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SUMMARY

On-orbit servicing (OOS) of space systems provides immense benefits by ex-

tending their lifetime, by reducing overall cost of space operations, and by adding

flexibility to space missions. Refueling is an important aspect of OOS operations.

The problem of determining the optimal strategy of refueling multiple satellites in a

constellation, by expending minimum fuel during the orbital transfers, is challenging,

and requires the solution of a large-scale optimization problem. The conventional

notion about a refueling mission is to have a service vehicle visit all fuel-deficient

satellites one by one and deliver fuel to them. A recently emerged concept, known

as the peer-to-peer (P2P) strategy, is a distributed method of replenishing satellites

with fuel. P2P strategy is an integral part of a mixed refueling strategy, in which a

service vehicle delivers fuel to part (perhaps half) of the satellites in the constellation,

and these satellites, in turn, engage in P2P maneuvers with the remaining satellites.

During a P2P maneuver between a fuel-sufficient and a fuel-deficient satellite, one of

them performs an orbital transfer to rendezvous with the other, exchanges fuel, and

then returns back to its original orbital position. In terms of fuel expended during the

refueling process, the mixed strategy outperforms the single service vehicle strategy,

particularly with increasing number of satellites in the constellation. This disserta-

tion looks at the problem of P2P refueling problem and proposes new extensions like

the Cooperative P2P and Egalitarian P2P strategies. It presents an overview of the

methodologies developed to determine the optimal set of orbital transfers required

for cooperative and non-cooperative P2P refueling strategies. Results demonstrate

that the proposed strategies help in reducing fuel expenditure during the refueling

process.

xiv



CHAPTER I

INTRODUCTION

The traditional practice in the space industry has been the development of large and

complex monolithic spacecraft, resulting in high costs of overall space operations. In

recent times, the need for several small satellites performing the equivalent job of a

larger spacecraft has been recognized. Formation flying cluster of satellites provide

means of cost reduction and addition of flexibility to space-based programs. Natu-

rally, the areas of formation flight and satellite clusters,35,68,88 or the more recently

proposed fractionated spacecraft architecture10 have been receiving significant atten-

tion. Typically, a spacecraft requires a regular fuel budget for station-keeping and

orbital maneuvers. Hence, fuel on-board a spacecraft is one of the important factors

in determining the design life-time of the spacecraft. A spacecraft may also encounter

different kinds of failure that may degrade the performance of the spacecraft, or even

make the spacecraft non-functional. Traditionally, the industry has focussed on re-

placing a spacecraft at the end of its life-time. However, there has been a growing

interest in the new paradigm of on-orbit servicing, and refueling in particular. Ca-

pabilities to repair, upgrade, and replenish a spacecraft have immense potential to

decrease the cost of overall space operations, and impart flexibility to space-based

missions, apart from extending the design lifetime of the satellites. Although there

have been several studies on the economic and technological feasibility of servicing

missions, there are not enough studies on determining the best way of planning a

servicing mission. In this dissertation, we look at this problem. We consider a simple

system of a circular constellation of multiple satellites, and determine the best possi-

ble way of servicing these satellites. In particular, we address the refueling operation

1



of servicing missions. We will show that even for this simple system, the problem of

determination of the best way of refueling the satellites is challenging, as it requires

the solution of a large-scale optimization problem. In this introductory chapter, we

present a brief overview of our problem of study, literature survey and acquaint the

reader with some basic notations.

1.1 Problem Overview

We will consider a system of multiple satellites moving in a circular orbit. These

satellites are required to have a minimum amount of fuel. We also have a service-

vehicle that can deliver fuel to all these satellites in the constellation. All satellites are

required to satisfy the minimum fuel requirement at the end of the refueling process.

A refueling mission comprises of several orbital transfers necessary to deliver fuel to

the satellites in a constellation. We assume that the service-vehicle and the satellites

employ chemical propulsion. We also assume the following information is available for

each satellite: mass, initial position, initial fuel content, minimum fuel requirement,

and specific thrust of the engine. The radius of the orbit, and the maximum time

for the refueling mission, are also specified. Given all this information, we would like

to answer the following question: What is the “best possible way” of refueling the

system of satellites? By “best possible way,” we mean that the fuel expended during

all the orbital transfers taking place during refueling has to be a minimum.

The conventional notion of a refueling mission is to have a service vehicle visit

the satellites in an optimal sequence and replenish them with fuel. This strategy of

refueling satellites is referred to as a single service vehicle (SSV) refueling strategy.

Fig 1(a) depicts the SSV refueling strategy, in which the service-vehicle delivers fuel to

six satellites in the constellation. The Peer-to-Peer (P2P) refueling strategy provides

an alternative way of distributing fuel among the satellites in the constellation, in the

absence of a service vehicle. The fundamental concept behind P2P refueling is that

2



S0

S1

S2

S3
S4

S5

S6

S7

S8

S9S10S11

S12

∆V01

S0

∆V12

∆V23

∆V34 ∆V45

∆V56

∆V67

∆V78

∆V89

∆V9,10∆V10,11

∆V11,12

∆V12,0

(a) Single Service Vehicle
Strategy

S0

S1

S2

S3
S4

S5

S6

S7

S8

S9S10S11

S12

∆V01

∆V12

∆V23

∆V34 ∆V45

∆V56

S0

(b) Mixed Strategy

Figure 1: Refueling Strategies in a Constellation.

if some of the satellites have more fuel than the remaining ones, then they can share

their fuel with those deficient of it by engaging in P2P maneuvers. During a P2P

maneuver between a fuel-sufficient and fuel-deficient satellite, one of the satellites

performs an orbital transfer to rendezvous with the other, exchanges fuel, and then

return to its original orbital position. The satellite which performs the orbital transfer

is said to be active, while the satellite which remains in its orbital slot throughout

the transfer is said to be a passive. Fig 2(a) depicts the P2P refueling strategy, in

which three fuel-sufficient satellites engage in P2P maneuvers with three fuel-deficient

satellites in order to exchange fuel. The forward trips are marked by solid arrows,

while the return trips are marked by dotted arrows. P2P refueling is an integral part

of a mixed refueling strategy, in which the service vehicle refuels part (potentially

half) of the satellites in a constellation, and these satellites engage in P2P maneuvers

with the remaining satellites in order to distribute the fuel in the constellation. The

mixed refueling strategy is depicted in Figure 1(b).

The primary focus of this dissertation is the P2P refueling of satellite constella-

tions. Of particular interest are two extensions of the P2P refueling problem. One of

them is the Egalitarian P2P refueling, in which an active satellite is not constrained
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Figure 2: P2P Refueling Strategy.

to return to its original orbital position, and can return to any orbital slot originally

occupied by a different satellite. The other case is the Cooperative P2P (C-P2P)

refueling, in which both satellites, involving in a refueling transaction, are active

and engage in a cooperative rendezvous. After the fuel exchange takes place, both

satellites return to their original slots. Furthermore, the ideas of E-P2P and C-P2P

refueling can be combined into one single Cooperative Egalitarian P2P (CE-P2P)

refueling strategy. During a CE-P2P maneuver, both satellites participating in a re-

fueling transaction are active and return to any available orbital position during their

return trips. Fig. 2(b) depicts instances of C-P2P, E-P2P, and CE-P2P maneuvers.

As before, the forward trips are marked by solid lines, while the return trips are

marked by dotted lines. Satellites s4 and s6 engage in a C-P2P maneuver, that is,

they rendezvous in the slot different from their original locations, exchange fuel, and

return to their original locations. Satellites s5 and s7 engage in an E-P2P maneuver,

in which satellite s5 rendezvous with the satellite s7 that stays in its original location,

and after the fuel exchange is over, satellite s7 returns to the slot originally occupied

by satellite s8. Similarly, satellites s1 and s3 engage in an E-P2P maneuver, in which
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the active satellite s3 returns to its the slot initially occupied by the active satellite

s2. Satellites s2 and s8 engage in a CE-P2P maneuver during which the satellites

engage in a cooperative rendezvous, and return to orbital slots initially occupied by

the active satellites s3 and s5.

The primary goal of this dissertation is to develop methodologies to determine the

optimal set of orbital transfers that yield the minimum fuel expenditure during P2P,

E-P2P, C-P2P, and CE-P2P refueling strategies.

1.2 Literature Survey: On Orbit Servicing

Waltz84 defines OOS as work done in space by man or machine or by a blend of both,

in order to increase the operational life and capabilities of the space assets. OOS

operations primarily include on-orbit assembly and maintenance of a space asset, as

also replenishment of consumables. In recent years, there have been a growing interest

in the OOS paradigm, and several studies have been performed on OOS operations

including refueling. Most of these studies have focussed on reviewing the servicing

missions that have taken place till date, identifying the benefits offered by servicing,

capturing the cost-effectiveness of servicing operations, analyzing different servicing

architectures, identifying design modifications necessary for satellites to be considered

serviceable, and reviewing key technologies required for servicing.

1.2.1 Motivation: Servicing Missions

Although the current practice in the space industry is to replace spacecrafts after

their design lifetime, there have been several instances when on-orbit servicing has

proven to be beneficial. The first on-orbit servicing mission can perhaps be traced to a

manned mission to SkyLab in 1973, when a substitute heat shield was deployed in the

space station, after the original was damaged during launch.36 Solar Maximum Repair

Mission (SMM) in 1984 provides another instance of servicing mission that became

necessary after the failure of the Coronagraph Polarimeter and the fuse failures of the
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Attitude Control System.50 Servicing missions were also undertaken for the Russian

space station in order to deliver fuel, expendables, and other cargo.6 The most

prominent instance of OOS operations is perhaps the repair of Hubble Space Telescope

(HST) in 1993, when a unit was installed in order to compensate for a manufacturing

defect in the primary mirror. There have been several servicing missions for the HST

after that, leading to an increase in productivity of the HST by 1 to 2 orders of

magnitude, and an increase in data output by 2 to 3 times.44 These missions were all

manned missions. Recent efforts of the Defence Advanced Research Projects Agency

(DARPA) led to the first demonstration of autonomous servicing in space. DARPA’s

Orbital Express program demonstrated several key on-orbit servicing technologies

like automated rendezvous, transfer of fluid (hydrazine), and robotic arm transfers of

Orbital Replacement Unit (ORU) components.12

1.2.2 Benefits of OOS operations

The servicing missions for SkyLab, SMM, HST, and the Russian Space Station clearly

identifies the benefits of life-time extension and anomaly resolution offered by OOS

operations. The study on Spacecraft Modular Architecture Design65 (SMAD) iden-

tified six potential benefits of on-orbit servicing: (1) reduced life-cycle costs, (2) in-

creased payload sensor availability achieved by replacing failed sensors, (3) extended

spacecraft orbital lifetime achieved by replenishing consumables like propellant, (4)

enhanced spacecraft capabilities achieved by insertion of new technologies, (5) en-

hanced mission flexibility and operational readiness because refueling capability al-

lows for maneuvers which would otherwise shorten the spacecraft lifetime by high

fuel consumption, (6) pre-launch spacecraft integration flexibility offered by a modu-

lar architecture of a serviceable spacecraft. A survey of spacecraft failures that could

have been corrected by allowing for on-orbit servicing can be found in Ref. 78. Apart
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from providing the primary benefits of lifetime extension, upgrade, and anomaly res-

olution, OOS may also be used as a surveillance tool for customers willing to perform

an inspection of their assets.17 Ideas about OOS operations also include the use of

space tugs to boost or relocate satellites to desired orbits.46 The primary objectives

of OOS operations can therefore be summarized as: life extension, repair, upgrade,

relocate, and inspection.39,46,71

Refueling is one of the vital OOS operations, primarily because most satellites have

a mission life driven by propellant usage.17 Provision of refueling capabilities would

allow for satellites to be launched with less fuel. This may either mean reduced launch

costs, or additional revenue generation by dedicating the volume and mass, previously

occupied by excess fuel, to additional payload.51,83 The designers of Space Based

Laser (SBL) have also identified refueling operations to be essential for replenishing an

operational chemical laser system.42,54 Furthermore, refueling capability enables new

missions like extremely low-altitude high-drag orbits for Earth observation satellites.48

1.2.3 The Economic Perspective

In spite of OOS operations being highly successful in the case of SkyLab, SMM, and

HST missions, and the potential benefits that OOS can offer, there are several con-

cerns in the space industry regarding adopting the servicing paradigm. In order for

servicing to be practical, both a serviceable spacecraft and a servicer are required.

This brings up the primary issue referred to as the ’chicken vs. egg’ dilemma.17 On

one hand, why would a manufacturer develop a serviceable spacecraft when there

does not exist a servicing infrastructure? On the other hand, why would anyone

develop a servicing infrastructure when there does not exist a customer base? Also,

the costs associated with the development of a serviceable spacecraft and a servicing

infrastructure have been considered too high to justify the acceptance of the OOS

paradigm. Because of the prevalent competition among the satellite manufacturers,
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the focus has been on cutting down development costs, thereby hindering the devel-

opment of a serviceable satellite.46 In fact, commercial companies are not likely to

adopt the OOS paradigm unless the cost to benefit ratio is substantially decreased.64

Several studies looked at the problem of servicing from the perspective of OOS

providers and OOS customers.32,33,46,51,71 An OOS provider would be concerned

about the minimum price to charge a client for servicing. In order to determine this

price, the OOS provider needs to consider the cost of the servicing mission and the

cost of infrastructure development required for servicing operations. On the other

hand, an OOS customer would be concerned about the maximum price to pay for

a servicing mission. Hence, the customer needs to consider the savings in life-cycle

cost offered by the servicing mission, and the value of flexibility offered by a servicing

mission. Flexibility refers to the availability of a set of options, from which the

customer can chose the one that best answers the uncertainties like changing market

requirements.71 The viewpoints of the provider and client are discussed in Ref. 51,

with respect to servicing operations that aid in orbit-raising and station-keeping.

The client and provider perspectives for the case of refueling are also discussed in

Ref. 46. Different viewpoints of the provider and the client are presented for the case

of satellite upgrade in Ref. 32,33.

The OOS provider would be concerned about the servicing architecture. There is

the cost of developing the infrastructure to service satellites. Also, the cost of a servic-

ing operation needs to be estimated, based on the fuel expenditure for all maneuvers

(orbital transfers) required for the mission, and the fuel and other requirements of

the serviceable client satellites. Typically, in order to avail of OOS operations, client

satellites need to be designed for servicing. However, refueling is an operation that

presents an unique opportunity to OOS providers. Owing to the high volatility and

toxicity of satellites’ fuel, the current design and integration practices of satellites

allows fuel to be loaded into the satellite just before launch. In other words, the
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fueling process is not an integral part of satellite’s integration process. This implies

that it is possible to refuel the currently operating satellites.48

From the perspective of the OOS client, servicing operations would allow the satel-

lite operators to address various risks: (1) system failure may be encountered during

long life-time of satellites, (2) technology on-board a satellite may become obsolete

long before the end-of-life of satellites, (3) the market, that an operational system

caters to, may itself become obsolete, leading to loss of revenue-earning capabilities

of the system, (4) customer desires may evolve with time leading to change in mis-

sion requirements.32 Regular upgrades sent to satellites via OOS operations can help

the operators deal with the technology evolution and changing market requirements.

Also, degraded performance of an operational system can be corrected by replacement

of the defective module. Although upgrading helps to mitigate the risks mentioned

above, there is a risk of the servicing operations itself. This is a key factor in deter-

mining the acceptance of the OOS paradigm by the space operators. There are also

other factors that concern the operators: how new the upgrades are, and the delay to

service. This would depend on whether the modules are kept in on-orbit depots, or

launched on demand.32 Furthermore, from the perspective of an OOS client, refueling

capability allows for a satellite to be launched with less amount of fuel, so that the

client can chose to launch the satellite with less mass, thereby incurring lesser launch

costs. Otherwise, the client can chose to fill up the mass and volume, previously occu-

pied by fuel, with additional revenue-generating transponders.46 Refueling a satellite

at end-of-life helps the satellite operator avoid the risk of loss of future revenue in the

event servicing was to fail. Note that from the OOS client perspective, it does not

matter what the form of servicing architecture is as long as the price, that the OOS

provider charges, is acceptable. The operator may take a decision based on existing

market condition: If the market is up and refueling would generate a profit, then

refueling is the option. On the other hand, if the market is down, and refueling would
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result in loss, then the operator would decommission the satellite.46

1.2.4 Servicing Architectures and Cost-Effectiveness of OOS Operations

In one of the original studies on OOS, Reynerson65 introduced a notion of cost in defin-

ing a serviceable spacecraft: “Any spacecraft for which the benefits of OOS outweigh

the associated cost”. The study also provides an overview of the Spacecraft Modular

Architecture Design (SMAD) and discusses a low-cost servicing architecture design

for servicing. It emphasizes the functional replacement strategy in OOS operations

in order to minimize the cost and complexity of servicing missions. In Ref. 41, the

authors outline different types of servicing missions and different orbits for servicing,

analyze different servicing methods, including the transportation for OOS operations.

There have also been studies on the analysis and design of OOS architecture with

the Global Positioning System (GPS) constellation as a case study.42 The structural

modifications, necessary for satellites in GPS constellation so that they can be ser-

viced, have also been identified.29 A detailed discussion on different means of making

a spacecraft cost-effective by frequent non-intrusive servicing can be found in Ref. 83.

Non-intrusive servicing refers to operations such as propellant re-supply, power trans-

fer, and visual inspection, and leaves out operations like equipment change-out and

repair. A model can also be developed to compare servicing and non-servicing archi-

tectures in both mass and cost over the life of the targeted constellation and cost.64

For GEO and MEO constellations, Ref. 13 discusses the OOS system architecture,

lists various servicing tasks, the servicer vehicle mission scenario, and impacts on the

satellite design.

Typically, the above-mentioned studies have focussed on identifying logistical sup-

port for a given space mission, analyzing different servicing architectures to achieve

the servicing goals, designing the service vehicle, modifying the design of a satel-

lite to make it serviceable, and finally determining the most cost-effective servicing
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architecture.71 This is the traditional provider’s perspective of looking at the servic-

ing problem. A new customer-centric approach is introduced in Ref. 71, in order to

capture the value of flexibility that is important from the point of view of the OOS

customers. Ref. 51 provides a framework that breaks the OOS valuation analysis

into two distinct parts: the client’s value and the provider’s value. With a case-

study of GEO communication satellites, the study points out a viable GEO servicing

market. It identifies cases that look promising both from the viewpoint of the OOS

provider and the customer. Ref. 32 analyzes the value of flexibility offered by satel-

lite upgrade, and in particular looked at the instance of upgrade of solar panels for

GEO communication satellites. Based on the HST example, the model of a scien-

tific serviceable mission is developed and the promise of on-orbit upgrade operations

is emphasized in Ref. 33. Ref. 46 examined the end-of-life refueling case for two

real-world communication satellites, and justifies the existence of a servicing market,

along with benefit for potential customers. Studies have also been done to identify

feasible non-commercial OOS markets like upgrade of government weather satellites

in geosynchronous orbit.47 A new value proposition that considers rapid response to

technological or market change and design of less redundant satellites, is addressed

in Ref. 48.

Although most studies have considered monolithic servicing architecture, an alter-

native fractionated servicing architecture have also been investigated. For instance,

the Heterogeneous Expert Robots for On-Orbit Servicing (HEROS) architecture con-

sists of a fleet of small, agile robots cooperatively performing servicing missions.80,81

1.2.5 Enabling Technologies for OOS Operations

One of the key technologies required for autonomous OOS operations is the Au-

tonomous Rendezvous and Capture (ARC). Ref. 57 reviews some of the technology

efforts related to ARC. Ref. 76 discusses the development of an autonomous servicing
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spacecraft simulator to validate autonomous control algorithms and different hard-

ware required for ARC, and OOS operations in general. Tests have been performed

at the Naval Research Laboratory in order to validate autonomous guidance, naviga-

tion, and control algorithms with a relative navigation sensor in the loop for satellite

servicing and inspection.9 For the ARC operations during the successful tests of

the OE program, an Advanced Video Guidance Sensor was used to provide relative

position and attitude between the two vehicles.30,56 Ref. 87 describes a high perfor-

mance image processing unit and its role in the ARC operations during servicing of

a spacecraft.

One of the most important aspect of servicing missions is refueling which involves

fluid exchange. The development of critical technologies related to on-orbit refueling

is discussed in Ref. 27. It provides an overview of the necessary fluid coupling, and

systems required to engage and disengage the fluid couplings. Ref. 18 describes the

fluid transfer and propulsion system required for on-orbit propellant replenishment,

for the Orbital Express program. The HERMES OOS provides an architecture with

a minimalistic approach for enabling refueling services on-orbit. Ref. 38 discusses a

small HERMES Quick Disconnect (QD) accessory that allows any satellite carrying

the accessory perform the functions of a tanker spacecraft.

Studies have also been done to address servicing objectives other than refuel-

ing. Ref. 43 discusses the design of a small spacecraft to perform on-orbit servicing

tasks. The MORPHbots presents a lightweight modular system, comprised of stan-

dardized actuator, sensor, and computational modules, that is capable of performing

assembly and servicing works typically done by astronauts.4 An Orbital Recovery

System (ORS) is being developed with the goals of maintaining a telecommunica-

tions satellite in Geostationary (GEO) orbit for 10 or more additional years beyond

its normal propellant end-of-life.34 Ref. 49 focusses on simplifying the attitude con-

trol system of space cargo for reusable orbital logistics supply servicing systems, with
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potential application in logistics supply missions to International Space Station, or

propellant supply mission for the Low Earth Orbit satellites. Front-end Robotics

Enabling Near-Term Demonstration (FREND), which is a technology demonstration

program at Naval Research Laboratory, is aimed at designing and building a robotic

payload capable of grappling and repositioning existing satellites.79 Ref. 3 discusses a

dextrous robotic servicing system, based largely on the requirements for robotic ser-

vicing of HST. For the fractionated servicing architecture HEROS, Ref. 80 discusses

the development of path-planning algorithms.

A detailed account of technical and economic feasibility of on-orbit satellite servic-

ing can be found in Ref. 77. With the Orbital Express program, we can say that OOS

operations has attained technological maturity. The major obstacle are therefore the

high costs of servicing and the lack of a serviceable satellite market. The demon-

stration of one or more basic OOS operations with a low capital starting point may

pave the way for the development of a serviceable market. One possible relatively low

capital starting point of servicing missions could begin with the refueling of existing

satellites.46

1.3 Literature Survey: Optimal Time-Fixed Impulsive Ren-

dezvous

A servicing mission would involve several orbital transfers performed by a service

vehicle and/or satellites. These transfers require the solution of time-fixed rendezvous

problems. Assuming a chemical propulsion system for the service vehicle and the

satellites, the orbital maneuvers would be impulsive in nature.

1.3.1 Non-Cooperative Rendezvous

Optimal fixed-time multi-impulse transfer trajectories can be determined by meth-

ods based on Lawden’s primer vector theory.40 Lion and Handelsman45 applied the
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calculus of variations to the primer vector theory in order to obtain the first order con-

ditions for optimal addition of an impulse along the trajectory of the transfer vehicle,

or for the inclusion of initial and final coasting. Primer vector theory has been applied

to determine multiple impulse fixed time solutions to rendezvous between two vehicles

in circular orbits.62 C-W equations60 have also been used in the literature to obtain

minimum fuel multiple-impulse orbital trajectories. In particular, the primer vector

theory has also been applied to the C-W equations.31 In our study, we are interested

in minimum fuel two-impulse orbital transfer between coplanar circular orbits. This

is essentially the well-known Lambert’s problem.60 The multiple revolution solutions

to Lambert’s problems, in which the transfer vehicle can complete several revolutions

in the transfer orbit, have been studied. it has been shown that if the number of

maximum possible revolutions is Nmax, then the optimal solution is determined by

exhaustively investigating a set of (2Nmax + 1) candidate minima.61 However, it has

been established that the optimal solution can be obtained by investigating at most

two of the (2Nmax + 1) candidate minima.74

1.3.2 Cooperative Rendezvous

Although most of the studies in the literature focus on active-passive (non-cooperative)

rendezvous, there also exits works which consider the active-active (cooperative) case

of rendezvous. The earliest works on cooperative rendezvous considered rendezvous

between general linear or non-linear systems with various performance indices.24,52

The idea of using differential games to study cooperative rendezvous problems has

also been discussed in the literature.86 A study has been done on the optimal termi-

nal maneuver of the active satellites engaged in a cooperative impulsive rendezvous.59

Determination of optimal terminal maneuvers involves the optimization of the com-

mon velocity vector after the rendezvous. Methods have also been developed for

determining optimal time-fixed impulsive cooperative rendezvous using primer vector
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theory.53 These accommodate cases of fuel-constraints on satellites and enables the

addition of mid-course impulse(s) to a vehicle’s trajectory. For the case of fixed-time

impulsive maneuvers, cooperative rendezvous is advantageous when the time allot-

ted for the maneuver is relatively short. Examples show that the non-cooperative

solution becomes cheaper once the time allotted for the rendezvous is large enough

for Hohmann transfers to be feasible. The minimum fuel rendezvous of two power-

limited spacecrafts has also been studied14,15 using non-linear analysis as well as C-W

equations. For such spacecraft engaging in a rendezvous maneuver, cooperative ren-

dezvous is always found to be cheaper than non-cooperative solution. Constrained

and unconstrained circular terminal orbits have also been analyzed, and it has been

found that the cooperative solution still remains the cheaper option to rendezvous.

Analytical solutions using the C-W equations can be used to predict the nature of the

terminal orbit of rendezvous.15 For instance, in the case of a cooperative rendezvous

between two satellites in a circular orbit, the two meet up at an orbital slot mid-way

between the original slots, each satellite essentially removing half the phase angle.

1.4 Literature Survey: Optimal Scheduling for Refueling

One aspect of the study of servicing missions, or refueling missions in particular, is the

determination of the optimal scheduling, which involves the solution of a large-scale

optimization problem. The conventional notion of refueling fuel-deficient satellites in

a constellation is to have a refueling spacecraft visit the latter one by one and impart

fuel to them.73 By an optimal schedule for single-service vehicle refueling strategy, we

mean an optimal sequence in which the service vehicle would visit the fuel-deficient

satellites in a constellation in order to replenish them with fuel; the optimal sequence

corresponding to minimum total fuel expenditure of the service vehicle. Typically,

for a service vehicle imparting fuel to satellites in a circular constellation, the optimal

schedule is sequential visit of the satellites by the service vehicle in a clockwise or
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counter-clockwise fashion.73 For the problem of servicing satellites in a constellation

when plane changes are required, it has been shown, with the instance of servicing

satellites in Geosynchronous orbit (GEO), that the optimal schedule may not be

sequential.5

Recently, an alternative scenario for distributing fuel amongst a large number of

satellites has been proposed.74,75 In this scenario, no single spacecraft is in charge of

the whole refueling process. Instead, all satellites share the responsibility of refueling

each other on an equal footing. This is referred to as the peer-to-peer (P2P) refueling

strategy.75 This is achieved by having satellites with excess fuel sharing their resources

(propellant) with those depleted of it. Although a stand-alone P2P strategy might

seem unconventional at first notice, P2P comes as a natural choice in distributing

fuel in the constellation in a mixed refueling strategy.19,82 In such a scenario, an

external refueling spacecraft, either launched from Earth or coming from a different

orbit, replenishes half of the satellites in a constellation and returns back to its original

orbit. The satellites which receive fuel from the external refueling spacecraft distribute

the fuel amongst other satellites in the constellation via P2P refueling. Numerical

studies have shown that the mixed refueling strategy is a competitive alternative to

the single-service vehicle refueling strategy and, in fact, outperforms the latter, as the

number of satellites82 in the constellation increases and/or the time to refuel decreases.

Furthermore, the incorporation of cost-reducing strategies such as the coasting time

allocation strategy and asynchronous P2P maneuvers19 provides further improvement

by reducing the fuel expenditure of the P2P phase of the mixed refueling strategy.

In all of the above-mentioned studies, P2P refueling was perceived as a means

to equalize fuel in the constellation. In order to achieve fuel equalization in the

constellation, an optimization problem was formulated, such that the deviation of

each satellite’s fuel from the initial average fuel in the constellation is penalized.

Under such a formulation, the problem of establishing optimal pairings of satellites
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reduces to a problem of finding the maximum weighted matching in the so-called

constellation graph. This maximum matching problem can be solved using standard

methods.28 A decentralized approach that uses auctions has also been reported in

Ref. 70. An alternative formulation for the P2P refueling problem is to impose a

minimum fuel requirement for each satellite in the constellation in order to remain

operational. Satellites having the required amount of fuel are fuel-sufficient, while

those which do not have the required amount of fuel are fuel-deficient. We therefore

seek to find the optimal satellite pairings so that all satellites end up being fuel-

sufficient at the end of the refueling process. This is to be achieved by using as little

fuel as possible in the process.23,69

Furthermore, the (baseline) P2P refueling strategy can be extended to cases like

the Egalitarian P2P (E-P2P), the Cooperative P2P (C-P2P), and Cooperative Egali-

tarian P2P (CE-P2P) refueling strategies. Although the baseline P2P and the C-P2P

refueling strategies can be formulated as a bipartite matching problem, or a two-index

assignment problem,22,69 the E-P2P and the CE-P2P problem would require the solu-

tion of a higher dimensional matching problem, or a multi-index assignment problem.

In these cases, the problem becomes hard to solve. In particular, the E-P2P refueling

strategy, can be formulated as a three-index assignment problem.20 It is well known

that the three-index assignment problem is NP-complete.26 The general multi-index

assignment problem was first stated by Pierskalla55 as an extension of the two-index

assignment problem. The three-dimensional assignment problem, which is a special

case of the multi-index assignment problem, can be viewed as a matching problem on

a complete tripartite graph. Several sub-optimal algorithms have been proposed for

this problem. A branch-and-bound algorithm was proposed to solve the three-index

assignment problem by Balas and Saltzman.7 Approximation algorithms for three-

index assignment problems with triangle inequalities were addressed by Crama and
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Spieksma.16 For multi-index assignment problems in k-partite graphs with decompos-

able costs∗, Bandelt, Crama and Spieksma8 introduced two approximate algorithms,

each of which solves a sequence of two-index assignment problems. Another class

of algorithms that has been developed for solving the three-index assignment prob-

lem includes the Greedy Random Adaptive Search Procedure (GRASP).2,25,66 Feo

and Resende25 discussed GRASP as a means for solving general combinatorial op-

timization problems. Robertson66 introduced four GRASP implementations for the

multi-index assignment problem, which are combinations of two constructive meth-

ods (i.e., randomized reduced cost greedy, and randomized maximum regret) and two

local search methods (i.e., two-assignment exchange, and variable depth exchange).

Aiex et al.2 proposed the use of GRASP with path relinking. This method was able

to improve the quality of the heuristic solutions proposed in Refs. 7 and 16. Moreover,

the GRASP method is shown to benefit from parallelization.

The GRASP method can be used to to solve the E-P2P refueling problem.20

Alternatively, the problem can be formulated using network flows.1,21,23 Similarly,

the CE-P2P can also be formulated using network flows. The E-P2P, C-P2P, and the

CE-P2P are the subjects of discussion in this dissertation, and will be discussed in

great detail in the following chapters.

1.5 Preliminary Notations

In this section, we will introduce some introductory notations in order to facilitate

the discussion in the forthcoming chapters.

∗By decomposable costs, we mean that the cost of a clique in the k-partite graph is a function of
the cost of the edges induced by the clique. Note that a clique is a subgraph in which all vertices are
pairwise adjacent. For a k-partite graph, a clique comprises of exactly one node from each partition
of the k-partite graph.
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1.5.1 Constellation Details

We consider the circular constellation to consist of n satellites, distributed over n

orbital slots in a circular orbit of radius R. Let the set of n satellites be given by

S = {si : i = 0, 1, 2, . . . , n}, where s0 represents a fictitious satellite. Let the set of n

orbital slots be given by Φ = {φi ∈ [0, 2π) : i = 1, 2, . . . , n, φi 6= φj}. We introduce a

mapping σt : Φ 7→ S that, at time t ≥ 0, assigns to each orbital slot a satellite from

S. In particular, σt(φj) = si implies that the satellite si occupies the orbital slot φj

at time t. If the slot φj is empty at time t, we write σt(φj) = s0. Also, let the fuel

content of satellite si at time t be denoted by fi,t. In particular, let the initial fuel

content of satellite si be denoted by f−
i and the final fuel content be denoted by f+

i ;

that is, f−
i = fi,0 and f+

i = fi,T , where T is the time allotted for refueling.

S2

S8

S7

S5

S4

S1

S3

S6

 

 

 

 

  = {3,4,5,6}

  = {1,4,5,7}

  = {2,3,6,8}

  = {1,4,5,7}

  = {1,2,7,8}

E-P2P Maneuvers: 
(1,3,4) 
(4,2,1) 
(5,8,7) 
(7,6,5)

Ja

Jp

Jr

Js,0

Jd,0

Figure 3: Notations explanation for refueling.

1.5.2 Satellite Roles During Refueling

It will be convenient to keep track of the indices of the satellites participating in the

refueling process under different roles. To this end, let I = {1, 2, . . . , n}. We will refer

to satellites as fuel-sufficient if they have excess fuel and thereby capable of sharing
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this amount of fuel to other satellites in the constellation. Satellites which are depleted

of fuel are referred to as fuel-deficient satellites. Let Is,0 denote the set comprised of

indices of the fuel-sufficient satellites, while let Id,0 denote the set comprised of indices

of the fuel-deficient ones. Clearly, Is,0 ∪Id,0 = I. During a P2P refueling transaction

between a fuel-sufficient and a fuel-deficient satellite, one of them (henceforth referred

to as the active satellite) performs an orbital transfer to rendezvous with the other

satellite (henceforth referred to as the passive satellite). After the fuel exchange

takes place between the two, the active satellite returns to its original orbital slot.

We will denote the index set of active satellites by Ia ⊆ I and the index set of passive

satellites by Ip ⊂ I. For convenience, let Js,t = {j : σt(φj) = si, i ∈ Is,t} denote

the index set of orbital slots occupied by fuel-sufficient satellites at time t, and let

Jd,t = {j : σt(φj) = si, i ∈ Id,t} denote the index set of orbital slots occupied by

fuel-deficient satellites at time t. Also, let Ja = {j : σ0(φj) = si, i ∈ Ia} denote the

index set of orbital slots occupied by the active satellites before any orbital maneuver

commences, let Jp = {j : σ0(φj) = si, i ∈ Ia} denote the index set of orbital slots

occupied by the passive satellites before any orbital maneuver commences. Fig. 3

shows some of the notations for a case of E-P2P refueling, which is an extension of

P2P refueling. In this case, we consider σ0(φi) = si. Also, satellites s1, s2, s7 and

s8 are the fuel-sufficient satellites and the remaining are the fuel-deficient satellites.

The active satellites are marked with ’⋆’, the forward trips are marked by solid arrow,

while the return trips are marked by dashed arrow.

1.5.3 Satellite Properties

Furthermore, for each satellite si, we denote the mass of its permanent structure by

mspi and the specific thrust of its engine by Ispi. Also, we denote the gravitational

acceleration on the surface of the earth by g0. For each satellite si, we therefore

define the characteristic constant c0i = g0Ispi. Finally, we will denote the optimal
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rendezvous cost required for an orbital transfer from slot φi to φj by ∆Vij and the

fuel expended by a satellite sµ to perform the orbital transfer from slot φi to slot φj

is denoted by pµ
ij.

1.6 Organization of the Dissertation

Let us now outline the organization of the dissertation. In Chapter 2, we discuss the

problem of time-fixed impulsive rendezvous. We discuss the case of both cooperative

and non-cooperative rendezvous, and assume that each orbital transfer comprises of

two impulses. In Chapter 3, we discuss the different refueling strategies: the single

service vehicle refueling strategy, the baseline peer-to-peer refueling strategy, and the

mixed refueling strategy. In Chapter 4, we look into details the problem of non-

cooperative and Cooperative P2P refueling. We also consider the case when the

satellites are in two different circular orbits. In Chapter 5, the problem of Egalitarian

P2P refueling is discussed. In Chapter 6, we discuss the problem of a Cooperative

Egalitarian P2P refueling. Finally, in Chapter 7, we present the conclusions, the pri-

mary contributions of the dissertation, and also outline the potential future research

areas.
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CHAPTER II

OPTIMAL TIME-FIXED RENDEZVOUS

A refueling mission comprises of several orbital transfers (rendezvous) made by the

service vehicle and/or the satellites. Before discussing a complete refueling mission,

let us look into one single rendezvous problem. Furthermore, let us consider that the

satellites and the service vehicle employ a chemical propulsion system, so that the

maneuvers are impulsive in nature. In particular, we look at the problem of two-

impulse time-fixed rendezvous in this chapter. We discuss both cases of rendezvous

between two satellites: (1) non-cooperative rendezvous, in which only one of the

satellites performs the orbital transfer, (2) cooperative rendezvous, in which both

satellites perform orbital transfers to complete the rendezvous. We motivate our

discussion by taking a look at the well-known classical problem of Lambert.

2.1 Lambert’s Problem

Lambert’s problem can be stated as follows: Given two points P1 and P2 in space,

the time of flight tf , and a direction of flight, determine the transfer orbit that takes

a spacecraft from P1 to P2 in the given time tf . By direction of flight, we mean

whether the spacecraft moves along the short way (transfer angle θ ≤ π), or it moves

along the long way (transfer angle θ > π), as illustrated in Figure 4. Given the two

points P1 and P2 in space, there are two conjugate elliptical orbits for a given value

of semi-major axis a of the transfer orbit. For the case shown in the Figure 5, F

is the primary focus occupied by the primary gravitational body (Earth), and Fs

and Fℓ are the vacant foci corresponding to the two conjugate ellipses with the same

value of a. The distance of P1 and P2 from F are given by r1 and r2, while d is

the distance between the points P1 and P2. The two conjugate ellipses differ in their
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P1

P2

θ

(a) Short Way

P1

P2

θ

(b) Long Way

Figure 4: Lambert’s Problem.

eccentricities. The ellipse with vacant focus Fs has the smaller eccentricity, while the

one with vacant focus Fℓ has the larger eccentricity. Lambert’s theorem states that

the time of flight from P1 to P2 is a function of the semi-major axis a of the transfer

orbit, the distance d between the points, and the sum of the radii r1 and r2.

P1

P2 Fℓ

Fs

r1

r2 d

F

θ

Figure 5: Transfer Orbit Geometry in Lambert’s Problem.

Note that if the transfer time tf permits, the spacecraft can complete several

revolutions N in its transfer orbit. In general, the transfer time is given by

√
µtf = a3/2 [2Nπ + α− β − (sinα− sin β)] , (1)
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where µ is the gravitational parameter, and α and β are parameters defined by

sin
α

2
=

( s

2a

)1/2

, sin
β

2
=

(

s− d

2a

)1/2

, (2)

where s = (r1 + r2 + d) /2. Figure 6 shows a typical variation of tf with a for different
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Figure 6: Example plot of transfer-time vs. semi-major axis.

values of N . Clearly, there is a minimum value of a, denoted by amin, for which a

transfer is possible. Also, for a given value of N , there are two branches (marked by

solid and lines in the plot) connected at amin. They correspond to the two different

conjugate elliptical path mentioned before. Suppose, we are given a time of flight

tf0 as shown in Figure 6. This time determines the maximum number of revolu-

tions Nmax that would be possible. A horizontal line through tf = tf0 intersects the

branches corresponding to different number of revolutions. We accordingly have two

intersections for each revolution N = 1, 2, . . . , Nmax. For N = 0, there can be only

one intersection as the lower branch is monotonically decreasing. Therefore, there are

2Nmax + 1 intersections. In other words, 2Nmax + 1 choices of a for the transfer orbit

are possible for a given value of transfer time tf .

2.2 Non-Cooperative Rendezvous

Let us consider that a satellite s1 in a circular orbit of radius r1 has to rendezvous

with another satellite s2 in a circular orbit of radius r2. Without loss of generality, we
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can consider that the rendezvous starts at the time t = 0. At this instant of time, s1

occupies the point P1, as shown in Figure 7, and s2 occupies the position P ′
2 with an

angle of separation θ0 with respect to P1. At the instant of time t = tf , the satellite

s2 occupies the position P2. Hence, we are required to find the transfer orbit that

takes the satellite s1 from P1 to P2 in the given time tf . In our discussion of the

Lambert’s problem, we found that there are 2Nmax + 1 transfer orbits that would be

possible. We need to select the best of these candidate solutions.

P1

P2

P2'

V1

∆V1

Vc1

∆V2

V2

Vc2

θ0

Figure 7: Two-Impulse Transfer.

In order to move from P1 to P2, the satellite s1 uses two impulses. The first

impulse results in a velocity change ∆V1 at P1 and places s1 in the transfer orbit,

while the second impulse causes another velocity change ∆V2 at P2 that places s1 in

the target orbit. Figure 7 shows these velocity changes incurred at points P1 and P2.

The total velocity change incurred is then given by

∆V = ∆V1 + ∆V2 (3)

Among all candidate solutions, the transfer orbit we chose for s1 is the one that incurs

the minimum possible ∆V . Note that this optimal transfer orbit is for a given initial

angle θ0 and a given time of flight tf . A detailed variation of ∆V , with respect to

changes in θ0 and tf , can be found in the contour plots in Ref. 73.
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Figure 8: Variation of ∆V with time (r1 = r2).

In particular, let us look at the case r1 = r2. In such a case, the points P1 and

P2 are on the same circular orbit. Given an initial lead angle θ0 of satellite s2 with

respect to satellite s1, a typical variation of ∆V with time is shown in Figure 8(a).

The plot shows alternating local maxima and minima. Now, suppose a time tf is

given for the rendezvous to complete. The corresponding ∆V = ∆Vf is shown in the

plot. Clearly, if we utilize a time t′f lesser than the time tf , it is possible to reduce

the ∆V to ∆V ′
f , as shown in the figure. Thus, the actual transfer time t′f is less

than given time tf , so that the satellite s1 can coast for the remaining time. In other

words, given a time tf , we allow a coasting time tf − t′f with t′f ≤ tf , such that the

nearest local minimum is attained. Each local minimum corresponds to a so-called

Phasing Maneuver, for which points P1 and P2 coincide, that is, the impulses are

provided at the same position on the transfer orbit. With the allowance of coasting,

the ∆V becomes a non-increasing function of time, as shown in Figure 8(b). The plot

has alternating cost-reducing and cost-invariant intervals. For the case of r1 6= r2,

the optimal rendezvous is a Hohmann transfer. It has been shown in Ref.58 that

the globally optimal two-impulse transfer that minimizes total ∆V is the Hohmann

transfer. Note that, in order to have a Hohmann transfer, the time needs to be

sufficient. We would look at both the Hohmannn transfer and the Phasing maneuver
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Figure 9: Phasing Maneuver.

in the remainder of this section.

2.2.1 Phasing Maneuvers

In a phasing maneuver, the satellite s1 transfers from one point to a different point

in a circular orbit, such that the velocity changes occur at the same point in the

transfer orbit. In other words, the points P1 and P2 coincide in this case. Depending

on whether the transfer orbit has a lesser semi-major axis or not, the the Phasing

maneuver is termed Subsynchronous or Supersynchronous. Figure 9 depicts both

phasing maneuvers, with the transfer orbit shown in solid line, and the original orbit

in dotted line. In the case of a sub-synchronous maneuver (Figure 9(a)), the satellite

s1 transfers to an orbit with a smaller time period in order to catch up with satellite

s2 that initially leads s1 by an angle ψ. Similarly, in the case of a super-synchronous

maneuver (Figure 9(b)), the satellite s1 transfers to an orbit with a larger time period

in order to catch up with satellite s2 that initially lags s1 by an angle ψ. Figure 9

shows the initial positions P ′
1 and P ′

2 of the satellites s1 and s2, as well as the phasing

angle ψ of both phasing maneuvers. The velocity change required for a phasing

maneuver can be calculated analytically.

Let us consider a phasing maneuver by the satellite located on the orbit of radius
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r⋆. Also, let T⋆ denote the time period for the orbit of radius r⋆. Let us denote

the phasing angle by ψ, where −π ≤ ψ ≤ π. We consider the cases of ψ < 0

and ψ > 0 separately. For each of these cases, we have one of the two maneuvers

(supersynchronous or subsynchronous). We therefore have four cases to consider:39

i) Supersynchonous and ψ > 0: The velocity change required for this transfer is

given by

∆V p = 2

√

µ

r⋆





√

2 −
(

ℓ− 1

ℓ− ψ/2π

)2/3

− 1



 , (4)

where

ℓ = ⌊ T/T⋆ + ψ/2π ⌋. (5)

ii) Supersynchonous and ψ < 0: The velocity change required for this transfer is

given by

∆V p = 2

√

µ

r⋆





√

2 −
(

ℓ

ℓ− ψ/2π

)2/3

− 1



 . (6)

iii) Subsynchonous and ψ > 0: The velocity change required for this transfer is

given by

∆V p = 2

√

µ

r⋆



1 −
√

2 −
(

ℓ

ℓ− ψ/2π

)2/3


 . (7)

iv) Subsynchonous and ψ < 0: The velocity change required for this transfer is

given by

∆V p = 2

√

µ

r⋆



1 −
√

2 −
(

ℓ+ 1

ℓ− ψ/2π

)2/3


 . (8)

2.2.2 Hohmann Transfers

For a Hohmann transfer from an orbit of radius r1 to an orbit of radius r2 (where,

for simplicity, we may assume that r1 < r2), the semi-major axis of the transfer orbit

is given by a = (r1 + r2)/2, so that the velocity change corresponding to the first
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impulse is given by

∆v1 =

√

2µ

(

1

r1
− 1

r1 + r2

)

−
√

µ

r1
, (9)

and the velocity change corresponding to the second impulse is given by

∆v2 =

√

µ

r2
−

√

2µ

(

1

r2
− 1

r1 + r2

)

. (10)

Using the above expressions, we have the total ∆V requirement for the Hohmann

transfer to be

∆V H =

(√

µ

r2
−

√

µ

r1

)

+
√

2µ

(
√

1

r1
− 1

r1 + r2
−

√

1

r2
− 1

r1 + r2

)

. (11)

P1

P2

Figure 10: Hohmann Transfer.

The angle of separation required for a Hohmann transfer to be feasible is given

by11

θH = π

[

1 −
(

1 + r1/r2
2

)3/2
]

. (12)

Unless this angle of separation is achieved, the satellite performing the transfer will

need to coast for a time τH given by11

τH =
θ0 − θH

2π (1/T1 − 1/T2)
, (13)

where θ0 is the initial separation angle, and where Ts = (1/T1 − 1/T2)
−1 is the synodic

period for the orbits concerned, with Ti = 2π
√

r3
i /µ, for i = 1, 2 is the orbital period.
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Since we are concerned with fixed-time transfers, the maximum time allowed for

coasting is given by

tc ≤ T − π

√

(r1 + r2)
3

8µ
. (14)

Therefore, the separation angle required for a Hohmann transfer should lie between

θH and θH + ∆θ, where

∆θ =































2π

Ts



T − π

√

(r1 + r2)
3

8µ



 , if r1 < r2,

−2π

Ts



T − π

√

(r1 + r2)
3

8µ



 , if r1 > r2.

(15)

A Hohmann transfer is therefore feasible for all separation angles θ0 ∈ [θH , θH +∆θH ]

if r1 < r2 and θ0 ∈ [θH + ∆θH , θH ] if r1 > r2. Therefore, all slots on ri and ro that

satisfy the above condition on the separation angle will allow for a Hohmann transfer

to take place.

2.3 Cooperative Rendezvous

In our discussion so far, we have looked at the problem of non-cooperative rendezvous,

that is, only one of the satellites perform the orbital transfer necessary to complete the

rendezvous. However, this need not be the case, and both satellites might be active

and each performs an orbital transfer necessary for the rendezvous. We assume that

during a cooperative rendezvous, each satellite performs a time-fixed two-impulse

transfer. Furthermore, we assume that the terminal rendezvous orbit is circular.

In the remainder of this chapter, we look at the problem of cooperative rendezvous.

To this end, let us consider two satellites sµ and sν occupying the orbital slots φi and

φj in the circular orbits of radius ri and ro respectively. Let the initial separation

angle between these satellites be θ0. Now, we consider various orbit for cooperative

rendezvous, and discretize each orbit of radius r into a set of orbital slots Φr equally

spaced along the orbit. Let I denote the set of indices for these slots. Now consider
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an orbital slot φkr
∈ Φr on the orbit of radius r where a cooperative rendezvous takes

place, where kr ∈ I. The situation is depicted in Fig. 11.

Let the time allotted for a cooperative rendezvous between the two satellites be

given by T , and let also the velocity change required for an orbital transfer from slot

φi to slot φkr
be denoted by ∆Vikr

, and the velocity change required for an orbital

transfer from slot φj to slot φkr
be denoted by ∆Vjkr

. The total velocity change

required for a cooperative rendezvous in which the satellites meet at slot φkr
∈ Φr is

denoted by

∆V c
ij|kr

= ∆Vikr
+ ∆Vjkr

. (16)

This is the total velocity change required for a cooperative rendezvous between the two

satellites. Had the satellites been involved in a non-cooperative rendezvous, then the

φi

φj

φk

Figure 11: Cooperative rendezvous for the case ri ≤ r ≤ ro.

total velocity change required to complete the rendezvous would be ∆Vij if satellite

sµ were active and ∆Vji if satellite sν were active. Hence, the cases φkri
= φi and

φkrj
= φj correspond to the two cases of non-cooperative rendezvous.

One of the slots in Φr results in the cheapest cooperative maneuver between any

two satellites meeting on the orbit of radius r. Let us denote this slot by φc(r) and
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the corresponding total velocity change by ∆Vc(r). We therefore have

∆Vc(r) , min
φkr∈Φr

∆V c
ij|kr

, (17)

and

φc(r) , arg min
φkr∈Φr

∆V c
ij|kr

. (18)

Assume now that the optimal cooperative rendezvous involving satellites sµ and sν

takes place in the orbit of radius rmin and at the orbital slot φc,min. This corresponds

to the lowest ∆V over all possible orbits and all possible slots. We also let the

corresponding optimal velocity change be ∆Vc,min. We therefore have,

∆Vc,min , min
r

∆Vc(r) (19)

and

φc,min , φc(rmin), where rmin = arg min
r

∆Vc(r). (20)

Recall that optimal time-fixed two-impulse rendezvous is a Hohmann transfer (for

different orbits) or a Phasing maneuver (for same orbit). Let us now investigate

now two cooperative maneuvers that comprise of these optimal maneuvers. The first

case of cooperative rendezvous that we study is a Hohmann-Hohmann Cooperative

Maneuver, which comprises of two Hohmann transfers. The second case of coopera-

tive rendezvous that we study is a Hohmann-Phasing Cooperative Maneuver, which

comprises of a Hohmann transfer and a Phasing maneuver.

2.4 Hohmann-Hohmann Cooperative Maneuvers (HHCM)

Let satellites sµ and sν engage in a HHCM rendezvous. We assume that for all

orbits of radius r where a cooperative rendezvous can take place, there exists at least

one slot φkr
∈ Φr at which both satellites can perform a Hohmann transfer. Using

the expression for the cost of a Hohmann transfer in (11), the total velocity change
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required for the HHCM rendezvous, when ri ≤ r ≤ ro, is given by

∆V H
c (r) =

(√

µ

ro

−
√

µ

ri

)

+

√

2µ

(
√

1

ri

− 1

ri + r
−

√

1

r
− 1

ri + r
+

√

1

r
− 1

ro + r
−

√

1

ro

− 1

ro + r

)

. (21)

Taking the derivative of the previous expression with respect to r, we have,

√

2

µ

d

dr

(

∆V H
c

)

=

(

1

r

)2
[

1
√

1/r − 1/(ri + r)
− 1

√

1/r − 1/(ro + r)

]

+

(

1

ri + r

)2
[

1
√

1/ri − 1/(ri + r)
− 1

√

1/r − 1/(ri + r)

]

+

(

1

ro + r

)2
[

1
√

1/r − 1/(ro + r)
− 1

√

1/ro − 1/(ro + r)

]

.(22)

By defining the following two parameters

β1 = 2 (ro + ri)
3 , β2 = ro (ro + 3ri)

2 , (23)

and by substituting r = ri in (22), we have

√

2

µ

[

d

dr

(

∆V H
c

)

]

r=r+
i

=

√
β1 −

√
β2

r
3/2
i (ri + ro)

3/2
. (24)

Note that β1 − β2 = (ro − ri) [ro (ro + ri) − 2r2
i ] > 0 since ro > ri. It follows that

0 <
√
β2 <

√
β1. We therefore have that

[

d

dr

(

∆V H
c

)

]

r=r+
i

> 0. (25)

Substituting r = ro in (22), and by performing similar calculations, we obtain

[

d

dr

(

∆V H
c

)

]

r=r−o

< 0. (26)

Similarly, we consider the cost of a HHCM rendezvous for the cases r < ri < ro and

ri < ro < r. These two cases yield

[

d

dr

(

∆V H
c

)

]

r=r−i

< 0, (27)
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and
[

d

dr

(

∆V H
c

)

]

r=r+
o

> 0. (28)

The results can be summarized as

[

d

dr

(

∆V H
c

)

]

r=ri















< 0, if r < ri,

> 0, if r > ri,

(29)

and

[

d

dr
(∆V )

]

r=ro















< 0, if r < ro,

> 0, if r > ro.

(30)

Therefore, we conclude that the ∆V cost for a HHCM rendezvous attains a local

minimum when either r = ri or r = ro. Note that a HHCM rendezvous for r =

ri or r = ro is actually a non-cooperative Hohmann transfer. It follows that if

either Hohmann transfer is possible, then the non-cooperative maneuvers are local

minimizers. Let us denote the cost of a non-cooperative Hohmann transfer by ∆V H
nc .

Figure 12 shows how the cooperative rendezvous cost varies with r for different values

of ro (ri is fixed at 1). For a cooperative rendezvous at an outer orbit, the cost of

the maneuver increases rapidly. As ro approaches ri, the cooperative cost for any

intermediate orbit r approaches the non-cooperative Hohmann transfer cost and the

concave region flattens out. In the limiting case when ro → ri, the minimum is

obtained at r = ri = ro with the total cost of transfer being zero.

For convenience, let the difference of the HHCM and the non-cooperative Hohmann

maneuver costs be denoted by the function η(r), given by

η(r) ,
∆V H

c (r) − ∆V H
nc√

2µ
.

Clearly, η(ri) = 0 and η(ro) = 0. The function η(r) can be calculated analytically,

and its variation over r (Fig. 13(a)) shows that η(r) is marginally sub-optimal for all

r ∈ (ri, ro) compared to r = ri or r = ro. If enough time is available so that Hohmann
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Figure 12: Variation of HHCM cost with r.

transfers are possible for the given separation of the satellites, the optimal rendezvous

is non-cooperative.
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Figure 13: Variation of auxiliary functions η(r) and ζ(r) with r.

If the optimal cooperative rendezvous is comprised of two Hohmann transfers, we

have ∆Vc(r) = ∆V H
c (r). However, both Hohmann transfers may not be possible. In

this case ∆Vc(r) 6= ∆V H
c (r). Let us define the following function:

ζ(r) ,
∆Vc(r) − ∆V H

c (r)√
2µ

.

Since a Hohmann transfer is the optimal two-impulse transfer between all coplanar
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circular orbits, a HHCM rendezvous is the optimal cooperative rendezvous at a radius

r /∈ {ri, ro}. Hence, ζ(r) measures the sub-optimality of the cooperative rendezvous

solution when a HHCM rendezvous is not feasible at any slot on the orbit. The

function ζ(r) is shown in Fig. 13(b). Note that if a HHCM rendezvous is feasible at

any slot on the orbit, we have ζ(r) = 0.

2.5 Hohmann-Phasing Cooperative Maneuvers (HPCM)

In our case, either satellite sµ or satellite sν performs a Phasing maneuver, that is,

r⋆ ∈ {ri, ro}. The satellite can transfer from its original slot (φi for sµ and φj for

sν) to another orbital slot φkr⋆
in the same orbit, by performing one of the following

two maneuvers: (1) A supersynchronous maneuver, in which the transfer orbit has a

higher apoapsis than r⋆, (2) A subsynchronous maneuver, in which the transfer orbit

has a lower periapsis than r⋆.

Recall that a HPCM rendezvous comprises of a Hohmann transfer and a Phasing

maneuver. Note that during a HPCM rendezvous, the Phasing maneuver can occur

either on the orbit ri or on the orbit ro. We therefore have, r⋆ ∈ {ri, ro}. The satellite

can transfer from its original slot (φi for sµ and φj for sν) to another orbital slot φkr⋆

in the same orbit. In the case r⋆ = ri, the satellite sν performs a Hohmann transfer

from ro to ri and the satellite sµ performs a Phasing maneuver. In the other case

r⋆ = ro, the satellite sµ performs a Hohmann transfer from ri to ro and the satellite sν

performs a Phasing maneuver. This case is depicted in Fig. 14, in which ψ represents

the phasing angle and θ0 is the initial separation angle between satellites sµ and sν .

Denoting by ∆V c(r⋆) the cooperative cost, we therefore have

∆V c(r⋆) = ∆V p + ∆V H
nc , ⋆ = i, o. (31)

The total ∆V for a HPCM rendezvous depends on the phasing angle ψ. The

phasing angle ψ determines the location of the cooperative rendezvous on the orbit

36



φi

φj

φkr⋆

θ0

ψ

Figure 14: Hohmann-Phasing Cooperative Maneuver (r⋆ = ro).

r⋆, where r⋆ = ri or r⋆ = ro. In this section, we consider the four cases of Phasing

maneuvers and find the locations on r⋆ for which the corresponding HPCM rendezvous

is cheaper (in terms of ∆V ) than a cooperative maneuver on an intermediate orbit.

According to the previous discussion, these are exactly the locations for which a

HPCM rendezvous is feasible.

First, note the following expressions:

⌊ T/T⋆ − 1 ⌋ ≤ ℓ ≤ ⌊ T/T⋆ ⌋ if ψ ≤ 0, (32)

and

⌊ T/T⋆ ⌋ ≤ ℓ ≤ ⌊ T/T⋆ + 1 ⌋ if ψ ≥ 0. (33)

We therefore have,

∆Vc(r) − ∆V c(r⋆)√
2µ

=
∆Vc(r) − ∆V H

c (r)√
2µ

+
∆V H

c (r) − ∆V H
nc√

2µ
+

∆V H
nc − ∆V c(r⋆)√

2µ

= η(r) + ζ(r) − ∆V c(r⋆) − ∆V H
nc√

2µ

= η(r) + ζ(r) − ∆Vp√
2µ

(34)

We are interested in finding the phasing angle such that ∆Vc(r) ≥ ∆V c(r⋆). It follows

that

η(r) + ζ(r) ≥
√

2

r⋆





√

2 −
(

ℓ− 1

ℓ− ψ/2π

)2/3

− 1



 , (35)
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which gives
√

r⋆

2
(η (r) + ζ (r)) ≥

√

2 −
(

ℓ− 1

ℓ− ψ/2π

)2/3

− 1. (36)

Simple calculations lead to

(

ℓ− 1

ℓ− ψ/2π

)

≥
[

2 −
(

√

r⋆/2 (η(r) + ζ(r)) + 1
)2

]3/2

. (37)

This inequality yields

ψ

2π
≥











1 − 1
[

2 −
(

√

r⋆/2 (η(r) + ζ(r)) + 1
)2

]3/2











ℓ+
1

[

2 −
(

√

r⋆/2 (η(r) + ζ(r)) + 1
)2

]3/2
.

(38)

Finally, using (5), the above inequality yields

ψ

2π
≥ ⌊T/T⋆⌋ −

⌊T/T⋆⌋ − 1
[

2 −
(

√

r⋆/2 (η(r) + ζ(r)) + 1
)2

]3/2
. (39)

Inequality (39) provides a lower bound ψ1
ℓ (r) for the supersynchronous phasing angle.

This lower bound is given by

ψ1
ℓ (r) = 2π











1 + ⌊T/T⋆⌋











1 − 1
[

2 −
(

√

r⋆/2 (η(r) + ζ(r)) + 1
)2

]3/2





















, (40)

and determines the minimum value of the supersynchronous phasing angle that defines

locations on r⋆ for which a HPCM rendezvous is feasible. Since for this case we have by

definition 0 ≤ ψ ≤ π, the lower bound on the phasing angle is given by max{0, ψ1
ℓ (r)}.

Naturally, π represents an upper bound for the phasing angle. Similarly, for the case

of a supersynchronous Phasing maneuver with ψ < 0, we can show that

ψ

2π
≥ (⌊T/T⋆⌋ − 1)











1 − 1
[

2 −
(

√

r⋆/2 (η(r) + ζ(r)) + 1
)2

]3/2











(41)
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ensures that a HPCM is cheaper than the optimal cooperative rendezvous on any

orbit of radius r 6= r⋆. The above inequality imposes a lower bound on the supersyn-

chronous phasing angle given by

ψ2
ℓ (r) , 2π (⌊T/T⋆⌋ − 1)











1 − 1
[

2 −
(

√

r⋆/2 (η(r) + ζ(r)) + 1
)2

]3/2











. (42)

For this case, we have −π ≤ ψ ≤ 0 by definition. The lower bound on the phasing

angle is therefore given by max{−π, ψ2
ℓ (r)}. Naturally, it follows by definition that the

upper bound on the phasing angle is 0. In summary, for the case of a supersynchronous

maneuver, the lower bound on the phasing angle is given by

ψℓ(r) =















max{0, ψ1
ℓ (r)}, if 0 ≤ ψ ≤ π,

max{−π, ψ2
ℓ (r)}, if − π ≤ ψ ≤ 0.

(43)

Note that the maximum value of ψℓ(r) represents a lower bound on the phasing angle

that defines the location on r⋆ for which a HPCM is optimal. Note also that the maxi-

mum for both ψ1
ℓ (r) and ψ2

ℓ (r) occurs when the quantity

(

2 −
(

1 +
√

r⋆/2 (η(r) + ζ(r))
)2

)

is maximum, equivalently, when
(

1 +
√

r⋆/2 (η(r) + ζ(r))
)

is minimum, which occurs

when η(r) + ζ(r) is minimum.

For the case of a sub-synchronous maneuver with ψ > 0, we have

ψ

2π
≤ ⌊T/T⋆⌋ −

(⌊T/T⋆⌋ + 1)
[

2 −
(

1 −
√

r⋆/2 (η(r) + ζ(r))
)2

]3/2
(44)

as the corresponding condition that makes HPCM cheaper. The above inequality

imposes an upper bound ψ3
u(r) on the subsynchronous phasing angle in a HPCM

ψ3
u(r) , 2π











⌊T/T⋆⌋ −
(⌊T/T⋆⌋ + 1)

[

2 −
(

1 −
√

r⋆/2 (η(r) + ζ(r))
)2

]3/2











, (45)
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Figure 15: Cooperative rendezvous.

such that a HPCM rendezvous is feasible. However, for this case, we have by defini-

tion, 0 ≤ ψ ≤ π. Therefore, min{ψ3
u(r), π} denotes the upper bound on the phasing

angle, while the lower bound is zero. Finally, for the case of a sub-synchronous

maneuver with ψ < 0, we can show that

ψ

2π
≤ 1 + (⌊T/T⋆⌋ − 1)











1 − 1
[

2 −
(

1 −
√

r⋆/2 (η(r) + ζ(r))
)2

]3/2











(46)

is required to have a HPCM maneuver to be optimal. This inequality imposes an

upper bound ψ4
u(r) on the subsynchronous phasing angle

ψ4
u(r) , 2π











1 + (⌊T/T⋆⌋ − 1)











1 − 1
[

2 −
(

1 −
√

r⋆/2 (η(r) + ζ(r))
)2

]3/2





















, (47)

which is a bound on the location on r⋆ for which a HPCM rendezvous is feasible.

Since by definition, −π ≤ ψ ≤ 0, the upper bound on the phasing angle is given by

min{0, ψ4
u(r)}, and the lower bound is given by −π. Therefore, by combining the two
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cases of subsynchronous maneuvers, we have the following expression

ψu(r) =















min{π, ψ3
u(r)}, if 0 ≤ ψ ≤ π,

min{0, ψ4
u(r)}, if − π ≤ ψ ≤ 0.

(48)

Note that the minimum of ψu(r) over r represents an upper bound on the phasing an-

gle that gives the position on r⋆ for which HPCM is feasible, hence also optimal. Note

that the minimum of both ψ3
u(r) and ψ4

u(r) occurs when

(

2 −
(

1 −
√

r⋆/2 (η(r) + ζ(r))
)2

)

is minimum, that is, when
(

1 −
√

r⋆/2 (η(r) + ζ(r))
)

is maximum, which occurs when

η(r) + ζ(r) is minimum.

The above analysis gives the location of the cooperative rendezvous of HPCM to

be the cheapest rendezvous option between the two satellites.

2.6 Short Time to Rendezvous

In the previous sections it has been assumed that a phase-free Hohmann transfer

is always possible between the orbits ri and ro. However, if the time allowed for

rendezvous is sufficiently small, a Hohmann transfer between orbits ri and ro and

vice versa becomes infeasible. In this section, we consider the case of short-time

rendezvous between satellites sµ and sν . We therefore assume that

T < π

√

(ri + ro)
3

8µ
. (49)

Clearly, HPCM maneuvers are not possible in this case. However, HHCM maneuvers

may be possible for some orbit r 6∈ {ri, ro}. Let us determine the orbits r for which

HHCM maneuvers can occur for short-time rendezvous. To this end, let us investigate

if the time T is sufficient for both satellites sµ and sν to perform Hohmann transfers

to an orbit of radius r. It follows from inequality (16) that

T < π

√

(r + ro)
3

8µ
, for all r ≥ ri. (50)
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Figure 16: Short time of rendezvous: Feasibility of HHCM.

Therefore, satellite sν cannot perform a Hohmann transfer to an orbit of radius r if

r ≥ ri. For the given time T , the satellite sν can nonetheless perform a Hohmann

transfer from orbit ro to an orbit r, provided r ≤ rν , where rν is defined as

rν =

(

8µT 2

π2

)1/3

− ro < ri. (51)

Similarly, for the given time T satellite sµ can perform a Hohmann transfer from orbit

ri to an orbit of radius r, provided that r ≤ rµ, where rµ is defined as

rµ =

(

8µT 2

π2

)1/3

− ri < ro. (52)

Note that rν < rµ < ro and rν < ri < ro. Hence, a HHCM rendezvous is

feasible only for r ≤ rν . Consequently, if the optimal solution is a HHCM rendezvous,

the location of rendezvous is at an orbit of radius r ≤ rν . Otherwise, the optimal

rendezvous takes place on an orbit of radius r > rν . Figure 16 shows the two satellites

sµ and sν in the orbits ri and ro respectively, along with the orbits rµ and rν .

The results of the previous analysis are summarized in Table 1. In the table,

TH
nc denotes the time required for a non-cooperative Hohmann transfer between the

satellites (which is a function of the initial separation angle θ0) and TH
pf denotes the

time required for a phase-free Hohmann transfer.
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Table 1: Summary of results.

Time of Rendezvous Optimal Solution Optimal Rendezvous Location

T ≥ TH
nc(θ0) Non-Cooperative Hohmann r⋆ = ri or r⋆ = ro

Transfer

TH
pf ≤ T < TH

nc(θ0) HPCM r⋆ = ri or r⋆ = ro

T < TH
pf Cooperative Rendezvous r⋆ ≤ rν if HHCM

2.7 Fuel Expenditure During Cooperative Rendezvous

We have discussed so far only the minimization of total velocity change required for

a cooperative rendezvous. In this section, we consider the minimization of the true

objective, which is the fuel expenditure during the cooperative rendezvous between

the satellites sµ and sν . Let msµ and msν denote the mass of the permanent structure

of the satellites sµ and sν respectively, while f−
µ and f−

ν denote the initial fuel content

of satellites sµ and sν , respectively. For the transfer of sµ from φi to φkr
, let ∆Vikr

denote the required velocity change. The fuel expenditure during the transfer is given

by

pµ
ikr

=
(

msµ + f−
µ

)

(

1 − e
−

∆Vikr
c0µ

)

. (53)

For the transfer of sν from φj to φℓ, let ∆Vjℓ denote the required velocity change.

The fuel expenditure during this transfer is given by

pν
jkr

=
(

msν + f−
ν

)

(

1 − e
−

∆Vjkr
c0ν

)

. (54)

The total fuel expenditure during the cooperative rendezvous between satellites sµ

and sν is therefore given by

pµ
ikr

+ pν
jkr

=
(

msµ + f−
µ

)

(

1 − e
−

∆Vikr
c0µ

)

+
(

msν + f−
ν

)

(

1 − e
−

∆Vjkr
c0ν

)

, (55)
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and is a function of the location (slot φkr
of orbit of radius r) of the cooperative

rendezvous. Now, let us assume that the minimum fuel expenditure occurs at the

slot φ⋆ of orbit of radius r⋆. We will denote all quantities associated with the optimal

fuel expenditure by the subscript ’⋆’. In other words, we have

pµ
ikr⋆

+ pν
jkr⋆

≤ pµ
ikr

+ pν
jkr

(56)

for all possible r and φkr
. Using (55), we have from (56),

(

msµ + f−
µ

)

(

e
−

∆Vikr
c0µ − e

−
∆Vikr⋆

c0µ

)

+
(

msν + f−
ν

)

(

e
−

∆Vjkr
c0ν − e

−
∆Vjkr⋆

c0ν

)

≤ 0 (57)

Expanding the exponential term, and neglecting higher powers of ∆V/c0 ≪ 1∗, we

have

(

msµ + f−
µ

)

(

∆Vikr⋆

c0µ

− ∆Vikr

c0µ

)

+
(

msν + f−
ν

)

(

∆Vjkr⋆

c0ν

− ∆Vjkr

c0ν

)

≤ 0, (58)

which reduces to

(

msµ + f−
µ

)

c0µ

∆Vikr⋆
+

(msν + f−
ν )

c0ν

∆Vjkr⋆
≤

(

msµ + f−
µ

)

c0µ

∆Vikr
+

(msν + f−
ν )

c0ν

∆Vjkr
(59)

Note that the right-hand side of the above inequality is a function of r and φkr
. The

inequality holds for all r and φkr
. Hence, we have

min
r,φkr

[

(

msµ + f−
µ

)

c0µ

∆Vikr
+

(msν + f−
ν )

c0ν

∆Vjkr

]

=

(

msµ + f−
µ

)

c0µ

∆Vikr⋆
+

(msν + f−
ν )

c0ν

∆Vjkr⋆

(60)

We therefore conclude that the total fuel expenditure is minimized at the location

where a weighted sum of ∆V is minimized, the weights being a ratio of mass and

specific impulse for each satellite. If this ratio is the same for the two satellites,

that is, msµ/c0µ = msµ/c0µ, then the minimum fuel expenditure during cooperative

rendezvous is equivalent to minimizing the total ∆V . Furthermore, if the satellites

∗This assumption is justified because a typical value of c0 = 2943 m/s and the ∆V requirement
for the transfers would be much smaller (of the order of 10 m/s).
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have the same engine characteristics and nearly the same mass, minimizing fuel is the

same as minimizing total ∆V .

Note that for a cooperative rendezvous on an orbit of radius r, both satellites

sµ and sν must have enough fuel to complete the rendezvous at an orbital slot φkr

on the orbit r. Next, we determine the necessary conditions for the feasibility of a

cooperative rendezvous at a slot φkr
on the orbit r.

For satellite sµ to be able to complete the rendezvous, we must have

pikr
≤ f−

µ , (61)

which, under the assumption ∆V/c0 ≪ 1, implies
(

msµ + f−
µ

)

c0µ

∆Vikr
≤ f−

µ . (62)

Similarly, for the satellite sν to be able to complete the rendezvous, we must have

pjkr
≤ f−

ν , (63)

which, under the assumption ∆V/c0 ≪ 1, yields

(msν + f−
ν )

c0ν

∆Vjkr
≤ f−

ν . (64)

Equations (62) and (64) imply that the radius r of the orbit for the cooperative

rendezvous to take place is bounded above and below by rℓ ≤ r ≤ ru. Hence,

minimizing the total fuel is equivalent to minimizing the weighted sum of ∆V over

all locations of all orbits of radius r such that rℓ ≤ r ≤ ru.

Assuming the orbits ri and ro are close enough, that is ro − ri ≪ ri, we can derive

explicit expressions for rℓ and ru. To this end, let us consider the transfer of sµ from

the orbit ri to some orbit r > ri. For a given amount of fuel, the highest orbit the

satellite sµ can transfer to is the one given by a Hohmann transfer. The velocity

change for a Hohmann transfer from orbit ri to r is given by

∆Vikr
= ∆ru

√

µ

r3
i

, (65)
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where ∆ru = r − ri and where we have assumed that ∆ru/ri ≪ 1. Using (65), we

obtain from (62),

∆ru ≤ f−
µ

(

msµ + f−
µ

)c0µ

√

r3
i

µ
. (66)

This expression yields the upper bound ru as follows

ru = ri +
f−

µ
(

msµ + f−
µ

)c0µ

√

r3
i

µ
. (67)

Let us now consider the transfer of sν from the orbit of radius ro to the orbit

r < ro. For a given amount of fuel, the lowest orbit the satellite sν can transfer to is

a Hohmann transfer from ro and r. Letting ∆rℓ = r − ro, and assuming again that

∆rℓ/ro ≪ 1, we have,

∆Vjkr
=

1

2
∆rℓ

√

µ

r3
o

. (68)

Using the above expression, we obtain from (64),

∆rℓ ≤ 2
f−

ν

(msν + f−
ν )
c0ν

√

r3
o

µ
, (69)

which yields the following expression for the lower bound rℓ as follows

rℓ = ro − 2
f−

ν

(msν + f−
ν )
c0ν

√

r3
o

µ
. (70)

In summary, a cooperative rendezvous is feasible at an orbit of radius r if and only

if rℓ ≤ r ≤ ru. If rℓ > ri and ru > ro, none of the non-cooperative rendezvous are

feasible and the rendezvous has to be cooperative.

From the above analysis (recall also (60), we find that the fuel expenditure is

minimized when the weighted sum

(

msµ + f−
µ

)

c0µ

∆Vikr
+

(msν + f−
ν )

c0ν

∆Vjkr
(71)

is minimized for all rℓ ≤ r ≤ ru. Assume now that the satellites sµ and sν perform

a HHCM rendezvous at an orbit of radius r. For ri ≤ r ≤ ro, the total ∆V required
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for the HHCM rendezvous remains roughly constant, say, ∆V0. For similar satellites,

that is, msµ = msν = ms and c0µ = c0ν , we have for the expression in (71)

ms + f−
ν

c0
∆V0 +

f−
µ − f−

ν

c0
∆Vikr

=
ms + f−

µ

c0
∆V0 +

f−
ν − f−

µ

c0
∆Vjkr

. (72)

If f−
µ < f−

ν , the above expression is minimized when ∆Vikr
is maximized, which occurs

at r = rµ. Similarly, if f−
ν < f−

µ , the above expression is minimized when ∆Vjkr
is

maximized, which occurs at r = rν . In either case, the fuel-deficient satellite moves

as close to the fuel-sufficient satellite as possible. This is a particularly important

case for the refueling problem because refueling typically takes place towards the end

of fuel life-time of the satellite. Hence, it is likely that the fuel-deficient satellites

would be almost depleted of fuel. In such a case, even if enough time is permitted

for Hohmann transfers to take place, the optimal rendezvous has to be cooperative,

at an orbit of radius r = rν or r = rµ.

2.8 Numerical Example

In this section, we first consider an example of a cooperative rendezvous between two

satellites in two different circular orbits. According to the previous developments, the

terminal orbit of the satellites at the end of the cooperative maneuver is assumed to

be circular as well. With the help of this example, we illustrate that the optimal ren-

dezvous that minimizes the total ∆V , is either a non-cooperative Hohmann transfer

or a cooperative maneuver that is comprised of a Hohmann transfer and a Phasing

maneuver, provided there is sufficient time to perform a phase-free Hohmann transfer

between the orbits ri and ro.

Example 1. Cooperative rendezvous between two satellites in different circular orbits.

Let ri = 1, ro = 1.05 and θ0 = 60 deg. First we determine the optimal coop-

erative rendezvous for a time-of-flight less than the one necessary for a Hohmann
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Figure 17: Case study (ri = 1, ro = 1.05, θ = 60 deg, T = 1.5).

transfer for either one of the non-cooperative maneuvers. For this example, a non-

cooperative Hohmann transfer for which sµ is the active satellite becomes possible

when t = 2.6290. The other non-cooperative Hohmann transfer, in which sν is the

active satellite, becomes possible at t = 3.1479. In other words, if t < 2.6290,

non-cooperative Hohmann transfers are not feasible between the two satellites. We

therefore consider the time for rendezvous to be t = 1.50. We determine the total

cost (∆V ) of a cooperative rendezvous for all possible slots and compute the min-

imum. We consider cooperative rendezvous to occur in orbits of radius r, where

0.98 ≤ r ≤ 1.07. This allows us to consider all three cases of cooperative rendezvous,

namely (i) r < ri < ro, (ii) ri < r < ro and (iii) ri < ro < r. Figure 17(a) shows the

variation of cooperative ∆V with the radius r of the orbit. On each orbit of radius r

where the cooperative rendezvous takes place, there is an optimal location that yields

the minimum ∆V for that particular orbit. Figure 17(b) depicts the variation of the

optimal position of cooperative rendezvous φc(r) with r. The plot shows a disconti-

nuity in the optimal rendezvous position as the value of r changes from r = 1.0150

to r = 1.0175. To investigate the reason for this discontinuity, let us consider the

variation of ∆V c
ij|kr

over various slots Φr of a given intermediate orbit. Figure 18(a)

shows such a variation for the orbit with radius r = 1.0150, while Fig. 18(b) shows
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Figure 18: Explaining the discontinuity: Competing local minima.
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Figure 19: Explaining the discontinuity: Detail of the two competing local minima.

the same for the orbit with radius r = 1.0175. A detailed view of the two competing

local minima is shown in Fig. 19.

Both these plots show two local minima that compete with each other for the

cheapest solution for cooperative rendezvous on that particular orbit r. Each of

these local minima corresponds to a cooperative maneuver in which one of the orbital

transfers is a Hohmann transfer. As r changes from r = 1.0150 to r = 1.0175,

there is a change of optimal cooperative rendezvous from one local minimum to the

other. This shift of the optimal position appears as a discontinuity in the plot of φ.

Naturally, there is no discontinuity in the variation of ∆V .
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Figure 20: Case study (ri = 1, ro = 1.05, θ = 60 deg, T = 3.0).

Referring back to Fig. 17(a), we see that the minimum ∆V for cooperative ren-

dezvous occurs at one of the orbits r = ri or r = ro. The optimal cooperative

rendezvous on orbit ri occurs at the slot φ = 28 deg, while the optimal cooperative

rendezvous on orbit ro occurs at the slot φ = 32 deg. Calculations of the feasible

slots for Hohmann transfers indicate that Hohmann transfers are possible for slots

φ = 28.28 deg to φ = 53.21 deg on orbit ri, while Hohmann transfers are possible for

slots φ = 6.39 deg to φ = 31.32 deg on orbit ro. These are obtained by calculating

the lead angles necessary for a Hohmann transfer, as given by equation (15). Because

of the discretization used for our calculation of slots at intervals of 2 deg, we obtain

the optimal rendezvous locations at φ = 28 deg (instead of φ = 28.28 deg) on orbit

ri and at φ = 32 deg (instead of φ = 31.32 deg) on orbit ro. The results indicate

that the optimal rendezvous locations on orbits ri and ro occur near the slots where

Hohmann transfers are possible, indicating that the optimal cooperative rendezvous

is indeed a Hohmann-Phasing cooperative maneuver. Hence, when the time of ren-

dezvous does not allow for a Hohmann non-cooperative transfer, the best possible

cooperative maneuver is found to be comprised of a Hohmann transfer and a Phasing

maneuver.

Next, we investigate the optimal cooperative rendezvous between two satellites
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Figure 21: Case study for small time of flight (ri = 1, ro = 1.05).

for a time of maneuver T = 3.0 that allows for non-cooperative rendezvous using

Hohmann transfers. Figure 20(a) shows the variation of cooperative ∆V with the

radius r of the orbit where the cooperative rendezvous takes place. Figure 20(b)

depicts the variation of the optimal position of the cooperative rendezvous φc(r) with

r. It is found that the non-cooperative Hohmann transfers provide the best ∆V

for the rendezvous of the two satellites. In summary, this numerical example shows

that the optimal rendezvous between two satellites in different orbits is either non-

cooperative Hohmann or it is a cooperative maneuver comprised of a Hohmann and

a Phasing maneuver.

Let us now consider a time for the rendezvous T , so that a phase-free Hohmann

transfer between orbits ri and ro is not possible. For our example, if T < 0.519 a
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Figure 22: Optimal cooperative (but non-HHCM) rendezvous for short time of
flight.

Hohmann transfer between ri and ro is not possible, so we let T = 0.50. In this

case rν = 0.95, so that HHCM maneuvers are not possible at any orbit of radius

r > 0.95. The optimal rendezvous is cooperative and occurs at the orbit of radius

r = 0.9879 (not a HHCM rendezvous). However, there are cases when the optimal

solution is a HHCM rendezvous. For instance, when ri = 1, ro = 1.05, θ0 = 7 deg and

T = 0.518, we have rν = 0.9975 and the optimal maneuver is a HHCM rendezvous.

The optimum occurs at the orbit of radius r = 0.9975, when the HHCM maneuver

just becomes feasible. Figures 21(a) and 21(b) show the variation of ∆V for both

of these cases. The optimal rendezvous in either case occurs at an orbit other than

ri or ro. Figures 21(c) and 21(d) show the detail of the region where the minimum

occurs. Note that the function is relatively flat in this region. We may use this result

to compute (analytically) HHCM maneuvers that are only slightly suboptimal.

In order to confirm the occurrence of cooperative (but not HHCM) rendezvous

when the time to rendezvous is very short, we repeated the analysis for the cases

T = 0.40 and T = 0.45. The results are shown in Fig. 22. In both cases the HHCM

maneuver is sub-optimal. In the first case the optimum occurs at r = 0.9487 whereas
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rν = 0.6735. In the second case the optimum occurs at r = 0.9765 whereas rν =

0.8143. Note that the optimal cooperative maneuver in either case is substantially

cheaper than the corresponding HHCM solution.
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Figure 23: Variation of fuel with r.

Thus far we only considered the minimization of ∆V . Let us now consider the fuel

expenditure during the cooperative rendezvous between the satellites in orbits ri = 1

and ro = 1.05 and with angle of separation θ0 = 60 deg. Fig. 23 shows the variation

of fuel expenditure with r. The fuel expenditure has been normalized by dividing

the total fuel expenditure by the maximum of the fuel capacities of the satellite. In

the first case, the satellites have 25 and 5 units of fuel and the time for rendezvous is

T = 1.5. The fuel-deficient satellite has enough fuel to complete the non-cooperative

rendezvous. The plot shows that there are indeed two local minimum at r = 1 and

r = 1.05, that is, at the end orbits. In this case, the fuel is minimized at the same

location as the total ∆V and the optimal rendezvous is a HPCM. In the second

case, the time of rendezvous is T = 3.0 and the fuel content of the satellites are 25

and 1.3 units respectively. Had the fuel-deficient satellite enough fuel to complete a

non-cooperative Hohmann transfer, the optimal rendezvous would have taken place

at r = 1.00. However, the 1.3 units of fuel is not sufficient for the fuel-deficient
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satellite to complete a non-cooperative Hohmann transfer. Consequently, the optimal

rendezvous takes place at r = 1.0175. The fuel-deficient satellite uses all of its fuel in

order to transfer to an orbit that is as close as possible to the fuel-sufficient satellite.

The optimal rendezvous is HHCM.

2.9 Summary

In this chapter, we discussed the problem of determining optimal time-fixed, impulsive

rendezvous. First, we looked at the case of two-impulse non-cooperative rendezvous.

Next, we studied the problem of cooperative rendezvous between two satellites in

circular orbits. We assume that the terminal orbit for each rendezvous maneuver is

circular. We have specifically looked at cooperative maneuvers that are comprised of

two Hohmann transfers (HHCM), or a Hohmann transfer and a Phasing maneuver

(HPCM). If the time of maneuver allows for a non-cooperative Hohmann transfer,

the optimal solution is non-cooperative. When the time to rendezvous is not suf-

ficient for a non-cooperative Hohmann transfer between the satellites, the optimal

rendezvous that yields the minimum ∆V is the Hohmann-Phasing cooperative ma-

neuver. However, in both these cases, we assume that the time of transfer is sufficient

for a (phase-free) Hohmann transfer to take place between the orbits of the satellites.

If the time to complete the rendezvous is too short, then a cooperative rendezvous at a

lower orbit is the optimal candidate, and it may or may not be a HHCM rendezvous.

Recognizing that the real objective to minimize in an orbital transfer problem is

fuel, we also discuss the problem of minimizing fuel expenditure during cooperative

rendezvous.
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CHAPTER III

ON-ORBIT REFUELING STRATEGIES

In the previous chapter, we discussed the problem of two-impulse time-fixed orbital

transfers. During a refueling mission, several such orbital maneuvers would be neces-

sary to deliver fuel to the fuel-deficient satellites in a constellation. Fuel is expended

during these orbital maneuvers. Hence, we would like to minimize the total fuel

spent during all maneuvers. In this chapter, we discuss the problem of determining

the optimal set of orbital transfers that incur the minimum fuel expenditure during

a complete refueling mission. To this end, we will look at both the Single Service

Vehicle (SSV) and the Peer-to-Peer (P2P) refueling strategies, and illustrate how the

optimal maneuvers required for refueling can be determined in either case. Finally,

we discuss the mixed refueling strategy, which combines the ideas of SSV and P2P

refueling.

3.1 Single Service Vehicle (SSV) Refueling Strategy

During a SSV strategy, a service vehicle visits the satellites one by one to deliver fuel

to them. Let a service vehicle S0 visits n satellites in the order sℓ1 , sℓ2 , . . . , sℓn
, where

ℓi ∈ I = {1, 2, . . . , n}. For instance, Figure 24 shows a sequence of orbital transfers

by the service vehicle that visits 6 satellites in a constellation in order to deliver fuel.

For simplicity, let us consider that the service vehicle S0 is already in rendezvous

with the first satellite sℓ1 in the sequence. Let the total time given for S0 to visit the

remaining satellites in the sequence be T . Also, let the transfer time required by S0

to move from sℓi
to sℓi+1

be given by ti,i+1. Clearly, we must have

n−1
∑

i=1

ti,i+1 ≤ T. (73)
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Figure 24: Single Service Vehicle Refueling Strategy.

Now, let ∆Vℓi,ℓi+1
denotes the velocity change required by S0 to transfer from sℓi

to

sℓi+1
. Hence the total velocity change that is incurred during the orbital transfers is

given by
n−1
∑

i=1

∆Vℓi,ℓi+1
. (74)

We would like to minimize this objective function subject to the constraint given in

(73).

Recall that, for an individual transfer, the velocity change is a non-increasing

function of time with the allowance of coasting. Figure 25 shows the variation of

∆Vℓi,ℓi+1
with time. Inspection of the plot reveals that the total time can be divided

into alternating cost-decreasing and cost-invariant intervals. Let ji,max denotes the

number of cost-decreasing intervals that is possible for the maximum time T available

for the transfer. Let Aij−1 denotes the time at which jth cost-reducing interval starts,

while βij denotes the time at which the jth cost-invariant interval starts. Clearly,

j = 1, 2, . . . , ji,max and

ji,max = max{j : Aij−1 ≤ T} (75)

Typically, for any j, βij−Aij−1 is small compared to Aij−Aij−1, and also the difference

increases with increasing j. In fact, as the transfer time increases, βij − Aij−1 → 0.
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Figure 25: Step Function Approximation.

We may therefore approximate the ∆Vℓi,ℓi+1
with a series of step functions as shown

in Figure 25. Let us now introduce binary variables as follows:

xij =















1 if ti,i+1 ∈ [Aij−1Aij] , j = 1, 2, . . . , ji,max ,

0 otherwise.

(76)

That is, if the time for the transfer from satellite sℓi
to sℓi+1

belongs to the interval

[Aij−1Aij], then the corresponding decision variable xij is 1. Otherwise, the decision

variable is 0.

Let us assign a cost cij to each decision variable xij. The cost equals the value of the

step function corresponding to the interval [Aij−1, Aij]. We can therefore determine

the optimal time distribution for the trips made by S0 by solving the integer program:

min
n−1
∑

i=1

ji,max
∑

j=1

cijxij, (77)

subject to the following constraints

ji,max
∑

j=1

xij = 1, for all i = 1, 2, . . . , n− 1, (78)
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n−1
∑

i=1

ji,max
∑

j=1

Aijxij ≥ T, (79)

n−1
∑

i=1

ji,max−1
∑

j=0

Aijxij ≤ T. (80)

Constraint (78) means that a transfer time has to be assigned to each of the n − 1

transfers, while Constraints (79) and (80) signifies that all transfers must be completed

within the given time T . The solution of this integer program yields the optimal time

distribution for the SSV strategy for a particular sequence. Extensive numerical

studies, performed in Ref. 74, indicates that of all possible sequences in which the

service S0 visits the satellites, the optimal sequence is sequential or bi-sequential.

3.2 Peer-to-Peer (P2P) Refueling Strategy

A P2P maneuver refers to two satellites, one fuel-sufficient and the other fuel-deficient,

engaging in a fuel transaction. Currently, we consider that the fuel exchange takes

place at the orbital slots of one of these satellites, that is, only one of them (active)

performs the orbital transfer necessary for a rendezvous with the other (passive). The

fuel exchange takes place at the orbital slot of the passive satellite and after it is over,

the active satellite returns to its original orbital slot. We assume that a satellite

can engage itself in at most one P2P maneuver. Given a constellation with satellites

having different amounts of fuel, a set of such P2P maneuvers can be utilized to

attain fuel equalization among the satellites. Under the notion of fuel equalization,

we consider that the satellites involved in a P2P maneuver exchange an amount of

fuel such that at the end of the maneuver, both satellites end up with equal amount

of fuel. In this chapter, we briefly discuss the formulation of the problem of P2P

refueling based on this notion of fuel equalization.19,72,75
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3.2.1 Formulation of the P2P refueling problem

Under the notion of fuel equalization, the principal objective of refueling is to keep

the fuel content of the satellites as close to the mean fuel in the constellation. This

can be achieved by minimizing the deviation of the fuel among all satellites in the

constellation. Ideally, this deviation should be calculated with respect to f+
av which is

the mean fuel in the constellation after all the P2P maneuvers take place. However,

we would like to spend as little fuel as possible in order to achieve fuel equalization.

Minimizing the deviation of fuel content of satellites from f+
av does not ensure that

the fuel expenditures during the ensuing orbital maneuvers is small. Hence, we would

measure the deviation with respect to f−
av which is the initial mean fuel in the constel-

lation. Keeping all the fuel content of satellites close to f−
av ensures that fuel expenses

during the refueling process is kept small. Equivalently, the following cost function

can be maximized72,75

Ca = −
∑

µ∈I

|f+
µ − f−

av|. (81)

Maximization of the objective function given in (81) needs to be achieved via a set of

P2P maneuvers that redistributes the fuel in the constellation. Under this formulation

of P2P refueling problem, we consider those satellites to be fuel-sufficient which have

greater than the average fuel in the constellation, that is, Is,0 = {i : f−
i ≥ f−

av}. The

remaining satellites are fuel-deficient, that is, Id,0 = {i : f−
i < f−

av}.

The optimization problem involved in P2P refueling is typically formulated using

a constellation graph (Figure 26) in which the vertices represent the orbital slots

and the edges represent a P2P refueling transaction. To this end, let us define the

undirected graph G = (V , E) whose nodes are given by the set V = J that essentially

corresponds to the index set of all orbital slots in the constellation. An (undirected)

edge between a pair of orbital slots represents a P2P maneuver between the satellites

initially occupying the respective slots. For instance, 〈i, j〉 ∈ E will denote that
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Figure 26: Constellation Graph.

the satellite sµ = σ0(φi) initially occupying the orbital slot φi undergoes a refueling

transaction with the satellite sν = σ0(φj) initially occupying the orbital slot φj. Each

edge 〈i, j〉 ∈ E has an associated cost which equals the fuel expenses incurred during

the refueling process. Now, in an ensuing P2P maneuver between sµ and sν , either of

the two satellites can be active provided they both have enough fuel to carry out the

orbital transfers. Let us denote the fuel expenditure incurred by satellite sµ during an

orbital transfer from φi to φj be denoted by pµ
ij. Then, the fuel expenditure incurred

during a P2P maneuver in which satellite sµ transfers to the orbital slot of sν and

comes back to its original position is given by

cµij = pµ
ij + pµ

ji. (82)

The amount of fuel spent by sµ to rendezvous with sν is given by72

pµ
ij = (msµ + f−

µ )(1 − e−∆Vij/c0µ), (83)

where msµ is the mass of the permanent structure of satellite sµ, ∆Vij is the velocity

change required the orbital transfer, and the parameter c0µ is defined by c0µ = g0Ispµ,

g0 being the acceleration due to gravity at the Earth’s surface, and Ispµ is the specific

thrust of satellite sµ. The amount of fuel consumed by satellite sµ to return back to
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its original position after a fuel exchange has taken place∗ is given by

pµ
ji = (2msµ + f−

µ + f−
ν − pµ

ij)
(1 − e−∆Vji/c0µ)

(1 + e−∆Vji/c0µ)
, (84)

where ∆Vji is the optimum rendezvous cost for the return journey. Similarly, the fuel

expenditure incurred during a P2P maneuver in which satellite sν transfers to the

orbital slot of sµ and returns to its original position is given by

cνij = pν
ji + pν

ij, (85)

where the calculation of pν
ij and pν

ji are similar to the calculation of pµ
ji and pµ

ij.

In case when both satellites can be active, we will consider the refueling transaction

that is cheaper. In other words, we assign to every edge 〈i, j〉 ∈ E a unique cost cij

given by

cij =















































cµij, if sµ can be active, but sν cannot,

cνij, if sν can be active, but sµ cannot,

min{cµij, cνij}, if either sµ or sν can be active,

∞, if neither sµ nor sν can be active.

(86)

We are only concerned with edges that have finite cost, that is, edges that correspond

to a feasible P2P fuel transaction. We therefore consider E to be consisting of edges

that have finite cost. Also, for convenience, we define the neighbor N (i) of a node

i ∈ V as the set of nodes that has an edge with i, that is, N (i) = {j : 〈i, j〉 ∈ E}.

We are interested in a set M ⊆ E of P2P maneuvers that would maximize the

objective function Ca. To this end, let us define a binary variable xij corresponding

to each edge 〈i, j〉 ∈ E as follows:

xij =















1 if 〈i, j〉 ∈ M,

0 otherwise.

(87)

∗It is assumed that during the exchange of fuel the fuel-sufficient satellite gives enough fuel to the
fuel-deficient satellite so that both have the same amount of fuel at the end of the fuel transaction.75
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We will refer to any node i ∈ V as matched if there exists an edge 〈i, j〉 ∈ M.

Otherwise, we will refer the node i as unmatched. The contribution of all matched

vertices of G to Ca in equation (81) is easily computed as

−
∑

µ∈I
sµ=σ0(φi)

∑

〈i,j〉∈N (i)

|f+
µ − f−

av|xij. (88)

On the other hand, if satellite sµ is not involved in a fuel transaction, then f+
µ = f−

µ .

The corresponding node in G does not have an edge that is part of the set M. As a

result, xij = 0 for all 〈i, j〉 ∈ N (i). In fact, we have xij = 0 for all 〈i, j〉 ∈ E\M. The

contribution to Ca from all unmatched vertices is

−
∑

µ∈I
sµ=σ0(φi)

(

1−
∑

〈i,j〉∈N (i)

xij

)

|f−
µ −f−

av| = −
∑

µ∈I

|f−
µ −f̄−|+

∑

µ∈I
sµ=σ0(φi)

∑

〈i,j〉∈N (i)

|f−
µ −f−

av|xij.

(89)

The term
∑

µ∈I |f−
µ − f−

av| in the previous expression is constant, and thus it has no

effect on the optimization process and hence can be neglected. From Equations (88)

and (89), and summing up the contributions from all satellites, we finally have

C′
a =

∑

µ∈I
sµ=σ0(φi)

∑

〈i,j〉∈N (i)

(

|f−
µ − f−

av| − |f+
µ − f−

av|
)

xij. (90)

Recalling that each edge 〈i, j〉 ∈ E has contributions from two vertices i, j ∈ V of the

graph, and rewriting the summation in equation (90) as a summation over all edges

in the constellation graph, the objective function to be maximized is given by

C′
a =

∑

〈i,j〉∈E
sµ=σ0(φi)

sν=σ0(φj)

(

|f−
µ − f−

av| − |f+
ν − f−

av| + |f−
ν − f−

av| − |f+
µ − f−

av|
)

xij (91)

Letting πij denote the coefficient of xij in the previous sum in (91), the problem

becomes one of maximizing

C′
a =

∑

〈i,j〉∈E

πijxij. (92)

62



subject to (87) and the following constraint

∑

〈i,j〉∈N (i)

xij ≤ 1, i ∈ I. (93)

The constraint (93) ensures that each satellite is involved in at most one fuel transac-

tion with another satellite. Since the objective of the refueling process is to equalize

the fuel among all satellites in the constellation, we impose the constraint that after

each fuel transaction between any pair of satellites, the two satellites end up with

the same amount of fuel. In other words, we impose the condition that f+
µ = f+

ν

for all satellite pairs sµ and sν involved in a P2P refueling transaction. Noting that

the difference between the total fuel in the satellites before and after refueling can be

related to the total fuel burnt during the rendezvous,75 one obtains

f+
µ = f+

ν =
1

2
(f−

µ + f−
ν − cij). (94)

Using equation (94), the weight of each edge in the constellation graph becomes

πij = |f−
µ − f−

av| + |f−
ν − f−

av| − |f−
µ + f−

ν − 2f−
av − cij|, (95)

where sµ = σ0(φi) and sν = σ0(φj). Note that we can leave out all edges from the

constellation graph which has negative cost. Hence, we can only consider a reduced

constellation graph Gr = (V , Er) where Er = {〈i, j〉 ∈ E : πij > 0}. Given these weights

on the edges of the reduced constellation graph Gr, we seek a matching M that will

maximize the sum of the weights of all edges in M. This is a standard maximum

weight matching problem in graph theory.28,85 The solution to this problem provides

the pairs of satellites involved in the optimal distribution of fuel using a P2P refueling

scheme. A similar optimization can also be done by using the square of the deviation

of the fuel content of the satellites from the average,19 instead of using the absolute

value of the deviation.

Example 2. A P2P refueling strategy for a constellation of 14 satellites.72
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Figure 27: P2P refueling strategy in a constellation.

Consider a case of P2P refueling example in a constellation of 14 satellites with

fuel contents 38.8, 36, 35.2, 32.8, 29.6, 27.6, 26.8, 17.6, 14, 8, 6.8, 6.4, 5.6 and 0.4

units. For each satellite, the mass of permanent structure for each of these satellites

is 60 units, the specific thrust of each is 300 sec. The satellites are distributed evenly

in the constellation as shown in Fig. 27. The altitude of the constellation is 500 Km.

The allowed total time of refueling is T = 12 orbital periods. The average fuel in the

constellation is 20.4 units, implying that satellites s1, s2, s3, s4, s5,s6 and s7. The

remaining satellites are fuel-deficient. The optimal P2P assignments for refueling

satellites in this constellation are: s1 − s14, s2 − s10, s3 − s13, s4 − s8, s5 − s12, s6 − s9

and s7 − s11. The total fuel expenditure incurred in refueling is 30.1 units, and the

final fuel content of the satellites are 17.7, 20.4, 18.8, 19.9, 16.4, 19.1, 15.3, 19.9, 19.2,

20.4, 15.3, 16.4, 18.8 and 17.7 units respectively.

3.3 A generalized cost function approach

The P2P refueling strategy, under the notion of fuel equalization, essentially has two

objectives: (i) minimization of the fuel deviation among all satellites in the constel-

lation, and (ii) minimization of the fuel expenditure during the orbital rendezvous
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transfers. Moreover, these two objectives are conflicting in nature. For instance, we

can fulfil only the first objective by performing continuous orbital transfers until all

satellites have the same amount of fuel (perhaps even null). On the other hand, we

can satisfy only the second objective by not performing any orbital transfers at all.

The cost function in equation (81) was introduced rather heuristically so that it

implicitly takes into account both of these objectives. In this section we show that

this rationale is valid. We do this by introducing an optimization criterion Cb, that

incorporates explicitly the previous two conflicting objectives, and by unraveling the

relationship of the cost Cb with the cost Ca in equation (81).

Since we seek to minimize the fuel deviation among all satellites in the constella-

tion at the end of the refueling process, we introduce the following cost function to

be maximized

C1 = −
∑

µ∈I

|f+
µ − f+

av|2. (96)

Since we also want to minimize the cost incurred during the orbital maneuvers re-

quired for the fuel transfers, we also introduce the following cost to be maximized

C2 = −
∑

〈u,v〉∈M

c2uv. (97)

Given C1 and C2, we assign a relative weight between these two costs, and we combine

them into a single cost function to be maximized, as follows

Cb = αC1 + (1 − α) C2, (98)

where 0 ≤ α ≤ 1 takes care of the relative importance assigned to the two objectives.

The contribution to C1 from the satellites participating in fuel transactions is

−
∑

µ∈I
sµ=σ0(φi)

∑

〈i,j〉∈N (i)

|f+
µ − f+

av|2xij. (99)

The contribution to C1 from the satellites not participating in fuel transactions is

−
∑

µ∈I
sµ=σ0(φi)

(

1 −
∑

〈i,j〉∈N (i)

xij

)

|f−
µ − f+

av|2. (100)
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Combining the contributions from the participating (matched) and nonparticipating

(unmatched) satellites into (96), one obtains

C1 = −
∑

µ∈I
sµ=σ0(φi)

∑

〈i,j〉∈N (i)

|f+
µ −f+

av|2xij−
∑

µ∈I
sµ=σ0(φi)

|f−
µ −f+

av|2+
∑

µ∈I
sµ=σ0(φi)

∑

〈i,j〉∈N (i)

|f−
µ −f+

av|2xij.

(101)

The average fuel available in the constellation before and after refueling are related

by

f+
av = f−

av −
1

n

∑

〈u,v〉∈M

cuv. (102)

Using equation (102), we may rewrite equation (101) as

C1 =
∑

µ∈I
sµ=σ0(φi)

∑

〈i,j〉∈N (i)

(

|f−
µ −f−

av|2−|f+
µ −f−

av|2+
2

n
(f−

µ −f+
µ )

∑

〈u,v〉∈M

cuv

)

xij−
∑

µ∈I

|f−
µ −f+

av|2.

(103)

A simple calculation yields

∑

µ∈I
sµ=σ0(φi)

|f−
µ − f+

av|2 =
∑

µ∈I

(

|f−
µ − f−

av|2 +
2

n
(f−

µ − f−
av)

∑

〈u,v〉∈M

cuv

)

+
1

n

(

∑

〈u,v〉∈M

c2uv +
∑

〈u,v〉∈M

cνµ

∑

〈m,k〉∈M\〈u,v〉

cmk

)

Note that
∑

µ∈I
sµ=σ0(φi)

(f−
µ − f−

av) = 0.

Moreover, the term
∑

µ∈I |f−
i − f̄−|2 is constant for a given constellation, and plays

no role in the optimization process. Excluding this constant term, we have

∑

µ∈I
sµ=σ0(φi)

|f−
µ − f+

av|2 =
1

n

(

∑

〈u,v〉∈M

c2uv +
∑

〈u,v〉∈M

cνµ

∑

〈m,k〉∈M\〈u,v〉

pmk

)

.

Hence the cost function to be maximized can be written as

C′
b = α

∑

µ∈I
sµ=σ0(φi)

∑

〈i,j〉∈N (i)

(

|f−
µ − f−

av|2 − |f+
µ − f−

av|2 +
2

n
(f−

µ − f+
µ )

∑

〈u,v〉∈M

cuv

)

xij

−α
n

(

∑

〈u,v〉∈M

c2uv +
∑

〈u,v〉∈M

cuv

∑

〈m,k〉∈M\〈u,v〉

cmk

)

− (1 − α)
∑

〈u,v〉∈M

c2uv. (104)
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Writing the above as a summation over the edges and using equation (102), it follows

that the criterion to be maximized takes the form

C′
b = α

∑

〈i,j〉∈E

(

|f−
µ − f−

av|2 + |f−
ν − f−

av|2 −
1

2
|f−

µ + f−
ν − cij − 2f−

av|2
)

xij

+
α

n

∑

〈i,j〉∈E

cij
∑

〈m,k〉∈E\〈i,j〉

cmkxmkxij − (1 − α− α

n
)

∑

〈u,v〉∈E

c2uvxuv, (105)

where sµ = σ0(φi) and sν = σ0(φj). This expression consists of both linear and

quadratic terms in the decision variables xij. This makes the problem a quadratic

binary programming problem. One way to solve this problem is by introducing new

variables in lieu of the quadratic terms. This also introduces new constraints involving

the new and old variables. Formulating these as linear constraints, the problem can

be converted to a linear binary programming problem for which efficient algorithms

exist.

To this end, consider the quadratic term xijxmk where xij and xmk are binary

variables. Note that two edges that are part of the matching cannot share the same

vertex, that is, if i, j, m ∈ I, and xim = 1, then xij = 0 for all 〈i, j〉 ∈ E , j 6= m.

Thus, we may only consider quadratic terms of the form xijxmk, 〈i, j〉, 〈m, k〉 ∈ E

and i, j, k, m ∈ I, all distinct. Let now I ′ be a set of indices (of cardinality |E|)

generated as follows

q = n× i+ j, for all 〈i, j〉 ∈ E , i, j ∈ I. (106)

Conversely, given q ∈ I ′ the corresponding indices i and j are obtained via integer

division by n using (106). We can therefore establish a one-to-one correspondence

between elements of I ′ and E , and we write q ∼ 〈i, j〉 to denote this correspondence.

Considering now distinct indices i, j,m, k ∈ I, and p, q ∈ I ′ such that p ∼ 〈i, j〉

and q ∼ 〈m, k〉, we introduce the new variable defined by

xpq = xijxmk, (107)

67



These new variables are also binary since

xpq =















1, when xij = 1 and xmk = 1,

0, otherwise.

(108)

The restrictions in equation (108) can be imposed on the new variable by introducing

the following three linear constraints

xpq ≤ xij, (109)

xpq ≤ xmk, (110)

−xpq + xij + xmk ≤ 1. (111)

The first two constraints ensure that whenever xij = 0 or xmk = 0, we have xpq = 0.

The last of the previous three constraints ensures that xpq = 1 when xij = 1 and

xmk = 1. Hence, the problem of minimizing the dual objectives absorbed in equation

(98) is equivalent to the following linear binary integer programming problem

C′
b =

∑

〈i,j〉∈E

α

(

|f−
µ − f−

av|2 + |f−
ν − f−

av|2 −
1

2
|f−

µ + f−
ν − 2f−

av − cij|2
)

xij

−(1 − α− α

n
)

∑

〈i,j〉∈E

c2ijxij +
2α

n

∑

〈i,j〉∈E
〈m,k〉∈E\〈i,j〉

cijcmkxpq, (112)

(where sµ = σ0(φi) and sν = σ0(φj)) subject to the constraints given by equations

(109), (110), (111), and equations (87)-(93).

The parameter α in equation (98) weighs the relative importance for the fulfilment

of the two performance objectives we have set for a P2P refueling scenario. If α = 0,

no fuel equalization is desirable (Cb = C2), and we only minimize the rendezvous

costs. Obviously, in such a case the optimal solution involves no satellite pairings:

all satellites remain at their initial orbital slots and the matching set M is empty.

Equivalently, |M| = 0. As we increase the value of α, fuel equalization becomes

increasingly important and after a certain value of α = ᾱ > 0 at least one pair
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of satellites performs a fuel transaction. The matching set M is non empty, and

consequently |M| > 0. For α = 1 fuel equalization is the only optimization objective

(Cb = C1), which is achieved with a (perhaps) unacceptably large number of fuel

transactions. A compromise between the performance objectives C1 and C2 is achieved

via an intermediate value of α. We will now illustrate with an example the effect of

α on the optimal satellite pairings. Also, with the help of this example, we now

investigate numerically the relationship between the solutions obtained via the two

costs given in (81) and (98).

Example 3. Optimizing Cb for a constellation of 10 satellites.

Let us consider the constellation a constellation of 10 satellites evenly distributed

in a circular orbit. The initial fuel content of the satellites are: 25, 20, 8, 8, 2, 1, 22,

1, 2 and 6 units. For each of the satellites, the mass of the permanent structure is 70

units and specific thrust of engine is 300 sec. The total time of refueling is 12 orbital

periods. For this constellation, a P2P refueling strategy as obtained by minimizing

objective Ca yields a total fuel expenditure of 14.93 units. We can compute the

values of C1 and C2 for this solution and they turn out to be C1 = 58.57 square units

and C2 = 88.34 square units respectively. Now, we consider the minimization of the

objective Cb for various values of α. Fig. 29 shows the variation of number of edges

in the constellation graph for various values of α. When α = 0, our sole objective

is to minimize the fuel expenditure during the refueling process; naturally, this is

achieved by having no P2P maneuver at all. Consequently, there are no edges in

the constellation graph at this value of α. As we increase the value of α, that is,

reduce the weightage on C2, more and more edges are included in the constellation

graph. Fig. 28 shows the variation of the values of the two objective functions C1

and C2 for different values of α. Each point on the curve in these plots is optimal for

different choice of values of α. The range of values of α for which the same pairings

of satellites occur as with the optimization of Ja is also shown on these plots. Note
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that for this range of α the pairings of satellites are the same, hence the values

of C1 and C2 are also the same. The plot depicts that solutions obtained via (81)

correspond to solutions obtained via (98) for a range of values of α that achieve a

balanced compromise between the original conflicting optimization objectives C1 and

C2. For α = 0.26−0.33 (highlighted in the plot by a solid dot because it corresponds
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to the solution obtained by minimization of 81), we have a reasonable compromise

between the two performance specifications C1 and C2. It can be seen that the use of
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Figure 30: Mixed refueling Strategy.

the simpler cost Ca in lieu of Cb is justified, as the former results in solutions which

are identical to those obtained via Cb for values of α that provide a balance between

the objectives C1 and C2. The case for using Ca instead of Cb is made stronger in

light of the fact that the calculation of the optimal matching using the cost Cb is

computationally more intensive than using the cost Ca owing to the larger number

of decision variables and the associated constraints; see (107)-(111). As a result, in

practice one can bypass the optimization of Cb and deal only with the optimization

of Ca when computing the optimal satellite pairings in a P2P scenario.

3.4 A Mixed Refueling Strategy

The mixed refueling strategy combines the ideas of SSV and P2P refueling strategies.

In a mixed strategy, a service vehicle delivers fuel to part (perhaps, half) of the

satellites in the constellation. The satellites which recieve fuel from the service vehicle

distributes the same among all the remaining satellites by engaging in P2P maneuvers.

Clearly, a mixed refueling strategy has two steps: (1) SSV phase, and (2) P2P phase.

In this section, we will discuss the two steps of the mixed refueling strategy. To this

end, let there be an even (2n) number of satellites in the constellation, and let T be

the total time of the refueling mission. Figure 30 depicts the two phases of the mixed
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refueling strategy.

3.4.1 SSV Phase

During the SSV phase, the service vehicle S0 delivers fuel sequentially to n of the

satellites. Let I1 denote the index set of the satellites that receive fuel from S0.

Without loss of generality, we can consider that I1 = {1, 2, . . . , n}. Also, let T (1)

denotes the time allotted for the SSV phase. Let t
(1)
i,i+1 denotes the time taken by S0

to transfer from satellite si to satellite si+1. Then, we have,

T (1) =
n−1
∑

i=1

t
(1)
i,i+1. (113)

The individual transfers times t
(1)
12 , t

(1)
23 , . . . , t

(1)
n−1,n can be obtained by solving the in-

teger program given by (77) -(80).

3.4.2 P2P Phase

During the P2P phase, the satellites s1, s2, . . . , sn engage in P2P maneuvers with the

remaining satellites whose indices are given by I2 = {n + 1, n + 2, . . . , 2n}. Let T (2)

denotes the time for the P2P phase. Hence, we have

T (2) = T − T (1). (114)

The optimal P2P maneuvers can be determined by solving a P2P problem with fuel-

sufficient satellites given by indices I1 and fuel-deficient satellites given by indices

I2.

It has been shown in Ref. 82 that, in terms of fuel expended during the refueling

mission, the mixed strategy becomes better with increasing number of satellites in

the constellation. This result is demonstrated by Figure 31, which compares the total

amount of fuel expended during the two strategies as the number of satellites in a

constellation changes. However, as we will show now, the mixed refueling strategy

can be improved further by the inclusion of a couple of cost-reducing strategies.
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Figure 31: Refueling Strategies: SSV vs. Mixed

3.5 Cost-Reducing Strategies for Mixed Refueling

In this section, we discuss two means of that helps in reducing the fuel expenditure

during mixed strategy.

3.5.1 Coasting Time Allocation (CTA) Strategy

The idea of allowing coasting intervals is utilized in this section to propose a strategy

for reducing the overall P2P rendezvous cost. Already mentioned is that the optimal

cost, when coasting is included, is a non-increasing function of time. That is, the

inequality

∆V (tf1) ≤ ∆V (tf2), for tf1 ≥ tf2 (115)

holds for any two transfer times tf1 and tf2. Note that this monotonicity of ∆V

versus the transfer time does not hold if there are no coasting intervals.

In the previous chapter, while discussing the P2P refueling strategy, we assumed

that the time for forward and return trips are equal. In particular, we show that

by allowing unequal transfer times between the forward and return journeys for each

fuel transaction, one can reduce the transfer cost. To this end, let us consider a

P2P maneuver between two satellites sµ and sν occupying the orbital slots φi and φj
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respectively. Let us denote by tij the total time allowed to complete both legs of the

fuel transaction between satellites sµ and sν . Let us consider sµ to be active and sν

to be passive. Moreover, let tfij denote the time for the forward journey and trij denote

the time for the return journey, so that

tij = tfij + trij. (116)

In case of an equal partition of the total time between the forward and return transfers,

we have tfij = trij = tij/2. Let us use the superscript I, to denote quantities associated

with such an equal time partition transfer. We will use the superscript II to denote

the quantities associated with a transfer with unequal time partition of tij such that

the forward and return legs are completed within the time intervals tfij = tij/2 − t′ij

and trij = tij/2 + t′ij, where t′ij denotes the optimal final coasting time for the forward

leg. Similarly, we will use the superscript III to denote the quantities associated with

a transfer with unequal time partition of tij such that the forward and return legs

are completed within the time intervals tfij = tij/2 + t′′ij and trij = tij/2− t′′ij, where t′′ij

denotes the optimal coasting time for the return leg. Let us concentrate on the case

where coasting is part of the forward leg.

Note that since coasting periods do not have any effect on the cost,

∆V I
ij = ∆V II

ij

which implies, according to (83) that

pµI
ij = pµII

ij . (117)

For the return flight, and since tij/2 + t′ij ≥ tij/2 we have, via (84), that

∆V I
ji ≥ ∆V II

ji ,

which implies that e−∆V I
ji/c0i ≤ e−∆V II

ji /c0i . Using this inequality, it follows that 1 −

e−∆V I
ji/c0i ≥ 1−e−∆V II

ji /c0i , and also 1+e−∆V I
ji/c0i ≤ 1+e−∆V II

ji /c0i . These two inequalities
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together yield

1 − e−∆V I
ji/c0i

1 + e−∆V I
ji/c0i

≥ 1 − e−∆V II
ji /c0i

1 + e−∆V II
ji /c0i

(118)

which, via (115), yields

pµI
ji ≥ pµII

ji . (119)

From equation (117) and inequality (119), the identity (82) yields

cµI
ij ≥ cµII

ij . (120)

A similar analysis holds when a coasting period of length t′′ij is part of the return

leg. We have therefore shown the following proposition.

Proposition 1. Given the total time for a fuel transaction to take place between two

satellites in the same circular orbit, an equal time allocation between the forward and

return legs of the two associated rendezvous transfers is always suboptimal.

We will next utilize this idea to devise a coast time allocation (CTA) algorithm

for reducing the fuel coast during each fuel transaction.

3.5.2 CTA Algorithm

The main idea behind the formulation of a fuel-reducing strategy is to allow for un-

equal time distribution between the forward and the return legs for each fuel trans-

action. To this end, we consider the following three cases:

• Case-I: tfij = trij = tij/2

• Case-II: tfij = tij/2 − t′ij and trij = tij/2 + t′ij

• Case-III: tfij = tij/2 + t′′ij and trij = tij/2 − t′′ij

Assume a fuel transaction between satellites sµ = σ0(φi) and sν = σ0(φj), where

i ∈ Ja and j ∈ Jp. Let cµI
ij , cµII

ij and cµIII
ij denote the fuel spent for satellite sµ to
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rendezvous with sν and return back to its original position, for each of the previous

three cases, respectively. The optimal time sharing is the one that satisfies

cµ∗ij = min{cµI
ij , c

µII
ij , c

µIII
ij }. (121)

The corresponding time allocation is then given by

(tfij, t
r
ij) =































(tij/2, tij/2), if cµ∗ij = cµI
ij ,

(tij/2 − t′ij, tij/2 + t′ij), if cµ∗ij = cµII
ij ,

(tij/2 + t′′ij, tij/2 − t′′ij), if cµ∗ij = cµIII
ij .

We can similarly compute the cost of a single fuel transaction for the case i ∈ Jp and

j ∈ Ja. Finally, the optimum fuel consumption in a P2P maneuver between any two

satellites sµ and sν is given by

c∗ij =















































cµ∗ij , if sµ can be active, but sν cannot be active,

cν∗ij , if sν can be active, but sµ cannot be active,

min{cµ∗ij , c
ν∗
ij }, if either sµ or sν can be active,

∞, if neither sµ nor sν can be active.

Ref. 19 shows the benefit of such a strategy in reducing the fuel expenditure of P2P

refueling. In most cases, the CTA gives a reduced fuel consumption, but do not affect

the optimal P2P assignments. However, there may be cases when the application

of CTA changes the P2P assignments.19 We will use this algorithm to compute the

optimal fuel expenditure in P2P phase of the mixed refueling strategy which we focus

on in the rest of the chapter.

3.5.3 Asynchronous P2P Refueling

The mixed refueling strategy discussed before considers the SSV and P2P phases to

be distinct. In other words, the P2P maneuvers all take place simultaneously, at the

end of SSV phase, during the time T (2) allotted for the P2P phase. However, note
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that this need not be the case. A satellite that receives fuel from the SSV need not

wait for SSV phase to complete in order to start the P2P maneuvers. For instance,

it can initiate an orbital transfer immediately after it receives fuel from S0. In this

case, the different P2P maneuvers will have different time-lengths. Hence, we refer to

these as Asynchronous P2P (A-P2P) maneuvers. Note, however that the time T (2)

is binding only for satellite sn (the last satellite to be visited by s0 during the first

step of a mixed strategy). All other satellites si (i = 1, . . . , n − 1) have available

T (2) +
∑n−1

k=i t
(1)
k,k+1 time units to perform their fuel transactions. Thus, the time

available for si to complete the P2P maneuver with its matching pair sj is given by

t
(2)
ij =















T (2) +
∑n−1

k=i t
(1)
k,k+1, if i ∈ I1\{n},

T (2), if i = n.

(122)

Since t
(2)
ij ≥ T (2) for all satellite pairs, referring again to equation (115) makes it

clear that each rendezvous between two satellites will require less fuel than a syn-

chronous implementation. Consequently, the overall fuel consumption for the whole

constellation will also be reduced by using an asynchronous P2P implementation.

3.6 Comparison of Refueling Strategies

Let us consider a constellation in a circular orbit with an even number of satellites,

say, 2n. For the sake of simplicity, we may assume that all satellites are initially

depleted of fuel, that is, i ∈ Id,0 for all i ∈ I. Given a maximum refueling period, say

T , we wish to refuel all of the satellites from a service vehicle s0, such that after time

T , they all end up with approximately the same amount of fuel. In the process, we also

want to minimize the total fuel expenditure during the ensuing orbital maneuvers.

Equivalently, we want to maximize the total amount of fuel that can be delivered to

the constellation. We have two alternatives for solving this problem.

The first alternative is for s0 to refuel (perhaps sequentially73) all satellites in the

constellation. This scenario is shown in Figure 32(a).
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Figure 32: Refueling Strategies in a Circular Constellation.

Example 4. Mixed refueling strategy for a constellation of 12 satellites.

We now apply the CTA algorithm along with an asynchronous (mixed) P2P refu-

eling strategy to a constellation comprising 12 satellites. Through this example, we

show how these improvements for a mixed refueling strategy make the latter a com-

petitive alternative to a refueling strategy using a single service vehicle or to mixed

synchronous P2P strategies.

Table 2: Optimal Fuel Consumption the Refueling with a Single Service Vehicle.

Segment tij ∆Vij Fuel Expense
i = 1, j = 2 1.9084 0.1821 35.9746
i = 2, j = 3 1.9084 0.1821 32.1287
i = 3, j = 4 1.9084 0.1821 28.5604
i = 4, j = 5 1.9084 0.1821 25.2497
i = 5, j = 6 1.9084 0.1821 22.1779
i = 6, j = 7 1.9084 0.1821 19.3278
i = 7, j = 8 1.9084 0.1821 16.6834
i = 8, j = 9 1.9084 0.1821 14.2299
i = 9, j = 10 1.9084 0.1821 11.9535
i = 10, j = 11 1.9084 0.1821 9.8414
i = 11, j = 12 0.9163 0.3805 15.8334

To this end, we assume a circular orbit constellation with an even number of

satellites. The service spacecraft, denoted by s0, starts with an initial amount of fuel
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f0(0
−) = 500 units. We assume that s0 is initially at a higher circular orbit than the

constellation orbit. It is required that s0 returns to the same orbit after completing

the refueling process with f0(T
+) = 10 units of fuel, where T = 20 is the maximum

allowed time for completing the whole refueling process. Recall that one unit of time

corresponds to one period of the circular orbit of the constellation. Hence, the total

amount of fuel to be delivered to the satellites in the constellation including the fuel

to be used during the corresponding orbital transfers is 490 units. The spacecraft

spends p0 = 44.26 units of fuel to arrive from the higher orbit to the constellation

orbit† After refueling s0 returns to its initial orbit by spending pf = 6.01 units of

fuel. The mass of the permanent structure for each satellite is msi = 60 units and

the characteristic constant of the engine is c0i = 2943 units for all satellites.

Table 3: Optimal Fuel Consumption for First Step of Mixed Refueling Strategy.

Segment t
(1)
ij ∆Vij Fuel Expense

i = 1, j = 2 1.9174 0.1822 33.2517
i = 2, j = 3 1.9174 0.1822 26.8369
i = 3, j = 4 1.9174 0.1822 20.8556
i = 4, j = 5 1.9174 0.1822 15.3643
i = 5, j = 6 1.9174 0.1822 10.2419

Let us consider a constellation with twelve satellites evenly distributed in a circular

orbit. The total time allowed for refueling is again T = 20 time units. There are

eleven rendezvous segments with a single-spacecraft refueling strategy. The optimal

time distribution for each of the eleven rendezvous segments and the corresponding

fuel consumption are given in Table 2. At the end of this process, each of the six

satellites end up with an equal amount of fuel f+
i = 17.31. The total amount of fuel

used during all the transfers is thus 490 − 12 × 17.31 = 282.28 units.

†Here we assume that the constellation orbit and the higher orbit are coplanar. This is not
restrictive. For orbits at different inclinations a plane change may have been considered. However,
this extra degree of freedom does not affect the comparison of the two refueling strategies. This is
because the fuel of the transfer of s0 to and from the constellation orbit is part of both refueling
strategies, and hence it is not part of the optimization process.
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Table 4: Optimal Fuel Consumption for Second Step of Mixed Refueling Strategy.
Twelve Satellite Constellation.

Pairs T T (1)/T (2) Fuel Expense
(s1, s10) 20.00 10.25/9.75 8.5335
(s2, s11) 18.08 9.33/8.75 9.4564
(s3, s12) 16.17 8.43/7.74 10.6270
(s4, s7) 14.25 8.00/6.25 12.0585
(s5, s8) 12.33 5.75/6.58 14.1137
(s6, s9) 10.41 4.74/5.67 16.8236

For the mixed strategy, there are five rendezvous segments during the first stage,

which are all completed within T (1) = 9.59 units. The optimal time distribution for
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Figure 33: Comparison of Fuel Expenditure of Refueling Strategies.

each of the five rendezvous segments and the corresponding fuel consumption are

given in Table 3. The six satellites refueled by s0 have fuel 55.53 units each before

performing the P2P refueling part. The available times for the P2P maneuvers as well

as the corresponding fuel consumption are given in Table 4. The final fuel content
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of the satellites are f1(T
+) = f10(T

+) = 23.50, f2(T
+) = f11(T

+) = 23.04, f3(T
+) =

f12(T
+) = 22.45, f4(T

+) = f7(T
+) = 21.74, f5(T

+) = f8(T
+) = 20.71, f6(T

+) =

f9(T
+) = 19.35. The average amount of fuel in the constellation is 21.80 units. The

total amount of fuel burnt using the mixed refueling strategy is 490−12×21.80 = 228.4

units, which is about 19% less than the amount of fuel burnt if the satellites are

refueled by a single spacecraft. Clearly, the mixed scenario outperforms the single

service vehicle option in this case.
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Figure 34: Comparison of Time of Mission for Refueling Strategies.

An elaborate comparison of the refueling strategies is made for varying number of

satellites in the constellation. Figure 33 shows the variation of fuel expended during

the refueling process with the number of satellites in the constellation. The result

clearly demonstrates that the mixed refueling strategy is better than the SSV strategy

in terms of fuel expended, with the incorporation of the CTA strtaegy and A-P2P

maneuvers. When there are 6 satellites in the constellation, the single-service vehicle

strategy is only marginally better. But, with increasing number of satellites, the
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mixed strategy becomes increasingly better.

Finally, we present a comparison of the two strategies from a different perspective.

Suppose, we are given a budget for ∆V , and we wish to answer the question, how fast

can we refuel all the satellites for the two strategies? Figure 34 gives a variation of ∆V

with the minimum time required to complete the refueling mission, for a constellation

of 8 satellites. Let us consider the horizontal line in the figure. The line corresponds

to a given budget ∆Vb for the refueling mission. Given this budget, the fastest time

we can distribute fuel among all the satellites is Tm for the mixed refueling strategy,

and Ts for the SSV refueling strategy. Clearly, Tm < Ts. The result demonstrates

that, if we are given a total ∆V budget, then the mixed refueling can complete the

fuel delivery in a time less than that required by the single service vehicle refueling

strategy.

3.7 Summary

In this chapter, we discussed different strategies for refueling a system of several

satellites in a circular orbit. In the SSV strategy, one needs to solve an integer

program to determine the optimal time for all the transfers. In the case of P2P

refueling, one needs to solve a weighted matching problem in order to solve for the

P2P maneuvers. Finally, a mixed refueling strategy, that combines the ideas of SSV

and P2P refueling, is discussed. In terms of fuel expended during the maneuvers, the

mixed refueling strategy is better than a SSV strategy, particularly with increasing

number of satellites in the constellation. We provide two cost-reducing measures,

namely the Coasting Time Allocation Strategy and Asynchronous P2P maneuvers,

in order to further reduce the fuel expenditure in a mixed refueling scenario.
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CHAPTER IV

PEER-TO-PEER REFUELING STRATEGY

In the original studies on P2P refueling,19,72,75 the P2P maneuvers were considered

to be means to achieve fuel equalization in the constellation, and the P2P refueling

problem was formulated based on this notion. In this chapter, we point out a draw-

back of such a formulation, and then provide an alternative formulation of the P2P

refueling problem. In this alternative formulation, we consider that the satellites are

required to maintain a minimum amount of fuel to remain operational. The satellites

not meeting this criterion are considered fuel-deficient and those which satisfy the

same are considered fuel-sufficient. The objective for the satellites would be to share

fuel such that all of them become fuel-sufficient at the end of the P2P maneuvers.

We discuss this formulation in detail, and demonstrate with examples, P2P refueling

strategy in sample circular constellations. Furthermore, we also extend the problem

to allow for cooperative rendezvous between the satellites engaging in a refueling

transaction.

4.1 A Practical Drawback of the Fuel Equalization Formu-

lation

As shown in the previous chapter, the optimal P2P maneuvers achieving fuel equal-

ization in a constellation can be obtained by maximizing the cost function Ca. When

using the cost function Ca, the expression for the cost of an edge πij for all 〈i, j〉 ∈ Er

suggests that the reduced constellation graph Gr is, in general, non-bipartite. From

a refueling point of view, we are interested in a bipartite matching between the fuel-

sufficient and fuel-deficient satellites. However, the objective of fuel equalization does

not necessarily lead to a bipartite graph. It can be noted that although there may not
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exist an edge between two fuel-deficient satellites in the reduced constellation graph

(because πij ≤ 0 for all i, j ∈ Jd,0), there may still be edges between the fuel-sufficient

satellites. Now, a question that arises here is whether an optimal P2P assignment

consists of an edge between two fuel-sufficient satellites. Before we address this issue,

let us define the following terms for convenience. We refer to Mp as a bipartite edge

set if there exists no edge 〈i, j〉 ∈ Mp such that i, j ∈ Js,0. If there exists at least one

such edge between fuel-sufficient satellites, we refer to Mp as a non-bipartite edge set.

Now, the following proposition gives the condition that guarantees that the optimal

P2P assignment as determined by Ca would be a non-bipartite edge set.

Proposition 2. The optimal P2P maneuvers determined by maximizing the cost

function Ca consists of a fuel transaction between two fuel-sufficient satellites if the

following hold: |Is,0| − |Id,0| ≥ 2, and πij > 0 for all 〈i, j〉 ∈ Er such that i, j ∈ Js,0.

Proof. Consider a bipartite edge set Mp consisting of |Id,0| edges. Since an edge

between two fuel-deficient satellites does not exist in Gr, Mp leaves |Id,0| fuel-deficient

satellites matched with same number of fuel-sufficient satellites. This also means

|Is,0| − |Id,0| ≥ 2 fuel-sufficient satellites are left unmatched by Mp. Let U be the set

of indices of orbital slots of the unmatched fuel-sufficient satellites. Clearly, |U| ≥ 2.

Since πij > 0 for all 〈i, j〉 ∈ Er such that i, j ∈ Js,0, there exists an edge in 〈i, j〉 ∈ Er

for every i, j ∈ U . Let E ′ be the set of edges induced by the set U . Consider any

edge 〈u, v〉 ∈ E ′ and construct the non-bipartite edge set M′
p = Mp ∪ {〈u, v〉}. Since

πuv > 0, M′
p gives a more optimal value of the cost function Ca. Hence, for every

bipartite edge set Mp, there exists a non-bipartite edge set M′
p that gives a more

optimal value of the objective function Ca. The optimal P2P assignment therefore

has to be a non-bipartite edge set.

The proposition essentially shows that two fuel-sufficient satellites can pair up in

the optimal P2P maneuver. An important question that arises here is whether we
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want two fuel-sufficient satellites to be involved in a P2P refueling transaction. It may

not be practical to use up some fuel in the constellation by having two fuel-sufficient

satellites engaged in a refueling transaction. In other words, from a practical point of

view, we we do not want a fuel transaction between two fuel-sufficient satellites. Let

us illustrate this with the following example.

Example 5. Optimal P2P assignment consists of a fuel exchange between two fuel-

sufficient satellites.

We consider here a simple example of a circular constellation comprising 8 satel-

lites. For each satellite, mass of permanent structure is considered to be 70 units and

the specific thrust of the engine is considered to be 300 sec. The satellites s1, s2, . . . s8

are evenly distributed in the orbit at the slots φ1 = 0, φ2 = 45, . . . , φ8 = 315 deg re-

spectively. They have initial fuel content of f−
1 = 30, f−

2 = 25, f−
3 = 28 and f−

4 = 30,

f−
5 = 25, f−

6 = 4, f−
7 = 6 and f−

8 = 4 units respectively. The mean fuel in the constel-

lation is 19 units and hence the satellite s1, s2, s3, s4 and s5 are fuel-sufficient, while

s6, s7 and s8 are fuel-deficient. Clearly, |Is,0| − |Id,0| = 2, satisfying the condition of

the proposition. The optimal P2P assignments for this example turns out to be the

following: s1−s7, s2−s5, s3−s8, s4−s8. Clearly, the fuel-sufficient satellites s2 and s5

engage in a refueling transaction, resulting in a fuel consumption of 8.30 units, which

is about 33% of the total fuel expenditure (24.85 units) during the overall refueling

process. The fuel-sufficient satellites being involved in an impractical fuel exchange

resulted in a loss of 8.30 units of fuel that could have otherwise been preserved in the

constellation.

This drawback in the formulation of the P2P refueling problem based on the

notion of fuel equalization motivates us in resorting to an alternate formulation of

the P2P refueling problem based on the notion of achieving fuel sufficiency in the

constellation.20,21,70
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4.2 An Alternative Formulation for the P2P Refueling Prob-

lem

An alternative way of formulating the P2P problem would be to impose a minimum

fuel requirement on each satellite in order to remain operational. Let f
i
denotes this

minimum amount of fuel required by satellite si, while let f̄i denote the maximum

fuel capacity of the satellite. Hence, fuel-sufficient satellite are those which have at

least the requisite amount of fuel and the remaining satellites are fuel-deficient, that

is, Is,t = {i : fi,t ≥ f
i
} and Id,t = {i : fi,t < f

i
}. The objective of P2P refueling

is therefore to achieve f+
i ≥ f

i
for all i ∈ {1, 2, . . . , n} by expending the minimum

amount of fuel during the ensuing orbital maneuvers.

4.2.1 Feasible P2P Maneuver

Let us consider a P2P maneuver between the satellites sµ and sν initially occupying

the orbital slots φi and the satellite sν occupy the orbital slot φj. Note that sµ = σ0(φi)

and sν = σ0(φj). Without loss of generality, assume sµ to be a fuel-sufficient satellite

and sν to be a fuel-deficient satellite, that is, µ ∈ Is,0 and ν ∈ Id,0. Either of the

two satellites may be active during a refueling transaction between the two satellites.

Hence, two different refueling transactions are possible for the edge 〈i, j〉 ∈ E . In

the first case, the fuel-sufficient satellite sµ is active. Therefore, µ ∈ Ia ∩ Is,0 and

ν ∈ Ip ∩ Id,0. The forward and return trips of the related P2P maneuver are shown

in Figure 35. The fuel consumed by the active satellite sµ to transfer from the orbital

slot φi to the orbital slot φj is given by:

pµ
ij =

(

msµ + f−
µ

)

(

1 − e
−

∆Vij
c0µ

)

, (123)

The fuel content of satellite sµ after its forward trip (but before fuel exchange takes

place) is f−
µ − pµ

ij. After the fuel exchange takes place between the two satellites, sµ

performs another orbital maneuver and returns to its original orbital slot φi. Since

the fuel consumption during the maneuver is minimized when the active satellite
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Figure 35: P2P Maneuver (sµ active).

returns to its final slot with exactly the required minimum amount of fuel to remain

operational, the amount of fuel consumed during the return trip is given by

pµ
ji =

(

msµ + f
µ

)

e
∆Vji
c0µ

(

1 − e
−

∆Vji
c0µ

)

. (124)

In order for satellite sν to become fuel-sufficient after the fuel transaction, we must

therefore have,
(

f−
ν + f−

µ

)

−
(

f
µ

+ f
ν

)

≥ pµ
ij + pµ

ji. (125)

If the above condition does not hold, then the P2P refueling transaction is not feasible.

Also, if satellite sµ does not have enough fuel to carry out the orbital transfer during

the forward trip, that is, if pµ
ij ≥ f−

µ , then the P2P refueling transaction is also not

feasible.

In the second case, the fuel-deficient satellite sν is active. The fuel consumed for

the active satellite sν to transfer from the orbital slot φi to the orbital slot φj is given

by

pν
ji =

(

msν + f−
ν

)

(

1 − e
−

∆Vji
c0ν

)

. (126)

The fuel content of satellite sν after its forward trip (but before fuel exchange takes

place), is f−
ν −pν

ji. The amount of fuel consumed during the return trip, during which
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the satellite sν travels from the orbital slot φi to the orbital slot φj, is given by

pν
ij =

(

msν + f
ν

)

e
∆Vij
c0ν

(

1 − e
−

∆Vij
c0ν

)

, (127)

Before the return trip (but after the fuel exchange takes place), the fuel on board

satellite sν is f
ν

+ pν
ij. The fuel transferred to satellite sν during the fuel exchange

is (f
ν

+ pν
ij) − (f−

ν − pν
ji). The fuel on board satellite sµ after the fuel transaction is

f−
µ − (f

ν
+ pν

ij) + (f−
ν − pν

ji). In order for the satellite sµ to be fuel-sufficient after the

fuel transaction, we must have

(

f−
µ + f−

ν

)

−
(

f
ν

+ f
µ

)

≥ pν
ji + pν

ij. (128)

If the above condition does not hold, then a P2P refueling transaction is not feasible.

Also, if the satellite sν does not have enough fuel to carry out the orbital transfer

during the forward trip, that is, if pν
ji ≥ f−

ν , then the P2P refueling transaction is

also not feasible.

4.2.2 P2P Constellation Graph

In order to formulate the P2P refueling problem, consider an undirected bipartite

graph G = (V , E) with the two partitions being Js,0 and Jd,0. There exists an edge

〈i, j〉 ∈ Js,0 × Jd,0 if the satellites sµ = σ0(φi) and sν = σ0(φj) can engage in a P2P

refueling transaction such that at the end of the refueling process, both the satellites

end up being fuel-sufficient. Let E ⊆ Js,0 ∪ Jd,0 be the set of all edges in G. To

each edge 〈i, j〉 ∈ E , we assign a cost cij (as in (95)) that equals the fuel expenditure

incurred during a P2P refueling transaction between the two. Recognizing that either

of the two satellites engaged in a P2P refueling transaction can be the active one, we
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Figure 36: P2P Formulation.

define the cost associated with each edge of the graph as follows:

cij =















































pµ
ij + pµ

ji, if sµ can be active, but sν cannot,

pν
ji + pν

ij, if sν can be active, but sµ cannot,

min{pµ
ij + pµ

ji, p
ν
ji + pν

ij}, if either sµ or sν can be active,

∞, if neither sµ nor sν can be active.

(129)

Figure 36(a) depicts such the bipartite graph for a constellation of 5 fuel-sufficient

and 4 fuel-deficient satellites.

4.2.3 P2P Optimization

We are interested in a set Mp ⊆ E of |Id,0| edges that has minimum total cost and

that all fuel-deficient satellites are involved in fuel transactions. Let us also associate

with each edge 〈i, j〉 ∈ E a binary variable xij defined as in (87). We allow one

satellite to be involved in at most one P2P maneuver. Therefore, the set of edges

included in Mp cannot share a node. Figure 36(b) depicts a feasible P2P solution in

the constellation graph shown in Figure 36(a). We thereby can set up the following

optimization problem:

(P2P − IP) min
Mp⊆E

∑

〈i,j〉∈E

cijxij, (130)
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such that
∑

j∈Jd,0

xij ≤ 1, for all i ∈ Js,0, (131)

∑

i∈Js,0

xij = 1, for all j ∈ Jd,0, (132)

The cost function, given in (130), is the total fuel expenditure corresponding to the

P2P maneuvers represented by the edges in Mp. Constraint (131) implies that a

fuel-sufficient satellite can be assigned to at most one refueling transaction, while

constraint (132) implies that a fuel-deficient satellite has to be assigned to a refueling

transaction.

4.3 Numerical Examples: P2P

In this section, we illustrate the P2P refueling scenario with some examples. To this

end, let us consider some sample constellations given in Table 5. The optimal assign-

ments for each case can be obtained by solving the optimization problem outlined in

the previous section. In particular, we discuss in detail the optimal P2P assignments

obtained in the case of constellations C1 and C2.

Example 6. P2P refueling strategy for a constellation of 10 satellites.

Consider the constellation C1 given in Table 5. This constellation consists of

10 satellites evenly distributed in a circular orbit. The maximum allowed time for

refueling is T = 12 orbital periods. Each satellite si has a minimum fuel requirement

of f
i
= 12 units, while the maximum amount of fuel each satellite can hold is f̄i = 30

units. Each satellite has a permanent structure of msi = 70 units, and a characteristic

constant of c0i = 2943 m/s. The indices of the fuel-sufficient satellites are Js,0 =

{1, 2, 8, 9, 10} and those of the fuel-deficient satelites are Jd,0 = {3, 4, 5, 6, 7}. The

optimal P2P assignments obtained after solving the optimization is s4 → s1, s5 → s2,

s7 → s8, s6 → s9, s3 → s10, and the total fuel consumption for all P2P maneuvers is

26.07 units. This represents 14.48% of the total initial fuel in the constellation. The
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Figure 37: Optimal assignments for P2P refueling.

indices of the active satellites in this case are Ja = {3, 4, 5, 6, 7}. Note that Ja = Jd,0,

that is, the fuel-deficient satellites are the active ones for the P2P refueling strategy.

The optimal P2P assignments are shown in Fig. 37(a). The active satellites are

marked by ’⋆’. The forward trips are marked by solid arrows, while the return trips

are marked by dotted arrows. The primary reason for fuel-sufficient satellites being

the active ones is that their lesser mass compared to their fuel-sufficient counterparts

leads to lesser fuel expenditure during the orbital transfers.

Example 7. P2P refueling strategy for a constellation of 10 satellites.

In this example, we consider the constellation C2 given in Table 5. This is a

constellation of 16 satellites, evenly distributed in a circular orbit. The maximum al-

lowable time for refueling is T = 30 orbital periods. Each satellite si has a minimum

fuel requirement of f
i

= 15 units, a maximum fuel capacity of f̄i = 30 units, per-

manent structure of msi = 70 units, and a characteristic constant of c0i = 2943 m/s.

The indices of the fuel-sufficient satellites are Js,0 = {1, 2, 3, 4, 5, 6, 15, 16}, while

those of the fuel-deficient satellites are Jd,0 = {7, 8, 9, 10, 11, 12, 13, 14}. The optimal

P2P assignments are given by s11 → s1, s12 → s2, s9 → s3, s7 → s4, s8 → s5,
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s10 → s6, s13 → s15, s14 → s16 and the total fuel consumption is 37.46 units. This

represents 11.71% of the total initial fuel in the constellation. Similar to the previous

example, we have that only the fuel-deficient satellites are the active ones, that is,

Ja = {7, 8, 9, 10, 11, 12, 13, 14} = Jd,0. This is similar to the previous example. The

standard P2P assignment for C2 is shown in Fig. 37(b).

Fig. 6 summarizes the fuel expenditure incurred during the P2P refueling of satel-

lites in the sample constellations. We also indicate the percentage of fuel in the con-

stellation expended to achieve fuel-sufficiency in the constellation. In all these cases,

we find that the active satellites carrying out the P2P maneuvers are the fuel-deficient

satellites. Of course, the fuel- deficient satellites in all these cases had enough fuel

to perform the necessary orbital maneuvers. If any of them were incapable of being

the active satellite, a fuel-sufficient satellite has to become the active satellite in its

case. In fact, if all the fuel-deficient satellites been empty, all of the P2P maneuvers

had to be carried out by the fuel-sufficient satellites. Below, we discuss two cases in

which one or more fuel-deficient satellites fail to become the active satellite because

of scarcity of initial fuel amount.

Example 8. P2P refueling strategy when all satellites do not have enough fuel to be

active.

We consider in this example the same constellation C1 of Example 6, except for

that the fuel-deficient satellites contain 2.0 units of fuel (not sufficient to carry out

some of the large-∆V transfers). This is given by constellation by constellation C ′
1

in Table 5. Hence, it is not possible for all the fuel-deficient satellites to be the

active ones. Under such a consideration, the optimal P2P assignments obtained are:

s1 → s4, s2 → s5, s6 → s8, s7 → s9, s10 → s3. The total fuel expended during

the P2P maneuvers is 28.60, which amounts to 15.89% of the initial total fuel in the

constellation. Figure 38 shows the optimal P2P maneuvers in the constellation. Note

that Jd,0 = {3, 4, 5, 6, 7} and Ja = {1, 2, 6, 7, 10}, so that we no longer have Jd,0 = Ja.
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The 2.0 units of fuel for satellite s4, s5 and s3 are no longer sufficient to complete

the forward trip. Instead, it is possible to carry out the P2P maneuvers by having

fuel-sufficient satellites s1, s2 and s10 to be active.

Figure 38: P2P assignments when fuel-deficient satellites do not have enough fuel.

In the P2P refueling strategy discussed so far, we have considered that the satel-

lites, involved in a P2P refueling transaction, engage in a non-cooperative rendezvous,

that is, only one of the satellites perform the orbital transfers necessary for refueling.

In the remaining part of this chapter, we discuss an extension of the P2P problem,

in which we allow both satellites to be active. We call this the Cooperative P2P

(C-P2P) refueling strategy. The formulation of the C-P2P strategy is similar to the

baseline P2P strategy, as we will show in the next section.

4.4 C-P2P Refueling Strategy

In this section, we formulate the C-P2P refueling problem as an optimization problem

over a suitable bipartite constellation graph. Recall that in the C-P2P strategy, we

allow cooperative rendezvous between the satellites engaging in a P2P maneuver. To

this end, let us consider a set of slots Φ′ ⊇ Φ on the constellation orbit. These slots

are positions where a cooperative rendezvous can take place between two satellites
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in the constellation. Let K denote the set of indices for these slots. Now, let us

consider a C-P2P maneuver between two satellites sµ = σ0(φi) and sν = σ0(φj)

occupying the orbital slots φi and φj, where i, j ∈ J . Let these satellites engage in

a cooperative rendezvous at the orbital slot φk, where k ∈ K. During the first phase

of the cooperative P2P maneuver, the two satellites sµ and sν transfer to the orbital

slot φk. After the rendezvous, the satellites sµ and sν are engaged in a fuel exchange

and then, in the second phase of the P2P maneuver, the satellites sµ and sν transfer

to their original orbital slots φi and φj respectively. Without loss of generality, let us

assume that sµ is the fuel-sufficient satellite and that sν is the fuel-deficient satellite,

that is, f−
µ ≥ f

µ
and f−

ν < f
ν
.

Note that in a non-cooperative P2P maneuver, the amount of fuel exchanged by

the two satellites can be determined by the fact that the active satellite returns with

just enough fuel to be fuel-sufficient. Unlike the non-cooperative case, the amount of

fuel exchanged between the satellites in the cooperative case affects the return trips

of both the active satellites. Hence, a natural question that arises here is how to

obtain the amount of fuel that must be shared between the two satellites. Of course,

the objective is to spend as little fuel during each C-P2P maneuver as possible.

4.4.1 Fuel Expenditure During a C-P2P Maneuver

We now determine the amount of fuel exchange that leads to minimum fuel expendi-

ture during the maneuver. To this end, let us denote by gν
µ the amount of fuel that is

transferred from satellite sµ to satellite sν . Figure 39 shows the forward and return

trips of the C-P2P maneuver. The fuel consumed by the active satellite sµ to transfer

from the orbital slot φi to the orbital slot φk is given by:

pµ
ik =

(

msµ + f−
µ

)

(

1 − e
−

∆Vik
c0µ

)

. (133)
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Figure 39: C-P2P Maneuver.

Similarly, the fuel expenditure for satellite sν to transfer from the orbital slot φj to

the orbital slot φk is given by:

pν
jk =

(

msν + f−
ν

)

(

1 − e
−

∆Vjk
c0ν

)

. (134)

The fuel content of satellite sµ after its forward trip (but before the fuel exchange

takes place) is f−
µ − pµ

ik, while that of satellite sν is f−
ν − pν

jk. The amount of fuel

that sµ imparts to sν is gν
µ. Hence, the fuel content of satellite sµ just after the fuel

exchange takes place is f−
µ −pµ

ik−gν
µ, while that of satellite sν is f−

ν −pν
jk +gν

µ. During

the return trip, the fuel expenditure of satellite sµ to transfer from slot φk to slot φi

is given by

pµ
ki =

(

msµ + f−
µ − pµ

ik − gν
µ

)

(

1 − e
−

∆Vki
c0µ

)

, (135)

while that of satellite sν to transfer from slot φk to slot φj is given by

pν
kj =

(

msν + f−
ν − pν

jk + gν
µ

)

(

1 − e
−

∆Vkj
c0ν

)

. (136)

The final fuel content of satellite sµ after the cooperative P2P maneuver is given

by f+
µ = f−

µ −pµ
ik−gν

µ−pµ
ki, while that of satellite sν is given by f+

ν = f−
ν −pν

jk+gν
µ−pν

kj.

Using the above equations, we have

f+
µ =

(

msµ + f−
µ − gν

µ − pµ
ik

)

e
−

∆Vki
c0µ −msµ, (137)
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and

f+
ν =

(

msν + f−
ν + gν

µ − pν
jk

)

e
−

∆Vkj
c0ν −msν . (138)

We therefore have

f+
µ + f+

ν =
(

msµ + f−
µ − pµ

ik

)

e
−

∆Vki
c0µ − gν

µe
−

∆Vki
c0µ +

(

msν + f−
ν − pν

jk

)

e
−

∆Vkj
c0ν

+ gν
µe

−
∆Vkj
c0ν − (msµ +msν) .

(139)

Minimizing the fuel expenditure during a C-P2P maneuver is the same as maximizing

the total fuel content f+
µ + f+

ν of the satellites after the maneuver. From the above

equation, f+
µ + f+

ν is maximized when

gν
µe

−
∆Vkj
c0ν − gν

µe
−

∆Vki
c0µ = gν

µ

(

e
−

∆Vkj
c0ν − e

−
∆Vki
c0µ

)

is maximized. Recall that both satellites need to be fuel-sufficient after the P2P

maneuver. Satellite sµ will be fuel-sufficient if

f+
µ ≥ f

µ
,

that is,
(

msµ + f−
µ − gν

µ − pµ
ik

)

e
−

∆Vki
c0µ −msµ ≥ f

µ
,

or

gν
µe

−
∆Vki
c0µ ≤

(

msµ + f−
µ − pµ

ik

)

e
−

∆Vki
c0µ −

(

msµ + f
µ

)

,

and hence,

gν
µ ≤

(

msµ + f−
µ − pµ

ik

)

−
(

msµ + f
µ

)

e
∆Vki
c0µ .

Also, satellite sν will be fuel-sufficient if

f+
ν ≥ f

ν
,

that is,
(

msν + f−
ν + gν

µ − pν
jk

)

e
−

∆Vkj
c0ν −msν ≥ f

ν
,
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or,

gν
µe

−
∆Vkj
c0ν ≥

(

msν + f
ν

)

−
(

msν + f−
ν − pν

jk

)

e
−

∆Vkj
c0ν ,

and hence,

gν
µe

−
∆Vkj
c0ν ≥

(

msν + f
ν

)

−
(

msν + f−
ν − pν

jk

)

e
−

∆Vkj
c0ν .

The conditions of fuel-sufficiency on the satellites provide us with a lower bound

gν
µ|ℓ on the amount of fuel exchange, given by

gν
µ|ℓ =

(

msν + f
ν

)

e
∆Vkj
c0ν −

(

msν + f−
ν − pν

jk

)

. (140)

It also provides an upper bound gν
µ|u on the amount of fuel exchange, given by

gν
µ|u =

(

msµ + f−
µ − pµ

ik

)

−
(

msµ + f
µ

)

e
∆Vki
c0µ . (141)

As mentioned already, we need to maximize gν
µ

(

e
−

∆Vkj
c0ν − e

−
∆Vki
c0µ

)

. This is maximized

if

gν
µ =















gν
µ|ℓ, e

−
∆Vkj
c0ν < e

−
∆Vki
c0µ ,

gν
µ|u, e

−
∆Vkj
c0ν > e

−
∆Vki
c0µ .

(142)

Clearly, if e
−

∆Vkj
c0ν = e

−
∆Vki
c0µ , then gν

µ can assume any value in the interval gν
µ|ℓ ≤ gν

µ ≤

gν
µ|u.

To determine the final fuel content of the satellites when the fuel exchange is

optimal, we need to consider two cases. If e
−

∆Vkj
c0ν < e

−
∆Vki
c0µ , we have

f+
ν =

(

msν + f−
ν + gν

µ|k − pν
jk

)

e
−

∆Vkj
c0ν −msν

=
(

msν + f−
ν −

(

msν + f−
ν − pν

jk

)

− pν
jk

)

e
−

∆Vkj
c0ν +

(

msν + f
ν

)

−msν

= f
ν
, (143)

which implies that sν returns with just enough fuel to be fuel-sufficient. On the other
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hand, if e
−

∆Vkj
c0ν > e

−
∆Vki
c0µ , we have

f+
µ =

(

msµ + f−
µ − gν

µ|u − pµ
ik

)

e
−

∆Vki
c0µ −msµ

=
(

msµ + f−
µ −

(

msµ + f−
µ − pµ

ik

)

− pµ
ik

)

e
−

∆Vki
c0µ +

(

msµ + f
µ

)

−msµ

= f
µ
, (144)

which implies that sµ returns with just enough fuel to be fuel-sufficient.

If both satellites have the same engine characteristics, then c0µ = c0ν , and e
−

∆Vkj
c0ν <

e
−

∆Vki
c0µ , equivalently,

∆Vkj

c0ν
> ∆Vki

c0µ
, and hence, ∆Vkj > ∆Vki. Similarly, e

−
∆Vkj
c0ν >

e
−

∆Vki
c0µ implies that ∆Vkj > ∆Vki. We can summarize our findings with the following

proposition.

Proposition 3. If two satellites engaging in a cooperative P2P maneuver have en-

gines with the same specific thrust, the optimal fuel exchange takes place when the

satellite making the costlier ∆V transfer returns with just enough fuel to be fuel-

sufficient.

4.4.2 C-P2P Optimization Problem

Similar to solving the P2P refueling problem, let us consider the undirected bipartite

graph G with the two graph partitions being the orbital slots of the fuel-sufficient

satellites Js,0 and those of the fuel-deficient satellites Jd,0. There exists an edge

〈i, j〉 ∈ Js,0 × Jd,0 if the satellites sµ = σ0(φi) and sν = σ0(φj) can engage in a

cooperative or non-cooperative P2P refueling transaction, such that, at the end of

the refueling process, both satellites end up being fuel-sufficient. Let E ⊆ Js,0 × Jd,0

be the set of all edges in G. To each edge 〈i, j〉 ∈ E , we assign a cost cij that equals

the fuel expenditure incurred during the cheapest (among all non-cooperative and

cooperative) P2P maneuver between the two. Let the satellites sµ = σ0(φi) and

sν = σ0(φj) be involved in a cooperative rendezvous at the orbital slot φk ∈ Φ′, where

Φ′ is the set of all possible orbital slots on the orbit. Note that Φ ⊆ Φ′. The fuel
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expenditure incurred during the cooperative maneuver is given by

cij|φk
=

(

pµ
ik + pν

jk

)

+
(

pµ
ki + pν

kj

)

(145)

Note that φk = φi corresponds to a non-cooperative maneuver, in which the satellite

sν is active, while φk = φj corresponds to a non-cooperative maneuver, in which the

satellite sν is active. The minimum over all cooperative and non-cooperative fuel

expenditures is assigned to be the weight of the edge 〈i, j〉. Therefore, we have

cij = min
φk∈Φ′

cij|φk
(146)

For convenience, let us also define a function Coop : E 7→ Φ′ such that

Coop (i, j) = arg min
φk∈Φ′

cij|φk
(147)

Note that if for edge 〈i, j〉, the cheapest maneuver is non-cooperative, then Coop (i, j)

gives the orbital slot of the passive satellite. We are interested in a set Mc ⊆ E of

|Id,0| edges that has minimum total cost and such that all fuel-deficient satellites are

involved in fuel transactions. Similarly to what we did for the P2P refueling problem,

let us also associate with each edge 〈i, j〉 ∈ E a binary variable xij, defined as

xij =















1, if 〈i, j〉 ∈ Mc,

0, otherwise.

(148)

We can therefore consider the following optimization problem:

(CP2P − IP) : min
Mc⊆E

∑

〈i,j〉∈E

cijxij, (149)

such that
∑

j∈Jd,0

xij ≤ 1, for all i ∈ Js,0, (150)

∑

i∈Js,0

xij = 1, for all j ∈ Jd,0. (151)
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As before, constraint (150) implies that a fuel-sufficient satellite must be assigned to

at most one refueling transaction, while constraint (151) implies that a fuel-deficient

satellite has to be assigned to a refueling transaction. However, for the C-P2P prob-

lem, we require additional constraints to be imposed. For instance, consider two edges

〈i, j〉, 〈q, r〉 ∈ Mc. Note that if Coop (i, j) = Coop (q, r), then this implies either one

of the following:

i) A cooperative rendezvous corresponding to the two edges occur at the same

orbital slot, or

ii) A cooperative rendezvous corresponding to one edge occurs at the slot of the

passive satellite corresponding to another edge.

Both cases are impractical and cannot occur physically. Hence, we have to ensure

that the following additional constraint also holds:

Coop (i, j) 6= Coop (q, r) for all 〈i, j〉, 〈q, r〉 ∈ Mc. (152)

The determination of the optimal C-P2P solution requires the minimization of the

objective given in (149), subject to the constraints (150)-(152).

4.4.3 Methodology

We can solve the optimization problem given by (149)-(151) to find the set of edges

Mc. The set Mc may or may not be a feasible C-P2P solution, because it may or may

not satisfy constraint (152). If it does, then we have the optimal C-P2P solution and

we are done. If the constraint (152) is not satisfied, then another bipartite matching

problem can be set up in order to yield the optimal (and feasible) C-P2P solution for

the same set of satellite pairs (or refueling transactions) given by Mc. We discuss

below how this can be achieved.

Let us construct a bipartite graph, with one of the partitions representing the

orbital slots given by Φ′, and the other partition comprised of nodes representing the
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Figure 40: Bipartite graph for determining the C-P2P solution given Mc.

edges given by Mc. Figure 40 depicts such a graph. We say that there exists an

edge < 〈i, j〉, φk > between 〈i, j〉 ∈ Mc and φk ∈ Φ, if satellites sµ = σ0(φi) and

sν = σ0(φj) can engage in a feasible cooperative P2P maneuver at the orbital slot

φk ∈ Φ′, such that at the end of the overall maneuver the satellites return to their

original slots with enough amount of fuel to be fuel-sufficient. Let Ec denote the set

of all such edges. We are interested in a set Mc ⊆ Ec of edges that assigns to each

fuel transaction a slot for cooperative rendezvous and which leads to a feasible C-P2P

solution. To this end, let us assign to each edge the binary variable

yijk =















1, if < 〈i, j〉, k >∈ Mc,

0, otherwise.

(153)

The following optimization problem yields the optimal C-P2P solution, given the fuel

transactions depicted by the infeasible solution Mc:

min
Mc⊆Ec

∑

<〈i,j〉,φk>∈Ec

cij|φk
yijk, (154)

subject to
∑

φk∈Φ′

yijk = 1, for all 〈i, j〉 ∈ Mc, (155)

∑

〈i,j〉∈Mc

yijk ≤ 1, for all φk ∈ Φ′, (156)
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Constraint (155) signifies that all fuel transactions need to be assigned a slot for

rendezvous, while constraint (156) signifies that an orbital slot can be assigned to at

most one refueling transaction. The solution to this optimization problem yields the

cheapest feasible C-P2P solution corresponding to the fuel transactions determined

by Mc.

4.5 C-P2P Numerical Examples

In this section, we will consider sample constellations and will determine the optimal

C-P2P refueling strategy for each one of them. We will also compare the total fuel

expenditure incurred using C-P2P and P2P refueling of the satellites for the constel-

lations given in Table 5. These numerical examples demonstrate the usefulness of a

C-P2P refueling strategy.

Example 9. C-P2P refueling strategy for constellation C1.

For this example the orbital slots for cooperative rendezvous to take place have

been assumed to be equally spaced at intervals of 9 deg along the orbit. Hence,

there are 40 available slots for the cooperative rendezvous to take place, including

the 10 orbital slots occupied originally by the satellites. The optimal assignments

obtained from the solution of the optimization problem (CP2P-IP) were found to be

non-cooperative. Note that since Φ ⊆ Φ′, the optimal solution of (CP2P-IP) will be

the optimal P2P solution if there exists no cooperative solution that is cheaper than

the optimal P2P case. In other words, cooperative maneuvers in cases such as in this

example do not help in reducing the fuel expenditure of the overall refueling process.

Example 10. C-P2P refueling strategy for constellation C ′
1.

As in the previous example, the orbital slots for cooperative rendezvous to take

place are equally spaced at intervals of 9 deg along the orbit. The assignments are

determined by solving the optimization problem (CP2P-IP), and are given by: s1 ↔
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(a) Constellation C ′
1

(b) Constellation C2

Figure 41: Optimal assignments for C-P2P refueling.

s4, s2 ↔ s5, s8 ↔ s6, s9 ↔ s7 and s10 ↔ s3. All of these maneuvers are cooperative.

For instance, satellites s1 and s4 rendezvous at the orbital slot with a lead angle

of 54 deg with respect to satellite s1. Similarly, satellites s8 and s6 engage in a

cooperative maneuver in which both satellites cooperatively rendezvous at the orbital

slot with a lead angle of 27 deg. The solution to the C-P2P integer program yields no

conflict that violates the additional constraint. Hence, the above solution corresponds

to the optimal C-P2P assignments. The fuel expenditure corresponding to this set of

C-P2P assignments is 27.19 units, a reduction of about 8% over the optimal P2P fuel

expenditure. This example demonstrates the benefit of allowing satellites to engage

in cooperative rendezvous when the fuel-deficient satellites do not have enough fuel

to complete the non-cooperative rendezvous. Figure 41(a) shows the optimal C-P2P

assignments obtained for this example. An important observation for this example is

that for each of the C-P2P maneuvers, the cooperative rendezvous takes place in a

slot at which the fuel-deficient satellite arrives by having exhausted almost all of its

fuel. In other words, the fuel-deficient satellite moves as close to the fuel-sufficient

satellite as it is permitted by its onboard fuel. The final fuel contents of the satellites
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after the C-P2P maneuvers have taken place are 12.0, 12.0, 13.1, 13.1, 13.1, 12.0,

12.0, 15.5, 15.5 and 12.0 respectively.

Example 11. C-P2P refueling strategy for constellation C2.

Let us now consider the constellation C2 given in Table 5. The fuel expenditure

incurred in the P2P refueling of the satellites in the constellation is 39.67 units. The

optimal C-P2P assignments, as determined by solving the (CP2P-IP), are given as

follows: s1 ↔ s14, s2 ↔ s12, s3 ↔ s9, s4 ↔ s7, s5 ↔ s8, s6 ↔ s10, s15 ↔ s11 and

s16 ↔ s13. Of these maneuvers, two are non-cooperative, namely the assignments

s1 ↔ s14 and s16 ↔ s13. For these, the fuel-deficient satellites have enough fuel

to be active. The remaining maneuvers are cooperative. Allowing for cooperative

maneuvers reduces the overall fuel expenditure to 36.98 units, which is about 6.8%

less than the optimal P2P fuel expenditure. Similarly to the previous example, we

have that for the cooperative maneuvers, the fuel-deficient satellites move as close to

the fuel-sufficient satellites as permitted by their onboard fuel. Figure 41(b) shows the

C-P2P assignments. The final fuel contents of the satellites in the constellation are

given by 16.2, 12.3, 12.0, 16.1, 16.1, 14.8, 12.0, 12.0, 12.2, 12.0, 12.0, 12.0, 12.0, 12.0,

14.9 and 16.2 units. The solution generated by the optimization problem (CP2P-IP)

does not violate the additional constraint (152). Hence, this is the optimal C-P2P

solution. Figure 42 summarizes the results for the sample constellations of Table 5.

The optimal P2P and C-P2P fuel expenditure for these constellations are shown.

For the constellations C1 and C4, the optimal non-cooperative P2P solution is the

cheapest way to redistribute fuel in the constellation. For these, the fuel-deficient

satellites have enough fuel to complete a non-cooperative rendezvous. Whenever this

is not possible, as in case of the remaining constellations, cooperative maneuvers turn

out to be beneficial.
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Figure 42: Comparison of P2P and C-P2P refueling strategies for the sample con-
stellations of Table 5.

4.6 Peer-to-Peer Refueling Between Satellites in Different

Orbits

In this section, we discuss the P2P refueling strategy for satellites in two different

circular orbits. To this end, let us therefore consider a circular constellation consisting

of two circular orbits of radii r1 and r2, where r1 < r2. Let the number of satellites in

orbit r1 be denoted by n1, while that in orbit r2 be given by n2. The total number of

satellites is therefore n = n1 + n2. One can consider that the fuel-sufficient satellites

are in one orbit, say r1, while the fuel-deficient satellites are in the other orbit r2.

During a P2P refueling transaction between two satellites sµ = σ0(φi) and sν = σ0(φj)

occupying the orbital slots φi on the orbit r1 and φj on the orbit r2, where i, j ∈ J ,

we allow these satellites to engage in a cooperative rendezvous at the orbital slot φkr

on an intermediate orbit r. During the first phase of the cooperative P2P maneuver,

the two satellites sµ and sν transfer to the orbital slot φkr
. After rendezvous, the

satellites sµ and sν are engaged in a fuel exchange and then in the second phase

of the P2P maneuver, satellites sµ and sν transfer to their original orbital slots φi

105



S1

S6

S8

S4

S7

S5

S2

S3
S9

S10

S11

S12

(a) Non-cooperative Strategy

S1

S6

S8

S4

S7

S5

S2

S3
S9

S10

S11

S12

(b) Cooperative Strategy

Figure 43: Optimal assignments for P2P refueling.

and φj respectively. We will assume that the time allotted for the refueling process

allows phase-free Hohmann transfers between the two orbits r1 and r2 during the

trips. In other words, the satellites engage either in a HHCM or a HPCM rendezvous

to exchange fuel between themselves. The optimal refueling strategy can be obtained

by employing the methodology illustrated perviously in this chapter.

The next example demonstrates the benefits of cooperative rendezvous for P2P

refueling for a large number of satellites in two different coplanar circular orbits.

Example 12. P2P refueling for a constellation of 12 satellites in two circular orbits,

each orbit having 6 satellites.

Consider a satellite constellation of two circular orbits, one at an altitude of

1000 Km and the other at an altitude of 1075 Km. The upper orbit has 6 fuel-

deficient satellites, while the lower orbit is populated with 6 satellites, all of which

are fuel-sufficient. The orbital slots of the satellites in the lower orbit are given by

Φ1 = {0, 60, 120, 180, 210, 270, 330} deg. The fuel content of these satellites are 27,

29, 30, 29.5, 28.5 and 28 units respectively. Similarly, the orbital slots of the satellites

in the upper orbit are given by Φ2 = {30, 90, 150, 210, 270, 330} deg. The fuel content
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of these satellites are 0.75, 0.70, 0.80, 0.60 and 0.65 units respectively. Each satellite

has a minimum fuel requirement of f
i

= 12 units, where i = 1, . . . , 12, while the

maximum amount of fuel is f̄i = 30 units. Each satellite has a permanent structure

of msi = 70 units, and a characteristic constant of c0i = 2943 m/s. The indices of

the fuel-sufficient satellites are Is,0 = {1, 2, 3, 4, 5, 6} and those of the fuel-deficient

satellites are Jd,0 = {7, 8, 9, 10, 11, 12}. If all satellites are restricted to engage in non-

cooperative rendezvous, then the optimal P2P assignments are s1 ↔ s12, s2 ↔ s11,

s3 ↔ s10, s4 ↔ s9, s5 ↔ s8, and s6 − s7. The corresponding total fuel expendi-

ture during the refueling process is 12.80 units. The optimal solution is depicted in

Fig. 43(a).

If the satellites are allowed to engage in cooperative rendezvous, the optimal C-

P2P assignments are s1 ↔ s12, s2 ↔ s8, s3 ↔ s9, s4 ↔ s7, s5 ↔ s11, and s6 ↔ s10.

All of these refueling transactions involve cooperative rendezvous. The total fuel

expenditure is given by 11.38 units, implying a reduction of fuel consumption by

11% when we allow for cooperative rendezvous between the satellites. Figure 43(b)

shows the optimal C-P2P assignments. For instance, satellites s1 and s2 meet on

the orbit of radius r = 1.0042 after both preforming Hohmann transfers. In fact, for

all of the refueling transactions, the satellites engage in HHCM rendezvous. In each

case, although the allotted time is enough for a non-cooperative Hohmann transfer

between the participating satellites, the fuel-deficient satellites do not have enough

fuel to complete the non-cooperative Hohmann transfer. Instead, they move as close

as possible to the orbit of a fuel-sufficient satellite by expending all their fuel.

4.7 Summary

In this chapter, we discussed the formulation of the P2P refueling strategy, based

on the notion of achieving fuel-sufficiency in the constellation. We formulated the

problem using a bipartite graph, and outlined the optimization problem that needs
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to be solved in order to determine the optimal P2P maneuvers. It is observed that

in the optimal P2P strategy, the fuel-deficient satellites tend to be active because

of their smaller mass leading to lesser fuel expenditure during the orbital transfers.

However, the fuel of a fuel-deficient satellite may not be sufficient for it to be active.

In such cases, fuel-sufficient satellites may be active. In the baseline P2P strategy, it

is assumed that only one of the two satellites, engaging in a P2P maneuver, is active.

We extend the P2P problem to the case of a Cooperative P2P (C-P2P) refueling

strategy, in which we allow both satellites, participating in a refueling transaction, to

be active. We discussed the formulation of the C-P2P strategy, and with the help of

numerical examples compared it to the baseline P2P strategy. It has been found that

cooperative maneuvers are particularly beneficial when the fuel-deficient satellites

have too low fuel to perform the non-cooperative maneuvers. This is a particularly

important result for a problem such as refueling, because a refueling mission would be

performed at end-of-life of fuel of the satellites, and it is likely that the fuel-deficient

satellites would have very low fuel content.
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Table 5: Sample Constellations.

Label Description
C1 10 satellites, Altitude = 35, 786 Km, T = 12

f−
i : 30, 30, 6, 6, 6, 6, 6, 30, 30, 30

f̄i = 30, f
i
= 12, msi = 70 for all satellites

C ′
1 10 satellites, Altitude = 35, 786 Km, T = 12

f−
i : 30, 30, 1.5, 1.5, 1.5, 1.5, 1.5, 30, 30, 30

f̄i = 30, f
i
= 12, msi = 70 for all satellites

C2 16 satellites, Altitude = 1, 200 Km, T = 30
f−

i : 30, 30, 30, 30, 30, 30, 10, 10, 10, 10, 10, 10, 10, 10, 30, 30
f̄i = 30, f

i
= 15, msi = 70 for all satellites

C ′
2 16 satellites, Altitude = 1, 200 Km, T = 30

f−
i : 30, 30, 30, 30, 30, 30, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5

f̄i = 30, f
i
= 15, msi = 70 for all satellites

C3 12 satellites, Altitude = 2, 000 Km, T = 30
f−

i : 30, 30, 30, 10, 10, 10, 10, 10, 10, 30, 30, 30
f̄i = 30, f

i
= 15, msi = 70 for all satellites

C ′
3 12 satellites, Altitude = 12, 000 Km, T = 20

f−
i : 25, 25, 25, 25, 25, 25, 2, 2, 2, 2, 2, 2

f̄i = 25, f
i
= 12, msi = 75 for all satellites

C4 18 satellites, Altitude = 6, 000 Km, T = 25
f−

i : 25, 25, 25, 25, 25, 25, 25, 25, 25, 6, 6, 6, 6, 6, 6, 6, 6, 6
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C5 12 satellites, Altitude = 12, 000 Km, T = 20
f−

i : 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C ′
5 14 satellites, Altitude = 1, 400 Km, T = 35

f−
i : 25, 25, 25, 25, 25, 25, 25, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5

f̄i = 25, f
i
= 10, msi = 75 for all satellites

C6 14 satellites, Altitude = 1, 400 Km, T = 35
f−

i : 25, 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8, 8
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C7 16 satellites, Altitude = 30, 000 Km, T = 15
f−

i : 10, 10, 10, 10, 10, 10, 10, 10, 28, 28, 28, 28, 28, 28, 28, 28
f̄i = 30, f

i
= 15, msi = 70 for all satellites

C8 16 satellites, Altitude = 1, 200 Km, T = 30
f−

i : 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10
f̄i = 30, f

i
= 15, msi = 70 for all satellites
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Table 6: Fuel expenditures during P2P refueling.

Constellation Optimal P2P Fuel Expenditure Percentage of total fuel
in constellation

C1 26.07 14.48%
C2 37.46 11.71%
C3 26.73 11.14%
C4 41.06 14.72%
C5 23.38 11.81%
C6 28.77 12.45%
C7 19.26 6.35%
C8 9.38 2.93%
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CHAPTER V

EGALITARIAN PEER-TO-PEER REFUELING

STRATEGY

In the the P2P refueling strategy discussed so far, we have considered that the active

satellites are constrained to return to their original orbital slots. In this chapter, we

consider an extension of the baseline P2P refueling problem, in which we remove this

constraint. In other words, we allow the active satellites to interchange their orbital

slots during their return trips. The underlying assumption is that all satellites are

similar and capable of performing the same functions, and hence can replace each

other in the constellation. This extension of the P2P refueling problem is referred

to as the the Egalitarian P2P (E-P2P) refueling strategy. Note that by E-P2P, we

mean a non-cooperative maneuver, that is, only one of the two satellites involved in a

fuel exchange is active, and after the fuel exchange it returns to any available orbital

slot left vacant by other active satellite. In this chapter, we discuss the formulation

of the E-P2P refueling problem, and demonstrate with examples the benefits of this

strategy in reducing the fuel expenditure during the refueling process.

5.1 Formulation Using an Undirected Constellation Graph

During an E-P2P maneuver, an active satellite performs an orbital transfer to ren-

dezvous with a passive satellite, exchanges fuel, and then returns back to an orbital

position left vacant by another active satellite. Let us consider an E-P2P maneuver

between two satellites sµ and sν initially occupying the orbital slots φi and φj re-

spectively. Figure 44 depicts the forward and return trips of the E-P2P maneuver

in which the satellite sµ is active. During the forward trip, the active satellite sµ
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Figure 44: E-P2P Maneuver (sµ active).

performs an orbital transfer from the slot φi to the slot φj occupied by the passive

satellite sµ. During the return trip, the satellite sµ returns to an orbital slot φk left

vacant by another active satellite. Note that the E-P2P maneuver comprises of three

slots, φi, φj, and φk. Hence, an E-P2P maneuver can be represented by a triplet of

orbital slots. In this section, we will formulate the E-P2P problem over an undirected

tripartite graph.

To this end, let us define a complete tripartite constellation graph G consisting of

three partitions. The first partition consists of nodes that correspond to the elements

of the index set Js,0, the second partition consists of nodes that correspond to the

elements of the index set Jd,0, and the third partition consists of nodes that correspond

to the elements of the index set Ja. Therefore, nodes of G are given by Js,0∪Jd,0∪Ja

and the edges of G are all edges induced by triplets in Js,0 × Jd,0 × Ja, that is,

G = {Js,0 ∪ Jd,0 ∪ Ja,Js,0 × Jd,0 × Ja}.

Let us consider a triplet (i, j, k) ∈ Js,0 × Jd,0 × Ja. We say that the triplet

(i, j, k) is feasible if the satellites σ0(φi) and σ0(φj) can engage in a feasible P2P

refueling maneuver, that is, the active satellite (which can be either σ0(φi) or σ0(φj))
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rendezvous with the passive satellite, exchanges fuel, and then returns to the orbital

slot initially occupied by the active satellite σ0(φk), such that both σ0(φi) and σ0(φj)

end up being fuel-sufficient at the end of the process. Let T ⊆ Js,0×Jd,0×Ja denote

the set of all feasible triplets in the constellation graph G.

5.1.1 E-P2P Maneuver Costs and Feasible Triplets

Let us consider a triplet (i, j, k) ∈ Js,0 ×Jd,0 ×Ja in the constellation graph G. Also,

let the satellite sµ occupy the orbital slot φi at time t = 0 and the satellite sν occupy

the orbital slot φj at time t = 0. Hence, sµ = σ0(φi) and sν = σ0(φj). Without loss

of generality, assume sµ to be a fuel-sufficient satellite and sν to be a fuel-deficient

satellite, that is, µ ∈ Is,0 and ν ∈ Id,0. Either of the two satellites may be active

during a refueling transaction between the two satellites. Hence, two different P2P

refueling transactions are possible for the triplet (i, j, k).

In the first case, the fuel-sufficient satellite is active, that is, satellite sµ performs

the orbital maneuver to rendezvous with the passive satellite sν . Therefore, µ ∈

Ia ∩ Is,0 and ν ∈ Ip ∩ Id,0. After the fuel exchange takes place between the two

satellites, sµ performs another orbital maneuver and moves to the orbital slot φk

initially occupied by the active satellite σ0(φk). Note that k ∈ Ja and k 6= j. The

fuel consumed by the active satellite sµ to transfer from the orbital slot φi to the

orbital slot φj is given by:

pµ
ij =

(

msµ + f−
µ

)

(

1 − e
−

∆Vij
c0µ

)

, (157)

where msµ is the mass of the permanent structure of satellite sµ, and ∆Vij is the

optimal velocity change required for a two-impulse transfer from the orbital slot φi

to the orbital slot φj. The parameter c0µ is defined by c0µ = g0Ispµ, where g0 is the

acceleration due to gravity at the Earth’s surface and Ispµ is the specific thrust of

satellite sµ. The fuel content of satellite sµ after its forward trip (but before fuel

exchange takes place) is f−
µ − pµ

ij. Since the fuel consumption during the maneuver is
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minimized when the active satellite returns to its final slot with exactly the required

minimum amount of fuel to remain operational, the amount of fuel consumed during

the return trip (during which satellite sµ travels from φj to φk), is given by

pµ
jk =

(

msµ + f
µ

)

e
∆Vjk
c0µ

(

1 − e
−

∆Vjk
c0µ

)

. (158)

In (158), ∆Vjk denotes the optimal velocity change required for the transfer from

the orbital slot φj to the orbital slot φk. Before the return trip (but after the fuel

exchange takes place), the fuel on board satellite sµ is f
µ

+ pµ
jk. The fuel transferred

to satellite sν during the fuel exchange is (f−
µ − pµ

ij) − (f
µ

+ pµ
jk), assuming that the

satellite sν has enough fuel capacity to accommodate this amount of fuel. The fuel

on board satellite sν after it is refueled is f−
ν + (f−

µ − pµ
ij) − (f

µ
+ pµ

jk). In order

for satellite sν to become fuel-sufficient after the fuel transaction, we must therefore

have,
(

f−
ν + f−

µ

)

−
(

f
µ

+ f
ν

)

≥ pµ
ij + pµ

jk. (159)

If the above condition does not hold, then the P2P refueling transaction between sµ

and sν is not feasible. Also, if satellite sµ does not have enough fuel to carry out the

orbital transfer during the forward trip, that is, if pµ
ij ≥ f−

µ , then the P2P refueling

transaction is also not feasible. Let c1 (i, j, k) denote the cost of a P2P maneuver for

the case when the fuel-sufficient satellite is active. Then c1 (i, j, k) is given by the

sum of (157) and (158). We therefore have,

c1 (i, j, k) =















pµ
ij + pµ

jk, if pµ
ij < f−

µ and pµ
ij + pµ

jk ≤
(

f−
µ + f−

ν

)

−
(

f
µ

+ f
ν

)

,

∞, otherwise.

(160)

In the second case, the fuel-deficient satellite is active, that is, satellite sν performs

the orbital maneuver to rendezvous with the passive satellite sµ. Therefore, µ ∈

Ip ∩ Is,0 and ν ∈ Ia ∩ Id,0. After a fuel exchange takes place between the two

satellites, sν performs another orbital maneuver and travels to the orbital slot φk
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initially occupied by the active satellite σ0(φk). Note that k ∈ Ja and k 6= i. The fuel

consumed for the active satellite sν to transfer from the orbital slot φi to the orbital

slot φj is given by

pν
ji =

(

msν + f−
ν

)

(

1 − e
−

∆Vji
c0ν

)

. (161)

The fuel content of satellite sν after its forward trip (but before fuel exchange takes

place), is f−
ν −pν

ji. The amount of fuel consumed during the return trip, during which

the satellite sν travels from the orbital slot φi to the orbital slot φk, is given by

pν
ik =

(

msν + f
ν

)

e
∆Vik
c0ν

(

1 − e
−

∆Vik
c0ν

)

, (162)

Before the return trip (but after the fuel exchange takes place), the fuel on board

satellite sν is f
ν

+ pν
ik. The fuel transferred to satellite sν during the fuel exchange

is (f
ν

+ pν
ik) − (f−

ν − pν
ji). The fuel on board satellite sµ after the fuel transaction is

f−
µ − (f

ν
+ pν

ik) + (f−
ν − pν

ji). In order for the satellite sµ to be fuel-sufficient after the

fuel transaction, we must have

(

f−
µ + f−

ν

)

−
(

f
ν

+ f
µ

)

≥ pν
ji + pν

ik. (163)

If the above condition does not hold, then a P2P refueling transaction between sµ and

sν is not feasible. Also, if the satellite sν does not have enough fuel to carry out the

orbital transfer during the forward trip, that is, if pν
ji ≥ f−

ν , then the P2P refueling

transaction is also not feasible. Let c2 (i, j, k) denote the cost of a P2P maneuver for

the case when the fuel-deficient satellite is active. Then, c2 (i, j, k) is given by the

sum of (161) and (162). We therefore have,

c2 (i, j, k) =















pν
ji + pν

ik, if pν
ji < f−

ν and pν
ji + pν

ik ≤
(

f−
µ + f−

ν

)

−
(

f
ν

+ f
µ

)

∞, otherwise.

(164)

Of the two possible P2P maneuvers associated with the triplet (i, j, k), the cheaper

one is of interest to us. To this end, let the total fuel expenditure incurred in the P2P
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maneuver associated with the triplet (i, j, k) be given by

c (i, j, k) =















c1 (i, j, k) , if c1 (i, j, k) ≤ c2 (i, j, k)

c2 (i, j, k) , otherwise.

(165)

We therefore associate with each triplet (i, j, k) ∈ Js,0 × Jd,0 × Ja a single P2P

maneuver. The set of all feasible triplets can then defined by T = {(i, j, k) ∈ Js,0 ×

Jd,0 ×Ja : c (i, j, k) <∞}. Let now Act : T 7→ I be a function that returns the index

of the orbital slot of the active satellite, that is,

Act (i, j, k) =















i, if c1 (i, j, k) ≤ c2 (i, j, k)

j, otherwise.

(166)

Similarly, let Pas : T 7→ I be a function that returns the index of the orbital slot of

the passive satellite, that is,

Pas (i, j, k) =















j, if c1 (i, j, k) ≤ c2 (i, j, k)

i, otherwise.

(167)

Moreover, the edges induced by the triplets that are not feasible can be removed

from the graph G in order to yield a reduced constellation graph Gr. Therefore,

Gr = {Js,0 ∪ Jd,0 ∪ Ja, T }. Henceforth, we restrict our discussion to the reduced

constellation graph Gr.

Using equations (157), (158), (161) and (162), we can ascertain the cost of a

triplet (i, j, k) ∈ T using (165). Notice that the calculation of the optimal costs

∆Vij,∆Vji, ∆Vjk and ∆Vki in Equations (157), (158), (161) and (162) requires, in

general, the solution of the two-impulse multi-revolution Lambert problem.61

5.1.2 The Three-Index Assignment Problem

Since our goal is to refuel all fuel-deficient satellites, each of them should be part of

a feasible fuel transaction. We therefore seek a set of exactly |Id,0| feasible triplets
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Figure 45: Feasible E-P2P Solution.

M∗
e ⊆ T in the reduced constellation graph Gr such that none of the triplets in M∗

e

share a common vertex or a common edge, and such that the sum of the costs of all

these triplets is minimum. To this end, let us define as a feasible E-P2P solution a

set Me of |Jd,0| feasible triplets that has the following properties:

i) An active and a passive satellite should feature in a single E-P2P maneuver,

that is, i 6= i′, j 6= j′ for all triplets (i, j, k) , (i′, j′, k′) ∈ Me.

ii) The returning positions for all active satellites are distinct, that is, k 6= k′ for

all triplets (i, j, k), (i′, j′, k′) ∈ Me.

iii) The return positions are the slots left vacant by the active satellites.

iv) The orbital slots of the passive satellites cannot be the return positions for any

of the active satellites.

Fig. 45 depicts a set of triangles in the constellation graph that corresponds to a

feasible E-P2P solution. The cost C(Me) of a feasible E-P2P solution Me is defined

to be the sum of the cost of all triplets in Me, that is,

C(Me) =
∑

(i,j,k)∈Me

c (i, j, k) . (168)
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The optimal E-P2P solution is a feasible E-P2P solution M∗
e that achieves the min-

imum value of (168) among all feasible set of triplets. That is, C(M∗
e) ≤ C(Me) for

all feasible Me ⊂ T .

In order to determine the optimal E-P2P solution, let us therefore consider a set

Me ⊆ T that consists of |Id,0| triplets. To each triplet (i, j, k) ∈ T , let us associate

a binary variable xijk as follows

xijk =















1, if (i, j, k) ∈ Me,

0, otherwise.

(169)

We can therefore formulate the problem of finding the set of feasible triplets Me ⊆ T

that yield the minimum cost as follows

min
Me⊆T

∑

(i,j,k)∈Me

c (i, j, k) xijk, (170)

such that
∑

j∈Jd,0

∑

k∈Ja

xijk ≤ 1, for all i ∈ Js,0, (171)

∑

i∈Js,0

∑

k∈Ja

xijk = 1, for all j ∈ Jd,0, (172)

∑

i∈Js,0

∑

j∈Jd,0

xijk ≤ 1, for all k ∈ Ja, (173)

r 6= Pas(i, j, k) for all (i, j, k) , (p, q, r) ∈ Me. (174)

Constraint (171) signifies that not all fuel-sufficient satellites have to be part of

P2P refueling transactions, because we may have |Is,0| > |Id,0|. Constraint (172)

implies that each fuel-deficient satellite must be part of exactly one P2P fuel trans-

action. Constraint (173) signifies that each of the slots left vacant by the active

satellites needs to be assigned to a P2P refueling transaction. Note that the set of

active satellites is not known a priori. We only know that Ja ⊂ I. For solving our

problem, we use Ja = I for the third partition of the constellation. Therefore, not

all nodes of the third partition correspond to orbital slots of active satellites. Hence
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the inequality sign in the constraint (173). Constraint (174) implies that the return

orbital slot for the active satellite in a P2P maneuver cannot be the orbital slot of a

passive satellite of a different P2P maneuver. To illustrate this, let us consider two

triplets (i, j, k) ∈ Me and (p, q, r) ∈ Me such that i 6= p, j 6= q, k 6= r. Without

loss of generality, assume Act(i, j, k) = i and Act(p, q, r) = p. If r = j, then the

fuel-sufficient satellite σ0(φp) initially occupying orbital slot φp returns to the orbital

slot φj. However, the orbital slot φj is not vacant because the satellite σ0(φj) is pas-

sive and never leaves its slot. Constraint (174) avoids such infeasible cases. A set of

triplets Me ⊆ T satisfying (169), (171)-(174) will be referred to as a basic feasible

solution for our problem.

It should be mentioned at this point that a few differences emerge between our

problem and the standard three-index assignment problem (AP3) discussed in Refs. 2,

7,8,16,25,55,66. First, the AP3 is a matching problem in a complete tripartite graph,

whose partitions have the same number of nodes. In the case of the constellation

graph G or the reduced constellation graph Gr, the three partitions do not have the

same number of nodes. Secondly, in our problem, we have additional constraints

given in (174), which need to be accounted for whenever a basic feasible solution is

considered. Nonetheless, in our problem we can readily construct one basic feasible

solution without solving a three-index assignment problem. This solution is obtained

by solving the P2P refueling problem, while constraining the active satellites to return

to their orbital slots after refueling. This problem can be easily solved as a two-index

assignment problem.19,70,72,75

5.2 Greedy Random Adaptive Search Procedure

In this section, we use a Greedy Random Adaptive Search Procedure to solve the

three-index assignment problem, while taking into account the additional constraints

in (174). The GRASP has been used to solve the standard AP3, and primarily
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consists of two phases: a construction phase that builds a basic feasible solution, and

a local search phase that locates a solution in the neighborhood of the basic feasible

solution with a lower cost. Reference 25 discusses two variants of implementing the

construction phase (randomized greedy, maximum regret) as well as two variants

of implementing the local search phase (two-exchange neighborhood search, variable

depth exchange). We will use the randomized greedy method in the construction

phase in order to generate a basic feasible solution, and we will perform a local search

using a two-exchange neighborhood.

5.2.1 Construction of a Basic Feasible Solution

The construction phase iteratively builds a feasible solution Me by selecting |Id,0|

triplets, one at a time, from a list L of eligible triplets from T . The list L initially

consists of all triplets in the reduced constellation graph Gr, that is, L = T , because

initially all triplets are eligible for selection during the construction of Me.

Let Mℓ denote the constructed solution after the ℓth iteration, where ℓ ≤ |Id,0|.

Initially M0 = ∅. Assume p−1 < |Id,0| triplets have been added after p−1 iterations,

so the current constructed solution is denoted by Mp−1 = {(iℓ, jℓ, kℓ) : ℓ = 1, 2, . . . , p−

1}. The pth triplet needs to be added to Mp−1.

A parameter η, known as restricted candidate list parameter, is selected at random

from the interval [0, 1] and is used to form a list Lr called the restricted candidate

list that comprises of the best (in terms of lower cost) candidate triplets available for

selection during the current iteration step. The restricted candidate list Lr ⊆ L is

defined as

Lr = {(i, j, k) ∈ L : c (i, j, k) ≤ c+ η(c̄− c)}, (175)

where c and c̄ are given by

c = min
(i,j,k)∈L

c (i, j, k) and c̄ = max
(i,j,k)∈L

c (i, j, k) . (176)
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The definition of the restricted candidate list given in (175) shows the greedy

nature of the algorithm. Only triplets in L having cost less than c + η (c̄− c) are

made eligible for selection. At the pth step the triplet (ip, jp, kp) is chosen at random

from Lr, provided it does not violate (174), that is,

kp 6= Pas(iℓ, jℓ, kℓ) for all ℓ = 1, 2, . . . , p− 1, (177)

and

kℓ 6= Pas(ip, jp, kp) for all ℓ = 1, 2, . . . , p− 1. (178)

Equation (177) implies that the return orbital slot corresponding to the triplet

(ip, jp, kp) cannot be the orbital slot of a passive satellite corresponding to any of

the triplets in Mp−1, and equation (178) implies that the orbital slot of the passive

satellite corresponding to the triplet (ip, jp, kp) cannot be the returning orbital slot

corresponding to any of the triplets in Mp−1. Once the pth triplet is selected, the set

of candidate triplets L must be adjusted to take into account that (ip, jp, kp) is now

part of the solution. Therefore, any triplet (i, j, k) ∈ L with i = ip or j = jp or k = kp

is removed from L because any such triplet cannot be selected in the future; otherwise

at least one of the constraints (171), (172), or (173) will be violated. Subsequently,

the list L is updated accordingly. Finally, Mp = Mp−1 ∪ (ip, jp, kp).

The adaptive nature of the GRASP method is due to the fact that once a triplet

from Lr is selected for addition to Mp−1, all triplets that are made ineligible for

addition to Mp+1 are removed from L. The probabilistic nature of the algorithm

arises from the use of the random parameter η and the random selection of a triplet

from the restricted candidate list. In the most simple implementation of the algorithm

the value of η is not changed during the construction phase.

5.2.2 Local Search

In the local search phase, the feasible solution from the construction phase is im-

proved upon by searching its neighborhood for a better solution. If an improvement
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is detected, the solution is updated and a new neighborhood search is initialized.

The definition of the neighborhood N (Me) of Me is crucial for the performance of

the local search. Here we use the 2-exchange neighborhood suggested in Ref. 2. Re-

call that the basic feasible solution generated by the construction phase consists of

|Id,0| triplets. For convenience, let us denote the triplet (iℓ, jℓ, kℓ) by tℓ. Let also

D = {1, 2, . . . , |Id,0|} denote the index set of triplets in Me. We can therefore write

Me = {tℓ : ℓ ∈ D}. We will denote the difference between tp, tq ∈ Me by

δ(tp, tq) = {r : tp,r 6= tq,r, r = 1, 2, 3}. (179)

The distance between the triplets tp and tq is then defined as

d(tp, tq) = |δ(tp, tq)|. (180)

Using (180), we can define the 2-exchange neighborhood of the triplet pair (tp, tq) ∈

Me ×Me as

N2(tp, tq) = {(τ, σ) ∈ Me ×Me : d(tp, τ) + d(tq, σ) = 2}. (181)

The neighborhood of the solution Me consists of the union of 2-exchange neighbor-

hoods of all possible triplet pairs (tp, tq) ∈ Me, that is,

N (Me) =
⋃

(tp,tq)∈Me

N2(tp, tq). (182)

During the local search phase the cost of each M′
e ∈ N (Me) (validated with respect

to the constraints as in (174)) is compared with the cost of Me. If the cost is lower,

then the current search is halted, and a search around the neighborhood of M′
e is

initialized. The local search ends when no neighbor of the current solution has a lower

cost.

The successive application of the construction phase and the local search phase

may generate several local minima. The procedure halts either after the maximum

number of iterations is reached, or if a local minimum with a value less than or equal

to some pre-specified value is found.
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5.3 Numerical Results: GRASP Solution

In this section, we apply the GRASP method in order to determine the optimal assign-

ments required for P2P refueling of sample constellations when the active satellites

are not restricted to return to their original orbital slots. We also compare the results

against the baseline P2P case, namely when the active satellites are constrained to

return to their original orbital slots. With the help of numerical examples, we show

how the removal of such a restriction leads to considerable reduction in the fuel ex-

penditure required for the refueling process to be completed. In all examples, we run

the GRASP procedure 10, 000 times in order to determine the optimal assignments.

Example 13. E-P2P refueling strategy in a constellation of 10 satellites.

We revisit Constellation C1 given in Table 5. It is found that when the active

satellites are allowed to interchange their orbital slots, the optimal assignments for

E-P2P refueling are s8 → s7 → s6, s6 → s9 → s8, s3 → s10 → s1, s1 → s4 → s5,

s5 → s2 → s3. The fuel expenditure during the refueling process is 18.73 units,

which is less than the fuel expenditure for the baseline P2P case. This represents

10.41% of the total initial fuel in the constellation, or an improvement of 28% over

the standard P2P scenario. Figure 46(a) shows the constellation and the optimal

assignments. The active satellites are marked by ’⋆’. The forward trips are marked

by solid arrows, while the return trips are marked by dotted arrows. In the optimal

assignment produced by the GRASP method, it is observed that each active satellite,

after undergoing a fuel transaction with the corresponding passive satellite, returns

to an available orbital slot in the vicinity of the passive satellite with which it was

involved in the transaction. For instance, satellite s1 undergoes a fuel transaction with

the satellite s4 and then returns to the orbital slot initially occupied by active satellite

s5. Moving to an orbital slot in the vicinity involves an orbital transfer through a

smaller transfer angle and thereby results in a likely lesser fuel expenditure during the
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Figure 46: E-P2P solution determined by GRASP.

return trip. Hence, the active satellites, having the freedom to return to any available

orbital slot, opt to move to a nearby orbital slot during the return trip. In the baseline

P2P strategy, such freedom is not available, and some of the active satellites have to

perform orbital transfers that incur higher cost. Another observation is the fact that

some of the active satellites are also fuel-sufficient. Note that satellites s1 and s8 are

fuel-sufficient and active. For this problem, by having some fuel-sufficient satellites

as the active satellites, it is ensured that all active satellites are able to return to the

nearest orbital slot, thereby saving fuel during the return trip.

Figure 47 depicts a basic feasible solution generated by the GRASP method along

with a local search performed about this solution. Figure 47(a) is the basic feasible

solution and corresponds to the assignment s4 → s10 → s1, s1 → s3 → s4, s7 → s8 →

s2, s2 → s5 → s7, s6 → s9 → s6. The cost of this assignment is 24.87 units of fuel. By

performing a search in the neighborhood of this solution, another assignment of lower

cost, shown in Figure 47(b) is obtained. In this assignment, satellite s4 returns to the

orbital slot initially occupied by s2 instead of the orbital slot initially occupied by s1,

while satellite s7 returns to the orbital slot initially occupied by s1 instead of returning

to the orbital slot initially occupied by s2. The cost of this assignment is 24.77 units
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Figure 47: Example of local search of the GRASP method.

of fuel. A local search performed in the neighborhood of this solution yields the

assignment shown in Figure 47(c). In this assignment, satellite s7 rendezvous with

s9 instead of s8, while satellite s6 rendezvous with s8 instead of s9. The cost of this

assignment is 22.61 units of fuel. A search in the neighborhood of this solution now

yields yet another assignment shown in Figure 47(d). In this assignment, satellite s2

returns to the orbital slot initially occupied by s6 instead of the orbital slot initially

occupied by s7, while satellite s6 returns to the orbital slot initially occupied by s7

instead of returning to its original orbital slot. The cost of this solution is 20.48.

Finally, a local search in the neighborhood of this solution yields no other cheaper

solution, thereby implying that the assignment in Figure 47(d) is a local minimum.

Example 14. E-P2P refueling strategy in a constellation of 16 satellites.

In this example, we consider again Constellation C2 given in Table 5. Using

the GRASP method to determine the optimal assignments for E-P2P refueling of
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satellites in this constellation. If the active satellites are allowed to interchange or-

bital slots, then the optimal assignment for the P2P refueling problem, as deter-

mined by the GRASP method, are s1 → s12 → s13, s3 → s7 → s6, s5 → s8 → s9,

s6 → s10 → s11, s9 → s4 → s5, s11 → s15 → s14, s13 → s16 → s1, s14 → s2 → s3.

Here, Ia = {1, 3, 5, 6, 9, 11, 13, 14}. Relaxing the return orbital position constraint re-

duces the fuel expenditure to 24.82 units. This represents 7.76% of the total initial fuel

in the constellation or an improvement of 33% over the standard P2P scenario. Fig-

ure 46(b) shows the constellation and the optimal assignments. The active satellites

are marked by ’⋆’. Similarly to Example 13, it is observed that the active satellites,

after undergoing fuel transactions with the corresponding passive satellites, return to

an available orbital slot in their vicinity. For instance, satellite s1 undergoes a fuel

transaction with satellite s12 and returns to the orbital slot occupied by active satel-

lite s13. Also, the active satellites include fuel-sufficient ones. Here the fuel-sufficient

satellites s1, s3, s5 and s6 being active ensures that all active satellites return to the

neighboring orbital slot.

The above examples show the benefit of an E-P2P strategy over a P2P strategy.

P2P or E-P2P refueling strategy discussed so far has all been formulated on an undi-

rected constellation graph. However, it is more natural to formulate such a problem

over a constellation graph with directed edges (also termed arcs), with each arc rep-

resenting an orbital transfer, the direction being from the initial to final orbital slot

of the active satellite during the transfer. We now provide an alternative formula-

tion of the E-P2P problem using a directed graph approach. In the next section, we

use a directed graph to construct a constellation network and formulate the E-P2P

refueling problem as a minimum cost flow in the network.
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5.4 Network Flow Formulation for the E-P2P Problem

In this section, we discuss in detail the network flow formulation for solving the E-

P2P problem. As we will show, we can set up a minimum cost flow problem, the

solution to which would provide the will correspond to a set of maneuvers for which

total ∆V is minimized. We also describe a local search method for improving this

solution, in terms of fuel expenditure, by performing a local search similar to the

GRASP method.

5.4.1 Constellation Digraph

Let us consider a directed tripartite constellation graph G with the three partitions

being Ja,Jp,Jr. Because we do not know a priori which satellites are active, we

consider Ja = Jp = Jr = I. On the constellation digraph G we represent a E-P2P

maneuver (i, j, k) by the directed edges (i, j) and (j, k), where i ∈ Ja, j ∈ Jp, and

k ∈ Jr. Since a fuel transaction can only be between a fuel-sufficient and a fuel-

deficient satellite, we have that either i ∈ Js,0 and j ∈ Jd,0, or i ∈ Jd,0 and j ∈ Js,0.

Therefore, the set of edges representing all possible forward trips is given by
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Figure 48: E-P2P Directed constellation graph.

Ef = {(i, j) : i ∈ Js,0∩Ja, j ∈ Jd,0∩Jp}∪{(i, j) : i ∈ Jd,0∩Ja, j ∈ Js,0∩Jp}. (183)
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The return maneuver from the orbital slot φj to the orbital slot φk, where k 6= j, can

be represented by a directed edge (j, k) ∈ Jp × Jr, j 6= k. We can therefore denote

the set of all possible return trips by

Er = {(j, k) : j ∈ Jp, k ∈ Jr, j 6= k}. (184)

Thus, the set of vertices in the constellation digraph is given by V = Ja∪Jp∪Jr, while

the set of edges is given by E = Ef ∪ Er. Let the constellation digraph be G = (V , E).

Figure 48 shows the digraph for a constellation, with vertices representing orbital slots

of satellites and edges representing orbital maneuvers. Note that a pair of directed

edges (i, j) ∈ Ef and (ℓ, k) ∈ Er represents an E-P2P maneuver if and only if ℓ = j.

5.4.2 Cost Assignment

With each orbital transfer represented by a directed edge (i, j) ∈ E , we associate a

cost cij as follows

cij = ∆Vij for all (i, j) ∈ E , (185)

where ∆Vij is the required velocity change for a satellite to transfer from the orbital

slot φi to the orbital slot φj. Note that the calculation of ∆Vij requires, in general,

the solution of a two-impulse multi-revolution Lambert problem.61

We should point out here that – ideally – the cost cij should be the fuel consump-

tion during the transfer. However, the amount of fuel depends on the mass of the

satellite performing the transfer, which may not be known a priori. For instance,

recall that the edge (j, k) ∈ Er represents a valid return trip for any of the E-P2P

maneuvers in which an edge (i, j) ∈ Ef represents a forward trip. The set of possible

active satellites that can carry out the orbital transfer from the slot φj to the slot φk is

given by {σ0(φi) : (i, j) ∈ Ef}. For each of these active satellites, the fuel expenditure

for the return trip represented by the edge (j, k) ∈ Er is different. Therefore, if fuel

expenditure is used to define the cost of edges, no unique value can be assigned to an
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edge (j, k) ∈ Er. This is the reason we use (185) tacitly recognizing the fact that the

results will necessarily be suboptimal in terms of actual fuel consumption.

5.4.3 Constellation Network Flow

Given the constellation digraph G, we now set up the constellation network Gn and

show that the E-P2P problem can be formulated as a minimum cost flow problem on

the constellation network Gn. To this end, we add a source node s and a sink node t

to the constellation digraph G. For all i ∈ Ja, we also add an arc (s, i) with associated

cost csi = 0. We denote the set of these arcs by Es. Similarly, for all k ∈ Jr, we add

an arc (k, t) with associated cost ckt = 0. We denote the set of these arcs by Et. The

set of nodes for Gn is Vn = {s} ∪ V ∪ {t}, while the set of arcs (directed edges) of Gn

is En = Es ∪ E ∪ Et. That is, Gn = (Vn, En). A depiction of Gn is given in Figure 49.
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1
1
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s t

Ja Jp
Jr

Es Ef Er Et

Figure 49: E-P2P Constellation flow network.

Let us now consider a s → t flow in the network Gn. By a s → t flow, we mean a

flow from the source s to the sink t passing through the nodes i ∈ Ja, j ∈ Jp and

k ∈ Jr in that order, that is, a flow along the directed path {s → i → j → k → t}.

Note that the s → t flow passes through the arcs (s, i) ∈ Es, (i, j) ∈ Ef , (j, k) ∈ Er

and (k, t) ∈ Et. Of these, the arcs (i, j) and (j, k) constitute an E-P2P maneuver

(i, j, k), and the sum of the costs of all these edges is the total cost of the E-P2P

maneuver (i, j, k). The remaining arcs (s, i) and (k, t) have zero cost and therefore
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the cost of a unit flow along the path {s → i → j → k → t} is the total cost of

the corresponding E-P2P maneuver. We can therefore associate an E-P2P maneuver

with a unique s→ t flow.

5.4.4 Network Flow Minimization Problem

We will now formulate the E-P2P refueling problem as a minimum cost flow problem.

It is to be noted here that the integrality property 1 states that if all arc capacities

and supplies/demands of the nodes are integers, the minimum cost flow problem has

an integral optimal solution. In other words, we can arrive at the optimal solution

by considering only integer values of the flow variables. In the formulation of our

problem, we will include integer arc capacities and integer supply/demand for each

node, and will show that a feasible integral flow in the constellation corresponds to

a feasible E-P2P solution Me. Now let us introduce a flow variable xij for each edge

(i, j) ∈ En. The flow variable xij equals the amount of flow through the edge (i, j).

We consider xij ∈ {0, 1}. Clearly, for each edge (i, j), the capacity which is the

maximum amount of flow that is permissible through that edge equals 1. In addition,

let bi denote the amount of supply at node i ∈ Vn, such that bi < 0 denotes demand

at the node. For all nodes i ∈ N\{s, t}, we have bi = 0. For the source and sink

nodes, we have bs = |Id,0| and bt = −|Id,0|, respectively. This implies that we wish

to send a flow equal to |Id,0| through the network from the source to the sink, given

that no edge allows more than one unit of flow through it.

All nodes in the constellation network Gn are required to satisfy the usual flow

balance equations

∑

j:(i,j)∈En

xij −
∑

j:(j,i)∈En

xji = bi for all i ∈ Vn. (186)

However, our initial consideration Ja = Jp = Jr = I requires the introduction of

additional constraints. First, note that Act(Me) = Ret(Me). Hence, if the flow

passes through a node i ∈ Ja, then the flow has to pass through the node i ∈ Jr.
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Moreover, if the flow does not pass through the node i ∈ Ja, no flow should then pass

through i ∈ Jr. This constraint can be written as

xsi = xit for all i ∈ Ja = Jr. (187)

Second, note that i ∈ Act(Me) implies i /∈ Pas(Me). Hence, the network should not

allow two s→ t flows, one that passes through node i ∈ Ja and the other that passes

through i ∈ Jp. That is, the satellite originally occupying the orbital slot φi cannot

be simultaneously the active satellite and the passive satellite with respect to two

different P2P maneuvers. This implies the following constraint

xsj +
∑

i:(i,j)∈Ef

xij ≤ 1 for all j ∈ Jp. (188)

Finally, given the constellation network Gn, we seek to find the minimum cost flow

in the network

(EP2P-IP): min
∑

(i,j)∈En

cijxij (189)

subject to the constraints (186)-(188) and xij ∈ {0, 1}.
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Figure 50: Constellation flow network with an additional (t, s) arc.

Note that in Fig. 49 the source sends a total flow equal to |Jd,0| to the sink

via the network. Since the capacity of each edge is unity, an integral flow in the
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network will be comprised of |Jd,0| flows from s to t. We now show that the network

ensures that all fuel-deficient satellites are involved in fuel transactions. The flow

from the sink reaches |Jd,0| nodes in Ja. Clearly, these nodes are given by Act(Me)

and |Act(Me)| = |Jd,0|. The indices of the original orbital slots of the active fuel-

sufficient satellites are given by Act(Me)∩Js,0 and those for the active fuel-deficient

satellites are given by Act(Me)∩Jd,0. The set of nodes in Jp through which the flow

passes are given by Pas(Me). Evidently, the indices of the original orbital slots of the

passive fuel-sufficient satellites are given by Pas(Me)∩Js,0, while those of the passive

fuel-deficient satellites are given by Pas(Me) ∩ Jd,0. Because a fuel transaction can

only be between a fuel-sufficient and a fuel-deficient satellite, the number of passive

fuel-deficient satellites will equal the number of active fuel-sufficient satellites, that

is, we have |Pas(Me)∩Jd,0| = |Act(Me)∩Js,0|. However, the total number of active

satellites is |Jd,0|, so that we have |Act(Me)∩Js,0|+|Act(Me)∩Jd,0| = |Jd,0|. It follows

that |Act(Me)∩Jd,0|+ |Pas(Me)∩Jd,0| = |Jd,0|, which implies that the flow from the

source reaches all nodes corresponding to the orbital slots of all fuel-deficient satellites.

In other words, all fuel-deficient satellites are involved in a fuel transaction during

the E-P2P maneuvers represented by the optimal flow in the network as required by

the problem statement.

Remark 1. Note that in the network flow formulation for the problem, the supply or

demand at each node representing an orbital slot of a satellite is zero. If we now let

bs = bt = 0, but add an arc (t, s) in the network Gn and impose a flow |Id,0| through

this arc from the sink to the source, then the problem remains unaltered. All nodes

in the augmented network (see Fig. 50) now have zero demand/supply and the flow

in the network has to be a circulation. We know that a circulation can always be

decomposed into cycles.1 Hence, the optimal cost flow should be in the form of cycles.

Let the solution obtained by solving (EP2P-IP) be denoted by MIP and the cor-

responding fuel expenditure be denoted by CIP. Note that the solution has to be
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Figure 51: Optimal E-P2P assignments.

sub-optimal because instead of minimizing the total fuel expenditure, we are min-

imizing the total ∆V during the E-P2P maneuvers represented by the flow in the

constellation network. However, we can perform a local search in the N2 neighbor-

hood (refer Section 5.2.2) of MIP in order to find a solution cheaper in terms of fuel

expenditure. We denote by MH the final solution that is obtained by the application

of the local search method on MIP.

5.5 Numerical Examples: E-P2P Solution

In this section, we apply our proposed method to determine the optimal assignments

for E-P2P refueling of sample constellations given in Table 5. In order to obtain

the optimal assignments, the integer program (EP2P-IP) is solved using the binary

integer programming solver bintprog of MATLAB. This solver uses branch-and-

bound to solve integer programs. We also compare the results against the baseline

P2P strategy, in which the active satellites are constrained to return to their original

orbital slots.

Example 15. E-P2P refueling strategy in a constellation of 10 satellites.

In this example, we determine the optimal assignments for E-P2P refueling of
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satellites in constellation C1 by solving the optimization problem (EP2P-IP). The

solution of (EP2P-IP) yields the following optimal assignment for E-P2P refueling:

s1 → s3 → s2, s2 → s4 → s5, s5 → s8 → s9, s7 → s10 → s1, s9 → s6 → s7. The

fuel expenditure during the E-P2P refueling process is 19.11 units, which is less than

the fuel expenditure for the baseline P2P case. This represents 10.62% of the total

initial fuel in the constellation. Figure 51(a) shows the optimal assignments for the

E-P2P case. Similar to the observations for Example 13, it is observed that each

active satellite, after undergoing a fuel transaction with the corresponding passive

satellite, returns to an available orbital slot in the vicinity of the passive satellite with

which it was involved in the transaction. For instance, satellite s1 undergoes a fuel

transaction with satellite s3, and then returns to the orbital slot initially occupied

by active satellite s2. Moving to an orbital slot in the vicinity involves an orbital

transfer through a smaller transfer angle, and thereby it likely results in a lesser fuel

expenditure during the return trip. Another observation that is similar to the solution

yielded by the GRASP method is some of the active satellites are also fuel-sufficient.

For instance, satellites s1, s2 and s9 are fuel-sufficient and active. Furthermore, note

in figure 51(a) that the optimal solution comprises a Hamiltonian cycle {s1 → s3 →

s2 → s4 → s5 → s8 → s9 → s6 → s7 → s10 → s1} in the constellation.

Example 16. E-P2P refueling strategy in a constellation of 16 satellites.

For constellation C2 given in Table 5, the solution of (EP2P-IP) yields the following

optimal assignment for E-P2P refueling: s1 → s12 → s13, s3 → s7 → s6, s5 →

s8 → s9, s6 → s10 → s11, s9 → s4 → s5, s11 → s15 → s14, s13 → s16 → s1,

s14 → s2 → s3. Here, Ja = {1, 3, 5, 6, 9, 11, 13, 14}. Note that this assignment is

the same as determined using the GRASP method given in Example 14. Therefore,

as before, the fuel expenditure is 24.82 units, that represents 7.76% of the total

initial fuel in the constellation. Figure 51(b) shows the constellation and the optimal

assignments for the E-P2P case. The active satellites are marked by ’⋆’. Also note
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that the figure shows that the optimal solution corresponds to three cycles in the

constellation, namely, {s1 → s12 → s13 → s16 → s1}, {s3 → s7 → s6 → s10 → s11 →

s15 → s14 → s2 → s3} and {s5 → s8 → s9 → s4 → s5}.

We have also tested the proposed methodology on other constellations as depicted

in Table 5. The optimal assignments for these constellations show considerable re-

duction in fuel consumption against the baseline P2P strategy. For instance, for

constellation C3, the baseline P2P refueling strategy yields an optimal assignment

s4 → s1, s5 → s2, s7 → s10, s6 → s3, s11 → s8, s9 → s12 with a fuel expen-

diture of 26.73 units, with the fuel-deficient satellites being the active ones. Our

proposed methodology yields the optimal assignment s1 → s4 → s5, s3 → s6 → s7,

s5 → s2 → s3, s7 → s10 → s11, s9 → s12 → s1, s11 → s8 → s9, that reduces the fuel

expenditure to 18.87 units. The optimal solution consists of the Hamiltonian cycle

{s1 → s4 → s5 → s2 → s3 → s6 → s7 → s10 → s11 → s8 → s9 → s12 → s1}.

Similarly, for the other constellations, the fuel expenditure reduces from 41.06 units

to 26.26 units in case of C4, from 28.38 to 18.86 in case of C5, from 28.77 units to

19.26 units in case with C6, and from 34.97 units to 22.75 units in case of C7.

5.5.1 Computational Time

As mentioned before, the E-P2P refueling problem is NP-hard. This means that there

currently exists no polynomial-time algorithms for this problem. Although for the

instances of P2P refueling, the number of satellites is not huge (there might be 15-

20 satellites in one orbit), it is interesting to see how the computational time varies

with the number of satellites in a constellation. Figure 52 shows the variation of

computational time with number of satellites. It can be seen that the time increases

with increasing number of satellites. However, note that this increase is roughly

linear, possibly because the constellations considered do not have too many satellites.

In the instances, all constellations have less than 20 satellites.
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5.5.2 Comparison with results using GRASP

Here, we provide a comparison of the results obtained by solving (EP2P-IP) with those

obtained using the GRASP method. Figure 53(a) shows the fuel expenditure incurred

in E-P2P refueling of the sample constellations based on the assignments determined

by the network flow formulation and the GRASP method. Typically, we find that

the solution yielded by the GRASP method are marginally better than those yielded

by the network flow formulation. This is encouraging, given the fact that that the

network flow formulation minimizes total ∆V rather than actual fuel consumption.
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Js,0 Jd,0

Figure 54: Bipartite Graph for Lower Bound Calculation.

Nonetheless, as shown in Figure 53(b), the network flow formulation generates the

solution much faster than the GRASP method. Although, we acknowledge here

that the GRASP method has capabilities of parallelization that can speed up the

computations for determining the optimal solution.

5.6 Bounds On The Optimal E-P2P Fuel Expenditure

In this section, we provide a measure of the sub-optimality of the solution MH by

deriving the bounds on the optimal fuel expenditure for E-P2P refueling. We show

that the lower bound on the total fuel expenditure C (M∗
e) can be obtained by solving

a bipartite assignment problem. To this end, let us consider the bipartite graph

Gℓ = {Js,0 ∪ Jd,0, Eℓ} (Figure 54). There exists an (undirected) edge 〈i, j〉 between

two nodes i ∈ Js,0 and j ∈ Jd,0 if and only if the satellites sµ = σ0(φi) and sν = σ0(φj)

can engage in a feasible E-P2P maneuver. Eℓ is the set of all such edges in the graph

Gℓ. If the two satellites sµ and sν can engage in a feasible E-P2P maneuver, then the

orbital slot φi is said to be a neighbor of the orbital slot φj and vice versa. Let N (i)

denote the index set of orbital slots that are neighbors of the orbital slots φi. Since a

fuel transaction can only be between a fuel-sufficient and a fuel-deficient satellite, we
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have Eℓ = {〈i, j〉 : i ∈ N (j) ∩ Js,0, j ∈ N (i) ∩ Jd,0}. To each edge 〈i, j〉, we associate

a cost cℓij that takes into account the fuel expenditure during the forward transfer

and the minimum fuel expenditure among all possible return costs. Therefore, if the

fuel-sufficient satellite sµ = σ0(φi) is active, then the fuel consumption for the related

E-P2P maneuver (forward trip + cheapest return trip) is given by

cµij = pµ
ij + min

k∈I\{j}
pµ

jk. (190)

We denote by kµ
ij the index of return slot for which the return cost is minimum.

On the other hand, if the fuel-deficient satellite sν = σ0(φj) is active, then the fuel

consumption for the related E-P2P maneuver (forward trip + cheapest return trip)

is given by

cνij = pν
ji + min

k∈I\{i}
pν

ik. (191)

We denote by kν
ij the index of return slot for which the return cost is minimum.

Therefore, the cost of the edge 〈i, j〉 ∈ Eℓ is taken as

cℓij =















cµij, if cµij ≤ cνij,

cνij, if cµij > cνij.

(192)

Also, let kij denote the index of the orbital slot to which the active satellite can return

to by spending the minimum amount of fuel. We therefore have

kij =















kµ
ij, if cµij ≤ cνij,

kν
ij, if cµij > cνij.

(193)

We are interested in a set Mℓ ∈ Eℓ of |Id,0| edges such that no two edges share the

same nodes, that is, {i, j}∩{ℓ, k} = ∅ for all 〈i, j〉, 〈ℓ, k〉 ∈ Mℓ. Let us associate with

each edge 〈i, j〉 ∈ Eℓ the binary variable xij given by

xij =















1, if xij ∈ Mℓ,

0, otherwise.

(194)
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We now define the following optimization problem on Gℓ:

(AP-LB): min
Mℓ⊆Eℓ

∑

〈i,j〉∈Eℓ

cℓijxij, (195)

subject to
∑

j∈N (i)

xij ≤ 1 for all i ∈ Js,0, (196)

∑

i∈N (j)

xij = 1 for all j ∈ Jd,0. (197)

Constraint (196) implies that each fuel-sufficient satellite can be assigned to at most

one fuel-deficient satellite for refueling purpose, while constraint (197) implies that

each fuel-deficient satellite has to be assigned to a fuel-sufficient satellite. Let the op-

timal solution to the problem (AP-LB) be M∗
ℓ and the optimal value of the objective

given in (195) be denoted by CLB. We then have,

CLB =
∑

〈i,j〉∈M∗
ℓ

cℓij. (198)

We now state the following theorem.

Theorem 1. The total fuel expenditure C (M∗
e) corresponding to the optimal E-P2P

solution M∗
e is bounded below by the optimal value CLB of the objective function in the

bipartite assignment problem (AP-LB). Also, C (M∗
e) is bounded above by the optimal

fuel expenditure CP2P obtained via P2P refueling. Therefore, CLB ≤ C (M∗
e) ≤ CP2P.

Proof. The optimal E-P2P solution M∗
e consists of |Jd,0| triplets. For convenience,

let us consider the two mappings Suff : T 7→ Js,0 and Def : T 7→ Jd,0 that give

the indices of the orbital slots of the fuel-sufficient satellite and fuel-deficient satellite

respectively, corresponding to a triplet (i, j, k) ∈ T . Therefore, Suff(M∗
e) corresponds

to a set of |Id,0| distinct nodes in the partition Js,0 of Gℓ, while Def(M∗
e) corresponds to

all nodes in the partition Jd,0 of Gℓ. Since a triplet (i, j, k) ∈ M∗
e ⊆ T corresponds to

a feasible E-P2P maneuver, there exists an edge 〈q, r〉 ∈ Eℓ such that q = Suff (i, j, k)
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and r = Def (i, j, k). Let us therefore define the mapping Q : T 7→ Eℓ that gives an

edge in Eℓ for every triplet in T . Now consider the following assignment in Gℓ: xqr = 1

for all 〈q, r〉 ∈ Q(M∗
e) and 0 otherwise. Note that

∑

r∈N (q)

xqr = 0 for all q ∈ Js,0\Suff (M∗) ,

and
∑

r∈N (q)

xqr = 1 for all q ∈ Suff (M∗) .

We also have,
∑

q∈N (r)

xqr = 1 for all r ∈ Def (M∗) ,

where Def (M∗) = Jd,0. Hence, the optimal E-P2P solution M∗
e corresponds to a

feasible solution Q(M∗
e) for the optimization problem (AP-LB). Hence, we have

∑

〈q,r〉∈Q(M∗
e)

cℓqr ≥
∑

〈q,r〉∈M∗
ℓ

cℓqr. (199)

Now, considering sµ = σ0(φi), we have the fuel expenditure C (M∗
e) as

C (M∗
e) =

∑

(i,j,k)∈M∗
e

(

pµ
ij + pµ

jk

)

≥
∑

〈i,j〉:(i,j,k)∈M∗
e

(

pµ
ij + min

k∈I\{j}
pµ

jk

)

. (200)

Now, consider 〈q, r〉 = Q (i, j, k). Also, let sα = σ0(φq) and sβ = σ0(φr). Further,

note that we have two cases: either q = i, r = j, or q = j, r = i. In the first case, when

the fuel-sufficient satellite is active, µ = α and the right-hand side of the inequality

in (200) reduces to

∑

〈i,j〉:(i,j,k)∈M∗
e

(

pµ
ij + min

k∈I\{j}
pµ

jk

)

=
∑

〈q,r〉∈Q(M∗
e)

(

pα
qr + min

k∈I\{r}
pα

rk

)

=
∑

〈q,r〉∈Q(M∗
e)

cαqr.

(201)

In the second case, when the fuel-deficient satellite is active, µ = β and the right-hand

side of the inequality in (200) reduces to

∑

〈i,j〉:(i,j,k)∈M∗
e

(

pµ
ij + min

k∈I\{j}
pµ

jk

)

=
∑

〈q,r〉∈Q(M∗
e)

(

pβ
rq + min

k∈I\{q}
pβ

qk

)

=
∑

〈q,r〉∈Q(M∗
e)

cβqr.

(202)
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Using equations (201) and (202) and observing the definition of cost of edges in Eℓ

given by (192), we have

∑

〈i,j〉:(i,j,k)∈M∗
e

(

pµ
ij + min

k∈I\{j}
pµ

jk

)

≥
∑

〈q,r〉∈Q(M∗
e)

min{cαqr, c
β
qr} =

∑

〈q,r〉∈Q(M∗
e)

cℓqr. (203)

Using (203), we have from (200),

C (M∗
e) ≥

∑

〈q,r〉∈Q(M∗
e)

cℓqr. (204)

Finally, comparing (199) and (204), we have

C (M∗
e) ≥ CLB. (205)

For the upper bound, recall that the P2P refueling is a special case of E-P2P and

therefore the optimal P2P solution given by MP2P is a feasible E-P2P solution.

Hence,

C (M∗
e) ≤ CP2P. (206)

The inequalities (205) and (206) give the desired result.

Note that an edge 〈q, r〉 ∈ Eℓ corresponds to a feasible triplet (i, j, kij) in T , where

q = Suff (i, j, k) and r = Def (i, j, k). Hence, from the solution M∗
ℓ of the optimization

problem (AP-LB), we can construct a set T ∗
ℓ of |Jd,0| triplets. In general, this set

of triplets T ∗
ℓ does not correspond to a feasible E-P2P solution because we may not

necessarily have Act(T ∗
ℓ ) = Ret(T ∗

ℓ ). In other words, either more than one active

satellite would compete for the same return position, or an active satellite would try

to return to an orbital slot occupied by a passive satellite. In case the condition is

met, the set of triplets T ∗
ℓ represents a feasible E-P2P solution. This observation

along with the Theorem 1 leads to the following corollary.

Corollary 1. If Act(T ∗
ℓ ) = Ret(T ∗

ℓ ), then T ∗
ℓ is globally optimal solution for the

E-P2P problem.
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In case the condition is not met, the set of triplets T ∗
ℓ do not correspond to

a feasible E-P2P solution. We would use the lower bound given in Theorem 1 in

order to estimate the level of sub-optimality of the results obtained by our proposed

methodology.

5.6.1 Sub-optimality measure

As already mentioned, the E-P2P solution MH given by our proposed methodology

is sub-optimal. The fuel expenditure associated with this E-P2P solution is given by

C(MH). Considering the bounds given by Theorem 1, we have an estimate of how

much sub-optimal these results are. The maximum percentage of sub-optimality of

MH is given by

η =
C(MH) − CLB

CLB

× 100% (207)

5.7 Sub-optimality of E-P2P solution

In this section, we will look at the solution of the (AP-LB) and use it to have estimates

on the sub-optimality of the E-P2P solution as determined by the GRASP method or

the network flow formulation. Typically, the set of E-P2P assignments given by the

solution of (AP-LB) does not correspond to a feasible E-P2P solution. For instance,

for constellation C1, the lower bound on the fuel expenditure obtained by solving (AP-

LB) is 17.05 units. The solution of (AP-LB) corresponds to the following assignment

of satellites for E-P2P refueling: s4 → s1 → s2, s3 → s2 → s3, s5 → s8 → s9,

s6 → s9 → s10, s7 → s10 → s1. Evidently, this does not correspond to a feasible

E-P2P solution. Similarly, for constellation C2, the solution of (AP-LB) yields the

following set of E-P2P maneuvers: s13 → s1 → s2, s14 → s2 → s3, s10 → s3 → s4,

s9 → s4 → s5, s8 → s5 → s6, s7 → s6 → s7, s11 → s15 → s16, s12 → s16 → s1.

Clearly, this also does not correspond to a feasible E-P2P solution. However, there

can be cases when the solution of (AP-LB) yields a feasible E-P2P solution. For

instance, for constellation C8, (AP-LB) yields the following set of E-P2P assignments:
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s16 → s1 → s2, s2 → s3 → s4, s4 → s5 → s6, s6 → s7 → s8, s8 → s9 → s10,

s10 → s11 → s12, s12 → s13 → s14, s14 → s15 → s16. Clearly, this is a feasible E-P2P

solution and by Corollary 1, this is the globally optimal E-P2P solution. Figure 55

summarizes the results obtained for all the constellations along with the lower and

upper bounds for the optimal fuel expenditure for E-P2P refueling. Furthermore,
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Figure 55: Comparison of E-P2P and baseline P2P refueling strategies.

we can use the measure of sub-optimality defined in the previous section in order to

estimate how much sub-optimal the E-P2P solution is.

Table 7: Sub-optimality of results.

Constellation Sub-optimality of MH Sub-optimality of GRASP solution
C1 12.1% 10.05%
C2 9.69% 9.69%
C3 9.26% 7.17%
C4 9.70% 9.70%
C5 3.06% 1.09%
C6 7.23% 7.22%
C7 7.25% 6.36%
C8 0.00% 0.00%

5.8 Summary

We investigated the (non-cooperative) Egalitarian P2P (E-P2P) refueling strategy, in

which the active satellites are allowed to interchange their orbital slots during their
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return trips. We provided two formulations for the problem, and pointed out the

relative merits of the formulations. The primary benefit of the E-P2P strategy is the

significantly reduced fuel expenditure, compared to the P2P strategy. Recognizing the

sub-optimality of the E-P2P solution generated by our method, we derive bounds on

the optimal fuel expenditure incurred in E-P2P refueling. The lower bound provides a

measure of the sub-optimality of the solutions, however the lower bound may or may

not correspond to a feasible E-P2P solution. When it does correspond to a feasible

solution, the bound is tight and the global optimal E-P2P solution can be obtained

by solving the bipartite matching problem used to determine the bound.
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CHAPTER VI

COOPERATIVE EGALITARIAN PEER-TO-PEER

REFUELING STRATEGY

From the discussion in the previous chapters, we have found that the two extensions

of the P2P refueling problem, namely the Egalitarian P2P and the Cooperative P2P,

help in substantially reducing the fuel expenditure during the refueling process. A

natural question that arises is that if both E-P2P and C-P2P strategies are better,

why should not they be combined together in a single refueling strategy. In this

chapter, we address this question by combining these ideas into what we term the

Cooperative Egalitarian P2P (CE-P2P) refueling strategy. We discuss in detail a

network flow formulation for the problem, and then compare the various refueling

strategies for several constellations.

6.1 CE-P2P Problem Formulation

Let us consider a CE-P2P maneuver between two satellites sµ = σ0(φi1) and sν =

σ0(φi2), occupying the orbital slots φi1 and φi2 respectively, where i1, i2 ∈ J . Without

loss of generality, assume sµ to be the fuel-sufficient satellite and sν to be the fuel-

deficient satellite, that is, i1 ∈ Js,0 and i2 ∈ Jd,0. Let these satellites engage in

a rendezvous at the orbital slot φj, where j ∈ Jc. After the refueling transaction,

the satellites sµ and sν return to the orbital slots φk1 and φk2 respectively, where

k1, k2 ∈ Jr. Given i1, i2 ∈ Ja, j ∈ Jc, and k1, k2 ∈ Jr, we can represent an assignment

for a CE-P2P maneuver by (i1, i2, j, k1, k2). An assignment (i1, i2, j, k1, k2) is feasible

if the satellites sµ and sν engaging in the CE-P2P refueling transaction end up being
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Figure 56: CE-P2P Maneuver.

fuel-sufficient after the maneuver is complete. Let P denote the set of all feasible CE-

P2P assignments in the constellation. Let Mce ⊆ P denote the set of |Jd,0| feasible

CE-P2P maneuvers such that all fuel-deficient satellites are included in the refueling

transactions. The cost of a CE-P2P solution is the total fuel expenditure incurred

during all the orbital transfers taking place. Figure 56 depicts the forward and return

trips of the CE-P2P maneuver. Let pµ
ij denote the fuel used by satellite sµ during its

transfer from the orbital slot φi to the slot φj. Therefore, the cost of the CE-P2P

solution is given by

C(Mce) =
∑

(i1,i2,j,k1,k2)∈Mce

pµ
i1j + pν

i2j + pµ
jk1

+ pν
jk2
. (208)

Also note that, if i1 = j = k1 or i1 = j = k1, for a CE-P2P assignment (i1, i2, j, k1, k2) ∈

P then the assignment represents an E-P2P maneuver (non-cooperative). Let Pe de-

note the set of feasible E-P2P maneuvers in the constellation. Clearly, Pe ⊆ P.

Similarly, if i1 = k1 and i2 = k2, for the CE-P2P assignment (i1, i2, j, k1, k2) ∈ P then

the assignment represents a C-P2P maneuver (non-Egalitarian). Let Pc denote the

set of feasible C-P2P maneuvers in the constellation. Clearly, Pc ⊆ P. Furthermore,

let M∗
ce denote the optimal set of assignments that minimizes the fuel expenditure
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during CE-P2P refueling. We therefore have

C(M∗
ce) = min

Mce⊆P
C(Mce). (209)

Similarly, let M∗
c ⊆ Pc and M∗

e ⊆ Pe denote the optimal set of assignments for

C-P2P and E-P2P refueling. We therefore have,

C(M∗
c) = min

Mce⊆Pc

C(Mce), (210)

and

C(M∗
e) = min

Mce⊆Pe

C(Mce). (211)

6.1.1 CE-P2P Maneuver Costs

Let us consider a CE-P2P maneuver (i1, i2, j, k1, k2). During the first phase of the

maneuver, the two satellites sµ = σ0(φi1) and sν = σ0(φi2) transfer to the orbital slot

φj. The fuel consumed by the active satellite sµ to transfer from the orbital slot φi1

to the orbital slot φj is given by

pµ
i1j =

(

msµ + f−
µ

)

(

1 − e
−

∆Vi1j

c0µ

)

, (212)

wheremspµ denotes the mass of the permanent structure of the satellite sµ, c0µ denotes

the characteristic constant for the satellite sµ, and ∆Vi1j denotes the optimal velocity

change required for the transfer from the slot φi1 to φj. The characteristic constant is

defined by c0µ = g0Ispµ, where g0 denote the gravitational acceleration on the surface

of the earth, and Ispµ denote the specific thrust of the engine of the satellite sµ.

Similarly, the fuel expenditure for satellite sν to transfer from the orbital slot φi2 to

the orbital slot φj is given by:

pν
i2j =

(

msν + f−
ν

)

(

1 − e
−

∆Vi2j

c0ν

)

. (213)

The fuel content of satellite sµ after its forward trip (but before the fuel exchange

takes place) is f−
µ − pµ

i1j, while that of satellite sν is f−
ν − pν

i2j. The amount of fuel
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that sµ delivers to sν is gν
µ. Hence, the fuel content of satellite sµ just after the fuel

exchange takes place is f−
µ −pµ

i1j −gν
µ, while that of satellite sν is f−

ν −pν
i2j +gν

µ. After

the fuel exchange, and in the second phase of the P2P maneuver, satellites sµ and sν

transfer to the orbital slots φk1 and φk2 , respectively. During the return trip, the fuel

expenditure of satellite sµ to transfer from slot φj to slot φk1 is given by

pµ
jk1

=
(

msµ + f−
µ − pµ

i1j − gν
µ

)

(

1 − e
−

∆Vjk1
c0µ

)

, (214)

while that of satellite sν to transfer from slot φj to slot φk1 is given by

pν
jk2

=
(

msν + f−
ν − pν

i2j + gν
µ

)

(

1 − e
−

∆Vjk2
c0ν

)

. (215)

The amount of fuel exchanged affects the return trip fuel expenditure. Following an

analysis similar to the one in Ref. 22, it can be shown that the fuel expenditure during

the CE-P2P is minimized if the amount of fuel exchanged by the satellites is given by

gν
µ =















gν
µ|ℓ, e

−
∆Vjk2

c0ν < e
−

∆Vjk1
c0µ ,

gν
µ|u, e

−
∆Vjk2

c0ν > e
−

∆Vjk1
c0µ ,

(216)

where,

gν
µ|ℓ =

(

msν + f
ν

)

e
∆Vjk2

c0ν −
(

msν + f−
ν − pν

i2j

)

, (217)

and

gν
µ|u =

(

msµ + f−
µ − pµ

i1j

)

−
(

msµ + f
µ

)

e
∆Vjk1

c0µ . (218)

Also, if e
−

∆Vjk2
c0ν = e

−
∆Vjk1

c0µ , gν
µ can assume any value in the interval gν

µ|ℓ ≤ gν
µ ≤ gν

µ|u.

For the maneuver to be feasible we must have gν
µ|ℓ ≤ gν

µ|u, that is, there exists a fuel

exchange that would result in both satellites to be fuel-sufficient at the end of the

maneuver. Furthermore, for feasibility of the CE-P2P maneuver, we must also have

pµ
i1j < f−

µ and pµ
i2j < f−

µ , that is, both satellites must have enough fuel to complete

their forward trips.
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6.1.2 Constellation Digraph

We can represent a CE-P2P maneuver using a directed graph. To this end, let us

define a constellation graph G consisting of three partitions Ja, Jc and Jr. The nodes

of G are given by Ja ∪Jc ∪Jr. However, we do not know a priori which satellites are

active, which are passive, and which slots are used for cooperative rendezvous. That

is, we do not know the sets Ja, Jc and Jr a priori. We therefore let Ja = Jr = J

and Jc = J ′. We will denote an orbital transfer using a directed edge, with the

direction of edge signifying the direction of the orbital transfer. Let an edge (i, j),

where i ∈ Ja and j ∈ Jc, denote a forward trip from the slot φi to the slot φj, and

let the associated cost for this transfer be denoted by cij. Let an edge (j, k), where

j ∈ Jc and k ∈ Jr, denote a return trip from the slot φj to φk, and let the associated

cost for this transfer be denoted by cjk. A set of edges (i1, j), (i2, j), (j, k1) and (j, k2)

represents a CE-P2P maneuver. Note that any edge (i, j) having φi = φj does not

represent a physical transfer, since it would mean that the active satellite occupies

the same orbital slot during its forward/return trip. Naturally, the cost associated

with such an edge is zero. Hence, if we have φi1 = φj or φi2 = φj, then the maneuver

is actually non-cooperative, because one of the satellites involved in the refueling

transaction remains in its orbital slot throughout the maneuver. In other words, our

representation of a CE-P2P maneuver allows an E-P2P maneuver to be treated as a

special case of a CE-P2P maneuver in which one forward edge and one return edge

does not actually represent a maneuver, and each of these edges has a zero cost.

Ideally, the cost of the edges in the graph G has to be the fuel expenditure during

the orbital transfers. However, the calculation of the fuel expenditure is dependent

on the mass of the satellite performing the orbital transfer. Since we do not know a

priori which satellites are going to pair up for the refueling transactions, the return

trip fuel expenditure cannot be uniquely determined for the return trip edges on the

graph G. Instead of the fuel expenditure, we can use the velocity change ∆V required
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Ja
Jc Jr

Figure 57: Directed constellation graph.

for the corresponding orbital transfer because the ∆V can be uniquely determined

for all edges. The minimization of ∆V would yield sub-optimal results since the true

objective is to minimize fuel expenditure. However, it was observed in our numerical

simulations that solutions are only marginally sub-optimal when we minimize ∆V .

Furthermore, in order to avoid solutions in which a fuel-deficient satellite does not

have enough fuel to complete the desired rendezvous, we only allow those forward

edges (i, j) in the graph G for which we have pµ
ij < f−

µ , where sµ = σ0(φi) and

φj ∈ Φ′.

6.1.3 A Network Flow Formulation

We now present a network flow formulation for the solution of CE-P2P problem. We

set up a constellation network Gn using the constellation digraph G. To this end,

we add a source node s and a sink node t to the constellation digraph G. For all

i ∈ Ja, we also add an arc (s, i) with associated cost csi = 0. We denote the set

of these arcs by Es. Similarly, for all k ∈ Jr, we add an arc (k, t) with associated

cost ckt = 0. We denote the set of these arcs by Et. Let us now consider two s → t

flows in the network Gn, that pass through the same node j ∈ Jc. A pair of such

flows s → i1 → j → k1 → t and s → i2 → j → k2 → t represent a CE-P2P

maneuver (i1, i2, j, k1, k2). The total cost of the flows equal the total ∆V required
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for all the orbital transfers during a CE-P2P maneuver. We seek |Jd,0| pairs of flows

in the constellation network with minimum total cost, such that all flows also pass

through all the fuel-deficient satellites in the constellation. Note that each assignment

(i1, i2, j, k1, k2) in a CE-P2P solution Mce corresponds to a set of edges (s, i1), (s, i2),

(i1, j), (i2, j), (j, k1), (j, k2), (k1, t), and (k2, t) in Gn. The total cost of these edges

is therefore the total ∆V required for all the orbital transfers corresponding to the

assignment (i1, i2, j, k1, k2). Let the set of edges in the network corresponding to all

assignments in the CE-P2P solution Mce be denoted by M. Also, let the set of slots

where the cooperative rendezvous takes place corresponding to the solution Mce be

given by Y . Let us now introduce the following decision variables for our optimization

problem. Corresponding to each edge (i, j), we introduce a flow variable xij defined

by

xij =















1, if xij ∈ M,

0, otherwise.

(219)

Also, corresponding to each slot for cooperative rendezvous, let us introduce the

decision variables yj, as follows

yj =















1, if j ∈ Y ,

0, otherwise.

(220)

We need |Jd,0| CE-P2P maneuvers in order to refuel all fuel-deficient satellites. Hence,

the total flow that goes out of the source is 2|Jd,0| and the flow distributes itself into

|Jd,0| fuel-sufficient satellites and |Jd,0| fuel-deficient satellites. Noting that Js,0 ∪

Jd,0 = J , we have,
∑

i∈J

xsi = 2|Jd,0|, (221)

and
∑

i∈Js,0

xsi = |Jd,0|. (222)
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An amount of flow equal to the flow originating from the source must be collected at

the sink node, that is,
∑

k∈J

xkt = 2|Jd,0|. (223)

The flow balance equations at the different nodes yield the following constraints

xsi =
∑

j∈Jc

xij, for all i ∈ Ja, (224)

xkt =
∑

j∈Jc

xjk, for all i ∈ Jr, (225)

and
∑

i∈Ja

xij =
∑

k∈Jr

xjk, for all j ∈ Jc. (226)

The orbital slots available for return are exactly the orbital slots for the active satel-

lites. Hence, we have,

xsi = xit, for all i ∈ J . (227)

The total number of slots for rendezvous is the total number of CE-P2P maneuvers,

which in turn equals the number of fuel-deficient satellites in the constellation. We

therefore have,
∑

j∈Jc

yj = |Jd,0|. (228)

If a slot is selected for cooperative rendezvous, two satellites must transfer to that

location (unless it is a non-cooperative maneuver). Hence, we have the following

constraint:
∑

i∈J

xij = 2yj, for all j ∈ Jc. (229)

The two satellites transferring to the slot φj must be a fuel-sufficient and a fuel-

deficient satellite. In other words, we have at most one fuel-sufficient satellite ending

up in the slot φj, that is,

∑

i∈Js,0

xij ≤ 1, for all j ∈ Jc. (230)
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Given the decision variables defined in (219) and (220), and the set of constraints

(221)-(230), we are required to minimize the total ∆V for the CE-P2P maneuvers,

that is,

(CE-P2P) : min
∑

(i,j)∈En

cijxij. (231)

6.2 CE-P2P Numerical Examples

In this section we discuss a few numerical examples that show the benefit of a co-

operative refueling strategy for different satellite constellations. These constellations

vary in the number of satellites, the mass and fuel content of the satellites, and the

constellation orbit. The details of these constellations are given in Table 5.

Example 17. CE-P2P strategy for a constellation of 10 satellites.

Let us consider the constellation C1 given in Table 5. It consists of 10 satel-

lites evenly distributed in a circular orbit. The initial fuel content of the satellites

s1, s2, . . . , s10 are 30, 30, 6, 6, 6, 6, 6, 30, 30, 30 units respectively. The maximum al-

lowed time for refueling is T = 12 orbital periods. Each satellite si has a minimum fuel

requirement of f
i
= 12 units, while the maximum amount of fuel for each satellite is

f̄i = 30 units. Each satellite has a permanent structure of msi = 70 units, and a char-

acteristic constant of c0 = 2943 m/s. The indices of the fuel-sufficient satellites are

Is,0 = {1, 2, 8, 9, 10} and those of the fuel-deficient satellites are Id,0 = {3, 4, 5, 6, 7}.

Let Φ′ be a set of 20 evenly distributed slots, out of which 10 are occupied by the

satellites. We have, J ′ = {1, 2, . . . , 20}, and the satellites occupy the slots J =

{1, 3, . . . 19} respectively, that is, we have si = σ0(φ2i−1) for all i ∈ {1, 2, . . . , 10}.

An E-P2P strategy for this constellation yields the following optimal assignments:

s1 → s3 → s2, s2 → s4 → s5, s5 → s8 → s9, s7 → s10 → s1, s9 → s6 → s7,

where the assignment s1 → s3 → s2 implies that the satellite s1 undergoes an orbital

transfer to rendezvous with s3, exchanges fuel, and then returns to the orbital slot
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Figure 58: Optimal assignments.

originally occupied by the satellite s2. Figure 58(a) depicts these E-P2P maneuvers.

The fuel expenditure during the E-P2P refueling process is 19.11 units. This rep-

resents 10.62% of the total initial fuel in the constellation. Figure 58(a) shows the

optimal assignments for the E-P2P case. A C-P2P strategy for this constellation

yields a higher fuel expenditure than the E-P2P case. Let us now consider a CE-P2P

strategy for refueling satellites in this constellation. First, let us look at the solution

provided by the problem (CE-P2P-LB). The lower bound on CE-P2P expenditure is

found to be CLB = 17.05 units. The corresponding optimal matching is the follow-

ing satellites pairs: s1 ↔ s4, s2 ↔ s3, s8 ↔ s5, s9 ↔ s6, and s10 ↔ s7 with their

preferred slots for rendezvous being φ1, φ3, φ15, φ17, and φ19 respectively. Note that

in all of these matchings between the fuel-sufficient and fuel-deficient satellites, the

fuel-deficient satellite performs a non-cooperative rendezvous with the corresponding

fuel-sufficient satellite. The preferred return locations for these active satellites are

φ3, φ7, φ17, φ19, and φ1 respectively. All these are slots adjacent to the corresponding

rendezvous slot. Note that these slots are occupied by the passive satellites and it

is not possible for all of the active satellites to return to their most preferred choice
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of orbital slots. Hence, the solution of (CE-P2P-LB) is not a feasible CE-P2P solu-

tion. We therefore solve the optimization problem (CE-P2P) yielding the following

assignments: (s1, s3) → φ4 → (s2, s3), s2 → s4 → s5, (s5, s8) → φ12 → (s6, s7),

(s6, s9) → φ16 → (s8, s9) and s7 → s10 → s1. Figure 58(b) depicts this solution.

Note that, like the E-P2P case, all active satellites transfer to available slots in the

vicinity during their return trips. The fuel expenditure during the cooperative E-P2P

refueling process is 18.65 units, which represents 2.5% fuel savings over the E-P2P

refueling strategy. This example demonstrates the utility of the CE-P2P refueling

strategy in reducing the fuel expenditure incurred during a (non-cooperative) E-P2P

strategy or a (non-Egalitarian) C-P2P strategy. The solution determined is poten-

tially sub-optimal. Comparing with the lower bound on fuel expenditure, we have

η = 9.38%. This means that our solution is at most 9.38% sub-optimal. Further-

more, looking at the optimal CE-P2P solution, we find that two of the maneuvers

are actually non-cooperative E-P2P maneuvers. Satellites s2, s4 and s7, s10 engage in

(non-cooperative) E-P2P maneuvers, while the remaining transactions are all coop-

erative. Hence, s4 and s10 are the passive satellites for the CE-P2P refueling strategy,

that is, they remain in their orbital slots throughout the refueling process.

Example 18. Global minimum in the case of a constellation of 16 satellites.

Let us consider the constellation C3 in Table 5 consisting of 16 satellites, evenly

distributed in a circular orbit. The fuel content of satellites s1, s2, . . . , s16 are 30, 10,

30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10 respectively. The indices of the

fuel-sufficient satellites are Is,0 = {1, 5, 7, 9, 11, 13, 15} and those of the fuel-deficient

satellites are Id,0 = {2, 4, 6, 8, 10, 12, 14, 16}. Let us consider Φ′ to be a set of 32

orbital slots evenly distributed on the orbit, out of which 16 are initially occupied

by the satellites. We therefore have, J ′ = {1, 2, . . . , 32}. The satellites occupy the

slots φ1, φ3, . . . φ31 respectively, so that si = σ0(φ2i−1) for all i ∈ {1, 2, . . . , 16}. If

we solve (CE-P2P-LB), we have the lower bound on the CE-P2P fuel expenditure to
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(a) Fuel-deficient satellites
can initiate non-cooperative
rendezvous

(b) Fuel-deficient satel-
lites cannot initiate non-
cooperative rendezvous

Figure 59: Global Minimum for a Constellation of 16 satellites.

be CLB = 9.08 units of fuel. The optimal matching yielded by (CE-P2P-LB) is the

following satellites pairs: s1 ↔ s16, s2 ↔ s3, s4 ↔ s5, s6 ↔ s7, s10 ↔ s11, s12 ↔ s13,

and s14 ↔ s15. For all of these matchings, the fuel-deficient satellite performs a non-

cooperative rendezvous with the corresponding fuel-sufficient satellite and returns to

an orbital slot previously occupied by a different active satellite. Furthermore, the

active satellites rendezvous with their preferred choice of fuel-sufficient satellite in

its vicinity, and return to their preferred choice of orbital slots without any conflict.

Thus, the solution of (CE-P2P-LB) yields a feasible, and hence the global optimum,

CE-P2P solution. Figure 59(a) depicts this global minimum. In particular, we find

that the global minimum is also the optimal (non-cooperative) E-P2P solution. The

(non-Egalitarian) C-P2P solution has a higher fuel expenditure (10.34 units) in this

case.

Example 19. Fuel-deficient satellites have insufficient fuel to engage in non-cooperative

rendezvous.

Let us consider the constellation C4 given in Table 5. This is similar to the

constellation C3, except that now the fuel-deficient satellites have much less amount
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of fuel so that they cannot engage in a non-cooperative rendezvous. If we solve

(CE-P2P-LB), the optimal matching obtained is the following set of satellites pairs:

s1 ↔ s2, s3 ↔ s4, s5 ↔ s6, s7 ↔ s8, s9 ↔ s10, s11 ↔ s12, s13 ↔ s14, and s15 ↔ s16.

The lower bound obtained is CLB = 9.48 units of fuel. In each of these assignments,

the fuel-deficient satellite engages in a cooperative rendezvous with a neighboring

fuel-sufficient satellite and after undergoing a fuel-exchange, returns to its original

orbital slot. For each pair of active satellites engaging in a fuel exchange, the slot

for cooperative rendezvous is midway between the original slots of the satellites. In

fact, all fuel-deficient satellites rendezvous with their preferred choice of fuel-sufficient

satellites and return to their preferred orbital slots, without any conflict. The solution

of (CE-P2P-LB) is therefore a feasible CE-P2P solution and, hence, also the global

optimal solution. Figure 59(b) depicts the matching between the satellites required
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Figure 60: Refueling Expenditures.

for refueling. The global minimum in this case is the optimal C-P2P solution. For

this constellation, the (non-cooperative) E-P2P solution has a higher fuel expenditure

of 11.85 units.

Figure 6 provides a comparison of the CE-P2P, E-P2P and C-P2P refueling strate-

gies for the constellations depicted in Table 5. It also shows the lower bound given

by the (CE-P2P-LB) solution for all constellations. In general, it is observed that
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Js,0 Jd,0

Figure 61: Bipartite Graph for CE-P2P Lower Bound Calculation.

the CE-P2P strategy provides an improvement over either the E-P2P or the C-P2P

strategies.

6.3 Bounds On The Optimal Fuel Expenditure

The set of CE-P2P maneuvers obtained by solving the optimization problem (CE-

P2P) corresponds to the minimum total ∆V required for the orbital transfers taking

place during refueling. Let this solution be denoted by MH
ce. Our true objective is

to minimize fuel expenditure, and hence the solution MH
ce is potentially sub-optimal.

In this section, we provide a measure of the sub-optimality of the solution MH
ce by

deriving bounds on the optimal fuel expenditure for CE-P2P refueling. In particular,

we show that a conservative lower bound on the total fuel expenditure C (M∗
ce) can be

obtained by solving a bipartite assignment problem. To this end, let us consider the

undirected bipartite graph Gℓ = {Js,0∪Jd,0, Eℓ} (Figure 61). We will represent a P2P

maneuver between two satellites by an undirected edge in the graph Gℓ. In particular,

we say that there exists an (undirected) edge 〈i1, i2〉 between two nodes i1 ∈ Js,0 and

i2 ∈ Jd,0 if and only if the satellites sµ and sν , occupying initially the orbital slots φi1

and φi2 , respectively, can engage in a feasible CE-P2P maneuver. By this, we mean the
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satellites can engage in a rendezvous at a slot φj, where j ∈ J ′, and return respectively

to the orbital slots φk1 and φk2 . The set of all such edges in the graph is given by Eℓ =

{〈i1, i2〉 : there exists j ∈ J ′, and φk1 , φk2 ∈ J such that either (i1, i2, j, k1, k2) ∈

P}. To each edge 〈i1, i2〉, we associate a cost cℓi1i2
that takes into account the fuel

expenditure during the forward and return trips of the satellites, among all possible

slots for cooperative rendezvous and return positions. The minimum fuel consumption

for all possible return slots corresponding to the cooperative rendezvous slot φj, where

j ∈ J ′, is given by

[

pµ
i1j + pν

i2j + min
k1,k2∈J ,k1 6=k2

(

pµ
jk1

+ pµ
jk2

)

]

.

Therefore, the cost of the edge 〈i1, i2〉 ∈ Eℓ is taken as

cℓi1i2
= min

j∈Jc

[

pµ
i1j + pν

i2j + min
k1,k2∈J ,k1 6=k2

(

pµ
jk1

+ pµ
jk2

)

]

. (232)

It represents the minimum possible fuel expenditure if the satellites sµ and sν engage

in a CE-P2P maneuver.

We are interested in a subset Mℓ of Eℓ with |Jd,0| edges, such that no two edges

share the same node. This ensures that a satellite can be assigned to only one CE-

P2P maneuver. Let us associate with each edge 〈i, j〉 ∈ Eℓ the binary variable xij

given by

xij =















1, if xij ∈ Mℓ,

0, otherwise.

(233)

We now define the following optimization problem on Gℓ
∗:

(CE-P2P-LB): min
∑

〈i,j〉∈Eℓ

cℓijxij, (234)

subject to
∑

j:〈i,j〉∈Eℓ

xij ≤ 1 for all i ∈ Js,0, (235)

∗CE-P2P-LB stands for CE-P2P - Lower Bound
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∑

i:〈i,j〉∈Eℓ

xij = 1 for all j ∈ Jd,0. (236)

The constraint (235) implies that each fuel-sufficient satellite can be assigned to,

at most, one fuel-deficient satellite, while the constraint (236) implies that each fuel-

deficient satellite has to be assigned to a fuel-sufficient satellite. Let the optimal

solution to the problem (CE-P2P-LB) be M∗
ℓ and the optimal value of the objective

given in (234) be denoted by CLB. We then have

CLB =
∑

〈i,j〉∈M∗
ℓ

cℓij. (237)

We now state the following theorem.

Theorem 2. The total fuel expenditure C(M∗
ce) corresponding to the optimal CE-

P2P solution M∗
ce is bounded below by the optimal value CLB of the objective func-

tion in the bipartite assignment problem (CE-P2P-LB). Moreover, C(M∗
ce) is bounded

above by the optimal fuel expenditure C(M∗
e) obtained via E-P2P refueling or C(M∗

c)

obtained via C-P2P refueling, whichever is smaller. Therefore, CLB ≤ C(M∗
ce) ≤

min{C(M∗
e), C(M∗

c)}.

Proof. The optimal CE-P2P solution M∗
ce consists of |Jd,0| assignments. For an

assignment given by (i1, i2, j, k1, k2) ∈ M∗
ce, the satellites sµ = σ0(φi1) and sν =

σ0(φi2) represent the fuel-sufficient and fuel-deficient satellites respectively. Since

M∗
ce ⊆ P, sµ and sν can engage in a feasible CE-P2P maneuver, which implies that

the edge 〈i1, i2〉 exists in Gℓ. We therefore define the mapping Q : P 7→ Eℓ that gives

an edge in Eℓ for every assignment in P. For instance, Q (i1, i2, j, k1, k2) = 〈i1, i2〉.

Note that the CE-P2P solution M∗
ce corresponds to |Jd,0| distinct fuel-sufficient and

all |Jd,0| fuel-deficient satellites involved in refueling transactions (refer to (221) and

(222)). Let us now consider the following assignment in Gℓ: xqr = 1 for all 〈q, r〉 ∈

Q(M∗) and 0 otherwise. For all the |Jd,0| fuel-sufficient satellites included in CE-P2P
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solution M∗
ce, we have

∑

r:〈q,r〉∈Eℓ

xqr = 1,

whereas for the remaining |Js,0| − |Jd,0| fuel-sufficient satellites not included in any

refueling transaction, we have
∑

r:〈q,r〉∈Eℓ

xqr = 0.

Combining the above two equations, we have

∑

r:〈q,r〉∈Eℓ

xqr ≤ 1 for all q ∈ Js,0.

All the fuel-deficient satellites are included in the CE-P2P solution and each of them

engages in a refueling transaction with a distinct fuel-sufficient satellite (refer to

(221),(222), and (230)). We therefore have,

∑

q:〈q,r〉∈Eℓ

xqr = 1 for all r ∈ Jd,0.

Hence, the optimal CE-P2P solution M∗
ce corresponds to a feasible solution Q(M∗

ce)

for the optimization problem (CE-P2P-LB). Hence, we have

∑

〈q,r〉∈Q(M∗
ce)

cℓqr ≥
∑

〈q,r〉∈M∗
ℓ

cℓqr. (238)

Now, let us consider the fuel expenditure C(M∗
ce). We have

C(M∗
ce) =

∑

(i1,i2,j,k1,k2)∈M∗
ce

pµ
i1j + pν

i2j +
(

pµ
jk1

+ pµ
jk2

)

≥
∑

{i1,i2,j}:(i1,i2,j,k1,k2)∈M∗
ce

[

pµ
i1j + pν

i2j + min
k1,k2∈J ,k1 6=k2

(

pµ
jk1

+ pµ
jk2

)

]

≥
∑

{i1,i2}:(i1,i2,j,k1,k2)∈M∗
ce

[

min
j∈Jc

(

pµ
i1j + pν

i2j + min
k1,k2∈J ,k1 6=k2

(

pµ
jk1

+ pµ
jk2

)

)]

.

(239)

Using (232), we have from (239),

C(M∗
ce) ≥

∑

〈q,r〉∈Q(M∗
ce)

cℓqr. (240)
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Finally, comparing Eq. (238) and Eq. (240), we have

C(Mce) ≥ CLB. (241)

For the upper bound, recall that Pc ⊆ P and Pe ⊆ P. Therefore, from the definition

of C(M∗
ce), C(M∗

c) and C(M∗
e), given in (209)-(211), we have

C(M∗
ce) ≤ C(Mc) and C(M∗

ce) ≤ C(Me). (242)

The inequalities (241) and (242) give the desired result.

The fuel expenditure associated with the (CE-P2P) solution, obtained by solving

the optimization problem (CE-P2P), is given by C(MH
ce). Since MH

ce might be a

sub-optimal solution, we have C(MH
ce) ≥ C(M∗

ce). Considering the bounds given by

Theorem 2, we obtain an estimate of sub-optimality of these results. Specifically,

we may define the maximum percentage of sub-optimality of MH
ce by the following

expression

ηce =
C(MH

ce) − CLB

CLB

× 100%. (243)

Note that because the solution of the CE-P2P-LB problem may correspond to an

infeasible CE-P2P solution, η is a worst case (conservative) estimate of the subopti-

mality of MH
ce. However, we can guarantee that the solution is no worse than η, but

it could also be better. In fact, there are indeed cases in which the solution of the

(CE-P2P-LB) does lead to a feasible solution. In such cases, the solution is globally

optimal.

6.4 Summary

In this chapter, we studied a Cooperative Egalitarian P2P (CE-P2P) strategy for

refueling satellites in a circular constellation. We have presented a network flow for-

mulation for determining the optimal set of CE-P2P maneuvers in the constellation

and we computed a lower bound on the fuel expenditure for the optimal set of CE-P2P
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maneuvers. The bound is determined by solving a bipartite assignment problem, the

solution of which may or may not correspond to a feasible CE-P2P solution. In case

it does, we have a globally optimal CE-P2P solution. Otherwise, the bound helps

in providing an estimate of the sub-optimality of the CE-P2P solution obtained by

our proposed methodology. The CE-P2P strategy is found to be a better refueling

strategy compared to either a (non-cooperative) Egalitarian P2P (E-P2P) strategy

or a (non-Egalitarian) Cooperative P2P strategy (C-P2P). In fact, the CE-P2P strat-

egy allows for the benefits of both Egalitarian P2P refueling and Cooperative P2P

refueling. On one hand, active satellites can perform smaller-∆V (and hence lower

fuel expenditure) orbital transfers since they are allowed to return to any available

orbital slot. On the other hand, the CE-P2P strategy reduces the fuel expenditure

by allowing satellites to engage in cooperative rendezvous. This is particularly ad-

vantageous when the fuel-deficient satellite does not have enough fuel to initiate a

non-cooperative rendezvous.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Refueling is one of the important operations of on-orbit servicing of space system.

This dissertation focusses on the problem of determining the optimal refueling strat-

egy for a system of multiple satellites in a circular constellation. The primary aim

of the dissertation is to answer the following question: Given a service vehicle and

a certain number of satellites having insufficient amount of fuel, what is the “best

way” of planning a refueling mission? Typically, a refueling mission would comprise

of several orbital transfers taking place, each of which would consume fuel. Therefore,

by “best way” of planning a refueling mission, we mean that we wish to expend the

minimum amount of fuel during all orbital maneuvers required for the mission.

We assume that the service vehicle and satellites employ a chemical propulsion

system, so that the maneuvers are impulsive in nature. Specifically, we consider that

the transfers are time-fixed two-impulse rendezvous. Hence, the optimal trajectory

for a single orbital transfer can be obtained by considering the multi-revolution solu-

tions to the Lambert’s problem. We studied the problem of rendezvous between two

satellites in different circular orbits, by allowing the satellites to engage in a cooper-

ative rendezvous in a different circular orbit. It is found that if time is sufficient for

a non-cooperative Hohmann transfer between the satellites, the optimal rendezvous

non-cooperative. However, if the time is not sufficient for a non-cooperative Hohmann

transfer, but is sufficient for a phase-free Hohmann transfer between the circular or-

bits, then we find that the optimal solution is a Hohmann-Phasing Cooperative Ma-

neuver. In such a case, one of the satellites perform a Hohmann transfer to the orbit
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of the other satellite, and the latter satellite just performs a Phasing Maneuver to

complete the rendezvous.

The determination of the optimal set of orbital transfers for a complete refuel-

ing mission presents a large-scale optimization problem. The conventional notion of

refueling is to have a service vehicle visit all fuel-deficient satellites in an optimal se-

quence. In the strategy, known as the single-service vehicle (SSV) refueling strategy,

one needs to solve an integer program to determine the optimal time for all the trans-

fers. An alternative scenario for refueling satellites is the Peer-to-Peer (P2P) refueling

strategy, which is a redistribution of fuel within the constellation without the aid of

an external service vehicle. During a P2P maneuver, a fuel-sufficient satellite and a

fuel-deficient satellite engages in a fuel exchange, after one of them (active) performs

the orbital transfer to rendezvous with the other (passive). The active satellite returns

to its original position after the refueling process. The optimal set of P2P maneuvers

can be determined by solving a bipartite assignment problem. It is observed that

typically in the optimal set of P2P maneuvers, the fuel-deficient satellites are active,

because they have the lighter mass, and thereby likely to expend less fuel during the

maneuvers. However, if the fuel-deficient satellites do not have sufficient fuel to be

active, then the fuel-deficient satellites are active.

The P2P comes as a natural choice during the second phase of a mixed refueling

strategy, in which the service vehicle delivers fuel to some of the satellites (perhaps,

half) in the constellation, and these satellite refueled by the service vehicle engage

in P2P maneuvers with the remaining satellites in order to distribute the fuel among

them. In terms of the fuel expended during a refueling mission, a mixed refueling

strategy is better than a single service vehicle strategy, particularly with increasing

number of satellites in the constellation, and/or with decreasing time for the refueling

mission. However, the mixed refueling strategy can be improved further. A Coasting

Time Allocation algorithm has been implemented to determine the optimal time
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sharing between the forward and return trips in the P2P maneuver that needs to be

completed within a given time. The notion of Asynchronous P2P (A-P2P) maneuvers

identifies that in the mixed refueling strategy, a satellite refueled by the service vehicle

can start a P2P maneuver immediately after it has been refueled by the service

vehicle. The introduction of the CTA strategy and the notion of A-P2P maneuvers

substantially decrease the amount of fuel expended during a mixed strategy. One

question that arises at this point is: Can we further improve the P2P phase of the

mixed refueling strategy?

One extension of the P2P problem is the Egalitarian P2P (E-P2P) strategy, in

which we allow the active satellites to interchange their orbital positions during their

return trips. The E-P2P problem can be formulated as a three-index assignment

problem in an undirected constellation graph. Alternatively, a network flow formu-

lation can be used to solve for the E-P2P maneuvers. However, both methodologies

yield sub-optimal solutions. Lower bound on the optimal fuel expenditure incurred

during E-P2P refueling is derived, in order to obtain a measure of the sub-optimality

of the solutions. However, the lower bound may or may not correspond to a feasible

E-P2P solution. When it does correspond to a feasible E-P2P solution, the bound is

tight and represents the global optimal E-P2P solution. The E-P2P strategy yields

significantly less fuel expenditure, compared to the P2P strategy. This is because all

active satellites perform low-∆V maneuvers in order during their return trips, thus

saving a substantial amount of fuel.

Another extension of the P2P problem is the Cooperative P2P (C-P2P) strategy,

in which we allow both satellites to be active. The formulation of the C-P2P strategy

is similar to the baseline P2P strategy, except for additional constraints that need to

be accounted for. Cooperative maneuvers are particularly beneficial when the fuel-

deficient satellites have too low fuel to be active. This is particularly important in

the case of the refueling problem, because a refueling mission would be performed at
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end of lifetime of fuel of the satellites, and it is likely that the fuel-deficient satellites

would have very low fuel content.

The fact that both E-P2P and C-P2P refueling strategies are better provides the

motivation for combining these two ideas into one single strategy, referred to as the

Cooperative Egalitarian P2P (CE-P2P) strategy. A network flow formulation of the

problem can be used to determine the CE-P2P maneuvers in the constellation. The

formulation yields only sub-optimal solutions, and a lower bound on the fuel expendi-

ture during CE-P2P refueling is used to provide a measure of the sub-optimality of the

solution. The CE-P2P strategy is found to be a better refueling strategy compared to

either a (non-cooperative) Egalitarian P2P (E-P2P) strategy or a (non-Egalitarian)

Cooperative P2P strategy (C-P2P). In fact, the CE-P2P strategy allows for the ben-

efits of both E-P2P refueling and C-P2P refueling. On one hand, active satellites can

perform smaller-∆V (and hence lower fuel expenditure) orbital transfers since they

are allowed to return to any available orbital slot. On the other hand, the CE-P2P

strategy reduces the fuel expenditure by allowing satellites to engage in cooperative

rendezvous. This is particularly advantageous when the fuel-deficient satellite does

not have enough fuel to initiate a non-cooperative rendezvous.

7.2 Contributions of the Dissertation

We finally conclude by outlining the primary contributions of this dissertation:

• The problem of achieving fuel equalization in a constellation using P2P ma-

neuvers involves the minimization of two conflicting objectives. A rationale

is developed to justify the use of a simple cost function that implicitly takes

into account both conflicting objectives, and results in a solution that yields a

reasonable compromise between the two objectives.
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• The problem of cooperative rendezvous between two satellites in different cir-

cular orbits is studied with the assumption that each satellite performs two-

impulse transfers, and that the terminal orbit of rendezvous is circular. For the

time of rendezvous that prohibits a non-cooperative Hohmann transfer between

the satellites, but allows for a phase-free Hohmann transfer between the or-

bits, we characterized the optimal solution as a Hohmann-Phasing Cooperative

Maneuver (HPCM).

• Two cost-reducing measures are incorporated in the mixed refueling strategy.

The first of them is the development of a Coasting Time Allocation algorithm

that optimally divides total P2P time between the forward and return trips of

the maneuver. The second is the introduction of the notion of Asynchronous

P2P maneuvers. These measures substantially reduce the fuel expended during

a mixed refueling strategy.

• The idea of allowing active satellites to interchange their orbital positions were

introduced in the form of an Egalitarian Peer-to-Peer (E-P2P) refueling strategy.

Two different methodologies are developed to solve for the E-P2P problem.

Both methodologies yield sub-optimal solutions. Lower bound on E-P2P fuel

expenditure are derived to provide estimates of sub-optimality of the solutions.

Finally, it is demonstrated that the E-P2P strategy provides significantly less

fuel expenditure, compared to the baseline P2P strategy.

• The idea of cooperative rendezvous is introduced in the problem of P2P refu-

eling. A formulation is developed to solve for the optimal C-P2P strategy. It

is shown that the satellites, engaging in a cooperative rendezvous, share fuel

in such a way that the satellite, performing the higher-∆V transfer during the

return trip, ends up with just enough fuel to be sufficient at the completion

of the maneuver. It is demonstrated that cooperative P2P maneuvers help in
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reducing the fuel expenditure during refueling if the fuel-deficient satellites have

low amount of fuel and cannot perform a non-cooperative P2P maneuver. This

is a very important result in the context of refueling, because refueling is an

operation that would performed near the end-of-life of fuel of satellites. Hence,

most satellites are likely to be having a vary low amount of fuel content. In

this case, cooperative strategy would be beneficial. It is found that the fuel-

deficient satellite moves, by expending all of its fuel, as close as possible to a

fuel-sufficient satellite in order to undergo a fuel exchange.

• The ideas of E-P2P and C-P2P strategies are combined into one single refu-

eling strategy, known as the Cooperative Egalitarian P2P (CE-P2P) strategy.

A formulation is developed to solve for the optimal CE-P2P solution. The

methodology yields only sub-optimal solution. Hence, a lower bound on the

fuel expenditure during CE-P2P refueling is derived. It is demonstrated that

the CE-P2P strategy helps in further reduction of fuel expenditure during P2P

refueling.

Finally, we conclude with the main result of this dissertation: In terms of fuel-

expenditure during a refueling mission, we have

Lower Bound ≤ CE-P2P ≤







E-P2P

C-P2P






≤ P2P (244)

7.3 Future Work

Several extensions of the current work are described in this section.

7.3.1 Servicing of Multiple Satellites

We can also extend the refueling problem to the more general problem of servicing,

as illustrated in Figure 62. The inner orbit comprises of nf fuel units and no other

Orbital Replacement Units (ORUs). The latter units might be upgraded avionics
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Figure 62: On-Orbit Servicing.

units, or additional payload for all or some of the satellites that need to be serviced.

These items need to be delivered to n satellites evenly distributed in the outer orbit.

The service vehicle can deliver these units by following a mixed strategy. In such a

strategy, the service vehicle delivers the units to part of the satellites and then these

satellites distribute the units to the remaining satellites. We assume here that the

satellites can hold additional units that need to be delivered to another satellite via

a P2P maneuver.

In the mixed strategy we studied, we considered that the service vehicle visits half

of the satellites that need to be serviced. However, the optimal number of satellites

serviced by the service vehicle might be different, and needs to be investigated. Fur-

thermore, the problem becomes even more interesting when we have more than one

service vehicle. The discrete optimization problem in this case becomes even more

complex and efficient algorithms need to be developed in order to tackle it.

170



7.3.2 Low Thrust Servicing

In our study, we have considered that the service vehicle or the satellites employ

chemical propulsion system, so that the maneuvers are impulsive in nature. A natural

extension of the work is therefore the case when the satellites employ an electric, solar-

electric, or ionic propulsion system. In these cases, we have low-thrust maneuvers.

The primary benefit of using low-thrust propulsion systems is an efficient usage of

propellant. The problem of minimum-fuel, time-fixed low-thrust maneuvers have been

studied in the literature, and typically the optimal transfer is determined by solving

a non-linear programming problem (NLPs). There have been several studies in the

literature that deal with the problem of solving the NLP associated with a low-thrust

maneuver.37,63,67 Generating good guesses for solving the NLPs is a difficult problem,

and can be non-intuitive.67 The biggest challenge in the study of low-thrust servicing

missions is that numerous orbital transfer problems need to be solved.

For instance, consider a simple case of 10 satellites in a constellation. A service

vehicle visits 5 of these satellites, which engage in low-thrust E-P2P maneuvers with

the remaining satellites. There are of course 5× 5 = 25 possible pairings between the

satellites. For each pairing, either satellite can be active, and the active satellite can

return to any one of 10−1 = 9 orbital positions. This means there are 25×2×9 = 450

possible E-P2P maneuvers. Each E-P2P maneuver would comprise of a forward trip

and a return trip, and determining the optimal trajectory for each trip would require

the solution of a NLP. Hence, a low-thrust E-P2P mission would require the solution

of 2× 450 = 900 NLPs. Development of efficient algorithms to tackle such large-scale

problem is therefore the prime challenge in solving a low-thrust servicing mission,

and presents an interesting research area that needs to be investigated.
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7.3.3 Servicing Satellites in Different Planes

In this dissertation, we considered that all the satellites that need to be refueled are

on the same plane. However, the studies may be extended to the case of servicing

satellites in non-coplanar orbits. In general, plane changes are costly maneuvers,

compared to the phasing maneuvers, unless the planes differ by small angle. Hence,

if there are many satellites in the same plane, then one may think of dedicating a

service vehicle for each plane. If this is not the case, then plane change maneuvers

need to be considered. For instance, if each plane has only 3-4 satellites, then we

need to consider the fuel expenditure owing to plane changes required for servicing.

This can be easily incorporated within the framework developed in this dissertation.

Nevertheless, P2P refueling problem incorporating plane change maneuvers need to

be studied, and this might be one direction of extending the work of this dissertation.

7.3.4 Servicing Satellites Flying in Formation

We have studied the problem of refueling a system of multiple satellites moving in one

or more circular orbits. Of course, the system of multiple satellites we have considered

is simple. However, we have seen that even for this simple system, the problem of

finding the “best way” of refueling the satellites is challenging, because it involves

the solution of a large-scale optimization problem. Extension of the work to consider

more complex systems, for instance a system of formation flying spacecraft, seems

natural. The dynamics of such a system is described by CW-equations, which are the

linearized equations of motion. The optimal transfer from one satellite to another

can then be calculated by considering the dynamics of the system as given by the

CW-equations.

7.3.5 Optimal Scheduling

In the studies of P2P refueling, we have assumed that there are not any constraint that

prohibits a satellite from performing a maneuver. However, in a real-world scenario,
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there would be restrictions on a satellite from leaving it position. For instance, in case

of communication satellites, in order to maintain connectivity in the constellation, two

active satellites may not be allowed to perform the orbital maneuvers simultaneously.

Hence, two P2P maneuvers, if taking place simultaneously, may violate a connectivity

constraint, and thereby lead to a downtime of the constellation. Given a set of P2P

maneuvers that need to be executed, the problem of scheduling these maneuvers

within a given time, such that the total downtime of the constellation is minimized,

is interesting. If there is a sufficiently large time available for a refueling mission,

then the maneuvers can take place one by one without any conflict. This would lead

to minimum possible downtime in the constellation corresponding to a set of P2P

maneuvers. However, given an upper bound on the time, within which all maneuvers

need to be scheduled, the problem of minimizing the downtime becomes interesting.

Ref. 69 looked at this problem for the baseline P2P strategy. However, the scheduling

problem for E-P2P, C-P2P, or the general CE-P2P strategies have not been looked

at. Hence, this presents another direction, in which the work can be extended.

7.3.6 Risk Analysis

The risk factor involved in the fuel delivery stage of a servicing mission of a system

of multiple satellites has not been analyzed in any work. A single service vehicle

refueling mission would involve several maneuvers by the service vehicle and a failure

of the service vehicle would lead to the failure of the remaining mission. However,

in a mixed refueling strategy, the service vehicle performs less number of manuevers,

but there are other satellites performing P2P maneuvers. Because of more number

of maneuvers, the chances of a failure occuring might be more. However, if the

failure occurs to an active satellite performing a P2P maneuver, it does not affect

the remaining mission. Analyzing the risk associated with both refueling missions

presents an interesting problem for study.
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7.3.7 Stochastic Formulation

The formulations for the various refueling strategies we have discussed are determin-

istic in nature. A deterministic formulation assumes that we have a good idea of the

fuel content of the satellites. But, in general, we may not have an idea of the exact

fuel content of the satellites. Particularly, for satellites performing frequent orbital

maneuvers as part of mission requirements, the fuel content at a certain time cannot

be known exactly in advance, and this causes a hindrance in advanced planning of a

refueling mission. Such a situation calls for a stochastic formulation of the problem.

At any instance of time t, we need to consider that the fuel content of a satellite fol-

lows a probability distribution. With knowledge of such probability distribution, one

can only calculate the expected cost of a refueling mission planned for a certain time

t. The optimal set of maneuvers can then be determined by minimizing the expected

fuel expenditure during a refueling mission. This would lead to solving a stochastic

programming problem. This also presents an interesting direction of future work.

7.4 Summary

The dissertation looked at the problem of refueling multiple satellites moving in a

circular orbit. The problem is challenging because one has to deal with a large-

scale optimization problem in order to decide on the best servicing strategy. In this

dissertation, methodologies have been developed in order to determine the optimal

set of maneuvers required for such a refueling mission. Several possible extensions

of the work have been identified. Overall, it can be concluded that the problem of

planning a servicing mission for a system of multiple satellites is a very rich problem,

and there are several unexplored areas that remains to be studied.
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