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Department of Mathematics
Georgia Institute of Technology

Professor Yuri Bakhtin
Department of Mathematics
Georgia Institute of Technology

Professor Vladimir Koltchinskii
Department of Mathematics
Georgia Institute of Technology

Professor Mikhail Lifshitz
Mathematical Mechanics Faculty
St. Petersburg State University

Professor Ionel Popescu
Department of Mathematics
Georgia Institute of Technology

Professor Heinrich Matzinger
Department of Mathematics
Georgia Institute of Technology

Professor Robert Foley
Department of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: November 12, 2008



To my loving wife Sunchin,

Without whose support

This thesis would have been,

Almost surely,

Nonexistent.

iii



ACKNOWLEDGEMENTS

“Good definitions make for easy theorems” is by now a piece of mathematical folklore,

one which has the additional property of actually being true. A corollary might well be

that good problems make for, if not easy, then at least interesting thesis research. And

so I would like to first of all thank my advisor, Dr. Christian Houdré, for introducing
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SUMMARY

The limiting law of the length of the longest increasing subsequence, LIn, for

sequences (words) of length n arising from iid letters drawn from finite, ordered

alphabets is studied using a straightforward Brownian functional approach. Building

on the insights gained in both the uniform and non-uniform iid cases, this approach

is then applied to iid countable alphabets. Some partial results associated with the

extension to independent, growing alphabets are also given. Returning again to the

finite setting, and keeping with the same Brownian formalism, a generalization is

then made to words arising from irreducible, aperiodic, time-homogeneous Markov

chains on a finite, ordered alphabet. At the same time, the probabilistic object, LIn,

is simultaneously generalized to the shape of the associated Young tableau given by

the well-known RSK-correspondence. Our results on this limiting shape describe, in

detail, precisely when the limiting shape of the Young tableau is (up to scaling) that

of the iid case, thereby answering a conjecture of Kuperberg. These results are based

heavily on an analysis of the covariance structure of an m-dimensional Brownian

motion and the precise form of the Brownian functionals. Finally, in both the iid and

more general Markovian cases, connections to the limiting laws of the spectrum of

certain random matrices associated with the Gaussian Unitary Ensemble (GUE) are

explored.

viii



CHAPTER I

INTRODUCTION

A substantial portion of probability theory is concerned with the properties of se-

quences of random objects. Indeed, for sequences of real-valued random variables,

the most fundamental questions include Laws of Large Numbers, Central Limit Theo-

rems, Large Deviation Principles, and Invariance Principles (Functional Central Limit

Theorems), all of which describe certain asymptotic properties of the sequence.

In this thesis we will be concerned with certain asymptotic properties of longest in-

creasing subsequences, which we define as follows. Let (Xk)1≤k≤n be a sequence taken

from an ordered alphabet A (usually finite, but possibly even uncountable). A strictly

increasing subsequence of (Xk)1≤k≤n is a subsequence (Xkj
) such that Xkj

< Xkj+1
,

for each j. Similarly, a weakly increasing subsequence of (Xn)1≤k≤n is a subsequence

(Xkj
) such that Xkj

≤ Xkj+1
, for each j. We will be primarily concerned with the

latter type of increasing subsequence, and will refer to it as simply an increasing

subsequence. A longest increasing subsequence of (Xk)1≤k≤n, is then defined to be an

increasing subsequence of maximal length, a length which we designate by LIn.

Motivating our investigation of LIn in various probabilistic contexts is the clas-

sical problem of describing the length of the longest (necessarily strictly) increasing

subsequence of a random permutation of the first n positive integers. The study of the

asymptotic behavior of this quantity, Lσn, has enjoyed a rich history as “Ulam’s Prob-

lem”. The determination of its first-order asymptotics was accomplished by the work

of Logan and Shepp [34], and Vershik and Kerov [45], who showed that Lσn/
√

n → 2

a.s. and in L1. Newer methods making use of interacting particle processes and

“hydrodynamical arguments” have brought new insights. In particular, Aldous and
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Diaconis [1] and Seppäläinen [41] use such methods to show that Lσn/
√

n → 2 in

expectation and in probability. Groeneboom [24] proves such convergence results us-

ing only the convergence of random signed measures, while Cator and Groeneboom

[11] prove that ELσn/
√

n → 2 in a way that avoids both ergodic decomposition ar-

guments and the subadditive ergodic theorem. Making further connections to other

fields, Aldous and Diaconis [2] also connect these particle process concepts to the card

game solitaire, while Seppäläinen [42] employs these particle processes to a verify an

open asymptotics problem in Queuing Theory.

The far more challenging problem of finding the limiting behavior of Lσn, once

suitably centered and normalized, was solved by Baik, Deift, and Johansson, in their

landmark paper [5]. In particular, they showed that (Lσn − 2
√

n)/n1/6 converges in

distribution to a non-trivial limiting distribution known as the Tracy-Widom distri-

bution. Even more remarkable than the unusual scaling factor in this result is the

fact that the Tracy-Widom distribution first arose in the study of the asymptotics

of the largest eigenvalues of certain random matrices. Cator and Groeneboom [12]

use particle processes to directly obtain the cube-root asymptotics of the variance of

Lσn. Further non-asymptotic results for Lσn are found in [25].

In this thesis, we will be concerned primarily with the asymptotics of LIn for

weakly increasing subsequences when the alphabet is finite or countably infinite. In

the case that (Xn)n≥1 is a sequence (often called a word in this context) of iid random

variables taken from a finite ordered alphabet of size m, Tracy and Widom [44], as

well as Johannson [31], have shown, in the uniform case, that the limiting distribution

is that of the largest eigenvalue of an m×m matrix of the Gaussian Unitary Ensemble

(GUE), subject to a zero-trace condition. Its, Tracy, and Widom [28, 29] have further

examined this problem in the non-uniform iid case, relating the limiting distribution

to certain direct sums of GUE matrices. (For a general overview of the subject of

random matrices, refer to the standard text of Mehta [35].)
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In this iid setting, we will investigate the limiting distribution of LIn using a

Brownian functional approach, which we will extend to the countably-infinite iid case

as well. In the context of random growth processes, Gravner, Tracy, and Widom [22]

have already obtained a Brownian functional of the form we derive. This functional

appeared first in the work of Glynn and Whitt [20], in Queuing Theory, and its

relation to the eigenvalues of the GUE has also been studied by Baryshnikov [6]. It

is, moreover, remarked in [22] that the longest increasing subsequence problem could

also be studied using a Brownian functional formulation.

To generalize beyond the iid setting, we then consider sequences generated by a

time-homogeneous, irreducible, aperiodic Markov chain on a finite alphabet of size

m. Moreover, we generalize the object of our study, LIn, to that of the shape of

the Young tableau generated by (Xk)1≤k≤n via the Robinson-Schensted-Knuth (RSK)

correspondence. The shape of the Young tableau, which in this context consists of

n left-aligned boxes arranged in at most m rows such that each row is no greater in

length than the row above it, indeed generalizes LIn: the length of the top row is

simply LIn. We confine our attention to irreducible, aperiodic Markov chains so as

to ensure that the stationary distribution is unique.

In the particular case that the Markov chain generates a uniform iid sequence,

Tracy and Widom [44] conjectured that the Young tableau has a limiting shape given

by the joint distribution of the eigenvalues of a traceless m×m element of the GUE.

Johansson [31] proved this conjecture using orthogonal polynomial methods. Further,

Okounkov [38], and Borodin, Okounkov, and Olshankii [8], as well as Johansson [31],

also answered a conjecture of Baik, Deift, and Johansson [4, 3] regarding the limiting

shape of the Young tableau associated with a random permutation of the first n

positive integers. In particular, as n grows without bound, the lengths R1
n, R

2
n, . . . , R

k
n

of the first k rows of the Young tableau, appropriately centered and scaled, have,

asymptotically, the same limiting law as the k largest eigenvalues of an n×n element

3



of the GUE, a result first proved, for k = 2, in [4, 3].

The non-uniform iid case was also addressed to some degree in Its, Tracy, and

Widom [28, 29], who focused primarily on LIn. Here the obvious conjecture is that

the limiting shape has rows whose suitably centered and normalized lengths have a

joint distribution which is that of the whole spectrum of the direct sum of certain

GUE matrices, a result that was shown in the thesis of Xu [46].

However, the primary purpose of the Markovian framework is to move beyond the

iid setting. Inspired by questions in statistical physics, Kuperberg [32] conjectured

that if the sequence is generated by a more specific type of Markov chain, namely, an

irreducible, aperiodic, cyclic one, then the limiting distribution of the shape is still

that of the joint distribution of the eigenvalues of a traceless m × m element of the

GUE. The cyclic criterion, i.e., the Markov transition matrix P has entries satisfying

pi,j = pi+1,j+1, for 1 ≤ i, j ≤ m (where m + 1 = 1), implies, but is not equivalent to,

P being doubly stochastic, i.e., having a uniform stationary distribution.

For m = 2, this was shown to be true by Chistyakov and Götze [13]. For m = 3,

simulations by Kuperberg [32] indicated that it was true as well, and we show that, for

m = 3, his conjecture is indeed true. However, for m ≥ 4, this is no longer the case,

as was also suggested by further simulations by Chistyakov and Götze [13]. Indeed,

some, but not all, cyclic Markov chains lead to the same limiting law as in the iid

uniform case already obtained by Johansson [31]. We obtain a precise description of

the class of cyclic transition matrices generating the iid limiting shape.

Recall again that LIn is the length of longest row of the associated Young tableau,

and that an iid sequence may be viewed as a special case of a Markovian sequence. In

this more specialized setting, we begin, in Section 2.1 of Chapter II, by writing LIn as

a simple algebraic expression. Using this simple characterization, we then investigate

the m-letter iid case. In Section 2.2, we obtain the the limiting distribution of LIn

(properly centered and normalized) when the letters are chosen uniformly. Our result

4



is expressed as a functional of an (m−1)-dimensional Brownian motion with correlated

coordinates. Using certain natural symmetries, this limiting distribution is further

expressed as various functionals of a (standard) Brownian motion. We then extend

this development to the non-uniform iid case. In Section 2.3, connections with the

Brownian functional originating with the work of Glynn and Whitt in Queuing Theory

are investigated. This allows us to investigate the asymptotics of the limiting law of

LIn as the alphabet size m grows.

Next, in Chapter III, we extend our results to the iid case for countably infinite

alphabets by reducing the problem to an effectively finite-alphabet one.

We then discuss, briefly, in Chapter IV, a time-inhomogeneous setting, wherein

the sequence is chosen uniformly from independent, but growing, alphabets. As the

results in this direction are partial, we prove only a first-order result which nonetheless

bridges, in some sense, the linear asymptotics of LIn in the iid finite-alphabet case

and the
√

n asymptotics of Lσn.

Chapter V begins our study of the general Markovian framework for Young

tableaux. In Section 5.1, we first use our combinatorial expression for LIn developed

in Section 2.1, to rederive the two-letter Markov case first studied by Chistyakov and

Götze [13]. Then, in order to extend these results to alphabets of size m ≥ 3, we

introduce, in Section 5.2, a slight modification of our original combinatorial devel-

opment, and so obtain a functional of combinatorial quantities which describes the

shape of the entire Young tableau, along with a concise expression for the associated

asymptotic covariance structure. Next, in Section 5.3, we apply Markovian Invariance

Principles to express the limiting shape of the Young tableau as a Brownian func-

tional for all irreducible, aperiodic, homogeneous Markov chains (without the cyclic

or even the doubly-stochastic constraint.) Using this functional we are then able

to answer Kuperberg’s conjecture. In Section 5.4, we investigate, in further detail,

various symmetries exhibited by the Brownian functional. In particular, we clarify

5



the asymptotic covariance structure in the cyclic case, and obtain, for m arbitrary, a

precise description of the class of cyclic Markov chains having the same limiting law

as in the uniform iid case. In Section 5.5, we further explore connections between

the various Brownian functionals obtained as limiting laws and eigenvalues of random

matrices.

We conclude, in Chapter VI, with a brief discussion of natural extensions and

complements (such as Queuing Theory) to some of the ideas and results presented in

the thesis, and indicate promising directions for further research.
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CHAPTER II

FINITE IID ALPHABETS

2.1 Combinatorics

Let (Xn)n≥1 consist of a sequence of values taken from an m-letter ordered alphabet,

A = {α1 < α2 < · · · < αm}. Let ar
k be the number of occurrences of αr among

X1, X2, . . . , Xk, 1 ≤ k ≤ n. Each increasing subsequence of (Xn)n≥1 consists simply

of runs of identical values, with the values of each successive run forming an increasing

subsequence of αr. Moreover, the number of occurrences of αr among Xk+1, . . . , Xℓ,

where 1 ≤ k < ℓ ≤ n, is simply ar
ℓ − ar

k. The length of the longest increasing

subsequence of (Xn)n≥1 is then given by

LIn = max
0≤k1≤···
≤km−1≤n

[(a1
k1
− a1

0) + (a2
k2
− a2

k1
) + · · ·+ (am

n − am
km−1

)], (2.1.1)

i.e.,

LIn = max
0≤k1≤···
≤km−1≤n

[(a1
k1
− a2

k1
) + (a2

k2
− a3

k2
) + · · · + (am−1

km−1
− am

km−1
) + am

n ], (2.1.2)

where ar
0 = 0. For i = 1, . . . , n and r = 1, . . . , m − 1, let

Zr
i =






1, if Xi = αr,

−1, if Xi = αr+1,

0, otherwise,

(2.1.3)

and let Sr
k =

∑k
i=1 Zr

i , k = 1, . . . , n, and also Sr
0 = 0. Then clearly Sr

k = ar
k − ar+1

k .

Hence,
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LIn = max
0≤k1≤···
≤km−1≤n

{S1
k1

+ S2
k2

+ · · ·+ Sm−1
km−1

+ am
n }. (2.1.4)

Since a1
k, . . . , a

m
k must evidently sum to k, we have

n =

m∑

r=1

ar
n

=

m−1∑

r=1

(
am

n +

m−1∑

j=r

Sj
n

)
+ am

n

=
m−1∑

r=1

rSr
n + mam

n .

Solving for am
n gives us

am
n =

n

m
− 1

m

m−1∑

r=1

rSr
n.

Substituting into (2.1.4), we finally obtain

LIn =
n

m
− 1

m

m−1∑

r=1

rSr
n + max

0≤k1≤···
≤km−1≤n

{S1
k1

+ S2
k2

+ · · ·+ Sm−1
km−1

}. (2.1.5)

The expression (2.1.5) is of a purely combinatorial nature or, in more probabilistic

terms, is of a pathwise nature. We now analyze (2.1.5) in light of the probabilistic

nature of the sequence X1, X2, . . . , Xn.

2.2 Probabilistic Development

Throughout the sequel, Brownian functionals will play a central rôle. By a Brownian

motion we shall mean an a.s. continuous, centered Gaussian process B(t), 0 ≤ t ≤ 1,

with B(0) = 0, having stationary, independent increments. By a standard Brownian

motion we shall mean that Var B(t) = t, 0 ≤ t ≤ 1, i.e., we endow C[0, 1] with the

Wiener measure. A standard m-dimensional Brownian motion will be defined to be a

vector-valued process consisting of m independent standard Brownian motions. More

8



generally, an m-dimensional Brownian motion shall refer to a linear transformation

of a standard m-dimensional Brownian motion. Throughout this thesis, we assume

that our underlying probability space is rich enough so that all the Brownian motions

and sequences we study can be defined on it.

We consider first the case in which (Xn)n≥1 are iid, with each letter drawn uni-

formly from A = {α1, . . . , αm}. Then, for each fixed letter r, the sequence (Zr
n)n≥1

is also formed of iid random variables with P(Zr
1 = 1) = P(Zr

1 = −1) = 1/m, and

P(Zr
1 = 0) = 1 − 2/m.

Thus EZr
1 = 0, and E(Zr

1)
2 = 2/m, and so, Var Sr

n = 2n/m, for r = 1, 2, . . . , m − 1.

Defining B̂r
n(t) = 1√

2n/m
Sr

[nt] +
1√

2n/m
(nt− [nt])Zr

[nt]+1, for 0 ≤ t ≤ 1, and noting that

the local maxima of B̂i
n(t) occur at t = k/n, k = 0, . . . , n, we have from (2.1.5) that

LIn − n/m√
2n/m

= − 1

m

m−1∑

i=1

iB̂i
n(1) + max

0≤t1≤···
≤tm−1≤1

[B̂1
n(t1) + · · ·+ B̂m−1

n (tm−1)]. (2.2.1)

We can now invoke Donsker’s Theorem since the measures Pn generated by (B̂1
n(t),

. . . , B̂m−1
n (t)) satisfy Pn(A) → P∞(A), for all Borel subsets A of the space of continu-

ous functions C([0, 1]m−1) for which P∞(∂A) = 0, where P∞ is the (m−1)-dimensional

Wiener measure. Thus, by Donsker’s Theorem and the Continuous Mapping The-

orem we have that (B̂1
n(t), . . . , B̂m−1

n (t)) ⇒ (B̃1(t), . . . , B̃m−1(t)), where the Brown-

ian motion on the right has a covariance structure which we now describe. First,

Cov(Zr
1 , Z

s
1) = EZr

1Z
s
1 = 0, for |r − s| ≥ 2, and Cov(Zr

1 , Z
r+1
1 ) = EZr

1Z
r+1
1 = −1/m,

for r = 1, 2, . . . , m − 1. Then, as already noted, for each fixed r, Zr
1 , Z

r
2 , . . . Zr

n, . . . are

iid, and for fixed k, Z1
k , Z

2
k , . . . , Z

m−1
k are dependent but identically distributed ran-

dom variables. Moreover, it is equally clear that for any r and s, 1 ≤ r < s ≤ m− 1,

the sequences (Zr
k)k≥1 and (Zs

ℓ )ℓ≥1 are also identical distributions of the Zr
k and that

Zr
k and Zs

ℓ are independent for k 6= ℓ. Thus, Cov(Sr
n, Ss

n) = n Cov(Zr
1 , Z

s
1). This

result, together with our 2n/m normalization factor gives the following covariance

9



matrix for (B̃1(t), . . . , B̃m−1(t)):

t




1 −1/2 ©

−1/2 1 −1/2

. . .
. . .

. . .

−1/2 1 −1/2

© −1/2 1




. (2.2.2)

We remark here that the functional in (2.2.1) is a bounded continuous functional

on C(0, 1)m−1. (This fact will be used throughout this thesis.) Hence, by a final

application of the Continuous Mapping Theorem,

LIn − n/m√
2n/m

⇒ − 1

m

m−1∑

i=1

iB̃i(1) + max
0≤t1≤···
≤tm−1≤1

m−1∑

i=1

B̃i(ti). (2.2.3)

We have thus obtained the limiting distribution of LIn as a Brownian functional.

Tracy and Widom [44] already obtained the limiting distribution of LIn in terms of

the distribution of the largest eigenvalue of the Gaussian Unitary Ensemble (GUE)

of m×m Hermitian matrices having trace zero. Johansson [31] generalized this work

to encompass all m eigenvalues. Gravner, Tracy, and Widom [22] in their study of

random growth processes make a connection between the distribution of the largest

eigenvalue in the m×m GUE and a Brownian functional essentially equivalent, up to

a normal random variable, to the right hand side of (2.2.3). (This will become clear

as we refine our understanding of (2.2.3) in the sequel.) For completeness, we now

state our result.

Proposition 2.2.1 Let (Xn)n≥1 be a sequence of iid random variables drawn uni-

formly from the ordered finite alphabet A = {α1, . . . , αm}. Then

LIn − n/m√
2n/m

⇒ − 1

m

m−1∑

i=1

iB̃i(1) + max
0≤t1≤···
≤tm−1≤1

m−1∑

i=1

B̃i(ti), (2.2.4)

10



where (B̃1(t), . . . , B̃m−1(t)) is an (m− 1)-dimensional Brownian with covariance ma-

trix given by (2.2.2).

For m = 2, (2.2.4) simply becomes

LIn − n/2√
n

⇒ −1

2
B(1) + max

0≤t≤1
B(t), (2.2.5)

where B is standard one-dimensional Brownian motion. A well-known result of Pit-

man [39] implies that, up to a factor of 2, the functional in (2.2.5) is identical in law

to the radial part of a three-dimensional standard Brownian motion at time t = 1.

Specifically, Pitman shows that the process (2 max0≤s≤t B(s) − B(t))t≥0 is identical

in law to
(√

(B1(t))2 + (B2(t))2 + (B3(t))2
)

t≥0
, where (B1(t), B2(t), B3(t))t≥0 is a

standard 3-dimensional Brownian motion.

Let us now show that the functional in (2.2.5) does indeed have the same distri-

bution as that of the largest eigenvalue of a 2 × 2 zero-trace matrix of the form




X Y + iZ

Y − iZ −X


 ,

where X, Y , and Z are centered independent normal random variables, all with

variance 1/4. These random variables have a joint density given by

f3(x, y, z) =

(
2

π

)3/2

e−2x2−2y2−2z2

, (x, y, z) ∈ R
3.

It is straightforward to show that the largest eigenvalue of our matrix is given

by λ1 =
√

X2 + Y 2 + Z2. Thus, up to a scaling factor of 2, λ1 is equal in law to

the radial Brownian motion expression given by Pitman at t = 1. Explicitly, since

4λ2
1 = 4X2+4Y 2+4Z2 consists of the sum of the squares of three iid standard normal

random variables, 4λ2
1 must have a χ2 distribution with 3 degrees of freedom. Since

11



this distribution has a density of h(x) = (1/
√

2π)x1/2e−x/2, we immediately find that

λ1 has density

g(λ1) =
1√
2π

(4λ2
1)

1/2e−(4λ2
1)/2(8λ1)

=
16√
2π

λ2
1e

−2λ2
1 , λ1 > 0.

Let us look now at the connection between the 2×2 GUE and the traceless matrix

we have just analyzed. Consider the 2 × 2 matrix




X1 Y + iZ

Y − iZ X2


 ,

where X1, X2, Y , and Z are independent normal random variables, with VarX1 =

VarX2 = 1/2, and with VarY = VarZ = 1/4. Since these random variables have a

joint density given by

f4(x1, x2, y, z) =
2

π2
e−x2

1−x2
2−2y2−2z2

, (x1, x2, y, z) ∈ R
4,

conditioning on the zero-trace subspace {X1 + X2 = 0}, and using the transformation

X ′
1 = (X1 − X2)/

√
2 and X ′

2 = (X1 + X2)/
√

2, we obtain the conditional density

f3(x
′
1, y, z) =

(
2

π

)3/2

e−2(x′

1)2−2y2−2z2

,

which is also the joint density of three iid centered normal random variables X ′
1, Y ,

and Z with common variance 1/4. Note also that the traceless GUE model may

be obtained from the GUE by simply subtracting the trace of the GUE from each

diagonal. (See Xu [46] for further developments of this sort for more general random

matrices.)
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Let us finally note that one can directly evaluate (2.2.5) in a classical manner

using the Reflection Principle to obtain the corresponding density (see, e.g. [22, 27]).

It is instructive to express (2.2.4) in terms of an (m − 1)-dimensional standard

Brownian motion (B1(t), . . . , Bm−1(t)). It is not hard to check that we can express

B̃i(t), i = 1, . . . , m − 1, in terms of the Bi(t) as follows:

B̃i(t) =






B1(t), i = 1,

√
i+1
2i

Bi(t) −
√

i−1
2i

Bi−1(t), 2 ≤ i ≤ m − 1.

(2.2.6)

Substituting (2.2.6) back into (2.2.4), we obtain a more symmetric expression for

our limiting distribution:

LIn − n/m√
n

⇒ 1√
m

max
0≤t1≤···

≤tm−1≤tm=1

m−1∑

i=1

[
−
√

i

i + 1
Bi(ti+1) +

√
i + 1

i
Bi(ti)

]
. (2.2.7)

The above Brownian functional is similar to one introduced by Glynn and Whitt

[20], in the context of a queuing problem:

Dm = max
0=t0≤t1≤···
≤tm−1≤tm=1

m∑

i=1

[
Bi(ti) − Bi(ti−1)

]
, (2.2.8)

where (B1(t), . . . , Bm(t)) is an m-dimensional standard Brownian motion. Gravner,

Tracy, and Widom [22], in studying a one-dimensional discrete space and discrete

time process, have shown that its limiting distribution is equal to both that of Dm

and also that of the largest eigenvalue λ
(m)
1 of an m×m Hermitian matrix taken from

a GUE. That is, Dm and λ
(m)
1 are in fact identical in law. Independently, Baryshnikov

[6], studying closely related problems of Queuing Theory and of monotonous paths

on the integer lattice, has shown that the process (Dm)m≥1 has the same law as the

process (λ
(m)
1 )m≥1, where λ

(m)
1 is the largest eigenvalue of the matrix consisting of the

first m rows and m columns of an infinite matrix in the Gaussian Unitary Ensemble.
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Remark 2.2.1 It is quite clear that LIn ≥ n/m, since at least one of the m letters

must lie on a substring of length at least n/m. Hence, the limiting functional in

(2.2.4) must be supported on the positive real line. We can also see directly that the

functional on the right hand side of (2.2.7) is non-negative. Indeed, for consider the

more general Brownian functional of the form

max
0≤t1≤···

≤tm−1≤tm=1

m−1∑

i=1

[
βiB

i(ti+1) − ηiB
i(ti)

]
,

where 0 ≤ βi ≤ ηi, for i = 1, 2, . . . , m − 1. Now for any fixed ti+1 ∈ (0, 1], i =

1, . . . , m − 1, max0≤ti≤ti+1
[βiB

i(ti+1) − ηiB
i(ti)] is at least as large as the maximum

value at the two extremes, that is, when ti = 0 or ti = ti+1. These two values are

simply βiB
i(ti+1) and (βi − ηi)B

i(ti+1). Since 0 ≤ βi ≤ ηi, at least one of these two

values is non-negative. Hence, we can successively find tm−1, tm−2, . . . , t1 such that

each term of the functional is non-negative. Thus the whole functional must be non-

negative. Taking βi =
√

i/(i + 1) and ηi =
√

(i + 1)/i, the result holds for (2.2.7).

The functional of Glynn and Whitt in (2.2.8) does not succumb to the same analysis

since the i = 1 term demands that t0 = 0.

Let us now turn our attention to the m-letter case wherein each letter αr occurs

with probability 0 < pr < 1, independently, and the pr need not be equal as in the

previous uniform case. For the non-uniform case, Its, Tracy, and Widom in [28] and

[29] obtained the limiting distribution of LIn. Reordering the probabilities such that

p1 ≥ p2 ≥ · · · ≥ pm, and grouping those probabilities having identical values p(j) of

multiplicity kj , j = 1, . . . , d, (so that
∑d

j=1 kj = m and
∑d

j=1 p(j)kj = 1), they show

that the limiting distribution is identical to the distribution of the largest eigenvalue

associated with the k1 × k1 block of a direct sum of d mutually independent kj × kj

GUEs, whose eigenvalues (λ1, λ2, . . . , λm) = (λk1
1 , λk1

2 , . . . , λk1
k1

, . . . , λkd
1 , λkd

2 , . . . , λkd
kd

)

satisfy
∑m

i=1

√
piλi = 0. With the above ordering of the probabilities, the limiting
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distribution simplifies to an integral involving only p1 and k1. (See Remark 2.3.4 for

some explicit expressions and more details.) We now state our own result in terms of

functionals of Brownian motion.

Theorem 2.2.1 Let (Xn)n≥1 be a sequence of iid random variables taking values

in an ordered finite alphabet A = {α1, . . . , αm}, such that P(X1 = αr) = pr, for

r = 1, . . . , m, where 0 < pr < 1 and
∑m

r=1 pr = 1. Then

LIn − pmaxn√
n

⇒ − 1

m

m−1∑

i=1

iσiB̃
i(1) + max

0=t0≤t1≤···
≤tm−1≤tm=1

ti=ti−1, i∈I∗

m−1∑

i=1

σiB̃
i(ti), (2.2.9)

where pmax = max1≤r≤m pr, σ2
r = pr +pr+1− (pr −pr+1)

2, I∗ = {r ∈ {1, . . . , m} : pr <

pmax}, and where (B̃1(t), . . . , B̃m−1(t)) is an (m − 1)-dimensional Brownian motion

with covariance matrix given by

t




1 ρ1,2 ρ1,3 · · · ρ1,m−1

ρ2,1 1 ρ2,3 · · · ρ2,m−1

...
...

. . .
. . .

...

...
... 1 ρm−2,m−1

ρm−1,1 ρm−1,2 · · · ρm−1,m−2 1




,

with

ρr,s =






−pr+µrµs

σrσs
, s = r − 1,

−ps+µrµs

σrσs
, s = r + 1,

−µrµs

σrσs
, |r − s| > 1, 1 ≤ r, s ≤ m − 1,

and with µr = pr − pr+1, 1 ≤ r ≤ m − 1.

Proof. As before, we begin with the expression for LIn displayed in (2.1.5), noting

that for each letter αr, 1 ≤ r ≤ m − 1, (Zr
k)k≥1 forms a sequence of iid random

variables, and that, moreover, Zr
k and Zs

ℓ are independent for k 6= ℓ, and for any r
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and s. Now, however, for each fixed k, the Zr
k are no longer identically distributed;

indeed,






µr := EZr
1 = pr − pr+1, 1 ≤ r ≤ m − 1,

σ2
r := VarZr

1 = pr + pr+1 − (pr − pr+1)
2, 1 ≤ r ≤ m − 1.

(2.2.10)

Since 0 < pr < 1, we have σ2
r > 0 for all 1 ≤ r ≤ m− 1. We are thus led to define

our Brownian approximation by

B̂r
n(t) :=

Sr
[nt] − µr[nt]

σr

√
n

+ (nt − [nt])
Zr

[nt]+1 − µr

σr

√
n

, 0 ≤ t ≤ 1, 1 ≤ r ≤ m − 1.

Again noting that the local maxima of B̂i
n(t) occur on the set {t : t = k/n, k =

0, . . . , n}, (2.1.5) becomes

LIn =
n

m
− 1

m

m−1∑

i=1

i
[
σiB̂

i
n(1)

√
n + µin

]

+ max
0=t0≤t1≤···

≤tm−1≤tm=1

{
m−1∑

i=1

[
σiB̂

i
n(ti)

√
n + µitin

]}
. (2.2.11)

Next,

m−1∑

i=1

iµi =

m−1∑

i=1

m−1∑

j=i

µj =

m−1∑

i=1

m−1∑

j=i

(pj − pj+1)

=

m−1∑

i=1

(pi − pm) = (1 − pm) − (m − 1)pm

= 1 − mpm.

Hence, (2.2.11) becomes

LIn =
n

m
− (1 − mpm)n

m
− 1

m

m−1∑

i=1

iσiB̂
i
n(1)

√
n

+ max
0=t0≤t1≤···

≤tm−1≤tm=1

m−1∑

i=1

[
σiB̂

i
n(ti)

√
n + µitin

]
, (2.2.12)
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and, dividing through by
√

n, we obtain

LIn√
n

= pm

√
n − 1

m

m−1∑

i=1

iσiB̂
i
n(1)

+ max
0=t0≤t1≤···

≤tm−1≤tm=1

m−1∑

i=1

[
σiB̂

i
n(ti) + µiti

√
n
]
. (2.2.13)

Let t0 = 0, and let ∆i = ti − ti−1, i = 1, . . . , m − 1. Since

m−1∑

i=1

µiti =

m−1∑

i=1

µi

i∑

j=1

∆j =

m−1∑

i=1

∆i

m−1∑

j=i

µj =

m−1∑

i=1

∆i(pi − pm),

(2.2.13) becomes

LIn√
n

= pm

√
n − 1

m

m−1∑

i=1

iσiB̂
i
n(1)

+ max
∆i≥0

Pm−1
i=1 ∆i≤1

{
m−1∑

i=1

σiB̂
i
n(ti) +

√
n

m−1∑

i=1

∆i(pi − pm)

}
, (2.2.14)

where ti =
∑i

j=1 ∆j .

Recalling that tm := 1, and setting ∆m = 1 − tm−1, (2.2.14) enjoys a more sym-

metric representation as

LIn√
n

= − 1

m

m−1∑

i=1

iσiB̂
i
n(1)

+ max
∆i≥0

Pm
i=1 ∆i=1

[
m−1∑

i=1

σiB̂
i
n(ti) +

√
n

m∑

i=1

∆ipi

]
. (2.2.15)

Next,

LIn − pmaxn√
n

= − 1

m

m−1∑

i=1

iσiB̂
i
n(1)

+ max
∆i≥0

Pm
i=1 ∆i=1

[
m−1∑

i=1

σiB̂
i
n(ti) +

√
n

m∑

i=1

∆i(pi − pmax)

]
, (2.2.16)
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where pmax = max1≤i≤m pi. Clearly, if ∆i > 0 for any i such that pi < pmax, then

√
n

m∑

i=1

∆i(pi − pmax)
a.s.−→−∞.

Intuitively, then, we should demand that ∆i = 0 for i ∈ I∗ := {i ∈ {1, 2, . . . , m} :

pi < pmax}. Indeed, we now show that in fact

LIn − pmaxn√
n

= − 1

m

m−1∑

i=1

iσiB̂
i
n(1) + max

0=t0≤t1≤···
≤tm−1≤tm=1

ti=ti−1, i∈I∗

m−1∑

i=1

σiB̂
i
n(ti) + En, (2.2.17)

where the remainder term En is a random variable converging to zero in probability

as n → ∞.

To see this, let us introduce the following notation. Writing t = (t1, t2, . . . , tm),

let T = {t : 0 ≤ t1 ≤ · · · ≤ tm−1 ≤ tm = 1} and let T ∗ = {t ∈ T : ti = ti−1, i ∈ I∗}.

Setting Cn(t) =
∑m−1

i=1 σiB̂
i
n(ti) and R(t) =

∑m
i=1(ti − ti−1)(pmax − pi), we can rewrite

the terms involving max in (2.2.16) and (2.2.17) as

max
t∈T

[
Cn(t) −

√
nR(t)

]

and

max
t∈T ∗

Cn(t).

By the compactness of T and T ∗ and the continuity of Cn(t) and R(t), we see that

for each n and each ω ∈ Ω, there is a τn ∈ T and a τn
∗ ∈ T ∗ such that

Cn(τ
n) −

√
nR(τn) = max

t∈T

[
Cn(t) −

√
nR(t)

]
,

and

Cn(τn
∗ ) = max

t∈T ∗

Cn(t).

(Note that the piecewise-linear nature of Cn(t) and the linear nature of R(t) imply that

the arguments maximizing the above must lie on a finite set; thus, the measurablility

of τn and τn
∗ is trivial.)
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Now we first claim that the set of optimizing arguments {τn}∞n=1 a.s. does not

have an accumulation point lying outside of T ∗. Suppose the contrary, namely that

for each ω in a set A of positive measure, there is a subsequence (τnk)∞k=1 of (τn)∞n=1

such that d(τnk , T ∗) > ǫ, for some ǫ > 0, where the metric d is the one induced by

the L∞-norm over T , i.e., by ‖t‖∞ = max1≤i≤m |ti|.

Then, since T ∗ ⊂ T , it follows that, for all n,

Cn(τ
n) −

√
nR(τn) ≥ Cn(τn

∗ ).

Now if pmax = pm, then t = (0, . . . , 0, 1) ∈ T ∗, and if for some 1 ≤ j ≤ m− 1 we have

pmax = pj > maxj+1≤i≤m pi, then t = (0, . . . , 0, 1, . . . , 1) ∈ T ∗, where there are j − 1

zeros in t. Hence Cnk
(τnk∗ ) ≥ Cnk

(0, . . . , 0, 1, . . . , 1) =
∑m−1

i=j σiB̂
i
nk

(1), where the sum

is taken to be zero for j = m. Given 0 < δ < 1, by the Central Limit Theorem, we

can find a sufficiently negative real α such that

P (Cnk
(τnk) −√

nkR(τnk) ≥ α) ≥ P (Cnk
(τnk

∗ ) ≥ α)

≥ P

(
m−1∑

i=j

σiB̂
i
nk

(1) ≥ α

)

> 1 − δ,

for nk large enough. In particular, this implies that

P (A ∩ {Cnk
(τnk) −√

nkR(τnk) ≥ α}) >
1

2
P(A), (2.2.18)

for nk large enough.

Next, note that for any t ∈ T , we can modify its components ti to obtain an

element of T ∗, by collapsing certain consecutive tis to single values, where i ∈ {j −

1, j, . . . , ℓ} and {j, j + 1, . . . , ℓ} ⊂ I∗. With this observation, it is not hard to see

that by replacing such maximal consecutive sets of components {ti}ℓ
i=j−1 with their

median values, we must have
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d(τnk , T ∗) = max
{(j,ℓ):{j,j+1,...,ℓ}⊂I∗}

(τnk
ℓ − τnk

j−1)

2
.

Writing p(2) for the largest of the pi < pmax, we see that for all k, and for almost

all ω ∈ A,

R(τnk) =
m∑

i=1

(τnk
i − τnk

i−1)(pmax − pi)

=
∑

i∈I∗

(τnk
i − τnk

i−1)(pmax − pi)

≥ (pmax − p(2))
∑

i∈i∗

(τnk
i − τnk

i−1)

≥ 2(pmax − p(2))d(τnk , T ∗) ≥ 2(pmax − p(2))ǫ.

Now by Donsker’s Theorem and the Continuous Mapping Theorem, we have that

max
t∈T

Cn(t) ⇒ max
t∈T

m−1∑

i=1

σiB̃
i(ti),

as nk → ∞, where (B̃1(t), . . . , B̃m−1(t)) is an (m − 1)-dimensional Brownian motion

described in greater detail below. The point here is simply that this limiting functional

exists. Moreover,

max
t∈T

Cn(t) ≥ Cn(τn),

hence, given 0 < δ < 1, if M is chosen large enough, then

P (Cnk
(τnk) ≤ M) ≥ P

(
max
t∈T

Cnk
(t) ≤ M

)

> 1 − δ,
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for nk large enough.

We can next see how the boundedness of R(τnk) on A influences that of the whole

expression Cnk
(τnk)−√

nkR(τnk) via the following estimates. Given M > 0 as above,

if k is large enough, then

nk ≥ ((M − α + 1)/(2(pmax − p(2))ǫ))
2,

and also

P (A ∩ {Cnk
(τnk) −√

nkR(τnk) ≤ α − 1})

= P (A ∩ {Cnk
(τnk) ≤ α − 1 +

√
nkR(τnk)})

≥ P
(
A ∩ {Cnk

(τnk) ≤ α − 1 +
√

nk(2(pmax − p(2))ǫ)}
)

≥ P (A ∩ {Cnk
(τnk) ≤ M})

>
1

2
P(A).

But this contradicts (2.2.18); thus, our optimal parameter sequences (τn)∞n=1 must

a.s. have their accumulation points in T ∗.

Thus, given ǫ > 0, there is an integer Nǫ such that the set An,ǫ = {d(τk, T ∗) <

ǫ3, k ≥ n} satisfies P(An,ǫ) ≥ 1 − ǫ, for all n ≥ Nǫ. Now, for each τn, define τ̂n ∈ T ∗

to be the (not necessarily unique) point of T ∗ which is closest in the L∞-distance to

τn. Recalling that

En = Cn(τ
n) −

√
nR(τn) − Cn(τn

∗ ) ≥ 0,

and noting that R(t) ≥ 0, for all t ∈ T , we can estimate the remainder term En as

follows: for n ≥ Nǫ,

P (En ≥ ǫ) = P ({En ≥ ǫ} ∩ An,ǫ) + P
(
{En ≥ ǫ} ∩ Ac

n,ǫ

)

≤ P ({En ≥ ǫ} ∩ An,ǫ) + P
(
Ac

n,ǫ

)
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≤ P ({En ≥ ǫ} ∩ An,ǫ) + ǫ

= P
(
{Cn(τ

n) −
√

nR(τn) − Cn(τn∗) ≥ ǫ} ∩ An,ǫ

)
+ ǫ

≤ P
(
{Cn(τn) −√

nR(τn) − Cn(τ̂n) ≥ ǫ} ∩ An,ǫ

)
+ ǫ

≤ P ({Cn(τ
n) − Cn(τ̂n) ≥ ǫ} ∩ An,ǫ) + ǫ

≤ P

(∣∣∣∣∣

m−1∑

i=1

σi(B̂
i
n(τn

i ) − B̂i
n(τ̂n

i ))

∣∣∣∣∣ ≥ ǫ

)
+ ǫ. (2.2.19)

To further bound the right-hand side of (2.2.19), note that for all n ≥ 1 and all

1 ≤ i ≤ m − 1, we have Var(B̂i
n(ti) − B̂i

n(si)) = |ti − si|. Then, let (s, t) ∈ T × T be

such that ‖t− s‖∞ ≤ ǫ3. Using the Bienaymé-Chebyshev inequality, we find that for

n large enough,

P

(∣∣∣∣∣

m−1∑

i=1

σi(B̂
i
n(ti) − B̂i

n(si))

∣∣∣∣∣ ≥ ǫ

)
≤ ǫ−2(m − 1)2 max

1≤i≤m−1
σ2

i ‖t − s‖∞

≤ ǫ−2(m − 1)2 max
1≤i≤m−1

σ2
i ǫ

3

= ǫ(m − 1)2 max
1≤i≤m−1

σ2
i .

Since ‖τn − τ̂n‖ < ǫ3, for n ≥ Nǫ, this can be used to bound (2.2.19):

P (|En| ≥ ǫ) < P

(∣∣∣∣∣

m−1∑

i=1

σi(B̂
i
n(τn

i ) − B̂i
n(τ̂n

i ))

∣∣∣∣∣ ≥ ǫ

)
+ ǫ

≤ ǫ

{
(m − 1)2 max

1≤i≤m−1
σ2

i + 1

}
.

Finally, ǫ being arbitrary, we have indeed shown that En → 0 in probability.

Applying Donsker’s Theorem, the Continuous Mapping Theorem, and Slutsky’s

(or the converging-together) Theorem [7, 17] to (2.2.17) we finally have:

LIn − pmaxn√
n

⇒ − 1

m

m−1∑

i=1

iσiB̃
i(1) + max

0=t0≤t1≤···
≤tm−1≤tm=1

ti=ti−1, i∈I∗

m−1∑

i=1

σiB̃
i(ti), (2.2.20)
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where (B̃1(t), . . . , B̃m−1(t)) is an (m − 1)-dimensional Brownian motion covariance

matrix, t(ρr,s)r,s, where

ρr,s =






1, r = s,

−pr+µrµs

σrσs
, s = r − 1,

−ps+µrµs

σrσs
, s = r + 1,

−µrµs

σrσs
, |r − s| > 1, 1 ≤ r, s ≤ m − 1.

Now for t = ℓ/n, and 1 ≤ r ≤ s ≤ m − 1, the covariance structure above is

computed as follows:

Cov(B̂r
n(t), B̂s

n(t)) = Cov

(
ℓ∑

i=1

Zr
i − µr

σr

√
n

,

ℓ∑

i=1

Zs
i − µs

σs

√
n

)

=
1

nσrσs
Cov

(
ℓ∑

i=1

(Zr
i − µr),

ℓ∑

i=1

(Zs
i − µs)

)

=
1

nσrσs

ℓ∑

i=1

Cov(Zr
i − µr, Z

s
i − µs)

=
ℓ

nσrσs

Cov(Zr
1 − µr, Z

s
1 − µs)

= t






1
σrσs

σrσs, s = r,

1
σrσs

(0 − µrµs − µrµs + µrµs), s > r + 1,

1
σrσs

(−ps − µrµs − µrµs + µrµs), s = r + 1,

= t






1 s = r,

−µrµs

σrσs
s > r + 1,

− (ps+µrµs)
σrσs

s = r + 1,

using the properties of the Zr
k noted at the beginning of the proof.

We now study (2.2.9) on a case-by-case basis. First, let I∗ = ∅, that is, let
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pi = 1/m, for i = 1, . . . , m. Then σ2
i = 2pi = 2/m, for all i ∈ {1, 2, . . . , m}. Hence,

simply rescaling (2.2.9) by
√

2/m recovers the uniform result in (2.2.4).

Next, consider the case where pmax = pj , for precisely one j ∈ {1, . . . , m}. We

then have I∗ = {1, 2, . . . , m}\{j}. This forces us to set 0 = t0 = t1 = · · · = tj−1 and

tj = tj+1 = · · · = tm−1 = tm = 1, in the maximizing term in (2.2.9) . This leads to

the following result, where, below, (LIn − pmaxn)/
√

n converges to a centered normal

random variable. Intuitively, this result is not surprising since the longest increasing

subsequence is, asymptotically, a string consisting primarily of the most frequently

occurring letter, a string whose length is approximated by a binomial random variable

with parameters n and pmax. We show below that the variance of the limiting normal

distribution is, in fact, equal to pmax(1 − pmax).

Corollary 2.2.1 If pmax = pj for precisely one j ∈ {1, . . . , m}, then

LIn − pmaxn√
n

⇒ − 1

m

m−1∑

i=1

iσiB̃
i(1) +

m−1∑

i=j

σiB̃
i(1), (2.2.21)

where the last term in (2.2.21) is not present if j = m.

Proof. One could compute the variance of the right hand side of (2.2.21) directly to

verify that it is in fact pmax(1−pmax). However, the nature of the covariance structure

of the Brownian motion makes the calculation somewhat cumbersome. Instead, we

revisit the approximation to our Brownian motion in the first term on the right

hand side of (2.2.21). In doing this, we not only recover the variance of the limiting

distribution, but also see that our approximating functional does indeed take the form

of the sum of a binomial random variable and of a term which converges to zero in

probability.

From the very definition of the approximation, we have
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− 1

m

m−1∑

i=1

iσiB̂
i
n(1) = − 1

m

m−1∑

i=1

iσi

[
Si

n − µin

σi

√
n

]

=
1√
n

[
− 1

m

m−1∑

i=1

iSi
n +

n

m

m−1∑

i=1

iµi

]
. (2.2.22)

Recalling that − 1
m

∑m−1
i=1 iSi

n = am
n − n

m
, and that

∑m−1
i=1 iµi = 1 − mpm, (2.2.22)

becomes

1√
n

[(
am

n − n

m

)
+

n

m
(1 − mpm)

]
=

1√
n

(am
n − npm). (2.2.23)

Turning to the second term on the right hand side of (2.2.21) and noting that for

1 ≤ j < k ≤ m − 1,
∑k

i=j µi = pj −pk+1 and that
∑k

i=j Si
r = aj

r −ak+1
r , for 1 ≤ r ≤ n,

we then have

m−1∑

i=j

σiB̂
i
n(1) =

1√
n

[
m−1∑

i=j

Si
n − n

m−1∑

i=j

µi

]

=
1√
n

[
(aj

n − am
n ) − n(pj − pm)

]

=
1√
n

[
(aj

n − npj) − (am
n − npm)

]
. (2.2.24)

We saw in (2.2.17) that we could write (LIn − pmaxn)/
√

n, as the sum of a func-

tional approximating a Brownian motion and of an error term En converging to zero

in probability. In the present case, this expression simplifies to

− 1

m

m−1∑

i=1

iσiB̂
i(1) +

m−1∑

i=j

σiB̂
i(1) + En =

aj
n − npj√

n
+ En, (2.2.25)

using (2.2.22)–(2.2.24).

Now aj
n is a binomial random variable with parameters n and p = pj = pmax.

By the Central Limit Theorem and the converging together lemma, the right hand

side of (2.2.25) converges to a N(0, pmax(1 − pmax)) distribution, while by Donsker’s
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Theorem, the left hand side converges to the Brownian functional obtained in (2.2.21).

Hence, (LIn − pmaxn)/
√

n ⇒ N(0, pmax(1 − pmax)), as claimed.

Let us now study what happens when pmax = pj = pk, 1 ≤ j < k ≤ m, and

pi < pmax otherwise, that is, when precisely two letters have the maximal probability.

We then have I∗ = {1, . . . , m}\{j, k}. This requires that

0 = t0 = t1 = · · · = tj−1,

tj = tj+1 = · · · = tk−1,

tk = tk+1 = · · · = tm = 1.

Hence,

max
0=t0≤t1≤···

≤tm−1≤tm=1

m−1∑

i=1

σiB̃
i(ti) = max

0≤t≤1

[
k−1∑

i=j

σiB̃
i(t) +

m−1∑

i=k

σiB̃
i(1)

]

=
m−1∑

i=k

σiB̃
i(1) + max

0≤t≤1

k−1∑

i=j

σiB̃
i(t).

Thus the limiting law is

− 1

m

m−1∑

i=1

iσiB̃
i
n(1) +

m−1∑

i=k

σiB̃
i(1) + max

0≤t≤1

k−1∑

i=j

σiB̃
i(t). (2.2.26)

To consolidate our analysis, we treat the general case for which pmax occurs ex-

actly k times among {p1, p2, . . . , pm}, where 2 ≤ k ≤ m− 1. Not only will we recover

the natural analogues of (2.2.26), but we will also express our results in terms of

another functional of Brownian motion which is more symmetric. Combining the

2 ≤ k ≤ m − 1 case at hand with the k = 1 case previously examined, we have the

following:
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Corollary 2.2.2 Let pmax = pj1 = pj2 = · · · = pjk
for 1 ≤ j1 < j2 < · · · < jk ≤ m,

for some 1 ≤ k ≤ m − 1, and let pi < pmax, otherwise. Then

LIn − pmaxn√
n

⇒
√

pmax(1 − pmax) max
0=t0≤t1≤···
≤tk−1≤tk=1

k∑

ℓ=1

[
B̃ℓ(tℓ) − B̃ℓ(tℓ−1)

]
, (2.2.27)

where the k-dimensional Brownian motion (B̃1(t), B̃1(t), . . . , B̃k(t)) has the covari-

ance matrix

t




1 ρ ρ · · · ρ

ρ 1 ρ
...

...
. . .

. . .
. . .

...

... ρ 1 ρ

ρ · · · · · · ρ 1




, (2.2.28)

with ρ = −pmax/(1 − pmax).

Proof. Let pmax = pj1 = pj1 = · · · = pjk
, with 1 ≤ j1 < j2 < · · · < jk ≤ m and

2 ≤ k ≤ m − 1, i.e., let I∗ = {1, 2, . . . , m}\{j1, j2, . . . , jk}. Set j0 = 1 and jk+1 = m.

Then (2.2.17) becomes

LIn − pmaxn√
n

= − 1

m

m−1∑

i=1

iσiB̂
i
n(1)

+ max
0=t0≤t1≤···

≤tm−1≤tm=1

ti=ti−1, i∈I∗

m−1∑

i=1

σiB̂
i
n(ti) + En

= − 1

m

m−1∑

i=1

iσiB̂
i
n(1)

+ max
0=tj0≤tj1≤···
≤tjk

≤tjk+1
=1

k∑

ℓ=0

jℓ+1−1∑

i=jℓ

σiB̂
i
n(tjl

) + En

= − 1

m

m−1∑

i=1

iσiB̂
i
n(1)+
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+ max
0=tj0≤tj1≤···
≤tjk

≤tjk+1
=1

[
k−1∑

ℓ=1

jℓ+1−1∑

i=jℓ

σiB̂
i
n(tjℓ

) +
m−1∑

i=jk

σiB̂
i
n(1)

]
+ En

=

[
− 1

m

m−1∑

i=1

iσiB̂
i
n(1) +

m−1∑

i=jk

σiB̂
i
n(1)

]

+ max
0=tj0≤tj1≤···
≤tjk

≤tjk+1
=1

k−1∑

ℓ=1

jℓ+1−1∑

i=jℓ

σiB̂
i
n(tjℓ

) + En. (2.2.29)

We immediately recognize the first term on the right hand side of (2.2.29) as

what we encountered for k = 1. Using the definition of the B̂i
n, (2.2.29) can then be

rewritten as

ajk
n − npmax√

n
+ max

0=tj0≤tj1≤···
≤tjk

≤tjk+1
=1

k−1∑

ℓ=1

jℓ+1−1∑

i=jℓ

σiB̂
i
n(tjℓ

) + En

=
ajk

n − npmax√
n

+ max
0=tj0≤tj1≤···
≤tjk

≤tjk+1
=1

k−1∑

ℓ=1

jℓ+1−1∑

i=jℓ

σi




Si

[ntjℓ ]
− µi [ntjℓ

]

σi

√
n



 + En

=
ajk

n − npmax√
n

+
1√
n

max
0=tj0≤tj1≤···
≤tjk

≤tjk+1
=1

k−1∑

ℓ=1

((
ajℓ

[ntjℓ ]
− a

jℓ+1

[ntjℓ ]

)
− [ntjℓ

]
(
pjℓ

− pjℓ+1

))

+ En

=
ajk

n − npmax√
n

+
1√
n

max
0=tj0≤tj1≤···
≤tjk

≤tjk+1
=1

k−1∑

ℓ=1

((
ajℓ

[ntjℓ ]
− [ntjℓ

] pmax

)
−
(
a

jℓ+1

[ntjℓ ]
− [ntjℓ

] pmax

))

+ En. (2.2.30)

Setting a
jk+1
n = n −∑k

ℓ=1 ajℓ
n , we note that the random vector (aj1

n , aj2
n , . . . ,

a
jk+1
n ) has a multinomial distribution with parameters n and (pmax, pmax, . . . , pmax, 1−
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kpmax). It is thus natural to introduce a new Brownian motion approximation as

follows:

B̌ℓ
n(t) =

ajℓ

[ntjℓ ]
− [ntjℓ

] pmax

√
npmax(1 − pmax)

, 1 ≤ ℓ ≤ k. (2.2.31)

Substituting (2.2.31) into (2.2.30) gives

√
pmax(1 − pmax)




B̌k
n(1) + max

0=t0≤t1≤···
≤tk−1≤tk=1

k−1∑

ℓ=1

[
B̌ℓ

n(tℓ) − B̌ℓ+1
n (tℓ)

]



+ En

=
√

pmax(1 − pmax) max
0=t0≤t1≤···
≤tk−1≤tk=1

k∑

ℓ=1

[
B̌ℓ

n(tℓ) − B̌ℓ
n(tℓ−1)

]
+ En. (2.2.32)

By Donsker’s Theorem, (B̌1
n(t), B̌2

n(t), . . . , B̌k
n(t)) converges jointly to a k-dimensional

Brownian motion (B̃1(t), B̃2(t), . . . , B̃k(t)). This Brownian motion has the covariance

structure

t




1 ρ ρ · · · ρ

ρ 1 ρ
...

...
. . .

. . .
. . .

...

... ρ 1 ρ

ρ · · · · · · ρ 1




,

where ρ = −pmax/(1−pmax), a fact which follows immediately from the covariance of

the multinomial distribution, where the covariance of any two distinct ajℓ
r is simply

−rp2
max, for 1 ≤ r ≤ n. This, together with our analysis of the unique pmax case,

proves the corollary.

Remark 2.2.2 The above results provide a Brownian functional equivalent to the

GUE result of Its, Tracy, and Widom [28] (described in detail in the comments pre-

ceding Theorem 2.2.1 and with a law given in Remark 2.3.4). Note that the limiting
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distribution in (2.2.27) depends only on k and pmax; neither the specific values of

j1, j2, . . . , jk nor the remaining values of pi are material, a fact already noted in [28].

Also, it follows from generic results on Brownian functionals that this limiting law

has a density, which in the uniform case is supported on the positive real line, while

supported on all of R in the non-uniform case.

We have already seen in (2.2.7) that the limiting distribution for the uniform case

has a nice representation as a functional of standard Brownian motion. We now

also express the limiting distribution in (2.2.27) as a functional of standard Brownian

motion. This new functional extends to the uniform case, although its form is different

from that of (2.2.7). This limiting random variable can be viewed as the sum of a

normal one and of a maximal eigenvalue type one.

Corollary 2.2.3 Let pmax = pj1 = pj2 = · · · = pjk
, for 1 ≤ j1 < j2 < · · · < jk ≤ m,

and some 1 ≤ k ≤ m, and let pi < pmax, otherwise. Then

LIn − pmaxn√
n

⇒ √
pmax

{√
1 − kpmax − 1

k

k∑

j=1

Bj(1)

+ max
0=t0≤t1≤···
≤tk−1≤tk=1

k∑

ℓ=1

[
Bℓ(tℓ) − Bℓ(tℓ−1)

]}
. (2.2.33)

where (B1(t), B2(t), . . . , Bk(t)) is a standard k-dimensional Brownian motion.

Proof. Let us first examine the non-uniform case 1 ≤ k ≤ m − 1. Recall that ρ =

−pmax/(1−pmax). Now the covariance matrix in (2.2.28) has eigenvalues λ1 = 1−ρ =

1/(1−pmax) of multiplicity k−1 and λ2 = 1+(k−1)ρ = (1−kpmax)/(1−pmax) < λ1

of multiplicity 1. From the symmetries of the covariance matrix, it is not hard to see

that we can write each Brownian motion B̃i(t) as a linear combination of standard

Brownian motions (B1(t), . . . , Bk(t)) as follows:
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B̃i(t) = βBi(t) + η
k∑

j=1,j 6=i

Bj(t), i = 1, . . . , k, (2.2.34)

where

β =
(k − 1)

√
λ1 +

√
λ2

k
, η =

−
√

λ1 +
√

λ2

k
. (2.2.35)

Substituting (2.2.34) and (2.2.35) into (2.2.27), and noting that β − η =
√

λ1 =

1/
√

1 − pmax, we find that

√
pmax(1 − pmax) max

0=t0≤t1≤···
≤tk−1≤tk=1

k∑

ℓ=1

[
B̃ℓ(tℓ) − B̃ℓ(tℓ−1)

]

=
√

pmax(1 − pmax) max
0=t0≤t1≤···
≤tk−1≤tk=1

k∑

ℓ=1

{
β
[
Bℓ(tℓ) − Bℓ(tℓ−1)

]

+ η
k∑

j=1,j 6=ℓ

[
Bj(tℓ) − Bj(tℓ−1)

]}

=
√

pmax(1 − pmax) max
0=t0≤t1≤···
≤tk−1≤tk=1

k∑

ℓ=1

{
(β − η)

[
Bℓ(tℓ) − Bℓ(tℓ−1)

]

+ η
k∑

j=1

[
Bj(tℓ) − Bj(tℓ−1)

]}

=
√

pmax(1 − pmax) max
0=t0≤t1≤···
≤tk−1≤tk=1

{ k∑

ℓ=1

(β − η)
[
Bℓ(tℓ) − Bℓ(tℓ−1)

]

+ η

k∑

ℓ=1

k∑

j=1

[
Bj(tℓ) − Bj(tℓ−1)

]}

=
√

pmax(1 − pmax)

{
η

k∑

j=1

Bj(1)

+ (β − η) max
0=t0≤t1≤···
≤tk−1≤tk=1

k∑

ℓ=1

[
Bℓ(tℓ) − Bℓ(tℓ−1)

]}

=
√

pmax

{√
1 − kpmax − 1

k

k∑

j=1

Bj(1)
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+ max
0=t0≤t1≤···
≤tk−1≤tk=1

k∑

ℓ=1

[
Bℓ(tℓ) − Bℓ(tℓ−1)

]}
. (2.2.36)

To complete the proof, we now examine the uniform case k = m, where necessarily

pmax = 1/m. We saw in Proposition 2.2.1 that

LIn − n/m√
n

⇒
√

2

m

{
− 1

m

m−1∑

i=1

iB̃i(1) + max
0≤t1≤···
≤tm−1≤1

m−1∑

i=1

B̃i(ti)

}
, (2.2.37)

where the (m−1)-dimensional Brownian motion (B̃1(t), . . . , B̃m−1(t)) had a tridiago-

nal covariance matrix given by (2.2.2). Now we can derive this Brownian motion from

a standard m-dimensional Brownian motion (B1(t), . . . , Bm(t)) via the a.s. transfor-

mations

B̃i(t) =
1√
2
(Bi(t) − Bi+1(t)), 1 ≤ i ≤ m − 1.

It is easily verified that the Brownian motion (B̃1(t), . . . , B̃m−1(t)) so obtained

does indeed have the covariance structure given by (2.2.2). Substituting these inde-

pendent Brownian motions into (2.2.37), we obtain the following a.s equalities:

LIn − n/m√
n

⇒
√

2

m

{
− 1

m

m−1∑

i=1

iB̃i(1) + max
0≤t1≤···
≤tm−1≤1

m−1∑

i=1

B̃i(ti)

}

=

√
1

m

{
− 1

m

m−1∑

i=1

i[Bi(1) − Bi+1(1)]

+ max
0≤t1≤···
≤tm−1≤1

m−1∑

i=1

[Bi(ti) − Bi+1(ti)]

}

=

√
1

m

{
− 1

m

m∑

i=1

Bi(1) + Bm(1)

+ max
0≤t1≤···
≤tm−1≤1

m∑

i=1

[Bi(ti) − Bi(ti−1)] − Bm(1)

}
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=

√
1

m

{
− 1

m

m∑

i=1

Bi(1) + max
0≤t1≤···
≤tm−1≤1

m∑

i=1

[Bi(ti) − Bi(ti−1)]

}
, (2.2.38)

which give (2.2.33), with k = m and pmax = 1/m.

We have already seen several representations for the limiting law in the uniform

case. Yet one more pleasing functional for the limiting distribution of LIn is described

in the following

Theorem 2.2.2 Let pmax = p1 = p2 = · · · = pm = 1/m. Then

LIn − n/m√
n

⇒ H̃m√
m

,

where

H̃m =

√
m − 1

m
max

0=t0≤t1≤···
≤tm−1≤tm=1

m∑

i=1

[
B̃i(ti) − B̃i(ti−1)

]
, (2.2.39)

and where (B̃1(t), B̃2(t), . . . , B̃m(t)) is an m-dimensional Brownian motion having

covariance matrix (2.2.28), with ρ = −1/(m−1), and thus such that
∑m

i=1 B̃i(t) = 0,

for all 0 ≤ t ≤ 1.

Proof. We show that the functional being maximized in (2.2.39) has the same

covariance structure as the functional being maximized in (2.2.7), a result which

we restate as:

LIn − n/m√
n

⇒ 1√
m

max
0≤t1≤···

≤tm−1≤tm=1

m−1∑

i=1

[
βiB

i(ti+1) − ηiB
i(ti)

]
, (2.2.40)

where βi =
√

i/(i + 1) and ηi =
√

(i + 1)/i. From this it will immediately follow

that the maxima, over all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm−1 ≤ 1, in both expressions have the

same law, clinching the proof.
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Let (B̃1(t), B̃2(t), . . . , B̃m(t)) be an m-dimensional Brownian motion with a permutation-

invariant covariance matrix described by

Cov(B̃i(t), B̃j(t)) = − t

m − 1
, i 6= j,

and

Var B̃i(t) = t.

Hence, E(
∑m

i=1 B̃i(t))2 = 0, for all 0 ≤ t ≤ 1, so that
∑m

i=1 B̃i(t) is identically equal

to zero.

Let t = (t1, t2, . . . , tm−1) be a fixed collection of ti from the Weyl chamber T =

{(t1, t2, . . . , tm−1) : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm−1 ≤ 1}. Setting tm = 1, and also setting

Xt =

√
m − 1

m

m∑

i=1

[
B̃i(ti) − B̃i(ti−1)

]
, (2.2.41)

we then have

Cov(Xt, Xs) =
m − 1

m

∑

1≤i,j≤m

Cov(B̃i(ti) − B̃i(ti−1), B̃
j(sj) − B̃j(sj−1))

=
m − 1

m

m∑

i=1

[ti ∧ si − ti ∧ si−1 − ti−1 ∧ si + ti−1 ∧ si−1]

− 1

m

∑

i6=j

[ti ∧ sj − ti ∧ sj−1 − ti−1 ∧ sj + ti−1 ∧ sj−1] . (2.2.42)

We can rewrite (2.2.42) in a clear way by setting T1 = [0, t1] and Ti = (ti, ti+1],

i = 2, . . . , m − 1, and similarly S1 = [0, s1] and Si = (si, si+1], i = 2, . . . , m − 1.

Letting Leb denote the Lebesgue measure on [0, 1], a case-by-case analysis of the

relative positions of ti, ti−1, si, and si−1 quickly yields that
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Cov(Xt, Xs) =
m − 1

m

m∑

i=1

Leb(Ti ∩ Si) −
1

m

∑

i6=j

Leb(Ti ∩ Sj)

=
m − 1

m

m∑

i=1

Leb(Ti ∩ Si) −
1

m

[
1 −

m∑

i=1

Leb(Ti ∩ Si)

]

= − 1

m
+

m∑

i=1

Leb(Ti ∩ Si). (2.2.43)

To complete the proof, we now show that

Yt =

m−1∑

i=1

[
βiB

i(ti+1) − ηiB
i(ti)

]
, (2.2.44)

has the same covariance structure as Xt, where βi =
√

i/(i + 1) and ηi =
√

(i + 1)/i.

Using the independence of the components of the Brownian motion, we also have

Cov(Yt, Ys) =

m−1∑

i=1

Cov
(
βiB

i(ti+1) − ηiB
i(ti), βiB

i(si+1) − ηiB
i(si)

)

=
m−1∑

i=1

[
i

i + 1
(ti+1 ∧ si+1) − ti+1 ∧ si − ti ∧ si+1 +

i + 1

i
(ti ∧ si)

]

=
m∑

i=1

i − 1

i
ti ∧ si −

m−1∑

i=1

[
ti+1 ∧ si + ti ∧ si+1 −

i + 1

i
ti ∧ si

]

=
m − 1

m
−

m−1∑

i=1

[ti+1 ∧ si + ti ∧ si+1 − 2(ti ∧ si)] . (2.2.45)

As before, a simple case-by-case analysis of the summands in (2.2.45) reveals that

Cov(Yt, Ys) =
m − 1

m
−
[
1 −

m∑

i=1

Leb(Ti ∩ Si)

]

= − 1

m
+

m∑

i=1

Leb(Ti ∩ Si), (2.2.46)

completing the proof.
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2.3 Large-m Asymptotics and Related Results

With the covariance structure of Xt now in hand, and the help of (2.2.43), we can

compute the L2-distance between any Xt and Xs:

E(Xt − Xs)
2 = VarXt + VarXs − 2 Cov(Xt, Xs)

= 2(1 − 1/m) − 2

[
−1/m +

m∑

i=1

Leb(Ti ∩ Si)

]

= 2

[
1 −

m∑

i=1

Leb(Ti ∩ Si)

]
. (2.3.1)

Such a metric is useful, for instance, in applying Dudley’s Entropy Bound to show

that lim supm→∞ E (maxt∈T Xt) /
√

m is bounded above by a constant. To obtain this

constant, we argue as follows. Now for s and t in the Weyl chamber T , we can check

that if max1≤i≤m |ti − si| < 1/k, for some integer k, then

E(Xt − Xs)
2 = 2

[
1 −

m∑

i=1

Leb(Ti ∩ Si)

]

= 2

m∑

i=1

Leb(TC
i ∩ Si)

<
2m

k
.

Now consider the points of t ∈ T for which each ti is of the form j/k for some

j = 0, 1, . . . , k. Let us try to cover T with balls of radius ε > 0 centered at each such

point of T . Then, clearly, if k > 2m/ε2, then these N(ε) balls will indeed cover T .

Since in that case N(ε) < (2m/ε)m/m!, and since VarXt = (m − 1)/m for all t ∈ T ,

Dudley’s Entropy Bound (see Theorem 1 on p. 179 of [33]) gives us that

EH̃m = E

(
max
t∈T

Xt

)
≤ 4

√
2

∫ 1
2

√
m−1

m

0

√
N(ε) dε

< 4
√

2

∫ 1
2

0

√
−2m log ε + m log (2m) − log m! dε,
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so that, by Stirling’s formula,

lim sup
m→∞

H̃m√
m

< 8

∫ 1
2

0

√
− log ε + (log 2 + 1)/2 dε

≈ 8(0.7843) = 6.2744.

One can also obtain a lower bound for lim infm→∞ EH̃m/
√

m using the following

direct argument. First, note that, almost surely,

max
0=t0≤t1≤···

≤tm−1≤tm=1

m∑

i=2

[
B̃i(ti) − B̃i(ti−1)

]

≥ 1{B̃1(1/m)>0}



B̃1(1/m) + max
1/m=t1≤t2≤···
≤tm−1≤tm=1

m∑

i=2

[
B̃i(ti) − B̃i(ti−1)

]




+ 1{B̃1(1/m)≤0}



B̃2(1/m) + max
1/m=t2≤t3≤···
≤tm−1≤tm=1

m∑

i=3

[
B̃i(ti) − B̃i(ti−1)

]


 . (2.3.2)

Here the idea is that if B̃1(1/m) > 0, then we “keep” B̃1 for the interval [0, 1/m];

otherwise, we keep B̃2 for [0, 1/m]. Then, taking expectations in (2.3.2), and using

the scaling and Markovian properties of Brownian motion, and also, crucially, the

fact that EW21{W1≤0} = −ρσ2/
√

2π for any centered Gaussian random variables W1

and W2 with correlation coefficient ρ and Var W2 = σ2
2 , we find that

E



 max
0=t0≤t1≤···

≤tm−1≤tm=1

m∑

i=2

[
B̃i(ti) − B̃i(ti−1)

]




≥ 1√
2π

1√
m

+
1

2
E



 max
1/m=t1≤t2≤···
≤tm−1≤tm=1

m∑

i=2

[
B̃i(ti) − B̃i(ti−1)

]




+
1√
2π

1√
m

( −1

m − 1

)
+

1

2
E



 max
1/m=t2≤t3≤···
≤tm−1≤tm=1

m∑

i=3

[
B̃i(ti) − B̃i(ti−1)

]



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=
1√
2π

1√
m

(
m

m − 1

)
+

1

2

√
m − 1

m
E



 max
0=t0≤t1≤···

≤tm−2≤tm−1=1

m−1∑

i=1

[
B̃i(ti) − B̃i(ti−1)

]




+
1

2

√
m − 1

m
E



 max
0=t0≤t1≤···

≤tm−3≤tm−2=1

m−2∑

i=1

[
B̃i(ti) − B̃i(ti−1)

]




≥ 1√
2π

1√
m

+

√
m − 1

m
E



 max
0=t0≤t1≤···

≤tm−3≤tm−2=1

m−2∑

i=1

[
B̃i(ti) − B̃i(ti−1)

]


 . (2.3.3)

Iterating the inequality (2.3.3), and assuming that m is even, we obtain

E



 max
0=t0≤t1≤···

≤tm−1≤tm=1

m∑

i=2

[
B̃i(ti) − B̃i(ti−1)

]




≥ 1√
2π

1√
m

+

√
m − 1

m

1√
2π

1√
m − 2

+

√
m − 1

m

√
m − 3

m − 2
E



 max
0=t0≤t1≤···

≤tm−5≤tm−4=1

m−4∑

i=1

[
B̃i(ti) − B̃i(ti−1)

]




≥ 2

(
1√
2π

1√
m

)
+

√
m − 3

m
E



 max
0=t0≤t1≤···

≤tm−5≤tm−4=1

m−4∑

i=1

[
B̃i(ti) − B̃i(ti−1)

]




...

≥ m

2

(
1√
2π

1√
m

)
=

(
1

2
√

2π

)√
m (2.3.4)

or, in terms of H̃m,

EH̃m ≥
√

m − 1

m

(
1

2
√

2π

)√
m. (2.3.5)

Since
√

m/(m − 1)H̃m ≥
√

(m − 1)/(m − 2)H̃m−1, almost surely, we conclude that

lim inf
m→∞

EH̃m√
m

≥ 1

2
√

2π
≈ 0.1995. (2.3.6)
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We can also more clearly see the similarities between the functional Dm of Glynn

and Whitt in (2.2.8) and that of (2.2.7), which we have shown to have the same law

as H̃m in (2.2.39). Indeed, the only difference between the functionals is simply that

in (2.2.8) the Brownian motions are independent, while in (2.2.39) they are subject to

the zero-sum constraint. Gravner, Tracy, and Widom [22] have already remarked that

random words could be studied via such Brownian functionals. In fact, a restatement

of Corollary 2.2.3 shows that, in law, Dm and H̃m differ by a centered normal random

variable, as indicated by the next theorem and corollary. This, in turn, will allow us

to clearly state more precise asymptotic results for H̃m from the known corresponding

results for Dm.

Theorem 2.3.1 Let

Hm =
√

2




− 1

m

m−1∑

i=1

iB̃i(1) + max
0≤t1≤···
≤tm−1≤1

m−1∑

i=1

B̃i(ti)




 ,

m ≥ 2, and let H1 ≡ 0 a.s., where (B̃1(t), . . . , B̃m−1(t)) is an (m − 1)-dimensional

Brownian motion with tridiagonal covariance matrix given by (2.2.2). Let

Dm = max
0=t0≤t1≤···
≤tm−1≤tm=1

m∑

i=1

[
Bi(ti) − Bi(ti−1)

]
,

where (B1(t), . . . , Bm(t)) is a standard m-dimensional Brownian motion, which is

related to (B̃1(t), . . . , B̃m−1(t)) by the almost sure identities

B̃i(t) =
1√
2
(Bi(t) − Bi+1(t)), 1 ≤ i ≤ m − 1.

Then Dm = Zm + Hm a.s., where Zm is a centered normal random variable with

variance 1/m, which is given by Zm = (1/m)
∑m

i=1 Bi(1).

Proof. The m = 1 case is trivial. For m ≥ 2, reformulating the proof of Corollary

2.2.3, for the uniform case, in terms of the functionals Hm and Dm shows that, almost

surely,
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Hm√
m

=
1√
m

(
− 1

m

m∑

i=1

Bi(1) + Dm

)

=
1√
m

(−Zm + Dm).

Recalling the definition of H̃m from Theorem 2.2.2:

H̃m :=

√
m − 1

m
max

0=t0≤t1≤···
≤tm−1≤tm=1

m∑

i=1

[
B̃i(ti) − B̃i(ti−1)

]
,

where (B̃1(t), B̃2(t), . . . , B̃m(t)) is an m-dimensional Brownian motion having covari-

ance matrix (2.2.28), with ρ = −1/(m − 1), implying that
∑m

i=1 B̃i(t) = 0, for all

0 ≤ t ≤ 1, we then have

Corollary 2.3.1 For each m ≥ 1, H̃m
L
= Dm − Zm, where L denotes equality in

distribution.

Proof. Proposition 2.2.1 asserts that

LIn − n/m√
n

⇒ Hm√
m

,

as n → ∞, while by Theorem 2.2.2

LIn − n/m√
n

⇒ H̃m√
m

,

as n → ∞ as well. The conclusion follows from the previous theorem.

This relationship between H̃m (resp.,Hm) and Dm allows us to further express the

limiting distribution in a rather compact form.

Proposition 2.3.1 Let pmax = pj1 = pj2 = · · · = pjk
, for 1 ≤ j1 < j2 < · · · < jk ≤

m, and some 1 ≤ k ≤ m, and let pi < pmax, otherwise. Then

LIn − pmaxn√
n

⇒ √
pmax{

√
1 − kpmaxZk + Hk}.
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Proof. For k = m, we have pmax = 1/m, and thus simply recover the limiting

distribution Hm/
√

m
L
= H̃m/

√
m of the uniform case.

For 1 ≤ k ≤ m− 1, we saw in Corollary 2.2.3 that we could write the limiting law

of (LIn − pmaxn)/
√

n as

√
pmax

{√
1 − kpmax − 1

k

k∑

j=1

Bj(1)

+ max
0=t0≤t1≤···
≤tk−1≤tk=1

k∑

ℓ=1

[
Bℓ(tℓ) − Bℓ(tℓ−1)

]}
, (2.3.7)

where (B1(t), B2(t), . . . , Bk(t)) is a standard k-dimensional Brownian motion. But,

recalling the definitions of Dk and Zk, and the fact that Dk = Zk + Hk a.s., (2.3.7)

becomes

√
pmax

{√
1 − kpmax − 1

k
(kZk) + Dk

}

=
√

pmax

{(√
1 − kpmax − 1

)
Zk + (Zk + Hk)

}

=
√

pmax

{√
1 − kpmaxZk + Hk

}
. (2.3.8)

Remark 2.3.1 One can also write the limiting law of Proposition 2.3.1 in terms of

the functional Dk. Indeed, we have

LIn − pmaxn√
pmaxn

⇒
{√

1 − kpmax − 1
}
Zk + Dk,

so that the limiting law is expressed as the sum of a centered normal random variable

and of the maximal eigenvalue of a k × k element of the GUE.

The behavior of Dm has been well-studied. In particular, it has been shown that

that Dm/
√

m → 2 a.s. and in L1, as m → ∞ (see [6, 19, 20, 26, 36, 37, 42]), and that
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(Dm − 2
√

m)m1/6 ⇒ F2, as m → ∞, where F2 is the Tracy-Widom distribution (see

[6, 22, 44, 43]). From these results, the asymptotics of Hm follows.

Theorem 2.3.2 We have that

Hm√
m

→ 2

a.s. and in L1, as m → ∞. Moreover,

(
Hm√

m
− 2

)
m2/3 ⇒ F2, (2.3.9)

where F2 is the Tracy-Widom distribution. The same statements hold for H̃m in place

of Hm.

Proof. From Theorem 2.3.1 we have Dm = Zm+Hm a.s., where Zm = (1/m)
∑m

i=1 Bi(1).

Clearly, Zm → 0 a.s. and in L1. Thus, a.s. and in L1,

lim
m→∞

Hm√
m

= lim
m→∞

Dm√
m

.

Since this last limit is 2, and since, for each m ≥ 1, Hm
L
= H̃m, it also follows that

lim
m→∞

E

∣∣∣∣∣
H̃m√

m
− 2

∣∣∣∣∣ = 0.

We are thus left with proving the a.s. convergence to 2 of H̃m/
√

m. Since the

variance of the functional being maximized in the definition of H̃m equals 1 − 1/m,

the Gaussian concentration inequality implies that

P(|H̃m − EH̃m| > h) ≤ 2e
−h2

2(1−1/m) < 2e−
h2

2

for all h > 0. Then since EH̃m/
√

m → 2 as m → ∞ we have for m large enough that

P

(∣∣∣∣∣
H̃m√

m
− 2

∣∣∣∣∣ > h

)
≤ P

(∣∣∣H̃m − EH̃m

∣∣∣ >
√

m

(
h −

∣∣∣∣∣
EH̃m√

m
− 2

∣∣∣∣∣

))

≤ P

(∣∣∣H̃m − EH̃m

∣∣∣ >
√

mh

2

)

< 2e−
mh2

8 .
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This concentration result implies that, for all h > 0,

∞∑

m=1

P

(∣∣∣∣∣
H̃m√

m
− 2

∣∣∣∣∣ > h

)
< ∞,

and the Borel-Cantelli lemma allows us to conclude.

Turning to the limiting law, we know ([6, 22]) that Dm has the same distribution

as the largest eigenvalue of the m × m GUE. Then the fundamental random matrix

theory result of Tracy and Widom [43] implies that

(
Dm√

m
− 2

)
m2/3 ⇒ F2.

Since, moreover, Dm = Zm + Hm, and since Zm has variance 1/m, Zmm1/6 ⇒ 0,

and so

(
Hm√

m
− 2

)
m2/3 =

(
Dm√

m
− 2

)
m2/3 − Zmm1/6 ⇒ F2.

Finally, Hm
L
= H̃m, and the same result holds for H̃m in place of Hm.

Remark 2.3.2 (i) In the conclusion to [44], Tracy and Widom already derived (2.3.9)

by applying a scaling argument to the limiting distribution of the uniform alphabet

case. In our case we can moreover assert that a.s. and in the mean,

lim
k→+∞

lim
n→+∞

LIn − pmaxn√
kpmaxn

= 2,

and that

(
LIn − pmaxn√

kpmaxn
− 2

)
k2/3 ⇒ F2,

where the weak limit is first taken over n and then over k, and where pmax depends

on k, and necessarily decreases to zero, as k → ∞.

(ii) Using scaling, subadditivity, and concentration arguments found in Hambly, Mar-

tin, and O’Connell [26] and in O’Connell and Yor [36], one could prove directly that
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H̃m/
√

m → 2 a.s. This could be accomplished by studying, as do these authors, a

process version of H̃m, i.e.,

H̃m(ε) :=

√
m − 1

m
max

0=t0≤t1≤···
≤tm−1≤tm=ε

m∑

i=1

[
B̃i(ti) − B̃i(ti−1)

]
,

for ε > 0. With obvious notations, for all ε > 0 and m ≥ 1, Dm(ε) = Z(ε) + Hm(ε),

a.s., where Z(ε) = (1/m)
∑m

i=1 Bi(ε).

To see in further detail how Dm and H̃m are related, first note that Dm ≤ Dm+1 a.s.

for m ≥ 1, since Dm can simply be obtained by restricting the right-most parameter

tm to be 1 in the definition of Dm+1. We now show a stochastic domination result

between Dm and H̃m.

Recall that a random variable X is said to stochastically dominate another random

variable Y (X ≥st Y ) if, for all x ∈ R, P(X ≥ x) ≥ P(Y ≥ x).

Proposition 2.3.2 H̃m ≥st

√
(1 − 1/m)Dm, for m ≥ 1. The same statement holds

for Hm in place of H̃m.

Proof. Since the m = 1 case is trivial, let m ≥ 2. We saw in (2.2.43) that the

functional Xt being maximized in the definition of H̃m had a covariance structure

given by Cov(Xt, Xs) = −1/m+
∑m

i=1 Leb(Ti∩Si). A similar argument shows that the

functional Ut =
∑m

i=1 [Bi(ti) − Bi(ti−1)] which is being maximized in the definition of

Dm has a covariance structure given by Cov(Ut, Us) =
∑m

i=1 Leb(Ti ∩ Si). Therefore,

Var(
√

(1 − 1/m)Ut) = Var Xt = 1 − 1/m,

and

Cov(
√

(1 − 1/m)Ut,
√

(1 − 1/m)Us) = (1 − 1/m)

m∑

i=1

Leb(Ti ∩ Si)

≥ Cov(Xt, Xs).
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By Slepian’s Lemma we conclude that H̃m ≥st

√
(1 − 1/m)Dm. The final asser-

tion follows from the equality in law between H̃m and Hm.

Remark 2.3.3 Note that

E(Xt − Xs)
2 = E(

√
(1 − 1/m)Ut −

√
(1 − 1/m)Us)

2

= 2

(
1 −

m∑

i=1

Leb(Ti ∩ Si)

)

for all s, t ∈ [0, 1]. That is, while Xt and
√

(1 − 1/m)Ut have different covari-

ance structures, the L2-distance between Xt and Xs is the same as that between
√

(1 − 1/m)Ut and
√

(1 − 1/m)Us. We then conclude again that EH̃m = EDm

in a manner independent of Theorem 2.3.1, which implies that EH̃m = EHm =

E(Dm + Zm) = EDm, since Zm ∼ N(0, 1/m).

Remark 2.3.4 Let us briefly summarize the connections between random matrix the-

ory and the Brownian functionals encountered in this thesis. Writing, for any m ≥ 1,

x(m) = (x1, x2, . . . , xm), letting ∆(x(m)) = Π1≤i<j≤m(xi − xj) be the Vandermonde

determinant, and if dx(m) = dx1dx2 . . . dxm is the Lebesgue measure on R
m, we have

the following facts.

(i) First, λ
(m)
1

L
= Dm, where λ

(m)
1 is the largest eigenvalue of the m×m GUE, with the

scaling taken so that the diagonal elements Xi,i satisfy EX2
i,i = 1, and the off-diagonal

elements Xi,j, for i 6= j, satisfy E|Xi,j|2 = 1. Using standard random matrix results

(see, e.g., [35]), the distribution of Dm, for all m ≥ 1 and all s ∈ R, is given by

P(Dm ≤ s) = cm

∫

As

e−
1
2

Pm
i=1 x2

i ∆(x(m))2dx(m),

where

As = {x ∈ R
m : max

1≤i≤m
xi ≤ s},
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where

c−1
m =

∫

Rm

e−
1
2

Pm
i=1 x2

i ∆(x(m))2dx(m).

(ii) Second, from [44] and our results, λ
(m,0)
1

L
= H̃m

L
= Hm, where λ

(m,0)
1 is the largest

eigenvalue of the m × m traceless GUE, with the scaling as in (i). Using the joint

density of the eigenvalues of the traceless m × m GUE [35, 44], the distribution

function of H̃m can also be computed directly, for all m ≥ 2 and all s ≥ 0, as

P(H̃m ≤ s) = c0
m

∫

A0
s

e−
m
2

Pm
i=1 x2

i ∆(x(m))2dx(m,0),

where dx(m,0) is the Lebesgue measure over the set {x ∈ R
m :
∑m

i=1 xi = 0}, and where

A0
s = {x ∈ R

m : max
1≤i≤m

xi ≤ s} ∩
{

m∑

i=1

xi = 0

}
,

where

(c0
m)−1 =

∫

{
Pm

i=1 xi=0}
e−

m
2

Pm
i=1 x2

i ∆(x(m))2dx(m,0).

Note that H̃m is a.s. non-negative, and so P(H̃m ≤ s) = 0, for all s < 0.

(iii) Third, let Jk :=
√

pmax{
√

1 − kpmaxZk +Hk} be the limiting functional of Propo-

sition 2.3.1 for the m-letter non-uniform case, having its most probable letters of

multiplicity k occurring with probability pmax. Using (ii), this functional is equal in

law to the sum of a normal random variable and a variable whose distribution, up to

the scaling factor
√

pmax, is that of the largest eigenvalue of the k × k traceless GUE,

with the scaling as in (i). Further, from (i) and Dk = Zk + Hk a.s., Jk is also equal

in law to the sum of a normal random variable and a variable whose distribution, up

to the scaling factor
√

pmax, is that of the largest eigenvalue of the k × k GUE. Its,

Tracy, and Widom [29] show that, for all k ≥ 1 and all s ∈ R, Jk has distribution

given by
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P(Jk ≤ s) = ck,pmax

∫

As

e−
1

2pmax
[
Pk

i=1 x2
i + pmax

1−kpmax
(
Pk

i=1 xi)2]∆(x(k))2dx(k),

where

As = {x ∈ R
k : max

1≤i≤k
xi ≤ s},

and where

c−1
k,pmax

=

∫

Rk

e−
1

2pmax
[
Pk

i=1 x2
i + pmax

1−kpmax
(
Pk

i=1 xi)2]∆(x(k))2dx(k).

Moreover, in the discussion prior to Theorem 2.2.1, we noted that the k-fold integral

representation of the limiting distribution of Jk came from simplifying a more complex

expression. This expression described the distribution of Jk as that of the largest

eigenvalue associated with the k1 × k1 submatrix of the matrix consisting of a direct

sum of d mutually independent GUEs, each of size kj × kj, 1 ≤ j ≤ d, subject

to the eigenvalue constraint
∑m

i=1

√
piλi = 0. The kj were the multiplicities of the

probabilities having common values, the pi were ordered in decreasing order, and the

eigenvalues were ordered in terms of the GUEs corresponding to the appropriate values

of pi. So in our notation, k is the multiplicity of pmax.

Note that when k = 1, the limiting distribution becomes

P(Jk ≤ s) =
1√

2πpmax(1 − pmax)

∫ s

−∞
e
− x2

2pmax(1−pmax) dx,

which is simply a N(0, pmax(1 − pmax)) distribution.

(iv) The Tracy-Widom distribution function F2, which also describes the limiting

distribution of (Lσn − 2
√

n)/n1/6, (see [5]), is given, for all t ∈ R, by

F2(t) = exp

(
−
∫ ∞

t

(x − t)u2(x)dx

)
,
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where u(x) is the solution to the Painlevé II equation uxx = 2u3+xu with u ∼ −Ai(x),

as x → ∞, where Ai(x) is the Airy function.
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CHAPTER III

COUNTABLY INFINITE IID ALPHABETS

Let us now study the problem of describing LIn for an ordered, countably infinite

alphabet A = {αn}n≥1, where α1 < α2 < · · · < αm < · · · . Let (Xi)1≤i≤n, Xi ∈ A, be

an iid sequence, with P(X1 = αr) = pr > 0, for r ≥ 1.

The central idea in the first part of our approach is to introduce two new sequences

derived from (Xi)1≤i≤n. Fix m ≥ 1. The first sequence, which we shall term the capped

sequence, is defined by taking T m
i = Xi∧αm, for i ≥ 1. The second one, (Y m

i )1≤i≤Nn,m ,

the reduced sequence, consists of the subsequence of (Xi)1≤i≤n of length Nn,m, for

which Xi ≤ αm, for i ≥ 1. Thus, the capped sequence (T m
i )1≤i≤n is obtained by setting

to αm all letter values greater than αm, while the reduced sequence (Y m
i )1≤i≤Nn,m is

obtained by eliminating letter values greater than αm altogether.

Let LIcap
n,m and LIred

n,m to be the lengths of the longest increasing subsequence of

(Tm
i )1≤i≤n and (Y m

i )1≤i≤Nn,m , respectively. Now on the one hand, any subsequence of

the reduced sequence is again a subsequence of the original sequence (Xi)1≤i≤n. On

the other hand, any increasing subsequence of (Xi)1≤i≤n corresponds to an increasing

subsequence of the capped one. These two observations lead to the pathwise bounds

LIred
n,m ≤ LIn ≤ LIcap

n,m, (3.0.10)

for all m ≥ 1 and n ≥ 1.

These bounds suggest that the behavior of the iid infinite case perhaps mirrors

that of the iid finite-alphabet case. Indeed, we do have the following result, which

amounts to an extension of Theorem 2.2.1 (or, more precisely, of Proposition 2.3.1)

to the iid infinite-alphabet case.
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Theorem 3.0.3 Let (Xi)1≤i≤n be a sequence of iid random variables taking values in

the ordered alphabet A = {αn}n≥1. Let P(X1 = αj) = pj, for j ≥ 1. Let pmax = pj1 =

pj2 = · · · = pjk
, 1 ≤ j1 < j2 < · · · < jk, k ≥ 1, and let pi < pmax, otherwise. Then

LIn − pmaxn√
n

⇒ √
pmax{

√
1 − pmaxkZk + Hk} := R(pmax, k).

The proof of the theorem relies on an understanding of the limiting distributions

of LIred
n,m and LIcap

n,m. To this end, let us introduce some more notation. For a finite

m-alphabet, and for W1, . . . , Wn iid with P(W1 = αr) = qr > 0, let LIn(q) :=

LIn(q1, . . . , qm) denote the length of the longest increasing subsequence of (Wi)
n
i=1.

For each m ≥ 1, let also πm =
∑m

r=1 pr.

First, let us choose m large enough so that 1 − πm−1 < pmax. Next, observe that,

from the capping at αm, LIcap
n,m is distributed as LIn(p̃), where p̃ = (p1, . . . , pm−1, 1 −

πm−1). But since m is chosen large enough, the maximal probability among the entries

of p̃ is then pmax, of multiplicity k, as for the original infinite alphabet. By Theorem

2.2.1, we thus have

LIn(p̃) − pmaxn√
n

⇒ R(pmax, k), (3.0.11)

as n → ∞.

Turning to LIred
n,m, suppose that the number of elements Nn,m of the reduced subse-

quence (Y m
i )1≤i≤Nn,m is equal to j. Since only the elements of (Xi)1≤i≤n which are at

most αm are left, LIred
n,m must be distributed as LIj(p̂), where p̂ = (p1/πm, . . . , pm/πm).

From the way m is chosen, the maximal probability among the entries of p̂ is then

pmax/πm, of multiplicity k. Invoking again the finite-alphabet result of Theorem 2.2.1,

we find that

LIn(p̂) − (pmax/πm)n√
n

⇒ R

(
pmax

πm

, k

)
, (3.0.12)
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as n → ∞.

We now relate the two limiting expressions in (3.0.11) and (3.0.12) by the following

elementary lemma.

Lemma 3.0.1 Let k ≥ 1 be an integer, and let (qm)∞m=1 be a sequence of reals in

(0, 1/k] converging to q ≥ 0. Then R(qm, k) ⇒ R(q, k), as m → ∞.

Proof. Assume q > 0. Then

R(qm, k) =
√

qm

{√
1 − qmkZk + Hk

}

=
√

qm{
√

1 − qkZk + Hk}

+
√

qm{
√

1 − qmk −
√

1 − qk}Zk

=

√
qm

q
R(q, k) + cmZk, (3.0.13)

where cm =
√

1 − qmk − √
1 − qk. Since qm → q as m → ∞, cm → 0, and so

cmZk ⇒ 0, as m → ∞. This gives the result. The degenerate case, q = 0, is clear.

The main idea developed in the proof of Theorem 3.0.3 is now to use the basic

inequality (3.0.10) in conjunction with a conditioning argument for LIred
n,m, in order

to apply Lemma 3.0.1, i.e., to use R(pmax/πm, k) ⇒ R(pmax, k), as m → ∞, since

πm → 1.

Proof. (Theorem 3.0.3) First, fix an arbitrary s > 0. As previously noted in

Remark 2.2.2, R(pmax, k) is absolutely continuous, with density supported on R (R+

in the uniform case), and so s is a continuity point of its distribution function. Next,

choose 0 < ǫ1 < 1, and 0 < δ < 1, and again note that (1 + δ)s is also necessarily a

continuity point for R(pmax, k).

With this choice of ǫ1, pick β > 0 such that P(Z ≥ β) < ǫ1/2, where Z is a stan-

dard normal random variable. Finally, pick ǫ2 such that 0 < ǫ2 < ǫ1P(R(pmax, k) <
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(1 + δ)s). Such a choice of ǫ2 can always be made since the support of R(pmax, k)

includes R
+.

We have seen that, for m large enough, we can bring some finite-alphabet results

to bear on the infinite case. In fact, we need a few more technical requirements to

complete our proof. Setting σ2
m = πm(1 − πm), we choose large enough m so that:

(i) 1 − πm−1 < pmax,

(ii) (s + pmaxβσm/πm)/
√

πm − βσm < (1 + δ)s, and

(iii) |P(R(pmax, k) < (1 + δ)s) − P(R(pmax/πm, k) < (1 + δ)s)| < ǫ2/2.

The conditions (i) and (ii) are clearly satisfied, since πm → 1 and σm → 0, as m → ∞.

The condition (iii) is also satisfied, as seen by applying Lemma 3.0.1 to R(pmax/πm, k),

with πm → 1, and since (1 + δ)s is also a continuity point for R(pmax, k).

Now recall that LIcap
n,m is distributed as LIn(p̃), where p̃ = (p1, . . . , pm−1, 1−πm−1).

Hence, we have from (3.0.10) and (3.0.11) that

LIn − pmaxn√
n

≤ LIcap
n,m − pmaxn√

n
⇒ R(pmax, k), (3.0.14)

as n → ∞, and so

P

(
LIn − pmaxn√

n
≤ s

)
≥ P

(
LIcap

n,m − pmaxn√
n

≤ s

)

→ P(R(pmax, k) ≤ s), (3.0.15)

as n → ∞.

More work is required to make use of the left-hand minorization in (3.0.10) (i.e.,

LIred
n,m ≤ LIn.) Recall that if the length Nn,m of the reduced sequence is equal to j,

then LIred
n,m must be distributed as LIj(p̂), where p̂ = (p1/πm, . . . , pm/πm). Now the
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essential observation is that Nn,m is distributed as a binomial random variable with

parameters πm and n. It is thus natural to focus on the values of j close to ENn,m =

nπm. Writing the variance of Nn,m as nσ2
m, where, as above, σ2

m = πm(1 − πm), and

setting

γn,m,j := P(Nn,m = j) =

(
n

j

)
πj

m(1 − πm)n−j,

we have

P

(
LIred

n,m − pmaxn√
n

≤ s

)

=
n∑

j=0

P

(
LIred

n,m − pmaxn√
n

≤ s

∣∣∣∣Nn,m = j

)
γn,m,j

=

n∑

j=0

P

(
LIj(p̂) − pmaxn√

n
≤ s

)
γn,m,j

=
n∑

j=0

P

(
LIj(p̂) − pmax

πm
j

√
j

≤
√

n

j

(
s +

pmax√
n

(
n − j

πm

)))
γn,m,j

≤
n∑

j=⌈nπm−βσm
√

n⌉

P

(
LIj(p̂) − pmax

πm
j

√
j

≤
√

n

j

(
s +

pmax√
n

(
n − j

πm

)))
γn,m,j

+

⌈nπm−βσm
√

n⌉−1∑

j=0

γn,m,j

<
n∑

j=⌈nπm−βσm
√

n⌉

P

(
LIj(p̂) − pmax

πm
j

√
j

≤
√

n

j

(
s +

pmax√
n

(
n − j

πm

)))
γn,m,j

+ ǫ1, (3.0.16)

for sufficiently large n, where (3.0.16) follows from the Central Limit Theorem and

our choice of β, and where, as usual, ⌈·⌉ is the ceiling function.

Next, note that for ⌈nπm − βσm

√
n⌉ ≤ j ≤ n, and making use of the condition

(ii),
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√
n

j

(
s +

pmax√
n

(
n − j

πm

))

<

√
n

nπm − βσm

√
n

(
s +

pmax√
n

(
n − nπm − βσm

√
n

πm

))

=
1√

πm − βσm/
√

n

(
s +

pmaxβσm

πm

)

≤ 1√
πm − βσm

(
s +

pmaxβσm

πm

)

< s(1 + δ). (3.0.17)

Hence, for sufficiently large n, we have

n∑

j=⌈nπm−βσm
√

n⌉

P

(
LIj(p̂) − pmax

πm
j

√
j

≤
√

n

j

(
s +

pmax√
n

(
n − j

πm

)))
γn,m,j

+ ǫ1

≤
n∑

j=⌈nπm−βσm
√

n⌉

P

(
LIj(p̂) − pmax

πm
j

√
j

≤ s(1 + δ)

)
γn,m,j + ǫ1. (3.0.18)

Now from the condition (iii), and from the weak convergence, as j → ∞, of

(LIj(p̂) − (pmax/πm)j)/
√

j to R(pmax/πm, k), we find that, for j large enough,

∣∣∣∣P
(

LIj(p̂) − pmax

πm
j

√
j

≤ (1 + δ)s

)
− P(R(pmax, k) ≤ (1 + δ)s)

∣∣∣∣

≤
∣∣∣∣P
(

LIj(p̂) − pmax

πm
j

√
j

≤ (1 + δ)s

)
− P

(
R

(
pmax

πm
, k

)
≤ (1 + δ)s

)∣∣∣∣

+

∣∣∣∣P(R(pmax, k) ≤ (1 + δ)s) − P

(
R

(
pmax

πm

, k

)
≤ (1 + δ)s

)∣∣∣∣

<
ǫ2

2
+

ǫ2

2

< ǫ1P(R(pmax, k) ≤ (1 + δ)s), (3.0.19)

and so,
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P

(
LIj(p̂) − pmax

πm
j

√
j

≤ (1 + δ)s

)
≤ (1 + ǫ1)P (R(pmax, k) ≤ (1 + δ)s) . (3.0.20)

Now since ⌈nπm − βσm

√
n⌉ → ∞, as n → ∞, with the help of (3.0.18) and

(3.0.20), (3.0.16) becomes

P

(
LIred

n,m − pmaxn√
n

≤ s

)

≤
n∑

j=⌈nπm−βσm
√

n⌉

(1 + ǫ1)P (R(pmax, k) ≤ (1 + δ)s) γn,m,j + ǫ1

≤ (1 + ǫ1)P (R(pmax, k) ≤ (1 + δ)s) + ǫ1. (3.0.21)

From (3.0.10) we know that LIred
n,m ≤ LIn a.s., and so

P

(
LIn − pmaxn√

n
≤ s

)
≤ P

(
LIred

n,m − pmaxn√
n

≤ s

)

≤ (1 + ǫ1)P (R(pmax, k) ≤ (1 + δ)s) + ǫ1, (3.0.22)

for large enough n. But since ǫ1 and δ are arbitrary, (3.0.22) and (3.0.15) together

show that

P

(
LIn − pmaxn√

n
≤ s

)
→ P(R(pmax, k) ≤ s), (3.0.23)

for all s > 0.

The proof for s < 0 is similar. Indeed, since necessarily pmax < 1/k, R(pmax, k)

describes the limiting distribution of the longest increasing subsequence for a non-

uniform alphabet, and so is supported on R. Then, one needs only to examine

quantities of the form P(R(pmax, k) ≤ (1 − δ)s), instead of P(R(pmax, k) ≤ (1 + δ)s),

as we have done throughout the proof for s > 0. These changes lead to the resulting

statement.
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Remark 3.0.5 As an alternative to the above proof, one could certainly adopt the

finite-alphabet development of the previous sections so as to express LIn, for countable

infinite alphabets, in terms of approximations to functionals of Brownian motion.

More precisely,

LIn = sup
m≥2

max
0≤k1≤···
≤km−1≤n

{
S1

k1
+ S2

k2
+ · · · + Sm−1

km−1
+ am

n

}

= sup
m≥2





n

m
− 1

m

m−1∑

r=1

rSr
n + max

0≤k1≤···
≤km−1≤n

m−1∑

r=1

Sr
kr




 ,

where am
n counts the number of occurrences of the letter αm among (Xi)1≤i≤n, and

Sr
k =

∑k
i=1 Zr

i is the sum of independent random variables defined as in (2.1.3). After

centering and normalizing the Sr
k, as was done to obtain (2.2.11) in the non-uniform

finite alphabet development, one could then try to apply Donsker’s Theorem to obtain

a Brownian functional, which we now know to be distributed as R(pmax, k). However,

due to the countably infinite number of Brownian motions that would result, great care

would need to be taken to make such an approach rigorous.
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CHAPTER IV

GROWING IID ALPHABETS

4.1 Introduction

We have thus far focused on the limiting behavior of LIn for iid alphabets, noting,

in particular, that LIn ≍ n. On the other hand, Lσn ∼ 2
√

n, as was discussed in the

Introduction.

With an eye to linking both types of asymptotics, we introduce the notion of

growing alphabets. Specifically, we assume that we have an infinite, ordered alphabet

A = {α1 < α2 < · · · < αn · · · }, and that for each n ≥ 1, we have a finite alphabet

An = {α1 < α2 < · · · < αmn} ⊂ A. Then (Xn)n≥1 is chosen to be a sequence of

independent random variables such that each Xn is uniformly distributed over An,

where mn → ∞, as n → ∞. In this setup, each finite alphabet consists of the first

mn letters of A, so that An ⊂ An+1 ⊂ A, for all n ≥ 1.

4.2 A First-order Lower Bound

Now if mn = m, for all n, then we have again the finite-alphabet case, so that LIn ≍ n.

Here, the linear asymptotic behavior essentially results from long stretches of identical

values in the subsequence. On the other hand, if we allow mn to grow so quickly, as

n → ∞, that Xn ≤ Xn+1 with some positive probability uniformly bounded below

in n, we find that, again, LIn ≍ n. Such results can be made rigorous, for instance,

in the exponentially growing case mn ∼ cn, where c > 1. At more moderate growth

rates of mn, however, sub-linear behavior is more typical. In particular, for growing

alphabets with a polynomial growth rate, we obtain the following theorem, which

serves as something of an interpolation result between the finite-alphabet case and
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Table 1: Lower bound constants in the
√

n regime of Theorem 4.2.1

p dp 2
√

cp

0.5 0.90251 1.41421
0.6 0.98865 1.36346
0.7 1.06787 1.31920
0.8 1.14160 1.28000
0.9 1.21085 1.24486
1.0 1.27635 1.21306
1.5 1.56320 1.08866
2.0 1.80503 1.00000
3.0 2.21070 0.87738
4.0 2.55269 0.79370
5.0 2.85400 0.73143
6.0 3.12640 0.68256
7.0 3.37689 0.64277
8.0 3.61005 0.60951
9.0 3.82904 0.58112
10.0 4.03616 0.55651

the random permutation case. In particular, it shows that, in expectation, LIn must

always be at least asymptotically
√

n, in this growth regime.

Theorem 4.2.1 Let mn = ⌈np⌉, with p > 0, and let (Xn)n≥1 be a sequence of inde-

pendent random variables, with Xn uniformly distributed over An. Then,

lim inf
n→∞

ELIn

n1−p
≥ 1

1 − p
, 0 < p ≤ 1

2
, (4.2.1)

lim inf
n→∞

ELIn√
n

≥ (2
√

cp) ∨ dp, p >
1

2
, (4.2.2)

where cp and dp satisfy c1 = e−1 and cp = (pp/(1−p) − p1/(1−p))/(1− p), for p 6= 1, and

dp = supα>0{
√

2/α(1 − e−2αp)}, for all p > 0, respectively.

Remark 4.2.1 The lower bound in (4.2.1) can actually be extended to 0 < p < 1,

and the lower bound in (4.2.2) can likewise be extended to all p > 0. However, for
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0 < p < 1, the theorem as stated shows the best asymptotic rates of growth in n, and,

moreover, the constant 1/(1 − p) can also be shown to be exact for 0 < p < 1/3.

Finally, note that the constant cp is continuous at p = 1, and that dp > 2
√

cp, if and

only if, p is greater than approximately 0.94, as suggested in Table 1.

Proof. To prove (4.2.1), observe that, for any n ≥ 1,

LIn ≥
n∑

k=1

1{Xk=α1}, (4.2.3)

almost surely.

Let 0 < p < 1. Note that, for any k, we have mj = k over the block Ik :=

{⌊(k − 1)1/p⌋ + 1 ≤ j ≤ ⌊k1/p⌋}, where ⌊a⌋ (the floor of a) is the greatest integer less

than or equal to a. Then (4.2.3) clearly implies that

ELI⌊n1/p⌋ ≥
⌊n1/p⌋∑

j=1

E1{Xj=α1}

=

⌊n1/p⌋∑

j=1

P(Xj = α1)

=

n∑

k=1

(
⌊k1/p⌋ − ⌊(k − 1)1/p⌋

) 1

k

≥
n∑

k=1

(
k1/p − (k − 1)1/p − 1

) 1

k

≥
n∑

k=1

(
k1/p

(
1 − e−1/kp

)
− 1
) 1

k

≥
n∑

k=1

(
k1/p

(
1

kp

)
− 1

)
1

k

=

n∑

k=1

1

p
k1/p−2 − 1

k

=
1

1 − p
n1/p−1 + o

(
n1/p−1

)
. (4.2.4)
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Hence, lim infn→∞ ELI⌊n1/p⌋/n
1/p−1 ≥ 1/(1 − p), and so, by rescaling,

lim inf
n→∞

ELIn

n1−p
≥ 1

1 − p

,

for 0 < p < 1, and (4.2.1) is proved.

Turning next to (4.2.2), we first establish the bounds associated with cp. For k

and n fixed, k ≤ n, let

Y k
j = 1{Xj≤αmk

}, k ≤ j ≤ n, (4.2.5)

and thus the number Nk,n of Xjs among Xk, Xk+1, . . . , Xn which do not exceed αmk

is

Nk,n =

n∑

j=k

Y k
j . (4.2.6)

In seeking a lower bound for ENk,n, we first note that, trivially, for k = n − 1 or

n, ENk,n does not exceed 2. For the remaining values of 1 ≤ k ≤ n − 2, we have, for

p 6= 1:

ENk,n =
n∑

j=k

EY k
j =

n∑

j=k

⌈kp⌉
⌈jp⌉

≥ kp
n∑

j=k

1

(j + 1)p

≥ kp

∫ n

k

1

(y + 2)p
dy

> kp

∫ n−2

k

1

(y + 2)p
dy

= kp n1−p − (k + 2)1−p

1 − p

=
1

1 − p

[
n

(
k

n

)p

−
(

k

k + 2

)p

(k + 2)

]
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>
1

1 − p

[
n

(
k

n

)p

− k − 2

]
. (4.2.7)

Let us denote the expression in (4.2.7) by f(k), and optimize over 1 ≤ k ≤ n− 2.

One can easily check that f attains its maximum at xn := np1/(1−p), and so

f(xn) =
1

1 − p
(npp/(1−p) − np1/(1−p) − 2)

= ncp −
2

n
. (4.2.8)

Now among the integers, kn = ⌈xn⌉ or ⌊xn⌋ one finds the maximum of f . In either

case, it is clear that

lim inf
n→∞

ENk,n

n
≥ cp. (4.2.9)

To see that (4.2.9) holds when p = 1, we make use of the inequality

1

2(n + 1)
<

n∑

j=1

1

j
− log n − γ <

1

2n
, (4.2.10)

where γ ≈ 1.57721 . . . is the Euler-Mascheroni constant. From this it follows that,

for 2 ≤ k ≤ n,

log

(
n

k − 1

)
− n − k + 2

2(k − 1)(n + 1)
<

n∑

j=k

1

j
< log

(
n

k − 1

)
− n − k

2kn
. (4.2.11)

Now trivially ENn,n does not exceed 1, and for 2 ≤ k ≤ n − 1 we have that

ENk,n =

n∑

j=k

EY k
j =

n∑

j=k

k

j

> k

(
log

(
n

k − 1

)
− n − k + 2

2(k − 1)(n + 1)

)

61



> k log

(
n

k − 1

)
− 1. (4.2.12)

Denoting the final expression in (4.2.12) by g(k), we find that its maximum is

attained at some xn, where xn/n → e−1, as n → ∞. Again denoting the maximum

of g(k) over the integers by kn (either ⌈xn⌉ or ⌊xn⌋), we again see that

lim inf
n→∞

ENk,n

n
≥ lim inf

n→∞

1

n

(
kn log

(
n

kn − 1

)
− 1

)

= e−1 log e = c1. (4.2.13)

We thus have an estimate of how many Xjs satisfy Xj ≤ αmkn
, for kn ≤ j ≤ n,

an estimate whose expectation is of order n. To complete the proof, we make three

key observations.

Firstly, since Nk,n consists of a sum of (independent) indicator random variables,

we have

P(Nk,n ≥ aENk,n) ≥ 1 − e−(1−a)2(ENk,n)2/2 Var Nk,n ≥ 1 − e−(1−a)2ENk,n/2, (4.2.14)

for 0 < a < 1.

Secondly, denoting by Akn,n the set of indices among kn, kn + 1, . . . , n for which

Xj ≤ αmkn
, we see that each Xj ∈ Akn,n is distributed uniformly over α1, α2, . . . , αmkn

.

Hence, the length of the longest increasing subsequence among such Xj , which we

denote by LI(Akn,n), is distributed as in the mkn-letter uniform alphabet case, with

the sequence length given by Nkn,n.

Thirdly, given (Yi)1≤i≤n iid, chosen uniformly over the m-letter alphabet {αk}1≤k≤m,

and (Ui)1≤i≤n iid, and independent of (Yi)1≤i≤n, with U1 ∼ U(0, 1), then the sequence

(Zi)1≤i≤n defined by Zi = Yi − Ui has two useful properties. The first of these is

that clearly each Zi is uniform over the interval (0, m), and hence the length of the
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longest increasing subsequence of (Zi)1≤i≤n is distributed as Lσn. The second prop-

erty is that if Zi1 ≤ Zi2 ≤ · · · ≤ Zik is an increasing subsequence of (Zi)1≤i≤n, then

Yi1 ≤ Yi2 ≤ · · · ≤ Yik must also be an increasing subsequence of (Yi)1≤i≤n, and so

LI(Y1, . . . , Yn) ≥ LI(Z1, . . . , Zn).

Applying these insights, along with our understanding of the asymptotics of Nkn,n,

we conclude that, for any 0 ≤ a < 1,

ELIn ≥ ELI(Akn,n)

≥
n∑

j=⌊aENkn,n⌋
E(LI(Akn,n)|Nkn,n = j)P(Nkn,n = j)

≥
n∑

j=⌊aENkn,n⌋
ELσjP(Nkn,n = j)

> ELσ⌊aENkn,n⌋

n∑

j=⌊aENkn,n⌋
P(Nkn,n = j)

≥ ELσ⌊aENkn,n⌋P(Nk,n ≥ aENkn,n)

> ELσ⌊aENkn,n⌋

(
1 − e−(1−a)2ENkn,n/2

)
, (4.2.15)

using (4.2.14). Hence, since lim infn→∞ ENkn,n/n = cp,

lim inf
n→∞

LIn√
n

≥ lim inf
n→∞

ELσ⌊aENkn,n⌋√
n

(
1 − e−(1−a)2ENkn,n/2

)

≥ 2
√

acp(1), (4.2.16)

which is optimized as a ր 1. Thus,

lim inf
n→∞

LIn√
n

≥ 2
√

cp, (4.2.17)

and we have the bound associated with cp.
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Turning to the lower bound associated with dp, let α > 0 be given, and define

the kth block of indices to be Ik = {βk−1 + 1, . . . , βk}, where βk = ⌊αk(k + 1)/2⌋.

We will be interested in examining the events Ek = ∪j∈Ik
{Xj ∈ Rk}, where Rk :=

{⌈βp
k−2 + 1⌉, . . . , ⌈βp

k−1⌉}, a set whose cardinality ∆k = ⌈βp
k−1⌉ − ⌈βp

k−2⌉ we will

estimate in terms of α and p. Note that Rk ⊂ Aj, for all j ∈ Ik.

It is not hard to see that, in analogy with (4.2.3),

LIβk
≥

k∑

j=1

1Ek
. (4.2.18)

Now by the independence of the Xj, we have

P(Ec
k) =

∏

j∈Ik

P(Xj /∈ Rk)

=

βk−βk−1∏

j=1

(
1 − ∆k

⌈βk−1 + j⌉p

)

≤ exp

(
−∆k

βk−βk−1∑

j=1

1

⌈βk−1 + j⌉p

)
. (4.2.19)

We first estimate ∆k in (4.2.19) as follows:

∆k = ⌈βp
k−1⌉ − ⌈βp

k−2⌉

≥ βp
k−1 − βp

k−2 − 1

= ⌊αk(k − 1)

2
⌋p − ⌊α(k − 1)(k − 2)

2
⌋p − 1

≥
(

αk(k − 1)

2

)p

−
(

α(k − 1)(k − 2)

2

)p

− 2

=

(
αk(k − 1)

2

)p(
1 −

(
1 − 2

k

)p)
− 2. (4.2.20)

Next, let 0 < ε < 1. For p ≥ 1, we note that 1− (1− 2/k)p ≥ p(2/k)(1− 2/k)p−1.

Then, for k large enough, our estimate in (4.2.20) becomes
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∆k ≥
(

αk(k − 1)

2

)p
(

p

(
2

k

)(
1 − 2

k

)p−1
)

− 2

≥ (1 − ε)
αpkp−1(k − 1)p

2p−1
p. (4.2.21)

Similarly, for 0 < p < 1, we also note that 1 − (1 − 2/k)p ≥ p(2/k). Then, for k

large enough, our estimate in (4.2.20) again becomes

∆k ≥
(

αk(k − 1)

2

)p(
p

(
2

k

))
− 2

≥ (1 − ε)
αpkp−1(k − 1)p

2p−1
p. (4.2.22)

To estimate the sum in (4.2.19), we also have, for sufficiently large k,

βk−βk−1∑

j=1

1

⌈βk−1 + j⌉p
≥

βk−βk−1+1∑

j=2

1

(βk−1 + j)p

≥
∫ βk−βk−1+2

2

1

(βk−1 + x)p
dx. (4.2.23)

To continue estimating (4.2.23), we first consider the case p > 1. Then

∫ βk−βk−1+2

2

1

(βk−1 + x)p
dx

=
1

p − 1

(
1

(βk−1 + 2)p−1
− 1

(βk + 2)p−1

)

=
1

(p − 1)(βk + 2)p−1

(
(βk + 2)p−1

(βk−1 + 2)p−1
− 1

)

≥ 1

(p − 1)(αk(k + 1)/2 + 2)p−1

((
αk(k + 1)/2 + 1

αk(k − 1)/2 + 2

)p−1

− 1

)

=
2p−1

(p − 1)(αk(k + 1) + 4)p−1

((
1 +

2(αk − 1)

αk(k − 1) + 4

)p−1

− 1

)
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≥ 2p−1

(p − 1)(αk(k + 1) + 4)p−1

(
2(p − 1)(αk − 1)

αk(k − 1) + 4

)

≥ (1 − ε)
2p(αk − 1)

(αk(k + 1))p
. (4.2.24)

Similarly, for 0 < p < 1, we again find that

∫ βk−βk−1+2

2

1

(βk−1 + x)p
dx

=
1

1 − p

(
(βk + 2)1−p − (βk−1 + 2)1−p

)

=
1

1 − p
(βk + 2)1−p

(
1 −

(
(βk−1 + 2)

βk + 2

)1−p
)

≥ 1

1 − p

(
αk(k + 1)

2
+ 1

)1−p
(

1 −
(

αk(k − 1)/2 + 1

αk(k + 1)/2 + 2

)1−p
)

=
(αk(k + 1) + 2)1−p

21−p(1 − p)

(
1 −

(
1 − 2(αk + 1)

αk(k + 1) + 4

)1−p
)

≥ (αk(k + 1) + 2)1−p

21−p(1 − p)

(
1 − 2(1 − p)(αk + 1)

αk(k + 1) + 4

)

=
2p(αk + 1)(αk(k + 1) + 2)1−p

αk(k + 1) + 4

≥ (1 − ε)
2p(αk + 1)

(αk(k + 1))p

> (1 − ε)
2p(αk − 1)

(αk(k + 1))p
. (4.2.25)

Finally, for p = 1,

∫ βk−βk−1+2

2

1

(βk−1 + x)p
dx

= log (βk + 2) − log (βk−1 + 2)

= log
βk + 2

βk−1 + 2

≥ log
αk(k + 1)/2 + 1

αk(k − 1)/2 + 2
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= log
αk(k + 1) + 2

αk(k − 1) + 4

= log

(
(1 +

2(αk − 1)

αk(k − 1) + 4

)

≥ (1 − ε)
2(αk − 1)

αk(k + 1)
. (4.2.26)

Thus, for any p > 0, and for k large enough, say k > K, we have from our

estimates in (4.2.21) - (4.2.26) that

P(Ec
k) ≤ exp

(
−∆k

βk−βk−1∑

j=1

1

⌈βk−1 + j⌉p

)

≤ exp

(
−
[
(1 − ε)

αpkp−1(k − 1)p

2p−1
p

] [
(1 − ε)

2p(αk − 1)

(αk(k + 1))p

])

= exp

(
−(1 − ε)22p(αk − 1)

k

)

≤ exp(−(1 − ε)3(2αp)). (4.2.27)

Applying the estimate in (4.2.27) to (4.2.18), we see that for n > K,

ELIβn ≥
n∑

k=1

E1Ek

≥
n∑

k=K+1

E1Ek

≥
n∑

k=K+1

(
1 − e−(1−ε)3(2αp))

)

= (n − K)
(
1 − e−(1−ε)3(2αp)

)
. (4.2.28)

Since n/
√

βn →
√

2/α, as n → ∞, we have

lim inf
n→∞

LIβn√
βn

= lim inf
n→∞

LIn√
n

≥
√

2

α

(
1 − e−(1−ε)3(2αp)

)
, (4.2.29)
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and since ε was arbitrary,

lim inf
n→∞

LIn√
n

≥
√

2

α

(
1 − e−2αp

)
, (4.2.30)

and we may optimize over α > 0, and so complete the proof.
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CHAPTER V

MARKOVIAN ALPHABETS

Recall that in the combinatorial development above, the expression for LIn in (2.1.5),

namely,

LIn =
n

m
− 1

m

m−1∑

r=1

rSr
n + max

0≤k1≤···
≤km−1≤n

{S1
k1

+ S2
k2

+ · · · + Sm−1
km−1

}, (5.0.31)

is of a purely combinatorial nature or, in more probabilistic terms, is of a pathwise

nature. We wish to extend our analysis of this expression to Markovian sequences.

Moreover, at the same time we wish to generalize from LIn to the shape of the

entire associated Young tableau, which we now define and relate to the sequence

(Xn)n≥1.

A Young tableau of size n is a diagram consisting of a collection of n boxes arranged

in rows and aligned at the left, such that:

• The number of boxes in each row is no greater than the number of boxes in the

row above, and

• Each box contains entries which are weakly or strictly increasing in each row

and strictly increasing down each column. If the entries are row-wise weakly

increasing, we say that the Young tableau is semi-standard, while if the entries

are row-wise strictly increasing, we say that it is standard.

The shape of a Young tableau will refer to the lengths of the rows, irrespective of the

entries, and it is the shape that will be of primary concern to us.

Young tableaux are connected to sequence analysis via the well-known Robinson-

Schensted-Knuth (RSK) correspondence, which states that for any sequence (Xk)1≤k≤n
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Figure 1: Example of a 4-Row, Semi-Standard Young Tableau

drawn from an ordered alphabet there is a unique pair of Young tableaux (P, Q), both

of the same shape, with P semi-standard, and Q standard. The pair (P, Q) is con-

structed as follows.

Beginning with a Young tableau P consisting of a single box containing X1, and

a corresponding Young tableau Q, called the recording tableau, also consisting of a

single box but containing the integer 1, we successively augment P and Q according

to the values of X2, . . . , Xn using the following algorithm. For each k ≥ 2:

• If Xk is greater than or equal to the final entry of the first row of P , then we

simply add another box containing Xk to the end of the first row, completing

the augmentation of P by Xk.

• If Xk is strictly less than the final entry of the first row of P , then we locate the

left-most box of the first row whose entry exceeds Xk, replace that entry with

Xk, and “bump” the original entry to the next row.

• For any “bumped” entry, we proceed, in each successive row, as with the first

row until an entry is added to the end of a (possibly empty) row, at which point

the augmentation of P by Xk is complete.

• Once P has been augmented, we augment Q with a box containing the integer

k, where the location of the box corresponds the location of the box in P that

was added to the end of a row. (This explains the name recording tableau).
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Figure 2: RSK Algorithm Applied to the Sequence (4, 1, 3, 4, 2).

(See Figure 2 for a short example of the RSK algorithm applied to a sequence of

length 5.)

Moreover, one can always recover the sequence (Xk)1≤k≤n from (P, Q). Indeed,

the RSK correspondence states that there is actually a one-to-one correspondence

between all possible sequences (Xk)1≤k≤n of letters from an alphabet of size m, and

all possible pairs (P, Q) of Young tableaux, with P a semi-standard Young tableau

with entries in the alphabet of size m, and Q a standard Young tableau with entries

consisting of the first n positive integers.

5.1 2-Letter Case

We begin our study of Markovian alphabets by first concentrating on the 2-letter

case. Now R1
n = LIn, and with m = 2, R2

n = n−LIn, it suffices to describe LIn. Here

(Xn)n≥0 is described by the following transition probabilities between the two states

(which we identify with the two letters α1 and α2): P(Xn+1 = α2|Xn = α1) = a and

P(Xn+1 = α1|Xn = α2) = b, where 0 < a + b < 2. We later examine the degenerate

cases a = b = 0 and a = b = 1. In keeping with the common usage within the Markov

chain literature, we begin our sequence at n = 0, although our focus will be on n ≥ 1.

Denoting by (p1
n, p2

n) the vector describing the probability distribution on {α1, α2} at

time n, we have
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(
p1

n+1, p
2
n+1

)
=

(
p1

n, p
2
n

)



1 − a a

b 1 − b


 . (5.1.1)

The eigenvalues of the matrix in (5.1.1) are λ1 = 1 and −1 < λ2 = 1 − a − b < 1,

with respective left eigenvectors (π1, π2) = (b/(a+b), a/(a+b)) and (1,−1). Moreover,

(π1, π2) is also the stationary distribution. Given any initial distribution (p1
0, p

2
0), we

find that

(
p1

n, p
2
n

)
=

(
π1, π2

)
+ λn

2

ap1
0 − bp2

0

a + b

(
1,−1

)
→
(

π1, π2

)
, (5.1.2)

as n → ∞, since λ2 < 1.

Our goal is now to use these probabilistic expressions to describe the random

variables Z1
k and S1

k defined in Section 2.2. (We retain the redundant superscript “1”

in Z1
k and S1

k in the interest of uniformity.)

Setting β = ap1
0 − bp2

0, we easily find that

EZ1
k = (+1)

(
π1 +

β

a + b
λk

2

)
+ (−1)

(
π2 −

β

a + b
λk

2

)

=
b − a

a + b
+ 2

β

a + b
λk

2, (5.1.3)

for each 1 ≤ k ≤ n. Thus,

ES1
k =

b − a

a + b
k + 2

(
βλ2

a + b

)(
1 − λk

2

1 − λ2

)
, (5.1.4)

and so ES1
k/k → (b − a)/(a + b), as k → ∞.

Turning to the second moments of Z1
k and S1

k , first note that E(Z1
k)2 = 1, since

(Z1
k)

2 = 1 a.s. Next, we consider EZ1
kZ

1
ℓ , for k < ℓ. Using the Markovian structure

of (Xn)n≥0, it quickly follows that
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P((Xk, Xℓ) = (xk, xℓ))

=






(
π1 + λℓ−k

2
a

a+b

) (
π1 + λk

2
β

a+b

)
, if (xk, xℓ) = (α1, α1),

(
π1 − λℓ−k

2
b

a+b

) (
π2 − λk

2
β

a+b

)
, if (xk, xℓ) = (α1, α2),

(
π2 − λℓ−k

2
a

a+b

) (
π1 + λk

2
β

a+b

)
, if (xk, xℓ) = (α2, α1),

(
π2 + λℓ−k

2
b

a+b

) (
π2 − λk

2
β

a+b

)
, if (xk, xℓ) = (α2, α2).

(5.1.5)

For simplicity, we will henceforth assume that our initial distribution is the sta-

tionary one, i.e., (p1
0, p

2
0) = (π1, π2). Later, (see Chapter VI) we note that we may

drop this assumption and deal with initial distributions concentrated on an arbitrary

state. Under this assumption, β = 0, ES1
k = kµ, where µ = EZ1

k = (b − a)/(a + b),

and (5.1.5) simplifies to

P((Xk, Xℓ) = (xk, xℓ))

=






(
π1 + λℓ−k

2
a

a+b

)
π1, if (xk, xℓ) = (α1, α1),

(
π1 − λℓ−k

2
b

a+b

)
π2, if (xk, xℓ) = (α1, α2),

(
π2 − λℓ−k

2
a

a+b

)
π1, if (xk, xℓ) = (α2, α1),

(
π2 + λℓ−k

2
b

a+b

)
π2, if (xk, xℓ) = (α2, α2).

(5.1.6)

We can now compute EZ1
kZ1

ℓ :

EZ1
kZ1

ℓ = P(Z1
kZ

1
ℓ = +1) − P(Z1

kZ
1
ℓ = −1)

= P((Xk, Xℓ) ∈ {(α1, α1), (α2, α2)})

− P((Xk, Xℓ) ∈ {(α1, α2), (α2, α1)})

=

(
π2

1 + λℓ−k
2

a

a + b
π1 + π2

2 + λℓ−k
2

b

a + b
π2

)
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−
(

π1π2 − λℓ−k
2

b

a + b
π2 + π1π2 − λℓ−k

2

a

a + b
π1

)

=

(
π2

1 + π2
2 +

2ab

(a + b)2
λℓ−k

2

)
−
(

2π1π2 −
2ab

(a + b)2
λℓ−k

2

)

=
(b − a)2

(a + b)2
+

4ab

(a + b)2
λℓ−k

2 . (5.1.7)

Hence, recalling that β = 0,

σ2 := Var Z1
k = 1 −

(
b − a

a + b

)2

=
4ab

(a + b)2
, (5.1.8)

for all k ≥ 1, and, for k < ℓ, the covariance of Z1
k and Z1

ℓ is

Cov(Z1
k , Z

1
ℓ ) =

(b − a)2

(a + b)2
+ σ2λℓ−k

2 −
(

b − a

a + b

)2

= σ2λℓ−k
2 . (5.1.9)

Proceeding to the covariance structure of S1
k , we first find that

VarS1
k =

k∑

j=1

VarZ1
j + 2

∑

j<ℓ

Cov(Z1
j , Z

1
l )

= σ2k + 2σ2
∑

j<ℓ

λℓ−j
2

= σ2k + 2σ2

(
λk+1

2 − kλ2
2 + (k − 1)λ2

(1 − λ2)2

)

= σ2

(
1 + λ2

1 − λ2

)
k + 2σ2

(
λ2(λ

k
2 − 1)

(1 − λ2)2

)
. (5.1.10)

Next, for k < ℓ, and using (5.1.9) and (5.1.10), the covariance of S1
k and S1

ℓ is

given by

Cov(S1
k , S

1
ℓ ) =

k∑

i=1

ℓ∑

j=1

Cov(Z1
i , Z

1
j )

74



=

k∑

i=1

VarZ1
i + 2

∑

i<j<k

Cov(Z1
i , Z

1
j ) +

k∑

i=1

ℓ∑

j=k+1

Cov(Z1
i , Z

1
j )

= VarS1
k +

k∑

i=1

ℓ∑

j=k+1

Cov(Z1
i , Z

1
j )

= VarS1
k + σ2

(
λ2(1 − λk

2)(1 − λℓ−k
2 )

(1 − λ2)2

)

= σ2

((
1 + λ2

1 − λ2

)
k − λ2(1 − λk

2)(1 + λℓ−k
2 )

(1 − λ2)2

)
. (5.1.11)

From (5.1.10) and (5.1.11) we see that, as k → ∞,

VarS1
k

k
→ σ2

(
1 + λ2

1 − λ2

)
, (5.1.12)

and, moreover, as k ∧ ℓ → ∞,

Cov(S1
k , S

1
ℓ )

(k ∧ ℓ)
→ σ2

(
1 + λ2

1 − λ2

)
. (5.1.13)

When a = b, ES1
k = 0, and in (5.1.12) the asymptotic variance becomes

VarS1
k

k
→ 4a2

(2a)2

(
1 + (1 − 2a)

1 − (1 − 2a)

)

=
1

a
− 1.

For a small, we have a “lazy” Markov chain, that is, a Markov chain which tends

to remain in a given state for long periods of time. In this regime, the random variable

S1
k has long periods of increase followed by long periods of decrease. In this way, linear

asymptotics of the variance with large constants occur. If, on the other hand, a is

close to 1, the Markov chain rapidly shifts back and forth between α1 and α2, and so

the constant associated with the linearly increasing variance of S1
k is small.

As in Chapter II, Brownian functionals play a central rôle in describing the limiting

distribution of LIn.
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To move towards a Brownian functional expression for the limiting law of LIn,

define the polygonal function

B̂n(t) =
S1

[nt] − [nt]µ

σ
√

n(1 + λ2)/(1 − λ2)
+

(nt − [nt])(Z1
[nt]+1 − µ)

σ
√

n(1 + λ2)/(1 − λ2)
, (5.1.14)

for 0 ≤ t ≤ 1. In our finite-state, irreducible, aperiodic, stationary Markov chain

setting, we may conclude that B̂n ⇒ B, as desired. (See, for example, even more

general settings, such as Gordin’s martingale approach to dependent invariance prin-

ciples [21], and the stationary ergodic invariance principle found in Theorem 19.1 of

Billingsley [7].)

Turning now to LIn, we see that for the present 2-letter situation, (5.0.31) simply

becomes

LIn =
n

2
− 1

2
S1

n + max
1≤k≤n

S1
k .

To find the limiting distribution of LIn from this expression, recall that π1 =

b/(a + b), π2 = a/(a + b), µ = π1 − π2 = (b − a)/(a + b), σ2 = 4ab/(a + b)2, and that

λ2 = 1 − a − b. Define πmax = max{π1, π2} and σ̃2 = σ2(1 + λ2)/(1 − λ2). Rewriting

(5.1.14) as

B̂n(t) =
S1

[nt] − [nt]µ

σ̃
√

n
+

(nt − [nt])(Z1
[nt]+1 − µ)

σ̃
√

n
,

LIn becomes

LIn =
n

2
− 1

2

(
σ̃
√

nB̂n(1) + µn
)

+ max
0≤t≤1

(
σ̃
√

nB̂n(t) + µnt
)

= nπ2 −
1

2

(
σ̃
√

nB̂n(1)
)

+ max
0≤t≤1

(
σ̃
√

nB̂n(t) + (π1 − π2)nt
)

= nπmax − 1

2

(
σ̃
√

nB̂n(1)
)

+ max
0≤t≤1

(
σ̃
√

nB̂n(t) + (π1 − π2)nt − (πmax − π2)n
)

. (5.1.15)
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This immediately gives

LIn − πmaxn

σ̃
√

n
= −1

2
B̂n(1)

+ max
0≤t≤1

(
B̂n(t) +

√
n

σ̃
((π1 − π2)t − (πmax − π2))

)
. (5.1.16)

Let us examine (5.1.16) on a case-by-case basis. First, if πmax = π1 = π2 = 1/2,

i.e., if a = b, then σ = 1 and σ̃ = (1 − a)/a, and so (5.1.16) becomes

LIn − n/2√
(1 − a)n/a

= −1

2
B̂n(1) + max

0≤t≤1
B̂n(t). (5.1.17)

Then, by the Invariance Principle and the Continuous Mapping Theorem,

LIn − n/2√
(1 − a)n/a

⇒ −1

2
B(1) + max

0≤t≤1
B(t). (5.1.18)

Next, if πmax = π2 > π1, (5.1.16) becomes

LIn − πmaxn

σ̃
√

n
= −1

2
B̂n(1)

+ max
0≤t≤1

(
B̂n(t) −

√
n

σ̃
(πmax − π1)t

)
. (5.1.19)

On the other hand, if πmax = π1 > π2, (5.1.16) becomes

LIn − πmaxn

σ̃
√

n
= −1

2
B̂n(1)

+ max
0≤t≤1

(
B̂n(t) −

√
n

σ̃
(πmax − π2)(1 − t)

)

=
1

2
B̂n(1)

+ max
0≤t≤1

(
B̂n(t) − B̂n(1) −

√
n

σ̃
(πmax − π2)(1 − t)

)
. (5.1.20)
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In both (5.1.19) and (5.1.20) we have a term in our maximal functional which is

linear in t or 1 − t, with a negative slope. We now show, in an elementary fashion,

that in both cases, as n → ∞, the maximal functional goes to zero in probability.

Consider first (5.1.19). Let cn =
√

n(πmax − π1)/σ̃ > 0, and for any c > 0, let

Mc = max0≤t≤1(B(t) − ct), where B(t) is a standard Brownian motion. Now for n

large enough,

B̂n(t) − ct ≥ B̂n(t) − cnt

a.s., for all 0 ≤ t ≤ 1. Then for any z > 0, and n large enough,

P(max
0≤t≤1

(B̂n(t) − cnt) > z) ≤ P(max
0≤t≤1

(B̂n(t) − ct) > z), (5.1.21)

and so by the Invariance Principle and the Continuous Mapping Theorem,

lim sup
n→∞

P(max
0≤t≤1

(B̂n(t) − cnt) > z) ≤ lim
n→∞

P(max
0≤t≤1

(B̂n(t) − ct) > z)

= P(Mc > z). (5.1.22)

Now, as is well-known, P(Mc > z) → 0 as c → ∞. One can confirm this intuitive

fact with the following simple argument. For z > 0, c > 0, and 0 < ε < 1, we have

that

P(Mc > z) ≤ P(max
0≤t≤ε

(B(t) − ct) > z) + P(max
ε<t≤1

(B(t) − ct) > z)

≤ P(max
0≤t≤ε

B(t) > z) + P(max
ε<t≤1

(B(t) − cε) > z)

≤ P(max
0≤t≤ε

B(t) > z) + P(max
0<t≤1

B(t) > cε + z)

= 2

(
1 − Φ

(
z√
ε

))
+ 2 (1 − Φ(cε + z)) . (5.1.23)
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But, as c and ε are arbitrary, we can first take the limsup of (5.1.23) as c → ∞, and

then let ε → 0, proving the claim.

We have thus shown that

lim sup
n→∞

P(max
0≤t≤1

(B̂n(t) − cnt) > z) ≤ 0,

and since the functional clearly is equal to zero when t = 0, we have

max
0≤t≤1

(B̂n(t) − cnt)
P→ 0, (5.1.24)

as n → ∞. Thus, by the Continuous Mapping Theorem, and the Converging Together

Lemma, we obtain the weak convergence result

LIn − πmaxn

σ̃
√

n
⇒ −1

2
B(1). (5.1.25)

Lastly, consider (5.1.20). Here we need simply note the following equality in law,

which follows from the stationary and Markovian nature of the underlying sequence

(Xn)n≥0:

B̂n(t) − B̂n(1) −
√

n

σ̃
(πmax − π2))(1 − t)

L
= −B̂n(1 − t) −

√
n

σ̃
(πmax − π2))(1 − t), (5.1.26)

for t = 0, 1/n, . . . , (n − 1)/n, 1. With a change of variables (u = 1 − t), and noting

that B(t) and −B(t) are equal in law, our previous convergence result (5.1.24) implies

that

max
0≤t≤1

(B̂n(t) − B̂n(1) − cn(1 − t))
L
= max

0≤u≤1
(−B̂n(u) − cnu)

P→ 0, (5.1.27)
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as n → ∞. Our limiting functional is thus of the form

LIn − πmaxn

σ̃
√

n
⇒ 1

2
B(1). (5.1.28)

Since B(1) is simply a standard normal random variable, the different signs in (5.1.25)

and (5.1.28) are inconsequential.

Finally, consider the degenerate cases. If either a = 0 or b = 0, then the sequence

(Xn)n≥0 will be a.s. constant, regardless of the starting state, and so LIn ∼ n. On the

other hand, if a = b = 1, then the sequence oscillates back and forth between α1 and

α2, so that LIn ∼ n/2. Combining these trivial cases with the previous development,

we have proved the following theorem:

Theorem 5.1.1 Let (Xn)n≥0 be a 2-state Markov chain, with transition probabilities

P(Xn+1 = α2| Xn = α1) = a and P(Xn+1 = α1|Xn = α2) = b. Let the law of X0

be the invariant distribution (π1, π2) = (b/(a + b), a/(a + b)), for 0 < a + b ≤ 2, and

(π1, π2) = (1, 0), for a = b = 0. Then, for a = b > 0,

LIn − n/2√
n

⇒
√

1 − a

a

(
−1

2
B(1) + max

0≤t≤1
B(t)

)
, (5.1.29)

where B(t) is a standard Brownian motion, and for a 6= b or a = b = 0, and πmax =

max{π1, π2},

LIn − πmaxn√
n

⇒ N(0, σ̃2/4), (5.1.30)

where N(0, σ̃2/4) is a centered normal random variable with variance σ̃2/4 = ab(2 −

a−b)/(a+b)3, for a 6= b, and σ̃2 = 0, for a = b = 0. (If a = b = 1, or σ̃2 = 0, then the

distributions in (5.1.29) and (5.1.30), respectively, are understood to be degenerate at

the origin.)

To extend this result to the entire Young tableau, let us introduce the following

notation. By
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(Y (1)
n , Y (2)

n , . . . , Y (k)
n ) ⇒ (Y (1)

∞ , Y (2)
∞ , . . . , Y (k)

∞ ) (5.1.31)

we shall mean the weak convergence of the joint law of a k-vector (Y
(1)
n , Y

(2)
n ,

. . . , Y
(k)
n ) to that of (Y

(1)
∞ , Y

(2)
∞ , . . . , Y

(k)
∞ ), as n → ∞. As noted above, since LIn is

the length of the top row of the associated Young tableau, the length of the second

row is simply n − LIn. Denoting the length of the ith row by Ri
n, (5.1.31), together

with an application of the Cramér-Wold Theorem, recovers the result of Chistyakov

and Götze [13] as part of the following easy corollary, which is in fact equivalent to

Theorem 5.1.1:

Corollary 5.1.1 For the sequence in Theorem 5.1.1, if a = b > 0, then

(
R1

n − n/2√
n

,
R2

n − n/2√
n

)
⇒ R∞ := (R1

∞, R2
∞), (5.1.32)

where the law of Y∞ is supported on the 2nd main diagonal of R
2, and with

R1
∞

L
=

√
1 − a

a

(
−1

2
B(1) + max

0≤t≤1
B(t)

)
.

If a 6= b or a = b = 0, then setting πmin = min{π1, π2}, we have

(
R1

n − πmaxn√
n

,
R2

n − πminn√
n

)
⇒ N((0, 0), Σ̃), (5.1.33)

where Σ̃ is the covariance matrix

(σ̃2/4)




1 −1

−1 1


 ,

where σ̃2 = 4ab(2 − a − b)/(a + b)3, for a 6= b, and σ̃2 = 0, for a = b = 0.

Remark 5.1.1 The joint distributions in (5.1.32) and (5.1.33) are of course degen-

erate, in that the sum of the two components is a.s. identically zero in each case. In
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(5.1.32), the density of the first component of R∞ is easy to find, and is given by (e.g.,

see [27])

f(y) =
16√
2π

(
a

1 − a

)3/2

y2e−2ay2/(1−a), y ≥ 0. (5.1.34)

As in Chistyakov and Götze [13], (5.1.32) can then be stated as: For any bounded,

continuous function g : R
2 → R,

lim
n→∞

(
g

(
R1

n − n/2√
(1 − a)n/a

,
R2

n − n/2√
(1 − a)n/a

))

= 2
√

2π

∫ ∞

0

g(x,−x)φGUE,2(x,−x)dx,

where φGUE,2 is the density of the eigenvalues of the 2 × 2 GUE, and is given by

φGUE,2(x1, x2) =
1

π
(x1 − x2)

2e−(x2
1+x2

2).

To see the GUE connection more explicitly, consider the 2 × 2 traceless GUE

matrix

M0 =




X1 Y + iZ

Y − iZ X2


 ,

where X1, X2, Y , and Z are centered, normal random variables. Since Corr (X1, X2) =

−1, the largest eigenvalue of M0 is

λ1,0 =
√

X2
1 + Y 2 + Z2,

almost surely, so that λ2
1,0 ∼ χ2

3 if VarX1 = VarY = Var Z = 1. Hence, up to a

scaling factor, the density of λ1,0 is given by (5.1.34). Next, let us perturb M0 to

M = αGI + βM0,
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where α and β are constants, G is a standard normal random variable independent

of M0, and I is the identity matrix. The covariance of the diagonal elements of M is

then computed to be ρ := α2 − β2. Hence, to obtain a desired value of ρ, we may take

α =
√

(1 + ρ)/2 and β =
√

(1 − ρ)/2. Clearly, the largest eigenvalue of M can then

be expressed as

λ1 =

√
1 + ρ

2
G +

√
1 − ρ

2
λ1,0. (5.1.35)

At one extreme, ρ = −1, we recover λ1 = λ1,0. At the other extreme, ρ = 1, we

obtain λ1 = Z. Midway between these two extremes, at ρ = 0, we have a standard

GUE matrix, so that

λ1 =

√
1

2
(G + λ1,0) .

5.2 Combinatorics Revisited

The original combinatorial development for the m-letter alphabet resulted in m − 1

quantities Sr
n, 1 ≤ r ≤ m − 1. In the 2-letter case we were then able to proceed

with a probabilistic development which involved a single Brownian motion. Using an

even more straightforward development which involves m quantities instead, we can

obtain more symmetric expressions for LIn. This is done next, and will prove useful

when studying the shape of the whole Young tableau.

Recall that ar
k counts the number of occurrences of αr among (Xi)1≤i≤k. Moving

beyond the purely combinatorial setting, assume that (Xk)k≥0 is an infinite sequence

generated by an irreducible homogeneous Markov chain having a stationary distribu-

tion (π1, π2, . . . , πm). (For no k ≥ 0 is the law of Xk necessarily assumed to be the

stationary distribution.) For each 1 ≤ r ≤ m, set T r
k = ar

k − πrk, for k ≥ 1, and

T r
0 = 0. Beginning again with (2.1.1), we find that
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LIn = max
0≤k1≤···
≤km−1≤n

[
(a1

k1
− a1

0) + (a2
k2
− a2

k1
) + · · ·+ (am

n − am
km−1

)
]

= max
0≤k1≤···
≤km−1≤n

[
((T 1

k1
+ π1k1) − (T 1

k0
+ π1k0)) + ((T 2

k2
+ π2k2) − (T 2

k1
+ π2k1))

+ · · · + ((T m
km

+ πmkm) − (T m
km−1

+ πmkm−1))
]

= max
0≤k1≤···
≤km−1≤n

[
(T 1

k1
− T 1

k0
) + (T 2

k2
− T 2

k1
) + · · ·+ (T m

km
− Tm

km−1
)

+ π1(k1 − k0) + π2(k2 − k1) + · · ·+ πm(km − km−1)
]
. (5.2.1)

Setting πmax = max{π1, π2, . . . , πm}, (5.2.1) becomes

LIn − πmaxn = max
0=k0≤k1≤···

≤km−1≤km=n

m∑

r=1

[
(T r

kr
− T r

kr−1
) + (πr − πmax)(kr − kr−1)

]
. (5.2.2)

For a uniform stationary distribution, πmax = πr = 1/m, for all r, and (5.2.2) simpli-

fies to

LIn − n

m
= max

0=k0≤k1≤···
≤km−1≤km=n

m∑

r=1

(T r
kr
− T r

kr−1
). (5.2.3)

To introduce a random walk formalism into the picture, we next set, for i =

1, . . . , n and r = 1, 2, . . . , m,

W r
i =






1, if Xi = αr,

0, otherwise.

(5.2.4)

Clearly, ar
k =

∑k
i=1 W r

i , and so T r
k =

∑k
i=1(W

r
i − πr), for 1 ≤ r ≤ m.

To understand the limiting law of (5.2.2) or (5.2.3), we must have a more precise

description of the underlying Markovian structure. To that end, let pr,s = P(Xk+1 =

αs|Xk = αr) be the transition probability from state αr to state αs, and let P = (pr,s)

be the associated Markov transition matrix. In this setting,
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(pn+1
1 , pn+1

2 , . . . , pn+1
m ) = (pn

1 , p
n
2 , . . . , p

n
m)P.

Moreover, as usual, let p
(k)
r,s denote the k-step transition probability from αr to αs; its

associated transition matrix is simply P k.

Assume now that the law of X0 is the stationary distribution. Thus, by construc-

tion, ET r
k = 0 for all 1 ≤ r ≤ m and 1 ≤ k ≤ n, and our primary task is to describe

the covariance structure of these random variables T r
k .

Since W r
i is, simply, a Bernoulli random variable with parameter πr, VarW r

i =

πr(1 − πr). We then find that, for k ≥ 1,

VarT r
k = Var

(
k∑

i=1

(W r
i − πr)

)

=

k∑

i=1

VarW r
i +

k−1∑

i1=1

k∑

i2=i1+1

Cov(W r
i1
, W r

i2
)

+
k∑

i1=2

i1−1∑

i2=1

Cov(W r
i1
, W r

i2
). (5.2.5)

By stationarity, (5.2.5) becomes

VarT r
k =

k∑

i=1

VarW r
i +

k−1∑

i1=1

k∑

i2=i1+1

Cov(W r
0 , W r

i2−i1)

+

k∑

i1=2

i1−1∑

i2=1

Cov(W r
0 , W r

i1−i2
)

= kπr(1 − πr) +
k−1∑

i1=1

k∑

i2=i1+1

(πrp
(i2−i1)
r,r − π2

r )

+

k∑

i1=2

i1−1∑

i2=1

(πrp
(i1−i2)
r,r − π2

r)

= kπr − k2π2
r + πr

k−1∑

i1=1

k∑

i2=i1+1

erP
i2−i1eT

r

+ πr

k∑

i1=2

i1−1∑

i2=1

erP
i1−i2eT

r , (5.2.6)
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where er = (0, 0, . . . , 0, 1, 0, . . .0) is the rth standard basis vector of R
m. Setting

Qk =
k−1∑

i1=1

k∑

i2=i1+1

P i2−i1 =
k∑

i=1

(k − i)P i, (5.2.7)

we can rewrite (5.2.6) in the simple form

VarT r
k = kπr − k2π2

r + 2πrerQke
T
r . (5.2.8)

Our description of the covariance structure can now be completed using the above

results. For r1 6= r2 and k ≥ 1,

Cov(T r1
k , T r2

k ) =
k∑

i=1

Cov(W r1
i , W r2

i ) +
k−1∑

i1=1

k∑

i2=i1+1

Cov(W r1
i1

, W r2
i2

)

+

k∑

i1=2

i1−1∑

i2=1

Cov(W r1
i1

, W r2
i2

)

=
k∑

i=1

Cov(W r1
i , W r2

i ) +
k−1∑

i1=1

k∑

i2=i1+1

Cov(W r1
0 , W r2

i2−i1
)

+
k∑

i1=2

i1−1∑

i2=1

Cov(W r2
0 , W r1

i1−i2
)

= −kπr1πr2 +

k−1∑

i1=1

k∑

i2=i1+1

(πr1p
(i2−i1)
r1,r2

− πr1πr2)

+

k∑

i1=2

i1−1∑

i2=1

(πr2p
(i1−i2)
r2,r1

− πr1πr2)

= −k2πr1πr2 + πr1

k−1∑

i1=1

k∑

i2=i1+1

er1P
i2−i1eT

r2

+ πr2

k∑

i1=2

i1−1∑

i2=1

er2P
i1−i2eT

r1

= −k2πr1πr2 + πr1er1Qke
T
r2

+ πr2er2Qke
T
r1

. (5.2.9)
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Remark 5.2.1 Both (5.2.8) and (5.2.9) appear to be asymptotically quadratic in k.

However, since Qk =
∑k

i=i(k − i)P i, cancellations will show that when the Markov

chain is irreducible and aperiodic, the order of the variance is, in fact, linear in k.

In order to further analyze the asymptotics of Qk, we first examine the diagonal-

ization of P for a very general class of transition matrices.

Proposition 5.2.1 Let P be the m × m transition matrix of an irreducible, aperi-

odic, homogeneous Markov chain with eigenvalues λ1 = 1, λ2, . . . , λm, and let Λ =

diag(1, λ2, . . . , λm). Let P = S−1ΛS be the diagonalization of P , where the rows of

S consist of the left-eigenvectors of P , with, moreover, the first row of S being the

stationary distribution (π1, π2, . . . , πm). Then the first column of S−1 is (1, 1, . . . , 1)T .

Proof. Since P = S−1ΛS, then PS−1 = S−1Λ. Denoting the first column of S−1 by

c1, we have Pc1 = c1. But since the rows of P sum to 1, we see that c1 = (1, 1, . . . , 1)T

satisfies Pc1 = c1. Moreover, c1 must be unique, up to normalization, since the

irreducibility of P implies that λ1 = 1 has multiplicity 1. Finally, since the inner

product of the first row of S and the first column of S−1 is 1, the correct normalization

is indeed (1, 1, . . . , 1)T .

Returning to Qk, as given in (5.2.7), and using Proposition 5.2.1, we then obtain:

Theorem 5.2.1 Let (Xn)n≥0 be a sequence generated by an m-letter, aperiodic, ir-

reducible, homogeneous Markov chain with state space Am = {α1 < · · · < αm},

transition matrix P , and stationary distribution (π1, π2, . . . , πm). Let also the law of

X0 be the stationary distribution. Moreover, for 1 ≤ r ≤ m, let T r
k = ar

k − πrk, for

k ≥ 1, and T r
0 = 0, where ar

k is the number of occurrences of αr among (Xi)1≤i≤k.

Then, for 1 ≤ r ≤ m,

lim
k→∞

Var T r
k

k
= πr

(
1 + 2erS

−1DSeT
r

)
, (5.2.10)
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and for r1 6= r2,

lim
k→∞

Cov(T r1

k , T r2

k )

k
= πr1er1S

−1DSeT
r2

+ πr2er2S
−1DSeT

r1
, (5.2.11)

where P = S−1ΛS is the standard diagonalization of P in Proposition 5.2.1, and

D = diag(−1/2, λ2/(1 − λ2), . . . , λm/(1 − λm)). That is, the asymptotic covariance

matrix of (T r
k , )1≤r≤m is given by

Σ = Π + Π(S−1DS) + (S−1DS)TΠ, (5.2.12)

where Π = diag(π1, π2, . . . , πm).

Proof. Beginning with (5.2.7), we diagonalize P and find that

Qk =
k−1∑

i=1

(k − i)(S−1ΛS)i

= S−1

(
k−1∑

i=1

(k − i)Λi

)
S

= S−1 diag(h(1), h(λ2), . . . , h(λm))S, (5.2.13)

where h(λ) :=
∑n−1

k=1(n − k)λk. Now h(1) = k(k − 1)/2 is quadratic in k, while for

λ 6= 1,

h(λ) = k
λ

(1 − λ)
+

λ(λk − 1)

(1 − λ)2
,

so that h(λ) is linear in k. We thus can write Qk as the sum of terms which are,

respectively, quadratic and linear in k. Recalling, moreover, that the first row of S

contains the stationary distribution, and that the first column of S−1 is (1, 1, . . . , 1)T ,

we have

88



Qk = S−1 diag(h(1), h(λ2), . . . , h(λm))S,

=
k2

2
S−1 diag(1, 0, . . . , 0)S

+ kS−1 diag

(
−1

2
,

λ2

1 − λ2
, . . . ,

λm

1 − λm

)
S + o(k)

=
k2

2




π1 π2 · · · πm

π1 π2 · · · πm

...
... · · · ...

π1 π2 · · · πm




+ kS−1DS + o(k). (5.2.14)

Starting with the variance in (5.2.8), we now find that, for each 1 ≤ r ≤ m,

VarT r
k = kπr − k2π2

r + 2πrerQke
T
r

= kπr − k2π2
r + 2πr

(
k2

2
πr + kerS

−1DSeT
r

)
+ o(k)

= kπr

(
1 + 2erS

−1DSeT
r

)
+ o(k), (5.2.15)

from which the asymptotic result (5.2.10) follows immediately.

An identical development shows that, for r1 6= r2, (5.2.9) simplifies to

Cov(T r1
k , T r2

k ) = −k2πr1πr2 + πr1er1Qke
T
r2

+ πr2er2Qke
T
r1

= −k2πr1πr2 + πr1

(
k2

2
πr2 + ker1S

−1DSeT
r2

)

+ πr2

(
k2

2
πr1 + ker2S

−1DSeT
r1

)
+ o(k)

= k
(
πr1er1S

−1DSeT
r2

+ πr2er2S
−1DSeT

r1

)
+ o(k),

(5.2.16)

from which the asymptotic result (5.2.11) follows, and so does (5.2.12).
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Remark 5.2.2 To see that (5.2.10) and (5.2.11) both recover the covariance results

for the iid case in Chapter II, let P be the transition matrix whose rows each consist

of the stationary distribution (π1, π2, . . . , πm). In this case λ2 = · · · = λm = 0, and

so D = diag(−1/2, 0, . . . , 0). Hence,

er1S
−1DSeT

r2
= (1, ∗, . . . , ∗)D (πr2, ∗, . . . , ∗)T

= −πr2

2
,

for all r1 and r2, and so, for each r,

lim
k→∞

VarT r
k

k
= πr

(
1 + 2

(
−πr

2

))
= πr(1 − πr),

while, for r1 6= r2,

lim
k→∞

Cov(T r1
k , T r2

k )

k
= πr1

(
−πr2

2

)
+ πr2

(
−πr1

2

)
= −πr1πr2 .

Note that, in the uniform iid case, we have πr = 1/m, for all 1 ≤ r ≤ m. Hence, for

r1 6= r2, the asymptotic correlation between T r1
k and T r2

k is given by (−1/(m2))/((1/m)(1−

1/m)) = −1/(m − 1), so that the covariance matrix is indeed the permutation-

symmetric one obtained in the iid uniform case in Chapter II.

5.3 The Limiting Shape of the Young Tableau

Thus far, our results have centered on LIn alone, essentially ignoring the larger ques-

tion of the structure of the entire Young tableau. The present section extends the

combinatorial development of the previous section to answer the question of the lim-

iting shape of the Young tableau.

Our first result in this direction is a purely combinatorial expression generalizing

(5.0.31). It is standard in the Young tableau literature to have entries chosen from
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the set {1, 2, . . . , m}. Below, without loss of generality, we allow our entries to be

chosen from the m-letter ordered alphabet Am = {α1 < · · · < αm}.

Theorem 5.3.1 Let R1
n, R2

n, . . . , Rr
n be the lengths of the first 1 ≤ r ≤ m rows of

the Young tableau generated by the sequence (Xk)1≤k≤n whose elements belong to an

ordered alphabet Am = {α1 < · · · < αm}. Then, for each 1 ≤ r ≤ m, the sum of the

lengths of the first r rows of the Young tableau is given by

r∑

j=1

Rj
n = max

kj,ℓ∈Jr,m

r∑

j=1

m−r+j∑

ℓ=j

(
aℓ

kj,ℓ
− aℓ

kj,ℓ−1

)
, (5.3.1)

where Jr,m = {(kj,ℓ, 1 ≤ j ≤ r, 0 ≤ ℓ ≤ m) : kj,j−1 = 0, kj,m−r+j = n, 1 ≤ j ≤

r; kj,ℓ−1 ≤ kj,ℓ, 1 ≤ j ≤ r, 1 ≤ ℓ ≤ m; kj,ℓ ≤ kj−1,ℓ, 2 ≤ j ≤ r, 1 ≤ ℓ ≤ m}, and where

aℓ
k is the number of occurrences of αℓ among (Xi)1≤k≤k.

Proof. Recall that the sum of the lengths of the first r rows of the Young tableau

generated by a sequence (Xk)1≤k≤n, whose letters arise from an m-letter alphabet,

has an interpretation in terms of the length of certain increasing sequences. Indeed,

the sum R1
n +R2

n + · · ·+Rr
n is equal to the maximum sum of the lengths of r disjoint,

increasing subsequences of (Xk)1≤k≤n, where by disjoint it is meant that each element

of (Xk)1≤k≤n occurs in at most one of the r subsequences. (See Lemma 1 of Section 3.2

in [18]). More general results of this sort, involving partial orderings of the alphabet

and associated antichains, are known as Greene’s Theorem [23]. However, such results

are not enough for our purpose. Below we need a different way of reconstructing

disjoint subsequences.

We begin by examining an arbitrary collection of r disjoint, increasing subse-

quences of (Xk)1≤k≤n, and show that we can always map these r subsequences onto

another collection of r disjoint, increasing subsequences whose properties will be

amenable to our combinatorial analysis.

91



Specifically, with the number of rows r fixed, suppose that, for each 1 ≤ j ≤ r,

we have an increasing subsequence (Xj

kj
ℓ

)1≤ℓ≤nj
of length nj ≤ n, and that the r

subsequences are disjoint.

We first construct the new subsequence (X̃1
k̃1

ℓ

)1≤ℓ≤ñ1 as follows. First, place all α1s

occurring among the r original subsequences into (X̃1
k̃1

ℓ

)1≤ℓ≤ñ1 , if there are any. If the

last α1 occurs at the nth index, then (X̃1
k̃1

ℓ

)1≤ℓ≤ñ1 is complete. Otherwise, place all

α2s which occur after the final α1 into (X̃1
k̃1

ℓ

)1≤ℓ≤ñ1 , if there are any. If the last α2

occurs at the nth index, then (X̃1
k̃1

ℓ

)1≤ℓ≤ñ1 is complete. Otherwise, continue adding,

successively, α3, . . . , αm−r+1 in the same manner. Thus, (X̃1
k̃1

ℓ

)1≤ℓ≤ñ1 consists of a

weakly increasing sequence of length ñ1 having values in {α1, . . . , αm−r+1}.

Next, we construct the new subsequence (X̃2
k̃2

ℓ

)1≤ℓ≤ñ2 similarly. By considering

only those letters among the r original subsequences which have not already been

moved to the first new subsequence, start with the smallest available letter, α2, and

continue adding, successively, α3, . . . , αm+r−2. Note that, crucially, all α2s added to

(X̃2
k̃2

ℓ

)1≤ℓ≤ñ2 occur before the last index at which α1 was added to the first subsequence.

More generally, each αj, 2 ≤ j ≤ m − r + 2, added to (X̃2
k̃2

ℓ

)1≤ℓ≤ñ2 occurs before the

last αj−1 was added to the first subsequence. Thus, (X̃2
k̃2

ℓ

)1≤ℓ≤ñ2 consists of a weakly

increasing subsequence of length ñ2 having values in {α2, . . . , αm−r+2}.

The construction of (X̃j

k̃j
ℓ

)1≤ℓ≤ñj
, for 3 ≤ j ≤ r, continues in the same manner, with

(X̃j

k̃j
ℓ

)1≤ℓ≤ñj
, constructed from among the entries of the r original subsequences which

were not moved into any of the first j−1 new subsequences, so that (X̃j

k̃j
ℓ

)1≤ℓ≤ñj
, con-

sists of a weakly increasing sequence of length ñj having values in {αj, . . . , αm−r+j}.

It is possible that beyond some j ≥ 2 the new subsequences may be empty.

We claim that, indeed, the construction of the rth new subsequence exhausts the

set of available entries. Indeed, without loss of generality, assume that after we

have created the (r − 1)th new subsequence, the set of available entries is non-empty,

and designate the location of the final αℓ to be included in the jth new subsequence

92



by kj,ℓ, for 1 ≤ j ≤ r and 1 ≤ ℓ ≤ m. (If no αℓ was available for inclusion,

set kj,ℓ = kj,ℓ−1, where kj,0 = 0, for all 1 ≤ j ≤ r.) Clearly, all α1, α2, . . . , αr−1

have been included in the first r − 1 new subsequences. If r = m, we are done:

simply put the remaining αrs into the rth new subsequence. If r < m, we may still

ask whether there was, for some r + 1 ≤ ℓ ≤ m, an αℓ from among the available

entries which occurred before kr,ℓ−1. Assume that there is such an αℓ. Now by

construction, kj+1,ℓ−r+j ≤ kj,ℓ−r+j−1, for 1 ≤ j ≤ r − 1. Hence, there exist letters

αj1 < αj2 < · · · < αjr ≤ αℓ−1 among the original subsequences which occurred after

kr,ℓ−1, and, moreover, each letter must come from a different subsequence. But since

each original subsequence was increasing, none of them could have contained an αℓ

before kr,ℓ−1, and we have a contradiction.

To better understand this construction, consider the first row of Figure 3, which

shows an initial sequence of length n = 12, with m = 4 letters, broken into r = 3

disjoint, increasing subsequences of lengths n1 = 3, n2 = 4, and n3 = 3, and so with

total length 10. The final three rows of the diagram show the results of the operations

described above, producing 3 new increasing subsequences of length ñ1 = 4, ñ2 = 3,

and ñ3 = 3.

Hence, if we wish to find r disjoint, increasing subsequences whose length sum

is maximal, it suffices to consider only those disjoint, increasing subsequences for

which the final occurrence of the letter αℓ in the subsequence i happens after the

final occurrence in the subsequence j, whenever i < j. Because such ranges do not

overlap, if we wish to count the number of αℓs in the jth subsequence, it suffices to

simply count the number of αss in (Xk)1≤k≤n over that range.

Indeed, returning to the fundamental combinatorial objects of our development,

the aj
k, we see that since aj

ℓ − aj
k counts the number of αjs in the range ℓ + 1, . . . , k,

we can describe the valid index ranges over which to search for the maximal sum as

Jr,m = {(kj,ℓ, 1 ≤ j ≤ r, 0 ≤ ℓ ≤ m) : kj,j−1 = 0, kj,m−r+j = n, 1 ≤ j ≤ r; kj,ℓ−1 ≤
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Figure 3: Transformation of r = 3 subsequences.

kj,ℓ, 1 ≤ j ≤ r, 1 ≤ ℓ ≤ m; kj,ℓ ≤ kj−1,ℓ, 2 ≤ j ≤ r, 1 ≤ ℓ ≤ m}. The constraints on the

kj,ℓ follow simply from the fact that each subsequence is increasing and that, moreover,

the intervals associated with a given letter do not overlap. Figure 4 indicates the

relative positions of each range, for r = 4 and m = 7.

Since the first possible letter of each subsequence grows from α1 to αr, and the

last possible letter grows from αm+r−1 to αm, the result is proved.

1 2

3

3 5 6

5 6 7

4

3 4

2 5

4

4

j=1

j=2

j=3

j=4

k=1 k=n

Figure 4: Schematic diagram of Jr,m, for r = 4, m = 7.
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We are now ready to apply our asymptotic covariance results (Theorem 5.2.1),

along with a Brownian sample-path approximation, to the combinatorial expression

(5.3.1), and so obtain a Brownian functional expression for the limiting shape of the

Young tableau for all irreducible, aperiodic, homogeneous Markov chains.

Indeed, for each 1 ≤ r ≤ m, let the sum of the first r rows of the Young tableau

be given by

V r
n :=

r∑

j=1

Rj
n = max

kj,ℓ∈Jr,m

r∑

j=1

m−r+j∑

ℓ=j

(
aℓ

kj,ℓ
− aℓ

kj,ℓ−1

)
, (5.3.2)

where the index set Jr,m is defined as in Theorem 5.3.1. Define, as before, T r
k =

∑k
i=1(W

r
i − πr) = ar

k − πrk, and so rewrite (5.3.2) as

V r
n = max

kj,ℓ∈Jr,m

r∑

j=1

m−r+j∑

ℓ=j

((
T ℓ

kj,ℓ
+ πℓkj,ℓ

)
−
(
T ℓ

kj,ℓ−1
+ πℓkj,ℓ−1

))

= max
kj,ℓ∈Jr,m

r∑

j=1

m−r+j∑

ℓ=j

((
T ℓ

kj,ℓ
− T ℓ

kj,ℓ−1

)
+ πℓ (kj,ℓ − kj,ℓ−1)

)
. (5.3.3)

Next, let τ be a permutation of the indices 1, 2, . . . , m such that πτ(1) ≥ πτ(2) ≥

· · · ≥ πτ(m) > 0. Moreover, we demand that if πτ(i) = πτ(j) for i < j, then τ(i) < τ(j).

(The permutation so defined is thus unique.) As we are considering V r
n , it is natural

to define νr =
∑r

j=1 πτ(j), the sum of the r largest values among π1, π2, . . . , πm. We

obtain, below, the limiting distribution of (V r
n − νrn)/

√
n as a Brownian functional.

To introduce Brownian sample-path approximations, and for each 1 ≤ r ≤ m, we

first define the asymptotic variance of T r
n as in (5.2.10), by

σ2
r := lim

n→∞

VarT r
n

n
= erΣeT

r , (5.3.4)

and, for r1 6= r2, the asymptotic covariance of T r1
n and T r2

n by

σr1,r2 := lim
n→∞

Cov(T r1
n , T r2

n )

n
= er1ΣeT

r2
, (5.3.5)
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j=1

j=2

j=3

j=4

t=0 t=1

Figure 5: Schematic diagram of Is,d, for s = 4, d = 7.

where Σ is the covariance matrix of Theorem 5.2.1 associated with the transition

matrix P . For each 1 ≤ r ≤ m, we then let

B̂r
n(t) =

T r
[nt] + (nt − [nt])(W r

[nt]+1 − πr)

σr

√
n

, (5.3.6)

for 0 ≤ t ≤ 1. This rescaling of [0, n] to [0, 1] calls for us to define a new parameter

set over which we will maximize a functional arising from the expressions in (5.3.6).

Indeed, for any positive integers s and d, with s ≤ d, define the set

Is,d =
{

(tj,ℓ, 1 ≤ j ≤ s, 0 ≤ ℓ ≤ d) :tj,j−1 = 0, tj,d−s+j = 1, 1 ≤ j ≤ s;

tj,ℓ−1 ≤ tj,ℓ, 1 ≤ j ≤ s, 1 ≤ ℓ ≤ d;

tj,ℓ ≤ tj−1,ℓ, 2 ≤ j ≤ s, 1 ≤ ℓ ≤ d
}
.

Note that the constraints tj,j−1 = 0 and tj,d−s+j = 1, for 1 ≤ j ≤ s, force many of the

tj,ℓ to be zero or one. We will denote the s × (d + 1)-tuple elements of Is,d, by (t.,.).

Figure 5 shows the structure of Is,d, for s = 4 and d = 7. The locations of tj,ℓ are

indicated by the horizontal lines within the diagram.

With this notation, (5.3.3) becomes
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V r
n − νrn√

n
= max

(t.,.)∈Ir,m

{ r∑

j=1

m−r+j∑

ℓ=j

σℓ

(
B̂ℓ

n(tj,ℓ) − B̂ℓ
n(tj,ℓ−1)

)

+
r∑

j=1

m−r+j∑

ℓ=j

√
n(πℓ − πτ(j)) (tj,ℓ − tj,ℓ−1)

}
. (5.3.7)

Our analysis of (5.3.7) will yield the following theorem, whose proof we defer to

the conclusion of the section. This theorem gives, in particular, a full characterization

of the limiting shape of the Young tableau in the non-uniform iid case.

Theorem 5.3.2 Let (Xn)n≥0 be an irreducible, aperiodic, homogeneous Markov chain

with finite state space Am = {α1 < · · · < αm}, transition matrix P , and stationary

distribution (π1, π2, . . . , πm). Let Σ = (σr,s)1≤r,s≤m be the associated asymptotic co-

variance matrix, as given in (5.2.12), and let the law of X0 be given by the stationary

distribution. Let τ be the permutation of {1, 2, . . . , m} such that πτ(i) ≥ πτ(i+1), and

τ(i) < τ(j) whenever πτ(i) = πτ(j) and i < j. For each 1 ≤ r ≤ m, let V r
n be the sum of

the lengths of the first r rows of the associated Young tableau, and let νr =
∑r

j=1 πτ(j).

Finally, let dr be the multiplicity of πτ(r), and let

mr =






0, if πτ(r) = πτ(1),

max{i : πτ(i) > πτ(r)}, otherwise.

Then, for each 1 ≤ r ≤ m,

V r
n − νrn√

n
⇒ V r

∞ :=

mr∑

i=1

στ(i)B̃
τ(i)(1)

+ max
Ir−mr,dr

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

στ(mr+ℓ)

(
B̃τ(mr+ℓ)(tj,ℓ) − B̃τ(mr+ℓ)(tj,ℓ−1)

)
, (5.3.8)
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where the first sum on the right-hand side of (5.3.8) is understood to be 0, if mr =

0. Above, σ2
r = σr,r, and (B̃1(t), B̃2(t), . . . , B̃m(t)) is an m-dimensional Brownian

motion, with covariance matrix Σ̃ = (σ̃r,s)1≤r,s≤m given by

(σ̃r,s) = t(σr,s)/σrσs, (5.3.9)

for 1 ≤ r, s ≤ m. Moreover, for any 1 ≤ k ≤ m,

(
V 1

n − ν1n√
n

,
V 2

n − ν2n√
n

, . . . ,
V k

n − νkn√
n

)
⇒
(
V 1
∞, V 2

∞, . . . , V k
∞
)
. (5.3.10)

Remark 5.3.1 The critical indices dr and mr in Theorem 5.3.2 are chosen so that

πτ(mr) > πτ(mr+1) = πτ(r) = · · · = πτ(mr+dr) > πτ(mr+dr+1).

Thus, the functional in (5.3.8) consists of a sum of mr Gaussian random variables and

a maximal functional involving only dr of the m one-dimensional Brownian motions.

Remark 5.3.2 Another, perhaps more natural, way of describing the covariance

structure of the m-dimensional Brownian motion in Theorem 5.3.2 is to note that

(σ1B̃
1(t), σ2B̃

2(t), . . . , σmB̃m(t)) has covariance matrix tΣ.

Let us now examine the case r = 1. Here, as previously noted, V 1
n = LIn. Since

m1 = 0, (5.3.8) becomes

LIn − πmaxn√
n

⇒ max
(t.,.)∈I1,d1

d1∑

ℓ=1

στ(ℓ)

(
B̃τ(ℓ)(t1,ℓ) − B̃τ(ℓ)(t1,ℓ−1)

)
, (5.3.11)

where we have written πmax for πτ(1). The functional in (5.3.11) is similar to the one

obtained in the iid case in (2.2.39), namely H̃m, the essential difference being, not

in the form of the Brownian functional, but rather in the covariance structure of the

Brownian motions.
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To see precisely where this difference comes into play, note that if the transition

matrix P is cyclic, then the covariance matrix of the Brownian motion is also cyclic.

Consider then the 3-letter aperiodic, homogeneous, cyclic Markov case. Since the

Brownian covariance matrix is symmetric, and, moreover, degenerate, an additional

cyclicity constraint forces it to have the permutation-symmetric structure seen in the

iid uniform case. In particular, LIn will have, up to a scaling factor, the same limiting

distribution as in the iid uniform case:

LIn − n/3√
n

⇒ σ max
(t.,.)∈I1,3

3∑

ℓ=1

(
B̃ℓ(t1,ℓ) − B̃ℓ(t1,ℓ−1)

)
, (5.3.12)

where σ = σℓ, for all 1 ≤ ℓ ≤ 3, and with the Brownian covariance matrix given by

Σ̃ = t




1 −1/2 −1/2

−1/2 1 −1/2

−1/2 −1/2 1




,

and where we have used the fact that τ(ℓ) = ℓ, for all 1 ≤ ℓ ≤ 3.

However, when m ≥ 4, the cyclicity constraint does not force the Brownian covari-

ance matrix to have the permutation-symmetric structure, as the following example

shows for m = 4.

Example 5.3.1 Consider the following doubly-stochastic, aperiodic, cyclic transition

matrix:

P =




0.4 0.3 0.2 0.1

0.1 0.4 0.3 0.2

0.2 0.1 0.4 0.3

0.3 0.2 0.1 0.4




. (5.3.13)

While the doubly-stochastic nature of P ensures that the stationary distribution is

uniform, the covariance matrix of the limiting Brownian motion, at three-decimal
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accuracy, is computed to be

Σ̃ = t




1.000 −0.357 −0.287 −0.357

−0.357 1.000 −0.357 −0.287

−0.287 −0.357 1.000 −0.357

−0.357 −0.287 −0.357 1.000




, (5.3.14)

and σ2
r = σ2 := 0.263, for each 1 ≤ r ≤ 4. Thus, the limiting distribution of LIn is

given by

LIn − n/4√
n

⇒ σ max
(t.,.)∈I1,4

4∑

ℓ=j

(
B̃ℓ(t1,ℓ) − B̃ℓ(t1,ℓ−1)

)
, (5.3.15)

for 1 ≤ r ≤ 4. However, while the form of the functional is the same as in the iid

uniform case (up to the constant), the covariance structure of the Brownian motion

in (5.3.14) differs from that of the uniform iid case, i.e., from

t




1 −1/3 −1/3 −1/3

−1/3 1 −1/3 −1/3

−1/3 −1/3 1 −1/3

−1/3 −1/3 −1/3 1




, (5.3.16)

and so the limiting distribution in (5.3.15) is not that of the uniform iid case.

We thus see that Kuperberg’s conjecture regarding the shape of the Young tableau

for random sequences generated by aperiodic, homogeneous, and cyclic matrices [32]

is not true for general m-alphabets. By simply extending the first-row analysis above

to the second and third rows, we see that it is true for m = 3. However, as could

have been anticipated by (5.3.12), it fails for m ≥ 4, as the previous example showed.

Furthermore, in the next section we shall see that for the cyclic case the structure of

Σ can be described in an elegant manner which delineates precisely when we obtain

the uniform iid limiting law.
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In the more general doubly stochastic case, we have the following corollary:

Corollary 5.3.1 Let the transition matrix P of Theorem 5.3.2 be doubly stochastic.

Then, for every 1 ≤ r ≤ m, mr = 0, dr = m, and

V r
n − rn/m√

n
⇒ max

(t.,.)∈Ir,m

r∑

j=1

m−r+j∑

ℓ=j

σℓ

(
B̃ℓ(tj,ℓ) − B̃ℓ(tj,ℓ−1)

)
. (5.3.17)

If, moreover, the matrix P has all entries of 1/m (i.e., in the iid uniform alphabet

case), then

V r
n − rn/m√

n
⇒

√
m − 1

m
max

(t.,.)∈Ir,m

r∑

j=1

m−r+j∑

ℓ=j

(
B̃ℓ(tj,ℓ) − B̃ℓ(tj,ℓ−1)

)
(5.3.18)

and the covariance matrix in (5.3.9) has all its off-diagonals equal to −1/(m − 1).

Proof. For each 1 ≤ r ≤ m, πr = 1/m, and so νr = r/m, mr = 0, and the

multiplicity dr = m. Moreover, the permutation τ is simply the identity permutation.

This proves (5.3.17). If, moreover, all the transition probabilities are 1/m, then

the multinomial nature of the underlying combinatorial quantities ar
k tells us that

σ2
r = (1/m)(1 − 1/m), for each 1 ≤ r ≤ m, and that ρr1,r2 = −1/(m − 1), for each

r1 6= r2, thus proving (5.3.18).

To see that the functional in (5.3.17) is generally different from the uniform iid

case, even for m = 3, consider the following non-cyclic example:

Example 5.3.2 Let a doubly-stochastic (but non-cyclic), aperiodic Markov chain

have transition matrix

P =




0.4 0.6 0.0

0.6 0.0 0.4

0.0 0.4 0.6




. (5.3.19)

101



As in Example 5.3.1, the doubly-stochastic nature of P ensures that the stationary

distribution is uniform. In the present example, the asymptotic covariance matrix, at

three-decimal accuracy, is computed to be




0.459 0.049 −0.506

0.049 0.086 −0.136

−0.506 −0.136 0.642




. (5.3.20)

Note that, even though we have a uniform stationary distribution, the asymptotic

variances (i.e., the diagonals of (5.3.20)) have dramatically different values. More-

over, according to Remark 5.2.2, in the uniform iid case, the only possibility for the

Brownian covariance matrix is that the off-diagonals have value −1/2. However, the

Brownian motion covariance matrix obtained from (5.3.20) is

t




1.000 0.246 −0.935

0.246 1.000 −0.577

−0.935 −0.577 1.000




. (5.3.21)

Not only are the off-diagonals different from −1/2, but in some cases are even positive.

In short, the functional in (5.3.17) has a distribution which differs from any iid case

(even non-uniform).

Remark 5.3.3 Generalizing a result of Baryshnikov [6] and of Gravner, Tracy, and

Widom [22] on the representation of the maximal eigenvalue of an m × m element

of the GUE, Doumerc [16] found a Brownian functional expression for all the eigen-

values of an m × m element of the GUE. Our expression in (5.3.18) is similar, with

the exception that our m-dimensional Brownian motion is constrained by a zero-sum

condition, and, moreover, has a different covariance structure. (We note, moreover,

that the parameters over which his Brownian functional is maximized in [16] might

be intended to range over a slightly larger set which corresponds to our Ir,m.) Using
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a path-transformation technique relating the joint distribution of a certain transfor-

mation of n continuous processes to the joint distribution of the processes conditioned

never to leave the Weyl chamber, O’Connell and Yor [37] employed queuing-theoretic

arguments to obtain Brownian functional representations for the entire spectrum of

the m×m element of the GUE. In a study of much more general transformations of

this type, Bougerol and Jeulin [9] were able to obtain this result as a special case.

If dr = 1, i.e., if the rth most probable state is unique, then the following result

can be viewed as lying at the other extreme from Corollary 5.3.1:

Corollary 5.3.2 Let 1 ≤ r ≤ m, and let dr = 1 in Theorem 5.3.2. Then

V r
n − νrn√

n
⇒

r∑

i=1

στ(i)B̃
τ(i)(1). (5.3.22)

Proof. If dr = 1, then mr = r − 1, and so the maximal term of (5.3.8) contains

only one summand, namely στ(mr+1)B̃
τ(mr+1)(1) = στ(r)B̃

τ(r)(1). Including this term

in the first summation term of (5.3.8) proves (5.3.22).

Remark 5.3.4 The maximal term of the functional in (5.3.8) is that of the doubly-

stochastic, dr-letter case. Indeed, the maximal term involves precisely dr Brownian

motions over the r − mr rows. Such a functional would arise in a doubly-stochastic

dr-letter situation with a covariance matrix consisting of the sub-matrix of the original

Σ corresponding to the dr Brownian motions, as in Corollary 5.3.1. The Gaussian

term corresponds to the functional of Corollary 5.3.2. That is, in some sense, the

limiting law of (5.3.8) interpolates between these two extreme cases.

Proof. (Theorem 5.3.2) Since the r = m case is trivial (V m
n is then identically

equal to n), assume that r < m. Recall the approximating functional (5.3.7):
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V r
n − νrn√

n
= max

Ir,m

{ r∑

j=1

m−r+j∑

ℓ=j

σℓ

(
B̂ℓ

n(tj,ℓ) − B̂ℓ
n(tj,ℓ−1)

)

+
r∑

j=1

m−r+j∑

ℓ=j

√
n(πℓ − πτ(j)) (tj,ℓ − tj,ℓ−1)

}
. (5.3.23)

Introducing the notation ∆tj,ℓ := [tj,ℓ−1, tj,ℓ−1] and M ℓ
n(∆tj,ℓ) := M ℓ

n(tj,ℓ)−M ℓ
n(tj,ℓ−1),

for any m-dimensional process M(t) = (M1(t), M2(t), . . . , Mm(t)), t ∈ [0, 1], we can

rewrite (5.3.23) more compactly as

V r
n − νrn√

n
= max

Ir,m

{ r∑

j=1

m−r+j∑

ℓ=j

σℓB̂
ℓ
n(∆tj,ℓ) −

√
n

r∑

j=1

m−r+j∑

ℓ=j

(πτ(j) − πℓ)|∆tj,ℓ|
}

.

(5.3.24)

The main idea of the proof to follow will be to show that the second summation

of (5.3.24) can, in effect, be eliminated by choosing the (∆tj,ℓ) in an appropriate

manner. Now some of the coefficients (πτ(j)−πℓ) are zero; such terms do not cause any

problems. Intuitively, however, the remaining terms should have |∆tj,ℓ| = 0. Defining

the restricted set of parameters I∗
r,m = {(tj,ℓ) ∈ Ir,m :

∑r
j=1

∑m−r+j
ℓ=j (πℓ−πτ(j))|∆tj,ℓ| =

0, 1 ≤ ℓ ≤ m}, we see that, provided I∗
r,m 6= ∅,

max
Ir,m

r∑

j=1

m−r+j∑

ℓ=j

(
σℓB̂

ℓ
n(∆tj,ℓ) −

√
n
(
πτ(j) − πℓ

)
|∆tj,ℓ|

)

≥ max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=j

σℓB̂
ℓ
n(∆tj,ℓ). (5.3.25)

Moreover, by the Invariance Principle and the Continuous Mapping Theorem,

max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=j

σℓB̂
ℓ
n(∆tj,ℓ) ⇒ max

I∗r,m

r∑

j=1

m−r+j∑

ℓ=j

σℓB̃
ℓ(∆tj,ℓ). (5.3.26)

We claim that, indeed, I∗
r,m 6= ∅, and that, moreover,
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max
Ir,m

r∑

j=1

m−r+j∑

ℓ=j

(
σℓB̂

ℓ
n(∆tj,ℓ) −

√
n
(
πτ(j) − πℓ

)
|∆tj,ℓ|

)

⇒ max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=j

σℓB̃
ℓ(∆tj,ℓ). (5.3.27)

We will prove that I∗
r,m 6= ∅ by creating a bijection between I∗

r,m and Ir−mr,dr . To

this end, for 1 ≤ i ≤ mr, let Ĩτ(i),i = [uτ(i),i−1, uτ(i),i] = [0, 1]. Next, choose any

(u.,.) ∈ Ir−mr ,dr , and define further intervals Ĩτ(mr+j),ℓ = ∆uj,ℓ, for 1 ≤ j ≤ r − mr

and 1 ≤ ℓ ≤ dr.

We now create a partition of these intervals in a manner which relies on the ideas

used in the proof of Theorem 5.3.1. Consider the set of points {uj,ℓ}(1≤j≤r−mr ,1≤ℓ≤dr),

and order them as s0 := 0 < s1 < · · · < sκ−1 < sκ := 1, for some integer κ, and let

∆sq = [sq−1, sq], for all 1 ≤ q ≤ κ.

Trivially, for each 1 ≤ q ≤ κ, and for each 1 ≤ i ≤ mr, ∆sq ⊂ Ĩτ(i),i. More-

over, for each 1 ≤ j ≤ r − mr, there exists a unique ℓ(j, q) such that ∆sq ⊂

Ĩτ(mr+j),ℓ(j,q). For each q, consider the set of indices Aq := {τ(1), . . . , τ(mr)} ∪

{τ(mr + ℓ(1, q)), . . . , τ(mr + ℓ(r − mr, q))}, and order these r elements of Aq as

1 ≤ ℓ̃(1, q) < · · · < ℓ̃(r, q) ≤ m.

Using these partitions, we examine, with foresight, the following functional of a

general m-dimensional process (M(t))t≥0:

mr∑

i=1

M τ(i)(1) +

(r−mr)∑

j=1

(r−mr+dr−1)∑

ℓ=j

M τ(mr+ℓ)(∆uj,ℓ) (5.3.28)

=
mr∑

i=1

(
κ∑

q=1

M τ(i)(∆sq)

)

+

(r−mr)∑

j=1

(r−mr+dr−1)∑

ℓ=j




∑

q:∆sq⊂Ĩτ(mr+j),ℓ

M τ(mr+ℓ)(∆sq)





105



=
κ∑

q=1




mr∑

i=1

M τ(i)(∆sq) +

(r−mr)∑

j=1

M τ(mr+ℓ(j,q))(∆sq)





=

κ∑

q=1

r∑

j=1

M ℓ̃(j,q)(∆sq) =

r∑

j=1

κ∑

q=1

M ℓ̃(j,q)(∆sq)

=
r∑

j=1

r∑

ℓ=1

M ℓ̃(j,q)(∆tj,ℓ), (5.3.29)

where, for each 1 ≤ j ≤ r, and for each 1 ≤ ℓ ≤ m, tj,ℓ := max{sq : ℓ ≥ ℓ̃(j, q)}.

(That is, for each j, we collapse together intervals ∆sq corresponding to the same

component M ℓ.) Now, since our functional in (5.3.29) has non-trivial summands only

for ℓ such that πτ(ℓ) ≥ πτ(r), we have shown that (t.,.) ∈ I∗
r,m.

The following example illustrates this argument. Suppose we have an alphabet of

size m = 8, with

(π1, π2, . . . , π8) = (0.07, 0.1, 0.2, 0.06, 0.2, 0.06, 0.1, 0.2).

Then,

πτ(1) = πτ(2) = πτ(3) = 0.2, m1 = m2 = m3 = 0, d1 = d2 = d3 = 3,

πτ(4) = πτ(5) = 0.1, m4 = m5 = 3, d4 = d5 = 2,

πτ(6) = 0.07, m6 = 5, d6 = 1,

πτ(7) = πτ(8) = 0.06, m7 = m8 = 6, d7 = d8 = 2.

In particular, note that the two largest, distinct probability values are 0.2 and 0.1,

of multiplicities 3 and 2, respectively. Next, consider the case r = 4. We now show

how Ir−mr ,dr = I4−3,2 = I1,2 corresponds to an element of I∗
r,m = I∗

4,8. Figure 6 shows

a typical element of the unconstrained index set I4,8.

Now τ(1) = 3, τ(2) = 5, τ(3) = 8, τ(4) = 2, and τ(5) = 7. Our construction begins

with the amalgamation of mr = m4 = 3 rows, corresponding to the three indices for

which πi is strictly less than πτ(r) = πτ(4) = 0.1, with I1,2. This is shown in Figure 7.
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1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

Figure 6: A typical element of I4,8.

3 3

5 5

8 8

2 7

3

5

8

2 7

Figure 7: Amalgamating 3 rows with I1,2.
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3 3

5 5

8 8

2 7

2

3

5

8

3

5

7

8

Figure 8: Reordering vertically to obtain an element in I∗
4,8.

Finally, we simply reorder each vertical column in the original order of the indices,

as shown in Figure 8. We see that, first of all, we have constructed an element of I4,8.

Moreover, since we have three rows whose indices are associated with the maximum

value, and a remaining row whose indices are associated with πτ(4), we indeed have

an element of I∗
4,8. Note that the 4× 4 = 16 free indices in I4,8 (corresponding to the

locations of the 16 vertical bars in Figure 6) have been reduced to a single one in I∗
4,8.

In addition, we may essentially reverse this construction, starting with an element

of I∗
r,m ( 6= ∅), and so obtain an element of Ir−mr,dr . Indeed, from the definitions of

I∗
r,m and νr we know that

νr =
r∑

j=1

πτ(j) =
r∑

j=1

m−r+j∑

ℓ=j

πℓ|∆tj,ℓ|,

for any (t.,.) ∈ I∗
r,m. However, we also have

r∑

j=1

m−r+j∑

ℓ=j

πℓ|∆tj,ℓ| = 1{mr>0}

( r∑

j=1

m−r+j∑

ℓ=j

1{πτ(ℓ)≥πτ(mr)}πℓ|∆tj,ℓ|

+

r∑

j=1

m−r+j∑

ℓ=j

1{πτ(ℓ)<πτ(mr)}πℓ|∆tj,ℓ|
)

+ 1{mr=0}πτ(1)

r∑

j=1

m−r+j∑

ℓ=j

|∆tj,ℓ|

≤ 1{mr>0}((πτ(1) + · · · + πτ(mr)) + (r − mr)πτ(r))
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+ 1{mr=0}rπτ(1)

= νr,

with equality holding throughout if and only if mr = 0 or mr > 0 and
∑r

j=1 |∆tj,ℓ| = 1,

for all ℓ such that πτ(ℓ) ≥ πτ(mr), and that, moreover,
∑r

j=1

∑m−r+j
ℓ=j 1{πτ(ℓ)=πτ(r)}

|∆tj,ℓ| = r − mr. If mr > 0, then, for any (t.,.) ∈ I∗
r,m, we may start with (5.3.29),

and use again the permutation of the indices employed there. We thus obtain the

first term of (5.3.28), which corresponds to the condition
∑r

j=1 |∆tj,ℓ| = 1, for all ℓ

such that πτ(ℓ) ≥ πτ(mr), and also the second term of (5.3.28), which corresponds to

the other condition
∑r

j=1

∑m−r+j
ℓ=j 1{πτ(ℓ)=πτ(r)}|∆tj,ℓ| = r − mr. If mr = 0 the same

reasoning holds, except that the first term in (5.3.28) is taken to be zero.

Having thus established a bijection between I∗
r,m and Ir−mr,dr , we may thus max-

imize over these two parameter sets, and so, for any process (M(t))t≥0, obtain the

general result

mr∑

i=1

M τ(i)(1) + max
Ir−mr,dr

(r−mr)∑

j=1

(r−mr+dr−1)∑

ℓ−j

M τ(mr+ℓ)(∆uj,ℓ)

= max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

M ℓ̃(j,q)(∆tj,ℓ). (5.3.30)

We now proceed to show that (5.3.27) holds. First, fix c > 0, and, for each

1 ≤ ℓ ≤ m, set

cℓ =






c, if πℓ < πτ(r),

0, otherwise.

(5.3.31)

Next, let M̂ ℓ
n(t) = σℓB̂

ℓ
n(t) − cℓt, and let M ℓ(t) = σℓB̃

ℓ(t) − cℓt. Then, for n

large enough, namely, for n > c/(πτ(r) −πτ(r+1)), we have that, almost surely, for any

t.,. ∈ Ir,m,
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r∑

j=1

m−r+j∑

ℓ=1

M̂ ℓ
n(∆tj,ℓ)

≥
r∑

j=1

m−r+j∑

ℓ=j

(
σℓB̂

ℓ
n(∆tj,ℓ) −

√
n
(
πτ(j) − πℓ

)
|∆tj,ℓ|

)
. (5.3.32)

Hence, almost surely, both

max
Ir,m

r∑

j=1

m−r+j∑

ℓ=1

M̂ ℓ
n(∆tj,ℓ)

≥ max
Ir,m

r∑

j=1

m−r+j∑

ℓ=j

(
σℓB̂

ℓ
n(∆tj,ℓ) −

√
n
(
πτ(j) − πℓ

)
|∆tj,ℓ|

)
, (5.3.33)

and

max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

M̂ ℓ
n(∆tj,ℓ) = max

I∗r,m

r∑

j=1

m−r+j∑

ℓ=j

σℓB̂
ℓ
n(∆tj,ℓ). (5.3.34)

Now choose any z > 0. Then

P

(
max
Ir,m

r∑

j=1

m−r+j∑

ℓ=j

(
σℓB̂

ℓ
n(∆tj,ℓ) −

√
n
(
πτ(j) − πℓ

)
|∆tj,ℓ|

)

− max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=j

σℓB̂
ℓ
n(∆sj,ℓ) > z

)

≤ P

(
max
Ir,m

r∑

j=1

m−r+j∑

ℓ=1

M̂ ℓ
n(∆tj,ℓ) − max

I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

M̂ ℓ
n(∆tj,ℓ) > z

)
, (5.3.35)

so that

lim sup
n→∞

P

(
max
Ir,m

r∑

j=1

m−r+j∑

ℓ=j

(
σℓB̂

ℓ
n(∆tj,ℓ) −

√
n
(
πτ(j) − πℓ

)
|∆tj,ℓ|

)

− max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=j

σℓB̂
ℓ
n(∆sj,ℓ) > z

)
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≤ lim sup
n→∞

P

(
max
Ir,m

r∑

j=1

m−r+j∑

ℓ=1

M̂ ℓ
n(∆tj,ℓ) − max

I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

M̂ ℓ
n(∆tj,ℓ) > z

)

= P

(
max
Ir,m

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ) − max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ) > z

)
, (5.3.36)

by the Invariance Principle and the Continuous Mapping Theorem. Next, for any

0 ≤ ε ≤ 1, let

Ir,m(ε) = {(tj,ℓ) ∈ Ir,m :
∑

j,ℓ

|∆tj,ℓ|1{πℓ<πτ(r)} ≤ εr}.

Thus, I∗
r,m = Ir,m(0) ⊂ Ir,m(ε) ⊂ Ir,m(1) = Ir,m. We bound (5.3.36) using this family

of subsets as follows:

P

(
max
Ir,m

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ) − max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ) > z

)

≤ P

(
max
Ir,m(ε)

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ) − max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ) > z

)

+ P

(
max

Ir,m\Ir,m(ε)

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ) − max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ) > z

)

≤ P

(
max
Ir,m(ε)

r∑

j=1

m−r+j∑

ℓ=1

B̃ℓ(∆tj,ℓ) − max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

B̃ℓ(∆sj,ℓ) > z

)

+ P

(
max

Ir,m\Ir,m(ε)

r∑

j=1

m−r+j∑

ℓ=1

B̃ℓ(∆tj,ℓ) − max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

B̃ℓ(∆sj,ℓ) > z + εrc

)

≤ P

(
max
Ir,m(ε)

r∑

j=1

m−r+j∑

ℓ=1

B̃ℓ(∆tj,ℓ) − max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

B̃ℓ(∆sj,ℓ) > z

)

+ P

(
max
Ir,m

r∑

j=1

m−r+j∑

ℓ=1

B̃ℓ(∆tj,ℓ) − max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

B̃ℓ(∆sj,ℓ) > z + εrc

)
. (5.3.37)

We can now take the limsup in (5.3.37), as c → ∞, and then, as ε → 0, and so

establish convergence to zero in probability. Moreover, since
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P

(
max
Ir,m

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ) − max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ) ≥ 0

)
= 1,

we have in fact shown, with the help of (5.3.36), that with probability one,

max
Ir,m

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ) = max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=1

M ℓ(∆tj,ℓ),

and thus

max
Ir,m

r∑

j=1

m−r+j∑

ℓ=j

(
σℓB̂

ℓ
n(∆tj,ℓ) −

√
n
(
πτ(j) − πℓ

)
|∆tj,ℓ|

)

− max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=j

σℓB̂
ℓ
n(∆sj,ℓ)

P→ 0. (5.3.38)

Since

max
I∗r,m

r∑

j=1

m−r+j∑

ℓ=j

σℓB̂
ℓ
n(∆sj,ℓ) ⇒ max

I∗r,m

r∑

j=1

m−r+j∑

ℓ=j

σℓB̃
ℓ(∆sj,ℓ), (5.3.39)

by the Converging Together Lemma, we have proved (5.3.27). Equation (5.3.8) of the

theorem follows from the bijection between I∗
r,m and Ir−mr ,dr described in the general

result (5.3.30).

Finally, we can obtain the convergence of the joint distribution in (5.3.10) in the

following manner. Given any (θ1, θ2, . . . , θr) ∈ R
r, we have

r∑

k=1

θk

(
V k

n − νkn√
n

)

=

r∑

k=1

θk

(
max
Ik,m

k∑

j=1

m−k+j∑

ℓ=j

(
σℓB̂

ℓ
n(∆tj,ℓ) −

√
n
(
πτ(j) − πℓ

)
|∆tj,ℓ|

))

=
r∑

k=1

θk

(
max
Ik,m

k∑

j=1

m−k+j∑

ℓ=j

(
σℓB̂

ℓ
n(∆tj,ℓ) −

√
n
(
πτ(j) − πℓ

)
|∆tj,ℓ|

)

− max
I∗k,m

k∑

j=1

m−k+j∑

ℓ=j

σℓB̂
ℓ
n(∆sj,ℓ)

)
+

r∑

k=1

θk

(
max
I∗k,m

k∑

j=1

m−k+j∑

ℓ=j

σℓB̂
ℓ
n(∆sj,ℓ)

)
. (5.3.40)
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Now from (5.3.38), the first summation on the right-hand side of (5.3.40) converges

to zero in probability, as n → ∞. Moreover, the second summation is a continuous

functional of (B̂1
n, B̂

2
n, . . . , B̂

m
n ), and so, by the Invariance Principle and Continuous

Mapping Theorem, converges. Then the Converging Together Lemma, along with

the bijection result (5.3.30), gives

r∑

k=1

θk

(
V k

n − νkn√
n

)

⇒
r∑

k=1

θk

(
max
I∗k,m

k∑

j=1

m−k+j∑

ℓ=j

σℓB̃
ℓ(∆sj,ℓ)

)
=

r∑

k=1

θkV
k
∞. (5.3.41)

Since (5.3.41) holds for arbitrary (θ1, θ2, . . . , θr) ∈ R
r, by the Cramér-Wold The-

orem, we have the joint convergence result (5.3.10).

Since the shape of the Young tableau is more naturally expressed in terms of the

Rk
n, rather than of the V k

n , we may restate the results of the previous theorem as

follows:

Theorem 5.3.3 Let (Xn)n≥0 be an irreducible, aperiodic, homogeneous Markov chain

with finite state space Am = {α1 < · · · < αm}, and with stationary distribution

(π1, π2, . . . , πm). Then, in the notations of Theorem 5.3.2,

(
R1

n − πτ(1)n√
n

,
R2

n − πτ(2)n√
n

, . . . ,
Rm

n − πτ(m)n√
n

)
⇒ (R1

∞, R2
∞, . . . , Rm

∞), (5.3.42)

where

R1
∞ = max

I1,d1

d1∑

ℓ=1

στ(ℓ)

(
B̃τ(ℓ)(t1,ℓ) − B̃τ(ℓ)(t1,ℓ−1)

)
, (5.3.43)

and, for each 2 ≤ k ≤ m,
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Rk
∞ =

mk∑

i=mk−1+1

στ(i)B̃
τ(i)(1)

+ max
Ik−mk,dk

k−mk∑

j=1

(dk+mk−k+j)∑

ℓ=j

στ(mk+ℓ)B̃
τ(mk+ℓ)(∆tj,ℓ)

− max
Ik−1−mk−1,dk−1

k−1−mk−1∑

j=1

(dk−1+mk−1−k+1+j)∑

ℓ=j

στ(mk−1+ℓ)B̃
τ(mk−1+ℓ)(∆tj,ℓ), (5.3.44)

where we use the notation B̃s(∆tj,ℓ) = B̃s(tj,ℓ) − B̃s(tj,ℓ−1), for any 1 ≤ s ≤ m,

1 ≤ j ≤ k, and 1 ≤ ℓ ≤ m, and where the first sum on the right-hand side of (5.3.44)

is understood to be 0, if mk = mk−1.

Proof. First, R1
n = V 1

n , and, for each 2 ≤ k ≤ m, Rk
n = V k

n −V k−1
n . Expressing these

equalities at the multivariate level, we have

(
R1

n − πτ(1)n√
n

,
R2

n − πτ(2)n√
n

, . . . ,
Rm

n − πτ(m)n√
n

)

=

(
V 1

n − πτ(1)n√
n

,
V 2

n − V 1
n − πτ(2)n√

n
, . . . ,

V m
n − V m−1

n − πτ(m)n√
n

)

=

(
V 1

n − ν1n√
n

,
V 2

n − ν2n√
n

, . . . ,
V m

n − νmn√
n

)

−
(

0,
V 1

n − ν1n√
n

, . . . ,
V m

n − νm−1n√
n

)

⇒ (V 1
∞, V 2

∞, . . . , V m
∞ ) − (0, V 1

∞, . . . , V m
∞ )

:= (R1
∞, R2

∞, . . . , Rm
∞), (5.3.45)

where the weak convergence follows immediately from the Continuous Mapping The-

orem, since the transformation is linear.

Equations (5.3.43) and (5.3.44) follow simply from the Brownian expressions for

(V 1
∞, V 2

∞, . . . , V m
∞ ) in Theorem 5.3.2.
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If all m letters have unique stationary probabilities, then we have the following

corollary to Theorem 5.3.3:

Corollary 5.3.3 If the stationary distribution of Theorem 5.3.3 is such that each πr

is unique, then

(
R1

n − πτ(1)n√
n

,
R2

n − πτ(2)n√
n

, . . . ,
Rm

n − πτ(m)n√
n

)
⇒ N((0, 0, . . . , 0), Σ). (5.3.46)

In other words, the limiting distribution is identical in law to the spectrum of

the diagonal matrix D = diag{Z1, Z2, . . . , Zm}, where (Z1, Z2, . . . , Zm) is a centered

normal random vector with covariance matrix Σ.

Proof. Now, for all 1 ≤ k ≤ m, dk = 1, and mk = k − 1, so that

R1
∞ = max

I1,d1

d1∑

ℓ=1

στ(ℓ)

(
B̃τ(ℓ)(t1,ℓ) − B̃τ(ℓ)(t1,ℓ−1)

)

= στ(1)B̃
τ(1)(1),

and, for each 2 ≤ k ≤ m,

Rk
∞ =

mk∑

i=mk−1+1

στ(i)B̃
τ(i)(1)

+ max
Ik−mk,dk

k−mk∑

j=1

(dk+mk−k+j)∑

ℓ=j

στ(mk+ℓ)B̃
τ(mk+ℓ)(∆tj,ℓ)

− max
Ik−1−mk−1,dk−1

k−1−mk−1∑

j=1

(dk−1+mk−1−k+1+j)∑

ℓ=j

στ(mk−1+ℓ)B̃
τ(mk−1+ℓ)(∆tj,ℓ)

=
k−1∑

i=k−1

στ(i)B̃
τ(i)(1)

+ max
I1,1

1∑

j=1

j∑

ℓ=j

στ(k−1+ℓ)B̃
τ(k−1+ℓ)(∆tj,ℓ)
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− max
I1,1

1∑

j=1

j∑

ℓ=j

στ(k−2+ℓ)B̃
τ(k−2+ℓ)(∆tj,ℓ)

= στ(k−1)B̃
τ(k−1)(1) + στ(k)B̃

τ(k)(1) − στ(k−1)B̃
τ(k−1)(1)

= στ(k)B̃
τ(k)(1).

Moreover, the joint law result for (R1
∞, R2

∞, . . . , Rm
∞) holds as well, and this is clearly

a multivariate normal distribution, with mean (0, 0, . . . , 0) and covariance matrix Σ.

Since the spectrum of a diagonal matrix consists of its diagonal elements, the final

claim of the corollary holds.

Remark 5.3.5 We know that the joint law of (R1
∞, R2

∞, . . . , Rm
∞) in the iid uniform

alphabet case is identical to the joint law of the eigenvalues of an m × m traceless

GUE matrix. Corollary 5.3.3 also gives a spectral characterization for the unique

probability case, in particular, for a non-uniform iid alphabet with unique stationary

probabilities. This is consistent with the characterization of the limiting law of LIn in

the non-uniform iid case, due to Its, Tracy, and Widom [28, 29], as that of the largest

eigenvalue of the block associated with the most probable letters among a direct sum

of independent GUE matrices whose dimensions correspond to the multiplicities dr of

Theorems 5.3.2 and 5.3.3, subject to the condition that
∑m

r=1

√
πτ(r)Xr = 0, where

X1, X2, . . . , Xm are the diagonal elements of the random matrix. More generally, the

joint law in Corollary 5.3.3 is a special case of the non-uniform iid result of Xu [46].

Remark 5.3.6 The difference between the zero-trace condition
∑m

r=1 Xr = 0 and the

generalized traceless condition
∑m

r=1

√
πτ(r)Xr = 0 amounts to nothing more than a

difference in the choice of scaling for each row Rr
n. We will find it more natural to

express our results using the normalization associated with the zero-trace condition

∑m
r=1 Xr = 0
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5.4 Fine Structure of the Brownian Functional

So far, we have seen that the limiting shape of the random Young tableau generated by

an aperiodic, irreducible, homogeneous Markov chain can be expressed as a Brownian

functional. The form of this functional is similar to the iid case; the essential difference

is in the covariance structure of the Brownian motion. We begin our study of the

consequences of this difference.

In the iid uniform m-alphabet case, Johansson [31] proved that the limiting shape

of the Young tableau had a joint law which is that of the spectrum of an m × m

traceless GUE matrix. An immediate consequence of this result is that the limiting

shape of the Young tableau contains simple symmetries, e.g., for each 1 ≤ r ≤ m,

Rr
∞

L
= −Rm−r

∞ . Now, as was seen in Corollary 5.3.1 of Theorem 5.3.2, the form of the

Brownian functional in the doubly stochastic case involved only the maximal term.

We will see that that there is also a pleasing symmetry to the limiting shape of Young

tableaux in the doubly stochastic case by examining a natural bijection between the

parameter set Ir,m and Im−r,m, for any 1 ≤ r ≤ m − 1. Indeed, this result will follow

as a corollary to the following, more general, theorem:

Theorem 5.4.1 The limiting functionals of Theorem 5.3.2 enjoy the following sym-

metry property: for every 1 ≤ r ≤ m − 1,

V r
∞ :=

mr∑

i=1

στ(i)B̃
τ(i)(1)

+ max
t(·,·)∈Ir−mr,dr

r−mr∑

j=1

(mr+dr−r+j)∑

ℓ=j

στ(mr+ℓ)B̃
τ(mr+ℓ)(∆tj,ℓ)

L
=

m∑

i=mr+dr+1

στ(i)B̃
τ(i)(1)

+ max
u(·,·)∈Imr+dr−r,dr

mr+dr−r∑

j=1

r−mr+j∑

ℓ=j

στ(mr+ℓ)B̃
τ(mr+ℓ)(∆uj,ℓ), (5.4.1)
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where B̃ℓ(∆) := B̃ℓ(t) − B̃ℓ(s), for ∆ = [s, t], and where the non-maximal terms on

the left and right-hand sides of (5.4.1) are identically zero if mr = 0, or mr +dr = m,

respectively.

Remark 5.4.1 Recall that, from the definitions of mr and dr, the non-maximal sum-

mation terms on the left and right-hand sides of (5.4.1) reflect the letters which have,

respectively, greater and smaller stationary probabilities than πτ(r). Recall, moreover,

that the maximal terms are associated with the indices having the same stationary

probability as πτ(r). The maximal term on the left-hand side of (5.4.1) involves a

summation over r −mr rows, while the one on the right-hand side involves mr+1 − r

rows. Thus, in a sense, the two maximal terms in (5.4.1) split dr = mr+1 − mr rows

between themselves. In summary, the functional on the right-hand side of (5.4.1)

corresponds to the sum of the m − r bottom rows of the Young tableau.

Proof. Without loss of generality, we may assume that τ(j) = j, for all 1 ≤ j ≤ m.

Fix 1 ≤ r ≤ m − 1, and for any point t in the index set Ir−mr ,dr , define ∆tj+mr ,ℓ =

[tj,ℓ−1, tj,ℓ], for 1 ≤ j ≤ r − mr and 1 ≤ ℓ ≤ dr. Furthermore, for each 1 ≤ j ≤ mr

or mr+1 < j ≤ m, set ∆tj,ℓ = [0, 1], for j = ℓ, ∆tj,ℓ = {0}, for 0 ≤ ℓ < j, and

∆tj,ℓ = {1}, for j < ℓ ≤ m. Next, as in the proof of Theorem 5.3.2, consider the set of

points {tj,ℓ}(1≤j≤r−mr ,1≤ℓ≤dr), and order them as s0 := 0 < s1 < · · · < sκ−1 < sκ := 1,

for some integer κ, and let ∆sq = [sq−1, sq], for each 1 ≤ q ≤ κ.

Now, for each 1 ≤ q ≤ κ, let Aq consist of the indices ℓ for which ∆sq ∩∆tj,ℓ 6= ∅.

Then, almost surely,

mr∑

i=1

σiB̃
i(1) +

r−mr∑

j=1

(mr+dr−r+j)∑

ℓ=j

σmr+ℓB̃
mr+ℓ(∆tj,ℓ)

=

r∑

j=1

m∑

ℓ=1

σℓB̃
ℓ(∆tj,ℓ)
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=
r∑

j=1

κ∑

q=1

m∑

ℓ=1

σℓB̃
ℓ(∆tj,ℓ ∩ ∆sq)

=

r∑

j=1

κ∑

q=1

∑

ℓ∈Aq

σℓB̃
ℓ(∆sq). (5.4.2)

Now by the “stairstep” properties of Ir,m there are precisely r elements in each

Aq. Letting Ãq = {1, . . . , m} \ Aq, for each 1 ≤ q ≤ κ, we thus see that each Ãq

contains exactly m− r elements. Let ℓ̃j,q be the jth smallest element of Ãq. We claim

that for each 1 ≤ j ≤ m − r, the sequence ℓ̃j,1, ℓ̃j,2, . . . , ℓ̃j,κ. is weakly decreasing.

Indeed, fix 1 ≤ j ≤ m− r and 1 ≤ q ≤ κ− 1, and suppose that ℓ̃j,q is less than all

the elements of Aq. Then, by the properties of Ir,m, the least element of Aq+1 is no

smaller, so that the jth smallest element of Ãq, ℓ̃j,q+1 is also ℓ̃j,q. Next, suppose that

ℓ̃j,q is greater than k ≥ 1 elements of Aq. Thus, ℓ̃j,q = j + k. Then there are at most

k elements of Aq+1 which are less than or equal to ℓ̃j,q, by the properties of Ir,m. But

this implies that there are at least j elements of Ãq+1 which are less than or equal to

ℓ̃j,q. Thus, ℓ̃j,q+1 ≤ ℓ̃j,q, and the claim is proved.

Moreover, since each Aq contains {1, 2, . . . , mr}, we see that necessarily each Ãq

contains {mr + dr + 1, mr + dr + 2, . . . , m}.

For each 1 ≤ j ≤ m − r, we may now amalgamate the intervals ∆sq to obtain

a partition of the unit interval. Specifically, for each 1 ≤ j ≤ m − r, and each

1 ≤ ℓ ≤ m, let ũj,ℓ be the smallest sq such that ℓ̃j,q+1 ≤ ℓ. (We define ũj,0 = 1, for all

1 ≤ j ≤ m − r.)

Finally, and most crucially, recall that
∑m

ℓ=1 σℓB̃
ℓ(t) = 0, for all t. Then since

(B̃1, B̃2, . . . , B̃m)
L
= (−B̃1,−B̃2, . . . ,−B̃m),

r∑

j=1

κ∑

q=1

∑

ℓ∈Aq

σℓB̃
ℓ(∆sq)
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=

m−r∑

j=1

κ∑

q=1

∑

ℓ∈Ãq

(
−σℓB̃

ℓ(∆sq)
)

= −
m∑

i=mr+dr+1

σiB̃
i(1) −

mr+dr−r∑

j=1

m∑

ℓ=1

σmr+ℓB̃
mr+ℓ(∆uj,ℓ)

L
=

m∑

i=mr+dr+1

σiB̃
i(1) +

mr+dr−r∑

j=1

m∑

ℓ=1

σmr+ℓB̃
mr+ℓ(∆uj,ℓ), (5.4.3)

where ∆uj,ℓ = [uj,ℓ−1, uj,ℓ]. But, by the way we ordered each Aq, we must have

∆uj1,ℓ ∩∆uj2,ℓ = ∅, for any j1 6= j2. Thus, u ∈ Imr+dr−r,dr , and so we may restrict the

summation over ℓ in (5.4.3) to ℓ = j, . . . , r − mr + j, since the remaining terms are

zero. Equation (5.4.1) follows immediately by taking the maxima over Ir−mr ,dr and

Imr+dr−r,dr over the left-hand and right-hand sides, respectively, of (5.4.3).

For doubly stochastic transition matrices, the symmetry is even more apparent:

Corollary 5.4.1 Let the transition matrix P of Theorem 5.3.2 be doubly stochastic.

Then, for every 1 ≤ r ≤ m − 1,

V r
∞ := max

t(·,·)∈Ir,m

r∑

j=1

m−r+j∑

ℓ=j

σℓ

(
B̃ℓ(tj,ℓ) − B̃ℓ(tj,ℓ−1)

)

L
= max

u(·,·)∈Im−r,m

m−r∑

j=1

r+j∑

ℓ=j

σℓ

(
B̃ℓ(uj,ℓ) − B̃ℓ(uj,ℓ−1)

)
:= V m−r

∞ , (5.4.4)

and so

lim
n→∞

∑r
j=1 Rj

n − rn/m
√

n

L
= lim

n→∞

rn/m −∑m
j=m−r+1 Rj

n√
n

. (5.4.5)

Moreover,

(V 1
∞, . . . , V r

∞)
L
= (V m−1

∞ , . . . , V m−r
∞ ). (5.4.6)
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Proof. Since mr = 0 and dr = m for all 1 ≤ r ≤ m, the non-maximal terms on both

sides of (5.4.1) disappear, and we have (5.4.4).

To prove (5.4.5), recall that V m
n =

∑m
j=1 Rj

n = n. Then, from the result just

proved,

V m−r
n − (m − r)n/m√

n
=

∑m−r
j=1 Rj

n − (m − r)n/m
√

n

=

(
n −∑m

j=m−r+1 Rj
n

)
− (m − r)n/m

√
n

=
rn/m −∑m

j=m−r+1 Rj
n√

n

⇒ V m−r
∞

L
= V r

∞, (5.4.7)

and we have established the claimed symmetry.

Finally, the extension of (5.4.4) to (5.4.6) follows from a standard Cramér-Wold

argument.

Remark 5.4.2 Since Rm
∞ = −V m−1

∞ , almost surely, Corollary 5.4.1 states that Rm
∞

L
=

−R1
∞. From the symmetry of the Brownian motion, we thus see that Rm

∞ may be

represented as a minimal Brownian functional:

Rm
∞ = min

I1,m

m∑

ℓ=1

σℓ

(
B̃ℓ(t1,ℓ) − B̃ℓ(t1,ℓ−1)

)
.

Turning again to the cyclic case, recall that, for m ≥ 4, the limiting shape of

the Young tableau in general differs from that of the iid uniform case. The following

theorem characterizes the asymptotic covariance matrices of such Markov chains.

Theorem 5.4.2 Let P be the m × m transition matrix of an aperiodic, irreducible,

cyclic Markov chain on an m-letter, ordered alphabet, Am = {α1 < α2 < · · · < αm},

with
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P =




a1 am · · · a3 a2

a2 a1
. . . a3

...
. . .

. . .
. . .

...

am−1
. . . a1 am

am am−1 · · · a2 a1




. (5.4.8)

Then, for 1 ≤ j ≤ m, λj =
∑m

k=1 akω
(k−1)(j−1) is an eigenvalue of P , where ω =

exp(2πi/m) is the mth principal root of unity. Moreover, letting γj = λj/(1−λj), for

2 ≤ j ≤ m, and βj = cos(2πj/m), for 0 ≤ j ≤ m, the asymptotic covariance matrix

Σ is given by

Σ =
m − 1

m2
M (1) +

4

m2

m0+1∑

j=2

Re(γj)M
(j), m = 2m0 + 1, (5.4.9)

and

Σ =
m − 1

m2
M (1) +

4

m2

m0∑

j=2

Re(γj)M
(j) +

2

m2
γm0+1M

(m0+1), m = 2m0, (5.4.10)

where M (j) is an m × m Toeplitz matrix with entries (M (j))k,ℓ = β(j−1)|k−ℓ|, for 2 ≤

j ≤ m, and (M (1))k,ℓ = δk,ℓ − (1 − δk,ℓ)/(m − 1), for j = 1.

Proof. It is straightforward, and classical, to verify that, for each 1 ≤ j ≤ m,

(1, ωj−1, ω2(j−1), . . . , ω(m−1)(j−1)) is a left eigenvector of P , with eigenvalue λj =

∑m
k=1 akω

(k−1)(j−1). We can thus write our standard diagonalization of P as P =

S−1ΛS, where Λ = diag(1, λ2, . . . , λm),

122



S =




1 1 · · · 1 1

1 ω ω2 · · · ωm−1

1 ω2 ω4 · · · ω2(m−1)

...
...

. . .
. . .

...

1 ωm−1 ω2(m−1) · · · ω(m−1)2




, (5.4.11)

and

S−1 =
1

m




1 1 · · · 1 1

1 ω−1 ω−2 · · · ω−(m−1)

1 ω−2 ω−4 · · · ω−2(m−1)

...
...

. . .
. . .

...

1 ω−(m−1) ω−2(m−1) · · · ω−(m−1)2




. (5.4.12)

In the present cyclic, and hence, doubly stochastic case, we know that Σ =

(1/m)(I + S−1DS + (S−1DS)T ), where, as usual, we have D = diag(γ1, γ2, . . . , γm)

= diag(−1/2, λ2/(1− λ2), . . . , λm/(1− λm)). We can then compute the entries of the

covariance matrix Σ S−1DS as follows:

(S−1DS)j1,j2 =
∑

k,ℓ

(S−1)j1,k(D)k,ℓ(S)ℓ,j2

=
∑

k,ℓ

1

m
(ω−(j1−1)(k−1))(δk,ℓγk)(ω

(j2−1)(ℓ−1))

=

m∑

k=1

γk

m
ω(j2−j1)(k−1)

=
1

m

(
−1

2
+

m∑

k=2

γkω
(j2−j1)(k−1)

)
, (5.4.13)

for all 1 ≤ j1, j2,≤ m. The entries of the asymptotic covariance matrix can thus be

written as
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σj1,j2 =
1

m

(
δj1,j2 + (S−1DS)j1,j2 + (S−1DS)j2,j1

)

=
1

m

(
δj1,j2 +

1

m

(
−1 +

m∑

k=2

γk(ω
(j2−j1)(k−1) + ω(j1−j2)(k−1))

))

=
m − 1

m2
M

(1)
j1,j2

+
2

m2

m∑

k=2

γkβ|j2−j1|(k−1), (5.4.14)

for all 1 ≤ j1, j2,≤ m.

Next, note that since λm+2−k = λ̄k, i.e., the complex conjugate of λm+2−k, we have

γm+2−k = γ̄k, for all 2 ≤ k ≤ m. Moreover, since β|j2−j1|(k−1) = β|j2−j1|((m+2−k)−1), we

can write (5.4.14) more symmetrically as (5.4.9) or (5.4.10), depending on whether

m is odd or even, respectively, and in the latter case, we also use that γm0+1 is real,

since ωm0 = −1.

Let us again examine the cases m = 3 and m = 4. In the former case, we have

M (1) =




1 −1/2 −1/2

−1/2 1 −1/2

−1/2 −1/2 1




.

But for m = 3, β1 = −1/2 = β2, and so M (1) = M (2). Hence

Σ =
2

9
M (1) +

4

9
Re(γ2)M

(2) =
2

9
(1 + 2Re(γ2))M

(1). (5.4.15)

Hence, for m = 3, cyclicity always produces a rescaled version of the uniform iid

case, with the rescaling factor given by 1 + 2Re(γ2).

For m = 4, however,

M (1) =




1 −1/3 −1/3 −1/3

−1/3 1 −1/3 −1/3

−1/3 −1/3 1 −1/3

−1/3 −1/3 −1/3 1




,
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and β1 = 0, β2 = −1, and β3 = 0. Thus,

M (2) =




1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1




,

and

M (3) =




1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1




.

In this case, we have

Σ =
3

16
M (1) +

4

16
Re(γ2)M

(2) +
2

16
γ3M

(3).

Next, note that 2M (2) + M (3) = 3M (1). Then, if Re(γ2) = γ3,

Σ =
3

16
M (1) +

4

16
Re(γ2)M

(2) +
2

16
γ3M

(3)

=
3

16
M (1) +

2

16
(2Re(γ2)M

(1))

=
3

16
(1 + 2Re(γ2))M

(1), (5.4.16)

so that there is still a rescaled version of the iid case in a non-iid cyclic setting.

Indeed, since we know that λ2 = a1 + ia2 − a3 − ia4 = (a1 − a3) + i(a2 − a4) and

λ3 = a1 − a2 + a3 − a4, we find that

Re(γ2) =
1 − a2 − 2a3 − a4

(a2 + 2a3 + a4)2 + (a2 − a4)2
− 1,

and γ3 = 1/(2(a2 + a4)) − 1. A short calculation then shows that Re(γ2) = γ3 if and

only if a2
3 = a2a4. We thus have a complete characterization of all 4-letter, cyclic
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Markov chains whose Young tableaux have the same limiting shape as the uniform

iid case. In particular, choosing a2 = a4 = a, for some 0 < a < 1/3, leads to a3 = a

and a1 = 1 − 3a. If, moreover, a = 1/4, we have again the iid uniform case. For

a 6= 1/4, however, we may view the Markov chain as a “lazy” version of the uniform

iid case.

Note that the scaling factor in both (5.4.15) and (5.4.16) is 1 + 2Re(γ2). The

following theorem shows that, in fact, such a scaling factor occurs for general m, and

gives a spectral characterization of all transition matrices which lead to an iid limiting

shape.

Theorem 5.4.3 Let P be the m × m transition matrix of an aperiodic, irreducible,

cyclic Markov chain on an m-letter, ordered alphabet given in Theorem 5.4.2. Then

the asymptotic covariance matrix Σ is a rescaled version of the iid uniform covariance

matrix Σiidu := ((m − 1)/m2)M (1) if and only if the constants γj = λj/(1 − λj), for

2 ≤ j ≤ m, satisfy the condition

Re(γj) = γ, for all 2 ≤ j ≤ m, (5.4.17)

for some real constant γ. Moreover, the scaling is then given by

Σ = (1 + 2γ)Σiidu. (5.4.18)

Proof. We first claim that the system of matrix equations

m∑

j=2

bjM
(j) = M (1) (5.4.19)

has a unique solution bj = 1/(m − 1), for all 2 ≤ j ≤ m. Indeed, revisiting (5.4.14),

we can express each M (j) as
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M (j) = M̃ (j) + M̃ (−j)

= M̃ (j) + M̃ (m−j+1), (5.4.20)

where (M̃ (j))k,ℓ = ω(j−1)(ℓ−k)/2, for all 1 ≤ k, ℓ ≤ m, so that (5.4.19) becomes

M (1) =

m∑

j=2

bj

(
M̃ (j) + M̃ (m−j+1)

)

=
m∑

j=2

(bj + bm−j+1)M̃
(j)

=

m∑

j=2

b̃jM̃
(j), (5.4.21)

where b̃j := (bj + bm−j+1)/2, for 2 ≤ j ≤ m.

Now, clearly, each M̃ (j) is cyclic, so that in solving (5.4.21) we need only examine

the m entries in the first rows of the matrices. We can thus reduce (5.4.21) to the

m × (m − 1) system of equations




1 1 1 · · · 1

ω ω2 ω3 · · · ωm−1

ω2 ω4 ω6 · · · ω2(m−1)

...
...

...
. . .

...

ωm−1 ω2(m−1) ω3(m−1) · · · ω(m−1)2







b̃2

b̃3

...

b̃m




=




1

−1
m−1

−1
m−1

...

−1
m−1




. (5.4.22)

Since each of the last m − 1 rows of the matrix in (5.4.22) sums to −1, it is clear

that b̃j = 1/(m − 1) is a solution to the system. To see that this solution is, in fact,

unique, consider the (m − 1) × (m − 1) sub-matrix consisting of the last m − 1 rows

of the matrix in (5.4.22), namely,
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


ω ω2 ω3 · · · ωm−1

ω2 ω4 ω6 · · · ω2(m−1)

...
...

...
. . .

...

ωm−1 ω2(m−1) ω3(m−1) · · · ω(m−1)2




. (5.4.23)

Now this matrix, which is very closely related to the Fourier matrix which arises in

discrete Fourier transform problems, is in fact invertible, and can be shown to have

one eigenvalue of −1, and m − 2 eigenvalues of the form ±√
m and ±i

√
m, so that

the modulus of the determinant is m(m−2)/2 6= 0. Thus, the solution b̃j = 1/(m − 1)

is unique, and since bj = (bj + bm−j+1)/2 = bm−j+1, for all 2 ≤ j ≤ m, we conclude

that bj = 1/(m − 1) as well, for all 2 ≤ j ≤ m, and the claim is proved.

We can now use Theorem 5.4.2 to simplify the asymptotic covariance matrix

decomposition as follows:

Σ =
m − 1

m2
M (1) +

2

m2

m∑

k=2

γkM
(k)

=
m − 1

m2
M (1) + 2γ

1

m2

m∑

k=2

M (k)

=
m − 1

m2
M (1) + 2γ

m − 1

m2
M (1)

= (1 + 2γ)
m − 1

m2
M (1)

= (1 + 2γ)Σiidu, (5.4.24)

where γ = Re(γj), for all 2 ≤ j ≤ m. If the real parts of γj are not all identical,

then the uniqueness of the solution of (5.4.19) implies that no such simplification is

possible, and the theorem is proved.

Remark 5.4.3 To see that the condition in (5.4.17) is not vacuous for any m, recall

that for m = 4, the “lazy” chain has the iid limiting shape. This is true for general
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m: if a2 = a3 = · · · = am = a, for some 0 < a < 1/(m − 1), then λj = 1 − (m − 1)a,

for all 2 ≤ j ≤ m. Trivially, then, γj = 1/((m − 1)a) − 1 := γ, for all 2 ≤ j ≤ m,

so that the conditions of Theorem 5.4.3 are satisfied, and the scaling factor is given

by 1 + 2γ = (2 − (m − 1)a)/((m − 1)a). Even in the m = 4 case, however, we saw

that there were other, more general, cyclic transition matrices which gave rise to the

iid limiting distribution.

The previous theorem indicates precisely when we may expect the limiting shape

of a cyclic Markov chain to be identical to that of the iid uniform case. Now the first-

order behavior of all rows of the Young tableau is n/m + O(
√

n) for cyclic Markov

chains. Although this differs from the first-order behavior in the non-uniform iid case,

one may still ask whether the limiting shape for some cyclic Markov chains might still

be that of some non-uniform iid case. In fact, this can never occur: cyclicity ensures

that the asymptotic covariance matrix is also cyclic, and thus cannot be equal to the

asymptotic covariance matrix of any non-uniform iid case.

Still, we may ask how to relate the iid non-uniform limiting shape to that of a

general Markov chain having the same stationary distribution. The following inter-

polation result describes the asymptotic covariance matrix for a Markov chain whose

transition matrix is a convex combination of an iid (uniform or non-uniform) tran-

sition matrix and another arbitrary transition matrix having the same stationary

distribution:

Theorem 5.4.4 For any m ≥ 3, let P0 be the m × m transition matrix of an ir-

reducible, aperiodic, homogeneous Markov chain, and let its associated asymptotic

covariance matrix be given by

Σ0 = Π0 + Π0(S
−1
0 D0S0) + (S−1

0 D0S0)
T Π0, (5.4.25)

in the standard notations of Theorem 5.2.1. Then, for 0 < δ ≤ 1, the transition
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matrix P = (1 − δ)Im + δP0 has an asymptotic covariance matrix given by

Σ =
1

δ
(Σ0 + (1 − δ)ΣΠ0) , (5.4.26)

where ΣΠ0 is the covariance matrix associated with the iid Markov chain having the

same stationary distribution as P0.

Proof. Using the standard notations of Theorem 5.2.1, we will write

Σ = Π + Π(S−1DS) + (S−1DS)T Π

in terms of the decomposition Σ0 in (5.4.25). Now, clearly, the stationary distribution

under P is that of P0, so that Π = Π0. We will thus write the stationary distribution

simply as (π1, π2, . . . , πm). Moreover, the eigenvectors are also unchanged, so that

S = S0. However, for each eigenvalue λk,0 of P0, we have that λk = (1 − δ) + δλk,0 is

an eigenvalue of P , for 1 ≤ k ≤ m. Thus, for each 2 ≤ k ≤ m, the diagonal entries of

D are given by

γk :=
λk

1 − λk

=
(1 − δ) + δλk,0

δ(1 − λk,0)

=
1 − δ

δ
+ γk,0,

where γk,0 are the diagonal entries of D0. We can thus decompose D as follows:

D = diag(−1/2, γ2, . . . , γm)

= diag(−1/2, 0, . . . , 0) +

(
1 − δ

δ

)
diag(0, 1, . . . , 1)

+

(
1

δ

)
diag(0, γ2,0, . . . , γm,0)
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= diag

(
−
(

1 − δ

2δ

)
, 0, . . . , 0

)
+

(
1 − δ

δ

)
Im +

(
1

δ

)
D0. (5.4.27)

Next, recall from Proposition 5.2.1 that the first column of S−1 is (1, 1, . . . , 1)T .

Hence,

S−1DS = S−1
0 DS0

=




1 ∗ · · · ∗
...

... · · · ...

...
... · · · ...

1 ∗ · · · ∗







−1−δ
2δ

0 · · · 0

0
. . . · · · ...

...
...

. . .
...

0 · · · · · · 0







π1 π2 · · · πm

∗ ∗ · · · ∗
...

... · · · ...

∗ ∗ · · · ∗




+

(
1 − δ

δ

)
S−1

0 ImS0 +

(
1

δ

)
S−1

0 D0S0

= −
(

1 − δ

2δ

)




π1 π2 · · · πm

π1 π2 · · · πm

...
... · · · ...

π1 π2 · · · πm




+

(
1 − δ

δ

)
Im +

(
1

δ

)
S−1

0 D0S0,

(5.4.28)

which gives us

ΠS−1DS = Π0S
−1DS

= −
(

1 − δ

2δ

)




π1 0 · · · 0

0 π2 · · · ...

0
...

. . .
...

0 · · · · · · πm







π1 π2 · · · πm

π1 π2 · · · πm

...
... · · · ...

π1 π2 · · · πm




+

(
1 − δ

δ

)
Π0 +

(
1

δ

)
Π0S

−1
0 D0S0
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= −
(

1 − δ

2δ

)




π2
1 π1π2 · · · π1πm

π2π1 π2
2 · · · π2πm

...
...

. . .
...

πmπ1 πmπ2 · · · π2
m




+

(
1 − δ

δ

)
Π0 +

(
1

δ

)
Π0S

−1
0 D0S0. (5.4.29)

Finally, we can express Σ as

Σ = Π + Π(S−1DS) + (S−1DS)T Π

=

(
1

δ

)
Π0 +

(
1 − 1

δ

)
Π0 + Π0(S

−1DS) + (Π0(S
−1DS))T

=

(
1

δ

)
Σ0 +

(
1 − 1

δ

)
(Π0 − 2Π0)

+

(
1 − 1

δ

)




π2
1 π1π2 · · · π1πm

π2π1 π2
2 · · · π2πm

...
...

. . .
...

πmπ1 πmπ2 · · · π2
m




=

(
1

δ

)
Σ0 +

(
1 − 1

δ

)
(−ΣΠ0)

=
1

δ
(Σ0 + (1 − δ)ΣΠ0) , (5.4.30)

and we are done.

Thus far we have expressed our limiting laws in terms of Brownian functionals

whose Brownian motions have a non-trivial covariance structure arising directly from

the specific nature of the transition matrix. It is of interest to instead express the

limiting laws in terms of standard Brownian motions.

Since the asymptotic covariance matrix Σ is non-negative definite, we can find
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an m × m matrix C such that Σ = CCT . (The matrix C is not unique, since

(CQ)(CQ)T = CCT = Σ for any orthogonal matrix Q.) Clearly, we then have

(σ1B̃
1(t), σ2B̃

2(t), . . . , σmB̃m(t))T = C(B1(t), B2(t), . . . , Bm(t))T , (5.4.31)

where (B1(t), B2(t), . . . , Bm(t))T is a standard, m-dimensional Brownian motion,

since

E
[
(σ1B̃

1(t), σ2B̃
2(t), . . . , σmB̃m(t))T (σ1B̃

1(t), σ2B̃
2(t), . . . , σmB̃m(t))

]

= E
[
C(B1(t), B2(t), . . . , Bm(t))T

][
(C(B1(t), B2(t), . . . , Bm(t))T

]T

= C
[
E(B1(t), B2(t), . . . , Bm(t))T )(B1(t), B2(t), . . . , Bm(t))

]
CT

= C(tIm)CT

= tΣ.

Next, we can, without loss of generality, assume that τ(ℓ) = ℓ, for all ℓ, and so

write our main result (5.3.8) in Theorem 5.3.2 as

V r
n − νrn√

n
⇒

mr∑

k=1

σkB̃
k(1) + max

Ir−mr,dr

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

σmr+ℓB̃
mr+ℓ(∆tj,ℓ)

:= V r
∞. (5.4.32)

Simply substituting (5.4.31) into (5.4.32) immediately yields
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V r
∞ =

mr∑

k=1

(
m∑

i=1

Ck,iB
i(1)

)

+ max
Ir−mr,dr

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

(
m∑

i=1

Cmr+ℓ,iB
i(∆tj,ℓ)

)

=

m∑

i=1

mr∑

k=1

Ck,iB
i(1)

+ max
Ir−mr,dr

m∑

i=1

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

Cmr+ℓ,iB
i(∆tj,ℓ). (5.4.33)

Now the first term in (5.4.33) is simply a Gaussian term whose variance can be

computed explicitly. Unfortunately, the maximal term does not in general succumb

to any significant simplifications. However, in the iid case, we can further simplify

(5.4.33) in a very satisfying way.

Indeed, since, in the iid case, we have σ2
k = πk(1 − πk) and, for k 6= ℓ, σk,ℓ =

−πkπℓ, one can quickly check that C can be chosen so that Ck,k =
√

πk − √
πkπk,

and, for k 6= ℓ, Ck,ℓ = −√
πℓπk. Moreover, for all mr + 1 ≤ k ≤ mr + dr, πk =

πmr+1 = πr. Then, within the maximal term, Cmr+ℓ,i =
√

πr − πr
√

πr, for i = mr + ℓ,

and Cmr+ℓ,i = −πr
√

πi, for i 6= mr + ℓ. With the convention that ν0 = 0, we can then

express (5.4.33) as

V r
∞ =

mr∑

i=1

√
πiB

i(1) +

m∑

i=1

mr∑

k=1

(−√
πiπk)B

i(1)

+ max
Ir−mr,dr

{r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

√
πrB

mr+ℓ(∆tj,ℓ)

+

m∑

i=1

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

(−πr

√
πi)B

i(∆tj,ℓ)

}

=

mr∑

i=1

√
πiB

i(1) −
m∑

i=1

√
πiB

i(1)

mr∑

k=1

πk

+
√

πr max
Ir−mr,dr

{r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

Bmr+ℓ(∆tj,ℓ)
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−√
πr

m∑

i=1

√
πi

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

Bi(∆tj,ℓ)

}

=

{ mr∑

i=1

√
πiB

i(1) − νmr

m∑

i=1

√
πiB

i(1) − πrr

m∑

i=1

√
πiB

i(1)

}

+
√

πr max
Ir−mr,dr

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

Bmr+ℓ(∆tj,ℓ)

=

{ mr∑

i=1

√
πiB

i(1) − (νmr + πrr)

m∑

i=1

√
πiB

i(1)

}

+
√

πr max
Ir−mr,dr

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

Bmr+ℓ(∆tj,ℓ)

=
{

(1 − νmr − πrr)
mr∑

i=1

√
πiB

i(1)

− (νmr + πrr)

m∑

i=mr+dr+1

√
πiB

i(1)
}

+
√

πr

{
−(νmr + πrr)

mr+dr∑

i=mr+1

Bi(1)

+ max
Ir−mr,dr

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

Bmr+ℓ(∆tj,ℓ)
}
. (5.4.34)

Note that the first two Gaussian term of (5.4.34) are independent of the remaining

two Gaussian-maximal expression terms.

Following Glynn and Whitt[20] and Barishnykov[6], who studied the Brownian

functional

Dm = max
I1,m

m∑

ℓ=1

Bℓ(∆tℓ),

we define the following, more general, Brownian functional:

Dr,m := max
Ir,m

r∑

j=1

(m−r+j)∑

ℓ=j

Bℓ(∆tj,ℓ), (5.4.35)

where 1 ≤ r ≤ m. Clearly, the maximal term in (5.4.34) has just such a form. We
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also remark that Dr,m corresponds to the sum of the r largest eigenvalues of an m×m

GUE matrix.

To better understand (5.4.34), we may, without much loss in generality, focus on

the first block, that is, values of r such that mr = 0. The first Gaussian term of

(5.4.34) thus vanishes, and, writing πmax for πr, we have

V r
∞ = −rπmax

m∑

i=d1+1

√
πiB

i(1)

+
√

πmax

(
−rπmax

d1∑

i=1

Bi(1) + Dr,dr

)
. (5.4.36)

In the uniform iid case, the first Gaussian term of (5.4.36) itself vanishes, since

dr = d1 = m, and we have

V r
∞ =

1√
m

(
− r

m

m∑

i=1

Bi(1) + Dr,m

)

:=
Hr,m√

m
. (5.4.37)

For r = 1, this result corresponds to Theorem 2.3.1. Furthermore, and still specializ-

ing (5.4.36) to r = 1,

LIn − πmaxn√
n

⇒ −πmax

m∑

i=d1+1

√
πiB

i(1)

+
√

πmax

(
−πmax

d1∑

i=1

Bi(1) + D1,d1

)

= −πmax

m∑

i=d1+1

√
πiB

i(1)

+
√

πmax

(
1

d1
− πmax

) d1∑

i=1

Bi(1)
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+
√

πmaxH1,d1 . (5.4.38)

One can easily compute the variance of the Gaussian terms in (5.4.38) to be

πmax(1 − d1πmax)/d1, which is consistent with Proposition 2.3.1.

The iid development above suggests that we can find additional cases which yield

simple functionals of standard Brownian motions. Indeed, the first property of the

matrix C in the iid case that allowed the functionals to be simplified was that Ck,ℓ =

cℓ, for all k 6= ℓ, mr + 1 ≤ k ≤ mr + dr, and 1 ≤ ℓ ≤ m, where c1, c2, . . . , cm

were real numbers. Then, writing the diagonal terms of C as Ck,k = bk + ck, for

mr + 1 ≤ k ≤ mr + dr, we may revisit (5.4.33), and write

V r
∞ =

m∑

i=1

mr∑

k=1

Ck,iB
i(1) + max

Ir−mr,dr

m∑

i=1

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

Cmr+ℓ,iB
i(∆tj,ℓ)

=

m∑

i=1

mr∑

k=1

Ck,iB
i(1) + max

Ir−mr,dr

{r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

bmr+ℓB
mr+ℓ(∆tj,ℓ)

+

m∑

i=1

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

ciB
i(∆tj,ℓ)

}

=
m∑

i=1

mr∑

k=1

Ck,iB
i(1) + r

m∑

i=1

ciB
i(1)

+ max
Ir−mr,dr

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

bmr+ℓB
mr+ℓ(∆tj,ℓ) (5.4.39)

Except for the fact that we have written the functional in terms of standard Brow-

nian motions, the maximal term in (5.4.39) is no simpler than that of our original

functional. However, the second property of the iid case that yielded further sim-

plifications was that bk = b, for all mr + 1 ≤ k ≤ mr + dr. In this case, (5.4.39)

becomes

137



V r
∞ =

m∑

i=1

mr∑

k=1

Ck,iB
i(1) + r

m∑

i=1

ciB
i(1)

+ b max
Ir−mr,dr

r−mr∑

j=1

(dr+mr−r+j)∑

ℓ=j

Bmr+ℓ(∆tj,ℓ) (5.4.40)

Again, by focusing on the first block, we no longer have the initial Gaussian term,

and (5.4.40) becomes

V r
∞ = r

m∑

i=d1+1

ciB
i(1)

+ r

d1∑

i=1

ciB
i(1) + b max

Ir,d1

r∑

j=1

(d1−r+j)∑

ℓ=j

Bℓ(∆tj,ℓ)

= r

m∑

i=d1+1

ciB
i(1) +

(
r

d1∑

i=1

ciB
i(1) + bDr,d1

)

= r

m∑

i=d1+1

ciB
i(1) + r

d1∑

i=1

(
ci +

b

d1

)
Bi(1)

+ b

(
− r

d1

d1∑

i=1

Bi(1) + Dr,d1

)

= r

m∑

i=d1+1

ciB
i(1) + r

d1∑

i=1

(
ci +

b

d1

)
Bi(1) + bHr,d1 . (5.4.41)

We restate these results in the following theorem:

Theorem 5.4.5 Assume, without loss of generality, that τ(ℓ) = ℓ, for all 1 ≤ ℓ ≤ m,

in the notations of Theorem 5.3.2. Moreover, let the asymptotic covariance matrix be

given by Σ = CCT , where C is an m × m matrix whose first d1 rows are given by






Ck,ℓ = cℓ, k 6= ℓ, 1 ≤ k ≤ d1, 1 ≤ ℓ ≤ m

Ck,k = b + ck, 1 ≤ k ≤ d1,

(5.4.42)
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for some real constants c1, c2, . . . , cm and b. Then, for 1 ≤ r ≤ d1,

V r
∞ = r

m∑

i=d1+1

ciB
i(1) + r

d1∑

i=1

(
ci +

b

d1

)
Bi(1) + bHr,d1 , (5.4.43)

where Hr,d1 is the maximal functional

Hr,d1 :=
1√
d1



− r

d1

d1∑

i=1

Bi(1) + max
Ir,d1

r∑

j=1

(d1−r+j)∑

ℓ=j

Bℓ(∆tj,ℓ)



 .

Remark 5.4.4 One can generalize Theorem 5.4.5 to non-initial blocks (i.e., to r >

d1) by extending the conditions in (5.4.42) to non-initial blocks and then applying the

theorem to V r
∞ − V mr

∞ .

To better understand which asymptotic covariance matrices Σ can be decomposed

in this manner, the conditions Ck,ℓ = cℓ, for all k 6= ℓ, 1 ≤ k ≤ d1, 1 ≤ ℓ ≤ m, and

bk = b, for all 1 ≤ k ≤ d1, imply that

σ2
k = b2 + 2bck +

m∑

i=1

c2
i , (5.4.44)

for 1 ≤ k ≤ d1, and

σk,ℓ = bck + bcℓ +

m∑

i=1

c2
i , (5.4.45)

for 1 ≤ k < ℓ ≤ d1.

If we let (Z1, Z2, . . . , Zm) be a centered Gaussian random vector with covariance

matrix Σ, then (5.4.44) and (5.4.45) give us

E(Zk − Zℓ)
2 = σ2

k − 2σk,ℓ + σ2
ℓ

= 2b2, (5.4.46)

for all 1 ≤ k < ℓ ≤ d1. That is, the L2-distance between any pair (Zk, Zℓ) is the

same, for 1 ≤ k < ℓ ≤ d1.

139



Notice that if σ2
k = σ2, for all 1 ≤ k ≤ d1, then in fact (5.4.46) implies that

ρk,ℓ = σk,ℓ/σkσℓ = 1 − b2/σ2 := ρ, for all 1 ≤ k < ℓ ≤ d1. That is, the d1 × d1

submatrix of Σ must be permutation-symmetric.

Next, we note that, for 1 ≤ k < ℓ ≤ d1,

σ2
k − σ2

ℓ = 2b(ck − cℓ), (5.4.47)

so that ck = σ2
k/(2b) + c0, for some constant c0. Substituting this expression into

(5.4.44) and, writing Γ =
∑m

i=d1+1 c2
i , we obtain

σ2
k = b2 + 2b

(
σ2

k

2b
+ c0

)
+

d1∑

i=1

(
σ2

i

2b
+ c0

)2

+ Γ

= b2 + σ2
k + 2bc0 +

d1∑

i=1

(
σ2

i

2b
+ c0

)2

+ Γ. (5.4.48)

Writing σr = (
∑d1

i=1 σr
i )/d1, for any r > 0, (5.4.48) gives us

b2 + 2bc0 +

d1∑

i=1

(
σ2

i

2b
+ c0

)2

+ Γ

= d1c
2
0 +

(
2b +

d1

b
σ2

)
c0 +

(
b2 +

d1σ4

4b2
+ Γ

)

= 0. (5.4.49)

In order for c0 to be a real number, the discriminant of the quadratic equation in

(5.4.49) must satisfy

(
2b +

d1

b
σ2

)2

− 4d1

(
b2 +

d1σ4

4b2
+ Γ

)
≥ 0, (5.4.50)
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which leads to the inequality

(d1 − 1)b4 − d1(σ2 − Γ) +
d2

1

4

(
σ4 −

(
σ2
)2
)

≤ 0. (5.4.51)

This inequality, in turn, gives us constraints on b2. Indeed, the necessary and

sufficient condition needed for such a b2 to exist is given by examining the quadratic

in b2 in (5.4.51) at its extremal point, namely, at b2 = d1(σ2 −Γ))/(2(d1 − 1)). Doing

so leads to the condition

−
(

d2
1(σ

2 − Γ)2

4(d1 − 1)

)
+

d2
1

4

(
σ4 −

(
σ2
)2
)

≤ 0, (5.4.52)

or simply,

σ4 −
(
σ2
)2

≤ (σ2 − Γ)2

d1 − 1
, (5.4.53)

since σ4 ≥
(
σ2
)2

. The closer that Γ is to σ2, the more similar that the d1 variances

must be. Thus, (5.4.53) functions as a bound on the variability among these d1

variances. Provided that the variances satisfy (5.4.53), the condition on b2 is given

by

b2 ∈
(

d1

2(d1 − 1)

{
(σ2 − Γ) −

√

(σ2 − Γ)2 − (d1 − 1)

(
σ4 −

(
σ2
)2
)}

,

d1

2(d1 − 1)

{
(σ2 − Γ) +

√

(σ2 − Γ)2 − (d1 − 1)

(
σ4 −

(
σ2
)2
)})

. (5.4.54)

Now consider the doubly stochastic case, where d1 = m. Applying the general

fact that each row of Σ must necessarily sum to zero, we use (5.4.44) and (5.4.45) to

find that, for each 1 ≤ k ≤ m,
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m∑

ℓ=1

σk,ℓ = σ2
k +

∑

ℓ 6=k

σk,ℓ

=

(
b2 + 2bck +

m∑

i=1

c2
i

)
+
∑

ℓ 6=k

(
bck + bcℓ +

m∑

i=1

c2
i

)

= b2 + b

(
mck +

m∑

ℓ=1

cℓ

)
+ m

m∑

i=1

c2
i

= 0, (5.4.55)

so that ck = c ∈ R, for all 1 ≤ k ≤ m. Substituting c back into (5.4.55) gives us

m∑

ℓ=1

σk,ℓ = b2 + b(mc + mc) + m(mc2)

= (b + mc)2 = 0, (5.4.56)

so that b = −mc. This then implies that σ2
k = m(m − 1)c2 and σk,ℓ = −mc2, for all

1 ≤ k ≤ m, ℓ 6= k. But this is precisely a permutation-symmetric covariance matrix,

which in the iid case corresponds to the class of Markov chains having a uniform

stationary distribution.

We summarize these results in the following:

Theorem 5.4.6 In order that the asymptotic covariance matrix Σ have a decompo-

sition Σ = CCT , where






Ck,ℓ = cℓ, k 6= ℓ, 1 ≤ k ≤ d1, 1 ≤ ℓ ≤ m,

Ck,k = b + ck, 1 ≤ k ≤ d1,

(5.4.57)

for some real constants c1, c2, . . . , cm and b, it is necessary and sufficient that

σ4 −
(
σ2
)2

≤ (σ2 − Γ)2

d1 − 1
, (5.4.58)
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where Γ =
∑m

i=d1+1 c2
i , and σr = (

∑d1

i=1 σr
i )/d1, for any r > 0. In this case,

b2 ∈
(

d1

2(d1 − 1)

{
(σ2 − Γ) −

√

(σ2 − Γ)2 − (d1 − 1)

(
σ4 −

(
σ2
)2
)}

,

d1

2(d1 − 1)

{
(σ2 − Γ) +

√

(σ2 − Γ)2 − (d1 − 1)

(
σ4 −

(
σ2
)2
)})

. (5.4.59)

In particular, if d1 = m, the asymptotic covariance matrix must be permutation-

symmetric, with ck = c, for all k, and b = −mc, so that the common variance is

m(m − 1)c2 and the common covariances are all −mc2.

5.5 Connections to Random Matrix Theory

For iid uniform m-letter alphabets, the limiting law of the Young tableau corresponds

to the joint distribution of the eigenvalues of an m×m matrix from the traceless GUE

[31]. In the non-uniform iid case, we further noted that Xu [46] has extended the

first-row results of Its, Tracy, and Widom [28, 29] to that of the entire Young tableau

by described the limiting shape as that of the joint distribution of the eigenvalues

of a random matrix consisting of independent diagonal blocks, each of which is a

matrix from the GUE. The size of each block depends upon the multiplicity of the

corresponding stationary probability. In addition, there is a zero-trace condition

involving the stationary probabilities on the composite matrix.

As a first step in extending these connections between Brownian functionals and

spectra of random matrices, recall the general case when the stationary probabili-

ties are all distinct (see Remark 5.3.5). Our Brownian functionals then have no true

maximal terms, so that the limiting shape, (R1
∞, R2

∞, . . . , Rm
∞) is simply multivariate

normal, with covariance matrix Σ (or, more precisely, the matrix obtained by permut-

ing the rows and columns of Σ using τ , the permutation of {1, 2, . . . , m} previously

defined). Trivially, this limiting law corresponds to the spectrum of a diagonal matrix

whose elements are multivariate normal with the same covariance matrix Σ.
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We can see that this general result is consistent with the non-uniform iid case

having distinct probabilities. Indeed, each block is of size 1, and is rescaled so that

the variance is πτ(i)(1 − πτ(i)), for 1 ≤ i ≤ m. Because of this rescaling, instead

of having a generalized zero-trace condition, as in the non-rescaled matrices used in

[28, 29], our condition is rather a true zero-trace condition. This zero-trace condition

is clear, since the covariance matrix for any iid case (uniform and non-uniform alike)

is that of a multinomial distribution with parameters (n = 1; πτ(1), πτ(2), . . . , πτ(m)),

and any (Y1, Y2, . . . , Ym) having such a distribution of course satisfies
∑m

i=1 Yi = 1, so

that Var(
∑m

i=1 Yi) = 0, which implies the zero-trace condition for (R1
∞, R2

∞, . . . , Rm
∞).

Next, consider the case when each stationary probability has multiplicity no

greater than 2. One may conjecture that the limiting shape (R1
∞, R2

∞, . . . , Rm
∞) is

that of the spectrum of a direct sum of certain 2 × 2 and/or 1 × 1 random matrices.

Specifically, let κ ≤ m be the number of distinct probabilities among the stationary

distributions. Then the composite matrix consists of a direct sum of κ GUE matrices

which are as follows. First, the overall diagonal (X1, X2, . . . , Xm) of the matrix has

a N(0, Σ) distribution. Next, if dr = 1, then the GUE matrix is simply the 1 × 1

matrix (Xr). Finally, if dr = 2, then the GUE matrix is the 2 × 2 matrix




Xmr+1 Ymr+1 + iZmr+1

Ymr+1 − iZmr+1 Xmr+2


 ,

whose off-diagonal random variables Ymr+1 and Zmr+1 are iid, centered, normal ran-

dom variables, independent of all other random variables in the overall matrix, with

variance

(σ2
mr+1 − 2ρmr+1,mr+2σmr+1σmr+2 + σ2

mr+2)/4.

If such a conjecture were true, it would imply the following, more modest marginal

result regarding a single block of such a matrix, which without loss of generality we
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take to be the first block. Specifically, if d1 = 2 and τ(r) = r, for all 1 ≤ r ≤ m, we

claim that (R1
∞, R2

∞) = (V 1
∞, V 2

∞ − V 1
∞) is distributed as the spectrum (λ1, λ2) of the

2 × 2 Gaussian Hermitian matrix

A1 :=




X1 Y1 + iZ1

Y1 − iZ1 X2


 , (5.5.1)

where λ1 ≥ λ2. Equivalently, we will show that (V 1
∞, V 2

∞) is distributed as (λ1, λ1+λ2).

Let the 2 × 2 submatrix Σ2 of Σ be written as

Σ2 =




σ̃2
1 ρ̃σ̃1σ̃2

ρ̃σ̃1σ̃2 σ̃2
2


 . (5.5.2)

Then

(V 1
∞, V 2

∞) =
(

max
0≤t≤1

(
σ̃1B̃

1(t) + σ̃2B̃
2(1) − σ̃2B̃

2(t)
)
,

σ̃1B̃
1(1) + σ̃1B̃

2(1)
)

=
(
σ̃2B̃

2(1) + max
0≤t≤1

(
σ̃1B̃

1(t) − σ̃2B̃
2(t)
)
,

σ̃1B̃
1(1) + σ̃1B̃

2(1)
)
. (5.5.3)

We simplify (5.5.3), by introducing new Brownian motions and then decomposing

the resulting expression into two independent parts. To do so, begin by defining the

new variances and correlation coefficients σ2
1 := σ̃2

2, σ2
2 := σ̃2

1 − 2ρ̃σ̃1σ̃2 + σ̃2
2, and

ρ := (ρ̃σ̃1 − σ̃2)/
√

σ̃2
1 − 2ρ̃σ̃1σ̃2 + σ̃2

2 . Then it is easily verified that B1(t) := B̃2(t),

and B2(t) := (σ̃1B̃
1(t) − σ̃2B̃

2(t))/σ2 are (dependent) standard Brownian motions,

and (5.5.3) becomes
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(V 1
∞, V 2

∞) =
(
σ1B

1(1) + σ2 max
0≤t≤1

B2(t), 2σ1B
1(1) + σ2B

2(1)
)

=
(
(σ1B

1(1) − ρσ1B
2(1)) + σ2

(
ρ
σ1

σ2

+ max
0≤t≤1

B2(t)
)
,

2(σ1B
1(1) − ρσ1B

2(1)) + (σ2 + 2ρσ1)B
2(1)

)
. (5.5.4)

Note that B1(t)− ρB2(t) is independent of B2(t) and has variance σ2
1(1− ρ2). Intro-

ducing the Brownian functional

U(β) =

(
β − 1

2

)
B2(1) + max

0≤t≤1
B2(t), (5.5.5)

β ∈ R, and using σ2
1, σ

2
2, and ρ above, (5.5.4) becomes

(V 1
∞, V 2

∞)
L
= σ1

√
1 − ρ2Z(1, 2) +

(
σ2U

(
1

2
− ρ

σ1

σ2

)
, (σ2 + 2ρσ1)B

2(1)

)

=
σ̃1σ̃2

√
1 − ρ̃2

√
σ̃2

1 − 2ρ̃σ̃1σ̃2 + σ̃2
2

Z(1, 2)

+

(√
σ̃2

1 − 2ρ̃σ̃1σ̃2 + σ̃2
2 U

(
σ̃2

1 − σ̃2
2

2
√

σ̃2
1 − 2ρ̃σ̃1σ̃2 + σ̃2

2

)
,

2(σ̃2
1 − σ̃2

2)B
2(1)

)
, (5.5.6)

where Z is a standard normal random variable independent of the sigma-field gener-

ated by B2.

Turning now to the eigenvalues’ distributions, we first consider the centered, mul-

tivariate normal random variables (W1, W2), having covariance matrix




σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


 ,

and let W3 and W4 be two iid, centered, normal random variables, independent of

(W1, W2), with variance σ2
2. Then it is classical that
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(
W2,

√
W 2

2 + W 2
3 + W 2

4

)
L
= σ2

(
B(1), 2 max

0≤t≤1
B(t) − B(1)

)
,

or, equivalently,

(
W2, βW2 +

1

2

√
W 2

2 + W 2
3 + W 2

4

)
L
= σ2(B(1), U(β)), (5.5.7)

where B is a standard Brownian motion, and U(β), β ∈ R, is defined in terms of B,

rather than in terms of B2, as in (5.5.5). Then consider the random variable

λ̃ := W1 +
√

W 2
2 + W 2

3 + W 2
4

=

(
W1 − ρ

σ1

σ2

)
+

(
ρ
σ1

σ2

+
√

W 2
2 + W 2

3 + W 2
4

)
. (5.5.8)

Using (5.5.7), and noting that the variance of the first term in (5.5.8) is σ2
1(1 − ρ2),

it is easy to see that

λ̃
L
= σ1

√
1 − ρ2Z + 2σ2U

(ρσ1

2σ2

)
, (5.5.9)

where Z is a standard normal random variable independent of B.

We now apply this result to the eigenvalues of the matrix A1 in (5.5.1), namely,

to

λ1 =

(
X1 + X2

2

)
+

√(
X1 − X2

2

)
+ Y 2

1 + Z2
1 , (5.5.10)

and

λ2 =

(
X1 + X2

2

)
−
√(

X1 − X2

2

)
+ Y 2

1 + Z2
1 . (5.5.11)

Letting W1 = (X1 + X2)/2, W2 = (X1 − X2)/2, W3 = Y1, and W4 = Z1, we have
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(λ1, λ1 + λ2) =

(
W1 +

√
W 2

2 + W 2
3 + W 2

4 , 2W1

)

=

((
W1 − ρ̂

σ̂1

σ̂2

W2

)
+ 2

(
ρ̂

σ̂1

2σ̂2

W2 +
1

2

√
W 2

2 + W 2
3 + W 2

4

)
,

2

(
W1 − ρ̂

σ̂1

σ̂2
W2

)
+ 2ρ̂

σ̂1

σ̂2
W2

)

=

(
W1 − ρ̂

σ̂1

σ̂2
W2

)
(1, 2)

+

(
ρ̂

σ̂1

2σ̂2

W2 +
1

2

√
W 2

2 + W 2
3 + W 2

4 , 2ρ̂
σ̂1

σ̂2

W2

)
, (5.5.12)

where σ̂2
1 = (σ̃2

1 +2ρ̃σ̃1σ̃2+ σ̃2
2)/4, σ̂2

2 = (σ̃2
1−2ρ̃σ̃1σ̃2+ σ̃2

2)/4, and ρ̂σ̂2
1σ̂

2
2 = (σ̃2

1− σ̃2
2)/4.

Noting that the variance of W1 − (ρ̂σ̂1/σ̂2)W2 is σ̂2
1(1 − ρ̂2) = σ2

1(1 − ρ2), and that,

moreover, β := ρ̂σ̂1/2σ̂2 = (σ̃2
1 − σ̃2

2)/(2
√

σ̃2
1 − 2ρ̃σ̃1σ̃2 + σ̃2

2), we find that

(λ1, λ1 + λ2) = σ̂1

√
1 − ρ̂2Z(1, 2) +

(
2σ̂2U

( ρ̂σ̂1

2σ2

)
, 2ρ̂

σ̂1

σ̂2
B2(1)

)

= σ1

√
1 − ρ2Z(1, 2) + σ2

(
U(β), 4βB2(1)

)

L
= (V 1

∞, V 2
∞), (5.5.13)

and we have our identity in law.

To illustrate the ways in which additional random matrix interpretations might

potentially illuminate other, apparently unrelated, Brownian functionals, consider the

following example. Let (εk)k≥1 be a sequence of positive numbers decreasing to zero.

Then it is possible to find an increasing sequence of integers (mk)k≥1 so that, for each

k, there is a Markov chain on mk letters such that:

• the maximal stationary probability πmax(k) is of multiplicity 3, and

• the 3×3 covariance submatrix Σ3(k) governing the associated Brownian func-

tional V 1
∞(k) is of the form
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Σ3(k) = σ(k)2




ε2
k 0 0

0 1 0

0 0 ε2
k




. (5.5.14)

That is, the variance of Bτ(2) becomes arbitrarily large in comparison to that of Bτ(1)

and Bτ(3).

Then, since LIn(k) = V 1
n (k), we have, as n → ∞,

LIn(k) − πmax(k)√
n

⇒ max
I1,3

3∑

ℓ=1

στ(ℓ)B
τ(ℓ)(∆tℓ)

= σ(k) max
I1,3

(
εk(B

τ(1)(t1) − Bτ(1)(0)) + (Bτ(2)(t2) − Bτ(2)(t1))

+ (εk(B
τ(3)(1) − Bτ(3)(t2))

)

:= V 1
∞(k), (5.5.15)

so that, as k → ∞,

V 1
∞(k)

σ(k)
⇒ max

0≤t1≤t2≤1
(B(t2) − B(t1)), (5.5.16)

where B(t) is a standard Brownian motion. The right-hand side of (5.5.16) is known

as the local score, and describes the largest positive increase that B makes within the

unit interval. Such functionals are of great importance in sequence comparison, par-

ticularly in bioinformatics, (e.g., see Daudin, Ettienne, and Vallois [14].) Moreover,

(see Revuz and Yor [40])

max
0≤t1≤t2≤1

(B(t2) − B(t1)) = max
0≤t2≤1

(B(t2) − min
0≤t1≤t2

B(t1))

L
= max

0≤t≤1
|B(t)|. (5.5.17)
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The equality in law between the first and last expressions in (5.5.17) follows im-

mediately from the classical result of Lévy, namely, (|B(t)|)t≥0
L
= (max0≤s≤t B(s) −

B(t))t≥0. Thus, if we have a random matrix connection to V 1
∞(k), we can extend it

to max0≤t≤1 |B(t)|, at least in some limiting sense. This is also interesting from the

following point of view. Classically, the Brownian functional max0≤t≤1 B(t)
L
= |B(1)|,

and a trivial random matrix connection can be seen by examining the eigenvalues of

the random matrix




Z 0

0 −Z


 , (5.5.18)

where Z is a standard normal random variable. Then, clearly, λmax has the half-

normal law, since λmax = max(Z,−Z) = |Z|. Thus, the maximal Brownian functional

max0≤t≤1 B(t) has a random matrix interpretation, one which is considerably simpler

than any potential random matrix interpretation for max0≤t≤1 |B(t)|.
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CHAPTER VI

CONCLUSION

In this paper, we have obtained the limiting shape of Young tableaux generated by

an aperiodic, irreducible, homogeneous Markov chain on a finite state alphabet. The

following remarks indicate natural directions in which our results in some cases can,

and in other cases, may hope to, be extended.

• Our limiting theorems have all been proved assuming that the initial distribution

is the stationary one. However, such results as Theorem 2 of Derriennic and Lin [15]

extend our framework to initial distributions started at a specified state. Indeed, in

this case, i.e., if for some k = 1, . . . , m, P(X0 = αk) = 1, the asymptotic covariance

matrix is still given by (5.2.12), and, for example, Theorem 5.3.2 remains valid. For

an arbitrary initial distribution, what is needed in this non-stationary context is an

invariance principle. More generally, our results continue to hold for kth-order Markov

chains, and in fact, they extend to any sequence for which both an asymptotic co-

variance matrix and an invariance principle exist.

• Our limiting theorems have only been proved for finite alphabets. However, in

Chapter III, it was seen that for countably infinite iid alphabets, LIn has a limiting

law corresponding to that of a non-uniform, finite-alphabet. Hence, for a Markov

chain on a countably infinite alphabet (subject to additional constraints), we might

still be able to obtain limiting laws of the form developed in this paper.
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• By using appropriate existing concentration inequalities, one can expect to estab-

lish the convergence of the moments of the rows of the tableau.

• Various other types of subsequence problems can be tackled by the methodologies

used in this thesis. To name but a few, comparisons for unimodal sequences, alter-

nating sequences, and sequences with blocks will deserve further similar studies.

• One field in which the connection between Brownian functionals and random

matrix theory has been exploited is in Queuing Theory. The development below,

following O’Connell and Yor [36], shows how Brownian functionals of the sort we

have studied arise as generalizations of standard queuing models.

Let A(s, t] and S(s, t], −∞ < s < t < ∞, be two independent Poisson point

process on R, with intensity measures λ and µ, respectively, with 0 < λ < µ. Here A

represents the arrivals process, and S the service time process, at a queue consisting

of a single server. The condition λ < µ ensures that the queue length

Q(t) = sup
−∞<s≤t

{A(s, t] − S(s, t]} , (6.0.19)

is a.s. finite, for any t ∈ R. Then, defining the departure process

D(s, t] = A(s, t] − (Q(t) − Q(s)), (6.0.20)

which is simply the number of arrivals during (s, t] less the change in the queue

length during (s, t], the classical problem is to determine the distribution of D(s, t].

The answer to this problem is given by Burke’s Theorem [10] (see Theorem 1 of [36]):

Theorem 6.0.1 D is a Poisson process with intensity λ, and {D(s, t], s ≤ t} is

independent of {Q(s), s ≥ t}.
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That is, D has the same law as the arrivals process A. Moreover, since,the queue

length after time t is independent of the process D up to time t, one may take the

departures from the first queue and use them as inputs to a second queue, and observe

that the departure process from the second queue also has the law of A. Proceeding

in this way, one generalizes to a tandem queue of n servers, each taking the departures

from the previous queue as its arrivals process.

One can further generalize this model to a Brownian queue in tandem in the

following manner. Let B, B1, B2, . . . , Bn be independent, standard Brownian motions

on R, and write Bk(s, t) = Bk(t) − Bk(s), for each k and s < t, and similarly for B.

Let m > 0 be a constant, and define, in complete analogy to (6.0.19) and (6.0.20),

q1(t) = sup
−∞<s≤t

{
B(s, t) + B1(s, t) − m(t − s)

}
, (6.0.21)

and, for s < t,

d1(s, t) = B(s, t) − (q1(t) − q1(s)). (6.0.22)

For k = 2, 3, . . . , n, let

qk(t) = sup
−∞<s≤t

{
dk−1(s, t) + Bk(s, t) − m(t − s)

}
, (6.0.23)

and, for s < t,

dk(s, t) = dk−1(s, t) − (qk(t) − qk(s)). (6.0.24)

Here B is the arrivals process for the first queue, dk−1 is the arrivals process for

the kth queue (k ≥ 2), and mt−Bk(t) is the service process for the kth queue, for all k.

Using the ideas employed in Burke’s Theorem, it can be shown that the generalized

queue lengths q1(0), q2(0), . . . , qn(0) are iid random variables. Moreover, they are

exponentially distributed with mean 1/m.
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Using the definitions in (6.0.21)-(6.0.24), and a simple inductive argument, one

finds that

n∑

k=0

qk(0) = sup
t>0

{
B(−t, 0) − mt + Ln(t)

}
, (6.0.25)

where

Ln(t) = sup
0≤s1≤···
≤sm−1≤t

{B1(−t,−sn−1) + · · ·+ Bn(−s1, 0)}. (6.0.26)

By Brownian rescaling, we observe that

Ln(t)
L
=

√
t sup

0≤s1≤···
≤sm−1≤1

{B1(−1,−sn−1) + · · · + Bn(−s1, 0)}

L
=

√
tV 1

∞, (6.0.27)

where the functional V 1
∞ is as in Theorem 5.3.2, with associated n × n covariance

matrix Σ = tIn and parameter set I1,n. Thus, Ln(t) may be thought of as a process

version of this V 1
∞.

The generalized Brownian queues in (6.0.21)-(6.0.24) involved independent Brow-

nian motions. These may be generalized to Brownian motions (B1, . . . , Bn) for

which (σ1B
1(t), . . . σnB

n(t)) has (nontrivial) covariance matrix tΣ. Whether or not

we keep the initial arrival process B independent of (B1,. . . ,Bn), we no longer have

that q1(0), q2(0), . . . , qn(0) are iid random variables, due to the dependence among

the service times mt − Bk(t), but we do still have the identity (6.0.25) and (6.0.27)

relating the total occupancy of the queue at time zero to V 1
∞. More importantly, our

generalizations of the Brownian functionals Ln(t) above can be used to describe the

joint law of the input/output of each queue.
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• An important topic connecting much of random matrix theory to other problems,

such as the shape of random Young tableaux, is the field of orthogonal polynomials.

(See, e.g., [31].) It would be of great interest to see what, if any, classes of orthogonal

polynomials are associated with the limiting laws in this thesis.
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[42] Seppäläinen, T., “A scaling limit for queues in series,” Ann. Appl. Probab.,
vol. 7, no. 4, pp. 855–872, 1997.

[43] Tracy, C. A. and Widom, H., “Level-spacing distributions and the Airy
kernel,” Comm. Math. Phys., vol. 159, no. 1, pp. 151–174, 1994.

[44] Tracy, C. A. and Widom, H., “On the distributions of the lengths of
the longest monotone subsequences in random words,” Probab. Theory Related
Fields, vol. 119, no. 3, pp. 350–380, 2001.
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