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SUMMARY 

Even as we see a significant growth in the field of supramolecular polymers in the 

last ten years, multi-functionalized systems have been scarcely studied. Noncovalent 

multi-functionalization provides unique advantages such as rapid materials optimization 

via reversible functionalization as well as for the tuning of materials properties by 

exploiting the differences in the nature of these reversible interactions. 

This thesis involves the design principles, synthesis & methodology of 

supramolecular side-chain multi-functionalized polymers. The combination of a 

functionally tolerant & controlled polymerization technique such as ROMP with multiple 

noncovalent interactions such as hydrogen bonding, metal coordination and ionic 

interactions has been successfully used to synthesize these polymers. Furthermore, the 

orthogonality between the above interactions in block/random copolymers has been 

studied in detail. It has been found that the studied interactions were orthogonal to each 

other.  

To validate the viability of this methodology using multiple orthogonal 

interactions towards materials design noncovalent crosslinking of polymers has been used 

as a potential application. Three classes of networks have been studied: complementary 

multiple hydrogen bonded networks, metal crosslinked networks, & multi- functionalized 

hydrogen bonded and metal coordinated networks.  

The first room temperature decrosslinking by exclusive complementary hydrogen 

bonded interactions has been successfully achieved. Furthermore network properties have 

been successfully tuned by varying the network micro-structure which in turn was tuned 

by the hydrogen bonding motifs used for inter-chain crosslinking.   



 xxxi

By combining two different noncovalent interactions used for inter-chain 

crosslinking, it was possible to make multi-functionalized materials whose properties 

could be controlled by varying the crosslinking strategy. Hence by employing multi-

functionalization methodology, important materials properties such as stimuli 

responsiveness can been tuned to yield novel materials which would be difficult to be 

obtained via traditional covalent chemistry or by using single noncovalent interactions. 
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CHAPTER ONE 

Multi-functionalized Side-Chain Supramolecular Copolymers 

1.1 Introduction 

The combination of noncovalent chemistry and polymer science has lead to the 

emergence of the relatively new field of supramolecular polymer chemistry. In the past 

two decades this new area of science has seen a phenomenal growth mainly due to the 

significant advances in supramolecular and synthetic polymer chemistry. The synergy of 

these two areas of science has allowed for a quantum leap in supramolecular polymer 

science.  Almost endless permutations and combinations of noncovalent interactions 

based on molecular recognition such as hydrogen bonding, metal coordination and 

Columbic interactions with a wide variety of polymeric scaffolds have been investigated 

with the goal to form highly functionalized complex nanoscale architectures and 

materials either by using single or multiple noncovalent interactions.  

This introductory chapter will focus mainly on side-chain functionalized 

supramolecular polymers, specific advantages of side-chain functionalization over main 

chain functionalization, the advantages of multi-functionalization over mono-

functionalization and finally some important application of side-chain functionalization 

methodology in the field of materials design. The design principles and the methodology 

of side-chain functionalization in particular multi-functionalization will be discussed in 

detail with examples in the published literature.   
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1.2 Side-chain supramolecular polymers  

Supramolecular polymers can be defined as ‘the formation of polymeric materials 

via noncovalent interactions using self-assembly’ and can be categorized into main- and 

side-chain supramolecular polymers.1  The vast majority of reports in the literature focus 

on main-chain supramolecular polymers (as shown in Figure 1.1) materials that are held 

together by noncovalent interactions such as hydrogen bonding, metal coordination or 

Columbic interactions.2   

 

Noncovalent Complex

Covalent Segments

 

 

Figure 1.1 Cartoon representation of a generic main-chain supramolecular functionalized 
polymer. 
 

Since the degree of polymerization and ultimately the stability of the polymer 

backbone are dependent upon the strength of the noncovalent interaction, main-chain 

supramolecular polymers often are limited to employing recognition motifs that have 

very strong binding efficiencies.   

In contrast, side-chain supramolecular polymers are polymers in which the 

polymer backbone is based on covalent bonds (as shown in Figure 1.2) while the side-

chains of the polymer are noncovalently functionalized.3,4   

The main components of side-chain functionalized polymers are: 
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(i) polymer backbone,  

(ii) side-chains,  

(iii) noncovalent complex and  

(iv) functional moiety. 

Covalent Backbone

Side-chains

Noncovalent
Complex

Functional Moiety

Photoactive
Biodegradable
Commodity plastic

Hydrogen Bonding
Metal Coordination
Ionic Interactions

Mesogen
Fluorescent tag
Protein sensor
Inorganic Moiety  

 

Figure 1.2 A cartoon representation of a generic side-chain supramolecular 
functionalized polymer. 
 
(i) Polymer Backbone: The unique advantage of noncovalent side-chain functionalization 

is that it combines the robustness of the covalent main-chain polymer along with the 

reversibility and flexibility of noncovalent interactions, and hence has been used 

extensively in synthesizing “tailor-made” materials with controlled architectures and 

properties.4 Depending upon the desired application, appropriate polymeric scaffold can 

be chosen from the vast number of extensively studied polymeric systems.3  For example, 

copolymers such as random, alternating, di-, and tri-block as well as crosslinked 

polymeric networks, hyperbranched polymers, dendrimers, graft polymers have been 

employed as polymeric scaffolds for side-chain functionalization.4  Furthermore, 

functional polymer backbones such as liquid crystalline polymer,5  biodegradable 

polymers,6  and lastly polymeric macrostructures such as vesicles, aggregates, networks 

and even inorganic materials such as nanoparticles have been utilized.7   
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(ii) Side-chains: Most side-chain functionalized polymers consist of long alkyl side-

chains which tether the noncovalent recognition unit to the polymer backbone.3 These 

side-chains act as a diluent, increasing the solubility of the polymers in different solvents, 

a specific advantage of processing considerations. The side-chains can also confer high 

solubility in specific solvents for the desired application. For example, the use of specific 

side-chains such as poly(ethyleneglycol) will result in highly water soluble system, where 

as the use of highly fluorinated side-chain segments will result in hydrophobic as well as 

lipophobic system. Furthermore, the presence of these side-chains also de-couples the 

motion of the polymer backbone from the noncovalent complex formation.  

(iii) Noncovalent complex: The fundamental part of side-chain functionalized 

supramolecular polymers is the ability of fast reversible and facile functionalization. This 

functionalization can be achieved by using a noncovalent complex as a tethering point to 

reversibly attach the functional moiety of interest onto the polymer backbone. This 

tethering point is the heart of the system which consists of a noncovalent complex which 

is responsible for attaching the functional moiety of interest to the polymer backbone. 

Since the degree of polymerization and the stability of the polymer backbone are 

independent of the strength of the noncovalent interaction, a vast variety of interactions 

can be utilized in these systems, unlike in the previous main-chain systems.  Hydrogen 

bonding, metal coordination, Columbic interactions, and dipole-dipole interactions are 

some of the most extensively employed noncovalent interactions used for side-chain 

functionalization of polymers.8,3,4  By choosing the appropriate noncovalent interaction 

based on the association constant and desired responsiveness, quantitative 

functionalization of polymer scaffolds can be obtained.   Furthermore in supramolecular 
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side-chain functionalized systems, the functional loading can be greatly controlled from a 

few mol% to 100% functional group loading. Such an extensive window for controlling 

the functional loading cannot be achieved in main-chain systems. 

(iv) Functional moiety: A vast variety of functional moieties have been noncovalently 

and hence reversibly tethered to polymer backbones.9-14 Furthermore just by altering the 

functional moiety the same polymer scaffold can be transformed into a family of 

functionalized “daughter-polymers” with vastly different properties and applications. 

Well known examples of functional moieties which have been used are fluorescent tags, 

bioactive molecules, photoactive molecules, mesogenic moieties, photoactive moieties, 

inorganic moieties etc. 

Hence it can be seen that this strategy of using supramolecular side-chain 

functionalization offers an important advantage in the field of materials design, as by 

simply varying the desired noncovalent functionality self-assembled along a polymeric 

scaffold, a single parent polymer scaffold can be transformed into a family of 

functionalized polymers with very different and tunable physical and chemical properties.  

Therefore, this strategy is capable to circumvent lengthy sequential synthetic steps based 

on covalent chemistry and thus has the potential to allow for easier, faster and more 

efficiency materials optimization.   

1.3 Synthetic strategies towards functionalized polymeric scaffolds 

Side-chain functionalized polymers can be synthesized  either by “pre-

polymerization functionalization”, i.e. the functionality has been bestowed to the 

monomer, or by “post-polymerization functionalization”, after the polymerization, the 

polymer backbone is subsequently functionalized with the desired moiety. 3  While both 
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approaches have been employed successfully in covalent polymer chemistry, the first 

approach can be synthetically more demanding but always yields 100% functionalization 

which is not the case for most post-polymerization functionalization strategies.   

In supramolecular side-chain functionalized polymers, the first functionalization 

strategy, the “pre-polymerization functionalization” is not always readily available.  

However, using appropriate design principles and noncovalent functionalization 

strategies, one can tune the “post-polymerization functionalization” strategy from fully 

functionalized polymers to very weak and non-perfect functionalized polymers, 

depending on the application in mind.  Clearly, the strength of the noncovalent 

interaction in the desired medium is key to this strategy.  Noncovalent interactions 

ranging the full spectrum of association constants from weak such as single point 

hydrogen bonding interactions, dipole-dipole, pi-pi stacking or hydrophilic interactions to 

fairly strong ones such as metal coordination or ionic interactions, have been used to 

functionalize polymeric scaffolds.  It is important to note that the strength of these 

association constants is dependent on external factors such as the temperature and 

solvent. In the subsections below, the most common side-chain polymer functionalization 

strategies that are based on hydrogen bonding, metal coordination and ionic interactions 

will be discussed.  These examples of noncovalent interactions to functionalize polymeric 

scaffolds along the side-chains are not meant to be conclusive but to demonstrate the 

basic design principles behind the functionalization strategies and to give some selected 

examples from the literature.  Due to the vast number of examples of recognition motifs 

for the functionalization step that have been reported in the literature, it is beyond the 

scope of this chapter to mention all of them.   
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1.4 Synthetic aspects of side-chain functionalized polymers 

As described earlier, there are two main methods of synthesizing side-chain 

functionalized polymers, (i) polymerization of functionalized monomers (pre-

polymerization functionalization) and (ii) polymer modification (post-polymerization 

functionalization). 

Pre-polymerization functionalization: this method consists of polymerizing 

monomers which have been covalently functionalized with the noncovalent recognition 

functional group. The presence of highly electrophilic/nucleophilic centers requires that 

the polymerization technique employed must be sufficiently functional group tolerant.  

Traditionally, functionally tolerant techniques such as free-radical polymerization have 

been employed to polymerize functional monomers.15 Although highly successful in 

synthesizing highly functionalized high molecular weight polymers, one of the most 

serious disadvantages of this polymerization technique is its uncontrolled polymerization 

nature. Hence the use of this technique essentially sacrificed the high control on the 

molecular architecture such as molecular weight and polydispersity index. Furthermore 

commercially important polymer classes with precise molecular architectures such as 

block copolymers were inaccessible using this technique. Well-established controlled 

polymerization techniques based on anionic polymerizations also could not be used due 

to presence of highly electrophilic/nucleophilic centers which prevent or interfere in the 

“controlled”/”living” polymerizations. Hence the options were generally restricted to 

either highly functionalized polymers with little control on the molecular architecture or 

unfunctionalized polymers with precise molecular architecture. 
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With the advent of functional group tolerant controlled polymerization techniques 

such as Ring-Opening Metathesis Polymerization (ROMP), allowed for the syntheses of 

highly functionalized polymers with a high degree of control on the macromolecular 

architecture. 

1.4.1 Ring-Opening Metathesis Polymerization (ROMP) 

ROMP is a transition-metal catalyzed polymerization method which is a subclass 

of olefin metathesis.16 It involves a chain growth polymerization process in which cyclic 

olefins are converted to polymers. Since ROMP is based on olefin metathesis which 

involves a metal-mediated carbon–carbon double bond exchange process, the 

unsaturation associated with the monomer is retained in the final polymeric product. A 

general mechanism for ROMP, based on Chauvin’s original proposal is shown in Scheme 

1.1.  
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Scheme 1.1 A schematic representation of ROMP mechanism of norbornene illustrating 
the Chauvin pathway. 
 

Initiation begins with the coordination of a transition metal alkylidene complex to 

a cyclic olefin. Subsequent [2+2]-cycloaddition produces a four-membered 

metallacyclobutane intermediate which effectively forms the beginning of a growing 

polymer chain. This intermediate undergoes a cycloreversion reaction to afford a new 

metal alkylidene. Although the resulting complex has increased in size, its reactivity 

toward cyclic olefins is retained as a result analogous steps are repeated during the 

propagation stage to yield the polymer. The termination can occur due to deactivation of 

the catalyst due to impurities, poisons or when deliberately quenched. 

 There are three important features of the metal-mediated ROMP reactions.  
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(i) the propagating metal centers on the growing polymer chains may exist in 

either the metallacyclobutane or metal alkylidene form,  

(ii) like most olefin metathesis reactions, ROMP reactions are generally 

reversible.  Thus, the basic mechanism illustrated in Scheme 1 can proceed in 

the opposite direction as shown and  

(iii)  though they are reversible reactions, these reactions are equilibrium-

controlled and the position of the equilibrium can be predicted by considering 

the thermodynamics of the polymerization.  

In ROMP the reaction is driven from monomer to polymer by the release of ring 

strain associated with the cyclic olefin balanced by entropic penalties. The common 

monomers used in ROMP are cyclic olefins which have a high degree of strain (45 

kcal/mol) such as cyclobutene, cyclopentene, cis-cyclooctene, and norbornene. Modern 

initiators commonly employed in ROMP are based on molybdenum- and ruthenium- 

alkylidene transition metal complexes that were developed by Schrock17 and Grubbs16 

respectively. In particular, Grubbs’ initiators have enjoyed much utility due to their high 

functional group tolerance18 and the ability to withstand the presence of air and water 

(Figure 1.3). 
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Figure 1.3 Grubbs’ ruthenium alkylidene olefin metathesis initiators. 

Living “controlled” ROMP: ROMP usually proceeds in a living “controlled” 

manner.16 Living polymerizations give maximum control over molecular weight, 

composition, and polydispersity allowing for the formation of well-defined structures 

such as block copolymers. A ROMP reaction should exhibit the following characteristics 

in order to be considered ‘‘living and controlled’’:  

(1) fast and complete initiation,  

(2) a linear relationship between the degree of polymerization,  measured as 

the number-average molecular weight of the polymer, (Mn) and monomer consumption,  

(3) polydispersity index (PDI) around 1.5. 

Hence to meet these requirements, the ROMP initiators should (1) enable 

complete, rapid initiation and complete monomer conversion to polymer (2) have 

negligible (intramolecular or intermolecular) chain-transfer or premature termination, (3) 

react with accessible terminating agents to facilitate selective end-functionalization, (4) 

display good solubility in common organic solvents, and (5) show high stability toward 

moisture, air, and common organic functional groups.16 

Complete monomer conversion to polymer, results in well-defined polymers with 

narrow distributions and predictable molecular weights specified by the initial monomer 

to initiator ratio (M/I). Hence a “controlled living” ROMP reaction can be a route to 

synthesize well-defined block-, graft-, and other types of copolymers, end-functionalized 

polymers, and various other polymeric materials with complex architectures and useful 

functions. Coupled with the high functional tolerance,19,20 ROMP can offer the advantage 
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of a high degree of control over the polymer architecture as well as high functionality, 

thus resulting in well-defined highly functionalized polymers.  

1.5 Side-chain functionalization using hydrogen bonding interactions 

Hydrogen bonding interactions are the most widely employed noncovalent 

interactions for the functionalization of polymeric scaffolds.21, 22  Over the past 20 years, 

a wide variety of hydrogen bonding motifs ranging from single, two, three, four, and six-

point recognition motifs to higher order systems have been developed.  Figure 1.4 

describes some of the more common recognition motifs described in the literature.  The 

popularity of hydrogen bonding is due to the fact that the strength of the hydrogen 

bonded complexes can be tuned easily by using these different hydrogen bonding motifs 

and by altering the acidity and basicity of the donor (D) and acceptor (A) moieties 

respectively.  By choosing the appropriate hydrogen bonding motif, binding constants 

(measured in a relatively nonpolar solvent such as chloroform at room temperature) as 

low as 1 M-1 for a single hydrogen bonding interaction to binding constants more than 

106 M-1 for multiple hydrogen bonded interactions can be ‘programmed’.23     

 



 13 

N

O
H

OO

H

NN N

H

Et

O

H

Et

O

N

N

H

O O
O O

H

N N

NO

H

O

O

H

O O

NN
HH

NN

N
H

O

Pr

N
H

O

Pr
N

NN

H

O

N

H

O

H

N
N

N

O

O
H

N
N

N

O

O
H

N

N N

H

O

N

H

O

H

N

N

N

N N

HH

HH

N

H

O O

N NN

H

O

N

H

O

C6H13

N

N

N

N

O

H

N

H

O

N
H C4H9

(A) (B) (C) (D) (E)

(F) (G) (H)  

Figure 1.4 Examples of hydrogen bonding motifs that have been used in side-chain 
functionalizations of polymers: single point complementary (A), two-point dimerizing (B 
and C), three-point complementary (D and E), four-point dimerizing (F), four-point 
complementary (G), and six-point complementary (H) hydrogen bonding motifs. 
 

Typically, in solution the hydrogen bonding interactions have a strength ranging 

between 10-120 KJ/mol (depending on the solvent) with an approximate range of length 

of 0.15 -10.0 nm.24  All hydrogen bonding motifs can be categorized into two distinct 

classes: 1) self-dimerizing interactions in which the hydrogen bonding motifs have a high 

tendency of self-complexation, examples of such motifs are self-dimerizing carboxylic 

acid groups, urazole groups13 and 2) complementary hydrogen bonding interactions in 

which the recognition motifs have a complementary recognition partner with which a 

stable complex formation is preferentially formed over self-complexation.25  Examples of 

such complementary motifs are the recognition pair 2,6-diaminopyridine and thymine8 

(Figure 1.4, D) as well as cyanuric acid and the Hamilton wedge receptor26 (Figure 1.4, 

H).   

In general, self-assembly using hydrogen bonding interactions is especially facile 

requiring no prior activation as compared to other interactions such as metal 
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coordination.  It consists of a simple “mix and stir” chemistry of the recognition unit 

involved.  Since hydrogen bonding interactions are thermally reversible the strength of 

the interactions as well as the thermal responsiveness of the system can be controlled 

greatly.  Figure 1.5 describes some examples from the literature of side-chain 

functionalized supramolecular scaffolds using hydrogen bonding.  The importance of 

hydrogen bonding interactions can be judged from the vast number of examples reported 

in literature ranging from small molecule self-assembly27  to self-assembled 

supramolecular polymers.28, 4  The versatility and the ease of self-assembly of hydrogen 

bonding interactions have made it a popular choice in both main-chain28  and side-chain 

supramolecular polymers.3,4  
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Figure 1.5  Examples of hydrogen bonding motifs that have been used in supramolecular 
polymers: dimerizing UPy functionalized main-chain supramolecular polymers (A), 
simple one-point complementary hydrogen bonding interactions between pyridine and 
phenol (B), and six-point complementary hydrogen bonding interaction between cyanuric 
acid and the Hamilton wedge receptor (C). 
 

The groups of Weck26 and Sleiman29,30  have synthesized a variety of copolymers 

functionalized by either thymine or diaminopyridine derivatives or biological important 

groups such as biotin, adenine etc. using ROMP.  Sleiman then investigated their self-
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assembly into nanostructures – such as star micelles – using the hydrogen bonding 

moieties to control the formation of the three-dimensional structures.29, 30 

Rotello and co-workers carried out “post-polymerization functionalization” of 

poly(styrene) copolymers containing randomly dispersed chloromethylstyrenes functional 

groups with 2,4-diaminotriazine or 2,6-diaminopyridine derivatives yielding 

poly(styrene) copolymers with terminal hydrogen bonding recognition moieties along the 

side-chains.31  These scaffolds were then functionalized noncovalently using hydrogen 

bonding with a variety of small molecules including sesquiloxane to form inorganic-

organic hybrid materials.31  Such a strategy of obtaining a host of different materials from 

the same parent polymeric scaffold just by varying the anchoring moieties was named 

“Plug and Play Polymers” by the Rotello group.31  

1.6 Side-chain functionalization using metal coordination 

The second major class of noncovalent interactions that have been employed 

extensively in the literature for polymeric functionalization is metal coordination.32-37  

Side-chain metal functionalized polymers possess the characteristic properties of both, 

the metal and the polymer components, giving rise to a variety of hybrid materials 

thereby exhibiting metal-specific properties such as conductivity and magnetism while 

maintaining the benefit of solubility and processability due to the polymer backbone.  

These metal-ligand interactions are fairly temperature insensitive as compared to 

hydrogen bonding interactions.  However, they are highly sensitive to ligand 

displacement reactions and are therefore considered to be chemoresponsive.  Advantages 

of metal-complexes include their highly controlled synthesis, the formation of strong 

noncovalent bonds in non-competing solvents, the potential application of metal-
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containing polymers in areas such as supported catalysis,38  electro-optical materials,39  

and chemically responsive gels.40    

Side-chain metal functionalized polymers fall into two classes according to the 

position of the metal complex with respect to the polymer backbone.  In the first class, 

the metal is covalently tethered to the polymer backbone, whereas the complementary 

component, the ligand, is coordinated to the ‘polymeric scaffold’.  In the second class of 

side-chain metal functionalized polymers, the ligand is covalently attached to the polymer 

backbone to form a “polymeric ligand species” also often called a macroligand whereas 

the metal center is then subsequently complexed on to the polymer.  In both cases, the 

resultant polymers may possess identical structures and the choice of the synthetic 

strategy is dependent on the ease of the synthetic method: the synthesis of polymeric 

ligand scaffolds is more facile as compared to the polymerization of a metal containing 

monomer due to the limited number of polymerization methods as a result of the metal 

intolerance of most polymerization techniques.  Although many examples of side-chain 

metal coordinated polymers exist, only a few are designed to serve as recognition motifs 

for controlled side-chain functionalization.  The two most widely encountered metal 

coordination recognition units in side-chain supramolecular polymers are palladated SCS 

pincer complexes41-44 and metal-terpyridine/bipyridine complexes.45,36  

Palladated sulfur-carbon-sulfur (SCS) pincer complexes are an important class in 

coordination chemistry and have been used widely ranging from catalysis38  to anchoring 

units in functional materials.36 They consist of a metallated tridentate pincer ligand 

having a square planar coordination sphere with only one chemically accessible 

coordination site for self-assembly with monodentate ligands such as nitriles, pyridines, 
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thiocyanates or phosphines.  The stability of the metal ligand complex is in the order 

phosphine > pyridine > thiocyanate ~ nitrile.46  Weck and co-workers reported the 

preparation of poly(norbornene)s bearing palladated SCS pincer complexes at every 

repeat unit which then could be functionalized with pyridines or nitriles (Figure 1.6 A).44   

In all cases, these polymers were formed via living polymerization methods allowing for 

low polydispersities and full stoichiometric control over the molecular weight. 
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Figure 1.6 Examples of metal coordination motifs employed for side-chain 
functionalization of polymers.  
 

Metal-terpyridine/bipyridine complexes are the second class of common metal-

ligand interactions used in side-chain functionalized polymers. The importance of these 

metal complexes lies in their electro/photoluminescent properties as well as the 
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possibility to direct self-assembly in supramolecular systems. Schubert and co-workers 

have extensively used terpyridine-based metal coordination for both side-chain and main-

chain functionalization. 35  Tew and co-workers used a post-polymerization 

functionalization approach to covalently attach terpyridine functional groups on both 

random and block copolymers based on methacrylates that were copolymerized using 

atom-transfer radical polymerization.(Figure 1.6 D)  Subsequent metal complexation of 

the terpyridine groups resulted in copolymers generating emissive materials in the blue, 

green, and red. 47  In contrast to the post-polymerization approach described by Tew and 

co-workers, 48  Weck and Carlise 33  have employed pre-polymerization functionalization, 

i.e. they reported the synthesis of a norbornene monomer functionalized with a Ru-bpy 

complex which was then subsequently polymerized using Grubbs’ third generation 

catalyst leading to well-defined polymers with 100% functionalization (Figure 1.6 B).   

Although both these metal complexes have been used extensively in noncovalent 

polymer functionalization, the SCS-Pd pincer functionalization has the added advantage 

that the metal coordination requires very mild conditions in contrast to the metal 

complexation involving the terpyridine ligands. 

1.7 Side-chain functionalization using Coulombic interactions 

Coulombic interactions are among the most widely encountered noncovalent 

interactions in polymeric systems rivaled only by hydrogen bonding and van der Vaals 

interactions in their frequency.49  The most important example of using Coulombic 

interactions in materials science is in the field of “ionomers” which are tailor-made 

materials.  Ionomers are widely used commercially due to their unique physical 

properties such as enhanced impact strength, toughness and thermal reversibility.50  Other 
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examples of Coulombic interactions in side-chain functionalized polymeric systems, 

include charged block copolymers,51  crosslinked polymers using charge interactions,52  

self-assembled dendrimers,53  Coulombically linked side-chain liquid crystalline 

polymers,  and Coulombic polyamphiphiles amongst others.54  The polymeric scaffold 

can either be positively or negatively charged, hence can be considered to be a 

“polyelectrolyte”.  The majority of the Coulombically functionalized side-chain polymers 

are based on “post-polymerization” functionalizations to circumvent severe interference 

of the charged Coulombic centers during the synthesis.  More recently, with the advent of 

highly functional group tolerant yet mild polymerization techniques such as ROMP, there 

have been reports of polymerization of charged monomers.  For example, Lonergon and 

co-workers have reported the ROMP of both positively as well as negatively charged 

cyclooctatetraenes, using a tungsten- based Schrock catalyst (Figure 1.7 A and B).55, 56  
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Figure 1.7 Examples of charged Coulombic moieties employed for side-chain 
functionalization of polymers.  

Barrett and co-workers polymerized a positively charged norbornene monomer 

using Grubbs’ second generation ruthenium initiator (Figure 1.7 F and G).57  

Unfortunately, the polymerizations of charged monomers are mostly uncontrolled 

preventing the easy formation of block copolymers.  Kennedy and co-workers 
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circumvented this problem by using a post-polymerization method to introduce the 

charge species onto one or more blocks of block copolymers that were synthesized using 

ATRP. (Figure 1.7 C and 1.7 D).58 

1.8 Noncovalent multi-functionalization of side-chains of polymeric scaffolds 

In the previous section, the supramolecular side-chain functionalization of 

polymers based on a single recognition motif was explained. The use of a single 

noncovalent interaction such as hydrogen bonding interactions for side-chain polymer 

functionalization results in material which exhibits only thermal responsiveness, as 

shown in Scheme 1.2. 
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Scheme 1.2 Concept of using side-chain multi-functionalization of polymers for 
synthesis of multi-responsive materials. 
 

 However, biological systems use a wide variety of noncovalent interactions such 

as hydrogen bonding, metal coordination, and hydrophobic interactions in an orthogonal 

fashion to introduce function, diversity, and complexity.  Although most of the concepts 
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of supramolecular polymer science are inspired from self-assembly process in nature, the 

vast majority of supramolecular polymers are based solely on one molecular recognition 

motif.  In the future, supramolecular side-chain functionalized polymers for advanced 

applications will require multiple functionalities combined with controlled architectures.  

Noncovalent multi-functionalized materials will provide unique advantages such as rapid 

optimization via reversible functionalization to give highly advanced materials whose 

responsiveness to external stimuli could be tuned.  Such systems will open new 

possibilities for the preparation of dynamic and rapidly optimized ‘‘smart’’ materials.59   
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Scheme 1.3 Cartoon representation of stepwise multi-functionalization of a multi-
functionalized polymer scaffold; using hydrogen bonding interactions (Path A), metal 
coordination (Path B) and multi-functionalization using hydrogen bonding and metal 
coordination (Path C).  

One strategy for the noncovalent multi-functionalization of side-chain 

supramolecular polymers would be the controlled employment of multiple noncovalent 

interactions within the same polymeric system as shown in Scheme 1.3.  Such a strategy 

should allow for the tailoring of materials properties by exploiting the differences in the 

nature of these reversible interactions as well as multi-functionalization.  An important 
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prerequisite for the use of multiple interactions in such a system is that all noncovalent 

interactions must be orthogonal to each other (Scheme 1.4), or at least the effects of one 

interaction in the presence of another one must be clearly understood, such that multiple 

interactions can be simultaneously used with a high degree of control on the system. 

Not Orthogonal Orthogonal

Multi-functional Scaffold

Multi-reponsive

Path BPath A

 

 

Scheme 1.4 Cartoon representation of orthogonal multi-functionalization in which both 
the noncovalent interactions are mutually independent of each other (Path B) and non 
orthogonal multi-functionalization in which metal coordination of the polymer scaffold 
disrupts the hydrogen bonding functionalization of the polymer scaffold (Path A).  
 

The Weck group has demonstrated that a family of materials derived from a 

single polymer backbone can be prepared rapidly and quantitatively with desirable 

properties via an orthogonal multi-functional self-assembly approach.43 Some of these 

examples in which the above strategy is used will be discussed below.   

1.9 Combination of hydrogen bonding and metal coordination interactions 

The Weck group was the first to establish the orthogonality of hydrogen bonding 

interactions and metal coordination in side-chain polymers.43  The hydrogen bonding 

interactions employed were based on the three-point hydrogen bonding complex between 

2,6-diaminopyridine and N-butylthymine whereas the metal coordination was based on 

palladated SCS pincer metal complex which were functionalized via coordination 

chemistry with pyridine or nitriles.43 In order to measure the strength of the hydrogen 
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bonding interactions and to demonstrate the orthogonality of the two noncovalent 

interactions, the systems were characterized extensively using 1H NMR spectroscopy. 

The initial studies involved random polymers based on poly(norbornene)s.  They found 

that the strength of the hydrogen bonding interactions was independent upon the 

presence/absence of the metal coordinated sites.  Furthermore the studied interactions 

were also independent upon the functionalization route used, i.e. metal coordination 

followed by hydrogen bonding, hydrogen bonding followed by metal coordination or all 

in one single step (Scheme 1.5).   
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Scheme 1.5 Stepwise functionalization of multi-functional polymer scaffold based on 
random copolymer using hydrogen bonding and metal coordination interactions. 
 
1.10 Multiple hydrogen bonding interactions: Self-sorting on polymers 

The Weck group has also investigated the incorporation of multiple hydrogen 

bonding interactions along a single polymer backbone for random copolymers as shown 

in Scheme 1.6.43 Copolymer-4 based on poly(norbornene) was functionalized with two 

different hydrogen bonding side-chains based on thymine and cyanuric acid recognition 
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groups.26  It was demonstrated that the thymine and cyanuric acid units were able to self-

assemble with their complementary 2,6-diamimopyridine and Hamilton wedge moieties, 

respectively, even in the presence of competitive recognition sites.  Hence selective 

functionalization of the copolymers can be accomplished by a one-step orthogonal self-

assembly approach.   

The selective self-assembly of a receptor molecule with its complementary 

recognition unit in the presence of a competitive recognition unit has been described as 

self-sorting in the literature.  Using the above described system containing two hydrogen 

bonding units, Weck and Burd were able to prove for the first time the concept of self-

sorting in synthetic polymers and suggest the design of complex polymeric materials 

containing competitive noncovalent interactions.26  
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Scheme 1.6 Functionalization strategies of copolymer-4 based on multiple hydrogen 
bonding interactions.  
 

1.11 Terpolymer functionalization strategies: Combining hydrogen bonding, metal 

coordination and pseudorotaxane formation 
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Random poly(norbornene)-based terpolymer-5 (Figure 1.8) functionalized with 

sulfur-carbon-sulfur (SCS) palladated pincer complexes, dibenzo[24]crown-8 (DB24C8) 

rings, and 2,6-diaminopyridine units were synthesized by ROMP.60  The palladium 

complex serves as anchoring unit for metal coordination, 2,6-diaminopyridine as DAD 

hydrogen bonding moiety, and DB24C8 as precursor for pseudorotaxane formation, 

which has been studied extensively by Stoddart and co-workers.61  Side-chain 

functionalization of these terpolymers was achieved by self-assembling (i) pyridines to 

the palladated pincer complexes, (ii) dibenzylammonium ions to the dibenzyl-24-crown 

ether (DB24C8) rings, and (iii) thymine to the 2,6-diaminopyridine receptors.  Again, by 

following the hydrogen bonding an as well as the pseudorotaxane formation by 1H NMR 

spectroscopy and isothermal titration calorimetry, the Weck and Stoddart groups were 

able to demonstrate that the association constants were unaffected by neighboring 

functionalities on the polymer backbone, demonstrating for the first time orthogonality in 

the recognition expressed by three well-defined and discrete recognition sites. 



 26 

O

O O

O

O

OO

O

NNN N

H

Et

O

H

Et

O

N

N

H

O O

Bu

PdS SPh Ph

N

BF4

O

O

O

O

(CH2)9

O O

33 33

(CH2)11

N

O

O

O O

O

O

OO

O

N

O

O

(CH2)11

O

Pd

S

S

Ph

Ph

33

N

BF4

N
H

Et O

N
H

Et

O

N

N
H

O

O

Bu
H

H

BArF

H

H

BArF

(A) (B) (C)

(D) Fully functionalized terpolymer-5  

Figure 1.8  Three recognition motifs based on (A) hydrogen bonding interactions 
between 2,6-diaminopyridine and thymine, (B) metal coordination of SCS Pd pincer with 
pyridine and (C) pseudorotaxane formation between dibenzo[24]crown-8 (DB24C8) and 
dibenzylammonium ions, and (D) the fully functionalized terpolymer-5.   
 
1.12 Applications of noncovalently functionalized side-chain copolymers  

After having discussed self-assembly strategies towards noncovalently 

functionalized side-chain supramolecular polymers as well as studies on the orthogonality 

of using multiple noncovalent interactions in the same system, it is worthy to mention the 

potential applications of noncovalent side-chain polymer functionalization. In general this 

non covalent functionalization strategy can be used in two distinct areas, (i) for 
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polymer/materials functionalization in which the appropriately functionalized polymer 

scaffold is noncovalently functionalized with the functional moiety bestowing the desired 

function to the material62,9,63 and (ii) for noncovalent crosslinking of the polymers to 

yield crosslinked networks which would show reversibility and stimuli responsive 

materials. 

 In Chapter two, the progress of using noncovalent interactions to reversibly 

crosslink polymer scaffolds to yield reversible and responsive materials will be discussed 

in detail. The chapter illustrates the importance of crosslinking technology in the field of 

materials science and the different approaches scientists have taken to overcome the 

significant drawbacks of conventional covalent polymer crosslinking. The chapter 

highlights the alternative reversible crosslinking processes based on different chemistries, 

but mainly focuses the advantages and the vast yet untapped potential of using 

noncovalent interactions based on molecular recognition to reversibly crosslink polymers 

yielding novel smart responsive materials. Such materials may address the requirements 

of emerging advanced applications. 

 Chapter three will discuss the synthesis of multi-functionalized block copolymers 

functionalized using metal coordination and hydrogen bonding interactions, it will be 

seen that by the combination of using a functionally tolerant “controlled” polymerization 

technique such as ROMP, with multiple noncovalent interactions highly defined 

polymeric structures with high functionality can be synthesized. Furthermore, such multi-

functionalized polymer scaffolds can act as “Universal Polymer Backbones”. Using this 

strategy, a parent ‘Universal Polymer Backbone” can give rise to a family of daughter 

polymers upon using the appropriate noncovalent side-chain functionalization. To utilize 
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this strategy it is imperative, that the multiple noncovalent interactions must be 

orthogonal or at least the effect of one noncovalent interaction over the other must be 

quantitatively studied. Chapter three will focus on the orthogonality between hydrogen 

bonding and metal coordination interactions; furthermore it shall discuss the dependence 

of the stability of the hydrogen bonding complex formation on important factors such as 

polymer molecular weight and block copolymer composition.  

Chapter four will discuss multi-functionalization of a random copolymer using 

simultaneous hydrogen bonding interactions and ionic charge interactions. Chapter four 

will discuss ROMP to polymerize ionically charged monomers to yield charged 

polymers. Furthermore, ROMP will be utilized to copolymerize the charged ionic 

monomer with hydrogen bonded functionalized monomer, to form random multi-

functionalized side-chain polymers which have both ionic charges and hydrogen bonding 

moieties. The orthogonality between the hydrogen bonding and ionic charge interactions 

will then be studied in detail, by using qualitative as well as quantitative analyses. Again, 

it will be shown that these multi-functionalized polymer scaffolds can be seen as 

“Universal Polymer Backbones”. These ‘Universal Polymer Backbone” upon side-chain 

functionalization can give rise to a family of varied daughter polymers stemming from a 

single parent polymer backbone.  

For the application of multi-functional methodology for reversible polymer 

crosslinking, Chapter five will discuss in detail on the synthesis and characterization of 

complementary hydrogen bonded networks. Chapter five will mainly illustrate the 

hydrogen bonded networks obtained by reversibly crosslinking cyanuric functionalized 

polymers. This chapter will focus on the specific advantages of using complementary 
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hydrogen bonding interactions over self-dimerizing interactions to obtain hydrogen 

bonded crosslinked materials. Furthermore, the chapter will focus on the importance of 

the role of the crosslinking agent in modulating the network microstrucutre and hence the 

final materials properties of the crosslinked networks. 

In Chapter six, the importance of the molecular structure of the hydrogen bonding 

motif used for inter-chain crosslinking in complementary hydrogen bonded networks will 

be discussed. The chapter will focus on hydrogen bonded crosslinked networks 

synthesized from polymers functionalized with thymine side-chains. The network 

properties of analogous thymine and cyanuric acid polymer networks will be compared 

and discussed focusing on the difference in the structure of the hydrogen bonding motif 

used for inter-chain crosslinking in the two systems. 

 Chapters five and six focus mainly on one type of hydrogen bonding motif used 

for synthesizing hydrogen bonded crosslinked networks. Chapter seven will focus on 

multi-functional complementary hydrogen bonding interactions based on cyanuric acid 

and thymine functional groups for inter-chain crosslinking. It will be seen that by 

combining multiple complementary hydrogen bonding motifs with vastly different 

association constants, it is possible to modulate and control the network microstructure at 

room temperature without the need for any thermal gradients, which are usually required 

for conventional hydrogen bonded systems. Furthermore, by employing crosslinking 

agents with different functional groups, the polymer networks can be either de-

crosslinked or re-crosslinked yield materials which have significantly differing 

mechanical properties. 
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The application and specific advantages of complementary hydrogen bonded 

polymer networks were discussed in detail in Chapters five-seven. Chapter eight will 

briefly focus on metal coordinated crosslinked networks based on SCS Pd pincer centers 

and pyridine complexes. The importance of using metal coordination interactions for 

reversible polymer crosslinking will be addressed. Furthermore, the network properties of 

the metal crosslinked system will be compared with those of the hydrogen bonded 

crosslinked networks. 

In Chapters’ five to eight, the application of only one type of noncovalent 

interaction, either hydrogen bonding or metal coordination for reversibly crosslinking 

polymers was discussed. Chapter nine will discuss the synthesis and characterization of 

multi-functionalized multi-responsive networks in which both hydrogen bonding and 

metal coordination interactions will be used to crosslink a multi-functionalized polymer 

scaffold. Chapter nine will discuss the application of the “Universal Polymer Backbone” 

concept discussed in Chapter two. It will illustrate how one can combine two different 

orthogonal noncovalent interactions to transform a single polymer backbone into 

materials having vastly different mechanical properties and responsiveness. 

Chapter ten will discuss the future outlook and potential applications for side-

chain multi-functionalized systems. This chapter will focus on the vast potentials of 

applying the concept of multi-functionalization of side-chain polymers in the field of 

materials science.  
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CHAPTER TWO 

Application of Side-Chain Supramolecular Copolymers: Reversible 

Stimuli Responsive Crosslinked Polymer Networks 

2.1 Introduction 

The process of transforming a linear polymer structure into a three-dimensional 

network structure in which the individual polymer chains are linked together is known as 

polymer crosslinking. The discovery of polymer crosslinking is one of most important 

events in the development of materials and polymer science. However conventional 

polymer crosslinking has been completely based on covalent chemistries.  

Although highly successful covalent crosslinking is essentially a unidirectional 

crosslinking approach and has its serious disadvantages. One of the most serious 

problems of irreversibly crosslinked polymers is the inability of the material to be 

recycled efficiently.  With the growing use of polymers as in the case of commodity 

thermoset polymers, environmental pertinent issues such as recycling of plastics are 

important considerations. Crosslinked polymers are difficult to process and recycle an 

important goal in today’s society. While it must be noted that the development of 

crosslinking technology was spurred due to the need for superior materials properties, the 

current research in materials science mandates more stringent demands, such as self-

reparability, highly controlled and functionalized materials, stimuli responsive materials 

for applications ranging from photo-lithography, catalysis, biodegradable materials, to 

enhanced biomedical scaffold materials to drug release agents.  Stimuli-responsive 

materials are needed for advanced technologies for the control of fluidity, viscoelasticity, 

solvent volatility, and material transport.  
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Despite the disadvantages of conventional covalent crosslinking, the vast numbers 

of crosslinked polymers are still based on covalent crosslinking techniques. However, the 

growing needs of technological innovation cannot be met by utilizing covalent chemistry. 

Thus there exists a vast opportunity for other unconventional crosslinking techniques 

based on noncovalent chemistry to carry the advancement in material science to the next 

level. This chapter critically evaluates the attempts made by various scientists to use 

novel techniques to crosslink polymers to yield materials which not only display the 

usual superior materials characteristics, but also display increasing relevant attributes 

such as reversibility and responsiveness. 
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Reversible Crosslinked Polymer Networks

Reversible Covalent Bond Physically Crosslinked Molecular Recognition

1.Thermoreversible

2.Photoreversible

3. Miscellaneous

1. Thermoplastic elastomers

2. LCPs

3. Topological crosslinking

1. Hydrogen bonding
a. Self-associative
b. Complementary

2. Metal coordination

3. Ionic interactions

4. Multi-functional  

Figure 2.1 Schematic description of the major classification of reversibly crosslinked 
polymer networks. 
 
2.2 Reversible crosslinking of polymers using covalent bonds 

Polymers which can be crosslinked by using labile covalent bonds can be 

classified into two main systems as shown in Figure 2.1, thermally-labile bonds, 

photoreversible bonds. Dynamic covalent chemistry relates to chemical reactions carried 

out reversibly under conditions of equilibrium control, such a system can offer the 

possibility of “doing supramolecular chemistry” at the level of covalent bonds.1 If a 

polymer consists of dynamic covalent bonds, it can behave as a reorganizable polymer 

similar to noncovalent systems. However, in contrast to noncovalent systems, polymers 

with dynamic covalent bonds are stable under ambient conditions and even under high 

dilution concentration conditions. Nevertheless, once they are exposed to external stimuli 

such as heating, they can be reorganized to the proper form that reflects the chemical and 

physical environmental conditions. 

The employment of dynamic covalent bonds which would quantitatively 

dissociate or cleave under a suitable agent such as temperature or UV radiation can be 

used for the synthesis of reversibly covalently crosslinked polymers. Such a dynamic 

covalent bond must however not be too stable since this result in inefficient 

decrosslinking and would require very stringent conditions, which would result in several 
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side-reactions such as chain-degradation and oxidation. For practical considerations, the 

reversible crosslinking/decrosslinking reaction conditions  must be mild enough so as not 

to degrade the polymer main-chain, cause side-reaction such as free radical formation. 

Furthermore, the reaction must have a sufficiently high yield and must be sufficiently fast 

so as to allow practical applications. The obvious benefits of using such as systems is that 

we can successfully combine the superior properties of crosslinked polymer networks as 

well as retain the benefits of converting the crosslinked material to a linear 

“thermoplastic” material. 

2.2.1 Thermally reversible polymer networks 

 Thermally reversible covalent (TRC) crosslinked polymers are covalently 

crosslinked polymers, which undergo decrosslinking at elevated temperatures. In such 

systems the covalent inter-chain crosslinks are thermally labile and hence exhibit 

thermoplasticity at higher temperatures.  However the reversible reaction must most 

involve the loss of byproducts, furthermore both the forward and backward reactions 

must be temperature dependent and the covalent bond formation must take place at lower 

temperatures.2 Such systems are hence expected to be similar to thermosetting polymers 

in their physical properties and solvent resistance in their crosslinked state but can be 

remolded by thermal processing technology as in the case of conventional 

“thermoplastic” uncrosslinked materials. Consequently, TRC crosslinking technology can 

be used for manufacturing recyclable materials and improving the mechanical properties 

of traditional thermoplastic materials. Additionally, linear polymers with TRC linkages in 

their backbone are expected to exhibit lower viscosities on heating than typical linear 

polymers and to be processed at lower shear rates.  Several approaches have been utilized 
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to obtain TRC materials however the most successful system has been based on Diels-

Alder based systems. 

2.2.1.1 Diels-Alder reaction crosslinked polymers  

 The Diels-Alder reaction provides a simple, efficient, and clean route to generate 

carbon based bonds by inter- or intra-molecular coupling and represents one of the most 

widely used route to generate TRC materials (Figure 2.2).3-11 It is a [4 + 2] cyclo-addition 

reaction, in which a dienophile (electron poor) adds typically to a conjugated diene 

(electron rich) to give a cyclic product called an adduct.  
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Figure 2.2   Example of Diels-Alder crosslinking of furan and maleimide functionalized 
polymers  for reversible polymer crosslinking. 
 

For polymer crosslinking, the dienes and dienophiles groups are either present as 

side-chain functional groups (as in side-chain functionalized polymers) or as main-chain 

polymers.8 Alternatively reversible Diels–Alder cycloadditive dimerization of 

cyclopentadiene (CPD) or its derivatives has also been used for reversible polymer 

crosslinking. Since the Diels-Alder reaction is thermally reversible; its equilibrium can be 

easily displaced toward the starting compounds by heating (retro-Diels-Alder). The 

versatility of this reaction has allowed polymers belonging to a vast class of polymers 
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ranging from acrylates, to poly(amide)s, poly(ester)s, poly(siloxane)s, etc to be reversibly 

crosslinked. Gandini and coworkers used Diels-Alder reaction to synthesize new, 

thermally reversible, elastomeric networks. They synthesized a low Tg furan 

functionalized poly(hexyl acrylate) which was then reversibly crosslinked through the 

furan pendant group via a Diels-Alder reaction using a maleimide crosslinking agent to 

yield a gel like elastomeric material. This material could also be reversibly de-crosslinked 

by thermal treatment in the presence of an appropriate trapping agent via retro-Diels-

Alder reaction which gave the original uncrosslinked polymer structure.6  The use of 

Diels-Alder reaction for polymer crosslinking is for primarily the synthesis of thermally 

sensitive materials; however it has also been used for advanced applications. Jen and 

coworkers used a dendronized polymer functionalized with protected furan groups which 

was later reversibly crosslinked using Diels-Alder reaction by maleimide crosslinking 

agents. Such a TRC material was found to be a superior NLO material which also had a 

very high thermal stability.11 Furthermore Hawker and coworkers have also used this 

approach to make materials for applications such as data-storage and lithographic 

applications.7  

Even though we have seen the success of using Diels-Alder reaction for thermo-

reversible crosslinking, it must be pointed out that the system has its own limitations. 

There have been reports which detail the instability of the functionalized polymers which 

undergo irreversible crosslinking through non-cyclization paths, furthermore the heat 

treatment required for complete decrosslinking also offers an important limitation for its 

practical applications.3  Schiraldi and coworkers also used this approach to reversibly 

crosslink anthracene functionalized poly(ethyleneterephthalate) (PET) using maleimides. 
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Although they observed that they could successfully crosslink the polymers, the 

decrosslinking step was slow, inefficient and the process resulted in thermal degradation 

of the PET copolymer.8 

2.2.2 Photo-reversible polymer networks 

The second class of covalently crosslinkable materials use photo-reversible 

covalent bonds for the inter-chain crosslinking. Aromatic functional groups such as 

coumarin, cinnamate, and maleimides undergo 2 + 2 cycloadditions when exposed to UV 

irradiation and form crosslinking points via nonradical radiative pathways, negating the 

need for photoinitiators. Such photolabile covalent bond formation can be utilized for 

reversible polymer crosslinking reactions to yield materials which would be responsive to 

UV radiations. Derivatives of 7-hydroxycoumarin (Figure 2.3) photodimerize when 

irradiated in the ultraviolet-A (UVA) region of the electromagnetic spectrum (>300 

nm).12 The dimer, which is composed of a cyclobutane ring, can undergo 

cycloreversibility when irradiated at wavelengths shorter than 290 nm. One important 

advantage of photocrosslinking via the cycloaddition is that this reaction does not suffer 

from oxygen inhibition. Saegusa and co-workers synthesized polyoxazoline having a 

coumarin moiety as a pendent group and first demonstrated the photoreversibility of 

crosslinks using coumarin groups.13  
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Figure 2.3 Photoreversible polymer crosslinking based on the photoreversible 
dimerization of 7-hydroxycoumarin. 
 

Coumarin as a photo-cross-linkable group has several advantages such as high 

photosensitivity, particularly an efficient photoreversibility as well as biodegradability.  

Nagata and co-workers used photoreversible poly(ethylene glycol)s functionalized with 

pendant coumarin groups to form PEG hydrogels which underwent rapid reversible 

photocrosslinking , the degree of swelling could be controlled by the irradiation time and 

molecular weight of PEG. The facile photoreversibility of these hydrogels are of interest 

as substrates for drug delivery and biomedical applications.14 

Zhao and coworkers have designed and synthesized a novel coumarin-containing 

amphiphilic diblock copolymer, which can form photocontrollable polymer micelles can 

be reversibly photo crosslinked and photo decrosslinked. Such a system allows for the 

increase stability of these polymer micellar aggregates (and their encapsulation) through 

photo-cross-linking and then to allow the release of encapsulated guest through photo-de-

cross-linking-induced disruption of the micelles.15    

2.3 Reversible crosslinking via physical crosslinking 

In this group of materials, the polymer chains are linked together physically by 

exploiting the morphological variations in the different segments of the polymer.16 The 

polymer chains not connected via covalent bonds, but due to the difference in the 

inherent molecular architecture of the polymer chains, the material exhibits a two (or 

more) phase system in which major phase is impregnated with localized domains of the 

minor phase. Generally the minor phase (hard phase) has a higher glass-transition 

temperature than the major phase (soft phase), and hence it acts as physical crosslinking 

points thus providing the necessary reinforcement for important materials properties such 
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as elasticity and mechanical strength. Since the material is physically crosslinked and the 

presence of these different domains are affected by thermal conditions, hence the material 

would exhibit thermoplasticity above the glass transition temperature of the reinforcing 

domain thus facilitating processing and recycling. Hence in this approach the difference 

in the macro or bulk architecture due to the difference in the molecular architecture of the 

polymer is used for reversible crosslinking. Segmented tri-block copolymers and liquid 

crystalline materials are important examples in this group of materials.  

2.3.1 Thermoplastic elastomers 

 Thermoplastic elastomers are perhaps the most important commercial examples 

of physically crosslinked materials.17 Due to the thermally reversible nature of the 

physical crosslinks, these materials exhibit superior mechanical properties while retaining 

their thermoplasticity. Furthermore the ability to tailor the hard and the soft segments of 

these block copolymers have made them highly tailor-made materials whose mechanical 

properties can be precisely tuned via polymer chemistry.16 The most important example 

of these materials which has historically replaced conventionally crosslinked rubber is the 

SBS (styrene-butadiene-styrene) triblock copolymers. 

2.3.2 Liquid crystalline (LC) materials 

Liquid crystalline polymers have attracted much attention as a candidate for 

promising polymeric materials with high performance and high function.18-23 LC 

polymers can be classified as main-chain and side-chain, which have mesogenic units in 

the main chain and side chains, respectively. For polymeric materials with high modulus 

and high strength at break, the main chain type LC polymer having a linear polymer 

backbone has been focused. Thermoplastic main chain polymers such as poly(ester)s, 
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poly(carbonate)s, poly(esteramide)s, and poly(urethane)s have been studied extensively.  

In the industry, these polymers are generally utilized as engineering plastics, but they 

possess processing problems because of their high melting temperature (Tm) and high 

melt viscosity, and so on. In order to improve their processability, several investigations 

have been carried out; for example, the incorporation of flexible segments into the main 

chain decreased the Tm of polymers. Combining LC segments with flexible segments is 

expected to form new materials with unique properties arising from the characteristics of 

two segments.   

2.3.3 Mechanically (topologically) interlocked systems 

In all the examples of polymer networks so far discussed the crosslinks were 

introduced by physical or chemical bonding and the concentration fluctuations or spatial 

inhomogeneities in polymer gels are topologically frozen by nature due to the presence of 

permanent networks. A relatively new class of gel materials is called “topological 

network” or ‘‘slide-ring gel’’, and is characterized by the sliding character of the cross-

link points (also called slide-ring cross-link points).  
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Figure 2.4 A schematic representation of a generic slide-ring gel.24 

An essential difference between the slide-ring gels and conventional polymer gels 

is the presence of movable crosslinks, which allows a sliding motion of the constitutive 

template network chains through the Figure-of-eight junctions.24 As shown in the Figure 

2.4, a crosslink of slide-ring gel can move freely along the polymer chain to equalize the 

tension of the polymer chains just like a pulley. The sliding gels demonstrate unusual 

chemical, physical, and mechanical properties due to the theoretical ability of the 

crosslinking points to slide along the template polymer chain.  It is expected that 

nanoscopic spatial inhomogeneities and local stresses may be automatically relaxed by a 

sliding motion of the movable crosslinks. These movable cross-links allow high 

extensibility, large degree of swelling, and large reversible-deformability. This specific 

crosslinking structure of slide-ring gel shows different mechanical properties in contrast 

to conventional chemical gels and rubbers. 

2.4 Reversible crosslinking using molecular recognition processes 

The third class of reversibly crosslinked polymer networks is based on 

noncovalent interactions. Noncovalent crosslinking of polymers using molecular 

recognition processes such as hydrogen bonding, metal coordination, and Coulombic 

interactions have been employed to reversibly crosslink side-chain functionalized 

copolymers.  Such an approach offers the advantage that it can be used to crosslink 

reversibly polymer chains without chain degradation or other side-reactions. By utilizing 

a suitable molecular recognition process with a sufficiently large equilibrium constant 

quantitative reversible crosslinking can be achieved without any side-reactions or chain 
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degradation.  Besides the inherent advantages of noncovalent crosslinks such as 

reversibility and a greater control over the network architecture, noncovalent strategies 

also allow for the tuning of materials properties due to the responsiveness of these 

interactions and ultimately the material towards external stimuli.  For example, the 

employment of metal coordination for noncovalent cross-linking results in materials 

those are sensitive towards redox reactions or metal-ligand displacement agents, whereas 

the use of hydrogen bonding interactions yields thermally sensitive materials.  Clearly, 

noncovalent crosslinking strategies offer a route towards responsive materials with 

tunable properties that are otherwise not accessible.   

2.4.1 Network formation using hydrogen bonding 

Hydrogen bonding is among the most widely used noncovalent interactions for 

the synthesis of reversible crosslinked polymeric networks. The advantages of using 

hydrogen bonding interactions for reversible crosslinking are that the crosslinks are 

thermally reversible and further the strength of hydrogen bonded complexes (and hence 

the crosslinking strength) can be tuned easily by (i) varying the number of hydrogen 

bonds in a receptor system from single,  dual, triple, quadruple  to sextuple or even higher 

order hydrogen bonding motifs, (ii) changing solvent or temperature  or (iii) altering the 

acidity and/or basicity of the donor (D) and acceptor (A) moieties.  

 In polymer melts, even weak hydrogen bonded complexes can be used for 

polymer crosslinking when combined with additional stabilization factors.  Rowan and 

coworkers have used telechelic polymers based on adenines and cytosines which form 

weakly bonded hydrogen bonded complexes (association constant < 5 M-1).  They found 

that combination of weak hydrogen bonding with phase separation resulted in thermally 
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sensitive crosslinked polymer melts. Polymeric networks based on hydrogen bonding can 

broadly be classified into two classes distinguished by the origin of crosslinks due to a) 

self-association or b) addition of an external “crosslinking agent”.   

2.4.1.1 Self-associative polymer networks  

In self-associative polymer networks (often called one component systems), the 

hydrogen bonding recognition units that are covalently attached to the polymer backbone 

have an appreciable tendency for self-association, i.e. self-dimerize, which leads to inter-

chain crosslinking of the polymers.  As a result, the system is inherently crosslinked and 

does not require any external crosslinking agents for network formation (Figure 2.5).  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Hydrogen bonded crosslinked polymer based on self-dimerizing hydrogen 
bonding recognition units. 

Self-dimerizing
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Since the crosslinking is based on dimerization phenomena, to achieve effective 

crosslinking the functional groups attached to the polymer chains must exhibit very high 

dimerization tendency, i.e. they have to have high dimerization constant.  If weak 

interactions are employed, additional stabilizing effects such as phase separation are 

needed to form crosslinked three-dimensional networks. Self-associative polymer 

networks based on the dimerization of urazole units (two-point hydrogen bonding)25, 2-

ureido-4[1H]-pyrimidone (four-point hydrogen bonding)26, simple carboxylic acid groups 

(two-point hydrogen bonding)27, sulfonamide (two-point hydrogen bonding), and 1, 2, 4-

triazole27 (three-point hydrogen bonding) have been reported (Figure 2.6). 
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Figure 2.6 Self-associative hydrogen bonded polymer networks based on (A) 2-ureido-
4[1H]-pyrimidone (UPy), (B) 1,2,4-triazine, and (C) urazole carboxylic acid. 
 

Examples of self-associative polymer networks using hydrogen bonding include 

the work by Stadler and co-workers who reported reversible polymer network formation 

via intermolecular hydrogen bonding of (4-carboxyphenyl)urazole groups attached to the 

side-chains of poly(isobutylene).28  Effective crosslinking results from the two-point 

hydrogen bonding dimerization of the urazole moieties as well as the carboxylic acid 

groups.  While the individual two-point hydrogen bonding interactions are fairly weak 
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(Kdimer less than 100 M
-1 in chloroform), the system also is based on highly ordered two-

dimensional urazole clusters that phase separate from the amorphous non-polar polymer 

resulting in additional stabilization of the crosslinked polymeric network.  Meijer and co-

workers have reported the use 2-ureido-4[1H]-pyrimidone (UPy) (Figure 2.7), a hydrogen 

bonding array that dimerizes through an array of four hydrogen bonds in a self-

complementary (DDAA) manner with a dimerization constant as high as 6 x 107 M-1 in 

chloroform, to crosslink polymers.29 Similar approaches using UPy as cross-linking 

directing group have been reported by Long and coworkers who functionalized 

poly(methylmethacrylate) using UPy to form a self-associative polymer network.26 

Furthermore; Coates copolymerized UPy functionalized monomers with 1-hexene to 

form polyolefin-based elastomers.30   
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Figure 2.7 Self-associative polymer network formed via the dimerization of 2-ureido-
4[1H]-pyrimidone groups attached to the polymer backbone.  
 

Chino and coworkers functionalized maleated poly(isoprene) with amino triazole 

to form a functionalized polymer with pendant triazole and carboxylic acid groups. The 
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hydrogen bonding interactions between the functional groups resulted in hydrogen 

bonding units which resulted in the superior properties of the functionalized rubber.27 
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Scheme 2.1 Post-polymerization functionalization of maleated poly(isoprene)  by triazole 
to form a self-associative network. 
 

Although self-complementary polymer networks clearly show distinct advantages 

over conventional covalent crosslinked polymers, a limitation of this system is that the 

system always remains “crosslinked” and would exhibit “uncrosslinked” behavior only at 

temperatures above the hydrogen bond dissociation temperature.  Since this system relies 

on the dimerization of the functional groups that are covalently attached to the polymer 

chains, the system displays some of the same limitations as covalent ones.  As a result, to 

tune network properties such as the degree of crosslinking or the crosslinking density 

new generations of optimized polymeric material has to be redesigned and resynthesized.  

Therefore, this strategy does not allow for the full exploitation of the advantages of 

supramolecular self-assembly. 

2.4.1.2 Complementary hydrogen bonded polymer networks 

 In polymeric networks that are based on the employment of complementary 

linkers - two component system - the hydrogen bonding recognition units attached to the 

polymer chains undergo little or no self-association and hence cannot effectively 

“crosslink” the polymer chains.  Such a system represents an “open” system.  An external 
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chemical agent or a “crosslinking agent” has to be added that is able to undergo hydrogen 

bonding with the recognition groups attached to the polymer side-chains resulting in the 

effective crosslinking of the polymer chains through inter-chain hydrogen bonding as 

depicted in Scheme 2.2.   
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Scheme 2.2 Hydrogen bonded crosslinked polymer based on complementary hydrogen 
bonding recognition units. 
 

In such a system, a polymer can be converted from being a completely 

“uncrosslinked” materials, i.e. no crosslinking agent present, to a completely “crosslinked 

system” with the addition of exactly one equivalent of crosslinking agent based on the 

recognition motifs along the polymer backbone.   
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Scheme 2.3 Hydrogen bonded crosslinked polymer based on complementary hydrogen 
bonding recognition units. 
 

Changes of the stoichiometry of the recognition site/linker ratio can be used to 

tailor the physical properties of the resulting polymeric network and therefore obtain a 

range of materials ranging from highly viscous fluids to highly viscoelastic solids all 

resulting from the same parent polymer depicted in Scheme 2.3. 

 

(B)(A)

(C)

 

  

Scheme 2.4  Schematic representation of different polymer network formation based on 
the addition of complementary linkers from the same polymer scaffold using (A) 
bifunctional crosslinking agent based on six-point hydrogen bonding interaction, (B) 
trifunctional crosslinking agent based on single-point hydrogen bonding interaction and 
(C) tetrafunctional crosslinking agent based on single-point hydrogen bonding 
interaction. 
 

The network strength of these systems also can be altered by varying the stability 

of the hydrogen bonded complex formation between the crosslinking agent and the 
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functional groups attached to the polymer chains.  For example, the Weck group has 

demonstrated that networks  based on three-point hydrogen bonding complex formation 

between 2,6-diaminopyridine and thymine (Ka ~ 10
3 M-1) exhibit lower solution 

viscosities in chloroform as compared to similar systems in which the network is based 

on a stronger six-point complex formation between cyanuric acid and isophthalamide 

wedge receptors (Ka ~ 10
6 M-1).31 Another important factor in tuning the network 

properties is the molecular architecture of the crosslinking agent; by varying the 

functionality of the crosslinking one can control the crosslinking density of the network.  

As a result, the addition of one equivalent (based on recognition sites not linker to 

polymer ratio) of a tetrafunctional crosslinking agent will result in greater crosslinking 

efficiency as compared to the addition of two equivalents of a difunctional crosslinking 

agent.  These advantages of the two component crosslinking systems allow for tunability 

of network properties when compared to the one component system described above.  

However, the number of reports in the literature using such a two-component system is 

limited when compared to the one component systems.   

Kato and co-workers have crosslinked a supramolecular side-chain liquid 

crystalline polymer with side-chain carboxylic acid groups by using bis-imidazoyl or bis-

pyridine compound as the crosslinking agent (Figure 2.8 A and B respectively).  The 

addition of the bis-pyridine caused inter-chain crosslinking through the one-point 

hydrogen bonding of the side-chain carboxylic groups with the bis-pyridine resulting in 

crosslinking and increased mesophase stability of the liquid crystalline state.32  
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Figure 2.8 Examples of linker-crosslinked polymer networks exhibiting LCP 
characteristics. 
 

As explained earlier, the role of the crosslinking agent is key in two component 

systems and affects the properties of the final network.  The work of Rotello and co-

workers illustrates the importance of the crosslinking agent.  They employed bis-thymine 

based crosslinking agents with different linker lengths to reversibly crosslink 2,6-

diaminopyridine functionalized copolymers (Figure 2.9) that formed discrete micron-

sized spherical polymeric aggregates.33 In their study, they demonstrated that the linker 

length influenced the median diameter of the spherical aggregate formed resulting in 

good control over the aggregate dimension. 
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Figure 2.9 2,6-Diaminopyridine side-chain functionalized poly(styrene) crosslinked via 
bis-thymine crosslinking agents. 
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2.4.1.3 Polymer networks based on polymer blends 

The physical combination of two or more chemically-different polymers to yield a 

hybrid material possessing the desirable properties of all the combined polymers has been 

a well-established part of materials science.  However serious challenges such as the 

inherent immiscibility of different polymers leading to phase separated materials have to 

be overcome for materials applications.  Many strategies have been used to minimize 

interfacial energy and to reduce the propensity for phase separation, including the use of 

compatibilizers, introduction of reactive groups to covalently connect individual 

polymers within the blend.  One strategy to overcome microphase separation is the use of 

hydrogen bonding interactions.  The polymers that need to be blended can be 

functionalized with complementary hydrogen bonding functional groups and, when 

blended either in solution or the melt, can undergo inter-chain hydrogen bonding 

interactions between the two inherently immiscible polymers thereby suppressing phase 

separation and forming a homogeneous polymer blend.  Most systems described in the 

literature rely on fairly weak hydrogen bonding complexes based mainly on single or 

two-point interactions between functional groups such as hydroxyl, carboxyl, pyridyl, 

and amino groups.  As a result of the weakness (low association strength) of the resulting 

complexes, to achieve homogenous blend formation high mole percentages of the 

hydrogen bonding functional groups are required.  Unfortunately, this often results in 

materials with undesirable properties such as hygroscopiscities or high frictional 

coefficients.  Zimmerman and co-workers have reported a system that ahs the potential to 

overcome these shortcomings.  They employed a four-point hydrogen bonding system 

between urea of guanosine (UG) and 2,7-diamido-1,8-naphthyridine (DAN) which has an 
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association constant of Ka ~ 5 x 10
7 M-1, to blend two immiscible polymers such as 

poly(styrene) and poly(butylmethacrylate). They were able to demonstrate that a mixture 

of poly(styrene) and poly(butyl methacrylate) functionalized with DAN and UG 

respectively formed homogeneous blend (Figure 2.10) with no evidence of phase 

separation, even at a  low concentration of the hydrogen bonding functional groups.34 
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Figure 2.10 Homogenous polymer blend of DAN functionalized poly(styrene) and UG 
functionalized poly(butylmethacrylate) based on the four-point complementary complex 
formation between DAN and UG. 
 
 2.4.2 Network formation using metal coordination 

The second class of noncovalent interactions that have been employed in polymer 

crosslinking is metal coordination.  Metal coordination has a number of advantages to 

hydrogen bonding.  First, metal coordination is among the strongest noncovalent 

interaction used in self-assembly in a variety of solvents (such as halogenated and aprotic 

ones) and the solid state.  Second, while hydrogen bonding is generally thermo-

reversible, metal-coordination is essentially chemo-reversible, i.e. crosslinking by metal-

coordination can be reversed by a chemical species depicted in Scheme 2.5.31  
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Scheme 2.5 Cartoon representation of metal coordinated crosslinking of a functionalized 
polymer scaffold to yield chemoresponsive network. 
 

Furthermore the introduction of metal centers into a crosslinked matrix also 

potentially confers distinct function to the material such as phosphorescence or 

fluorescence.  Although not belonging to the class of side-chain functionalized polymers, 

Rowan and co-workers report a class of metallo-supramolecular gels which are multi-

responsive and multi-stimuli as well as having the capability of photo-electroluminescent 

materials.  

Crosslinked polymers based on metal coordination can be broadly classified into 

two classes.  The first consists of systems in which the metal center is covalently attached 

to the polymer backbone essentially consisting of “macromolecular metallic centers” and 

crosslinking is achieved through bi- or multi-functional small molecule ligands. The 

second class consists of “macroligands” which are then crosslinked by the addition of bi-

(or multi) functionalized metal complexes.  Craig and co-workers have extensively 

studied metal crosslinked networks using poly(vinylpyridine) and bis-functionalized 

pincer complexes based on Pd and Pt (Figure 2.11 A).  Since they employed a polymeric 

“macroligand” based on poly(vinylpyridine), they were able to noncovalently crosslink 

the same polymer chain by different bis-metal complexes, they used single as well as 

multiple metal complex formation for polymer crosslinking without any significant 
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interference of the different metal centers.35 Similarly the Weck group has also used this 

metal coordination motif to crosslink their Pd metal containing polymers using bis-

pyridine crosslinking agents (Figure 2.11 C).31 

Schubert and co-workers have used terpyridine-based metal coordination for 

polymer crosslinking.  They post-polymerized a commodity plastic such as 

poly(vinylchloride) to introduce terpyridine moieties in the side-chains. The 

functionalized polymer was then crosslinked by complexation of the terpyridine groups 

with ruthenium to form a metal crosslinked polymer (Figure 2.11 B).  This example 

illustrates the importance of using “post-polymerization” functionalization in converting 

easily available commodity plastics into high value materials.36 Furthermore, Schubert 

and co-workers have crosslinked a terpyridine functionalized poly(methacrylate) polymer 

using Fe (II) and Zn (II), and demonstrated that the addition of Fe(II) resulted in more 

efficient crosslinking than the addition of Zn(II).  They also completely decrosslinked the 

Zn(II)-based network by the addition of HEEDTA [hydroethyl-

(ethylenediaminetetriacetic acid)], thus demonstrating the complete reversibility of metal 

crosslinked polymers.37  
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Figure 2.11 Examples of side-chain functionalized metal crosslinked polymer networks. 

2.4.3 Multi-functional polymer networks: Combining hydrogen bonding and metal 

coordination 

Side-chain functionalized polymers offer a strategy to use multiple noncovalent 

interactions that can be used to reversibly and simultaneously crosslink as well as 

functionalize the polymeric scaffolds to form highly functionalized crosslinked polymers 

with unprecedented complexity as illustrated in Scheme 2.6.  This strategy involves the 

employment of an orthogonal functionalization and crosslinking strategy.  The 

functionalization is achieved by using mono-functionalized moieties which are 

noncovalently anchored to the scaffold whereas crosslinking is achieved by using bi-

functional crosslinking agents to cause inter-chain crosslinking.  
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Scheme 2.6 Cartoon representation of multi-functional crosslinking of a multi-
functionalized polymer scaffold to yield thermoresponsive network (via Hydrogen 
bonding crosslinking), chemoresponsive network (via Metal coordination crosslinking) 
and multi-responsive network (via simultaneous crosslinking). 
 

 When orthogonal noncovalent interactions for crosslinking as well as for 

functionalization results are employed both processes should be mutually independent 

and non-interfering.  The Weck group have synthesized highly functionalized 

noncovalently crosslinked polymers prepared from single “Universal Polymer Backbone” 

via directional self-assembly processes using a combination of metal coordination and 

hydrogen bonding.31 They report a functionalization/crosslinking strategy where the 

polymeric scaffold can be noncovalently crosslinked employing one of the self-assembly 

motifs while the second one is used for the noncovalent functionalization.  The Weck 

system is based on a terpolymer functionalized with 2,6-diaminopyridine as the hydrogen 

bonding receptor moieties, palladated SCS pincer complexes for metal coordination, and 



 63 

a third inert spacer monomer to increase the polymer solubility and to dilute the 

recognition units (Scheme 2.7).  
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Scheme 2.7    Orthogonal noncovalent crosslinking as well as functionalization strategy 
of terpolymer using hydrogen bonding and metal coordination interactions. 
 

Two distinct crosslinking/functionalization Schemes were investigated: (i) 

crosslinking via hydrogen bonding interaction employing either a bis-thymine or bis-

perylene unit while the palladated SCS pincer centers were used for polymer 

functionalization by metal coordination or (ii) crosslinking via metal coordination using a 

bis-pyridine crosslinking agent while the 2,6-diaminopyridine along the polymer scaffold 

were functionalized with thymine derivatives.  Extensive polymer crosslinking was 

observed in all cases as investigated by viscometry.  However, the metal coordinated 

crosslinked scaffolds exhibited significantly higher viscosity than its hydrogen bonded 

analogue.  The independent, non-interacting behaviors of these two modes of self-

assembly allowed for the creation of a self-assembled, multi-functional, and crosslinked 

material in one self-assembly step.  The reversibility of this system was also studied.  The 

polymer scaffold could be fully de-functionalized and de-crosslinked by (1) heating to 

disrupt the hydrogen bonds (thus exhibiting thermoresponsiveness), and (2) addition of 
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PPh3 to break the metal-pyridine complex via competitive ligand interaction (thus 

exhibiting chemoresponsiveness).  Hence by the employment of different noncovalent 

interactions one can design a system that is responsive to multiple stimuli, opening the 

potential for the easy fabrication of “smart materials”.  

2.5 Conclusions and future outlook 

In this chapter the development of polymer crosslinking technologies has been 

discussed; in particular the limitations of using conventional covalent chemistry for 

polymer crosslinking have been elucidated. The employment of reversible molecular 

recognition processes has allowed not only for the reversible crosslinking of polymers but 

has also allowed for the development of stimuli responsive materials. In particular the 

combination of orthogonal molecular recognition processes for noncovalent crosslinking 

for the generation of multi-responsive materials is potentially very suitable. Such multi-

responsive materials will play an important role in the development of next-generation 

smart materials. 
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CHAPTER THREE 

Noncovalently Functionalized Block Copolymers Possessing Both 

Hydrogen Bonding and Metal Coordination Centers 

3.1 Abstract 

In this chapter, di-block copolymers containing both hydrogen bonding and metal 

coordination sites have been synthesized by ROMP and subsequently functionalized 

using noncovalent interactions.  The resulting block copolymers can be viewed as 

“Universal Polymer Backbones”, as a wide variety of polymers with varying 

functionalities can be prepared by altering the noncovalent functionalization strategy of 

the same polymer backbone.  The effect of degree of polymerization, block 

copolymerization, block copolymer composition and metal coordination on the hydrogen 

bonding interaction has been investigated.  In general, none of these variables has a 

profound effect on the strength of the hydrogen bonding interactions along the polymer 

backbones suggesting that the metal coordination and hydrogen bonding are orthogonal 

to each other in block copolymers.  Finally, the effect of the noncovalent 

functionalization on the thermal properties of the polymers was investigated. It was found 

that, functionalization by both hydrogen bonding and metal coordination reduced the 

glass transition temperature and thermal stability of the polymers. 
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3.2 Introduction 

The emerging area of functional materials for advanced applications will require 

both a high degree of functionalization as well as a high degree of control over the 

molecular architecture.1  Examples include highly functionalized polymers for a wide 

variety of applications ranging from bio-medical materials such as polymers for drug 

delivery to electro-optical materials.2  Other polymeric materials with a high degree of 

control over their molecular architecture are used in applications such as thermoplastic 

elastomers and nano-scale lithography.3  One major class of materials that has the 

potential to fulfill both of these characteristics, namely functionalization and architectural 

control, are block copolymers.4  Block copolymers have the unique advantage that their 

properties can be easily tailored through several variables such as the choice of 

comonomers and the individual block lengths.  Despite these advantages, the synthetic 

complexity of densely functionalized block copolymers that combine multi-

functionalization and controlled block copolymer architecture makes them extremely 

rare.  To efficiently synthesize such materials one would need a highly controlled and 

functional group tolerant polymerization route, coupled with a fast and easy 

functionalization strategy.  This chapter illustrates such a system by combining block 

copolymer formation using ROMP coupled with a noncovalent functionalization 

technique strategy using self-assembly. In the previous chapters the suitability of ROMP 

for this application was explained in detail, namely because ROMP is a highly functional 

group tolerant and can yield polymers with controlled architectures.5-7  Prior to this study, 

ROMP has been used to synthesize highly functionalized di- and tri-block copolymers in 

a fast and efficient manner.8-11  However, all of these examples are based on covalent 
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functionalization strategies.  A strategy that has been suggested in the literature to 

overcome this limitation is the use of noncovalent chemistry for the functionalization 

step, i.e. the use of supramolecular polymer chemistry.12,13 

In this chapter, substituted 2,6-diaminopyridines and their complimentary 

recognition units, substituted thymines, have been used as hydrogen bonding moieties as 

shown schematically in Figure 3.1. 

 

Figure 3.1 A cartoon depiction of block copolymers functionalized by complementary 
sets of recognition units based on hydrogen bonding and metal coordination.  A) Block 
copolymer containing 'polymeric' metal complexes and B) block copolymer containing 
'polymeric' ligands. 
 

In the previous chapter it was discussed that metal coordination  is the second 

class of noncovalent interactions that has been employed extensively in the literature.18,19  
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The main reasons for the use of metal coordination complexes in polymer science are 

their highly controlled synthesis, strong noncovalent bond strength, and the potential 

application of metal-containing polymers in areas such as supported catalysis,35  light-

emitting diodes36  and chemically responsive gels.14 

The combination of self-assembly with highly controlled polymerization 

techniques and complex polymeric architectures such as block copolymers has not been 

accomplished.  Most literature reports employ random copolymers that have the 

advantage of being highly soluble and, in most cases, do not undergo phase separation.  

The employment of block copolymers in multi-step self-assembly is significantly more 

challenging due to these solubility and phase separation issues.  This chapter reports the 

first example of the synthesis and subsequent fast and facile noncovalent 

functionalization of block copolymers having well-defined architectures by using 

multiple noncovalent interactions, i.e. hydrogen bonding and metal coordination motifs 

as noncovalent recognition sites.  Such a strategy demonstrates the straight forward 

syntheses of highly functionalized polymeric materials with a high degree of control over 

their molecular architecture can be accomplished using self-assembly by combining 

functional group tolerant polymerization techniques, such as ROMP and noncovalent 

chemistry. 

3.3 Design of monomers and recognition units 

Multi-functional di-block copolymers having both hydrogen bonding and metal 

coordination sites are the basis of our research design.  These polymers can be viewed as 

the development of the “Universal Polymer Backbones” concept as from a single 

polymer backbone a family of different functionalized polymeric materials can be 
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obtained by just varying the functionalization strategy by using self-assembly..13  These 

polymer backbones are based on monomers that are comprised of three basic structural 

elements: a norbornene monomer that can be polymerized using ROMP, a long C-11 

alkyl spacer to improve solubility and finally the recognition unit itself.  During the 

course of this study, 100% isomerically pure exo-norbornene acid derivatives were used 

as precursors for the synthesis of all monomers.  Isomerically pure exo-norbornenes have 

been shown to polymerize in a highly controlled fashion using the first generation Grubbs 

initiator making exo-norbornenes the monomers of choice.43  Four recognition units have 

been covalently linked to the monomers that are either based on DAD-ADA three 

hydrogen bonding arrays or on palladium-based metal coordination motifs.  

Three point hydrogen bonding DAD-ADA arrays are the most widely studied 

hydrogen bonding receptor systems to date.44,45  In this work the DAD-ADA arrays are 

formed using two sets of functionalized 2,6-diaminopyridine (DAD) and thymine (ADA) 

complementary units as shown in Figure 3.2 A.  The first set involves anchoring the 2,6-

diaminopyridine recognition unit as the side-chain functionality onto the monomer with 

N-butyl thymine being the complementary recognition unit while the second set utilizes a 

thymine recognition unit covalently linked to the monomer with 2,6-diaminopyridine 

being used as the complementary recognition unit.  
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Figure 3.2 Self-assembly motifs employed in this study:  A) Three point hydrogen-
bonded complex between 2,6-diaminopyridines and thymine and B) metal coordination 
complexes of palladated SCS pincer system with pyridines (B-1) and nitriles (B-2). 
 

In the previous chapters it was seen that, palladated sulfur-carbon-sulfur (SCS) 

pincer complexes are an important class of organometallic compounds which are widely 

used in catalysis46,35  and functional materials.47  In this study, the coordination of 

palladated SCS pincer systems with either nitriles or pyridines using again two sets of 

complementary units is utilized.  The first set involves anchoring the palladated SCS 

pincer ligand as side-chain functionality onto the monomer with pyridine or functional 

nitriles as complementary ligands.  The second set is based on a nitrile functionalized 

monomer that can be viewed, after polymerization, as a “polymeric” ligand.  This 

polymeric ligand can then be functionalized by coordination of a palladated pincer center 

as the complementary coordination system.  Figure 3.3 outlines the monomers and 

recognition units employed in this study.  
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Figure 3.3 Monomers 1-5 and recognition units 6-9 utilized in this study.   

 

3.4 Synthesis of monomers and recognition units 

 Monomer 1 was synthesized as outlined in Scheme 3.1 by converting 11-

bromoundecan-1-ol to its corresponding nitrile derivative, 10,49  followed by 

esterification of 10 with the exo-norbornene acid. 

HO-(CH2)11-Br NaCN
DMSO, 80 °C, 3 h

93 %
+

OH

O

O

O

(CH2)11-CN

1

DCC,DMAP
12 hrs, 75 %

10

HO-(CH2)11-CN

 

Scheme 3.1 Synthesis of monomer 1.   

The ether functionalized Pd-pincer compound 8 was synthesized as outlined in 

Scheme 3.2.  The starting compound, 5-octyloxy-isophthalic acid dimethyl ester, was 
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synthesized according to literature procedures50  and was reduced with lithium aluminum 

hydride to yield the corresponding diol.  The diol was then converted into the dichloride 

using methanesulfonyl chloride and the dichloride was coupled with an excess of sodium 

thiophenolate resulting in the formation of 14, which on cyclopalladation with 

Pd[PhCN]2Cl2 and further workup, yielded the ether functionalized palladated pincer 

recognition unit, 8. 
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Scheme 3.2 Synthesis of the ether functionalized Pd pincer recognition unit 8.   

3.5 Homopolymerization studies  

All polymerizations were carried out using Grubbs’ first generation initiator in 

chloroform at room temperature.43,40,51  The polymerizations were monitored by 1H NMR 

analysis, and upon complete conversion, a drop of ethyl vinyl ether was added to 

terminate the polymerization.  While the living polymerization of monomers 2-5 has been 

proven before,43  1 is a new monomer and its living character, a prerequisite for the 

formation of block copolymers had to be established.   

Complete monomer conversion of 1 occurred in less than three hours depending 

upon the monomer-to-initiator ratios.  This clearly indicates that Grubbs’ first generation 

initiator is compatible with the terminal nitrile groups.  This result was surprising since 
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nitriles have been known to act as ligands for the ruthenium metal center of the initiator, 

thereby preventing polymerization of such nitrile containing monomers.52-55  However, 

monomers containing nitrile groups have been polymerized by ROMP before using 

tungsten initiator giving some precedent to our observation.55  The favorable 

polymerization behavior of 1 using Grubbs first generation initiator might be related to 

the fact that 100% isomerically pure exo-monomer was used since it has been shown that 

exo-norbornene monomers have faster polymerization kinetics than their endo isomers.43  

To investigate the living nature of the polymerization, a series of polymerizations with 

variable monomer to initiator (M/I) ratios were carried out, and the resulting molecular 

weights were plotted against the M/I ratios.  Figure 3.4 A shows a linear relationship 

between the M/I ratio and the molecular weights, indicating a controlled polymerization.  

Furthermore, the polydispersity index (PDI) depended upon the molecular weight of the 

polymers: at lower molecular weights the PDIs were higher with values being around 1.7, 

whereas the PDI decreased from 1.7 to 1.5 for the high molecular weight polymers 

suggesting a slower rate of initiation in comparison to the rate of propagation.  

Nevertheless, full initiation was observed within 120 seconds indicated by a complete 

shift of the carbene signal of the initiator in the 1H NMR from 19.1 ppm before addition 

of the monomer to 18.0 ppm after complete initiation.  No signal corresponding to the un-

initiated initiator was observed.   
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Figure 3.4 Controlled polymerization of 1.  A) Plot of Mn versus the monomer-to- 
initiator ([M]:[I]) ratios. R2 = 0.9698 B) GPC chromatographs of the block copolymer 
test of 1: (blue curve) homopolymer after complete conversion ([M]:[I] = 20:1, Mw = 
20,800, Mn = 11,700, PDI= 1.7), (red curve) the same polymer after the addition of 350 
equivalents of monomer 5 ([M2]:[M1] = 350:1, [M];[I] = 20, Mw = 346,000, Mn = 
254,100, PDI= 1.3).  
 

The living nature of the polymerization was unequivocally confirmed by a block 

copolymerization test.  First, twenty equivalents of monomer 1 were polymerized.  Upon 

complete conversion as monitored by 1H NMR spectroscopy, 350 equivalents of 

monomer 5 were added.  Complete conversion occurred within three hours.  The 

homopolymer and the copolymer were characterized by gel-permeation chromatography 

(GPC) and the results are shown in Figure 3.4 B.  The GPC trace of the block copolymer 
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is unimodal and shows a complete and dramatic shift to high molecular weight without 

traces of terminated low molecular weight polymer.  This result in combination with the 

linear relationship between the M/I ratios and the molecular weight clearly proves the 

living nature of 1.  

3.6 Thymine monomer studies 

  Monomer 4 could be polymerized homogenously in chloroform only at low 

concentrations and low degrees of polymerization.  At concentrations above 100 mg/mL 

and at degrees of polymerization above 25, phase separation occurred.  Phase separation 

was also observed in dichloromethane and at elevated temperatures.  These results clearly 

indicate that high molecular weight thymine homopolymers are not completely soluble in 

these solvents.  However these polymers are soluble in polar solvents like THF.  We 

rationalize that this phenomenon might be due to self-association of the functionalized 

thymines which can dimerize.30  Hence, we carried out dimerization experiments and 

established the self-association constant of 4 in chloroform using 1H NMR dilution 

experiments (Figure 3.5).  The self-association constant of 4 was found to be 21 M-1, 

which is close to the published literature value.25 
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Figure 3.5 Chemical shift in ppm of the imide proton (N-H) of the thymine monomer (4) 
as a function of concentration in chloroform at room temperature. 
 

Based on these results, the M/I ratios was limited to 20 for all copolymers 

containing 4 to ensure homogenous reaction conditions.  Complete conversion of the 

ROMP of 4 occurred in about 30 minutes as monitored by 1H NMR analysis and the GPC 

trace of the resulting homopolymer showed a unimodal signal with a narrow PDI of 1.12.  

We have previously reported that the ROMP of monomers 2 and 3 are living yielding 

polymers of narrow PDIs.43   

3.7 Copolymerization studies 

 As monomer 1 could be polymerized in a living fashion, it was possible to 

synthesize block copolymers starting with any monomer.  Four classes of di-block 

copolymers were synthesized containing one hydrogen bonding block and one metal 

coordination block (UPB-A-D).  All block copolymerization were carried out by the 

sequential monomer addition after the first monomer was completely polymerized, as 



 81 

determined by 1H NMR spectroscopy analysis.  The resulting block copolymers were 

characterized by GPC analysis, which showed unimodal distributions for all copolymers.  

In general, block copolymers containing 1 displayed higher PDIs around 1.7 while all 

other block copolymers (UPB-B, UPB-D) showed lower PDIs around 1.3 (Table 3.1).  

Scheme 3.3 outlines all block copolymers that have been synthesized for this study.  
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Scheme 3.3 Block copolymer formation using the synthesis of UPB-A as an example and 
the depiction of all synthesized di block copolymers.  Polymer endgroups have been 
omitted for sake of clarity. 
 

The GPC analyses of all homo and copolymers using THF as eluant are 

summarized in Table 3.1. 

 

Table 3.1 Characterization of unfunctionalized homo and block copolymers.  (a) Eluant: 
dichloromethane, (b) M/I ratios for each block. Polymer abbreviations are based on 
Scheme 3.3. 

 

 

 

[M]/[I] Mn 

(103) 

Mw 

(103) 

PDI Tg 

(˚C) 

Tdeg 

(˚C) 
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Poly-1 50 17.9 34.0 1.89 91 400 

Poly-2 50 8.4 6.8 1.23 54 383 

Poly-3a 50 30.6 36.1 1.17 79 299 

Poly-4 20 3.9 4.4 1.12 69 387 

UPB-Ab 25 30.0 49.0 1.63 21 370 

UPB-Ba,b 25 11.4 15.8 1.30 48 255 

UPB-Cb 20 7.0 12.5 1.77 24 380 

UPB-Db 20 21.6 29.4 1.36 44 376 

 

3.8 Noncovalent functionalizations 

Functionalization of the resulting block copolymers using noncovalent 

interactions as well as the investigation into the orthogonal character of all 

functionalization steps is key to our study.  Therefore, after establishing the living nature 

of the polymerization of all monomers, the homopolymerization characteristics, and the 

synthesis of all block copolymers, the noncovalent functionalizations of all homo and 

block copolymers via hydrogen bonding and/or metal coordination were investigated.  

The self-assembly of a single block by using either hydrogen bonding or metal 

coordination was carried out as well as the stepwise multi-functionalization beginning 

with the metal coordination followed by hydrogen bonding was carried out as depicted in 

Scheme 3.4.  
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Scheme 3.4 Functionalization strategies of all block copolymers, “Universal Polymer 
Backbones”.  Polymer endgroups have been omitted for sake of clarity.   
 

3.8.1 Hydrogen bonding functionalization 
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  All homopolymers and copolymers were easily self-assembled via hydrogen 

bonding by simply stirring the polymer solution in dichloromethane with the appropriate 

complimentary recognition unit, followed by removal of the solvent under reduced 

pressure.  Association constants (Ka values) of the monomers, homopolymers, and block 

copolymers were determined by 1H NMR titration experiments in chloroform at room 

temperature (Table 3.2).  We first investigated the Ka values of monomers 2 and 3.  The 

Ka value of the hydrogen-bonded complex between 2 and 7 was found to be 1080 M
-1 

whereas the Ka value between 4 and 6 was determined to be 920 M
-1.  Both of these 

values are comparable to published literature values.44,56  Upon polymerization, the Ka 

values of the homopolymers of both monomers (Poly-2 and Poly-4) showed a significant 

decrease from 1080 M-1 to around 540 M-1 and from 920 M-1 to 460 M-1 for Poly-2 and 

Poly-4, respectively.  Similar decreases in the Ka values of hydrogen bonding monomers 

based on 2,6-diaminopyridines upon polymerization have been previously reported.57  

 

Table 3.2 Association constants (Ka values in M
-1) for the self-assembly via hydrogen 

bonding of monomers 2 and 4, all homopolymers and all block copolymers before and 
after metal coordination.  1: Errors for all Ka measurements ranged between 10 to 15%. 
Polymer abbreviations are based on Schemes 3.3 and 3.4. 
 

Entry Ka value
(1) Entry Ka value

(1) 

2 1080 UPB-A 410 

3 920 UPB-A-2 460 

Poly-2 (50mer) 540 UPB-B 510 

Poly-2 (100 mer) 540 UPB-C 370 

Poly-4 (20 mer) 460 UPB-C-2 310 

  UPB-D 340 
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Next the effect of molecular weight on the Ka by measuring the Ka values of a 

100mer and a 50mer of 2 (Figure 3.6), was studied.  For both polymers, the Ka values 

were found to be similar (540 M-1) (Table 3.2) indicating the independence of the Ka 

from the polymer molecular weight.  Similar results were obtained for monomer 4.   
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Figure 3.6  1H NMR spectroscopy titration curves for monomer 2 (red circles), a 50 mer 
of 2 (blue diamonds) and a 100 mer (green squares) of 2 with N-butyl thymine.  The 
polymer solutions (0.005 M, based on the hydrogen bonding moieties) were titrated 
against N-butyl thymine (0.01 M) in chloroform at room temperature. 
 

After establishing the Ka values of the homopolymers, the Ka values of all block 

copolymers were determined and were compared to the corresponding monomers and 

homopolymers, in order to study the effect of block copolymerization on the hydrogen 

bonding interaction (Figures 3.7-3.9).  In general, it was found that the Ka values of all 

block copolymers were comparable to their homopolymer analogs.  Block copolymers 
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containing 2 had Ka values of 500 ± 50 M
-1 while block copolymers based on 4 showed 

Ka values of 360 ± 50 M
-1 (Figure 3.7).  These results clearly prove that the block 

copolymerization had no significant effect on the stability of the hydrogen bonding 

complex.  Furthermore, the Ka values are also independent of the comonomer used (either 

1 or 3) proving that the comonomer does not interfere with the hydrogen bonding, i.e. the 

hydrogen bonding step is orthogonal to the metal coordination sites in block copolymers.   
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Figure 3.7  1H NMR spectroscopy titration curves for Poly-2 (blue diamonds), UPB-A 
(green triangles) and UPB-B (red circles) with N-butyl thymine. The polymer solutions 
(0.005 M, based on the hydrogen bonding moieties) were titrated against N-butyl thymine 
(0.01 M) in chloroform at room temperature. 
 

To further study the effect of block copolymer composition on the Ka values, 

UPB-A was synthesized with three different ratios of block A to block B (ratios of 25:75, 

50:50 and 75:25 of 1:2) and the Ka values of each block copolymer were determined 

(Table 3.2 and Figure 3.8).  The Ka values of these different block copolymer 
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compositions were found to be identical within the experimental error indicating that the 

block copolymer composition had little effect on the Ka values. 
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Figure 3.8   1H NMR spectroscopy titration curves for UPB-A (25/75) (red diamonds), 
UPB-A (50/50) (green squares) and UPB-A (75/25) (blue triangles) with N-butyl 
thymine. The polymer solutions (0.005 M, based on the hydrogen bonding moieties) were 
titrated against N-butyl thymine (0.01 M) in chloroform at room temperature. 

 

3.8.2 Effect of the dimerization of the thymine functional groups 

 The block copolymers UPB-A and UPB-B are identical to UPB-C and UPB-D 

but for the terminal hydrogen bonding units (UPBs A and B are based on 2,6-

diaminopyridine while UPBs C and D on thymine).  Nevertheless, both terminal 

hydrogen bonding units are complementary to each other consisting of identical ADA-

DAD units, hence it is expected that the Ka values for all polymers be similar.  However, 

the Ka values of all block copolymers containing 4 are significantly lower (about 10-30%) 

than those containing 2.  These lower association constants can be attributed to the 

dimerization of the thymine groups attached to the polymer backbone thereby lowering 
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the association constant.  In contrast, block copolymers based on 2 have low propensity 

to dimerize resulting in higher association constants.57   

3.8.3 Metal coordination 

The terminal nitrile functionalized monomers and polymers as well as the 

palladated pincer complex functionalized monomers and polymers represented a 

complimentary set of a metal coordination system.  Functionalization of the pincer 

moieties in both cases began with the abstraction of the chlorine atom from the palladated 

center using AgBF4 followed by coordination of the appropriate ligand to the palladium 

atom.18  The nitrile functionalized polymers in essence act as a “polymeric ligand” that 

can coordinate with the Pd pincer center 8 whereas the covalent functionalization of the 

pincer complex onto the polymer can be seen as a “polymeric metal center” which needs 

to be activated prior to functionalization.  The functionalization of the nitrile-based 

polymers was significantly easier and could be carried out in analogy to literature 

procedures in a variety of solvents including chloroform and dichloromethane.58  

However every attempt to coordinate the pincer block copolymers in chloroform resulted 

in immediate precipitation.  Furthermore, polar solvents such as DMF and DMSO could 

not be employed because of the severe disruption of the hydrogen bonding complex 

formation of the block containing the hydrogen bonding recognition units.  Therefore, the 

metal coordination of the pincer based block copolymers (UPBs B and D) was successful 

only in anhydrous dichloromethane using a saturated solution of AgBF4 in an equivolume 

mixture of nitromethane and acetonitrile.  This important difference can be ascribed to 

the fact that during the metal coordination step, the pincer functionalized block 

copolymer gets converted into a “polyelectrolyte species” thus decreasing the solubility 
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of the system in a non-polar environment, whereas in the case of the nitrile functionalized 

block copolymers, the Pd pincer center 8 get positively charged on activation thereby 

circumventing the formation of a “polyelectrolyte species”.  Nevertheless, when using an 

appropriate solvent, quantitative metal coordination took place and no interferences of the 

hydrogen bonding moieties during the metal coordination steps were observed using 1H 

NMR spectroscopy.59  

3.8.4 Multi-functionalizations 

After establishing that a) the metal coordination steps on all homo and block 

copolymers can be carried out quantitatively within seconds without interference of the 

hydrogen bonding recognition motifs and b) the strength of the hydrogen bonding 

interaction is independent of the copolymers used, multi-functionalization experiments 

were carried out.  In particular, the Ka value was determined via 
1H NMR titration 

experiments of block copolymers that were first functionalized via metal coordination.  

As can be seen in Figure 3.9 and Table 3.2, similar Ka values for the hydrogen bonding 

titration experiments for all metal-coordinated block copolymers were observed as 

described above for all single hydrogen bonding functionalization studies on 

homopolymers and block copolymers (the Ka values range from 460 M
-1 for block 

copolymers containing 2 to 360 M-1 for block copolymers containing 4).  These results 

clearly demonstrate that metal coordination does not interfere with the hydrogen bonding 

functionalization, i.e. both recognition motifs are orthogonal to each other in all block 

copolymers.  However, due to poor solubility, it was possible to measure the Ka values 

for UPB-B-2 and UPB-D-2. 
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Figure 3.9   1H NMR spectroscopy titration curves for UPB-A (red circles), UPB-A-2 
(green circles) with N-butyl thymine. The polymer solutions (0.005 M, based on the 
hydrogen bonding moieties) were titrated against N-butyl thymine (0.01 M) in 
chloroform at room temperature. 
 

3.9 Thermal characterization 

To study the effect of the noncovalent functionalization on the thermal properties 

of all polymers, the glass-transition temperatures (Tg) and onset temperatures of 

degradation (Tdeg) of all homo and block copolymers were measured.  The results are 

tabulated in Table 3.3.  Poly-1 displayed the highest Tg as well as Tdeg values, which can 

be explained by the strong inter- as well as intra- molecular dipole-dipole interactions 

between the nitrile groups, as reported for other nitrile-based polymers such as 

poly(acrylonitrile).60  Poly-1 upon metal coordination with 8 gave the self-assembled 

Poly-1(SA) which exhibited a large decrease in the Tg due to the disruption of these 

intermolecular interactions.  Poly-1(SA) also showed a large decrease in the thermal 

stability, which can be explained by the introduction of metallic species into the system.  

Similarly, Poly-3, a metallated polymer, showed the lowest thermal stability as compared 
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to the other non-metal containing polymers, this can be explained by the fact that metal 

residues catalyze the thermal degradation of polymers.61,62  Poly-3 upon functionalization 

by either pyridine or functionalized nitriles gave self-assembled Poly-3(SA) which did 

not exhibit significant changes in the Tg.  However, upon metal coordination with 9, 

Poly-3(SA) showed a large decrease in the thermal stability.  Poly-4, which is able to 

undergo a high degree of intermolecular interactions via hydrogen-bonding, exhibited a 

large decrease in the Tg values after functionalization with 6 to give self-assembled Poly-

4(SA), however the thermal stability was not affected.  Poly-2 on self-assembly with 7 

gave the self-assembled Poly-2(SA) showed a large decrease in both, the Tg and Tdeg. 

Table 3.3 Thermal characterization data of all self-assembled homo and block 
copolymers. Polymer abbreviations are based on Schemes 3.3 and 3.4. 
 

Polymer Tg (
˚C) Tdeg (

˚C) Polymer Tg 

(˚C) 

Tdeg (
˚C) 

Poly-1(SA) 72 185 UPB-B-2 31 190 

Poly-2(SA) 10 278 UPB-B-3 33 222 

Poly-3(SA) 64 194 UPB-C-1 13 320 

Poly-4(SA) 36 383 UPB-C-2 5 284 

UPB-A-1 6 265 UPB-C-3 2 284 

UPB-A-2 6 240 UPB-D-1 29 312 

UPB-A-3 10 232 UPB-D-2 42 205 

UPB-B-1 32 227 UPB-D-3 30 230 

 

All block copolymers displayed lower glass-transition temperatures than their 

homopolymer counterparts although their Tdeg were similar.  To understand the individual 
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effects of hydrogen bonding and metal coordination interactions on the thermal properties 

of the copolymers, the glass-transition temperature and onset of thermal degradation after 

each functionalization step was measured.  Both functionalizations, hydrogen bonding 

and metal coordination, decreased the Tg of the copolymers, by similar extents, although 

the fully functionalized copolymers had lower Tg due to the combined effects of both 

functionalizations.  The decrease in the Tg values upon functionalization can be explained 

by the plasticization of the polymers.  Similarly, the polymers, upon metal coordination, 

had lower onsets of degradation temperatures.  It can be seen in every case that the 

thermal stability decreases to a higher extent upon metal coordination as compared to 

their corresponding hydrogen bonded counterparts.  

3.10 Summary and conclusions 

In this chapter, di-block copolymers possessing both hydrogen bonding and metal 

coordination recognition units have been synthesized using ROMP.  The hydrogen 

bonding recognition system consisted of substituted thymines and 2,6-diaminopyridines 

whereas the metal coordination system consisted of palladated SCS pincer complexes and 

functionalized nitriles and pyridine.  The effect of degree of polymerization, block 

copolymer composition and most importantly metal coordination on the noncovalent 

functionalization via hydrogen bonding was studied in detail.  It was found that none of 

these variables had any substantial impact on the stability of the hydrogen-bonded 

complexes.  These results suggest that the investigated noncovalent interactions are 

orthogonal in block copolymers, a prerequisite to employ this strategy in material 

science.  Finally the effects of these noncovalent functionalizations on the thermal 

properties of the polymers were studied.  It was found that both functionalization by 
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hydrogen bonding and metal coordination decrease the glass-transition temperatures of 

all polymers due to disruption of the intermolecular forces and similarly the 

functionalized polymers had lower thermal stability than their corresponding 

unfunctionalized counterparts.   

In summary, it has been demonstrated that combining a highly functional group 

tolerant polymerization route with noncovalent functionalization techniques, allows for 

the facile syntheses of highly functionalized materials having a high degree of control 

over their molecular structure.  Using noncovalent interactions such as hydrogen bonding 

and metal coordination one can synthesize from a single polymer backbone (“Universal 

Polymer Backbone”) a large variety of functionally varied polymers, which widely differ 

in their physical and chemical properties, simply by altering the functionalization 

strategy.   

3.11 Experimental section 

General  

All reagents were purchased either from Acros Organics, Aldrich or Strem 

Chemicals and used without further purification unless otherwise noted.  

Dimethylformamide (DMF) and deuterated chloroform (CDCl3) were distilled over 

calcium hydride.  Grubbs first generation initiator was purified by filtration using purified 

benzene under an atmosphere of argon.  N-(6-Propionylamino-pyridin-2-yl)-

propionamide,44  N-butyl thymine,57 isomerically pure exo-norbornene acid,45,54 12- 

bromododecanitrile,47 5-Octyloxy-isophthalic acid dimethyl ester 48  and monomers 2,43  

3,43  4,63  and 517  were synthesized according to published procedures.   

Characterization procedure 



 94 

1H NMR and 13C NMR spectra were taken using a Varian Mercury Vx 300 

spectrometer.  All spectra are referenced to residual proton solvent.  Abbreviations used 

include singlet (s), broad singlet (bs), doublet (d), triplet (t), quartet (q), and unresolved 

multiplet (m).  Mass spectral analyses were provided by the Georgia Tech Mass 

Spectrometry Facility on a VG-70se spectrometer using electron impact ionization (EI).  

Self-CI denotes self-chemical ionization.  Elemental analyses were performed by Atlantic 

Microlabs, Norcross, GA.  Gel-permeation chromatography (GPC) analyses were carried 

out using a Shimadzu pump, a Shimadzu UV detector with tetrahydrofuran (THF) or 

dichloromethane as the eluant and a set of American Polymer Standards columns 

(100,1000,100,000 Å linear mixed bed). The flow rate used for all the measurements was 

1 mL/min. All GPC measurements were calibrated using poly(styrene) standards and 

were carried out at room temperature. Mw, Mn and PDI represent the weight average 

molecular weight, number average molecular weight and the polydispersity index 

respectively. The glass-transition temperature of the polymers (Tg) was measured by 

differential-scanning calorimetry (DSC). The DSC analyses were performed under an 

atmosphere of nitrogen using a Mettler Toledo DSC 822e, which was calibrated using 

Indium standards.  The temperature program provided two heating and cooling cycles 

between -100 and 100˚C at 10˚C /min, with the sample size ranging from 5 to 9 mg.  The 

onset of thermal degradation for the polymers (Tdeg) was measured by thermal 

gravimetric analysis (TGA). The TGA analyses were performed under an atmosphere of 

nitrogen using a Shimadzu TGA-50 and all samples were heated from 25 to 450˚C at a 

rate of 10˚C /min. 

exo-Bicyclo [2.2.1] hept-5-ene-2-carboxylic acid 11-cyano-undecyl ester (1) 
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Exo-bicyclo [2.2.1] hept-5-ene-2-carboxylic acid (4.4 g, 0.021 mol) and 

compound 1049  (4.16 g, 0.021 mol) were dissolved and stirred in anhydrous 

dichloromethane (100 mL).  Dicyclohexyl dicarbondiimide (DCC) (4.4 g, 0.021 mol) in 

dichloromethane and a catalytic amount (20 mg) of 4-dimethylaminopyridine (DMAP) 

were added at room temperature.  Immediately a white precipitate was formed.  The 

mixture was refluxed for twelve hours after which it was cooled and filtered.  The 

solution was then concentrated and purified by column chromatography (SiO2, eluant: 

dichloromethane), and dried on high vacuum to yield 1 as a colorless liquid (5 g, 75%).  

1H NMR (CDCl3): δ = 6.09 (m, 2H, CH=CH), 4.06 (t, 2H, J = 6.67 Hz, -COOCH2-), 3.00 

(s, 1H), 2.88 (s, 1H), 2.31 (2H, t, J = 7.08 Hz, -CH2-CN), 2.17 (m, 1H), 1.899 (m, 1H), 

1.67-1.55 (m, 4H), 1.51-1.25 (m, 20H).  13C NMR (CDCl3): δ = 176.1, 138.0, 135.8, 

119.2, 64.6, 46.8, 46.5, 43.4, 41.8, 30.55, 29.6, 29.6, 29.5, 29.4, 29.0, 28.9, 28.9, 26.2, 

25.6, 17.3.  HRMS (Self-CI) m/z (100%) = 318.2393 (M+, calcd 318.2348).  Anal. Calcd 

for C20H31NO2: C, 75.67; H, 9.84; Found: C, 75.49; H, 9.93. 

 (3-Hydroxymethyl-5-octyloxy-phenyl)-methanol (12) 

5-Octyloxy-isophthalic acid dimethyl ester 48 (11) (7.1 g, 0.022 mol) was 

dissolved in anhydrous THF and added to a suspension of LiAlH4 (1.66 g, 0.044 mol) in 

THF at 0˚C.  The reaction was stirred at room temperature for twelve hours after which 

the THF was removed under reduced pressure.  The residue was carefully acidified by 

adding 1N HCl dropwise at 0˚C to dissolve the LiAlH4.  The solution was then extracted 

with dichloromethane (3 x 200 mL), the organic extracts were dried with MgSO4 and the 

solvent removed under reduced pressure to yield a white solid (6.00 g, 86%).  1H NMR 

(CDCl3): δ = 6.91 (s, 1H, ArH), 6.83 (s, 2H, ArH), 4.64 (s, 4H, -CH2OH), 3.94 (t, 2H, J = 
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6.38 Hz, -OCH2-), 1.93 (broad, 2H, -OH), 1.75 (m, 1H, ), 1.44 (m, 2H), 1.29 (m, 8H), 

0.87 (distorted t, 3H, J = 6.8 Hz, -CH3).  
13C NMR (CDCl3): δ = 159.3, 142.8, 117.6, 

112.1, 68.3, 64.9, 64.8, 32.0, 29.7, 29.6, 26.4, 23.0, 14.5.  MS (EI) m/z (100%) = 266.18 

(M+, calcd. 266.19).  Anal. Calcd for C16H26O3: C, 72.14; H, 9.84; Found: C, 72.17; H, 

9.86. 

1, 3-Bis-chloromethyl-5-octyloxy-benzene (13) 

Compound 12 (4.99 g, 0.019 mol) and trimethyl amine (5.68 g, 0.056 mol) were 

dissolved in 100 mL of anhydrous dichloromethane and cooled to 0˚C.  Methane sulfonyl 

chloride (6.43 g, 0.056 mol) was added dropwise over a period of one hour.  After 

complete addition, the reaction mixture was gradually heated to 38˚C for twelve hours.  

The reaction mixture was then washed with 1N NaOH (50 mL), 1N HCl (50 mL) and 

water (100 mL), and finally dried over MgSO4.  The solvent was removed under reduced 

pressure and the crude mixture was purified by column chromatography (SiO2, eluant: 

hexanes-dichloromethane 3/2, v/v) to yield a colorless liquid (3.94 g, 70%).  1H NMR 

(CDCl3): δ = 6.98 (s, 1H, ArH), 6.89 (s, 1H, ArH), 4.54 (s, 4H, -CH2Cl), 3.94 (t, 2H, J = 

6.50 Hz, -OCH2-), 1.80 (p, 2H, J = 6.64 Hz, -OCH2CH2- ), 1.48 (m, 2H), 1.34 (m, 8H), 

0.92 (distorted t, 3H, -CH3).  
13C NMR (CDCl3): δ = 159.7, 139.4, 120.8, 114.8, 68.4, 

46.2, 32.2, 29.7, 29.6, 29.5, 26.4, 23.0, 14.5.  MS (EI) m/z   (100%) = 302.12 (M+, calcd. 

302.12).  Anal. Calcd for C16H24Cl2O: C, 63.37; H, 7.98; Found: C, 63.72;H, 8.00. 

1, 3-Bis [(phenylsulfanyl) methyl]-5-octyloxy-benzene (14) 

Sodium thiophenolate (7.10 g, 0.051 mol) was dissolved in anhydrous THF (100 

mL) and dichloride 13 (3.94 g, 0.012 mol) was added drop wise to the reaction mixture at 

room temperature.  The mixture was then heated at 50˚C for twelve hours, after which the 
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solvent was removed under reduced pressure and the crude mixture was redissolved in 

dichloromethane (200 mL).  The solution was then washed with brine (100 mL), 2 N 

NaOH (100 mL), water (100 mL), and dried over MgSO4.  The solvent was removed 

under reduced pressure and the crude mixture was purified by column chromatography 

(SiO2, eluant: hexanes-dichloromethane 7/3, v/v) to yield the product as a colorless liquid 

(3.94 g, 70%).  1H NMR (CDCl3): δ = 7.30-7.15 (m, 10H, -SC6H5), 6.85 (s, 1H, ArH), 

6.70 (s, 2H, ArH), 4.03 (s, 4H, -SCH2-), 3.84 (t, 2H, J = 6.57 Hz, -OCH2-), 1.72 (m, 2H, -

OCH2CH2-), 1.43-1.29 (m, 10H, -(CH2)5-), 0.89 (distorted t, 3H, J = 7.10 Hz, -CH3).  
13C 

NMR (CDCl3): δ = 159.8, 139.4, 137.2, 129.4, 127.7, 127.4, 120.8, 114.9, 68.5, 46.2, 

32.2, 29.8, 29.7, 29.6, 26.4, 23.1, 14.6.  MS (EI) m/z (100%) = 450.20 ( M+, calcd. 

450.21).  Anal. Calcd for C28H34OS2 : C, 74.62; H, 7.60; Found: C, 74.64; H, 7.69. 

Pd-Cl 1, 3-Bis[(phenylsulfanyl)methyl]-5-octyloxy-benzene (8) 

Compound 14 (400 mg, 0.89 mmol) was dissolved in a mixture of 

dichloromethane (5 mL) and acetonitrile (10 mL) and placed under an atmosphere of 

argon.  Pd[(C6H5CN)2Cl2] (340 mg, 0.89 mmol) was added to the stirred solution.  The 

resulting orange solution was stirred for 30 min, after which AgBF4 (425 mg, 2.19 mmol) 

was added in one portion.  Immediately, the orange solution became pale yellow due to 

the formation of silver chloride and the solution was stirred for 30 min under argon.  The 

reaction mixture was then diluted by dichloromethane (250 mL) and the solution was 

poured into a saturated aqueous solution of NaCl and stirred vigorously for eight hours.  

The organic layer was separated, dried over MgSO4 and the solvent removed under 

reduced pressure.  Purification by column chromatography (SiO2, eluant: 

dichloromethane-methanol 99/1, v/v) gave 8 as a yellow solid (400 mg, 77%).  1H NMR 
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(CD2Cl2): δ = 7.80 (m, 4H, -SC6H5), 7.43 (m, 6H, -SC6H5), 6.61 (s, 2H, ArH), 4.59 (bs, 

4H, -SCH2-), 3.85 (m, 2H, -OCH2-), 1.74 (m, 2H, -OCH2CH2-), 1.45-1.30 (m, 10H, -

(CH2)5-), 0.88 (m, 3H, -CH3).  
13C NMR (CDCl3): δ = 220.2, 157.2, 150.3, 132.6, 131.6, 

129.9, 129.8, 109.0, 68.3, 51.9, 32.0, 29.5, 29.4, 29.4, 26.2, 22.8, 14.3.  HRMS (EI) m/z 

(97.12 %) = 590.06 (M+, calcd 590.05 ).  Anal. Calcd for C28H33ClOPdS2: C, 57.96; H 

6.32, Found: C, 56.68; H, 5.75. 

Polymerizations  

The monomers were dissolved in an appropriate volume of dry distilled 

deuterated chloroform.  The calculated amount of a stock solution of Grubb’s first 

generation initiator in chloroform was added in one portion.  The reaction mixture was 

stirred at room temperature and monitored by 1H NMR spectroscopy.  Upon complete 

polymerization, a drop of ethyl vinyl ether was added to terminate the polymerization.  In 

the case of copolymerizations, upon complete conversion of the first monomer, the 

second monomer was added in chloroform.  Purification of all polymers was performed 

by precipitating the polymers from ice-cold methanol and repeated washings with ice-

cold methanol and ice-cold hexanes, followed by prolonged drying at room temperature 

under high vacuum. 

Poly-1 1H NMR (CDCl3): δ = 5.34-5.18 (m, 2H, CH=CH), 4.01(t, 2H, J = 6.18 Hz, -

COOCH2-), 2.68 (br m, 2H), 2.48 (br m, 2H), 2.31 (t, 2H, J = 7.08 Hz, -CH2-CN), 2.02-

1.91 (br m, 2H), 1.60 (br m, 5H), 1.41 (br m, 2H), 1.25 (br s, 14H).  13C NMR (CDCl3): δ 

= 176.1, 134-131, 120, 64.67, 50-49, 47.8, 43.2, 42.1, 41.3, 37.2, 36.4, 29.5, 28.9, 29.1, 

25.5. 
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Poly-4 1H NMR (THF-d4): δ = 9.26 (s, 1H, -NH-), 6.12 (s, 1H, thymine), 4.30-4.10 (br 

m, 2H, CH=CH), 2.91 (t, 2H J = 5.98 Hz, -COOCH2-), 2.75 (m, 1H), 2.52 (t, 2H, J = 

7.29 Hz, -CH2-N), 1.9-1.58 (m, 1H), 1.6-1.42 (br m, 2H), 0.71-0.5 (m, 10H), 0.20 (br s, 

12H, alkyl chains).  13C NMR (THF-d4): δ = 178.6, 167.8, 154.8, 144.2, 138.8, 137.3, 

136.4-135.1, 113.0, 111.9, 82.5, 81.7, 67.7, 53.5, 51.5, 45.9, 44.9, 43.8, 41.0, 33.3, 32.9, 

31.4, 30.5, 29.8, 28.5. 

UPB-A 1H NMR (CDCl3): δ = 8.19 (s, 2H, -NH-), 7.49 (s, 2H, Pyrβ), 5.32-5.17 (br m, 

4H, CH=CH), 4.1 (br s, 4H, -COOCH2-), 3.99 (br m, 2H, -OCH2-), 2.64 (br m, 8H), 2.47 

(br m, 4H, -COOCH2CH3), 2.34 (t, 2H, J = 7.1 Hz, -CH2-CN), 2.16 (s, 6H), 2.01-1.9 (br 

m, 8H), 1.67-1.57 (br m, 20 H), 1.24-1.1 (br m, 92H, alkyl chains).  13C NMR (CDCl3): δ 

= 176.3, 172.9, 150.4, 133.9, 131.5, 120.1, 96.2, 69.7, 68.6, 64.7, 50.4, 49.7, 47.8, 42.1, 

41.2, 37.1, 36.4, 35.0, 32.0, 30.8, 29.7, 29.5, 29.0, 28.8, 26.0, 25.5, 17.3, 9.5. 

UPB-B 1H NMR (CD2Cl2): δ = 8.10(s, 2H, -NH-), 7.80 (br m, 4H, -SC6H5), 7.49 (br s, 

2H,Pyrβ), 7.33 (br m, 8H, -SC6H5), 6.54 (s, 2H, ArH), 5.32-5.16 (br m, 4H, CH=CH), 

4.50 (br s, 4H, -SCH2- ), 4.00 (br m, 6H, -COOCH2-), 3.82 (t, 4H, J = 6.22 Hz, -OCH2-), 

2.63 (br m, 4H, bridging proton), 2.44 (br m, 4H, bridging proton), 2.36 (br m, 4H, -

COOCH2CH3), 2.16 (br s, 2H), 2.02-1.91 (br m, 4H), 1.69 (br m, 4H), 1.56 (br m, 4H), 

1.24-1.16 (br m, 46H, alkyl chains).  13C NMR (CDCl3): δ = 176.5, 172.9, 169.2, 157.2, 

151.6, 150.8, 150.3, 132.6, 131.5, 129.9, 109.0, 96.2, 69.7, 68.6, 64.7, 54.0, 51.0, 32.0, 

30.8, 29.7, 29.4, 28.9, 26.0. 

UPB-C 1H NMR (CD2Cl2): δ = 9.2(s, 1H, -NH-), 6.14 (s, 1H, thymine proton), 5.03 (br s, 

1H, CH=CH), 4.33 (br m, 4H, -COOCH2-), 4.12 (br m, 1H, -CH2-N ), 2.92 (br m, 6H), 

1.63-1.46 (t, 14H), 1.27 (t, 2H, J = 7.00 Hz), 0.94 (br m, 2H), 0.84 (br m, 4H), 0.71 (br s, 
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4H), 0.64 (br s, 4H), 0.51 (br m, 16H), 0.23 (br m, 48H, alkyl chains).  13C NMR 

(CDCl3): δ = 178.4, 167.6, 154.7, 144.0, 139.4, 137.36, 136.5-135.2, 131.9, 122.9, 112.9, 

67.7, 53.2, 51.2, 48.6, 46.0, 45.4, 44.9, 40.0, 33.4, 32.8, 30.3, 29.8, 29.3, 20.0. 

UPB-D 1H NMR (CD2Cl2): δ = 10.13 (s, 1H, -NH-), 7.83 (br m, 4H, -SC6H5), 7.39 (br m, 

6H, -SC6H5), 7.04 (br m, 1H, ArH), 6.57 (br s, 1H, thymine proton), 5.37-5.2 (br m, 4H, 

CH=CH), 4.57 (br s, 4H, -SCH2-), 4.01 (br m, 4H, -COOCH2-), 3.85 (br m, 2H, -OCH2-), 

3.67 (t, 2H, J = 7.08 Hz, -CH2-N), 2.67-2.48 (br m, 2H), 1.88 (br m, 4H), 1.63-1.57 (br 

m, 10H), 1.27 (br m, 32H, alkyl chains).  13C NMR (CD2Cl2): δ = 177.7, 166.9, 159.1, 

153.6, 152.2, 142.8, 134-131, 112.2, 110.9, 70.2, 66.4, 50.5, 44.2, 38.3, 31.7, 30.8, 28.5, 

14.1. 

Self-assembly experiments 

Hydrogen Bonding:   

The polymers (100 mg) were dissolved in dry dichloromethane (5 mL) until a 

homogenous solution was obtained.  Then, the calculated amount of the hydrogen 

bonding recognition unit dissolved in dry dichloromethane (2-3 mL) was added in one 

portion and the solution was stirred for 30 min after which the solvent was removed 

under reduced pressure to yield the hydrogen bonded polymer. 

Metal Coordination:   

The polymers were dissolved in dry dichloromethane (5 mL) until a homogenous 

solution was obtained.  Then the calculated amount of 8-9, dissolved in dry 

dichloromethane (2-3 mL), was added.  The reaction mixture was stirred and AgBF4 (aq) 

was added, whereas for the pincer based polymers, an equivolume solution (0.02 mL) of 

nitromethane and acetonitrile was used to dissolve the AgBF4.  After one minute, the 
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solution turned green and AgCl precipitated.  The solution was then allowed to stir for 

one hour.  The reaction mixture was filtered through Celite and then the solvent was 

removed under reduced pressure, to yield the metal coordinated polymers as light green 

solids. 

Titration experiments:   

1H NMR spectroscopy titration association constants were measured by 1H NMR 

spectroscopy titration of a 0.005 M solution of the polymer (based on the hydrogen 

bonding moieties) in CDCl3 with a 0.01M of the corresponding receptor moiety.  The 

chemical shifts of the amide protons for the 2,6-diaminopyridines and the imide protons 

of the substituted thymines were monitored.  The 1H NMR spectroscopy data was 

evaluated by ChemEquili software to calculate the association constants.64  The errors 

ranged from 10 to 15%. 
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CHAPTER FOUR 

Noncovalently Functionalized Poly(norbornene)s Possessing both 

Hydrogen Bonding and Coulombic Interactions 

4.1 Abstract 

Random copolymers containing both hydrogen bonding and charged ionic sites 

have been synthesized by the ROMP of norbornene monomers containing either an ionic 

quaternary ammonium group or a 2,6-diaminopyridine functionality.  All copolymers 

were functionalized subsequently via self-assembly using hydrogen bonding and 

Coulombic interactions.  The hydrogen bonding interactions between 2,6-

diaminopyridine and N-butylthymine were studied in the presence of the ionic quaternary 

ammonium group and it’s subsequent self-assembly with three different charged anionic 

species was investigated to determine the influence of the Coulombic interactions on the 

strength of hydrogen bonding. Both qualitative analysis using IR and 1H NMR 

spectroscopy techniques and quantitative analysis using 1H NMR spectroscopy titrations 

were carried out. It was found that hydrogen bonding was independent of the nature and 

presence of the Coulombic interactions in chloroform as the solvent.  These results prove 

that the studied hydrogen bonding interactions are orthogonal to the Coulombic 

interactions and that both interactions can be used independently of each other in the 

same system to noncovalently functionalize polymer backbones. 
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4.2 Introduction 

In the previous chapters it has been explained that that side-chain polymer 

functionalization through noncovalent chemistry has been shown to have several distinct 

advantages over covalent functionalization strategies, such as fast and facile 

functionalization, reversibility, and self-reparability.1-3  One example from the work of 

Ikkala et al., demonstrates that by combining metal coordination and ionic interactions 

with polymer science, highly controlled and functionalized nanostructures can be 

synthesized in a straight forward fashion.4 Coulombic interactions are among the most 

widely encountered noncovalent interactions rivaled only by hydrogen bonding and van 

der Vaals interactions in their frequency.  One important strategy for noncovalent multi-

functionalization5,6  would be the controlled employment of ionic interactions along with 

other noncovalent interactions within the same polymeric system.  Such a strategy would 

allow for the tailoring of materials properties by exploiting the differences in the nature 

of these reversible interactions as well as multi-functionalization.7,8  However, a 

prerequisite for the use of multiple interactions in such a system is that all noncovalent 

interactions have to be orthogonal to each other, or at least the effects of one interaction 

in the presence of the other one must be clearly understood. Chapter three reported the 

detailed investigations into the orthogonality of hydrogen bonding and metal 

coordination9,8  where it was proven that these two interactions can be used in an 

orthogonal fashion expanding the possibility to design polymers that can be utilized as 

precursors for a variety of materials applications through simple self-assembly based 

functionalization.7,8  Although there have been some reports where Coulombic 

interactions have been used in the presence of hydrogen bonding in polymeric systems, a 
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study of the interdependence of these two interactions with a quantitative evaluation is 

lacking.10,11  Furthermore, Rotello and coworkers have used hydrogen bonding and 

Coulombic self-assembly in micro-patterning surfaces, however the recognition units 

were present on separate polymer backbones.12  This chapter demonstrates the efficiency 

of direct copolymerization via ROMP of functionalized monomers as a convenient route 

to multi-functionalized polymers having both hydrogen bonding and Coulombic self-

assembly sites. 

While ROMP of charged metal complexes such as ferrocene13-17  and in ionic 

liquids as solvents18  has been carried out, there are only few reports of polymerizing 

charged monomers.19-21  The vast majority of reports utilize post polymerization 

modifications to yield polyelectrolytes.22-26  However, such post polymerization 

modifications can involve side-reactions such as hydrolysis, chain-degradation, or cross-

linking thereby leading to ill-defined structures.27  By directly copolymerizing a charged 

monomer, post-polymerization steps can be avoided, giving a straightforward and robust 

method to make functional materials such as ionomers and polyelectrolytes.  This 

chapter, reports the first synthesis of a highly functionalized polymer by copolymerizing 

a charged norbornene monomer with a norbornene monomer containing a terminal 

hydrogen bonding motif using ROMP followed by a detailed investigation into the 

noncovalent multi-functionalization of the resulting copolymers as shown schematically 

in Figure 4.1.   
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Figure 4.1 A cartoon depiction of a random copolymer noncovalently multi-
functionalized by complementary sets of recognition units based on hydrogen bonding 
and Coulombic self-assembly.  
 

4.3 Research design 

The research design consists of multi-functional random copolymers having both 

hydrogen bonding and Coulombic recognition sites.  These multi-functionalized 

copolymers can be viewed as “Universal Polymer Backbones”7,8  since a family of 

different functionalized polymeric materials can be obtained from a single polymer 

backbone by varying the complementary recognition units, i.e. the functionalization.  

These polymer backbones are based on monomers that are comprised of a norbornene 

moiety that can be polymerized using ROMP and a long alkyl spacer composed of either 

a C-10 or C-11 chain to improve solubility and to decouple the recognition units from the 

polymer backbone.  In particular, functionalized 2,6-diaminopyridines (DAD) and N-

butylthymine (ADA) (Figure 4.2) have been employed.  The 2,6-diaminopyridine 

recognition units are anchored onto the polymer backbone with N-butylthymine being the 

complementary recognition unit.  In Chapter three, it was shown that higher Ka are 
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achieved with the 2,6-diaminopyridines being attached to the polymer backbone as they 

have a lesser tendency to undergo self-association as compared to their complementary 

thymine counterpart.9  
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Figure 4.2 Self-assembly motifs used in this study:  (A) three point hydrogen-bonded 
complex between 2,6-diaminopyridine and N-butylthymine, and (B) Coulombic self-
assembly between the quaternary ammonium group and (B-1) sodium dodecyl sulfonate, 
(B-2) sodium stearate, and (B-3) sodium dodecyloxy phenolate. 
 

The components for the Coulombic self-assembly consist of quaternary 

ammonium iodide which can be self-assembled with three different complementary 

recognition units 5-7 (Figures 4.2 and 4.3).  The recognition units are based on the 

sodium salts of long alkyl chain functionalized sulfonic acid (sodium dodecyl sulfonate-

SDS), carboxylic acid (sodium stearate-SS), and phenol (sodium dodecyloxy phenolate-

SDP).  The long alkyl chains enhance the solubility of these salts in nonpolar solvents 

such as CHCl3 and CH2Cl2 in which all self-assembly experiments were carried out.  The 

three different anionic recognition units were chosen to study the effect of the hydrogen 

bonding acceptors (oxygen atoms) on the anionic moieties.  Each of the three anionic 

recognition units has a differing number of oxygen atoms, capable of disrupting the 

hydrogen bonding interactions between N-butylthymine and 2, 6-diaminopyridine.  
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Figure 4.3 Monomers 2-4 and recognition units 5-8 used in this study. 

4.4 Synthesis of monomers and recognition units  

All monomers are derived from 100% isomerically pure exo-norbornene acid.28,29  

Monomer 3 was synthesized as outlined in Scheme 4.1.  Esterification of exo-norbornene 

acid with an excess of 1,10-decanediol using p-toluene sulfonic acid as the catalyst in 

toluene gave the monoester alcohol 1.  Compound 1 was then esterified with 4-

(dimethylamino) benzoyl chloride in CH2Cl2, to yield the tertiary amine monomer 2. 
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Scheme 4.1  Synthesis of monomer 3. 

Monomer 3 was then synthesized by quantitatively converting the tertiary amine 

group of monomer 2 to a quaternary ammonium group, which was achieved by reacting 2 

with an excess of iodomethane at 30°C for 48 hours.30  The quantitative quaternization of 

2 was determined by 1H NMR spectroscopy.  Upon complete quaternization, the methyl 

signals showed a complete downfield shift from 3.00 ppm to 4.00 ppm.  Furthermore, due 

to the strong negative inductive effect of the quaternary ammonium group, the aromatic 

signals also showed significant shifts from 6.63 ppm to 8.13 ppm and from 7.90 ppm to 

8.28 ppm.  Isolation of the analytically pure monomer 3 from monomer 2 was facile, as 

monomer 2 is a liquid and soluble in hexanes, whereas monomer 3 is a solid and 

insoluble in hexanes.  As a result, filtration and repeated washings with ice-cold hexanes 

followed by prolonged drying under high vacuum yielded pure 3 as a pale yellow solid. 

4.5 Homopolymerization studies 

Although monomer 2 could be polymerized using Grubbs’ second and third 

generation initiators, monomer 3 could only be polymerized using Grubbs’ third 

generation initiator which has been reported to have  high catalytic activity and functional 

group tolerance.31  Quantitative conversions of monomer 3 could be achieved in less than 

five minutes at room temperature using CHCl3 as the solvent as determined by 
1H NMR 

spectroscopy.  Poly-3 had limited solubility in solvents such as CH2Cl2, CHCl3, and THF, 

but was completely soluble in strongly polar solvents such as DMF and DMSO.  Once 

Grubbs’ third generation initiator was found to polymerize monomer 3, the 

homopolymerization was studied in detail.  A series of homopolymerizations with 

monomer to initiator ratios (M/I ratios) ranging from 10:1 to 250:1 were carried.  It was 
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found that molecular weights of the resulting polymers were independent of the M/I ratio 

used indicating an uncontrolled polymerization.  For all M/I ratios studied, the Mn was in 

the range of 8,000-9,000 with the PDI ranging from 1.2 to 1.3 (GPC analysis of Poly-3 

were carried out using DMF as the solvent and poly(styrene)s as standards).  To further 

probe the polymerization of 3, the carbene signal was monitored during polymerization.  

Upon addition of 3 to the catalyst solution, complete disappearance of the uninitiated 

carbene signal at 19.09 ppm without any presence of either initiated or uninitiated 

carbene signals were observed confirming the uncontrolled nature of this polymerization. 

O

O

(CH2)11 O N

N

Et

H

O

N H

O

Et

O

O

(CH2)10 O C N

O

I

+

O

O

O

O

(CH)10 (CH)11

O O

C

I

m n

[Ru]

CHCl3

[Ru] =

m n

O

N

NN N Et

H

O

Et

H

O

3 4

Ru
Ph

Cl

ClN

Br

N

Br

NN

 

Scheme 4.2 Random copolymerization of monomers 3 and 4 in chloroform at room 
temperature using Grubb’s third generation initiator. 
 

 

 

4.6 Copolymerization studies 
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  Monomers 2 and 4 could be quantitatively copolymerized using Grubbs’ third 

generation initiator in less than five minutes.  All copolymers based on 2 and 4 with 

varying composition were soluble in non-polar solvents such as CH2Cl2 and CHCl3. 

 

Table 4.1 GPC data of unfunctionalized homo and copolymers.  (a) Eluant: DMF.  
Polymer abbreviations are based on Scheme 4.3. 
 

Entry [M]/[I] Mn (10
3) Mw (10

3) PDI 

Poly-2 50 5.3 6.7 1.26 

Poly-3 50 8.5 13.0 1.23 

Poly-4(a) 50 10.4 13.0 1.25 

UPB-10% 50 7.1 9.0 1.26 

UPB-15% 50 8.0 9.7 1.22 

UPB-20% 50 8.7 10.6 1.21 

Control 50 63.0 97.5 1.54 

 

Similarly 3 and 4 could be copolymerized using Grubbs’ third generation initiator 

to yield copolymers having both hydrogen bonding and charged sites.  GPC analyses of 

the resulting copolymers shows unimodal curves with PDIs around 1.2 as listed in Table 

4.1.  However, the solubility of copolymers 3 and 4 was highly dependent upon the mole 

fraction of the charged monomer 3.  All copolymers having less than 20 mol% of 

monomer 3 were completely soluble in non polar solvents such as CHCl3 and CH2Cl2.  

However, increasing the concentration of 3 above 20 mol% resulted in copolymers that 

phase separated in these solvents, but were completely soluble in polar solvents such as 

THF and DMF.  Unfortunately, due to the competing nature of these solvents, they do not 
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allow for formation of strong hydrogen bonds between 2,6-diaminopyridine and N-

butylthymine, thereby eliminating these solvents for our self-assembly studies. 

4.7 Noncovalent functionalizations 

  The copolymers thus synthesized have both hydrogen bonding and ionic sites 

along the polymer backbone which after multi-functionalization can yield a family of 

functionally varied copolymers from a single polymer backbone.7,8  Functionalization of 

the resulting copolymers using noncovalent interactions as well as investigation into the 

orthogonal character of all functionalization steps is the basis of this work.  Therefore the 

subsequent step was to study the noncovalent functionalizations of all copolymers via 

hydrogen bonding and/or Coulombic self-assembly as depicted in Scheme 4.3.   
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Scheme 4.3 Functionalization strategies of the random copolymers.  Nomenclature: n% 
denotes the percentage of monomer 3; UPB-1 indicates functionalization through 
Coulombic self-assembly; UPB-2 indicates functionalization through hydrogen bonding; 
UPB-3 indicates complete functionalization through both interactions; SDS, SDP and SS 
represent the anionic recognition units 5, 6 and 7 respectively used for ionic self-
assembly.  Hence the polymer abbreviation UPB-1-SDS-20% would indicate a 
copolymer of 4 and 3 (20 mol%) which is functionalized by ionic self-assembly using 5. 

 
4.8 Monomer studies 

4.8.1 Qualitative analysis:  Hydrogen bonding interactions 

One of the aims of this work was to determine if the hydrogen bonding 

interactions between 2,6-diaminopyridine and N-butylthymine were affected by the 

presence of ionic charges and subsequent Coulombic self-assembly.  To investigate this, 

1H NMR spectroscopy was used to monitor the chemical shifts of the amide protons of 

2,6-diaminopyridine and the chemical shifts of the imide proton of N-butylthymine 

during the hydrogen bond formation both in the presence and in the absence of ionic 

charges and Coulombic self-assembly.  For these qualitative analyses, the copolymers 

based on 4 and 3 having equimolar amounts of the recognition units, could not be used as 

they were sparingly soluble in CHCl3.  Hence these qualitative analyses were carried out 

using monomers 3 and 4, which were completely soluble in equimolar ratios in CHCl3, 

thus permitting to accurately and reliably study the effect of ionic charges and self-

assembly on the 2,6-diaminopyridine-N-butylthymine complex formation.  Furthermore, 

to study if the sequence of the hydrogen bonding and ionic self-assemblies would have 

any effect on the complex formation of 2,6-diaminopyridine and N-butylthymine, the 

multiple self-assembly experiments were carried out in three distinct ways:  

(A) Hydrogen bonding followed by Coulombic self-assembly.   
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This investigation was carried out to study the affect of the ionic charges and 

Coulombic self-assembly on the hydrogen bonded complex between 4 and 8.  In this 

experiment, 4 and 8 were first self-assembled to form the corresponding hydrogen 

bonded complex, after which an equimolar amount of 3 was added to the complex.  It 

was found that the amide and the imide protons of the hydrogen bonded complex did not 

undergo any changes in their chemical shifts, indicating that the presence of ionic charges 

did not interfere in the hydrogen bonding interactions of 4 and 8.  Further, the effect of 

Coulombic self-assembly was investigated and monomer 3 in the above experiment was 

self-assembled with 5, 6 and 7 individually.  In each case it was found that the proton 

shifts of the hydrogen bonded complex were not affected upon the Coulombic self-

assembly.  The NMR data is listed in Table 4.2 and clearly establishes that the hydrogen 

bonding between 4 and 8 is not disrupted by the presence of 3 and its subsequent 

Coulombic self-assembly. 

Table 4.2 Amide and imide proton chemical shifts in ppm measured by 1H NMR 
spectroscopy of the hydrogen bonded complex between 4 and 8, using three different 
functionalization routines:  (A) hydrogen bonding followed by Coulombic self-assembly, 
(B) Coulombic self-assembly followed by hydrogen bonding, and (C) one-step multi-
functionalization.  
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 (B) Coulombic self-assembly followed by hydrogen bonding. 

 (A) Hydrogen bonding followed  

by Coulombic self-assembly 

(B) Coulombic self-assembly  

followed by hydrogen bonding 

Chemical Shift (ppm) Chemical Shift 

(ppm) 

 

Entry 

Amide 

protons of 4 

Imide 

protons of 8 

 

Entry 

 Amide 

protons of 4 

Imide  

protons 

of  8 

4 7.57 N A 3 + 5 + 4 + 8 9.16 10.54 

8 N A 8.02 3 + 6 + 4 + 8 9.11 10.60 

4 + 8 9.21 10.64 3 + 7 + 4 + 8 9.18 10.60 

4 + 8 + 3 9.17 10.54 (C) Simultaneous multi-

functionalization 

4 + 8 + 3 + 5 9.21 10.56 (4+3) + 

(8+5) 

9.11 10.63 

4 + 8 + 3 + 6 9.15 10.61 (4+3) + 

(8+6) 

9.13 10.62 

4 + 8 + 3 + 7 9.17 10.61 (4+3) + 

(8+7) 

9.14 10.56 
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 In this functionalization mode, the Coulombic self-assembly was followed by 

hydrogen bonding.  Monomer 3 was self-assembled with 5, 6, or 7 individually to form 

three distinct ionic complexes.  Subsequently an equimolar amount of 4 was added to the 

ionic complexes.  It was found that the amide protons of 4 did not undergo any changes 

in their chemical shifts.  Furthermore, when 4 was self-assembled with an equimolar 

amount of 8, the amide and the imide protons shifts of the complex of 4 and 8 were not 

affected by the Coulombic self-assembled complexes.  These results clearly illustrate that 

the route of functionalization does not affect the hydrogen bonding between 4 and 8. 

(C) Simultaneous multi-functionalizations. 

  To investigate if both ionic self-assembly and hydrogen bonding can be carried 

together simultaneously, simultaneous multi-functionalization experiments were carried 

out.  Monomers 3 and 4 were simultaneously self-assembled using ionic self-assembly 

and hydrogen bonding interactions respectively.  Here again it was found that the amide 

and the imide protons shifts of the complex of 4 and 8 were independent, i.e. the 

hydrogen bonding interaction was not affected by the Coulombic self-assembly and was 

independent of the anionic recognition units 5, 6, and 7. 

4.8.2 Qualitative analysis: Coulombic self-assembly 

It was not possible to characterize the Coulombic self-assembly via NMR 

spectroscopy since it involves only the exchange of the counter anions. No visible shifts 

of the chemical shifts of the protons (methyl protons attached to the quaternary nitrogen 

atom, aromatic nucleus and the methylene carbon atom adjacent to the aromatic nucleus) 

were detected.  Also no significant shifts in the 13C spectra were observed upon 

coulombic self-assembly, preventing the use of 13C NMR for qualitative information.  
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Hence the Coulombic self-assembly between 3 with 5, 6, and 7 was studied by using 

infrared spectroscopy by monitoring the distinct absorption bands around 3000 cm-1 and 

1500 cm-1 (-N+(CH3)3 group), 1245 cm
-1 (sulfonate group), around 1560 cm-1 

(carboxylate group) and around 1235 cm-1 (phenate group).32-34  The IR spectra can be 

found in the appendix to this chapter.  First, the changes of the IR stretches during the 

hydrogen bonding self-assembly were investigated.  Upon self-assembly of 4 and 8, the 

free amide vibration band of 4 at 3320 cm-1 was completely shifted to 3280 cm-1, whereas 

the free imide vibration band of 8 was completely shifted to 3210 cm-1.35  Next the effect 

of 5, 6 and 7 which have hydrogen bond acceptor oxygen moieties on 4 was studied to 

see if there was any hydrogen bonding interactions.  The vibrational frequencies of the 

amide group of 4 in the presence of 5 was monitored.  No shifting of the amide frequency 

at 3320 cm-1 as well as the sulfonate frequency at 1245 cm-1 was detected indicating the 

absence of any interactions between the sulfonate groups and the amide groups of 4.  

Furthermore, when 4 and 8 were self-assembled in the presence of 5, the distinctive shifts 

of both the amide and the imide frequencies of 4 and 8 were observed without any 

shifting of the sulfonate group at 1245 cm-1.  Next 5  was self-assembled with 3 and it 

was found that the positions of the amide band of 4, the imide band of 8 and the sulfonate 

band of 5 were not altered.  Furthermore the same experiments using 6 and 7 were carried 

out and similar results were observed indicating the absence of hydrogen bonding 

interactions between the amide groups of 4 with the carboxylate and the phenate groups, 

respectively.  The detailed IR shifts values are tabulated in Table 4.3.  

 

Table 4.3 Wavenumbers of (1) N-H stretch of 4 and 5, (2) counter anion A‾. 
(a) sulfonate group, (b) carboxylate group, (c) phenate group.  
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Wavenumber (cm-1) Wavenumber (cm- 

Entry Amid Imide A‾ 

 

Entry Amid Imide A‾ 

4 + 5 3320 NA 1245 4 + 8 + 6 328 3210 156

4 + 8 + 5 3280 3210 1245 4 + 7 3320 NA 123

4 + 8 + 5 3280 3210 1245 4 + 8 + 7 328 3210 123

4 + 6 3320 NA 1560 4 + 8 + 7 328 3210 123

4 + 8 + 6 3280 3210 1560     

 

4.8.3 Quantitative analysis: Hydrogen bonding interactions 

After performing the qualitative analysis, detailed quantitative analyses were 

carried out by measuring the Ka values of 2, 6-diaminopyridine and N-butylthymine in 

the presence and absence of the charged ionic species.  First preliminary studies using 

monomer 4 and its complimentary recognition unit 8 were carried out.  Using 1H NMR 

spectroscopy titration experiments, the Ka of the hydrogen bonded complex between 4 

and 8 was determined to be 900 M-1 which is comparable to published values.35,9  Next it 

was investigated whether the anionic recognition species 5, 6, or 7 would interfere in the 

hydrogen bonded complex formation between 4 and 8.  Therefore monomer 4 was 

titrated against 8 in the presence of equimolar concentrations of 5, 6, or 7.  In all cases it 

was found that the Ka values were identical to those for the hydrogen bonding between 4 

and 8 without the presence of any salt, which indicates that presence of anionic functional 

groups such as sulfonate, carboxylate and phenolate does not appreciably interfere in the 
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hydrogen bonding interactions between 4 and 8.  Figure 4.4 and Table 4.4 outline these 

results. 
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Figure 4.4  1H NMR spectroscopy titration curves for monomer 4 (�), monomer 4 + 5 
(�), monomer 4 + 6 (�) and monomer 4 + 7 (�) with N-butylthymine 8.  The solutions 
(0.005 M, based on the hydrogen bonding moieties) were titrated against N-butylthymine 
(0.01 M) at room temperature in CHCl3.   
 
Table 4.4 Ka values for the self-assembly via hydrogen bonding of monomer 4 before 
and after Coulombic self-assembly.  (1) Errors for all Ka measurements ranged from 10 to 
15%.  
 
 

Entry Ka value
(1) Entry Ka value

(1) 

4 + 8 900 M-1 4 + 7 + 8 895 M-1 

4 + 3 + 8 920 M-1 4 + 3 + 5 + 8 945 M-1 

4 + 5 + 8 885 M-1 4 + 3 + 6 + 8 822 M-1 

4 + 6 + 8 922 M-1 4 + 3 + 7 + 8 1000 M-1 

 

To study the effect of the cationic quaternary ammonium salt group on the 

hydrogen bonding interactions, 4 was titrated against 8 in the presence of an equimolar 
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concentration of 3.  No changes in the Ka values were observed, indicating that the 

presence of the quaternary ammonium salt does not interfere with the hydrogen bonding 

interactions.  Furthermore, the quantitative effect of ionic self-assembly on hydrogen 

bonding interactions was investigated.  Monomer 3 in the above experiment was then 

self-assembled with 5, 6, or 7 individually, and subsequently 1H NMR titration studies 

were carried out.  In each case it was observed that the Ka values (Table 4.4) did not show 

any significant deviations from Ka values for the complex of 4 and 8 in the absence of 

any charged species.  This clearly establishes that the hydrogen bonding between 4 and 8 

is not disrupted by the presence of 3 and its subsequent Coulombic self-assembly. 

These preliminary monomer studies indicate that the presence of anions such as 

sulfonate 5, carboxylate 6, and phenolate 7 containing three, two and one oxygen atoms 

respectively that are able to act as potential hydrogen bond acceptors do not disrupt the 

hydrogen bond complex formation between 4 and 8.  Furthermore, when these anions are 

complexed with 3, the presence of the ionic complex does not cause any disruption of the 

hydrogen bonded complex formation of 4 and 8.  After these preliminary experiments,  

the self-assembly of all copolymers by using either hydrogen bonding or ionic self-

assembly as well as the stepwise multi-functionalization beginning with the ionic self-

assembly followed by hydrogen bonding as depicted in Scheme 4.3, was carried out.  

4.9 Polymer studies 

4.9.1 Quantitative analysis: Hydrogen bonding interactions 

All copolymers were easily self-assembled via hydrogen bonding by simply 

stirring the polymer solution in CH2Cl2 with the calculated amounts of 8 (based on the 

2,6-diaminopyridine moieties along the polymers), followed by the removal of the 
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solvent under reduced pressure.  The Ka values for all copolymers measured by 
1H NMR 

spectroscopy titration experiments were found to decrease from 900 M-1 to around 500 

M-1.  This result was expected since similar decreases in the Ka values have been 

previously reported upon polymerization of hydrogen bonding monomers based on 2,6-

diaminopyridines.9,36  

To study the effect of copolymer composition on the Ka values, three different 

copolymers were synthesized having three different ratios of monomer 3 to monomer 4 

(10:90, 15:85, 20:80 mol%).  The Ka values (Table 4.5 and Figure 4.5) of these three 

different copolymers were identical within the experimental error indicating that the 

copolymer composition has no effect on the Ka values.  Furthermore, a control copolymer 

using monomers 2 and 4 (equimolar amounts of 2 and 4, [M]/[I] = 50) was synthesized.  

This control copolymer does not contain any charged species along the polymer 

backbone and allowed for easy comparison of the effect of the ionic charges.  Again, it 

was found that the Ka value (Ka = 520 M
-1) of the control copolymer was identical, within 

the error range, to those copolymers based on monomers 3 and 4 indicating that the 

presence of the ionic sites along the polymer does not interfere with the hydrogen 

bonding interactions between 2,6-diaminopyridine and N-butylthymine.   
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Figure 4.5  1H NMR spectroscopy titration curves for Poly-4 (�), control polymer (�), 
UPB-10% (�), UPB-15% (�) and UPB-20% (�) with N-butylthymine.  The solutions 
(0.005 M, based on the hydrogen bonding moieties) were titrated against N-butylthymine 
(0.01 M) at room temperature in CHCl3.  
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Figure 4.6  1H NMR spectroscopy titration curves for UPB-20% (�), UPB-1-SDS-20% 
(�), UPB-1-SDP-20% (�) and UPB-1-SS-20% (�) with N-butylthymine.  The 
solutions (0.005 M, based on the hydrogen bonding moieties) were titrated against N-
butylthymine (0.01 M) at room temperature in CHCl3.  
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Table 4.5 Ka values for the self-assembly via hydrogen bonding of copolymers based on 
monomers 3 and 4 before and after Coulombic self-assembly.  Polymer abbreviations are 
based on Scheme 4.3.  (1) Errors for all Ka measurements ranged from 10 to 15%.  

 

Entry Ka value
(1) Entry Ka value

(1) 

UPB-10% 505 M-1 UPB-1-SS-10% 650 M-1 

UPB-15% 415 M-1 UPB-1-SS-15% 550 M-1 

UPB-20% 555 M-1 UPB-1-SS-20% 560 M-1 

UPB-1-SDS- 450 M-1 UPB-1-SDP- 525 M-1 

UPB-1-SDS- 535 M-1 UPB-1-SDP- 620 M-1 

UPB-1-SDS- 505 M-1 UPB-1-SDP- 660 M-1 

 

4.9.2 Coulombic self-assembly  

Functionalization of the quaternary ammonium salt was carried out by dissolving 

the copolymers in dry CH2Cl2, and then adding a calculated amount of the appropriate 

recognition unit 5, 6, or 7.  The solution was stirred for 30 minutes after which the 

solvent was evaporated under reduced pressure.   

4.9.3 Step-wise multi-functionalizations   

After establishing that a) the Coulombic self-assembly of all copolymers can be 

carried out without interference of the hydrogen bonding recognition motifs and the 

hydrogen-bonding based functionalization of the copolymers, b) the strength of the 

hydrogen bonding interaction is independent of the copolymers used, c) the strength of 

the hydrogen bonding interaction is independent of the Coulombic recognition pair 

employed, studies towards the ultimate goal of multi-functionalization of polymer 

scaffolds were carried out.  In particular, we investigated the hydrogen bonding strength 

via 1H NMR spectroscopy titration experiments of copolymers that were first 

functionalized via Coulombic self-assembly.  All three complementary recognition units 
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5, 6, and 7 were used for these studies.  As shown in Figure 4.6 and Table 4.5, similar Ka 

values for the hydrogen bonding titration experiments for all copolymers self-assembled 

with 5, 6, and 7 were observed.  Furthermore, the Ka values were also independent of the 

composition of the copolymers functionalized by Coulombic self-assembly.  These 

results clearly demonstrate that Coulombic self-assembly does not interfere with the 

hydrogen bonding functionalization, i.e. both recognition motifs are orthogonal to each 

other.   

4.10 Summary and future outlook 

In this chapter, random copolymers possessing both hydrogen bonding and 

charged ionic recognition sites via ROMP have been synthesized.  The hydrogen bonding 

recognition system consisted of substituted 2,6-diaminopyridine and N-butylthymine, 

whereas the Coulombic self-assembly system is based on a quaternary ammonium salt 

and sodium salts of long alkyl chain sulfonic acid, stearic acid, and phenol.  The effect of 

copolymerization, copolymer composition, and lastly Coulombic self-assembly on the 

noncovalent functionalization via hydrogen bonding was studied in detail.  None of these 

variables had any substantial impact on the stability of the hydrogen bonded complexes.  

Since the hydrogen bonding interactions between 2,6-diaminopyridine and N-

butylthymine are highly sensitive to the solvent medium used, the multi-

functionalizations were studied only in solvents such as chloroform or methylene 

chloride which offer superior solubility and do not disturb the hydrogen bonding 

interactions.  Clearly the Coulombic interactions are also strongly solvent dependent and 

all results described in this manuscript are only valid for the solvent systems studied.  

Nevertheless, these results demonstrate that the hydrogen bonding interactions are 
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orthogonal to the Coulombic interactions.  Therefore, combining a functional group 

tolerant polymerization route with noncovalent functionalization techniques, allows for 

the fast synthesis of highly functionalized materials.  Using noncovalent interactions such 

as hydrogen bonding and ionic self-assembly, allows for the synthesis of a large variety 

of functionally varied polymers which widely differ in their physical and chemical 

properties from a single polymer backbone by simply altering the functionalization 

strategy.  Such a strategy will be important in the synthesis of multi-functional materials 

for emerging advanced applications as reported by Bazuin. 

 

C
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Br
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SSLCP-A  

Figure 4.9 Example of SSCLCP based on hydrogen bonding and Coulombic interactions 
and hydrogen bonding studied by Bazuin and co-workers. 
 

Bazuin and co-workers reported the application of multiple noncovalent 

interactions in side-chain supramolecular polymers to form functional materials such as 

supramolecular side-chain liquid crystalline polymers (SSLCP).10  They used 

poly(pyridylpyridinium dodecyl methacrylate) bromide with terminal pyridyl groups 

functionalized side-chains which acted as hydrogen bond acceptors, furthermore the 

pyridyl groups were in close proximity to an ion pair as the polymeric scaffold to anchor 

a series of phenolic mesogens to the scaffold by using single point hydrogen bonding 

interactions (Figure 4.9, SSLCP-A).  They showed that the hydrogen bond complexation 

of the mesogens on to the polymer scaffold is successful, leading to formation of SSLCP 

exhibiting well-defined thermotropic LC characteristics.  The hydrogen bonding between 
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the scaffold and the phenol-functionalized mesogens took place selectively and 

completely despite the presence of potentially interfering Coulombic groups.  The 

presence of the Coulombic groups results in relatively high glass-transition temperatures 

of around 80°C in the presence of the lengthy side-chains, whereas the mesogen that was 

created by the hydrogen bonding complex formation promotes liquid crystalline 

character. Such a successful example of multi-functional material with important 

commercial properties demonstrates the potential of using side chain multi-functionalized 

polymers for advanced applications. 

4.11 Experimental section  

General  

All reagents were purchased from Acros Organics, Aldrich, or Strem Chemicals 

and used without further purification unless otherwise noted.  Triethylamine, methylene 

chloride, and deuterated chloroform (CDCl3) were distilled over calcium hydride.  

Grubbs’ third generation initiator was synthesized as reported.37 Monomer 4,28  N-

butylthymine,36  isomerically pure exo-norbornene acid,28,29  and sodium 4-(dodecyloxy) 

phenolate (SDP)38  were synthesized according to published procedures.  Sodium 

benzene dodecylsulfonate (SDS) and sodium stearate (SS) were used as received.   

Characterization procedure 

As reported in Chapter three. IR analyses were performed on a Shimadzu IR 

spectrometer.  The samples were dissolved in dry CH2Cl2 and cast as a thin film on a 

NaCl disc. 

10-Hydroxydecyl exo-bicyclo[2.2.1]hept-5-ene-2-carboxylate (1) 
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  Exo-bicyclo [2.2.1] hept-5-ene-2-carboxylic acid (5 g, 0.036 mol) and 1,10-

decane diol (12.6 g, 0.072 mol) were suspended in anhydrous toluene (100 mL).  A 

catalytic amount of p-toluene sulfonic acid (0.37 g, 0.002 mol) was added and the 

mixture was refluxed at 110˚C for four hours.  After cooling and filtering off the excess 

diol, the solvent was evaporated under reduced pressure.  The crude product was purified 

by column chromatography (SiO2, eluant: hexanes: EtOAc, 3/1, v/v), and dried to yield 1 

as a colorless liquid (6.12 g, 57%).  1H NMR (CDCl3): δ = 6.01 (m, 2H, CH=CH), 3.97 

(t, 2H, J = 6.70 Hz, -COOCH2-), 3.49 (t, 2H, J = 6.70 Hz, -CH2-OH), 2.92 (s, 1H, 

norbornene signal), 2.81 (s, 1H, norbornene signal), 2.75 (s, 1H, norbornene signal), 2.12 

(m, H, norbornene signal), 2.17 (m, 1H, norbornene signal), 1.90 (m, 1H, norbornene 

signal), 1.67-1.55 (m, 4H, -(CH2)2-), 1.51-1.25 (m, 10H, -(CH2)5-).  
13C NMR (CDCl3): δ 

= 176.5, 138.1, 135.8, 64.7, 62.7, 46.4, 46.7, 43.3, 41.7, 32.8, 30.4, 29.6, 29.5, 29.3, 28.8, 

26.0, 25.9.  HRMS (FAB+) [M+1] calcd for C18H31O3: 295.22732, found: 295.22962.  

Anal. Calcd for C18H30O3: C, 73.43; H, 10.27; Found: C, 70.20; H, 10.49.  

10-(4-(Dimethylamino)benzoyloxy)decyl exo-bicyclo[2.2.1]hept-5-ene-2-carboxylate 

(2) 

Compound 1 (1.0 g, 0.003 mol) and triethylamine (1.71 g, 0.016 mol) were 

dissolved in anhydrous CH2Cl2 (100 mL) and cooled to 0˚C.  Then, 4-dimethylamino 

benzoyl chloride (0.64 g, 0.003 mol) was added slowly to the stirred solution.  After one 

hour, the temperature was allowed to rise to room temperature followed by reflux for 

twelve hours.  The reaction mixture was then cooled to room temperature and washed 

with 1 N HCl (100 mL) followed by saturated NaHCO3 solution (100 mL).  The organic 

phase was then dried over anhydrous magnesium sulfate and the solvent was removed 
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under reduced pressure.  The crude product was purified by column chromatography 

(SiO2, eluant: hexanes: EtOAc, 1/2, v/v), and dried to yield 2 as a colorless liquid (0.80 g, 

60%).  1H NMR (CDCl3): δ = 7.90 (d, 2H, J = 9.95 Hz, Ar), 6.63 (d, 2H, J = 9.95 Hz, 

Ar), 6.11 (m, 2H, CH=CH), 4.24 (t, 2H, J = 6.70 Hz, -CH2-OCO-Ar), 4.08 (t, 2H, J = 

6.72 Hz, -COOCH2-), 3.02 (s, 6H, -N(CH3)2), 3.00 (s, 1H, norbornene signal), 2.88 (s, 

1H, norbornene signal), 2.31 (t, 2H, J = 7.08 Hz, -CH2-), 2.17 (m, 1H, norbornene 

signal), 1.90 (m, 1H, norbornene signal), 1.67-1.55 (m, 4H, -(CH2)2- ), 1.51-1.25 (m, 

10H, -(CH2)5-).  
13C NMR (CDCl3): δ = 176.5, 167.2, 153.4, 138.2, 136.0, 131.4, 117.5, 

110.8, 64.8, 64.8, 46.8, 46.5, 43.4, 41.8, 40.2, 30.5, 29.6, 29.5, 29.4, 29.1, 28.9, 26.3, 

26.1.  HRMS (FAB+) [M+1] calcd for C27H40NO4: 442.295, found: 442.293.  Anal. 

Calcd for C27H39NO4: C, 73.43; H, 8.90; N, 3.17 Found: C, 73.47; H, 9.16; N, 3.39. 

4-((10-(Exo-bicyclo[2.2.1]hept-5-enecarbonyloxy)decyloxy)carbonyl)-N,N,N-

trimethylbenzenaminium iodide (3) 

Compound 2 (1.74 g, 0.003 mol) was dissolved in excess iodomethane (5.5 g, 

0.039 mol) and stirred at 30˚C for two days.  The excess iodomethane was removed 

under reduced pressure to give the crude product as a yellow solid.  The solid was 

suspended in ice-cold diethyl ether, stirred for 30 minutes, and filtered.  Then, the product 

was washed repeatedly with ice-cold hexanes and dried to yield the pure product 3 (1.71 

g, 98%) as a pale yellow solid.  1H NMR (CDCl3): δ = 8.28 (d, 2H, J = 9.95 Hz, Ar), 8.13 

(d, 2H, J = 9.95 Hz, Ar), 6.10 (m, 2H, CH=CH), 4.24 (t, 2H, J = 6.70 Hz, -CH2-OCO-

Ar), 4.08 (t, 2H, J = 6.72 Hz, -COOCH2-), 4.05 (s, 9H, -N(CH3)3), 3.03 (s, 1H, 

norbornene signal), 2.90 (s, 1H, norbornene signal), 2.31 (m, 2H, J = 7.08 Hz, -CH2-), 

2.17 (m, 1H, norbornene signal), 1.90 (m, 1H, norbornene signal), 1.67-1.55 (m, 4H, -
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(CH2)2- ), 1.51-1.25 (m, 10H, -(CH2)5-).  
13C NMR (CDCl3): δ = 176.5, 164.7, 150.2, 

138.2, 135.9, 133.0, 132.2, 120.9, 110.8, 66.2, 64.7, 62.1, 58.1, 46.8, 46.5, 43.4, 41.8, 

40.3, 30.5, 29.6, 29.4, 28.8, 26.1.  HRMS (FAB+) [M – I + 1] calcd for C28H42NO4: 

456.311, found: 456.311.  Anal. Calcd for C28H42INO4: C, 57.63; H, 7.25; N, 2.40 Found: 

C, 57.35; H, 7.25; N, 2.51.  

Homopolymerizations 

 The homopolymerization of monomer 3 is described as a representative example:  

Monomer 3 (22.1 mg, 0.037 mmol) was dissolved in 0.5 mL of CHCl3.  A stock solution 

of Grubbs’ third generation initiator was prepared in CHCl3 and an amount of the stock 

solution equaling 6.7 mg (0.379 mmol) of the initiator was added to the monomer 

solution.  The solution was stirred and the reaction was monitored by observing the 

olefinic signals of the monomer by 1H NMR spectroscopy.  Upon complete conversion, a 

drop of ethyl vinyl ether was added to terminate the polymerization.  The polymer was 

isolated and purified by precipitating from ice-cold methanol, and repeated washings with 

ice-cold methanol and hexanes, followed by prolonged drying at room temperature under 

high vacuum. 

Poly-2.  1H NMR (CDCl3): δ = 7.90 (d, 2H, J = 9.95 Hz, Ar), 6.63 (d, 2H, J = 9.95 Hz, 

Ar), 5.34-5.18 (m, 2H, CH=CH), 4.24 (br m, 2H, -CH2-OCO-Ar), 4.01 (br m, 2H, -

COOCH2-), 3.02 (s, 6H, -N(CH3)2), 2.68 (br m, 2H), 2.48 (br m, 2H), 2.31 (), 2.02-1.91 

(br m, 2H), 1.60 (br m, 5H), 1.41 (br m, 2H), 1.25 (br s, 14H).  13C NMR (CDCl3): δ = 

176.1, 134-131, 120.0, 64.7, 50-49, 47.8, 43.2, 42.1, 41.3, 37.2, 36.4, 29.5, 28.9, 29.1, 

25.5. 
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Poly-3.  1H NMR (d6-DMSO): δ = 8.16 (distorted d, 2H, Ar), 8.10 (distorted d, 2H, Ar), 

5.33-5.17 (m, 2H, CH=CH), 4.24 (br m, 2H, -CH2-OCO-Ar), 3.99 (br m, 2H, -COOCH2-

), 3.65 (br s, 9H, -N(CH3)3), 2.48 (br m, 2H), 2.31 (m, 2H), 2.02-1.91 (br m, 2H), 1.60 (br 

m, 2H), 1.48 - 1.26 (br m, 14H).  13C NMR (d6-DMSO): δ = 165.0, 151.1, 138.5, 136.3, 

131.9, 122.0, 65.9, 64.6, 57.1, 46.6, 43.2, 30.5, 29.6, 29.4, 29.3, 28.7, 26.1. 

Copolymerizations 

 Random copolymers of 3 and 4 were synthesized in a similar fashion as outlined 

above.  The synthesis of UPB-10% is described as a representative example of random 

copolymerization of 3 and 4:  Monomer 3 (22.1 mg, 0.037 mmol) was dissolved in 0.5 

mL of CHCl3 to which a 0.5 mL solution of monomer 4 (200 mg, 0.38 mmol) was added.  

A stock solution of Grubbs’ third generation initiator was prepared in CHCl3, and an 

amount of the stock solution equaling 6.7 mg (0.379 mmol) of the initiator was added to 

the monomer solution.  The solution was stirred, and the reaction was monitored by 

observing the olefinic signals of the monomers by 1H NMR spectroscopy.  Upon 

complete conversion, a drop of ethyl vinyl ether was added to terminate the 

polymerization.  Purification of all polymers was performed by precipitating the 

polymers from ice-cold methanol and repeated washings with ice-cold methanol and ice-

cold hexanes, followed by prolonged drying at room temperature under high vacuum. 

UPB-10%.  1H NMR (d7-DMF): δ = 8.40 (br d, 2H, Ar), 8.21 (br d, 2H, Ar), 7.57 (s, 2H, 

pyridyl), 5.34-5.18 (m, 2H, CH=CH), 4.36 (t, 2H, J = 6.6 Hz,), 4.04 (m, 2H), 3.94 (s, 9H, 

-N(CH3)3), 2.48 (br m, 2H), 1.78 (br s, 2H), 1.61 (br s, 2H), 1.32-1.10 (br m, 2H),  1.08 

(t, 6H, J = 7.7 Hz).  13C NMR (d6-DMF): δ = 173.2, 168.3, 164.9, 152.3, 151.2, 132-131, 

121.9, 95.4, 68.2, 65.8, 64.3, 56.9, 37.2, 34.0, 26.0. 



 136 

Self-assembly experiments 

Hydrogen bonding:   

The synthesis of UPB-2-10% is described as a representative example:  UPB-

10% (222 mg, 0.379 mmol based on the 2,6-diaminopyridine functional groups along the 

polymer backbone) was dissolved in 5 mL of CH2Cl2.  Then, 69 mg (0.379 mmol) of N-

butylthymine was added and the solution was stirred for 30 minutes.  The solvent was 

evaporated, and the self-assembled polymer UPB-2-10% was dried under high vacuum. 

Coulombic self-assembly:   

The synthesis of UPB-1-SDS-10% is described as a representative example:  

UPB-10% (222 mg, 0.0379 mmol based on the quaternary ammonium iodide groups 

along the polymer backbone) was dissolved in 5 mL of CH2Cl2, then 13.2 mg (0.037 

mmol) of compound 5 was added, and the reaction mixture was stirred for 30 minutes.  

The solution was dried under high vacuum to yield the self-assembled polymer UPB-1-

SDS-10%. 

Titration experiments:   

Association constants (Ka) were measured by 
1H NMR spectroscopy titrations at 

room temperature of a 0.005 M solution of the copolymers (based on the hydrogen 

bonding moieties) in deuterated CHCl3 with a 0.01 M solution of N-butylthymine.  The 

chemical shifts of the amide protons for the 2,6-diaminopyridines were monitored during 

the titration.  The data was evaluated by ChemEquili software to calculate the association 

constants.39  All titrations were conducted in duplicate.  The errors ranged from 10 to 

15%. 
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4. 13Appendix 
List of IR spectroscopy graphs 

 

 

Figure 4.A IR spectrum of monomer 4 

 

Figure 4.B  IR spectrum of monomer 4 + 8 (1. Equivalent) 
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Figure 4.C  IR spectrum of monomer 4 + 5 (1. Equivalent) 

 

 

Figure 4.D  IR spectrum of monomer 4 +5 (1. Equivalent) +8 (1. Equivalent) 
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Figure 4.E  IR spectrum of monomer 4 +8 (1. Equivalent) + 5 (1. Equivalent) + 3 (1. 
Equivalent) 
 

 

Figure 4.F  IR spectrum of monomer 4 +6 (1. Equivalent)  
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Figure 4.G  IR spectrum of monomer 4 +8 (1. Equivalent) + 6 (1. Equivalent)  

 

 

 

Figure 4.H  IR spectrum of monomer 4 +7 (1. Equivalent)  
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Figure 4.I  IR spectrum of monomer 4 +8 (1. Equivalent) + 7 (1. Equivalent)  

 

 

Figure 4.J  IR spectrum of monomer 4 +8 (1. Equivalent) + 7 (1. Equivalent) + 3 (1. 
Equivalent) 
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CHAPTER FIVE 

Complementary Hydrogen Bonded Thermoreversible Polymer 

Networks Based on Cyanuric Acid  

5.1 Abstract 

Complementary hydrogen-bonded crosslinked polymer networks based on two 

distinct hydrogen bonding recognition motifs have been synthesized by using a 

combination of ROMP and hydrogen bonding interactions and were subsequently 

characterized in solution using rheometry.  The hydrogen bonding recognition units were 

based either on three point cyanuric acid-2, 4-diaminotriazine or six point cyanuric acid-

Hamilton wedge interactions.  Through the addition of “ditopic crosslinking agents”, the 

polymer scaffold, which was functionalized with cyanuric acid functional groups, was 

noncovalently crosslinked in solution through complementary inter-chain hydrogen 

bonding interactions.  The extent of crosslinking could be controlled by varying the 

amount of the crosslinking agent added.  These networks are thermally reversible and 

have highly tunable mechanical properties which are controlled by the molecular 

structure of the crosslinking agent.  While addition of the Hamilton wedge crosslinking 

agent to the polymer solution led to high-viscosity fluids, the diaminotriazine 

crosslinking agent produced highly viscoelastic gels, in spite of the inherently weaker 

hydrogen bonding (three versus six point), due to higher connectivity between the 

crosslinking agent and polymer.  The study shows that the micro-structure plays an 

important role in the macroscopic mechanical properties of these hydrogen-bonded 

networks in solution.  By varying the hydrogen bonding motif, materials with tunable 

rheological properties were obtained from the same parent polymer backbone.  Such a 
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strategy will allow for materials design by tailoring the network micro-structure via the 

molecular architecture of the crosslinking agents. 
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5.2 Introduction 

In Chapter two, the advantages of reversible polymer crosslinking techniques 

using noncovalent processes over conventional covalent crosslinking have been 

extensively discussed. In this chapter the use of hydrogen bonding interactions 

(specifically complementary hydrogen bonding interactions) to reversibly crosslink 

polymer scaffolds to yield a highly tunable, thermally reversible polymeric network will 

be discussed in detail. Furthermore, this chapter will focus on the specific advantages of 

using these interactions over dimerizing or self-complementary networks such that one 

can fine-tune network properties in solution by choosing the appropriate hydrogen 

bonding interaction, where the extent of crosslinking can simultaneously be tuned via the 

concentration of the crosslinking agent.  As a result, these materials offer a high degree of 

control over the final mechanical properties and the underlying strategy shall be useful in 

designing tailor–made materials. Furthermore, in Chapters one and two the specific 

advantages of using hydrogen bonding interactions for the polymer functionalization as 

well as for the synthesis of reversible crosslinked polymeric networks have been 

explained.1,2   

In this study, this approach is extended by using a recognition motif attached to 

the polymer backbone that is able to form different hydrogen bonding motifs with 

crosslinking agents.  Our hypothesis is that such a system will allow to tailor the 

materials properties in solution, in particular the degree of crosslinking and strength of 

the network.  Such networks based on multiple hydrogen bonding interactions have the 

potential to be used in the fabrication of highly functionalized “smart materials” with 

tunable thermal responsiveness.   
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5.3 Research design 

 Our research design is centered around two different hydrogen bonding 

interactions utilizing the cyanuric acid recognition motif, which is capable of multiple 

hydrogen bond formation in two distinct ways i) three-point hydrogen bonding between 

cyanuric acid and 2,4-diaminotriazine and ii) six-point hydrogen bonding between 

cyanuric acid and the Hamilton wedge receptor (Figure 5.1).  The six-point hydrogen 

bonded complex between substituted cyanuric acid residues and the Hamilton wedge 

receptor has been utilized extensively in supramolecular science because of its high 

association constant that has been reported to be approximately 106 M-1 in 

chloroform.8,13-15,6  This interaction has been used before in side-chain supramolecular 

polymers for side-chain functionalization.13,6  In contrast, the three-point hydrogen 

bonding interaction between cyanuric acid and 2,4-diaminotriazine has not been reported 

in the literature.  However, the interaction between functionalized 2,4-diaminotriazines 

and functionalized thymines has been reported extensively, giving some precedent to our 

three point hydrogen bonding system.16-19  
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Figure 5.1  Self-assembly recognition pairs employed in this study:  (A) six point 
hydrogen bonded complex between the Hamilton wedge receptor and cyanuric acid, (B) 
three point hydrogen bonded complex between 2,4-diaminotriazine and cyanuric acid. 
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The cyanuric acid moieties are anchored covalently onto a poly(norbornene) 

backbone by copolymerizing monomer 1 and the cyanuric acid containing monomer 2 

using ROMP.  The non-functionalized monomer 1 serves as a diluent for the cyanuric 

acid units and  increases solubility of all copolymers in non-polar solvents.6  Hydrogen 

bonded crosslinking was carried by employing either ditopic 2,4-diaminotriazine 

(crosslinking agent 3) or ditopic Hamilton wedge receptors (crosslinking agent 4).  All 

crosslinking events as well as all characterizations of the resulting crosslinked polymer 

networks were carried out in 1-chloronaphthalene which is a non-competitive, high 

boiling solvent in which all copolymers are highly soluble.  All monomers and 

crosslinking agents are shown in Figure 5.2.  Monotopic agents 5 and 6 were used as 

model compounds to study the hydrogen bonding self-assembly. 
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Figure 5.2 Monomers 1 and 2, ditopic crosslinking agents 3 and 4 and monotopic 
functionalizing agents 5 and 6 utilized in this study.   
 

5.4 Synthesis of crosslinking agents 
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Monomers 1 and 2 were synthesized according to literature procedures.13,6  The 

ditopic diaminotriazine crosslinking agent 3 was synthesized from 1,4-bis(10-

bromodecyloxy)benzene in two steps as outlined in Scheme 5.1.  1,4-Bis(10-

bromodecyloxy)benzene was treated with excess NaCN in DMSO to give 11,11'-(1,4-

phenylenebis(oxy))diundecanenitrile in high yield requiring no subsequent purification.  

The corresponding di-nitrile was then treated with dicyandiamide in propanol in the 

presence of KOH to give 3 which was purified by repeated crystallizations from 

ethanol.18   
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Scheme 5.1 Synthesis of ditopic 2,4-diaminotriazine crosslinking agent 3 and ditopic 
Hamilton wedge crosslinking agent 4.   
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Crosslinking agent 4 was also obtained in two steps.  First, the tetra-acid was 

converted to its corresponding acid chloride derivative by heating it to reflux in a large 

excess of thionyl chloride. After distilling off the thionyl chloride, the resulting tetra-acid 

chloride was immediately coupled with an excess of N-(6-aminopyridin-2-yl) butyramide 

in anhydrous THF and triethylamine at 0°C.  After stirring the reaction at ambient 

temperatures for twelve hours, the solvent was removed under reduced pressure and the 

residue suspended in ethyl acetate and filtered.   Crosslinking agent 4, which is insoluble 

in ethyl acetate, was isolated and purified by repeated washings with water to remove any 

triethylamine salts, followed by repeated washings with ethyl acetate to remove the 

excess amine. 

5.5 Copolymerization studies 

We have previously reported the detailed polymerization behaviors of monomers 

1 and 2.13,6  Both monomers can be copolymerized in a statistical manner via ROMP in 

chloroform at room temperature using Grubbs’ first generation initiator (Scheme 5.2).  

We obtained complete monomer conversion within three hours.  The molecular weights 

of the polymers were easily controlled by the monomer to initiator feed ratios [M]/[I].  

The highly controlled ROMP copolymerization of these monomers resulted in 

copolymers with controlled molecular weight and low polydispersities.  Table 5.1 lists 

the gel-permeation chromatography characterization of these polymers. 
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Scheme 5.2 Synthesis of Poly-12 via ROMP using Grubbs’ first generation initiator. 

 
Table 5.1 GPC data of Poly-12 using THF as the eluent.  Polymer molecular structure is 
described in Scheme 5.2.   
 

Entry [M]/[I] Mn (10
3) Mw (10

3) PDI 

125 33 43 1.29 

250 88 101 1.15 
Poly-12 

500 105 123 1.17 
 

Copolymer composition and molecular weight are important parameters that 

affect the subsequent preparation of homogenous crosslinked polymer networks in 1-

chloronaphthalene, which was the solvent of choice for all our rheological measurements 

because of its relatively high boiling point.  The solubility of all copolymers in 1-

chloronaphthalene was found to depend on the mole fraction of 2.  Copolymers 

containing less than 20 mol% of 2 were completely soluble in non-polar solvents, such as 

chloroform, while increasing the content of 2 above 20 mol% resulted in phase 

separation.  In contrast, copolymers containing more than 20 mol% of 2 were fully 

soluble in polar solvents such as THF and DMF.  The limited solubility in non-polar 

solvents might be attributed to self-association of the cyanuric acid groups along the 

polymer backbone, which has been reported previously.20  The copolymer composition 
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for our rheological measurements was chosen to be 10 mol% with respect to 2, resulting 

in copolymers that were completely soluble in 1-chloronapthalene.  The ability to prepare 

homogenous crosslinked samples in solution was also found to be affected by molecular 

weight.  Poly-12 was synthesized with degrees of polymerization (DP) ranging from 100 

to 1000.  Above a DP of 500, all copolymers exhibited a tendency to undergo phase 

separation in 1-chloronaphthalene at concentrations of 5-10 weight%, which is  attributed 

to self-association of pendant cyanuric acid groups.  Lowering the degree of 

polymerization to 250 resulted in uniform polymer solutions with a polymer 

concentration of 5-10 weight%.  However, the addition of crosslinking agents still 

resulted in phase separation during network formation due to syneresis.  Therefore, 

copolymers with a degree of polymerization of 125 were used for all rheological 

characterizations, because they exhibited excellent solubility in 1-chloronaphthalene at 

polymer concentration of 10 weight% and formed homogenous, sTable polymer 

networks upon crosslinking.  

5.6 Self-assembly and crosslinking studies 

Before conducting crosslinking studies, the hydrogen bonding self-assembly 

between 2 and the monotopic compounds 5 and 6 were investigated using 1H NMR 

spectroscopy by monitoring shifts of the amine proton signal of 6, the amide proton 

signals of 5 and the imide proton signal of 2 both before and after self-assembly.  These 

self-assembly experiments were performed using a 0.2 M solution of the compounds in 

deuterated chloroform.  Upon the addition of two equivalents of 6, the imide signal of 2 

shifted downfield from 9.57 ppm to 13.60 ppm while the amine proton signals of 6 

shifted downfield from 5.58 ppm to 5.76 ppm.  Further addition of another two 
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equivalents of 6 resulted in the downfield shifts of the imide protons of 2 to 13.77 ppm 

and the amine protons of 6 to 5.85 ppm.  The imide signal of 2 shifted downfield from 

9.57 ppm to 12.44 ppm upon the addition of one equivalent of 5, while the amide proton 

signals of 5 shifted downfield from 8.93 ppm and 8.40 ppm to 9.85 ppm and 9.53 ppm, 

respectively.  Further addition of another equivalent of 5 resulted in a further downfield 

shift of the imide proton of 2 to 13.19 ppm and an upfield shift of the amide protons of 5 

to 9.50 ppm and 9.08 ppm.  Similar results were obtained when copolymer Poly-12 was 

self-assembled with 5 and 6.  These results demonstrate the strong hydrogen bonding 

interactions between monomer 2 and copolymer Poly-12 with 5 and 6. After conducting 

these preliminary self-assembly studies Poly-12 was crosslinked through hydrogen 

bonding self-assembly, using ditopic crosslinking agents 3 and 4 (Scheme 5.3). 
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Scheme 5.3 Noncovalent crosslinking and functionalization strategies for Poly-12: 
formation of (i) network Poly-12-3 via the addition of crosslinking agent 3, (ii) network 
Poly-12-4 via the addition of crosslinking agent 4, and (iii) functionalized Poly-12-5 via 
the addition of the monotopic functionalization agent 5.   

 

The degree of crosslinking can be controlled easily via the amount of the 

crosslinking agent added.  The crosslinking agent concentration was varied from 0% to 

400% (molar ratio of functional groups in the crosslinking agent to cyanuric acid groups 

attached to the polymer chains).  The crosslinked networks were characterized 

quantitatively using rheology but initial visual observations of the mechanical properties 
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provided a telling qualitative picture.  Solutions of Poly-12 yielded a low-viscosity fluid 

that readily flowed after vial inversion (center vial in Figure 5.3), while crosslinking 

Poly-12 with 3 resulted in an elastic solid.  The left vial in Figure 5.3 shows the vial-

inversion experiment for a 100% crosslinking agent concentration where the gel did not 

flow even after several months.  In contrast, when Poly-12 was crosslinked with 4 at 

100% crosslinking agent concentration, a highly viscous fluid was obtained.  The right 

vial in Figure 5.3 shows this sample: although Poly-12-4 initially passed the vial 

inversion test (i.e. no flow was detected for several minutes), gradual flow was observed 

after a period of several hours, indicative of a highly viscous liquid.  The marked 

difference in flow behavior is indicative of different self-assembled micro-structures of 

the crosslinked materials.  At first sight, it seems counterintuitive that the three-point 

crosslinking agent 3 results in an elastic gel, while the stronger six-point crosslinks with 

agent 4 result in a high-viscosity fluid.  In order to quantitatively probe the effect of both 

crosslinking agents on network formation, rheological measurements with a cone-and-

plate rheometer were carried out.  
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Figure 5.3  Optical micrograph of inverted vials 3-4 hours after vial inversion with (left) 
the stable elastic gel Poly-12-3, (center) the pure uncrosslinked Poly-12 and (right) the 
crosslinked viscous liquid Poly-12-4.  All polymers and additives were dissolved in 1-
chloronaphthalene. 
 

5.7 Rheological characterization 

Initially the presence of self-association of the cyanuric acid group in the 

uncrosslinked Poly-12 was investigated.  This study was important to determine if there 

is any appreciable rheological effect due to self-association of the cyanuric acid 

functional groups.  As a control experiment, the rheology of the pure polymer solution 

Poly-12 with  Poly-12-5 was compared.  Compound 5 is designed to cap the cyanuric 

acid groups along the polymer backbone via Hamilton wedge six point interaction and 

thus suppresses self-association of the cyanuric acid groups.  In the presence as well as 
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absence of 5, the polymer solutions behaved as viscous fluids with complex viscosities 

η* of 0.06 Pa.s (without 5) and 0.07 Pa.s (with 5), respectively.  The slight increase in 

viscosity after addition of 5 can be attributed to the strong association of 5 with the 

copolymer, which creates a bulkier polymer chain.  Most importantly, the experiment 

indicates that there is no significant contribution of self-association of the cyanuric acid 

groups to the sample rheology.  Hence, Poly-12 can be seen as a cyanuric acid 

functionalized polymer that is suitable for crosslinking by using complementary 

hydrogen bonding interactions. 

Furthermore, the mechanical properties of the crosslinked networks were 

investigated.  The strain amplitude sweeps of Poly-12-3 and Poly-12-4 are shown in 

Figure 5.4. The amplitude sweep is an oscillatory test with variable amplitude and 

constant frequency values, in which the elastic and loss moduli are measured.  The elastic 

or storage modulus is a measure of the deformation energy that is stored in the sample 

during the shear process and recovered after the load is removed by shearing in the 

opposite direction or releasing the stress. On the other hand, the loss modulus is a 

measure of the energy that is dissipated in the sample during the shear process and 

rendererd mechanically useless as thermal energy. For both experiments the polymer 

concentration was 10 weight% and the crosslinking agent concentration 100%.  It can be 

seen that for Poly-12-3, the elastic modulus G' is greater than the loss modulus G" 

indicating the formation of a gel according to a more stringent, quantitative rheological 

criterion than the qualitative vial inversion test in Figure 5.3.  The gel breaks down at 

strain amplitudes larger than 0.1.  In contrast, for Poly-12-4 G" is significantly greater 

than G', and largely insensitive to strain amplitude, indicating that the addition of 
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crosslinking agent 4 increases the viscosity of the network but does not result in the 

formation of a viscoelastic gel. 
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Figure 5.4 Strain amplitude sweep at 20°C at ω = 6.3 rad/s for Poly-12-3 (triangles) and 
Poly-12-4 (circles).  
 

In order to probe the thermal reversibility of the polymer networks, a temperature 

sweep was carried out in which the sample was subjected to a heating-cooling cycle 

which consisted of first increasing the temperature from 20 to 80°C and then lowering it 

back to 20°C, with heating and cooling rates of 2°C /min.  During both the heating as 

well as the cooling cycle the viscoelastic moduli were monitored at a constant frequency 

(1 Hz = 6.28 rad/s) and strain amplitude (0.1).  At high temperatures, this protocol can 

lead to low signal to noise ratio, because the weak gels and low-viscous fluids yield low 

torques that are close to the sensitivity limitations of the rheometer. The temperature 

sweeps in Figure 5.5 show a strong temperature dependence of the network.  Both 
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samples showed gradual but large decreases of the dynamic moduli over the temperature 

range without sharp transitions.  The decrease in moduli of both crosslinked systems (by 

a factor of ~100) is much larger than temperature-related changes in viscosity for the pure 

solvent (1-chloronaphthalene), which decreases from 0.0028 Pa.s to 0.0013 Pa.s over the 

same temperature range, and can thus be attributed to the break-up of hydrogen bonded 

intermolecular associations.  The crosslinking in Poly-12-3 is sufficiently stable that the 

network behaves as a viscoelastic gel even at 80°C, as can be concluded from the fact 

that G' > G" over the entire range in Figure 5.5 (A).  The recovery of these gels after 

cooling is also markedly different.  Both samples show reversible increases of the moduli 

during the cooling cycle. Poly-12-3 exhibits significant hysteresis, while the viscous 

Poly-12-4 recovers almost quantitatively. 
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Figure 5.5 Temperature sweep profile: (A) Poly-12-3 and (B) Poly-12-4.  The red curves 
(triangles) denote the heating curves from 20 to 80 °C.  The blue curves (circles) denote 
the cooling curves from 80 to 20 °C.  G' and G" were measured at ω = 6.3 rad/s and strain 
amplitude 0.1. 
 

To probe the thermal recovery and rheological behavior at high temperatures in 

more detail, three frequency sweeps were carried out at constant strain amplitude: the 

first frequency sweep was conducted at 20°C, the second at 80°C after heating, and the 

third at 20°C after the sample was cooled and allowed to rest for 20 minutes.  The results 

are presented in Figure 5.6 for both crosslinking agents.  From the frequency plots it can 

be seen that Poly-12-3 indeed shows the behavior of a typical viscoelastic gel even at 

80°C, with G' > G" at all accessible frequencies, while Poly-12-4 predominantly exhibits 

viscous behavior.  The Figure also reiterates the effect of thermal history.  After 

completion of the heating and cooling cycle, Poly-12-3 exhibits a loss in both G' (~40%) 
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as well as in G" (~55%) whereas Poly-12-4 shows quantitative recovery of both G' and 

G"; this effect was also noticeable as the hysteresis in Figure 5.5.  Careful analysis of the 

rheological data in Figures 5.5 and 5.6 shows that after the cooling is completed, Poly-

12-3, slowly recovers to its original strength: G' at 6.3 rad/s is only ca. 130 Pa at the end 

of the cooling cycle, but recovers to ca. 210 Pa during the 20 minute resting period.  It is 

hypothesized that the lack of polymer mobility in the crosslinked gel (Poly-12-3) hinders 

the recovery of mechanical properties after cooling in comparison to the viscous liquid 

Poly-12-4.  Although Figure 5.6 does not show a complete study of the temperature-

dependent frequency sweeps, which was beyond the scope of our study, the limited data 

at 20 and 80°C unambiguously shows that time-temperature-superposition (TTS) is not 

applicable to Poly-12-3; it is not possible to simultaneously overlap both moduli by 

simply shifting the frequencies.  Because Poly-12-4 is a viscous liquid, TTS of G" is 

possible, but of limited scientific value.   
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Figure 5.6 Frequency sweep profile:  (A) Poly-12-3 and (B) Poly-12-4.  First sweep at 
20 °C (triangles), second sweep at 80°C (circles) and third sweep at 20°C (rectangles), at 
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strain amplitude 0.1.  G' data for Poly-12-4 at 80°C has been omitted because of 
insufficient rheometer sensitivity. 
 

The key hypothesis behind this research was that the use of complementary 

hydrogen bonding interactions for crosslinking allows for the fine-tuning of the degree of 

crosslinking and ultimately the materials properties through changes in the amount of the 

crosslinking agent added.  In order to study this tunability, the crosslinking profile of our 

system by varying the concentration of 3 or 4 was investigated.  An uncrosslinked 

solution of Poly-12 was used as baseline for these experiments.   

Figure 5.7 displays the crosslinking profile of Poly-12-3, in which the elastic and 

the loss moduli of Poly-12-3 are plotted as a function of crosslinking agent concentration, 

again defined as the ratio of the molar concentration of functional groups in 3 to the 

molar concentration of cyanuric acid functional groups on Poly-12.  The graph can be 

divided into two distinct regions, below 60% the sample is a viscous liquid with G' < G", 

whereas at concentrations above 60% the sample displays predominantly elastic behavior 

with G' > G".  The concentration of 60% can be termed cross-over or gelation 

concentration, since the elastic modulus becomes greater than the loss modulus and 

elastic gel-like properties are observed. 
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Figure 5.7 Crosslinking profile of Poly-12 using 3.  Filled symbols denote the elastic 
modulus [G'], whereas empty symbols denote the loss modulus [G"] at strain value of 
0.1.  The percentage of 3 is based on the molar ratio to cyanuric acid groups attached to 
the polymer.  
 

Figure 5.8 displays the crosslinking profile of Poly-12-4.  In contrast to Figure 

5.7, it can be seen that G" stays higher than G' over the entire concentration range, i.e. no 

elastic behavior is observed.  Nevertheless, 4 is an efficient crosslinking agent, since the 

loss modulus reaches even higher values for than the elastic modulus found at analogous 

concentrations of 3. 
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Figure 5.8 Crosslinking profile of Poly-12 using 4.  Filled symbols denote the elastic 
modulus [G'], whereas empty symbols denote the loss modulus [G"] at strain value of 
0.1.  The percentage of 4 is based on the cyanuric acid groups attached to the polymer.   
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Scheme 5.4 Proposed network micro-structures for Poly-12-3 and Poly-12-7. 

Clearly, there is marked difference in rheological nature of these two networks.  

The rheological data suggest that the addition of 3 results in the formation of a true 

sample-spanning network structure that is capable of bearing stresses, while 4 leads to 

crosslinking of several polymer chains without the high level of connectivity that 

characterizes a gel.  Because of higher interaction strengths of the individual interaction 

between the six point hydrogen bonded complex between Hamilton wedge and cyanuric 

acid (Ka ~10
6 M-1 in chloroform at room temperature)1  in comparison to the three point 

hydrogen bonded complex of cyanuric acid and 2,4-diaminotriazine, the difference in 

rheology cannot be attributed to a simple variation in dissociation timescales between 
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crosslinking agent and polymer backbone, which could change the relaxation timescales 

of the network.  Instead, the data suggest a difference in the micro-structure of the 

networks.  At first sight, there is no obvious reason, because both crosslinking agents are 

ditopic.  A closer inspection of the molecular structure of Poly-12-3 in Scheme 5.3, 

however, shows a possible explanation for the observed rheology: each cyanuric acid 

residue could actually establish hydrogen bonding with two 2,4-diaminotriazine groups 

of different crosslinking agent molecules (illustrated in Scheme 5.4).  As a result, each 

2,4-diaminotriazine-based crosslinking agent 3 would potentially be connected to up to 4 

cyanuric acid residues via two and three point hydrogen bonding, while the Hamilton-

wedge based crosslinking agent 4 is limited to interactions with maximum 2 cyanuric 

acid residues.  The resulting higher connectivity of Poly-12-3 would explain the 

formation of highly connected, sample-spanning network, while Poly-12-4 consists of 

finite-size copolymer aggregates that significantly increase the solution viscosity, but do 

not lead to gel-like properties.  To test this hypothesis, we synthesized crosslinking agent 

7 that is based on 2,6-diaminopyridine recognition units, which are very similar to the 

2,4-diaminotriazine recognition unit, but lack the two triazine nitrogen atoms.  As a 

result, the addition of crosslinking agent 7 should result in a true three-point hydrogen 

bonding interaction with the cyanuric acid groups and multi-point array formation should 

not be possible.  Indeed, it was found that the addition of crosslinking agent 7 to Poly-12 

resulted in free-flowing viscous liquids, even at the highest crosslinking agent 

concentration of 400 mol%.  The drastic difference in behavior of Poly-12-3 and Poly-

12-7 can be therefore attributed to the difference in the network microstructures: while 

Poly-12-3 represents a true multi-point array network structure, Poly-12-7 represents a 
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point-to-point connected polymer network which does not have enough connectivity to 

form an elastic solid.  The frequency plots of Poly-12-3 and Poly-12-7 at 100% 

respective crosslinking agent loading are illustrated in Figure 5.10, which shows that 

while Poly-12-7 is a free flowing liquid, Poly-12-3 displays the characteristics of a highly 

connected, sample-spanning network. 
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Figure 5.10 Frequency sweep profile at 20°C:  (A) Poly-12-3 (triangles), and (B) Poly-
12-7 (rectangles), at strain amplitude 0.1.   
 

5. 8 Summary and future outlook 

In this chapter, random copolymers containing cyanuric acid recognition units via 

ROMP have been synthesized and their crosslinking behavior via complementary 

hydrogen bonding has been investigated.  The hydrogen bonding recognition system 

consisted of the interaction between cyanuric acid units along the polymer backbone and 



 171 

small molecule ditopic crosslinking agents based on either 2,4-diaminotriazine or 

Hamilton wedge motifs.  This crosslinking system, by combining a functional group 

tolerant polymerization route with noncovalent crosslinking techniques, allows for the 

facile synthesis of reversible crosslinked polymers with a high degree of control over the 

extent of crosslinking and the network microstructure properties.  Low-viscosity 

solutions of the parent copolymer could be changed into thermally reversible highly 

viscous liquids or elastic gels with tunable strength by simply varying the architecture 

and concentration of the crosslinking agent. Our approach results in the creation of 

materials with diverse mechanical properties from the same parent polymer backbone. 

5.9 Experimental section  

General 

All reagents were purchased either from Acros Organics, Aldrich or Strem 

Chemicals and used without further purification unless otherwise noted.  Triethylamine 

(NEt3), tetrahydrofuran (THF), methylene chloride and deuterated chloroform (CDCl3) 

were distilled over calcium hydride.  Grubbs’ first generation initiator was purified by 

filtration using purified benzene under an atmosphere of argon.  The cyanuric acid 

monomer 2,13  spacer monomer 1,6  N-(6-aminopyridin-2-yl) butyramide,8  5,5'-(decane-

1,10-diylbis(oxy))diisophthalic acid,21  1,4-bis (10-bromodecyloxy) benzene,22  and 6-

dodecyl-1,3,5-triazine-2,4-diamine (monotopic diaminotriazine),23  N1,N10-bis(6-

aminopyridin-2-yl)decanediamide 724  were synthesized according to published 

procedures.  1-chloronaphthalene, dicyandiamide, and 5-octyldecyloxy isophthalic acid 

were used as received. 

Characterization procedure 
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As reported in Chapter three.  

11,11'-(1,4-Phenylenebis(oxy))diundecanenitrile  

1,4-Bis(10-bromodecyloxy)benzene (2.19 g, 0.0039 mol) and NaCN (0.78 g, 

0.0156 mol) were suspended in DMSO (100 mL) and heated at 80°C for 4 hrs.  The 

solvent was removed by distillation under reduced pressure.  Then CH2Cl2 (200 mL) was 

added, the resulting solution was extracted with water (3 x 100 mL), and the organic 

phase was dried using anhydrous magnesium sulfate.  The solvent was removed to give 

the product as a white solid (1.5 g, 85%).  1H NMR (CDCl3): δ = 6.71 (s, 4H, Ar), 3.79 (t, 

4H, J = 6.38 Hz ,-OCH2-), 2.29 (t, 4H, J = 7.08 Hz, -CH2-CN), 1.64 (p, 4H, -OCH2-CH2-

), 1.56 (m, 4H, -CH2-CH2-CN), 1.32-1.21 (m, 24H, -(CH2)4-).  
13C NMR (CDCl3): δ = 

153.3, 120.1, 115.5, 68.7, 41.2, 29.6, 29.5, 29.4, 28.9, 28.8, 26.2, 25.5, 17.3.  HRMS 

(FAB+) [M+1] calcd for C28H44N2O2:  441.34810, found: 441.34744.   

6,6'-(10,10'-(1,4-Phenylenebis(oxy))bis(decane-10,1-diyl))bis(1,3,5-triazine-2,4-

diamine) (3) 

11,11'-(1,4-Phenylenebis(oxy))diundecanenitrile (1.38 g, 0.0031 mol), 

dicyandiamide (0.75g, 0.0124 mol) and KOH (1.00 g) were dissolved in 1-propanol (100 

mL) and the reaction mixture was refluxed for 12 hours.  The solvent was removed by 

distillation under reduced pressure and the residue was washed with hot water (100 mL) 

and dried.  Repeated recrystallization out of ethanol yielded the final product as a pale 

yellow solid (3.40 g, 45%).  1H NMR (DMSO-d6): δ = 6.79 (s, 4H, Ar), 6.65 (8H, br s, -

NH2), 3.84 (t, 4H, J = 6.38 Hz, -CH2O-), 2.29 (t, 4H, -CH2CH2O-), 2.02 (t, 4H, J = 7.1 

Hz, -CH2-), 1.64-1.03 (m, 28H, -(CH2)7-).  
13C NMR (DMSO-d6): δ = 178.4, 167.7, 
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153.2, 115.9, 68.4, 38.6, 29.6, 29.5, 29.4, 28.8, 27.8, 26.2, 25.3, 16.7.  HRMS (FAB+) 

[M+1] calcd for C32H52N10O2: 609.43530, found: 609.43197.   

5,5'-(Decane-1,10-diylbis(oxy))bis(N1,N3-bis(6-butyramidopyridin-2-

yl)isophthalamide) (4) 

5,5'-(Decane-1,10-diylbis(oxy))diisophthalic acid (1.00 g, 1.99 mmol) was 

dissolved in thionyl chloride (5 mL).  A few drops of anhydrous DMF were added and 

the reaction mixture was heated at 80°C for 12 hours after which the excess thionyl 

chloride was distilled off.  The crude acid chloride was washed with anhydrous THF to 

remove excess thionyl chloride and dried under high vacuum at room temperature.  The 

acid chloride was then cannula transferred into a solution of N-(6-aminopyridin-2-yl) 

butyramide (2.13 g, 11.9 mol) and NEt3 (40 mL) in anhydrous THF (100 mL) at 0°C.  

The solution was allowed to stir at room temperature for twelve hours after which it was 

filtered to remove any insoluble products.  The solvent was evaporated and the residue 

was repeatedly washed with water to remove all triethylamine salts and dried.  The 

residue was suspended in ethyl acetate and stirred for 30 minutes and then filtered to 

recover the product.  To ensure complete removal of the unreacted amine, the product 

was repeatedly washed with ethyl acetate, to give the product as a gray powder (1.03 g, 

45%).  1H NMR (DMSO-d6): δ =10.45 (s, 4H, -CONH-), 10.08 (s, 4H, -CONH-), 8.07 (s, 

2H, Ar), 7.80-7.72 (m, 12 H, pyridyl), 7.66 (s, 4H, Ar), 4.11 (t, 4H, J = 6.50 Hz, -CH2O-

), 2.35 (t, 8H, J = 7.1 Hz, -CONH-CH2-), 1.74 (m, 4H), 1.60 (m, 8H, -CONH-CH2-CH2-), 

1.41-1.31 (m, 12H), 0.85 (t, 12H, J = 7.2 Hz,  -CH3).  
13C NMR (DMSO-d6): δ = 171.5, 

164.4, 158.2, 150.1, 149.5, 139.5, 135.1, 115.7, 110.1, 105.6, 67.8, 37.8, 28.8, 28.5, 28.4, 

25.3, 18.3.  MALDI calcd for: C62H74N12O10: 1146.56508, found: 1146.5604.   
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N1, N3-Bis(6-butyramidopyridin-2-yl)-5-(octadecyloxy)isophthalamide (6) 

5-Octyldecyloxy isophthalic acid (2.5 g, 0.005 mol) was dissolved in thionyl 

chloride (5mL) and a few drops of DMF were added.  The reaction mixture was heated at 

80 °C for 4 hours after which the excess thionyl chloride was distilled off.  The crude 

acid chloride was washed with anhydrous THF and dried under high vacuum at room 

temperature.  The acid chloride was then cannula transferred into a solution of N-(6-

aminopyridin-2-yl) butyramide (3.00g, 0.016 mol) and NEt3 (20 mL) in anhydrous THF 

(100 mL) at 0°C. The solution was stirred at room temperature for twelve hours, filtered 

to remove any insoluble products and the solvent was removed under reduced pressure.  

The residue was redissolved in chloroform (200 mL) and washed with a 2 M NaOH 

solution (100 mL), dried over anhydrous magnesium sulfate and concentrated under 

reduced pressure.  The crude product was purified by column chromatography using 

silica and ethyl acetate and hexanes (1/1, v/v) as the eluents, to yield the final product as 

a white waxy solid (2.321g, 52%).  1H NMR (CDCl3): δ = 10.45 (s, 2H, -CONH-), 10.09 

(s, 2H, -CONH-), 8.10 (s, 1H, Ar), 7.82-7.73 (m, 6 H, pyridyl), 7.68 (s, 2H, Ar), 4.10 (t, 

2H, J = 6.38 Hz, -CH2O-), 2.36 (t, 4H, J = 7.1 Hz ,- CONHCH2), 1.74 (m, 2H), 1.62(m, 

4H), 1.34-1.11 (m, 30 H ), 0.91 (t, 6H, J = 7.2 Hz -CH3), 0.84 (t, 3H, J = 6.8 Hz, -CH3).  

13C NMR (CDCl3): δ = 178.5, 172.1, 164.8, 160.2, 149.9, 149.5, 141.5, 135.9, 117.7, 

117.4, 110.4, 110.1, 68.9, 39.7, 36.2, 32.1,29.9, 29.8, 29.6, 29.3, 26.2, 22.9, 18.9, 18.5, 

14.3, 13.9, 13.8.  HRMS (EI) calcd for: C44H64N6O5: 756.49382, found: 756.49886.   

Polymerizations 

The synthesis of the copolymer Poly-12 is described as a representative example:  

Monomers 1 (2.70 g, 10.79 mmol) and 2 (503 mg, 1.198 mmol) were dissolved in 30 mL 
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of CHCl3.  A stock solution of Grubbs’ first generation initiator was prepared in CHCl3 

and an amount of the stock solution equaling 78.90 mg ([M]/[I] = 125:1) of the initiator 

was added to the monomer solution.  The solution was stirred at room temperature and 

the reaction was monitored by observing the olefinic signals of the monomer by 1H NMR 

spectroscopy.  Upon complete conversion, a drop of ethyl vinyl ether was added to 

terminate the polymerization, followed by prolonged drying at room temperature under 

high vacuum for 24 hours to remove all the solvent.  The 1H and 13C NMR spectra of all 

copolymers are analogous to the ones reported in the literature.6   

Crosslinking experiments 

For all crosslinking experiments, the copolymers were dissolved in a calculated 

amount of 1-chloronaphthalene and the mixture was stirred overnight at room 

temperature to ensure a homogenous solution.  Then, a calculated amount of the 

crosslinking agent was added and the mixture was stirred briefly at elevated temperature 

until a homogenous solution was obtained.  The sample was then allowed to rest at room 

temperature for twelve hours before the rheological experiments were carried out.   

The preparation of Poly-12-3 is described as a representative example:  Poly-12 

(200 mg, 0.074 mmol based on the hydrogen bonding functional groups along the 

polymer backbone) was dissolved in 1.8 g of 1-chloronaphthalene (10 weight%).  Then 

22.76 mg (0.074 mmol based on the hydrogen bonding sites allowing for quantitative 

crosslinking) of 3 was added to the sample and the suspension was heated until a clear 

homogenous solution was obtained, which quickly gelled when cooled to room 

temperature.  The gel was then allowed to rest at room temperature for least twelve hours 

before rheological measurements were carried out. 
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Rheological characterization 

Rheological measurements were carried out on an MCR300 controlled stress 

rheometer (Anton Paar), equipped with Peltier elements for temperature control and an 

evaporation blocker that enables measurements of polymer solutions at elevated 

temperature in a cone-plate geometry (diameter 50mm, angle 1°).25  All measurements 

were carried out in oscillatory mode in order to probe the equilibrium structures of the 

polymer solutions. 

The rheological testing protocol of all polymer solutions consisted of: 1) strain 

amplitude sweep at constant frequency (temperature 20°C; strain amplitude γ = 0.001-10, 

angular frequency ω = 6.28 rad/s) to identify the linear viscoelastic regime, 2) frequency 

sweep at constant strain amplitude (20°C; γ = 0.01; ω = 0.1-100 rad/s) to determine 

network viscoelasticity, 3) temperature sweep (20 to 80°C; γ = 0.1; ω = 6.28 rad/s) to 

characterize thermal stability, 4) frequency sweep at elevated temperature (80°C; γ = 0.1; 

ω = 0.1-100 rad/s), 6) temperature sweep (80 to 20°C; γ = 0.01; ω = 6.28 rad/s) to 

investigate thermal reversibility, and 7) frequency sweep at constant strain amplitude 

(20°C; γ = 0.1; ω = 0.1-100 rad/s) to determine the extent of thermal recovery. 
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CHAPTER SIX  

Complementary Hydrogen Bonded Crosslinked Polymer Networks 

Based on Thymine Moieties  

 

6.1 Abstract 

Complementary hydrogen bonded crosslinked polymer networks based on 

thymine residues attached to the polymer backbone have been synthesized by using a 

combination of ROMP and hydrogen bonding interactions.  The thymine residue 

represents a single ADA motif and hence the recognition units used for crosslinking were 

based only on three point hydrogen bonding interactions. The crosslinked polymer 

networks synthesized were thermally reversible and the network properties were 

dependent upon the molecular structure of the crosslinking agent used.  The addition of 

the 2,4-diaminotriazine as well as the Hamilton wedge crosslinking agents produced 

freely flowing to highly viscous liquids respectively and it was seen that the addition of 

the ditopic Hamilton wedge crosslinking agent resulted in the highest increases in the 

solution viscosity. However, none of the compositions exhibited a true viscoelastic solid 

formation, which can be attributed to the lack of network formation capability in the 

thymine system with only one ADA face in comparison to the cyanuric acid system with 

two ADA faces which were able to form viscoelastic solids with the 2,4-diaminotriazine 

crosslinking agents via multi-point hydrogen bonding interactions. Hence, it was seen 

that by varying the type of hydrogen bonding motif used for crosslinking, materials with 

different rheological properties could be obtained, indicating that the network 

microstructure plays an important role in physical properties of these networks. 
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6.2 Introduction 

In Chapters one and two the importance of hydrogen bonding interactions in 

reversible crosslinking of polymers was described. Furthermore, Chapter five outlined the 

importance of using complementary hydrogen bonding interactions, to control the 

network structure and the final mechanical properties of the crosslinked network, i.e. by 

changing the complementary hydrogen bonding recognition units used for inter-chain 

crosslinking, the cyanuric acid copolymer was converted into either a highly viscoelastic 

gel or highly viscous liquid. In this chapter the effect of a subtle change in molecular 

architecture of the hydrogen bonding recognition moiety is investigated, as the cyanuric 

acid functional group is replaced by a thymine functional group.  The effect of molecular 

architecture of the crosslinking agent as well as the hydrogen bonding motifs used for 

inter-chain crosslinking on the properties of these networks is discussed. It will be 

demonstrated that subtle changes in the molecular architecture of the interacting moieties 

results in dramatic changes in the physical properties of these materials. Such a study will 

provide useful insights for ‘Structure-property” relationship in reversibly crosslinked 

materials design based on complementary hydrogen bonding interactions.  

6.3 Research design 

The research design consists of random copolymers functionalized with thymine 

residues as hydrogen bonding sites.   In contrast to the cyanuric acid residues, the 

thymine groups have a single ADA face and as a result can only form three point 

hydrogen bonding interactions with both 2,4-diaminotriazine and 2,6-diaminopyridine 

groups. The noncovalent functionalization of 2,4-diaminotriazine as well as 2,6-

diaminopyridine side-chain functionalized polymers using substituted thymines has been 
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studied before.1-4 It has also been reported that the association constants of the two 

complexes of 2,4-diaminotriazine and 2,6-diaminopyidine with thymine are very similar.5 

The hydrogen bonding self-assembly motifs used for inter-chain crosslinking are shown 

in Figure 6.1. 
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 Figure 6.1 Self-assembly motifs employed in this study:  (A) three point hydrogen 
bonded complex between 2,6-diaminopyridine and thymine and (B) three point hydrogen 
bonded complex between 2,4-diaminotriazine and thymine.  
 

  The monomers and the crosslinking agent used in this study are depicted in Figure 

6.2. In this study the thymine functional groups are anchored covalently onto a 

poly(norbornene) backbone by copolymerizing 1 with 2 using ROMP, to form Poly-12. 

As explained in Chapter five, monomer 1 serves as a diluent and increases solubility of 

the polymer in non-polar solvents. Hydrogen bonded crosslinking was carried out by 

employing either 2,4-diaminotriazine based crosslinking agents 5 and 7 or Hamilton 

wedge receptors based crosslinking agents 4 and 6.  As described in Chapter 5, all 

crosslinking processes as well as all characterizations of the resulting crosslinked 

polymer networks were carried out in 1-chloronaphthalene, a non-competitive, high 

boiling solvent in which all copolymers have good solubility.   
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Figure 6.2 Monomers 1-3, functionalized monotopic and ditopic agents 4-7 utilized in 
this study.   
 
6.4 Results and discussions 

6.4.1 Polymerization studies  

The detailed polymerization behaviors of monomers 1 and 2 have been previously 

reported, which can be copolymerized in a statistical manner via ROMP in chloroform at 

room temperature using Grubbs’ first generation initiator (Scheme 6.2).6,2 The  ROMP 

copolymerization of these monomers resulted in polymers with controlled molecular 

weighs and relatively low polydispersities.  Table 6.1 lists the gel-permeation 

chromatography characterization of these polymers. The polymer compositions and 

molecular weights were found to be important parameters affecting the subsequent 

syntheses of homogenous crosslinked polymer networks in 1-chloronaphthalene. The 

polymers were designed to possess low concentrations of the thymine monomer, in order 

to study crosslinking while simultaneously maintaining good solubility in 1-

chloronaphthalene.  In Chapter 5 it was seen that the solubility of the cyanuric acid 

functionalized polymer (Poly-13) in 1-chloronaphthalene was highly dependent upon the 



 184 

mole fraction of 3 and the degree of polymerization, this phenomenon was explained due 

to the self-association of the cyanuric acid groups. In contrast to Poly-13, it was found 

that Poly-12 exhibited very good solubility in 1-chloronaphthalene even at 30 mol% of 2 

and at a degree of polymerization as high as 1000. 
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Scheme 6.1 Synthesis of Poly-12 by random polymerization of monomers 1 and 2. 

 
Table 6.1 GPC data of unfunctionalized copolymers Poly-12. Polymer abbreviations are 
based on Scheme 6.2. 
 

 

6.4.2 Self-assembly studies  

To investigate the effect of the self-association of cyanuric acid and the thymine 

residues on the polymer solubility, the self-association characteristics of monomers 2 and 

Entry 
 mol% of 

2 
[M]/[I] 

Mn 

(103) 

Mw 

(103) 
PDI 

Poly-12 10 125 46 71  1.56 

Poly-12 10 1000 244 322 1.32 
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3 were probed. Hence, 1H NMR spectroscopy dilution experiments in deuterated 

chloroform at room temperature were conducted and it was found that both the 

monomers displayed self-association and that the self-association was slightly higher in 

the case of 3 as compared to 2.1,7 This can be explained on the basis of the presence of 

two ADA faces per cyanuric acid group increasing the propensity for self-association as 

compared to only single ADA face per thymine residue which could explain the tendency 

of  Poly-13 to phase separate at higher molecular weights and higher concentrations in 1-

chloronaphthalene as compared to analogous polymers based on Poly-12. 
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 Figure 6.3 Chemical shift in ppm of the imide proton (N-H) of 2 (squares) and 3 
(triangles) as a function of concentration in chloroform at room temperature. 
 

Before conducting the crosslinking studies, the hydrogen bonding self-assembly 

between model compounds which consisted of the monomer 2 and the monotopic 

compounds 6 and 7 was studied using 1H NMR spectroscopy at room temperature. The 

self-assembly was probed by monitoring the shifting of the amine proton signal of 6,  
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amide proton signals of 7 and the imide proton signal of monomer 2 before and after self-

assembly. The self-assembly was performed using a 0.2 M solution of the compounds in 

deuterated chloroform. The imide signal of 2 shifted downfield from 9.47 ppm to 12.98 

ppm upon the addition of one equivalent of monotopic 6, while the amine proton signals 

of 6 shifted downfield from 5.83 ppm to 7.44 ppm. Further addition of another three 

equivalents of 6 resulted in the downfield shift of the imide proton to 13.60 ppm, whereas 

the amine proton signal of 6 was shifted to 5.97 ppm. The imide signal of monomer 2 

shifted downfield from 9.47 ppm to 11.81 ppm upon the addition of half equivalent of 

monotopic wedge 7, while the amide proton signals of 7 shifted downfield from 8.76 ppm 

and 8.53 ppm to 9.93 ppm and 9.57 ppm respectively. Further addition of another half 

equivalent of 7 resulted in the downfield shift of the imide proton of 2 to 12.23 ppm, 

whereas the amide proton signal of 7 was shifted to 9.56 ppm and 8.89 ppm. These 

results demonstrate the strong hydrogen bonding interactions between monomer 2 and 

Poly-12 with 6 and 7. 

6.4.3 Crosslinking studies 

After studying the self-assembly of Poly-12, the polymer scaffold was reversibly 

crosslinked via complementary hydrogen bonding interactions using crosslinking agents 

4-7. Crosslinking agents 4 (two 2,4-diaminotriazine functional groups) and 7 (two 2,6-

diaminopyridine functional groups) acted as ditopic crosslinking agents whereas 

crosslinking agent 5 acted as a tetra-topic crosslinking agent, as 5 has four  2,6-

diaminopyridine functional groups. MonoDAT (6) acted only as a functionalization agent 

and did not cause any inter-chain crosslinking but resulted only in end-capping the 
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polymer. The detailed network and functionalized structures of Poly-12 are depicted in 

Figure 6.4. 
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Figure 6.4 Microstructures of networks based on Poly-12: crosslinked networks – Poly-
12-4, Poly-12-5, Poly-12-7 and functionalized Poly-12-6.  
 

 Crosslinking studies using Poly-12 having a degree of polymerization equal to 

125 at 10% (wt) solution were first conducted. However it was found that for Poly-12 the 

network samples obtained after crosslinking were free-flowing liquids and resulted in 

insufficient rheometer sensitivity. Hence, in order to obtain data of reasonable magnitude 
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Poly-12 with a DP of 1000 was synthesized. By increasing the molecular weight it was 

able to get an increase in the signal strength by a factor of almost 1000 and thus obtain 

data with a high degree of accuracy. 

6.5 Crosslinking behaviors of Poly-12 and Poly-13 

Although Poly-12 and Poly-13 have very similar structures, they displayed 

significantly different behaviors on crosslinking with compounds 4-7. For example, 

ditopic 4 was an efficient crosslinking agent for Poly-13 which produced highly 

viscoelastic solids at ca. 0.6 and higher equivalents of 4. However, in the case of Poly-12 

even after adding one equivalent of 4, no viscoelastic solid was formed, instead 

significant increase in the solution viscosity was observed. This difference in the physical 

properties of these two seemingly similar polymer networks can be attributed to the 

differences in the network micro-structures based on Scheme 5.4 (Chapter 5) and Figure 

6.4 (Chapter 6). Poly-13-4 represents a true three dimensional polymer network with a 

strong continuity where each crosslinking agent molecule binds several polymer chains 

through multiple hydrogen bonding interactions, whereas the Poly-12-4 represents a 

weakly connected network where each crosslinking agent molecule binds only two 

polymer chains. 

 

Table 6.2 G'/ G" and |G*| values for unfunctionalized, crosslinked and functionalized 
polymers of Poly-12 and Poly-13. 
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After studying the crosslinking profile of the Poly-12 and Poly-13 using ditopic 

agent 4, the effect of monotopic 6 on these polymers was investigated. Even though 6 

was monotopic, it effectively crosslinked Poly-13 through multiple hydrogen bonding 

interactions leading to highly viscoelastic solids. The addition of one equivalent of 6 to 

Poly-13 transformed it from a free flowing liquid to a viscoelastic solid.   In stark 

contrast, the addition of 6 to Poly-12 resulted in lowering of the solution viscosity, with 

the addition of one equivalent of 6 to Poly-12 resulting in a lowering of both G' and G" 

by nearly 0.3 times as compared to pure polymer. This phenomenon can be explained by 

the fact that thymine and 2,4-diaminotriazine form a 1:1 complex as a result, 6 acts as an 

endcapping agent for the thymine residues of Poly-12. Hence the addition of 6 to Poly-12 

Poly-13  (DP=125) Poly-12 (DP=1000) Crosslinking 

Agent G'/ G" |G*| G'/ G" |G*| 

None Eq <0.0001   3.32 <0.0001   14.57 

4  1.0       
0.95 526.73 0.04 

 

35.04 

 

5  1.0 
0.28 0.29 (104)   0.06 

 

66.63 

 

6 
 1.0 

4.62 12.94 (104)   <0.0001   10.40 

 

7  1.0 
<0.0001   2.72 0.04 

 

23.62 
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caused functionalization of the thymine residues which then severely suppressed the self-

association of the thymine residues, thereby decreasing the G' and G" values.  

The six point wedge Hamilton-cyanuric acid complex has a Ka value of around 

106 M-1,8,9 hence it was not very surprising that 5 efficiently  crosslinked Poly-13, 

resulting in highly viscous liquids Poly-13-6.  The addition of one equivalent of 6 to 

Poly-13 transformed the sample from a free flowing liquid to a highly viscous network. 

Crosslinking agent 5 has four 2,6-diaminopyridine functional groups hence it can 

effectively bind four thymine residues per molecule of crosslinking agent and can act as a 

tetrafunctional crosslinking agent for Poly-12. Therefore, as expected the addition of 5 to 

Poly-12 resulted in an increase in the solution viscosity to form highly viscous liquids, 

upon the addition of one equivalent of 5 to Poly-12. 
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Figure 6.5 Frequency sweep Profile at strain amplitude 0.1 and 20°C: Poly-13-6 
(triangles), Poly-12-6 (diamonds), Poly-13-7 (squares) and Poly-12-7 (rectangles). 
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The addition of monotopic wedge 7 to Poly-13 did not cause any crosslinking as 7 

was designed to be an end-capping agent for Poly-13, and the addition of  7 resulted only 

in functionalization of the cyanuric acid groups as shown in Figure 6.4. However, 

monotopic wedge receptor 7 has two 2,6-diaminopyridine groups as a result it can 

complex two thymine residues leading to a marginal increase in the moduli.  

Since the addition of agents 4-7 to Poly-12 resulted in mainly viscous liquids, 

flow experiments to probe the nature of these liquids were conducted. It was found that 

the complex solution viscosity of these networks had little dependence on the shear rate 

(Figure 6.6). 
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Figure 6.6 Flow curves for samples based on Poly-12 at 20°C: Poly-12-5 (triangles), 
Poly-12-4 (squares), Poly-12-7 (diamonds) and Poly-12-6 (circles).  
 

6.6 Effect of addition of more than one equivalent of crosslinking agent on the 

network properties of Poly-12 
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In complementary hydrogen bonded polymer networks, the degree of crosslinking 

can be varied easily by controlling the amount of the crosslinking agent added to the 

polymer. Hence, it is expected at exactly one equivalent of the crosslinking agent added, 

the system would represent a completely crosslinked system and further addition of the 

crosslinking agent should not cause any further crosslinking. However, the addition of 

more than one equivalent of the crosslinking agent can lead to functionalization of the 

polymer and thus cause “decrosslinking” of the network. For Poly-13 the addition of 

more than one equivalent of 4, 5 and 6 did not result in decrosslinking. However at higher 

equivalents, the increase in the G' and G" leveled off. Such a phenomenon may be 

explained by the fact that cyanuric acid moieties having two ADA faces can result in 

multiple hydrogen bonding interactions which lead to a stable three-dimensional network 

and  increasing the concentration of the crosslinking agent above one equivalent does not 

displace the network structure sufficiently to cause decrosslinking by functionalization of 

the polymer chains. However in the case of Poly-12 which has only one ADA face, the 

effect of saturation is seen due to the functionalization of the polymer chains. Hence, 

when more than one equivalent of crosslinking agents 4, 5 and 7 are added, a decrease in 

the G' and G" was observed. However the exact concentration at which the effect of 

decrosslinking was observed was different for each agent. For instance the addition of 1.5 

equivalents of 4 resulted in decrease in the G' and G" whereas the effect of decrosslinking 

was observed only at two equivalents of 5 and 7. The results of the decrosslinking of 

Poly-12 is shown in Figure 6.7, where the G" is plotted as a function of the concentration 

of the crosslinking agent. 
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Ditopic wedge 5 and monotopic wedge 7 differ only in the number of 2,6-

diaminopyridine groups per molecule, where 5 has four groups and 7 has only two 

groups. As a result 5 acts as a tetrafunctional crosslinking agent while 7 acts as a 

difunctional crosslinking agent for Poly-12. It was observed that 5 was a superior 

crosslinking agent as compared to 7. This can be attributed to the increased network 

density due to the higher functionality of 5. The functionality of the crosslinking agent is 

an important parameter affecting the network strength, where the higher functionality of 

the crosslinking agent results in more efficient network crosslinking.  
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Figure 6.7 Crosslinking profile of Poly-12 using crosslinking agents (4-7): 4 (solid 
triangles), 5 (solid squares), 6 (empty triangles) and 7 (empty squares).  
 

6.7 Thermal reversibility studies 
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The thermal reversibility studies of Poly-12-4 and Poly-12-5 are shown in Figure 

6.8, with both networks showing strong temperature dependence.  Both samples showed 

large but gradual decreases in G" over the temperature range, but no sharp transitions 

could be observed for either sample, however sharp decrease in the G' values were seen 

at 60°C for Poly-12-4 and at 40°C for Poly-12-5.  In the cooling cycle Poly-12-5 shows 

almost quantitative recovery as compared to Poly-12-4. The decrease in moduli of the 

crosslinked systems is much stronger than temperature related changes in viscosity for 

the pure solvent, from 0.0028 Pa.s to 0.0013 Pa.s over the same temperature range.   
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Figure 6.8 Temperature sweep profile:  Poly-12-4 (circles) and Poly-12-5 (triangles).  G’ 
and G" were measured at ω = 6.3 rad/s. Filled symbols denote the elastic modulus [G'], 
whereas empty symbols denote the loss modulus [G"]. The red curves represent the 
heating profile whereas the blue curves represent the cooling profile. 

 

The degree of crosslinking was also an important parameter that influenced the 

thermal responsiveness of the networks. Figure 6.9 depicts the heating sweep for Poly-
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12-5 at 0.5, 1.0, 1.5 and 2.0 equivalents of the crosslinking agent 5 added. It can be seen 

that as the degree of crosslinking increase from 50 to 150%, the temperature at which 

decrease in the G' values are seen is shifted from around 35 to 50°C. However, at 2.0  

equivalents of 5, the system shows a thermal transition at 35°C similar to that having 0.5 

equivalents of 5. Thus indicating that the network structures are highly dependent upon 

the concentration of the crosslinking agent. 
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Figure 6.9 Heating profile for Poly-12-5: 50% (triangles), 100% (circles), 150% ( 
diamonds) and 200% (rectangles). Filled symbols denote the elastic modulus [G'], 
whereas empty symbols denote the loss modulus [G"]. G’ and G" were measured at ω = 
6.3 rad/s. Percentages represent the mol% of crosslinking agent 5. 

 

 

6.8 Summary and conclusions 

In this chapter, complementary hydrogen bonded polymer networks from random 

copolymers functionalized with thymine residues via ROMP have been synthesized.  It 
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has been demonstrated that the molecular architecture of the polymer as well as the 

crosslinking agent have a profound effect on the subsequent network micro-structure, 

which in turn affects the properties of the resultant material.  The change of the cyanuric 

acid  motif to the thymine motif which is incapable of multi-point array formation by 

hydrogen bonding resulted in networks which were either viscous or free-flowing liquids, 

no viscoelastic gel was formed as in the case of the cyanuric acid-2,4-diaminotriazine 

system. 

6.9 Experimental section  

General   

All reagents were purchased either from Acros Organics, Aldrich or Strem 

Chemicals and used without further purification unless otherwise noted.  Grubbs first 

generation catalyst was purified by filtration using purified benzene under an atmosphere 

of argon.   Spacer monomer 12, thymine monomer 26, cyanuric acid monomer 32, ditopic 

2,4-diaminotriazine crosslinking agent 42, Hamilton wedge crosslinking agent 52 and, 

monotopic 2,4-diaminotriazine 65 were synthesized according to published procedures.  

The monotopic Hamilton wedge 7 was synthesized as described in Chapter five. 

Characterization procedure  

As reported in Chapter three.  

Polymerizations 

The synthesis of the polymer Poly-12 is described as a representative example:  

Monomers 1 (1.890 g, 7.56 mmol) and 2 (349.86 mg, 0.84 mmol) were dissolved in 30 

mL of CHCl3.  A stock solution of Grubbs’ first generation initiator was prepared in 

CHCl3 and an amount of the stock solution equaling 6.91 mg ([M]/[I] = 1000:1) of the 
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initiator was added to the monomer solution.  The solution was stirred at room 

temperature and the reaction was monitored by observing the olefinic signals of the 

monomer by 1H NMR spectroscopy.  Upon complete conversion after 6 hours, a drop of 

ethyl vinyl ether was added to terminate the polymerization, followed by prolonged 

drying at room temperature under high vacuum for 24 hours to remove all the solvent. 

The 1H and 13C NMR spectra of all copolymers are analogous to the ones reported in the 

literature.6,1 

Crosslinking experiments 

The preparation of Poly-12-4 is described as a representative example:  Poly-12 

(176 mg, 0.06 mmol based on thymine groups along the polymer backbone) was 

dissolved in 1.584 g of 1-chloronaphthalene (10 weight%).  Then 18.92 mg (0.06 mmol 

based on the hydrogen bonding sites allowing for quantitative crosslinking) of 4 was 

added to the sample and the suspension was heated until a clear homogenous solution 

was obtained.  The viscous liquid was then allowed to rest at room temperature for least 

twelve hours before rheological measurements were carried out. 

Rheological characterization 

The rheological testing protocol of all polymer solutions has been described in 

Chapter five. Flow experiments were carried out for all samples of Poly-12, in which the 

complex viscosity at increasing and decreasing shear rates was measured, the shear rate 

was varied from 0.01 to 100 s-1. 
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CHAPTER SEVEN 

Modulating Mechanical Properties of Self-assembled Polymer Networks 

by Multi-functional Complementary Hydrogen Bonding  

7.1 Abstract 

Complementary hydrogen bonded polymer networks based on two different 

hydrogen bonding recognition units namely cyanuric acid and thymine have been 

synthesized. The cyanuric acid and thymine based terpolymer were crosslinked using 

multi-functional complementary hydrogen bonding interactions and their network 

properties studied using rheometry. Two distinct hydrogen bonding motifs were used for 

the inter-chain crosslinking, three-point hydrogen bonding and six-point hydrogen 

bonding interactions. The three-point hydrogen bonding complexes were based on 

cyanuric acid-2,4-diaminotriazine or thymine-2,4-diaminotriazine, whereas the six-point 

hydrogen bonding complexes were based on cyanuric acid- Hamilton wedge receptor 

interactions. The terpolymers were crosslinked with the addition of the 6-dodecyl-2,4-

diaminotriazine to give a highly viscoelastic solid,. This crosslinked material could be de-

crosslinked at room temperature by the addition of mono-functionalized Hamilton wedge 

receptor agent which displaced the three-point hydrogen bonding complex between the 

cyanuric acid and the 2,4-diaminotriazine and resulted in functionalization of the 

cyanuric acid by the formation of the more stable six-point complex formation. Hence by 

altering the hydrogen bonding recognition unit for inter-chain crosslinking, one could 

decrosslink a viscoelastic gel to a low viscosity liquid at room temperature. Furthermore 

the viscoelastic gel could also be re-crosslinked with the di-functional Hamilton 
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crosslinking agent (directed re-crosslinking), which resulted in the transformation of the 

viscoelastic gel to a highly viscous liquid at room temperature. Hence by using multi-

functional complementary hydrogen bonding interactions the mechanical properties of 

the self-assembled networks can be modulated at room temperature. 
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7.2 Introduction 

In Chapter 5 it was seen that the cyanuric acid functionalized polymer, could be 

transformed into either a highly viscoelastic solid, by using 2,4-diaminotriazine 

functional agents or  could be transformed into a highly viscous liquid by crosslinking it 

with the ditopic wedge crosslinking agent. In stark contrast it was also seen that thymine 

functionalized polymers always resulted in either free flowing liquids to highly viscous 

liquids in Chapter six, no matter which crosslinking agent was used to crosslinked the 

polymer. Furthermore the monotopic Hamilton wedge agent and the monoDAT ( 6-

dodecyl 2,4-diaminotriazine) acted as functional or endcapping agents for cyanuric acid 

functionalized and thymine functionalized respectively. 

In this chapter, the application of using multiple hydrogen bonding interactions to 

alter crosslinked network architecture which in turn alters the physical properties of the 

materials will be demonstrated. By using multiple hydrogen bonding interactions, it could 

be possible to modulate to a large extent the physical property of noncovalent polymer 

networks, thus paving the way for the study of using multiple noncovalent interactions to 

probe the structure-property relationship in supramolecular polymers. Furthermore, by 

using competitive hydrogen bonding interactions one can change the network 

microstructure of these networks. The change in the micro-structure can result in distinct 

and significant changes of physical properties of these materials. In particular, a 

terpolymer-based system in which multiple hydrogen bonding interactions based on 

cyanuric acid and thymine functional groups which can be used to manipulate and 

modulate the physical properties of the networks, will be studied. This system is based on 

complementary hydrogen bonded polymeric network system, in which the hydrogen 
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bonding interactions between the functional groups attached to the polymer and the 

crosslinking agent are altered, resulting in formation to distinct materials having different 

rheological characteristics.  

7.3 Research design 

  The research design for this study is centered around two different hydrogen 

bonding motifs based on cyanuric acid and thymine. It has been known in the past that 

the six point hydrogen bonded complexes are more thermodynamically stable than the 

three point hydrogen bonded complexes.1-3 In Chapters 5 and 6, it was shown that the 

difference in interaction strength has profound effects on the mechanical properties of the 

crosslinked network. Additional control over network structure and physical properties 

can be obtained by combining multiple crosslinking agents with a single polymer. For 

example, if the Hamilton wedge receptor is added to the three point hydrogen bonded 

complex of cyanuric acid and the 2,4-diaminotriazine, it could potentially disrupt the 

three point hydrogen bonded complex resulting in favor of the formation of  more stable 

six-point hydrogen bonded complexes between cyanuric acid and the Hamilton wedge 

receptor, as shown in Figure 7.1.  This would then result in the disruption of the three-

point multi-array network between the cyanuric acid and 2,4-diaminotriazine to form a 

more loosely connected system consisting of  the cyanuric acid-wedge complex. 
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Figure 7.1  Self-assembly motifs:  (A) Three point hydrogen bonded complex between 
cyanuric acid and 2,4-diaminotriazine (Cy-DAT), (B) de-complexation of cyanuric acid-
2,4diaminotriazine complex (Cy-DAT) with Hamilton wedge receptor (W) via six point 
hydrogen bonding  to form cyanuric acid-Hamilton wedge complex (Cy-W). 
 

On the other hand, thymine residues possess only a single ADA face, so that it 

can form complexes  with the monotopic 2,4-diaminotrazine crosslinking agent, but not 

exhibit multi-point array formation. When the Hamilton wedge receptor, which has two 

2,6-diaminopyridine centers, is added, thymine can form a 2:1 complex via a three-point 

hydrogen bonding interaction with Hamilton wedge receptor, leading to effective inter-

chain crosslinking and an increase in viscosity. By combining the competitive binding of 

the crosslinking agents with the functionalized side chains, the aim is to modulate the 

network micro-structure.  

The cyanuric acid and thymine moieties are anchored covalently onto a 

poly(norbornene) backbone by copolymerizing monomers 1, 2 and 3 via ROMP.  

Hydrogen bonded crosslinking was carried out by adding ditopic 2,4-diaminotriazine 4 or 

ditopic Hamilton wedge receptors 5 to the polymer solution. Monotopic 2,4-
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diaminotriazine 6   and monotopic Hamilton wedge receptors 7 were used as the second 

set of crosslinking agents. All characterizations of the polymer were carried out in 1-

chloronaphthalene, which is a non-competitive, high boiling solvent with high solubility 

for all copolymers.  All monomers and crosslinking agents are shown in Figure 7.2.   

 

O

O

(CH2)11N

N

N

O H

O

O H

O

O

(CH2)11N

N

O H

O

O

O

Spacer monomer
(1)

NN

N

(CH2)10

N N

O

O

(CH2)10

N

N

N

NN

H

H

H

H

H

H

H

H

Diaminotriazine
Crosslinking agent

(4)

Cyanuric acid monomer
(3)

Thymine monomer
(2)

Hamilton Wedge
Crosslinking agent

(5)

O

N

O

N

O

N

O

N

O

NN

HH

NN
H

Pr

H

Pr

OO

HH

NN

N O

Pr

N
H

Pr

H
O

O

(CH2)10

N

N

N

C12H25

N
H

H

N
H

H

OC18H37

O

N

O

N
H H

N N

N
H

N
H

O

Pr

O

Pr

Monotopic Diaminotriazine
(6)

Monotopic Wedge
(7)

O

O

(CH2)11

N

N N

O

H

O

H

O

O

O

O

O

(CH2)11

N

N

O

H

O

C8H17

1 18 12.5

O

O

(CH2)11

N

N N

O

H

O

H

O

O

O

C8H17

1 9 12.5

O

O

(CH2)11

N

N

O

H

O

O

O

C8H17

1 9 12.5

Poly-12 Poly-13 Poly-123

 

Figure 7.2 Overview of monomers 1-3, crosslinking agents 4-6, and polymers Poly-12, 
Poly-13 and Poly-123 used in this study. 
 

7.4 Results and discussions 

7.4.1 Polymerization studies 

The detailed polymerization behavior of monomers 1-3 has been reported 

previously. 4-6 All monomers can be copolymerized in a statistical manner via ROMP in 

chloroform at room temperature using Grubbs’ first generation initiator (Scheme 7.1).4-6 
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The ROMP copolymerization of these monomers results in polymers with controlled 

molecular weight and relatively low polydispersities.  Table 7.1 lists the results of gel-

permeation chromatography characterization. The polymers were designed to possess low 

concentrations of the monomer 3, in order to optimize the degree of crosslinking while 

maintaining good solubility in 1-chloronaphthalene.  In Chapter 5 it was seen that the 

solubility of Poly-13 in 1-chloronaphthalene strongly depends on the mole content of 3 

and the degree of polymerization, which could be attributed to self-association of the 

cyanuric acid groups. In contrast to Poly-13, Poly-12 exhibits very good solubility in 1-

chloronaphthalene even at 30 mol % of 2 and at degrees of polymerization as high as 

1000. The solubility of terpolymer Poly-123 was mainly determined by the polymer 

molecular weight and the mole fraction of monomer 3. To obtain polymers which were 

completely soluble in both chloroform and 1-chloronaphthalene (10 wt %) at room 

temperature, the cyanuric acid and thymine content was kept equal at 10 mol % and the 

monomer to initiator ratio [M]/[I]  was kept at 125 .  
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Scheme 7.1 Synthesis of Poly-123 by random polymerization of monomers 1, 2 and 3 via 
ROMP. 
 
 
Table 7.1 GPC data of unfunctionalized terpolymer Poly-123. Polymer abbreviations are 
based on Scheme 7.1. 
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7.4.2 Self-assembly studies  

Before conducting crosslinking studies, the competitive hydrogen bonding 

between monomer 3 and the monotopic compounds 6 and 7 was first investigated. Using 

1H NMR spectroscopy, the chemical shifts of the amine proton of 6, the amide protons of 

7 and the imide proton of 3 both before and after self-assembly were monitored.  These 

self-assembly experiments were performed using a 0.2 M solution of the compounds in 

deuterated chloroform at room temperature and corrected for solvent dilution effects.  

First the self-assembly of 3 with 6 was studied; upon the addition of two equivalents of 6 

to the solution, the imide signal of 3 shifted downfield from 9.78 ppm to 13.81 ppm, 

while the amine proton signals of 6 shifted downfield from 5.33 ppm to 5.74 ppm.  

Addition of one equivalent of 7 to the mixture resulted in the downfield shifts of the 

imide protons of 3 to 13.40 ppm and the amine protons of 4 to 5.80 ppm, whereas the 

amide protons of 7 shifted from 8.64 and 8.14 ppm to 9.07 and 8.61 ppm respectively. 

Addition of another equivalent of 7 resulted in the imide proton of 3 to shift to 13.27 

ppm, whereas the amide proton signals of 7 were shifted to 8.97 and 8.56 ppm 

respectively, whereas the amine proton signals of 6 were shifted to 5.74 ppm. Control 

complexation experiments for 7 with 6 and 3 with 7 were also carried out. It can be 

concluded from the chemical shifts listed in table 7.2 that the addition of 7 to the complex 

Entry [M]/[I] 
Mn 

(103) 

Mw 

(103) 
PDI 

Poly-123 125 94.0 65.0 1.4 
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formed between 3 and 6 results in decomplexation of cyanuric acid-2,4-diaminotriazine 

multi-point hydrogen bonded complex, as was hypothesized.   

 

Table 7.2  1H NMR spectroscopy shifts of small molecule compounds upon hydrogen 
bonded self-assembly. Symbols: c represents the imide protons of 3, d represents amine 
protons of 6 and w represents the amide protons of 7.  
 

Entry 1H NMR shifts 

(ppm) 

Entry 1H NMR shifts 

(ppm) 

3 9.78c 7 +  2 Eq. 6 8.74w & 8.26w, 5.66d 

6 5.33d 3 +  2 Eq. 6 13.81c, 5.74d 

7 8.64w & 8.14w (3 +  2 Eq. 6) +7 13.40c, 5.80d, 9.07w & 8.61w 

3 + 7 13.24c, 9.46w & 

9.03w 

(3 +  2 Eq. 6) + 

2 Eq. 7 

13.27c, 5.74d, 8.97 & 8.56w 

 

After conducting these preliminary self-assembly studies on monomers in 

solution, the competitive binding of terpolymer Poly-123 with multiple hydrogen 

bonding crosslinking agents was investigated. By applying the strategy of competitive 

complexation and decomplexation to polymer systems, the network micro-structures of 

complementary hydrogen bonded networks can be manipulated without the need for 

synthesizing new polymer materials, as shown in Scheme 7.2. 
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Scheme 7.2 Noncovalent crosslinking and de-crosslinking strategies of Poly-123. (A) 
Selective crosslinking of Poly-123 using 6, to give network Poly-123-6, (B) de-
crosslinking of Poly-123-6 using 7 to give Poly-123-6-7 and (C) directed re-crosslinking 
of Poly-123-6 using 5 to give Poly-123-6-5. 

 

7.5 Crosslinking studies 

Complementary hydrogen bonding networks based on Poly-13: Cyanuric acid 

residues are capable of multiple hydrogen bond formation in two distinct ways. Since the 

cyanuric acid residues have two ADA faces, it can form multi-point hydrogen bonded 

complex with 2, 4-diaminotriazine moieties, via three and two point hydrogen bonding 

interactions. The addition of both the ditopic DAT 4 and the monotopic DAT 6 to 

solutions of Poly-13 result in strong viscoelastic gels. Somewhat surprisingly. it was 

found that monotopic DAT 6 resulted in stronger gels (higher values of loss modulus G′) 

than analogous additions of ditopic DAT 4. This difference can be explained on the basis 

of steric hindrance: because ditopic DAT 4 has two 2,4-diaminotriazine functional groups 

attached to a long alkyl linker, steric constraints are imposed on in the formation of the 

network array. On the other hand, 6 has only one dodecyl alkyl tail, which would result in 

lower steric hindrance in the formation of the multi-point network structure with the 
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cyanuric acid groups. As a result network formed by 6 are more tightly packed as 

compared to those formed by 4. To test this hypothesis, 1,3,5-triazine-2,4-diamine was 

added to crosslink  Poly-13 under the same conditions. 1,3,5-triazine-2,4-diamine has a 

very similar structure to 6, but without the alkyl chain. It was found that 1,3,5-triazine-

2,4-diamine was indeed a very efficient crosslinking agent and resulted in very stiff gels 

which could not even be loaded into the rheometer for quantitative measurement of the 

dynamic moduli. This control experiment proves that the presence of an alkyl tail at the 6 

position of the triazine ring hinders the formation of an array network structure with the 

cyanuric acid groups. 

The cyanuric acid residues can also form a 1:1 complex  via the  stronger six-

point hydrogen bonding interaction with the Hamilton wedge receptor. The resulting 

cyanuric acid - Hamilton wedge receptor complex has been utilized extensively in 

supramolecular science because of its high association constant (106 M-1) in 

chloroform.4,2   Chapter 5 discussed the addition of the wedge crosslinking agent 5 to 

Poly-13, which resulted in polymer networks Poly-13-5 with strong point to point 

linkages, but with lower intermolecular network connectivity.  The crosslinked system 

was a highly viscous liquid as opposed to the strong viscoelastic gels obtained by the 

addition of 2,4-diaminotriazine based crosslinking agents. The monotopic wedge 7 acts 

as an endcapping agent for Poly-13, and hence Poly-13-7 is an uncrosslinked low-

viscosity liquid in which the cyanuric acid groups are functionalized by the wedge 

recognition unit (Scheme 7.3). 
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Scheme 7.3 Cartoon representation of the microstructures of networks based on (A) 
Poly-13: Poly-13-4, Poly-13-5, Poly-13-6, Poly-13-7 and (B) Poly-12: Poly-12-4, Poly-
12-5, Poly-12-6, Poly-12-7. 

 
Complementary hydrogen bonding networks based on Poly-12:  Unlike the 

cyanuric acid residues, thymine recognition units are capable of only three-point 

hydrogen bonding interactions. As seen in Chapter six, unlike the cyanuric acid residues 

thymine has just one ADA face which can take part hydrogen bonding interactions. This 

important structural difference resulted in a drastic difference in mechanical properties 

between networks based on Poly-12 and Poly-13. As discussed in detail in Chapter 6, the 

addition of ditopic DAT 4 to Poly-12 resulted in the formation of viscous liquids, while 

the addition of monotopic 6 did not enhance the viscosity significantly, in stark contrast 
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to the highly viscoelastic network Poly-13-6. This observation can be explained by the 

fact that monotopic DAT 6 acts as an endcapping agent for the thymine groups and can 

therefore not create inter-chain crosslinks (Scheme 7.3).   Ditopic wedge 5 and 

monotopic wedge 7 have four and two 2, 4-diaminopyridine functional groups, 

respectively. Hence 5 can act as a tetra-topic crosslinking agent, whereas 7 simple acts as 

a ditopic crosslinking agent for Poly-12. It was found that the addition of both 

crosslinking agents resulted in increases of the viscosity of the polymer solution, but no 

viscoelastic gel formation was observed. As expected, the addition of tetra-topical 5 

resulted in greater increase in the solution viscosity than that of di-topic 7.  

In conclusion, the experiments show that Poly-12 and Poly-13 form 

complementary networks with vastly different physical properties, depending upon the 

type of crosslinking agent used. Copolymerization of monomers 2 and 3 yielding Poly-

123 should therefore create a polymer scaffold that combines the crosslinking 

characteristics of thymine and cyanuric acid residues. By carefully choosing the 

crosslinking agent used for inter-chain crosslinking of Poly-123 and tuning its 

concentration, one should be able to manipulate the network microstructure. Table 7.3 

summarizes the results for copolymer crosslinking and illustrates that the combination of 

different functional groups crosslinking agent represents a versatile toolkit for modulating 

physical properties of polymer networks based on complementary hydrogen bonding 

interactions. 
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Table 7.3 Toolkit for hydrogen bonding interactions. a represents G'/ G" and b represents 
|G*| values (in Pa) for crosslinked polymers of  Poly-12 and Poly-13, at frequency of 
1 Hz (6.28 rad/s). strain 0.1 and at 25°C. 
 

Polymer Poly-12 Poly-13 Poly-123 

DAT (4) Liquid 

[0.04a, 35.0b] 

Viscoelastic Gel 

[0.95a, 527b] 

Poor Gelation 

Wedge (5) Liquid 

[0.06a, 67.0b] 

Viscous Liquid 

[0.28a, 2990b] 

Highly Viscous 

Liquid 

MonoDAT (6) Liquid 

[<0.01a, 10.4b] 

Viscoelastic Gel 

[4.6a, 129435b] 

Viscoelastic Gel 

MonoWedge (7) Liquid 

[0.04a, 23.6b] 

Liquid 

[<0.01a, 2.7b] 

Liquid 

 

 

7.5.1 Selective Crosslinking of Poly-123  

From the studies on copolymers Poly-12 (Chapter 6) and Poly-13 (Chapter 5) it 

has been established that only interactions between cyanuric acid and 2,4-diaminotriazine 

resulted in viscoelastic gels.  When the ditopic crosslinking agent 4 was added to Poly-

123, simultaneous crosslinking of the thymine and the cyanuric acid side chains is 

expected. Because the crosslinking of the thymine groups results in the formation of 

viscous liquids, competing with the formation of solid gels with cyanuric acid, 4 is a poor 

choice as selective crosslinking agent for Poly-123.  
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Scheme 7.4 Noncovalent crosslinking of Poly-123. (A) Selective crosslinking of Poly-
123 using 6, to give network Poly-123-6, (B) Non selective crosslinking of Poly-123 
using 4. 

 

In contrast, the addition of monotopic DAT 6 to Poly-123, should result in two 

distinct types of hydrogen bonded complexes: (i) three point thymine-6  complex 

formation, which acts as endcap for the thymine functionalized groups, and (ii) multi-

point hydrogen bonding of cyanuric acid residues-6, resulting in inter-chain crosslinking 

into a highly viscoelastic array network (Scheme 7.4).  To probe the effects of 

competitive binding on the gel formation, the amount of 6 added to Poly-123 was varied 

between 0 and 2 equivalents of 6, as defined with respect to combined number of thymine 

and cyanuric acid residues in solution. The results of these crosslinking experiments are 

shown in Figure 7.3. It was found that 0.5 equivalent of 6 leads to the formation of a 

highly viscoelastic gel, whereas at lower concentrations of 6 viscous liquids are formed 

due to lack of connectivity.  This behavior is analogous to the crosslinking profile of 

copolymer Poly-13 with 4 in Chapter 5. More surprisingly, however, is that increasing 

the amount of 6 above 0.5 equivalent causes decrease in the G', to the point were another 

crossover between G' and G" is observed, indicating break-up of the network into a 
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highly viscous liquid.  The likely explanation for this phenomenon is that 

functionalization of thymine residues leads to steric hindrance of the array formation 

between crosslinking agent and cyanuric acid residues. 

 

Figure 7.3 Crosslinking profile of Poly-123 using 6.  Filled symbols denote the elastic 
modulus [G'], whereas empty symbols denote the loss modulus [G"] at strain value of 0.1 
and angular frequency of 6.28 rad/s. The inset represents the ratio G'/G" as a function of 
the amount of 6 added. The percentage of 6 is based on the molar ratio to combined 
cyanuric acid and thymine groups attached to the polymer. 
 

7.5.2 Room temperature decrosslinking of Poly-123-6 using competitive hydrogen 

bonding interactions 

After having studied the crosslinking profile of Poly-123 with 6, the multi-point 

hydrogen bonded array of cyanuric acid-2,4-diaminotriazine  was disrupted by the 

addition of monotopic wedge agent 7, which has been found to act as an efficient 

endcapping agent for cyanuric acid residues and as a weak crosslinking agent for thymine 

residues in copolymer systems.  Based on the monomer studies presented above, the 
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addition of 7 to the terpolymer is anticipated to break-up relatively weak three-point 

complexes between cyanuric acid and 6, in favor of the formation of significantly 

stronger six point hydrogen bonded complexes between cyanuric acid and 7 (Scheme 

7.5). The results are presented in Figure 7.4 for a terpolymer system that was initially 

crosslinked with 1.0 equivalent of 6, before adding the monotopic wedge 7. 
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Scheme 7.5 Noncovalent de-crosslinking strategy of Poly-123-6 using 7 to give Poly-
123-6-7. 



 216 

Even though 7 acts as a weak crosslinking agent for the thymine functional 

groups, the addition of 7 does not result in effective inter-chain multipoint crosslinking, 

as was shown in Chapter 6 and Table 7.3. Therefore addition of 7 predominantly breaks 

up the multi-point array network of the cyanuric acid side chains and 6, which causes a 

dramatic decrease in the G' values and a clear change from an elastic gel to a low 

viscosity liquid. The addition of 0.4 equivalents of 7 induces a crossover of G" and G' 

values, which represents this gel-to-liquid transition. 

 

 

Figure 7.4 Room temperature decrosslinking profile of Poly-123-6 using 7.  Filled 
symbols denote the elastic modulus [G'], whereas empty symbols denote the loss 
modulus [G″] at strain value of 0.1 and angular frequency 6.28 rad/s.  Inset represents the 
ratio  G'/ G" as a function of the amount of monoWedge added. The percentage of 7 is 
based on the molar ratio to combined cyanuric acid and thymine groups attached to the 
polymer. Optical micrographs of inverted vials 3-4 hours after vial inversion with (left) 
the stable elastic gel Poly-123-6, (right) the de-crosslinked liquid Poly-123-6-7.  All 
polymers and additives were dissolved in 1-chloronaphthalene.  
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7.5.3 Directed re-crosslinking of Poly-123-6 via competitive hydrogen bonding 

interactions  

 The addition of monotopic agent 7 to Poly-123-6, resulted in gel break-up, due to 

the fact that addition of 7 causes strong endcapping of the cyanuric acid residues. 

Analogously, the addition of the ditopic Hamilton wedge crosslinking agent 5 would be 

expected to disrupt the strong crosslinking of the cyanuric acid residues as well. Since 5  

is not an endcapping agent and will still give rise to crosslinking when it competitively 

displaces 6. However, Table 7.3 and Chapter 5 clearly showed that the network 

microstructures due to crosslinking of the cyanuric acid residues with 2,4-diaminotriazine 

based 6 and Hamilton wedge crosslinking agent 5 are markedly different.   
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Scheme 7.6 Noncovalent directed re-crosslinking of Poly-123-6 using 5 to give Poly-
123-6-5. The network structure depicts the crosslinking of the thymine residues by 5. 

 

The addition of 6 causes multi-point inter-chain hydrogen bonding interactions 

leading to a three dimensional network structure, whereas the addition of 5 results in 

strong albeit two-point linkages. Hence by the addition of 5 to crosslinked terpolymer 
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Poly-123-6, the network microstructure might be tuned between a three dimensional 

multipoint array-like network structure to a network structure predominantly linked by 

strong two-point linkages. Due to the dynamic nature of the hydrogen bonding 

interactions, the addition of 5 (which can act as a tetrafunctional crosslinking agent for 

the thymine residues as depicted in Scheme 7.3), can crosslink the thymine residues. 

However, as indicated in Table 7.3, the crosslinking of thymine residues by 5 does not 

lead to effective multipoint inter-chain crosslinking and it is expected that these 

crosslinks would contribute minimally to G'.  Hence the addition of 5 is expected to lead 

to an increase in G″ values. The rheological characteristics of directed re-crosslinking 

studies by adding variable amounts of 5 to a crosslinked Poly-123-6 (1.0 equivalent of 6 

initially) are shown in Figure 7.5. Optical micrographs of the elastic gel Poly-123-6 (vial 

A) and the re-crosslinked viscous liquid (1 eq. of 5) Poly-123-6-5 (vial B) are shown in 

Figure 7.6. 
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Figure 7.5 Directed re-crosslinking profile of Poly-123-6 using (5).  Filled symbols 
denote the elastic modulus [G'], whereas empty symbols denote the loss modulus [G″] at 
strain value of 0.1. The percentage of 5 is based on the molar ratio to combined cyanuric 
acid and thymine groups attached to the polymer.  
 
 

It can be seen from both the rheological data and the images that Poly-123-6 does 

not flow whereas Poly-123-6-5 exhibits viscous behavior. 

                                               

                                              

(A)                                                         (B) 

Figure 7.6 Optical micrograph of inverted vials 1-2 hours after vial inversion with (left) 
the sTable elastic gel Poly-123-6, (right) the re-crosslinked viscous liquid Poly-123-6-5 
(1 eq. of 5).  All polymers and additives were dissolved in 1-chloronaphthalene. 
 

Frequency sweeps of Poly-123 (low-viscosity liquid), Poly-123-6 (viscoelastic 

solid), Poly-123-6-5 (viscous liquid) and Poly-123-6-7 (low viscosity liquid) are 

presented in Figure 7.7 to provide more detailed insight into the rheology of the samples.  

These frequency sweeps further support the notion that by using multi-functional 

complementary hydrogen bonding interactions it is possible to tune the materials 

properties of samples originating from a single parent polymer backbone.  
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Figure 7.7 Frequency sweeps at 20°C at strain amplitude 0.1:  (A) Poly-123 (circles), (B) 
Poly-123-6-7 (rectangles), (C) Poly-123-6-5 (triangles) and (D) Poly-123-6 (squares). 
Filled symbols denote the elastic modulus [G'], whereas empty symbols denote the loss 
modulus [G"]. G' data for Poly-123 and Poly-123-6-7 has been omitted due to very low 
magnitude.  
 

7.6 Summary and conclusions 

 In this chapter multi-functional complementary hydrogen bonding interactions 

have been successfully utilized in changing the network micro-structure of the hydrogen 

bonded crosslinked polymers. By varying the hydrogen bonding motif used for inter-

chain crosslinking, the properties of a single network could be tailored from a viscoelastic 

solid to a highly viscous liquid to a free-flowing liquid. The ability of altering the 

physical property of a material by varying the recognition moiety responsible for inter-

chain crosslinking allows for tailoring the materials property at room temperature without 

the need for temperature gradients typical for conventional mono-functionalized 

hydrogen bonded systems. Such a strategy combines for the first time “Supramolecular 
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Polymer Chemistry” and polymer “Structure Property Relationship”, allowing for further 

development of tailor-made and highly responsive materials for advanced applications.  

7.7 Experimental section  

General 

  All reagents were purchased either from Acros Organics, Aldrich or Strem 

Chemicals and used without further purification unless otherwise noted.  Grubbs first 

generation catalyst was purified by filtration using purified benzene under an atmosphere 

of argon.   Spacer monomer 16, thymine monomer 24, cyanuric acid monomer 36, 

monotopic 2,4-diaminotriazine 47, ditopic Hamilton wedge crosslinking agent 56, 

monotopic Hamilton wedge 68 were synthesized according to published procedures.  

 Characterization procedure 

As reported in Chapter three.  

Polymerizations 

The synthesis of terpolymer Poly-123 is described as a representative example:  

Monomers 1 (1.80 g, 7.2 mmol), 2 (562 mg, 1.34 mmol) and 3 (188 mg, 0.44 mmol) 

were dissolved in 30 mL of CHCl3.  A stock solution of Grubbs’ first generation initiator 

was prepared in CHCl3 and an amount of the stock solution equaling 7.40 mg ([M]/[I] = 

1000:1) of the initiator was added to the monomer solution.  The solution was stirred at 

40°C and the reaction was monitored by observing the olefinic signals of the monomer 

by 1H NMR spectroscopy.  Upon complete conversion, a drop of ethyl vinyl ether was 

added to terminate the polymerization, followed by prolonged drying at 60°C to remove 

all the solvent.  
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The 1H and 13C NMR spectra of all copolymers are analogous to the ones reported in the 

literature.4 

Crosslinking experiments 

The preparation of Poly-123-4 is described as a representative example:  Poly-

123 (170 mg, 0.12 mmol based on the hydrogen bonding functional groups along the 

polymer backbone) was dissolved in 1.53 g of 1-chloronaphthalene (10 weight%).  Then 

36 mg (0.12 mmol based on the hydrogen bonding sites allowing for quantitative 

crosslinking) of 4 was added to the sample and the suspension was heated until a clear 

homogenous solution was obtained.  The polymer solution was then allowed to rest at 

room temperature for least twelve hours before rheological measurements were carried 

out. 

Rheological characterization 

The rheological testing protocol of all polymer solutions has been described in 

Chapter five.  
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CHAPTER EIGHT 

Metal Crosslinked Polymer Networks 

 

 

8.1 Abstract 

Random side-chain functionalized copolymers with SCS palladated-pincer 

complexes have been synthesized using ROMP. These Pd SCS pincer side-chain 

functionalized polymers were then subsequently crosslinked via metal coordination 

interactions using bis-pyridine as the crosslinking agent. Extensive crosslinking via metal 

coordination was observed which resulted in materials displaying properties varying from 

being viscoelastic gels to highly viscous liquids. The network properties strongly 

depended on the extent of crosslinking and the concentration of the polymer in the 

solution. By varying the SCS palladated pincer loading and by varying the concentration 

of the polymer, the final network properties of the metal coordinated crosslinked 

materials can be tuned and controlled. 
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8.2 Introduction 

In Chapters one and two the importance of metal coordination in reversible 

crosslinking of polymers was explained in detail. In this chapter, the network properties 

of metal crosslinked polymers based on SCS Pd-pincer complexes will be presented and 

discussed. Palladated sulfur–carbon–sulfur (SCS) pincer complexes are tridentate, square 

planar coordination spheres that are particularly useful in molecular recognition because 

they possess only one coordination site accessible for self-assembly.1   The aim of this 

study is to understand the effect of SCS Pd-pincer concentration and the effect of the 

polymer concentration in the solution on the ability of the system to form viscoelastic 

gels. Such a study will be helpful in optimizing the molecular architecture for subsequent 

experiments that will combine metal coordination with hydrogen bonding interactions to 

yield a multi-functionalized polymer system crosslinked via multiple noncovalent 

interactions to form a multi-responsive material, as will be shown in Chapter nine.  

8.3 Research design 

Our research design consists of random copolymers functionalized with SCS 

palladated pincer complexes as metal coordination sites. The noncovalent 

functionalization of SCS palladated pincer systems with nitriles, pyridines and 

phosphines has been studied before.1-5 The metal coordination motif that is used for inter-

chain crosslinking in this study is shown in Figure 8.1. 
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Figure 8.1 Self-assembly motif employed in this study based on SCS-Pd pincer- pyridine 
complex.   
 

The monomers and the crosslinking agent used in this study are depicted in Figure 

8.2. In this study the SCS palladated pincer groups are anchored covalently onto a 

poly(norbornene) backbone by copolymerizing 1 with 2 using ROMP, to form Poly-12. 

As explained in Chapter 5, monomer 1 serves as a diluent and increases solubility of the 

polymer in non-polar solvents. Metal coordinated crosslinking was carried by adding bis-

pyridine. As described in Chapter 5, all crosslinking processes as well as all 

characterizations of the resulting crosslinked polymer networks were carried out in 1-

chloronaphthalene, a non-competitive, high boiling solvent in which all copolymers have 

good solubility.   
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Figure 8.2 Monomers 1-2, crosslinking agents 3 utilized in this study.   

8.4 Results and discussions 
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8.4.1 Polymerization studies 

The detailed polymerization behaviors of monomer 1 and 2 have been previously 

reported. The monomers can be copolymerized in a statistical manner via ROMP in 

chloroform at room temperature using Grubbs’ first generation initiator (Scheme 8.1).6,3 

The  ROMP copolymerization of these monomers resulted in polymers with controlled 

molecular weights and relatively low polydispersities.  The polymer composition and 

molecular weight were found to be important parameters affecting the subsequent 

syntheses of homogenous crosslinked polymer networks in 1-chloronaphthalene. The 

polymers were designed to possess low concentrations of the pincer monomer 2 (5-20 

mol%), in order to study crosslinking while simultaneously maintaining good solubility 

in 1-chloronaphthalene.  The weight average molecular weight was approximately 36000 

and number average molecular weight was approximately 29 000 (Mw ~ 35 000, Mn ~ 29 

000, PDI = 1.2). 
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Scheme 8.1 Synthesis of Poly-12 by random polymerization of monomers 1 and 2. 

8.4.2 Crosslinking studies 

The detailed self-assembly involving metal coordination of the SCS-Pd pincer 

centers with pyridine has been explained in Chapters 1-3.1-3,5  After studying in detail the 

self-assembly of Poly-12, the polymer scaffold was reversibly crosslinked via metal 
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coordination using crosslinking agent 3. The crosslinking of Poly-12 was carried out in 

two steps, first requiring the activation of Pd centers with silver tetrafluoroborate and 

then the subsequent coordination of the Pd center with the pyridine. The network 

structures of Poly-12-3 are depicted in Scheme 8.2. 
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Scheme 8.2 Metal coordinated crosslinking of Poly-12 using crosslinking agent 3 to form 
Poly-12-3.   

 

8.4.3 Crosslinking behavior of Poly-12-3 

In order to probe effect of  important parameters such as concentration of the 

pincer complex and polymer content of the solution on the ability of the system to 

undergo gelation, three different crosslinked polymers systems at 100% crosslinking 
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composition with 3 were studied, (i) Poly-12-3 (5 mol%-20% SC) which consists of  

Poly-12 functionalized with 5 mol% of pincer complex with polymer content in solution 

being 20 weight% (or solid content SC), (ii) Poly-12-3 (10 mol%-10% SC) which 

consists of  Poly-12 functionalized with 10mol% of pincer complex with polymer content 

in solution being 10 weight% (or solid content SC) and (iii) Poly-12-3 (20 mol%-10% 

SC) which consists of  Poly-12 functionalized with 20 mol% of pincer complex with 

polymer content in solution being 10 weight% (or solid content SC). 

It was seen that the even at 100% crosslinked composition and at a relatively 

higher polymer content Poly-12-3 (5 mol%-20% SC) was a viscous liquid and not a gel. 

The other two samples visibly appeared to be viscoelastic solids with Poly-12-3 (20 

mol%-10% SC) being stiffer than Poly-12-3 (10 mol%-10% SC). In order to gain 

quantitative analysis, the samples were analyzed using rheology. The amplitude sweep of 

the above samples is shown in Figure 8.3, from which it can be clearly seen that for Poly-

12-3 (5 mol%-20% SC) G' < G", whereas for the other two samples G' > G", exhibiting a 

visoelastic nature. Poly-12-3 (20 mol%-10% SC) exhibited higher moduli than Poly-12-3 

(10 mol%-10% SC) and also more brittle, displaying failure at high strain amplitudes.  
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Figure 8.3 Strain amplitude sweep at 20°C at ω = 6.3 rad/s for Poly-12-3 (5 mol%-20% 
SC) (triangles), Poly-12-3 (10 mol%-10% SC) (triangles) and Poly-12-3 (20 mol%-10% 
SC) (circles).  Filled symbols denote the elastic modulus [G'], whereas empty symbols 
denote the loss modulus [G"]. 

 

The frequency sweeps profiles of the same samples at room temperature are 

shown in Figure 8.4, from which it can be observed that Poly-12-3 (20 mol%-10% SC) 

behaves a typical viscous liquid whereas the other two samples exhibit viscoelastic 

behavior. 
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Figure 8.4 Frequency sweep profile at strain amplitude 0.1 and 20°C: Poly-12-3 (5 
mol%-20% SC) (triangles), Poly-12-3 (10 mol%-10% SC) (squares), Poly-12-3 (20 
mol%-10% SC) (circles). Filled symbols denote the elastic modulus [G'], whereas empty 
symbols denote the loss modulus [G"]. 

 

Interestingly, the low-frequency crossover for the stronger gel, Poly-12-3 (20 

mol%-10% SC), occurs at higher frequencies than the weaker Poly-12-3 (10 mol%-10% 

SC). Clearly, the pincer content and the polymer concentration in the solution are both 

important parameters that affect the ability of the system to gel to form viscoelastic gels: 

a low functional loading results in viscous liquids even at high polymer concentrations 

whereas at high functional loadings networks having high modulii are obtained that 

exhibit fracture at higher strain amplitudes. 

8.5 Summary and conclusions 

In this chapter, random copolymers functionalized with SCS Pd pincer via ROMP 

have been synthesized which have been reversibly crosslinked via metal coordination 

using bis-pyridine as the crosslinking agent. The metal content of the polymer as well as 
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the polymer content in the solution determine the ability of the system to form 

viscoelastic gels. It was seen that a metal content of 10 mol% and a polymer content of 

10 weight% in 1-chloronaphthalene at 100% crosslinked composition using bis-pyridine  

as the crosslinking agent, yielded viscoelastic gels which could be easily handled and 

analyzed. Higher metal loading at the same polymer content yielded in very stiff gels, 

while lower metal loadings did not undergo gelation even at higher polymer content. As a 

result, the metal content of 10% was selected to be combined with hydrogen bonding 

interactions to synthesize multi-functionalized crosslinked system which would result in 

multi-responsive materials, as will be discussed in Chapter nine. 

8.6 Experimental section  

General   

All reagents were purchased either from Acros Organics, Aldrich or Strem 

Chemicals and used without further purification unless otherwise noted.  Grubbs first 

generation catalyst was purified by filtration using purified benzene under an atmosphere 

of argon.   Spacer monomer 17, SCS Pd pincer monomer 28, were synthesized according 

to published procedures as described in Chapter three.   

Characterization procedure  

As reported in chapter three.  

Polymerizations 

The synthesis of the polymer Poly-12 is described as a representative example:  

Monomers 1 (1.890 g, 7.56 mmol), 2 (646.86 mg, 0.84 mmol) were dissolved in 30 mL 

of CHCl3.  A stock solution of Grubbs’ first generation initiator was prepared in CHCl3 

and an amount of the stock solution equaling 55 mg ([M]/[I] = 125:1) of the initiator was 



 234 

added to the monomer solution.  The solution was stirred at room temperature and the 

reaction was monitored by observing the olefinic signals of the monomer by 1H NMR 

spectroscopy.  Upon complete conversion after 6 hours, a drop of ethyl vinyl ether was 

added to terminate the polymerization, followed by prolonged drying at room 

temperature under high vacuum for 24 hours to remove all the solvent.  

Crosslinking experiments 

For all crosslinking experiments, the polymers were dissolved in a calculated 

amount of 1-chloronaphthalene and the mixture was stirred overnight at room 

temperature to ensure a homogenous solution.  Then, a calculated amount of the 

crosslinking agent and silver tetrafluoroborate were added and the mixture was stirred, 

increase in the solution viscosity could be observed visually. The mixture was then 

allowed to anneal at 800C for a period of six hours, after which the sample was allowed to 

rest at room temperature for twelve hours before the rheological experiments were carried 

out.   

The preparation of Poly-12-3 is described as a representative example:  Poly-12 

(176 mg, 0.06 mmol based on SCS groups along the polymer backbone) was dissolved in 

1.584 g of 1-chloronaphthalene (10 weight %).  Then 5.4 mg (0.03 mmol based on the 

metal coordination sites allowing for quantitative crosslinking) of 3 and 11.6 mg (0.06 

mmol) of silver tertrafluoroborate were added to the sample and stirred. The mixture was 

then allowed to anneal at 800C for a period of six hours, after which the sample was 

allowed to rest at room temperature for twelve hours before the rheological experiments 

were carried out.   

Rheological characterization 
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The rheological testing protocol of all polymer solutions has been described in 

Chapter five.  
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CHAPTER NINE 

MULTI-FUNCTIONAL CROSSLINKED POLYMER NETWORKS BASED ON 

HYDROGEN BONDING AND METAL COORDINATION 

 

9.1 Abstract 

Multi-functional reversible polymer networks based on hydrogen bonding and 

metal coordination have been synthesized by using a combination of ROMP and 

molecular self-assembly and characterized in detail with rheometry.  The polymer 

scaffold consisted of a random poly(norbornene) functionalized with (i) cyanuric acid 

functional groups as hydrogen bonding moieties and, (ii) palladated SCS pincer centers 

as metal coordination sites.  The hydrogen bonding interactions used for inter-chain 

crosslinking were based on three point cyanuric acid-2,4-diaminotriazine interactions. 

The hydrogen bonded networks exhibited thermo-reversibility. The metal coordination 

interactions for crosslinking were based on pyridine-Pd SCS complex. In both cases the 

extent of crosslinking could be controlled by varying the amount of the crosslinking 

agent added. By varying the noncovalent interaction used for crosslinking, materials with 

different rheological properties and responsiveness were obtained from the same parent 

polymer backbone.  
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9.2 Introduction 

In chapter two it was explained how molecular recognition has offered a 

successful strategy to overcome certain limitations of covalently crosslinked polymer 

networks, such as polymer degradation, detrimental side-reactions during the curing 

process and, most importantly, the irreversible nature of covalent crosslinking.  

Molecular recognition processes based on  noncovalent interactions (e.g. hydrogen 

bonding,1,2  metal coordination,3-5  Coulombic interactions6,7) have the advantage of 

being reversible and have thus enabled the development of crosslinked networks with 

tailored  responsiveness towards a variety of external stimuli including temperature, 

solvent, and pH.8  Examples include the use of metal coordination to obtain materials that 

are responsive to redox reactions and metal-ligand displacement agents9,10, or the 

employment of hydrogen bonding interactions to create crosslinked polymer networks 

that are reveresible to temperature, as discussed in Chapters 5 to 7. However the present 

use of a single molecular recognition process in such networks limits the responsiveness 

to one external stimulus. By synthesizing polymers with multi-functional side-chains, it is 

possible to create noncovalent networks with unprecedented multi-responsiveness. In 

order to realize such networks, it is critical to use an orthogonal crosslinking strategy, i.e. 

the different noncovalent interactions should be mutually independent and non-

interfering. The Weck group has synthesized highly functionalized noncovalently 

crosslinked polymers prepared from a single “Universal Polymer Backbone” via 

directional self-assembly processes using a combination of metal coordination and 

hydrogen bonding as was shown  in Chapter two.10  
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In this chapter, a multi-functional crosslinking strategy will be discussed that uses 

terpolymers that combine crosslinking via hydrogen bonding interactions and metal 

coordination. It will be shown that the mechanical properties of such networks can be 

fine-tuned by choosing the appropriate noncovalent crosslinking agents. The extent of 

crosslinking can be manipulated by varying the amount of the crosslinking agent added. 

As a result, these materials offer a high degree of control on the final material properties 

and ultimately the underlying strategy shall be useful in designing tailor-made materials. 

Furthermore by utilizing a particular noncovalent interaction for polymer crosslinking, 

the responsiveness of the material can be tuned, for example hydrogen bonded 

crosslinked networks would be thermally responsive whereas utilizing metal coordination 

crosslinking would result in materials which could exhibit chemical responsiveness. 

9.3 Research design 

 The research design is centered on two noncovalent interactions: hydrogen 

bonding and metal coordination. The hydrogen bonded complexes used in this chapter 

were described in Chapter 5 and are based on the cyanuric acid recognition motif, which 

is capable of multiple hydrogen bond formation by three-point hydrogen bonding 

between cyanuric acid and 2,4-diaminotriazine (Figure 9.1A).  The metal coordination 

interactions, which were introduced in Chapter 8 are based of the coordination of 

pyridine to the SCS Pd centre (Figure 9.1B). 
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Figure 9.1 Self-assembly motifs employed:  (A) Hydrogen bonded multi-point array 
based on three point hydrogen bonded complex between 2,6-diaminotriazine and 
cyanuric acid (B) Metal coordination interaction pyridine- SCS Pd metal coordinated 
complex. 
 

The cyanuric acid and SCS Pd pincer complex moieties are anchored covalently 

onto a poly(norbornene) backbone by copolymerizing monomer 1 and the cyanuric acid 

containing monomer 2 using ROMP.  As explained previously, the non-functionalized 

monomer 1 serves as a diluent for the cyanuric acid units and to increase solubility of all 

copolymers in non-polar solvent.10  Hydrogen bonded crosslinking was carried by 

employing monotopic diaminotriazine-based crosslinking agent 4, whereas the metal 

coordinated crosslinking was carried by the addition of crosslinking agent 5 after 

activation of the SCS Pd centers with silver tetrafluoroborate. All crosslinking events and 

experimental characterizations of the resulting polymer networks were carried out in 1-

chloronaphthalene, which is a non-competitive, high boiling solvent in which all 

copolymers have good solubility.  All monomers and crosslinking agents are shown in 

Figure 9.2.   
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Figure 9.2 Monomers 1-3, crosslinking agents 4 and 5 utilized in this study.   

9.4 Results and Discussions 

Copolymerization Studies 

The polymerization behaviors of monomer 1-3 has been previously reported in 

detail.11,10  All monomers can be copolymerized in a statistical manner via ROMP in 

chloroform at room temperature using Grubbs’ first generation initiator (Scheme 9.1); 

complete monomer conversion was obtained within three hours at room temperature. 
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Scheme 9.1 Synthesis of Poly-123 via ROMP using Grubbs’ first generation initiator. 

Copolymer composition and molecular weight are important parameters affecting 

the subsequent syntheses of homogenous crosslinked polymer networks in 1-

chloronaphthalene, the solvent of choice for all our rheological measurements because of 

its relatively high boiling point.  The solubility of all copolymers in 1-chloronaphthalene 

was dependent upon the mole fraction of 2, as was demonstrated in chapter five.  The 

copolymer composition for our rheological measurements was chosen to be 10 mol% of 

2. In chapter eightit was found that the optimum SCS pincer loading on the polymer is 10 

mol% for a 10 wt% polymer concentration in solution.  In line with these findings, the 

content of both 2 and 3 was kept at 10 mol% with a [M]/[I] = 125, resulting in 

terpolymers that were completely soluble in 1-chloronapthalene at room temperature. The 

weight average molecular weight was approximately 36000 and number average 

molecular weight was approximately 29 000 (Mw = 36 000, Mn = 29 000, PDI = 1.24). 

9.5 Crosslinking studies 

Terpolymer Poly-123 can be seen as a multi-functional polymer scaffold which 

has crosslinkable side chains both for hydrogen bonding and metal coordination 

interactions. This multi-functional scaffold can be reversibly crosslinked in three distinct 

ways, i) via hydrogen bonding interactions through the addition of crosslinking agent 4, 

which causes inter-chain crosslinking through the cyanuric acid groups, ii) via metal 

coordination interactions by the addition of crosslinking agent 5, which causes inter-chain 

crosslinking through the activated SCS pincer Pd centers, ii) simultaneous crosslinking 

via both hydrogen bonding and metal coordination interactions. 

9.5.1 Hydrogen bonding crosslinking 
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 First, Poly-123 was crosslinked through hydrogen bonding, using crosslinking 

agent 4 (Scheme 9.2). 
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Scheme 9.2 Noncovalent crosslinking of Poly-123, formation of hydrogen bonded 
network Poly-123-4 via the addition of crosslinking agent 4.   

 

 The degree of crosslinking could be controlled via the amount of crosslinking 

agent added.  The concentration of 4 was varied from 0% to 100% (molar ratio of 

functional groups in the crosslinking agent to cyanuric acid groups attached to the 

polymer chains).  The crosslinked networks were characterized quantitatively with 

rheology, but initial visual observations of the samples provided a telling qualitative 

picture of the mechanical properties.  While solutions of Poly-123-4 yielded a low-

viscosity fluid below 20 mol % of 4, higher concentrations of crosslinking agent 4 (above 

25 mol %) resulted in the formation of an elastic solid that would not flow under gravity 

after vial inversion.   

The crosslinking profile of Poly-123 with 4 as the crosslinking agent is shown in 

Figure 9.3. 
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Figure 9.3 Crosslinking profile of Poly-123 using 4.  Filled symbols denote the elastic 
modulus [G'], whereas empty symbols denote the loss modulus [G"] at strain value of 0.1 
and angular frequency 6.28 rad/s.  The concentration of 4 is defined relative to the molar 
concentration of cyanuric acid groups in the polymer solution.  
 

From the crosslinking profile it can be seen that the transition from viscous liquid 

to viscoelastic gel state takes place at low concentration of crosslinking agent 4; even at 

25 mol% of 4 the network exhibits a higher elastic modulus than loss modulus, indicating 

that 4 acts as a very efficient crosslinking agent, in line with the previous results in 

Chapter seven. The left vial in Figure 9.3 illustrates Poly-123-4 at a 100% crosslinked 

composition. 
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                        (A)                                           (B)                                        (C) 

 

Figure 9.4 Optical micrographs of inverted vials with (left) stable elastic gel (A) Poly-
123-4, (center) (B) Poly-123-5 and (right) (C) Poly-123-45 at room temperature.  All 
polymers and additives were dissolved in 1-chloronaphthalene. All the samples are at 
100% crosslinked composition. Micrographs were taken two hours after inversion. 
 

9.5.2 Metal coordinated crosslinking 

 The crosslinking of Poly-123 via metal coordination occurs in two distinct steps: 

first the activation of the Pd centers by the abstraction of the chlorine atom through the 

addition of AgBF4, followed by the coordination of the open Pd center by pyridine as 

shown in Scheme 9.3.12,10,13 The 10 % (wt) solutions of Poly-123 in 1-

chloropnaphthalene were crosslinked by the addition of AgBF4 or NH4BF4 and 

crosslinking agent 5. To ensure homogeneity, the gels were allowed to anneal at 80°C for 

4-5 hours before resting for at least twelve hours at room temperature before rheological 

analysis. 
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Scheme 9.3 Noncovalent crosslinking of Poly-123, formation of metal coordinated 
network Poly-123-5 via the addition of crosslinking agent 5.   
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Figure 9.5 Crosslinking profile of Poly-123 using 5.  Filled symbols denote the elastic 
modulus [G'], whereas empty symbols denote the loss modulus [G"] at strain value of 0.1 
and angular frequency 6.28 rad/s.  The percentage of 5 is based on the SCS palladium 
pincer complex groups attached to the polymer. 



 247 

 The degree of crosslinking was controlled by varying the concentration of 5 from 

0 % to 100 % (molar ratio of functional groups in the crosslinking agent to pincer groups 

attached to the polymer chains). From the crosslinking profile it can be seen that the 

transition from the liquid to the viscoelastic gel state takes place at much higher 

concentration of 5 than for the hydrogen bonding agent. The network exhibits a higher 

elastic modulus than loss modulus only when the concentration of 5 is more than 80 

mol%. Based on the the crosslinking profiles of Figures 9.3 and 9.5, it appears that 4 is a 

more efficient crosslinking agent than 5. This can be attributed to the fact that hydrogen 

bonded network structure represents a true multi-point array network structure which has 

very high inter-chain connectivity due to the multi-hydrogen bonding interactions 

between the monotopic DAT and the cyanuric acid groups. On the other hand, the metal 

crosslinked network consists of very strong point-to-point linkages between the Pd 

centers and the pyridine units, but there is no multi-point array formation. As a result, a 

larger amount of crosslinking agent is required for the formation of the viscoelastic gel.  

The center vial in Figure 9.4 shows this experiment for a 100% crosslinking agent 

concentration.  

9.5.3 Simultaneous multi-functional crosslinking 

The orthogonality of hydrogen bonding and metal coordination interactions has 

been extensively discussed in the previous chapters12,13 and enables simultaneous use of 

both interactions in the same system. Furthermore, the metal coordinated crosslinking 

step occurs at mild conditions and can be successfully combined with hydrogen bonding 

crosslinking as shown in Scheme 9.4.12,10,13,14  
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Scheme 9.4 Noncovalent crosslinking of Poly-123, formation hydrogen bonded as well 
as metal coordinated network Poly-123-45 via the simultaneous addition of 4 and 5.   

 

The degree of crosslinking can be controlled by manipulating the concentration of 

both the crosslinking agents.  Initially, the concentrations of both 4 and 5 were kept 

equimolar and were varied from 0% to 100% (molar ratio of functional groups in the 

crosslinking agent to cyanuric acid groups as well as the pincer groups attached to the 

polymer chains).   
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Figure 9.6 Crosslinking profile of Poly-123 using 4 and 5 [1:1 mol ratio].  Filled 
symbols denote the elastic modulus [G'], whereas empty symbols denote the loss 
modulus [G"] at strain value of 0.1 and angular frequency 6.28 rad/s.  The percentage of 
4 is based on the cyanuric acid groups attached to the polymer whereas percentage of 5 is 
based on the SCS palladium pincer complex groups attached to the polymer. 
 

The crosslinking profile of Poly-123-45 is depicted in Figure 9.6. The system 

undergoes gelation at about 57% crosslinking agent concentration, whereas Poly-123-4 

had a gelation point at around 25% and Poly-123-5 had a higher gelation point at about 

80%. It is not surprising that the gelation point of the multi-functional system falls in 

between the gelation points of Poly-123-4 and Poly-123-5, since both interactions were 

specifically chosen for their orthogonality.  The crosslinking profile also reveals that the 

combined the network is stronger (i.e. higher dynamic moduli), than either Poly-123-4 or 

Poly-123-5 at the corresponding crosslinking agent composition. This indicates that these 

two noncovalent interactions act synergistically to crosslink the network. Furthermore, 

Figure 9.6 shows that the dynamic moduli reach a saturation point above 80% crosslinked 

composition; further addition of the crosslinking agents does not increase the moduli of 

the network. This can be attributed to the network saturation state in which the network is 
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sufficiently crosslinked and further addition of the crosslinking agent does not increase 

the connectivity of the network.  

9.5.4 Rheological characterization 

In order to probe the effect of both crosslinking agents on network structure in 

more quantitative detail, oscillatory measurements with a cone-and-plate rheometer were 

carried out.  Strain amplitude sweeps of Poly-123-4, Poly-123-5 and Poly-123-45 are 

shown in Figure 9.7; in all samples, the polymer concentration is 10 weight % and 

crosslinking agent concentration 100 %.  It can be seen clearly that for all the samples the 

elastic modulus G' is greater than the loss modulus G"   indicating the formation of a gel 

according to a much more stringent rheological criterion than the vial inversion test in 

Figure 9.4.  Furthermore Poly-123-4 was prone to fracture at lower strain values as 

compared with Poly-123-5 and Poly-123-45, consistent with the fact that cyanuric acid-

2,4-diaminotriazine system exhibits a multi-point array system as discussed in Chapters 5 

to7. 
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Figure 9.7 Strain amplitude sweep at 20°C at ω = 6.3 rad/s for Poly-123-4 (squares), 
Poly-123-5 (triangles) and Poly-123-45 (circles).  Filled symbols denote the elastic 
modulus [G'], whereas empty symbols denote the loss modulus [G"]. 
 

The viscoelastic behavior of these gels was further investigated by performing 

frequency sweeps at 20°C as shown in Figure 9.8. The figure clearly shows that the 

hydrogen bonded network has a much longer relaxation time, which falls well outside the 

frequency window of these experiments. On the other hand, the metal coordinated 

network show relaxation times between 0.1 and 1 rad/s. 
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Figure 9.8 Frequency sweeps at 20°C at strain amplitude 0.1:  (A) Poly-123-4 
(triangles), (B) Poly-123-5 (rectangles), (C) Poly-123-45 (circles). Filled symbols denote 
the elastic modulus [G'], whereas empty symbols denote the loss modulus [G"]. 
 

Hydrogen bonding is thermally reversible and in order to probe the 

responsiveness of the polymer networks, a temperature sweep was performed during 

which the sample was heated from 20 to 80°C, at a heating rate of 2°C /min, while 

monitoring the viscoelastic moduli at constant frequency (6.28 rad/s) and strain amplitude 

(0.1).   
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Figure 9.9 Temperature Sweep Profile from 80 to 20°C.  G’ and G" were measured at ω 
= 6.3 rad/s and strain 0.1: (A) Poly-123-4 (triangles) (B) Poly-123-5 (rectangles) and (C) 
Poly-123-45 (circles).   

 

The temperature sweeps in Figure 9.9 show a strong temperature dependence of 

the network based on Poly-123-4 (Figure 9.9, triangles), which essentially becomes a low 

viscosity liquid at high temperatures.  The decrease in moduli (by more than a factor 

~10000) is much stronger than temperature related changes in viscosity for the pure 

solvent, which varies from 0.0028 Pa.s to 0.0013 Pa.s over the same temperature range. 

The decrease is attributed to the break-up of hydrogen bonded intermolecular 

associations.  In contrast, the metal coordination crosslinking in Poly-123-5 is 

sufficiently stable that the network behaves as a viscoelastic gel even at 80°C, as can be 

concluded from the fact that G' > G" over the entire range in Figure 9.9 (squares).  

Finally, the multi-functional crosslinked network Poly-123-45 (Figure 9.9, circles) shows 

a clear thermal response, less than for the pure hydrogen bonded network but more than 

the metal crosslinked networks. However, the metal coordinated crosslinks are 
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sufficiently strong to to retain appreciable viscoelasticity even at high temperatures. By 

balancing the relative amounts of hydrogen bonding and metal coordinated crosslinking 

agents, the thermal response of the material can be controlled. 

9.6 Summary and conclusions 

In this chapter, random copolymers containing cyanuric acid groups and SCS 

palladated pincer complexes via ROMP have been synthesized. The resultant terpolymers 

were crosslinked either by hydrogen bonding, metal coordination or by a combination of 

both the interactions. The hydrogen bonding gels showed a greater thermal response than 

the metal crosslinked system, whereas the multi-functionalized system showed 

intermediate thermal response. Such a methodology in which different noncovalent 

interactions are utilized for inter-chain polymer crosslinking reactions can result in the 

creation of materials with diverse properties from the same parent polymer backbone. 

9.7 Experimental section  

General   

All reagents were purchased either from Acros Organics, Aldrich or Strem 

Chemicals and used without further purification unless otherwise noted.  Grubbs first 

generation initiator was purified by filtration using purified benzene under an atmosphere 

of argon.  Cyanuric acid monomer 2,11 spacer monomer 1,10 pincer monomer 3, dodecyl-

2,4 diaminotriazine 4 were synthesized according to previous reports.   

Characterization procedure 

As reported in chapter three.  

Polymerizations  
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The synthesis of the terpolymer Poly-123 is described as a representative 

example:  Monomers 1 (3.6 g, 14.4 mmol), 2 (754.2mg, 1.8 mmol) and 3 (1.386 g, 1.8 

mmol) were dissolved in 30 mL of CHCl3.  A stock solution of Grubbs’ first generation 

initiator was prepared in CHCl3 and an amount of the stock solution equaling 118.48 mg 

([M]/[I] = 125:1) of the initiator was added to the monomer solution.  The solution was 

stirred at room temperature and the reaction was monitored by observing the olefinic 

signals of the monomer by 1H NMR spectroscopy.  Upon complete conversion, a drop of 

ethyl vinyl ether was added to terminate the polymerization, followed by prolonged 

drying at room temperature under high vacuum for 24 hours to remove all the solvent.  

Poly-123 1H NMR (300 MHz CD2Cl2): 7.80 (m, 4H, SPh), 7.40 (m, 6H, SPh), 6.56 (s, 

2H, ArH), 5.50–5.07 (m, 6H, CH=CH), 4.55 (br s, 4H, CH2S), 4.09–3.9 (m,6H, CH2O), 

3.8–3.7 (m, 4H, CH2O, CH2N), 3.2–1.0 (m,69H), 0.86 (t, 3H, J=7.1 Hz, CH2CH3).  

13C NMR(400 MHz CD2Cl2): 174.0, 156.7, 151.6, 150.3, 149.9,148.8, 133.5, 132.7, 

131.9, 131.0, 129.6, 108.9, 67.7, 64.0,50.8, 49.8, 49.2, 47.5, 41.7, 38.3, 37.0, 35.9, 35.2, 

34.6, 31.6, 29.2–28.2, 27.7, 26.7–25.8, 22.8, 22.4, 14.1 

Crosslinking experiments 

Hydrogen bonded crosslinking  

The preparation of Poly-123-4 is described as a representative example:  Poly-

123 (190 mg, 0.06 mmol based on the hydrogen bonding functional groups along the 

polymer backbone) was dissolved in 1.72 g of 1-chloronaphthalene (10 weight %).  Then 

16.76 mg (0.06 mmol based on the hydrogen bonding sites allowing for quantitative 

crosslinking) of 4 was added to the sample and the suspension was heated until a clear 

homogenous solution was obtained, which quickly gelled when cooled to room 
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temperature.  The gel was then allowed to rest at room temperature for least twelve hours 

before rheological measurements were carried out. 

Metal coordinated crosslinking 

The preparation of Poly-123-5 is described as a representative example:  Poly-

123 (190 mg, 0.06 mmol based on the metal coordination functional groups along the 

polymer backbone) was dissolved in 1.72 g of 1-chloronaphthalene (10 weight %).  Then 

5.5 mg (0.03 mmol based on the metal coordination sites allowing for quantitative 

crosslinking) of 5 and 11.68 mg of silver tetrafluoroborate were added to the sample and 

the mixture was stirred and annealed at 80 0C for at least six hours.  The sample was then 

allowed to rest at room temperature for twelve hours before the rheological experiments 

were carried out.  The samples gelled upon resting at room temperature after about 1-2 

hours. 

Multi-functional crosslinking 

The preparation of Poly-123-45 is described as a representative example:  Poly-

123 (190 mg, 0.06 mmol based on the metal coordination functional groups along the 

polymer backbone) was dissolved in 1.72 g of 1-chloronaphthalene (10 weight %).  Then 

16.76 mg (0.06 mmol based on the hydrogen bonding sites allowing for quantitative 

crosslinking) of 4  with 5.5 mg (0.03 mmol based on the metal coordination sites 

allowing for quantitative crosslinking) of 5 and 11.68 mg of silver tetrafluoroborate were 

added to the sample and the mixture was stirred and annealed at 80 0C for at least six 

hours.  The sample was then allowed to rest at room temperature for twelve hours before 

the rheological experiments were carried out.   

Rheological characterization 
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The rheological testing protocol of all polymer samples has been described in 

Chapter five.  
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Chapter TEN 

 Future Directions for Multi-Functionalized Side-Chain Functionalized 

Polymeric Systems 

 

10.1 Introduction  

As the field of functional materials design and synthesis continues to demand 

smaller and smaller size ranges for increasingly complex devices and applications, self-

assembly has the potential to emerge as the most important tool available to scientists for 

the development of these materials. Supramolecular side-chain functionalized polymers 

combine the advantages of covalent polymer formation along with side-chain 

functionalization through noncovalent interactions.1,2 As a result of the side-chain 

placement of the noncovalent complex, the main-chain of the polymer is independent of 

the stability of the noncovalent interaction, this allows for a vast number of polymer 

backbones to be used depending upon the desired application in mind. Such a system 

represents the synergistic combination of synthetic polymer chemistry with 

supramolecular chemistry and confers distinct advantages of using such strategy for 

materials design and optimization. Although the current development of synthetic 

polymer chemistry and supramolecular science shall greatly benefit the synthesis of more 

complex controlled polymer architectures using side-chain functionalization, multi-

functionalized systems as of now are greatly under utilized. In this chapter the present 

scenario of multi-functionalized systems will be briefly discussed, focusing on the areas 

of improvement. Finally some potential applications of side-chain multi-functionalization 

will be discussed.  
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 10.2 Present supramolecular multi-functionalized side-chain systems 

The present examples of supramolecular side-chain copolymers reported in the 

literature are limited by two important factors. The first is the lack of multi-

functionalization and second is the limited number of polymer scaffolds being used for 

side-chain functionalization.1 Among the vast numbers of side-chain functionalized 

systems studied, only a handful of them use simultaneous noncovalent multi-

functionalization limiting the applicability of these systems.3-6  The second important 

limitation is the use of only a few of the large number of polymer scaffolds known for 

side-chain functionalization. Technologically as well as commercially important polymer 

scaffolds based on polyolefins, vinylics, poly(esters), poly(amides) etc have scarcely 

been used for multi-functionalization. These polymers scaffolds upon side-chain 

functionalization can give rise to novel materials which are based on commercially 

important materials and thus could offer more practical applications. One of the specific 

challenges of using the concept of side-chain multi-functionalization is the ability to 

functionalize commercially important polymer backbones to allow an extensive impact 

on the existing applications. Emerging functionally tolerant polymerization techniques 

such as ATRP, NMP, RAFT will allow for the synthesis of vast number of polymer 

backbones to be side-chain functionalized via copolymerization of the existing monomer 

with functionalized monomers.  

10.3 Potential applications using multi-functional supramolecular side-chain 

functionalization 

 Three different potential applications of multi-functionalization in regards to 

existing systems in the literature will be discussed. The first will focus on the 
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employment of multiple hydrogen bonding interactions for tuning network properties. 

Multi-functionalization using hydrogen bonding and metal coordination will then be 

discussed in reference to blending of two incompatible commercial polymer backbones. 

The third potential application focuses on hybrid main-chain/side-chain systems 

involving hydrogen bonding and metal coordination interactions. 

10.3.1 Tuning the viscosity by using multiple hydrogen bonding interactions 

 As seen in chapter seven, the use of multiple hydrogen bonding interactions 

allows one to tailor the micro-structure of networks, which in turn can be used to tailor 

the physical properties of materials.  Such a system can be employed using commercially 

important polymer scaffolds such as poly(isoprene), poly(butadiene), poly(ethylene) etc 

which are normally above their glass transition temperatures at room temperature and can 

act as ideal commercial polymer backbones for room temperature-viscosity modulating 

systems. Chino and coworkers functionalized maleated poly(isoprene) with amino 

triazole to form a functionalized polymer with pendant triazole and carboxylic acid 

groups which resulted in self-dimerizing hydrogen bonded crosslinking. The inter-chain 

hydrogen bonded crosslinking enhanced the properties of the rubber7. The use of multiple 

complementary hydrogen interactions for polymer crosslinking will offer more 

advantages than using the self-dimerizing interactions used by Chino and coworkers.8,9 

Figure 10.1 depicts the example of using poly(isoprene) as a commercial polymer 

backbone for such an application. Poly(isoprene)  can be functionalized with cyanuric 

acid functional groups by copolymerizing cyanuric acid functionalized monomer with 

isoprene. Appropriate post-polymerization functionalization can also be used to get the 

functionalized poly(isoprene) backbone. The resultant functionalized polymer scaffold 



 263 

can then be crosslinked by the addition of 2,4-diaminotriazine (or melamine) through 

complementary hydrogen bonding interactions (Path A, Figure 10.1) resulting in the 

formation of a viscoelastic multi-point array network. Since the inter-chain crosslinking 

involves complementary hydrogen bonding moieties, the physical properties of the 

material can be controlled by varying the degree of crosslinking by monitoring the 

amount of the crosslinking agent added to the system. Such modulation of the network 

properties is not possible in the self-dimerizing network employed by Chino and 

coworkers. 

 The physical properties of the network can be modulated by addition of the 

monotopic Hamilton Wedge (Path B, Figure 10.1), resulting in the disruption of the array 

network causing decrosslinking and lowering of the viscosity of the material. 

Furthermore, the extent to which the viscosity is lowered can be controlled by the 

monitoring the concentration of monotopic wedge agent added. 
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Figure 10.1 Modulating the physical properties of polyisoprene-based system by 
complementary multi-functional hydrogen bonding interactions.  
 

Path C shown in Figure 10.1 depicts directed re-crosslinking of the cyanuric acids 

by the addition of a ditopic Hamilton wedge crosslinking agent which would result in the 

transformation of the viscoelastic gel to a highly viscous liquid. As explained in chapter 
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seven, the viscosity of the material can be tuned by monitoring the concentration of the 

ditopic crosslinking agent added. 

Hence by using complementary multi-functionalized hydrogen bonding 

interactions, it is possible to optimize important materials properties such as viscosity 

reversibly and rapidly. Commercially important materials such as adhesives, coatings and 

elastomeric materials are potential targets for using this system. 

10.3.2 Polymer blends using multiple noncovalent interactions 

 Noncovalent interactions especially hydrogen bonding and metal coordination 

offer new important strategies to blend two inherently incompatible polymers. 

Zimmerman and co-workers employed a four-point hydrogen bonding system between 

urea of guanosine (UG) and 2,7-diamido-1,8-naphthyridine (DAN) ( Ka ~ 5 X 10
7 M-1), 

to blend two immiscible polymers such as poly(styrene) and poly(butylacrylate).10,11 This 

approach although offers advantages over conventional blend processes, the resultant 

hydrogen bonded blend is thermoreversible. As a result at higher temperatures due to the 

hydrogen bond disruption, the system has a high propensity for phase separation of the 

two polymer backbones. By combining metal coordination for polymer blending along 

with the hydrogen bonding interactions, the thermal response of the resultant blend can 

be fine tuned for a low thermal response with a high degree of metal crosslinking. 

Alternately one can increase the thermal response by using a high degree of hydrogen 

bonding crosslinking. 
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Figure 10.2 Multi-functionalized poly(styrene):poly(butylmethacrylate) blend using 
hydrogen bonding and metal coordination interactions. 
 

Such a multi-functionalized polymer blend system using hydrogen bonding 

interactions based on the urea of guanosine (UG) and 2,7-diamido-1,8-naphthyridine 

(DAN) and metal coordination based on the SCS-Pd pincer-pyridine complex12 is shown 

in Figure 10.2. In this system, both the polymers are side-chain functionalized with 

pyridine groups along with the hydrogen bonding functional groups, pyridine 

functionalized polymers have been crosslinked using ditopic SCS Pd pincer complex (B) 

before by Craig and coworkers.13  Pyridine functionalized polymers can be achieved from 
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the existing system shown by Zimmerman. 4-Vinyl pyridine can be copolymerized with 

styrene, styrene-DAN monomers, to get the pyridine-DAN functionalized poly(styrene) 

backbone. Whereas by copolymerizing pyridine-functionalized acrylate monomer (A) 

with the butyl acrylate and the gaunosine functionalized monomer the pyridine-

Guanosine functionalized polyacrylate polymer can be obtained. 

The resultant multi-functionalized polystyrene and polyacrylate can be either 

blended via (i) hydrogen bonding between the DAN-Guanosine interactions to form a 

thermoresponsive blend, or (ii) metal coordination using a ditopic SCS Pd pincer 

crosslinking agent (B) to form a chemical responsive blend or (iii) simultaneous multi-

functional crosslinking to obtain a multi-responsive blend which shows both chemical as 

well as thermal responsiveness. 

 Hence side-chain multi-functionalization methodology for polymer blending can 

result in novel polymer blends whose properties can be tuned varying the 

functionalization technique used for the blending mechanism. 

10.3 Multi-functionalized hybrid main-chain side-chain systems  

  Although the vast numbers of supramolecular main-chain as well as side-chain 

polymers have been reported in the literature, there are very few reports of main-

chain/side-chain hybrid systems. These hybrid systems offer exciting possibilities of 

using multiple noncovalent interactions to form multi-responsive materials. Since the 

polymer backbone is composed of noncovalent complexes, it becomes imperative to use 

the stronger noncovalent complex to form the polymer backbone. The weaker 

noncovalent interaction can be used for side-chain functionalization or crosslinking 

reactions, which will not disrupt the polymer backbone. 
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 Rowan and coworkers have utilized metal coordination interactions to form a 

main-chain supramolecular polymer with a conjugated polymer backbone.14 They utilized 

Zn- methylbenzimidazolyl)pyridine (Mebip) complexes to form a supramolecular 

conjugated polymer based on poly(2,5-dialkoxy-p-phenylene ethynylene) core (Poly-A)  

as shown in Figure 10.3. By copolymerizing a cyanuric acid functionalized monomer, a 

multi-functional polymer scaffold will be obtained, which will consist of a main-chain 

supramolecular polymer consisting of metal coordination interactions with pendant 

cyanuric acid functional groups (Poly-B) as shown in Figure 10.3.  

By using hydrogen bonding interactions the polymer can be either (i) reversibly 

functionalized using a monofunctionalized hydrogen bonded moiety15 or (ii) reversibly 

crosslinked using a hydrogen bonding crosslinking agent5 to form a thermoreversible 

polymer network which will also show chemical responsiveness due to the presence of 

the metal coordinated complexes in the main-chain.16 Hence by using the appropriate 

noncovalent interactions for generating main-chain as well as side-chain hybrid systems, 

multi-stimuli responsive materials can be generated as desired. 
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Figure 10.3 (PolyA)-Zn-PPE based metallo-supramolecular polymer, (Poly-B) - cyanuric 
acid side-chain functionalized (Poly-A). Inset: Photograph of a polymer film composed 
of Poly-A.14 
 
10.4 Conclusions 

This thesis began with the introduction of side-chain multi-functionalization 

concept as an alternative route to the highly complex and laborious covalent technique 

used conventionally for synthesizing highly functionalized polymers. The synthetic 

pathway to obtain such well-defined multi-functionalized polymers has been realized by 

the successful combination of ROMP and noncovalent chemistry. Furthermore, the 

orthogonality of these multiple interactions has also been established thus paving the way 

for their use in materials designing. To validate the practical applicability of this concept 

in the field of materials designing, the synthesized side-chain functionalized polymers 

were reversibly crosslinked using noncovalent interactions. It was seen that by using this 

concept, the mechanical properties of the networks could be controlled and modulated to 

a large degree. Furthermore, by using specific type of noncovalent interaction, it was also 

possible to tune the responsiveness of these materials towards external stimuli, thus 

making these materials potential candidates for “smart materials”.  
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In conclusion, the work accomplished in the thesis has the potential to positively 

impact the field of supramolecular multi-functionalized side-chain copolymers. The 

multi-functionalization methodology has great potential for designing tailor-made 

materials and for understanding the structure-property relationship in supramolecular 

polymers. The ongoing advances in the field of supramolecular polymer chemistry will 

further open vast number of possibilities in the field of material designing, enabling 

easier synthesis, optimization and tuning of “smart materials” for emerging applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 271 

10.5 References 

(1) Pollino, J. M.; Weck, M. "Non-covalent side-chain polymers: Design principles, 
functionalization strategies, and perspectives". Chemical Society Reviews 2005, 34, 1078. 
 
(2) Weck, M. "Side-chain functionalized supramolecular polymers". Polymer 
International 2007, 56, 453-460. 
 
(3) Bazuin, C. G.; Brodin, C. "Thermotropic liquid crystalline complexes of hydrogen-
bonded poly(pyridylpyridinium dodecyl methacrylate) bromide and octylphenol". 
Macromolecules 2004, 37, 9366-9372. 
 
(4) Nair, K. P.; Pollino, J. M.; Weck, M. "Noncovalently functionalized block 
copolymers possessing both hydrogen bonding and metal coordination centers". 
Macromolecules 2006, 39, 931-940. 
 
(5) Pollino, J. M.; Nair, K. P.; Stubbs, L. P.; Adams, J.; Weck, M. "Crosslinked and 
functionalized universal polymer backbones via simple, rapid, and orthogonal multi-site 
self-assembly". Tetrahedron 2004, 60, 7205-7215. 
 
(6) Pollino, J. M.; Stubbs, L. P.; Weck, M. "One-step multifunctionalization of random 
copolymers via self-assembly". Journal of the American Chemical Society 2004, 126, 
563-567. 
 
(7) Chino, K.; Ashiura, M. "Thermoreversible cross-linking rubber using supramolecular 
hydrogen-bonding networks". Macromolecules 2001, 34, 9201-9204. 
 
(8) Kihara, H.; Kato, T.; Uryu, T.; Fréchet, J. M. J. "Supramolecular liquid-crystalline 
networks built by self-assembly of multifunctional hydrogen-bonding molecules". 
Chemistry of Materials 1996, 8, 961-968. 
 
(9) Thibault, R. J.; Hotchkiss, P. J.; Gray, M.; Rotello, V. M. "Thermally reversible 
formation of microspheres through non-covalent polymer cross-linking". Journal of the 
American Chemical Society 2003, 125, 11249-11252. 
 
(10) Park, T.; Zimmerman, S. C. "Formation of a miscible supramolecular polymer blend 
through self-assembly mediated by a quadruply hydrogen-bonded heterocomplex". 
Journal of the American Chemical Society 2006, 128, 11582-11590. 
 
(11)  Zimmerman, S. C.; Corbin, P. S. "Heteroaromatic modules for self-assembly using 
multiple hydrogen bonds". Structure and Bonding  2000, 96, 63-94. 
 
(12) Pollino, J. M.; Weck, M. "Supramolecular side-chain functionalized polymers: 
Synthesis and self-assembly behavior of polynorbornenes bearing Pd(II) SCS pincer 
complexes". Synthesis 2002, 1277-1285. 



 272 

(13) Serpe, M. J.; Craig, S. L. "Physical organic chemistry of supramolecular polymers". 
Langmuir 2007, 23, 1626-1634. 
 
(14) Knapton, D.; Rowan, S. J.; Weder, C. "Synthesis and properties of metallo-
supramolecular poly(p-phenylene ethynylene)s". Macromolecules 2006, 39, 651-657. 
 
(15) Burd, C.; Weck, M. "Self-sorting in polymers". Macromolecules 2005, 38, 7225. 
 
(16) Beck, J. B.; Rowan, S. J. "Multistimuli, multiresponsive metallo-supramolecular 
polymers". Journal of the American Chemical Society 2003, 125, 13922-13923. 
 
 
 

 


