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SUMMARY

To abstract physical into virtual computing infrastructures is a longstanding goal.

Efforts in the computing industry started with early work on virtual machines in IBM’s

VM370 operating system and architecture, continued with extensive developments in dis-

tributed systems in the context of grid computing, and now involve investments by key

hardware and software vendors to efficiently virtualize common hardware platforms. Re-

cent efforts in virtualization technology are driven by two facts: (i) technology push – new

hardware support for virtualization in multi- and many-core hardware platforms and in the

interconnects and networks used to connect them, and (ii) technology pull – the need to

efficiently manage large-scale data-centers used for utility computing and extending from

there, to also manage more loosely coupled virtual execution environments like those used

in cloud computing. Concerning (i), platform virtualization is proving to be an effective way

to partition and then efficiently use the ever-increasing number of cores in many-core chips.

Further, I/O Virtualization enables I/O device sharing with increased device throughput,

providing required I/O functionality to the many virtual machines (VMs) sharing a single

platform. Concerning (ii), through server consolidation and VM migration, for instance,

virtualization increases the flexibility of modern enterprise systems and creates opportuni-

ties for improvements in operational efficiency, power consumption, and the ability to meet

time-varying application needs.

This thesis contributes (i) new technologies that further increase system flexibility, by

addressing some key problems of existing virtualization infrastructures, and (ii) it then

directly addresses the issue of how to exploit the resulting increased levels of flexibility

to improve data-center operations, e.g., power management, by providing lightweight, effi-

cient management technologies and techniques that operate across the range of individual

many-core platforms to data-center systems. Concerning (i), the thesis contributes, for

large many-core systems, insights into how to better structure virtual machine monitors

xi



(VMMs) to provide more efficient utilization of cores, by implementing and evaluating the

novel Sidecore approach that permits VMMs to exploit the computational power of paral-

lel cores to improve overall VMM and I/O performance. Further, I/O virtualization still

lacks the ability to provide complete transparency between virtual and physical devices,

thereby limiting VM mobility and flexibility in accessing devices. In response, this thesis

defines and implements the novel Netchannel abstraction that provides complete location

transparency between virtual and physical I/O devices, thereby decoupling device access

from device location and enabling live VM migration and device hot-swapping. Concerning

(ii), the vManage set of abstractions, mechanisms, and methods developed in this work are

shown to substantially improve system manageability, by providing a lightweight, system-

level architecture for implementing and running the management applications required in

data-center and cloud computing environments. vManage simplifies management by making

it possible and easier to coordinate the management actions taken by the many manage-

ment applications and subsystems present in data-center and cloud computing systems.

Experimental evaluations of the Sidecore approach to VMM structure, Netchannel, and of

vManage are conducted on representative platforms and server systems, with consequent

improvements in flexibility, in I/O performance, and in management efficiency, including

power management.

xii



CHAPTER I

INTRODUCTION

1.1 Background

The computing industry is currently undertaking a major push towards virtualized in-

frastructures, to realize their proven advantages in manageability, security and isolation.

Virtualization is a key enabler of server consolidation and for sharing available platform

resources among different applications. By running such applications in different, isolated

Virtual Machines (VMs) or domains, isolation guarantees are provided by underlying vir-

tual machine monitors (VMMs) or hypervisors (HVs). VMMs provide such guarantees by

exporting virtual rather than physical resources and then controlling all virtual to physical

resource mappings. VMMs can also help with the management of larger platforms like

massively parallel processor (MPP) systems [102], by dividing them into multiple, smaller

virtual platforms, thereby avoiding certain scalability issues experienced by the guest oper-

ating systems running on these platforms.

While system virtualization has traditionally been used in high end mainframes [102, 63],

it is now becoming common in server class computing, personal computing, and to some

extent, in the high performance domain (HPC) [25]. In part, this is because of the oppor-

tunities provided by virtualization technologies to better utilize and manage the increased

processing power and other resources offered by these systems. The recent technology ‘push’

towards new hardware support for virtualization in multi- and many-core hardware plat-

forms and in their interconnects is evidenced by Intel’s VT and AMD’s Pacifica extensions

to their processor architectures, by Infiniband’s hardware support for virtual lanes offering

different levels of quality of service (QoS) and similar ongoing efforts for Ethernet-based

technologies [54].

Concurrent with the ongoing technology ‘push’, a technology ‘pull’ for virtualization

technologies is created by the need to efficiently manage the large-scale data-centers used
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for utility computing and more loosely coupled virtual execution environments like those

used in cloud computing [3]. Here, companies like HP, IBM, and VMWare are developing

a rich set of virtualization technologies, to attain goals like blade server disaggregation,

efficient system deployment and provisioning, ease of update and patching, and emergency

response [83, 34]. At the platform level, for instance, platform virtualization provides an

effective way to partition and use the ever-increasing number of cores in many-core chips.

Similarly, I/O virtualization enables decoupling between I/O device access and its location,

and the sharing of I/O devices across many VMs, which increases device throughput. With

respect to management, virtualization enables, for instance, server consolidation and VM

migration, which improve management of large data-centers, including improvements in

operational efficiency, power consumption, and the ability to provision VMs to meet various

requirements of the applications and the underlying platform [83, 86].

Ongoing development efforts face a number of challenges that can seriously affect the

performance and functionality of virtual machines. For instance, (i) current VMM imple-

mentations face scalability issues on large scale many-core systems, thereby creating a need

to redesign VMMs [71] concerning the ways in which their services are provided to guest

VMs; (ii) VMMs lack proper support for location transparency of I/O devices, which re-

sults in inefficiencies concerning device handling during live VM migration and in dynamic

changes to virtual to physical device mappings; and (iii) management methods targeting

individual platforms to large scale virtualized data-centers remain lacking in terms of their

scalability, efficiency, and effectiveness, because of inefficient underlying low-level mecha-

nisms and lack of coordination between different management subsystems and applications.

The following section describes these problems in more detail.

1.2 Key Research Problems

This dissertation addresses some of the issues and opportunities arising from the conflu-

ence of virtualization technology, many-core architectures and the management challenges

presented by these systems, the latter including the lack of a coordination architecture to

2



facilitate coordination between VMs, VMMs, host hardware, and data-center level manage-

ment applications. The following specific issues are addressed:

• VMM efficiency: Large scale many-core systems have fundamental differences both

from SMP machines and from small scale multicore systems. For example, the

compute-to-cache ratio for a large scale many-core platform is orders of magnitude

larger than for traditional SMPs or for small scale multicore systems. The latency to

access data from a different H/W thread is an order of magnitude lower than for a

traditional SMP. Further, the specialized cores in heterogeneous many-core systems

(accelerators), optimized for certain tasks, such as GPUs, network processors (NPs),

etc. pose additional challenges to the VMMs, including efficient access and sharing of

these heterogeneous cores among multiple VMs. As a result, current VMMs, originally

designed for small scale (containing at most a few tens of cores) SMP systems, will not

be sufficiently scalable nor efficient for large and possibly heterogeneous many-core

systems containing hundreds of cores. It has been shown critical to address these

differences in order to implement efficient VMMs and system software stacks [71]. A

redesign of systems software (and in virtualized environments, of the VMM) is required

to create scalable and efficient future many-core systems.

• Location transparency is a highly desirable properties for I/O virtualization, referring

to the fact that a VM should be able to access its I/O devices irrespective of the VM’s

or device’s locations. Transparency is important in multiple settings, including blade-

servers, data centers, enterprise settings, and even in home-based, personal computing

environments. It is important in data center environments, for instance, for live VM

migration, for dynamic device consolidation, and for flexibility in server hardware

configuration (e.g., for hardware disaggregation). It is important in home and office

environments to attain higher levels of flexibility in accessing the variety of devices

present in these infrastructures. Current VMMs do not have adequate and efficient

support for transparent access to I/O devices, instead depending on external network

transparent devices (e.g., iSCSI, SAN, NFS etc.) for such access. This results in

3



inefficient handling of I/O devices during live VM migration, and during dynamic

changes of virtual to physical device mappings. VMMs also provide VMs with pass-

through access to I/O devices to improve their I/O performance. However, location

transparency is even more difficult to achieve for VMM pass-through devices, because

VMMs are not involved during device access by VMs. As a result, live migration of

VMs accessing pass-through devices is not supported by current VMMs. Hence, an

efficient and flexible VMM-level solution is needed for providing location transparency

which works for both virtualized and pass-through devices.

• Effective management: Managing a large number of VMs on a single large-scale many-

core platform with devices, accelerators, CPUs, memory etc. already presents signif-

icant challenges. The manageability problem becomes even more complex for large

scale data centers. An important issue in this context is that previous work on man-

agement has focused on solving specific problems, like power management [53, 65],

VM provisioning based on resource requirements [83], VM migration [96] etc. This has

resulted in solutions that operate in ‘silos’, use proprietary interfaces, and/or do not

coordinate with each other. The resulting lack of coordination can cause inefficient

or inappropriate management actions, and proprietary interfaces make the develop-

ment of management solutions more costly. For example, power management can

often run in conflict with performance management if both do not coordinate. On

the other hand, proper coordination between reliability management and VM migra-

tion solutions can provide the novel functionality of migrating VMs to more reliable

machine before the current platform fails, thereby significantly improving VM avail-

ability. Hence, a ‘coordination architecture’ is required to enable coordination among

the multiple management applications present in large-scale data centers.

1.3 Thesis Statement

New VMM level abstractions and mechanisms are required to meet the needs of future

many-core systems. Lower level VMM mechanisms must enable high performance via the

flexible use of the many cores on these platforms, as well as the efficient use of their I/O

4



devices. Higher level abstractions must leverage the improved flexibility realized by lower

level mechanisms to ensure, via runtime management, high performance despite varying

workloads and dynamic changes in resource availability.

1.4 Contributions

This dissertation makes the following contributions:

• To improve VMM scalability and efficiency in large many-core systems, the disserta-

tion introduces and experimentally evaluates the novel concept of “Sidecore”, which

is a system level abstraction enabling the presence and use of service cores specialized

to certain tasks. A Sidecore is a ‘dedicated’ core providing specialized services to

‘normal’ cores. A Sidecore could be realized as a special purpose code running on a

regular core and/or running on a specialized core (e.g., on a hardware accelerator like

a communication processor or a GPU). In either case, the efficient use of Sidecores

requires the re-design of certain VMM functionality. The Sidecore concept, its associ-

ated VMM re-design and its realization on both general purpose and specialized cores

constitute one set of contributions of this dissertation.

• To realize location transparency for I/O devices, the dissertation defines, implements

and evaluates the novel Netchannel mechanism. Netchannel extends the existing

VMM level methods for I/O virtualization to provide for continuous access to I/O

devices, during live VM migration, termed virtual device migration, and during dy-

namic changes to virtual to physical device mappings, termed device hot-swapping, for

both virtualized and VMM pass-through device access. It also exploits the underlying

I/O virtualization mechanism of the VMM to provide VMs access to remote devices

without the need to modify them, essentially making remote devices appear as if they

were local.

• Using the mechanisms described above and to exploit the improved degrees of runtime

flexibility they enable, the dissertation also introduces the novel concept and realiza-

tion of a ‘coordination architecture’, termed vManage, to improve the manageability of
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virtualized systems and applications. vManage enables seamless coordination across

the different management applications and policies present in large-scale data centers.

The utility of vManage is demonstrated via a case study example of VM placement

and dynamic VM provisioning, where coordination is shown useful across power man-

agement, SLA management, and reliability management.

1.5 Organization

The remainder of this dissertation is organized as follows.

Chapter 2 describes the design and implementation of the Sidecore approach, along with

an implementation and its performance analysis for both homogeneous and heterogeneous

many-core systems.

Chapter 3 describes the Netchannel mechanism, along with a specific realization and

performance analysis for both virtualized and pass-through access.

Chapter 4 describes the design and implementation of the vManage coordination ar-

chitecture, the dynamic VM provisioning example, and evaluations of its performance and

utility.

Chapter 5 discusses related work, including brief architectural specifics of future multi-

core systems and their impact on VMM/OS design.

Chapter 6 concludes the dissertation and presents ideas for future research.
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CHAPTER II

RE-ARCHITECTING VMMS FOR MULTICORE SYSTEMS: THE

SIDECORE APPROACH

Virtualizing many-core systems constitutes both an opportunity, i.e., to gain more flexibility

in exploiting their cores, and a challenge, i.e., to do so in a fashion that can scale to the

hundreds of cores foreseen in future systems. This chapter describes a technique to efficiently

virtualize cores in a many-core system that attains improved scalability and gains the desired

flexibility, by designating some cores as ‘service’ cores providing functionality that supports

‘normal’ general purpose cores. The result can be improved efficiency and better resource

management, for both homogeneous and heterogeneous many-core systems.

2.1 Sidecores: Structuring VMMs for Many-Core Platforms

Virtualization technologies are becoming increasingly important for fully utilizing future

many-core systems. Evidence of this fact are Virtual Machine Monitors (VMMs) like

Xen [21] and VMWare [85], which support the creation and execution of multiple virtual

machines (VMs) on a single platform in secure and isolated environments and manage phys-

ical resources of the host machine [26]. Further evidence are recent architecture advances,

such as hardware support for virtualization (e.g. Intel’s VT [87] and AMD’s Pacifica [4]

technologies) and I/O virtualization support from upcoming PCI devices [56].

There are multiple fundamental differences between large scale many-core systems and

SMP machines (including small scale multicore systems). For example, the compute-to-

cache ratio for a large scale many-core platform is orders of magnitude larger than for

traditional SMPs or for small scale multicore systems, and the latency to access data from

a different H/W thread is an order of magnitude lower than for a traditional SMP [71].

Further, the specialized cores in heterogeneous many-core systems (accelerators) [82], opti-

mized for certain tasks, such as GPUs, NPs, etc., and less power consumption pose addi-

tional challenges to the VMMs, including efficient access and sharing of these heterogeneous
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cores among multiple VMs. As a result, current VMMs, originally designed for small scale

(containing at most a few tens of cores) SMP systems, will not be sufficiently scalable nor

efficient for large and possibly heterogeneous many-core systems containing hundreds of

cores.

Current VMM designs are monolithic, that is, all cores on a virtualized multi-core plat-

form execute the same set of VMM functionality. This chapter describes an alternative

design choice, which is to structure a VMM as multiple components, with each compo-

nent responsible for certain VMM functionality and internally structured to best meet its

obligations [42]. As a result, in multi- and many-core systems, these components can even

execute on cores other than those on which their functions are called. Furthermore, it be-

comes possible to ‘specialize’ cores, permitting them to efficiently execute certain subsets

of rather than complete sets of VMM functionality. While prior attempts at using spe-

cialized/dedicated cores to improve scalability and/or performance have focused on SMP

operating systems in non-virtualized environments [14, 80, 101], this chapter describes an

approach to enable VMMs to efficiently utilize specialized cores for improved performance

and scalability.

There are multiple reasons why functionally specialized, componentized OS/VMMs are

superior to the current monolithic implementations of OS/VMMs, particularly for future

many-core platforms. Some reasons are applicable to both OSes and VMMs while others

are specific to VMM based systems.

• Since only specific OS/VMM code pieces run on particular cores, improved perfor-

mance is derived from reductions in cache misses, including the trace-cache, D-cache,

and TLB. Further, VMM code and data are less likely to pollute a guest VM’s cache

state, thereby improving performance isolation for VMs and improving overall VM

performance [71].

• By using a single core or a small set of cores for certain VMM functionality (e.g., page

table management), locking requirements may be reduced for shared data structures,

8



such as guest VM page tables [8]. This can positively impact the scalability of multi-

processor guest VMs.

• In heterogeneous many-core systems, some cores may be specialized for certain tasks

(e.g., accelerators, such as GPUs, network processors (NPs), etc.) and hence, can offer

improved performance for performing these tasks compared to other non-specialized

cores [43, 19]. Using a componentized VMM to run the code for which these cores

are optimized can significantly improve the performance and flexibility of many-core

systems.

• Unique to the VMM-level targeted by this work is the fact that when a core exe-

cutes a VMM function, it is already in the appropriate VMM-level processor state

for running another such function, thus reducing or removing the need for expen-

sive processor state changes (e.g., the VMexit trap in Intel’s VT architecture). Some

of the performance measurements presented in this chapter leverage this fact (see

Section 2.2).

• To take full advantage of many computational cores, future architectures will likely

offer fast core-to-core communication infrastructures [71], rather than relying on rela-

tively slow memory-based communications. The communication between VMM com-

ponents running on different cores can leverage these technology developments. Initial

evidence are high performance inter-core interconnects, such as AMD’s HyperTrans-

port [33] and Intel’s planned CSI.

In this chapter, we propose an abstraction of specialized cores, termed Sidecore, as a

means for structuring future VMMs in many-core systems. Sidecores act as ‘service’ cores

that provide services to ‘normal’ cores running VM and VMM code. A Sidecore can be

similar to normal cores (e.g., same instruction set architecture) or it can be a specialized

core (e.g., hardware accelerator like network processor) in heterogeneous many-core systems.

However, it differs from normal cores in that it only executes one or a small set of VMM

or VM functionality, whereas normal cores execute generic guest VM and VMM code. A

service request to any such Sidecore is termed a sidecall, and such calls can be made from
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a guest VM or from a platform component, such as an I/O device. The result is a VMM

that attains improved performance by internally using the client-server paradigm, where

the VMM (server) executing on a different core performs a service requested by VMs or

peripherals (clients).

We demonstrate the viability and advantages of the Sidecore approach using two ex-

ample implementations: (i) we use a homogeneous core as a Sidecore performing efficient

routing of service requests from the guest VM to a VMM, to avoid costly VMexits in VT-

enabled processors, and (ii) we use a network processor (NP) as an accelerator Sidecore in

heterogeneous many-core system and enable its efficient use among VMs to improve appli-

cation performance. Section 2.2 and Section 2.3 describe these two implementations and

their evaluations in more detail.

2.2 Efficient Guest VM-VMM Communication in VT-enabled Proces-
sors

Earlier implementations of the x86 architecture were not conducive to classical trap-and-

emulate virtualization [1] due to the behavior of certain instructions. System virtualization

techniques for x86 architecture included either non-intrusive but costly binary rewriting [85]

or efficient but highly intrusive paravirtualization [21]. These issues are addressed by archi-

tecture enhancements added by Intel [87] and AMD [4]. In Intel’s case, the basic mechanisms

in VT-enabled processors for virtualization are VMentry and VMexit. When the guest VM

performs a privileged operation it is not permitted to perform, or when the guest explicitly

requests a service from the VMM, it generates a VMexit, whereupon control is transferred

to the VMM. The VMM performs the requested operation on the guest’s behalf and returns

to the guest VM using VMentry. Hence, the costs of VMentry and VMexit are important

factors in the performance of implementation methods for system virtualization.

Microbenchmark results presented in Figure 1 compare the costs of VMentry and VMexit

with the inter-core communication latency experienced by the Sidecore approach. These

results are gathered on a Dell 1950 with 2.67 GHz dual-core X86-64 bit Intel Xeon, VT-

enabled system, running a uni-processor VT-enabled guest VM (hereafter referred to as

hvm domain). The hvm domain runs an unmodified Linux 2.6.16.13 kernel and is allocated
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Figure 1: Latency comparison of VMexit and Sidecall approach

256MB RAM. The latest unstable version of Xen 3.0 is used as the VMM. The figure shows

the VMexit latency for three cases when the hvm domain needs to communicate with the

VMM: (1) for making a ‘Null’ call, where the VMCALL instruction is used to cause VMexit

but VMM immediately returns; (2) for obtaining the result of a CPUID instruction which

causes a VMexit and then, the VMM executes the real CPUID instruction on the hvm

domain’s behalf and returns the result; and (3) for performing page table updates, which

may result in a VMexit and corresponding shadow page table management by the VMM.

The figure also presents comparative results when VM-VMM communication is imple-

mented as a sidecall using shared memory (shm), as depicted in Figure 2. In particular, one

core is assigned as the Sidecore, and the other core runs the hvm domain, with a slightly

modified Linux kernel. When the hvm domain boots, it establishes a shared page with

the Sidecore to be used as a communication channel. The operations mentioned above are

implemented as synchronous shared memory requests to avoid VMexits. In the first case

(‘Null’ call), the Sidecore immediately returns a success code via the shared memory. In

the second case, it executes the CPUID instruction on the hvm domain’s behalf and returns

the result. The third case of page table updates is discussed in detail in Section 2.2.1.

Results demonstrate considerably higher performance for the sidecall compared to the
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VMexit path. Hence, by replacing VMexits with cheaper Sidecore calls, the performance

of the hvm domain and of system virtualization overall can be improved significantly. The

higher performance is because of the fact that shared memory based sidecall latency is less

compared to VMexit latency. It is notable that the experiments were conducted in April

2007, and with continuous optimizations in Intel’s VT performance, the VMexit latency has

been reducing over time (similar to system call latency optimizations using specialized in-

structions like sysenter, sysexit, etc.). Hence, we predict that at some point VMexit latency

will cease to be more than the current shared memory based sidecall latency. However, we

also predict that, with improvements in many-core architectures and development of inter-

core interconnects like HyperTransport [33] and CSI, the inter-core communication latency

will also be significantly reduced. Hence, we predict that sidecall latency will still be better

than VMexit latency in future many-core systems. The Sidecore approach also benefits by

avoiding system state pollution, e.g., cache, TLB, etc. Further, Sidecore requires minimal

modifications to guest VMs and VMMs. To implement the sidecalls described above, only

7 lines of code were modified in the guest kernel, and only 120 lines of code in the form of

a new kernel module were added.

2.2.1 Page Table Update

This section describes how the Sidecore approach can be used to reduce the number of

VMexits during page table updates in a hvm domain.

Xen runs hvm domains by maintaining an extra page table, called the shadow page

table, for every guest page table. The hardware actually uses the shadow page tables for

address translation. The changes to the guest page tables are propagated to the shadow

page tables by Xen. Page faults inside hvm domains cause VMexits and the control goes to

Xen. If the fault didn’t happen because the guest and shadow tables were not in sync, the

fault is reflected back inside hvm domain and its page fault handler is invoked. It brings

the faulting page into memory and updates the guest page table. Updating the guest table

again causes VMexit because it was marked read-only by Xen. This time, Xen does the

necessary propagation of changes from the guest page table to the shadow page table and
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Figure 2: Implementing VMM services using Sidecore on an X86 64bit VT machine

resumes the hvm domain using VMentry. Hence, a typical page fault corresponding to

creating a new page table entry causes two VMexits and two VMentries.

In this case, the Sidecore approach reduces the number of VMEntries and VMexits to

one. The Sidecore spin waits for hvm domain requests in a tight loop. The domain’s page

fault handler code is modified so that instead of updating the guest page table itself (which

would cause a VMexit), it makes a request to the Sidecore, providing the faulting address

and the page table entry values. Since the Sidecore already runs in VMM mode, this process

avoids the VMexit. The Sidecore updates the guest page table, propagates the values to

the shadow page table and returns control to the hvm domain.

In another case of page table update when a guest page table entry is removed or

modified (e.g., when a page is swapped out to disk), we also remove the corresponding

shadow page table entry and in addition, we must flush the corresponding TLB entry.

With the Sidecore approach, this requires sending an IPI for remote TLB flush. This is

because the page fault handler is running on a different core and current processors do

not provide an efficient mechanism for remote TLB flushes. This fact ends up eliminating

the benefits of the Sidecore approach, since an IPI implicitly causes a VMexit. A hardware

recommendation from our work, therefore, is that future many-core systems can benefit from

efficient implementations of certain cross-core functions, in this case, an efficient hardware

mechanism for remote TLB flushes.
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Figure 3: LMbench performance comparison for VMexit and Sidecore Call

Figure 1 shows the latency benefits of using the Sidecore approach for guest page table

entry (PTE) updates. The results clearly show the approach’s benefits, on average providing

a 41% improvement in latency. Hence, using Sidecores for page table management can

significantly improve the performance of virtual memory-intensive guest applications.

We also ran LMbench [51] performance benchmarks and a Linux kernel compilation

to evaluate Sidecore page table management. Figure 3 shows LMbench’s context switching

and page fault performance comparisons. The context switch benchmark is shown for 16

processes, with process sizes of 16KB each. The latency improvement in page fault handling

is due to low latency PTE updates performed by the Sidecore, as shown in Figure 1. The

context switching performance for Sidecore is improved as a result of page fault performance

improvements. The Linux kernel (version 2.6.16.13) compilation takes 676 seconds with

VMexits and 668 seconds with Sidecore. This relatively low performance benefit is due to

the fact that the majority of page faults being experienced are for memory mapped I/O

(file I/O), which are not yet handled by our Sidecore implementation and therefore, follow

the VMexit path.
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2.3 C-core: Communication Accelerator using Sidecore

Sidecore approach can not only benefit VMMs by implementing their functions more effi-

ciently, it can also benefit VMs, e.g., by improving I/O performance, by accelerating spe-

cialized VM processing, etc. Specifically, Sidecore approach can be used in heterogeneous

many-core systems to efficiently use specialized cores (accelerators) among VMs. The use of

heterogeneous cores in many-core systems has been increasing because of their higher per-

formance and less power consumption [17]. Complimentary to previous efforts at improving

application performance [80, 19] in non-virtualized environments, Sidecore approach focuses

on efficiently sharing the accelerators among VMs. This section describes the use of the

Sidecore approach to efficiently utilize network processors (NPs) as communication cores

(c-core) in a heterogeneous many-core system to improve application performance by de-

ploying onto those cores application specific processing. The Sidecore approach is used to

create a virtualized network accelerator similar to self-virtualized network device [66] which

can be efficiently shared by multiple VMs.

A network accelerator capable of application specific processing of VMs’ network ap-

plications is useful under many circumstances. Large-scale distributed applications in-

creasingly use middle-ware that dynamically deploys processing along the data paths of

application-level overlays [67]. Processing ranges from simple data routing and forwarding,

to the boolean functions carried out in distributed publish/subscribe [100] infrastructures,

to application-specific actions that manipulate, transform, aggregate, and/or distribute in-

formation on sets of source-to-sink paths [45]. For instance, in commercial applications

like the operational information systems used by airlines [55], middle-ware services execute

simple business rules to transform and route business events between the company’s central

processing site and remote sites like airport terminals or baggage agents. In distributed

scientific collaborations, including those supported by the SmartPointer framework [94],

scientists rely on middle-ware services to monitor and steer remote experiments, accessing

the subsets of experiments’ outputs relevant to their current interests, at levels of detail

appropriate for their local platforms (e.g., PCs vs. high end workstations) or their com-

munication resources (e.g., available network bandwidth). An important attribute of all

15



such applications is that they require substantial amounts of processing on network data.

Hence, a network accelerator can significantly improve overall application performance by

accelerating the network processing.

We leverage current hardware trends [13, 82], which indicate that future processors

will be multi-core systems comprised of many processing cores (processors) on the same

chip. Moreover, there will be both homogeneous (like SMPs but more tightly coupled)

and heterogeneous multi-core systems, the latter consisting of different cores optimized for

different purposes. One example is IBM’s cell processor [13], which has cores specialized for

gaming applications. The example considered in this section is a multi-core platform with

general computational and specialized communication cores, emulated by using a general

purpose CPU with an attached network processor (NP). In particular, we are using an

IXP2400 NP attached to a general Intel Xeon Linux host through a dedicated PCI bus.

The VMM enables sharing of the NP by virtualizing and using it as a specialized core.

This approach to improving the performance of middleware-based applications run-

ning inside VMs is to enable them to ‘best’ use the heterogeneous, computational vs.

communication-centric processors present in underlying hardware platforms. Toward this

end, the Sidecore approach allows the VMM to use the communication core as a specialized

core and through its virtualization, enable its sharing among multiple VMs. This allows

the VMs to deploy their network specific processing on the communication core similar to

one used for GPUs in non-virtualized environments [19].

Communication Core: A communication core (c-core) is similar to those of current NPs,

with many internal processing units, each independently programmable and with sufficient

resources to support a single communication stream at link speed. Intel’s IXP NPs, for

instance, has hardware processing units termed microengines that can operate in parallel,

have their own registers and small amounts of program memory, and have shared access

to hierarchically arranged memories of different speeds. These engines are programmed

such that one or more of them can be allocated for control plane operations, and others

can be allocated for data-plane operations. In addition, engine actions can be chained to

form processing pipelines that implement more complex messaging operations. Engines
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Figure 4: Using Sidecore for communication-core aware processing

have direct access to high speed network interfaces, with additional hardware present (in

some IXP processors) for specialized processing tasks like encryption. Using the parallelism

present in them, c-cores can significantly improve performance of network data processing.

Figure 4 shows the use of the Sidecore approach for utilizing communication cores in

a virtualized system. The normal cores run general purpose code while the Sidecore runs

VMs’ data processing codes for which it has been optimized. An accelerator virtualization

module runs in the VMM which virtualizes the accelerator and enables its sharing among

multiple VMs with the help of a virtualization module inside every VM. The applications

access the accelerator using an accelerator library which implements APIs for sending, and

receiving data and sending application specific code to the accelerator. The library accesses

the accelerator through the virtualization module present in each VM. Applications deploy

their custom processing code on the accelerator which operates on the data belonging to

the VM. The Rx unit receives network packets which gets operated upon by the data-

processing unit before sending it to the VM. Similarly, the Tx unit sends data to the
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network after it has been processed by the data-processing unit. To improve performance,

the virtualization module inside the VMM can be moved to the accelerator itself, thus

creating a ‘self-virtualizing’ accelerator and bypassing the VMM.

While the c-core can be used to improve any streaming data application, in this section, it

is used with applications using the publish/subscribe messaging model [59, 100]. Supporting

this model is particularly challenging because of the potential presence of a large number

of subscribers to the same information, each of which may require data to be customized

before receiving it. Customization is expressed with data filters provided by subscribers that

must be executed on messages. A specific example is a set of filters that extract different

information from airline flight records such as those that extract passenger vs. baggage vs.

meal preference information. With its multiple processing units, the c-core can use either

parallel processing or pipelined processing to execute the customization handlers/filters

more efficiently.

2.3.1 Using C-cores in a Middleware System

The capabilities of traditional publish/subscribe middleware can be enhanced by making

it ‘c-core aware’, i.e., by enabling it to dynamically create, deploy, and configure data

processing. The execution model uses a VMM to share c-cores among VMs where VMs run

pub/sub middleware which deploy application specific processing on the specialized cores.

Since specialized cores typically have a different instruction set architecture (ISA) compared

to the general purpose cores, the programming model uses a special compiler and a general

purpose programming language to program them. The application code consists of two

components; one that runs on normal cores and the other that runs on the c-core [19], termed

‘kernel’1. These two components permit applications, via the middleware, to establish

parallel or pipeline-structured sets of communication actions on the data-streams. The

application calls APIs from the accelerator library to access the c-core hardware, and deploys

the kernels on the c-core. The library allows multiple kernels to run simultaneously on the c-

core thus enabling its sharing my multiple VMs. The library also manages all the resources of

1Not to be confused with an OS kernel
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the c-core and performs admission control. These kernels get deployed in the data processing

block in Figure 4 and operate on the incoming and outgoing data streams of the VMs.

The goal is to permit c-cores to perform meaningful application-specific actions, thereby

permitting applications to directly leverage their abilities to run at physical link speeds, close

to the physical network, tightly linked with standard communication processing actions, and

utilize hardware optimized for communication processing [57, 99] (e.g., multiple hardware

queues, direct low latency access to physical network links, etc.).

2.3.2 Xen Implementation

We have implemented a prototype of applying the Sidecore approach to communication

processing in Xen using IXP2400 NP [35] as a c-core, interconnected via a dedicated PCI

interface to the host system. The goal is to demonstrate the benefits of using the approach

for heterogeneous many-core systems. Application-level benefits are shown by implementing

efficient ‘continual’ query processing on its data streams, by deploying the query processing

kernels on the NP. The 8 microengines available on the IXP2400 provide the processing

contexts and run either dedicated components of the execution environment like Rx, Tx,

message fragmentation and reassembly, or they provide processing contexts for executing

query processing kernels. The XScale core on the IXP runs virtualization and initialization

operations, facilitates data transfers across the PCI interface, and performs c-core recon-

figuration (e.g., deployment of new kernels on the c-core). As shown in Figure 5, all 8
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microengines are assigned to different tasks, able to work in parallel on different message

streams and/or in a pipelined fashion for a single stream. In our current implementation,

six microengines remain available to execute kernels or chains of kernels (worker engines

in Figure 5) on application-level messages. We expect future heterogeneous cores to have

significantly more engines available for application-level processing tasks, e.g., nVidia GPUs.

Virtualization of network accelerator (c-core). We utilize our prior work on self-

virtualized network devices [66] to implement a virtualized network accelerator in Xen.

Figure 5 shows the current implementation, where an accelerator frontend OS kernel module

runs inside guest VMs (Dom-Us, and an accelerator backend module runs in Dom-0 and in

the IXP’s Xscale core. The accelerator backend in Dom-0 enables sharing of the accelerator

between multiple Dom-Us, while the backend on Xscale enables the dynamic deployment of

kernels on IXP microengines. Two microengines handle receive (Rx), packet classification,

and transmit (Tx) operations and 6 microengines are available for running application

specific kernels. The accelerator backend enables Sidecore functionality by enabling guest

VMs to use the IXP NP as a service core to deploy kernels. As shown in Figure 4, the

applications access the NP using the accelerator library which in turn uses the accelerator

frontend (equivalent to the virtualization module). The accelerator frontend forwards the

requests to the Dom-0 backend which performs multiplexing and de-multiplexing of various

requests and accesses the NP by communicating with the Xscale backend. For example, to

deploy a kernel, the application calls the accelerator library API which forwards the request

to Dom-0 backend via Dom-U frontend. Dom-0 backend requests the Xscale backend to

deploy the kernel binary on the required microengines. The Xscale backend initializes the

microengines, copies the kernel code into microengine instruction store, sets up required

queues and data structures and finally starts the microengines. Although not implemented

yet, the Dom-U frontend can directly communicate with the Xscale backend for fast data-

path to improve performance, thus creating a self-virtualized accelerator using the Sidecore

approach.

Kernels and their execution environment. Kernels are specified in microcode object

format (.UOF), which has the capability to represent multiple processing contexts and
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also has information about which processing context should be run on which microengine.

The Xscale backend reads this information from the kernel header and copies the specific

contexts to their respective microengines’ instruction memories. Kernels can be created to

operate in parallel or in a pipelined fashion(see Figure 5) using the UOF format.

Pipelined implementation of kernel chains. Representing more complex application-

level processing actions as sets of chained kernels enables us to split the execution of time-

consuming processing across multiple microengines, to gain pipeline parallelism, and to

prevent any one execution context from becoming a bottleneck. The c-core pipeline imple-

mentation uses non-copying message queuing between different pipeline stages and imple-

ments an efficient hand-off protocol.

Dynamic reconfiguration through hot-swapping. In order to best utilize resources

and match current application needs and platform resources, kernels need to be deployed

and configured dynamically (hot-swapping of kernels). This can be initiated in response

to changes in system resources or in end user interests. Simple reconfigurations involve

changes to stream kernel parameters, such as changing the selection criteria in a select query

kernel. More complex configurations involve hot-swapping stream kernels, including to

address limitations in the amount of instruction memory in the microengines. Hot-swapping

of kernel code is also required for kernel specialization where a kernel is redesigned to

specialize it for its current execution environment and redeployed in place of its older version.

Automatic kernel specialization, based on runtime monitoring as in other specialization

systems has not yet been implemented.

The current implementation of hot-swapping keeps one of the microengines in idle state,

while others are used to run kernels. During hot-swapping, the new kernel is loaded onto the

idle microengine and then the control is switched from the old microengine to the new one.

The idle microengine is started while the old microengine is stopped and becomes the idle

microengine to be used for next hot-swap. This implies that the actual downtime for kernel

processing is equivalent to the costs of stopping one microengine and starting the other

one. Measurements show that this can be done in about 30 microseconds as compared to

around 400 microseconds when the same microengine is stopped, new kernel code is loaded
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Figure 6: A. Query throughput with and without c-core, and B. Processing time of various
pipeline stages

and then restarted. The drawback of this method is that one of the IXP2400 microengines

must be kept idle for hot-swapping.

2.3.3 Efficient Query Processing on Data-Streams

To evaluate the performance and benefits of c-core, an example implementation of continual

query processing of data-streams is evaluated on Xen hosts and their attached IXP2400s.

The experimental testbed is comprised of 8 Dell Poweredge 2650 Machines (4 Xeon 2.8

GHz each), each having one IXP2400 (Radisys’ ENP2611 board) attached to it via a PCI

interface. IXPs are interconnected via a Gigabit LAN. Results demonstrate the benefits

and feasibility of enabling the execution of application-level data processing on specialized

heterogeneous cores.

Benefits of using c-core to run application kernels. The first set of experiments

evaluates the c-core’s ability to execute middleware-provided kernels. This evaluation uses

an implementation of ‘continual database queries’ [45], comparing its performance with a

corresponding general purpose core (henceforth referred to as g-core) based implementa-

tion. Queries implemented by operators are applied to streaming data in order to create
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customized/personalized representations of that stream for different clients. The operators

evaluated are the database operators (i.e., select, project, join) used in publish/subscribe

infrastructures like IBM’s Gryphon [100] product. The following specific test case is used.

Two publishers generate data streams and send them to a single broker VM. In addition,

two subscribers submit queries to the broker, one query doing select/project on individual

streams and the other doing join operation on the two streams. A total of three sub-streams

is generated, two corresponding to individual streams and the third is join sub-stream. In

the c-core based implementation, the broker receives the query kernel from a subscriber

and deploys it on the NP. The query operators are applied to data streams that carry

data from the operational information system of an airline (see [55] for more detail on

that application). These data streams are directly sent to the c-core via its Gigabit links.

Similarly, the sub-streams produced by the c-core are directly sent, via its output links, to

the subscribers that desire them. On the c-core, operators are executed in pipelined fashion.

In comparison, the implementation without c-core deploys query operators on the normal

core, using a multithreaded approach, where the same message streams are processed with

the same select, project, and join operators as those used in the c-core scenario.

A representative query for stream A is as follows: select passengerList, mealPreference

from A where A.source=”Atlanta” AND A.destination=”Paris” AND A.departTime=”20:40

pm”. Note that query operators can substantially differ in complexity, where complexity

not only derives from the number of conditions tested and evaluated, but also from the

number of different message fields accessed, the sizes of such fields, and the sizes of the

messages created for output sub-streams.

The result shown in Figure 6.A compares the execution of a set of these queries on the

NP vs. the g-core. The results shown are the attained throughput for c-core and g-core

for different query complexities. We observe that for all data sizes, the c-core is capable of

delivering improved throughput levels compared to the host. Note that the reasons for these

improvements are complex, involving both the innate differences in hardware structures

and capabilities on NP vs. g-cores and the general vs. specialized nature of g-core vs.

NP execution environments, in the critical data path involving an entire Linux VM on the
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Table 1: Query throughput and overhead calculation for various input stream speeds on
the IXP2400.

I/P Thrput O/P Thrput Overhead(usec) pkts sent pkts processed pkts dropped
200 Mbps 200 Mbps 31 200000 255000 0
350 Mbps 350 Mbps 32 200000 230000 20000
495 Mbps 450 Mbps 35 200000 160000 80000
695 Mbps 450 Mbps 50 200000 160000 105000

g-core vs. minimal runtime support on the NPs.

Ability to deploy kernel chains. Figure 6.B presents time in terms of the processing

cycles required by different components of the application, and by different query kernels (for

different message sizes). We observe that query operations can be executed in approximately

the same amount of time as the receive operation for output data streams of the same size.

This demonstrates that the NP is capable of supporting chained queries. Moreover, we can

hypothesize from these results that when operators reduce the amounts of data produced

vs. received (e.g., an outgoing sub-stream contains a subset of the information contained in

the arrival stream), similar performance results will be attained. It is also notable that, by

executing stream processing on the c-core, the g-core is freed to carry out other application-

level tasks.

We next determine the limits to which the IXP2400 can sustain query processing by

increasing stream throughput. The case measured constitutes a worst case in that it does not

reduce the size of output compared to input data (using 600 byte messages). Table 1 shows

that the IXP2400 can sustain close to 350 Mbps of throughput. Beyond that, packet drops

become significant. We expect the NP to be able to sustain higher levels of throughput for

queries that lead to reduced size output streams (approximating link rates). Measurements

also show the overheads incurred in query execution. In fact, overheads increase as the

input speed increases because of memory and other resource contention issues. Please note

that the output throughput is more than the input throughput in some cases. This is

because we send two input streams (of 100000 packets each) but output three sub-streams,
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two corresponding to the individual streams and the third sub-stream as a result of a join

query operation on the two streams.

2.4 The Sidecore Approach: Discussion

The performance benefits of the Sidecore approach for VM-VMM communication might

become less pronounced as VMexit/VMentry operations are further optimized [1]. However,

we believe that the Sidecore approach can still provide significant advantages. First, since

low latency inter-core interconnects are important for attaining high performance for parallel

programs on future many-core platforms, they are likely to be an important element of future

hardware developments. The latency of inter-core communication can be further decreased

by cache sharing among cores or by direct addressed caches from I/O devices [93]. Second,

re-architecting the virtualized system as a client-server design via Sidecores provides a clear

separation of functionality between VM and VMMs. This can result in better performance

for VMs due to reduced VMM noise, caused by the pollution of architectural state [7].

Moreover, it has been shown that using functional partitioning is one of the important

techniques for improving scalability of system software in large scale many-core and in

multiprocessor systems [71].

One disadvantage of the Sidecore approach is that its current implementation requires

minor modifications to the guest OS kernel. However, these changes are significantly smaller

than a typical paravirtualization effort – e.g., for page tables updates using Sidecore, 120

lines for setting up the shared communication ring and 7 lines for sending a sidecall request.

Hence, the approach has a desirable property of minimal paravirtualization. Besides, the

approach can be dynamically turned on/off with a simple flag, allowing the same guest

kernel binary to execute on a VMM with/without the Sidecore design. Another trade-off

is that the Sidecore approach causes wasted cycles and energy due to the CPU spinning

used to look for requests from guest VMs. This can be alleviated via energy-efficient polling

methods, such as the monitor/mwait instructions available in recent processors. Further-

more, the use of Sidecores to run specialized functions might make them unavailable for

normal processing. A Sidecore implementation that dynamically finds available cores would
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alleviate this problem, but we have not yet implemented that generalization and therefore,

cannot assess the performance impacts of runtime core selection. For a static approach,

we hypothesize that in future large-scale many-core systems like those in Intel’s tera-scale

computing initiative [81], it will be reasonable to use a few additional cores on a chip for

purposes like these, without unduly affecting the platform’s normal processing capabilities.

Using the Sidecore approach to efficiently share heterogeneous cores among VMs requires

that these cores should be able to run multiple kernels simultaneously. While the IXP

NP allows this, many other specialized cores, e.g., nVidia’s GPU, do not open up their

implementations to enable such sharing. The Sidecore approach would not be as useful

for these cores, unless dynamic compiler techniques to merge multiple kernels into a single

kernel can be developed [19].

2.5 Related Work

Substantial prior research has addressed the benefits of utilizing dedicated cores, both in

heterogeneous [28] and homogeneous [69] multicore systems. Self-virtualized devices [66]

provide I/O virtualization to guest VMs by utilizing the processing power of cores on the

I/O device itself. In a similar manner, driver domains for device virtualization [62] utilize

cores associated with them to provide I/O virtualization to guest VMs. The Sidecore

approach presented in this paper utilizes dedicated host core(s) for system virtualization

tasks. Particularly, we advocate the partitioning of the VMM’s functionality and utilizing

dedicated core(s) to implement a subset of them. Similar approaches are used in operating

systems, where processor partitioning is used for network processing [68, 10].

Computation Spreading [14] attempts to run similar code fragments of different threads

on the same core and dissimilar code fragments of the same thread on different cores.

Another approach is to run hardware exceptions on a different hardware thread (or core)

instead of running it on the same thread (core) [101]. While these solutions are targeted

for better utilization of the micro-architecture resources such as caches, branch predictors,

instruction pipeline etc., our solution is targeted at improving VMM performance and scal-

ability for large scale many-core systems.
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Intel’s McRT (many-core run time) [71] in sequestered mode uses dedicated cores to run

application services in non-virtualized systems. This approach requires major modifications

in the application to utilize the parallel cores. This is in contrast to the Sidecore approach,

which requires only minor modifications to the guest VM’s kernel and is aimed at improving

overall system performance.

There have been previous attempts at using host attached network processors in non-

virtualized environments to execute application specific services closer to the network [24].

Further, examples of executing various protocol- vs. application-level actions in different

hardware context include splitting TCP/IP stack across general purpose cores and dedicated

network devices such as NPs, FPGA-based line cards, or dedicated cores in SMP systems [9,

69], or splitting the application stack as with content-based load balancing for an http

server or for efficient implementations of media services. Besides NPs, there are multiple

ongoing efforts on building heterogeneous many-core systems, e.g., Intel QuickAssist [82],

and then exploiting the specialized and massively parallel nature of heterogeneous cores

to improve application performance, e.g., Cell SDK for Cell processor [13], CUDA [19] and

Accelerator [80] for GPUs, etc. Other ongoing efforts on specialized execution environments

using heterogeneous cores include Cellule [27] using Libra [5]. While these efforts utilize

accelerators in non-virtualized environments, the Sidecore approach attempts to efficiently

utilize and share these accelerators among multiple VMs in virtualized environments.

2.6 Summary

This chapter presents the Sidecore approach to enhance system-level virtualization in future

multi- and many-core systems. The approach factors out some parts of the VMM or VM

functionality in order to execute it on a specific host core, termed Sidecore. We demonstrate

the benefits of this approach by using it to: (i) avoid costly VMexits on VT-enabled pro-

cessors, and (ii) deploy application specific continual query processing on communication

cores (NPs). Performance results demonstrate that the Sidecore approach improves the

overall performance of the virtualized system. Apart from such performance improvements,

the approach also improves the way in which the resources present in many-core systems
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are used. For example, through dynamic hot-swapping of kernels, Sidecore can efficiently

manage resources used by different VMs. The accelerator backend can also dynamically

map a VM’s request for an accelerator to various accelerators, when there are multiple such

accelerators present in the system.

The Sidecore approach, however, alone can not improve the overall performance and

management of virtualized systems. There are many other components in the system (e.g.,

I/O devices) which are also very important to virtualize efficiently apart from the processing

cores. I/O virtualization is the next most important aspect of these systems because: (i)

I/O virtualization incurs the most amount of overhead during virtualization, and (ii) the

vast amount and variety of I/O devices present in current data centers and other computing

systems makes it very important to efficiently share and manage them. In response, the next

chapter in this dissertation attempts to solve the problem of location transparency which

provides flexibility in I/O virtualization and further improves manageability of virtualized

systems.
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CHAPTER III

NETCHANNEL: A VMM-LEVEL MECHANISM FOR LOCATION

TRANSPARENCY OF I/O DEVICES

In the previous chapter, we discussed the Sidecore approach to efficiently utilizing and

managing cores in (possibly heterogeneous) many-core systems. A second challenge for

VMMs is their efficient interaction with I/O devices especially since VM migration is one

of the most powerful mechanisms for improving the manageability of virtualized systems.

Current I/O virtualization, however, presents location transparency problems for ‘live’ VM

migration under certain circumstances. This chapter addresses this problem, by describing a

novel mechanism, termed Netchannel, to provide location transparency to I/O virtualization.

The performance of Netchannel can be improved by using dedicated cores provided by

Sidecore approach.

3.1 Background

System-level virtualization [21, 85] is becoming increasingly important because of bene-

fits in providing isolation, consolidation, containment, and manageability. An important

attribute of virtualization is the ability to completely and seamlessly migrate a virtual ma-

chine (VM) from one physical machine to another [73, 84, 16]. This helps VMMs (e.g.,

Xen [21] and VMWare [85]) to provide promised consolidation and manageability benefits.

A highly desirable feature of virtualization is location transparency, which refers to the

complete decoupling between a VM’s location and the location of its I/O devices. Location

transparency of I/O devices is useful for ‘live’ VM migration, i.e., the efficient and dynamic

migration of VMs with un-noticeable service disruption [16]. A key requirement for live

VM migration without downtime for the services being run is continuous and transpar-

ent access to its virtualized I/O devices, termed virtual device migration. Unfortunately,

current methods for I/O virtualization do not provide such continuity and transparency

for VMs’ devices. Instead, they must rely on other technologies to provide them, such as
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hardware-based methods like storage area networks (SANs) for disks.

Location transparency is also useful in dynamically changing virtual to physical I/O

device mapping. Also known as device hot-swapping, this refers to changing a VM’s physical

I/O device with another ’similar’ I/O device on the fly without any observable service

disruption. Device hot-swapping may be required for multiple reasons, e.g., to improve

performance, to improve reliability or to do hardware maintenance. Device hot-swapping

is even more critical when a VM with pass-through access to an I/O device is migrated

to another machine because this must also perform a device hot-swapping to maintain the

VM’s pass-through access to the I/O device. Current VMMs do not provide support for

device hot-swapping and often they depend on costly external solutions like SAN or smart

hardware based disk replication controllers.

This chapter presents VMM-level support for location transparency in accessing I/O de-

vices, termed Netchannel. Netchannel provides virtual device migration (VDM) and device

hot-swapping (DHS) for both virtualized and pass-through access to the devices. Finally,

for locally attached devices, Netchannel also provides transparent device remoting (TDR),

where a locally attached device can be transparently accessed remotely by a VM. The com-

bination of seamless VDM, DHS, and TDR enables and benefits the dynamic management

and fault tolerance methods envisioned for next generation virtualized systems. More gen-

erally, it provides servers and end user applications running in VMs with richer choices in

device usage, without requiring costly hardware solutions. Seamless VDM addresses a key

issue with live VM migration, for both fully and para-virtualized VMs, which is their abil-

ity to continue to access the devices they are using. For instance, if the VM used devices

present on the machine from which it is being migrated, migration makes these remote

devices inaccessible to the VM. Further, even when the devices are present on the network

(e.g., an NFS-based disk), migration requires that the virtual device state (including pend-

ing I/O transactions) be seamlessly migrated along with the VM. Unfortunately, VMMs

do not currently handle pending I/O operations during VM migration, instead relying on

external techniques like the Fiber Channel-based hardware solutions used for disks or like

the software-based remote device access solutions integrated into guest operating systems
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(e.g., iSCSI disks inside VMs). In contrast to such point solutions, our approach is to design

a new, general VMM-level mechanism, termed Netchannel, enabling VDM, DHS, and TDR.

The Netchannel VMM-level abstraction presented in this chapter has multiple interest-

ing properties. First, it is OS agnostic, since it does not rely on guest operating systems

to provide OS support for remote device access and for device hot-swapping. Second, it is

general, in that it works for both fully and para-virtualized guests. Third, it is cost-effective,

as it eliminates the need for hardware solutions where such costs are not warranted. To

demonstrate these properties, Netchannel has been implemented for both block and USB

devices inside the Xen VMM. The implementation offers the following degrees of flexibility

to virtual machines and their applications:

• Virtual Device Migration (VDM) – for both locally attached and networked devices,

Netchannel enables the seamless migration of virtual device state (including pending

I/O transactions) without any noticeable downtime, thereby permitting continuous

device operation transparent to the VM, during and after live VM migration;

• Device Hot-Swapping (DHS) – virtual device hot-swapping, again without any no-

ticeable downtime, can be done for both locally attached and networked devices; this

makes it easy to develop rich fault tolerance and load balancing solutions for virtual-

ized systems [79, 74].

• Transparent Device Remoting (TDR) – besides providing virtual device migration

for locally attached devices, Netchannel’s TDR functionality provides a common in-

frastructure for remotely accessing non-networked devices, by using existing device

virtualization solutions.

• High Performance – for strongly networked systems, like those found in datacenters

or even in offices and homes, Netchannel offers levels of performance for remote device

access similar to those seen for local devices, in terms of realized device bandwidths.

Experimental evaluations on a cluster of machines presented in Section 3.5 of this chapter

validate these claims.

31



Netchannel affords administrators with substantial flexibility in how to structure or

configure their systems. In blade servers, for example, some cabinets may be configured

to be device-less, coupled with device-heavy cabinets elsewhere. This can reduce per blade

costs without limiting configuration flexibility in terms of where certain virtual machines

may be run. An advantage in home or office settings is the ability to access arbitrary devices,

which may be attached to other machines or to the network, without having to use costly

hardware solutions. Beyond these basic capabilities, extensions of the Netchannel concept

can be used to realize new levels of device sharing and new device capabilities, by presenting

to different VMs different views of the devices present in the underlying platforms, which we

term ‘logical’ or ‘soft devices’ [89]. An example is the association of distributed file system

properties like fine-grained sharing, dynamic allocation etc. with virtual disks, essentially

creating a virtualization aware file system [58].

We summarize by briefly outlining this chapter’s contributions. First, the Netchannel

architecture and its Xen implementation provide a flexible and efficient approach to provid-

ing the rich device-level functionality needed for effective virtualization, i.e., VDM, DHS,

and TDR. Second, experimental evaluations with both remote disk and remote USB de-

vices demonstrate that the Netchannel-based realization of TDR offers levels of performance

comparable to those of existing non-transparent kernel-level solutions. Third, evaluations

with a representative multi-tier application demonstrate seamless live VM migration when

using Netchannel-based VDM and DHS for the disk devices used by this application.

The remainder of the chapter is organized as follows. Section 3.2 presents Netchannel’s

software architecture. Section 3.3 presents Netchannel’s implementation in Xen. Section 3.5

evaluates various Netchannel functionalities. Section 3.6 discusses some of the related work,

and Section 3.7 provides summary and conclusions.

3.2 Netchannel Software Architecture

The Netchannel VMM extension for efficient device virtualization is depicted in Figure 7.

To explain it, it is necessary to describe the device virtualization mechanisms used in current

VMMs. Device virtualization typically involves running two stacks of device drivers: one in
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Figure 7: Netchannel Software Architecture

the guest VM (GVM), which is the GVM’s device driver (DD) and another, termed device

virtualization (DV) driver, running in the VMM or more likely, in a special privileged VM,

called a Service VM (SVM). The DV exports a virtual device inside GVM and DD attempts

to access it. Every attempt by the DD to access the device causes control to transfer to

the DV, which properly virtualizes these accesses. The DV can use either a locally present

physical device for the GVM’s virtual device, or it can use a remote device by accessing a

Device Server (represented by a dotted line) using some remote access protocol (e.g., NFS).

In fully virtualized systems, the GVM runs the entire unmodified device driver stack and

DV emulates a virtual device, while in the para-virtualized case, the driver stack is split: the

GVM runs only the upper part of the split device driver stack, termed frontend (FE), and

the SVM runs the lower part of the split stack, termed backend (BE). Examples of both

implementations are VMWare workstation [78] and Xen [21], respectively. Netchannel’s

current implementation uses Xen’s FE/BE mode of device virtualization but without further

modifying the VM. Live migration support for fully virtualized VMs has been recently added

in Xen and we are currently working on implementing Netchannel for fully virtualized VMs.

Multiple technical issues must be addressed when implementing virtual device migration,

device hot-swapping, and transparent device remoting. Most important of these is to deal

with I/O and device states. Specifically, the DV driver maintains the state of the VM’s
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virtual devices which during live VM migration, must be transferred from the old DV

to the new DV on the new machine. This state also includes the currently pending I/O

transactions (i.e., the I/O operations issued by the DD but not yet completed) issued before

the completion of VM migration. These transactions are issued by the DV to the device and

results must be returned to the DD to ensure proper device operation. After VM migration,

however, the VM has moved to a new machine, and these completed transactions cannot

be returned to the DD in the normal manner. Thus, old and new DV must cooperate

to ensure these pending I/O operations are transparently handled, along with the rest of

the device state. In doing so, the sequence of I/O operations (issued before and after live

migration completes) must be maintained to provide complete transparency. If the devices

are locally attached to the machine before VM migration, live migration further requires

that the new DV must cooperate with the old DV to access the devices remotely. Similarly,

device hot-swapping requires that the DV must ensure that the new device is exactly in the

same state as the original device to provide complete transparency. The next subsections

describe how the Netchannel architecture addresses these issues.

3.2.1 Virtual Device Migration

As shown in Figure 7, to provide seamless VDM, the Netchannel architecture extends

the device virtualization (DV) module with a Mid-Point (MP) module that monitors the

virtual device state and the pending I/O operations. During live migration, the Mid-Point

(MP) establishes a communication channel with the other MP (on the new machines) to

co-ordinate and allow for the seamless transfer of the device state, including pending I/O

operations. The extended DV can implement multiple approaches to handle these pending

I/O operations.

3.2.1.1 Basic Mechanism

VM migration involves multiple steps, including freezing a VM, destroying its interfaces

with the current VMM, creating a new VM on the destination machine, filling this VM’s

memory with the memory pages of the frozen VM, and finally, unfreezing the new VM. Live

VM migration is a special case in which the freeze duration of the VM is kept un-noticeably
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small. The method for live migration used in Xen3.0 is described in [16].

Virtual Device Migration is depicted in Figure 8. Assume that a guest VM named G1

is migrating from host machine M1 to host machine M3, while G1 is accessing a device

on M2 (the device could be locally attached to M1 as well). During live VM migration,

G1 is frozen and the DD-DV communication is suspended. During this suspension, DV

breaks its connection with the DD, but it does not break its connection with the device.

On the destination host M3, a new VM G2 is created, and its OS pages are filled from the

suspended VM G1. G2 uses G1’s configuration so that it exactly looks like G1. The old

DV sends the device state to the new DV which creates a new virtual device with the same

state. The new DV on M3 connects to the Device Server on M2, while the old DV breaks its

connection with the device server. Next, G2 is un-paused and its DD starts communicating

with the DV. At this point, migration completes and communication between DD and DV

on M3 resumes. While all subsequent accesses to the device use the new path, the entire

process of VM migration is transparent to the guest VM.
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3.2.1.2 Handling Pending I/O Transactions

As mentioned earlier, a potential issue for virtual device migration is that there may be

pending I/O transactions issued by G1’s DD at the time G1 is suspended. By the time these

I/O transactions complete, the VM has already migrated, and the old DV cannot return

the I/O results to the DD in the normal fashion. Transparency demands that we deal with

these pending transactions. The Netchannel architecture, comprised of Mid-Points and

the communication channel connecting them, makes it possible to implement a variety of

approaches for dealing with pending I/O transactions:

• Discard pending I/O transactions – the DV on M1 DVM1 can discard these I/O

transactions. This approach relies on the error recovery mechanism in the DD and

in its upper level drivers. After migration, eventually, DD will realize the failure of

the pending I/O transactions and as part of error recovery, its retry of those I/O

operations will eventually succeed. While suitable for devices with highly resilient

protocol stacks, e.g., the NIC device, the drawback of this approach is its reliance on

robust error recovery in guest device drivers.

• Re-issue pending I/O transactions – the Mid-Point on M1 MPM1 can store

the list of pending transactions and send it to the new Mid-Point (MPM3) during

live migration which re-issues these transactions on the new machine M3. However,

issuing these pending transactions twice (once on M1 and then on M3) can cause

inconsistent end results (e.g., if these transactions include a read followed by a write

to the same block on a disk, re-issuing them will result in second read returning

different value than first read). It also causes significantly more latency during live

migration, because all pending operations are re-issued from scratch.

• Bringing the device into a quiescent state before migration – before freezing

the VM, its virtual device is brought into a state with no pending I/O operations,

termed the quiescent state. To do this, however, the virtual device should be put into a

state where it can’t accept any I/O requests, causing DD to stop issuing I/O operations

to the device. The VM is migrated when all the pending I/O transactions complete.
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After migration the virtual device is again brought into the normal operating mode

causing DD to resume issuing I/O operations. This approach requires that the virtual

device and DD must support such a ‘no more I/O operations’ state. It also increases

VM freeze time because it waits for all the pending I/O transactions to complete.

• Returning the completed I/O transactions – alternatively, MPM1 waits for the

pending transactions to complete while the VM is being migrated. It receives all

the completed transactions and sends them to the new Mid-Point (MPM3), which

in turn returns them to the DD. This approach causes least increase in VM freeze

time because VM migration and completion of pending I/O transactions continue in

parallel. We use this approach for block devices in this chapter.

3.2.2 Device Hot-Swapping

Device hot-swapping permits a VM to dynamically re-wire its virtual to physical device

connections while the device is in operation. This is useful in multiple circumstances, e.g.,

fault maintenance of the device/machine, run-time performance management (e.g., the new

device performs better than the old one), or a hot-swap required because of a higher level

policy change. This chapter uses device hot-swapping to improve the performance of a

running application, where a remote disk being accessed by a VM is hot-swapped with a

local disk to significantly improve its throughput and remove network dependence. Such

transparent hot-swapping requires that a ‘similar’ device be used (e.g., a disk with the same

content as the original disk), implying the need to efficiently transfer the device contents

and state. When the hot-swapping is performed, there could be pending I/O transactions

to the old device and it must be ensured that any state changes made by these pending

transactions to the old device are reflected onto the new device before it is used. The

Netchannel architecture supports multiple implementations of this functionality:

• Weak consistency – the MP can access both the old and the new devices during

hot-swapping (i.e., while the state changes made by pending transactions are being

transferred from the old to the new device). When the complete state has been trans-

ferred, the Mid-point stops using the old device and accesses only the new device.
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This approach, while requiring smaller downtime in device access, can be hard to im-

plement because the MP may have to implement complex semantics, such as deciding

which disk contains the latest data block for a particular read operation.

• Strong consistency – this approach requires that the new device be in complete

sync before hot-swapping can take place. MP does this by first bringing the physical

device into a quiescent state. At the start of hot-swapping, MP queues all transactions

from the DD instead of issuing them to the device and then waits for all pending

transactions to complete. After these are complete, the device is in a quiescent state,

and this state is transferred to the new device. Once the new device has been updated,

the hot-swap takes place and MP starts using the new device by issuing all of the

queued transactions to it instead of to the old device. This is the approach used for

disk hot swapping in this chapter.

For devices like NICs, frequent hot-swapping is reasonable due to their small internal states.

For disks and similarly state-rich devices, hot-swapping will likely remain infrequent.

3.2.3 Transparent Device Remoting

Although Figure 7 shows the device on a remote machine M2 accessed via a Device Server,

device virtualization is not complete without also addressing locally attached devices. In

such situations, virtual device migration presents additional challenges because of the lack of

a device server since the DV accesses the local device directly via local device driver. Hence,

after live migration, the new MP cannot access the now remote device, because there is no

Device Server to provide such access. To solve this problem, we have extended the MP

module to also provide minimal Device Server functionality. The pending I/O transactions

during live migration are handled in the same way as described in Section 3.2.1. In this

configuration, after live migration, the new MP forwards I/O transactions to the old MP

which passes them to the DV which in-turn issues them to the device (see Figure 9 for a

Xen specific implementation). The completed transactions are returned by the old MP to

the new one. This essentially provides transparent device remoting (TDR), where a VM

accessing a locally attached device can continue to access it after live migration despite the
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fact that the device has now become remote.

Apart from supporting live migration for locally attached devices, TDR also provides a

common infrastructure for transparently accessing remote devices present on other machines

running the same VMM. Since the MP also works as the Device Server, it can export locally

attached devices to the DVs present on remote machines which in turn export them to their

guest VMs. Here, Netchannel provides the common infrastructure of Mid-points and the

communication channels connecting them.

3.2.4 Architectural Considerations

Experiments described in Section 3.5 show the simple implementation of Netchannel to be

useful for both disk and USB devices. Several interesting implementation issues arising in

those contexts are discussed next.

Communication Protocol. The Netchannel architecture is independent of the communi-

cation protocol between the Mid-point and the Device Server. We could use device-specific

remote access protocols (e.g., NFS, iSCSI etc. for disks) or more general remote access

protocols (e.g., 9P in Plan 9 [61]) with some device-specific extensions. Similarly, for TDR

operation, the communication channel between the two Mid-points (acting as client and

Device Server) can use one of the protocols described above. In this chapter, we have used

a socket-based client-server communication protocol to implement the Netchannel mecha-

nisms, and we are currently working on implementing them using the more general Plan 9

approach.

Latency and Bandwidth. Since network communications introduce additional latency in

accessing remote devices, a guest application may timeout on pending device requests during

TDR operation. However, we have not observed it for the devices we have evaluated. These

include bulk devices like SCSI and USB disks and isochronous devices like USB cameras.

For the devices evaluated in our research, mechanisms like buffer caching [20] tend to reduce

network bandwidth needs. We also note that future work on virtualized networks will likely

address issues like congestion and isolation in the network, thereby providing further support

for the TDR methods advocated in our work.
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Device Naming and Discovery. Device naming and discovery are essential functions of

TDR. Netchannel is designed to use the naming and discovery protocols provided by under-

lying remote device access protocols. In the current implementation, it uses a combination

of IP and device addresses to create unique remote device identifiers. As we move towards

using 9P for TDR, we will use its implementations of these functionality.

Device Sharing. The TDR feature of Netchannel can allow the remote device to be shared

between multiple VMs. The Mid-point (acting as Device Server) can export the same device

to multiple DVs to enable sharing. It must also handle the device-specific sharing semantics

(e.g., read-only vs. read-write sharing of disks). The Mid-Point’s current implementation

can be extended to support device sharing.

Residual Dependencies and Security. During the migration of locally attached devices

permitting VMs to access their now remote devices leads to residual dependencies. Hot-

swapping can be used to remove such dependencies, which is one reason why Netchannel

supports it.

To provide security through authentication and authorization for accessing remote de-

vices, Netchannel depends on the underlying communication protocol between the Mid-

point and Device Server. Many existing remote access protocols (e.g., iSCSI, 9P etc.)

already provide security measures. Even for the TDR feature, the Mid-Points can use these

to provide desired security guarantees.

3.3 Netchannel Implementation for Virtualized I/O Devices in Xen

To demonstrate the ideas presented above, we have implemented Netchannel and its support

of TDR in the Xen environment. The implementation not only gives VMs transparent access

to remote devices, but also provides for virtual device migration and device hot-swapping

for locally attached devices.

Netchannel-Xen is based on the frontend/backend mode of device virtualization [38], as

shown in Figure 9. Xen virtualizes I/O devices by splitting the device stack at the ‘class-

driver’ level. Special ‘class-drivers’ are used in both Dom0 (SVM) and DomU (GVM). The

‘class-driver’ in DomU and Dom0 are the frontend (FE) and backend (BE), which act as
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DD and DV, respectively. Concrete examples of class-level drivers are block, network, USB,

etc. Figure 9 depicts a client-side BE as a local BE (LBE) and a server-side BE as a remote

BE (RBE).

3.3.1 Transparent Device Remoting

The MP acting as the Device Server MPM1 exports the locally attached device over the

network. The connection information for the remote device provided by MPM1 is specified

in the VM G2’s configuration and passed down to MPM2 using the xenstore utility. MPM2

also maintains generic remote device state and any device-specific states LBE may require.

Every Netchannel communication over the network, then, is preceded by a Netchannel

header. Each such header has a common and a device-specific part. The common part

contains information common to all devices, e.g., request-response id, device id, length of

the data following the header, etc. Examples of the device-specific parts appear later in

this section.

Device-specific actions are linked to Netchannel communications by having device-

specific callback functions implemented for each class of device. The following function

call is used to register the device specific callbacks by MPs (for both client and server):

void register_netchannel_device(struct xenbus_device *xenbus_dev, u64_t
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devid, void *dev_context, netchannel_connect_callback *connect,

netchannel_disconnect_callback *disconnect, netchannel_receive_callback

*receive, netchannel_xmit_callback *xmit, netchannel_migration_callback

*migration, netchannel_hotswap_callback *hotswap);

The first four callbacks (connect, disconnect, receive, xmit) provide TDR functional-

ity, and the last two callbacks (migration, hotswap) provide VDM and DHS functionality,

respectively.

In Figure 9, FE in DomU G2 on machine M2 accesses the device on M1 as if it were a

locally attached device. FE makes requests to LBE via a shared memory communication

channel which are forwarded by the MPM2 (client) to MPM1 (server). The I/O buffers

corresponding to these requests are also shared between FE and LBE. MPM2 also enqueues

this transaction in its list of pending transactions. MPM1 causes RBE to issue the transac-

tion to the device. Upon completion of the transaction, it follows the reverse path. Upon

receiving the transaction, MPM2 removes it from the pending list and LBE returns it to

FE.

For efficiency, in DomO, Netchannel communications and the execution of MP client

and server callbacks are carried out by kernel-level, per-device receive and transmit threads.

The receive thread, for instance, will first perform some checks on Netchannel header, e.g.,

matching a request response id pair, and then forward the actual data contained in each

request to the device-specific callback function for further processing. We next describe the

specific Netchannel devices implemented in our work.

Remote Virtual Block Device Access

Xen virtualizes block devices using block BE and FE drivers. Block device specific

callbacks are implemented for the MP client and servers. For read requests, the LBE

transmit the requests to the RBE via the MP communication channel. For write operations,

the LBE additionally sends the blocks to be written. When the request completes, RBE

sends the result to LBE (along with any blocks read for the read requests).

Remote USB Device Access

USB devices are virtualized at port granularity, using USB BE and FE drivers. The
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USB ports are assigned to guest VMs, and any device attached to a port belongs to the

respective VM. When a device is attached to a USB port, the root hub driver notifies the

corresponding BE (RBE), which notifies the guest FE about the attach event through LBE.

The guest USB driver initializes the remote virtual device via MP channel. The USB drivers

in the guest issue requests using USB Request Blocks (URBs), which the FE forwards to the

RBE via the LBE. For write operations, it also sends the transfer buffer. For isochronous

devices, it additionally sends an isochronous schedule to the RBE. Upon URB completion,

the RBE sends the results back to FE via the LBE, along with any transfer buffer.

3.3.2 Virtual Device Migration

Virtual device migration operates in conjunction with live VM migration in Xen. In Fig-

ure 9, DomU G1 is migrated from M1 to M2 while it is still accessing the block device.

During live VM migration, the VM save process on M1 sends G1’s configuration and mem-

ory pages to M2, and the VM restore process on M2 creates a new VM G2 using the

configuration and memory pages. When the VM is finally suspended during the last phase

of live migration and the channel between FE and RBE is broken, MPM1 transfers the list

of pending block requests to MPM2. It also starts transferring all completed block requests

to MPM2 as they complete instead of dropping them. This however, requires that (1) the

I/O buffers shared between FE and RBE on M1 corresponding to the pending transactions

and (2) the communication channel must be shared between FE and LBE on M2, as well.

To implement this sharing, MPM1 sends the guest page frame numbers (GPFN) of the

shared buffers to MPM2 which maps those pages into its own address space, with the help

of Xen. Similarly, the virtual interrupt shared between FE and RBE on M1 is also shared

between FE and LBE on M2. In addition, MPM1 begins to act like a Device Server and

services the requests from MPM2. Summarizing, the Netchannel implementation estab-

lishes the necessary Mid-Points and communication channels between them, as described

in Section 3.2.1.1, using Mid-Point extensions provided by the developer.

After resuming as VM G2, FE makes further block requests to LBE, which are issued

to the device via RBE as described in Section 3.3.1. However, since the completed pending
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transactions were returned by MPM1 to MPM2 in parallel to live migration, most of the

pending transactions were returned to MPM2 by the time G2 resumed. This causes only a

small increase in latency for completing pending transactions.

3.3.3 Device Hot-swapping

This section describes an implementation of disk hot-swapping, the purpose of which is

to improve VM and system performance. In this scenario, after VM migration, a new

disk partition of the same size as the VM’s current disk size is created on the VM’s new

local machine (M2), and the disk is replicated onto this partition over the network. Block

level replication is used because disk virtualization operates at that level. The guest VM

continues to operate throughout the replication period, of course, since it can continue

to access the remote disk. This masks the potentially large disk replication time, which

depends on the size of the disk and can be done in phases, similar to the pre-copy phase of

live VM migration [16]. Intelligent disk replication techniques [70] can be used to further

reduce overheads, but that is not the focus of this chapter.

At the start of hot-swapping, the MPM2 places the disk into a quiescent state by queuing

the FE requests instead of forwarding them to the RBE. It also waits for all pending I/O

operations to complete. The last phase of block replication is completed to address any

changes made by the I/O operations that were pending at the start of the quiescent state.

At this point, the hot-swap happens, and the virtual device is released from its quiescent

state. Henceforth, the LBE makes I/O requests to its local disk instead of sending them to

the RBE. The disk stays unavailable to the VM during its quiescent period.

3.4 Netchannel Implementation of Pass-Through I/O Devices in Xen

This section focuses on high performance I/O device virtualization because I/O device

performance suffers the most from virtualization overheads [78]. While fully-virtualized

VMs use device emulation to access virtual devices, paravirtualized VMs use a split driver

stack to access them [21, 78]. Both the techniques, however, require switching of control

between the guest VM and the service VM, providing the major source of overhead. For

example, the network interface card (NIC) throughput decreases by almost 70% because of
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NIC virtualization [85]. Such performance drop may become a bottleneck in the overall VM

performance and may not be acceptable to some performance critical VMs. For example, a

web server may not be able to perform optimally because the virtual NIC is the throughput

bottleneck. Similarly a DB server may have a virtual disk as bottleneck.

The problem of device virtualization scalability is even worse with multicore systems

and the consequent increase in the number of guest VMs. Multicore systems, however,

are also device rich i.e. they have multiple devices in the platform. For example, modern

chipsets even have builtin NICs inside them and there are future plans for integrating GPUs

as well. Given this scenario, to improve I/O device performance, a performance critical VM

can be given direct access to an I/O device. We term this as pass-through access since VMs

bypass the VMM to access the device. The VM can access and control the device directly

which would provide close to non-virtualized device performance.

There are multiple issues with this approach. First, giving pass-through access of a

device to a VM renders the device unsharable for most of the devices, e.g., a NIC device

cannot be shared between multiple VMs if they are all accessing it directly. This would

break one of the fundamental advantage of virtualization that resources can be shared

between multiple VMs. Second, it creates a security and isolation problem in computer

systems where an IOMMU [21] in not present. Because of absence of the IOMMU, devices

can access any part of system memory. Since the VM has direct access to the I/O device,

it can program the device to do a DMA to regions of memory that it does not own, causing

a major threat for overall system security. Third, unmodified VMs having direct access

to physical I/O devices are ‘tied’ to the physical machine. As a result, they can not be

migrated to other machines because unmodified VMs are not aware of migration and the

physical device can not be migrated to the other machine with the VM. For example, when

the VM’s device driver fails when it attempts to access its device on the destination machine.

The first two issues can easily and much more efficiently be solved by hardware en-

hancements. For example, regarding the first issue, I/O devices can be enhanced to support

virtualization of I/O devices in the device itself. This will enable sharing of I/O devices

while still having pass-through access to them. In fact, we are already seeing emergence
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of such ‘smart’ devices in Infiniband controllers and self-virtualized NICs [66]. The second

issue can be solved by the IOMMU that is being integrated into the upcoming chipsets by

all major manufactures (e.g., Intel, AMD, etc.). Once an IOMMU is in place, devices will

not be able to access any arbitrary part of memory, but instead, will have to go through the

IOMMU which can be programmed to enforce isolation among different VMs. The third

issue of VM migration can be solved by a variant of the Netchannel architecture described

next.

Live VM migration with pass-through access requires that during migration, a similar

physical device (e.g., a NIC of the same model) be present on the destination host, and that

device hot-swapping be performed between the devices on source and destination hosts.

This will switch the VM’s I/O device from source to destination machine and allow the

VM continuous access to the I/O device after migration. The problem with this approach

is that because of pass-through access, the VMM is not involved during I/O device access

causing the VMM to be completely unaware of the device state. Therefore, during live VM

migration, device hot-swapping cannot be performed because the VMM can not transfer

the device state to the destination device.

The Netchannel architecture provides a solution to this problem by enabling device hot-

swapping of pass-through devices during live VM migration. As described in Section 3.2, the

Mid-Point (MP) module inserted between the VM’s device driver and the physical device,

keeps track of all the device accesses and maintains the device state. With pass-through

access, however, the MP cannot reside in the SVM, because the SVM is not involved during

pass-through access. Further, the MP cannot reside inside the guest VM because this would

require modifying the VM. Netchannel solves these restrictions by running the MP inside

the virtual BIOS (VBIOS) area of the guest VM using the Integrated Device Model (IDM)

described next.

Integrated Device Model The Integrated Device Model (IDM) is similar to pre-virtualization [49]

which allows device models (DV module) to run inside the guest VM’s address space with-

out modifying it. The device models are run inside ‘special’ memory areas of the VM, e.g.,
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Figure 10: Netchannel Implementation for Pass-Through Devices in Xen

virtual BIOS (VBOIS) area, I/O memory area etc. The advantage is that the I/O virtual-

ization overhead can be significantly reduced because now every device access by the VM

can be handled by the VM itself (hence eliminating the overhead of domain switching to the

SVM), and in addition, running the device model in the special memory regions keeps the

VM unmodified. The device model integrated inside the VM can handle non-I/O requests

such as modifying certain device registers, setting up DMA descriptors, etc. For actual

I/O requests, the device model can call the DV module inside the SVM which can perform

the actual I/O. As a result, the Integrated Device Model enables the I/O virtualization

performance of fully-virtualized VMs to be similar to para-virtualized VMs.

3.4.1 Pass-through Access and Device Hot-Swapping of NIC Using IDM

This section describes the implementation of hot-swapping of pass-through devices in Xen

using IDM and using a NIC device as an example. Figure 10 shows the implementation of

Mid-Point (MP) using IDM and device host-swapping during live VM migration. On host

M1, an unmodified VM (hardware virtual machine or HVM) is provided pass-through access

to a NIC. However, to enable device hot-swapping, a MP module has been inserted into

the VBIOS area of the HVM using IDM. MP runs a partial device model which maintains

the complete state of the device in software. The state of a device is device specific and
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typically consists of values of all the registers of the device, the pending I/O descriptors

and any state machine (including device content) the device may have. We only partially

emulate it, to keep track of the device’s exact state at any point in time. The partial device

model intercepts every access to the device by the HVM’s device driver and updates its

software state before passing on the access to the device. To ensure this, the MP is given

direct access to the NIC but the HVM driver is given only virtualized access to it. This is

achieved by creating twice the size of NIC’s register space. The first half is unmapped and

accessible to the legacy driver of HVM while the second half is mapped to the physical NIC

and accessible to the MP device model.

When the HVM device driver accesses the NIC through memory-mapped I/O, it gener-

ates a VMexit (because the address is unmapped, and control is transferred to Xen. Since

the address belongs to the pass-through NIC, Xen returns control to the MP module in the

VBIOS area instead of sending the control to the DV module in Dom0. The MP device

model updates the software state of the NIC (register values, DMA structures, etc.) ac-

cording to the access made by the HVM driver and makes the request to the NIC. When an

interrupt is generated by the NIC, Xen calls an interrupt handler in the MP device model

instead of the HVM driver’s interrupt handler. The MP interrupt handler again updates

its software state according to the interrupt before transferring control to the HVM driver’s

interrupt handler. This ensures that the MP device model always has a exact snapshot of

the NIC’s state.

It is worth noting that inserting a MP module between the HVM driver and the NIC

causes performance to drop compared to true pass-through access without MP. However, the

experimental evaluations discussed in Section 3.5.4 show that the performance overheads

are minimal and NIC throughput and latency are close to true pass-through NICs.

Next we describe the device hot-swapping mechanism during live VM migration. As

shown in Figure 10, when the live migration of HVM is initiated from host M1 to M2,

the MP module is informed about the event. During the last phase of live migration, the

HVM is suspended and the remaining pages of the VM is transferred to M2. A similar

NIC (same make and model) is present on host M2. Before the HVM is resumed on M2,
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the MP module is notified of the resume event. MP module accesses the new NIC and by

configuring it, brings it into the same state as the one NIC on M1. This involves configuring

the various registers with the same values as the old NIC and configuring all the pending

I/O operations (DMA structures) so that they can be accessed by the new NIC. When the

MP module returns from the resume operation, the HVM is resumed. The HVM driver

again starts accessing the NIC through the MP and since the new NIC is in the same state

as the old NIC, the HVM driver remains completely oblivious to the device hot-swapping

during the live migration.

3.5 Experimental Evaluation

This section quantifies the overheads and performance of the TDR functionality of Netchan-

nel implementation in Xen, demonstrates the benefits of VDM during live VM migration,

and evaluates overheads and benefits of DHS. Experiments are conducted using two hosts,

which are Dell PowerEdge 2650 machines connected with a 1 Gbps gigabit Ethernet switch.

Both hosts are dual 2-way HT Intel Xeon (a total of 4 logical processors) 2.80GHz servers

with 2GB RAM running Xen3.0. Dom0 and DomU both run a para-virtualized Linux

2.6.16 kernel with a RedHat Enterprise Linux 4 distribution. Dom0 runs a SMP kernel

while DomU a uni-processor kernel. Adaptec AIC7902 SCSI (36GB) disks are used for

block device experiments. Both hosts have EHCI USB host controllers, and we use a USB

flash disk and a USB camera to evaluate remote USB device access.

Experiments are divided into 3 sections. The first section measures the overhead and

performance (both latency and throughput) of TDR for both block and USB devices using

micro-benchmarks. Throughput is measured with the Iozone 1 file I/O benchmarks for ext3

file systems. The next section evaluates VDM by live migrating a database server in the

3-tier RUBiS application. Finally, the third section shows the effects of disk hot-swapping

in the database VM of the RUBiS application from a remote disk to a local disk.

1http://www.iozone.org/
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3.5.1 Transparent Device Remoting

3.5.1.1 Netchannel Overheads

The inherent overheads incurred by the Netchannel implementation are derived from the

need to encapsulate I/O blocks with additional control information. This includes the

network header (TCP/IP and Ethernet, 40 + 16) bytes and the Netchannel header bytes.

The latter differ depending on the device being accessed remotely, since they also contain

some device-specific information. For Block devices, the Netchannel header is comprised of:

28 (request) + 4 (response) = 32 bytes.

On average, one request transfers 4 blocks of data over the network, where block size is

4096 bytes. Hence the overhead for block devices is:

((no of packets * network overhead) + Netchannel overhead)/(total useful data

transferred) = (5 * 56 + 32) / (4 * 4096) = 1.904%

For USB devices, the Netchannel header consists of:

16 (request) + 16 (response) bytes.

USB devices transfer data in URB’s transfer buffers. For isochronous transfers, there is an

additional transfer of the isochronous schedule. Experiments with the USB bulk (disk) and

isochronous (camera) has shown that on average, they transfer 3050 and 4400 bytes of data

per URB request, respectively. Hence the overhead for USB bulk devices is:

((no of packets * network overhead) + Netchannel overhead)/(total useful data

transferred) = (2 * 56 + 32) / (1 * 3050) = 4.721%

and the overhead for USB isochronous devices is:

((no of packets * network overhead) + Netchannel overhead)/(total useful data

transferred) = (3 * 56 + 32) / (1 * 4400) = 4.545%

The straightforward computations in this section demonstrate that the additional band-

width overheads incurred by Netchannel encapsulation are low, never exceeding more than

a few percent.
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Figure 11: Write throughput of Block devices (record size=8MB)

3.5.1.2 Block Device Performance

To measure the throughput of remote virtual block devices (RVBDs) provided by Netchan-

nel, we boot a guest VM from a remote disk and run Iozone benchmarks. Dom0 is configured

with 512 MB of memory while the guest VM uses 256 MB. Read, write, buffered read, and

buffered write tests are performed. Iozone performs these tests for different file sizes and

different record sizes. We compare the RVBD throughput with locally attached disk (local

VBD) and an NBD (network block device) disk which is directly accessed from guest NBD

client.

The results for the write tests are shown in Figure 11 for different file sizes with a record

size of 8 MB. Throughput is shown on a logarithmic scale. The results for other tests and

record sizes show similar patterns and for brevity, are not included here.

Throughput for file sizes less than 64MB is quite high, and it is similar for local VBD,

RVBD, and NBD. This is because of buffer caching in the Linux, which caches the files in
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Figure 12: Write throughput of block devices without buffer caching (record size=8MB)

memory and so avoids disk access for subsequent file accesses. However, throughput sharply

decreases for file sizes greater than 64 MB, because for bigger file sizes, the buffer cache

cannot contain the file, which means that file contents must be pushed to the disk. Hence

the actual disk I/O throughput starts to dominate. For the file size of 512 MB, RVBD and

NBD have similar throughput, offering about 60% of the local VBD case.

Actual device I/O throughput without buffer caching is shown in Figure 12, on a nor-

mal scale. Throughput without caching is drastically lower than that with caching. The

performance of NBD and RVBD remain similar for all file sizes, and show the same relative

performance compared to local VBD for other record sizes. For the record size of 8 MB,

throughput is about 65% of local VBD throughput.

We conclude that RVDB and NBD offer performance comparable to that of locally

attached disks, in part due to optimization techniques like buffer caching. This clearly

demonstrates the utility of the proposed Netchannel implementation for transparent remote
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disk access.

3.5.1.3 USB Performance

Remote USB (RUSB) bulk device experiment uses a USB flash disk with the same exper-

iment setup as in the previous section. The USB disk (a 1GB Sandisk cruzer micro) is

attached to the USB port of a machine, and it appears as a local USB disk to the guest

VM on the other machine.

Figure 13 depicts the throughput of USB vs. RUSB disks, using a logarithmic scale.

The results are from the Iozone benchmark’s write test with a record size of 4 MB. Results

are very similar to those seen for block devices. For small file sizes, throughput is similar for

USB and RUSB disks because of buffer caching. For larger file sizes, throughput decreases

sharply because of the actual device I/O. For the RUSB case, the decrease in throughput is

higher. For the file size of 256 MB, RUSB throughput is approximately only 48% of USB

throughput. Iozone throughput without buffer caching shows patterns similar to those of

block devices (see Figure 12) and for brevity, they are not included here.

The Linux USB storage driver used in this experiment does not support multiple out-

standing URB requests. Instead, it issues an URB to the USB FE and waits for it to com-

plete before issuing another one. To optimize sequential I/O throughput for RUSB bulk

devices, we can use a USB storage driver which supports multiple outstanding requests.

An alternate set of measurements demonstrates the generality of the Netchannel solu-

tion, by measuring the TDR throughput of a USB camera as an example of an isochronous

device operating over Netchannel. We use a Logitech QuickCam web-camera and measure

its throughput for both local and remote access. The results are shown in Figure 14. Since

this camera only supports two small image sizes, its bandwidth requirements are modest.

The throughput for Netchannel is about 83% of local throughput for image size 320x240

and about 90% for image size 640x480.

The differences in throughput reductions experienced by disks, USB bulk devices, and

USB isochronous devices for TDR access demonstrate the fact that actual performance
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Figure 13: Write throughput of Netchannel USB devices (record size=4MB)

depends on the combination of three principal factors: (1) network bandwidth, (2) the ap-

plications’ and device drivers’ ability to efficiently utilize network bandwidth (by supporting

multiple pending I/O requests), and (3) actual device throughput.

3.5.1.4 RVBD and RUSB Latencies

This section contains detailed latency measurements when accessing remote vs. local de-

vices. To minimize TCP/IP buffering latency, we use the TCP NODELAY socket option.

End to end latency encompasses the entire time between the FE sending a request to the

device and the FE receiving the device’s response. We divide this latency into stages and

calculate the time spent in every stage. In Xen, the stages are Frontend (time spent by the

FE driver in GVM), Network (time spent by the TDR processing and network propagation

delay), and Backend (time spent by BE processing and actual I/O operation). Every stage is

measured individually, but we report the combined latency in both the forward (towards the

device) and the backward (towards the FE) directions for each stage. Latency is measured
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Figure 14: Throughput of remote USB camera using Netchannel

using the sched clock() function which gives synchronized time in the guest VM as well as

in Dom0. To remove the effects of large latencies due to infrequent system activity, we

sample the latency for 100 transactions to the device and compute the average.

Figure 15 shows the normalized latencies of accessing 4KB disk block incurred in various

stages of local VBD, RVBD, and NBD devices. The total access latency is slightly lower for

NBD compared to RVBD since NBD server runs at the application layer and can utilize file

system provided caching. It is apparent that the total increase in RVBD and NBD latency

are mainly due to additional time spent in the Network stage. The total RVBD access

latency is only 25% more than the local VBD.

Figure 16 shows the normalized latency for accessing 4KB data incurred in various

stages of accessing local USB and RUSB devices. The normalized latency of USB devices

is significantly more than block devices because blocks device drivers transfer significantly

more data with every request. The increase in I/O latency for the RUSB case is again due

55



 0

 0.5

 1

 1.5

 2

TotalBackendNetworkFrontend

N
or

m
al

iz
ed

 L
at

en
cy

 (
M

ill
is

ec
on

ds
)

Various stages of accessing the block device

Local VBD
Netchannel RVBD

NBD

Figure 15: Latency incurred by various components in accessing block devices (millisec-
onds)

to Netchannel processing and the extra copying of data over the network. The total USB

access latency is 66% the RUSB access latency.

We see that for both block and USB devices, the majority of I/O access latency is in-

curred in servicing an actual I/O request by the device and in case of remote devices, by the

network (protocol stack processing and propagation delay) delay. The time taken by the

device is characteristic of the device and cannot be improved by software solutions. The la-

tency induced by the network, however, can be reduced by using low latency communication

technologies like RDMA, Infiniband, etc.

3.5.2 Virtual Device Migration

A strong advantage of Netchannel is the ability to migrate virtual devices while they are

being used. We evaluate the effects of such migration with a multi-tier web application called

RUBiS that heavily accesses a disk, and we show how the VM running the application can
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Figure 16: Latency incurred by various components in accessing USB devices (millisec-
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be migrated seamlessly without any disconnection from the device and hence, without any

significant degradation in its performance.

Application Description. Many enterprise applications are constructed as multi-tier

architectures, with each tier providing its own set of services. A typical e-commerce site,

for instance, consists of a web server at the front-end, a number of application servers in

the middle tier, and database servers at the backend [11]. In this environment, it may

be desirable to migrate one or more components in a tier to another physical machine

for performance (load balancing, etc.) or for maintenance (hardware upgrades, applying

software patches, etc.). Experiments with live migration in multi-tier applications use the

RUBiS open source online auction benchmark [12]. It implements core functionality of an

auction site like selling, browsing and bidding.

Figure 17 shows the basic setup and the live migration of a MySQL server from node A

to node B. The workload is generated using httperf running on two separate client machines.
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Figure 17: MySQL Server migration in RUBiS

Each of the httperf instances create 30 parallel sessions that issue user registration requests

to the RUBiS web-server. The web-server forwards the requests to the two application

servers, which in turn communicate with the MySQL server backend. The MySQL server

runs in a guest VM and to satisfy client requests, heavily accesses a database of size more

than 6 GB which is stored on a local disk. In order to demonstrate the seamless migration

of block devices, at some point during the experiment, the MySQL server VM is migrated

from host A to host B. For this migration, we evaluate the change in throughput seen by the

clients and time taken in handling pending I/O requests. After migration, at some point

we perform a disk hot-swapping. The results are shown in Figure 18.

Figure 18 shows the drop in total throughput (measured in response/sec) due to this

migration. Note the change in performance in the pre-copy phase, when the memory pages

of the MySQL server VM are copied to node B. This phase lasts for about 6 seconds and
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Figure 18: Effect on RUBiS throughput due to MySQL Server migration and hot-swapping

during this phase; the throughput drops by about 28%. In the stop-and-copy phase, further

throughput reductions are experienced. This phase lasts for approximately 105 milliseconds.

It includes the wait time for the Mid-points to handle the pending I/O requests which is

approximately 13 ms. This wait time is actually dependent on the number of pending block

requests which was on average 6 in this test. These requests are ‘returned’ to the VM at

its new location. We observe that because of virtual device migration, the database server

seamlessly accesses the disk remotely.

However, we do not observe any significant reduction in disk throughput. This is because

of the buffer caching effect (discussed in Section 3.5.1.2), which causes the throughput for

remote disk access (the throughput after ”Migration completes” in Figure 18) to be same

as the throughput for local disk access (before VM migration).

We further compare the time taken to complete pending I/O transactions by our ‘return’

approach with the approach where all the pending I/O transactions are reissued again after

live migration. Current block FE driver buffers all the pending I/O transactions and when

resuming after live migration, it reissues them to the device. We ran Iozone benchmark
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Table 2: Time taken in handling pending disk requests during Iozone VM migration
Pending reqs. Incomplete reqs. Return time Replay time

5 0 1.94 ms 23.43 ms
12 0 2.74 ms 40.29 ms
16 1 12.93 ms 45.01 ms
23 5 23.41 ms 81.23 ms
26 2 16.69 ms 85.46 ms
32 7 29.24 ms 96.90 ms

during live VM migration and measured the time taken inside the guest VM. Table 2

shows the comparison of time taken with varying number of pending I/O requests. We

observe our ‘returning’ approach takes significantly less time to complete the I/O operations

compared to ‘reissuing’ approach. This is because in ‘return’ approach, most of the pending

I/O operations are already complete when the VM resumes on the new machine while in

’reissue’ approach we have to reissue all the pending operations from scratch and wait for

their completion. The column ‘Incomplete reqs.’ lists the incomplete requests at the time

of VM resumption for ‘return’ approach. We see that the number of incomplete requests

is significantly smaller than the total pending requests which make the ’return’ approach

less time-consuming. By reducing the time to complete pending requests, ‘return’ approach

significantly improve the device availability for the VM during live migration.

3.5.3 Device Hot-swapping

Figure 18 also shows the results of disk hot-swapping of database VM. In this experiment,

the MySQL server VM’s remote disk is hot-swapped with a local disk while the server is

running. However, to simplify disk replication required for hot-swapping, we only make

read requests to the database server from the httperf clients. We do block-level replication

of the disk used by the MySQL server from host A to a disk on host B using dd utility in

Linux before starting the experiment.

Interestingly, the throughput does not drop during hot-swapping despite the device going

into quiescent state. This is because the device’s quiescent period lasts only about 5 ms,

which is not noticed by the clients due to buffer caching effects. Even after hot-swapping,

there is no change in the client observed throughput. This is again because of the buffer
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caching effect (discussed in Section 3.5.1.2), which causes the throughput for remote disk

access to be same as the throughput for local disk access.

To measure the throughput effects of device hot-swapping on disk access (without any

caching), we use Iozone to measure disk throughput before VM migration, after VM mi-

gration and after disk hot-swapping. Iozone is run inside guest VM to measure the disk

throughput as seen by the guest VM. The results are shown in Figure 19.
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Figure 19: Effects on Iozone throughput due to VM migration and disk hot-swapping (file
size = 32MB, test=read, record size = 8MB)

Figure 19 clearly shows the throughput benefits derived from device hot-swapping. The

throughput level of Iozone drops after VM migration and is restored after device hot-

swapping. The number of pending I/O requests at the start of the quiescent state is ap-

proximately 30 in this test, and the measured downtime for the disk because of this state

is 25 ms.

3.5.4 Pass-Through Access to NIC

To evaluate the performance of Netchannel pass-through access, we used an IBM Think-

Center workstation with an Intel Pentium Dual-Core processor with 1 GB RAM and Intel
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Figure 20: Latency overhead of Netchannel pass-through access and comparison with
IOEMU based access

Pro/1000 NIC with i82573 controller. We used the latest version for Xen as of May 2006

and 2.6.16.13 kernel version for Dom0 and HVM. The HVM domain was booted with 256

MB of memory and was given pass-through access to the NIC. Three cases are evaluated

and compared; (i) Netchannel’s pass-through access to NIC as described in this section, (ii)

Linux native access to NIC without any virtualization layer, and (iii) Xen’s IOEMU based

emulation of NIC. To measure the network performance, we used iperf traffic generator

with TCP/IP traffic from a non-virtualized machine to the HVM over a gigabit network.

To avoid any timing related virtualization, all the timing related measurements were done

on the non-virtualized machine.

Figure 20 and Figure 21 show Netchannel’s network latency and throughput overheads

respectively, compared to Linux native and Xen’s IOEMU access. Figure 20 compares

the minimum, average and maximum latencies for the three access methods. We see that

Netchannel’s pass-through access latency is very close to Linux native compared to Xen

IOEMU. The average latency overhead for pass-through access is only about 4% com-

pared to Linux native demonstrating the efficiency of Netchannel. Figure 21 compares the

throughput overhead of Netchannel’s pass-through access to Linux native and Xen IOEMU
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Figure 21: Throughput overhead of Netchannel pass-through access and comparison with
IOEMU based access

for different packet sizes. We see that for 64 byte size packets the throughput of all 3

methods is the same because the access overhead is negligible compared to processing time

for packets which is the same for all the 3 cases. For 512B and 8KB size packets, how-

ever, we see that Netchannel’s pass-through throughput is almost similar to Linux native

while Xen’s IOEMU throughput is significantly less than the other two cases. These results

demonstrate that although the MP module in Netchannel creates processing overheads for

maintaining the device state of the NIC, these overheads are very minimal compared to

true pass-through access.

Next we evaluate the CPU overhead of Netchannel’s pass-through access of NIC devices.

The experiment is the same as the throughput experiment. Figure 22 shows the normalized

CPU overhead (CPU cycles per Mbps of throughput) of pass-through access and compares

it to Linux native and Xen IOEMU. We see that for all packet sizes, pass-through access has

significant CPU overhead compared to Linux native (39% more CPU for 512 byte packets)

but still consumes significantly less CPU than Xen IOEMU (62% less CPU for 512 byte

packets).
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Figure 22: Normalized CPU overhead of Netchannel pass-through access and comparison
with IOEMU based access

3.5.5 Evaluation Summary

These results show that Netchannel provides an efficient and low overhead mechanism for

providing transparent device remoting of locally attached devices for virtualized access.

Further, They show that for complex applications like RUBiS, virtual device migration

via Netchannel is not only seamless and transparent to guest VMs, but is also perfor-

mance transparent. Further they show that device hot-swapping requires un-noticeably

small downtime but improves true device throughput (without caching) significantly. They

also show that Netchannel provides a low overhead mechanism for pass-through access to

I/O devices while still be able to migrate VMs by using device hot-swapping. These features

are attained without the need for any special hardware.

3.6 Related Work

There has been significant work on live VM migration support in various VMMs, includ-

ing VMotion in VMWare’s ESX server [84] and live migration in Xen [16]. According to

our knowledge, however, these solutions still do not handle pending I/O transactions dur-

ing live migration and hot-swapping, instead relying on the error recovery mechanisms of
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higher layer driver stacks. Further, these solutions do not handle locally attached devices,

instead relying on costly ‘networked’ solutions (e.g., SAN or NAS for storage devices). The

Netchannel architecture improves these VMMs with VMM-level handling of I/O devices

during live migration and with additional migration support for locally attached devices.

Nomad [32] enables live migration of VMM pass-through network devices, depending

heavily on the intelligence in the Infiniband controller. Netchannel’s more general approach

depends only on the underlying device virtualization layer, thereby addressing arbitrary

devices. Previous work on hot-swapping [6, 64] has targeted the run-time exchange of

software modules or objects, rather than the physical devices addressed by our work.

Multiple protocols exist for remote device access. There are device specific solutions

like iSCSI, NBD, and NFS [72] for storage,more general remote access protocols like 9P in

Plan 9 [61], and device access via web services. The Netchannel architecture can utilize any

of these solutions and maintain their device states. Netchannel differs in that it does not

depend on the network stacks in the corresponding guest OS for remote device access, and

therefore, does not have the guest OS dependencies present elsewhere. Instead, Netchannel

relies only (1) on the device virtualization (DV) module and (2) on network stack being

present in the VMM.

Finally, our TDR functionality is similar to methods like USB/IP [29], which enable

remote access to USB devices. The comparative advantage of the Netchannel architecture

is that it utilizes the pre-existing device virtualization (DV) module to provide Device Server

functionality instead of demanding the creation of an entirely new solution. One view of the

TDR functionality, therefore, is that it generalizes USB/IP to work with arbitrary devices

and in addition, supports live VM migration.

3.7 Summary

This chapter presents a general mechanism, termed Netchannel, to provide location trans-

parency for I/O devices in virtualized environments. Netchannel enables transparent (i.e.,

not visible to guest operating systems) and continuous access to I/O devices during live

VM migration for both locally attached devices and networked devices. Netchannel also
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supports seamless hot-swapping of devices and provides a common infrastructure for trans-

parent device remoting of locally attached devices. Using the Integrated Device Model,

Netchannel enables live migration of unmodified VMs having pass-through access to I/O

devices by doing device hot-swapping along with VM migration. Particular advantages of

Netchannel are its guest OS-agnostic approach and its independence of potentially costly

hardware support for remote device access.

To demonstrate Netchannel functionality for virtualized devices, it is implemented in

Xen for block and USB devices. Virtual device migration, when applied to complex multi-

tier web services like RUBiS, cause little or no effects on application behavior and per-

formance. In addition, for I/O-intensive applications, virtual device migration is supple-

mented with device hot-swapping, to remove negative performance effects due to remote

device access. Finally, for remote access to block and USB devices in Xen, the Netchannel

performance seen is similar to that of local devices accesses, because of caching effects. To

demonstrate Netchannel functionality for pass-through devices, it is implemented in Xen

for NIC. Results show that Netchannel overheads are minimal making the NIC perform

very close to unvirtualized access.

Netchannel significantly improves the manageability of virtualized systems by enabling

live migration of VMs using virtualized as well as pass-through devices. However, VM mi-

gration itself is insufficient to improve overall management of virtualized data-centers. This

is because, there are multiple management solutions in modern data-centers operating in

‘silos’ which do not coordinate with each other. This lack of coordination results in ineffi-

cient management actions, e.g., inefficient VM migration decisions. A generic coordination

architecture is required to help these management application coordinate with each other to

take more efficient management actions, resulting in overall improvement in manageability

and reduction in development and administration cost of management applications. The

next chapter describes such a coordination architecture, termed vManage, and using this

architecture, provides a solution to one of the most important management problems in

virtualized data-centers.
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CHAPTER IV

vMANAGE: COORDINATED CROSS-LAYER MANAGEMENT IN

VIRTUALIZED SYSTEMS

The previous two chapters describe Sidecore and Netchannel, two VMM-level techniques to

enhance the virtualization of computational cores and of I/O devices in future many-core

systems. These techniques provide efficient methods for utilizing cores and I/O location

transparency, both of which enhance the flexibility and manageability of these resources.

This chapter describes the logical next step in this research, since exploiting such improved

flexibility and manageability is difficult without also making it easier to actually manage

VMs and the virtualized platforms on which they run. Further, to demonstrate scalability,

we go beyond single platforms to entire blade servers and ultimately, to virtualized data-

centers.

The specific technical contribution provided in this work follows a vision in which larger

systems are managed by coordinating a federated set of management entities, across the

different levels of abstraction of hardware, to VMM, to VM, to applications, and across

different subsystems, such as platform- vs. server-level controllers. The vision is both prac-

tical, in that current management systems are naturally structured in this fashion, and it

is scalable, in that centralized control cannot scale to continuously manage the hundreds

of thousands of manageable entities (e.g., VMs running on cores) present in large-scale

data-centers. Instead, we design and implement a software architecture for coordinated

management, termed vManage. By using vManage’s approach and mechanisms, multiple

management solutions in a data-center can coordinate with each other to take more effi-

cient management actions, thereby reducing the overall cost of management. Specific use

cases explored and evaluated with vManage leverage the improvements in flexibility and

manageability attained with our earlier work, by providing a solution for coordinated VM

and host provisioning, including performing VM migration so as to take into account both

67



VM-level and host-level attributes and requirements.

4.1 Background

The effective use of IT infrastructures strongly depends on easily and efficiently managing

server hardware, system resources, and applications. However, rising complexity and scale

in today’s enterprise data centers has led to increased costs for management, and in some

cases, it consumes the largest fraction (60-70%) of IT budgets [52]. Additional challenges

are introduced by the adoption of virtualization in enterprise systems, which enables new

levels of flexibility like dynamic VM migration [16] and other runtime changes in mappings

between virtual and physical resources [44]. ‘Cloud computing’ and its abstractions further

extend the domain [3].

Reacting to these trends, a spectrum of management solutions has been developed and

deployed, e.g., the range of operations required to maintain the whole system through its

lifecycle phases [39] – bring up, operation, failures/changes, and retirement. These solu-

tions can be broadly classified as providing platforms management, virtual machine (VM)

management, or application management. Examples include power and thermal manage-

ment at the platform level [65, 53], VM provisioning and migration at the VM management

level [83], SLA (service level agreement) management at the application level [46, 15], and

resource provisioning for multi-tier applications [98, 88, 37]. Table 3 summarizes the scope

and examples of these different classes, where it is critical to realize that each of its en-

tries represents substantial industry investments in improving the ways in which platforms,

systems, and applications are managed.

Two basic issues with current management approaches and solutions are (1) the presence

of solution silos and (2) the resulting autonomous operation of methods used within such

silos. Concerning (1), while each of the individual solutions shown in Table 3 provide

improved and required functionality, the autonomous actions taken by each can lead to

ineffective management in today’s increasingly complex data centers. Concerning (2), it is

neither desirable nor viable to integrate the rich and useful management solutions already

present in each such silo, for practical reasons like the need for concurrent development
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Table 3: Management Classification
Mgmt. Class Function Examples

Platforms Manage hardware Server config, HW monitor,
Mgmt. resources Power,thermal mgmt.

Virtualization Manage VM VM provisioning, runtime
Mgmt. resources monitoring, retirement,

App/Service Manage application SLA management,
Mgmt. resources patch updates, backup

and progress and for theoretical reasons like the difficulty of finding effective and general

methods for controlling multi-layer systems and applications [23].

vManage is a VMM-level architecture and approach to managing complex systems and

applications. It directly addresses the two issues raised above, by offering support at both

the levels of mechanism and policy:

1. Coordination Architecture and Mechanisms: vManage provides a simple set of mecha-

nisms for coordinating, rather than integrating, the actions taken by different manage-

ment layers and methods. Coordination policies are embedded in mediation brokers

and management VMs, and they are enabled by coordination channels.

2. Dynamic Coordination Assessment: vManage also offers a rigorous approach to as-

sessing coordination actions before carrying them out, the objective being to carry

out such actions only if they are likely to have their intended effects. For example,

while doing VM migration, perhaps to reduce power consumption via consolidation,

the dynamic assessment of future resources available on a target platform is used to

prevent undesirable action effects like VM ’ping-ponging’.

vManage’s VMM-level support for lifecycle management enables practical approaches to

coordinating across different management subsystems – via its management architecture. At

the same time, vManage does not impose the disruptive requirement to re-architect existing

solutions. Its open nature is in contrast to proprietary approaches to interfacing across dif-

ferent management domains [40], and/or the use of system-specific implementations which

often limit desired functionality extensions or generalizations. The HP PowerRegulator

for example, implements power management in the firmware of the processor and has no
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feedback about how its power management decisions are affecting the SLAs of applications

running on top of it. vManage, in comparison, encourages solutions in which coordinated

cross-layer management can take into account VM, application, and host metrics.

vManage leverages rich prior work in the domains of adaptive and autonomic sys-

tems [75, 39], but implementation uses a light-weight approach suited to the VMM and

system levels it targets, perhaps even enabling future hardware support for select vManage

functions. vManage makes the following technical contributions:

• vManage extends the design of virtualized systems to achieve cross-layer, coordinated

management. Extensions include (i) the introduction of management coordination

channels to define seamless communication between management layers abstracted

from underlying implementation and platform details, (ii) mediation brokers that

define policy managers to perform coordination across layers, and (iii) a per platform

management VM (MVM) responsible for overall management and coordination of the

system.

• A case study application of vManage provides effective methods for VM placement

and dynamic provisioning in data centers, considering both VMs’ SLAs and platform

metrics (power, reliability). For such a vManage application, policies using vManage’s

methods for dynamic action assessment are shown to satisfy the key constraint of

stability desired for online management methods.

• A prototype open source implementation of vManage realized in the Xen environment

offers channel libraries and policy modules embedded in a separate management VM,

Dom-M, which is also enabled as a virtual appliance. Evaluation of sample vManage

policies for power and fault management show improved management & data center

efficiency compared to the state of the art. For example, it shows that novel SLA

based power management policies enabled by vManage provide better power savings

compared to traditional utilization based policies. Microbenchmark studies and qual-

itative evaluations show that vManage’s proposed design extensions to virtualization

infrastructures show improved benefits at acceptable overheads.
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Finally, vManage addresses known challenges associated with system management includ-

ing (i) dealing with heterogeneous management entities across hardware/firmware, VMM,

and guest VMs, (ii) dealing with insufficient privileges and conflicting management actions

of VMs, and (iii) lack of visibility into the SLA and performance requirements of the VMs’

applications at the management hardware layer. Going beyond such mechanism-level con-

tributions, vManage’s dynamic action assessment constitutes a first step toward providing

ways in which semantic issues may be addressed when faced with coordinating different

management policies.

This chapter demonstrates concrete benefits derived from using vManage’s coordination

approach to system management. Coordination across solution silos can avoid redundancy

and conflicting actions. Power management provides a concrete illustration of this problem,

where management agents in guest VMs (e.g., the Linux ondemand governor [53]) react to

local resource usage and make changes to actuators (e.g., CPU power states) associated

with virtualized hardware. The virtualization layer may in turn, perform its own power

management across a collection of VMs, for example, by migrating virtual machines to

reduce power. At the physical platform layer, hardware controllers may manage power based

on aggregate information visible at that layer. As shown in this chapter, with vManage,

algorithms can be realized that properly coordinate such actions, for cluster-size and in the

future, data center-size systems. Similar scenarios can be identified for other management

applications.

Specific performance results attained with vManage in the context of VM provision-

ing show benefits that include the following: (1) SLA-based power regulation enabled by

its cross-layer coordination obtains improved (about 8% more in small-scale experiments)

power savings compared to traditional utilization-based policies, (2) novel VM migration

methods implemented with vManage can resolve conflicts between solutions for SLA man-

agement and power capping, where (3) its dynamic assessment algorithm is shown to make

stable VM migration decisions which in turn, reduces the number of VM migrations, and

(4), novel functionality of VM provisioning based on reliability metrics improves overall VM

availability through VM migration.

71



Table 4: Cross layer management approaches
Approach Characteristics Limitations

None No cross-layer Ineffective mgmt.,
coord. redundancies

Manual Multiple console views High latency,
for mgmt info, high cost

Admin executes policies
Ad-hoc Point solution, Non-scalable/portable,

Implementation and complex, costly
platform dependent

Structured Built-in infrastructure Initial dev. cost
hooks, automated community adoption

The remainder of the chapter is organized as follows. Section 4.2 describes the approach

and detailed design of vManage. Section 4.3 presents a case study application. Section 4.4

describes the implementation in Xen. Section 4.5 provides evaluation of the vManage

mechanisms and its application to the case study. Section 4.6 discusses the related work,

and Section 4.7 summarizes the chapter.

4.2 vManage: Architecture Design

4.2.1 Basic Design Elements

Existing deployments providing cross-layer coordination, if at all, are either manual-based

or use ad-hoc approaches. Table 4 summarizes the characteristics of these approaches. As

seen, these approaches when applied to the development of coordination engines lead to

inefficiencies and high costs. For example, a coordination policy engine developed using an

ad-hoc approach would hard-code the discovery of individual management entities, require

intricate knowledge of the specific data collectors and actuators in the system along with

their access method, require awareness of platforms implementation details, and would lead

to tightly integrated coordination policies. With the diversity in data collectors, informa-

tion delivery mechanisms, policy implementations, platforms, virtualization & applications

implementations, such existing approaches would not scale, are not portable, and introduce

complexity.

More importantly, given the vast benefits possible from cross-layer coordination, such

approaches present a hindrance towards wider adoption and development of coordination
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Figure 23: Conceptual view of cross-layer coordinated management. Coordination chan-
nels and mediation brokers represent the vManage approach.

engines in the systems and resource management ecosystem.

To solve these problems, vManage is designed as a management architecture extension

to virtualization infrastructures. The goal is to simplify the creation and execution of

cross-layer coordination methods that operate without compromising the functionality of

individual management layers or components.

The vManage design presented next has the following additional important properties:

(i) it enables coordination without exposing internal implementation details across indi-

vidual layers; (ii) it is sufficiently general and efficient to be able to deal with the range

of management actions relevant to the VMM, platform, and application layer, as well as

being able to deal with dynamic behaviors like VM migration; (iii) it runs in isolation

without noticeable effects on the base VMM and its operation; (iv) it is easily deployed,

including dynamic deployments and upgrades; and (v) it supports heterogeneous execution

environments (hardware, software, virtualization) with well-defined APIs.

Figure 23 shows the conceptual picture of the vManage cross-layer stack, depicting the

following major elements:

• Management Coordination Channel is an abstraction layer for seamless exchange of

management information across hardware-virtualization-application layers, hiding im-

plementation and platform details. Operationally, channels connect to the sensors and
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Figure 24: Extending virtualized system for cross layer management. Shaded portions
represent vManage components.

actuators of interest in these layers, and they are virtualization-aware in their ability

to automatically handle events like VM migration (i.e., via automatic disconnection

from the old host and reconnection to the new one). 1

• Mediation brokers implement aggregation and coordination policies, using coordina-

tion channels to transport monitoring information and to convey actuation decisions.

A coordinator instantiated as such a broker can focus on policy decisions within a

well-defined coordination structure and framework.

1For brevity, we henceforth refer to management coordination channels as ‘coordination channels‘.
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4.2.2 Realization in a Virtualized Environment

Figure 24 depicts the realization of vManage in a virtualized environment. Each physical

node has management entities dealing with platform, virtualization, and application man-

agement. The key per node element in vManage is the coordinator, represented as M-broker

in Figure 24. This entity exists in a privileged execution domain, termed Management VM

(MVM), running at higher levels of trust than guest VMs. Each per-node broker can in-

teract with a higher level broker responsible for coordinating among cluster management

tools, termed Cluster Broker in the figure.

4.2.2.1 Coordination Channels

Coordination policies run by brokers benefit from the MVM-resident service for channel use

and establishment, termed CC service. This service, coupled with CC endpoints embed-

ded in participating management entities, is used to discover entities, create and maintain

coordination channels, and ensure their seamless use. More precisely, CC endpoints are pas-

sive entities running within management domains (platforms, virtualization, application).

Each CC endpoint keeps track of the sensors and actuators present in its domain, and it

interacts with both using sensor- or actuator-specific protocols. After configuration, the

CC endpoint is available to receive calls at a well-known port. The CC service is started in

the management VM and is responsible for providing the following services to the broker

by communicating with the CC endpoints: (i) Discovery of CC endpoints across the plat-

form, virtualization, and application layers, by communicating with the well-known port

of each CC endpoint and using standard discovery protocols; (ii) Meta-data registration

from available CC endpoints in the various management domains, thus allowing the broker

to be aware of the type and structure of information available across the various manage-

ment entities; (iii) Information gathering and transfer, which involves the actual transfer of

monitoring data and actuation commands; and (iv) Dealing with dynamics, which is a key

attribute of the loosely coupled nature of vManage. This includes dealing with dynamic

additions of VMs, hardware updates, dynamic application deployment, and VM migration.

75



Dynamic additions and removals are handled by periodic discovery and lease-based regis-

trations. VM migration is supported by dynamic disconnection and reconnection between

VMs and MVM.

The choice of physical communication media in implementing coordination channels

varies. For example, communication with platform hardware elements will likely employ

a driver that uses shared memory communication, while communication between per-node

broker and cluster broker will employ message passing. The CC service determines the

specific information delivery and physical channel during the endpoint discovery process by

querying the endpoint. Finally, the CC service exposes a well-defined set of APIs to the

broker. Also, while not currently fully completed, the final coordination channel implemen-

tation will use and extend standard protocols provided by WBEM [90] so as to use its rich

services like naming, discovery, registration, and security.

4.2.2.2 Mediation Brokers (Coordinator)

M-brokers benefit from coordination channels and their capabilities (see Figure 25) to carry

out tasks that include discovery, information gathering, and dissemination of actuation

commands across the platforms, virtualization, and application layers. Specific examples

include gathering power, IPMI [36] sensor, SLA violations, versioning information, etc. Go-

ing beyond facilitating such interactions, vManage also provides a structured environment

for changing and running coordination policies. Specifically, a policy interface and engine

make it easy to plug-in and run specific policies. If a custom policy engine is needed, it

can be created by using the provided framework to develop it and then bind it with the

CC service libraries to obtain all the CC services, without having to be concerned with

implementation and platform details. Finally, as also shown in Figure 25, multiple brokers

(e.g., for power, fault management, etc.) can share the same CC service, thus leveraging

common elements and avoiding duplication.

The role of a cluster broker (CB) (see Figure 24) is interesting because (i) it can run

policies that coordinate across multiple per-node brokers, and (ii) it can also interact with

and control cluster-level management tools and mechanisms. As a result, the CB runs on a
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Figure 25: Brokers deployed in MVM. Multiple brokers can share the CC service. Brokers
have a well-defined structure simplifying the development of coordination policies.

separate node, called a Cluster Leader (CL). Examples of cluster level platform management

tools include HP SIM [30], and those for virtualization level management tools include

VMWare VirtualCenter [83].

4.2.2.3 Management VM

The Management VM (MVM) is a privileged VM that is the dedicated point of control for

coordinated management tasks on a single host. MVM hosts the broker and CC service and

any associated libraries. It has selective privileges to access platforms’ hardware including

entities such as management processors. Having a separate MVM to run the broker has

several significant benefits compared to running the broker inside the VMM. (i) Reduction in

VMM’s Trusted Computing Base. since most of the per-host management code (including

various management models, policies, and device drivers) run inside an isolated VM, this

reduces the trusted computing base (TCB) of the VMM and in turn, improves its security

and reliability. (ii) Selective Privileges. Although the broker requires certain privileges

for management, this is a subset of the privileges required by other distinguished VMs

like Dom-0, ensuring improved robustness to failures compared to solutions in which such

functions are integrated into Dom-0. (iii) Virtual Appliances. Having a separate virtual

machine for management simplifies its deployment and its upgrades, by casting it into the

form of a virtual machine appliance. In this form, an MVM can be deployed independently
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from the VMM, and it can be dynamically added or removed from a system.

4.3 Using vManage: Case Studies

In this section, we describe the application of the vManage design presented in Section 4.2

for solving a real-world problem in data centers which utilizes the low-level mechanisms

developed in previous chapters. We first present the problem and then our vManage-based

solution.

4.3.1 Coordinated VM Placement and Dynamic Provisioning

The VM placement problem is to select the most suitable host for a given virtual machine.

Traditional solutions like the ones used in VMWare’s Virtual Center consider VM metrics

such as CPU, memory, network bandwidth, VM priority, etc., but do not take into account

platform requirements such as power budget or attributes like platform reliability or trust.

Consequently, if a host fails, for example, the availability needs of a VM will not be met,

leading to undesirable downtime. Similar issues arise, of course, after initial deployment,

which means that runtime management, i.e, dynamic provisioning, is required to ensure

VMs’ as well as hosts’ requirements are continuously met over time.

An integrated approach to solving problems like those described above, would be to cre-

ate a single infrastructure and tool able to deal with an arbitrary number of metrics, require-

ments, attributes, and able to deal with/interface with all management subsystems present

in the environment. vManage instead, makes the practical assumption that there will be

multiple, well-designed and well-tuned methods for performing different management tasks,

such as application performance management (e.g., load balancing), virtualization manage-

ment (e.g., VM scheduling), power management, and others. Each of these management

components independently carries out actions that ultimately, trigger certain management

events, such as requests for VM migration. vManage, then provides the ‘glue‘ for coordi-

nating such events, to avoid unnecessary workload migration, loss in performance due to

unoptimized power-performance trade-offs, and to prevent conflicts created by contradic-

tory decisions made by different subsystems (e.g., migrating a VM onto an idle machine

to increase capacity but thereby also increasing power usage). The outcomes are improved
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system stability and effectiveness in data center management. Technical specifics in how

this is done are explained next.

4.3.2 vManage-based Solution

Overview. Figure 26 shows a vManage-based set of methods whereby the CB assists

in making suitable VM placement decisions. It interfaces both with existing cluster level

virtualization management solutions (e.g., VMWare Virtual Center [83]) and with platform

management solutions (e.g, HP SIM [30]), wherever available. Via its unified monitoring,

CB gathers information concerning all relevant requirements and attributes about all of the

hosts and VMs in the cluster. It finds a host for the VM by “matching“ VMs’ and hosts’

requirements and attributes so that both are met.

Since VM or host requirements or attributes can change at runtime (e.g., a VM’s CPU

requirement or host’s reliability may change over time), it is necessary to re-provision a

VM (e.g., by increasing its CPU reservations or by migrating it to a more reliable host)

to continue meeting VM or host needs. This involves message exchanges between MVM

brokers with the CB (e.g., to determine a new host) and communications with the MVM

brokers who invoke VM migration.

Figure 26 also shows disk reliability brokers hosted in storage nodes. Such a broker can

monitor disk for errors, and if errors are predicted to cross reliability thresholds that would

make the storage node unable to meet certain VMs’ reliability requirements, the broker

would pro-actively trigger either a backup or a complete data migration. In the latter case,

it communicates with the CB to determine the appropriate disk where the data should be

moved, and it then sends commands to available data migration actuators (e.g., Storage

VMotion [77], or disk hot-swapping as described in chapter 3), the objective being zero

downtime or zero data-loss.

Unified System Monitoring. Coordination requires unified monitoring across the plat-

form, virtualization, and application layers. With vManage’s coordination channels, the

power and reliability brokers use the CC service to collect monitoring data from the rele-

vant sensors, via CC endpoints. Specific sensors used in our current implementation include
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Figure 26: vManage-based Solution for VM placement and dynamic provisioning. The
coordination channels and brokers would be hosted in a virtualized environment as described
in Figure 24.

the following(also see Figure 26): (i) resource usage sensors in the VMM layer, (ii) power

monitoring sensors (IPMI based) in the hardware, e.g., from HP’s iLO management proces-

sor, (iii) guest VM SLA monitoring sensors, (iv) Processor Machine Check Event (MCE)

sensors in the VMM layer 2, and (v) disk S.M.A.R.T. data sensors at the storage node.

Since all such data is first collected and processed by per-node brokers, data processing,

data filtering, the production of data digests, and similar actions are possible before sharing

it with the CB. This distributed architecture also makes the CB more scalable.

Policies. For power management, DVFS and two different power regulation policies are

used to evaluate the vManage approach (Section 4.5 for experimental details): (i) the

utilization-based policy, similar to the Linux ondemand power governor, uses current CPU

utilization as an indication of system load; (ii) the SLA-based policy uses SLA violation

statistics gathered from the VMs through coordination channels. Whenever a VM experi-

ences an SLA violation, the broker increases the frequency of the CPU running the VM.

When the SLA metric drops below a certain threshold, CPU frequency is decreased. Fur-

ther, whenever the host’s power budget is violated because of increased load on the host and

local actions (e.g., reducing CPU frequency to reduce power consumption) are insufficient,

the MVM broker sends a notification to the CB, asking it to find a relatively less loaded

2These sensors use a driver to get the actual data from processor.
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host to which one or more VMs can be migrated.

Our ongoing work with reliability management is experimenting with an approach in

which the reliability of a host is defined in terms of five reliability states, varying from

extremely reliable to extremely unreliable, with different probabilities of failures. This is

implemented with a reliability broker that scans the MCE and IPMI sensor logs for any

errors (e.g., bus error, fan failure etc.) and uses a reliability model to determine the current

reliability state of the system. The model is known a priori or learned dynamically using

techniques like Bayesian machine learning algorithm [18] or offline monitoring [37]. Accurate

predictions of the reliability state, i.e., of impending failures, can be used to pre-emptively

migrate VMs to more reliable hosts, using VM-specified and vManage-captured reliability

requirements, thus improving overall availability of VMs.

4.3.3 Dynamic Coordination Assessment

A key goal of coordination is to prevent redundant or unnecessary management actions.

vManage attains this goal by assessing the effects of coordination before actuation. Specifi-

cally, with VM placement and provisioning, the assessment metric is stability, where due to

the high cost of VM migration, coordination should prevent unnecessary migration, thereby

reducing the number of migrations over time. Stated more precisely, when choosing a des-

tination host for a VM (either for initial placement or for migration), dynamic assessment

encourages decisions that lead to a more stable system in which newly migrated VMs do not

cause further violations on the new host, thereby causing more migrations, etc. Similarly,

when choosing a target VM for migration (e.g., because of a host power budget violation),

dynamic assessment is used to bring power consumption below the budget with a minimum

number of migrations. it may also not be suitable to migrate VMs in the face of some

transient SLA or power violations. Hence, the CB’s decisions on when, which VM, and

where to migrate must go through a dynamic stability assessment in the decision process.

Details of the vManange dynamic assessment approach are presented next.
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System Model. Dynamic assessment uses a probabilistic model of application require-

ments and system resources, where VMs’ and platform’s resource and attribute requirements

like CPU, memory, power, reliability, trust, etc. may change over time. For a particular

VM, the variation corresponding to each resource or attribute is represented with vi(t).

The variation of all such requirements vi(t) is then represented with V.

We distinguish between resource (VR ⊂ V) and attribute (VA ⊂ V) requirements.

A resource requirement is used to specify quantities that result in the reduction of such

resources available to other VMs deployed on the same platform (e.g., a CPU or memory

requirement), while an attribute requirement is used to specify properties, numerical or

otherwise, that the hosting platform is expected to provide at minimum (e.g., a reliability

requirement). The resource and attribute requirements vi(t) are modeled as time dependent

functions. For a resource requirements, since its variation is not known exactly, we model it

using a time varying mean µvi(t), a standard deviation σvi(t), and a probability distribution

function fvi(x, t), the latter representing the distribution of the resource requirement at any

time instant t based on µvi and σvi . The attribute requirements are modeled as time varying

step functions, and it is assumed that for attributes, one can calculate a binary match or a

non-match between a VM and a platform.

The resource requirements (µvi(t) and σvi(t)) and probability distribution function (pdf)

depend on the type of workload. To find out a typical workload behavior, we analyzed the

real requests traces obtained from our industry collaborators [97]. The trace is shown in

Figure 27.

In the figure, we see that the request rate varies significantly, but that there is a repetitive

pattern in the request rate over a period of 24 hours (1 day). This indicates that we can

estimate workload characteristics (µvi(t) and σvi(t)) with very good accuracy by monitoring

it for a certain period of time.

We also model the resources and attributes, hi(t), of the underlying platform, which

represent the resource or attribute value of the platform at any time t when no VMs are

deployed on the platform. The model of the underlying platform is such that the VM re-

quirement or attribute vi(t) corresponds to the platform resource or attribute represented
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Figure 27: Travelport web trace

by hi(t). We model the platform resources and attributes as a function of time because

these can change due to events like CPU frequency scaling, failure of a disk in a disk array,

etc.

Stability Determination. Dynamic assessment for stability is interested in determining

the average probability with which a certain platform can provide sufficient resources to

a set of VMs (represented by L), for a given time T into the future, and independently

satisfy their individual attribute requirements. To compute this, we start by calculating

the cumulative resource requirements for all VMs deployed on the platform. We assume

that the resource requirements of various VMs in L are independent of each other. This is

a valid assumption for VMs running independent workloads. This, however, may not be a

valid assumption for VMs that are dependent on each other (e.g., a multi-tier application

where each tier is running in a separate VM). Under this independence assumption, let

fvL
i
(x, t) represent the pdf for the net requirement of the ith resource by all the VMs in L.

Then the corresponding mean µvL
i
(t) and the standard deviation σvL

i
(t) for the pdf can be

calculated by summing the corresponding quantities from the VMs in L.
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µvL
i
(t) =

∑
∀vi(t)∈L

µvi(t)

σ2
vL

i
(t) =

∑
∀vi(t)∈L

σ2
vi

(t)

In the remainder of this section, we assume that the pdf fvL
i
(x, t), for any time instant

t, follows the normal distribution. Now, since the sum of several normal distributions is

again a normal distribution [92], the cumulative distribution function for the pdf fvL
i
(x, t)

can be calculated using Equation 1. Note that if fvL
i
(x, t) were found to follow some other

distribution the calculations for the cumulative distribution function may become very

involved, and beyond the scope of this paper. The results in Section 4.5 show that the

assumption of normal distribution works well for the workloads used in the experiments

and shows good results.

FvL
i
(x, t) =

1
2
(1 + erf

x− µvL
i
(t)

σvL
i
(t)
√

2
) (1)

Now, by substituting x = hi(t), we can calculate the probability that the net required

resources are less than or equal to the resources available with the platform, at any time t.

To calculate the average probability pi(t0, t0 + T ) that the net required resources, over the

time interval t0 to t0 + T , are less than or equal to the available platform resources, we use

the following formulation:

pi(t0, t0 + T ) =

∫ t0+T
t0

FvL
i
(hi(t), t)dt

T
(2)

However, since the erf (the error function) cannot be evaluated in closed form, we

discretize the quantities involved in Equation 1 over the time dimension. This transforms

Equation 2 to:

pi(t0, t0 + T ) =

∑t0+T
t0

FvL
i
(hi(t), t)

T
(3)
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Assuming that all the VMs (contained in the set L) have their attribute requirements

matched to the platform, then the probability P (t0, t0 + T ) that the VMs will continue to

have the required resources can be found using the following:

P (t0, t0 + T ) =
∏

∀i:vi∈VR

pi(t0, t0 + T ) (4)

=
∏

∀i:vi∈VR

∑t0+T
t0

FvL
i
(hi(t), t)

T
(5)

Dynamic assessment: adding a VM to a cluster. To illustrate the utility of the

formulation developed above, consider the addition of a new VM to a cluster. In this case,

the CB uses these formulations to find the most suitable host for the VM satisfying stability.

Specifically, the VM specifies its various requirements in terms of resources (CPU, memory,

etc.), and attributes (reliability, etc.). Once the CB determines a host that satisfies these

basic resource and attribute requirements, it uses Equation 5 to calculate the probability of

the host satisfying the VM’s resource requirements over time T in future. If the probability

is above a certain threshold, the search ends and the selected host is used to deploy the

VM. Otherwise, the search continues and at the end, the host with maximum probability

is selected to deploy the VM.

4.4 Implementation

We have implemented vManage in Xen environment to provide a solution for the case study

described in Section 4.3. We first describe the implementation of the design components

and then of the case study.

Management VM. The management VM (MVM) has been implemented as a separate

privileged VM, termed Dom-M. Xen has been extended with the notion of a Dom-M so

that Xen can provided special privileges to it. It has privileged access to selective manage-

ment hardware, such as HP’s iLO management processor. When Xen (or Dom-0) receives

requests from Dom-M, it authenticates Dom-M and after successful authorization, performs

the action requested. Dom-M hosts the CC service and mediation brokers. The coordina-

tion channels support dynamic disconnection and reconnection, so that one Dom-M can be
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dynamically replaced with another, transparently to any DomU and to the platform end-

points. This functionality also supports dynamic deployment and is essential for deploying

Dom-M as a virtual appliance.

Coordination Channels. This is implemented as CC service in Dom-M and as CC

endpoints in Dom-0 (for virtualization management), DomUs (for application management),

and iLO (for platform management). Some of the platform management information is also

provided through Dom-0 (e.g., S.M.A.R.T. data is obtained by invoking a driver in Dom-

0). Currently, in-house protocols are used for discovery, lease registration, and meta-data

gathering.

Multiple underlying physical channels are used for information delivery depending on

the nature of communication. (1) For monitoring VM-specific SLA statistics, we use a Xen-

provided shared memory channel (Xenbus) over which VMs and Dom-M can communicate

with each other. Since the coordination channels are virtualization-aware, they automat-

ically handle VM migration events. In other words, whenever a VM migration happens,

the CC service in the old Dom-M automatically disconnects itself from the VM endpoint,

and the new Dom-M automatically connects with the arriving VM’s endpoint. (2) For

performing DVFS and accessing MCE, SMART, and IPMI data, we utilize the drivers al-

ready present in Dom-0. The CC service establishes a Xen-provided shared memory channel

(Xenbus) with a CC endpoint in Dom-0. The CC service sends requests to perform DVFS,

VM migration, and collect MCE/IPMI data to Dom-0 and Dom-0 performs these actions

on behalf of Dom-M. These actions can also be performed by directly communicating with

Xen, but that requires significant modifications to the MCE/IPMI and DVFS drivers, and

we found that communicating through Dom-0 has negligible overheads compared to directly

communicating with Xen. (3) For interacting with virtualization management, Dom-M ei-

ther communicates directly with Xen through the hypercall interface providing it privileged

resource utilization data, or it communicates with Dom-0 similar to (2). The implementa-

tion also supports network socket communication to interact with cluster brokers.

Mediation Broker. M-brokers are implemented as applications that run inside Dom-M

and the Cluster Leader. They are multi-threaded processes where one or more threads
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perform the monitoring, protocol exchange, coordination, and actuation tasks. Unified

management via a single broker has the advantage that various monitoring time constants

can be coordinated. For example, the power budgeting thread can coordinate with the power

regulation thread to ensure timely handling of power violations. Coordination policies are

written using an in-house policy engine template, and they bind to the coordination channels

libraries. The cluster broker is similar to per-node broker described above, the difference

being that this broker runs cluster-wide policies.

Case Study specifics. For initial VM placement, a new VM specifies its requirements with

respect to resources (CPU, memory, network bandwidth, storage capacity) and reliability

to the cluster broker (CB). The CB runs the “matching“ algorithm which is based on the

dynamic coordination assessment algorithm described in Section 4.3.3 and finds a matching

host for a VM. Once the decision is made at the cluster broker, it sends a message to the

Dom-M of the selected compute host to deploy the VM. The Dom-M broker asks Dom-0 to

create the VM and allocate all its required resources. Dom-M is thus doing the additional

functionality of provisioning in our implementation.

Dom-M bootstrapping takes place by the host sending a request to a cluster deployment

server (currently co-hosted with the cluster broker) to install the appropriate Dom-M on the

host (Dom-M is enabled as an appliance). Two brokers are currently used on the compute

nodes – one for power which uses IPMI sensor data and another for reliability which uses

IPMI and Machine Check Events (MCEs) for error statistics to determine current reliability

of the host. A separate storage host runs a broker that monitors the reliability of disks using

S.M.A.R.T. data. The various brokers implement the policies described in Section 4.3.

4.5 Evaluation

This section evaluates the vManage architecture and its application for the case study

described in Section 4.3. Specifically, we first present an architecture evaluation of vMan-

age and subsequently, using the vManage architecture, we evaluate SLA and utilization

based power regulation, SLA-aware power budgeting, and reliability management. We also

demonstrate the stability of our VM migration decisions. Results demonstrate that (1)
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vManage is sufficiently rich to support the solution of complex management problems like

the coordinated management of VMs and hosts; (2) policies implemented with vManage

are effective, such as the novel cross-layer SLA-based power regulation policy which is

more power-efficient than traditional utilization-based power management; (3) SLA- and

migration-aware power budgeting along with power regulation can reduce power consump-

tion and at the same time, improve system reliability by reacting quickly to power violations;

(4) there are opportunities for reliability management, to significantly improve VM avail-

ability by predicting host failures and migrating VMs to other reliable hosts in advance;

and (5) dynamic action assessment is an effective method, in this case concerning the ef-

fectiveness of our stability algorithm in reducing the number of VM migration by choosing

target hosts more intelligently.

4.5.1 Experimental Setup and Methodology

Our experimental testbed consists of 4 Dell PowerEdge 1950 hosts connected through a

gigabit network. One host works as the storage node providing virtual disks to all the

VMs. The storage node also runs the cluster broker. The other three nodes are compute

hosts running VMs. The hosts are dual-core dual-socket (total four cores) machines con-

taining Intel Xeon 5150 processors with three different frequencies (2.66 GHz, 2.33 GHz,

and 2.0 GHz) and 4 GB of memory. Experimentation with a larger testbed is planned when

additional resources are acquired in late summer 2008.

Multiple workloads are used to emulate a typical data center environment. They include

the RUBiS online auctioning application, the Nutch search engine, WebServer serving static

files, and batch mode applications which run some standalone workload without any timing

requirements. RUBiS is a three tier application with an Apache webserver, Tomcat appli-

cation server, and a MySQL database server. Two application servers are used between

webserver and db server for load balancing. All servers are run inside VMs. Hence, one

RUBiS instance consists of 4 VMs. We have used two instances of Nutch, RUBiS, and static

WebServers each in this “mini” data center, resulting in a total of 12 VMs (8 RUBiS VMs,

2 Nutch VMs, and 2 WebServer VMs). All VMs are uniprocessor VMs and have different
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requirements for CPU cycles and memory.

We used two actual workload traces to generate workload for the VMs: (i) EPA-HTTP

web traffic trace from the LBL Repository [22] to generate workload for the RUBiS appli-

cations and (ii) request traces from the Travelport [97] website to generate workload for

Nutch and static WebServers. The two web traces contain traffic for more than an entire

day. However, for purpose of experimentation, we scaled down the trace to run in 24 min-

utes (instead of 24 hours) while preserving the shape of the workload. The Travelport trace

is discussed in Section 4.3.3 and is shown in Figure 27. All the workloads are primarily

CPU bound.

Since these hosts do not have real-time power metering capabilities, we use CPU utiliza-

tion as a proxy for power consumption. Specifically, we assume power consumption varies

according to P = K*U + I, where P is consumed power, K is a constant, U is the CPU

utilization and I is the idle power. K also depends on the current operating frequency (i.e.,

p-state) of the CPU. We determine the values of K and I offline, by calibrating the hosts

using a power meter.

4.5.2 Architecture Evaluation

This section contains both a quantitative and a qualitative evaluation of the vManage

architecture, with micro-benchmarks presented first. Table 5 summarizes the evaluation

and is explained below.

Table 5: vManage Architecture Evaluation
Xen SHM 7 us

Physical Channel Latency
Network Socket 14 us

Max. CPU Usage 2%
Unified Monitoring

VM/VMM Monitoring 1.5 ms
IPMI Monitoring 5 sec

Stress expt. Overhead (CPU) 15%
MVM-CB Latency 1 ms

Mediation Broker
MVM LoC 2670

Xen/Dom-0 LoC 1085

Unified Monitoring Evaluation. Monitoring overheads via coordination channels de-

pend on multiple factors: number of VMs on the host, monitoring data collection frequency,
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and the resources allocated to the MVM. Table 5 shows latencies for runtime unified mon-

itoring overhead (after initial setup) as the number of VMs is varied from 1 to 32. Initial

channel setup takes place through a socket, and the monitoring data transfer is via shared

memory. We see that MVM’s max CPU usage and VM/Xen monitoring latency are very

modest. The IPMI sensor data records take about 5 second to read. This indicates that

the vManage monitoring infrastructure is very lightweight. Results also show that we are

not likely to encounter scalability problems for MVM for a typical frequency of monitoring

data (often 1 sample every few seconds) and for up to a few 10s of VMs per host.

Broker Evaluation. The costs of running an MVM directly depend on the complexi-

ties and frequencies of the analysis used to make coordination decisions. For intuition, we

report the overhead of the MVM when the broker executes heavy analysis (stress exper-

iment). Table 5 also shows that the max latency overhead of indirection between MVM

broker and cluster broker (CB) is 1 ms. Finally, in our prototype, Xen/Dom-0 runs 1085

new/modified lines of code (LoC), while the MVM runs 2670 new/modified lines of code

(LoC). Hence, in this implementation, MVM is able to isolate 71% of the new/modified

code of the vManage prototype from Xen, clearly showing that having a separate MVM has

significantly less impact on TCB of Xen and consequently has very little adverse impact on

its reliability/security.

Scalability of Cluster Broker. To measure the scalability of the CB, we simulate and

vary a cluster of hosts from 100 to 2500 hosts and measure the total CPU consumption and

the time taken in making a VM placement/migration decision. Table 6 shows the scalability

of cluster broker for the host update frequency of 1 per second. We see that as the number

of hosts increase, the CPU usage, the search time for a host for VM migration, and the

total response time for migration request from the host increase linearly. This shows that

the cluster broker scales well for sizes typical for small data centers. For larger systems, a

data center may be divided into multiple smaller size, separately managed clusters, with all

clusters coordinating in a tree-like structure.

Other qualitative benefits. There are several other qualitative benefits for vManage:

(i) Automation: we take a structured approach to designing cross-layer coordination,
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Table 6: Cluster Broker Scalability
No. of hosts CPU usage Search time Migration

resp. time
100 0.5% 1 ms 1 ms
500 1.0% 2 ms 3 ms
1000 2.0% 3 ms 4 ms
1500 4.0% 4 ms 5 ms
2000 6.0% 5 ms 6 ms
2500 8.0% 6 ms 7 ms

thereby improving on manual or ad-hoc approaches. The general adoption of vManage,

however, will require some support from community, but with our current effort to use

standards-based protocols and leverage existing CIMOM deployments, we believe this to

be plausible. (ii) Framework extensibility and flexibility: while the coordination channel

infrastructure provides us with flexibility and easy portability across multiple platforms and

implementations, the broker framework provides for ease of programmability, extensibility,

and the potential for reusability.

4.5.3 Case Study Evaluation

We next evaluate the scenario represented in the case study (see Section 4.3) and show the

benefit of the vManage-based architecture.

4.5.3.1 Overall Benefits

We first demonstrate the overall benefits obtained with respect to data center efficiency

(power savings) and VM guarantees (SLA violations) with various coordination policies.

This is summarized in Table 7.

Table 7: Summary of Benefits
Coordination Avg. SLA VM
Algorithms Power Violations Migrations
No Coord. 249.5W 20 -
Util. based 247.0W 25 -

SLA + Basic 232.2W 26 89
VM Placement
SLA+Intelligent 231.2W 20 62
VM Placement
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With no coordination, there is no power management, and the CPUs always run at

the highest frequency. The utilization-based algorithm uses current CPU utilization for

power regulation, while the SLA-based algorithm uses SLA violation notifications for this

purpose. The basic VM placement algorithm considers current CPU utilization to choose

a target host for VM placement/migration, while the intelligent VM placement algorithm

uses dynamic assessment and the workload characteristics of the VMs to make more stable

VM placement/migration decisions and consequently reduce the total number of VM migra-

tions. In summary, SLA-driven policies can provide additional benefits. Further, dynamic

assessment helps reduce the number of migrations (i.e., intelligent VM placement), and

these improvements will increase with larger equipment/testbed configurations (additional

experimentation is in progress). We next explore experimental results in more detail.

4.5.3.2 SLA vs. Utilization Based Power Management

There are many possible cross-layer coordination alternatives. The specific ones compared in

this case study are SLA-based and utilization-based power regulation policies, implemented

with vManage. The utilization-based power regulation broker in the MVM attempts to save

power by performing DVFS of the CPUs according to the current CPU utilization. If the

utilization exceeds a certain threshold (80%), it increases the CPU frequency by one level

and when the CPU utilization drops below a certain threshold (20%), it decreases the CPU

frequency by one level. The SLA-based broker attempts to save power through DVFS of

the CPUs according to the SLA violations experienced by the VM applications. The SLA

of the application servers is defined in terms of the execution response time of the requests.

SLA monitoring tools inside VMs capture the average execution time periodically (every

1 second) and a notification is to the MVM broker whenever the response time exceeds

the SLA threshold or when the slack between response time and threshold is more than

50% of the threshold. When the broker receives a SLA violation notification from a VM, it

increases the frequency of the CPU running the VM and when it receives a notification that

the response time slack is more than 50%, it decreases the frequency of the CPU running

the VM. For this experiment, we only used one instance of RUBiS and one instance of the
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Figure 28: Comparison of execution times of Nutch search engine for Utilization based
and SLA based power regulation policies

Nutch server on a single host.

Figures 28 and 29 shows the response time of Nutch application, for both power reg-

ulation policies. The SLA threshold is set at 10 ms, so any request execution time above

10 ms is considered an SLA violation. We see that the request execution time and SLA

violation characteristic are similar for both policies. RUBiS’ behavior is similar. Concerning

power consumption, Figure 30 depicting the consumption trace over time for both policies,

demonstrates that host power consumption under the SLA-based policy is less than under

the utilization-based policy. The SLA-based policy reduces power consumption by 8%, al-

though average CPU utilization is similar under both policies. The simple reason for this

fact is that high utilization is not an appropriate metric for SLA violations. As a result,

power regulation directly done based on SLA violations can often run the CPU at lower

frequencies even under high CPU utilization. This constitutes a straightforward example of

the benefits attained from vManage’s ability to extend the cross-layer stack beyond VMs to

the application level. The next two subsections use the SLA-based approach to demonstrate

other useful elements of the vManage approach.
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Figure 29: Comparison of execution times of RUBiS requests for Utilization based and
SLA based power regulation policies

4.5.3.3 SLA-Based Coordinated Power Regulation And Power Capping

The lack of coordination between performance management and power capping can lead to

conflicts between the two. To demonstrate how vManage can be used to solve this problem,

we conduct an experiment similar to the one in Section 4.5.3.2. In addition, we run two

batch mode applications in two other VMs on the host to increase the power consumption

so that it violates the power budget (360 watts) set for the hosts. Under certain high

load conditions, we may run into a situation where performance management conflicts

with power capping. For example, when the SLA of an application is violated, the power

regulator increases the CPU frequency to handle the load but this also increases the power

consumption which may in turn violate the power budget of the host. To handle power

violation, the power capper reduces the CPU frequency, which again causes additional SLA

violations, thereby resulting in a lack of stability.

Figure 31 shows the result of unstable operation. The left side y axis show the response

time of Nutch server, and right side y axis shows the power consumption as the experiment

progresses over time. We see that often, SLA violations are caused right after power viola-

tions (because of power capper reducing CPU frequency), and power violations are caused
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Figure 30: Comparison of power consumption of the host for Utilization based (avg. 247
watts) and SLA based (avg. 228.6 watts) power regulation policies

right after SLA violations (because of power regulator increasing the CPU frequency). Cur-

rent power management schemes do not have the visibility into such SLA violations and

keep aggressively reducing power consumption, causing more SLA violations and oscilla-

tion. In vManage, we recognize that under such overload conditions, per host management

techniques may be insufficient, and power regulator and power capper must coordinate to

migrate one or more VMs to relatively less loaded host(s) to reduce load and increase sta-

bility. We have implemented such a broker which coordinates between SLA management

and power capping. Indeed, vManage makes it easy to implement such diverse cross layer

monitoring and actuation.

Re-running the above experiment with our coordinated broker in place, when the fre-

quency of power budget violations or SLA violations crosses a certain threshold, the MVM

broker notifies the CB of the event. The CB chooses a VM (in this case, an application

server of the RUBiS application) from the host (named H1), chooses a relatively less loaded

host (H2), and then triggers a migration of the VM to host H2, thereby resolving the

oscillation between SLA and power violations.

Figure 32 shows the response time of Nutch and the power consumption of host H1 as the

experiment progresses. At around 52nd second, H1 experiences multiple power violations
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Figure 31: A demonstration of conflict between VM’s SLA requirements and hosts power
requirements. VMs and hosts both suffer because of lack of coordination between SLA
management and power capping

which triggers a VM migration of RUBiS AppServer. This finally brings down the power

consumption and reduces the SLA violation of the Nutch server significantly. Figure 33

shows the response time of the RUBiS application as its application server is migrated from

H1 to H2. We see that the migration lasts for about 8 seconds and during this period, the

RUBiS application experiences very high response time because: (1) the shadow mode is

enabled during live VM migration [16], (2) the VM is suspended briefly during the last phase

of VM migration, and (3) a significant amount of network bandwidth is used for migrating

the VM itself. These facts again demonstrate the importance of dynamic assessment for

vManage coordination actions. More generally, the experiment demonstrates that with the

vManage architecture, we can develop automated solutions for coordinated performance

management, power regulation, and power budgeting.

4.5.3.4 Intelligent VM Placement/Migration Algorithm (Dynamic Coordination As-
sessment)

To demonstrate the benefits of the VM placement algorithm described in Section 4.3.3, we

only consider the CPU requirements of various VMs, and we assign various applications

(Nutch, RUBiS, WebServer) CPU requirements that approximate the request rate of the
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Figure 32: Coordination between SLA based power regulation and power budgeting.
Excessive power violation causes RUBiS AppServer to be migrated which brings down the
power consumption of the host and the response time of Nutch server

Travelport traces in Figure 27. Figure 34 shows the CPU requirements of all six workloads

(RUBiS1, RUBiS2, Nutch1, Nutch2, WS1, and WS2). These workloads are shown over

a 24 minute period and repeat after every 24 minutes. Due to discretization, the CPU

requirement may change at the start of every 1 minute period, but it remains the same for

the 1 minute period. The workloads are also time shifted so that they peak at different

times, a typical behavior for servers operating in different time zones. This also allows us

to over-provision the system. We have used poisson distribution to generate the workload

requests for the VMs.

For simplicity, the RUBiS CPU requirements are equally divided among the 4 VMs.

Figure 35 shows the three hosts present in the testbed and the cumulative CPU requirement

of the VMs running on them. Initially, RUBiS1, Nutch1, and WS1 are running on Host1,

RUBiS2 and Nutch2 are running on Host2 and WS2 is running on Host3. The experiment

shows intelligent VM migration decision based on excessive SLA violations for this initial

VM placement configuration.

Whenever the SLA violation frequency increases beyond a certain threshold (because

of increased load), the MVM broker requests CB to migrate the VM to a relatively less

97



 0

 10

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100  120
 200

 250

 300

 350

 400

R
es

po
ns

e 
T

im
e 

(m
s)

P
ow

er
 (

W
at

ts
)

Time (sec)

Resp. Time
SLA Time

H1 Pwr
Pwr Budget

H2 Pwr

Figure 33: Execution response time of RUBiS before, during and after VM migration.
Shows the power consumption traces on source and destination machines.

loaded host. CB searches its list of hosts and finds a suitable destination for the migration.

The basic algorithm attempts to find a host by looking at the current CPU utilization and

chooses the host which has the least CPU utilization. However, taking a decision based on

current utilization may be short sighted because the CPU utilization may go up after VM

migration, which may cause further VM migrations to happen.

Figures 36, 38, and 37 show the CPU utilization traces and VM migration instances

by using the basic matching algorithm. As the experiment starts, Host2 quickly becomes

overloaded and consequently, RUBiS2 and Nutch2 servers experience excessive SLA viola-

tions, triggering a VM migration (at about 290 seconds). CB chooses Host1 as the target

for VM migration because its CPU utilization is less than the CPU utilization of Host3.

The AppServer of RUBiS2 is migrated to Host1. However, Host1’s CPU utilization quickly

goes up because of the increase in its workload causing excessive SLA violations to occur.

At this time (627 seconds), the AppServer of RUBiS2 is migrated to Host3 from Host1

because its CPU utilization is the lowest. Hence, the previous VM migration decision was a

short-sighted one, because CB had to migrate the AppServer twice in quick succession. The

two migrations (at 878 and 1075 seconds) migrate the AppServer of RUBiS1 from Host1 to

Host2 and Nutch1 from Host1 to Host3. The experiment causes a total of 4 migrations in

98



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  5  10  15  20  25

C
P

U
 (

%
)

Time (min)

RUBiS1
RUBiS2
Nutch1
Nutch2

WS1
WS2

Figure 34: Mean CPU requirements for various applications over time
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Figure 35: Mean CPU requirements for various hosts over time for a certain VM placement
configuration

the 24 minute period.

With the intelligent algorithm developed in Section 4.3.3, CB keeps track of mean CPU

utilization and variance of every VM over time. Hence, during the selection of a target

host for VM migration, CB can evaluate the stability of its decision by calculating the

probability of a Host satisfying the VM requirements over some future time period. Here,

CB calculates the probability of a host satisfying CPU requirements for 15 minutes in the

future when making migration decision.

Figures 39, 40, and 41 show the CPU utilization traces of Host1, 2, and 3 and VM
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Figure 36: CPU utilization traces for Host H1 over time without intelligent placement

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  200  400  600  800  1000  1200  1400  1600

C
P

U
 (

%
)

Time (sec)

Host2
Migration Src

Migration Dest.

Figure 37: CPU utilization traces for Host H2 over time without intelligent placement

migration instances while using the intelligent matching algorithm. During this experiment,

the first VM migration is triggered at 275 second on Host2. The intelligent algorithm,

however, chooses Host3 instead of Host1 as the destination because Host3 has a higher

probability of satisfying the AppServer’s requirements over the next 15 minutes. The next

two migrations (at 810 seconds and 1000 seconds) are the same as the last two migrations

of the basic algorithm.

This experiment demonstrates that using the intelligent algorithm developed in Sec-

tion 4.3.3, CB can make more stable VM migration decisions, in this case reducing the total

number of VM migrations from 4 to 3. If we consider a larger data center environment
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Figure 38: CPU utilization traces for Host H3 over time without intelligent placement
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Figure 39: CPU utilization traces for Host H1 over time with intelligent placement

with thousands of machines and VMs, this modest reduction can expand into significant

reductions in the total number of VM migrations over a large period of time, preserving

significant network bandwidth, CPU cycles, and improves VMs’ levels of availability. To

validate our claims, we repeated the above experiment on a bigger testbed and for a longer

period. We used 28 VMs (3 RUBiS, 10 Nutch, 6 Web Servers) running on 7 hosts. We ran

the experiment for 20 hours each with and without intelligent VM placement algorithm.

We observed the total number of VM migrations without the intelligent VM placement

algorithm was 89 while with the intelligent VM placement algorithm, the number of VM

migrations was significantly reduced to 62.
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Figure 40: CPU utilization traces for Host H2 over time with intelligent placement
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Figure 41: CPU utilization traces for Host H3 over time with intelligent placement

4.5.3.5 SLA-Reliability Coordinated Management

A brief foray into reliability management serves the purpose of further demonstrating the

generality of the vManage approach. Specifically, we demonstrate the improvement in

availability of VMs using reliability management through VM migration. In the experiment,

a synthetic reliability model is used to determine the current reliability state of a host by

monitoring MCE events. The MCE errors could be either correctable or uncorrectable. The

correctable errors are automatically fixed by hardware, and the host can survive such errors.

The uncorrectable errors, however, cannot be corrected, and in this experiment, we mark

the host as unavailable after an uncorrectable MCE error. Since MCE errors happen rarely,
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Figure 42: Reliability management of VMs using vManage

we injected artificial MCE errors to demonstrate this functionality. A uniform probability

distribution function is used, with the probability of correctable errors higher than that of

uncorrectable errors.

Figure 42 shows the result of the experiment. The three hosts have different reliability,

i.e., the probability of MCE errors decreases from Host1 to Host3. Reliability is defined

as states from 0 to 4, with 0 being unavailable (crashed) and 4 being most reliable. The

Nutch VM’s reliability requirement specifies that it can be run only on the most reliable

machine (state 4). The experiment starts with 3 hosts in state 4, and the VM is running

on Host1. At 325 seconds, a correctable MCE on Host1 reduces its reliability state to

3. This triggers a VM migration, because Host1 is no longer able to satisfy the VM’s

reliability requirement. Host2 is chosen as the destination by CB and the VM is migrated.

When no more errors happen for the next 1 minute, the host’s reliability is restored to

4. However, Host1 experiences further errors and finally it encounters an uncorrectable

error and becomes unavailable (reliability 0). At 650 secs., Host2 encounters a correctable

MCE error which causes the VM to migrate to Host3. Host2 also eventually encounters

an uncorrectable error and becomes unavailable. The experiment shows that vManage,

through its monitoring of reliability events along with other resource monitoring, can be

used to greatly improve the availability of VMs in a virtualized data center. The results,

of course, depend on our ability to predict impending failures and migrate VMs before the
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failure occurs. Here, we use the occurrence of correctable MCE errors as an indication of

an impending uncorrectable error in the future. We also note that, similar to compute node

reliability, we can monitor storage disk reliability (e.g., monitoring S.M.A.R.T. data) and

predict impending disk failures. vManage, then, as described in Section 4.3, can perform

proactive backup or use techniques like VMWare’s Storage VMotion [77] or Disk Hot-

swapping [44] to significantly improve VM’s and its data availability.

4.6 Related Work

Virtualization management solutions include industry solutions such as VMWare’s Lifecycle

Manage and Virtual Center [83]. These solutions, however, provide VM provisioning and

dynamic management based on only traditional resources such as CPU, memory, priority

etc. vManage, on the other hand, through its unified monitoring infrastructure, can provide

VM provisioning and management based on novel metrics such as reliability, trust, and

others. For example, Virtual Center and Sandpiper [96] provide dynamic VM migration

for performance management, while vManage can additionally improve VM’s availability by

managing its reliability. Similarly, platform management solutions such as HP SIM [30] and

application management solutions [31], respectively, focus on host and application metrics

only.

Within coordination and unification, related work includes agent systems [91, 95], cross

layer adaptation [2], and autonomic computing [39, 40]. While our approach borrows from

prior work in these domains, we differ in (i) our light weight implementation approach

suited to the VMM and system levels we target; and (ii) the instantiation of the coordi-

nation architecture across the ”hardware-software-virtualization boundary”. Past work on

coordination in data centers has focused on specific domain policies and ad-hoc individual

interfaces generating point solutions [65, 53]. Even the solutions focussing on coordination,

provide solutions which are specific to some management actions, e.g., power and perfor-

mance management [48]. vManage, on the other hand, provides a generic coordination

architecture using which any number of cross-layer management solutions can coordinate

with each other in an automated manner for improved data-center management.
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Multiple management standards have been defined to manage resources in distributed

environments, such as SNMP, WBEM, CIM, SMASH, DASH, PMCI, etc. We leverage these

wherever appropriate and adapt them to meet the efficiency and dynamism support we

require. An important aspect of vManage is to model system behavior based on monitoring

data to take better management decisions. A significant amount of work has been done

where statistical and machine learning techniques are used to build system behavior models

at runtime [18, 46]. Other techniques use offline analysis of historical traces to determine

system behavior, e.g., using Disk failure traces to determine disk failure models [76, 60].

vManage can use these techniques to understand and predict system behavior models, which

would further improve the efficiency of its coordination actions.

4.7 Summary

Management and automation are important issues in future virtualized data centers. A crit-

ical and relevant issue today is the isolation of management solutions in different silos across

the platforms, virtualization, and application layers, leading to inefficient management in

data centers. In this chapter, we present the vManage architecture for achieving coordi-

nated cross-layer management and show its mapping onto a virtualized system. vManage

achieves loose coupling of management solutions using coordination channels and mediation

brokers. Further, through its dynamic coordination assessment, vManage enables proba-

bilistic analysis of management actions to improve stability and efficiency in virtualized

enterprises. We have presented the basic design building blocks, the specific realization in

virtualized environments, and have shown its usage through case study example.

vManage is used to implement dynamic VM and host provisioning so that both VM’s

and host’s requirements are satisfied. It does per-node provisioning as well as extends the

solution to cluster and data center level, including by using VM migration. It also uses

the dynamic coordination assessment to evaluate the efficiency of VM migration actions

to reduce total number of VM migrations. The architecture has been implemented in

Xen, and evaluation results show that a vManage-based system provides improved overall

management at acceptable overhead.
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In the broader context, vManage improves virtualization of enterprise systems by effi-

ciently managing them. It uses the lower-level mechanisms developed in previous chapters,

e.g., Netchannel for efficient live migration and can also use Sidecore enabled VMMs for

better core utilization and provisioning in a many-core system.
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CHAPTER V

RELATED WORK

There have been many efforts, both in the past and ongoing, that attempt to improve the

performance and manageability of virtualized environments. For example, attempts are

ongoing, both in software and hardware, to improve the I/O performance for multicore sys-

tems in virtualized environments. Hardware attempts include developing high bandwidth,

low latency interconnects, e.g., AMD’s HyperTransport [33], Intel’s CSI, and PCI Express,

developing high bandwidth device controllers, virtualization extensions to processor archi-

tectures [87, 4], the introduction of IOMMUs to chipsets, etc. Software attempts include

paravirtualization [21], self-virtualized devices [66], soft devices [89], VMM bypass [50], im-

proving network throughput [41], etc. Similarly, multiple attempts like McRT [71], Acceler-

ator [80], etc., propose novel ways to use cores in a many-core system. On the management

front, there are rich software solutions like HP’s SIM [30], IBM’s Tivoli [34], VMWare’s

VirtualCenter [83], etc., for managing large data-center environments.

The idea of specialized/dedicated cores has been previously used in traditional operating

systems both for homogeneous cores [69, 14, 101] as well as heterogeneous cores [28, 19, 9].

These solutions, however, become ineffective in virtualized environments because of the

VMM layer between the OS and the cores. The Sidecore mechanism, on the other hand,

operates at the VMM layer enabling VMMs to efficiently utilize and manage the cores as

well as share them with VMs. It significantly improves the dynamic provisioning of various

computing resources in the virtualized systems.

I/O virtualization is another important component of virtualized enterprises because (i)

I/O virtualization incurs highest performance overhead significantly affecting VM perfor-

mance, and (ii) lack of location transparency between virtual and physical I/O devices leads

to inflexibility and inefficiency in VM migration which reduces the manageability of VMs.

Previous attempts at high I/O throughput via pass-through access, e.g., Nomad [32] or live
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VM migration solutions [84, 16] heavily depend on specialized and costly hardware support

for I/O devices (e.g, intelligent Infiniband controller, Fiber channel SAN, etc.). Netchannel

mechanism proposed by this dissertation, on the other hand, supports pass-through access

and live migration of I/O devices (including device hot-swapping) in the VMM-layer making

it independent of the specialized hardware support and thus reducing the cost wherever it

is not warranted.

Further, the additional flexibility and functionality provided by above solutions increases

the challenges of managing large virtualized enterprises. To address these challenges, there

has been significant amount of past work on managing both non-virtualized as well as virtu-

alized enterprises. Examples include power management solutions [65, 53], VM management

solutions [83], resource provisioning solutions [46, 98, 88, 47], etc.

While these independent attempts have significantly improved the performance and

manageability of computing systems (both virtualized and non-virtualized), the lack of co-

ordination across multiple such solutions can lead to reduced performance and inefficient

management. For example, lack of coordination between VM migration and reliability man-

agement solutions reduces a VM’s availability in virtualized environments. This dissertation

attempts to bridge the gap between existing solutions by first developing some of the re-

quired low-level mechanisms (Sidecore and Netchannel) and then providing a coordination

architecture (vManage), so that different solutions can coordinate with each other, thereby

improving the overall performance and utility of virtualized many-core systems.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This dissertation addresses the problem of efficiently using and managing virtualized en-

vironments, ranging from single many-core platforms to entire data-centers. Towards this

end, we have developed a coordination architecture, termed vManage, which enables coordi-

nation between multiple management applications resulting in better management actions.

However, to make vManage more effective, we first develop VMM level mechanisms to en-

hance the virtualization of processing cores and I/O devices in future many-core systems.

For cores, we have developed the Sidecore approach, where one or more of the cores (both

homogeneous and heterogeneous) can be specialized and/or dedicated to perform certain

VMM or VM processing. Sidecore improves VMM and VM performance and provides

improved flexibility in using and managing the diverse cores present on large many-core

platforms. For I/O devices, we have developed the Netchannel mechanism, which provides

location transparency of I/O devices for I/O virtualization. Netchannel enables virtual de-

vice migration, device hot-swapping, and transparent device remoting for virtualized as well

as pass-through devices. Netchannel helps vManage by providing VMM level mechanism

for seamless live VM migration and disk hot-swapping. Finally, vManage’s dynamic co-

ordination assessment analyzes the stability of VM migration actions using probabilistic

methods to reduce the total number of VM migrations in a data-center.

In summary, this dissertation provides hard evidence for the thesis statement, specif-

ically, novel VMM level techniques (at low levels of virtualization support as well as for

higher-level management) should be developed to efficiently use large many-core systems

and data-center environments.

As an ongoing effort, we are currently working on more realistic reliability experiments,

specifically, gathering failure related data from real systems for both compute and storage

nodes and providing better reliability management by analyzing this data. Further, to make
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the vManage architecture more scalable, we are also working on developing a hierarchical

architecture where a large data-center can be divided into smaller clusters with cluster

brokers coordinating with each other in a tree-like structure. As part of future work, besides

working with a priori known models of system behavior (e.g., workload requirements), we

plan to use machine learning techniques like Bayesian networks and continuous time Markov

chains for learning system behavior dynamically. Such models can then be used for better

dynamic coordination assessment without relying on prior knowledge of system behavior.

We also plan to generalize the dynamic coordination assessment technique to analyze other

management decisions, (e.g., hardware provisioning for the data-center, admission control of

VMs on a host, etc.). Finally, we would like to extend the vManage architecture to support

multiple VMMs, which requires VMMs to support common and standardized interfaces.
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