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SUMMARY

This thesis studies several problems dealing with weighted inequalities and

vector-valued operators. A weight is a nonnegative locally integrable function, and

weighted inequalities refers to studying a given operator’s continuity from Lp(w) to

Lp(σ) (or Lp,∞(σ)) with 1 < p < ∞ and w and σ weights. The case where σ = w is

known as a one weight inequality and the case where σ 6= w is called a two weight

inequality. These types of inequalities appear naturally in harmonic analysis from at-

tempts to extend classical results to function spaces where the underlying measure is

not necessarily Lebesgue measure. For most operators from harmonic analysis, Muck-

enhoupt Ap weights represent the class of weights for which a one weight inequality

holds. Chapters II and III study questions involving these weights. In particular,

Chapter II focuses on determining the sharp dependence of a vector-valued Calderón-

Zygmund operator’s norm on an Ap weight’s characteristic; we determine that the

vector-valued operator recovers the scalar dependence. Chapter III presents material

from a joint work with M. Lacey. Specifically, in this chapter we estimate the weak-

type norms of a simple class of vector-valued operators, but are unable to obtain a

sharp result. The final two chapters consider two weight inequalities. Chapter IV

characterizes the two weight inequality for a subset of the vector-valued operators

considered in Chapter III. The final chapter presents examples to argue there is no

relationship between the Hilbert transform and the Hardy-Littlewood maximal op-

erator in the two weight setting; the material is taken from a joint work with M.

Reguera.

vii



CHAPTER I

INTRODUCTION

1.1 Preliminaries

This thesis studies a branch of harmonic analysis known as weighted inequalities. Our

particular focus will be on vector-valued operators and Calderón-Zygmund operators.

The theory of weighed inequalities is pertinent to a variety of subjects. There are

deep ties between weights and the regularity of solutions to certain partial differential

equations. Operator theory and spectral theory can be related to this subject through

two weight inequalities for singular integrals. Additionally, weighted inequalities also

find application in approximation theory and probability theory.

The present chapter will provide an overview of the area of weighted inequalities.

Subsequent chapters detail recent advances in the subject. The material of Chapters

II-V are drawn from [40], [37], [41], and [22].

We begin by introducing some basic terms and ideas. First, we refer to a locally

integrable nonnegative function w on Rn as a weight. In harmonic analysis, weighted

theory or weighted norm inequalities refers to the study of a given operator’s con-

tinuity properties when considered as acting on functions from Lr(w) to Lp(σ) (or

Lp,∞(σ)), where σ and w are fixed weights and 1 < p, r <∞. The terms one weight

and two weight refer to the cases where w = σ and w 6= σ.

We let M denote the Hardy-Littlewood maximal operator defined as

Definition 1. For f ∈ L1
loc(Rn) let

Mf(x) = sup
Q3x
〈f〉Q

where the supremum is taken over all cubes Q containing x and 〈f〉Q = 1
|Q|

∫
Q
f(y)dy,

1



and by a Calderón-Zygmund operator, we will mean the following:

Definition 2. We call a function K a Calderón-Zygmund kernel if there is 0 < α ≤ 1

such that K satisfies the following:

(i.) |K(x, y)| . 1
|x−y|n for x, y ∈ Rn such that x 6= y

(ii.) |K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| . |x−x′|α
|x−y|n+α with |x− x′| < |x−y|

2
.

We call an operator T a Calderón-Zygmund operator if T is bounded on L2(Rn) and

there is a Calderón-Zygmund kernel K such that

Tf(x) =

∫
Rn
K(x, y)f(y)dy x 6∈ supp(f)

for compactly supported f ∈ L2(Rn).

The canonical example of Calderón-Zygmund operator is of course the Hilbert trans-

form H which we define as

Hf(x) = p.v.

∫
R

f(y)dy

x− y
.

A notion closely related to Calderón-Zygmund operators is that of Haar functions

and Haar shift operators.

Definition 3. Let D be a dyadic grid and Q ∈ D. Then hQ is a Haar function if hQ

satisfies

hQ(x) =
∑

Q′∈C(Q)

cQ′1Q′(x)

where C(Q) is the collection of all dyadic children for Q.

Definition 4. For integers (m,n) ∈ Z2 we will call S a Haar shift operator of com-

plexity (m,n) if

Sf(x) =
∑
Q∈D

∑
Q′,R′∈D
Q′,R′⊂Q

`(Q′)=`(Q)2−m, `(R′)=`(Q)2−n

〈f, hQ
′

R′〉
|Q|

kR
′

Q′(x).

2



where for a given cube I, `(I) = |I| 1n . The functions hQ
′

R′ and kR
′

Q′ represent generalized

Haar functions. The complexity κ of S is defined as max {m,n, 1}.

It is a well known but deep fact that a general Calderón-Zygmund operator T can be

recovered via suitable averaging of Haar shift operators, see [17].

Central to this thesis are vector-valued operators and functions; here, following [9],

we make explicit the meaning behind these terms.

Definition 5. Let (X,µ) be a σ-finite measure space and B a Banach space. A

function F : X → B is measurable if the following holds:

(i.) there is a separable subspace B0 of B such that F (x) ∈ B0 for almost every

x ∈ X.

(ii.) for each b′ ∈ B′, g(x) = 〈F (x), b′〉 is measurable.

We let LpB(µ) be the space consisting of all measurable F : X → B such that(∫
X

‖F‖pBdµ
) 1

p

<∞.

and analogously we take Lp,∞B (µ) to be the collection of all F : X → B satisfying

‖F‖Lp,∞(w) = sup
t>0

tµ ({x ∈ X : ‖F (x)‖ > t})
1
p .

Our focus is on the case when B is a sequence space `r with 1 < r < ∞; unless

otherwise indicated, we use vector and vector-valued in reference to such an `r space.

Other classical operators we will be interested in are

Definition 6. For 1 < r <∞ we define the vector-valued maximal operator Mr as

Mr(f)(x) =

(
∞∑
j=1

Mfj(x)r

) 1
r

for f = {fj}∞j=1 a sequence of locally integrable functions,

3



Definition 7. For f ∈ L1
loc(R), define the dyadic square function to be

Sf(x) =

(∑
I∈D

〈f, hI〉2IhI(x)

) 1
2

,

and as in [45] we define the intrinsic square function to be

Definition 8. Let Cα be the collection of functions γ supported in the unit ball with

mean zero and such that |γ(x)− γ(y)| ≤ |x− y|α. For f ∈ L1
loc(Rn) let

Aαf(x, t) = sup
γ∈Cα
|f ∗ γt(x)|

where γt(x) = t−nγ(xt−n) and take

Gαf(x) =

(∫
Γ(x)

Aαf(y, t)2dydt

tn+1

) 1
2

where Γ(x) :=
{

(y, t) ∈ Rn+1
+ : |y| < t

}
is the cone of aperture one in the upper-half

plane. We call Gα the intrinsic square function.

We make one last definition,

Definition 9. We refer to a collection of cubes Q =
{
Qk
j

}
j,k∈N as sparse if for fixed

j, Qk
j ∩Ql

j = ∅ and if for Qk
j ∈ Q we have

|D(Qk
j ) ∩Qk

j | ≤ 2−1|Qk
j |

where D(Qk
j ) = Qk

j\
⋃

Qml ⊂Q
k
j

Qml ∈Q

Qm
l .

1.2 Main Results and Background

1.2.1 One Weight Inequalities

The theory of one weight inequalities is well known and largely restricted to the study

of Muckenhoupt Ap weights:

4



Definition 10. Let w be a weight which is strictly positive almost everywhere. We

say w ∈ Ap for 1 < p <∞ provided the following quantity is finite:

[w]Ap = sup
Q

(
1

|Q|

∫
Q

w(x)

)(
1

|Q|

∫
Q

w(x)1−p′
)p−1

,

where the supremum is taken over all cubes in Rn. When p = 1 we say w ∈ A1

provided the following is finite:

[w]A1 =

∥∥∥∥Mw

w

∥∥∥∥
L∞

.

For most classical operators from harmonic analysis, Muckenhoupt weights com-

prise the weights for which a one weight inequality holds. In [27] Muckenhoupt showed

the Ap condition was necessary and sufficient for the Hardy-Littlewood maximal op-

erator to be a bounded operator from Lp(w) into Lp(w). Later, Muckenhoupt, Hunt

and Wheeden [10] demonstrated the Ap condition characterized the weighted continu-

ity of the Hilbert transform, and Coifman-Fefferman [4] proved this for more general

singular integrals.

Sharp one weight estimates were first studied by Buckley [1] when he obtained

the sharp strong-type and weak-type bounds for the Hardy-Littlewood maximal func-

tion. Later, the subject was motivated by [34], where A. Volberg and S. Petrmichl

use sharp weighted results to study solutions for the Beltrami equation; in particular,

the authors prove a linear bound for the Beurling-Alfohrs transform T , i.e. if w ∈ A2

then

‖T‖L2(w)→L2(w) . [w]A2

so that by extrapolation,

‖T‖Lp(ω)→Lp(ω) . [w]
max{1, 1

p−1}
Ap

for ω ∈ Ap with 1 < p <∞. Following [34] a series of results appeared verifying the

linear bound for singular integral operators and dyadic shift operators (see [18, 44]);

5



and, the question of whether the linear bound extended to all Calderón-Zygmund

operators became the focus of intense research, eventually becoming known as the A2

conjecture. The conjecture was finally solved in all generality by T. Hytönen [17].

The second chapter of this thesis considers the question of extending Hytönen’s

result to `r spaces. That is, Chapter II focuses on the following: given a Calderón-

Zygmund operator T and its `r extension T, we want an estimate of the following

type

‖T‖Lp`r (w)→Lp`r (w) . αp,r([w]Ap)

for some function αp,r(t) which is the best possible choice in the sense αp,r(t) cannot

be replaced by a function βp,r(t) which grows more slowly as t → ∞. We are able

to show that the best possible choice of αp,r in the above inequality is tmax{1, 1
p−1}; in

particular, we obtain the same dependence as in the scalar case. This type of depen-

dence is somewhat unexpected, contrasting greatly with similar operators such as the

dyadic square function and vector-valued maximal operator (see Chapter II and [8]).

Additionally, we also note that the implied constants in our estimates do depend on r.

Hence, Chapter II presents the unusual result that scalar valued Calderón-Zygmund

operators are just as singular as `r extensions of Calderón-Zygmund operators.

An important remark is that Hytönen’s proof relied on probabilistic techniques

and the notion of Haar shift operators. Different methods of proof for this theo-

rem were simultaneously and subsequently investigated. The most successful of these

involved using A. Lerner’s decomposition theorem [23]:

Theorem 1.2.1. Let f ∈ L1
loc(Rn) and let Q be a fixed cube. Then there exists a

collection of dyadic cubes
{
Qk
j

}
j,k∈N such that

(i.) for each k, j ∈ N, we have Qk
j ⊂ Q

(ii.) for almost every x ∈ Q,

|f(x)−mf (Q)| ≤ 4M ]
2−n−2;Qf(x) + 4

∑
k

∑
j

ω2−n−2(f ;Qk
j )1Qkj (x)

6



(iii.) for fixed k, Qk
j ∩Qk

i = ∅ for i 6= j

(iv.) letting Ωk =
⋃
j

Qk
j , we have |Ωk ∩Qk

j | ≤ 2−1|Qk
j | and Ωk+1 ⊂ Ωk

and avoided averaging techniques altogether (see [13, 24]). Other ideas focused on

reducing the strong-type inequality to a weak-type inequality; this was in fact the basis

of [17]. With regard to this line of investigation, two conjectures received considerable

attention, namely the A1 conjecture, i.e.

Conjecture 1.2.2 (A1 Conjecture). If T is a Calderón-Zygmund operator and w ∈

A1, then

w ({x ∈ Rn : |Tf(x)| > λ}) . [w]A1

λ

∫
Rn
|f(x)|w

for f ∈ L1(w),

and a related conjecture by Muckenhoupt and Wheeden

Conjecture 1.2.3. Let T be a Calderón-Zygmund operator and w a weight. Then

w ({x ∈ Rn : |Tf(x)| > λ}) . 1

λ

∫
Rn
|f(x)|Mw

for f ∈ L1(w).

Were either conjecture true, an extrapolation argument would imply the A2 conjec-

ture; however, both conjectures have recently been shown to fail [29, 36]. The best

known bound for A1 weights was obtained by Lerner-Perez-Ombrosi [26]:

Theorem 1.2.4. Let T be a Calderón-Zygmund operator and w ∈ A1. Then we have

w ({x ∈ Rn : |Tf(x)| > λ}) . [w]A1(1 + log [w]A1)

λ

∫
Rn
|f(x)|w.

The addition of the logarithm to some power is necessary as shown by Nazarov-

Reznikov-Vasyunin-Volberg [29]. The sharp dependence for the endpoint estimate

remains an open question. In the range 1 < p < ∞, the sharp result was obtained

by [16]:

7



Theorem 1.2.5. If T is a Calderón-Zygmund operator and w ∈ Ap then we have

‖T‖Lp,∞(w)→Lp,∞(w) . [w]Ap .

We can contrast the above behavior with the less singular square functions and

vector-valued maximal function. Wilson [45] showed if w is a weight and Gα is the

intrinsic square function then

w ({x ∈ Rn : Gαf(x) > λ}) . 1

λ

∫
Rn
|f(x)|Mw

and Perez [33] gave the same estimate with Gα replaced by the vector-valued maximal

function Mr with exponent 1 < r <∞. As a result, both the vector-valued maximal

function and square functions satisfy a linear A1 bound.

Chapter III will consider a problem related to the endpoint estimates above.

Namely, we consider the vector-valued operators TQ,r,ρ defined by

Definition 11. Let Q be a sparse collection of cubes, 1 < r < ∞, and parameter

1 ≤ ρ <∞. Then for f ∈ L1
loc(Rn) we define

TQ,r,ρf(x) =

(∑
I∈Q

|〈f〉ρI |r1I(x)

) 1
r

where given a cube Q ⊂ Rn we let ρQ be the cube with the same center as Q but with

side length ρ`(Q),

and show

Theorem 1.2.6. For 1 < p, r <∞, 1 ≤ ρ <∞, and w ∈ Ap we have

‖TQ,r,ρ‖Lp,∞(w) . φp,r([w]Ap)

where φp,r(x) = x
1
p for 1 < p < r and φp,r(x) = x

1
r (1 + log x) for r ≤ p.

We are interested in the operators TQ,r,ρ because application of Theorem 1.2.1 reduces

study of the intrinsic square function and the vector-valued maximal function with

8



exponent r to that of the maximal function and operators of the form TQ,2,ρ and TQ,r,ρ

(see Chapter III for details). Hence, as a result of Theorem 1.2.6, we improve the

implicit weak-type bounds for the intrinsic square function in the range 1 < p < 3

and the vector-valued maximal operator in the range 1 < p < r+1. The logarithm in

our theorem can be compared with that in (1.2.4) for Calderón-Zygmund operators;

however, we are unable to show that the addition of a logarithm is necessary.

1.2.2 Two Weight Inequalities

Two weight inequalities are more difficult and complicated than one weight inequal-

ities. Due to the work of Eric Sawyer on the two weight inequality for fractional

integrals [39] and the maximal function [38], there is a standard method for charac-

terizing the two weight inequality via testing conditions. Explicitly, given an operator

T : Lr(w)→ Lp(σ), we test the following inequality

‖T (f)‖Lp(σ) . ‖f‖Lr(w)

over all f in some special, usually simpler, class of functions. For most integral

operators with positive kernels, the above is an efficient method of characterization.

The main ingredient used in the arguments for such results is the weighted Carleson

embedding theorem:

Theorem 1.2.7 (Weighted Carleson Embedding Theorem). Let w be a weight on Rn

and {τJ}J∈D a collection of nonnegative numbers. Then we have

sup
I

1

w(I)

∑
J⊂I

τJ . 1

if and only if

sup
f∈Lp(w)
‖f‖Lp(w)=1

∑
J∈D

(〈f〉wJ )pτJ . 1, (1.2.8)

where 〈f〉wJ = 1
w(J)

∫
J
f(x)w for a given interval J .

9



Indeed, Theorem 1.2.7 can be used to prove E. Sawyer’s two weight characterization

for the maximal function and discrete positive operators, see [43]. We provide a

generalization of Theorem 1.2.7 in Chapter IV, specifically showing

Theorem 1.2.9. Suppose w and σ are weights and 1 < r, p <∞ with Q a collection

of sparse cubes. Then for TQ,r,1 = TQ, we have ‖TQ,r(·σ)‖Lp(σ)→Lp(w) if and only if

there are L and L∗ such that

sup
Q

∫
Q

TQ,r(1Qσ)(x)pw ≤ Lσ(Q) (1.2.10)

sup
a

sup
Q

∫
Q

UQ(1Qaw)(x)p
′
σ ≤ L∗w(Q) (1.2.11)

where we define

UQ(g)(x) =
∑
I∈Q

〈gI〉I1I(x)

for g = {gI}I∈Q a sequence of locally integrable functions and where the second supre-

mum is taken over all sequences a of locally integrable functions satisfying ‖a‖`r = 1.

Additionally, using A. Lerner’s decomposition theorem, an immediate consequence of

Theorem 1.2.9 is that we obtain sufficient conditions for a two weight inequality for

the vector-valued maximal function and dyadic square function.

When the operator under consideration fails to be positive, the two weight problem

typically requires more elaborate arguments. In particular, singular integrals such as

the Hilbert transform have been notoriously difficult to characterize in the two weight

setting. It is readily seen that a two weight Ap condition is not sufficient for the Hilbert

transform to be bounded, see [28]. An alternative condition for the Hilbert transform

was suggested by D. Sarason:

Conjecture 1.2.12 (Sarason’s Conjecture). For two weights w and σ the Hilbert

transform is bounded from L2(w) to L2(σ) if and only if

sup
z∈C+

Pw(z)Pv(z) . 1

where Pw and Pv are the Poisson extensions of w and v to the upper half plane C+.

10



However, F. Nazarov [28] constructed counterexamples to show Sarason’s conjecture

is false. One important positive result in this direction was given by Nazarov-Treil-

Volberg [31]:

Theorem 1.2.13. Suppose σ and w are positive Borel measures such that M(·σ) :

L2(σ)→ L2(w) and M(·w) : L2(w)→ L2(σ) both hold. Then H(·σ) is bounded from

L2(σ) to L2(w) if and only if the following hold:

(i.) ‖H(1Iσ)‖L2(w) . σ(I)
1
2

(ii.) ‖H(1Iw)‖L2(σ) . w(I)
1
2

(iii.) supz∈C Pσ(z)Pw(z) . 1.

Recently, [21] obtained a characterization in terms of weak-type inequalities. The

problem is still open for more general singular integrals.

Chapter V considers examples which illustrate some of the difficulties presented

by the two weight problem when the underlying operator is no longer positive. Using

the constructions of [19, 35–37] as inspiration we construct weights to refute an old

conjecture of Muckenhoupt and Wheeden

Conjecture 1.2.14 (Lp Muckenhoupt-Wheeden). Let T be a Calderón-Zygmund op-

erator and let w and v be weights on Rn. Then

M : Lp(v) 7→ Lp(w) (1.2.15)

M : Lp
′
(w1−p′) 7→ Lp

′
(v1−p′) (1.2.16)

if and only if

T : Lp(v) 7→ Lp(w). (1.2.17)

and a pair of measures which show the assumptions of Theorem 1.2.13 are distinct.

We conclude that in the two weight setting, there is no relationship between the

maximal function and the Hilbert transform.
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CHAPTER II

SHARP ONE WEIGHT ESTIMATE FOR A

VECTOR-VALUED CALDERÓN-ZYGMUND OPERATOR

2.1 Introduction

The present chapter will focus on strong-type inequalities for `r extensions of singular

integral operators on weighted spaces Lp(w). Our goal is to give a quantitative

estimate of these operators’ norm in terms of a given weight’s Ap characteristic. The

scalar version of this problem has recently been given a great deal of attention. In

this context the sharp dependence can be extrapolated from the case p = 2 which

gives a linear estimate, i.e. if T is a Calderón-Zygmund operator and w ∈ A2,

‖T‖L2(w)→L2(w) . [w]A2 ; (2.1.18)

further, the above inequality is referred to as the A2 Theorem. The authors of [32]

reduced the proof of (2.1.18) to estimating Sawyer-type testing conditions for w ∈ A2,

‖T‖L2(w)→L2(w) . [w]A2 + ‖T‖L2(w)→L2,∞(w) + ‖T ∗‖L2(w−1)→L2,∞(w−1). (2.1.19)

Using probabilistic techniques, Hytönen [17] first proved (2.1.18) in all generality by

demonstrating the weak-type norms in (2.1.19) satisfy a linear bound. Several sub-

sequent proofs of (2.1.18) have also appeared, some of which appeal to averaging

techniques [15,23], and others avoiding this altogether [13, 24].

In the vector-valued setting, several different types of operators have been con-

sidered. In [8] the authors show that the dyadic square function S and vector-valued

maximal operator Mr with exponent r satisfy

‖S‖Lp(w)→Lp(w) . [w]
max{ 1

2
, 1
p−1}

Ap

‖Mr‖Lp`r (w)→Lp(w) . [w]
max{ 1

r
, 1
p−1}

Ap

12



where 1 < p < ∞ and w ∈ Ap. Using similar methods, [25] gives sharp bounds for

the intrinsic square function Gα on weighted Lp(w) spaces, resolving a well-known

conjecture [25]. We aim to generalize the forgoing types of results to vector-valued

extensions of a Calderón-Zygmund operator. Based on the previous examples, it

would be natural to expect the estimates of the Ap characteristic to depend on the

exponent r associated with the `r extension of the given Calderón-Zygmund operator;

however, in the estimates we obtain this does not occur. In particular, the main

theorem of this chapter can be formulated as the following

Theorem 2.1.20. Given a Calderón-Zygmund operator T on Rn, for 1 < r <∞ we

denote by T the `r extension of T , i.e. T(f) = {T (fj)(x)}∞j=1 and

Tr(f)(x) =

(
∞∑
j=1

|T (fj)(x)|r
) 1

r

for f = {fj}∞j=1 with fj ∈ S(Rn). Let 1 < p < ∞ and w ∈ Ap. Given a Calderón-

Zygmund operator T we have the following bound

‖Tr‖Lp`r (w)→Lp(w) . [w]
max{1, 1

p−1}
Ap

. (2.1.21)

We stress that unexpectedly, the dependence on [w]Ap in Theorem 2.1.20 is the same

as in Hyönen’s original theorem, and this is in contrast to the implied constants

which do depend on r. Hence, our theorem indicates that scalar and vector-valued

Calderón-Zygmund operators can be equally singular. Additionally, the paper [11]

considers more general Banach valued Calderón-Zygmund operators and achieves our

Theorem 2.1.20 as a corollary using different proof methods.

Now we make a few remarks about the proof of Theorem 2.1.20. In the scalar

case, the proof strategy is to reduce the study of T to simpler operators, typically

Haar shift operators of a fixed complexity. We follow this tract, reducing the study of

a given T to consideration of vector-valued Haar shift operators of a fixed complexity

κ. Indeed, we show it will be enough to prove the following theorem

13



Theorem 2.1.22. Given a vector-valued Haar shift operator Sr of complexity κ, we

have

‖Sr‖Lp`r (w)→Lp(w) . κ4[w]
max{1, 1

p−1}
Ap

.

The chief difficulty in proving Theorem 2.1.22 will be maintaining a polynomial de-

pendence on κ. To this end, we follow the argument outlined in [24] for the scalar

case. We rely heavily on the application of Lerner’s decomposition theorem, applying

this inequality multiple times before obtaining our desired estimates. An alternative

method of proof would be to verify the bounds in Theorem 2.1.22 via testing con-

ditions; this is easily achieved in certain cases, such as when the Calderón-Zygmund

operator has bounded complexity, but we were unable to achieve the result for general

Calderón-Zygmund operators.

The outline of this chapter is as follows. In Section 2.1.1 we introduce our main

theorems and Section 2.1.2 lists several results which will be used in our proofs. Sub-

sequent sections refer to the proofs of specific theorems, beginning with arguments for

our Lebesgue estimates and continuing with proofs of Theorem 2.1.22 and Theorem

2.1.20.

2.1.1 Preliminaries

In this section we fix notation and introduce our theorems. Let 1 < p, r < ∞ and

w ∈ Ap weight with κ ∈ N.

Definition 12. For u ∈ {0, 3−1}n we denote by Du the dyadic grid defined by

Du =
{

2−k([0, 1)n +m+ (−1)ku) : k ∈ Z,m ∈ Zn
}

and note that this defines a collection of 2n dyadic grids on Rn. In the special case

u = 0, we let Du = D. Given a dyadic grid Du and a cube Q ∈ Du, we use Q(κ) to

denote the κ-fold parent of Q from the dyadic grid.

14



Definition 13. Let S = {Sj}∞j=1 be a collection of generalized Haar shift operators

of complexity κ such that Sjf(x) =
∑
I∈D

〈f, kjI〉h
j
I(x) =

∑
I∈D

SjIf(x) for f ∈ L1
loc(Rn).

Take

Srf(x) =

(
∞∑
j=1

|Sjfj(x)|r
) 1

r

for f = {fj} with fj ∈ L1
loc(Rn). We call Sr a vector-valued Haar shift operator of

complexity κ.

Definition 14. We define an operator Pr as follows. For each j let Qj be a sparse

collection of dyadic cubes from the same dyadic system. For f = {fj}∞j=1, define

P j(fj)(x) =
∑
Q∈Qj

〈fj〉Q1Ej(Q)(x)

where for each Q, Ej(Q) is a union of sub-cubes of Q satisfying 2−κ|Q| ≤ |Ej(Q)|

and take

Pr(f)(x) =

(
∞∑
j=1

|P jfj(x)|r
) 1

r

.

We refer to operators of the above type as positive vector-valued Haar shift operators.

Definition 15. For given f ∈ L1
loc(Rn), 0 < λ < 1, and Q we have

ωλ(f ;Q) = inf
c∈R

((f − c)1Q)∗ (λ|Q|)

M ]
λ,Qf(x) = sup

I⊂Q
1Q(x)ωλ(f, I)

where for g ∈ L1
loc(Rn), g∗ represents the symmetric non-increasing rearrangement.

Now we list the main theorems of this chapter:

Theorem 2.1.23. The operator Sr(·) satisfies ‖Sr‖L1
`r→L1,∞ . κ1+ 1

r′ .

Theorem 2.1.24. For Pr as above, the following inequalities hold for Lebesgue mea-

sure

‖Pr‖Lp`r→Lp . κ2κmax{ 1
r
, 1
r′}. (2.1.25)
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Theorem 2.1.26. With w and p as above we have

‖Sr‖Lp`r (w)→Lp(w) . κ4[w]
max{1, 1

p−1}
Ap

. (2.1.27)

Theorem 2.1.28. Let T be a Calderón-Zygmund operator and w ∈ Ap with 1 < p <

∞. For 1 < r <∞,

‖Tr‖Lp`r (w)→Lp(w) . [w]
max{1, 1

p−1}
Ap

.

2.1.2 Technical Lemmas and Theorems

We begin by stating some known technical Lemmas and Theorems which will be used

to initiate our proofs.

Lemma 2.1.29. [8] Given a measurable function f and Q ∈ D, then for 0 < λ < 1

and 0 < p <∞ we have

(f1Q)∗ (λ|Q|) ≤
‖f‖Lp,∞(Q,|Q|−1dx)

λ
1
p

.

Lemma 2.1.30. [24] Let T be a Calderón-Zygmund operator and Q ⊂ Rn a cube. If

1 < p <∞ and w ∈ Ap then for f ∈ Lp(w)

ωλ(Tf ;Q) .
∞∑
m=0

1

2mδ

(
1

|2mQ|

∫
2mQ

|f(y)|dy
)

Lemma 2.1.31. [12] If S is a generalized Haar shift operator of complexity κ then

we have

ωλ(Sf ;Q)(λ|Q|) . κ〈|f |〉Q
λ

+
1

λ

κ∑
j=1

〈|f |〉Q(j) .

Theorem 2.1.32. [23] Let 1 < q, p < ∞, 0 < λ < 1, and assume that f and g are

functions such that for any cube Q we have

ωλ(|g|q;Q) .

(
〈|f |〉Q
λ

)q
for some constant independent of Q. Then we have

‖g‖Lp(w) . [w]
max{ 1

q
, 1
p−1}

Ap
‖f‖Lp(w).
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Theorem 2.1.33. [8] For 1 < r, p <∞ and w ∈ Ap we have the following bound

‖Mr‖Lp`r (w)→Lp(w) . [w]
max{ 1

r
, 1
p−1}

Ap
.

Additionally, we have the following estimate which we prove in the next section

Lemma 2.1.34. If Q ∈ D then

ωλ(Srf ;Q) . κ1+ 1
r 2κ〈‖f‖`r〉Q(κ) .

2.2 The Lebesgue Estimates

2.2.1 Proof of Theorem 2.1.23

We will perform a Calderón-Zygmund decomposition. Fix λ > 0 and let {Qj}∞j=1 be

the maximal dyadic cubes such that 1
|Qj |

∫
Qj

‖f‖`rdx ≥ λ. For each j define bj by

bjk(x) =

(
fk −

1

|Qj|

∫
Qj

fkdx

)
1Qj(x).

and let b =
∞∑
j=1

bj. Further, we let g = f − b. Then we have the following:

(i.) ‖g‖L1
`r
. ‖f‖L1

`r

(ii.) for each j, supp bjk ⊂ Qj all k ∈ N

(iii.)
∞∑
j=1

‖bj‖L1
`r
. ‖f‖L1

`r

(iv.) for almost all x ∈ Rn, ‖g‖`r . λ‖f‖`r

(v.)
∞∑
j=1

|Qj| .
‖f‖L1

`r

λ
.

Notice

|{x ∈ Rn : Srf(x) > λ}| ≤
∣∣∣∣{x ∈ Rn : Srg(x) >

λ

2

}∣∣∣∣+

∣∣∣∣{x ∈ Rn : Srb(x) >
λ

2

}∣∣∣∣
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and consider by Chebyshev’s inequality,∣∣∣∣{x ∈ Rn : Srg(x) >
λ

2

}∣∣∣∣ ≤ 2r

λr

∫
Rn
Srg(x)rdx

.
2r

λr

∫
Rn
‖g‖Lr`r .

By properties (i.) and (iv.) from above,∫
Rn
‖g‖r`rdx . λr−1

∫
Rn
‖f‖`rdx

so that

2r

λr

∫
Rn
‖g‖`rdx .

2r

λ

∫
Rn
‖f‖`rdx. (2.2.35)

On the other hand,

Srb(x) ≤
∞∑
j=1

Srbj(x).

Further, for Q
(κ)
j ⊂ I, we have

∫
I

bjk(x)dx = 0 so that SkI (bjk)(x) = 0 for Q
(κ)
j ⊂ I.

Hence, by standard computations

∞∑
j=1

Srbj(x) =
∞∑
j=1

(
∞∑
k=1

∣∣Sk(bjk)(x)
∣∣r) 1

r

≤
∞∑
j=1

 ∞∑
k=1

∣∣∣∣∣∣
∑
I⊆Qj

SkI (bjk)(x)

∣∣∣∣∣∣
r

1
r

+ κ
1
r′

∞∑
j=1

∑
Qj⊂I⊂Q

(κ)
j

(
∞∑
k=1

〈|bjk|〉
r
I1I(x)

) 1
r

= A(x) +B(x)

where

A(x) =
∞∑
j=1

 ∞∑
k=1

∣∣∣∣∣∣
∑
I⊆Qj

SkI (bjk)(x)

∣∣∣∣∣∣
r

1
r

B(x) = κ
1
r′

∑
Qj⊂I⊂Q

(κ)
j

∞∑
j=1

(
∞∑
k=1

(
〈|bjk|〉I

)r
1I(x)

) 1
r

so that∣∣∣∣{x ∈ Rn : Srb(x) >
λ

2

}∣∣∣∣ ≤ ∣∣∣∣{x ∈ Rn : A(x) >
λ

4

}∣∣∣∣+

∣∣∣∣{x ∈ Rn : B(x) >
λ

4

}∣∣∣∣ .
18



Notice that A is supported on ∪Qj so that∣∣∣∣{x ∈ Rn : A(x) >
λ

4

}∣∣∣∣ ≤ ∞∑
j=1

|Qj| .
‖f‖L1

`r

λ

and using Chebyshev’s inequality we have

∣∣∣∣{x ∈ Rn : B(x) >
λ

4

}∣∣∣∣ ≤ 4

λ
κ

1
r′

∫ ∑
Qj⊂I⊂Q

(κ)
j

∞∑
j=1

(
∞∑
k=1

(
〈|bjk|〉I

)r
1I(x)

) 1
r

dx.

Applying Minkowskii’s integral inequality to the inner sum of expectations in the

above and continuing gives

4κ
1
r′

λ

∫ ∑
Qj⊂I⊂Q

(κ)
j

∞∑
j=1

〈(‖bj‖`r)〉I1I(x)dx ≤ 4κ
1
r′

λ

∑
Qj⊂I⊂Q

(κ)
j

∞∑
j=1

‖bj‖L1
`r

.
4κ

1
r′

λ

∑
Qj⊂I⊂Q(κ)

‖f‖L1
`r

≤ 4κ1+ 1
r′

λ
‖f‖L1

`r
.

Combining the above estimates gives ‖S‖L1
`r→L1,∞ . κ1+ 1

r′ .

2.2.2 Proof of Theorem 2.1.24

Fix f ∈ Lp`r and suppose first p = r. In this case we have∫
Rn
Pr(f)(x)pdx =

∫
Rn

∞∑
j=1

|P j(fj)(x)|rdx

. κr
∫
Rn

∞∑
j=1

|fj(x)|rdx

= κr
∫
Rn
‖f‖pdx.

Now by Theorem 2.1.23 and the Marcinkiewicz Interpolation Theorem for vector-

valued operators we have for 1 < p ≤ r,

‖Pr‖Lp`r→Lp . κ2+ 1
r′ .
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For the range 1 < r < p we notice there is a vector h ∈ Lp
′

`r′
with ‖h‖

Lp
′

`r
′

= 1 such

that ∫
Rn
Pr(f)(x)pdx =

∫
Rn
Pr(f) · hdx

≤
(∫

Rn
‖f‖p`rdx

) 1
p
(∫

Rn
U(h)(x)p

′
dx

) 1
p′

where U represents a ‘dual’ operator for Pr, i.e. if (P j)∗ is the dual for each P j then

U(g)(x) =

(
∞∑
j=1

|(P j)∗(gj)(x)|r′
) 1

r′

with g = {gj} and gj ∈ L1
loc(Rn). Arguing as before with U in place of Pr, we see(∫

Rn
U(h)(x)p

′
dx

) 1
p′

. κ2+ 1
r .

Hence, we have

‖Pr‖Lp`r→Lp . κ2 max
{
κ

1
r , κ

1
r′
}
.

2.2.3 Proof of Lemma 2.1.34

By the triangle inequality we have,

∣∣1Q(x)Sr(f)(x)− 1Q(x)Sr(1(Q(κ))cf)(x)
∣∣ ≤ 1Q(x)Sr(f1Q(κ))(x).

Notice, Sr(f1(Q(κ))c)(x)1Q(x) is constant on Q. Define

C(Q, f , κ) = C = Sr
(
1(Q(κ))cf

)
(x)1Q(x).

Now the above implies

ωλ(Sr(f);λ|Q|) ≤ (1QSr(f1Q(κ)))∗ (λ|Q|) .

Applying Lemma 2.1.29 gives

(1QSr(f1Q(κ)))∗ (λ|Q|) . ‖Sr(f1Q(κ))‖L1,∞(Q,|Q|−1dx)
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and from the weak-(1,1) inequality for Sr we obtain

‖Sr
(
f1Q(κ)

)
‖L1,∞(Q,|Q|−1dx) . κ1+ 1

r 2κ〈‖f‖`r〉Q(κ)

Thus,

ωλ(Sr(f);λ|Q|) . κ1+ 1
r 2κ〈‖f‖`r〉Q(κ)

2.3 Proof of Theorem 2.1.26

2.3.1 Proof of (2.1.27)

Let f ∈ Lp`r(w) be such that ‖f‖`r has compact support. By applying Lerner’s in-

equality to each component of Sr on a sufficiently large cube J , we obtain the bound

Sr(f)(x) .

(
∞∑
j=1

M ]
1
4

;J
(Sj(fj))(x)r

) 1
r

+

 ∞∑
j=1

∑
Q∈Qj

1Q(x)ω2−n−2(Sj(fj);Q)

r
1
r

where Qj is the collection of cubes which results from applying Theorem 1.2.1 to

Sj(fj). Using Lemma 2.1.31 as in [12] we obtain for each j,

M ]
1
4

;J
(Sj(fj))(x)r . κrMfj(x)r

and (
∞∑
j=1

M ]
1
4

;J
(Sj(fj))(x)r

) 1
r

. Mr(f)(x).

Now we consider the function ∞∑
j=1

∑
Q∈Qj

1Q(x)ω2−n−2(Sj(fj);Q)

r
1
r

. (2.3.36)

Applying Lemma 2.1.31 for each j we obtain the following expression ∞∑
j=1

∑
Q∈Qj

κ · 1Q(x) · 〈|fj|〉Q +
κ∑
i=1

1Q(x) · 〈|fj|〉Q(i)

r
1
r

. (2.3.37)
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For each j and 0 ≤ i ≤ κ define E(Q)i =
⋃

(I)(i)=Q
I∈Qj

I with the convention E(Q)0 = Q.

Continuing, we have

(2.3.37) . κ

 ∞∑
j=1

∑
Q∈Qj

1E(Q)0(x) · 〈|fj|〉Q

r
1
r

+

κ
κ∑
i=1

 ∞∑
j=1

∑
Q∈Qj

1E(Q)i(x) · 〈|fj|〉Q(i)

r
1
r

.

For 0 ≤ i ≤ κ let

P j,i(g)(x) =
∑
Q∈Qj

1E(Q)i(x)〈g〉Q

with g ∈ L1
loc(Rn) and Pi be defined by

Pi(g)(x) =

(
∞∑
j=1

|P j,i(g)(x)|r
) 1

r

for g = {gj}∞j=1 and gj ∈ L1
loc(Rn). Hence we have the following pointwise bound

Sr(f)(x) . Mr(f)(x) + κ
κ∑
i=0

Pi(f)(x). (2.3.38)

By Theorem 2.1.33, ∫
Rn

Mr(f)(x)pw . [w]
max{ pr , p

p−1}
Ap

‖f‖p
Lp`r (w)

.

So from (2.3.38),∫
Rn
Sr(f)(x)pw .

∫
Rn

Mr(f)(x)pw + κ2p

κ∑
i=0

∫
Rn

Pi(f)(x)pw

. [w]
max{p, pr}
Ap

∫
Rn
‖f‖p`rw + κ2p

κ∑
i=0

∫
Rn

Pi(f)(x)pw.

From duality, there is a vector h = {hj} ∈ Lp
′

`r′
(w) such that(∫

Rn
Pi(f)(x)pw

) 1
p

=

∫
Rn

Pi(f)(x) · hw

≤ ‖f‖Lp`r (w)

(∫
Rn

Ui(hw)(x)p
′
σ

) 1
p′

,
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where σ = w1−p′ and for each i

Ui(g)(x) =

(
∞∑
j=1

|(P j,i)∗(gj)(x)|r′
) 1

r′

with g = {gj} and gj ∈ L1
loc(Rn). We apply Lerner’s Theorem in each component of

Ui to obtain the bound

Ui(hw)(x) . Mr′(hw)(x) + κ

(
∞∑
j=1

|Lj,i(hjw)|r′
) 1

r′

= Mr′(hw)(x) + κLi(hw)(x)

where for each j,

Lj,i(hjw)(x) =
∑
I∈Nj,i

〈hjw〉I1I(x).

Notice Li is a vector-valued Haar shift operator of complexity 1 which is L2(Rn)

bounded; hence, by Lemma 2.1.34,

ωλ(Li(hw))(λ|Q|) . 〈‖h‖`r′w〉Q

so that from another application of Lerner’s Theorem we obtain a sparse collection

of cubes Ki,

Li(hw)(x) .M(‖h‖`r′w)(x) +
∑
I∈Ki

〈‖h‖`r′w〉I1I(x).

Hence for each i we have∫
Rn

Ui(hw)(x)p
′
σ .

∫
Rn

Mr′(hw)(x)p
′
+ κp

′
M(‖h‖`r′w)p

′
+ κp

′Li(hw)(x)p
′
σ

. κp
′
[w]

max
{
p′, p

′
p−1

}
Ap

∫
Rn
‖h‖p

′

`r′
σ

. κp
′
[w]

max
{
p′, p

′
p−1

}
Ap

.

Now,

‖Sr‖Lp`r (w)→Lp(w) . κ4[w]
max{1, 1

p−1}
Ap

giving the result.
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2.3.2 An Example to Show Sharpness

The dependence on the Ap characteristic from Theorem 2.1.26 is sharp by the scalar

bound, but here we give an explicit example to show the dependence is sharp. For

each j let Ij = [0, 2−j) and define

S(f)(x) =
∞∑
j=1

〈f〉Ij1Ij(x).

Let w(x) = |x|(δ−1)(p−1) and f(x) = |x|δ−11[0,1)(x). Then

‖f‖pLp(w) =

∫
[0,1)

|x|δ−1dx

=
1

δ
.

On the other hand

‖S(f)‖pLp(w) =

∫
[0,1)

(
∞∑
j=1

〈|x|δ−1〉Ij1Ij(x)

)p

|x|(1−δ)(p−1)dx

=
∞∑
k=0

∫
[2−k−1,2−k)

(
∞∑
j=0

〈|x|δ−1〉Ij1Ij(x)

)p

|x|(1−δ)(p−1)dx

∼
∞∑
k=0

∫
[2−k−1,2−k)

δ−p|x|(δ−1)p|x|(1−δ)(p−1)dx

=

∫
[0,1)

δ−p|x|δ−1dx

= δ−p−1.

Hence,

[w]
1
p−1

Ap
∼ δ−1

.
‖S(f)‖Lp(w)

‖f‖Lp(w)

.
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As a consequence,(∫
S(fσ)(x)pw

) 1
p

= sup
h∈Lp′ (w)
‖h‖

Lp
′
(w)

=1

∫
S(fσ)(x)h(x)w

= sup
h∈Lp′ (w)
‖h‖

Lp
′
(w)

=1

∫
f(x)S∗(hw)(x)σ

= sup
h∈Lp′ (w)
‖h‖

Lp
′
(w)

=1

∫
f(x)S(hw)(x)σ

≥
∫
f(x)S(1[0,1)w)(x)w([0, 1))

−1
p′ σ

so that

[w]Ap . w([0, 1))
−1
p′

(∫
[0,1)

S(1[0,1)w)(x)p
′
σ

) 1
p′

. ‖S(·σ)‖Lp(σ)→Lp(w)

∼ ‖S‖Lp(w)→Lp(w).

As a result, [w]
max{1, 1

p−1}
Ap

. ‖S‖Lp(w)→Lp(w). Since S is a positive operator, S extends

to a vector-valued operator S on Lp`r(w) defined by

S(f)(x) =

(
∞∑
j=1

|S(fj)(x)|r
) 1

r

and ‖S‖Lp`r (w)→Lp(w) ∼ [w]
max{1, 1

p−1}
Ap

.

2.4 Proof of Theorem 2.1.28

Let T be as in the statement of Theorem 2.1.28. For each j we apply Lerner’s

inequality to obtain the following bound

T (fj)(x) .Mfj(x) +
∑
Q∈Qj

1Q(x)ω2−n−1(T (fj);Q).

For each j, we have by Lemma 2.1.30,

ω2−n−1(T (fj);Q) .
∞∑
m=0

1

2mα

(
1

|2mQ|

∫
2mQ

|fj(y)|dy
)
.

25



Now we make an observation (see [14], [24], [13]), for any cube Q ⊂ Rn there is u

and I ∈ Du such that Q ⊂ I and `(I) ≤ 6`(Q). Hence for each u ∈ {0, 3−1}n we may

choose a collection of dyadic cubes Qj,u in Du such that

∑
Q∈Qj

1Q(x)〈fj〉2mQ .
∑

u∈{0,3−1}

∑
Q∈Qj,u

1Q(x)〈fj〉Q

=
∑

u∈{0,3−1}

Pj,m,u(fj)(x).

Define

Pm,u(f)(x) =

(
∞∑
j=1

|Pj,m,u(fj)(x)|r
) 1

r

;

we have the following bound

Tr(f)(x) . Mr(f)(x) +
∞∑
m=0

1

2αm

∑
u∈{0,3−1}n

Pm,u(f)(x). (2.4.39)

By Theorem 2.1.33 ∫
Rn

Mr(f)(x)pw . [w]
max{ pr , p

p−1}
Ap

∫
Rn
‖f‖p`rw.

For fixed m and u, we may apply Theorem 2.1.26 to obtain∫
Rn

Pm,u(f)(x)pw . m4p+ p
r [w]

max{p, p
p−1}

Ap

∫
Rn
‖f‖p`rw

so that

∞∑
m=0

1

2αm

∑
u∈{0,3−1}n

∫
Rn

Pm,u(f)(x)pw .

(
∞∑
m=0

m4p+ p
r

2αm

)
[w]

max{p, p
p−1}

Ap

∫
Rn
‖f‖p`rw

. [w]
max{p, p

p−1}
Ap

∫
Rn
‖f‖p`rw.

As a result, from (2.4.39) we have(∫
Rn
Tr(f)(x)pw

) 1
p

. [w]
max{1, 1

p−1}
Ap

(∫
Rn
‖f‖pw

) 1
p

.
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CHAPTER III

WEAK-TYPE ONE WEIGHT ESTIMATES FOR A

VECTOR-VALUED OPERATOR

3.1 Introduction

This chapter is devoted to weak-type inequalities on weighted spaces Lp(w) with

w ∈ Ap and 1 < p < ∞. Our focus is on obtaining estimates for the vector-valued

operators TQ,r,ρ; recall, for Q a sparse collection of cubes, 1 < r <∞, and 1 ≤ ρ <∞

we define

TQ,r,ρf(x) =

(∑
I∈Q

|〈f〉ρI |r1I(x)

) 1
r

for f ∈ L1
loc(Rn). The main theorem we present here is the following:

Theorem 1.2.6. For 1 < p, r <∞, 1 ≤ ρ <∞, and w ∈ Ap we have

‖TQ,r,ρ‖Lp,∞(w) . φp,r([w]Ap)

where φp,r(x) = x
1
p for 1 < p < r and φp,r(x) = x

1
r (1 + log x) for r ≤ p.

In the final section of this chapter, we show our result is sharp for the range 1 < p < r.

Due to A. Lerner’s decomposition theorem we obtain the following as a corollary to

the above:

Corollary 3.1.40. Recall, Mr denotes the vector-valued maximal function with ex-

ponent r and Sr a vector-valued Haar shift operator of complexity κ with exponent

r. Further, let T be any of the dyadic square function, area integral, or the intrinsic
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square function. Then

‖Sr‖Lp`r (w)→Lp,∞(w) . [w]Ap

‖Mr‖Lp`r (w)→Lp,∞(w) . φp,r([w]Ap)

‖T‖Lp(w)→Lp,∞(w) . φp,2([w]Ap)‖f‖Lp(w)

where φp,r is defined as before.

Previously, the best bounds for the operators in Corollary 3.1.40 were those implied

by their corresponding strong-type bounds; namely

‖Sr‖Lp`r (w)→Lp`r (w) . [w]
max{1, 1

p−1}
Ap

‖Mr‖Lp`r (w)→Lp(w) . [w]
max{ 1

r
, 1
p−1}

Ap

‖T‖Lp(w)→Lp(w) . [w]
max{ 1

2
, 1
p−1}

Ap
.

Hence, Corollary 3.1.40 improves the known weak-type bound for Sr in the range

1 < p < 2, Mr in the range 1 < p < r + 1 and those of the square functions in the

range 1 < p < 3.

In the literature, weak-type estimates for several classical operators have been

considered. Buckley was first to quantify the dependence of the maximal function’s

norm on a weight’s Ap characteristic, proving

‖M‖Lp(w)→Lp,∞(w) . [w]
1
p

Ap

for w ∈ Ap and 1 < p < ∞. The authors of [26] were able to show for p = 1 and T

an L2(Rn) bounded Calderón-Zygmund operator, we have

‖T‖L1(w)→L1,∞(w) . [w]A1(log[w]A1 + 1).

Subsequently, [16] considered the remaining values of p, giving

‖T‖Lp(w)→Lp,∞(w) . [w]Ap .
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The authors of [2] established

w ({x ∈ Rn : Af(x) > λ}) . 1

λ

∫
Rn
f(x)Mw

where A denotes the area integral and w is a weight; a similar type of argument

extends the result to more general square functions (see [45] and [46]).

The remainder of this chapter is outlined as follows. In the next two sections we

consider the proofs of Theorem 1.2.6 and Corollary 3.1.40. The final section discusses

an example to show Theorem 1.2.6 is sharp for p < r.

3.2 Proofs of Main Results

3.2.1 Proof of the Theorem 1.2.6

Fix Q, ρ, r, p, and let f ∈ Lp(w) such that f is nonnegative. We wish to show

w({x ∈ Rn : TQ,r,ρf(x) > λ})λp . φp,r([w]Ap)
p‖f‖pLp(w),

and it will be enough to consider λ = 1. Let Q1 consist of all I such that 〈f〉ρI > 1.

Then if I ∈ Q1 we have ρI ⊂ {x ∈ Rn : Mf(x) > 1} so that I ⊂ {x ∈ Rn : Mf(x) >

1}. As a result,

w

({
x ∈ Rn :

∑
I∈Q1

〈f〉rρI1I(x) > 1

})
≤ w

( ⋃
I∈Q1

I

)

≤ w ({x ∈ Rn : Mf(x) > 1})

. [w]Ap‖f‖
p
Lp(w).

We split the remaining cubes into disjoint collections setting

Q` :=
{
I ∈ Q : 2−`−1 < 〈f〉ρI ≤ 2−`

}
, ` = 0, 1, . . . ,
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Now let E(I) = ρI\
⋃
{ρI ′ : I ′ ( I, I ∈ Q`} and R(I) =

⋃
{ρI ′ : I ′ ( I, I ∈ Q`}.

Notice, if |R(I)| < |ρI|
8

= ρn|I|
8

then we have

〈f1E(I)〉ρI = 〈f〉ρI − 〈f1R(I)〉ρI

≥ 〈f〉ρI − 8−1〈f〉R(I)

≥ 2−`−1 − 8−12−`

& 2−`

so that 〈f1E(I)〉ρI & 2−`. By possibly considering the dyadic descendants of a given

cube Q ∈ Q` we may assume without loss of generality |R(I)| < |ρI|
8

and 〈f1E(I)〉ρI &

2−`. Finally, we need the following lemma:

Lemma 3.2.41. Let R be a collection of cubes, 1 < p <∞, and {gI}I∈R a sequence

of nonnegative functions.∥∥∥∥∥∥
(∑
I∈R

〈gI〉pρI1I

)1/p
∥∥∥∥∥∥
Lp(w)

. [w]
1/p
Ap

∥∥∥∥∥∥
(∑
I∈R

gpI

)1/p
∥∥∥∥∥∥
Lp(w)

.

Proof. Consider, with σ = w1−p′ ,∫
Rn

∑
I∈R

〈gI〉pρI1I(x)w ≤
∑
I∈R

(
〈gIσ−1〉σρI

)p(σ(ρI)

|ρI|

)p
w(ρI)

≤ [w]Ap
∑
I∈R

σ(I)
(
〈gIσ−1〉σρI

)p
≤ [w]Ap

∑
I∈R

∫
I

Mσ(gI)(x)pσ

. [w]Ap
∑
I∈R

∫
Rn
gI(x)pσ(x)−pσ

= [w]Ap

∫
Rn

∑
I∈R

gI(x)pw.
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3.2.1.1 The Case of 1 < p < r

Given a collection I ⊂ Q and a sequence of functions {aI(x)}I∈I indexed by I, define

E (I, {aI} , λ) = E
(
I, {aI}I∈I , λ

)
=

{
x ∈ Rn :

∑
I∈I

|aI(x)|r > λ

}
.

We let kε ' ε−1 be a constant such that

w
(
E
(
Q\Q1, {〈f〉ρI1I(x)} , kε

))
≤

∞∑
`=0

w
(
E
(
Q`,

{
2−r`1I(x)− 2−ε`

}
, 0
))

=
∞∑
`=0

w
(
E
(
I ∈ Q`,

{
2−r`1I(x)

}
, 2−ε`

))
.

For fixed ` we have

E
(
Q`,

{
2−r`1I(x)

}
, 2−ε`

)
⊂ E

(
Q`,

{
〈f1E(I)(x)〉pρI1I(x)

}
, 2(r−p−ε)`−5

)
and

w
(
E
(
Q`,

{
〈f1E(I)(x)〉pρI1I(x)

}
, 2(r−p−ε)`−5

))
. [w]Ap2

−(r−p−ε)`/r‖f‖pLp(w)

by Lemma 3.2.41. Choosing ε = (r − p)/2 and summing over ` gives the result.

3.2.1.2 The case of p = r

We consider

w
(
E
(
Q\Q1,

{
〈f〉rρI1I(x)

}
, 1
))
≤ w(A) + w(B)

where

A =

{
x ∈ Rn :

`0−1∑
`=0

∑
I∈Q`

〈f〉rρI1I(x) >
1

2

}

B =

{
x ∈ Rn :

∞∑
`=`0

∑
I∈Q`

〈f〉rρI1I(x) > 2−`/8−1

}
.
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Note

w(B) ≤ w

({
x ∈ Rn :

∞∑
`=`0

∑
I∈Q`

〈f〉rρI1I(x)− 2−`/8−1 > 0

})

≤
∞∑
`=`0

w

({
x ∈ Rn :

∑
I∈Q`

〈f〉2ρI1I(x)− 2−`/8−1 > 0

})

≤
∞∑
`=`0

w

({
x ∈ Rn :

∑
I∈Q`

〈f〉rρI1I(x) > 2−`/8−1

})
.

Using the A∞ estimate we have

w
(
E
(
Q`,

{
〈f〉rρI1I(x)

}
, 2−`/8−1

))
≤ w

(
E
(
Q`, {1I(x)} , 2(8r`−`)/8−1

))
. exp

(
(−c2r`/2)/[w]Ar

)
w

( ⋃
I∈Q`

I

)

. [w]A22
` exp

(
−c2r`/2/[w]Ar

)
‖f‖rLr(w),

where 0 < c < 1 is a fixed constant. This is summable in ` ≥ `0 to at most a constant.

For the case of 0 ≤ ` < `0, we use the estimate of Lemma 3.2.41 to obtain

w(A) ≤
`0−1∑
`=0

w

({
x ∈ Rn :

∑
I∈Q`

〈f1E(I)〉2ρI1I(x) >
1

128`0

})

. `r0[w]Ar‖f‖rLr(w) = [w]Ar(1 + log[w]Ar)
r‖f‖rLr(w)

concluding the proof of this case.

3.2.1.3 The case of r < p <∞

We have

w(E(Q, {〈f〉rI1I(x)} , 1))
1
p =

(
w(E(Q, {〈f〉rI1I(x)} , 1))

r
p

) 1
r

= (hw(E(Q, {〈f〉rI1I(x)} , 1)))
1
r

for h ∈ Lq′(w) with norm 1, where q = p
r
. Now by the Rubio de Francia algorithm

there is a function H such that the following hold:

(i.) h ≤ H
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(ii.) ‖H‖Lq′ (w) . ‖h‖Lq′ (w)

(iii.) Hw ∈ A1

(iv.) [Hw]A1 . [w]Ap .

We can continue,

hw(E(Q, {〈f〉rI1I(x)} , 1)) ≤ Hw(E(Q, {〈f〉rI1I(x)} , 1))

. [Hw]Ar (1 + log [Hw]Ar)
r

∫
Rn
f(x)rHw. (3.2.42)

Using Hölder’s inequality we obtain∫
Rn
f(x)rHw ≤ ‖f‖rLp(w)‖H‖rLq′ (w)

. ‖f‖rLp(w)

so that

(3.2.42) . [Hw]Ar (1 + log [Hw]Ar)
r ‖f‖rLp(w)

. [w]Ap
(
1 + log [w]Ap

)r ‖f‖rLp(w)

which implies the result.

3.2.2 Proof of Corollary 3.1.40

The following lemma is known (see [8] and [25]):

Lemma 3.2.43. Let f ∈ L1
loc(Rn) and g be a sequence of `r summable locally inte-

grable functions. For Mr the vector-valued maximal function with exponent r and T

any of square functions in Corollary 3.1.40,

ωλ(Tf
2, Q0) . λ−1〈f〉2ρQ0

ωλ(Mr(g)r, Q0) . λ−1〈‖g‖`r〉rQ0

for some ρ ≥ 1 which depends on the choice of T .
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By Lerner’s decomposition theorem, for each cube QN there is an appropriate ρ and

collections of sparse cubes QN and IN such that

|Tf(x)−mQN | .M ](f)(x) + TIN ,ρ,r(f)(x)

|Mr(g)(x)−mQN | .M ](‖g‖`r)(x) + TQN ,r(‖g‖`r)(x);

the conclusion of the corollary for Mr and the operators represented by T follow

immediately.

Now we consider Sr, where Sr is a vector-valued Haar shift operator of complexity

κ. Let f ∈ Lp`r(w) such that ‖f‖`r has compact support. For all cubes Q which are

sufficiently large, we have the following point-wise bound:

Srf(x) .M ]
2−n−1;Q(Srf)(x) +

∑
I∈K

ω2−n−1(Srf ; I)1I(x),

where K is a sparse collection of cubes. By a Lemma 2.1.34 from Chapter II,

M ]
2−n−1;Q(Srf)(x) . M(‖f‖`r)(x)

ω2−n−1(Srf ; I)1I(x) . 〈‖f‖`r〉I(κ)1I(x)

so that

Srf(x) . M(‖f‖`r)(x) +
∑
I∈K

2κ〈‖f‖`r〉I1I(x) (3.2.44)

and we are done.
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3.3 An Example to Show Sharpness

Let Q = {[0, 2−j) : 0 ≤ j}, ρ = 1, and 1 < r < ∞. Take w(x) = |x|(1−δ)(p−1) with

0 ≤ δ < 1 and f(x) = 1[0,1)(x)|x|δ−1. Then

TQ,r,ρf(x)r =
∞∑
j=0

1[0,2−j)(x)〈f〉r[0,2−j)

=
∞∑
j=0

1[0,2−j)(x)δ−r2r(−jδ+j)

=
∑

j≤log |x|−1

1[0,2−j)(x)δ−r2r(−jδ+j)

∼ δ−r|x|r(δ−1)

and so we need to consider

w
({
x ∈ [0, 1) : (λδ)

−1
1−δ > x

})
λp = w

(
[0, (λδ)

−1
1−δ )

)
λp

for 0 < λ. But

w
(

[0, (λδ)
−1
1−δ )

)
= (λδ)

−ε
1−δ

with ε = (1− δ)(p− 1) so

w
(

[0, (λδ)
−1
1−δ )

)
λp = (λδ)

−ε
1−δλp

& δ
−ε
1−δ

= δ−(p−1)

∼ [w]Ap

and since ‖f‖Lp(w) = 1 we are done.
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CHAPTER IV

TWO WEIGHT INEQUALITY FOR A VECTOR-VALUED

OPERATOR

4.1 Introduction

Our focus is on two weight inequalities. We study the simple vector-valued operator

TQ,r defined by a sparse collection of cubes Q and an exponent 1 ≤ r <∞; recall, in

this context we take

TQ,r,1f(x) = TQ,rf(x) =

(∑
I∈Q

|〈f〉I |r1I(x)

) 1
r

for f ∈ L1
loc(Rn). The aim of our efforts is to give a necessary and sufficient condition

for the two weight inequality of TQ,r to hold when 1 < r < ∞. The main result of

this chapter may be formulated as follows:

Theorem 1.2.9. Suppose w and σ are weights and 1 < r, p < ∞ with Q a sparse

collection of cubes. Then we have ‖TQ,r(·σ)‖Lp(σ)→Lp(w) if and only if there are L and

L∗ such that:

sup
Q

∫
Q

TQ,r(1Qσ)(x)pw ≤ Lσ(Q) (4.1.45)

sup
a

sup
Q

∫
Q

UQ(1Qaw)(x)p
′
σ ≤ L∗w(Q) (4.1.46)

where UQ is an appropriate ‘dual’ operator (which we define later) and where the first

supremum for UQ is taken over all sequences of functions a such that ‖a‖`r = 1.

Special cases of our theorem have been considered before. Notably, when p = r

and w = σ we obtain the weighted Carleson embedding theorem:
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Theorem 1.2.7 (Weighted Carleson Embedding Theorem). Let w be a weight on Rn

and {τJ}J∈D a collection of nonnegative numbers. Then we have

sup
I

1

w(I)

∑
J⊂I

τJ . 1

if and only if

sup
f∈Lp(w)
‖f‖Lp(w)=1

∑
J∈D

(〈f〉wJ )pτJ . 1. (4.1.47)

Theorem 1.2.7 is a fundamental result in two weight theory. For positive operators,

the relationship between Theorem 1.2.7 and the corresponding two weight inequality

is very strong. The two weight inequality for the maximal function is equivalent to

Theorem 1.2.7 and the characterization of weighted inequalities for discrete positive

operators can be reduced to Theorem 1.2.7, see [43]. The connection is less clear for

operators without a positive kernel, but if p = 2 then Theorem 1.2.7 can be used to

give the two weight inequality for the dyadic square function and Haar multipliers

(see [30]). Our Theorem 1.2.9 generalizes Theorem 1.2.7, reducing to a special case

of (4.1.47) when p = r.

Further, for r = 1 and p = 2, [30] gave a characterization of the operator TQ,r.

This result was later extended to p 6= 2 by [20] (later a simplified argument was

constructed by [43]). A crucial difference between [30] and [20] was that [30] used

a Bellman function technique while [20] constructed a more flexible argument. We

rely on the methods presented in [20], noting Theorem 1.2.9 follows largely from their

argument but not directly from their results.

We mention the operators TQ,r have also received attention with respect to one

weight inequalities. The arguments of [8] imply the following:

Theorem 4.1.48. Let Q be a sparse collection of cubes with 1 < r, p < ∞ and

w ∈ Ap. Then we have

‖TQ,r‖Lp(w)→Lp(w) . [w]
max{ 1

r
, 1
p−1}

Ap
. (4.1.49)
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Using a decomposition theorem of A. Lerner in conjunction with (4.1.49) the authors

of [8] were able to deduce sharp strong-type inequalities for the vector-valued maximal

function and dyadic square function. Later, A. Lerner used a similar argument to

extend the square function result to the intrinsic square function. Applying these type

of arguments together with Theorem 1.2.9 and Sawyer’s theorem for the maximal

function we obtain the following

Corollary 4.1.50. Suppose w and σ are two weights with 1 < p, r < ∞. Assume

the testing conditions (4.1.45) and (4.1.46) are satisfied with constants independent

of the sparse collection Q. Additionally, suppose M(·σ) satisfies∫
Q

M(1Qσ)(x)pw . σ(Q).

Then Mr(·σ) is bounded from Lp(σ) to Lp(w) and if r = 2, S(·σ) is bounded from

Lp(σ) to Lp(w).

The remainder of this chapter is structured as follows. In Section 2 we introduce

certain definitions and theorems which will be useful for us. The subsequent section

deals with several preliminary results and Section 4 contains the bulk of our argument

for Theorem 1.2.9.

4.2 Initial Concepts

Throughout the remainder of this chapter we assume 1 < r < ∞. Recall, for Q a

sparse collection of cubes and g = {gI}I∈Q a collection of measurable functions we

set

UQ(g)(x) =
∑
I∈Q

〈gI〉I1I(x).

We also consider an operator TQ,r which allows us to overcome the non-linearity of

TQ,r:
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Definition 16. Let f ∈ L1
loc(Rn) and 1 < r <∞. We set

TQ,r(f)(x) = {〈f〉I1I(x)}I∈Q .

Then we have ∫
Rn
TQ,r(fσ)(x)pw =

∫
Rn
‖TQ,r(fσ)‖p`rw

=

∫
Rn
〈TQ,r(fσ), aw〉`rdx

=

∫
Rn
〈fσ,UQ(aw)〉`rdx.

Consequently, UQ can be loosely considered as the dual operator to TQ,r. Further,

we define certain restrictions of TQ,r:

Definition 17. Suppose Q is a sparse collection of cubes and 1 < r < ∞. For

Q ⊂ Rn, we have

T in
Q,r,Qf(x) =

∑
I⊆Q
I∈Q

|〈f〉I |r1I(x)


1
r

,

T out
Q,r,Q(f)(x) =

∑
Q⊂I
I∈Q

|〈f〉I |r1I(x)


1
r

.

Now we consider a Whitney covering lemma whose statement we borrow from [20]

and the universal maximal estimate:

Lemma 4.2.51. For each k there exists a collection Qk of disjoint cubes satisfying:

Ωk =
⋃
Q∈Qk

Q, (4.2.52)

Q(1) ⊂ Ωk , Q
(2) ∩ Ωc

k 6= ∅, (4.2.53)∑
Q∈Qk

1Q(1) . 1Ωk , (4.2.54)

sup
Q∈Qk

]
{
Q′ ∈ Qk : Q′ ∩Q(1) 6= ∅

}
. 1 , (4.2.55)

Q ∈ Qk , Q′ ∈ Ql , Q $ Q′ k > l . . (4.2.56)
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Theorem 4.2.57. Let µ be a weight and 1 < s ≤ ∞. For g ∈ Ls(ω), define

Mµg(x) = sup
Q∈D
Q3x

〈|g|〉µQ.

Then Mµ : Ls(µ)→ Ls(µ) is a bounded operator.

The proofs of Lemma 4.2.51 and Theorem 4.2.57 are standard and we omit them, but

relevant arguments can be found in [20] and [42].

Definition 18. Let {Qk}k∈Z be collections of cubes as in Lemma 4.2.51 and R a

dyadic cube. Provided there exists k such that R ∈ Qk, define C(R) = sup{k : R ∈

Qk}, c(R) = inf{k : R ∈ Qk} and D(R) = C(R)−c(R); otherwise let c(R) = C(R) =

D(R) = 0.

4.3 Preliminary Results

Here we formulate and prove some results which will be used in the argument for

Theorem 1.2.9. We begin with the following weak-type estimate:

Lemma 4.3.58. Assuming (4.1.45) and (4.1.46) hold, for g ∈ Lp
′

`r′
(w) and f ∈ Lp(σ),

we have

‖UQ(gw)‖Lp′,∞(σ) . L
1
p
∗ ‖g‖Lp′

`r
′ (w)

, (4.3.59)

‖TQ,r(fσ)‖Lp,∞(w) . L
1
p′ ‖f‖Lp(σ). (4.3.60)

A consequence of Lemma 4.3.58 is that we can make slight modifications to the

testing conditions on TQ,r and UQ:

Lemma 4.3.61. For each Q ∈ D and for any positive a = {aI}I∈Q satisfying∑
I∈Q |aI(x)|r = 1 for almost all x ∈ Rn, we have∫

Rn
TQ,r(1Qσ)(x)pw . Lσ(Q), (4.3.62)∫

Rn
UQ (1Qaw) (x)p

′
σ . L∗w(Q). (4.3.63)
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Now we consider the following the lemma:

Lemma 4.3.64. Given collections of cubes {Qk}k∈Z as in Lemma 4.2.51, for each k

and Q ∈ Qk we have

max
{
T out
Q,r,Q(1)(1Q(2)fσ)(x) , TQ,r(1(Q(2))cfσ)(x)

}
≤ 2k ,

with x ∈ Q.

Further, Lemma 4.3.64 also implies the following maximum principle

Lemma 4.3.65. For a given function f ∈ L1
loc(Rn), let Ωk = {x ∈ Rn : TQ,rf(x) >

2k}. Denote by Qk the corresponding Whitney cubes for the Ωk and for a given cube

Q let

Ek(Q) = Q ∩ (Ωk+2 − Ωk+3) , Q ∈ Qk .

Then for all k and x ∈ Ek(Q), we have

2k ≤ T in
Q,r,Q(1)(1Q(1)f)(x).

4.3.1 Proof of Lemma 4.3.58

We will argue the case for (4.3.59) first. Fix a sequence g ∈ Lp
′

`r′
(w) and begin by

defining Γα = {x : U(gw)(x) > α} for α > 0. UQ(gw)(x) is lower semi-continuous

and so Γα is open. Similar to Lemma 4.2.51, we will perform a Whitney-style decom-

position; specifically, for fixed α, let
{
Lαj
}
j∈N be the dyadic cubes which are maximal

with respect to the following two conditions: (i.) Lαj ∩ Γ2α 6= ∅ and (ii.) Lαj ⊂ Γα for

all j ∈ N. First, we aim to put ourselves in a position to use the testing condition on

TQ,r; for fixed j, ∫
Lαj

UQ(gw)(x)σ =

∫
Lαj

〈1Lαj σ,UQ(gw)〉`rdx

=

∫
Lαj

〈TQ,r(1Lαj σ),gw〉`rdx

≤
∫
Lαj

TQ,r(1Lαj σ)(x)‖g‖`rw.
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Now as a result, we have(
σ(Lαj )−1

∫
Lαj

UQ(gw)(x)σ

)p′

≤

(
σ(Lαj )−1

∫
Lαj

TQ,r(1Lαj σ)(x)‖g‖`r′w

)p′

≤

(∫
Lαj

‖g‖p
′

`r′
w

)(∫
Lαj

TQ,r(1Lαj σ)pw

) p′
p

σ(Lαj )−p
′

. L
p′
p

(∫
Lαj

‖g‖p
′

`r′
w

)
σ(Lαj )

p′
p
−p′

= L
p′
p

(∫
Lαj

‖g‖p
′

`r
′w

)
σ(Lαj )−1.

As a consequence,(
σ(Lαj )−1

∫
Lαj

UQ(gw)(x)σ

)p′

σ(Lαj ) . L
p′
p

(∫
Lαj

‖g‖p
′

`r′
w

)
and summing over j gives

∑
j∈N

(
σ(Lαj )−1

∫
Lαj

U(gw)(x)σ

)p′

σ(Lαj ) . L
p′
p ‖g‖p

′

Lp
′

`r
′ (w)

. (4.3.66)

At this point we will appeal to a ‘good-lambda’ trick. In particular, we fix α and

ε = 2−p
′−1 > 0; further, we define E =

{
j : σ(Lαj ∩ Γ2α) < εσ(Lαj )

}
. So,

(2α)p
′
σ(Γ2α) . ε(2α)p

′∑
j∈E

σ(Lαj ) + ε−1
∑
j 6∈E

(2α)p
′
σ(Lαj )

≤ ε(2α)p
′∑
j∈E

σ(Lαj ) +
∑
j 6∈E

2−1(ασ(Lαj )σ(Lαj )−1)p
′
σ(Lαj )

≤ ε(2α)p
′∑
j∈E

σ(Lαj ) +
∑
j 6∈E

2−1

(
σ(Lαj )−1

∫
Lαj

UQ(gw)(x)σ

)p′

σ(Lαj )

. ε(2α)p
′∑
j∈E

σ(Lαj ) + 2−1L
p′
p ‖g‖p

′

Lp
′

`r
′ (w)

where the final inequality follows from (4.3.66). Hence

(2α)p
′
σ(Γ2α) . 2−1(α)p

′
σ(Γα) + 2−1L

p′
p ‖g‖p

′

Lp
′

`r
′ (w)

≤ 2−1‖UQ(gw)‖p
′

Lp′,∞(σ)
+ 2−1L

p′
p ‖g‖p

′

Lp
′

`r
′ (w)
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which gives (4.3.59).

Now we consider (4.3.60). The argument will be similar to that for (4.3.59). Fix a

positive function f ∈ Lp(σ) and let Ψα = {x : TQ,r(fσ)(x) > α} for α > 0. Again, we

perform a Whitney-style decomposition; explicitly, let
{
Pα
j

}
j∈N be the dyadic cubes

which are maximal with respect to: (i.) Pα
j ∩ Ψ2α 6= ∅ and (ii.) Pα

j ⊂ Ψα for all

j ∈ N. We define a = TQ,r(fσ)r−1(TQ,r(fσ))−1 and attempt to place ourselves in a

position where we may use the testing condition on UQ; using duality as before, for

each j we see the expression(
w(Pα

j )−1

∫
Pαj

TQ,r(fσ)(x)w

)p

w(Pα
j ) (4.3.67)

is equivalent to (
w(Pα

j )−1

∫
Pαj

UQ(1Pαj wa)(x)f(x)σ

)p

w(Pα
j ). (4.3.68)

Using Hölder’s inequality,

(4.3.68) ≤

(∫
Pαj

UQ(a1Pαj w)(x)p
′
σ

) p
p′
(∫

Pαj

f(x)pσ

)
w(Pα

j )1−p

. L
p
p′
∗

(∫
Pαj

f(x)pσ

)

and summing gives

∑
j∈N

(
w(Pα

j )−1

∫
Pαj

TQ,r(fσ)(x)w

)p

w(Pα
j ) . L

p
p′
∗ ‖f‖pLp(σ).
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As before we use a ‘good-lambda’ trick; we fix α and ε = 2−p−1. Further, define

Υ =
{
j : w(Pα

j ∩Ψ2α) < εw(Pα
j )
}

. So

(2α)pw(Ψ2α) . ε(2α)p
∑
j∈Υ

w(Pα
j ) + ε−1

∑
j 6∈Υ

(2α)pw(Pα
j )

. ε(2α)p
∑
j∈Υ

w(Pα
j ) + 2−1

∑
j 6∈Υ

(αw(Pα
j )w(Pα

j )−1)pw(Pα
j )

. ε(2α)p
∑
j∈Υ

w(Pα
j ) + 2−1

∑
j 6∈Υ

(
w(Pα

j )−1

∫
Pαj

TQ,r(fσ)(x)w

)p

w(Pα
j )

. ε(2α)p
∑
j∈Υ

w(Pα
j ) + 2−1L

p
p′
∗ ‖f‖pLp(σ)

≤ ε(2α)pw(Ψα) + 2−1L
p
p′
∗ ‖f‖pLp(σ).

Now we have

(2α)pw(Ψ2α) . 2−1αpw(Ψα) + 2−1L
p
p′
∗ ‖f‖pLp(σ)

≤ 2−1‖TQ,r(fσ)‖pLp,∞(w) + L
p
p′
∗ ‖f‖pLp(σ)

and this gives (4.3.60).

4.3.2 Proof of Lemma 4.3.61

First, we will show the case for (4.3.62). By (4.3.59) and duality, we have for each

f ∈ Lp,1(σ),

‖TQ,r(fσ)‖Lp(w) . L
1
p‖f‖Lp,1(σ).

Since for any cube Q, 1Q ∈ Lp,1(σ) and ‖1Q‖Lp,1(σ) = σ(Q)
1
p , we have

‖TQ,r(1Qσ)‖Lp(w) . L
1
pσ(Q)

1
p

which gives the desired result.

We conclude by verifying (4.3.63) holds. Consider, for a = TQ,r(fσ)TQ,r(fσ)−1

and Q fixed, (∫
Rn

UQ(1Qaw)(x)p
′
σ

) 1
p′

=

∫
Rn

UQ(1Qaw)(x)h(x)σ
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for some h ∈ Lp(σ). Then using duality and Hölder’s inequality in `r − `r′ we have∫
Rn

UQ(1Qaw)(x)h(x)σ =

∫
Rn
〈1Qaw,TQ,r(hσ)〉`rdx

≤
∫
Q

TQ,r(hσ)(x)w. (4.3.69)

Recall, by (TQ,r(hσ)(x))∗ and (1Q)(x))∗, we mean the symmetric decreasing rear-

rangements of TQ,r(hσ)(x) and 1Q(x) with respect to w. We continue from (4.3.69)

by applying Hölder’s inequality and using (4.3.60) to obtain

(4.3.69) ≤
∫
R
(TQ,r(hσ)(x))∗ (1Q(x))∗w

≤ ‖TQ,r(hσ)‖Lp,∞(w)w(Q)
1
p′

≤ ‖TQ,r(·σ)‖Lp(σ)→Lp,∞(w)w(Q)
1
p′

. L
1
p′
∗ w(Q)

1
p′ .

The foregoing inequalities yield∫
Rn

UQ(1Qaw)(x)p
′
σ ≤ L∗w(Q)

p′
p′

and we are done.

4.3.3 Proof of Lemma 4.3.64 and Lemma 4.3.65

4.3.3.1 Proof of Lemma 4.3.64

By Lemma 4.2.51, there is z ∈ Q(2) ∩ Ωc
k. Thus for x ∈ Q we have

TQ,r(1(Q(2))cfσ)(x) = T out
Q,r,Q(1)(1(Q(2))cfσ)(x) ≤ TQ,r(fσ)(z) ≤ 2k

and we are done.

4.3.3.2 Proof of Lemma 4.3.65

By Lemma 4.3.64 and the sub-linearity of TQ, we have for x ∈ Ek(Q)

2k+2 − 2k+1 ≤ TQ,r(f)(x)− T out
Q,r,Q(1)(1Q(1)f)(x)− TQ,r(1(Q(1))cfσ)(x)

≤ T in
Q,r,Q(1)(1Q(1)f)(x).

Noting 2k+2 − 2k+1 ≥ 2k, we obtain 2k ≤ T in
Q,r,Q(1)(1Q(1)f)(x).
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4.3.3.3 Proof of Corollary 4.1.50

Assuming Theorem 1.2.9 and recalling Sawyer’s two weight theorem for the maximal

function, the corollary follows from Lerner’s decomposition theorem and arguments

similar to those used for Corollary 3.1.40 in Chapter III.

4.3.4 Proof of Theorem 1.2.9: Necessity

Here we prove the necessity of the testing conditions. We suppose that TQ,r is a

bounded operator. The necessity of (4.1.45) is immediate by taking f = 1Q for an

arbitrary cube, so we only need to verify the necessity of the conditions on UQ. Fix a

cube Q and a sequence a such that ‖a‖`r = 1. Without loss of generality we assume

h and a are positive. Then,(∫
Q

UQ(a1Qw)(x)p
′
σ

) 1
p′

=

∫
Q

UQ(a1Qw)(x)hσ

where h is an appropriate function from Lp(σ) satisfying ‖h‖Lp(σ) = 1. Now we use

duality and apply Hölder’s inequality in `r − `r′ and obtain∫
Q

UQ(a1Qw)(x)hσ =

∫
Rn
〈TQ,r(h1Qσ), a1Qw〉`rdx

≤
∫
Q

TQ,r(h1Qσ)(x)w

≤ ‖TQ,r(h1Qσ)‖Lp(w)w(Q)
1
p′

≤ ‖TQ,r(·σ)‖Lp(σ)→Lp(w)w(Q)
1
p′ .

Hence, ∫
Q

UQ(a1Qw)(x)p
′
σ ≤ ‖TQ,r(·σ)‖p

′

Lp(σ)→Lp(w)w(Q)

where a is arbitrary. Taking supremums we have

sup
a

sup
Q
w(Q)−1

∫
Q

UQ(1Qaw)(x)p
′
σ ≤ ‖TQ,r(·σ)‖p

′

Lp(σ)→Lp(w)

which gives the result.
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4.4 Proof of Theorem 1.2.9: Sufficiency

We apply Lemma 4.2.51 to obtain a collection of cubes Qk for each k such that Ωk ={
x ∈ Rn : TQ,r(fσ)(x) > 2k

}
= ∪Q∈QkQ. For Q ∈ Qk, define Ek(Q) = (Ωk\Ωk+2)∩Q.

Then we have the following:∫
Rn
TQ,r(fσ)(x)pw .

∑
k∈Z

w(
{
x ∈ Rn : TQ,r(fσ)(x) > 2k

}
)2kp

.
∑
k∈Z

∑
Q∈Qk

w(Ek(Q))2kp.

By Lemma 4.3.65,

w(Ek(Q))2k .
∫
Ek(Q)

TQ,r(fσ1Q(1))(x)w

=

∫
Q(1)

UQ(a1Ek(Q)w)(x)f(x)σ;

we split the above integral into two pieces so that∫
Q(1)

UQ(a1Ek(Q)w)(x)f(x)σ = S1,k(Q) + S2,k(Q)

with

S1,k(Q) =

∫
Q(1)\Ωk+m

UQ(a1Ek(Q)w)(x)f(x)σ

S2,k(Q) =

∫
Q(1)∩Ωk+m

UQ(a1Ek(Q))(x)f(x)σ.

For each k, we partition Qk into two collections:

Q1,k = {Q ∈ Qk : w(Ek(Q)) ≤ ηw(Q)}

Q2,k = {Q ∈ Qk : w(Ek(Q)) > ηw(Q)}

where 0 < η < 1 is a fixed parameter that will be defined later in the proof; further

divide Q2,k into:

Q2
k = {Q ∈ Q2,k : S2,k(Q) ≤ S1,k(Q)}

Q3
k = {Q ∈ Q2,k : S2,k(Q) > S1,k(Q)} .
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The sum
∑

k∈Z
∑

Q∈Qk w(Ek(Q))2kp is split into pieces corresponding to the collec-

tions above:

I1 =
∑
k∈Z

∑
Q∈Q1,k

w(Ek(Q))2kp

I2 =
∑
k∈Z

∑
Q∈Q2

k

w(Ek(Q))2kp

I3 =
∑
k∈Z

∑
Q∈Q3

k

w(Ek(Q))2kp.

Trivially, we have ∑
k∈Z

∑
Q∈Qk

w(Ek(Q))2kp = I1 + I2 + I3

so that it suffices to estimate each Ij.

4.4.1 Estimating I1

Consider,

I1 . η
∑
k∈Z

∑
Q∈Qk

η−1w(Q)2kp

. η

∫
Rn
TQ,r(fσ)(x)pw;

as 0 < η < 1, we may absorb the term I1 into ‖TQ,r(fσ)‖Lp(σ).

4.4.2 Estimating I2

Here, notice

η2kw(Q) ≤
∫
Q(1)

UQ(a1Ek(Q)w)(x)f(x)σ

.
∫
Q(1)\Ωk+m

UQ(a1Ek(Q)w)(x)f(x)σ

≤

(∫
Q(1)\Ωk+m

UQ(a1Qw)(x)p
′
σ

) 1
p′
(∫

Q(1)\Ωk+m
f(x)pσ

) 1
p

. L
1
p′
∗ w(Q)

1
p′

(∫
Q(1)\Ωk+m

f(x)pσ

) 1
p
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so that for fixed Q and k,

w(Ek(Q))2kp . η−pw(Ek(Q))

(∫
Q(1)\Ωk+m

UQ(a1Ek(Q)w)(x)f(x)σ

)p

. η−pw(Ek(Q))L
p
p′
∗ w(Q)

∫
Q(1)\Ωk+m

f(x)pσ

= η−pL
p
p′
∗
w(Ek(Q))

w(Q)

∫
Q(1)\Ωk+m

f(x)pσ

≤ η−pL
p
p′
∗

∫
Q(1)\Ωk+m

f(x)pσ.

Summing, we have from (4.2.55)

η−pL
p
p′
∗
∑
k∈Z

∑
Q∈Q2

k

∫
Q(1)\Ωk+m

f(x)pσ . η−pL
p
p′
∗

∫
Rn
f(x)pσ;

recalling

I2 =
∑
k∈Z

∑
Q∈Q2

k

w(Ek(Q))2kp

. η−p
∑
k∈Z

∑
Q∈Q2

k

∫
Q(1)\Ωk+m

f(x)pσ,

implies the result.

4.4.3 Estimating I3

Assume N is some fixed positive integer and 0 ≤ n < m; we split the remaining cubes

into collections modulo m and intend to show∑
k>−N

k≡n mod m

∑
Q∈Q3

k

w(Ek(Q))2kp .
∫
Rn
f(x)pσ

with implied constants independent of n and N . The monotone convergence theorem

combined with summing over n will yield∑
Q∈Q3

k

w(Ek(Q))2kp .
∫
Rn
f(x)pσ

To this end, we use a stopping time argument. Namely, set P(N, n, 1) to be the

collection of maximal cubes within PN,n = ∪j≡n mod m
j≥−N

∪Q∈Q3
j
Q. For j > 1 define

P(N, n, j) to be the collection of all cubes I in PN,n which satisfy the following:
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(i.) there is I ′ ∈ P(N, n, j − 1) such that I ( I ′

(ii.) 〈f〉σI > 2〈f〉σI′

(iii.) I is maximal with respect to properties (i.) and (ii.)

Denote by P(N, n) = ∪∞j=1P(N, n, j).

We define for Q ∈ Q3
k

N (k,m,N, n,Q) =
{
I ∈ Qk+m, k ≡ n mod m : I ∩Q(1) 6= ∅

}
N (k,m,N, n) = ∪ Q∈Qk

k≡n mod m
N (k,m,N, n,Q)

and note that Q(1) ∩ Ωk+m = ∪I∈N (k,m,N,n,Q)I. Further, for each I ∈ N (k,m,N, n)

there is Ik,m,N,n ∈ Qk such that I ⊂ Ik,m,N,n. Since k ≡ n mod m we have I ∈ P or

Γ(I) = Γ(Ik,m,N,n); as a consequence, we may split the sum∫
Q(1)∩Ωk+m

UQ(a1Ek(Q)w)(x)f(x)σ =
∑

I∈N (k,m,N,n,Q)

∫
I

UQ(a1Ek(Q)w)(x)f(x)σ

into two pieces:

A1(k,m,N, n,Q) =
∑

I∈N (k,m,N,n,Q)
I∈P(N,n)

∫
I

UQ(a1Ek(Q)w)(x)f(x)σ

A2(k,m,N, n,Q) =
∑

I∈N (k,m,N,n,Q)
Γ(I)=Γ(Ik,m,N,n)

∫
I

UQ(a1Ek(Q)w)(x)f(x)σ.

For the remainder of the proof, we will assume k ≡ n mod m and suppress the nota-

tional dependence on N and n (e.g. we will write A1(k,m,Q) for A1(k,m,N, n,Q)).

Continuing, from the defining properties of Q3
k,

2kw(Q) . η−1

∫
Q(1)∩Ωk+m

UQ(a1Ek(Q)w)(x)f(x)σ

. η−1A1(k,m,Q) + η−1A2(k,m,Q)

so that

2kpw(Ek(Q)) .
w(Ek(Q))

ηpw(Q)p
A1(k,m,Q)p +

w(Ek(Q))

ηpw(Q)p
A2(k,m,Q)p.
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Recalling

I3 =
∑
k∈Z

∑
Q∈Q3

k

w(Ek(Q))2kp

we see it is enough to estimate I3,j =
∑

Q∈Q3
k
I3,j(Q) for j ∈ {1, 2} and

I3,1(Q) =
w(Ek(Q))

w(Q)p
A1(k,m,Q)p

I3,2(Q) =
w(Ek(Q))

w(Q)p
A2(k,m,Q)p

with Q ∈ Q3
k.

4.4.3.1 Estimating I3,1

For a fixed cube Q and I ∈ N (k,m,Q) we may write∫
I

UQ(a1Ek(Q)w)(x)f(x)σ =

∫
I

UQ(a1Ek(Q)w)(x)〈f〉σIσ

since the expression UQ(a1Ek(Q)w)(x) is constant for x ∈ I. Continuing, for G ∈ P ,∑
I∈N (k,m,Q)
Γ(I)=Γ(Ik,m)

∫
I

UQ(a1Ek(Q)w)(x)f(x)σ =
∑

I∈N (k,m,Q)
Γ(I)=Γ(Ik,m)

∫
I

UQ(a1Ek(Q)w)(x)f(x)σ

=
∑

I∈N (k,m,Q)
Γ(I)=Γ(Ik,m)

∫
I

UQ(a1Ek(Q)w)(x)〈f〉σIσ

. 〈f〉σG
∑

I∈N (k,m,Q)
Γ(I)=Γ(Ik,m)

∫
I

UQ(a1Ek(Q)w)(x)σ.

So for fixed G ∈ P , using duality and Hölder’s inequality we have

w(Ek(Q))

w(Q)p
A1(k,m,Q)p .

w(Ek(Q))

w(Q)p
(〈f〉σG)p

 ∑
I∈N (k,m,Q)

Γ(I)=Γ(Ik,m)=G

∫
I

UQ(a1Ek(Q)w)(x)σ


p

≤ w(Ek(Q))

w(Q)p
(〈f〉σG)p

 ∑
I∈N (k,m,Q)

Γ(I)=Γ(Ik,m)=G

∫
G

TQ,r(1Gσ)(x)w


p

≤ (〈(f)〉σG)pw(Ek(Q))Mw(TQ,r(1Gσ))(x)p.
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By the universal maximal estimate and the modified testing condition Lemma 4.3.61,

∑
k∈Z

∑
Q∈Q3

k

w(Ek(Q))Mw(TQ,r(1Gσ))(x)p .
∫
Rn
Mw(TQ,r(1Gσ))(x)pw

.
∫
Rn
TQ,r(1Gσ)(x)pw

. Lσ(G).

Hence,

∑
k∈Z

∑
Q∈Q3

k

w(Ek(Q))

w(Q)p

 ∑
I∈N (k,m,Q)
Γ(I)=Γ(Ik,m)

∫
I

UQ(a1Ek(Q)w)(x)f(x)σ


p

. L
∑
G∈P

(〈f〉σG)pσ(G)

. L
∫
Rn
f(x)pσ

where in the last line we have used the Carleson embedding theorem.

4.4.3.2 Estimating I3,2

We begin by noticing for fixed Q,

w(Ek(Q))

w(Q)p
A2(k,m,Q)p =

w(Ek(Q))

w(Q)p

( ∑
I∈N (k,m,Q)

I∈P

σ(I)
1
p

σ(I)
1
p

∫
I

UQ(a1Ek(Q)w)(x)f(x)σ

)p

≤ I4,1(k,m,Q)I4,2(k,m,Q)

where we define

I4,1(k,m,Q) =
w(Ek(Q))

w(Q)p

( ∑
I∈N (k,m,Q)

I∈P

σ(I)
−p′
p

(∫
I

UQ(a1Ek(Q)w)(x)σ

)p′) p
p′

I4,2(k,m,Q) =
∑

I∈N (k,m,Q)
I∈P

σ(I)(〈f〉σG)p.

Notice for each Q by Hölder’s inequality,

σ(I)
−p′
p

(∫
I

UQ(a1Ek(Q)w)(x)σ

)p′
≤ σ(I)

−p′
p

+ p′
p

∫
I

UQ(a1Ek(Q)w)(x)p
′
σ,
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so that

∑
I∈N (k,m,Q)

I∈P

σ(I)
−p′
p

(∫
I

UQ(a1Ek(Q)w)(x)σ

)p′
≤

∑
I∈N (k,m,Q)

I∈P

∫
I

UQ(a1Ek(Q)w)(x)p
′
σ

.
∫
Rn

UQ(a1Ek(Q)w)(x)p
′
σ

. L∗w(Q);

since w(Ek(Q))
w(Q)p

≤ w(Q)1−p we obtain I4,1(k,m,Q) . L
p
p′
∗ w(Q)

p
p′−p+1

= Lp∗; as a result

we need only consider the sum

∑
k∈Z

∑
Q∈Q3

k

∑
I∈N (k,m,Q)

I∈P

σ(R)(〈f〉σR)p.

To finish the proof, we need a uniform bound on the number of times a cube R may

appear in the above sum. Consider the following lemma, whose proof we momentarily

postpone.

Lemma 4.4.70. Fix a cube R which satisfies R ∈ Qj for some integer j, and for

1 ≤ l ≤ D(R) suppose

(i.) there is an integer kl and Ql ∈ Q3
kl

with R ∈ Rkl(Q),

(ii.) the pairs (Ql, kl) are distinct.

We then have that D(R) . 1, with the implied constant depending upon the dimension,

and η, the small constant previously mentioned.

Using Lemma 4.4.70 and the Carleson embedding theorem, we may estimate

∑
k∈Z

∑
Q∈Q3

k

∑
R∈N(k,m,Q)

R∈P

σ(R)(〈f〉σR)p .
∫
Rn
f(x)pσ

to complete the proof modulo Lemma 4.4.70.
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4.4.3.3 Proof of Lemma 4.4.70

Fix R ∈ D such that there exists k1, · · · , kD(R) ∈ Z and cubes Q1, · · · , QD(R) so that

R ∈ Rkj(Qj) for all 1 ≤ j ≤ D(R) and the pairs (Qj, kj) are distinct. We argue by

contradiction that D(R) . 1. The dyadic structure of D immediately implies that

by possibly reordering we must have the following

Q1 ⊆ Q2 ⊆ · · · ⊆ QD(R). (4.4.71)

Then, we have R ⊂ Q
(1)
j for each j by (4.2.53). At this point we consider two cases;

namely

(a.) Q1 ( Q2 ( · · · ( QD(R)

(b.) Q1 = · · · = QD(R) .

First we want to inspect case (a.). We may assume that k1 > · · · > kD(R) by (4.2.53)

(Whitney condition); also it is clear that case (a.) implies

R ⊂ Q
(1)
1 ⊂ · · · ⊂ Q

(1)
D(R).

Hence, by the above and the definition of Rk1 and RkD(R)
, R ∈ Qk1+3 and R ∈

QkD(R)+3. We conclude R ∈ Ql for kD(R) + 3 ≤ l ≤ k1 + 3. Since we are assuming

that D(R) . 1 fails, without loss of generality we may take D(R) = 7. Then we have

R,Q7 ∈ Qk7 :

R ⊂ Q
(1)
1 ( · · · ( Q

(1)
7 =⇒

R(2) ⊂ Q
(1)
7

and this contradicts (4.2.53). Hence, there is a uniform bound on the number of strict

inequalities in (4.4.71), and so we only need to consider (b.).

If (b.) holds then by definition we have w(Ekj(Q1)) > ηw(Q1) for all 1 ≤ j ≤

54



D(R). We can without loss of generality assume the ki are distinct. Then the Ekj(Q1)

are also distinct and

w(Q1) =
∑
j∈Z

w(Ej(Q1)) ≥
D(R)∑
j=1

w(Ekj(Q1)) >

D(R)∑
j=1

w(Q1)η

so that it must be D(R) ≤ η−1 and we are done.
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CHAPTER V

JOINT ESTIMATES FOR THE HILBERT TRANSFORM

AND MAXIMAL FUNCTION

5.1 Introduction

In this chapter, our particular focus is on the relationship between the Hilbert trans-

form H and the Hardy-Littlewood maximal operator M in the two weight setting.

Links between the two operators in this context have been considered previously. The

authors of [31] establish

Theorem 1.2.13. Suppose σ and w are two positive Borel measures such that M(·σ) :

L2(σ)→ L2(w) and M(·w) : L2(w)→ L2(σ) both hold. Then H(·σ) is bounded from

L2(σ) to L2(w) if and only if the following hold:

(i.) ‖H(1Iσ)‖L2(w) . σ(I)
1
2

(ii.) ‖H(1Iw)‖L2(σ) . w(I)
1
2

(iii.) supz∈C Pσ(z)Pw(z) . 1,

where Pw and Pσ are the Poisson extensions of w and σ,

and suggest the boundedness of M(·σ) and M(·w) in Theorem 1.2.13 may be un-

necessary. An old conjecture of Muckenhoupt and Wheeden stated in [5] implies the

continuity of H(·σ) is equivalent to that of M(·σ) and M(·w):

Conjecture 1.2.14 (Lp Muckenhoupt-Wheeden). Let M be the Hardy-Littlewood

maximal operator, T be a Calderón-Zygmund operator and let w and v be weights on
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Rd. Then

M : Lp(v) 7→ Lp(w) (5.1.72)

M : Lp
′
(w1−p′) 7→ Lp

′
(v1−p′) (5.1.73)

if and only if

T : Lp(v) 7→ Lp(w). (5.1.74)

We will show that within the context of Theorem 1.2.13, boundedness of the Hilbert

transform does not imply that of the maximal function; further, we will construct

weights w and v which violate Conjecture 1.2.14. As a consequence, we conclude

there is no a priori association between the operators in the two weight setting. The

main results of this chapter may be formulated as follows:

Theorem 5.1.75. Let 1 < p <∞ and let p′ be the dual exponent, 1
p

+ 1
p′

= 1. There

exist nontrivial weights w and v =
(
Mw
w

)p
w for which the Hardy-Littlewood maximal

operator satisfies

M : Lp(
(
Mw
w

)p
w) 7→ Lp(w) (5.1.76)

M : Lp
′
(w1−p′) 7→ Lp

′
(

w
(Mw)p′

)
(5.1.77)

but the Hilbert transform H is unbounded from Lp(
(
Mw
w

)p
w) to Lp(w).

Theorem 5.1.78. There exist measures γ and λ such that

M(·γ) : L2(γ) 6→ L2(λ) (5.1.79)

H(·γ) : L2(γ)→ L2(λ). (5.1.80)

The examples we present here rely heavily on the Cantor-like constructions found

in [21,35–37]. The authors of [35] and [36] were interested in showing certain endpoint

estimates for Calderón-Zygmund operators failed and to this end built weights σ and
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w for which H(·σ) failed to map L2(σ) into L2,∞(w). We modify their weights slightly

for the purposes of obtaining strong-type Lp estimates and verify Theorem 5.1.75

holds. The weights considered for Theorem 5.1.78 were constructed in [21] to show

a particular testing condition was not necessary for the two weight inequality of the

Hilbert transform. To obtain the conclusion of Theorem 5.1.78 we verify the maximal

function is unbounded for this pair of measures.

There are two important remarks about our results which should be made. The

weights described above are allowed to take the value 0 on sets of non-zero Lebesgue

measure. This feature is important for the weights’ construction and is useful for the

proofs of Theorem 5.1.75 and Theorem 5.1.78. Additionally, we consider the operators

M and H as maps from one weighted Lp space to another Lq space with p = q; the

assumption p = q is necessary (see [6] for a proof conjecture 1.2.14 holds for p < q).

The remainder of the chapter is structured as follows. In the next section we review

some basic theorems which will be useful for us. The third and fourth sections focus

on the proofs of Theorem 5.1.75 and Theorem 5.1.78.

5.2 Preliminaries

Here we introduce some key definitions and theorems which we refer to throughout

the remainder of the chapter. First we introduce the concept of a triadic interval:

Definition 19. We refer to an interval of the type [3jk, 3j(k + 1)) with j, k ∈ Z as

a triadic interval and use T to denote the corresponding triadic grid consisting of

all triadic intervals. For a given triadic interval I let Im be the triadic child which

contains the midpoint (center) c(I) of I.

The following is a convenient dualized formulation of a two weight inequality due to

Eric Sawyer (see [38] and [39]):

Theorem 5.2.81. Let w and v be weights and T a sublinear operator with 1 < p <∞.

If σ = 1suppww
1−p′ then the following are equivalent:
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(i.) ‖Tf‖Lp(v)‖. ‖f‖Lp(w)

(ii.) ‖T (fσ)‖Lp(v)‖. ‖f‖Lp(σ).

Finally, we also recall E. Sawyer’s characterization of the two weight inequality for

the maximal function:

Theorem 5.2.82. Let w and v be weights with 1 < p < ∞ and define σ = v1−p′.

Then M is bounded from Lp(v) to Lp(w) if and only if∫
Q

|M(σ1Q)(x)|p v . σ(Q) for all Q cubes. (5.2.83)

5.3 Proof of Theorem 5.1.75

5.3.1 Weight Construction

Here we will construct a sequence {wk}∞k=1 of weights which will be used to define the

weight w in Theorem 5.1.75. Fix k and let w0
k be the uniform measure on [0, 1]; define

J1
k = {[1/3, 2/3]} to be the middle triadic child of [0, 1] and K1

k to be all triadic descen-

dants of [1/3, 2/3] having length 3−k. Inductively, we set Jlk =
{
Km : K ∈ Kl−1

k

}
and

take Kl
k to be the collection of all triadic intervals which are contained in ∪J∈JlkJ and

have length |K|/3lk; define Jk =
{
J : J ∈ Jlk some l

}
, Kk =

{
K : K ∈ Kl

k some l
}

and Sk = ∪K∈Kk
J=Km

I(J)m. With each interval J we associate a sign ε(J) ∈ {−1, 1}

whose choice we will describe momentarily and an interval I(J); I(J) will be the

triadic interval of length |J |/3k which has as its right endpoint the left endpoint of

J if ε(J) = 1 and I(J) will be the triadic interval of length |J |/3k which has as

its left endpoint the right endpoint of J . For each l we take wlk to be the measure

which is equal to wl−1
k outside the intervals in Kl and which is measure preserving on

Km ∪ I(Km). Finally, for a given interval J = Km for some K, we choose ε(J) so

that the following is satisfied for each x ∈ I(J)

sgn

∫
J

wlk(y)dy

y − x
= sgn

∫
(∪

Kl
k
K′)c

wl−1
k (y)dy

y − x
+

∑
K′∈Kl

k\K

∫
K′

wl−1
k (y)dy

c(K ′)− c(J)
.
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Define wk to be the weak limit of the sequence {wik}
∞
i=0 and w(x) =

∑∞
k=0wk(x− 3k).

Given the sequence of weights {wk}∞k=1 the following lemma holds

Lemma 5.3.84. [36, 37] For K ∈ Kk and J = Im with k > 3000,

|H(wk)(x)| & k

3
wk(x) x ∈ I(J)m

Mwk(x) . wk(x) x ∈ I(J).

5.3.1.1 Unboundedness of H

Let ε satisfy 1/p′ < ε < 1 and set

f(x) =
∞∑
k=1

1

kε
1[3k,3k+1)(x)

σ(x) =
w(x)

Mw(x)p′
1supp w(x).

Then ∫
R
f(x)p

′
w =

∫
R

∞∑
k=1

1

kp′ε
1[3k,3k+1)(x)w

=
∞∑
k=1

1

kp′ε

and f ∈ Lp′(w). Additionally, we have∫
R
|H(f)(x)|p′σ =

∞∑
k=1

∫ 3k+1

3k

∣∣∣∣∣
∞∑
n=1

n−εH(wn(· − 3n))(x)

∣∣∣∣∣
p′

wk(x− 3k)

Mw(x)p′

&
∞∑
k=1

∫ 3k+1

3k

∣∣∣∣∣
∞∑
n=1

n−εH(wn(· − 3n))(x)

∣∣∣∣∣
p′

wk(x− 3k)

M(wk(· − 3k))(x)p′

(5.3.85)

and for fixed x,

∞∑
n=1

n−εH(wn(· − 3n))(x) =

∣∣∣∣∣H(wk(· − 3k))(x)k−ε +
∞∑
n6=k

n−εH(wn(· − 3n))(x)

∣∣∣∣∣
p′

≥

∣∣∣∣∣∣∣H(wk(· − 3k))(x)k−ε
∣∣− ∣∣∣∣∣

∞∑
n6=k

n−εH(wn(· − 3n))(x)

∣∣∣∣∣
∣∣∣∣∣
p′

.
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We claim for x ∈ supp wk(· − 3k)∣∣∣∣∣
∞∑
n6=k

n−εH(wn(· − 3n))(x)

∣∣∣∣∣ ≤ H1(x) +H2(x)

≤ 4

where

H1(x) =

∣∣∣∣∣
k−1∑
n=1

n−εH(wn(· − 3n))(x)

∣∣∣∣∣
H2(x) =

∣∣∣∣∣
∞∑

n=k+1

n−εH(wn(· − 3n))(x)

∣∣∣∣∣ .
Consider, if x ∈ [3k, 3k + 1), then for n 6= k

H(wn(· − 3n))(x) =

∫ 3n+1

3n

wn(y − 3n)dy

x− y

=

∫ 1

0

wn(y)dy

x− y − 3n

=

∫ 1

0

wn(y)dy

x′ − y + 3k − 3n
(5.3.86)

for some x′ ∈ [0, 1). Provided n < k (5.3.86) is nonnegative and |x′−y| ≤ 2−1(3k−3n)

so for y ∈ [0, 1) ∫ 1

0

wn(y)dy

x′ − y + 3k − 3n
≤
∫ 1

0

2wn(y)dy

3k − 3n

≤ 2

3k − 3n

=
2

3n(3k−n − 1)

≤ 2

3k−n − 1
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and ∣∣∣∣∣
k−1∑
n=1

n−εH(wn(· − 3n))(x)

∣∣∣∣∣ ≤
k−1∑
n=1

2n−ε

3k−n − 1

≤
k−1∑
n=1

2n−ε

3k−n − 1

≤
k−1∑
n=1

4n−ε

3k−n

≤ 4
∞∑
n=1

3−n

= 2;

similarly, for n > k we obtain∣∣∣∣∣
∞∑

n=k+1

H(wn(· − 3n))(x)

∣∣∣∣∣ ≤ 2

to give the claim. By Lemma 5.3.84, for x ∈ Sk, we have∣∣∣∣∣
∞∑
n=1

n−εH(wn(· − 3n))(x)

∣∣∣∣∣
p′

wk(x− 3k)

Mk(x)p′
& |H(wk(· − 3k))(x)|p′wk(x− 3k)

Mk(x)p′

where we use the abbreviation Mk(x) = Mwk(· − 3k))(x). Consequently,

(5.3.85) &
∞∑
k=1

∫
Sk

|H(wk(· − 3k))(x)|p′ wk(x− 3k)

M(wk(· − 3k))(x)p′

&
∞∑
k=1

kp
′−εp′

=∞.

Hence, H(·w) is unbounded as an operator from Lp
′
(w) to Lp

′
(σ). As a result of

duality, H is also an unbounded operator from Lp(v) to Lp(w).

5.3.1.2 The Boundedness of M

By the preceding argument for the Hilbert transform, to obtain Theorem 5.1.75 it

will suffice to prove the following proposition:
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Proposition 5.3.87. For 1 < p <∞ and ω a weight, we have

M :Lp (v) 7→ Lp(w) (5.3.88)

M :Lp
′
(w1−p′) 7→ Lp

′
(ν), (5.3.89)

with v =
(
Mω
ω

)p
w and ν = v1−p′.

Prior to proving Proposition 5.3.87, we recall a well-known lemma. Let D 1
3 denote

the shifted dyadic grid of Michael Christ, i.e.

D
1
3 =

{
2j
(
[n, n+ 1) + (−1)j3−1

)
: n, j ∈ Z

}
and for f ∈ L1

loc(R) define

Mdf(x) = sup
I∈D

1I
|I|

∫
I

|f(y)|dy.

Equivalently we can define Md, 1
3f , where the supremum is taken over intervals in D 1

3 .

Then we have from [3],

Lemma 5.3.90. For any finite interval I, there exists an interval Id ⊂ D ∪D
1
3 such

that I ⊂ Id and |I| ≈ |Id|. As a consequence, for a function f ∈ L1
loc(R), the following

inequality holds:

Mf(x) .Mdf(x) +Md, 1
3f(x). (5.3.91)

With Lemma 5.3.90 in hand, we now proceed to the proof of Proposition 5.3.87.

Proof of Proposition 5.3.87. The proof of (5.3.88) follows from an extrapolation ar-

gument of D. Cruz-Uribe and C. Pérez [7], so we only need to consider (5.3.89).

Instead of proving (5.3.89) directly, by (5.2.81), we may verify the following equiva-

lent expression

M(·ω) : Lp
′
(ω)→ Lp

′
(ν), (5.3.92)
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holds. Consideration of Lemma 5.3.90 implies it is sufficient to demonstrate (5.3.92)

for an arbitrary dyadic linearization of the maximal function, i.e. we need to show

L(·ω) : Lp
′
(ω) 7→ Lp

′
(ν) (5.3.93)

with L a linearization of the maximal function. To this end, let

L(fω)(x) =
∑
I∈G

〈fω〉I1E(I)(x) (5.3.94)

where G = D or D 1
3 and each E(I) satisfies E(I) ⊂ I and E(I)∩E(Ĩ) = ∅ if I 6= Ĩ.

Before doing any computations, we invoke Theorem 5.2.82 which reduces proving

(5.3.93) to showing

‖1QL(1Qω)‖Lp′ (ν) . w(Q)
1
p′

for Q a dyadic subinterval of R. Now we fix an interval Q and notice that since

E(I) ∩ E(Q) = ∅ for I 6= Q,

‖L(1Qω)‖p
′

Lp′ (ν)
=

∫
Q

L(1Qω)p
′
(x)ν(x)

=

∫
Q

(∑
I∈G

〈1Qω〉I1E(I)(x)

)p′

ν(x)

=
∑
I∈G

〈1Qω〉p
′

I ν(E(I) ∩Q)

=
∑
I∈G

(
ω(I ∩Q)

|I|

)p′
ν(E(I) ∩Q)

=
∑
I∈G
I⊂Q

(
ω(I ∩Q)

|I|

)p′
ν(E(I) ∩Q) +

∑
I∈G
Q⊂I

(
ω(I ∩Q)

|I|

)p′
ν(E(I) ∩Q).

As ν = v1−p′ =
(

1
Mω(x)

)p′
ω(x),

ν(E(I) ∩Q) ≤ ω(E(I) ∩Q) ·min

{(
|I|
ω(I)

)p′
,

(
|Q|
ω(Q)

)p′}
.
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Consequently,

∑
I∈G
I⊂Q

(
ω(I ∩Q)

|I|

)p′
ν(E(I) ∩Q) ≤

∑
I∈G
I⊂Q

(
ω(I)

|I|

)p′ ( |I|
ω(I)

)p′
ω(E(I) ∩Q)

=
∑
I∈G
I⊂Q

ω(E(I) ∩Q)

≤ w(Q),

and

∑
I∈G
Q⊂I

(
ω(I ∩Q)

|I|

)p′
ν(E(I) ∩Q) ≤

∑
I∈G
Q⊂I

(
ω(Q)

|I|

)p′ ( |Q|
ω(Q)

)p′
ω(E(I) ∩Q)

≤ ω(Q)|Q|p′
∑
I∈G
Q⊂I

1

|I|p′

≤ 2ω(Q),

Thus, ∫
Q

L(1Qω)p
′
(x)ν(x) ≤ 3w(Q)

which implies the desired result and completes the proof of Proposition 5.3.87.

5.4 Proof of Theorem 5.1.78

5.4.1 Weight Construction

In this subsection, we emphasize the disparity between the Hilbert transform and the

maximal function by presenting a pair of measures λ and γ for which the Hilbert

transform acts continuously while the maximal function is unbounded. The measures

which we will use are due to Lacey, Sawyer, and Uriarte-Tuero (see [21]) and we

begin by briefly describing their construction. In the interest of clarity we introduce

γ and some attendant notation by describing the Cantor set’s construction. We let

I0
1 = [0, 1] and for 1 ≤ r we let {Irl }

2r

l=1 denote the 2r closed intervals (ordered left to

right) which remain during the rth stage of the Cantor set’s construction; in particular,

we have I1
1 = [0, 1

3
] and I1

2 = [2
3
, 1], I2

1 = [0, 1
9
], I2

2 = [2
9
, 1

3
], I2

3 = [2
3
, 7

9
], I2

4 = [8
9
, 1] etc.
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For each Irl , the corresponding open middle third interval which is removed during the

r + 1 stage of construction will be denoted by Gr
l = (arl , b

r
l ); so, we have G0

1 = (1
3
, 2

3
),

G1
1 = (1

9
, 2

9
), G1

2 = (7
9
, 8

9
) etc. Further, we denote the Cantor set by E = ∩∞r=1 ∪2r

j=1 I
r
j .

The measure γ is the Cantor measure, the unique probability measure on [0, 1] which

satisfies γ(Irl ) = 2−r for all r ≥ 0 and 1 ≤ l ≤ 2r.

At this point, we would like to describe the measure λ. However, prior to doing

so, we introduce a lemma which lists important properties of H(γ) discussed in [21]:

Lemma 5.4.95. For any l, r ∈ N, we have the following:

(i.) H(γ)(x) is decreasing monotonically on Gr
l .

(ii.) H(γ)(x) approaches infinity as x approaches arl .

(iii.) H(γ)(x) approaches negative infinity as x approaches brl .

By Lemma 5.4.95, for each r ∈ N and 1 ≤ l ≤ 2r, there is a point ζrl ∈ Gr
l which

satisfies H(γ)(ζrl ) = 0. We define

λ(x) =
∞∑
r=0

2r∑
l=1

δζrl (x)prl

where prl =
(

2
9

)r
for r ∈ N and 1 ≤ l ≤ 2r. With λ and γ defined, we may now

proceed to the proof of Theorem 5.1.78.

5.4.2 Verifying M is Unbounded

The verification of (5.1.80) is shown in [21] so to finish the proof of Theorem 5.1.78 we

need only consider (5.1.79). We will show for r ∈ N and l = 1 that

∫
Irl

M(1Irl γ)(x)2dλ

is unbounded. Fix r ∈ N and define a collection of sets {Gt}t∈N in the following way:
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G0 = Gr
1 and Gt =

24t⋃
s=1

Gr+4t
s for 1 ≤ t. Then we have

∫
Ir1

M(1Ir1γ)(x)2dλ(x) &
∞∑
i=0

∫
Gi
M(1Ir1γ)(x)2dλ(x)

=
∞∑
i=0

24i∑
s=1

∫
Gr+4i
s

M(1Ir1γ)(x)2dλ(x). (5.4.96)

But, by inspection

M(1Ir1γ)(ζr+4t
s ) ≥

(
3

2

)r+4t

for t ∈ N and 1 ≤ s ≤ 24t. Now, continuing from the above, we obtain

(5.4.96) ≥
∞∑
i=0

24i∑
s=0

∫
Gr+4i
s

(
3

2

)2r+8i

dλ(x)

≥
∞∑
i=0

24i∑
s=1

pr+4i
s

(
3

2

)2r+8i

=
∞∑
i=0

24i∑
s=1

(
2

9

)r+4i(
3

2

)2r+8i

=
∞∑
i=1

2−r

=∞.

Immediately, we have

∫
Ir1

M(1Ir1γ)(x)2dλ(x) is unbounded, which completes the proof.
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