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SUMMARY

This thesis studies several problems dealing with weighted inequalities and
vector-valued operators. A weight is a nonnegative locally integrable function, and
weighted inequalities refers to studying a given operator’s continuity from LP(w) to
LP(o) (or LP*°(0)) with 1 < p < 0o and w and o weights. The case where 0 = w is
known as a one weight inequality and the case where o # w is called a two weight
inequality. These types of inequalities appear naturally in harmonic analysis from at-
tempts to extend classical results to function spaces where the underlying measure is
not necessarily Lebesgue measure. For most operators from harmonic analysis, Muck-
enhoupt A, weights represent the class of weights for which a one weight inequality
holds. Chapters II and III study questions involving these weights. In particular,
Chapter II focuses on determining the sharp dependence of a vector-valued Calderén-
Zygmund operator’s norm on an A, weight’s characteristic; we determine that the
vector-valued operator recovers the scalar dependence. Chapter III presents material
from a joint work with M. Lacey. Specifically, in this chapter we estimate the weak-
type norms of a simple class of vector-valued operators, but are unable to obtain a
sharp result. The final two chapters consider two weight inequalities. Chapter 1V
characterizes the two weight inequality for a subset of the vector-valued operators
considered in Chapter III. The final chapter presents examples to argue there is no
relationship between the Hilbert transform and the Hardy-Littlewood maximal op-
erator in the two weight setting; the material is taken from a joint work with M.

Reguera.
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries

This thesis studies a branch of harmonic analysis known as weighted inequalities. Our
particular focus will be on vector-valued operators and Calderén-Zygmund operators.
The theory of weighed inequalities is pertinent to a variety of subjects. There are
deep ties between weights and the regularity of solutions to certain partial differential
equations. Operator theory and spectral theory can be related to this subject through
two weight inequalities for singular integrals. Additionally, weighted inequalities also
find application in approximation theory and probability theory.

The present chapter will provide an overview of the area of weighted inequalities.
Subsequent chapters detail recent advances in the subject. The material of Chapters
II-V are drawn from [40], [37], [41], and [22].

We begin by introducing some basic terms and ideas. First, we refer to a locally
integrable nonnegative function w on R™ as a weight. In harmonic analysis, weighted
theory or weighted norm inequalities refers to the study of a given operator’s con-
tinuity properties when considered as acting on functions from L"(w) to LP(o) (or
LP>(0)), where o and w are fixed weights and 1 < p,r < oco. The terms one weight
and two weight refer to the cases where w = ¢ and w # o.

We let M denote the Hardy-Littlewood maximal operator defined as

Definition 1. For f € L{ (R") let

loc

Mf(x) = sup (f)q

Q>

where the supremum is taken over all cubes () containing x and (f)g = ﬁ fQ f(y)dy,



and by a Calderéon-Zygmund operator, we will mean the following:

Definition 2. We call a function K a Calderon-Zygmund kernel if there is0 < a < 1

such that K satisfies the following:
(i) |K(z,y)| < m for x,y € R™ such that x #y

(i) |K(z,y) — K@, y)| +|K(y,z) — K(y,2")| S =21 with |v — of| < 232

lz—y[nte

We call an operator T' a Calderén-Zygmund operator if T is bounded on L*(R™) and
there is a Calderon-Zygmund kernel K such that
Tf(x)= | K(z,y)f(y)dy « ¢&supp(f)
RTL

for compactly supported f € L*(R"™).

The canonical example of Calderén-Zygmund operator is of course the Hilbert trans-

form H which we define as

Hf(x)=p.v. . x(y_)ciy

A notion closely related to Calderén-Zygmund operators is that of Haar functions

and Haar shift operators.

Definition 3. Let D be a dyadic grid and Q € D. Then hq is a Haar function if hg

satisfies
ho(z) = > colg(x)
Q'eC(Q)
where C(Q) is the collection of all dyadic children for Q.

Definition 4. For integers (m,n) € Z* we will call S a Haar shift operator of com-
plezity (m,n) if

o
Sf(z)=>_ > ngi(x).

QeD Q',R'eD ’Q|
Q' R'CQ
2QN=£(Q)2™™, L(R)=(Q)2™™



where for a given cube I, ((I) = |I|% The functions hg and k;gf represent generalized

Haar functions. The complezity  of S is defined as max {m,n,1}.

It is a well known but deep fact that a general Calderén-Zygmund operator T can be
recovered via suitable averaging of Haar shift operators, see [17].
Central to this thesis are vector-valued operators and functions; here, following [9],

we make explicit the meaning behind these terms.

Definition 5. Let (X, p) be a o-finite measure space and B a Banach space. A

function F' : X — B is measurable if the following holds:

(i.) there is a separable subspace By of B such that F(x) € By for almost every

r e X.
(ii.) for each V/ € B', g(x) = (F(x),b) is measurable.
We let L% (1) be the space consisting of all measurable F : X — B such that
([rian)” <o
X
and analogously we take L% (1) to be the collection of all F : X — B satisfying
P llpoe) = supty ({o € X : [ F@)] > )5

Our focus is on the case when B is a sequence space ¢ with 1 < r < oo; unless
otherwise indicated, we use vector and vector-valued in reference to such an ¢" space.

Other classical operators we will be interested in are

Definition 6. For 1 < r < oo we define the vector-valued maximal operator M, as

M, (£)(a) = (Z ij<x>T>

for f ={f; };’;1 a sequence of locally integrable functions,

T



Definition 7. For f € L] _(R), define the dyadic square function to be

loc

Sﬂm:<§}ﬁme@>,

1eD

and as in [45] we define the intrinsic square function to be

Definition 8. Let C,, be the collection of functions v supported in the unit ball with

mean zero and such that |y(x) —y(y)| < |z —y|*. For f € L} (R™) let

Ao f(x,t) = sup |f ()]

veCq

where v (x) =t "y(xt™") and take

dydt\ *
Gd@ﬂZ(ﬁmAdwifﬁi)

where T'(z) := {(y,t) eRM ¢ |yl < t} is the cone of aperture one in the upper-half

plane. We call G,, the intrinsic square function.
We make one last definition,

Definition 9. We refer to a collection of cubes Q = {Qf

Js QfﬂQé =0 and iffoer € Q we have

}j pey 08 sparse iof for fized

[D(Q5) N Q51 < 271Qj]

where D(Q¥) =@\ | ] Q.

Q' CQk
QreQ

1.2 Mawn Results and Background
1.2.1 One Weight Inequalities

The theory of one weight inequalities is well known and largely restricted to the study

of Muckenhoupt A, weights:



Definition 10. Let w be a weight which s strictly positive almost everywhere. We

say w € A, for 1 < p < oo provided the following quantity is finite:

la, =5 (17 [ o) (7 [ w<x>1p/)p_1,

where the supremum is taken over all cubes in R™. When p = 1 we say w € A;

provided the following is finite:

Muw
w

fwla, = ] -

For most classical operators from harmonic analysis, Muckenhoupt weights com-
prise the weights for which a one weight inequality holds. In [27] Muckenhoupt showed
the A, condition was necessary and sufficient for the Hardy-Littlewood maximal op-
erator to be a bounded operator from LP(w) into LP(w). Later, Muckenhoupt, Hunt
and Wheeden [10] demonstrated the A, condition characterized the weighted continu-
ity of the Hilbert transform, and Coifman-Fefferman [4] proved this for more general
singular integrals.

Sharp one weight estimates were first studied by Buckley [1] when he obtained
the sharp strong-type and weak-type bounds for the Hardy-Littlewood maximal func-
tion. Later, the subject was motivated by [34], where A. Volberg and S. Petrmichl
use sharp weighted results to study solutions for the Beltrami equation; in particular,
the authors prove a linear bound for the Beurling-Alfohrs transform T, i.e. if w € Ay

then
1T\l 22wy L2(w) S [w]a,

so that by extrapolation,

max 1,%
1Ty ry S [l 37T

for w € A, with 1 < p < co. Following [34] a series of results appeared verifying the

linear bound for singular integral operators and dyadic shift operators (see [18,44]);



and, the question of whether the linear bound extended to all Calderén-Zygmund
operators became the focus of intense research, eventually becoming known as the A,
conjecture. The conjecture was finally solved in all generality by T. Hytonen [17].

The second chapter of this thesis considers the question of extending Hytonen’s
result to ¢" spaces. That is, Chapter II focuses on the following: given a Calderén-
Zygmund operator T" and its ¢" extension T, we want an estimate of the following
type

1T 22, () 22 () S (0] 4,,)

for some function «,,,(t) which is the best possible choice in the sense «,,(t) cannot
be replaced by a function f,,(t) which grows more slowly as ¢ — co. We are able
to show that the best possible choice of o, , in the above inequality is tmax{l’p%l}; in
particular, we obtain the same dependence as in the scalar case. This type of depen-
dence is somewhat unexpected, contrasting greatly with similar operators such as the
dyadic square function and vector-valued maximal operator (see Chapter II and [8]).
Additionally, we also note that the implied constants in our estimates do depend on 7.
Hence, Chapter II presents the unusual result that scalar valued Calderén-Zygmund
operators are just as singular as ¢" extensions of Calderéon-Zygmund operators.

An important remark is that Hytonen’s proof relied on probabilistic techniques
and the notion of Haar shift operators. Different methods of proof for this theo-

rem were simultaneously and subsequently investigated. The most successful of these

involved using A. Lerner’s decomposition theorem [23]:

Theorem 1.2.1. Let f € Li (R™) and let Q be a fized cube. Then there exists a

loc

collection of dyadic cubes {Qf}] . such that

(i.) for each k,j € N, we have Q¥ C Q
(ii.) for almost every x € Q,

[f(@) = mp(Q) S AM] o f(2) +4) D wona(f; Q) Lge(2)
kg



(iti.) for fived k, Q5 NQY =0 fori # j

(iv.) letting Q = U Qf, we have | N QY < 271 Q4| and Qpy C QU

J

and avoided averaging techniques altogether (see [13,24]). Other ideas focused on
reducing the strong-type inequality to a weak-type inequality; this was in fact the basis
of [17]. With regard to this line of investigation, two conjectures received considerable

attention, namely the A; conjecture, i.e.

Conjecture 1.2.2 (A; Conjecture). If T is a Calderdn-Zygmund operator and w €
Ay, then

[w]Al

w({z €R": [Tf(2)] > A}) S =

[ @)

for f € LY (w),
and a related conjecture by Muckenhoupt and Wheeden

Conjecture 1.2.3. Let T be a Calderdon-Zygmund operator and w a weight. Then
1
w({z €R": [Tf()[ > A S v [ [f(2)|Mw
R’ﬂ

for f € LY(w).

Were either conjecture true, an extrapolation argument would imply the Ay conjec-
ture; however, both conjectures have recently been shown to fail [29,36]. The best

known bound for A; weights was obtained by Lerner-Perez-Ombrosi [26]:

Theorem 1.2.4. Let T be a Calderon-Zygmund operator and w € A;. Then we have

[w]a, (1 + log [w]a,)

w({z €R" s [Tf()] > \}) S .

[ i@

The addition of the logarithm to some power is necessary as shown by Nazarov-
Reznikov-Vasyunin-Volberg [29]. The sharp dependence for the endpoint estimate
remains an open question. In the range 1 < p < oo, the sharp result was obtained

by [16]:



Theorem 1.2.5. If T is a Calderon-Zygmund operator and w € A, then we have

HT”LT”W(w)HLPvOO(w) 5 [?U]Ap.

We can contrast the above behavior with the less singular square functions and
vector-valued maximal function. Wilson [45] showed if w is a weight and G,, is the

intrinsic square function then

wi{e € R Gufle) > AD £ 5 [ 1f@)]Mw

and Perez [33] gave the same estimate with G, replaced by the vector-valued maximal
function M, with exponent 1 < r < oo. As a result, both the vector-valued maximal
function and square functions satisfy a linear A; bound.

Chapter IIT will consider a problem related to the endpoint estimates above.

Namely, we consider the vector-valued operators 7o, , defined by

Definition 11. Let Q be a sparse collection of cubes, 1 < r < oo, and parameter

1 < p<oo. Then for f € LL (R") we define

loc

TQrpf (Z’ pI’ ]-I )

IeQ

where given a cube Q) C R™ we let pQ) be the cube with the same center as Q) but with

side length pl(Q),
and show

Theorem 1.2.6. For1 <p,r < oo, 1 <p<oo, andw € A, we have

1Tarpllreow) S @pr(lw]a,)
where ¢, (z) = xv forl<p<r and ¢,,(x) = zr(1+logx) forr <p.

We are interested in the operators 7g ., because application of Theorem 1.2.1 reduces

study of the intrinsic square function and the vector-valued maximal function with



exponent 7 to that of the maximal function and operators of the form 7g 9 , and 7o, ,
(see Chapter III for details). Hence, as a result of Theorem 1.2.6, we improve the
implicit weak-type bounds for the intrinsic square function in the range 1 < p < 3
and the vector-valued maximal operator in the range 1 < p < r+1. The logarithm in
our theorem can be compared with that in (1.2.4) for Calderén-Zygmund operators;

however, we are unable to show that the addition of a logarithm is necessary.
1.2.2 Two Weight Inequalities

Two weight inequalities are more difficult and complicated than one weight inequal-
ities. Due to the work of Eric Sawyer on the two weight inequality for fractional
integrals [39] and the maximal function [38], there is a standard method for charac-
terizing the two weight inequality via testing conditions. Explicitly, given an operator

T:L"(w) — LP(0), we test the following inequality

IT()eroy S I Lr ()

over all f in some special, usually simpler, class of functions. For most integral
operators with positive kernels, the above is an efficient method of characterization.
The main ingredient used in the arguments for such results is the weighted Carleson

embedding theorem:

Theorem 1.2.7 (Weighted Carleson Embedding Theorem). Let w be a weight on R™

and {77} jep a collection of nonnegative numbers. Then we have

Sup ZTJ§1

if and only if

sup Y () S 1, (1.2.8)
feLP(w) jep
Ifllzp (wy=1

where ( w(J fJ x)w for a given interval J.



Indeed, Theorem 1.2.7 can be used to prove E. Sawyer’s two weight characterization
for the maximal function and discrete positive operators, see [43]. We provide a

generalization of Theorem 1.2.7 in Chapter IV, specifically showing

Theorem 1.2.9. Suppose w and o are weights and 1 < r,p < oo with Q a collection
of sparse cubes. Then for To,1 = To, we have ||To,(-0)||1r(o)—rrw) if and only if

there are L and L, such that
sup / Tor(1go)(z)'w < Lo(Q) (1.2.10)
Q JQ

supsup/ Ug(1gaw)(z)P o < Law(Q) (1.2.11)
a Q Q
where we define

Uo(g)(z) = Y (9:1)11(x)

IeQ
forg ={g1},cq a sequence of locally integrable functions and where the second supre-

mum is taken over all sequences a of locally integrable functions satisfying ||a||» = 1.

Additionally, using A. Lerner’s decomposition theorem, an immediate consequence of
Theorem 1.2.9 is that we obtain sufficient conditions for a two weight inequality for
the vector-valued maximal function and dyadic square function.

When the operator under consideration fails to be positive, the two weight problem
typically requires more elaborate arguments. In particular, singular integrals such as
the Hilbert transform have been notoriously difficult to characterize in the two weight
setting. It is readily seen that a two weight A, condition is not sufficient for the Hilbert
transform to be bounded, see [28]. An alternative condition for the Hilbert transform

was suggested by D. Sarason:

Conjecture 1.2.12 (Sarason’s Conjecture). For two weights w and o the Hilbert

transform is bounded from L*(w) to L*(o) if and only if
sup P, (2)Py(2) S'1
Z€C+

where P, and P, are the Poisson extensions of w and v to the upper half plane C, .

10



However, F. Nazarov [28] constructed counterexamples to show Sarason’s conjecture
is false. One important positive result in this direction was given by Nazarov-Treil-

Volberg [31]:

Theorem 1.2.13. Suppose o and w are positive Borel measures such that M(-o) :
L*(o) — L*(w) and M(-w) : L*(w) — L*(c) both hold. Then H(-0) is bounded from
L3(0) to L*(w) if and only if the following hold:

(i) [H@0) |20 S o(1)?
(i) 1H(Lw)]i20) S w(l)>
(iii.) sup,ec Pr(2)Pu(z) S 1.

Recently, [21] obtained a characterization in terms of weak-type inequalities. The
problem is still open for more general singular integrals.

Chapter V considers examples which illustrate some of the difficulties presented
by the two weight problem when the underlying operator is no longer positive. Using
the constructions of [19,35-37] as inspiration we construct weights to refute an old

conjecture of Muckenhoupt and Wheeden

Conjecture 1.2.14 (L Muckenhoupt-Wheeden). Let T be a Calderén-Zygmund op-

erator and let w and v be weights on R™. Then

M : LP(v) — LP(w) (1.2.15)
M L (w'?) — LF' (v (1.2.16)

if and only if
T:LP(v)— LP(w). (1.2.17)

and a pair of measures which show the assumptions of Theorem 1.2.13 are distinct.
We conclude that in the two weight setting, there is no relationship between the

maximal function and the Hilbert transform.

11



CHAPTER 11

SHARP ONE WEIGHT ESTIMATE FOR A
VECTOR-VALUED CALDERON-ZYGMUND OPERATOR

2.1 Introduction

The present chapter will focus on strong-type inequalities for £" extensions of singular
integral operators on weighted spaces LP(w). Our goal is to give a quantitative
estimate of these operators’ norm in terms of a given weight’s A, characteristic. The
scalar version of this problem has recently been given a great deal of attention. In
this context the sharp dependence can be extrapolated from the case p = 2 which

gives a linear estimate, i.e. if T is a Calderén-Zygmund operator and w € A,

HT|’L2(w)~>L2(w) < [w]ay; (2.1.18)
further, the above inequality is referred to as the As Theorem. The authors of [32]

reduced the proof of (2.1.18) to estimating Sawyer-type testing conditions for w € A,,

1T 22wy = r2w) S [W]ay + 1Tl 22wy 2oy + 1T 221y s p200 -1y (2.1.19)
Using probabilistic techniques, Hyténen [17] first proved (2.1.18) in all generality by
demonstrating the weak-type norms in (2.1.19) satisfy a linear bound. Several sub-
sequent proofs of (2.1.18) have also appeared, some of which appeal to averaging
techniques [15,23], and others avoiding this altogether [13,24].

In the vector-valued setting, several different types of operators have been con-
sidered. In [8] the authors show that the dyadic square function S and vector-valued
maximal operator M, with exponent r satisfy
max{ 3,547 }

Ap

1S 2 (w)— Lp(w) S (W]

1 1

max{ et

||Mr||L§;T(wHLp(w) S [wly

N

P

12



where 1 < p < oo and w € A,. Using similar methods, [25] gives sharp bounds for
the intrinsic square function G, on weighted LP(w) spaces, resolving a well-known
conjecture [25]. We aim to generalize the forgoing types of results to vector-valued
extensions of a Calderén-Zygmund operator. Based on the previous examples, it
would be natural to expect the estimates of the A, characteristic to depend on the
exponent r associated with the ¢" extension of the given Calderén-Zygmund operator;
however, in the estimates we obtain this does not occur. In particular, the main

theorem of this chapter can be formulated as the following

Theorem 2.1.20. Given a Calderon-Zygmund operator T on R™, for 1 < r < oo we

denote by T the (" extension of T, i.e. T(f) = {T(fj)(zzc)}]o.';1 and

T:(f)(x) = (Z |T(fj)(f6)|r)
j=1
for f = {fj};il with f; € S(R™). Let 1 < p < oo and w € A,. Given a Calderdn-

Zygmund operator T we have the following bound
max 1,%
H7;HL§,.(w)—>LP(w) ,S [w]Ap { P 1}- (2.1.21)

We stress that unexpectedly, the dependence on [w]4, in Theorem 2.1.20 is the same
as in Hyonen’s original theorem, and this is in contrast to the implied constants
which do depend on r. Hence, our theorem indicates that scalar and vector-valued
Calderén-Zygmund operators can be equally singular. Additionally, the paper [11]
considers more general Banach valued Calderén-Zygmund operators and achieves our
Theorem 2.1.20 as a corollary using different proof methods.

Now we make a few remarks about the proof of Theorem 2.1.20. In the scalar
case, the proof strategy is to reduce the study of T' to simpler operators, typically
Haar shift operators of a fixed complexity. We follow this tract, reducing the study of
a given T to consideration of vector-valued Haar shift operators of a fixed complexity

k. Indeed, we show it will be enough to prove the following theorem

13



Theorem 2.1.22. Given a vector-valued Haar shift operator S, of complexity r, we
have

max{l,ﬁ}

||ST||L§T(w)—>LP(w) S f‘é4[w]A,,

The chief difficulty in proving Theorem 2.1.22 will be maintaining a polynomial de-
pendence on k. To this end, we follow the argument outlined in [24] for the scalar
case. We rely heavily on the application of Lerner’s decomposition theorem, applying
this inequality multiple times before obtaining our desired estimates. An alternative
method of proof would be to verify the bounds in Theorem 2.1.22 via testing con-
ditions; this is easily achieved in certain cases, such as when the Calderén-Zygmund
operator has bounded complexity, but we were unable to achieve the result for general
Calderon-Zygmund operators.

The outline of this chapter is as follows. In Section 2.1.1 we introduce our main
theorems and Section 2.1.2 lists several results which will be used in our proofs. Sub-
sequent sections refer to the proofs of specific theorems, beginning with arguments for
our Lebesgue estimates and continuing with proofs of Theorem 2.1.22 and Theorem

2.1.20.
2.1.1 Preliminaries

In this section we fix notation and introduce our theorems. Let 1 < p,r < oo and

w € A, weight with x € N.

Definition 12. For u € {0,37!}" we denote by D* the dyadic grid defined by
D' = {2770, )" + m+ (—1)"u) : k € Z,m € Z"}

and note that this defines a collection of 2" dyadic grids on R™. In the special case
u =0, we let D* = D. Given a dyadic grid D* and a cube Q € D*, we use Q" to

denote the k-fold parent of ) from the dyadic grid.

14



Definition 13. Let S = {Sj};i be a collection of generalized Haar shift operators

of complexity k such that S7 f(x) = Z(f N AC ZSJ ) for f € L (R™).

1eD 1eD

- (Zwﬂ‘fxx)r)T

for £ = {f;} with f; € L, (R™). We call S, a vector-valued Haar shift operator of

Take

complexity k.

Definition 14. We define an operator P, as follows. For each j let Q; be a sparse

collection of dyadic cubes from the same dyadic system. For f = {f;}52,, define

Jj=1

Pi(f;)(x) = Z (fi)ole; ) (2)

QeQ;
where for each Q, E;(Q) is a union of sub-cubes of Q satisfying 27"|Q| < |E;(Q)|

and take

P (f)(z) = <Z Iijj(fr)!’”> B

j=1

We refer to operators of the above type as positive vector-valued Haar shift operators.

Definition 15. For given f € Li, .(R"), 0 < A < 1, and Q we have

W (f;Q) = inf ((f = 9)1o)” (AIQY)

M; o f(x) = sup Lo(@)un(/, 1)

where for g € L. (R"), g* represents the symmetric non-increasing rearrangement.
Now we list the main theorems of this chapter:

Theorem 2.1.23. The operator S,(-) satisfies ||S; ||z, p10 S Kt

Theorem 2.1.24. For P, as above, the following inequalities hold for Lebesque mea-
sure

1Pl s, e S w2600, (2.1.25)

15



Theorem 2.1.26. With w and p as above we have
max{1,--
|Sx ||Lp )= LP(w )5 "54[w],4p {7 1}- (2.1.27)

Theorem 2.1.28. Let T' be a Calderon-Zygmund operator and w € A, with 1 <p <

oo. Forl <r < oo,
max 1,%
1T et ooty < [l
2.1.2 Technical Lemmas and Theorems

We begin by stating some known technical Lemmas and Theorems which will be used

to initiate our proofs.

Lemma 2.1.29. [8] Given a measurable function f and Q € D, then for 0 < A <1

and 0 < p < oo we have

(flo)" (NQ|) < Hf”Lp’w(?lel‘ldx).

Lemma 2.1.30. [24] Let T' be a Calderon-Zygmund operator and Q C R™ a cube. If
1 <p<ooandw € A, then for f € LP(w)

= 1 1
ATFQ S Y 555 (g L Vi)

m=0

Lemma 2.1.31. [12] If S is a generalized Haar shift operator of complexity k then

we have

(57:Q0Q) 5 K AZ g

Theorem 2.1.32. [23] Let 1 < q,p < 00, 0 < A < 1, and assume that f and g are

functions such that for any cube QQ we have

anlati@) s (12

for some constant independent of Q). Then we have

max{

ol () < a8 T T £ .

16



Theorem 2.1.33. [8] For 1 < r,p < oo and w € A, we have the following bound

max l,%
M| 22, )2y S [0, St

Additionally, we have the following estimate which we prove in the next section

Lemma 2.1.34. If QQ € D then
WA(S:F;Q) S KR 2|l or) oo -

2.2 The Lebesgue Estimates
2.2.1 Proof of Theorem 2.1.23

We will perform a Calderén-Zygmund decomposition. Fix A > 0 and let {Qj};il be

the maximal dyadic cubes such that @ / |f|le-dz > X. For each j define b’ by
Qj

1

@ o, fkdl'> le(:z:).

b (x) = (fk -

and let b = Z b’. Further, we let g = f — b. Then we have the following:

Jj=1

(i) llgllcy, < [fllzy,
(ii.) for each j, supp bf; CQjalkeN
Gii) Sy < IEl,
j=1

(iv.) for almost all z € R™, ||g|ler < Al|f]]er

< lfl,
(v) DolQil S =
j=1

Notice

{r €R": S,f(x) > \}| < ; {xeR":Srb(x)>%H

{:v eR": S, g(x) > AH +

17



and consider by Chebyshev’s inequality,

[\

{a: eR": S .g(x) >

27‘
MeZ [ sura

<5 /. Nl

By properties (i.) and (iv.) from above,

Igllode S 3 [ feds
R R

so that
2" or
v [ llgllede s = | |If]lede (2.2.35)
R~ Rn
On the other hand,

x) < ZSrbj (x)

Further, for Q " C I, we have /bff(a:)da: — 0 so that S¥(b])(z) = 0 for Q" c I
I

J

Hence, by standard computations

1

Z&b%x) = (Z }S’“(b@(w)!?")

NERRANE

(Z ZS?(bi)(x)) Y (Z 2171 (2 )

<
j=1 \ k=1 |ICQ; j=1 QchcQg.”) k=1
= A(x) + B(x)
where
1= 3 (3|5 st
j=1 \ k=1 |ICQ,
o L
B(z) = kv Z Z <Z |b] 1]( ))
Q]CICQ(K) j 1 k=1
so that

e ssw s frer -3 -

18



Notice that A is supported on UQ); so that

{xéR":A(m) > %H Z|Qa| . HfHL

and using Chebyshev’s inequality we have

{xER":B(m)>%H Séml'/ > Z(Z (21)1 11(35)) da.

Q C[CQ(N) J 1 =

3

Applying Minkowskii’s integral inequality to the inner sum of expectations in the

above and continuing gives

X e < Sy

Qﬂ'CICQ;H) 5=l QjCICQE‘H) 5=l
1
4K
S [}
Q,;CICQ®

4/‘4/1_‘— 7
< ||f||L

.. . . 1+L
Combining the above estimates gives ||S|[11, 10 S K77

2.2.2 Proof of Theorem 2.1.24

Fix f € L?. and suppose first p = r. In this case we have
¢

opds = [ SO IPIf) @) ds
s [ Yl

=" [ ||f||Pdz.

Rn

Rn

Now by Theorem 2.1.23 and the Marcinkiewicz Interpolation Theorem for vector-

valued operators we have for 1 < p <r,

*3\‘,_.

1Pellep, o S 65

~Y

19



For the range 1 < r < p we notice there is a vector h € L?;, with [|h[| ,, =1 such
e’

that

[ Pvarae= [ Pe) nis

1
ol

< ([uezae)” ([ vmeras)’
R Rn
where U represents a ‘dual’ operator for P, i.e. if (P?)* is the dual for each P? then
U(g)(z) = (Z !(Pj)*(gj)(x)!’")
j=1

with g = {g;} and g; € Li..(R™). Arguing as before with U in place of P,, we see

loc

1

r!

% e

([ omyac)” < et
RTL
Hence, we have

||PT||L‘ZT—>LP 5 l€2 max {li%, /{71’} .
2.2.3 Proof of Lemma 2.1.34

By the triangle inequality we have,

|10(2)S,(£) () — 1o(2)S, (1 ge)ef) ()] < 1o(2)S,(fLow) ().

Notice, S,(f1 (g )(7)1g(2) is constant on Q. Define

C(Q,f,k) = C = 8, (Ligw)f) (2)1g(x).

Now the above implies

wA(S:(F); AlQI) < (105, (flgm))™ (AIQ)) -

Applying Lemma 2.1.29 gives

(105, (flgw))" (AQI) S 18- (Flgw) | Lo (@@l 1ax)

20



and from the weak-(1,1) inequality for S, we obtain

l K
IS (Flom) e (@@tde) S &7 2%([f]ler) oo

Thus,

WA(SHE); AQ]) < KTF25 (|| £l oo

2.3 Proof of Theorem 2.1.26
2.3.1 Proof of (2.1.27)

Let f € L} (w) be such that ||f|[,; has compact support. By applying Lerner’s in-

equality to each component of S, on a sufficiently large cube .J, we obtain the bound

™ r
0o

(ZM (S7(f:))( ))T + (D0 D) to@)wer2(S7(f;); Q)

Jj=1 \Qe€Q;
where Q; is the collection of cubes which results from applying Theorem 1.2.1 to

S9(f;). Using Lemma 2.1.31 as in [12] we obtain for each j,
MQ;J(Sj(fj))(f)r S KM fi(x)"

and

(ZM (5 (7)) )) S M, (f)(2).

Now we consider the function

o0

S Y 10(@) w2 (S7(£5): Q) . (2.3.36)

j=1 \QeQ,
Applying Lemma 2.1.31 for each j we obtain the following expression

L
=

DN DDA PICORR (N Q+ZIQ (£l gw : (2.3.37)

j=1 \QeQ;
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For each j and 0 < i < k define E(Q)" U I with the convention F(Q)° = Q.

(NW=Q
IcQ;

Continuing, we have

(2.3.37) < Z > e - (Ifile +

For 0 <7 <k let

with g € L .(R") and P; be defined by

Pi(g)(x) = (Z |Pj’i(g)(fﬂ)lr> T

j=1

for g = {g;};2, and g; € Lj,.(R"). Hence we have the following pointwise bound

S (£)(@) S M, (f)(@) + Y Pi(f)(). (2.3.38)

By Theorem 2.1.33,

So from (2.3.38),
/n8r<f><x>pw< M, pw+52pz [ pa
uli ) / -+ 73 / .

From duality, there is a vector h = {h;} € L?L,(w) such that

(] Pi(f)(ﬂs)pw); - [ P b

< ufnL;r(w)( [ U¢<hw><x>p’a) ,

3
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/ .
where ¢ = w!™" and for each i

1

- (Z r<Pj7i>*<gj><x>r’> T

with g = {g,;} and g; € L{ .(R™). We apply Lerner’s Theorem in each component of

U; to obtain the bound

1

U, (hw)(z) < M,( +/<;< |17 (h;w)| )H

M, (hw)(z) + kL;(h

where for each 7,

L (hjw)(z) = Y (hjw)1;(z).
IeN;;

Notice £; is a vector-valued Haar shift operator of complexity 1 which is L?(R")

bounded; hence, by Lemma 2.1.34,

wi(Li(hw))(AQ[) < ([[hl[rw)q

so that from another application of Lerner’s Theorem we obtain a sparse collection

of cubes K;,

Li(hw)(z) $ M(|[hllyw)(@) + D (Ihlew) ().
IeKk;

Hence for each ¢ we have

U;(hw)(z)"o < Mw(hw)( )+ & M(|[b]lprw)? + K7 Li(hw)(2)" 0

Rn
b / )1,

max{ ',
w
Ap

< kP

S
Now,

max Lp%
HST“Lfr(w)—)Lp(w) SJ K;4[w]Ap { 1}

giving the result.
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2.3.2 An Example to Show Sharpness

The dependence on the A, characteristic from Theorem 2.1.26 is sharp by the scalar
bound, but here we give an explicit example to show the dependence is sharp. For

each j let [; = [0,277) and define

Z )1 (x

Jj=1

Let w(z) = |z|®~V®=Y and f(z) = |z[°~'1p1)(z). Then

oy = |l
[0,1)

On the other hand

o) p
1Sz :/[01) (Zﬂx\“mlg(fﬂ)) | =Dy

j=1

Sl E

~ Z/ 5P|z~ || 1= (=1) g
2=

lek)

:/ 5P|’ da
[0,1)
=071

P
x‘sfl .17 (x z|1=0P=1) gq
(lz[> )1y,

=0

Hence,

wlf, ~ 57"

< 1S ()l Lr ()
/1| 2o ()
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As a consequence,

(/ s<fo><x>Pw)’l’ S S(fo)

IRl =

= sup f(x)S* (hw)(x)o
heL? (w)
1Bl 7y =1

= sup / f(x
hELP w)
IRl oy =

/ F(2)S(1payw) (2w ([0, 1)) 7

-1
7/

so that

R
o’

s, S w007 ([ Sau)r's)

[0,1)
S IISCo)| o (o) = Lo (w)

~ S| o (w)— Lo () -

As a result, [w]jjx{ =k SIS r(w)—Lrw)- Since S is a positive operator, S extends

to a vector-valued operator S on Lj, (w) defined by

- <Z|S(fj)(w)|’">r

]max{l 1}

and ||S||LP Y= LP(w) ™ [w Ap

2.4 Proof of Theorem 2.1.28

Let T be as in the statement of Theorem 2.1.28. For each j we apply Lerner’s
inequality to obtain the following bound

T(fi)(x) S Mfi(x) + > 1g(@)wen (T(f); Q).

QeQ;
For each 7, we have by Lemma 2.1.30,

=1 1
wa-n—1(T(f;); Q) S oma (m e |fj(y)|dy> .
0

m=
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Now we make an observation (see [14], [24], [13]), for any cube @ C R™ there is u
and I € D* such that Q C I and ¢(I) < 6/(Q). Hence for each u € {0,37'}" we may
choose a collection of dyadic cubes Q;,, in D" such that

> lo@(fi)zo S D>, D lolw)

QeQ; u€{0,371} QEQ;

> Pimulfi)(@)

ue{0,3-1}

Define

1
T

- (Z \amu(fj)(x)r) ;

we have the following bound

T(D)@) < +Zzam S Puub)a). (2.4.30)

ue{0,3-1}"

By Theorem 2.1.33

M, (F)(@)w < [w] 17T [ g

Rn Rn

For fixed m and u, we may apply Theorem 2.1.26 to obtain

[ Pua®@rw s mr e [ ey
n R

oW

so that
> 1 > m4p+§ max D,
S X[ Pettiors (X5 )ul e [ i
ue{0,3-1}" m=0
max{ p, -2~
<l e

Rn

As a result, from (2.4.39) we have

([ 7wira)’ it ([ o)
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CHAPTER II1

WEAK-TYPE ONE WEIGHT ESTIMATES FOR A
VECTOR-VALUED OPERATOR

3.1 Introduction

This chapter is devoted to weak-type inequalities on weighted spaces LP(w) with
w e A, and 1 < p < co. Our focus is on obtaining estimates for the vector-valued
operators Tg . ,; recall, for Q a sparse collection of cubes, 1 <7 < 0o, and 1 < p < 00
we define
1
Torutto) = (S 01,0
IeQ

for f € L _(R™). The main theorem we present here is the following:

Theorem 1.2.6. For 1 <p,r <oo, 1 <p<oo, andw € A, we have

[Torpllzroow) S ¢pr([w]a,)
where ¢, () = o for 1 <p<r and ¢, (x) = x+ (1 +logz) forr < p.

In the final section of this chapter, we show our result is sharp for the range 1 < p < r.
Due to A. Lerner’s decomposition theorem we obtain the following as a corollary to

the above:

Corollary 3.1.40. Recall, M, denotes the vector-valued mazimal function with ex-
ponent v and S, a vector-valued Haar shift operator of complexity k with exponent

r. Further, let T' be any of the dyadic square function, area integral, or the intrinsic
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square function. Then

IS, ||L” (w)— L2 (w) N [w]Ap

M 22, () s Lo () S Ppr([w]a,,)

1T Lr ) zroowy S Dp2([w]a, ) 1l zew)
where ¢, is defined as before.

Previously, the best bounds for the operators in Corollary 3.1.40 were those implied

by their corresponding strong-type bounds; namely

maxq 1
1S+ HL”(w )= Lby (w) S [w]AP o

max{7 yp—1

IV [ 22, () 2oy S [W]a,

1 1
max{ 3,515 }

1T 2o () po(w) S [w)a,

Hence, Corollary 3.1.40 improves the known weak-type bound for S, in the range
1 < p <2, M, in the range 1 < p < r 4+ 1 and those of the square functions in the
range 1 < p < 3.

In the literature, weak-type estimates for several classical operators have been
considered. Buckley was first to quantify the dependence of the maximal function’s

norm on a weight’s A, characteristic, proving

S =

1M oy oo ) S 0]

P

for w € A, and 1 < p < co. The authors of [26] were able to show for p = 1 and T

an L?(R") bounded Calderén-Zygmund operator, we have

| TNl £t (w)y—s L1 () S [w]a, (loglw]a, +1).

Subsequently, [16] considered the remaining values of p, giving

HTHLP(w)HLPv‘X’(w) 5 [’lU]Ap.
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The authors of [2] established
1
w({xER”:Af(x)>)\})§X fx)Mw
Rn

where A denotes the area integral and w is a weight; a similar type of argument
extends the result to more general square functions (see [45] and [46]).

The remainder of this chapter is outlined as follows. In the next two sections we
consider the proofs of Theorem 1.2.6 and Corollary 3.1.40. The final section discusses

an example to show Theorem 1.2.6 is sharp for p < r.

3.2 Proofs of Main Results
3.2.1 Proof of the Theorem 1.2.6

Fix Q, p, r, p, and let f € LP(w) such that f is nonnegative. We wish to show

w{z e R" : To,,f(x) > AP S (bp,r([w]Ap)prHip(w)’

and it will be enough to consider A = 1. Let Q' consist of all I such that (f),r > 1.
Then if I € Q' we have pI C {z € R" : M f(x) > 1} so that [ C {zx € R" : M f(x) >

1}. As a result,

w <{x e R": Z(f}:ﬂl[(x) > 1}) <w ( U I)
IeQ! Ieg!

<w({xeR": Mf(x)>1})

S [w]Aprlep(w)-

We split the remaining cubes into disjoint collections setting

Qi ={IeQ: 27" < (fHyy <27}, (=0,1,...,
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Now let E(I) = pI\U{pl' : I' CI,1€ Q;} and R(I) = U{pl': I' T I,I€ Q,}.

Notice, if |R(I)| < % = %Il\ then we have

(fLewy)pr = (F)or — (fLr1)) o1
> (fpr — 8 )
S g—t-1 _g-lg—

227

so that (flg))er 2 2=¢. By possibly considering the dyadic descendants of a given
cube @ € Q, we may assume without loss of generality |R(I)| < % and (flp@)pr 2

27¢. Finally, we need the following lemma:

Lemma 3.2.41. Let R be a collection of cubes, 1 < p < 0o, and {gr},.x a sequence

of nonnegative functions.

1/p 1/p
(zw;m) < i} <Zg§)

L (w) ferR Lo (w)

. . o
Proof. Consider, with ¢ = w7,

[ S totow <3 (o) (S0 wion

IeR IeR

< [w]a, Z a(I) ({gi0™)5r)"

IeR

<fuls, 3 [ M (an)(aro

IeR

S [w]a, Z/n gr(z)Po(z)Po

IeR

~ula, [ Y arlerw

" IeR
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3.2.1.1 The Case of 1 <p<r

Given a collection Z C Q and a sequence of functions {a;(z)},.; indexed by Z, define

E(Z,{ar},\) = E(Z,{ar};ez, ) :{xeR > as(x |>)\}

Iel

We let k. ~ ¢! be a constant such that

w (B (Q\Q" {{f)prlr()} . k)) <Y w(E(Qn{271(zx) —27},0))

1

NE

w(E (I €Qp{2711(x)},27)).

~
Il
o

For fixed ¢ we have

E(Qn, {271(2)},27) € E(Qu, {{f1pm (@)’ 1s(x)}, 207 P790)

and

w (B (Qe, { (/Lo (@) Le(a) },207P790)) S wla, 27| 11700
by Lemma 3.2.41. Choosing € = (r — p)/2 and summing over ¢ gives the result.
3.2.1.2 The case of p=r

We consider
w (B (Q\Q", {{f)j1i(x)},1)) < w(A) + w(B)

where

{xeR" %Z:IZ £z 1}

(=0 I€Q,

{=ly IEQe
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Note

w(B) <w <{:c e R": i Z<f>;11[(x) — o8l 0})

=ty 1€Qy
< iw ({:c eR": Z(f)f)]lf(q:) — o8l 0})
=L IeQ,
< iw ({:c eR™: Z<f>;111(17) > 25/81}> :
=L IeQ,

Using the A, estimate we have
o (B (@0 {50001} 257) < (B Qs (1101} 205
5 exp ((_CQTK/Q)/[’(U]AT) w ( U [)

1€Qy

< [w] 42" exp (=27 /[w]a, ) | 1)

where 0 < ¢ < 1 is a fixed constant. This is summable in £ > ¢, to at most a constant.

For the case of 0 < £ < {;, we use the estimate of Lemma 3.2.41 to obtain

w(A) < Z_w ({x cR": Z(flEU))fﬂl[(x) > 121850})

1€Qy

S Golwla 112wy = [w]a, (1 +loglw]a, )" [ fl|7r )
concluding the proof of this case.
3.2.1.3 The case of r < p < 00
We have

w(B(Q, {{N51r(@)} )7 = (w(B(Q {(f)i1r(@)}, 1>>;)5
(hw(E(Q, {{f)iLr(x)},1)))"

for h € L7 (w) with norm 1, where ¢ = 2. Now by the Rubio de Francia algorithm

there is a function H such that the following hold:
(i) h<H
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(i) 1H e ) S 1l 2o )
(ii.) Hw e A,
(iv.) [Hw]q,

< [’LU]AP.

~Y

We can continue,

hw(E(Q,{(f)711(z)},1)) < Hw(E(Q.{(f)71:(z)}, 1))

< [Hw)a, (14 log [Hw]Ar)r/ f(x)"Huw. (3.2.42)

R

Using Holder’s inequality we obtain

[ @y Hw < il S 1
so that

(3.2.42) < [Hwla, (1 +log [Hw]a,)" | fl )

< [wla, (1 +log [w]a,)" | Fll o w)
which implies the result.
3.2.2 Proof of Corollary 3.1.40

The following lemma is known (see [8] and [25]):

Lemma 3.2.43. Let f € L. _(R™) and g be a sequence of £ summable locally inte-

loc

grable functions. For M, the vector-valued maximal function with exponent r and T

any of square functions in Corollary 3.1.40,

wA(Tf?,Q0) S )\71<f>ic20

wA(M,(8)", Qo) S A lIgller)gy,

for some p > 1 which depends on the choice of T.

33



By Lerner’s decomposition theorem, for each cube @) there is an appropriate p and

collections of sparse cubes Qn and Zy such that

T f(x) = moy| S MH(f) (@) + Tzypr(f) (@)

M. (g)(2) — may| £ M¥(lglle) (@) + Tay.(llgller) ();

the conclusion of the corollary for M, and the operators represented by T follow
immediately.

Now we consider S,, where S, is a vector-valued Haar shift operator of complexity
k. Let £ € L}, (w) such that ||f||;- has compact support. For all cubes @ which are

sufficiently large, we have the following point-wise bound:

St () S Mj_y (i) (@) + Y wan1 (S 1)1 (),

Iek

where K is a sparse collection of cubes. By a Lemma 2.1.34 from Chapter 1I,

Mgfnfl;Q(Srf) (ZL‘) 5 M(HfHﬁ)(x)

wo-n-1(SE5 D) 1r(x) S (|[f]]er) po0 1r()
so that

Sif(zx) < M(|f

o) (@) + ) 27|

Iek

er)11y(x) (3.2.44)

and we are done.
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3.3 An Example to Show Sharpness

Let @ = {[0,279):0<j}, p=1,and 1 < r < co. Take w(x) = |z|1=9P~D with

0<d<1land f(z) =1y (z)|z[°". Then

TQ,T,pf('I)T =

M

Lio.2-3)(%)(f)o.2-4)
0

J

1(0.9-4) (x)5—T2T(—j5+j)

[
WE

.
Il
o

= Z 1[0727])(1')577‘27‘(7.7'54’].)

j<log|z|~1

~ 577‘|x|7‘(571)
and so we need to consider
w ({x € [0,1): (A)Ts > x}) N = ([o, (A5)%—%)) AP

for 0 < A. But

w ([0, (m)ﬁ) — (\)T5

withe=(1—-0)(p—1) so

and since || f|zr(w) = 1 we are done.
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CHAPTER IV

TWO WEIGHT INEQUALITY FOR A VECTOR-VALUED
OPERATOR

4.1 Introduction

Our focus is on two weight inequalities. We study the simple vector-valued operator
To,r defined by a sparse collection of cubes Q and an exponent 1 < r < oo; recall, in

this context we take

Tori (@) = Torf (@ (Z\ Rt )

IeQ

for f € LL (R™). The aim of our efforts is to give a necessary and sufficient condition

loc

for the two weight inequality of 7o, to hold when 1 < r < co. The main result of

this chapter may be formulated as follows:

Theorem 1.2.9. Suppose w and o are weights and 1 < r,p < oo with Q a sparse
collection of cubes. Then we have || Tor(-0)||Lr(o)—Lr(w) if and only if there are £ and

L. such that:
sup/ To,(1go)(x)’w < Lo(Q) (4.1.45)
Q JQ
supsup/ Ug(lgaw)(z)” o < Low(Q) (4.1.46)
a Q Q

where Ug is an appropriate ‘dual’ operator (which we define later) and where the first

supremum for Ug is taken over all sequences of functions a such that ||a|, = 1.

Special cases of our theorem have been considered before. Notably, when p = r

and w = o we obtain the weighted Carleson embedding theorem:
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Theorem 1.2.7 (Weighted Carleson Embedding Theorem). Let w be a weight on R™
and {7} jep a collection of nonnegative numbers. Then we have

SUP Z S

JCI
if and only iof

sup > (AP S L (4.1.47)
feLP(w) jep
Il e (w)y=1

Theorem 1.2.7 is a fundamental result in two weight theory. For positive operators,
the relationship between Theorem 1.2.7 and the corresponding two weight inequality
is very strong. The two weight inequality for the maximal function is equivalent to
Theorem 1.2.7 and the characterization of weighted inequalities for discrete positive
operators can be reduced to Theorem 1.2.7, see [43]. The connection is less clear for
operators without a positive kernel, but if p = 2 then Theorem 1.2.7 can be used to
give the two weight inequality for the dyadic square function and Haar multipliers
(see [30]). Our Theorem 1.2.9 generalizes Theorem 1.2.7, reducing to a special case
of (4.1.47) when p =r.

Further, for r = 1 and p = 2, [30] gave a characterization of the operator Tg,.
This result was later extended to p # 2 by [20] (later a simplified argument was
constructed by [43]). A crucial difference between [30] and [20] was that [30] used
a Bellman function technique while [20] constructed a more flexible argument. We
rely on the methods presented in [20], noting Theorem 1.2.9 follows largely from their
argument but not directly from their results.

We mention the operators 7o, have also received attention with respect to one

weight inequalities. The arguments of [8] imply the following:

Theorem 4.1.48. Let Q be a sparse collection of cubes with 1 < r,p < oo and

w € A,. Then we have

||TQ,7’||LP(w)%LP(w) < [ ] {T el (4.1.49)
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Using a decomposition theorem of A. Lerner in conjunction with (4.1.49) the authors
of [8] were able to deduce sharp strong-type inequalities for the vector-valued maximal
function and dyadic square function. Later, A. Lerner used a similar argument to
extend the square function result to the intrinsic square function. Applying these type
of arguments together with Theorem 1.2.9 and Sawyer’s theorem for the maximal

function we obtain the following

Corollary 4.1.50. Suppose w and o are two weights with 1 < p,r < oo. Assume
the testing conditions (4.1.45) and (4.1.46) are satisfied with constants independent

of the sparse collection Q. Additionally, suppose M(-o) satisfies

/ M(1g0) (2)Pw < 0(Q).
Q

Then M, (-0) is bounded from LP(o) to LP(w) and if r = 2, S(-0) is bounded from
LP(o) to LP(w).

The remainder of this chapter is structured as follows. In Section 2 we introduce
certain definitions and theorems which will be useful for us. The subsequent section
deals with several preliminary results and Section 4 contains the bulk of our argument

for Theorem 1.2.9.

4.2 Initial Concepts

Throughout the remainder of this chapter we assume 1 < r < oo. Recall, for Q a
sparse collection of cubes and g = {g1},.o a collection of measurable functions we
set
Uo(g)(x) = (gr)Li(x).
IeQ

We also consider an operator T, which allows us to overcome the non-linearity of

Tor:
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Definition 16. Let f € L .(R") and 1 <r < co. We set

Tor(N)) = (N} 1co-

Then we have

To,(fo)@)w = [ [T, (o)l
— [ (To (o) au)ds
- /n<fa, Uo(aw))pda.

R”

Consequently, Ug can be loosely considered as the dual operator to 7g,. Further,

we define certain restrictions of 7o ,:

Definition 17. Suppose Q is a sparse collection of cubes and 1 < r < oo. For

Q C R"™, we have

S =

7-Q113T,Qf<$> = Z ‘ ‘ 11 ;
1CQ
IeQ

3=

Shia(N@) = | D 1Nl (e

QCI
IeQ

Now we consider a Whitney covering lemma whose statement we borrow from [20]

and the universal maximal estimate:

Lemma 4.2.51. For each k there exists a collection Q) of disjoint cubes satisfying:

= @ (4.2.52)

Qe
QYW c, QPN £0, (4.2.53)
Z loo S 1y, (4.2.54)
QeQy
sup £{Q € Q + QNQW £0} <1, (4.2.55)
Qe
QeQk, e, QSQ k>1. : (4.2.56)
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Theorem 4.2.57. Let p be a weight and 1 < s < co. For g € L*(w), define

Meg(z) = sup(lal),
QeD
Q3>

Then M*" : L*(u) — L*(u) is a bounded operator.

The proofs of Lemma 4.2.51 and Theorem 4.2.57 are standard and we omit them, but

relevant arguments can be found in [20] and [42].

Definition 18. Let {Qy}rez be collections of cubes as in Lemma 4.2.51 and R a
dyadic cube. Provided there exists k such that R € Qy, define C(R) = sup{k: R €
Ok}, ¢(R) =inf{k : R € O} and D(R) = C(R)—c(R); otherwise let ¢(R) = C(R) =
D(R) = 0.

4.3 Preliminary Results

Here we formulate and prove some results which will be used in the argument for

Theorem 1.2.9. We begin with the following weak-type estimate:

Lemma 4.3.58. Assuming (4.1.45) and (4.1.46) hold, forg € LZ;, (w) and f € LP(0),
we have
||UQ(gw)||LP'!°°(0') 5 L"‘;HgHLP'/(wy (4359)
o

1 Tor(fo) ey S L7 [ lloo)- (4.3.60)

A consequence of Lemma 4.3.58 is that we can make slight modifications to the

testing conditions on 7o, and Ug:

Lemma 4.3.61. For each Q € D and for any positive a = {ar};.o satisfying
> reolar(@)|" =1 for almost all x € R™, we have

Tor(1go)(z)'w < Lo(Q), (4.3.62)

RTL

Ug (1gaw) ()Y 0 < L,w(Q). (4.3.63)

R
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Now we consider the following the lemma:

Lemma 4.3.64. Given collections of cubes {Qy},c, as in Lemma 4.2.51, for each k

and Q) € Q. we have

max {75 o (Lo f0)(2) s Tar (L fo) () } < 2,
with x € Q.
Further, Lemma 4.3.64 also implies the following maximum principle

Lemma 4.3.65. For a given function f € L _(R"), let Q. = {z € R" : Tg,f(z) >

loc

2%}, Denote by Qy, the corresponding Whitney cubes for the Q. and for a given cube

Q let
Ep(Q) = QN (Qr2 — Qeys) Qe Q.

Then for all k and x € Ex(Q), we have

28 < T8 ooy (Lom ().

4.3.1 Proof of Lemma 4.3.58

We will argue the case for (4.3.59) first. Fix a sequence g € LZ, (w) and begin by
defining ', = {z : U(gw)(x) > a} for a > 0. Ug(gw)(z) is lower semi-continuous
and so I',, is open. Similar to Lemma 4.2.51, we will perform a Whitney-style decom-
position; specifically, for fixed a, let {L‘;“}J.GN be the dyadic cubes which are maximal
with respect to the following two conditions: (i.) LE Ny # () and (ii.) L C Ty, for
all 5 € N. First, we aim to put ourselves in a position to use the testing condition on

To.r; for fixed j,

UQ(gw)(x)az/ (1120, Ug(gw))erda

L;?‘ L;?‘

~ [ (Tar(iiz0).gu)rds
s

</ Tor(1re0)(z)|gllew.
J
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Now as a result, we have

<U(L?)_l | Uelgw)(@)o ) <

As a consequence,

p/
(O(Lg)—l 5 Ug(gw)(as)o> o(L§) S LY ( Lal!g!liﬁl/w)

and summing over j gives

Z(a@;“)l mu<gw><x>a> (1) 5 L gl (4.3.66)

jEN
At this point we will appeal to a ‘good-lambda’ trick. In particular, we fix o and

e = 27771 > 0; further, we define € = {; : o(Ly NTsq) < eo(LY)}. So,

(20)"0(T2) S e(20)” > (L) + > (20) 0(LF)

JEE JEE
e(2a)? ZO‘ (L5) +22 (ao(LF)o(LS)™ ' o a(L3)
JeE J€E
pl
<o) D oLy + ) 27 <0(Lg)—1 Ug(gw)(x)a> o(L3)
jEE JgE Ly

/ 1 A2 /
S 20y’ S o) + 27 L5 gl

je€ er ()

where the final inequality follows from (4.3.66). Hence

(20)/ 0(Ta) 27 (@) o (Ta) + 27 L7 gl

[r

< 27 |[Ug(gw)|” +27 1ﬁpHng

L#"%2(0) L7, (w)
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which gives (4.3.59).

Now we consider (4.3.60). The argument will be similar to that for (4.3.59). Fix a

positive function f € LP(0) and let ¥, = {z : To,(fo)(z) > a} for a > 0. Again, we

perform a Whitney-style decomposition; explicitly, let {Pf‘} N be the dyadic cubes

J

which are maximal with respect to: (i.) Pf N Wy, # 0 and (ii.) P C ¥, for all

Jj € N. We define a = Tg,.(fo) ! (To.,(fo))™" and attempt to place ourselves in a

position where we may use the testing condition on Uyg; using duality as before, for

each 7 we see the expression

(w(Pf‘)_l . Tg,r(fff)(w)w> w(Py")

is equivalent to

<w(Pf‘)1 - UQ(lpfwa)(I)f@W) w(Fy).

J

Using Holder’s inequality,

(4.3.68) < (

<c¥ ( f(x)%)
Pj“

and summing gives

> <w<Pf)1 /. Tg,r(fa)(x)w) w(P?) S L8 1 iy

jeN
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As before we use a ‘good-lambda’ trick; we fix a and € = 277~ Further, define

T = {j:wP*N¥y) <ew(P*)}. So

(20)Pw(V20) S €2)" Y w(Pf) +e 'Y (2a) w(Py)

JET JjgYr

< c(2a) Y w(P) + 27 Y (aw( PP Y w(PE)
JETY JjgT

S 20y (P +27 Y <w<Pﬁ>1 /. TQ,T<fa><x>w> w(Py)

jer JgT

S ey w(Py) + 27 LY (|1,

jer

< e(2a)Pw(Wa) + 27 LY | fI[F00)-
Now we have
(20)Pw(Vae) S 271apw(qja) + 2715?‘””%(@
<27 Tar (fo) ] pooiuy + £E NI oo)
and this gives (4.3.60).

4.3.2 Proof of Lemma 4.3.61

First, we will show the case for (4.3.62). By (4.3.59) and duality, we have for each
f € L7 (o),

1
ITar(fo)llerw) S Lo\ fllirio).

Since for any cube Q, 1¢ € LP!(0) and [|1g]|1r1(o) = U(Q)%, we have

1Tor(1go)|lrw) S Lra(Q)?

which gives the desired result.
We conclude by verifying (4.3.63) holds. Consider, for a = Tg,(fo)Tg,(fo)™*
and @ fixed,

1
Y

( e UQ(].Qaw)(ZE)P’O-) = UQ(].Q&U))(J])]]([L’)O'

Rn
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for some h € LP(c). Then using duality and Holder’s inequality in ¢ — " we have

UQ(lQaw)(x)h(x)a:/ (lgaw, Tg,(ho))erdx

Rr Rr

< [ To,(ho)(z)w. (4.3.69)
Q

Recall, by (Tg,(ho)(x))* and (1g)(z))*, we mean the symmetric decreasing rear-

rangements of 7o, (ho)(x) and 1g(z) with respect to w. We continue from (4.3.69)

by applying Hélder’s inequality and using (4.3.60) to obtain

(13.69) < [ (To,(ho)(@))" (Lof@))" w

R

L

< 7o (ha )| Lo uyw(Q) ¥

=

< [ Tar(-0)llLr (@)oo w(Q)?
1

< LY (@)

The foregoing inequalities yield

o

Ug(1lgaw)(z)?'o < L.w(Q)r
Rn
and we are done.

4.3.3 Proof of Lemma 4.3.64 and Lemma 4.3.65
4.83.3.1 Proof of Lemma 4.53.6}

By Lemma 4.2.51, there is z € Q®® N Qf. Thus for x € Q we have
Tor(Ligenefo)(x) = TS ow (Ligeyefo)(z) < To,(fo)(z) < 2°
and we are done.
4.8.3.2  Proof of Lemma 4.3.65
By Lemma 4.3.64 and the sub-linearity of Tg, we have for x € Fy(Q)

262 — 2 < T (f)(2) = TS om (Lo (@) = Tor(Lguyefo)(x)

< Tarqowlou f)(x).

Noting 2%+2 — 281 > 2% we obtain 2° < T3 o) (1om f)(2).
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4.3.3.3  Proof of Corollary 4.1.50

Assuming Theorem 1.2.9 and recalling Sawyer’s two weight theorem for the maximal
function, the corollary follows from Lerner’s decomposition theorem and arguments

similar to those used for Corollary 3.1.40 in Chapter III.
4.3.4 Proof of Theorem 1.2.9: Necessity

Here we prove the necessity of the testing conditions. We suppose that 7o, is a
bounded operator. The necessity of (4.1.45) is immediate by taking f = 1 for an
arbitrary cube, so we only need to verify the necessity of the conditions on Ug. Fix a
cube @) and a sequence a such that ||al|, = 1. Without loss of generality we assume

h and a are positive. Then,

(/ Ug(algw)(x ) /UQ algw)(x)ho

where h is an appropriate function from LP(o) satisfying ||h||r(o) = 1. Now we use

duality and apply Holder’s inequality in ¢" — ¢ and obtain

/ Uo(alow)(z)ho — / (To.(ho0), algw)edx
Q n
< /Q Tor(hlgo)(@)w

< | Tor(h1go)|| Lrwyw(Q) ¥
<N T o (-0) | r(0) o ()0 (Q) 7

Hence,
/Q Uo(alou)(@)’ o < [ Tar(0) s 1oy (@)

where a is arbitrary. Taking supremums we have

spsup (Q / Uo(1aw)(@)”a < [ Tor (o)l 1o

which gives the result.
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4.4 Proof of Theorem 1.2.9: Sufficiency

We apply Lemma 4.2.51 to obtain a collection of cubes Q. for each k such that € =
{z eR": T, (fo)(z) > 2"} = Ugeg,Q. For Q € Qy, define Ei(Q) = (2\Q12)NQ.

Then we have the following:

Tor(fo)(@)Pw S w({z € R : To,(fo)(w) > 2"})2

R keZ

<33 w(Bm(Q)2".

kEZ QEQy,
By Lemma 4.3.65,

w(Bx(Q))2" S Tor(folgm)(z)w
Er(Q)

= Ug(alp,uw)(z)f(r)o;
oW

we split the above integral into two pieces so that

o0 Ug(alg,qu)(x)f(z)o = S11(Q) + 524(Q)
with
s(@= [ Uglalegu)@)f(@)o
QN1

5@ = [ Usfalno)@fx)e

For each k, we partition Qy into two collections:

Q1 =1{Q € Ok : w(EL(Q)) <nuw(Q)}
Qok ={Q € Qi : w(E(Q)) > nuw(Q)}

where 0 < 1 < 1 is a fixed parameter that will be defined later in the proof; further

divide Qs into:

Qr ={Q € Qo : S24(Q) < S1:(Q)}
Q) ={Q € Qu: S24(Q) > S14(Q)}.
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The sum >, ;> oco, w(E,(Q))2* is split into pieces corresponding to the collec-

tions above:

=2 2 w(B(@)2”

keZ QeQ i

L=Y > wE(Q))2"
keZ Qegi

=YY wE(Q))?2".
keZ QeQ?

Trivially, we have

SN w(E(Q)2 =L+ L+ 1

kEZ QEQy,

so that it suffices to estimate each I;.
4.4.1 Estimating [;

Consider,

LSn) ) Y n ' w(@)2®

kEZ QEQy,

Tor(fo)(x) w

R

as 0 <7 < 1, we may absorb the term I; into || Tg,(fo)| e ()

4.4.2 Estimating [,

Here, notice



so that for fixed () and k,

w(Bx(Q))2" < 17 w(Er(Q)) (/Q UQ(alEk<Q>w)($)f($)0>

(1>\Qk+m
P
< P BL(Q)LE w(Q) /
1>\Qk+m

L nw(EQ) o
= yref e /Q(l)\%mf()
<nPLE /Q (1)\Qk+mf(:€)p0-

Summing, we have from (4.2.55)
e SN [ sepesared [ gare
keZ QeQ? @ \Qk-Hn Rn
recalling

L=Y > wE(Q)2"

keZ Q€Q2

§77‘p22/ o,

kEZ QGQQ a )\Qk+m

implies the result.
4.4.3 Estimating I3

Assume N is some fixed positive integer and 0 < n < m; we split the remaining cubes
into collections modulo m and intend to show

Z Z Q))2" < f(x)Po

R'IL
k>—N 954
k=n mod m Q

with implied constants independent of n and N. The monotone convergence theorem
combined with summing over n will yield

> w(BQ27 S | Sy

QeQ}

To this end, we use a stopping time argument. Namely, set P(NN,n,1) to be the
collection of maximal cubes within Py, = Uj=n mod m Ugegs Q. For 7 > 1 define
j>—N

P(N,n,j) to be the collection of all cubes I in Py, which satisfy the following:
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(i.) thereis I’ € P(N,n,j — 1) such that I C I

(i) (N)F >2(N7
(iii.) 7 is maximal with respect to properties (i.) and (ii.)

Denote by P(N,n) = U2, P(N,n, j).
We define for Q € Q3

N(k,m,N,n,Q) ={I € Quym. k=n mod m : I N QW # 0}

N(k>m>N>n):U QEeQk N(k>m7N7n7Q)

k=n mod m
and note that QW N Q= UreN(eym,Nn,@) L. Further, for each I € N (k,m, N, n)
there is Iy N € Qg such that I C Iy, N, Since k =n mod m we have I € P or

I'(I) = I'(I,m.nn); as a consequence, we may split the sum

/ Uo(al pyqu)(@)f(2)o = / Ugl(al @) (x) f(x)o
QMWNQptm

IENkmNnQ)

into two pieces:

Ak, Non, Q) = / Uo(al ) (x) f(z)o
IGN(k m,N,n,Q)
IE'P Nn

As(kym, Ny, Q) = / Uo(al,g)(#) f(x)o.
IGNkmNnQ
F(I) F(IkmNn)

For the remainder of the proof, we will assume £ =n mod m and suppress the nota-
tional dependence on N and n (e.g. we will write A;(k,m, Q) for A;(k,m, N,n,Q)).

Continuing, from the defining properties of Q3,
2u@<n [ Uoalngu)e) (o
QMNQ
S./ 77_1A1(k'7 m, Q) + 77_1A2(k7 m, Q)

so that

w(EL(Q))
nPw(Q)P

w(Ek(Q))

27u(Ey(Q) S Oy

Al(k>m7Q)p + A2(k7m7Q)p'
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Recalling

=) > wE(Q))2"

kez Qeo?

we see it is enough to estimate I3 ; = ZQEQ% I5,;(Q) for j € {1,2} and

I3, 1(@) %@Aﬂk,m,@)p
]3}2(@) = %Ag(k, m, Q)p

with @ € Q3.
4.4.83.1 Estimating I3,

For a fixed cube @ and I € N (k,m,Q) we may write

/UQ alg, (@ Jo = /UQ alg,@w)(@)(f)7o
since the expression Ug(alg, @yw)(x) is constant for x € I. Continuing, for G € P,
[ Uelatz @)@ - [ Uelati )@y (@e
IEN (k,m.,Q) IeN ka
P()=IIx,m) L(Ik,m)

- [ Uelatagu)@n)io

IE./\/'ka
Ikm

S Y. /UQ alpg,qw)(z)o.

IeN (k,m,Q)
P()=T"Ik,m)

So for fixed G € P, using duality and Holder’s inequality we have

W(EQ) 4 < WEQ) 0, )
wy @SSy | 3 [ Uelatzgua)a
(D=TIx,m)=G
W(EL(Q)) ) op o
<“hgr e Y [ et

L)=Lk,m)=G

(&) w(E(Q)) Mw(Tor(1ao)) ().

IN
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By the universal maximal estimate and the modified testing condition Lemma 4.3.61

D> wBE(Q)Mu(Tor(leo) @) S [ Muy(Tor(1ao)) (@) w

kEZ QeQ? R®
To,r(1go)(z) w

Rn

< Lo(G).
Hence,
Sy D S [Usatneu)@ie | £ UNG
kEeZ QeQ3 w(Q)p IeN (k,;m,Q) GeP
()= F(Ik m)
L[ f(x)o

Rn

where in the last line we have used the Carleson embedding theorem.

4.4.8.2  Estimating I3

We begin by noticing for fixed @),

szm@»Aﬂhn%QVZIMEAQ»< a(1)
IeN (km,Q) O

%\»—‘

w(Q)P w(Q)P o(I)

‘S\H

L/Ugah% ()f())p

IeP

S 1471(1{?7 m, Q)]472(k7 m, Q)
where we define

P
p

b %Qw(kmm </UQ ala@u)(e)o ) > |

IeP

Lip(k,m, Q)= > o(D)((NE)-

IeN (k,m,Q)
IeP

Notice for each ) by Holder’s inequality,
—p/ pl _p,_;’_Pl /
]) P (/IUQ(alEk(Q)w)(x)a) S 0'(]) P p /IUQ(alEk(Q)w)(ZL‘)p g,
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so that

/

0¥ ([ etatsguao ) < ¥ [Uelatagu)a)s

IEN(ka) IeN(k,m,Q)
IeP IeP

< | Uglalggu)(a)o
R
S Low(@Q);
D
since wEUE(’ZQ()%)) < w(Q)'™P we obtain I, ;(k,m,Q) < Eg’f/w(Q)ﬁ_pJrl = L?; as a result

we need only consider the sum

YYD aUN”

kEZ QeQ? IEN (km.Q)
IeP

To finish the proof, we need a uniform bound on the number of times a cube R may
appear in the above sum. Consider the following lemma, whose proof we momentarily

postpone.

Lemma 4.4.70. Fiz a cube R which satisfies R € Q; for some integer j, and for

1 <1< D(R) suppose
(i.) there is an integer ki and Q; € Q3 with R € Ry, (Q),
(ii.) the pairs (Qy, k;) are distinct.

We then have that D(R) < 1, with the implied constant depending upon the dimension,

and n, the small constant previously mentioned.

Using Lemma 4.4.70 and the Carleson embedding theorem, we may estimate

> X oBmWNRE [ fre

keZ Qeo? RGN(k m,Q)
ReP

to complete the proof modulo Lemma 4.4.70.
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4.4.3.3  Proof of Lemma 4.4.70

Fix R € D such that there exists ky,- -+, kpr) € Z and cubes Q1,--- ,Qpr) so that
R € Ry, (Q;) for all 1 < j < D(R) and the pairs ()}, k;) are distinct. We argue by
contradiction that D(R) < 1. The dyadic structure of D immediately implies that

by possibly reordering we must have the following

Q1 CQ2C - C Qpm)- (4.4.71)

Then, we have R C le) for each j by (4.2.53). At this point we consider two cases;

namely
(a.) Q1 S Q2C - C Qpr)

(b.) Qi ="--=Qpm) -

First we want to inspect case (a.). We may assume that ky > --- > kpg) by (4.2.53)

(Whitney condition); also it is clear that case (a.) implies
1 1
Rc Q) c- Q-

Hence, by the above and the definition of Ry, and Ry, , R € Q43 and R €
QkD(R)+3. We conclude R € Q; for kpry +3 < I < ki + 3. Since we are assuming

that D(R) < 1 fails, without loss of generality we may take D(R) = 7. Then we have
R, Q7 € Qy;

RcQ'cc@)) =

R c QY

and this contradicts (4.2.53). Hence, there is a uniform bound on the number of strict
inequalities in (4.4.71), and so we only need to consider (b.).

If (b.) holds then by definition we have w(Ey,;(Q1)) > nw(Q1) for all 1 < j <
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D(R). We can without loss of generality assume the k; are distinct. Then the £ (Q1)

are also distinct and

D(R) D(R)
w(@) =Y w(Bi(Q1) > Y w(Eg (@) > Y w(
= j=1 =1

so that it must be D(R) < n~! and we are done.
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CHAPTER V

JOINT ESTIMATES FOR THE HILBERT TRANSFORM

AND MAXIMAL FUNCTION

5.1 Introduction

In this chapter, our particular focus is on the relationship between the Hilbert trans-
form H and the Hardy-Littlewood maximal operator M in the two weight setting.
Links between the two operators in this context have been considered previously. The

authors of [31] establish

Theorem 1.2.13. Suppose o and w are two positive Borel measures such that M (-o) :
L*(o) — L*(w) and M(-w) : L*(w) — L*(c) both hold. Then H(-c) is bounded from
L?(0) to L*(w) if and only if the following hold:

(i) [1H(110) ||z S o(1)?
(L) [|H (1rw)|12@) S w(l)?
(iil.) sup.ec Po(2)Pu(2) S 1,
where P, and P, are the Poisson extensions of w and o,

and suggest the boundedness of M(-0) and M (-w) in Theorem 1.2.13 may be un-
necessary. An old conjecture of Muckenhoupt and Wheeden stated in [5] implies the

continuity of H(-0) is equivalent to that of M(-0) and M (-w):

Conjecture 1.2.14 (LP Muckenhoupt-Wheeden). Let M be the Hardy-Littlewood

mazimal operator, T be a Calderon-Zygmund operator and let w and v be weights on
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R?. Then

M : LP(v) — LP(w) (5.1.72)
M L (w'?) — LF' (v (5.1.73)

of and only iof
T : LP(v) — LP(w). (5.1.74)

We will show that within the context of Theorem 1.2.13, boundedness of the Hilbert
transform does not imply that of the maximal function; further, we will construct
weights w and v which violate Conjecture 1.2.14. As a consequence, we conclude
there is no a priori association between the operators in the two weight setting. The

main results of this chapter may be formulated as follows:

Theorem 5.1.75. Let 1 < p < oo and let p' be the dual exponent, 119 —l—}% = 1. There
exist nontrivial weights w and v = (%)pw for which the Hardy-Littlewood maximal

operator satisfies

M:  LP((22)Pw) — LP(w) (5.1.76)
M : Lp/(wl_p/)HLp/((Mﬁ)p,> (5.1.77)

but the Hilbert transform H is unbounded from LP((22)" w) to LP(w).

Theorem 5.1.78. There exist measures v and A such that

M) L*(y) £ L2(N) (5.1.79)

H(7): L2(7) — L*(\). (5.1.80)

The examples we present here rely heavily on the Cantor-like constructions found
in [21,35-37]. The authors of [35] and [36] were interested in showing certain endpoint

estimates for Calderén-Zygmund operators failed and to this end built weights o and
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w for which H(-0) failed to map L?*(o) into L*>*°(w). We modify their weights slightly
for the purposes of obtaining strong-type L? estimates and verify Theorem 5.1.75
holds. The weights considered for Theorem 5.1.78 were constructed in [21] to show
a particular testing condition was not necessary for the two weight inequality of the
Hilbert transform. To obtain the conclusion of Theorem 5.1.78 we verify the maximal
function is unbounded for this pair of measures.

There are two important remarks about our results which should be made. The
weights described above are allowed to take the value 0 on sets of non-zero Lebesgue
measure. This feature is important for the weights’ construction and is useful for the
proofs of Theorem 5.1.75 and Theorem 5.1.78. Additionally, we consider the operators
M and H as maps from one weighted LP space to another L? space with p = ¢; the
assumption p = ¢ is necessary (see [6] for a proof conjecture 1.2.14 holds for p < ¢).
The remainder of the chapter is structured as follows. In the next section we review
some basic theorems which will be useful for us. The third and fourth sections focus

on the proofs of Theorem 5.1.75 and Theorem 5.1.78.

5.2 Preliminaries

Here we introduce some key definitions and theorems which we refer to throughout

the remainder of the chapter. First we introduce the concept of a triadic interval:

Definition 19. We refer to an interval of the type [3k,3/(k + 1)) with j,k € Z as
a triadic interval and use T to denote the corresponding triadic grid consisting of
all triadic intervals. For a given triadic interval I let I™ be the triadic child which

contains the midpoint (center) c(I) of 1.

The following is a convenient dualized formulation of a two weight inequality due to

Eric Sawyer (see [38] and [39]):

Theorem 5.2.81. Let w and v be weights and T a sublinear operator with 1 < p < oo.

If o = lsuppwwl’p/ then the following are equivalent:
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Finally, we also recall E. Sawyer’s characterization of the two weight inequality for

the maximal function:

Theorem 5.2.82. Let w and v be weights with 1 < p < oo and define o = v' 7',

Then M is bounded from LP(v) to LP(w) if and only if

/ IM(o1lg)(2)|Pv S o(Q) for all Q cubes. (5.2.83)
Q

5.3 Proof of Theorem 5.1.75
5.3.1 Weight Construction

Here we will construct a sequence {wy },-, of weights which will be used to define the
weight w in Theorem 5.1.75. Fix k and let w) be the uniform measure on [0, 1]; define
Ji = {[1/3,2/3]} to be the middle triadic child of [0, 1] and K}, to be all triadic descen-
dants of [1/3,2/3] having length 37%. Inductively, we set Ji = {K™: K € K| '} and
take K! to be the collection of all triadic intervals which are contained in U, g J and
have length |K|/3'; define Jj, = {J : J € J} some I}, K; = {K : K € K|, some [}
and Sy = U(Ijgeflé,%[(t])m. With each interval J we associate a sign ¢(J) € {-1,1}
whose choice _We will describe momentarily and an interval I(J); I(J) will be the
triadic interval of length |.J|/3* which has as its right endpoint the left endpoint of
J if €(J) = 1 and I(J) will be the triadic interval of length |J|/3* which has as
its left endpoint the right endpoint of J. For each | we take w! to be the measure
which is equal to wfg_l outside the intervals in K; and which is measure preserving on
K™ U I(K™). Finally, for a given interval J = K™ for some K, we choose ¢(J) so
that the following is satisfied for each x € I(J)

! w1
wy,(y)dy / /
gn/ - —*sgn +
g y—z (st K7 Z /cK’

K'eKI\K

29



Define wy, to be the weak limit of the sequence {wj};°, and w(z) =

Given the sequence of weights {wy};-, the following lemma holds

Lemma 5.3.84. [36,37] For K € K, and J = I"™ with k > 3000,
|H(wi)(2)| 2 zwr(z) @ e I(J)"
Muwy,(z) < wy(x) xel(]).
5.3.1.1 Unboundedness of H

Let € satisfy 1/p’ < e <1 and set

= 1
) = Z El[Bk,3k+1)(x)
k=1

_w(z)
Muw(z)”

e /Z

and f € L¥ (w). Additionally, we have

o(r) = —— 7 Lsupp w(T).
Then

(x)w

ZZO:O w.(x — 3%).

AL V’U—Z / Zne (= 3")() —wﬁiéi—b

o0

k

k=1 n=1

and for fixed z,

=X [ [t~ )|
3 (we

D H(wa(- = 3")(w) = |H(wi(- = 3M) @)k~ + )0~ H(wa(- = 3"))(x)
n=1 n#k
> |[H (wi(- = 3) @)k~ = |D_ 0™ H(wa(- = 3")(2)
n#k
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We claim for = € supp wy,(- — 3F)

Z n=H (wn(- = 3"))(2)

S Hl (x) + 7’[2(1’)

notk
<4
where
Hi(x) = Zn H(wn(- —3"))(x)
Ha(x) = zk;ln “H(wn(- —3"))()]

Consider, if x € [3%,3% + 1), then for n # k

3"y (4 — 3"
Hiuwn (= 3)) = [ 2 =20

_ / b w(y)dy
0o T—y—3"
_ / wa(y)dy (5.3.86)

for some 2’ € [0,1). Provided n < k (5.3.86) is nonnegative and |2/ —y| < 27(3F—3")

/ L way)dy / ' 2w, (y)dy
, 2 —y+3k_3n = J, 3F_3n

so for y € [0,1)
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and

similarly, for n > k we obtain

(e 9]

Y H(wa(-—3")()

n=k+1

<2

to give the claim. By Lemma 5.3.84, for x € S;, we have

Zn “H (wn(- = 3"))(x)

where we use the abbreviation Mj,(z) = Mwy(- — 3%))(x). Consequently,

/

’ wy,(z — 3%) i o Wi(z —3%)
M 2 H (wy(- = 3%)) ()] M)

wy(z — 3%)

(5.3.85) > Z IH wi(- = 3k))<$>|p/M(wk(- — 3M)) (x)¥

o0

> Z LP —er
k=1

2

I
8

Hence, H(-w) is unbounded as an operator from L* (w) to L (o). As a result of

duality, H is also an unbounded operator from LP(v) to LP(w).
5.83.1.2 The Boundedness of M

By the preceding argument for the Hilbert transform, to obtain Theorem 5.1.75 it

will suffice to prove the following proposition:
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Proposition 5.3.87. For 1 < p < oo and w a weight, we have

M :L? (v) — LP(w) (5.3.88)

M L7 (w'™") — LF (), (5.3.89)
with v = (%)pw and v = v'7,

Prior to proving Proposition 5.3.87, we recall a well-known lemma. Let D3 denote

the shifted dyadic grid of Michael Christ, i.e.

W=

Di = {2 ([n,n+1)+ (-1)’37") :n,j € Z}

and for f € L{ (R) define

M4 f(z) = sup — /\f )| dy.
1]

1eD

Equivalently we can define M dg f, where the supremum is taken over intervals in Ds.

Then we have from [3],

Lemma 5.3.90. For any finite interval I, there exists an interval I, C DU Ds such
that I C Iy and |I] =~ |I|. As a consequence, for a function f € L} (R), the following

inequality holds:
Mf(z) < MAf(x) + MY f(x). (5.3.91)
With Lemma 5.3.90 in hand, we now proceed to the proof of Proposition 5.3.87.

Proof of Proposition 5.3.87. The proof of (5.3.88) follows from an extrapolation ar-
gument of D. Cruz-Uribe and C. Pérez [7], so we only need to consider (5.3.89).
Instead of proving (5.3.89) directly, by (5.2.81), we may verify the following equiva-

lent expression

M(w): LP (w) = L¥ (v), (5.3.92)
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holds. Consideration of Lemma 5.3.90 implies it is sufficient to demonstrate (5.3.92)

for an arbitrary dyadic linearization of the maximal function, i.e. we need to show
L(w): IP (w) — LP (v) (5.3.93)

with L a linearization of the maximal function. To this end, let

L(fw)(z) =Y (fw)rlpm(z) (5.3.94)

Ieg

where G = D or D3 and each E(I) satisfies E(I) C I and E(I\NE(I) =0 if I # 1,
Before doing any computations, we invoke Theorem 5.2.82 which reduces proving
(5.3.93) to showing

1
I

NoL(1ew)l ) S w(Q)r
for () a dyadic subinterval of R. Now we fix an interval ) and notice that since

E(I)NEQ)=10forI=#Q,

L0y = [ gl @wia)

/

:/Q<Z<1Qw>11E(I)(5U)> v(z)

Ieg

= Z 1Qw Q)

Ieg

—Z( ﬂ;Q) WE(D)NQ)
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Consequently,

3 (W) JENNQ) < Y (“’l(]?) (u}'(]}))p/w(E(I) nQ)

Ieg Ieg
IcQ 1cQ
= ) wEI)NQ)
1%
< w(Q),
and
wINQ\" W@\ (1l \"
S () o< (7)) (Gg) wEmne
QcI QcI
sw@wWZﬁ%
=
< 2w(Q),
Thus,

/QL(le)p/(:v)V(JE) < 3w(Q)

which implies the desired result and completes the proof of Proposition 5.3.87. O

5.4 Proof of Theorem 5.1.78
5.4.1 Weight Construction

In this subsection, we emphasize the disparity between the Hilbert transform and the
maximal function by presenting a pair of measures A and « for which the Hilbert
transform acts continuously while the maximal function is unbounded. The measures
which we will use are due to Lacey, Sawyer, and Uriarte-Tuero (see [21]) and we
begin by briefly describing their construction. In the interest of clarity we introduce
~ and some attendant notation by describing the Cantor set’s construction. We let
19 =[0,1] and for 1 < r we let {I/};_, denote the 2" closed intervals (ordered left to
right) which remain during the r*® stage of the Cantor set’s construction; in particular,

we have I} = [0, %] and I§ = [2,1], 12 = [0, 1], I = [2,

3 J; lg ::[gvg]vlz ::[%’1]etc'

1
3
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For each I}, the corresponding open middle third interval which is removed during the
7+ 1 stage of construction will be denoted by G} = (aj, b}); so, we have G} = (3, 3),

Gi = (3,2), Gy = (5. 5) etc. Further, we denote the Cantor set by E = N2, U, I7.
The measure 7 is the Cantor measure, the unique probability measure on [0, 1] which
satisfies y(I]) = 27" forall r > 0 and 1 <[ <27,

At this point, we would like to describe the measure \. However, prior to doing

so, we introduce a lemma which lists important properties of H(7) discussed in [21]:
Lemma 5.4.95. For any l,r € N, we have the following:

(i.) H(y)(z) is decreasing monotonically on Gj.

(ii.) H(y)(x) approaches infinity as x approaches aj.

(iii.) H(7y)(x) approaches negative infinity as x approaches b .

By Lemma 5.4.95, for each » € N and 1 <1 < 2", there is a point ¢ € G} which

satisfies H()(¢/) = 0. We define

oo 27

NOED PP IR

r=0 =1
where p] = (%)T forr € Nand 1 <[ < 2". With A\ and v defined, we may now

proceed to the proof of Theorem 5.1.78.
5.4.2 Verifying M is Unbounded

The verification of (5.1.80) is shown in [21] so to finish the proof of Theorem 5.1.78 we
need only consider (5.1.79). We will show for » € N and [ = 1 that M(lllw)(x)zd)\

Ir
is unbounded. Fix r € N and define a collection of sets {G,},.y in the following way:
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24t

Go = G and G, = | J Gi™ for 1 < t. Then we have

M(l[r Z M 1IT )2d/\<l’)
- ZZ /G o Mgy (@) dA (). (5.4.96)

But, by inspection

r+4t
M(1py) () > (;)

fort € Nand 1 < s < 2%, Now, continuing from the above, we obtain

(5.4.96) ZZ/+ ( )M& dA(w)

i=0 s=0

o 2% 2r48i
Z Z Zpr+4z (_)

i=0 s=1

oo 2% 9\ TH /3 2rsi
>3 ()

i=1

= OQ.

Immediately, we have / M (17;7)(z)?dA(x) is unbounded, which completes the proof.

I
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