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CHAPTER 1

INTRODUCTION

High-flying unmanned reconnaissance and surveillance systems are now being
used extensively in the United States military. Current development programs are
producing demonstrations of next-generation unmanned flight systems that are designed
to perform combat missions. Their use in first-strike combat operations will dictate
operations in densely cluttered environments that include unknown obstacles and threats,
and will require the use of terrain for masking. The demand for autonomy of operations
in such environments dictates the need for advanced trajectory optimization capabilities.
In addition, the ability to coordinate the movements of more than one aircraft in the same
area is an emerging challenge.

There are presently many different methods being used to solve trajectory
problems for both single and multiple vehicles. Most of these methods commonly consist
of different ways of stringing together pre-determined potential flight segments into an
optimal or near-optimal path. These include using a Hybrid A" algorithm, Voroni
polygons, probabilistic maps and other graphical methods. Some researchers are also
experimenting with various analytical techniques to solve these path-planning problems,
including singular perturbation, genetic algorithms and neighboring optimal control as
well as other analytical techniques.

Many determine UAV trajectories using a Hybrid A™ or similar search tree
algorithm. This consists of optimizing the trajectory based on any specified cost function

using a library of predetermined vehicle movements. First, a library of potential motion



segments is built; then they are sequenced to find the path that minimizes the cost
objective. This process has been used for both 2D and 3D motion planning.'*

Several methods involve the use of Voroni polygons. This consists of dividing
the potential flight space into a graph where the vertices represent a specific position and
orientation of the vehicle. Costs of the path between two vortices are then determined via
the vehicle dynamics and cost function. First a suboptimal path is found by searching a
graph based on Voroni polygons, and then the path is improved through a variety of
techniques, including cubic splines and nonlinear ordinary differential equations.” "

Some researchers have examined other methods of graphically determining
minimum paths between two points. First a set of flyable paths is determined by
combining certain maneuvers into a flight path. These paths were then examined to find
the one with the lowest cost. Two different basic path scenarios are generally used. One
consists of flight paths of the form circular arc — straight line — circular arc.”” Another
considers paths that use three circular arc maneuvers.'*

A large number of the analytical techniques used for optimal trajectory generation
involve a direct solving method of nonlinear programming. This consists of solving the
set of Karush—-Kuhn—Tucker equations, instead of the Euler-Lagrange equations from
classical optimal control.'” One method is to first discretize the differential and algebraic
constraints using a collocation method with the state variables approximated as
polynomials and the control variables approximated as piecewise linear functions. This
results in a purely algebraic problem that can be directly solved.''® Another technique

involves using either a Gauss or Legendre pseudospectral method.'*



There are a wide variety of other analytical techniques that have been employed
to determine optimal, or near-optimal, trajectories. One method involves using singular

3 Another

perturbation techniques to create a two-point boundary value problem.”
involves using a probabilistic map — which is defined as the risk of exposure to threats as
a function of position — to find an optimal path while avoiding threats.** A third uses a
nonlinear trajectory generation algorithm that finds a trajectory parameterized by B-
splines, the coefficients of which are then found to satisfy the optimization objectives and
constraints.”> In addition, neighboring optimal control is also used to find optimal
trajectories.

Several groups of researchers use genetic algorithms to solve optimal trajectory
problems, for both single and multiple vehicles. One way is to have a set number of
defined maneuvers and standard small-formation tactics, then use the genetic algorithm to
determine how they can be integrated to optimize the problem.”” Another possibility is to
first convert the optimization problem to a nonlinear programming problem; then use a
real-coded genetic algorithm to solve it.*® A third method is to use the genetic algorithms
to find an optimal set of waypoints defining the trajectory, then connect the points with
flyable curves.”” Others use a genetic algorithm to find a near optimal solution by
searching a population of possible vehicle path portions.’*’

In the early 1990s, P. K. Menon and Eulgon Kim researched methods of optimal
trajectory path planning for terrain following and terrain masking flight. This research
produced a reduced order formulation based on a constant velocity approach.**** Ping Lu

and Bion Pierson then used an inverse dynamics approach to solve a terrain following

problem that included a more realistic varying velocity.*® In 2005, Tobies Ries conducted



similar research using a graphical optimization program called GESOP. This program
allows the inclusion of a six degree-of-freedom UAV model with dynamics.”’

This research expands on the work done by Menon and Kim. It was decided to
continue investigating using a reduced order formulation in order to exploit the benefits
of analytical methods of solving the optimal path planning problem before it became
necessary to use any numerical methods. In most numerical methods, the time step for
the discretization phase usually must be very small to avoid loss of information. This
leads to very long solving times. Also, the graphical methods of solving this type of
problem rarely lead to an optimal solution. The components of the research presented
here include

e Inclusion of wind effects, moving target and moving threats to pseudo-3D
constant velocity formulation.

e Examination of interior point constraints.

e Expansion of pseudo-3D equations of motion to full 3D equations of motion.

e Addition of velocity as a state to create a 3D varying velocity formulation.

e Expansion of pseudo-3D and 3D equations of motion to handle cooperative path
planning for n-vehicles.

e Derived second order variation conditions for each formulation and used these
conditions to assist in finding the optimal initial conditions.

Two pseudo-3D formulations are presented: one using local tangent plane
equations of motion and one using simplified equations of motion. These equations of
motion are used both with determining the trajectories for a single aircraft as well as for

multiple vehicles. Figure 1 depicts a sample terrain profile with the X-Y-H coordinate



system and a local x;-y;-z; coordinate system. The moving local coordinate system has
its origin on the terrain surface at a current x, y position with the x;-y; plane being the

tangent plane.

TANGENT PLANE
TERRAIN PROFILE

WX
v o\ X 1
\
| T 3
L;--/j ~— HEADING ANGLE
.
i
\.___‘
X

Figure 1.1: Relationship between Inertial Frame and Local Tangent Plane.

The local tangent plane formulation incorporates the constraint that the vehicle flies

tangentially to the local terrain directly into the equations of motion and can be written as

. Vecosy Vf.f,siny
X = +
Al A] AZ

(1.1)

j= —VA, siny

i (1.2)

The simplified equations of motion are an approximation written in the local level frame

and neglect the effects of the terrain slope in the position kinematics.
x=Vcosy (1.3)

y=Vsiny (1.4)



Chapters 2 to 6 investigate the implementation of the optimal path planning with a
single vehicle. Chapter 2 formulates the problem using both the simplified and local
tangent plane equations of motion and includes the effects of adding a moving target,
wind effects and moving threats. Chapter 3 details the results gathered from using these
methods. Chapter 4 repeats this problem using 3D equations of motion, both with a
constant velocity and with a varying velocity. Chapter 5 contains the results for these
formulations. Chapter 6 compares the results from Chapters 2-5 and then investigates
implementing the analytical results from these methods in a full six degree-of-freedom
flight simulator. In addition, results are compared to those found using GESOP.

Chapters 7 through 10 deal with implementing this process using multiple
vehicles. In Chapter 7, the necessary equations are derived for n-vehicles using the
simplified and local tangent plane equations of motion. The corresponding results for
these formulations are depicted in Chapter 8. In Chapter 9, the n-vehicle formulation is
expanded to use the 3D constant velocity equations of motion and those results are in
Chapter 10.

Details on the methods used to solve these problems are discussed in Chapter 11
while conclusions and future research are presented in Chapter 12. The second variation
analysis of these problems is considered in Appendix A. Here the Legendre-Clebsch
necessary condition and the Jacobi condtion — which are needed to ensure at least a weak
local minimum — as well as the Weierstrass test — which is needed to ensure a strong local
minimum — are examined. For the Legendre-Clebsch condition and the Weierstrass test,

it is found that certain inequalities must be satisfied at all time. These specific



inequalities are examined throughout the thesis for each formulation. For the Jacobi
condition, it is found that a matrix created by perturbing the optimal solution must be
fully rank at all time. All the results presented in this thesis meet this requirement, and
this condition is not discussed explicitly for the different sections  Last, various

necessary mathematical proofs are contained in Appendix B.



CHAPTER 2

SINGLE VEHICLE FORMULATION

2.1 Local Tangent Plane Equations of Motion
In this formulation, the equations of motion were described in equations (1.1) and

(1.2) and are restated here.

Vf f sin
x= VCOSW+ 1:1, l//+u(x,y)
A] A1A2

2.1)

j= —VA, siny
AZ

+v(x,) (2.2)

These equations embody the constraint that at all times the vehicle flies tangentially to
the local terrain. Here, x and y are the north and east components, respectively. V' is the
total aircraft velocity while u and v are the wind velocities in the x and y-directions,
respectively. The heading of the vehicle is represented by  -- the heading angle

measured with respect to the local tangent plane. Also, £, and f, are the partial derivatives

of the terrain profile. A; and A, are given by

A =1+ f? (23)
@=m+ﬁ+ﬁ (2.4)

The cost function for this problem can be seen in the following equation.
J = [0~ K)+ Kg(x, y.0)}dt 2.5)

In this equation, the combined threat and terrain function, g(x,,?), is given as a function

of time as well as the position and can be defined as follows.

g(x,y,0)= f(x, )+ f7(x,»,0) (2.6)



Here, f(x,y) is the function for the terrain profile and f7(x,y,?) is the function denoting the
moving threat. The weighting parameter, K, can vary between 0 and 1 and determines
the relative importance of time and terrain masking/threat avoidance used in the
optimization. When K = 0, the equations are optimized with respect to time. When K is
set to 1, the path is optimized with respect to the threats and the terrain. The Hamiltonian

equation can then be given as

7 sin - i
H=A4,+2, VCOSW+ It W+u}+l{—VA‘ sy Ly

4 A, } (2.7)

2

In this expression, A, and A, are the costate equations and 4, can be seen in the following

equation.
A, =1-K + Kg(x,y,t) (2.8)
The moving threat and target equations of motion are, respectively:

X, =V, cosy,

. ) 2.9)
Yr =Vpsiny,

)'crg = VTg cosy p, (2.10)
yTg = VTg Sinl//Tg

In each expression, it is assumed that the respective velocity and heading angle are

known at all times. The moving target then results in a new boundary condition.

2.11)

¥~ [x(t) -, (t)}

Y(O) =y, (0)

In this expression, it can be seen that #{#, has an explicit dependence on the final time as
a consequence of the fact that the target coordinates are assumed to satisfy equation

(2.10). Therefore, for a free final time, the Hamiltonian equation satisfies



¥ )
H(t,)= -y {E} =V, [xix cosy/, + ﬂy siny, Lz,» (2.12)

—f
Due to the moving threat, the Hamiltonian equation, (2.7), is explicitly dependent
on time. Given this, the optimality condition for a solution along an extremal arc shows
that

=21 =
ot

Kg, (2.13)
where g, denotes the partial derivative of the penalty function with respect to time.

Assuming that the threat is constant when expressed in a coordinate system that is

attached to the moving threat, then

glx,y,t)=glx—x,(t),y =y, ()] (2.14)

with the threat coordinates satisfying (2.9). Thus

H=-KV, (gx cosy,+g, sinl//T) (2.15)

Because the final time is free, the boundary condition for this expression is defined in
(2.12).
The optimality condition for this problem is defined as

H,=0 (2.16)

174

Evaluating this expression results in the following relationship

V .
A, =1 JoJycosy Vsiny )| 4, 2.17)

44, A | VA cosy
Equation (2.17) can then be substituted into the Hamiltonian equation, (2.7), to determine

equations defining the two costates, Ay and A, as follows.

1= —(4, —H)A? cosy

2.18
x Den (2.18)

10



(4, — H)4, siny — (4, _H)fxfy cosy

A = 2.19
g Den ( )

where
Den=VA, + A'u cosy + f. f,veosy — A,vsiny (2.20)

These new expressions for the costates can then be inserted into (2.12) to result in a new

boundary condition for the Hamiltonian at the final time.

H(t ) Vi A, (A,2 cosy cosy,, + f f, cosysiny,, — A, sinysiny,, )
f =

P , — (2.21)
Vi (A, cosy cosyy, + f f, cosysiny,, — A, sinysiny,, )— Den
t=t,
Differential equations for the costates can be found using

ﬂ"x = _Hx
. (2.22)

A, =-H,

This yields
/ix ——Kg. -4 D,cosy + Dysiny +Du, | A D,smy+ Dy, (2.23)
L Dl a L Dl
. [ D, cosy + D, siny + Du., | D, siny + D
ﬂzy — _Kgy _ﬂx 5 W 6 l// 1uy _ly 7 W ]vy (224)
L D] H L Dl
where

D, =44, (2.25)
D2 = _W‘xfxxA; (2'26)
D, = VA12A2232 _VAzzfxzfyfxx _VAlzBlfxfy (2.27)
D, =VA'B, ~VA 4} f.f., (2.28)
DS = _Vf‘xf‘;cyz423 (229)
D6 = VA12A22B3 _VAZfozfyfxy _VAIZB4fxfy (230)

11



D7 = VA14B4 _VAlezszfxy (231)

By=fofut iy (232)
By=fofoy+ S (2.33)
Bo=fofo+ oS (234)
Bi=ffy+ 1S, (235)

Next, the time derivative of either equation (2.18) or (2.19) is taken and set equal to its
counterpart in equation (2.23) or (2.24). This expression can then be solved for the
derivative of the heading angle such that

. L +Tu+Tyw+Tu, +Tu, +Tov, +Thv,

v = 7 (2.36)
where

T, =-KVS, +V(4,-H)S, (2.37)

T,=-KS,+(4,-H)S, (2.38)

T, = KS, +(4, — H)S, (2.39)

T,=(4,-H)S, (2.40)

T, =(4, - H)S, (2.41)

T,=(4,—-H)S, (2.42)

T, =(4,-H)S,, (2.43)

T, = (4, —H)A’ A} (2.44)

S, = A4, |A,g, siny + (¢, + /28, ~g.f.1, )eos vl (2.45)

S, =[S 2 = A2, 1 siny + Ay f, f ., cOsY (2.46)

12



S3 = A13A2 [Azgx Sml//+ (gy + szg)) - gxfxfy )COS W]COSW (2'47)

S4 =A1A2(A12fxfxy _fxzfyfxx +fnyX)COSZI//+

, 5 , . (2.48)

+A1 (AI fxfxx _AI fyfxy +2fxfy fxx)SIHI//COSl//
SS :AIA22<A12gy _2gxfxfy)8inwcosvl+ (2 49)

+A1A§gx Sinzl/j+A1A2(gxf¥2fy2 _Alzfygyfy)coszl// .

S6 =A1A2(fyfxy_fxzfyfxy+A12fxfyy)Coszl//+ (2 50)

+ AI <2fxfy2fxy + Alzfxfxy - Alzfyfyy )Sinl//COSl//
S, =44, (A2 siny — f.. f, cosw)cost// (2.51)
Sy = A’ A, cos” y (2.52)

Sy = 4 A2(2f 1, sinpcosy — A4, )+ 4,4, (42 = f2 12 )cos’y  (2.53)

S, =4 A, (foJ cosy — A, siny)cosy (2.54)
This solution consists of four differential equations -- x, y, H and y -- and requires
two initial conditions to be found -- H and y. The final value of the Hamiltonian is
known, via equation (2.21). The solution is reached when the final values of the
Hamiltonian and position are met and the cost is minimized. When there are no moving
threats, the Hamiltonian is constant in value — so there are only three differential

equations — and the final value is still known. When there is no moving target, the final

value of the Hamiltonian is zero.

2.1.1 Legendre-Clebsch Necessary Condition

The Hamiltonian equation for the local tangent plane equations of motion is
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Vi f sin — VA si
H:A4+/1{VCOSW+ It W}M{M} (2.55)
Al AIAZ AZ
and the algebraic equations for the costates are
1= —(4, - H)A, cosy
! 14
. (2.56)
ﬂ, — (A4 _H)(AZ Slnl//_ fxfy Cos l//)
! VA,

Since there is only one control, the second partial derivative of the Hamiltonian with

respect to the heading angle is a scalar value and is represented by

— Vj sin i
i = ZVeosy V] siny A, | Psmy 2.57)
Al AIAZ AZ

Substituting in the equations for the optimal costates will result in
H,=(4,-H)>0 (2.58)

This condition must always be satisfied.

2.1.2 Weierstrass Test
The variational Hamiltonian can be found by substituting the costate equations from
(2.56) for the optimal path into the Hamiltonian equation from (2.55) evaluated for any

path. This yields

— - 0 14 i
Hp)= 4, + (4, — H)A, cosy Vcosl,V+ 7., siny N

14 A4, A A,

. (2.59)
(4, — H) A, siny — . f, cosy” ) | -4, siny
VA, A,
This can be simplified to

H(y)=(4, - H)1-cos(y’ —w)|2 0 (2.60)
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which will always be satisfied if equation (2.58) is satisfied.

2.2 Simplified Equations of Motion
The equations of motion used in the simplified formulation are described earlier in
equations (1.3) and (1.4) and are restated here
x=Vcosy+u(x,y) (2.61)
y=Vsiny +v(x,y) (2.62)
These equations are written in the local level plane and neglect the effects of the terrain
slope. The cost equation for this case is the same as earlier and can be found in equation
(2.5). The corresponding Hamiltonian equation is therefore
H=A4,+A[Vcosy+ul+A,[Vsiny +v] (2.63)

The equations governing the moving target and moving threat can be seen above in
equations (2.9) and (2.10).

Evaluating the optimality condition stated in equation (2.16) for this formulation
results in the expression

1 =4 Sy

y P
cosy

(2.64)

Substituting this into the Hamiltonian equation results in the following costate equations

A = ~ (4~ H)cosy (2.65)
V +ucosy +vsiny

A= ~ (4, ~ H)siny (2.66)
© V+4ucosy +vsiny

Therefore, the Hamiltonian evaluated at the final time will be
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VTg 4, COS(‘// Y )

H(tf ) B Vi, cos(l// ~Yr, )— (V +ucosy + vsin l//) - (2.67)

The costate differential equations can then be found to be
A, =-H, =-Kg —Au -4y, (2.68)
/;ty =-H,=-Kg, —Adu,-A4yv, (2.69)

As before, the time derivative of (2.65) or (2.66) is found and equated to either (2.68) or
(2.69). This expression can then be rearranged to result in the following heading
differential equation.

. R +R2u+R3v+R4(ux —vy)+R5uy + R,

R, (2.70)
with
R, = KV(gy cosy — g sin y/) (2.71)
R, = K(gy cosy — g sin y/)cos v (2.72)
R, = K(gy cosy — g, sin l//)sinl// (2.73)
R, = (A4 —H)sinl//cosl// (2.74)
R, =—(4,—H)cos’ v (2.75)
R, = (4, — H)sin (2.76)
R, =(4,-H) (2.77)

Again, the inclusion of a moving target and moving threat results in a system of four

differential equations with two initial parameters to be found.
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2.2.1 Legendre-Clebsch Necessary Condition

The Hamiltonian equation for the simplified equations of motion is

H=A4,+A, [V cos l//]+ 4, [V sin y/] (2.78)

and the costate equations are

1 = —(A4 —H)cosz//
} V
2.79
J) :—(A4—H)sinl// @79)
! V

The partial derivative of the Hamiltonian equation with respect to the heading angle is
H,=(4,-H)=0 (2.80)

whish must always be satisfied.

2.2.2 Weierstrass Test
Using the Hamiltonian equation in (2.78) and the costate equations in (2.79), the

variational Hamiltonian can be written as

H=4, {_(A“ _g)cowo }[Vcosw]+{_(z44 —;l)smy/" }[Vsinl//] (2.81)

This equation can be reduced to
H(p)=(4, - H)1-cosly” -y)|= 0 (2.82)

which will always be satisfied if equation (2.80) is satisfied.
2.3 Waypoints

One useful problem variation that can also be investigated is the implementation of

interior point constraints during the flight.’®>* For this problem, the constraints will be

17



implemented in the form of waypoints where a specific position is required in the middle

of the flight. There can be n-number of waypoints during this flight, such that each

waypoint — with a given x and y position — is reached at an unspecified time, t;, in a

specified order before ending at the specified final position.

In this type of problem, there are certain constraints on the costates and

Hamiltonian that must be fulfilled at the interior points. They include
A1) = A7) + v,
A,7)=A,@t7)+ vy
H(t')=H(t7)=0

(2.83)

This implies that the value of each of the costates will jump at each waypoint while the
Hamiltonian will remain constant. Because of that, the heading angle will also jump at

each waypoint. This will result in a trajectory such as that seen in Figure 2.1. In this
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Figure 2.1: Solution with one waypoint.

example, flight over a flat plane with one waypoint is considered. Because all the terrain
partial derivatives are zero, the local tangent plane equations of motion will reduce to the

simplified equations of motion. In addition, both the costates will be at a constant value
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at all times with a jump at the time of reaching the waypoint. This results in the heading
angle also being a constant value with a jump at the waypoint. Having a jump in the
heading angle will create an optimal path that is not flyable. Therefore, the equations of
motion for this section will be modified to ensure a smooth trajectory.

The equations of motion for this section will include the equations used earlier with

the addition of y as an additional state. This results in equations of motion of

Vf f sin
x:Vcosl//+ 7., siny

Al AIAZ

j= —VA, siny (2.8

AZ
y=u
for the local tangent plane or

x=Vcosy
y=Vsiny (2.85)
y=u

for the simplified equations of motion. In these equations, u designates the control

variable for the system. The new cost equation is
J= [ 0= K+ Kp)+wu fae = [ 4, + W Jar (2.86)

which is the same as above with the inclusion of the control in the cost multiplied by a
weighing factor.

The Hamiltonian for this problem is now
H=A,+Wu’ + A3+ A,y +Au (2.87)
For both formulations, evaluating the optimality equation results in

H,=0=2Wu+2, (2.88)
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This yields the following equation for the control

2W

U=y (2.89)

At each interior point, the following conditions on the costates and the Hamiltonian must

be met.
A=A+,
ﬂy (t;) = ﬂ’y (&) +v,

2, =2, (1))
H(t')=H(t7)=0

(2.90)

Using these conditions from (2.90) as well as equations (2.87) and (2.86), an independent
equation for 4, is found as follows.

Wut -4, -Ax
y

A

y

2.91)

Next the differential equations for the other two costates can be determined using

A, =-H,

. (2.92)

;Lw =-H,

This yields
i ——kf. —/1X|:D2 cosy + D, sinz//}_ﬂy[D4 Sinl//:|
Dl Dl
(2.93)
: i Vf.f, cos
=4, Vsing  Vf.J, cosy v VA, cosy
Al AIA2 A2

for the local tangent plane equations of motion with D, through D; defined in equations
(2.25) — (2.31). For the simplified equations of motion, the costate differential equations

arc
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A, =-Kf,

X

. * (2.94)
A, =AVsiny -1V cosy

This results in a system of six differential equations. The initial conditions for the

two costates — A, and 4, — must be found as well as v; for each waypoint.

2.3.1 Legendre-Clebsch Necessary Condition
The Hamiltonian equation is stated in equation (2.87). The second partial

derivative of it then
H, =2W>0 (2.95)

which means that this condition is always satisfied.

2.3.2 Weierstrass Test
Using the Hamiltonian equations in (2.87) and the algebraic equations for A, and

Ay found in (2.91) and (2.89), the variational Hamiltonian can be found to be

Hw)=W-u") 20 (2.96)

This shows that the Weierstrass test is always satisfied.
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CHAPTER 3

SINGLE VEHICLE RESULTS

3.1 Terrain Data

Two general types of terrain models are used for the results throughout this thesis.
The first is a generic terrain model used for the initial testing of the equations. This
consists of variations of a flat plane with one or more constructed hills. The second
consists of actual terrain data for a larger area. This allows the opportunity for the
various equations to be tested in a more realistic manner.

A sample terrain of the generic model is shown in Figure 3.1. In this case a
mostly flat plane with a single hill is used. This hill in this terrain is formulated using the

exponential function

f=deh (3.1)
where 4 is the amplitude, b is a scaling factor to adjust the width and r is the distance

from any position to the center of the threat.

Terrain Elevation
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Figure 3.1: Terrain with threats formulated as an exponential function.
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Real terrain data was acquired from the United States Geological Survey to

1.* The data was found in tabular format relating the altitude to

incorporate into this mode
the locations longitude and latitude, with data points spaced approximately every 48 feet.
This data was then converted to matrix form, from which it could then be used as
f(x,y). Because of the distance between the sampled altitude points in the matrix, the
data was then smoothed to appear more continuous and to remove discontinuities in

altitude. The gradients of this matrix, along both the x and y directions, were calculated

numerically to form matrices representing f (x,y) and f (x,y). The gradients of these

two matrices yielded matrices for 1 (x,y), f,, (x,y) and £ (x,).

Terrain Elevation
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o
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=
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Figure 3.2: Terrain plot of an area near Columbus Ohio.
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For this portion of the testing, it was decided to use a section of terrain near
Columbus, Ohio. A profile of this terrain can be seen in Figure 3.2. In this graph, the x
and y-axes depict the position coordinates, measured in feet, such that the x-axis point
north and the y-axis points east. The altitude of the terrain is measured along the z-axis
and is also given in feet. This plot depicts a square plot of land, with 10,000 feet to a
side. The measurements along the x and y-axes are relative to a set origin for the terrain

data collected; this plot is just one small portion of the database.

3.2 Wind Effects
First, the effects of a wind blowing were investigated. For this portion, the terrain
model shown in Figure 3.1 was used with the single hill. For these flights, the initial and
final points are (500,1800) and (500,200). Therefore the hill is directly between the two
endpoints. With K set to 1, the optimal path found will curve around the hill. Since this
is a symmetric field, there are two possible optimal paths when there is no wind — the

path flying clockwise around the hill and the path flying counter-clockwise around the

hill.

Wind Magnitudes

Wind Magnitudes
R 1000
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Figure 3.3: Wind magnitudes of a circulating pattern.
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Here, a circulating wind pattern was introduced to the problem. In this case, the
wind moved in a circular pattern centered at the top of the hill with a decreasing speed
moving away from the hill. The magnitudes of the wind can be seen in Figure 3.3. This
plot was generated using equation (3.1).

With the winds added, the optimal path is the option where the aircraft moves in
the same direction as the circulating wind flow. Figure 3.4 shows the solutions found
with the winds moving in a clockwise direction. The trajectory is on the left and the
heading angle is plotted on the right. In Figure 3.5 the trajectory and heading angle for a

flight with counter-clockwise wind are depicted.
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Figure 3.4: Trajectories for flights with clockwise wind.
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Figure 3.5: Trajectories for flights with counter-clockwise wind.
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3.3 Moving Target and Threats
The simple terrain depicted above in Figure 3.1 consisting of a flat plain with a
single hill was also used to test the moving threat and target formulation with K=1. The
initial position is located at (500, 1800). The moving target begins at the point (900, 200)
and travels south while the two threats begin at (600, 1400) and (600, 400), respectively,
and travel in a south-easterly direction. For this situation, the results from the simplified
equations of motion and the local tangent plane equations of motion are the same, so only

one set of results are depicted.
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Figure 3.6: Paths generated with a moving target.

26



Figure 3.6 shows the first result. This is the case when there is a moving target
and no threats are present. The target is represented by the purple line and the trajectory

is depicted by the blue line.

The second case is depicted in Figure 3.7. In this scenario, the moving target is
still present, but there is also one threat in the area to be avoided. The threat is shown as
the red line in the plot. This figure also includes the result with the first case shown in

Figure 3.6. Figure 3.8 shows the distances between the vehicle and the threat when path
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Figure 3.7: Paths generated with a moving target and one moving threat.
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1 or path 2 are flown. It can be seen there that path 1 — the blue line — collides with the
threat while path 2 — the red line — is about 100 feet away from the threat at its closest

point. Thus it can be seen how path 2 changes to avoid the threat.
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Figure 3.8: Distance between trajectories and threat 1.
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Figure 3.9: Path generated with a moving target and two moving threats.
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Figure 3.9 shows the results from Figure 3.6 with the addition of a second threat

and a new trajectory, path 3. The beginning of the flight is the same as path 2 until the
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Figure 3.10: Distance between trajectories and threat 2.

first threat is avoided, then the new trajectory shifts to avoid the second threat. Figure
3.10 shows the distances between threat 2 and both path 2 and path 3. Here it can be seen
that path 2 — shown with the blue line — collides with the threat while path 3 — depicted
by the red line — stays a minimum of about 100 feet from the threat.

It was shown in the previous chapter that the Legendre-Clebsch and Weierstrass
tests are satisfied if the following inequality is satisfied for all time.

A,-H>0 (3.2)

When considering the case of moving targets and moving threats, the Hamiltonian is no
longer zero at all times, so this condition must be tested. Figure 3.11 shows the value for
this function at all times for each of the three paths found in this section. It can be seen

here that this function is always positive.
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Figure 3.11: Weierstrass and Legendre-Clebsch test.

3.4 Pop-up Threats

The case of pop-up threats during flight was also investigated. In this case, the
optimal path is in mid-flight when a stationary threat appears. A new trajectory must
then be calculated. To test this, a flight through the Columbus terrain — shown in Figure
3.2 — was used, utilizing the constant velocity, local tangent plane equations of motion.
In this case, a threat was added to the terrain as a single hill, as shown above in Figure
3.1, with a height of 300 feet above the level of the terrain at that point.

The results for this section can be seen in Figure 3.12. In this plot, the black
dashed line depicts the original trajectory found; here it goes directly through the new
threat. The three new trajectories are then shown as solid red lines. These depict the
results when the threat is detected at three different times in the flight — at 7 seconds, 12
seconds and 16 seconds into the approximately 36-second flight. The plot on the right
contains the plots of the heading angle for these four flights. The black line represents
the heading angle for the nominal trajectory while the blue, red and green lines represent

the heading angles for the trajectories when the threat is detected at 7, 12 and 16 seconds,
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respectively. For each of these flights, the jump in the heading angle can be seen when

the threat is detected and the new trajectory is calculated.
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Figure 3.12: Trajectories found with a pop-up threat
using local tangent plane equations of motion.

3.5 Waypoints

Two different cases of flying between waypoints are presented in this section. In
each case, two waypoints are included in the flight scenarios. The first case concerns a
flight over a flat plane. In this case, because there is a constant terrain, the local tangent
plane equations of motion will reduce to the simplified equations of motion. The second
case concerns flight over real terrain. For this case, the trajectory uses the local tangent
plane equations of motion.

The first, shown in Figure 3.13, consists of a flight on a flat plain with two
waypoints. The start position for the flight is at point (100, 100) with an initial heading
of 0.44 radians; the first waypoint is at (600, 400); the second waypoint is at (900, 1900);

the final position is (600, 1600). Here the initial position and the two waypoints are
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marked with red circles while the final position is marked with a red x. The heading

angle for this flight is depicted in the plot on the right.

1200 300

1000

800

600

w (feet)

400+

2001

L L L L L L L L L ) L L L L L
0 200 400 GO0 300 1000 1200 1400 1800 1800 2000 1} 5 10 15 20 25 3o
y (feet) t (sec)

Figure 3.13: Trajectory on a flat plain with two waypoints.
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Figure 3.14: Trajectory on real terrain with two waypoints.
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The second waypoint case involves flight over real terrain and is depicted in
Figure 3.14. In this case, the initial position is (11000, 9000), the end position is (12500,
17000), and the initial heading angle is 6.3 radians. The two waypoints are located at

(16000, 11000) and (13000, 12000). As before, the initial position and two waypoints are

32



marked with red circles while the final position is marked with a red x. Again, the

heading angle for this flight is depicted in the plot on the right.
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CHAPTER 4

SINGLE VEHICLE 3D FORMULATION

4.1 Constant Velocity

The 3D equations of motion used are

x=Vcosycosy 4.1)
y=Vcosysiny 4.2)
z=Vsiny 4.3)

Here, V' is the constant vehicle velocity, y represents the flight path angle and i is the

heading angle. The cost equation used for this problem is

J=["c +C =" A (4.4)
C,=1-K+Kf(x,y) (4.5)
C,=Wz=(f(e,3)+h) (4.6)

This cost equation has two distinct parts. The first, and dominant part, is C;
shown in (4.5). This part controls the importance of minimizing terrain masking versus
minimizing flight time. The second part is C, as seen in (4.6). Here, 4., the ground
clearance, is a constant provided by the operator and represents the desired flight height
above the terrain. This part is used to keep the flight path near the desired ground
clearance throughout the flight. W is a weighing parameter supplied by the user.

The Hamiltonian is

H=A4,+AVcosycosy + AV cosysing +AVsiny=0 4.7)

The optimality conditions for this problem are now
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H, =0
(4.8)
H,=0

Expressions for the three costates can then be found to be

—A
4 == cos ycosy 4.9)
' 14
— A, cosysiny
A, =— v (4.10)
A = — A siny 4.11)
14
The differential equations for the costates can then be found using the equations
ﬂ’x = _Hx
A, =-H, (4.12)
A, =—H.
and can be shown to be
A, =—Kf, +2Wf B, (4.13)
A, =—Kf, +2Wf,B, (4.14)
A, =-2WB, (4.15)
where
B =z—(f+h,) (4.16)

Next, the time derivative of equation (4.11) can be taken and set equal to equation
(4.15). This can be solved to find the following differential equation for ¥

_ 2VWB, cosy+Vsiny(f, cosy + f, siny J2WB, - K)
7/:
A4

(4.17)
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Then the time derivative of either (4.9) or (4.10) can be calculated and set equal to the
corresponding costate differential equations shown in (4.13) or (4.14), respectively. This
equation can be solved to find a differential equation for .

= (fx sinl//—fy cost//)(ZWVB1 —KV) .18)
A, cosy

This results in a system of five differential equations — x, y, z, ¥, and ¥ — with two

unknown initial conditions — ¥ and ¥

4.1.1 Legendre-Clebsch Necessary Condition
The Hamiltonian equation is
H=A4,+AV cosycosy+ AV cosysiny+AVsiny (4.19)

and the costates are represented by

1 = — A4, cosycosy
* 14
A, = — A, cosysiny (4.20)
V
1= —A,siny
: V

There are two controls for this section expressed as

u= {‘q (4.21)
4

This results in a 2x2 matrix for the second partial derivative of the Hamiltonian such that

g ool A, (fos 7?05 w-A, .cos ysiny A sinysiny — 4, sm.;/cos v (4.22)
“ A, sinysiny — A sinycosy  —A, cosycosy —A, cosysiny —A_siny

Substituting in the costates from (4.21) will result in
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H = V{A‘* (cos7)" 0 } (4.23)
0

Therefore, this matrix will be nonnegative definite.

4.1.2 Weierstrass Test
Substituting the optimal costates from (4.20) into the Hamiltonian in (4.19) for

any potential control results in the following equation.
Hu)=4, [1 — (cos wceosy’ +sinysiny’ )cos ycos ¥’ —sin ysin ¥’ ] (4.24)
In Appendix B, it is proven that this simplifies to
H@u)=A4,1-N)=0 (4.25)
where
N<1 (4.26)

Therefore, this condition is always satisfied.

4.2 Velocity as a State
This next section investigates including the velocity of the vehicle as a fourth

state. The new equations of motion will now consist of the equations in (4.1-3) and also
p=1=D_ gsiny (4.27)
m

In this equation, m is the mass of the vehicle, g is gravity, and T is the thrust of the
vehicle, which, for optimal results should be held constant at its maximum value. In

addition, D is the drag and is represented by

D=|C, + C |t V:s (4.28)
P enAR 2p '
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Here, Cp, is the nominal drag coefficient, AR is the aspect ratio, e is the efficiency factor,

p is the density of air, S is the wing area and C is the lift coefficient that is approximated

by
L mg
C, = = (4.29)
’ % pv:s % pV:s
These substitutions result in the following velocity differential equation
. B
V:E—gsiny—Bsz——; (4.30)
m V
with
Z}2 — CDopS
2m
. (mg)’ (4.31)

T % pPSmenAR
The same process as outlined earlier is used to reduce the order of the problem.

The new costate differential equation is found to be

. A, /11/ T . » 3B,
=" | ——gsiny+B, V- 4.32
b=y V(m AN 432

Next the new differential equations for the flight path angle and the heading angle are

(fx siny — f, cosz//)(ZWVB1 —KV)

v = (4.33)
B
cos ;{A4 -1, (BZV2 +2 - Tﬂ
V, m
and
y= G +G, (4.34)
B, T
V{— A, + A, cos y{Bsz +V;—mﬂ
with
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G, ==2WBV* cosy+V?*sin (K —2WB, |\ f. cosy + f, siny
1 1 x Y

B (4.35)
G, = gcos y{— A, +2/1V(V—Z—BZVZH

This process now results in a system of seven differential equations with three unknown

initial conditions to be determined.

4.2.1 Legendre-Clebsch Necessary Condition

The Hamiltonian equation is
H=A4,+AVcosycosy + AV cosysiny + A Vsiny+ AV (4.36)

and the costates are represented by

4%{ 144, V2+___}
cos ¥sin
A, :#{—1@ + [B & +——— } 4.37)

sin y , By T
A = —A,+A,| BV +———
z V |: 4 X’V( 2 Vz m]:| V

Again, there are two controls which can be expressed as

"= V} (4.38)
y

Taking the second derivative of the Hamiltonian and substituting in the costates from

(4.37) result in

HW — {(A4 - ﬂ’le )(COS 7)2 0 }

0 A - AH, (4.39)
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This matrix will be nonnegative definite as long as the following inequality is satisfied
for all time

A, -AH, >0 (4.40)

4.2.2 Weierstrass Test
Substituting the optimal costates from (4.37) into the Hamiltonian in (4.36) for
any potential control results in the following equation.

Hw)=(4,-A,H,J1-N)=0

N=1- (COSI//COSI/IO +siny siny”’ )cos ycos ¥’ —sin ysin y° (4.41)
where
V=l (4.42)
as shown in Appendix B. Therefore, this condition is satisfied when
A=A, 20 (4.43)

which is the same condition as in (4.40).
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CHAPTER 5

SINGLE VEHICLE 3D RESULTS

In this chapter are presented results using the 3D equations of motion, both with a
constant velocity and with a varying velocity. First, three sets of results are presented for
both the terrain masking and minimum time optimization options. In these cases, the
terrains used are flat planes with a progressively steeper hill. In addition, the initial
altitude for these tests is very close to the desired flight altitude. The next set of results is
for a case where the initial altitude is significantly different than the desired flight
altitude. As before, the terrain used is a flat plane with a single hill and both terrain
masking and minimum time flights are considered. The final set of results uses real
terrain.

Figures 5.1 — 5.6 depict the results using K = 0 — the minimum time case — over
progressively steeper hills. Results for each hill steepness are presented in two views,

one 3D view on the left and one overhead view on the right. The results in Figure 5.1

400

200
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Figure 5.1: Results for K = 0 with a hill height of 30 feet.
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Figure 5.2: Controls for K = 0 with a hill height of 30 feet.

and Figure 5.2 are for the least steep hill with a height of 30 feet. Figure 5.3 and Figure
5.4 depict the results for a terrain with a hill height of 40 feet. The steepest hill, in Figure
5.5 and Figure 5.6, has a height of 50 feet. The first plots in each set contain the 3D and

overhead views of the trajectories. The second set of plots contains the heading angle —
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Figure 5.3: Results for K = 0 with a hill height of 40 feet.
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on the left — and the flight path angle — on the left. The black line in each plot depicts the
trajectory for the constant velocity case while the red line depicts the trajectory for the

varying velocity case.
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Figure 5.4: Controls for K = 0 with a hill height of 40 feet.
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Figure 5.5: Results for K = 0 with a hill height of 50 feet.
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Figure 5.6: Controls for K = 0 with a hill height of 50 feet.

In the first two cases, it can be seen that the results for the constant velocity case
goes directly over the hill. In the third case, the constant velocity trajectory tends to veer
slightly around the hill. In this case, the hill is steep enough that it is quicker to fly
slightly around the hill instead of directly over it. For each of the three cases, the
trajectories for the varying velocity formulation always veer to some degree around the

hill, more than the trajectories using a constant velocity formulation.
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Figure 5.7: Velocity profiles from the three cases for K = 0.
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Figure 5.7 shows the velocities from the varying velocity trajectories from the
three minimum time cases. The blue line corresponds to the result over the 30-foot hill,
the red line is for the result with the 40-foot hill and the green line represents the result
for the 50-foot hill. In each case, the velocity decreases going over the hill, but, because
as the hill height increases, the optimal trajectory veers more around the hill, the
minimum velocity and velocity profile are almost the same for each case.

In the last chapter, an inequality was derived that must be satisfied in order for the
second order variation tests to be satisfied for the varying velocity formulation.

W=A,-A,H 20 (5.1)
This function, W, must be positive at all times along the trajectory. The plots for this
function for each of the three minimum time cases can be seen in Figure 5.8. It can be

seen here that the second order variation conditions are always satisfied.
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Figure 5.8: Second variation inequality for K = 0.

Figures 5.9 — 5.14 similarly show the results for three progressively steeper hills

with K = 1 — the terrain masking case. Here it can be seen that the trajectories for both
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the constant velocities and the varying velocity formulations are almost identical. In all

three cases, the optimal trajectories go around the hill.
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Figure 5.9: Results for K = 1 with a hill height of 30 feet.
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Figure 5.10: Controls for K = 1 with a hill height of 30 feet.
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Figure 5.11: Results for K = 1 with a hill height of 40 feet.
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Figure 5.12: Controls for K = 1 with a hill height of 40 feet.
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Figure 5.13: Results for K = 1 with a hill height of 50 feet.
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Figure 5.14: Controls for K = 1 with a hill height of 50 feet.

Velocity profiles for these cases can be seen in Figure 5.15. In each case, it can
be seen that there is a slight fluctuation in the velocity at the beginning as the altitude
settles, then it smoothly increases slightly throughout the flight. Figure 5.16 contains the
plots of the function for the second variation tests for the three terrain masking varying

velocity cases. As before, it can be seen that these tests are always satisfied.
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Figure 5.15: Velocity profiles from three cases of K = 1.
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Figure 5.16: Second Var;;‘:;)()n inequality for K = 1.

The final trajectories presented involve a flight over real terrain.  Figure 5.17
shows the optimal results for K = 0 with the corresponding controls in Figure 5.18.
Figure 5.19 depicts the results for K = 1 and those controls are shown in Figure 5.20.
Both are overhead views of the terrain and trajectories. The red sections indicate hills
while the blue parts are valleys. In both plots, the constant velocity trajectory is shown
with black and the varying velocity path is in red. The initial position is marked with a
red circle on the left of the plots while the destination is marked with a red star on the
right.

In Figure 5.17, the minimum time case, there is a significant difference in the two
trajectories. This is because for the case with the varying velocity, the vehicle loses
speed going uphill — increasing the flight time — and gains speed going downhill —
decreasing the flight time. Therefore, the flight time is minimized by lessening the
amount of uphills flown. Instead, the trajectory for the minimum time case with the
varying velocity is quite similar to the terrain masking trajectories, which are depicted in
Figure 5.19. It can be seen that the optimal trajectories for the terrain masking case are

very similar to each other, whether considering a constant or varying velocity flight.
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Figure 5.19: Optimal trajectories for K = 1.
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Figure 5.21: Velocities for flights over real terrain.

500

800

700

BOO |

= 500

400 -

3001

1 2001

05 L L . . . . . . . 100 L
i} 10 20 30 40 50 <in] 70 a0 a0 100 i} o 20
1 (sec)

L L L L L
30 40 50 =] 70 a0 a0 100
t (sec)

Figure 5.22: Second variation inequality for flights over real terrain.
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The velocities for the varying velocity trajectories from Figures 5.17 and 5.19 are
depicted in Figure 5.21. In this plot, the velocity from the minimum time formulation is
depicted be the black line while the red line represents the velocity from the terrain
masking formulation. The plots of the function from the second variation analysis
inequality are depicted in Figure 5.22. The plot on the left shows the function from the
minimum time case while the plot on the right shows the function for the terrain masking

case. It can be seen that both functions are positive at all time.
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CHAPTER 6

SIMULATOR RESULTS AND COMPARISONS

This chapter more closely examines the formulations and results from the
previous chapters concerning single vehicle optimal paths. First a direct comparison of
the results for all four formulations — for both minimum time and terrain masking flights
— will be made. Next the trajectories will be implemented in a full six degree-of-freedom
flight simulator for a fixed wing UAV. Then results from a simple flight test will be
examined. Finally, comparisons will be made between the pseudo-3D cases from
Chapters 2 and 3 with similar results found using GESOP (Graphical Environment for

Simulation and Optimization).

6.1 Trajectory Comparison

This section examines the results from the previous chapters. For a given terrain,
a flat plane with a single hill, the optimal trajectories found to navigate it for both
minimum time and terrain masking flight are compared. The formulations considered
include the simplified and local tangent plane equations of motion for the pseudo-3D case
as well as the constant velocity and varying velocity 3D equations of motion. This is
repeated for three different hill steepnesses.

Figures 6.1 — 6.3 contain the results for the minimum time, K = 0, case. Each
figure portrays the results from a different hill height. The top two plots are a 3D view
and an overhead view of the trajectories from the pseudo-3D case while the bottom two

plots depict the paths for the 3D cases. For these cases, the trajectories from using the
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simplified equations of motion and from using the local tangent plane equations of

motion are the same and are represented by the black line. In the bottom two plots, the

i}
i (feet) o v fieet) ! o)
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Figure 6.1: Trajectories for K = 0 and hill height = 30.

black line represents the simplified the constant velocity 3D equations of motion. The
red line is for the varying velocity 3D equations of motion. The plots for the 3D
equations of motion trajectories are the same as depicted in Chapter 5, and are repeated
here for convenience. In the first two cases, with hill heights of 30 and 40 feet, the

constant velocity 3D trajectories are the same as the pseudo-3D formulations; however,
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in the steepest hill, the 3D trajectory begins to veer around the hill. In all three cases, the

varying velocity trajectory veers around the hill to some extent.
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Figure 6.2: Trajectories for K = 0 and hill height = 40.

Some details from the various cases portrayed in these figures are tabulated below
in Table 6.1. Here, the time for the flight and the cost of the flight can be compared for
each set of equations of motion investigated. In this table, it can be seen that the flight
time doesn’t change with the simplified equations of motion, while the time increases for

the local tangent plane and 3D equations of motion. This is because the time needed to
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fly vertically is ignored in the simplified equations of motion. This time is better
accounted for with the local tangent plane equations of motion, but these final times are
still slightly less than the final times with the 3D equations of motion, especially when
the hill steepness is greater. The final times for the varying velocity cases are

significantly greater due to the loss in velocity during the flights.
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Figure 6.3: Trajectories for K = 0 and hill height = 50.
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Table 6.1: Trajectory data for K = 0 flights

Hill Height =30 | Hill Height =40 | Hill Height = 50

tf cost tf cost tf cost
simplified 7 7 7 7 7 7
local tangent plane 7.06 7.06 7.1 7.1 7.15 7.15
3D 7.06 | 7.063 7.11| 7.116 7.16 | 7.165
varying velocity 727 | 7.289 737 7371 745 | 7.451

Figures 6.4 — 6.6 contain the plots for the results for K = 1. These plots are for
cases parallel to those shown in Figures 6.1 — 6.3. The same three hill heights are

displayed with the four sets of trajectories depicted. As in the earlier plots, the top plots
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Figure 6.4: Trajectories for K = 1 and hill height = 30.
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show the trajectories from using the simplified and local tangent plane equations of
motion. The bottom two plots depict the results from Chapter 5 for the trajectories using
the 3D constant velocity and varying velocity equations of motion. In each of the four
cases, for each of the three hill steepnesses, the trajectories appear the same. The

trajectory always curves around the given hill.

Table 6.2 contains the final time and cost information for the trajectories from each
set of equations of motion and for each hill height for the K = 1 formulation. It can be
seen here that there is very little difference in these results regardless of the equations of

motion used or the hill steepness.
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Figure 6.5: Trajectories for K = 1 and hill height = 40.
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Figure 6.6: Trajectories for K = 1 and hill height = 50.

Table 6.2: Trajectory data for K = 1 flights

500 BO00 700

Hill Height = 30 | Hill Height =40 | Hill Height = 50

tf cost tf cost tf cost
simplified 8.42 | 26.349 8.42 | 35.1314 8.42 | 43.9143
local tangent plane 8.42 | 26.348 8.42 | 35.1305 8.42 | 43.9132
3D 8.42 | 26.349 8.42 | 35.132 842 | 43914
varying velocity 8.41 | 26.306 8.42 | 35.108 8.42 43.88

59



6.2 SIMULATOR IMPLEMENTATION
Some of the results from the last section were then implanted on a 6 degree-of-
freedom flight simulator. This simulator is for a small fixed wing aircraft that is being
built for flight research at Georgia Tech. The results from each of the four single vehicle
formulations for a single hill height are implemented on the simulator and the results are

compared. This is completed for both the minimum time and terrain masking cases.
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Figure 6.7: Simulator comparisons for K = 0.

In Figure 6.7, the results for the minimum time cases for each set of equations of

motion are shown, along with the corresponding simulator results. In these plots, the
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blue line represents the analytical trajectory found while the red line shows the
corresponding simulator result. In each case, it can be seen that there are some problems
following the trajectories. The limit on the rate of change of the flight path angle is
reached in each case, meaning that the simulator is slow to start climbing the hill and
especially in going over the hill.

Figure 6.8 depicts the results for the terrain masking cases for each of the
equations of motion. In each case, the overhead views of the trajectories are shown. As
with the minimum time cases, there are some problems in following the trajectories. In
this case the heading angle rate of change limit is reached, causing the simulator to lag in

turning.

¥ (fest)

¥ (feet)

500

480

4001

3801

300

-50

Simplified EOM

— analytical trajectory
sim trajectory 7]

i}

500

L
100

I
200

L L I L
300 400 00 BO00 700

30 EOM

450 F
400
3801
3001

-60

y (feet)
analytical trajectory
=im trajectory 7

1}

L
100

!
200

L L L L
300 400 500 500 700
y (feet)

¥ (feet)

* (feet)

500

480+

400+

380+

300+

-50

500

450+
400+
380+
300+

280

200+

150 F

100 F

50 F

oF

-50

Local Tangent Plane EOM

— analytical trajectary
sirn trajectory 7

i}

L
100

L
200

3D Varying Yelocity EOM

. L L .
300 400 500 500 700
¥ (feet)

T T
analytical trajectory
sim trajectory )

1}

L
100

L
200

L L L L
300 400 500 600 700
y (feet)

Figure 6.8: Simulator comparisons for K = 1.
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6.3 FLIGHT DATA

This section examines a few flight test made using some analytical trajectories
found. In this case, the trajectories were flown on the GTmax experimental helicopter.
The trajectories are terrain masking flights using the local tangent plane equations of
motion.

Figures 6.9 and 6.10 depict the results for the two terrain sets used here. In
Figure 6.9, a terrain with five hills was considered while a terrain with three hills was
used for the results in Figure 6.10. In both plots, the blue line represents the analytical

trajectory while the red line indicates the actual flown trajectory. In both cases, there is a

0 200 400 BOO 800 1000 1200 1400 1600 1800 2000
¥ (feet)

Figure 6.9: Flight data for 5 hill terrain.

slight difference at the beginning of the flight — towards the right of the plot — then the
flight trajectory follows the analytical path closely. This difference is due to the fact that
the helicopter was not oriented in the same heading as y°. Therefore, the helicopter had

to turn to start following the trajectory, which causes the slight difference.
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Figure 6.10: Flight data for 3 hill terrain.

6.4 GESOP

Several test cases from the previous chapter were also compared to results found
using GESOP. GESOP (Graphical Environment for Simulation and Optimization) is a
graphical optimization program that includes four different optimization programs using
different methods such as collocation or multiple shooting. It was developed at the
Institute for Flight Mechanics and Control at the University of Stuttgart and allows the
implementation of every kind of optimization model. The optimization can be performed
by using program interface modules — available in Ada95, C or Fortran — that contain the
optimization model, which are then compiled and used by the program. The solutions
can be shown in the program itself with Quick View or can be exported for further
processing.

This program allows the optimization of a full six degree-of-freedom UAV model
with the full dynamics included. For the first approach the model of a preliminary system
GA Tech UAV model was used. When experimental values for this UAV are available,

changes to the program can be made.
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Two different test cases were examined, and the answers compared with the
solutions generated by the analytical method outlined above. The first consists of flights
with moving targets and threats at a constant altitude. The second case examined deals
with pop-up threats.

First is the situation when the target must rendezvous with a moving target while
avoiding two moving threats. The results from this can be seen in Figure 6.11. The blue
line is the 3DoF GESOP result, the black line is the 6DoF GESOP result, the red line is

the 3DoF analytical result and the green line is a modified 6 DoF GESOP result. The top
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Figure 6.11: GESOP flights with a moving target and moving threats.
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plot is when there are no threats yet present. The three solutions are pretty much the
same, but the 6DoF-solution doesn‘t fly the turn as sharply as the 3DoF solutions. Next,
in the bottom left plot, one moving threat is added. The two 3DoF solutions pass it in
front while the 6DoF solution finds it more optimal to pass behind. Finally, the bottom
right plot shows the results of the case when a second moving threat is included. Again,
the 3DoF solutions pass in front of the threats while the original 6DoF result passes
behind the threats. But in a simulation containing threats with their velocity reduced by
10% (green) the 6DoF simulation also passes in front. But there it can be seen that the
turning rate especially at the second threat is much lower than for the unresticted 3DoF-
simulations, so that a flight in front of the threats for the normal 6DoF would cause a
significantly longer path taking longer than crossing behind.

Figure 6.12 shows a comparison between the 6 DoF GESOP results and the 3
DoF analytical results from above with a popup threat, with a terrain masking

optimization. In this plot the black dashed line shows the original result without a popup

Figure 6.12: Flight with popup threats showing both
6 DoF GESOP and 3 DoF analytical solutions.
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threat for the analytical result; the red line is then the corresponding result when the
popup threat is included. The blue lines are the results using both full throttle and a
reduced throttle using the 6 DoF GESOP.

Overall, it can be seen that a 6 DoF optimization with a full dynamics model over
real terrain is available and working. It was found that the 6 DoF results were very
similar to the 3 DoF results for tests at constant altitudes and unambiguous cases.
However, the 6 DoF results can show significant differences for flights over discrete
terrain due to full dynamics and ambiguous cases. An ambiguous case is where there are
two solutions that don‘t differ very much in the cost function, but differ very much in the

path, like taking the left or the right side for going around a symmetrical hill.
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CHAPTER 7

MULTIPLE VEHICLES

This chapter examines the problem of finding optimal trajectories for multiple
vehicles simultaneously. Two different situations are considered. The first is the case
when there are two vehicles operating independently in the same area. They must each
have a trajectory from their starting position to their ending position while avoiding
flying too close to the other vehicles. The second case is formation flight. The vehicles
must fly a set distance from the other vehicles and travel from the starting location to the
ending location.

As in Chapter 2, the pseudo 3D equations of motion are used, both the simplified
set and the local tangent plane equations of motion. First, the reduced order optimal
equations are derived for both sets of equations of motion for the case of controlling two
vehicles. Next, these equations are expanded to include the simultaneous control of an

unspecified number of vehicles (n-vehicles).

7.1 Simplified Equations of Motion
For this formulation, the simplified equations of motion are used, as described
above in equations (1.3) and (1.4).
x;, =V, cosy, (7.1)
Y, =V, siny, (7.2)
Here, with i equal to one, (7.1) and (7.2) depict the equations of motion for vehicle 1 with

a velocity, V;, and a heading angle y;. With i equal to two, (7.1) and (7.2) depict the
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equations of motion for vehicle 2 with a velocity of V> and a heading angle of y». The
variables x; and x, represent the positions with respect to the northward x-axis of vehicle
1 and 2, respectively, while y; and y, are the positions with respect to the eastward y-axis
of vehicle 1 and 2, respectively. For this problem, the initial and final positions for each
vehicle are specified.

The cost equation used for this problem is
tr t,z
J= "+ lde+ [ 1 + e (7.3)

Since the final time for each vehicle can be different, the cost equation is composed of
two integrals covering the time for the flight of each vehicle. In this problem, the cost
equation for each vehicle is broken into two parts. The first part is
J,=0=-K)+Kf.(x,,y;) (7.4)

and represents the cost for either minimum time versus terrain masking, depending on K.
As before, if K = 0, the problem is optimized solely with respect to minimum time while
if K = 1, the problem is optimized purely with respect to terrain masking. The second
part of the cost will change, depending on whether vehicle avoidance or formation flight

1s desired. It will be either

n=2 (7.5)
for collision avoidance flight or
J,=W(d-d.) (7.6)
for formation flight with
d=(x~x,) +(-») (7.7)
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In these equations, W is a weighing parameter and d is a measure of the square of the
distance between the two vehicles. It can be seen that d will create a singularity in J at
collision. The altitudes of each of the vehicles are represented by the sum of f;(x;, y;) and
Jfo(x2, y2) -- the terrain height at each respective vehicle position -- and a constant ground
clearance.
The Hamiltonian equation for this system can be written as
H=A,+A,V, cosy, + A,V siny, + 1,V, cosy, + 4.V, siny,

2

A4:Z(J11+J2) (7.8)

The costate variables for the four states are given by A,; and 4,,.
The optimality conditions for this problem are

H. =0 (7.9)

vi
where Hy; represents the partial derivative of the Hamiltonian with respect to y; while
Hy, represents the partial derivative of the Hamiltonian equation with respect to 5> .

Evaluating equation (7.8) results in the following two relationships.

Ay = A, ud (7.10)
cosy,
Since the Hamiltonian equation is not explicitly dependent on time, it will equal

zero at all times. Using this fact and equations (7.8) and (7.9), the following two

algebraic expressions for costates are found

1= —siny, (4, cosy, + A,V (7.11)
v, cosy,

P cosy, (A, cosy, + AV, (7.12)
v, cosy/,
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Differential equations for the costates can be found by taking the partial

derivatives of the Hamiltonian equation as shown below.

§ (7.13)

i

ﬂ.'xi = _H
A, =-H
This results in the following four differential equations.

A, =—Kf\, + B, (7.14)
A, =-Kf,, +B, (7.15)
A, =-Kf,, - B, (7.16)
A, =—Kf,, - B, (7.17)
with either

B1 — 2W(‘x12_ ‘x2)
d (7.18)

2W(y1 Vs )

B, = e

for aircraft avoidance or

B, =4wd -d, )\x, —x
= —d ) —x,) 10
B, = 4W(d_dc)(y1 _yz)
The time derivative of equation (7.10) is taken and set equal to its counterpart in

equation (7.15), with i equal to one in both cases. Rearranging this expression will result

in a differential equation for y;.

. cosy, [(Kflx _Bl)SinW1 _(Kfly - B, )COSl//l]
Y, = 1

x1

(7.20)

Next, this is repeated for either equations (7.11) and (7.16) or equations (7.12) and (7.17),

to determine a differential equation for .
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_ V, cosy, [(Kny +B, )COSl/jz - (Kf2x +Bl)Sinl//2]
A, cosy, +V A,

(7.21)

2

This results in a system with seven differential equations — the four state equations, the

two heading equations and the costate A,; — with three unknown initial values.

7.1.1 Legendre-Clebsch Necessary Conditions

For this formulation, the Hamiltonian equation is
H=A4,+A,V,cosy, + A,V siny, + A,V,cosy, + A,V,siny, (7.22)

and the costates are represented by

sin

A, =4, 20V
cosy,

ﬂyz _ _Slnl//z (A4 COS'//] +ﬂ’xll/] J (723)
v, cosy,

4. = Tcosy, A, cosy, + AV,
2 v, cosy,

There are two controls here, represented by the vector

. {WI} (7.24)
¥,
This will result in the following matrix for the partial derivative of the Hamiltonian
" (_ A, cosy, — A, siny, ) 0
w = ' . (7.25)
0 v, (— A, cosy, — A, siny, )

Substituting in the costate equations from (7.23) will result in the following matrix.

B /?’x] I/] 0
H, =| Y (7.26)
0 B ﬂ’xZ V2
cosy,
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In order to satisfy the condition, the following equations must be met.

ALy (7.27)

cosy/,

7.1.2 Weierstrass Test
Substituting the optimal costate equations into the Hamiltonian equation will

result in the following expression for the variational Hamiltonian.

A
H(l//1 W, ) =4, [1 - COS(l//;’ -y, )]"' ﬁ [cos(l//f -y )_ Cos(l/jza -V, )] (7.28)
|

This must satisfy

H(Wlalﬂz)z 0 (7.29)

In Appendix B.2, it is proven that this condition will be satisfied if the following

inequalities are true.

|4, cosyy | 2] 4,7 (7.30)

sign(A,, )= —sign(cosy,) (7.31)

7.2 Local Tangent Plane Equations of Motion
For this section the equations of motion used were seen above in equations (1.1)

and (1.2) and are repeated here.

X_ _ V: Ccos W,‘ + I/lj;xf;y Sin l//i
i Ali AliAZi

(7.32)

. _—Vid,siny,

: 7.33
Vi y (7.33)

2i

where
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A, =41+ f;)f ( )
7.34

4,, :\/1+fij +fzy2

This process used is the same as above. The cost equation used is the same as in the

previous section and can be seen in equations (7.3) — (7.7). The Hamiltonian equation is

found to be

J (7.35)

: - Vif. S, siny, —V. A, siny,
H:A4+/1X{V’ oSV Sty WJ+JLy.£—V’ 1 S Y,

1i AliAZi l A2i
where A4, is defined in equation (7.8).
As before, equations were found for the costates using the Hamiltonian equation

and the optimality equation seen in (7.9). These were found to be, as a function of 4,;,

— A, siny, + cos
lyl — lx][ 21 lyzl ﬁxﬁy Wl J (7_36)
47, cosy,
A, = — 4y, cosy, £A4A11 cosy;, +Vid, j (7.37)
" 4, cosy,
1. = (A4A11 cosy, + V4, )(_ f2xf2y cosy, + Ay, sin l//z) (7.38)
- Vi4, cosy A, '

The differential equations for the costates were found through evaluating equation (7.13).

This resulted in

: 14 . in’
Ay =—Kf, + B, ———| L, cosy, + L, siny, + L1 | (7.39)
A]]A2] COSWI
- v, . sin”
A . =—Kf +B, ——| L, cosw, + L.siny, +L ! 7.40
y1 fly 2 A131A23] 4 v, 5 v, 6 cosy, j ( )

% . in”
ﬂ'xz = _Kf2x _Bl _3—23[1‘1 cosy, +L2 sy, +L3 MJ (7'41)
AL A5, cosy,
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ﬂ’yZ = _Kfzy - B, -

-2
3 43
124122

s 2
(L4 cosy, + Lysiny, + L Sl J (7.42)
cosy,

where

Ll = _A;l fixfixx ﬂ’xi
Ly =242, o+ S S )= A2 oS + S S )= A2 TS S Py (7:43)
Ly= (AL, fo + AL f2 o Vo

L4 = _Agif‘ixf\ixyﬂxi

S LA 1) A0
LS - AliAZi iyf;‘xy +f;‘xf;‘yy - lif;'xf;'y ixf;xy +f;‘yf;'yy - Zif;'x f;'yf;‘xy xi (744)
Ly = (A3 oy + AL S oo W

B; and B, are defined in equations (7.18) and (7.19). Using the technique described
above, differential equations for the two heading angles are then found. These can be

represented as

l/./ — A]3]A2] COSW] (Pl Sin llyl + P2 COS'//] )+ ﬂ'xll/lf;y})?y
1 A]3] A22] ﬂ'x]

(7.45)

l// _ V2 [A11A122A22 COs l/IIT; + (A4A1] COS l//] + I/lﬂ'x] )TZ] (7 46)
2 - .
A]32 A222 (A4 Al] Cos l//] + I/lﬂ'x] )

with

P = Azl(Kf]x _D])
})2 :A]2]<Kﬁy _DZ)_f;xf;y(Kﬂx_D]) (747)
})3 = ﬁxﬁyﬁxx Sin llyl - Alzlﬁxy Sin llyl + AZIﬁxx €os l//1

T, = (Kf2x +D, )(fony cosy, — 4,, Sinl;”z)_ (Kny +D, )A122 cosy,

s . (7.48)
T, = ny (fonyfox - AlZfoy )Sm v, + A22f2yf2xx cosy,

Again, this process results in a system with seven differential equations — the four state
equations, the two heading equations and the costate A,; — with three unknown initial

values.
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7.2.1 Legendre-Clebsch Necessary Conditions

The Hamiltonian equation for the local tangent plane formulation is

Vi . Vifi Sy siny, —V. A, siny,
Hed, 4| o0 Vidulysiny w4, SV (7 49
Ay, 4,4, Ay,
and the algebraic expressions for the costates are
1 =1 _Azl Sinl:”1 +f1xf1y cosy,
. o A121 cosy,
A, =" 4, cosy, [A4A11 cosy, + V4, ] (7.50)
8 4, cosy,
1. = (4,4, cosy, + V4, )(_ Jocfoy cO8YW, + 4, sin l/jz)
v2 T

l71/11] Cos lly] A]Z

This results in the following matrix for the second partial derivative of the Hamiltonian

A_ ﬂ’xl I/l O
H,, =| "V (7.51)
O ﬂxZ VZ
A4,, cosy,
In order to satisfy the condition, the following equations must be met.
A sy (7.52)

Ali COos l//[

7.2.2 Weierstrass Test
The variational Hamiltonian is again found by substituting the optimal algebraic
costate equations into the Hamiltonian equation.

A
H(W1>W2): 4,4, [I_COS(W;) -y, )]"'ﬁ[cos(@”f _Wl)_cos(l/l; -y, )] (7.53)

1

This must satisfy
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H(y,,p,)20 (7.54)

In Appendix B.2, it is proven that this condition will be satisfied if the following

inequalities are true.

‘A4A, cosy,

>[4, (7.55)

sign(A,, )= —sign(cosy, ) (7.56)

7.3 Simplified Equations of Motion — n-Vehicles
For this section, the same process as above is repeated here, but now presented for
a n-number of vehicles. First, the simplified equations of motion are used, as described
above.
X, =V, cosy, (7.57)
y; =V, siny, (7.58)
Again, i is used to represent each of the n-vehicles. The cost equation, in this case, is

represented as

J = [ [+, )dt] (7.59)

with
J, =1-K+Kf(x,,y,) (7.60)

As before, the second part of the cost will be

J, = WZ Z; (7.61)

for collision avoidance flight while, for formation flight, it will be
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n-1 n
=Wy Y, ~d, (7.62)

i=1 j=i+l
In these equations,
2 2
dy =, —x, F+ (0, -y) (7.63)
Here, the weighing parameter, W, can be changed depending on the two vehicles —

vehicles i and j — it represents.

The costate differential equations are then represented by the following two

equations.
n i—1
A;=-Kf,+ D Bx,—> Bx, (7.64)
j=itl j=1
. n i—1
Ay =—Kf,+ Y By, — Y By, (7.65)
Jj=i+l Jj=1
with
2Wix, —
<2Vl
d:
q
- (7.66)
By — 2w (y, - y,)
Vi 42

for aircraft avoidance flight or

Bxl.j = 4W(dly. - daj )(xl. - xj)

7.67
Byij = 4W(dzjf _dcy‘)(yi _yj) ( :

for formation flight. The resulting differential equations for the heading angles are
shown in the next two equations, the first of which is applicable for the first n-1 vehicles

while the second is for the n™ vehicle.

v, = oy i, ‘(;08% siny A, (7.68)
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Vnﬁcos wlsiny, A, —cosy, 4, |
e (7.69)

n—1 n—1 n—1

A4Hcosw,. + Z /lxiV,.Hcoswj
i=l 1 j=1

i=

J#i
This process results in a system of 4n-1 differential equations to be solved with 2n-1

unknown initial conditions.

7.3.1 Legendre-Clebsch Necessary Conditions
Similar to the procedure for the two-vehicle problem, the following inequalities
are found that must be true in order to satisfy this condition

“AVi S, (7.70)
cosy,

7.3.2 Weierstrass Test
As outlined in the two-vehicle section, the following inequalities must be met to

satisfy this condition.

n—1 n—l1 n—l1
A4Hcosy/i" > Z ﬂxiViHcosy/;’ (7.71)

i=1 i=1 f:i
sign(A,,) = —sign(cosy, ) (7.72)

Equation (7.72) must be met for i=1:n-1.
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7.4 Local Tangent Plane Equations of Motion — n-Vehicles
This process is now repeated for a n-number of vehicles using the local tangent

plane equations of motion shown above.

R Vl COS% + Kf;x,f;y, Sin l//i

. 7.73
XZ Ali AliAZi ( )
—V. A siny,
J'/i — i“7i sm 1/11 (774)
AZi
where
Ai = 1+ f;f
1 ’ (7.75)

4, :4/1+ﬁfi +f;

The differential equations for the n-costates are depicted as

AV

X1

Iy e—" (D1 sin®y, + D, cos’ ¥, + D, siny, cos l//,.) (7.76)
1140; COSY;

A =D

X

AV,

A, =D, —m(m sin’, + D, cos” ¥/, + D, siny, cosy, ) (7.77)
with
D= A1 S fP -4, 1,) (7.78)
D, == 41.1.) (7.79)
Dy = (A2 f fy = L2 fuy+ fu],) (7.80)
D, =411 17~ 42 1,1,) (7.81)
D=(-41.1,) (7.82)
D= (41,1, = L1+ 1o 1) (7.83)

79



D, =-Kf, + Z Bx, —ZBx (7.84)

J=i+l

Dy =-Kf,, + Z By, - ZByﬂ (7.85)

Jj=i+l

The heading differential equations are

| A4, cosy(Rsiny + P, cosy)+ AV, P,
y, = ) (7.86)
Al AZJ“X j
B, :Azj[Kfjx Z Bx; +ZBx ]
j=i+l
P, :Aﬁ{KfD Z By, +ZByﬂ] S L, [ Z Bx, +ZBx ] (7.87)
Jj=i+l Jj=i+l
Py =(1.f, fusing — 41, siny + 4, f, cosy)
and
vI|aarn+nn]
== 7.88
v, =R (7.88)
n—1 ) n—1
Ti = Kfnxn + Zijn (frf;/ COSI//_ AZ S W)n - Kf;zy” + ZByjn ln COSW
j=1 j=1
T =1, (£ 1, 1. - 421, Jsiny + 4,1, ., cosy]
n—1 n—I1 n—1 (789)
T, = A4HA1,- cosy, + Y ﬂxiViHAlj cosy/,
i=1 i=1 j;:::
n—1
T, = HAli cosy;

i=1
As stated before, this results in a system of 4n-1 differential equations to be solved with

2n-1 unknown initial conditions.
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7.4.1 Legendre-Clebsch Necessary Conditions
Similar to the procedure for the two-vehicle problem, the following inequalities

are found that must be true in order to satisfy this condition

AN >0 (7.90)
A4,; cosy,

7.4.2 Weierstrass Test
As outlined in the two-vehicle section, the following inequalities must be met to

satisfy this condition.

n—1 n—1 n—l1
A, (Ah. coswf* > Z ﬂxiViHcosy/;’ (7.91)
i=1 i=1 f:i
sign(A,.) = —sign(cosy, ) (7.92)

As before, equation (7.92) must be met for i=1:n-1.
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CHAPTER 8

MULTIPE VEHICLE RESULTS

This chapter examines results found using the equations for the control of
multiple vehicles derived in the last chapter. Results will be presented for the cases when
2, 3 and 4 vehicles are to be controlled simultaneously in a variety of situations. These
include the simple case of vehicle avoidance, a case of a faster vehicle passing slower

vehicles and finally the case of formation flight.

8.1 2-Vehicle Results

In this section, three different sets of results are shown for two-vehicle control.
The first two cases are different situations using the aircraft avoidance formulation. The
third case examines a formation flight situation.

The first set of trajectories presented considers a case of aircraft avoidance. Here,
two vehicles are operating in the same area and must avoid each other. The terrain used
is a flat plain; in this case the local tangent plane equations of motion will reduce to the
simplified equations of motion. In addition, the minimum time and terrain masking
variations will be identical. Two different sets of trajectories are shown for this case.
The first is a nominal case when no correction for multiple vehicles is made. The second
is using the equations from Chapter 7 that account for other vehicles in the area. In these
plots, the blue line represents vehicle 1 while the green line represents vehicle 2. The
starting positions and ending positions are marked with red circles and xs, respectively.

The red star marks the position when the two vehicles are at their closest point.
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First, in Figure 8.1, the nominal results are shown for this situation. Here are the
optimal trajectories for two vehicles flying alone in the area, using the equations of
motion from Chapter 2. As expected, these trajectories are straight lines. Figure 8.2
depicts the distance between the two vehicles at all times. It can be seen that, if allowed

to fly these trajectories, the two aircraft would collide.
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Figure 8.1: Nominal trajectories with no correction for multiple vehicles.
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Figure 8.2: Distance between the two vehicles at all time.

Figure 8.3 depicts the trajectories found for the two vehicles when the correction

is made for multiple vehicles in the area, as in the equations in Chapter 7. Figure 8.4
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depicts the distance between the two vehicles throughout the flights. In this case, the
minimum distance between the vehicles is about 247 feet. The heading angles for the

two vehicles are depicted in Figure 8.5.
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Figure 8.3: Trajectories for two vehicles with aircraft avoidance formulation.
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Figure 8.4: Distance between the two vehicles at all time.
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Figure 8.5: Controls for aircraft avoidance flight.

The results from the second variation analysis can be seen in Figure 8.5. In the
last chapter it was shown that, in order for the Legendre-Clebsch condition to be satisfied,

the following inequalities must be satisfied.

ﬁz 0 (8.1)
4,; cosy,

In addition, the following equations must be satisfied at all times in order for the

Weierstrass test to hold.

W =|4,4, cosyy |- |4,7|2 0 (8.2)

sign(A,, )= —sign(cosy, ) (8.3)
Figure 8.6 depicts the plots of the Legendre-Clebsch function with respect to time, which
is always positive. Figure 8.7 depicts the plots for the two inequalities for the Weiertrass
test. On the right is the inequality from the Weierstrass tess — which is positive at all time

— and on the left is the sign functions.
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Figure 8.6: Results from Legendre-Clebsch test.
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Figure 8.7: Results from Weierstrass test.

The second case examined for this formulation is a situation when a faster vehicle
must pass a slower vehicle. These trajectories are shown in Figure 8.8. In this case, the
starting positions, (500, 100) and (500, 0), and ending positions, (500, 1700) and (500,
1900), for both vehicles are in a line with each other. Here, the faster vehicle starts
behind the slower vehicle, so they would collide if a straight line trajectory were flown by
each of the vehicles. It can be seen that each vehicles path curves slightly away from the

trajectory of the other vehicle. Figure 8.9 shows the distance between the two vehicles.
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Figure 8.8: Optimal trajectories for passing.

The closest position during the flight is just after the start of the flight as the aircraft are
curving away from each other and is about 93 feet. The heading angles for each vehicle

is depicted in Figure 8.10.
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Figure 8.9: Distance between the two vehicles at all time.
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Figure 8.10: Controls for passing.

Figures 8.11 and 8.12 contain the three plots for the analysis of the second
variation tests whose inequalities are given in (8.1) - (8.3). The inequality from the
Legendre-Clebsch test can be seen plotted in Figure 8.11 while the functions needed for
the Weierstrass test can be seen in Figure 8.12. It can be seen that they are all satisfied

for all time.
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Figure 8.11: Results from Legendre-Clebsch test.
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Figure 8.12: Results from Weierstrass test.

The final result shown considers the case of formation flight. For this situation,
the terrain of a flat plain with a single hill was used and the terrain masking formulation
was used. The trajectories for the two vehicles can be seen in Figure 8.13. The plot on
the left shows the 3D view of the terrain and trajectories while the plot on the right
contains an overhead view. It can be seen that the vehicles stay parallel to each other
throughout the flight around the hill. The plot of the heading angles for this flight can be
seen in Figure 8.14. Figures 8.15 and 8.16 depict the plots for the second variation

analysis, a described earlier, which are all satisfied.

z (feet)

400

] 100 200 300 400 500 600 7o0

oot oo
x (feet) y (feet) y (faet)

Figure 8.13: Trajectories for two vehicles in formation flight.
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Figure 8.14: Controls for formation flight.
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Figure 8.15: Results from Legendre-Clebsch test.
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Figure 8.16: Results from Weierstrass test.
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8.2 3-Vehicle Results
This section presents the results for two cases with 3 vehicles. The first
represents the case of aircraft avoidance in a given area on a flat plane. The second
examines terrain masking formation flight.
Figure 8.17 depicts the trajectories for the aircraft avoidance flight. The blue line
represents vehicle 1, the green line represents vehicle 2 and the red line represents vehicle
3. The starting and ending positions for each of these flights are depicted by red circles

and xs, respectively. Figure 8.18 depicts the positions of the vehicles with respect to each
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Figure 8.17: Trajectories for aircraft avoidance.
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Figure 8.18: Distances between vehicles at all times.
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other for the entire time of the flight. It can be seen that the closest point between the
vehicles is about 219 feet between vehicles one and two; this point in marked in Figure

8.17 with light blue stars. The heading angles for these flights are plotted in Figure 8.19.
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Figure 8.19: Controls for aircraft avoidance flight.

The results from the second variation analysis for this problem are depicted in
Figures 8.20 and 8.21. In Chapter 7, the necessary equations to meet the second variation

tests are stated as follows for three vehicles.

& >0 (8.4)
A4,; cosy,

W =|4,4, 4, cosy, cos l//g‘ — ‘llel cosys + AV, cost//lo‘ >0 (8.5)

sign(A,, )= —sign(cosy,) 8.6

sign(A,, ) = —sign(cosy, )
The inequalities in (8.4) are necessary for the Legendre-Clebsch condition while (8.5)
and (8.6) must be satisfied for the Weierstrass test. The plots of the functions stated in
the inequalities in (8.4) and (8.5) can be seen in Figure 8.20. The plot on the left

represents the Legendre-Clebsh inequalities and the plot on the right contains the
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Weierstrass inequality. The plots of the signs on the variables in (8.6) are in Figure 8.21.

In all cases, it can be seen that the requirements are satisfied.
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Figure 8.20: Inequalities from second variation tests.
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Figure 8.21: Plots of signs of variables for Weierstrass test.

The second case presented consists of a formation flight. These trajectories can
be seen in Figure 8.22. The 3D view can be seen in the plot on the left while the over
head view is in the plot on the right. Here, the three vehicles remain in a triangle
formation throughout the entire flight. The controls for these flights can be seen in

Figure 8.23.
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Figure 8.22: Trajectories for formation flight of three vehicles.
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Figure 8.23: Controls for formation flight.

The analysis of the second variation tests are depicted in Figures 8.24 and 8.25.
In Figure 8.24, the functions from the inequalities from equations 8.4 and 8.5 for the
Legendre-Clebsch condition (on the left) and the Weierstrass test (on the right) are
plotted. In each case, it can be seen that the functions are positive at all time. The signs

of the variables for the Weierstrass test, from equation 8.6, can be seen in Figure 8.25.

94



35 ul T T T T T T 6000

5000 -

4000 -

2 3000

2000 -

1000

t (sec) t (sec)

Figure 8.24: Inequalities from second variation tests.
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Figure 8.25: Plots of signs of variables for Weierstrass test.

8.3 4-Vehicle Results
As with the 3-vehicle case, two sets of results will be presented here for the
coordinated flight of four vehicles — one for aircraft avoidance and one for formation
flight. Figure 8.26 shows the trajectories for the aircraft avoidance flight of four vehicles.
The blue, green, red and magenta lines represent vehicles one, two, three and four
respectively. Figure 8.27 contains the plots of the distance between each set of vehicles

at all time. It can be seen that the minimum distance is 186 feet between vehicles two
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and four; this point is marked on Figure 8.26 with a red star. The heading angles for each

of these vehicles for this flight can be seen in Figure 8.28.
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Figure 8.26: Trajectories for aircraft avoidance flight of four vehicles.
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Figure 8.27: Distances between each set of vehicles.
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Figure 8.28: Controls for aircraft avoidance flight.

The analysis of the second variation is portrayed in Figures 8.29 and 8.30. For

this formulation, the equations that must be satisfied are as follows.

& >0 (8.7)
A4,; cosy,
3 3 3
W =|A, (Ah. cosz//f*— Z ﬂxiViHcosy/j”. >0 (8.8)
i=1 i=1 f:i
sign(A,) = —sign(cosw,), i=1:3 (8.9)

The inequalities in (8.7) is necessary for the Legendre-Clebsch conditions to be satisfied

while the inequality in (8.8) and the equations in (8.9) are required for the Weierstrass

test to be satisfied. These inequalities are depicted in Figure 8.29 and the signs of the

variables from (8.9) are shown in Figure 8.30. It can be seen that all these equations are

satisfied for all time.
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Figure 8.29: Inequalities from second variation tests.
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Figure 8.30: Plots of signs of variables for Weierstrass test.
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The last set of trajectories depicted is for the case of formation flight of four
vehicles. This can be seen in Figure 8.31. In this case, the four aircraft remain in a
square formation for the entire flight around the hill. The heading angles for these flights
can be seen in Figure 8.32. The corresponding second variation analysis is depicted in
Figures 8.33 and 8.34. The inequalities from the functions in (8.7) and (8.8) are shown in
Figure 8.33 with the Legendre-Clebsch inequality on the left and the Weierstrass test

inequality on the right. The signs of the variables necessary for the Weierstrass test, as

o
% ifeet) 0 v (feet) 0 a0 100 150 200 5,(2{:21) 300 380 400 450 500

Figure 8:31: Trajectories of formation flight of four vehicles.
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Figure 8.32: Controls for formation flight.
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represented in equation (8.9) are shown in Figure 8.34. It can be seen that all the

conditions are satisfied for all time.
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Figure 8.33: Inequalities from second variation tests.
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Figure 8.34: Plots of signs of variables for Weierstrass test.
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CHAPTER 9

MULTIPLE VEHICLE 3D EQUATIONS OF MOTION

This section incorporates the 3D constant velocity equations of motion detailed in
Chapter 4 with the multiple vehicle formulation detailed in Chapter 7. As shown earlier,
using the 3D equations of motion provide a more realistic solution to the terrain
following problem. First the reduced order formulation for the problem will be derived

in detail for the two-vehicle problem, then the n-vehicle equations will be derived.

9.1 Two-vehicle formulation
For this formulation, the 3D equations of motion are used, as described before in

equations (4.1) to (4.3).

X; =V, cosy, cosy, 9.1)
v, =V cosy,siny, (9.2)
z. =V siny, 9.3)

Here, with i equal to one, these equations depict the equations of motion for vehicle 1
while with 7 equal to two, they represent the equations of motion for vehicle 2.

The cost equation used for this problem is
J = jof (C,, +Cy +C,)dt + Lr (C,+C,, +C,)dt (9.4)

with a separate integral for each vehicle, as discussed in Chapter 7. There are three
distinct portions of the cost equation for each vehicle. First

C, :1_K+Kfi(xi>yi) 9.5)
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controls the amount of optimality with respect to terrain masking or minimum time as

described in earlier chapters. The second part is

Cy = VVliZiz (9.6)

with
Z, :Zi_[f;(‘xiﬁyi)+hci] 9.7)

This section is for maintaining flight near the desired constant altitude as discussed in

Chapter 4. The third part of the cost, as in Chapter 7, is determined by either

W (9.8)

for aircraft avoidance or
Cy=W,(d-d,) 9.9)

for formation flight. In both these equations,

d=(x —x) +(y =) (9.10)
W, and W, are weighing parameters supplied by the user.
The Hamiltonian equation for this system can be written as
2
H=A4,+ Z [lxiVl. cos ¥, cosy, + AV, cosy,siny, + AV, sin 7/1.]
i=1
(9.11)

[

4, = (Cn +Cy + C3)

LARUN

<

~ o~

fi

The costate variables for the six states are given by Ay, 4,; and A;.. There are now four

optimality conditions for the problem, which can be written as

H, =0
(9.12)

Evaluating the equations in (9.12) results in the following four relationships.

102



siny,
A=A,V
cosy/,
l/‘/' (9.13)
siny,
' cosy, cosy,
As before, since the Hamiltonian equation is not explicitly dependent on time, it

will equal zero at all times. Using this fact and the equations in (9.11) and (9.13), the

following five algebraic expressions are found for the costates

sin
ﬂyl = A i’ G149
cosy,
A=A, - A 619
CosY/, cos ¥,
B A + AV,
- Cosy, cosy, | A, COSy, Cosy, + A,V (9.16)
v, CosY/, Cos Y,
3, = ZCOSTs sy, [ Ay cosy, cosy + A, 9.17)
v, COS Y, cosy/,
A, = —siny, £A4 COS Y| COsY/, +/1x1V1] (9.18)
v, COS Y, CosY,

Differential equations for the costates can be found by taking the partial

derivatives of the Hamiltonian equation as shown below.

ﬂxl = _Hxi
Ay =-H, (9.19)
/izz = _Hzi

This results in the following six differential equations.

Aw=—Kf,, +B, +2W,Z, f,,, (9.20)

z’yl = _K]{lyl +By + 2VV1121f1y1 (921)
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/’i’zl =B, + 2WuZl

/1):2 = _Kf2x2 -B, + 2W1222f2x2

//2’)’2 = _Knyz _By +2VV1222f2y2

/122 =-B, - 2%222

with
B, = 2, (xlz_XZ)
d
20, (y, - y,)
By _ 2 d12 2
B. = 2, (le Zz)
d

for vehicle avoidance flight or

for formation flight.

Next, the time derivative of equation (9.14) is taken and set equal to its

counterpart in equation (9.21). Rearranging this expression will result in a differential

equation for ;.

. cosy, [(2VV121 _K)<f1y1 cosy, — fi Sinl//])_Bx siny, +By COS'//l]

4 2

x1

Then the time derivative is determined for equation (9.15) and set equal to its

corresponding differential equation in (9.22) to derive the differential equation for the

flight path angle of vehicle 1.
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. cosy, cosy, [/iz1 cos Y, —siny, (/iy] siny, + 4, cosy, )]
nh=
A

x1

(9.29)

Next, this is repeated with equations (9.18) and (9.25) to find the differential equation for
% then with either (9.16) and (9.24) or equations (9.17) and (9.25) to determine a

differential equation for .

. V,cosy,cosy, [— A, cos ¥, +siny, (/1},2 siny, + 4, cosy, )] 9.30)
2= A, cosy, cosy, +V, A, '

_Vycosy, cosy, [/"'sz siny, — /"'Lyz Ccos l//z]

5 =

9.31)
cos ¥, (4, cosy, cosy, +V,A,,)

This yields a system with eleven differential equations — the six state equations, the two
heading angle equations, two flight path angle equations, and the costate A,; — with five

unknown initial values.

9.1.1 Legendre-Clebsch Necessary Conditions

For this formulation, the Hamiltonian equation is seen in equation (9.11) and the
costates are in equations (9.14) — (9.18). There are four controls for this problem,
represented by the vector

¥

|V 9.32
u v (9.32)
7>

Taking the second partial derivative of the Hamiltonian and substituting in the algebraic

expressions for the costates will result in the following matrix

105



—Aicosy 0 0
cosy,
Huu = 0 (COS%)ZHI —2,0 V ’ (933)
0 0 16 B
Cosy/, cos Y,
i 0 0 0 H, |
with
b - A, cosy, cosy, + A,V (9.34)

COS ¥, COsY/,

Since cosy is always positive, this matrix will be nonnegative definite provided the
following two inequalities are satisfied

_ﬂ'xll/l > O
COSY/, COs ¥, (9.35)
H >0

which is always positive, thus satisfying the condition.

9.1.2 Weierstrass Test
Substituting the optimal costate equations into the Hamiltonian equation will

result in the following expression for the variational Hamiltonian.

H(l//],l//2)= A, cosy; cosy; [1— C2]+/”Lx1V[C] —C2]2 0

(9.36)
C, =cosy,cosy; cos(l//l. -y; )+ sin y, sin y;

In Appendix B.2, it is proven that this condition will be satisfied if the following

conditions are true.

‘A4 cosy/; cos 71‘" > |/1x1V1| (9.37)

sign(A,, )= —sign(cosy,) (9.38)
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9.2 n-vehicle formulation

This section repeats the derivation in the last section, with an expansion to n-vehicles,

instead of just two vehicles. The equations of motion are still

X, =V, cosy, cosy, (9.39)
v, =V, cosy,siny, (9.40)
z, =V, siny, (9.41)

Here, though, i can equal each number from 1 to n.

The cost equation used for this problem is now

7=y [ ["(c,+c, +C, )dt} 9.42)
i=lI
with
C,=1-K+Kf.(x.,y,) (9.43)
G, = VVIiZiZ (9.44)
and
n—1 n 1
C,=m).> — (9.45)
i=1 j=i dg/
for aircraft avoidance or
n-1 n
c,=mY>,-d,) (9.46)
i=l j=i
for formation flight. In both these equations,
d; = (xl. - X; )2 + (yl. -y, )2 (9.47)

The corresponding costate differential equations for this problem will be
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n i—1
/Ixi =—Kf,, + ZBx[j _szji +2W,. 2, 1 (9.48)
=1

j=i+l

. n i—1
Ay ==Kfy+ D By =2 By +2W, 2., (949)
J=i+l j=1
A, = Zn:BZij - iBzﬁ +2W,Z, (9.50)
Jj=it+l Jj=1
with
B 2w, (xi —X; )
o)
2\ —y,
B, = # (9.51)
ij
2w, (Zi —Zj)
@ d>

for vehicle avoidance flight or

B = 4W2(dl.j —da.j)(xl. —xj)

xij

B, =4w,(d, —d, )y, - »,) (9.52)

yy

B_. =4W2(dl.j —da.j)(zl. —zj.)

zij
for formation flight.

Next, the differential equations for the heading angles and flight path angles were
derived in a similar manner as above. The first two equations are applicable to vehicle 1

through vehicle n-1. The last two equations are for vehicle n.

cosy, [ﬂ.‘yi cosy,; — /;txi sin v, ]
Wl' = 2‘
i=l:n—1

xi

(9.53)

_ cosy/, cos ¥, [/izi Cos Y, —siny, (/iyl. siny, + A, cosy, )]
Vi = P (9.54)
i=ln-1

xi
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siny, + 4, cosy, |

n—1
Vn (COS 7/1 cos l//i )[_ ﬂ.’zn cos }/n + Sin 7/;1 (ﬂ.’yn
Jo=—" (9.55)
n-1 n—1 n—1
A4H COS ¥, COS Y/, )+Z VA, (cos;/j cosz//j)
i= i=i j:
n—1 . .
Vn H (COS 7/1 COsS l//i )[ﬂ’xn Sin l//n - ﬂ’yn COsS l//n ]
v, = (9.56)
n—l1 n—1

n—1
Z ﬂ,H(cosyj coswj)

cosy,q A4 H Ccos ¥, cosy, )

i=1
This results in a system with 6n-1 differential equations — the 3n state equations, the n

heading angle equations, n flight path angle equations, and the n-1 costates, A,; — with 3n-

1 unknown initial values.

9.2.1 Legendre-Clebsch Necessary Conditions

For this formulation, the Hamiltonian equation is

H=A4,+ Z[ﬂ. V,cosy,cosy, + AV, cosy,siny, + AV, sin%] (9.57)

and the costates are

A=A smy;
cosyy,
, (9.58)
P sin ¥,

zi xi
CoSY/, oS Y,

for i = 1:n-1 and for the n™ vehicle they are
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—Cosy, cosy

lxn = V s Hl
ﬂyn = _Cosiﬂ[_]l (9.59)
A = - cos;;/n siny, H,
with
n—1 n—1 n—1
A4H(cos ¥, cosy, )+ z V,./lx,.H(cos Y, cosy, )
i=1 i=i J=l
H, = — e (9.60)
H (cosy, cosy,)
i=l
There are 2n controls for this problem, represented by the vector
n
u=|"" 9.61)
I
L 7/;1 ]

Taking the second partial derivative of the Hamiltonian and substituting in the algebraic
expressions for the costates will result in the following matrix.

[ - /1x1V1 Cosy;

0 0 0 0 0 0 0
cosy;
0 K 0 0 0 0 0 0
0 O B /?’xn—l n—1 COs 7/11—] O
cosy,
H - 0 0 0 (cosy, ) H, /{) 0 0 0
uu _ V
0 0 0 0 —_—i 0 0
cosl/; Cos Y,
0 0 0 0 : A 0 0
0 0 0 0 0 0t
COSl/jnfl cos ynfl
i 0 0 0 0 0 0 0 H, |
(9.62)
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Similar to the two-vehicle formulation, the following inequalities must be satisfied.

i >0; i=1:n-1
cosy/, cos ¥, (9.63)
H >0
9.2.2 Weierstrass Test
Substituting the optimal costate equations into the Hamiltonian equation will
result in the following expression for the variational Hamiltonian.
H(l//pl/fz ) = A4 COSl/lla cos 7/10 [1 -C ]+ ﬂle[Cz - Cl]2 0
C, =cosy, cosy, cos(l//2 -y )+ sin ¥, sin 5 (9.64)
C, =cosy, cosy, cos(l//] -y )+ sin ¥, sin

In Appendix B.2, it is proven that this condition will be satisfied if the following

conditions true.

‘A4 cosy/; cos 71‘" > /1lel| (9.65)

sign(A,,) = —sign(cosy, ) (9.66)

Equation (9.66) must be met for i=1:n-1.
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CHAPTER 10

3D MULTIPLE VEHICLE RESULTS

This chapter contains some results for case of using the 3D equations for multiple
vehicles. Depicted are three cases using the aircraft avoidance formulation and one case
considering formation flight for two vehicles. The first case considers flight over a flat
plane. The second case considers a minimum time flight over a terrain with a hill. The
third situation portrayed involves a terrain masking flight over the same terrain with a
hill. The final case portrays a formation flight terrain masking flight.

The first case presented is for a flight over a flat plane. In this case, the minimum
time and terrain masking variations will be the same. Figure 10.1 first contains the
results when no correction for multiple vehicles is made. In the plot on the left, the
trajectories for this case can be seen. The plot on the right depicts the distance between

the two vehicles during this flight. It can be seen here that the two vehicles would crash

if allowed to fly these trajectories.
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Figure 10.1: Results for two vehicles with no correction for multiple vehicles.
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Figure 10.2 contains the results for this same situation, but with the addition of the
multiple vehicle variation. Again, the plot on the left shows the trajectories while the plot
on the right shows the distance between the two vehicles at all time. In this case, it can
be seen that the minimum distance between the vehicles is about 75 feet. This point is
represented on the plot on the left by the red stars. The controls for these flights can be

seen in Figure 10.3. It can be seen that there is some mild oscillations in the flight path

angles.
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Figure 10.2: Results for two vehicles with correction for multiple vehicles.
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Figure 10.3: Controls for aircraft avoidance flight.
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The results from the second variation tests are depicted in Figure 10.4 and Figure
10.5. It was shown in Chapter 9 that the inequalities in (10.1) must be satisfied for the
Legendre-Clebsch condition and the equations in (10.2) and (10.3) must be true to satisfy

the Weierstrass test.

_ﬂlev] 2 O
COSY, COS ¥, (10.1)
A, cosy, cosy, + AV, >0 '
COS ¥, cos Y/, B
Wz‘A4 cosy; cos;/f‘—|/1lel|20 (10.2)
sign(A,,) = —sign[cos(y, )] (10.3)
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Figure 10.4: Inequalities from Legendre-Clebsch condition.

The functions from the Legendre-Clebsch condition are plotted in Figure 10.4 while the
functions from the Weierstrass test can be seen in Figure 10.5. The plot on the left
contains the plot of the function from the inequality in (10.1). The plot on the right
contains the results of the signs. It can be seen that both of these conditions are satisfied

at all times.
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Figure 10.5: Results from Weierstrass test.

The second case is presented in Figure 10.6. This considers the case of a
minimum time flight over a terrain of a flat plain with a single hill. The 3D view of the
trajectories can be seen on the left while the overhead view of the trajectories can be seen
on the right. For this situation, it can be seen that one vehicle flies straight over the hill
while the other vehicle flies around the hill. The distance between the vehicles can be
seen in Figure 10.7. The minimum distance is about 125 feet and is marked along the

trajectories by the blue stars. The controls for this case can be seen plotted in Figure

o
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Figure 10.6: Trajectories for K = 0.
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10.8. The results from the second variation analysis can be seen plotted in Figure 10.9 —

the Legendre-Clebsch condition — and in Figure 10.10 — the Weierstrass test.
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Figure 10.8: Controls for aircraft avoidance K = 0 flight.
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Figure 10.10: Results from Weierstrass test.

The next set of results considers the terrain masking case. This situation also uses
the flat plane with a single hill as in the previous results. The plot of these trajectories
can be seen in Figure 10.11. In this formulation, both of the vehicles circle the hill in a
counter-clockwise fashion. This distance between the vehicles is plotted in Figure 10.12.
The closest distance between the vehicles is 292 feet is this point is shown in Figure
10.11 by the blue star. The controls for these flights are shown in Figure 10.13. In

checking the second variation, the results from the Legendre-Clebsch condition are
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plotted in Figure 10.14 while the results from the Weierstrass test are plotted in Figure

10.15.
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Figure 10.11: Trajectories for K = 1.
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Figure 10.12: Distance between vehicles for all time.
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Figure 10.15: Results from Weierstrass test.
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The final result depicts a case of formation flight for the two vehicles. The plots
of these trajectories can be seen in Figure 10.16 and the corresponding controls can be
seen in Figure 10.17. In this plot, it can be seen that the vehicles circle the hill with
parallel paths. The results from the second variation analysis can be seen in Figure 10.18
and Figure 10.19. The inequalities from the Legendre-Clebsch condition are plotted in

Figure 10.18 and the functions from the Weierstrass test are depicted in Figure 10.19.
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Figure 10.16: Trajectories for formation flight.
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Figure 10.17: Controls for formation flight.
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Figure 10.19: Results from Weierstrass test.
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CHAPTER 11

SOLVING THE PROBLEM

In order to solve these problems, it was necessary to find between one and seven
initial conditions to optimize the trajectories, depending on the formulation. Two
different methods were utilized to find these initial conditions, depending on the number
necessary. When only one value was needed, a variable step sweep was employed to find

it. Otherwise a genetic algorithm was used.*'*

To begin the genetic algorithm, a set of 48 chromosomes was initialized
representing different sets of initial conditions to test. [Each initial value in the
chromosomes was represented by digits with five decimal places included. In addition
the costates, flight path angles and Hamiltonian values included an extra digit to indicate

a positive or negative value.

After the chromosomes were initialized, they were each tested to determine their
relative costs. To accomplish this, the current chromosome being tested was broken into
its respective initial conditions, which were then used in the differential equations. The
cost, J, was found for the run as well as the distance from the final position of the run to
the final target position. The sum of these two values was used as the total cost for the

chromosome.

After each chromosome was tested and a total cost assigned, the chromosomes
were ranked from last to first based on a tournament procedure. Two chromosomes
would be randomly chosen to compete and the one with the higher cost was placed in the

next position on the list while the one with the lower cost was returned to the available

122



set of chromosomes to be tested. This process was continued until all the chromosomes

were ranked. The top 24 chromosomes were then kept to begin the next generation.

In all subsequent generations, the 24 available chromosomes were combined to
create 24 new chromosomes to complete the population of 48. Here, chromosomes 1 and
2 would be combined to create two new chromosomes, and then chromosomes 3 and 4
would be combined to create two new chromosomes and so on until all the chromosomes
were mixed. This was accomplished by first mixing the individual segments of the
chromosomes so that each of the new chromosomes had some segments from each
parent, where a segment consisted of the digits for each initial condition needed. Next a
mutation was introduced into the new chromosomes such that up to about a third of the
digits could be changed. The number of digits changed, which digits were changed, and
their new values were all determined randomly. After all the new chromosomes were
created, the cost assignment and tournament were repeated as before. This process was

repeated until it converged on a solution.

The differential equations were solved using a standard fourth order Runge-Kutta
method. In addition, a variable time step was implemented to decrease the time needed
to numerically solve the set of differential equations. For most of the flight, the time step
was 0.1 seconds; however, when the distance to the target final position was close

enough, the time step was decreased to 0.01 seconds.

Another condition was added to the differential equation solver to help decrease
the solving time of the genetic algorithms. For each formulation, inequalities were
derived that had to be satisfied at all times in order for the Legendre-Clebsch necessary

condition and the Weierstrass test to be satisfied. These inequalities were then tested at
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each time step. If either was violated, then the current run was ended at that point. This
decreased the solving time significantly, but was even more useful in ensuring the

convergence to a strong local minimum.

Table 11.1 contains some average run times for the different formulations. This
table contains the number of initial conditions to be solved for, the run time length for
each problem, then the average time it took to solve the problem. It can be seen that the
single vehicle formulations were all generally solved in less than a minute for a case with
a run time of 10 seconds. The multiple vehicle formulations took longer to solve because

those cases tended to have a large number of local minima.

Table 11.1: Time to Solve

Number of Run Time to
Formulation Variables time Solve
Pseudo 3D 1 10 sec 25 sec
3D 2 10 sec 40 sec
Varying

Velocity 3 10 sec 65 sec
2-vehicle 3 25 sec 6 min
3-vehicle 5 25 sec 15 min
4-vehicle 7 25 sec 60 min
2-vehicle 3D 5 10 sec 10 min

124



CHAPTER 12

CONCLUSIONS

This thesis examined path planning methods using a reduced order formulation
for both single and multiple vehicles. In all cases the cost equation was set such that the
path could be optimized with respect to either minimizing flight time or terrain masking.
For most of the formulations, a constant velocity assumption was made, although one

attempt was made at creating a more realistic varying velocity approach.

To begin with two pseudo-3D equations of motion were utilized and the altitude
was constrained to be a set height above the terrain. It was found, in general, that there
was very little difference between the paths found with these two sets of equations of
motion. One problem, though, was accounting for the time necessary to move vertically.
The simplified equations of motion ignored this detail entirely, while the local tangent

plane equations of motion were able to mostly account for it.

This formulation was expanded to use a full set of 3D equations of motion, which
allow a little more realism in the problem formulation. In addition, a greater variety of
problems can be examined, such as the case when the vehicle does not start the desired
distance above the terrain. This formulation also fully accounts for the time to fly
vertically. Also, a simplified varying velocity component was added to the 3D equations
of motion by including the velocity as an additional state. For this, the vehicle is now
assumed to be flying with a constant — maximum — thrust. Now, the path generated will

more accurately lose speed going uphill and gain speed going downhill.

125



The formulations using the two sets of pseudo-3D equations of motion as well as
the full 3D equations of motion were also examined in the case of simultaneous path
planning for multiple vehicles. In these cases, two different situations were examined.
The first was the situation of aircraft avoidance such as having two vehicles operating in
the same area and ensuring they do not collide. The second involves the case of
formation flight. For all sets of equations of motion considered, the necessary equations
to generate the paths were derived for an unspecified n- number of vehicles. Results are
depicted for 2, 3, and 4 vehicles using the pseudo-3D equations of motion and for 2

vehicles using the 3D equations of motion.

One major problem with this multiple vehicle formulation is that the number of
differential equations to be solved and the number of initial conditions to be found
increases quickly with the number of vehicles considered. Using the pseudo-3D equations
of motion, there will be 4n-1 differential equations and 2n-1 unknown initial conditions.
Using the full 3D equations of motion, there will be 6n-1 differential equations and 3n-1

unknown initial conditions. This means that the solving times can become lengthy.

To create trajectories that better mimic actual flight capabilities, a better varying
velocity model and rate constraints should be added. At this point, a very simple velocity
model is used. Improving this model will better reflect a vehicles speed flying over hills
and around sharp turns. Including an angle of attack constraint or acceleration constraint
will also create a better representative model for horizontal maneuvering. As seen with
the simulator comparisons, limits on both the heading angle and flight path angle rates
are being reached, causing the simulator to be unable to accurately follow the designated

path. Some method of limiting these rates should be incorporated. These additions will
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greatly increase the flyability of the optimal paths, thereby increasing the safety of the

missions.
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APPENDIX A

SECOND VARIATION ANALYSIS

Optimal control for a problem can be proved using various tests of the second
variation of the problem.** A sufficient condition for a weak local minimum is that the
second variation be strongly positive. To achieve this, two conditions must be met. First
the Legendre-Clebsch necessary condition must be met, and then the Jacobi test for
conjugate points must be satisfied. To show that the extremals provide a strong local

minimum, the Weierstrass condition must be satisfied.

A.1 Legendre-Clebsch Necessary Condition

The Legendre-Clebsch necessary condition** considers the positive-definiteness

of the second partial derivative of the Hamiltonian equation such that

H,20 (A.1)
or, for the strengthened form
H, >0 (A.2)
where
g o H”l”n
H, =| : : (A.3)
u,uy e Hu”u”

In these equations, u represents the vector of control variables for the optimal control

problem such that
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u=|: (A.4)

If equation (A.2) is satisfied for every time step, the extremals will be smooth and

provide a weak local minimum for sufficiently short intervals.

A.2 Weierstrass Test

4447

The Weierstrass test can be used to verify an extremal is a strong local

minimum. From the calculus of variations, the Weierstrass test is stated such that the

. . .. 45. 4
Weierstrass excess function must be positive.* *°

E(v..p)= f(5.8)~ (. p)— (= p) LR 5 (A5)

This can be shown to be the same as the Variational Hamiltonian H(u).** This test states
H(t,x",/l",u)zH(t,x",/lo,uo) (A.6)

where the superscript denotes an optimal value. When the Hamiltonian is not explicitly

dependent on time, it will be equal to zero at all time with an optimal solution meaning
H(t,x*, 2u°)=0 (A7)
Thus
Hle,x* 2 u)= Hw) 2 H{t,x, 2 u” )= 0 (A.8)
In the strengthened form, (A.8) should be equal to zero only when

u=u’ (A9)
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The Variational Hamiltonian is found by inserting the algebraic equations for the optimal

costates into the Hamiltonian equation evaluated at any test control point, such that

Hu)= Ay + A Jelu) + A, (u )iru) +--- (A.10)

A.3 Jacobi Condition

In the calculus of variations, an accessory-minimum problem is used to show that
the second variation is nonnegative for extremals of finite length. This test attempts to
find a neighboring solution that is competitive to being an optimal solution by searching
for a system consisting of nonzero variations which also make the second variation zero.
According to Ref. 45, given an extremal x = x°(2), the point M is said to be conjugate to X
if M is the limit as ||x°(2)-x(2)]]—0 of the points of intersection of x = x°(z) and the
neighboring extremal x = x(?), starting from the same initial point X. To ensure at least a

weak local minimum, it must be shown that there are no conjugate points.

The accessory minimum problem leads to an analysis of the nature of solutions to
the linearized Euler-Lagrange equations. These equations can be solved algebraically,
but would become quite involved. Instead, a numerical conjugate point test that was
developed by H. J. Kelly and H. G. Moyer will be employed here.***”*® The linearized

Euler-Lagrange equations can be written as

- ox, ooy |
Yolax, o ax, | A
3 (A.11)
B dx,  ox, 2
' aﬂ’(v)cl aﬂ’zn -
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where the matrix is composed of the partial derivatives of each state with respect to the

initial costate values.

A conjugate point is marked as a time when the rank of the matrix drops.
Therefore, if the matrix retains full rank at all time, there are no conjugate points to that
extremal. In order to create this matrix, the following numerical approximation was used

for each partial derivative.*

o, _ % (/13; +A4, )-x, (’131 —AMy ) (A.12)
A, 2A

Xj Xj

This means that the initial values of each costate was perturbed both positively and
negatively and this value was implemented in the set of differential equations to create
two new vectors for each state. These values of the states from the perturbed costate
initial conditions were then subtracted and this value was divided by twice the
perturbation value. This process was repeated at every time step of the trajectory for the
entire matrix. The rank of the matrix was then determined for every time step to ensure
that it always has full rank at all time. All of the results presented in this thesis meet this

requirement and it is not discussed specifically for each formulation.
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APPENDIX B

MATHEMATICAL PROOFS

B.1 Single Vehicle 3D Weierstrass Test Proof

Considering the Weierstrass test for 3D equations of motion, it was found that
Hu)=4, [1 — (cos wceosy’ +sinysiny’ )cos ycos ¥’ —sin ysin y° ] (B.1)

To satisfy the Weierstrass test, the following inequality must be satisfied.

H(u)>0 (B.2)
Equation (B.1) can be rewritten as
H(u)=A4,[1-N] (B.3)
where
N = (cos wcosy’ +sinysiny’ )cos ycos ¥y’ +sin ysin y° (B.4)
This section examines N from the previous equations. Given the trigonometric
identity
cos(a +b)=cosa coshFsina sinb (B.5)
(B.4) can be rewritten as
N = cos(w -y’ )cos ycos ¥’ +sin ysin y° (B.6)
or
= M cos ycos ¥’ +sin ysin y’; Mel-1 1] (B.7)
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where M is any number between -1 and 1.
Then the following identities can be substituted into (B.7)

i —io

+e
coso =
2
. 1104 _e—la’
sino = -
2i

This will result in

Multiplying the terms will result in

= M(ei(ﬂyu) + e_i(y+;/”) " ei(y_yv) + ei(_y+yu))+
4

l(_ ei(7+7“) _ e—i(7+7") + ei(H’“) + ei(—7+7"))

4

Rearranging the terms will allow this to be rewritten as

B M +1 ei(V—V”) +e—i(7—7”) N M =1 ei(7+7“) +e—i(y+y”)
2 2 2 2

Using the identities from (B.8) will give

-1 cos(;f— 70)+ cos(7+ 7”)

- Xcos(j/— 7 )+ (x —1)cos(7+ 70)

where
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(B.11)
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A=cos(y—y")e[-1 1] (B.14)

The range of values for N from equations (B.13) — (B.14) are evaluated and
summarized in Table B.1. It can be seen that when X is 0, N will be —B. Conversely,
when X is 1, N will be the same as A. In addition, values for N when X is 0.5 are also

displayed in the table.

Table B.1: Values for N

X A B N
0 -1 1
0 0 0
0 1 -1
1 -1 -1
1 0 0
1 1 1
0.5 -1 -1 0
0.5 -1 0 -0.5
0.5 -1 1 -1
0.5 0 -1 0.5
0.5 0 0 0
0.5 0 1 -0.5
0.5 1 -1 1
0.5 1 0 0.5
0.5 1 1 0

It can be seen from the table that
Nel[-1 1] (B.15)
Therefore

1-Neo 2] (B.16)
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B.2 Multiple Vehicle Weierstrass Test Proof

Examining the Weierstrass test for the 2-vehicle simplified equations of motion

results in

A
H(l//1 W, ) =4, [1 - COS(l//zo -y, )]+ ﬁ [COS(I//IO -y )_ Cos(l/jg -V, )] (B.17)
|

To satisfy the Weierstrass condition, equation (B.17) must be positive.

A
1= coslys —w o+ 222 ol ) -coslz —w, ]2 0 (B.18)
cosy,

Multiplying through by cos;” will result in two possible inequalities, depending on the

sign of cosy;°.

A, cosy! [1 ~ cos(l//§ -y, )J+ AV lcos(wf -y, )— cos(l//;) -V, )J > 0; cosy; =20

(B.19)
A, cosyy [1 - COS(‘//zO —¥, )]"‘ AN [COS(‘/IF —¥ )_ COS(l//é’ —¥, )] <0;cosyy <0

Next, defining the following equality
N = cos(l//g —l,Vz) (B.20)
and substituting it into (B.19) will result in

A, cosy/f’[l—N]+/1lellc0s(l//f —1//1)—NJ2 0; cosy; 20

4, cosyri [ = N+ A,V eoslyy —y)-N]<0; cosyr <0 ®.2D)
with
Nel[-1 1]
coslyy —y)e [-1 1] (B.22)
Now let
M=1-N
(B.23)

P=cosy} —y,)-N
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and (B.21) can be rewritten as

A, cosy/M =2—-A V,P; cosy; =0

(B.24)
A, cosy/M <-A,V,P; cosy, <0
where
Melo 2]
(B.25)
Pel|M-2) M]
Therefore
M=2 = Pelo 2]
M=1 = Pel-1 1] (B.26)

M=0 = Pel-2 0]
First, the top inequality from (B.24) will be evaluated, where cosy;’ is positive.
A summary of this evaluation is given in Table B.2. From the first case, it can be found

that A,; must always be negative. In the fourth and fifth cases, both sides of the

inequality are positive, so the left side must e more positive.

Table B.2: Evaluation of Top Inequality

M P Given inequality Needed condition
0 -2 02240, A, <0
0 0 0=0 Always satisfied
2 0 24, cosyy 20 Always satisfied
2 2 Aycosyy 2-A,V, | A cosyy 2-A,V,
1 1 Aycosyy 2=,V | A, cosyy 2-A,V,
Always satisfied
1 -1 A, cosy) 2 AV, given 4, <0
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Next the bottom inequality from (B.35) is examined. In this situation, cosy;’ is

negative. A summary of the evaluation of this inequality is presented in Table B.3. In

the first case examined, it is found that A,; must always be positive. In the fourth and

fifth, both sides of the inequality will be negative, so the left side must be more negative.

Combining the results from this evaluation with the previous one, some general

conclusions can be made to ensure the inequality from (B.19) is always satisfied.

sign(A,,)= —sign(cos l,ylo)
ﬂxl V] |

‘A4 cos l//,‘" >

Table B.3: Evaluation of Bottom Inequality

(B.27)

M P Given inequality Needed condition
0 2 0<24,V, 4,20
0 0 0<0 Always satisfied
2 0 24, cosy; <0 Always satisfied
2 2 A, cosy <=1V, A, cosy <-4V,
1 1 Aycosyy <=4V | A, cosy) <-4,V
Always satisfied
1 -1 A, cosy <AV, given A, 2>0
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