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SUMMARY

In maritime transportation, liner shipping accounts for over 60% of the value

of goods shipped. However, very limited literature is available on the study of various

problems in liner shipping. In this thesis we focus on problems related to this industry.

Given a set of cargo to be transported, a set of ports and a set of ships, a common

problem faced by carriers in liner shipping is the design of their service network. We

develop an integrated model to design service network for the ships and to route

the available cargo, simultaneously. The proposed model incorporates many relevant

constraints, such as the weekly frequency constraint on the operated routes, and

emerging trends, such as obtaining benefits from transshipping cargo on two or more

service routes, that appear in practice but have not been considered previously in

literature. Also, we design exact and heuristic algorithms to solve the integer program

efficiently. The proposed algorithms integrate the ship scheduling problem, a tactical

planning level decision, and the cargo routing problem, an operational planning level

decision, and provide good overall solution strategy. Computational experiments

indicate that larger problem instances, as compared to the literature, can be solved

using these algorithms in acceptable computational time.

Alliance formation is very common among global liner carriers however a quanti-

tative study of liner alliances is missing from literature. We provide a mathematical

framework for the quantitative study of these alliances. For the formation of a sustain-

able alliance, carriers need to agree on an overall service network and resolve issues

concerning distribution of benefits and costs among the members of the alliance. We

develop mechanisms to design a collaborative service network and to manage the

interaction among the carriers through the allocation of profits in a fair way. The

x



mechanism utilizes inverse optimization techniques to obtain resource exchange costs

in the network. These costs provide side payments to the members, on top of the

revenue generated by them in the collaborative solution, to motivate them to act in

the best interest of the alliance while satisfying their own self interests.
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CHAPTER I

INTRODUCTION

Sea cargo is the freight carried by ships. It includes anything traveling by sea other

than mail, persons and personal baggage. Sea cargo transportation is a cheap, safe

and clean transportation mode, compared to other modes of transportation. Rates for

sea cargo transportation are approximately one-tenth of air freight rates. Increasing

globalization and inter-dependence of various world economies is leading to a tremen-

dous positive growth in the sea cargo industry. International and domestic trade of

many nations depends on this mode of transportation and it has helped many na-

tions such as Singapore to shape their export-dominated economy. According to [5],

in United States, which is the largest trading nation in the world for both imports

and exports - accounting for nearly 20% of world trade, sea cargo is responsible for

moving over 99% of the international cargo. U.S. ports and waterways handle more

than 2.5 billion tons of trade annually, and that volume is projected to double within

the next fifteen years.

As depicted in Figure 1, the increase in sea-borne trade worldwide has led to

similar trends in the growth of the world fleet. Although the fleet mix and size have

changed over time considerably, for example the recent use of bigger ships, the main

motive of the industry remains the same - efficient utilization of the ships. The

increasing sea-borne trade and the increasing size of the world fleet presents new

challenges for planners and demands attention from researchers to develop optimiza-

tion based decision support systems for efficient fleet management and routing of the

cargo.

Next, we discuss some of the emerging trends in this industry. Prior to that, a
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Figure 1: Growth of the world fleet and sea-borne trade. Source: Lloyd’s Register
of Shipping

couple of definitions are in place. A sea carrier is a person, business or organization

that offers transportation services via sea on a worldwide basis. A shipper is a person

or company who is either the supplier or the owner of the cargo that is to be shipped.

Today sea carriers offer a global transport solution to a global shipper with global

shipping needs.

1.1 Emerging Trends in Sea Cargo

The sea cargo industry is going through many changes that are reshaping the face of

this industry forever.

• One of the most prominent changes is the increasing use of containers. Con-

tainerized cargo is the cargo that have been physically and economically stowed

in a container. Containerization of cargo minimizes port labor, maximizes ship’s

capacity utilization and has revolutionized the sea cargo industry. The dimen-

sions of containers have been standardized and the term twenty foot equivalent

unit (TEU) is used to refer to one twenty foot long container. For example a

20 feet long container is expressed by 1 TEU and a 60 feet long container is

expressed by 3 TEUs. According to [24], at the start of 1980s only around 20%
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Figure 2: Growth in container movements worldwide. Source: Drewry Container
Market Quarterly

of all general cargo shipments were carried in containers. In 2001 this figure in-

creased to 60%. An IBM white paper [45] shows that container shipping market

is still growing at 8-10% per year. This trend is also depicted by Figure 2.

A serious challenge associated with container shipping is the repositioning of

empty containers. Because of the huge imbalance in demand on some trade

routes, carriers need to reposition empty containers. For example, there is a high

demand of commodities in America from Asia but not vice versa thus, carriers

need to reposition empty containers from America to Asia. This process involves

huge costs. According to [51], a 10% reduction in equipment and repositioning

costs can potentially increase profitability by 30-50%.

• Sea cargo industry has seen a tremendous growth in number as well as in size

of transshipment ports. A transshipment port is a port where cargo is trans-

ferred from one ship to another which is bound for different local, regional or

global ports. Through a sequence of moves by cranes, cargo is transferred ei-

ther directly from a ship to another or temporarily stored at the port before

being loaded onto outbound ships for further transportation. Use of containers

3



makes this transfer very convenient and cost effective. Transshipment services

provide carriers with additional routing options, reduced transit times and act

as facilitator of international trade. For example the Hutchinson terminal in

Freeport, Bahamas has become a major transshipment port between the East-

ern Gulf Coasts of the United States, the Gulf of Mexico, the Caribbean, South

America, and trade lanes to European, Mediterranean, far Eastern and Aus-

tralian destinations. Other major international transshipment ports include

Singapore, Port Klang in Malaysia and Hong Kong. In 2003, approximately

30% of worldwide container movements were transshipped and it is believed

that this number is rising. According to [65], 80% of all containers handled at

the port of Singapore, world’s second largest container port and world’s busiest

port in terms of shipping tonnage, are transshipments.

• Traditionally, companies have focused on their own resources and ability to per-

form effectively and efficiently. However recently the many and varied carriers in

the sea-cargo industry, who in the past worked independently of each other, are

working in close liaison. Shipping alliances allow carriers to realize economies

of scale, extend customer base and increase asset utilization while providing

customers with more frequent sailings. Since 1990, when Sea-Land and Maersk

introduced the alliance system and began sharing vessels in the Atlantic and

Pacific oceans, mergers have become increasingly common. Recently, smaller

alliances are collaborating to form even bigger alliances, for example The Grand

Alliance and The New World Alliance laid down foundations for cooperating in

2006.

1.2 Liner Shipping

Global shipping can be distinguished into three different modes of operation - indus-

trial, tramp and liner. In industrial shipping, the shipper owns the ships and aims to

4



minimize the shipping cost. In tramp shipping, a carrier engages in contracts with

shippers to carry bulk cargo between specified ports within a specific time frame.

Additional cargo (if any available in the market) are picked depending on the fleet

capacity to maximize revenue. In liner shipping, a carrier decides on a set of voyages,

makes the schedule available to shippers and operates on it. Thus, one can identify

industrial shipping with “owning a car,” tramp shipping with “a taxi service” and

liner shipping with “a bus service” with definite schedules and a published itinerary.

As the focus of this thesis is liner shipping, we now discuss it in detail. Liner

shipping mainly involves carrying containerized cargo on regularly scheduled service

routes. Liner services involve higher fixed costs and administrative overhead than

for example tramp shipping because tramps usually wait until they are full before

departing from a port whereas liner services promise to depart on predetermined

schedules regardless of whether the ship is full. The number of ships required for a

given liner service route is determined principally by the frequency required on the

service route, the distance travelled by a ship on the route and the speed of the ship.

For example, a weekly liner service between New York and Hamburg may require four

ships to maintain the necessary frequency.

As observed by [15], liner shipping is growing at a high pace with the increasing

global container traffic. In the United States, in 2003, liner shipping with its network

of ships, containers, port terminals and information systems, handled over 60% of

the total sea-borne trade. According to [8] between January 2000 and January 2006,

the TEU capacity deployed on global liner trades has risen from 5,150,000 TEUs to

9,135,000 TEUs, a 77.4% increase.

Liner shipping involves decision making at strategic, tactical and operational plan-

ning levels. Figure 3 outlines the key decisions that need to be made at different levels

of the planning horizon.

The first stage of planning is to determine an optimal mix and size of ships in
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Strategic Planning (long term) 
Acquire resources, determine fleet size and mix  

General policies  
and guidelines 

Goals, rules  
and limits 

Revenue and   
cost information 

Revenue and 
cost information 

Tactical Planning (medium term) 
Design the service network (frequency of routes, port selection, 

port rotation), assign ships to routes 

Operational Planning (short term) 
Choose which cargo to accept/reject for routing, route the 

selected cargo 

Simultaneous ship scheduling and cargo routing problem 

Figure 3: Different planning levels for liner shipping

the fleet. Given that a ship involves huge capital investment (usually millions of

US dollars) and the cost of idling a 2,000TEU ship is $20,000-$25,000 per day, the

strategic problem is extremely important.

The tactical planning decision involves decisions regarding an optimal design of

service routes, i.e. the sequence of ports to be serviced by the given fleet and the

assignment of ships to these routes. Ships move in cycles from one port to another

following the same port rotation for the entire planning horizon. We refer to this

problem as the ship scheduling problem.

The operational planning problem involves decisions regarding which cargo to

accept or reject and which path(s) to use to ship the selected cargo. We refer to this

problem as the cargo routing problem. A carrier may select not to transport some

cargo, either because it is not profitable or because there is other cargo, perhaps at

other ports, that is relatively more profitable. A cargo starts its trip from an in-land

location and may or may not visit an intermediate port before arriving at its origin

port. This network which utilizes trucks or railroad to bring cargo from an inland

location to ports or ships to bring cargo from intermediate ports to origin ports is

known as the feeder network. Cargo then moves from its origin port to its destination
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port, possibly after visiting some intermediate ports. From there it is taken to its final

in-land destination using another feeder network. Some of the intermediate ports that

a cargo visits during its journey from the origin port to the destination port may act

as transshipment ports where transfer of cargo from one ship to another takes place.

The decisions made at one planning level affect decision making at other plan-

ning levels as well. The decisions at the strategic level set the general policies and

guidelines for the decision making at the tactical and operational levels. Similarly,

the decisions at the tactical level set the limitations and network structure for the

operational planning level. In the reverse direction, the information (for example

cost and revenue) provide the much needed feedback for decision making at a higher

level. Given a fleet size and mix, the service network laid at the tactical planning

level governs which routes can be formed at the operational planning level to route

cargo. The cargo picked at the operational planning level and the routes selected

determine the cost and revenue that can be generated and thus the profitability of

the given service network. These two problems are highly inter-dependent and thus

it is important that they be studied in an integrated framework.

Collaboration and alliance formation is a common phenomenon among liner ship-

ping operators. Carriers used conferences, as a means for curbing competition and

controlling tariff rates in the market, as early as 1875. More recently, carriers are

forming strategic alliances that allow them to realize economies of scale, extend their

customer base and increase asset utilization while providing customers with more

frequent sailings and faster transit times ([64]). Alliances account for more than half

of the liner services on major global routes. In the mid 1990s an estimated 60% of

the total global liner capacity was accounted by alliances. Typically members of an

alliance pool their ships on a particular trading route and allocate part of each ship’s

capacity to the alliance members. As a result of these alliances and agreements,

shipments arranged through one carrier may actually be moved by a ship operated
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by another and alliance members can offer higher sailing frequencies than would be

possible using only their own ships. Alliances are most common on deep sea routes

such as the Asia-North America route that require a bigger commitment in terms

of assets (ships) from carriers. Also, alliances are used to achieve cost efficiencies,

especially in terminal operations.

Alliances lead to many large scale problems at the tactical and the operational

planning level such as managing a large pool of ships, as contributed by the members

of the alliance, and designing a large scale network to satisfy multiple demands due

to various carriers. Members of an alliance together decide on a set of routes to

operate. Also they need to decide how to realize these routes i.e. how should the

different members of the alliance assign their ships to the selected routes. Further

they need to decide how to share the benefits of the alliance. Thus, successful alliance

formation requires allocation algorithms for distributing benefits, costs, and assets’

capacity among the members of the alliance in a fair way to motivate them to “play

along.”

1.3 Contributions of the Thesis

The contribution of this thesis is two fold. First, we present an integrated study of

the tactical and the operational planning level problems in liner shipping. As shown

in Figure 3 we refer to this problem as the simultaneous ship scheduling and the cargo

routing problem. Our goal is to account for the emerging trends in liner shipping

(containerization and transshipments) in our model and to solve the large scale opti-

mization problem efficiently. Second, a detailed study of the alliance formation among

liner carriers is performed.

In the first part of the thesis (Chapter 2) we present an integrated model, a mixed

integer linear program, to schedule ships in a given fleet and efficiently route the max-

imum possible cargo, simultaneously. Our model handles many relevant constraints
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and emerging trends that appear in practice but have not been considered previ-

ously. For instance, customers expect carriers to provide them a regular schedule by

maintaining at least weekly frequency on the routes they operate on. This constraint

however has not been considered in the literature. Use of containers to ship cargo

has revolutionized the international cargo shipping industry. However, huge imbal-

ance in demand in various world economies leads to the problem of empty container

repositioning. The proposed model ensures weekly frequency on the operated routes

and has the flexibility to incorporate empty container repositioning. Our model also

allows cargo routes to encompass a combination of service routes rather than a single

service route, thus providing carriers with increased routing opportunities. We are

not aware of any earlier results on transshipment of containers at an intermediate

port from one ship to another. We consider a heterogenous fleet with ships of differ-

ent sizes, cost structures and speeds. As is common in container shipping, we allow

multiple pickup and delivery on ships. These features allow the use of our model in

a wide variety of problem settings.

The proposed integer program is too large to be solved economically by general

mixed integer programming codes, thus we develop algorithms to solve it efficiently.

More specifically, a greedy heuristic, a column generation based algorithm and a two

phase Bender’s decomposition based algorithm is developed and their computational

efficiency in terms of the solution quality and the computational time taken is dis-

cussed. These algorithms exploit the separability of the problem and utilize the fact

that the ship scheduling problem can be reduced to a cycle generation problem and

the cargo routing problem can be reduced to a multicommodity flow problem. We

also propose an efficient iterative search algorithm to generate schedules for ships.

Computational experiments are performed on randomly generated instances simulat-

ing real life with up to 20 ports and 100 ships and the results are presented. Our

computational results are encouraging and establish that the algorithms developed
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here can be used to solve larger instances, as compared to the literature.

The second part of the thesis concerns with the challenges offered by alliances.

As carriers form alliances by pooling their ships and integrating their networks, the

maximum overall revenue that an alliance can generate can be obtained by replacing

individual carriers with one large carrier, with a fleet equal to the combined fleet

of the individual carriers and a demand structure equal to the combined demand

of all carriers. We refer to this problem as the optimization problem for the grand

coalition and to its solution as the collaborative optimal solution. Though working in

collaboration, carriers cannot be assumed to follow the collaborative optimal solution

but their own self-interests. For example on collaborative routes the “resource,” e.g.

capacity on a ship, belongs to some carrier who does not allow other carriers to freely

obtain “benefits” from using it. Thus, for sustainable alliances, the task is not only

to solve large scale optimization problems but also to provide algorithms to share the

benefits of alliances in such a way that the best overall solution is obtained and all

carriers are motivated to collaborate. The split of income and costs is an intriguing

research topic and very little is available in literature on the systematic study of

alliances among sea carriers. We provide algorithms to guide the members of an

alliance in deciding which routes to operate, how to operate the chosen routes, how

to distribute the capacity on ships and how to share the benefits from the alliance.

Chapter 3 presents the motivation behind alliance formation among carriers in

liner shipping. We then study a special case of the problem and utilize the linear pro-

gramming machinery to allocate the overall benefit generated by the alliance among

its members in a “fair” way. The notion of “core,” which guarantees that the sum of

benefits allocated among the members is their maximum attainable benefit and no

subset of members can collude and obtain better benefits for its members, is utilized

to define fairness.

Study of collaboration among carriers in liner shipping led us to the study of a more
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general multi-commodity flow game. In a maximum multi-commodity flow problem

given a set of demand to be satisfied and capacity on the edges of the network the

objective is to maximize the revenue generated by simultaneously satisfying different

demands in such a way that the total amount of flow through each edge is no more

than the edge’s capacity. In the multi-commodity flow game, demand in the network

and the capacity on the edges is owned by different members. The goal of each

member is to use the underlying capacity in the network to satisfy his own demand.

However, members often need to exchange capacity in the network to realize this

goal. This framework where a number of participants interact in a multi-commodity

flow setting occurs in many real life applications in transportation and logistics. In

Chapter 4, we present a mechanism that facilitates capacity exchange on the edges

of the network among the alliance members in a multi-commodity flow game setting.

Specifically, the mechanism provides capacity exchange costs on the edges of the

network to motivate a member who owns the capacity on an edge to sell it to another

member who can utilize that capacity to satisfy his own demand. In a special case,

when each of the network edges is owned by an unique member we show that the

allocation made by our mechanism provides an allocation in the core.

Finally, we present membership mechanisms that allocate resources and benefits

to carriers for forming sustainable alliances in liner shipping. In literature, although

some qualitative studies are available, a quantitative study of liner shipping alliances

is missing. In Chapter 5, we provide a mathematical framework to study alliance

formation among liner carriers. We compute an optimal collaborative solution for

the alliance by solving the network design problem for a large fictitious carrier with

demand and fleet equal to the sum of the demand and fleet of individual carriers.

However, individual carriers in the alliance cannot be assumed to accept the optimal

collaborative solution. More over, for an individual carrier, the revenue generated

by satisfying demand and the cost incurred on the collaborative routes is often not
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enough to motivate him to behave in the best interest of the alliance. We develop

algorithms that provide side payments to carriers so that the best overall revenue is

generated for the alliance. This is achieved by finding capacity exchange costs (as in

Chapter 4) so that a carrier who has unused space on his ships is motivated to sell it

to carrier who can use it to transport his cargo. Our computational results suggest

that the mechanism can be used to help carriers form sustainable alliances.
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CHAPTER II

SHIP SCHEDULING AND NETWORK DESIGN FOR

CARGO ROUTING IN LINER SHIPPING

2.1 Introduction

Sea cargo is the freight carried by ships. Increasing globalization and inter-dependence

of various world economies is leading to a positive growth in the sea cargo industry.

Today, sea carriers offer transportation services on a worldwide basis. Increasing sea-

borne trade (a 3.8% annual growth in 2005) and the increasing size of world fleet (a

7.2% increase in deadweight tons in 2005) offer new challenges and problems for the

planners. Deadweight tons measures the weight of the ship at any loaded condition

minus the weight of the ship with no crew, cargo, fuel etc on board.

Among the different modes of shipping, liner shipping is on a continuous rise. Liner

services carry over 60% of the value of goods shipped by sea [23]. In liner shipping

a carrier decides on a set of voyages, makes the schedule available to shippers and

operates on it. As mentioned in Chapter 1, liner shipping mainly involves carrying

containerized cargo, i.e. the cargo that have been physically and economically stowed

in a container. Containerization of cargo makes the handling of cargo easy, minimizes

port labor and maximizes ship’s capacity utilization. Also, cargo is allowed to travel

on more than one service route before reaching its final destination. A port where

cargo is transferred from one ship to another for further transportation is referred to as

a transshipment port. The number and size of transshipment ports is on a continuous

rise. Further collaboration among liner shipping carriers is very common. Today

smaller alliances are collaborating to form even bigger alliances, for example The

Grand Alliance and The New World Alliance laid down the foundation for cooperating
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in 2006. The trend of consolidating fleets and service routes demands better decision

support systems to control a large fleet of ships and to solve large scale scheduling

and optimization problems.

Liner services involve higher fixed costs and administrative overhead than for ex-

ample tramp shipping because tramps usually wait until they are full before departing

from a port whereas liner services promise to depart on predetermined schedules re-

gardless of whether the ship is full. The number of ships required for a given liner

service route is determined principally by the frequency required on the service route,

the distance travelled by a ship on the route and the speed of the ship. For example,

a weekly liner service between New York and Hamburg may require four ships to

maintain the necessary frequency.

As mentioned in Chapter 1, liner shipping involves decision making at strategic,

tactical and operational planning levels. In the strategic planning stage, the optimal

number and mix of ships in a fleet is determined. Given that owning a ship involves

a huge capital investment (usually in millions of US dollars) and the cost of idling a

2,000TEU ship is $20,000-$25,000 per day, the strategic level decisions are extremely

important. In this chapter, we study the tactical and the operational level decisions.

In the tactical planning stage, the service network is designed by creating the ship

routes, i.e. the sequence of port visits by a given fleet, and the assignment of ships to

these routes. Ships move in cycles from one port to another following the same port

rotation for the entire planning horizon. To maintain a customer base and to provide

customers with a regular schedule most carriers have at-least one departure each week

from each port visited on a service route (i.e. a cycle). This requires that the number

of ships that operate on a cycle be at-least equal to the number of weeks that it takes

to complete the cycle. Some cycles such as those connecting Asia to North America,

may take up to eight weeks to complete, which means that a carrier requires at-least

eight ships to introduce a new service on such a route. The problem of designing the
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service network of a carrier is referred to as the ship scheduling problem.

In the operational planning stage, a carrier makes decisions regarding which cargo

to accept or reject for servicing and which path(s) to use to ship the selected cargo.

This is referred to as the cargo routing problem. A carrier may elect not to transport

some cargo, either because it is not profitable or because there is other cargo, perhaps

at other ports, that is relatively more profitable. A cargo starts its trip from an in-land

location and arrives at its origin port. This network which utilizes trucks, railroads,

or waterways to bring cargo from an inland location to its origin port is known as

the feeder network. Cargo then moves from its origin port to its destination port,

possibly after visiting some intermediate ports. From there it is taken to its final in-

land destination using another feeder network. Some of the intermediate ports that

a cargo visits during its journey from the origin port to the destination port may act

as transshipment ports where cargo is transferred from one ship to another.

The decisions made at one planning level affect the decision making at other

planning levels as well. The decisions at the strategic level set the general policies

and guidelines for the decision making at the tactical and operational levels. Similarly,

the decisions at the tactical level set the capacity limitations and network structure

for the operational planning level. In the reverse direction, the information on cost

and revenue that are generated by the system given the set parameters provides the

much needed feedback for decision making at a higher level.

Over the years, the sea cargo industry has been conservative in terms of adopting

new decision support systems. It has a long tradition of manual planning by expe-

rienced planners. More over, in general ship scheduling involves a large variety of

problems. Hence, mostly tailor made models for specific problems with specialized

constraints and objectives are available in the literature. Furthermore, most of the

available literature have been developed for industrial and tramp shipping ([15]). Be-

cause of the many differences in modelling and problem structure itself, it is difficult
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to draw comparisons between the existing literature. We next briefly overview a set

of representative papers related to container and liner shipping. For a comprehensive

review of literature on ship scheduling and cargo routing we recommend [52] for the

work done before 1983, [53] for the decade 1982-1992 and [15] for the last decade.

[50] provides a nonlinear integer program to maximize total profit by finding an

optimal sequence of ports to visit for each container-ship and an optimal number of

cargo units to be transported between each pair of ports by each ship. They allow

multiple pick ups and delivery on their ships. However, a special network structure

with a restriction on loading and unloading of cargo at the end ports is considered.

Furthermore, the model does not consider transshipments by not allowing cargo to be

carried on ships that do not visit either the port of origin or the port of destination.

They report that their algorithms solve instances with 3 ships and up to 20 ports

within an hour.

[27] considers the liner shipping problem in a special network where all cargo is

transported from a set of production ports to a single depot. The problem is solved

by first generating all feasible single ship routes, and then solving a set partitioning

problem. Again the model does not allow for transshipments. Although a weekly

frequency constraint is imposed on the operated routes, the feasible routes for the

particular problem considered have a maximum route time of one week only. Thus

on any of the feasible routes a single ship can maintain weekly frequency. Instances

with up to 19 ships on a network with up to 40 ports are reported to be solved within

a couple of seconds.

Finally, [49] provides a review of linear and integer programming models, that

only consider the deployment of a fleet of liner ships, with different ship types, on a

set of predetermined routes with targeted service frequencies to minimize operating

and lay-up costs.

As noted earlier, decisions made at one planning level affect decision making
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at other planning levels. Given a fleet size and mix, the service network laid at

the tactical planning level governs which routes can be formed at the operational

planning level to route cargo. The cargo picked at the operational planning level and

the routes selected determine the cost and revenue that can be generated and thus

the profitability of the given service network. These two problems are highly inter-

dependent and thus it is important that they be studied in an integrated framework.

In this chapter, we present a new mixed integer programming (MIP) model for the

integrated ship scheduling and the cargo routing problem for containerized cargo.

We refer to this problem as the simultaneous ship scheduling and the cargo routing

problem. Since the proposed integer program is too large to be solved economically by

general mixed integer programming codes, we develop algorithms to solve it efficiently.

Our model handles many relevant constraints and emerging trends that appear

in practice, but have not been considered previously in the literature. For instance,

customers expect carriers to provide them a regular schedule by maintaining at least

a weekly frequency on the routes they operate on. To the best of our knowledge,

this constraint has not been considered in the literature in its full generality. We

successfully impose the weekly frequency constraint at the ports visited by a carrier.

As is common in container shipping, we allow multiple pickup and delivery on our

ships i.e. we allow containers loaded at one port to have more than one port of

destination. More over, the fleet of a carrier usually consists of various ship types

with different characteristics that may change over time. We consider a heteroge-

neous fleet with ships of different sizes, cost structures and speeds. In the literature,

although there are references (see for example [27]) to models with a heterogeneous

fleet, most of these models consider ships with identical service speeds. Repositioning

of empty containers efficiently is a big problem in liner shipping. Our model with

some modifications has the flexibility to incorporate empty container repositioning.

Empty container repositioning has been studied by [62] and [14] also, however these
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papers consider only the movement of empty containers on a given network. We also

allow for cargo routes to encompass a combination of cycles rather than a single cycle

(with some simplifying assumptions on the cost of transshipment), thus providing

carriers with increased routing opportunities. We are not aware of any earlier results

on transshipment of containers at an intermediate port from one ship to another.

These features allow the use of our model in a wide variety of problem settings.

In the most general approach for solving ship scheduling problems to date, [27]

generates a set of feasible schedules by including non-linear and intricate constraints,

and then solves a set partitioning problem. Our goal in this chapter is to model

the simultaneous ship scheduling and cargo routing problem in its generality and

solve it for large-scale instances. Hence, rather than being limited to an initial set

of routes or exhaustively listing all the routes for ships, we design algorithms that

exploit the separability of the problem to iteratively generate good cycles for ships

and efficiently route the demand. More specifically, we utilize the fact that the ship

scheduling problem can be reduced to a cycle generation problem and the cargo rout-

ing problem can be reduced to a multicommodity flow problem. We develop a greedy

heuristic, a column generation based algorithm and a two phase Benders decompo-

sition based algorithm and compare the computational effectiveness and efficiency of

these approaches.

Our computational results are encouraging and establish that some of the algo-

rithms developed can be used to solve larger instances, as compared to the literature,

in terms of fleet size that arise as a result of collaborations and mergers in the sea

cargo industry. We report computational results on problem instances with up to 100

ships and 20 ports.

The rest of the chapter is organized as follows. The next section introduces our

notation, mathematical formulation and a note on the complexity of the problem.

Three different algorithms, a greedy heuristic, a column generation based algorithm
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and a Benders decomposition based algorithm, are discussed in Section 2.3. Section

2.4 provides various algorithmic and implementation details. Computational exper-

iments are presented in Section 2.5. Conclusions and directions for future work are

discussed in the final section.

2.2 Problem Description

We now present a mathematical formulation for the simultaneous ship scheduling and

containerized cargo routing problem after introducing our notation and a space-time

network.

Let P denote the set of ports. We will treat demand as a set of commodities with

a positive supply at the origin ports and a positive demand at the destination ports.

Each such commodity is characterized by an origin port, o, a destination port, d, the

day of the week, i, when the supply is available at port o, the maximum demand

(in TEUs) that may arise at port d, D(o,d,i), and the revenue obtained by satisfying

one TEU of the demand, R(o,d,i). We use the triplet (o, d, i) to identify a particular

demand and we let Θ be the set of all such triplets. We call such triplets demand

triplets.

A carrier typically has several different types of ships in his fleet. Each ship type

usually has different capacity and speed and specifies the characteristics of a group

of ships that are considered identical. We denote by A the set of all the ship types

and use the index a to represent a particular ship type. We associate the following

information with each ship type a ∈ A: T a denotes the capacity of a ship in TEUs

for a ship of type a, for p, q ∈ P , la(p,q) denotes the number of days it takes for a ship

of type a to make a sailing from port p to port q and Na denotes the number of ships

of type a available in the given fleet.

Given that the temporal aspects of the problem are important, we formulate the

simultaneous ship scheduling and cargo routing problem as a multicommodity flow
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problem with side constraints on a space-time network. Furthermore, we use days as

our time units in the space-time network, since in general the transoceanic routes do

not visit more than one port in a given day. Let G = (V,E) be a directed space-time

network with vertex set V and edge set E. Each vertex v ∈ V represents a port,

port(v), on a day of the week, time(v). That is, for each port p ∈ P we create seven

vertices in V . For notational convenience, we associate a subscript with each vertex,

i.e. v = v(p,i) where port(v) = p and time(v) = i. We refer to the vertices of G either

by v or v(p,i) depending on the ease of exposition.

The network G = (V,E) contains three types of edges. The first is the set of

ground edges. For every ship type a ∈ A, we construct ground edges by connecting

nodes v(p,i) to v(p,i+1) ∀p ∈ P and 1 ≤ i ≤ 6. We also connect v(p,7) to v(p,1) ∀p ∈ P .

For a ship, these edges represent an over-night stay at a port and for cargo they

represent an overnight stay at a port either on ground, or on the same or on a

different ship before continuing further. Next, for every ship type a ∈ A and pair of

ports p, q ∈ P, we construct voyage edges, (v(p,i), u(q,j))
a for 1 ≤ i, j ≤ 7 such that

i − j = la(p,q) mod(7). The voyage edges represent the movement of ships and cargo

from one port to another at a given speed. Finally, we create a set of fictitious edges,

(v(d,j), u(o,i)) for all demand triplets (o, d, i) ∈ Θ and 1 ≤ j ≤ 7. An edge (v(d,j), u(o,i))

only allows the flow of commodity (o, d, i) on it and enables us to view the flow of

commodity (o, d, i) in the network as a circulation. Let us denote the set of all ground

edges by Eg, the set of all ground edges for ship type a by Ea
g , the set of all voyage

edges by Ev, the set of all voyage edges for ship type a by Ea
v and the set of all fictitious

edges by Ef . That is, Eg =
⋃
a∈AE

a
g , Ev =

⋃
a∈AE

a
v and E = Eg ∪Ev ∪Ef . We also

use the following additional notation: InEdges(v) denotes the set of incoming edges

into vertex v and OutEdges(v) denotes the set of outgoing edges from vertex v; for

an edge e = (u, v) ∈ E, tail(e) denotes vertex u and head(e) denotes vertex v. Figure

4 represents a space-time network with four ports and two cycles, C1 and C2. Note
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Figure 4: Network with four ports and two cycles

that port C acts as a transshipment port to transport cargo from port A to port D.

The length of voyage edge e = (v, u) ∈ Ea
v , lae , is equal to the number of days it

takes for a ship of type a to reach from port(v) to port(u). We also let le = 1 for

e ∈ Eg and le = 0 for e ∈ Ef . The capacity of an edge represents the total amount of

flow in TEUs that the edge can sustain. Ground edges at a port may have finite or

infinite capacity depending on whether we wish to impose a limit on the amount of

cargo that can be handled/stored at a port. Capacity on a voyage edge depends on

the number of ships (and their capacities) that cover the edge.

There are various fixed and variable costs associated with the simultaneous ship

scheduling and cargo routing problem. While some of these costs are incurred by

ships, others are incurred by cargo. For the costs related to ports, we let cs,av be the

one-time cost incurred by a ship of type a ∈ A when visiting port(v) and ccv be the

total cost that a TEU of cargo incurs at port(v) per day. The port visit costs may be

different at different ports. Similarly, cs,ae reflects the cost of operating a ship of type

a on edge e in deep sea if e ∈ Ea
v and the cost of an overnight stay for a ship of type

a at port(head(e)) if e ∈ Ea
g . For cargo, cce for e ∈ Ev reflects the cost of shipping a
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TEU of cargo on edge e and for e ∈ Eg reflects the cost of storing or holding a TEU

of cargo at port((head(e)). Fictitious edges are assigned zero costs.

We make sure that the port visit cost is incurred only once at each port even if a

ship makes an over-night stay at the port. To account properly for the port visit cost

in the time expanded network, we subtract the port visit cost for ship type a at the

port from the ship cost cs,ae on the ground edge e. Thus if a ship makes an overnight

stay at a port then though the port visit cost is counted twice via the node costs it

is subtracted once via the ground edge cost. Idling of a ship at a port is penalized

by imposing the overnight stay cost on the ship. Long stay of cargo at a port, which

is different from its port of destination, is penalized through the holding cost at the

port. In our model, we use days of the week as the level of time discretization, thus

we assume that if ships on two different cycles meet at a port on the same day then

transshipment can occur in both the directions (i.e. cargo can be transferred from

both the ships on each other). By considering finer discretization of time, one can

account for smaller time windows on which ships at a port meet for transshipments

and to determine if transshipment is possible in only one direction (without incurring

the holding cost).

Given that in the space-time network the level of discretization is in days, a

commodity that becomes available at port o on the ith day of the week is represented

as a supply on vertex v(o,i) in the network. We assume that supply appears at vertex o

(for destination d) at the same day of week every week. We believe assuming that an

average amount of demand arises at a port on a given day is reasonable in our context

since we are considering a tactical model. Since the demand from week to week is

taken to be the same for a carrier, the service characteristics may also remain the

same every week. To this end, we assume that given any cycle, the weekly frequency

on the cycle is maintained using ships from the same fleet. We characterize a cycle

C by the port rotation that it follows, the days of the week it visits each port in its
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rotation, the type of ship that is used to service C and the number of ships LC it

takes to maintain a weekly frequency on C. Due to the indivisibility of ships, LC is

integral by definition. A cycle is said to be feasible if it satisfies pre-specified rules in

terms of the number of ships required to maintain a weekly frequency on the cycle

and the number of ports visited. We denote the set of all feasible cycles for ship type

a by Ca. Mathematically, for a cycle C ∈ Ca, LC =


∑
e∈C

lae

7

. Whenever necessary

we represent a cycle C by a sequence of vertices, for example a cycle from vertex v1

to vertex vr via v2, · · · , vr−1 is represented as C = v1 − v2 · · · vr − v1. Cost of a cycle

C ∈ Ca is denoted by CostC and is calculated as CostC =
∑
v∈C

cs,av +
∑
e∈C

cs,ae .

2.2.1 Mathematical Model

We now present a mixed integer programming formulation for the simultaneous ship

scheduling and cargo routing problem. Our formulation has two sets of variables.

First, for every feasible cycle C we define a binary variable xC . xC = 1 if a weekly

frequency is maintained on cycle C and is 0 otherwise. The xC variables are taken

to be binary rather than integer as the possibility of departing two ships of same

type from a port following the same port calls on the same days of the week is highly

unlikely.

Next, we define non-negative continuous variables representing the flow on edges.

For each edge e ∈ Eg ∪ Ev and each triplet (o, d, i) ∈ Θ we define f
(o,d,i)
e to denote

the flow of commodity represented by (o, d, i) on edge e. For a fictitious edge e =

(v(d,j), u(o,i)) ∈ Ef , a single flow variable, f
(o,d,i)
e , for commodity (o, d, i), is defined

since the flow of other commodities on this edge is not allowed. Note that, we let the

flow variables to be continuous since adjusting for picking a fractional container does

not influence the solution quality very much for the purposes of our tactical model.

Before presenting the model we summarize the following additional assumptions

that we make. A1-A3 are for the clarity of exposition and in no way restrict the
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usability of our model, however assumption A4 is more significant. (A1) Capacity

on ground edges is assumed to be infinite i.e. we do not put any restriction on the

amount of cargo that can be handled/stored at a port. (A2) We assume that all costs

on cargo can be modelled via edge costs i.e. we set ccv = 0 ∀v ∈ V . (A3) We assume

that all cargo is available in identical 1 TEU containers. Thus, D(o,d,i) represents

the number of containers of a commodity required at port d that become available

at port o on day i of the week. (A4) Finally, we do not consider the costs involved

with transferring cargo from one ship to another. As discussed before, cargo incurs

holding costs whenever it stays at a port overnight. To account for transshipment

costs correctly we need to distinguish between the capacity provided by different

cycles on the same edge of the network. If the edges are duplicated for all the feasible

cycles it will increase the size of the graph tremendously. Thus, it is hard to account

correctly for transshipment costs if the network is not known (i.e. the cycles to be

operated have not been selected). Since our aim is to consider the network design

and cargo routing problems simultaneously and generate feasible cycles as a sub-

problem, we ignore the transshipment costs for now. In Section 2.5.4 we present a

computational study to discuss the effects of transshipment costs on cargo routing

decisions once a set of cycles, to be operated by the given fleet, has been selected.

The simultaneous ship scheduling and cargo routing problem can be formulated

as the following mixed integer program:

(SSSCR) :

max
∑

(o,d,i)∈Θ

7∑
j=1

R(o,d,i)f
(o,d,i)
(v(d,j),v(o,i))

−
∑

(o,d,i)∈Θ

∑
e∈E

ccef
(o,d,i)
e −

∑
a∈A

∑
C∈Ca

CostCxC (1)
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such that ∑
e∈InEdges(v)

f (o,d,i)
e −

∑
e∈OutEdges(v)

f (o,d,i)
e = 0 ∀v ∈ V, ∀(o, d, i) ∈ Θ (2)

∑
(o,d,i)∈Θ

f (o,d,i)
e −

∑
a∈A

∑
{C∈Ca:e∈C}

T axC ≤ 0 ∀e ∈ Ev (3)

7∑
j=1

f
(o,d,i)
(v(d,j),v(o,i))

≤ D(o,d,i) ∀(o, d, i) ∈ Θ (4)∑
C∈Ca

LCxC ≤ Na ∀a ∈ A (5)

xC ∈ {0, 1} ∀C ∈ Ca ,∀a ∈ A (6)

f (o,d,i)
e ≥ 0 ∀e ∈ E, ∀(o, d, i) ∈ Θ. (7)

We now explain the above formulation. The objective function (1) maximizes the

net profit by subtracting the sum of operating costs from the revenue generated. The

first term in the objective function denotes the total revenue generated by transport-

ing cargo between various origin and destination pairs. The second term captures the

cost incurred by cargo during its routing from the origin port to the destination port.

The third term denotes the total cost of operating ships on the selected cycles.

Constraint (2) is a flow balance constraint at every vertex of the space-time net-

work. It ensures that the total flow into vertex v, of each commodity (o, d, i) ∈ Θ, is

equal to the total flow out of it for the same commodity. Constraints (3) and (4) are

capacity constraints on the edges. Constraint (3) requires that the total flow on a

voyage edge must be less than the sum of the capacities of ships servicing that edge.

Constraint (4) models that the total flow of a given commodity from an origin port

to a destination port must be less than the demand at the destination port. Note

that we do not have a capacity constraint on ground edges because of assumption A1.

Constraint (5) requires that for each fleet type, we do not use more ships than we

have available. Note that if cycle C ∈ Ca is selected, i.e. xC = 1, then it will utilize

LC ships of type a to maintain a weekly frequency. Finally, (6) denotes xC as binary

variables and (7) denotes f
(o,d,i)
e as non-negative continuous flow variables.
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2.2.2 Hardness of the Problem

The decision version of the simultaneous ship scheduling and cargo routing problem

is in NP, that is given a set of cycles to be operated and a flow of cargo on the edges it

can be determined in polynomial time whether the total revenue generated is greater

than a given constant K. We show the NP completeness of the problem by reducing a

well known NP-complete problem, 0-1 Knapsack, into a simultaneous ship scheduling

and cargo routing problem.

The decision version of the 0-1 Knapsack problem is defined as the following:

Given set N = {1, 2, · · ·n}, integers K, ci and wi for every i ∈ N is there a subset S

of N such that
∑
i∈S

wi ≤ W and
∑
i∈S

ci ≥ K?

Theorem 1. The decision version of the simultaneous ship scheduling and cargo

routing problem is NP-complete.

Proof. Suppose there are W identical ships with capacity T TEUs each. Construct a

sea cargo network as follows. For each i ∈ {1, 2 · · ·n} construct two ports, a demand

port(di) with demand ciTEUs and an origin port (oi). Let a ship in the fleet take wi
2

weeks to make a sailing from port oi to port di. Assume symmetric distances between

ports and that the distances between oi and dj, ∀1 ≤ i 6= j ≤ n is large. Thus wi ships

are needed to maintain weekly frequencies on cycles Ci = oi − di − oi for 1 ≤ i ≤ n

and all other cycles are infeasible. Let T = maxi∈N ci and let revenue generated by

satisfying unit demand between any o− d pair be 1. Assume there are no operating

costs involved. Observe that :

• All feasible cycles are disjoint.

• A cycle Ci needs wi ships to maintain weekly frequency and can generate ci

units of revenue.
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• If a set S ⊂ N of cycles is chosen to be serviced then
∑
i∈S

wi ≤ W and a total of∑
i∈S

ci units of revenue is generated.

It follows easily now that a set of chosen cycles, S, will give a revenue of K units

or more if and only if the 0-1 Knapsack problem has a feasible solution. Thus the 0-1

Knapsack can be solved by solving a SSSCR problem.

2.3 Solution Methodology

The linear program given by (1)-(7) contains a large number of variables even for

moderate size problems. The large size of the model is a direct result of the exponen-

tial number of possible feasible cycles. Furthermore, each demand triplet adds a set

of flow variables to the MIP model. An interesting observation however is that if we

determine the set of cycles to be operated for each fleet type, i.e. given non-negative

values xC satisfying fleet availability constraints (5), model (1)-(7) reduces to the

following multicommodity flow problem where each demand triplet is considered as a

different commodity.

(MCF ) : max
∑

(o,d,i)∈Θ

7∑
j=1

R(o,d,i)f
(o,d,i)
(v(d,j),v(o,i))

−
∑

(o,d,i)∈Θ

∑
e∈E

ccef
(o,d,i)
e (8)

such that

∑
e∈InEdges(v)

f (o,d,i)
e −

∑
e∈OutEdges(v)

f (o,d,i)
e = 0 ∀v ∈ V, ∀(o, d, i) ∈ Θ (9)

∑
(o,d,i)∈Θ

f (o,d,i)
e −

∑
a∈A

∑
{C∈Ca:e∈C}

T axC ≤ 0 ∀e ∈ Ev (10)

7∑
j=1

f
(o,d,i)
(v(d,j),v(o,i))

≤ D(o,d,i) ∀(o, d, i) ∈ Θ (11)

f (o,d,i)
e ≥ 0 ∀e ∈ E, ∀(o, d, i) ∈ Θ. (12)

Note that (8)-(41) is a linear program with no integrality constraints as it only

involves the flow variables f
(o,d,i)
e . Let π = {π(o,d,i)

v : π
(o,d,i)
v unrestricted, ∀v ∈

V, ∀(o, d, i) ∈ Θ} , λ = {λe : λe ≥ 0 ∀e ∈ Ev} and ω = {ω(o,d,i) : ω(o,d,i) ≥
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Figure 5: Outline of the three algorithms considered.

0 ∀(o, d, i) ∈ Θ} be the set of dual variables associated with constraints (9), (10) and

(11) respectively.

Next, we present three heuristic algorithms that exploit the above observation to

solve the SSSCR problem. First, we provide a simple greedy heuristic that selects

good cycles one by one and then assigns cargo to routes. Then we present a column

generation based algorithm that generates a pool of good cycles and then selects the

best cycles among these while also routing cargo in the network. Finally we present

the details of a more involved Benders decomposition based algorithm. Figure 5

presents an outline of the three algorithms.

2.3.1 Greedy Algorithm

Let S represent the set of cycles that are in operation i.e. ships have been assigned to

maintain weekly frequencies on cycles in set S. The desirability or the value of cycle

C depends on the revenue generated by routing flow on ships employed in C, the

number of ships required to maintain weekly frequency on C and the various costs

involved in operating the cycle C. The marginal value of cycle C also depends on

the cycles already present in set S. Thus, a greedy selection of cycles must take into

account the set of existing operational cycles and demand triplets (o, d, i) ∈ Θ.
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Let Aa, ∀a ∈ A, represent the number of ships of type a that are currently

available. The greedy algorithm starts with an empty set of selected cycles. To

find profitable cycles an auxiliary network Ga = (V a, Ea) is created utilizing dual

information from the solution of the MCF problem to assign edge costs. Ga is

constructed for each ship type a such that V a = V and Ea = Ea
v ∪ Ea

g . Each edge

e ∈ Ea is assigned a cost ce = cs,ae + λe and each vertex v ∈ V a is assigned a cost

cv = cs,av . For every ship type, the algorithm then finds a minimum cost cycle in the

auxiliary network by using a procedure FindCycle(Ga). Details of this procedure

will be provided in Section 2.4. Finally, if feasible the cycle with minimum cost is

selected and a suitable number of ships, to maintain weekly frequency, is assigned to

it. The process is repeated while there are ships to be assigned.

2.3.2 Column Generation Based Algorithm

Though the greedy algorithm is simple and provides a feasible solution quickly it is

not very effective. It works with a very small set of feasible cycles and once a feasible

cycle is generated it is picked in the final solution without any further considerations.

Next we propose a column generation based algorithm that iteratively generates a

good pool of profitable cycles for solving the linear programming (LP) relaxation of

(1)-(7).

Column generation is an effective way of solving linear programs with a large

number of columns (see [11] for an introduction). Rather than enumerating all the

columns explicitly, it begins by solving a restricted problem (called the master prob-

lem) with a select set of columns. A subproblem is solved to generate “attractive”

columns and they are subsequently added to the master problem. The process is re-

peated until no further profitable columns can be generated. The column generation

technique has been successfully used to solve many large scale optimization problems,

please see ([7]) for an example in solving airline crew assignment problems.
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To solve the LP relaxation of SSSCR, the master problem in the column genera-

tion is initialized by restricting the set of cycle selection variables, to one simple cycle

for every demand triplet. At every step of the column generation process, the master

problem is solved to find the best value for all the decision variables. The pricing

subproblem for the column generation is equivalent to identifying negative cost cycles

in an auxiliary network, for every ship type. The auxiliary network, Ga = (V a, Ea) is

constructed for each ship type a such that V a = V and Ea = Ea
v ∪Ea

g . Dual variable

values from the master problem are used to assign costs to the edges and the vertices

of the auxiliary network. Each edge e ∈ Ea is assigned a cost ce = cs,ae + T aλe + le
7
σa

and each vertex v ∈ V a is assigned a cost cv = cs,av so that negative cost cycles in

Ga correspond to columns with positive reduced costs in the master problem. Note

that since SSSCR is a maximization problem, profitable columns are the ones with

positive reduced cost. Procedure FindCycle(Ga) (described in Section 2.4) is used

to identify negative cost cycles in the auxiliary network and corresponding columns

are added to the master problem. The process is continued until no new cycles can

be found. Finally, integrality constraints are imposed on the cycle selection vari-

ables and a branch-and-bound framework is used to obtain an integer solution for

the SSSCR problem. No new columns are generated during the branch-and-bound

phase. Different branching rules, with different advantages, can be devised to obtain

the integer solution. For example branching on the largest feasible cycle forces many

other binary variables also to satisfy the integrality constraints. However, we use the

variable that affects the solution quality the most as the variable to branch on, giving

preference to the up (xC = 1) branch, because this strategy performed the best in

our computational experiments.
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2.3.3 Benders Decomposition Based Algorithm

As the number of ports, ships and demand triplets increase, solving model (1)-(7) by

column generation becomes increasingly difficult. The number of constraints as well

as the number of variables increase with the increase in the number of ports, ships

and demand triplets, in the column generation master problem. We next decompose

the LP relaxation of the model (1)-(7) using Benders decomposition to obtain a pair

of problems that utilize the separability of SSSCR. The decomposition results in a

master problem, where the number of variables increases as the number of cycles

increase, and a subproblem, where the number of constraints increases as the number

of demand triplets increase. Thus the effect of the increase in problem size is divided

between a master problem and a subproblem. Further, this decomposition is used

to effectively solve the LP relaxation and the solution is embedded in a branch-and-

bound approach to obtain an integer solution.

Benders decomposition ([10]) is a popular technique to solve mixed integer linear

programming problems with linking constraints. This approach is useful when master

problem has all the integer variables and it is difficult to treat them in sub-problems.

The solution process iterates between an integer master problem, which passes on the

value of integer variables to subproblem(s), and subproblems generate cuts (feasibility

and optimality) which are passed back to the master problem. Though this approach

has proved to be suitable for many problems it has the drawback that an integer

master problem has to be solved at each iteration. [43] proposed a modification to

this approach in which the solution of a sequence of integer programs is replaced by

the solution of a sequence of linear programs and a few integer programs.

The basic techniques of [43] and its modifications have been used successfully to

solve many hard problems. [28] used it for solving an engine scheduling problem

and [66] used it for solving a time-dependent travelling salesman problem. More
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recently, these techniques have been used successfully to solve locomotive car assign-

ment ([17], [18]) and aircraft routing and crew scheduling ([19]) problems. For these

problems enormous time reductions and significant improvements in solution quality

were achieved by first relaxing the integrality constraints in the master problem. Af-

ter the relaxation is solved, to acceptable time or optimality criteria, the integrality

constraints are introduced back in the master problem. We now present the use of

Benders decomposition method to solve the SSSCR problem.

2.3.3.1 Benders reformulation

As noted earlier for given non-negative values xC satisfying fleet constraints (5), the

LP relaxation of model (1)-(7) reduces to the MCF . Since MCF is a multicommodity

flow problem with no integrality constraints, the optimal value of MCF problem is

equal to the optimal value of its dual. The dual problem (DP ) of the MCF problem

can be written as

(DP ) : min
∑
e∈Ev

∑
a∈A

∑
{C∈Ca:e∈C}

T axCλe +
∑

(o,d,i)∈Θ

D(o,d,i)ω(o,d,i) (13)

such that

π
(o,d,i)
head(e) − π

(o,d,i)
tail(e) + λe ≥ −cce ∀e ∈ E − Ef , ∀(o, d, i) ∈ Θ (14)

π
(o,d,i)
head(e) − π

(o,d,i)
tail(e) + ω(o,d,i) ≥ R(o,d,i) − cce ∀e ∈ Ef , ∀(o, d, i) ∈ Θ (15)

π(o,d,i)
v unrestricted, ∀v ∈ V, ∀ (o, d, i) ∈ Θ (16)

λe ≥ 0 ∀e ∈ Ev (17)

ω(o,d,i) ≥ 0 ∀ (o, d, i) ∈ Θ. (18)

Let D be the feasible region of the dual problem and PD and QD be the set of

extreme points and extreme rays of D, respectively. Note that D does not depend

on xC . Also, since R(o,d,i) ≥ 0 ∀(o, d, i) ∈ Θ and cce = 0 ∀e ∈ Ef , a feasible solution

for the dual subproblem is π
(o,d,i)
v = 0 ∀ v ∈ V, ∀(o, d, i) ∈ Θ, λe = 0 ∀ e ∈ Ev
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and ω(o,d,i) = R(o,d,i) ∀ (o, d, i) ∈ Θ, and thus D 6= ∅. Now, by strong duality, either

the MCF problem is infeasible or it is feasible and bounded. Clearly the null vector

0 is a feasible solution for MCF . This means that the primal-dual pair of MCF

and DP is feasible and bounded. Thus the optimal value of MCF and DP can be

characterized in terms of only the extreme points of DP , i.e. the set PD, and can be

written as:

min
(π,λ,ω)∈PD

∑
e∈Ev
{
∑
a∈A

∑
{C∈Ca:e∈C}

T axC}λe +
∑

(o,d,i)∈Θ

D(o,d,i)ω(o,d,i).

Introducing an additional free variable z, model (1)-(7) can be reformulated as

the following Benders master problem (BMP). This problem has integer variables xC

and one free continuous variable z.

(BMP ) : max z (19)

such that

z ≤
∑
e∈Ev

{
∑
a∈A

∑
{C∈Ca:e∈C}

T axC}λe +
∑

(o,d,i)∈Θ

D(o,d,i)ω(o,d,i)

−
∑
a∈A

∑
C∈Ca

CostCxC ∀(λ, ω) ∈ PD (20)∑
C∈Ca

LCxC ≤ Na ∀ a ∈ A (21)

xC ∈ {0, 1} (22)

z free. (23)

Note that we do not have any feasibility constraints in the Benders master problem

because (DP) is bounded. The optimality constraints (20) ensure that z is restricted

to be smaller than or equal to the value of the right hand side of constraint (20)

at various extreme points of DP . In general, the above model contains many more

constraints than the LP relaxation of model (1)-(7) but most of them are inactive

at optimality. Thus a natural approach to solve (19)-(23) is by dropping constraints

(20) and generating them as needed. We now present the basic Benders algorithm
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to solve the linear relaxation of SSSCR problem to optimality. Later, integrality

constraints are introduced to solve the original SSSCR problem. We denote the

linear relaxation of BMP as LPBMP and the relaxation of LPBMP obtained by

dropping constraints (20) as the RLPBMP .

2.3.3.2 Overview of the algorithm

The basic Benders decomposition based algorithm for solving the LP relaxation

of SSSCR iteratively selects good cycles, by solving the RLPBMP , for the ship

scheduling problem and then efficiently solves the cargo routing problem, by solving

the MCF problem. The MCF problem utilizes the RLPBMP solution to assign

capacity to voyage edges before solving the flow problem. In return, at each iteration,

the dual solution of the MCF problem provides an optimality cut to the RLPBMP .

Let t be the iteration number and P t
D be the restricted set of extreme points of D

available at iteration t, i.e. the RLPBMP at iteration t is obtained from LPBMP

by replacing PD by P t
D in (20). Note that the solution of the RLPBMP at each

iteration t, denoted by zt, provides an upper bound for the original LPBMP (since

the RLPBMP has fewer constraints than the LPBMP ).

Algorithm 1 The basic Benders decomposition based algorithm

Procedure Basic Benders()

Set t = 1, P t
D = ∅, lower bound = 0, upper bound =∞.

while (upper bound > lower bound+ ε ) do
STEP 1. SOLV E the RLPBMP to obtain solution zt and {xC}t.
Set upper bound = zt.
STEP 2. Solve the MCF problem taking {xC}t as input to obtain v({xC}t) and
optimal dual solution (π, λ, ω).
Set lower bound = max{lower bound, v({xC}t)−

∑
a∈A

∑
C∈Ca

CostCxC}.

Set P t+1
D = {P t

D ∩ {(x, z) : z ≤
∑
e∈Ev
{
∑
a∈A

∑
{C∈Ca:e∈C}

T axC}λe +∑
(o,d,i)∈Θ

D(o,d,i)ω(o,d,i) −
∑
a∈A

∑
C∈Ca

CostCxC}}.

t = t+ 1.
end while
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The original BMP (or SSSCR) problem with integrality constraints is solved

heuristically in two phases. In Phase I, all integrality constraints are relaxed and

the LPBMP is solved to optimality by using basic Benders decomposition algorithm

(Algorithm 1). Since the set of feasible cycles can be exponential, the RLPBMP ,

in this phase, is solved in a column generation setting. For phase I, SOLV E in

Algorithm 1 refers to this column generation and its details will be provided next.

Retaining all optimality cuts and cycles generated in the first phase, Phase II

puts the integrality constraints back on the master problem. Algorithm 1 is started

once more, however in this phase the RLPBMP in Step 1 is replaced with the mixed

integer program BMP , together with the cuts and cycles generated in the first phase.

Since theDP polytope is not affected by the integrality constraints, all optimality cuts

generated in Phase I can be used to generate corresponding cuts for the mixed integer

program in Phase II. Additional optimality cuts are generated at each iteration. Note

however that in phase II Algorithm 1 in Step 1 solves an integer problem at every

iteration. Thus in Phase II no new cycles are generated and SOLV E simply refers

to a branch-and-bound solution of the relaxed BMP . This two phase approach for

solving integer programs using Benders decomposition was originally proposed by [43]

and the intuition behind it is the hope that many of the necessary constraints for the

master problem may be generated by solving a linear program in place of the more

computationally expensive integer program.

The branch-and-bound tree in Phase II is searched by a depth first search, giving

preference to the up (xC = 1) branch. As in Section 2.3.2, the variable that affects

the solution quality the most is chosen as the branching variable. Note that solving

the mixed integer program in BMP is a computationally expensive step. Since any

feasible integer solution can be used to generate an optimality cut, the mixed integer

program BMP does not need to be solved to optimality at every iteration. However,

if the BMP is solved heuristically the upper bound it provides during the Benders

35



iterations could be much smaller than the true upper bound which might lead to a

premature termination of the algorithm. In the worst case, the upper bound could

become smaller than the lower bound. To avoid such a premature termination of the

algorithm, the branch-and-bound search is terminated only when the solution quality

obtained reaches an acceptable optimality gap (the gap between the best integer

objective and the objective of the best node remaining). Searching the branch-and-

bound tree for a solution with small optimality gap is likely to take large computation

time but it is also likely to provide better solution quality by providing better bounds

for the Benders iterations. Thus, a suitable optimality gap must be chosen to avoid

the premature termination of the algorithm and to keep it computationally efficient.

2.3.3.3 Column generation for solving the RLPBMP

The master problem in the Benders decomposition (the RLPBMP in Algorithm

1) is solved in a column generation setting. The pricing subproblem in the column

generation reduces to identifying negative cost cycles in an auxiliary network, Ga =

(V a, Ea), for every ship type a. As before, Ga is constructed such that V a = V and

Ea = Ea
v ∪ Ea

g . We next present how we compute the costs on the vertices and the

edges of network Ga.

Let Π(λ,ω) and σa denote the dual variables corresponding to constraint (20) and

(21), respectively. The reduced cost cC of a cycle C ∈ Ca can now be written as:

cC = 0−

∑
(λ,ω)

CostC − ∑
{e:e∈C∩Ev}

T aλe

Π(λ,ω) + LCσ
a

 . (24)

Note that in (24) the second summation is only over the voyage edges of cycle

C. Since the ground edges have infinite capacity, at optimality, by complementary

slackness conditions λe = 0 ∀e ∈ Eg. Thus, ground edges can also be included in the

summation in (24). From LP theory, we know that if the reduced cost cC ≤ 0 for

each cycle C ∈ Ca and every fleet type a ∈ A then we have the optimal solution to
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our problem. That is the column generation iterates as long as there exists a cycle

C ∈ Ca for some a ∈ A such that

∑
(λ,ω)

(∑
v∈C

cs,av +
∑
e∈C

cs,ae −
∑
e∈C

T aλe

)
Π(λ,ω) +

⌈∑
e∈C

lae
7

⌉
σa < 0

⇒
∑
v∈C

∑
(λ,ω)

Π(λ,ω)

 cs,av −
∑
e∈C

∑
(λ,ω)

Π(λ,ω) ∗ λe

T a

+
∑
e∈C

∑
(λ,ω)

Π(λ,ω)

 cs,ae +

⌈∑
e∈C

lae
7

⌉
σa < 0. (25)

For the network Ga, we assign cost cv =

( ∑
(λ,ω)

Π(λ,ω)

)
cs,av to every v ∈ V a and

cost ce = le
7
σa −

( ∑
(λ,ω)

Π(λ,ω) ∗ λe

)
T a +

( ∑
(λ,ω)

Π(λ,ω)

)
cs,ae to every edge e ∈ Ea.

Let, CostC represents the cost of cycle C with the above cost structure. Let dCostCe

be the cost when we replace the
∑
e∈C

lae
7

term in CostC by

⌈∑
e∈C

lae
7

⌉
. Note that, since

dxe ≥ x, if the optimal value of the pricing subproblem ∀ a ∈ A is greater than

zero then there are no more profitable cycles because CostC ≥ 0 ⇒ dCostCe ≥ 0. If

however, the optimal value of the pricing subproblem for some a ∈ A is less than zero

than we need to check if dCostCe < 0. If it is, then we have found a profitable cycle,

otherwise either there are no more profitable cycles to be added or profitable cycles

have very low negative cost (> −1) and are therefore ignored. We use Procedure

FindCycle(Ga) (as will be described in Section 2.4) to identify negative cost cycles

in Ga.

2.4 Algorithmic Issues

In this section we discuss several algorithmic ideas we utilize to make our algorithms

more effective, efficient, and stable.
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2.4.1 Solving the Pricing Subproblem

The pricing subproblems for both the column generation and Benders decomposition

based algorithms reduce to finding profitable cycles in the auxiliary network Ga. Sim-

ilarly, the Greedy algorithm needs to find profitable cycles in the auxiliary network.

It is tempting to solve directly a minimum cost circulation problem in the network

Ga, to identify negative cost cycles. However, the cycles obtained by decomposing

the solution of the circulation problem into simple cycles are not guaranteed to be

practical. For example, our initial computational experiments with the circulation

problem suggest that most of the cycles thus generated are too long and require a large

number of ships to maintain weekly frequency. Hence, we first discuss rules based on

the real world practice of liner shipping companies for defining feasible cycles. Next,

a recursive algorithm, FindCycle(G), is presented to efficiently find negative cost

cycles, satisfying pre-defined feasibility conditions, in a given network G.

2.4.1.1 Defining feasible cycles

To solve the pricing subproblem to optimality one must consider all sequences of

ports as candidates for possible profitable cycles. However, searching for negative

cost cycles in such an unconstrained manner not only makes our algorithms inefficient

by generating cycles that create undesirable effects such as large integrality gaps but

also it generates cycles that would never be operated in practice. Hence we impose a

set of constraints that a cycle must satisfy to qualify as a feasible cycle.

Global carriers operate in different regions, for example OOCL operates mainly in

North America, Europe and Asia, and cater to the demand of various markets, such

as trans-Atlantic, trans-Pacific, intra-Asia, and Asia-Europe trade routes. Figure 6

represents an Asia-Europe cycle for OOCL. For a carrier it is important to tap the

benefits of both inter-region and intra-region markets. Whereas, some of the inter-

region markets, for example the trans-Pacific, are the most profitable ones, some of
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Figure 6: An Asia-Europe cycle for OOCL. Source: OOCL

the intra-region markets, for example the intra-Asia market, form the backbone of

international shipping.

We considered the published cycles by [47] and [6] in trans-Pacific and intra-Asia

trade routes to come up with the following guidelines for defining the set of feasible

cycles distributed in two regions, ri and rj.

1. The number of ports visited by a cycle must not be too high. Most of the

current trans-Pacific cycles visit up to 10-15 ports and intra-Asia cycles visit

up to 7-10 ports. Let R(ri,rj) denote the maximum number of ports that a cycle

visiting region ri and rj is allowed to visit.

2. The length (in weeks) of a cycle must be bounded by a suitable number, i.e. the

number of ships that can be committed to a particular cycle are limited. Most

of the trans-Pacific cycles are up to 15 weeks long and most of the intra-Asia

cycles are up to 6 weeks long. Let L(ri,rj) be the maximum allowed length in

weeks for a cycle visiting region ri and rj.

3. Cycles that operate in multiple regions must enter and leave a region only

once, i.e. no inter-region loops are allowed. However, 1-2 intra-region loops are

allowed.

4. Each cycle must directly (without using capacity on other cycles) serve the

origin and destination ports of at least one demand triplet. It is highly unlikely

39



for a carrier to introduce a cycle that does not satisfy any demand directly.

2.4.1.2 Finding negative cost feasible cycles

Incorporating any of the rules that guide the feasibility of a cycle into the circulation

problem yields a NP hard problem. (This is easily seen from the fact that shortest

weight-constrained path problem is NP complete ([29]).) Furthermore, an exhaustive

enumeration of cycles following the above rules still yields a large number of cycles.

For ports distributed in two regions, up to 10,000 cycles for a 10 port, 30 demand

triplets problem, over a million cycles for a 15 port, 50 demand triplets problem and

more than 10 million cycles for a 20 port, 80 demand triplets problem exist.

We now describe an iterative search algorithm for constrained negative cycle de-

tection which yields good computational results. In essence, the algorithm utilizes

Lemma (1) due to [40] to prune the search tree by ignoring paths with non-negative

costs. This pruning helps the algorithm to maintain time- and space-efficiency. [4]

have used lemma (1) to develop a similar algorithm for detecting subset disjoint

negative cycles.

Lemma 1. For a negative cost (directed) cycle C = v1−v2− ....−vr−v1 there exists

a node vh in C such that each partial (directed) path vh − vh+1, vh − vh+1 − vh+2,

vh − vh+1 − vh+2 − ... (where indices are modulo r) is a negative cost (directed) path.

We now present a cycle generation algorithm for ports distributed in two regions:

r1 and r2. Note that these ideas can easily be carried over to ports distributed in more

than two regions. Before presenting the algorithm we define some notation. With each

directed path p, we associate the following information: head(p) and tail(p) denote

the last node and first node on p. Cost(p) denotes the cost of path p. NRr1(p)

and NRr2(p) denote the number of ports from region r1 and r2, ER(p) denotes the

number of inter-region edges and finally l(p) denotes the length of path p. Note that

each edge in the network is either between two nodes of the same region (intra-region
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edge) or between two nodes of different regions (inter-region edge) and that the set

{NRr1(p), NRr2(p), ER(p)} completely describes the region(s) visited by a path p.

For a path p we denote the set {head(p), tail(p), ER(p)} as DSet(p). We say that a

path p dominates another path q if DSet(p) = DSet(q) and Cost(p) < Cost(q).

Note that a cycle can be obtained by connecting the endpoints of a path. Lemma

(1) suggests that to find negative cost cycles it is enough to consider paths with

negative cost. Further, the above definition of dominance suggests that among the

paths with the same DSet() only the path with the least cost needs to be explored

further. A path p is said to be feasible if it has negative cost and if it can be extended

to form a feasible cycle. Let Pk denote the set of all non-dominated, feasible paths

with k nodes.

For each ship type a, Algorithm (2) detects negative cost cycles in the auxiliary

network Ga, described earlier with various cost structures. It works inductively by

constructing set Pk+1 from the set Pk. For each path p ∈ Pk it examines if the path

can be extended by adding a single edge to form path p′, that is if path p′ is feasible.

Procedure if feasible path(p) checks for the feasibility of path p depending on the

region(s) visited by p, by ensuring that the guidelines set in Section 2.4.1.1 are met,

and accounts for the fact that for a ship type a no cycle can be longer than Na, number

of available ships for ship type a, weeks. The path is then checked for dominance in

Pk+1, using procedure if dominated(p′, Pk+1) and non-dominated paths are added to

Pk+1. For a cycle C, procedure if feasible cycle(C) checks if the cycle C is feasible.

For a path p all information can be maintained in O(1) time. For example, to

maintain ER(p), we assign a value 0 to all intra-region edges and value 1 to inter-

region edges. Thus whenever an edge is appended to a path p ∈ Pk to obtain path

p′ ∈ Pk+1, ER(p′) can be obtained by adding the value of the appended edge to

ER(p). Since we maintain all information regarding the region(s) visited by a path,

feasibility check for a path and a cycle can be done in constant time. To check the
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dominance of a path p ∈ Pk, we first need to check if there exists a path q ∈ Pk such

that DSet(p) = DSet(q). This is a computationally expensive step. We use standard

hashing techniques to efficiently detect paths with the same DSet. Once such a path

is found, dominance can be checked in O(1) time. Note that at any given time, set

Pk will contain only one path with a particular DSet, i.e. the non-dominated path.

Rather than storing only the most negative cycle C∗ Algorithm (2) can easily be

modified to maintain a pre-defined number of best cycles.

Algorithm 2 An iterative constrained negative cycle detection algorithm

Procedure FindCycles(Ga)

for all e ∈ Ea do
p = {e}
if if feasible path(p) then P1 = P1 ∪ {p}

end for
k = 1, C∗ = ∅, CostC∗ = 0
while k < R do

while Pk 6= ∅ do
Remove a path p from Pk
Connect the ends of path p to form cycle C.
if if feasible cycle(C) and CostC < CostC∗ then C∗ = C
for all {(head(p), j) ∈ OutEdges(head(p))} do
p′ = p ∪ {(head(p), j)}
if {if feasible path(p′)} then
Pk+1 = Pk+1 ∪ {p′}
if if dominated(p′, Pk+1) then Remove the dominated path

end if
end for

end while
k+1

end while

2.4.2 Choosing an Initial Set of Cuts

Even though the Benders decomposition based Algorithm (1) may be initialized with

an empty set of extreme points, the choice of an initial set may affect its convergence.

In our experiments, the addition of several cuts helped us improve the performance

of Algorithm (1).
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Note that, π
(o,d,i)
v = 0 ∀v ∈ V, ∀(o, d, i) ∈ Θ, λe = 0 ∀e ∈ E and ω(o,d,i) = R(o,d,i)

∀(o, d, i) ∈ Θ is a feasible but not necessarily an extreme point solution of the DP

polytope. It can thus be used to obtain the valid cut

z ≤
∑

(o,d,i)

R(o,d,i)D(o,d,i) −
∑
a∈A

∑
C∈Ca

CostCxC . (26)

The above cut is equivalent to adding the constraint that the value of the optimal

solution must be less than or equal to the revenue that can be generated by satisfying

all the available demand minus the cost of operating the picked cycles.

Similarly, λe = max
(o,d,i)∈Θ

R(o,d,i) ∀e ∈ E and ω(o,d,i) = 0∀(o, d, i) ∈ Θ is a feasible

solution for the DP polytope and provides the valid cut

z ≤ max
(o,d,i)∈Θ

R(o,d,i)
∑
e∈Ev

{∑
a∈A

∑
C∈Ca:e∈C

T axC

}
−
∑
a∈A

∑
C∈Ca

CostCxC . (27)

2.4.3 Making Column Generation Effective

While performing column generation, both in the pure column generation based al-

gorithm for SSSCR and for solving the RLPBMP in Benders decomposition based

algorithm, we identify and add more than one profitable column per iteration. During

the iterative cycle generation instead of maintaining just the most negative cycle we

maintain a set of 5 − 10 most profitable cycles at almost no extra cost. This helps

to significantly reduce the numbers of iterations during column generation without

substantially increasing the time taken per iteration.

During a typical column generation, the problem keeps growing as the column

generation process keeps adding columns to the master problem. To keep the list of

columns manageable, we frequently delete nonbasic columns with high negative re-

duced cost from the master problem. This reduces the time per iteration significantly,

though it increases the number of iterations slightly in many cases. As another speed

up for the column generation process, if no new cycle is detected for a ship type in

an iteration then cycle generation for that ship type is suspended for 2-5 iterations.
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2.5 Computational Experiments

In this section, we present the results of our computational study after describing

the schema employed for generating test cases. We first establish the dominance of

the Benders decomposition based algorithm over the greedy heuristic and the column

generation based algorithm. Next, we present a deeper analysis of the Benders decom-

position based algorithm. Finally, we discuss some of the interesting characteristics of

the solutions obtained by our algorithm and show that it supports the recent trends

observed in the sea-cargo industry. All of our algorithms were implemented in C++

in an Unix environment and we made extensive use of the callable libraries in CPLEX

9.0. All computational experiments were performed on a Sun280R workstation with

UltraSparc-III processor. All times are reported in minutes.

2.5.1 Data Generation

We performed our computational experiments on networks with ports distributed in

two regions. Each generated port is randomly assigned to one of the two regions, with

equal probability, and the sailing distance between ports are chosen to represent the

sailing distance between ports distributed in the Asia and the North-America regions.

Typically, as observed from [47] and [6] service networks, intra-region sailing times

for ports in Asia and North-America are 2-30 days whereas the inter-region sailing

times are 14-42 days.

Origin-destination pairs are chosen randomly from the pairs of ports. Day of the

week on which supply arises at the origin port is assumed to be the same every week

and is chosen uniformly at random from the seven days of a week. The demand

sizes are randomly generated from the interval 0.1 to 1.0 times the capacity of the

largest ship available. Similar proportions are used in [27] and it is suggested that this

represents the demand sizes observed by a liner shipping company. Revenue generated

by satisfying demand for a given demand triplet (o, d, i) is chosen to be in direct

44



proportion to the distance between port o and port d, i.e. more revenue is generated

by satisfying a demand at a port in North-America from a port in Asia as compared

to satisfying a demand between two ports in North-America. The proportionality

constant is chosen randomly from [100, 200].

Since the fleet of a carrier usually consists of ships of different types we considered

three different ship types in our fleet. The three ship types have capacity 2000 TEU,

4000 TEU and 8000 TEU. [9] and [35] suggest that ships with 2000 TEU and 4000

TEU capacity are currently in use. According to [47], OOCL has ships of different

types with capacity varying from 2,500TEU to 8,063TEU. A recent increase in liter-

ature regarding the viability of larger ships, [35], points towards the increasing use of

big ships and [9] suggests that ships of up to 8000+ TEUs are in design.

There are various fixed and variable costs involved in shipping a cargo. As in

[16] we do not consider the daily running costs including cost of capital, personnel,

insurance etc. since they are fixed during the planning period. However, we consider

various operational costs that effect a carrier’s decision regarding which ports to visit

and which cycles to operate on. For every ship type, a ∈ A, and for all the ports,

v ∈ P, we consider a port visit cost incurred by a ship of type a if it visits port v.

At a port p, port visit cost for a ship is proportional to the capacity of the ship i.e.

a ship with 8000 TEU capacity incurs a higher port visit cost as compared to a 2000

TEU capacity ship. At every port, v ∈ P , we consider a per unit cargo per night

holding cost. This cost is incurred by a unit of cargo if it is held at a port for one

night and is assumed to be the same for all cargo types. At a port, holding cost per

unit cargo is chosen to be considerably smaller than the port visit cost for a ship. For

every ship type, a ∈ A, and for every pair of ports, {u, v}, we consider the operation

cost for sailing a ship from port u to v. The operation cost depends on the type of

ship that is used for the sailing and is proportional to the distance between the ports.

We generate various classes of random instances, utilizing the above schema, to
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test the robustness of our algorithm. Classes are characterized by specifying the

number of ports (P ), the number of ships (S) and the number of demand triplets

(D). For example, an instance with 6 ports, 30 ships and 18 demand triplets is

represented as P6S30D18. We tested our algorithm on networks with 6, 10, 15 and

20 ports to be serviced. In each of the test classes 20-30 % of all pairs of ports are

considered to be origin destination pairs. A fleet size of up to 100 ships is scheduled.

Grand Alliance which is one of world’s largest alliances has a fleet of 100 ships and

[6] has a fleet of more than 80 container ships. For each test class, results reported

in this section were obtained by generating 5 random instances and then taking an

average over them.

To report the results of our computational study in tabular form we use the

following abbreviations:

• G: The greedy algorithm.

• C: The pure column generation based algorithm.

• B: The two phase Benders decomposition based algorithm where column gen-

eration is used for solving the master problem in Phase I.

• F : The cycle generation algorithm based on the flow decomposition of the

circulation problem.

• I: The cycle generation algorithm based on the iterative search algorithm.

Combination of these are used to represent the overall algorithm tested. For exam-

ple, the two phase Benders decomposition based algorithm with the iterative search

algorithm for cycle generation is represented by BI.

2.5.2 Effectiveness of the Algorithms

We now compare the Benders decomposition based algorithm with the other pro-

posed algorithms. While solving the problem with the pure column generation based
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algorithm the LP relaxation is first solved to optimality and then the integer solution

is obtained using branch-and-bound. However, while solving the problem with the

two phase Benders decomposition based algorithm, in Phase I the cuts are generated

until the relative difference between the upper bound provided by the Benders re-

laxed master problem and the lower bound provided by the subproblem is less than

1% or the number of iterations in the first phase of Benders are less than 200. Phase

I terminates when one of these criteria is met. The LP solution obtained by the pure

column generation based algorithm is used as an upper bound to estimate the quality

of the final integer solution.

Table 6 presents a comparison between the greedy algorithm, the pure column

generation based algorithm and the Benders decomposition based algorithm. It also

compares the flow decomposition based cycle generation algorithm with the iterative

search algorithm for cycle generation. The second and third column of Table 6 report

the number of cycles generated and the CPU time taken to solve the problem using

greedy algorithm with iterative cycle generation. The fourth and fifth column report

these statistics for the pure column generation based algorithm with iterative cycle

generation. The next four columns, two each, report the corresponding statistics for

the Benders decomposition based algorithms with algorithm F and algorithm I for

cycle generation, respectively. The last three columns report the gap corresponding

to the relative difference between the solution value of the GI and the BI algorithm,

the CI and the BI algorithm and the BF and the BI algorithm, respectively. Initial

cuts described in Section 2.4.2 are used in both of the Benders decomposition based

algorithms. Also, columns with reduced cost less than -1,000,000 are removed after

every 10 iterations, during the column generation phase in algorithm C and while

solving the master problem in Phase I of algorithm B. As discussed at the end of

Section 2.3.3.2, care must be taken in setting the stopping conditions for the mixed

integer program BMP in Phase II of the Benders decomposition based algorithm.
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In our computational experiments, stopping the MIP when a 1% optimality gap

for small instances (6-10 ports) and a 3-5% gap for large instances (15-20 ports) is

reached provided a good balance of computational time and solution quality. These

parameters were set after initial computational experiments. Specifically, for the

6 port instances when the optimality gap is reduced from 1% to 0.1%, the solution

quality improves by only ∼ 0.04% whereas the time taken to solve the integer program

increases by ∼ 55%. Hence we believe that heuristically solving the MIP’s did not

have a significant effect in prematurely terminating the Benders algorithm if the

optimality gap was chosen properly. Also, in our computations when we use the

above optimality gaps as stopping criterions we never ran into a situation where

the upper bound obtained by the MIP was less than the Benders lower bound. For

the CI, BF and BI algorithms, column # cycles reports the number of cycles in

the integer program. Note that in these algorithms a larger number of cycles are

generated during column generation, while solving the LP, but subsequently removed

if they have high negative reduced cost.

The results of our tests show that there is a very significant difference in the so-

lution quality obtained by the greedy algorithm and the solution quality obtained

by the other two algorithms. Though the greedy heuristic is fast, it works with a

very small set of cycles and picks each cycle that it generates without any further

considerations. The pure column generation based algorithm yields solution qualities

comparable to the Benders decomposition based algorithm with iterative cycle gen-

eration however it incurs a longer computational time and this difference increases

as the problem size increases. Though the number of cycles passed on to the integer

program in the pure column generation is not very high as compared to the number

of cycles at the end of Phase I in algorithm BI, the amount of time taken is much

higher. This can be contributed to the fact that as the problem size (number of

ports, ships and demand triplets) increases the number of variables as well as the
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number of constraints increases in the column generation based algorithm. However,

in the Benders decomposition based algorithm the effect of increase in problem size

is distributed between the master problem and the subproblem.

Though the BI algorithm outperforms the BF algorithm uniformly, the difference

between the solution quality obtained by these algorithms is less than 6%. However,

the time taken in the BF algorithm is 4-5 times higher than the time taken by the BI

algorithm. This can be attributed to the fact that, in algorithm BF , many infeasible

cycles are generated by solving the circulation problem and decomposing its flow

in the first phase of the Benders decomposition based algorithm. For a 6(10) port

problem BF generated about 65%(60%) infeasible cycles in Phase I. Though more

cycles are submitted at the end of Phase I by algorithm BF , the branch-and-bound

takes far less time as compared to the corresponding branch-and-bound in algorithm

CI since most of the cycles generated by algorithm BF are infeasible for the integer

program and are removed at the start of the branch-and-bound. More over, in the

CI algorithm most of the time is spent in solving the LP relaxation via column

generation.

Table 6 reports results for test cases with up to 10 ports because the pure column

generation based algorithm and the flow decomposition based cycle generation algo-

rithm become computationally very expensive thus making CI and BF ineffective.

Also, the solution quality of the greedy algorithm decreases further as compared to

the Benders decomposition based algorithm. Table 6 establishes the superiority of

the solution, in terms of both CPU time and revenue generated, obtained by the two

phase Benders decomposition based algorithm with iterative cycle generation. Thus,

we used this algorithm to perform all further experiments.

50



Table 2: Analysis of the Benders decomposition based algorithm.
Test Phase I Phase
Class iters sub-problem master cycle-gen II %gap

P6S18D6 13 0.02 0.11 0.09 0.01 10.24
P6S18D9 16 0.10 0.19 0.14 0.03 12.10
P6S30D6 20 0.06 0.23 0.17 0.03 2.30
P6S30D9 27 0.16 0.36 0.27 0.05 3.32

P10S30D18 47 7.24 6.13 5.17 1.99 8.55
P10S30D27 56 17.02 7.65 3.63 6.54 9.80
P10S50D18 75 23.87 20.64 16.09 19.65 1.91
P10S50D27 95 52.69 31.20 18.37 35.55 3.24
P15S45D42 130 105.86 69.46 52.27 35.25 8.63
P15S45D63 175 141.60 110.69 72.00 33.80 8.53
P15S75D42 181 172.25 152.49 118.80 167.72 5.30
P15S75D63 200 254.26 212.56 156.08 174.78 5.92
P20S60D76 200 1165.87 73.12 39.92 42.07 12.70
P20S60D114 200 1750.63 113.18 47.38 173.37 7.51
P20S100D76 200 2507.51 164.61 72.81 262.45 5.05
P20S100D114 200 3784.38 380.11 149.65 478.01 7.21

2.5.3 Analysis of the Benders Decomposition Based Algorithm

Our next set of experiments perform a deeper analysis of the Benders decomposition

based algorithm and are presented in Table 7. In these experiments we used initial

cuts and removed columns with large negative reduced costs after every 10 iterations

in the first phase of the Benders decomposition based algorithm. The second column

in Table 7 represents the number of iterations in the first phase of the algorithm. The

third, fourth and fifth columns present a breakdown of the total time taken in various

processes while solving the LPBMP . The next column represents the additional time

taken to obtain an integer solution. The last column reports the gap corresponding

to the relative difference between the upper bound, obtained by the CI algorithm,

and the integer solution value obtained by the BI algorithm. To keep computational

time under control, in Phase II, only 2-3 iterations of the Benders algorithm were

performed.

Table 7 suggests that as the number of demand triplets increase the time taken
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in solving the sub-problem increases. This is mainly because every demand triplet

is considered a different commodity thus as the number of demand triplets increase

the complexity of the multi-commodity flow problem or the subproblem increases (in

the number of variables and constraints) significantly. Note that an increase in the

number of demand triplets results in an increase in the time taken to solve the master

problem also. This is because of the increased possibilities with regard to the cycles

that can be generated. The overall time increases as we increase the number of ports,

the number of ships or the number of demand triplets.

For the same number of ports, as the number of ships increases the integrality gap

reduces significantly. This suggests that the set of cycles generated in the first phase

are good for the second phase also and given sufficient number of ships the gap can

be reduced further. For small test cases with 6 ports, we observed that the integer

solution obtained by our algorithm is indeed close to the optimal solution in many

cases and that LP based upper bound is not very tight. It is easily seen that the

integrality gap can be very bad. Consider a two port, one ship instance such that the

sailing time between ports is one week. An LP solution will assign half a ship to each

edge whereas an integer solution will yield zero revenue resulting in a 100% integrality

gap. However, given a sufficient number of ships such extremely pathological cases

are highly unlikely to occur.

Our next set of experiments studies the effect of using the refinements described

in Section 2.4.2 and Section 2.4.3. Using the two phase approach we solve each

instance first without the initial set of cuts, then without removing any column at

intermediate steps and finally by incorporating the initial cuts and removing columns

at intermediate steps to keep only a subset of columns. Parameters are chosen so that

the solution quality is not affected by these refinements however the computational

time is reduced significantly. Table 8 reports cycles generated, iterations performed

and the time taken for each of these cases. The total CPU time taken to find an
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Table 3: Effect of algorithmic refinements.
Test No Cuts + All Cols Cuts + All Cols Cuts + Remove Cols
Class #cycles iters time #cycles iters time #cycles iters time

P6S18D6 62 15 0.20 51 13 0.17 49 13 0.16
P6S18D9 93 15 0.34 87 15 0.33 64 16 0.30
P6S30D6 194 22 0.66 105 20 0.44 96 20 0.33
P6S30D9 240 30 1.03 131 27 0.88 120 27 0.57

P10S30D18 494 52 18.82 464 45 18.68 213 47 15.41
P10S30D27 673 60 64.50 603 55 50.45 292 56 30.56
P10S50D18 882 79 271.03 790 71 168.82 371 75 61.34
P10S50D27 1102 99 748.23 889 91 364.81 578 95 116.35

integer solution is also reported.

Table 8 reports results for networks with up to 10 ports because the time taken

in both phases of the Benders decomposition based algorithm becomes prohibitively

high, for networks with more than 10 ports, if we remove the initial cuts or do not

remove cycles with large negative reduced cost. Note that removing columns with

negative reduced cost less than -1,000,000 does not reduce the number of cycles sig-

nificantly for 6 port instances since not many cycles for such a small network have

a large negative reduced cost. However the same refinement reduces the number of

cycles for 10 port instances to approximately half the size suggesting that this refine-

ment must be tuned according to the problem size to properly control the number of

columns in the linear program.

Table 8 suggests that the CPU time as well as the number of iterations, in the

first phase of the Benders decomposition based algorithm, reduce by introducing the

initial cuts. However, a more significant reduction in time is achieved by removing

columns with large negative reduced cost. Removing very negative reduced cost cycles

does not affect the time taken in Phase I very much, but the number of columns that

the integer program works with in Phase II are reduced considerably and thus the

time taken in the second phase of the Benders decomposition based algorithm reduces

significantly.
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Finally, we study the effect of having only one ship type, in the fleet, on the

solution quality. Table 4 reports results for a fleet of identical ships with 4000 TEU

capacity. For each test class, we report the CPU time taken in Phase I and Phase II of

the Benders decomposition based algorithm with iterative search for cycle generation,

the total number of cycles generated and the optimality gap. In this case also, 2-3

iterations of the Benders algorithm were performed in Phase II.

Table 4: Effect of identical ships in the fleet.
Test Phase I Phase
Class sub-problem master cycle-gen II #cycles %gap

P6S18D6 0.02 0.09 0.07 0.00 35 1.43
P6S18D9 0.04 0.17 0.14 0.01 42 2.14
P6S30D6 0.03 0.11 0.09 0.00 60 0.16
P6S30D9 0.06 0.20 0.18 0.04 72 2.01

P10S30D18 3.92 2.97 2.41 0.30 190 2.25
P10S30D27 5.06 2.16 1.82 0.62 202 2.23
P10S50D18 8.32 6.98 5.25 2.02 243 1.45
P10S50D27 13.38 8.36 6.82 2.54 275 1.74
P15S45D42 51.72 17.40 15.35 3.72 398 2.53
P15S45D63 97.05 25.59 21.97 4.97 520 2.01
P15S75D42 171.12 52.77 37.77 5.20 583 1.93
P15S75D63 209.07 87.28 52.78 6.83 647 1.56
P20S60D76 1023.53 106.96 91.60 12.83 450 1.32
P20S60D114 1869.77 193.79 117.76 13.50 791 1.16
P20S100D76 1825.67 181.85 144.67 14.82 957 1.91
P20S100D114 2923.28 189.13 141.51 16.50 980 2.01

Table 4 suggests that if all the ships are identical the optimality gap reduces even

further in all the test classes. Since all ships are identical, in Phase II it becomes

easier to operate a service route using ships of similar kind to maintain the weekly

frequency. Comparing Table 7 to Table 4 suggests that the overall time taken also

reduces. The time taken in the cycle generation process reduces significantly as now

the cycle generation needs to be solved only for one ship type at every iteration. Thus

the time taken in the master problem decreases. Also note that a fewer number of

cycles are generated and thus the time taken in Phase II reduces significantly. As a
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result the overall solution time is reduced.

2.5.4 Analysis of the Solution

In this section, we take a closer look at the solution generated by the Benders de-

composition based algorithm and its implications. Also, we perform preliminary

experiments to study the effect of transshipment cost on cargo routing.

The second column in Table 5 reports the number of cycles or service routes picked

in the final solution. The number of service routes increases as the number of ships

and the number of ports increase. The next two columns in Table 5 report the average

percentage utilization of capacity on the edges of the network and the percentage of

the cargo that is transshipped. These results are for the case when we do not consider

transshipment cost i.e. the cost of transshipment is 0. Utilization of capacity on an

edge is calculated by dividing the total flow on that edge by the total capacity of the

edge. Recall that the capacity of an edge is defined by the number of ships (and their

capacities) that utilize the given edge. Across our problem instances, our algorithm

consistently reports high average percentage utilization, 70-90%, of capacity. Note

that higher the number of service routes, higher is the number of possibilities for cargo

routes. As a result the percentage of the cargo transshipped to the total cargo shipped

increases as the problem size increases. This trend is observed in our computational

study also as the amount of transshipped cargo increases from ∼ 19% for a 6 port

problem to ∼ 30% for a 10 port problem.

Next, we perform preliminary experiments to study the effect of transshipment

cost on cargo routing. Depending on the set of chosen service routes we construct a

new network. In the new network, at every port where two or more cycles meet a new

node is constructed for every cycle. The new nodes are connected to the original port

node via edges. These edges act as loading/unloading edges and have corresponding

costs associated with them. For example, for the network represented in Figure 4
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Figure 7: New network to study the effects of transshipments

the new network is given by Figure 7. At port p, cup and clp denote the unloading

and loading cost respectively and the transshipment cost is given by cup + clp. Thus

a transshipment occurs when at an intermediate port cargo travels on an unloading

and then a loading edge. In Figure 7, a cargo that is routed from port B to port D is

transshipped at port C and it uses the unloading edge from cycle C1 to port C and

the loading edge from port C to cycle C2.

To perform the experiment, we construct the new network for the cycles selected

at the end of the second phase of the Benders based algorithm. The cargo routing

problem is solved for both the, new and the original, networks. The effect of the trans-

shipment costs on the cargo routing decisions is studied by observing the percentage

difference between the demand satisfied in the original network (in the absence of

transshipment costs) and the new network (in the presence of transshipment costs).

Also we compute the percentage of cargo transshipped to the total cargo shipped.

These two statistics are reported in Table 5 for three different scenarios: transship-

ment cost = 20 units/per unit of cargo, transshipment cost = 100 units/per unit of

cargo and transshipment cost = 1000 units/per unit of cargo. Recall that the holding

cost at ports is chosen randomly from [1, 10] and the revenue generated by satisfying
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demand is chosen to be proportional to the distance (proportionality constant being

chosen randomly from [100, 200]) between the origin and destination ports. Note

that as the distance between ports is chosen from [2, 42] days, the revenue generated

is chosen from ∼ [200, 8000]. Thus the first scenario represents the case when the

transshipment cost is low and is comparable to the holding cost at a port. The third

scenario represents the case when the transshipment cost is very high and is compa-

rable to the revenue generated by satisfying demand. Such high transshipment costs

are highly unlikely however we discuss this scenario to present an extreme case.

Our computations yield that when the cost of transshipment is of the order of

the holding cost at a port or low as compared to the revenue generated by satisfying

demand, the routing decision in both networks are similar. However, as the transship-

ment cost increases the routing decisions change. Specifically, as the transshipment

cost increases from 20 to 1000 units the percentage change in the amount of demand

satisfied increases from 0% to ∼ 36%. We note that as the transshipments become

more and more expensive the percentage of the cargo transshipped to the total cargo

shipped decreases. An anomaly occurs in the first row last column of Table 5 as the

percentage of transshipped cargo increases from 12.84% to 15.17% when the trans-

shipment cost increases from 100 units to 1000 units. This occurs because as the

transshipment cost increases not only does the transshipments decrease but also the

demand that is satisfied decreases in many cases since the routing options get limited.

Thus for the last column the numerator as well as the denominator decreases. For

instances in the class P6S186 the denominator decreases faster than the numerator

because for this class of instances we have very few demand pairs (few things to route)

and on average very few selected cycles (very few alternative routing options).
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2.6 Concluding Remarks and Future Research

In this chapter we presented a new mathematical model for the simultaneous ship

scheduling and containerized cargo routing problem for liner shipping. The proposed

model captures the important weekly frequency constraint faced by the carriers and

allows them to take advantage of transshipping cargo. The structure of the model

makes it well suited for decomposition, leading to efficient algorithms. Effective ser-

vice routes for ships are generated selectively in a column generation setting using

an iterative search algorithm. Finally, the proposed solution approach is tested on

various test classes. Considering the preliminary results obtained, we believe that

the suggested solution approach has the potential to help the planners in developing

better routes for a fleet of up to 100 ships. The planners can also add their pre-

determined service routes to the model as a set of initial cycles and thus be a part

of the solution process to obtain a solution which is a “user’s solution” rather than

a “computer’s solution”. Our results indicate high percentage utilization of ships’

capacities and a significant number of transshipments in the final solution.

Our aim in this chapter is to provide a basic framework for simultaneous ship

scheduling and cargo routing. The model and the solution strategy presented here can

be enhanced in different ways. Next, we present some directions for future research.

The model presented in this chapter allows for transshipping the cargo from one

ship to another. At the end of Section 2.5.4 we presented an approach to account

for transshipment costs during cargo routing. However, the model does not take

in to account the transshipment costs while designing the service routes. Further

research is required to extend or modify the model to include transshipment costs.

This aspect is expected to increase the complexity of the model and the solution

procedures significantly.

In our model we allow only one ship type to maintain weekly frequency on a

service route. This provides same capacity in the network every week and is useful
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when a carrier faces same demand each week. However, it is possible that the de-

mand structure is not the same each week. Further research is required to allow for

multiple ship types on a service route. Changes in demand from week to week can be

incorporated easily by expanding the planning horizon, however incorporating cycles

with multiple ship types will require changes in the model and the cycle generation

scheme.

In the pure column generation algorithm and the Benders decomposition based

algorithm, no new columns are generated when solving the integer program. New

columns can be generated by solving the integer program in a branch-and-price (rather

than the branch and bound used here ) framework. Branch-and-price is expected to

improve the solution quality. However, there are many important and challenging

issues that are required to be resolved for developing a successful branch-and-price

algorithm. Specifically, a good branching rule needs to be devised. Standard branch-

ing on the cycle or the xC variables creates a problem along the branch where a

variable has been set to zero. xC = 0 means that cycle C needs to be excluded.

However, it is possible that the next time the pricing problem is solved to generate

a profitable cycle in this branch, the optimal solution is precisely the cycle C. Thus

the second best cycle must be considered. More over, at depth l in the branch and

price tree it might be necessary to construct the lth best cycle. Note that a successful

branch-and-price algorithm requires a pricing problem that can be solved very effi-

ciently, as it will be invoked many times. Explicitly excluding the specified cycles

from the pricing problem is computationally expensive. Even if a pool of cycles is

generated at every column generation step, one needs to keep track of all the cycles

that need to be excluded. Since commercial softwares such as CPLEX cannot handle

the branch and price framework, managing the search tree efficiently poses many im-

plementation challenges, such as deciding which nodes to branch on and which search

technique e.g. breadth first search, depth first search, best bound, etc to use.

60



CHAPTER III

ALLIANCE FORMATION AMONG SEA CARRIERS

3.1 Introduction

In order to position themselves better against their competitors carriers rely on good

customer service (shorter transit times, higher frequency of service) and competitive

prices. However, some of the recent trends in the industry such as increasing cus-

tomer expectations, shrinking profit margins, new entrants (for example brand name

package delivery providers such as DHL and UPS that are synonymous with relia-

bility and speed) and new markets [45] are leading to cutthroat price competition

among various carriers. These market and customer pressures are driving carriers to

adopt solutions outside of their traditional business practices and identify competitors

with most synergies to increase profit margins and meet increasing customer expecta-

tions. Though carriers collaborate and form alliances on many trade routes they are

competitors with selfish interests. Sustainable collaborations require mechanisms to

govern membership rules and allocate costs and benefits in a fair way. As observed by

Jain and Vazirani [36] such problems appear in a wide variety of seemingly unrelated

fields such as internet routing, auctions, telecommunications and transportation and

have the following two properties in common:

1. In all of these problems a number of players/participants interact with varying

degree of collaboration and self motives.

2. The underlying computational problem is NP hard.

The mathematical tools and insights most appropriate to understand and analyze

these problems are obtained by uniting concepts of mathematical economics and game
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theory with that of algorithm design. The linear programming machinery, especially

ideas from duality theory such as primal dual methods, are heavily used in literature

to develop good algorithms for solving these problems [30], [36].

In this chapter and Chapter 5 we study strategic alliance formation among two

or more carriers in containerized liner shipping. Sea carriers collaborate to form

operational, pricing and logistical alliances. We study alliances, among sea carriers,

that are formed by pooling, exchanging and integrating ships in their fleet.

In this chapter, we first study the reasons that motivate carriers to collaborate

and form alliances. In Section 3.3, we review some relevant game theoretic concepts.

Carriers form alliances by pooling their ships and integrating their networks. The

maximum revenue that an alliance can generate can be obtained by replacing in-

dividual carriers with one large carrier, with a fleet equal to the combined fleet of

different individual carriers and a demand structure equal to the combined demand of

all carriers, and solving the corresponding optimization problem for a single carrier as

formulated in Chapter 2. In Section 3.4, we present a small example to study alliances

among liner carriers. In Section 3.5, for a special case of the problem, we provide

a fair allocation of the total revenue generated by the alliance among its members.

Allocation mechanisms for the general case are presented in Chapter 5.

3.2 Why Collaborate?

Traditionally, companies have focused on their own resources and ability to perform

effectively and efficiently. However, recently in logistics and supply chain manage-

ment, companies that in the past worked independently of each other, are working

in close liaison. The system wide collaboration perspective provides opportunities

for increased profitability that are impossible to achieve through internal focus only.

Vendor managed inventory (VMI) and shipper collaboration (for example the suc-

cess of collaborative logistics networks run by Nistevo and Transplace) are two of
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the most successful applications of collaboration in logistics to date. Globalization,

containerization, deregulation and easy integration of logistics networks of different

carriers due to technological advancements have led to similar trends in the sea cargo

industry.

Collaboration among sea carriers is not new. Carriers have used conferences, as

a means for curbing competition and controlling tariff rates in the market, for over

a century. The first conference was formed in 1875 on a route between the United

Kingdom and Calcutta, India. More recently, carriers are forming strategic alliances

that allow them to share capacity on a ship and to share slots at the ports. Since

1990, when Sea-Land and Maersk introduced the alliance system and began sharing

vessels in the Atlantic and Pacific oceans, strategic alliances have become increas-

ingly common. The industry is becoming more and more consolidated (for example

Maersk’s bid for P&O Nedlloyd in 2005) and smaller alliances are collaborating to

form even bigger alliances (for example Grand Alliance and The New World Alliance

laid down foundation for cooperating in 2006). Figure 8 depicts some of the trends of

consolidation in 2007 as compared to those in 1995. More over, the shipping industry

in many nations including the United States has enjoyed anti-trust impunity because

of the widely accepted fact that this industry is highly capital intensive and collabo-

ration among carriers helps provide regular service between ports. According to [45],

in near future the top 10 carriers will control about 80% of the market with the next

20 carriers controlling about 15% of the market. We now list some of the motivating

factors for alliance formation among sea carriers. These have been studied by [67] in

detail.

1. In the last couple of decades, many factors have led to the consolidation of

manufacturing sector thus leading to bigger demands. This consolidation works

in favor of the shippers who can now control a bigger share of the market.

However this leads to squeezed profit margins for the sea cargo carriers. Sea
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Figure 8: Trend of consolidation

cargo carriers have counter acted by forming many alliances among themselves

to help them fix prices so that the shippers have less bargaining power.

2. Liner shipping is a capital intensive industry with infra-structural set up as its

backbone. Carriers need to invest heavily in assets such as ships (owning a ship

involves millions of US dollars and the cost of idling a 2,000 TEU ship is $20,000-

$25,000 per day), containers and land based facilities such as marine terminals

etc. Carriers collaborate and form alliances to reduce and share capital costs.

Huge costs are involved in maintenance and operation of ships as well. In

extreme cases of collaboration carriers form alliances with carriers who do not

own any ships or “NVO”s(Non-vessel operator). NVOs compensate ship owners

for using capacity on their ships and for ship owning carriers they act like

shippers with big demands. Similarly, a carrier who has invested heavily in

land based infra structure and marine terminals can improve the utilization of

these facilities by getting its partner’s cargo volume to assist in spreading the
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Figure 9: Increase in size of container ships. Source: Wikipedia

capital investment costs. Advent of containerization of cargo in 1990s demanded

new investments and many alliances at that time were formed to share this cost.

3. Ships are becoming larger and larger, as depicted by Figure 9, thus giving rise

to chronic over capacity. A recent increase in literature e.g. [35] on the viability

of larger ships is also a pointer towards the increasing use of bigger ships. The

construction cost, the cost of operation (e.g. fuel, equipment, port visit cost

e.t.c) and the cost of maintenance (e.g. crew cost, repair cost e.t.c.) on a

ship does not increase in proportion to the size of the ship. For example, in

1992 when ship size increased from 800 TEUs to 2,500 TEU’s (or 212%), the

construction cost increased by only 160%. This motivates construction of bigger

and bigger ships. However, the capacity on the ship is perishable. Once the

ship leaves the port the capacity becomes unusable until it reaches a loading

port again. Alliances provide carriers with opportunities to deploy bigger ships,

thus achieving reduction in cost via economies of scale and higher utilization

of space, by catering to the demand of multiple carriers. For example, two

carriers with 2,000 TEUs demand each week can deploy a single 4000 TEU ship

rather than two 2,000 TEUs ships and thus achieve economies of scale while

still satisfying their individual demands.
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4. Sea cargo industry is marked with low product differentiation. Almost all car-

riers have same facilities and ships with similar speeds. Containerization of

cargo further reduces any differences. The low differences help carriers to form

alliances easily.

5. Good frequency of service is essential for a carrier to achieve higher market

share. The “Just-in-time” inventory management system deployed by many

businesses demands timely and frequent transportation service. Thus, most

carriers have at least one departure each week from each port visited on a service

route. As observed in the previous chapter, this requires that the number of

ships that operate on a cycle be at least equal to the number of weeks that it

takes to complete a cycle. However some cycles such as the Asia- North America

cycle take up to eight weeks to complete. This means many ships are required

to maintain good frequency on these routes. However if two carriers with 2,000

TEU demand from Asia to North America run this eight week service route

in collaboration then each carrier would need to contribute only four ships

of 4000 TEUs and still have access to a weekly 2000 TEU capacity, with a

proportional allocation of space on the ships. This can also be viewed as a way

of breaking the discreteness of the ships. In this example we can say that a

carrier is running half a ship each week. Note that if a carriers has less than

eight ships then he cannot offer any service on this very profitable trade route.

More over, in the above example, if both carriers have eight ships each of 4000

TEU to offer for the service route then they can increase frequency on the route

and potentially grab a higher market share. For example according to 2005

data [47], the Grand Alliance, which is the largest integrated alliance, offers a

total capacity of 640,000 TEUs with 112 vessels dedicated to the three main

East-West trade lanes, thus maintaining its strong hold on these trade lanes by

offering faster transit times and high frequency service. Pooling ships together
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allows carriers to group ships with similar characteristics together, independent

of ownerships, to offer same services every week on jointly operated routes, by

deploying compatible ships on a service route.

6. Alliances help carriers to explore new markets and enhance their global reach.

Transshipments play a vital role in enhancing global markets. For example in

Figure 10 let carrier A and carrier B operate cycle C1 and C2 respectively. To

obtain benefit from an emerging market from port P1 to port P3 they can form

an alliance by offering space on their respective cycles and by transshipping

at port P2. Thus both of them have expanded markets without deploying any

additional ships. This is well suited for shippers as well as they can avoid dealing

with multiple carriers.

Alliances also help carriers redistribute their excess capacity and de-emphasize

or emphasize their operations in some areas. These needs often arise as a result

of change in corporate mission and internal decision regarding which trades to

participate in, exit, trim or expand. For example, in 2005 MISC, MOL, NYK,

OOCL and PIL started two collaborative routes to cover China, Singapore and

New Zealand. The strategic alliance allowed them to extend their services to

new destinations thus enhancing their role in those regions and generating new

opportunities for mutual growth. Similarly in 1993, Hapag Lloyd formed an

alliance with NOL and NYK, who offered Far East -North America service.

This alliance forced Hapag Lloyd to reduce its own weekly capacity on its trans

Atlantic route, to offer space to the alliance. However, this provided Hapag

Lloyd with an opportunity to access the trans Pacific trade and thus a chance

to redistribute its trans Atlantic capacity to the trans Pacific.

7. In spite of globalization, carriers tend to dominate their home markets and this

trend is expected to remain more or less the same. There are many reasons
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Figure 10: Transshipment at port P2

such as a better understanding of the political and geographical issues and

human instincts for this behavior. However this leads to huge imbalance in

trade in many cases. With an industry concerned with filling ships, alliances

help carriers to reduce the imbalance in trade and achieve better utilization of

ship’s capacity. For example two carriers, one with a high demand from North

America to Asia and another with a high demand from Asia to North America

can find perfect synergies for alliance formation.

Finally, we conclude that though the notion of cooperation runs contrary to the

concept of perfect competition, carriers form alliances to realize economies of scale,

extend customer base, increase asset utilization, regulate traffic and fix prices while

providing customers with more frequent sailings and faster transit times. Decisions

regarding the alliance routes have to be taken together by the alliance members.

However, it involves management costs etc and all partners have their own interests

in mind. Thus, to form successful alliances, carriers need to identify suitable partners

with most synergies. In many cases collaborators have parted ways because they

could not align their interests properly. For example, Ben Lines and P&O dissolved

their alliance because of their similar market focus in the east Europe trade. Though

alliances provide more opportunities to carriers, they make the network design com-

plicated and give rise to issues of distribution of benefits and costs. We consider these

issues next. But first we introduce some game theoretic definitions and concepts that

are relevant to this and the following chapters.
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3.3 Game Theory Basics

A cooperative game is defined by a set N of players and a characteristic function

opt : 2N → R. opt(S) maps a value to every subset/coalition S ⊂ N , interpreted

as the total gain the members of S can achieve by cooperating. We assume that

opt(∅) = 0. The set N itself is referred to as the grand coalition. The central

problem in cooperative game theory is how to allocate the total gain opt(N) among

the individual players i ∈ N in a “fair” way. We denote an allocation/payoff vector

by x = {x1, . . . , xn} ∈ R, where xi refers to the payoff made to player i.

One of the most prominent and widely accepted notions of fairness is the “core” of

the game. An allocation of benefits is said to be in the core if the sum of the payoffs

over all players is their maximum attainable profit (budget balance property) and no

subset of players can collude and obtain a better payoff for its members (stability

property). Mathematically, a payoff vector x is said to be in the core if:

∑
i∈N

xi = opt(N) (28)∑
i∈S

xi ≥ opt(S) ∀S ⊂ N. (29)

3.4 A First Look

As challenging as the optimization problem of network design for a set of carriers

is, it is also important to identify the rules governing the distribution of benefits

among the carriers. Assuming that a carrier is concerned only with a payoff at the

end and is indifferent towards which demand is satisfied and which service routes are

realized the sea cargo network design game can be defined as: Given a set of carriers

N = {1 · · ·n} and specific demand set Θk and Na
k ships of type a for each carrier k,

carriers form alliances by consolidating their demand, Θ = ∪kΘk, and pooling their

ships, Na =
∑
k

Na
k . Together they need to decide on a set of service routes for their

ships and select a set of cargo to be shipped on the chosen routes, to maximize the

69



overall revenue generated by the alliance. Then they need to identify a “fair” payoff

method to allocate the revenue generated by the alliance among its members. Note

that in our study we ignore any costs, logistical and management, involved in forming

such alliances.

We refer to the participating carriers as players and any non empty subset of

N (including N itself and all the one element subsets) as a coalition. For a subset

S of carriers we denote by opt(S) the schedule obtained by solving the optimization

problem, as described in Chapter 2, when the demand and fleet size is restricted

to the carriers in the set S. By the characteristic function of the sea cargo network

design game we mean a real-valued function r(opt) defined on the subsets of N , which

assigns to each S ⊂ N the profit attainable by the schedule opt(S). In other words,

r(opt(S)) is the amount of payoff that the carriers in S can obtain, whatever the

remaining carriers may do. As observed in Chapter 2, determining opt(S) itself is a

hard problem. Also, we define a payoff allocation vector by x = {x1, ..., xn}, where

xk is the payoff allocated to carrier k.

A payoff allocation in the core represents a very strong type of stability (where

the grand alliance is not threatened by sub-coalitions) and provides a fair allocation

of benefits among the members. However, frequently the core of a game is empty.

Shapley [60] proved that if the characteristic function of a game is supermodular (i.e.

r(opt(S))+r(opt(T )) ≤ r(opt(S∪T ))+r(opt(S∩T ))) then the core is nonempty. We

now present a sea cargo network design game instance for which the characteristic

function is not supermodular.

Consider an instance with three ports with distances (in terms of the number of

weeks that a ship takes to reach from one port to another) as depicted in Figure 11.

Consider three carriers A with two ships and B and C with one ship each. Carrier

A has demand from port P2 to port P3 and carrier B and carrier C have demands

from port P1 to port P2. Assume all ships are identical with 1000 TEU capacity, all
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demands are unlimited, unit amount of revenue can be generated by satisfying a unit

of demand and there are no costs involved. Let us consider the set S = {A,B} and

T = {B,C}. Then, after maintaining a weekly frequency on operated cycles, clearly

r(opt(S)) = $2000: 3 ships on cycle P1 − P2 − P3 − P1.

r(opt(T )) = $1000: 2 ships on cycle P1 − P2 − P1.

r(opt(S ∪ T )) = $2000: 3 ships on cycle P1 − P2 − P3 − P1.

r(opt(S ∩ T )) = $0 : Carrier B cannot operate on its own.

Figure 11: The sea cargo network design game is not super-modular

Since in the above instance, r(opt(S∪T ))+ r(opt(S∩T )) � r(opt(S))+ r(opt(T ))

we do not have supermodularity. Also, in the above example it is easy to see that

r(opt({A})) = r(opt({B})) = r(opt({C})) = $0

r(opt({A,B})) = r(opt({A,C})) = $2000, r(opt({B,C})) = $1000

r(opt({A,B,C})) = $2000.

Thus for an allocation {xA, xB, xC} in the core, for the budget balance condition

we must have

xA + xB + xC = 2000 (30)
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and for the two carrier subset rationality constraints we must have

xA + xB ≥ 2000 (31)

xA + xC ≥ 2000 (32)

xB + xC ≥ 1000 (33)

⇒ xA + xB + xC ≥ 2500. (34)

Thus, the core in this example is empty. Next, we look at a subclass of the general

sea cargo network design game where an allocation in the core can always be found.

3.5 An Allocation in the Core

In this section we consider a subclass of the general sea cargo network design game,

namely the instances for which the the integer program (1) - (7) in Chapter 2 and

its linear programming relaxation have the same objective function value. For these

instances an allocation in the core can always be found with the help of the linear

programming machinery. We provide an algorithm, which utilizes the dual of the

problem, for obtaining an allocation in the core.

The use of dual variables for determining a payoff allocation in the core can be

traced back to the classic Bondareva-Shapley theorem [12] , [59]. It has been shown

that core allocation can be obtained as a function of dual variables for problems such

as the facility location game [30], in the special case when there is no integrality gap

for the corresponding linear programming relaxation, and for problems such as the

multicommodity flow game [42] in general.

Consider the LP relaxation of the integer linear program (1)-(7) from Chapter 2

where Θ = ∪kΘk and Na =
∑
k

Na
k . As in Chapter 2, let π = {πv : πv ≥ 0 ∀v ∈ G},

λ = {λe : λe ≥ 0 ∀e ∈ Ev}, ω = {ω(o,d,i) : ω(o,d,i) ≥ 0 ∀(o, d, i) ∈ Θ} and

σ = {σa : σa ≥ 0 ∀a ∈ A} be the dual variables associated with constraints (2), (3),

(4) and (5) respectively. The dual of the LP relaxation can be written as:
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min
∑

(o,d,i)∈Θ

ω(o,d,i)D(o,d,i) +
∑
a∈A

σaN
a (35)

such that

π
(o,d,i)
head(e) − π

(o,d,i)
tail(e) + λe ≥ −cce ∀e ∈ E − Ef , ∀(o, d, i) ∈ Θ (36)

π
(o,d,i)
head(e) − π

(o,d,i)
tail(e) + ω(o,d,i) ≥ R(o,d,i) − cce ∀e ∈ Ef , ∀(o, d, i) ∈ Θ (37)

−T a
∑
e∈C

λe + LCσa ≥ −CostC ∀a ∈ A, ∀C (38)

π, σ, λ, ω ≥ 0. (39)

Let (π∗, λ∗, ω∗, σ∗) be an optimal solution to the above linear program.

Lemma 2. If there is no integrality gap for the LP relaxation of the sea cargo network

design game, the payoff vector x = {x1, ..., xn} such that

xk =
∑

(o,d,i)∈Θk

ω(o,d,i)∗D(o,d,i) +
∑
a∈A

σ∗aN
a
k (40)

provides an allocation in the core.

Proof. We now prove that the allocation in (40) satisfies both conditions required for

the definition of core.

1. Budget balance

∑
k∈N

xk =
∑
k∈N

 ∑
(o,d,i)∈Θk

ω(o,d,i)∗D(o,d,i) +
∑
a∈A

σ∗aN
a
k


=

∑
(o,d,i)∈Θ

ω(o,d,i)∗D(o,d,i) +
∑
a∈A

σ∗aN
a

= r(opt(N )).
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Figure 12: An allocation in the core may exist even when the LP relaxation has an
integrality gap

2. Stability

Let S ⊂ N . Since (π∗, λ∗, ω∗, σ∗) is an optimal solution to the dual of the linear

program for set N , it will be feasible for the dual of the corresponding program

for set S. (This is easy to see since constraints in (36) remain the same, the

right hand side for some edges in (37) reduces from R(o,d,i) − cce to −cce and

constraints in (38) either remain the same or drop out as the cycles become

infeasible for carriers in S). Since the dual is a minimization problem,

r(opt(S)) ≤
∑
k∈S

 ∑
(o,d,i)∈Θk

ω(o,d,i)∗D(o,d,i) +
∑
a∈A

σ∗aN
a
k


⇒ r(opt(S)) ≤

∑
k∈S

xk.

Theorem 2. The core of the sea cargo network design game is non-empty if the LP

relaxation has no integrality gap.

Since the payoff vector in (40) is in the core, this theorem easily follows. The

following example shows that the converse of the theorem does not hold in general.
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Consider an instance with three ports with distance (in terms of the number of

weeks that a ship takes to reach from one port to another) as depicted in Figure

12. Consider two carriers A and B with two ships each. Carrier A has 1000 TEUs

of demand from port P1 to P2 and 1000 TEUs of demand from port P1 to port

P3. Similarly, carrier B has 1000 TEUs of demand from port P3 to P2 and 1000

TEUs of demand from port P3 to port P1. Assume all ships are identical with 1000

TEU capacity, the revenue generated by satisfying a unit of demand depends on the

distance between ports (in direct proportion i.e. revenue generated by satisfying a

unit demand at port P1 from port P2 is 1 unit and the revenue generated by satisfying

a unit demand at port P1 from port P3 is
√

2 units) and there are no costs involved.

Clearly,

r(opt({A})) = $1000: 2 ships (1 each week) on cycle P1 − P2 − P1.

r(opt({B})) = $1000: 2 ships (1 each week) on cycle P3 − P2 − P3.

r(opt({A,B})) = $2
√

2 ∗ 1000: 3 ships (1 each week) on cycle P1 − P3 − P1.

LP relaxation r(opt({A,B})) = $2
√

2 ∗ 1000 + 0.5 ∗ 1000: 3 ships (1 each week) on

cycle P1 − P3 − P1 and 1 ship (0.5 each week) on either cycle P1 − P2 − P1 or cycle

P3 − P2 − P3.

In this example, even though there is an integrality gap (LP relaxation r(opt({A,B}))

- r(opt({A,B})) = 500), a payoff in the core exists (($
√

2 ∗ 1000, $
√

2 ∗ 1000)).

3.6 Conclusions

In this chapter we studied alliance formation among carriers. First, we presented the

motivation behind alliance formation. Carriers collaborate with each other to share

costs, extend customer base, provide better service frequency, achieve economies of

scale and to better utilize their assets. Then, we considered the distribution of the

overall revenue generated by an alliance among its members. For a special case of the

problem, when the LP relaxation of the problem has no integrality gap, we provided
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an allocation of the benefits that is in the core.
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CHAPTER IV

MECHANISM DESIGN FOR A MULTICOMMODITY

FLOW GAME IN SERVICE NETWORK ALLIANCES

4.1 Introduction

In the transportation industry carriers form alliances to design collaborative service

networks. They bring their assets, such as ships in sea cargo transportation, in to

a pool and operate them together to provide capacity on the edges of the network.

Further, carriers use this capacity to route their demand in the network. Collabo-

rative networks help carriers to improve asset utilization, share capital costs, gain

economies of scale and explore new markets. This situation where multiple partic-

ipants/players utilize the underlying collaborative network to simultaneously route

their revenue maximizing demand appears in other application areas as well. In the

case of the internet, the backbone infrastructure and network is provided by a set of

companies, and businesses and end users utilize the capacity on the network to route

their data by paying fees to the network owner(s). Similarly, in procurement net-

works where multiple commodities are sourced through common suppliers, allocating

capacity appropriately among the several commodities assumes great importance in

determining the profitability of the entire system [13].

In a centralized setting, for instance when there is a single decision-maker who

makes all the decisions, a maximum multi-commodity flow problem can be solved to

identify the set of demands to satisfy and to route the demand on the network. The

objective in this problem is to maximize the revenue by simultaneously shipping dif-

ferent commodities in such a way that the total amount of flow through each edge
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is no more than the edge’s capacity. However, in real life applications where multi-

ple players interact, although individual players form alliances to take advantage of

the synergies that exist among their operations, usually only part of the decisions

regarding the alliance’s operations are determined jointly. For example, given the

capacities in the underlying collaborative network, individual carriers selfishly make

their own routing decisions to satisfy their demand and maximize their own revenue.

Also, they collect the revenue generated by satisfying their own demand and exchange

capacity on the assets at some pre-determined prices. Specifically, a player does not

allow other players to freely utilize his capacity. In this chapter, we provide a mecha-

nism, an algorithmic solution adorned with side payments, to regulate the interaction

among the players by determining capacity exchange costs. These exchange prices

guide the individual players’ profit maximizing behavior towards the solution of the

centralized multicommodity flow problem. Furthermore, they lead to allocation of

the total revenue among the players with desirable properties.

Flow games were first considered by [37] and [38] for networks with a single com-

modity where each arc is owned by an unique player. [21] extended the results of

[38] by studying flow of multiple commodities on networks with a common source

and a sink for all commodities where each arc again assumed to be owned by an

unique player. More recently, [42] studies the coalitional multicommodity game in

which players are the nodes of the given network who own capacity in terms of the

maximum flow allowed through that node. In general, the focus of these papers is

to first obtain the optimal flow in the network by solving the centralized problem

using classical linear programming methods and then allocate the revenue among the

players in a “fair” way. To define fairness, most of the work in literature utilizes the

notion of the core allocation, the set of stable and budget balance allocations. [38]

and [42] utilize the dual solution to show that the core is non-empty for the particu-

lar flow games they consider. In general, [48] shows that for any linear programming
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game dual solution provides an allocation in the core.

The strategy of first computing a centralized solution to a game and then allocat-

ing the revenues obtained by this solution assumes a centralized planner in the sense

that, the individual players have no control on the system operations and at the end

they receive an overall payoff from the central planner. The centralized systems are

very efficient as the decision-maker chooses the optimal solution for the collaboration

and allocates the overall benefits in a fair manner so that the collaboration is stable.

However, in most settings designing fully centralized systems are not realistic. For

example, in carrier alliances the individual carriers will operate their own assets and

route their own demand incurring the relevant costs and revenues. Given that cen-

tralization is not always possible, in decentralized system the incentives within the

system must be designed in such a way that the individual players are motivated to

chose solutions that are collectively optimal for the collaboration and the revenue ob-

tained is close to the maximum revenue that can be obtained with a fully centralized

system. Decentralized shortest path problems have been studied from a mechanism

design point of view by for example [46] and [33]. They design second price auctions

or VCG type payment mechanisms to evaluate the cost of an edge in the network. A

well known problem with VCG auctions however is that the resulting prices may not

be in the core.

In this chapter, we consider a more general network as compared to the literature

in the sense that we allow multiple players to own capacity on a single edge. Our

model is further differentiated from the ones studied by [38] and [21] since we con-

sider multiple commodities with their respective sources and sinks. More over, the

contribution of this chapter is the design of a mechanism to distribute the benefits

of collaboration among the players in a decentralized setting of the multicommodity

flow game. As the players are selfish, an individual player follows a strategy which

maximizes his own revenue. We model this strategy explicitly as a linear program

79



(LP ). The mechanism drives each individual player’s LP towards the collaborative

optimal solution using inverse optimization techniques. Specifically, the mechanism

computes capacity exchange costs on the edges of the network so that given these

costs the routing and capacity exchange decisions each player makes selfishly results

in the collaborative optimal flow. The mechanism allows a player to collect the rev-

enue from satisfying his own demand and charge (pay) other players for utilizing

capacity owned by him (them). We show that for the decentralized multicommodity

flow game, capacity exchange costs can always be found efficiently. Further, for a

special case of the problem, i.e. when each edge in the network has an unique owner,

we prove that the net revenue received by the players operating under the mechanism

provides an allocation in the core.

The rest of the chapter is organized as follows: in the next section we review

some relevant game theoretic concepts. In Section 4.3 we present the formal problem

definition. In Section 4.4 we provide a basic core allocation. The design of the

mechanism and related results are discussed in Section 4.5. Our conclusions are

presented in Section 4.6.

4.2 Game Theory Basics

Two game theoretic concepts are relevant to this chapter - the notion of core and

mechanism design. The definition of core is provided in Chapter 3. We now define

mechanism design.

Given a set of players N and a set O of possible outcomes for these players, we let

vi(o) be the valuation of outcome o for player i. The goal of mechanism design is to

design an algorithm that chooses an outcome, õ ∈ O and an n-tuple of side payments

{s1, . . . , sn} such that the total payment, xi, to player i is xi = vi(õ) + si. The total

payment is what each individual player aims to optimize. Intuitively, a mechanism

design concerns both an algorithmic ingredient (to obtain the desirable solution) and
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a payment ingredient that motivates the players. This field has received widespread

attention recently and has been used successfully to develop algorithms and protocols

for inter-connected collection of computers such as on the internet. For a detailed

discussion of mechanism design we refer the reader to [46].

4.3 Problem Definition

We define the maximum multicommodity flow (MCF ) game as follows: let G =

(V,E) be a directed graph on a set of nodes V and a set of edges E. Let N be

the set of players. Each player i ∈ N has a demand set Di where d(o,d,i) denotes

the maximum amount of existing demand from node o to node d for player i and

r(o,d,i) denotes the revenue generated by delivering a unit of demand from o to d by

player i. Let ∪i∈NDi = D. Each edge e ∈ E has a capacity ce, which denotes the

maximum amount of flow, summed over all commodities, allowed on that edge. γie

denotes the fraction of capacity that player i owns on edge e and
∑
i∈N

γie = 1. In

the multicommodity setting, each demand triplet (o, d, i) is referred to as a different

commodity. An outcome of the game is a feasible multicommodity flow, subject

to demand and capacity constraints, that maximizes the overall revenue generated,

denoted by opt(N), and an allocation, x ∈ Rn, of the total revenue among the players.

For a set S ⊂ N , we denote by opt(S) the maximum revenue generated by the network

induced by players in set S.

Next, we present a linear program to compute the flow that maximizes the revenue

generated by the grand coalition. For ease of exposition, we introduce fictitious edges

(d, o, i), from node d to node o, for every commodity (o, d, i) such that the only flow

allowed on edge (d, o, i) is for commodity (o, d, i). For each (o, d, i), f
(o,d,i)
e denotes the

amount of flow of commodity (o, d, i) on edge e. The linear program can be written

as:

(PN) : opt(N) = max
∑

(o,d,i)∈D

f
(o,d,i)
(d,o,i) r(o,d,i) (41)
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such that ∑
{e:e∈IEdges(v)}

f (o,d,i)
e −

∑
{e:e∈OEdges(v)}

f (o,d,i)
e ≤ 0 ∀v ∈ V ∀(o, d, i) ∈ D (42)

∑
(o,d,i)∈D

f (o,d,i)
e ≤ ce ∀e ∈ E (43)

f
(o,d,i)
(d,o,i) ≤ d(o,d,i) ∀(o, d, i) ∈ D (44)

f ≥ 0. (45)

In (PN), IEdges(v) denote the set of incoming edges into node v and OEdges(v)

denote the set of outgoing edges from node v. The objective function (41) maximizes

the revenue obtained by satisfying demand. Constraint (42) is a flow balance con-

straint at every node of the network. Note that if these inequalities hold for each

node v ∈ V then in fact they must hold with equality at every node. Constraint (43)

is a capacity constraint on each edge and constraint (44) is a demand constraint for

every commodity.

Let (DN) denote the dual of the linear program (PN). Let π = {π(o,d,i)
v : π ≥

0, ∀v ∈ V, ∀(o, d, i) ∈ D}, α = {αe : αe ≥ 0, ∀e ∈ E} and β = {β(o,d,i) : β(o,d,i) ≥

0, ∀(o, d, i) ∈ D} be the dual variables associated with constraints (42), (43) and (44)

respectively.

4.4 An Allocation in the Core

For cooperative games when the players are concerned with an overall payoff only,

utilizing the dual optimal solution to the grand coalition’s optimization problem is

a common strategy to obtain an allocation for the players. Such a payoff vector is

called a dual payoff vector and is obtained by assigning to each player an amount

which corresponds to the value of his resources, according to the dual solution. Also,

it is a well known result that for linear programming games, such as the one we

consider here, the dual payoff vectors provide an allocation in the core [48]. [38]

showed that for simple networks (single commodity flow networks where each edge
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has a single unit of capacity), every core allocation corresponds to an optimal dual

solution for the corresponding optimization problem. [56] proved a similar result for

a more general class of linear programming games.

Theorem 3. The core of the multicommodity flow game defined above is non-empty

and a payoff allocation in the core can be constructed in polynomial time by solving

the dual program (DN). However, the core of this game is not fully characterized by

these dual solutions.

Proof. This theorem can be easily proven by considering an optimal dual solution

(π, α, β) and a payoff vector x = {x1, . . . , xn} such that the payoff to player i is:

xi =
∑
e∈E

γieceαe +
∑

(o,d,i)∈Di
d(o,d,i)β(o,d,i). (46)

Next, we provide an example to show that the core of the MCF game cannot be fully

characterized by the dual payoff vector (46). Consider a network with two nodes 1

and 2 and edge (1,2). Consider two players A and B such that player A owns 2 units

of capacity on edge (1,2) and player B has a unit demand from 1 to 2 generating a

unit revenue. Clearly, the optimal solution value is one unit and (xA = 0.5, xB = 0.5)

is an allocation in the core. However this payoff vector does not correspond to any

dual payoff vector (46) since every dual payoff vector will assign zero units to player

A.

4.5 Mechanism Design

In a MCF game, players collaborate by sharing capacity on the edges of the network.

Let the optimal collaborative flow in the network be f ∗, an optimal solution to (PN).

In many applications, given an optimal flow in the network, players are concerned

with not only their overall payoffs but also the flow decisions. For example when

carriers collaborate in transportation networks, each carrier collects the revenue from

his customers by satisfying their demand and evaluates the valuation of solution f ∗
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for himself as vi(f ∗) =
∑

(o,d,i)∈Di
r(o,d,i)f

∗(o,d,i)
(d,o,i) . Note that it is in the best interest

of the collaboration that players make their demand routing and capacity exchange

decisions as implied by f ∗. However, the computation of optimal flow f ∗ ignores the

ownership of capacity on the edges by the players. That is, it assumes the players

readily exchange capacity on the edges of the network.

We now present a mechanism that provides incentives to the players to route their

flows and exchange capacity among themselves as prescribed by f ∗. The incentive is

provided in the form of capacity exchange costs, denoted by the vector cost. Capacity

exchange costs provide side payments, on top of the valuations vi(f ∗), to the players

to guide their selfish behaviors towards the optimal solution f ∗. That is, the net profit

generated by a player i is calculated by adding vi(f ∗) to the money player i receives

from the other players using capacities on his edges minus the money i pays to others

for using their capacities. We present a linear program, representing the perspective of

an individual player, that makes routing decisions for each player in order to maximize

the net profit for the player. Further, we utilize inverse optimization techniques and

calculate capacity exchange costs so that f ∗ becomes the optimal solution for all the

individual player’s LP ′s.

4.5.1 Single Player Problem

The key difficulties in modelling the individual player’s perspective in an alliance are

in determining: how should the player account for the flow of other players in the

network and what portion of their capacities can he use for routing his own flow.

We model the individual perspective of a player as a linear program. We assume

that if a player i owns γie fraction of capacity on edge e then he is allowed to collect

γie fraction of the cost payed by other players for using capacity on edge e. We

model an individual player’s perspective by assuming that he can route all the flow

in the network to maximize his profit. However in practice, an individual player
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can only make decisions regarding his own flow. In this sense our approach is a

conservative one, since the maximum revenue that player i can obtain will always be

less than the optimal value of this model. However, as described later, this model

leads to allocations with desirable properties. In mathematical terms we represent

the optimization problem solved by player i in the alliance as:

(PSi) :

max
∑

(o,d,i)∈Di
f

(o,d,i)
(d,o,i) r(o,d,i) +

∑
e∈E

coste

[
γie

∑
(o,d,i)/∈Di

f (o,d,i)
e −

(
1− γie

) ∑
(o,d,i)∈Di

f (o,d,i)
e

]
(47)

such that

∑
e:e∈IEdges(v)

f (o,d,i)
e −

∑
e:e∈OEdges(v)

f (o,d,i)
e ≤ 0 ∀v ∈ V ∀(o, d, i) ∈ D (48)

∑
(o,d,i)∈D

f (o,d,i)
e ≤ ce ∀e ∈ E (49)

f
(o,d,i)
(d,o,i) ≤ d(o,d,i) ∀(o, d, i) ∈ D (50)

f ≥ 0. (51)

The objective function (47) consists of three terms. The first term maximizes the

revenue generated by satisfying demand. The second term computes the cost paid to

player i by other players for using capacity on an edge owned by player i. Similarly,

the third term represents the cost paid by player i to other players for using capacity

on their edges. Constraints (48)-(51) are network flow constraints.

4.5.2 Computation of Allocations Using Inverse Optimization

Our aim is to motivate player i so that the collaborative solution f ∗ is attractive to

him. To this end, we wish to identify a vector cost such that f ∗ is optimal for PSi.

The problem fits well in the inverse optimization framework where given a feasible

solution (flow vector f ∗) to the problem, we wish to identify the parameters of the

problem (cost vector cost) which will make the given solution (f ∗) optimal for the

problem. Inverse problems have been studied in a variety of fields such as portfolio
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optimization [20] and traffic equilibrium [22]. [3] provides a unified framework for

studying many inverse optimization problems on networks such as the shortest path

problem, the assignment problem and the minimum cut problem.

Let (πi), (αi) and (βi) denote the dual variables associated with constraints (48),

(49) and (50) respectively and (DPSi) denote the dual program corresponding to

(PSi). Note that we use super-script i to denote that the dual is corresponding to

player i’s LP . One form of the linear programming optimality conditions states that

the primal solution f ∗ and a dual solution (πi, λi, ωi) are optimal for their respective

problems if f ∗ is feasible for (PSi) and (πi, λi, ωi) is feasible for (DPSi), and together

they satisfy the complementary slackness conditions. We say that a cost vector, cost,

is inverse feasible with respect to f ∗ if f ∗ is an optimal solution to (PSi) with cost

vector cost. Let E denote the set of edges that are utilized at full capacity in flow

f ∗ (that is, E = {e ∈ E :
∑

(o,d,i)

f
∗(o,d,i)
e = ce}), D denote the set of demands that are

fully satisfied (that is, D = {(o, d, i) ∈ D : f
∗(o,d,i)
(d,o,i) = d(o,d,i)}), and F denote the set of

non zero flow vectors (that is, F = {f ∗(o,d,i)e : f
∗(o,d,i)
e > 0}). Using the above notation

following gives us a characterization of the inverse feasible cost vector for player i:

(I i) : (πi)(o,d,i)
v − (πi)(o,d,i)

u + (αi)e ≥ −(1− γie)coste (o, d, i) ∈ Di e ∈ E : f ∗(o,d,i)e /∈ F(52)

(πi)(o,d,i)
v − (πi)(o,d,i)

u + (αi)e = −(1− γie)coste (o, d, i) ∈ Di e ∈ E : f ∗(o,d,i)e ∈ F(53)

(πi)(o,d,i)
v − (πi)(o,d,i)

u + (αi)e ≥ γiecoste (o, d, i) /∈ Di e ∈ E : f ∗(o,d,i)e /∈ F(54)

(πi)(o,d,i)
v − (πi)(o,d,i)

u + (αi)e = γiecoste (o, d, i) /∈ Di e ∈ E : f ∗(o,d,i)e ∈ F(55)

(πi)(o,d,i)
o − (πi)

(o,d,i)
d + (βi)(o,d,i) ≥ r(o,d,i) (o, d, i) ∈ Di : f

∗(o,d,i)
(d,o,i) /∈ F(56)

(πi)(o,d,i)
o − (πi)

(o,d,i)
d + (βi)(o,d,i) = r(o,d,i) (o, d, i) ∈ Di : f

∗(o,d,i)
(d,o,i) ∈ F(57)

(πi)
(o,d,i)
d − (πi)(o,d,i)

o + (βi)(o,d,i) ≥ 0 (o, d, i) /∈ Di : f
∗(o,d,i)
(d,o,i) /∈ F(58)

(πi)(o,d,i)
o − (πi)

(o,d,i)
d + (βi)(o,d,i) = 0 (o, d, i) /∈ Di : f

∗(o,d,i)
(d,o,i) ∈ F(59)

(αi)e = 0 ∀e /∈ E (βi)(o,d,i) = 0 ∀(o, d, i) /∈ D(60)

(πi)(o,d,i)
v ≥ 0 ∀v ∈ V, ∀(o, d, i) ∈ D ; (αi)e ≥ 0 ∀e ∈ E ; (βi)(o,d,i) ≥ 0 ∀(o, d, i).(61)
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Thus the inverse problem for player i is to find a dual solution and a cost vector

that satisfies constraints (52) -(61). Constraints (52) - (55) are the dual feasibility

and complementary slackness conditions for the flow variables corresponding to each

demand triplet and each edge of the network. The first two constraints correspond

to the demand owned by player i and the next two constraints correspond to the

demand owned by the other players. Similarly, constraints (56) - (61) are the dual

feasibility and complementary slackness conditions for the flow variables correspond-

ing to demand triplets and the fictitious edges of the network. Constraints (56) -

(59) correspond to the demand owned by player i and the last two constraints are

for the demand owned by other players. Recall that our aim is to determine a cost

vector such that the flow f ∗, as given by the optimal solution to (PN), is optimal for

all single player problems (PSi). Extending the above arguments for all the players

gives us the following characterization of the inverse feasibility problem to determine

the vector cost

(INV P ) : ∪i∈N (I i). (62)

Thus the inverse problem INV P is the union of all the individual players’ inverse

problems connected together with the common cost vector.

To prohibit players from colluding to form sub coalitions, we require a cost vector

such that for any subset S ⊂ N of players f ∗ is an optimal solution for the corre-

sponding problem PSS. However, there are an exponential number of such subsets

and including the inverse problem corresponding to each of them in INV P will cause

INV P to become exponential in size. The next theorem shows that it is sufficient

to consider only individual players’ problems in INV P to determine a suitable cost

vector.

Theorem 4. The inverse problem (INV P ) identifies a cost vector such that f ∗ is

optimal for any PSS such that S ⊂ N .
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Proof. Let
(
(πi∗)i∈N , (α

i∗)i∈N , (β
i∗)i∈N , cost

∗) denote a feasible solution to INV P .

Consider a subset S ⊂ N . Our claim is that for the inverse problem, IS, correspond-

ing to the problem PSS modeling the selfish behavior of subset S,( ∑
i∈S

(πi∗),
∑
i∈S

(αi∗),
∑
i∈S

(βi∗), cost∗
)

is a feasible solution. That is, cost∗ is inverse feasi-

ble for IS. Let,

(πS∗) =
∑
i∈S

(πi∗)

(αS∗) =
∑
i∈S

(αi∗)

(βS∗) =
∑
i∈S

(βi∗).

Consider a constraint similar to (52) for the inverse problem IS. Let (o, d, k) ∈

Dk, k ∈ S and f
∗(o,d,k)
e /∈ F . Since

(
(πi∗)i∈N , (α

i∗)i∈N , (β
i∗)i∈N , cost

∗) is a feasible

solution for INV P we have:

(πk∗)(o,d,k)
v − (πk∗)(o,d,k)

u + (αk∗)e ≥ −(1− γke )cost∗e

(πi∗)(o,d,k)
v − (πi∗)(o,d,k)

u + (αi∗)e ≥ γiecost
∗
e i 6= k, i ∈ S.

After summing these inequalities and rearranging the terms we get:∑
i∈S

(πi∗)(o,d,i)
v −

∑
i∈S

(πk∗)(o,d,i)
u +

∑
i∈S

(αk∗)e ≥ −(1−
∑
i∈S

γie)cost
∗
e. (63)

If for demand (o, d, k) and edge e, f
∗(o,d,k)
e ∈ F then in INV P constraints corre-

sponding to f
∗(o,d,k)
e will be at equality and hence we will get equality in (63). Simi-

larly,
(
(πS∗), (αS∗), (βS∗), cost∗

)
satisfies other constraints in IS. Since our choice of

S was arbitrary this holds for every subset S ⊂ N . Thus it is enough to consider

only the inverse problems corresponding to individual players in INV P to determine

a cost vector that also prevents collusion among subsets of players.

To summarize, the inverse problem is a feasibility problem to identify the cost

vector cost∗ and the overall payoff assigned by our mechanism to player i is:

xi =
∑

(o,d,i)∈Di
r(o,d,i)f

∗(o,d,i)
(d,o,i) + si (64)
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where the vector of side payments is

si =
∑
e∈E

cost∗e

[
γie

∑
(o,d,i)/∈D

f ∗(o,d,i)e −
(
1− γie

) ∑
(o,d,i)∈Di

f ∗(o,d,i)e

]
∀i ∈ N. (65)

The vector of payoffs (93) is such that
∑
i∈N

xi = opt(N). This is easy to see since

once a feasible solution is found for INV P , the flow in the network is same as the

optimal flow f ∗. Also note that the vector of side payments {s1, s2, · · · , sn} is such

that
∑
i∈N

si = 0. Next, we prove that the inverse problem INV P is feasible and thus

the mechanism can always be used to find a cost structure on the edges of the network.

Theorem 5. The inverse problem INV P is feasible.

Proof. For every inverse problem I i, let (yi)(o,d,k) ∀(o, d, k) ∈ D and (f i)
(o,d,k)
e ∀e ∈

E, ∀(o, d, k) ∈ D denote dual variables for constraints corresponding to (56)-(59) and

constraints (52)-(55) respectively. The dual for INV P can then be written as:

(DINV P ) : max
∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i)(y
i)(o,d,i)

such that
∑

e:e∈IEdges(v)

(f i)(o,d,i)
e −

∑
e:e∈OEdges(v)

(f i)(o,d,i)
e

+ χ(v,o)(yi)(o,d,i) − χ(v,d)(yi)(o,d,i) ≤ 0 ∀v ∈ V, ∀(o, d) ∈ D, ∀i ∈ N

∑
(o,d,i)∈D

(f i)(o,d,i)
e ≤ 0 ∀e ∈ E, ∀i ∈ N

∑
i∈N

∑
(o,d,i)∈Di

(
1− γie

)
(f i)(o,d,i)

e −
∑
i∈N

∑
(o,d,i)/∈Di

γie(f
i)(o,d,i)
e ≤ 0 ∀e ∈ E

(yi)(o,d,i) ≤ 0 ∀(o, d, i) ∈ D, ∀i ∈ N

(yi) ≥ 0, (f i) ≥ 0 ∀i ∈ N.

χ(u,v) is an indicator function such that χ(u,v) = 1 if u = v and 0 otherwise. Clearly

the zero vector is a feasible solution to DINV P and the optimal objective value is

also zero (note that the last two constraints imply that (yi)(o,d,k) = 0 for all feasible

solutions of DINV P ). Since DINV P has a finite optimal value, from duality theory

we get that its dual INV P is feasible.
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4.5.3 Multicommodity Flow Game with a Unique Owner on Each Edge

In this section, we consider a special case of the multicommodity flow game in which

for every edge of the network, the capacity on the edge belongs to an unique player.

We denote by Ei the set of edges owned by player i. For this case, Theorem 6 states

that the payoff allocation (93) made by our mechanism is an allocation in the core.

Theorem 6. If each edge of the network has an unique owner, the payoff vector

x = {x1, . . . xn} where xi is given by (93) lies in the core of the multicommodity flow

game.

Proof. Recall that the payoff obtained by the mechanism is budget balance. Hence,

we only need to show the stability of payoff for every subset S ⊂ N . Consider a subset

S of players. The maximum revenue that the players in S can achieve on their own

is denoted by opt(S). It is obtained by considering a linear program (P S) (similar to

program (PN) in Section 4.3) on the network induced by the players in set S. Let us

denote the dual for linear program (P S) as

(DS) : opt(S) = min
∑
i∈S

∑
e∈Ei

ceαe +
∑
i∈S

∑
(o,d,i)∈Di

d(o,d,i)β(o,d,i) (66)

such that π(o,d,i)
v − π(o,d,i)

u + α(u,v) ≥ 0 ∀(u, v) ∈ ∪i∈SEi , (o, d, i) ∈ ∪i∈SDi (67)

π(o,d,i)
o − π(o,d,i)

d + β(o,d,i) ≥ r(o,d,i) ∀(o, d, i) ∈ ∪i∈SDi (68)

π(o,d,i)
v ≥ 0 ∀v ∈ V, ∀(o, d, i) ∈ ∪i∈SDi ; αe ≥ 0 ∀e ∈ ∪i∈SEi (69)

β(o,d,i) ≥ 0 ∀(o, d, i) ∈ ∪i∈SDi. (70)

As proved in Theorem (4), (πS∗, αS∗, βS∗, cost∗) is a feasible solution for IS. We

will show that (πS∗, αS∗, βS∗) is a feasible solution for (DS). Since (πS∗, αS∗, βS∗) is

feasible for (IS), for (o, d, i) ∈ Di, i ∈ S we have

(πS∗)(o,d,i)
o − (πS∗)

(o,d,i)
d + (βS∗)(o,d,i) ≥ r(o,d,i). (71)

This is easy to see by considering constraints corresponding to constraints (56) and

(57) in IS. Similarly, in the network induced by the players in S, for an edge
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e ∈ Ek, and (o, d, i) ∈ Di such that k, i ∈ S we have (by considering constraints

corresponding to constraints (52) and (53) in IS)

(πS∗)(o,d,i)
v − (πS∗)(o,d,i)

u + (αS∗)e ≥ −
(

1−
∑
j∈S

γje

)
cost∗e. (72)

Since player k is the unique owner of edge e, γke = 1 and thus right hand side in (72)

is zero.

⇒ (πS∗)(o,d,i)
u − (πS∗)(o,d,i)

v + (αS∗)e ≥ 0. (73)

Equation (71) and (73) suggest that (πS∗, αS∗, βS∗) satisfies (67)-(70).

⇒
∑
i∈S

∑
e∈Ei

ce(α
S∗)e +

∑
i∈S

∑
(o,d,i)∈Di

d(o,d,i)(β
S∗)(o,d) ≥ opt(S). (74)

Since d(o,d) ≥ 0, ce ≥ 0, (αS∗) ≥ 0 and (βS∗) ≥ 0 we have

∑
i∈N

∑
e∈Ei

ce(α
S∗)e +

∑
i∈N

∑
(o,d,i)∈Di

d(o,d,i)(β
S∗)(o,d,i) ≥∑

i∈S

∑
e∈Ei

ce(α
S∗)e +

∑
i∈S

∑
(o,d,i)∈Di

d(o,d,i)(β
S∗)(o,d,i) (75)

but left hand side in (75) is same as
∑
i∈S

xi from strong duality applied to (PSS) and

(DPSS). From (74), (75) and above argument we get
∑
i∈S

xi ≥ opt(S).

4.6 Concluding Remarks

In this chapter we presented a mechanism that regulates the interactions among the

players in a multicommodity flow game. This scheme can be used in transportation

and communications systems when multiple businesses and organizations use a collab-

orative service network to deliver goods. The mechanism provides capacity exchange

costs on the edges of the network to motivate a player who owns the capacity on an

edge to sell it to a player who can utilize that capacity to satisfy his own demand.

Also the mechanism allows players to keep the revenue obtained by satisfying their

demand in a collaborative solution. In a special case, when each of the network edges
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is owned by an unique player we show that the allocation made by our mechanism

provides an allocation in the core.

We considered a particular behavioral model to capture the selfish perspective

of an individual player. Other behavioral models have also been considered in [2]

and [34]. Different behavioral models lead to different capacity exchange prices with

different properties. For further details on comparison of different behavioral models

we refer the reader to [2]. Whether the payoff given by (93) provides an allocation

in the core or not in the general case, that is when the edges have multiple owners,

remains an open question.
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CHAPTER V

MECHANISM DESIGN FOR LINER SHIPPING

ALLIANCES

5.1 Introduction

The discussion in Chapter 3 on payoffs among carriers in an alliance guarantees a

stable allocation only for a subclass of the sea cargo network design game (when

the integer program (1) - (7) in Chapter 2 and its linear programming relaxation

have the same objective function value). Also, it works on the assumption that the

carriers are indifferent towards which demands are satisfied and which routes are

scheduled. However, this is usually not the case in practice. A carrier spends his

resources on maintaining and operating his ships and benefits from satisfying his own

demand. In this chapter we develop a mechanism that utilizes ideas from game theory,

economics and inverse optimization to allocate benefits and costs among carriers. In

literature a wide variety of problems ranging from auctions, voting, internet routing,

transportation and traffic routing, facility location [30], [54] e.t.c. have been studied

in a distributed setting. The general problem studied involves interaction among

self-interested players with their own goals and preferences, and the capability of

manipulating the system. The goal is to develop algorithms and protocols, for a

set of players, that perform well when the players behave selfishly. The notion from

game theory most relevant to this chapter is that of “mechanism design” (introduced

formally in Chapter 4).

In general, the field of mechanism design aims to study how privately known

preferences of many people can be aggregated towards a “social choice”. Intutively,

a mechanism solves a given problem by providing side payments to players to assure
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that the required output occurs, when players choose their strategies so as to maximize

their own selfish profits. This field has received widespread attention recently and

has been used successfully to develop algorithms and protocols for inter-connected

collection of computers such as on the internet. In the general setting of mechanism

design problems the utility or the valuation of an outcome for a player is private

information of the player and the goal is to design mechanisms to promote truthful

reporting of the utility among players. Most often the mechanism design theory

ignores the computational aspect of the protocol and emphasizes on theoretical results

that might be computationally challenging to achieve. For a detailed discussion of

mechanism design we refer the reader to [46].

In this chapter, the focus is to design computationally efficient mechanisms to

distribute “benefits” and “costs” among different sea carriers in a liner shipping al-

liance and motivate them to act in an optimal fashion. In literature a few references

are available regarding qualitative study of liner shipping alliances, however a quan-

titative study is missing. In this chapter we provide a mathematical framework to

study these alliances. Carriers form strategic alliances by pooling their fleets and

operating them together to share capacity on the ships. In such alliances, the carriers

decide on a set of service routes, assign their ships for operating the chosen routes

and allocate each ship’s capacity among the alliance members. As a result of these

alliances and agreements, shipments arranged through one carrier may actually be

moved by a ship operated by another carrier and alliance members can offer higher

sailing frequencies than would be possible using only their own ships. Alliances are

most common on deep sea routes such as the Asia-North America route that require

a bigger commitment in terms of assets (ships) from carriers. In the mid 1990s an

estimated 60% of the total global liner capacity was accounted by alliances.

From the perspective of a single carrier, each carrier would like to design a service

network which maximizes his profit. However, since he is working in collaboration
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with other carriers, a network that generates maximum overall revenue for all carriers

is selected. Clearly, such a network can be generated by replacing the individual

carriers by a large carrier, with demand equal to the consolidated demand of all

carriers and fleet equal to the pooled fleet of all carriers, and obtaining a schedule

(or outcome say õ) by solving the optimization problem presented in Chapter 2 for

the large carrier. We refer to this solution as the collaborative optimal solution. Each

carrier has a valuation of the collaborative optimal solution for himself, depending

on the cost incurred by him and the revenue generated by shipping his demand on

the collaborative routes. Let us denote the valuation of schedule õ for carrier k by

vk(õ). vk(õ) alone is not guaranteed to provide enough motivation for carrier k to

act according to the schedule, õ. The goal in this chapter is to obtain an n-tuple of

side payments {s1, · · · , sn} such that for every carrier k the total payoff to carrier

k, xk = vk(õ) + sk, motivates him to act in accordance with the optimal schedule õ.

In the collaborative optimal solution often the “resource,” e.g. capacity on a ship,

belongs to some carrier who does not allow other carriers to freely obtain “benefits”

from using it. The fair distribution of costs and benefits among the alliance members

is an intriguing question and in transportation networks, in particular liner shipping,

sharing benefits and costs among the carriers generally translates into exchanging

asset capacity on service routes. One way to regulate capacity exchanges among

the carriers is to assign suitable capacity exchange costs so that the carrier who has

unused capacity on a ship is motivated to sell the capacity to a carrier who can utilize

it to deliver cargo. We utilize capacity exchange costs to provide side payments to

the carriers. These payments are made by the carriers who utilize a ship’s capacity,

depending on the amount of utilization, to the carrier who owns the ship. To compute

these costs we model the individual behavior of a carrier in the alliance as a linear

program. The mechanism drives each individual carrier’s linear program towards the

collaborative optimal solution õ using inverse programming techniques.
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In the next section we present a brief literature review and in Section 5.3 we present

the formal problem definition. In Section 5.4 we present our solution strategy and

an inverse optimization based mechanism to compute side payments for the carriers.

In Section 5.5 we compare the fairness of the payoff to a carrier obtained by our

algorithm against the core allocation. As described formally in Chapter 3, allocations

in the core are budget balance and stable. Finally, in Section 5.6 we present future

directions for our research.

5.2 Literature Review

There exists literature that joins cooperative game theory with classical routing prob-

lems. [57] develops an allocation mechanism for a transportation game. [32] and [31]

study delivery games associated with the Chinese postman problem. [41] and [26]

study the vehicle routing game with homogeneous and heterogeneous fleet respec-

tively and allocate cost among the members of an alliance based on cooperative game

theory concepts. Network related games such as the network design games [39], the

assignment game [61] and the facility location games [30] have also been studied in

the literature. Some studies on combinatorial games such as the bin packing games

[25] and the knapsack game [25] are also available.

In particular, qualitative studies regarding alliance formation among carriers in

liner shipping industry are available in the literature. [44], [63], [55], [64] discuss

the importance of strategic alliances in liner shipping. In particular, [44] studies the

factors that led to the advent of strategic alliances among liner carriers 30 years ago,

and the changes in the industry in the 1990s (for example, the increase in demand

due to globalization) that made the previous alliances inadequate and called for a

new generation of strategic partnerships. It suggests that differentiation in the con-

tribution of each member, depending on their core competencies, can lead to alliances

that deliver more than the sum of individual contributions. Also, alliances with fewer
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members or ones that are led by a dominant partner are more likely to succeed. [63]

provides industry data to support the claim that alliances lead to intensification in

service frequency and an increase in ship size. It points out that as a result of al-

liances, carriers are becoming more similar (with similar service routes, serving the

same markets and employing comparable ships) and although individual carriers who

form alliances serve more ports than before, the total number of ports served by the

overall industry remain remarkably constant. [55] studies the progression of collabo-

rations from consortia, which are route-based forms of cooperation, to alliances, which

cooperate on a global level, among Asian carriers. They argue that the reasons behind

this trend are the flexibilities and synergies provided by alliances in global perspec-

tive. [64] makes use of cooperative game theory and provides a quantitative study to

analyze liner shipping alliances by considering two small examples (3 ports and 2-3

carriers). They explicitly write all the core inequalities to analyze the alliance and

allocate the revenue among the members in ratio of their shipping capacity. However,

as we will see later, in many situations such a proportional allocation of benefits is

not guaranteed to provide a payoff to the alliance members to sustain the existence of

the collaboration. Also, [64] does not provide any framework for dealing with larger

instances for which it becomes harder to explicitly write all the core inequalities.

5.3 Problem Definition

In this section we formally present our problem. Our attempt is to use as much as

possible the standard notions from both mechanism design and inverse optimization.

We will use the notation introduced in Chapter 2 and Chapter 3 to refer to the set,

N = {1, 2 · · ·n}, of carriers and their fleet size and demand triplets. To simplify our

study we assume that all ships are identical. Thus for a carrier k ∈ N , Θk represents

his demand set and Nk represents the number of ships in his fleet.

The liner shipping mechanism design problem is defined as follows. We are given
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a set of carriers N who wish to form an alliance by consolidating their demand

Θ = ∪kΘk, and pooling their ships, N =
∑
k

Nk. Following are the set of problems

that the carriers face:

1. Together they need to design their service network. For this, they need to design

a set of service routes (say C = {C1, · · · , Cr}) to operate, utilizing their ships.

Also, they need to decide a set of cargo (say Θ ⊂ Θ) to deliver and the paths

to use to deliver the selected cargo.

2. The members of the alliance need to decide how to realize the service routes

in C. For example, they need to decide the number of ships that each carrier

should assign to the service routes in C.

3. Each carrier k needs to compute the valuation, vk, of the solution, given by

(C, Θ), depending on the cost incurred by him and the revenue generated by

delivering his demands.

4. For a given (C, Θ), the valuation vk alone is not enough to guarantee that carrier

k will route his cargo and share capacity as determined by the collaborative

solution. Thus the alliance needs to put in place a mechanism that provides

the right incentives to the carriers in order for them to act as prescribed by

the collaborative solution. We provide incentives in the form of side payments

{s1, · · · , sn}, such that the total payment, xk = vk + sk, to carrier k motivates

him to participate in the alliance. Furthermore, the side payments are the net

sum of the capacity exchange costs a carrier pays to and receives from other

carriers.

5.4 Solution Strategy

In this section, we propose a set of algorithms for resolving the above problems faced

by the alliance members. Before providing the details, we first present an outline of
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our solution strategy. The goal of an individual carrier is to design a service network

which maximizes his profit. However, since he is working in collaboration with other

carriers, a network that generates maximum overall revenue for all the carriers is

selected. Clearly, such a network can be obtained by replacing the individual carriers’

fleet by N , the combined fleet of all the carriers, and the individual demand sets by Θ,

the combined demand of all the carriers, and then solving a network design problem

as presented in Chapter 2 on this input. We use the solution strategy described

in Chapter 2 to solve this optimization problem and obtain a collaborative optimal

solution opt(N ) = (C,Θ).

It is non-trivial for the alliance to realize the solution given by the optimization

algorithm. In a carrier alliance such as the one addressed here, it is not reasonable

to assume that there exists a fully centralized body that can operate the combined

fleet, make the overall cargo accept-reject and routing decisions and hence gather the

total profit and then allocate it among the members of the alliance in a fair manner.

A more realistic model of operation is to assume that once the collaborative optimal

service routes and the ships to operate on them are decided centrally, then the carriers

individually operate their ships incurring the operational costs and make their own

cargo accept-reject and routing decisions determining the revenue they earn. In such

a partial decentralized system the challenges are (i) to design a mechanism that

regulates the interactions among the carriers, that is exchange of capacity on each

others’ ships; and (ii) to provide incentives so that the carriers’ individual accept-

reject and routing decisions are as prescribed by the collaborative optimal solution.

One straight forward way to handle the exchange of capacity among the carriers

is to use a proportional space allocation algorithm assigning each carrier a capacity

on a network edge in proportion to the capacity provided by the carrier to that edge.

However, such a simple allocation algorithm does not guarantee to provide outcomes

that can achieve the generation of the maximum possible profit, opt(N ). To see this
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consider a simple network with two ports P1 and P2 such that it takes a ship one week

to reach from one port to the other. Now let two carriers A and B with one ship

each of 1000 TEU capacity form an alliance to operate a service route with weekly

frequency between the two ports. Let A have 700 TEUs of demand and B have 300

TEUs of weekly demand from P1 to P2. Assume that a unit amount of revenue can

be generated by satisfying any demand and that ship operation costs are negligible.

Then a proportional space allocation algorithm would assign a capacity of 500 TEUs

to each carrier and would be able to generate only 800 units of weekly revenue whereas

the optimal solution to the problem is 1000 units of weekly revenue.

The valuation of solution opt(N ) is calculated for each carrier by calculating the

revenue generated by him and the costs incurred by him. The valuation obtained

from solution opt(N ) however is not guaranteed to provide enough motivation for a

carrier to act according to the schedule opt(N ). To provide this guarantee incentives

in the form of side payments must be provided to the carriers.

To handle both of the challenges described above, we suggest that the centralized

authority also determines capacity exchange costs on each edge of the service network

and then lets the carriers make cargo accept-reject and routing decisions, buying and

selling capacity along the way at the given prices. That is, we determine side payment

as the net sum of the capacity exchange costs a carrier receives from others for utilizing

capacity on his ships and pays to others for utilizing their capacity.

Computation of capacity exchange costs is however non-trivial. In Section 5.4.1

we show that the assignment of different carriers’ ships to various selected cycles

reduces to a generalized assignment problem in our setting. For a carrier, given an

assignment of his ships to the cycles in C, the computation of the fraction of capacity

that the carrier owns on an edge is explained in Section 5.4.2. We denote by coste

the cost of using one TEU capacity on edge e. In other words, if a carrier provides

capacity on an edge e then for a unit utilization of capacity on edge e he will charge
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other carriers coste times the fraction of the capacity he owns on edge e. Note that

the optimal solution opt(N ) provides a flow vector f on the edges of the network. We

provide a linear program that models the behavior of each carrier k for making cargo

accept-reject and routing decisions, equivalently determining his optimal flow vector

fk. Finally, we use inverse optimization techniques to determine the cost vector,

coste, such that the optimal flow vector fk for each carrier k is as prescribed by the

collaborative optimal flow vector f . That is, the vector of side payments determined

by the capacity exchange costs makes the solution opt(N ) attractive to all the carriers.

We now provide the details of our solution strategy.

5.4.1 Valuation of the Schedule

For a carrier, the valuation of solution opt(N ) is determined by calculating the revenue

generated by him and the costs incurred by him. The revenue generated by carrier k is

calculated by summing over the revenue generated by satisfying demand (o, d, i) such

that (o, d, i) ∈ Θ∩Θk. Similarly, each carrier pays for maintaining and operating his

ships on the collaborative routes. To compute the costs incurred, a carrier first needs

to know the assignment of his ships to the selected routes. Recall that as explained in

Chapter 2, LC denotes the number of ships required to maintain a weekly frequency

on cycle C and that the cycle selection variables in the mixed integer linear program

in (1) -(7) are binary i.e. the maximum frequency maintained on a cycle is a weekly

frequency. Let, ykCj represents the number of ships carrier k assigns to route Cj and

ukCj represents the utility he obtains by assigning one ship to route Cj. The problem

of assigning ships, for all the carriers, to the set of selected service routes reduces to

a generalized assignment problem which we refer to as the ship assignment problem
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(SAP ).

(SAP ) : max
∑
k,Cj

ukCjy
k
Cj

(76)

such that
∑
k

ykCj = LCj ∀Cj ∈ C (77)∑
Cj

ykCj ≤ Nk ∀k ∈ N (78)

ykCj int. (79)

The generalized assignment problem is shown to be NP-hard. It is a well studied

problem in literature and many heuristics have been proposed to solve it effectively

[58]. The utility function, u, can be determined heuristically in many different ways.

We compute the utility function in two different ways - first, we take the utility of

assigning a ship to a service route for a carrier to be proportional to the flow of carrier

on that service route and second, we take it to be proportional to the profit generated

by the carrier from that service route. We solve the ship assignment problem exactly

and heuristically. In Section 5.5.1 we report the effect of different ship assignment

algorithms and different utility functions on the overall mechanism.

Once an assignment of ships to service routes is computed, the cost incurred by

carrier k in the alliance is computed as

Cost of operating routes =
∑
Cj∈C

CostCj
LCj

ykCj

Note that cost of operating a ship on cycle Cj (or the cost of cycle Cj per week) is

given by CostCj . Thus if carrier k assigns ykCj ships to cycle Cj then the cost per week

incurred by him on this cycle is
CostCj
LCj

ykCj . Finally, the valuation of solution opt(N)

for carrier k is given by:

vk(opt(N )) =
∑

(o,d,i)∈Θk

R(o,d,i)f − Cost of operating routes. (80)
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5.4.2 Computation of Side Payments

In an alliance, carriers work in collaboration with each other, however the primary

objective of an individual carrier remains to be the maximization of his own profits.

We model the selfish behavior of carriers by assuming that given the collaborative

network the carriers solve their cargo routing problems individually. Given an assign-

ment of ships, it is in the best interest of the collaboration that the carriers make

their cargo routing decisions as in f̄ . Note that f̄ requires carriers to share capacity

on the ships. We facilitate this by allowing a carrier to charge other carriers for using

capacity on the edges of the network. For this we need to determine when can a

carrier charge other carriers for using capacity on an edge and at what price. Next,

we answer these two questions.

We allow a carrier to charge other carriers for using capacity on a network edge

e whenever he owns the capacity on that edge i.e. whenever he has a ship assigned

to e. The rest of the times he will need to pay other carriers for using capacity on

edge e. As carriers pool their ships in an alliance to operate on service routes, usually

multiple carriers have their ships assigned to any given edge. In other words, carriers

usually own a fraction of the capacity on an edge. Given an assignment of ships of

various carriers to the routes in C, let γke be the fraction of capacity that carrier k

owns on edge e. Recall that we assume all ships are identical with T units of capacity.

Thus, in the special case, when an edge e is part of a single service route Cj and the

number of ships assigned by carrier k to Cj are ykCj ,

γke =
ykCj
LCj

.

However, an edge can be part of many operated service routes. Next, we compute

γke for this case. Consider an edge e that is part of multiple service routes, C̃ =

{C1, C2, · · · , Cr} ⊂ C. The total capacity that carrier k owns on edge e due to his

ships on service routes in C̃ is
∑
Cj∈C̃

TykCj
LCj

. As e is part of r cycles and thus total
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capacity on e is Tr, γke is given by

γke =
1

r
∗
∑
Cj∈C̃

ykCj
LCj

.

Clearly for an edge e,
∑
k∈N

γke = 1
r

∑
k∈N

∑
Cj∈C̃

ykCj
LCj

= 1
r

∑
Cj∈C̃

∑
k∈N

ykCj
LCj

= 1
r

∑
Cj∈C̃

1 = 1.

Once we have determined the fraction of capacity each carrier owns on an edge,

the problem of determining suitable prices on the network edges reduces to the multi-

commodity flow game discussed in Chapter 4. As denoted earlier, we refer to these

prices as the capacity exchange costs and on an edge e we denote it by coste. The

capacity exchange costs provide side payments to the players, in addition to the

valuation (80) obtained by them. Note that the capacity on the edges in the network

is given by the collaborative optimal solution opt(N ), since carriers operate same

service routes as in opt(N ). On an edge e, we denote this capacity by Cape. Let

fk = {f (o,d,i),k
e : f

(o,d,i),k
e ≥ 0 ∀e ∈ E, ∀(o, d, i) ∈ Θ}, where f

(o,d,i),k
e represents the

optimal flow of demand (o, d, i) on edge e when carrier k makes his cargo accept-reject

and routing decisions. Similar to Chapter 4 we propose the following mathematical

formulation for modeling an individual carrier k’s behavior in the alliance:

(SCP k) :

max
∑

(o,d,i)∈Θk

f
(o,d,i),k
(d,o) R(o,d,i) +

∑
e∈Ev

( ∑
(o,d,i)/∈Θk

γke f
(o,d,i),k
e −

∑
(o,d)∈Θk

(1− γke )f (o,d,i),k
e

)
coste(81)

such that
∑

e∈InEdges(v)

f (o,d,i),k
e −

∑
e∈OutEdges(v)

f (o,d,i),k
e ≤ 0 ∀v ∈ V, ∀(o, d, i) ∈ Θ(82)

∑
(o,d,i)∈Θ

f (o,d,i),k
e ≤ Cape ∀e ∈ E(83)

f
(o,d,i),k
(d,o) ≤ D(o,d,i) ∀(o, d, i) ∈ Θ(84)

f (o,d,i),k
e ≥ 0 ∀e ∈ E, ∀(o, d, i) ∈ Θ.(85)

The objective function (81) consists of three terms. The first term denotes the

revenue generated by satisfying demand corresponding to player k. The second term

computes the cost paid to player k by the other players for using capacity owned by
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him. Similarly, the third term represents the cost paid by player k to the other players

in the alliance for using their capacity. Constraints (82)- (85) are the network flow

constraints. Note that this is a conservative model since we allow an individual player

to modify other player’s flow also. In practice, an individual can only make decisions

regarding his own flow. Thus the maximum revenue that player k can obtain will

always be less than the optimal value of (SCP k).

Assignment of Prices to Network Edges For the single carrier problem (SCP k)

we wish to identify a cost vector, cost, such that the collaborative optimal flow,

f , is an optimal decision for the carrier also. This problem fits well in the inverse

optimization framework where given a feasible solution (flow vector f) to a linear

program (SCP k), we wish to identify the parameters of the problem (cost vector

cost) which will make the given solution (flow vector f) optimal for the problem

(SCP k). Next, we demonstrate the use of inverse optimization (as in Chapter 4) to

compute the cost vector coste.

As in previous chapters, we denote by πk = {π(o,d,i),k
v : π

(o,d,i),k
v ≥ 0 ∀v ∈

V, ∀(o, d, i) ∈ Θ} , λk = {λke : λke ≥ 0 ∀e ∈ Ev} and ωk = {ω(o,d,i),k : ω(o,d,i),k ≥

0 ∀(o, d, i) ∈ Θ} the dual variables associated with constraints (82), (83) and (84)

respectively. Note the use of super-script k to denote that the dual is considered for

the single carrier problem corresponding to carrier k. For carrier k, the dual of the

SCP k, denoted by DSCP k, can be written as:

(DSCP k) :

min
∑
e∈Ev

Capeλ
k
e +

∑
(o,d,i)∈Θ

ω(o,d,i),kD(o,d,i) (86)
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such that

π
(o,d,i),k
head(e) − π

(o,d,i),k
tail(e) + λke ≥ (γke − 1)coste∀e ∈ E \ Ef ,∀(o, d, i) ∈ Θ \Θk(87)

π
(o,d,i),k
head(e) − π

(o,d,i),k
tail(e) + λke ≥ γke coste ∀e ∈ E − Ef , ∀(o, d, i) ∈ Θk (88)

π
(o,d,i),k
head(e) − π

(o,d,i),k
tail(e) + ω(o,d,i),k ≥ 0 ∀e ∈ Ef , ∀(o, d, i) ∈ Θ \Θk (89)

π
(o,d,i),k
head(e) − π

(o,d,i),k
tail(e) + ω(o,d,i),k ≥ R(o,d,i) ∀e ∈ Ef , ∀(o, d, i) ∈ Θk (90)

πk, λk, ωk ≥ 0. (91)

One form of the linear programming optimality conditions states that the primal

solution fk and dual solution (πk, λk, ωk) are optimal for their respective problems if

fk is feasible for the linear program in (82) - (85) and (πk, λk, ωk) is feasible for the

linear program in (87) - (91), and together they satisfy the following complementary

slackness conditions:

• For all edges e that are not on full capacity, i.e.
∑

(o,d,i)

f
(o,d,i),k
e < Cape, λ

k
e = 0

for all carriers k.

• For all demand triplets (o, d, i) that are not fully satisfied, i.e.
7∑
j=1

f
(o,d,i),k
(v(d,j),v(o,i))

<

D(o,d,i), ω(o,d,i),k = 0 for all carriers k.

• For all edges e with non zero flow, i.e. fke > 0, the corresponding dual constraints

in (87) -(91) are satisfied at equality.

We say that a cost vector cost is inverse feasible with respect to fk if fk is an

optimal solution to SCP k with cost vector cost. Let us denote by INV P k the inverse

problem that finds this cost vector. Note that INV P k is similar to the inverse problem

Ik in Chapter 4.

Our aim is to determine the cost vector such that the flow f as given by opt(N )

is optimal for all individual carrier problems i.e. SCP k ∀k ∈ N . From above, f is

an optimal solution for every SCP k if for every (DSCP k) there exists a dual feasible
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solution (πk, λ
k
, ωk) and a common cost vector cost that satisfies the primal-dual

complementary slackness conditions. This gives us the following characterization of

the inverse optimization problem we should solve to determine the vector cost:

(INV P ) : ∪i∈N INV P k (92)

In other words, the inverse problem is a feasibility problem to identify the cost

vector. If cost is a feasible solution to (INV P ), the overall payoff to player k is given

by:

xk = vk(opt(N )) + sk (93)

where the vector of side payments {s1, s2, · · · , sn} is calculated as,

sk =
∑
e∈E

( ∑
(o,d,i)/∈Θk

γke f
(o,d,i)
e −

∑
(o,d,i)∈Θk

(1− γke )f (o,d,i)
e

)
coste. (94)

Note that the vector of payoffs to carriers {x1, x2, · · · , xn} is such that
∑
k∈N

xk =

r(opt(N )). This is easy to see since once a feasible solution is found for (INV P ), the

flow in the network is the same as the flow of the optimal solution opt(N ). Also note

that the vector of side payments {s1, s2, · · · , sn} is such that
∑
k∈N

sk = 0. Similar to

Theorem 5 in Chapter 4, Theorem 7 guarantees that the inverse problem is feasible

and a cost vector can always be found.

Theorem 7. The inverse problem (INV P ) is feasible.

To prohibit the players from colluding to form sub-coalitions, we want to have a

cost vector such that for any subset S ⊂ N , f is an optimal solution for the corre-

sponding problem (SCP S). However, there are exponential number of such subsets

and including an inverse problem corresponding to each of them in (INV P ) will cause

(INV P ) to become exponential in size. Theorem 4 from Chapter 4 guarantees that

it is sufficient to consider only single carrier problems in (INV P ) to determine a cost

vector that makes f optimal for any subset S ⊂ N of carriers.
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It is reasonable to assume that an individual carrier would seek higher payoff in

the alliance as compared to the revenue that he can generate on his own. To this end,

we have enhanced our model by adding the following set of limited (single carrier and

two carrier subset) rationality constraints in (INV P ):

opt({k}) ≥ xk for each k ∈ N . (95)

opt({k, i}) ≥ xk + xi for k, i ∈ N . (96)

where, opt(S) for S ⊂ N is the maximum revenue that the carriers in set S can

obtain, when working on their own.

5.5 Computational Experiments

Next, we analyze liner shipping alliances from a quantitative as well as qualitative

point of view. The focus of our computations is to study the performance of the

mechanism designed in this chapter in the context of liner shipping.

We performed our computations on instances involving up to 10 ports with up

to 27 demand triplets and 50 ships. The data is generated as explained earlier in

Chapter 2 and the same notation is used to express various problem classes. All of

our algorithms are implemented in C++ in an Unix environment. We also made

extensive use of the callable libraries in CPLEX 9.0. All computational experiments

were performed on a Sun280R system with UltraSparc-III processor. Results are

reported on 50 randomly generated instances in each test class.

We measure the performance of the mechanism by checking if the payoffs obtained

in (93) are in the core. As explained in Chapter 3, an allocation of benefits is in the

core if it is budget balance and stable. Note that the core provides a very strong

definition of stability where the grand alliance is not threatened by any of the sub-

coalitions. However, as demonstrated by the example in Section 3.4 (Chapter 3), the

core of the network design game in liner shipping can be empty.
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5.5.1 Effect of Ship Assignment and Rationality Constraints

Recall that the problem of assigning ships of different carriers on the service routes

is formulated as (SAP ) in Section 5.4.1. As noted earlier, this problem is NP-hard.

However, in our case since the number of selected service routes are between 3 and

10 (depending on the problem size), an explicit enumeration scheme can also be used

to determine the exact assignment of ships to the service routes. Next, we study

how the mechanism is effected by different assignment of ships on the service routes.

We obtain different assignment by considering different algorithms to solve (SAP ).

In particular, we consider an exact assignment, a greedy assignment and a random

assignment of the ships. We also consider two different utility functions (u in the

objective function of (SAP )) - 1. the utility of assigning a ship to a service route for

a carrier is taken proportional to the sum of his flow on the edges of the service route

(denoted by f) and 2. the utility of assigning a ship to a service route for a carrier is

taken to be proportional to the sum of his profit generated from his flow on the edges

of the service route (denoted by f.R).

We also study the effect of enhancing the inverse problem (INV P ) by adding ra-

tionality constraints. As mentioned at the end of Section 5.4.2, rationality constraint

for a subset S of carriers states that carriers in S seek higher payoff in an alliance

as compared to the payoff they can generate on their own. We divide the rationality

constraints into different sets, depending on the number of carriers considered. For

example, two carrier rationality constraints is the set of rationality constraints for all

subsets with two carriers and is denoted by {2}. To study the effect of rationality

constraints we introduce one set of rationality constraints at a time to the inverse

problem INV P . Inverse program together with all the single carrier rationality con-

straints is denoted as INV P + {1} and inverse program together with all the single

carrier and two carrier rationality constraints is denoted as INV P+{1}+{2}. Recall

that INV P is a feasibility problem and the payoff allocation made by our algorithms
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is always budget balance. Thus for a three carrier alliance if INV P + {1} + {2} is

feasible than it means that a cost structure that yields payoff allocation in the core

can be identified.

Table 6 reports the effect of different assignment of ships on the service routes

and the effect of rationality constraints on the solution quality for 3 carrier alliances

and different test classes. In this table, we use {0} to denote that INV P is solved,

{1} to denote that INV P + {1} is solved and {1} + {2} to denote that INV P +

{1} + {2} is solved. The first column denotes different problem classes. It indicates

the total number of ports, ships and demand pairs considered. Each demand and

ship is assigned to one of the three carriers with equal probability. The next three

columns report the number of instances (out of 50) for which an allocation in the

core is found when the SAP is solved exactly and the utility function is taken to be

proportional to the flow times the revenue. The second column reports this number

when the inverse problem INV P is solved. The third, and fourth column report these

numbers when the inverse problem (INV P ) is solved together with all single carrier

rationality constraints and (INV P ) is solved with all single and two carrier rationality

constraints, respectively. The next three triplet of columns report the corresponding

numbers when SAP is solved exactly, greedily and randomly, respectively. In these

cases the utility function is taken to be proportional to the flow.

Different assignment algorithms and utility functions result in different number of

ships being assigned by a carrier to each of the selected service routes. This in turn

influences a carrier’s valuation (80) of the optimal solution and the way the optimal

solution is realized by the alliance. Note that the inverse problem computes the cost

structure for a given assignment of ships to the service routes. Table 6 suggests

that the number of cases for which the mechanism successfully finds a cost structure

does not depend significantly on the assignment of ships to the service routes. If we

consider all the rationality constraints, even for a random assignment of ships to the
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service routes, in most of the instances the mechanism finds a cost structure that

yields an allocation in the core.

From Theorem 7, the inverse program INV P is feasible. We found in our compu-

tational study that inverse problem together with single carrier rationality constraints

is also feasible in all the instances. However, in some cases a feasible solution for

INV P +{1}+{2} could not be found. Note that for three carrier alliances a solution

to INV P + {1}+ {2} means that a cost structure that yields payoffs in the core can

be identified. For INV P and INV P +{1} we report if the feasible solution provided

by CPLEX is in the core. For these cases there might be alternate solutions and some

might provide an allocation in the core (for example, instances in which we find an

allocation in the core by considering INV P + {1} + {2} but not when we consider

INV P or INV P + {1}).

Table (6) suggests that a feasible solution to (INV P ) in 10-25% of the instances

directly yields an allocation in the core. As the inverse problem is constrained by

adding single carrier rationality constraints in 25-45% of the instances the feasible

solution yields an allocation in the core. Further INV P + {1} + {2} is feasible in

70-95% of the cases, depending on the test class. Thus in 70-95% of the cases our

mechanism provides an allocation in the core. Recall that it is not necessary that an

instance will have a non-empty core.

5.5.2 Analysis of Different Test Classes

We analyze different test classes in Table 7. We consider alliances with three carriers.

Ships and demand pairs are distributed uniformly among the carriers. We solve the

ship assignment problem exactly and the utility of assigning a ship to a service route

for a carrier is taken proportional to the sum of his flow times the revenue on the edges

of the service route. First column in Table 7 denotes different problem classes. For

each test class, the second column reports the average CPU time taken (averaged over

112



Table 7: Analysis of test classes.
Test Time # Non Non-empty core Empty core
Class -empty %Unmet Unused %Utilizi %Unmet Unused %Utiliz

core demand ships -ation demand ships -ation
P6S18D6 1.92 48 21.9 0.5 0.70 41.6 1 0.59
P6S18D9 3.08 49 36.93 0.25 0.82 45.07 0 0.96
P6S30D6 5.75 36 3.61 2.22 0.64 0.25 3.29 0.56
P6S30D9 8.60 46 11.60 0.76 0.77 5.30 0.75 0.72

P10S30D18 98.01 50 43.83 0.04 0.83 N/A N/A N/A
P10S30D27 181.46 50 58.91 0 0.86 N/A N/A N/A
P10S50D18 306.12 50 16.90 0.45 0.88 N/A N/A N/A
P10S50D27 514.61 50 28.19 0 0.91 N/A N/A N/A
P10S50D10 48.70 35 0.52 4.39 0.60 0.63 6.43 0.65

50 instances) in minutes to solve a problem instance. This includes the time to solve

the service design problem for all the subsets of carriers and the time taken to solve the

inverse problem. The third column represents the number of instances, out of a total

of 50 random instances generated for each test class, for which an allocation in the

core exists. To test if the core of a problem is non-empty, a linear program consisting

of all the core inequalities is constructed and its feasibility is tested. The next three

columns report the average percentage of unsatisfied demand to the total demand,

the average number of un-utilized ships and the average utilization of capacity on the

edges of the network respectively, for the instances with a non-empty core. The next

three columns report same statistics for the cases with empty core.

The second column in Table 7 suggests that as the problem size (number of ports,

ships or demand pairs) increases the time taken to solve the problem increases. Also,

more than 95% of the time reported here is taken in solving the network design

problem for various subset of carriers. The increase in time taken to solve the network

design problem with the increase in problem size is similar to the trend reported in

[1].

Note that among the test classes with 6 ports, P6S30D6 has the highest num-

ber of instances with an empty core. A closer look at Table 7 reveals that this test
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class has the highest number of un-used ships and the lowest percentage of unsat-

isfied demand. Also instances in this class have lower utilization of capacity on the

edges of the network. More specifically, these networks have over capacity. We con-

structed an additional class of instances namely P10S50D10. These instances also

have over-capacity and show similar behavior as that of instances in the P6S30D6

class. Specifically, many instances in test class P10S50D10 also have empty core.

This leads us to the conclusion that instances with over-capacity are more likely to

have an empty core. The primary motivation for carriers to collaborate in liner ship-

ping is that they do not have enough ships to maintain weekly frequency on the

routes. For instances other than in P6S30D6 and P10S50D10 test class, since car-

riers and subset of carriers have few ships (as compared to the available demand),

in most of the cases the grand alliance offers the best possibility for maintaining the

required frequency on the service routes and thus most of the instances have non-

empty core. Instances in P6S30D6 and P10S50D10 test classes, are however more

likely to have profitable sub-coalitions. Our experiments yield that subsets of carriers

that have good synergy in the origin- destination port of their demand triplets are

more likely to form sub-coalitions. In general, if sub-coalitions have higher synergies

(as compared to the grand alliance) then it is less likely that the grand alliance will

be formed. Also there are fewer incentives for carriers to get into the organizational

and managerial complexities of big alliances.

For 6 port instances with 18 ships, the percentage of unsatisfied demand is quite

high. Further the average un-satisfied demand for the instances with empty core is

even higher than the average un-satisfied demand for the instances with non-empty

core. Thus instances with small fleet size in which carriers find synergies among

themselves to satisfy higher demand are more likely to have a stable grand alliance.

Also we note from Table 7 that as the size of the network increases from 6 to 10 ports

all the instances in all the test classes (except P10S50D10) have non-empty core.

114



Instances with 10 ports that have very high demand as compared to the available

fleet (un-satisfied demand is 40-60% of the total demand) are very likely to form

stable grand alliance. In these instances, as there is a shortage of ships, only the

grand alliance provides a global optimal schedule for the available fleet. Table 7

reflects that in fact the grand alliance schedules almost all the ships in the fleet and

provides very high utilization of capacity (85-95%) on the operated routes.

Note that from Table 6 and Table7, if the core of a problem instance is non-empty,

our mechanism succeeds in finding an allocation in the core in almost all (95-100%) of

the instances, when the inverse problem is considered with all the subset rationality

constraints.

5.5.3 Size and Number of Carriers

Next, we study the effect of number of carriers in an alliance. Table 8 reports results

for alliances with two, three and four carriers. The first column represents the test

class. To generate instances with i-carriers the number of demand pairs and ships

are distributed uniformly randomly among i carriers. Thus, Table 8 reports results

for alliances among carriers with similar characteristics. The second and the third

column report results for alliances with two carriers. The second column reports the

number of instances (out of 50) for which an allocation in the core exists. The third

column reports the average (average taken over 50 instances) percentage improvement

in the total revenue generated by the alliance as compared to sum of the revenue gen-

erated by individual carriers working independently. The next two twins of columns

report similar statistics for alliances with three and four carriers, respectively. For a

particular instance, the percentage improvement in the revenue generated as a result

of the alliance is computed as:

opt(N)−
∑
i∈N

opt({i})∑
i∈N

opt({i})
.
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Table 8: Analysis of the size of an alliance.
Test 2-Carriers 3-Carriers 4-Carriers
Class core % improvement core % improvement core % improvement

P6S18D6 50 63.04 48 275.45 46 717.40
P6S18D9 50 40.73 36 167.60 37 475.61
P6S30D6 50 17.11 36 50.58 29 117.87
P6S30D9 50 20.12 46 66.17 43 115.64

P10S30D18 50 26.91 50 61.05 50 99.65
P10S30D27 50 19.68 50 53.42 48 88.13
P10S50D18 50 14.24 50 31.38 48 72.11
P10S50D27 50 15.94 50 32.36 49 69.45

Table 8 suggests that as the number of carriers increases in an alliance, the al-

liance tends to become more un-stable in the sense that the number of instances

with a non-empty core decreases. Note that as the number of carriers increases the

number of constraints that need to be satisfied to obtain an allocation in the core

increases exponentially. Higher the number of constraints higher the chances that

the constraints will conflict with each other and thus higher the chances that the

core will be empty. With higher number of carriers in an alliance it is more likely

that some subset of carriers will have better synergies for an alliance than the grand

alliance. Qualitatively, as the number of carriers increase in an alliance the organiza-

tional complexity of the alliance increases and the decision making process becomes

time consuming. One of the most successful alliances among liner carriers have been

the Maersk-Sealand alliance which consists of only two carriers [64]. Some of the

bigger alliances have organized and re-organized themselves a number of times within

a short span of time. For example, the Global Alliance which was formed in 1995

among four carriers (APL, OOCL, MOL and Nedlloyd) reorganized in 1998 to form

the New World Alliance (NOL/APL, MOL, HMM) after the merger of APL and NOL

in 1997.

The third, fifth and the seventh column of Table 8 clearly shows that alliances

can generate higher revenues as compared to the carriers operating on their own. For
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a particular instance, i.e. for a given set of ports, fleet size and demand pairs, as we

increase the number of carriers (that is distribute the fleet and demand pairs among a

larger number of carriers), the revenue that an individual carrier can generate reduces.

However, the optimal solution of the grand alliance remains the same, independent of

the number of carriers in the alliance. Thus, as reflected by Table 8 the the percentage

increase in the revenue generated as a result of the alliance increases as the number

of carriers increases.

5.5.4 Role and Contribution of Carriers in an Alliance

We study how participants with complementary and similar roles influence an alliance.

Specifically, we study the alliance between a ship owner and a group of shippers. That

is one player has all the ships and the other players have all the demand. First, we

study instances (drawn from different test classes P6S18D6 - P10S50D27) with one

ship owner and one shipper. This is a perfect situation for collaboration and all

these instances have a non-empty core. Further, in all such instances our mechanism

provides a cost structure such that the resulting payoffs to both the participants is in

the core, when the inverse problem is solved with all the subset rationality constraints.

Thus a stable alliance can be formed in all these instances. Next, we study problem

instances with three shippers and a single ship owner. Depending on the problem

instance (P6S30D9 etc) we found that the core is non-empty in 90%- 100% of the

cases. Among the instances with non-empty core, in 95%-100% of the instances our

mechanism provides a cost structure such that the resulting payoff to the participants

is in the core. Comparing one ship owner and one shipper case with the one ship

owner and three shippers case we conclude that in the latter case, shippers give rise

to competition and instability in the grand alliance.

An interesting observation is that for P6S30D6 problem instances for one ship

owner and three shippers case, 98% of the instances have non-empty core. Whereas,
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for this test class when the ships and demand pairs are distributed uniformly among

four carriers only 58% of the instances have non-empty core (Table 8). For the

P6S30D6 class the number of ships are enough to satisfy most of the demand, thus

even if there are three competing shippers the alliance is stable. As the ship owner

has sufficient number of ships, he has an incentive to collaborate with as many ship-

pers as possible to increase his revenue. Similarly, though the shippers compete for

capacity on the ships, in the case when the system has over-capacity they can all form

a sustainable alliance with the ship owner. However this is not the case when ships

and demand pairs are uniformly distributed among four carriers as many subset of

carriers find synergies to form sub-coalitions. In general, for other test classes also,

instances with ships and demand pairs distributed among one ship owner and three

shippers are more likely to have a non-empty core as compared to four equi-sized

carriers. This is simply because in the former scenario the players have higher degree

of complementarity in their role. Carriers have used conferences and alliances to fix

price and moderate the buying power of shippers. As a result of our experiments we

conclude that it is a good strategy for shippers also to form alliances and consolidate

cargo before negotiating with the carriers and ship operators. This practice is ob-

served in the industry as giant shippers and freight-forwarders consolidate the cargo

of small shippers.

5.6 Conclusions

In this chapter we addressed various problems posed by alliance formation among

carriers in the liner shipping industry. We designed allocation mechanism for an

alliance to share the benefits of the alliance in such a way that all the members are

motivated to act in the best interest of the alliance. Since the revenue generated by the

collaborative solution alone is not enough to guarantee the satisfaction of an individual

carrier, the mechanism provides side payments to the carriers to motivate them to
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“play along” in the alliance. Considering our preliminary results, we believe that

the suggested solution approach has the potential to help carriers form sustainable

alliances.

Our experiments suggest that across all test classes, in most (more than 95%)

of the instances that have non-empty core our mechanism successfully finds a cost

structure such that the resulting payoff to the carriers is in the core, when the inverse

problem is solved with all the rationality constraints. Assignment of ships to the

service routes influences the cost incurred by a carrier (thus his payoff) and the

ownership of capacity on the edges by the carriers. However our results indicate that

independent of the assignment of ships to the service routes in most of the cases

our mechanism successfully finds a cost structure such that the overall payoff to the

carriers is in the core. Analysis of different test classes suggests that the core is empty

for a very high number of instances (more than 72%) drawn from the classes in which

carriers have sufficient number of ships to satisfy the available demand. Further

our experiments yield that, as the number of carriers increase in an alliance, the

percentage improvement in the total revenue generated by the alliance as compared

to the sum of the revenue generated by individual carrier independently increases.

However, it becomes harder to find a solution in the core as the number of constraints

to obtain a core allocation increase exponentially with the number of carriers. Further

we conclude that carriers who have complementarity in their roles, for example ship

owners and freight forwarders, are more likely to form stable alliances. Note that

many other factors (such as compatibility in mission, strategy, governance, culture,

organization and management etc of different partners of an alliance) also contribute

significantly to the success of an alliance.

In this chapter we considered alliance formation among 3-4 carriers. For these

alliances we considered all subset rationality constraints to find an allocation in the

core. In many transportation and other logistics problems it is necessary to consider
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alliances with higher number of participants. Also in liner shipping, smaller alliances

are collaborating to from even bigger alliances, for example Grand Alliance and The

New World Alliance laid down foundations for cooperation in 2006. However con-

sidering all rationality constraints becomes prohibitively expensive as the number of

carriers increase in an alliance. To extend the mechanism developed in this chapter

for alliances with higher number of participants, subset rationality constraints need

to be added in the inverse problem in a constraint generation setting.

The liner shipping industry is deploying bigger and bigger ships. Further research

is required to study the viability of bigger ships and their impact on alliances. These

issues have also been studied by [35].

This chapter provides a basic framework for the research that can be used for

designing allocation mechanism for various network design problems. The research

integrates tools from optimization, economics and mathematics to study the selfish

behavior of individual players in an alliance thus providing advances in interdisci-

plinary work.
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APPENDIX A

LIST OF ABBREVIATIONS

A.1 Name of carriers

APL : American President Line

CGM : Compagnie Generale Maritime

CMA : Compagnie Maritime d’Affrtement

COSCO : China Ocean Shipping Company

Hamburg Sud : Hamburg Sud Group

Hapag Lloyd : Hapag-Lloyd AG

HMM : Hyundai Merchant Marine

K Line : Kawasaki Kisen Kaisha

Maersk : A.P.Moller-Maersk Line

Marfret : Marfret Compagnie Maritime

MISC : Malaysian International Shipping Corporation

MOL : Mitsui OSK Lines

NYK : Nippon Yusen Kaisha

OOCL : Orient Overseas Container Lines

P&O : P & O Container Line

Sea-Land : Sea-Land Service Inc.

Yang Ming : Yang Ming Line
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on the Parallel Machine Scheduling Problem and various problems in Liner Shipping.

This thesis covers some of this latter work.

Richa’s research interests are in mathematical programming, large scale optimiza-

tion and algorithmic game theory. She is also interested in studying various logistics

and scheduling problems. In 2006, she received the Georgia Institute of Technology

student paper award sponsored by the SAIC and the NSF student travel grant spon-

sored by the NSF and the Arizona State University. Richa is a member of INFORMS

and is a student representative on the INFORMS chapter/fora committee.

127


