
MULTIPLE GLOBAL ANE MOTION MODELS USED IN
VIDEO CODING

A Thesis
Presented to

The Academic Faculty

by

Xiaohuan Li

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2007



MULTIPLE GLOBAL ANE MOTION MODELS USED IN
VIDEO CODING

Approved by:

Professor Russell M. Mersereau,
Committee Chair
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor David V. Anderson
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Joel R. Jackson, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Hermann M. Fritz
School of Civil and Environmental
Engineering
Georgia Institute of Technology

Professor Anthony Yezzi
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 17 November 2006



To my parents, Jiesheng Li and Xiangmei Zeng;

To my husband, Ji Chen;

To my son, Dawson Chen.

iii



ACKNOWLEDGEMENTS

I owe my achievement of Ph.D. greatly to my parents. Had it not been for their

encouraging and cultivation during my teenage years, I may not even have pursued

Ph.D. in my life.

I would like to thank my advisor Dr. Joel R. Jackson, for his invaluable support

and guidance on my research and study. His intelligence and open-mindedness have

helped to make my Ph.D. experience not only enlightening but also enjoyable. Dr.

Jackson has not only tried his best to cultivate my academic and research capabilities,

but also encouraged my collaboration with the industry during my graduate years.

I must also express my deepest gratitude to Dr. Russell M. Mersereau, who from

time to time discusses with me all my technical confusions in the finest details, refers

me to extensive literature in the field of image processing and reads every publication

of mine with great patience.

I want to also thank Dr. Aggelos K. Katsagglos from Northwestern University, for

his precious advices on my research goals and continuous support during my graduate

studies.

I must also thank Dr. Anthony Yezzi, Dr. David V. Anderson and Dr. Hermann

M. Fritz to serve on my reading committee.

I’d like to extend my gratitude to staff at Georgia Tech- Savannah as well as staff

and students at Center of Signal and Image Processing. Mr. Page Siplon supported

me through the port of Savannah since summer of 2004. Mr. Mike Potter, Ms. Pat

Potter, Ms. Christy Ellis and Ms. Yvonne D. Bridges helped me on miscellaneous

administrative items. Mr. Keith May fixed a dozen of my computer problems.

I’d also like to thank Hyungjoon Kim for sharing his expertise on H.264 video

iv



coding with me.

Last but not least, I must thank my husband Ji, for his warm support and com-

panionship during my graduate years. I’d also like to appreciate the arrival of my son

Dawson, which gives me more strength and motivation to achieve my goals in life.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

II BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Motion Structure in Hybrid Video Codecs . . . . . . . . . . . . . . 7

2.1.1 Video Coding Standards and Motion Compensation Techniques 7

2.1.2 Search Strategies for Block-Matching ME . . . . . . . . . . 12

2.1.3 Other ME Techniques . . . . . . . . . . . . . . . . . . . . . 14

2.2 Motion advances in H.264 . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Overview of H.264 standard . . . . . . . . . . . . . . . . . . 16

2.2.2 Motion-related features of H.264 . . . . . . . . . . . . . . . 16

2.2.3 Other important features of H.264 . . . . . . . . . . . . . . 20

2.3 Affine motion model and related work . . . . . . . . . . . . . . . . 22

2.3.1 Higher Order Motion Models . . . . . . . . . . . . . . . . . 22

2.3.2 Motion Elements . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Affine Motion Model Estimation . . . . . . . . . . . . . . . 26

2.3.4 Video Compression Schemes Using An Affine Motion Model 27

2.3.5 Sprite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



III GLOBAL AFFINE MODEL FOR MPEG P-VOP . . . . . . . . . . . . . 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Proposed Adaptive Coding Scheme Using Affine Motion Models for
MPEG P-VOP’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Affine Motion Estimator for Each P-VOP . . . . . . . . . . 35

3.3 VOP Header Modification . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Block-wise Motion Model Choice Criteria . . . . . . . . . . . . . . 36

3.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

IV MULTIPLE GLOBAL AFFINE MODELS FOR GENERAL VIDEO FRAMES 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Motion Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Motion Objects . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Motion Segmentation Problem Formulation . . . . . . . . . 46

4.2.3 Flow-Based Motion Segmentation Methods . . . . . . . . . 47

4.2.4 Motion Estimation in the Multiple Affine Model Video CODEC 50

4.3 Compression of the Affine Models . . . . . . . . . . . . . . . . . . . 59

4.3.1 Quantization of the 6-D Affine Models . . . . . . . . . . . . 59

4.3.2 Vector Quantizer . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Global Motion Model and Blocking Artifact . . . . . . . . . . . . . 64

4.4.1 Blocking Artifacts . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Perceptual PSNR . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Macroblock Level Mode Selection . . . . . . . . . . . . . . . . . . . 66

4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

V CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . 71

5.1 Simulation Results and Conclusion . . . . . . . . . . . . . . . . . . 71

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Scalability in Motion Segmentation . . . . . . . . . . . . . . 71

5.2.2 Error Concealment Algorithms . . . . . . . . . . . . . . . . 72

vii



VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



LIST OF TABLES

1 The VLC table for α1, α2, α4 and α5. The magnitude is in units of
accuracy, e.g. 0.0005. The last VLC contains 500 0’s in a row. . . . . 37

ix



LIST OF FIGURES

1 Rate distortion performance of MPEG-2 (simple profile) , MPEG-4
(baseline) and H.264 (baseline) standards, on the first 300 frames of
foreman QCIF (video format with frame size 176 × 144 , 30 Hz. All
with only the first frame as the intra frame. . . . . . . . . . . . . . . 3

2 Motion bits distribution by MPEG-2 (simple profile) , MPEG-4 (base-
line) and H.264 (baseline) standards, on the first 300 frames of foreman
QCIF, 30 Hz. All with only the first frame as the intra frame. . . . . 4

3 Block diagram of a hybrid video encoder. . . . . . . . . . . . . . . . . 8

4 Block diagram of a hybrid video decoder. . . . . . . . . . . . . . . . . 8

5 Optimum choice of partitions for the 3rd frame of the foreman se-
quence, from Vprove, a video compression analysis s)Aoftware. . . . . 17

6 Translation of object, with (a1, a2) = (1,−1). . . . . . . . . . . . . . . 23

7 Rotation of object about the origin, with θ = 30◦. . . . . . . . . . . . 23

8 Zooming of object about the origin, with (a1, a2) = (0.9, 1.3). . . . . . 24

9 Vertical twist of object about the origin, with a = −0.5. . . . . . . . . 24

10 (a) is the original picture of frame0 in the bream.qcif sequence. By
applying translation with [a1, a2]

′ = [6,−250], rotation with θ = −45o

and [a1, a2]
′ = [1

2
, 1

2
] consecutively, (b) is obtained. The three motion

elements can be concatenated and expressed as an affine transform
operation in ( 9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

11 Generation of the sprite from the background of a video sequence.
(a) (f) are frames 1, 181, 191, 207, 211, 232 of foreman.qcif. (g) is the
generated sprite background from [32] . . . . . . . . . . . . . . . . . 29

12 Synthesized video from 3 VOP’s. (a) and (b) are the luma and α chan-
nels for VOP 1 (the fish) respectively. (c) and (d) are the luma and α
channels for VOP 2 (the caption) respectively. (e) is the luma for VOP
0 (the background), and since the transparency for the background is
always zero, no α channel is needed for VOP 0. Note that the α chan-
nels for VOP 1 and 2 are both grayscale, meaning that they define a
transparency degree for each pixel in that VOP. A binary α channel
would only define if a pixel is transparent or opaque. Finally, (f) is
the video frame synthesized from the weighted sum of the 3 VOP’s.
All frames are from the 95th frame of bream.qcif. . . . . . . . . . . . 31

x



13 (a) and (b) are frame 3 and frame 4 of the sequence bream2-1.qcif
respectively, with binary alpha plane defined; (c) and (d) are block-
wise motion vector fields from affine and block-matching estimation
approaches respectively. From subjective observation, one can judge
that the motion between (a) and (b) is mainly global translation and
rotation. The reason for some irregular motion vectors in (d) is that
the optimization goal of block-matching method is MSE of the com-
pensated block, instead of the real motion of the target block. . . . . 33

14 MB-wise multiple motion model encoder structure. Solid lines illus-
trates process of the program, dashed lines mean data transmission
only. Gray blocks are modules that output to real bit stream if affine
mode is selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

15 Choice of accuracy of affine parameters. . . . . . . . . . . . . . . . . . 36

16 Region division for block-matching and affine motion models, with (a)
taking only bit-rate into consideration, (b) selection by rate-distortion
optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

17 Rate-PSNR curves of BREAM sequence encoded with MPEG-4 and
proposed encoders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

18 Rate-PSNR curves of ”WELCOME TO MPEG4 WORLD” sequence
encoded with MPEG-4 and proposed encoders. . . . . . . . . . . . . . 41

19 Distribution of intra MB’s over the P-frames (frame 5-8), with yellow
MB’s as INTRA4 × 4, green as INTRA16 × 16, gray as SKIP and
orange as INTER. The intra MB’s are mostly distributed around the
human face, where occlusion happens frequently. . . . . . . . . . . . . 45

20 An example of a VOP layer that’s not one motion object.(a) is the
original scene for the VOP. (b) is the alpha channel for the VOP. (c)
is the VOP masked by its alpha channel, ready to be synthesized with
other VOP’s for a new scene, as in Figure 13.f. The difference between
the MO in Figure 13.a and the one in this figure is that the first one
is a rigid MO, while the latter is not. . . . . . . . . . . . . . . . . . . 46

21 Effect of different initial segments on motion segmentation results for
the standard sequence of “mother and daughter”, from [46]. (a), (b)
are random initial guess of the segmentation map. (f) is the region map
obtained from color segmentation, which could be used as an initial
map as well. (c) and (d) are intermediate results after 30 segmentation
iterations. (e) is the final motion segmentation map. . . . . . . . . . . 49

xi



22 Block-matching motion fields of variable sizes ((a)-16× 16, (b)-16× 8,
(c)-8 × 16, (d)-8 × 8, (e)-8 × 4, (f)-4 × 8, (g)-4 × 4) generated by the
original JM encoder, and the motion segmentation map (h) generated
from the 4× 4 one, on foreman.QCIF frame 0 and 1. . . . . . . . . . 51

23 System block diagram of the proposed hybrid video encoder. The gray
parts are the originals of the JM encoder. . . . . . . . . . . . . . . . . 52

24 Flow chart of the “Motion Segmentation” module in Figure 23. This
simultaneously performs segmentation and affine model estimation. . 52

25 Block diagram for motion segmentation, with an initial random block-
wise segmentation map (refer to Figure 26) and the motion field with
the same block size base as the input, and the final segmentation map,
as well as the affine models for each segment, as the output. X6×N

stands for the affine model matrix, where N is the number of models.
S44×36 is the label map for the 44× 36 4× 4 blocks, ranging from 1 to N . 53

26 Initial random guess of the segmentation map, on a 16 × 16 base, for
a QCIF frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

27 Example of segmentation results. (a) and (b) are the originals of frame
1 and frame 2 of foreman.QCIF; (c) and (d) are the binary segmenta-
tion map as a result of the segmentation process described in section
4.2.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

28 Figure 27.a is divided into 2 motion objects: foreground (a) and back-
ground (c), using the segmentation map obtained in Figure 27.c. Fig-
ure 27.b is divided into 2 motion objects: foreground (b) and back-
ground (d), using the segmentation map obtained in Figure 27.d. (a)
and (b) are then used on (10) to estimate the affine motion model for
the foreground object, while (c) and (d) are used for the background.
X0 = [0.0080,−0.0228,−0.0030,−0.0096, 1.8517,−4.0776]T and X1 =
[−0.0013,−0.0020, 0.0010,−0.0139, 0.3334,−0.1161]T are obtained for
the foreground and background respectively. . . . . . . . . . . . . . . 57

29 Synthesis of warped motion objects into a complete compensated frame.
(a) is the reference frame, i.e. frame 1 of foreman.QCIF; (b) and (c)
are (a) warped by X0 and X1 respectively; (d) is (b) masked by seg-
mentation map Figure 27.d; (e) is (c) masked by the complimentary
map. Adding (d) and (e) produces (g) the final affinely reconstructed
image. For comparison, (f), the original of frame 2, and (h), the block-
matched frame are listed. It can be observed that (h) resembles the
original more on a rough scale and particularly on the face area, while
(g) offers an equally good reconstruction on the rest of the frame and
a more smooth and natural reconstruction on the face area. . . . . . . 58

30 Position of the 6−D affine models in the bitstream. . . . . . . . . . 60

xii



31 The updating processes of the LRU refreshment strategy during a
cache-hit (top) and cache-miss (bottom). . . . . . . . . . . . . . . . . 64

32 Mode distribution of the original H.264 encoder, on the second frame
of foreman.qcif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

33 Mode distribution of the proposed encoder, on the second frame of
foreman.qcif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

34 Rate distortion performance for sequence foreman.qcif (panning) and
coastguard.qcif (global translation).Both PSNR and perceptual PSNR
are used for measuring distortion. The upper left is the result of per-
ceptual PSNR with sequence coastguard ; the upper right of PSNR with
coastguard ; the lower left of perceptual PSNR with sequence foreman
(last 100 frames); the lower right of PSNR with foreman . . . . . . . 70

xiii



SUMMARY

The research presented in this dissertation explores a hybrid video codec’s per-

formance by simplifying its motion structure, instead of complicating it. This is in

contrast to the latest compression standard H.264, and the majority of video re-

searchers who are exploring more complex motion models. Specifically, we propose

to use global motion models instead of local block-wise motion vectors to compress

motion information between consecutive frames.

To cover the frequently occurring operations of rotation and zooming in global

motion, a 6-D affine model is adopted instead of the more common 2-D translational

one. To account for multiple motion objects in a video frame, motion segmentation

is implemented based on the scalable motion field of an H.264 encoder. An affine

model for each segment is estimated and used for global motion compensation of the

corresponding areas. A warped reconstruction of the entire video frame is constructed

using the segmentation map.

The multiple affine models are predicatively compressed with a specially designed

vector quantizer, which consists of a long main dictionary stored off-line and a short

cache word list on line. The cache word list is searched for a match each time an affine

model is quantized. The main dictionary is checked only when a ”miss” happens.

While reconstructing the current frame with multiple affine models, the proposed

video codec system does not discard the classical block-matched reconstruction of

each macroblock. Specifically, a macroblock can be reconstructed under any of the

original H.264 inter or intra modes, or, with one of the affine models. Hence we add

N affine modes to the original macroblock mode list of I4, I16, P16x16, P16x8, P8x16,

xiv



P8x8, P4x4 and DIRECT, where N is the number of countable motion objects in the

frame. One of the new modes is chosen by Lagrange optimization. By elongating

the mode list and spending moderately more bits on mode indication, we save the

encoder the prohibitive effort of transmitting a segmentation map to the decoder.

Finally we present the experiment results of our system, in comparison with the

latest published version of JM, the H.264 codec reference software. Our system man-

ifests a notable gain (up to 0.8 dB) in rate-distortion performance when the video

stream bit rate is below 100 kbps. 30%-70% of the macroblocks in a P-frame end

up being encoded by the affine modes. The proposed system also shows many other

advantages over traditional codecs, such as less pronounced blocking artifacts and

more error resilience.

xv



CHAPTER I

INTRODUCTION

1.1 Motivation

H.264, also known as MPEG-4 part 10, is the latest international video coding stan-

dard approved by ITU-T and ISO/IEC. It outperforms all its predecessors by a con-

siderable margin in terms of its rate-distortion optimization. It introduces a variety

of new features to enhance the encoder’s ability to predict video content [2], at the

price of increased complexity. The reforms brought by H.264 span the entire process

of encoding a video sequence, including motion estimation, motion compensation,

block mode selection, the DCT transform, de-blocking and entropy coding.

Among these new features, the motion-related techniques contribute most signifi-

cantly to the gain in PSNR or reduction in bit rate. More precisely, H.264 provides a

motion model that predicts the current frame more accurately. This is achieved by a

motion structure that is much more complicated, memory demanding and computa-

tionally expensive than with prior algorithms. For example, the expansion of a single

reference frame to multiple reference frames adds one more dimension to the origi-

nal 2-D motion vector. The increased precision of motion vectors with quarter-pixel

resolution and pointing across picture boundaries requires a longer encoding table

and more bits for each item. Blocks of variable and smaller sizes demand on a larger

number of motion vectors per frame, and additional bits to indicate the mode of each

block.

While imposing a tremendous demand on memory allocation and computation

complexity like some of the other new features, the motion related modifications also

increase the portion of bitstream that must be spent on motion information.

1



When we review the evolution of video coding standards, we can see the history of

the development of motion models. The evolution of motion compensation procedure

has followed two routes: (1) refining the accuracy of the motion vector and (2) shrink-

ing and varying the size of the compensated block. More specifically, displacement

vectors evolved from integer-pixel in MPEG-1/H.261 to half-pixel in MPEG-2/H.263,

and finally to quarter-pixel in H.264; block sizes have been refined from the solo pat-

tern of 16x16 in H.261/263/MPEG-1/2 to include 8x8 in MPEG-4, and eventually

4x4 and even the non-square shapes of 16x8 and 8x16 in H.264.

While this more and more complicated motion structure successfully improves

the prediction process and diminishes the number of non-zero coefficients in the DCT

matrix, it increases the number of bits allocated to motion vectors. The strategy has

so far been effective in shrinking the bitstream, because the increase in motion bits

is more than offset by a significant decline in residual bits. However, this is only true

when the refined residual errors are quantized with a small enough quantization step-

size before they are transformed. In other words, a coarse quantization step-size will

set the fine residual errors to zero anyway, and the advantage of a sophisticated and

accurate motion compensation scheme is lost. Furthermore, since small quantization

step-sizes are associated with high bit rate of transmission, the advanced motion

models are only effective when abundant bandwidth is available. Most of the time, this

is the case, given the fast development of communication network technologies today.

However, there are still many important implementations with limited transmission

bit rate constraints, such as wireless video conference, etc. The following is a study

of the rate-distortion performance of MPEG-2, MPEG-4 and H.264.

We can see in Figure 1 that H.264 beats MPEG-4 and MPEG-2 in coding efficiency

(in terms of the objective reconstruction quality measure PSNR) over almost the

entire bandwidth, especially at the higher end when bit rate exceeds 100 kbps.

Figure 2 illustrates the percentage of bits allocated to motion related information

2



0 100 200 300 400 500 600
26

28

30

32

34

36

38

40

Rate−Distortion Optimization of Different Standards 

Bit Rate (Kbps)

Lu
m

a 
P

S
N

R
 (

dB
)

H.264
MPEG−4
MPEG−2

Figure 1: Rate distortion performance of MPEG-2 (simple profile) , MPEG-4 (base-
line) and H.264 (baseline) standards, on the first 300 frames of foreman QCIF (video
format with frame size 176 × 144 , 30 Hz. All with only the first frame as the intra
frame.

3



0 100 200 300 400 500 600
0

10

20

30

40

50

60
Motion Bits Allocation by Different Standards

Bit Rate (Kbps)

M
ot

io
n 

B
its

 P
er

ce
nt

ag
e 

(%
)

H.264
MPEG−4
MPEG−2

Figure 2: Motion bits distribution by MPEG-2 (simple profile) , MPEG-4 (baseline)
and H.264 (baseline) standards, on the first 300 frames of foreman QCIF, 30 Hz. All
with only the first frame as the intra frame.

4



(intra/inter mode, MB partition, motion vectors, etc.) because of rate-distortion op-

timization under a range of network bandwidths. For MPEG-2 and MPEG-4, as the

available bit rate goes up, the total number of bits spent on motion vectors remains

about the same, as a result of the straightforward motion estimation schemes embod-

ied in these standards. However, in H.264 the motion vector selection is optimized by

a Lagrange parameter similar to that of the mode selection. Therefore the number

of H.264’s motion bits increase at the higher end of the bandwidth. (This will be

elaborated in the following chapters.) In both cases, the motion portion increase in

the bitstream doesn’t catch up with the increase in bits spent on residual errors (as

a result of the Quantization Parameter(QP) decrease). That explains why the over-

all percentage of motion bits falls as the bandwidth escalates. Nevertheless, when

the upper limit QP defined in the standard is reached, the residual portion of the

bitstream stops expanding, and the motion portion approaches a limit consequently.

On the other hand, with the same bit rate, the percentage of bandwidth spent

on the transmission of motion information goes up as the standards become more

sophisticated, and as better and better PSNR is achieved, according to Figure 2.

This leads to the conclusion that increase of expenditure on motion bits appears to

always be effective in raising the coding efficiency. Each standard reaches its limit

of motion calculation constrained by the computation power limits. While there will

definitely be a limit on this path of video coding technology, we can’t help asking:

are there other approaches to improve video codecs when we are waiting for the next

revolution in the chip industry to launch the one in the video coding industry? This

is the question we are trying to answer with the work presented in this thesis.

5



1.2 Scope of Thesis

While a complete hybrid video codec with an H.264 structure has been constructed

and modified to accommodate added affine motion estimation and compensation mod-

ules, the affine motion estimation techniques are the basis, but not the contribution

and originality, of this thesis. However, different affine model estimation algorithms

have been attempted for the purpose of motion compression and minor novel changes

have been implemented on the existent methods.

1.3 Organization of Thesis

The thesis presentation is organized as follows. Chapter 2 is an introduction of the

fundamental techniques upon which the thesis work is built. The most important

include motion compression methods in the hybrid video coding standards and their

development trend; the mathematics of affine motion model parametrization and

vector quantization. Chapter 3 and chapter 4 are the two major chapters, offering a

comprehensive coverage of the two proposed video codecs with global affine motion

model for MPEG-4 sequences with the contour-defining alpha channel, and for H.264

sequences without an alpha channel, respectively. Chapter 5 is a probe into the error

resilience of the proposed system. Chapter 6 concludes the thesis with simulation

results, technical conclusions and a discussion of remaining issues on the system.

6



CHAPTER II

BACKGROUND

2.1 Motion Structure in Hybrid Video Codecs

2.1.1 Video Coding Standards and Motion Compensation Techniques

2.1.1.1 Video Standard History

All existing video coding standards are categorized as hybrid coding standards. They

exploit both spatial and temporal redundancy in a sequence of video frame, in order

to achieve a high compression ratio. Motion Compensation (MC), which represents

a target block of pixels in the current frame by copying a similar block of pixels in a

cached reference frame, and Motion Estimation (ME), which locates the block to be

copied, are the major techniques to reduce temporal redundancy. Since the birth of

the first hybrid coding standard H.120 version 2 in 1988, its successors H.261 (1991),

MPEG-1 (1993), MPEG-2/H.262 (1994), H.263 (1996), MPEG-4(1999) and the latest

H.264 (2003), have achieved greater and greater compression rates by incorporating

new techniques and upgrading already built-in techniques. The most significant por-

tion of the increase comes from the refinement of the MC and ME techniques.

2.1.1.2 Hybrid Video Codec Structure

MPEG video frames are categorized as intra coded (I-) frames, temporally predicted

(P-) frames and bi-directionally (B-) predicted frames [1]. I-frames are allocated

more bits than the others, because the DCT of the whole original frame is coded, i.e.,

only the spatial redundancy is exploited. For P- or B-frames, the DCT of the motion

compensation error frame (which is usually significantly lower in intensity than the

original frame) and the motion vectors are coded, i.e., both spatial and temporal

redundancies are exploited. The existing MPEG standards have mainly used block

7



Partitioning


Motion

Estimation


Entropy

Coding


Zigzag

Scan


Video

Frame


Intra MB


Inter MB


Residual

Error


Motion

Vector


Distortion
 Rate


Mode

Selection


Motion

Compensation


Bitstream


+
Reconstructed

MB


+


-


Reference

Buffer


Transform
 Quantizer


Figure 3: Block diagram of a hybrid video encoder.

Bitstream
 Parsing


Motion

Vector


MB

Header
 +


Inter MB


Transform

Coefficients


N


Transform

Coefficients


Residual

Error


Reference

Buffer


Motion

Compensation


Compensated

MB


Video

Frame


Inverse

Scan


DeQuant

Inverse


Transform

Reconstructed


Intra MB


Reconstructed

Inter MB


Y


Figure 4: Block diagram of a hybrid video decoder.

8



matching for motion estimation. Every video frame to be coded is divided into squares

of 16 × 16 or 8 × 8 pixels called macroblocks (MBs) or blocks. For each MB in the

frame, a search is made in the reference frame over an area around the position of the

target MB that allows for a certain range of translation specified by the coder. The

result of the search is the MB with the least prediction error, usually a mean square

error (MSE), or mean absolute difference (MAD). The estimated two-dimensional

displacement of the MB is referred to as the motion vector.

Figures 3 and 4 together offer a overview of the basic functional modules in a

hybrid video codec. The input to the video encoder is a sequence of video frames. All

the MB’s in an I-frame (and some of the MB’s in a P-frame) are intra-MB’s, which are

coded directly without any prediction (intra-MB’s are spatially predicted in H.264,

which will be discussed in the following sections). Inter-MB’s, however, need to be

motion estimated and expressed as a group of MV’s and a matrix of residual errors

before they can be further processed. The residual errors of an inter-MB, as well as

the intra coefficients of an intra-MB, are fed into the transformer, where the discrete

cosine transform(DCT) expresses the spatial signals as a spectral distribution in the

frequency domain. The DCT coefficients are then further trimmed by a matrix of

quantizers. Since the energy distribution after the transform is concentrated in the low

frequency areas, a special zigzag mapping matrix is designed to scan the coefficients

so that the all-zero areas are grouped together. The zigzagged coefficients, as well as

the motion vectors, are entropy coded.

Since different motion estimating block sizes and different prediction modes (intra

or inter) have been allowed to increase the estimation accuracy, the encoder needs

to make optimal selections in terms of coding efficiency and quality. The coded MV

and residual errors for each partition size can be measured by their numbers of bits.

The motion compensated MB’s can be compared with the original MB to produce a

PSNR that measures the reconstruction quality. The two parameters coding efficiency

9



and quality, are jointly considered in the mode selection module. Once an optimal

prediction mode has been selected, the reconstructed MB is written to the reference

frame buffer, while the coded bits are output to the bitstream.

The decoder structure is constructed from the inverse of each essential element

of the encoder, except for the mode selection module, which is not needed in the

decoder.

2.1.1.3 Motion Vector Accuracy and Motion Compensated Block Size

The evolution of MC has followed two routes: (1) refining the accuracy of the mo-

tion vector and (2) shrinking and varying the size of the compensated block. More

specifically, displacement vectors have evolved from integer-pixel in MPEG-1/H.261

to half-pixel in MPEG-2/H.263, and finally to quarter-pixel in H.264; block sizes

have been refined from the single 16×16 pattern in H.261/263/MPEG-1/2 to include

8× 8 blocks in MPEG-4, and eventually 4× 4 block and even the non-square 16× 8

and 8 × 16 blocks in H.264. Although in theory the motion vector accuracy can be

quantized still finer. G. Birod [7] in 1993 quantified the effect of fractional-pixel

accuracy on the efficiency of a MC predictor in conjunction with various spatial in-

terpolation filters, and concluded from experiments that for a block size of 16 × 16,

quarter-pel resolution is sufficient for TV signals, and half-pel resolution is sufficient

for videophone signals. Although block sizes have changed since these experiments,

one can generalize that the compression rate of a hybrid coder cannot be indefinitely

improved by unlimited refinement of the motion vector accuracy. On the other hand,

a discrete block-size as low as 4× 4, does not much room for further downsizing. In

other words, if the hybrid video coder is to be improved in terms of its compression

efficiency in the future, more MC techniques need to be investigated, instead pushing

the above two refinements to further extremes.

10



2.1.1.4 Multiple Reference Frames

The essence of the efforts to adjust MV accuracy and block size is to provide more

spatially distributed prediction options, so as to reduce the prediction errors. Another

approach that shares the same philosophy is to allow for more prediction candidates

in multiple reference frames [8], which was incorporated a standard in H.264. The

magnified computation load for ME can be trimmed by non-exhaustive searching

alternatives [9].

2.1.1.5 Multi-Hypothesis Motion Compensation

While modifying the parameters for ME in the standard block-matching paradigm

is successfully reducing compensation errors, non-conventional MC and ME methods

using spatial and temporal motion correlations are being explored also.

Overlapped block matching compensation (OBMC) OBMC estimates a pixel

by superimposing predictions using not only the MV of the block that contains it,

but also the MV’s of neighboring blocks [10] [11]. Since the compensated pixel is a

weighted average of several values across the block boundary, OBMC not only achieves

a lower compensation error, but also reduces the blocking artifacts. As a result it

was standardized in H.263 in 1995. However, since OBMC entails multiple MV’s and

each MV affects multiple blocks, the corresponding ME has to be performed in an

iterative manner. The high computation cost often makes this technique prohibitive.

Bi-directional Prediction Applying the idea of OBMC to the temporal domain,

the superimposition of blocks from different reference frames (the previous and the

next as in MPEG and H.263) often allows a more accurate prediction than if only

one block is used from the previous frame. In the so-called bi-directionally predicted

frame (B-frame), each block is associated with two MV’s and two error blocks. B-

frames are particularly efficient in dealing with uncovering areas, for the uncovering

11



block content can often be found in the future frame if it is missing in the previous

one. However, because of the use of a future reference, B-frames suffer from increased

delay and the necessity of additional storage [12].

Multi-Hypothesis Motion Compensation Multi-hypothesis motion compensa-

tion, which is a generalization of both OBMC and B-frames, is realized by the in-

troduction of multi-hypothesis-mode macroblocks in H.264 [13]. Under the multi-

hypothesis-mode, superimposed prediction pairs can come from any reference frames

in the buffer. The combination can be forward-backward (as in the B-frame case),

as well as forward-forward, backward-backward, or even forward-current, backward-

current and current-current (as in the OBMC case). Moreover, the number of past or

future reference frames is not confined to two. The average of the compensation pairs

provides a much closer prediction at the price of an increased computational load.

2.1.2 Search Strategies for Block-Matching ME

2.1.2.1 Principle of Block-Matching

While it is the most straightforward and intuitive approach for motion estimation,

block-matching is also the most widely used motion search strategy. A comparison

of the target block is made with every possible reference block in a certain temporal

and spatial range, and a difference measure (e.g. mean square error) is computed

for each of them. The displacement between the reference block associated with the

smallest error measure is used as the MV for the target block. The several important

parameters modifiable in a block-matching search include the step size (how closely

distributed the MV’s are, e.g. 1 for pixel-wise ME, 16 for macroblock-wise ME),

matching window size (the number of pixels in the neighborhood that are compared

for the error measure), search range (the maximum possible MV) and MV accuracy.

12



2.1.2.2 More Search Patterns

The full-search block-matching strategy exhausts every pixel in every window that is

within the search range. For example, to get a block(8× 8)-wise quarter-pel motion

field for a QCIF(176×144) frame, with the usual search range of 16×16, a window size

of 16×16 and an MSE error criterion, 16×16×64×64×22×18 = 415M comparison

operations, 415M summing operations and 415M multiplication operations would be

required for each frame, which is enormous. In order to overcome this computational

drawback, a large amount of work has been done to design alternative fast search

algorithms for block-matching, such as 2-D logarithmic search [14], three-step search

[15], conjugate direction search [16], cross search [17], four-step search [18], block-

based gradient descent search [19], etc. While these approaches attempt to shorten

the search path on a square shaped search window, diamond [20] and hexagon [21]

shaped search patterns have also been found to further speed up the search job. Some

of these fast algorithms are so simple and effective that they have been recommended,

although not specified, by the standard.

2.1.2.3 Hierarchical Structure

A hierarchical motion structure is one of the many techniques designed to reduce

the computational load. Exploiting the fact that neighboring motion vectors tend to

similar, the current and the reference frames are filtered and sub-sampled to obtain

two pyramids of frames, with the original full-size frames at the bottom, and their

down-sized versions on top in a descending order. Conventional blocking-matching is

performed on a top level, resulting in a small motion field that can be stretched into a

rough estimate of the larger motion field for the level beneath. This multi-resolution

structure not only reduces ME computation, but also avoids local optima, which lead

to false MV’s.

13



2.1.2.4 Rate-Constrained ME

Rate-constrained ME was first proposed by by Sullvan et. al. in 1991 [22], and

included in the H.263/MPEG-4 standards [49]. Instead of minimizing the measured

error only, rate-constrained ME seeks for an MV that minimizes the weighted sum of

the error and the bits required for coding the MV itself, as in (1).

mv′ = arg min
mv∈M

(DDFD(mv) + λMOTIONRMOTION(mv)) (1)

where M is the set of motion vectors within the search range. The measured distortion

associated with the motion vector is

DDFD(mv) =
∑

(x,y)∈A

|s[x, y, k]− s′[x−mvx, y −mvy, k − 1]|p (2)

where p=1 for sum of absolute difference (SAD) and p=2 for sum of squared errors

(SSD). The choice of is made through experimental results and defined as λMOTION =
√

λMODE for SAD and λMOTION = λMODE for SSD, where is the Lagrange parameter

for mode selection and obtained by λMODE = 0.85 × 2(QN264−12)/3 in H.264. As a

consequence, a better performance in terms of rate-distortion optimization is accom-

plished.

2.1.3 Other ME Techniques

2.1.3.1 Gradient-Based Motion Estimation

If we model a video frame as a function of spatial and temporal variables as

I(x + mvxdt, y + mvydt, t + dt) = I(x, y, t) (3)

and assume that the intensity of each pixel remains the same in the two frames

connected by the motion field, then if we furhter assume that there is a smooth

change of pixel intensities over x, y and t, (3) can be expanded in a Taylor series as

I(x, y, t) +
∂I

∂x
mvxdt +

∂I

∂y
mvydt +

∂I

∂t
dt + O(dt2) = I(x, y, t) (4)

14



Simplifying this equation gives the famous optical flow constraint equation

∂I

∂x
mvx +

∂I

∂y
mvy +

∂I

∂t
= 0 (5)

If we treat vx and vy as two unknowns, we will need a second equationin a dition

to (5) to solve for them. Lucas and Kanade proposed applying (5) to a small

region (with more than 2 pixels) of the image to obtain a local MV. To satisfy the

smoothness condition, the spatial and temporal gradients are always low-pass filtered

to combat high frequency noises. Although the gradient approaches require several

iterations to reach an accurate estimate, still the computational load is far less than

block-matching.

2.1.3.2 Phase Correlation Motion Estimation

According to the Fourier shift property, a displacement in the spatial domain cor-

responds to a phase factor in the frequency domain. Specifically, if we rewrite (3)

as

f2(x, y) = f1(x−mvx, y −mvy) (6)

and compute the Fourier transform of the two sides, we have

F2(u, v) = F1(u, v)exp(−i(u ·mvx + v ·mvy)) (7)

The normalized cross power spectrum is then given by

F2(u, v)F ∗
1 (u, v)

|F1(u, v)F ∗
1 (u, v)| = exp(−i(u ·mvx + v ·mvy)) (8)

By inverse Fourier transforming (8), we expect to obtain a Dirac-delta function

centered at (mvx,mvy). Then the problem boils down to locating the peak in a 2-

D domain [25]. Although the phase correlation technique is supposed to find the

true motion for each transformed block, its high computational load has made it

impractical in compression uses.

15



2.2 Motion advances in H.264

2.2.1 Overview of H.264 standard

H.264 is the latest video coding standard of the ITU-T Video Coding Experts Group

(VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) [2]. The stan-

dardization of H.264/AVC announced a new era in the video coding development

with significantly improved compression performance and provisions for a ”network-

friendly” video representation addressing ”conversational” (video telephony) and ”non-

conversational” (storage, broadcast, or streaming) applications. H.264/AVC has

achieved an unprecedented advance in rate-distortion efficiency relative to existing

standards.

The success of H.264 is effected by the combination of a dozen new techniques.

We shall only discuss the video coding structure related features, thus we shall skip

the streaming related designs, which are exemplified by the parameter set struc-

ture, the NAL unit syntax structure, flexible slice size, flexible macroblock ordering

(FMO), arbitrary slice ordering (ASO), redundant pictures and SP/SI synchroniza-

tion/switching pictures, etc.

Among the features that enhance the coding efficiency, several motion-related ones

enhance the ability to predict a video frame, and thus contribute the most in the gain

in reconstruction quality. We will elaborate on this group of technical highlights in

section 2.2.2. Other design features which also contributed to the enhancement, are

briefly discussed in section 2.2.3.

2.2.2 Motion-related features of H.264

2.2.2.1 Variable block-size for motion compensation

H.264 provides for a more flexible selection of motion compensation block sizes and

shapes than any previous standard, with a minimum luma motion compensation block

size as small as 4 × 4. Such a small block has a greater chance of finding a match

16



Figure 5: Optimum choice of partitions for the 3rd frame of the foreman sequence,
from Vprove, a video compression analysis s)Aoftware.

in the reference frame than a larger block. However, a larger block may be still be

used if it provides a close enough match (see Figure 5). That is why the variable

block-size design decreases residual errors and the corresponding number of bits [5].

2.2.2.2 Quarter-pixel motion compensation accuracy

Most of the standards prior to H.264 enable half-pixel motion vector accuracy at most.

The new standard improves upon this by adding quarter-pixel motion vector accuracy,

as first found in an advanced profile of the MPEG-4 Visual (part 2) standard, but it

further reduces the complexity of the interpolation processing compared to the prior

design. Finer motion vectors cost (1) more bits to be entropy coded (2) more complex

interpolation on the reference frame, but at the same time offer more compensation

candidate blocks and reduce the residual errors.

2.2.2.3 Motion vectors over picture boundaries

While motion vectors in MPEG-2 and its predecessors were required to point only to

areas within the previously-decoded reference picture, the picture boundary extrapo-

lation technique first found as an optional feature in H.263 is included in H.264/AVC.

17



2.2.2.4 Multiple reference picture motion compensation

The new design extends upon the enhanced reference picture selection technique found

in H.263++ to enable efficient coding by allowing an encoder to select, for motion

compensation purposes, among a larger number of pictures that have been decoded

and stored in the decoder; while predictively coded pictures (called ”P” pictures) in

MPEG-2 and its predecessors used only one previous picture to predict the values

in an incoming picture. The same extension of referencing capability is also applied

to motion-compensated bi-prediction, which is restricted in MPEG-2 to using two

specific pictures only (one of these being the previous intra (I) or P picture in display

order and the other being the next I or P picture in display order).

2.2.2.5 Decoupling of referencing order from display order

In all prior standards, the ordering of pictures for motion compensation in the refer-

ence frame buffer are strictly determined by the ordering of pictures in final display.

In H.264/AVC, these restrictions are largely removed. The encoder can now choose

the ordering of pictures for referencing and display purposes with a high degree of

flexibility constrained only by a total memory capacity bound imposed to ensure

decoding ability. Removal of the restriction also enables removing the extra delay

previously associated with bi-predictive coding.

2.2.2.6 Decoupling of picture representation methods from picture referencing
capability

In prior standards, pictures encoded using some encoding methods (namely bi-predictively-

encoded pictures) could not be used as references for prediction of other pictures in

the video sequence. By removing this restriction, the new standard provides the en-

coder more flexibility and, in many cases, an ability to use a picture for referencing

that is a closer approximation to the picture being encoded, and therefore generate

lower residual errors.

18



2.2.2.7 Weighted prediction

A new innovation in H.264/AVC allows the motion-compensated prediction signal to

be weighted and offset by amounts specified by the encoder. This can dramatically

improve coding efficiency for scenes containing fades, and can be used flexibly for

other purposes as well.

2.2.2.8 Improved ”skipped” and ”direct” motion inference

In prior standards, a ”skipped” area of a predictively-coded picture could not have

any motion in the scene content. This had a detrimental effect when coding video

containing global motion, so the new H.264/AVC design instead infers motion in

”skipped” areas. [4] For bi-predictively coded areas (called B slices), H.264/AVC also

includes an enhanced motion inference method known as ”direct” motion compen-

sation, which improves further on prior ”direct” prediction designs found in H.263+

and MPEG-4 Visual.

2.2.2.9 Directional spatial prediction for intra coding

The previous standards apply transforms on intra blocks directly without any kind of

prediction. The new standard exploits the spatial redundancy in the intra-coded areas

by extrapolating the edges of the previously-decoded parts of the current picture. This

predictor is applied in regions of pictures that are coded as intra (i.e., coded without

reference to the content of some other picture). This improves the quality of the

prediction signal, and also allows prediction from neighboring areas that were not

coded using intra coding (something not enabled when using the transform-domain

prediction method found in H.263+ and MPEG-4 Visual).

19



2.2.2.10 In-loop deblocking filtering

Block-based video coding produces artifacts known as blocking artifacts. These can

originate from both the prediction and residual difference coding stages of the de-

coding process. Application of an adaptive deblocking filter is a well-known method

of improving the resulting video quality, and when designed well, this can improve

both objective and subjective video quality. Building further on a concept from an

optional feature of H.263+, the deblocking filter in the H.264/AVC design is brought

within the motion-compensated prediction loop, so that this improvement in quality

can be used in inter-picture prediction to improve the ability to predict other pictures

as well.

2.2.3 Other important features of H.264

2.2.3.1 Small block-size transform

All major prior video coding standards used a transform block size of 8x8, while

the new H.264/AVC design is based primarily on a 4x4 transform. This allows the

encoder to represent signals in a more locally adaptive fashion, which reduces artifacts

known colloquially as ”ringing”. (The smaller block size is also justified partly by the

advances in the ability to better predict the content of the video using the techniques

noted above, and by the need to provide transform regions with boundaries that

correspond to those of the smallest prediction regions.)

2.2.3.2 Hierarchical block transform

While in most cases, using the small 4x4 transform block size is perceptually benefi-

cial, there are some signals that contain sufficient correlation to call for some method

of using a representation with longer basis functions. The H.264/AVC standard en-

ables this in two ways: 1) by using a hierarchical transform to extend the effective

block size use for low frequency chroma information to an 8x8 array, and 2) by allow-

ing the encoder to select a special coding type for intra coding, enabling extension of

20



the length of the luma transform for low-frequency information to a 16x16 block size

in a manner very similar to that applied to the chroma.

2.2.3.3 Short word-length transform

All prior standard designs have effectively required encoders and decoders to use more

complex processing for transform computation. While previous designs have generally

required 32-bit processing, the H.264/AVC design requires only 16-bit arithmetic.

2.2.3.4 Exact-match inverse transform

In previous video coding standards, the transform used for representing the video was

generally specified only within an error tolerance bound, due to the impracticality

of obtaining an exact match to the ideal specified inverse transform. As a result,

each decoder design would produce slightly different decoded video, causing a ”drift”

between encoder and decoder representation of the video and reducing effective video

quality. Building on a path laid out as an optional feature in the H.263++ effort,

H.264/AVC is the first standard to achieve exact equality of decoded video content

from all decoders.

2.2.3.5 Arithmetic entropy coding

An advanced entropy coding method known as arithmetic coding is included in

H.264/AVC. While arithmetic coding was previously found as an optional feature

of H.263, a more effective use of this technique is found in H.264/AVC to create a

very powerful entropy coding method known as CABAC (context-adaptive binary

arithmetic coding).

2.2.3.6 Context-adaptive entropy coding

The two entropy coding methods applied in H.264/AVC, termed CAVLC (context-

adaptive variable-length coding) and CABAC, both use context-based adaptivity to

improve performance relative to prior standard designs.

21



2.3 Affine motion model and related work

2.3.1 Higher Order Motion Models

While block-matching is an efficient way of modeling much of the motion in a video

frame, its model covers only translation, which limits its effectiveness when there

is more complicated motion, such as rotation and zooming. Higher order motion

models like affine models and perspective models can represent these motion types,

albeit with more parameters.

If the translational motion model is expressed as in (9)




u(x, y) = a1

v(x, y) = a2

higher-order models expressed on this pattern as follows, with the affine model in (9)




u(x, y) = a1x + a2y + a3

v(x, y) = a4x + a5y + a6

the bilinear model in (9)




u(x, y) = a1x + a2y + a3 + a4xy

v(x, y) = a4x + a5y + a6 + a8xy

and the perspective model in (9)




u(x, y) = a1x+a2y+a3

a7x+a8y+1
− x

v(x, y) = a4x+a5y+a6

a7x+a8y+1
− y

2.3.2 Motion Elements

2.3.2.1 Translation

As the most common motion element in image sequences, translation refers to a rigid

shift in either the x or y or both directions, i.e. (9)




x′ = x + a1

y′ = y + a2

22



(0,0)
 x


y


Figure 6: Translation of object, with (a1, a2) = (1,−1).

(0,0)
 x


y


(0,0)
 x


y


Figure 7: Rotation of object about the origin, with θ = 30◦.

In an affine model, a3 and a6 account for translations in the two dimensions.

2.3.2.2 Rotation

Rotation in a polar axis system is described as the shift on the angular axis with

constant amplitude. A pure rotation through a clockwise angle is parameterized as

(9). 



x′ = cos θ · x− sin θ · y
y′ = sin θ · x + cos θ · y

2.3.2.3 Zooming

Zooming, or scaling, is a general term encompassing both cases of magnifying/dilating

and minifying/contracting the scene, which are very common in movie videos. A

23



(0,0)
 x


y


(0,0)
 x


y


Figure 8: Zooming of object about the origin, with (a1, a2) = (0.9, 1.3).

(0,0)
 x


y


(0,0)
 x


y


Figure 9: Vertical twist of object about the origin, with a = −0.5.

simple model describes a pure zooming as (9).





x′ = a1 · x
y′ = a2 · y

2.3.2.4 Shear

The effect of shear in a 2-D plane is that of stretching an object in the direction

of one axis while maintaining it in the other, and parameterized as in (9) for a

horizontal twist, or (9) for a vertical one. Though not usually found in natural video

sequences’ realistic motion, shear is very common in synthesized computer animations

and graphics. 



x′ = x + a · y
y′ = y

24



(a) (b)

Figure 10: (a) is the original picture of frame0 in the bream.qcif sequence. By
applying translation with [a1, a2]

′ = [6,−250], rotation with θ = −45o and [a1, a2]
′ =

[1
2
, 1

2
] consecutively, (b) is obtained. The three motion elements can be concatenated

and expressed as an affine transform operation in ( 9)





x′ = x

y′ = a · x + y

2.3.2.5 Panning/Tilting

Panning and tilting refer to the large motion of the camera in a certain direction,

namely, a dominant global motion in the video frame. It can include translation as

well as rotation. More importantly, it can be modeled more efficiently by a global

motion model instead of a segmented local one.

2.3.2.6 Multiple Motion Elements in the Affine Model

As illustrated in (9)- (9), any motion element can be expressed as an operation on

the 2-D coordinates of the corresponding pixel. A series of operations result in an

affine motion model, in which a3 and a6 stand for translation, a1, a2, a4 and a5 all

contain rotation, a1 and a5 cover zooming, and a2 or a4 accounts for shear. Figure (10)

shows an example of the combined effect of several motion elements mentioned above.

Specifically, the motion between Figure 10.a and 10.b consists of translation with

[a1, a2]
′ = [6,−250], rotation with θ = −45o and [a1, a2]

′ = [1
2
, 1

2
]. Plugging these

25



parameters in ( (9)), (9) and (9), we get the overall affine motion model as

−→mv =




mvx

mvy


 =




0.414 −1.414

1.414 0.414


×




x

y


 +




6

−250


 (9)

2.3.3 Affine Motion Model Estimation

2.3.3.1 Gradient-Based Method

As explained for the gradient-based motion estimation for the translational model,

the gradient-based estimation for affine motion parameter set can be derived from

the optical flow constraint equation (5). Except that at least 6 pixels would be

needed in order to solve for a non-singular solution for the equation. After some

simple manipulation, it can be seen that the affine model parameter can be formed

by solving (10).




∑
xIxxIx

∑
yIxxIx

∑
IxxIx

∑
xIyxIx

∑
yIyxIx

∑
IyxIx

∑
xIxyIx

∑
yIxyIx

∑
IxyIx

∑
xIyyIx

∑
yIyyIx

∑
IyyIx

∑
xIxIx

∑
yIxIx

∑
IxIx

∑
xIyIx

∑
yIyIx

∑
IyIx

∑
xIxyIy

∑
yIxyIy

∑
IxxIy

∑
xIyxIy

∑
yIyxIy

∑
IyxIx

∑
xIxyIy

∑
yIxyIy

∑
IxyIy

∑
xIyyIy

∑
yIyyIy

∑
IyyIy

∑
xIxIy

∑
yIxIy

∑
IxIy

∑
xIyIy

∑
yIyIy

∑
IyIy




×




a1

a2

a3

a4

a5

a6




=




∑−xIxIt

∑−yIxIt

∑−IxIt

∑−xIyIt

∑−yIyIt

∑−IyIt




(10)

where Ix, Iy and It are the frame’s gradients in the horizontal, vertical and temporal

directions respectively. All sums are done over the pixels covered by the affine model.

2.3.3.2 Fitting Translational Motion Field

If the MV’s for the small partitions (e.g. 8×8 blocks) of a large region (e.g. a motion

object) are known, assuming that the large region is affected by one affine transform,

affine motion estimation is equivalent as fitting a 6-D point to the known MV’s. More

specifically, by plugging all the partitions’ parameters into (11), the i and j in which

26



are vertical and horizontal coordinates for the pixels in the affine motion object.




i j 1 0 0 0

0 0 0 i j 1


×




x1

x2

x3

x4

x5

x6




=




i + mvx(i, j)

j + mvy(i, j)


 (11)

and lining them up, we obtain a redundant equation (12)

A2N×6x6×1 = b2N×1 (12)

where N is the number of pixels in the segmentation. Taking the pseudo-inverse of

A, we obtain the solution as in (13).

x = (AT A)−1 · AT b (13)

2.3.4 Video Compression Schemes Using An Affine Motion Model

2.3.4.1 Affine Motion Model in Place of Block-Based Translational Model

To overcome the limitation of a block-matching MC scheme, researchers have looked

into the possibility of more complicated motion models in motion coding. [26], [27]

and [28] are examples of such efforts. An affine model is introduced as a substitute

for the translational model, applied to the same block. More bits are spent on motion

information, in the hope of reducing the number of bits for the residual error.

2.3.4.2 Affine Motion Model in Conjunction with Block-Based Translational Model

[29] develops such an affine motion video codec by enlarging the block-size (to 32×32)

for affine model estimation, while applying the affine transformation to the whole

frame, which is implemented in series with the block-matching estimation. Remark-

able progress in rate-distortion performance is reported, while a dramatic increase in

computation load and codec structure complexity is observed.

27



2.3.4.3 Affine Motion Model for Frame-Wise Global Motion

Smolic et al proposes to use affine model on a frame-wise basis in cases of sheer

camera panning [30]. Block-matched MVs are also estimated at each MB, and the

choice between the global affine model and the local translational model is made by

minimizing a Lagrange cost. Another significant feature of the system proposed in

[30] is the use of a super-resolution (SR) technique in place of residual error coding

when global motion is predominant. In order for SR be effective, long term reference

frames become a must instead of an option. Due to the large overhead from long

term affine models, this technique works much better with high resolution formats,

e.g. 1280× 720, than lower resolution formats like QCIF, CIF and SIF.

2.3.5 Sprite

The well-known technique of sprite coding was first specified in MPEG-4 in 1999

[31], in response to the need formore efficient coding for global motion, with the

introduction of the concept of a video object plane and a video object layer [1]. A

sprite consists of pixels that are present in the frame throughout the sequence, which

are often background components. It’s usually constructed by adding the occluded

pixels in all following frames to the first frame (see Figure 11 for an example).

Therefore the sprite contains all parts of the background that were at least visible

once in an image sequence. It can be used for the reconstruction or the predictive

coding of the background. A comparison of the sprite coding and the video coding

method proposed by this thesis will be offered in later chapters.

According to the way its motion is transmitted in the bitstream, a sprite can be

labeled as a static or a dynamic sprite.

2.3.5.1 Static Sprite

For static sprites, long-term continuous motion information needed throughout the

sequence needs to be estimated off-line before the coding process starts. As a result,

28



(a)
 (b)
 (c)


(d)
 (e)
 (f)


Figure 11: Generation of the sprite from the background of a video sequence. (a) (f)
are frames 1, 181, 191, 207, 211, 232 of foreman.qcif. (g) is the generated sprite
background from [32]

29



it is not suitable for on-line video communication purposes.

2.3.5.2 Dynamic Sprite

Dynamic sprites’ motion information is coded and transmitted on a frame-wise basis,

like the rest of the frame, together with the residual error, which will be added to the

warped sprites at the decoder side.

One significant constraint of sprite coding, which also restricts the use of video

objects in MPEG-4/7/21, is the fact that the whole infrastructure is constructed upon

apriori segmentation maps, which must be very accurate.

30



(a) (b)

(c) (d)

(e) (f)

Figure 12: Synthesized video from 3 VOP’s. (a) and (b) are the luma and α channels
for VOP 1 (the fish) respectively. (c) and (d) are the luma and α channels for VOP
2 (the caption) respectively. (e) is the luma for VOP 0 (the background), and since
the transparency for the background is always zero, no α channel is needed for VOP
0. Note that the α channels for VOP 1 and 2 are both grayscale, meaning that
they define a transparency degree for each pixel in that VOP. A binary α channel
would only define if a pixel is transparent or opaque. Finally, (f) is the video frame
synthesized from the weighted sum of the 3 VOP’s. All frames are from the 95th
frame of bream.qcif.

31



CHAPTER III

GLOBAL AFFINE MODEL FOR MPEG P-VOP

3.1 Introduction

MPEG-4 and higher versions have introduced the concept of a Video Object Plane

(VOP), defined by its shape and texture. Masked by shape (the α-plane), the VOP is

often a contoured independent object, whose texture, motion and shape information

are all transmitted in the bitstream, according to MPEG-4 visual [33]. The bitstreams

of several VOP’s and accompanying composition information can be multiplexed so

that the decoder receives all the information to decode the VOP’s and arrange them

into one video scene, as illustrated in Figure 12. This results in interactivity and

flexibility for standardized video and multimedia applications [34].

The shape of an object is defined as the α-plane, or the α-map, which specifies

whether or not a pixel belongs to the corresponding VOPt. An α-plane can be either

grayscale or binary. A grayscale α-plane has each of its pixel values ranging from 0 to

255. A binary α-plane has each of its pixel as either 0 or 255. α value 255 means the

object is opaque at that pixel, namely, it’s fully displayed; value 0 means the object is

transparent, i.e. it’s totally unseen in the synthesized image. Any in-between values

define the transparency of the object pixel, the smaller the more transparent (see

Figure 12 (b) and (d) for instance). When a VOP is a rigid moving object, which

is very often the case, its motion is more likely to be global than the motion in a

synthesized multiple-VOP frame.

On the other hand, in many cases, the block-based motion vectors are very similar

in a neighborhood or even the whole frame. Putting the motion vectors directly into

the bit stream is like writing the raw pixels of each frame to disk. The concept of

32



(a) (b)

(c) (d)

Figure 13: (a) and (b) are frame 3 and frame 4 of the sequence bream2-1.qcif re-
spectively, with binary alpha plane defined; (c) and (d) are block-wise motion vector
fields from affine and block-matching estimation approaches respectively. From sub-
jective observation, one can judge that the motion between (a) and (b) is mainly
global translation and rotation. The reason for some irregular motion vectors in (d)
is that the optimization goal of block-matching method is MSE of the compensated
block, instead of the real motion of the target block.

prediction of motion vectors has been included in MPEG to deal with this situation.

Research of corresponding predicting algorithms has been carried out, e.g. [35], [36]

and [37]. All of the approaches only decrease the intensity of the coded motion

vectors, but not the number of motion vectors. For a 176 × 144 frame, there are

22× 18 = 396 blocks and therefore 792 real numbers to be coded. This means either

a large fraction of the bit stream must be occupied by motion information, or low

accuracy is necessary for each motion vector, or both. In this case, it is reasonable to

adopt an affine motion model other than block-wise translational motion models. See

Figure 13 for an example. The affine motion model has been utilized by the MPEG

standards, but only for coding the background sprite. [47] is an effort to introduce

an affine motion model for coding motion of VOP’s, however, it applies the affine

33



bits_BM


Affine

Estimator


(A)


Current

VOP


Reconst.

Prev.

VOP


Block-

Matching

Estimator


(B)


a
1~


a
6


mv2


mv1


Coding

VOP


Header


C

o


d

i
n


g



M

B


 

L


o

o


p
 Coding MB

Shape &


Shape Mot.

(D)


bits_affine


bits_BM


MB Mot.

Compensat.


(E)


Error

_MB2


Error

_MB1


Coding MB

Mode,


DCT & Mot.

(F)


bits_affine

Motion Model Decision


BM


affine


Coding MB

Shape &


Shape Mot.

(D)


Coding MB

Shape &


Shape Mot.

(D)


Coding MB

Mode &DCT


(F)


Coding MB

Mode,


DCT & Mot.

(F)


C

o


d

i
n


g



M

B


 
L

o


o

p




a
1'~


a
6'


Comp. VOP

(Texture)


Affine

Warp

(C)


Comp.

-Plane
 


Figure 14: MB-wise multiple motion model encoder structure. Solid lines illustrates
process of the program, dashed lines mean data transmission only. Gray blocks are
modules that output to real bit stream if affine mode is selected.

motion model to each block instead of to the whole VOP, so it results in an even

larger number of motion bits, this is traded off for a gain in motion accuracy in cases

of rotation, divergence and shear. In this chapter, we study the efficiency of coding

a sequence of VOP’s of one single Video Object (VO), with the affine motion model.

The factors that will affect the efficiencies are: (1) the number and intensity of the

motion parameters and (2) the intensity of the compensation error VOP.

3.2 Proposed Adaptive Coding Scheme Using Affine Mo-
tion Models for MPEG P-VOP’s

This work is based on the software of MoMuSys-OM-1.0-000706 coder-decoder. The

adaptive coding scheme with affine motion models is created by modifications to the

momusys system as described in the following section. Figure 14 is a flow chart of

the core part of the modified encoder.

34



3.2.1 Affine Motion Estimator for Each P-VOP

An affine motion estimator ((A) in Figure 14) is implemented as well as the original

block-matching searching algorithm ((B) in Figure 14), prior to the MB coding loop.

The affine motion estimation program used herein is hierarchical and iterative; it

outputs the 6 affine parameters, α1 ∼ α6 , which are interpreted in terms of block-

wise optical flow vectors (mv2) by (14). Note that here i and j are indices of the

MB, instead of the pixel.



mv2x

mv2y


 (i, j) =




a′1 a′2

a′3 a′4


×




(i− 1)× 16 + 8

(j − 1)× 16 + 8


 +




a′3

a′6


 (14)

α′1 ∼ α′6 in (14) are decoded affine parameters from the variable length coder (VLC)

approximations of α1 ∼ α6. These values will be used by the decoder for further

computation. The only use of mv2 is to provide prediction for shape motion estima-

tion. They are neither used for texture compensation, nor coded to the bit-stream,

as mv1 are in the MB coding loop. The MB loop creates two compensated MB’s for

each MB to be coded: one from mv1 via block-matching; another trimmed from the

affine-warped VOP, which is generated before the loop starts.

3.3 VOP Header Modification

The resulting affine parameters α1 ∼ α6 are predicatively coded by VLC to the VOP

header. To parallel its MPEG-4 coder counterpart, a step size of 0.5 and a search

range of [−16, +16] were chosen for α3 and α6, which represent the shift components

of the motion. The original VLC for MV difference (MVD) of the MPEG standards

uses for α3 and α6. The rotation parameters α1, α2, α4 and α5 are more subtle and

need greater accuracy. Assuming that the smaller amounts of motion occur most

often, we can generate a VLC for the magnitude of α1, α2, α4 and α5 (another bit is

allocated for the sign) as in Table 1. For the sequence of bream, the magnitudes of

α1, α2, α4 and α5 are rarely greater than 0.1, so we set the range to be [−0.25, +0.25].

35



Accuracy of a1, a2, a4 and a5

40

 30

20

10
310− 210−

35

25

15

(a)

Accuracy of a1, a2, a4 and a5

24.5

24

23.5

23
310− 210−

(b)

Figure 15: Choice of accuracy of affine parameters.

The choice of precision affects the length of the VLC. We experimented withaccuracies

uniformly separated on the logarithmic scale of [0.0005, 0.01], to obtain an optimal

accuracy, trading off the number of bits used for the affine parameters and the PSNR

of the affine warped VOP, as well as the ultimate number of bits required for the

whole VOP. In Figure 15, we see that as the accuracy (increases in magnitude), bits

used for the affine parameters decrease, the PSNR of the warped VOP does as well.

However in the lower range of accuracy, the number of header bits (1) does not change

as drastically as in the higher range, while the PSNR (2) drops almost linearly over

the whole range. As a result, we choose the 0.001 for the accuracy, which achieves

the lowest number of bits for the header, among those with the highest compensation

PSNR for the affine estimator.

3.4 Block-wise Motion Model Choice Criteria

The choice between affine and block-matching (BM) motion models is made in the

MB coding loop. Coding an MB consists mainly of 2 modules: (1) coding the MB

36



Table 1: The VLC table for α1, α2, α4 and α5. The magnitude is in units of accuracy,
e.g. 0.0005. The last VLC contains 500 0’s in a row.

Variable Length Code Magnitude of Affine Parameter

1 0
01 1
001 2
0001 3

...
...

000. . . 0001 500

shape and shape motion (as (D) in Figure 14); (2) coding the MB’s motion and

corresponding texture compensation DCT (as (F) in Figure 14). Both modules put

bits into the bit-stream, which is the final output of the encoder. In order to compare

the efficiency of the affine and BM models comprehensively, (1) and (2) are called 3

times. First, both models are for used for both modules (1) and (2). As the output

bits are sent to two dummy bit-streams, the lengths of the two bit-streams are used for

comparison. After the choice is made, (1) and (2) are called again, using the chosen

motion model; this time, the resulting bits are put to the real bit-stream. The choice

between affine and BM motion models has to take two factors into consideration: (1)

the number of bits required and (2) the reconstructed PSNR. The significance of the

bit length comparison is evident: the BM model needs some bits for motion vectors,

which are totally saved by the affine model; while the BM compensated MB might

be smaller in magnitude than the affine warped MB, and thus result in fewer bits for

error DCT. In fact this is the case, because of the BM motion compensation’s MSE

target. Chances are that the affine model can beat the BM with a pretty large error

MB, because of the absence of motion vectors. When bit length is the only concern,

the two models’ operating regions are divided as in Figure 14(a). However, a large

error MB not only implies more bits for the DCT, but also a lower reconstruction

PSNR. To prevent too much sacrifice of PSNR in bit saving, we expect the operating

regions of the two motion models to be as in Figure 16(b), instead of Figure 16(a).

37



Bits_Affine-Bits_BM (bit)

PSNR_Affine-PSNR_BM (dB)

2λ
Bits_Affine-Bits_BM (bit)

PSNR_Affine-PSNR_BM (dB)

-- BM Mode-- Affine Mode

(a) (b)

1λ

Figure 16: Region division for block-matching and affine motion models, with (a)
taking only bit-rate into consideration, (b) selection by rate-distortion optimization.

In the upper left region, the affine model is preferred only when a modest loss of

PSNR trades off a significant gain of bit rate. If a mediocre saving of bits is achieved

by a gigantic loss of PSNR, then it is not a sensible choice. The ratio is heuristically

set to 0.01. The loss of PSNR in the upper left region can eventually be compensated

by reducing the DCT quantization step size in rate control when encoded bit rate is

lower than the target bit rate. The motion mode selection between the affine and

BM models borrows the same philosophy as the mode selection among different block

sizes in the MPEG-4/H.263 (INTER8x8 and INTER16x16) and H.264 (INTER16x16,

INTER16x8, INTER8x16 and INTER8x8) standards: the optimal coding mode finds

a best tradeoff between the motion vector bit-rate and the residual error bit-rate.

With the BM estimated motion vectors and the affine warp parameters, the MB

modes are decided based on a Lagrangian cost function [29],

JMODE(Sk, Ik|Q, λMODE) = DREC(Sk, Ik|Q + λMODERREC(Sk, Ik|Q)) (15)

where the MB mode Ik is varied over the set of possible MB modes I=INTRA, SKIP,

INTER-16x16, INTER-8x8, and AFFINE. (15) is minimized when the optimal rate-

distortion combination is achieved. The distortion DREC is measured as the sum of

38



squared differences between the reconstructed s′ and the original frame s

DREC =
∑

(x,y)∈A

|s[x, y, t]− s′[x, y, t]|2 (16)

where A is the MB to be coded. The rate RREC is the sum of the number bits

for syntax, motion vectors, residual errors and shape information. The coefficient

λMODEis chosen according to [29] as

λMODE = 0.85×Q2 (17)

where Q is the quantization step size for the current frame.

3.5 Complexity Analysis

The computational load of the proposed coding scheme consists of (1)affine model

estimation (the warped VOP is generated as part of this calculation) and (2) calcula-

tion of the affine mode cost in BM mode selection. The temporal gradient It used in

the determination of the affine model is obtained by simple pixel substraction with a

cost of approximately 6× 9× 16× 16 = 13824 additions, in the case of the frame0 of

bream.qcif, whose VO is defined on a 6× 9 rectangle. Ix and Iy require 12 additions

and 7 multiplications for filtering and subtraction with a 9 × 9 kernel at each pixel.

This results in a total cost for determining the spatial gradients is 12×13824×2 addi-

tions and 7×13824×2 multiplications. Calculating x ·Ix, x ·Iy, y ·Ix and y ·Iy costs 4

multiplications and filling the elements above the diagonal of H requires an additional

21 multiplications at each pixel. The load for constructing H with the given gradients

is thus 25 × 13824 multiplications and 21 × 13823 additions. Likewise, B requires

6 × 13824 multiplications and 6 × 13823 additions. Adding the 301 multiplications

and 250 additions to solve a 6× 6 set of linear equations, using the 3-layer structure

and assuming an average of 3 iterations per layer, the overall complexity for affine

motion estimation is about 2.8M multiplications and 2.5M additions, per frame. For

a half-pixel MSE BM scheme, with a search range of [−16, 16], the worst case requires

39



14 16 18 20 22 24 26 28 30 32
24.5

25

25.5

26

26.5

27

27.5

28
Bream2−1, QCIF, Initial QP=13, Frame Rate=7.5Hz

Bit Rate (kbps)

P
S

N
R

(d
B

)

Proposed
MPEG−4

Figure 17: Rate-PSNR curves of BREAM sequence encoded with MPEG-4 and
proposed encoders.

(16× 16 + 16× 16− 1)× 64× 64 additions and 16× 16× 64× 64 multiplications to

find the motion vector for one of the 6× 9 MB’s and 4× (8× 8 + 8× 8− 1)× 64× 64

additions and 4× 8× 8× 64× 64 multiplications for the MV’s for the corresponding

4 blocks. This comes to 225M additions and 113M multiplications per frame. The

computational load for the global affine motion estimation is approximately 1% of the

full search BM case, and is comparable to most of the realistic partial search cases.

The computational complexity for the affine mode in mode selection is comparable

to that for the BM mode.

40



14 16 18 20 22 24 26 28
23

23.5

24

24.5

25

25.5

26

26.5

27

27.5
"Welcome to MPEG World", QCIF, Initial QP=13, Frame Rate=7.5Hz

Bit Rate (kbps)

P
S

N
R

 (
dB

)

Proposed
MPEG−4

Figure 18: Rate-PSNR curves of ”WELCOME TO MPEG4 WORLD” sequence
encoded with MPEG-4 and proposed encoders.

41



3.6 Simulation Results

Simulations we carried out on the sequences bream2 1.qcif and bream2 2.qcif, under

various target bit rates, with the original Momusys codec and the proposed multiple

motion model code. We observe a notable decrease in the number of bits used for an

average P-frame, especially when the transmission bit rate is very low (Figures 17

and 18). The system’s relative improvement at low bit rates can be explained by

the observation that affine model, in most cases, loses to the BM model in terms of

compensation error, as a tradeoff for its compact motion representation. Also, due

to BM model’s MSE optimization target, even when it doesn’t provide as accurate

a motion vector as the affine model, it still often generates a smaller residual error.

When the target bit rate for video communication is low, the quantization of the

DCT is forced to be crude, and the subtle difference of the error block produced by

the two motion models is diminished. In all cases, 50% to 70% of the inter-coded MB

choose the affine mode over other modes.

The proposed codec can decrease the number of bits used for an average P-frame by

10% to 20% for a range of data transmission bit rates, compared to the existing MPEG

codec. The practical significance of this system is that it requires only moderate

modification to the standard, to achieve its coding gain, and therefore may well be

added to an original MPEG-4 codec. Due to its low bit-rate adaptability, the proposed

scheme is best utilized in video conference scenarios. Although simulation was carried

out on sequences with pre-defined VOP’s, the alpha channel is not necessarily a pre-

requisite for using the affine model. Application of the proposed coding scheme for

more general sequences is introduced in the next chapter.

42



CHAPTER IV

MULTIPLE GLOBAL AFFINE MODELS FOR GENERAL

VIDEO FRAMES

4.1 Introduction

In this chapter, we propose to use multiple global affine motion models on a nat-

ural video frame, in place of the local block motion vectors, in lower transmission

bandwidth scenarios.

In the latest video coding standard H.264, motion compensation partitions have

been reduced to allow for blocks as small as 4 × 4. For a qcif (176 × 144) P-frame,

assuming all MB’s are coded as inter MB’s, then motion estimation can generate

between 11×9×2 = 198 (in the case of all INTER16×16 modes) to 44×36×2 = 3168

(in the case of all INTER4× 4 modes) motion parameters. On the other hand, with

affine models for each motion object (MO) used, only N × 6 parameters are needed,

where N stands for the number of MO’s in the frame. In many applications, e.g.

video conferencing, there are only two MO’s, the background and the foreground.

With N = 2, only 12 motion parameters are transmitted in the bitstream.

Meanwhile, in low bit rate network scenarios, a hybrid video coder (e.g. AVC/H.264)

tends to allocate a greater portion of the bit budget for motion vectors, while saving

bits on residual errors (Figure 2). With the objective of reducing the bit budget

for motion information at lower end bitrates, we propose to use the global motion

model in place of local block motion vectors, when the available bandwidth for video

communication is lower than 100 kbps.

To detect multiple MO’s in a frame, motion segmentation needs to be performed

while the affine motion model for each MO is being computed. While pixel-wise

43



segmentation can offer the best segmentation accuracy, it is computationally expen-

sive and not necessary. Instead, we perform the segmentation and estimation on a

block base, to be compatible to the existing codec structure. This is sufficient for our

accuracy needs.

The scaling portion of the affine model is coded with a 4−dimensional vector-

quantizer (VQ), the translational part with a classical motion vector. Both parts are

transmitted in the frame header. Multiple new macroblock (MB) modes, associated

with the affine motion models, are added to the original list of I4, I16, P16 × 16,

P16× 8, P8× 16, P8× 8 and DIRECT etc. of the standard. An MB chooses one of

the affine modes, if the corresponding MO affine motion model results in the lowest

Lagrange cost.

This chapter is organized as follows. Section 4.2 introduces general backgrounds

for motion segmentation, as well as the specific affine motion estimation process

implemented in the proposed codec. Section 4.3 covers the vector quantizer used to

quantize the affine model and the cache-memory design to accelerate the dictionary

search. Section 4.4 discusses the effect of the global motion model on blocking artifacts

and introduces a new subjective reconstruction quality measure, which favors the

affine modes more than the traditional PSNR. Section 4.5 is a description of the mode

selection module, which modifies the existing Lagrange optimizer with the new affine

modes, as well as the new perceptual PSNR distortion metric. Section 4.6 presents

results of simulations on coding efficiency, and subjective reconstruction quality.

4.2 Motion Segmentation

4.2.1 Motion Objects

4.2.1.1 Motion Object and Motion Boundary

A motion object refers to a set of pixels with the same coherent motion. It is more

of a practical concept than a mathematical definition, for it is difficult to be defined

44



Figure 19: Distribution of intra MB’s over the P-frames (frame 5-8), with yellow
MB’s as INTRA4 × 4, green as INTRA16 × 16, gray as SKIP and orange as
INTER. The intra MB’s are mostly distributed around the human face, where
occlusion happens frequently.

precisely. Realistically it could be a rolling ball, or a panning background, but it

should not be a dancing human. The margin areas at the boundary of two or more

motion objects are called motion boundaries, which may suffer from occlusion and

uncovering and hence be elusive for motion compensation. The residual error for a

motion boundary block is often notably higher than for an internal block of a motion

object. When the intra-mode is selected in an inter-coded slice, it is often on the

motion boundary. See Figure 19 for an example.

4.2.1.2 Video Object Plane

A Video Object Plane (VOP) is a concept first defined by MPEG-4, as a feature of

object-based video coding [1]. It is introduced for the sake of multiple video object

manipulation, rather than compression enhancement. A VOP can contain multiple

motion objects, such as the two children and one ball in the standard sequence chil-

dren. A VOP can (such as sequence bream) or can not (such as in the sequence

children in Figure 20) be a motion object. It is after all a subjective definition. The

support of a VOP is represented by a gray-scale or binary map of the same size as

the luminance frame. This is called the alpha-channel; it is transmitted as a fourth

channel together with the one luminance and two chrominance channels. A gray-scale

alpha-map defines the transparency of each pixel, with 0 as transparent and 255 as

45



(a)

(b)

(c)

Figure 20: An example of a VOP layer that’s not one motion object.(a) is the
original scene for the VOP. (b) is the alpha channel for the VOP. (c) is the VOP
masked by its alpha channel, ready to be synthesized with other VOP’s for a new
scene, as in Figure 13.f. The difference between the MO in Figure 13.a and the one
in this figure is that the first one is a rigid MO, while the latter is not.

opaque. A binary alpha-map is the same, except that it omits the intermediate val-

ues. The alpha-channel can also be coded in intra or inter mode, with the assistance

of arithmetic coding.

4.2.2 Motion Segmentation Problem Formulation

Motion segmentation groups similar pixels based on their motion consistency, given

two consecutive frames of the same scene under motion. For example, if the scene

consists of two different cars and the background, motion segmentation should output

46



three segments to represent the background environment, and the two cars respec-

tively, based on their different movements [43]. In other words, the task of motion

segmentation is to cluster all pixels of a video frame into partitions as close as to

the real moving objects as possible. Since the objective is to determine the motion

coherence of pixels, a pixel-wise optical flow field is needed as an input to the motion

segmenter. This way, the task of grouping pixels is converted into the mission of

grouping the similar motion parameters associated with the pixels.

4.2.3 Flow-Based Motion Segmentation Methods

4.2.3.1 Bayesian Expectation-Maximization (EM)

Assuming that the number of motion objects is known, the Bayesian method models

the segmentation problem as a missing data problem and provides a theoretically

elegant framework for the solution. For a given observation O, EM determines the

segmentation X that maximizes P (X|O), often referred to as the maximum a pos-

teriori (MAP) estimation. In [44] the pre-computed optical flow is used as the

observation O, the segmentation X is modeled as a Markov random field. With the

knowledge of each pixel’s segment identity, the maximum likelihood (ML) estimation

can easily predict the probability density of each segment; on the other hand, based

on MAP, the segmentation map can be estimated from the density parameters [43].

Thus the EM approach iterates between the estimation (E-step) and maximization

(M-step), until it converges. Limitations of the EM methods include the requirement

that the number of segments be known, which can practically be dealt with by cross-

validation procedure. It also requires considerable computation when the dimension

of X is high.

4.2.3.2 Clustering

K-means clustering vector quantization is an intuitive and is also the most popular

method of motion segmentation. Though numerous implementations of K-means

47



motion segmentation have been proposed by researchers, the basic algorithm consists

of the following steps.

First, an initial segmentation map is determined. This initialization can be ran-

dom or preset. Yang et al proposed a motion segmentation scheme with adaptive

number of segments [45], in which the initial number of segments is set to a large

upper limit, e.g. 30, and after each round of clustering, any two segments with a

distance below a predefined threshold is merged, reducing the number of segments by

one.

Figure 21 demonstrates an example in which (a) and (b) are preset initial seg-

mentation maps, which lead to fairly good convergence results;(f) is the preset color

segmentation map, which converges to a more meaningful and neat segmentation

[46]. In either case, the number of segments is preset to 2 in Figure 21.

Second, the affine model for each segment is computed from the MV’s within that

segment by ( 13). The MV’s could be pixel-wise or block-wise, depending on the

accuracy and computation load requirements.

Third, the MV’s are reassigned to one of the N affine models, to minimize either

the 2-D motion vector distortion as in ( 18) or compensated intensity distortion as in

( 19).

DM =
∑

(i,j)∈Sk

‖mv(i, j)−mv(Ak; (i, j))‖2 (18)

DI =
∑

(i,j)∈Sk

‖I ′(i−mvx(i, j), j−mvy(i, j))−I ′((1−a1,k)·i−a2,k·j−a3,k, i+(1−a5,k)·j−a6,k)‖2

(19)

While ( 19) provides a more physically meaningful criterion, ( 19) is more computa-

tionally efficient and often leads to a comparable result with ( 18).

Fourth, as in any classical K-means iteration, the cluster center, interpreted as

the affine model, is updated. Instead of taking the centroid as the center, the motion

segmentation process obtains the new center by ( 13) as in step one.

48



(a) (b)

(c) (d)

(e) (f)

Figure 21: Effect of different initial segments on motion segmentation results for the
standard sequence of “mother and daughter”, from [46]. (a), (b) are random initial
guess of the segmentation map. (f) is the region map obtained from color segmen-
tation, which could be used as an initial map as well. (c) and (d) are intermediate
results after 30 segmentation iterations. (e) is the final motion segmentation map.

49



Steps three and four are iterated until the number of pixels that change their

segmentation assignment is below a threshold. In addition to this basic iteration

structure, a motion segmentation process can be equipped with various functionalities

to facilitate the accuracy and speed of the segmentation task, such as filtering small

segments to enforce spatial continuity.

4.2.4 Motion Estimation in the Multiple Affine Model Video CODEC

In this section, the proposed novel hybrid video encoder, which models the frame

motion information using the affine motion model for multiple motion objects in the

frame, together with conventional block based motion vectors is discussed. Figure 23

is a block diagram of the proposed encoder. The proposed codec is constructed upon

the JM 7.1 codec.

4.2.4.1 Block Matching Motion Estimation

In Figure 23, the block labelled “BM Estimator 1” is the JM block-matching motion

estimator. It estimates quarter-pixel resolution motion vectors for all of the block

sizes allowed in H.264, for one MB. “BM Estimator 0” is similiar to “BM Estimator

1”, except that “BM Estimator 0” uses the original previous frame as its reference,

in order model the optical flow as accurately as possible; whereas “BM estimator 1”

uses the previous reconstructed frame, in order to mimic the behavior of the decoder.

For the same reason, after the affine models have been calculated, the reconstructed

previous frames are used to predict the current frame. Although BM estimators 0

and 1 share the same search range (e.g. 16 × 16) and step size (e.g. 4 × 4), their

matching window sizes are significantly different (e.g. 32×32 for estimator 0 vs. 4×4

for estimator 1). This is to avoid pseudo motion vectors in areas of uniform texture

areas.

As discussed in section 4.2.3.2, the MV’s that are inputs to the segmentation

module can either be pixel-wise or block-wise. We use a motion field of 4 × 4 block

50



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 22: Block-matching motion fields of variable sizes ((a)-16 × 16, (b)-16 × 8,
(c)-8 × 16, (d)-8 × 8, (e)-8 × 4, (f)-4 × 8, (g)-4 × 4) generated by the original JM
encoder, and the motion segmentation map (h) generated from the 4 × 4 one, on
foreman.QCIF frame 0 and 1.

51



Reconst.

Previous

Frame


BM

Estimator 0


Motion

Segmentation


4x4 block

motion field


Affine

Warp


Warped

Segments


Combination


warped

segments


segmentation

map


VQ

affine


model sets


warped

reconstruction


VQ

-1


recon.

affine


models

entropy

codes


Writing

Slice


Header


sub-block

MVs


M

a


r
c

o


B

l
o


c

k


C

o


d

e


 
L

o


o

p




M

 a
 c
 r
o
 B


 l
o
 c
 k


C

 o
 d
 e
  
L
 o
 o
 p


Mode

Decision


Writing

Motion &

Residual

for Block


BM

Estimator 1


Original

Previous

Frame


Original

Current

Frame


Figure 23: System block diagram of the proposed hybrid video encoder. The gray
parts are the originals of the JM encoder.

N Fitting

Problems in

6-D Space


Equation (9)
 Equation (6)

N affine

models


N’ 4x4 Block

Motion Fields


M1, M2, …, MN’


4x4 Block Motion Field M0 (X by Y)


 Dm (X by Y by N’)


BM

Estimator 0


Segment

Combination


Random

Segmentation

Initialization


Segmentation Map 
 P

(Initial N=10)


Segmentation

Update


Updated

Segmentation


Map 
P
=
P’’
  (N=N’’)


Number

of 4x4 Blocks


Changing Segment

< 
T 
?


Segmentation

Map 
P
=
P’


N=N’

affine models


Y


N
 Filter Out

Small


Segments


Segmentation

Map 
P
=
P’’


N=N’’

affine models


N’ affine

models


Final Segmentation

Map 
P
=
P’’


N=N’’ affine models


Figure 24: Flow chart of the “Motion Segmentation” module in Figure 23. This
simultaneously performs segmentation and affine model estimation.

MV’s, because (i) pixel-wise motion estimation is quite costly and not necessary, since

the selection of the affine mode is made at the MB level; (ii) MB-wise motion fields

are too crude for motion segmentation. The inclusion of too many points outside the

motion object will affect the accuracy of the estimated affine model, given the fact

that the affine motion estimation and the motion segmentation are coupled.

4.2.4.2 Motion Segmentation and Affine Model Estimation

The motion segmentation and affine model estimation processes are coupled, and

both are performed by the subsystem labelled “Motion Segmentation” in Figure 23.

For a segmentation task that ultimately aims at the construction of video objects as

52



Regression


#changing

blks
<TH


#changing

blks
<TH


Y


N


99
6
 
X

Cluster


Label


f
S
1

36
44
 


36
44
 
MV


0

36
44
 
S


4
6
 
X


Filter


1

36
44
 
S


Splitter


s
S
1

36
44
 


Merger


3
6
 
X


36
44
 
S
 2
6
 
X


Figure 25: Block diagram for motion segmentation, with an initial random block-
wise segmentation map (refer to Figure 26) and the motion field with the same block
size base as the input, and the final segmentation map, as well as the affine models
for each segment, as the output. X6×N stands for the affine model matrix, where N
is the number of models. S44×36 is the label map for the 44× 36 4× 4 blocks, ranging
from 1 to N .

in [46]; an accurate pixel-wise segmentation map is useful. To generate a pixel-wise

segmentation map P , however, for a QCIF frame, requires 176 × 144 × N labeling

operations after the block-wise motion segmentation procedure. In addition, the affine

model fitting equation of eq.( 13) would require matrix A to be of size 2× 176× 144

by 2. However, our experiments show that a block-wise final P (see Figure 24)

achieves the same number of affine mode MB’s and approximately the same final

coding efficiency as a pixel-wise final P . So we use the block-wise final P as shown

in Figure 24, to reduce the computation. See Figure 22 for an example.

In addition to the clustering routines needed for motion segmentation, several

other features are inculded in the segmentation module, to improve performance [44].

These are shown in (Figure 25).

53



Figure 26: Initial random guess of the segmentation map, on a 16 × 16 base, for a
QCIF frame.

To accommodate the initial assumption that each MB in a QCIF frame has a

unique affine model, the regression parameter N is set to 99. After the regression

process in Figure 25 exits with N affine models, each of the M initial 4 × 4 blocks

(M = 44 × 36× in Figure 26) has a label ranging from 1 to N . Clustering group

these 99 classes in the 6-dimensional affine parameter space into a preset small num-

ber (heuristically 4) of clusters. Since the ultimate goal of the coder is to reduce

the number of motion bits, generating too many affine models would add too much

overhead for the Rate-Distortion performance to improve. Thus, the cluster block is

necessary to limit the number of affine models to be transmitted. As N is reduced to

4, the M segment units are re-labeled with labels 1 to 4.

The clustering process presets the number of output segments to 4, but one frame

doesn’t necessarily contain 4 motion objects. In this case, some of the 4 segments

that essentially belong to one MO will have very close affine model in the 4−D space.

54



They are merged by the “Merger” in Figure 25, and N is further reduced to, say, 3.

To enforce the local spatial connectivity of the motion regions, additional con-

straints need to be applied before the N models are re-estimated in the loop. Because

the affine motion classification is performed at each small 4 × 4 block in the frame

with models that apply to a much larger region, one model may coincidentally fit

a small block in another region undergoing a different coherent motion. Also, since

block-matching is a method that targets at the best match instead of the true mo-

tion, some small blocks may be associated with wrong motion vector and then labeled

erroneously. As a result, the affine model may support sporadic 4× 4 blocks that are

disjoint from each other. The serial modules “Splitter” and “Filter” identify these

blocks and filter them out. When several disjoint regions are supported by a single

model, the region splitter separates them into independent regions and produces a

new model for each. Then the “Filter” eliminates the small regions to keep the es-

timator stable. Finally eq.( 13) creates an affine model for each reliably connected

region. The ultimate output of the segmentation process is (i) the segmentation map

S44×36 with values from 1 to N (N = 2 in the foreman frame example) and (ii) the

N (e.g. N = 2) affine models X6×2.

Figure 27 presents an example of the segmentation results. Figure 28 shows

the result of applying the segmentation map on the reference and the current frame.

The four images in Figure 28 are used for affine model estimation in (10). As

can been seen from the estimated affine models X0 and X1, The foreground motion

X0 is drastic because the head is turning, while the background reflects slight shift

caused by the camera shaking. Figure 29 demonstrates how the warped MO’s are

synthesized into a complete motion compensated frame.

55



(a) (b)

(c) (d)

Figure 27: Example of segmentation results. (a) and (b) are the originals of frame
1 and frame 2 of foreman.QCIF; (c) and (d) are the binary segmentation map as a
result of the segmentation process described in section 4.2.4.2.

56



(a) (b)

(c) (d)

Figure 28: Figure 27.a is divided into 2 motion objects: foreground (a) and back-
ground (c), using the segmentation map obtained in Figure 27.c. Figure 27.b is
divided into 2 motion objects: foreground (b) and background (d), using the seg-
mentation map obtained in Figure 27.d. (a) and (b) are then used on (10) to
estimate the affine motion model for the foreground object, while (c) and (d) are
used for the background. X0 = [0.0080,−0.0228,−0.0030,−0.0096, 1.8517,−4.0776]T

and X1 = [−0.0013,−0.0020, 0.0010,−0.0139, 0.3334,−0.1161]T are obtained for the
foreground and background respectively.

57



Figure 29: Synthesis of warped motion objects into a complete compensated frame.
(a) is the reference frame, i.e. frame 1 of foreman.QCIF; (b) and (c) are (a) warped
by X0 and X1 respectively; (d) is (b) masked by segmentation map Figure 27.d;
(e) is (c) masked by the complimentary map. Adding (d) and (e) produces (g) the
final affinely reconstructed image. For comparison, (f), the original of frame 2, and
(h), the block-matched frame are listed. It can be observed that (h) resembles the
original more on a rough scale and particularly on the face area, while (g) offers an
equally good reconstruction on the rest of the frame and a more smooth and natural
reconstruction on the face area.

58



4.2.4.3 Adaptive Number of Motion Objects

Since the number of motion objects, N , is usually no more than 3, the extra bits

caused by the increase of mode indication complexity are trivial. When there are

more than 3 MO’s, too many affine models will result in too much overhead in the

slice header, which contradicts the purpose of saving motion bits.

On the other hand, when local motion in a frame is drastic, the global motion

model will fail. To avoid wasting bit-rate on the affine motion models in such cases,

a metric S is obtained in the motion segmentation phase to measure the locality of

the motion. If S is above a predefined threshold, then the affine motion models are

skipped in construction of the slice header and the L global modes are all disabled.

4.3 Compression of the Affine Models

4.3.1 Quantization of the 6-D Affine Models

As discussed in Section 2.3.2.6, among the 6 parameters that constitute an affine

model, a1, a2, a4 and a5 are the scaling factors while a3 and a6 are the shift factors.

In order to compress the 6-D model most efficiently, we quantize [a1, a2, a4, a5]
T as one

vector A and [a3, a6]
T as another, b. The 4-D A is quantized by the vector quantizer

introduced in the following sections, while the 2-D b is quantized and coded as a

regular motion vector. Both A and b are compressed and put in the slice header as

in Figure 30. Meanwhile, for those MB’s that are still coded using traditional inter

modes, e.g. INTER16 × 16, INTER4 × 4, etc., the motion vectors are coded and

put in the MB data packet.

4.3.2 Vector Quantizer

4.3.2.1 Quantization

Quantization is a vital step in any digital signal processing task. It represents an

infinite number of values on a continuous/discrete range with a finite number of

indices, with some acceptable loss of precision. Quantizers can be divided into two

59



Slice
Slice Header
 Slice
Slice Header


Affine Model
 Motion Vector


Figure 30: Position of the 6−D affine models in the bitstream.

groups: scalar quantizers and vector quantizers, each of which works efficiently in

different applications.

4.3.2.2 Scalar Quantizer

A scalar quantizer divides a range into N steps, each represented an index. An input

signal is labeled by the index of the step into which it falls. In de-quantization, the

recovered value of the signal is the central value of the indexed step; the expected

deviation from the original is determined by the width of the step.

A scalar quantizer can be uniform, in which all the steps have the same width, as

well as non-uniform, in which they don’t. Non-uniform quantizers are usually designed

to minimize the de-quantized distortion for a given number of steps (e.g. a Lloyd-

Max quantizer), or to minimize the distortion with an upper limit on the number

of bits needed to represent the steps (entropy-constrained quantizer). Experiments

show that in most cases, a simple uniform quantizer followed by an entropy coder

performs similiarly to an entropy-constrained quantizer [12].

4.3.2.3 Basic Concept of Vector Quantizer

The basic idea behind a vector quantizer (VQ) is to divide a vector space into regions

(analogous to the steps in a scalar quantizer), and replace any vector that falls within

a region with the centroid. The centroids are often called codewords, that are of the

region into which it falls. This is analogous to the step centers in a scalar quantizer.

In order to define the regions, a finite number of vectors that are representative of

60



the statistical characteristics of the real data (referred to as the training set) are

clustered using a clustering algorithm and an optimization criterion. The most well-

known clustering algorithm is called the Linde-Buzo-Gray (LBG) algorithm or the

generalized Lloyd algorithm[38], which starts with an initial selection of codewords

and iterates between clustering the vectors in the training set based on the codebook

and updating the code-book. It can fail because of a poor initial guess, and suffers

computationally from the number of searching operations in the assigning phase. To

address these problems, various fast approaches with a minor sacrifice of performance

and significant gains in matching speed have been proposed, including the pair-wise

nearest neighbor (PNN) algorithm [39] and the self-organizing feature map algorithm

[40].

4.3.2.4 Cache-Memory Design

Although a vector quantizer can shrink the vector space to a code-book, still the

code-book is too large to be searched for a match for real-time coding purposes.

K. K. Truong et al applied the cache-memory technique from computer architecture

design [41], to the code-book construction in VQ. This technique defines the full-size

code-book obtained from clustering as the main code-book, which is stored off line.

On the other hand, an on-line cache code-book which is far shorter than the main

code-book is initially searched for VQ. Only when a vector cannot find a satisfactory

match (distortion below a pre-defined threshold) in the cache code-book, is the main

code-book searched and the cache code-book updated. Simulations demonstrate that

the cache miss frequency is mostly below 5%.

While it dramatically cuts down the operations in VQ code-book searching, the

cache-memory technique needs a carefully designed cache replacement rule to function

optimally. Least recently used (LRU), for example, substitutes the new match found

in the main code-book for the codeword with the oldest hit time record in the cache

61



code-book. In least frequently used (LFU), the codeword to be removed is the one

with the lowest number of hit. Another popular rule is first-in-first-out (FIFO) which

takes out the codeword that stayed longest in the stack.

Truong et al also discusses the choice of the cache size for the different update

rules and concludes that the fixed sizes of 100, 200 and 25 for the LRU, LFU and

FIFO respectively are the most efficient [41].

The adaptive working set model (AWSM) is also proposed in [41], for the design of

the cache code-book. In this model, the cache is the updated under any replacement

rule, but rather by the location of the coding process. In the case of image block

vector coding, the cache is the set of codewords that have been used in a causal

window located around the current block. The most prominent advantage of AWSM

is the adaptation of the window size to the cache-miss frequency, which uses the cache

source most efficiently.

4.3.2.5 Entropy Coding

After quantization, the matched codeword needs to be translated to a binary stream

so as to ultimately realize the purpose of quantization. Entropy coding expresses a set

of quantized vectors with a set of unique symbols, the average length of which equals

the signal entropy, and therefore is the shortest possible, according to Shannon’s

conclusion. Using an entropy coding (e.g. Huffman coding) scheme for the cache

index, a VQ can achieve an even better coding efficacy.

4.3.2.6 Vector Quantizer for Affine Models

The training set that we use to construct the main code-book is obtained from a

variety of video sequences that are representative of common global motion ele-

ments. These include rotation (bream, “Welcome to MPEG4 World”), translation

(coastguard, container, mobile and calendar), panning (foreman, flower garden), and

zooming (highway). To maximize the accuracy of the affine models used for training,

62



we specify the number of MO’s for every sequence, instead of adapting it to

the segmentation process. For example, the 300-frame coastguard sequence would

generate 2(the boat and the background)×300 sets of affine models, and the 300-frame

mobile and calendar sequence will generate 4(calendar, wall, train and ball)×300 sets

of affine models. Note that only the scaling parameters a1, a2, a3 and a4 are used with

vector quantization. With the above sequences, we have more than 10, 000 4-D vectors

that are used to train 300 codewords in the main code-book Qm = {A1, A2, . . . , A300}
, where Ai = (ai,1, ai,2, ai,4, ai,5)

T .

The cache code-book that we search for VQ is 16 items long in our codec, noted

as Qi = {A1, A2, . . . , A16}. After the “Motion Segmentation” module produces the

N affine models, the N 4 × 1 scaling vectors are checked against Qc for a closest

match AI(1 ≤ l ≤ 16). If the quantization distortion Dv is greater than a predefined

threshold, then a cache-miss happens and Qc needs to be updated. Let Ai(n) be the

cached codeword whose last reference prior to frame n is the oldest. By the LRU rule,

Ai(n) is dismissed from the cache code-book. The main code-book is then searched,

and the best match AI(17 ≤ l ≤ 300) is put into the cache code-book.

When the quantization distortion Dv is below the predefined threshold, a cache-

hit is observed. In this case, Qc keeps the same members but needs to be re-ordered.

Figure 31 illustrates the updating process of Qc .

Our experiments demonstrate that in 95% of the cases, no more than 10 bits are

spent on the vector quantized affine model, which is less than 2% of the overhead

of the frame bit-rate in our testing scenarios. [a3, a6] of the affine model is coded

predicatively as a conventional motion vector, except that the resulting VLC is put

in the slice header.

63



 


Figure 31: The updating processes of the LRU refreshment strategy during a cache-
hit (top) and cache-miss (bottom).

4.4 Global Motion Model and Blocking Artifact

4.4.1 Blocking Artifacts

Blocking artifacts have been a major drawback of block-based hybrid video coding

systems. These originate from two aspects of the encoder: (i) block-based motion es-

timation and (ii) block-based DCTs. Various error concealment approaches [55] [56]

[57] have been proposed to reduce the artifacts at the boundaries of the neighboring

MB’s. H.264’s introduction of in-loop filter smoothes out the blocking artifacts before

a compensated frame is used as a reference, and reduces the temporal propagation of

the artifacts. However, the in-loop filter operation is computationally expensive and

erases some of the reconstruction texture details because of its low-pass nature.

The affine global motion model however, treats one motion object as a whole

64



and applies the same warping operation to all the MB’s that belong to the MO.

This way, the motion compensation works spatially continuously on the MB’s and

the reconstruction result appears smooth at the MB boundaries, even without any

filtering operation. The low pass element in the interpolation step in the affine model

estimation is not more detrimental to the texture details than the interpolation im-

plemented to perform quarter-pixel block matching. However, since the MB’s coded

with affine mode still undergo the block-based DCT transformation, the in-loop filter

remains necessary. Since the filtering condition is satisfied less frequently, the filtering

operation is called less often and requires fewerf computation resources.

4.4.2 Perceptual PSNR

According to studies of the human vision neural system [53], human eyes are more

sensitive to the inner area of a motion object than to the boundaries, more con-

cerned about foreground objects than background ones and, more attentive to fast

moving objects than relatively static ones. These properties can be well exploited by

the proposed video codec with its segmentation motion structure. For example, the

distortion of the interior MB’s of a motion object can be weighted in the Lagrange

formula more heavily than that of the boundary MB’s [54]. This can drastically affect

the choice of the mode, and will most likely result in more choices of the AFFINE

mode. The modification of the mode selection criteria remains to be added to the

current project. Hopefully, it will increase the subjective appearance of the decoded

sequence, and hence the perceptual PNSR, as defined in [54].

To take the perceptual distortion into consideration, we simplified the pixel-wise

weighted mean square error (MSE) defined in [54] to the MB-wise weighted MSE in

JMODE(Sk, Ik|Q, λMODE) = CPERDREC(Sk, Ik|Q + λMODERREC(Sk, Ik|Q)) (20)

which is a modified version of ( 15). Namely, for MB’s with the same segmentation

label for all its 16 4 × 4 sub-blocks, we assume it is the internal part of an MO.

65



According to [54], when the same MSE distortion occurs at the central and boundary

regions, the perceptual distortion is larger in the central region. So we use a CPER > 1

for such an MB. For an MB with different segmentation label, CPER = 1 is used, and

eq. ( 20) becomes a Lagrangian equation eq.( 15) as in [23]. Because human vision

is more sensitive to active regions than to static ones, we define

CPER = 1 + σ · 2
√

a3
2 + a6

2 (21)

where a3 and a6 are the translational elements from the MO containing the current

MB and σ is a heuristic coefficient.

The rate RREC in ( 20) is the sum of the bits for syntax, motion vectors, residual

errors and shape information. Coefficient λMODE is chosen according to [23] as ( 17),

where Q is the quantization step size for the current frame.

The perceptual PSNR we use in the affine-model codec system is defined as

PSNRPER = 10 · log10(
2552

∑
CPER ·DREC

) (22)

where the sum is over the whole frame.

Figure 34 also presents the rate-distortion performances of the two encoders,

when distortion is defined as the perceptual distortion by (11), (13) and (14). The

proposed encoder still beats the JM7.3 encoder by a greater margin at the lower end

of the bitrate spectrum, but by a better margin over the whole range compared to the

case where the regular PSNR is used to measure distortion. Note that the calculation

of perceptual PSNR for JM-created bitstream utilizes the segmentation map from the

proposed encoder.

4.5 Macroblock Level Mode Selection

The choice between the N affine and 4 (16 × 16, 16 × 8, 8 × 16, 8 × 8) BM motion

models is made in the MB coding loop. Two factors are taken into consideration:

the coded bit length for the MB and the reconstructed PSNR. The BM model needs

66



some bits for motion vectors, which are totally avoided by the affine models; while the

BM compensated MB might be smaller in magnitude than the affine warped MB, and

thus result in fewer bits for the residual DCT, which is always the case, because of the

BM motion compensation’s mean square error (MSE) optimization target. Chances

are that the affine model can beat the BM method for large error MB’s, due to the

absence of motion vectors. The motion mode selection between affine and BM models

shares the same philosophy as the mode selection among different block sizes in the

H.264 standard: the optimal coding mode finds a best tradeoff between motion vector

bit-rate and residual error bit-rate.

While the BM compensated MB’s and the corresponding residual errors are com-

puted in the MB loop in the JM encoder, the added affine warped MB’s are simply

clipped from the synthesized warped reconstruction (Figure 23), which is obtained

before the MB loop starts.

With the BM estimated motion vectors and the affine warp parameters, the MB

modes are decided based on a Lagrangian cost function [49], which is minimized

when the optimal rate-distortion combination is achieved as in ( 15), where the MB

mode Ik is varied over the set of possible MB modes

I = {I4, I16, SKIP, P16× 16, P16× 8, P8× 16, P8× 8, A1, A2, . . . , AN} (23)

The distortion DREC is defined in ( 16), where A is the MB to be coded.

Figure 32 shows the distribution of MB mode selection in frame2 of foreman.qcif

by the JM encoder, while Frame 33 shows the mode distribution with the proposed

codec. It can be seen that half of the MB’s use the affine modes in Figure 33.

4.6 Simulation Results

Simulation results demonstrate a notable decrease in the number of bits for an average

coded P-frame for similar quality. Simulations are carried out on the 300 frames of

coastguard, which is a typical scene composed of a focused front object over a moving

67



INTER 8X16


DIRECT


INTER 16x16


INTER 16x8


INTER 8x8


INTRA 8x8


Figure 32: Mode distribution of the original H.264 encoder, on the second frame of
foreman.qcif.

background; and the last 100 frames of foreman, which is a classical panning scene.

Rate distortion performances of the proposed codec system and the original JM codec

system have been reported and compared in Figure 34.

Bit rates shown in Figure 34 are for P-frames only. As the bit rate goes up, a

greater portion of the bandwidth is allocated to the residual error, and savings from

the motion vectors affect the whole bitstream marginally. Due to the the BM model’s

MSE optimization target, even if it doesn’t give as accurate a motion vector as the

affine model does in cases involving rotating and zooming, it might still generate a

smaller residual error block. However, when the target bit rate for video communica-

tion is low, the quantization of DCT coefficients is forced to be crude, and the subtle

differences of the error block produced by the two motion models is diminished.

It can be concluded from Figure 34 that at the lower end of the simulation range,

the bit rate saving is about 18%, corresponding to a PSNR increase of about 1 dB.

68



AFFINE


INTER 8X16


DIRECT


INTER 16x16


INTER 16x8


INTER 8x8


INTRA 8x8


Figure 33: Mode distribution of the proposed encoder, on the second frame of
foreman.qcif.

In all cases, 20% to 40% of the inter-coded MB’s choose one of the affine modes.

69



10 15 20 25 30 35 40 45 50
24

25

26

27

28

29

30

31

32

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

Sequence: foreman.QCIF (frame 200−299), Frame Rate: 30Hz

Proposed
H.264 Baseline

(a)

0 10 20 30 40 50 60 70 80 90 100
25

26

27

28

29

30

31

32

33

34

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

Sequence: Coastguard, Frame Rate: 30Hz

Proposed
H.264 Baseline

(b)

10 15 20 25 30 35 40 45 50
24

25

26

27

28

29

30

31
Sequence: foreman.QCIF (frame 200−299), Frame Rate: 30Hz

Bit Rate (Kbps)

P
er

ce
pt

ua
l P

S
N

R

Proposed
H.264 Baseline

(c)

0 10 20 30 40 50 60 70 80 90 100
24

25

26

27

28

29

30

31

32

33

Bit Rate (Kbps)

P
er

ce
pt

ua
l P

S
N

R
 (d

B
)

Sequence: Coastguard, Frame Rate: 30Hz

Proposed
H.264 Baseline

(d)

Figure 34: Rate distortion performance for sequence foreman.qcif (panning) and
coastguard.qcif (global translation).Both PSNR and perceptual PSNR are used for
measuring distortion. The upper left is the result of perceptual PSNR with sequence
coastguard ; the upper right of PSNR with coastguard ; the lower left of perceptual
PSNR with sequence foreman (last 100 frames); the lower right of PSNR with foreman

70



CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Simulation Results and Conclusion

For the sequences of Foreman and Coastguard, a bit-rate saving of 1 ∼ 18% compared

to the H.264 baseline coder is observed with transmission bitrates ranging from 10kbps

to 100kbps, with more than 50% of the MB’s choosing one of the affine modes. Greater

compression efficiency is achieved at the lower end of the bitrate range, as expected.

Also, the larger the video frame size, the more notable the improvement over the

H.264 baseline.

Besides increasing the coding efficiency, the global affine model manifests the

following features that refine the compressed video quality. (i) When the number of

slices per frame is more than 1, the global affine motion model can enhance the error-

resilience of the video stream, because the affine motion parameters are duplicated

in the headers of different slices over the same frame. (ii) The global motion model

predicts a frame by warping the whole reference frame and this helps to decrease

blocking artifacts in the compensation frame.

5.2 Future Work

5.2.1 Scalability in Motion Segmentation

As explained above, in the video coding scenario, accurately labeling the interior

pixels/blocks of a motion object is much more important than actually depicting the

contour of the object. The reason for this is that the boundary blocks will not select

the AFFINE mode anyway. They will more likely choose a block-matching inter

mode, or even an intra mode. The set of blocks that are eventually compensated by

one of the AFFINE models is a subset of the corresponding motion object.

71



On the other hand, the pixels of a motion object in the boundary blocks may

contribute favorably to the estimation of the affine model. To exploit the motion

information at these locations, motion segmentation can be designed as a series of

stages. First, MB-wise segmentation based on MB-wise motion vectors is performed.

Only those boundary MB defined in the first stage are considered for re-labeling in

the iterations of the second stage, in which the segmentation task is carried out on

a block-wise basis. This process continues until a pixel-wise segmentation map is

accomplished.

Whether a merely MB-wise motion segmentation or a refining segmentation is

more efficient in modeling the affine motion parameters will need be decided by ex-

periments and further study.

5.2.2 Error Concealment Algorithms

In a conventional hybrid video codec, the motion information is coded MB by MB.

When a video packet is lost, the motion vectors for the MB’s within are gone, together

with the corresponding residual errors. In a partitioning mode, motion information

is put in partition I, which has a higher priority of importance than residual errors,

because without the accurate motion compensation, the residual error is nothing but

noise. The proposed global motion modeling makes it possible to raise the protection

priority of motion information to the same level as the frame header, in the hope

that even if an MB has not selected the AFFINE mode by Lagrange optimization,

it will achieve a reasonably good reconstruction, when the selected motion vector

is lost in transmission. An error concealment infrastructure needs to be designed in

accordance with the video stream carrying global, as well as local, motion information.

When one frame is one slice, the header burden due to global motion model is trivial

and can be used for error concealment when the data packet is lost. When there

are multiple slices in a frame, the overhead volume will increase, and the maximum

72



number of motion objects needs to be adapted to the slice size. In this case, the affine

models are simply duplicated in theheaders of slices that dwell in the same frame,

and increased error resilience comes from redundancy. When a whole slice including

the header is lost, its spatially neighboring slices can offer useful motion information

for concealment.

A possible problem for the concealment scheme is the decision of motion object

identity for a lost MB. Because although the global motion models are in the header,

the object index for an MB is coded locally and subject to more contamination, when

there are multiple motion objects in the frame. Future research needs to design a

mechanism, to find out the most possible motion object index for a lost MB.

73



REFERENCES

[1] Text for ISO/IEC FDIS 14496-2 Visual, ISO/IEC JTC1/ SC29/ WG11 N2502,

Vancouver, Canada, Nov. 1998.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “An Overview of the

H.264/AVC video coding standard,” in IEEE Trans. on Circuits and Systems for

Video Technology, pp. 560-576, vol. 13, Jul. 2003.

[3] T. Wedi and H. G. Musmann, “Motion- and aliasing-compensated prediction for

hybrid video coding,” in IEEE Trans. on Circuits and Systems for Video Tech-

nology, pp. 577-586, vol. 13, Jul. 2003.

[4] M. Flierl and B. Girod, “Generalized B pictures and the draft H.264/AVC video-

compression standard,” in IEEE Trans. on Circuits and Systems for Video Tech-

nology, pp. 587-597, vol. 13, Jul. 2003.

[5] W. Wien, “Variable block-size transforms for H.264/AVC,” in IEEE Trans. on

Circuits and Systems for Video Technology, pp. 604-613, vol. 13, Jul. 2003.

[6] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini and G. J. Sullivan, “Rate-

constrained coder control and comparison of video coding standards,” in IEEE

Trans. on Circuits and Systems for Video Technology, pp. 688-703, vol. 13, Jul.

2003.

[7] B. Girod, “Motion-Compensation Prediction with Fractional-Pel Accuracy,” IEEE

Trans Communications, vol. 41, pp. 604-612, Apr. 1993.

74



[8] T. Wiegand, X. Zhang, and B. Girod,“Long-Term Memory Motion-Compensated

Prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 70-84, Feb.

1999.

[9] Y. W. Huang, B.Y. Hsieh, T.C. Wang, S.Y. Chien, S.Y. Ma, C.F. Shen, and L.G.

Chen, “Analysis and Reduction of Reference Frames for Motion Estimation in

MPEG-4 AVC/JVT/H.264,” Proc. International Conference on Multimedia and

Expo 2003 (ICME2003), vol. 2, pp. 812-815, Baltimore, MD, U.S.A. Jun. 2003.

[10] S. Nogaki and M. Ohta, “An Overlapped Block Motion Compensation for High

Quality Motion Picture Coding,” IEEE Int. Symp. Circuits Syst., pp. 184-187,

May 1992

[11] M.T. Orchard and G. J. Sullivan, ”Overlapped Block Motion Compensation:

An Estimation-Theoretic Approach,” IEEE Trans. Image Processing, vol. 3, pp.

693-699, Sep. 1994.

[12] A. M. Tekalp, Digital Video Processing. London, U.K.: Prentice-Hall, 1995.

[13] M. Flierl and B. Girod, ”Generalized B Pictures and the Draft H.264/AVC Video-

Compression Standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp.

587-597, Jul. 2003.

[14] J. Jain and A. Jain, ”Displacement measurement and its application in interframe

image coding,” IEEE Trans. Commun., vol. COMM-29, pp.1799-1808, Dec. 1981.

[15] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion compensated

interframe coding for video conferencing,” Proc. Nat.Telecommun. Conf., New

Orleans, LA, Nov. 29-Dec. 3 1981, pp. G5.3.1-5.3.5.

[16] R. Srinivasan and K. R. Rao, “Predictive coding based on efficient motion esti-

mation,” IEEE Trans. Commun., vol. COMM-33, pp. 888-896, Aug. 1985.

75



[17] M. Ghanbari, “The cross-search algorithm for motion estimation,” IEEE Trans.

Commun., vol. 38, pp. 950-953, July 1990.

[18] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block motion

estimation,” IEEE Trans. Circuits Syst. Video Technol.,vol. 6, pp. 313-317, June

1996.

[19] L. K. Liu and E. Feig, “A block-based gradient descent search algorithm for block

motion estimation in video coding,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 6, pp. 419-423, Aug. 1996.

[20] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast blockmatching

motion estimation,” IEEE Trans. Image Processing, vol. 9, pp. 287-290, Feb. 2000.

[21] C. Zhu, X. Lin and L.P. Chau, “Hexagon-Based Search Pattern for Fast Block

Motion Estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, pp. 349-

355, Aug. 1996.

[22] G. J. Sullivan and R. L. Baker, “Rate-distortion optimized motion compensation

for video compression using fixed or variable size blocks,” Proc. GLOBECOM’91,

Phoenix, AZ, Dec. 1991, pp. 85-90.

[23] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, G.J.Sullivan, “Rate-constrained

Coder Control and Comparison of Video Coding Standards,” IEEE Trans. Cir-

cuits Syst. Video Technol., vol. 13, pp. 688-703, Jul. 2003.

[24] B. D. Lucas and T. Kanade, “An iterative image registration technique with an

application to stereo vision,” Proc. 7th Inl Joint Conf on Artificial Intelligence

(IJCAI) 1981, Vancouver, BC, Canada, pp. 674-679.

[25] C. D. Kuglin and D. C. Hines, “The phase correlation image alignment method,”

Proc. Int. Conf. Cybernetics Society, 1975, pp. 163-165.

76



[26] M.C. Lee, W.G. Chen, C. B. Lin, C. Gu, T. Markoc, S. I. Zabinsky, and R.

Szeliski, “A Layered Video Object Coding System Using Sprite and Affine Motion

Model”, IEEE Trans. Circuits Syst. Video Technol., pp. 130-145, Vol. 7, No. 1,

Feb., 1997.

[27] H. Jozawa, K. Kamikura, A. Sagata, H. Kotera, and H. Watanabe, “Two-stage

motion compensation using adaptive global MC and local affine MC,” IEEE

Trans. Circuits Syst. Video Technol., pp. 75-85, Vol. 7, No. 1, Feb. 1997.

[28] K. Zhang, M. Bober, and J. Kitter, “Image sequence coding using multiple-level

segmentation and affine motion estimation”, IEEE Journal on Selected Areas in

Comm., pp. 1704-1713, Vol. 15 No. 9, Dec. 1997.

[29] E. Steinbach, T. Wiegand and B. Girod, “Using Multiple Global Motion Models

for Improved Block-Based Video Coding,” Proc. Int. Conf. Image Processing 99

(ICIP99), Kobe, Japan, Oct. 1999, vol. 2, pp. 56-60.

[30] A. Smolic, Y. Vatis, H. Schwarz, and T. Wiegand, “Improved H.264/AVC coding

using long-term global motion compensation,” Proc. VCIP 2004, SPIE Visual

Communications and Image Processing, San Jose, CA, USA, Jan. 2004.

[31] A. Smolic, T. Sikora, and J.-R. Ohm, “Long-Term Global Motion Estimation

and its Application for Sprite Coding, Content Description and Segmentation,”

IEEE Trans. Circuits Syst. Video Technol., Vol. 9, No. 8, pp. 1227-1242, Dec.

1999.

[32] Y. Lu, W. Gao, and F. Wu, “Efficient Background Video Coding With Static

Sprite Generation and Arbitrary-Shape Spatial Prediction Techniques,” IEEE

Trans. Circuits Syst. Video Technol., Vol. 13, No. 5, pp. 394-405, May. 2003.

77



[33] A. K. Katsaggelos, L. P. Kondi, F. W. Meier, J. Ostermann and G. M. Schuster,

“MPEG-4 and Rate-Distortion-Based Shape-Coding Techniques,” Proc. IEEE,

Vol. 86, pp. 1126-1154, June. 1998.

[34] Y. Wang, G. Wen, S. Wenger, and A. K. Katsaggelos, “Review of Error Resilient

Techniques for Video Communications,” IEEE Signal Processing Magazine, vol.

17, no. 4, pp. 61-82, July 2000.

[35] Ismaeil, I., Docef, A., Kossentini, F., and Ward, R., “Efficient Motion Estima-

tion Using Spatial And Temporal Motion Vector Prediction,” Proc. International

Conference on Image Processing, Kobe, Japan, Vol. 1, pp. 70-74 , Dec, 1999

[36] M.G. Liu, C.H. Hou, “A Fast Block-Matching Motion Estimation Algorithm

Based on Spatial-Temporal Motion Vector Correlation,” Proc. International Sym-

posium on Intelligent Multimedia, Hong Kong, pp. 498-501, May, 2001

[37] S.D. Kim, J.B. Ra, “An Efficient Motion Vector Coding Scheme Based on Min-

imum Bit Rate Prediction,” IEEE Transaction on Image Processing, Vol. 8, pp-

1117-1120, Aug, 1999.

[38] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantization design,”

IEEE Trans. Commun., vol. 28, pp. 84-95, Jan. 1980

[39] W.H.Equitz, “New vector quantization clustering algorithm,” IEEE Trans Com-

mun. Vol.37, pp. 1568,-1575, Oct. 1989.

[40] K.K.Truong, “Multilayer Kohonen image codebooks with a logarithmic search

complexity,” Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 4, pp.

2789-2792, May 1991.

78



[41] K.K. Truong, “Vector quantizer design for images and video based on hierarchical

structures,” Thesis (Ph.D.)–School of Electrical Engineering, Georgia Institute of

Technology, Atlanta, GA, U.S.A. 1993.

[42] P.V.C. Hough, “Machine Analysis of Bubble Chamber Pictures,” Proc. of Inter-

national Conference on High Energy Accelerators and Instrumentation, CERN,

1959.

[43] Y. Wu, “Optical Flow and Motion Analysis,” ECE510-Computer Vision Course

Notes, Department of Electrical and Computer Engineering, Northwestern Uni-

versity, Winter 2001.

[44] J.Y.A.Wang and E.H.Adelson, “Representing moving images with layers,” IEEE

Trans. Image Processing, Vol. 3, No. 5, Sep. 1994.

[45] G.D. Borshukov, G. Bozdagi, Y. Altunbasak, and A. M. Tekalp, “Motion seg-

mentation by multistage affine classification,” IEEE Trans Image Processing, Vol.

6, No. 11, Nov. 1997.

[46] Y.Altunbasak, P.E.Eren and A.M.Tekalp, “Region-based parametric motion seg-

mentation using color information,” Graphic Models on Image Processing, Vol. 60,

No. 1, pp. 13-23, Jan. 1998.

[47] N. Grammalidis, D. Beletsiotis and M. G. Strintzis, “Sprite Generation and Cod-

ing in Multiview Image Sequences,” IEEE Transactions on Circuits and Systems

for Video Technology, Vol. 10, No. 2, Mar. 2000.

[48] X. Li, J.R.Jackson, A.K.Katsaggelos, R.M.Mersereau, “An adaptive coding

scheme using affine motion model for MPEG P-VOP,” Proc. of International Con-

ference on Acoustic and Speech Signal Processing (ICASSP04), Montreal, Canada,

May 2004.

79



[49] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini and G. J. Sullivan, “Rate-

constrained coder Control and Comparison of Video Coding Standard”, IEEE

Trans. Circuit Syst. Video Technol., vol. 13, pp.688-703, Jul. 2003.

[50] X. Li, J.R.Jackson, A.K.Katsaggelos and R.M.Mersereau, “Multiple Global

Affine Motion Model for H.264 Video Coding with Low Bit Rate,” Proc. of SPIE

Conference on Image and Video Communications and Processing III, San Jose,

CA, U.S.A., Jan. 2005.

[51] E. Kowler, “Eye Movements and Their Role in Visual and Cognitive Processes,”

New York: Elsevier Science, 1990.

[52] J. K. O’Regan and A. Levy-Schoen, “ Eye Movements: From Physiology to

Cognition,” New York: Elsevier Science, 1987.

[53] C. W. Oyster, “The human eye: structure and function,” Sunderland, Mass.

Sinauer Associates, 1999.

[54] C-W Wong, O. C. Au, B. Meng, H-K Lam, “Perceptual Rate Control for Low-

Delay Video Communications,” Proc. of International Conference on Multimedia

and Expo (ICME2003), Vol. 3, pp. 6-9, Jul. 2003.

[55] H. S. Malvar and D. H. Staelin, “The LOT: Transform Coding without Blocking

Effect”, IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp.553-559, Apr.

1989.

[56] R. Rosenholtz and A. Zakhor, “Iterative Procedure for Reduction of Blocking

Effects in Transform Image Coding”, IEEE Trans. Circuit Syst. Video Technol.,

vol. 2, pp.91-95, Mar. 1992.

80



[57] Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, “Regularized Reconstruction

to Reduce Blocking Artifacts of Block Discrete Cosine Transform Compressed

Image,” IEEE Trans. Circuit Syst. Video Technol., vol. 3, pp.421-432, Dec. 1993.

81



VITA

Xiaohuan Li was born in the city of Chongqing, China in November 1976. She

received her Bachelor of Engineering degree from the Automation Department of

Tsinghua University, Beijing, China in June 2000. From September 2000 to Decem-

ber 2001, she studied in the Department of Electrical and Computer Engineering in

Northwestern University, Evanston, IL, U.S.A. During the 4 academic quarters she

spent in Northwestern, she served as a Teaching Assistant in the ECE department.

Meanwhile, she conducted research in the field of error concealment in video shape

coding, with the advisory of Dr. Aggelos K. Katsaggelos, director of the Image and

Video Processing Laboratory. During the summer quarter of 2001, she worked as

an exchange student in the Media Lab of Hochschule fr Technik (HSR), Rapperswil,

Switzerland, where she initiated her research on video concealment with Dr. Guido

M. Schuster. Xiaohuan received her Master of Science degree from Northwestern Uni-

versity in June 2002. From January 2002 to May 2005, she worked as a Graduate

Research Assistant in the School of Electrical and Computer Engineering in Georgia

Institute of Technology, Atlanta, GA. During her stay in the Center of Signal and

Image Processing, she worked extensively in the field of video coding, with a focus

on global motion models used in video compression, under Dr. Joel R. Jackson’s

advisory. From June 2005 on, she worked as a video architecture engineer in NVidia

Corp. in Santa Clara, CA. Xiaohuan defended her Ph.D. thesis in May 2006 and

received her Ph.D. degree in Electrical Engineering from Georgia Tech in July 2006.

Non-academic biographical highlights of her graduate years include her wedding

to Dr. Ji Chen in August 2001 during her master study and her giving birth to her

son Dawson Chen in January 2004 during her Ph.D. study.

82


