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CHAPTER 1 

  INTRODUCTION 

 High-flying unmanned reconnaissance and surveillance systems are now being 

used extensively in the United States military.  Current development programs are 

producing demonstrations of next-generation unmanned flight systems that are designed 

to perform combat missions.  Their use in first-strike combat operations will dictate 

operations in densely cluttered environments that include unknown obstacles and threats, 

and will require the use of terrain for masking.  The demand for autonomy of operations 

in such environments dictates the need for advanced trajectory optimization capabilities.  

In addition, the ability to coordinate the movements of more than one aircraft in the same 

area is an emerging challenge.   

 There are presently many different methods being used to solve trajectory 

problems for both single and multiple vehicles.  Most of these methods commonly consist 

of different ways of stringing together pre-determined potential flight segments into an 

optimal or near-optimal path.  These include using a Hybrid A* algorithm, Voroni 

polygons, probabilistic maps and other graphical methods.  Some researchers are also 

experimenting with various analytical techniques to solve these path-planning problems, 

including singular perturbation, genetic algorithms and neighboring optimal control as 

well as other analytical techniques. 

 Many determine UAV trajectories using a Hybrid A* or similar search tree 

algorithm.  This consists of optimizing the trajectory based on any specified cost function 

using a library of predetermined vehicle movements.  First, a library of potential motion 
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segments is built; then they are sequenced to find the path that minimizes the cost 

objective.  This process has been used for both 2D and 3D motion planning.1-6

 Several methods involve the use of Voroni polygons.  This consists of dividing 

the potential flight space into a graph where the vertices represent a specific position and 

orientation of the vehicle.  Costs of the path between two vortices are then determined via 

the vehicle dynamics and cost function.  First a suboptimal path is found by searching a 

graph based on Voroni polygons, and then the path is improved through a variety of 

techniques, including cubic splines and nonlinear ordinary differential equations.7-12

  Some researchers have examined other methods of graphically determining 

minimum paths between two points.  First a set of flyable paths is determined by 

combining certain maneuvers into a flight path.  These paths were then examined to find 

the one with the lowest cost.  Two different basic path scenarios are generally used.  One 

consists of flight paths of the form circular arc – straight line – circular arc.13 Another 

considers paths that use three circular arc maneuvers.14

 A large number of the analytical techniques used for optimal trajectory generation 

involve a direct solving method of nonlinear programming.  This consists of solving the 

set of Karush–Kuhn–Tucker equations, instead of the Euler-Lagrange equations from 

classical optimal control.15 One method is to first discretize the differential and algebraic 

constraints using a collocation method with the state variables approximated as 

polynomials and the control variables approximated as piecewise linear functions.  This 

results in a purely algebraic problem that can be directly solved.16-18 Another technique 

involves using either a Gauss or Legendre pseudospectral method.19-22 
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 There are a wide variety of other analytical techniques that have been employed 

to determine optimal, or near-optimal, trajectories.  One method involves using singular 

perturbation techniques to create a two-point boundary value problem.23 Another 

involves using a probabilistic map – which is defined as the risk of exposure to threats as 

a function of position – to find an optimal path while avoiding threats.24 A third uses a 

nonlinear trajectory generation algorithm that finds a trajectory parameterized by B-

splines, the coefficients of which are then found to satisfy the optimization objectives and 

constraints.25  In addition, neighboring optimal control is also used to find optimal 

trajectories.26

 Several groups of researchers use genetic algorithms to solve optimal trajectory 

problems, for both single and multiple vehicles.  One way is to have a set number of 

defined maneuvers and standard small-formation tactics, then use the genetic algorithm to 

determine how they can be integrated to optimize the problem.27 Another possibility is to 

first convert the optimization problem to a nonlinear programming problem; then use a 

real-coded genetic algorithm to solve it.28  A third method is to use the genetic algorithms 

to find an optimal set of waypoints defining the trajectory, then connect the points with 

flyable curves.29  Others use a genetic algorithm to find a near optimal solution by 

searching a population of possible vehicle path portions.30-33 

 In the early 1990s, P. K. Menon and Eulgon Kim researched methods of optimal 

trajectory path planning for terrain following and terrain masking flight.  This research 

produced a reduced order formulation based on a constant velocity approach.34-35 Ping Lu 

and Bion Pierson then used an inverse dynamics approach to solve a terrain following 

problem that included a more realistic varying velocity.36 In 2005, Tobies Ries conducted 
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similar research using a graphical optimization program called GESOP.  This program 

allows the inclusion of a six degree-of-freedom UAV model with dynamics.37

 This research expands on the work done by Menon and Kim.  It was decided to 

continue investigating using a reduced order formulation in order to exploit the benefits 

of analytical methods of solving the optimal path planning problem before it became 

necessary to use any numerical methods.  In most numerical methods, the time step for 

the discretization phase usually must be very small to avoid loss of information.  This 

leads to very long solving times.  Also, the graphical methods of solving this type of 

problem rarely lead to an optimal solution.  The components of the research presented 

here include 

• Inclusion of wind effects, moving target and moving threats to pseudo-3D 

constant velocity formulation. 

• Examination of interior point constraints. 

• Expansion of pseudo-3D equations of motion to full 3D equations of motion. 

• Addition of velocity as a state to create a 3D varying velocity formulation. 

• Expansion of pseudo-3D and 3D equations of motion to handle cooperative path 

planning for n-vehicles. 

• Derived second order variation conditions for each formulation and used these 

conditions to assist in finding the optimal initial conditions. 

 Two pseudo-3D formulations are presented: one using local tangent plane 

equations of motion and one using simplified equations of motion.  These equations of 

motion are used both with determining the trajectories for a single aircraft as well as for 

multiple vehicles.  Figure 1 depicts a sample terrain profile with the X-Y-H coordinate 
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system and a local x1-y1-z1 coordinate system.  The moving local coordinate system has 

its origin on the terrain surface at a current x, y position with the x1-y1 plane being the 

tangent plane.   

Figure 1.1: Relationship between Inertial Frame and Local Tangent Plane. 

The local tangent plane formulation incorporates the constraint that the vehicle flies 

tangentially to the local terrain directly into the equations of motion and can be written as 

211

sincos
AA

fVf
A

Vx yx ψψ +=&  (1.1) 

2

1 sin
A

VA
y

ψ−
=&  (1.2) 

The simplified equations of motion are an approximation written in the local level frame 

and neglect the effects of the terrain slope in the position kinematics. 

ψcosVx =&  (1.3)

ψsinVy =&  (1.4) 
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 Chapters 2 to 6 investigate the implementation of the optimal path planning with a 

single vehicle.  Chapter 2 formulates the problem using both the simplified and local 

tangent plane equations of motion and includes the effects of adding a moving target, 

wind effects and moving threats.  Chapter 3 details the results gathered from using these 

methods.  Chapter 4 repeats this problem using 3D equations of motion, both with a 

constant velocity and with a varying velocity.  Chapter 5 contains the results for these 

formulations.  Chapter 6 compares the results from Chapters 2-5 and then investigates 

implementing the analytical results from these methods in a full six degree-of-freedom 

flight simulator.  In addition, results are compared to those found using GESOP. 

 Chapters 7 through 10 deal with implementing this process using multiple 

vehicles.  In Chapter 7, the necessary equations are derived for n-vehicles using the 

simplified and local tangent plane equations of motion.  The corresponding results for 

these formulations are depicted in Chapter 8.  In Chapter 9, the n-vehicle formulation is 

expanded to use the 3D constant velocity equations of motion and those results are in 

Chapter 10.

 Details on the methods used to solve these problems are discussed in Chapter 11 

while conclusions and future research are presented in Chapter 12.  The second variation 

analysis of these problems is considered in Appendix A.  Here the Legendre-Clebsch 

necessary condition and the Jacobi condtion – which are needed to ensure at least a weak 

local minimum – as well as the Weierstrass test – which is needed to ensure a strong local 

minimum – are examined.  For the Legendre-Clebsch condition and the Weierstrass test, 

it is found that certain inequalities must be satisfied at all time.  These specific 
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inequalities are examined throughout the thesis for each formulation.  For the Jacobi 

condition, it is found that a matrix created by perturbing the optimal solution must be 

fully rank at all time.  All the results presented in this thesis meet this requirement, and 

this condition is not discussed explicitly for the different sections   Last, various 

necessary mathematical proofs are contained in Appendix B. 
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CHAPTER 2 

  SINGLE VEHICLE FORMULATION 

  2.1 Local Tangent Plane Equations of Motion 

 In this formulation, the equations of motion were described in equations (1.1) and 

(1.2) and are restated here.   

( )yxu
AA

fVf
A

Vx yx ,
sincos

211

++=
ψψ

&  (2.1) 

( )yxv
A

VA
y ,sin

2

1 +
−

=
ψ

& (2.2)

These equations embody the constraint that at all times the vehicle flies tangentially to 

the local terrain.  Here, x and y are the north and east components, respectively.  V is the 

total aircraft velocity while u and v are the wind velocities in the x and y-directions, 

respectively.  The heading of the vehicle is represented by ψ -- the heading angle 

measured with respect to the local tangent plane.  Also, fx and fy are the partial derivatives 

of the terrain profile.  A1 and A2 are given by  

2
1 1 xfA +=  (2.3) 

22
2 1 yx ffA ++=  (2.4) 

 The cost function for this problem can be seen in the following equation. 

( )[ ]+−= ft
dttyxKgKJ

0
),,(1  (2.5) 

In this equation, the combined threat and terrain function, g(x,y,t), is given as a function 

of time as well as the position and can be defined as follows.

),,(),(),,( tyxfyxftyxg T+=  (2.6) 
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Here, f(x,y) is the function for the terrain profile and fT(x,y,t) is the function denoting the 

moving threat.  The weighting parameter, K, can vary between 0 and 1 and determines 

the relative importance of time and terrain masking/threat avoidance used in the 

optimization.  When K = 0, the equations are optimized with respect to time.  When K is 

set to 1, the path is optimized with respect to the threats and the terrain.  The Hamiltonian 

equation can then be given as 

+
−

++++= v
A

VA
u

AA
fVf

A
V

AH y
yx

x
2

1

211
4

sinsincos ψλ
ψψλ  (2.7) 

In this expression, λx and λy are the costate equations and A4 can be seen in the following 

equation.

( )tyxKgKA ,,14 +−=  (2.8) 

 The moving threat and target equations of motion are, respectively:   

TTT

TTT

Vy
Vx

ψ
ψ

sin
cos

=
=

&

&
 (2.9) 

TgTgTg

TgTgTg

Vy

Vx

ψ
ψ

sin

cos

=

=
&

&
 (2.10) 

In each expression, it is assumed that the respective velocity and heading angle are 

known at all times.  The moving target then results in a new boundary condition. 

fttTg

Tg
f tyty

txtx
t

=
−
−

=Ψ
)()(
)()(

)(  (2.11) 

In this expression, it can be seen that Ψ(tf) has an explicit dependence on the final time as 

a consequence of the fact that the target coordinates are assumed to satisfy equation 

(2.10).  Therefore, for a free final time, the Hamiltonian equation satisfies 
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[ ]
f

f

ttTgyTgxTg
tt

T
f V

t
tH

=
=

+=
∂
Ψ∂−= ψλψλλ sincos)(  (2.12) 

   Due to the moving threat, the Hamiltonian equation, (2.7), is explicitly dependent 

on time.  Given this, the optimality condition for a solution along an extremal arc shows 

that 

tKg
t

H
H =

∂
∂=&  (2.13) 

where gt denotes the partial derivative of the penalty function with respect to time.  

Assuming that the threat is constant when expressed in a coordinate system that is 

attached to the moving threat, then 

( ) ( )[ ])(,,, tyytxxgtyxg TT −−=  (2.14) 

with the threat coordinates satisfying (2.9).  Thus 

( )TyTxT ggKVH ψψ sincos +−=&  (2.15) 

Because the final time is free, the boundary condition for this expression is defined in 

(2.12).

 The optimality condition for this problem is defined as 

0=ψH  (2.16) 

Evaluating this expression results in the following relationship 

ψ
ψψ

λλ
cos

sincos

1

2

121 VA
A

A
V

AA
fVf yx

xy −=  (2.17) 

Equation (2.17) can then be substituted into the Hamiltonian equation, (2.7), to determine 

equations defining the two costates, λx and λy as follows. 

( )
Den

AHA
x

ψλ cos2
14 −−

=  (2.18) 



 11 

( ) ( )
Den

ffHAAHA yx
y

ψψ
λ

cossin 424 −−−
=  (2.19) 

where

ψψψ sincoscos 2
2

11 vAvffuAVADen yx −++=  (2.20) 

These new expressions for the costates can then be inserted into (2.12) to result in a new 

boundary condition for the Hamiltonian at the final time. 

( ) ( )
( )

fttTgTgyxTgTg

TgTgyxTgTg
f DenAffAV

AffAAV
tH

=
−−+

−+
=

ψψψψψψ
ψψψψψψ

sinsinsincoscoscos
sinsinsincoscoscos

2
2

1

2
2
14  (2.21) 

 Differential equations for the costates can be found using 

yy

xx

H

H

−=

−=

λ
λ
&

&
 (2.22) 

This yields 

+−++−−=
1

14

1

132 sinsincos
D

vDD
D

uDDDKg x
y

x
xxx

ψλψψλλ&  (2.23) 

+
−

++
−−=

1

17

1

165 sinsincos
D

vDD
D

uDDD
Kg y

y
y

xyy

ψ
λ

ψψ
λλ&  (2.24) 

where

3
2

3
11 AAD =  (2.25) 

3
22 AfVfD xxx−=  (2.26) 

yxxxyx ffBVAfffVABAVAD 1
2

1
22

22
2
2

2
13 −−=  (2.27) 

xxx ffAVABVAD 2
2

2
11

4
14 −=  (2.28) 

3
25 AfVfD xyx−=  (2.29) 

yxxyyx ffBVAfffVABAVAD 4
2

1
22

23
2
2

2
16 −−=  (2.30) 
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xyx ffAVABVAD 2
2

2
14

4
17 −=  (2.31) 

xyyxxx ffffB +=1  (2.32) 

xxyxyx ffffB +=2  (2.33) 

xyyyyx ffffB +=3  (2.34) 

yyyxyx ffffB +=4  (2.35) 

Next, the time derivative of either equation (2.18) or (2.19) is taken and set equal to its 

counterpart in equation (2.23) or (2.24).  This expression can then be solved for the 

derivative of the heading angle such that 

8

7654321

T
vTvTuTuTvTuTT yxyx ++++++

=ψ&  (2.36) 

where

( ) 2411 SHAVKVST −+−=  (2.37) 

( ) 4432 SHAKST −+−=  (2.38) 

( ) 6453 SHAKST −+=  (2.39) 

( ) 744 SHAT −=  (2.40) 

( ) 845 SHAT −=  (2.41) 

( ) 946 SHAT −=  (2.42) 

( ) 1047 SHAT −=  (2.43) 

( ) 2
2

3
148 AAHAT −=  (2.44) 

( )[ ]ψψ cossin 2
22

2
11 yxxyxyx ffggfggAAAS −++=  (2.45) 

( ) ψψ cossin 2
2

1
2

2 xxyxyyxxyx ffAffAfffS +−=  (2.46) 
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( )[ ] ψψψ coscossin 2
22

3
13 yxxyxyx ffggfggAAAS −++=  (2.47) 

( )
( ) ψψ

ψ

cossin2

cos
22

1
2

11

222
1214

xxyxxyyxxx

xxyxxyxxyx

fffffAffAA

fffffffAAAS

+−+

++−=
 (2.48) 

( )
( ) ψψ

ψψ
22

1
22

21
23

21

2
1

2
215

cossin

cossin2

yyxyxxx

yxxy

fgfAffgAAgAA

ffggAAAS

−++

+−=
 (2.49) 

( )
( ) ψψ

ψ

cossin2

cos
2

1
2

1
2

1

22
1

2
216

yyyxyxxyyx

yyxxyyxxyy

ffAffAfffA

ffAfffffAAS

−++

++−=
 (2.50) 

( ) ψψψ coscossin22
3
17 yx ffAAAS −=  (2.51) 

ψ2
2

5
18 cosAAS =  (2.52) 

( ) ( ) ψψψ 2222
2212

2
219 coscossin2 yxyx ffAAAAffAAS −+−=  (2.53) 

( ) ψψψ cossincos 22
3
110 AffAAS yx −=  (2.54) 

 This solution consists of four differential equations -- x, y, H and ψ -- and requires 

two initial conditions to be found -- H and ψ.  The final value of the Hamiltonian is 

known, via equation (2.21).  The solution is reached when the final values of the 

Hamiltonian and position are met and the cost is minimized.  When there are no moving 

threats, the Hamiltonian is constant in value – so there are only three differential 

equations – and the final value is still known.  When there is no moving target, the final 

value of the Hamiltonian is zero. 

2.1.1 Legendre-Clebsch Necessary Condition 

 The Hamiltonian equation for the local tangent plane equations of motion is 
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−
+++=

2

1

211
4

sinsincos
A

VA
AA

fVf
A

V
AH y

yx
x

ψλ
ψψλ  (2.55) 

and the algebraic equations for the costates are 

( )

( )( )
1

24

14

cossin

cos

VA
ffAHA

V
AHA

yx
y

x

ψψ
λ

ψλ

−−
=

−−
=

 (2.56) 

Since there is only one control, the second partial derivative of the Hamiltonian with 

respect to the heading angle is a scalar value and is represented by 

+−−=
2

1

211

sinsincos
A

VA
AA

fVf
A

V
H y

yx
xuu

ψλ
ψψλ  (2.57) 

Substituting in the equations for the optimal costates will result in 

( ) 04 ≥−= HAH uu  (2.58) 

This condition must always be satisfied. 

   

2.1.2 Weierstrass Test 

The variational Hamiltonian can be found by substituting the costate equations from 

(2.56) for the optimal path into the Hamiltonian equation from (2.55) evaluated for any 

path.  This yields 

( ) ( )

( )( ) −−−

++
−−

+=

2

1

1

24

211

14
4

sincossin

sincoscos

A
VA

VA
ffAHA

AA
fVf

A
V

V
AHA

AH

o
yx

yx
o

ψψψ

ψψψψ

 (2.59) 

This can be simplified to  

( ) ( ) ( )[ ] 0cos14 ≥−−−= ψψψ oHAH  (2.60) 
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which will always be satisfied if equation (2.58) is satisfied. 

   

  2.2 Simplified Equations of Motion 

 The equations of motion used in the simplified formulation are described earlier in 

equations (1.3) and (1.4) and are restated here 

),(cos yxuVx += ψ&  (2.61) 

),(sin yxvVy += ψ&  (2.62) 

These equations are written in the local level plane and neglect the effects of the terrain 

slope.  The cost equation for this case is the same as earlier and can be found in equation 

(2.5).  The corresponding Hamiltonian equation is therefore 

[ ] [ ]vVuVAH yx ++++= ψλψλ sincos4  (2.63) 

The equations governing the moving target and moving threat can be seen above in 

equations (2.9) and (2.10). 

 Evaluating the optimality condition stated in equation (2.16) for this formulation 

results in the expression 

ψ
ψλλ

cos
sin

xy =  (2.64) 

Substituting this into the Hamiltonian equation results in the following costate equations 

( )
ψψ

ψλ
sincos

cos4

vuV
HA

x ++
−−

=  (2.65) 

( )
ψψ

ψλ
sincos

sin4

vuV
HA

y ++
−−

=  (2.66) 

Therefore, the Hamiltonian evaluated at the final time will be  
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( ) ( )
( ) ( )

fttTgTg

TgTg
f vuVV

AV
tH

=
++−−

−
=

ψψψψ
ψψ

sincoscos
cos4  (2.67) 

 The costate differential equations can then be found to be 

xyxxxxx vuKgH λλλ −−−=−=&  (2.68) 

yyyxyyy vuKgH λλλ −−−=−=&  (2.69) 

As before, the time derivative of (2.65) or (2.66) is found and equated to either (2.68) or 

(2.69).  This expression can then be rearranged to result in the following heading 

differential equation. 

( )
7

654321

R
vRuRvuRvRuRR xyyx ++−+++

=ψ&  (2.70) 

with 

( )ψψ sincos1 xy ggKVR −=  (2.71) 

( ) ψψψ cossincos2 xy ggKR −=  (2.72) 

( ) ψψψ sinsincos3 xy ggKR −=  (2.73) 

( ) ψψ cossin44 HAR −=  (2.74) 

( ) ψ2
45 cosHAR −−=  (2.75) 

( ) ψ2
46 sinHAR −=  (2.76) 

( )HAR −= 47  (2.77) 

Again, the inclusion of a moving target and moving threat results in a system of four 

differential equations with two initial parameters to be found.  
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2.2.1 Legendre-Clebsch Necessary Condition 

The Hamiltonian equation for the simplified equations of motion is 

[ ] [ ]ψλψλ sincos4 VVAH yx ++=  (2.78) 

and the costate equations are 

( )

( )
V
HA

V
HA

y

x

ψλ

ψλ

sin

cos

4

4

−−
=

−−
=

 (2.79) 

The partial derivative of the Hamiltonian equation with respect to the heading angle is 

( ) 04 ≥−= HAH uu  (2.80) 

whish must always be satisfied. 

   

2.2.2 Weierstrass Test 

 Using the Hamiltonian equation in (2.78) and the costate equations in (2.79), the 

variational Hamiltonian can be written as 

( ) [ ] ( ) [ ]ψψψψ sinsincoscos 44
4 V

V
HA

V
V
HA

AH
oo −−

+
−−

+=  (2.81) 

This equation can be reduced to

( ) ( ) ( )[ ] 0cos14 ≥−−−= ψψψ oHAH  (2.82) 

which will always be satisfied if equation (2.80) is satisfied. 

2.3 Waypoints 

One useful problem variation that can also be investigated is the implementation of 

interior point constraints during the flight.38-39 For this problem, the constraints will be 
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implemented in the form of waypoints where a specific position is required in the middle 

of the flight.  There can be n-number of waypoints during this flight, such that each 

waypoint – with a given x and y position – is reached at an unspecified time, ti, in a 

specified order before ending at the specified final position. 

 In this type of problem, there are certain constraints on the costates and 

Hamiltonian that must be fulfilled at the interior points.  They include 

0)()(

)()(

)()(

2

1

==

+=

+=

−+

−+

−+

ii

iiyiy

iixix

tHtH

tt

tt

υλλ
υλλ

 (2.83) 

This implies that the value of each of the costates will jump at each waypoint while the 

Hamiltonian will remain constant.  Because of that, the heading angle will also jump at 

each waypoint.  This will result in a trajectory such as that seen in Figure 2.1.  In this  

  Figure 2.1: Solution with one waypoint.  

   
example, flight over a flat plane with one waypoint is considered.  Because all the terrain 

partial derivatives are zero, the local tangent plane equations of motion will reduce to the 

simplified equations of motion.  In addition, both the costates will be at a constant value 
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at all times with a jump at the time of reaching the waypoint.  This results in the heading 

angle also being a constant value with a jump at the waypoint.  Having a jump in the 

heading angle will create an optimal path that is not flyable.  Therefore, the equations of 

motion for this section will be modified to ensure a smooth trajectory. 

 The equations of motion for this section will include the equations used earlier with 

the addition of ψ as an additional state.  This results in equations of motion of 

u
A

VA
y

AA
fVf

A
Vx yx

=

−
=

+=

ψ

ψ

ψψ

&

&

&

2

1

211

sin

sincos

 (2.84) 

for the local tangent plane or 

u
Vy
Vx

=
=
=

ψ
ψ
ψ

&

&

&

sin
cos

 (2.85) 

for the simplified equations of motion.  In these equations, u designates the control 

variable for the system.  The new cost equation is 

( ){ } { }+=++−= ff tt
dtWuAdtWuKfKJ

0

2
40

21  (2.86) 

which is the same as above with the inclusion of the control in the cost multiplied by a 

weighing factor. 

 The Hamiltonian for this problem is now 

uyxWuAH yx ψλλλ ++++= &&2
4  (2.87) 

For both formulations, evaluating the optimality equation results in 

ψλ+== WuH u 20   (2.88) 
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This yields the following equation for the control 

W
u

2
ψλ

ψ
−

== &  (2.89) 

At each interior point, the following conditions on the costates and the Hamiltonian must 

be met. 

0)()(

)()(

)()(

)()(

2

1

==

=

+=

+=

−+

−+

−+

−+

ii

ii

iiyiy

iixix

tHtH

tt

tt

tt

ψψ λλ

υλλ
υλλ

 (2.90) 

Using these conditions from (2.90) as well as equations (2.87) and (2.86), an independent 

equation for λy is found as follows. 

y
xAWu x

y &

&λλ −−
= 4

2

 (2.91) 

 Next the differential equations for the other two costates can be determined using 

ψψλ
λ

H

H xx

−=

−=
&

&
 (2.92) 

This yields 

+−=

−
+

−−=

2

1

211

1

4

1

32

coscossin

sinsincos

A
VA

AA
fVf

A
V

D
D

D
DD

Kf

y
yx

x

yxxx

ψλ
ψψλλ

ψλψψλλ

ψ
&

&

 (2.93) 

for the local tangent plane equations of motion with D1 through D7 defined in equations 

(2.25) – (2.31).  For the simplified equations of motion, the costate differential equations 

are
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ψλψλλ
λ

ψ cossin VV

Kf

yx

xx

−=

−=
&

&
 (2.94) 

 This results in a system of six differential equations.  The initial conditions for the 

two costates – λx and λψ – must be found as well as υ1 for each waypoint. 

2.3.1 Legendre-Clebsch Necessary Condition 

The Hamiltonian equation is stated in equation (2.87).  The second partial 

derivative of it then 

  02 >= WH uu  (2.95) 

which means that this condition is always satisfied. 

2.3.2 Weierstrass Test 

Using the Hamiltonian equations in (2.87) and the algebraic equations for λy and

λψ found in (2.91) and (2.89), the variational Hamiltonian can be found to be 

( ) 0)( 2 ≥−= ouuWuH  (2.96) 

This shows that the Weierstrass test is always satisfied. 
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CHAPTER 3 

  SINGLE VEHICLE RESULTS 

  3.1 Terrain Data 

 Two general types of terrain models are used for the results throughout this thesis.  

The first is a generic terrain model used for the initial testing of the equations.  This 

consists of variations of a flat plane with one or more constructed hills.  The second 

consists of actual terrain data for a larger area.  This allows the opportunity for the 

various equations to be tested in a more realistic manner.  

 A sample terrain of the generic model is shown in Figure 3.1.  In this case a 

mostly flat plane with a single hill is used.  This hill in this terrain is formulated using the 

exponential function 

b
r

Aef
2

−=  (3.1) 

where A is the amplitude, b is a scaling factor to adjust the width and r is the distance 

from any position to the center of the threat.   

Figure 3.1: Terrain with threats formulated as an exponential function.   
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 Real terrain data was acquired from the United States Geological Survey to 

incorporate into this model.40 The data was found in tabular format relating the altitude to 

the locations longitude and latitude, with data points spaced approximately every 48 feet.  

This data was then converted to matrix form, from which it could then be used as 

),( yxf .  Because of the distance between the sampled altitude points in the matrix, the 

data was then smoothed to appear more continuous and to remove discontinuities in 

altitude.  The gradients of this matrix, along both the x and y directions, were calculated 

numerically to form matrices representing ),( yxf x  and ),( yxf y .  The gradients of these 

two matrices yielded matrices for ),( yxf xx , ),( yxf yy  and ),( yxf xy .

Figure 3.2: Terrain plot of an area near Columbus Ohio. 



 24 

 For this portion of the testing, it was decided to use a section of terrain near 

Columbus, Ohio.  A profile of this terrain can be seen in Figure 3.2.  In this graph, the x 

and y-axes depict the position coordinates, measured in feet, such that the x-axis point 

north and the y-axis points east.  The altitude of the terrain is measured along the z-axis 

and is also given in feet.  This plot depicts a square plot of land, with 10,000 feet to a 

side.  The measurements along the x and y-axes are relative to a set origin for the terrain 

data collected; this plot is just one small portion of the database. 

   3.2 Wind Effects 

 First, the effects of a wind blowing were investigated.  For this portion, the terrain 

model shown in Figure 3.1 was used with the single hill.  For these flights, the initial and 

final points are (500,1800) and (500,200).  Therefore the hill is directly between the two 

endpoints.  With K set to 1, the optimal path found will curve around the hill.  Since this 

is a symmetric field, there are two possible optimal paths when there is no wind – the 

path flying clockwise around the hill and the path flying counter-clockwise around the 

hill.

  Figure 3.3: Wind magnitudes of a circulating pattern.  
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 Here, a circulating wind pattern was introduced to the problem.  In this case, the 

wind moved in a circular pattern centered at the top of the hill with a decreasing speed 

moving away from the hill.  The magnitudes of the wind can be seen in Figure 3.3.  This 

plot was generated using equation (3.1). 

 With the winds added, the optimal path is the option where the aircraft moves in 

the same direction as the circulating wind flow.  Figure 3.4 shows the solutions found 

with the winds moving in a clockwise direction.  The trajectory is on the left and the 

heading angle is plotted on the right.  In Figure 3.5 the trajectory and heading angle for a 

flight with counter-clockwise wind are depicted. 

   Figure 3.4: Trajectories for flights with clockwise wind. 

Figure 3.5: Trajectories for flights with counter-clockwise wind. 
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  3.3 Moving Target and Threats 

 The simple terrain depicted above in Figure 3.1 consisting of a flat plain with a 

single hill was also used to test the moving threat and target formulation with K=1.  The 

initial position is located at (500, 1800).  The moving target begins at the point (900, 200) 

and travels south while the two threats begin at (600, 1400) and (600, 400), respectively, 

and travel in a south-easterly direction.   For this situation, the results from the simplified  

equations of motion and the local tangent plane equations of motion are the same, so only 

one set of results are depicted. 

Figure 3.6: Paths generated with a moving target. 
Target Path 1

Target

Path 1
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 Figure 3.6 shows the first result.  This is the case when there is a moving target 

and no threats are present.  The target is represented by the purple line and the trajectory 

is depicted by the blue line.   

 The second case is depicted in Figure 3.7.  In this scenario, the moving target is 

still present, but there is also one threat in the area to be avoided.  The threat is shown as 

the red line in the plot.  This figure also includes the result with the first case shown in 

Figure 3.6.  Figure 3.8 shows the distances between the vehicle and the threat when path  

Figure 3.7: Paths generated with a moving target and one moving threat. 

Target

Path 1

Threat 1

Path 2
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1 or path 2 are flown.  It can be seen there that path 1 – the blue line – collides with the 

threat while path 2 – the red line – is about 100 feet away from the threat at its closest 

point.  Thus it can be seen how path 2 changes to avoid the threat. 

Figure 3.8: Distance between trajectories and threat 1. 

Figure 3.9: Path generated with a moving target and two moving threats. 

Target

Path 1

Threat 1

Path 2

Threat 2

Path 3
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 Figure 3.9 shows the results from Figure 3.6 with the addition of a second threat 

and a new trajectory, path 3.  The beginning of the flight is the same as path 2 until the  

Figure 3.10: Distance between trajectories and threat 2. 

first threat is avoided, then the new trajectory shifts to avoid the second threat.  Figure 

3.10 shows the distances between threat 2 and both path 2 and path 3.  Here it can be seen 

that path 2 – shown with the blue line – collides with the threat while path 3 – depicted 

by the red line – stays a minimum of about 100 feet from the threat.

 It was shown in the previous chapter that the Legendre-Clebsch and Weierstrass 

tests are satisfied if the following inequality is satisfied for all time.   

04 >− HA  (3.2) 

When considering the case of moving targets and moving threats, the Hamiltonian is no 

longer zero at all times, so this condition must be tested.  Figure 3.11 shows the value for 

this function at all times for each of the three paths found in this section.  It can be seen 

here that this function is always positive. 
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  Figure 3.11: Weierstrass and Legendre-Clebsch test. 

  3.4 Pop-up Threats 

 The case of pop-up threats during flight was also investigated.  In this case, the 

optimal path is in mid-flight when a stationary threat appears.  A new trajectory must 

then be calculated.  To test this, a flight through the Columbus terrain – shown in Figure 

3.2 – was used, utilizing the constant velocity, local tangent plane equations of motion.  

In this case, a threat was added to the terrain as a single hill, as shown above in Figure 

3.1, with a height of 300 feet above the level of the terrain at that point. 

 The results for this section can be seen in Figure 3.12.  In this plot, the black 

dashed line depicts the original trajectory found; here it goes directly through the new 

threat.  The three new trajectories are then shown as solid red lines.  These depict the 

results when the threat is detected at three different times in the flight – at 7 seconds, 12 

seconds and 16 seconds into the approximately 36-second flight.  The plot on the right 

contains the plots of the heading angle for these four flights.  The black line represents 

the heading angle for the nominal trajectory while the blue, red and green lines represent 

the heading angles for the trajectories when the threat is detected at 7, 12 and 16 seconds, 
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respectively.  For each of these flights, the jump in the heading angle can be seen when 

the threat is detected and the new trajectory is calculated. 

   Figure 3.12: Trajectories found with a pop-up threat 
  using local tangent plane equations of motion. 

3.5 Waypoints 

Two different cases of flying between waypoints are presented in this section.  In 

each case, two waypoints are included in the flight scenarios.  The first case concerns a 

flight over a flat plane.  In this case, because there is a constant terrain, the local tangent 

plane equations of motion will reduce to the simplified equations of motion.  The second 

case concerns flight over real terrain.  For this case, the trajectory uses the local tangent 

plane equations of motion. 

 The first, shown in Figure 3.13, consists of a flight on a flat plain with two 

waypoints.  The start position for the flight is at point (100, 100) with an initial heading 

of 0.44 radians; the first waypoint is at (600, 400); the second waypoint is at (900, 1900); 

the final position is (600, 1600).  Here the initial position and the two waypoints are 
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marked with red circles while the final position is marked with a red x.  The heading 

angle for this flight is depicted in the plot on the right. 

  Figure 3.13: Trajectory on a flat plain with two waypoints. 

  Figure 3.14: Trajectory on real terrain with two waypoints. 

 The second waypoint case involves flight over real terrain and is depicted in 

Figure 3.14.  In this case, the initial position is (11000, 9000), the end position is (12500, 

17000), and the initial heading angle is 6.3 radians.  The two waypoints are located at 

(16000, 11000) and (13000, 12000).  As before, the initial position and two waypoints are 
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marked with red circles while the final position is marked with a red x.  Again, the 

heading angle for this flight is depicted in the plot on the right. 
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  CHAPTER 4 

  SINGLE VEHICLE 3D FORMULATION 

  4.1 Constant Velocity 

 The 3D equations of motion used are 

ψγ coscosVx =&  (4.1) 

ψγ sincosVy =&  (4.2) 

γsinVz =&  (4.3) 

Here, V is the constant vehicle velocity, γ represents the flight path angle and ψ is the 

heading angle.  The cost equation used for this problem is 

{ } =+= ff tt
dtAdtCCJ

0 40 21  (4.4) 

( )yxKfKC ,11 +−=  (4.5) 

( )[ ]2
2 ),( chyxfzWC +−=  (4.6) 

 This cost equation has two distinct parts.  The first, and dominant part, is C1

shown in (4.5).  This part controls the importance of minimizing terrain masking versus 

minimizing flight time.  The second part is C2 as seen in (4.6).  Here, hc, the ground 

clearance, is a constant provided by the operator and represents the desired flight height 

above the terrain.  This part is used to keep the flight path near the desired ground 

clearance throughout the flight.  W is a weighing parameter supplied by the user. 

 The Hamiltonian is 

0sinsincoscoscos4 =+++= γλψγλψγλ VVVAH zyx  (4.7) 

The optimality conditions for this problem are now 
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0

0

=

=

γ

ψ

H

H
 (4.8) 

Expressions for the three costates can then be found to be 

V
A

x
ψγλ coscos4−

=  (4.9) 

V
A

y
ψγλ sincos4−

=  (4.10) 

V
A

z
γλ sin4−

=  (4.11) 

The differential equations for the costates can then be found using the equations 

zz

yy

xx

H

H

H

−=

−=

−=

λ

λ
λ

&

&

&

 (4.12) 

and can be shown to be 

12 BWfKf xxx +−=λ&  (4.13) 

12 BWfKf yyy +−=λ&  (4.14) 

12WBz −=λ&  (4.15) 

where

( )chfzB +−=1  (4.16) 

 Next, the time derivative of equation (4.11) can be taken and set equal to equation 

(4.15).  This can be solved to find the following differential equation for γ.

( )( )
4

11 2sincossincos2
A

KWBffVVWB yx −++
=

ψψγγ
γ&  (4.17) 
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Then the time derivative of either (4.9) or (4.10) can be calculated and set equal to the 

corresponding costate differential equations shown in (4.13) or (4.14), respectively.  This 

equation can be solved to find a differential equation for ψ.

( )( )
γ

ψψ
ψ

cos
2cossin

4

1

A
KVWVBff yx −−

=&  (4.18) 

This results in a system of five differential equations – x, y, z, ψ, and γ – with two 

unknown initial conditions – ψ and γ.

4.1.1 Legendre-Clebsch Necessary Condition 

 The Hamiltonian equation is  

γλψγλψγλ sinsincoscoscos4 VVVAH zyx +++=  (4.19) 

and the costates are represented by  

V
A

V
A

V
A

z

y

x

γλ

ψγλ

ψγλ

sin

sincos

coscos

4

4

4

−
=

−
=

−
=

 (4.20) 

There are two controls for this section expressed as 

=
γ
ψ

u  (4.21) 

This results in a 2x2 matrix for the second partial derivative of the Hamiltonian such that 

−−−−
−−−

= γλψγλψγλψγλψγλ
ψγλψγλψγλψγλ

sinsincoscoscoscossinsinsin
cossinsinsinsincoscoscos

zyxyx

yxyx
uu VH  (4.22) 

Substituting in the costates from (4.21) will result in 
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( )=
4

2
4

0
0cos
A

A
VH uu

γ  (4.23) 

Therefore, this matrix will be nonnegative definite.  

   

4.1.2 Weierstrass Test 

 Substituting the optimal costates from (4.20) into the Hamiltonian in (4.19) for 

any potential control results in the following equation. 

( )[ ]ooooAuH γγγγψψψψ sinsincoscossinsincoscos1)( 4 −+−=  (4.24) 

In Appendix B, it is proven that this simplifies to 

( ) 01)( 4 ≥−= NAuH  (4.25) 

where

1≤N  (4.26) 

Therefore, this condition is always satisfied. 

  4.2 Velocity as a State 

 This next section investigates including the velocity of the vehicle as a fourth 

state.  The new equations of motion will now consist of the equations in (4.1-3) and also 

γsing
m

DTV −−=&      (4.27) 

In this equation, m is the mass of the vehicle, g is gravity, and T is the thrust of the 

vehicle, which, for optimal results should be held constant at its maximum value.  In 

addition, D is the drag and is represented by  

SV
ARe

C
CD L

Do
2

2

2
1 ρ

π
+=      (4.28) 
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Here, CDo is the nominal drag coefficient, AR is the aspect ratio, e is the efficiency factor, 

ρ is the density of air, S is the wing area and CL is the lift coefficient that is approximated 

by 

SV
mg

SV
LCL 22

2
1

2
1 ρρ

==  (4.29) 

These substitutions result in the following velocity differential equation 

2
32

2sin
V
B

VBg
m
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 The same process as outlined earlier is used to reduce the order of the problem.  

The new costate differential equation is found to be 
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Next the new differential equations for the flight path angle and the heading angle are 
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This process now results in a system of seven differential equations with three unknown 

initial conditions to be determined.   

4.2.1 Legendre-Clebsch Necessary Condition 

 The Hamiltonian equation is 
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Again, there are two controls which can be expressed as 

=
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Taking the second derivative of the Hamiltonian and substituting in the costates from 

(4.37) result in 
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This matrix will be nonnegative definite as long as the following inequality is satisfied 

for all time 

  014 ≥− HA vλ  (4.40) 

4.2.2 Weierstrass Test 

 Substituting the optimal costates from (4.37) into the Hamiltonian in (4.36) for 

any potential control results in the following equation. 
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where

1≤N  (4.42) 

as shown in Appendix B.  Therefore, this condition is satisfied when 

  014 ≥− HA Vλ  (4.43) 

which is the same condition as in (4.40). 
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CHAPTER 5 

  SINGLE VEHICLE 3D RESULTS 

 In this chapter are presented results using the 3D equations of motion, both with a 

constant velocity and with a varying velocity.  First, three sets of results are presented for 

both the terrain masking and minimum time optimization options.  In these cases, the 

terrains used are flat planes with a progressively steeper hill.  In addition, the initial 

altitude for these tests is very close to the desired flight altitude.  The next set of results is 

for a case where the initial altitude is significantly different than the desired flight 

altitude.  As before, the terrain used is a flat plane with a single hill and both terrain 

masking and minimum time flights are considered.  The final set of results uses real 

terrain.   

 Figures 5.1 – 5.6 depict the results using K = 0 – the minimum time case – over 

progressively steeper hills.  Results for each hill steepness are presented in two views, 

one 3D view on the left and one overhead view on the right.  The results in Figure 5.1  

  Figure 5.1: Results for K = 0 with a hill height of 30 feet. 
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  Figure 5.2: Controls for K = 0 with a hill height of 30 feet. 

and Figure 5.2 are for the least steep hill with a height of 30 feet.  Figure 5.3 and Figure 

5.4 depict the results for a terrain with a hill height of 40 feet.  The steepest hill, in Figure 

5.5 and Figure 5.6, has a height of 50 feet.  The first plots in each set contain the 3D and 

overhead views of the trajectories.  The second set of plots contains the heading angle –  

  Figure 5.3: Results for K = 0 with a hill height of 40 feet. 
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on the left – and the flight path angle – on the left.  The black line in each plot depicts the 

trajectory for the constant velocity case while the red line depicts the trajectory for the 

varying velocity case. 

  Figure 5.4: Controls for K = 0 with a hill height of 40 feet. 

  Figure 5.5: Results for K = 0 with a hill height of 50 feet. 
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  Figure 5.6: Controls for K = 0 with a hill height of 50 feet. 

 In the first two cases, it can be seen that the results for the constant velocity case 

goes directly over the hill.  In the third case, the constant velocity trajectory tends to veer 

slightly around the hill.  In this case, the hill is steep enough that it is quicker to fly 

slightly around the hill instead of directly over it.  For each of the three cases, the 

trajectories for the varying velocity formulation always veer to some degree around the 

hill, more than the trajectories using a constant velocity formulation. 

 Figure 5.7: Velocity profiles from the three cases for K = 0.
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Figure 5.7 shows the velocities from the varying velocity trajectories from the 

three minimum time cases.  The blue line corresponds to the result over the 30-foot hill, 

the red line is for the result with the 40-foot hill and the green line represents the result 

for the 50-foot hill.  In each case, the velocity decreases going over the hill, but, because 

as the hill height increases, the optimal trajectory veers more around the hill, the 

minimum velocity and velocity profile are almost the same for each case. 

In the last chapter, an inequality was derived that must be satisfied in order for the 

second order variation tests to be satisfied for the varying velocity formulation. 

 014 ≥−= HAW Vλ  (5.1)  

This function, W, must be positive at all times along the trajectory.  The plots for this 

function for each of the three minimum time cases can be seen in Figure 5.8.  It can be 

seen here that the second order variation conditions are always satisfied. 

Figure 5.8: Second variation inequality for K = 0. 

 Figures 5.9 – 5.14 similarly show the results for three progressively steeper hills 

with K = 1 – the terrain masking case.  Here it can be seen that the trajectories for both 
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the constant velocities and the varying velocity formulations are almost identical.  In all 

three cases, the optimal trajectories go around the hill. 

  Figure 5.9: Results for K = 1 with a hill height of 30 feet. 

  Figure 5.10: Controls for K = 1 with a hill height of 30 feet. 
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  Figure 5.11: Results for K = 1 with a hill height of 40 feet. 

  Figure 5.12: Controls for K = 1 with a hill height of 40 feet. 

  Figure 5.13: Results for K = 1 with a hill height of 50 feet. 
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  Figure 5.14: Controls for K = 1 with a hill height of 50 feet. 

 Velocity profiles for these cases can be seen in Figure 5.15.  In each case, it can 

be seen that there is a slight fluctuation in the velocity at the beginning as the altitude 

settles, then it smoothly increases slightly throughout the flight.  Figure 5.16 contains the 

plots of the function for the second variation tests for the three terrain masking varying 

velocity cases.  As before, it can be seen that these tests are always satisfied. 

 Figure 5.15: Velocity profiles from three cases of K = 1. 
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Figure 5.16: Second variation inequality for K = 1. 

 The final trajectories presented involve a flight over real terrain.    Figure 5.17 

shows the optimal results for K = 0 with the corresponding controls in Figure 5.18.  

Figure 5.19 depicts the results for K = 1 and those controls are shown in Figure 5.20. 

Both are overhead views of the terrain and trajectories.  The red sections indicate hills 

while the blue parts are valleys.  In both plots, the constant velocity trajectory is shown 

with black and the varying velocity path is in red.  The initial position is marked with a 

red circle on the left of the plots while the destination is marked with a red star on the 

right. 

 In Figure 5.17, the minimum time case, there is a significant difference in the two 

trajectories.  This is because for the case with the varying velocity, the vehicle loses 

speed going uphill – increasing the flight time – and gains speed going downhill – 

decreasing the flight time.  Therefore, the flight time is minimized by lessening the 

amount of uphills flown.  Instead, the trajectory for the minimum time case with the 

varying velocity is quite similar to the terrain masking trajectories, which are depicted in 

Figure 5.19.  It can be seen that the optimal trajectories for the terrain masking case are 

very similar to each other, whether considering a constant or varying velocity flight. 
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  Figure 5.17: Optimal trajectories for K = 0. 

  Figure 5.18: Controls for K = 0. 

Figure 5.19: Optimal trajectories for K = 1. 
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  Figure 5.20: Controls for K = 1. 

Figure 5.21: Velocities for flights over real terrain. 

Figure 5.22: Second variation inequality for flights over real terrain. 
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 The velocities for the varying velocity trajectories from Figures 5.17 and 5.19 are 

depicted in Figure 5.21.  In this plot, the velocity from the minimum time formulation is 

depicted be the black line while the red line represents the velocity from the terrain 

masking formulation.  The plots of the function from the second variation analysis 

inequality are depicted in Figure 5.22.  The plot on the left shows the function from the 

minimum time case while the plot on the right shows the function for the terrain masking 

case.  It can be seen that both functions are positive at all time. 
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CHAPTER 6 

  SIMULATOR RESULTS AND COMPARISONS 

This chapter more closely examines the formulations and results from the 

previous chapters concerning single vehicle optimal paths.  First a direct comparison of 

the results for all four formulations – for both minimum time and terrain masking flights 

– will be made.  Next the trajectories will be implemented in a full six degree-of-freedom 

flight simulator for a fixed wing UAV.  Then results from a simple flight test will be 

examined.  Finally, comparisons will be made between the pseudo-3D cases from 

Chapters 2 and 3 with similar results found using GESOP (Graphical Environment for 

Simulation and Optimization).   

  6.1 Trajectory Comparison 

 This section examines the results from the previous chapters.  For a given terrain, 

a flat plane with a single hill, the optimal trajectories found to navigate it for both 

minimum time and terrain masking flight are compared.  The formulations considered 

include the simplified and local tangent plane equations of motion for the pseudo-3D case 

as well as the constant velocity and varying velocity 3D equations of motion.  This is 

repeated for three different hill steepnesses. 

 Figures 6.1 – 6.3 contain the results for the minimum time, K = 0, case.  Each 

figure portrays the results from a different hill height.  The top two plots are a 3D view 

and an overhead view of the trajectories from the pseudo-3D case while the bottom two 

plots depict the paths for the 3D cases.  For these cases, the trajectories from using the 
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simplified equations of motion and from using the local tangent plane equations of 

motion are the same and are represented by the black line.  In the bottom two plots, the  

  Figure 6.1: Trajectories for K = 0 and hill height = 30. 

black line represents the simplified the constant velocity 3D equations of motion.  The 

red line is for the varying velocity 3D equations of motion.  The plots for the 3D 

equations of motion trajectories are the same as depicted in Chapter 5, and are repeated 

here for convenience.  In the first two cases, with hill heights of 30 and 40 feet, the 

constant velocity 3D trajectories are the same as the pseudo-3D formulations; however, 
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in the steepest hill, the 3D trajectory begins to veer around the hill.  In all three cases, the 

varying velocity trajectory veers around the hill to some extent.   

  Figure 6.2: Trajectories for K = 0 and hill height = 40. 

Some details from the various cases portrayed in these figures are tabulated below 

in Table 6.1.  Here, the time for the flight and the cost of the flight can be compared for 

each set of equations of motion investigated.  In this table, it can be seen that the flight 

time doesn’t change with the simplified equations of motion, while the time increases for 

the local tangent plane and 3D equations of motion.  This is because the time needed to 
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fly vertically is ignored in the simplified equations of motion.  This time is better 

accounted for with the local tangent plane equations of motion, but these final times are 

still slightly less than the final times with the 3D equations of motion, especially when 

the hill steepness is greater.  The final times for the varying velocity cases are 

significantly greater due to the loss in velocity during the flights.  

  Figure 6.3: Trajectories for K = 0 and hill height = 50. 



 57 

Table 6.1: Trajectory data for K = 0 flights     
  Hill Height = 30 Hill Height = 40 Hill Height = 50 
  tf cost tf cost tf cost 
simplified 7 7 7 7 7 7
local tangent plane 7.06 7.06 7.1 7.1 7.15 7.15
3D 7.06 7.063 7.11 7.116 7.16 7.165
varying velocity 7.27 7.289 7.37 7.371 7.45 7.451

 Figures 6.4 – 6.6 contain the plots for the results for K  = 1.  These plots are for 

cases parallel to those shown in Figures 6.1 – 6.3.  The same three hill heights are 

displayed with the four sets of trajectories depicted.  As in the earlier plots, the top plots

  Figure 6.4: Trajectories for K = 1 and hill height = 30. 
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show the trajectories from using the simplified and local tangent plane equations of 

motion.  The bottom two plots depict the results from Chapter 5 for the trajectories using 

the 3D constant velocity and varying velocity equations of motion.  In each of the four 

cases, for each of the three hill steepnesses, the trajectories appear the same.  The 

trajectory always curves around the given hill. 

 Table 6.2 contains the final time and cost information for the trajectories from each 

set of equations of motion and for each hill height for the K = 1 formulation.  It can be 

seen here that there is very little difference in these results regardless of the equations of 

motion used or the hill steepness. 

  Figure 6.5: Trajectories for K = 1 and hill height = 40. 
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  Figure 6.6: Trajectories for K = 1 and hill height = 50. 

Table 6.2: Trajectory data for K = 1 flights    
  Hill Height = 30 Hill Height = 40 Hill Height = 50 
  tf cost tf cost tf cost 
simplified 8.42 26.349 8.42 35.1314 8.42 43.9143
local tangent plane 8.42 26.348 8.42 35.1305 8.42 43.9132
3D 8.42 26.349 8.42 35.132 8.42 43.914
varying velocity 8.41 26.306 8.42 35.108 8.42 43.88
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6.2 SIMULATOR IMPLEMENTATION

 Some of the results from the last section were then implanted on a 6 degree-of-

freedom flight simulator.  This simulator is for a small fixed wing aircraft that is being 

built for flight research at Georgia Tech.  The results from each of the four single vehicle 

formulations for a single hill height are implemented on the simulator and the results are 

compared.  This is completed for both the minimum time and terrain masking cases. 

  Figure 6.7: Simulator comparisons for K = 0. 

 In Figure 6.7, the results for the minimum time cases for each set of equations of 

motion are shown, along with the corresponding simulator results.  In these plots, the 
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blue line represents the analytical trajectory found while the red line shows the 

corresponding simulator result.  In each case, it can be seen that there are some problems 

following the trajectories.  The limit on the rate of change of the flight path angle is 

reached in each case, meaning that the simulator is slow to start climbing the hill and 

especially in going over the hill. 

 Figure 6.8 depicts the results for the terrain masking cases for each of the 

equations of motion.  In each case, the overhead views of the trajectories are shown.  As 

with the minimum time cases, there are some problems in following the trajectories.  In 

this case the heading angle rate of change limit is reached, causing the simulator to lag in 

turning. 

  Figure 6.8: Simulator comparisons for K = 1. 



 62 

6.3 FLIGHT DATA

 This section examines a few flight test made using some analytical trajectories 

found.  In this case, the trajectories were flown on the GTmax experimental helicopter.  

The trajectories are terrain masking flights using the local tangent plane equations of 

motion.

  Figures 6.9 and 6.10 depict the results for the two terrain sets used here.  In 

Figure 6.9, a terrain with five hills was considered while a terrain with three hills was 

used for the results in Figure 6.10.  In both plots, the blue line represents the analytical 

trajectory while the red line indicates the actual flown trajectory.  In both cases, there is a  

Figure 6.9: Flight data for 5 hill terrain. 

slight difference at the beginning of the flight – towards the right of the plot – then the 

flight trajectory follows the analytical path closely.  This difference is due to the fact that 

the helicopter was not oriented in the same heading as o.  Therefore, the helicopter had 

to turn to start following the trajectory, which causes the slight difference. 
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Figure 6.10: Flight data for 3 hill terrain. 

  6.4 GESOP 

 Several test cases from the previous chapter were also compared to results found 

using GESOP. GESOP (Graphical Environment for Simulation and Optimization) is a 

graphical optimization program that includes four different optimization programs using 

different methods such as collocation or multiple shooting.  It was developed at the 

Institute for Flight Mechanics and Control at the University of Stuttgart and allows the 

implementation of every kind of optimization model.  The optimization can be performed 

by using program interface modules – available in Ada95, C or Fortran – that contain the 

optimization model, which are then compiled and used by the program.  The solutions 

can be shown in the program itself with Quick View or can be exported for further 

processing.   

 This program allows the optimization of a full six degree-of-freedom UAV model 

with the full dynamics included.  For the first approach the model of a preliminary system 

GA Tech UAV model was used.  When experimental values for this UAV are available, 

changes to the program can be made.   
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 Two different test cases were examined, and the answers compared with the 

solutions generated by the analytical method outlined above.  The first consists of flights 

with moving targets and threats at a constant altitude.  The second case examined deals 

with pop-up threats. 

 First is the situation when the target must rendezvous with a moving target while 

avoiding two moving threats.  The results from this can be seen in Figure 6.11.  The blue 

line is the 3DoF GESOP result, the black line is the 6DoF GESOP result, the red line is 

the 3DoF analytical result and the green line is a modified 6 DoF GESOP result.  The top 

Figure 6.11:  GESOP flights with a moving target and moving threats.   
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plot is when there are no threats yet present.  The three solutions are pretty much the 

same, but the 6DoF-solution doesn‘t fly the turn as sharply as the 3DoF solutions.  Next, 

in the bottom left plot, one moving threat is added.  The two 3DoF solutions pass it in 

front while the 6DoF solution finds it more optimal to pass behind. Finally, the bottom 

right plot shows the results of the case when a second moving threat is included.  Again, 

the 3DoF solutions pass in front of the threats while the original 6DoF result passes 

behind the threats. But in a simulation containing threats with their velocity reduced by 

10% (green) the 6DoF simulation also passes in front. But there it can be seen that the 

turning rate especially at the second threat is much lower than for the unresticted 3DoF-

simulations, so that a flight in front of the threats for the normal 6DoF would cause a 

significantly longer path taking longer than crossing behind. 

Figure 6.12 shows a comparison between the 6 DoF GESOP results and the 3 

DoF analytical results from above with a popup threat, with a terrain masking 

optimization.  In this plot the black dashed line shows the original result without a popup  

Figure 6.12: Flight with popup threats showing both  
6 DoF GESOP and 3 DoF analytical solutions. 



 66 

threat for the analytical result; the red line is then the corresponding result when the 

popup threat is included.  The blue lines are the results using both full throttle and a 

reduced throttle using the 6 DoF GESOP.   

 Overall, it can be seen that a 6 DoF optimization with a full dynamics model over 

real terrain is available and working.  It was found that the 6 DoF results were very 

similar to the 3 DoF results for tests at constant altitudes and unambiguous cases.  

However, the 6 DoF results can show significant differences for flights over discrete 

terrain due to full dynamics and ambiguous cases.  An ambiguous case is where there are 

two solutions that don‘t differ very much in the cost function, but differ very much in the 

path, like taking the left or the right side for going around a symmetrical hill. 
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  CHAPTER 7 

  MULTIPLE VEHICLES 

 This chapter examines the problem of finding optimal trajectories for multiple 

vehicles simultaneously.  Two different situations are considered.  The first is the case 

when there are two vehicles operating independently in the same area.  They must each 

have a trajectory from their starting position to their ending position while avoiding 

flying too close to the other vehicles.  The second case is formation flight.  The vehicles 

must fly a set distance from the other vehicles and travel from the starting location to the 

ending location. 

 As in Chapter 2, the pseudo 3D equations of motion are used, both the simplified 

set and the local tangent plane equations of motion.  First, the reduced order optimal 

equations are derived for both sets of equations of motion for the case of controlling two 

vehicles.  Next, these equations are expanded to include the simultaneous control of an 

unspecified number of vehicles (n-vehicles). 

  7.1 Simplified Equations of Motion 

 For this formulation, the simplified equations of motion are used, as described 

above in equations (1.3) and (1.4).

iii Vx ψcos=&  (7.1)

iii Vy ψsin=&  (7.2) 

Here, with i equal to one, (7.1) and (7.2) depict the equations of motion for vehicle 1 with 

a velocity, V1, and a heading angle ψ1.  With i equal to two, (7.1) and (7.2) depict the 
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equations of motion for vehicle 2 with a velocity of V2 and a heading angle of ψ2.  The 

variables x1 and x2 represent the positions with respect to the northward x-axis of vehicle 

1 and 2, respectively, while y1 and y2 are the positions with respect to the eastward y-axis 

of vehicle 1 and 2, respectively.  For this problem, the initial and final positions for each 

vehicle are specified. 

 The cost equation used for this problem is 

[ ] [ ]dtJJdtJJJ ff tt
+++= 21

0 2120 211  (7.3) 

Since the final time for each vehicle can be different, the cost equation is composed of 

two integrals covering the time for the flight of each vehicle.  In this problem, the cost 

equation for each vehicle is broken into two parts.  The first part is 

),()1(1 iiii yxKfKJ +−=  (7.4) 

and represents the cost for either minimum time versus terrain masking, depending on K.

As before, if K = 0, the problem is optimized solely with respect to minimum time while 

if K = 1, the problem is optimized purely with respect to terrain masking.  The second 

part of the cost will change, depending on whether vehicle avoidance or formation flight 

is desired.  It will be either 

d
WJ =2  (7.5) 

for collision avoidance flight or 

( )2
2 cddWJ −=  (7.6) 

for formation flight with  

( ) ( )2
21

2
21 yyxxd −+−=  (7.7) 
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In these equations, W is a weighing parameter and d is a measure of the square of the 

distance between the two vehicles.  It can be seen that d will create a singularity in J at 

collision.  The altitudes of each of the vehicles are represented by the sum of f1(x1, y1) and

f2(x2, y2)  -- the terrain height at each respective vehicle position  -- and a constant ground 

clearance.   

 The Hamiltonian equation for this system can be written as 
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 (7.8) 

The costate variables for the four states are given by λxi and λyi.

 The optimality conditions for this problem are 

0=iHψ  (7.9) 

where Hψ1 represents the partial derivative of the Hamiltonian with respect to ψ1 while 

Hψ2 represents the partial derivative of the Hamiltonian equation with respect to ψ2 .  

Evaluating equation (7.8) results in the following two relationships. 
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 Since the Hamiltonian equation is not explicitly dependent on time, it will equal 

zero at all times.  Using this fact and equations (7.8) and (7.9), the following two 

algebraic expressions for costates are found 
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 Differential equations for the costates can be found by taking the partial 

derivatives of the Hamiltonian equation as shown below. 
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This results in the following four differential equations. 

111 BKf xx +−=λ&  (7.14) 

211 BKf yy +−=λ&  (7.15) 

122 BKf xx −−=λ&  (7.16) 

222 BKf yy −−=λ&  (7.17) 
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for aircraft avoidance or 
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 The time derivative of equation (7.10) is taken and set equal to its counterpart in 

equation (7.15), with i equal to one in both cases.  Rearranging this expression will result 

in a differential equation for ψ1.
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Next, this is repeated for either equations (7.11) and (7.16) or equations (7.12) and (7.17), 

to determine a differential equation for ψ2.
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This results in a system with seven differential equations – the four state equations, the 

two heading equations and the costate λx1 – with three unknown initial values. 

7.1.1 Legendre-Clebsch Necessary Conditions 

 For this formulation, the Hamiltonian equation is 

2222221111114 sincossincos ψλψλψλψλ VVVVAH yxyx ++++=  (7.22) 

and the costates are represented by  
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There are two controls here, represented by the vector 
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This will result in the following matrix for the partial derivative of the Hamiltonian 
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Substituting in the costate equations from (7.23) will result in the following matrix. 
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In order to satisfy the condition, the following equations must be met. 

0
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7.1.2 Weierstrass Test 

Substituting the optimal costate equations into the Hamiltonian equation will 

result in the following expression for the variational Hamiltonian. 
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This must satisfy 

( ) 0, 21 ≥ψψH  (7.29) 

In Appendix B.2, it is proven that this condition will be satisfied if the following 

inequalities are true. 

1114 cos VA x
o λψ ≥  (7.30) 

( ) ( )11 cosψλ signsign x −=  (7.31) 

   

  7.2 Local Tangent Plane Equations of Motion 

 For this section the equations of motion used were seen above in equations (1.1) 

and (1.2) and are repeated here. 
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where
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This process used is the same as above.  The cost equation used is the same as in the 

previous section and can be seen in equations (7.3) – (7.7).  The Hamiltonian equation is 

found to be 
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where A4 is defined in equation (7.8).

 As before, equations were found for the costates using the Hamiltonian equation 

and the optimality equation seen in (7.9).  These were found to be, as a function of λx1,
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The differential equations for the costates were found through evaluating equation (7.13).  

This resulted in 
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B1 and B2 are defined in equations (7.18) and (7.19).  Using the technique described 

above, differential equations for the two heading angles are then found.  These can be 

represented as 
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Again, this process results in a system with seven differential equations – the four state 

equations, the two heading equations and the costate λx1 – with three unknown initial 

values.
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7.2.1 Legendre-Clebsch Necessary Conditions 

 The Hamiltonian equation for the local tangent plane formulation is 
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and the algebraic expressions for the costates are 
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This results in the following matrix for the second partial derivative of the Hamiltonian 

−

−

=

212

22

111

11

cos
0

0
cos

ψ
λ

ψ
λ

A
V

A
V

H
x

x

uu  (7.51) 

In order to satisfy the condition, the following equations must be met. 
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7.2.2 Weierstrass Test 

The variational Hamiltonian is again found by substituting the optimal algebraic 

costate equations into the Hamiltonian equation. 
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( ) 0, 21 ≥ψψH  (7.54) 

In Appendix B.2, it is proven that this condition will be satisfied if the following 

inequalities are true. 

11114 cos VAA x
o λψ ≥  (7.55) 

( ) ( )11 cosψλ signsign x −=  (7.56) 

  7.3 Simplified Equations of Motion – n-Vehicles 

 For this section, the same process as above is repeated here, but now presented for 

a n-number of vehicles.  First, the simplified equations of motion are used, as described 

above.

iii Vx ψcos=&  (7.57)

iii Vy ψsin=&  (7.58) 

Again, i is used to represent each of the n-vehicles.  The cost equation, in this case, is 

represented as 
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As before, the second part of the cost will be  
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for collision avoidance flight while, for formation flight, it will be  
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In these equations, 
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Here, the weighing parameter, Wij, can be changed depending on the two vehicles – 

vehicles i  and j – it represents. 

 The costate differential equations are then represented by the following two 

equations.
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for aircraft avoidance flight or 
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for formation flight.  The resulting differential equations for the heading angles are 

shown in the next two equations, the first of which is applicable for the first n-1 vehicles 

while the second is for the nth vehicle. 
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This process results in a system of 4n-1 differential equations to be solved with 2n-1 

unknown initial conditions. 

7.3.1 Legendre-Clebsch Necessary Conditions 

 Similar to the procedure for the two-vehicle problem, the following inequalities 

are found that must be true in order to satisfy this condition 
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7.3.2 Weierstrass Test 

As outlined in the two-vehicle section, the following inequalities must be met to 

satisfy this condition. 
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( ) ( )ixi signsign ψλ cos−=  (7.72) 

Equation (7.72) must be met for i=1:n-1. 
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  7.4 Local Tangent Plane Equations of Motion – n-Vehicles 

 This process is now repeated for a n-number of vehicles using the local tangent 

plane equations of motion shown above. 
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The differential equations for the n-costates are depicted as 
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The heading differential equations are 

( )
jx

yx
j AA

PVfPPAA ++
=

λ
λψψψ

ψ 2
2

3
1

3212
3
1 cossincos

&  (7.86) 

( )
jxxxyxxyxj

n

ij

i

j
jiijjxjyjx

n

ij

i

j
jiijjyjj

n

ij

i

j
jiijjxjj

fAfAfffP

BxBxKfffByByKfAP

BxBxKfAP

jjjj

j

ψψψ cossinsin 2
2

13

1

1

11

1

1

2
12

1

1

1
21

+−=

+−−+−=

+−=

+=

−

=+=

−

=

+=

−

=

 (7.87) 
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As stated before, this results in a system of 4n-1 differential equations to be solved with 

2n-1 unknown initial conditions.  
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7.4.1 Legendre-Clebsch Necessary Conditions 

 Similar to the procedure for the two-vehicle problem, the following inequalities 

are found that must be true in order to satisfy this condition 
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7.4.2 Weierstrass Test 

As outlined in the two-vehicle section, the following inequalities must be met to 

satisfy this condition. 
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( ) ( )ixi signsign ψλ cos−=  (7.92) 

As before, equation (7.92) must be met for i=1:n-1. 
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CHAPTER 8

  MULTIPE VEHICLE RESULTS 

This chapter examines results found using the equations for the control of 

multiple vehicles derived in the last chapter.  Results will be presented for the cases when 

2, 3 and 4 vehicles are to be controlled simultaneously in a variety of situations.  These 

include the simple case of vehicle avoidance, a case of a faster vehicle passing slower 

vehicles and finally the case of formation flight. 

8.1 2-Vehicle Results

 In this section, three different sets of results are shown for two-vehicle control.  

The first two cases are different situations using the aircraft avoidance formulation.  The 

third case examines a formation flight situation. 

 The first set of trajectories presented considers a case of aircraft avoidance.  Here, 

two vehicles are operating in the same area and must avoid each other.  The terrain used 

is a flat plain; in this case the local tangent plane equations of motion will reduce to the 

simplified equations of motion.  In addition, the minimum time and terrain masking 

variations will be identical.  Two different sets of trajectories are shown for this case.  

The first is a nominal case when no correction for multiple vehicles is made.  The second 

is using the equations from Chapter 7 that account for other vehicles in the area.  In these 

plots, the blue line represents vehicle 1 while the green line represents vehicle 2.  The 

starting positions and ending positions are marked with red circles and xs, respectively.  

The red star marks the position when the two vehicles are at their closest point. 
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 First, in Figure 8.1, the nominal results are shown for this situation.  Here are the 

optimal trajectories for two vehicles flying alone in the area, using the equations of 

motion from Chapter 2.  As expected, these trajectories are straight lines.  Figure 8.2 

depicts the distance between the two vehicles at all times.  It can be seen that, if allowed 

to fly these trajectories, the two aircraft would collide. 

Figure 8.1: Nominal trajectories with no correction for multiple vehicles. 

Figure 8.2: Distance between the two vehicles at all time. 

 Figure 8.3 depicts the trajectories found for the two vehicles when the correction 

is made for multiple vehicles in the area, as in the equations in Chapter 7.  Figure 8.4 
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depicts the distance between the two vehicles throughout the flights.  In this case, the 

minimum distance between the vehicles is about 247 feet.  The heading angles for the 

two vehicles are depicted in Figure 8.5. 

Figure 8.3: Trajectories for two vehicles with aircraft avoidance formulation. 

Figure 8.4: Distance between the two vehicles at all time. 
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Figure 8.5: Controls for aircraft avoidance flight. 

 The results from the second variation analysis can be seen in Figure 8.5.  In the 

last chapter it was shown that, in order for the Legendre-Clebsch condition to be satisfied, 

the following inequalities must be satisfied. 

0
cos1

≥
−

ii

ixi

A
V
ψ

λ (8.1)

In addition, the following equations must be satisfied at all times in order for the 

Weierstrass test to hold. 

0cos 11114 ≥−= VAAW x
o λψ (8.2)

( ) ( )11 cosψλ signsign x −= (8.3)

Figure 8.6 depicts the plots of the Legendre-Clebsch function with respect to time, which 

is always positive.  Figure 8.7 depicts the plots for the two inequalities for the Weiertrass 

test.  On the right is the inequality from the Weierstrass tess – which is positive at all time 

– and on the left is the sign functions. 
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  Figure 8.6: Results from Legendre-Clebsch test. 

Figure 8.7: Results from Weierstrass test. 

 The second case examined for this formulation is a situation when a faster vehicle 

must pass a slower vehicle.  These trajectories are shown in Figure 8.8.   In this case, the 

starting positions, (500, 100) and (500, 0), and ending positions, (500, 1700) and (500, 

1900), for both vehicles are in a line with each other.  Here, the faster vehicle starts 

behind the slower vehicle, so they would collide if a straight line trajectory were flown by 

each of the vehicles.  It can be seen that each vehicles path curves slightly away from the 

trajectory of the other vehicle.  Figure 8.9 shows the distance between the two vehicles.   
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Figure 8.8: Optimal trajectories for passing. 

The closest position during the flight is just after the start of the flight as the aircraft are 

curving away from each other and is about 93 feet.  The heading angles for each vehicle 

is depicted in Figure 8.10. 

Figure 8.9: Distance between the two vehicles at all time. 
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Figure 8.10: Controls for passing. 

 Figures 8.11 and 8.12 contain the three plots for the analysis of the second 

variation tests whose inequalities are given in (8.1) - (8.3).  The inequality from the 

Legendre-Clebsch test can be seen plotted in Figure 8.11 while the functions needed for 

the Weierstrass test can be seen in Figure 8.12.  It can be seen that they are all satisfied 

for all time. 

 Figure 8.11: Results from Legendre-Clebsch test. 
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Figure 8.12: Results from Weierstrass test. 

 The final result shown considers the case of formation flight.  For this situation, 

the terrain of a flat plain with a single hill was used and the terrain masking formulation 

was used.  The trajectories for the two vehicles can be seen in Figure 8.13.  The plot on 

the left shows the 3D view of the terrain and trajectories while the plot on the right 

contains an overhead view.  It can be seen that the vehicles stay parallel to each other 

throughout the flight around the hill.  The plot of the heading angles for this flight can be 

seen in Figure 8.14.  Figures 8.15 and 8.16 depict the plots for the second variation 

analysis, a described earlier, which are all satisfied. 

  Figure 8.13:  Trajectories for two vehicles in formation flight. 
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Figure 8.14: Controls for formation flight. 

Figure 8.15: Results from Legendre-Clebsch test. 

Figure 8.16: Results from Weierstrass test. 
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8.2 3-Vehicle Results 

 This section presents the results for two cases with 3 vehicles.  The first 

represents the case of aircraft avoidance in a given area on a flat plane.  The second 

examines terrain masking formation flight.   

 Figure 8.17 depicts the trajectories for the aircraft avoidance flight.  The blue line 

represents vehicle 1, the green line represents vehicle 2 and the red line represents vehicle 

3.  The starting and ending positions for each of these flights are depicted by red circles 

and xs, respectively.  Figure 8.18 depicts the positions of the vehicles with respect to each     

  Figure 8.17: Trajectories for aircraft avoidance. 

Figure 8.18: Distances between vehicles at all times. 
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other for the entire time of the flight.  It can be seen that the closest point between the 

vehicles is about 219 feet between vehicles one and two; this point in marked in Figure 

8.17 with light blue stars.  The heading angles for these flights are plotted in Figure 8.19. 

Figure 8.19: Controls for aircraft avoidance flight. 

 The results from the second variation analysis for this problem are depicted in 

Figures 8.20 and 8.21.  In Chapter 7, the necessary equations to meet the second variation 

tests are stated as follows for three vehicles. 
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ixi
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The inequalities in (8.4) are necessary for the Legendre-Clebsch condition while (8.5) 

and (8.6) must be satisfied for the Weierstrass test.  The plots of the functions stated in 

the inequalities in (8.4) and (8.5) can be seen in Figure 8.20.  The plot on the left 

represents the Legendre-Clebsh inequalities and the plot on the right contains the 
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Weierstrass inequality.  The plots of the signs on the variables in (8.6) are in Figure 8.21.  

In all cases, it can be seen that the requirements are satisfied. 

  Figure 8.20: Inequalities from second variation tests. 

  Figure 8.21: Plots of signs of variables for Weierstrass test. 

 The second case presented consists of a formation flight.  These trajectories can 

be seen in Figure 8.22.  The 3D view can be seen in the plot on the left while the over 

head view is in the plot on the right.  Here, the three vehicles remain in a triangle 

formation throughout the entire flight.  The controls for these flights can be seen in 

Figure 8.23. 
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  Figure 8.22: Trajectories for formation flight of three vehicles. 

Figure 8.23: Controls for formation flight. 

 The analysis of the second variation tests are depicted in Figures 8.24 and 8.25.  

In Figure 8.24, the functions from the inequalities from equations 8.4 and 8.5 for the 

Legendre-Clebsch condition (on the left) and the Weierstrass test (on the right) are 

plotted.  In each case, it can be seen that the functions are positive at all time.  The signs 

of the variables for the Weierstrass test, from equation 8.6, can be seen in Figure 8.25. 
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  Figure 8.24: Inequalities from second variation tests. 

  Figure 8.25: Plots of signs of variables for Weierstrass test. 

8.3 4-Vehicle Results 

As with the 3-vehicle case, two sets of results will be presented here for the 

coordinated flight of four vehicles – one for aircraft avoidance and one for formation 

flight.  Figure 8.26 shows the trajectories for the aircraft avoidance flight of four vehicles.  

The blue, green, red and magenta lines represent vehicles one, two, three and four 

respectively.  Figure 8.27 contains the plots of the distance between each set of vehicles 

at all time.  It can be seen that the minimum distance is 186 feet between vehicles two 
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and four; this point is marked on Figure 8.26 with a red star.  The heading angles for each 

of these vehicles for this flight can be seen in Figure 8.28. 

Figure 8.26: Trajectories for aircraft avoidance flight of four vehicles. 

  Figure 8.27:  Distances between each set of vehicles. 
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Figure 8.28: Controls for aircraft avoidance flight. 

 The analysis of the second variation is portrayed in Figures 8.29 and 8.30.  For 

this formulation, the equations that must be satisfied are as follows.  
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( ) ( ) 3:1;cos =−= isignsign ixi ψλ  (8.9) 

The inequalities in (8.7) is necessary for the Legendre-Clebsch conditions to be satisfied 

while the inequality in (8.8) and the equations in (8.9) are required for the Weierstrass 

test to be satisfied.  These inequalities are depicted in Figure 8.29 and the signs of the 

variables from (8.9) are shown in Figure 8.30.  It can be seen that all these equations are 

satisfied for all time.  
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  Figure 8.29: Inequalities from second variation tests. 

  Figure 8.30: Plots of signs of variables for Weierstrass test. 
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 The last set of trajectories depicted is for the case of formation flight of four 

vehicles.  This can be seen in Figure 8.31.  In this case, the four aircraft remain in a 

square formation for the entire flight around the hill.  The heading angles for these flights 

can be seen in Figure 8.32.  The corresponding second variation analysis is depicted in 

Figures 8.33 and 8.34.  The inequalities from the functions in (8.7) and (8.8) are shown in 

Figure 8.33 with the Legendre-Clebsch inequality on the left and the Weierstrass test 

inequality on the right.  The signs of the variables necessary for the Weierstrass test, as 

  Figure 8:31: Trajectories of formation flight of four vehicles. 

Figure 8.32: Controls for formation flight. 
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represented in equation (8.9) are shown in Figure 8.34.  It can be seen that all the 

conditions are satisfied for all time. 

  Figure 8.33: Inequalities from second variation tests. 

  Figure 8.34: Plots of signs of variables for Weierstrass test. 
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CHAPTER 9 

  MULTIPLE VEHICLE 3D EQUATIONS OF MOTION 

 This section incorporates the 3D constant velocity equations of motion detailed in 

Chapter 4 with the multiple vehicle formulation detailed in Chapter 7.  As shown earlier, 

using the 3D equations of motion provide a more realistic solution to the terrain 

following problem.  First the reduced order formulation for the problem will be derived 

in detail for the two-vehicle problem, then the n-vehicle equations will be derived. 

   

9.1 Two-vehicle formulation 

  For this formulation, the 3D equations of motion are used, as described before in 

equations (4.1) to (4.3).   

iiii Vx ψγ coscos=&  (9.1)

iiii Vy ψγ sincos=&  (9.2) 

iii Vz γsin=&  (9.3) 

Here, with i equal to one, these equations depict the equations of motion for vehicle 1 

while with i equal to two, they represent the equations of motion for vehicle 2.

 The cost equation used for this problem is 

( ) ( )dtCCCdtCCCJ ff tt
+++++= 21

0 322120 32111  (9.4) 

with a separate integral for each vehicle, as discussed in Chapter 7.  There are three 

distinct portions of the cost equation for each vehicle.  First 

( )iiii yxKfKC ,11 +−=  (9.5) 
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controls the amount of optimality with respect to terrain masking or minimum time as 

described in earlier chapters.  The second part is 

2
12 iii ZWC =  (9.6) 

with 

( )[ ]ciiiiii hyxfzZ +−= ,  (9.7) 

This section is for maintaining flight near the desired constant altitude as discussed in 

Chapter 4.  The third part of the cost, as in Chapter 7, is determined by either 

d
W

C 2
3 =  (9.8) 

for aircraft avoidance or 

( )2
23 cddWC −=  (9.9) 

for formation flight.  In both these equations,  

( ) ( )2
21

2
21 yyxxd −+−=  (9.10) 

W1 and W2 are weighing parameters supplied by the user. 

The Hamiltonian equation for this system can be written as 

[ ]

( )
≤
=

=

++=

+++=

2

1
3214

2

1
4 sinsincoscoscos

fitt
i

ii

i
iiziiiiyiiiixi

CCCA

VVVAH γλψγλψγλ

 (9.11) 

The costate variables for the six states are given by λxi, λyi and λzi.  There are now four 

optimality conditions for the problem, which can be written as 

0
0

=

=

i

i

H

H

γ

ψ  (9.12) 

Evaluating the equations in (9.12) results in the following four relationships. 
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ii

i
xizi

i

i
xiyi

γψ
γλλ

ψ
ψλλ

coscos
sin

cos
sin

=

=
 (9.13) 

 As before, since the Hamiltonian equation is not explicitly dependent on time, it 

will equal zero at all times.  Using this fact and the equations in (9.11) and (9.13), the 

following five algebraic expressions are found for the costates 

1

1
11 cos

sin
ψ
ψλλ xy =  (9.14) 

11

1
11 coscos

sin
γψ

γλλ xz =  (9.15) 

+−
=

11

11114

2

22
2 coscos

coscoscoscos
γψ

λψγψγλ VA
V

x
x  (9.16) 

+−
=

11

11114

2

22
2 coscos

coscossincos
ψγ

λψγψγλ VA
V

x
y  (9.17) 

+−
=

11

11114

2

2
2 coscos

coscossin
ψγ

λψγγλ VA
V

x
z  (9.18) 

 Differential equations for the costates can be found by taking the partial 

derivatives of the Hamiltonian equation as shown below. 

zizi

yiyi

xixi

H

H

H

−=

−=

−=

λ

λ
λ

&

&

&

 (9.19) 

This results in the following six differential equations. 

11111111 2 xxxx fZWBKf ++−=λ&  (9.20) 

11111111 2 yyyy fZWBKf ++−=λ&  (9.21) 
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1111 2 ZWBzz +=λ&  (9.22) 

22212222 2 xxxx fZWBKf +−−=λ&  (9.23) 

22212222 2 yyyy fZWBKf +−−=λ&  (9.24) 

2122 2 ZWBzz −−=λ&  (9.25) 

with

( )

( )

( )
2

212

2
212

2
212

2

2

2

d
zzW

B

d
yyW

B

d
xxW

B

z

y

x

−
=

−
=

−
=

 (9.26) 

for vehicle avoidance flight or 

( )( )
( )( )
( )( )212

212

212

4
4
4

zzddWB

yyddWB
xxddWB

cz

cy

cx

−−=

−−=
−−=

 (9.27) 

for formation flight. 

 Next, the time derivative of equation (9.14) is taken and set equal to its 

counterpart in equation (9.21).  Rearranging this expression will result in a differential 

equation for ψ1.

( )( )[ ]
1

11111111111
1

cossinsincos2cos

x

yxxy BBffKZW
λ

ψψψψψ
ψ

+−−−
=&  (9.28) 

Then the time derivative is determined for equation (9.15) and set equal to its 

corresponding differential equation in (9.22) to derive the differential equation for the 

flight path angle of vehicle 1. 



 105 

( )[ ]
1

111111111
1

cossinsincoscoscos

x

xyz

λ
ψλψλγγλγψ

γ
&&&

&
+−

=  (9.29) 

Next, this is repeated with equations (9.18) and (9.25) to find the differential equation for 

γ2 then with either (9.16) and (9.24) or equations (9.17) and (9.25) to determine a 

differential equation for ψ2.

( )[ ]
11114

2222222112
2 coscos

cossinsincoscoscos

x

xyz

VA
V

λψγ
ψλψλγγλγψ

γ
+

++−
=

&&&
&  (9.30) 

[ ]
( )111142

2222112
2 coscoscos

cossincoscos

x

yx

VA
V

λψγγ
ψλψλψγ

ψ
+

−
=

&&
&  (9.31) 

This yields a system with eleven differential equations – the six state equations, the two 

heading angle equations, two flight path angle equations, and the costate λx1 – with five 

unknown initial values. 

9.1.1 Legendre-Clebsch Necessary Conditions 

 For this formulation, the Hamiltonian equation is seen in equation (9.11) and the 

costates are in equations (9.14) – (9.18).  There are four controls for this problem, 

represented by the vector 

=

2

1

2

1

γ
γ
ψ
ψ

u  (9.32) 

Taking the second partial derivative of the Hamiltonian and substituting in the algebraic 

expressions for the costates will result in the following matrix 



 106 

( )
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00cos0
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uu
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 (9.33) 

with 

11

11114
1 coscos

coscos
ψγ

λψγ VA
H x+

=  (9.34) 

Since cosγ1 is always positive, this matrix will be nonnegative definite provided the 

following two inequalities are satisfied 

0

0
coscos

1

11

11

≥

≥
−

H

Vx

γψ
λ

 (9.35) 

which is always positive, thus satisfying the condition. 

9.1.2 Weierstrass Test 

Substituting the optimal costate equations into the Hamiltonian equation will 

result in the following expression for the variational Hamiltonian. 

( ) [ ] [ ]
( ) o

ii
o
ii

o
iii

x
oo

C

CCVCAH

γγψψγγ
λγψψψ
sinsincoscoscos

01coscos, 211211421

+−=

≥−+−=
 (9.36) 

In Appendix B.2, it is proven that this condition will be satisfied if the following 

conditions are true.

11114 coscos VA x
oo λγψ ≥  (9.37) 

( ) ( )11 cosψλ signsign x −=  (9.38) 
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9.2 n-vehicle formulation

 This section repeats the derivation in the last section, with an expansion to n-vehicles, 

instead of just two vehicles.  The equations of motion are still    

iiii Vx ψγ coscos=&  (9.39)

iiii Vy ψγ sincos=&  (9.40) 

iii Vz γsin=&  (9.41) 

Here, though, i can equal each number from 1 to n.

 The cost equation used for this problem is now 

( )
=

++=
n

i

t

ii dtCCCJ fi

1
0 321  (9.42) 

with 

( )iiii yxKfKC ,11 +−=  (9.43) 

2
12 iii ZWC =  (9.44) 

and

−

= =
=

1

1
23

1n

i

n

ij ijd
WC  (9.45) 

for aircraft avoidance or 

( )−

= =

−=
1

1

2
23

n

i

n

ij
cijij ddWC  (9.46) 

for formation flight.  In both these equations,  

( ) ( )22
jijiij yyxxd −+−=  (9.47) 

The corresponding costate differential equations for this problem will be  
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ixiii
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with 
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 (9.51) 

for vehicle avoidance flight or 
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 (9.52) 

for formation flight. 

 Next, the differential equations for the heading angles and flight path angles were 

derived in a similar manner as above.  The first two equations are applicable to vehicle 1 

through vehicle n-1.  The last two equations are for vehicle n. 

        
[ ]
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ixiiyii

ni
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ψλψλψ
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&&
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 (9.53) 
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 (9.54) 
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This results in a system with 6n-1 differential equations – the 3n state equations, the n 

heading angle equations, n flight path angle equations, and the n-1 costates, λxi – with 3n-

1 unknown initial values. 

9.2.1 Legendre-Clebsch Necessary Conditions 

 For this formulation, the Hamiltonian equation is  

[ ]
=
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n

i
iiziiiiyiiiixi VVVAH

1
4 sinsincoscoscos γλψγλψγλ  (9.57) 

and the costates are 
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=

=
 (9.58) 

for i = 1:n-1 and for the nth vehicle they are   
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There are 2n controls for this problem, represented by the vector 

=

n
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M
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1

 (9.61) 

Taking the second partial derivative of the Hamiltonian and substituting in the algebraic 

expressions for the costates will result in the following matrix. 
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Similar to the two-vehicle formulation, the following inequalities must be satisfied. 

0

1:1;0
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ixi
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 (9.63) 

9.2.2 Weierstrass Test 

Substituting the optimal costate equations into the Hamiltonian equation will 

result in the following expression for the variational Hamiltonian. 
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 (9.64) 

In Appendix B.2, it is proven that this condition will be satisfied if the following 

conditions true.

11114 coscos VA x
oo λγψ ≥  (9.65) 

( ) ( )ixi signsign ψλ cos−=  (9.66) 

Equation (9.66) must be met for i=1:n-1. 
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CHAPTER 10  

  3D MULTIPLE VEHICLE RESULTS 

 This chapter contains some results for case of using the 3D equations for multiple 

vehicles.  Depicted are three cases using the aircraft avoidance formulation and one case 

considering formation flight for two vehicles.  The first case considers flight over a flat 

plane.  The second case considers a minimum time flight over a terrain with a hill.  The 

third situation portrayed involves a terrain masking flight over the same terrain with a 

hill.  The final case portrays a formation flight terrain masking flight.  

 The first case presented is for a flight over a flat plane.  In this case, the minimum 

time and terrain masking variations will be the same.  Figure 10.1 first contains the 

results when no correction for multiple vehicles is made.  In the plot on the left, the 

trajectories for this case can be seen.  The plot on the right depicts the distance between 

the two vehicles during this flight.  It can be seen here that the two vehicles would crash 

if allowed to fly these trajectories. 

 Figure 10.1: Results for two vehicles with no correction for multiple vehicles. 
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 Figure 10.2 contains the results for this same situation, but with the addition of the 

multiple vehicle variation.  Again, the plot on the left shows the trajectories while the plot 

on the right shows the distance between the two vehicles at all time.  In this case, it can 

be seen that the minimum distance between the vehicles is about 75 feet.  This point is 

represented on the plot on the left by the red stars.  The controls for these flights can be 

seen in Figure 10.3.  It can be seen that there is some mild oscillations in the flight path 

angles. 

 Figure 10.2: Results for two vehicles with correction for multiple vehicles. 

  Figure 10.3: Controls for aircraft avoidance flight. 
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 The results from the second variation tests are depicted in Figure 10.4 and Figure 

10.5.  It was shown in Chapter 9 that the inequalities in (10.1) must be satisfied for the 

Legendre-Clebsch condition and the equations in (10.2) and (10.3) must be true to satisfy 

the Weierstrass test.   

0
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0
coscos

11

11114

11
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−

ψγ
λψγ

γψ
λ

VA

V

x

x

 (10.1) 

0coscos 11114 ≥−= VAW x
oo λγψ  (10.2) 

( ) ( )[ ]11 cos ψλ signsign x −=  (10.3) 

Figure 10.4:  Inequalities from Legendre-Clebsch condition. 

The functions from the Legendre-Clebsch condition are plotted in Figure 10.4 while the 

functions from the Weierstrass test can be seen in Figure 10.5.  The plot on the left 

contains the plot of the function from the inequality in (10.1).  The plot on the right 

contains the results of the signs.  It can be seen that both of these conditions are satisfied 

at all times. 
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  Figure 10.5: Results from Weierstrass test. 

   

 The second case is presented in Figure 10.6.  This considers the case of a 

minimum time flight over a terrain of a flat plain with a single hill.  The 3D view of the 

trajectories can be seen on the left while the overhead view of the trajectories can be seen 

on the right.  For this situation, it can be seen that one vehicle flies straight over the hill 

while the other vehicle flies around the hill.  The distance between the vehicles can be 

seen in Figure 10.7.  The minimum distance is about 125 feet and is marked along the 

trajectories by the blue stars.  The controls for this case can be seen plotted in Figure  

  Figure 10.6: Trajectories for K = 0. 
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10.8.  The results from the second variation analysis can be seen plotted in Figure 10.9 – 

the Legendre-Clebsch condition – and in Figure 10.10 – the Weierstrass test. 

Figure 10.7: Distance between vehicles for all time. 

  Figure 10.8: Controls for aircraft avoidance K = 0 flight. 
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Figure 10.9:  Inequalities from Legendre-Clebsch condition. 

  Figure 10.10: Results from Weierstrass test. 

 The next set of results considers the terrain masking case. This situation also uses 

the flat plane with a single hill as in the previous results.  The plot of these trajectories 

can be seen in Figure 10.11.  In this formulation, both of the vehicles circle the hill in a 

counter-clockwise fashion.  This distance between the vehicles is plotted in Figure 10.12.  

The closest distance between the vehicles is 292 feet is this point is shown in Figure 

10.11 by the blue star.  The controls for these flights are shown in Figure 10.13.  In 

checking the second variation, the results from the Legendre-Clebsch condition are 
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plotted in Figure 10.14 while the results from the Weierstrass test are plotted in Figure 

10.15.

  Figure 10.11: Trajectories for K = 1. 

Figure 10.12: Distance between vehicles for all time. 
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  Figure 10.13: Controls for aircraft avoidance K = 1 flights. 

Figure 10.14: Results from Legendre-Clebsch condition. 

  Figure 10.15: Results from Weierstrass test. 
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 The final result depicts a case of formation flight for the two vehicles.  The plots 

of these trajectories can be seen in Figure 10.16 and the corresponding controls can be 

seen in Figure 10.17.  In this plot, it can be seen that the vehicles circle the hill with 

parallel paths.  The results from the second variation analysis can be seen in Figure 10.18 

and Figure 10.19.   The inequalities from the Legendre-Clebsch condition are plotted in 

Figure 10.18 and the functions from the Weierstrass test are depicted in Figure 10.19. 

  Figure 10.16: Trajectories for formation flight. 

  Figure 10.17: Controls for formation flight. 
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Figure 10.18: Results from Legendre-Clebsch condition. 

  Figure 10.19: Results from Weierstrass test. 
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CHAPTER 11 

  SOLVING THE PROBLEM 

In order to solve these problems, it was necessary to find between one and seven 

initial conditions to optimize the trajectories, depending on the formulation.  Two 

different methods were utilized to find these initial conditions, depending on the number 

necessary.  When only one value was needed, a variable step sweep was employed to find 

it.  Otherwise a genetic algorithm was used.41-43

 To begin the genetic algorithm, a set of 48 chromosomes was initialized 

representing different sets of initial conditions to test.  Each initial value in the 

chromosomes was represented by digits with five decimal places included.  In addition 

the costates, flight path angles and Hamiltonian values included an extra digit to indicate 

a positive or negative value.   

 After the chromosomes were initialized, they were each tested to determine their 

relative costs.  To accomplish this, the current chromosome being tested was broken into 

its respective initial conditions, which were then used in the differential equations.  The 

cost, J, was found for the run as well as the distance from the final position of the run to 

the final target position.  The sum of these two values was used as the total cost for the 

chromosome.

 After each chromosome was tested and a total cost assigned, the chromosomes 

were ranked from last to first based on a tournament procedure.  Two chromosomes 

would be randomly chosen to compete and the one with the higher cost was placed in the 

next position on the list while the one with the lower cost was returned to the available 
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set of chromosomes to be tested.  This process was continued until all the chromosomes 

were ranked.  The top 24 chromosomes were then kept to begin the next generation. 

 In all subsequent generations, the 24 available chromosomes were combined to 

create 24 new chromosomes to complete the population of 48.  Here, chromosomes 1 and 

2 would be combined to create two new chromosomes, and then chromosomes 3 and 4 

would be combined to create two new chromosomes and so on until all the chromosomes 

were mixed.  This was accomplished by first mixing the individual segments of the 

chromosomes so that each of the new chromosomes had some segments from each 

parent, where a segment consisted of the digits for each initial condition needed.  Next a 

mutation was introduced into the new chromosomes such that up to about a third of the 

digits could be changed.  The number of digits changed, which digits were changed, and 

their new values were all determined randomly.  After all the new chromosomes were 

created, the cost assignment and tournament were repeated as before.  This process was 

repeated until it converged on a solution. 

 The differential equations were solved using a standard fourth order Runge-Kutta 

method.  In addition, a variable time step was implemented to decrease the time needed 

to numerically solve the set of differential equations.  For most of the flight, the time step 

was 0.1 seconds; however, when the distance to the target final position was close 

enough, the time step was decreased to 0.01 seconds.  

 Another condition was added to the differential equation solver to help decrease 

the solving time of the genetic algorithms.  For each formulation, inequalities were 

derived that had to be satisfied at all times in order for the Legendre-Clebsch necessary 

condition and the Weierstrass test to be satisfied.  These inequalities were then tested at 
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each time step.  If either was violated, then the current run was ended at that point.  This 

decreased the solving time significantly, but was even more useful in ensuring the 

convergence to a strong local minimum. 

 Table 11.1 contains some average run times for the different formulations.  This 

table contains the number of initial conditions to be solved for, the run time length for 

each problem, then the average time it took to solve the problem.  It can be seen that the 

single vehicle formulations were all generally solved in less than a minute for a case with 

a run time of 10 seconds.  The multiple vehicle formulations took longer to solve because 

those cases tended to have a large number of local minima.   

    

Table 11.1: Time to Solve   

Formulation 
Number of 
Variables 

Run
time 

Time to 
Solve 

Pseudo 3D 1 10 sec 25 sec 
3D 2 10 sec 40 sec 

Varying 
Velocity 3 10 sec 65 sec 
2-vehicle 3 25 sec 6 min 
3-vehicle 5 25 sec 15 min 
4-vehicle 7 25 sec 60 min 

2-vehicle 3D 5 10 sec 10 min 
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CHAPTER 12 

  CONCLUSIONS 

 This thesis examined path planning methods using a reduced order formulation 

for both single and multiple vehicles.  In all cases the cost equation was set such that the 

path could be optimized with respect to either minimizing flight time or terrain masking.  

For most of the formulations, a constant velocity assumption was made, although one 

attempt was made at creating a more realistic varying velocity approach. 

 To begin with two pseudo-3D equations of motion were utilized and the altitude 

was constrained to be a set height above the terrain.  It was found, in general, that there 

was very little difference between the paths found with these two sets of equations of 

motion.  One problem, though, was accounting for the time necessary to move vertically.  

The simplified equations of motion ignored this detail entirely, while the local tangent 

plane equations of motion were able to mostly account for it. 

 This formulation was expanded to use a full set of 3D equations of motion, which 

allow a little more realism in the problem formulation.  In addition, a greater variety of 

problems can be examined, such as the case when the vehicle does not start the desired 

distance above the terrain.  This formulation also fully accounts for the time to fly 

vertically.  Also, a simplified varying velocity component was added to the 3D equations 

of motion by including the velocity as an additional state.  For this, the vehicle is now 

assumed to be flying with a constant – maximum – thrust.  Now, the path generated will 

more accurately lose speed going uphill and gain speed going downhill. 
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 The formulations using the two sets of pseudo-3D equations of motion as well as 

the full 3D equations of motion were also examined in the case of simultaneous path 

planning for multiple vehicles.  In these cases, two different situations were examined.  

The first was the situation of aircraft avoidance such as having two vehicles operating in 

the same area and ensuring they do not collide.  The second involves the case of 

formation flight.  For all sets of equations of motion considered, the necessary equations 

to generate the paths were derived for an unspecified n- number of vehicles.  Results are 

depicted for 2, 3, and 4 vehicles using the pseudo-3D equations of motion and for 2 

vehicles using the 3D equations of motion.   

 One major problem with this multiple vehicle formulation is that the number of 

differential equations to be solved and the number of initial conditions to be found 

increases quickly with the number of vehicles considered. Using the pseudo-3D equations 

of motion, there will be 4n-1 differential equations and 2n-1 unknown initial conditions. 

Using the full 3D equations of motion, there will be 6n-1 differential equations and 3n-1 

unknown initial conditions.  This means that the solving times can become lengthy. 

 To create trajectories that better mimic actual flight capabilities, a better varying 

velocity model and rate constraints should be added.  At this point, a very simple velocity 

model is used.  Improving this model will better reflect a vehicles speed flying over hills 

and around sharp turns.  Including an angle of attack constraint or acceleration constraint 

will also create a better representative model for horizontal maneuvering.  As seen with 

the simulator comparisons, limits on both the heading angle and flight path angle rates 

are being reached, causing the simulator to be unable to accurately follow the designated 

path.  Some method of limiting these rates should be incorporated.  These additions will 
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greatly increase the flyability of the optimal paths, thereby increasing the safety of the 

missions.
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APPENDIX A 

  SECOND VARIATION ANALYSIS 

Optimal control for a problem can be proved using various tests of the second 

variation of the problem.44  A sufficient condition for a weak local minimum is that the 

second variation be strongly positive.   To achieve this, two conditions must be met.  First 

the Legendre-Clebsch necessary condition must be met, and then the Jacobi test for 

conjugate points must be satisfied.  To show that the extremals provide a strong local 

minimum, the Weierstrass condition must be satisfied.   

   

A.1 Legendre-Clebsch Necessary Condition 

The Legendre-Clebsch necessary condition44 considers the positive-definiteness 

of the second partial derivative of the Hamiltonian equation such that 

0≥uuH  (A.1) 

or, for the strengthened form 

0>uuH  (A.2) 

where

=

nnn

n

uuuu

uuuu
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L

1

111

 (A.3) 

In these equations, u represents the vector of control variables for the optimal control 

problem such that 
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=

nu

u
u M

1

 (A.4) 

If equation (A.2) is satisfied for every time step, the extremals will be smooth and 

provide a weak local minimum for sufficiently short intervals. 

A.2 Weierstrass Test 

The Weierstrass test44-47 can be used to verify an extremal is a strong local 

minimum.  From the calculus of variations, the Weierstrass test is stated such that the 

Weierstrass excess function must be positive.45, 46

( ) ( ) ( ) ( ) ( ) 0,,,,, ≥
∂

∂−−−=
p

pxfpxpxfxxfpxxE &&&   (A.5) 

This can be shown to be the same as the Variational Hamiltonian H(u).44  This test states 

( ) ( )ooooo uxtHuxtH ,,,,,, λλ ≥  (A.6) 

where the superscript denotes an optimal value.  When the Hamiltonian is not explicitly 

dependent on time, it will be equal to zero at all time with an optimal solution meaning 

( ) 0,,, =ooo uxtH λ  (A.7) 

Thus

( ) ( ) 0,,,)(,,, =≥≡ ooooo uxtHuHuxtH λλ  (A.8) 

In the strengthened form, (A.8) should be equal to zero only when 

ouu =  (A.9) 
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The Variational Hamiltonian is found by inserting the algebraic equations for the optimal 

costates into the Hamiltonian equation evaluated at any test control point, such that 

( ) ( ) ( ) ( ) L&& +++= uyuuxuAuH o
y

o
x λλ4)(  (A.10) 

A.3 Jacobi Condition 

In the calculus of variations, an accessory-minimum problem is used to show that 

the second variation is nonnegative for extremals of finite length.  This test attempts to 

find a neighboring solution that is competitive to being an optimal solution by searching 

for a system consisting of nonzero variations which also make the second variation zero.  

According to Ref. 45, given an extremal x = xo(t), the point M is said to be conjugate to X

if M is the limit as ||xo(t)-x(t)|| 0 of the points of intersection of x = xo(t) and the 

neighboring extremal x = x(t), starting from the same initial point X.  To ensure at least a 

weak local minimum, it must be shown that there are no conjugate points. 

 The accessory minimum problem leads to an analysis of the nature of solutions to 

the linearized Euler-Lagrange equations.  These equations can be solved algebraically, 

but would become quite involved.  Instead, a numerical conjugate point test that was 

developed by H. J. Kelly and H. G. Moyer will be employed here.34,47-48  The linearized 

Euler-Lagrange equations can be written as 
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∂
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where the matrix is composed of the partial derivatives of each state with respect to the 

initial costate values.  

 A conjugate point is marked as a time when the rank of the matrix drops.  

Therefore, if the matrix retains full rank at all time, there are no conjugate points to that 

extremal.  In order to create this matrix, the following numerical approximation was used 

for each partial derivative.49

( ) ( )
xj

xj
o
xjixj

o
xji

o
xj

i
xxx

λ
λλλλ

λ Δ
Δ−−Δ+

=
∂
∂

2
  (A.12) 

This means that the initial values of each costate was perturbed both positively and 

negatively and this value was implemented in the set of differential equations to create 

two new vectors for each state.  These values of the states from the perturbed costate 

initial conditions were then subtracted and this value was divided by twice the 

perturbation value.  This process was repeated at every time step of the trajectory for the 

entire matrix.  The rank of the matrix was then determined for every time step to ensure 

that it always has full rank at all time.  All of the results presented in this thesis meet this 

requirement and it is not discussed specifically for each formulation.  
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APPENDIX B 

  MATHEMATICAL PROOFS 

  B.1 Single Vehicle 3D Weierstrass Test Proof 

 Considering the Weierstrass test for 3D equations of motion, it was found that 

( )[ ]ooooAuH γγγγψψψψ sinsincoscossinsincoscos1)( 4 −+−= (B.1) 

To satisfy the Weierstrass test, the following inequality must be satisfied. 

( ) 0≥uH  (B.2) 

Equation (B.1) can be rewritten as 

( ) [ ]NAuH −= 14  (B.3) 

where

( ) ooooN γγγγψψψψ sinsincoscossinsincoscos ++=  (B.4)

 This section examines N from the previous equations.  Given the trigonometric 

identity

( ) bababa sinsincoscoscos m=±  (B.5) 

(B.4) can be rewritten as 

( ) oooN γγγγψψ sinsincoscoscos +−=  (B.6) 

or

[ ]11;sinsincoscos −∈+= MM oo γγγγ  (B.7) 
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where M is any number between -1 and 1. 

 Then the following identities can be substituted into (B.7) 

i
ee
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−

−
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+=
 (B.8) 

This will result in 

i
ee

i
eeeeeeMN

oooo iiiiiiii

2222

γγγγγγγγ −−−− −−+++=  (B.9) 

Multiplying the terms will result in 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )oooo

oooo

iiii

iiii

eeee

eeeeM

γγγγγγγγ

γγγγγγγγ

+−−+−+

+−−+−+

++−−

++++=

4
1

4
 (B.10) 

Rearranging the terms will allow this to be rewritten as  

( ) ( ) ( ) ( )+−+++=
+−+−−−

22
1

22
1

oooo iiii eeMeeM γγγγγγγγ

 (B.11) 

Using the identities from (B.8) will give 

( ) ( )oo MM γγγγ +−+−+= cos
2

1cos
2

1  (B.12) 

( ) ( ) ( )oo XX γγγγ +−+−= cos1cos  (B.13) 

where
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[ ]
( ) [ ]
( ) [ ]11cos

11cos
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1
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o
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γγ
γγ  (B.14) 

 The range of values for N from equations (B.13) – (B.14) are evaluated and 

summarized in Table B.1.  It can be seen that when X is 0, N will be –B.  Conversely, 

when X is 1, N will be the same as A.  In addition, values for N when X is 0.5 are also 

displayed in the table.  

Table B.1: Values for N
X A B N 
0  -1 1 
0  0 0 
0  1 -1 
1 -1  -1 
1 0  0 
1 1  1 

0.5 -1 -1 0 
0.5 -1 0 -0.5 
0.5 -1 1 -1 
0.5 0 -1 0.5 
0.5 0 0 0 
0.5 0 1 -0.5 
0.5 1 -1 1 
0.5 1 0 0.5 
0.5 1 1 0 

 It can be seen from the table that  

[ ]11−∈N  (B.15) 

Therefore

[ ]201 ∈− N  (B.16) 
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B.2 Multiple Vehicle Weierstrass Test Proof 

Examining the Weierstrass test for the 2-vehicle simplified equations of motion 

results in 

( ) ( )[ ] ( ) ( )[ ]2211
1

11
22421 coscos

cos
cos1, ψψψψ

ψ
λψψψψ −−−+−−= oo

o
xo V

AH  (B.17) 

To satisfy the Weierstrass condition, equation (B.17) must be positive. 

( )[ ] ( ) ( )[ ] 0coscos
cos

cos1 2211
1

11
224 ≥−−−+−− ψψψψ

ψ
λψψ oo

o
xo V

A  (B.18) 

Multiplying through by cosψ1
o will result in two possible inequalities, depending on the 

sign of cosψ1
o.

( )[ ] ( ) ( )[ ]
( )[ ] ( ) ( )[ ] 0cos;0coscoscos1cos

0cos;0coscoscos1cos

12211112214
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ooo
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(B.19) 

Next, defining the following equality 

( )22cos ψψ −= oN  (B.20) 

and substituting it into (B.19) will result in 

[ ] ( )[ ]
[ ] ( )[ ] 0cos;0cos1cos

0cos;0cos1cos

1111114
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with 

[ ]
( ) [ ]11cos

11

11 −∈−

−∈

ψψ o

N
 (B.22) 

Now let 

( ) NP

NM

o −−=

−=

11cos

1

ψψ
 (B.23) 



 136 

and (B.21) can be rewritten as 

0cos;cos

0cos;cos
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where

[ ]
( )[ ]MMP

M
2

20
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∈
 (B.25) 

Therefore
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 (B.26) 

 First, the top inequality from (B.24) will be evaluated, where cosψ1
o is positive.  

A summary of this evaluation is given in Table B.2.  From the first case, it can be found 

that λx1 must always be negative.  In the fourth and fifth cases, both sides of the 

inequality are positive, so the left side must e more positive.   

Table B.2: Evaluation of Top Inequality 
M P  Given inequality  Needed condition 
0 -2 1120 Vxλ≥    01 ≤xλ
0 0 00 ≥   Always satisfied  
2 0  0cos2 14 ≥oA ψ  Always satisfied  
2 2 1114 cos VA x

o λψ −≥ 1114 cos VA x
o λψ −≥

1 1 1114 cos VA x
o λψ −≥ 1114 cos VA x

o λψ −≥

1 -1 1114 cos VA x
o λψ ≥

Always satisfied 
 given 01 ≤xλ
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 Next the bottom inequality from (B.35) is examined.  In this situation, cosψ1
o is 

negative.  A summary of the evaluation of this inequality is presented in Table B.3.  In 

the first case examined, it is found that λx1 must always be positive.  In the fourth and 

fifth, both sides of the inequality will be negative, so the left side must be more negative.  

Combining the results from this evaluation with the previous one, some general 

conclusions can be made to ensure the inequality from (B.19) is always satisfied.   

( ) ( )
1114

11

cos

cos

VA

signsign

x
o

o
x

λψ

ψλ

≥

−=
    (B.27) 

Table B.3: Evaluation of Bottom Inequality 
M P  Given inequality  Needed condition 
0 -2 1120 Vxλ≤    01 ≥xλ
0 0 00 ≤   Always satisfied  
2 0  0cos2 14 ≤oA ψ  Always satisfied  
2 2 1114 cos VA x

o λψ −≤ 1114 cos VA x
o λψ −≤

1 1 1114 cos VA x
o λψ −≤ 1114 cos VA x

o λψ −≤

1 -1 1114 cos VA x
o λψ ≤

Always satisfied 
given  01 ≥xλ
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