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SUMMARY 

Computed tomography (CT) has become an important clinical imaging modality, 

and has been extended into a wide range of usage with the development of novel CT 

scanners such as dual energy CT (DECT). However, the imaging dose during CT scanning 

increasingly raises public concern. Iterative reconstruction algorithms have shown promise 

on improving quality of CT images with reduced radiation. In the first part of this study, a 

novel iterative reconstruction method is developed to enable a new data acquisition scheme 

for potential reduction in imaging dose and engineering cost of DECT. 

 As iterative CT reconstruction continues to advance, the spatial distribution of noise 

standard deviation (STD) and accurate noise power spectrum (NPS) on the reconstructed 

CT images become important for method evaluation as well as optimization of algorithm 

parameters. In the second part of this study, a practical method for pixel-wise calculation 

of noise statistics on an iteratively reconstructed CT image is developed, which enables 

accurate calculation of noise STD for each pixel and NPS. 
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CHAPTER 1. INTRODUCTION 

1.1 Computed tomography imaging 

X-ray kilovoltage (kV) computed tomography (CT) imaging, first introduced by 

Godfrey Hounsfield into medical practice in 1971, has been widely studied and well 

developed for various clinical applications.1 Its capability for producing detailed cross-

sectional images of patients enables it to be one of the most popular clinical practices for 

diagnosis. In 2013, 43.5 CT scanners per million population are installed and 240 exams 

per 1000 population are performed in the United States, and the number of CT systems has 

been increasing by around 10% annually since the commercial introduction of multi-slice 

detector CT scanners.2, 3 In addition to the regular diagnostic CT scanner,  more advanced 

CT scanners are being introduced into extended special usage in radiology as well as 

radiation therapy, such as dual energy CT (DECT) for material decomposition and selective 

visualization or subtraction of iodinated contrast material. 

1.1.1 Radiation dose concerns 

The widespread use of CT raises the public concerns about the radiation dose 

deposited in patients during the scanning. The dose from CT examination accounts for 

more than two thirds of the total radiation dose from medical imaging.4 Excessive CT dose 

leads to the increased risks of radiation-induced cancer and genetic defects.5, 6 On the basis 

of risk estimates and data on CT use from 1991 through 1996, it has been estimated that 

about 0.4% of all cancers in the United States may be attributable to the radiation from CT 

studies. This estimate might have been in the range of 1.5 to 2.0% by 2007 due to the 
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increased use of CT.7 Thus, methods to reduce the imaging dose as well as keep the image 

quality are very desirable in clinics. 

Currently, CT dose can be lowered by optimizing data acquisition protocols (e.g. 

automatic exposure control),8 improving detector designs and x-ray tube,9-11 kV/spectrum 

shaping12, 13, using reconstruction from reduced projection,14 or applying noise suppression 

methods with degraded spatial resolution.15 After continuous optimization of CT systems 

for decades, further dose reduction from these techniques is expected to be limited or 

costly. Efforts have been devoted to improvement of the method of image reconstruction 

from measured projection data with the increases in computing power. 

1.1.2 Iterative reconstruction 

Iterative reconstruction (IR) methods were proposed for image reconstruction in 

the early days of CT development in the 1970s.1 However, its high computation and 

memory demands limited its practical usage in CT imaging in clinics. Instead, IR became 

a routine method for nuclear medicine emission tomography imaging modalities with lower 

spatial and temporal resolution, such as single photon emission CT and positron emission 

tomography, because of the smaller data volumes and less complex data handling.16, 17 For 

CT imaging, the analytical method of filtered-back-projection (FBP) has become the 

standard reconstruction method due to its robustness and high speed in producing CT 

images in an adequate quality. 

Despite its widespread usage, CT images reconstructed by FBP method can be 

affected by high image noise, artifacts (eg, streak artifacts), or poor low-contrast 

detectability in specific clinical scenarios.16 It is because the FBP method is based on 
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simple mathematical assumptions that it may compromise the truthfulness of output 

images, such as infinitely small points of image pixels and perfect measurement without 

statistical fluctuations. The deviation in implementation of scanning from these ideal 

assumptions leads to high noise and severe artifacts on CT images. Such degraded image 

qualities become more severe when the CT imaging dose is reduced, which interferes with 

the delineation and low contrast detectability of structures. Although the imaging noise can 

be lowered by choosing a lower-frequency passing kernel in the FBP reconstruction 

process, the spatial resolution is impaired due to the characteristic of FBP that there is a 

trade-off between image noise and image sharpness. 

These shortcomings in the FBP method have driven researchers to revisit IR for 

dose reduction in CT imaging. By modeling the physical process of a CT scan and 

incorporating prior knowledge, iterative CT reconstruction algorithms are found to be more 

resistant to noise and therefore require less imaging dose for the same image quality, 

compared with conventional analytical CT reconstruction. The IR method provides the 

flexibility to incorporate accurate models of each component of CT data acquisition such 

as scan geometry (i.e. finite size of focal spot), X-ray physics and detector response.18 This 

part is usually called the data fidelity term. Moreover, a prior regularization on the 

distribution of the image space such as an image smoothness penalty can further control 

the image quality, which is called the regularization term. A commonly used prior model 

is a simple Markov random field with very local dependencies.19, 20 Recent advances in the 

compressed sensing technique introduce the total variation (TV) regularization into IR, 

which assumes that the image boundary is sparse and enables high-quality CT 

reconstruction from noisy and highly undersampled projections.21, 22 A typical IR method 
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is usually formulated as an optimization problem that minimizes the two part, i.e. the data 

fidelity term and the regularization term with the condition of image non-negativity. A 

weighting parameter is also applied on one of the terms to tune the image quality with 

different characteristics of images such as noise and spatial resolution. 

On commercial CT scanners, a variety of vendor-specific IR methods have been 

implemented for clinical use. For example, GE Healthcare (Waukesha, WI) introduced 

their Adaptive Statistical Iterative Reconstruction (ASIR) in late 2008.23 ASIR iteratively 

updates the image pixel values by comparing them with the ideal pixel values that are 

predicted with noise modeling until converge.15 With the benefit of noise reduction, ASIR 

has been shown to reduce dose by up to 82% compared to standard FBP reconstruction at 

the same image quality.24 Philips Healthcare (Best, the Netherlands) implemented iDose4 

as IR in CT scanners in 2010. The iDose4 method analyzes, identifies and corrects the 

noisiest signal in measured projection data with a model of photon statistics. An iterative 

method is applied on the measured projection data to penalize those noisy data as well as 

preserve edges, followed by analytical image reconstruction. This method successfully 

prevents photon starvation artifacts,25 and also achieves image noise reduction of 11% to 

55% depending on the strength level of iDose4.26 In 2010, Siemens Healthcare (Forchheim, 

Germany) released Sinogram-affirmed Iterative Reconstruction (SAFIRE), which utilizes 

both measured projection data and image data in two main loops. In the first loop, with an 

initial reconstruction using FBP method, SAFIRE first compares the forwarded projection 

from the FBP image with the original raw projection data to generate corrected projection 

for an updated FBP image. Such a loop is repeated several times. In the second loop, the 

noise is suppressed on the update FBP image from the first loop through a statistical 
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optimization process, which is also repeated several times.27 It is found that the image noise 

can be reduced by 10% to 60% compared with FBP image depending on the iterative 

strength level.16 

1.1.3 Noise estimation in iterative reconstruction 

The knowledge of noise statistical properties of an algorithm is important for 

careful clinical evaluation as well as optimization of algorithm parameters. Despite the 

increasing number of publications on iterative CT reconstruction,22, 28, 29 little research has 

been devoted to studies on noise statistical properties of these algorithms. A statistical 

analysis of CT image noise usually involves measurements of noise standard deviation 

(STD) and noise power spectrum (NPS). Noise STD quantifies the uncertainty level of 

pixel values, and is related to a wide range of image quality matrices such as signal-to-

noise ratio. NPS describes the noise correlation among neighboring pixels and determines 

the noise texture of CT images.30  As low-dose imaging protocols using iterative algorithms 

become more popular, a practical algorithm of noise STD map and NPS calculation on an 

iteratively reconstructed CT image could be a useful complementary tool in clinical 

practice. For example, an accurately measured noise STD map provides radiologists a 

reference map of reconstruction uncertainty during the diagnosis process. The NPS 

analysis aids radiologists to optimize the parameters of iterative reconstruction algorithms 

for a preferred noise texture. Moreover, the comparison of noise STD and NPS for different 

iterative reconstruction algorithms may help imagers choose the most suitable 

reconstruction method for a specific clinical task. 
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Accurate noise STD or NPS measurements require multiple scans on the same 

object without changing scan settings, which is considered impractical in clinical CT 

imaging. To estimate image noise statistics from a single CT scan, a commonly used 

method is to select a uniform region of interest (ROI) on the CT image, and then measure 

noise STD and NPS on the ROI, treating all the image pixels as random samples of the 

same probability distribution. This method inevitably lowers the spatial resolution of a STD 

map since a large size ROI is needed for accurate noise measurement. Furthermore, it is 

implicitly assumed that all image pixels of the ROI obey the same signal statistics. This 

assumption is inaccurate on a clinical image since the selected ROI does not always have 

uniform mean values and the noise level and spatial correlation vary across the entire 

image. 

1.2 Dual energy CT 

1.2.1 Principle 

The concept of DECT was first proposed by R.E. Alvarez and A. Macovski in 

1976.31 In their original work, the principle of DECT is introduced: the attenuation 

coefficient of any material in the diagnostic energy range can be approximated as a 

weighted summation of two universal energy-dependent functions mainly accounting for 

photoelectric and Compton interactions. In practice, the basis functions can be the energy-

dependent linear attenuation coefficients of two different actual or even virtual materials.32 

The weight distributions of the two basis functions, i.e., the decomposed material images, 

are reconstructed from the data acquired with two different x-ray energy spectra, which 

can be used to calculate electron density maps or effective Z images.31  
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The decomposition process can be implemented in either the projection domain or 

the image domain. The projection domain method, which is proposed from the original 

concept of DECT, requires acquisition of projection data with two different x-ray energies 

for each projection ray. Non-linear decomposition is then applied on the projection data to 

obtain the sinogram of two basis materials, from which decomposed materials are 

reconstructed via the same CT reconstruction principle. Since the decomposed images are 

energy-independent, these images are free from beam-hardening artifacts. However, for 

DECT scanners of some designs and scanning schemes, it is difficult or impossible to have 

dual-energy measurements on the same projection ray due to engineering issues. The 

procedure of material decomposition is therefore more conveniently performed on CT 

images after the standard CT reconstruction, typically based on a linear model,33-36 at the 

price of losing the beam-hardening correction capability. Compared with the projection 

domain method, which usually requires the knowledge of x-ray spectra and detector 

response, or detailed calibration data with complex non-linear decomposition model, the 

image domain method is much easier to implement, thus is more commonly used on current 

commercial DECT scanners.37 

In the existing literature,34, 36 the terminology of DECT has extended from its 

original concept to include these imaging modalities based on image-domain 

decomposition. 

1.2.2 Implementation of DECT on commercial CT scanners 

Implementations of DECT highly depend on the specific designs of hardware and 

the scan schemes of the CT scanners. On a conventional diagnostic CT scanner, the 
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projection data at two different energy levels are measured by two sequential scans (so-

called rotation-rotation mode) with two different kVps of X-ray tube, thus different energy 

spectrum. However, this method is very sensitive to patient motion because the time 

interval between the two kVps is in the order of seconds, which may cause motion-induced 

artifacts such as blurring of edges and steaks.38 On the Aquilion ONE CT scanner of 

Toshiba America Medical Systems (Tustin, CA), this method is slightly improved by 

alternating the X-ray tube potential between high and low kVps with each gantry rotation 

instead of each scan. This is shown in Figure 1.1. However, it still has the worst temporal 

resolution compared with other commercial DECT scanners.  

 

Figure 1.1 Implementation of DECT by two sequential scans of different kVps on 

Aquilion ONE CT scanner of Toshiba America Medical Systems. 

(http://www.toshiba-medical.eu/eu/product-solutions/computed-

tomography/aquilion-one/aquilion-one-advanced-applications/) 

On the HD 750 CT scanner from GE Healthcare, a fast-kVp switching method is 

successfully implemented. 39 As shown in Figure 1.2, it acquires dual-energy projections 

in one single rotation via rapidly switching the potential of X-ray tube between low- and 

high- kVps in adjacent views, which enables accurate spatial-temporal registration between 

http://www.toshiba-medical.eu/eu/product-solutions/computed-tomography/aquilion-one/aquilion-one-advanced-applications/
http://www.toshiba-medical.eu/eu/product-solutions/computed-tomography/aquilion-one/aquilion-one-advanced-applications/
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two different kVps, thus freezing motion and significantly reducing artifact. Since data 

acquisition is doubled without increasing scan time, the scanner is equipped with a fast 

detector and a fast-switching high-voltage generator, both of which significantly increase 

the system cost. 

 

Figure 1.2 Implementation of DECT by fast-kVp switching method on HD 750 CT 

scanner from GE Healthcare. (http://www3.gehealthcare.com.au/en-

au/products/categories/computed_tomography/discovery_ct750_hd/spectral_imagin

g) 

For Siemens Healthcare, the design of dual sources is implemented on their several 

DECT scanners: Somatom Definition DS in 2006, Somatom Definition Flash in 2009 and 

Somatom Force in 2013.40 On dual-source CT, two pairs of x-ray source and detector are 

mounted orthogonally on the same gantry as shown in Figure 1.3.41 The advantage of dual-

source CT is that both x-ray tube potential and the tube current can be independently 

controlled to optimize the spectral filtration for each tube-detector pair, which enables 

increased spectral separation and an increased signal-to-noise ratio in the material-specific 

images.40, 42, 43 However, since the two x-ray tubes are in operation simultaneously, the 

http://www3.gehealthcare.com.au/en-au/products/categories/computed_tomography/discovery_ct750_hd/spectral_imaging
http://www3.gehealthcare.com.au/en-au/products/categories/computed_tomography/discovery_ct750_hd/spectral_imaging
http://www3.gehealthcare.com.au/en-au/products/categories/computed_tomography/discovery_ct750_hd/spectral_imaging
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photon emitted from one tube may be detected by the detector of the other tube-detector 

pair, which degrades the spectral separation.44 

 

Figure 1.3 Implementation of DECT by dual-source CT on Somatom Force CT 

scanner of Siemens Healthcare. (https://www.healthcare.siemens.com/computed-

tomography/dual-source-ct/somatom-force/technical-specifications) 

 A dual-layer scintillation detector has been used on IQ on spectral CT system of 

Philips Healthcare for DECT. 45-47 With a single high tube potential, the dual-layer detector 

collects low-energy projections from front layer and the high-energy projections from the 

back layer. The advantage of this method is that the low- and high-energy projections are 

acquired simultaneously, which allows excellent temporal matching. However, the 

sensitivity profiles of the available materials on the detector layers have a rather broad 

overlap on X-ray energy spectrum, which limits the contrast of the spectral information or 

requires a relatively high additional dose.48 

1.2.3 Clinical application 

DECT has been increasingly used in different clinical applications. For example, 

bones and iodinated vessels usually have very similar ranges of Hounsfield Units (HU) on 

https://www.healthcare.siemens.com/computed-tomography/dual-source-ct/somatom-force/technical-specifications
https://www.healthcare.siemens.com/computed-tomography/dual-source-ct/somatom-force/technical-specifications
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CT images, which makes them difficult to be differentiated. By identifying and removing 

bones from iodinated vessels with material decomposition, DECT can resolve the 

superimposition of bone and vessels and generate direct angiography images. 49-52 DECT 

can also be used to assess lung perfusion with significantly reduced imaging dose compared 

to dynamic CT. 53, 54 In the abdomen area, DECT is able to identify the renal calculi and 

differentiate uric acid stone and non-uric acid stone. 55-57 

In DECT, the decomposed material images reconstructed from the data acquired 

with two different x-ray energy spectra, can be used to calculate electron density maps 

which is important in dose calculation for radiation therapy.31, 58 Recent studies show 

DECT can be further used to estimate the proton stopping power ratio distribution inside a 

patient, which may play an important role in proton therapy treatment planning.59 

Another common application of DECT is to generate virtual unenhanced CT 

images. DECT can identify and remove the iodine component from CT images to create 

images without contrast material enhancement. Thus, the true scan without contrast of 

multiphase examinations can be skipped if the virtual unenhanced image has satisfactory 

quality. It is very attractive in the CT evaluation of the kidneys, ureters, and bladder which 

include a complete examination with both a noncontrast and a contrast-enhanced scan.40, 

60-62 

1.3 Main contributions and publications 

Most of the work in this dissertation can be found in the following journal papers 

and conference proceedings: 
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T. Wang and L. Zhu, “Dual energy CT with one full scan and a second sparse-view 

scan using structure preserving iterative reconstruction (SPIR),” Physics in Medicine and 

Biology 61, 6684 (2016) 

T. Wang and L. Zhu, “Pixel-wise estimation of noise statistics on iterative CT 

reconstruction from a single scan”, in press, Medical Physics, (2016) 

J. Harms, T. Wang, M. Petrongolo, T. Niu, and L. Zhu “Noise suppression for dual-

energy CT via penalized weighted least-square optimization with similarity-based 

regularization” Medical Physics, 43, 2676-2686 (2016) 

J. Harms, T. Wang, M. Petrongolo, and L. Zhu “Noise suppression for energy-

resolved CT using similarity-based non-local filtration” Proc. SPIE 9783, Medical Imaging 

2016: Physics of Medical Imaging, 978341 (March 31, 2016) 

as well as conference presentations: 

 T. Wang and L. Zhu “Pixel-wise calculation of noise statistics on iterative CT 

reconstruction from a single scan”, talk in 58th AAPM Annual Meeting, July 2016, 

Washington, DC 

 T. Wang and L. Zhu “Dual energy CT with one full scan and a second sparse-view 

scan using structure preserving iterative reconstruction (SPIR)”, talk in 57th AAPM 

Annual Meeting talk, July 2015, Anaheim, CA. 

T. Wang and L. Zhu “Dual energy CT using one full scan and a second scan with 

very few projections”, talk in 56th AAPM Annual Meeting, July 2014, Austin, TX. 
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1.4 Outline of this dissertation 

The dissertation is organized in the following manner: 

Chapter 1 gives an introduction of the background and scope of this dissertation, 

and outlines the dissertation 

Chapter 2 introduces a novel iterative reconstruction method for DECT to enable a 

new data acquisition scheme which requires one full scan and a second sparse-view scan 

for potential reduction in imaging dose and engineering cost of DECT. 

 Chapter 3 presents a practical method for pixel-wise calculation of noise statistics 

on an iteratively reconstructed CT image, which enables accurate calculation of noise 

standard deviation for each pixel and noise power spectrum. 

Chapter 4 summarizes the dissertation and suggests directions for future research.  



 

 14 

CHAPTER 2. DUAL ENERGY CT WITH ONE FULL SCAN AND 

A SECOND SPARSE-VIEW SCAN USING STRUCTURE 

PRESERVING ITERATIVE RECONSTRUCTION (SPIR) 

2.1 Introduction 

Dual energy CT (DECT) has been increasingly used in different clinical 

applications, including direct angiography and bone removal,49-52 assessment of lung 

perfusion,53, 54 characterization of renal calculi,55, 56 and generation of virtual unenhanced 

CT images.60 Conventional DECT reconstruction theory requires two full-size projection 

datasets with two different energy spectra. This chapter aims to relax the data acquisition 

requirement of DECT for potential dose reduction and simplified imaging schemes by 

using an iterative reconstruction algorithm, which exploits the redundant structural 

information of the CT images acquired at two different x-ray energies.  

The DECT theory assumes that the attenuation coefficient of any material in the 

diagnostic energy range can be approximated as a weighted summation of two universal 

energy-dependent functions mainly accounting for photoelectric and Compton 

interactions.31 In practice, the basis functions can be the energy-dependent linear 

attenuation coefficients of two different actual or even virtual materials.63 The weight 

distributions of the two basis functions, i.e., the decomposed material images, are 

reconstructed from the data acquired with two different x-ray energy spectra, which can be 

used to calculate electron density maps or effective Z images.31 The original concept of 

DECT requires acquisition of projection data with two different x-ray energies for each 
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projection ray. Non-linear decomposition is then applied on the projection data to obtain 

the sinogram of two basis materials, from which decomposed materials are reconstructed 

via the same CT reconstruction principle. In practical implementations of DECT, dual-

energy projection data can be acquired, for example, on advanced CT imaging systems, 

including dual-source CT41 or fast kVp switching CT,39, 64 or using two sequential scans 

(so-called rotation-rotation mode) on a conventional diagnostic CT scanner. In these data 

acquisition schemes (except using a dual-layer detector as on the Philips IQon spectral CT 

system45-47), however, it is difficult or impossible to have dual-energy measurements on 

the same projection ray. The procedure of material decomposition is therefore more 

conveniently performed on CT images after the standard CT reconstruction, typically based 

on a linear model,33-36 at the price of losing the beam-hardening correction capability. In 

the existing literatures,34, 36 the terminology of DECT has extended from its original 

concept to include these imaging modalities based on image-domain decomposition. This 

chapter follows the convention and refer to all imaging systems that acquire projection data 

with two effective x-ray spectra and perform material decomposition as DECT systems, 

although readers should be aware that DECT in the strict sense uses only non-linear 

decomposition in the projection domain. 

DECT requires doubling the size of projection measurements. In current DECT 

implementations, this condition is satisfied by either scan time increase, as in the rotation-

rotation mode on a conventional diagnostic CT scanner, or hardware advancements, as on 

the dual-source CT,41 the fast kVp switching CT39 and the dual-layer detector CT.45, 46 This 

work focuses on a software-based improvement to reduce the requirement of data 

acquisition for DECT. A new reconstruction algorithm is developed using a full CT scan 
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plus a second scan with very few projections for high-quality DECT, which potentially 

reduces imaging dose and allows for more flexible designs of data acquisition on clinical 

DECT systems. This proof-of-concept investigations are performed on DECT using a 

rotation-rotation mode, i.e., two sequential CT scans at different x-ray energies, with 

image-domain decomposition. The proposed method is expandable to other DECT imaging 

modalities using either image-domain or projection-domain decomposition.  

Iterative algorithms have demonstrated successes on CT reconstruction on sparse 

data.21, 22, 65-72 The projection data for high-quality CT images are further reduced if the 

reconstruction is constrained by prior images, as shown in many recent applications, 

including 4D CBCT,73 daily imaging CBCT,74, 75 and cardiac CT.76, 77 An iterative 

algorithm is developed to improve DECT on sparse data with a design strategy different 

from those of existing algorithms. In this new DECT reconstruction method, a full scan is 

first used to obtain an estimated classification of object structures. A bilateral filter is 

calculated as a similarity matrix from the first full-scan CT image to quantify the similarity 

between any two pixels. This similarity matrix remains approximately unchanged on the 

same object in different CT scans, although the CT image pixel values may vary. In a 

second CT scan with different x-ray energy and significantly reduced projections, a high-

quality CT image is reconstructed by an iterative method. In each iteration, the image 

vector to be reconstructed is multiplied by the similarity matrix, a procedure equivalent to 

shift-variant low-pass filtering. To suppress noise and image artifacts on the reconstructed 

image, the algorithm updates the reconstructed CT image by minimizing the total variation 

(TV) of the difference between the image and its filtered image under the data fidelity 

constraint.  Note that, the proposed algorithm for the second CT scan does not regularize 
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on the TV of the image to be reconstructed as in the conventional TV based iterative CT 

reconstruction methods.21, 22, 65, 67, 68, 72, 78 It is also distinct from other prior-image 

constrained iterative algorithms in that it does not rely on the matching of pixel values 

between the prior image and the image to be reconstructed. Instead, the improvement of 

reconstruction accuracy from reduced projections is based on an estimated classification 

of structures shared by the two images. The proposed iterative algorithm is therefore 

referred to as structure preserving iterative reconstruction (SPIR).  

 In this chapter, the DECT quality using SPIR is evaluated on both digital and 

physical phantoms. In particular, the effects of structure classification errors on SPIR and 

the limit of data reduction for satisfactory DECT accuracy are investigated. Reconstruction 

error, spatial resolution, noise level and error of measured electron density are used as the 

image quality metrics in these DECT studies. 

2.2 Method 

2.2.1 Formulation of SPIR framework 

In the presented studies, a full-scan image is chosen to be reconstructed at high kVp 

using the standard FBP algorithm, and the reconstruction of a second sparse-view scan 

image at low kVp is aided by the structure preservation from the first CT image using 

SPIR. Similar to the optimization framework of other regularization-based iterative 

reconstruction algorithms,33, 65, 79 the proposed SPIR method is formulated as the following 

constrained minimization: 

 𝝁𝑳
∗ = arg min [𝜆 ∙ 𝑅(𝝁𝑳, 𝝁𝑯) +

1

2
‖𝑀𝝁𝑳 − 𝒃‖2

2] , 𝑠. 𝑡. 𝝁𝑳(𝑖) ≥ 0, (2.1) 
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where  𝝁𝑳 is the vectorized image at low kVp to be reconstructed, 𝝁𝑯 is the vectorized 

image at high kVp reconstructed by FBP, 𝑅(𝝁𝑳, 𝝁𝑯) is the regularization term quantifying 

the extent of structure preservation. 𝑀 is the system matrix modeling CT forward 

projection, vector 𝒃 is the measured line integrals, and  ‖𝑀𝝁
𝑳
− 𝒃‖

2
 calculates the L-2 

norm of the difference between the estimated and the raw projections, i.e., the data fidelity 

error. 𝜆 is a user-defined penalty weight, which balances structure preservation and 

reconstruction accuracy. Each element of 𝝁𝑳, 𝝁𝑳(𝑖), is constrained by image non-

negativity. 

The design of the regularization term 𝑅(𝝁𝑳, 𝝁𝑯) is the key to the success of SPIR. 

The structural information is first extracted from the full-scan FBP image via a procedure 

that is referred as structure classification, which is inspired by the bilateral filtering method 

originated in the image processing field.80 Bilateral filtering combines two types of image 

filtering, domain filtering and range filtering. The domain filtering suppresses image noise 

via weighted averaging with domain weights that decrease as spatial distance between two 

pixels increases. The range filtering is performed in the same way with range weights that 

decay with pixel value differences. In the structure classification of the new method, 

combined domain and range weights of bilateral filtering is used to quantify the similarity 

between any two pixels of the first full-scan CT image. These weights are organized in a 

matrix form and the bilateral filtering becomes similarity matrix multiplication.  

In the implementation, the domain weight with respect to distance is set as a box 

function centered at 0 with a window size of 𝑋-by-𝑋 pixels, and the range weight with 

respect to the pixel value difference is set as a Gaussian function centered at 0 with a kernel 
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width ℎ. The similarity between two pixels 𝑖 and 𝑗, 𝑊𝑖𝑗, on the full-scan CT image  

𝝁𝑯 is calculated by the following formula: 

 

𝑊𝑖𝑗(𝝁𝑯, 𝑋, ℎ) =

{
 
 

 
 𝑒𝑥𝑝(−

(𝝁𝑯(𝑖)−𝝁𝑯(𝑗))
2

ℎ2
)

∑ 𝑒𝑥𝑝(−
(𝝁𝑯(𝑖)−𝝁𝑯(𝑗))

2

ℎ2
)

𝑗∈𝛺
𝑖
(𝑋)

  𝑗 ∈ 𝛺𝑖
(𝑋)
 

0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , (2.2) 

where 𝑋 and ℎ are user-defined parameters, Ω𝑖
(𝑋)

 is the 𝑋-by-𝑋 subset of the pixels in the 

neighborhood centered at pixel 𝑖. Note that the total similarity for one pixel is normalized 

to one. 

To reduce errors of similarity calculation, a noise-suppressed 𝝁𝑯 via bilateral 

filtering is first generated, i.e. multiplication by the similarity matrix W:  

 𝝁𝑯̂ = 𝑊𝝁𝑯, (2.3) 

where each element of 𝑊 is calculated using Eq. (2.2) with 𝑋 = 3 pixels and ℎ = 𝜎, the 

noise standard deviation (STD) measured on a uniform area in 𝝁𝑯. The similarity matrix 

𝑊  is then updated on the noise suppressed CT image 𝝁𝑯̂ using Eq. (2.2) again (i.e., 𝝁𝑯 is 

replaced by 𝝁𝑯̂) with ℎ = 𝜎 and 𝑋 = 41. In case that one pixel of interest does not have 

sufficient pixels with non-zero similarity, the window 𝑋 is adaptively increased until the 

number of pixels with non-zero similarity exceeds 200 or the size of the search window 

equals that of the image. 

The generation of similarity matrix 𝑊 is a process of structure classification, 

because 𝑊 contains the structural information of the image. For example, if the size of the 
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high energy image is 𝑁 by 𝑁, the 𝑘th row of  𝑊, 𝑊𝑖𝑗, 𝑖 = 𝑘, 𝑗 = 1, 2, . . . 𝑁2, can be 

reshaped as an 𝑁-by-𝑁 image, showing the relative similarity values of all pixels across 

the entire image compared with the 𝑘th pixel. In the new method, 𝑊 is computed on the 

high-kVp CT image (hereafter is referred as 𝑊𝐻). Since the object structure remains 

unchanged in the low-kVp CT scan, the computed 𝑊𝐻 is also an accurate estimate of the 

similarity matrix on the low-kVp CT image 𝝁𝑳, 𝑊𝐿, i.e.: 

 𝑊𝐻 ≈ 𝑊𝐿. (2.4) 

As a process of bilateral filtering in nature, multiplication of an image vector by an 

accurate similarity matrix 𝑊 yields a noise or error suppressed image. The reconstructed 

low kVp image, 𝝁𝑳, is expected to have a reduced quality due to insufficient projection 

data. As such, the similarity matrix calculated on 𝝁𝑳 is inaccurate, and cannot be used to 

effectively reduce reconstruction errors. Therefore Eq. (2.4) is relied on for improved 

reconstruction of 𝝁𝑳. If 𝝁𝑳 is reconstructed accurately with low noise or small errors (e.g., 

from successful iterative reconstruction), multiplication of 𝝁𝑳 by an accurately estimated 

similarity matrix (𝑊𝐻 based on Eq. (2.4)) should have small effects on 𝝁𝑳, i.e.: 

 𝝁𝑳 ≈ 𝑊𝐻𝝁𝑳, (2.5) 

Eq. (2.5) is used as an additional data constraint in the design of the regularization 

term of the optimization framework. One may notice that the difference between 𝑊𝐻𝝁𝑳 and  

𝝁𝑳 is relatively large at structure edges. To better preserve edge signals, the regularization 

term 𝑅(𝝁𝑳, 𝝁𝑯) is designed to be the TV of the difference of 𝑊𝐻𝝁𝑳 and  𝝁𝑳 as: 
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 𝑅(𝝁𝑳, 𝝁𝑯) =
1

2
‖𝝁𝑳 −𝑊𝐻𝝁𝑳‖𝑇𝑉 =

1

2
‖∇(𝐴𝝁𝑳)‖1, (2.6) 

where = 𝐼 −𝑊𝐻 , 𝐼 is an identity matrix with the same size as that of 𝑊𝐻 and ‖∙‖1 

calculates the L1 norm. Note that, in Eq. (2.6), the matrix 𝑊𝐻 is equivalent to a shift-variant 

low-pass filter computed from 𝝁𝑯, thus 𝐴 = 𝐼 −𝑊𝐻 is equivalent to a shift-variant high-

pass filter. By plugging Eq. (2.6) into Eq. (2.1), one can reformulate the SPIR method as 

the following constrained minimization problem: 

 𝝁𝑳
∗ = arg min [

𝜆

2
‖∇(𝐴𝝁𝑳)‖1 +

1

2
‖𝑀𝝁𝑳 − 𝑏⃗ ‖2

2
] , 𝑠. 𝑡. 𝝁𝑳(𝑖) ≥ 0. (2.7) 

The contribution of this algorithm development is mainly two-fold. First, this study 

reformulate bilateral filtering into similarity matrix multiplication, a form compatible with 

the framework of iterative CT reconstruction. Bilateral filtering, which is equivalent to 

shift-variant high-pass filtering, is included in the regularization term for improved CT 

reconstruction. Secondly, SPIR is developed to reduce the data acquisition of DECT since 

CT images at different energies on the same object share the same structures and therefore 

have almost identical similarity matrices. Only one high-quality CT image is needed to 

calculate an accurate similarity matrix, and thus the projection data of a second CT scan 

can be reduced and reconstruction errors can be suppressed by SPIR. 

2.2.2 Implementation details of the SPIR algorithm 

2.2.2.1 Summary of SPIR workflow 

The DECT method using the SPIR algorithm implemented in this paper is 

summarized as follows: 
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1. Reconstruct a high kVp CT image 𝝁𝑯 from a full scan using FBP reconstruction. 

2. Generate noise-suppressed 𝝁𝑯̂ by bilateral filtering via Eq. (2.2) and Eq. (2.3). 

3. Calculate the similarity matrix 𝑊𝐻 on 𝝁𝑯̂ using Eq. (2.2). 

4. Solve Eq. (2.7) and output 𝝁𝑳. 

2.2.2.2 Solver to Eq. (7) 

To efficiently solve the constrained minimization problem, i.e., Eq. (2.7), a gradient 

projection with an adaptive Barzilai–Borwein (GP-BB) step-size selection scheme is used. 

The implementation is similar to that presented in Reference22, except the gradient of the 

regularization term is included in the calculation of the descending direction of the 

objective function. Let 𝒉 = 𝐴𝝁
𝑳
, and the regularization term (Eq. (2.6)) can be rewritten 

as 

 
𝑅 =

1

2
‖∇𝒉‖1 =

1

2
∑ √(ℎ𝑚,𝑛 − ℎ𝑚,𝑛−1)

2
+ (ℎ𝑚,𝑛 − ℎ𝑚−1,𝑛)

2
𝑚,𝑛 , (2.8) 

where the vector ℎ⃗  is reshaped as a 𝑁𝑋 × 𝑁𝑌 image matrix whose elements are ℎ𝑚,𝑛, 0 <

𝑚 ≤ 𝑁𝑋 , 0 < 𝑛 ≤ 𝑁𝑌. 𝑁𝑋 × 𝑁𝑌 is the image size of reconstruction. Similarly, 𝝁𝑳 is 

reshaped as 𝜇𝑠,𝑡 and 𝐴 as 𝐴𝑚,𝑛,𝑠,𝑡, 0 < 𝑠,𝑚 ≤ 𝑁𝑋 , 0 < 𝑡, 𝑛 ≤ 𝑁𝑌. Thus, ℎ𝑚,𝑛 =

∑ 𝐴𝑚,𝑛,𝑠,𝑡𝜇𝑠,𝑡𝑠,𝑡 . Denoting the gradient of Eq. (2.8) with respect to 𝝁𝑳 as ∇⃗⃗ 𝑅, one can 

calculate its element via the following equation: 
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 (∇⃗⃗ 𝑅)
𝑖,𝑗
=

𝜕𝑅

𝜕𝜇𝑖,𝑗
=

∑
(ℎ𝑚,𝑛−ℎ𝑚,𝑛−1)(𝐴𝑚,𝑛,𝑖,𝑗−𝐴𝑚,𝑛−1,𝑖,𝑗)+(ℎ𝑚,𝑛−ℎ𝑚−1,𝑛)(𝐴𝑚,𝑛,𝑖,𝑗−𝐴𝑚−1,𝑛,𝑖,𝑗)

√(ℎ𝑚,𝑛−ℎ𝑚,𝑛−1)
2
+(ℎ𝑚,𝑛−ℎ𝑚−1,𝑛)

2
+𝜖

𝑚,𝑛 , 

(2.9) 

where 𝜖 is a small positive number to avoid singularities in the derivative calculation and 

is set as 10-8 in the algorithm. 

ALGORITHM I shows the pseudo code of the solver of Eq. (2.7) by the GP-BB 

method. Line 1 lists algorithm parameters with typical values controlling the optimization. 

The penalty weight 𝜆 in the optimization objectives balances the strength of noise 

suppression and data fidelity error. The value of 𝜆 is empirically chosen to match the data 

fidelity error of the images with those of other methods for a fair comparison in the studies 

presented later. A typical value range is also given in Line 1. The initial guess of the low-

kVp image in the optimization can be zero or generated by other iterative reconstruction 

algorithm (line 2). Note that, zero initial will give the same optimal solution but with more 

computation time.  Line 3 to 16 is the main loop solving Eq. (2.7) using GP-BB method. 

When the L1 norm of the image difference between two adjacent iterations ‖𝝁
𝑳
− 𝝁

𝑳,𝒐𝒍𝒅
‖
1
 

is less than the preset tolerance (line 15) or the number of iterations exceeds the upper limit 

𝑁𝑖𝑡𝑒𝑟, the iteration stops with a final result image 𝝁𝑳 (line 17). 

ALGORITHM I Pseudo code of solver to Eq. (2.7) by the GP-BB method (the 

comments are shown in italic). 

1: 𝑁𝑖𝑡𝑒𝑟 ≔ 2000; 𝜅 ≔ 0.3; 𝑡𝑜𝑙 ≔ 10−10; 𝜆 ≔ 0.1~1;   empirical control parameters 

2: 𝝁𝑳 ≔ 0 or result from other iterative reconstruction;    initial guess 

3: for 𝑡 ≔ 1:𝑁𝑖𝑡𝑒𝑟 do                                                          main loop 
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4: 𝒈 = ∇⃗⃗ 𝑅 +𝑀𝑇(𝑀𝝁
𝑳
− 𝒃);        gradient of objective function 

5: for 𝑖 ≔ 1:𝑁 do                  enforce gradient negativity and projection non-negativity  

6: if 𝑔(𝑖) ≤ 0, or 𝝁𝑳(𝑖) ≥ 0, then 𝑝(𝑖):=  𝑔(𝑖); else 𝑝(𝑖):= 0 end if; 

7: end for; 

8: if 𝑡 ≔ 1, then 

9: 𝝁𝑳,𝒐𝒍𝒅≔ 0; 𝒑𝒐𝒍𝒅 ≔ 0; 𝛼 ≔ 0; 

10: else                                                                         adaptive BB step size 

11: 

𝛼𝐵𝐵1: =
(𝝁𝑳−𝝁𝑳,𝒐𝒍𝒅)

𝑇
(𝝁𝑳−𝝁𝑳,𝒐𝒍𝒅)

(𝝁𝑳−𝝁𝑳,𝒐𝒍𝒅)
𝑇
(𝒑−𝒑𝒐𝒍𝒅)

, 𝛼𝐵𝐵2: =
(𝝁𝑳−𝝁𝑳,𝒐𝒍𝒅)

𝑇
(𝒑−𝒑𝒐𝒍𝒅)

(𝒑−𝒑𝒐𝒍𝒅)
𝑇(𝒑−𝒑𝒐𝒍𝒅)

; 

if 𝛼𝐵𝐵2/𝛼𝐵𝐵1 < 𝜅, then 𝛼:= 𝛼𝐵𝐵2; else 𝛼:= 𝛼𝐵𝐵1; end if; 

12: 𝝁𝑳,𝒐𝒍𝒅≔ 𝝁𝑳, 𝒑𝒐𝒍𝒅 ≔ 𝒑; 

13: end if; 

14: 𝝁𝑳 ≔ 𝝁𝑳 − 𝛼𝒑;                                                        update image 

15: if ‖𝝁
𝑳
− 𝝁

𝑳,𝒐𝒍𝒅
‖
1
< 𝑡𝑜𝑙, then break; end if;            stopping criterion 

16: end for; 

17: return 𝑓𝐿⃗⃗  ⃗; 

2.2.3 Evaluation 

The feasibility of the proposed algorithm is demonstrated through both computer 

simulation and phantom experiments. In all the investigations, imaging parameters 

matching those of an On-Board Imager (OBI) cone-beam CT (CBCT) system on a Varian 

radiation therapy machine (e.g. Trilogy or Truebeam) are used, except that this study 

focuses on fan-beam CT studies to avoid scatter errors. Each projection contains 1024 

pixels with a pixel pitch of 0.388 mm. A full scan over 360° acquires 655 projections. The 
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reconstructed CT images and the decomposed material images have a dimension of 

512×512 with a pixel size of 0.5×0.5 mm2. The CT images are converted to CT number in 

Hounsfield Unit (HU), and the decomposed material images are the relative weights (i.e., 

the effective volume fractions) of the basis materials. In simulation studies, a mono-

energetic source at 47 keV and 61 keV is used. No scatter is simulated. Poisson noise is 

added on projections to simulate an image noise level close to that in experimental results. 

The phantom experiments are performed on the tabletop CBCT system at the Georgia 

Institute of Technology, with two x-ray tube energies of 75 kVp and 125 kVp. A fan-beam 

geometry with a longitudinal beam width of 15 mm on the detector is used to acquire views 

with scatter contamination inherently suppressed.81 More details of the tabletop CBCT 

system can be found in Reference.82 

High-energy CT images are reconstructed from raw data by the FBP method with 

a Hamming filter and are used for structure classification in SPIR. Low-energy CT images 

are reconstructed using SPIR with different numbers of equi-angular views. A practical 

reason of using a full high kVp scan and a sparse-view low kVp scan is that compared with 

the CT image of a full low kVp scan, the CT image of a full high kVp scan is less noisy in 

this study and thus can generate a more accurate similarity matrix. A more accurate 

similarity matrix leads to a high-quality CT image of the second sparse-view scan 

reconstructed by the new method. The decomposed material images are generated from 

high-energy and low-energy CT images by an iterative image-domain decomposition 

method recently developed.83 CT images and decomposed material images by the 

conventional two-full-scan FBP method are used as the ground truth. The proposed 

algorithm is implemented in MATLAB. The majority of computation occurs in minimizing 
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the objective function of SPIR, which typically takes about 10 minutes on a 2.67GHz CPU. 

The generation of similarity matrix 𝑊 takes about 20 seconds with 8-thread parallel 

computation. 

The performance of the proposed DECT heavily relies on the accuracy of structure 

classification. To investigate DECT image qualities when structure classification is 

challenging, the algorithm is evaulated on a digital phantom with a water equivalent 

background containing 8 rods. On the high-energy CT image where structure classification 

is performed, the attenuation coefficients of the 8 contrast rods are carefully designed to 

assess the proposed SPIR-based DECT for the following three scenarios:  

Scenario I:  Rods have sufficient contrasts compared with the background and each rod 

has a different CT value and therefore is identified as a different material.  

Scenario II:  Rods have sufficient contrasts compared with the background but have the 

same CT values on the high-energy CT image. These rods may be therefore falsely 

classified as the same material although they have different CT values on the low-energy 

CT image.  

Scenario III:  Rods have no contrasts compared with the background on the high-energy 

CT image. Structure classification therefore completely fails. 

 Scenario I represents the most common situation on clinical DECT images. 

Scenario II may happen in some cases such as angiography bone removal when the 

intensities of iodine and bone partially overlap. Scenario III is an extremely challenging 

case for assessment purposes only. It is hypothesized that SPIR can accurately reconstruct 
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the image of rods in Scenario I with a high overall image quality, and may have lower 

accuracy in Scenario II and III depending on the number of views.  In addition, one small 

rod with a diameter of 1cm that contains a 0.5cm calcium rod surrounded by iodine solution 

is included. Similar to scenario II, the two materials in this rod have the same pixel value 

in the high energy image but different pixel values in the low energy image. This rod is 

used to simulate the scenario in angiography that a vessel contains calcium plaque and 

iodine contrast with similar HU values in the high kVp image, and to evaluate the 

preservation of the calcium/iodine boundary in the reconstructed image by the new method. 

The above studies focus on the evaluation of SPIR accuracy on the low-energy CT 

scan. The relative root-mean-square error (R-RMSE) is used as an image quality metric, 

which is calculated as 

 
R-RMSE =

√
1

𝑁
∑ (𝜇𝑖−𝜇𝑖0)

2𝑁
𝑖=1

1

𝑁
∑ 𝜇𝑖0
𝑁
𝑖=1

× 100%, (2.10) 

where 𝑖 is the index of the region of interest (ROI), 𝜇𝑖 is the mean reconstructed CT value 

inside the ROI, 𝜇𝑖0 is the corresponding ground truth value, and 𝑁 is the total number of 

the ROIs. 

Measurements of line-spread function are used to evaluate the method performance 

on image spatial resolution. Besides rods, three 1-by-7-pixel lines with contrasts of 127 

HU (line #1), 1017 HU (line #2) and 94 HU (line #3)  corresponding to scenarios I, II and 

III, respectively, are added in the digital phantom to further study the performance of the 

proposed method. For each line, 7 1D profiles pass through all the 7 pixels at the direction 

perpendicular to the line and are averaged along the direction of the line. The averaged 
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profile is fitted by a Gaussian function and then converted to a modulation transfer function 

(MTF). The frequency at 10% of maximum value of MTF is used to quantify the MTF 

function, and is referred as “10% MTF frequency” for conciseness in the presentation of 

results. A larger value of 10% MTF frequency indicates a higher spatial resolution. 

The overall performance of the proposed method is further evaluated on two 

physical phantoms, the Catphan©600 phantom and an anthropomorphic pediatric phantom. 

The slice of the line pairs on the Catphan phantom is used to investigate the spatial 

resolution. Both CT images and decomposed material images are generated. A uniform 

ROI in a CT image is also selected to measure the noise level. A similar study is performed 

on the anthropomorphic pediatric phantom to evaluate the method performance in the 

presence of complex object structures. A further evaluation is performed on head patient 

DECT images acquired at 140 kVp and 80 kVp. The full-scan CT image at 140 kVp is used 

for similarity matrix calculation. As the raw projection data on the clinical CT scanner is 

not accessible, the full-scan CT image at 80 kVp is forward-projected to generate a full-

size sinogram. The projection views of the sinogram are then downsampled to simulate 

different sparse-view scans. This simulated sparse-view scan is reconstructed by the 

proposed method, and used in material decomposition of “iodine” and “tissue” images. 

This study focuses on the evaluation of virtual unenhanced imaging using DECT, a 

common clinical technique that removes iodine from contrast-enhanced DECT images and 

reduces the need for an unenhanced CT scan.61 Virtual unenhanced images are generated 

by weighted summation of the decomposed images, in the same way as shown in Reference 

62. 



 

 29 

The contrast rod slice of the Catphan phantom is used to investigate the 

measurement accuracy of electron density using DECT, which is important in dose 

calculation for radiation therapy.58 The electron density map is generated as the summation 

of the decomposed basis material images weighted by their known electron densities. 

Teflon and polystyrene are used as the two basis materials of which electron densities can 

be found in the phantom manual. The contrast rods are selected as the ROIs. The 

measurement error of electron density is calculated as: 

 𝐸𝑖 =
𝜌𝑖−𝜌𝑖0

𝜌𝑖0
× 100%, (2.11) 

where 𝜌𝑖 is the mean electron density of the ith ROI and  𝜌𝑖0 is its ground truth obtained 

from the phantom manual. The absolute values of 𝐸𝑖 of all ROIs are then averaged for 

comparison. 

The above studies compare SPIR approach with the FBP method as well as a 

conventional TV regularization-based iterative reconstruction method (TVR), which uses 

the TV of the image to be reconstructed as the regularization term.22, 84, 85. On the digital 

phantom, the new approach is also compared with two iterative reconstruction methods: 

Prior Image Constrained Compressed Sensing (PICCS), a state-of-the-art algorithm that 

uses a prior image to improve the iterative CT reconstruction algorithm.79 In PICCS, the 

strength parameter of prior image constraint is set as the value recommended in Reference 

79 (i.e., 𝛼 = 0.91 in Eq.(3) of Reference 79). In all the comparisons, the parameters of 

different algorithms are manually tuned to have the same data fidelity errors on the 

reconstructed images. 
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In particular, the method performance is assessed on DECT data of a full scan and 

a second scan with different numbers of projection views. For conciseness, the following 

abbreviations are used in the presentations of results. On the results of CT images, “Full-

scan FBP” stands for the FBP reconstruction using a full scan dataset, “N-view 

SPIR/TVR/PICCS” stands for reconstruction by SPIR, TVR or PICCS using data of N 

views, and “high E/low E” stands for high energy CT image or low energy CT image. On 

the results of decomposed material images, electron density maps and virtual unenhanced 

images, “Full+Full FBP” refers to the conventional two-full-scan FBP method, and 

“Full+N SPIR” refers to the proposed DECT method using one full-scan FBP image and a 

second N-view SPIR image. 

2.3 Results 

2.3.1 Digital phantom study 

Figure 2.1 shows the digital phantom setting at low energy and high energy. Both 

images are reconstructed by full-scan FBP as the ground truth. Figure 2.2 shows the CT 

images of the digital phantom reconstructed by SPIR, TVR and PICCS with a sparse-view 

scan at the low energy level. In the comparison of TVR and PICCS with SPIR results, the 

algorithm parameters is tuned to achieve the same data fidelity errors. The parameter 𝛼 in 

PICCS, i.e., the strength of prior image constraint, is set as 0.91, the recommended value 

in Reference 79.   

From Figure 2.2, it is seen that TVR and SPIR have similar reconstruction accuracy 

on a 50-view scan. The advantage of SPIR becomes prominent as the number of views 

further decreases. The images of SPIR on scans with 20 and 10 views show fewer patchy 
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artifacts than those by TVR (see Figure 2.2(a2), (a3), (b2) and (b3)). This finding is 

consistent with the measured reconstruction accuracies of CT numbers listed in Table 2-I. 

SPIR with a 10-view scan has an R-RMSE of 1.33%, while TVR introduces large errors 

with the same number of views and increases R-RMSE to 6.18%. The CT images of SPIR 

show sharper edges for rods with sufficient contrast in the high-quality CT image of the 

first scan (i.e., the scenario I and II rods) than the TVR images, which indicates a better 

spatial resolution on these objects. The result of PICCS shows a comparable accuracy and 

spatial resolution with that of SPIR, while it is much noisier. On the zoomed-in ROI of 

“vessel” simulating calcium plaque and iodine contrast which have the same pixel values 

in the high energy image, the boundaries between calcium and iodine are preserved in the 

low energy images of SPIR with scans of 20 views or more, a similar performance 

compared with TVR and PICCS (see Figure 2.2(a2), (b2) and (c2)). However, TVR and 

PICCS fail to maintain the vessel shape, mainly because of their poor reconstruction 

accuracy for such a small object. On the scenario III rods with no sufficient contrast in the 

CT image of the first scan, the structure classification fails in SPIR. However, SPIR still 

achieves similar image qualities with 10 views as TVR and PICCS. It is worth emphasizing 

again that scenario III represents the most challenging case for SPIR and is considered rare 

in clinical practice. 

The measured 10% MTF frequency and noise STD are listed in Table 2-II. On both line #1 

and line #2 (i.e., scenario I and II, respectively), SPIR outperforms TVR on spatial 

resolution with the 10% MTF frequency higher by an average factor of 4, and maintains a 

similar noise STD. SPIR and PICCS show similar spatial resolutions indicated by similar 

10% MTF frequency. However, SPIR outperforms PICCS on noise suppression with a 
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noise STD lower by a factor of 7. On line #3 (i.e., scenario III), SPIR, TVR and PICCS all 

fail to show observable contrast for this line. The above study reveals that the proposed 

SPIR is superior to TVR on spatial resolution with similar noise suppression, and superior 

to PICCS on noise reduction with similar spatial resolution. 

 

Figure 2.1 CT images of a digital phantom reconstructed by full-scan FBP 

reconstructions at (a) low energy level, (b) high energy level. The labels in (a) are the 

indices of ROIs, and the labels in (b) indicate the different scenarios for each ROI. 

The dashed-line square in (a) indicates the region where the zoomed-in “vessel” at the 

bottom-left of each image is located. The black arrow, white arrow and double line 

arrow in (a) show the positions of line #1, line #2 and line #3 (corresponding to 

scenario I, II and III, respectively). Display window for full-FOV images is [-250 250] 

HU, and for zoomed-in “vessel” at bottom-left is [𝑯𝑼̅̅ ̅̅̅-80 𝑯𝑼̅̅ ̅̅̅+80] HU, where 𝑯𝑼̅̅ ̅̅̅ is 

the mean HU value of the “vessel” in each case. 
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Table 2-I Measured CT number (in HU) of the ROIs and the background on CT 

images shown in Figure 2.1. The indices of ROIs are marked in Figure 2.1(a). The 

indices of scenarios are marked in Figure 2.1(b). The R-RMSEs are calculated by Eq. 

(2.10) with the ground truth obtained from the full-scan FBP images. The proposed 

SPIR method and TVR are applied on low-energy CT scans with different numbers 

of views. Note that, although the contrast rods have different linear attenuation 

coefficients at two different x-ray energies, their CT numbers in HU may be similar 

on the CT images of the two scans. 

 ROI 

Ground 

truth 

Low-E CT via SPIR Low-E CT via TVR 

# of views  N/A 50 20 10 50 20 10 

Scenario I 

2 -58 -59 -60 -61 -59 -60 -46 

4 127 127 127 125 128 128 114 

6 63 63 63 65 63 61 51 

8 -112 -114 -114 -114 -114 -112 -95 

II 

3 1017 1017 1016 1015 1018 1016 1004 

7 850 850 849 847 851 850 836 

III 

1 -87 -88 -87 -83 -87 -85 -69 

5 94 96 96 92 95 95 87 

Background 9 0 0 0 4 0 0 6 

R-RMSE (%)   0.50 0.60 1.33 0.48 0.61 6.18 
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Figure 2.2 CT images of a digital phantom at low energy reconstructed by (a) SPIR, 

(b) TVR and (c) PICCS using (1) 50 views, (2) 20 views and (3) 10 views. The zoomed-

in “vessel” at the bottom-left of each image is indicated by the dashed-line square in 

Figure 2.1(a). The dashed circle shown in (c) is the ROI on which the noise STD in 

Table 2-II is calculated. Display window for full-FOV images is [-250 250] HU, and 

for zoomed-in “vessel” at bottom-left is [𝑯𝑼̅̅ ̅̅̅-80 𝑯𝑼̅̅ ̅̅̅+80] HU, where 𝑯𝑼̅̅ ̅̅̅ is the mean 

HU value of the “vessel” in each case. 
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Table 2-II 10% MTF frequency values and noise STD measured on Figure 2.2. 

 10% MTF frequency (lp/mm) 

Noise 

STD (HU) 
 

50-view scan 20-view scan 

Average 

 Line #1 Line #2 Line #1 Line #2 

SPIR 13.90 8.80 15.20 8.34 11.56 5 

TVR 3.31 2.90 1.77 2.97 2.74 5 

PICCS 6.76 11.43 6.29 11.48 8.99 34 

2.3.2 Catphan phantom study 

Figure 2.3 shows the CT images of the Catphan phantom on the slice of line pairs, 

reconstructed by FBP, TVR and SPIR. The dotted circle area in Figure 2.3(c) is selected 

as the ROI, of which the means and noise STDs are measured in Table 2-III. SPIR achieves 

noise STD reduction by a factor of more than 10 compared with the full-scan FBP 

reconstruction. With the same data fidelity error, SPIR substantially outperforms the TVR 

method on image spatial resolution with half of the noise STD.  As shown in the zoomed-

in insert of each image on the ROI (indicated by the white rectangle in Figure 2.3(a)), the 

TVR method has a spatial resolution of less than 5 pairs/cm when the view number is 50 

(see Figure 2.3(f)), while SPIR on even 10 views (see Figure 2.3(e)) has a spatial resolution 

of 6 pairs/cm, comparable to that of the full-scan FBP image. The corresponding DECT 

decomposed images are shown in Figure 2.4. The aluminum (the line-pair material) and 

the epoxy (the background) are chosen as the basis materials. It is seen that the high quality 
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of CT images reconstructed by SPIR leads to high spatial resolution on the decomposed 

images. 

One may notice some low frequency artifacts in the decomposed images shown in 

Figure 2.4(d2). Compared with simulation studies, phantom experiments contain larger 

projection errors mainly from beam-hardening and scatter. These errors propagate through 

both reconstruction and decomposition processes. In reconstruction, because of the very 

limited number of views in one scan, the error is non-uniformly distributed across the 

reconstructed image. This artifact is not obvious in the CT images, but it is magnified and 

becomes noticeable after material decomposition, which is an error-sensitive process. 83 

A different slice of contrast rods of the Catphan phantom is used to evaluate the 

electron density measurement accuracy of SPIR-based DECT. Figure 2.5 shows the 

electron density maps generated by the conventional two-full-scan FBP and SPIR-based 

DECT. The measurement errors of ROIs are listed in Table 2-IV. The average errors on 

the results by SPIR-based DECT are comparable with those of the conventional two-full-

scan FBP, which indicates the high accuracy of the decomposed images and electron 

density maps obtained by the new method. As a side note, the measurement errors of 

electron densities shown in Table IV are different from those reported in the recent 

papers.33, 83 It is mainly because of the different basis materials used in the DECT 

decomposition as well as the different phantom geometry. 
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Figure 2.3 CT images of the Catphan phantom on the slice of resolution line pairs, 

reconstructed by FBP on full scan data at (a) low kVp and (b) high kVp, SPIR at low 

kVp using (c) 50 views, (d) 20 views and (e) 10 views, and  (6) TVR at low kVp using 

50 views. The dashed rectangle shown in (a) is the region where the zoom-in inserts 

of line pairs are located. The dotted circle shown in (c) is the ROI on which Table 

2-III is calculated. Labels in the bottom figure of (a) show the value of line pairs per 

cm for each line cluster. Display window: [-500 2500] HU. 
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Table 2-III The means and the noise STDs of the CT number (in HU) in the ROIs 

indicated by the dotted circle shown in Figure 2.3(c). 

Methods Mean ± STD 

Full scan FBP at 75kVp -4±128 

Full scan FBP at 125kVp 60±62 

50-view SPIR at 75kVp -4±9 

20-view SPIR at 75kVp -7±6 

10-view SPIR at 75kVp -4±7 

50-view TVR at 75 kVp -4±16 
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Figure 2.4 The decomposed material images of line pair slice, based on the 

reconstruction images at low kVp and high kVp using (a) conventional two-full-scan 

FBP, SPIR-based DECT using one full scan and a second (b) 50-view, (c) 20-view and 

(d) 10-view scan. Row (1): “bone” images; row (2): “tissue” images; and row (3): 

magnified views of bone images in the ROI of dashed rectangle in Figure 2.5(a). 

Display window: [0.1, 1.2]. 
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Figure 2.5 Electron density maps of contrast rods, based on the reconstruction images 

at low kVp and high kVp using (a) conventional two-full-scan FBP, SPIR-based 

DECT using one full scan and a second (b) 50-view, (c) 20-view and (d) 10-view scan. 

The labels in (a) indicate the ROIs on which Table IV is calculated. Display window: 

[2.5 6.5]× 𝟏𝟎−𝟐𝟑 cm-3. 
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Table 2-IV The percentage error of electron density measurement of contrast rods 

using conventional two-full-scan FBP and SPIR-based DECT with one full scan and 

a second N-view scan (“Full+ N”). The indices of the ROIs are marked in Figure 

2.5(a). The ground-truth electron density values are obtained from Catphan©600 

phantom manual. The average absolute error is the average of the absolute values of 

error in all ROIs. 

Scan scheme 
1  

Teflon 

2  

PMP 

3  

LDPE 

4  

Polystyre

ne 

5  

Delrin 

Average 

absolute 

error 

Conventional 

two-full scan 

FBP 

0.64% 0.81% -0.63% -0.45% -1.69% 0.84% 

Full+Full 0.48% 0.95% -0.60% -0.18% -1.71% 0.78% 

Full+50 0.32% 0.98% -0.57% -0.75% -1.65% 0.85% 

Full+20 0.16% 1.01% -0.57% -0.95% -1.80% 0.90% 

Full+10 -0.18% 0.60% -1.24% -0.88% -1.65% 0.91% 

2.3.3 Pediatric phantom study 

An anthropomorphic pediatric phantom with realistic vertebra structures is used to 

evaluate the performance of the new method on objects with a complex geometry. The 

bone of the phantom is made of calcium and the soft tissue is composed of epoxy. Figure 

2.6 and Figure 2.7 show the CT images and decomposed material images. Similar to 

previous results, SPIR-based DECT generates accurate CT images and decomposed 

images with clearly separated bone and tissue structures. The error maps of CT image 

reconstructed by SPIR are shown in Figure 2.6(c), with the full-scan FBP image considered 

as the ground truth. Three rectangles indicated by the dashed rectangle in Figure 2.6(a1) 

are used as the ROIs for the measurement of the root-mean-square-error (RMSE) in HU, 

shown in Table 2-V. Overall, SPIR maintains a low reconstruction error of less than 10 HU 
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for scans with different numbers of views, except for the 10-view scan where the RMSE 

increases to 18 HU. A similar performance on image qualities for different numbers of 

views is observed on decomposed images shown in Figure 2.7. Similar low frequency 

artifacts are also shown in Figure 2.7(e2) as those of Figure 2.4(d2). These artifacts stem 

from the reconstruction error shown in Figure 2.6(c), which is magnified in the error-prone 

procedure of material decomposition.83 

 

Figure 2.6 CT images of the pediatric phantom, reconstructed by full-view scan using 

(a1) FBP at high kVp, (a2) FBP at low kVp and (a3) SPIR at low kVp, and SPIR at 

low kVp using (b1) 50 views, (b2) 20 views and (b3) 10 views. The error maps of SPIR 

using (c1) 50 views, (c2) 20 views and (c3) 10 views compared with the full-scan FBP 

are also shown. The dashed rectangles in (a1) are the ROIs on which Table 2-V is 

calculated. Display window is [-500 1500] HU for (a) and (b), and is [-150 150] HU for 

(c). 
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Table 2-V Measurements on error of mean pixel value and RMSE (both in HU) on 

CT images reconstructed by SPIR with different numbers of views. The ROIs are 

marked in Figure 2.6(a1). The CT image of full-scan FBP at low kVp is chosen as the 

ground truth. 

Number of 

views 

Error of mean HU 

RMSE 

ROI 1 ROI 2 ROI 3 

655 5 -1 2 3 

50 13 0 8 9 

20 10 2 8 7 

10 14 0 28 18 

 

Figure 2.7 The decomposed material images of the pediatric phantom, based on the 

reconstruction images at low kVp and high kVp using (a) the conventional two-full-

scan FBP, the proposed SPIR-based DECT using one full scan and a second scan with 

(b) full views, (c) 50 views, (d) 20 views and (e) 10 views. Row (1) is the “bone” image 

and row (2) is the “tissue” image. Display window: [0.1 1.2]. 
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2.3.4 Clinical study 

Head patient DECT images acquired at 140 kVp and 80 kVp with full scans are 

used to further evaluate the performance of SPIR on a clinical dataset. Figure 2.8 and 

Figure 2.9 show the CT images and the virtual unenhanced images, with a narrow display 

window of 80 HU. To quantify the reconstruction accuracy by SPIR, RMSEs are measured 

on CT images in three uniform ROIs indicated by the dashed rectangles in Figure 2.8(a1). 

The maximum RMSE is 7.2 HU when SPIR uses a second scan of only 10 views. As the 

number of projection views reduces, image non-uniformity and artifacts increase on the 

SPIR results. However, in the virtual unenhanced images of Figure 2.9, it is seen that the 

vessels containing iodine contrast agency are successfully removed in the results using 

SPIR reconstructions on even 20 views, with an image quality similar to that using full-

scan FBP. 
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Figure 2.8 CT images of a head patient, reconstructed by (a1) full-view FBP at high 

kVp, (a2) full-view FBP at low kVp, (a3) full-view SPIR at low kVp, and SPIR at low 

kVp using (b1) 50 views, (b2) 20 views and (b3) 10 views. The dashed rectangles in 

(a1) are the ROIs on which RMSE is calculated. Display window is [0 80] HU. 
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Figure 2.9 The original CT image and the virtual unenhanced CT images of a head 

patient. The virtual unenhanced CT images are generated from decomposed soft 

tissue and iodine images using (a2) the conventional two-full-scan FBP, the proposed 

SPIR-based DECT with one full scan and a second scan of (a3) full views, (b1) 50 

views, (b2) 20 views and (b3) 10 views. The contrast-enhanced full-scan FBP image at 

low kVp is shown in (a1) for reference. Display window is [0 80] HU. 

2.4 Conclusions and discussion 

This work developed a new iterative CT reconstruction algorithm, SPIR, to reduce 

the data requirement for DECT. On a digital phantom, SPIR reduces the number of views 

in the second scan of DECT to as low as 10 with a reconstruction error of less than 1.5%. 

On physical phantoms, in addition to reduction of data acquisition in the second scan down 

to tens of views, SPIR achieves the same spatial resolution and an average error of less 

than 20 HU compared to the CT image reconstructed by the full-view FBP with image 

noise STD one order of magnitude less. Comparisons show that SPIR substantially 
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improves over TVR on the reconstruction accuracy of a 10-view scan by decreasing the 

reconstruction error from 6.18% to 1.33%. SPIR also outperforms TVR at 50-view and 20-

view scan in image spatial resolution with a higher 10% MTF frequency by an average 

factor of 4. Compared with the results by PICCS in 50-view and 20-view scan, the image 

reconstructed by SPIR has similar spatial resolution but with a noise STD 7 times lower. 

The high accuracy of SPIR leads to the high spatial resolution of decomposed material 

images and the high accuracy of electron density maps. The electron density map obtained 

from the SPIR-based DECT images with a second 10-view scan has an average error of 

less than 1%.  

The performance of SPIR is demonstrated using a rotation-rotation mode of the 

broad-sense DECT technique with linear image-domain decomposition. Compared with 

the non-linear projection-domain decomposition of DECT in its original concept, such an 

implementation simplifies the signal processing of DECT at the price of lacking beam-

hardening correction capability.36 It should be noted, however, that the research presented 

in this study is focused on the design of a new reconstruction algorithm for DECT 

independently of the decomposition process, and the use of SPIR does not require an 

image-domain decomposition. For example, a non-linear decomposition can be first 

performed on the dual-energy projection data using the same method as shown in recent 

publication,86 and then carry out SPIR on the decomposed projections.  

This study primarily focuses on the development of a new reconstruction 

framework that reduces data acquisition for DECT without much degradation of image 

quality. The presented proof-of-concept studies choose to evaluate the method performance 

using a rotation-rotation scan mode. It should be noted, however, that the rotation-rotation 
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scan mode is not an ideal scheme of DECT imaging for the new method in clinical use. 

The involuntary patient movement might comprise the assumption that the second CT scan 

of DECT contains the same structural information as the first CT scan. The performance 

of the proposed algorithm is therefore expected to be more robust on advanced DECT 

scanners,39, 41 where patient motion is minimized via acquisition of dual-energy projections 

in a single scan.  

This chapter describes a new reconstruction framework that reduces data 

acquisition for DECT without much degradation of image quality. By reducing data 

acquisition for DECT, SPIR can potentially reduce radiation dose on patients and hardware 

costs of the imaging system. For example, a “fast kVp switching” CT scanner 39 acquires 

dual-energy projections in one single rotation via switching the x-ray energy for 

neighboring projections. Since data acquisition is doubled without increasing scan time, 

the scanner is equipped with a fast detector and a fast-switching high-voltage generator, 

both of which significantly increase the system cost. The small number of projections in 

the low-kVp scan enabled by the new method indicates that the switching rate can be 

significantly lowered on the kVp-switching CT scanner. A fast detector also becomes 

unnecessary as the total number of DECT projections only slightly increases compared 

with that of a single-energy CT scan. The manufacturing cost can therefore be substantially 

reduced on such a “slow kVp switching” DECT system.34 On a dual source CT,41 The 

second sparse-view scan used by the proposed algorithm potentially leads to dose reduction 

on DECT imaging. In this paper, it have shown that a second scan with only 20 views (3% 

of a full scan, and thus negligible imaging dose) is sufficient for DECT imaging with a 

satisfactory image quality. In a clinical DECT protocol, it has been reported that, in order 
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to maximize CNR, the optimal dose ratio between the low- and high-energy scans is 

approximately 1:2.87-89 It is therefore roughly estimated that the dose reduction achieved 

by the proposed method is about 30%, compared with the dose of DECT using two full 

scans. A thorough evaluation of dose reduction, however, entails comprehensive studies 

for different image quality metrics, clinical tasks and disease sites, and it is considered 

beyond the scope of this work.  

The parameters in similarity matrix generation are empirically chosen to yield 

results with satisfactory qualities. In the step of bilateral filtering for noise suppression, a 

small size of spatial window (i.e., 𝑋 = 3) is used to ensure that each pixel is locally 

averaged by its neighboring pixels. In the step of similarity calculation step, a large window 

(i.e., 𝑋 = 41) is used such that each pixel has a large number of pixels for similarity 

calculation. An over-large window includes too distant pixels that are less likely to be the 

same material, and also dramatically increases the memory burden. If the found similar 

pixels are less than a threshold value (200 in the presented implementations), the window 

size is adaptively enlarged until the threshold value is met. Otherwise the pixels with few 

similar pixels are less regularized and tend to be reconstructed poorly. In this paper, it is 

found that the results obtained by the proposed algorithm are not sensitive to the above 

parameter values. As such, these parameters are fixed in all presented studies on different 

phantom data. For fair comparisons of SPIR, TVR and PICCS, the regularization weighting 

of different algorithms are manually tuned to have the same data fidelity errors on the 

reconstructed images. Readers may notice that the results of TVR (see Figure 2.1(c), (e), 

(g) and 6(f)) appear over-smoothed. It is because the data fidelity error is too large for 
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TVR, while the same data fidelity error enables the new method to achieve a very high 

image quality with significantly reduced noise. 

The success of SPIR mainly stems from the establishment of an additional data 

constraint shown in Eq. (2.5), where a similarity matrix 𝑊 is used to exploit the redundant 

structural information of the CT images of the same object acquired at two different 

energies. By enforcing the new data constraint during the iterative reconstruction, SPIR 

shows promise on more accurate CT construction than TVR, a popular algorithm of 

iterative CT reconstruction. Studies have shown that TVR could over-smooth CT images 

and generate contouring artifacts because of its tendency to penalize the image gradient 

irrespective of the image structures.72, 78, 90, 91 Instead of reducing signal variations only on 

adjacent pixels as done in TVR, SPIR reduces signal variations for all pixels of the same 

structure, which effectively avoids the image artifacts of a TVR reconstruction. As SPIR 

adopts an optimization framework with regularization, it is also possible to combine SPIR 

with TVR for unified benefits of these two algorithms. 
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CHAPTER 3. PIXEL-WISE ESTIMATION OF NOISE 

STATISTICS ON ITERATIVE CT RECONSTRUCTION FROM A 

SINGLE SCAN 

3.1 Introduction 

Computed tomography (CT) imaging dose becomes an increasing public concern 

nowadays.92 Iterative reconstruction algorithms have shown promise on improving quality 

of CT images reconstructed from projection data with reduced radiation.28 To provide an 

evaluation tool for clinical utility of iterative CT reconstruction, this chapter describes a 

practical method for pixel-wise estimation of noise statistics on iteratively reconstructed 

CT images from a single scan.  

Excessive CT dose can lead to the increased risks of radiation-induced cancer and 

genetic defects.5, 6 CT dose can be lowered by optimizing data acquisition protocols (e.g. 

automatic exposure control),8 improving detector designs,9 using reconstruction from 

reduced projections,93 or applying noise suppression methods with degraded spatial 

resolution.15 After continuous optimization of CT systems for decades, further dose 

reduction from these techniques is expected to be limited or costly. By modeling the 

physical process of a CT scan and incorporating prior knowledge, iterative CT 

reconstruction algorithms are more resistant to noise and therefore require less imaging 

dose for the same image quality, compared with standard analytical CT reconstruction. 

Despite the increasing number of publications on iterative CT reconstruction,22, 28, 29 little 

research has been devoted to studies on noise statistical properties of these algorithms.  
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A statistical analysis of CT image noise usually involves measurements of noise 

standard deviation (STD) and noise power spectrum (NPS). Noise STD quantifies the 

uncertainty level of pixel values, and is related to a wide range of image quality matrices 

such as signal-to-noise ratio. NPS describes the noise correlation among neighboring pixels 

and determines the noise texture of CT images.30  As low-dose imaging protocols using 

iterative algorithms becomes more popular, a practical algorithm of noise STD map and 

NPS calculation on an iteratively reconstructed CT image could be a useful complementary 

tool in clinical practice. For example, an accurately measured noise STD map provides 

radiologists a reference map of reconstruction uncertainty during the diagnosis process. 

The NPS analysis aids radiologists to optimize the parameters of iterative reconstruction 

algorithm for a preferred noise texture. Moreover, the comparison of noise STD and NPS 

for different iterative reconstruction algorithms may help imagers choose the most suitable 

reconstruction method for a specific clinical task. 

Accurate noise STD or NPS measurements require multiple scans on the same 

object without changing scan settings, which is considered impractical in clinical CT 

imaging. To estimate image noise statistics from a single CT scan, a commonly used 

method is to select a uniform region of interest (ROI) on the CT image, and then measure 

noise STD and NPS on the ROI, treating all the image pixels as random samples of the 

same probability distribution. This method inevitably lowers the spatial resolution of a STD 

map since a large size of ROI is needed for accurate noise measurement. Furthermore, it is 

implicitly assumed that all image pixels of the ROI obey the same signal statistics. This 

assumption is inaccurate on a clinical image since the selected ROI does not always have 
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uniform mean values and the noise level and spatial correlation vary across the entire 

image. 

A more elegant approach for estimation of noise statistics on a CT image is to 

directly compute noise STD at each pixel or NPS on a CT image from the raw projection 

data. For example, an analytical algorithm with a filtered-backprojection (FBP) structure 

can be used to reconstruct the noise STD map on a CT image obtained by a standard FBP 

reconstruction method.94 The theories of noise propagation from raw projection data to an 

iteratively reconstructed CT image have been previously developed, and can be divided 

into two main categories: propagation-based methods95-97 and fixed-point based methods98-

100. However, most existing methods are limited to the iterative CT reconstruction 

algorithms with quadratic regularization terms. As numerous non-quadratic regularization 

terms with better reconstruction properties have been proposed to improve iterative CT 

reconstruction,79, 101, 102 it is of great importance to develop a practical method of computing 

the pixel-wise noise statistics for general iterative reconstruction methods.  

This chapter describes a general method for estimating the pixel-wise noise 

statistics of iteratively reconstructed CT images from a single scan. The method is based 

on the noise propagation from the projection data through the reconstruction process, and 

a practical algorithm is then developed to compute the pixel-wise noise statistics (i.e., noise 

STD and NPS). The accuracy of this new method is evaluated on an anthropomorphic 

phantom via comparisons with the ground truth obtained from repeated CT scans. The 

clinical utility of the new approach is demonstrated by implementations on a set of head 

and neck patient CT data. 
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3.2 Method 

3.2.1 Noise propagation in iterative CT reconstruction 

The primary goal is to develop a practical algorithm of calculating noise 

distributions on CT images generated by existing iterative CT reconstruction techniques. 

This chapter studies iterative CT algorithms that can be written in the form of 

regularization-based optimization (shown below as Eq. (3.1)), a well-established 

framework used by different research groups.22, 29, 101 Note that, another group of 

compressed sensing (CS) based algorithms, where data fidelity is used as an optimization 

constraint, can be converted to Eq. (1) as shown in Reference.21.  

 𝝁̂ = argmin 𝑓(𝝁) = argmin
𝝁
[
1

2
(𝑀𝝁 − 𝒃)𝑇𝑃(𝑀𝝁 − 𝒃) +

𝜆𝑅(𝝁)] , 𝑠. 𝑡. : 𝜇(𝑖) ≥ 0. 

(3.1) 

In Eq. (3.1), the reconstruction of the unknown vectorized CT image 𝝁 from the 

measured vectorized projection 𝒃, is formulated as a constrained minimization problem of 

an objective function 𝑓(𝝁) consisting of a data fidelity term and a regularization term. 𝑀 

is the system matrix modeling the forward projection process, 𝑃 is a diagonal matrix whose 

diagonal elements are determined by the estimated noise variance on the projection data,19 

and (∙)𝑇 denotes the transpose operation. (𝑀𝝁 − 𝒃)𝑇𝑃(𝑀𝝁 − 𝒃) calculates the L-2 norm 

of the difference between the estimated and raw projections, i.e. the data fidelity error. 

𝑅(𝝁) is a convex regularization term penalizing the roughness of the estimated image. As 

implemented in the existing literature,22, 29, 79 𝜆 is an empirically selected weighting factor 

which balances the strength of noise suppression and the residual data fidelity error to yield 
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a CT image with a satisfactory quality. Each element of 𝝁, 𝜇(𝑖), is forced to be non-

negative. The non-negativity constraint takes effect only in the area where the true CT 

image has values equal or close to zero, and it is infrequently active in the support of 

scanned object.98, 103 Therefore the non-negativity constraint is omitted in the following 

derivation. 

Without the non-negativity constraint, the minimization of  𝑓(𝝁) is equivalent to 

finding an optimal solution, 𝝁̂, of which the objective function has  a gradient of zero, i.e., 

𝝁̂ should satisfy the following condition: 

 ∇𝑓(𝝁̂) = 𝑀𝑇𝑃(𝑀𝝁̂ − 𝒃) + 𝜆∇𝑅(𝝁̂) = 0. (3.2) 

Eq. (3.2) describes the relationship between the noisy projection data 𝒃 and the iteratively 

reconstructed CT image 𝝁̂, and therefore the noise propagation during the reconstruction 

process. To find the noise of 𝝁̂, the noise-free reconstructed image 𝝁𝟎 is considered, which 

also satisfies Eq. (3.2) 

 𝑀𝑇𝑃(𝑀𝝁𝟎 − 𝒃𝟎) + 𝜆∇𝑅(𝝁𝟎) = 0, (3.3) 

where 𝒃𝟎 is the noise-free projection data.  Denote 𝒏𝝁 and 𝒏𝒃 as the noise on the CT image 

and the projection data, respectively, i.e., 𝝁̂ = 𝝁𝟎+𝒏𝝁 and 𝒃 = 𝒃𝟎 + 𝒏𝒃. One obtains from 

Eqs. (3.2)and (3.3): 

 𝑀𝑇𝑃(𝑀𝒏𝝁 − 𝒏𝒃) + 𝜆(∇𝑅(𝝁̂) − ∇𝑅(𝝁𝟎)) = 0. (3.4) 
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With the assumption of small 𝒏𝝁, the second term of Eq. (3.4) can be simplified using 

Taylor expansion on ∇𝑅 at 𝝁̂, i.e., ∇𝑅(𝝁̂) − ∇𝑅(𝝁𝟎) ≈ ∇
2𝑅(𝝁̂)𝒏𝝁: 

 𝑀𝑇𝑃𝑀𝒏𝝁 −𝑀
𝑇𝑃𝒏𝒃 + 𝜆∇

2𝑅(𝝁̂)𝒏𝝁 ≈ 0 

⇒ 𝒏𝝁 ≈ (𝑀
𝑇𝑃𝑀 + 𝜆∇2𝑅(𝝁̂))

−1
𝑀𝑇𝑃𝒏𝒃. 

(3.5) 

Note that the same derivation of image noise in regularized least square problems has been 

previously discussed by Fessler.98 Based on Eq. (3.5), one can obtain noise properties of 𝝁̂ 

if the noise statistics are known on the projection data. For example, the noise covariance 

matrix of 𝝁̂ can be calculated from the noise covariance matrix of  𝒃, Σ𝑏, as98: 

 Σ𝜇 = 𝐸(𝒏𝝁𝒏𝝁
𝑇) = (𝑀𝑇𝑃𝑀 + 𝜆∇2𝑅(𝝁̂))

−1
𝑀𝑇𝑃Σ𝑏𝑃𝑀(𝑀

𝑇𝑃𝑀 +

𝜆∇2𝑅(𝝁̂))
−1

. 

(3.6) 

3.2.2 Simulation of noise propagation for iterative CT reconstruction 

Unfortunately, neither Eq. (3.5) or (3.6) has practical value in studies of noise 

properties of general iterative CT reconstruction due to their high computational 

complexity. For a non-quadratic regularization term 𝑅, which is commonly used in existing 

iterative reconstruction algorithms,22, 104, 105 the Hessian matrix ∇2𝑅(𝝁) is shift-variant and 

has a huge size of 109~1010 elements for the imaging geometry of current CT scanners. The 

storage of the Hessian matrix consumes at least 250 GB memory. It is almost impossible 

to calculate matrix inversion of these matrices on a standard computer. 



 

 57 

To develop a practical algorithm of computing noise statistics on an iteratively 

reconstructed CT image, the following iterative reconstruction problem is considered: 

 𝝁̃ = argmin 𝑓(𝝁) = argmin
𝝁
[
1

2
(𝑀𝝁 − 𝒃̃)

𝑇
𝑃(𝑀𝝁 − 𝒃̃) +

𝜆𝑅(𝝁)] , 𝑠. 𝑡. : 𝜇(𝑖) ≥ 0. 

(3.7) 

Eq. (3.7) is the same as Eq. (3.1) except that a different set of projections, 𝒃̃, is used, which 

is obtained by adding simulated noise with known statistics, 𝒏̃𝒃, on the measured 

projection, 𝒃, i.e., 𝒃̃ = 𝒃 + 𝒏̃𝒃. The solution to Eq. (3.7), 𝝁̃, is different from that to Eq. 

(3.1), i.e., 𝝁̃ = 𝝁̂ + 𝒏̃𝝁, where 𝒏̃𝝁 denotes the image difference caused by 𝒏̃𝒃. Ignoring the 

non-negativity constraint as in the previous section, one can have the following equation: 

 𝑀𝑇𝑃(𝑀𝝁̃ − 𝒃̃) + 𝜆∇𝑅(𝝁̃) = 0. (3.8) 

One obtains from Eqs. (3.2) and (3.8): 

 𝑀𝑇𝑃(𝑀𝒏̃𝝁 − 𝒏̃𝒃) + 𝜆(∇𝑅(𝝁̃) − ∇𝑅(𝝁̂)) = 0. (3.9) 

If one uses small simulated noise 𝒏̃𝒃, 𝒏̃𝝁 is small on the CT image. The second term of Eq. 

(3.9) is then simplified using Taylor expansion on ∇𝑅 at 𝝁̂, i.e., ∇𝑅(𝝁̃) − ∇𝑅(𝝁̂) ≈

∇2𝑅(𝝁̂)𝒏̃𝝁. The following equation is finally derived from Eq. (3.9): 

 𝒏̃𝝁 ≈ (𝑀
𝑇𝑃𝑀 + 𝜆∇2𝑅(𝝁̂))

−1
𝑀𝑇𝑃𝒏̃𝒃. (3.10) 
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Comparing Eqs. (3.5) and (3.10), one can conclude that the iterative reconstruction 

process using either Eq. (3.1) or Eq. (3.7) has the very similar noise propagation. As such, 

one can simulate random samples of iteratively reconstructed CT images, 𝝁̃, by solving 

Eq. (3.7) using different simulated projection noise, 𝒏̃𝒃, added on the original measured 

projection data 𝒃 of a single scan. Noise statistical analysis on these random samples of 

CT images (𝝁̃)  (i.e., STD and NPS calculations) provides the noise statistical properties of 

the original CT image (𝝁̂) from a single scan, as long as the simulated projection noise (𝒏̃𝒃) 

obeys the same noise statistics as that of the measured projections (𝒏𝒃). 

3.2.3 A practical algorithm of computing noise statistics on an iteratively reconstructed 

CT image 

Based on the previous finding, a practical algorithm is developed to compute the 

noise STD map and the NPS map on an iteratively reconstructed CT image from a single 

scan. 

First, the CT image 𝝁̂ is reconstructed from the measured projection data 𝒃 based 

on Eq. (3.1) using an existing iterative reconstruction algorithm.19, 101 Generated from an 

estimated noise statistical model of projection data, the simulated projection noise, 𝒏̃𝒃
(𝒊)

, 

where the superscript 𝑖 is an simulation index, is then added on the measured projection 

data (𝒃). The iterative CT reconstruction continues to generate a different CT image 𝝁̃(𝒊) =

𝝁̂ + 𝒏̃𝝁
(𝒊)

 from 𝒃̃(𝒊) = 𝒃 + 𝒏̃𝒃
(𝒊)

 based on Eq. (3.7). The above process is repeated on the 

same measured projection added by different simulated projection noise, 𝒏̃𝒃
(𝒊)

, until a 

sufficient number 𝑁 of different reconstruction images (𝝁̃(𝒊) = 𝝁̂ + 𝒏̃𝝁
(𝒊), 𝑖 = 1,2, …𝑁) are 
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generated. Thus, the noise propagated from the simulated projection noise to each of the 

reconstructed images is: 

 𝒏̃𝝁
(𝒊) = 𝝁̃(𝒊) − 𝝁̂. (3.11) 

Note that although 𝒃̃(𝒊) contains both the measured projection noise 𝒏𝒃 and the simulated 

projection noise 𝒏̃𝒃
(𝒊)

, i.e. 𝒃̃(𝒊) = 𝒃𝟎 + 𝒏𝒃 + 𝒏̃𝒃
(𝒊)

,  the fluctuation of 𝒃̃(𝒊) from its mean in 

each set of simulation is the simulated projection noise 𝒏̃𝒃
(𝒊)

, instead of 𝒏𝒃 + 𝒏̃𝒃
(𝒊)

. This is 

because the measured noise 𝒏𝒃 remains unchanged in all the simulations. Thus, in Eq. 

(3.11), the image noise 𝒏̃𝝁
(𝒊)

, i.e. the deviation of 𝝁̃(𝒊) from its mean 𝝁̂, is caused only by 

the fluctuation of 𝒃̃(𝒊), i.e. 𝒏̃𝒃
(𝒊)

. The noise statistics of each pixel in the original CT image 

can be estimated from the statistical analysis of the 𝑁 sets of 𝒏̃𝝁
(𝒊)

. 

The number of noise simulations, 𝑁, is empirically selected to balance the 

computation time and precision. A large 𝑁 leads to a noise STD map with less uncertainty, 

while a small N is desired to save computation. 𝑁 = 32 in the presented implementation, 

which achieves a root-mean-square error (RMSE) of less than 3 HU on the calculated noise 

STD map with a computation time of around 8 minutes. 

3.2.3.1 Simulation of projection noise 

The projection noise added on the measured projection data is simulated by a 

stochastic noise model describing the actual noise statistical distribution of raw projection 

data. Stochastic noise models of X-ray projection have been widely studied.106 Among 

many factors contributing to the noise in data acquisition, the Poisson quantum noise of 
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detected photons plays a dominant role when imaging dose is not low. In this study, the 

noise is simulated on the measured photon numbers solely from the Poisson noise. The raw 

projections before the log operation are first converted from detector unit to photon 

number.22 Noise is then simulated for each detector pixel by a Poisson random generator 

with a mean value of the measured photon number. The log operation is finally performed 

on the noisy projections to generate noisy line integrals, 𝒃̃(𝒊). 

3.2.3.2 Noise STD and NPS calculation 

The image noise obtained by Eq. (3.11) is first converted from a vector form to an 

image form, 𝑛̃𝜇
(𝑖)(𝑥, 𝑦), where (𝑥, 𝑦) is the 2D pixel index. The noise STD map on the 

iteratively reconstructed image (𝝁̂) is calculated as: 

 
𝑆𝑇𝐷(𝑥, 𝑦) = √1

𝑁
∑ (𝑛̃𝜇

(𝑖)(𝑥, 𝑦))
2

𝑁
𝑖=1 . (3.12) 

The NPS map is estimated as the expectation value (𝑬(∙)) of the square modulus of 

the 2D discrete Fourier transformation (DFT) on the noise107: 

 𝑁𝑃𝑆(𝜔𝑥, 𝜔𝑦) = 𝑬 (|𝐷𝐹𝑇 (𝑛̃𝜇(𝑥, 𝑦))| 
2) =

1

𝑁
∑ |𝐷𝐹𝑇 (𝑛̃𝜇

(𝑖)(𝑥, 𝑦))| 2𝑁
𝑖=1 , (3.13) 

where (𝜔𝑥, 𝜔𝑦) is the 2D index in the frequency domain. Since a finite number (𝑁) of sets 

of noise are available, the expectation value is approximated by averaging the 𝑁 sets of 

square modulus of 2D DFT on noise. In all the comparisons, the NPS map is normalized 

by its integrated area inside Nyquist frequency. To characterize the noise texture without 
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the presence of anatomical structures, the NPS map is calcualted in a ROI of uniform 

substance. 

3.3 Evaluation 

The new method is evaluated through studies on an anthropomorphic head phantom 

experiment and a head and neck patient. The phantom study is performed on a tabletop 

cone-beam CT (CBCT) system operated at 120 kVp with a full scan of 655 views. The 

phantom is scanned with a pulse width of 4 ms at 6 different tube current levels, 40 mA, 

35 mA, 30 mA, 25 mA, 20 mA and 8 mA, to investigate the performance of the proposed 

method at different noise levels. The geometry of this system exactly matches that of a 

Varian On-Board Imager (OBI) CBCT system on the Trilogy radiation therapy machine. 

More details of the tabletop CBCT system can be found in Reference.82. The clinical patient 

data are acquired by Varian OBI CBCT system on a Trilogy radiation therapy machine 

operated at 100 kVp with a full scan of 498 views. For both studies, the projection data of 

each view contain 1024×768 pixels with a detector pixel size of 0.388×0.388 mm2. The 

CT image is reconstructed at the central slice of the image volume, which has a dimension 

of 256×256 with a pixel size of 1×1 mm2. The CT images are converted to CT number 

in Hounsfield Unit (HU). 

The accuracy of this new method is evaluated on the anthropomorphic head 

phantom at each tube current levels. The phantom is repeatedly scanned and iteratively 

reconstructed by 48 times without changing the scan setting. The noise of each CT image 

is measured by subtracting the mean of the 48 CT images. The ground truths of the noise 

STD map and the NPS map are first calculated by Eq. (3.12) and Eq. (3.13), except that 
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the estimated noise 𝑛̃𝜇
(𝑖)(𝑥, 𝑦) in Eq. (3.12) and Eq. (3.13) is replaced by the measured noise 

of CT images from the repeated scans. Only one set of the acquired sinograms is processed 

by the new method for the pixel-wise noise statistics estimation. The estimation accuracy 

of the noise STD map is quantified by the RMSE, i.e. the root-mean-square value of the 

difference between the estimated and the ground-truth noise STD maps. 

In the study of NPS map estimation, the result of the new method is compared with 

that of the conventional method, which is described as: 108, 109 

 𝑁𝑃𝑆(𝜔𝑥, 𝜔𝑦) = |𝐷𝐹𝑇(𝜇̂𝑅𝑂𝐼(𝑥, 𝑦) − 𝜇̂𝑝(𝑥, 𝑦))|
2
. (3.14) 

In Eq. (3.14), 𝜇̂𝑅𝑂𝐼 denotes a uniform ROI, and 𝜇̂𝑝is an estimated non-uniformity of 𝜇̂𝑅𝑂𝐼 

obtained by a low-order 2D polynomial fitting on 𝜇̂𝑅𝑂𝐼.
109 The conventional method 

requires that the ROI is uniform such that the image in the ROI offset by its mean value is 

assumed to be the image noise of that ROI. However, such a uniformity requirement may 

not be satisfied due to the presence of the structured noise caused by artifacts.110 Thus, the 

polynomial fitting is applied on the ROI to correct for the non-uniformity. Note that, when 

the order of the fitting polynomial is zero, 𝜇̂𝑝(𝑥, 𝑦) reduces to the mean pixel value of the 

ROI. In this study, a third-order polynomial fitting is used to correct for the non-uniformity. 

For both the new method and the conventional method, the ROI for the NPS map 

estimation is an area of 64×64 pixels, and the estimated NPS maps are interpolated to be 

256×256 pixels. The accuracy of the NPS map estimation is quantified by the RMSE of 

the estimated NPS map compared with the ground truth. 
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To demonstrate the clinical utility, the proposed method is then implemented on a 

set of head and neck patient CT data. This work focus on comparing the noise statistics 

estimation results on the CT images reconstructed from the same dataset but by different 

iterative reconstruction algorithms. 

Two iterative reconstruction methods are implemented as examples to evaluate the 

new method: the penalized weighted least-square (PWLS) algorithm19 and the total 

variation (TV) regularization101. Both the PWLS method and the TV method have the same 

framework of regularization-based optimization as shown in Eq. (3.1). The regularization 

term (𝑅(𝝁) in Eq. (3.1)) of PWLS is 

 𝑅(𝝁) =
1

2
∑ ∑ 𝑎𝑗𝑚(𝜇𝑗 − 𝜇𝑚)

2
𝑚∈𝑁𝑗𝑗 , (3.15) 

where index 𝑗 runs over all image pixels, and 𝑁𝑗 represents the set of eight neighbors of the 

𝑗-th image pixel in two dimensions. The weight 𝑎𝑗𝑚 is equal to 1 for the vertical and 

horizontal neighbors and 1/√2 for the diagonal neighbors. The regularization term of TV 

is 𝑅(𝝁) = ‖𝝁‖𝑇𝑉, where ‖∙‖𝑇𝑉 is the TV term defined as the L1 norm of the spatial 

gradient image.22 In Eq. (3.1), the difference between the measured projection and the 

forwarded projection of reconstructed image is weighted by 𝑊 in order to achieve noise 

uniformity across the image. 𝑊 is a diagonal matrix with the i-th element of the reciprocal 

of the estimated noise variance on the projection data at the i-th detector bin. In the head 

phantom study, to demonstrate the performance of the proposed method on estimating both 

heterogeneous and homogeneous noise STD maps, both uniform and variant weights 𝑊 

are used in investigations. The gradient projection method described in Reference22 is used 
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as the iterative update scheme for both methods. In all comparisons, the weighting factors 

of the regularization terms in PWLS and TV are tuned to achieve the same data fidelity 

value on the reconstructed images obtained by the two algorithms. 

The iterative CT reconstruction methods as well as the new algorithm of noise STD 

and NPS calculation are implemented in Matlab on a 1.8 GHz computer with 16GB internal 

memory and a NVIDIA® Quadro K4000 GPU. For each case, it takes about 15 seconds to 

obtain an iteratively reconstructed CT image, and 8 minutes to generate noise STD and 

NPS maps. 

3.4 Results 

3.4.1 Head phantom study 

The accuracy of the new method is evaluated on the anthropomorphic head 

phantom. Figure 3.1 shows the iteratively reconstructed CT images of the head phantom, 

the noise STD maps of the ground truths and the estimated results by the new method. Note 

that the results at flux levels of 8 mA and 40 mA are taken as examples and shown in Figure 

3.1 since it is found that the results ranging from 20 mA to 40 mA are quite similar. It is 

seen that the estimated noise STD maps of images reconstructed by PWLS and TV (column 

(2)) at both flux levels (8 mA and 40 mA) match their corresponding ground truths (column 

(3)) very well. The difference between the estimation and the ground truth is shown in the 

fourth column with a narrow display window. Table 3-I shows the RMSEs of the estimated 

noise STD maps compared with the ground truths at all flux levels. The accuracies of 

estimated noise STD maps are similar at different flux levels ranging from 20 mA to 40 

mA, and it slightly degrades at 8 mA. Overall, the proposed algorithm performs well in all 
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different scenarios, with a RMSE less than 5 HU. The new method clearly reveals the 

difference between the noise STD maps of CT images of PWLS and TV. On the PWLS 

results, the noise STDs (Figure 3.1 (a3), (b3), (e3) and (f3)) are uniform in the support of 

scanned object, while for TV, the noise STDs (Figure 3.1 (c3), (d3), (g3), (h3)) of pixels 

around sharp transitions are significantly higher than those in the uniform area. The above 

finding is consistent with the existing literature.111, 112  

Figure 3.2 shows the NPS maps of the ground truth and the estimated results by the 

conventional method and the new method at flux levels of 8 mA and 40 mA. On both 

PWLS and TV reconstructions, the estimations (column (2)) match with the ground truths 

(column (1)) overall, while the results of the conventional method (column (3)) appear 

noisy and inaccurate. The accuracies of the estimated NPS map at all flux levels are 

summarized in Table 3-I. Compared with the conventional method, the new method 

achieves 92% less RMSE on average. The new method also reveals the difference between 

the NPS maps on CT images reconstructed by PWLS (Figure 3.2 (a2), (b2), (e2) and (f2)) 

and TV (Figure 3.2 (c2), (d2), (g2) and (h2)). The image reconstructed by TV contains 

more low-frequency noise than that by PWLS. 
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Figure 3.1 CT images and noise STD maps of the anthropomorphic head phantom 

using (a) PWLS with uniform W (i.e., W in Eq. (1)) at 40 mA, (b) PWLS with variant 

W at 40 mA, (c) TV with uniform W at 40 mA, (d) TV with variant W at 40 mA, (e) 

PWLS with uniform W at 8 mA, (f) PWLS with variant W at 8 mA, (g) TV with 

uniform W at 8 mA, (h) TV with variant W at 8 mA. Columns: (1) the reconstructed 

CT images using iterative methods; (2) the ground truth of noise STD maps; (3) the 

estimated noise STD maps; (4) the smoothed difference maps between the estimated 

and ground truth of noise STD maps. The dash square in (a1) indicates the ROI where 

the NPS maps shown in Figure 3.2 are calculated. Display windows: [-500 500] HU 

for column (1), [0 20] HU for column (2) and (3) from (a) to (d), [0 40] HU for column 

(2) and (3) from (e) to (h), and [-5 5] HU for column (4). 
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Figure 3.2 NPS maps of the CT images of the anthropomorphic head phantom using 

(a) PWLS with uniform W (i.e., W in Eq. (1)) at 40 mA, (b) PWLS with variant W at 

40 mA, (c) TV with uniform W at 40 mA, (d) TV with variant W at 40 mA, (e) PWLS 

with uniform W at 8 mA, (f) PWLS with variant W at 8 mA, (g) TV with uniform W 

at 8 mA, (h) TV with variant W at 8 mA. Columns (1), (2) and (3) show the NPS maps 

of the ground truth, estimated by the proposed method and estimated by the 

conventional method, respectively. The ROI where the NPS maps are calculated is 

indicated as the dash square in Figure 3.1(a1). Display window: [0 1]×10-4 for (a), 

(b), (e) and (f), and [0 5] ×10-4 for (c), (d), (g) and (h). 
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Table 3-I RMSE of the estimated noise STD maps and NPS maps. 

 

Noise STD maps 

by proposed 

method (HU) 
NPS maps (×10-6) 

Weight 

W 

Flux 

level 
PWLS TV 

Proposed method Conventional method 

PWLS TV PWLS TV 

Uniform 

40 1.51 1.85 5.47 17.90 46.09 217.92 

35 1.88 2.38 5.83 19.65 41.93 200.87 

30 1.54 1.97 6.11 18.54 51.12 203.42 

25 1.84 2.26 5.58 19.07 48.23 202.21 

20 1.80 2.51 5.94 22.34 67.61 173.82 

8 2.62 3.31 5.81 20.82 80.06 183.35 

Variant 

40 2.98 2.83 4.88 20.43 51.88 180.48 

35 3.22 3.26 5.29 22.49 45.57 160.19 

30 2.69 2.96 6.19 31.92 40.89 186.96 

25 2.91 3.20 5.77 22.61 56.67 198.14 

20 3.27 3.36 4.92 28.66 52.70 176.50 

8 4.53 4.55 5.09 20.15 58.49 175.56 

 

3.4.2 Head and neck patient study 

The clinical utility of the new method is then demonstrated by the implementation 

on a head and neck patient. The noise STD maps and the NPS maps estimated by the new 

method along with the reconstructed images of PWLS and TV are shown in Figure 3.3. 

The new method provides a detailed evaluation of imaging performances of different 
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iterative reconstruction algorithms on the same CT dataset. For example, the comparison 

between the noise STD maps (Figure 3.3(a2) and 4(b2)) indicates that although the CT 

images reconstructed by PWLS and TV appear similar, the reconstruction uncertainty (i.e., 

the noise STD) significantly varies across the image. The reconstruction uncertainty of 

PWLS is more uniform, while the TV method tends to have large noise around sharp edges. 

The above difference is also clearly seen in the 1D profile comparison of the noise STD 

shown in Figure 3.4. The comparison on the NPS maps (Figure 3.3(a3) and 4(b3)) 

demonstrates that the noise texture of the image reconstructed by TV is coarser (i.e., 

predominantly low-frequency) than that by PWLS in this clinical case.113, 114 

 

Figure 3.3 CT images, noise STD maps and NPS maps. Column (1) shows the 

reconstructed CT images using iterative methods. Columns (2) and (3) are the noise 

STD maps and NPS maps estimated by the new method, respectively. The iterative 

methods used in rows (a) and (b) are PWLS and TV, respectively. The dash square in 

(a1) indicates the ROI where the NPS map is calculated. The dashed lines in (a2) and 

(b2) indicate where the noise STD profiles shown in Figure 3.4 are plotted. Display 

window: [-500 500] HU for (a1) and (b1), [0 80] HU for (a2) and (b2), [0 1]×10-4 for 

(a3) and [0 4]×10-4 for (b3) . 
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Figure 3.4 Noise STD profiles of the CT images reconstructed by PWLS and TV. The 

dashed lines in Figure 3.3 (a2) and (b2) are where the profiles are plotted. 

3.5 Conclusions and discussion 

In this study, a practical method is developed for pixel-wise estimation of noise 

statistics for an iteratively reconstructed CT image from a single scan, which enables an 

accurate calculation of noise STD and NPS maps. On an anthropomorphic head phantom, 

it is demonstrated that the new method accurately estimates the noise STD map with an 

RMSE of less than 5HU, and substantially improves over the conventional NPS estimation 

method by decreasing the RMSE of NPS maps by 92%. The implementation of the new 

method on clinical data successfully provides the noise STD values around complex 

structures and a high-quality NPS map. Moreover, the new algorithm provides a detailed 

evaluation of noise properties of different iterative reconstruction methods on the same CT 

dataset. 

In the new method, additional noise is simulated on the measured noisy data from 

a single scan. Although noise realizations are commonly used in simulation to study image 
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statistics, the new method is distinct. Most of the existing studies start from a noiseless 

ground truth, which is unavailable for a clinical dataset, and simulate additional noise on 

projection data to investigate the resultant CT image noise. In this study, via mathematical 

derivations, it shows that simulation of additional noise on one single set of noisy data 

leads to the same noise propagation in the iterative CT reconstruction process and therefore 

one can accurately estimate noise of a CT image using multiple noise realizations. The 

novelty of this work lies in that multiple CT scans are successfully replaced by multiple 

noise realizations toward the purpose of CT noise estimation, which makes this algorithm 

practically useful on clinical data. 

The success of this new method in estimating the noise STD and NPS maps stems 

from the accurate noise propagation model. In this method, pixel-wise noise statistics are 

estimated from multiple sets of image noise, each of which contains exclusively the 

stochastic fluctuation at each pixel caused by the simulated projection noise through the 

reconstruction process. Whereas in the conventional method, the noise estimated in ROI 

may still contain residual structured noise that cannot be completely corrected by the 

polynomial fitting and therefore downgrades the accuracy of noise STD or NPS estimation. 

The non-negativity constraint in Eq. (3.1) is ignored in the new method to simplify 

the algorithm derivation. As the non-negativity constraint takes effect only in the image 

area with CT values close to air (according to the KKT condition in the optimization 

theory), ignoring the non-negativity constraint would affect the accuracy of noise 

estimation only outside the patient body or in air cavities (e.g., lungs or gas pockets), which 

has limited impact on the clinical use of the new algorithm. 
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The 𝑁 samples of CT image noise 𝒏̃𝝁
(𝒊)

 obtained by the new algorithm allows 

calculations of different noise properties, not limited to the noise STD and NPS maps as 

shown in this paper.  For example, it is possible to estimate the noise autocorrelation 

𝑅(𝑥1, 𝑦1; 𝑥2, 𝑦2) = ∑ 𝑛̃𝜇
(𝑖)(𝑥1, 𝑦1)𝑛̃𝜇

(𝑖)(𝑥2, 𝑦2)
𝑁
𝑖=1  between any two pixels at (𝑥1, 𝑦1) and 

(𝑥2, 𝑦2) on an iteratively reconstructed CT images with a higher accuracy than the 

conventional method.  The current estimation of noise autocorrelation  on a single CT 

image can be applied on only uniform ROIs,115 while the new method calculates the noise 

autocorrelation between any two pixels. 

The clinical utility of this new method are shown on data of a head and neck patient, 

using PWLS and TV as examples of iterative reconstruction algorithms. This algorithm is 

generic as long as the iterative reconstruction has a form of Eq. (3.1). Using similar 

derivations of noise perturbation, one can extend the algorithm to other iterative CT 

reconstruction that is formulated as a convex optimization problem. The obtained noise 

properties are useful in the evaluations of iterative reconstruction algorithms toward 

different clinical tasks. For example, the comparison between the noise STD and NPS maps 

of the images reconstructed by TV and PWLS (Figure 3.3(a2) and (b2), Figure 3.4) shows 

that the two algorithms have different imaging advantages across the field in the presented 

head and neck patient case. The TV reconstruction achieves lower uncertainties in the 

uniform area than the PWLS reconstruction. However, the NPS comparison indicates 

significant high-frequency loss on the image reconstructed by the TV algorithm. 

  



 

 73 

CHAPTER 4. SUMMARY AND FUTURE DIRECTIONS 

In this dissertation, novel methods have been developed for image reconstruction 

and noise estimation in CT imaging. A new iterative reconstruction method, SPIR, for 

DECT is introduced in Chapter 2. This method enables a new data acquisition scheme 

which requires one full scan and a second sparse-view scan for potential reduction in 

imaging dose and engineering cost of DECT. The redundant structural information from 

the full scan is extracted and used to aid the reconstruction of the sparse view scan. The 

performance of the proposed method is evaluated on both digital and physical phantoms.  

In Chapter 3, a practical method for pixel-wise calculation of noise statistics on an 

iteratively reconstructed CT image is introduced to enable accurate evaluation of noise 

standard deviation (STD) for each pixel and noise power spectrum. It shows that the model 

of noise propagation of iterative reconstruction remains approximately unchanged for extra 

simulated noise added to the measured projections. Thus, the noise performance of 

iteratively reconstructed image can be evaluated by the noise analysis on multiple images 

iteratively reconstructed from same measured dataset with different noise simulated from 

an estimated projection noise model. The method is evaluated on an anthropomorphic head 

phantom, and demonstrate its clinical utility on a set of head and neck patient CT data. 

The new SPIR algorithm described in Chapter 2 can be further assessed and 

improved. For example, the method of generating similarity matrix 𝑊 described in this 

dissertation is not the only solution of structure classification for SPIR. It is suggested that 

more sophisticated image segmentation methods for improved calculation of the similarity 

matrix. 
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In the result part of Chapter 3, it is found that the accuracies of the estimated noise 

STD maps are similar at flux levels ranging from 20 mA to 40 mA, but show slightly larger 

errors at the lowest flux level (8 mA) in Table 3-I. A major source of the error could be 

that the noise on the measured photon numbers is simulated solely from the Poisson noise 

and neglect the electronic noise which may play an important role at low flux.116 The 

method performance can be further improved by incorporating a more sophisticated noise 

model which considers other factors contributing to the noise in the CT data acquisition. 
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