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SUMMARY 

A method is presented that allows the use of multiresolution principles in a time 

domain electromagnetic modeling technique that is applicable to general structures.  

Specifically, methods are presented that are compatible with the multiresolution time-

domain (MRTD) technique using Haar basis functions that allow the modeling of general 

structures without limiting the cell size to the features of the modeled structure.  Existing 

Haar techniques require that cells be homogenous in regard to PECs and other localized 

effects (with the exception that εr can vary throughout the cell).  The techniques that are 

presented here allow the modeling of these structures using a subcell technique that 

permits the modeling of these effects at individual equivalent grid points.  This is 

accomplished by transforming the application of the effects at individual points in the 

grid into the wavelet domain. 

There are several other contributions that are provided in this work.  First, the 

MRTD technique is derived for a general wavelet basis using a relatively compact vector 

notation that both makes the technique easier to understand and allows the differences 

and similarities between different MRTD schemes more apparent.  Second, techniques 

such as the uniaxial perfectly matched layer (UPML) for arbitrary wavelet resolution and 

non-uniform gridding are presented for the first time.  Using these techniques, any 

structure that can be simulated in Yee-FDTD can be modeled with Haar-MRTD.  For the 

first time, results for the use of a time-and-space-adaptive grid in an MRTD simulation 

are presented. 
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CHAPTER 1 
 

INTRODUCTION 

The field of RF and microwave design is growing at an astonishing rate due the 

confluence of several factors.  Chief among these factors are the increased demand for 

RF and microwave consumer devices (cellular telephony and wireless data systems) and 

the increasing speed of digital devices that has led to design limitations that previously 

only applied to traditional RF (radar and communications) circuits.  There are also 

several quickly growing commercial RF applications such as automotive radar and RFID.  

As RF devices become more predominant in the consumer market, the design time for 

each generation decreases while performance demands increase.  Design turnaround and 

performance gains traditional to the semiconductor device market are being expected of 

RF circuits.  This in turn leads to increased demands on the RF designer and all 

associated tools, such as EM simulators. 

Modern RF devices are built on a variety of technologies for a wide array of 

functionality.  In the attempt to reduce size and cost, multilayer substrates are 

commonplace.  The constraints of each substrate are different, and the devices that can be 

fabricated with them often have no, or highly inaccurate, theoretical or empirical models.  

Design is usually performed using a top-down methodology, where the system is 

designed at the conceptual level, and then details of the actual system are added as the 

design progresses.  At the bottom of this design process, the actual physical layouts that 

represent the design blocks must be created.  The characterization of these devices 

usually requires a full-wave electromagnetic simulator. 

Full wave simulators are often required to characterize effects that cannot be 

predicted, or properly accounted for, at higher levels of the design process.  Examples of 

these effects are parasitic coupling, substrate modes, radiation, and package interference.  
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These effects are often unique to the exact layout of a device and are too complicated to 

be treated theoretically.  Any simulator that models the complete physics of 

electromagnetic interaction can be used to model these devices, however, time domain 

techniques are popular and particularly well suited to these devices. 

Time-domain techniques, as the name implies, determine the electromagnetic fields 

in a structure in response to an incident condition.  They are contrasted to frequency-

domain methods, which determine the response to a harmonic source.  There are several 

advantages to each class of methods, and the requirements of a particular problem 

determine which is best.  The characteristic that is most often cited in recommending 

time-domain methods for the simulation of microwave devices is that a broadband 

response can be determined from a single simulation.  In addition, time domain 

simulators are usually derived using a differential form of Maxwell’s equations, relating 

fields at points and allowing easy discretization of complex structures; they do not 

require the calculation of Green’s functions.  In addition nonlinear effects can be 

simulated easily, as the field strength is measured as a function of time and these effects 

can be directly applied.  The two main drawbacks of time-domain techniques are 

representing dispersive media and speed.  The speed of these techniques, while 

comparable to other full wave techniques, is not nearly fast enough for modern 

microwave design. 

The most mature and widely used time-domain simulation technique is finite-

difference time-domain (FDTD) [1].  The Yee-FDTD scheme is one of the oldest, and 

one of the simplest, time domain EM simulation techniques.  It has remained popular due 

to this simplicity; not only is it relatively easy to apply, but it is also highly flexible.  Due 

to its flexibility, the method has been applied to practically every type of electromagnetic 

analysis, from radar-cross-section investigation to optical characterization.  A number of 

compatible techniques have been developed to model specific effects in the method.  
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When developing other methods, the Yee-FDTD scheme is often used as a benchmark; 

most other techniques are designed to be faster. 

While a number of techniques have been developed that are at least as fast as 

FDTD for the same accuracy, a technique that will permit modeling at the same level of 

accuracy and flexibility as FDTD while offering severe (several orders of magnitude in 

execution time and memory efficiency) performance improvement is not likely to be 

developed.  One promising method of decreasing design time is to identify parts of the 

circuit which require full-wave simulation, and characterizing the remainder of the circuit 

with less computationally intensive techniques.  However, as integration increases, the 

areas of the circuit that require full-wave simulation will increase.  Thus, it is necessary 

to use the most efficient full-wave technique possible.  One technique that has been 

suggested is multiresolution time-domain (MRTD) [2]. 

MRTD uses a wavelet based discretization to represent the EM fields.  The 

wavelets allow the resolution of the simulation to be changed as a function of both time 

and space.  If the resolution is changed to respond to a propagating waveform, the 

number of operations that must be performed to characterize a structure can be 

minimized.  While these advantages are suggested by the MRTD method, many of the 

details of their application have never been shown. 

While several papers have been written documenting the MRTD algorithm, most 

details have never been published.  First, a general discretization of the perfectly-matched 

layer (PML) has never been presented.  Existing publications show the PML for a single 

level of wavelet resolution.  Other papers have argued that the PML cannot be efficiently 

represented in MRTD.  A general framework for understanding and implementing 

MRTD is presented here which allows the efficient modeling of the PML for any level of 

wavelet resolution. 

Another required element for any realistic simulation is non-uniform gridding.  

This method allows the size of the cells to vary as a function of position.  To accurately 
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represent most structures in any method, non-uniform gridding is required; a single cell 

size that can represent all features of a structure is wasteful, and often not possible.  The 

application of non-uniform gridding in MRTD requires a relatively straightforward but 

non-trivial change to currently published MRTD algorithms.  The variable gridding 

algorithm is presented here. 

One of the largest difficulties in applying the MRTD method is representing 

electrically small structures in the MRTD grid.  Because of its multiresolution nature, the 

domain of each basis function is large when compared other methods.  Each discrete 

electric/magnetic field point is represented as a sum of several coefficients.  Thus, the 

fields at one point cannot be modified without modifying the fields at surrounding points.  

Existing methods for modeling discontinuities with these basis functions require the use 

of image theory to decouple the fields across the boundary.  These methods can be 

difficult and time-consuming to apply.  For this research a less complex but 

mathematically rigorous method was developed to allow the modeling of intracell 

structures in the Haar-MRTD method.  This method allows the modeling of any structure 

that can be represented in the Yee-FDTD technique, while keeping the advantages of 

multiresolution analysis.  In addition, it offers a bridge between a pointwise field 

representation, such as that in FDTD, to the wavelet based field representation of MRTD.  

Using this technique, point based techniques that have been developed for FDTD can be 

applied to MRTD.  This is demonstrated for discrete lumped elements. 

The chief contribution of this thesis is the intracell Haar-MRTD modeling method, 

which is termed composite-cell MRTD.  To accurately demonstrate and test this 

technique, a general 3D MRTD code was developed.  The other MRTD features, 

mentioned above, were developed as a consequence of creating this code.  In addition, to 

fully evaluate the usefulness of this code, an adaptive resolution algorithm was developed 

and applied to the code. 
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The next chapter presents the background necessary to understand the techniques 

presented in this paper and their comparison to existing methods.  As such, a full 

derivation of the general MRTD technique is presented, as well as a brief overview of the 

FDTD technique.  The remainder of this document is dedicated to the presentation of the 

Haar-MRTD algorithm that was developed for this investigation.  This includes the 

arbitrary resolution PML, variable gridding, and composite cell techniques.  A discussion 

is also presented regarding the application of these techniques to other basis functions.  

This paper concludes with several examples of the application of the MRTD technique. 

It is shown in this document that the MRTD technique can be applied to any 

structure and that its time-and-space-adaptive grid can be used to greatly reduce 

execution time.  A framework is presented that allows the reader to construct an efficient 

and quick MRTD simulator, and several original techniques are presented. 
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CHAPTER 2 
 

BACKGROUND 

This thesis presents techniques that can be used to model complex microwave 

structures in MRTD.  In order to properly present the MRTD techniques that were 

developed as a part of this investigation, a background of the MRTD method, from its 

genesis to current research, is presented.  In addition, as the MRTD technique is 

presented as an adaptive alternative to FDTD, and several MRTD examples will be 

contrasted to FDTD, an brief overview of the FDTD method is presented.  This chapter 

begins with a discussion of MRTD basics, including wavelet basis functions and the 

method of moments, followed by a discussion of two specific areas, PML and PEC 

modeling, that were a particular focus of this effort.  After these topics are addressed, an 

overview of FDTD, focusing on its similarities and differences with MRTD, is presented. 

 

2.1 MRTD BASICS 

 

2.1.1 WAVELET OVERVIEW 

 

The MRTD technique was first presented by Krumpholz and Katehi in 1996 [2].  

At the time, multiresolution analysis, the application of wavelet bases to numerical 

problems, was becoming popular in a number of fields as a way of increasing both the 

efficiency and accuracy of numerical methods.  These techniques remain popular today.  

Their original MRTD paper provides a general discretization technique that can be used 

with any wavelet basis, however, the paper focused on the Battle-Lemarie wavelet 
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scheme.  Several other wavelet schemes have since been applied in the same manner, 

including Haar [3], Daubechies [4], and Cohen-Daubechies-Feauveau (CDF) [5]. 

While the above mentioned wavelet schemes are all very different, they share a 

number of characteristics that suit them towards numerical modeling.  All wavelet 

schemes used in for MRTD are orthonormal, and are characterized by a scaling function 

and a mother wavelet.  The mother wavelet is generated using the scaling function and is 

in turn used to generate all other wavelets that constitute the basis.  The orthogonality that 

exists between the wavelets and scaling function, as well as all wavelets with other 

wavelets, make them natural choices for numerical discretization. 

The key concept regarding wavelet expansions is that of levels of wavelet 

resolution.  These levels correspond to sets of functions that can be added to the 

expansion to increase the accuracy of the wavelet discretization.  In the following 

expressions, the scaling functions will be represented as ( )xiϕ  [6], where  

 ⎟
⎠
⎞

⎜
⎝
⎛ −

∆
= i

x
xxi ϕϕ )( , (1) 

and ( )xϕ  represents the general scaling function.  Likewise, the wavelets are offset 

throughout the grid, but are characterized with three indices.  A typical wavelet 

coefficient is represented as, 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ −

∆
= pi

x
xx rrr

pi
2/

0
2/

, 22)( ψψ . (2) 

In this function, r represents the wavelet resolution and p can take any integer value 

between 0 and 2r-1.  Using these coefficients, each level of resolution, r, contains 2r 

wavelets, offset by rx 2∆ . 

For all wavelet schemes used in multiresolution analysis, the following hold [6]: 

 ( ) ( ) jiji xx ,δϕϕ =∫  (3) 
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 ( ) 0)(, =∫ xx r
pji ψϕ   prji ,,,∀  (4) 

 qpsrji
s

qj
r

pi xx ,,,,, )()( δδδψψ =∫ , (5) 

where δi,j is the Kronecker delta function, 

 
⎩
⎨
⎧

≠
=

=
ji   0
ji   1

, jiδ . (6) 

If the closed subspace represented by all wavelets of resolution r and higher is 

termed Vr, the following properties are required, 

 ...... 3210123 VVVVVVV ⊂⊂⊂⊂⊂⊂ −−−  (7) 

 ( )RLV
Zi

i
2=

∈
U  (8) 

 0=
∈
I

Zi
iV , (9) 

where Z is the set of all integers and L2(R) is the set of all doubly differentiable functions. 

The consequence of these properties is that each addition of a level of wavelet 

resolution increases the accuracy of the representation, and arbitrary accuracy can be 

achieved by using the appropriate wavelet resolution.  This is in contrast to methods of 

improving accuracy in other basis functions, where increased accuracy is achieved by 

contracting the domain and increasing the number of basis functions.  There are several 

basis functions that can be used to meet these requirements. 

The oldest and simplest of these is the Haar basis functions.  When these wavelets 

are used in MRTD, a scheme equivalent to FDTD can result [7].  However, when used 

correctly, a time and space adaptive scheme that is more numerically efficient than FDTD 

results.  As mentioned above, a number of other wavelet schemes have been used with 

the MRTD technique. 
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An overview of the Haar wavelets is presented here.  They are simple enough that 

they can be used to explain wavelet concepts relatively easily in one and two dimensions, 

while adequately demonstrating wavelet properties (three dimensional wavelets will be 

discussed, but are difficult to present in a two dimensional format).  The code developed 

for this work uses Haar wavelets exclusively; they are preferred for a number of reasons 

that will be discussed.  In addition, the composite cell technique presented in the next 

chapter is practical only for Haar wavelets. 

The Haar scaling function, ϕ, and mother wavelet, ψ, are presented in Figure 1.  

The Haar scaling function is defined as χ[0,1), the characteristic function from zero to one.  

The mother wavelet is based on this function.  It is defined as  

 ( ) ( ) ( )( )2
1

0 22 −−= xxx ϕϕψ , (10) 

 

 

Figure 1:  Haar scaling function (top) and mother wavelet (bottom) 
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Figure 2: Haar wavelets for resolution 1 and 2 

 

Higher level wavelets can be generated using (2).  These wavelets for resolutions 1 and 2 

are presented in Figure 2. 

As stated previously, and demonstrated in Figure 2, there are 2r wavelets for each 

level of resolution.  Thus, there are 2 wavelets at r=1 and 4 at r=2.  These functions 

represent scaled and translated mother wavelets.  The scaling factor, 2r/2, presented in (2) 

is required to orthonormalize the functions, which guarantees (5).  The domain of all of 

the wavelet functions for any level of resolution is identical to that of the mother wavelet 

and scaling function.  A scheme that uses wavelets up to and including a resolution level 

r will use 2r+1 functions (including the scaling function). 

There are several advantages to using Haar wavelets to model electromagnetic 

phenomena.  The first is their finite domain nature.  When Haar wavelets are used to 

expand an electric or magnetic field, the scaling functions and wavelets from one cell to 

the next do not overlap.  This allows hard boundary conditions (setting discrete areas to a 

fixed value) to be easily applied.  For example, a perfect-electrical-conductor (PEC) 
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boundary condition can be applied by zeroing tangential electric fields.  If the basis 

functions were to overlap, this condition could not be applied.  The second advantage of 

using Haar wavelets is the relative ease of performing derivatives and integrals.  Due to 

their pulse nature, these operations become simple arithmetic.  It will be seen that this 

eases the generation of the MRTD scheme.  The major disadvantage of Haar wavelets is 

in the numerical dispersion of the resultant MRTD scheme.  Compared to most other 

wavelet schemes, denser grids, and thus more coefficients, are required for Haar-MRTD 

schemes. 

The MRTD scheme is generated by first representing the electric and magnetic 

fields in terms of wavelets and then applying the method of moments to Maxwell’s curl 

equations, (11) and (12), and the constitutive equations, (15) and (16).  The differential 

form of Maxwell’s equations in the time domain can be expressed as, 

 ( ) ( ) ( )t
t
tt MBE −

∂
∂

−=×∇  (11) 

 ( ) ( ) ( )t
t
tt JDH +

∂
∂

=×∇  (12) 

 ( ) ( )tt eρ=⋅∇ D  (13) 

 ( ) ( )tt mρ=⋅∇ B  (14) 

where E is the electric field (V/m), H is the magnetic field (A/m), D is the electric flux 

density (C/m2), B is the magnetic flux density (Wb/m2), ρ is charge density (C/m3), M is 

the magnetic current density (V/m2), and J is the electric current density (A/m2).  These 

equations relate the electric and magnetic fields at points in space.  This analysis is 

limited to isotropic, non-dispersive media, which have the constitutive equations, 

 ( ) ( ) ( )rErrD ε=  (15) 

 ( ) ( ) ( )rHrrB µ=  (16) 
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where r is the position vector. 

For a general material interface, the boundary conditions are 

 ( ) sρ=−⋅ 12ˆ DDn  (17) 

 ( ) 0ˆ 12 =−⋅ BBn  (18) 

 ( ) 0ˆ 12 =−× EEn  (19) 

 ( ) sJHHn =−× 12ˆ  (20) 

where ρs, and Js are the charge and electric current densities on the interface and n̂  is the 

normal unit vector to the interface. 

Faraday’s and Ampere’s laws, (11) and (12) respectively, are vector equations and 

are expressed in Cartesian coordinates as, 

 x
zyx M

y
E

z
E

t
B

−
∂

∂
−

∂
∂

=
∂

∂  (21) 

 y
xzy M

z
E

x
E

t
B

−
∂

∂
−

∂
∂

=
∂

∂
 (22) 
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y
E
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B

−
∂
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−
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∂

=
∂
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yzx J

z
H

y
H

t
D

−
∂

∂
−

∂
∂

=
∂

∂  (24) 

 y
zxy J

x
H

z
H

t
D

−
∂

∂
−

∂
∂

=
∂

∂
 (25) 

 z
xyz J

y
H

x
H

t
D

−
∂

∂
−

∂

∂
=

∂
∂  (26) 

To generate the MRTD scheme, each E and H field in Faraday’s and Ampere’s laws must 

be expanded in terms of scaling and wavelet functions.  A one dimensional field, for 
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example Ex in a 1D scheme, is expressed in scaling and wavelet functions up to 

resolution rmax as, 

 ⎥
⎦
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⎢
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tnx

r

xExEhxE ψϕ ψφ , (27) 

where, φ,x
in E  and ψ,

,,
x

prin E  are coefficients representing the magnitudes of the scaling and 

wavelet functions.  This function is the discretization in both time and space.  The time 

discretization is performed with simple pulse functions, equivalent to the Haar scaling 

functions presented in Figure 1.  The pulse functions are used in time to ensure causality.  

If the functions representing each time step overlapped, it would be possible for past 

events to be modified by future ones.  The spatial index, i, indicates the position in cells 

along the x axis.  The cells are defined by the domain of each scaling function, ∆x.  It is, 

technically, possible to use one scaling function the size of the entire domain.  

Practically, however, this is difficult to implement, and it removes some of the ability to 

locally increase resolution.  In practice, several cells per the maximum excited 

wavelength are used.  The criteria for choosing the cell size are discussed later, as a part 

of numerical dispersion. 

In order to expand the fields in multiple dimensions, the products of all 

scaling/wavelet functions of each direction must be used.  In two-dimensions, this means 

four groups of coefficients, scaling-x/scaling-y, wavelet-x/scaling-y, scaling-x/wavelet-y, 

and wavelet-x/wavelet-y coefficients.  As in (27), the wavelet terms require sums, and the 

wavelet/wavelet terms have nested x and y sums.  In a two-dimensional simulation, with 

rmax=0, the four functions used to represent the fields for the Haar wavelets are depicted 

in Figure 3. 

The maximum resolution is not required to be the same in each direction.  For any 

wavelet basis, the number of coefficients required for a given maximum resolution is  



14 

 # of coefficients = 
∑

=

+
zyxi

irD
,,

max,

2 , (28) 

where D is the dimensionality of the simulator, and the sum indicates that the maximum 

resolution may vary by direction.  In a three dimensional simulator, there are nine groups 

of coefficients needed to represent the field expansion, and an increase in resolution in 

every direction increases the number of coefficients needed by three powers of two. 

 

Figure 3: Two-dimensional Haar coefficients for rmax=0 

 

The expansion of the Ex field in three dimensions, for any wavelet basis, is 
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 (29) 

The eight groups of coefficients represent all of the combinations of scaling/wavelet 

functions in each direction.  Using (28), for rmax=0 in all directions, there are eight 

coefficients per cell.  For rmax= 2, there are 512 coefficients per cell.  The field 

coefficients are identified in this equation by the superscripts, denoting the field direction 

and scaling/wavelet component for each direction.  For example, φφψ,yE  denotes a y-

directed electric field coefficient, with a scaling function used in the x and y directions, 

and a wavelet in the z direction.  The coefficients have a maximum of nine indices (for 

the ψψψ,dirE  coefficient), which represent the position in space of the scaling function as 

well as the resolution and position of each wavelet. 

The 3-D MRTD scheme is generated by first representing all fields (E, H ,D, and 

B) in scaling/wavelet function expansions, as in (29), and setting the time and space 

steps.  However, the fields are not collocated in space or time.  The original MRTD 

scheme presented in [2] offsets electric fields one half a cell (the offset between scaling 

functions) along their coordinate axis (Ex by ∆x/2 in x, for example), while magnetic 
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fields are offset by half a cell in their two normal directions (Hx by ∆y/2 in y and ∆z/2 in 

z).  However, two papers [8,9] correct this field arrangement, suggesting that the 

magnitude of the offset should depend on the maximum wavelet resolution used in the 

simulation.  The corrected offset, sd, is, 

 2max,2
1

+=
drds , (30) 

where d denotes the direction (x, y, or z).  The purpose of this offset is discussed in more 

detail as a consequence of numerical dispersion, but a brief graphical discussion is now 

presented which explains some of the purpose of the choice of offset. 

Figure 4 shows a two-dimensional Haar cell with rmax=0.  The r=0 wavelets are 

shown as a reference.  The MRTD technique is characterized by cells that contain several 

basis functions.  As a consequence, the field variation throughout the cell is not limited to 

the shape of a single function, but rather the sum of several.  The position of the wavelet 

coefficients at rmax, which can be calculated using (2), defines a number of equivalent 

grid points [9].  Specifically, two equivalent grid points are defined per rmax level wavelet 

positioned )24( maxrx ×∆  and )24(3 maxrx ×∆ from the position specified in (2).  It should 

be noted that the number of equivalent grid points is equal to the number of basis 

functions, (28).  While the half cell offset used in [2] was chosen to give the cells an 

offset equal to Yee-FDTD [1], the offset presented in (30) arranges the equivalent grid 

points in the Yee manner.  It should be noted that while Figure 4 is shows the wavelets 

for the Haar scheme, the position of the equivalent grid points is valid for any wavelet 

basis.  Furthermore, the cell size represents the domain of the scaling function in the Haar 

case, but it represents the spacing between the centers of the scaling functions in the 

general case.  The equivalent grid points in Figure 4 are marked with X’s. 
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Figure 4: 2-D Haar cell, rmax=0, equivalent grid points 

 

If a 2-D scheme with EX, Ey, and Hz (TEz mode) is simulated with the rmax=0 cell of 

Figure 4, and the fields are offset using (30) in the manner suggested above, the field 

arrangement shown in Figure 5 results.  This figure shows the equivalent grid points for 

all three fields, and is valid for any wavelet basis.  The arrangement of the grid points in 

this case is the same as the Yee-FDTD cell.  If the same arrangement is used for a full 3-

D scheme, the equivalent grid points are arranged in the same manner as Yee-FDTD. 
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Figure 5: Equivalent grid points for a 2-D MRTD cell, rmax=0 

 

Like FDTD, the update equations in MRTD are fully explicit.  Thus, the time step 

must be chosen according to a stability requirement.  This is discussed later.  Also like 

FDTD, the electric and magnetic fields are offset in time.  The time basis functions used 

for all MRTD schemes are pulses, as in FDTD.  Similarly, the fields are offset by half a 

time step.  Once the field offset is determined, the MRTD update scheme can be 

determined using the method of moments. 

 

2.1.2 METHOD OF MOMENTS OVERVIEW 

 

The method of moments is a general method used in a variety of numerical 

schemes.  A brief overview of techniques that relate to MRTD is presented here.  First, 

the method is applied by representing the unknown function as a sum of unknown 

coefficients multiplied by known basis functions.  Next, a series of testing functions are 
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chosen.  These functions are multiplied into both sides of the equation and the integral is 

taken over the entire domain.  This process is referred to as an inner product, and the 

following notation will be used, 

 ( ) ( ) rrr ∂= ∫ gfgf ,  (31) 

If the number of testing functions is equal to the number of unknown coefficients, the 

result is a series of linear equations that can be solved to determine the coefficients. 

As a simple 1-D (in space) example, the equation 

 ( ) ( )
x
xbxf

∂
∂

=  (32) 

is presented, where f(x) is unknown and b(x) is a known function.  The unknown 

expression can be expanded into a sum of basis functions, 

 ( ) ( )∑
=

=
N

n
nn xcatxf

0

,  (33) 

where an are unknown scalar coefficients and cn(x) are the known basis functions.  A set 

of testing function, wn(x) are chosen, and the inner product of (32) with each 

 bwfw nn ′= ,,  (34) 

is taken.  The result is a system of equations, 
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which can be solved to yield the unknown coefficients, an.  If the testing functions are 

chosen such that,  
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 nmnm cw ,, δ=  (36) 

then the matrix on the left hand side of (35) is diagonal.  In this case, the scheme is 

explicit; a matrix does not need to be inverted to solve the equations.  Each coefficient 

can be determined directly, 

 bwa nn ′= , . (37) 

If an orthonormal set of basis functions is chosen,  

 nmnm ww ,, δ= , (38) 

then the basis functions can be used as testing functions.  This technique is called 

Galerkin’s method. 

 

2.2 MRTD Update Scheme 

 

2.2.1 TIME LOCALIZATION 

 

MRTD update equations are determined using Galerkin’s method with wavelet 

discretizations of the electric and magnetic fields, such as (29).  The half time step offset 

of the electric and magnetic field ensure that the fields are always updated from values at 

previous time steps, and thus the only unknowns are the updated values of the fields.  

Using (21)-(23), B fields are determined from previous E field values.  Likewise, (24)-

(26) are used to determine D fields from previous H fields.  In many FDTD schemes the 

constitutive relationship, (15) and (16), is applied discretely at each cell, and thus H 

values are determined directly from E values, and vice-versa.  For general MRTD basis 

functions, which can extend over the entire domain, this is not possible.  Furthermore, 
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even for non-overlapping, finite-domain wavelets, such as Haar wavelets, it is not 

practical because the dielectric constant cannot vary over the relatively large MRTD cell.  

Thus, the method of moments must also be applied to (15) and (16), to determine E fields 

from D fields and H fields from B fields.  While this does add complexity to the method, 

it also allows the material to vary continuously throughout the cell. 

The MRTD update equations are determined by localizing the coefficients in time 

by testing with the time basis functions (pulses) and then localizing in space by testing 

with the scaling/wavelet functions.  The time derivative of the pulse function yields two 

Dirac Delta functions, located at the edges of the pulse, 

 ( ) ( ) ( )( )tnttnt
t
thn ∆+−−∆−=

∂
∂ 1δδ , (39) 

The time derivatives of the pulse functions that make up the time discretization are a 

Delta train, represented by the top line of Figure 6.  In (21)-(26), one field value is 

differentiated in time, while the other field values are differentiated in space.  As stated 

previously, the E and H fields are offset in time by half a time step, which means that the 

spatial derivative terms are offset in time by half a time step from the time derivative 

terms. 

 

 

Figure 6: Time localization using pulse functions 
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The time testing function is chosen to overlap with the terms in the spatial 

derivative.  If the B (and H) coefficients are located at the n+1/2 time steps and the D 

(and E) functions are located at the n time steps, Figure 6 represents the time 

discretization of (21) – (23).  The delta train on the top of the figure represents the time 

derivative of the B fields, while the pulse functions on the bottom represent the E fields.  

The shaded area represents the domain of a testing function, which is collocated in time 

with the E fields.  If the time and space basis functions that represent the E fields are 

separated, 

 ( ) ( ) ( )∑
=

=
N

n
nn EthtE

0
, rr , (40) 

where nE(r) is the wavelet/scaling space discretization for time step n, the quantities in 

the brackets of (29).  Similarly, 

 ( ) ( ) ( )∑
=

++=
N

n
nn BthtB

0
2

1
2

1, rr , (41) 

represents the B fields.  Using these expressions, the inner products with hn are, 

 ( ) ( ) ( )rr EttEth nn ∆=,, , (42) 

 ( ) ( ) ( ) ( )rrr BB
t

tBth nnn 2
1

2
1

,, −+ −=
∂

∂ , (43) 

As an example, (42) and (43) can be applied to (21).  Ignoring the current terms, and 

taking the inner product with hn, 
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yields, 
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Similar expressions can be found using (22) to (26).  Solving for ( )rxn B
2

1+ , 

 ( ) ( ) ( ) ( )
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∂
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2
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1  (46) 

yields an update equation for ( )rxn B
2

1+  in terms of quantities from the previous time step.  

The next step in determining the MRTD update equations is to test with the spatial 

scaling/wavelet functions. 

 

2.2.2 SPACE LOCALIZATION 

 

The 3-D basis functions are expressed as ( ) ( ) ( )zyx ΓΓΓ , where each Γ can be either 

lϕ  or r
pl ,

ψ , with l representing a directional index, i, j, or k.  As stated in (28), for 

maximum resolution in the x, y, z direction rmax,x, rmax,y, rmax,z,, respectively, each cell 

(denoted by the triplet i,j,k) contains zyx rrr max,max,max,32 +++  basis functions.  To determine an 

update formula for each coefficient, the testing functions are collocated in space with the 

time differentiated functions in Faraday’s and Ampere’s laws.  In (46) this is equivalent 

to collocating the scaling/wavelet testing functions with the Bx fields. 

A convenient notation was first introduced in [8], which represents the field 

discretization as a vector.  This notation has been generalized for any wavelet basis, and 

allows the MRTD update equations to be written in a compact and easily understandable 

form.  The wavelet/scaling coefficients for all wavelet resolutions can be represented as a 

vector, for example, 
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If another vector, Γ, is defined, 
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 (48) 

then, 

 ( ) ∑ ++ =
kji

kjixn
T

kjixn B
,,

,,,,, 2
1

2
1 BΓr  (49) 

The update equation for each coefficient of B can then be determined by taking the inner 

product of (46) with each scaling/wavelet coefficient (every row of (48)). 

Because the basis functions are orthonormal, a separate update equation is found 

for each scaling/wavelet coefficient.  However, due to the offset of the B and E fields, the 
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scaling/wavelet functions used for the B fields are not orthogonal with the functions used 

for the E fields.  If the basis functions representing the Bx field are offset in the positive y 

and z directions from cell i,j,k (located at ∆x, j∆y, k∆z), while the Ey fields are offset in 

the y direction and Ez is offset in the z direction, then, using the vector notation of (47), 

the update for (46) becomes, 

 ⎥
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In this expression, U represents an update matrix, and consists of the inner products of 

the E basis functions with the B basis functions.  The B and E fields are only offset in the 

direction of differentiation of the E field.  Thus, m represents the position of all of the 

neighboring cells that the E and B fields overlap (depending on the domain of the chosen 

basis function). 

The U matrices are zyx rrr max,max,max,32 +++  x zyx rrr max,max,max,32 +++  in size, and can be computed 

before simulation begins. They take the form, 
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where F1 is the field whose update is being found, and F2 is the field on which the update 

depends.  In this case, lF Γ
1

 is the lth row of Γ for the F1 fields, and 
mlF Γ

2
 is the lth row of 

Γ for the F2 fields, offset by m in the direction of differentiation.  The n∂
∂ term represents 

the space derivative, in this case n=y or z.  If the basis functions used for each field were 

collocated, (51) would be diagonal.  However, due to the offset scheme used, the 

functions are only collocated in two of the three Cartesian directions.  For example, the 
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Bx and Ey fields have the same location in the x and y directions, but are offset in the z 

direction. 

If the field offset in the x, y, and z directions is sx, sy, sz, respectively, then the (2,2) 

entry of (51) for kjiy ,,,E  (same cell as the B vector, m=0) is, 
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This integral can be separated by direction, 
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Next, the orthogonality between the collocated basis functions can be exploited, 
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and, finally, only a single one dimensional integral must be evaluated.  Depending on the 

functions involved, this can be done analytically or numerically.  For either case, it can be 

tabulated, and does not have to be performed for each simulation.  It should also be noted 

that, due to the orthogonality of the basis functions, the majority of the entries in (51) are 

zero. 

The procedure shown above can be applied to the remainder of (22) – (26), yielding 

update equations for all B and D fields.  The remaining step in determining the MRTD 

update scheme is to find the updates for E and H fields from the D and B fields, 

respectively.  As these fields are collocated in space and time, the procedure is less 

complicated, although potentially more computationally intensive. 
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2.2.3 MEDIA DISCRETIZATION 

 

In a general structure, the material properties can vary as a function of position.  

For this work, only linear, isotropic, nondispersive media are considered.  The 

relationship between the fields in this case is given in (15) and (16).  Time localization in 

this case can be performed by taking the inner product with the time yielding, 

 ( ) ( ) ( )zyxD
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The update for each component of E and H can be determined by taking the inner product 

with the scaling functions.  However, because the offset of each field component is 

different, the update for each component is different.  The update of a general E 

component takes the form 

 ∑∑∑ +++=
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cbakjiDkjidn
d
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where a, b, and d represent the relative positions of the surrounding D basis functions that 

overlap the (i,j,k) E basis function.  The number of entries in these sums is dependent on 

the basis functions.  The coefficients of (57) take the form 
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Unlike the U matricies that are used in the discretization of Faraday’s and Ampere’s 

laws, most of the entries in these update matricies are nonzero.  Furthermore, the matrices 

vary by position.  However, for regions of uniform media, they are diagonal for 

l=m=n=0, and zero elsewhere. 
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These equations can be used together in a time stepping scheme with the 

discretizations of Ampere’s and Faraday’s laws to create a general time marching MRTD 

scheme: 

1. Determine B fields from E fields 

2. Determine H fields from B fields 

3. Determine D fields from H fields 

4. Determine E fields from D fields 

5. Repeat until simulation is complete 

 

2.2.4 NUMERICAL STABILITY 

 

The scheme that has been presented allows MRTD update schemes to be 

determined for any basis function.  These schemes are fully explicit, the matrix 

expressions demonstrated only involve multiplication, and all numerical integration is 

performed before the start of simulation.  For the majority of cases, a library of the 

update, equations, U, can be constructed, so that the costly numerical integration does not 

have to be performed before each simulation.  Most of the update matrices are very 

sparse, and a number of clever coding techniques and libraries can be used to reduce the 

processor and memory load of implementing these updates.  Any basis function can be 

used by calculating the U matricies, which can be accomplished by solving a number of 

integrals, either analytically, or, more likely, numerically.  To this point, however, no 

guidance has been given on choosing the time and space step values.  To properly choose 

these values, the stability and dispersion of the scheme must be taken into consideration. 

The purpose of this investigation is to determine techniques that can be used with 

the Haar-MRTD scheme to reduce simulation time by increasing the efficiency and 

applicability of the technique.  The techniques that were developed are not directly 
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related to the stability or dispersion requirements, and as such they will not be covered in 

depth.  However, knowledge of the effects of these conditions is necessary to apply the 

techniques, and as such a brief overview is presented here. 

It is a known limitation of explicit techniques that the time step must limited as a 

function of the space step to maintain stability.  If the time step is not below this limit, the 

resulting scheme quickly grows without bounds.  One notable exception to this is the 

ADI-MRTD method [10], which is a semi-implicit scheme that remains stable (but not 

accurate) for any time step.  This technique separates the time-step into two substeps, 

and, as it does not alter the spatial grid, it is very similar to ADI-FDTD [11].  The 

techniques presented in this study are related to the spatial discretization, and are 

completely compatible with the ADI technique.  The discussion, however, will focus on 

the traditional MRTD technique.  A brief stability analysis of the MRTD technique is 

presented in [2], while additional studies were presented in [9,12]. 

The stability condition for MRTD depends on the choice of the wavelet basis.  The 

general dispersion analysis, however, is performed in the same manner as traditional 

FDTD techniques [13].  The time update portion (the discretization of the time 

derivative) and the space update portion (the discretization of the spatial derivative) are 

split into two separate problems.  For numerical stability, the eigenvalues of the spatial 

problem must contain the eigenvalues of the temporal problem.  For FDTD, this results in 

the condition [13]: 
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For Battle-Lemarie S-MRTD (scaling function only) [12] 
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where 

 ∑
−

=

=
1

0

an

i
iMRTD as , (61) 

 

the MRTD stability factor, is the sum of the magnitudes of the inner products of the 

offset scaling functions from the spatial update equations (equivalent to the entries in the 

1x1 U matricies using the notation presented here).  In this equation, na is the stencil size, 

or the domain of the basis function in cells.  The Battle-Lemarie basis functions are 

symmetric.  Alternatively, the sum could be expressed as 

 ∑
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b

n

ni
iMRTD as , (62) 

where na and nb represent the stencil size of the function in both the positive and negative 

directions, respectively.  In fact, if this expression is used, the stability condition is valid 

for any basis function.  For the Battle-Lemarie scheme [12], 
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and the time step for the MRTD scheme is smaller than the time step for and FDTD grid 

with the same cell size.  However, as will be shown next, the cells used in Battle-Lemarie 

MRTD are generally larger than those used in FDTD, and thus the technique is more 

efficient overall.  It is demonstrated in [9] that, for any MRTD wavelet basis, the 

resolution of the scheme doubles for each addition of a level of wavelet resolution.  This 
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is equivalent to saying the time step of a scheme with one level of wavelet resolution in 

each direction will have a time step one-half of the value of S-MRTD.  The resulting 

stability condition, valid for any MRTD basis, is, 
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The Haar MRTD technique can be analyzed using the same method.  Several 

authors [3,7,8,9], have noted the equivalence between Haar S-MRTD and FDTD, and 

indeed this relationship can be exploited to directly derive the general Haar MRTD 

stability requirement.  Using this equivalence, and applying the resolution doubling 

argument to (59), the stability for Haar MRTD at any resolution level is [9], 
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This is a special case of (64), for the Haar scheme 

 1=MRTDs . (66) 
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2.2.5 NUMERICAL DISPERSION 

 

Dispersion is defined as the variation of the wavelength, λ, with frequency, f.  More 

commonly, it is discussed as the variation of the wavenumber, k, with angular frequency, 

ω, where 

 fπω 2=  (67) 

 
λ
π2

=k . (68) 

By substituting the solution for a monochromatic plane wave into Maxwell’s equations 

(assuming a linear, isotropic, nondispersive medium), the following dispersion 

relationship results 

 
c

k ω
±= , (69) 

where, 

 
µε
1

=c . (70) 

In a 3-D representation, a wavevector, k, is defined, where, in Cartesian coordinates, 

 kkjkik zyx
ˆˆˆ ++=k , (71) 

and 

 zyx kkkk ++= . (72) 

Using these parameters, a phase velocity, vp and group velocity, vg can be defined,  

 c
k

vp ±=±=
ω  (73) 
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 c
k

vg ±=
∂
∂

±=
ω . (74) 

These parameters demonstrate that the wavelength and frequency have linear 

relationship, and that the phase and group velocities are independent of frequency. 

These relationships are more complicated in a numerical scheme.  A numerical 

scheme, by its nature, discretizes space into small, but finite, cells.  In these cells, the 

waves cannot propagate in any direction, but rather in the directions defined by the grid.  

In addition, time is not continuous, but set as a multiple of a discrete time step.  With 

these limitations it should not be surprising that the numerical wave propagation velocity 

can depend on direction, and, because of the discrete spatial and time steps, frequency.  

As it has been shown, Haar S-MRTD is equivalent to FDTD, and, as one of the simplest 

MRTD schemes, it will be used as the first example.  For S-MRTD (and FDTD) [14], 
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For numerical stability, the argument was advanced that increasing the resolution 

by one level effectively doubled the resolution of the code.  This was represented in the 

time stability condition by dividing the space step by 1max2 +r .  For the dispersion analysis, 

this condition holds as well, thus [9], 
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A similar dispersion analysis was performed in [12] for Battle-Lemarie S-MRTD, 

and, when made general for any wavelet basis and resolution level, 
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This is the general dispersion relationship for MRTD.  As (65) is a special case of (64), 

(76) is a special case of (77). 

It is useful to express the wavenumber in terms of angular frequency.  As (77) is a 

sum of sinusoids, an analytical solution cannot be found for the general case  It can, 

however, be solved numerically for specific wavelet bases.  Several studies have been 

performed using these equations [4,9,12].  For reference, the solution for the wavenumber 

as a function of angular frequency for Haar MRTD in one of the grid major directions 

(along an axis), assuming a uniform grid size ∆, is [14], 
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and the phase velocity is, 
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using the definitions: 
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Using this expression, the error between the numerical phase velocity and c can be 

determined, as well as what values of Nλ (the number of cells per wavelength) yield 

stable (non-damped) results.  This equation is also valid for any wavelet resolution if ∆ is 

the spacing between equivalent grid points.  To keep phase error low, it is usual for these 

schemes to use more than 10 equivalent cells per smallest excited wavelength. 

This condition is one of the major arguments for using the MRTD technique.  

Although it was demonstrated for Haar MRTD that the dispersion relationship, and thus 

the number of cells needed per wavelength, is the same for the MRTD scheme as in 

FDTD, other basis functions can use significantly fewer cells per wavelength.  It was 

reported in [12] that a discretization of three to four cells per wavelength using Battle-

Lemarie MRTD gave results comparable to FDTD with 10 cells per wavelength. 

 

2.3 IMAGE THEORY FOR PEC MODELING 

 

The techniques that have been presented thus far allow the modeling of arbitrary 

variation of the permeability and permittivity of the media under simulation.  However, 

most structures of interest to microwave designers also contain metals.  For many 

simulations in the time domain, these metals are treated as PECs, and this limitation will 

be used in this case as well.  The treatment of a metal as a PEC is necessary, because 

otherwise the metal itself must be simulated (resulting in significantly increased number 

of grid points) or frequency dependent loss characteristics must be applied to the PEC. 

In the prototypical time-domain technique, FDTD, PEC structures are simulated in 

a simple and straightforward manner.  The PECs are located along grid boundaries, and 

the electric field values that are tangential to the PEC structures are zeroed each time step 

(after their updates are calculated).  This explicitly enforces (17).  The normal 

coefficients do not require any special processing, because they are offset from the PEC 
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location.  Due to the extended, and often overlapping, nature of MRTD basis functions, 

this simple processing is not possible in MRTD.  Instead, PEC boundary conditions are 

traditionally applied to MRTD codes through image theory. 

Several papers have been published that discuss the implementation of image 

theory to the modeling of PEC structures in MRTD [2,9,12,15,16,17].  Using this 

method, PECs are modeled through the introduction of artificial image scaling and 

wavelet coefficients on the opposite side of the PEC.  These image wavelets have 

opposite magnitude of the wavelets whose domain include the PEC.  In this manner, 

when the real and image wavelet and scaling coefficients are summed at the PEC 

interface, the result is zero, the PEC boundary condition.  This technique is difficult to 

apply in a general 3D code, because a large amount of bookkeeping is required for each 

PEC in the grid.  For any wavelet that contains a PEC within its stencil, a unique update 

scheme must be applied.  In addition, multiple images, caused by the close proximity of 

multiple PECs, can exacerbate this problem further.  While it has been stated in several 

publications that this technique can be applied to complex structures, no publications 

have been made detailing its use for a general 3D structure with multiple PECs.  At 

maximum, external boundaries and one internal PEC have been presented. 

A one dimensional example of the application of image theory is presented in 

Figure 7.  This example uses biorthogonal scaling functions [5].  These functions are used 

because they have a relatively compact stencil size of four cells.  The shaded area 

represents the width of the stencil.  All magnetic field points within this distance of the 

PEC must use the images of the electric field on the opposite of the PEC when computing 

an update.  If this PEC intersects the grid, (the simulation is performed on both sides of 

the PEC) the actual field values on the opposite of the PEC are not used (the PEC 

effectively decouples these fields).  In addition, when the fields are reconstructed, the 

images must be used in the reconstruction algorithm.  This same method can be used to 
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simulate perfect magnetic conductors (PMC) by imaging the magnetic fields across the 

boundary. 

 

 

Figure 7: Image theory in one dimension using biorthogonal 

scaling functions 

 

2.4 EXISTING PML TECHNIQUES IN MRTD 

 

The MRTD scheme that has been presented allows the simulation of arbitrary 

media terminated with PEC boundary conditions.  PEC boundary conditions are 

necessary because the fields on the boundary of the simulation space must be known in 

order to calculate the internal field values.  However, the PEC boundary conditions cause 

complete reflection of electromagnetic waves.  When used in a time domain simulation, 

these reflections interfere with the fields being measured, and render the results useless.  

In order to reduce these reflections, absorbing boundary conditions (ABCs) must be 

applied. 



38 

The most popular absorbing boundary condition used in time-domain 

electromagnetic simulations is the perfectly matched layer (PML).  This boundary 

condition was first introduced by Berenger in 1994 [18].  The PML takes the form of a 

material that surrounds the simulation space that is perfectly matched to all incoming 

wave directions and frequencies, and is also highly lossy.  Berenger’s original 

formulation of the PML used a split field formulation of Maxwell’s equations.  However, 

a similar method was later introduced that was termed the uniaxial PML (UPML) [19].  

This PML takes the form of a unaxial anisotropic medium; the material properties are 

identical in directions transverse to the UPML interface, and vary in the normal direction.  

This PML formulation is often implemented because it avoids the field splitting used in 

Berenger’s original PML formulation.  In addition, when implemented in FDTD, it 

requires two field update steps.  The first step applies Faraday’s and Ampere’s law, and 

the second step applies the constitutive relationships.  This is a natural method to 

implement in MRTD because the fields are already updated in this manner. 

Several authors [17,20,21] have demonstrated the implementation of the PML for 

S-MRTD (scaling function only) schemes.  In addition, a technique that interfaces Haar-

MRTD and FDTD domains was introduced [22], with one application aimed at 

interfacing an FDTD PML with an inner MRTD grid.  A derivation of the UPML for the 

general Haar MRTD scheme (for any wavelet resolution) has not been presented.  The 

derivation of the technique for any wavelet resolution is given in Chapter 4. 

 

2.5 FDTD 

 

It has already been stated that FDTD is often used as a benchmark for other time 

domain schemes, such as MRTD.  The chief advantage of the FDTD method is its 

simplicity; it was originally derived using central differences with Maxwell’s equations.  
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However, the key aspect of the FDTD method does not come from its relatively simple 

derivation, but the arrangement of it grid points. 

FDTD was originally developed in 1967 by K.S. Yee[1].  The feature of FDTD that 

makes it both simple and widely applicable is the Yee-Cell, which is presented in Figure 

8.  A simple Cartesian grid is used, with the fields offset from the grid points in a specific 

manner.  In Figure 8 the electric field components are offset from the grid points half a 

cell in their coordinate direction (Ex in x, for example) and the magnetic fields are offset 

in the directions normal to their field components. 

 

 

Figure 8: Yee-Cell in 3-D 

 

Using this simple field arrangement, and by offsetting the magnetic and electric 

fields by half a step in time, central differences can be applied to Faraday’s and Ampere’s 

law, creating a system of equations that can be used in a time marching scheme to update 

the fields.  For example, the FDTD discretization of (21) is, 
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if the convention that has been used in the MRTD case is applied, where all field 

components are offset in the positive direction, and the offsets are not explicitly shown in 

the field components ( kjiyE ,,,  is located at i∆x, (j+1/2)∆y, k∆z, for example).  In this 

equation, the constitutive relationship (15), is directly applied, as the updates are for 

actual field values at points, instead of scaling/wavelet coefficients that span a much 

wider area. 

It is useful to note that the FDTD update equations are exactly the same as Haar S-

MRTD (scaling function only) update equations.  The method-of-moments, applied with 

pulse basis functions, offset according to the scheme that has been presented for MRTD 

and FDTD, is equivalent to performing a central difference approximation.  Furthermore, 

FDTD and Haar MRTD are equivalent for any rmax if all wavelets are used for all points 

in the grid.  This can be demonstrated by transforming the MRTD scaling/wavelet 

scheme into a pointwise (where the actual field values are used) scheme, [23], or by 

noting that the Haar MRTD dispersion relationship for an arbitrary resolution level is the 

same as FDTD, if the FDTD cells are the same size as the MRTD equivalent grid points. 
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CHAPTER 3 
 

MRTD COMPOSITE-CELL MODELING 

The MRTD scheme that was presented in the previous chapter provides a 

framework for applying multiresolution principles to the simulation of modern 

microwave structures.  Every paper published on MRTD discusses two major advantages 

of the MRTD technique: 

1. The basis functions employed in the MRTD technique allow fewer cells to be 

used per maximum excited wavelength (compared to FDTD), allowing a more 

efficient overall simulation. 

2. Wavelets can be added and subtracted dynamically during simulation, resulting 

in an adaptive scheme that automatically tailors its computational requirements 

to the complexity of propagating signals. 

The number of cells required per wavelength is discussed in the previous chapter.  

The dispersion relationship, (77), can be numerically solved for any wavelet basis.  It is 

shown in several papers [2,4,9,20] that a variety of wavelet bases can be employed that 

allow less dense grids to be used.  There are two distinct costs of applying these 

techniques.  The first is determining the update coefficients, such as those used in (50) 

and (57), that result from Ampere’s and Faraday’s laws.  However, these coefficients can 

be calculated before the start of simulation, and it is possible to build a library of the 

coefficients for several common cases.  The second cost of applying the technique is the 

field updates themselves, which, due to the stencil of the basis functions, involve several 

surrounding field coefficients.  Thus, while fewer cells are required per wavelength when 

compared to FDTD, more operations are required to calculate each field update.  A 

comprehensive comparison of the benefits from using fewer cells in MRTD compared to 

the more simple updates used in FDTD has not been presented in literature. 
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Another difficulty of using general wavelet bases is that of simulating lossy media.  

The derivations of MRTD update equations presented in the previous chapter neglected 

loss.  When ohmic losses are added (considering both electric and magnetic loss), 

Faraday’s and Ampere’s laws become, 
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The procedure for determining the MRTD update procedures described in the previous 

chapter can be applied in this case as well.  For example, the update for the Bx field is 

determined from, 
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To determine the time localized form of this equation, the inner product of both sides of 

(85) must be taken with hn+1/2(t).  This process is slightly different than the case without 

loss, because both the time derivative of the B field and the B field itself are used in this 

equation.  In Figure 9, it is noted that the pulse used in the time localization overlaps the 

B field from two time steps.  The inner product, 

 ( ) ( ) ( )
2

, 2
1

2
1 rr xnxn

xn

BB
Bth −+ +

=  (86) 

therefore, includes terms from both the time step being updated and the previous time 

step.  This is a statement of the semi-implicit approximation used in FDTD [14], but it is 

derived in this case as a direct result of the chosen basis functions. 
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Figure 9: Time localization (pulse basis functions) for lossy case 

 

Using (86), the time localized form of (85) is, 
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Collecting terms, 
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and finally solving for ( )rxn B
2

1+  
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When the space localization is performed to determine the updates for the individual 

wavelet coefficients, the following results, 
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using the notation presented in the last chapter.  In this case, however, it is noted that the 

basis functions can be offset every direction (denoted by a,b, and c, in the x,y, and z 

directions, respectively), instead of the single direction that was denoted by m in Chapter 

2.  The entries of the x

x

B
cbaB ,,,U  matricies take the form 

 zyx
t
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cbajBiBcbajBiBij xxxx
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and the entries of the x

y

B
cbaE ,,,U  matricies take the form, 
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where 
cbaj ,,

Γ  denotes the scaling/wavelet function offset by a, b, and c, (cells) in the x, 

y, z directions, respectively, from the coefficient update being calculated.  In the general 

case of ( )zyx ,,∗σ  varying constantly in each direction, the xB  coefficients depend on 

surrounding xB  coefficients from the previous time step.  This complicates the update of 

the coefficients, as when implemented on a computer, the array of updated values must 

be kept separate from previous values.  In the lossless scheme, the fields being updated 

depend only on their previous value, and the updated fields can be stored in the same 

array as the previous fields.  This doubles the amount of memory required to perform the 

scheme.  In addition, it significantly increases the computational burden. 

In the lossless case, the updates of any one coefficient depend on the previous value 

of the coefficient and the values of two other fields (the normal E fields in the B update 

case, and the normal H fields in the D case).  For these fields, a sum of coefficients 
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(multiplied by the entries in the U matrix) from neighboring grid points is required, and 

the number of grid points depends on the stencil of the basis function.  For example, a 

stencil of twelve (six in the positive, six in the negative direction) cells is normally used 

for Battle-Lemarie wavelets [16].  However, because the fields are only offset in one 

direction, the sum must only be performed in one direction (as in (50)).  In the case 

including loss, however, the addition of σ into the inner products destroys the 

orthogonality in the inner product integrals, and the sums must be performed in all three 

directions.  For a stencil size n, the result is a summation over n3 elements.  As an 

example, in the lossless case, for Battle-Lemarie wavelets using a stencil size of 12, the 

total number of neighboring cells required for the update is: 

 Previous Value+Normal Field 1+Normal Field 2  

 121 +=++ nnn  (93) 

 2512121 =++  (94) 

while for the lossy case: 

 3333 3nnnn =++  (95) 

 5184172817281728 =++  (96) 

This significantly complicates the method.  However, for stencil sizes of one (such as 

Haar basis functions) the requirements are the same in the lossy and lossless case. 

The final difficulty of simulating complex structures using general wavelet bases is 

that of representing PEC structures within an MRTD grid.  In the previous chapter, image 

theory was discussed; the primary example presented, as well as the examples shown in 

the referenced literature, was for the case of a PEC wall terminating the structure.  A 

general method for simulating arbitrarily placed internal PEC structures has not been 

presented in literature.  This makes simulation of most microwave structures difficult.  

One notable exception is [22], which utilizes an FDTD/Haar-MRTD interface to simulate 
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highly detailed structure in FDTD, and MRTD to simulate open areas.  However, this 

technique cannot be readily expanded to other wavelet bases.  In this chapter a method is 

presented that allows arbitrarily placed PEC structures to be simulated, however, it is 

shown that it is only practical for Haar-MRTD schemes. 

As most structures cannot be readily simulated with general wavelet bases, the 

focus of this thesis is on Haar MRTD techniques.  In this chapter a technique is presented 

that allows subcell structures to be modeled within Haar MRTD cells.  This technique is 

shown to be a bridge between pointwise field updates, such as those used in FDTD, and 

the wavelet/scaling updates used in MRTD.  This technique allows the adaptive 

resolution characteristics of MRTD to be exploited for the simulation of any structure.  

Thus, of the two stated goals of MRTD, it is noted that the first can only be obtained for 

structures consisting entirely of lossless, PEC-free structures, while this thesis 

demonstrates how to achieve the second for general structures using Haar basis functions. 

 

3.1 GENERAL, EXPLICIT, SUBCELL FIELD MODIFICATION 

 

The motivation of this research is to represent arbitrary structures in MRTD so that 

the time-space adaptive grid can be used effectively.  To accomplish this, it is necessary 

to determine a method of representing PEC structures that are smaller than an MRTD 

cell.  The method that has been developed as a part of this research is based on the 

method that PEC structures are represented in FDTD grids.  It is shown that the method 

effectively provides a bridge between pointwise electromagnetic effects, and the 

distributed wavelet field representation used in MRTD. 

In FDTD, which is equivalent to Haar S-MRTD, PEC structures are explicitly 

represented by zeroing electric field values that are tangential to PEC field locations.  The 

update equations for FDTD can be determined in the same manner as the MRTD 



47 

equations in the previous chapter.  In fact, the Bx update equation is a special case of (50).  

Similarly, the Dx update equation is [14], 
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in the lossless case (for the purpose of applying PEC boundary conditions, loss is 

irrelevant).  In FDTD, the constitutive relationships are applied at each cell, so, 
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In this notation, note that the spatial offsets from the grid points are not written explicitly, 

similar to the MRTD case in the previous chapter (but follow the same scheme as 

MRTD).  In this case, the electric fields are located half a cell from point i∆x, j∆y, k∆z in 

the direction of their field component, and the magnetic fields are located half a cell from 

i∆x, j∆y, k∆z in the two directions normal to the field component that they represent.  A 

two dimensional cross-section of an FDTD grid intersected by a PEC is presented in 

Figure 10. 

In FDTD, the PEC is placed along the locations of the electric field points.  The 

practical result is that the size of the structure being simulated is constrained by the grid.  

To represent field variation caused by the PECs, several cells are usually placed across 

each PEC.  The PEC condition is applied by first updating the electric fields, and then 

setting the field values that overlap with the PEC locations to zero.  This is possible 

because the electric field update equations, such as (98), only use previous field values. 
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Figure 10: FDTD grid intersected by PEC 

 

The time update scheme used in MRTD takes the same form as FDTD (the same 

basis functions are used for the time discretization).  Instead of using image theory, which 

creates artificial scaling/wavelet coefficients to apply PEC conditions, it would be 

convenient to explicitly enforce the boundary condition of zero tangential electric field on 

the MRTD grid. 

For a general wavelet basis, using the notation presented in the previous chapter, 

the electric field is reconstructed as, 

 ( ) ∑∑∑=
i j k

kjidirn
T

kjidirn E ,,,,, EΓr . (99) 

This function is used to give the fields at every point in the grid.  It is useful to note that 

the MRTD scheme never updates the field values themselves, as in FDTD, but only 

updates the scaling/wavelet coefficients that then must be reconstructed to determine 

field values.  This is important to note when probing the fields during simulation, as the 

fields must be reconstructed at points of interest.  When probing fields during simulation, 

(99) is unwieldy; reconstructing the fields for the entire grid for each time step is 
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computationally prohibitive.  Instead, the fields for an individual cell can be 

reconstructed using 

 ( ) ∑ ∑ ∑
−= −= −=

++++++=
b

a

b

a

b

a

n

na

n

nb

n

nc
ckbjaidirn

T
ckbjaikjidirn E ,,,,,,,, EΓr . (100) 

where na and nb represent the size of the stencil (the overlap of the wavelet/scaling 

function in cells). 

Once the fields are reconstructed, a localized PEC can be applied by multiplying 

the reconstructed electric field by a function P(r), where, 

 ( )
⎩
⎨
⎧

=
Elsewhere1

location PEC0
rP . (101) 

Once the PEC boundary condition has been applied, the fields must be transformed back 

into the wavelet domain.  This can be accomplished by applying a wavelet transform, 

 ( ) ( )rrΓE kjidirnkjikjidir EP ,,,,,,,, ,= . (102) 

Of course, the new components must be found at all locations whose stencils include a 

PEC location.  By combining (99) and (102), the wavelet coefficient with the PEC 

condition applied can be found directly from other scaling/wavelet coefficients using 

 ( )∑∑∑=
i j k

kjidirn
T

kjikjikjidir P ,,,,,,,,,, , EΓrΓE . (103) 

In the case of a general wavelet resolution, there are several difficulties in applying 

this technique.  The first is that, for arbitrarily placed PECs, the reconstruction, and 

subsequent wavelet decomposition, of the entire grid is required for each time step.  This 

procedure likely requires more computation time than the field updates, and is therefore 

not practical.  In addition, the implicit assumption in the above procedure is that the 

fields, when deconstructed back into the wavelet domain after the application of the PEC 
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boundary condition, reconstruct to the same values at all non-PEC locations, and zero at 

PEC locations.  While all of the wavelet bases discussed in this thesis are complete in 

L2(R), this condition is only true for an infinite level of wavelet resolution.  For a limited 

wavelet resolution, which is kept the same before and after the application of the PEC, 

the application of the PEC as outlined here will result in modified fields outside the PEC 

region, and nonzero fields inside the PEC region.  This is not consistent with Maxwell’s 

equations. 

For this technique to be applied successfully, the wavelet basis must satisfy two 

conditions: 

1. The scaling/wavelet functions for one cell must not overlap with a neighboring 

cell. 

2. The application of a PEC boundary condition (zeroing the field) over a range 

within an MRTD cell must not affect neighboring field values. 

The first condition allows the PEC boundary condition to be applied locally.  This means 

that only the scaling/wavelet coefficients in a single cell must be modified to apply the 

PEC boundary condition.  The second ensures that the fields will not undergo non-

physical modifications when the PEC condition is applied.  Both of these conditions are 

satisfied by the Haar wavelet basis. 

 

3.2 PROPERTIES OF HAAR-WAVELET DISCRETIZATIONS 

 

To demonstrate that the Haar basis can be used to explicitly apply subcell PEC 

boundary conditions it is first useful to study how the Haar basis functions discretize field 

values.  The Haar scaling and wavelet functions are defined in the previous chapter.  

When the Haar wavelets are reconstructed, they are constantly valued over discrete 

regions.  For example, Figure 3 presents the 2-D Haar scaling function and wavelets for 
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rmax=0 in both directions.  When these functions are summed, they yield four independent 

regions of constant field value.  These regions are centered at the equivalent grid points.  

As was stated previously, the number of equivalent grid points is the same as the number 

of basis functions.  In the 3-D case, the number of equivalent grid points (and basis 

functions) is, 

 # of equivalent grid points zyx rrr max,max,max,32 +++= , (104) 

which is equivalent to (28) for the 3-D case. 

As another example, the rmax=1, in all directions, wavelets for the 2-D case are 

presented in Figure 11.  In this case there are 1622 1122 max,max, == ++++ yx rr  coefficients per 

cell.  In this figure, each of the wavelets has two possible, identical in magnitude, values, 

with opposite sign.  These are represented in the figure by different shading.  For the 

wavelet/wavelet case, these represent four distinct regions.  For the highest level 

wavelet/wavelet terms (the ( ) ( )yx r
p

r
p

maxmax ψψ  terms), the equivalent grid points are at the 

center of the areas of constant magnitude.  Each of the highest level wavelet/wavelet 

terms represents four equivalent grid points in the 2-D scheme. 
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Figure 11: Haar scaling and wavelet functions in 2-D, rmax=1 

 

This discussion is easily extended to 3-D.  In the rmax=1 case an additional four 

scaling/wavelet coefficients are required to describe the fields in the z direction.  The 

total number of basis functions in this case is 6422 11133 max,max,max, == ++++++ zyx rrr .  In this case, 

the regions of constant value are rectangular solids, and for the wavelet/wavelet terms 

there are eight areas of constant value.  Again, the center of these regions for the highest 

resolution wavelet/wavelet terms represents the equivalent grid points.  When the fields 

are reconstructed they add to independent values, located at the equivalent grid points.  

The domain of each value is 

 
Dr

DL
max,12 +

∆
= , (105) 
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in each dimension, D.  In the rmax=1 case, the value is constant at each equivalent grid 

point over a range of 444 zyx ∆×∆×∆ .  

One important note is that, for any cell, the fields can be represented in an 

equivalent manner by scaling functions alone.  In this case the scaling functions must be 

the size of the equivalent grid points.  The advantage of using the wavelets is that the 

resolution can be varied on a cell by cell basis.  In cells containing complex structures, 

high resolution cells can be used.  In surrounding cells, lower resolution can be used.  

Additionally, the wavelet resolution can be varied during simulation.  For complex field 

variation, high resolution wavelets can be used, for less variation, lower resolution can be 

used.  To apply a similar method with scaling functions only (FDTD), an interpolation 

scheme must be used to interface the high and low resolution areas.  In the MRTD 

scheme, variable resolution is automatically applied by zeroing high resolution wavelet 

coefficients when they are not needed. 

The practicality of using Haar wavelet addition/subtraction as a method of 

representing fields varying at different rates can be represented analytically and 

graphically.  For example, a 1-D Haar wavelet system with rmax=0 is presented.  In this 

scheme there is only one scaling and one wavelet function.  These functions can be used 

to represent any two values.  Figure 12(a) shows the Haar scaling and wavelet function 

and Figure 12(b) shows an example of a dual valued piecewise constant function that can 

be represented using these values.  The function f(x) in Figure 12(b) has value c in the 

range (0,0.5) and the value d in the range (0.5,1).  The scaling function has value s in the 

range (0,1) and 0 elsewhere.  The wavelet function is valued w0 in the range (0,0.5) and   

-w0 in the range (0.5,1). 
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Figure 12: (a) Haar scaling and rmax=0 wavelet, (b) sample function that can 

be represented using (a) 

 

The magnitudes of the scaling/wavelet functions can be found using the system 

 
dws
cws

=−
=+

0

0  (106) 

This system can be easily solved to yield, 

 
22 0

dcwdcs −
=

+
=  (107) 

The scaling function is the average of the two discrete values of f(x).  If the two values 

are identical, w0=0, and the wavelet coefficient is not needed.  In practical simulations, wo 

can be neglected if it is significantly smaller than the scaling function. 

This same scheme holds for higher level wavelets.  For contrast, a similar example 

is presented for rmax = 1.  In Figure 13 the addition of the level one wavelets (the tails are 

removed for rmax = 1 to demonstrate that the wavelets represent two independent 
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functions) allows the piecewise constant valued function to have a maximum of four 

independent values.  The wavelets have two values, equal in magnitude and opposite in 

sign, and for simplicity the magnitude is indicated in the center of each function. In this 

case a system of four equations can be constructed to determine the scaling/wavelet 

function magnitudes.  The solution of this system,  

 

22

44

1,00,0

0

fewdcw

fedcwfedcs

−
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−
=

−−+
=

+++
=

, (108) 

shows that the scaling function still represents the average of the function.  The sum of 

the scaling term and the 0th level wavelet represents the average on either half of the 

domain.  If the variation of the field on either half of the domain is small, the high level 

wavelets can be ignored. 
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Figure 13: Haar example with (a) scaling through rmax=1 wavelets, (b) an 

example function that can be represented with these functions 

 

One other interesting property of Haar wavelet expansions related to the 

representation of PEC structures can be demonstrated using this example.  The values of 

the scaling/wavelet functions presented in (108) can be determined regardless of the 

values of f(x).  If f(x) is zeroed over one of the ranges, the remainder of the values can 

still be represented using the scaling/wavelet basis.  The values of all of the basis 

functions in the cell change, but the values obtained when the functions are summed 

remain the same. 

In the two examples that have been presented of Haar wavelet decompositions, the 

values of the Haar wavelets were found using a system of linear equations.  In the general 

case of a continuous function, the method of moments can be applied.  In the special 

cases that have been presented of piecewise constant functions with constant domains 

equal to the equivalent grid point dimensions, the method of moments discretization 
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reduces to a system of linear equations.  If the values of the function over these constant 

areas are represented as a vector, F, and the scaling/wavelet function magnitudes are 

represented as a vector Fw, then they are related by a reconstruction matrix, R, where, 

 wRFF = . (109) 

This representation is also valid for the two and three dimensional cases.  Because there 

are the same number of equivalent grid points as scaling/wavelet functions, R is square.  

In the two and three dimensional cases, any ordering of the wavelet coefficients and 

equivalent grid points can be used, it only affects the positioning of the coefficients in the 

R matrix.  R can be generated quickly by examining the contribution of each 

wavelet/scaling coefficient to each equivalent grid point. 

Once the reconstruction matrix is determined, the wavelet transform can be easily 

performed for arbitrary values of F.  A wavelet transform matrix, W is defined, 

 1−= RW , (110) 

and 

 WFFw = . (111) 

These matrices provide a quick and easy transition between scaling/wavelet coefficients 

and allow the PEC boundary condition to be explicitly applied at any equivalent grid 

point in the Haar MRTD scheme without affecting neighboring field values.  The only 

restriction is that the metals must be the size of an equivalent grid point.  By increasing 

the resolution to the appropriate level, arbitrary structures can be represented. 
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3.3 HAAR SUBCELL PEC APPLICATION 

 

The discussion in the previous section demonstrates that Haar wavelets can be used 

to apply the explicit PEC method that has been presented.  The Haar wavelets are non-

overlapping, and thus a modification of the fields in one cell does not affect neighboring 

cells.  In addition, the reconstruction matrix can be used to quickly determine the field 

values within one cell, which can be subsequently modified and transformed back into 

the wavelet domain.  The MRTD update algorithm that was presented in the previous 

chapter can be modified: 

1. Determine B fields from E fields 

2. Determine H fields from B fields 

3. Determine D fields from H fields 

4. Reconstruct D fields in PEC grid locations 

5. Zero fields tangential to PECs 

6. Transform D fields back to wavelet domain 

7. Determine E fields from D fields 

8. Repeat until simulation is complete 

The added steps are indicated in boldface. 

The PEC condition is applied directly to the D fields after they are updated.  

Mathematically, these steps are relatively simple.  First, the fields are reconstructed in the 

cell where the PEC is to be applied, 

 kjidirkjidir ,,,,,,, wRDD = . (112) 

In this case the subscripts indicate the fields at cell i,j,k.  The vector kjidir ,,,D  contains the 

reconstructed field values in the cell.  The entries in this vector that correspond to 

positions of PECs are zeroed.  This can also be represented mathematically if a matrix IP 
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is defined, where IP is the identity matrix with the rows that correspond to the PEC 

locations zeroed.  The application of the PEC to the field becomes, 

 kjidirkjidir ,,,,,,, DID PPEC = . (113) 

To continue the MRTD field updates, the D fields must be transformed back to the 

wavelet domain, 

 kjidirkjidir ,,,,
1

,,,, PECw DRD −= . (114) 

The procedure that has been presented requires that the D vector be multiplied by 

three matrices.  These matrices are zyxzyx rrrrrr max,max,max,max,max,max, 33 22 ++++++ ×  in size, for the 

rmax=1 case the matrix is 64x64, containing 4096 entries.  While many of the entries in 

these matrices are zero, and thus the multiplication can be significantly simplified, this 

procedure still adds non-negligible computational overhead.  There are two methods that 

can be used to apply this process in a more efficient manner. 

First, the three steps (112)-(114), can be combined.  Each step is a matrix 

multiplication, so an alternate method is, 

 kjidirkjidirkjidirkjidir ,,,,,,,,,,,,,,, wP
1

ww RDIRDPD −== . (115) 

Before simulation begins, the kjidir ,,,P  matrices can be calculated, and then the PEC 

condition can be quickly applied with a single matrix multiplication.  This method is a 

simple way to modify an existing Haar MRTD code to add local PEC modeling.  An even 

more efficient method is to directly modify the MRTD update equations. 

In Haar MRTD the D field update equations can be calculated using the same 

procedure as (50), yielding 
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In the Haar MRTD case, the sums are not required, because the overlap of the D and B 

basis functions only extends to the nearest neighbors.  All of these equations have the 

same format; the only differences between the equations are the field values involved and 

the entries of the U matrices.  It should be noted that the U matrices are the same size as 

the reconstruction/wavelet decomposition matrices.  Neglecting unneeded subscripts, any 

of (116)-(118) can be represented as, 
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where the w subscript indicates that the vector is scaling/wavelet magnitudes.  The 

updated D vector can be reconstructed to give field values at specific points by 

multiplication with R, 
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The 11 dirdir WRDD =  term represents the field values at the equivalent grid points, not the 

scaling/wavelet coefficients.  Thus, (120) is an equation that gives updated D field values 

from H scaling/wavelet coefficients.  If the PEC condition is applied,  
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Transforming back into the wavelet domain, 
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If a new matrix UPEC is defined,  

 RUIRU PPEC
1−= , (123) 

then a new update equation can be defined, 
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The 1
1

dirWPRDIR−  condition does not have to be explicitly enforced because 1dirWD  

represents the scaling/wavelet coefficients from the previous time step, where the 

condition has already been applied. 

This technique provides a method that can be used to automatically apply the PEC 

boundary condition within the Haar-MRTD update equations.  In this method, the PECU  

matrices can be calculated before the simulation begins, and therefore do not add 

significant overhead to the field updates.  In fact, this method can be expanded to allow 

other subcell effects to be automatically applied in the MRTD update scheme. 

 

3.3 GENERAL SUBCELL EFFECTS IN HAAR-MRTD: COMPOSITE CELLS 

 

In the previous section, the reconstruction/wavelet transform matrices were used to 

apply the PEC boundary condition directly in the MRTD update.  If the 

reconstruction/deconstruction is applied to all of the fields in the update equation, 
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and the substitutions, 

 WRHH = , (126) 

 1−= RURUL , (127) 

where the subscript L is used to refer to the update equation for local, pointwise, fields, is 

made, then 
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This equation is an update for the field values at the equivalent grid points from field 

values at equivalent grid points.  It has been repeatedly stated that MRTD and FDTD are 

equivalent schemes, and (128) is the conversion from MRTD to FDTD.  It should be 

noted, however, that the MRTD scheme can still be used to vary the wavelet resolution, 

and thus the number of equivalent grid points, on a cell by cell basis.  This is an inherent 

property of MRTD that is not available in FDTD.  The pointwise field update 

representation, (128), provides the ability to manipulate the fields at individual equivalent 

grid points and then transform the fields back to the scaling/wavelet domain. 

One application of this technique, and indeed the motivation for discovering this 

technique, is the application of the PEC boundary condition at individual equivalent grid 

points that has already been presented.  Another simple application of this technique is 

the addition of a current source at equivalent grid points.  To this point in this thesis, no 

method of applying a source to the MRTD grid has been presented.  This method is 

equivalent to wavelet transforming a spatial source condition. 

In the pointwise update scheme, a source, J, can be added at each equivalent grid 

point.   
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Multiplying (129) by R-1 converts the equation back to the wavelet domain, yielding,  
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This equation can be used to apply an arbitrarily placed source into the MRTD cell. 

One of the advantages of the Yee-FDTD scheme is that its popularity and longevity 

has led to the development of a large number of techniques that can extend its use.  Some 

examples of techniques that have been developed for Yee-FDTD are the modeling of thin 

wires [24], narrow slots [25], curved structures (with a locally conformal grid) [26], thin 

material sheets [27], dispersive surfaces (such as thin metals) [28], SPICE circuits [29], 

local field correction [30], and lumped elements [31].  The result of all of these 

techniques is modified FDTD update equations for the areas where the effect is applied.  

The surrounding fields are updated normally.  Using the technique that has been 

presented here, it is possible directly bridge the modified FDTD update equations to the 

MRTD technique. 

An example of how this technique can be applied to bridge the pointwise FDTD 

modifications to the MRTD technique is presented here with lumped elements.  The 

procedure for representing lumped elements in FDTD is presented in [31], and a brief 

overview is given here. 

A lumped element, here specified to be a resistor, capacitor, or inductor, can be 

represented in Ampere’s law as a current source, JL, 

 ( ) ( ) ( )t
t
tt LJDH +

∂
∂

=×∇ . (131) 

In this case currents due to loss and impressed currents are neglected for simplicity.  For 

each of the lumped elements listed above, a relationship can be determined for the current 
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as a function of voltage.  The Dz component update will be shown here, although this 

procedure can be easily modified for any direction.  Including the lumped element 

current, the z component of (131) is, 
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noting that, 
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Iz can be determined for each element.  For resistors, 
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capacitors, 
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and inductors, 
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For any of these cases, the MRTD update equations can be determined by inserting the 

current relationship into Ampere’s law and applying the method of moments.  However, 

this method is somewhat difficult.  An example is presented for the resistor. 

The voltage across a single equivalent grid point can be simply calculated as 

 zEV kjikji ∆= ,,,, . (137) 
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However, for Ampere’s law, the update is performed at the n+1/2 time step, while the E 

field is only known for the n and n+1 time steps.  Similar to the method that is used for 

Ohmic losses, the semi-implicit approximation can be applied.  In this case,  

 z
EE

V kjinkjin
kji ∆

+
= +

2
,,,,1

,, . (138) 

When the method of moments is applied to (132), with the voltage-current relationship 

(138), the resulting update equation is, 
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The entries of L have the form, 

 ∫ ∂ΓΓ=
r

rr jiij LL )( , (140) 

with 
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if ∆x, ∆y, and ∆z are the size of the equivalent grid points.  Two difficulties are 

immediately apparent with the equation.  First, it includes both D and E coefficients, 

where before E coefficients were updated directly from the D fields.  Secondly, D fields 

are updated using E fields at the same time step. 

The first of these difficulties can be easily accounted for using the constitutive 

relationship.  In (57), the electric field is determined from the D field.  In the Haar case, 

this relationship becomes 
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Because no neighboring field values are required to determine the E coefficients from the 

D coefficients, the transformation can be applied directly to the update equation.  In this 

case, 
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Using this update, (139) becomes, 
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Collecting terms, 
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and solving for kjixn ,,,1E+ , 
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A similar procedure can be used to determine the updates for capacitors and 

inductors.  This procedure is not difficult, and most of the operations involved are matrix 
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multiplications that can be performed before the start of simulation.  The only integration 

required is to determine the L matrix.  However, there is another method that can be used 

in this case that removes the need to calculate the L matrix. 

The Ez update equation in FDTD for a resistor is [31], 
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Using (128), two additional lumped element matrices can be created that apply the 

lumped element formulation in (147).  The two lumped element matrices L1 and L2, are 

diagonal, with 
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L1 and L2 can be inserted into (128), 
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where again, for simplicity, the subscripts have been dropped.  By rotating the values of 

∆x, ∆y, and ∆z, L can be used for a resistor in any direction.  Converting back to the 

wavelet domain, 
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These matrices can be combined so that each field is only multiplied by one matrix for 

each update, 
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Using this method, resistors can be inserted into the MRTD grid at any equivalent grid 

point, and modified update equations can be found before simulation through simple 

matrix multiplications.  One other important note is that this formulation introduced a 

new update matrix for the current D field.  This does add one extra matrix multiplication 

to the field update, but, as is shown in the next chapter, the general MRTD update 

including UPML includes this matrix. 

Similar updates can be derived for capacitors and inductors.  Capacitors are 

modeled in FDTD using, 
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so, in this case, only one L matrix needs to be determined, 
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In FDTD, inductors are represented using, 
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where it is noted that the sum can be represented as a single value that is augmented at 

each time step.  In this case, both L1 and L2 are the identity matrix, but another matrix 

must be created.  In this case, the sum term is similar to the previously presented current 

source.  If (128) is modified 
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with, 
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Then, using the same procedure as above, (156) can be converted into the wavelet 

domain.  In the case of the inductor, an additional vector, ∑
=

n

m 0
WD  must be used to 

calculate the updates.  It is noted that it is only necessary to store this vector in cells that 

contain inductors. 

 

 



70 

CHAPTER 4 
 

FULL WAVE HAAR-MRTD WITH COMPOSITE-CELL MODLELING, UPML, 
VARIABLE GRIDDING, AND TIME/SPACE ADAPTIVE GRIDDING 

In the previous chapter, a method is presented that allows a variety of elements that 

are smaller than a single MRTD cell to be simulated using the Haar MRTD method.  

Unlike the method presented in [22], this technique treats the entire space as an MRTD 

grid, using scaling and wavelet functions exclusively to represent the field.  The method 

was created to model subcell PEC structures, as most microwave structures are simulated 

using only PEC and dielectric media.  In addition, it is shown that the method can be 

generalized to allow the modeling of several other subcell effects; a specific example is 

provided for lumped elements.  The MRTD method that includes subcell elements and 

varying dielectrics within individual MRTD cells is termed the composite-cell method.  

This is because, instead of homogenous cells that are used in most MRTD simulations, 

these cells can include complex structures.  The advantage of this method is that these 

subcell structures can be treated within the MRTD framework, allowing the adaptive 

MRTD grid to be used to effectively model these structures. 

In order to verify the method, and show that the technique can be used to apply an 

adaptive grid to realistic structures, a 3-D Haar MRTD code was written.  This code 

implements the 3-D MRTD scheme presented in Chapter 2, along with the subcell 

technique for PECs, sources, and lumped elements presented in Chapter 3.  Simulations 

that were performed using this code are presented in Chapter 5.  In this chapter, the 

specific elements of the code that was generated that have not before been published are 

presented.  These elements include a UPML that is valid for arbitrary wavelet resolution, 

non-uniform gridding, and adaptive gridding. 
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4.1 ARBITRARY WAVELET RESOLUTION UPML 

 

The UPML [19] was first developed as an alternative to the Berenger PML [18] 

that did not require non-physical field splitting.  The UPML is expressed as a material 

with a carefully designed permittivity and permeability tensor [14], 
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where, 
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The parameter nσ  represents the loss inside the UPML, and nk  is a matching parameter 

that can be used to fine tune the UPML performance. 

The permittivity and permeability tensors inside the UPML are frequency 

dependent, and are therefore difficult to represent in a time domain scheme.  If the 

constitutive relationship 
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is defined, then a coupled set of time domain equations can be defined to update the 

electric and magnetic fields.  The derivation for the electric fields is shown here, the 

magnetic field updates are found in the same manner. 

The time domain differential equation for the D field is, 
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This system is very similar to Ampere’s law when Ohmic loss is included (the only 

difference is the constant that precedes the time derivative).  It can be discretized using 

the procedure in Chapter 2.  For example, the Dx component of (161) is 
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and the time localized form is, 
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Combining D terms, 
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Next, space localization can be performed, and the update matrices can be computed.  

The Dx update is, 
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where, 
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Similar equations can be found for the Dy and Dz components. 

The relationship between the E and D fields inside the PML is also more 

complicated than in the isotropic non-dispersive case that has already been presented.  

When the Dx relationship of (160) is converted to the time domain [19], 
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must be solved to determine the updated E fields from D fields. 

The time localized form of (169) is 
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Collecting terms and solving for xn E1+  
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Solving for the Ex coefficients, 

 [ ]kjixn
E

kjixn
E
Dkjixn

E
Ekjixn

x

xD

x

x

x

x ,,,,,,1,,,,,,1 0,

,

,
DUDUEUE ++= ++ +

. (172) 

Where, 
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and, again, similar equations can be found for the other directions.  A process similar to 

the one presented here can be used to find the updates for the magnetic fields. 

It has been left until this point to discuss the values of σ and k that should be used 

with this scheme.  The technique for implementing the UPML that has been presented 

here is derived in an equivalent manner to the FDTD UPML [19] (until the last step, 

where the updates for the scaling/wavelet coefficients are found).  The values of σ and k 

can be chosen in exactly the same manner as an FDTD implementation.  In this case, 

σn(n), where n is x, y, or z, is only nonzero within a predetermined distance d of the n 

normal outer boundaries.  Usually, a width of 10 cells is sufficient for the UPML.  Inside 

this boundary, σn(n) is varied from zero to a maximum value σmax.  A polynomial grading 

works well, 

 ( ) max,)( n

m

n d
nn σσ = . (176) 

Similiarly, k can be varied from 1 in the non-UPML region, to kmax at the outer edge of 

the grid. 

There is one important difference between the FDTD and MRTD implementations 

of the UPML.  In FDTD, the σ values are discretized and only applied at FDTD grid 

points.  In MRTD, however, the function σn(n) is used when calculating the update 

equations, and thus the variation in σn(n) across a cell is accounted for.  This method 

could also be applied to FDTD, by determining FDTD coefficients as in S-MRTD. 

It is important to note the similarity between the field updates for the PML and the 

field updates for fields outside the PML.  If σ=0 and k=1, the equations are the same as 
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for the PML free case.  For implementation of the PML in a computer, it is convenient to 

use the PML formulation everywhere, and to only use nonzero σ values inside the PML 

region.  As an added convenience, by using this formulation, the PML does not need to 

cover an entire cell.  For example, in the rmax=1 case, there are four equivalent grid points 

per direction.  If at least 10 equivalent cells of PML coverage are required, then this 

scheme permits exactly 10 to be used, instead of 12 (for three cells entirely covered with 

PML). 

 

4.2 NON-UNIFORM GRID IN MRTD 

 

In the FDTD method, one common technique for conformal meshing is non-

uniform gridding [32].  For a fixed grid size, it is easy to pick a structure (for example 

parallel transmission lines) where a uniform grid (constant ∆x, ∆y, ∆z) cannot align with 

the structure at all points.  If, instead, the grid spacing can vary with position, many more 

structures can be accurately represented in the FDTD grid.  Of course, curved structures 

must still be stair-stepped, but even with these structures, a more accurate grid using 

fewer grid points is possible.  The FDTD algorithm depends on neighboring cells having 

identical dimensions at intersections, and if the grid is varied so that the grid size is a 

function of all three coordinate directions, the grid becomes incompatible with FDTD.  

Therefore, FDTD non-uniform grids must vary the spacing as a function of individual 

directions only.  This means, 

 )()()( kzzjyyixx ∆=∆∆=∆∆=∆ . (177) 

One example of a grid that uses this scheme is presented in Figure 14. 

The 2-D grid that is presented shows the positions of the Ex, Ey, and Hz fields. The 

value of ∆x or ∆y must be computed based on the field update.  For the space derivatives 
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of fields, the value of ∆x or ∆y is the separation between the field components.  Thus, for 

electric field space derivatives, the ∆x or ∆y value is simply the grid spacing.  However, 

for magnetic field spatial derivatives, the value is instead the average of the ∆ values for 

the cells containing each magnetic field.  For example, if the Hz coefficient centered at 

∆x3,∆y3 in Figure 14 is updated, the Ey field coefficients required are the ones centered at  
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Figure 14: 2-D FDTD non-uniform grid example 
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∆y3 and located on either end of ∆x3.  For this update, ∆y= ∆y3.  But, when the Ey field 

component centered at ∆y3 and between ∆x3 and ∆x4 is updated, the Hz  fields required are 

those centered at ∆x3 ,∆y3,  and ∆x4 ,∆y3.  In this case, ∆x=( ∆x3 + ∆x4)/2. 

It would be convenient to have a similar capability for MRTD.  While the MRTD 

adaptive grid does allow the resolution to vary on a cell-by-cell basis, the equivalent grid 

size is always 

 
nrequiv

nn +

∆
=∆ 12

. (178) 

Using this grid size, it is difficult to align the grid with realistic structures.  Furthermore, 

increasing the resolution until an equivalent grid point is close to a feature being modeled 

is an inefficient use of the adaptive grid.  A more effective grid would use both non-

uniform and adaptive gridding. 

The most difficult aspect of implementing a non-uniform grid in the MRTD 

method is determining the correct ∆x, ∆y, and ∆z values to use for each field.  In MRTD, 

the cell size does not appear explicitly in the field update (for the formulation presented 

here) but is an implicit part of determining the update coefficients.  In the derivation 

presented in Chapter 2, a formula for the offset between the electric and magnetic fields 

is given, 

 2max,2 +

∆
=

dr
d

ds . (179) 

In this formula, rd,max is the maximum resolution in the given direction.  It was discussed 

that in the general 3-D scheme, the fields being updated (the time derivative terms in 

Faraday’s and Ampere’s laws) are offset from the other fields in the update (the spatial 

derivative terms) only in the direction of their spatial derivative.  If this scheme is applied 

consistently for all electric and magnetic field coefficients, there is a specific arrangement 

of grid points that must be used.  That arrangement is outlined here. 
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The convention chosen for this work is that all fields are offset relative to a grid 

that is defined by (177).  The field components can be indexed to each of these grid 

points, but the actual domain of each function, defined by the Haar-MRTD scaling 

function (this discussion can be easily extended to general wavelet basis by defining the 

domain as the spacing between the centers of the scaling functions, centered on each 

scaling function), begins at the offset from the grid point.  The grid is consistent with the 

conditions above if the electric fields are offset by s in their coordinate directions, and the 

magnetic fields are offset by sd in the two directions normal to their coordinate direction.  

An example of a grid that meets these criteria is demonstrated in Figure 15.  It should be 

noted that while the offset can be made relative to another point (for example the 

magnetic fields could be offset in their coordinate directions and the electric field in the 

normals) the resulting arrangement of the fields relative to each other must be 

maintained. 

The offset of (177) denotes the start of the scaling function for the electric or 

magnetic field, but does not specify the size of the scaling function.  If the size of each 

scaling function is chosen to simply as )()()( kzjyix ∆×∆×∆ , then the basis functions for 

a single field can overlap.  In Figure 15, a 2-D view of an MRTD grid for rmax=0 (in both 

directions) is used to demonstrate variable gridding.  For rmax=0, sx=sy= ¼.  In the figure, 

the positions of the Ez and Hz equivalent grid points, and the domain of the scaling 

functions, are shown.  The Ez field is offset in the z direction (normal to the page) while 

the Hz field is offset in the x and y directions. 
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Figure 15: Offset between electric and magnetic fields in MRTD  

(a) fixed grid (b) non-uniform grid (implemented incorrectly) 

(c) non-uniform grid (implemented correctly) 
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Figure 15(a) demonstrates a uniform MRTD grid.  In this case, both scaling 

functions have dimensions yx ∆×∆ .  The scaling functions for each field start at the same 

point relative to the grid, and form a non-overlapping basis covering the entire space.  

Figure 15(b) demonstrates a non-uniform MRTD grid.  In this case, the 1x∆  is twice 2x∆ .  

The Ez field is not offset in the x direction, and thus for each cell ixx ∆=∆ .  The Hz field, 

however is offset in the x direction.  When ixx ∆=∆  is used for this field, the Hz field for 

the first cell continues to the center of the neighboring cell.  The Hz field for the second 

cell, however, begins one quarter of the cell width from x1.  This causes the field 

coefficients that represent the Hz field to overlap.  While it may be possible to use this 

field arrangement for MRTD, the overlap between neighboring field components would 

render the scheme implicit, and the wavelet basis non-orthogonal. 

In order to keep the wavelet scheme non-overlapping, and still allow for a variable 

grid, the width of the offset scaling functions must be set so that it begins sd from the 

current grid point, and ends s from the next grid point (note that sd is proportional to the 

cell spacing).  This is demonstrated in Figure 15(c).  A scheme for determining the grid 

size for the different basis functions can then be quantified: 

1. For non-offset directions (directions normal to field component for electric 

fields, or direction of field component for magnetic fields),  

 )(lnn ∆=∆ , (180) 

where l is an index denoting the position along the axis 

2. For offset directions (direction of field component for electric fields, or 

normal to field component for magnetic fields),  

 
4

)()1()( lnlnlnn ∆−+∆
+∆=∆ . (181) 
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4.3 MRTD GRID EXCITATION 

 

In Chapter 3, a method was presented that allows the addition of an impressed field 

to the MRTD field update equations.  A modified Dx update was presented, (129), that 

allows a source function to be applied at specific equivalent grid points and then be 

transformed back into the wavelet domain.  While this equation can be used to impress a 

field at any (or every) point in the MRTD grid, it is likely that only a relatively small 

number of grid points will be modified to excite the grid.  In this case, the fields can be 

excited using 

 JRDD WW
1

11
−+= dirdir , (182) 

after the fields are updated, if J is a vector of field values that is only nonzero at desired 

equivalent grid points.  In this case, (129) is simply split into two steps. 

For the cases that were simulated in this research, only a microstrip excitation was 

required.  The microstrip excitation used for this work impressed a constant electric field 

in a plane normal to the microstrip metal, directly under the microstrip.  For any wavelet 

resolution, it is necessary to use (182).  This is because, when wavelets are applied, there 

is more than one equivalent grid point in each direction.  This relatively simple excitation 

is demonstrated in Figure 16.   

In this example, rmax=0 in all directions, therefore there are two equivalent grid 

points per cell in each direction (eight total equivalent grid points).  In this example, only 

the fields directly under the microstrip are excited.  The field strength is represented by 

arrows, demonstrating that the impressed field at all points is identical in magnitude and 

direction.  The arrows are located at the Ey equivalent grid points, and the cells are 

represented by the alternating shading.  This is meant as simple approximation of the 

microstrip mode; as the field propagates through the grid it quickly matches the 

microstrip field pattern.  In this example, five Ey field points fall under the microstrip 
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line.  As there are two of the field points in the y direction per cell, one cell is split in the 

x direction, where only half is excited.  Similarly, all cells that contain the PEC are split 

in the y direction.  Although it could be claimed that this is a contrived example, as it 

would be a relatively simple matter to keep an even number of points across and under 

the microstrip line, the x-z plane demonstrates why subgridding is required. 

 

 

Figure 16: Excitation in MRTD, rmax=0 cells demonstrated by  

alternate shading 

 

As in all other directions, there are two Ey field points in the z direction per cell.  

These field points are represented by the dots in Figure 16, and the boundaries of the top 

metallization are the dark lines.  For the excitation, however, only a single set of fields is 

excited.  If both are excited, the fields resemble two identical, slightly offset pulses, 

needlessly complicating analysis.  This is similar to subcell PEC analysis, where PECs 

can be simulated with an even number of cells in their tangential directions, but without 

subcell modeling, the PECs are several equivalent cells in thickness.   

Similar limitations apply to coplanar waveguide (CPW) excitations; this case is 

presented in Figure 17.  For CPW excitations, the field is guided between the center 

conductor and the surrounding ground planes.  In this case, the field is excited as a 
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voltage between the center conductor and the outer ground planes.  In the direction of 

propagation (the z direction in the diagram) the field is only one cell thick.  The 

impressed voltage along a line one equivalent cell in thickness can also used for wire 

antennas and probe feeds (in coaxial fed microstrip antennas or waveguides, for 

example). 

 

 

Figure 17: CPW excitation, demonstrating subcell excitation 

 

4.4 TIME/SPACE ADAPTIVE GRIDDING 

 

At the beginning of Chapter 3, the two main advantages of the MRTD method are 

presented.  The first of these advantages is that many of the wavelet basis functions that 

can be used in MRTD allow the use of fewer basis functions per wavelength than FDTD, 

resulting in fewer coefficient updates per time step.  However, it can be very difficult to 

apply PEC boundary conditions and the UPML boundary with these cases.  In this thesis, 
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the focus is placed on Haar wavelet basis functions, and while it is true that the Haar cells 

are larger than FDTD cells, the total number of scaling/wavelet coefficients needed per 

wavelength is the same as in the FDTD case.  The advantage of the Haar scheme is the 

time-and-space adaptive grid. 

The methods that have been presented in this thesis that allow for the modeling of 

general structures using Haar MRTD are derived using an equivalence between FDTD 

and Haar MRTD.  If the Haar MRTD method is applied, and the maximum wavelet 

resolution is used in all cells, the scheme is equivalent to FDTD.  However, the chief 

advantage of the MRTD method is that the wavelet resolution can be varied from cell to 

cell.  Most simulations are not constrained by the dispersion requirement, but instead by 

the structures that are simulated.  For accurate simulation, several grid points must be 

used across each feature.  Using Haar MRTD, the resolution can be locally increased to 

model complex structures, and reduced elsewhere for computational efficiency.  This 

technique can be applied statically before the start of simulation, and automatically 

during simulation.  When applied during simulation, this feature is usually referred to as 

the MRTD time-and-space adaptive grid [33]. 

The concept of the equivalent grid point was introduced in Chapter 2 to 

demonstrate the offset of the electric and magnetic fields in MRTD.  In Haar MRTD the 

equivalent grid points are functionally identical to FDTD grid points (regions of constant 

field value).  When wavelets are added and subtracted from a Haar representation, the 

effect is to add and remove equivalent grid points.  This allows dense discretizations to be 

used in the area of complex structures, and coarse discretizations to be used elsewhere.  

Figure 18 shows the arrangement of the fields (equivalent grid points) in a single rmax=0 

Haar MRTD cell, and also shows the positions of the FDTD grid points if the Yee-cell in 

Chapter 2 is used.  These FDTD equivalent grid points can be used to demonstrate the 

FDTD equivalent grid for Haar MRTD adaptive resolution. 
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Figure 18: Haar MRTD cell (2-D), showing FDTD grid points, rmax=0 

 

As an example of the capabilities of the Haar MRTD adaptive grid, consider the 

grid presented in Figure 19.  In this example, three wavelet resolutions are used from 

rmax=-1 (scaling function only) to rmax=1.  In the rmax=-1 case, there is one equivalent 

FDTD cell per MRTD cell, in the rmax=1 case there are eight equivalent FDTD cells per 

MRTD cell (for a 2-D example).  Similar to Figure 18, the dots represent the equivalent 

FDTD cells, and the surrounding squares represent the MRTD grid boundaries. 

In Figure 19, the adaptive grid is used to place a dense discretization in the center, 

and a coarse discretization in the surrounding area.  Using this grid, a highly detailed 

structure can be modeled in the center, while the surrounding, homogeneous area is 

simulated with low resolution.  This technique is more powerful than the non-uniform 

mesh that is presented earlier in this chapter because the spacing of the equivalent grid 

points is a function of all three grid dimensions, and thus can be increased locally to 

represent complex features.  One important note is that, while this example demonstrates 

the grid when the resolution is the same in all dimensions, this is not a requirement. 
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Figure 19: Adaptive grid example 

 

While the grid that is presented in Figure 19 can be fixed for the entire simulation, 

the MRTD method also provides the ability to change the resolution during simulation.  

In Chapter 3, it is demonstrated that at any point in the grid, the highest resolution 

wavelet represents the deviation from the average.  If the field is not changing rapidly, 

the high resolution wavelets can be neglected during the simulation.  In [33], it is 

suggested that an absolute and relative threshold be used to determine whether a wavelet 

is needed.  This concept forms the basis for the technique that was used in this thesis. 

For this work, the thresholds were chosen as in [33].  The relative threshold is a 

fraction of the value of the scaling function.  If the value of the wavelet is less than this 

fraction of the scaling function, it can be neglected.  The absolute threshold is required 

for low field values, and does not change during simulation.  If the fields are near zero, 

the difference between the scaling and wavelet coefficients will not be large.  However, 

the wavelets are not required because the field does not vary rapidly.  In this case, the 

wavelets will be lower than the absolute threshold, and can be neglected. 



88 

This scheme is not effective if it is applied every time step.  For the test to be 

applied, the wavelet value must be calculated, which defeats the purpose of the adaptive 

grid.  In this work a scheme was used where the wavelets were tested at a user defined 

period.  Wavelets that are below either threshold are neglected until the next testing 

period.  Using this scheme, only the highest level wavelets are tested.  If the wavelets are 

removed, at the next testing period both the currently highest level wavelets are tested 

(one lower than the previous level) and the next highest level is tested.  In this manner, it 

can be determined if wavelets need to be reintroduced into the grid. 

In the code that was used in this simulation, both time-adaptive grids and static (but 

variable in space) grids are used.  Using this scheme, high resolution grids can be used to 

specify complex structures, while the resolution around the structure can be predefined to 

a low value.  In this manner, the adaptive grid can be applied to vary the resolution in 

response to field propagation, while the resolution is not higher than necessary at any 

point in the structure. 
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CHAPTER 5 
 

MRTD SIMULATION EXAMPLES 

The techniques that are presented in this thesis can be used to simulate a wide 

variety of structures in MRTD.  The primary contribution of this thesis, the subcell 

modeling of arbitrary structures, can be used to simulate any structure that can be 

simulated in FDTD in MRTD.  Before this method was developed, PEC structures could 

only be the size of entire MRTD cells (the boundary condition in that case is applied by 

zeroing all scaling and wavelet coefficients in the cell).  This severely limits the 

applicability of MRTD, as the major advantage of MRTD, the time-and-space adaptive 

grid, cannot be used effectively.  If a structure can be represented within a cell, then the 

cells used in an MRTD simulation can be significantly larger.  Using the method 

presented in this thesis, any structure that can be simulated in FDTD can be simulated 

with MRTD.  In addition, the MRTD time-and-space adaptive grid can be applied to 

allow fewer grid points in the MRTD case. 

In order to verify the method, several simulations were run using the MRTD code 

that was developed in this investigation.  The code utilizes all of the features that have 

been discussed, including the UPML, non-uniform gridding and lumped element 

modeling.  For the practical cases, the MRTD results were verified by an FDTD code.  

The FDTD code that was used to verify these results was also written by the author, and 

its results have been verified against measurement for a variety of structures; these 

structures have been presented in several journals and conferences [34-36]. 

To measure the effectiveness of the MRTD code, both simulation time and number 

of equivalent grid points required to simulate the structure were recorded.  The number of 

equivalent grid points, which is equal to the total number of grid points in the FDTD 

case, is useful because it directly relates to the number of calculations required.  This is 
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the best measure of how one MRTD grid compares to another.  In the cases where the 

time-adaptive grid was used, the number of equivalent grid points provided a method to 

measure the effectiveness of the adaptive scheme. 

The microstrip structures that were evaluated in the following examples were 

measured by computing the voltage on the microstrip lines.  The voltage is calculated 

using  

 ( )∫ ∂⋅−=
ab

abV lrE , (183) 

where a is the ground plane and b is the microstrip conductor.  This is the same method 

that is used for FDTD simulations [14].  Similarly, current is calculated using, 

 ( )∫ ∂⋅=
C

I lrH , (184) 

where C is the contour that the current passes through.  These are relatively simple 

calculations, and are solved in the discrete case by summing the electric or magnetic field 

values along the path and multiplying by the space step.  Of course, in MRTD, the field 

must be reconstructed to perform the sum, and the space step used must be the equivalent 

cell size.  In this case it is useful to note that, while the reconstruction is a matrix 

operation, the field at any one point in the cell can be reconstructed by multiplying the 

coefficient vector by the row of the reconstruction matrix that represents the desired 

point. 

Most structures are not characterized in the frequency domain, therefore the time 

domain voltages must be transformed into the frequency domain using a discrete Fourier 

transform (any DFT method will suffice).  Once the frequency domain voltages are 

determined, they can be used to calculate device parameters such as S-parameters and 

characteristic impedance.  S-parameters are calculated using [14] 
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where the Vm is the voltage out of port m and Vn is the voltage into port n.  In most 

simulations, one port is excited and the output is measured at the other ports.  In this case 

the total voltage measured at the output ports can be used directly in (185).  The voltage 

recorded at the input, however, is the total of the input waveform and reflections from the 

structure being characterized.  In this case, a separate simulation of the input line alone 

can be used to determine the input.  This ‘thru’ case can be used as Vn in (185).  For the 

special case of Snn, the following can be used, 

 
( ) ( )

( )ω
ωω

thrun

thruntotaln
nn V

VV
S

,
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For the microstrip lines used here, the characteristic impedance can be calculated 

simply by dividing the voltage between the ground and the conductor at one point with 

the current through the conductor at the same point.  However, the electric and magnetic 

fields are offset.  Both the half-time step and half equivalent grid point offset must be 

accounted for.  Using [37], 

 ( ) ( )
( ) ( )ωω
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ω
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=
zz

tj
z

o II
eVZ , (187) 

the characteristic impedance can be determined.  In this case, the line runs in the z 

direction and the z-1/2 and z+1/2 subscripts indicate that the current values are offset 

from the voltage values by one half of a space step. 
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5.1 PML ABSORPTION USING MICROSTRIP LINE 

 

The first test that was run of the MRTD code was that of a simple microstrip line.  

Beyond a simple check to see if the code is working, this test allows the performance of 

the PML to be evaluated.  As has already been presented, the PML is a numerical 

representation of a non-physical (at least at the time of this printing) high-loss material 

that is perfectly matched for incoming waves at any angle.  When implemented 

numerically, however, the material exhibits small reflections.  The reflections are 

generated in two ways.  First, the medium is highly lossy, but not infinitely lossy; some 

of the incoming wave will propagate through the material, reflect off of the outer PEC 

boundary, and reenter the simulation space.  In addition, when implemented in a discrete 

space, the PML is not perfectly matched and small reflections occur.  The parameters that 

can be used to finely tune the PML are σ , k, and the degree of the polynomial that is used 

to grade them.  Using these parameters, it is possible to characterize the PML for a 

number of applications and values of the parameters [14]. 

The purpose of the test used here was not to completely characterize the PML, but 

rather to verify that the PML was functioning as expected.  The test structure is a 

microstrip line terminated at one end with PML.  The microstrip line is excited using the 

method presented in the previous chapter.  The time shape of the pulse is Gaussian, with 

time duration chosen such that the 3dB point is at 30GHz.  Two structures are simulated.  

In the first case, the line is chosen to be sufficiently long so that reflections from the far 

wall do not return until the initial pulse (and its reflection from the near wall) has passed.  

In the second case, the line is terminated with PML very close to the excitation.   

The simulation was performed using rmax=1 in all directions (64 equivalent grid 

points per cell).  The microstrip PEC is 452µm wide and the substrate is 200µm thick 

with εr=2.2.  The predicted Z0 is 50Ω.  The grid size is 452µm across the microstrip line, 
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so that 4 equivalent grid points are used to model the line.  The cell height is 200µm; the 

entire height of the substrate is modeled with one cell (four equivalent grid points).  

Using this grid, subcell PEC modeling is necessary to restrict the microstrip conductor to 

only one cell in height. 

For this case, S11 was calculated to quantify the reflection from the PML.  The 

reflection, as seen in Figure 20, is lower that -60dB at 10GHz, and slowly increases with 

frequency.  This is expected behavior; the reflection from the PML is caused primarily by 

the effect of the discrete grid.  As the frequency increases, the relative size of the cells 

also increases.  The PML could most likely be tuned by manipulating σ , k, their variation 

across the PML, and the grid size, but it is not required for the structures that are 

characterized in this study.  The response of the featured antenna is significantly higher 

than this noise floor, making the reflection irrelevant. 

 

 

Figure 20: Reflection from PML 
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5.2 LUMPED ELEMENT VERIFICATION: RESISTOR TERMINATED 

MICROSTRIP LINE 

 

In order to test the lumped element algorithm that is presented in Chapter 3, a very 

simple case was simulated.  A microstrip line, the same as in the antenna example, was 

terminated with resistors.  This technique is commonly used to simulate measurement 

environments.  As was shown in the previous example, the PML has low reflections 

across a wide band.  In measurement, the ports are often terminated with a load of fixed 

impedance.  If the input line is not matched to the load, or the characteristic impedance of 

the line changes with frequency, then reflections will occur from the termination.  By 

terminating the simulation with resistors, the measurement environment is simulated. 

In this example, the microstrip line of the previous example is terminated with a 

PML at one end and five parallel resistors at the other.  The PEC that represents the 

microstrip conductor is four equivalent grid points wide (5 Ez field locations).  The 

impedance of the line was first calculated using (188), and is presented in Figure 21.  The 

impedance can be seen to vary slightly over the 50GHz band.  The resistors were chosen 

to represent a 49Ω load (each resistor is 245Ω), the impedance at the center of the band. 

The time domain response is given in Figure 22.  The time domain is presented 

instead of the S-parameters because, in this case, the reflection from the resistor can be 

seen.  The initial pulse is a Gaussian derivative, with the 3dB frequency at 50GHz.  The 

reflection occurs at approximately 175ps, and is the small ripple in the response.  In the 

case where both ends of the line are terminated with PML, the ripple does not appear.  

This response demonstrates that the resistor is matched for part of the band, but not all.  

This is verified by S11, which is presented in Figure 23, demonstrating that the best match 

occurs at approximately 37GHz, the same frequency that Z0=49 Ω. 
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Figure 21: Characteristic impedance of microstrip line 

 

 

Figure 22: Time domain reflection from resistor 
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Figure 23: Frequency domain reflection from resistor 

 

5.3 MICROSTRIP PATCH ANTENNA 

 

The two examples that have been presented effectively validate the code and the 

techniques that have been presented.  Both the microstrip line and the resistors used to 

terminate it in the previous example are smaller than a cell in size, validating the subcell 

PEC procedure.  However, in order to show the advantage of Haar MRTD simulations 

over FDTD simulations (and verify that the code gives results similar to FDTD), another 

example is presented.  In this example, a 30GHz microstrip patch antenna is simulated.  

Several simulations are performed, and the effectiveness of the adaptive grid over a 

variety of threshold values is evaluated.  In addition, a static multiresolution grid is used, 

as well as a mix of static and adaptive grids. 

The antenna that was simulated is presented in Figure 24.  The antenna is based on 

a design for a 30GHz patch antenna built on a thin polyimide film [38].  The microstrip 

line is identical to the line used in the previous two examples.  In the simulation, rmax=1 is 
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used in all directions.  A uniform grid is used with ∆x=452µm, ∆y=200 µm, and 

∆z=725 µm.  The uniform grid is used to ensure that the FDTD grid and the MRTD grid 

are identical.  When a non-uniform grid is used in FDTD, a change in cell size only 

affects adjacent cells.  However, in the MRTD case, the change in cell size affects every 

equivalent cell within the MRTD cell.  Using the offset method presented here, an FDTD 

grid cannot be generated from the MRTD grid by simply subdividing the grid size.  

While it is possible to match an MRTD and FDTD grid (by applying a variable grid to 

every cell in the FDTD grid), the purpose of this example is to measure the effect of the 

MRTD adaptive grid. 

To avoid interaction of the antenna with the boundary, a space of three times the 

antenna width is placed between the PML and the antenna on all sides (three times the 

substrate height on the top).  Including the antenna, the surrounding space, and the 

absorber, the simulation space is 40 cells x 7 cells x 23 cells.  In equivalent grid points 

(and FDTD cells) the grid is 160x28x92.  To model the antenna, a 50GHz Gaussian 

derivative pulse is used to excite the microstrip line.  As a reference to the adaptive grid 

case, an FDTD simulation and MRTD simulation with constant grid were run.  The time 

domain voltage on the feed line is presented in Figure 25. 

In this figure, excellent agreement is observed between the MRTD and FDTD 

simulations.  However, there are small differences between these time domain plots and 

these are revealed in the plot of S11, Figure 26.  It can be seen from the S11 plot that there 

is a small difference between the simulations (approx 1.5%) in the resonance frequency 

of the antenna.  When the time response is examined more closely, Figure 27, the 

differences between the FDTD and MRTD simulations are easier to observe.  The 

primary reason for this difference is the modeling of the varying dielectric in the different 

techniques.  In the FDTD simulation, the εr value used in the update equation is applied 

locally.  For field values on the air/substrate interface, the average of the two values is 
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used.  In the MRTD case, the discretization of the constitutive relationship involves field 

values across the entire cell, leading to the small difference between the two techniques. 

To verify that the differences in the methods that are used to model material 

interfaces is responsible for the frequency shift in Figure 26, another experiment was run 

where εr was kept constant across the entire space.  For this experiment, the εeff (2.47) of 

the microstrip line was chosen.  For this case, S11 is presented in Figure 28.  In this 

example, the MRTD and FDTD results overlap; there is no frequency shift. 

The remainder of the cases that were simulated using this technique are 

experiments with the grid resolution.  The first tests that were run used a static grid, but 

lowered the resolution in the area surrounding the antenna.  This is a very important test, 

because it demonstrates that the technique can be used to locally increase the grid 

resolution to simulate a complex structure (the antenna), while the surrounding area can 

use a coarser grid.  In this case, the smallest grid dimension used in the x direction 

(tangential to the antenna surface) is 1.53/λ .  The grid is sampled significantly higher 

than required for accuracy in free space, however, this grid is necessary to accurately 

model the feed.  When the resolution is reduced in the area surrounding the antenna, the 

spacing is 5.26/λ  for r=0 and 3.13/λ  for r=-1 (scaling function only). 

The results for the r=-1 case are presented in Figure 29.  The grid in this case has 

12.4% fewer grid points than in the grid that uses the same resolution everywhere.  If the 

PML cells are neglected for this calculation, the number of cells is reduced by 34.0%.  

This relatively modest improvement is due to the relatively small structure that is 

simulated.  In this structure, the only area that can be reduced in resolution is the area 

surrounding the antenna, and it uses relatively small number of cells.  In this case, the 

grid has 6440 cells (with 64 equivalent grid points per cell for a total of 412,160 

equivalent grid points), and 1077 of these cells surround the antenna and are reduced in 

resolution (cells in the PML are not reduced).  In addition, the cells on the bottom of the 

grid intersect the ground plane, and the resolution is not lowered in the y direction.  The 
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results for the r=0 case are presented in Figure 29, the number of non-PML grid points is 

reduced by 28.1%. 

The remaining cases that are presented demonstrate the adaptive grid.  In these 

cases the resolution was set to one at the beginning of the simulation, and relative and 

adaptive thresholds, tr and ta respectively, were used to in the manner indicated in the 

previous chapter to automatically determine if wavelets were needed.  The ta values that 

are presented are relative to the maximum value of the pulse for the entire simulation 

(this can be determined a-priori from the excitation).  A number of cases were run, the 

more important ones are presented here.  In all of these cases, the thresholding is 

performed every 110 time steps.  This value is chosen because it represents the Nyquist 

limit for the resonant frequency of the antenna.  When the thresholding is performed 

significantly more often than this rate, the effectiveness is largely unchanged, and for 

values higher than this limit, the scheme is slightly less efficient. 

In the first two cases that are presented, the threshold values are too high.  In Figure 

31, the simulation uses tr=0.1 ta=0.01.  In the time domain output, it can be seen that the 

oscillations of the wave are quickly damped.  This is because the adaptive grid algorithm 

removes wavelets that have significant values.  A similar result is presented in Figure 32.  

In this case, both thresholds are reduced by an order of magnitude from the previous case.  

It can be seen that the damping takes a longer time to occur.  It is interesting to note that 

in both of these cases the results at the time before the results are abruptly damped 

closely match the fixed grid case. 

In the final case that is presented the results are very close to the fixed grid case 

(0.73% error).  The error in this case was calculated by integrating the magnitude of the 

difference between the uniform and variable grid cases and dividing by the integral of the 

magnitude of the uniform case.  In Figure 33, the simulation uses tr=1x10-4 and ta=1x10-5.  

In this case the adaptive algorithm does not remove wavelets that are needed.  However, 

results exactly the same as the fixed grid case could easily be achieved by setting the 
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thresholds to an extremely low value.  For the method to be effective, it must also reduce 

the number of calculations required to update the fields. 

In Figure 34, the number of the equivalent grid points, normalized to the maximum, 

at each time step is presented for the tr=1x10-4, ta=1x10-5 case.  This plot can be used to 

calculate the total number of grid points required for the simulation.  For the case that is 

presented, the reduction in grid points is only 0.6%.  This is extremely low, and is most 

likely due to the fact that the structure being simulated occupies most of the grid.  The 

adaptive algorithm will most likely yield higher efficiency in grids with finely detailed 

structures that are dispersed in a larger grid.  In the next section, one of these structures is 

explored. 

 

 

Figure 24: Microstrip fed patch antenna 
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Figure 25: Time domain response of antenna, FDTD and MRTD rmax=1 

 

Figure 26: S11 of patch antenna, MRTD/FDTD comparison 
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Figure 27: Close-up of differences between MRTD/FDTD, time domain 

 

 

Figure 28: FDTD/MRTD comparison, constant εr 
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Figure 29: Comparison of rmax=1 MRTD with surround grid fixed at r=-1 

 

 

 

Figure 30: Comparison of rmax=1 MRTD with surround grid fixed at r=0 
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Figure 31: Comparison of fixed grid MRTD with adaptive grid tr=0.1 ta=0.01 

 

Figure 32: Comparison of fixed grid MRTD with adaptive grid tr=0.01 

ta=0.001 
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Figure 33: Comparison of fixed grid MRTD with adaptive grid tr=1x10-4 

ta=1x10-5 

 

Figure 34: Number of gridpoints used in simulation vs. time, 

 tr=1x10-4 ta=1x10-5 
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5.4  DUAL MICROSTRIP PATCH ANTENNAS 

 

The previous example served to demonstrate the subcell technique as applied to a 

relatively simple structure and showed the benefit of both fixed subcell grids and 

adaptive grids.  The adaptive gridding method that has been presented allows the grid to 

be varied as a function of position, and provides modest gains for many structures.  This 

technique is even more effective for highly detailed structures with large homogeneous 

areas.  For this example, the antenna from the previous section is employed.  Another 

similar antenna, this one tuned for 43GHz, is placed on the same substrate, separated by 

approximately three wavelengths.  An example of a situation where this configuration 

may be used is in a device that has separate send and receive bands.  In this case, it is 

useful to know the isolation between the antennas and the change in the radiation due to 

the proximity of the antennas.  This structure is presented in Figure 35.   

For this example, the feed for the 31GHz antenna is labeled port one, and the feed 

for the 43GHz antenna is labeled port two.  For this structure, S11 and S22 are presented in 

Figure 36 and Figure 37, respectively.  The return loss for the 31GHz antenna is almost 

exactly the same as in the case where the antenna was evaluated alone.  This can be 

further explained by examining S21, the coupling between the antennas.  In this case, the 

maximum coupling occurs, as expected, at 43GHz (the resonant frequency of the second 

antenna), but it is very low; the isolation between the antennas is 48dB. 

This simulation was evaluated with the same metrics as the previous example.  A 

fixed subcell grid was employed, and the difference between the two simulations was 

examined.  For the fixed grid, high resolution was used to model the antenna, while low 

resolution was used around the antenna. The antenna was simulated with r=1, and the 

surrounding area used r=-1 (scaling function only).  It is important to note that even in 

the r=-1 case, there are still more than 12 equivalent grid points per wavelength.  In the 
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previous example, it was noted that the fixed subcell grid used less overall grid points 

than the adaptive grid case (where the resolution at the beginning was r=1 everywhere).  

In this example, a simulation was run where the adaptive grid was used in the area of the 

antenna, while the surrounding resolution was still fixed at r=-1.  The goal of this 

simulation was to determine what improvement, if any, could be obtained through the 

application of both the adaptive and fixed subcell grids. 

For the fixed subcell grid case, where the resolution between and surrounding the 

antennas was reduced to -1, the efficiency when compared to the uniform grid case is 

41.4%.  The two other cases of interest are the adaptive grid for the entire grid and the 

adaptive grid for the antenna area only (with the surrounding grid at -1 as in the fixed 

subcell case).  For the case where only adaptive gridding is used, there is a 9.4% 

reduction in cells.  This is significantly lower than the reduction using the fixed subcell 

grid, but it does demonstrate that the adaptive grid can be used to achieve non-trivial grid 

reduction while maintaining accuracy.  In the case where the adaptive grid is combined 

with the fixed grid, the total cell reduction is 41.9%.  This is only 0.6% higher than the 

fixed grid case, showing that the adaptive grid does not cause much improvement when 

the grid is already fairly sparse. 
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Figure 35: Dual microstrip patch antenna (shaded area is PML) 

 

 

Figure 36: S11 for dual antennas 
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Figure 37: S22 for dual antennas 

 

 

Figure 38: S21 for dual antennas 
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Figure 39: Adaptive grid for initial r=1 everywhere 

 

 

Figure 40: Adaptive grid with resolution surrounding antenna fixed at r=-1 
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CHAPTER 6 
 

CONCLUSION 

For many years, papers have been written on the MRTD technique promising 

efficiencies in memory and execution time over FDTD and other similar methods [2-

5,8,15,20-23,30,33].  The hallmark of the technique is its multiresolution nature, the 

ability to add or subtract wavelets to create areas of varying resolution both before and 

during simulation.  Of course, MRTD is not a single technique, but a method that can be 

applied using a variety of basis functions, each with its own advantages and 

disadvantages.  Many of these wavelet bases require the use of significantly fewer 

coefficients per wavelength than FDTD, although the overall scheme is significantly 

more complicated.  Of course, the effectiveness of these techniques when applied to 

highly detailed structures is questionable, as the grid density is often not dictated by 

dispersion requirements, but the size of the structure being simulated [22].  To date, no 

papers have been written detailing the simulation of complex structures using the method.  

In addition, like most high order methods, the smoothly varying basis functions create 

difficulties when modeling hard boundary conditions [2,17,22]. 

Like all of engineering, efficiencies gained in one area must be measured against 

costs in another.  For this thesis, Haar MRTD was chosen as a compromise that allowed 

both the modeling of general, highly detailed structures, and efficiency improvements 

due to multiresolution.  The techniques that are presented in this thesis allow modern 

microwave structures to be simulated with Haar MRTD in such a way that the adaptive 

grid can be used to its maximum potential.  This thesis presents, for the first time, the use 

of a time-and-space adaptive grid in MRTD.  The gains achieved with the adaptive grid 

are modest, although they will show the most benefit structures with small details and 

large, open spaces. 
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The methods presented in this thesis are often benchmarked against the FDTD 

method both because it is considered the standard in time-domain techniques, and 

because it is very similar to the method that is presented.  Indeed, the method developed 

in this thesis can be considered a multiresolution FDTD method.  In this manner, the 

FDTD advantage of simplicity, and through simplicity the ability to be modified to model 

a wide array of structures, is coupled with the efficiency of multiresolution.  The 

examples presented in this thesis demonstrate that the technique can be used to model 

modern structures, and that it is possible to employ the adaptive grid efficiently. 

With any research come the questions of both future research possibilities and 

additional applications.  The applications presented in this thesis validate the technique, 

but the technique is general and can be used on a wide array of structures.  One promising 

application of this technique to microwave design is statistical based characterization 

techniques such as design of experiments (DOE).  In this technique, and related ones such 

as response surface modeling (RSM), a structure is characterized for several 

configurations using a full-wave modeler, such as MRTD, and then the statistical tool is 

used to develop a model for the entire range of tested configurations.  Using this model, it 

is possible to create a library of devices that can be quickly customized to differing 

requirements.  The author has applied this technique to multiple structures using FDTD 

[39,40], and the MRTD method presented is perfectly compatible with this technique. 

Another interesting avenue for future research is the exploration of methods to 

implement the technique more efficiently.  While the technique is presented as a series of 

matrix multiplications, and the code that was developed implements the technique in this 

manner, it is not necessarily the most efficient method possible.  The technique that is 

presented includes a wavelet reconstruction that can be used to convert the MRTD grid to 

a pointwise, FDTD-like formulation.  The formulation is called FDTD-like because, 

when multiresolution is applied, the algorithm allows grids that are not possible in Yee-

FDTD.  However, in the pointwise method, the update of a single equivalent grid point 
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only involves it nearest neighbors.  This method is most likely more computationally 

efficient, and is an excellent avenue for future work. 

While it can be said that this thesis provides the groundwork for many future 

research goals, it also is important to note that the work that is performed allows the 

MRTD technique to be applied to these cases for the first time.  The work that is 

presented in this thesis transforms the existing MRTD work, which is a general method 

that promises efficiency, into a robust technique that can be used to simulate a wide 

variety of electromagnetic phenomena.  The major limitation of MRTD prior to this work 

was that, while the large MRTD cells could contain a variation in εr, they could not 

contain PECs or fine structures such as wires, slots and lumped elements.  Without this 

ability, MRTD cells were limited to the size of PEC structures, which negates that 

multiresolution advantage.  Using this method, larger cells that include all of the 

previously mentioned subcell effects can be used.  Surrounding cells, which are largely 

homogenous, can use lower resolution. 

To summarize, several important additions to the cannon of MRTD work have been 

presented in this thesis.  First, a minor contribution has been made in terms of the 

notation used to represent MRTD schemes.  A similar vector notation to the one 

presented in this thesis has been used for Haar MRTD in a few publications [8,17], but 

this notation was extended to general basis functions, which allows the comparison of 

several methods using consistent notation than is significantly more compact than 

showing the update for each coefficient individually.  The major contributions are the 

subcell PEC modeling, and the more general method of combining pointwise subcell 

effects to the general multiresolution scheme.  In addition, the implementation of the 

UPML for a general wavelet basis was demonstrated, and the implementation of a 

variable grid in MRTD was presented.  Using these techniques, Haar MRTD gains the 

flexibility to model general structures while exploiting its multiresolution nature to the 

fullest. 
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