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SUMMARY

The focus of this thesis is the question of how non-covalent interactions affect

chemical systems’ electronic and structural properties. Non-covalent interactions can

exhibit a range of binding strengths, from strong electrostatically-bound salt bridges

or multiple hydrogen bonds to weak dispersion-bound complexes such as rare gas

dimers or the benzene dimer. To determine the interaction energies (IE) of non-

covalent interactions one generally takes the supermolecular approach as described

by the equation

EIE = EAB − EA − EB, (1)

where subscripts A and B refer to two monomers and AB indicates the dimer. This

interaction energy is the difference in energy between two monomers interacting at a

single configuration compared to the completely non-interacting monomers at infinite

separation. In this framework, positive interaction energies are repulsive or unfavor-

able while negative interaction energies signify a favorable interaction. We use proto-

type systems to understand systems with complex interactions such as π-π stacking

in curved aromatic systems, three-body dispersion contributions to lattice energies

and transition metal catalysts affect on transition state barrier heights. The current

”gold standard” of computational chemistry is coupled-cluster theory with iterative

single and double excitation and perturbative triple excitations [CCSD(T)].[94] Using

CCSD(T) with large basis sets usually yields results that are in good agreement with

experimental data.[140] CCSD(T) being very computational expensive forces us to

use methods of a lower overall quality, but also much more tractable for some inter-

esting problems. We must use the available CCSD(T) or experimental data available

to benchmark lower quality methods in order to ensure that the low quality methods
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are providing and accurate description of the problem of interest.

To investigate the effect of curvature on the nature of π-π interactions, we stud-

ied concave-convex dimers of corannulene and coronene in nested configurations. By

imposing artificial curvature/planarity we were able to learn about the fundamen-

tal physics of π-π stacking in curved systems. To investigate these effects, it was

necessary to benchmark low level methods for the interaction of large aromatic hy-

drocarbons. With the coronene and corannulene dimers being 60 and 72 atoms,

respectively, they are outside the limits of tractability for a large number of compu-

tations at the level of CCSD(T). Therefore we must determine the most efficient and

accurate method of describing the physics of these systems with a few benchmark

computations. Using a few benchmark computations published by Janowski et al.

(Ref. [76]) we were able to benchmark four functionals (B3LYP, B97, M05-2X and

M06-2X) as well as four dispersion corrections (-D2, -D3, -D3(BJ), and -XDM) and

we found that B3LYP-D3(BJ) performed best. Using B3LYP-D3(BJ) we found that

both corannulene and coronene exhibit stronger interaction energies as more curvature

is introduced, except at unnaturally close intermolecular distances or high degrees of

curvature. Using symmetry adapted perturbation theory (SAPT)[78, 148], we were

able to determine that this stronger interaction comes from stabilizing dispersion,

induction and charge penetration interactions with smaller destabilizing interactions

from exchange interactions.

For accurate computations on lattice energies one needs to go beyond two-body

effects to three-body effects if the cluster expansion is being used. Three-body disper-

sion is normally a smaller fraction of the lattice energy of a crystal when compared to

three-body induction. We investigated the three-body contribution using the coun-

terpoise corrected formula of Hankins et al..[58]

∆3EABC
ABC = EABC

ABC −
∑

i

EABC
i −

∑

ij

∆2EABC
ij , (2)

where the superscript ABC represents the trimer basis and the Ei denotes the energy
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of each monomer, where i counts over the individual molecule of the trimer. The last

term is defined as

∆2EABC
ij = EABC

ij − EABC
i − EABC

j , (3)

where the energies of all dimers and monomers are determined in the trimer basis.

Using these formulae we investigated the three-body contribution to the lattice energy

of crystalline benzene with CCSD(T). By using CCSD(T) computations we resolved

a debate in the literature about the magnitude of the non-additive three-body dis-

persion contribution to the lattice energy of the benzene crystal. Based on CCSD(T)

computations, we report a three-body dispersion contribution of 0.89 kcal mol−1, or

7.2% of the total lattice energy. This estimate is smaller than many previous compu-

tational estimates[155, 55, 167, 162] of the three-body dispersion contribution, which

fell between 0.92 and 1.67 kcal mol−1. The benchmark data we provide confirm that

three-body dispersion effects cannot be neglected in accurate computations of the

lattice energy of benzene. Although this study focused on benzene, three-body dis-

persion effects may also contribute substantially to the lattice energy of other aromatic

hydrocarbon materials.

Finally, density functional theory (DFT) was applied to the rate-limiting step

of the hydrolytic kinetic resolution (HKR) of terminal epoxides to resolve questions

surrounding the mechanism. We find that the catalytic mechanism is cooperative

because the barrier height reduction for the bimetallic reaction is greater than the

sum of the barrier height reductions for the two monometallic reactions. We were

also able to compute barrier heights for multiple counter-ions which react at different

rates. Based on experimental reaction profiles, we saw a good correlation between

our barrier heights for chloride, acetate, and tosylate with the peak reaction rates

reported. We also saw that hydroxide, which is inactive experimentally is inactive

because when hydroxide is the only counter-ion present in the system it has a barrier

height that is 11-14 kJ mol−1 higher than the other three counter-ions which are

xiv



extremely active.
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CHAPTER I

INTRODUCTION

1.1 Introduction to Electronic Structure Theory

This section is an introduction to the fundamentals of electronic structure theory

which will be necessary to understand portions of this thesis. The section uses nota-

tion that is consistent with that of Szabo and Ostlund[147].

1.1.1 Schrödinger Equation

The field of electronic structure theory mainly looks for ways to solve the time-

independent, non-relativistic Schrödinger equation as shown below,

ĤΨ = EΨ, (4)

where Ĥ represents the Hamiltonian operator and ψ represents the molecular wave-

function. The Hamiltonian can be defined for a system with N electrons and M atoms

as

Ĥ = −
N
∑

i=1

1

2
∇2

i −
M
∑

A=1

1

2MA

∇2
A −

N
∑

i=1

M
∑

A=1

ZA

RiA

+
M
∑

A=1

M
∑

B>A

ZAZB

RAB

+
N
∑

i=1

N
∑

j>i

1

Rij

. (5)

The terms represent distinct interactions in the Hamiltonian and are described below.

In the first term,
∑N

i=1
1
2
∇2

i , the ∇2
i represents the Laplacian operator which involves

differentiation with respect to all the coordinates of the ith electron. This first term

represents the kinetic energy of the N electrons in the system. The second term

∑M

A=1
1

2MA
∇2

A similarly represents the total kinetic energy of all the nuclei in the

system with ∇2
A representing the Laplacian operator of the Ath nucleus with mass

MA. The third term in the Hamiltonian,
∑N

i=1

∑M

A=1
ZA

riA
is the Coulombic attraction

between all the nuclei and electrons, with ZA representing the charge of the Ath

1



nucleus and RiA as the distance between the ith electron and the Ath nucleus. The

fourth term
∑M

A=1

∑M

B>A
ZAZB

RAB
is the nuclear-nuclear repulsion between all pairs of

nuclei where RAB is the distance between the Ath and Bth nucleus. The final term,

∑N

i=1

∑N

j>i
1

Rij
is the electron-electron repulsion term which only involves the Rij

distance between the two electrons.

In order to solve the Schrödinger equation, a few approximations must be made

to simplify the terms that would otherwise be too difficult to solve. The first approx-

imation to be made is the Born-Oppenheimer approximation. This approximation

allows us to consider the nuclei as fixed due to their masses (1.674 × 10−27 kg for

hydrogen, the lightest nucleus) being much larger than the mass of an electron (9.109

× 10−31 kilograms). This allows us to consider the movements of the electrons in

the electric field of the fixed nuclei. With this approach, we are able to approximate

the second term in Equation 5 as zero with respect to the electron motions. Also

with this approximation we are able to consider the fourth term in Equation 5 to be

a constant value, referred to as the nuclear repulsion energy. The remaining three

terms in Equation 5 are the terms in the electronic Hamiltonian (Equation 6) that

fully describes the electrons moving in the field of the fixed nuclei.

Ĥelectronic = −
N
∑

i=1

1

2
∇2

i −
N
∑

i=1

M
∑

A=1

ZA

RiA

+
N
∑

i=1

N
∑

j>i

1

Rij

(6)

Having removed two terms from our operator by employing the Born-Oppenheimer

approximation, we still do not have an analytically solvable operator for a system

that has greater than one electron. In order to solve the many-body problem, more

approximations must be made. Wavefunctions (Ψ) are considered as the product of

many one-electron functions. A Slater determinant (Equation 7) is used in order to

2



utilize these one electron functions as well as inherently enforce anti-symmetry.

Ψ(x1,x2, · · · ,xN) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χi(x1) χj(x1) . . . χk(x1)

χi(x2) χj(x2) . . . χk(x2)

...
...

. . .
...

χi(xN) χj(xN) . . . χk(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(7)

In Equation 7 1√
N !

is the normalization factor for an N-electron determinant. The χ(x)

represent one-electron spin orbitals which are formed from a linear combination of

atomic orbitals (LCAOs). Molecular orbitals are formed from the linear combination

of orbitals in LCAO-MO approach,

χi =
∑

µ

C i
µφµ, (8)

with C i
µ representing the expansion coefficients with the atomic orbitals φµ. The

atomic orbitals φµ are formed from Gaussian-type orbitals (GTOs) which are of the

form,

φGTO
µ (r) = Nxlymzne−αr2 . (9)

These orbitals use integers l, m, n as the orbital angular momentum for various

orbitals. By using GTOs as the basis functions for a molecular system, it allows one

to utilize the matrix formalism that is necessary for efficiently using CPUs to solve

the Schrödinger equation.

1.1.2 Hartree-Fock Theory

The most common approximation to solving the Schrödinger equation in electronic

structure theory is the Hartree-Fock (HF) approximation. The HF approximation

states that electrons can only interact with the average field of all the other electrons.

Within this approximation, remaining terms of Equation 6 is reduced from a two-

electron operator 1
Rij

to a one electron operator, which is referred to as the Fock

3



operator,

f̂(i) = −1

2
∇2

i −
M
∑

A=1

ZA

riA
+ νHF (i). (10)

Substituting the previous equations into Equation 4 gives the following equation to

solve

f̂χj(x) = εjχj(x). (11)

This equation is the result from the approximations listed above that reduces the

many-body problem to solving for the eigenvalues of Equation 11. Again, this is only

solvable due to the simplification from Hartree-Fock theory that replaces the explicit

two-electron interactions with single electrons interacting with the potential, νHF (i).

Utilizing the definitions in the previous sections, it can be shown that the the

Hartree-Fock energy simplifies to a summation of one- and two-electron integrals,

described below

EHF =
∑

i

〈i|h|i〉+ 1

2

∑

ij

[ii|jj]− [ij|ij]. (12)

The one- and two-electron integrals are defined as

〈i|h|j〉 =
∫

dx1χ
∗
i (x1)h(r1)χj(x1), (13)

and

[ij|kl] =
∫

dx1dx2χ
∗
i (x1)χj(x1)

1

r12
χ∗
k(x2)χl(x2). (14)

The above equations show us the basis for solving for the Hartree-Fock energy. Moving

forward, we iteratively solve for the coefficients Ci
µ in Equation 8 that minimize the

energy of the system. This method is introduced and extensively covered in Szabo

and Ostlund[147].

1.1.3 Density Functional Theory

The aim of density functional theory (DFT)[65, 90] is to approximate the electronic

Hamiltonian, Ĥelec in Equation 6. The main difference between Hartree-Fock com-

putation and DFT is that the DFT method depends on the electron density, n(r),
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instead of the many-electron wavefunction from a single Slater determinant. This

means that instead of of solving the many-electron system, it is reduced to compute

the energy of non-interacting electrons in the external potential, v(r), of all the elec-

trons in the combined with the interacting electrons in a functional form that depends

only on the density, n(r)[89]. Using n(r) to determine Ĥelec is based on the theorem

of Hohenberg and Kohn[66] that the ground state density uniquely defines v(r), and

the number of electrons can be found by integration. Kohn and Sham derived a

Hamiltonian of the form

Ĥelec = −1

2
∇2 + v(r) +

∫

n(r′)

|r − r′|dr
′ + vxc(r). (15)

Solving the Schrödinger equation using this Hamiltonian allows one to compute the

orbital coefficients and orbital energies similarly to Hartree-Fock but using only the

density. The first, second and third, terms in Equation 15 refer to the electron ki-

netic energy, electron-nuclear attraction and electron-electron repulsion respectively.

These three terms are similar to those expressed in Equation 6. The exchange-

correlation term, vxc(r) is the mathematical difference between DFT and HF theory.

The exchange-correlation term depends on the exchange-correlation energy, Exc,

vxc(r) = δExc[n(r)]/δn(r). (16)

DFT would be an exact theory if an exact Exc[n] was known, except that in

practice, the exact functional form of Exc[n] is not known. Many of the first DFT

functionals were of local density approximation (LDA) form, which provided a simple

functional form of Exc[n],

ELDA
xc =

∫

ǫxc(n(r))n(r)dr. (17)

where ǫxc is the energy per particle of a uniform electron gas of density n. Within

the LDA formalism, the resultant orbitals are very close to HF orbitals of the same

system. An incremental improvement over the LDA formalism is the generalized
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gradient approximation (GGA) which adds the gradient of the density to the Exc

functional form,

EGGA
xc =

∫

f(n(r),∇n(r))dr, (18)

where f(n(r),∇n(r)) is a function of both the density and the gradient of the density.

This gives functionals one extra degree of freedom when computing the exchange-

correlation energy. Functionals can also include some of the Hartree-Fock exchange

energy and are called hybrid functionals, of which B3LYP[14] is the most widely

known. DFT’s ability to compute energies on large systems makes their utility greater

than that of many other methods do not have.

1.2 Post Hartree-Fock Methods of Electron Correlation

1.2.1 Møller–Plesset Perturbation Theory

In-depth reviews of Møller–Plesset Perturbation Theory can be found in references

[12, 95]. One of the simplest methods that includes electron correlation is Møller–

Plesset Perturbation Theory. This theory introduces a small perturbation to the

Hamiltonian as,

Ĥelec ≈ Ĥ0 + λV (19)

where Ĥ0 is the unperturbed Hamiltonian from Hartree-Fock theory and V is the

perturbation of electron correlation to the wavefunction. We then expand the ith

wavefunction, |Ψi〉, and the energy, Ei, in a Taylor series in λ gives,

|Ψi〉 = |Ψ(0)
i 〉+ λ|Ψ(1)

i 〉+ λ2|Ψ(2)
i 〉+ · · · (20)

and

Ei = E
(0)
i + E

(1)
i + E

(2)
i + · · · (21)

The energy expressions for a normalized |Ψ(0)
i 〉 up to second-order are

E
(0)
i = 〈Ψ(0)

i |H0|Ψ(0)
i 〉 (22)
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E
(1)
i = 〈Ψ(0)

i |V|Ψ(0)
i 〉 (23)

E
(2)
i = 〈Ψ(0)

i |V|Ψ(1)
i 〉. (24)

By defining the operator V as

V =
∑

i<j

r−1
ij − VHF , (25)

the zero- and first-order energies in the expansion sum to exactly the Hartree-Fock

energy, EHF . Obtaining the second-order energy requires the first-order perturbed

wavefunction which is constructed as a linear combination of the unperturbed wave-

functions,

|Ψ(1)
i 〉 =

∑

µ 6=i

〈Ψ(0)
µ |V|Ψ(0)

i 〉
E

(0)
i − E

(0)
µ

|Ψ(0)
µ 〉. (26)

Using the definition of two-electron integrals in Equation 14, the second-order

correction to the energy is

E(2) =
1

4

∑

ijab

|[ai|bj]− [aj|bi]|2
ǫa + ǫb − ǫi − ǫj

(27)

Generally the perturbative expansion is truncated at second-order and referred to

as second-order Møller–Plesset perturbation theory (MP2). Corrections after the

second-order are generally not considered due to their comparable computational

cost with more accurate electron correlation methods which will be discussed be-

low. Perturbation theory provides a better description than HF theory of molecular

interactions and energies but there are still cases where it fails. First, it has been

shown that including higher order perturbations does not always provide a more ac-

curate answer. Second, due to the denominator of equation of Equation 27, if ǫa + ǫb

approaches ǫi − ǫj the energy equation goes to infinity.

1.2.2 Coupled-Cluster Theory

Coupled-cluster (CC) theory has many reviews which the reader is directed to for com-

plete derivations and more information[121, 127, 122, 134, 132, 133]. Coupled-cluster
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theory is among the most robust levels of theory to describe electron correlation. It

achieves robustness using the exponential ansatz acting on the Hartree-Fock reference

|Φ0〉,

|ΨCC〉 = eT̂Φ0〉. (28)

where T̂ is the excitation operator that contains all possible excitations,

T̂ = T̂1 + T̂2 + T̂3 · · ·+ T̂N . (29)

For example, the T̂1 will act on the reference wavefunction and form singly-excited

determinants Φa
i and coefficients tai which are solved for iteratively. Similarly, T̂2 when

acting on the reference produces all doubly excited determinants Φab
ij with coefficients

tabij . If T̂ only includes single and double excitations, then the CC wavefunction

becomes,

|ΨCCSD〉 = eT̂1+T̂2 |Φ0〉. (30)

Using |ΨCCSD〉, the energy expression can be derived but it is quite long and the

reference provided above are excellent resources for that derivation. The energy

expression for the correlation energy of coupled-cluster of single and double excitations

(CCSD) is

Ecorr
CCSD =

occ
∑

i

virt
∑

a

tai f
a
i +

1

4

occ
∑

ij

virt
∑

ab

(tabij + tai t
b
j − tbit

a
j )〈ij||ab〉. (31)

Much of the time, truncating CC theory at double excitations provides a very

accurate result given its computational cost. For the cases where CCSD does not

provide accurate enough an answer, perturbative triples can be added to the CCSD,

giving us CCSD(T)[121, 127, 122, 133]. This method is referred to as the “gold-

standard” of computational chemistry which is then used to evaluate the performance

of other methods.
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1.3 Approximations to Two-Electron Integrals

1.3.1 Density Fitting

One of the most common bottlenecks that electronic structure theory faces is the

evaluation and storage of the four-index, two-electron integrals represented in Equa-

tion 14. A few techniques have been explored to combat this problem, namely

Cholesky Decomposition[19, 128, 88, 8, 24, 164, 7, 178, 25, 36], pseudo-spectral

techniques[98, 97, 50], and density fitting (DF) or resolution of the identity (RI)[171,

45, 46, 48, 22, 85, 163, 169, 168]. The density-fitting approximation is based on

treating the four-index integrals (µν|ρσ) as two three-index quantities and a metric

[J−1]PQ that connects the two in an auxiliary basis set.

(µν|ρσ) ≈
∑

PQ

(µν|P )[J−1]PQ(Q|ρσ) (32)

[J ]PQ =

∫

P (r1)
1

r12
Q(r2)dr1dr2 (33)

In the DF approximation, the three-index quantity (µν|P ) serves as a way to cast

the orbital product (µν into the auxiliary basis via the Coulomb metric

(µν|P ) =
∫

µ(r1)ν(r1)
1

r12
P (r2)dr1dr2. (34)

Density-fitting does not reduce the computational scaling of MP2 or CCSD, but it

does reduce the pre-factor in MP2 and eliminates the need for the integral transfor-

mation in CCSD. For certain methods like MP2, density-fitting can reduce the cost of

the correlation energy computation to a point where the SCF computation becomes

the rate-limiting step in the computation.

1.3.2 Frozen Natural Orbitals

One way to accelerate methods which depend on large powers of the number of

orbitals is to use eliminate orbitals which do not contribute much to the electron
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correlation. One method to do this is using the Frozen Natural Orbital (FNO) ap-

proximation which truncates the virtual orbitals according to the MP2 population of

those orbitals[144, 87, 152, 153]. This truncation can result in result in a 20%–60%

reduction in the number of virtual orbitals while only incurring errors in geometric

parameters of a few tenths of a picometer[153]. FNOs allow for a tunable amount

of accuracy based on the population used as the cutoff for a virtual orbital being

ignored during the correlation portion of the computation. Utilizing this approxima-

tion allows one to perform CCSD and CCSD(T) computations on system sizes that

are outside the tractability of canonical CCSD and CCSD(T). Also, the FNO approx-

imation makes computation times on an N-mer in an (N+1)-mer basis set effectively

free compared to the long time necessary for the (N+1)-mer computation.

1.4 Transition State Searching

Transition states can show us key reaction steps that would allow one to tune the

molecules involved to increase reactivity, decrease side reactions or change a number

of other properties of a reaction. One could do this by finding a better stabilized

transition state structure through non-covalent interactions or by including bulky

groups in key areas keep a side reaction from occurring. Transition states are fist-

order saddle-points within the Born–Oppenheimer approximation, meaning that the

vibrational Hessian will have exactly one negative eigenvalue which represents being

at a maximum along a reaction path between two local minima, while being at mini-

mum in all other directions perpendicular to the reaction path. The process by which

one finds transition states can be quite complex, but the crucial steps in the process

are obtaining a good starting geometry, performing a transition state optimization,

verifying the optimized structure is a first-order saddle-point, and ensuring the ob-

tained transition state is along the reaction path between the correct reactants and

products.
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Obtaining a geometry that approximates the transition state structure may be the

most difficult step in the process above. Many algorithms have been developed to help

obtain these approximate structures. Of course, one can always attempt to draw the

structure in a molecule editor (Avogadro, ChemSketch, Spartan, etc. ...) based on the

proposed transition state of the reaction being investigated, but this can sometimes

be difficult if there are too many degrees of freedom or too many subtle molecular ar-

rangements in the transition state. If a hand-drawn transition state does not produce

successful transition state searches, one can go to the many algorithms developed

to assist in generating transition state structures, such as linear synchronous transit

or the freezing string method. Linear synchronous transit (LST)[108] requires two

input structures, one of the reactants and one of the products. LST then interpolates

between the two geometries and produces a guess structure for the transition state.

The interpolation can be controlled to interpolate less than 50% of the way between

reactants and products if your reaction has an early transition state or greater than

50% if the reaction has a late transition state. For straight-forward reactions, LST

produces very good guess geometries for the rest of the transition state searching pro-

cess. If LST does not produce a structure that is close enough of an approximation

to the transition state, one might try a more complex method, the freezing string

method. The freezing string method (FSM)[138, 20] also needs input of reactants

and products geometries but then produces strings[166] which are grown from the

reactants and products until the two fragments meet. Then the points along the

string are optimized, and the highest energy point along the string is considered the

best guess for the transition state structure. For systems where the transition state

is surrounded by a complex chemical environment, sometimes the environment may

cause problems in finding the transition state. In those cases, one can simply do a

constrained optimization where the atoms involved in the transition state are frozen

in place while the rest of the environment is put through a geometry optimization.
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This allows the environment to be in a more optimal structure when one then un-

freezes the previously frozen atoms and perform a transition state optimization on

the entire structure.

Once a transition state has been found, the rest of the effort is put forth towards

verification that it is a transition state and it is the transition state that was sought.

In order to verify that it is a transition state, one just performs a frequency compu-

tation on the transition state structure and verifies that there is only one imaginary

vibrational frequency. After the frequency calculation, the last step in the process

is to verify that the transition state is the correct one (i.e., it connects the correct

reactants and products.) To do this, one must perform an intrinsic reaction coor-

dinate (IRC)[51] computation. IRC computations follow the steepest descent paths

going downhill in both directions from the transition state. Because the path between

transition state and stationary point is unlikely to be a straight line, the computation

takes a series of finite-size steps along the gradient at each point which better sim-

ulates the “true” reaction path. If the IRC computation provides structures which

are equivalent to the desired reactants and products, then the correct transition state

has been found.

1.5 Organization of Thesis

This thesis contains four chapters starting with this introduction to electronic struc-

ture theory, Hartree-Fock theory, methods to correlate electrons, and approximations

employed by computational chemists to aid in computing larger systems than pre-

viously possible. Chapter 2 explores the effect that curvature has on π-π stacking

interactions which is normally studied using planar aromatic hydrocarbons. Chap-

ter 3 attempts to reconcile differences in the literature about the magnitude of the

three-body non-additive dispersion contribution to the lattice energy of crystalline

benzene. Chapter 4 provides mechanistic insights into the proposed rate limiting
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step of hydrolytic kinetic resolution (HKR) of terminal epoxides, a reaction that pro-

duces extremely enantiopure products by way of selectively opening epoxide rings of

one enantiomer but not the other. Chapters 2, 3, and 4 are adapted from previously

published or submitted first author publications listed below:

Chapter 2: Kennedy, M. R., Burns, L. A., Sherrill, C. D. “Buckyplates and Bucky-

bowls: Examining the Effects of Curvature on π-π Interactions” J. Phys. Chem. A,

vol. 116, p. 11920, 2012.

Chapter 3: Kennedy, M. R., Ringer, A. L., DePrince, A. E., Marshall, M. S.,

Podeszwa, R., Sherrill, C.D. “Communication: Resolving the three-body contribution

to the lattice energy of crystalline benzene: Benchmark results from coupled-cluster

theory” J. Chem. Phys., vol. 140, p. 121104, 2014

Chapter 4: Kennedy, M. R., Burns, L. A., Sherrill, C. D. “Mechanistic Insight into

the Hydrolytic Kinetic Resolution of Epoxides Catalyzed by Co-Salen”, Submitted
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CHAPTER II

BUCKYPLATES AND BUCKYBOWLS: EXAMINING

THE EFFECTS OF CURVATURE ON π-π

INTERACTIONS

2.1 Abstract

π-π interactions are integral to many areas of chemistry, biochemistry, and materi-

als science. Here we use electronic structure theory to analyze how π-π interactions

change as the π-systems are curved in model complexes based on coronene and coran-

nulene dimers. Curvature redistributes electronic charge in the π-cloud and creates

a dipole moment in these systems, leading to enhanced intermolecular electrostatic

interactions in the concave-convex (nested) geometries that are the focus of this work.

Curvature of both monomers also has a geometric effect on the interaction by decreas-

ing the average C–C distance between monomers and by increasing the magnitude

of both favorable London dispersion interactions and unfavorable exchange-repulsion

interactions. Overall, increasing curvature in nested π-π interactions leads to more

favorable interaction energies regardless of the native state of the monomers, except

at short distances where the most highly curved systems are less favorable as exchange

repulsion terms begin to dominate the interaction.

2.2 Introduction

π-π interactions play a pivotal role in the way proteins fold[100, 32] and drugs

bind to targets[130]. They are also critical in determining the crystal packing and

charge transport properties of π-conjugated organic materials for organic electronics
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applications[40]. In biological contexts and frequently in organic materials, π-π inter-

actions involve planar π-systems, and the fundamental physics of planar π-π interac-

tions has been the focus of significant recent effort[100, 141, 139, 130, 123] π-π. in-

teractions involving prototype molecules such as benzene[157, 142, 74, 113, 139, 170],

coronene[73, 75], and linear acenes[69] have been given special consideration. On the

other hand, curved π systems including fullerenes and carbon nanotubes are also of

significant interest in materials applications. Experimental and theoretical works have

examined such curved π systems[31, 41, 82, 49, 38], yet to our knowledge, the effect of

curvature on the fundamental physics of π-π interactions has not been systematically

explored.

To investigate this issue, we employed as model systems nested dimers of coronene

and corannulene, which are among the simplest model systems large enough to ex-

hibit curvature effects. Coronene dimer is naturally flat because its central ring has

six sides, and corannulene is naturally curved because its central ring has five sides.

High-quality interaction energies for coronene dimer[73], corannulene dimer[76], and

coronene-circumcoronene dimer[75] have recently been published by Pulay and co-

workers. To probe the effect of curvature directly, we constructed model dimer ge-

ometries in which each monomer (coronene and corannulene) was distorted from its

natural state (flat and curved, respectively) through to its opposite state (curved and

flat). Using these model systems, we are able to examine the interaction between

monomers (at fixed monomer geometries) as a function of intermonomer distance

and monomer curvature. Curvature can affect the intermolecular interaction through

two routes: by modifying the electronic structure of the monomers and by introduc-

ing differences in the contact geometries. An example of the former is that as the

monomers become curved, a permanent dipole is created within each monomer that

interacts with the dipole on the other monomer for an enhanced or reduced electro-

static interaction, depending on the orientation of the two monomers. Here we seek
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to quantify such effects to better understand how curvature influences the strength

and character of π-π interactions.

Dispersion plays a major role in π-π interactions, and hence we also use these

systems to examine possible differences between recently proposed dispersion correc-

tions to density functional theory. The simplest such corrections are damped C6R
−6

terms[174], popularized primarily by Grimme[53, 54, 55]. In most such approaches

(including Grimme’s second-generation -D2 method[54]), the C6 parameters are tab-

ulated for each element and are not able to respond to their local chemical envi-

ronment (and thus, for present purposes, not able to adapt to curving monomers).

However, of course the C6 parameters should change with curvature, and here we

examine by how much, using two alternative approaches. First, we employ Grimme’s

third-generation -D3 method[55], which interpolates C6 terms from tabulated data

based on each atom’s coordination number. Second, we employ a more theoretically

sophisticated approach, Becke and Johnson’s exchange-hole dipole moment model

(XDM)[15, 16, 17]. Johnson has recently shown that oxidation state, hybridization,

charge, and other chemical properties can affect the atomic Cn by as much as 65%

for carbon atoms[79].

2.3 Computational Methods

2.3.1 Geometries

To investigate the effect of curvature on π-π interactions, a set of coronene (buck-

yplate) and corannulene (buckybowl) dimers was constructed by varying the inter-

monomer distance and the degree of curvature of the monomers. The labeling of

atoms, bonds, and curvature angles for coronene can be seen in Figure 1 and is

analogous for corannulene. The curved monomer geometries were constructed such

that bond lengths were fixed while bond angles changed in order to relieve the stress

of curvature. The formulae for construction of the molecules can be found in the
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Figure 1: (a) Side view of coronene dimer geometry with τ = 50◦ and R=3.7 Å. (b)
Side view of coronene dimer geometry with τ = 0◦ and R=3.7 Å. (c) Top down view
of coronene dimer geometry where a, b, and c label distinct groups of carbon atoms.
The curvature τ and the dihedral τ ′ are related by τ ′ = 180− τ

2
.

supplementary materials.

In order to find a reliable, computationally tractable methodology for treating

these systems, computations using four density functionals and four different disper-

sion corrections were performed on the geometries of corannulene dimer reported by

Janowski et al.[76] These structures are nearly identical to those reported by X-ray

crystallography[111], with curvature torsion angle (see Figure 1) of τ ≈ 57.5◦, and

were obtained using the PBE1 functional[110] with the 6-31G* basis set [61] using

a grid with 99 radial shells and 302 angular points (99,302). Here we employ frozen

monomer geometries to simplify the computations. This approximation appears to
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be a good one for these systems[76], at least for native monomer curvatures. Of

course, there would be large monomer relaxation energies for our artificially curved

monomers, but given the artificial nature of the imposed curvature, the associated

relaxation energies are not particularly relevant to our study — our focus is on how

intermolecular interaction energies (at fixed monomer geometries) are affected by

curvature, regardless of how the monomer curvature might have been achieved (the

curvature will be natural in our corannulene dimer, or in larger systems like carbon

nanotubes or fullerenes).

2.3.2 Dispersion–Corrected DFT

Single-point energy computations were performed using the B3LYP[14], B97-D[54],

M05-2X[176], and M06-2X[177] functionals with the heavy-aug-cc-pVDZ (haDZ) ba-

sis set (defined as aug-cc-pVDZ[84] for non-hydrogen atoms and cc-pVDZ[47] for

hydrogen atoms) to determine which functional most accurately reproduced the es-

timated triple-ζ quality QCISD(T) interaction energies for concave-convex stacked

corannulene dimer recently reported by Janowski et al.[76] That work examined the

B97-D, M06-2X, and ωB97X-D functionals in conjunction with the cc-pVQZ basis

set and noted that B97-D provided an intermonomer distance within 0.06 Å and an

interaction energy within 1.1 kcal mol−1 of benchmark values.

DFT computations reported in this work utilized NWChem 6.0[160], with the

“fine” or (70,590) grid. Grimme’s -D2 and -D3 corrections[54, 55] were both applied

to all the functionals through the dftd3 program[55]. The computations of XDM

dispersion coefficients were performed in Q-Chem 3.2 [137] with the full aug-cc-pVDZ

basis and damped into a dispersion correction according to revised parameters[29, 28].

Generally our computations are counterpoise corrected according to the Boys and

Bernardi approach[27] to reduce basis set superposition error (BSSE); however the

XDM computations are not counterpoise corrected because parameters for the XDM
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damping function were optimized using uncorrected interaction energies.

The three dispersion corrections considered here all take slightly different forms.

Grimme’s DFT-D2 correction [54] is the simplest, employing C6 only in the dispersion

series, and is expressed in Equation (35).

ED2
disp = −s6

N
∑

i,j>i

C ij
6

R6
ij

fdamp(Rij). (35)

The C6 coefficients are calculated as the geometric average between the two elemental

C6 coefficients C i
6 and Cj

6 . The s6 parameter is optimized for each functional and is

usually between 0.5 and 1.5.

Grimme recently released a more refined method[55], DFT-D3, which additionally

implements the R−8 term in the dispersion correction, changes the method of calcu-

lating C6, and alters the damping functional. Atomic C i
6 coefficients are interpolated

from reference values based upon coordination number in the current molecular struc-

ture. Thus, the C6 values are allowed to respond to the molecular environment in -D3,

rather than being simply looked-up from a table of elemental values. The DFT-D3

correction has the form:

ED3
disp = −

∑

n=6,8

sn

N
∑

i,j>i

C ij
n

Rn
ij

fdamp(Rij). (36)

We investigated two different damping functions for use with the DFT-D3 cor-

rection. The first is the original damping function for DFT-D3, which damps the

dispersion interaction to zero at short ranges[55], and the other is the damping func-

tion suggested by Becke and Johnson[15, 80, 81], and now advocated by Grimme,

DFT-D3(BJ). Implementing the latter entailed a reoptimization of the sn parameters

as well as a switch of damping functional form[56].

The last dispersion correction considered is the XDMmethod of Becke and Johnson[15,

5, 17, 62]. Calculation of the XDM correction is based upon the non-zero dipole
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moment of exchange holes[18] on one monomer that can induce a complementary

dipole moment on the other monomer, leading to a dispersion interaction between

the molecules. This method is quite different from the first two approaches to dis-

persion corrections because XDM calculates Cn parameters from the electron density

instead of using tabulated C6 data. The computation of the XDM dispersion contri-

bution to the energy in Equation (37) uses a similar functional form as those used for

the DFT-D2 and DFT-D3 corrections but involves one term further, C10.

EXDM
disp = −

∑

n=6,8,10

N
∑

i,j>i

C ij
n

Rn
ij

fdamp(Rij). (37)

To help illustrate electronic changes due to curvature, electrostatic potentials of

coronene and corannulene at different curvatures were produced using the Spartan ’08

package[1]; the electrostatic potential [between -80 (red) and +80 (blue) kcal mol−1]

was mapped onto the electron density (produced at the B3LYP/6-31G level of theory)

with an isovalue of 0.002 e− bohr−3. Our discussions of the plotted electrostatic

potentials is purely qualitative, and we do not expect the figures to change noticeably

at higher levels of theory.

2.3.3 SAPT Energy Decomposition

Symmetry adapted perturbation theory (SAPT) is an approach by which individual

physical components (electrostatics, induction, dispersion, and exchange) of a non-

bonded interaction can be elucidated.[78, 148]. SAPT partitions the Hamiltonian

into contributions from the Fock operator of each monomer, the interaction between

the two monomers, and the fluctuation potential (electron correlation), as explained

in Ref [78]. Examining the components along a potential energy curve allows for

insight into how the nature of the interaction changes as the monomers approach each

other. These calculations were performed with the jun-cc-pVDZ (jaDZ) basis set[106]

(formerly referred to as aug-cc-pVDZ′ by our group) inside a development version of
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PSI4[2]. Compared to the aug-cc-pVDZ basis, jun-cc-pVDZ removes diffuse functions

from hydrogen atoms and diffuse d functions from the non-hydrogen elements. For

SAPT0, jun-cc-pVDZ has been shown to yield favorable error cancellation[70].

2.4 Results and Discussion

The performance of density functional methods versus the estimated QCISD(T)/aug-

cc-pVTZ benchmarks for corannulene dimer reported by Janowski et al.[76] is pre-

Figure 2: Counterpoise-corrected DFT/haDZ interaction energies for corannulene
dimer compared to QCISD(T) reference values from Ref. [76] (see text for XDM
details).

sented in Figure 2 as a function of intermonomer distance. The benchmark curve

shows a minimum of 15.43 kcal mol−1 at 3.64 Å. It is apparent that M05-2X and M06-

2X both underbind (M05-2X by a larger margin) when compared to the reference,

with neither curve tracking the shape of the reference curve very closely. The B3LYP-

D3 and B97-D3 methods also underbind the reference by 3-4 kcal mol−1. B3LYP-D2

and B97-D2 are closer to the reference data than their respective -D3 curves, but

both have the wrong shape, shifting the equilibrium distance to shorter distances.

B97-D3(BJ) and B3LYP-D3(BJ) both show good agreement with the shape of the

reference curve, and the B3LYP-D3(BJ) curve is rather close to the benchmark curve
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(differences of 0.4-0.8 kcal mol−1). The last method investigated is B3LYP-XDM us-

ing the parameterization of Burns et al.[29, 28], which performs very well in providing

a curve with the right shape; the interaction energies are underestimated by 2.0-2.5

kcal mol−1 across the potential curve. However, these errors are significantly larger

than the errors exhibited by B3LYP-D3(BJ). Hence, we selected the latter method

for primary use in this work. We also performed limited tests using XDM with the

PBE functional, but the dimers were more underbound using this functional than

they were using B3LYP-XDM.

Results for the full two-dimensional scan of intermonomer distance and curvature

(R, τ) are displayed in Figure 3. The B3LYP-D3(BJ)/haDZ computations show that

as τ is varied from 0◦ to 50◦, minima of the coronene interaction energy curves range

from -17.7 to -22.9 kcal mol−1 (-13.1 to -16.2 kcal mol−1 for corannulene). Coronene

and corannulene exhibit the same trend from 0◦ to 50◦: the minima of the interaction

energy curves deepen with increasing curvature. This stabilization results from an

enhancement in both the dispersion interaction and electrostatic interaction between

the two monomers, as seen from the SAPT0 results plotted in Figure 4. Induction

also increases with increasing curvature (Figure 4), although this effect is smaller than

that for the electrostatic and dispersion terms. Induction accounts for approximately

25% of the interaction energy at the most extreme curvature studied, and 6.5% at

τ=0◦. Such percentages are higher than those typically observed in other π systems

that have been examined to date[68, 126]. The relatively large induction interaction

is due to a very strong dependence of the monomer dipole moment on curvature,

increasing from 0 at τ=0◦ to 2.5 Debye at τ=50◦. Counterbalancing these increases

in attractive components with increasing curvature is an increase in the unfavorable

exchange-repulsion term.

Of the two primary contributors to extra stabilization with increasing curvature

(electrostatics and London dispersion forces), let us begin with the electrostatic term.
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Figure 3: B3LYP-D3(BJ)/haDZ interaction energy curves for various curvatures of
coronene dimer (top panel) and corannulene dimer (bottom panel).

The electrostatic interaction becomes more favorable with curvature in these concave-

convex (nested) geometries for two reasons: first, the curvature redistributes the elec-

tronic charge leading to more favorable interactions, and second, at a fixed distance

between the central rings, greater curvature leads to shorter average intermolecular

C–C distances, in turn leading to larger favorable charge penetration terms.

The first effect, that coming from charge redistribution, is illustrated in Figure 5

and Figure 6. For flat monomers, the two sides of the monomer are symmetric, and

hence the charge distribution is equivalent on both sides. However, upon curvature,

the monomers adopt a positive charge on the outside of the bowl and a negative charge

on the inside, leading to an electronic dipole moment. For the nested (concave-convex)
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geometries considered here, this means that the two dipoles are aligned in a head-

to-tail arrangement, which contributes to a favorable electrostatic interaction. The

dipole moment of the monomers is a significant 2.5 Debye when τ=50◦.

The second effect, a geometric effect in which average interatomic contact dis-

tances get shorter, also enhances the electrostatic interaction. For a fixed distance

between the central rings of the two monomers, curvature of both monomers means

that the atoms around the periphery of the outer monomer get closer to the atoms of

the inner monomer in a concave-convex geometry. As the curvature changes from 0◦

to 50◦ at an intermolecular distance of 3.7 Å, this results in a 10% reduction in the

sum of interatomic distances between pairs of atoms on separate monomers. Having

closer contact between the monomers is favorable electrostatically because it leads to

enhanced charge penetration terms. Charge penetration is a favorable contribution

to electrostatic interactions due to orbital overlap, and its importance to π-π inter-

actions has been recently emphasized by Hohenstein et al.[67] The effect is visible in

the SAPT0 electrostatic term plotted in Figure 4, which becomes both exponentially

more attractive at short intermonomer distances and more attractive with increas-

ing curvature for a fixed intermonomer distance. A comparison of the more rigorous

(charge-penetration including) SAPT electrostatic energy and a (charge-penetration

neglecting) distributed multipole analysis[145] (DMA) estimate is presented in Fig-

ure 7. The DMA is performed based on Hartree–Fock/6-311G** results and includes

terms through quadrupole-quadrupole. The DMA analysis actually shows repulsive

electrostatics at short distances, indicating that electrostatics in these systems would

not be favorable if not for the charge penetration terms. For dimers 3.3 Å apart, the

deviation is upwards of 40 kcal mol−1, whereas for dimers over 5 Å separation (where

a multipole description of the monomers becomes more appropriate), the deviation

is less than 1 kcal mol−1. Again, the SAPT electrostatics term shows more favorable

interactions for more curved monomers at a fixed intermolecular distance.
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Figure 4: SAPT0 breakdown of the interaction energy for various values of τ . Top
panel: coronene, bottom panel: corannulene.
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Next, let us consider changes to the dispersion contribution as a function of cur-

vature. Figure 4 indicates that the dispersion term becomes more favorable with

increasing curvature at a fixed distance between the central rings of the monomers.

Just as for the electrostatic term, there can be two origins of this change: an elec-

tronic effect (changes in electron distribution and polarizability) and a geometric

effect (closer interatomic contacts with curvature). Because the dispersion interac-

tion depends sensitively on interatomic distances (the leading term being proportional

to R−6), the geometric effect on dispersion is easy to understand. The -D2 disper-

sion contribution to the interaction energy goes from -25.69 to -33.96 kcal mol−1 for

coronene as the curvature is increased from 0o to 50o, as seen in Table 1. The increase

in the magnitude of the dispersion term as computed by -D2 is from geometric effects

alone, because the C6 coefficients in that approximation are fixed for each element

and are not dependent on chemical environment. Hence, the geometric contribution

to the dispersion term is substantial.

Changes in the electronic distribution with respect to curvature are another pos-

sible source of changes to the dispersion term. Grimme’s -D3 model allows for some

response of the dispersion coefficients to an atom’s coordination geometry, and the
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Figure 5: Electrostatic potential at the B3LYP/6-31+G* level of theory, using a
scale of -80 (red) to +80 (blue) kcal mol−1 for (a) coronene with τ=0◦, (b) Convex
side of coronene with τ=50◦, (c) Concave side of coronene with τ=50◦.

XDM model allows for a full response to the chemical environment because the dis-

persion coefficients are computed directly from the electron density. To quantify how

much the changing chemical environment affects the dispersion contribution, we eval-

uated -XDM and -D3(BJ) dispersion terms at 0o and 50o curvature, for both coronene

dimer and corannulene dimer. Next, we took the computed dispersion coefficients Cn

at each geometry, and then applied them at the other geometry to re-evaluate the

dispersion contribution. This provides a measure of how much the changing Cn co-

efficients change the total dispersion contribution in these systems as they progress

from flat to curved.
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Figure 6: Electrostatic potential at the B3LYP/6-31+G* level of theory, using a
scale of -80 (red) to +80 (blue) kcal mol−1 for (a) corannulene with τ=0◦, (b) Convex
side of corannulene with τ=50◦, (c) Concave side of corannulene with τ=50◦.

Table 1 shows dispersion interactions for the two dimers, relative to their disper-

sion interactions at τ=0◦. Comparing the first two rows, we see that the Cn coeffi-

cients affect the dispersion interaction of corannulene by 0.51 and 0.08 kcal mol−1 for

-D3(BJ) and -XDM, respectively, when applying the Cn coefficients from τ=50◦ to the

geometry τ=0◦. These are modest contributions compared to the overall dispersion

contributions of -16 to -29 kcal mol−1 (see Table footnote). Comparing the first and

third rows of the Table shows that using fixed Cn values on two different geometries

changes the dispersion interaction by 5.2 or 4.3 kcal mol−1 for -D3(BJ) and -XDM,

respectively, for corannulene. This is a much larger change than that observed in the

previous comparison. This indicates that the geometric effect is around 10-50 times

larger than the electronic effect in determining the changes in dispersion contributions
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Figure 7: Comparison of SAPT0 electrostatic contribution (dashed lines) and dis-
tributed multipole analysis (DMA) of electrostatics through quadrupole-quadrupole
(solid lines) at various τ . Top panel: coronene, bottom panel: corannulene.

with respect to curvature. Results for coronene in Table 1 show similar trends.

Lastly, in Figure 8 we examine the changes of the C6 coefficients in both -D3(BJ)

and -XDM for various τ . First, the coefficients from -D3(BJ) and -XDM follow the

same trends with respect to monomer curvature. Second, both sets of C6 coefficients

change by no more than 5% between τ=0◦ and τ=50◦, consistent with the results

from Table 1 discussed above.
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Table 1: Dispersion corrections for coronene and corannulene relative to 0◦ geometry
with 0◦ Cn coefficients at R = 3.7 Å. All values in kcal mol−1.

Coronene Corannulene
Geometry from C6 from -D2 -D3(BJ) -XDM -D2 -D3(BJ) XDM

0◦ 0◦ 0.00a 0.00b 0.00c 0.00d 0.00e 0.00f

0◦ 50◦ 0.00 -0.61 -0.08 0.00 -0.51 -0.08
50◦ 0◦ -8.27 -7.23 -5.64 -6.29 -5.21 -4.31
50◦ 50◦ -8.27 -6.75 -5.34 -6.29 -5.76 -4.22

a-D2 dispersion interaction for coronene is -25.69 kcal mol−1; b-D3(BJ) dispersion
interaction for coronene is -28.85 kcal mol−1; c-XDM dispersion interaction for
coronene is -20.80 kcal mol−1. d -D2 dispersion interaction for corannulene is -20.63
kcal mol−1; e-D3(BJ) dispersion interaction for corannulene is -22.28 kcal mol−1;
f -XDM dispersion interaction for corannulene is -16.89 kcal mol−1;

2.5 Conclusions

We have studied concave-convex (nested) dimers of corannulene and coronene at

various imposed monomer curvatures to elucidate how curvature affects the funda-

mental physics of π-π interactions. Both coronene and corannulene dimers exhibit

more attractive interaction energies upon curvature, except at short, unnatural inter-

molecular distances and high degrees of curvature. Curvature in a π system affects

all four major components of noncovalent interactions: dispersion, electrostatics, ex-

change, and induction. Dispersion and exchange are affected most strongly by simple

geometric effects because average interatomic distances between monomers decrease

with increasing curvature in concave-convex geometries as the peripheral atoms of

the outer monomer become closer to the atoms of the inner monomer. This same

geometric effect also leads to increased orbital overlap, and hence larger stabilizing

charge penetration contributions to the electrostatic interaction. On the other hand,

curvature creates a charge redistribution within the monomers that also affects the

nature of the interaction. XDM and DFT-D computations suggest that this electronic

effect is much less important than the geometric effect when examining the dispersion

term. On the other hand, this charge redistribution has a significant electrostatic ef-

fect because it creates a dipole on each curved monomer, which leads to a favorable
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Figure 8: C6 coefficients from -D3(BJ) (solid lines, left axis) and -XDM (dashed
lines, right axis) at various τ for the three distinct carbon atoms defined in Figure 1.
Top panel: coronene, bottom panel: corannulene.

head-to-tail alignment of dipoles in concave-convex geometries. We expect that the

careful elucidation of these various factors determining how π-π interactions vary with

curvature will aid future studies that explore diverse chemical systems featuring such

interactions.
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CHAPTER III

RESOLVING THE THREE-BODY CONTRIBUTION TO

THE LATTICE ENERGY OF CRYSTALLINE BENZENE:

BENCHMARK RESULTS FROM COUPLED-CLUSTER

THEORY

3.1 Abstract

Coupled-cluster theory including single, double, and

perturbative triple excitations [CCSD(T)] has been applied to trimers that appear

in crystalline benzene in order to resolve discrepancies in the literature about the

magnitude of non-additive three-body contributions to the lattice energy. The present

results indicate a non-additive three-body contribution of 0.89 kcal mol−1, or 7.2% of

the revised lattice energy of -12.3 kcal mol−1. For the trimers for which we were able to

compute CCSD(T) energies, we obtain a sizable difference of 0.63 kcal mol−1 between

the CCSD(T) and MP2 three-body contributions to the lattice energy, confirming that

three-body dispersion dominates over three-body induction. Taking this difference as

an estimate of three-body dispersion for the closer trimers, and adding an Axilrod-

Teller-Muto estimate of 0.13 kcal mol−1 for long-range contributions yields an overall

value of 0.76 kcal mol−1 for three-body dispersion, a significantly smaller value than

in several recent studies.

3.2 Introduction

In 2008, we reported coupled-cluster computations aimed at obtaining an accurate

theoretical value for the lattice energy of crystalline benzene[125]. Because benzene

lacks any permanent charge or dipole moment that could lead to strong polarization
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effects, a simple additive scheme was used to determine the total cohesive energy of

the crystal from interaction energies of individual dimers. Based on previous work

[154] showing good agreement between second-order perturbation theory (MP2) and

coupled-cluster through triple excitations [122] [CCSD(T)] for three-body effects in a

few prototypical benzene trimer configurations, the three-body effects were examined

using MP2 and estimated to contribute only a minor amount.

Although MP2 will capture certain three-body effects, such as three-body induc-

tion, it cannot capture any three-body correlation effects, such as three-body disper-

sion, which can be significant in crystals for some trimer orientations[115]. Further,

estimates of three-body lattice energy contributions using symmetry-adapted pertur-

bation theory based on density-functional descriptions of the monomers [SAPT(DFT)]

[172, 77, 63, 101, 119, 64, 116, 120] for crystalline benzene indicated that three-body

effects contribute around 1.6 kcal mol−1 (or about 14% of the total lattice energy)[117].

More recent studies [167, 162] suggest that the majority of the three-body effects in

crystalline benzene are due to three-body dispersion interactions, estimated to con-

tribute 1.1 or 1.7 kcal mol−1 using the Axilrod-Teller-Muto expression (below).

Given increasing recent interest in high-accuracy computations of lattice energies

(see, for example, Refs. [118, 21, 102, 39]), it would be valuable to have reliable

estimates of three-body effects in systems like crystalline benzene. For this reason,

we have performed counterpoise-corrected CCSD(T) computations to obtain accurate

values for this contribution. We use the -135 oC crystal structure of Bacon, Curry,

and Wilson[11], the same as that used in previous studies[125, 117].

3.3 Theoretical Methods

Three-body, triple-dipole dispersion between atoms A, B, and C may be modeled by

the Axilrod-Teller-Muto expression [10, 103] as

VABC = D
3 cos γBAC cos γABC cos γACB + 1

R3
ABR

3
BCR

3
AC

, (38)
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where D is a positive constant proportional to the ionization energy of the atoms

and the cube of their polarizability. Assuming a qualitatively similar behavior for the

three-body dispersion between molecules, the R−9 decay behavior suggests that only

closely interacting trimers can exhibit a non-negligible three-body dispersion term.

To generate the relevant trimers in crystalline benzene, we first extracted a cube 30

Å on a side from the crystal lattice (coordinates provided in the ancillary materials).

From this cube, we then selected all monomers whose centers of mass were within 15

Å of the central benzene, and then formed trimers by adding to the central benzene

all unique pairs of selected monomers. The trimers were then sorted by increasing

values of R3
ABR

3
BCR

3
AC , where A, B, and C denote the three monomers. This first

pass yielded 7750 (non-symmetry-unique) trimers. Fortunately, as discussed below,

the difference in three-body energies computed by CCSD(T) and MP2 diminishes

rapidly with increasing distance between the monomers; this suggests that for the

more distant trimers, three-body interaction energies can be estimated using MP2

plus the Axilrod-Teller-Muto expression for the three-body dispersion terms neglected

by MP2.

To determine the counterpoise corrected three-body interaction energies a modi-

fied Boys-Bernardi counterpoise correction developed by Hankins et al. was employed[58].

The non-additive three-body interaction is given by

∆3EABC
ABC = EABC

ABC −
∑

i

EABC
i −

∑

ij

∆2EABC
ij , (39)

where the superscript ABC denotes a computation in the trimer basis (the basis of all

molecules A, B, and C). Ei denotes the energy of each monomer, where i counts over

the individual molecules in the trimer. The last term is determined by the equation

∆2EABC
ij = EABC

ij − EABC
i − EABC

j , (40)

where the energies of all dimers and monomers are determined in the trimer (ABC)

basis. The individual three-body interaction energies for individual trimers are all
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computed according to this approach. When they are summed to obtain lattice

energy contributions, the sum is divided by three to obtain a lattice energy in kcal

per mole of benzene monomers (bearing in mind that in crystalline benzene, all the

monomers are symmetry-equivalent).

To reduce computational cost, the aug-cc-pVDZ basis set [47, 84] is used. Previ-

ous results indicate that three-body effects require smaller basis sets for convergence

than two-body terms[52]. To verify that three-body interaction energies can be ac-

curately computed with this basis set, for one representative cyclic trimer we also

employed the large aug-cc-pVTZ basis. The CCSD(T) benzene trimer computations

(with no spatial symmetry) were difficult to perform, particularly for the one compu-

tation where we used an aug-cc-pVTZ basis set (1242 contracted basis functions). We

utilized the Cray XT4 “Jaguar” supercomputer at Oak Ridge National Laboratory,

running NWChem 5.1 on 6000 cores[30, 83]. While the overall trimer interaction en-

ergy cannot be accurately determined with the smaller aug-cc-pVDZ basis, excellent

basis set convergence was observed for the non-additive three-body contribution (the

focus of the present work), with a value of 0.0278 kcal mol−1 for aug-cc-pVDZ and

0.0274 for aug-cc-pVTZ, a difference of 1.5%.

Density fitting (DF)[171, 46, 48, 159, 124, 163, 143, 169] and Cholesky decom-

position (CD)[19, 128, 88, 8] were used to reduce computational costs. These ap-

proaches reduce disk and memory requirements, and CPU costs in certain terms, by

expressing the 4-index two-electron integrals as contractions of 3-index quantities.

The aug-cc-pVDZ-JKFIT[163] was used for the DF-SCF procedure, and the aug-

cc-pVDZ-MP2FIT[165] basis was used for the DF-MP2 computations. CCSD(T)

computations utilized CD[107, 112, 9, 26, 43] with a tolerance of 10−4, and they

were also accelerated with Frozen Natural Orbitals[144, 87, 152, 153, 93, 44] (FNOs),

truncating at a very conservative [44] natural orbital occupation of 10−7. With this

cutoff, the FNO approximation led to errors on the order of 10−4 kcal mol−1 for the
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trimers with the largest three-body contributions. The combined FNO CD-CCSD(T)

approach has been carefully benchmarked previously for non-covalent interactions,

including three-body interactions in selected benzene trimers[43]. The MP2 and

DF-MP2 computations were performed in Molpro 2010[3]. The FNO CD-CCSD(T)

computations were performed with a development version of the PSI4 program[158]

using a recently developed, multi-core FNO DF/CD-CCSD(T) module[43, 44]. We

also obtained SCS-CCSD[149] and SCS(MI)-CCSD[114] values [as a byproduct of the

CCSD(T) computations] to see how well these methods match CCSD(T) three-body

energies, as recent work [42] suggests that they should be rather accurate for this

purpose.

3.4 Results and Discussion

Previous work [154] has shown that cyclic trimers have significantly greater three-body

contributions than alternating T-shaped configurations or multiply-stacked sandwich

configurations. Therefore, one might expect that the cyclic, all-nearest-neighbor

Figure 9: Two configurations of the benzene trimer extracted from the crystal struc-
ture. The trimers shown above have three-body interaction energies of -0.0340 and
0.1339 kcal mol−1 for configurations (a) and (b) respectively.
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trimers in crystalline benzene would make the largest three-body contributions. Fig-

ure 9 shows two orientations of the benzene trimer from the crystal lattice. Trimer (a)

in Figure 9 is the trimer with the smallest product R3
ABR

3
BCR

3
AC in the crystal lattice

and trimer (b) has the largest magnitude for the three-body interaction (0.1339 kcal

mol−1).

Figure 10: Three-body interaction energy (left axis) of trimers in crystalline benzene
using MP2, DF-MP2 and CCSD(T) with an aug-cc-pVDZ basis set (red, blue, and
black lines). On the right axis is the error of DF-MP2 relative to CCSD(T) (green
line). Horizontal line segments denote degenerate trimers in the crystal.
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Figure 10 shows the individual trimer three-body interactions for MP2, DF-MP2,

and CCSD(T) on the left axis, and the difference between CCSD(T) and DF-MP2

on the right axis. For the 366 closest trimers (including degeneracies), there is no

difference between MP2 and DF-MP2 three-body interaction energies that is greater

than 0.0002 kcal mol−1, justifying the use of the DF approximation.

The difference between MP2 and CCSD(T) is as large as 0.1 kcal mol−1 for the

first few trimers, but it decays very quickly. For trimers 51-366, the maximum un-

signed error, mean unsigned error, and mean signed error are 0.0094, 0.0026, -0.0002

kcal mol−1, respectively. Figure 11 presents analogous results for SCS-CCSD and

SCS(MI)-CCSD. For the first 366 trimers, SCS-CCSD and SCS(MI)-CCSD perform

very well, with mean unsigned errors of 0.0008 and 0.0007 kcal mol−1 respectively.
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Neither method incurs an error of more than 0.006 kcal mol−1 error for a single

trimer interaction. Unlike MP2, the errors for SCS-CCSD and SCS(MI)-CCSD occur

in mostly the same direction, as the mean signed errors (-0.0005 and -0.0006 kcal

mol−1) are almost as large in magnitude as the mean unsigned errors.

The small maximum and mean errors of MP2 vs. CCSD(T) beyond the first 50

trimers are not necessarily indicative that three-body dispersion terms have become

negligible at the intermolecular distances seen in these trimers. Indeed, if one com-

pares CCSD(T) and MP2 three-body energies for individual trimers in this range,

they often exhibit large relative errors. The absolute errors are small primarily be-

cause the three-body interaction energies themselves are quite small in this range;

the average CCSD(T) three-body energy for trimers 51-366 is just 0.0063 kcal mol−1.

In addition, it seems fortuitous that the MP2 errors are mostly random for trimers

51-366 (as evidenced by the much smaller magnitude of the mean error compared

Figure 11: Three-body interaction energy (left axis) of benzene trimers in crystalline
benzene using SCS-CCSD, SCS(MI)-CCSD, and CCSD(T) with an aug-cc-pVDZ ba-
sis set (solid blue, green, and black lines; differences are so small that the lines are
nearly coincident). On the right axis is the error of SCS-CCSD and SCS(MI)-CCSD
relative to CCSD(T) (dashed lines). Horizontal line segments denote degenerate
trimers in the crystal.
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to the mean unsigned error). Unfortunately such good error cancellation will not

necessarily hold for further trimers.
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Figure 12: Cumulative contribution of the three-body interaction energy to the
lattice energy of crystalline benzene, summed through trimer N . Results for SCS-
CCSD, SCS(MI)-CCSD, and CCSD(T) beyond trimer 366 are approximated by DF-
MP2 values (see text).
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Figure 12 displays the cumulative three-body contribution to the lattice energy

computed using DF-MP2 for all 7750 trimers considered. The overall cumulative

DF-MP2 three-body lattice energy seems well converged at 0.13 kcal mol−1 by the

time 3,000 trimers have been included. This represents a rather small correction of

0.06 kcal mol−1 to the DF-MP2 result using the first 366 trimers. If we use the more

computationally tractable DF-MP2 results in lieu of the much more costly coupled-

cluster results for trimers beyond 366, we obtain the estimated SCS-CCSD, SCS(MI)-

CCSD, and CCSD(T) curves shown. The CCSD(T) result converges to approximately

0.76 kcal mol−1, a difference of 0.63 kcal mol−1 from the DF-MP2 result. Although

SCS-CCSD and SCS(MI)-CCSD perform very well for the three-body interaction

energy of any particular trimer, the small systematic errors (see above) eventually

add up, and the overall SCS-CCSD and SCS(MI)-CCSD three-body contributions

(again using DF-MP2 beyond the first 366 trimers) converge to approximately 0.81

and 0.83 kcal mol−1, respectively, slightly above the 0.76 kcal mol−1 CCSD(T) result.

Of course, using DF-MP2 for the more distant trimers means we will still be

missing an estimate of long-range three-body dispersion. The data above clearly
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indicate that the three-body dispersion per trimer is quite small by the time we

reach trimer 366, the last trimer for which we have explicit CCSD(T) values. On the

other hand, there are a large number of remaining trimers, so the residual three-body

dispersion could be significant. We estimate this contribution using the Axilrod-

Teller-Muto expression in Eq. (38), using aD coefficient of 82657.65 a.u. from previous

estimations using SAPT(DFT)[117]. This value converges asymptotically to 0.13

kcal mol−1 once the three-body dispersion from trimers 1-366, already accounted

for by CCSD(T), is subtracted. Although the Axilrod-Teller-Muto formula may not

be reliable for the closer trimers [where we are using CCSD(T) values instead] it

should be reliable for the purposes of this asymptotic estimate. As a check of its

suitability, we computed the Axilrod-Teller-Muto three-body dispersion for the most

distant 50 trimers for which we have CCSD(T) data. Assuming the difference between

CCSD(T) and MP2 is primarily three-body dispersion, we obtain a lattice energy

contribution of 0.0125 kcal mol−1 from the Axilrod-Teller-Muto expression and 0.0127

kcal mol−1 from [CCSD(T)-MP2], a very satisfactory agreement. We also examined

asymptotic induction estimates for trimers beyond the 7750 treated by DF-MP2, but

the magnitude of this contribution was below 0.005 kcal mol−1.

Our previous work[125] reported a two-body lattice energy of -56.4 kJ mol−1 but

contained an error in the degeneracy of dimers G and H. Both dimers G and H should

have been classified to have a degeneracy of 4. They were mistakenly labeled with a

degeneracy of 8 due to there being two dimers with matching center of mass distances

but with different orientations. Two-body interaction energies for the additional

dimers are -0.25 kJ mol−1 (G′) and -0.17 kJ mol−1 (H′). Correcting for this error

gives us a lattice energy of -55.3 kJ mol−1. If we add the present estimate of 0.89 kcal

mol−1 (3.7 kJ mol−1) for the three-body contribution, we obtain a total revised lattice

energy of -51.6 kJ mol−1. If we use our earlier estimate of 7.0 kJ mol−1 for the enthalpy

correction to go from a lattice energy to an experimentally measured sublimation
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energy[125], we obtain a sublimation energy of -44.6 kJ mol−1. This remains in the

-43 to -47 kJ mol−1 experimental range which we favored in our earlier publication

[125] due to several values being reported in this range[34, 4]. The lattice energy of

-51.6 kJ mol−1 also compares well to Beran’s analysis [21] of the experimental data,

deducing lattice energies of -52 ± 3 kJ mol−1 based on the experimental sublimation

energies. Nevertheless, we expect the magnitude of the lattice energy to be slightly

underestimated due to the neglect of two-body interactions beyond 9.4 Å in our earlier

study[125].

The present estimate of 0.89 kcal mol−1 for the three-body contribution is 7.2% of

the total revised lattice energy of -12.33 kcal mol−1. We may estimate the total three-

body dispersion contribution as 0.63 kcal mol−1 [the difference between CCSD(T)

and MP2 for the first 366 trimers] plus 0.13 kcal mol−1 for the Axilrod-Teller-Muto

estimate of the long-range contribution, yielding a total of 0.76 kcal mol−1, or 6.2%

of the total lattice energy.

Several groups have recently estimated the three-body dispersion in the benzene

crystal using various approximations. Wen and Beran estimated that three-body

dispersion contributes 0.92 kcal mol−1 using an ab initio force field (AIFF)[167]. Using

SAPT(DFT) Podeszwa et al.[117] estimated the three-body dispersion contribution

to be 1.56 kcal mol−1 (the total three-body contribution was 1.64 kcal mol−1). Von

Lilienfeld et al.[162] have also estimated the three-body dispersion in the benzene

crystal to be 1.67 kcal mol−1 using frequency-dependent polarizabilities to obtain C9

coefficients. These studies all overestimate the three-body dispersion compared to our

value of 0.76 kcal mol−1 for three-body dispersion (or 0.89 kcal mol−1 for the overall

three-body contribution). In the case of the SAPT(DFT) results, the authors were

aware their approach tended to overestimate three-body contributions[117]. However,

their estimate of the error in the three-body term (about 1 kJ mol−1 or 0.24 kcal

mol−1) is low compared to the 0.75 kcal mol−1 difference between their three-body
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value and the present one.

3.5 Conclusions

Our coupled-cluster results confirm that three-body dispersion effects cannot be ne-

glected in accurate computations of the lattice energy of benzene[115, 167, 162].

Three-body dispersion effects may also contribute substantially to the lattice en-

ergy of other aromatic hydrocarbons or π-conjugated materials. As these effects are

not commonly included in widely-used density functional theory (DFT) methods, it

seems important to further explore ways of capturing them using models that can

be added to DFT such as the many-body dispersion model of Tkatchenko et al.[155],

or atom-based triple dipole Axilrod-Teller-Muto terms using C9 coefficients obtained

by geometric means of C6 coefficients[55], or Casimir-Polder integration of frequency-

dependent polarizabilities[167, 162]. However, these contributions must be evaluated

with care, as existing results from the literature appear to overestimate three-body

dispersion in crystalline benzene by as much as a factor of 2.
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CHAPTER IV

COUNTER-ION AND SUBSTRATE EFFECTS ON

BARRIER HEIGHTS OF THE HYDROLYTIC KINETIC

RESOLUTION OF TERMINAL EPOXIDES CATALYZED

BY CO(III)-SALEN

4.1 Abstract

Density functional theory (DFT) has been applied to the proposed rate-limiting step

of the hydrolytic kinetic resolution (HKR) of terminal epoxides as catalyzed by Co-

salen-X (X = counter-ion) in order to resolve some questions surrounding the mecha-

nism. The present results indicate that the bimetallic mechanism proposed by Jacob-

sen shows non-additive, cooperative catalysis with a larger reduction in barrier height

than the sum of the barrier height reductions from the two monometallic reaction

pathways. We computed barrier heights for the reaction using several counter-ions

(chloride, acetate, tosylate, and hydroxide). For the three counter-ions that are ex-

perimentally active (chloride, acetate, and tosylate) the barrier heights are 35, 38,

and 34 kJ mol−1, respectively, while for hydroxide it is 48 kJ mol−1. The similarity

of the barrier heights for chloride, acetate and tosylate is in agreement with their

similar peak reaction rates. Based on these findings, the fact that Co-salen-X with

counter-ions leads to rather different overall reaction profiles suggests that they have

quite different rates of reaction with epoxide to form the activated Co-salen-OH re-

quired for the bimetallic mechanism. Co-salen-OH is inactive as the sole catalyst for

HKR, and this inactivity is ascribed to its larger barrier height for the ring-opening
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step, rather than to any inability to activate epoxide. Barrier heights were also com-

puted using 1-hexene oxide, propylene oxide and epichlorohydrin; propylene oxide

and 1-hexene oxide have similar barrier heights, 35.5 and 33.2 kJ mol−1 respectively,

and epichlorohydrin has a significantly lower barrier height of 18.8 kJ mol−1, which is

qualitatively consistent with experiments showing faster reactions for epichlorohydrin

than propylene oxide when catalyzed by Co-salen-OAc.

4.2 Introduction

Metal-salen catalysts are widely used in enantioselective reactions including epox-

ide ring-opening[156, 175, 161], nitroaldol reactions[92], and conjugate additions[96].

The hydrolytic kinetic resolution (HKR)[86] of terminal epoxides has garnered much

attention due to the production of useful chiral epoxide and diol building blocks for

numerous reactions[131, 91, 129]. First developed by Jacobsen, HKR of epoxides cat-

alyzed by Co-salen-X (X = nucleophilic counter-ion like Cl−, OAc−, etc.) was shown

to follow a second-order, cooperative bimetallic pathway[156, 104, 71, 37, 72] which

agrees with experiments on other metal-salen complexes utilized for ring-opening

reactions[99, 57, 59]. In the reaction mechanism proposed[104], one Co-salen initially

undergoes a counter-ion exchange, trading its X for OH−. A second Co-salen (with

the initial counter-ion, X) activates an epoxide. The two Co-salen complexes then

react (the -OH of one attacking the epoxide on the other), and the HKR of epox-

ides proceeds quickly and in great enantiomeric excess, as shown in Figure 13. Ring

opening via the bimetallic transition state is proposed to be the rate limiting step of

the HKR reaction of terminal epoxides with water/hydroxide[104]. This reaction can

proceed through an attack at either the secondary or tertiary carbon in the terminal

epoxide ring, as seen in Figure 13.

There remain numerous unanswered questions about these reactions, including

the origin of rate differences among substrates, the source of enantioselectivity, the
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Figure 13: Reaction Mechanism of HKR of terminal epoxides using Co-salen catalysts
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inactivity of Co-salen-OH without the presence of another Co-salen molecule with

a different counter-ion, and the effect of different counter-ions on reactivity. A

previous investigation[146] using Density Functional Theory (DFT) examined the

rate-determining step and showed how the reaction barrier is lowered through the

use of two catalysts, one to activate the epoxide and one to activate the nucle-

ophile. The previous study[146] used only a single density functional (B3LYP)[14],

and given prior work showing substantial sensitivity of metal salens to the choice of

functional[135, 136, 150, 151], it is not clear if the results would change dramatically

if another functional was employed. Here we perform a comparison of three density

functionals for barrier heights using 0, 1, or 2 catalysts in the transition state; com-

paring the three functionals allows us to approximately gauge the error bars for DFT

energetics of this reaction. We also include a treatment of long-range London disper-

sion forces using DFT-D; these corrections can be important in larger systems such

as those studied here[82, 6]. We then use these methods to investigate counter-ion

and substrate effects on Co-salen catalysis of HKR.
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4.3 Computational Methods

All DFT computations were performed in the Q-Chem package[137]. The B3LYP

(Ref. [14]), BP86 (Refs. [13] and [109]), and M05-2X (Ref. [176]) density functionals

were used for computations of the transition state barriers and geometries. Long-

range dispersion interactions were computed using the dftd3 program[55] of Grimme;

both the -D2 and -D3 schemes were tested, but these corrections had little effect on

computed barriers (see below). Atomic charges were derived in Jaguar[23] from a fit

of the molecular electrostatic potential (ESP)[173, 35] that has been constrained to

reproduce the total charge and quantum mechanical dipole moment.

To investigate the epoxide ring opening reaction, DFT transition state optimiza-

tions were performed to obtain the transition state geometry, followed by frequency

and intrinsic reaction coordinate (IRC)[51] computations. The frequency computa-

tion is used to verify that a transition state was found (by having only one imaginary

vibrational frequency) and also as a necessary initial step for the IRC computation.

The IRC computation uses the computed Hessian and performs a steepest descent

optimization along the imaginary mode to move the computed transition state to-

wards the reactants and products along the minimum-energy path, verifying that the

transition state connects the correct reactants (epoxide and water/hydroxide) to the

diol product. Lastly, the reactants’ end of the IRC computation is optimized to obtain

the pre-reactive complex needed to obtain the barrier height of the reaction. The Los

Alamos National Laboratory 2 double-ζ (LANL2DZ)[60] basis set and corresponding

effective core potentials (ECPs) were used in conjunction with a grid of 100 radial

shells and 302 angular points.
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4.4 Results and Discussion

4.4.1 Transition State Geometry and Barriers

Figure 14 shows reaction barriers for the rate-limiting step of epoxide HKR computed

by B3LYP, BP86, and M05-2X with the LANL2DZ basis set and corresponding ECPs.

The first row (a) shows the uncatalyzed reaction, rows (b), (c), and (e) show different

ways that the reaction can be catalyzed by a single Co-salen, and rows (d) and (f)

show the bicatalyzed reaction. The top three reactions have a non-activated epoxide,

while the bottom three show barriers for epoxides activated by a Co-salen. The left

and right sides of Figure 14 show attack at the tertiary versus the secondary carbon in

the epoxide ring. The Co-salen entity is represented in the figure as Co with an oval

around it. The representative oval always includes the counter-ion, which is chloride

for Co-salen when binding a water or epoxide molecule. Alternatively, when Co-salen

is shown bound to -OH there is an implied water molecule for the sixth coordination

spot in the Co-salen structure. Our B3LYP results for the reactions in Figure 14 are

in agreement with those reported by Sun et al.[146]

First, we examine how the choice of functional affects the barrier heights. Dif-

ferences in barrier height energies between the the functionals considered can be

substantial, with typical differences of several tens of kJ mol−1. Differences tend to

be larger when the barrier heights are larger, and reaction a(right) exhibits the max-

imum difference observed between density functionals, 64 kJ mol−1 between BP86

and M05-2X. The differences in barrier heights between functionals tend to be in the

range of 15-35%, so we expect roughly this level of accuracy in the barrier heights.

Fortunately, the three functionals studied studied show similar trends in the en-

ergetic ordering of the barrier heights for the different reactions considered. For

example, B3LYP and BP86 both show that for rows (a)-(c) the left transition state

barrier is always lower than that of the right transition state, implying that for rows

(a)-(c) attack at the tertiary carbon is favored compared to attack at the secondary
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Figure 14: Transition state barrier heights for HKR of terminal epoxides using 0,
1, or 2 Co-salen catalysts reported as B3LYP/LANL2DZ, BP86/LANL2DZ, M05-
2X/LANL2DZ under each arrow in kJ mol−1. Reactions are labeled (a)–(f) in accor-
dance with Sun et al. (Ref. [146].
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carbon. Similarly, for rows (e) and (f) we see that attack at the secondary carbon is

favored in both B3LYP and BP86. We also see that there seem to be three clusters of

barrier heights regardless of the functional chosen: rows (a) and (b) have the highest

barrier heights, and rows (c), (d), and (e) have barrier heights that are below rows (a)

and (b) but are much greater than the barrier heights in row (f). Due to substantial

computational expense we did not obtain barrier heights for all of the reactions using

M05-2X, but where available the M05-2X barrier heights follow the general trends

discussed above. All the barrier heights for M05-2X are greater than those found

with B3LYP. Similarly, all but one of the barrier heights [d(right)] for B3LYP are
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greater in magnitude than those found with BP86.

Row (a) in Figure 14 shows the uncatalyzed HKR reaction. The barriers for

attack at the secondary carbon are 177, 147, and 211 kJ mol−1 for B3LYP, BP86,

and M05-2X. The corresponding barriers for attack at the tertiary carbon are each

lower at 164, 136, and 196 kJ mol−1, respectively. BP86 gives lower barrier heights

than B3LYP, which gives lower barrier heights than M05-2X. This trend continues for

almost all barriers reported throughout the discussion, with the exception of d(right)

which has a BP86 barrier of 113 kJ mol−1 versus 97 kJ mol−1 for B3LYP.

Rows (b) and (e) depict HKR with an activated nucleophile. Row (b) shows water

coordinated by Co-salen as the activated nucleophile while row (e) has a hydroxide co-

ordinated to Co-salen as the activated nucleophile. The reaction barriers for b(right)

are 174, 148, and 194 kJ mol−1 for B3LYP, BP86, and M05-2X, which are about the

same or slightly lower than the uncatalyzed reaction a(right). Similarly, b(left) shows

barriers of 150 and 131 kJ mol−1 for B3LYP and BP86, which are 5–10 kJ mol−1

lower than the uncatalyzed reaction. Also consistent with the uncatalyzed reaction,

row (b) shows that attack at the tertiary carbon in the epoxide is favored. Row (e)

shows HKR with -OH as the nucleophile instead of water. In this case, the Co-salen

complex has a water in the sixth coordination spot which is on the opposite side of the

Co-salen complex from the -OH group. Reaction e(right) has Co-salen-OH attacking

the secondary carbon in the epoxide ring, with barriers of 96 and 95 kJ mol−1 for

B3LYP and BP86, respectively. Similarly, e(left) features transition state barriers of

116 and 94 kJ mol−1 for B3LYP and BP86, all of which are 42–81 kJ mol−1 lower

than the uncatalyzed reaction, showing that hydroxide is a much better nucleophile

for HKR of epoxides than water. Rows (a), (b), and (c), which have water as the

nucleophile, show that attack at the tertiary carbon is favored while rows (e) and (f)

with a hydroxide nucleophile show attack at the secondary carbon is favored.

Row (c) shows HKR with an activated epoxide and an unactivated nucleophile.
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Activating the epoxide by coordination to Co-salen-Cl reduces the barrier height for

both c(left) and c(right) when compared to the uncatalyzed a(left) and a(right) reac-

tions by 46–59 kJ mol−1. This is a much larger effect than just activating water as a

nucleophile (through coordination with Co-salen-Cl), which only provided reductions

of 5–10 kJ mol−1, and it is similar to the 42–81 kJ mol−1 lowering discussed above

when using Co-salen activated OH− as the nucleophile.

Rows (d) and (f) show the HKR of epoxides where both the epoxide and nucle-

ophile are each activated by a Co-salen molecule. Row (d) represents a combination

of rows (b) and (c) as it has an activated epoxide from row (c) and activated water

molecule from row (b). This combination of two catalysts brings the reaction barrier

down to 97 kJ mol−1 for d(right) from 177 kJ mol−1 for the uncatalyzed reaction

a(right). It is also lower than either rows (b) or (c) which were 174 and 127 kJ mol−1

respectively. The activation of the water nucleophile lowers the barrier by 2 kJ mol−1

and the activation of the epoxide lowers the barrier by 50 kJ mol−1 which when com-

bined is less than the 80 kJ mol−1 reduction in barrier height observed when both are

activated (d). This shows that having the two catalysts working in cooperation leads

to non-additive effects in lowering the barrier height. Unfortunately we were unable

to find the d(left) transition state despite numerous attempts.

Row (f) is a combination of rows (c) and (e) which contains activated epoxide

and an activated hydroxide ion as the nucleophile. For the bimetallic transition state

proposed by Jacobsen, we see that the reaction barriers drop to 35–43 kJ mol−1

for B3LYP, compared to 96–174 kJ mol−1 for the monometallic reactions. In the

bimetallic transition states of row (f), there are geometric changes where the breaking

C-O bond length is 0.2–0.3Å shorter than in rows (a) through (e), indicating an earlier

transition state along the reaction coordinate.

Long-range dispersion corrections (-D) were computed and for the transition state

and pre-reactive complexes. The barrier heights change by no more than 5 kJ mol−1
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in either direction. These effects are on the same order or less than the expected error

in our B3LYP/LANL2DZ computational methodology and thus for this reaction they

do not appear to be not computationally significant.

4.4.2 Counter-ion Effects

The HKR mechanism proposed by Jacobsen in Figure 13 encompasses two path-

ways: one monometallic, first-order in Co-salen, examined in Figure 14 (rows (b),

(c), and (e)) and one bimetallic, second-order in Co-salen, examined in Figure 14

(rows (d) and (f)). Experimentally, X=Cl− and AcO− are highly active (the former

only initially, due to rapid counter-ion exchange with the epoxide, later depriving

the reaction of the activated epoxide, species Co-salen-Cl-epoxide) but X=OH− is far

less active (based on experiments using X=Cl− and taking measurements after the

rapid induction period, when presumably all Co-salen-Cl species have been converted

to Co-salen-OH.)[105] Additionally, experiments with a 50:50 mixture of X=Cl− and

SbF−
6 proceed very rapidly, the former presumably converting entirely to the X=OH−

species and the latter activating epoxide[104].

Of particular interest is examining why Co-salen-OH is unable to catalyze HKR as

the sole Co-salen-X species. Based on experimental evidence as well our computations

above, Co-salen-OH seems very effective as an activated nucleophile. Hence, the

inactivity of Co-salen-OH by itself may indicate its inability to activate epoxide. One

might suppose that Co-salen-OH is less effective in binding to epoxide due to a more

covalent Co bond, making Co less effective as a Lewis acid. We investigated this

possibility by computing atomic charges on cobalt in the Co-salen-X complex but did

not find a revealing trend, as X=Cl−, OAc−, OH−, SbF−
6 or none (cation) give similar

Co charges in the range 1.04–1.22 e−. Similarly, the gas-phase binding strengths to

epoxide of the stable complexes (Cl−: −82.8; AcO−: −87.9 kJ/mol) differ negligibly

from from the in situ species (OH−: −82.0 kJ/mol). One of the clearest signs of
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epoxide activation is a shift in charge distribution among the atoms forming the

three-membered epoxide ring. Counter-ions considered (X=Cl−, OAc−, OH−, SbF−
6 )

increase the magnitude of charge: secondary epoxide carbon from −0.16 isolated to

−0.16–−0.19 in complex, and tertiary epoxide carbon from +0.14 isolated to +0.21–

+0.26 in complex. But it is interesting to note that for this property, and indeed

essentially all binding energies, charges, and structural properties considered in Table

2, the value for Co-salen-OH is approximately equal to or between its X=Cl− and

OAc− counterparts. Exceptions are in the binding of the counter-ion, where hydroxide

is bound more than 200 kJ/mol more strongly than any other, and structurally where

the epoxide in Co-salen-OH-epoxide is bound somewhat more loosely (2.09 Å) than

X=Cl− or AcO− (≈ 2.05Å). Nevertheless, our comparison of Co-salen-X and their

complexes with epoxide show no clear reason why X=OH− would be less effective

at activating epoxide, indicating that the inactivity of Co-salen-OH is due to some

other reason, perhaps due to a higher kinetic barrier for the bimetallic ring-opening

reaction. We carried out a transition state optimization for the bimetallic reaction

(Figure 14 f(right)) in which the chloride counter-ion was replaced with a hydroxide

counter-ion. The barrier height for this transition state (confirmed via IRC analysis)

is 48.5 kJ mol−1. This barrier is higher by 11 kJ mol−1 or greater when compared

to the other three counter-ions studied. HKR is normally run at room temperature

(25◦C). If we use the Arrhenius equation at this temperature, assuming that ∆G ≈

∆G and that the pre-exponential factors are approximately the same, we see that

this 11 kJ mol−1 difference would result in a reaction rate that is ≈1% as fast, which

would be considered essentially inactive compared to the other three counter-ions.

We now move from considering the particular case of Co-salen-OH to a more

general comparison of counter-ions. We examined counter-ion trends for the Co-

salen-X-epoxide complex, particularly the differences between the nucleophilic anions

X=Cl− and AcO− that vigorously catalyze the HKR reaction discussed in this work
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Table 2: Effects of counter-ion identity upon electronic characteristics, ligand binding
strength, charge distribution, and geometry of the Co(III)-salen-epoxide-counter-ion
complex as derived from the B3LYP/LANL2DZ level of theory.

Nucleophilic Non-nucleophilic
Property Cl− AcO− HO− BF−

4 SbF−
6

multiplicity1 1 1 1 3 3
Interaction Energy (kJ/mol; gas-phase)
epoxide -82.8 -87.9 -82.0 -58.6 -64.0
counter-ion -520.9 -557.7 -817.6 -359.0 -346.9
Charge (e)
epoxide ligand +0.17 +0.08 +0.08 +0.02 +0.05
Co-salen +0.22 +0.50 +0.33 +0.75 +0.73
counter-ion -0.39 -0.58 -0.41 -0.77 -0.78
O (epoxide) -0.26 -0.36 -0.33 -0.37 -0.34
Co(III) +0.52 +1.20 +0.96 +1.10 +1.07
Co(III)2 +1.04 +1.22 +1.18 +1.12 +1.12
Structure (Å)
Co· · ·O (epoxide) 2.05 2.04 2.09 2.27 2.27
Co· · · counter-ion3 2.29 1.89 1.85 2.19 2.18
1 Lowest energy species, singlet or triplet, for which all subsequent quantities tabu-

lated
2 Charge on cobalt for species without epoxide: neutral, pentavalent, triplet multi-
plicity
3 Distance between cobalt and the nearest counter-ion atom, not comparable between
counter-ions
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through the bimetallic route, and non-nucleophilic anions BF−
4 and SbF−

6 that cat-

alyze asymmetric ring opening (ARO) in alcohols but are less effective (restricted to

monometallic pathway) for HKR, presumably because they are unable to form the

activated OH species Co-salen-OH through counter-ion addition to epoxide. Con-

sidering solely the monometallic route in ARO, experimentally the non-nucleophilic

counter-ions perform well while X=Cl− shows significantly reduced activity. Com-

putationally, B3LYP/LANL2DZ finds Co-salen-X-epoxide species to have a triplet

ground state when X is a non-nucleophilic counter-ion, whereas nucleophilic counter-

ions favor a singlet state, as summarized in Table 2. Since singlet forms of a given

Co-salen-X-epoxide system consistently bind both the epoxide and counter-ion more

strongly than triplets, a comparison of ground state species unsurprisingly shows

more loosely bound ligands for non-nucleophilic species. This is manifest both in in-

teraction energies, which for non-nucleophilic are approximately 65–80% the value of

nucleophilic complexes, and in geometry, where the epoxide ligand in non-nucleophilic

species is situated ≈ 0.15Å more distant than in nucleophilic structures. Compared

to the bare gas-phase data in 2, application of a -D3 dispersion correction strength-

ened epoxide binding energies by a nearly uniform 40 kJ/mol. Similarly, including

a solvent (methanol) correction weakens binding by 20–40 kJ/mol, such that trend-

wise the reported gas-phase interaction energies are unchanged. The propensity for

non-nucleophilic systems to maintain a measure of detachment among the Co-salen,

epoxide, and counter-ion components is also reflected in the internal charge distribu-

tion. In nucleophilic complexes, the Co-salen bears a modest charge of +0.22–+0.50

magnitude, with the nominally neutral epoxide at ≈ +0.1–+0.2. In contrast, non-

nucleophilic systems are similar to the sans counter-ion species in that Co-salen bears

a substantial portion of its nominal +1 charge (≈ +0.7), being fully balanced by

the negative charge on the counter-ion, and leaving the epoxide ligand largely neu-

tral (+0.02–+0.05), though with a sizable polarization toward its reactive oxygen
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atom. Thus, nucleophilic counter-ions impart to a Co(III)-salen complex a tightly

bound, charge blended system in comparison to non-nucleophilic that support inde-

pendence among metal-salen and ligand components with regard to distance, charge,

and interaction strength. Hence, the electronic structure of Co-salen-X and their

binding energies to epoxide do show significant differences between nucleophilic and

non-nucleophilic counter-ions, consistent with the rather different reactivity of nucle-

ophilic vs. non-nucleophilic counter-ions for ARO. However, one might have supposed

that stronger binding to epoxide would lead to more effective activation of epoxide and

hence faster reactions. The binding energies of Co-salen-X show the opposite trend,

indicating that in fact Co-salen-X epoxide binding energies do not correlate well with

experimental reaction rates for ARO. This lack of correlation between epoxide bind-

ing energies of Co-salen-X and reaction rates is also consistent with our discussion

above regarding the inactivity of Co-salen-OH when it is the sole species in HKR,

even though it has very similar epoxide binding energies as X=Cl− and X=OAc−,

which are active.

Nielsen et al.[105] reported rates for the HKR of epoxyhexanes using Co-salen-

X with the counter-ions Cl−, OAc−, and OTs−. The reaction profiles for the three

counter-ions are diverse in shape. For chloride, the reaction rate peaks quickly, pre-

sumably due to very fast counter-ion exchange of Co-salen-Cl to produce Co-salen-OH

as required for the reaction to proceed through the bimetallic transition state. Both

acetate and tosylate show longer induction periods, not having peak reaction rates

until 40–50% conversion of water. While the profiles show very different induction

periods, the peak reaction rates are quite similar for all three counter-ions, as shown

in Table 3: 18×104 M s−1, 12×104 M s−1, and 21×104 M s−1 for chloride, acetate and

tosylate respectively. We obtain transition state barriers of 35, 38, and 34 kJ mol−1

for the three counter-ions using the B3LYP functional which shows good agreement

with the reported peak reaction rates being very close to each other. The similarity
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Table 3: Experimental Reaction Rates (Ref. [105]) vs. Computed Barrier Heights
(B3LYP/LANL2DZ) for different counter-ions in the HKR of terminal epoxides. The
experimental reaction rates are reported with epoxyhexane and the computational
barriers are using propylene oxide.
Counter-ion Reaction Rate (104 M s−1) Barrier Height (kJ mol−1)
Chloride 18 35
Acetate 12 38
Tosylate 21 34

of the barrier heights for these three counter-ions indicates that the counter-ion has

little effect on the electronic structure of the transition state, and it suggests that the

experimental reaction profiles differ primarily due to differences in other steps of the

reaction, such as the rate of counter-ion loss.

4.4.3 Substrate Effects

Our model system is propylene oxide reacting with water or -OH to form a diol, but

more commonly HKR is run using 1-hexene oxide. We focused primarily on propylene

oxide because it’s smaller, and thus more computationally tractable, and because the

rotationally flexible hydrocarbon tail of 1-hexene oxide introduces many degrees of

freedom that may cause technical difficulties while doing transition state optimiza-

tion. To ensure that eliminating the hydrocarbon tail does not affect the nature of

the system significantly, we have found the lowest barrier transition states (corre-

sponding to f(right) in 14) using both 1-hexene oxide and propylene oxide. 1-hexene

oxide has a barrier height of 33.2 kJ mol−1, while propylene oxide has a barrier height

of 35.5 kJ mol−1, a very minor change. We also investigated epichlorohydrin as a

substrate. Chengjun showed that the reaction rate constants for HKR of epichloro-

hydrin and propylene oxide using Co-salen-OAc were 8.9 × 103 and 3.3 × 103 mol−1

s−1, respectively[33]. Our transition state barriers for epichlorohydrin and propylene

oxide were 18.8 and 35.5 kJ mol−1, respectively. Comparing the computed barriers

to the reaction rates quantitatively is difficult given that the full reaction from which
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the effective rate constants were extracted consists of multiple fundamental steps and

that the DFT barriers surely exhibit errors of at least several kJ mol−1. However it is

gratifying that B3LYP computations for the proposed rate-determining step are able

to obtain the correct qualitative reactivity order of the different substrates.

4.5 Conclusions

We have studied the catalysis of the rate-limiting step of the HKR of terminal epox-

ides with Co-salen catalysts. The DFT functionals studied have given the same trends

as one another, even though the absolute barrier heights differ by as much as 60 kJ

mol−1. The barrier heights follow the expected trend that the uncatalyzed reaction

has a higher barrier than any of the monocatalyzed reactions, which in turn also have

higher barriers than the bicatalyzed reactions. The bicatalyzed reactions show a non-

additive cooperative catalysis effect with a greater barrier height reduction than one

would expect by summing the barrier height reductions from activation of the epoxide

and activation of the nucleophile. Semi-empirical dispersion corrections through the

DFT-D approach showed only small effects on the barrier heights. The chloride, ac-

etate and tosylate counter-ions do not show significantly different binding of epoxide

or barrier heights, which is in good agreement with their very similar experimental

peak reaction rates. Differences in overall reaction rate profiles seen experimentally

therefore appear to be due to differences in rates of other steps of the reaction, espe-

cially the rate of counter-ion loss to form Co-salen-OH. The Co-salen-OH complex,

which provides the activated nucleophile for the bimetallic pathway as proposed by

Jacobsen, is not catalytically active when used as the sole Co-salen species in experi-

ments. However, the catalytically active Co-salen-X (X = Cl−, OAc−, OTs−) do not

show significant differences when compared to Co-salen-OH when considering charge

distribution among the Co-salen backbone, charges on the carbons being attacked in

the epoxide ring, or the binding energy of the epoxide reactant. This suggests that
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Co-salen-OH is no less effect at activating epoxide as a reactant. Co-salen-OH has a

10-15 kJ mol−1 higher transition state barrier compared to these other counter-ions

when it is the only catalytic species present. We also studied three substrates in

the transition state of the HKR of terminal epoxides. By comparing propene oxide

and 1-hexene oxide, we were able to verify that studying the computationally simpler

propylene oxide doesn’t significantly effect the transition state barriers. We also ex-

amined epichlorohydrin in the HKR transition state and found that its barrier height

was approximately half as large as those of 1-hexene oxide and propylene oxide, which

is consistent with epichlorohydrin reacting faster experimentally.
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CHAPTER V

CONCLUSIONS AND OUTLOOK

This work demonstrates how one can use electronic structure theory to elucidate

information about a variety of types of chemical systems. Performing such compu-

tations allows us to gain new understanding about non-covalent interactions in an

array of chemical environments. We have shown through comparison to benchmark

quality computations that when π-π stacking occurs in systems that are curved, the

stacking interactions are enhanced if the two molecules are nested like bowls stacked

in the cupboard. Using symmetry-adapted perturbation theory (SAPT) we were able

to discover which contributions to the non-covalent interactions are enhanced or di-

minished by adding curvature to the molecules. All four components of the SAPT

computation (i.e., electrostatics, dispersion, induction, and exchange) are larger in

magnitude as one introduces more curvature into the system. Both dispersion and

exchange are affected most strongly by the simple fact that the interatomic distances

between the two monomers decrease with increasing curvature. This same geomet-

ric effect also leads to enhanced electrostatic interactions due to charge penetration

effects becoming important at shorter intermonomer distances. The curvature also

creates a permanent dipole via a rearrangement of electron density in the molecule

which otherwise does not have a dipole, and since the molecules are aligned along

the axis that the dipole is created along, one gets a favorable head-to-tail alignment

of the dipole. These principles of how π-π interactions change with curvature should

be able to guide future studies that explore chemical systems featuring curved π-π

stacking.
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Another area where non-covalent interactions are of major importance is in crys-

tal packing. We use “gold standard” level CCSD(T) computations to confirm that

three-body dispersion cannot be neglected if one wants an accurate computation of the

lattice energy of benzene. We show that three-body dispersion contributes 0.89 kcal

mol−1, which is 7.2% of our revised estimate lattice energy. We performed “gold stan-

dard” computations on trimers taken from the crystal structure of benzene. Using our

benchmark quality results we were able to assess the accuracy of other approximate

methods that have been used for estimation of the three-body dispersion in crystalline

benzene. The methods for computing three-body dispersion that have been previously

used were the many-body dispersion formula of Tkatchenko[155], geometric based C6

and C9 coefficients with the atom-based Axilrod-Teller-Muto term[55], and frequency-

dependent polarizabilities computed by way of Casimir-Polder integration[167, 162].

These procedures must be considered with caution as some of the results overesti-

mate the three-body dispersion by as much as a factor of 2. Based on these results,

it could be necessary to include accurate computation of three-body dispersion for

other aromatic hydrocarbons or π-conjugated systems.

Lastly, the hydrolytic kinetic resolution (HKR) of epoxides was studied using

DFT. We computed the barrier height for many variations of the HKR transition

state for epoxide ring openining, including different number of catalysts, different

counter-ions, and different substrates. The reaction has been proposed to be a co-

operative mechanism where one Co-salen molecule activates a nucleophile (water or

hydroxide) while another Co-salen molecule activates an epoxide. We found that the

catalysts do have a cooperative effect, meaning that having both the epoxide and nu-

cleophile being activated has a greater effect on lowering the barrier height than the

sum of the two individual catalysts. Three functionals for DFT were used to compute

barrier heights and while the barrier heights followed the same trends with all three

functionals, the absolute barrier heights were different by as much as 60 kJ mol−1.
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We also investigated including an empirical dispersion correction to the barrier height

computations and found that it has only small effects on the barrier heights. Next we

investigated the effect that different counter-ions have on the barrier height for the

reaction. Experimental reaction profiles were published[105] and showed very differ-

ent profiles, but very similar peak reaction rates for all three counter-ions (chloride,

acetate, and tosylate.) We computed the barrier height for those three counter-ions

and found barrier heights of 35, 38, and 34 kJ mol−1 respectively. This shows a good

agreement between the experimental peak reaction rates and our computed transition

state barriers. The other counter-ion studied was hydroxide, which is necessary as

one component for the proposed bimetallic, cooperative mechanism, but is inactive

if it is the only counter-ion available in the reaction vessel. We find that hydroxide

as the only counter-ion has a barrier height of 11-14 kJ mol−1 higher than the other

three counter-ions. HKR is normally run at room temperature (25◦ C) and using

the Arrhenius equation assuming ∆E ≈ ∆G and the pre-exponential factors being

approximately the same, we see that an 11 kJ mol−1 difference would result in a reac-

tion rate that is ≈1% as fast, which would be considered inactive under the reaction

conditions when compared to the other three counter-ions. We also considered the

effect of substrate on the reaction rate of HKR. We find a qualitative agreement be-

tween out computed barrier heights of epichlorohydrin and propylene oxide and the

overall experimental rate constants[33].

One of the remaining problems to be studied in the area of non-covalent inter-

actions is the effect that solvent has on the interactions. Elucidating the effects of

solvation on non-covalent interactions is a difficult problem to solve due to either

using an empirical/implicit solvent correction or the need to sample a large config-

uration space of solvent molecules around the complex. These effects could play a

major role in some of the projects studied in this thesis. For example, in HKR there

are frequently many solvent molecules around that would compete to fill the two axial
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ligand positions around the cobalt center in the salen complex and we have ignored

them due to the computational cost it would take to explore that space. The algo-

rithms and code are not developed to a point where computation of derivatives is

fast enough to run dynamics on systems of the size that are of interest to this work.

It is of note that the results presented in this thesis are purely gas-phase electronic

interaction energies or transition state barriers, but many of the results are compared

to experimental data in solution. To properly compare our results to experimental

results the thermodynamic corrections from solvent, ∆H and ∆S, would need to be

computed if we were to hope to have answers that were within “chemical accuracy”

(i.e., ±1 kcal mol−1.) Eventually the methodologies will evolve and improve to a

point where theorists will be able to estimate these important contributions even for

large systems like the HKR transition states, and be able to compare with solution-

phase experimental results on a quantitative level. While computing barrier heights

or interaction energies in a solvated environment is important for comparing to exper-

imental data, it should be noted that DFT functionals must be improved as well. The

discrepancies between functionals evaluated in this work is as large as 60 kJ mol−1

which is substantial. This is another area where advancements in methodologies is

needed to accurately describe chemical systems of interest.
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APPENDIX A

ANCILLARY MATERIAL

A.1 XYZ Coordinates for Figure 2

R = 3.54 Å

C -0.70622800 0.97212500 2.4186270

C -1.14280400 -0.37137200 2.4184910

C 0.00000000 -1.20165400 2.4182740

C 1.14280400 -0.37137200 2.4184910

C 1.45779000 2.00650700 1.8958130

C -1.45779000 2.00650700 1.8958130

C -2.35873800 -0.76639200 1.8956510

C 0.00000000 -2.48003500 1.8953480

C 2.35873800 -0.76639200 1.8956510

C 0.69261800 3.17924500 1.5484640

C -0.69261800 3.17924500 1.5484640

C -2.80958100 1.64120300 1.5487510

C -3.23765700 0.32374300 1.5486410

C -2.42918200 -2.16498400 1.5486530

C -1.30841500 -2.97916300 1.5484020

C 1.30841500 -2.97916300 1.5484020

C 2.42918200 -2.16498400 1.5486530

C 3.23765700 0.32374300 1.5486410

C 2.80958100 1.64120300 1.5487510

H 1.20851300 4.06642600 1.1874910

62



H -1.20851300 4.06642600 1.1874910

H -3.49401500 2.40602700 1.1880070

H -4.24094400 0.10730100 1.1879390

H -3.36816400 -2.57958300 1.1881730

H -1.41248600 -4.00023700 1.1876990

H 1.41248600 -4.00023700 1.1876990

H 3.36816400 -2.57958300 1.1881730

H 4.24094400 0.10730100 1.1879390

H 3.49401500 2.40602700 1.1880070

C 0.70622800 0.97212500 5.9586270

C -0.70622800 0.97212500 5.9586270

C -1.14280400 -0.37137200 5.9584910

C 0.00000000 -1.20165400 5.9582740

C 1.14280400 -0.37137200 5.9584910

C 1.45779000 2.00650700 5.4358130

C -1.45779000 2.00650700 5.4358130

C -2.35873800 -0.76639200 5.4356510

C 0.00000000 -2.48003500 5.4353480

C 2.35873800 -0.76639200 5.4356510

C 0.69261800 3.17924500 5.0884640

C -0.69261800 3.17924500 5.0884640

C -2.80958100 1.64120300 5.0887510

C -3.23765700 0.32374300 5.0886410

C -2.42918200 -2.16498400 5.0886530

C -1.30841500 -2.97916300 5.0884020

C 1.30841500 -2.97916300 5.0884020

C 2.42918200 -2.16498400 5.0886530
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C 3.23765700 0.32374300 5.0886410

C 2.80958100 1.64120300 5.0887510

H 1.20851300 4.06642600 4.7274910

H -1.20851300 4.06642600 4.7274910

H -3.49401500 2.40602700 4.7280070

H -4.24094400 0.10730100 4.7279390

H -3.36816400 -2.57958300 4.7281730

H -1.41248600 -4.00023700 4.7276990

H 1.41248600 -4.00023700 4.7276990

H 3.36816400 -2.57958300 4.7281730

H 4.24094400 0.10730100 4.7279390

H 3.49401500 2.40602700 4.7280070

R = 3.64 Å

C 0.70622800 0.97212500 2.4186270

C -0.70622800 0.97212500 2.4186270

C -1.14280400 -0.37137200 2.4184910

C 0.00000000 -1.20165400 2.4182740

C 1.14280400 -0.37137200 2.4184910

C 1.45779000 2.00650700 1.8958130

C -1.45779000 2.00650700 1.8958130

C -2.35873800 -0.76639200 1.8956510

C 0.00000000 -2.48003500 1.8953480

C 2.35873800 -0.76639200 1.8956510

C 0.69261800 3.17924500 1.5484640

C -0.69261800 3.17924500 1.5484640

C -2.80958100 1.64120300 1.5487510

64



C -3.23765700 0.32374300 1.5486410

C -2.42918200 -2.16498400 1.5486530

C -1.30841500 -2.97916300 1.5484020

C 1.30841500 -2.97916300 1.5484020

C 2.42918200 -2.16498400 1.5486530

C 3.23765700 0.32374300 1.5486410

C 2.80958100 1.64120300 1.5487510

H 1.20851300 4.06642600 1.1874910

H -1.20851300 4.06642600 1.1874910

H -3.49401500 2.40602700 1.1880070

H -4.24094400 0.10730100 1.1879390

H -3.36816400 -2.57958300 1.1881730

H -1.41248600 -4.00023700 1.1876990

H 1.41248600 -4.00023700 1.1876990

H 3.36816400 -2.57958300 1.1881730

H 4.24094400 0.10730100 1.1879390

H 3.49401500 2.40602700 1.1880070

C 0.70622800 0.97212500 6.0586270

C -0.70622800 0.97212500 6.0586270

C -1.14280400 -0.37137200 6.0584910

C 0.00000000 -1.20165400 6.0582740

C 1.14280400 -0.37137200 6.0584910

C 1.45779000 2.00650700 5.5358130

C -1.45779000 2.00650700 5.5358130

C -2.35873800 -0.76639200 5.5356510

C 0.00000000 -2.48003500 5.5353480

C 2.35873800 -0.76639200 5.5356510
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C 0.69261800 3.17924500 5.1884640

C -0.69261800 3.17924500 5.1884640

C -2.80958100 1.64120300 5.1887510

C -3.23765700 0.32374300 5.1886410

C -2.42918200 -2.16498400 5.1886530

C -1.30841500 -2.97916300 5.1884020

C 1.30841500 -2.97916300 5.1884020

C 2.42918200 -2.16498400 5.1886530

C 3.23765700 0.32374300 5.1886410

C 2.80958100 1.64120300 5.1887510

H 1.20851300 4.06642600 4.8274910

H -1.20851300 4.06642600 4.8274910

H -3.49401500 2.40602700 4.8280070

H -4.24094400 0.10730100 4.8279390

H -3.36816400 -2.57958300 4.8281730

H -1.41248600 -4.00023700 4.8276990

H 1.41248600 -4.00023700 4.8276990

H 3.36816400 -2.57958300 4.8281730

H 4.24094400 0.10730100 4.8279390

H 3.49401500 2.40602700 4.8280070

R = 3.74 Å

C 0.70622800 0.97212500 2.4186270

C -0.70622800 0.97212500 2.4186270

C -1.14280400 -0.37137200 2.4184910

C 0.00000000 -1.20165400 2.4182740

C 1.14280400 -0.37137200 2.4184910
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C 1.45779000 2.00650700 1.8958130

C -1.45779000 2.00650700 1.8958130

C -2.35873800 -0.76639200 1.8956510

C 0.00000000 -2.48003500 1.8953480

C 2.35873800 -0.76639200 1.8956510

C 0.69261800 3.17924500 1.5484640

C -0.69261800 3.17924500 1.5484640

C -2.80958100 1.64120300 1.5487510

C -3.23765700 0.32374300 1.5486410

C -2.42918200 -2.16498400 1.5486530

C -1.30841500 -2.97916300 1.5484020

C 1.30841500 -2.97916300 1.5484020

C 2.42918200 -2.16498400 1.5486530

C 3.23765700 0.32374300 1.5486410

C 2.80958100 1.64120300 1.5487510

H 1.20851300 4.06642600 1.1874910

H -1.20851300 4.06642600 1.1874910

H -3.49401500 2.40602700 1.1880070

H -4.24094400 0.10730100 1.1879390

H -3.36816400 -2.57958300 1.1881730

H -1.41248600 -4.00023700 1.1876990

H 1.41248600 -4.00023700 1.1876990

H 3.36816400 -2.57958300 1.1881730

H 4.24094400 0.10730100 1.1879390

H 3.49401500 2.40602700 1.1880070

C 0.70622800 0.97212500 6.1586270

C -0.70622800 0.97212500 6.1586270
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C -1.14280400 -0.37137200 6.1584910

C 0.00000000 -1.20165400 6.1582740

C 1.14280400 -0.37137200 6.1584910

C 1.45779000 2.00650700 5.6358130

C -1.45779000 2.00650700 5.6358130

C -2.35873800 -0.76639200 5.6356510

C 0.00000000 -2.48003500 5.6353480

C 2.35873800 -0.76639200 5.6356510

C 0.69261800 3.17924500 5.2884640

C -0.69261800 3.17924500 5.2884640

C -2.80958100 1.64120300 5.2887510

C -3.23765700 0.32374300 5.2886410

C -2.42918200 -2.16498400 5.2886530

C -1.30841500 -2.97916300 5.2884020

C 1.30841500 -2.97916300 5.2884020

C 2.42918200 -2.16498400 5.2886530

C 3.23765700 0.32374300 5.2886410

C 2.80958100 1.64120300 5.2887510

H 1.20851300 4.06642600 4.9274910

H -1.20851300 4.06642600 4.9274910

H -3.49401500 2.40602700 4.9280070

H -4.24094400 0.10730100 4.9279390

H -3.36816400 -2.57958300 4.9281730

H -1.41248600 -4.00023700 4.9276990

H 1.41248600 -4.00023700 4.9276990

H 3.36816400 -2.57958300 4.9281730

H 4.24094400 0.10730100 4.9279390
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H 3.49401500 2.40602700 4.9280070

R = 3.84 Å

C 0.70622800 0.97212500 2.4186270

C -0.70622800 0.97212500 2.4186270

C -1.14280400 -0.37137200 2.4184910

C 0.00000000 -1.20165400 2.4182740

C 1.14280400 -0.37137200 2.4184910

C 1.45779000 2.00650700 1.8958130

C -1.45779000 2.00650700 1.8958130

C -2.35873800 -0.76639200 1.8956510

C 0.00000000 -2.48003500 1.8953480

C 2.35873800 -0.76639200 1.8956510

C 0.69261800 3.17924500 1.5484640

C -0.69261800 3.17924500 1.5484640

C -2.80958100 1.64120300 1.5487510

C -3.23765700 0.32374300 1.5486410

C -2.42918200 -2.16498400 1.5486530

C -1.30841500 -2.97916300 1.5484020

C 1.30841500 -2.97916300 1.5484020

C 2.42918200 -2.16498400 1.5486530

C 3.23765700 0.32374300 1.5486410

C 2.80958100 1.64120300 1.5487510

H 1.20851300 4.06642600 1.1874910

H -1.20851300 4.06642600 1.1874910

H -3.49401500 2.40602700 1.1880070

H -4.24094400 0.10730100 1.1879390
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H -3.36816400 -2.57958300 1.1881730

H -1.41248600 -4.00023700 1.1876990

H 1.41248600 -4.00023700 1.1876990

H 3.36816400 -2.57958300 1.1881730

H 4.24094400 0.10730100 1.1879390

H 3.49401500 2.40602700 1.1880070

C 0.70622800 0.97212500 6.2586270

C -0.70622800 0.97212500 6.2586270

C -1.14280400 -0.37137200 6.2584910

C 0.00000000 -1.20165400 6.2582740

C 1.14280400 -0.37137200 6.2584910

C 1.45779000 2.00650700 5.7358130

C -1.45779000 2.00650700 5.7358130

C -2.35873800 -0.76639200 5.7356510

C 0.00000000 -2.48003500 5.7353480

C 2.35873800 -0.76639200 5.7356510

C 0.69261800 3.17924500 5.3884640

C -0.69261800 3.17924500 5.3884640

C -2.80958100 1.64120300 5.3887510

C -3.23765700 0.32374300 5.3886410

C -2.42918200 -2.16498400 5.3886530

C -1.30841500 -2.97916300 5.3884020

C 1.30841500 -2.97916300 5.3884020

C 2.42918200 -2.16498400 5.3886530

C 3.23765700 0.32374300 5.3886410

C 2.80958100 1.64120300 5.3887510

H 1.20851300 4.06642600 5.0274910
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H -1.20851300 4.06642600 5.0274910

H -3.49401500 2.40602700 5.0280070

H -4.24094400 0.10730100 5.0279390

H -3.36816400 -2.57958300 5.0281730

H -1.41248600 -4.00023700 5.0276990

H 1.41248600 -4.00023700 5.0276990

H 3.36816400 -2.57958300 5.0281730

H 4.24094400 0.10730100 5.0279390

H 3.49401500 2.40602700 5.0280070

R = 3.94 Å

C -0.70622800 0.97212500 2.4186270

C -1.14280400 -0.37137200 2.4184910

C 0.00000000 -1.20165400 2.4182740

C 1.14280400 -0.37137200 2.4184910

C 1.45779000 2.00650700 1.8958130

C -1.45779000 2.00650700 1.8958130

C -2.35873800 -0.76639200 1.8956510

C 0.00000000 -2.48003500 1.8953480

C 2.35873800 -0.76639200 1.8956510

C 0.69261800 3.17924500 1.5484640

C -0.69261800 3.17924500 1.5484640

C -2.80958100 1.64120300 1.5487510

C -3.23765700 0.32374300 1.5486410

C -2.42918200 -2.16498400 1.5486530

C -1.30841500 -2.97916300 1.5484020

C 1.30841500 -2.97916300 1.5484020
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C 2.42918200 -2.16498400 1.5486530

C 3.23765700 0.32374300 1.5486410

C 2.80958100 1.64120300 1.5487510

H 1.20851300 4.06642600 1.1874910

H -1.20851300 4.06642600 1.1874910

H -3.49401500 2.40602700 1.1880070

H -4.24094400 0.10730100 1.1879390

H -3.36816400 -2.57958300 1.1881730

H -1.41248600 -4.00023700 1.1876990

H 1.41248600 -4.00023700 1.1876990

H 3.36816400 -2.57958300 1.1881730

H 4.24094400 0.10730100 1.1879390

H 3.49401500 2.40602700 1.1880070

C 0.70622800 0.97212500 6.3586270

C -0.70622800 0.97212500 6.3586270

C -1.14280400 -0.37137200 6.3584910

C 0.00000000 -1.20165400 6.3582740

C 1.14280400 -0.37137200 6.3584910

C 1.45779000 2.00650700 5.8358130

C -1.45779000 2.00650700 5.8358130

C -2.35873800 -0.76639200 5.8356510

C 0.00000000 -2.48003500 5.8353480

C 2.35873800 -0.76639200 5.8356510

C 0.69261800 3.17924500 5.4884640

C -0.69261800 3.17924500 5.4884640

C -2.80958100 1.64120300 5.4887510

C -3.23765700 0.32374300 5.4886410
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C -2.42918200 -2.16498400 5.4886530

C -1.30841500 -2.97916300 5.4884020

C 1.30841500 -2.97916300 5.4884020

C 2.42918200 -2.16498400 5.4886530

C 3.23765700 0.32374300 5.4886410

C 2.80958100 1.64120300 5.4887510

H 1.20851300 4.06642600 5.1274910

H -1.20851300 4.06642600 5.1274910

H -3.49401500 2.40602700 5.1280070

H -4.24094400 0.10730100 5.1279390

H -3.36816400 -2.57958300 5.1281730

H -1.41248600 -4.00023700 5.1276990

H 1.41248600 -4.00023700 5.1276990

H 3.36816400 -2.57958300 5.1281730

H 4.24094400 0.10730100 5.1279390

H 3.49401500 2.40602700 5.1280070

A.2 Coronene Dimer Coordinates with R = 3.7Å and τ=0◦

C 1.00000000 0.00000000 -0.3915000

C 1.00000000 1.20507400 0.3042500

C 1.00000000 1.20507400 1.6957500

C 1.00000000 0.00000000 2.3915000

C 1.00000000 -1.20507400 1.6957500

C 1.00000000 -1.20507400 0.3042500

C 1.00000000 0.00000000 -1.7830000

C 1.00000000 2.41014900 -0.3915000
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C 1.00000000 2.41014900 2.3915000

C 1.00000000 0.00000000 3.7830000

C 1.00000000 -2.41014900 2.3915000

C 1.00000000 -2.41014900 -0.3915000

C 1.00000000 1.20507400 -2.4787500

C 1.00000000 2.41014900 -1.7830000

C 1.00000000 3.61522300 0.3042500

C 1.00000000 3.61522300 1.6957500

C 1.00000000 2.41014900 3.7830000

C 1.00000000 1.20507400 4.4787500

C 1.00000000 -1.20507400 4.4787500

C 1.00000000 -2.41014900 3.7830000

C 1.00000000 -3.61522300 1.6957500

C 1.00000000 -3.61522300 0.3042500

C 1.00000000 -2.41014900 -1.7830000

C 1.00000000 -1.20507400 -2.4787500

H 1.00000000 1.20507400 -3.5587500

H 1.00000000 3.34545600 -2.3230000

H 1.00000000 4.55053000 -0.2357500

H 1.00000000 4.55053000 2.2357500

H 1.00000000 3.34545600 4.3230000

H 1.00000000 1.20507400 5.5587500

H 1.00000000 -1.20507400 5.5587500

H 1.00000000 -3.34545600 4.3230000

H 1.00000000 -4.55053000 2.2357500

H 1.00000000 -4.55053000 -0.2357500

H 1.00000000 -3.34545600 -2.3230000
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H 1.00000000 -1.20507400 -3.5587500

C -2.70000000 0.00000000 -0.3915000

C -2.70000000 1.20507400 0.3042500

C -2.70000000 1.20507400 1.6957500

C -2.70000000 0.00000000 2.3915000

C -2.70000000 -1.20507400 1.6957500

C -2.70000000 -1.20507400 0.3042500

C -2.70000000 0.00000000 -1.7830000

C -2.70000000 2.41014900 -0.3915000

C -2.70000000 2.41014900 2.3915000

C -2.70000000 0.00000000 3.7830000

C -2.70000000 -2.41014900 2.3915000

C -2.70000000 -2.41014900 -0.3915000

C -2.70000000 1.20507400 -2.4787500

C -2.70000000 2.41014900 -1.7830000

C -2.70000000 3.61522300 0.3042500

C -2.70000000 3.61522300 1.6957500

C -2.70000000 2.41014900 3.7830000

C -2.70000000 1.20507400 4.4787500

C -2.70000000 -1.20507400 4.4787500

C -2.70000000 -2.41014900 3.7830000

C -2.70000000 -3.61522300 1.6957500

C -2.70000000 -3.61522300 0.3042500

C -2.70000000 -2.41014900 -1.7830000

C -2.70000000 -1.20507400 -2.4787500

H -2.70000000 1.20507400 -3.5587500

H -2.70000000 3.34545600 -2.3230000
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H -2.70000000 4.55053000 -0.2357500

H -2.70000000 4.55053000 2.2357500

H -2.70000000 3.34545600 4.3230000

H -2.70000000 1.20507400 5.5587500

H -2.70000000 -1.20507400 5.5587500

H -2.70000000 -3.34545600 4.3230000

H -2.70000000 -4.55053000 2.2357500

H -2.70000000 -4.55053000 -0.2357500

H -2.70000000 -3.34545600 -2.3230000

H -2.70000000 -1.20507400 -3.5587500

A.3 Corannulene Dimer Coordinates with R = 3.7Å and

τ=50◦

C 1.00000000 0.00000000 -0.2061040

C 1.00000000 1.14707300 0.6272930

C 1.00000000 0.70893000 1.9757580

C 1.00000000 0.00000000 -0.2061040

C 1.00000000 1.14707300 0.6272930

C 1.00000000 0.70893000 1.9757580

C 1.00000000 -0.70893000 1.9757580

C 1.00000000 -1.14707300 0.6272930

C 0.50884400 0.00000000 -1.5080400

C 0.50884400 2.38528800 0.2249730

C 0.50884400 1.47418900 3.0290470

C 0.50884400 -1.47418900 3.0290470

C 0.50884400 -2.38528800 0.2249730

C 0.02140000 1.24419700 -1.8961710
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C 0.02140000 2.36994400 -1.0782680

C 0.02140000 3.13890000 1.2883360

C 0.02140000 2.70890300 2.6117310

C 0.02140000 0.69575000 4.0743720

C 0.02140000 -0.69575000 4.0743720

C 0.02140000 -2.70890300 2.6117310

C 0.02140000 -3.13890000 1.2883360

C 0.02140000 -2.36994400 -1.0782680

C 0.02140000 -1.24419700 -1.8961710

H -0.38163100 1.34213400 -2.8933540

H -0.38163100 3.28805700 -1.4795580

H -0.38163100 4.11754200 1.0733330

H -0.38163100 3.37426500 3.3609020

H -0.38163100 1.20264600 4.9386760

H -0.38163100 -1.20264600 4.9386760

H -0.38163100 -3.37426500 3.3609020

H -0.38163100 -4.11754200 1.0733330

H -0.38163100 -3.28805700 -1.4795580

H -0.38163100 -1.34213400 -2.8933540

C -2.70000000 0.00000000 -0.2061040

C -2.70000000 1.14707300 0.6272930

C -2.70000000 0.70893000 1.9757580

C -2.70000000 -0.70893000 1.9757580

C -2.70000000 -1.14707300 0.6272930

C -3.19115600 0.00000000 -1.5080400

C -3.19115600 2.38528800 0.2249730

C -3.19115600 1.47418900 3.0290470
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C -3.19115600 -1.47418900 3.0290470

C -3.19115600 -2.38528800 0.2249730

C -3.67860000 1.24419700 -1.8961710

C -3.67860000 2.36994400 -1.0782680

C -3.67860000 3.13890000 1.2883360

C -3.67860000 2.70890300 2.6117310

C -3.67860000 0.69575000 4.0743720

C -3.67860000 -0.69575000 4.0743720

C -3.67860000 -2.70890300 2.6117310

C -3.67860000 -3.13890000 1.2883360

C -3.67860000 -2.36994400 -1.0782680

C -3.67860000 -1.24419700 -1.8961710

H -4.08163100 1.34213400 -2.8933540

H -4.08163100 3.28805700 -1.4795580

H -4.08163100 4.11754200 1.0733330

H -4.08163100 3.37426500 3.3609020

H -4.08163100 1.20264600 4.9386760

H -4.08163100 -1.20264600 4.9386760

H -4.08163100 -3.37426500 3.3609020

H -4.08163100 -4.11754200 1.0733330

H -4.08163100 -3.28805700 -1.4795580

H -4.08163100 -1.34213400 -2.8933540

A.4 Z-Matrix and Variables for Model Systems

Coronene

X
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X 1 XX

X 2 XX 1 A0

C 3 CX 2 A0 1 0.0

C 3 CX 2 A0 1 60.0

C 3 CX 2 A0 1 120.0

C 3 CX 2 A0 1 180.0

C 3 CX 2 A0 1 240.0

C 3 CX 2 A0 1 300.0

C 4 CC 5 A1 6 D1

C 5 CC 6 A1 7 D1

C 6 CC 7 A1 8 D1

C 7 CC 8 A1 9 D1

C 8 CC 9 A1 4 D1

C 9 CC 4 A1 5 D1

C 10 CC 11 A2 5 D2

C 11 CC 10 A2 4 D2n

C 11 CC 12 A2 6 D2

C 12 CC 11 A2 5 D2n

C 12 CC 13 A2 7 D2

C 13 CC 12 A2 6 D2n

C 13 CC 14 A2 8 D2

C 14 CC 13 A2 7 D2n

C 14 CC 15 A2 9 D2

C 15 CC 14 A2 8 D2n

C 15 CC 10 A2 4 D2

C 10 CC 15 A2 9 D2n

H 16 CH 17 A3 11 D2
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H 17 CH 16 A3 10 D2n

H 18 CH 19 A3 12 D2

H 19 CH 18 A3 11 D2n

H 20 CH 21 A3 13 D2

H 21 CH 20 A3 12 D2n

H 22 CH 23 A3 14 D2

H 23 CH 22 A3 13 D2n

H 24 CH 25 A3 15 D2

H 25 CH 24 A3 14 D2n

H 26 CH 27 A3 10 D2

H 27 CH 26 A3 15 D2n

X 1 R 2 A0 3 180.0

X 40 XX 1 A0 2 0.0

X 41 XX 40 A0 1 0.0

C 42 CX 41 A0 40 0.0

C 42 CX 41 A0 40 60.0

C 42 CX 41 A0 40 120.0

C 42 CX 41 A0 40 180.0

C 42 CX 41 A0 40 240.0

C 42 CX 41 A0 40 300.0

C 43 CC 44 A1 45 D1

C 44 CC 45 A1 46 D1

C 45 CC 46 A1 47 D1

C 46 CC 47 A1 48 D1

C 47 CC 48 A1 43 D1

C 48 CC 43 A1 44 D1

C 49 CC 50 A2 44 D2
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C 50 CC 49 A2 43 D2n

C 50 CC 51 A2 45 D2

C 51 CC 50 A2 44 D2n

C 51 CC 52 A2 46 D2

C 52 CC 51 A2 45 D2n

C 52 CC 53 A2 47 D2

C 53 CC 52 A2 46 D2n

C 53 CC 54 A2 48 D2

C 54 CC 53 A2 47 D2n

C 54 CC 49 A2 43 D2

C 49 CC 54 A2 48 D2n

H 55 CH 56 A3 50 D2

H 56 CH 55 A3 49 D2n

H 57 CH 58 A3 51 D2

H 58 CH 57 A3 50 D2n

H 59 CH 60 A3 52 D2

H 60 CH 59 A3 51 D2n

H 61 CH 62 A3 53 D2

H 62 CH 61 A3 52 D2n

H 63 CH 64 A3 54 D2

H 64 CH 63 A3 53 D2n

H 65 CH 66 A3 49 D2

H 66 CH 65 A3 54 D2n

Variables for the Z-matrix variable equations below are R (the interatomic distance),

τ (the curvature), and τ ′ (the dihedral angle) are defined in 1.
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Bond Lengths

XX = 1.0 (41)

CC = 1.3915 (42)

CX =
CC

2 ∗ cos(1
2
∗ 120◦) (43)

CH = 1.08 (44)

(45)

Dihedral Angles

D1 = τ ′ = 180.0◦ − 0.5 ∗ τ (46)

D2 = 180.0◦ (47)

D2n = −1 ∗D2 (48)

Bond Angles

A0 = 90.0◦(49)

A1 = 180.0◦ − cos−1(cos(60◦) ∗
√

1 + (sin(60◦) tan(D1))2)(50)

A2 = 180.0◦ − A1(51)

A3 = 180.0◦ − cos−1(cos(
1

2
(180◦ − A2)) ∗ (1 + (sin(

1

2
(180◦ − A2)) tan(D2))2)−

1

2 )(52)

Corannulene

X

X 1 XX

X 2 XX 1 A0

C 3 CX 2 A0 1 0.0

C 3 CX 2 A0 1 72.0

C 3 CX 2 A0 1 144.0

C 3 CX 2 A0 1 216.0

C 3 CX 2 A0 1 288.0
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C 4 CC 5 A1 6 D1

C 5 CC 6 A1 7 D1

C 6 CC 7 A1 8 D1

C 7 CC 8 A1 4 D1

C 8 CC 4 A1 5 D1

C 9 CC 10 A2 5 D2

C 10 CC 9 A2 4 D2n

C 10 CC 11 A2 6 D2

C 11 CC 10 A2 5 D2n

C 11 CC 12 A2 7 D2

C 12 CC 11 A2 6 D2n

C 12 CC 13 A2 8 D2

C 13 CC 12 A2 7 D2n

C 13 CC 9 A2 4 D2

C 9 CC 13 A2 8 D2n

H 14 CH 15 A3 10 D2

H 15 CH 14 A3 9 D2n

H 16 CH 17 A3 11 D2

H 17 CH 16 A3 10 D2n

H 18 CH 19 A3 12 D2

H 19 CH 18 A3 11 D2n

H 20 CH 21 A3 13 D2

H 21 CH 20 A3 12 D2n

H 22 CH 23 A3 9 D2

H 23 CH 22 A3 13 D2n

X 1 R 2 A0 3 180.0

X 34 XX 1 A0 2 0.0
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X 35 XX 34 A0 1 0.0

C 36 CX 35 A0 34 0.0

C 36 CX 35 A0 34 72.0

C 36 CX 35 A0 34 144.0

C 36 CX 35 A0 34 216.0

C 36 CX 35 A0 34 288.0

C 37 CC 38 A1 39 D1

C 38 CC 39 A1 40 D1

C 39 CC 40 A1 41 D1

C 40 CC 41 A1 37 D1

C 41 CC 37 A1 38 D1

C 42 CC 43 A2 38 D2

C 43 CC 42 A2 37 D2n

C 43 CC 44 A2 39 D2

C 44 CC 43 A2 38 D2n

C 44 CC 45 A2 40 D2

C 45 CC 44 A2 39 D2n

C 45 CC 46 A2 41 D2

C 46 CC 45 A2 40 D2n

C 46 CC 42 A2 37 D2

C 42 CC 46 A2 41 D2n

H 47 CH 48 A3 43 D2

H 48 CH 47 A3 42 D2n

H 49 CH 50 A3 44 D2

H 50 CH 49 A3 43 D2n

H 51 CH 52 A3 45 D2

H 52 CH 51 A3 44 D2n
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H 53 CH 54 A3 46 D2

H 54 CH 53 A3 45 D2n

H 55 CH 56 A3 42 D2

H 56 CH 55 A3 46 D2n

Bond Lengths

XX = 1.0 (53)

CC = 1.3915 (54)

CX =
CC

2 ∗ cos(1
2
∗ 108◦) (55)

CH = 1.08 (56)

(57)

Dihedral Angles

D1 = τ ′ = 180.0◦ − 0.5 ∗ τ (58)

D2 = 180.0◦ (59)

D2n = −1 ∗D2 (60)

Bond Angles

A0 = 90.0◦(61)

A1 = 180.0◦ − cos−1(cos(54◦) ∗
√

1 + (sin(54◦) tan(D1))2)(62)

A2 = 180.0◦ − cos−1(
1

2
∗ (1− 108◦

120◦
) + cos(A1))(63)

A3 = 180.0◦ − cos−1(cos(
1

2
(180◦ − A2)) ∗ (1 + (sin(

1

2
(180◦ − A2)) tan(D2))2)−

1

2 )(64)

A.5 Basis Set Convergence of Three-Body Interaction

Geometry from the -55 degree used to compute the three-body interaction with both

the aug-cc-pVDZ and aug-cc-pVTZ basis sets.
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C -0.4486 10.7322 -0.0470

C -1.0176 9.8411 0.8581

C 0.5690 10.3224 -0.9023

H -0.7730 11.7769 -0.0838

H -1.8165 10.1557 1.5261

H 1.0132 11.0035 -1.6072

C -0.5690 8.5176 0.9023

C 1.0176 8.9989 -0.8581

C 0.4486 8.1078 0.0470

H -1.0132 7.8365 1.6072

H 1.8165 8.6843 -1.5261

H 0.7730 7.0631 0.0838

C -0.4486 10.7322 6.7630

C -1.0176 9.8411 7.6681

C 0.5690 10.3224 5.9077

H -0.7730 11.7769 6.7262

H -1.8165 10.1557 8.3361

H 1.0132 11.0035 5.2028

C -0.5690 8.5176 7.7123

C 1.0176 8.9989 5.9519

C 0.4486 8.1078 6.8570

H -1.0132 7.8365 8.4172

H 1.8165 8.6843 5.2839

H 0.7730 7.0631 6.8938

C -0.4486 3.3978 3.3580

C -1.0176 4.2889 4.2631

C 0.5690 3.8076 2.5027
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H -0.7730 2.3531 3.3212

H -1.8165 3.9743 4.9311

H 1.0132 3.1265 1.7978

C -0.5690 5.6124 4.3073

C 1.0176 5.1311 2.5469

C 0.4486 6.0222 3.4520

H -1.0132 6.2935 5.0122

H 1.8165 5.4457 1.8789

H 0.7730 7.0669 3.4888

Three-body interaction is 0.027353166 kcal mol−1 for the aug-cc-pVTZ basis set

and 0.027768656−1 for the aug-cc-pVDZ basis set.

87



Table 4: Interaction Energies for Figure 2 reported in kcal mol−1

3.54Å 3.64Å 3.74Å 3.84Å 3.94Å

B3LYP-D2 -14.70 -14.65 -14.11 -13.31 -12.37
B3LYP-D3 -11.61 -12.76 -13.10 -12.93 -12.45
B3LYP-D3(BJ) -15.47 -16.05 -15.90 -15.30 -14.42
B3LYP-XDM -12.31 -13.11 -13.20 -12.86 -12.19
B97-D2 -16.09 -16.18 -15.77 -15.12 -14.32
B97-D3 -12.23 -12.88 -12.85 -12.45 -11.84
B97-D3(BJ) -17.18 -17.54 -17.25 -16.59 -15.70
M05-2X -6.96 -7.74 -8.27 -8.15 -7.74
M06-2X -13.79 -14.22 -13.80 -12.87 -11.62

Figure 15: Investigation of parallel displaced corannulene dimer at three different
slipped distances compared with the nested configuration. The parallel displaced
configuration has a weaker interaction than the nested configuration, so the nested
configuration was used for this study
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[114] Pitoňák, M., Řezác, J., and Hobza, P., “Spin-component scaled coupled-
clusters singles and doubles optimized towards calculation of noncovalent inter-
actions,” Phys. Chem. Chem. Phys., vol. 12, pp. 9611–9614, 2010.

[115] Podeszwa, R., “Comment on “Beyond the Benzene Dimer: An Investigation
of the Additivity of π-π Interactions”,” J. Phys. Chem. A, vol. 112, pp. 8884–
8885, 2008.

[116] Podeszwa, R., Bukowski, R., and Szalewicz, K., “Density-fitting method
in symmetry-adapted perturbation theory based on Kohn-Sham description of
monomers,” J. Chem. Theory Comput., vol. 2, pp. 400–412, 2006.

98



[117] Podeszwa, R., Rice, B. M., and Szalewicz, K., “Predicting structure of
molecular crystals from first principles,” Phys. Rev. Lett., vol. 101, p. 115503,
2008.

[118] Podeszwa, R., Rice, B. M., and Szalewicz, K., “Crystal structure pre-
diction for cyclotrimethylene trinitramine (rdx) from first principles.,” Phys.

Chem. Chem. Phys., vol. 11, pp. 5512–5518, 2009.

[119] Podeszwa, R. and Szalewicz, K., “Accurate interaction energies for argon,
krypton, and benzene dimers from perturbation theory based on the kohn-sham
model,” Chem. Phys. Lett., vol. 412, pp. 488–493, 2005.

[120] Podeszwa, R. and Szalewicz, K., “Three-body symmetry-adapted pertur-
bation theory based on kohn-sham description of the monomers,” J. Chem.

Phys., vol. 126, p. 194101, 2007.

[121] Purvis, G. D. and Bartlett, R. J., “A full coupled-cluster singles and
doubles model: The inclusion of disconnected triples,” J. Chem. Phys., vol. 76,
pp. 1910–1918, 1982.

[122] Raghavachari, K., Trucks, G. W., Pople, J. A., and Head-Gordon,

M., “A 5th-order perturbation comparison of electron correlation theories,”
Chem. Phys. Lett., vol. 157, pp. 479–483, 1989.

[123] Raju, R. K., Bloom, J. W. G., An, Y., and Wheeler, S. E., “Sub-
stituent effects on non-covalent interactions with aromatic rings: Insights from
computational chemistry,” ChemPhysChem, vol. 12, pp. 3116–3130, 2011.

[124] Rendell, A. P. and Lee, T. J., “Coupled-cluster theory employing approx-
imate integrals: An approach to avoid the input/output and storage bottle-
necks,” J. Chem. Phys., vol. 101, pp. 400–408, 1994.

[125] Ringer, A. L. and Sherrill, C. D., “First principles computation of lat-
tice energies of organic solids: The benzene crystal,” Chem. Eur. J., vol. 14,
pp. 2542–2547, 2008.

[126] Ringer, A. L., Sinnokrot, M. O., Lively, R. P., and Sherrill, C. D.,
“The effect of multiple substituents on sandwich and t-shaped π-π interactions,”
Chem. Eur. J., vol. 12, pp. 3821–3828, 2006.

[127] Rittby, M. and Bartlett, R. J., “An open-shell spin-restricted coupled
cluster method: Application to ionization potentials in N2,” J. Phys. Chem.,
vol. 92, p. 3033, 1988.

[128] Roeggen, I. and Wisloff-Nilssen, E., “On the beebe-linderberg 2-electron
integral approximation,” Chem. Phys. Lett., vol. 132, pp. 154–160, 1986.

99



[129] Sadhukhan, A., Khan, N. H., Roy, T., Kureshy, R. I., Abdi, S. H. R.,
and Bajaj, H. C., “Asymmetric hydrolytic kinetic resolution with recyclable
macrocyclic coiii-salen complexes: A practical strategy in the preparation of (r)-
mexiletine and (s)-propranolol,” Chem. Eur. J., vol. 18, pp. 5256–5260, 2012.

[130] Salonen, L. M., Ellermann, M., and Diederich, F., “Aromatic rings in
chemical and biological recognition: Energetics and structures,” Angew. Chem.,

Int. Ed. Engl., vol. 50, pp. 4808–4842, 2011.

[131] Schaus, S. E., Brandes, B. D., Larrow, J. F., Tokunaga, M., Hansen,

K. B., Gould, A. E., Furrow, M. E., and Jacobsen, E. N., “Highly
selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral
(salen)co-iii complexes. practical synthesis of enantioenriched terminal epoxides
and 1,2-diols,” J. Am. Chem. Soc., vol. 124, pp. 1307–1315, 2002.

[132] Scuseria, G. E., Janssen, C. L., and Schaefer, H. F., “An efficient
reformulation of the closed-shell coupled cluster single and double excitation
(CCSD) equations,” J. Chem. Phys., vol. 89, p. 7382, 1988.

[133] Scuseria, G. E. and Lee, T. J., “Comparison of coupled-cluster meth-
ods which include the effects of connected triple excitations,” J. Chem. Phys.,
vol. 93, p. 5851, 1990.

[134] Scuseria, G. E., Scheiner, A. C., Lee, T. J., Rice, J. E., and Schaefer,

H. F., “The closed-shell coupled sluster single and double excitation (CCSD)
model for the description of electron correlation. a comparison with configura-
tion interaction (CISD) results,” J. Chem. Phys., vol. 86, pp. 2881–2890, 1987.

[135] Sears, J. S. and Sherrill, C. D., “Assessing the performance of density
functional theory for the electronic structure of metal-salens: The 3d0-metals,”
J. Phys. Chem. A, vol. 112, no. 15, pp. 3466–3477, 2008.

[136] Sears, J. S. and Sherrill, C. D., “Assessing the performance of density
functional theory for the electronic structure of metal-salens: The d2-metals,”
J. Phys. Chem. A, vol. 112, pp. 6741–6752, 2008.

[137] Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C.,
Brown, S. T.,Gilbert, A. T. B., Slipchenko, L. V., Levchenko, S. V.,
O’Neill, D. P., Jr., R. A. D., Lochan, R. C., Wang, T., Beran, G.

J. O., Besley, N. A., Herbert, J. M., Lin, C. Y., Voorhis, T. V.,
Chien, S. H., Sodt, A., Steele, R. P., Rassolov, V. A., Maslen,

P. E., Korambath, P. P., Adamson, R. D., Austin, B., Baker, J.,
Byrd, E. F. C., Dachsel, H., Doerksen, R. J., Dreuw, A., Dunietz,

B. D., Dutoi, A. D., Furlani, T. R., Gwaltney, S. R., Heyden, A.,
Hirata, S., Hsu, C.-P., Kedziora, G., Khalliulin, R. Z., Klunzinger,

P., Lee, A. M., Lee, M. S., Liang, W., Lotan, I., Nair, N., Peters,
B., Proynov, E. I., Pieniazek, P. A., Rhee, Y. M., Ritchie, J., Rosta,

100



E., Sherrill, C. D., Simmonett, A. C., Subotnik, J. E., Woodcock,

H. L., Zhang, W., Bell, A. T., Chakraborty, A. K., Chipman, D. M.,
Keil, F. J., Warshel, A., Hehre, W. J., Schaefer, H. F., Kong, J.,
Krylov, A. I., Gill, P. M. W., and Head-Gordon, M., “Advances in
methods and algorithms in a modern quantum chemistry program package,”
Phys. Chem. Chem. Phys., vol. 8, pp. 3172–3191, 2006.

[138] Sharada, S. M., Zimmerman, P. M., Bell, A. T., and Head-Gordon,

M., “Automated transition state searches without evaluating the hessian,” J.

Chem. Theory Comput., vol. 8, pp. 5166–5174, 2012.

[139] Sherrill, C. D., Takatani, T., and Hohenstein, E. G., “An assessment
of theoretical methods for nonbonded interactions: Comparison to complete
basis set limit coupled-cluster potential energy curves for the benzene dimer,
the methane dimer, benzene-methane, and benzene-H2S,” J. Phys. Chem. A,
vol. 113, pp. 10146–10159, 2009.

[140] Shibasaki, K., Fujii, A., Mikami, N., and Tsuzuki, S., “Magnitude of the
ch/pi interaction in the gas phase: Experimental and theoretical determination
of the accurate interaction energy in benzene-methane,” J. Phys. Chem. A,
vol. 110, pp. 4397–4404, 2006.

[141] Sinnokrot, M. O. and Sherrill, C. D., “High-accuracy quantum mechan-
ical studies of π-π interactions in benzene dimers,” J. Phys. Chem. A, vol. 110,
pp. 10656–10668, 2006.

[142] Sinnokrot, M. O., Valeev, E. F., and Sherrill, C. D., “Estimates of the
ab initio limit for π-π interactions: The benzene dimer,” J. Am. Chem. Soc.,
vol. 124, pp. 10887–10893, 2002.

[143] Sodt, A., Subotnik, J. E., and Head-Gordon, M., “Linear scaling density
fitting,” J. Chem. Phys., vol. 125, p. 194109, 2006.

[144] Sosa, C., Geersten, J., Trucks, G. W., Barlett, R. J., and Franz,

J. A., “Selection of the reduced virtual space for correlated calculations - an ap-
plication to the energy and dipole-moment of H2O,” Chem. Phys. Lett., vol. 159,
pp. 148–154, 1989.

[145] Stone, A. J., “Distributed multipole analysis, or how to describe a molecular
charge-distribution,” Chem. Phys. Lett., vol. 83, pp. 233–239, 1981.

[146] Sun, K., Li, W., Feng, Z., and Li, C., “Cooperative activation in ring-
opening hydrolysis of epoxides by co-salen complexes: A first principle study,”
Chem. Phys. Lett., vol. 470, pp. 259–263, 2009.

[147] Szabo, A. and Ostlund, N. S., Modern Quantum Chemistry: Introduction

to Advanced Electronic Structure Theory. New York: McGraw-Hill, 1989.

101



[148] Szalewicz, K., “Symmetry-adapted perturbation theory of intermolecular
forces,” WIREs Comput. Mol. Sci., vol. 2, pp. 254–272, 2012.

[149] Takatani, T., Hohenstein, E. G., and Sherrill, C. D., “Improvement of
the coupled-cluster singles and doubles method via scaling same- and opposite-
spin components of the double excitation correlation energy,” J. Chem. Phys.,
vol. 128, p. 124111, 2008.

[150] Takatani, T., Sears, J. S., and Sherrill, C. D., “Assessing the perfor-
mance of density functional theory for the electronic structure of metal-salens:
The d6-metals,” J. Phys. Chem. A, vol. 113, pp. 9231–9236, 2009.

[151] Takatani, T., Sears, J. S., and Sherrill, C. D., “Assessing the perfor-
mance of density functional theory for the electronic structure of metal-salens:
The m06 suite of functionals and the d4-metals,” J. Phys. Chem. A, vol. 114,
pp. 11714–11718, 2010.

[152] Taube, A. G. and Bartlett, R. J., “Frozen natural orbitals: Systematic ba-
sis set truncation for coupled-cluster theory,” Collect. Czech. Chem. Commun.,
vol. 70, pp. 837–850, 2005.

[153] Taube, A. G. and Bartlett, R. J., “Frozen natural orbital coupled-cluster
theory: Forces and application to decomposition of nitroethane,” J. Chem.

Phys., vol. 128, p. 164101, 2008.

[154] Tauer, T. P. and Sherrill, C. D., “Beyond the benzene dimer: An in-
vestigation of the additivity of π-π interactions,” J. Phys. Chem. A, vol. 109,
pp. 10475–10478, 2005.

[155] Tkatchenko, A., DiStasio, J. R. A., Car, R., and Scheffler, M.,
“Accurate and efficient method for many-body van der waals interactions,”
Phys. Rev. Lett., vol. 108, p. 236402, 2012.

[156] Tokunaga, M., Larrow, J. F., Kakiuchi, F., and Jacobsen, E. N.,
“Asymmetric catalysis with water: Efficient kinetic resolution of terminal epox-
ides by means of catalytic hydrolysis,” Science, vol. 277, pp. 936–938, 1997.

[157] Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., and Tanabe, K.,
“Origin of attraction and directionality of the π-π interaction: Model chemistry
calculations of benzene dimer interaction,” J. Am. Chem. Soc., vol. 124, no. 1,
pp. 104–112, 2002.

[158] Turney, J. M., Simmonett, A. C., Parrish, R. M., Hohenstein, E. G.,
Evangelista, F. A., Fermann, J. T., Mintz, B. J., Burns, L. A.,
Wilke, J. J., Abrams, M. L., Russ, N. J., Leininger, M. L., Janssen,
C. L., Seidl, E. T., Allen, W. D., Schaefer, H. F., King, R. A.,
Valeev, E. F., Sherrill, C. D., and Crawford, T. D., “Psi4: An open-
source ab initio electronic structure program,”WIREs Comput. Mol. Sci., vol. 2,
pp. 556–565, 2012.

102
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[165] Weigend, F., Köhn, A., and Hättig, C., “Efficient use of the correlation
consistent basis sets in resolution of the identity mp2 calculations,” J. Chem.

Phys., vol. 116, pp. 3175–3183, 2002.

[166] Weinan, E., Ren, W. Q., and Vanden-Eijnden, E., “String method for
the study of rare events,” Phys. Rev. B, vol. 66, p. 052301, 2002.

[167] Wen, S. and Beran, G. J. O., “Accurate molecular crystal lattice ener-
gies from a fragment qm/mm approach with on-the-fly ab initio force field
parametrization,” J. Chem. Theory Comput., vol. 7, pp. 3733–3742, 2011.

[168] Werner, H.-J. and Manby, F. J. Chem. Phys., vol. 124, p. 054114, 2006.

[169] Werner, H.-J., Manby, F. R., and Knowles, P. J., “Fast linear scaling
second-order Møller-Plesset perturbation theory (MP2) using local and density
fitting approximations,” J. Chem. Phys., vol. 118, no. 18, pp. 8149–8160, 2003.

[170] Wheeler, S. E. and Houk, K. N., “Substituent effects in cation/π interac-
tions and electrostatic potentials above the centers of substituted benzenes are
due primarily to through-space effects of the substituents,” J. Am. Chem. Soc.,
vol. 131, p. 3126, 2009.

103



[171] Whitten, J. L., “Coulombic potential-energy integrals and approximations,”
J. Chem. Phys., vol. 58, pp. 4496–4501, 1973.

[172] Williams, H. L. and Chabalowski, C. F., “Using kohn-sham orbitals in
symmetry-adapted perturbation theory to investigate intermolecular interac-
tions,” J. Phys. Chem. A, vol. 105, pp. 646–659, 2001.

[173] Woods, R. J., Khalil, M., Pell, W., Moffat, S. H., and Smith, V. H.,
“Derivation of net atomic charges from molecular electrostatic potentials,” J.

Comput. Chem., vol. 11, pp. 297–310, 1990.

[174] Wu, Q. and Yang, W., “Empirical correction to density functional theory for
van der waals interactions,” J. Chem. Phys., vol. 116, pp. 515–524, 2002.

[175] Zhang, X., Jia, Y., Lu, X., Li, B., Wang, H., and Sun, L., “Intramolec-
ularly two-centered cooperation catalysis for the synthesis of cyclic carbonates
from co2 and epoxides,” Tetrahedron Lett., vol. 49, pp. 6589–6592, 2008.

[176] Zhao, Y., Schultz, N. E., and Truhlar, D. G., “Design of density func-
tionals by combining the method of constraint satisfaction with parametrization
for thermochemistry, thermochemical kinetics, and noncovalent interactions,”
J. Chem. Theory Comput., vol. 2, pp. 364–382, 2006.

[177] Zhao, Y. andTruhlar, D. G., “The m06 suite of density functionals for main
group thermochemistry, thermochemical kinetics, noncovalent interactions, ex-
cited states, and transition elements: Two new functionals and systematic test-
ing of four m06-class functionals and 12 other functionals,” Theor. Chem. Acc.,
vol. 120, pp. 215–241, 2008.

[178] Zienau, J., Clin, L., Doser, B., and Ochsenfeld, C., “Cholesky-
decomposed densities in Laplace-based second-order Møller-Plesset perturba-
tion theory,” J. Chem. Phys., vol. 130, p. 204112, 2009.

104



VITA

Matthew R. Kennedy was born in 1986 in Alexandria, Virginia to William B. Kennedy

and Lynn G. Kennedy. He graduated high-school in 2004 from Hayfield Secondary

School in Alexandria, Virginia. He then attended the University of Tennessee at

Knoxville, where he worked with Dr. Robert Hinde and Dr. Robert Harrison, gradu-

ating cum laude with degrees in Chemistry and Computer Science. He then spent five

years studying computational chemistry under the guidance of Dr. C. David Sherrill.

105


