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SUMMARY

There exist many numerical techniques for solving optimal control problems but less

work has been done in the field of making these algorithms run faster and more robustly.

The main motivation of this work is to solve optimal control problems accurately in a fast

and efficient way.

Optimal control problems are often characterized by discontinuities or switchings in the

control variables. One way of accurately capturing the irregularities in the solution is to

use a high resolution (dense) uniform grid. This requires a large amount of computational

resources both in terms of CPU time and memory. Hence, in order to accurately capture

any irregularities in the solution using a few computational resources, one can refine the

mesh locally in the region close to an irregularity instead of refining the mesh uniformly

over the whole domain. Therefore, a novel multiresolution scheme for data compression has

been designed which is shown to outperform similar data compression schemes. Specifically,

we have shown that the proposed approach results in fewer grid points in the grid compared

to a common multiresolution data compression scheme.

The validity of the proposed mesh refinement algorithm has been verified by solving

several challenging initial-boundary value problems for evolution equations in 1D. The ex-

amples have demonstrated the stability and robustness of the proposed algorithm. The

algorithm adapted dynamically to any existing or emerging irregularities in the solution

by automatically allocating more grid points to the region where the solution exhibited

sharp features and fewer points to the region where the solution was smooth. Thereby, the

computational time and memory usage has been reduced significantly, while maintaining

an accuracy equivalent to the one obtained using a fine uniform mesh.

Next, a direct multiresolution-based approach for solving trajectory optimization prob-

lems is developed. The original optimal control problem is transcribed into a nonlinear

programming (NLP) problem that is solved using standard NLP codes. The novelty of
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the proposed approach hinges on the automatic calculation of a suitable, nonuniform grid

over which the NLP problem is solved, which tends to increase numerical efficiency and

robustness. Control and/or state constraints are handled with ease, and without any addi-

tional computational complexity. The proposed algorithm is based on a simple and intuitive

method to balance several conflicting objectives, such as accuracy of the solution, conver-

gence, and speed of the computations. The benefits of the proposed algorithm over uniform

grid implementations are demonstrated with the help of several nontrivial examples.

Furthermore, two sequential multiresolution trajectory optimization algorithms for solv-

ing problems with moving targets and/or dynamically changing environments have been

developed. For such problems, high accuracy is desirable only in the immediate future, yet

the ultimate mission objectives should be accommodated as well. An intelligent trajectory

generation for such situations is thus enabled by introducing the idea of multigrid temporal

resolution to solve the associated trajectory optimization problem on a non-uniform grid

across time that is adapted to: (i) immediate future, and (ii) potential discontinuities in

the state and control variables.
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CHAPTER I

MOTIVATION AND LITERATURE SURVEY

1.1 A Brief History of Optimal Control

The objective of optimal control theory is to determine the control signals that will cause

a process to satisfy the physical constraints and at the same time minimize (or maximize)

some performance criterion. The history of optimal control dates back to the 17th century

when the calculus of variation originated (Fermat, Newton, Liebniz, and the Bernoullis).

It is believed that the calculus of variation started with Pierre de Fermat (1601-1665)

when in 1662 he postulated his principle that the light rays follow the minimum time

paths [32, 62]. In the late XVII-th century, Bernoulli (1667-1748) used Fermat’s ideas

to solve a discrete-time version of the “brachistochrone” problem posed by Galileo Galilei

(1564-1642) in the XVI-th century. The “brachistochrone” problem is to find the shape

of a wire such that a bead sliding along it traverses the distance between the two end

points in minimum time. Later Bernoulli challenged his colleagues to solve the continuous

brachistochrone problem; not only did he solve it himself, but so did Leibniz, his brother

James, l’Hospital, and Newton. Calculus of variations was futher developed by Euler (1707-

1783) and Lagrange (1736-1813) who gave the first-order necessary conditions of optimality

for minimizing or maximizing a functional. These conditions are commonly known as Euler-

Lagrange equations. The next step was to look at the second variation, and Legendre

(1752-1833) was the first one to do this, who found an additional necessary condition of

optimality for a minimum. During the middle of XIX-th century, Jacobi (1804-1851) and

Hamilton (1805-1865) showed that the partial derivatives of the performance index with

respect to each parameter of a family of extremals (which today we call states) obey a

certain differential equation. The equation is the Hamilton-Jacobi equation, which is the

basis of dynamic programming developed by Bellman over 100 years later.

Weirstrass (1815-1897) put calculus of variations on a more rigorous basis and discovered
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his famous condition involving an “excess-function” which is the predecessor of the maxi-

mum principle of Pontryagin in this century. As pointed out by Sussmann [133], Weierstrass’

condition, expressed in terms of the Hamiltonian, simply says that along the optimal curve

the optimal control must maximize the Hamiltonian (where the classical definition of the

Hamiltonian is used, which is opposite in sign from the one commonly used today). During

this period, Clebsch (1833-1872) gave a sharper interpretation of Legendre’s condition (the

Legendre-Clebsch condition) which, in modern language, states that the second derivative

matrix of the Hamiltonian with respect to the controls must be positive definite (assuming

no active control or state constraints). Later Bolza (1857-1942) and Bliss (1876-1951) gave

calculus of variations its present rigorous mathematical structure.

Dynamic programming, a new vision and an extension of Hamilton-Jacobi thoery, was

developed by Bellman and his colleagues starting in the 1950s [12] which led to the Hamilton-

Jacobi-Bellman (HJB) equation. The HJB equation is a partial differential equation which

defines the optimal cost to go function, that is, the performance index value from current

time to the end, on the optimal trajectory for the continuous time problems. In the middle

of XX-th century, Pontryagin extended the calculus of variations to handle control variable

inequality constraints, in particular, extended the necessary conditions derived by Weier-

strass (1815-1897) to the cases where the control functions are bounded, enunciating his

elegant maximum principle [29, 59, 60]. In optimal control terminology, it states that a min-

imizing path must satisfy Euler-Lagrange equations where the optimal controls maximize

the Hamiltonian within their bounded region at each point along the path1. The maximum

principle is inherent in dynamic programming since the HJB equation includes finding the

controls (possibly bounded) that minimize the Hamiltonian at each point in the state space.

A comprehensive introduction to calculus of variations and optimal control can be found in

[33, 93], and for a more detailed historical perspective on the evolution of optimal control

the reader is referred to [5, 32, 133].

1Pontryagin used the classical definition of the Hamiltonian, which is opposite in sign from the one
commonly used today.
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1.2 Motivation

The solution of general (realistic) trajectory optimization problems is a challenging task.

Analytical solutions are seldom available or even possible. As a result, numerical methods

must be employed in order to solve the trajectory optimization problems. However, the

amount of numerical computation required for even a relatively simple problem is forbidding

if it must be done by hand. This is why the calculus of variations and optimal control

theory found very little use in engineering and applied science until the middle of XX-th

century. The truly enabling element for the use of the optimal control theory was the digital

computer, which became available commercially in 1950s. The development of economical,

high-speed computers since then has dramatically changed the situation. These days, as will

be discussed later in Section 1.4, there exist many numerical algorithms for solving optimal

control problems but less work has been done in the field of making these algorithms run

faster and more robustly. The main motivation of this work is to solve the optimal control

problems accurately in a fast and efficient way.

Optimal control problems are often characterized by discontinuities or switchings in the

control variables. One way of accurately capturing the irregularities in the solution is to

use a high resolution (dense) uniform grid. This requires a large amount of computational

resources both in terms of CPU time and memory. Hence, in order to accurately capture

any irregularities in the solution using a few computational resources, one would like to

refine the mesh locally in the region close to an irregularity instead of refining the mesh

uniformly over the whole domain. To achieve this goal, we start by looking at what has

been done in the field of partial differential equations (PDEs) for adaptive mesh refinement.

1.3 Adaptive Mesh Refinement for the Solution of Evolution PDEs

It is well known that the solution of evolution partial differential equations is often not

smooth even if the initial data are smooth. For instance, shocks may develop in hyperbolic

conservation laws. To capture discontinuities in the solution with high accuracy one needs

to use a fine resolution grid. The use of a uniformly fine grid requires a large amount

of computational resources in terms of both CPU time and memory. Hence, in order
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to solve evolution equations in a computationally efficient manner, the grid should adapt

dynamically to reflect local changes in the solution.

Several adaptive gridding techniques for solving partial differential equations have been

proposed in the literature. A nice survey of the early works on the subject can be found

in [6, 138]. Currently, popular adaptive methods for solving PDEs are: (i) moving mesh

methods [1, 2, 4, 7, 8, 38, 39, 50, 91, 98, 105, 106, 136], in which an equation is derived that

moves a grid of a fixed number of finite difference cells or finite elements so as to follow

and resolve any local irregularities in the solution; (ii) the so called “adaptive mesh refine-

ment” method [10, 13, 14, 15], in which the mesh is refined locally based on the difference

between the solutions computed on the coarser and the finer grids, and (iii) wavelet-based

or multiresolution-based methods [3, 16, 68, 69, 75, 76, 87, 139, 140, 141], which take ad-

vantage of the fact that functions with localized regions of sharp transition can be very well

compressed. Our proposed method falls under this latter category.

Mallat [102] formulated the basic idea of multiresolution analysis for orthonormal wavelets

in L2(R). Harten [68, 69, 70] later proposed a general framework for multiresolution repre-

sentation of data by integrating ideas from three different fields, namely, theory of wavelets,

numerical solution of PDEs, and subdivision schemes. Recently, Alves et al. [3] proposed

an adaptive multiresolution scheme, similar to the multiresolution approach proposed by

Harten [68, 69] and Holmstrom [75] for solving hyperbolic PDEs. These approaches share

similar underlying ideas. Namely, the first step is to interpolate the function values at

the points belonging to a particular resolution level, from the corresponding points at the

coarser level, and find the interpolative error at the points of that particular resolution level.

Once this step has been performed for all resolution levels, all the points that have an in-

terpolative error greater than a prescribed threshold are added to the grid, along with their

neighboring points at the same level and the neighboring points at the next finer level. The

main difference between these approaches is that in Harten’s approach [68, 69], the solution

for each time step is represented on the finest grid and one calculates the interpolative

errors at all the points of the finest grid at each mesh refinement step. On the other hand,

Holmstrom [75] and Alves et al. [3], compute the interpolative error only at the points that
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are in the adaptive grid. If a value that does not exist is needed, Holmstrom interpolates

the required function value recursively from a coarser scale. Alternatively, Alves et al. [3]

add to the grid the points that were used to predict the function values at all previously

added points, in order to compute the interpolative error during the next mesh adaptation.

In this thesis, we propose a novel multiresolution scheme for data compression, which

results in a higher compression rate compared to the multiresolution approach by Harten [68,

69, 70] for the same desired accuracy. Subsequently, we apply the proposed encoding scheme

to solve initial-boundary value problems (IBVP) encountered in evolution PDEs and show

that the proposed mesh refinement algorithm results in fewer points in the grid compared

to the approach of Alves et al. [3].

Next, we give a literature survey on numerical methods for solving optimal control

problems.

1.4 Numerical Methods for Solving Optimal Control Problems

As mentioned before, the solution of general (realistic) trajectory optimization problems is

a challenging task. Analytical solutions are seldom available or even possible. As a result,

most often than not, one resorts to numerical techniques [20, 21, 22, 24, 25, 26, 27, 28, 30,

52, 53, 56, 55, 67, 72, 104, 117, 118, 121, 124, 57, 73, 107, 100, 101, 36, 37, 131, 58]. Available

numerical techniques for solving optimal control problems can be broadly divided into direct

methods [20, 21, 22, 24, 25, 26, 27, 28, 30, 52, 53, 56, 55, 67, 72, 104, 117, 118, 121, 124] and

indirect methods [57, 73, 107]. Indirect methods solve the necessary optimality conditions

stated in terms of the adjoint differential equations, Pontryagin’s minimum principle, and

the associated transversality conditions. Direct methods, on the other hand, are based

on discretizing the states and controls at a set of nodes, transforming the optimal control

problem into a nonlinear programming (NLP) problem. The solution of the resulting NLP

problem can be obtained using standard NLP solvers. A nice survey of available trajectory

optimization methods can be found in [17] and [114]. Recently, hybrid methods that combine

the analytic and numerical methods have also been proposed in the literature [36, 37] by

Calise et al.
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In recent years, direct transcription methods have become increasingly popular for solv-

ing trajectory optimization problems, the major reason being that in direct methods one

does not require an analytic expression for the necessary conditions, which for compli-

cated nonlinear dynamics can be intimidating. Moreover, incorporating state and control

constraints is rather straightforward. Most importantly, experience has shown that direct

methods tend to be more robust with respect to inaccurate initial guesses, hence they con-

verge more easily. On the other hand, indirect methods result in more accurate overall

solutions and provide more confidence in the (at least local) optimality of the obtained

solution. Algorithms that aim at taking advantage of both direct and indirect methods by

combining them into a single algorithm have been also proposed in the literature [132, 126].

Direct methods can be broadly classified as shooting methods [21, 27, 28, 30, 104, 121]

and collocation methods [20, 22, 52, 53, 56, 55, 67, 72, 117, 118]. Shooting methods can be

further subdivided into simple (or single) shooting methods [27, 30, 104, 121] and multiple

shooting [21, 28] methods. In simple shooting the initial conditions, the final conditions,

and the “parameters” make up the NLP variables. All states and controls are then rep-

resented using these NLP variables. The terminal conditions are the constraints and with

each iteration of the NLP solver the trajectory is integrated and the terminal conditions

evaluated. The fundamental difference between the simple shooting and multiple shoot-

ing methods is that the multiple shooting methods divide the time interval into multiple

segments with there own initial conditions and which are integrated separately, that is on

each segment the shooting is performed separately, and the values of the state variables at

the junctions of these segments are also included as the optimization variables. Moreover,

additional constraints are introduced enforcing continuity of the state from one segment

to another. The effect of the controls is thus limited to corresponding segments, and the

nonlinear effects of early controls on the latter parts of the trajectory is reduced. Hence,

the multiple shooting technique is more robust compared to the simple shooting approach,

where the small changes introduced early in the trajectory can propagate into very nonlinear

changes at the end of the trajectory. However, in the case of multiple shooting, the number

of NLP variables and constraints increases markedly over simple shooting implementations.
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Direct collocation methods descretize the ordinary differential equations (ODEs), using

collocation (or interpolation schemes) [120, 142] along with the introduction of collocation

conditions as NLP constraints, together with the initial and terminal conditions. Direct

collocation methods can be further subdivided into pseudospectral methods [52, 56, 55, 117,

118] and other collocation methods [20, 22, 53, 67, 72]. In a sense, “pseudospectral” is a

synonym for “collocation” but the term “pseudospectral” is applied only when collocation

is used with a basis of global functions like Chebyshev or Legenedre polynomials. The

other difference between the pseudospectral and the rest of the collocation methods is that

pseudospectral methods use differentiation, whereas typical collocation methods are based

mainly on integration. In other words, pseudospectral methods rely on the discretization of

the tangent bundle (roughly, the left-hand side of the differential equation, ẋ = f(x, u, t)),

whereas most of collocation methods rely on the approximation of the vector field (the

right-hand side).

Regardless of the particular method used, if a highly accurate solution is needed using

one of the above mentioned direct methods, one must resort to the use of a high resolution

(dense) grid. This choice results in a large amount of computational resources both in terms

of CPU time and memory, especially if the resulting NLP problem is not sparse. Therefore,

recent work has focus on the reduction of the high computational load associated with

uniform grid discretizations. See, for instance, the work by Betts et al. [18, 20, 22], Ross

and Fahroo [117, 118], Gong et al. [63], Binder et al. [24, 27, 25, 26], and Schlegel et al.

[121].

The method of Betts et al. [18, 20, 22] selects the new grid points by solving an integer

programming problem that minimizes the maximum discretization error (found by inte-

grating the dynamics of the system) by subdividing the current grid. In [22], the authors

computed the discretization error by comparing the solution with a more accurate estimate

using two (half) steps and by keeping the control fixed. The authors also assumed that the

order of discretization, which effects the addition of mesh points to any subinterval in their

mesh refinement algorithm, is constant. However, during the course of optimization process

the actual order may vary with each iteration because of the potential activation of path
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constraints. It has been shown in [23] that having the wrong value for the order of discretiza-

tion can seriously impact the mesh refinement algorithm of [22]. In order to overcome this

problem, Betts et al. [20] derived a formula for estimating the order reduction by comparing

the behavior of the discretization errors on successive mesh refinement iterations. But since

the estimated order reduction is very sensitive to the computed discretization errors, the

authors in [20] use a highly accurate quadrature method, namely Romberg quadrature, with

a tolerance close to machine precision for computing the discretization errors.

The pseudospectral knotting method introduced by Ross and Fahroo [117] breaks a

single phase problem with discontinuities and switches in states, control, cost functional,

or dynamic constraints into a multiple phase problem with the phase boundaries, termed

as “knots” by the authors, as the point of discontinuities or switchings. This way states

and controls are allowed to be discontinuous across the phase boundaries and the phase

boundaries can be fixed or free. On each phase, the problem is solved using the Legendre

pseudospectral method [52] or Chebyshev pseudospectral method [55], and the free knots are

part of the optimization process. The knots where the states are assumed to be continuous

but no continuity condition is imposed on the controls are termed as soft knots. The soft

knots can handle problems with smooth data and non-smooth solutions (e.g. switches

and corners). But as pointed out by Ross [116] “Soft knots do not increase the speed of

the algorithm; they are expected to improve accuracy. Consequently, the introduction of

soft knots in the grid might significantly slow the algorithm.” In order to improve the

pseudospectral methods, Gong et al. [63] present an algorithm in which the user specifies

the number of nodes to be increased in a particular phase, in case the error of the computed

optimal control between two successive iterations is greater than a prescribed threshold.

The authors of Ref. [63] use the gradient of the control to determine (approximately) the

location of the knots. Binder et al [24, 27] use a wavelet-Galerkin approach to discretize the

optimal control problem into an NLP problem. In Ref. [118], the authors use the domain

transformation techniques for generating the adaptive grids.

Binder et al. [24, 25, 26] work in the wavelet space by using the wavelet-Galerkin

approach to discretize the optimal control problem into an NLP problem and use the local
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error analysis of the states and the wavelet analysis of the control profile to add or remove

the wavelet basis functions. In Ref. [27], the authors use a direct shooting approach, where

the optimal control problem is converted into an NLP problem by parameterizing the control

profile, combined with a wavelet analysis of the gradients of the Lagrangian function with

respect to the parametrization functions at the optimal points in order to determine the

regions that require refinement. For problems with state and/or control path constraints

Schlegel et al. [121] use wavelet analysis of the control profile to determine the regions that

require refinement.

In our continued effort on solving optimal control problems numerically [80, 81, 84],

in this thesis, we have proposed a novel, fully automated, adaptive multiresolution-based

trajectory optimization technique to solve optimal control problems quickly and accurately.

The proposed technique does not require the solution of any secondary optimization prob-

lem for adding (or removing) points to the mesh, as done for instance, in Ref. [18, 20, 22].

Moreover, the criterion for deciding the region to refine the mesh is based on simple inter-

polations. Furthermore, the algorithm can add and remove points anywhere in the grid.

Hence the grid can embrace any form depending on the irregularities in the solution, thus

providing more flexibility in capturing any irregularities in the solution as opposed to the

pseudospectral knotting method [117], where the grid on a particular phase is fixed.

Next, we give a literature survey on the numerical techniques for solving optimal control

problems with moving targets and/or dynamically changing environments.

1.5 Trajectory Optimization for Moving Targets and/or Dynamically
Changing Environments

A common line of attack for solving nonlinear trajectory optimization problems in real

time [125, 100, 88, 144] is to break the problem into two phases: an offline phase and

an online phase. The offline phase consists of solving the optimal control problem for

various reference trajectories and storing these reference trajectories onboard for later online

use. These reference trajectories are used to compute the actual trajectory online via

a neighboring optimal feedback control strategy [31, 92, 130, 33] typically based on the

linearized dynamics. This approach requires extensive ground-based analysis and onboard
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storage capabilities [94]. Moreover, perturbations around the reference trajectories might

not be small, and therefore applying the linearized equations may not be appropriate.

To illustrate the previous point, consider the problem of finding the optimal control that

will steer the system from point A to the target point B under certain path constraints at

a minimum cost. If the target point B is far off, then there is no real advantage of finding

the optimal trajectory online with high precision from the starting point till the end. As

we continue to move from point A towards the target point B, we can get more accurate

information about the surrounding environment (path constraints), which may be different

from what was assumed at the beginning when the trajectory was optimized. Moreover,

the path constraints and the terminal constraints may also change as the vehicle progresses

towards point B. For example, the target point B may not be stationary. One way of

handling this problem is to use the receding horizon approach [108, 11, 143], in which

a trajectory that optimizes the cost function over a period of time, called the planning

horizon, is designed. The trajectory is implemented over the shorter execution time and

the optimization is performed again starting from the state that is reached at the end of

the execution time. However, if the planning horizon length does not reach the target B,

the trajectory found using this approach might not be optimal. One would like to solve the

nonlinear trajectory optimization problem online for the whole time interval, but with high

accuracy only near the current time. Recently, some work has been done in this direction

by Kumar et al. [94] and Ross et al. [119]. Kumar and Seywald [94] proposed a dense-

sparse discretization technique in which the trajectory is discretized by placing ND dense

nodes close to the current time and NS sparse nodes for the rest of the trajectory. The

state values at some future node are accepted as optimal and are prescribed as the initial

conditions for the rest of the trajectory. The remainder of the trajectory is again discretized

using a dense-sparse discretization technique, and the whole process is repeated again. The

algorithm can be stopped by using any adhoc scheme, for example, it can be terminated

when the density of the dense nodes is less than or equal to the density of the sparse nodes.

Ross et al. [119] also proposed a similar scheme by solving the discretized NLP problem on

a grid with a certain number of nodes and then propagate the solution from the prescribed

10



initial condition by integrating the dynamics of the system for a specified interval of time.

The values of the integrated states at the end of the integration interval are taken as the

initial condition for solving the NLP problem for the rest of the trajectory, again on a grid

with a fixed number of nodes. The whole process is repeated until the terminal conditions

are met.

In this thesis, we present two algorithms that autonomously discretize the trajectory

with more nodes (finer grid) near the current time (not necessarily uniformly placed) and

use fewer nodes (coarser grid) for the rest of the trajectory, the latter to capture the overall

trend. Furthermore, if the states or controls are irregular in the vicinity of the current

time, the algorithm will automatically further refine the mesh in this region to capture the

irregularities in the solution more accurately. The generated grid is fully adaptive and can

embrace any form depending on the solution.

1.6 Organization of the Thesis

Since this work is multidisciplinary, every effort has been made to make this thesis self-

contained. The thesis is organized as follows. Chapter 2 gives a brief introduction into

wavelet multiresolution theory. In Chapter 3, we briefly describe the evolution equations, the

difficulties encountered while solving the evolution equations, remedies for resolving these

difficulties and also at the same time provide the reader with enough context to understand

remarks made in the remainder of the thesis. In particular, we show that the solutions to

the initial value problem for the conservation laws and Hamilton-Jacobi equations are not

smooth in general, which is another motivation behind developing a novel multiresolution

data compression algorithm described in Chapter 4. In Chapter 4, we present the proposed

multiresolution scheme for data compression and compare the proposed scheme with the

Harten’s data compression scheme [68, 69, 70]. We show that the proposed algorithm results,

in general, in a fewer number of grid points compared to Harten’s approach [68, 69, 70]. In

Chapter 5, we present a hierarchical multiresolution adaptive mesh refinement algorithm for

the solution of evolution PDEs. The proposed grid adaptation method for the solution of

evolution PDEs is then compared with the existing multiresolution schemes for the solution
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of evolution PDEs. This analysis is followed by several challenging numerical examples that

show the robustness of the proposed approach and the advantages in terms of computational

time compared to the uniform mesh case. Next, we move on to the optimal control part

in Chapter 6. In Chapter 6, we first formulate the general optimal control problem and

discretize the continuous optimal control problem into an NLP problem. We then present

the multiresolution-based trajectory optimization algorithm followed by several nontrivial

examples that show the robustness, efficiency and accuracy of the proposed algorithm. We

conclude this chapter by giving advantages of the proposed algorithm over the current

state-of-the-art adaptive algorithms for solving optimal control problems. In Chapter 7, we

present two sequential trajectory optimization techniques for solving problems with moving

targets and/or dynamically changing environments. Finally, the conclusions and several

issues for the future study are proposed in Chapter 8.
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CHAPTER II

WAVELET MULTIRESOLUTION THEORY

Wavelets and multiscale analysis have emerged in a number of different fields, from har-

monic analysis and partial differential equations in pure mathematics, to signal and image

processing in computer science and electrical engineering. Typically, a general function, sig-

nal, or image is broken up into linear combinations of translated and scaled versions of some

simple, basic building blocks. Multiscale analysis comes with natural hierarchical structure

obtained by only considering the linear combinations of building blocks up to a certain

scale. This hierarchical structure is particularly suited for fast numerical implementations.

In this chapter, we give a brief introduction into the theory of wavelets and multiresolution

analysis. For details on any particular topic the reader is referred to the corresponding

references.

2.1 Traditional Wavelets

The traditional wavelets are defined over the whole real line R and form two-parameter

families of basis functions, which induce a multiresolution decomposition of L2(R) [34, 44,

102, 103]. This is the main property making wavelets attractive in applications. Specifically,

wavelets induce the following nested sequence of subspaces,

V0 ⊂ V1 ⊂ V2 · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ L2(R),

with the following properties.

Multiresolution Properties:

• ⋃∞
j=0 Vj is dense in L2(R), that is,

⋃∞
0 Vj = L2(R),

• ⋂j≥0 Vj = 0,

• f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1,∀ j ≥ 0,

• f(x) ∈ Vj ⇐⇒ f(x− 2−jk) ∈ Vj,∀ j ≥ 0.
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The “base” (or coarse-resolution) subspace V0 is spanned by integer translates of the

scaling function φ:

V0 = span{φ(x− k)}, k ∈ Z. (1)

The higher-resolution subspaces Vj are spanned by dilated versions of the scaling function:

Vj = span{2j/2φ(2jx− k)}, k ∈ Z, j ≥ 0. (2)

The orthogonal complement of Vj in the larger subspace Vj+1 is denoted by Wj and it is

spanned by the wavelets:

Wj = span{2j/2ψ(2jx− k)}, k ∈ Z, j ≥ 0, (3)

where ψ is the mother wavelet, which spans the spaceW0 = V1⊖V0. Hence, we see that the

traditional wavelets are characterized by the translation and dilation of a single function ψ.

A pictorial representation of the subspaces Vj and Wj is given in Figure 1.

Figure 1: Pictorial representation of the subspaces Vj and Wj .

For notational convenience, we define the two-parameter family of functions

φj,k(x) = 2j/2φ(2jx− k), j ≥ 0, k ∈ Z, (4)

ψj,k(x) = 2j/2ψ(2jx− k), j ≥ 0, k ∈ Z. (5)
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L2(R) can then be decomposed as

L2(R) = V0

+∞
⊕

j=0

Wj = lim
j→∞

Vj, (6)

that is, for all f ∈ L2(R),

f(x) =
∑

k∈Z

c0,kφ0,k(x) +
∑

j≥0

∑

k∈Z

dj,kψj,k(x) (7)

= lim
j→∞

∑

k∈Z

cj,kφj,k(x), (8)

where

cj,k = 〈f, φj,k〉L2(R) =

∫ ∞

−∞
f(x)φj,k(x)dx, j ≥ 0, k ∈ Z, (9)

dj,k = 〈f, ψj,k〉L2(R) =

∫ ∞

−∞
f(x)ψj,k(x)dx, j ≥ 0, k ∈ Z. (10)

The following fact is crucial for the approximating properties of wavelet decompositions.

Theorem 1 (Equivalent Characteristics [34]). The following are equivalent:

1. The first µ moments of the wavelet ψ are zero, that is,

∫

xℓψ(x)dx = 0, ℓ = 0, 1, · · · , µ− 1. (11)

2. All polynomials of degree up to µ−1 can be expressed as a linear combination of shifted

scaling functions at any scale.

Note that from the multiresolution properties, we have that φ(x) ∈ V0 ⊂ V1. Hence,

there exist coefficients hk such that φ(x) satisfies

φ(x) =
∑

k

hk

√
2φ(2x− k), k ∈ Z. (12)

Therefore, the scaling function is obtained by solving the above recursive equation (12).

Now, since W0 ⊂ V1, and since the mother wavelet ψ(x) ∈ W0, there exist coefficients h̃k

such that

ψ(x) =
∑

k

h̃k

√
2φ(2x− k), k ∈ Z. (13)
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Examples of some commonly used wavelets are Haar wavelets (Figure 2), Daubechies

wavelets (Figure 3), symlets (Figures 4, 5), and coiflets (Figures 6, 7). It has been shown

in the literature [34, 44] that the condition of orthogonality Vj ⊥ Wj gives

h̃k = (−1)kh1−k. (14)
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Figure 2: Haar wavelets (Daubechies wavelets with µ = 1).
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Figure 3: Daubechies wavelets (µ = 2).

In many applications, one never has to deal directly with the scaling functions or wavelets

and only the coefficients hk, h̃k, cj,k, and dj,k need to be considered. There exist following

relationships between the coefficients hk, h̃k, cj,k, and dj,k [34],
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Figure 4: Symlets (µ = 4).

0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

φ(
x)

(a) Scaling function (φ(x)).

0 5 10 15
−1

−0.5

0

0.5

1

1.5

x

ψ
(x

)

(b) Wavelet (ψ(x)).

Figure 5: Symlets (µ = 8).

From Fine Scale to Coarse Scale:

cj,k =
∑

ℓ

hℓ−2kcj+1,ℓ, (15)

dj,k =
∑

ℓ

h̃ℓ−2kcj+1,ℓ, (16)

From Coarse Scale to Fine Scale:

cj+1,k =
∑

ℓ

hk−2ℓcj,ℓ +
∑

ℓ

h̃k−2ℓdj,ℓ. (17)

The traditional wavelets, discussed above, are usually constructed using Fourier tech-

niques, although some traditional wavelets can be constructed without the use of Fourier
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Figure 6: Coiflets (µ = 3).
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Figure 7: Coiflets (µ = 5).

techniques. Interpolating wavelets based on the interpolating subdivision scheme of Deslau-

riers and Dubuc [46], and independently discovered by Donoho [47] and Harten [68], are

such an example and are discussed next.

2.2 Interpolating Wavelets

The interpolating wavelets are constructed on a set of dyadic grids of the form

Vj = {xj,k ∈ R : xj,k = k/2j , k ∈ Z}, j ∈ Z, (18)

where j denotes the resolution level and k the spatial location. Note that since xj,k = xj+1,2k

it follows that Vj ⊂ Vj+1. Interpolating wavelets can be formally introduced through the

interpolating subdivision scheme of Deslauriers and Dubuc [46], which considers the problem
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of building an interpolant f̂(x) on a grid Vj+1 for a given data sequence f(xj,k). Further,

for simplicity of notations, we denote f(xj,k) simply by fj,k. Deslauriers and Dubuc defined

a recursive procedure for interpolating the data fj,k to all dyadic points in between. The

algorithm proceeds by interpolating the data fj,k to the points on a grid Vj+1 which do

not belong to Vj. This procedure does not modify any of the existing data and thus can

be repeated until the data are interpolated to all dyadic points up to the desired level of

resolution. The interpolation is achieved by constructing local polynomials, f̂(x) of degree p,

which uses p+1 closest points. For example, to find the value of the interpolant at location

xj+1,2k+1 we construct the polynomial of degree p based on the values of the function

at locations xj,k+ℓ (ℓ = −(p − 1)/2, . . . , (p + 1)/2) and evaluate it at location xj+1,2k+1.

Evaluating this polynomial at point xj+1,2k+1 and substituting the values of polynomial

coefficients expressed in terms of values fj,k, we get that

f̂(xj+1,2k+1) =

(p+1)/2
∑

ℓ=−(p−1)/2

hj,k,ℓfj,k+ℓ, (19)

where hj,k,ℓ, ℓ = −(p − 1)/2, . . . , (p + 1)/2, are the interpolating coefficients from even

points xj+1,2(k+ℓ) to odd point xj+1,2k+1. The values of the interpolating coefficients are

the same for the evenly spaced grid points. In other words, the interpolating coefficients

are translation and dilation invariant for a uniform grid. For example, when the grid points

are evenly spaced, we have

{hj,k,ℓ}1ℓ=0 =

{

1

2
,
1

2

}

, (20)

for linear subdivision (p = 1), and

{hj,k,ℓ}2ℓ=−1 =

{

− 1

16
,

9

16
,

9

16
,− 1

16

}

, (21)

for cubic subdivision (p = 3). Examples of linear and cubic subdivisions are shown in

Figure 8. In Figure 8, on the left, the linear subdivision step inserts new values in between

the old values by averaging the two old neighbors, whereas on the right, cubic polynomials

are used for every quad of old values to determine a new in between value.

The interpolating scaling function φj,k(x) is defined to be the result of running the sub-

division scheme ad infinitum starting from a sequence fj,ℓ = δℓ,k, where δℓ,k is the Kronecker
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Figure 8: Examples of interpolating subdivision [135].

delta, and then performing the interpolating subdivision scheme up to an arbitrary high

level of resolution. All scaling functions for the regularly spaced grid Vj are translates and

dilates of one function φ(x) = φ0,0(x),

φj,k(x) = φ(2jx− k), (22)

called the interpolating scaling function, since φ(x) is interpolating in the sense that φ(0) = 1

and φ(k) = 0 for k 6= 0. The main feature of this approach is that the powerful properties

such as approximation order and the connection with wavelets remain valid. The scaling

function φ(x) resulting from the interpolating subdivision for different values of p, namely,

1, 3, 5, and 7 are shown in Figure 9.

Since the scaling functions are interpolating, then at a particular level j,

f(x) =
∑

k

cj,kφj,k(x), (23)

where cj,k = fj,k. Moreover, since xj,k = xj+1,2k, we have

cj,k = cj+1,2k. (24)

Hence, if we set

dj,k(x) = cj+1,2k+1 −
∑

ℓ

hj,k,ℓcj+1,2(k+ℓ), (25)
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Figure 9: Scaling functions resulting from interpolating subdivision. Going from left to
right, top to bottom, p is 1, 3, 5, 7 [135].

and

ψj,k(x) = φj+1,2k+1(x), (26)

then the forward wavelet transform can be written as

cj,k = cj+1,2k, (27a)

dj,k = cj+1,2k+1 −
∑

ℓ

hj,k,ℓcj+1,2(k+ℓ), (27b)

while the inverse wavelet transform is given by

cj+1,2k = cj,k, (28a)

cj+1,2k+1 = dj,k +
∑

ℓ

hj,k,ℓcj+1,2(k+ℓ). (28b)

While Mallat [102, 103] formulated the basic idea of multiresolution analysis for or-

thonormal wavelets in L2(R), Harten [70] later proposed a general framework for multireso-

lution representation of data by integrating ideas from three different fields, namely, theory

of wavelets, numerical solution of PDEs, and subdivision schemes. His contribution to
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the theory of wavelets lies mainly in his extension of wavelets to nonuniform grids. The

algorithm for constructing interpolating wavelets on a nonuniform grid is the same as de-

scribed above, except that scaling functions and wavelets will not be dilates and translates

of each other. In this case, the interpolating coefficients are location-dependent and are, in

general, different. Further, in [134] Sweldens introduced a lifting scheme for constructing

the wavelets that are not necessarily translates and dilates of each other and called such

wavelets as second generation wavelets. Second generation wavelets maintain most of the

useful properties of the traditional wavelets described above. For the sake of brevity, we

will skip the details on the lifting scheme and the interested reader is referred to [134].

The interpolating wavelets defined on real line with evenly spaced grid are an example of

traditional wavelets, while the extension to the irregular grids and intervals is an example

of second-generation wavelets.

Next, we give a brief introduction to the evolution PDEs.
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CHAPTER III

EVOLUTION PDES

Many problems in engineering and physics can be written in the form of an initial value

problem (IVP) for an evolution equation,

(IVP) :















ut + f(uxx, ux, u, x) = 0 in R× (0,∞),

u = g on R× {t = 0},
(29)

where the function f : R
m × R

m × R
m × R → R

m, and the initial function g : R → R
m

are given. The unknown is the function u : R× [0,∞) → R
m. Such PDEs are often called

evolution equations, the idea being that the solution evolves in time from a given initial

configuration.

Our goal is to solve such PDEs. But what it means to “solve” a given PDE can be

subtle, depending in large part on the particular structure of the problem at hand. The

informal notion of a “well-posed problem” widely used in the study of PDEs captures many

of the desirable features of what it means to solve a PDE.

A given problem for a PDE is said to be well-posed if

WP 1: the problem in fact has a solution;

WP 2: this solution is unique;

WP 3: the solution depends continuously on the data given in the problem.

Now it would be desirable to solve a PDE in such a way that WP 1 - WP 3 hold. But

what is a solution? Should u be real analytic or at least a solution of a PDE of order k be

at least k times continuously differentiable. Then at least all the derivatives which appear

in the statement of the PDE will exist and be continuous, although maybe certain higher

derivatives will not exist. A solution with this much smoothness is referred to as the classical

solution of the PDE. In reality, it is not possible to solve many PDEs in a classical sense.
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Hence, one looks for a wider class of candidates for solutions satisfying the well-posedness

conditions WP 1 - WP 3. Such solutions are called weak or generalized solutions. Hence,

our goal is to find numerically a weak solution to any well-posed evolution equation.

The multiresolution mesh refinement approach for solving evolution PDEs proposed in

Chapter 5 will work for any evolution PDE, but the PDEs that are mainly of interest to

us are nonlinear conservation laws and Hamilton-Jacobi (HJ) equations. The reason being

that the IVP for the nonlinear conservation laws and the HJ equations do not, in general,

have a smooth solution lasting for all times t > 0 even if the initial condition is smooth.

Hence, in the next sections we will briefly discuss these equations, namely, we will describe

why these equations can have non-smooth solutions, and define a notion of weak solution

for both the nonlinear conservation laws and the HJ equations. The only purpose of this

chapter is to familiarize the reader with the difficulties encountered while solving nonlinear

conservation laws, HJ equations, and at the same time provide the reader with enough

context to understand remarks made in the remainder of the thesis. Therefore, to keep

things simple, for further analysis in this chapter we will assume u : R × [0,∞) → R. But

before going into the details of nonlinear scalar conservation laws and HJ equations, we

briefly describe the method of characteristics for solving a basic nonlinear first order PDE

which we will use to show as to why the nonlinear conservation laws and the HJ equations

can have non-smooth solutions.

3.1 Method of Characteristics

Consider the IVP for a basic nonlinear first-order PDE

G(Dxu, u,x) = 0 in U , (30a)

u = g on Γ, (30b)

where U is an open subset of R
2, Γ ⊆ ∂U , and Dxu = [ux1

, ux2
]. The function G :

R
2×R×U → R, and the initial function g : Γ→ R are given. The unknown is the function

u : U → R. G, g are supposed to be smooth functions.

The basic idea behind the method of characteristics is to convert the PDE (30a) into a

system of ODE’s (called characteristics). Suppose we want to know the solution u of (30)
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at any point x ∈ U , that is, find u(x). Then, the goal of the method is to find some curve

lying within U , connecting x with a point x0 ∈ Γ and along which we can compute u. Since

from (30b) we know u(x0) = g(x0), the idea is to be able to compute u all along that curve,

so in particular at x.

To this end, let us suppose that the curve be parametrically described by the function

x(s) = [x1(s), x2(s)], (31)

where s lies in some subinterval of R. Assume u ∈ C2, and define

z(s) = u(x(s)), (32)

p(s) = Dxu(x(s)), (33)

that is, p(s) = [p1(s), p2(s)], where

pi(s) = uxi(s), for i = 1, 2. (34)

So z(·) gives the value of u along the curve and p(·) records the values of the gradient Dxu.

Then the following system of 5 first-order ODEs [54],

dp

ds
(s) = −DxG(p(s), z(s),x(s)) −DzG(p(s), z(s),x(s))p(s), (35a)

dz

ds
(s) = DpG(p(s), z(s),x(s)) · p(s), (35b)

dx

ds
(s) = DpG(p(s), z(s),x(s)), (35c)

comprise the characteristic equations of the nonlinear first-order PDE (30a). The functions

p(·) = [p1(·), p2(·)], z(·), x(·) = [x1(·), x2(·)] are called the characteristics.

Theorem 2 (Structure of Characteristics [54]). Let u ∈ C2(U) solve the nonlinear PDE

(30a) in U . Assume x(·) solves the ODE (35c), where p(·) = Dxu(x(·)), z(·) = u(x(·)).

Then p(·) solves the ODE (35a) and z(·) solves the ODE (35b) for those s such that x(s) ∈

U .

Now we move on to the discussion of the nonlinear conservation laws and HJ equation.
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3.2 Conservation Laws

3.2.1 Introduction

The class of conservation laws is a very important class of PDEs because as their name

indicates, they include those equations that model conservation laws of physics (mass,

momentum, energy etc.). Conservation laws are generally nonlinear.

Consider the IVP for the scalar conservation laws

ut + F (u)x = 0 in U = R× (0,∞), (36a)

u = g on Γ = R× {t = 0}. (36b)

Here, F : R→ R, g : R→ R are given and u : R× (0,∞)→ R is the unknown, u = u(x, t).

Equation (36a) is said to be in conservation form and is called a conservation law.

To understand the physical significance of the conservation laws, we integrate equation

(36a) with respect to x and t from a to b and t1 to t2 respectively, where a, b ∈ R and

t1, t2 ∈ [0,∞). Performing the integration with respect to t for the first term and with

respect to x for the second term, we obtain

∫ b

a
u(x, t2)dx−

∫ b

a
u(x, t1)dx = −

(∫ t2

t1

F (u(b, t))dt−
∫ t2

t1

F (u(a, t))dt

)

. (37)

Equation (37) is referred to as the integral form of conservation law. In (37), u is the

density of the “conserved material” (whatever material the conservation law is conserving);

∫ b
a u(x, t1)dx,

∫ b
a u(x, t2)dx are the amount of conserved material in the interval [a, b] at

times t1, t2 respectively; and F (u) is vaguely defined to be the flux function. Then the

physical interpretation of (37) is that the difference in the “amounts of material” entering

and/or leaving the control volume [a, b] × [t1, t2] across the top and bottom, t = t1 and

t = t2, is balanced by the amount of material entering/or leaving the sides, x = a and x = b.

After giving a physical interpretation of the conservation laws, we derive the character-

istics for conservation laws and show that the solution to the nonlinear conservation laws,

in general, is not smooth.
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3.2.2 Characteristics for Conservation Laws

For finding the characteristics of the scalar conservation law (36), we set x(s) = [x(s), t(s)],

p(s) = [ux(x(s), t(s)), ut(x(s), t(s))]. Then we have

G(p(s), z(s),x(s)) = ut(x(s), t(s)) + F ′(z(s))ux(x(s), t(s)), (38)

and consequently

DpG = [F ′(z(s)), 1], (39)

DxG = 0, (40)

DzG = F ′′(z(s))ux(x(s), t(s)). (41)

Hence, equation (35c) becomes















dx
ds (s) = F ′(z(s)),

dt
ds(s) = 1.

(42)

Therefore, t(s) = s, since t(0) = 0. In other words, we can identify the parameter s with

the time t.

Equation (35b) becomes

dz

ds
(s) = DpG · p (43)

= F ′(z(s))ux(x(s), s) + ut(x(s), s) (44)

= 0 by (36a). (45)

Consequently,

z(s) = z0 = g(x0); (46)

and (42) implies

x(s) = F ′(g(x0))s + x0. (47)

Thus the projected characteristic x(s) = (x(s), s) = (F ′(g(x0))s+x0, s) (s ≥ 0) is a straight

line, along which u is constant.
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Remark 1 (Crossing characteristics.). But suppose now we apply the same reasoning to

a different initial point x̂0 ∈ Γ, where g(x0) 6= g(x̂0). The projected characteristics may

possibly then intersect at some time t > 0. Since Theorem 2 tells us u = g(x0) on the

projected characteristic through x0 and u = g(x̂0) on the projected characteristic through

x̂0, an apparent contradiction arises. The resolution is that the IVP (36) does not, in

general, have a smooth solution, existing for all times t > 0.

The method of characteristics demonstrated that there does not in general exist a smooth

solution of (36) existing for all times t > 0. Therefore, we look for a weak or generalized

solution to (36).

3.2.3 Weak Solutions

Define the set of test functions, C1
0 to be the set

{v ∈ C1 : {(x, t) ∈ R× [0,∞) : v(x, t) 6= 0} ⊂ [a, b]× [0, T ] for some a, b and T}. (48)

If we multiply PDE (36a) by v ∈ C1
0 and integrate with respect to x from −∞ to ∞ and

with respect to t from 0 to ∞, we get

0 =

∫ ∞

0

∫ ∞

−∞
[ut + F (u)x]v dxdt (49)

=

∫ T

0

∫ b

a
[ut + F (u)x]v dxdt (50)

=

∫ b

a

∫ T

0
utv dtdx+

∫ T

0

∫ b

a
F (u)xv dxdt (51)

=

∫ b

a

{

[

uv
]t=T

t=0
−
∫ T

0
uvt dt

}

dx+

∫ T

0

{

[F (u)v]x=b
x=a −

∫ b

a
F (u)vx dx

}

dt (52)

= −
∫ b

a
u(x, 0)v(x, 0) dx−

∫ b

a

∫ T

0
uvt dtdx−

∫ T

0

∫ b

a
F (u)vx dxdt, (53)

since v(x, T ) = v(a, t) = v(b, t) = 0. We note that since the support of v is contained

in [a, b] × [0, T ] and v is defined on R × [0,∞), v(x, 0) need not be zero. We can rewrite

(49)-(53) as

0 =

∫ ∞

0

∫ ∞

−∞
[uvt + F (u)vx] dxdt+

∫ ∞

−∞
gv(x, 0) dx. (54)

The above equality was derived assuming that u is a smooth solution of (36), but the

resulting formula has meaning even if u is only bounded. Hence, we define the notion of

weak solution for the conservation laws as follows:
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Definition 1. If u satisfies (54) for all v ∈ C1
0 , u is said to be a weak solution to IVP (36).

Next, we explain the concepts of “shocks” and “fans” with the help of some simple

examples.

Example 1

Consider the Burger’s equation

ut +

(

1

2
u2

)

x

= 0, (55)

with initial condition

u(x, 0) =















1, x ≤ 0,

0, x > 0.

(56)

The characteristic curves associated with the above IVP are shown in Figure 10(a).

We see in Figure 10(a) that the characteristic curves associated with the above problem

intersect. Hence, we need to consider a weak solution.

It is easy to verify that

u(x, t) =















1, x ≤ t/2,

0, x > t/2.

(57)

is a weak solution to IVP (55)-(56). The example demonstrates that a solution that is

obviously not a classical solution can still be a weak solution. The weak solution given

in (57) is associated with the characteristic curves given in Figure 10(b). The solution on

the characteristics emanating from x, x < 0 is different from that on the characteristics

emanating from x, x > 0. Hence, there is a discontinuity along the curve x = t/2.

One should note that by the form of the solution (57) the discontinuity in the solution

propagates along the curve x = t/2. Hence, the speed of propagation of the discontinuity

is dx/dt = 1
2 .

A more formal definition of a shock will be given later in this chapter but for the time

being we define the shock as follows.

Definition 2. A discontinuity of a piecewise continuous weak solution is called a shock if

the characteristics on both sides of the discontinuity impinge on the discontinuity curve in

the direction of increasing t.
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tion given in Example 1 to IVP (55)-(56).

Figure 10: Characteristic curves associated with the IVP (55)-(56) and the solution given
in Example 1.

If we let aL = F ′(uL) and aR = F ′(uR), where uL and uR are the values of u on the left

and right sides of the discontinuity, then a discontinuity will be a shock if

aL > σ > aR, (58)

where σ is the speed of propagation of the discontinuity.

The discontinuity in the weak solution (57) of IVP considered in Example 1 is a shock

(Figure 10(b)). In the above example, aL = 1, aR = 0 and σ = 1
2 , so the above inequality

is satisfied.

Next, we consider another example.

Example 2

In this example, we again consider the Burger’s equation (55) but with different initial

condition

u(x, 0) =















0, x ≤ 0,

1, x > 0.

(59)

It can be easily shown that

u(x, t) =















0, x ≤ t/2,

1, x > t/2,

(60)
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and

u(x, t) =































0, x < 0,

x/t, 0 ≤ x ≤ t,

1, x > t,

(61)

are both the weak solutions to the Burger’s equation (55) with the initial condition given

in (59). Hence, we see that the weak solutions to IVP for conservation laws are not unique.

The characteristics associated with the IVP given by Burger’s equation (55) and initial

condition (59) are shown in Figure 11. We see that because the slope of the characteristic

curves for x < 0 is greater that the slope of the characteristic curves for x > 0, there is

a region that has no characteristics. The solution (60) corresponds to filling in this region

that has no characteristic curves with characteristics that come out of the curve t = 2x, as

shown in Figure 12(a). Since the characteristics on either side of the curve x = t/2 emanate

from the discontinuity, the discontinuity in solution (60) is not a shock.

The solution given in (61) corresponds to filling in the region that has no characteristic

curves with a “fan” of characteristics as is shown in Figure 12(b). We saw that we were

able to “fill in” the missing characteristics in at least two different ways that are compatible

with the weak formulation of the problem. However, solutions found by filling in a region

with a fan are the desired solutions (shown in the next section).
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Figure 11: Characteristic curves associated with the IVP (55), (59).
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(a) Characteristic curves associated with the solu-
tion (60) given in Example 2 to IVP (55), (59).
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(b) Characteristic curves associated with the solu-
tion (61) given in Example 2 to IVP(55), (59).

Figure 12: Characteristic curves associated with the solutions given in Example 2 to IVP
(55), (59).

3.2.4 Entropy Condition and Vanishing Viscosity Solution

Weak solutions to conservation laws can contain discontinuities that are due to a disconti-

nuity in the initial condition or due to characteristics that cross each other, but any weak

solution to an IVP (36) must satisfy across any jump discontinuity the following condition.

Proposition 1 (Rankine-Hugoniot condition [137]). Let C be a smooth curve in x − t

space (R × [0,∞)), xC = xC(t), across which u, a weak solution to IVP (36), has a jump

discontinuity. Let P = (x0, t0), t0 > 0, be any point on C and uL and uR be the values of

u evaluated to the left and the right of P , respectively. Then

(uL − uR)
dxC

dt
= F (uL)− F (uR). (62)

σ = dxC
dt is the speed of propagation of the discontinuity and equation (62) is referred

to as the jump condition or the Rankine-Hugoniot condition. Observe that the speed σ and

the values uL, uR, F (uL), F (uR) will generally vary along the curve C. The point is that

even though these quantities may change, the expressions σ(uL − uR) and F (uL)− F (uR)

must always exactly balance.

In addition, we saw that, in general, weak solutions to conservation laws are not unique.

One way of choosing the correct solution is to choose the solutions that are limits of an

associated viscous problem as the viscosity vanishes (which are generally called the vanishing
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viscosity solutions). Hence, we want solutions to equation (36a) that are limits of solutions

to

ut + F (u)x = νuxx (63)

as ν → 0.

Proposition 2 ([137]). If a vanishing viscosity solution exists, it is a weak solution.

As shown in Section 3.2.2 using the method of characteristics that the solution u of the

scalar conservation law (36a), whenever smooth, takes the constant value z0 = g(x0) along

the projected characteristic

x(s) = (F ′(g(x0))s+ x0, s) (s ≥ 0). (64)

Now we know that typically we will encounter the crossing of characteristics, and resultant

discontinuities in the solution, if we move forward in time. However, we can hope that if we

start at some point in R×(0,∞) and go backwards in time along a characteristic, we will not

cross any others. In other words, let us consider the class of, say, piecewise-smooth weak

solutions of (36) with the property that if we move backwards in t along any characteristic,

we will not encounter any lines of discontinuity for u.

So now suppose at some point on a curve C of discontinuities that u has distinct left

and right limits, uL and uR, and that the characteristic from the left and a characteristic

from the right hit C at this point. Then in view of the above equation we have

F ′(uL) > σ > F ′(uR). (65)

These inequalities are called the entropy condition (from a rough analogy with the thermo-

dynamic principle that physical entropy cannot decrease as time goes forward).

Remark 2. 1. In Example 1: F ′(uL) = 1, σ = 1
2 and F ′(uR) = 0, hence the solution

satisfies the entropy condition.

2. In Example 2 with weak solution (60): F ′(uL) = 0, s = 1
2 and F ′(uR) = 1, hence the

solution does not satisfy the entropy condition.
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3. In Example 2 with weak solution (61): the solution satisfies the entropy condition

vacuously since there are no discontinuities in the solution.

In view of the entropy condition, we give a formal definition of shock as follows.

Definition 3. A curve of discontinuity for u is called a shock provided both the Rankine-

Hugoniot and the entropy conditions are satisfied.

Proposition 3 ([137]). Suppose that F is convex and that the solution to the IVP (36)

satisfies the entropy condition across all jumps. Then the solution u is the unique viscosity

solution to the IVP (36) that satisfies entropy condition and is a vanishing viscosity solution

to IVP (36).

The nonconvex analogue to the Entropy condition mentioned above is as follows:

Definition 4 ([137]). The solution to equation (36a) (where F is not necessarily convex),

u = u(x, t), containing a discontinuity is said to satisfy entropy condition if

F (uL)− F (u)

uL − u
≥ F (uR)− F (uL)

uR − uL
(66)

for all u between uL and uR, where uL and uR are the solution values to the left and right

of the discontinuity, respectively.

As for the case where F is convex, if F is not convex, the solution u is unique and is a

vanishing viscosity solution if u satisfies the entropy condition (66) across all jumps.

3.2.5 Discrete Conservation Form

In order to solve the IVP for the conservation laws (36) numerically, we must write the

conservation law (36a) in a discrete form. To this end, we assume that we are given a

nonuniform grid of the form1

Grid ={xji,ki
: xji,ki

= ki/2
ji ∈ [0, 1], 0 ≤ ki ≤ 2ji , Jmin ≤ ji ≤ Jmax, for i = 0 . . . N,

and xji,ki
< xji+1,ki+1

, for i = 0 . . . N − 1}, (67)

1It should be noted that for solving IVP for the conservation laws (36) numerically the domain should
be bounded, and hence, without loss of generality, we consider the nonuniform grid on the interval [0, 1].
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where Jmin, Jmax ∈ Z
+
0 .

For simplicity of notations, we define the cell walls by

xji−1/2,ki−1/2
=
xji−1,ki−1

+ xji,ki

2
, xji+1/2,ki+1/2

=
xji,ki

+ xji+1,ki+1

2
, (68)

and we denote u(x, t) evaluated at x = xj,k and t = tn by un
j,k, where 0 ≤ k ≤ 2j , Jmin ≤

j ≤ Jmax, n ∈ Z
+
0 , t0 = 0, tn = tn−1 + ∆tn for n > 0, and ∆tn is the time step based on

the Courant-Friedrichs-Levy (CFL) condition [137].

The CFL condition asserts that the numerical waves should propagate at least as fast as

the physical waves. This means that the numerical wave speed of (xji+1,ki+1
−xji,ki

)/∆tn+1

must be at least as fast as the physical wave speed |F ′(u)|. This leads us to the CFL time

step restriction of

∆tn+1 <
mini=0,...,N−1(xji+1,ki+1

− xji,ki
)

maxx{|F ′(u)|} . (69)

The above equation (69) is usually enforced by choosing a CFL number α with

∆tn+1

(

maxx{|F ′(u)|}
mini=0,...,N−1(xji+1,ki+1

− xji,ki
)

)

= α, (70)

and 0 < α < 1.

To ensure that shocks and other steep gradients move at the right speed, equation (36a)

should be written in a discrete conservation form, that is, a form in which the rate of change

of conserved quantities is equal to a difference of fluxes [97]. Hence, it has been shown in

the literature [109], that equation (36a) should be approximated by

un+1
ji,ki

= un
ji,ki
− ∆tn+1

xji+1/2,ki+1/2
− xji−1/2,ki−1/2

(Fn
ji+1/2,ki+1/2

−Fn
ji−1/2,ki−1/2

), (71)

where Fn
ji±1/2,ki±1/2

= F(xji±1/2,ki±1/2
, tn), and ∆tn+1Fn

ji+1/2,ki+1/2
, ∆tn+1Fn

ji−1/2,ki−1/2
ap-

proximate the flux of material across the sides x = xji+1/2,ki+1/2
and x = xji+1/2,ki+1/2

,

respectively. The approximate fluxes are written as

Fn
ji+1/2,ki+1/2

= F(un
ji−ℓ,ki−ℓ

, . . . , un
ji+m,ki+m

), (72)

Fn
ji−1/2,ki−1/2

= F(un
ji−ℓ−1,ki−ℓ−1

, . . . , un
ji+m−1,ki+m−1

), (73)

if Fn
ji±1/2,ki±1/2

depends on u at ℓ+m+ 1 points.
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But how can it be guaranteed that the scheme picks out the correct entropy-satisfying

weak solution? To answer this question, we first give the following definition.

Definition 5 (Monotone Scheme). A difference scheme of the form

un+1
ji,ki

= Q(un
ji−ℓ−1,ki−ℓ−1

, . . . , un
ji+m,ki+m

) (74)

is said to be monotone if the function Q is a monotone increasing function with respect to

each of its arguments.

Proposition 4 ([97, 123]). A conservative, monotone scheme produces a solution that

satisfies the entropy condition.

In a nut shell, this means that to construct a viable numerical scheme for solving IVP

(36), we only need to make sure that it is in conservation form and that it is a monotone

increasing function of its arguments.

Next we move on to the discussion of HJ equations.

3.3 Hamilton-Jacobi Equations

3.3.1 Introduction

Consider the IVP for Hamilton-Jacobi (HJ) equation:

ut +H(ux, x) = 0 in U = R× (0,∞), (75a)

u = g on Γ = R× {t = 0}, (75b)

where the Hamiltonian H : R × R → R and the initial function g : R → R are given.

The unknown is the function u : R × [0,∞) → R. In the next section, we derive the

characteristics for the IVP (75).

3.3.2 Characteristics for the Hamilton-Jacobi Equation

As for the conservation laws, we set x(s) = [x(s), t(s)], p = [p1(s), p2(s)], where p1(s) =

ux(x(s), t(s)) and p2(s) = ut(x(s), t(s)). Then we have

G(p(s), z(s),x(s)) = p2(s) +H(p1(s), x(s)). (76)
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Therefore,

DpG =

[

∂H

∂p1
(p1(s), x(s)), 1

]

, (77)

DxG =

[

∂H

∂x
(p1(s), x(s)), 0

]

, (78)

DzG = 0. (79)

Thus equation (35c) becomes














dx
ds (s) = ∂H

∂p1
(p1(s), x(s)),

dt
ds(s) = 1.

(80)

Hence, t(s) = s, since t(0) = 0. Again, as for the conservation laws, we can identify the

parameter s with time t.

The equation (35a) for the case at hand reads














dp1

ds (s) = −∂H
∂x (p1(s), x(s)),

dp2

∂s (s) = 0;

(81)

the equation (35b) is

dz

ds
(s) =

∂H

∂p1
(p1(s), x(s))p1(s) + p2(s) (82)

=
∂H

∂p1
(p1(s), x(s))p1(s)−H(p1(s), x(s)) by (75a), (76). (83)

In summary, the characteristic equations for the HJ equation are

dp1

ds
(s) = −∂H

∂x
(p1(s), x(s)), (84a)

dz

ds
(s) =

∂H

∂p1
(p1(s), x(s))p1(s)−H(p1(s), x(s)), (84b)

dx

ds
(s) =

∂H

∂p1
(p1(s), x(s)). (84c)

Equations (84a) and (84c) are called Hamilton’s equations. Once x(s), p1(s) have been

found from the Hamilton’s equations, z(s) can be found from (84b).

As for conservation laws, the IVP for HJ equation (75) does not, in general, have a

smooth solution u lasting for all times t > 0. To show this, we consider for simplicity

H(ux, x) = H(ux), (85)
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that is,

ut +H(ux) = 0 in U = R× (0,∞), (86a)

u = g on Γ = R× {t = 0}. (86b)

Hence, the associated Hamilton’s equations are

ẋ(t) =
∂H

∂p1
(p1(t)), (87a)

ṗ1(t) = 0, (87b)

with initial conditions

x(0) = y, (88a)

p1(0) = g′(y), (88b)

for some fixed y ∈ Γ. Hence, the solution of (87)-(88) is

x(t) = y + t
∂H

∂p1
(g′(y)), (89a)

p1(t) = g′(y). (89b)

In the general form, we can write (89) as

x(t, y) = y + t
∂H

∂p1
(g′(y)), (90a)

p1(t, y) = g′(y), (90b)

for all y ∈ Γ.

Therefore, (84b) reduces to

ż(t) = g′(y)
∂H

∂p1
(g′(y))−H(g′(y)), (91)

with z(0) = g(y), which implies

z(t) = g(y) + t

(

g′(y)
∂H

∂p1
(g′(y))−H(g′(y))

)

. (92)

Now we suppose that the mapping from y → x(t, y) is one-to-one, then the candidate

solution u produced by the method of characteristics is

u(x, t) = g(x−1(t, y)) + t

(

g′(x−1(t, y))
∂H

∂p1
(g′(x−1(t, y))) −H(g′(x−1(t, y)))

)

. (93)
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But since (x(t), t) =
(

y + t ∂H
∂p1

(g′(y)), t
)

(t ≥ 0) are straight lines, the characteristics may

possibly intersect at some time t > 0. Hence, we see that the mapping from y → x(t, y)

might not be one-to-one, and x−1(t, y) might be defined only for small t > 0. As a conse-

quence, the function u is not globally defined by (93) which also implies that the solution

to IVP for HJ equations does not in general have a smooth solution, existing for all times

t > 0. Also it has been pointed out by Crandall et al. [43] that if H and g are assumed to be

smooth and g be compactly supported, then (86) will typically have a unique C2 solution

u on some maximal time interval 0 ≤ t < T for which limtրTu(x, t) exists uniformly, but

this limiting function might not be continuously differentiable. Thus, ux might become

discontinuous at t = T (or “shocks” might form).

Hence, in the next section we consider the notion of “weak” solution for HJ equations.

3.3.3 Viscosity Solution

Consider the approximate problem:















uν
t +H(Duν , x)− νuν

xx = 0 in R× (0,∞),

uν = g on R× {t = 0},
(94)

for ν > 0. Equation (75) involves a fully nonlinear first order PDE, whereas (94) is an IVP

for a quasilinear parabolic PDE, which is known to have a smooth solution [54]. The term

νuν
xx in (94) in effect regularizes the HJ equation. The idea is that as ν → 0, the solution uν

of (94) will converge to some sort of weak solution of (75). This technique is known as the

method of vanishing viscosity. However, as ν → 0 we can expect to loose control over the

various estimates of the function uν and its derivatives: these estimates depend strongly on

the regularizing effect of νuν
xx and blow up as ν → 0. Hence, a unique limit solution may

not exist. However, Evans in [54] has mentioned that in practice we can be at least sure that

the family {uν}ν>0 is bounded and equicontinuous on compact subsets of R
n× [0,∞). Now

since the family {uν}ν>0 is bounded and equicontinous on compact subsets of R
n × [0,∞),

consequently the Arzela-Ascoli Compactness Criterion (Appendix B) ensures that

uνj → u locally uniformly in R× [0,∞), (95)
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for some subsequence {uνj}∞j=1 and some limit function

u ∈ C(R× [0,∞)). (96)

Now we can expect that u is some kind of solution of our IVP (75) but as we only know

u is continuous, and have absolutely no information as to whether ux and ut exist in any

sense, such an interpretation is difficult.

To show that such a u is a weak solution one way would have been to integrate by parts

to throw the “hard-to-control” derivatives onto a fixed test function, and only then try to

go to limits to discover a weak solution, as was done for the conservation laws. But since

(75a) is fully nonlinear we cannot just integrate by parts to switch to differentiations on

the test function. Hence, the idea is to put the derivatives onto any smooth function v, at

the expense of certain inequalities holding. The solution that is built using this technique

is called viscosity solution, in honor of the vanishing viscosity technique.

Definition 6 (Viscosity Solution). A bounded, uniformly continuous function u is called a

viscosity solution of IVP (75) for HJ equation provided:

i) u = g on R× {t = 0},

ii) for each v ∈ C∞(R× (0,∞))















if u− v has a local maximum at a point (x0, t0) ∈ R× (0,∞), then

vt(x0, t0) +H(vx(x0, t0), x0) ≤ 0,

(97)

and














if u− v has a local minimum at a point (x0, t0) ∈ R× (0,∞), then

vt(x0, t0) +H(vx(x0, t0), x0) ≥ 0,

(98)

To verify that a given function u is a viscosity solution of the HJ equation (75), we

must confirm that (97), (98) hold for all smooth functions v. Some of the interesting facts

regarding the viscosity solutions taken from [54] are as follows:

1. If u is constructed using the vanishing viscosity method, it is a viscosity solution.
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2. Any classical solution of (75) is also a viscosity solution.

3. Let u be a viscosity solution of (75) and suppose u is differentiable at some point

(x0, t0) ∈ R× (0,∞). Then

ut(x0, t0) +H(ux(x0, t0), x0) = 0. (99)

For a more detailed discussion on the viscosity solutions, the reader is referred to [42,

41, 43, 54] where the existence and uniqueness of the viscosity solutions to IVP for HJ

equations (75) is also shown.

3.3.4 Connection with Conservation Laws

The purpose of this section is to show a direct connection between the conservation laws

and HJ equations in one spatial dimension, which will be utilized for solving the IVP to HJ

equations numerically.

For simplicity, we consider the HJ equation

ut +H(ux) = 0, (100)

which becomes

(ux)t +H(ux)x = 0, (101)

after one takes a spatial derivative of the entire equation. Setting v = ux in the above

equation results in

vt +H(v)x = 0, (102)

which is a scalar conservation law. Thus in one spatial dimension a direct correspondence

between HJ equations and conservation laws can be drawn. The solution v to a conservation

law is the derivative of a solution u to a HJ equation. Conversely, the solution u to a HJ

equation is the integral of a solution v to a conservation law. This allows us to point out a

number of useful facts.

1. Since the integral of a discontinuity is a “kink”, or discontinuity in the first derivative,

solutions to HJ equations can develop kinks in the solution even if the data are initially

smooth.
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2. The solutions to HJ equations cannot generally develop a discontinuity unless the

corresponding conservation law develops a delta function. Thus solutions u to (75)

are typically continuous.

3. Since the conservation laws can have non-unique solutions, entropy conditions are

needed to pick out “physically” relevant solutions to equation (75) as well.

Hence, the successful numerical methodology for solving conservation laws (Section 3.2) can

be applied for solving the IVP for HJ equations (75) [111].

3.4 Summary

In this chapter, we showed that the solution to the nonlinear conservation laws and the HJ

equations do not have smooth solutions lasting for all times t > 0 and hence developed the

notion of “weak” solutions for the nonlinear conservation laws and the HJ equations. We

also stated the conditions that any numerical scheme for solving IVP for the conservation

laws should satisfy for picking out the unique “physically” correct solution to the IVP

for the conservation laws. A direct correspondence between the conservation laws and HJ

equations in one spatial dimension was shown which allows us to use the successful numerical

methodology of conservation laws for solving IVP for HJ equations.

As was shown for the conservation laws and HJ equations, the solution to (IVP), in

general, do not have smooth solutions. Hence, in order to solve evolution equations in a

computationally efficient manner, the grid should adapt dynamically to reflect local changes

in the solution. Therefore, in the next chapter, we propose a novel multiresolution-based

data compression algorithm.
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CHAPTER IV

MULTIRESOLUTION DATA COMPRESSION

First, we give a brief overview on dyadic grids which are used in the proposed multiresolution

data compression algorithm.

4.1 Dyadic grids

Since D = [0, 1], we consider dyadic grids of the form

Vj = {xj,k ∈ [0, 1] : xj,k = k/2j , 0 ≤ k ≤ 2j}, Jmin ≤ j ≤ Jmax, (103)

where j denotes the resolution level, k the spatial location, and Jmin, Jmax ∈ Z
+
0 . We

denote by Wj the set of grid points belonging to Vj+1 \ Vj. Therefore,

Wj = {yj,k ∈ [0, 1] : yj,k = (2k + 1)/2j+1, 0 ≤ k ≤ 2j − 1}, Jmin ≤ j ≤ Jmax − 1. (104)

Hence, xj+1,k ∈ Vj+1 is given by

xj+1,k =















xj,k/2, if k is even,

yj,(k−1)/2, otherwise.

(105)

An example of a dyadic grid with Jmin = 0 and Jmax = 5 is shown in Figure 13.

k=0 k=1

k=0 k=3

k=0

k=0

k=0

k=0 k=1
V0

W0

W1

W3

W4

k=7

k=15

W2

Figure 13: Example of a dyadic grid.

With a slight abuse of notation, we write Vj+1 = Vj ⊕ Wj, although Wj is not an

orthogonal complement of Vj in Vj+1. The subspaces Vj are nested, VJmin
⊂ VJmin+1 · · · ⊂
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VJmax , with limJmax→∞ VJmax = D. The sequence of subspaces Wj satisfy Wj ∩Wℓ = ∅ for

j 6= ℓ.

Next, we present a novel multiresolution scheme for data compression.

4.2 Encoding

Suppose g : D → R is specified on a grid VJmax ,

UJmax = {gj,k : xj,k ∈ VJmax}, (106)

where gj,k = g(xj,k). Let Ip(x;XGrid) denote any p-th order interpolation of U = {gj,k :

xj,k ∈ XGrid}, where XGrid = {xjℓ,kℓ
}i+p

ℓ=i ⊂ Grid, where

Grid ={xji,ki
: xji,ki

∈ [0, 1], 0 ≤ ki ≤ 2ji , Jmin ≤ ji ≤ Jmax, for i = 0 . . . N,

and xji,ki
< xji+1,ki+1

, for i = 0 . . . N − 1} ⊂ VJmax , (107)

and x ∈ [xji,ki
, xji+p,ki+p

]. In (107) Grid can be uniform or nonuniform. Then the encoding

algorithm for compressing the signal g is as follows.

Encoding Algorithm

Step 1. Initialize an intermediate grid Gridint = VJmin
, with function values Uint = Umin,

where Umin = {gJmin,k : 0 ≤ k ≤ 2Jmin}. Set j = Jmin.

Step 2. DO for k = 0, . . . , 2j − 1.

(a) Compute the interpolated function value ĝ(yj,k) = Ip(yj,k,XGridint
).

(b) If the interpolative error coefficient at the point yj,k,

dj,k = |g(yj,k)− ĝ(yj,k)| > ǫ, (108)

where ǫ is the prescribed threshold, then add yj,k to the intermediate grid

Gridint and the corresponding function value g(yj,k) to Uint.

Step 3. Increment j by 1. If j < Jmax goto Step 2, otherwise move on to the next step.
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Step 4. Terminate the algorithm. The final nonuniform grid representing the compressed

information is GridM = Gridint and the corresponding function values is the set

UM = Uint.

If we represent the above nonlinear encoding procedure by an operator M , then we can

write

UM = MUJmax . (109)

One should note that in Harten’s approach [68, 69, 70] the points of a particular resolu-

tion level Wj are interpolated only from the corresponding points belonging to Vj. In our

approach, instead, we continuously keep on updating the grid, and the points {g(yj,k)}2
j−1

k=0

of level Wj are interpolated from the function values at the points in Vj ⊕Wj. Hence, by

making use of the extra information from levels Wj – which in any case will be added to

the adaptive grid – we are able to reduce the number of grid points in the final grid. This

process results in higher compression factors, as will be shown in Section 4.6 via several

examples.

In the next section, we briefly describe the techniques that will be used in this thesis

for constructing Ip.

4.3 Construction of the Interpolation Operator Ip

The proposed encoding and decoding algorithms will work with many interpolations, like

piecewise-polynomial interpolation, essentially nonoscillatory (ENO) interpolation, cubic-

spline interpolation, trigonometric interpolation etc. [70]. For sake of brevity, we only

describe the techniques for constructing Ip that are used in the thesis.

4.3.1 Piecewise-polynomial Interpolation

For piecewise-polynomial interpolation, the stencil XGridint
consists of the p+1 nearest points

to x in Gridint. By p + 1 nearest points here we mean one neighboring point on the left of

x, one neighboring point on the right of x and the remaining p − 1 points are the points

nearest to x in the set Gridint. In case two points are at the same distance from x, that is,
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if a point on the left and a point on the right are equidistant to x, then we choose a point

so as to equalize the number of points on both sides. For example, consider a grid at level

j = 3 as shown in Figure 14. The set Gridint consists of the solid circles. Let p = 3 and

x = x3,4, shown by an empty square in Figure 14. The whole process involves three steps.

Step a: We include in the set XGridint
one neighboring point on the left (x3,2), shown by

a left triangle and one neighboring point on the right (x3,5), shown by a right triangle in

Figure 14. Step b: We add to the set XGridint
the point x3,6 since the distance from xinterp

to x3,0 is greater than the distance of x3,4 to x3,6. Step c: To choose the last point, we

notice that both points x3,0 and x3,8 are equidistant to x3,4. In this case, we choose x3,0 in

order to equalize the number of points on both sides. Hence, our final set XGridint
consists

of points x3,0, x3,2, x3,5, and x3,6 as shown in Figure 14.

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

XStep a:

Step b:

Step c:

Grid
int

Grid int

X
Grid int

X
Grid int

Figure 14: Demonstration of the procedure for finding the nearest points in piecewise
polynomial interpolation.

Suppose p is even and suppose we have already chosen p−2 points based on the previous

methodology, such that (p − 2)/2 points are on the left of x and the remaining (p − 2)/2

points are on the right of x. In case both points on the left and the right are equidistant to

x we choose either of these points as the last point. Note that this situation will not arise

if p is odd.

Once we have found the p+ 1 nearest points of the set XGridint
, we construct an interpo-

lating polynomial ĝ(x) of order p passing through these p+1 points. One may use Neville’s

algorithm (Appendix A.1.6) to construct the respective interpolating polynomials on the

fly.
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4.3.2 Essentially Non-Oscillatory Interpolation

For ENO interpolation, the stencil XGridint
consists of one neighboring point on the left and

one neighboring point on the right of x in the set Gridint, and the remaining p − 1 points

are selected from the set Gridint that give the least oscillatory polynomial. Next, we briefly

describe how the ENO interpolant is constructed. For more details on ENO interpolation

the reader is referred to [70, 110].

To this end, let the grid Gridint be given as in (107). Now define

D+gn
ji,ki

=
gn
ji+1,ki+1

− gn
ji,ki

xji+1,ki+1
− xji,ki

, D−gn
ji,ki

=
gn
ji,ki
− gn

ji−1,ki−1

xji,ki
− xji−1,ki−1

. (110)

Define the zeroth divided difference of g by

D0
i g = gn

ji,ki
, (111)

at each grid node xji,ki
. The first divided difference of g are defined midway between grid

nodes as

D1
i+1/2g =

D0
i+1g −D0

i g

xji+1,ki+1
− xji,ki

. (112)

The second divided differences are defined at the grid nodes as

D2
i g =

D1
i+1/2g −D1

i−1/2g

xji+1,ki+1
− xji−1,ki−1

, (113)

while the third divided differences

D3
i+1/2g =

D2
i+1g −D2

i g

xji+2,ki+2
− xji−1,ki−1

, (114)

are defined midway between the grid nodes.

The divided differences are then used to construct a polynomial of the form

ĝ(x) = Q0 +Q1(x) +Q2(x) +Q3(x). (115)

Let the left neighboring point to x in Gridint be xjL,kL
. Then define

Q0 = g(xjL,kL
), (116)

and

Q1(x) = (D1
L+1/2g)(x − xjL,kL

), (117)
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which gives linear interpolation of one neighboring point on the left and one neighboring

point on the right of x in the set Gridint.

Now for the second-order accuracy we can include the next point to the left and use

D2
Lg, or we can include the next point to the right and use D2

L+1g. One would like to avoid

interpolating near large variations such as discontinuities or steep gradients, since they cause

overshoots in the interpolating function, leading to numerical errors in the approximation

of the derivative. Thus, if |D2
Lg| ≤ |D2

L+1g|, set c = D2
Lg and L⋆ = L − 1; otherwise, set

c = D2
L+1g and L⋆ = L. Then define

Q2(x) = c(x− xjL,iL)(x− xjL+1,kL+1
). (118)

If we stop here, that is, omitting the Q3 term, we have a second-order accurate method for

approximating g(x).

To obtain the third-order accurate correction compare |D3
L⋆+1/2g| and |D3

L⋆+3/2g|. If

|D3
L⋆+1/2g| < |D3

L⋆+3/2g|, set c⋆ = |D3
L⋆+1/2g| otherwise set c⋆ = |D3

L⋆+3/2g|. Then define

Q3(x) = c⋆(x− xjL⋆ ,kL⋆ )(x− xjL⋆+1,kL⋆+1
)(x− xjL⋆+2,kL⋆+2

), (119)

which is the third-order accurate correction to the approximation of g(x).

Next, we give the decoding algorithm, that is, the algorithm for computing

ÛJmax = M−1UM. (120)

4.4 Decoding

One way of decoding the information back from the compressed signal in nonlinear schemes

is to keep track of the stencils that were used for interpolating the function values at a

particular point while encoding the information and use the same stencils to decode the

information from the compressed signal. An alternative way (described below) of decoding

the information from the compressed signal is to follow the same approach as in the encoding

algorithm.

Decoding Algorithm

Step 1. Initialize Gridint = VJmin
, with function values ÛJmax = Uint = Umin, where Umin =

{gJmin,k : 0 ≤ k ≤ 2Jmin}. Set j = Jmin.
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Step 2. DO for k = 0, . . . , 2j − 1.

If g(yj,k) ∈ UM, then add g(yj,k) to ÛJmax , Uint and yj,k to Gridint otherwise add

ĝ(yj,k) = Ip(yj,k,XGridint
) to ÛJmax .

Step 3. Increment j by 1. If j < Jmax goto Step 2, otherwise move on to the next step.

Step 4. Terminate the algorithm.

It should be noted that at termination Gridint = VJmax .

4.5 Error Estimate

In this section, we derive an estimate for the error between the original signal UJmax and

the decoded signal ÛJmax obtained after encoding the original signal and then decoding the

compressed signal UM .

Proposition 5. Let UJmax be defined as in (106), and let ÛJmax = M−1UM , where M−1

denotes the decoding algorithm described above. Then for 1 ≤ m <∞,

Em(g) = ‖UJmax−ÛJmax‖m =





1

2Jmax + 1

2Jmax
∑

k=0

|gJmax,k − ĝJmax,k|m




1
m

≤
(

2Jmax − 2Jmin

2Jmax + 1

)

1
m

ǫ,

(121)

and

E∞(g) = ‖UJmax − ÛJmax‖∞ = max
0≤k≤2Jmax

|gJmax,k − ĝJmax,k| ≤ ǫ. (122)

Proof. First, we note that

|gJmin,k − ĝJmin,k| = 0, k = 0, . . . , 2Jmin , (123)

since gJmin,k ∈ UM for all k = 0, . . . , 2Jmin . Next, since the function values in the set ÛJmax

are interpolated directly only from the function values in UM, we have a direct control over

the error. Therefore,

|g(yj,k)− ĝ(yj,k)| ≤ ǫ, k = 0, . . . , 2j − 1, (124)

for j = Jmin, . . . , Jmax − 1. Hence, we have

‖UJmax − ÛJmax‖∞ = max
0≤k≤2Jmax

|gj,k − ĝj,k| ≤ ǫ. (125)
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For 1 ≤ m <∞, we have

‖UJmax − ÛJmax‖mm (126)

=
1

2Jmax + 1





2Jmin
∑

k=0

|gJmin,k − ĝJmin,k|m +
Jmax−1
∑

j=Jmin

2j−1
∑

k=0

|g(yj,k)− ĝ(yj,k)|m


 (127)

≤ ǫm

2Jmax + 1

Jmax−1
∑

j=Jmin

2j−1
∑

k=0

1 = ǫm
2Jmax − 2Jmin

2Jmax + 1
. (128)

Consequently, for 1 ≤ m <∞,

‖UJmax − ÛJmax‖m ≤
(

2Jmax − 2Jmin

2Jmax + 1

)

1
m

ǫ, (129)

which completes the proof.

Example 3

Consider g1 : D → R,

g1(x) =















1, 1
3 ≤ x ≤ 2

3 ,

0, otherwise,

(130)

and g2 : D → R,

g2(x) =















































































0, 0 ≤ x < 1
6 ,

1, 1
6 ≤ x < 1

3 ,

0, 1
3 ≤ x < 1

2 ,

sin(πx), 1
2 ≤ x < 2

3 ,

0, 2
3 ≤ x < 5

6 ,

x, 5
6 ≤ x ≤ 1.

(131)

For this example, we consider a grid with Jmin = 3 and Jmax = 10 and use ENO interpolation

for the encoding and the decoding algorithms described above. For both g1 and g2, the data

compression factor

C =
2Jmax + 1−Np

2Jmax + 1
× 100%, (132)

where Np denotes the number of grid points, along with the decoding errors Em, m =

1, 2,∞, with an interpolating polynomial of degree p = 3 and different thresholds ǫ, are
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summarized in Table 1. First, we consider ǫ = 10−3 for both the functions g1 and g2. The

proposed algorithm compressed the given signals g1 and g2 using only 25 and 52 points,

respectively, The decoding errors Em (m = 1, 2,∞) are well below the threshold for both

these functions. The grid point distributions for both g1 and g2 are shown in Figure 15.

Next, for g2, we decrease the threshold to 10−7. It is observed that the proposed encoding

algorithm increased the number of points used for compressing the signal; once again, the

decoding errors are below the prescribed threshold.

Table 1: Example 3. Data compression along with the decoding errors for the proposed
approach.

ǫ C Einf E1 E2

g1 10−3 97.56 0 0 0

g2 10−3 94.93 2.2741 × 10−5 8.2103 × 10−7 2.8111 × 10−6

g2 10−7 93.85 9.0426 × 10−8 3.7983 × 10−9 1.2662 × 10−8
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(a) g1(x).
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(b) g2(x).

Figure 15: Example 3. Grid point distribution for ǫ = 1× 10−3.

4.6 Comparison with Existing Multiresolution-Based Approach

The proposed encoding algorithm results, in general, in a fewer number of grid points when

compared to the Harten’s multiresolution scheme [68, 69]. First, we explain why this is so

and then we give several examples to demonstrate this fact.

In the encoding algorithm of existing approach [68, 69], one interpolates {g(yj,k)}2
j−1

k=0

only from the function values at the points belonging to Vj for j = Jmin . . . Jmax−1, and only

then, one adds to the adaptive grid, the points yj,k for all the pairs (j, k), such that dj,k > ǫ.
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In the proposed method, we continuously keep on updating the adaptive grid instead. If

the interpolative error coefficient at yj,k, where 0 ≤ k ≤ 2j − 1 and Jmin ≤ j ≤ Jmax − 1, is

greater than the prescribed threshold, we add yj,k to the adaptive grid. We use the newly

added point also for interpolating the remaining points at level Wj and the levels below it.

In other words, in the proposed approach {g(yj,k)}2
j−1

k=0 are interpolated from the function

values at the points in Vj ⊕Wj for j = Jmin, . . . , Jmax − 1. Hence, by making use of the

extra information from levels Wj , which in any case will be added to the adaptive grid, we

are able to reduce the number of grid points in the final grid.

We illustrate this fact with the help of several examples.

Example 4

We again consider the functions g1 and g2 given by (130) and (131), respectively, and

a grid with Jmin = 2 and Jmax = 10. We compare the proposed encoding algorithm

(using ENO interpolation) with the Harten’s encoding algorithm (using ENO interpolation)

and the Harten’s encoding algorithm (using central interpolation). The number of grid

points used by the proposed algorithm Np, Harten’s algorithm (using ENO interpolation)

NHeno, and Harten’s algorithm (using central interpolation) NHc for different thresholds

using interpolating polynomial of degree p = 3 are summarized in Table 2. For both

Table 2: Example 4. Comparison of the proposed decoding approach with Harten’s ap-
proach.

ǫ Np NHeno NHc Np/NHeno Np/NHc

g1 10−3 25 29 53 0.86 0.47

g2 10−3 52 58 108 0.90 0.48

g2 10−7 63 73 119 0.86 0.53

functions g1 and g2, we found that the proposed algorithm results in up to 14% fewer

number of points in the compressed data compared to the Harten’s approach (using ENO

interpolation) and up to 53% fewer points compared to the Harten’s approach (using central

interpolation).

52



4.7 Summary

In this chapter, we have proposed a novel multiresolution scheme for data compression.

The proposed data compression scheme is shown to outperform similar data compression

schemes in the literature. Specifically, we have shown that the proposed approach results

in fewer grid points when compared to a common adaptive grid approach.

Next, based on the proposed data compression scheme, we present an adaptive multires-

olution technique for solving evolution PDEs .
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CHAPTER V

SOLUTION OF IBVP FOR EVOLUTION EQUATIONS

5.1 Problem Statement

The IVP (29) that we are trying to solve is defined over all of R, and hence has no physical

boundary. Unfortunately, we can numerically approximate the solution only on a finite

domain, so we must introduce boundaries and enforce some form of boundary conditions.

Hence, we consider an initial-boundary value problem (IBVP) for an evolution equation:

(IBVP) :















ut + f(uxx, ux, u, x) = 0 in D × (0,∞),

u = g on D × {t = 0},
(133)

where D = D∪∂D, with D ⊂ R bounded. The function f : R
m×R

m×R
m×D → R

m, and

the initial function g : D → R
m are given. The unknown is the function u : D×[0,∞)→ R

m.

The algorithm proposed in this section works for other boundary conditions as well, but

for simplicity in the analysis below we only use periodic, Dirichlet, and Neumann boundary

conditions. Without loss of generality, we will further assume that D = (0, 1).

In (IBVP) the initial function g can be irregular. Even if g is smooth, discontinuities

such as shocks (in hyperbolic conservation laws) and kinks (in Hamilton-Jacobi equations)

can develop in the solution u at some later time. Therefore, we would like to adapt the grid

dynamically to any existing or emerging irregularities in the solution instead of using a fine

mesh over the whole spatial and temporal domain. In the next section, we propose a novel

grid refinement technique for solving (IBVP) in a computationally efficient manner.

5.2 Adaptive gridding

5.2.1 Grid Adaptation for the solution of (IBVP)

Consider a set of dyadic grids Vj and Wj as described in Eqs. (103) and (104),

Vj = {xj,k ∈ [0, 1] : xj,k = k/2j , 0 ≤ k ≤ 2j}, Jmin ≤ j ≤ Jmax, (134)
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Wj = {yj,k ∈ [0, 1] : yj,k = (2k + 1)/2j+1, 0 ≤ k ≤ 2j − 1}, Jmin ≤ j ≤ Jmax − 1. (135)

Assume we are given a nonuniform grid of the form

Grid ={xji,ki
: xji,ki

∈ [0, 1], 0 ≤ ki ≤ 2ji , Jmin ≤ ji ≤ Jmax, for i = 0 . . . N,

and xji,ki
< xji+1,ki+1

, for i = 0 . . . N − 1} ⊂ VJmax , (136)

For simplicity, we denote by un
j,k the value of u(x, t) evaluated at x = xj,k and t = tn,

where 0 ≤ k ≤ 2j , Jmin ≤ j ≤ Jmax, n ∈ Z
+
0 , t0 = 0, tn = tn−1 + ∆tn for n > 0, and

∆tn is the time step based on the Courant-Friedrichs-Levy condition [137] for hyperbolic

equations and the von Neumann condition [137] for all other evolution equations. The

“top-down” approach of our algorithm allows one to add and remove points using the most

recently updated information. To this end, suppose u(x, tn) is specified on the grid Gridold,

with corresponding solution values Uold = {un
j,k : xj,k ∈ Gridold}, where Gridold can be

either regular or irregular1. We assume Gridold ⊇ VJmin
. Our aim is to find a new grid

Gridnew, by adding or removing points from Gridold, reflecting local changes in the solution.

To this end, we initialize an intermediate grid Gridint = VJmin
, with the function values

Uint = {un
Jmin,k : un

Jmin,k ∈ Uold, 0 ≤ k ≤ 2Jmin}, and we set j = Jmin. The mesh refinement

algorithm proceeds as follows:

Step 1. Find the points belonging to the intersection of Wj and Gridold, that is,

Y = {yj,ki
: yj,ki

∈ Wj ∩ Gridold, for i = 1, . . . ,M, 1 ≤M ≤ 2j − 1}. (137)

If Y is empty goto Step 4 otherwise goto the next step.

Step 2. Set i = 1.

(a) Compute the interpolated function values at point yj,ki
∈ Y , û(yj,ki

), that is,

ûℓ(yj,ki
) = Ip(yj,ki

,XGridint
), where ûℓ is the ℓth element of û, for ℓ = 1, . . . ,m.

(b) If at the point yj,ki
2,

dj,ki
(un) = max

ℓ=1,...,m
|uℓ(yj,ki

, tn)− ûℓ(yj,ki
)| < ǫ, (138)

1Typically, Gridold at time t = 0 is regular with Gridold = VJmax .
2Note that u(yj,k, tn) ∈ Uold for all yj,k ∈ Y .
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goto Step 2(f), otherwise add yj,ki
to the intermediate grid Gridint and move

on to the next step.

(c) Add to Gridint N1 points on the left and N1 points on the right neighboring

to the point yj,ki
in Wj. This step accounts for the possible displacement of

any sharp features of the solution during the next time integration step. The

value of N1 dictates the frequency of mesh adaptation and is provided by the

user. The larger the N1, the smaller the frequency of mesh adaptation will be,

at the expense of a larger number of grid points in the adaptive grid. Hence,

there is a trade-off between the frequency of mesh adaptation and the number

of grid points.

(d) Add to Gridint 2N2 neighboring points at the next finer level

{yj+1,2ki+ℓ}N2

ℓ=−N2+1, where 1 ≤ N2 ≤ 2N1. This step accounts for the pos-

sibility that the solution becomes steeper in this region. Our experience has

shown that N2 = N1 is a good choice.

(e) Add the function values at all the newly added points to Uint. If the function

value at any of the newly added points is not known, we interpolate the func-

tion value at that point from the points in Gridold and their function values in

Uold using Ip(·,XGridold
).

(f) Increment i by 1. If i ≤ M goto Step 2(a), otherwise move on to the next

step.

Step 3. Increment j by 1. If j < Jmax goto Step 1, otherwise move on to the next step.

Step 4. Terminate the algorithm. The final nonuniform grid is Gridnew = Gridint and their

corresponding function values is the set Unew = Uint.

Remark 3. Although the proposed grid adaptation algorithm will work for any interpolation

technique, in this work we use ENO interpolation to avoid any unphysical interpolation of

the data.
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Remark 4. For sake of brevity, in the thesis, we work only with the point-value discretiza-

tion of data but the proposed encoding and decoding algorithms (or the grid adaptation

algorithm for solving PDEs) will also work for discretizations based on the cell-averages.

Next, we explain the proposed grid adaptation algorithm with the help of a simple

example.

Example 5

Consider a dyadic grid V4 and the function

g(x) =















1, x = x4,k,

0, otherwise,

(139)

with k = 6, so that g denotes an impulse located at x = x4,6 = 0.375. Let Jmin = 0,

Jmax = 4, p = 1, ǫ = 0.1, N1 = N2 = 1, and consider Gridold = VJmax . For this example the

proposed grid adaptation algorithm is illustrated in Figure 16.

In Figure 16, the solid circles show the points belonging to the intermediate grid Gridint

and those belonging to Gridnew. The empty squares show the points that are being tested

or have been tested for inclusion in Gridint. If the interpolative error coefficient at a point is

greater than the prescribed threshold, then we show that point by a solid square. The left

and the right neighbors are shown by left and right triangles, respectively. For reference,

all points at that particular level are shown by empty circles.

First, we initialize Gridint with VJmin
. Next, we check if the function value at the point

y0,0 ∈ W0 can be interpolated from the nearest p + 1 = 2 points in Gridint, which in this

case are the points x0,0 and x0,1. Since for this example g(y0,0) can be interpolated from the

points in Gridint, we do not include y0,0 in Gridint. Next, we consider the level W1 and check

the point y1,0. Since g(y1,0) can again be interpolated from the function values at points

x0,0, x0,1 ∈ Gridint, we do not include y1,0 in Gridint, and move on to the next point y1,1.

For the same reason as before, we do not include this point and the point y2,0 belonging

to the next level W2. Moving further to y2,1, we find that g(y2,1) cannot be interpolated

from the neighboring two points x0,0, x0,1 ∈ Gridint. Hence, we include y2,1 in Gridint along

with points y2,0, y2,2 ∈ W2 and y3,2, y3,3 ∈ W3. Next, we check point y2,2. The nearest
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Figure 16: Demonstration of the proposed grid adaptation algorithm using Example 5.
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points to y2,2 in Gridint are y3,3 and x0,1. Since g(y2,2) can be interpolated from y3,3 and

x0,1, we do not include y2,2 in the grid. For the same reason, we do not include y2,3. Now

we move to the next level W3 and check points y3,0 and y3,1. Since both these points can

be interpolated from the existing points in Gridint we do not include these points in the

grid. Subsequently we check y3,2. Since g(y3,2) cannot be interpolated from the nearest

two points y2,0, y2,1 ∈ Gridint we include y3,2 along with points y3,1 and y3,3 (which in any

case is already present in Gridint) in Gridint. Moving on to the next point y3,3, we see again

that g(y3,3) cannot be interpolated from the nearest two points y2,1, y2,2 ∈ Gridint. Hence,

we include y3,3 along with y3,2 (which in any case is already present in Gridint) and y3,4 in

Gridint. The next point in W3 is y3,4. Since g(y3,4) can be interpolated from the two nearest

points y3,3, y2,2 ∈ Gridint, we move on to the next point y3,5. The nearest two points to y3,5

in Gridint are y2,2, x0,1, and since g(y3,5) can be interpolated from these two points, we do

not include y3,5 in Gridint. For the same reason we do not add points y3,6 and y3,7. The

final adaptive grid Gridnew is shown by the solid circles in Figure 16.

The adaptive grid generated using the previous algorithm depends on how we select

points along the grid, that is, whether we move from left to right or from right to left across

each level. It also depends on the location of the singularity. If the singularity is located

in the middle, then it does not matter whether we move from left to right or from right

to left. The result will be the same nonuniform grid. If on the other hand, the singularity

is not in the middle, then the grid depends on the way in which we traverse across each

level. To illustrate this fact, we again consider Example 5, but this time with k = 1.

Hence, the impulse is located at x = x4,1. If we go from left to right then the adaptive grid

consists of the points x4,0, x4,1, x4,3, x4,5, x4,16. If we go from right to left then the grid

consists of the points x4,0, x4,1, x4,3, x4,16. Now let k = 15, which implies that the impulse

is located at x = x4,15. If we go from left to right then the grid consists of the points

x4,0, x4,13, x4,15, x4,16, and if we go from right to left then the grid consists of the points

x4,0, x4,11, x4,13, x4,15, x4,16. Note that, in the proposed algorithm, it is not mandatory to

traverse across a level only from the leftmost point or from the rightmost point. We can

instead start from any point at that level, each time resulting in a different grid. This
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suggests that by using a suitable probability distribution function to choose the order in

which the points at each particular level are selected, one may be able to further optimize

the grid.

5.2.2 Grid Adaptation Approach of Alves et al. [3]

In this section, we briefly summarize the main idea underlying the grid adaptation approach

of Alves et al. [3] which is based on the approach of Harten [68, 69]. For further details,

the reader is referred to [3, 68, 69, 70].

Consider a set of dyadic grids Vj and Wj as described in equations (134) and (135)

before. We explain pictorially, with the help of Example 5, how the approach of Alves et

al. [3] works (see Figure 17). The symbols used in Figure 17 are the same as those used

in Figure 16 except for a new symbol (a triangle facing down), which is used to show the

parents of points inWj, that is, the points in Vj that are used for interpolating the function

values at points in Wj . In the approach of Alves et al., we first interpolate the function

values at the points belonging to Wj from the corresponding points in Vj for j = 0, . . . , 3,

respectively, as shown in Figure 17. Then we find the points which have interpolative error

coefficients greater than the prescribed threshold ǫ. We see that points y2,1, y3,2, y3,3 have

interpolative error coefficients greater than the threshold (shown by solid squares) and add

these points in the grid. Next, we add the points y2,0, y2,2 neighboring to y2,1 in W2 (shown

by level A) and the points y3,2, y3,3 neighboring to y2,1 inW3 (shown by level B). Similarly,

we add points y3,1, y3,3 neighboring to y3,2 inW3 (shown by level C) and the points y3,2, y3,4

neighboring to y3,3 in W3 (shown by level D). Finally, we include the parents of all the

points added previously to the adaptive grid (shown by levels Ap, Bp, Cp and Dp) resulting

in the nonuniform grid Gridnew shown in Figure 17.

5.2.3 Comparison with Existing Multiresolution-Based Approaches

The proposed grid adaptation algorithm results, in general, in a fewer number of grid points

when compared to the grid adaptation algorithms of Harten [68, 69], Holmstrom [75], and

the Alves et al. [3]. First, we explain why this is so and then we give several examples to

demonstrate this fact.
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Figure 17: Demonstration of the grid adaptation approach of Alves et al. [3] using Exam-
ple 5.
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In the grid adaptation algorithm of existing approaches [68, 69, 75, 3], one interpo-

lates {g(yj,k)}2
j−1

k=0 only from the function values at the points belonging to Vj for j =

Jmin . . . Jmax − 1, and only then, one adds to the adaptive grid, the points yj,k along with

the points {yj,k+ℓ}N1

ℓ=−N1
and {yj+1,2k+ℓ}N2

ℓ=−N2+1 for all the pairs (j, k), such that dj,k > ǫ.

In the proposed method, we continuously keep on updating the adaptive grid instead. If

the interpolative error coefficient at yj,k, where 0 ≤ k ≤ 2j − 1 and Jmin ≤ j ≤ Jmax − 1,

is greater than the prescribed threshold, we add yj,k to the adaptive grid, at the same time

we also add to the adaptive grid the neighboring points at the same level {yj,k+ℓ}N1

ℓ=−N1
,

as well as the neighboring points at the next level {yj+1,2k+ℓ}N2

ℓ=−N2+1. We use the newly

added points also for interpolating the remaining points at level Wj and the levels below

it. In other words, in the proposed approach {g(yj,k)}2
j−1

k=0 are interpolated from the func-

tion values at the points in Vj ⊕Wj ⊕Wj+1 for Jmin ≤ j ≤ Jmax − 2 and in Vj ⊕Wj for

j = Jmax − 1. Hence, by making use of the extra information from levels Wj (and Wj+1),

which in any case will be added to the adaptive grid, we are able to reduce the number of

grid points in the final grid.

In Harten’s approach, the solution at each time step is represented on the finest grid, and

one encodes and decodes the solution at each time step in order to calculate the interpolative

errors. In other words, the interpolative errors are computed at all points of the fine grid at

each mesh refinement step. Holmstrom [75], on the other hand, calculates the interpolative

error coefficients only at the points that are in the adaptive grid; if a function value is

needed that does not exist in the present grid, the author interpolates the function value

from a coarser scale recursively. In the algorithm of Alves et al. [3] one also adds to the grid

the points that were used to predict the function values at all the previously added points

in order to compute the interpolative error during the next mesh adaptation. Therefore, in

the approach of Alves et al., when a point yj,k (0 ≤ k ≤ 2j − 1 and Jmin ≤ j ≤ Jmax − 1),

is added to the grid, one also include its parents, which were used to predict the function

value at that point. The parents are not needed for approximating the given function to the

prescribed accuracy, but are included just for calculating the interpolative error coefficient

at the point yj,k during the next mesh adaptation. In the proposed algorithm, on the other
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hand, whenever a point is being checked for inclusion in the adaptive grid, we predict the

function value at that point only from the points which already exist in the adaptive grid.

Hence, if that point is inserted in the grid we do not need to add any extra points (i.e.,

its parents). This also alleviates the task of keeping track of the parents from the rest of

the points as in the approach of Alves et al. and the task of recursively calculating the

function values from the coarser resolution levels as is done in the approach of Holmstrom.

Next we give several examples to compare the proposed grid adaptation approach with the

algorithm of Alves et al. [3] for solving evolution PDEs.

Example 6

First we consider a very simple example. For this example we consider a dyadic grid V4 and

the function

g(x) =















1, x = x4,k,

0, otherwise,

(140)

with an impulse located at x = k/24, where 0 ≤ k ≤ 16. Let Jmin = 0, Jmax = 4, p = 1,

ǫ = 0.1, and N1 = N2 = 1. Table 3 shows the number of grid points used by the proposed

grid adaptation algorithm Np and the number of points NA used by the grid adaptation

scheme of Alves et al. [3] for k = 0, . . . , 16. We found that when the impulse is located at

either the left boundary (k = 0) or the right boundary (k = 16) or in the middle of the

domain (k = 8) both the approach of Alves et al. and the proposed approach result in the

same grid. For all other cases, the grids generated are different. Moreover, we see that the

proposed algorithm results in a fewer number of grid points. For this example, the proposed

algorithm outperforms the algorithm of Alves et al. [3] by up to 33%.

Example 7

Next we again consider the functions g1 and g2 given by (130) and (131), respectively, and

a grid with Jmin = 2 and Jmax = 10. This time we set N1 = N2 = 1 in the proposed

grid adaptation algorithm. Table 4 gives the number of points used by the proposed grid

adaptation algorithm Np and the number of points NA used by the grid adaptation scheme

of Alves et al. [3]. For this example, we observe that the proposed grid adaptation algorithm
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Table 3: Example 6. Comparison of the proposed algorithm with the algorithm of Alves
et al.

k Np NA Np/NA k Np NA Np/NA

0 9 9 1 9 6 9 0.67

1 5 6 0.83 10 9 12 0.75

2 7 9 0.78 11 6 9 0.67

3 6 8 0.75 12 11 12 0.92

4 11 12 0.92 13 5 7 0.71

5 6 9 0.67 14 7 9 0.78

6 9 12 0.75 15 4 6 0.67

7 6 9 0.67 16 9 9 1

8 13 13 1

Table 4: Example 7. Comparison of the proposed algorithm with the algorithm of Alves
et al.

ǫ Np NA Np/NA

g1 10−3 53 93 0.57

g2 10−3 108 185 0.58

outperforms the algorithm of Alves et al. [3] by up to 43%.

We are now ready to present the algorithm for solving the (IBVP) on an adaptive,

nonuniform grid.

5.3 Numerical Solution of the IBVP for Evolution Equations

The numerical scheme for discretizing (IBVP) depends on f(uxx, ux, u, x). The proposed

grid adaptation algorithm will work for many numerically stable discretization schemes for

(IBVP). We use different schemes for the numerical examples discussed in this chapter,

depending on the problem. Hence, in the next section we only describe the techniques we

use for calculating the spatial derivatives ux and uxx on the nonuniform grid and we state

the numerical schemes in the examples themselves.

5.3.1 Calculation of Spatial Derivatives

To calculate the derivative ux on the adaptive nonuniform grid Gridnew we use the weighted

ENO (WENO) scheme [89, 90, 99, 110] on nonuniform grids. To this end, let the nonuniform

grid be given as in (136). Now define

D+un
ji,ki

=
un

ji+1,ki+1
− un

ji,ki

xji+1,ki+1
− xji,ki

, D−un
ji,ki

=
un

ji,ki
− un

ji−1,ki−1

xji,ki
− xji−1,ki−1

. (141)
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A third-order essentially nonoscillatory (ENO) approximation [71, 127, 128] to (u±x )nji,ki
=

u±x (xji,ki
, tn) is given by one of the following expressions

((u±x )nji,ki
)
1

=
v1
3
− 7v2

6
+

11v3
6

, (142a)

or

((u±x )nji,ki
)
2

= −v2
6

+
5v3
6

+
v4
3
, (142b)

or

((u±x )nji,ki
)
3

=
v3
3

+
5v4
6
− v5

6
, (142c)

where for calculating (u−x )nji,ki
, we use v1 = D−un

ji−2,ki−2
, v2 = D−un

ji−1,ki−1
, v3 = D−un

ji,ki
, v4 =

D−un
ji+1,ki+1

, v5 = D−un
ji+2,ki+2

, and for calculating (u+
x )nji,ki

, we use v1 = D+un
ji+2,ki+2

, v2 =

D+un
ji+1,ki+1

, v3 = D+un
ji,ki

, v4 = D+un
ji−1,ki−1

, v5 = D+un
ji−2,ki−2

. The basic idea behind

a third-order ENO scheme is to choose either ((u±x )nji,ki
)
1

or ((u±x )nji,ki
)
2

or ((u±x )nji,ki
)
3

for

approximating (u±x )nji,ki
by choosing the smoothest possible polynomial interpolation of u.

It is reminded that a WENO approximation of (u±x )nji,ki
is a convex combination of the

approximations in equations (142a), (142b) and (142c), that is,

(u±x )nji,ki
=

3
∑

ℓ=1

ωℓ((u
±
x )nji,ki

)
ℓ
, (143)

where 0 ≤ ωℓ ≤ 1 for ℓ = 1, 2, 3 and ω1 + ω2 + ω3 = 1. The weights for fifth-order accuracy

are given by [89, 110]

ωℓ =
αℓ

α1 + α2 + α3
, ℓ = 1, 2, 3, (144)

where,

αℓ =
ᾱℓ

(Sℓ + δ)2
, ℓ = 1, 2, 3, (145)

S1 =
13

12
(v1 − 2v2 + v3)

2 +
1

4
(v1 − 4v2 + 3v3)

2, (146)

S2 =
13

12
(v2 − 2v3 + v4)

2 +
1

4
(v2 − v4)2, (147)

S3 =
13

12
(v3 − 2v4 + v5)

2 +
1

4
(3v3 − 4v4 + v5)

2, (148)

and

ᾱ1 = 0.1, ᾱ2 = 0.6, ᾱ3 = 0.3. (149)
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In (145) δ is used to prevent the denominator from becoming zero. In our computations,

we have used δ = 10−6.

For the sake of brevity, we denote the cell walls by

xji−1/2,ki−1/2
=
xji−1,ki−1

+ xji,ki

2
, xji+1/2,ki+1/2

=
xji,ki

+ xji+1,ki+1

2
. (150)

In order to calculate (uxx)nji,ki
= uxx(xji,ki

, tn) on a nonuniform grid (136), we use the

centered second difference scheme [137]

(uxx)nji,ki
=

(

un
ji+1,ki+1

−un
ji,ki

xji+1,ki+1
−xji,ki

−
un

ji,ki
−un

ji−1,ki−1

xji,ki
−xji−1,ki−1

)

xji+1/2,ki+1/2
− xji−1/2,ki−1/2

. (151)

5.3.2 Temporal Integration

Although the proposed grid adaptation algorithm of Section 5.2.1 will work for any numeri-

cally stable scheme, in this work we use the total variation diminishing (TVD) Runge-Kutta

(RK) methods proposed by Shu and Osher in [110, 127] to increase the accuracy of the

temporal discretization. While there are numerous RK schemes, these TVD RK schemes

guarantee that no spurious oscillations are produced.

The basic first-order accurate TVD RK scheme is just the forward Euler method and

is assumed to be TVD. Higher order accurate methods are obtained by sequentially taking

Euler steps and combining the result with the initial data using a convex combination.

The second-order accurate TVD RK scheme is also known as the midpoint rule. First,

an Euler step is taken to advance the solution to time tn + ∆tn+1,

un+1
ji,ki
− un

ji,ki

∆tn+1
+ f

(

(uxx)nji,ki
, (u+

x )nji,ki
, (u−x )nji,ki

, xji,ki

)

= 0, (152)

followed by a second Euler step to advance the solution to time tn + 2∆tn+1,

un+2
ji,ki
− un+1

ji,ki

∆tn+1
+ f

(

(uxx)n+1
ji,ki

, (u+
x )n+1

ji,ki
, (u−x )n+1

ji,ki
, xji,ki

)

= 0, (153)

followed by an averaging step,

un+1
ji,ki

=
1

2
un

ji,ki
+

1

2
un+2

ji,ki
, (154)
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that takes a convex combination of the initial data and the result of two Euler steps. The

final averaging step produces the second-order accurate approximation to un+1
ji,ki

.

The third-order accurate TVD RK scheme is as follows. First, an Euler step (152) is

taken to advance the solution to time tn + ∆tn+1, followed by a second Euler step (153) to

advance the solution to time tn + 2∆tn+1, followed by an averaging step

u
n+1/2
ji,ki

=
3

4
un

ji,ki
+

1

4
un+2

ji,ki
, (155)

that produces an approximation to u at time tn + 1
2∆tn+1 and at location xji,ki

. Then

another Euler step is taken to advance the solution to time tn + 3
2∆tn+1,

u
n+3/2
ji,ki

− un+1/2
ji,ki

∆tn+1
+ f

(

(uxx)
n+1/2
ji,ki

, (u+
x )

n+1/2
ji,ki

, (u−x )
n+1/2
ji,ki

, xji,ki

)

= 0, (156)

followed by a second averaging step,

un+1
ji,ki

=
1

3
un

ji,ki
+

2

3
u

n+3/2
ji,ki

, (157)

that produces a third-order accurate approximation to un+1
ji,ki

.

Now we are ready to give the algorithm for solving the IBVP for evolution equa-

tions (133).

5.3.3 Solution of the IBVP for Evolution PDEs

Based on the problem, the desired accuracy, and the computational hardware, we choose

the minimum resolution level Jmin, the maximum resolution level Jmax, the threshold ǫ, the

order of the interpolating polynomial p and the parameters N1, N2 required for the grid

adaptation algorithm given in Section 5.2.1. The final time tf is assumed to be given.

To solve (IBVP) on an adaptive grid, we first initialize Gridold = VJmax,

Uold = {g(xJmax,k)}2
Jmax

k=0 ,

and set t = 0, n = 03. Then the algorithm proceeds as follows:

3In case of hardware limitations, we suggest using Gridold = VJint
, Uold = {g(xJint,k)}2Jint

k=0 , where Jmin <
Jint < Jmax is chosen based on the hardware limitations. Then, either if there are no discontinuities in
the initial condition g or even if there are discontinuities in g that are self-sharpening, the algorithm will
autonomously add points at higher resolution levels as we continue to move forward in time.
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Step 1. Given Gridold, Uold find the new grid Gridnew and the function values at all the points

in Gridnew, Unew = {un
j,k : xj,k ∈ Gridnew}, using the grid adaptation algorithm given

in Section 5.2.1. The new grid Gridnew is the grid on which we will propagate the

solution from time t to time tadapt = t+ ∆tadapt, where

∆tadapt =
N1∆xmin

wave speed
, (158)

is the time after which the grid should be adapted again, calculated from the

approximate time the solution will take to move N1 grid points, and ∆xmin =

minGridnew
(xji+1,ki+1

−xji,ki
). The reader is referred to [137, 110] for details on com-

puting the wave speed. One can always use ∆tadapt = ∆t for the cases where the

wave speed is either difficult or impossible to compute.

Step 2. Compute the solution at time t = tn+1 at all the points belonging to Gridnew,

Unew = {un+1
j,k : xj,k ∈ Gridnew}, using any numerically stable scheme, and increment

n by 1. Keep on repeating this step while t < tadapt. If t ≥ tf terminate the

algorithm.

Step 3. Reassign the sets: Gridold ← Gridnew, Uold ← Unew. It should be noted that we do

not interpolate the function values at the finest level during the mesh refinement

process. In the proposed mesh refinement algorithm, we only check the retained

points in Gridold to further add and remove points in the grid. The interpolative

error coefficients are computed only at the points yj,k ∈ Gridold, and the solution

Uold for all yj,k ∈ Gridold is known from the previous step.

Step 4. Goto Step 1.

Remark 5. As pointed out earlier, ∆tn is computed based on the Courant-Friedrichs-Levy

(CFL) condition [137] for hyperbolic equations and the von Neumann condition [137] for all

other evolution equations. For both CFL condition and the von Neumann condition ∆tn

depends on ∆xmin. Hence, in the proposed algorithm ∆tn changes adaptively depending

on ∆xmin, which also changes adaptively.
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5.4 Numerical Examples

In this section, we present several examples to demonstrate the stability and robustness

of our algorithm. These examples also illustrate the algorithm’s ability to automatically

capture and follow any existing or self-sharpening features of the solution that develop in

time.

Example 8

First, we consider a nonlinear conservation law

ut + (F (u))x = 0. (159)

For a specific example, we consider the inviscid Burgers’ equation

ut +

(

1

2
u2

)

x

= 0. (160)

We use the same smooth initial condition and the Dirichlet boundary condition as in [3],

that is,

g(x) = sin(2πx) +
1

2
sin(πx), u(0, t) = u(1, t) = 0, (161)

to check the ability of the proposed algorithm to capture the shock. The solution is a wave

that develops a very steep gradient and subsequently moves towards x = 1. Because of the

zero boundary values, the wave amplitude diminishes with increasing time.

For solving (160)-(161), we use (71) along with the ENO-Roe scheme proposed by

Shu and Osher [128] on a non-uniform grid for calculating the numerical flux functions

Fn
ji±1/2,ki±1/2

. For temporal integration, we use a third-order total variation diminish-

ing (TVD) Runge–Kutta (RK) scheme [127]. The numerical solution at times t = 0 s,

t = 0.158 s, t = 0.5 s and t = 1 s using a grid with Jmin = 4 and Jmax = 12 are shown

in Figure 18(a). The other parameters used in the grid adaptation procedure are p = 3,

ǫ = 0.01, N1 = N2 = 1. Figure 18 also shows the grid point distribution in the adaptive

mesh at times t = 0 s, t = 0.1 s, t = 0.158 s and t = 1 s. We see that as the shock continues

to develop, the algorithm adds points at the finer levels of resolution in the region where

the shock is developing, and removes points from the regions where the solution is getting
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smoother. Similar conclusions can be drawn by looking at the time evolution of the num-

ber of grid points (Figure 18(f)). We observe that the number of grid points increases as

the shock continues to develop, and once the solution is smooth everywhere except for the

region of the shock the number of grid points is pretty much steady, the number of grid

points oscillates about a mean value of 43. This shows that the proposed strategy uses only

the grid points that are actually necessary to attain a given precision, and the algorithm is

able to add and remove points when and where is needed.

A comparison of CPU times for the uniform and adaptive grids, along with the L1

error (E1(u)) between the solution of the proposed multiresolution algorithm and the fine

grid solution evaluated at grid VJmax and the number of grid points used by the proposed

algorithm at the final time step for different Jmax = 8, 9, 10, 11, 12 are summarized in Table 5.

We observe a major speed up in the computational time compared to the uniform mesh,

and the speed-up factors increase at an approximate rate of two. The proposed approach

results in speed-up factors that are higher than those reported in [3]. For scale Jmax = 12

the speed-up factor using the proposed approach is 63.7, which is about 27% higher than

the one reported in [3]. It is reminded that we chose N1 = 1 and Alves et al. chose N1 = 2

which implies that in our case mesh refinement was performed twice as many times as was

performed in [3] for the same problem and even then the speed-up factor is 27% higher than

the one reported in [3]. The L1 errors (E1(u)) along with the number of grid points used

by the proposed algorithm at times t = 0.158 s, t = 0.5 s and t = 1 s for Jmax = 12 have

been summarized in Table 6.

Table 5: Example 8. L1 error and computational times for uniform vs. adaptive mesh.
Uniform Mesh Adaptive Mesh

Jmax Np in VJmax tcpu (s) Np at tf in Gridnew E1(u) tcpu (s) Speed Up

8 28 + 1 = 257 2.7106 31 7.1991 × 10−3 0.5835 4.6454

9 29 + 1 = 513 9.3851 34 7.1717 × 10−3 1.2737 7.3684

10 210 + 1 = 1025 36.6631 37 7.7397 × 10−3 2.6622 13.7717

11 211 + 1 = 2049 223.8606 40 7.7220 × 10−3 6.0399 37.0636

12 212 + 1 = 4097 804.9415 43 7.8012 × 10−3 12.6301 63.7320

In the next two examples, we consider Hamilton-Jacobi equations, that is, evolution
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(c) Grid point distribution at t = 0.1 s.

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(d) Grid point distribution at t = 0.158 s.
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(e) Grid point distribution at t = 1 s.
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(f) Time evolution of the number of grid points.

Figure 18: Example 8. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
1, ǫ = 0.01, N1 = N2 = 1.
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Table 6: Example 8. L1 errors at different times for Jmax = 12.
t Np in Gridnew C (%) E1(u)

0.158 49 98.80 8.2093 × 10−3

0.5 42 98.97 9.3552 × 10−3

1 43 98.95 7.8012 × 10−3

equations as in (133), where

f(uxx, ux, u, x) = f(ux). (162)

For discretizing f(ux) we use the Lax-Friedrich’s (LF) scheme [43, 110, 111, 128]

f(ux) = f̂LF(u−x , u
+
x ) = f

(

u+
x + u−x

2

)

− 1

2
αx(u+

x − u−x ), (163)

where, αx = maxux∈Ix |f1(ux)|, f1 is the partial derivative of f with respect to ux, Ix =

[umin
x , umax

x ], and the minimum and the maximum values of ux are identified by considering

all the values of u−x and u+
x on the nonuniform grid.

Example 9

First, we consider the HJ equation with convex f(ux) taken from [111]

ut +
(ux + 1)2

2
= 0, (164)

with the initial condition and the periodic boundary condition as in [111], that is,

g(x) = − cos πx, u(−1, t) = u(1, t), − 1 ≤ x < 1. (165)

For solving the problem using the proposed algorithm, we first convert the above men-

tioned problem from x ∈ [−1, 1] to x̂ ∈ [0, 1] by using a simple change of variables x = 2x̂−1.

With a slight abuse of notation, we denote x̂ by x, and hence, the problem (164)-(165) trans-

forms to

ut +
(1
2ux + 1)2

2
= 0, (166)

with the initial condition and the periodic boundary condition,

g(x) = − cosπ(2x− 1), u(0, t) = u(1, t). (167)

The derivatives u+
x , u

−
x in the LF discretization are approximated using a WENO scheme

and the temporal integration is performed using a third-order TVD RK scheme. The
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numerical solution at times t = 0 s, t = 1.5/π2 s, t = 3.5/π2 s, t = 7/π2 s, t = 10/π2 s, and

t = 14/π2 s using a grid with Jmin = 4 and Jmax = 12 are shown in Figure 19(a). The

other parameters used in the grid adaptation algorithm are p = 3, ǫ = 0.001, N1 = N2 = 2.

Figure 19 also shows the grid point distribution in the adaptive mesh at times t = 0 s,

t = 3.5/π2 s, t = 7/π2 s, and t = 14/π2 s. We see that as the kink continues to develop

the algorithm adds points at the finer levels of resolution in the region where the kink is

developing, and removes points from the regions where the solution is getting smoother and

smoother. As the HJ equation (166) continues to evolve further in time, the discontinuity

in the first derivative of the solution is smoothing out and as a result the algorithm starts

removing points from the finer levels of resolution. This, again, demonstrates that the

proposed strategy uses only the grid points that are actually necessary to attain a given

precision, and the algorithm is able to add and remove points when and where is needed.

The L1 errors (E1(u)) along with the number of grid points used by the proposed algorithm

at times t = 1.5/π2 s, t = 3.5/π2 s, t = 7/π2 s, t = 10/π2 s, and t = 14/π2 s for Jmax = 12

have been summarized in Table 7.

Table 7: Example 9. L1 errors at different times for Jmax = 12.
t Np in Gridnew C (%) E1(u)

1.5/π2 52 98.73 1.7603 × 10−3

3.5/π2 50 98.78 4.2828 × 10−3

7/π2 39 99.05 5.4194 × 10−3

10/π2 44 98.93 6.0113 × 10−3

14/π2 31 99.24 6.5118 × 10−3

Example 10

Next, we consider the Hamilton-Jacobi (HJ) equation with non-convex f(ux),

ut − cos(αux + 1) = 0, (168)

with

g(x) = − cosπ(2x− 1), u(0, t) = u(1, t), (169)

where α is a constant. We again use an LF scheme (163) for solving the IBVP (168)-(169).

The derivatives u+
x , u

−
x in the LF discretization are approximated using a WENO scheme

and the temporal integration is performed using a third-order TVD RK scheme.
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(f) Time evolution of the grid points.

Figure 19: Example 9. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
3, ǫ = 0.001, N1 = N2 = 2.
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The choice of α = 0.5 results in the commonly used test problem for 1-D HJ equations

given in [111]. In order to make the problem more interesting and challenging, in this work,

we consider two more choices for α, namely, α = 1 and α = 1.5. The choices α = 1 and

α = 1.5 result in more kinks in the solution at time t = 1.5/π2 s. The numerical solutions

for all the cases at time t = 1.5/π2 s using a grid with Jmin = 4 and Jmax = 12 along with

the corresponding grid point distributions are shown in Figure 20. The other parameters

used in the grid adaptation algorithm are p = 3, ǫ = 0.001, N1 = N2 = 2. The solutions

at t = 1.5/π2 s for α = 0.5, 0.1, and 1.5 have two, four, and six kinks respectively. We once

again observe that the proposed algorithm is able to capture all the kinks in the solutions

accurately and efficiently by adding points at the finer resolution levels in the region of

kinks, while resolving the smoother regions using only the points at the coarse resolution

levels. The L1 errors (E1(u)) along with the number of grid points used by the proposed

algorithm at time t = 1.5/π2 s, for α = 0.5, 1, 1.5 and Jmax = 12 have been summarized in

Table 8.

Table 8: Example 10. L1 errors at different times for Jmax = 12.
α Np in Gridnew C (%) E1(u)

0.5 44 98.93 1.1259 × 10−3

1 120 97.07 8.8733 × 10−4

1.5 125 96.95 5.6106 × 10−4

Example 11

Consider the scalar reaction-diffusion problem that appears in combustion problems [77, 113]

ut − uxx −
Reδ

aδ
(1 + a− u)e−δ/u = 0, (170)

ux(0, t) = 0, u(1, t) = 1, u(x, 0) = 1. (171)

The solution u represents the temperature of a reactant in a chemical system, a is the

heat release, δ is the activation energy, and R is the reaction rate. For small times the

temperature gradually increases from unity with a “hot spot” forming at x = 0. After

some finite time, ignition occurs and the temperature at x = 0 jumps rapidly from near

unity to near 1 + a. A flame front then forms and propagates towards x = 1 with a speed

proportional to eaδ/2(1 + a). In real problems, a is close to unity and δ is large, thus the
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flame front moves exponentially fast after the ignition. We use the same problem parameters

as in [77, 113] namely, a = 1, R = 5, and δ = 30. This is the same problem as the one given

in [1], except for the value of the parameter δ, which in [1] is taken to be 20. Instead, we

consider δ = 30 as in [77, 113], since the flame layer in this case is much thinner, and higher

mesh adaptation is required. We use (151) to discretize uxx, and use a third-order TVD RK

scheme for temporal integration. To illustrate how we apply Neumann boundary condition

on a nonuniform grid we again consider a grid of the form (136). To apply the Neumann

boundary condition, ux(0, t) = 0, we introduce a fictitious node xj−1,k−1
= −xj1,k1

, which

lies outside the physical domain4, and approximate the boundary condition by

(ux)nj0,k0
=
un

j1,k1
− un

j−1,k−1

xj1,k1
− xj−1,k−1

= 0, (172)

which implies un
j−1,k−1

= un
j1,k1

. Hence, at the boundary x = 0, equation (151) reduces to

(uxx)nj0,k0
=

2

(

un
j1,k1

−un
j0,k0

xj1,k1
−0 −

un
j0,k0

−un
j−1,k−1

0−xj−1,k−1

)

xj1,k1
− xj−1,k−1

=
2(un

j1,k1
− un

j0,k0
)

(xj1,k1
)2

. (173)

The numerical solutions at times t = 0 s, t = 0.24 s, t = 0.241 s and t = 0.244 s using a

grid with Jmin = 4 and Jmax = 12 are shown in Figure 21(a). The other parameters used

in the grid adaptation algorithm are p = 3, ǫ = 10−5/2Jmax−j, N1 = N2 = 1. One of the

main challenges of this problem is the fact that one needs to use a very small time step

to capture the transition layer during the time of ignition. This is achieved automatically

by the proposed algorithm since the algorithm is adaptive both in time and space. As

the mesh gets refined, ∆tn in the proposed algorithm for the solution of evolution PDEs

given in Section 5.3.3 also decreases. We see from Figure 21(f) that for time t < 0.195 s

the proposed algorithm found the solution using only about 50 to 65 points. Starting from

t = 0.195 s to t = 0.2385 s, the algorithm slowly increased the number of points to around

95 points and, thereafter, efficiently added points at finer levels starting at t = 0.2385 s.

As the points from finer grid levels are being added, the algorithm automatically decreases

the time step and is able to capture the transition layer during the time of ignition. The

4Note that xj0,k0
= 0.
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L1 errors (E1(u)) along with the number of grid points used by the proposed algorithm at

times t = 0.24 s, t = 0.241 s and t = 0.244 s for Jmax = 12 have been summarized in Table 9.

Table 9: Example 11. L1 errors at different times for Jmax = 12.
t Np in Gridnew C (%) E1(u)

0.24 137 96.66 4.6714 × 10−4

0.241 227 94.46 3.4834 × 10−3

0.244 180 95.61 3.2098 × 10−3

Example 12

Finally, we consider a Riemann initial value problem (shock tube) for the Euler equations

of gas dynamics, as follows

ut + f(u)x = 0, (174)

u(x, 0) =















uL, x < 0.5,

uR, x > 0.5,

(175)

where

u = [ρ m E]T, (176)

f(u) = νu+ [0 p pν]T, (177)

ρ, m, E are the gas density, momentum, total energy per unit volume, respectively, ν = m/ρ

is the velocity, and

p = (γ − 1)

(

E − ρν2

2

)

, (178)

is the pressure. In (178) γ is the ratio of specific heat, which takes the usual value of 1.4

(for air). We consider the two well-known problems, namely, Sod’s problem [129], the initial

data for which is given by

uL = [1 0 2.5]T, uR = [0.125 0 0.25]T, (179)

and Lax’s problem [96], the initial data for which is given by

uL = [0.445 0.698 8.82]T, uR = [0.5 0 1.4275]T. (180)

We use the characteristic numerical scheme given in [128, 110] for solving this problem. The

basic idea behind the characteristic scheme is to transform the nonlinear system (174) to a
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system of (nearly) independent scalar conservation laws, and discretize each scalar conser-

vation law independently in an upwind biased fashion. Then we transform the discretized

system back to the original variables. We use the ENO-Roe fix (ENO-RF) scheme [128]

on a non-uniform grid for obtaining the numerical flux function Fn
ji±1/2,ki±1/2

in the scalar

field, and we use a third-order TVD RK scheme for temporal integration.

The numerical solution of the density ρ(x, t), the velocity ν(x, t), the pressure p(x, t), the

internal energy per unit mass e(x, t) (e = p/(γ−1)ρ), and the grid point distributions in the

adaptive mesh for Sod’s problem and Lax’s problem at times t = 0.2 s, t = 0.13 s respectively,

using a grid with Jmin = 4 and Jmax = 12 are shown in Figure 22 and Figure 23 respectively.

The other parameters used in the grid adaptation procedure are p = 3, ǫ = 0.001 and

N1 = N2 = 2. Figures 22, 23 also show the time evolution of the number of grid points

for both Sod’s and Lax’s problems. The L1 errors (E1(ρ), E1(m), E1(E)) along with the

number of grid points used by the proposed algorithm for solving Sod’s problem at times

t = 0.05 s, t = 0.1 s, t = 0.15 s, and t = 0.2 s and Lax’s problem at times t = 0.05 s, t = 0.1 s,

and t = 0.13 s for Jmax = 12 are summarized in Table 10 and Table 11, respectively.

Table 10: Example 12. Sod’s problem. L1 errors at different times for Jmax = 12.
t Np in Gridnew C (%) E1(ρ) E1(m) E1(E)

0.05 212 94.83 1.0300 × 10−4 1.1859 × 10−4 2.9885 × 10−4

0.1 189 95.39 2.8712 × 10−4 3.2164 × 10−4 8.3684 × 10−4

0.15 173 95.78 4.9362 × 10−4 5.4437 × 10−4 1.4215 × 10−3

0.2 195 95.24 7.8443 × 10−4 8.1571 × 10−4 2.1954 × 10−3

Table 11: Example 12. Lax’s problem. L1 errors at different times for Jmax = 12.
t Np in Gridnew C (%) E1(ρ) E1(m) E1(E)

0.05 272 93.36 5.6092 × 10−5 1.2380 × 10−4 7.7312 × 10−4

0.1 270 93.41 1.8641 × 10−4 4.1361 × 10−4 3.3487 × 10−3

0.13 267 93.48 2.7005 × 10−4 5.9612 × 10−4 4.9735 × 10−3

5.5 Summary

In this chapter, we have proposed a novel multiresolution grid adaptation algorithm for

solving evolution equations. The proposed algorithm for solving evolution PDEs is adaptive

both in space and time. The algorithm is shown to outperform similar grid adaptation

schemes in the literature. Several examples have demonstrated the stability and robustness
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of the proposed algorithm. In all examples considered, the algorithm adapted dynamically

to any existing or emerging irregularities in the solution, by automatically allocating more

grid points to the region where the solution exhibited sharp features and fewer points to the

region where the solution was smooth. As a result, the computational time and memory

usage can be reduced significantly, while maintaining an accuracy equivalent to the one

obtained using a fine uniform mesh.

Next, we move on to our main motivation behind this work, that is, develop fast and

efficient algorithms for solving optimal control problems.
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(b) Grid point distribution at t = 1.5/π2 s for α =
0.5.
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(d) Grid point distribution at t = 1.5/π2 s for α = 1.

0 0.2 0.4 0.6 0.8 1
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

x

u(
x)

Adaptive

t=1.5/π2

t=0 V12

(e) Solution u(x, 1.5/π2) for α = 1.5.
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(f) Grid point distribution at t = 1.5/π2 s for α =
1.5.

Figure 20: Example 10. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
3, ǫ = 0.001, N1 = N2 = 2.
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(c) Grid point distribution at t = 0.24 s.
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(d) Grid point distribution at t = 0.241 s.
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(e) Grid point distribution at t = 0.244 s.
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(f) Time evolution of the number of grid points.

Figure 21: Example 11. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
3, ǫ = 10−5/2Jmax−j , N1 = N2 = 1.
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(d) Solution e(x, 0.2).
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(e) Grid point distribution.
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(f) Time evolution of grid points.

Figure 22: Example 12. Sod’s problem. Parameters used in the simulation are Jmin =
4, Jmax = 12, p = 3, ǫ = 0.001, N1 = N2 = 2.
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(a) Solution ρ(x, 0.13).
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Figure 23: Example 12. Lax’s problem. Parameters used in the simulation are Jmin =
4, Jmax = 12, p = 3, ǫ = 0.001, N1 = N2 = 2.
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CHAPTER VI

OPTIMAL CONTROL

6.1 Problem Formulation

Consider the following optimal control problem with Bolza cost functional, which we call

the primal problem and denote it by P .

6.1.1 Primal Problem P

The problem is to determine the state x(·) and the control u(·) that minimize the Bolza

cost functional,

J = e(x(τf ), τf ) +

∫ τf

τ0

L(x(τ),u(τ), τ)dτ, (181)

where e : R
Nx × R+ → R, τ ∈ [τ0, τf ], x : [τ0, τf ] → R

Nx , u : [τ0, τf ] → R
Nu , L :

R
Nx × R

Nu × [τ0, τf ]→ R, subject to the state dynamics

ẋ(τ) = f(x(τ),u(τ), τ), (182)

the boundary conditions

x(τ0) = x0, ef (x(τf ), τf ) = 0, (183)

where ef : R
Nx × R+ → R

Ne , and the constraints

Cu(u(τ)) ≤ 0, Cx(x(τ)) ≤ 0, Cxu(x(τ),u(τ)) ≤ 0, (184)

where Cu : R
Nu → R

NCu , Cx : R
Nx → R

NCx , Cxu : R
Nx × R

Nu → R
NCxu . The initial time

τ0 is assumed to be given and the final time τf can be fixed or free.

Next, we define the dual problem.

6.1.2 Problem P λ

For the sake of simplicity, in this section, we denote the inequality constraints by

C =













Cu

Cx

Cxu













≤ 0, (185)
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where C : R
Nu × R

Nx → R
NC , NC = NCu +NCx +NCxu . Now by adjoining the dynamic

constraints (182), the constraints (185), and the boundary condition (183) to J , we obtain

the augmented performance index,

J ′ = e(x(τf ), τf ) + νTef (x(τf ), τf ) +

∫ τf

τ0

(L+ λT (f − ẋ) + µTC)dτ, (186)

where λ ∈ R
Nx , ν ∈ R

Ne , µ ∈ R
NC , and

µi =















0, Ci < 0,

> 0, Ci = 0,

(187)

for i = 1, . . . , NC .

The Hamiltonian is defined to be

H = L+ λT f + µTC. (188)

Let us define

E(x(τf ), τf ) = e(x(τf ), τf ) + νTef (x(τf ), τf ). (189)

Hence,

J ′ = E(x(τf ), τf ) +

∫ τf

τ0

(H − λT ẋ)dτ. (190)

Now consider the integral

∫ τf

τ0

λT (τ)ẋ(τ)dτ = λT (τ)x(τ)|τf
τ0 −

∫ τf

τ0

λ̇T (τ)x(τ)dτ (191)

= λT (τf )x(τf )− λT (τ0)x(τ0)−
∫ τf

τ0

λ̇T (τ)x(τ)dτ. (192)

Hence,

J ′ = E(x(τf ), τf )− λT (τf )x(τf ) + λT (τ0)x(τ0) +

∫ τf

τ0

(H + λ̇Tx)dτ. (193)

The first variation of J ′ is given by

δJ ′ =
∂E

∂x(τf )
dx(τf ) +

∂E

∂τf
δτf − λT (τf )δx(τf ) (194)

+

∫ τf

τ0

(Hxδx +Huδu + λ̇T δx)dτ +

∫ τf +δτf

τf

Ldτ, (195)
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where

∂E

∂x(τf )
=

[

∂E

∂x1(τf )
, . . . ,

∂E

∂xNx(τf )

]

, (196)

dx(τf ) = δx(τf ) + ẋ(τf )δτf = δx(τf ) + f |τ=τf
δτf , (197)

Hx =

[

∂H

∂x1
, . . . ,

∂H

∂xNx

]T

, (198)

Hu =

[

∂H

∂u1
, . . . ,

∂H

∂uNu

]T

. (199)

Since
∫ τf +δτf

τf

Ldτ = L|τ=τf
δτf , (200)

therefore,

δJ ′ =

[

∂E

∂x(τf )
− λT (τf )

]

δx(τf )+

[

∂E

∂τf
+

∂E

∂x(τf )
f |τ=τf

+ L|τ=τf

]

δτf

+

∫ τf

τ0

((Hx + λ̇T )δx +Huδu)dt. (201)

Recall that a necessary condition for a minimum is that the first variation of J ′ be zero,

that is,

δJ ′ = 0. (202)

Hence, the necessary conditions for optimality are as follows:

λ̇T = −Hx, (203)

Hu = 0 (204)

λT (tf ) =
∂E

∂x(tf )
, (205)

and

∂E

∂τf
+

∂E

∂x(τf )
f |τ=τf

+ L|τ=τf
= 0. (206)

Using (205), equation (206) can be written as

∂E

∂τf
+ λT (tf )f |τ=τf

+ L|τ=τf
= 0, (207)

Equations (203)-(205) are known as Euler-Lagrange equations and (207) is known as the

transversality condition.
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Hence, problem P reduces to the dual problem of determining x, u, λ, ν, and µ from

the Euler-Lagrange equations (203)-(205), the transversality condition (207), the state dy-

namics,

ẋ(τ) = f(x(τ),u(τ), τ), (208)

and the boundary conditions,

x(τ0) = x0, (209)

e(x(τf ), τf ) = 0. (210)

As noted earlier, it is very difficult to find an analytic solution to the above mentioned

optimal control problems P or P λ, therefore the problems must be solved numerically. For

this reason, the optimal control problems P or P λ must be discretized to an NLP problem

using certain kind of discretization, say for example, Runge-Kutta (RK) discretizations

(discussed later in Sections 6.3 and 6.4). A discretization method is said to be direct if

it refers to the discretization of problem P and indirect if it refers to the discretization of

problem P λ.

The indirect methods, as seen from above, require one to solve the necessary optimality

conditions stated in terms of the adjoint differential equations and the associated transver-

sality conditions, which for complicated nonlinear dynamics can be intimidating. On the

other hand, direct methods are simply based on discretizing the states and the controls

at a set of nodes, transforming the optimal control problem into an NLP problem. More-

over, direct methods tend to be more robust to the initial guesses, hence they converge

more easily. Therefore, in this work, we discretize problem P directly without finding any

analytic expressions for the necessary conditions using RK discretizations as described in

Section 6.3.

Before we transcribe the optimal control problem into an NLP problem, we give a very

brief introduction to nonlinear programming. For further reading, the reader is referred to

a very nice text on nonlinear programming by Bazaraa et al. [9].

87



6.2 Introduction to Nonlinear Programming

A NLP problem is to minimize f(x) subject to

g(x) ≤ 0, (211)

h(x) = 0, (212)

where x ∈ R
n, f : R

n → R, g : R
n → R

m, h : R
n → R

ℓ. The above problem should be

solved for the values of the variables x1, . . . , xn that satisfy the constratints (211), (212)

and meanwhile minimize the function f .

The function f is usually called the objective function, or the criterion function. The

constraints (211) are called inequality constraints and the constraints (212) are called the

equality constraints. A vector x satisfying all the constraints (211), (212) is called a feasible

solution to the problem. The collection of all such solutions forms the feasible region.

The nonlinear programming (NLP) problem, then, is to find a feasible point x̄ such that

f(x) ≥ f(x̄) for each feasible point x. Such a point x̄ is called an optimal solution to the

problem.

Next, we give the necessary conditions for x̄ to be an optimal solution to the above

mentioned NLP problem.

Theorem 3 (Karush-Kuhn-Tucker (KKT) Necessary Conditions [9]). For the above stated

problem let x̄ be a feasible solution, and let I = {i : gi(x̄) = 0}. Suppose that f and gi for

i ∈ I are differentiable at x̄, and suppose that each gi for i /∈ I is continuous at x̄, and that

each hi for i = 1, . . . , ℓ is continuously differentiable at x̄. Further, suppose that grad(gi)(x̄)

for i ∈ I and grad(hi)(x̄) for i = 1, . . . , ℓ are linearly independent. If x̄ solves the problem

locally, then unique scalars µ̃i for i ∈ I and λ̃i for i = 1, . . . , ℓ exist such that

grad(f)(x̄) +
∑

i∈I

µ̃igrad(gi)(x̄) +

ℓ
∑

i=1

λ̃igrad(hi)(x̄) = 0, (213)

µ̃i ≥ 0, i ∈ I, (214)

where grad(·) denotes the gradient of the function in the parantheses. In addition to the

above assumptions, if each gi for i /∈ I is also differentiable at x̄, then the KKT conditions
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can be written in the following equivalent form:

grad(f)(x̄) +
m
∑

i=1

µ̃igrad(gi)(x̄) +
ℓ
∑

i=1

λ̃igrad(hi)x̄) = 0, (215)

µ̃igi(x̄) = 0, i = 1, . . . ,m, (216)

µ̃i ≥ 0, i = 1, . . . ,m. (217)

In the next section, we transcribe the optimal control problem P into an NLP problem.

6.3 NLP Formulation: Discretizations on Dyadic Grids

All discretizations of the state dynamics, constraints and performance index in this chapter

will be performed on (nonuniform) grids induced by dyadic grids (103) and (104):

Vj = {tj,k ∈ [0, 1] : tj,k = k/2j , 0 ≤ k ≤ 2j}, Jmin ≤ j ≤ Jmax, (218)

Wj = {t̂j,k ∈ [0, 1] : t̂j,k = (2k + 1)/2j+1, 0 ≤ k ≤ 2j − 1}, Jmin ≤ j ≤ Jmax − 1. (219)

For simplicity, we denote x and u evaluated at tj,k by xj,k and uj,k respectively. Using

the transformation

τ = t∆τ + τ0, (220)

where ∆τ = τf−τ0 we can express the trajectory optimization problem stated in Section 6.1

on the unit interval t ∈ [0, 1] in terms of the new independent variable t. Hence, the original

trajectory optimization problem reduces to the minimization of the following cost functional

J = e(x(1), τf ) + ∆τ

∫ 1

0
L(x(t),u(t), t)dt, (221)

subject to the state dynamics

1

∆τ
ẋ(t) = f [x(t),u(t), t], (222)

where x : [0, 1]→ R
Nx , u : [0, 1]→ R

Nu , the boundary conditions

x(0) = x0, ef (x(1), τf ) = 0, (223)

and constraints

Cu(u(τ)) ≤ 0, Cx(x(τ)) ≤ 0, Cxu(x(τ),u(τ)) ≤ 0. (224)
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We convert the above mentioned optimal control problem into an NLP problem using a

Runge-Kutta (RK) discretization. To this end, let a nonuniform grid of the form

G = {tji,ki
: tji,ki

∈ [0, 1], 0 ≤ ki ≤ 2ji , Jmin ≤ ji ≤ Jmax, for i = 0, . . . , N,

and tji,ki
< tji+1,ki+1

, for i = 0, . . . , N − 1}. (225)

Then a q-stage RK method for discretizing Eq. (222) is given by [17, 18]

xji+1,ki+1
= xji,ki

+ hji,ki
∆τ

q
∑

ℓ=1

βℓf ℓ
ji,ki

, (226)

where f ℓ
ji,ki

= f(yℓ
ji,ki

,uℓ
ji,ki

, tℓji,ki
), yℓ

ji,ki
, uℓ

ji,ki
, tℓji,ki

are the intermediate state, control,

and time variables on the interval [tji,ki
, tji+1,ki+1

], given by

yℓ
ji,ki

= xji,ki
+ hji,ki

∆τ

q
∑

m=1

αℓ,mfm
ji,ki

, (227)

where hji,ki
= tji+1,ki+1

− tji,ki
, tℓji,ki

= tji,ki
+ hji,ki

ρℓ, uℓ
ji,ki

= u(tℓji,ki
), for 1 ≤ ℓ ≤ q,

and q is referred to as the stage. In these expressions ρℓ, βℓ, αℓ,m are known constants

with 0 ≤ ρ1 ≤ ρ2 ≤ · · · ≤ 1. The scheme is explicit if αℓ,m = 0 for m ≥ ℓ and implicit

otherwise. The coefficients ρℓ, βℓ, αℓ,m can be written in a convenient way using the Butcher

diagram [35] as shown in Figure 24. Some common examples of q-stage RK methods are

the trapezoidal method (q = 2), the Hermite-Simpson method (q = 3), and the classical

fourth-order RK method (q = 4) [17, 18, 35].

ρ1 α11 . . . α1q

...
...

. . .
...

ρq αq1 . . . αqq

β1 . . . βq

Figure 24: Butcher diagram.

Using Eq. (226), the defects of discretization are given by

ζi = xji+1,ki+1
− xji,ki

− hji,ki
∆τ

q
∑

ℓ=1

βℓf ℓ
ji,ki

, (228)

for i = 0, . . . , N − 1. For discretizing the cost functional (221), we introduce a new state z

such that

ż(t) = ∆τL(x(t),u(t), t)dt, z(0) = 0. (229)
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Using a q-stage RK method for discretizing Eq. (229) yields

zji+1,ki+1
= zji,ki

+ hji,ki
∆τ

q
∑

ℓ=1

βℓLℓ
ji,ki

, (230)

where Lℓ
ji,ki

= L(yℓ
ji,ki

,uℓ
ji,ki

, tℓji,ki
), i = 0, . . . , N − 1. Hence, we have

zjN ,kN
= zj0,k0

+ ∆τ

N−1
∑

i=0

hji,ki

q
∑

ℓ=1

βℓLℓ
ji,ki

. (231)

Since z(0) = zj0,k0
= 0, the cost functional (221) in discretized form can be written as

follows

J = e(xjN ,kN
, τf ) + ∆τ

N−1
∑

i=0

(

hji,ki

q
∑

ℓ=1

βℓLℓ
ji,ki

)

. (232)

Let us now define the following sets

X = {xj0,k0
, . . . ,xjN ,kN

},

U = {uj0,k0
, . . . ,ujN ,kN

},

G̃ = {tℓji,ki
∈ [0, 1] : tℓji,ki

/∈ G, 0 ≤ i < N, 1 ≤ ℓ ≤ q},

X̃ = {yℓ
ji,ki

: tℓji,ki
∈ G̃},

Ũ = {uℓ
ji,ki

: tℓji,ki
∈ G̃}.

As a result of the discretization, the optimal control problem reduces to the NLP problem

of finding the variables X, U, Ũ, τf , that minimize

J = e(xjN ,kN
, τf ) + ∆τ

N−1
∑

i=0

(

hji,ki

q
∑

ℓ=1

βℓLℓ
ji,ki

)

, (233)

subject to the following constraints

ζi = 0, i = 0, . . . , N − 1, (234)

xj0,k0
= x0, (235)

ef (xjN ,kN
, τf ) = 0, (236)

Cu(U, Ũ) ≤ 0, (237)

Cx(X, X̃) ≤ 0, (238)

Cxu(X, X̃,U, Ũ) ≤ 0. (239)
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Remark 6. It is well known [64, 49] that RK discretizations for optimal control problems

need to satisfy additional assumptions in order to obtain consistent approximations. Hence-

forth, we will therefore assume that the following conditions hold:

1. If the optimal control problem does not have any constraints, or if the optimal control

problem has only pure control constraints then by RK discretizations we mean RK

discretizations that satisfy the conditions in Ref. [64].

2. Alternatively, if the optimal control problem has only pure control constraints, the

coefficients of the RK scheme satisfy the conditions given in Ref. [49] or Ref. [64].

3. If the optimal control problem has state or mixed state/control constraints, then by

RK discretizations we mean either Euler, Trapezoidal, or Hermite-Simpson discretiza-

tion.

The restriction to the above mentioned schemes stems from the fact that the convergence

of these schemes for optimal control problems has been demonstrated in the literature [64,

49, 48, 19, 18]. Nonetheless, we point out that the proposed mesh refinement approach will

work with any RK discretization for which the convergence for the optimal control problems

can be shown, using either uniform or non-uniform meshes.

In the next section, we give examples of the RK discretizations used in this work.

6.4 Examples of Runge-Kutta Discretization

Four common examples of q-stage RK methods are Euler method (q = 1), trapezoidal

method (q = 2), Hermite-Simpson method (q = 3), and classical fourth-order RK method

(q = 4). The Euler discretization is first-order accurate, whereas the trapezoidal discretiza-

tion is second-order accurate, and Hermit-Simpson and classical RK discretization are both

fourth-order accurate.

6.4.1 Euler Method

An explicit Euler method is a 1-stage RK scheme with the following parameters

The defects of discretization for an explicit Euler scheme are as follows

ζi = xji+1,ki+1
− xji,ki

− hji,ki
∆τ f(xji,ki

,uji,ki
, tji,ki

), (240)
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0 0

1

for i = 1, . . . , N − 1.

6.4.2 Trapezoidal Method

Trapezoidal method is a 2-stage implicit RK scheme with the following parameters

0 0 0
1 1/2 1/2

1/2 1/2

The defects for the trapezoidal discretization are given by

ζi = xji+1,ki+1
− xji,ki

−∆τ
hji,ki

2
(fji,ki

+ fji+1,ki+1
), (241)

where

fji,ki
= f(xji,ki

,uji,ki
, tji,ki

),

for i = 1, . . . , N − 1.

6.4.3 Hermite-Simpson Method

Let us consider a 3-stage RK scheme with the following parameters

0 0 0 0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6

1/6 2/3 1/6

It has been indicated in [35] that this scheme is equivalent to the implicit Hermite-

Simpson (HS) scheme (Appendix A.3), the defects of discretization for which are given

by

ζi = xji+1,ki+1
− xji,ki

−∆τ
hji,ki

6
[fji,ki

+ 4fji+1/2,ki+1/2
+ fji+1,ki+1

], (242)

where

fji,ki
= f(xji,ki

,uji,ki
, tji,ki

),

fji+1/2,ki+1/2
= f(xji+1/2,ki+1/2

,uji+1/2,ki+1/2
, tji+1/2,ki+1/2

),
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xji+1/2,ki+1/2
=

1

2
[xji,ki

+ xji+1,ki+1
] + ∆τ

hji,ki

8
[fji,ki

− fji+1,ki+1
],

tji+1/2,ki+1/2
=
tji,ki

+ tji+1,ki+1

2
, uji+1/2,ki+1/2

= u(tji+1/2,ki+1/2
),

for i = 1, . . . , N − 1.

6.4.4 Classical Runge-Kutta Method

The Butcher diagram for the fourth-order explicit RK scheme (q = 4) is

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Hence, the defects of discretization for a fourth-order RK scheme are as follows

ζi = xji+1,ki+1
− xji,ki

− 1

6
(r1 + 2r2 + 2r3 + r4), (243)

where

r1 = hji,ki
∆τ f(xji,ki

,uji,ki
, tji,ki

),

r2 = hji,ki
∆τ f(xji,ki

+
1

2
r1,uji+1/2,ki+1/2

, tji+1/2,ki+1/2
),

r3 = hji,ki
∆τ f(xji,ki

+
1

2
r2,uji+1/2,ki+1/2

, tji+1/2,ki+1/2
),

r4 = hji,ki
∆τ f(xji,ki

+ r3,uji+1,ki+1
, tji+1,ki+1

),

tji+1/2,ki+1/2
=
tji,ki

+ tji+1,ki+1

2
, uji+1/2,ki+1/2

= u(tji+1/2,ki+1/2
),

for i = 1, . . . , N − 1.

Since the trajectory optimization problem can have discontinuities and switchings in the

states and the controls, one way to accurately capture these discontinuities and switchings

in the solution is to solve the NLP problem on a very fine mesh. However, this will require a

lot of computational resources in terms of both CPU time and memory. Therefore, in order

to accurately capture the irregularities in the solution and alleviate these problems, we will

only refine the mesh locally in the region of the irregularity using the multiresolution-based

mesh refinement algorithm described in Chapter 4.
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We are now ready to present the proposed multiresolution-based trajectory optimization

algorithm.

6.5 Multiresolution Trajectory Optimization

Consider a set of dyadic grids Vj and Wj as described in Eqs. (218) and (219). Let G be a

nonuniform grid as given in (67)), then by Ip(·;TG(·)) we denote the p-th order essentially

nonoscillatory (ENO) interpolation (see Section 4.3.2) of U = {gj,k : tj,k ∈ TG(t)}, where

TG(t) = {tjm,km}i+p
m=i ⊆ G, 0 ≤ i ≤ N − p− 1.

To proceed with the algorithm, we first choose the minimum resolution level Jmin based

on the minimum time step required to achieve the desired accuracy in the regions of the

solution where no constraints are active1, the threshold ǫ, which should be at least of the

order of hJmin
, where hJmin

= 1/2Jmin (the significance of ǫ and reason for such a choice

of ǫ which will be clear shortly), and pick the maximum resolution level Jmax. The pro-

posed MTOA involves the following steps. First, we transcribe the continuous trajectory

optimization problem into an NLP problem using a q-stage RK discretization as described

in the previous section. We use trapezoidal discretization for the first iteration and switch

to a high-order discretization for subsequent iterations. Next, we set iter = 1, initialize

Griditer = VJmin
, and choose an initial guess for all NLP variables. Let us denote the set of

initial guesses by Xiter. The proposed Multiresolution Trajectory Optimization Algorithm

(MTOA) then proceeds as follows:

Multiresolution Trajectory Optimization Algorithm (MTOA)

1. Solve the NLP problem on Griditer with the initial guess Xiter. If Griditer has points

from the level WJmax−1, terminate.

2. Mesh refinement.

(a)-i. If the problem has either pure state constraints or mixed constraints on the states

1The minimum time step required to achieve a desired accuracy in the regions of the solution where
no constraints are active can be calculated using the well-known error estimation formulas for RK schemes
[64, 19, 65, 66].
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and controls, set Φiter = {xj,k,uj,k : tj,k ∈ Griditer} and Nr = Nx +Nu.

(a)-ii. If the optimal control problem does not have any constraints, or if only pure

control constraints are present, set Φiter = {uj,k : tj,k ∈ Griditer} and Nr = Nu.

(a)-iii. In case no controls are present in the problem, set Φiter = {xj,k : tj,k ∈ Griditer}

and Nr = Nx.

In the following, let Φiter denote the set constructed in Step (a) of the algorithm,

that is, let Φiter = {φℓ(tj,k) : ℓ = 1, . . . , Nr, tj,k ∈ Griditer}.

(b) Initialize an intermediate grid Gridint = VJmin−1, with function values

Φint = {φℓ(tJmin,k) ∈ Φiter, 0 ≤ k ≤ 2Jmin, ℓ = 1, . . . , Nr}, (244)

and set j = Jmin − 1.

i. Find the points that belong to the intersection of Wj and Griditer

T̂j = {t̂j,ki
: t̂j,ki

∈ Wj ∩Griditer, for i = 1, . . . , Nt̂, 1 ≤ Nt̂ ≤ 2j − 1}. (245)

If T̂j is empty go to Step 2(c), otherwise go to the next step.

ii. Set i = 1.

A. Compute the interpolated function values at t̂j,ki
∈ T̂j,

φ̂ℓ(t̂j,ki
) = Ip(t̂j,ki

,TGridint
(t̂j,ki

)),

where φ̂ℓ is the ℓth element of φ̂, for ℓ = 1, . . . , Nr.

B. Calculate the interpolative error coefficient dj,ki
at the point t̂j,ki

2

dj,ki
(φ) = max

ℓ=1,...,Nr

dj,ki
(φℓ) = max

ℓ=1,...,Nr

|φℓ(t̂j,ki
)− φ̂ℓ(t̂j,ki

)|. (246)

If the value of dj,ki
is below the threshold ǫ, then reject t̂j,ki

and goto

Step 2(b)iiE, otherwise add t̂j,ki
to the intermediate grid Gridint and move

on to the next step.

2Note that φℓ(t̂j,k) ∈ Φiter for all t̂j,k ∈ T̂j and ℓ = 1, . . . , Nr.
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C. Add to Gridint points belonging to the set (VĴ ∩ [tj,ki
, tj,ki+1]) \ Gridint,

where Ĵ = min{j + ĵ, Jmax}, ĵ = 2 if iter = 1 and ĵ ≥ 2 if iter > 1.

Here ĵ is the number of finer levels from which the points be added to

the grid for refinement. In particular, we add to the intermediate grid

Gridint the points {tĴ ,k : 2Ĵ−jki ≤ k ≤ 2Ĵ−j(ki + 1)} \ Gridint.

D. Add the function values at all the newly added points to Φint. If the

function value at any of the newly added points is not known, interpolate

the function value at that point from the points in Griditer and their

function values in Xiter using Ip(·,TGriditer
(·)).

E. Increment i by 1. If i ≤ Nt̂ goto Step 2(b)iiA, otherwise move on to the

next step.

iii. Set j = j + 1. If j < Jmax go to Step 2(b)i, otherwise move on to the next

step.

(c) Terminate the mesh refinement algorithm. The final nonuniform grid is Gridnew =

Gridint and the corresponding function values are in the set Φnew = Φint.

3. Set iter = iter+ 1. If the number of points and the level of resolution remain the

same after the mesh refinement procedure, terminate. Otherwise interpolate the NLP

solution found in Step 1 on the new mesh Gridnew (which will be the new initial guess

Xiter), reassign the set Griditer to Gridnew, and go to Step 1.

The order of the interpolating polynomial p can be taken to be one less than the order

of the RK discretization of the differential equations. This choice of p is dictated by the

error analysis given in the next section, which considers the case with no constraints. It

is reminded that under the presence of constraints, the order of the RK discretization

for optimal control problems may be less than the order of the RK discretization used

for the differential equations [64]. The subsequent analysis, albeit heuristic, elucidates

the motivation behind the proposed approach and the previous choice of p. Although a

more rigorous analysis is required to justify the recommended choice for the order of the

interpolating polynomials (hence the order of the RK discretization as well), nonetheless,
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in all numerical examples we considered, choosing the interpolating polynomial according

to the previous criterion turned out to be adequate, irrespective of the presence (or not) of

the constraints.

6.6 Rationale of Proposed Multiresolution Scheme

In this section we outline the main idea behind the multiresolution mesh refinement algo-

rithm. In the process, we also provide rough estimates on the error one expects to obtain by

following the proposed approach. To keep the notation as simple as possible, the subsequent

discussion will be restricted to the case of a scalar-valued control function u. Furthermore,

we will consider a problem without state and control constraints, so that the refinement

algorithm is performed based on the (scalar-valued) control histories (case 2(a)-ii of MTOA

with Nu = Nr = 1).

The key idea behind the proposed mesh refinement algorithm is based on the fact that

the interpolative error coefficient in Step 2(b)ii-B of the MTOA, and for a sufficiently fine

grid, provides a good measure of the local smoothness of the function u. To see why this is

so, consider a function u which, at t = t̄, has ν ≥ −1 continuous derivatives3, but it has a

jump discontinuity in its (ν + 1)th derivative. Locally around any point t 6= t̄ the function

u can be approximated accurately by a polynomial, say û, of degree ν. Furthermore, in the

neighborhood of t̄, any interpolating polynomial of degree at least ν+1 will induce an error

that is proportional of the jump discontinuity of u(ν+1).

The proposed algorithm uses the information of the local interpolation error in (246)

to locally refine the grid, if necessary. In particular, at the locations when the solution is

smooth (hence it can be accurately interpolated by neighboring points) no further refinement

is performed. At those locations where the function is not smooth, grid points are added

to reduce the interpolation error below a certain threshold.

To this end, let the final grid at a certain iteration step be given by the points G =

{t0, t1, . . . , tN}. For each point ti ∈ G, (0 ≤ i ≤ N), let TG(ti) = {τ i
0, τ

i
1, . . . , τ

i
p} ∈ G\{ti}

with τ i
0 < · · · < τ i

p, be the stencil of p + 1 points that are used to interpolate the function

3This notation implies that for ν = −1 the function is discontinuous.
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u in the interval [τ i
0, τ

i
p], according to the discussion in the previous section. That is, let û

be the unique polynomial of degree p, such that (see Appendix A.1.1)

û(τ i
m) = u(τ i

m), 0 ≤ m ≤ p, 0 ≤ i ≤ N, (247)

and

u(t) = û(t) + u[τ i
0, . . . , τ

i
p, t] Π

p
m=0(t− τ i

m), τ i
0 ≤ t ≤ τ i

p. (248)

Moreover, if u is sufficiently smooth (i.e., is continuously differentiable at least ν ≥ p + 1

times) in the interval [τ i
0, τ

i
p] then

u[τ i
0, . . . , τ

i
p, t] =

u(p+1)(ξ)

(p + 1)!
, τ i

0 ≤ ξ ≤ τ i
p. (249)

It then follows from (248) that

di(u) = |u(ti)− û(ti)| ≈ |u(p+1)|(hi)
(p+1), (ν ≥ p+ 1), (250)

where hi = max0≤m≤p−1(τ
i
m+1−τ i

m). In (250) the notation “≈” indicates a term of the same

order of magnitude. Similarly, the notation “.” will be used to indicate a term dominated

by an expression of a known order of magnitude.

If, on the other hand, u has a jump discontinuity in its (ν+ 1) derivative and ν < p+ 1,

then [51, 68]

u[τ i
0, . . . , τ

i
p, t] ≈

[[u(ν+1)]]

(hi)p−ν
, (251)

where [[u(ν+1)]] denotes the jump at the discontinuity of the (ν+ 1)th derivative of u inside

the interval [τ i
0, τ

i
p]. It follows from (248) that, in this case, we have the estimate

di(u) = |u(ti)− û(ti)| ≈ [[u(ν+1)]](hi)
(ν+1), (ν < p+ 1). (252)

It has been shown in Ref. [64] that, under appropriate smoothness and coercivity hy-

potheses [64], and assuming that the solution u⋆ of the continuous optimal control problem

(221)-(223) is at least ν = p− 1 continuous differentiable, the following estimate holds

max
0≤i≤N

|xi − x⋆(ti)|+ max
0≤i≤N

|ui − u⋆(ti)| . hp+1 + hp

∫ 1

0
ω(u⋆(p), [0, 1]; t, h) dt, (253)
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for sufficiently small h = max0≤i≤N{ti+1 − ti}, and where ω(v, [a, b]; t, h) denotes the local

modulus of continuity of the function v, defined by [122]

ω(v, [a, b]; t, h) = sup{|v(σ1)− v(σ2)| : σ1, σ2 ∈ [t− h/2, t + h/2] ∩ [a, b]}. (254)

In (253) it has been assumed that the optimal solution (xi, ui) of the discrete problem

(233)-(236) is computed using a p + 1-th order RK scheme satisfying the Hager conditions

of Ref. [64].

The MTOA estimates the last term in (253) using the local interpolating error for the

control. To see why this is true, re-write the last term in (253) as follows

∫ 1

0
ω(u⋆(p), [0, 1]; t, h) dt =

N−1
∑

i=0

∫ ti+1

ti

ω(u⋆(p), [0, 1]; t, h) dt

=

N−1
∑

i=0

∫ ti+1

ti

ω(u⋆(p), [t′i, t
′′
i ]; t, h) dt

(255)

where t′i = 3ti/2 − ti+1/2 and t′′i = 3ti+1/2 − ti/2. Using the definition of the modulus of

continuity (254) and the estimate (251), we have that

ω(u⋆(p), [t′i, t
′′
i ]; t, h) ≤ sup

σ1,σ2∈[t′i,t
′′
i ]
|u⋆(p)(σ1)− u⋆(p)(σ2)| ≈ [[u⋆(p)]]. (256)

It follows that
∫ ti+1

ti

ω(u⋆(p), [t′i, t
′′
i ]; t, h) dt . h1−p

i di(u
⋆). (257)

Since the MTOA ensures the bound |di(u
⋆)| ≤ ǫ we finally get the estimate (recall that

∑N
i=0 hi ≈ 1)

hp

∫ 1

0
ω(u⋆(p), [0, 1]; t, h) dt . ǫ. (258)

It follows that

max
0≤i≤N

|xi − x⋆(ti)|+ max
0≤i≤N

|ui − u⋆(ti)| . hp+1 + ǫ. (259)

Given now the general grid in (225) it follows from (259) that if we chose ǫ ≈ h
(p+1)
Jmin

,

where hJmin
= tJmin,k+1 − tJmin,k = 1/2Jmin , 0 ≤ k ≤ 2Jmin − 1, we get an estimate of the

form

max
0≤i≤N

|xji,ki
− x⋆(tji,ki

)|+ max
0≤i≤N

|uji,ki
− u⋆(tji,ki

)| . hp+1
Jmin

. (260)
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Remark 7. As pointed out by Hager [64], the error in the discrete controls ui may be one or

more orders larger that the error obtained if the control were computed by the minimization

of the Hamiltonian and by using the discrete state/costate pair instead. Hence, ideally, the

approximation order in the right-hand-side of (253) will be one or more order less that

p + 1 even if a p + 1-th RK order is used. The interested reader may refer to Ref. [64] for

further details in regards to this observation. Since here we are only interested in rough

error estimates, the exact order of convergence for the discrete controls is immaterial for

the overall analysis (for example, use a higher order RK-scheme if needed).

6.7 Numerical Examples

In this section we provide several examples to demonstrate the robustness and efficiency

of the proposed approach for the solution of optimal control problems. For all cases, we

have used SNOPT [61] to solve the resulting NLP problem (233)-(239). SNOPT is an NLP

solver, which is based on sequential quadratic programming (SQP). All computations were

performed in MATLAB on a Pentium IV machine with a 3 GHz processor and 2 GB of

RAM. In all the examples below, and unless stated otherwise, a linear function has been

used as an initial guess for the first iteration of MTOA.

Example 13

First, we consider the Moon landing problem, taken from Ref. [55]. The control problem is

formulated as maximizing the final mass, and hence minimizing

J = −m(τf ). (261)

The equations of motion are given by

dh

dτ
= v, (262)

dv

dτ
= −g +

T

m
, (263)

dm

dτ
= − T

Ispg
, (264)

where the state variables h, v, m are altitude, velocity, and mass respectively. Control is

provided by the thrust T , which is bounded by

0 ≤ T ≤ Tmax. (265)
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The final time τf is free. The other parameters in the problem are g, the gravity of the

Moon, and Isp, the specific impulse of the spacecraft engine. The normalized parameters

for the problem were chosen the same as in [55]:

Tmax

m0g
= 1.1,

Ispg

v0
= 1,

h(0)

h0
= 0.5,

v(0)

v0
= −0.05,

m(0)

m0
= 1,

for any given set of initial conditions h0, v0, and m0. Therefore, we have the following

normalized initial conditions:

h(0) = 0.5, v(0) = −0.05, m(0) = 1.0. (266)

For soft landing, we must have

h(0) = 0.5, (267)

v(0) = −0.05, (268)

m(0) = 1.0. (269)

In addition, for a physical meaningful trajectory, we must have

m(τf ) > 0. (270)

We solved this problem on a grid with Jmin = 3 and Jmax = 10. The threshold used for

this problem was ǫ = 10−4. We used the fourth-order explicit RK scheme (q = 4) for a high

order discretization in MTOA. The algorithm terminated in 8 iterations and the overall

CPU time taken by MTOA to solve this problem was 5.1 seconds. Because of the space

constraints, we show the time history of thrust T along with the grid point distribution

only for iterations 1, 3, 6, 7, and 8 (Figure 25 and Figure 26). The grid point distributions

in Figure 25 and Figure 26 show that with each iteration the algorithm adds points at finer

resolution levels, and as a result the solution is getting more and more accurate. Moreover,

as the solution gets more and more accurate, the algorithm also removes points at the coarser

levels from the region where the solution is getting smoother. The grid point distribution

at iteration 8 (Figure 26(d)) again shows that the regions where the solution is smooth are
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well represented by the coarse resolution levels; the higher resolution levels are needed only

near the switching points in the thrust T , thus illustrating the efficiency of the proposed

algorithm. From Figure 26(c), we see that the algorithm was accurately able to capture

the switching in the control using only two points. It should be noted that the algorithm

used only 25 points out of 1025 points of the grid V10 for calculating the final solution. One

should also discern that the algorithm used 25 points at iteration 6 whereas used 23 points

at iteration 7. At iteration 7, the algorithm removed some points at the coarser resolution

levels and added points at the finer resolution level W8. This clearly demonstrates that the

proposed strategy uses only the grid points that are actually necessary to attain a given

precision, and the algorithm is able to add and remove points when and where is needed.

The time history of mass m along with the phase portrait of the velocity v vs. the altitude

h for the last iteration are shown in Figure 27.

For comparison, we also solved the same problem using a fourth-order explicit RK

scheme on a uniform grid with same number of nodes as used by MTOA at the final

iteration, that is, on a uniform mesh with 25 nodes. The algorithm terminated in 2.1

seconds. Since, the switching in the control is not captured accurately (see Figure 28(a))

using a uniform mesh with 25 nodes, we gradually increased the number of nodes in the

uniform mesh and resolved the problem using the same linear initial guess, until the CPU

time taken by the algorithm was approximately equal to the CPU time taken by MTOA.

We ended up using 46 nodes in the uniform mesh. The algorithm terminated in 5.1 seconds.

The control found using a uniform mesh with 46 nodes is shown in Figure 28(b). Hence,

we see that MTOA was able to capture the switching in the control with more accuracy for

the same CPU time as for the uniform mesh case with 46 nodes.

Example 14

We first consider a simple minimum-energy problem with a second-order state variable

inequality constraint, taken from Ref. [33]. Since the analytic solution for this problem is

known, we can infer the absolute accuracy of the solution provided by the proposed MTOA.
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The problem is to find the control u(t) that minimizes the cost function

J =
1

2

∫ 1

0
u2(t) dt, (271)

subject to the dynamics

ẋ = v, (272)

v̇ = u, (273)

initial and final conditions

x(0) = x(1) = 0, (274)

v(0) = −v(1) = 1, (275)

and the path constraint

x(t) ≤ 0.04. (276)

We solved this problem on a grid with Jmin = 3 and Jmax = 10. The threshold used was

ǫ = 10−4. We used the implicit HS scheme for a high order discretization in MTOA. The

algorithm terminated in 5 iterations. The time histories of the states x and v at the final

iteration are shown in Figure 29. The time history of the control u along with the grid

point distribution at the final iteration are shown in Figure 30. It should be noted that the

proposed algorithm used only 61 points out of the maximum of 1025 points at the finest

resolution grid V10. Since the analytic solution of this problem is known [33] the absolute

error can be computed for all cases. The errors in the computed solution along with the

number of grid points (Niter) used by the algorithm at each iteration are shown in Table 12.

As shown in Table 12, the numerical solution converges to the analytic solution and, with

each iteration, the errors are decreasing roughly by an order of magnitude.

The overall CPU time taken by MTOA to solve this problem was 5.6 seconds. For

comparison, we also solved the same problem using a Hermite-Simpson discretization on a

uniform grid with the same number of points as in MTOA at the final iteration, that is, on

a uniform mesh with 61 nodes. The algorithm terminated in 2.5 seconds with the errors

shown in Table 13. Since the errors in the solution using a uniform mesh with 61 nodes
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Table 12: Example 14: No. of grid points along with the error in the computed optimal
cost at each iteration.

Iteration Niter ‖x− x⋆‖L∞ ‖v − v⋆‖L∞ ‖u− u⋆‖L∞ |J − J⋆|
1 9 4.0 × 10−2 1.5× 10−1 1.7× 100 Failed
2 15 1.3 × 10−4 2.1× 10−3 1.3× 10−1 5.7× 10−3

3 29 3.9 × 10−6 5.9× 10−5 3.0× 10−3 4.6× 10−4

4 45 3.1 × 10−7 1.4× 10−5 5.2× 10−4 6.6× 10−6

5 61 3.0 × 10−8 1.6× 10−6 5.6× 10−5 3.3× 10−8

Table 13: Example 14: No. of grid points and error for uniform mesh.

N1 ‖x− x⋆‖L∞ ‖v − v⋆‖L∞ ‖u− u⋆‖L∞ |J − J⋆|
61 3.7× 10−6 1.4× 10−4 1.4 × 10−1 2.7 × 10−4

131 1.7× 10−6 9.5× 10−5 2.7 × 10−2 6.0 × 10−5

are larger than the ones achieved using MTOA, we also gradually increased the number of

nodes in the uniform mesh and resolved the problem using the same linear initial guess,

until either the errors were of the same order of magnitude as the ones obtained using the

MTOA or the CPU time taken by the algorithm was approximately equal to the CPU time

taken by MTOA. This process ended up in a uniform mesh of 131 nodes. The algorithm

terminated in 5.7 seconds and the final errors are shown in Table 13. These results show

a typical trend we observed in all examples we tested, and which demonstrate the efficacy

of the MTOA : higher accuracy for the same CPU time or a smaller number of grid points

and CPU time for the same accuracy, compared to uniform grid implementations.

Example 15

Here we consider a problem derived from the control of a chemical reaction [22, 40]. The

problem is to maximize the final amount of product y during a two-stage chemical reaction,

x→ y → z, by a proper choice of the rate coefficient u(t). The amount of waste product z

formed does not influence x and y, and since the magnitude of z is of no interest, we may

consider only the reaction rates for x, y, which are given by

ẋ = −ux, (277)

ẏ = ux− ρuky, (278)

where ρ, k are positive constants. For this example we consider the same parameters as in
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[22, 40]

ρ = 2.5, k = 1.5, tf = 2, (279)

and initial conditions

x(0) = 1, (280)

y(0) = 0.01. (281)

The allowable control must lie within the range

0.1 ≤ u(t) ≤ umax. (282)

We solved this problem on a grid with Jmin = 3 and Jmax = 6 for three different choices

of umax, namely, umax = 0.5, umax = 0.4, and umax = 0.3. The threshold used in the

simulations was ǫ = 10−4. We used the implicit HS scheme for a high order discretization

in MTOA. The algorithm terminated in four iterations for all cases. The time history of

the states x, y and the control u, along with the grid point distribution for different values

of umax at the final iteration of MTOA are shown in Figure 31. The final states x(2) and

y(2) (rounded off to five decimal places), the overall CPU time taken by MTOA to solve

the problem, and the number of nodes used at the final iteration of MTOA (Nf ) for the

previous three values of umax, are summarized in Table 14. The values of x(2) and y(2) are

the same as those reported in Ref. [40].

We also solved the same problem using the HS discretization on a uniform grid having

the same number of points as used by MTOA at the final iteration, that is, on a uniform

mesh with Nf nodes. The CPU times (tCPU) used by the algorithm for all the cases are

summarized in Table 15. The values for both x(2) and y(2) were accurate up to five

decimal places for the case umax = 0.4. Since either of the two values x(2) or y(2) was not

of the same accuracy for the remaining two cases, we resolved the problem for the cases

umax = 0.5 and umax = 0.2 with a larger number of nodes in the uniform mesh (using

again a linear initial guess). We repeated this process until the values for both the states

at the final time coincided to five decimal places to the solution given in Table 14. The

result was a uniform mesh of 55 and 20 nodes for the cases umax = 0.5 and umax = 0.3
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respectively. These observations, along with the corresponding CPU times are reported

in Table 15. The uniform mesh implementation required more points to obtain the same

accuracy. The corresponding CPU times were comparable for this example for both uniform

and non-uniform mesh implementations. The reader should be reminded however that the

uniform grid solutions were obtained by calling SNOPT only once (assuming convergence

was possible). Hence per iteration the CPU time for the MTOA is indeed smaller, as

expected.

Table 14: Example 15: No. of nodes used by MTOA at the final iteration, overall CPU
time taken by MTOA, and final states for three different values of umax.

umax Nf tCPU (sec) x(2) y(2)

0.5 31 6.2 0.52222 0.30813
0.4 23 3.8 0.53051 0.30611
0.3 17 1.7 0.55765 0.30013

Table 15: Example 15: Uniform mesh.

umax N tCPU (sec) Error N tCPU (sec) Error

0.5 31 3 10−5 55 6.9 10−6

0.4 23 1.7 10−6 - - -
0.3 17 1.0 10−5 20 1.3 10−6

Example 16

In this example we investigate the performance of MTOA to a “hyper-sensitive” problem,

taken from Ref. [18]. As pointed out in Ref. [115, 18] this problem is extremely difficult to

solve using indirect methods. The problem is to minimize

J =

∫ 10000

0

(x2(t) + u2(t)) dt, (283)

subject to

ẋ = −x3 + u, (284)

and

y(0) = 1, (285)

y(10000) = 1.5. (286)
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We solved this problem on a grid with Jmin = 4 and Jmax = 10. The threshold used was

ǫ = 10−4. We used the implicit HS scheme for a high order discretization in MTOA. MTOA

terminated in 5 iterations and the overall CPU time taken by MTOA to solve this problem

was 17.5 seconds. The final nonuniform grid (shown in Fig. 32(b)) included 53 nodes. The

time history of the state x is shown in Figure 32(a).

For comparison, we also solved the same problem using a HS discretization on a uniform

grid having the same number of nodes as used by MTOA at the final iteration, that is, on

a uniform mesh with 53 nodes. The algorithm terminated after 43.7 seconds; the value

of the optimal cost found was an order of magnitude larger than the optimal cost found

using MTOA. These results show, again, the superiority of the MTOA over uniform grid

implementations. For this example, the uniform grid implementation not only took more

than twice the CPU time of MTOA, but also returned a solution that was far worse than

the one obtained from MTOA.

Example 17

As our final example we consider the realistic problem of optimizing the re-entry trajectory

of an Apollo-type vehicle [112]. This is a benchmark problem in trajectory optimization

that is known to be very challenging owing to its sensitivity in terms of the initial guesses.

The equations of motion during the flight of the vehicle through the Earth’s atmosphere

are as follows:

v̇ = − S

2m
ρv2cD(u)− g sin γ

(1 + ξ)2
,

γ̇ =
S

2m
ρvcL(u) +

v cos γ

R(1 + ξ)
− g cos γ

v(1 + ξ)2
,

ξ̇ =
v

R
sin γ,

ζ̇ =
v

1 + ξ
cos γ,

where v is the velocity, γ is the flight path angle, ξ = h/R is the normalized altitude, h is

the altitude above the Earth’s surface, R is the Earth’s radius, and ζ is the distance on the

Earth’s surface of a trajectory of an Apollo-type vehicle. The control variable is the angle
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of attack u. For the lift and drag the following relations hold:

cD = cD0
+ cDL cos u, (287)

cD0
= 0.88, (288)

cDL = 0.52, (289)

cL = cL0
sinu, (290)

cL0
= −0.505. (291)

The air density is assumed to satisfy the relationship, ρ = ρ0e
−βRξ . The values of the

constants are

R = 209.0352 (105 ft),

S/m = 50, 000 (10−5 ft2 slug−1),

ρ0 = 2.3769 × 10−3(slug ft−3),

g = 3.2172 × 10−4 (105 ft s−2),

β = 1/0.235 (10−5 ft−1).

The cost functional to be minimized that describes the total stagnation point convective

heating per unit area is given by the integral

J =

∫ tf

0
10v3√ρdt. (292)

The vehicle is to be maneuvered into an initial position favorable for the final splashdown

in the Pacific. Data at the moment of entry are

v(0) = 0.35 (105 ft s−1), (293)

γ(0) = −5.75 deg, (294)

ξ(0) = 4/R (h(0) = 400, 000 ft), (295)

ζ(0) = 0 (105 ft). (296)

Pesch [112] considered two situations for the given problem, one with constraints on control

and the other one with constraints on the state. We consider both of these problems in the

sequel.
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Problem A. Problem A imposes a control inequality constraint that limits the decelera-

tion of the vehicle:

|u| ≤ umax, umax > 0. (297)

The data prescribed at the unspecified terminal time tf for Problem A are as follows

v(tf ) = 0.0165 (105 ft s−1), (298)

γ(tf ) unspecified, (299)

ξ(tf ) = 0.75530/R (h(tf ) = 75, 530 ft), (300)

ζ(tf ) = 51.6912 (105 ft). (301)

We solved this problem for all the cases considered by Pesch [112], and the results obtained

using MTOA vindicate the proposed algorithm. For the sake of brevity, here we only give

the results for the cases when umax = 180 and umax = 68.

We solved this problem on a grid with Jmin = 3 and Jmax = 7. The threshold used for

this problem was ǫ = 10−2. We used the implicit HS scheme for a high order discretization

in MTOA. The algorithm for both cases terminated after 5 iterations and the overall CPU

times taken by MTOA to solve the problem for both cases were 111.2 seconds and 125.6

seconds, respectively. The time histories of the velocity (v) and altitude above the Earth’s

surface (h) at the final iteration of MTOA for umax = 180 are shown in Figure 33. The time

history of the angle of attack (u) along with the grid point distribution at the final iteration

of MTOA for umax = 180 are shown in Figure 34. The time histories of the flight-path angle

(γ) and the distance on the Earth’s surface (ζ) at the final iteration of MTOA for umax = 68

are shown in Figure 35. The time history of the angle of attack (u) along with the grid

point distribution at the final iteration of MTOA for umax = 68 are shown in Figure 36.

We also solved this problem for both the previous two cases on a grid with Jmin = 3 and

Jmax = 6, but this time we uniformly refined the mesh after each iteration. The reason for

choosing Jmax = 6 is because this problem could not be solved on a uniform grid finer than

V6 because of hardware limitations. The CPU times taken by the algorithm for both the

cases are shown in Table 16. We solved the problem using MTOA with the same parameters

as before, but this time with Jmax = 6. MTOA terminated within four iterations for both
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cases. The overall CPU times taken by MTOA along with the number of nodes used by

MTOA at the final iteration (Nf ) are given in Table 16. As shown in Table 16, the MTOA

outperformed the standard uniform grid implementation for this problem in terms of CPU

time.

Table 16: Example 17: Uniform mesh vs. MTOA.

Problem Uniform mesh MTOA
N tCPU (sec) Nf tCPU (sec)

A (umax = 180) 65 241.1 39 76.6
A (umax = 68) 65 174.9 30 94.2

B (ξmax = 0.0066) 65 265.4 41 60.0

Problem B. For this problem we impose a constraint to reduce re-ascent after the first

dip into the atmosphere, that is, we have

ξ ≤ ξmax, ξmax > 0. (302)

The data prescribed at the unspecified terminal time tf for this problem are

v(tf ) = 0.01239929 (105 ft s−1), (303)

γ(tf ) = −26.237124 deg, (304)

ξ(tf ) = 0.75530/R (h(tf ) = 75530 ft), (305)

ζ(tf ) = 51.10198 (105 ft). (306)

Again, we solved this problem for all the cases considered by Pesch [112]. The results

obtained using MTOA, once again, justify the proposed algorithm. For the sake of brevity,

below we only give the results for the case when ξmax = 0.0066. We solved this problem

on a grid with Jmin = 2 and Jmax = 7. We used the implicit HS scheme for a high order

discretization in MTOA. The threshold used for this problem was ǫ = 10−2. The algorithm

terminated after 6 iterations and the overall CPU time taken by MTOA to solve this problem

was 235.2 seconds. The time histories of the velocity (v) and altitude above the Earth’s

surface (h) at the final iteration of MTOA are shown in Figure 37. The time history of the

angle of attack (u) along with the final grid point distribution are shown in Figure 38.
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When we attempted to solve the same problem on a uniform mesh with 33 nodes (with

the same linear initial guess) using HS discretization, the algorithm failed to converge.

Increasing the number of nodes to 65 nodes and using again the same linear initial guess

did not help. We therefore solved this problem again on a grid with Jmin = 2 and Jmax = 6,

but this time we progressively refined the mesh uniformly after each iteration. The value

of Jmax = 6 was chosen because the problem could not be solved on a uniform grid finer

than V6 owing to hardware limitations. The CPU time taken by the algorithm in this

case is given in Table 16. Once again, we solved the problem using MTOA with the same

parameters as before but this time with Jmax = 6. MTOA terminated in 5 iterations. The

overall CPU time taken by MTOA along with the number of nodes used by MTOA at the

final iteration (Nf ) are also given in Table 16. These results again show the benefits of the

MTOA in terms of accuracy and speed when compared with uniform grid implementations

for this problem.

Next, we give the advantages of MTOA over the existing adaptive techniques for solving

optimal control problems.

6.8 Advantages of the Proposed Multiresolution Trajectory Optimiza-
tion Algorithm over the Existing Methods

First we show the advantages of the proposed multiresolution trajectory optimization al-

gorithm over the current state-of-the-art algorithms for solving optimal control problems,

namely, the algorithm of Betts et al. [18, 20, 22] and the pseudospectral knotting method [117],

and then compare the proposed algorithm with the methods of Binder et al. [24, 25, 26, 27]

and Schlegel et al. [121].

6.8.1 Advantages over the Method of Betts et al. [18, 20, 22]

The method of Betts et al. [18, 20, 22] selects the new grid points by solving an integer pro-

gramming problem, that minimizes the maximum discretization error (found by integrating

the dynamics of the system) by subdividing the current grid. In [22], the discretization error

is computed by comparing the solution with a more accurate estimate using two (half) steps
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and by keeping the control fixed. The authors also assumed that the order of discretiza-

tion, which effects the addition of mesh points to any subinterval in their mesh refinement

algorithm, is constant. However, during the course of optimization process the actual order

may vary with each iteration because of the potential activation of path constraints. It has

been shown in [23] that having the wrong value for the order of discretization can seriously

impact the mesh refinement algorithm of [22]. In order to overcome this problem, Betts et

al. [20] derived a formula for estimating the order reduction by comparing the behavior of

the discretization errors on successive mesh refinement iterations. But since the estimated

order reduction is very sensitive to the computed discretization errors, the authors in [20]

use a highly accurate quadrature method, namely Romberg quadrature (Appendix A.2),

with a tolerance close to machine precision for computing the discretization errors.

Briefly, the mesh refinement method of Betts et al. [18, 20] comprises of three main steps.

First, to interpolate all the states and controls using B-splines required for integrating the

dynamics of the system. Second, integrate all the states using a highly accurate quadrature

method, namely Romberg quadrature, with a tolerance close to machine precision in order

to find the discretization errors. Third, solve an integer programming problem for refining

the mesh.

Solving an integer programming problem for just refining the mesh on top of the NLP

problem required for solving the optimal control problem can be computationally expensive.

The proposed technique allows us to bypass solving any kind of secondary optimization

problem for adding points to the mesh. Only simple interpolations are needed to refine

the mesh, which can be done on the fly. Furthermore, the proposed mesh refinement

algorithm does not involve any integrations, as opposed to the highly accurate integrations

(Romberg quadratures) used by Betts et al, which again can be computationally expensive

for nonlinear dynamics. Finally, the algorithm of [18, 20, 22] can only add points to the

grid, whereas MTOA is capable of not only adding points to the grid but also removing

points from the grid when and where is needed. Moreover both the operations of adding

and removing points can be done in a single step.
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6.8.2 Advantages over the Pseudospectral Knotting Method [117, 63]

The pseudospectral knotting method introduced by Ross and Fahroo [117] breaks a sin-

gle phase problem with discontinuities and switches in states, control, cost functional, or

dynamic constraints into a multiple phase problem with the phase boundaries, termed as

“knots” by the authors, as the point of discontinuities or switchings. This way states

and controls are allowed to be discontinuous across the phase boundaries and the phase

boundaries can be fixed or free. On each phase, the problem is solved using the Legendre

pseudospectral method [52] or Chebyshev pseudospectral method [55], and the free knots

are part of the optimization process. The knots where the states are assumed to be contin-

uous but no continuity condition is imposed on the controls are termed as soft knots. The

soft knots can handle problems with smooth data and non-smooth solutions (e.g. switches

and corners). But as pointed out by Ross [116] “Soft knots do not increase the speed of the

algorithm; they are expected to improve accuracy. Consequently, the introduction of soft

knots in the grid might significantly slow the algorithm.” In the pseudospectral knotting

method, one needs to know a priori the approximate number and location of singularities

in the solution. These may not be known beforehand for most problems. One needs to

know the number of irregularities in order to add that many soft knots in the optimization

problem. Furthermore, the soft knots break the problem into multiple phases and each

phase is solved using a particular number of grid points assigned by the user for that phase

before starting the algorithm. Therefore, the user needs to know a priori the approximate

locations of the singularities, without which, the user will not be able to assign correctly,

the number of nodes for a particular phase. These facts are illustrated with the help of a

simple example.

Let us assume an optimal control problem which has two switchings in the control and

neither the number of switchings nor their approximate locations is known a priori before

solving the problem. Now suppose the user adds only one soft knot. In that case, the

pseudospectral knotting method will not be able to capture accurately both the switchings

in the control since one soft knot can capture only one switching. On the other hand, adding

too many soft knots will result in the unnecessary increase in the size of the optimization
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problem.

Now we assume that somehow it is known that there are going to be two switchings in

the control. In this case, the user can add two free soft knots in the optimization problem,

which will break the problem into three phases. But now the question is to add how

many nodes in each of the phases, which can not be answered correctly unless the user

knows the approximate location of the switching beforehand. Say for example, the user

solves the optimization problem using pseudospectral knotting method with equal number

of grid points N for all the phases and suppose after solving the problem it appears that

the switchings take place at 0.1τf and 0.95τf . Hence, the problem was solved by using N

points for the phase [0, 0.1τf ], N points for the phase [0.1τf , 0.95τf ], and N points for the

phase [0.95τf , τf ]. It may happen that the chosen value of N was redundant for the first

and third phases, whereas N might have not been adequate for the second phase. While

taking N to be sufficiently large for all the phases will increase the size of the NLP problem

considerably.

In order to improve the pseudospectral methods, Gong et al. [63] present an algorithm

in which the user specifies the number of nodes to be increased in a particular phase, in

case the error of the computed optimal control between two successive iterations is greater

than a prescribed threshold. The authors of Ref. [63] use the gradient of the control to

determine (approximately) the location of the knots. Since the number of nodes that will

be increased on a particular phase is assigned by the user a priori even before starting the

code, the algorithm faces the same problem as discussed before for the case of pseudospectral

knotting method.

On the other hand, the proposed multiresolution trajectory optimization algorithm is

fully autonomous. The user need not know a priori the number nor the approximate loca-

tions of the irregularities in the solution. The proposed MTOA will automatically detect

the regions in the solution that are nonsmooth and it will add points accordingly when and

where is needed.

Furthermore, the nonuniform grids of pseudospectral methods result in grid distributions

that remain fixed for each phase, since the location of the nodes are dictated by the zeros of
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the first derivative of the Legendre or Chebyshev polynomials (Appendix A.1), irrespective

of the location of the soft knots [118]. Our algorithm uses a grid that is fully adaptive,

embracing any form depending on the irregularities in the solution. This provides more

flexibility in capturing any irregularities in the solution.

6.8.3 Advantages over the Algorithms of Binder et al. [24, 25, 26, 27] and
Schlegel et al. [121]

From all previous references in this area the work of Binder et al. [24, 25, 26, 27], and

Schlegel et al. [121] are the closest – at least in spirit – to the approach proposed in this

thesis.

Binder et al. [24, 25, 26] work in the wavelet space by using the wavelet-Galerkin

approach to discretize the optimal control problem into an NLP problem and use the local

error analysis of the states and the wavelet analysis of the control profile to add or remove

the wavelet basis functions. When one uses wavelet-Galerkin methods, multiplication in

the physical space becomes convolution in the wavelet space, which is very costly as it is

hard to compute convolutions efficiently. Whereas, by using the proposed mesh refinement

technique, we always work in the physical domain and at the same time take advantage of

one of the main properties of the wavelets - the multiresolution properties (see Chapter 2).

Moreover, operations like multiplication and differentiation are fast in the physical domain

as compared to the wavelet domain. Furthermore, nonlinearities can be handled with ease.

Binder et al. in [27] use the direct shooting approach, where the optimal control prob-

lem is converted into an NLP problem by parametrization of the control profiles, combined

with a wavelet analysis of the gradients of the Lagrangian function with respect to the

parametrization functions at the optimal points to determine the regions that require re-

finement. In order to improve this method further for problems with state and/or control

path constraints Schlegel et al. [121] use wavelet analysis of the control profile to determine

the regions that require refinement. Using wavelet analysis only to determine the regions of

irregularities in the solution results in additional computational overhead, as one needs to

transform back and forth between the physical and wavelet domain. In addition, one needs

to interpolate the function values at the finest level every time one needs to perform the
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wavelet transform, which also results in additional computational overhead. Whereas the

proposed mesh refinement technique uses only the retained points in the grid for further

adding and removing points from the grid, and hence there is no need of interpolating the

function values at the finest level.

6.9 Summary

In this chapter we have proposed a novel multiresolution-based approach for direct tra-

jectory optimization. The algorithm automatically, and with minimal effort, generates a

nonuniform grid that reduces the discretization error with each iteration. As a result, one

is able to capture the solution accurately and efficiently using a relatively small number of

points. All the transition points in the solution (for example, bang-bang subarcs, or entry

and exit points associated with state or mixed constraints) are captured with high accuracy.

The convergence of the algorithm can be enhanced by initializing the algorithm on a coarse

grid having a small number of variables. Once a converged solution is attained, the grid can

be further refined by increasing the accuracy locally, only at the vicinity of those points that

cannot be accurately interpolated by neighboring points in the grid. The methodology thus

provides a compromise between robustness with respect to initial guesses, intermediate and

final solution accuracy, and execution speed. These observations are supported by several

numerical examples of challenging trajectory optimization problems. The proposed mul-

tiresolution trajectory optimization algorithm has been shown to have several advantages

over the current state-of-the-art methods for solving the optimal control problems.

Next, we present two sequential trajectory optimization techniques for solving problems

with moving targets and/or dynamically changing environments.

117



0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

Time (τ)

T

(a) Iteration 1: Time history of thrust T .
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(b) Iteration 1: Grid point distribution.
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(c) Iteration 3: Time history of thrust T .
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(d) Iteration 3: Grid point distribution.
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(e) Iteration 6: Time history of thrust T .
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(f) Iteration 6: Grid point distribution.

Figure 25: Example 13. Time history of thrust T along with the grid point distribution
for iterations 1, 3, and 6.
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(a) Iteration 7: Time history of thrust T .
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(b) Iteration 7: Grid point distribution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

Time (τ)

T

(c) Iteration 8: Time history of thrust T .
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(d) Iteration 8: Grid point distribution.

Figure 26: Example 13. Time history of thrust T along with the grid point distribution
for iterations 7 and 8.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.4

0.6

0.8

1

Time (τ)

m

(a) Iteration 8: Time history of mass m.
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(b) Iteration 8: Phase portrait of v vs. h.

Figure 27: Example 13. Time history of mass m and the phase portrait of velocity v vs.
altitude h for iteration 8.
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(a) No. of nodes used: 25.
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(b) No. of nodes used: 46.

Figure 28: Example 13. Time history of thrust T computed on a uniform mesh using an
explicit fourth-order RK discretization.
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(a) Iteration 5: Time history of x.
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(b) Iteration 5: Time history of v.

Figure 29: Example 14: Time history of x, v at the final iteration of MTOA.
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(b) Iteration 5: Grid point distribution.

Figure 30: Example 14: Time history of u along with the grid point distribution at the
final iteration of MTOA.
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(a) Time history of x, y, and u for umax = 0.5.
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(b) Grid point distribution.
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(c) Time history of x, y, and u for umax = 0.4.
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(e) Time history of x, y, and u for umax = 0.3.
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(f) Grid point distribution.

Figure 31: Example 15: Time history of states x, y and control u along with the grid
point distributions for different umax at the final iteration of MTOA.
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Figure 32: Example 16: Time history of state x along with the grid point distribution at
the final iteration of MTOA.
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(b) Iteration 5: Time history of h.

Figure 33: Example 17: Problem A. Time histories of v, h for umax = 180 at the final
iteration of MTOA.
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(a) Iteration 5: Time history of u.
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(b) Iteration 5: Grid point distribution.

Figure 34: Example 17: Problem A. Time history of u along with the grid point distribu-
tion for umax = 180 at the final iteration of MTOA.
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(a) Iteration 5: Time history of γ.
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(b) Iteration 5: Time history of ζ.

Figure 35: Example 17: Problem A. Time histories of γ, ζ for umax = 68 at the final
iteration of MTOA.
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Figure 36: Example 17: Problem A. Time history of u along with the grid point distribu-
tion for umax = 68 at the final iteration of MTOA.
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(b) Iteration 5: Time history of h.

Figure 37: Example 17: Problem B. Time histories of v, h for ξmax = 0.0066 at the final
iteration of MTOA.
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Figure 38: Example 17: Problem B. Time history of u for ξmax = 0.0066 along with the
grid point distribution at the final iteration of MTOA.
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CHAPTER VII

SEQUENTIAL MULTIRESOLUTION TRAJECTORY

OPTIMIZATION FOR PROBLEMS WITH MOVING TARGETS

AND/OR DYNAMICALLY CHANGING ENVIRONMENT

7.1 Problem Formulation

We wish to determine the state x(·) and the control u(·) that minimize the Bolza cost

functional,

J = e(x(τf ), τf ) +

∫ τf

τ0

L(x(τ),u(τ), τ)dτ, (307)

where e : R
Nx × R+ → R, τ ∈ [τ0, τf ], x : [τ0, τf ] → R

Nx , u : [τ0, τf ] → R
Nu , L :

R
Nx × R

Nu × [τ0, τf ]→ R, subject to the state dynamics

ẋ(τ) = f(x(τ),u(τ), τ), (308)

the state and control constraints

C(x(τ),u(τ), τ) ≤ 0, (309)

where C : R
Nx × R

Nu × [τ0, τf ]→ R
Nc , the initial condition

x(τ0) = x0, (310)

and the terminal constraint

ef (x(τf ), τf ) = 0, (311)

where ef : R
Nx × [τ0,∞) → R

Ne . The initial time τ0 is assumed to be given and the final

time τf can be fixed or free.

Note that the functions C and ef are assumed to be given at time t0, but may change

as the vehicle moves from x0 to x(τf ). This change is not known a priori so it cannot be

modeled via the explicit time-dependence of C and ef in (309) and (311).
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7.2 Sequential Trajectory Optimization

In order to solve an optimal control problem with a moving target and/or a dynamically

changing environment, in this chapter we present two sequential trajectory optimization

algorithms. The basic idea behind the proposed algorithms is to solve the trajectory op-

timization problem at hand over the horizon [τ1
0 , τ

1
f ], and as we continue to move forward

in time, we re-solve the optimization problem again on the new horizons [τ i
0, τ

i
f ], where

i = 2, . . . , NH , using the solution of the previous horizon as an initial guess. Here τ1
0 = τ0,

τ i−1
0 < τ i

0 < τ i−1
f , i = 2, . . . , NH , and NH is the number of horizons. If the final time is

fixed, then

τ1
f = τ2

f = · · · = τNH
f = τf . (312)

For further analysis, let

∆τ i
ro = τ i+1

0 − τ i
0, i = 1, . . . , NH − 1, (313)

be the time interval after which we re-optimize the trajectory. The value of ∆τ i
ro can be

the same or different for all i = 1, . . . , NH − 1 . For the case when ∆τ i
ro are all the same for

i = 1, . . . , NH − 1, that is, τ i
ro = τro, for all i = 1, . . . , NH − 1, and the final time is fixed,

the number of horizons is given by

NH = ⌊(τf − τ0)/∆τro)⌋. (314)

Next, we present the sequential trajectory optimization algorithm STOA I.

7.2.1 Sequential Trajectory Optimization Algorithm I (STOA I)

Consider a set of dyadic grids Vj and Wj as described in Eqs. (218) and (219). We first

choose the minimum resolution level Jmin based on the minimum time step required to

achieve the desired accuracy in the regions of the solution where no constraints are active1,

the threshold ǫ(t) (the significance of which will be clear shortly), and the maximum resolu-

tion level Jmax. Then the proposed STOA I involves the following steps. First, we transcribe

1The minimum time step required to achieve a desired accuracy in the regions of the solution where
no constraints are active can be calculated using the well-known error estimation formulas for RK schemes
[64, 19, 65, 66].
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the continuous trajectory optimization problem into an NLP problem using a q-stage RK

discretization as described in Section 6.3. We use trapezoidal discretization for the first

iteration and switch to a high-order discretization for subsequent iterations. Next, we set

i = 1, iter = 1, initialize Grid
i
iter = VJmin

, and choose an initial guess for all NLP variables.

In the following, the interpolation operator Ip is constructed using ENO interpolations (see

Section 4.3.2). Let us denote the set of initial guesses by X i
iter. The proposed sequential

trajectory optimization algorithm then proceeds as follows:

STOA I

Step 1. Solve the NLP problem on Grid
i
iter with the initial guess X i

iter on the horizon [τ i
0, τ

i
f ].

If Grid
i
iter has points from the level WJmax−1, go to Step 4.

Step 2. Mesh refinement.

(a) i. If the problem either has pure state constraints or mixed constraints on

states and controls, set Φi
iter = {xj,k,uj,k : tj,k ∈ Grid

i
iter}, Nr = Nx +Nu.

ii. If the optimal control problem does not have any constraints or only pure

control constraints are present, set Φi
iter = {uj,k : tj,k ∈ Griditer}, Nr = Nu.

iii. In case no controls are present in the problem, set Φi
iter = {xj,k : tj,k ∈

Grid
i
iter}, Nr = Nx.

In the following, let Φi
iter denote the set constructed in Step 2a of the algorithm,

that is, let Φi
iter = {φℓ(tj,k) : ℓ = 1, . . . , Nr, tj,k ∈ Griditer}.

(b) Initialize an intermediate grid Gridint = VJmin−1, with function values

Φint = {φℓ(tJmin,k) : φℓ(tJmin,k) ∈ Φi
iter, ∀ tJmin,k ∈ VJmin

, ℓ = 1, . . . , Nr},

(315)

and set j = Jmin − 1.

i. Find the points that belong to the intersection of Wj and Grid
i
iter

T̂j = {t̂j,km : t̂j,km ∈ Wj ∩ Grid
i
iter, for m = 1, . . . , Nt̂, 1 ≤ Nt̂ ≤ 2j − 1}.

(316)
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If T̂j is empty go to Step 2c otherwise go to the next step.

ii. Set m = 1.

A. Compute the interpolated function values at point t̂j,km ∈ T̂j, φ̂ℓ(t̂j,km) =

Ip(t̂j,km,TGridint
(t̂j,km)), where φ̂ℓ is the ℓ-th element of φ̂, for ℓ =

1, . . . , Nr.

B. Calculate the interpolative error coefficient dj,km at the point t̂j,km,
2

dj,km(φ) = max
ℓ=1,...,Nr

dj,km(φℓ) = max
ℓ=1,...,Nr

|φℓ(t̂j,km)− φ̂ℓ(t̂j,km)|.

If the value of dj,km is below the threshold ǫ(t̂j,km), then reject t̂j,km

and go to Step 2(b)iiF, otherwise add t̂j,km to the intermediate grid

Gridint and move on to the next step.

C. Add to Gridint Nneigh points on the left and Nneigh points on the right

of the point t̂j,km in Wj.

D. If Nneigh = 0 add to Gridint points belonging to the set

(VĴ ∩ [tj,km, tj,km+1]) \ Gridint,

else add to Gridint points belonging to the set

(VĴ ∩ [t̂j,km−Nneigh
, t̂j,km+Nneigh

]) \ Gridint.

Here Ĵ = min{j + ĵ, Jmax}, where ĵ = 2 if iter = 1 else ĵ ≥ 2, ĵ is

the number of finer levels from which the points be added to the grid

for refinement.

E. Add the function values at all the newly added points to Φint. If the

function value at any of the newly added points is not known, we

interpolate the function value at that point from the points in Grid
i
iter

and their function values in Φi
iter using Ip(·,T

Grid
i
iter

(·)).

F. Increment m by 1. If m ≤ Nt̂ go to Step 2(b)iiA, otherwise move on

to the next step.

2Note that φℓ(t̂j,k) ∈ Φi
iter for all t̂j,k ∈ T̂j and ℓ = 1, . . . , Nr.
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iii. Set j = j + 1. If j < Jmax go to Step 2(b)i, otherwise go to Step 2c.

(c) Terminate. The final nonuniform grid is Gridnew = Gridint and the correspond-

ing function values are in the set Φnew = Φint.

Step 3. Set iter = iter + 1. If the number of points and the level of resolution remain

the same after the mesh refinement procedure, terminate. Otherwise, interpolate

the NLP solution found in Step 1 on the new mesh Gridnew, which will be the new

initial guess X i
iter. Reassign the set Grid

i
iter to Gridnew, and go to Step 1.

Step 4. New horizon:

(a) Set Grid
i = Grid

i
iter.

(b) Increment i by 1.

(c) Set τ i
0 = τ i−1

0 + ∆τ i−1
ro .

(d) Terminate if τ i
0 ≥ τ i−1

f , otherwise set iter = 1, Grid
i
iter = VJmin

.

(e) Interpolate the solution of the previous horizon [τ i−1
0 , τ i−1

f ] given on Grid
i−1

to Grid
i
iter, which will be our new initial guess X i

iter for Step 13.

(f) Update information about the path constraints and the terminal constraints.

Step 5. Go to Step 1.

Remark 8. Although the STOA I will work for any form of ǫ(t), we recommend using the

following form,

ǫ(t) = ǫ̂E(max{0, t − ti+1
0 }), (317)

where ǫ̂ be at least of order hJmin
= 1/2Jmin , and E : [0, 1 − ti+1

0 ] → R
+ is such that

E(0) = 1. For example, one may choose E(t) = eβ(max{0,t−ti+1
0 }), where β ∈ R

+, for

t ∈ [0, 1], and i = 1, . . . , NH . This choice implies that the threshold is constant, is equal to

ǫ̂ for t ∈ [0, ti+1
0 ], and it varies with time for t ∈ (ti+1

0 , 1]. Such a choice stems from the fact

3It should be noted that although Grid
i
1 = Grid

i−1
1 on the transformed domain [0, 1] but both the grids

Grid
i−1
1 and Grid

i
1 correspond to different time intervals, that is, [τ i−1

0 , τ i−1
f ] and [τ i

0, τ
i
f ] respectively.
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that the solution should be calculated with high precision till the initial time of the next

horizon.

We demonstrate the above algorithm with the help of a simple, yet practical example,

in which the terminal condition is assumed to be changing with time.

Example 18

Consider the Zermelo’s problem taken from Ref. [33]. A ship must travel through a region

of strong currents. The equations of motion of the ship are

ẋ = V cos θ + u(x, y), (318)

ẏ = V sin θ + v(x, y), (319)

where θ is the heading angle of the ship’s axis relative to the (fixed) coordinate axes, (x, y)

represent the position of the ship, V is the magnitude of the ship’s velocity relative to

the water, and (u, v) are the velocity components of the current in the x and y directions,

respectively. The magnitude and direction of the currents are assumed to be,

u = −V y, (320)

v = 0, (321)

and the ship’s velocity V is assumed to be unity. The path constraint is the width of the

river, and we assume

0 ≤ x ≤ 6.8. (322)

The problem is to steer the ship in such a way so as to minimize the time necessary to go

from a given point A to another given point B. For this specific example, we assume the

coordinates of point A to be

xA = x(0) = 0, yA = y(0) = −4. (323)

The target B is assumed to be moving. However, the trajectory of point B is not known in

advance. Initially, the coordinates of B are taken to be as follows

xB = x(τf ) = 6, yB = y(τf ) = 1. (324)
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We assume (Step 4f of STOA I) that the information about the target is updated every time

before the re-optimization is done on a new horizon. We also assume that the trajectory of

the target is given by

xB(τ) = 6− 0.1τ, yB(τ) = 1− 0.2τ. (325)

Hence, on each horizon Hi, where i = 2, . . . , NH , we have the following terminal constraints,

x(τ i
f ) = 6− 0.1τ i

0, x(τ i
f ) = 1− 0.2τ i

0. (326)

For the sake of simplicity, and so that the proposed algorithm terminates in a finite number

of iterations, we assume that if τ i
0 ≥ 5, for some i ∈ [1, NH ], then

x(τm
f ) = 6− 0.1τ i

0, y(τm
f ) = 1− 0.2τ i

0, (327)

for all m = i, . . . ,NH .

We solved this problem on a grid with Jmin = 2 and Jmax = 7 for each horizon with

ǫ(τ) = 0.01e10 max{0,τ−τ i+1
0 }, where i = 1, . . . , NH . The other parameters used in the simu-

lation are p = 3 and Nneigh = 0. A fourth-order implicit Hermite-Simpson scheme [82] was

used as a high-order scheme for discretizing the continuous optimal control problem into an

NLP problem.

To solve this problem, we let ∆τ i
ro ≈ 1 sec (i = 1, . . . , NH − 1). One way for finding

the initial conditions (x(τ i
0), y(τ

i
0)) for the next horizon (Hi) is to integrate the dynamics

of the system using the control found on the previous horizon (Hi−1) for a duration of

∆τ i
ro seconds and then use the integrated states at the end of the interval [τ i−1

0 , τ i
0] as the

initial conditions for solving the NLP problem on the new horizon (Hi). For this example,

we picked the initial time τ i
0 for each horizon Hi, i = 1, . . . , NH , as follows. For the first

horizon we set τ1
0 = 0 and for subsequent horizons we choose

τ i
0 = min

τ
{τ ∈ Grid

i−1
τ : τ ≥ τ i−1

0 + 0.95}, (328)

where i = 2, . . . , NH ,

Grid
i−1
τ = {τ : τ = (τ i−1

f − τ i−1
0 )tj,k + τ i−1

0 , ∀ tj,k ∈ Grid
i−1}. (329)
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The algorithm terminated after solving the problem on 6 horizons. The number of itera-

tions taken by the algorithm before the algorithm terminated on each horizon (iterf ), the

maximum resolution level reached on each horizon (Jf ), the number of nodes used by the

algorithm at the final iteration on each horizon (Nf ), along with the initial and the final

times for all the horizons are shown in Table 17.

Table 17: Example 18. Target snapshots.

Horizon iterf Jf Nf τ0 τf
H1 3 4 9 0 5.6018
H2 3 4 9 1.0503 5.5198
H3 4 5 13 2.1677 5.4687
H4 6 7 17 3.1993 5.4965
H5 2 3 7 4.2043 5.5818
H6 1 2 5 5.2374 5.7538

The computed trajectory found using the proposed algorithm, along with the grid point

distributions for different horizons are shown in Figures 39 and 40. In these figures, the

initial point A is depicted by a square and the target point B is depicted by a cross. As

pointed out earlier, the target B is assumed to be non-stationary, and for convenience of

the reader, in Figures 39, 40 all the previous locations of B are also shown in addition to

the current position of target B. The optimal controls found for all the horizons are shown

in Figure 41. From Figures 39(a), 41(a), we see that the proposed algorithm used only 9

points out of 129 points of the grid V7 for solving the given problem on the first horizon

[0, τf ]. The grid point distribution 39(b) shows that the points from the finer resolution

levels V3, V4 are concentrated only near the initial time. On the second horizon, we assume

that the target B has moved to the new location. From Figures 39(c), 39(d), and 41(b),

we again find that the algorithm used only 9 points for discretizing the trajectory and the

points from the finer levels of resolution V3, V4 are again clustered near the current time.

For the third horizon, the algorithm used 13 points to find the optimal solution. From the

grid point distribution in Figure 39(f), it is evident that the algorithm started adding points

from the finer resolution level, V5, near the location where there should be a switching in

the control, since the ship is approaching the shore. Moving on to the fourth horizon, we

see that, as the boat is approaching the shore, there should be a switching in the control.
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Hence, in order to capture this control switching, the algorithm further added points at the

finer resolution levels V6, and V7, as can be observed from the grid point distribution for

the fourth horizon (Figure 40(b)). For the fifth and sixth horizons, the algorithm used only

7 and 5 points respectively for computing the optimal solution. Since on the sixth horizon,

we had τ6
0 > 5, the target was further assumed to be stationary located at

x(τm
f ) = 6− 0.1τ5

0 , y(τm
f ) = 1− 0.2τ5

0 , (330)

for all m = 5, . . . , NH . Hence, the algorithm terminated after solving the problem on the

sixth horizon. The overall CPU time taken by STOA I to solve this problem was 5.1 seconds.

The combined trajectory and the control found on different horizons is shown in Figure 42.

Next, we incorporate the information of the trajectory profile of the target (325) in

the optimal control problem itself. Since the trajectory profile of the target is assumed

to be given for the optimal control problem at hand, the resulting problem can be solved

in one go using MTOA (see Section 6.5). The results found using MTOA are shown in

Figure 42 and the overall CPU time taken by MTOA to solve this problem was 9.5 seconds.

The minimum time (τf ) to steer the ship from point A to the target point B found using

MTOA is τf = 5.8637. We also solved the same problem using STOA I. For comparison

purposes the results found using STOA I are again shown in Figure 42. The number of

iterations taken by the algorithm before the algorithm terminated on each horizon (iterf ),

the maximum resolution level reached on each horizon (Jf ), the number of nodes used by

the algorithm at the final iteration on each horizon (Nf ), along with the initial and the

final times for all the horizons are shown in Table 18. The overall CPU time to solve the

problem using STOA I was 6.3 seconds. Hence, we see that the cost found by solving the

problem using MTOA is less by 5−4 than the cost found using STOA I for the problem

when the trajectory profile of the target is assumed to be known. However, we see that the

overall CPU time taken by STOA I is about two-thirds of the overall CPU time taken by

MTOA to solve the same problem.
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Table 18: Example 18. Target trajectory known.

Horizon iterf Jf Nf τ0 τf
H1 3 4 9 0 5.9065
H2 3 4 9 1.1075 5.8256
H3 3 4 11 2.2870 5.8648
H4 6 7 17 3.4051 5.8643
H5 1 2 5 4.4810 5.8642
H6 1 2 5 5.5184 5.8642

7.2.2 Sequential Trajectory Optimization Algorithm II (STOA II)

In this section, we present yet another sequential trajectory optimization scheme referred

to as STOA II, which takes full advantage of the multiresolution structure of the grid in

the mesh refinement procedure so that the previously computed information is retained,

while moving from one horizon to the next. In order to avoid notational complexities, and

without loss of generality, we will assume in this section that the time interval of interest

is the unit interval t ∈ [0, 1] = [τ0, τf ]. Transformation (220) can be used to convert any

optimal control problem from the domain [τ0, τf ] to [0, 1].

Consider again a set of dyadic grids Vj andWj as described in Eqs. (218) and (219). We

choose the parameters Jmin, Jmax, and ǫ(t) as for the STOA I. Then the proposed STOA II

involves the following steps. First, we transcribe the continuous trajectory optimization

problem into an NLP problem using a q-stage RK discretization as described in the previous

section. We use trapezoidal discretization for the first iteration and switch to a high-order

discretization for subsequent iterations. Next, we set i = 1, iter = 1, ti0 = 0, initialize

Grid
i
iter = VJmin

, and choose an initial guess for all NLP variables (X i
iter). Fix J̄ = Jmin − 1.

The proposed sequential trajectory optimization algorithm proceeds as follows:

Step 1. Solve the NLP problem on Grid
i
iter with the initial guess X i

iter on the horizon [ti0, 1].

If Grid
i
iter has points from the level WJmax−1, go to Step 4.

Step 2. Find Gridnew using the mesh refinement step (Step 2) of STOA I.

Step 3. Set iter = iter + 1. If the number of points and the level of resolution remain

the same after the mesh refinement procedure then terminate, otherwise interpolate
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the NLP solution found in Step 1 on the new mesh Gridnew, which will be our new

initial guess X i
iter, reassign the set Grid

i
iter to Gridnew, and go to Step 1.

Step 4. New horizon.

(a) Set Grid
i = Grid

i
iter.

(b) Increment i by 1.

(c) Set ti0 = tJ̄ ,i−1.

(d) If i = 2J̄ + 1 terminate, else go to the next step.

(e) Set Grid
i− = {t : t ∈ Grid

i−1 and t ≥ tJ̄ ,i−1}.

(f) If the number of points in the set {Grid
i− ∩ VJmin−1} is less than p + 1, set

Jmin = Jmin + 1.

(g) Set iter = 1, Vj = Vj \ (Vj ∩ [0, tJ̄ ,i−1)) (where j = Jmin − 1, . . . , Jmax), and

Wj =Wj \ (Wj ∩ [0, tJ̄ ,i−1)) (where j = Jmin − 1, . . . , Jmax − 1). Find Gridnew

using the mesh refinement step (Step 2) of STOA I with Grid
i
iter = Grid

i−.

(h) Increment iter by 1 and reassign the set Grid
i
iter to Gridnew.

(i) Interpolate the NLP solution given on Grid
i− to Grid

i
iter, which will be our new

initial guess X i
iter for Step 1.

(j) Update the information about the path constraints and the terminal con-

straints.

Step 5. Go to Step 1.

Remark 9. Although STOA II will work for any form of the threshold ǫ(t), we recommend

choosing

ǫ(t) = ǫ̂E(max{0, t − tJ̄,i}), (331)

where ǫ̂ is at least of order hJmin
= 1/2Jmin , and E : [0, 1 − tJ̄,i]→ R

+ such that E(0) = 1,

t ∈ [0, 1], and i = 1, . . . , NH . This choice implies that the threshold is constant and is equal

to ǫ̂ for t ∈ [0, tJ̄ ,i] and varies with time for t ∈ (tJ̄ ,i, 1]. Such a choice stems from the fact
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that the solution should be calculated with high precision till the initial time of the next

horizon, which in this case would be tJ̄ ,i.

Example 19

In this example, we again consider the re-entry guidance problem of an Apollo-type vehicle

taken from Ref. [112]. The equations of motion during the flight of the vehicle through the

Earth’s atmosphere are as follows:

v̇ = − S

2m
ρv2cD(u)− g sin γ

(1 + ξ)2
,

γ̇ =
S

2m
ρvcL(u) +

v cos γ

R(1 + ξ)
− g cos γ

v(1 + ξ)2
,

ξ̇ =
v

R
sin γ,

ζ̇ =
v

1 + ξ
cos γ,

where v is the velocity, γ is the flight path angle, ξ = h/R is the normalized altitude, h is

the altitude above the Earth’s surface, R is the Earth’s radius, and ζ is the distance on the

Earth’s surface of a trajectory of an Apollo-type vehicle. The control variable is the angle

of attack u. For the lift and drag the following relations hold:

cD = cD0
+ cDL cos u, cD0

= 0.88, cDL = 0.52, (332)

cL = cL0
sinu, cL0

= −0.505. (333)

The air density is assumed to satisfy

ρ = ρ0e
−βRξ. (334)

The values of the constants are

R = 209.0352 (105 ft),

S/m = 50, 000 (10−5 ft2 slug−1),

ρ0 = 2.3769 × 10−3(slug ft−3),

g = 3.2172 × 10−4 (105 ft s−2),

β = 1/0.235 (10−5 ft−1).
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The cost functional to be minimized that describes the total stagnation point convective

heating per unit area is given by the integral

J(u) =

∫ τf

0
10v3√ρ dτ. (335)

The vehicle is to be maneuvered into an initial position favorable for the final splashdown

in the Pacific. The data at the moment of entry are

v(0) = 0.35 (105 ft s−1), γ(0) = −5.75 deg, (336)

ξ(0) = 4/R (h(0) = 400, 000 ft), ζ(0) = 0 (105 ft). (337)

The data prescribed at the unspecified terminal time tf for this problem are

v(τf ) = 0.0165 (105 ft s−1), γ(τf ) unspecified, (338)

ξ(τf ) = 0.75530/R (h(tf ) = 75530 ft), ζ(τf ) = 51.6912 (105 ft). (339)

The angle of attack is constrained to be between ±68 deg, that is,

|u| ≤ 68 deg . (340)

We have used STOA II to solve this problem with Jmin = 4, and Jmax = 7. The threshold

used for this problem was

ǫ(t) = 0.01e7 max{0,t−t3,i}, i = 1, . . . , NH . (341)

The other parameters used in the simulation for the mesh refinement step were p = 3 and

Nneigh = 1. A fourth-order implicit Hermite-Simpson scheme [82] was used as a high-order

scheme for discretizing the continuous optimal control problem into an NLP problem. The

algorithm terminated after solving the problem on 8 horizons and the overall CPU time

taken by the algorithm was 41.2 seconds, out of which 22 seconds were used to compute the

solution on the first horizon H1. For sake of brevity, we only show the time histories of the

control u, along with the grid point distribution for different horizons, in Figures 43, 44,

and 45. The number of iterations taken by the algorithm before the algorithm terminated

on each horizon (iterf ), the maximum resolution level reached on each horizon (Jf ), and

the number of nodes used by the algorithm at the final iteration on each horizon (Nf ) are

shown in Table 19.
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Table 19: Example 19.

Horizon iterf Jf Nf

H1 2 5 24
H2 2 7 27
H3 1 7 24
H4 1 4 11
H5 1 4 9
H6 1 4 7
H7 3 7 17
H8 1 7 13

7.2.3 STOA I vs. STOA II

Both STOA I and STOA II have their own merits. STOA I will work for any user-specified

time intervals (∆τro), whereas the time intervals in STOA II are dyadic and fixed. On the

other hand, STOA II takes full advantage of the multiresolution structure of the grid in the

mesh refinement procedure. Most of the nodes in the grid for the new horizon are the nodes

from the grid of the previous horizon. In STOA II most of the points of Grid
i
1 consist of the

points belonging to Grid
i− ⊂ Grid

i−1, for which the solution is already known. Hence, none

of the previously computed information is lost while going from one horizon to the next.

Therefore, in order to provide an initial guess X i for starting the NLP solver on horizon Hi,

the function values only at few additional points in the vicinity of the current time need

to be interpolated from the solution found on the grid Grid
i−1 during the previous horizon

Hi−1. Moreover, in STOA I the algorithm always begins to iterate from the coarsest grid

VJmin
. In STOA II, since most of the points of Grid

i
1 consist of the points belonging to

Grid
i−, the algorithm need not necessarily start from the coarsest grid, and in fact Grid

i
1

may have nodes from finer scales resulting in faster convergence.

For both STOA I and STOA II, if the path constraints and the terminal constraints

do not change drastically, the algorithm for each successive horizon converges pretty fast

since the solution of the previous horizon is provided as an initial guess for solving the NLP

problem on the current horizon. The CPU times achieved using the current implementation

show the merits of the proposed algorithms in terms of speed. We should mention at

this point that since all the computations presented in this chapter were carried out in
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MATLAB, the reported CPU times can be significantly reduced by coding the algorithms

in C or FORTRAN.

7.3 Summary

In this chapter, we have proposed two sequential trajectory optimization schemes to solve

optimal control problems with moving targets and/or under dynamically changing environ-

ments in a fast and efficient way. The proposed algorithms autonomously discretize the

trajectory with more nodes near the current time (not necessarily uniformly placed) while

using a coarser grid for the rest of the trajectory in order to capture the overall trend.

Moreover, if the states or the controls are irregular at a certain future time, the mesh is

further refined automatically at those locations as well. The final grid point distributions

for all the horizons and for both the examples considered in this chapter confirm these

observations. Given their simplicity and efficiency, the proposed techniques offer a poten-

tial for online implementation for solving problems with moving targets and dynamically

changing environments.
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(f) Horizon 3. Grid point distribution.

Figure 39: Example 18 (Target snapshots). Trajectory along with the grid point distri-
butions for horizons 1, 2, and 3.
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(d) Horizon 5. Grid point distribution.
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(f) Horizon 6. Grid point distribution.

Figure 40: Example 18 (Target snapshots). Trajectory along with the grid point distri-
butions for horizons 4, 5, and 6.
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Figure 41: Example 18 (Target snapshots). Time history of control θ for all horizons.
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(b) Time history of control θ.

Figure 42: Example 18. Trajectory along with the time history of the control θ using
three different multiresolution strategies.
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Figure 43: Example 19. Control time history and grid point distributions for horizons 1,
2, and 3.
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(f) Horizon 6. Grid point distribution.

Figure 44: Example 19. Control time history and grid point distributions for horizons 4,
5, and 6.
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(b) Horizon 7. Grid point distribution.
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(d) Horizon 8. Grid point distribution.

Figure 45: Example 19. Control time history and grid point distributions for horizons 7
and 8.
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CHAPTER VIII

THESIS CONTRIBUTION, CONCLUSIONS, AND FUTURE WORK

8.1 Conclusions and Contributions

8.1.1 Hierarchical Multiresolution Adaptive Mesh Refinement for the Solution
of Evolution PDEs

It is well-known that the solution of evolution partial differential equations is often not

smooth even if the initial data are smooth. For instance, shocks may develop in hyperbolic

conservation laws and kinks in Hamilton-Jacobi equations. To capture discontinuities and

irregularities in the solution with high accuracy one needs to use a fine resolution grid.

The use of a uniformly fine grid requires a large amount of computational resources in

terms of both CPU time and memory. Hence, in order to solve evolution equations in a

computationally efficient manner, several adaptive gridding techniques for solving partial

differential equations have been proposed in the literature. Currently, popular adaptive

methods for solving PDEs are: (i) moving mesh methods [1, 2, 4, 7, 8, 38, 39, 50, 91, 98,

105, 106, 136], in which an equation is derived that moves a grid of a fixed number of finite

difference cells or finite elements so as to follow and resolve any local irregularities in the

solution; (ii) the so called “adaptive mesh refinement” method [10, 13, 14, 15], in which

the mesh is refined locally based on the difference between the solutions computed on the

coarser and the finer grids, and (iii) wavelet-based or multiresolution-based methods [3,

16, 68, 69, 75, 76, 87, 139, 140, 141], which take advantage of the fact that functions with

localized regions of sharp transition can be very well compressed. Our proposed method

falls under this latter category.

Recently, Alves et al. [3] proposed an adaptive multiresolution scheme, similar to the

multiresolution approach proposed by Harten [68, 69] and Holmstrom [75] for solving hyper-

bolic PDEs. These approaches share similar underlying ideas. Namely, the first step is to

interpolate the function values at the points belonging to a particular resolution level, from

the corresponding points at the coarser level, and find the interpolative error at the points

147



of that particular resolution level. Once this step has been performed for all resolution

levels, all the points that have an interpolative error greater than a prescribed threshold

are added to the grid, along with their neighboring points at the same level and the neigh-

boring points at the next finer level. The main difference between these approaches is that

in Harten’s approach [68, 69], the solution for each time step is represented on the finest

grid and one calculates the interpolative errors at all the points of the finest grid at each

mesh refinement step. On the other hand, Holmstrom [75] and Alves et al. [3], compute

the interpolative error only at the points that are in the adaptive grid. If a value that

does not exist is needed, Holmstrom interpolates the required function value recursively

from a coarser scale. Alternatively, Alves et al. [3] add to the grid the points that were

used to predict the function values at all previously added points, in order to compute the

interpolative error during the next mesh adaptation.

In this work and Ref. [85, 86], we have proposed a novel multiresolution scheme for data

compression, which results in a higher compression rate compared to the multiresolution ap-

proach by Harten [68, 69, 70] for the same desired accuracy. Subsequently, we developed an

encoding scheme to solve initial-boundary value problems (IBVP) encountered in evolution

PDEs. The proposed multiresolution scheme for data compression works with any of the

interpolation techniques mentioned in Ref. [70]. One of the key features of our algorithm is

that it is a “top-down” (from coarse to fine scale) approach, and we use the most recently

updated information to make predictions. Moreover, our interpolations are not restricted

to the use of only the retained points at the coarser level, but also use the retained points

at the same level (and even the next finer level in the case of solving PDEs). This allows for

a more accurate interpolation which, in turn, leads to fewer points in the final grid. In the

proposed algorithm, we continuously keep on updating the grid as we go from the coarsest

level to finer levels. If the interpolative error at a point that belongs to a particular level is

greater than the prescribed threshold, we add that point to the grid. In the case of solving

PDEs, we also add the neighboring points at the same level and the neighboring points at

the next level to the grid. We make use of the fact that the point at which the interpolative

error is greater than a prescribed threshold, this point is added to the grid and, in addition,
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it can be used to predict the remaining points at the same level and the levels below it.

Moreover, for refining the mesh for solving evolution PDEs we predict the function value

at a particular point only from the points that are already present in the grid, hence we

avoid recursive interpolations from the coarser scales as is done by Holmstrom [75]. At the

same time we do not need to add any extra points to the grid that are required just for

computing the interpolative errors at the next mesh refinement step, as is done by Alves et

al. [3].

Several examples have demonstrated the stability and robustness of the proposed algo-

rithm. In all examples considered, the algorithm adapted dynamically to any existing or

emerging irregularities in the solution, by automatically allocating more grid points to the

region where the solution exhibited sharp features and fewer points to the region where

the solution was smooth. As a result, the computational time and memory usage can be

reduced significantly, while maintaining an accuracy equivalent to the one obtained using

a fine uniform mesh. We observed speed-up factors of up to 64 (for Jmax = 12) when

compared to the uniform mesh implementation. We also found that the speed-up factors

increased at an approximate rate of 2 with the increase in the resolution level. At the same

time, we have observed savings of up to 43% in terms of the number of grid points and a

gain of about 27% in terms of speed-up factors compared to the approach of Alves et al. [3].

8.1.2 Trajectory Optimization Using Multiresolution Techniques

In this work and Ref. [79, 82], we have proposed a novel multiresolution-based approach

for solving optimal control problems. As mentioned before, the solution of general (realis-

tic) trajectory optimization problems is a challenging task. Analytical solutions are seldom

available or even possible. In all numerical methods for the solution of trajectory opti-

mization problems one needs to compromise between accuracy of the solution, robustness

in terms of convergence, and execution speed. The use of a high resolution (dense) grid

to accurately capture any discontinuities or switchings in the state or control variables re-

quires a large amount of computational resources both in terms of CPU time and memory.

Moreover, a large grid results in a large number of the variables to optimize, which in turn,

149



can lead to ill-conditioning. MTOA automatically and inexpensively generates a grid that

reduces the discretization error with each iteration. As a result, one is able to capture

the solution accurately and efficiently using only a few nodes. The algorithm can handle

state constraints, control constraints, and mixed constraints with ease. All the transition

points in the solution (for example, bang-bang subarcs, or entry and exit points associated

with state or mixed constraints) are captured with high accuracy. The convergence of the

algorithm can be enhanced by initializing the algorithm on a coarse grid having a small

number of variables. Once a converged solution is attained, the grid can be further refined

by increasing the accuracy locally, only at the vicinity of those points that cannot be ac-

curately interpolated by neighboring points in the grid. The methodology thus provides a

compromise between robustness with respect to initial guesses, intermediate and final solu-

tion accuracy, and execution speed. These observations are supported by several numerical

examples of challenging trajectory optimization problems.

Compared to prior similar results in this area [22, 20, 118, 63, 24, 27, 121] the algorithm

proposed in this thesis has several advantages. First, we avoid the solution of a secondary

optimization problem for adding points to the mesh as in Ref. [18, 20, 22]. Only simple

interpolations are needed to refine the mesh, which can be done on the fly. Furthermore, our

algorithm does not involve any integrations, as opposed to the highly accurate integrations

(Romberg quadratures) required in the method by Betts et al. [20], which again can be

computationally expensive for nonlinear dynamics. Finally, our algorithm is capable of not

only adding points to the grid but also removing points from the grid when and where is

needed. Moreover, both the operations of adding and removing points can be done in a single

step. In the pseudospectral knotting method of Ross et al. [118, 63], one needs to know a

priori the approximate number and location of singularities in the solution. These may not

be known beforehand for most problems. The number of nodes to be added to a particular

phase must be defined by the user before starting the algorithm. In our algorithm the user

need not know a priori the number nor the locations of the irregularities in the solution. The

algorithm will automatically detect the regions in the solution that are nonsmooth and it

will add points accordingly when and where is needed. Furthermore, the nonuniform grids
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of pseudospectral methods result in grid distributions that remain fixed for each phase, since

the location of the nodes are dictated by the zeros of the first derivative of the Legendre or

Chebyshev polynomials, irrespective of the location of the soft knots [118]. Our algorithm

uses a grid that is fully adaptive, embracing any form depending on the irregularities in the

solution. This provides more flexibility in capturing any irregularities in the solution.

From all previous references in this area the work of Binder et al. [24, 27], and Schlegel et

al. [121] are the closest – at least in spirit – to the approach proposed in the current work.

These references use wavelet-based ideas to locate possible singularities in the solution

and refine the grid locally. However, since these references work solely in the wavelet

domain, they may lead to an increase of the overall computational overhead, as one needs

to transform back and forth between the physical and wavelet domain. We avoid this issue

altogether by always working in the physical domain. Nonetheless, by working with dyadic

grids we still take advantage of the major advantage of the wavelet-based analysis, that is,

multiresolution functional representations [70, 103].

8.1.3 Multiresolution Trajectory Optimization Schemes for Problems with Mov-
ing Targets and/or Dynamically Changing Environments

Next, we move on to the optimal control problems with moving targets and/or dynamically

changing environments. A common line of attack for solving nonlinear trajectory optimiza-

tion problems in real time [125, 100, 88, 144] is to break the problem into two phases: an

offline phase and an online phase. The offline phase consists of solving the optimal control

problem for various reference trajectories and storing these reference trajectories onboard

for later online use. These reference trajectories are used to compute the actual trajectory

online via a neighboring optimal feedback control strategy [31, 92, 130, 33] typically based

on the linearized dynamics. This approach requires extensive ground-based analysis and

onboard storage capabilities [94]. Moreover, perturbations around the reference trajectories

might not be small, and therefore applying the linearized equations may not be appropriate.

In order to overcome the above mentioned problems, Kumar and Seywald [94] proposed

to solve the nonlinear trajectory optimization problem online for the whole time interval,

but with high accuracy only near the current time. Kumar and Seywald [94] proposed a
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dense-sparse discretization technique in which the trajectory is discretized by placing ND

dense nodes close to the current time and NS sparse nodes for the rest of the trajectory. The

state values at some future node are accepted as optimal and are prescribed as the initial

conditions for the rest of the trajectory. The remainder of the trajectory is again discretized

using a dense-sparse discretization technique, and the whole process is repeated again. The

algorithm can be stopped by using any adhoc scheme, for example, it can be terminated

when the density of the dense nodes is less than or equal to the density of the sparse nodes.

Ross et al. [119] also proposed a similar scheme by solving the discretized NLP problem on

a grid with a certain number of nodes and then propagate the solution from the prescribed

initial condition by integrating the dynamics of the system for a specified interval of time.

The values of the integrated states at the end of the integration interval are taken as the

initial condition for solving the NLP problem for the rest of the trajectory, again on a grid

with a fixed number of nodes. The whole process is repeated until the terminal conditions

are met.

In this thesis and Ref. [83, 78], we have developed two sequential trajectory optimization

schemes that autonomously discretize the trajectory with more nodes (finer grid) near the

current time (not necessarily uniformly placed) and use fewer nodes (coarser grid) for the

rest of the trajectory, the latter to capture the overall trend. Furthermore, if the states or

controls are irregular in the vicinity of the current time, the algorithm will automatically

further refine the mesh in this region to capture the irregularities in the solution more

accurately. The generated grid is fully adaptive and can embrace any form depending on the

solution. Given their simplicity and efficiency, the proposed techniques offer a potential for

online implementation for solving problems with moving targets and dynamically changing

environments. However, we would like to point that the neighboring optimal feedback

control strategy is more robust compared to solving the nonlinear programming problem

for trajectory generation.
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8.2 Future Work

This work lays the foundation for solving optimal control problems using multiresolution

techniques in a fast and efficient way. Apart from what has been done in this dissertation,

there are many directions and unsolved problems which are worth investigating in the future.

8.2.1 Mesh Refinement

The adaptive grid generated in the proposed multiresolution-based algorithm for data com-

pression and the solution of evolution PDEs, MTOA, STOA I, and STOA II depends on

how we select points along the grid, that is, whether we move from left to right or from

right to left across each level. It also depends on the location of the singularity. If the

singularity is located in the middle, then it does not matter whether we move from left to

right or from right to left. The result will be the same nonuniform grid. If on the other

hand, the singularity is not in the middle, then the grid depends on the way in which we

traverse across each level. This suggests that by using a suitable probability distribution

function to choose the order in which the points at each particular level are selected, one

may be able to further optimize the grid.

The threshold ǫ in the proposed multiresolution-based algorithm for data compression

and the solution of evolution PDEs, MTOA, STOA I, and STOA II is level independent.

During the course of this work, it was observed that the interpolative error coefficients

decrease with the increase in the resolution level. The reduction in the interpolation error

is because of the decrease in the distance between the interpolating points as we go to

finer and finer levels. Hence, the future work should investigate the possible use of level

dependent threshold for solving both evolution PDEs and optimal control problems, which

will again help in optimizing the grid further.

8.2.2 Multiresolution Mesh Refinement for the Solution of Evolution PDEs

Follow-up work should concentrate on extending the proposed multiresolution approach for

solving evolution PDEs to multiple dimensions. It is expected that the savings in terms of

CPU time and the number of grid points observed for the single spatial dimension case will
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be greater in multiple dimensions. One approach in this direction is to work directly with

interpolating functions in higher dimensions and then follow the same approach as for the

one-dimensional case. That is, use the error between the actual and interpolated values from

neighboring points to determine which points to retain in the grid and which to remove.

The challenge is to find a consistent way of selecting neighboring points. Another idea is to

proceed in a dimension by dimension fashion. That is, to compute the interpolative error

coefficients at a particular point using an interpolation operator based on function values

in the intermediate grid along one direction while keeping the other coordinates fixed and

repeating the same for all directions.

In the proposed multiresolution mesh refinement scheme for the solution of evolution

PDEs, the values of the parameters N1 and N2 are considered to be constant across the

spatial as well as temporal domain. Future work should focus on the adaptation of these

parameters in order to further optimize the grid.

In this work, ∆tn is computed based on the Courant-Friedrichs-Levy (CFL) condi-

tion [137] for hyperbolic equations and the von Neumann condition [137] for all other evo-

lution equations. For both CFL condition and the von Neumann condition ∆tn depends

on ∆xmin. Hence, in the proposed algorithm ∆tn changes adaptively depending on ∆xmin,

which also changes adaptively. Therefore, a potential extension of this work is to incor-

porate different values of ∆tn for different grid levels which might further speed up the

computations.

8.2.3 Multiresolution Trajectory Optimization Algorithm

A preliminary error analysis shows that the effect of the proposed multiresolution scheme is

somewhat akin to a local control of the tolerance of the Runge-Kutta integration error. The

error analysis also provides guidelines on how certain parameters needed in the algorithm

(e.g., the order of the interpolating polynomials, the maximum/minimum time steps, etc)

can be chosen for its correct implementation and to yield consistent approximations. Future

work should focus on more quantitative measures for the selection of these parameters, and

well as on providing explicit error bounds both for the unconstraint case as well as for more
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general cases that include path constraints.

Another problem of interest is to investigate the possible use of different grids for dif-

ferent variables. In the current implementation of MTOA, the grid for all the states and

controls is the same even if the refinement is done based only on controls. The use of differ-

ent grids for different variables should have benefits in terms of the optimality of the grid

and hence should speed up the computations. But at the same time, the use of different

grids for different variables might affect the sparsity of the NLP problem being solved which

plays a crucial role in solving a NLP problem.

8.2.4 Applications of Sequential Trajectory Optimization Algorithms

There are several applications in which the proposed Sequential Trajectory Optimization

Algorithms might prove advantageous and are worth investigating, for example, aircraft

emergency landing and low thrust trajectory generation.

In an aircraft, once an emergency condition arises, effective generation of a safe trajec-

tory (and then following this trajectory) becomes crucial to a safe landing. From the pilots

point of view, emergency trajectory generation is defined as the determination of a course

of action with sufficient detail to describe immediate aircraft dynamic states and required

control activities to ensure a safe landing. Emergency trajectory generation requires a high

level of detail in the near-term and a long time-scale to avoid generating a trajectory that

is later found to be lacking. Generation of a detailed emergency trajectory can therefore

be viewed as a task that may prevent problems such as taking too long to land (important

in smoke and fire situations) or requiring extreme maneuvers to intercept the localizer and

glideslope (important in situations with degraded aircraft stability and maneuverability).

Another example is the low thrust trajectory generation. Constructing the trajectory for

a spacecraft as it transfers from a low earth orbit to a mission orbit is characterized by large

time scales. Since the thrust applied to the vehicle is small in comparison to the weight of

the spacecraft, the duration of the trajectroy can be very long. If a problem is solved from

the initial time to the final time in one go, the resulting NLP problem might go substantially

large to meet reasonable accuracy requirements. Lot of computational resources might be
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required for solving such a problem with high accuracy. Proposed sequential trajectory

optimization algorithms might prove advantageous in solving such problems by solving

several small scale problems with high accuracy only near the current time.
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APPENDIX A

NUMERICAL ANALYSIS

A.1 Polynomials and Interpolation

The general form of an n-th degree polynomial is

Pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, (342)

where n denotes the degree of the polynomial and a0 to an are constant coefficients. There

are n+ 1 coefficients, so n+ 1 discrete data points are required to obtain unique values for

the coefficients.

Definition 7 (Interpolation). An interpolating approximation to a function f(x) is an

expression Pn(x), whose n + 1 degrees of freedom are determined by the requirement that

the “interpolant” agrees with f(x) at each point of a set of n+ 1 interpolation points,

Pn(xi) = f(xi), i = 0, 1, 2, . . . , n. (343)

When a polynomial of degree n, Pn(x), is fit exactly to a set of n+1 discrete data points

(x0, f0), (x1, f1), . . . , (xn, fn), the polynomial has no error at the data points themselves.

However, at the locations between the data points, there is an error which is defined by

Error(x) = |f(x)− Pn(x)|. (344)

It is shown later in Appendix A.1.1 that if f is sufficiently smooth (i.e., is continuously

differentiable at least n+ 1 times) in the interval [x0, xn] then the error term is given by

Error(x) =
f (n+1)(ξ)

(n+ 1)!
Πn

i=0(x− xi), (345)

where x0 ≤ ξ ≤ xn.

Next, we briefly describe the polynomials and the interpolation techniques used in this

work for interpolating a given data set (xi, f(xi)), for i = 0, 1, . . . , n.
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A.1.1 Divided Difference Polynomials

A divided difference is defined as the ratio of the difference in the function values at two

points divided by the difference in the values of the corresponding independent variable.

Thus, the first divided at point i is defined as

f [xi, xi+1] =
f(xi+1)− f(xi)

xi+1 − xi
. (346)

The second divided difference is defined as

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi
. (347)

Similar expansions can be obtained for divided differences of any order. Also note that

f [xi, xi+1] =
f(xi+1)− f(xi)

xi+1 − xi
=
f(xi)− f(xi+1)

xi − xi+1
= f [xi+1, xi]. (348)

Approximating polynomials for nonequally spaced data can be constructed using divided

differences. Let (x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)) be the given n + 1 points. Then

the divided difference of orders 1, 2, . . . , n are defined by the relations

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
, (349)

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
, (350)

...

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , xn]− f [x0, x1, . . . , xn−1]

xn − x0
. (351)

By definition, f [xi] = f(xi), for i = 0, . . . , n. Furthermore,

f [x, x0] =
f(x)− f(x0)

x− x0
, (352)

therefore

f(x) = f(x0) + (x− x0)f [x, x0]. (353)

Again from the definition of divided differences we have

f [x, x0, x1] =
f [x, x0]− f [x0, x1]

x− x1
, (354)
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which gives

f [x, x0] = f [x0, x1] + (x− x1)f [x, x0, x1]. (355)

Substituting the value of f [x, x0] from (355) in (353) we get

f(x) = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x, x0, x1]. (356)

Similarly

f [x, x0, x1, x2] =
f [x, x0, x1]− f [x0, x1, x2]

x− x2
, (357)

and therefore

f [x, x0, x1] = f [x0, x1, x2] + (x− x2)f [x, x0, x1, x2]. (358)

Substituting the value of f [x, x0, x1] in (356) we get

f(x) = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2] (359)

+ (x− x0)(x− x1)(x− x2)f [x, x0, x1, x2]. (360)

Proceeding in this way we obtain

f(x) = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

+ (x− x0)(x− x1)(x− x2)f [x0, x1, x2, x3] + · · ·

+ (x− x0)(x− x1) · · · (x− xn)f [x, x0, x1, · · · , xn]. (361)

This formula is called Newton’s form of interpolating polynomial. Let

Pn(x) = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

+ (x− x0)(x− x1)(x− x2)f [x0, x1, x2, x3] + · · ·

+ (x− x0)(x− x1) · · · (x− xn−1)f [x, x0, x1, · · · , xn−1]. (362)

Hence, the interpolating error is given by

|f(x)− Pn(x)| = f [x, x0, x1, · · · , xn]Πn
i=0(x− xi). (363)

Moreover, if f is sufficiently smooth (i.e., is continuously differentiable at least n+ 1 times)

in the interval [x0, xn] then [45]

f [x, x0, x1, · · · , xn] =
f (n+1)(ξ)

(n+ 1)!
, x0 ≤ ξ ≤ xn+1. (364)
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A.1.2 Lagrange Interpolating Polynomial

A Lagrange interpolating polynomial of degree n is given by

Pn(x) =

n
∑

i=0

Ci(x)f(xi), (365)

where Ci(x) are polynomials of degree n which satisfy the condition

Ci(xj) = δij , (366)

where δij is the Kronecker δ-function and are defined as

Ci(x) =

n
∏

j=0,j 6=i

x− xj

xi − xj
. (367)

The n factors for (x− xj) insure that Ci(x) vanishes at all the interpolation points except

xi. As opposed to forward-difference polynomials, the interpolating points xi for Lagrange

interpolation can be evenly spaced or unevenly spaced.

A.1.3 Hermite’s Interpolating Polynomial

The interpolating formulas, considered so far, make use of only function values. We now

give an interpolation formula in which both the function and its first derivative values are

to be assigned at each point of interpolation, that is,

P2n+1(xi) = fi, (368)

P ′
2n+1(xi) = f ′i , (369)

for i = 0, 1, . . . , n. This is referred to as Hermite’s interpolation formula and such a poly-

nomial is given by

P2n+1(x) =
n
∑

i=0

Ui(x)fi +
n
∑

i=0

Vi(x)f
′
i , (370)

where

Ui(x) = [1− 2C ′
i(xi)(x− xi)][Ci(x)]

2, (371)

Vi(x) = (x− xi)[Ci(x)]
2, (372)

and Ci(x) are given by (367).
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A.1.4 Chebyshev Polynomial

Chebyshev polynomials are eigenfunctions of the following differential equation

(1− x2)
d2y

dx2
− xdy

dx
+ λy = 0, (373)

with eigenvalue λ = n2. There are two solutions which are given as series by:

y1(x) = 1− n2

2!
x2 +

(n− 2)n2(n+ 2)

4!
x4 − (n− 4)(n − 2)n2(n+ 2)(n + 4)

6!
x6 + . . . (374)

and

y2(x) = x− (n − 1)(n + 1)

3!
x3 +

(n− 3)(n − 1)(n + 1)(n + 3)

5!
x5 − . . . (375)

When n is a non-negative integer, one of these series will terminate, giving a polynomial

solution. If n ≥ 0 is even, then the series for y1 terminates at xn. If n is odd, then the

series for y2 terminates at xn. These polynomials are known as the Chebyshev polynomials.

(In fact, polynomial solutions are also obtained when n is a negative integer, but these are

not the new solutions, since the Chebyshev equation is invariant under the substitution of

n by −n.)

Now, for n = 0,

y1(x) = 1, (376)

and if we take x = cos(t), then we have

y1(cos(t)) = 1 = cos(0 · t). (377)

For n = 1,

y2(x) = x, (378)

and if we again take x = cos(t), then

y2(cos(t)) = cos(t). (379)

Similarly, for n = 2,

y1(cos(t)) = 1− 4

2
cos2(t) = cos(2t), (380)

and so on. Hence, Chebyshev polynomial Pn(x) is given by the following equation

Pn(cos(t)) = cos(nt), ∀ n. (381)
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A.1.5 Legendre Polynomial

Legendre polynomials are the eigenfunctions of the following differential equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ λy = 0, (382)

with an eigenvalue λ = n(n+ 1). The above equation can be written as

d

dx

[

(1− x2)
dy

dx

]

+ n(n+ 1)y = 0. (383)

The above differential equation again has two solutions which are given as series by:

yn
1 (x) = 1− n(n+ 1)

2!
x2 +

(n− 2)n(n+ 1)(n + 3)

4!
x4 (384)

− (n− 4)(n − 2)n(n+ 1)(n + 3)(n + 5)

6!
x6 + . . . (385)

yn
2 (x) = x− (n− 1)(n + 2)

3!
x3 +

(n− 3)(n − 1)(n + 2)(n + 4)

5!
x5 − . . . (386)

Hence, the general solution for an integer n is then given by the Legendre polynomials,

Pn(x) = cn















yn
1 (x), n even,

yn
2 (x), n odd,

(387)

where cn is chosen so as to yield the normalization Pn(1) = 1. Or, alternatively, we can

write

Pn(x) =















yn
1 (x)/yn

1 (1), n even,

yn
2 (x)/yn

2 (1), n odd.

(388)

A.1.6 Neville’s Algorithm

Neville’s algorithm is equivalent to a Lagrange polynomial. It is based on a series of linear

interpolations. The data do not have to be in monotonic order, or in any structured order.

The main advantage of Neville’s algorithm is that it can be very easily programmed for a

computer. Moreover, it will be seen that none of the prior work must be redone, as it would

have to be redone to evaluate Lagrange interpolating polynomials.

Given (n + 1) data points (xi, f(xi)), for i = 0, . . . , n, where the values of x need not

necessarily be equally spaced, then to find the value of f corresponding to any given value
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of x we proceed iteratively as follows: obtain a first approximation to f(x) by considering

the first two points only; then obtain its second approximation by considering the first three

points, and so on. We denote the different interpolation polynomials by ∆(x) (with suitable

subscripts) so that at the first stage of approximation, we have

∆01(x) =
x− x1

x0 − x1
f0 +

x− x0

x1 − x0
f1. (389)

Similarly, we can form ∆12, ∆23, . . . .

Next, we form ∆012 by considering the first three points

∆012(x) =
x− x2

x0 − x2
∆01(x) +

x− x0

x2 − x0
∆12(x). (390)

In the same fashion, we can obtain ∆123, ∆234, . . . . Continuing this way, at the nth stage

of approximation we obtain

∆012...n(x) =
x− xn

x0 − xn
∆012...n−1(x) +

x− x0

xn − x0
∆123...n(x). (391)

The Neville’s algorithm for a third degree interpolation has been summarized in Table 20.

x f

x0 f(x0)
∆01(x)

x1 f(x1) ∆012(x)
∆12(x) ∆0123(x)

x2 f(x2) ∆123(x)
∆23(x)

x3 f(x3)

Table 20: Neville’s algorithm for a third-degree interpolation.

Next, we briefly describe the Romberg integration algorithm.

A.2 Romberg Quadrature

When the functional form of the error of a numerical algorithm is known, the error can be

estimated by evaluating the algorithm for two different increment sizes. The error estimate

can be used both for error control and extrapolation.

Consider a numerical algorithm which approximates an exact calculation with an error

that depends on the grid size h. Let us denote the exact calculation by fexact and the
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approximation by f(h), which also depends on the grid size h. Thus,

fexact = f(h) + Error(h), (392)

where

Error(h) = C1h
n + C2h

n+m + C3h
n+2m + . . . , (393)

n is the order of the leading error term and m is the increment in the order of the following

error terms. Applying the algorithm at two increment sizes, h1 = h and h2 = h/R, gives

fexact = f(h) + C1h
n +O(hn+m). (394)

fexact = f(h/R) + C1

(

h

R

)n

+O(hn+m). (395)

Subtracting (395) from (394) gives

0 = f(h)− f(h/R) + C1h
n − C1

(

h

R

)n

+O(hn+m). (396)

Solving (396) for the leading error terms in (394) and (395) yields

Error(h) = C1h
n =

Rn

Rn − 1
(f(h/R)− f(h)), (397)

Error(h/2) = C1(h/2)
n =

1

Rn − 1
(f(h/R)− f(h)). (398)

The error estimates can be added to the approximate results to yield an improved approx-

imation. This process is called extrapolation. Adding (398) to (395) gives

Extrapolated value = f(h/R) +
1

Rn − 1
(f(h/R)− f(h)) +O(hn+m). (399)

The error of the extrapolated value is O(hn+m).

When extrapolation is applied to numerical integration by the trapezoidal rule where

the successive increment size is one-half of the preceding increment size, that is, R = 2, the

result is called Romberg integration.

The error of the composite trapezoidal rule has the form [74]

Error(h) = C1h
2 + C2h

4 + C3h
6 + . . . . (400)
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Thus, the basic algorithm is O(h2), so n = 2. The following error terms increase in order

in increments of 2. Hence, the error estimation formula (398) becomes

Error(h/2) =
1

2n − 1
(f(h/2) − f(h)). (401)

For the trapezoidal rule itself, n = 2, and equation (401) becomes

Error(h/2) =
1

3
(I(h/2) − I(h)), (402)

where I(h) denotes the integral approximation using the trapezoidal rule with step size h.

Applying the extrapolation formula (399) for R = 2 gives

I(h, h/2) = I(h/2) + Error(h/2) +O(h4). (403)

Equation (403) shows that the result I(h, h/2) obtained by extrapolating the O(h2) trape-

zoidal rule is O(h4).

If two extrapolated O(h4) values are available I(h, h/2), I(h/2, h/4), which requires

threeO(h2) trapezoidal rule results I(h), I(h/2), I(h/4), those two values I(h, h/2), I(h/2, h/4)

can be extrapolated to obtain an O(h6) value I(h, h/2, h/4) by applying (401) with n = 4

to estimate the O(h4) error, and adding that error term to the more accurate O(h4) value.

Successively higher-order extrapolations can be performed until round-off error masks any

further improvements. Each successive higher-order extrapolation begins with an additional

application of the O(h2) trapezoidal rule, which is then combined with the previously ex-

trapolated values to obtain the next higher-order extrapolated result.

With the notation described above, the Romberg integration can be summarized in the

tabular form as follows (Table 21).

Table 21: Romberg quadrature.

I(h)
I
(

h, 1
2h
)

I
(

1
2h
)

I
(

h, 1
2h,

1
4h
)

I
(

1
2h,

1
4h
)

I
(

h, 1
2h,

1
4h,

1
8h
)

I
(

1
4h
)

I
(

1
2h,

1
4h,

1
8h
)

I
(

1
4h,

1
8h
)

I
(

1
8h
)
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A.3 Derivation of the Defects of Hermite-Simpson Discretization

The usage of Hermite-Simpson combination dates back at least to Kunz (1957) [95] and the

collocation interpretation was provided by Weiss [142].

Consider for simplicity the scalar version of (222)

ẋ = ∆τf(x(t), u(t), t), (404)

where t ∈ [tji,ki
, tji+1,ki+1

] ⊂ G, where G be a non-uniform grid of the form (225). As

before we denote, x(tji,ki
) by xji,ki

. Then we can write the state x(t) on the segment

[tji,ki
, tji+1,ki+1

], using the cubic Hermite interpolating polynomial (370), with n = 1, as

x(t) = Ui(t)xji,ki
+ Ui+1(t)xji+1,ki+1

+ ∆τVi(t)fji,ki
+ ∆τVi+1(t)fji+1,ki+1

. (405)

Therefore,

xji+1/2,ki+1/2
=Ui(tji+1/2,ki+1/2

)xji,ki
+ Ui+1(tji+1/2,ki+1/2

)xji+1,ki+1

+ ∆τVi(tji+1/2,ki+1/2
)fji,ki

+ ∆τVi+1(tji+1/2,ki+1/2
)fji+1,ki+1

, (406)

where xji+1/2,ki+1/2
= x(tji+1/2,ki+1/2

) and

tji+1/2,ki+1/2
=
tji,ki

+ tji+1,ki+1

2
. (407)

For finding Ui(t), Ui+1(t), Vi(t) and Vi+1(t), we first find

Ci(t) =
t− tji+1,ki+1

tji,ki
− tji+1,ki+1

, (408)

C ′
i(t) =

1

tji,ki
− tji+1,ki+1

, (409)

Ci+1(t) =
t− tji,ki

tji+1,ki+1
− tji,ki

, (410)

C ′
i+1(t) =

1

tji+1,ki+1
− tji,ki

. (411)

Hence,

Ui(t) = [1− 2C ′
i(tji,ki

)(t− tji,ki
)][Ci(t)

2]

=

[

1− 2
(t− tji,ki

)

tji,ki
− tji+1,ki+1

] [

t− tji+1,ki+1

tji,ki
− tji+1,ki+1

]2

= (tji,ki
− tji+1,ki+1

− 2t+ 2tji,ki
]

(t− tji+1,ki+1
)2

(tji,ki
− tji+1,ki+1

)3

= (3tji,ki
− tji+1,ki+1

− 2t)
(t− tji+1,ki+1

)2

(tji,ki
− tji+1,ki+1

)3
. (412)
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Therefore,

Ui(tji+1/2,ki+1/2
) = Ui(tji,ki

+ hji,ki
/2)

= −
[

3tji,ki
− tji+1,ki+1

− 2

(

tji,ki
+
hji,ki

2

)]

(

tji,ki
+

hji,ki
2 − tji+1,ki+1

)2

h3
ji,ki

= −(3tji,ki
− tji+1,ki+1

− 2tji,ki
− hji,ki

)
h2

ji,ki

4h3
ji,ki

= − 1

4hji,ki

(tji,ki
− tji+1,ki+1

− hji,ki
)

= − 1

4hji,ki

(−hji,ki
− hji,ki

)

=
1

2
. (413)

Next we find

Ui+1(t) = [1− 2C ′
i+1(tji,ki

)(t− tji+1,ki+1
)][Ci+1(t)

2]

=

[

1− 2
t− tji+1,ki+1

tji+1,ki+1
− tji,ki

] [

t− tji,ki

tji+1,ki+1
− tji,ki

]2

= (tji+1,ki+1
− tji,ki

− 2t+ 2tji+1,ki+1
)

(t− tji,ki
)2

(tji+1,ki+1
− tji,ki

)3
. (414)

Therefore,

Ui+1(tji+1/2,ki+1/2
) = Ui+1(tji,ki

+ hji,ki
/2)

=
1

h3
ji,ki

[

3tji+1,ki+1
− tji,ki

− 2(tji,ki
+
hji,ki

2
)

](

tji,ki
+
hji,ki

2
− tji,ki

)2

=
1

h3
ji,ki

(3tji+1,ki+1
− tji,ki

− 2tji,ki
− hji,ki

)
h2

ji,ki

4

=
1

4hji,ki

(3hji,ki
− hji,ki

)

=
1

2
. (415)

Next we find

Vi(t) = (t− tji,ki
)[Ci(t)]

2

= (t− tji,ki
)

[

t− tji+1,ki+1

tji,ki
− tji+1,ki+1

]2

. (416)
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Therefore,

Vi(tji+1/2,ki+1/2
) = Vi(tji,ki

+ hji,ki
/2)

=
hji,ki

2

[

tji,ki
+

hji,ki
2 − tji+1,ki+1

hji,ki

]2

=
hji,ki

2

[

−hji,ki
2

hji,ki

]2

=
hji,ki

8
. (417)

Next we find

Vi+1(t) = (t− tji+1,ki+1
)[Ci+1(t)]

2

= (t− tji+1,ki+1
)

[

t− tji,ki

tji+1,ki+1
− tji,ki

]2

. (418)

Therefore,

Vi+1(tji+1/2,ki+1/2
) = Vi+1(tji,ki

+ hji,ki
/2)

=

(

tji,ki
+
hji,ki

2
− tji+1,ki+1

)

(

tji,ki
+

hji,ki
2 − tji,ki

hji,ki

)2

=
1

4

(

−hji,ki
+
hji,ki

2

)

= −hji,ki

8
. (419)

Hence, (406) reduces to

xji+1/2,ki+1/2
=

1

2
xji,ki

+
1

2
xji+1,ki+1

+ ∆τ
hji,ki

8
fji,ki

−∆τ
hji,ki

8
fji+1,ki+1

=
1

2
(xji,ki

+ xji+1,ki+1
) + ∆τ

hji,ki

8
(fji,ki

− fji+1,ki+1
). (420)

Once we have found xji+1/2,ki+1/2
, we compute1

fji+1/2,ki+1/2
= f(xji+1/2,ki+1/2

, uji+1/2,ki+1/2
, tji+1/2,ki+1/2

), (421)

where uji+1/2,ki+1/2
= u(tji+1/2,ki+1/2

), and integrate across the segment using Simpson’s

quadrature rule [74],

∫ ti+1

ti

ẋdt = xji+1,ki+1
− xji,ki

= ∆τ
hji,ki

/2

3
(fji,ki

+ 4fji+1/2,ki+1/2
+ fji+1,ki+1

). (422)

1It should be noted that uji+1/2,ki+1/2
is an optimization parameter (NLP variable), hence we do not

calculate uji+1/2,ki+1/2
.
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Hence, the defects of Hermite-Simpson discretization are given by

ζi = xji+1,ki+1
− xji,ki

−∆τ
hji,ki

6
[fji,ki

+ 4fji+1/2,ki+1/2
+ fji+1,ki+1

], (423)

where

fji,ki
= f(xji,ki

,uji,ki
, tji,ki

),

fji+1/2,ki+1/2
= f(xji+1/2,ki+1/2

,uji+1/2,ki+1/2
, tji+1/2,ki+1/2

),

xji+1/2,ki+1/2
=

1

2
[xji,ki

+ xji+1,ki+1
] + ∆τ

hji,ki

8
[fji,ki

− fji+1,ki+1
],

tji+1/2,ki+1/2
=
tji,ki

+ tji+1,ki+1

2
, uji+1/2,ki+1/2

= u(tji+1/2,ki+1/2
),

for i = 1, . . . , N − 1.
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APPENDIX B

ARZELO-ASCOLI COMPACTNESS CRITERION

Definition 8 (Uniformly Equicontinuous Functions). Let {fk}∞k=1 be a sequence of func-

tions from X ⊂ R
n → R. The sequence {fk}∞k=1 is uniformly equicontinuous if for every

ǫ > 0, ∃ δ > 0 such that for all k and all x, y ∈ X with |x−y| < δ we have |fk(x)−fk(y)| < ǫ.

Theorem 4 (Arzelo-Ascoli Compactness Criterion [54]). Suppose that {fk}∞k=0 is a sequence

of functions from R
n → R, such that

|fk(x)| ≤M (k = 1, . . . , x ∈ R
n) (424)

for some constant M , and that {fk}∞k=1 are uniformly equicontinuous. Then there exists a

subsequence {fkj
}∞j=1 ⊆ {fk}∞k=1 and a continuous function f , such that fkj

→ f uniformly

on compact subsets of R
n.
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