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SUMMARY

Power amplifiers (PAs) are important components of communication systems and are

inherently nonlinear. When a non-constant modulus signal goes through a nonlinear PA,

spectral regrowth (broadening) appears in the PA output, which in turn causes adjacent

channel interference (ACI). Stringent limits on the ACI are imposed by regulatory bodies,

and thus the extent of the PA nonlinearity must be controlled. PA linearization is often

necessary to suppress spectral regrowth, contain adjacent channel interference, and reduce

bit error rate (BER). This dissertation addresses the following aspects of power amplifier

research: modeling, linearization, and spectral regrowth analysis.

We explore the passband and baseband PA input/output relationships and show that

they manifest differently when the PA exhibits long-term, short-term, or no memory ef-

fects. We provide an explanation for the various memory effects in the context of AM/AM

and AM/PM responses. The so-called quasi-memoryless case is especially clarified. Four

particular nonlinear models with memory are further investigated. We examine bandpass

nonlinearities and their ramifications in the baseband and present a baseband formula which

reveals that in the quasi-memoryless case, AM/AM and AM/PM conversions are sufficient

to characterize the PA. We provide experimental results to support our analysis.

We employ the indirect learning structure to identify the Hammerstein predistorter for

a PA modeled by a Wiener model. We compare the performance of two Hammerstein sys-

tem identification algorithms; i.e., the Narendra-Gallman and least-squares/signular value

decomposition algorithms. The benefits of using the orthogonal polynomials as opposed to

the conventional polynomials are explored, in the context of digital baseband PA modeling

and predistorter design. A closed-form expression for the orthogonal polynomial basis is

derived. We demonstrate the improvement in numerical stability associated with the use of

orthogonal polynomials for predistortion.
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Spectral analysis can help to evaluate the suitability of a given PA for amplifying cer-

tain signals or to assist in predistortion linearization algorithm design. With the orthogonal

polynomials that we derived, spectral analysis of the nonlinear PA becomes a straightfor-

ward task. The orthogonal polynomial PA parameters directly reveal the severity of spectral

regrowth, as measured by the adjacent channel power ratio. We carry out nonlinear spec-

tral analysis with digitally modulated signal as input. We show that by taking into account

the cyclostationary nature of the processes, more accurate spectral analysis results can be

obtained. We demonstrate an analytical approach for evaluating the power spectra of fil-

tered QPSK and OQPSK signals after nonlinear amplification. A salient feature of our

analysis is that we do not need to assume that the PA input is Gaussian. We employed the

Leonov-Shiryaev formula to obtain closed-form output PSD expressions that apply to an

arbitrary-order polynomial type of nonlinearity, which may include memory effects. These

results can help us make important practical decisions such as what factors contribute to

spectral regrowth, and how to control or correct them in order to keep the adjacent channel

interference to within limits.

Many communications devices are nonlinear and have a peak power or peak ampli-

tude constraint. In addition to possibly amplifying the useful signal, the nonlinearity also

generates distortions. A measure that takes into account both these effects is the signal-

to-noise-and-distortion ratio (SNDR). We focus on SNDR optimization within the family

of amplitude limited memoryless nonlinearities. We show that under the peak amplitude

constraint, the nonlinearity that maximizes the SNDR is a soft limiter with gain, and the

specific gain (or equivalently, the threshold of the limiter) is found according to the peak

signal to noise ratio (PSNR) and the distribution of the input amplitude. We obtain a link

between the capacity of amplitude-limited nonlinear channels with Gaussian noise to the

SNDR. These results are also of interest in applications such as predistortion linearization

and peak-to-average power ratio reduction.
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CHAPTER I

INTRODUCTION

Power amplifiers (PAs) are important components of communication systems and are inher-

ently nonlinear. For example, the so-called Class AB PAs, which are moderately nonlinear,

are typically employed in wireless basestations and handsets. When digitally modulated

signals go through a nonlinear PA, spectral regrowth (broadening) appears in the PA out-

put, which in turn causes adjacent channel interference (ACI). Stringent limits on the ACI

are imposed by regulatory bodies, and thus the extent of the PA nonlinearity must be con-

trolled. PA linearization is often necessary to suppress spectral regrowth, contain adjacent

channel interference, and to reduce bit error rate (BER).

PA modeling has been a popular topic of research in the last few decades. Substantial

efforts have been invested in the modeling of memoryless nonlinear PAs. The power series

model, or the polynomial model, is widely used in the literature to model mild nonlinear

effects in the PA (see e.g., [36], [64]). More recently, there are growing interests in model-

ing nonlinear PAs with memory effects. The cause of memory effects can be electrical or

electro-thermal [118]. High-power amplifiers (HPAs) such as those used in wireless basesta-

tions exhibit memory effects; wideband signals also tend to induce memory effects in PAs.

Recently in [65], a memory polynomial model is proposed to fit nonlinear PAs with mem-

ory. The more general Volterra series (which is polynomial in nature) has also been used

to model nonlinear devices with memory [72].

Prediction of spectral regrowth for a prescribed level of PA nonlinearity can be very

helpful for designing communication systems. Since more linear PAs are less efficient, prac-

titioners may wish to use the PA in a configuration that allows for maximum PA efficiency

while still stay below the spectral emission limits. Such optimization strategy is feasible if

we have tools for spectral regrowth analysis. In [129], it is shown that after extracting the

coefficients of a polynomial PA model, it is then possible to predict spectral regrowth of
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digitally modulated signals using the concept of cumulants.

If a nonlinear PA is used to transmit non-constant modulus signals, PA linearization is

often necessary. Among all linearization techniques, digital baseband predistortion is one

of the most cost effective. A predistorter, which (ideally) has the inverse characteristic of

the PA, is used to compensate for the nonlinearity in the PA. To linearize a memoryless

nonlinear PA, one can pursue lookup table (LUT) based or model based approaches. The

LUT approach is easy to implement but may take a relatively long time to converge. More-

over, the piece-wise linear curve has a zig-zag appearance which may introduce additional

nonlinearities that degrade the performance [68]. As for model based approaches, the poly-

nomial model is a common choice due to its simplicity and ease of implementation [36, Sec.

3.3], [48]. Volterra series [47] and certain special cases of the Volterra series, for example,

the Hammerstein model [41] and the memory polynomial model [38], have been proposed

for predistorter design that includes memory effects.

1.1 Background

Power amplifiers (PAs) have been the focus of research for the past few decades. More

recently, due to technological advances in the digital signal processing (DSP) area, ana-

logue solutions are increasingly replaced by DSP type solutions. The interaction between

DSP and microwave engineers expended existing research areas and introduced additional

areas of research. Here, we present a literature review focusing on four areas of research:

characterization and modeling of PAs, spectral regrowth analysis of PAs, PA linearization,

and communication aspects of PAs.

1.2 Characterization and Modeling of Power Amplifiers

Power amplifiers are often characterized by experimental means. Measurements obtained

from a PA provide information on the PA characteristics such as the AM-AM and AM-PM

transfer functions, 1 dB compression point, third-order intermodulation (IMD3), and fifth-

order intermodulation (IMD5). Based on these measurements, we can obtain information

regarding the nonlinearity and of the PA to select an appropriate PA to match a desired
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application as well as to verify that the PA meets regulatory standards. For linear time-

invariant (LTI) devices, frequency response is a sufficient representation: changing the input

statistics will not change the frequency response of the system. However, a nonlinear device

may exhibit a different frequency response when measured with a different input signal. For

example, white noise excitation may yield a different frequency response from that of single

tone excitation. For this reason, an input independent representation is desired. Behavioral

or systematic modeling can offer a compact representation of the PA characteristics using

a relatively small set of parameters. The PA can be modeled using a circuit diagram

with values of the components as the model parameters. On the other hand, it can be

modeled using a parameterized “black-box”. In any case, the goal in mind is to offer a

parsimonious and accurate model for the PA. Discussions on spectral regrowth analysis and

PA linearization will be presented later.

1.2.1 Memoryless Model

An instantaneous transfer function is sufficient to represent a memoryless PA. One way

to model a memoryless transfer function is to use a polynomial model. The baseband

polynomial model for a memoryless nonlinear PA is given by:

y(t) =
K∑

k=0

c2k+1|z(t)|2kz(t), (1.1)

where y(t) is the baseband PA output signal, z(t) is the PA input signal, and c2k+1 is the

(2k + 1)th complex-valued polynomial coefficient. In [18], it is shown that the memoryless

PA input/output baseband model given by (1.1) contains only odd-order nonlinear terms

(e.g., terms associated with c1, c3). Bösch and Gatti pointed out in [24] that when the

coefficients {c2k+1} are real-valued, the PA represented by (1.1) is strictly-memoryless.

On the other hand, when the coefficients {c2k+1} are complex-valued, the PA is quasi-

memoryless. However, if the PA is no longer quasi-memoryless, the baseband polynomial

model in (1.1) is no longer valid and more elaborate model such as the Volterra series model

should be considered.

The quasi-memoryless PA, (i.e., a PA that can be represented using (1.1)), can be

characterized by two quantities. The first is the input amplitude to output amplitude
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Figure 1.1: AM/AM and AM/PM conversions measured from a real PA.

(AM/AM) conversion, i.e., the conversion from |z(t)| to |y(t)|. The second is the input

amplitude to input/output phase difference (AM/PM) conversion, i.e., the conversion from

|z(t)| to ∠y(t) − ∠z(t). We examine both PA input z(t) and PA output y(t) to verify that

AM/AM and AM/PM are sufficient to represent a PA given by (1.1). The amplitude of the

PA output is |y(t)| = |
∑K

k=0 c2k+1|z(t)|2k+1|, which is a function only of the input amplitude

|z(t)|. The phase of the PA output is ∠y(t) = ∠z(t)+∠
∑K

k=0 c2k+1|z(t)|2k+1, which means

that ∠y(t) − ∠z(t) is a function of |z(t)| only. Fig. 1.1 shows the AM/AM and AM/PM

conversions taken from an actual PA. Looking at the AM/AM curve presented in Fig. 1.1(a),

we observe that for a small input amplitude |z(t)|, the output amplitude of the PA |y(t)| is

a linear function of the input amplitude |z(t)|. Moreover, in Fig. 1.1(b), we notice that for

a small input amplitude |z(t)|, the phase deviation ∠y(t) − ∠z(t) is relatively constant as

a function of the input amplitude |z(t)|. Many PAs share this property, which can be well

characterized using the polynomial model in (1.1). The polynomial model offers a simple

way to describe and analyze a memoryless nonlinear PA. However, the polynomial model

has two major potential disadvantages: numerical instability and the lack of capability to

model memory effects.

1.2.2 Volterra Series

In wideband applications or when high power amplifiers are employed, memory effects can

no longer be ignored. In such cases, memoryless predistortion can no longer achieve the
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required level of linearization performance. The cause of memory effects can be electrical or

electro-thermal as suggested in [118]. The Volterra series model offers a good representation

for the nonlinearity as well as the memory effects of the PA [72]. General background and

theory regarding the Volterra series model can be found in [106]. In [119], the Volterra

series is used to model a PA and obtain theoretical expressions for the power spectral

density (PSD) at the output of the PA and for the intermodulation performance of the PA.

The baseband Volterra series model for the PA is given by:

y(t) =
K∑

k=0

∫
· · ·
∫
H2k+1(τ1, . . . , τ2k+1)

k+1∏

i=1

z(t− τi)
2k+1∏

i=k+2

z∗(t− τi)dτ1 · · · dτ2k+1 (1.2)

where H2k+1(τ1, . . . , τ2k+1) is the (2k + 1)th-order kernel. When H2k+1(τ1, . . . , τ2k+1) =

c2k+1
∏2k+1

i=1 δ(τi), this model simplifies to the memoryless polynomial model in (1.1). The

advantage of this model is that it can approximate very accurately a very large class of

nonlinear systems, and thus can capture a significant portion of the PA characteristics.

To illustrate the memory modeling capabilities of the Volterra series model, we consider

the IMD3 evaluated using a two-tone test in the following example. Consider the Volterra

series model given by

y(t) = z(t) − 0.2|z(t)|2z(t) + 0.1|z(t− 1)|2z(t− 1) (1.3)

and the memoryless polynomial model

y(t) = z(t) − 0.2|z(t)|2z(t). (1.4)

To examine the IMD3 behavior in each of the systems, we use a two-tone signal given by

z(t) = e−j2π ∆
2

t + ej2π ∆
2

t = cos(π∆t), (1.5)

where ∆ is the frequency spacing of the two tone signal. Note that since we deal with a

baseband model, the frequencies of the two-tone signal in the passband are fc − ∆
2 and

fc + ∆
2 , where fc is the carrier frequency. The resulting output for the model (1.3) is given

by

y(t) = cos(π∆t) − 0.2
(
cos(π∆t) + 2 cos(2π∆t) + cos(3π∆t)

)

+0.1
(
cos(π∆(t− 1)) + 2 cos(2π∆(t− 1)) + cos(3π∆(t− 1))

)
, (1.6)
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Figure 1.2: IMD3 results from a two-tone test of the Volterra series system in (1.3).

and the resulting output for the model (1.4) is given by

y(t) = cos(π∆t) − 0.2
(
cos(π∆t) + 2 cos(2π∆t) + cos(3π∆t)

)
. (1.7)

We shall examine the third-order intermodulation (IMD3), i.e., the quantity A(∆)ejθ(∆) in

the component of the form A(∆) cos(3π∆t+ θ(∆)) in y(t). Since in (1.6), the components

associated with frequency 3∆ are −0.2 cos(3π∆t) + 0.1 cos(3π∆(t− 1)), IMD3 is given by

IMD3(∆) = A(∆)ejθ(∆) = −0.2 + 0.1 cos(3π∆) − j0.1 sin(3π∆) (1.8)

A(∆) = 0.1

√
(2 − cos(3π∆))2 + sin2(3π∆) = 0.1

√
5 − 4 cos(3π∆) (1.9)

θ(∆) = arctan

(
−0.1 sin(2π3∆

2 )

−0.2 + 0.1 cos(2π3∆
2 )

)
. (1.10)

Note that A(∆) and θ(∆) are the amplitude and phase of the IMD3. In Fig. 1.2, we present

the amplitude and the phase of the IMD3 for the Volterra series system as given by (1.9)-

(1.10). We observe that both amplitude and phase depend on the frequency spacing, which

is an indication for the existence of memory effects. On the other hand, if we examine IMD3

at the output (1.7) of the memoryless system given by (1.4), we obtain

IMD3 = A(∆)ejθ(∆) = −0.2 (1.11)

A(∆) = 0.2 (1.12)

θ(∆) = −π. (1.13)

In (1.11)–(1.13), both amplitude and phase of the IMD3 are constant and therefore the

IMD3 is constant w.r.t. the two-tone frequency spacing ∆. These observations illustrate
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the capabilities of the Volterra series model to capture memory effects as they are observed

by the IMD3 test. Similar arguments can be made for the IMD5 etc. tests.

The main disadvantage of the Volterra model is its complexity. While the (2K + 1)th-

order polynomial model is characterized by up to 2K + 1 parameters, the Volterra series is

characterized by (2K + 1) kernels where the highest order kernel is a (2K + 1) dimensional

function. Using the full Volterra series for real-time applications is often impractical.

1.2.3 Wiener Model

To avoid the complexity issue associated with the Volterra series representation, other

models have been offered. One of these models is the Wiener model. The Wiener system is

a linear time-invariant (LTI) system followed by a memoryless nonlinearity (see Fig. 1.3).

The output y(t) of a Wiener system is given by:

y(t) = f(s(t)), s(t) =

∫
h(τ)z(t− τ)dτ, (1.14)

where f(·) is the input/output transfer function of the memoryless nonlinearity and h(τ)

is the impulse response of the LTI portion of the Wiener system. Using the polynomial

model f(s(t)) =
∑K

k=0 c2k+1|s(t)|2ks(t), we can offer a simple baseband representation for

the memoryless nonlinearity. This model is a special case of the Volterra series model with

H2k+1(τ1, . . . , τ2k+1) = c2k+1

∏k+1
i=1 h(τi)

∏2k+1
i=k+2 h

∗(τi). In [33], Clark et.al. used a Wiener

model to capture the nonlinear memory effects in the PA associated with wideband signals.

z(t)
- H(z) -

s(t)

f(·) -
y(t)

Figure 1.3: Wiener Model.
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1.2.4 Hammerstein Model

The Hammerstein model is another nonlinear model with memory, which offers similar com-

plexity to that of the Wiener model. The Hammerstein system is a memoryless nonlinearity

followed by an LTI system (see Fig. 1.4). The output y(t) of a Hammerstein system is given

by

y(t) =

∫
h(τ)s(t− τ)dτ,

s(t) = f(z(t)), (1.15)

where f(·) is the input/output transfer function of the memoryless nonlinearity and h(τ) is

the impulse response of the LTI portion of the Hammerstein system. Using the polynomial

model f(z(t)) =
∑K

k=0 c2k+1|z(t)|2kz(t), we can offer a simple baseband representation for

the memoryless nonlinearity. This model is a special case of the Volterra series model with

H2k+1(τ1, . . . , τ2k+1) = c2k+1h(τ1)
∏2k+1

i=2 δ(τi − τ1). The output of a Hammerstein PA is

linear w.r.t. the LTI portion parameters as opposed to the Wiener model [82]. Therefore,

Hammerstein system identification can be relatively simple as compared to the Wiener

system.

z(t)
- f(·) -

s(t)

H(z) -
y(t)

Figure 1.4: Hammerstein Model.

1.2.5 Wiener-Hammerstein Model

The Wiener-Hammerstein system is a concatenation of the Wiener system and the Hammer-

stein system. Since the nonlinear portion of the Wiener system is followed by the nonlinear

portion of the Hammerstein system, both portions can be combined into a single block.

Therefore, the Wiener-Hammerstein system is an LTI system followed by a memoryless

nonlinearity followed by a second LTI system (see Fig. 1.5, which has also been referred to
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as the LTI-MNL-LTI system). The PA output y(t) is given by

y(t) =

∫
h2(τ)s(t− τ)dτ,

s(t) = f(w(t)),

w(t) =

∫
h1(τ)z(t− τ)dτ, (1.16)

where h1(τ) is the impulse response of the LTI portion of the Wiener system, h2(τ) is the

impulse response of the LTI portion of the Hammerstein system, and f(·) is the memoryless

nonlinearity (MNL). Using the polynomial model f(w(t)) =
∑K

k=0 c2k+1|w(t)|2kw(t), we

can offer a simple baseband representation for the memoryless nonlinearity. The advantage

of this model over the Hammerstein and the Wiener models is that it is more general and

therefore model the PA more accurately. The added cost in complexity is reasonable. This

model arises in the context of satellite communications [17]. The LTI systems represent the

uplink and the downlink channels and the NL system represents the PA at the satellite.

z(t)
- H1(z) -

w(t)

f(·) -
s(t)

H2(z) -
y(t)

Figure 1.5: Wiener-Hammerstein Model.

1.2.6 Parallel Hammerstein Model

In Fig. 1.6, a block diagram of the parallel Hammerstein model is presented. The parallel

Hammerstein model consists of multiple Hammerstein branches with a common input and

an output which is the summation of the individual branch outputs. This system can be

represented by

y(t) =
L∑

i=1

yi(t),

yi(t) =

∫
hi(τ)si(t− τ)dτ,

si(t) = fi(z(t)), (1.17)
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Figure 1.6: Parallel Hammerstein model.

where hi(τ) denotes the LTI portion of the Hammerstein system and fi(·) denotes the

memoryless nonlinearity at the ith branch. Compared to the Wiener and Hammerstein

models, this model is more general and therefore can provide a more accurate model for

the PA. In the single branch case, i.e., L = 1, we obtain the Hammerstein model. If we set

hi(t) = δ(t−iT ), then we can interchange the LTI system with the memoryless nonlinearity.

The resulting system is presented in Fig. 1.7. This model was used in [65] to represent a

nonlinear PA with memory effects and is given by

y(t) =
L∑

i=1

fi(z(t− iT )). (1.18)

For a simple baseband representation, each memoryless nonlinearity can be represented by

a baseband polynomial model with a different set of coefficients. In such case, the model in

(1.18) becomes

y(t) =
K∑

k=0

L−1∑

i=0

cki|z(t− iT )|2kz(t− iT ), (1.19)

which in [39] is referred to as memory polynomial. Note that similarly to the Hammerstein

model with the polynomial nonlinearity, the memory polynomial is linear w.r.t. its coeffi-

cients {cki}. This property allows the use of linear techniques to identify a PA using the

memory polynomial model.

Another useful property of the memory polynomial model is that it can be easily con-

verted to a compact parallel Hammerstein system. This can be done by applying the

10
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Figure 1.7: Memory Nonlinearity [65]. We use z−1 to denote a delay of time T . When
a signal is sampled, z−1 represents a single sample delay of the sampled signal. With a
sampling period of T our notation coincides with the conventional notation.

compact version of the singular value decomposition (SVD) to the matrix C = [cki]. We

expand C as C =
∑L̃

l=1 γlulv
H
l , where γl, ul, and vl are the singular values, singular col-

umn vectors, and singular row vectors of the matrix C, respectively. Note that due to the

compact representation L̃ ≤ min{L,K + 1}. Substituting cki with
∑L̃

l=1 γlulkv
∗
li, we can

rewrite (1.19) as

y(t) =
L̃∑

l=1

Hl[fl(z(t))], (1.20)

where

Hl[sl(t)] =
L−1∑

i=0

γlvlisl(t− iT ), fl(z(t)) =
K∑

k=0

ulk|z(t)|2kz(t). (1.21)

This is an L̃ branch representation as opposed to L branches in Fig. 1.7. Consider for

example the case where K = 5 (polynomial order of 2K + 1 = 11) and L = 20 (memory of

20 taps) in (1.18), i.e., a 20 branch system. This model can be easily simplified to an L̃ = 5

branch system in (1.20).

1.3 PA Spectral Analysis

The design of PAs is constrained by spectral emission limits (e.g., Table 1.1). Nonlinear

PAs create spectral regrowth, i.e., spectral broadening, which creates adjacent channel
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Table 1.1: Spurious emission limits when transmitting [1]

For frequency f with Greater than 780kHz Greater than 1.98MHz
|f − Center Frequency|
Spurious emission levels (a) −42dBc/30kHz (a) −54dBc/30kHz
shall be less than either (b) −60dBc/30kHz
(a), or both (b) and (c) (c) −54dBc/1.23MHz

Spurious emission levels (a) −45dBc/30kHz (a) −60dBc/30kHz
should be less than either (b) −66dBc/30kHz
(a), or both (b) and (c) (c) −60dBc/1.23MHz

interference. In general, the more nonlinear the PA is, the more spectral regrowth it will

generate. It is desirable to design an efficient PA while keeping the spectral emissions of

the PA below the limit. To do so, we have to consider the characteristics of the input signal

to the PA as well as specific parameters of the PA. To obtain the power spectrum at the

output of the PA, one can run extensive simulations to model both the input signal and the

PA characteristics. To avoid that, we would like to have an analytic tool that allows us to

compute the spectral regrowth for a prescribed level of PA nonlinearity. Such an analytic

tool can simplify the process of optimizing the PA efficiency subject to spectral constraints.

When the PA is memoryless, the relationship between its input and output can be

written by

y(t) = f(z(t)), (1.22)

where z(t) and y(t) are the PA input and output, respectively. Given the input statistical

characteristics, our goal is to obtain a closed-form expression for the output power spectrum

given by

S2y(f) =

∫ ∞

−∞
c2y(τ)e

−j2πτfdτ (1.23)

where c2y(τ) = E[y∗(t)y(t + τ)] is the auto-covariance function of the output signal. In

Fig. 1.8, we present a PA output power spectrum, S2y(f), for a nonlinear PA (solid line)

and an input signal with bandwidth ∆ = 0.1. We observe that while the input is restricted

to [−∆
2 ,

∆
2 ], the output spectrum (solid line) is the range [−0.3, 0.3].

In the following, we present a literature review for analysis of the auto-covariance and

spectrum at the output of a nonlinearity. We start by presenting basic results in the

12
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Figure 1.8: PA output power spectrum example.

analysis of the auto-covariance of a nonlinearity. In [16], the PA output auto-covariance

function c2y(τ) is expressed in terms of the input auto-covariance function c2z(τ) in the case

of real-valued Gaussian distributed input. A closed-form expression for the output auto-

covariance in terms of the input auto-covariance is examined for different nonlinearities

such as f(z) = zm, f(z) = zmu(z), f(z) = |z|m, hard- and soft-limiter. For example, with

f(z) = z2, the output auto-covariance is given by c2y(τ) = c22z(0) + 2c22z(τ). The effect

of applying operators such as scaling, translation, differentiation, and integration to the

input signal on the output auto-covariance are also presented. Similarly relationships are

obtained in [77] for elliptically-symmetric distributions. The output auto-covariance of a

µ-law nonlinearity of a real-valued Gaussian input is derived in [121].

A general closed-form expression for the output auto-covariance does not exists in the

general case. Two main different approaches are taken to obtain a closed-form expression

for a general nonlinearity. The first approach is presented by Barrett and Lampard, which

offers the following orthogonal expansion of the nonlinearity:

f(z) =
∞∑

k=0

αkφk(z), (1.24)

where αk = E[φ∗k(z)f(z)] are the coefficients associated with the nonlinearity f(·) and

φk(z(t)) is orthogonal to φm(z(t+τ)) for all k 6= m and any given t and τ , i.e., E[φ∗k(z(t))φm(z(t+
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τ))] = 0, ∀k 6= m [14]. As a result, the output auto-covariance is given by

c2y(τ) = E[f∗(z(t))f(z(t+ τ))] =

∞∑

k=0

∞∑

m=0

α∗
kαmE[φ∗k(z(t))φm(z(t+ τ))]

=
∞∑

k=0

|αk|2E[φ∗k(z(t))φk(z(t+ τ))]. (1.25)

A closed-form expression for φk(·) is given in three cases: real-valued Gaussian distributed

input, Ricean distributed input, and an input of the form z(t) = cos(ωt+θ) with uniformly

distributed θ in [0, 2π]. An input/output cross-covariance expression for the three input

distributions is obtained in [26] and [69]. The corresponding orthogonal functions φk(·)

are the Hermite, Laguerre, and Tchebycheff polynomials, respectively. For example, in the

real-valued case φk(z) = Hk(z), the Hermite polynomials. In this case,

c2y(τ) =
∞∑

k=0

|E[f(z)Hk(z(t))]|2E[Hk(z(t))Hk(z(t+ τ))]

=
∞∑

k=0

|E[f(z)Hk(z(t))]|2
(c2z(τ))

k

k!
. (1.26)

This result is a general auto-covariance expression of any given nonlinearity f(·) linking the

output auto-covariance and the input auto-covariance. The output power spectrum is given

by

S2y(τ) =
∞∑

k=0

|E[f(z)Hk(z(t))]|2
S2z(f) ∗ S2z(f) ∗ · · · ∗ S2z(f)

k!
, (1.27)

where ∗ denotes the convolution operator. Note that the output spectrum in (1.27) is a

weighted sum of various kth-time convolutions of the input power spectrum. A closed-form

expression for E[φ∗k(z(t))φk(z(t + τ))] in (1.25) in terms of c2z(τ) is obtained for the real-

valued Gaussian [20, 27, 122] and the complex-Gaussian [21] cases. Since the closed-form

auto-covariance expression is suitable for any nonlinearity, various nonlinearities have been

examined. The output power spectrum expression for a bandpass nonlinearity characterized

by AM-AM and AM-PM conversions is provided in [31] along with an expression for a µ-law

device. In [42], a hyperbolic tangent NL with real-valued Gaussian input is analyzed.

This approach is used to analyze PA output power spectrum for various input signal

distributions and PA models. In [28], for a PA with the Saleh model [104] PA and soft-limiter
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are analyzed. An OFDM signal is approximated as a complex-Gaussian stationary input

signal. The power spectrum of such a signal is evaluated for a traveling wave tube amplifier

(TWTA) PA following the Saleh model [13,34] and for a solid state PA (SSPA) of the form

(1 + |z|2p)−1/2p [34]. A general closed-form PA output power spectrum expression for a

complex-Gaussian input (e.g., OFDM) is derived in [10–12] and a closed-form expression

for a soft-limiter nonlinearity is obtained. In [29], spectral analysis of a PA modeled by

Tchebichev polynomials is carried out.

Another approach is to model f(·) using the polynomial model, e.g., f(z) =
∑K

k=0 ckz
k(t)

for a bandpass nonlinearity or f(z) =
∑K

k=0 c2k+1|z|2k(t)z(t) for a baseband nonlinearity.

In the real-valued Gaussian case, to obtain a closed-form expression for the output auto-

covariance, E[zk(t)zm(t+ τ)] should be evaluated. A closed-form solution is given in [101].

The Price theorem [87] and its generalization in [85] also offer a solution for this problem.

In the complex-Gaussian case, to obtain a closed-form expression for the output auto-

covariance, E[|z|2k(t)z∗(t)|z|2k(t+ τ)z∗(t+ τ)] should be evaluated. This can be done using

the extension of the Price theorem to the complex-case [117] or by the complex-Gaussian

moments expressions in [76]. After obtaining the output auto-covariance, we can apply the

Fourier transform in (1.24) to obtain the power spectrum.

Following this approach, a closed-form expression for the output power spectrum is

obtained in [43] assuming a complex-Gaussian input and a 3rd-order polynomial. A 5th-

order nonlinear PA is examined in [43, 113]. In [50], the analysis was carried out for a

9th-order nonlinear PA and is generalized to the nth-order in [58]. Using the same result,

an IS-95 PA output spectrum is evaluated in [55], whereas for the OFDM signal adjacent

channel interference (ACPR) is evaluated in [56]. When only AM-AM conversion exists, a

real-valued analysis is used to obtain the output power spectrum for a 3rd-order polynomial

[123–125]. Similarly, a 5th-order expression is derived in terms of the PA gain G, its 3rd-

order interception point (IP3) and its 5th-order interception point (IP5) in [37], specifically

for CDMA, TDMA inputs in [126] and for TDMA and 16QAM inputs in [71]. In [128],

real-valued Gaussian signal is used to model the bandpass signal. As an alternative to the

Gaussian moment theorem, [129] uses cumulant based approach for a 7th-order nonlinear
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PA with (non-)Gaussian input. In [7], CDMA with QPSK modulation is analyzed and a

closed-form output spectrum expression for a 3rd-order PA is obtained. In [127], a third-

order analysis is carried out for a BPSK and QPSK input and a Bessel-series PA.

In [20], an LTI system is considered after a memoryless PA (Wiener model). For this

model, the output power spectrum is multiplied with the LTI system frequency response

magnitude. However, to the best of our knowledge there has been no closed-form expression

for spectral regrowth for other PA models with memory effects.

1.4 Power Amplifier Linearization

In Section 1.2, we mentioned that PA modeling and characterization can help in selecting

a PA to match a given application. To ensure linear amplification of a signal, a PA with

a power higher than required is usually selected such that the input signal fits into the

linear region of the PA. This “back-off” approach can result in a significant increase in PA

power specification as well as reduced efficiency, since the PA is using a high DC power

but is utilizing only a small portion of its allowed input range. The linearization approach

offers a remedy to this problem. To illustrate this concept, we present an example in Table

1.2 [2]. We compare a linearized 80W PA to an unlinearized 160W PA. The 80W PA is

Table 1.2: Digital predistortion: reduced power consumption, less heat dissipation and
cooling costs, and higher reliability can be achieved.

Digital Predistortion No Yes

PA Power Rating 160 W 80 W

Peak Power 80 W 80 W

PAR 9 dB 9 dB

Average Power 10 W 10 W

Back-off 12 dB 9 dB

Efficiency 9% 18%

Power Dissipation 101 W 45 W

linearized and can operate in the linear mode with a peak power of 80W. On the other hand,

to ensure linear operation, the unlinearized 160W PA may only be utilized up to a peak

power of 80W. Since only half of its power is utilized, i.e., the 160W PA uses additional

3dB back-off, its efficiency is lower than that of the 80W PA. Its power dissipation is more
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than twice than that of the 80W PA.

We identify a few major advantages for the linearized 80W PA. It can be smaller and

cheaper than the 160W PA since both price and size generally increase with the PA power

specification. It consumes less power and therefore requires less energy to operate. Alter-

natively, if the PA is operating using a battery, then the battery will last longer. Since it

consumes less power, less power will dissipate as heat and cooling costs can be reduced.

Due to its advantages, linearization has attracted a great deal of attention in the literature.

Next, we present different approaches to linearization.

1.4.1 PA Linearization Architecture

PA linearization can be implemented using different architectures. Here, we consider three

of these architectures.
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Figure 1.9: Feedforward architecture.

1.4.1.1 Feedforward linearization

The feedforward linearization technique [22] was invented by H. S. Black along with nega-

tive feedback [23]. While negative feedback suffers limited IMD suppression and instability

problems, feedforward can provide in theory full IMD suppression. In Fig. 1.9, the feed-

forward linearization architecture is presented. The input signal, x(t), is split into two

branches. In the main branch, the input signal x(t) is amplified by the main PA (typi-

cally a high power amplifier) yielding the PA output z(t). In the secondary branch, the

PA output z(t) is scaled and compared with the original input x(t). The resulting error
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signal e(t) goes through a second PA, known as the error PA. Typically, the error PA is

low power and highly linear as compared to the main PA. After the error signal e(t) is

obtained, it is amplified and subtracted from the delayed output of the main PA. Since the

error signal e(t) is the nonlinear distortion, removing it from the PA output linearizes the

PA. While ideally, this architecture is designed to perfectly linearize the PA, it is sensitive

to changes in the parameters of the PA due to factors such as temperature, aging effects,

and amplitude/phase matching, which require the gain G to continuously adapt [90].

1.4.1.2 Predistortion

While the feedforward linearization corrects for the nonlinearity after the PA, the predis-

tortion architecture corrects for the nonlinearity before the PA. In Fig. 1.10, the input

signal x(t) goes first through a predistorter which ideally implements the inverse of the

transfer function of the PA (up to a scaling factor). Then, the predistorted signal z(t) goes

through the PA, yielding y(t), which is ideally a magnitude-scaled version of the input signal

y(t) = Gx(t). Predistortion can be preformed either in baseband or in radio frequency (RF).

In analog, the expanding characteristics of the predistorter can be obtained by subtracting

a compressive transfer function (of a diode for example) from a linear transfer function.

With DSP, on the other hand, the predistorter can be implemented using a lookup table

(typically a memory device) indexed by the input signal magnitude. A DSP is used to

compute and update the values of the lookup table. When the PA exhibits memory effects,

a simple memoryless mapping (such as the lookup table) can no longer be used to fully

linearize the PA; thus memory effects should be included.

-
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PreD -
z(t)

����

HHHHPA -
y(t)

Figure 1.10: Predistortion.
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1.4.1.3 Indirect learning architecture

Predistortion can be implemented using the indirect learning architecture [46] as shown in

Fig. 1.11. The baseband predistorter input is denoted by x(t), the baseband predistorter

output/PA input is denoted by z(t), and the baseband PA output is denoted by y(t). The

feedback path labeled “Predistorter Training Branch” (block A) has y(t)/G as its input,

where G is the intended gain of the PA, and ẑ(t) is its output. The actual predistorter

(copy of A) is an exact copy of the predistorter training branch. When y(t) = Gx(t), the

error e(t) = z(t) − ẑ(t) is 0. To reduce the error between y(t) and Gx(t), we choose the

predistorter parameters that minimize the error e(t). The benefit of the indirect learning

architecture is that, instead of assuming a model for the PA, estimating the PA parameters

and then constructing its inverse, we can go directly after the predistorter1.

1.4.2 Predistortion Models

Considering predistortion as the main architecture, we still have to select an appropriate

model for the predistorted block. Issues such as bandwidth and memory effects should be

taken into account.

1The term “indirect learning” seems counter-intuitive here, since the predistorter is learned directly; it
is the PA characteristics that are learned indirectly.
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1.4.2.1 Memoryless predistorter

When the PA is assumed memoryless, we can select a memoryless predistorter to predistort

it. The input/ouput relationship of the memoryless predistorter is given by:

z(t) =
K∑

k=0

a2k+1|x(t)|2kx(t) (1.28)

where a2k+1 are complex-valued coefficients, x(t) is the input to the predistorter, z(t) is

the output of the predistorter and the input to the PA as shown in Fig. 1.10. Note that

the overall response of the predistorter given by (1.28) and the PA given by (1.1) is also

a polynomial of the same structure. Using the direct approach, we can first obtain the

PA coefficients. Then, we would like the coefficients of the overall predistortion and PA

concatenated polynomial to be zero for the nonlinear terms and constant G (PA gain) for the

linear component. This cannot be done for a finite order polynomial PA. An alternative is

to use the predistorter as the pth-order inverse of the polynomial model in (1.1). This means

that only the first p− 1 nonlinear terms of the polynomial resulting from the concatenation

of the predistorter and the PA are set to zero. Errors in the estimates of the PA coefficients

will yield error in the predistorter coefficients.

When the indirect learning architecture is considered, the coefficients of the predistorter

{a2k+1} are chosen to minimize the error e(z) in Fig. 1.11. One approach is to look for the

coefficients a2k+1 that form a least squares fit to (1.28) with x(t) replaced with y(t)
G . This

approach does not require the estimation of the PA coefficients. Furthermore, the PA does

not have to be polynomial. In [80], a third-order predistorter of the form given by (1.28)

(with K = 1) is used to predistort a nonlinear PA in CDMA communications.

When the complex coefficient model in (1.28) uses the cartesian representation of the

coefficients {a2k+1}, i.e., they are separated into their real and imaginary components, it is

referred to as the cartesian model [102]. An alternative to this model is the polar model [102]

given by

z(t) =

(
K∑

k=0

α2k+1|x(t)|2k+1

)
ej
∑K

k=0(β2k+1|x(t)|2k). (1.29)

where {α2k+1} are the coefficients for the AM/AM transfer function and {β2k+1} are the
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coefficients for the AM/PM transfer function. Note that this model is different from the

model in (1.28). To find the coefficients {α2k+1} and {β2k+1}, we can apply the least squares

fit to (1.29). While the cartesian model is linear w.r.t. its parameters, the polar model is

nonlinear w.r.t. to its parameters. Therefore, a least-square solution may not be easy to

obtain.

To reduce the computational complexity and adapt to time variations of the PA, a

sequential estimate for the PA coefficients can be formed as opposed to a batch estimator.

A sequential estimator evaluates the estimate at time N + 1 based on the estimate at time

N and the most recent data sample at time N+1. A batch approach takes all N+1 samples

into account, therefore, increasing computational complexity. Adaptive approaches such as

the gradient method (e.g., [19, 62, 70]) and recursive least squares (RLS) (e.g., [60]) have

been offered to obtain the predistorter’s coefficients (in both (1.28 and (1.29)) to overcome

the complexity issue associated with the batch estimators.

1.4.2.2 Volterra Model

To predistort PAs with memory effects which were discussed earlier in the context of PA

modeling, a predistorter with memory effects must be considered. A general model for such

predistorter is the Volterra series model. The Volterra series model for the predistorter is

similar to that used for PA modeling and is given by:

z(t) =
K∑

k=0

∫
· · ·
∫
A2k+1(τ1, . . . , τ2k+1)

k+1∏

i=1

x(t− τi)
2k+1∏

i=k+2

x∗(t− τi)dτ1 · · · dτ2k+1 (1.30)

where A2k+1(τ1, . . . , τ2k+1) is the (2k+1)th-order kernel of the Volterra predistorter. In [47]

and [134], the Volterra series model is used to construct the predistorter model. While

the number of basis functions representing the Volterra series model is very large, in [47]

and [134] only selected basis functions are used for predistortion. For example, [134] uses

terms of the form x(n− k)x(n− l)x(n−m) where k, l,m ∈ 0, 1, 2, x(n− k)x(n− l), where

k, l ∈ 0, 1, 2, and x(n − k), where k ∈ 0, 1, 2. Reference [47] uses similar terms where

k, l,m ∈ 0, 1, . . . , N . The model in [47] is a third-order Volterra series with a larger number

of basis functions. In the memoryless case sometimes fifth-, seventh-, and also ninth-order

models are used.
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1.4.2.3 Hammerstein Model

The Hammerstein model reduces the complexity associated with the general Volterra series

model. Similar to the models offered in [47] and [134] the Hammerstein model is also a

special case of the Volterra series model. The Hammerstein model for the predistorter is

similar to that used for PA modeling and is given by:

z(t) =

∫
φ(τ)s(t− τ)dτ, s(t) =

K∑

k=0

a2k+1|x(t)|2kx(t), (1.31)

where {ak} are the coefficients of the polynomial model of the memoryless nonlinearity

and φ(τ) is the impulse response of the LTI portion of the Wiener system. In [62], a

Hammerstein model is used to predistort a high power amplifier in the context of satellite

communications. The downlink channel consists of a high power amplifier followed by an

LTI transfer function modeling the communication channel between the satellite and the

earth.

1.4.2.4 Parallel Hammerstein Model

Similarly to PA modeling, the parallel Hammerstein predistorter can also be used for pre-

distortion. It consists of multiple Hammerstein systems in parallel and is given by

z(t) =
L∑

i=1

zi(t), zi(t) =

∫
hi(τ)si(t− τ)dτ, si(t) = fi(x(t)), (1.32)

where hi(τ) denotes the LTI portion of the Hammerstein system at the ith branch and fi(·)

denotes its memoryless nonlinearity. Replacing the nonlinearity fi(x(t)) with
∑K

k=0 aki|x(t)|2kx(t)

and hi(τ) with δ(τ − iT ), we obtain the memory-polynomial model given by

z(t) =

K∑

k=0

L−1∑

i=0

aki|x(t− iT )|2kx(t− iT ). (1.33)

In [39], a memory-polynomial predistorter is shown to be effective in linearizing a nonlinear

PA with memory effects.

1.5 Communications Aspects of Power Amplifiers

Power amplifiers (PAs) are peak power limited in addition to being nonlinear. As such,

ideal linearization via predistortion is not possible. Linearized PA can only be linearized to
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the soft-limiter in Fig. 1.12. Because a peak power limited PA cannot be truly linearized,

it introduces some distortion. This distortion can distort the constellation of a transmitted

communication signal. In Fig. 1.13, we show the constellation of a 16-QAM signal (◦) and

its distorted version (×). The nonlinear distortion changes the constellation and therefore

makes detection of the symbols more sensitive to noise. The nonlinear distortion is not
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Figure 1.13: The constellation of a 16QAM signal.

exclusive to the PAs and can also be created by other devices such as mixers [18, 64, 72],

magnetic recording channels [135], or when companding [59, 120] or clipping [83, 84, 103,

108, 115] are used for the purpose of peak-to-average power ratio (PAPR) reduction. We

would like to investigate what undesirable effects are caused by the nonlinearity. There has

been a lot of research devoted to this issue. Nonlinearity causes increase in symbol-error-rate

(SER) [64,108], spectral regrowth [108,129], and reduction in channel capacity [107,109,115].
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1.6 Organization of this Dissertation

In the rest of this document, we will present our results in areas of PA modeling, PA

linearization, PA spectral analysis, and nonlinearity considerations in the context of com-

munications applications. In the next two chapters, we describe results on PA modeling.

In Chapter 2 ([95]), we present nonlinear PA modeling of memoryless, quasi-memoryless,

and memory PAs. In Chapter 3 ([130]), we discuss the issue of baseband modeling of PAs

and verify these results with measured data. In the following three chapters, we present

results in PA linearization. In Chapter 4 ([41]), we examine memory predistortion of PAs

using a Hammerstein predistorter. In Chapters 5 ([91,93]) and 6 ([96,98]), we introduce the

application of orthogonal polynomials to predistortion when the input signal is uniformly

and Gaussian distributed, respectively. In Chapter 6 ([96,98]), we discuss the application of

such orthogonal polynomials to spectral regrowth analysis. In the following three chapters

we present additional spectral regrowth analysis results. In Chapter 7 ([97,99]), we discuss

a spectral analysis for a PA with a nonstationary input signal. In Chapter 8 ([100]), we

examine a spectral analysis for QPSK and OQPSK signals. In Chapter 9 ([131, 132]), we

present spectral analysis results for a memory polynomial PA. In Chapter 10 ([89, 92, 94]),

we evaluate amplitude-limited nonlinearities and their effects on communications. Finally,

in Chapter 11, we summarize this work and suggest topics for future research. For the

reader’s convenience, we have made an effort to keep every chapter as self contained as

possible.
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CHAPTER II

ON THE MODELING OF MEMORY NONLINEAR

EFFECTS OF POWER AMPLIFIERS FOR

COMMUNICATION APPLICATIONS

Understanding power amplifier (PA) nonlinearity is a first step towards linearization efforts.

We first explore the passband and baseband PA input/output relationships and show that

they manifest differently when the PA exhibits long-term, short-term, or no memory ef-

fects. We then explain the various memory effects in the context of AM/AM and AM/PM

responses. The so-called quasi-memoryless case is especially clarified. Four particular non-

linear models with memory are further investigated.

2.1 Introduction

Power amplifier (PA) is an indispensable component of a communication system and is

inherently nonlinear. PAs can be classified according to the degree of nonlinearity that

they exhibit, which in turn dictates efficiency. High linearity implies low efficiency, which

means reduced power that is delivered to the load. High nonlinearity, on the other hand,

causes spectral regrowth and increases bit error rate. Therefore, PA linearization is often

necessary with the goal of improving linearity while maintaining good efficiency.

Predistortion is a popular approach to linearize a PA for which PA modeling often serves

as an important first step. Before choosing a linearization method, one must decide whether

the PA exhibits memory effects. The cause of memory effects can be electrical or electro-

thermal [118]. High-power amplifiers (HPAs) such as those used in wireless basestations

exhibit memory effects; wideband signals also tend to induce memory effects in the PA. In

such cases, memoryless predistortion can be ineffective. Thus, accurate representation of

the memory effects in nonlinear PAs is crucial to linearization efforts.
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Figure 2.1: Block diagram of a bandpass system.

Denote by x̃(t) the baseband input to the PA and by ỹ(t) the baseband output of

the PA. The so-called AM/AM conversion is defined as the function mapping from the

baseband input signal amplitude, |x̃(t)|, to the baseband output signal amplitude, |ỹ(t)|;

AM/PM conversion is defined as the function mapping from the baseband input signal

amplitude, |x̃(t)|, to the baseband output phase deviation, ∠ỹ(t) − ∠x̃(t). Linearization

of a nonlinear device which can be completely characterized by AM/AM and AM/PM

conversions is rather straightforward. For example, the predistorter can be implemented

by a lookup table (LUT). The LUT creates nonlinear function mappings (AM/AM and

AM/PM) for the predistorter that are complementary to those of the PA.

Let us consider as an example, a baseband (2K + 1)th-order nonlinear PA model [18],

ỹ(t) =
K∑

k=0

a2k+1|x̃(t)|2kx̃(t), (2.1)

where a2k+1 is the coefficient of the (2k + 1)th-order nonlinear term.

From a signal processing point of view, the system in (2.1) is considered memoryless,

since the output ỹ(t) depends only on the input x̃(t) at the same time instant. In the

RF/Microwave literature however, if {a2k+1} are real-valued, the model in (2.1) is referred

to as (strictly-) memoryless since the AM/PM conversion is constant. Otherwise, the system

described by (2.1) is considered quasi-memoryless, which implies that short-term memory

effects exist in the system (e.g., [24]). The symptom of a quasi-memoryless system is that

AM/PM conversion varies with |x̃(t)| [18]. Therefore, confusion often arises as to the exact

nature of memory effects in nonlinear devices used in communications applications.

When long-term memory effects are present, AM/AM and AM/PM conversions are

insufficient to characterize the PA, and more elaborate models such as the Volterra series

can be used [24].
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In this chapter, we will examine what memory effects in the passband mean, and what

memory effects in the baseband mean. Our hope is to resolve the confusing notions and

conflicting terminologies of memory nonlinear effects used in different literatures.

In Section 2.2, the nonlinear baseband model and its relationship to the nonlinear band-

pass model is introduced. In addition, a discussion on the various degrees of memory effects

is presented. In Section 2.3, we investigate four special systems with memory. Finally,

Section 2.4 summarizes this chapter.

2.2 Baseband Representation

In this section, we derive the input/output relationship of the baseband signal from the

input/output relationship of the corresponding bandpass signal. We then consider two

cases, quasi-memoryless and (strictly-) memoryless.

In Fig. 2.1, a block diagram depicts the upconversion of the complex-valued baseband

signal to the passband, the transmission of the real-valued bandpass signal through the chan-

nel, and the downconversion of the bandpass output into a complex-valued baseband signal.

The relationship between the real-valued bandpass input signal, x(t), and the complex-

valued baseband input signal, x̃(t), is given by:

x(t) = Re
{
x̃(t)ej2πfot

}
⇔

x̃(t) = 2LPF
[
x(t)e−j2πfot

]
, (2.2)

where fo is the carrier frequency, LPF [·] denotes the lowpass filtering operation, and Re {·}

denotes the real-value part. Similarly, the relationship between the real-valued bandpass

output signal, y(t), and the complex-valued baseband output signal, ỹ(t), is given by:

y(t) = Re
{
ỹ(t)ej2πfot

}
⇔

ỹ(t) = 2LPF
[
y(t)e−j2πfot

]
. (2.3)

The “channel”1, in general, can be linear or nonlinear (NL). Subject to certain requirements

( [106]), the Volterra series can be used to represent a time-invariant (TI) NL system as

1Channel is used here with quotation marks, since it refers to the PA, although traditionally it refers to
a communication channel.
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follows:

y(t) =
∑

k

∫
· · ·
∫
hk(τk)

k∏

i=1

x(t− τi)dτk, (2.4)

where τk = [τ1, . . . , τk]
T , hk(·) is the kth-order Volterra kernel, and dτk = dτ1dτ2 · · · dτk.

Assuming that x(t) is band-limited with bandwidth Bx � fo, and substituting (2.2) and

(2.3) into (2.4), the complex-valued baseband output, ỹ(t), simplifies to [17]:

ỹ(t) =
∑

k

∫
· · ·
∫
h̃2k+1(τ2k+1)

k+1∏

i=1

x̃(t− τi)

2k+1∏

i=k+2

x̃∗(t− τi)dτ2k+1, (2.5)

where

h̃2k+1(τ2k+1) =
1

22k

(
2k + 1

k

)
×

h2k+1(τ2k+1)e
−j2πfo(

∑k+1
i=1 τi−

∑2k+1
i=k+2 τi), (2.6)

and (·)∗ denotes complex conjugation. Define the kth-dimensional Fourier transform of

hk(τk):

Hk(fk) =

∫
· · ·
∫
hk(τk)e

−j2πf
T
k

τkdτk, (2.7)

where fk = [f1, f2, . . . , fk]
T . It follows that the Fourier transform of (2.6) is

H̃2k+1(f2k+1) =
1

22k

(
2k + 1

k

)
×

H2k+1

(
f2k+1 + fo[1

T
k+1,−1T

k ]T
)
, (2.8)

where 1k = [1, . . . , 1]T is a k-dimensional column vector of ones. For example, with k = 1,

Eq. (2.8) yields

H̃3(f1, f2, f3) =
3

4
H3 (f1 + fo, f2 + fo, f3 − fo) . (2.9)

We would like to examine ramifications of the baseband input/output relationship (2.5)

under two scenarios.
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2.2.1 The Quasi-memoryless Case

If the signal x(t) is narrowband such that x̃(t− τi) ≈ x̃(t) over the support of each kernel,

hk(τk), we can replace x̃(t− τi) by x̃(t) in (2.5) to obtain

ỹ(t) =
∑

k

∫
· · ·
∫
h̃2k+1(τ2k+1)dτ2k+1 |x̃(t)|2kx̃(t)

=
∑

k

H̃2k+1(02k+1)|x̃(t)|2kx̃(t) (2.10)

=
∑

k

1

22k

(
2k + 1

k

)
H2k+1

(
fo[1

T
k+1,−1T

k ]T
)

|x̃(t)|2kx̃(t), (2.11)

where 0k = [0, . . . , 0]T is a column vector of k zeros. Since the right-hand side (RHS) of

(2.11) depends on x̃(t) only, it is regarded as memoryless from a signal processing point of

view. Comparing with (2.1), we see that

a2k+1 = H̃2k+1(02k+1)

=
1

22k

(
2k + 1

k

)
H2k+1

(
fo[1

T
k+1,−1T

k ]T
)
. (2.12)

Therefore, either H̃2k+1(02k+1) or H2k+1

(
fo[1

T
k+1,−1T

k ]T
)

can determine the polynomial

baseband relationship between x̃(t) and ỹ(t). The baseband relationship (2.10) is memory-

less but the physical device as described by hk(τk) has memory. The fact that the signal is

narrowband makes the kernel’s Fourier-transform, Hk(fk), wideband in comparison. Since

hk(τk) occupies a short time span relative to the time variation of x̃(t), the memory effect

is regarded as short-term. Moreover, H̃2k+1(02k+1) ∝ H2k+1(fo[1
T
k+1,−1T

k ]T ) is complex-

valued in general, and hence ∠ỹ(t) −∠x̃(t) is not constant (AM/PM conversion is present).

Such a system is referred to as quasi-memoryless in the RF/microwave literature.

2.2.2 The (strictly-) Memoryless Case

If the physical device is strictly-memoryless, we will have

hk(τk) = ck

k∏

i=1

δ(τi), (2.13)

where ck is real-valued. Substituting (2.13) in (2.6), we obtain

h̃2k+1(τ2k+1) = c̃2k+1

2k+1∏

i=1

δ(τi), (2.14)
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where c̃2k+1 = 1
22k

(
2k+1

k

)
c2k+1. Since c2k+1 is real-valued, both c̃2k+1 and h̃2k+1(τ2k+1) are

real-valued as well. In other words, not only the passband system is strictly-memoryless,

but also the baseband system. As a result, the complex-valued baseband output is:

ỹ(t) =
∑

k

H̃2k+1(02k+1) |x̃(t)|2kx̃(t)

=
∑

k

c̃2k+1 |x̃(t)|2kx̃(t). (2.15)

If a PA’s baseband input/output relationship obeys (2.15), its AM/AM characteristic is

|ỹ(t)|= |x̃(t)| |G(|x̃(t)|)|, (2.16)

where the complex gain is

G(r) =
∑

k

c̃2k+1 r
2k, r = |x̃(t)|, (2.17)

and the AM/PM relationship is described by

∠ỹ(t) − ∠x̃(t) = ∠G(|x̃(t)|). (2.18)

Note that since the coefficients, c̃2k+1, are real-valued, the phase of G(r) is either 0 or π.

However, in order for the phase to change, the gain, G(r), must be zero at that point of

phase change, thus making the PA output at the point zero. Since PAs do not attenuate

the signal to zero, we conclude that the phase change, ∠ỹ(t) − ∠x̃(t), remains constant.

Therefore, a strictly-memoryless NL PA has no AM/PM conversion.

2.3 Some Special Cases

In Section 2.2, we have seen that a strictly-memoryless NL system has AM/AM conversion

but no AM/PM conversion (i.e., the AM/PM conversion is constant). In contrast, a quasi-

memoryless NL system exhibits both AM/AM and AM/PM conversions. In this section, we

would like to investigate the opposite; i.e., whether a constant AM/PM conversion implies

that the nonlinear system is strictly-memoryless. We will see that two special cases of the

Volterra model, i.e., the Hammerstein and Wiener systems, are not memoryless but can

still be free of the AM/PM conversion when a narrowband input signal is applied.
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2.3.1 Diagonal Kernel System

Let us consider a diagonal kernel system, whose kth-order kernel is given by:

hk(τk) = φk(τ1)
k∏

i=1

δ(τi − τ1). (2.19)

Note that the kernel values are nonzero only along the diagonal τ1 = τ2 = . . . = τk.

Substituting (2.19) into (2.4), the bandpass input/output relationship is given by

y(t) =
∑

k

∫
φk(τ1) x

k(t− τ1)dτ1. (2.20)

The RHS of (2.20) is also known as a memory polynomial of x(t). If the input x̃(t) to such

a system is narrowband, the baseband input/output relationship is given by (2.1) with

a2k+1 =
1

22k

(
2k + 1

k

)
Φ2k+1 (fo) , (2.21)

where Φk (f) is the Fourier transform of φk(τ). Note that even though φk(τ) is real-valued,

Φk (fo) is not real-valued in general and hence the AM/PM conversion is non-constant.

However, special cases of the diagonal kernel system exist where the AM/PM conversion is

constant.

2.3.2 Hammerstein System

If a memoryless nonlinearity is followed by a linear time-invariant (LTI) system, the overall

system is called a Hammerstein system. The Hammerstein system is a special case of the

diagonal kernel system, where φk(τ) = ckφ(τ). Substituting this kernel relationship into

(2.20), we obtain

y(t) =

∫
φ(τ1)

∑

k

ckx
k(t− τ1) dτ1

= φ(t) ? u(t), u(t) =
∑

k

ckx
k(t), (2.22)

where ? denotes convolution. The above equation describes that x(t) first goes through a

memoryless NL and then an LTI system to yield y(t), and thus the overall system from x(t)

to y(t) is Hammerstein. If the input x(t) to the Hammerstein system is narrowband, the

baseband input/output relationship is given by (2.1) with

a2k+1 =
1

22k

(
2k + 1

k

)
c2k+1Φ(fo), (2.23)
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where Φ(f) is the Fourier transform of φ(τ). Since for the Hammerstein system, hk(τk) =

ckφ(τ1)
∏k

i=1 δ(τi−τ1) and {ck} are real-valued, a2k+1 in (2.23) has ∠a2k+1 = ∠Φ(fo), which

does not depend on k. As a result, the AM/PM conversion is constant.

2.3.3 Separable Kernel System

Consider the case where the kth-order Volterra kernel can be written as a product of k

one-dimensional functions,

hk(τk) =
k∏

i=1

ψk(τi), (2.24)

where each ψk(·) is real-valued and one-dimensional. This system is referred to as a separable

kernel system. Substituting (2.24) in (2.4) and simplifying, the bandpass input/output

relationship is

y(t) =
∑

k

(∫
ψk(τ)x(t− τ)dτ

)k

. (2.25)

If the input x(t) to such a system is narrowband, the baseband input/output relationship

of the separable kernel system is given by (2.1) with

a2k+1 =
1

22k

(
2k + 1

k

)
|Ψ2k+1 (fo)|2k Ψ2k+1 (fo) , (2.26)

where Ψk (f) is the Fourier transform of ψk(τ). Note that although ψk(τ) is real-valued,

Ψk(fo) is not real-valued in general, and hence the AM/PM conversion is non-constant.

However, special cases of the separable kernel system exist where the AM/PM conversion

is constant.

2.3.4 Wiener System

If an LTI system is followed by a memoryless nonlinearity, the overall system is called a

Wiener system. The Wiener system is a special case of the separable kernel system, where

ψk(τ) = k
√
ckψ(τ). As such,

y(t) =
∑

k

ck

(∫
ψ(τ)x(t− τ)dτ

)k

. (2.27)
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Since u(t) = ψ(t) ? x(t), y(t) =
∑

k cku
k(t), the system that transforms x(t) into y(t) is

Wiener. The kth-order Volterra kernel of the Wiener system is given by:

hk(τk) = ck

k∏

i=1

ψ(τi), (2.28)

where ck and ψ(·) are real-valued. If the input x(t) to the Wiener system is narrowband,

the baseband input/output relationship is given by (2.1) with

a2k+1 =
1

22k

(
2k + 1

k

)
c2k+1 |Ψ(fo)|2k Ψ(fo), (2.29)

where Ψ(f) is the Fourier transform of ψ(τ). Since ∠a2k+1 = ∠Ψ(fo) is independent of k,

the resulting AM/PM conversion is constant.

2.4 Conclusion

Volterra series is a general nonlinear model with memory. In this chapter, we first describe

the baseband input/output relationship of a Volterra nonlinear PA whose input is a bandpass

communication signal. When a physical PA exhibits short-term memory effects, it is said

to be quasi-memoryless, because the corresponding baseband input/output relationship is

memoryless. This is a potential point of confusion upon examining different literatures. In

general, the so-called AM/AM and AM/PM conversions cannot fully describe the PA, but

they can if the PA is quasi-memoryless. On the other hand, if the physical PA is (strictly-)

memoryless, the output is simply a polynomial function of the input, and the resulting

AM/PM conversion is constant. Thus, AM/AM conversion alone can fully characterize a

(strictly-) memoryless PA. This however, is not the only case where AM/PM conversion

is absent. We show that if a narrowband signal goes through a Wiener or a Hammerstein

nonlinear system, the AM/PM conversion is also constant. It is important to distinguish the

long-memory, short-memory, and memoryless nonlinear cases, since they affect our choice

of the linearization strategy.
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CHAPTER III

ON BASEBAND REPRESENTATION OF PASSBAND

NONLINEARITIES 1

Modeling, analysis and compensation of nonlinearities in the transmitter (power amplifier in

particular) has attracted a lot of attention recently. Given the same passband polynomial

or Volterra representation of the nonlinear system, two different baseband formulations

have appeared in the literature. The purpose of this chapter is to address the discrepancy

between the two and to affirm that proper conjugation must be applied in the baseband

representation of passband nonlinearities. Experimental validation is also provided.

3.1 Introduction

The topic of RF/microwave device nonlinearity [72], especially power amplifier (PA) non-

linearity [35], has attracted a lot of attention recently. This is because the modern, more

spectrally efficient transmission formats (such as OFDM and CDMA) tend to have large

peak-to-average power ratios but analog devices are linear only over a limited input ampli-

tude range. All PAs exhibit varying degrees of nonlinearity, and the mildly nonlinear class

AB PAs are often used in digital communication systems. In order for the PA to deliver a

reasonable amount of average power, either the signal has to experience some nonlinearity

thus creating in-band distortion as well as adjacent channel interference, or the PA has to

be linearized. Digital baseband predistortion is a promising approach to PA linearization.

For quasi-memoryless nonlinearities, polynomials have been used extensively to model

the PA [35, 50, 95, 123, 128, 129], or to construct the predistorter [39, 81, 112, 113]. Denote

by x(t) the baseband equivalent input to the device and by z(t) the baseband equivalent

output of the device. Two different versions of the baseband polynomial model exist.

1This chapter was published in [130] and is a result of joint work with Hua Qian, Lei Ding, and G. Tong
Zhou.
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Version 1 (for example, eq. (2.225) of [18], eq. (5) of [50], eq. (5) of [81], eq. (3) of [112],

eq. (1) of [113]):

z(t) = x(t)
K∑

k=0

a2k+1|x(t)|2k (3.1)

=
K∑

k=0

a2k+1 [x(t)]k+1[x∗(t)]k. (3.2)

Version 2 (for example, eq. (7) of [50], eq. (2.7) of [123], eq. (6) of [128]):

z(t) =

K∑

k=0

a2k+1 [x(t)]2k+1. (3.3)

Since the baseband quantities are complex valued in general, equations (3.1) and (3.3)

are fundamentally different. Using these different models to characterize or linearize the

devices, or to predict spectral regrowth [50, 112, 113, 128, 129], conflicting results may be

produced.

Similar discrepancy also arises in the treatment of (baseband) Volterra series, [18,47,134],

which is a general nonlinear model with memory. The purpose of this chapter is to provide

both theoretical and experimental justifications for (3.1)-(3.2) and to emphasize the use of

proper conjugations in baseband formulations.

3.2 Passband and baseband representations

-
HHHH

���� -
x̃(t)

DUT
ỹ(t)

fc

-
z̃(t)

Figure 3.1: Passband configuration.

-
HHHH

���� -
x(t)

DUT
z(t)

Figure 3.2: Baseband configuration.

In Fig. 3.1, we denote by x̃(t), the passband input to the device under test (DUT),

by ỹ(t), the passband output of the DUT before the zonal filter, and by z̃(t), the pass-

band output of the DUT after the zonal filter. The zonal filter [18, p. 68] only allows
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frequency contents centered around fc to pass un-altered, whereas frequency contents ap-

pearing around the dc, 2fc, 3fc etc, are eliminated.

We shall first present the Volterra series, and then specialize to the memoryless nonlinear

cases.

In [72, Ch. 4], the Volterra series is proposed to model nonlinear RF/microwave devices.

This means for Fig. 3.1, we can relate x̃(t) and ỹ(t) by [18,72],

ỹ(t) =
L∑

`=1

∫
· · ·
∫
h̃`(τ `)

∏̀

i=1

x̃(t− τi)dτ `, (3.4)

where τ ` = [τ1, . . . , τ`], h̃`(·) is the `th-order Volterra kernel, and dτ ` = dτ1dτ2 · · · dτ`. Note

that both even and odd `’s are allowed in (3.4), and all quantities in (3.4) are real-valued.

The strictly memoryless case corresponds to h̃`(τ `) = ã` δ(τ `), in which case (3.4) reduces

to the familiar polynomial (or power series) model [35, p. 181], [72, p. 156]

ỹ(t) =
L∑

`=1

ã` [x̃(t)]`. (3.5)

Note that no conjugation appears in (3.5) since all quantities involved are real-valued.

The baseband relationship that describes Fig. 3.2 is [18]:

z(t) =

K∑

k=0

∫
· · ·
∫
h2k+1(τ 2k+1)×

k+1∏

i=1

x(t− τi)
2k+1∏

i=k+2

x∗(t− τi)dτ 2k+1, (3.6)

where ∗ denotes conjugation, and

h2k+1(τ 2k+1) =
1

22k

(
2k + 1

k

)
h̃2k+1(τ 2k+1)×

e−j2πfc(
∑k+1

i=1 τi−
∑2k+1

i=k+2 τi). (3.7)

The relationship between the L in (3.5) and the K in (3.6) is given by

2K + 1 =




L, if L is odd,

L− 1, if L is even.

We emphasize that the baseband expression (3.6) is between x(t) and z(t) (c.f. Fig.

3.2) but the passband relationship (3.4) is between x̃(t) and ỹ(t) (c.f. Fig. 3.1). The zonal
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filter represents the frequency selectivity of the DUT and the antenna and is absorbed

into the DUT block in Fig. 3.2. Moreover, notice that there are k + 1 un-conjugated

copies of x but k conjugated copies of x in (3.6). Volterra predistorters are proposed

in [47, 134]; unfortunately, the above conjugation pattern is not always expressed correctly

in the baseband Volterra models.

If the system is strictly memoryless, the corresponding baseband expression is (3.1) with

a2k+1 =
1

22k

(
2k + 1

k

)
ã2k+1, (3.8)

obtained by substituting h̃`(τ `) = ã` δ(τ `) into (3.6)-(3.7). Since ã2k+1 is real-valued, so is

a2k+1 by virtue of (3.8).

When x̃(t) is narrowband, it is shown in [95] that the baseband counterpart of (3.4) is

again (3.1) but with

a2k+1 =
1

22k

(
2k + 1

k

)
H̃2k+1(fc, . . . , fc︸ ︷︷ ︸

k+1

,−fc, . . . ,−fc︸ ︷︷ ︸
k

), (3.9)

where H̃2k+1(·) on the right hand side of (3.9) is the (2k+1)-dimensional Fourier transform

of the Volterra kernel h̃2k+1(τ 2k+1) evaluated at the above frequency tuple. From (3.9), it

is apparent that a2k+1 is a function of the carrier frequency fc. If x(t) is narrow-band, a2k+1

is approximately constant over the signal bandwidth and the model in (3.1) is sufficient.

However, if x(t) is wideband, the Volterra model (3.6) is more appropriate [18,47,134].

It is well known that (qusi-)memoryless PAs are characterized by their amplitude-to-

amplitude (|x(t)| to |z(t)|; i.e., AM/AM) and amplitude-to-phase (|x(t)| to ∠z(t) − ∠x(t);

i.e., AM/PM) conversions. Indeed, from (3.1), we infer that

|z(t)| = |x(t)|
∣∣∣∣∣

K∑

k=0

a2k+1|x(t)|2k

∣∣∣∣∣ , (3.10)

∠z(t) − ∠x(t) = ∠

K∑

k=0

a2k+1|x(t)|2k, (3.11)

which depend on |x(t)| but not on ∠x(t). Table 3.1 summarizes the nonlinearities discussed

so far (N.A. stands for “not applicable”).
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Table 3.1: Nonlinear systems and their representations
Strictly Quasi- With

Memoryless Memoryless Memory

Passband eq. (3.5) eq. (3.4) eq. (3.4)
Baseband eq. (3.1) eq. (3.1) eq. (3.6)

a2k+1 real a2k+1 complex
AM/AM non-constant non-constant N.A.
AM/PM constant non-constant N.A.

On the other hand, the baseband model (3.3) without conjugation is problematic. It

describes a (quasi-)memoryless system, but |z(t)| and ∠z(t) − ∠x(t) depend on both |x(t)|

and ∠x(t), thus contradicting the notion of AM/AM and AM/PM conversions.

3.3 Experimental Results

We have assembled a digital baseband predistortion linearization testbed that consists of a

high speed digital I/O system, a digital to analog converter, an upconversion chain, a DUT,

a downconversion chain, and an analog-to-digital converter. In this experiment, the DUT is

a Siemens CGY0819 handset PA operating at the cellular band (824-849 MHz). The input

is a 1.35 MHz bandwidth signal centered at 836 MHz. We constructed two predistorters,

one according to (3.1) and the other one according to (3.3). Fig. 3.3 shows the PA output

power spectral density (PSD) measured by a spectrum analyzer. The PA is operated near

the 1dB compression point, so a significant amount of nonlinearity is present. Line (a) is

the PA output PSD without predistortion and shows spectral regrowth (broadening). Line

(b) is the PA output PSD when a predistorter (3.1) with K = 4 is applied. In this case,

approximately 20 dB of spectral regrowth suppression was achieved. In contrast, line (c) is

the PA output PSD when a predistorter (3.3) with K = 4 is applied: instead of reducing

the nonlinear effects, the predistorter aggravated the spectral regrowth.

3.4 Conclusions

In this chapter, we examined bandpass nonlinearities and their ramifications in the base-

band. We clarified that in the baseband representation, proper conjugation must be ap-

plied. Such conjugation designation ensures that in the quasi-memoryless case, AM/AM
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Figure 3.3: Measured PA output PSD: (a) without predistortion; (b) with predistorter
(3.1); (c) with predistorter (3.3).
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and AM/PM conversions are sufficient to characterize the device. Experimental results

support our analysis.
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CHAPTER IV

A HAMMERSTEIN PREDISTORTION LINEARIZATION

DESIGN BASED ON THE INDIRECT LEARNING

ARCHITECTURE1

Power amplifiers (PAs) are inherently nonlinear devices and are used in virtually all commu-

nications systems. Digital baseband predistortion is a highly cost effective way to linearize

the PAs, but most existing architectures assume that the PA has a memoryless nonlinearity.

For wider bandwidth applications such as WCDMA, PA memory effects can no longer be

ignored, and memoryless predistortion has limited effectiveness. In this chapter, we model

the PA as a Wiener system and construct a Hammerstein predistorter, obtained using an

indirect learning architecture. Linearization performance is demonstrated on a 3-carrier

UMTS signal.

4.1 Introduction

Power amplifiers (PAs) are indispensable components in a communication system and are

inherently nonlinear. It is well known that there is an approximate inverse relationship

between the PA efficiency and its linearity. Hence, nonlinear PAs are desirable from an

efficiency point of view. The price paid for higher efficiency is that nonlinearity causes

spectral regrowth (broadening) which leads to adjacent channel interference. It also causes

in-band distortion which degrades the bit error rate (BER) performance. Newer transmis-

sion formats such as CDMA and OFDM are especially vulnerable to PA nonlinearities, due

to their high peak to average power ratio; i.e. large fluctuations in their signal envelopes.

In order to comply with spectral masks imposed by regulatory bodies and to reduce BER,

PA linearization is necessary.

1This chapter was published in [41] and is a result of joint work with Lei Ding and G. Tong Zhou.
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Of all linearization techniques, digital baseband predistortion is among the most cost

effective. A predistorter is a functional block that precedes the PA. It generally creates an

expanding nonlinearity since the PA has a compressing characteristic. Ideally, we would

like the PA output to be a scalar multiple of the input to the predistorter-PA chain. For a

memoryless PA, (i.e.; the current output depends only on the current input), memoryless

predistortion is sufficient. There has been intensive research on memoryless predistortion

during the past decade [35].

For wider bandwidth applications such as WCDMA, PA memory effects can no longer

be ignored. Moreover, higher power amplifiers such as those used in wireless basestations

exhibit memory effects. The cause of memory effects can be electrical or electro-thermal

as suggested in [118]. Memoryless predistortion for a PA with memory often results in

poor linearization performance. Although Volterra series is a general nonlinear model with

memory, its predistortion is complex and its real-time implementation difficult. In [33],

Clark et.al. used a Wiener model; i.e., a linear time-invariant (LTI) system followed by

a memoryless nonlinearity, to capture the nonlinear memory effects in the PA associated

with wideband signals. In this chapter, we also adopt the Wiener PA model, which has

the advantage that its predistortion can be easily carried out. A Hammerstein system is a

memoryless nonlinearity followed by a LTI system, and can therefore linearize a Wiener PA

model.

In the current literature, predistorters with memory mainly fall into the data predistorter

category [46, 61], in the sense that predistortion is applied before the pulse shaping filter.

The main drawback of data predistortion is its dependence on the signal constellation and

the pulse shaping filter. Both Volterra model based [46] and Hammerstein model based [61]

data predistorters have been proposed. In [46], a Volterra data predistorter is constructed

using the indirect learning architecture. In [61], the Hammerstein data predistorter is

obtained using a stochastic gradient method.

As opposed to data predistortion, we shall pursue signal predistortion in this chapter;

i.e., predistortion occurs after the pulse shaping filter. To construct a Hammerstein pre-

distorter, one approach is to first identify the Wiener PA and then find the Hammerstein
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Figure 4.1: The indirect learning architecture for the Hammerstein predistorter.

predistorter as its inverse. Since Wiener system identification is generally more difficult

to carry out than Hammerstein system identification, we pursue an alternative approach

which generates the Hammerstein predistorter without first identifying the Wiener PA.

Unlike [61], our Hammerstein predistorter will be constructed using an indirect learning ar-

chitecture similar to the one used in [46]. In this setup, finding the predistorter is essentially

equivalent to identifying a Hammerstein system.

4.2 Indirect Learning Architecture

Fig. 4.1 shows the indirect learning structure that is used for Hammerstein predistorter

identification. The PA has a Wiener structure (LTI followed by memoryless nonlinearity).

The feedback path labeled “Predistorter Training” (block A) has a Hammerstein structure

if we view y(n)/K as its input and ẑ(n) as its output. The actual predistorter is an exact

copy of the feedback path (copy of A); it has x(n) as its input and z(n) as its output. Ideally,

we would like y(n) = Kx(n), which renders z(n) = ẑ(n) and the error term e(n) = 0. Given

y(n) and z(n), our task is to find the parameters of block A, which yields the predistorter.

The algorithm converges when the error energy ||e(n)||2 is minimized.

Here we consider that the PA characteristics do not change rapidly with time; changes

in PA characteristics are often due to temperature drift, aging etc which have long time

constants. After gathering a block of y(n) and z(n) data samples, the training branch (block

A) can process the data off-line, which lowers the requirement of the processing power of

the predistortion system. Once the predistorter identification algorithm has converged, the
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new set of parameters are plugged into the high speed predistorter, which can be readily

implemented by application-specific integrated circuits (ASIC) or field programmable gate

arrays (FPGA). When the predistorter coefficients have been found and it is believed that

the PA characteristics are hardly changing, the setup in Fig. 4.1 can be run in open loop; i.e.,

we temporarily shut down the training branch, until changes in PA characteristics require

a new predistorter.

4.3 Identification of The Hammerstein Predistorter

The predistorter training branch can be described by:

v(n)=

(K−1)/2∑

k=0

c2k+1 y(n)|y(n)|2k, (4.1)

z(n)=
P∑

p=1

apz(n− p) +

Q∑

q=0

bqv(n), (4.2)

which implies that for the predistorter, we model the memoryless nonlinearity as an odd-

order polynomial and the LTI system as a general pole/zero system. Combining the two

equations above, we obtain

z(n) =
P∑

p=1

apz(n− p) +

Q∑

q=0

bq




(K−1)/2∑

k=0

c2k+1y(n− q)|y(n− q)|2k


 . (4.3)

Given y(n) and z(n), our objective is to estimate the ap, bq and c2k+1 coefficients. Parameter

estimation of this model is a classical Hammerstein system identification problem. If no

additional assumptions are made on the system’s input signal y(n), iterative Newton and

Narendra-Gallman algorithms are the two most popular iterative estimation methods [45].

The two algorithms exhibit similar performance as shown in [45]. The main drawback of

these algorithms is that they are sensitive to the initial guesses and may converge to a local

minimum. A recent method proposed by Bai [9] uses an optimal two stage identification

algorithm, which can lead to a global optimum. The model structure introduced in [9]

is a Hammerstein system followed by a memoryless nonlinearity. However, we can easily

modify the results of [9] to suit our model. Note that for a given set of {y(n), z(n)} values,
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the bq’s and the c2k+1’s are not unique (i.e.; multiplying bq with a constant and dividing

c2k+1 by the same constant yields the same model). To avoid this problem, we assume that

∑Q
q=0 |bq|2 = 1 and the real part of b0 is positive as suggested in [9].

Next, we will review the Narendra-Gallman (NG) and the optimal two stage identifica-

tion (LS/SVD) algorithms.

4.3.1 Narendra-Gallman algorithm

The NG algorithm starts with initial guesses for the ap and bq coefficients, denoted by a
(0)
p

and b
(0)
q , respectively. At the ith iteration (4.3) can be rewritten as

z(n) −
P∑

p=1

a(i)
p z(n− p)=

(K−1)/2∑

k=0

c2k+1u2k+1(n) (4.4)

u2k+1(n)=

Q∑

q=0

b(i)q y(n− q)|y(n− q)|2k.

At this stage, our objective is to solve for c2k+1. Using matrix notation we can reformulate

(4.4) as

z0 − Za(i) = Uc, (4.5)

where Z = [z1, . . . , zP ], zl = [0T
l , z(1), . . . , z(N − l)]T , where 0l is a l × 1 all-zero vector,

a(i) = [a
(i)
1 , · · · , a(i)

P ]T , U = [u1, · · · ,uK ], u2k+1 = [u2k+1(1), · · · , u2k+1(N)]T , and c =

[c1, · · · , cK ]T . The least-squares solution for (4.5) is

ĉ(i+1) = (UHU)−1UH
(
z0 − Za(i)

)
, (4.6)

where H denotes Hermitian transpose. In the second step, based on the c
(i+1)
2k+1 ’s obtained,

we rewrite (4.3) as,

z0 = Za + Vb = [Z V]




a

b


 , (4.7)

where V = [v0v1, · · · ,vQ], vl = [0T
l , v(1), · · · , v(N − l)]T , b = [b0, · · · , bQ]T , and v(n) is

given in (4.1). The least-squares solution for (4.7) is,



â(i+1)

b̂(i+1)


 =

(
[Z V]H [Z V]

)−1
[Z V]Hz0, (4.8)
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With the new â(i+1) and b̂(i+1) estimates, we can go back to the first step and continue

until the algorithm converges.

4.3.2 Optimal two stage identification algorithm

Since the difficulty in estimating the bq’s and c2k+1’s is that they appear together as the

coefficient on the r.h.s. of (4.3), if we define

dq,2k+1 = bqc2k+1, (4.9)

we can first estimate dq,2k+1 using least-squares and then find bq and c2k+1 from dq,2k+1.

Substituting (4.9) into (4.3), we obtain

z(n) =
P∑

p=1

apz(n− p)

+

Q∑

q=0

(K−1)/2∑

k=0

dq,2k+1 gq,2k+1(n), (4.10)

where gq,2k+1(n) = y(n− q)|y(n− q)|2k. Rewriting in a matrix form, we obtain

z0 = Za + Gd = [Z G]




a

d


 , (4.11)

where G = [g01, · · · ,g0K , · · · ,gQ1, · · · ,gQK ], gq,2k+1 = [gq,2k+1(1), · · · , gq,2k+1(N)]T , and

d = [d01, · · · , d0K , · · · , dQ1, · · · , dQK ]T . The least-squares solution for (4.11) is




â

d̂


 =

(
[Z G]H [Z G]

)−1
[Z G]Hz0, (4.12)

Equation (4.9) can be alternatively expressed as

D =




d01 d03 · · · d0K

d11 d13 · · · d1K

...
...

...

dQ1 dQ3 · · · dQK




= bcT ,

where b = [b0, . . . , bQ]T , c = [c1, . . . , cK ]T . Since the matrix D has rank one, a natural way

to estimate b̂ and ĉ from D̂ is to perform a singular value decomposition (SVD) on D̂ and
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Figure 4.2: Comparison of the PSDs for pole/zero Wiener PA and pole/zero Hammerstein
predistorter. (a) Output without predistortion; (b) Output with memoryless predistortion;
(c) Output with Hammerstein predistortion, NG and LS/SVD algorithms (similar perfor-
mance).

then find the eigenvectors corresponding to the largest singular value. Let the SVD of D̂

be given by,

D̂ =

min[(Q+1),(K+1)/2]∑

i=1

σiµiν
H
i , (4.13)

where µi and νi are Q + 1 and (K + 1)/2 dimensional orthonormal vectors, respectively.

Then b̂ and ĉ can be estimated as

b̂ = sµµ1, ĉ = sµσ1ν
∗
1 , (4.14)

where ∗ denotes complex conjugate and sµ is the first non-zero element of µ1. These

estimates can be shown to be the closest b̂ and ĉ to D̂ in the least-squares sense [9].

In summary, the NG algorithm is a simple and robust algorithm. Although it may

have convergence problems, it can perform well in many cases as will be shown in the next

section. The LS/SVD algorithm avoids the potential local minimum problem of the NG

algorithm. However, using SVD to find the bq’s and c2k+1’s may not result in the best bq’s

and c2k+1’s that minimize the squared error criterion. Our examples in the next section

will show that both work well for identifying the Hammerstein predistorter although one

may outperform the other in a particular scenario.
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4.4 Simulations

In this section, we illustrate through computer simulations the performance of the Hammer-

stein predistorter identified using the indirect learning architecture. In the first example,

the LTI portion of the Wiener PA model has a pole/zero form, whose system function is

given by

H(z) =
1 + 0.3z−2

1 − 0.2z−1
. (4.15)

For the memoryless nonlinear portion of the Wiener PA model, we use a 5th order nonlin-

earity with coefficients,

c1=14.9740 + 0.0519j, c3 = −23.0954 + 4.9680j,

c5=21.3936 + 0.4305j, (4.16)

which were extracted from an actual Class AB PA.

The baseband input signal is a 3-carrier Universal Mobile Telecommunications System

(UMTS) signal. Hammerstein predistorter identification is carried out based on 8000 data

samples. The predistorter parameters usually converge after a few iterations. Next, we

compare the spectra of the input and output signals to asses the effectiveness of the pre-

distorter in reducing spectral regrowth. In this example, we assume that the LTI portion

of the Hammerstein predistorter is a pole/zero system with two poles and one zero (correct

model orders for the inverse of the H(z) of (4.15)). In addition, we make the assumption

that the nonlinearity of the predistorter is 5th order.

Performance of predistorter identified with the LS/SVD and NG algorithms is demon-

strated in Fig. 4.2. Both algorithms fully suppress the spectral regrowth exhibited by the

PA output when no predistortion is applied. In contrast, we observe in Fig. 4.2 that 5th

order memoryless predistortion does not fully suppress the spectral regrowth.

In the second example, the LTI portion of the Wiener PA is H(z) = 1 + 0.3z−2 (FIR),

and the LTI portion of the Hammerstein predistorter is assumed to be FIR as well. Our

objective here is to see whether the algorithm can correctly identify an FIR filter that

approximates the inverse of the FIR system in the PA. We assume that the FIR system

in the predistorter has 15 taps. The results are shown in Fig. 4.3. The two algorithms
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Figure 4.3: Comparison of the PSDs for FIR Wiener PA and 15-tap FIR Hammerstein pre-
distorter. (a) Output without predistortion; (b) Output with memoryless predistortion; (c)
Output with Hammerstein predistortion (NG); (d) Output with Hammerstein predistortion
(LS/SVD).

exhibit different behaviors this time: the NG algorithm performs worse than the LS/SVD

algorithm. When examining the concatenated response of the two LTI blocks (one from

the Wiener PA and the other from the Hammerstein predistorter), we observe that the

predistorter’s LTI system identified by the NG algorithm can only compensate for the PA’s

LTI system within the signal bandwidth. However, the LS/SVD algorithm is able to find a

good FIR system for the predistorter, both within and outside of the signal bandwidth.

In the third example, we perturbed the Wiener PA model coefficients so it is a full

Volterra model (not Wiener any more). Our objective is to see whether the Hammerstein

predistorter has any robustness. The result is shown in Fig. 4.4. We still observe significant

reduction of spectral regrowth with the Hammerstein predistorter.

In all cases, memoryless predistortion is not very effective in suppressing spectral re-

growth, which underscores the notion that PA memory effects must be taken into account

when designing the predistorter.

4.5 Conclusions

We employed the indirect learning structure to identify the Hammerstein predistorter for

a PA modeled by a Wiener model. We compared the performance of two Hammerstein

system identification algorithms; i.e., the NG and LS/SVD algorithms, in this context.
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Figure 4.4: Comparison of the PSDs for full Volterra PA and 15-tap FIR Hammerstein
predistorter. (a) Output without predistortion; (b) Output with memoryless predistortion;
(c) Output with Hammerstein predistortion (NG); (d) Output with Hammerstein predis-
tortion (LS/SVD); (e) Input signal.

For a Wiener model with a simple pole/zero LTI structure, both algorithms show similar

performance. However, when the LTI portion of the Wiener PA as well as that of the

Hammerstein predistorter are FIR, the LS/SVD algorithm outperforms the NG algorithm.

Simulation results illustrate the effectiveness of the proposed predistorter design.
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CHAPTER V

ORTHOGONAL POLYNOMIALS FOR POWER

AMPLIFIER MODELING AND PREDISTORTER

DESIGN1

The polynomial model is commonly used in power amplifier (PA) modeling and predistorter

design. However, the conventional polynomial model exhibits numerical instabilities when

higher order terms are included. In this chapter, we introduce a novel set of orthogonal

polynomials, which can be used for PA as well as predistorter modeling. Theoretically, the

conventional and the orthogonal polynomial models are “equivalent” and thus should behave

similarly. In practice, however, the two approaches can perform quite differently in the

presence of quantization noise and with finite precision processing. Simulation results show

that the orthogonal polynomials can alleviate the numerical instability problem associated

with the conventional polynomials and generally yield better PA modeling accuracy as well

as predistortion linearization performance.

5.1 Introduction

Power amplifier (PA) is a major source of nonlinearity in a communication system. To

increase efficiency, PAs are often driven into their nonlinear region, thus causing spectral

regrowth (broadening) as well as in-band distortion. PA linearization is often necessary to

suppress spectral regrowth, contain adjacent channel interference, and to reduce bit error

rate (BER).

The power series model, or the polynomial model, is widely used in the literature to

describe nonlinear effects in the PA (see e.g., [36], [64]). In [129], it is shown that after

extracting the polynomial coefficients of the PA, it is then possible to predict spectral

1This chapter was published in [91,93] and is a result of joint work with Hua Qian and G. Tong Zhou.
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regrowth of digitally modulated signals using the concept of cumulant. Recently in [65], a

memory polynomial model is proposed to fit nonlinear PAs with memory. The more general

Volterra series (which is polynomial in nature) has also been used to model nonlinear devices

with memory [72].

If the nonlinear PA is used to transmit non-constant modulus signals, PA linearization

is often necessary. Among all linearization techniques, digital baseband predistortion is one

of the most cost effective. A predistorter, which (ideally) has the inverse characteristic of

the PA, is used to compensate for the nonlinearity in the PA. To linearize a memoryless

nonlinear PA, one can pursue lookup table (LUT) based or model based approaches. The

LUT approach is easy to implement but may take a relatively long time to converge. More-

over, the piece-wise linear curve has a zig-zag appearance which may introduce additional

nonlinearities that degrade the performance [68]. As for model based approaches, the poly-

nomial model is a common choice due to its simplicity and ease of implementation [36, Sec.

3.3], [48]. Volterra series [47] and certain special cases of the Volterra series, for example,

the Hammerstein model [41] and the memory polynomial model [38], have been proposed

for predistorter design that includes memory effects.

Higher-order polynomials present a challenge for both PA modeling and predistorter

design. As we show in Section 2, in the process of solving for the model coefficients, a

matrix inversion is needed which can cause a numerical instability problem if higher-order

polynomial terms are included. The objective of this chapter is to derive a set of orthogonal

polynomial basis and to model the PA or the predistorter using such basis functions. The

resulting orthogonal polynomial model coefficients can be extracted with much improved

numerical stability.

To the best of our knowledge, [78,79] are the only published results on orthogonal poly-

nomials for predistorter design. Our approach is different and has the following advantages:

(i) Our orthogonal polynomial basis functions are expressed in closed form (non-iterative),

and their coefficients {Ulk} are free of round-off errors. (ii) Our basis functions are pre-

determined and can be implemented with little demand on the computation resources.

In [78, 79], the basis functions are calculated online and iteratively, thus requiring much
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more computational power. (iii) Our basis set consists of both even and odd-order terms

whereas that of [78, 79] allows odd-powered series only. Moreover, our basis function ex-

pressions are for generally complex-valued baseband data; their application to nonlinear

systems with memory is also prescribed.

In Section 5.2, we first introduce the conventional polynomial model and point out its

deficiencies. Next, we derive novel orthogonal polynomial basis functions and illustrate their

benefit in PA modeling. In Section 5.3, we formulate a predistortion linearization algorithm

with orthogonal polynomials. Numerical examples are presented alongside theoretical anal-

ysis. Finally, conclusions are drawn in Section 5.4.

5.2 The polynomial model

5.2.1 The conventional polynomial model

In Fig. 5.1, we denote by x̃(t) the passband input to a nonlinear system (e.g., a power

amplifier or a predistorter), and by ỹ(t) the corresponding passband output. If the nonlinear

system obeys the polynomial model,

ỹ(t) =
K∑

k=1

b̃k x̃
k(t) (5.1)

then it can be shown that the corresponding baseband input x(t) and the baseband output

y(t) are related by [18, p. 69]

y(t) =
K∑

k=1
k odd

bk |x(t)|k−1x(t), (5.2)

where

bk = 21−k

(
k

k−1
2

)
b̃k. (5.3)
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Since (5.1) is a physical (passband) model, b̃k is real-valued; so is bk according to (5.3).

In reality, however, model (5.1) is not exact. As shown in [40], by including even-order

nonlinear terms in (5.2); i.e.,

y(t) =
K∑

k=1

bk |x(t)|k−1x(t), (5.4)

modeling accuracy can be improved. Moreover, as shown in [95], when the nonlinear system

exhibits short-term memory effects (i.e., the PA is quasi-memoryless), the baseband model

(5.4) is still applicable but bk is now generally complex-valued.

Let us define φk(x) = |x|k−1x. Eq. (5.4) then becomes

y(t) =
K∑

k=1

bk φk(x(t)). (5.5)

Given the PA input x(t) and PA output y(t) measurements, we would like to extract the

PA parameters {bk}. Define the N -by-1 input data vector

x = [x(t1), . . . , x(tN )]T ,

the N -by-1 output data vector

y = [y(t1), . . . , y(tN )]T ,

and the K-by-1 parameter vector

b = [b1, b2, . . . , bK ]T .

Next define

φk(x) = [φk(x(t1)), . . . , φk(x(tN ))]T ,

and the N -by-K matrix

Φ = [φ1(x) φ2(x) . . . φK(x)].

We can now represent (5.5) as

y = Φb. (5.6)

The least squares (LS) solution for b is

bLS = (ΦHΦ)−1ΦHy. (5.7)
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The inversion of the K-by-K matrix ΦHΦ in (5.7) can experience a numerical instability

problem. To understand the problem, let us first examine its expected value E[ΦHΦ].

First, notice that φ∗k(x)φl(x) = |x|k+l = rk+l, where r = |x|. For a stationary random

process x(t), we infer that E[φH
k (x)φl(x)] = NE[rk+l]. Therefore, E[ΦHΦ] = NP, where

the (k, l)th element of P is E[rk+l].

Consider as an example, r uniformly distributed in [0, 1], which gives rise to E[rk+l] =

1/(k + l + 1). The resulting P matrix is known as a segment of the generalized Hilbert

matrix with p = 2 [110], which is ill-conditioned.

The condition number of a matrix is defined as ρ = |λmax/λmin|, where λmax and λmin are

its maximum and minimum eigenvalue, respectively. It can be used to predict the numerical

stability associated with matrix inversion. In general, when the condition number is much

larger than 1, the numerical error involved in inverting the matrix can be significant.

Let us consider two additional probability density functions (PDFs) for which closed

form expressions of the moments are available. If r is exponentially distributed with pa-

rameter λ; i.e., the PDF

fr(r) = 1/λ e−r/λ, r ≥ 0, (5.8)

it can be shown that E[rk] = k!λk. As another example, consider the Rayleigh PDF

fr(r) =
r

σ2
e−r2/(2σ2), r ≥ 0. (5.9)

Its kth-order moment is E[rk] = (
√

2σ)k Γ(k/2 + 1), where the Gamma function is defined

as Γ(x) =
∫∞
0 tx−1 e−t dt. When k is even, E[rk] = (

√
2σ)k(k/2)!; when k is odd, E[rk] =

√
π/2 σk 1 · 3 · 5 · · · k.

In Figure 5.2, we show the condition number ρ of the K-dimensional matrix P whose

(k, l)th element is E[rk+l]. We consider three PDFs for r: (i) r is uniformly distributed in

[0, 1]; (ii) r is exponentially distributed with parameter λ = 0.5; (iii) r is Rayleigh distributed

with parameter σ2 = 1.5. We observe that the condition number increases exponentially

as a function of K and becomes very large even for a moderate K. This implies that in

practice, the inversion of ΦHΦ in (5.7) can be difficult.
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5.2.2 Orthogonal polynomial bases

To alleviate the numerical instability problem associated with the basis set Φ in (5.5), we

consider orthogonal polynomials. Instead of (5.6), we write

y = Ψβ, (5.10)

where the new set of basis,

Ψ = [ψ1(x) ψ2(x) . . . ψK(x)],

spans the same space as Φ. The least squares solution to (5.10) is

βLS = (ΨHΨ)−1ΨHy. (5.11)

We consider the following requirements for Ψ:

1. Orthogonality: Any two different basis functions, ψk(x) and ψl(x), are orthogonal;

i.e.,

E[ψ∗
k(x)ψl(x)] = 0, ∀ k 6= l. (5.12)

2. Form of the basis: We consider polynomial basis

ψk(x) =
k∑

l=1

φl(x) Ulk =
k∑

l=1

Ulk |x|l−1x, (5.13)

where Ulk is generally complex-valued and Ulk = 0 for l > k. Note that ψk(x) has

order k.

Therefore, we seek an upper triangular matrix U whose (l, k)th element is Ulk, to con-

struct the orthogonal polynomial basis Ψ = Φ U such that

E[ΨHΨ] = UHE[ΦHΦ]U = NUHPU

is diagonal.

As we show in Section 5.2.1, the (k, l)th element of P is E[rk+l]. Given a PDF for r,

the orthogonal polynomial basis construction problem becomes finding the upper triangular
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matrix U such that UH P U = diag(d1, . . . , dK). Therefore in theory, orthogonal polynomi-

als are tied to the PDF of the signal amplitude. Since P always tends to be ill-conditioned

(see the examples in Section 5.2.1), solving for U is often a numerically challenging task.

Let r = |x| be uniformly distributed in [0, 1], and require that the squared norm of the

basis be preserved; i.e.,

dk = E[|ψk(x)|2] = E[|φk(x)|2] =

∫ 1

0
r2k dr =

1

2k + 1
, 1 ≤ k ≤ K. (5.14)

We show in the Appendix that the matrix U that solves this problem has an elegant

expression:

Ulk =





(−1)l+k (k+l)!
(l−1)!(l+1)!(k−l)! , l ≤ k,

0, l > k.
(5.15)

Therefore, the kth-order orthogonal polynomial basis function for the uniformly distributed

|x| is

ψk(x) =
k∑

l=1

(−1)l+k (k + l)!

(l − 1)!(l + 1)!(k − l)!
|x|l−1x. (5.16)

Table 5.1 shows the first 7 such orthogonal polynomials. Notice that if we replace

the complex valued basis functions |x|k−1x, k = 1, 2...,K, with real-valued basis functions,

|x|k, k = 1, 2...,K, we obtain the real-valued orthogonal polynomials defined in the region

[0, 1], which are known as the shifted Legendre polynomials [52], except that the |x|0 poly-

nomial is not included. Although the construction of orthogonal basis is often an iterative

procedure, we were able to obtain novel, closed form expression (5.16) for complex-valued

x(t).

Fig. 5.3(a) shows φk(|x|) = |x|k vs. |x| and Fig. 5.3(b) shows ψk(|x|) vs. |x|. When

x→ 0, the conventional polynomial basis function φk(x) is on the order of o(xk) which goes

to 0 a lot faster than x when k > 1. Implementing φk(x) with a lookup table can therefore

introduce more error when a low input value is forced to zero due to quantization. The

orthogonal polynomial basis function, ψk(x), is free of such problem, since it is on the order

o(x) for any k. Moreover, ψk(x) has k different roots whereas φk(x) has k repeated roots

at x = 0. This implies that ψk(x) has a richer “frequency content” and hence has better

interpolating properties.
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Figure 5.3: Comparison between φk(|x|) and ψk(|x|).

Table 5.1: Orthogonal polynomial basis functions ψk(x) for 1 ≤ k ≤ 7.

ψ1(x) = x

ψ2(x) = 4|x|x− 3x

ψ3(x) = 15|x|2x− 20|x|x+ 6x

ψ4(x) = 56|x|3x− 105|x|2x+ 60|x|x− 10x

ψ5(x) = 210|x|4x− 504|x|3x+ 420|x|2x− 140|x|x+ 15x

ψ6(x) = 792|x|5x− 2310|x|4x+ 2520|x|3x− 1260|x|2x+ 280|x|x− 21x

ψ7(x) = 3003|x|6x− 10296|x|5x+ 13860|x|4x− 9240|x|3x+ 3150|x|x2 − 504|x|x+ 28x

If r is uniformly distributed in [0, 1], the condition number of E[ΨHΨ] = NUHPU is

d1/dK = (2K + 1)/3, which is orders of magnitudes smaller than that of E[ΦHΦ] = NP;

c.f. Figure. 5.2.

5.2.3 Discussions on the orthogonal polynomial basis

In theory, we can calculate the orthogonal polynomial basis for any given PDF fr(r); i.e., we

can find the U matrix that makes UHPU diagonal, for P generated from the given distri-

bution. However, we were only able to obtain closed form expression of Ulk for the uniform

distribution case (closed form solution may not exist for other distributions). Interestingly,

the basis functions (5.16) (see also Table 5.1) consist of integer-valued coefficients which are

free of round-off errors. For almost all other PDFs, Ulk will be non-integer valued.
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Although {ψk(x)} of (5.16) are derived assuming that the input amplitude, r = |x|, is

uniformly distributed, we would like to show that such ψk(x) can be used even if r is not

uniformly distributed.

For a given PDF fr(r), we can form matrix P whose (k, l)th element is E[rk+l]. Hence

E[ΨHΨ] = NUHPU is known, where U is given by (5.15). When fr(r) is not uniform in

[0, 1], UHPU is probably not diagonal, but our hope is that its condition number does not

become huge. Keep in mind that our primary concern is to obtain (ΨHΨ)−1 accurately;

the exact orthogonality of Ψ for any given data x is of secondary importance.

Let us consider the “truncated exponential” distribution.

fr(r) =





1

1−e−
1
λ

1
λe

− r
λ , 0 ≤ r ≤ 1,

0, otherwise,

(5.17)

and the “truncated Rayleigh” distribution,

fr(r) =





1

1−e
−

1
2σ2

r
σ2 e

− r2

2σ2 , 0 ≤ r ≤ 1,

0, otherwise.

(5.18)

Suppose that v is a uniformly distributed r.v. in [0, 1]. Transformations

r = −λ ln(1 − v(1 − e−1/λ))

and

r =

√
−2σ2 ln(1 − v(1 − e−1/(2σ2)))

generate r.v. r with the PDF in (5.17) and (5.18), respectively.

Four specific cases are investigated:

(i) r is truncated Rayleigh distributed (c.f. (5.18)) with σ2 = 0.1086;

(ii) r is truncated Rayleigh distributed (c.f. (5.18)) with σ2 = 0.5;

(iii) r is truncated exponentially distributed (c.f. (5.17)) with λ = 0.2127;

(iv) r is truncated exponentially distributed (c.f. (5.17)) with λ = 1.
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distribution in [0, 1].

The above four PDFs along with the uniform distribution are shown in Fig. 5.4.

Fig. 5.5(a) shows the condition number for the matrix ΦHΦ for each of the PDFs,

calculated from 1,000,000 samples. We note that, for each PDF, the condition number

grows exponentially with the polynomial order K. Fig. 5.5(b) shows the condition number

for the matrix ΨHΨ for each of the PDFs, which increases at a much slower rate as K

increases and are within 100 for the cases tested. The low condition number will ensure

better numerical stability when finite precision computation of the model coefficients is

carried out. Notice from Fig. 5.4 and Fig. 5.5(b) that the closer a PDF resembles the

uniform distribution (e.g., case (iv) as opposed to case (iii)), the lower the condition number

when the orthogonal polynomial basis functions (5.16) are used.

In practice, we do not require r = |x| to be exactly in [0, 1] in order for the orthogonal

polynomial basis ψk(x) to be used. There are two scenarios however, where a simple scaling
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Figure 5.5: Comparison of the condition numbers of (a) ΦHΦ and of (b) ΨHΨ for
the PDFs given in Fig. 5.4. 1,000,000 samples were drawn from the following PDFs: (i)
truncated Rayleigh distribution with σ2 = 0.1086; (ii) truncated Rayleigh distribution
with σ2 = 0.5; (iii) truncated exponential distribution with λ = 0.2171; (iv) truncated
exponential distribution with λ = 1; along with the uniform distribution in [0, 1]. For (a),
the theoretical value is the condition number of matrix P, whose (k, l)th entry is 1

k+l+1 ,

1 ≤ k, l ≤ K. For (b), the theoretical value of the condition number is 2K+1
3 .

operation is needed. One situation is if Pr(r > 1) � 0; i.e., a significant number of r values

exceed 1. Another situation is if Pr(0 ≤ r ≤ δ) ≈ 1 for some δ � 1; i.e., the r values

concentrate around zero. For both cases, we first scale x to obtain x̌ = µx and then apply

the orthogonal polynomials to x̌. When Pr(r > 1) � 0, µ should be chosen such that the

maximum value of |x̌| is around 1. For the second situation, µ should be selected such that

the “center of gravity” of |x̌| is shifted closer to 1. A step-by-step algorithm is outlined

below.

Step 1. Determine µ > 0 such that the majority of µr values lie in [0, 1], or that µr spreads

over much of the [0, 1] interval. One possible scaling factor is µ = 1/maxt |x(t)|, if

|x(t)| is bounded. Let x̌ = µx.

Step 2. Form ψk(x̌) according to (5.16); i.e.,

ψk(x̌(t)) =
k∑

l=1

(−1)l+k (k + l)!

(l − 1)!(l + 1)!(k − l)!
|x̌(t)|l−1x̌(t).

Then form

ψk(x̌) = [ψk(x̌(t1)), . . . , ψk(x̌(tN ))]T ,
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Ψ = [ψ1(x̌) ψ2(x̌) . . . ψK(x̌)].

Step 3. Solve for β using (5.11); i.e.,

βLS = (ΨHΨ)−1ΨHy.

Step 4. The model is then

y(t) =
K∑

k=1

βk ψk(µx(t)).

Next, we would like to point out major differences between our orthogonal polynomial

basis (5.16) and that of [78, 79].

(i) Our basis set {ψk(x)} includes both even and odd k values, whereas in [78, 79], only

odd k values are allowed. Even-order terms are beneficial; see [40].

(ii) In [78, 79], an “orthogonal polynomial basis function calculator” constructs the basis

functions using the available data x, whereas our ψk(·) functions are already con-

structed and are available in closed form. For real data applications, speed is an

important concern and the optimization of the basis functions for each data vector

is not necessary. Since our ψk(x) functions are pre-determined, a lookup table can

be built to further accelerate the speed. In [78, 79], matrix inversion is avoided be-

cause of the exact orthogonality of the basis functions for the data present, but the

computation load is shifted to constructing the basis functions in the first place. Our

standpoint is that, we do not need ΨHΨ to be exactly diagonal for every realization of

x. As long as the condition number of ΨHΨ is low, we can proceed with its inversion

and obtain the model coefficients via linear least squares as in (5.11).

(iii) In solving for the Ulk coefficients for the construction of Ψ = ΦU, we desire the Ulk

coefficients to be very accurate. Most orthogonal bases (including that of [78, 79])

are constructed iteratively, often leading to less reliable Ulk values for larger k’s. Our

non-iterative, closed form, integer valued solution (5.15) ensures that the ψk(x) basis

functions are free of round-off errors.
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5.2.4 PA modeling example

If the baseband input to a nonlinear PA is x(t) and the corresponding baseband output

is y(t), then |y(t)| vs. |x(t)| is the so-called AM/AM conversion, and ∠y(t) − ∠x(t) vs.

|x(t)| is the so-called AM/PM conversion. We first measured the AM/AM and AM/PM

characteristics of a 2-stage GaAsFET RFIC PA (Class AB) as shown in Fig. 5.6(a) and

Fig. 5.6(b), respectively.
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Figure 5.6: AM/AM and AM/PM transfer characteristics of an actual class AB PA.

Next, a polynomial PA model is constructed to fit the measured data. When the con-

ventional polynomial basis is used, the resulting PA model output is

ŷ(t) =

K∑

k=1

bk φk(x(t)). (5.19)

When the orthogonal polynomial basis is used,

ŷ(t) =

K∑

k=1

βk ψk(x(t)). (5.20)

Theoretically, when additional higher order polynomial terms are included in the PA

model, modeling error becomes progressively smaller. To give a quantitative measure of the

approximation accuracy, we define a normalized mean square error,

NMSE (dB) = 10 log10

[∑N
n=1 |y(tn) − ŷ(tn)|2
∑N

n=1 |y(tn)|2

]
, (5.21)

where y(tn) is the measured PA output and ŷ(tn) is the PA model output.
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In Fig. 5.7, we show the modeling errors (NMSEs) for the conventional (solid line) and

the orthogonal polynomial (dash dotted line) PA models. The {bk} coefficients in (5.19)

and the {βk} coefficients in (5.20) were computed from (5.7) and (5.11), respectively, and

the computation environment was C with 32-bit floating point precision. We observe that

for the orthogonal polynomials, when the maximum polynomial order increases, modeling

error constantly decreases. However, this is not the case for the conventional polynomials.

In fact, for the PA under study, the orthogonal polynomial PA model shows superiority

starting at K = 7, which is not a very high polynomial PA model order for realistic PAs.
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Figure 5.7: PA modeling errors for the conventional polynomial model (solid line) and
the orthogonal polynomial model (dot-dashed line) when K polynomial basis functions are
used.

5.2.5 Extension to the memory polynomial case

For wideband applications (e.g., x(t) is wideband CDMA) and/or with high power amplifiers

(e.g., basestation PAs), memory effects show up in the PA [65], [118], [33]. In [65], the

memory polynomial model is shown to be a good model for characterizing nonlinear PAs
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with memory effects.

Here, we assume uniform sampling with sampling period T . The memory polynomial

PA model is given by

y[n] =

K∑

k=1

Q∑

q=0

bkq x[n− q]|x[n− q]|k−1, (5.22)

where x[n] = x(tn) = x(nT ) and y[n] = y(tn) = y(nT ), K is the highest polynomial order,

and Q is the maximum delay.

Let us define the N -by-1 shifted input vector

xq = [01×q, x[1], . . . , x[N − q]]T ,

the N -by-1 vector

φk(xq) = [01×q, φk(x[1]), . . . , φk(x[N − q])]T ,

the N -by-K matrix

Φq = [φ1(xq) φ2(xq) . . . φK(xq)],

and the N -by-K(Q+ 1) matrix

Φ = [Φ0 Φ1 . . . ΦQ].

The K(Q+ 1) parameter vector is

b = [b10, b20, . . . , bK0, . . . , b1Q, b2Q, . . . , bKQ]T .

We can then rewrite (5.22) as y = Φb and solve for b using linear least squares as in (5.7).

As one might expect, the “conventional memory polynomial” model (5.22) may suffer

the same numerical instability problem described earlier. To alleviate such problem, we

suggest to replace φk(x) by ψk(x). The result is the “orthogonal memory polynomial”

model,

y[n] =
K∑

k=1

Q∑

q=0

βkq ψk(x[n− q]). (5.23)

By replacing φk by ψk, and bkq by βkq, we can write y = Ψβ, and solve for β using linear

least squares similar to (5.11).
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Although orthogonality holds for Φq for each q; i.e., E[ΦH
q Φq] is diagonal, orthogonality

does not hold for the different delayed elements; i.e., E[ΦHΦ] is not exactly diagonal.

However, we still expect the orthogonal memory polynomial model (5.23) to be numerically

more robust than the conventional memory polynomial model (5.22).

5.3 Orthogonal polynomial predistortion

5.3.1 Predistortion via the indirect learning architecture

The baseband model (5.4) can be used for PA modeling as well as predistorter design. For

the latter, we advocate the use of the indirect learning architecture [46] as shown in Fig.

5.8.
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ẑ(t)

z(t)

v(t)

e(t)

y(t)

1

G

Figure 5.8: Indirect learning architecture.

The baseband PA input is denoted by x(t), the baseband PA output / predistorter

input is denoted by z(t), and the baseband PA output is denoted by y(t). The feedback

path labeled “Predistorter Training Branch” (block A) has y(t)/G as its input, where G is

the intended gain of the PA, and ẑ(t) is its output. The actual predistorter (copy of A)

is an exact copy of the predistorter training branch. Since when y(t) = Gx(t), the error

e(t) = z(t)− ẑ(t) is 0, the predistorter parameters can be found by minimizing ‖e(t)‖2. The

benefit of the indirect learning architecture is that, instead of assuming a model for the PA,

estimating the PA parameters and then constructing its inverse, we can go directly after
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the predistorter1.

For the predistorter training branch, if the conventional polynomial model is adopted,

we have,

ẑ(t) =
K∑

k=1

ak

∣∣∣∣
y(t)

G

∣∣∣∣
k−1 y(t)

G
, (5.24)

where G is the intended linear gain of the PA. Based on a set of PA input {z(ti)}N
i=1

and output {y(ti)}N
i=1 measurements, the least-squares solution can be obtained for the

predistorter coefficients, a = [a1, . . . , aK ]T , similar to (5.7), but with y(t)/G now playing

the role of x(t), and z(t) playing the role of y(t). Once the coefficients {ak} are found, they

are plugged into the predistorter:

z(t) =
K∑

k=1

ak |x(t)|k−1x(t) =
K∑

k=1

ak φk(x(t)). (5.25)

This procedure can be repeated, one benefit of the iterations being that more diverse values

of z(t) and y(t) are possible and are helpful for obtaining more accurate model parameter

estimates. To initialize, a = [1 0 . . . 0]T can be used. Such recursive procedure enables the

predistorter to linearize even a (slowly) time-varying PA.

As in PA modeling, in solving for the {ak} coefficients for the conventional polynomial

predistorter (5.25), the numerical instability problem may show up. Instead of (5.25), we

prefer to use the orthogonal polynomial predistorter,

z(t) =
K∑

k=1

αk ψk(x(t)), (5.26)

where ψk(x) is given by (5.16) (see also Table 5.1).

Since ψk(x) is a linear combination of {φl(x)}k
l=1, models (5.26) and (5.25) are equivalent,

in theory. However, in practice, sampling the input and output of a PA using a finite pre-

cision analog-to-digital converter (ADC) may introduce error to the samples. Furthermore,

since obtaining the LS estimates of the predistorter coefficients requires a matrix inversion,

the digital signal processor (DSP) precision may impact the accuracy of the resulting matrix

inverse. With the orthogonal polynomial predistorter model (5.26), numerical problems due

to quantization and finite precision calculations in the DSP can be significantly alleviated.

1The term “indirect learning” seems counter-intuitive here, since the predistorter is learned directly; it
is the PA characteristics that are learned indirectly.
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5.3.2 Simulations – predistortion linearization

The numerical problems associated with estimating the predistorter coefficients will affect

the performance of the predistorter. We will examine the problem from the view point of

spectral regrowth suppression. We utilize the indirect learning architecture shown in Fig.

5.8 to carry out predistortion linearization. The predistorter’s input, x(t), is a three carrier

UMTS signal [105]. The simulation environment is C, with 32-bit floating point accuracy.

The plots are done in MATLABr.

5.3.2.1 Memoryless predistortion

The PA input z(t) and output y(t) are assumed to obey the arctan model:

y(t) =
(
γ1 tan−1(ζ1|z(t)|) + γ2 tan−1(ζ2|z(t)|)

)
ej∠z(t), (5.27)

where γ1 = 8.00335 − j4.61157, γ2 = −3.77167 + j12.03758, ζ1 = 2.26895, and ζ2 = 0.8234

. This PA model fits well measured data from an actual Class AB PA discussed in Section

5.2.4. The intended linear gain is set to G = 7.
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(b) Orthogonal polynomial predistorter

Figure 5.9: Memoryless predistortion example. Dash dotted lines show the PA output
PSD without predistortion; solid lines show the PA output PSD with predistortion (results
are shown for iteration numbers 15, 18 and 21); dashed lines show the PA input PSD.
For easy visual comparison, output PSDs are normalized with respect to the input PSD.
(a) Conventional polynomial predistorter with K = 7. The predistorter did not converge,
revealing a numerical instability problem. (b) Orthogonal polynomial predistorter with
K = 7. The predistorter converged and could fully suppress spectral regrowth.

Fig. 5.9(a) shows the PSD at the output of the PA for the conventional polynomial
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predistorter with a polynomial order K = 7. The PSD is presented for iterations 15, 18,

and 21, respectively and shows no sign of convergence. In contrast, Fig. 5.9(b) shows the

PSD at the output of the PA for the orthogonal polynomial predistorter with the same

order K = 7. In this case, the predistorter shows stability and effectiveness.

5.3.2.2 Predistortion with memory

When a nonlinear PA exhibits memory effects, memoryless predistortion is often ineffective.

Indeed, the exact inverse of a nonlinear system with memory should be another nonlinear

system with memory.

In this example, we assume that the nonlinear system to be compensated for obeys

the Wiener-Hammerstein (W-H) model; i.e., a linear time invariant (LTI) system followed

by a memoryless nonlinearity, which in turn is followed by another LTI system. The LTI

blocks before and after the memoryless nonlinearity, which are denoted by H(z) and G(z),

respectively, are

H(z) =
1

1.5

1 + 0.25z−2

1 + 0.4z−1
, G(z) =

1

0.52

1 − 0.1z−1

1 − 0.2z−1
. (5.28)

For the memoryless nonlinear portion of the W-H model, we choose the arctan model defined

in (5.27) with the same parameters.

Using the indirect learning architecture, conventional and orthogonal memory polyno-

mial predistorters can be constructed following the ideas of Section 5.2.5. Here we show

the conventional and the orthogonal memory polynomial predistorters with 5 delay taps

(Q = 5) and 7th order polynomials (K = 7).

Performance of the conventional memory polynomial predistorter is shown in Fig. 5.10(a).

Its performance is not satisfactory; especially noticeable is the worsening of the alternate

channel spectral regrowth. Moreover, the conventional memory polynomial predistorter did

not converge even after 20 iterations; the instability was caused by ill conditioning of the

ΦHΦ matrix. Increasing Q or K did not alleviate the problem either.

In Fig. 5.10(b), we show performance of the the orthogonal memory polynomial pre-

distorter for the same PA. We observe that spectral regrowth was well suppressed and the
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(b) Orthogonal memory polynomial predistorter

Figure 5.10: Predistortion linearization performance of a memory polynomial predistorter
for a Wiener-Hammerstein system. Dash-dotted lines show the PA output PSD without
predistortion; solid lines show the PA output PSD with memory polynomial predistortion
(results are shown for iteration numbers 15, 17, 20); dashed lines show the PA input PSD.
For easy visual comparison, output PSDs are normalized with respect to the input PSD. (a)
Conventional memory polynomial predistorter with K = 7 and Q = 5. The predistorter did
not converge, revealing a numerical instability problem. (b) Orthogonal memory polynomial
predistorter with K = 7 and Q = 5. The predistorter converged and could suppress most
of the spectral regrowth.

predistorter converged. In general, linearizing a nonlinear system with memory is a difficult

task, but our proposed orthogonal memory polynomial predistorter is promising.

5.4 Conclusions

In this chapter, the benefits of using the orthogonal polynomials as opposed to the con-

ventional polynomials are explored, in the context of digital baseband PA modeling and

predistorter design. Closed-form expression for the orthogonal polynomial basis is derived.

We demonstrated using simulation examples, the numerical instability problem associated

with the conventional polynomials, when the polynomial order is high (e.g., K ≥ 7). Ex-

tension to an orthogonal polynomial predistorter with memory is also considered.

5.A Orthogonality Proof

We prove here the orthogonality of the polynomials given in (5.16) when r = |x| is uniformly

distributed in [0, 1], and find the norm of such orthogonal polynomials.
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The inner-product of two functions ψk(x) and ψl(x) is defined as

〈ψk(x), ψl(x)〉 = E[ψ∗
k(x)ψl(x)].

When 〈ψk(x), ψl(x)〉 = 0, we say that ψk(x) and ψl(x) are orthogonal. The norm of ψ(x)

is given by

‖ψ(x)‖ =
√
〈ψ(x), ψ(x)〉. (5.29)

Recall that the Gamma function is given by:

Γ(x) =

∫ ∞

0
tx−1e−tdt, x ≥ 1. (5.30)

We henceforth assume that r = |x| is uniformly distributed in [0, 1].

Theorem 1. Let ψ
(p)
n (x) =

∑n
i=1 U

(p)
in |x|i+ p

2
−1ej∠x, where j =

√
−1 and

U
(p)
in = (−1)n+i Γ(n+ p+ i− 1)

Γ(i)Γ(i+ p)Γ(n− i+ 1)
. (5.31)

For any n ∈ Z ≥ 1, and p ∈ R ≥ 0, the basis
{
ψ

(p)
1 (x), . . . , ψ

(p)
N (x)

}
is an orthogonal basis

with the squared-norm
∥∥∥ψ(p)

n (x)
∥∥∥

2
= 1

2n+p−1 .

Proof. We start by introducing the generalized segmented n× n Hilbert matrix, Hn, given

by

(Hn)il =
1

i+ l + p− 1
∀1 ≤ l, i ≤ n. (5.32)

Its inverse, H−1
n , is given by [67]

(
H−1

n

)
il

=
(−1)i+l

p+ i+ l − 1

Γ(n+ p+ i)

Γ(i)Γ(i+ p)Γ(n− i+ 1)

Γ(n+ p+ l)

Γ(l)Γ(l + p)Γ(n− l + 1)
. (5.33)

Using (5.31) and invoking the property Γ(x) = (x− 1)Γ(x− 1), we can rewrite (5.33) as:

(
H−1

n

)
il

=
(n+ p+ i− 1)(n+ p+ l − 1)

p+ i+ l − 1
U

(p)
in U

(p)
ln . (5.34)

Since H−1
n is the inverse of Hn, it follows that for 1 ≤ i, k ≤ n,

n∑

l=1

(
H−1

n

)
il

(Hn)lk = δik. (5.35)
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Substitution of (5.34) and (5.32) into (5.35) yields:

n∑

l=1

(n+ p+ i− 1)(n+ p+ l − 1)

p+ i+ l − 1
U

(p)
in U

(p)
ln

1

l + k + p− 1
= δik. (5.36)

Replacing k = n in (5.36) and simplifying, we obtain

n∑

l=1

U
(p)
ln

1

p+ i+ l − 1
=

δin

(n+ p+ i− 1)U
(p)
in

=
δin

(2n+ p− 1)U
(p)
nn

. (5.37)

The inner-product of ψ
(p)
n (x) and |x|i+ p

2
−1ej∠x yields

〈
ψ(p)

n (x), |x|i+
p
2
−1ej∠x

〉
=

n∑

l=1

U
(p)
ln

∫ 1

0
|x|l+

p
2
−1|x|i+

p
2
−1dr

=
n∑

l=1

U
(p)
ln

1

i+ l + p− 1

=
δin

(2n+ p− 1)U
(p)
nn

. (5.38)

Eq. (5.38) indicates that ψ
(p)
n (x) is orthogonal to |x|i+ p

2
−1ej∠x for any 1 ≤ i ≤ n− 1. Thus

ψ
(p)
n (x) is orthogonal to any linear combination of {|x|i+ p

2
−1ej∠x}n−1

i=1 . Therefore, ψ
(p)
n (x) is

orthogonal to any ψ
(p)
l (x) with 1 ≤ l ≤ n − 1. This property holds for n = 2, . . . , N , and

therefore, the basis
{
ψ

(p)
1 (x), . . . , ψ

(p)
N (x)

}
is orthogonal (i.e., each function in the basis is

orthogonal to the others). The squared norm of ψ
(p)
n (x) can be calculated as follows:

∥∥∥ψ(p)
n (x)

∥∥∥
2
=
〈
ψ(p)

n (x), ψ(p)
n (x)

〉

=
n∑

i=1

U
(p)
in

〈
ψ(p)

n (x), |x|i+
p
2
−1ej∠x

〉

=

n∑

i=1

U
(p)
in

δin

(2n+ p− 1)U
(p)
nn

=
1

2n+ p− 1
. (5.39)

Note that the first orthogonal function (i.e., for n = 1) is ψ
(p)
1 (x) = U

(p)
11 |x| p

2 ej∠x =

|x| p
2 ej∠x. In this chapter, we use the special case where p = 2, such that Uln = U

(2)
ln and

ψn(x) = ψ
(2)
n (x); and such that the first polynomial, ψ1(x) = x. When the input to the PA

is small, the PA is approximately linear. Therefore, having the orthogonal basis with the
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first polynomial being x, is appropriate. If the PA is not approximately linear for a small

input signal, a different choice of p (other than p = 2) may be appropriate. The norm for

the orthogonal polynomials used in this chapter, ψn(x), (when p = 2) is 1
2n+1 .
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CHAPTER VI

ORTHOGONAL POLYNOMIALS FOR COMPLEX

GAUSSIAN PROCESSES

Power amplifiers are the major source of nonlinearity in communications systems. Such

nonlinearity causes spectral regrowth as well as in-band distortion, which lead to adjacent

channel interference and increased bit error rate. Polynomials are often used to model

the nonlinear power amplifier or its predistortion linearizer. In this chapter, we present a

novel set of orthogonal polynomials for baseband Gaussian input to replace the conventional

polynomials, and show how they alleviate the numerical instability problem associated with

the conventional polynomials. The orthogonal polynomials also provide an intuitive means

of spectral regrowth analysis.

6.1 Introduction

Power amplifiers (PAs) are the major source of nonlinearity in communications systems.

To achieve high efficiency from a given PA, the PA is often driven into its nonlinear re-

gion. When a non-constant envelope signal goes through a nonlinear PA, spectral regrowth

(broadening) appears in the PA output, which in turn causes adjacent channel interference

(ACI). Due to stringent limits on the ACI imposed by regulatory bodies, PA nonlinearity

must be limited. PA linearization is often necessary to suppress spectral regrowth, contain

adjacent channel interference, and reduce bit error rate (BER).

When modeling a nonlinear PA or the predistorter linearizing such a PA, the power

series model, or the polynomial model, is often used (see e.g., [15, 36, 64, 113]). After

extracting the polynomial coefficients of the PA, it is then possible to predict spectral

regrowth present at the PA output [21, 50, 129, 131]. The polynomial model is widely used

since it is relatively simple to construct and to analyze. However, it suffers a major draw

back: computations associated with parameter estimation for the polynomial model tend to
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be numerically unstable [91, 116]. Orthogonal polynomials offer a remedy to this problem;

they also provide an intuitive means of spectral regrowth analysis, as we will see later in

this chapter.

In [106], the use of orthogonal basis functions for Volterra nonlinear systems was dis-

cussed, under the assumption of real-valued Gaussian input. In [116], orthogonal poly-

nomials were introduced to reduce numerical errors in the direct inversion of memoryless

nonlinearities. Moreover, the spectrum at the output of a nonlinearity was expressed in

terms of the orthogonal polynomial coefficients, but only the real-valued case was con-

sidered. In [91], a set of orthogonal polynomial basis functions was derived when the

magnitude of the input signal is uniformly distributed. Orthogonal frequency division mul-

tiplexing (OFDM) signals, which are widely used in modern communication systems, are

approximately complex-Gaussian distributed. In this chapter, we will derive a closed-form

expression for orthogonal polynomials when the input is complex Gaussian distributed. We

will replace the conventional polynomial model by the orthogonal polynomial model in order

to improve numerical stability in parameter extraction for baseband models, as well as to

simplify spectral regrowth analysis. Although the theoretical results are derived assuming

Gaussian distribution of the input, as we will show in the chapter, the orthogonal polyno-

mial model ensures better numerical stability even if the input distribution is not exactly

Gaussian.

This chapter is organized as follows. The problems associated with PA modeling and

predistortion are described in Section 6.2. Derivation of the orthogonal polynomials is

presented and some of their properties are outlined in Section 6.3. In Section 6.4, we apply

the orthogonal polynomials to carry out spectral regrowth analysis. In Section 6.5, we show

the benefits of the orthogonal polynomials for improving numerical stability in predistortion

linearization. Finally, conclusions are drawn in Section 6.6.

6.2 Problem Formulation

We say that f(z) and g(z) are orthogonal functions if and only if

E[f∗(z)g(z)] = 0, (6.1)
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where ∗ stands for complex conjugation and E[·] denotes statistical expectation. We are

prompted to consider orthogonal polynomials due to some numerical stability problems that

we encountered in PA modeling and PA linearization.

6.2.1 The Numerical Instability Problem in PA Modeling

We model the baseband input/output relationship of a (quasi-)memoryless PA by [17]

y(t) =
K∑

k=0

a2k+1|z(t)|2kz(t)

=
K∑

k=0

a2k+1φ2k+1(z(t)), (6.2)

where

φ2k+1(z(t)) = |z(t)|2kz(t) (6.3)

is the conventional polynomial basis function. For justification of the odd-order model and

the conjugation pattern [z(t)]k+1[z∗(t)]k = |z(t)|2kz(t), see [17]. Next, define the following

vector notations:

y = [y(t1), y(t2), . . . , y(tN )]T ,

φ2k+1(z) = [|z(t1)|2kz(t1), |z(t2)|2kz(t2), . . . , |z(tN )|2kz(tN )]T ,

Φ(z) = [φ1(z),φ3(z), . . . ,φ2K+1(z)],

a = [a1, a3, . . . , a2K+1]
T . (6.4)

Using this vector notation, eq. (6.2) can be written as

y = Φ(z)a. (6.5)

Therefore, the least-squares (LS) estimate of a based on the PA input measurements z and

the PA output measurements y is

âLS = Φ(z)†y, (6.6)

where Φ(z)† , (Φ(z)HΦ(z))−1Φ(z)H is the pseudo-inverse of Φ(z). The matrix Φ(z)HΦ(z)

is often ill-conditioned, therefore the inversion of such matrix will incur numerical errors.
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Figure 6.1: Condition number of Φ(z)HΦ(z) (averaged over 500 independent Monte-Carlo
runs) as a function of K.

Consider as an example, a simple nonlinear model y(t) = a1z(t) + a3|z(t)|2z(t), with

a1 = 15.0008 + 0.0908j and a3 = −23.0826 + 3.3133j; i.e., the true parameter vector is

a = [a1, a3, 0, . . . , 0]
T . The input z(t) was an i.i.d. complex Gaussian distributed with

zero-mean and standard deviation 0.16. The number of samples N was 1000. Define the

condition number of a matrix as ρ =
∣∣λmax

λmin

∣∣ where λmax and λmin are respectively, the

maximum and minimum eigenvalues of the matrix. The condition number of the resulting

matrix Φ(z)HΦ(z) (averaged over 500 independent Monte-Carlo runs) is shown in Fig. 6.1.

We observe that the condition number increases exponentially withK. Therefore, the higher

the nonlinear model order, the more susceptible the solution (6.6) is to numerical errors. We

would like to see a reduction of the condition number (and hence improvement in numerical

stability) when the orthogonal polynomial basis, {ψ1(z(t)), ψ3(z(t)), . . . , ψ2K+1(z(t))}, is

used to replace the conventional polynomial basis, {φ1(z(t)), φ3(z(t)), . . . , φ2K+1(z(t))}.

We will show that with the orthogonal polynomials, we will be inverting a Ψ(z)HΨ(z)

matrix with the corresponding E[Ψ(z)HΨ(z)] = I, if z(t) is complex Gaussian distributed.

Since an identity matrix has a condition number equal to 1, we expect a significant reduction

in condition number as compared to Fig. 6.1.

6.2.2 The Numerical Instability Problem in Predistortion Linearization

We advocate the indirect learning architecture [46] as shown in Fig. 6.2. The baseband
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Figure 6.2: The indirect learning architecture. The predistorter parameters are obtained
from the z(t) and y(t) samples, and then used to generate future z(t) values from x(t).

predistorter input is denoted by x(t), the baseband predistorter output/PA input is de-

noted by z(t), and the baseband PA output is denoted by y(t). The feedback path labeled

“Predistorter Training Branch” (block A) has y(t)/G as its input, where G is the intended

gain of the PA, and ẑ(t) is its output. The actual predistorter (copy of A) is an exact

copy of the predistorter training branch. When y(t) = Gx(t), the error e(t) = z(t) − ẑ(t)

is 0. To reduce the error between y(t) and Gx(t), we choose the predistorter parameters

that minimizes the error energy in e(t). The benefit of the indirect learning architecture

is that, instead of assuming a model for the PA, estimating the PA parameters and then

constructing its inverse, we can go directly after the predistorter.

We use an iterative approach to obtain the predistorter coefficients. In Fig. 6.2, let us

denote the predistorter input signal, the predistorter output/PA input signal, and the PA

output signal, at the ith iteration by x(i)(t), z(i)(t), and y(i)(t), respectively. To initialize,

the predistorter passes its input to the PA as is; i.e., z(0)(t) = x(0)(t). Based on measured

PA input z(0)(t) and output y(0)(t) values, a predistorter model f (0)(·) is obtained so that

z(0)(t) ≈ f (0)(y(0)(t)/G). In the next iteration, the estimated predistorter is copied to the

main branch to generate z(1)(t) = f (0)(x(1)(t)). We then supply z(1)(t) as input to the PA

to obtain output y(1)(t). Next, we update the predistorter based on the new PA input and

output measurements with the objective of achieving z(1)(t) ≈ f (1)(y(1)(t)/G). At the ith

iteration, we implement the predistorter f (i)(·) as

z(i+1)(t) = f (i)(x(i+1)(t)),
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and obtain an improved predistorter estimate f (i+1)(·) by solving

z(i+1)(t) ≈ f (i+1)(y(i+1)(t)/G).

This procedure is repeated until the predistorter estimate has converged according to a

pre-selected criterion. For notational simplicity however, we will omit (i) from now on.

We point out that before convergence, even if x(t) is Gaussian, y(t) is non-Gaussian.

However, as we will show in Section 6.5.1, the orthogonal polynomials derived in this chapter

can alleviate the condition number of the regressor matrix even if the signal distribution

deviates from complex Gaussian.

The conventional polynomial predistorter is [113], [15]

z(t) =
K∑

k=0

b2k+1φ2k+1 (x(t)) , (6.7)

where φ2k+1(·) is defined as in (6.3). We estimate the coefficients {b2k+1} by applying a

least-squares (LS) fit to the measured data y(t) and z(t) based on:

z(t) =
K∑

k=0

b2k+1φ2k+1

(
y(t)

G

)
, (6.8)

so at convergence the concatenation of the predistorter and the PA will approximate a

memoryless linear system with gain G. Using the Φ(·) notation introduced in (6.4) and

define b = [b1, b3, . . . , b2K+1]
T , the vector format of (6.8) is given by

z = Φ(G−1y)b. (6.9)

The LS estimator of b given by

b̂LS = Φ(G−1y)†z (6.10)

requires the inversion of Φ(G−1y)HΦ(G−1y), which is often ill-conditioned. Similar to

the PA modeling problem, we would like to consider the use of orthogonal polynomials

to reduce the numerical instability problem in implementing (6.10). The PA modeling

and predistorter construction problems are very similar by virtue of the indirect learning

architecture. The difference is that in PA modeling, a model is assumed for the PA, whereas

in predistortion, a model is assumed for the inverse of the PA.
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6.3 Orthogonal Polynomials

Here, we would like to find an orthogonal basis which spans the same space as spanned by

{φ1(z(t)), . . . , φ2K+1(z(t))}. This is applicable to both PA modeling and predistorter design.

We assume that z(t) is complex Gaussian distributed. Obtaining closed-form expressions

for orthogonal polynomials for an arbitrary distribution is generally a difficult problem and

the derivations are not easily generalized.

We seek a set of orthogonal polynomials {ψ2k+1(z)} of the form:

ψ2k+1(z) =
k∑

l=0

∆lk φ2l+1(z), (6.11)

where the conventional polynomial basis function φ2l+1(·) is defined as in (6.3) and ∆ =

[∆lk] is an upper triangular matrix. To find such orthogonal polynomials, we start with the

following lemma for a zero mean, unit variance complex Gaussian process z̃(t).

Lemma 1. Define

ψ̃2m+1(z̃(t)) =
m∑

k=0

(−1)m−k

√
m+ 1

(k + 1)!

(
m

k

)
φ2k+1(z̃(t)), (6.12)

where φ2k+1(·) is given by (6.3). If z̃(t) is complex Gaussian distributed with zero mean

and unit variance, then for any l < m and for any τ , ψ̃2m+1(z̃(t)) and φ2l+1(z̃(t + τ)) are

orthogonal; i.e.,

E[ψ̃∗
2m+1(z̃(t))φ2l+1(z̃(t+ τ))] = 0. (6.13)

Proof. See Appendix 6.A.

The above Lemma paves the way for proving that (6.12) forms an orthonormal basis.

Theorem 1. Let z̃(t) be a zero mean, unit variance, complex Gaussian process with auto-

covariance function c2z̃(τ). Then {ψ̃1(z̃(t)), ψ̃3(z̃(t)), . . . , ψ̃2K+1(z̃(t))} defined in (6.12)

forms an orthonormal basis. The following two properties hold:

1. For any n 6= m and for any τ , the random processes ψ̃2m+1(z̃(t)) and ψ̃2n+1(z̃(t+ τ))

are orthogonal to each other.
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2. The auto-correlation (auto-covariance) function of the random process ψ̃2m+1(z̃(t)) is

|c2z̃(τ)|2mc2z̃(τ). Since c2z̃(0) = 1, E[|ψ̃2m+1(z̃(t))|2] = 1.

Proof. See Appendix 6.B.

Table 6.1: The first five Orthonormal polynomials for unit variance z̃.

ψ̃1 (z̃) = z̃

ψ̃3(z̃) =
√

2
(
−1 + 1

2 |z̃|2
)
z̃

ψ̃5(z̃) =
√

3
(
1 − |z̃|2 + 1

6 |z̃|
4
)
z̃

ψ̃7(z̃) =
√

4
(
−1 + 3

2 |z̃|2 − 1
2 |z̃|4 + 1

24 |z̃|6
)
z̃

ψ̃9(z̃) =
√

5
(
1 − 2|z̃|2 + |z̃|4 − 1

6 |z̃|6 + 1
120 |z̃|8

)
z̃

In Table 6.1, the first five orthonormal polynomials obtained from (6.12) are shown.

We remark that ψ̃2m+1(z̃) is related to the associated Laguerre polynomials by

ψ̃2m+1(z̃) =
√
m+ 1 L1

m(|z̃|2)z̃, (6.14)

where Lk
n(t) ,

∑n
m=0

(−1)m

m!

(
n+k
m+k

)
tm are the associated Laguerre polynomials [5, p. 775].

For a zero-mean complex Gaussian process z(t) with variance σ2
z 6= 1, orthogonal poly-

nomials can be obtained using the following corollary.

Corollary 1. If z(t) is a zero-mean complex Gaussian process with variance σ2
z , then

ψ2m+1(z(t)) = ψ̃2m+1(z(t)/σz) =

m∑

k=0

(−1)m−k

√
m+ 1

(k + 1)!

(
m

k

) ∣∣∣∣
z(t)

σz

∣∣∣∣
2k z(t)

σz
, (6.15)

=
m∑

k=0

(−1)m−k

σ2k+1
z

√
m+ 1

(k + 1)!

(
m

k

)
φ2k+1(z(t)), (6.16)

is orthogonal to ψ2n+1 (z(t+ τ)), ∀m 6= n, ∀τ .

We remark also that the orthogonality in (6.17) is stronger than the orthogonality in

(6.1), since it holds even at different time-delayed terms (i.e., τ 6= 0):

E
[
ψ∗

2k+1(z(t))ψ2l+1(z(t+ τ))
]

= 0, ∀k 6= l, ∀τ. (6.17)

Next, we comment on our expression and other known orthogonal polynomials.
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6.3.1 Wiener G-Functionals

Similar to our orthogonal polynomials, Wiener’s G-functionals also form an orthogonal

basis [106], [75]. However, there are major differences between the two. First, the Wiener G-

functionals are derived for real-valued Gaussian input whereas our orthogonal polynomials

are derived for complex-valued Gaussian input. Second, our orthogonal polynomials are for

the odd-order baseband model whereas the Wiener G-functionals include all-order Volterra

kernels. Most importantly, the Wiener G-functionals are derived iteratively using the Gram-

Schmidt procedure (e.g., [74]) whereas our expression (6.15) is in closed-form.

6.3.2 Hermite Polynomials

Table 6.2: The first six Hermite-related orthonormal polynomials
p0(w) = 1
p1(w) = w
p2(w) = 1√

2
(w2 − 1)

p3(w) = 1√
6
(w3 − 3w)

p4(w) = 1√
24

(w4 − 6w2 + 3)

p5(w) = 1√
120

(w5 − 10w3 + 15w)

Assume that w is a zero mean real-valued Gaussian random variable with unit variance.

For memoryless polynomial nonlinearities, the Wiener G-functionals are simplified to the

following polynomials:

pn(w) =
(−1)n

√
2nn!

Hn

(
w√
2

)
, (6.18)

where Hn(w) are the Hermite polynomials given by Hn(w) = (−1)new
2 ∂n

∂wn e−w2
[5, Ch. 22,

pp. 771-802]. Hermite polynomials have the following property:

∫ ∞

−∞
Hn(w)Hm(w)e−w2

dw =





√
πn!2n, n = m,

0, n 6= m.
(6.19)

Based on (6.18)-(6.19), we infer that

∫ ∞

−∞
pn(w)pm(w)

1√
2π
e−

w2

2 dw =





1, n = m,

0, n 6= m.
(6.20)
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Therefore, for w Gaussian distributed with zero mean and unit variance, the set of polyno-

mials {pn(w)} forms an orthonormal basis. The first six {pn(w)} functions are presented in

Table 6.2. Note that this set of orthogonal polynomials includes even and odd order terms

and assumes a real-valued standard Gaussian distribution.

6.4 Spectral Analysis

Next, let us examine the PA’s input/output relationship represented using the orthogonal

polynomial model,

y(t) =
K∑

k=0

α2k+1ψ2k+1(z(t))

=
K∑

k=0

α2k+1ψ̃2k+1

(
z(t)

σz

)

=

K∑

k=0

y2k+1(t). (6.21)

The auto-covariance function c2y(τ) is given by

c2y(τ) =
K∑

k=0

K∑

l=0

cum{y∗2k+1(t), y2l+1(t+ τ)}. (6.22)

From the first property of Theorem 1, we infer that cum{y∗2k+1(t), y2l+1(t + τ)} = 0 for

k 6= l, and hence the cross-terms in (6.22) vanish. The auto-covariance function of y2k+1(t)

can be computed using the second property of Theorem 1, resulting in

c2y(τ) =
K∑

k=0

|α2k+1|2
∣∣∣∣
c2z(τ)

σ2
z

∣∣∣∣
2k c2z(τ)

σ2
z

. (6.23)

Applying the Fourier transform to both sides of (6.23), we obtain the PSD at the output of

the PA:

S2y(f) =
K∑

k=0

|α2k+1|2 S2z(f)
σ2

z
∗ · · · ∗ S2z(f)

σ2
z︸ ︷︷ ︸

k+1

∗ S2z(−f)
σ2

z
∗ · · · ∗ S2z(−f)

σ2
z︸ ︷︷ ︸

k

. (6.24)

Therefore, the orthogonal polynomial PA model coefficient α2k+1 is directly linked to the

amount of spectral regrowth generated by the (2k + 1)-convolution term in (6.24). Since

ψ2k+1(·) and φ2k+1(·) are related through (6.15), it can be shown that the conventional and
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the orthogonal polynomial PA coefficients are related through

α2k+1 =
K∑

l=k

(l + 1)!√
k + 1

(
l

k

)
σ2l+1

z a2l+1. (6.25)

A relatively linear PA will have a relatively large |α1| and relatively small |α3|, |α5|,

and so on. Therefore, the coefficients in the orthogonal polynomial PA model (6.21) have

clear meanings in the context of spectral regrowth. By inspecting |α1|, |α3|, |α5|, . . . , we

immediately have a sense of the severity of spectral regrowth. In contrast, the a1, a3, a5

etc. coefficients from a conventional polynomial PA model do not provide such direct link

to spectral regrowth.

The closed-form expression for the PA output PSD (6.24) can be used to compute the

channel power ratio (CPR), which is defined as CPR(f) =

∫ f2
f1

S2y(f)df
∫ f4

f3
S2y(f)df

[50], where [f1, f2]

is in the main channel and [f3, f4] is in another channel. Here, we take f4 − f3 = f2 − f1

and let [f1, f2] be an infinitely small interval surrounding the zero-frequency, and [f3, f4]

surrounding frequency f . Then

CPR(f) =
S2y(f)

S2y(0)
. (6.26)

As an example, consider a rectangular shaped PA input PSD, S2z(f) = u(f+ ∆
2 )−u(f− ∆

2 ),

where u(·) is the step function. From (6.24), the PA output spectrum can be shown to be

S2y(f) =
K∑

k=0

|α2k+1|2
2k+1∑

l=0

(−1)k

(
2k + 1

l

)
×

u
(

f
∆ − l + k + 1

2

)(
f
∆ − l + k + 1

2

)2k

2k!
. (6.27)

Assuming that |α1| � |α3| � · · · � |α2K+1| (a reasonable assumption for mildly nonlinear

PAs),

CPR

(
∆

2
(2n− 1)+

)
≈ |α1|2(2n)!

|α2n+1|2
. (6.28)

for n ≥ 1. Note that ∆
2

+
is just outside the main channel, 3∆

2

+
is just outside the adjacent

channel, 5∆
2

+
is just outside the alternate channel, so CPR

(
∆
2

+
)

is a measure for the

adjacent channel power ratio; CPR
(
3∆

2

+
)

can be used to gauge the alternate channel
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power ratio, and so on. In dB scale, (6.28) turns into

CPR
(

∆
2 (2n− 1)+

)
[dB]

≈

|α1|2[dB] − |α2n+1|2[dB] + 10 log10(2n)!. (6.29)

Figure 6.3 shows the PSD of a PA obeying model (6.21) with coefficients satisfying
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Figure 6.3: From top to bottom, the dashed lines depict the PSDs generated by y1(t),
y3(t), y5(t), and y7(t), respectively. The PSD of y(t) is shown as the solid line. Various
CPR measurements are indicated.

|α1|2 = 0dB, |α3|2 = −19.2dB, |α5|2 = −30.1dB, and |α7|2 = −55.9dB. To verify the

CPR expression in (6.29), take for example, CPR(5∆
2

+
)[dB]. Here with ∆ = 0.1, we obtain

CPR (0.25+) ≈ 0 − (−55.9) + 28.6 = 84.5dB. We conclude that by mere observation of the

magnitudes of the orthogonal polynomial coefficients, we can have a good picture of the

spectral regrowth generated by the nonlinear PA.

Next, we examine the so-called (conventional) memory polynomial PA model whose

input/output relationship is given by

y(t) =
K∑

k=0

a2k+1(t) ∗
[
|z(t)|2kz(t)

]

=
K∑

k=0

a2k+1(t) ∗ φ2k+1(z(t)), (6.30)
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where ∗ is the convolution operator. This model has been shown to be effective for PA

modeling [65] and predistorter design [39] when the nonlinear high power or wideband PA

exhibits memory effects.

Expressing the same y(t) in terms of the orthogonal memory polynomial basis functions,

we write

y(t) =
K∑

k=0

α2k+1(t) ∗ ψ2k+1(z(t))

=
K∑

k=0

α2k+1(t) ∗ ψ̃2k+1

(
z(t)

σz

)
. (6.31)

Using Theorem 1, the auto-covariance c2y(τ) of the PA output, y(t), can be shown to relate

to that of the PA input through

c2y(τ) =
K∑

k=0

α2k+1(τ) ∗ α∗
2k+1(−τ)

∗
[∣∣∣∣
c2z(τ)

σ2
z

∣∣∣∣
2k c2z(τ)

σ2
z

]
. (6.32)

Applying the Fourier transform to both sides of (6.32) yields

S2y(f) =

K∑

k=0

|A2k+1(f)|2 S2z(f)
σ2

z
∗ · · · ∗ S2z(f)

σ2
z︸ ︷︷ ︸

k+1

∗ S2z(−f)
σ2

z
∗ · · · ∗ S2z(−f)

σ2
z︸ ︷︷ ︸

k

, (6.33)

where A2k+1(f) is the Fourier transform of α2k+1(t). In the memoryless case, α2k+1(t) =

α2k+1δ(t), and (6.33) becomes (6.24).

6.5 Numerical Stability Improvement

Let us define the Ψ(z) matrix similar to the way the φ(z) matrix is defined in (6.5) (i.e.,

replace φ by ψ), and define α = [α1, α3, . . . , α2K+1]
T . Eq. (6.21) can be rewritten as

y = Ψ(z) α. (6.34)

The LS solution for the orthogonal polynomial coefficients α is

α̂LS = Ψ(z)† y. (6.35)
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Although (6.6) and (6.34) are theoretically equivalent; i.e., y = Φ(z)a = Ψ(z)α, because

the condition number of E[Ψ(z)HΨ(z)] is much smaller than that of E[Φ(z)HΦ(z)], the

solution in (6.35) will have better numerical properties than (6.6).

Orthogonal polynomials are also advantageous when it comes to PA predistortion. To

overcome the numerical instability problem, we propose to replace the conventional polyno-

mial predistorter model (6.7) by the following model based on the orthogonal polynomials:

z(t) =
K∑

k=0

β2k+1ψ2k+1 (x(t)) . (6.36)

Recall that the argument of ψ̃2k+1(·) in (6.12) is z̃(t), which is assumed to have unit variance.

In (6.15), ψ2k+1(·) is defined through ψ̃2k+1(·), whose argument z(t)/σz is standardized. As

a result,

ψ2k+1(y(t)/G) = ψ̃2k+1

(y(t)/G
σy/G

)
= ψ̃2k+1

(y(t)
σy

)
= ψ2k+1(y(t)).

This means that ψ2k+1(·) is “insensitive” to the multiplicative constant and thus the in-

tended gain G has to be realized via a two-step procedure. First, given measured data y(t)

and z(t), we obtain the LS estimates

γ̂LS = Ψ(y)†z, (6.37)

of γ = [γ1, γ3, . . . , γ2K+1]
T for z(t) =

∑K
k=0 γ2k+1ψ2k+1 (y(t)). If we plug the {γ2k+1}

coefficients directly into the predistorter as in z(t) =
∑K

k=0 γ2k+1ψ2k+1(x(t)), we will not

be able to realize the intended gain G. Instead, we map {γ2k+1} to {β2k+1} via

β = Mγ, (6.38)

where M is a (K + 1)-by-(K + 1) matrix with entries

Mkl =





√
k+1
l+1

(
l+1
k+1

)
ε2k+1(ε2 − 1)l−k, l ≥ k,

0, l < k,
(6.39)

and ε = Gσx

σy
, and then implement the predistorter as

z(t) =
K∑

k=0

β2k+1ψ2k+1(x(t)), (6.40)
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or z = Ψ(x)β in matrix form. With this predistorter, the resulting linearized PA gain will

be close to G. Again in theory, the predistorters in (6.7) and (6.40) are equivalent; i.e.,

z = Φ(x)b = Ψ(x)β, but in practice, the solution in (6.37)-(6.38); i.e,

β̂LS = Mγ̂LS , γ̂LS = Ψ(y)†z, (6.41)

is numerically superior to the solution in (6.10). Theoretical justification of this two-step

procedure is provided in Appendix 6.C.

6.5.1 Deviation from the Gaussian Assumption

Since our orthogonal polynomials are derived with the complex Gaussian distribution in

mind, one may wonder what happens if the distribution of z(t) deviates from the Gaussian

assumption?

Recall that if z(t) is complex Gaussian distributed, its amplitude r(t) = |z(t)| is Rayleigh

distributed, its phase is uniformly distributed in [−π, π), and the amplitude and the phase

are mutually independent. To examine the robustness of the orthogonal polynomials in

reducing the condition number when z(t) is not complex Gaussian distributed, we consider

r(t) = |z(t)| central Chi-square distributed with varying degrees of freedom. The phase of

z(t) is still uniformly distributed in [−π, π) and is independent of the amplitude. Since r(t)

is not Rayleigh distributed, z(t) is not complex Gaussian any more. Figure 6.4(b) shows

the Rayleigh and the χ2(p) PDFs with p = 4, 8, 12, respectively. The χ2(p) PDF is given

by

fr(r) =

(
r
δ

) p
2
−1
e−

r
δ

δΓ(p
2)

, δ2 =
Γ(p

2)

Γ(p
2 + 2)

. (6.42)

It can be shown that the kth-order moment of r is

E[rk] =
Γ(p

2 + k)

Γ(p
2)
(
(p
2 + 1)p

2

) k
2

. (6.43)

Specifically, E[r2] = 1, ∀p. This ensures that the corresponding z(t) has unit variance,

so that we conduct a fair comparison with a zero mean, unit variance complex Gaussian

process.
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Our objective is to show that the condition number of E[Ψ(z)HΨ(z)] is much smaller

than that of E[Φ(z)HΦ(z)]. Since φ2k+1(z) = |z|2kz, it follows that the (l,m)th entry

of the E[Φ(z)HΦ(z)] matrix is E[r2(l+m−1)], which can be calculated using (6.43). Thus

the E[Φ(z)HΦ(z)] matrix can be obtained. since Ψ(z) = Φ(z)∆ where ∆ is an upper-

triangular matrix (c.f. (6.11)), we can calculate E[Ψ(z)HΨ(z)] = ∆HE[Φ(z)HΦ(z)]∆ as

well. In Fig. 6.4(a), we plot the condition number of E[Φ(z)HΦ(z)] (dashed lines) and that

of E[Ψ(z)HΨ(z)] (solid lines) as a function of K (the polynomial order is 2K + 1). When

z(t) is Gaussian distributed, the condition number of E[Ψ(z)HΨ(z)] is 1. Although when

z(t) is non-Gaussian distributed, the condition number of E[Ψ(z)HΨ(z)] is larger than 1,

in all cases, use of the orthogonal polynomials resulted in orders of magnitude of reduction

in the condition number.

Keep in mind that our goal is to avoid numerical instability in least-squares parameter

estimation and utilizing orthogonal polynomials is only a means to that end. Maintaining

exact orthogonality in {ψ2k+1(z)} for every z(t) distribution is not our goal; keeping the

condition number of Ψ(z)HΨ(z) generally low is. Our predistortion example next further

illustrates the effectiveness of our orthogonal polynomials in maintaining numerical stability

even when z(t) is not Gaussian distributed.
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Figure 6.4: (a) PDF of r(t) = |z(t)|. When r(t) has the Rayleigh distribution, the
corresponding z(t) is complex Gaussian. Central χ2 distributions with degrees of freedom
p = 4, 8, 12 are also shown: for these r(t) distributions, the corresponding z(t) is not
Gaussian any more. (b) The condition number of E[Ψ(z)HΨ(z)] is shown as solid lines;
the condition number of E[Φ(z)HΦ(z)] is shown as dashed lines. Orthogonal polynomials
lowered the condition number for all these distributions.
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6.5.2 Numerical Examples

The simulation environment in this section is C, floating point data with 32-bit accuracy.

This precision is used in high-end digital signal processors (DSPs). Other DSPs may use a

fixed-point operation which is known to be less accurate than the floating-point format. An

example is given to demonstrate how the numerical problems associated with estimating

the predistorter coefficients affect the performance of the predistorter in terms of spectral

regrowth suppression. We utilize the indirect learning architecture to perform predistortion

linearization. The predistorter’s input, x(t), is a three carrier Universal Mobile Telephone

Service (UMTS) signal [30]. Both conventional polynomials and orthogonal polynomials

are considered for the construction of the predistorter of order 9 (i.e., K = 4).

The PA is assumed to have the following input/output relationship:

y(t) =
(
η1 tan−1(ξ1|z(t)|) + η2 tan−1(ξ2|z(t)|)

)
ej∠z(t), (6.44)

where η1 = 8.0034 − j4.6116, η2 = −3.7717 + j12.0376, ξ1 = 2.2690, and ξ2 = 0.8234. This

PA model fits well measured data from an actual class AB PA1. The intended linearized

PA gain is set to G = 11.

Fig. 6.5(a) shows the PSD at the output of the PA for the conventional polynomial

predistorter (6.7) of order 9. The PSD is presented for iterations 2, 5, and 7, respectively

and shows no sign of convergence. In contrast, Fig. 6.5(b) shows the PSD at the output of

the PA for the orthogonal polynomial predistorter (6.36) with the same nonlinearity order 9.

In this case, the predistorter shows stability and fully suppresses the spectral regrowth. We

remark that although the UMTS signal is not exactly Gaussian distributed, the orthogonal

polynomials (6.15) derived for Gaussian processes are still beneficial.

6.6 Conclusions

PA is a main source of nonlinearity in a communications system, and generates in-band

distortion as well as adjacent channel interference for non-constant envelope signals. The

1Many different PA models have been proposed in the literature. Using the indirect learning architecture,
the polynomial predistorter can be used to compensate for a variety of nonlinear PA models.
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Figure 6.5: Ninth-order (K = 4) polynomial predistorters are used to linearize the PA
model in (6.44). Line (i) corresponds to the PSD of the input signal; line (o) corresponds
to the PSD of the output signal without predistortion. Lines 2, 5, 7 indicate the PSDs
of the linearized PA output at the 2nd, 5th, and 7th iterations. The output PSDs have
been lowered by 20 log10 |G| dB to be overlaid on top of the input PSD to facilitate spectral
regrowth comparisons. The conventional polynomial predistorter in (a) did not converge
due to numerical instability problems. In contrast, the orthogonal polynomial predistorter
in (b) converged and demonstrated superior spectral regrowth suppression capability.

polynomial model has been widely used in PA modeling as well as predistortion linearization

design. For either task, obtaining a least squares solution for the model parameters can

be numerically challenging due to ill-conditioning of the regressor matrix to be inverted.

For bandpass communications signals, we have obtained novel closed-form expression of

baseband orthogonal polynomials for complex Gaussian input. We demonstrated that the

orthogonal polynomials are effective in alleviating the numerical instability problem in least

squares parameter estimation, even if the input signal is not exactly Gaussian distributed.

Furthermore, with orthogonal polynomials, spectral analysis of the nonlinear PA becomes a

straightforward task. The orthogonal polynomial PA parameters directly reveal the severity

of spectral regrowth, as measured for example, by the adjacent channel power ratio.
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6.A Proof of Lemma 1

First, we substitute (6.12) into the left-hand side of (6.13) to obtain,

E[ψ̃∗
2m+1(z̃(t))φ2l+1(z̃(t+ τ))] =

√
m+ 1

m∑

k=0

(−1)m−k 1

(k + 1)!

(
m

k

)
×

cum{φ∗2k+1(z̃(t)), φ2l+1(z̃(t+ τ))}. (6.45)

In [131], we proved that if z(t) is complex Gaussian distributed, then

cum{φ∗2k+1(z(t)), φ2l+1(z(t+ τ))} =

min(k,l)∑

s=0

1

s+ 1

(
k

s

)(
l

s

)
(k + 1)!(l + 1)!

|c2z(τ)|2sc2z(τ)[c2z(0)]
k+l−2s. (6.46)

Note that z̃(t) has variance c2z̃(0) = 1 here. Substituting (6.46) into (6.45), we rewrite

(6.45) as

(l + 1)!
√
m+ 1

m∑

k=0

(−1)m−k

(
m

k

)
×

min(k,l)∑

s=0

1

s+ 1

(
k

s

)(
l

s

)
|c2z̃(τ)|2sc2z̃(τ). (6.47)

Since l < m,
∑m

k=0

∑min(k,l)
s=0 =

∑l
s=0

∑m
k=s. We further rewrite (6.47) as

(l + 1)!
√
m+ 1

l∑

s=0

1

s+ 1

(
l

s

)
|c2z̃(τ)|2sc2z̃(τ) ×

m∑

k=s

(−1)m−k

(
m

k

)(
k

s

)
. (6.48)

Let us focus on the k-dependent terms in (6.48), namely,
∑m

k=s(−1)m−k
(
m
k

)(
k
s

)
. Since

s ≤ l < m, we have m > s. It is straightforward to show that

m∑

k=s

(−1)m−k

(
m

k

)(
k

s

)

= (−1)m−s

(
m

s

) m∑

k=s

(
m− s

k − s

)
(−1)s−k

= (−1)m−s

(
m

s

)m−s∑

k′=0

(
m− s

k′

)
(−1)k′

= (−1)m−s

(
m

s

)
(1 + (−1))m−s = 0, ∀m > s. (6.49)

93



Substituting (6.49) into (6.48), we conclude that for l < m, the polynomials ψ̃2m+1(z̃(t))

and φ̃2l+1(z̃(t+ τ)) are orthogonal thus Proving Lemma 1.

6.B Proof of Theorem 1

Define an upper-triangular matrix U as:

Ukm =





(−1)m−k
√

m+1
(k+1)!

(
m
k

)
, k ≤ m,

0, k > m.
(6.50)

Property 1): Since ψ̃2l+1(z̃(t)) =
∑l

k=0 Ukl φ2k+1(z̃(t)), we can write

E[ψ̃∗
2m+1(z̃(t))ψ̃2l+1(z̃(t+ τ))] =

l∑

k=0

Ukl E[ψ̃∗
2m+1(z̃(t))φ2k+1(z̃(t+ τ))]. (6.51)

When l < m, we have k < m for the summands on the right-hand side of (6.51). Since

(6.51) is zero according to Lemma 1, ψ̃2m+1(z̃(t)) is orthogonal to ψ̃2l+1(z̃(t + τ)) for any

l < m. Interchanging t with t + τ , we prove the orthogonality for l > m as well. Thus,

ψ̃2m+1(z̃(t)) is orthogonal to ψ̃2l+1(z̃(t+ τ)) for any l 6= m, ∀τ .

Property 2): The auto-correlation function of ψ̃2m+1(z̃(t)) is:

E[ψ̃∗
2m+1(z̃(t))ψ̃2m+1(z̃(t+ τ))]

=
m∑

l=0

Ulm E[ψ̃∗
2m+1(z̃(t))φ2l+1(z̃(t+ τ))]. (6.52)

Since ψ̃2m+1(z̃(t)) is orthogonal to φ̃2l+1(z̃(t+ τ)) for l < m, (6.52) simplifies to

Umm E[ψ̃∗
2m+1(z̃(t))φ2m+1(z̃(t+ τ))]. (6.53)

From (6.49), we learned that
∑m

k=s(−1)m−k
(
m
k

)(
k
s

)
= 0 if m > s; it equals to 1 if m = s.

Replacing l = m in (6.45)-(6.48), it is straightforward to show that only the s = k = l = m

term survives the double summation in (6.48) and hence E[ψ̃∗
2m+1(z̃(t))φ2m+1(z̃(t + τ))]

simplifies to (m+1)!√
m+1

|c2z̃(τ)|2mc2z̃(τ). Moreover, Umm =
√
m+ 1/(m + 1)! from (6.50).

Combining these results, (6.53) is simplified to

√
m+ 1

(m+ 1)!

(m+ 1)!√
m+ 1

|c2z̃(τ)|2mc2z̃(τ)

= |c2z̃(τ)|2mc2z̃(τ). (6.54)
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When τ = 0, we obtain E[|ψ̃2m+1(z̃(t))|2] = [c2z̃(0)]
2m+1 = 1 for the unit variance z̃(t).

Therefore, the basis {ψ̃2m+1(z̃(t))} is orthonormal.

6.C Derivation of the Orthogonal Polynomial Predistorter

Here, we would like to show that the orthogonal polynomial predistorter given by:

z(i+1) = Ψ(x)β̂LS , β̂LS = Mγ̂LS , γ̂LS = Ψ(y)†z(i), (6.55)

is theoretically equivalent to the conventional polynomial predistorter:

z(i+1) = Φ(x)b̂LS , b̂LS = Φ(y/G)†z(i). (6.56)

Note that we have omitted (i) in x(i) and y(i) for notational simplicity.

Let D(s) be a diagonal matrix whose diagonal elements are [s, s3, . . . , s2K+1]. It follows

easily that

Φ(x) = Φ(x/s) D(s). (6.57)

It also holds that

D(σs) = D(σ) D(s). (6.58)

Writing the orthogonal polynomials (6.15) for x and y in vector format, we obtain

Ψ(x) = Φ(x)D(1/σx)U, (6.59)

Ψ(y) = Φ(y)D(1/σy)U, (6.60)

where U is defined in (6.50). For the M matrix given in (6.39), it can be shown that

UM = D(Gσx/σy)U. (6.61)

Specifically, by substituting the U and M expressions, the (k, l)th element on either side of

(6.61) can be shown to be

1√
l + 1

1

k!

(
l + 1

k + 1

)
ε2k+1(−1)l−k,

where ε = Gσx/σy. Similar tools as used in Appendix 6.A are helpful here.

95



From (6.61), we can write

M = U−1D(Gσx/σy)U. (6.62)

Starting with (6.55) and using (6.56), (6.57), (6.58), (6.60), and (6.62), we prove that

β̂LS = U−1D(σx)b̂LS as follows:

β̂LS = MΨ(y)†z(i)

= M(Φ(y)D(1/σy)U)†z(i)

= M(Φ(y/G)D(G/σy)U)†z(i)

= MU−1D(σy/G)Φ(y/G)†z(i)

= U−1D(Gσx/σy)UU−1D(σy/G)b̂LS

= U−1D(σx)b̂LS . (6.63)

Next, by invoking (6.55), (6.58), (6.59), and (6.63), we show that the orthogonal polynomial

predistorter z(i+1) = Ψ(x)β̂LS is equivalent to the conventional polynomial predistorter

z(i+1) = Φ(x)b̂LS :

z(i+1) = Ψ(x)β̂LS

= Φ(x)D(1/σx)Uβ̂LS

= Φ(x)D(1/σx)UU−1D(σx)b̂LS

= Φ(x)b̂LS .
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CHAPTER VII

STATISTICAL ANALYSIS OF A BANDPASS

NONLINEARITY WITH NONSTATIONARY INPUT

Power amplifier is an important component of a communication system and is inherently

nonlinear. When a non-constant envelope signal goes through a nonlinear power amplifier,

spectral regrowth (broadening) appears at the output of the power amplifier. To satisfy

regulatory requirements on out of band emissions, spectral regrowth must be contained.

In this chapter, we first provide some general statistical analysis results for nonlinear sys-

tems with (non)stationary Gaussian input. We then derive a novel closed-form expression

for the output power spectral density when the power amplifier is quasi-memoryless and

cyclostationarity of the digitally modulated input is taken into account. We compare our

results with the conventional analysis where stationary input is assumed. We emphasize

the importance of paying attention to the cyclostationary nature of the input when excess

bandwidth is present.

7.1 Introduction

Power amplifiers (PAs) are the major source of nonlinearity in communications systems.

To achieve high efficiency from a given PA, the PA is sometimes driven into its nonlinear

region. When a non-constant envelope signal goes through a nonlinear PA, spectral regrowth

(broadening) appears at the PA output, which in turn causes adjacent channel interference

(ACI). Due to stringent limits on the ACI imposed by regulatory bodies, PA nonlinearity

must be contained.

It would be very helpful if we can predict spectral regrowth for a prescribed level of PA

nonlinearity. Since more linear PAs are less efficient, practitioners may wish to use the PA in

a configuration that allows for maximum PA efficiency while satisfying the spectral emission

limits. Such an optimization strategy is feasible if we have tools for spectral analysis for
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the nonlinear device.

A digital communication signal is cyclostationary (and thus nonstationary). The PA is

nonlinear. Therefore, we are faced with a challenging task of carrying out spectral analysis

on a nonlinear system with nonstationary input. Many authors have investigated spectral

regrowth of the nonlinear PA [7, 44, 49, 113, 133], but to the best of our knowledge, there

have been no published results that take into account the nonstationary or cyclostationary

nature of the input. In the current literature, the input is assumed to be stationary. Indeed,

nonlinear spectral analysis alone is already a challenging task. Interestingly, we will show in

this chapter that under curtain conditions (no excess bandwidth), the stationary assumption

is valid.

If the input is Gaussian and stationary, the PA output power spectral density (PSD)

has been derived for a fifth-order polynomial nonlinear PA model in [113] and [44]. Using a

moment-based approach in [49] and a cumulant-based approach in [133], spectral analysis

has been extended to a polynomial model of any order. In addition, [133] provides spectral

analysis results for a polynomial PA model with memory.

When the PA input is non-Gaussian, theoretical analysis becomes more complicated;

however results are available in [129] for a 7th-order nonlinear PA with stationary (non-

)Gaussian inputs. In [7], spectral analysis for a CDMA signal is presented assuming sta-

tionarity. In [8], uniform phase randomization is used to “stationarize” a cyclostationary

input.

In this chapter, we first prove in Section 7.2 fundamental results on covariance analysis

of a general nonlinearity with (non-)stationary Gaussian input. We then specialize to the

polynomial model studied in [7,44,49,113,133], and present a closed-form expression for the

output covariance function when the input is (non-)stationary Gaussian and the nonlinearity

order is arbitrary. In Section 7.3, we examine the (cyclo)stationarity of digitally modulated

signals, and present spectral analysis results that take into account (cyclo)stationarity of the

input signal. We offer a comparison between the estimated PSD for the output of the PA,

as well as analytical expressions for the PSD with and without the stationarity assumption.

We show that when cyclostationarity of the input signal is taken into account, the PSD
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predicted by our formula matches well the PSD calculated from the data. We summarize

our findings in Section 7.4. The rather technical proofs of this chapter are deferred to the

appendices.

7.2 Basic Results

The following baseband PA model has been frequently used in the literature [7,8,17,18,44,

49,113,129,133]

y(t) =
K∑

k=0

a2k+1|x(t)|2kx(t), (7.1)

where x(t) is the baseband PA input signal, y(t) is the baseband PA output signal, and

{a2k+1} are complex-valued coefficients that can be extracted from standard characteriza-

tions such as amplitude-to-amplitude (AM/AM) and amplitude-to-phase (AM/PM) con-

versions of the PA. The highest nonlinearity order is 2K + 1. The fact that only odd-

order nonlinear terms appear in (7.1) is attributed to the bandpass nonlinear nature of the

PA [17,18].

We see from (7.1) that the PA complex gain isG(x(t)) = y(t)/x(t) =
∑K

k=0 a2k+1 |x(t)|2k,

which is a function of input amplitude r = |x(t)| only. Writing the complex gain as

G(r) = A(r) ejΦ(r), we refer to A(r) as the AM/AM conversion, and Φ(r) as the AM/PM

conversion. A linear PA would have constant A(r) and Φ(r) characteristics. If A(r) is

non-constant but Φ(r) is, the corresponding PA is called strictly memoryless. If both A(r)

and Φ(r) are non-constant, the resulting PA is called quasi-memoryless. Equation (7.1) can

be used to describe both types of memoryless nonlinearity, and hence we do not distinguish

the two in subsequent analysis.

Similar to [44, 49, 113, 133], we assume that the input x(t) is complex Gaussian dis-

tributed, which is well-motivated for applications such as OFDM (orthogonal frequency

division multiplexing). We would like to examine the auto-covariance function of y(t) and

then its PSD. The problem is non-trivial and requires a series of steps. We start with

a general theorem on the correlation of (nonlinear) transformations of Gaussian random

variables.
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Theorem 2. Let u and v be jointly complex Gaussian random variables and denote their

cross-covariance by

σuv = E[(u− E[u])(v − E[v])∗]. (7.2)

The cross-correlation between two functions of u and v, f(u) and g(v), can be expressed as

E[f(u)g∗(v)] =

∞∑

n=0

n∑

k=0

1

n!

(
n

k

)
σk

uv(σ
∗
uv)

n−k

E

[
∂nf(u)

∂uk∂(u∗)n−k

]
E

[
∂ng(v)

∂vk∂(v∗)n−k

]∗
, (7.3)

where
(
n
k

)
= n!

k!(n−k)! .

Proof. See Appendix 7.A.

We remark that in (7.3), ∂f(u)
∂u denotes the partial derivative of f(u) w.r.t. u holding u∗

constant, and ∂f(u)
∂u∗ denotes the partial derivative of f(u) w.r.t. u∗ holding u constant [63, p.

518]. For example, we have ∂u
∂u = 1, ∂u

∂u∗ = 0. The notations ∂g(v)
∂v , ∂g(v)

∂v∗ are similarly defined.

Theorem 2 is a very general result and does not require u and v to be zero-mean. Next,

we verify (7.3) by way of some simple examples.

(i) If u and v are independent, we have σuv = 0. Therefore, only the k = n = 0 term

contributes to the right-hand side (RHS) of (7.3), giving rise to

E[f(u)g∗(v)] = E[f(u)]E[g∗(v)].

(ii) If f(u) = u, g(v) = v, then we only need to consider the terms with n = k = 0 and

n = k = 1 on the RHS of (7.3). This leads to E[uv∗] = E[u]E[v∗] + σuv, which is the

same as (7.2).

(iii) Let us consider the case with u = v, f(u) = g(u) = up. Thus, σuv = σ2
u, and the left-

hand side (LHS) of (7.3) becomes E[|u|2p]. Since ∂mup

∂(u∗)m = 0, ∀m 6= 0, only the n = k

terms survive on the RHS of (7.3). Moreover, if u is zero-mean complex Gaussian

distributed, E[um] = 0 for m 6= 0. Since

∂n(up)

∂un
=

p!

(p− n)!
up−n, p ≥ n, (7.4)
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we infer that E
[

∂n(up)
∂un

]
6= 0, only if p = n. Therefore, for u zero-mean complex

Gaussian distributed, only the n = k = p term survives on the RHS of (7.3), and we

obtain

E[|u|2p] =
1

p!
σ2p

u (p!)(p!) = p!σ2p
u . (7.5)

Equation (7.5) is a well-known result obtained by Reed in [101].

(iv) If f(u) = u, only the n = k = 0 and n = k = 1 terms contribute to the RHS of (7.3).

Hence,

E[ug∗(v)] = E[u]E[g∗(v)] + σuvE[g′(v)]∗,

where g′(v) = ∂g(v)
∂v . Equivalently,

cov{u, g(v)} = σuvE[g′(v)]∗ ∝ σuv. (7.6)

If a (nonlinear) system has x(t) as input, y(t) = g(x(t)) as output, and x(t) is sta-

tionary, then by replacing u = x(t + τ) and v = x(t) in (7.6), and recognizing that

σuv = c2x(τ), cov(u, g∗(v)) = cxy(τ), we obtain

cxy(τ) = c2x(τ) E[g′(x(t))]∗ ∝ c2x(τ), (7.7)

which is the celebrated Bussgang Theorem [86, p. 307].

The above examples illustrate the generality of our Theorem 2. Equation (7.3) says

that we can turn the joint expectation E[f(u)g∗(v)] into a linear combination of products

of individual expectations. Next, we specialize to the case where the gain function, f(u)/u,

depends on the input power |u|2 only; i.e., if

f(u) = uξ(uu∗). (7.8)

The following lemma will assist in simplifying (7.3) for this special case.

Lemma 2. Suppose that f(u) = uξ(uu∗) and up to m + l derivatives of ξ(·) exist. If u is

zero-mean complex Gaussian distributed then

E

[
∂m+lf(u)

∂um∂(u∗)l

]
= 0, if m 6= l + 1. (7.9)
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Proof. See Appendix 7.B.

Recall that if the device is quasi-memoryless, it is characterized by the AM-AM, AM-PM

conversions, which can be represented by (7.8).

Using Lemma 2, we can reduce the double summation on the RHS of (7.3) to a single

summation. We present the following corollary for nonlinear transformations of the type in

(7.8).

Corollary 2. Let u and v be zero-mean complex Gaussian distributed. Assume that f(u)/u

depends only on |u|2, g(v)/v depends only on |v|2, and all derivatives of f(u) and g(v) exist.

Then

E[f(u)g∗(v)] =
∞∑

s=0

|σuv|2sσuv

s!(s+ 1)!
E

[
∂2s+1f(u)

∂us+1∂(u∗)s

]

×E
[
∂2s+1g(v)

∂vs+1∂(v∗)s

]∗
. (7.10)

Proof. According to Lemma 2, we only need to consider the terms on the RHS of (7.3) that

satisfy k = n− k + 1; i.e., n = 2k − 1. Replacing n = 2s+ 1, k = s+ 1, n− k = s in (7.3)

and realizing that 1
(2s+1)!

(
2s+1
s+1

)
= 1

s!(s+1)! , we obtain (7.10).

Now, let us consider the polynomial model

f(u) =
K∑

k=0

a2k+1u
k+1(u∗)k

= u
K∑

k=0

a2k+1|u|2k. (7.11)

If we let u = x(t + τ), v = x(t), f(u) = y(t + τ), and g(v) = f(v) = y(t), then we have

σuv = c2x(t; τ). We can apply Theorem 2 to relate the auto-covariance function of y(t),

c2y(t; τ) = E[f(u)g∗(v)], to that of the input, c2x(t; τ) = E[uv∗]. Note that for u complex

Gaussian distributed, E[f(u)] = E[g(v)] = 0.
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Theorem 3. Suppose that x(t) is a zero-mean, complex Gaussian random process and

y(t) =

K∑

k=0

a2k+1[x(t)]
k+1[x∗(t)]k

= x(t)
K∑

k=0

a2k+1|x(t)|2k. (7.12)

Then the auto-covariance of y(t), c2y(t; τ), is related to that of x(t), c2x(t; τ), via

c2y(t; τ) =
K∑

s=0

|c2x(t; τ)|2sc2x(t; τ)

(s+ 1)
(

K∑

l=s

a2l+1

(
l

s

)
(l + 1)!(c2x(t; 0))l−s

)

(
K∑

k=s

a2k+1

(
k

s

)
(k + 1)!(c2x(t+ τ ; 0))k−s

)∗

. (7.13)

Proof. From (7.11) and (7.4), we infer that

∂2s+1f(u)

∂us+1∂(u∗)s
=

K∑

k=s

a2k+1
(k + 1)!

(k − s)!

k!

(k − s)!
|u|2(k−s). (7.14)

Next, we utilize (7.5) to obtain

E

[
∂2s+1f(u)

∂us+1∂(u∗)s

]
=

K∑

k=s

a2k+1
(k + 1)!

(k − s)!
k!(σ2

u)k−s. (7.15)

Similarly,

E

[
∂2s+1g(v)

∂vs+1∂(v∗)s

]
=

K∑

l=s

a2l+1
(l + 1)!

(l − s)!
l!(σ2

v)
l−s. (7.16)

Substituting (7.15) and (7.16) into (7.10) and replacing with σ2
u = c2x(t+τ ; 0), σ2

v = c2x(t; 0),

σuv = c2x(t; τ), and E[f(u)g∗(v)] = c2y(t; τ), we obtain (7.13).

Theorem 3 describes the auto-covariance of the output of a baseband polynomial non-

linearity when the input is (non-)stationary Gaussian. It is a general result. The next

corollary examines the case when x(t) is stationary, which makes c2x(t; τ) = c2x(τ), ∀t.

Corollary 3. Suppose that x(t) is a zero-mean, stationary complex Gaussian random pro-

cess and y(t) is related to x(t) through (7.12). Then the auto-covariance function of y(t) is
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given by

c2y(τ) =
K∑

s=0

|c2x(τ)|2sc2x(τ)

(s+ 1)

∣∣∣∣∣

K∑

l=s

a2l+1

(
l

s

)
(l + 1)!(c2x(0))l−s

∣∣∣∣∣

2

. (7.17)

Proof. For x(t) stationary, replace c2x(t; 0) = c2x(t + τ ; 0) = c2x(0), c2x(t; τ) = c2x(τ) in

(7.13).

Corollary 3 can be shown to agree with results in [21, 49, 133] for stationary Gaussian

x(t).

7.3 Digitally-Modulated Signals and Spectral Analysis for

Polynomial Nonlinearity

In this section, we would like to specialize to digitally modulated x(t) which is cyclostation-

ary in general. We first examine the (time-varying) covariance function of x(t), and then

that of y(t), and then the PSD of y(t).

7.3.1 Digitally-Modulated Signals

Consider the following baseband representation of a digitally-modulated signal:

x(t) =
∞∑

k=−∞
skh(t− kT ), (7.18)

where sk is the kth symbol, h(t) is impulse response of the pulse shaping filter, and T is

the symbol period. Applying the continuous-time Fourier transform (CTFT) to both sides

of (7.18), we obtain

X(f) = H(f)S(ej2πTf ), (7.19)

where the CTFT of x(t) is defined as

X(f) = F {x(t)} =

∫
x(t)e−j2πtfdt, (7.20)

the CTFT of h(t) is

H(f) = F {h(t)} =

∫
h(t)e−j2πtfdt, (7.21)
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and the discrete-time Fourier transform (DTFT) of sk is defined as

S(ej2πTf ) =

∞∑

k=−∞
ske

−j2πkTf . (7.22)

Note that S(ej2πTf ) is periodic in f with period 1
T , i.e., information contained in f ∈

[− 1
2T ,

1
2T ] is repeated every 1

T . To preserve the information in S(ej2πTf ), the pulse shaping

filter, H(f), must have a bandwidth greater than or equal to 1
T .

Assume that {sk} is zero-mean, i.i.d with variance γ2s = E[|sk|2]. The mean and

covariance function of x(t) are respectively,

E[x(t)] = 0, (7.23)

c2x(t; τ) = cum {x∗(t), x(t+ τ)}

= γ2s

∞∑

k=−∞
h∗(t− kT )h(t+ τ − kT ). (7.24)

Note that x(t) is not wide-sense stationary (WSS) in general since (7.24) may depend on t.

In Appendix 7.C, we show that c2x(t; τ) can be separated into t-dependent terms and

τ -dependent terms as follows:

c2x(t; τ) =
γ2s

T

∞∑

m=−∞
ρm

T
(τ)e−j 2π

T
mt, (7.25)

where

ρu(τ) =

∫
H∗(f + u)H(f)ej2πfτdf. (7.26)

Inverse CTFT is defined as

x(t) = F−1 {X(f)} =

∫
X(f)ej2πftdf.

From (7.26), we see that ρu(τ) and H∗(f + u)H(f) form a CTFT pair. The time average

of (7.25) is

c2x(τ) , c2x(t; τ) =
γ2s

T
ρ0(τ) =

γ2s

T

∫
|H(f)|2ej2πfτdf, (7.27)

where

f(t) , lim
∆→∞

1

2∆

∫ ∆

−∆
f(t)dt

represents the time averaging operation and ρ0(τ) = F−1
{
|H(f)|2

}
.

With respect to h(t), we consider the following two cases:
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(a) H(f) = 0 for |f | > 1
2T

.

-
f

6

− 1
2T

1
2T

3
2T

�
� A

A
− 1

T

H(f + 1
T )

�
� A

A
0

H(f)

�
� A

A
1
T

H(f − 1
T )

�
� A

A
2
T

H(f − 2
T )

(b) H(f) 6= 0 for some |f | > 1
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Figure 7.1: Relationship among H(f + m
T ) for different m’s.

(i) No excess bandwidth case. When H(f) is band-limited to bandwidth 1
T , i.e.,

H(f) = 0 for |f | > 1
2T , the only m for which H(f + m

T ) overlaps with H(f), is

m = 0 (see Fig. 7.1(a)). In this case, ρm
T

(τ) = 0 except for m = 0. Therefore, the

time-dependent term e−j 2π
T

mt in (7.25) is immaterial and

c2x(t; τ) =
γ2s

T
ρ0(τ). (7.28)

Since c2x(t; τ) does not depend on t in (7.28), c2x(t; τ) = c2x(τ) and x(t) is WSS. If

x(t) is Gaussian (either real or complex) then it is also strict sense stationary (SSS). In

this case, c2y(τ) is given by (7.17) and the PSD of y(t) has been investigated in [133]

and [49] for an arbitrary nonlinear order.

(ii) Excess bandwidth case. When the bandwidth of H(f) exceeds 1
T but does not

exceed 2
T , i.e., H(f) 6= 0 for some |f | > 1

2T , but H(f) = 0 for |f | > 1
T , the only m

values for which H(f + m
T ) overlaps with H(f) are m = 0, m = −1, and m = 1 (see

Fig. 7.1(b)). In this case, only ρ0(τ), ρ 1

T
(τ), and ρ

−
1

T
(τ) are non-zero, and hence from

(7.25),

c2x(t; τ) =
γ2s

T

(
ρ0(τ) + ρ

−
1

T
(τ)ej

2π
T

t + ρ 1

T
(τ)e−j 2π

T
t
)
. (7.29)

In this case c2x(t; τ) is a function of both t and τ , meaning that x(t) is not WSS. Since

c2x(t; τ) is a periodic function of t, c2y(t; τ) is also a periodic function of t by virtue

of (7.13). Spectral analysis of y(t) is still feasible, as we will see in the next section.

7.3.2 Cyclostationary Spectral Analysis

In the nonstationary (excess bandwidth) case, the spectrum of the PA output is given by:

S2y(f) = F {c2y(τ)} , (7.30)
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where c2y(τ) is the time-averaged version of c2y(t; τ) = cum {y∗(t), y(t+ τ)}. The time

average of (7.13) is

c2y(τ) = c2y(t; τ) = (7.31)

K∑

s=0

K∑

l=s

K∑

k=s

1

(s+ 1)

(
l

s

)
(l + 1)!

(
k

s

)
(k + 1)!a2l+1a

∗
2k+1

|c2x(t; τ)|2sc2x(t; τ)(c2x(t; 0))l−s(c∗2x(t+ τ ; 0))k−s.

Unfortunately, time-average of a product is not the same as the product of individual time-

averages (e.g., c2x(t; τ)c2x(t, 0) 6= c2x(τ)c2x(0)) so (7.31) is not easily simplified.

For the digitally-modulated x(t) of (7.18), we substitute (7.26) and (7.29) into (7.31) to

obtain a closed-form expression for c2y(τ) in terms of H(f), γ2s, and T . For simplicity, we

describe the result for a PA given by (7.1) with K = 1, i.e., including only the linear and

cubic nonlinear terms. In this case, (7.31) becomes

c2y(τ) = |a1|2 c2x(t; τ)︸ ︷︷ ︸
©1

+2a1a
∗
3 c2x(t; τ)c∗2x(t+ τ ; 0)︸ ︷︷ ︸

©2

+2a∗1a3 c2x(t; τ)c2x(t; 0)︸ ︷︷ ︸
©3

+4|a3|2 c2x(t; τ)c2x(t; 0)c∗2x(t+ τ ; 0)︸ ︷︷ ︸
©4

+2|a3|2 |c2x(t; τ)|2c2x(t; τ)︸ ︷︷ ︸
©5

. (7.32)

Substituting (7.29) into (7.32) and taking the CTFT on both sides of (7.32), we show in

Appendix 7.D that the PA output PSD is

S2y(f) =
γ2s

T

∣∣∣a1H(f) + a3
γ2s

T

(
ρ0(0)H(f) (7.33)

+ρ 1

T
(0)H(f + 1

T ) + ρ
−

1

T
(0)H(f − 1

T )
)∣∣∣

2

+2|a3|2(
γ2s

T
)3
(
|H(f)|2 ? |H(f)|2 ? |H(−f)|2

+2[H∗(f − 1
T )H(f)] ? [H(−f − 1

T )H∗(−f)] ? |H(f)|2

+2[H∗(f + 1
T )H(f)] ? [H(−f + 1

T )H∗(−f)] ? |H(f)|2

+2[H∗(f + 1
T )H(f)] ? [H∗(f − 1

T )H(f)] ? |H(−f)|2
)
,

where ? denotes convolution.

107



In the zero excess bandwidth (WSS) case, H(f) andH(f± 1
T ) do not overlap, H(f)H(f±

1
T ) = 0, ρ 1

T
(0) = ρ

−
1

T
(0) = 0, and thus (7.33) simplifies to

S2y(f) =
γ2s

T

∣∣∣a1 + a3
γ2s

T
ρ0(0)

∣∣∣
2
|H(f)|2

+2
(γ2s

T

)3
|a3|2|H(f)|2 ? |H(f)|2 ? |H(−f)|2. (7.34)

Next, we verify (7.33) and compare it with (7.34) using computer simulations.

7.4 Numerical Examples
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(a) with IS-95 pulse shaping filter.
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(b) with root raised cosine filter (roll-off factor is
0.5).

Figure 7.2: PA output PSD for a third-order nonlinear PA. The solid line is the estimated
PSD based on output samples; the dashed line corresponds to (7.33), and the dash-dotted
line is generated using equation (7.34).

Consider the PA given in (7.1) with K = 1 and a1 = 15.0008 + 0.0908j and a3 =

−23.0826 + 3.3133j. Here, we explore the PA output PSD S2y(f) when the PA input x(t)

is given by (7.18) with the following pulse shaping filter (i) IS-95 pulse shaping filter [1], or

(ii) root raised cosine filter given by:

H(f) =





1 |f | < (1 − β)fc

1
2 + 1

2 cos
(
π f−(1−β)fc

2βfc

)
(1 − β)fc ≤ |f | ≤ (1 + β)fc

0 |f | > (1 + β)fc

(7.35)

with cut-off frequency fc = 1
2T , and roll-off factor β = 0.5 (50% excess bandwidth). For

both (i) and (ii), sampling rate is 4 samples per symbol. γ2s is selected such that the

variance of x(t) is 0.017, and |x(t)| enters into the compression region of the PA.
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Figures 7.2(a) and 7.2(b) show the PA output PSD corresponding to filters (i) and (ii),

respectively. The solid line is the PA output PSD obtained from 217 samples of y(t). The

dashed line is the PA output PSD calculated based on (7.33). The dash-dotted line is the

PA output PSD calculated based on (7.34) (i.e., assuming a stationary input data model).

From both figures, we observe that the dashed line and the solid line coincide, thus verifying

the theoretical expression in (7.33). The small gap (in the adjacent channel) between the

solid line and the dashed-dotted line in Fig. 7.2(b) indicates that (7.34) cannot be used to

accurately predict the PA output PSD when the input has excess bandwidth. Therefore,

treating digitally-modulated signals with excess bandwidth as stationary underestimates

out-of-band emission by as much as 6 dB for the example shown. For a different PA or a

different input drive level, the discrepancy between stationary and nonstationary spectral

analysis can be more or less than what we see here. The discrepancy is negligible in

Fig. 7.2(a) because the filter has basically no excess bandwidth, except that small ripples

are present outside the passband [− 1
2T ,

1
2T ].

7.5 Conclusions

Power amplifiers are used in most communication systems and are inherently nonlinear.

Spectral analysis can help to evaluate the suitability of a given PA for amplifying certain

signals or to assist in predistortion linearization algorithm design. In this chapter, we in-

vestigated bandpass nonlinearities with Gaussian inputs. We first presented general results

on covariance analysis of (nonlinearly) transformed Gaussian random variables. We then

specialized to the case of digitally modulated signals. We showed that when the pulse shap-

ing filter has no excess bandwidth, the input signal is wide sense stationary and previous

nonlinear spectral analysis results apply. When the pulse shaping filter has excess band-

width, the input is cyclostationary. We then derived a closed-form expression for the PSD

at the output of the PA. We showed that by taking into account cyclostationary nature of

the processes, more accurate spectral analysis results can be obtained.
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7.A Proof of Theorem 1

We follow the approach of [63, Appendix 15B], denote the Fourier transform (FT) of f(u)

by F (ωu), and express f(u) in terms of F (ωu) as

f(u) =

∫
F (ωu)ejRe{ω∗

uu}dωu. (7.36)

Similarly we express g(v) in terms of its FT G(ωv) as

g(v) =

∫
G(ωv)e

jRe{ω∗

vv}dωv. (7.37)

Using (7.36) and (7.37), the correlation between f(u) and g(v) is

E[f(u)g∗(v)] =

∫∫
F (ωu)G∗(ωv)E

[
ejRe{ω∗

uu−ω∗

vv}
]
dωudωv. (7.38)

Recall that Φuv(ωu, ωv) = E
[
ejRe{ω∗

uu+ω∗

vv}] is the joint characteristic function of u, v. For

u, v jointly complex Gaussian distributed

Φuv(ωu, ωv) = e−
1
4
(|ωu|2σ2

u+|ωv |2σ2
v+2Re{w∗

uσuvwv})

×ejRe{ω∗

uµu+ω∗

vµv}, (7.39)

where µu = E[u], µv = E[v], σ2
u is the variance of u, and σ2

v is the variance of v [63, p. 559].

Since

Φu(ωu) = E
[
ejRe{ω∗

uu}
]

= Φuv(ωu, 0) = e−
1
4
|ωu|2σ2

u+jRe{ω∗

uµu} (7.40)

and

Φv(ωv) = E
[
ejRe{ω∗

vv}
]

= Φuv(0, ωv) = e−
1
4
|ωv |2σ2

v+jRe{ω∗

vµv}, (7.41)

we can write

Φuv(ωu, ωv) = Φu(ωu)Φv(ωv)e
− 1

2
Re{w∗

uσuvwv}. (7.42)

Substituting (7.42) into (7.38), we obtain

E[f(u)g∗(v)] =

∫∫
F (ωu)G∗(ωv)Φu(ωu)Φv(−ωv)

e
1
2
Re{w∗

uσuvwv}dωudωv. (7.43)
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Using the Taylor series expansion of ex =
∑∞

n=0
xn

n! and the fact that Φv(−ωv) = Φ∗
v(ωv),

we obtain

E[f(u)g∗(v)] =

∫∫
F (ωu)G∗(ωv)Φu(ωu)Φ∗

v(ωv)

∞∑

n=0

(1
2Re {w∗

uσuvwv})n

n!
dωudωv

=
∞∑

n=0

1

4nn!

∫∫
F (ωu)G∗(ωv)Φu(ωu)Φ∗

v(ωv)

(w∗
uσuvwv + w∗

vσ
∗
uvwu)ndωudωv. (7.44)

Recall the binomial expression (w∗
uσuvwv+w

∗
vσ

∗
uvwu)n =

∑n
k=0

(
n
k

)
(w∗

uσuvwv)
k(w∗

vσ
∗
uvwu)n−k.

We then rewrite (7.44) as

E[f(u)g∗(v)] =
∞∑

n=0

n∑

k=0

1

n!

(
n

k

)
σk

uv(σ
∗
uv)

n−k

∫ (
w∗

u

2

)k (wu

2

)n−k
F (ωu)Φu(ωu)dωu

∫ (wv

2

)k
(
w∗

v

2

)n−k

G∗(ωv)Φ
∗
v(ωv)dωv. (7.45)

Based on (7.36) and

∂k
[
ejRe{ω∗

uu}]

∂uk
=
(jω∗

u

2

)k
ejRe{ω∗

uu},

∂n−k
[
ejRe{ω∗

uu}]

∂(u∗)n−k
=
(jωu

2

)n−k
ejRe{ωuu},

we infer that

∫ (
w∗

u

2

)k (wu

2

)n−k
F (ωu)Φu(ωu)dωu

= E

[∫ (
w∗

u

2

)k (wu

2

)n−k
F (ωu)ejRe{ω∗

uu}dωu

]

=
1

jn
E

[
∂k

∂uk

∂n−k

∂(u∗)n−k

∫
F (ωu)ejRe{ω∗

uu}dωu

]

=
1

jn
E

[
∂nf(u)

∂uk∂(u∗)n−k

]
. (7.46)

Similarly,

∫ (wv

2

)k
(
w∗

v

2

)n−k

G∗(ωv)Φ
∗
v(ωv)dωv

=

(
1

−j

)n

E

[
∂ng(v)

∂vk∂(v∗)n−k

]∗
. (7.47)

111



Putting (7.45), (7.46), and (7.47) together, we thus prove (7.3).

7.B Proof of Lemma 1

We first find

∂lf(u)

∂(u∗)l
=
∂l[uξ(uu∗)]
∂(u∗)l

= ul+1ξ(l)(uu∗), (7.48)

where ξ(l)(p) = ∂lξ(p)
∂pl . Next, we take the mth derivative of (7.48) w.r.t. u, apply the

Leibnitz’s Theorem for the derivative of a product [5, p. 12], and obtain

∂m+lf(u)

∂um∂(u∗)l
=

m∑

k=0

(
m

k

)
∂k
(
ul+1

)

∂uk

∂m−k[ξ(l)(uu∗)]
∂um−k

(7.49)

=

m∑

k=0

(
m

k

)
(l + 1)! ul+1−k

(l + 1 − k)!
(u∗)m−kξ(l+m−k)(uu∗). (7.50)

We realize that

ul+1−k(u∗)m−k = |u|l+1+m−2kej(l+1−m)∠u.

Therefore, (7.50) can be written as

∂m+lf(u)

∂um∂(u∗)l
= ej(l+1−m)∠ug(|u|). (7.51)

Recall that for u zero-mean complex Gaussian distributed, the phase ∠u and the mag-

nitude |u| are mutually independent and ∠u is uniformly distributed in [0, 2π). Hence

E[ej(l+1−m)∠u] = 0 if m 6= l + 1. As a result, we obtain (7.9).

7.C Derivation of (7.25)

The inverse CTFT of H(f) is

h(t) =

∫
H(f)ej2πftdf. (7.52)

Substituting (7.52) into (7.24), we obtain

c2x(t; τ) = γ2s

∞∑

k=−∞

∫
H∗(f1)e

−j2πf1(t−kT )df1

∫
H(f2)e

j2πf2(t+τ−kT )df2

= γ2s

∫∫
H∗(f1)e

−j2πf1tH(f2)e
j2πf2(t+τ) (7.53)

∞∑

k=−∞
ej2π(f1−f2)kTdf1df2.
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Using the fact that
∑∞

k=−∞ ej2πfkT is the Fourier series expansion of
∑∞

m=−∞
1
T δ(f − m

T ),

we rewrite (7.54) as

c2x(t; τ) = γ2s

∫∫
H∗(f1)e

−j2πf1tH(f2)e
j2πf2(t+τ)

∞∑

m=−∞

1

T
δ(f1 − f2 −

m

T
)df1df2

=
γ2s

T

∞∑

m=−∞

∫
H∗(f2 +

m

T
)e−j2πf2te−j 2π

T
mt

H(f2)e
j2πf2(t+τ)df2

=
γ2s

T

∞∑

m=−∞
e−j 2π

T
mt

∫
H∗(f +

m

T
)H(f)ej2πfτdf, (7.54)

which yields (7.25) and (7.26).

7.D Derivation of (7.33)

We substitute (7.29) into (7.32) and write out each of the time-averages. Recall that the

time average of ejαt is zero except when α is 0 modulo 2π.

©1 =
γ2s

T
ρ0(τ) (7.55)

©2 =
(γ2s

T

)2 (
ρ0(τ)ρ

∗
0(0) + ρ 1

T
(τ)ρ∗1

T

(0)ej 2π
T

τ (7.56)

+ρ
−

1

T
(τ)ρ∗

−
1

T

(0)e−j 2π
T

τ
)

©3 = (
γ2s

T
)2
(
ρ0(τ)ρ0(0) + ρ 1

T
(τ)ρ

−
1

T
(0) + ρ

−
1

T
(τ)ρ 1

T
(0)
)

©4 = (
γ2s

T
)3
(
ρ0(τ)|ρ0(0)|2 + ρ 1

T
(τ)ρ0(0)ρ

∗
1

T

(0)ej 2π
T

τ

+ρ 1

T
(τ)ρ

−
1

T
(0)ρ∗0(0) + ρ0(τ)|ρ 1

T
(0)|2ej 2π

T
τ

+ρ0(τ)|ρ−
1

T
(0)|2e−j 2π

T
τ + ρ

−
1

T
(τ)ρ 1

T
(0)ρ∗0(0)

+ρ
−

1

T
(τ)ρ0(0)ρ

∗
−

1

T

(0)e−j 2π
T

τ
)

(7.57)

©5 = (
γ2s

T
)3
(
|ρ0(τ)|2ρ0(τ) + 2|ρ

−
1

T
(τ)|2ρ0(τ)

+2|ρ 1

T
(τ)|2ρ0(τ) + 2ρ 1

T
(τ)ρ

−
1

T
(τ)ρ∗0(τ)

)
. (7.58)

To obtain S2y(f), we take the CTFT of (7.32), i.e.,

S2y(f) = F {c2y(τ)} = |a1|2F {©1 } + 4Re (a∗1a3F {©3 })

+4|a3|2F {©4 } + 2|a3|2F {©5 } . (7.59)
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From (7.26), we see that the CTFT of ρu(τ) is H∗(f + u)H(f). Therefore, the CTFT of

(7.55)-(7.58) is respectively,

F {©1 } =
γ2s

T
|H(f)|2 (7.60)

F {©2 } = (
γ2s

T
)2
(
|H(f)|2ρ∗0(0) + ρ∗1

T

(0)H∗(f)H(f − 1
T )

+ρ∗
−

1

T

(0)ρ
−

1

T
(τ)H∗(f)H(f + 1

T )
)

(7.61)

F {©3 } = (
γ2s

T
)2
(
ρ0(0)|H(f)|2 + ρ

−
1

T
(0)H∗(f + 1

T )H(f)

+ρ 1

T
(0)H∗(f − 1

T )H(f)
)

(7.62)

F {©4 } =

(
γ2s

T
)3
(
|ρ0(0)|2|H(f)|2 + ρ0(0)ρ

∗
1

T

(0)H(f − 1
T )H∗(f)

+ρ
−

1

T
(0)ρ∗0(0)H

∗(f + 1
T )H(f) + |ρ 1

T
(0)|2|H(f − 1

T )|2

+|ρ
−

1

T
(0)|2|H(f + 1

T )|2 + ρ 1

T
(0)ρ∗0(0)H

∗(f − 1
T )H(f)

+ρ0(0)ρ
∗
−

1

T

(0)H(f + 1
T )H∗(f)

)
(7.63)

F {©5 } = (
γ2s

T
)3
(
|H(f)|2 ? |H(f)|2 ? |H(−f)|2 (7.64)

+2[H∗(f − 1
T )H(f)] ? [H(−f − 1

T )H∗(−f)] ? |H(f)|2

+2[H∗(f + 1
T )H(f)] ? [H(−f + 1

T )H∗(−f)] ? |H(f)|2

+2[H∗(f + 1
T )H(f)] ? [H∗(f − 1

T )H(f)] ? |H(−f)|2
)
.

Using the fact that ρ 1
T
(0) = ρ∗− 1

T

(0), we simplify (7.62) as

F {©3 } = (
γ2s

T
)2H(f)

(
ρ0(0)H(f) + ρ 1

T
(0)H(f + 1

T )

+ρ
−

1

T
(0)H(f − 1

T )
)∗

(7.65)

and realize that

F {©2 } = F {©3 }∗ . (7.66)

Moreover, we use the fact that H∗(f − 1
T )H(f + 1

T ) = 0 to simplify (7.63) as

F {©4 } = (
γ2s

T
)3
∣∣∣ρ0(0)H(f) + ρ

−
1

T
(0)H(f − 1

T )

+ρ 1

T
(0)H(f + 1

T )
∣∣∣
2
. (7.67)

Substituting (7.60), (7.65)-(7.67) and (7.64) back into (7.59), we obtain (7.33).
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CHAPTER VIII

ANALYZING SPECTRAL REGROWTH OF QPSK AND

OQPSK SIGNALS

In this chapter, a comparison is made between the spectral regrowth of quadrature phase

shift keyed (QPSK) and offset QPSK (OQPSK) signals as they go through non-linear am-

plifications. Contrary to existing approaches that assume the power amplifier input is

Gaussian, our analysis is carried out without the Gaussian assumption, by using higher-

order statistics. We show that it is possible to assess quantitatively, whether and how

much OQPSK is beneficial in reducing spectral regrowth. Simple closed form formulas

are obtained when the pulse shape filter is time-limited. A particular measure of spectral

broadening is also provided.

8.1 Introduction

QPSK is a popular modulation format that is used in many applications (e.g., IS-95 CDMA).

Let us denote a QPSK symbol by sm where sm = [±1 ± j] with probability 0.25 each. A

significant drawback of QPSK is the ±180-degree phase change at the 1 + j ↔ −1 − j and

the 1 − j ↔ −1 + j transitions. Such transitions are undesirable if the waveform is to be

filtered and subsequently processed by a nonlinear power amplifier (PA).

Nonlinear PAs are used in communication systems for improved efficiency because gen-

erally, there is an inverse relationship between linearity and efficiency [35]. Higher efficiency

means that a larger percentage of the dc (e.g., battery) power is delivered to the load, thus

increasing battery life and minimizing heat dissipation.

Figure 8.1 shows in solid line, the AM/AM (amplitude to amplitude) conversion of a

nonlinear PA. The dashed line shows in comparison, a linear AM/AM response. Although

|sm| =
√

2 is constant modulus, the envelope of a filtered QPSK signal could fluctuate, thus

leading to nonlinear distortions. In Figure 8.1, this means that a filtered QPSK signal could
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traverse the A-C region of the PA response. In addition to the PA compression at the larger

amplitudes, the filtered QPSK signal also experiences cut-off when the input amplitude is

close to zero.

A remedy is to employ offset QPSK (OQPSK) modulation. In OQPSK, the I- and Q-

symbol streams are offset in time by half the symbol period, thus avoiding the ±180-degree

phase change. For illustration purpose, we can imagine that in Figure 8.1, instead of the

A-C region, the filtered OQPSK signal traverses through the B-C region of the PA, thus

avoiding cut-off.
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0
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|
AM/AM conversion
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Figure 8.1: AM/AM characteristic of a nonlinear PA (solid line).

Despite of this merit of OQPSK, some concerns were raised about the overall effective-

ness of employing OQPSK. First of all, it does not lend itself to differential encoding [6].

Furthermore, argument has been made that although the QPSK signal experiences the cut-

off effect, it spends a very small percentage of time in the cut-off region. On the other hand,

the region that the OQPSK signal spends its time with (e.g., the B-C region in Figure 1)

is more compressed and hence more nonlinear than the A-B region that the QPSK signal

frequently visits.

This chapter attempts to offer a means of quantitatively analyzing spectral regrowth

of a communication signal passing through a nonlinear device. Specifically, we compare

the power spectra of filtered QPSK and OQPSK signals after their nonlinear amplifica-

tion. Although spectral analysis is routinely carried out for communications signals, the

nonlinearity present in the PA complicates the problem. In [50], the authors analyzed the

spectral regrowth pattern when the input signal is Gaussian, but their results have limited
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applicability since many communication signals are non-Gaussian. In [57], a Volterra sys-

tem approach was adopted. We address here spectral regrowth of a memoryless nonlinear

device.

8.2 Problem Formulation

A linearly modulated signal is expressed in the baseband as

x(t) =
A√
2

∞∑

m=−∞
sm h (t−mT ) , (8.1)

where sm = am + jbm is the mth symbol transmitted, h(t) is the baseband pulse shape

filter, A is a real-valued input scale factor, and T is the symbol period. We assume that am

and bm are i.i.d. and are mutually independent. We refer to the resulting sm as circular

complex symmetric.

When sm is QPSK, we have am ∈ {1,−1} with equal probability 0.5, and similarly for

bm.

A filtered OQPSK signal may be written as:

x(t) =
A√
2

∞∑

m=−∞
amh (t−mT )

+j
A√
2

∞∑

m=−∞
bmh

(
t−mT − T

2

)
, (8.2)

where am, bm, h(t), A, and T are the same as in the filtered QPSK case. The only difference

is that the imaginary part of (8.2) has a T/2 delay relative to that of (8.1).

Next, x(t) is input to a PA to yield output y(t). Ideally, we would like y(t) = α x(t),

where α is a constant with |α| > 1. But in reality, all PAs are inherently nonlinear. In

the case of a memoryless nonlinear PA, we can approximate its baseband input/output

relationship by [18, p. 735]:

y(t) = x(t)
∞∑

n=0

a2n+1 |x(t)|2n, (8.3)

from which we infer that the complex gain is

y(t)

x(t)
=

∞∑

n=0

a2n+1 |x(t)|2n. (8.4)
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It is seen that the complex gain is a function of the input amplitude |x(t)| only. This

is consistent with the fact that a memoryless nonlinear PA is often characterized by its

AM/AM (i.e., |y(t)| vs. |x(t)|) and AM/PM (i.e., ∠y(t)−∠x(t) vs. |x(t)|) characteristics. If

|x(t)| is constant such as the case of (8.1) with a rectangular shaped h(t) (see also Section

3), then x(t) will not experience any nonlinear distortion since the gain in (8.4) is constant.

Our objective here is to analyze the power spectral density (PSD) of y(t) and its dependence

on the PA parameters {a2n+1}, the baseband filter h(t), and the input scale factor A.

8.3 Analysis

Although our analysis on spectral regrowth can be generalized to accommodate higher-order

nonlinearities, for simplicity, we illustrate our approach using a 3rd-order nonlinear model:

y(t) = a1x(t) + a3 |x(t)|2x(t)

= a1x(t) + a3 x
2(t)x∗(t). (8.5)

Since sm has a symmetric distribution, y(t) has zero-mean. Therefore, the auto-correlation

and auto-covariance functions of y(t) coincide. We define the auto-correlation function of

y(t) at time t and lag τ as follows:

c2y(t; τ
∗) = E[y(t) y∗(t+ τ)]. (8.6)

In (8.6), τ ∗ indicates that conjugation is applied to the lagged copy, y(t+ τ). Note that τ

itself is always a real number.

Since y(t) is cyclostationary, its time-averaged auto-correlation function is

c̄2y(τ) =
1

T

∫ T

0
c2y(t; τ

∗) dt. (8.7)

The power spectrum of y(t) is the Fourier transform of c̄2y(τ):

S2y(f) = Fτ→f {c̄2y(τ)}

=

∫ ∞

−∞
c̄2y(τ) e

−j2πτf dτ. (8.8)
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We would like to examine S2y(f) for the PA model in (8.5) and the input as in (8.1) or

(8.2). Substituting (8.5) into (8.6), we obtain

c2y(t; τ) = E [y(t)y∗(t+ τ)] (8.9)

= |a1|2E [x(t)x∗(t+ τ)]

+a1a
∗
3E
[
x(t)|x(t+ τ)|2x∗(t+ τ)

]

+a3a
∗
1E
[
x∗(t+ τ)|x(t)|2x(t)

]

+|a3|2E
[
|x(t)|2x(t)|x(t+ τ)|2x∗(t+ τ)

]
.

Alternatively, we write

c2y(t; τ) = |a1|2 φ11(t; τ) + a1a
∗
3 φ13(t; τ) (8.10)

+a3a
∗
1 φ31(t; τ) + |a3|2 φ33(t; τ)

where

φ11(t; τ) = cov {x(t), x∗(t+ τ)}

φ13(t; τ) = cov
{
x(t)|x(t+ τ)|2, x∗(t+ τ)

}

φ31(t; τ) = cov
{
x∗(t+ τ), |x(t)|2x(t)

}

φ33(t; τ) = cov
{
|x(t)|2x(t), |x(t+ τ)|2x∗(t+ τ)

}
. (8.11)

Our next step is to expand the above covariance terms using the Leonov-Shiryaev for-

mula [25]. Under the circular symmetry assumption of sm, we infer that x(t) of (8.1) is
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circular symmetric as well. Therefore, we find for filtered QPSK,

φ11(t; τ) = c2x(t; τ∗)

φ13(t; τ) = c4x(t; τ∗, τ, τ∗) + 2c2x(t; τ∗)c2x(t+ τ∗; 0)

φ31(t; τ) = c4x(t; 0∗, 0, τ∗) + 2c2x(t; τ∗)c2x(t; 0∗)

φ33(t; τ) = c6x(t; 0∗, 0, τ∗, τ, τ∗)

+4c4x(t; 0∗, τ, τ∗)c2x(t; τ∗)

+2c4x(t; τ∗, τ, τ∗)c2x(t; 0∗)

+2c4x(t; 0∗, 0, τ∗)c2x(t+ τ ; 0∗)

+c4x(t; 0, τ∗, τ∗)c2x(t∗; τ)

+4c2x(t; τ∗)c2x(t; 0∗)c2x(t+ τ ; 0∗)

+2c2x(t; τ∗)c2x(t; τ∗)c2x(t∗; τ).

Note that the OQPSK signal (8.2) is no longer circular symmetric and hence the corre-

sponding φ13, φ31, and φ33 expressions contain additional terms.

The kth-order cumulant of x(t) at time t and lags (τ1, . . . , τk−1) is defined as

ckx(t; τ1, . . . , τ`−1, τ
∗
` , . . . , τ

∗
k−1)

, cum{x(t), x(t+ τ1), . . . , x(t+ τ`−1),

x∗(t+ τ`), . . . , x
∗(t+ τk−1)}.

Note that a conjugated lag in the argument of ckx(·); e.g., τ ∗` , implies that the corresponding

term in the cumulant; e.g., x∗(t+ τ`), has conjugation. For the x(t) in (8.1), we have

ckx(t; τ1, . . . , τ
∗
` , . . . , τ

∗
k−1)

= γks

(
A√
2

)k∑

m

h(t−mT )h(t−mT + τ1) . . .

h(t−mT + τ`−1)h
∗(t−mT + τ`) . . . h

∗(t−mT + τk−1),

and

γks = cum {s(t), s(t+ τ1), . . . , s(t+ τ`−1),
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s∗(t+ τ`), . . . , s
∗(t+ τk−1)} .

Next, let us analyze Sk`(f), which is the Fourier transform of φ̄k`(τ), the time-average

of φk`(t; τ).

Interestingly, when h(t) = 0, ∀ |t| > T/2, the φk`(t; τ) expressions can be simplified

considerably. As a result, we obtain

S11(f) =
A2

T
|H(−f)|2 (8.12)

S13(f) =
A4

T
H(−f) [H(f) ~H∗(−f) ~H∗(−f)] (8.13)

S31(f) =
A4

T
H∗(−f) [H∗(f) ~H(−f) ~H(−f)] (8.14)

S33(f) =
A6

T
|H∗(f) ~H(−f) ~H(−f)|2 , (8.15)

where H(f) is the Fourier transform of h(t), and ~ is the convolution operator.

When h(t) is real valued and symmetric, we obtain a surprisingly simple expression for

the PSD of y(t):

S2y(f) = |a1|2A2 1

T

∣∣∣∣H(f) +
a3

a1
A2H3(f)

∣∣∣∣
2

(8.16)

where H3(f) = H(f) ~H(f) ~H(f).

We make the following remarks regarding (8.16):

Remark 1: Potential spectral regrowth is indicated by the H3(f) term which generally

expands the bandwidth of H(f) through the triple convolution.

Remark 2: The severity of spectral regrowth is determined by the coefficient (a3/a1)A
2 in

(8.16). If the PA is inherently very nonlinear; i.e., the a3/a1 ratio is high, then one needs to

reduce the input amplitude factor A in order to minimize spectral regrowth – this is referred

to as input back-off. In general, spectral regrowth becomes more severe as A increases.

Now let us consider two baseband filters often studied in the literature [88]:

h(t) =





1 |t| ≤ T
2

0 |t| > T
2

(8.17)
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and

h(t) =





√
2 cos(π t

T ) |t| ≤ T
2

0 |t| > T
2 .

(8.18)

For the rectangular pulse (8.17), we obtain

H(f) =
1

fo

sin(fπ
fo

)

(fπ
fo

)
, (8.19)

and

H3(f) =
1

fo

sin(fπ
fo

)

(fπ
fo

)
= H(f). (8.20)

Substituting (8.19)-(8.20) into (8.16), we infer that there is no spectral regrowth when

the rectangular pulse is used for the x(t) in (8.1). This is expected since in this case, the

resulting |x(t)| = A has constant envelope.

For the sinusoidal pulse (8.18), we have

H(f) =

√
2

2πfo

cos( fπ
fo

)

1
4 −

(
f
fo

)2 , (8.21)

and

H3(f) =
3
√

2

2πfo

cos( fπ
fo

)
(

1
4 −

(
f
fo

)2
)(

9
4 −

(
f
fo

)2
) . (8.22)

This H3(f) can be shown to have a wider mainlobe than H(f).

One way to quantify spectral regrowth is to use a notion of bandwidth
√
〈f2〉 where

〈f2〉 ,

∫∞
−∞(f − 〈f〉)2S(f)df∫∞

−∞ S(f)df
(8.23)

and

〈f〉 ,

∫∞
−∞ fS(f)df∫∞
−∞ S(f)df

. (8.24)

Note that for a symmetric spectrum S(f), the corresponding 〈f〉 = 0.
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Substitution of (8.16), (8.21), and (8.22) into (8.23) yields the following bandwidth

formula for the cosine pulse (8.18):

√
〈f2〉 =

fo

2

√
1 − 3 Re(β) + 4.5 |β|2
1 − 3 Re(β) + 2.5 |β|2 ,

β = −a3

a1
A2. (8.25)

When the PA is linear, we have a3 = 0 and hence β = 0. The bandwidth formula (8.25)

yields 0.5fo as the bandwidth of a linear system. Therefore the ratio,
√
〈f2〉/(0.5f0), can

be used as a measure of bandwidth expansion and from (8.25), it is obvious that this ratio

is > 1 for any β 6= 0.

When x(t) is OQPSK, the analysis is generally more involved. But with either (8.17) or

(8.18), the OQPSK signal in (8.2) has |x(t)| = A and hence the corresponding PA output

y(t) = (a1 + a3 A
2)x(t) does not experience any spectral regrowth.

8.4 Simulations

In this section, we present a numerical example to verify the accuracy of the expressions

(8.12)-(8.16). 1, 000 symbols sm were generated and a filtered QPSK signal x(t) was ob-

tained from equation (8.1) with the cosine pulse (8.18). The scale factor was A = 1 and the

sampling period was 1
40T seconds. The resulting x(t) went through nonlinear amplification

as described by (8.5) with a1 = 1 and a3 = −0.3 exp (j π
4 ).

Figure 8.2 shows the theoretical S11(f) (c.f. (8.12)) in solid line and its estimate in dashed

line. The estimate is nothing but the PSD estimate of x(t). Close agreement between the

two is observed.

Figure 8.3 shows the theoretical S33(f) (c.f. (8.15)) in solid line and its estimate – the

PSD estimate of x(t)2x∗(t) in dashed line. Similar agreement is observed. Comparing with

Figure 8.2, we see that the bandwidth of S33(f) has increased from that of S11(f). Indeed,
√
〈f2〉 of S33(f) is

√
1.8 times or 34% larger than that of S11(f) (c.f. (8.23)). Moreover,

evaluation of the (8.12)-(8.15) terms reveals that S33(f) is the major contributor to spectral

regrowth in S2y(f).

In Figure 8.4, we show a comparison between the output spectrum S2y(f) when the
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input is QPSK (solid line) or OQPSK (dashed line). The bandwidth of the QPSK signal is

indeed larger than that of the OQPSK signal. In fact, equation (8.25) with β = 0.3 exp (j π
4 )

tells that the bandwidth increase was 14%.

8.5 Conclusions

We have described in this chapter, an analytical approach for evaluating the power spectra

of filtered QPSK and OQPSK signals after nonlinear amplification. A salient feature of our

analysis is that we do not need to assume that the PA input is Gaussian. In the QPSK

case, we were able to obtain a simple closed form expression for the output PSD when the

PA is cubic nonlinear and the baseband filter is time-limited. We treated the cosine pulse

filtered QPSK/OQPSK signals in detail and provided a measure of bandwidth expansion.

We are currently working on applying our analysis to more general scenarios.
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Figure 8.2: The theoretical S11(f) (solid line) and its estimate (dashed line).
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Figure 8.3: The theoretical S33(f) (solid line) and its estimate (dashed line).
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Figure 8.4: The PA output PSD S2y(f) when the input is QPSK (solid line) or OQPSK
(dashed line).
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CHAPTER IX

SPECTRAL ANALYSIS OF POLYNOMIAL

NONLINEARITY WITH APPLICATIONS TO RF

POWER AMPLIFIERS

The majority of the nonlinearity in a communication system is attributed to the power

amplifier (PA) present at the final stage of the transmitter chain. In this chapter, we

consider Gaussian distributed input signals (such as OFDM), and PAs that can be modeled

by memoryless or memory polynomials. We derive closed form expressions of the PA output

power spectral density, for an arbitrary nonlinear order, based on the so-called Leonov-

Shiryaev formula. We then apply these results to answer practical questions such as the

contribution of AM/PM conversion to spectral regrowth, and the relationship between

memory effects and spectral asymmetry.

9.1 Introduction

Power amplifiers (PAs) are important components of communications systems and are inher-

ently nonlinear. For example, the so-called Class AB PAs, which are moderately nonlinear,

are typically employed in wireless basestations and handsets. When a non-constant mod-

ulus signal goes through a nonlinear PA, spectral regrowth (broadening) appears in the

output, which in turn causes adjacent channel interference (ACI). Stringent limits on ACI

are imposed by the standard bodies and thus the extent of the PA nonlinearity must be

controlled.

We are interested in predicting the amount of spectral regrowth for a given level of PA

nonlinearity. Since more linear PAs are less efficient, one may want to maximize nonlinearity

(and hence optimize efficiency) subject to the spectral mask constraint. Such optimization
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strategy is feasible if we have tools for spectral regrowth analysis of the nonlinear output.

If the PA input is Gaussian, the PA output power spectral density (PSD) has been

derived for a 5th-order nonlinear PA in [113], [44]. In [50], the analysis was carried out for

a 9th-order nonlinear PA. The results in [21] are fairly general but developed for bandpass

signals, whereas references [44], [50], [113] and this chapter adopt a baseband nonlinear

formulation. In [49], a general expression is given without proof. When the PA input

is non-Gaussian, theoretical analysis becomes more complicated, but results are available

in [129] for a 7th-order nonlinear PA with (non-)Gaussian inputs.

The objective of this chapter is to derive closed-form expressions for the PA output

PSD (or output auto-covariance function) for an arbitrary nonlinear order, for both the

memoryless and memory baseband polynomial PA models. The PA input is assumed to

be Gaussian distributed, which is a reasonable assumption for OFDM signals [44], forward

link CDMA signals with a large number of Walsh-coded channels at the same frequency [7],

or signals at the satellite-borne relay [21]. The Gaussian assumption significantly reduces

the complexity of the analysis. Equipped with these formulas, we can then answer practical

questions such as how important or necessary it is to correct for the AM/PM distortion in

the PA, and possible mechanisms for spectral asymmetry in the PA output spectrum.

We would like to emphasize that the PA models considered in this chapter belong to the

polynomial family [75], [72]; i.e., polynomials or Taylor series for the (quasi-) memoryless

case, and Volterra series for the case with memory. Polynomials and Volterra series are

frequently used in PA modeling; see e.g., [18], [21], [35], [44], [50], [72], [113], [129].

The organization of the chapter is as follows. In Section 9.2, we outline the approach

of spectral analysis for a baseband nonlinear system with cyclostationary input, suitable

for digital communication signals. We will investigate the well known (quasi-) memoryless

PA model in Section 9.3, and then study the relatively recent memory polynomial model in

Section 9.4. Conclusions are drawn in Section 9.5. In order not to interrupt the flow of the

chapter, we defer the rather technical proofs of our theorems to Section 9.6.
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9.2 Cyclostationary input and spectral analysis

A digital communication signal x(t) is represented by

x(t) =
∑

k

sk h(t− kT ), (9.1)

where sk is the kth symbol, h(t) is the pulse shaping filter, and T is the symbol period.

Thus, x(t) is strict-sense cyclostationary in general [51, Ch. 12], [54].

Let us denote by cum{·}, the cumulant operator. The first-order cumulant is the mean;

the second-order cumulant is the covariance. General definitions and properties of cumulants

can be found in [25]. The auto-covariance function of the PA input signal x(t) at time t

and lag τ is defined as

c2x(t; τ) = cum{x∗(t), x(t+ τ)}. (9.2)

Closed-form spectral analysis for a nonlinear system with nonstationary (or cyclosta-

tionary) input is in general extremely difficult (if at all possible), even under the Gaussian

x(t) assumption. Therefore, we focus our attention on the case where the bandwidth of the

pulse shaping filter is limited to 1/T (i.e., h(t) has no excess bandwidth). Denote by H(f)

the Fourier transform (FT) of h(t); i.e.,

H(f) =

∫
h(t) e−j2πft dt; (9.3)

this assumption implies that H(f) = 0, ∀|f | > 1/(2T ).

If sk is zero-mean, i.i.d. with variance σ2
s , we show next that x(t) in (9.1) is wide-sense

stationary; i.e., c2x(t; τ) = c2x(τ), ∀t.

First, it is straightforward to show that

c2x(t; τ) = σ2
s

∑

k

h∗(t− kT )h(t+ τ − kT ) (9.4)

for the x(t) in (9.1). Next, recall the inverse FT relationship

h(t) =

∫
H(f) ej2πft df. (9.5)

Substituting (9.5) into (9.4) and using the fact that

∑

m

1

T
δ(f − m

T
) =

∑

k

ej2πfkT , (9.6)
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Figure 9.1: When H(f) has no excess bandwidth, H∗(f +m/T )H(f) = 0, ∀m 6= 0.

we obtain

c2x(t; τ) =
σ2

s

T

∑

m

e−j2πmt/T

∫
H∗(f +m/T )H(f) ej2πfτ df. (9.7)

From (9.7), it is clear that the t-dependence in c2x(t; τ) comes from the e−j2πmt/T term,

if m 6= 0. Equation (9.7) can also be viewed as a synthesis equation for the time-varying

correlation function in terms of cyclic correlation with cycles −2πm/T . The bandwidth of

H(f) affects the number of cycles present in c2x(t; τ) [111], [32].

Since the bandwidth of H(f) is limited to 1/T , H(f +m/T ) and H(f) do not overlap if

m 6= 0 (see Fig. 9.1), and hence the product H∗(f +m/T )H(f) = 0, ∀m 6= 0. As a result,

only the m = 0 term survives in the summation in (9.7) and

c2x(t; τ) =
σ2

s

T

∫
|H(f)|2 ej2πfτ df, (9.8)

which is not a function of t. Therefore, under the no excess bandwidth assumption,

c2x(t; τ) = c2x(τ), ∀t, meaning that x(t) is wide-sense stationary.

Since all cumulants of order ≥ 3 vanish for Gaussian processes, a wide-sense stationarity

Gaussian x(t) is also strict-sense stationarity. From now on, we will drop the t-dependence

and express the auto-covariance function of x(t) as c2x(τ).

We point out that (wide-sense) stationarity of x(t) is assumed in [21], [44], [50], [113],

[129], often without justification.

The power spectral density (PSD) of x(t) is defined as the Fourier Transform (FT) of

c2x(τ):

S2x(f) =

∫
c2x(τ) e−j2πfτ dτ. (9.9)
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Next, we will relate the PSD of the baseband PA output y(t) to that of the baseband PA

input x(t), when x(t) and y(t) obey polynomial nonlinear relationships.

9.3 Quasi-memoryless PA model

The following model is commonly used to describe memoryless PAs in the baseband; see

e.g., [18, p. 69],

y(t) =
K∑

k=0

a2k+1 [x(t)]k+1 [x∗(t)]k (9.10)

= x(t)
K∑

k=0

a2k+1 |x(t)|2k, (9.11)

where {a2k+1} are the (complex-valued) coefficients for the PA. We see from (9.11) that the

complex gain is G(x(t)) = y(t)/x(t) =
∑K

k=0 a2k+1 |x(t)|2k, which is a function of r = |x(t)|

only.

Writing the complex gain as G(r) = A(r) ejΦ(r), we refer to A(r) as the AM/AM

conversion, and Φ(r) as the AM/PM conversion. A linear PA would have constant A(r)

and Φ(r) characteristics. If A(r) is non-constant but Φ(r) is, the corresponding PA is

called strictly memoryless. If both A(r) and Φ(r) are non-constant, the resulting PA is

called quasi-memoryless. Eq. (9.10) can be used to describe both types of memoryless

nonlinearity, and hence we do not distinguish the two in subsequent analysis.

9.3.1 Closed form expression for spectral regrowth

We assume that x(t) is circular complex in the sense that

cum{x(t), x(t+ τ)} = 0, ∀τ. (9.12)

Let us write x(t) = xR(t) + jxI(t), where xR(t) and xI(t) are the real and imaginary parts

of x(t), respectively. It can be shown that eq. (9.12) is equivalent to

cum{xR(t), xR(t+ τ)} = cum{xI(t), xI(t+ τ)},

cum{xR(t), xI(t+ τ)} = −cum{xI(t), xR(t+ τ)}.

Processes satisfying (9.12) have also been referred to as complex video processes [101]. This

assumption is commonly used; see [21], [44], [50], [113], [129].
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We now present the first theorem which relates the output PSD S2y(f) to the input

PSD S2x(f) and (quasi-) memoryless PA parameters {a2k+1}.

Theorem 2. Assume that x(t) is stationary, zero-mean, complex Gaussian distributed and

satisfies (9.12). If the output y(t) is related to the input x(t) through (9.10), then the

autocorrelation function of y(t) is

c2y(τ) =
K∑

m=0

α2m+1 |c2x(τ)|2m c2x(τ), (9.13)

where the constant coefficient

α2m+1 =
1

m+ 1

∣∣∣∣∣

K∑

k=m

a2k+1

(
k

m

)
(k + 1)! [c2x(0)]k−m

∣∣∣∣∣

2

, (9.14)

and (
k

m

)
=

k!

m!(k −m)!
.

The PSD of y(t) is related to that of x(t) through

S2y(f) =
K∑

m=0

α2m+1 S2x(f) ? · · · ? S2x(f)︸ ︷︷ ︸
m+1

? S2x(−f) ? · · · ? S2x(−f)︸ ︷︷ ︸
m

, (9.15)

where ? denotes convolution.

Proof: See Section 9.6.1.

Some remarks are now in order:

(R1) From (9.15), we infer that if S2x(f) has bandwidth Bx, y(t) has bandwidth By =

(2K + 1)Bx, due to the spectral expansion caused by the convolution.

(R2) If S2x(f) is symmetric; i.e., S2x(f) = S2x(−f), then S2y(f) is symmetric as well.

This means that a (quasi-) memoryless PA will not lead to spectral asymmetry in the

PA output.

(R3) If S2x(f) is asymmetric, the 2m times spectral convolution on the RHS of (9.15) will

yield a more symmetric spectrum for larger m.
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Next, we would like to provide detailed expressions for the 9th-order nonlinear PA; i.e.,

K = 4 in (9.10). Equation (9.15) yields for K = 4,

α1 = |a1 + 2a3c2x(0) + 6a5c
2
2x(0) + 24a7c

3
2x(0) + 120a9c

4
2x(0)|2, (9.16)

α3 = 2|a3 + 6a5c2x(0) + 36a7c
2
2x(0) + 240a9c

3
2x(0)|2, (9.17)

α5 = 12 |a5 + 12a7c2x(0) + 120a9c
2
2x(0)|2, (9.18)

α7 = 144 |a7 + 20a9c2x(0)|2, (9.19)

α9 = 2880 |a9|2. (9.20)

It is important to cross-verify (9.16)-(9.20) with previously published results to validate

our closed form expression. We shall compare with three references below.

• In [113], c2x(τ) was defined as 0.5cum{x∗(t), x(t+ τ)} (equation (27) of [113]). Once

we have taken care of this scaling difference, equations (9.16)-(9.20) can be shown to

agree with equation (38)1 of [113], which holds for up to 5th-order nonlinearities.

• In [129], x(t) was assumed to be circular complex symmetric which renders c2x(τ)

real-valued. Except for the [c2x(τ)]2m+1 vs. |c2x(τ)|2mc2x(τ) difference, equations

(9.16)-(9.20) agree with the expressions presented in Section III.B of [129], where a

7th-order nonlinear model was considered.

• In [50], the output PSD expression was obtained for a 9th-order nonlinear PA model2.

Our equations (9.16)-(9.20) agree with the expressions3 found on p. 1068 of [50].

In conclusion, previously published results in [113], [50], [129] can be regarded as special

cases of our closed form expression (9.15).

9.3.2 Case study: The effect of AM/PM conversion on spectral regrowth

Although by reducing the input power level to the PA (i.e., with input back-off), one

can reduce the amount of spectral regrowth, the efficiency of the PA is also diminished.

1Reference [113] has a typo in equation (38): 48R{η1η
∗

3} should be 48R{η1η
∗

5}.
2Although the baseband input-output relationship is incorrectly expressed in equation (7) of [50], the

correct baseband model was used in equation (A.5) of [50].
3Reference [50] has a typo on p. 1068: 15ã9Rzo should be 20ã9Rzo.
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Some form of PA linearization is often sought in order to achieve both good linearity and

efficiency. In order to adopt an effective linearization strategy, it is important to understand

the nonlinear effects present and their manifestation in terms of spectral regrowth4. For

a given (quasi-) memoryless PA, it is useful to assess the relative contributions from the

AM/AM and AM/PM conversions to spectral regrowth. We can do so using Theorem 1.

Given measured PA AM/AM characteristic A(r) and AM/PM characteristic Φ(r), we

can then calculate the complex gain G(r) = A(r) ejΦ(r). Note that although the PA output

y(t) is a nonlinear function of the PA input x(t), y(t) is linear in the model coefficients

{a2k+1}. Therefore, regressing rG(r) w.r.t. the basis {r, r3, . . . , r2K+1}, we can estimate

the model parameters {a2k+1} via linear least squares. Afterwards, we apply Theorem 1 to

calculate the output PSD S2y(f).

To assess the individual contribution from the AM/AM conversion to S2y(f), we set5,

Φ(r) = 0 and find the {a2k+1} coefficients corresponding to G(r) = A(r). On the other

hand, to evaluate the individual contribution of the AM/PM effect to spectral regrowth,

we set A(r) = A (the intended linear gain of the PA), and find the {a2k+1} coefficients

corresponding to G(r) = A ejΦ(r) as described in the previous paragraph.

Example 1. Fig. 9.2 shows the AM/AM and AM/PM characteristics of an actual Class

AB PA. Table 9.1 lists the extracted PA model parameters for three scenarios: (i) when

both AM/AM and AM/PM conversions are present; (ii) when only the AM/AM conversion

is present (Φ(r) = 0); and (iii) when only the AM/PM conversion is present (A(r) = 11.75

was used so that the corresponding output power c2y(0) remains the same as in case (i) and

case(ii)).

First, we would like to verify that the closed form expression (9.15) is accurate. We

generated 65,536 samples of the PA input x(t), by passing a zero-mean, i.i.d., circular com-

plex Gaussian process through a 48-tap lowpass filter; the variance of x(t) was set to σ2
x =

c2x(0) = 0.322. The PA output y(t) was formed according to y(t) = x(t)A(|x(t)|) ejΦ(|x(t)|).

4The error vector magnitude should also be reduced, which is not the subject of this chapter.
5If we set Φ(r) = c, the PSD S2y(f) can be shown to be independent of the constant c.
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Figure 9.2: Measured AM/AM and AM/PM characteristics of a Class AB PA.

The sample and the theoretical S2x(f) and S2y(f) are shown in Fig. 9.3. They show good

agreement and verify that our PSD formula (9.15) is accurate.

Next, we apply (9.15) to predict spectral regrowth for the above three scenarios. From

Fig. 9.4, we see that for the particular PA given in Fig. 9.2 and for the Gaussian input

described above, both AM/AM and AM/PM conversions contribute significantly to spectral

regrowth. If one does not apply any linearization technique to the PA, the output PSD will

be at the level indicated by the solid line in Fig. 9.4. If with a linearization method, we

can completely correct for the AM/AM distortion, the resulting S2y(f) would be given by

the dash-dotted line, which is attributed solely to the AM/PM conversion. The remaining

spectral regrowth is still high and additional linearization, aimed at reducing the AM/PM

distortion, may be necessary.

In [66], a predistortion linearization algorithm was implemented for a handset which

only corrects the AM/AM distortion of the PA. Example 1 however, shows that one should

be careful not to under-estimate the effects of AM/PM distortion. Of course, one has to

evaluate the particular A(r) and Φ(r) characteristics to draw pertinent conclusions.
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Scenarios (i) AM/AM + AM/PM (ii) AM/AM only (iii) AM/PM only

a1 14.8526 − j0.1337 14.8469 11.7443 − j0.1562

a3 −23.1899 + j6.9785 −23.3505 0.4681 + j5.9639

a5 30.5226 − j1.9699 33.8272 −4.7569 + j6.9758

a7 −21.5517 − j4.7097 −25.4177 4.8612 − j13.7023

a9 6.0311 + j2.7527 7.3773 −1.5655 + j5.6319

Table 9.1: Estimated polynomial PA model coefficients for three scenarios: (i) when both
AM/AM and AM/PM conversions are present; (ii) when only the AM/AM conversion is
present (Φ(r) = 0); and (iii) when only the AM/PM conversion is present (A(r) = 11.75
was used).
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Figure 9.3: The theoretical S2x(f) is shown as the dashed line, the sample S2x(f) is shown
as the dotted line; the theoretical S2y(f) is shown as the solid line, and the sample S2y(f)
is shown as the dash-dotted line. The sample and the theoretical PSDs are very close (the
dashed line and the dotted line almost coincide; the solid line and the dash-dotted line
almost coincide), indicating that formula (9.15) is accurate. Note that we have lowered
S2y(f) by 21.4dB to facilitate easier visual comparison between S2x(f) and S2y(f).
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dash-dotted line for scenario (iii). In this example, we observe that both AM/AM and
AM/PM conversions contribute to spectral regrowth in S2y(f), hence correcting only one
of the distortions does not go far enough to suppress spectral regrowth.

9.4 Memory polynomial PA model

For low power amplifiers and/or narrowband input, the PA can be regarded as (quasi-)

memoryless. However, high-power amplifiers (HPAs) such as those used in wireless bases-

tations exhibit memory effects; wideband signals (such as WCDMA) also tend to induce

memory effects in the PA. In general, the cause of memory effects can be electrical or

electro-thermal [118]. When long-term memory effects are present, AM/AM and AM/PM

conversions are insufficient to characterize the PA, and more elaborate models such as the

Volterra series can be used; e.g., [72], [24].

Although the Volterra series is a general nonlinear model with memory [75], its applica-

tion to practical systems is limited due to the drastic increase in computational complexity

when higher order nonlinearities are included. Recently in [65], [39], it has been shown

that the so-called memory polynomial model is a good framework for studying nonlinear

PAs with memory effects; it is also a good model for predistorters. When only odd-order
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nonlinear terms are considered, the PA output is related to the input as follows:

y(t) =
K∑

k=0

∫
h2k+1(τ) |x(t− τ)|2kx(t− τ) dτ (9.21)

=

K∑

k=0

∫
h2k+1(τ) [x(t− τ)]k+1[x∗(t− τ)]k dτ (9.22)

=
K∑

k=0

h2k+1(t) ? φ2k+1(x(t))︸ ︷︷ ︸
y2k+1(t)

(9.23)

where φ2k+1(x(t)) = [x(t)]k+1[x∗(t)]k.

To the best of our knowledge, there has been no published results on spectral regrowth

analysis for nonlinear PAs with memory.

9.4.1 Closed form expression

We present here, a simple closed-form expression for the output PSD of the memory poly-

nomial model (9.21).

Theorem 3. Assume that x(t) is stationary, zero-mean, complex Gaussian distributed and

satisfies (9.12). If the output y(t) is related to the input x(t) through (9.21), then the PSD

of y(t) is related to that of x(t) through

S2y(f) =

K∑

m=0

α2m+1(f) S2x(f) ? · · · ? S2x(f)︸ ︷︷ ︸
m+1

? S2x(−f) ? · · · ? S2x(−f)︸ ︷︷ ︸
m

, (9.24)

where

α2m+1(f) =
1

m+ 1

∣∣∣∣∣

K∑

k=m

H2k+1(f)

(
k

m

)
(k + 1)! [c2x(0)]k−m

∣∣∣∣∣

2

. (9.25)

and

H2k+1(f) =

∫
h2k+1(t) e

−j2πft dt, (9.26)

is the FT of the (2k + 1)st-order kernel h2k+1(t).

Proof: See Section 9.6.2.

Remarks:
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(R4) The (quasi-) memoryless model (9.10) can be regarded as a special case of the memory

polynomial model (9.21) with h2k+1(t) = a2k+1 δ(t). Therefore, Theorem 1 can be

regarded as a special case of Theorem 2 with H2k+1(f) = a2k+1.

(R5) Since the baseband kernel h2k+1(t) is generally complex valued, its FT is not guaran-

teed to be conjugate symmetric. Therefore, even if S2x(f) is symmetric, S2y(f) may

not be symmetric.

9.4.2 Case study: Asymmetric spectral regrowth and memory effects

It is commonly known that asymmetry in the PSD of y(t) is indicative of memory effects

in the PA (e.g., [35]). Since the memory polynomial model has been shown to be a good

model for nonlinear PAs with memory, next, we shall carry out quantitative analysis on

spectral asymmetry of a PA with memory, by applying Theorem 2. We use the adjacent

channel power ratio (ACPR) defined as [50]

ACPR =

∫ f4

f3
S2y(f) df

∫ f2

f1
S2y(f) df

, (9.27)

as the performance metric, where f1 and f2 are the frequency limits of the main channel,

and f3 and f4 are the frequency limits of the adjacent channel. The two bandwidths (f2−f1)

and (f4 − f3) need not be the same and indeed are not for many current standards [64, p.

39]. For ACPRLOWER, we use f3, f4 as limits for the lower adjacent channel. Similarly, for

ACPRUPPER, we use f3, f4 as limits for the upper adjacent channel.

Example 2. In Table 9.2, we show the memory polynomial kernel coefficients extracted

from a PA which is known to exhibit memory effects. The sampling rate was fs = 150MHz.

To calculate the ACPR, we used [−0.15, 0.15] as the normalized frequency limits for the

main channel, [−0.45,−0.15] as the normalized frequency limits for the lower adjacent

channel, and [0.15, 0.45] as the normalized frequency limits for the upper adjacent channel.

In Fig. 9.5, we plot ACPRLOWER as the solid line, and ACPRUPPER as the dashed-dotted

line, as a function of the input signal power σ2
x = c2x(0). The two curves do not coincide,

implying spectral asymmetry in S2y(f). At low input power levels, the ACPR curves are

approximately constant – this is because the PA is approximately linear when it is largely
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q = 0 q = 1 q = 2

h1[q] 1.1330 + j0.0696 −0.2027 + j0.0338 0.0854 − j0.0341

h3[q] −0.2348 − j0.0876 0.1809 + j0.2447 −0.0439 − j0.0640

h5[q] 0.2675 − j0.4113 −0.1376 − j0.1862 0.0888 + j0.0197

h7[q] −0.2686 + j0.2694 0.0273 + j0.0504 −0.0457 + j0.0093

Table 9.2: Memory polynomial PA coefficients extracted for a real PA with maximum
nonlinearity order 2K + 1 = 7 and maximum lag Q = 2.
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Figure 9.5: ACPRLOWER (solid line) and ACPRUPPER (dash-dotted line) as a function of
the input power c2x(0), for a PA with memory.

backed-off, and spectral regrowth was almost absent. As the PA is driven into compression,

adjacent channel power increases sharply. Plots similar to Fig. 9.5 can be used to select the

input power level to ensure that spectral emission requirements are met.

9.5 Conclusions

The focus of this chapter was on polynomial type of PA nonlinearities and Gaussian inputs.

The objective was to obtain analytical expressions for the PA output power spectral density.

We employed the little known Leonov-Shiryaev formula (see Proofs section) to obtain closed

form output PSD expressions that apply to an arbitrary-order nonlinearity, and showed that

they embody as special cases, previously reported results for memoryless nonlinear PAs of

specific orders. Our spectral regrowth analysis on the PA model with memory is the first of

its kind. These results can help us make important practical decisions such as what factors
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contribute to spectral regrowth, and how to control or correct them in order to keep the

adjacent channel interference to within limits.

9.6 Proofs of Theorems

9.6.1 Proof of Theorem 1

Define φ2k+1(x(t)) = [x(t)]k+1[x∗(t)]k. We can rewrite (9.10) as

y(t) =
K∑

k=0

a2k+1 φ2k+1(x(t)). (9.28)

Since x(t) is assumed to be zero-mean, Gaussian distributed, only the second-order statistics

of x(t) are non-zero. Moreover, all odd-order moments of x(t) are zero [101]. Therefore,

E[φ2k+1(x(t))] = 0, and E[y(t)] = 0.

The auto-correlation (auto-covariance) function of y(t) is

c2y(τ) = cum{y∗(t), y(t+ τ)} (9.29)

=
K∑

k=0

K∑

l=0

a∗2k+1 a2l+1 cum{φ∗2k+1(x(t)), φ2l+1(x(t+ τ))}. (9.30)

First, we would like to express cum{φ∗2k+1(x(t)), φ2l+1(x(t+ τ))} in terms of c2x(τ).

Since φ2k+1(x(t)) is zero-mean,

cum{φ∗2k+1(x(t)), φ2l+1(x(t+ τ))} = E{[x∗(t)]k+1[x(t)]k[x(t+ τ)]l+1[x∗(t+ τ)]l}. (9.31)

It is possible to use the moment theorem for complex Gaussian processes [101] to simplify

(9.31), but as the authors of [50] found out, it “requires overwhelmingly complex manual

expansion of the moment expressions.” We adopt another approach here, which employs

the so-called Leonov-Shiryaev formula [25, p. 89].

To utilize the Leonov-Shiryaev formula, we start with a two-way table. We list the

individual elements that form the product φ∗2k+1(x(t)) = [x∗(t)]k+1xk(t) in the first row, and

display the individual elements that form the product φ2l+1(x(t+ τ)) = [x(t+ τ)]l+1[x∗(t+
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τ)]l in the second row.

x∗(t) · · · x∗(t)︸ ︷︷ ︸
k+1

x(t) · · · x(t)︸ ︷︷ ︸
k

x(t+ τ) · · · x(t+ τ)︸ ︷︷ ︸
l+1

x∗(t+ τ) · · · x∗(t+ τ)︸ ︷︷ ︸
l

(9.32)

Next, we partition the above (2k+2l+2) elements into subsets, according to the following

criteria:

(i) The joint cumulant of the elements in any subset is non-zero.

(ii) For each partition, there must be at least one subset that contains elements from

both rows of (9.32). We shall refer to such subset as a “hooking” subset.

When both conditions (i) and (ii) are satisfied, the corresponding partition is called a

“valid” partition. We must find all valid partitions of the two-way table in order to simplify

(9.31).

Since x(t) is zero-mean, Gaussian, and satisfies (9.12), the only non-zero cumulants of

x(t) are

c2x(τ) = cum{x∗(t), x(t+ τ)}

and its variants

c2x(0) = cum{x∗(t), x(t)},

c∗2x(τ) = cum{x(t), x∗(t+ τ)}.

Therefore, to meet requirement (i), we only need to consider two element subsets, and

the two elements within the subset must have different conjugation.

To illustrate the above concept, let us consider the following two-way table which would

be needed if we are interested in evaluating cum{φ∗5(x(t)), φ3(x(t+ τ))}:

x∗(t) x∗(t) x∗(t) x(t) x(t)

x(t+ τ) x(t+ τ) x∗(t+ τ)

One valid partition of the above 8 elements is:

{x∗(t), x(t+ τ)}, {x∗(t), x(t)}, {x∗(t), x(t)}, {x(t+ τ), x∗(t+ τ)},
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and there are 12 such possibilities (consider each element unique). In this partition, there

is only one hooking subset {x∗(t), x(t+ τ)}.

Another valid partition is:

{x∗(t), x(t+ τ)}, {x∗(t), x(t+ τ)}, {x(t), x∗(t+ τ)}, {x∗(t), x(t)},

and the multiplicity also happens to be 12. In this partition, the first three subsets are

hooking subsets.

These are the only valid partitions for the above 8 element example.

Once we have found all valid partitions, we take the cumulant of the elements in each

subset, multiply the resulting cumulants from all subsets of a given partition, and then sum

over all valid partitions. For the above 8 element example, we have

cum{φ∗5(x(t)), φ3(x(t+ τ))}

= 12c2x(τ)c2x(0)c2x(0)c2x(0)

+12c2x(τ)c2x(τ)c∗2x(τ)c2x(0)

= 12c2x(τ)c32x(0) + 12|c2x(τ)|2c2x(τ)c2x(0).

Now for the general two-way table in (9.32), we realize the following. For each partition

to be valid, there need to be (2m + 1) hooking subsets: (m + 1) subsets are of the form

{x∗(t), x(t + τ)}, m subsets are of the form {x(t), x∗(t + τ)}, and 0 ≤ m ≤ min(k, l). To

come up with these (2m+ 1) hooking subsets, there are

(k + 1)k · · · (k + 1 −m)(l + 1)l · · · (l + 1 −m)

(m+ 1)!

× k(k − 1) · · · (k −m+ 1)l(l − 1) · · · (l −m+ 1)

m!
(9.33)

different possibilities.

Apart from the (2m+1) hooking subsets, the remaining elements must be grouped into

(k−m) subsets of the form {x∗(t), x(t)}, and (l−m) subsets of the form {x(t+τ), x∗(t+τ)}.

The multiplicity number for this stage is

(k −m)!(l −m)! (9.34)
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Multiplying (9.33) and (9.34), we find that the multiplicity number for a partition that

involves exactly (m+ 1) subsets of {x∗(t), x(t+ τ)}, m subsets of {x(t), x∗(t+ τ)}, (k−m)

subsets of {x∗(t), x(t)}, and (l −m) subsets of {x(t+ τ), x∗(t+ τ)}, is

1

m+ 1

(
k

m

) (
l

m

)
(k + 1)!(l + 1)! (9.35)

Now take the cumulant of each subset and multiply the resulting cumulants. We infer

that the contribution from any one partition described above to (9.31) is

[c2x(τ)]m+1[c∗2x(τ)]m[c2x(0)]k−m[c2x(0)]l−m.

Summing over all valid partitions, we obtain,

cum{φ∗2k+1(x(t)), φ2l+1(x(t+ τ))}

=

min(k,l)∑

m=0

1

m+ 1

(
k

m

)(
l

m

)
(k + 1)!(l + 1)!|c2x(τ)|2mc2x(τ)[c2x(0)]k+l−2m. (9.36)

Substituting (9.36) into (9.30), we obtain,

c2y(τ) =
K∑

k=0

K∑

l=0

a∗2k+1 a2l+1

min(k,l)∑

m=0

1

m+ 1

(
k

m

)(
l

m

)

×(k + 1)!(l + 1)!|c2x(τ)|2mc2x(τ)[c2x(0)]k+l−2m. (9.37)

The above equation can be simplified once we realize the following:

• ∑K
k=0

∑K
l=0

∑min(k,l)
m=0 is equivalent to

∑K
m=0

∑K
k=m

∑K
l=m.

• Since c2x(0) = E[|x(t)|2] is real-valued,

K∑

k=m

a∗2k+1

(
k

m

)
(k + 1)! [c2x(0)]k−m =

[
K∑

l=m

a2l+1

(
l

m

)
(l + 1)! [c2x(0)]l−m

]∗
.

Therefore,

c2y(τ) =

K∑

m=0

α2m+1 |c2x(τ)|2m c2x(τ), (9.38)

where

α2m+1 =
1

m+ 1

∣∣∣∣∣

K∑

k=m

a2k+1

(
k

m

)
(k + 1)! [c2x(0)]k−m

∣∣∣∣∣

2

. (9.39)

Since the FT of c2x(τ) is S2x(f), the FT of c∗2x(τ) is S2x(−f). Thus, the input-output PSD

relationship is given by

S2y(f) =
K∑

m=0

α2m+1 S2x(f) ? · · · ? S2x(f)︸ ︷︷ ︸
m+1

? S2x(−f) ? · · · ? S2x(−f)︸ ︷︷ ︸
m

. (9.40)
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9.6.2 Proof of Theorem 2

Define

fkl(τ) =

∫
h∗k(t) hl(t+ τ) dt (9.41)

as the (deterministic) cross-correlation function between the kernels hk(t) and hl(t).

Define

gkl(τ) = cum{φ∗k(x(t)), φl(x(t+ τ))} (9.42)

as the (statistical) cross-correlation function between φk(x(t)) and φl(x(t)). The expression

for g(2k+1)(2l+1)(τ) was found previously as (9.36).

From the linear systems theory, it is well known that if yk(t) = hk(t) ? uk(t), yl(t) =

hl(t) ?ul(t), then cum{y∗k(t), yl(t+ τ)} =fkl(τ) ? cum{u∗k(t), ul(t+ τ)}, where fkl(τ) is given

in (9.41).

Since in the memory polynomial model (9.23), y2k+1(t) = h2k+1(t) ? φ2k+1(x(t)), we use

our linear systems knowledge to infer

c2y(τ) =
K∑

k=0

K∑

l=0

f(2k+1)(2l+1)(τ) ? g(2k+1)(2l+1)(τ). (9.43)

Recall that the FT of fkl(τ) is H∗
k(f)Hl(f). Thus, the FT (9.43) yields

S2y(f) =
K∑

k=0

K∑

l=0

H∗
2k+1(f) H2l+1(f) G(2k+1)(2l+1)(f), (9.44)

where G(2k+1)(2l+1)(f) is the FT of g(2k+1)(2l+1)(τ) given by (9.36).

Following the similar procedure as in Section 9.6.1, we can simplify S2y(f) to (9.24)-

(9.25).
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CHAPTER X

OPTIMIZATION OF SNDR FOR AMPLITUDE LIMITED

NONLINEARITIES1

Many communications components are nonlinear and have a peak power or peak amplitude

constraint. Nonlinearity generates distortions and thus an appropriate performance measure

is the signal-to-noise-and-distortion ratio (SNDR). In this chapter, we are interested in

finding the nonlinear mapping that maximizes the SNDR subject to the peak amplitude

constraint. The answer is a soft limiter with gain calculated based on the noise power and

the probability density function of the input amplitude. We also investigate a bounding

relationship between the SNDR and capacity of the nonlinear channel. The results of this

chapter can be applied for efficient transmission of high peak-to-average power ratio signals

such as OFDM or for optimal linearization of nonlinear devices.

10.1 Introduction

Many components in a communication system have a peak power (or peak amplitude)

constraint. For example, power amplifiers (PAs) are peak power limited in addition to

being nonlinear. Denote by x a zero-mean complex baseband signal with variance σ2
x and

by v a zero-mean additive noise process with variance σ2
v . Let us consider the received

signal modeled by

y = h(x) + v, (10.1)

where h(·) is a memoryless nonlinear mapping with peak amplitude constraint

|h(x)| ≤ A. (10.2)

Model (10.1) is of interest, for example, in transmission systems involving nonlinear

components such as PAs or mixers [18, 64, 72], for nonlinear magnetic recording channels

1This chapter was published in [89,92,94] and is a result of joint work with Hua Qian and G. Tong Zhou.
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[135], or when companding [59, 120] or clipping [83, 84, 103, 108, 115] is involved for the

purpose of peak-to-average power ratio (PAPR) reduction.

Two questions can be asked: (i) What undesirable effects are caused by the nonlinear-

ity? (ii) How can we best choose or modify (if possible) the nonlinearity h(·) so that the

undesirable nonlinear effects are minimal?

There has been a lot of research devoted to the first question. Nonlinearity causes

increase in symbol-error-rate (SER) [64, 108], spectral regrowth [108, 129], and reduction

in channel capacity [107, 109, 115]. However, to the best of our knowledge, optimization of

nonlinearity under the peak amplitude constraint has not been studied extensively. We use

the signal-to-noise-and-distortion ratio (SNDR) as the optimization criterion in this chapter.

We will show that the ideal linearizer (which is overall nonlinear) with gain properly selected

according to the distribution of |x| and the channel noise power, maximizes the SNDR. We

will also point out a bounding relationship between the SNDR and channel capacity, further

motivating the SNDR consideration.

The organization of this chapter is as follows. In Section 10.2, we derive the SNDR

expression and find the optimal nonlinear mapping according to the SNDR criterion. In

Section 10.3, we relate the SNDR to the capacity of the nonlinear channel in (10.1). Con-

clusions are drawn in Section 10.4. The rather technical proofs of this chapter are deferred

to the appendices.

10.2 The SNDR Criterion and Its Optimization

The SNDR criterion has been used in [83,84,103]. We start by reviewing its definition and

then present our novel results on its optimization.

10.2.1 SNDR Definition

The nonlinear mapping in (10.1) can be decomposed as

h(x) = αx+ d, (10.3)

where d is the distortion created by h(·) and α is chosen such that d is uncorrelated with

x; i.e., E[x∗d] = 0.
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From (10.3), we obtain

E[x∗h(x)] = αE[|x|2] + E[x∗d] = αE[|x|2]. (10.4)

Thus,

α =
E[x∗h(x)]
E[|x|2] =

E[x∗h(x)]
σ2

x

. (10.5)

The distortion power is given by

εd = E[|d|2] = E[|h(x)|2] − |α|2σ2
x. (10.6)

The SNDR is defined as

SNDR =
|α|2σ2

x

εd + σ2
v

=
|E[x∗h(x)]|2/σ2

x

E[|h(x)|2] − |E[x∗h(x)]|2/σ2
x + σ2

v

. (10.7)

We see from (10.7) that the SNDR depends on the distribution of x, the nonlinear

mapping h(·), and the noise power σ2
v .

10.2.2 Optimization of the SNDR

First, let us examine the angle of h(x), ∠h(x), which enables maximization of the SNDR.

Let us write h(x) = |h(x)|ej∠h(x), and

|E[x∗h(x)]| = |E[|x||h(x)|ej(∠h(x)−∠x)]|. (10.8)

Since the right hand side (RHS) of (10.8) is ≤ E[|x||h(x)|] with equality holds if and only if

∠h(x) − ∠x = constant, (10.9)

we infer that as far as ∠h(x) is concerned, the numerator of the SNDR expression in (10.7)

is maximized, the denominator of the SNDR in (10.7) is minimized, and thus the SNDR is

maximized if we have (10.9). Condition (10.9) implies that the so-called AM-PM conversion

is absent. Without loss of generality, we can set the constant in (10.9) to be zero, and work

with ∠h(x) = ∠x.

A type of nonlinearity that is of particular interest in communication systems exhibits

the so-called amplitude-to-amplitude (AM-AM) conversion, meaning that |h(x)| only de-

pends on |x|. A system with AM-AM, but no AM-PM conversion is called a strictly mem-

oryless system [18, Chap. 2]. Therefore, we consider h(·) of the form

h(x) = Ag(
|x|
σx

)ej∠x, (10.10)
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where 0 ≤ g(·) ≤ 1. This ensures that |h(x)| ≤ A and ∠h(x) = ∠x. The above standard-

ization in both the argument and the amplitude limit of g(·) will make the notations less

cumbersome.

Let γ = |x|/σx and substitute (10.10) into (10.7) to obtain

SNDR =
|E[γg(γ)]|2

E[g2(γ)] − |E[γg(γ)]|2 + σ2
n

A2

. (10.11)

We see from (10.11) that because of (10.9), the distribution of the phase of x does not

affect the SNDR; the distribution of |x|, or equivalently, the probability density function

(PDF) of γ does.

The SNDR optimization problem can be stated as follows: For a given distribution

of γ = |x|/σx, find the nonlinear mapping g(·) with 0 ≤ g(·) ≤ 1, such that the SNDR

expression in (10.11) is maximum.

Fig. 10.1 (a)-(f) show some example g(·) functions that satisfy the constraint 0 ≤ g(·) ≤

1. It is expected that they will exhibit different SNDR behavior. The results to be presented

next will shed light on which g(·) is the most desirable.

Lemma 3. Among all g(·) functions satisfying 0 ≤ g(·) ≤ 1, the g(·) that maximizes the

SNDR expression in (10.11) must be of the form

g(γ) =





γ
η , γ ∈ S,

1, γ 6∈ S,
(10.12)

where S is a subset of [0,∞), and η is determined from

η =
C1

Co + σ2
n

A2

, (10.13)

with Co = E[I(γ /∈ S)], C1 = E[γI(γ /∈ S)], and I(·) is the indicator function.

Proof. See Appendix I.

This result rules out the g(·)’s such as those shown in Fig. 10.1 (a), (d), (e) and (f)

as candidates for the optimal nonlinear mapping. Functions depicted in Fig. 10.1 (b) and

(c) meet the requirements in Lemma 1. Our next result further elucidates on the optimal

solution for g(·).
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Figure 10.1: Nonlinear mappings g(·) that satisfy the 0 ≤ g(·) ≤ 1 constraint.

Theorem 4. Within the class of g(·) satisfying 0 ≤ g(·) ≤ 1, the following g(·) maximizes

the SNDR expression in (10.11):

g(γ) =





γ
η? , 0 ≤ γ < η?,

1, γ ≥ η?,
(10.14)

where the threshold η? is found from η? = T−1(A2

σ2
v
), with

T (η) =
η

C1(η) − ηCo(η)
, (10.15)

Co(η) =

∫ ∞

η
p(γ)dγ, (10.16)

149



C1(η) =

∫ ∞

η
γp(γ)dγ, (10.17)

and p(γ) is the PDF of γ. The optimal SNDR is found as

SNDR? =
1

1
R(η?) − 1

, (10.18)

where

R(η?) =
C2

1 (η?)

Co(η?) + σ2
n

A2

+ C̄2(η
?), (10.19)

and

C̄2(η) =

∫ η

0
γ2p(γ)dγ. (10.20)

Proof. See Appendix II.

From (10.16) and (10.17), it is straightforward to show that the derivative of [C1(η) −

ηCo(η)] is −Co(η), which is negative. This means that the denominator of T (η) in (10.15)

is a monotonically decreasing function of η. Therefore, T (η) is a monotonically increasing

function of η and its inverse T−1(·) exists.

Theorem 1 establishes that the nonlinearity in the shape of Fig. 10.1 (c) is optimal.

Intuitively, the zig-zagged and non-smooth functions of Fig. 10.1 (a), (b), (e) must be

generating nonlinear distortions that lower the SNDR. Our examples in Section 10.3.3 will

illustrate the subtle difference in SNDR among the g(·) functions shown in Fig. 10.1 (c),

(d), (f).

Clipping is a popular approach to reduce the PAPR of certain signals such as OFDM

[84,103,108,115]. A soft clipper (limiter) is given by

h(x) =




x, |x| < A,

Aej∠x, |x| ≥ A.
(10.21)

The lower the threshold A, the smaller the PAPR, but the larger the clipping probability. If

we are to choose the A value so as to maximize the SNDR, then we should set A? = σx η
?,

where η? is given by Theorem 1.

If a given system nonlinearity u(·) is undesirable and it is possible to apply a predistortion

mapping f(·), then according to Theorem 1, it is best to make u(f(·)) equal to the g(·)
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function given in (10.14) (assume that u(·) is normalized to have a maximum amplitude of

1). This is the well-known linearization strategy [64]. However, what was little understood

before, was the selection of the threshold η, or equivalently, the gain factor 1/η. Theorem 1

says that the optimal (in terms of SNDR) η? depends on the PDF of γ and the peak signal-

to-noise ratio PSNR = A2/σ2
v . Examples are given in the next subsection to illustrate the

calculation of η? and its utility.

10.2.3 Examples – Optimal Threshold Selection and Application

Example 1. When x is zero-mean complex Gaussian distributed, γ = |x|
σx

is Rayleigh

distributed with PDF

p(γ) = 2γe−γ2
, γ ≥ 0. (10.22)

Note that (10.22) ensures that E[γ2] = 1. Substituting (10.22) into (10.16) and (10.17), we

obtain

Co(η) = e−η2
, (10.23)

C1(η) = ηe−η2
+
√
πQ(

√
2η), (10.24)

where

Q(η) =

∫ ∞

η

1√
2π
e−

t2

2 dt. (10.25)

It follows then that

T (η) =
η

√
πQ(

√
2η)

. (10.26)

The optimal η? = T−1(A2/σ2
v) does not have a closed-form expression but can be easily

calculated numerically.

Example 2. When |x| is uniformly distributed, γ = |x|
σx

is uniformly distributed as well.

Let γ be uniformly distributed between 0 and
√

3 so that E[γ2] = 1. It follows that

Co(η) = 1 − η√
3
, 0 ≤ η ≤

√
3, (10.27)

C1(η) =
3 − η2

2
√

3
, 0 ≤ η ≤

√
3, (10.28)
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Figure 10.2: Optimal threshold η? as a function of PSNR = A2/σ2
v for two distributions

of γ: Rayleigh (solid line) and uniform (dashed line).

and hence

T (η) =
η

η2

2
√

3−η
+

√
3

2

. (10.29)

Setting the above T (η) equal to A2/σ2
v , we obtain a closed-form solution for the optimal

η?:

η? =
√

3

((
1 +

σ2
n

A2

)
−
√
σ2

n

A2

(
σ2

n

A2
+ 2

))
, (10.30)

which is seen to depend only on the PSNR = A2/σ2
v .

Fig. 10.2 shows the optimal η? as a function of PSNR for the above two examples. An

interesting observation is made from Fig. 10.2: At high noise levels (i.e., low A2/σ2
v), strong

clipping is suggested. This is because with a low η?, the linear gain 1/η? is larger, giving

more energy |α|2σ2
x to the signal to counter-act the noise.

We point out that when it comes to linearization, there are other considerations in the

selection of η, such as spectral spreading [108,129] and SER.

Example 3. Application of optimal clipping with gain for OFDM transmission.

OFDM is well known for its robustness against frequency selective fading channels and

for its high spectral efficiency. It has shown tremendous potential for high speed digital

communication systems. It has been accepted as standards in many applications such as

digital subscriber line [3] and digital audio/video broadcasting [4].
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Denote by {X(k)}N−1
k=0 the frequency domain OFDM signal drawn from a known constel-

lation C, and by N the number of sub-carriers. Nyquist-rate sampled time domain OFDM

signal is given by

x(n) =
1√
N

N−1∑

k=0

X(k) ej 2πkn
N , 0 ≤ n ≤ N − 1. (10.31)

It is well-known that |x(n)| exhibits high peaks, especially for N large [114].

Theoretically, the worst case peak power of x(n) is Nσ2
x, but that happens with near zero

probability. Let us consider as an example, a QPSK sequence {X(k)}N−1
k=0 with N = 512 and

X(k) ∈ C = {σxe
±j π

4 }. Let us choose A = 2.6283 so that Pr{|x(n)|/σx > A} = 0.001 and

call this the “unclipped” case, i.e., treat h(x) ≈ x. In the unclipped case (assuming AWGN

channel), the received signal is y(n) = x(n) + v(n). We then follow standard procedures to

estimate X(k) from y(n).

Next, we describe an alternative method of OFDM transmission called “optimal clip-

ping with gain”. Instead of transmitting x, we transmit an optimally designed h(x). The

received signal (assuming AWGN channel) is y(n) = h(x(n)) + v(n) = αx(n) + d(n) + v(n).

The receiver decodes X(k) as usual (treats d(n) + v(n) as noise) so there is no additional

complexity at the receiver. Modification at the transmitter is described below.

Step 1. Calculate η? for given A and σ2
v values and distribution of |x| according to

equations (10.15)-(10.17), and then obtain the optimum g(·) in (10.14).

Step 2. Map x to h(x) using (10.10). Transmit h(x).

Fig. 10.3 illustrates the PDF of |x| and that of |h(x)|. Although non-negligible clipping

is present in h(x), the idea is to have increased signal power in h(x) which dominates the

increase in the distortion power. As we show in Fig. 10.4 (some results are highlighted in

Table 10.1), this simple operation at the transmitter allows significant SER improvement.

10.3 Relationship between SNDR and Capacity

Capacity for memoryless nonlinear channels has been studied in [107, 109, 115]. In this

section, we are not interested in finding the input distribution that achieves the capacity.
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Table 10.1: SER vs. SNR for unclipped OFDM and OFDM with optimum clipping using
threshold η?.

SNR −5 dB 0 dB 5 dB 10 dB

η? 0.6678 0.9896 1.2956 1.5768

SER for unclipped OFDM 4.915 × 10−1 2.921 × 10−1 7.394 × 10−2 1.565 × 10−3

SER with optimum clipping 2.391 × 10−1 6.900 × 10−2 4.408 × 10−3 7.089 × 10−6

Instead, we describe an interesting relationship between SNDR and capacity for a given

input distribution, thus underscoring the importance of looking into SNDR.

10.3.1 Lower Bound on Capacity

The capacity is given by:

C = max
px

I(y;x), (10.32)

where I(y;x) = H(x) −H(x|y) = H(y) −H(y|x) is the mutual information between y and

x, H(x) is the entropy of x given by E[− log px(x)], and px(x) is the PDF of x (base 2

logarithm is used throughout this chapter). Note that since the channel statistic py|x(y|x)

is available, using the Bayes rule, we can relate px to py and perform the maximization in

(10.32) w.r.t. py. First, we find a lower bound on the mutual information as follows:

I(y;x) = H(x) −H(x|y)
1©
= H(x) −H(x+ βy|y)
2©
≥ H(x) −H(x+ βy)

3©
≥ H(x) − log(πeσ2

x+βy)

4©
= H(x) − log(πe(σ2

x + 2Re {βσxy} + |β|2σ2
y)), (10.33)

where 1© is because H(x|y) = H(x+ βy|y); 2© is because the conditional entropy is smaller

than or equal to the entropy; 3© is due to the entropy of a complex Gaussian r.v. always

greater than or equal to the entropy of a complex r.v. with the same variance, and that

the former is log(πeσ2) [73]; 4© is obtained by expanding σ2
x+βy. To obtain a tighter bound,

we maximize the right hand side (RHS) of (10.33) with respect to β; the maximum occurs
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with β = −σ∗

xy

σ2
y

, yielding

I(y;x) ≥ H(x) − log

(
πe

(
σ2

x − |σxy|2
σ2

y

))
. (10.34)

Note that this bound applies for any input distribution px. By adding and subtracting

log(πeσ2
x) on the RHS of (10.34), we obtain

I(y;x) ≥ H(x) − log(πeσ2
x) + log


 σ2

x

σ2
x − |σxy |2

σ2
y




= H(x) − log(πeσ2
x) + log


 σ2

y

σ2
y − |σxy |2

σ2
x


 . (10.35)

Assuming that x and v are uncorrelated, we substitute σxy/σx = AE[γg(γ)], and σ2
y =

A2E[|g(γ)|2] + σ2
v into (10.35) to obtain

I(y;x) ≥ H(x) − log(πeσ2
x) + log

(
A2E[|g(γ)2] + σ2

v

A2E[|g(γ)|2] + σ2
v −A2|E[γg(γ)]|2

)

= H(x) − log(πeσ2
x) + log(1 + SNDR), (10.36)

by referring to (10.11). Since C ≥ I(y;x) for any input distribution px, by setting px to be

the PDF of a zero-mean complex Gaussian r.v., we obtain

C ≥ log(1 + SNDR), (10.37)

with the SNDR evaluated for a complex Gaussian x.

10.3.2 Upper Bound on Capacity

Next, we present an upper bound for the capacity. Using the PDF of y that maximizes the

capacity; i.e.,

p∗y = arg max
py

[H(y) −H(y|x)], (10.38)

we can write the capacity as

C = I(y;x)|p∗y = H(y)|p∗y −H(y|x)

= H(y)|p∗y −H(v)

= H(y)|p∗y − log(πeσ2
v). (10.39)
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Next, we bound the entropy H(y) with the entropy of a complex Gaussian y, yielding

C ≤ log(πeσ2
y) − log(πeσ2

v)

= log

(
1 +

A2α2 + σ2
d

σ2
v

)

= log

(
1 +

A2E[|g(γ)|2]
σ2

v

)

≤ log
(
1 +

A2

σ2
v

)
. (10.40)

Since |α2|σ2
x ≤ |h(x)|2 ≤ A2 and εd ≥ 0, we must have

SNDR =
|α2|σ2

x

εd + σ2
v

≤ A2

σ2
v

.

This relationship can also be inferred by comparing (10.37) with (10.40). When the SNDR

is maximized w.r.t. g(·) and the result is close to A2

σ2
v
, the lower bound (10.37) and the upper

bound (10.40) are close to each other; and we will have a good idea about the capacity.

10.3.3 Example on Capacity and Bounds

Assume that x is complex Gaussian distributed and the corresponding γ has the PDF in

(10.22). Let us consider four nonlinear mappings:

g1(γ) =





γ
η? , γ ≤ η?,

1, γ > η?,
(10.41)

where η? is calculated as explained in Example 1 in Section 10.2.3,

g2(γ) =





γ
η , γ ≤ η,

1, γ > η,
(10.42)

g3(γ) =




β + 1−β

η γ, γ ≤ η,

1, γ > η,
(10.43)

g4(γ) =





−(γ
η )2 + 2γ

η , γ ≤ η,

1, γ > η.
(10.44)

Fig. 10.1 (c), (d) and (f) illustrate g2(γ), g3(γ) and g4(γ) respectively.
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For the nonlinearity g3(γ) in (10.43), it can be shown that

E[γg3(γ)] =
1

η

(
(1 − β)(1 − e−η2

+
√
πηQ(

√
2η)) +

1

2
β
√
πη

)
, (10.45)

E[g3(γ)
2] =

1

η2

(
(1 − β)2(1 − e−η2

) + 2β(1 − β)
√
πη(

1

2
−Q(

√
2η)) + β2η2

)
,(10.46)

and the corresponding SNDR can be calculated according to (10.11). Note that the SNDR

expression for the nonlinearity g2(γ) in (10.42) can be obtained as a special case of the

above with β = 0. For the nonlinearity g4(γ) in (10.44), it can be shown that

E[γg4(γ)] =
1

η2

(
−1

2
ηe−η2

+ 2η + (
1

2
η2 +

3

2
)
√
πQ(

√
2η) − 3

4

√
π

)
, (10.47)

E[g4(γ)
2] =

1

η4

(
4η2 − 6

√
πη(

1

2
−Q(

√
2η)) − 2e−η2

+ 2

)
, (10.48)

and the SNDR can be calculated using (10.11).

Next, we set β = 0.5 for (10.43) and η = 2.6283 for (10.42)-(10.44), which ensures that

Pr{|x(n)|/σx > η} = 0.001. We show in Fig. 10.5, log(1 +A2/σ2
v) (line a), log(1 + SNDR1)

(line b), log(1 + SNDR2) (line c), log(1 + SNDR3) (line d), log(1 + SNDR4) (line e), as a

function of A2/σ2
v , where SNDRi corresponds to gi(γ), i = 1, 2, 3, 4. Notice that line a is

higher than line b, line b is higher than lines c-e. Capacity lies in between lines a and b.

This example also illustrates that the nonlinearity g1(γ) in (10.41) yields a higher SNDR as

compared to the other nonlinearities, as predicted by Theorem 1. Note that g1(γ) and g2(γ)

are different, since η? in (10.41) is obtained as a function of A2/σ2
v , whereas η in (10.42)

remains constant.

10.4 Conclusions

Many communications devices are nonlinear and have a peak power or peak amplitude

constraint. In addition to possibly amplifying the useful signal, nonlinearity also generates

distortions. A measure that takes into account both these effects is the signal-to-noise-

and-distortion ratio (SNDR). The focus of this chapter is on SNDR optimization within

the family of amplitude limited memoryless nonlinearities. We showed that under the peak
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Figure 10.5: Bounds on capacity: line a corresponds to the upper bound log(1 +A2/σ2
v);

line b corresponds to the lower bound log(1+SNDR) obtained using the optimum g1(·) with
optimum threshold η? and complex Gaussian x; lines c-e are looser lower bounds obtained
with g2(·), g3(·), and g4(·).

amplitude constraint, the nonlinearity that maximizes the SNDR is a soft limiter with gain,

and the specific gain (or equivalently, the threshold of the limiter) is found according to the

peak signal to noise ratio (PSNR) and the distribution of the input amplitude. When the

input is complex Gaussian distributed, the optimum log(1 + SNDR) also provides a tight

lower bound on the nonlinear channel capacity. We provided a clipped OFDM transmission

example to illustrate how simple optimum clipping can improve the system performance.

The results of this chapter are also of interest in applications such as predistortion lineariza-

tion and peak-to-average power ratio reduction.

10.A Proof of Lemma 1

Since we will be optimizing w.r.t. to a function, we introduce here the notion of functional

derivative [53]

δF [g(γ)]

δg(γo)
, lim

ε→0

F [g(γ) + εδ(γ − γo)] − F [g(γ)]

ε
, (10.49)

where δ(·) denotes the Dirac delta function. From (10.49), we infer that

δg(γ)

δg(γo)
= δ(γ − γo), (10.50)

δg2(γ)

δg(γo)
= 2g(γ)δ(γ − γo). (10.51)
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Due to the constraint g(·) ≤ 1, we assume the following form for g(·):

g(γ) < 1, γ ∈ S,

g(γ) = 1, γ /∈ S,
(10.52)

where S is a subset of [0,∞). To maximize the SNDR w.r.t. g(·), we need

δSNDR

δg(γo)
= 0, ∀ γo ∈ S. (10.53)

Denote by I(·) the indicator function. Since I(γ /∈ S) + I(γ ∈ S) = 1, we infer that for

the g(·) in (10.52),

E[g2(γ)] = E[I(γ /∈ S)g2(γ)] + E[I(γ ∈ S)g2(γ)]

= E[I(γ /∈ S)] + E[I(γ ∈ S)g2(γ)]

= Co + E[I(γ ∈ S)g2(γ)], (10.54)

where

Co = E[I(γ /∈ S)]. (10.55)

Similarly,

E[γg(γ)] = C1 + E[I(γ ∈ S)γg(γ)], (10.56)

where

C1 = E[γI(γ /∈ S)]. (10.57)

It follows easily that Co ≥ 0, C1 ≥ 0. Substituting (10.54) and (10.56) into (10.11), we

obtain

SNDR =
(C1 + E[I(γ ∈ S)γg(γ)])2

Co + E[I(γ ∈ S)g2(γ)] − (C1 + E[I(γ ∈ S)γg(γ)])2 + σ2
v

A2

. (10.58)

Note that Co and C1 are functions of the set S and the probability density function (PDF)

of γ but are not functions of g(·). For notational simplicity, we omit their S-dependence in

this section.

160



For the SNDR expression in (10.58), let us denote

Q[g(γ)] = C1 + E[I(γ ∈ S)γg(γ)], (10.59)

N [g(γ)] = (Q[g(γ)])2, (10.60)

D[g(γ)] = Co + E[I(γ ∈ S)g2(γ)] − (Q[g(γ)])2 +
σ2

v

A2
. (10.61)

Then SNDR = N [g(γ)]
D[g(γ)] . Condition (10.53) requires

δN [g(γ)]

δg(γo)
D[g(γ)] =

δD[g(γ)]

δg(γo)
N [g(γ)]. (10.62)

Denote by p(γ) the PDF of the random variable γ. Then

E[I(γ ∈ S)γg(γ)] =

∫
I(γ ∈ S)γg(γ)p(γ)dγ. (10.63)

Taking the functional derivative of (10.63) w.r.t. g(γo) and using (10.50), we obtain

δE[I(γ ∈ S)γg(γ)]

δg(γo)
=

∫
I(γ ∈ S)γδ(γ − γo)p(γ)dγ

= γop(γo), (10.64)

for γo ∈ S. Similarly, using (10.51) we obtain

δE[I(γ ∈ S)g2(γ)]

δg(γo)
= 2g(γo)p(γo). (10.65)

Therefore,

δN [g(γ)]

δg(γo)
= 2Q[g(γ)]γop(γo) (10.66)

δD[g(γ)]

δg(γo)
= 2g(γo)p(γo) − 2Q[g(γ)]γop(γo). (10.67)

Substituting (10.59)-(10.61), (10.66)-(10.67) into (10.62) and simplifying, we obtain

g(γo) =
γo

η
, η =

C1 + E[I(γ ∈ S)γg(γ)]

Co + E[I(γ ∈ S)g2(γ)] + σ2
v

A2

, (10.68)

as the solution for (10.53). Since (10.68) holds ∀ γo ∈ S, we must have

g(γ) =





γ
η , γ ∈ S,

1, γ /∈ S.
(10.69)
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Substituting (10.69) into (10.68), we obtain

η =
C1 + 1

η C̄2

Co + 1
η2 C̄2 + σ2

v

A2

, (10.70)

where

C̄2 = E[I(γ ∈ S)γ2]. (10.71)

Similar to the notations of (10.55) and (10.57), we may define C2 = E[I(γ /∈ S)γ2] and infer

that C̄2 = E[γ2] − C2 = 1 − C2. Since both sides of (10.70) contain η, we cross multiply

and further simplify it to

η =
C1

Co + σ2
v

A2

. (10.72)

In summary, under the peak amplitude constraint, the optimal g(·) that maximizes the

SNDR is given by (10.69) where η is given by (10.72).

10.B Proof of Theorem 1

Comparing (10.52) with (10.69), we infer that γ < η on S. Therefore, the set S must be a

subset of S? , [0, η); i.e., S ⊆ S?. The objective here is to determine the optimal S.

Since g(γ) = γ
η for γ ∈ S, we infer that

E[I(γ ∈ S)γg(γ)] =
1

η
E[I(γ ∈ S)γ2] =

C̄2

η
,

E[I(γ ∈ S)g2(γ)] =
1

η2
E[I(γ ∈ S)γ2] =

C̄2

η2
.

Hence, we can rewrite (10.58) as

SNDR =

(
C1 + 1

η C̄2

)2

Co + 1
η2 C̄2 −

(
C1 + 1

η C̄2

)2
+ σ2

v

A2

. (10.73)

From (10.72), we infer that Co + σ2
v

A2 = C1
η . Thus, (10.73) can be further simplified to

SNDR =

(
C1 + 1

η C̄2

)2

1
ηC1 + 1

η2 C̄2 −
(
C1 + 1

η C̄2

)2 =
1

1
ηC1+C̄2

− 1
. (10.74)
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Recall that Co, C1, C̄2 and η are all functions of S. According to (10.74), maximizing SNDR

w.r.t. S is equivalent to maximizing (c.f. (10.72))

R(S) = η(S)C1(S) + C̄2(S) =
C2

1 (S)

Co(S) + σ2
v

A2

+ C̄2(S) (10.75)

w.r.t. S (we now emphasize the S-dependence).

Let us denote

S̄ = S?\S, (10.76)

∆i = Ci(S) − Ci(S
?) = E[I(γ /∈ S)γi] − E[I(γ /∈ S?)γi] = E[I(γ ∈ S̄)γi] ≥ 0, i = 0, 1, 2.(10.77)

In the sequel, we will show that R(S?) −R(S) ≥ 0, ∀S ⊆ S?, thus establishing that S?

maximizes the SNDR.

Denote G = Co(S
?) + σ2

v

A2 , and thus Co(S) + σ2
v

A2 = G+ ∆0. Based on (10.75), we write

R(S?) −R(S) =
C2

1 (S?)

Co(S?) + σ2
v

A2

+ C̄2(S
?) − C2

1 (S)

Co(S) + σ2
v

A2

− C̄2(S) (10.78)

=
C2

1 (S?)

G
− C2

1 (S)

G+ ∆0
+ C2(S) − C2(S

?). (10.79)

Recall that C1(S) = C1(S
?) + ∆1, C2(S) = C2(S

?) + ∆2. We infer that

R(S?) −R(S) =
(G+ ∆0)C

2
1 (S?) −G(C1(S

?) + ∆1)
2 + ∆2G(G+ ∆0)

G(G+ ∆0)
. (10.80)

The denominator G(G+ ∆0) is always positive. The numerator can be shown to be

(C1(S
?)
√

∆0 −G
√

∆2)
2 + 2GC1(S

?)(
√

∆2

√
∆0 − ∆1) +G(∆2∆0 − ∆2

1).

Recall the Cauchy-Schwartz inequality (E[θφ])2 ≤ E[θ2]E[φ2]. Letting θ = γI(γ ∈ S̄) and

φ = I(γ ∈ S̄), we infer that ∆2∆0 ≥ ∆2
1. Therefore, the above numerator is ≥ 0.

We have thus proved that R(S?)−R(S) ≥ 0; i.e., R(S?) ≥ R(S), ∀ S ⊆ S?. This implies

that the optimal S, in the sense of maximizing the SNDR, is S? = [0, η).

Now (γ /∈ S?) means (γ ≥ η). We thus express

Co(S) = Co(η) = E[I(γ ≥ η)] = Pr(γ ≥ η), (10.81)

C1(S) = C1(η) = E[γI(γ ≥ η)], (10.82)

C̄2(S) = C̄2(η) = E[I(γ < η)γ2]. (10.83)
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Next, we infer from (10.72) that

T (η) ,
η

C1(η) − ηCo(η)
=
A2

σ2
v

. (10.84)

The above T (η) is a nonlinear function of η and can be shown to be monotonically increasing

in η. Therefore, (10.84) can be used to solve for the optimal η? = T−1(A2/σ2
v) for a given

PDF of γ. The optimal SNDR is

SNDR? =
1

1
R(η?) − 1

, (10.85)

where

R(η?) =
C2

1 (η?)

Co(η?) + σ2
v

A2

+ C̄2(η
?). (10.86)

Lastly, we point out that S? may not be the only maximizer of the SNDR. These cases

should make (10.80) zero. One such case is when p(γ) = 0, ∀γ ∈ S̄, which yields ∆i = 0 for

i = 0, 1, 2. This means that S can be a partial set of S?, which does not include values of γ

for which p(γ) = 0. This is intuitive, since the probability of γ ∈ S̄ is 0, the value g(γ) for

γ ∈ S̄ does not affect the SNDR.
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CHAPTER XI

CONCLUSIONS

In this dissertation, we considered the application of signal processing to the research on

nonlinear power amplifiers in the following areas: characterization and modeling, spectral

regrowth analysis, linearization, and communication aspects.

11.1 Contributions

In this thesis, we presented results in following areas:

• In the area of PA modeling, we derived the passband and baseband PA input/output

relationships. We examined the differences in formulation when the PAs exhibits long-

term, short-term, or no memory effects. We clarified the appropriate formulation of

the baseband representation and verified against experimental measurements of an

actual PA.

• In the area of PA linearization, we presented a Hammerstein model predistorter for a

Wiener model PA. We offered an algorithm to obtain the predistorter coefficients and

analyzed and compared its performance to existing algorithms. We presented closed-

form expressions for an orthogonal polynomial predistorter. We demonstrated the

improvement in numerical stability associated with the use of orthogonal polynomials

for predistortion.

• In the area of PA spectral regrowth analysis, we presented spectral analysis for a PA

modeled using orthogonal polynomials. We specialized the spectral analysis results to

the case of digitally modulated signals. We showed that by taking into account the

cyclostationary nature of the processes, more accurate spectral analysis results can be

obtained. Using the Leonov-Shiryaev formula, we analyzed spectral regrowth at the

output of a PA with QPSK and OQPSK modulated input. We obtained closed-form
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output PSD expressions that apply to an arbitrary-order nonlinearity, which may

include memory effects.

• In the area of applications of PAs to communications, we performed an SNDR opti-

mization within the family of amplitude limited memoryless nonlinearities. We showed

that under the peak amplitude constraint, the nonlinearity that maximizes the SNDR

is a soft limiter with gain, and the specific gain (or equivalently, the threshold of the

limiter) was found. We obtained a link between the capacity of amplitude-limited

nonlinear channels with Gaussian noise to the SNDR.
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11.2 Future Work

The work presented in this thesis can be extended to the following areas:

• Analysis of amplitude-limited nonlinearities in fading channels. In Chapter 10, we

presented an SNDR analysis of amplitude-limited nonlinearities when the channel is

additive white Gaussian noise (AWGN). This work can be extended to include fading

channels and symbol-error-rate (SER) analysis.

• PA modeling and predistortion of a temperature-varying nonlinearity model. The

memoryless model y(t) = f(z(t)) can be extended such that f(·) will depend on the

PA output power, which is related to the PA temperature. The output of such PA is

given by

y(t) = f(z(t), p(t))

p(t) =

∫ ∫
z(t− u)z∗(t− v)P (u, v)dudv,
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where p(t) denotes the PA output power and P (u, v) = P ∗(v, u). Using this for-

mulation, the PA output signal y(t) depends on the PA input signal x(t) and the

instantaneous PA output power p(t). Given this model, PA parameters such as the

functions f(·, ·) and P (·, ·) can be estimated to identify the PA. Similar approach can

be applied with the PA predistortion since the PA described can be predistorted by a

similar model:

z(t) = g(x(t), q(t))

q(t) =

∫ ∫
x(t− u)x∗(t− v)Q(u, v)dudv.

Note that the predistorter characteristics will vary based on its input power. Both

PA modeling and predistortion for the temperature based model can be further inves-

tigated.
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