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SUMMARY

Unsupervised learning has become more and more important due to the recent

explosion of data. Clustering, a key topic in unsupervised learning, is a well-studied

task arising in many applications ranging from computer vision to computational

biology to the social sciences. This thesis is a collection of work exploring two modern

aspects of clustering: stability and scalability.

In the first part, we study clustering under a stability property called perturbation

resilience. As an alternative approach to worst case analysis, this novel theoretical

framework aims at understanding the complexity of clustering instances that satisfy

natural stability assumptions. In particular, we show how to correctly cluster in-

stances whose optimal solutions are resilient to small multiplicative perturbations on

the distances between data points, significantly improving existing guarantees. We

further propose a generalized property that allows small changes in the optimal so-

lutions after perturbations, and provide the first known positive results in this more

challenging setting.

In the second part, we study the problem of clustering large scale data distributed

across nodes which communicate over the edges of a connected graph. We provide

algorithms with small communication cost and provable guarantees on the clustering

quality. We also propose algorithms for distributed principal component analysis,

which can be used to reduce the communication cost of clustering high dimensional

data while merely comprising the clustering quality.

In the third part, we study community detection, the modern extension of clus-

tering to network data. We propose a theoretical model of communities that are

x



stable in the presence of noisy nodes in the network, and design an algorithm that

provably detects all such communities. We also provide a local algorithm for large

scale networks, whose running time depends on the sizes of the output communities

but not that of the entire network.

xi



CHAPTER I

INTRODUCTION

This thesis develops new frameworks and designs algorithms for new aspects of clus-

tering, a key topic in unsupervised learning. These modern aspects of clustering,

including a focus on scalability and stability, are areas of significant practical impor-

tance and rising concerns. Traditional clustering analysis tends not to capture these

new aspects, hence new frameworks and algorithms are desirable.

Generally, the goal of clustering is to identify meaningful subsets (called clusters)

within a set of data points. The clusters are selected in such a way so that the points in

the same clusters are more similar to each other than to the points in different clusters.

Clustering is unsupervised because it does not make use of annotated data in order

to estimate the aforementioned clusters. Instead, the clusters are identified only by

using the characteristics of the data points, such as the feature vector representation

of the points, or the distances between them.

There are different paradigms for clustering in the literature, among which are

the following common approaches.

• Objective-based clustering, which imposes a quantitative objective and assumes

that the target clustering is equal or close to the partition that optimizes the

objective. For example, in the classic k-means clustering [81, 5], the points

are partitioned into k clusters and each cluster is assigned a center, and the

objective function is the sum of the squared distances between the points and

their centers. The goal is then to find the partitioning and cluster centers that

minimize the given objective. Another example is k-median clustering, whose

objective is the sum of the distances between the points and their centers.
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• Hierarchical clustering, which builds a hierarchy (typically a tree) of clusters

instead of a partition. This includes both agglomerative and divisive algorithms.

The agglomerative algorithms typically begin with each point being a cluster,

and then repeatedly merge the two closest clusters, where the closeness between

clusters is specified by some criterion such as single-linkage, complete-linkage,

or average-linkage [98, 66, 44]. The divisive algorithms typically begin with

all points in one cluster, and then repeatedly split one current cluster into

several clusters based on some subroutine, such as k-means [100] or spectral

clustering [31].

• Distribution-based clustering, which models the generative distribution of the

data by statistics and probabilities. For example, the mixture of Gaussians

model [37] assumes the points are generated from a mixture of Gaussian distri-

butions, and aims at recovering the parameters of the mixture.

• Graph clustering, which organizes the data on the basis of the edge structure

between the points and identifies the clusters by studying the edge structure.

The edges can be deterministically given by the application, such as the links

between the members of a social network. The clusters can then be identified

by optimizing some criterion, such as conductance [61], or cut ratio [85]. In this

case, the approach is closely related to objective-based clustering. The edges

can also be generated from some distribution. For example, in the planted

k-partition model [34], the points are divided into k clusters, and points in

the same clusters are connected with probability p while points in different

clusters are connected with probability q, where p, q are two parameters. The

clusters can then be identified by estimating the distribution parameters. In

this case, the approach is closely related to distribution-based clustering. In

some literature on network analysis, graph clustering is also called community
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detection [51, 90].

• Set system clustering, which specifies some properties the collection of clusters

should satisfy and aims at finding such a collection. For example, [22] aimed

at finding the collection of clusters such that for any two points p and q in the

same cluster and any point w outside the cluster, w is farther away from at

least one of p and q than p is from q. Some other work [67, 1] specifies a set of

axioms for partitioning the data, and studies the existence and uniqueness of

such partition procedures.

This thesis considers objective-based clustering where we are given the number k

of clusters and the distances between the data points. First, it is one of the most fre-

quently used and studied approaches. Second, as described in the paragraphs above,

other approaches are closely related to the objective-based clustering. For example,

divisive hierarchical clustering algorithms may have a subroutine that is objective-

based, and estimating the parameters in distribution-based clustering may reduce to

optimizing some objective function over the sampled points. Third, although it has

been well studied, there are new challenges that are not (fully) addressed by existing

analysis. This thesis also considers graph clustering (named community detection in

some network analysis literature) due to the recent explosion of network data and the

increasing interest in understanding them.

We focus on two modern aspects of the two clustering approaches considered:

stability and scalability.

First, since optimizing most natural clustering objectives is NP-hard, there has

been an increasing interest in moving beyond worst-case analysis of clustering based

on the stability properties of the target [92, 14, 9, 26, 69, 8]. Such stability properties

formalize what is implicitly assumed about the practically interesting instances. Bilu

and Linial [26] proposed such a property called perturbation resilience, which assumes

3



that the optimal solution does not change under small multiplicative perturbations to

the pairwise distances. The first part of this thesis provides a study of this property for

center-based clustering (including k-median and k-means) and min-sum clustering,

and the generalization of this property that allows small changes in the optimal

solutions after perturbations.

Another trend of modern clustering tasks is to deal with large scale data, especially

those collected in the distributed setting. A natural question in this setting is how

to compute high quality solutions with low communication. Due to the constraint

on communication, most distributed applications only ask for a good approximate

solution. Ideally, there is a tradeoff between the communication and the solution

quality, so that the application can choose its sweet spot between the two: with

more communication, the solution quality gets better; with a suitable amount of

communication, the error can be within any given small distance from that of a given

centralized algorithm on the global data. The second part of the thesis provides a

study of such a tradeoff, and further discusses how to reduce the communication

of k-means clustering of high dimensional data by distributed principal component

analysis.

Finally, the third part of the thesis turns to community detection on network

data. We propose a model of communities based on a stability property with respect

to noisy nodes in the network, and design an algorithm which provably detects all such

stable communities. Furthermore, we design a local algorithm to handle large scale

networks, whose running time of finding a community for a given node is independent

of the size of the entire network.

4



1.1 Clustering under Perturbation Resilience

For most natural clustering objectives, finding the optimal solution to the objective

function is NP-hard. As a consequence, there has been substantial work on approx-

imation algorithms [59, 29, 23, 40, 6] with both upper and lower bounds on the ap-

proximability of these objective functions on worst case instances. Bilu and Linial [26]

suggested an interesting alternative approach aimed at understanding the complexity

of clustering instances which arise in practice. They argued that interesting instances

should be resilient to small perturbations in the distances, and specifically defined an

instance to be α-perturbation resilient for an objective if perturbing pairwise distances

by multiplicative factors in the range [1, α] does not change the optimum clustering

under the objective. Two important questions raised are: (1) how much resilience is

required so that one can develop algorithms for important clustering objectives? (2)

the resilience definition requires the optimal solution to remain exactly the same after

perturbation: can one succeed under weaker conditions?

In Chapter 2, we address both of these questions. First, for center-based ob-

jectives, we design a polynomial time algorithm for finding the optimal solution for

instances resilient to perturbations of value α = 1 +
√

2, thus beating the previously

best known factor of 3 in [9]. Second, for k-median (which is a specific center-based

objective), we consider a weaker, relaxed, and more realistic notion of perturbation-

resilience where we allow the optimal clustering of the perturbed instance to differ

from the optimal of the original in a small ε fraction of the points. Compared to the

original perturbation resilience assumption, this is arguably a more natural though

also more difficult condition to deal with. We give positive results for this case as well,

showing for α > 4 we can in polynomial time compute a (1 +O(ε/ρ))-approximation

to the optimum, where ρ is the fraction of the points in the smallest cluster.

We further give positive results for min-sum clustering, which is a generally much

harder objective than center-based objectives. For α-perturbation resilient min-sum
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instances, we provide the first polynomial time algorithm for optimally clustering

when α is in the order of the ratio between the sizes of the largest and smallest

clusters. For (α, ε)-perturbation resilient min-sum instances with α in the order of the

ratio between the sizes of the largest and smallest clusters and ε = Õ(ρ), we provide

a polynomial time algorithm that outputs a clustering that is both a (1 + Õ(ε/ρ))-

approximation and Õ(ε)-close to the optimal clustering.

We additionally provide sublinear time algorithms both for the k-median and min-

sum objectives, showing algorithms that can return an implicit clustering from only

access to a small random sample.

1.2 Distributed Clustering

Most classic clustering algorithms are designed for the centralized setting, but in

recent years large scale data has become distributed over different locations. As a

consequence, it has become crucial to develop clustering algorithms which are effec-

tive in the distributed setting. Several algorithms for distributed clustering have been

proposed and empirically tested. Some of these algorithms [48, 101, 38] are direct

adaptations of centralized algorithms which rely on statistics that are easy to com-

pute in a distributed manner. Other algorithms [60, 64] generate summaries of local

data and transmit them to a central coordinator which then performs the clustering

algorithm. They do not provide theoretical guarantees on the clustering quality, or

the reduction in communication cost. Additionally, most of these algorithms assume

that the distributed nodes can communicate with all other sites or that there is a

central coordinator that communicates with all other sites.

In Chapter 3, we study the problem of distributed clustering where the data is

distributed across nodes which communicate over the edges of an arbitrary connected

graph. We provide algorithms for k-means and k-median clustering, which have low

communication costs and provable guarantees on the clustering quality. Our technique

6



for reducing communication in general graphs is based on the construction of a small

set of points called coresets [57], which act as a proxy for the entire data set. An

ε-coreset is a weighted set of points whose cost on any set of centers is approximately

the cost of the original data on those same centers (up to a multiplicative factor 1+ε),

thus an α-approximate solution for the coreset is also an α(1 + O(ε))-approximate

solution for the original data. In our distributed algorithms for k-means and k-

median, each node constructs a local portion of a global coreset. Communicating the

total cost of local approximate solutions to each node is enough for the construction,

leading to low communication cost overall. The nodes then share the local portions

of the coreset, which can be done efficiently in general graphs using a message passing

approach. The total communication cost then is proportional to the number of points

in the coreset, which is Õ(kd + sk) for constant ε, where d is the dimension of the

data and s is the number of the nodes in the communication graph.

The number of points in the coreset is independent of the number of points in the

original data, which is useful for large scale applications. However, it is linear in the

dimension of the data, leading to a communication cost quadratic in the dimension,

which is not scalable to high dimensional data. We propose a distributed principal

component analysis algorithm, which projects the data to a subspace of dimension

O(k/ε2) with a communication cost of O(skd/ε2) words. We show that its output

represents the original data in the sense that any α-approximation solution of k-means

clustering on the projected data is an α(1 + ε)-approximation solution on the original

data. We can then apply the aforementioned coreset based distributed clustering

algorithm, whose communication cost is now independent of the number of points in

the original data and their dimension.

7



1.3 Community Detection

In analyzing a social network, it is meaningful to identify interesting subsets called

communities based on the affinities between the members (nodes) of the social net-

work. In Chapter 4, we propose a theoretical model that formalizes the collection

of target communities. In our model, each node of a community falls into a sub-

community and the sub-communities within this community have active interactions

with each other, while entities outside this community have fewer interactions with

nodes inside. To deal with practical noise, we only require the communities to satisfy

the above property after removing a few nodes from the network. This means that

such communities are stable in the presence of a few exceptional or irregular outliers

(such as a member connected to almost all the other members, or a member whose

affinity data with others have been corrupted). Given this formalization, we then

propose an efficient algorithm that detects all the communities in this model, and

prove that all the communities form a tree hierarchy. Furthermore, a local algorithm

is designed to handle large scale networks. Such an algorithm takes a node in the

network as input, and outputs a community containing this node. Its running time

depends on the size of the output community but not that of the entire network, and

thus it is particularly suitable for large scale networks.

1.4 Summary and Bibliographic Information

The thesis is organized as follows.

• In Chapter 2 we study the objective-based clustering under a stability notion

called perturbation resilience. We improve the existing bound for center-based

objectives including k-median and k-means, and provide the first known bound

for the min-sum objective. We further propose a generalization of perturbation

resilience, and provide the first known bounds under this generalization for the

k-median and min-sum objectives. Finally, we provide sublinear time algorithms
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for the k-median and min-sum objectives. Part of this chapter is based on the

work that appears in [19].

• In Chapter 3 we provide algorithms for k-means and k-median clustering in the

distributed setting, where the data is distributed across nodes which communi-

cate over the edges of a connected graph. We bound the communication cost

and clustering quality in our algorithms. For k-means clustering of high dimen-

sional data, we further provide an algorithm that first reduces the dimension

by distributed PCA and then performs clustering. This chapter is mostly based

on the work that appears in [78] and [79].

• In Chapter 4 we propose a model for communities over networks, and provide

an algorithm that provably detects all such communities. We further propose

a local algorithm for large scale networks. Part of this chapter is based on the

work that appears in [20].

Other work that we have done but not included in the thesis includes the following.

In [17], we study learning disjunctions in the semi-supervised and active setting, and

provide efficient algorithms with nearly optimal label complexity. In [24], we study

the problem of learning sparse combinations of elements distributed across a network,

and propose a distributed Frank-Wolfe algorithm that solves this class of problems in

a scalable and communication-efficient way. In [43], we provide an efficient algorithm

for learning the spread of information over networks, based on the insight that the

information influence functions in many models are special combinatorial functions

called coverage functions and can be learned by convex combinations of random basis

functions. In [42], we provide a novel formulation for influence maximization of

multiple information items as a submodular maximization under the intersection of

a matroid and multiple knapsack constraints, the special structure of which leads to

an efficient algorithm with an approximation factor better than known guarantees.
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CHAPTER II

CLUSTERING UNDER PERTURBATION RESILIENCE

As discussed in the introduction, a common approach for solving clustering problems

is objective-based clustering. We are given the number k of clusters and the distances

between the data points, and we want to optimize various objective functions such as

k-median or min-sum. In the k-median clustering approach, the goal is to partition

the data into k clusters Ci, giving each a center ci, in order to minimize the sum

of the distances of all data points to the centers of their cluster. In the min-sum

clustering approach, the goal is to partition the data into k clusters Ci that minimize

the sum of all intra-cluster pairwise distances. Yet unfortunately, for these natural

clustering objectives [55, 59], finding the optimal solution to the objective function

is NP-hard. As a consequence, there has been substantial work on approximation

algorithms [59, 29, 23, 40, 6] with both upper and lower bounds on the approximability

of these objective functions on worst case instances.

Recently, Bilu and Linial [26] suggested an exciting, alternative approach aimed

at understanding the complexity of clustering instances which arise in practice. Moti-

vated by the fact that distances between data points in clustering instances are often

based on a heuristic measure, they argue that interesting instances should be resilient

to small perturbations in these distances. In particular, if small perturbations can

cause the optimum clustering for a given objective to change drastically, then that

probably is not a meaningful objective to be optimizing. Bilu and Linial [26] specifi-

cally define an instance to be α-perturbation resilient1 for an objective Φ if perturbing

pairwise distances by multiplicative factors in the range [1, α] does not change the

1Bilu and Linial [26] refer to such instances as perturbation stable instances.
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optimum clustering under Φ.2 They consider in detail the case of Max-Cut clustering

and give an efficient algorithm to recover the optimum when the instance is resilient

to perturbations on the order of α = O(
√
n).

Two important questions raised by the work of Bilu and Linial [26] are: (1) the

degree of resilience needed for their algorithm to succeed is quite high: can one develop

algorithms for important clustering objectives that require much less resilience? (2)

the resilience definition requires the optimum solution to remain exactly the same after

perturbation: can one succeed under weaker conditions? In the context of center-based

clustering objectives such as k-median and k-center, [9] partially address the first of

these questions and show that an algorithm based on the single-linkage heuristic can

be used to find the optimal clustering for α-perturbation-resilient instances for α = 3.

They also conjecture it to be NP-hard to beat 3 and prove beating 3 is NP-hard for

a related notion.

In this work, we address both questions raised by [26] and additionally improve

over [9]. First, for the center-based objectives we design a polynomial time algorithm

for finding the optimum solution for instances resilient to perturbations of value α =

1+
√

2, thus beating the previously best known factor of 3 in [9]. Second, for k-median

(which is a specific center-based objective), we consider a weaker, relaxed, and more

realistic notion of perturbation-resilience where we allow the optimal clustering of the

perturbed instance to differ from the optimal of the original in a small ε fraction of the

points. Compared to the original perturbation resilience assumption, this is arguably

a more natural though also more difficult condition to deal with. We give positive

results for this case as well, showing for somewhat larger values of α that we can

still achieve a near-optimal clustering on the given instance (see Section 1.1 below for

precise results). We additionally give positive results for min-sum clustering which is

2Of course, the score of the optimal solution will change; what the definition requires is that the
partitioning induced by the optimum remains the same.
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a generally much harder objective than center-based objectives. For example, the best

known guarantee for min-sum clustering on worst-case instances is an O(δ−1 log1+δ n)-

approximation algorithm that runs in time nO(1/δ) due to Bartal et al. [23]; by contrast,

the best guarantee known for k-median is factor 1 +
√

3 + ε [76].

Our results are achieved by carefully deriving structural properties of perturbation-

resilience. At a high level, all the algorithms we introduce work by first running ap-

propriate linkage procedures to produce a hierarchical clustering, and then running

dynamic programming to retrieve the best k-clustering present in the tree. To ensure

that (under perturbation resilient instances) the hierarchy output in the first step has

a pruning of low cost, we derive new linkage procedures (closure linkage and robust

average linkage) which are of independent interest. While the overall analysis is quite

involved, the clustering algorithms we devise are simple and robust. This simplicity

and robustness allow us to show how our algorithms can be made sublinear time by

returning an implicit clustering from only a small random sample of the input.

From a learning theory perspective, the resilience parameter, α, can also be seen

as an analog to a margin for clustering. In supervised learning, the margin of a data

point is the distance, after scaling, between the data point and the decision boundary

of its classifier, and many algorithms have stronger guarantees when the smallest

margin over the entire data set is sufficiently large [96, 102]. The α parameter,

similarly controls the magnitude of the perturbation the data can withstand before

being clustered differently, which is, in essence, the data’s distance to the decision

boundary for the given clustering objective. Hence, perturbation resilience is also a

natural and interesting assumption to study from a learning theory perspective.

Our Results: In this work, we greatly advance the line of work of [26] by solving

a number of important problems of clustering perturbation-resilient instances under

metric center-based and min-sum objectives.

In Section 2.2 we improve on the bounds of [9] for α-perturbation resilient instances
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for center-based objectives, giving an algorithm that efficiently3 finds the optimum

clustering for α = 1 +
√

2. Most of the frequently used center-based objectives,

such as k-median, are NP-hard to even approximate, yet we can recover the exact

solution for perturbation resilient instances. Our algorithm is based on a new linkage

procedure using a new notion of distance (closure distance) between sets that may be

of independent interest.

In Section 2.3 we consider the more challenging and more general notion of (α, ε)-

perturbation resilience for k-median, where we allow the optimal solution after per-

turbation to be ε-close to the original. We provide an efficient algorithm which for

α > 4 produces (1+O(ε/ρ))-approximation to the optimum, where ρ is the fraction of

the points in the smallest cluster. The key structural property we derive and exploit is

that, except for εn bad points, most points are α times closer to their own center than

to any other center. To eliminate the noise introduced by the bad points, we carefully

partition the points into a list of sufficiently large blobs, each of which contains only

good points from one optimal cluster. This then allows us to construct a tree on the

blobs with a low-cost pruning that is a good approximation to the optimum.

In Section 2.4 we provide the first efficient algorithm for optimally clustering α-

perturbation resilient min-sum instances. Our algorithm is based on an appropriate

modification of average linkage that exploits the structure of min-sum perturbation

resilient instances.

In Section 2.5, we show that for (α, ε)-perturbation resilient min-sum instances

with α in the order of the ratio between the sizes of the largest and smallest clusters

and ε = Õ(ρ), there exists a polynomial time algorithm that outputs a clustering that

is both a (1 + Õ(ε/ρ))-approximation and Õ(ε)-close to the optimal clustering.

We also provide sublinear-time algorithms both for the k-median and min-sum

3For clarity, in this paper efficient means polynomial in both n (the number of points) and k (the
number of clusters).

13



objectives (Sections 2.3.3 and 2.4.1), showing algorithms that can return an implicit

clustering from only access to a small random sample.

Related Work: A subsequent work of [26] by Bilu, Daniely, Linial and Saks [27]

studied the Max-Cut problem under Bilu and Linial stability, and showed how to

solve in polynomial time (1 + ε)-stable instances of metric and dense Max-Cut, and

Ω(
√
n)-stable instances of general Max-Cut. The later bound is further improved

by Makarychev, Makarychev and Vijayaraghavan [84]. They proposed a polyno-

mial time exact algorithm for Ω(
√

log n log log n)-stable Max-Cut instances based on

semidefinite programming. They also proved that for Max k-Cut with k ≥ 3, there

is no polynomial-time algorithm that solves ∞-stable instances of Max k-Cut unless

NP = RP. Here an instance is ∞-stable if it is α-stable for every α.

In the context of objective-based clustering, several recent papers have shown how

to exploit other notions of stability for overcoming the existing hardness results on

worst case instances. The ORSS stability notion of Ostrovsky, Rabani, Schulman

and Swamy [92, 9] assumes that the cost of the optimal k-means solution is small

compared to the cost of the optimal (k−1)-means solution. The BBG approximation

stability condition of Balcan, Blum and Gupta [14] assumes that every nearly optimal

solution is close to the target clustering. Awasthi, Sheffet and Blum [8] proposed a

stability condition called weak-deletion stability, and showed that it is implied by

both the ORSS stability and the BBG stability. Kumar and Kannan [69] proposed

a proximity condition which assumes that in the target clustering, most data points

satisfy that they are closer to their center than to any other center by an additive

factor in the order of the maximal standard variance of their clusters in any direction.

Their results are improved by Awasthi and Sheffet [10], which proposed a weaker

version of the proximity condition called center separation, and designed algorithms

achieving stronger guarantees under this weaker condition.

Several recent papers have shown how to exploit the structure of perturbation
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resilient instances in order to obtain better approximation guarantees (than those

possible on worst case instances) for other difficult optimization problems. These

include the game theoretic problem of finding Nash equilibria [15, 80] and the classic

traveling salesman problem [86].

2.1 Preliminaries

In a clustering instance, we are given a set P of n points in a finite metric space,

and we denote d : P × P → R≥0 as the distance function. Φ denotes the objective

function over a partition of P into k < n clusters which we want to optimize over the

metric, ie. Φ assigns a score to every clustering. The optimal clustering with respect

to Φ is denoted as C = {C1, C2, . . . , Ck}, and its cost is denoted as OPT . The core

concept we study in this paper is the perturbation resilience notion introduced by [26].

Formally:

Definition 1. A clustering instance (P, d) is α-perturbation resilient to a given objec-

tive Φ if for any function d′ : P×P → R≥0 s.t. ∀p, q ∈ P, d(p, q) ≤ d′(p, q) ≤ αd(p, q),

there is a unique optimal clustering C ′ for Φ under d′ and this clustering is equal to

the optimal clustering C for Φ under d.

In this paper, we focus on the center-based and min-sum objectives. For the

center-based objectives, we consider separable center-based objectives defined by [9].

Definition 2. A clustering objective is center-based if the optimal solution can be

defined by k points c1, · · · , ck in the metric space called centers such that every data

point is assigned to its nearest center. Such a clustering objective is separable if it

furthermore satisfies the following two conditions:

• The objective function value of a given clustering is either a (weighted) sum or

the maximum of the individual cluster scores.

• Given a proposed single cluster, its score can be computed in polynomial time.
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One particular center-based objective is the k-median objective. We partition

P into k disjoint subsets P = {P1, P2, . . . , Pk} and assign a set of centers p =

{p1, p2, . . . , pk} ⊆ P for the subsets. The goal is to minimize Φ(P ,p) =
∑k

i=1

∑
p∈Pi

d(p, pi).

The centers in the optimal clustering are denoted as c = {c1, . . . , ck}. Clearly, in an

optimal solution, each point is assigned to its nearest center. In such cases, the

objective is denoted as Φ(c).

For the min-sum objective, we partition P into k disjoint subsets P = {P1, P2, . . . , Pk},

and the goal is to minimize Φ(P) =
∑k

i=1

∑
p,q∈Pi

d(p, q). Note that we sometimes

denote Φ as ΦP in the case where the distinction is necessary, such as in Section 2.3.3.

In Section 2.3 we consider a generalization of Definition 1 where we allow a small

difference between the original optimum and the new optimum after perturbation.

Formally:

Definition 3. Let C be the optimal k-clustering and C ′ be another k-clustering of a

set of n points. We say C ′ is ε-close to C if minσ∈Sk
∑k

i=1 |Ci \C ′σ(i)| ≤ εn, where σ is

a matching between indices of clusters of C ′ and those of C.

Definition 4. A clustering instance (P, d) is (α, ε)-perturbation resilient to a given

objective Φ if for any function d′ : P × P → R≥0 s.t. ∀p, q ∈ P, d(p, q) ≤ d′(p, q) ≤

αd(p, q), the optimal clustering C ′ for Φ under d′ is ε-close to the optimal clustering

C for Φ under d.

For A,B ⊆ P we define d(A,B) :=
∑

p∈A
∑

q∈B d(p, q) and d(p,B) := d({p}, B).

Also, we define da(A,B) := d(A,B)/(|A||B|) and da(p,B) := da({p}, B). For sim-

plicity, we will sometimes assume that mini |Ci| is known. (Otherwise, we can simply

search over the n possible different values.)

Finally, if A∩B = ∅, we sometimes write A∪B as A+B to emphasize that they

are disjoint.
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2.2 α-Perturbation Resilience for Center-Based Objectives

In this section we show that, for α ≥ 1 +
√

2, if the clustering instance is α-

perturbation resilient for center-based objectives, then we can in polynomial time

find the optimal clustering. This improves on the α ≥ 3 bound of [9] and stands in

sharp contrast to the NP-Hardness results on worst-case instances. Our algorithm

succeeds for an even weaker property, the α-center proximity, introduced in [9].

Definition 5. A clustering instance (P, d) satisfies the α-center proximity property

if for any optimal cluster Ci ∈ C with center ci, Cj ∈ C(j 6= i) with center cj, any

point p ∈ Ci satisfies αd(p, ci) < d(p, cj).

Lemma 1. Any clustering instance that is α-perturbation resilient to center-based

objectives also satisfies the α-center proximity.

The proof follows easily by constructing a specific perturbation that blows up all

the pairwise distances within cluster Ci by a factor of α. By α-perturbation resilience,

the optimal clustering remains the same after this perturbation. This then implies

the desired result. The full proof appears in [9]. In the remainder of this section,

we prove our results for α-center proximity, but because it is a weaker condition, our

upper bounds also hold for α-perturbation resilience.

We begin with some key properties of α-center proximity instances.

Lemma 2. For any points p ∈ Ci and q ∈ Cj(j 6= i) in the optimal clustering of an

α-center proximity instance, when α ≥ 1 +
√

2, we have: (1) d(ci, q) > d(ci, p), (2)

d(p, ci) < d(p, q).

Proof. (1) Lemma 1 gives us that d(q, ci) > αd(q, cj). By the triangle inequality, we

have d(ci, cj) ≤ d(q, cj) + d(q, ci) < (1 + 1
α

)d(q, ci). On the other hand, d(p, cj) >

αd(p, ci) and therefore d(ci, cj) ≥ d(p, cj)−d(p, ci) > (α−1)d(p, ci). Combining these

inequalities, we get (1).
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(2) It suffices to prove d(p, q) > (α − 1) max{d(p, ci), d(q, cj)}. The proof first

appears in [9], and we include it for completeness. Without loss of generality, we can

assume that d(p, ci) ≥ d(q, cj). By triangle inequality we have d(p, q) ≥ d(p, cj) −

d(q, cj). From Lemma 1 we have d(p, cj) > αd(p, ci). Hence d(p, q) > αd(p, ci) −

d(q, cj) ≥ (α− 1)d(p, ci) ≥ (α− 1)d(q, cj).

Lemma 2 implies that for any optimal cluster Ci, the ball of radius maxp∈Ci
d(ci, p)

around the center ci contains only points from Ci, and moreover, points inside the

ball are each closer to the center than to any point outside the ball. Inspired by

this structural property, we define the notion of closure distance between two sets

as the radius of the minimum ball that covers the sets and has some margin from

points outside the ball. We show that any (strict) subset of an optimal cluster has

smaller closure distance to another subset in the same cluster than to any subset of

other clusters or to unions of other clusters. Using this, we will be able to define

an appropriate linkage procedure that, when applied to the data, produces a tree on

subsets that will all be laminar with respect to the clusters in the optimal solution.

This will then allow us to extract the optimal solution using dynamic programming

applied to the tree.

We now define the notion of closure distance and then present our algorithm for

α-center proximity instances (Algorithm 1). Let B(p, r) = {q : d(q, p) ≤ r}.

Definition 6. The closure distance dP (A,A′) between two disjoint non-empty subsets

A and A′ of point set P is the minimum d ≥ 0 such that there is a point c ∈ A ∪ A′

satisfying the following requirements:

(1) coverage: the ball B(c, d) covers A and A′, i.e. A ∪ A′ ⊆ B(c, d);

(2) margin: points inside B(c, d) are closer to the center c than to points outside,

i.e. ∀p ∈ B(c, d), q 6∈ B(c, d), we have d(c, p) < d(p, q).

Note that for any A and A′, we have dP (A,A′) = dP (A′, A) ≤ maxp,q∈P d(p, q).
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Figure 1: The closure distance.

Furthermore, dP (A,A′) can be computed in polynomial time.

Algorithm 1 Center-based objectives, α perturbation resilience

Input: Data set P , distance function d(·, ·) on P .
1: Begin with n singleton clusters.
2: Repeat till only one cluster remains:

merge clusters C,C ′ which minimize dP (C,C ′).
3: Let T be the tree with single points as leaves and internal nodes corresponding

to the merges performed.
4: Run dynamic programming on T to get the minimum cost pruning C̃.

Output: Clustering C̃.

Theorem 1. For (1+
√

2)-center proximity instances, Algorithm 1 outputs the optimal

clustering in polynomial time.

The proof follows immediately from the following key property of Algorithm 1.

The details of dynamic programming are presented in Appendix A.1, and an efficient

implementation of the algorithm is presented in Appendix A.2.

Theorem 2. For (1+
√

2)-center proximity instances, Algorithm 1 constructs a binary

tree T such that the optimal clustering is a pruning of this tree.

Proof. We prove correctness by induction. In particular, assume that our current

clustering is laminar with respect to the optimal clustering – that is, for each cluster

A in our current clustering and each C in the optimal clustering, we have either

A ⊆ C, or C ⊆ A or A ∩ C = ∅. This is clearly true at the start. To prove

that the merge steps keep the laminarity, we need to show the following: if A is a
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strict subset of an optimal cluster Ci, A
′ is a subset of another optimal cluster or

the union of one or more other clusters, then there exists B from Ci \ A, such that

dP (A,B) < dP (A,A′) = dP (A′, A).

We first prove that there is a cluster B ⊆ Ci \ A in the current cluster list such

that dP (A,B) ≤ d̃ := maxp∈Ci
d(ci, p). There are two cases. First, if ci 6∈ A, then

define B to be the cluster in the current cluster list that contains ci. By induction,

B ⊆ Ci and thus B ⊆ Ci \ A. Then we have dP (B,A) ≤ d̃ since there is ci ∈ B, and

(1) for any p ∈ A ∪ B, d(ci, p) ≤ d̃, (2) for any p ∈ P satisfying d(ci, p) ≤ d̃, and

any q ∈ P satisfying d(ci, q) > d̃, by Lemma 2 we know p ∈ Ci and q 6∈ Ci, and thus

d(ci, p) < d(p, q). In the second case when ci ∈ A, we pick any B ⊆ Ci \ A and a

similar argument gives dP (A,B) ≤ d̃.

case 1: c ∈ A case 2: c ∈ A′

B

A

ci
A′

c

p

cj

q B

A

ci
A′

c

p

cj
q

Figure 2: Comparing d and dP (A,A′) in closure linkage.

As a second step, we need to show that d < d̂ := dP (A,A′). There are two cases:

the center for dP (A,A′) is in A or in A′. See Figure 2 for an illustration. In the

first case, there is a point c ∈ A such that c and d̂ satisfy the requirements of the

closure distance. Pick a point q ∈ A′, and define Cj to be the cluster in the optimal
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clustering that contains q. As d(c, q) ≤ d̂, and by Lemma 2 we have d(cj, q) < d(c, q),

then d(cj, c) ≤ d̂ (otherwise it violates the second requirement of closure distance).

Suppose p = arg maxp′∈Ci
d(ci, p

′). Then we have d̃ = d(p, ci) < d(p, cj)/α ≤ (d̃ +

d(ci, c) + d(c, cj))/α where the first inequality comes from Lemma 1 and the second

from the triangle inequality. Since d(ci, c) < d(c, cj)/α, we can combine the above

inequalities and compare d̃ and d(c, cj), and when α ≥ 1+
√

2 we have d̃ < d(c, cj) ≤ d̂.

Now consider the second case, when there is a point c ∈ A′ such that c and d̂

satisfy the requirements in the definition of the closure distance. Select an arbitrary

point q ∈ A. We have d̂ ≥ d(c, q) from the first requirement, and d(c, q) > d(ci, q) by

Lemma 2. Then from the second requirement of closure distance d(ci, c) ≤ d̂. And

by Lemma 2, d̃ = d(ci, p) < d(ci, c), we have d̃ < d(ci, c) ≤ d̂.

Note: Our factor of α = 1 +
√

2 beats the NP-hardness lower bound of α = 3 of [9]

for center-proximity instances. The reason is that the lower bound of [9] requires the

addition of Steiner points that can act as centers but are not part of the data to be

clustered (though the upper bound of [9] does not allow such Steiner points). One

can also show a lower bound for center-proximity instances without Steiner points.

In particular one can show that for any ε > 0, the problem of solving (2 − ε)-center

proximity k-median instances is NP-hard [95].

2.3 (α, ε)-Perturbation Resilience for k-Median

In this section we consider a natural relaxation of the α-perturbation resilience, the

(α, ε)-perturbation resilience property, that requires the optimum after perturbation

of up to a multiplicative factor α to be ε-close to the original (one should think of ε as

sub-constant). We show that if the instance is (α, ε)-perturbation resilient, with α > 4

and ε = O(ε′ρ) where ρ is the fraction of the points in the smallest cluster, then we

can in polynomial time output a clustering that provides a (1 + ε′)-approximation to

the optimum. Thus this improves over the best worst-case approximation guarantees
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known [76] when ε′ ≤
√

3 and also beats the lower bound of (1 + 1/e) on the best

approximation achievable on worst case instances for the metric k-median objective

[55, 59] when ε′ ≤ 1/e.

The key idea is to understand and leverage the structure implied by (α, ε)-perturbation

resilience. We show that perturbation resilience implies that there exists only a small

fraction of points that are bad in the sense that their distance to their own center is

not α times smaller than their distance to any other centers in the optimal solution.

We then use this bounded number of bad points in our clustering algorithm.

2.3.1 Structure of (α, ε)-Perturbation Resilient Instances

To understand (α, ε)-perturbation resilience, we need to consider the difference be-

tween the optimal clustering C under d and the optimal clustering C ′ under d′, defined

as minσ∈Sk
∑k

i=1 |Ci \C ′σ(i)|. Without loss of generality, we assume in this subsection

that C ′ is indexed so that the argmin σ is the identity, and the distance between C

and C ′ is
∑k

i=1 |Ci \ C ′i|. We denote by c′i the center of C ′i.

In the following we call a point good if it is α times closer to its own center than

to any other center in the optimal clustering; otherwise we call it bad. Let Bi be the

set of bad points in Ci. That is, Bi = {p ∈ Ci : ∃j 6= i, αd(ci, p) > d(cj, p)}. Let

Gi = Ci \Bi be the good points in cluster Ci. Let B = ∪iBi and G = ∪iGi. We show

that under perturbation resilience we do not have too many bad points. Formally:

Theorem 3. Suppose the clustering instance is (α, ε)-perturbation resilient for the

k-median objective and mini |Ci| > (3 + 2α
α−1)εn+ 9α. Then |B| ≤ εn.

The main idea is to construct a specific perturbation that forces certain selected

bad points to move from their original optimal clusters. Then the (α, ε)-perturbation

resilience leads to a bound on the number of selected bad points, which can also be

proved to be a bound on all the bad points. The selected bad points B̂i in cluster i are

defined by arbitrarily selecting min(εn+ 1, |Bi|) points from Bi. Let c(p) denote the
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Figure 3: Different types of points when bounding the number of bad points for
(α, ε)-perturbation resilient k-median instances.

second nearest center for p ∈ B̂i and the nearest center for p 6∈ B̂i. The perturbation

we consider blows up all distances by a factor of α except for those distances between

p and c(p). Suppose after perturbation, the optimal cluster C ′i is obtained by adding

point set Ai and removing point set Mi from Ci, i.e. Ai = C ′i \ Ci,Mi = Ci \ C ′i.

Ci ∩ C ′i can be divided into two parts: Wi = (Ci ∩ C ′i) \ B̂i and Vi = (Ci ∩ C ′i) ∩ B̂i.

Then we have Ci = Wi + Vi +Mi, C
′
i = Wi + Vi +Ai. See Figure 3 for an illustration.

The key challenge in proving a bound on the selected bad points is to show that

c′i = ci for all i. This means the optimal centers do not change after the perturbation.

Then in the optimum under d′ each point p is assigned to the center c(p), and therefore

the selected bad points will move from their original optimal clusters. By (α, ε)-

perturbation resilience, we get an upper bound on the number of selected bad points.

At a high level, we prove that ci = c′i for all i as follows. We first show that for

each cluster, its new center is close to its old center, roughly speaking since the new

and old cluster have a lot in common (Claim 1). We then show if ci 6= c′i for some i,

then the weighted sum of the distances
∑

1≤i≤k |Ci|d(ci, c
′
i) should be large (Claim 2).

However, this contradicts Claim 1, so the centers do not move after the perturbation.

In the following, we will prove the two claims that imply c′i = ci(∀i) and then use

them to prove the theorem. The proofs make frequent use of the translation from d′

to d, which is summarized in Fact 1.

Fact 1. Suppose the clustering instance is (α, ε)-perturbation resilient and mini |Ci| >
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( 2
α−1 + 3)εn+ 1. If c′i 6= ci, then we have

d′(c′i,Wi) ≥ αd(c′i,Wi \ {c(c′i)}),

d′(c′i, Vi) = αd(c′i, Vi),

d′(c′i, Ai) ≥ αd(c′i, Ai \ {c(c′i)}),

d′(ci,Wi) = d(ci,Wi),

d′(ci, Vi) = αd(ci, Vi),

d′(ci, Ai) ≤ αd(ci, Ai \ {c(c′i)}) + α(1 + α)d(c′i, ci).

Proof Sketch. If d′(c′i, C) does not involve distances between p and c(p) for any

p ∈ P , then d′(c′i, C) = αd(c′i, C). To apply this idea, we first need to show that

c′i 6= cj(∀j 6= i). Intuitively, if c′i = cj, then under d′, points in Wj should be closer

to c′j than to c′i = cj. So under d, these points are α time closer to c′j than to cj,

which means the distance between cj and c′j is not so large compared to the average

distance between cj and Wj by the triangle inequality. On the other hand, it also

means cj has (1 − 1/α)d(cj,Wj) more cost than c′j on Wj. Then c′j should have at

least (1−1/α)d(cj,Wj) more cost on Cj \Wj. By the triangle inequality, the distance

between cj and c′j is much larger than the average distance between cj and Wj, which

is contradictory. Therefore, c′i 6= cj.

Then we only need to check if c(c′i) ∈ C when translating d′(c′i, C) to d(c′i, C) by

a case-by-case study. The same idea can be applied to d′(ci, C). The formal proof is

presented in Appendix A.3.

Claim 1. For each i, d(ci,Wi) ≥ α+2
α+1

|Ci|
3
d(ci, c

′
i).

Proof. The key idea is that under d′, c′i is the optimal center for C ′i, so it has no more

cost than ci on C ′i. Since Vi and Ai are small compared to Wi, c
′
i cannot save much

cost on Vi and Ai, so it cannot have much more cost on Wi than ci. Then c′i is close to

Wi (compared to the distance between ci and Wi). By triangle inequality, c′i is close

to ci.

Formally, if c′i = ci, d(c′i, ci) = 0, which immediately implies the bound. Otherwise,

we need to use the fact that c′i has smaller cost than ci on C ′i under d′: d′(c′i, C
′
i) ≤

d′(ci, C
′
i). We divide C ′i into three parts Wi, Vi and Ai, and move terms on Wi to one
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side (the cost more than ci on Wi), the rest terms to another side (the cost saved on

Vi and Ai):

d′(c′i,Wi)− d′(ci,Wi) ≤ d′(ci, Ai)− d′(c′i, Ai) + d′(ci, Vi)− d′(c′i, Vi)

Translating d′ to d by Fact 1, we have

αd(c′i,Wi \ {c(c′i)})− d(ci,Wi)

≤ αd(ci, Ai \ {c(c′i)}) + α(1 + α)d(c′i, ci)− αd(c′i, Ai \ {c(c′i)})

+αd(ci, Vi)− αd(c′i, Vi).

By the triangle inequality,

αd(ci, c
′
i)(|Wi| − 1)− (α + 1)d(ci,Wi) ≤ αd(ci, c

′
i) [|Vi|+ |Ai|+ (1 + α)]

which implies the desired result.

Claim 2. Let Ii = 1 if ci 6= c′i and Ii = 0 otherwise. Then
∑

1≤i≤k Iid(ci,Wi) ≤∑
1≤i≤k

|Ci|
3
d(ci, c

′
i).

Proof. The key idea is that the clustering that under d′ assigns points in Wi and

Ai to ci and points p in Vi to c(p), saves as much cost as d′(c′i,Wi) − d′(ci,Wi) ≈

(α − 1)d(ci,Wi) on Wi compared to the optimal clustering {C ′i} under d′, if c′i 6= ci.

Then {C ′i} must save this cost on other parts of points. So {c′i} should be near these

points and {ci} should be far away. By the triangle inequality, the weighted sum of

the distances between {c′i} and {ci} should be large.

Formally, we have the following inequality from the fact that {c′i} are the optimal

centers under d′, thus have no more cost than the clustering that under d′ assigns

points in Wi ∪ Ai to ci and points p in Vi to c(p):

k∑
i=1

d′(c′i, C
′
i) ≤

k∑
i=1

[
d′(ci, C

′
i \ Vi) +

∑
p∈Vi

d′(c(p), p)

]
.
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We divide C ′i into Ai, Vi and Wi, and divide C ′i \ Vi into Ai and Wi. Then we move

terms on Wi to one side (the cost more than ci on Wi), and move the rest terms to

another side (the cost saved on Vi and Ai):

k∑
i=1

[d′(c′i,Wi)− d′(ci,Wi)] ≤
k∑
i=1

[
d′(ci, Ai)− d′(c′i, Ai) +

∑
p∈Vi

d′(c(p), p)− d′(c′i, Vi)
]
. (1)

To estimate d′(c′i,Wi) − d′(ci,Wi), note that d′(c′i,Wi) − d′(ci,Wi) ≈ αd(c′i,Wi) −

d(ci,Wi) by Fact 1, so it suffices to show that d(ci,Wi) is not much larger than

d(c′i,Wi). This follows from the fact that {ci} are the optimal centers under d. For-

mally, d(ci, Ci) ≤ d(c′i, Ci), which leads to

d(ci,Wi)− d(c′i,Wi) ≤ d(c′i,Mi)− d(ci,Mi) + d(c′i, Vi)− d(ci, Vi). (2)

Now, we are ready to estimate d′(c′i,Wi) − d′(ci,Wi). Multiply Inequality (2) by α

and sum over all i, then add it to Inequality (1):

k∑
i=1

[d′(c′i,Wi)− d′(ci,Wi) + αd(ci,Wi)− αd(c′i,Wi)]

≤
k∑
i=1

[
d′(ci, Ai)− d′(c′i, Ai) + αd(c′i,Mi)− αd(ci,Mi)

+
∑
p∈Vi

d′(c(p), p)− d′(c′i, Vi) + αd(c′i, Vi)− αd(ci, Vi)

]
.

Rewrite it as
∑

i Si ≤
∑

i Ti where Si and Ti are the terms related to index i on the

two sides respectively. Then the claim follows from the following bounds on Si and

Ti and the fact that |Ci|/3 ≥ |Ai|+ |Mi|+ α + 2:

Si ≥ (α− 1)Iid(ci,Wi)− αd(ci, c
′
i), Ti ≤ α(|Ai|+ |Mi|+ α + 1)d(ci, c

′
i).

It remains to prove the two bounds by a case-by-case study. For Si, we have three

cases: if c′i = ci, then Si = 0; if c′i 6= ci and c(c′i) 6= ci, then it is 0 + (α − 1)d(ci,Wi);

if c(c′i) = ci, then it is −αd(ci, c
′
i) + (α − 1)d(ci,Wi). In conclusion, in any case

Si ≥ (α− 1)Iid(ci,Wi)− αd(ci, c
′
i).
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For Ti, in the easy case when c′i = ci, most terms cancel out, and we get Ti =∑
p∈Vi d(p, c(p))− αd(ci, Vi). Then Ti ≤ (α− α)d(ci, Vi) = 0 since Vi are the selected

bad points. If c′i 6= ci, Fact 1 leads to

Ti ≤ αd(ci, Ai \ {c(c′i)}) + α(1 + α)d(c′i, ci)− αd(c′i, Ai \ {c(c′i)})

+ αd(c′i,Mi)− αd(ci,Mi)

+
∑
p∈Vi

d(p, c(p))− αd(c′i, Vi) + αd(c′i, Vi)− αd(ci, Vi).

The first line is bounded by α(α + 1 + |Ai|)d(ci, c
′
i). The second line is bounded by

αd(ci, c
′
i)|Mi|. The third line is bounded by 0, since Vi are the selected bad points

and thus
∑

p∈Vi d(p, c(p)) ≤ αd(ci, Vi). In conclusion, in any case Ti ≤ α(|Ai|+ |Mi|+

α + 1)d(ci, c
′
i).

Proof of Theorem 3. Combining Claim 1 and 2 leads to

∑
1≤i≤k

|Ci|d(ci, c
′
i) [1− (α + 2)Ii/(α + 1)] ≥ 0.

If Ii = 0, then d(ci, c
′
i) = 0; if Ii = 1, the coefficient of d(ci, c

′
i) is negative. So all

terms on the left hand side are equal to 0, i.e. d(ci, c
′
i) = 0(1 ≤ i ≤ k). Then points

in B̂i will move to other clusters after perturbation, which means that B̂i ⊆ Mi. So

| ∪i B̂i| ≤ | ∪iMi| ≤ εn. In particular, |B̂i| ≤ εn for any i. Then |Bi| ≤ εn, otherwise

|B̂i| would be εn+ 1. Therefore, B̂i = Bi, and |B| = | ∪i B̂i| ≤ εn.

M
α+1

+ 1 αM
α+1
− 1

|G1| = 1−2ε
2
n |G2| = 1−2ε

2
n|B| = εn

Figure 4: The optimality of the bound on the number of bad points for (α, ε)-
perturbation resilient k-median instances.
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Note 1: The bound in Theorem 3 is optimal in the sense that for any α > 1, ε < 1
5
,

we can easily construct an (α, ε)-perturbation resilient 2-median instance which has

εn bad points.

The instance is shown in Figure 4. It has 3 groups of points: G1, G2, and B. Both

G1 and G2 have (1− ε)n/2 points, and B has εn points. Let M be a sufficiently large

constant, say, M > n2/ε. The distances within the same group are 1, while those

between the points in G1 and G2 are M , those between the points in B and G1 are

M
α+1

+1, and those between the points in B and G2 are αM
α+1
−1. The instance satisfies

the triangle inequality, which can be verified by a case-by-case study. The optimal

clustering before perturbation has one center in G1 and the other in G2. Then B are

trivially bad points, and thus we have εn bad points in this instance.

Now we show that the instance is (α, ε)-perturbation resilient. To prove that the

optimal clustering after perturbation C ′ is ε-close to the original optimal clustering,

it suffices to show that C ′ has one center from G1 ∪B and the other center from G2.

Assume for contradiction that this is not true. If both centers come from G2, the cost

of points in G1 is (1−ε)n
2

M . On the other hand, the optimal cost before perturbation

is (1− ε)n− 2 + εn( M
α+1

+ 1), so the optimal cost after perturbation is no more than

α[(1−ε)n−2+εn( M
α+1

+1)]. But this is smaller than (1−ε)n
2

M , which is a contradiction.

Similarly, we get a contradiction if both centers come from G1 ∪B.

Note 2: Theorem 3 requires that the sizes of the optimal clusters are sufficiently

large. This makes sure that a majority of points in each optimal cluster stay after

moving at most εn points, which means Wi is significantly larger than Vi, Ai and Mi.

This fact is crucial for proving the theorem. In the following subsections, we assume

n > ε/α, so that when α − 1 = O(1), the requirement in Theorem 3 is simplified as

mini |Ci| = Ω(εn).
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2.3.2 Approximating the Optimum Clustering

Now, we consider approximating the cost of the optimum clustering. We can see that

after removing the bad points, the optimal clusters are far apart from each other. In

order to get rid of the influence of the bad points, we generate a list of blobs, which

form a partition of the data points, and each of which contains only good points from

one optimal cluster. Then we construct a tree on the list of blobs with a pruning that

assigns all good points correctly. We will show that this pruning has low cost, so the

lowest cost pruning of the tree is a good approximation. The details are described in

Algorithm 2.

A key step is to generate the list of almost “pure” blobs, which is described

in Algorithm 3. Suppose for any i and any good point p ∈ Gi, its γ|Gi| nearest

neighbors contain no good points outside Ci. Also suppose the algorithm knows the

value of γ. Informally, the algorithm maintains a threshold t. At each threshold,

for each point p that has not been added to the list, the algorithm checks its γt

nearest neighbors Nγt(p). It constructs a graph Ft by connecting any two points that

have most neighbors in common. It then builds another graph Ht by connecting any

two points that have sufficiently many neighbors in Ft, and adds sufficiently large

components in Ht to the list. Finally, for each remaining point p, it checks if most of

p’s neighbors are in the list and if there are blobs containing a significant amount of

p’s neighbors. If so, it inserts p into such a blob with the smallest median distance.

Then the threshold is increased and the above steps are repeated.

The intuition behind Algorithm 3 is as follows. As mentioned above, the algorithm

works when for any i and any good point p ∈ Gi, the γ|Gi| nearest neighbors of p

contain no good points outside Ci (γ = 1 for the k-median instances considered in

this section, as shown in Lemma 3; γ = 4
5

for the min-sum instances considered

in Section 2.5, as shown in Claim 5). Without loss of generality, assume |C1| ≤

|C2| ≤ · · · ≤ |Ck|. When t ≤ |C1|, good points in different clusters do not have
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most neighbors in common and thus are not connected in Ft. However, they may be

connected by a path of bad points. So we further build the graphHt to disconnect such

paths, which ensures that the blobs added into the list contain only good points from

one optimal cluster. The final insert step (Step 6) makes sure that when t = |C1|,

all remaining good points in C1 will be added to the list and will not affect the

construction of blobs from other optimal clusters. We can show by induction that,

at the end of the iteration t = |Ci|, all good points in Cj(j ≤ i) are added to the

list. When t is large enough, any remaining bad points are inserted into the list, so

the points are partitioned into a list of almost pure blobs. The formal guarantee for

Algorithm 3 is stated in Lemma 4.

Another key step is to construct a tree on these blobs. Since good points are

closer to good points in the same optimal cluster than to those in other clusters

(Lemma 3), there exist algorithms that can build a tree with a pruning that assigns

all good points correctly. In particular, we can use the robust linkage procedure

in [16], which repeatedly merges the two blobs C,C ′ with the maximum score(C,C ′)

defined as follows. For each p ∈ C, sort the other blobs in decreasing order of the

median distance between p and points in the blob, and let rank(p, C ′) denote the

rank of C ′. Then define rank(C,C ′) = medianx∈C [rank(x,C ′)] and score(C,C ′) =

min[rank(C,C ′), rank(C ′, C)]. Intuitively, for any blobs A,A′ from the same optimal

cluster and D from a different cluster, good points in A always rank A′ later than D

in the sorted list, so rank(A,A′) > rank(A,D). Similarly, rank(A′, A) > rank(A′, D),

and thus score(A′, A) > score(A,D). This means the algorithm will always merge

blobs from the same cluster before merging them with blobs outside, so there is a

pruning that assigns all good points correctly.

In the following, we prove that Algorithm 2 outputs a good approximation. We

begin with a key property of (α, ε)-perturbation resilience that ensures the success of

Algorithm 3.
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Algorithm 2 k-median, (α, ε) perturbation resilience

Input: Data set P , distance function d(·, ·) on P , mini |Ci|, ε > 0
1: Run Algorithm 3 to generate a list L of blobs with parameters mB = εn, γ = 1.
2: Run the robust linkage procedure in [16] to get a cluster tree T .
3: Run dynamic programming on T to get the minimum cost pruning C̃ and its

centers c̃.
Output: Clustering C̃ and its centers c̃.

Algorithm 3 Generating interesting blobs

Input: Data set P , distance function d(·, ·) on P , the size of the smallest optimal
cluster mini |Ci|, the upper bound on the number of bad points mB, a parameter
γ ∈ [4/5, 1]

1: Let Nr(p) denote the r nearest neighbors of p in P .
2: Let L = ∅, AP = P . Let the initial threshold t = mini |Ci|.
3: Construct a graph Ft by connecting p, q ∈ AP if
|Nγt(p) ∩Nγt(q)| > (2γ − 1)t− 2mB.

4: Construct a graph Ht by connecting points p, q ∈ AP if p, q share more than mB

neighbors in Ft.
5: Add to L all the components C of Ht with |C| ≥ 1

2
mini |Ci| and remove them

from AP .
6: For each point p ∈ AP , check if most of Nγt(p) are in L and if there exists C ∈ L

containing a significant number of points in Nγt(p). More precisely, check if
(1) |Nγt(p) \ L| ≤ 1

2
mini |Ci|+ 2mB;

(2) Lp 6= ∅ where Lp = {C ∈ L : |C ∩Nγt(p)| ≥ (γ − 3
5
)|C|}.

If so, assign p to the blob in Lp of smallest median distance, remove p from AP .
7: While |AP | > 0, increase t by 1 and go to Step 3.

Output: The list L.

Lemma 3. When α > 4, for any good points p1, p2 ∈ Gi, q ∈ Gj(j 6= i), we have

d(p1, p2) < d(p1, q). Consequently, for any good point p ∈ Gi, all its |Gi| nearest

neighbors belong to Ci ∪B.

Proof. By the same proof in Lemma 2(2), we have

d(p1, q) > (α− 1)d(p1, ci) and d(p2, q) > (α− 1)d(p2, ci).

These then lead to

d(p1, p2) ≤ d(p1, ci) + d(p2, ci) <
d(p1, q) + d(p2, q)

α− 1
≤ 2d(p1, q) + d(p1, p2)

α− 1

and thus d(p1, p2) <
2

α−2d(p1, q). When α > 4, we have d(p1, p2) < d(p1, q).
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Lemma 4. Suppose the number of bad points is bounded by mB, and for any i and

any good point p ∈ Gi, all its γ|Gi| nearest neighbors in P are from Ci ∪ B. If

mini |Ci| > 30mB, then Algorithm 3 generates a list L of blobs each of size at least

1
2

mini |Ci| such that:

• The blobs in L form a partition of P .

• Each blob in L contains good points from only one optimal cluster.

Proof. We prove the following two claims by induction on i ≤ k:

• For any t ≤ |Gi|, any blob in the list L only contains good points from only one

optimal cluster; all blobs have size at least 1
2

mini |Ci|.

• At the beginning of the iteration t = |Gi|+ 1, any good point p ∈ Gj(j ≤ i) has

been assigned to a blob in the list that contains good points only from Cj.

The first two claims imply that each blob in the list contains good points from

only one optimal cluster. Moreover, at the beginning of the iteration t = |Gk| + 1,

all good points have been assigned to one of the blobs in L, so there are only bad

points left, the number of which is smaller than 1
2

mini |Ci|. These remaining points

will eventually be assigned to the blobs before γt > n, so the blobs form a partition

of P .

The claims are clearly both true initially. We show now that as long as t ≤ |G1|,

the graphs Ft and Ht have the following properties.

• No good point pi in cluster Ci is connected in Ft to a good point pj in a different

cluster Cj. By assumption, pi has no neighbors outside Ci ∪ B and pj has no

neighbors outside Cj∪B, so they share at most mB < (2γ−1)t−2mB neighbors.

• No point q is connected in Ft to both a good point pi in Ci and a good point

pj in a different cluster Cj. If q is connected to pi, then |Nγt(pi) ∩ Nγt(q)| >
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(2γ−1)t−2mB. Since pi has no neighbors outside Ci∪B, Nγt(q) contains more

than (2γ − 1)t− 3mB ≥ γt/2 points from Gi. Similarly, if q is connected to pj,

then Nγt(q) contains more than γt/2 points from Gj, which is contradictory.

• All the components in Ht of size at least 1
2

mini |Ci| will only contain good points

from one optimal cluster. As there are at most mB bad points, any two points

connected in Ht must be connected in Ft to one good point. Then by the above

two properties, points on a path in Ht must be connected in Ft to good points

in the same cluster, so there is no path connecting good points from different

clusters.

We can use the three properties to argue the first claim: as long as t ≤ |G1|, each

blob in L contains good points from at most one optimal cluster. This is true at the

beginning and by the third property, for any t ≤ |G1|, anytime we insert a whole

new blob in the list in Step 5, that blob must contain point from at most one optimal

cluster. We now argue that this property is never violated as we assign points to blobs

already in the list in Step 6. Suppose a good point p ∈ Ci is inserted into C ∈ L.

Then C ∈ Lp, which means |Nγt(p) ∩ C| ≥ |C|/2 > mB. So Nγt(p) ∩ C contains at

least one good point, which must be from Ci since Nγt(p) contains no good points

outside Ci. Then by induction C must contain only good points from Ci, and thus

adding p to C does not violate the first claim.

We now show the second claim: after the iteration t = |G1|, all the good points in

C1 have already been assigned to a blob in the list that only contains good points from

C1. There are two cases. First, if at the beginning of the iteration t = |G1|, there are

still at least 1
2

mini |Ci| points from the good point set G1 that do not belong to blobs

in the list. Any such good point has all γ|G1| neighbors in C1∪B. Then any two such

good points share at least 2γ|G1| − |C1 ∪B| ≥ (2γ − 1)|G1| − |B| ≥ (2γ − 1)t− 2mB

neighbors. So they will connect to each other in Ft and then in Ht, and thus we
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will add one blob to L containing all these points. Second, it could be that at the

beginning of the iteration t = |G1|, all but less than 1
2

mini |Ci| good points in G1 have

been assigned to a blob in the list. Denote these points as E. Any point p ∈ E has no

neighbors outside C1 ∪ B. Then |Nγt(p) \ L| ≤ |E| + |B| ≤ 1
2

mini |Ci| + 2mB. Also,

there exists a blob C containing good points from C1 such that C ∈ Lp. Otherwise,

Nγt(p) contains at most (γ − 3
5
)(|C1 ∪ B|) < γ|C1| − 1

2
|C1| − 2mB points in C1 ∩ L,

while it contains at most |E| good points in C1 \ L and contains no points outside

C1 ∪ B. In total, Nγt(p) has less than γt points, which is contradictory. So Lp 6= ∅

and p will be added to the list in Step 6.

We then iterate the argument on the remaining set AP . The key point is that for

t ≥ |Gi|, i > 1, we have that all the good points in C1, C2, . . . , Ci have already been

assigned to blobs in L.

Lemma 3 and 4 show that Algorithm 3 with parameters mB = εn and γ = 1

produces a list of sufficiently large, almost pure blobs. Then the robust linkage

procedure in [16] can build a tree on these blobs with a pruning that assigns all good

points correctly. Now it suffices to show that this pruning is a good approximation, for

which we need to bound the cost increased by the bad points assigned incorrectly. The

following property of these bad points turns out to be useful. Intuitively, Algorithm 3

is designed such that whenever a bad point is added to a blob containing good points

from a different cluster, it must be closer to a significantly amount of points in that

cluster than to a significantly amount of points in its own cluster. Then the cost

increased by incorrectly assigning each such bad point is small, resulting in a good

approximation.

Lemma 5. Suppose for any good point p ∈ Gi, all its |Gi| nearest neighbors in P are

from Ci ∪B, and mini |Ci| > 30mB. When running Algorithm 3 with γ = 1, if a bad

point q ∈ Bi is assigned to a blob C containing good points from a different optimal
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clustering Cj, then there exist m = 1
5

mini |Ci| points Zi from Ci, and m points Zj

from Cj, such that d(q, Zi) ≥ d(q, Zj).

Proof. There are two cases: q is added into C in (1) Step 5 or (2) Step 6.

Case 1 There must be a path in Ht connecting q to a good point in Cj at threshold

t. For any edge (x, y) in Ht, since x, y share at least εn neighbors in Ft and there are

at most εn bad points, they share at least one good point as neighbor in Ft. As shown

in the proof of Lemma 4, no point can connect to good points from different clusters,

so in Ft all points on the path must connect to good points in Cj. In particular, q is

connected in Ft to a good point p ∈ Gj. Then |Nt(p) ∩Nt(q)| > t− 2mB. Since p is

still in AP , t ≤ |Gj|, and thus Nt(p) contains no points outside Cj ∪ B. This means

that at least t− 3mB ≥ m points in Nt(q) are good points in Cj, then we can select

m points Zj from Nt(q) ∩ Gj. We also have that at most 2mB points in Nt(q) are

points in Ci, so we can select m points Zi from Ci \Nt(q).

Case 2 There are three subcases when q is inserted into C at threshold t.

(1) There is no good points from Ci in the list. Since |Nt(q) \ L| ≤ 1
2

mini |Ci| +

2mB, Nt(q) contains at most this number of good points in Ci. This means at least

1
2

mini |Ci| − 2mB > m good points in Ci are outside Nt(q), from which we can select

Zi. On the other hand, we can select Zj as follows. When inserting q into C, we have

|Nt(q) ∩C| ≥ 2
5
|C| ≥ m+mB. Since C contains only good points from Cj and some

bad points, Nt(q)∩C contains at least m good points in Cj, from which we can select

Zj. Since Zj are from Nt(q) and Zi are outside Nt(q), we have d(q, Zi) ≥ d(q, Zj).

(2) There exists C ′ ∈ L containing good points from Ci, but C ′ 6∈ Lp. This means

|B(q, t) ∩ C ′| ≤ 2
5
|C ′|, so there are at least 3

5
|C ′| ≥ m + mB points in C ′ are outside

Nt(q). At least m of these points are good points from Ci, since C ′ contains only

good points from Ci and at most mB bad points. On the other hand, we can select

Zj as in the first subcase.

(3) There exists C ′ ∈ Lp containing good points from Ci. Since q is assigned to C
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rather than C ′ according to median distances, we know that at least half of the points

Z ′j from C are closer to q than at least half of the points Z ′i from C ′. Since there

are at most mB bad points, we can select m good points Zj from Z ′j and select m

good points Zi from Z ′i. Note that Zj are all from Gj and Zi are all from Gi, so

d(q, Zi) ≥ d(q, Zj).

Theorem 4. If the clustering instance is (α, ε)-perturbation resilient for α > 4 and

ε ≤ ρ/30 where ρ = mini |Ci|
n

, then Algorithm 2 produces a clustering which is (1 +

5ε
ρ

)-approximation to the optimal clustering with respect to the k-median objective in

polynomial time.

Proof. By Lemma 3 and 4, Algorithm 3 partition the points into a list of blobs,

each of which has size at least 1
2

mini |Ci| and contains only good points from one

optimal cluster. Let B′i denote the bad points that are assigned to blobs containing

good points in Ci. By Lemma 3, Theorem 9 in [16] can be applied to L, by which

we know that {(Ci ∩ G) ∪ B′i} is a pruning of the tree. Suppose the cost of the

optimum is OPT . We now show that this pruning, using the original centers {ci}, is

a (1 + 5ε
ρ

)-approximation to OPT .

Suppose a bad point q ∈ Ci is assigned to a blob C containing good points from a

different optimal cluster Cj. By Lemma 5, there exist m = 1
5

mini |Ci| points Zi from

Ci, and m points Zj from Cj, such that d(q, Zi) ≥ d(q, Zj). Then the increase in cost

due to q is bounded as follows:

d(q, cj)− d(q, ci) ≤
d(q, Zj) + d(cj, Zj)

m
− d(q, Zi)− d(ci, Zi)

m

≤ 1

m
[d(cj, Zj) + d(ci, Zi)] ≤

OPT
m

.

As there are at most εn bad points and m = mini |Ci|
5

, the increase of cost is at most

εn
m
OPT = 5ε

ρ
OPT .

Running Time In Algorithm 3, for each p ∈ P , we first sort all the other points

in ascending order of distances in time O(n2 log n). At each threshold t, think of
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a directed t-regular graph Et, where, for each point q in the t nearest neighbors of

a point p, there is a directed edge from p to q in Et. Let AE denote the adjacent

matrix for Et, and let N = AEA
T
E. Then Npq is the number of common neighbors

between p and q, which can be used in constructing Ft. Computing N takes time

O(nω), the state of the art for matrix multiplication. The same method can be used

to compute the number of common neighbors in Ft and construct Ht. Since there

are O(n) thresholds, the total time for constructing Ft and Ht is O(nω+1). For the

other steps, adding a blob takes time O(n2) and inserting a point takes time O(n2).

These steps can be performed at most O(n) times, so they take O(n3) time. In

total, Algorithm 3 takes time O(nω+1). Since the robust linkage algorithm takes

time at most O(nω+1) ([16]), and the dynamic programming takes time O(n3) (see

Appendix A.1), the running time of Algorithm 2 is O(nω+1).

We observe that for α > 4 we can tolerate ε up to approximately ρ (recalling

that ρ is the fraction of points in the smallest cluster), and beat the lower bound of

(1 + 1/e) on the best approximation achievable on worst case instances for the metric

k-median objective [55, 59] when ε < ρ
5e

.

2.3.3 Sublinear Time Algorithm

Consider a clustering instance (X, d) that is (α, ε)-perturbation resilient to k-median.

For simplicity, suppose the distances are normalized to [0, 1]. Let N = |X|. Let

ρ = mini |Ci|/N denote the fraction of the points in the smallest cluster, ζ = ΦX(c)/N

denote the average cost of the points in the optimum clustering.

Theorem 5. Suppose (X, d) is (α, ε)-perturbation resilient for α > 4, ε < ρ/100.

Then with probability ≥ 1 − δ, we can get an implicit clustering that is 2(1 + 16ε
ρ

)-

approximation in time poly(log N
δ
, k, 1

ε
, 1
ζ
).

Intuition. The main idea is to run Algorithm 2 on a sufficiently large sample P to

obtain the minimum cost pruning and the centers c̃. Then the implicit clustering of
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the whole space X assigns each point in X to its nearest center in c̃. To show that

this is a good approximation, it suffices to show that ΦP (c̃) is close to ΦP (c) where

c are the optimal centers for X. Note that Algorithm 2 builds a tree with a pruning

P ′ that assigns all good points correctly. The key is to use the cost of this pruning

as a bridge for ΦP (c̃) and ΦP (c): on one hand, ΦP (c̃) is no more than the cost of P ′

since c̃ is the centers in the minimum cost pruning; on the other hand, the cost of P ′

is roughly bounded by twice ΦP (c) by triangle inequality.

Proof. We sample a set P of size n = Θ( k
ε2ζ2

ln N
δ

) and run Algorithm 2 on P to obtain

the minimum cost pruning C̃ and its centers c̃. The implicit clustering of the whole

space X then assigns each point in X to its nearest neighbor in c̃. Recall that if we

partition A into P , the cost using centers p is denoted as ΦA(P ,p). If we partition

A by assigning points to nearest centers in p, the cost is denoted as ΦA(p). We will

show that the cost of implicit clustering ΦX(c̃) approximates the optimum ΦX(c).

First, we will prove that when n is sufficiently large, with high probability, ΦX(c̃)/N ≈

ΦP (c̃)/n and ΦX(c)/N ≈ ΦP (c)/n. Formally, for every set of centers p, if n =

Θ( k
υ2ζ2

log N
δ

) where 0 < υ < 1, then

Pr

[∣∣∣∣ΦP (p)

n
− ΦX(p)

N

∣∣∣∣ > υ
ΦX(p)

N

]
≤ 2 exp{−2υ2ζ2n} ≤ δ

4Nk
.

By the union bound, we have with probability at least 1 − δ/4, (1 − υ)ΦX(c̃)/N ≤

ΦP (c̃)/n and ΦP (c)/n ≤ (1 + υ)ΦX(c)/N . We can choose υ = ε/20, then it is

sufficient to show ΦP (c̃) ≤ 2(1 + 12ε
ρ

)ΦP (c).

Next, since C̃ may be different from C ∩P , we need to find a bridge for comparing

ΦP (c̃) and ΦP (c). Now, we turn to analyze Algorithm 2 on P to find such a bridge.

First, we know that X has at most εN bad points. Since n is sufficiently large,

with probability at least 1 − δ/4, P has at most 2εn bad points. Similarly, with

probability at least 1−δ/4, for any i, |Ci∩P | > 60εn. These ensure that Algorithm 2

can successfully produce a tree with a pruning P ′ that assigns all good points in P
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correctly, as shown in Theorem 4. Suppose in P , c′ are the optimal centers for P ′.

Then we can use ΦP (P ′, c′) as a bridge for comparing ΦP (c̃) and ΦP (c).

On one hand, ΦP (c̃) ≤ ΦP (C̃, c̃) ≤ ΦP (P ′, c′). The first inequality comes from the

fact that in ΦP (c̃) each point is assigned to its nearest center and the second comes

from that C̃ is the minimum cost pruning.

On the other hand, ΦP (P ′, c′) ≤ 2ΦP (P ′, c) ≤ 2(1 + 12ε
ρ

)ΦP (c). The second

inequality comes from an argument similar to that in Theorem 4 and the fact that

ΦP (P ′, c) is different from ΦP (c) only on the bad points. The first inequality comes

from the triangle inequality. More precisely, for any N ′i ∈ P ′,

2|N ′i |
∑
p∈N ′i

d(p, ci) =
∑
q∈N ′i

∑
p∈N ′i

[d(p, ci) + d(q, ci)] ≥
∑
p∈N ′i

∑
q∈N ′i

d(p, q)

≥
∑
p∈N ′i

∑
q∈N ′i

d(q, c′i) = |N ′i |
∑
q∈N ′i

d(q, c′i)

where the third step follows from the fact that c′i is the optimal center for N ′i .

Note: If we have an oracle that given a set of points C ′i finds the best center in X

for that set, then we can save a factor of 2 in the bound.

2.4 α-Perturbation Resilience for Min-Sum

In this section we provide an efficient algorithm for clustering α-perturbation resilient

instances for the metric min-sum k-clustering problem (Algorithm 4).

Algorithm 4 min-sum, α perturbation resilience

Input: Data set P , distance function d(·, ·) on P , mini |Ci|.
1: Connect each point with its 1

2
mini |Ci| nearest neighbors.

2: Initialize the clustering C ′ with each connected component being a cluster.
3: Repeat till only one cluster remains in C ′:

merge clusters C,C ′ in C ′ which minimize da(C,C
′).

4: Let T be the tree with components as leaves and internal nodes corresponding to
the merges performed.

5: Run dynamic programming on T to get the minimum min-sum cost pruning C̃.
Output: C̃.
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Theorem 6. For (3maxi |Ci|
mini |Ci| )-perturbation resilient instances, Algorithm 4 outputs the

optimal min-sum k-clustering in polynomial time.

Intuition. To prove the theorem, first we show that the α-perturbation resilience

property implies the following (Lemma 6): for any two different optimal clusters

Ci and Cj and any A ⊆ Ci, we have αd(A,Ci \ A) < d(A,Cj). This follows by

considering the perturbation where d′(p, q) = αd(p, q) if p ∈ A, q ∈ Ci \ A and

d′(p, q) = d(p, q) otherwise, and using the fact that the optimum does not change

after the perturbation. This can be used to show that when α > 3maxi |Ci|
mini |Ci| , we have

the following (Lemma 7): (1) for any optimal clusters Ci and Cj and any Ai ⊆ Ci,

Aj ⊆ Cj such that min(|Ci \ Ai|, |Cj \ Aj|) > mini |Ci|/2 we have da(Ai, Aj) >

min{da(Ai, Ci \ Ai), da(Aj, Cj \ Aj)}; (2) for any point p in the optimal cluster Ci,

twice its average distance to points in Ci \ {p} is smaller than the distance to any

point in other optimal cluster Cj. Claim (2) implies that for any point p ∈ Ci its

|Ci|/2 nearest neighbors are in the same optimal cluster, so the leaves of the tree

T are laminar to the optimum clustering. Claim (1) can be used to show that the

merge steps preserve the laminarity with the optimal clustering, so the minimum cost

pruning of T will be the optimal clustering, as desired.

We now prove the key lemmas mentioned above, and then present the detailed

proof for the theorem.

Fact 2. For any nonempty set A and D ⊆ C, we have |D|d(A,C) ≤ |C|d(A,D) +

|A|d(D,C \D).

Proof. By the triangle inequality, da(A,C \D) ≤ da(A,D) + da(D,C \D). The fact

then follows from d(A,C) = d(A,D) + d(A,C \D).

Lemma 6. Suppose the clustering instance is α-perturbation resilient to the min-sum

objective. For any two different optimal clusters Ci and Cj and any A ⊆ Ci, we have

αd(A,Ci \ A) < d(A,Cj).
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Proof. This follows by considering a specific perturbation and using the fact that

the optimum does not change after the perturbation. We define a perturbation as

follows: d′(p, q) = αd(p, q) if p ∈ A, q ∈ Ci \ A or q ∈ A, p ∈ Ci \ A, and d′(p, q) =

d(p, q) otherwise. d′ is a valid α-perturbation of d, so the optimal clustering after

perturbation should remain the same. Specially, its cost should be smaller than that

of the clustering obtained by replacing Ci, Cj with Ci \A,A∪Cj. After canceling the

terms common in the two costs, we have 2d′(A,Ci \ A) < 2d′(A,Cj), which implies

αd(A,Ci \ A) < d(A,Cj).

Lemma 7. Suppose the clustering instance is α-perturbation resilient to min-sum for

α > 3maxi |Ci|
mini |Ci| .

(1) For any two different optimal clusters Ci and Cj and any Ai ⊆ Ci, Aj ⊆ Cj, if

|Ci \ Ai| and |Cj \ Aj| are larger than mini |Ci|/2, then

da(Ai, Aj) > min[da(Ai, Ci \ Ai), da(Aj, Cj \ Aj)].

(2) For any point p, all its mini |Ci|/2 nearest neighbors are in the same optimal

cluster.

Proof. (1) Let Ai = Ci \ Ai, Aj = Cj \ Aj. We have from Lemma 6 and Fact 2:

αd(Ai, Ai) < d(Ai, Cj) ≤
1

|Aj|

[
|Cj|d(Ai, Aj) + |Ai|d(Aj, Aj)

]
, (3)

αd(Aj, Aj) < d(Aj, Ci) ≤
1

|Ai|

[
|Ci|d(Aj, Ai) + |Aj|d(Ai, Ai)

]
. (4)

Divide Inequality (3) by |Ai|, divide Inequality (4) by |Aj|, and add them up:

(α− 1)|Aj|da(Aj, Aj) + (α− 1)|Ai|da(Ai, Ai) < (|Ci|+ |Cj|)da(Ai, Aj).

Since α, |Aj| and |Ai| are large enough, (α − 1)|Ai| > |Ci| and (α − 1)|Aj| > |Cj|.

Then the claim follows.
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(2) Suppose p comes from the optimal cluster Ci. Let q = arg minp′ 6∈Ci
d(p, p′),

and suppose q ∈ Cj.

If da(p, Ci) ≥ da(q, Cj), then by Inequality (3),

αd(p, Ci) ≤ |Cj|d(p, q) + d(q, Cj) = |Cj|d(p, q) + |Cj|da(q, Cj)

≤ |Cj|d(p, q) + |Cj|da(p, Ci)

which leads to da(p, Ci) < d(p, q)/2 since α is sufficiently large.

If da(p, Ci) < da(q, Cj), then we have da(q, Cj) < d(p, q)/2 by a similar argument.

In conclusion, we always have da(p, Ci) < d(p, q)/2, which means that more than

|Ci|/2 points in Ci are within distance less than d(p, q) = minp′ 6∈Ci
d(p, p′).

We are now ready to use Lemma 6 and Lemma 7 to prove the correctness of our

theorem.

Proof of Theorem 6. It is sufficient to show that in Algorithm 4, C ′ is always laminar

to the optimal clustering C, that is, for any A ∈ C ′ and C ∈ C, we have either A ⊆ C,

or C ⊆ A, or A ∩ C = ∅. Then the minimum cost pruning of T will be the optimal

clustering, which can be obtained by dynamic programming.

Intuitively, Lemma 7(2) implies that C ′ is laminar initially, and Lemma 7(1) can

be used to show that the merge steps preserve the laminarity, so C ′ is always laminar

to the optimal clustering.

Formally, we prove the laminarity by induction. By Lemma 7(2), C ′ is laminar

initially. It is sufficient to prove that if the current clustering is laminar, then the

merge step keeps the laminiarity. Assume that our current clustering C ′ is laminar to

the optimal clustering. Consider a merge of two clusters A and A′. There are two cases

when laminarity could fail to be satisfied after the merge: (1) they are strict subsets

from different optimal clusters, i.e. A ( Ci, A
′ ( Cj 6= Ci; (2) A is a strict subset of

an optimal cluster Ci and A′ is the union of one or several other optimal cluster(s).

By Lemma 7(1), the first case cannot happen. In the second case, for any E that is
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a subset of Ci \ A in the current clustering, we have da(A,E) ≥ da(A,A
′). We know

that da(A,Ci \ A) is a weighted average of the average distances between A and the

clusters that are subsets of Ci\A in the current clustering, so da(A,Ci\A) ≥ da(A,A
′).

Also, da(A,A
′) is a weighted average of the average distances between A and the

optimal clusters in A′, so there must exist an optimal cluster Cj ⊆ A′ such that

da(A,Cj) ≤ da(A,A
′) ≤ da(A,Ci \ A). This means

d(A,Cj) ≤
|Cj|
|Ci \ A|

d(A,Ci \ A) ≤ αd(A,Ci \ A)

where the last inequality comes from α ≥ 3maxi |Ci|
mini |Ci| and |Ci \ A| ≥ mini |Ci|/2. This

contradicts Lemma 6. So the merge of the two clusters A and A′ will preserve the

laminarity.

Running Time Finding the nearest neighbors for each point takes O(n log n) time,

so the step of constructing components takes O(n2 log n) time. To compute average

distances between clusters, we can record the size of each cluster, and d(C ′i, C
′
j) for

any C ′i, C
′
j in the current clustering, and update d(C ′i ∪C ′j, C ′l) = d(C ′i, C

′
l) +d(C ′j, C

′
l)

for any other cluster C ′l when merging C ′i and C ′j. So the merge steps take O(n3) time.

As dynamic programming takes O(n3) time, we can find the optimum clustering in

O(n3) time.

2.4.1 Sublinear Time Algorithm

Here we provide a sublinear algorithm for a clustering instance (X, d) that is α-

perturbation resilient to the min-sum objective. For simplicity, suppose the distances

are normalized to [0, 1]. Let N = |X|. Let ρ = mini |Ci|
N

denote the fraction of the

points in the smallest optimal cluster, and η = minp∈X,1≤i≤k da(p, Ci) denote the

minimum average distance between points and optimal clusters.

Our main result in this subsection is the following.

Theorem 7. Suppose the clustering instance (X, d) is α-perturbation resilient to
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Algorithm 5 min-sum, α perturbation resilience, sublinear

Input: Data set X, distance function d(·, ·) on X, mini |Ci|.
1: Draw a sample P of size n = Θ( 1

ρ2η2
ln Nk

δ
) i.i.d. from X.

2: Run Algorithm 4 on P to obtain C̃.
Output: The implicit clustering of X obtained by assigning each point p ∈ X to

C̃i ∈ C̃ such that d(p, C̃i) is minimized.

the min-sum objective where α ≥ 6maxi |Ci|
mini |Ci| . Then with probability at least 1 − δ,

Algorithm 5 outputs an implicit optimum clustering in time poly(log Nk
δ
, 1
ρη

).

Proof. To prove the theorem, we first show the following (Lemma 8): with high

probability, C ′ in Algorithm 4 is always laminar to C ∩ P . The key idea is that when

the sample is sufficiently large, we have that for any p ∈ Ci and Cj(j 6= i),

3
maxi |Ci ∩ P |
mini |Ci ∩ P |

d(p, Ci ∩ P ) < d(p, Cj ∩ P )

since d(p,Ci∩P )
n

≈ d(p,Ci)
N

,
d(p,Cj∩P )

n
≈ d(p,Cj)

N
and maxi |Ci∩P |

mini |Ci∩P | ≈
maxi |Ci|
mini |Ci| . Then C ∩ P

satisfies the properties for the linkage in Algorithm 4 to succeed, and thus C ′ in

Algorithm 4 is always laminar to C ∩ P , i.e. C ∩ P is a pruning of the tree.

Then we show that C∩P is actually the minimum cost pruning C̃ (Lemma 9). The

key idea is that clusters in C ∩P are far apart, the cost increased by joining different

clusters in it is larger than that saved by splitting clusters, so any other pruning has

larger cost than C ∩P . It immediately follows from the two lemmas that the implicit

clustering obtained is the optimum clustering C.

We now present the proofs of the lemmas for the correctness of the theorem.

Lemma 8. Suppose the clustering instance (X, d) is α-perturbation resilient to the

min-sum objective where α ≥ 6maxi |Ci|
mini |Ci| . If the size of the sample n = Θ( 1

ρ2η2
ln Nk

δ
),

then with probability at least 1− δ, C ′ in Algorithm 4 is always laminar to C ∩ P .

Proof. The intuition is that on X, for any i 6= j, any p ∈ Ci, we have αd(p, Ci) <

d(p, Cj). When n is sufficiently large, we can show d(p, Ci ∩ P ) ≈ n
N
d(p, Ci) for
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any i and maxi |Ci∩P |
mini |Ci∩P | ≈

maxi |Ci|
mini |Ci| , and thus we have a similar claim on P . Then C ′ in

Algorithm 4 is always laminar to C ∩ P .

First, we show that with probability at least 1 − δ/4, for any 1 ≤ i ≤ k and

υ = 1/20,

(1− υ)
n

N
|Ci| ≤ |Ci ∩ P | ≤ (1 + υ)

n

N
|Ci|. (5)

This follows from the union bound and

Pr

[∣∣∣∣ |Ci ∩ P |n
− |Ci|

N

∣∣∣∣ ≥ υ
|Ci|
N

]
≤ 2 exp

{
−2υ2

|Ci|2
N2

n

}
≤ 2 exp{−2υ2ρ2n} ≤ δ

4k
.

A similar argument shows that with probability at least 1 − δ/2, for any 1 ≤ i ≤ k

and p ∈ X,

(1− υ)
n

N
d(p, Ci) ≤ d(p, Ci ∩ P ) ≤ (1 + υ)

n

N
d(p, Ci). (6)

Now, by (5), we have maxi |Ci ∩ P | ≤ (1 + υ) n
N

maxi |Ci|, mini |Ci ∩ P | ≥ (1 −

υ) n
N

mini |Ci|. Combined these with (6), we have that with probability at least 1− δ,

for any i 6= j and any p ∈ Ci, 3maxi |Ci∩P |
mini |Ci∩P | d(p, Ci∩P ) < d(p, Cj ∩P ), which guarantees

the success of Algorithm 4.

Lemma 9. Suppose the clustering instance (X, d) is α-perturbation resilient to the

min-sum objective where α ≥ 6maxi |Ci|
mini |Ci| . If the size of the sample n = Θ( 1

ρ2η2
ln Nk

δ
),

then with probability at least 1− δ, the minimum min-sum cost pruning of the tree in

Algorithm 4 is C ∩ P .

Proof. Since the tree is laminar to C ∩ P , we know that C ∩ P is a pruning of the

tree, and any other pruning can be obtained by splitting some clusters in C ∩ P and

joining some others into unions. Intuitively, the clusters in C ∩P are far apart, so the

cost increased by joining different clusters is larger than the cost saved by splitting

clusters. This claim then implies C∩P is the minimum cost pruning. We first prove a
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similar claim for C by the α-perturbation resilience, i.e. for any three different clusters

Ci, Cj, Cl ∈ C, any AX ⊆ Ci, αd(AX , Ci \ AX) < d(Cj, Cl). Then we prove the claim

for C ∩P : for any A ⊆ Ci ∩P, d(A,Ci ∩P \A) < d(Cj ∩P,Cl ∩P )/2. Finally we use

it to prove C ∩ P is the minimum cost pruning.

First, for any AX ⊆ Ci, we define a perturbation as follows: blow up the distances

between the points in AX and those in Ci \AX by a factor of α, and keep all the other

pairwise distances unchanged. By the α-perturbation resilience, we know that C is

still the optimum clustering after perturbation. Therefore, it has lower cost than the

clustering obtained by replacing Ci with AX and Ci \ AX , and replacing Cj and Cl

with Cj ∪ Cl. After canceling the common terms in the costs of the two clusterings,

we have 2d′(AX , Ci \ AX) < 2d′(Cj, Cl), which leads to

αd(AX , Ci \ AX) < d(Cj, Cl).

Second, we prove the following claim: for any A ⊆ Ci ∩ P ,

2d(A,Ci ∩ P \ A) ≤ 2d(Ci ∩ P,Ci ∩ P ) < d(Cj ∩ P,Cl ∩ P ).

On one hand, by summing over all the subsets of Ci, we have
∑

AX⊆Ci
d(AX , Ci\AX) =

2|Ci|d(Ci, Ci)/2. Then α
2
d(Ci, Ci) < d(Cj, Cl). On the other hand, similar to the proof

of Lemma 8, we can show that with high probability, for any p ∈ Ci, d(p, Ci ∩ P ) ≤

(1 + υ) n
N
d(p, Ci) for υ = 1/20. So we have

d(Ci ∩ P,Ci ∩ P ) =
∑

p∈Ci∩P

d(p, Ci ∩ P ) ≤ (1 + υ)
n

N

∑
p∈Ci∩P

d(p, Ci)

= (1 + υ)
n

N

∑
q∈Ci

d(Ci ∩ P, q) ≤ (1 + υ)2
n2

N2
d(Ci, Ci).

A similar argument shows that for any Cj and Cl, d(Cj∩P,Cl∩P ) ≥ (1−υ)2 n
2

N2d(Cj, Cl).

The claim then follows by combining the three inequalities and noting υ = 1/20.

Now, we use the claim to prove the optimality of C ∩ P . Suppose a pruning

P∗ is obtained by splitting h clusters in C ∩ P and at the same time joining some
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other clusters into g unions. Specifically, for 1 ≤ i ≤ h, split Ci ∩ P into mi ≥ 2

clusters Pi,1, . . . , Pi,mi
; after that, merge Ch+1 ∩ P, . . . , Ch+lg ∩ P into g unions, i.e.

for 1 ≤ j ≤ g, l0 = 0, merge lj − lj−1 ≥ 2 clusters Ch+lj−1+1 ∩ P, . . . , Ch+lj ∩ P into

a union Uj; the other clusters in C ∩ P remain the same in P∗. Since the number of

clusters is still k, we have
∑

imi − h = lg − g. The cost saved by splitting h clusters

is

∑
1≤i≤h

∑
1≤p 6=q≤mi

d(Pi,p, Pi,q) =
∑
1≤i≤h

∑
1≤p≤mi

d(Pi,p, Ci ∩ P \ Pi,p). (7)

The cost increased by joining clusters is

∑
1≤j≤g

∑
h+lj−1<p 6=q≤h+lj

d(Cp ∩ P,Cq ∩ P ). (8)

To prove C∩P is the minimum cost pruning, we need to show that the saved cost (7) is

less than the increased cost (8). Since each term in (8) is twice larger than any term in

(7), it suffices to show that the number of the terms in (8) is at least half the number

of the terms in (7). Formally, we need to show 2
∑

1≤j≤g
(
lj−lj−1

2

)
≥ ∑1≤i≤hmi. We

have 2
∑

j

(
lj−lj−1

2

)
=
∑

j(lj − lj−1)(lj − lj−1 − 1) ≥ 2
∑

j(lj − lj−1 − 1) = 2(lg − g),

where the inequality comes from lj− lj−1 ≥ 2. Since lg−g =
∑

imi−h, it is sufficient

to show lg − g ≥ h. This comes from lg − g =
∑

imi − h =
∑

i(mi − 1) ≥∑i 1 = h

since mi ≥ 2.

2.5 (α, ε)-Perturbation Resilience for Min-Sum

For (α, ε)-perturbation resilient min-sum instances, we will show that when α =

Ω(maxi |Ci|
mini |Ci| ), ε = Õ(mini |Ci|

n
), there exists a polynomial time algorithm that outputs

a clustering that is both a good approximation and also Õ(ε)-close to the optimal

clustering. Formally,

Theorem 8. Suppose the instance is (α, ε)-perturbation resilient to the min-sum ob-

jective for α > 8maxi |Ci|
mini |Ci| , ε < mini |Ci|

600n logn
. There exists an algorithm that outputs a
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clustering which is a (1 + 40εn logn
mini |Ci| )-approximation to the optimal clustering in polyno-

mial time. Furthermore, the output clustering is also (6ε log n)-close to the optimal

clustering.

Since ε = O(mini |Ci|
n logn

), the approximation factor is always O(1) and gets better if

ε gets smaller. To prove the theorem, we first derive new useful structural properties

implied by (α, ε)-perturbation resilience for min-sum, and then use them to design

our algorithm achieving the guarantees in the theorem.

2.5.1 Structure of (α, ε)-Perturbation Resilient Instances

In this subsection, we introduce the notion of bad points for the min-sum objective,

and then show that there are just a few bad points while the other points have useful

properties. More precisely,

Definition 7. Define bad points to be those that are not β times closer to its own

cluster than to other clusters, where β = min
{

4
5
α, 8n

}
. That is

Bi = {p ∈ Ci : ∃j, d(p, Cj) ≤ βd(p, Ci)}, β = min

{
4

5
α, 8n

}
, B = ∪iBi. (9)

The other points are called good points.

β is chosen to be min
{

4
5
α, 8n

}
for reasons that will become clear in the proof

bounding the number of bad points. Informally, we will show that when α is suf-

ficiently large and ε is sufficiently small, the number of bad points are bounded by

Õ(εn) (Theorem 9 in Section 2.5.1.1). The good points in different optimal clusters,

by definition, are far from each other. It is then possible to design approximation

algorithms if the influence of the few bad points can be eliminated.

However, we do not know the actual bad points. A key observation is that we

can introduce a proxy called potential bad points, which can be easily computed.

Formally,
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Definition 8. (a) Define mB := 6ε log n.

(b) For a set A with |A| > 2mB, define the potential bad points F (A) to be the 2mB

points in A that are farthest from A. That is, F (A) ⊆ A, |F (A)| = 2mB, and for any

p ∈ F (A), q ∈ P \ F (A), d(p,A) ≥ d(q, A). The other points P (A) = A \ F (A) are

called potential good points.

(c) For a cluster A, define its robust min-sum cost as drs(A) := d(P (A), P (A)), where

P (A) are the potential good points in A. For a clustering C, define its robust min-sum

cost as
∑

C∈C drs(C).

We show that the robust min-sum cost computed after removing the potential

bad points approximates the min-sum cost computed after removing the actual bad

points (see Section 2.5.1.2). In other words, we can design approximation algorithms

using the potential bad points as if we knew the actual bad points.

2.5.1.1 Bounding the Number of Bad Points

Here we bound the number of bad points by Õ(εn) when α is sufficiently large and ε

is sufficiently small.

Theorem 9. Suppose the clustering instance is (α, ε)-perturbation resilient for the

min-sum objective where α > 4 and ε < mini |Ci|
200n

. Then we have |B| ≤ mB = 6εn log n.

Proof. Assume for contradiction |B| > 2ηεn where η =
⌈
log

maxi maxp∈Bi
d(p,Ci)

mini minp∈Bi
d(p,Ci)

⌉
. We

will first construct a perturbation which leads to a contradiction, and then show that

η ≤ 3 log n, completing the proof.

We begin constructing the perturbation by introducing some notations. Consider

the η intervals as follows: [2t−1v, 2tv] where v = mini minp∈Bi
d(p, Ci), 1 ≤ t ≤ η. At

least one of the intervals, say [r, 2r], will contain the costs of more than 2εn bad points.

Let B̂ denote an arbitrary subset of 2εn bad points in this interval. Let B̂i = B̂ ∩Ci
denote the selected bad points in the optimal cluster Ci. Let Ki = Ci \ B̂i denote

the other points in Ci, and set K = ∪iKi. Denote as Dj all those selected bad points
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Ci C̃i

B̂i Ki Di

Figure 5: Perturbation construction.

whose second nearest cluster is Cj, that is, Dj = {p : p ∈ B̂i, j = arg min`6=i d(p, C`)}.

Finally, let C̃i = Ki ∪Di. See Figure 5 for an illustration.

Now we are ready to construct the perturbation, which tries to make the selected

bad points move to their second nearest clusters and keep the other points in their

original clusters. More precisely, the perturbation is constructed as follows: blow up

all distances by a factor of α except those within C̃i, 1 ≤ i ≤ k. Intuitively, this

perturbation favors the clustering C̃i.

To derive a contradiction, consider the optimal clustering after perturbation, de-

noted as {C ′i}. Since there are more than εn bad points in B̂, by (α, ε)-perturbation

resilience, not all of them move to new clusters in {C ′i}, and thus {C ′i} is different

from {C̃i}. In fact, we will show that the clustering {C̃i} has a lower cost than {C ′i},

which is a contradiction. To do so, we consider changing {C ′i} to {C̃i} by moving

points. It is sufficient to show that by moving these points, the cost saved is larger

than the cost added.

To bound the costs, we first divide the points into different types. See Figure 6

for an illustration. First, we need to move out C ′i \ C̃i from each C ′i. These points

can be divided into three types:

(1) Ui = C ′i ∩ B̂i are the selected bad points in Ci that need to be moved out.

(2) Vi = (C ′i \ C̃i) ∩ (∪j 6=iB̂j) = ∪j 6=i(B̂j ∩ C ′i) are the selected bad points that are
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Figure 6: Different types of points when bounding the number of bad points for
(α, ε)-perturbation resilient min-sum instances.

from other optimal clusters. But their second nearest cluster is not Ci, so they

are not in C̃i.

(3) Wi = (C ′i \ C̃i)∩ (∪j 6=iKj) = ∪j 6=i(Kj ∩C ′i) are points that are from Kj for some

j 6= i and are in C ′i. But they are not from Ki and thus are not in C̃i.

Second, we need to move in C̃i \ C ′i for each C̃i. Similarly, these points can also be

divided into three types:

(1) W̃i = Ki \ C ′i = ∪j 6=i(Ki ∩ C ′j) are those points in Ki and in C ′j for some

j 6= i. This means that they are points in ∪jWj. More specifically, we have

∪iW̃i = ∪jWj.

(2) Ṽi = (Di \ C ′i) ∩
[
∪ 6̀=j(B̂` ∩ C ′j)

]
are part of the selected bad points whose

second nearest cluster is Ci. They are originally in B̂` for some ` but are in C ′j

for some j 6= `. In other words, they are points from Vj for some j, and we have

∪iṼi = ∪jVj.

(3) Ũi = (Di \ C ′i) ∩
[
∪j(B̂j ∩ C ′j)

]
are also part of the selected bad points whose

second nearest cluster is Ci. They are originally in B̂j for some j and are

also in C ′j. In other words, they are points from Uj for some j, and we have

∪iŨi = ∪jUj.
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In conclusion, we have C ′i = C ′i ∩ C̃i + Ui + Vi + Wi, C̃i = C ′i ∩ C̃i + Ũi + Ṽi + W̃i.

We also have ∪iŨi = ∪jUj, ∪iṼi = ∪jVj, and ∪iW̃i = ∪jWj. The costs saved and

added are then summarized as follows. Suppose we first move out W , then V , and

finally U . The cost saved by moving out W is at least 2
∑

i d
′(Wi, C

′
i∩Ci), that saved

by moving out V is at least 2
∑

i d
′(Vi, C

′
i ∩ Ci), and that saved by moving out U is

at least 2
∑

i d
′(Ui, C

′
i ∩Ki). Next, we move in W̃ , then Ṽ , and finally Ũ . The cost

added by moving in W̃ is at most 2
∑

i d
′(W̃i, W̃i +C ′i ∩ C̃i), that added by moving in

Ṽ is at most 2
∑

i d
′(Ṽi, C̃i), and that added by moving in Ũ is at most 2

∑
i d
′(Ũi, C̃i).

We are now ready to show that the cost saved is greater than the cost added.

The high level idea is that a significant amount of cost is saved by moving Ui to

the correct clusters, while the costs added by moving Vi and Wi are generally small

since the number of points moved is bounded by 3εn and the cost of the selected bad

points moved is bounded by 2r. Formally, we have the following claim, whose proof

is presented in Appendix A.4.1.

Claim 3. The costs saved and added by moving {Ui}ki=1, {Vi}ki=1 and {Wi}ki=1 satisfy:

(a) 2
∑
i

d′(Ui, C
′
i ∩Ki)− 2

∑
i

d′(Ũi, C̃i)

≥ 3

10
α
∑
i

d(Ui, Ci)−
2α

100

∑
i

d(Wi, Ci)−
8α + 16

100
rεn,

(b) 2
∑
i

d′(Vi, C
′
i ∩ Ci)− 2

∑
i

d′(Ṽi, C̃i)

≥ 99

50
(α− 2)

∑
i

d(Vi, Ci)−
2α

100

∑
i

d(Wi, Ci)−
8α + 16β

100
rεn,

(c) 2
∑
i

d′(Wi, C
′
i ∩ Ci)− 2

∑
i

d′(W̃i, W̃i + C ′i ∩ C̃i)

≥ 98

50
(α− 2)

∑
i

d(Wi, Ci)−
8α + 8β

100
rεn.

After adding up all the inequalities in the claim, the right hand side is a lower

bound on the difference between the cost saved and the cost added, which we now

show must be positive when α > 4 and β ≤ 4
5
α. The terms about d(Wi, Ci) and
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d(Vi, Ci) are positive, so it suffices to show that
∑

i d(Ui, Ci) is larger than rεn. First,

d(p, Ci) ≥ r for any p ∈ Ui. Second, |∪iUi| ≥ εn since there are 2εn selected bad points

but no more than εn of them move from their original clusters in {Ci} to a different

cluster in {C ′i}. Then we have
∑

i d(Ui, Ci) ≥
∑

i r|Ui| = r
∑

i |Ui| ≥ rεn. Hence, the

difference between the cost saved and the cost added is positive. This means the cost

of {C̃i} is smaller than the cost of {C ′i}, which contradicts the assumption that {C ′i}

is the optimal clustering under d′. Therefore, there can be at most 2ηεn bad points.

Finally, what is left is to show η ≤ 3 log n. Suppose p1 is the point that achieves

maxi maxp∈Bi
d(p, Ci) and p2 is the point that achieves mini minp∈Bi

d(p, Ci). Without

loss of generality, suppose p1 ∈ C1 and p2 ∈ C2. By definition of bad points, there

exists Ci 6= C2 such that d(p2, Ci) ≤ βd(p2, C2). If Ci 6= C1, we have d(p1, C1) ≤

d(C2, Ci), since otherwise we can get lower cost by splitting C1 into p1 and C1 \ {p1}

while merging C2 and Ci. If Ci = C1, we also have d(p1, C1) ≤ d(C2, Ci), since

otherwise we can get lower cost by splitting C1 into p1 and C1\{p1} and then merging

C2 and C1 \ {p1}. In both cases, we have

d(p1, C1) ≤ d(C2, Ci) ≤ |Ci|d(p2, C2) + |C2|d(p2, Ci)

≤ |Ci|d(p2, C2) + β|C2|d(p2, C2)

≤ 8n2d(p2, C2)

where the last inequality follows from β ≤ 8n. Then we have η ≤ 3 log n.

2.5.1.2 Properties of Actual and Potential Good Points

Since there are just a few bad points and the good points in different clusters are

far apart, the cost between sufficiently large subsets of their good points accounts for

most of the cost between the two clusters. This means that the min-sum cost can

be approximately computed on the good points, and the min-sum clustering can be

approximately solved if we knew the actual good points.
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Lemma 10. Suppose Wi ⊆ Gi,Wj ⊆ Gj. When |Ci| ≥ 50|Ci \ Wi| and |Cj| ≥

50|Cj \Wj|, we have d(Ci, Cj) ≤ 3
2
d(Wi,Wj).

Proof Sketch. Since |Wi| ≈ |Ci| and |Wj| ≈ |Cj|, it suffices to show that da(Ci, Cj) ≤

da(Wi,Wj) approximately. By the triangle inequality, da(Ci, Cj) ≤ da(Ci,Wi) +

da(Wi,Wj) + da(Wj, Cj), so we only need to bound da(Wi, Ci) and da(Wj, Cj) by

da(Wi,Wj).

By definition of good points, da(Wi, Ci) is much less than da(Wi, Cj), which is

approximately da(Wi,Wj) since Wj takes up a majority of points in Cj. A similar

argument bounds da(Wj, Cj), which then leads to the lemma. The complete proof is

provided in Appendix A.4.

Furthermore, the good points in different optimal clusters are far apart in the

following sense: the good points from two different clusters have cost much larger

than those in a third cluster have. Formally,

Lemma 11. For any three different optimal clusters Ci, Cj, and Cl, and any A ⊂ Gi,

18
5
d(A,Gi \ A) < d(Gj, Gl). Consequently, 9

5
d(Gi, Gi) < d(Gj, Gl).

If we can construct a tree on the good points with a pruning that assigns all good

points correctly, then this property is useful in finding the pruning.

Now we turn to analyze the potential good points. A key property of the potential

good points is the following: for any point p and any sufficiently large set A, the cost

between p and the potential good points in A is roughly bounded by the cost between

p and any sufficiently large subset H of A. See Lemma 12 for details. A specific case

is when H is the actual good points in A. In this case, the property says that the

cost between p and the potential good points is roughly bounded by the cost between

p and the actual good points. This means that in suitable situations, we can regard

potential good points as actual good points.
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Figure 7: Properties of the potential good points.

Lemma 12. Suppose H ⊆ A such that |A\H| ≤ mB. Let F = F (A), P = P (A), H̄ =

A \ H. Let W = H ∩ P, V = H̄ ∩ F,X = F ∩ H, Y = H̄ ∩ P . See Figure 7 for an

illustration. If |A| ≥ 20mB, then for any p, d(p, P ) ≤ |W |+|Y |
|W |−|X|d(p,H).

Proof. Since d(p, P ) = d(p, Y ) +d(p,W ) and d(p,H) = d(p,X) +d(p,W ), the lemma

is true if Y = ∅. Otherwise, we need to compare d(p,X) and d(p, Y ). By the

triangle inequality, we have da(W,X) ≤ da(W, p)+da(p,X) and da(p, Y ) ≤ da(p,W )+

da(W,Y ). Then

d(p,X) ≥ d(W,X)

|W | − |X||W |d(p,W ), d(p, Y ) ≤ d(W,Y )

|W | +
|Y |
|W |d(p,W ).

From these bounds on d(p,X) and d(p, Y ), we have

d(p,H) ≥ d(W,X)

|W | +
|W | − |X|
|W | d(p,W ), d(p, P ) ≤ d(W,Y )

|W | +
|W |+ |Y |
|W | d(p,W ).

The lemma then follows from these two inequalities and the following claim.

Claim 4. d(X,W ) ≥ d(Y,W + Y ).

Intuitively, the points in X ⊆ F are among those farthest away from A, so

da(X,A) ≥ da(Y,A). Since |A \ H| ≤ mB and |F | = 2mB, we have |X| ≥ 2|Y |.

Then the cost of Y cannot be too large compared to that of X. The complete proof

of the claim is provided in Appendix A.4.
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2.5.2 Approximating the Optimal Clustering

In this subsection, we design an approximation algorithm and prove our final result

Theorem 8 by utilizing the properties of the (α, ε)-perturbation resilience. Note that

we can generate a list of sufficiently large almost “pure” blobs using Algorithm 3.

However, unlike for (α, ε)-perturbation resilient k-median instances, it is not guar-

anteed that the robust linkage procedure in [16] can link these blobs into a tree so

that a pruning of the tree assigns all but bad points correctly. In Section 2.5.2.1, we

design a robust average linkage algorithm to achieve this goal, and in Section 2.5.2.2,

we show that this pruning can be found in polynomial time. Although this pruning

may not be a good approximation to the optimum, in Section 2.5.2.3 we show that

a good approximation can be computed by reassigning points in it, which leads to

Theorem 8.

2.5.2.1 Constructing A Tree with A Pruning Close to the Optimal Clustering

Here we show that by utilizing the bound on the number of bad points, we can

construct a tree with a pruning that assigns all good points correctly. As described

in Algorithm 6, we first use Algorithm 3 to generate a list of blobs, and then use a

robust version of average linkage to link them into a tree: repeatedly merge the two

blobs with the minimum robust average distance defined as follows.

Definition 9. The robust average distance dra(A1, A2) between two sets A1, A2 is de-

fined as the average distance between their potential good points. That is, dra(A1, A2) =

d(P (A1),P (A2))
|P (A1)||P (A2)| .

We now prove that the tree output by Algorithm 6 has a pruning that correctly

assigns all good points.

Lemma 13. The tree output in Algorithm 6 has a pruning C ′ that assigns all good

points correctly.
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Algorithm 6 Robust Average Linkage

Input: Data set P , distance function d(·, ·) on P , mini |Ci|, ε > 0.
1: Use Algorithm 3 with mB = 6εn log n and γ = 4

5
to get a list L0 of blobs.

2: Initialize the clustering L with each blob being a cluster.
3: Repeat till only one cluster remains:

merge clusters C,C ′ which minimize dra(C,C
′).

4: Let T be the tree with blobs as leaves and internal nodes corresponding to the
merges performed.

Output: The tree T .

Proof. To analyze the algorithm, we begin with the following property of good points.

When combined with the property of Algorithm 3 (Lemma 4), it immediately shows

that each blob in the list L0 has size at least 1
2

mini |Ci|, and contains good points

from only one optimal cluster.

Claim 5. For any p ∈ Gi, all its 4|Ci|
5

nearest neighbors belong to Ci ∪B.

Proof. We need to show that for any j 6= i and any good point q ∈ Gj, d(p, q) is

large compared to da(p, Ci). Intuitively, p is much farther away from Cj than from

Ci: βd(p, Ci) ≤ d(p, Cj). It suffices to bound d(p, Cj) by d(p, q) and d(p, Ci). By the

triangle inequality, we have

d(p, Cj) ≤ |Cj|d(p, q) + d(q, Cj) and d(q, Cj) ≤
1

β
d(q, Ci) ≤

|Ci|
β
d(p, q) +

1

β
d(p, Ci).

Combining these inequalities, we have (β − 1
β
)d(p, Ci) ≤ (|Cj| + |Ci|

β
)d(p, q). When

α > 8maxi |Ci|
mini |Ci| , we have 5da(p, Ci) < d(p, q), which then leads to the conclusion.

It now suffices to prove by induction that the clustering L ∩G is always laminar

to C ∩ G. It is true at the beginning by the property of Algorithm 3. Assume for

contradiction that the laminarity is first violated after merging A and D. There are

two cases: (1) A and D are strict subsets of different optimal clusters; (2) A is a strict

subset of Gi while D is the union of the good points in several optimal clusters. We

have the following claims for the two cases respectively.
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Claim 6. (a) Suppose A ∈ L, A ∩ G ( Gi, and D ∈ L, D ∩ G ( Gj(j 6= i). Then

there exists A′ 6= A in L such that A′ ∩G ( Gi and dra(A,A
′) < dra(A,D).

(b) Suppose A ∈ L, A ∩ G ( Gi, and D ∈ L, D ∩ G is the union of good points in

several optimal clusters. Then there exists A′ 6= A in L such that A′ ∩ G ( Gi and

dra(A,A
′) < dra(A,D).

The intuition is that since good points in different optimal clusters are far away,

we can find a blob A′ from Ci ∪ B such that good points in A′ have smaller average

distance to good points in A than those in D have, that is, da(A ∩ G,A′ ∩ G) <

1
2
da(A ∩G,D ∩G). Then we show that the bad points in these blobs do not change

things much: dra(A,A
′) is approximately less than da(A ∩G,A′ ∩G), and dra(A,D)

is approximately greater than da(A∩G,D∩G). These then lead to the claims. Their

complete proofs are presented in Appendix A.5.1.

By these two claims, we should first merge A with A′ rather than with D, which is

contradictory. So the laminarity is always preserved, which completes the proof.

2.5.2.2 Getting A Pruning Close to the Optimal Clustering

We have shown that a tree can be constructed such that there is a pruning, denoted

as C ′, that assigns all good points correctly. Here we show how to find this pruning

from the tree. Suppose we can remove the actual bad points and compute the cost

between the good points. Since the good points from different clusters are far apart,

the good point cost increased by joining different clusters in C ′ is larger than that

saved by splitting clusters in C ′ (Lemma 11). Then any other pruning has larger

cost than C ′. Unfortunately, we do not know the actual good points. Therefore, we

consider the potential good points and compute the robust min-sum cost. It turns

out that C ′ indeed is the pruning with the minimum robust min-sum cost.

Lemma 14. Suppose the pruning C ′ = {C ′1, . . . , C ′k} in tree T assigns all good points

correctly. Then C ′ is the minimum robust min-sum cost pruning in the tree.
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Proof Sketch. Computing the robust min-sum cost will eliminate the effect of the bad

points and work as if we knew the actual good points: the robust min-sum cost saved

by splitting a node is at most the good point cost saved (Claim 7), and the robust

min-sum cost increased by merging two nodes is in the same order of the good point

cost increased (Claim 8).
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P

F

H

H̄

Figure 8: Notations in Claim 4 and 7.

Claim 7. If |C ′i| ≥ 20mB, then drs(C
′
i) ≤ d(Gi, Gi).

Proof. The claim follows from Claim 4 (See Figure 8 for an illustration of the nota-

tions) by setting A = C ′i and H = Gi. In particular, we have drs(A) = d(P, P ) ≤

d(W,W ) + 2d(Y,W +Y ) and d(H,H) ≥ d(W,W ) + 2d(X,W ). By Claim 4, d(Y,W +

Y ) ≤ d(X,W ), which completes the proof.

Wj

Wi

Xi
Xj

Y
V

C = C ′i
⋃
C ′j

P

F

Gj

Gi

Ḡ

Figure 9: Notations in Claim 8.
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Claim 8. For t ∈ {i, j}, |Ct| ≥ 100mB, and C ′t contains all good points in Ct but no

good points in other optimal clusters. Then drs(C
′
i ∪ C ′j) − d(Gi, Gi) − d(Gj, Gj) ≥

(4
3
− 4

β
)d(Gi, Gj).

Proof. Let C = C ′i +C ′j, F = F (C), P = P (C), and G = Gi +Gj, Ḡ = C \G. Define

Wi = Gi∩P,Xi = Gi∩F ; define Wj, Xj similarly. Also, define Y = P ∩Ḡ, V = F ∩Ḡ.

See Figure 9. Then

d(C \ F,C \ F )− d(Gi, Gi)− d(Gj, Gj) ≥ 2d(Wi,Wj)− 2d(Xi, Gi)− 2d(Xj, Gj).(10)

We have d(Xi, Ci) + d(Xj, Cj) ≤ d(Xi,Cj)+d(Xj ,Ci)

β
≤ 2

β
d(Ci, Cj) by the definition of

good points, and d(Ci, Cj) ≤ 3
2
d(Wi,Wj) by Lemma 10. So (10) is at least (4

3
−

4
β
)d(Ci, Cj) ≥ (4

3
− 4

β
)d(Gi, Gj).

By these claims and Lemma 11, when splitting some node in the pruning while

merging some other two, the cost increased is larger than the cost saved. Since any

pruning of size k can be obtained from C ′ by splitting some nodes while merging

some others, we can show that C ′ has the minimum robust min-sum cost. See Ap-

pendix A.5.2 for the complete proof.

2.5.2.3 Getting a Good Approximation

We have showed that the pruning C ′ that assigns all good points correctly has min-

imum robust min-sum cost, so we can use dynamic programming on the tree to get

the pruning. However, this pruning may not be a good approximation. For example,

consider an instance consisting of two unbalanced clusters. Assume that there is only

one bad point, belonging to the small cluster. Further assume the distances between

the good points in each cluster are negligible, then assigning the bad point incorrectly

to the large cluster will lead to an O(maxi |Ci|
mini |Ci| )-approximation. So the pruning C ′ may

not be a constant approximation.

Here we show that a constant factor approximation can be computed by reassign-

ing the points in C ′. As described in Algorithm 7, we reassign each point p to the
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Algorithm 7 Getting a good approximation

Input: A clustering C ′ = {C ′1, . . . , C ′k}, where Gi ⊆ C ′i ⊆ Ci ∪B.
1: for each point p do
2: Assign p to the index i such that d(p, P (C ′i)) is minimized.
3: end for
4: Let C ′′i be the set of points assigned to the index i.

Output: The clustering C ′′ = {C ′′1 , . . . , C ′′k}.

index i that minimizes the cost between p and the potential good points in the cluster

C ′i. To analyze Algorithm 7, we first prove that after reassignment all good points

are still assigned correctly (Lemma 15), and then bound the cost.

Lemma 15. For any p ∈ Gi, any j 6= i, d(p, P (C ′j)) > d(p, P (C ′i)).

Proof Sketch. By Lemma 12, d(p, P (C ′i)) ≈ d(p, Ci). By definition of good points,

βd(p, Ci) ≤ d(p, Cj), so it suffices to show that d(p, P (C ′j)) is not so small compared

to d(p, Cj). Let Wj = Gj ∩P (C ′j) denote the good points that are also potential good

points, and let Zj = Cj \Wj denote all other points in Cj. Since Wj ⊆ P (C ′j), we only

need to prove that d(p,Wj) is large compared to d(p, Zj). Intuitively, this is true since

p is far from good points in Gj, and Wj contains most of Gj. See Appendix A.5.3 for

details.

Theorem 8. Suppose the instance is (α, ε)-perturbation resilient to the min-sum ob-

jective for α > 8maxi |Ci|
mini |Ci| , ε < mini |Ci|

600n logn
. There exists an algorithm that outputs a

clustering which is a
(

1 + 40εn logn
mini |Ci|

)
-approximation to the optimal clustering in poly-

nomial time. Furthermore, the output clustering is also (6ε log n)-close to the optimal

clustering.

Proof. By Lemma 15, all the good points in Ci are assigned correctly to C ′′i . Let

Ai = C ′′i \ Gi denote all the bad points assigned to C ′′i . The cost of the output
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clustering C ′′ can be written as follows.

∑
i

d(C ′′i , C
′′
i ) =

∑
i

d(Gi + Ai, Gi + Ai)

=
∑
i

d(Gi, Gi) + 2
∑
i

d(Gi, Ai) +
∑
i

d(Ai, Ai). (11)

We need to bound the last two terms.

Let r = mini |Ci|
mB

. By the triangle inequality, we have da(Ai, Ai) ≤ 2da(Ai, Gi),

leading to

d(Ai, Ai) ≤
2|Ai|
|Gi|

d(Ai, Gi) ≤
2mB

|Ci| −mB

d(Ai, Gi) ≤
2

r − 5
d(Ai, Gi). (12)

So it suffices to bound d(Ai, Gi). In Appendix A.5.3, we prove

Claim 9.
∑

i d(Ai, Gi) ≤ r2

(r−5)2
∑

i d(Ci, Ci)− r2−1
(r−5)2

∑
i d(Gi, Gi).

The intuition is as follows. Suppose p ∈ Ai comes from Cj. Then d(p,Gi) ≈

d(p, P (C ′i)), which is smaller than d(p, P (C ′j)) since p is assigned to i. By Lemma 12,

we have d(p, P (C ′j)) ≈ d(p,Gj). Applying this argument for all p ∈ Ai and all

i, and noting that ∪iAi = ∪jBj, we have
∑

i d(Ai, Gi) is approximately less than∑
j d(Bj, Gj) ≤

∑
j[d(Cj, Cj)− d(Gj, Gj)].

The proof of correctness is completed by combining this claim and the inequalities

(11) and (12).

Running Time Algorithm 3 takes time O(nω+1) (as shown in the proof of Theo-

rem 4), and the rest steps of Algorithm 6 take time O(n3). Finding the minimum

robust min-sum cost pruning in the tree output by Algorithm 6 takes time O(n3),

and Algorithm 7 takes time O(n3). So the total running time is O(nω+1).
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CHAPTER III

DISTRIBUTED CLUSTERING

Many modern applications face an explosion of data. Usually, the data is distributed

over different locations, such as distributed databases [91, 36], images and videos

over networks [87], surveillance [53] and sensor networks [35, 54]. In many of these

applications the data are inherently distributed because, as in sensor networks, it is

collected at different sites. Since most classic clustering algorithms are designed for

the centralized setting, it has become crucial to develop clustering algorithms which

are effective in the distributed setting.

Several algorithms for distributed clustering have been proposed and empirically

tested. Some of these algorithms [48, 101, 38] are direct adaptations of centralized

algorithms which rely on statistics that are easy to compute in a distributed man-

ner. Other algorithms [60, 64] generate summaries of local data and transmit them

to a central coordinator which then performs the clustering algorithm. They do not

provide theoretical guarantees on the clustering quality, or the reduction in commu-

nication cost. Additionally, most of these algorithms assume that the distributed

nodes can communicate with all other sites or that there is a central coordinator that

communicates with all other sites.

In this chapter, we study the problem of distributed k-median and k-means clus-

tering where the data is distributed across nodes whose communication is restricted

to the edges of an arbitrary graph. We provide algorithms with small communication

cost and provable guarantees on the clustering quality. Our technique for reducing

communication in general graphs is based on the construction of a small set of points

called coreset, which act as a proxy for the entire data set. For k-means, we further
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provide an algorithm for high dimensional data, where we first reduce the dimension

of the data by distributed principal component analysis (PCA) and then apply our

distributed clustering algorithm to the projected data.

An ε-coreset is a weighted set of points whose cost on any set of centers is ap-

proximately the cost of the original data on those same centers up to accuracy ε.

Thus an approximate solution for the coreset is also an approximate solution for

the original data. Coresets have previously been studied in the centralized setting

([57, 45]) but have also recently been used for distributed clustering as in [104] and

as implied by [47]. In Section 3.2, we propose a distributed algorithm for k-means

and k-median, by which each node constructs a local portion of a global coreset. The

nodes then share the local portions of the coreset, which can be done efficiently in

general graphs using a message passing approach. More precisely, each node com-

putes an approximate solution for its local data and communicate the cost of this

local solution, and then constructs the local portion of a global coreset using only

its local data and the total cost of each node’s local solution. For ε constant, this

builds a coreset of size Õ(kd + sk) for k-median and k-means when the data points

have dimension d and are distributed over s sites1. If there is a central coordinator

among the s sites, then clustering can be performed on the coordinator by collecting

the local portions of the coreset with a communication cost equal to the coreset size

Õ(kd+ sk). For distributed clustering over general connected topologies, we propose

an algorithm based on the distributed coreset construction and a message-passing ap-

proach, whose communication cost improves over previous coreset-based algorithms.

Experimental results on large scale data sets show that our algorithm performs well

in practice. For a fixed amount of communication, our algorithm outperforms other

1For k-median and k-means in general metric spaces, the bound on the size of the coreset can be
obtained by replacing d with the logarithm of the total number of points. The analysis for general
metric spaces is largely the same as that for d dimensional Euclidean space, so we will focus on
Euclidean space and point out the difference when needed.
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coreset construction algorithms.

In the above algorithms, the number of points in the coreset is independent of the

number of the original data points, which is useful for large scale applications. How-

ever, it is linear in the dimension of the data, leading to high communication cost for

high dimensional data. In Section 3.3, we propose a distributed PCA algorithm, and

show that its output represents the original data in the sense that any good approx-

imation solution of k-means clustering on the projected data is also a good solution

on the original data. When combined with the distributed clustering algorithm in

Section 3.2, this leads to an algorithm whose communication cost (in terms of the

number of points communicated) is independent of the size and the dimension of the

original data. Our experiment results demonstrate that this significantly reduces the

communication cost while hardly comprising the quality of the k-means clustering

solutions.

3.1 Preliminaries

Let d(p, q) denote the Euclidean distance between any two points p, q ∈ Rd. The

goal of k-means clustering is to find a set of k centers x = {x1, x2, . . . , xk} which

minimize the k-means cost of data set P ⊆ Rd. Here the k-means cost is defined as

cost(P,x) =
∑

p∈P d(p,x)2 where d(p,x) = minx∈x d(p, x). If P is a weighted data set

with a weighting function w, then the k-means cost is defined as
∑

p∈P w(p)d(p,x)2.

Similarly, the k-median cost is defined as
∑

p∈P d(p,x). Both k-means and k-median

cost functions are known to be NP-hard to minimize (see for example [7]). For

both objectives, there exist several readily available polynomial time algorithms that

achieve constant approximation solutions (see for example [63, 76]).

In the distributed clustering task, we consider a set of s nodes V = {vi, 1 ≤ i ≤ s}

which communicate on an undirected connected graph G = (V,E) with m = |E|

edges. More precisely, an edge (vi, vj) ∈ E indicates that vi and vj can communicate
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with each other. On each node vi, there is a local set of data points Pi, and the

global data set is P = ∪si=1Pi. The goal is to find a set of k centers x which optimize

cost(P,x) while keeping the computation efficient and the communication cost as low

as possible. Our focus is to reduce the total communication cost while preserving

theoretical guarantees for approximating the clustering cost.

Here we measure the communication cost in number of points transmitted. In

some cases we measure the communication in number of words transmitted, which

will be explicitly pointed out. We also assume for simplicity that there is no latency

in the communication.

3.1.1 Coresets

For the distributed clustering task, a natural approach to avoid broadcasting raw data

is to generate a local summary of the relevant information. If each site computes a

summary for their own data set and then communicates this to a central coordinator,

a solution can be computed from a much smaller amount of data, drastically reducing

the communication.

In the centralized setting, the idea of summarization with respect to the cluster-

ing task is captured by the concept of coresets [57, 45]. A coreset is a set of points,

together with a weight for each point, such that the cost of this weighted set approx-

imates the cost of the original data for any set of k centers. The formal definition of

coresets is:

Definition 10. An ε-coreset for a set of points P with respect to a center-based cost

function is a set of points S and a set of weights w : S → R such that for any set of

centers x,

(1− ε)cost(P,x) ≤
∑
p∈S

w(p)cost(p,x) ≤ (1 + ε)cost(P,x).

In the centralized setting, many coreset construction algorithms have been pro-

posed for k-median, k-means and some other cost functions. For example, for points
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in Rd, algorithms in [45] construct coresets of size t = Õ(kd/ε4) for k-means and core-

sets of size t = Õ(kd/ε2) for k-median. In the distributed setting, it is natural to ask

whether there exists an algorithm that constructs a small coreset for the entire point

set but still has low communication cost. Note that the union of coresets for multiple

data sets is a coreset for the union of the data sets. The immediate construction of

combining the local coresets from each node would produce a global coreset whose

size was larger by a factor of s, greatly increasing the communication complexity. We

present a distributed algorithm which constructs a global coreset the same size as the

centralized construction and only needs a single value2 communicated to each node.

This serves as the basis for our distributed clustering algorithm.

3.1.2 Principal Component Analysis

PCA is a classical tool for dimension reduction, and has been closely related to k-

means [41, 70]. In Section 3.3, we first use PCA on high dimensional data and then

do distributed clustering on the projected data, which leads to lower communication

cost. We introduce the following notations for PCA. View the local data Pi as a

matrix, whose rows are data points. The global data P is then a concatenation of

the local data matrix, i.e. P> = [P>1 , P
>
2 , . . . , P

>
s ]. For simplicity, we always assume

the data is centered, that is,
∑

p∈P p = 0; otherwise, we can first perform a step to

center the data, whose communication and computation costs will be dominated by

those in the other steps of our algorithms.

For a matrix X = [xij], let ‖X‖2F =
∑

i,j x
2
i,j. We say that X has orthonormal

columns if its columns are orthogonal unit vectors. Let L(X) denote the linear sub-

space spanned by the columns of X. For simplicity, for a set of points P , we denote

d2(P,L(X)) :=
∑

p∈P d(p, L(X))2 =
∑

p∈P
[
minq∈L(X) d(p, q)

]2
. For a point p, let

ΠX(p) denote its projection to L(X). Note that for an orthogonal matrix X, the

2The value communicated is the sum of the costs of approximations to the local optimal clustering.
This is guaranteed to be no more than a constant factor times larger than the optimal cost.
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projection of a point p to L(X) will be pX using the coordinates with respect to the

column space of X, and will be pXXT using the original coordinates.

3.2 Distributed Coreset-Based Clustering

Since coresets summarize local information they are a natural tool to use when trying

to reduce communication complexity. If each node constructs an ε-coreset on its

local data, then the union of these coresets is clearly an ε-coreset for the entire data

set. Unfortunately the size of the coreset in this approach increases greatly with the

number of nodes.

Another approach is the one presented in [104]. Its main idea is to approximate

the union of local coresets with another coreset. They assume nodes communicate

over a rooted tree, with each node passing its coreset to its parent. Because the ap-

proximation factor of the constructed coreset depends on the quality of its component

coresets, the accuracy a coreset needs (and thus the overall communication complex-

ity) scales with the height of this tree. Although it is possible to find a spanning

tree in any communication network, when the graph has large diameter every tree

has large height. In particular many natural networks such as grid networks have a

large diameter (Ω(
√
s) for grids) which greatly increases the size of coresets which

must be communicated across the lower levels of the tree. We show that it is possi-

ble to construct a global coreset with low communication overhead. This is done by

distributing the coreset construction procedure rather than combining local coresets.

The communication needed to construct this coreset is negligible – just a single value

from each data set representing the approximate cost of their local optimal clustering.

Since the sampled global ε-coreset is the same size as any local ε-coreset, this leads to

an improvement of the communication cost over the other approaches. See Figure 10

for an illustration. The constructed coreset is smaller by a factor of s in general

graphs, and is independent of the communication topology. This method excels in
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Figure 10: Illustration of different coreset construction approaches.

sparse networks with large diameters, where the previous approach in [104] requires

coresets that are quadratic in the size of the diameter for k-median and quartic for

k-means; see Section 3.2.2 for details. [47] also merge coresets using coreset construc-

tion, but they do so in a model of parallel computation and ignore communication

costs.

Additional related work. Many empirical algorithms adapt the centralized algo-

rithms to the distributed setting. They generally provide no bound for the clustering

quality or the communication cost. For instance, a technique is proposed in [48] to

adapt several iterative center-based data clustering algorithms including Lloyd’s algo-

rithm for k-means to the distributed setting, where sufficient statistics instead of the

raw data are sent to a central coordinator. This approach involves transferring data

back and forth in each iteration, and thus the communication cost depends on the

number of iterations. Similarly, the communication costs of the distributed cluster-

ing algorithms proposed in [38] and [101] depend on the number of iterations. Some

other algorithms gather local summaries and then perform global clustering on the

summaries. The distributed density-based clustering algorithm in [60] clusters and
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computes summaries for the local data at each node, and sends the local summaries

to a central node where the global clustering is carried out. This algorithm only con-

siders the flat two-tier topology. Some in-network aggregation schemes for computing

statistics over distributed data are useful for such distributed clustering algorithms.

For example, an algorithm is provided in [35] for approximate duplicate-sensitive ag-

gregates across distributed data sets, such as SUM. An algorithm is proposed in [54]

for power-preserving computation of order statistics such as quantile.

Several coreset construction algorithms have been proposed for k-median, k-means

and k-line median clustering [57, 30, 56, 74, 45]. For example, the algorithm in [45]

constructs a coreset of size Õ(kd/ε2) whose cost approximates that of the original data

up to accuracy ε with respect to k-median in Rd. All of these algorithms consider

coreset construction in the centralized setting, while our construction algorithm is for

the distributed setting.

There has also been work attempting to parallelize clustering algorithms. [47]

showed that coresets could be constructed in parallel and then merged together.

Bahmani et al. [12] adapted k-means++ to the parallel setting. Their algorithm, k-

means||, essentially builds O(1)-coreset of size O(k log |P |). However, it cannot build

ε-coreset for ε = o(1), and thus can only guarantee constant approximation solutions.

There is also related work providing approximation solutions for k-median based

on random sampling [25]. Particularly, they showed that given a sample of size Õ( k
ε2

)

drawn i.i.d. from the data, there exists an algorithm that outputs a solution with

an average cost bounded by twice the optimal average cost plus an error bound ε.

If we convert it to a multiplicative approximation factor, the factor depends on the

optimal average cost. When there are outlier points far away from all other points,

the optimal average cost can be very small after normalization, then the multiplica-

tive approximation factor is large. The coreset approach provides better guarantees.

Additionally, their approach is not applicable to k-means.
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Balcan et al. [18] and Daume et al. [39] consider fundamental communication

complexity questions arising when doing classification in distributed settings. In

concurrent and independent work, Vempala et al. [62] study several optimization

problems in distributed settings, including k-means clustering under an interesting

separability assumption.

3.2.1 Distributed Coreset Construction

Here we design a distributed coreset construction algorithm for k-means and k-

median. Note that the underlying technique can be extended to other additive clus-

tering objectives such as k-line median and sum of distances between points and their

centers to the power of z.

To gain some intuition on the distributed coreset construction algorithm, we briefly

review the coreset construction algorithm in [45] in the centralized setting. The

coreset is constructed by computing a constant approximation solution for the entire

data set, and then sampling points proportional to their contributions to the cost of

this solution. Intuitively, the points close to the nearest centers can be approximately

represented by the nearest centers while points far away cannot be well represented.

Thus, points should be sampled with probability proportional to their contributions

to the cost.

Directly adapting the algorithm to the distributed setting would require comput-

ing a constant approximation solution for the entire data set. We show that a global

coreset can be constructed in a distributed fashion by estimating the weight of the

entire data set with the sum of local approximations. We first compute a local ap-

proximation solution for each local data set, and communicate the total costs of these

local solutions. Then we sample points proportional to their contributions to the cost

of their local solutions. At the end of the algorithm, the coreset consists of the sam-

pled points and the centers in the local solutions. The coreset points are distributed
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over the nodes, so we call it distributed coreset. See Algorithm 8 for details.

Algorithm 8 Communication aware distributed coreset construction

Input: Local data sets {Pi}si=1, parameter t (number of points to be sampled).
1: for each node vi ∈ V do
2: Compute a constant approximation Bi for Pi.
3: Communicate cost(Pi, Bi) to all other nodes.
4: end for
5: for each node vi ∈ V do
6: Set ti = t cost(Pi,Bi)∑s

j=1 cost(Pj ,Bj)
. Set mp = cost(p,Bi) for each p ∈ Pi.

7: Pick a non-uniform random sample Si of ti points from Pi, where for every
q ∈ Si and p ∈ Pi, we have q = p with probability mp/

∑
z∈Pi

mz.
8: Let wq =

∑
i

∑
z∈Pi

mz/(tmq) for each q ∈ Si.
9: for each b ∈ Bi do

10: Let Pb = {p ∈ Pi : d(p, b) = d(p,Bi)}, wb = |Pb| −
∑

q∈Pb∩S wq.
11: end for
12: end for
Output: Distributed coreset: points Si ∪Bi with weights {wq : q ∈ Si ∪Bi}si=1.

Theorem 10. For distributed k-means and k-median clustering on a graph, there

exists an algorithm such that with probability at least 1 − δ, the union of its output

on all nodes is an ε-coreset for P = ∪si=1Pi. The size of the coreset is O( 1
ε4

(kd +

log 1
δ
) + nk log nk

δ
) for k-means, and O( 1

ε2
(kd + log 1

δ
) + nk) for k-median. The total

communication cost is O(mn).

As described below, the distributed coreset construction can be achieved by using

Algorithm 8 with appropriate t, namely O( 1
ε4

(kd + log 1
δ
) + nk log nk

δ
) for k-means

and O( 1
ε2

(kd+ log 1
δ
)) for k-median. The formal proofs are described in the following

subsections.

3.2.1.1 Proof of Theorem 14: k-median

The analysis relies on the definition of the pseudo-dimension of a function space and

a sampling lemma.

Definition 11 ([77, 45]). Let F be a finite set of functions from a set P to R≥0. For
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f ∈ F , let B(f, r) = {p : f(p) ≤ r}. The dimension of the function space dim(F, P ) is

the smallest integer d such that for any G ⊆ P ,
∣∣{G∩B(f, r) : f ∈ F, r ≥ 0}

∣∣ ≤ |G|d.
Suppose we draw a sample S according to {mp : p ∈ P}, namely for every q ∈ S

and every p ∈ P , we have q = p with probability mp∑
z∈P mz

. Set the weights of the

points as wp =
∑

z∈P mz

mp|S| for p ∈ P . Then for any f ∈ F , the expectation of the

weighted cost of S equals the cost of the original data P :

E

[∑
q∈S

wqf(q)

]
=

∑
q∈S

E[wqf(q)] =
∑
q∈S

∑
p∈P

Pr[q = p]wpf(p)

=
∑
q∈S

∑
p∈P

mp∑
z∈P mz

∑
z∈P mz

mp|S|
f(p) =

∑
q∈S

∑
p∈P

1

|S|f(p) =
∑
p∈P

f(p).

The following lemma shows that if the sample size is large enough, then we also

have concentration for any f ∈ F . The lemma is implicit in [45] and we include the

proof in the appendix for completeness.

Lemma 16. Fix a set F of functions f : P → R≥0. Let S be a sample drawn i.i.d.

from P according to {mp : p ∈ P}, namely, for every q ∈ S and every p ∈ P , we

have q = p with probability mp∑
z∈P mz

. Let wp =
∑

z∈P mz

mp|S| for p ∈ P . For a sufficiently

large c, if |S| ≥ c
ε2

(
dim(F, P ) + log 1

δ

)
then with probability at least 1 − δ, ∀f ∈ F :∣∣∣∑p∈P f(p)−∑q∈S wqf(q)

∣∣∣ ≤ ε
(∑

p∈P mp

)(
maxp∈P

f(p)
mp

)
.

To get a small bound on the difference between
∑

p∈P f(p) and
∑

q∈S wqf(q), we

need to choose mp such that maxp∈P
f(p)
mp

is bounded. More precisely, if we choose

mp = maxf∈F f(p), then the difference is bounded by ε
∑

p∈P mp.

We first consider the centralized setting and review how [45] applied the lemma to

construct a coreset for k-median as in Definition 10. A natural approach is to apply

this lemma directly to the cost, namely, to choose fx(p) := cost(p,x). The problem

is that a suitable upper bound mp is not available for cost(p,x). However, we can

still apply the lemma to a different set of functions defined as follows. Let bp denote

the closest center to p in the approximation solution. Aiming to approximate the
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error
∑

p[cost(p,x) − cost(bp,x)] rather than to approximate
∑

p cost(p,x) directly,

we define fx(p) := cost(p,x)−cost(bp,x)+cost(p, bp), where cost(p, bp) is added so that

fx(p) ≥ 0. Since 0 ≤ fx(p) ≤ 2cost(p, bp), we can apply the lemma to fx(p) and mp =

2cost(p, bp). The lemma then bounds the difference |∑p∈P fx(p)−∑q∈S wqfx(q)| by

2ε
∑

p∈P cost(p, bp), so we have an O(ε)-approximation.

Note that
∑

p∈P fx(p)−∑q∈S wqfx(q) does not equal
∑

p∈P cost(p,x)−∑q∈S wqcost(q,x).

However, it equals the difference between
∑

p∈P cost(p,x) and a weighted cost of the

sampled points and the centers in the approximation solution. To get a coreset as in

Definition 10, we need to add the centers of the approximation solution with specific

weights to the coreset. Then when the sample is sufficiently large, the union of the

sampled points and the centers is an ε-coreset.

Our key contribution in this paper is to show that in the distributed setting,

it suffices to choose bp from the local approximation solution for the local data set

containing p, rather than from an approximation solution for the global data set.

Furthermore, the sampling and the weighting of the coreset points can be done in

a local manner. In the following, we provide a formal verification of our discussion

above. We have the following lemma for k-median with F = {fx : fx(p) = d(p,x)−

d(bp,x) + d(p, bp),x ∈ (Rd)k}.

Lemma 17. For k-median, the output of Algorithm 8 is an ε-coreset with probability

at least 1− δ, if t ≥ c
ε2

(
dim(F, P ) + log 1

δ

)
for a sufficiently large constant c.

Proof. We want to show that for any set of centers x the true cost for using these

centers is well approximated by the cost on the weighted coreset. Note that our coreset

has two types of points: sampled points p ∈ S = ∪si=1Si with weight wp :=
∑

z∈P mz

mp|S|

and local solution centers b ∈ B = ∪si=1Bi with weight wb := |Pb| −
∑

p∈S∩Pb
wp.

We use bp to represent the nearest center to p in the local approximation solution.

We use Pb to represent the set of points having b as their closest center in the local

approximation solution.

74



As mentioned above, we construct fx to be the difference between the cost of p and

the cost of bp on x so that Lemma 16 can be applied to fx. Note that 0 ≤ fx(p) ≤

2d(p, bp) by triangle inequality, and S is sufficiently large and chosen according to

weights mp = d(p, bp), so the conditions of Lemma 16 are met. Then we have

D =

∣∣∣∣∣∑
p∈P

fx(p)−
∑
q∈S

wqfx(q)

∣∣∣∣∣ ≤ 2ε
∑
p∈P

mp = 2ε
∑
p∈P

d(p, bp) = 2ε
s∑
i=1

d(Pi, Bi)

≤O(ε)
∑
p∈P

d(p,x)

where the last inequality follows from the fact that Bi is a constant approximation

solution for Pi.

Next, we show that the coreset is constructed such that D is exactly the difference

between the true cost and the weighted cost of the coreset, which then leads to the

lemma.

Note that the centers are weighted such that

∑
b∈B

wbd(b,x) =
∑
b∈B

|Pb|d(b,x)−
∑
b∈B

∑
q∈S∩Pb

wqd(b,x) =
∑
p∈P

d(bp,x)−
∑
q∈S

wqd(bq,x).

(13)

Also note that
∑

p∈P mp =
∑

q∈S wqmq, so

D =

∣∣∣∣∣∑
p∈P

[d(p,x)− d(bp,x) +mp]−
∑
q∈S

wq [d(q,x)− d(bq,x) +mq]

∣∣∣∣∣
=

∣∣∣∣∣∑
p∈P

d(p,x)−
∑
q∈S

wqd(q,x)−
[∑
p∈P

d(bp,x)−
∑
q∈S

wqd(bq,x)

]∣∣∣∣∣. (14)

By plugging (13) into (14), we have

D =

∣∣∣∣∣∑
p∈P

d(p,x)−
∑
q∈S

wqd(q,x)−
∑
b∈B

wbd(b,x)

∣∣∣∣∣ =

∣∣∣∣∣∑
p∈P

d(p,x)−
∑
q∈S∪B

wqd(q,x)

∣∣∣∣∣
which implies the lemma.
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In [45] it is shown that 3 dim(F, P ) = O(kd). Therefore, by Lemma 17, when

|S| ≥ O
(

1
ε2

(kd+ log 1
δ
)
)
, the weighted cost of S ∪ B approximates the k-median

cost of P for any set of centers, then (S ∪ B,w) is an ε-coreset for P . The total

communication cost is bounded by O(mn), since even in the most general case when

every node only knows its neighbors, we can broadcast the local costs with O(mn)

communication (see Algorithm 10).

3.2.1.2 Proof of Theorem 14: k-means

We have for k-means a similar lemma that when t = O( 1
ε4

(kd+log 1
δ
)+nk log nk

δ
)), the

algorithm constructs an ε-coreset with probability at least 1− δ. The key idea is the

same as that for k-median: we use centers bp from the local approximation solutions

as an approximation to the original data points p, and show that the error between

the total cost and the weighted sample cost is approximately the error between the

cost of p and its sampled cost (compensated by the weighted centers), which is shown

to be small by Lemma 16.

The key difference between k-means and k-median is that triangle inequality ap-

plies directly to the k-median cost. In particular, for the k-median problem note

that cost(bp, p) = d(bp, p) is an upper bound for the error of bp on any set of centers,

i.e. ∀x ∈ (Rd)k, d(bp, p) ≥ |d(p,x) − d(bp,x)| = |cost(p,x) − cost(bp,x)| by triangle

inequality. Then we can construct fx(p) := cost(p,x) − cost(bp,x) + d(bp, p) such

that hp(x) is bounded. In contrast, for k-means, the error |cost(p,x)− cost(bp,x)| =

|d(p,x)2 − d(bp,x)2| does not have such an upper bound. The main change to the

analysis is that we divide the points into two categories: good points whose costs

approximately satisfy the triangle inequality (up to a factor of 1/ε) and bad points.

3For both k-median and k-means in general metric spaces, dim(F, P ) = O(k log |P |), so the bound
for general metric spaces (including Euclidean space we focus on) can be obtained by replacing d
with log |P |.
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The good points for a fixed set of centers x are defined as

G(x) = {p ∈ P : |cost(p,x)− cost(bp,x)| ≤ ∆p}

where the upper bound is ∆p = cost(p,bp)

ε
. Good points we can bound as before.

For bad points we can show that while the difference in cost may be larger than

cost(p, bp)/ε, it must still be small, namely O(εmin{cost(p,x), cost(bp,x)}).

Formally, the functions fx(p) are restricted to be defined only over good points:

fx(p) =


cost(p,x)− cost(bp,x) + ∆p if p ∈ G(x),

0 otherwise.

Then
∑

p∈P cost(p,x)−∑q∈S∪B wqcost(q,x) is decomposed into three terms:

∑
p∈P

fx(p)−
∑
q∈S

wqfx(q) (15)

+
∑

p∈P\G(x)

[cost(p,x)− cost(bp,x) + ∆p] (16)

−
∑

q∈S\G(x)

wq[cost(q,x)− cost(bq,x) + ∆q] (17)

Lemma 16 bounds (15) by O(ε)cost(P,x), but we need an accuracy of ε2 to com-

pensate for the 1/ε factor in the upper bound, resulting in a O(1/ε4) factor in the

sample complexity.

We begin by bounding (16). Note that for each term in (16), |cost(p,x) −

cost(bp,x)| > ∆p since p 6∈ G(x). Furthermore, p 6∈ G(x) only when p and bp

are close to each other and far away from x. In Lemma 25 we use this to show that

|cost(p,x)− cost(bp,x)| ≤ O(ε) min{cost(p,x), cost(bp,x)}. The details are presented

in the appendix.

Using Lemma 25, (16) can be bounded byO(ε)
∑

p∈P\G(x) cost(p,x) ≤ O(ε)cost(P,x).
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Similarly, by the definition of ∆q and Lemma 25, (17) is bounded by

(17) ≤
∑

q∈S\G(x)

2wq|cost(q,x)− cost(bq,x)| ≤ O(ε)
∑

q∈S\G(x)

wq cost(bq,x)

≤ O(ε)
∑
b∈B

( ∑
q∈Pb∩S

wq

)
cost(b,x).

Note that the expectation of
∑

q∈Pb∩S wq is |Pb|. By a sampling argument (Lemma 26),

if t ≥ O(nk log nk
δ

), then
∑

q∈Pb∩S wq ≤ 2|Pb|. Then (17) is bounded by

O(ε)
∑
b∈B

cost(b,x)|Pb| = O(ε)
∑
p∈P

cost(bp,x)

where
∑

p∈P cost(bp,x) is at most a constant factor more than the optimum cost.

Since each of (15),(16), and (17) is O(ε)cost(P,x), we know that their sum is the

same magnitude. Combining the above bounds, we have∣∣∣∣∣cost(P,x)−
∑
q∈S∪B

wqcost(q,x)

∣∣∣∣∣ ≤ O(ε)cost(P,x).

The proof is then completed by choosing a suitable ε, and bounding dim(F, P ) =

O(kd) as in [45].

3.2.2 Effect of Network Topology on Communication Cost

In the previous section, we presented a distributed coreset construction algorithm.

The coreset constructed can then be used as a proxy for the original data, and we

can run any distributed clustering algorithm on it. In this paper, we discuss the

approach of simply collecting all local portions of the distributed coreset and run

non-distributed clustering algorithm on it. If there is a central coordinator in the

communication graph, then we can simply send the local portions of the coreset to

the coordinator which can perform the clustering task. The total communication cost

is just the size of the coreset.

Here we consider the distributed clustering tasks where the nodes are arranged in

some arbitrary connected topology, and can only communicate with their neighbors.
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We propose a message passing approach for globally sharing information, and use it

for collecting information for coreset construction and sharing the local portions of

the coreset. We also consider the special case when the graph is a rooted tree.

Algorithm 9 Distributed clustering on a graph

Input: {Pi, 1 ≤ i ≤ s}: local data sets; {Ni, 1 ≤ i ≤ s}: the neighbors of vi; Aα: an
α-approximation algorithm for weighted clustering instances.

1: for each node vi ∈ V do
2: Construct its local portion Di of an ε/2-coreset by Algorithm 8, using Message-

Passing for communicating the local costs.
3: end for
4: for each node vi ∈ V do
5: Call Message-Passing(Di, Ni). Let x = Aα(∪jDj).
6: end for

Output: x.

Algorithm 10 Message-Passing(Ii, Ni)

Input: Ii is the message, Ni are the neighbors.
1: Let Ri denote the information received.
2: Initialize Ri = {Ii}, and send Ii to all the neighbors.
3: while Ri 6= {Ij, 1 ≤ j ≤ s} do
4: if receive message Ij 6∈ Ri then
5: Ri = Ri ∪ {Ij} and send Ij to all the neighbors.
6: end if
7: end while

3.2.2.1 General Graphs

We now present the main result for distributed clustering on graphs.

Theorem 11. Given an α-approximation algorithm for weighted k-means (k-median

respectively) as a subroutine, there exists an algorithm that with probability at least

1−δ outputs a (1+ ε)α-approximation solution for distributed k-means (k-median re-

spectively) clustering. The total communication cost is O(m( 1
ε4

(kd+log 1
δ
)+nk log nk

δ
))

for k-means, and O(m( 1
ε2

(kd+ log 1
δ
) + nk)) for k-median.

Proof. The details are presented in Algorithm 9. By Theorem 14, the output of

Algorithm 8 is a coreset. Observe that in Algorithm 10, for any j, Ij propagates on
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the graph in a breadth-first-search style, so at the end every node receives Ij. This

holds for all 1 ≤ j ≤ s, so all nodes has a copy of the coreset at the end, and thus

the output is a (1 + ε)α-approximation solution.

Also observe that in Algorithm 10, for any node vi and j ∈ [s], vi sends out Ij

once, so the communication of vi is |Ni| ×
∑s

j=1 |Ij|. The communication cost of

Algorithm 10 is O(m
∑s

j=1 |Ij|). Then the total communication cost of Algorithm 9

follows from the size of the coreset constructed.

In contrast, an approach where each node constructs an ε-coreset for k-means and

sends it to the other nodes incurs communication cost of Õ(mnkd
ε4

). Our algorithm

significantly reduces this.

3.2.2.2 Rooted Trees

Our algorithm can also be applied on a rooted tree, and compares favorably to other

approaches involving coresets [104]. We can restrict message passing to operating

along this tree, leading to the following theorem.

Theorem 12. Given an α-approximation algorithm for weighted k-means (k-median

respectively) as a subroutine, there exists an algorithm that with probability at least

1 − δ outputs a (1 + ε)α-approximation solution for distributed k-means (k-median

respectively) clustering on a rooted tree of height h. The total communication cost

is O(h( 1
ε4

(kd + log 1
δ
) + nk log nk

δ
)) for k-means, and O(h( 1

ε2
(kd + log 1

δ
) + nk)) for

k-median.

Proof. We can construct the distributed coreset using Algorithm 8. In the construc-

tion, the costs of the local approximation solutions are sent from every node to the

root, and the sum is sent to every node by the root. After the construction, the

local portions of the coreset are sent from every node to the root. A local portion

Di leads to a communication cost of O(|Di|h), so the total communication cost is
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O(h
∑s

i=1 |Di|). Once the coreset is constructed at the root, the α-approximation

algorithm can be applied centrally, and the results can be sent back to all nodes.

Our approach improves the cost of Õ(nh
4kd
ε4

) for k-means and the cost of Õ(nh
2kd
ε2

)

for k-median in [104] 4. The algorithm in [104] builds on each node a coreset for the

union of coresets from its children, and thus needs O(ε/h) accuracy to prevent the

accumulation of errors. Since the coreset construction subroutine has quadratic de-

pendence on 1/ε for k-median (quartic for k-means), the algorithm then has quadratic

dependence on h (quartic for k-means). Our algorithm does not build coreset on top

of coresets, resulting in a better dependence on the height of the tree h.

In a general graph, any rooted tree will have its height h at least as large as half

the diameter. For sensors in a grid network, this implies h = Ω(
√
s). In this case,

our algorithm gains a significant improvement over existing algorithms.

3.3 Distributed k-Means Clustering of High Dimensional
Data

In Algorithm 8, the number of points in the coreset is independent of the number

of the original data points, which is useful for large-scale applications. However, it

is linear in the dimension of the data, leading to high communication cost for high

dimensional data. Here we propose a distributed PCA algorithm, and show that

its output represents the original data in the sense that any good approximation

solution of k-means clustering on the output projected data is also a good solution

on the original data. When combined with the distributed coreset approach, this

leads to an algorithm whose communication cost (in terms of the number of points

communicated) is independent of the size and the dimension of the original data.

4Their algorithm used coreset construction as a subroutine. The construction algorithm they used
builds coreset of size Õ(nkh

εd
log |P |). Throughout this paper, when we compare to [104] we assume

they use the coreset construction technique of [45] to reduce their coreset size and communication
cost.
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Related Work on Distributed PCA. Algorithms for (approximate) distributed

PCA have been proposed [93, 13, 75, 83, 46], but either without theoretical guarantees

on the solution quality, or without considerations of the communication cost. Most

closely related to our work is [46], which pointed out that the top singular vectors

and eigenvalues of the local data set can be viewed as its summary and the union

of the local summaries can be viewed as a summary of the global data. It implicitly

showed the correctness of the method, but without considering the communication.

[93] proposed a variant of the algorithm but provided no theoretical analysis on the

tradeoff between communication and approximation guarantees.

In [62] the authors study efficient algorithms in the distributed model. Their

model is different, namely, it is an arbitrary partition model in which each server

holds a matrix Pi and P =
∑s

i=1 Pi. Thus, each row of P is additively shared across

the s servers, whereas in our model each row of P belongs to a single server, though

duplicate rows are allowed. Our model is motivated by applications in which points

are indecomposable entities, such as the clustering application. We also focus on

how the distributed PCA algorithm affects the quality of the final clustering solution,

while [62] focus on getting a low rank approximation.

Other related work includes the recent [50] (see also the references therein), who

give a deterministic streaming algorithm for approximate PCA in which each point

of P is seen one at a time and uses O(dk/ε) words of communication. Their algo-

rithm naturally gives an O(sdk/ε) word communication algorithm in the distributed

model. However, it involves an SVD computation for each point, making the overall

computation expensive.
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Algorithm 11 Distributed PCA

Input: local data {Pi}si=1 and parameter t ∈ N+.
1: for each node vi ∈ V do
2: Compute local SVD: Pi = UiDiV

>
i .

3: broadcast D
(t)
i , V

(t)
i .

4: end for
5: for each node vi ∈ V do
6: Set Yi = D

(t)
i (V

(t)
i )>, Y > = [Y >1 , . . . , Y

>
s ].

7: Compute global SVD: Y = UDV >.
8: Compute projected data: P̂i = P

(t)
i V (t)(V (t))>.

9: end for
Output: {P̂i}si=1.

3.3.1 Distributed PCA

Our distributed PCA algorithm is described in Algorithm 11, where broadcast is

a shorthand for communicating information to all other nodes. The algorithm per-

forms local PCA on each local data set, and communicates the t largest principal

components. These are then concatenated and used to get the t largest global prin-

cipal components. Finally, all the local data are projected on these t global principal

components. See Figure 11 for an illustration.

P =

 P1
...
Ps


Local PCA−−−−−−→

...
Local PCA−−−−−−→


D

(t1)
1

(
V

(t)
1

)>
...

D
(t1)
s

(
V

(t)
s

)>
 =

 Y1
...
Ys

 = Y
Global PCA−−−−−−−→ V (t)

Figure 11: The key points of the distributed PCA algorithm.

Here we provide a theoretical analysis, which leads to a way to set the algorithm

parameters, so that we will not compromise much on the quality of the clustering

obtained on the projected data. In the following, we always assume for simplicity that

P is normalized, that is,
∑

p∈P p = 0. We now show that the output of Algorithm 11

approximates the original data in the sense that their distances to low dimension

subspaces are almost the same:
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Theorem 13. Let X be a d×j matrix whose columns are orthonormal. Let ε ∈ (0, 1]

and t ∈ N with d− 1 ≥ t ≥ j + d8j/εe− 1. Then the output of Algorithm 11 satisfies

0 ≤ ‖PX‖2F − ‖P̂X‖2F ≤ εd2(P,L(X)) and 0 ≤ ‖PX − P̂X‖2F ≤ εd2(P,L(X)).

Intuitively, it implies that the squared distances to any low dimension subspace

L(X) from the projected data and the original data are approximately equal when the

number of principal components used is sufficiently large compared to the dimension

of L(X). As shown in the next section, this guarantees that the projected data can

act as a proxy for the original data in k-means clustering.

The key in the proof of the theorem is a property about SVD: the projection

Ã of a n × d matrix A to the subspace spanned by its first t right singular vectors

approximates A in the following sense.

Lemma 18. Let A ∈ Rn×d be an n × d matrix with singular value decomposition

A = UDV >. Let ε ∈ (0, 1] and r, t ∈ N+ with d − 1 ≥ t ≥ r + dr/εe − 1, and let

Ã = AV (t)(V (t))>. Then for any matrix X with d rows and ‖X‖2F ≤ r, we have

‖(A− Ã)X‖2F = ‖AX‖2F − ‖ÃX‖2F ≤ ε
d∑

i=r+1

σ2
i (A).

A special important case is that X is the orthonormal basis for r-dimensional

subspace, when the lemma reduces to Lemma 6.1 in [46]. In this case, the lemma

means that the projections of Ã and A on any r-dimensional subspace are close, when

the projected dimension t is sufficiently large compared to r. The proof of the theorem

will need a statement in the more general setting where X may not be orthonormal.

Proof Sketch of Theorem 13. We first introduce some auxiliary variables for the anal-

ysis, which act as intermediate connections between P and P̂ . Imagine we perform

two kinds of projections: first project Pi to P̃i = PiVi
(t)(Vi

(t))>, then project P̃i to

P i = P̃iV
(t)(V (t))>. Let P̃ denote the vertical concatenation of P̃i and let P denote
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the vertical concatenation of P i, i.e.

P̃ =


P̃1

...

P̃s

 and P =


P 1

...

P s


These variables are designed such that the difference between P and P is easily

bounded. Our proof proceeds by first bounding the diference between P and P , and

then bounding that between P and P̂ .

Consider ‖PX‖2F − ‖P̂X‖2F . It can be decomposed as followings:

‖PX‖2F − ‖P̂X‖2F =
[
‖PX‖2F − ‖P̃X‖2F

]
+
[
‖P̃X‖2F − ‖PX‖2F

]
+

[
‖PX‖2F − ‖P̂X‖2F

]
.

The first term ‖PX‖2F − ‖P̃X‖2F =
∑s

i=1

[
‖PiX‖2F − ‖P̃iX‖2F

]
, each of which can

be bounded by Lemma 18 since P̃i is the SVD truncation of P . The second term

can be bounded similarly. The more difficult part is to bound the third term. Let

Z = V (t)(V (t))>X. Then by definition, P i = P̃iZ, P̂i = PiZ, and

‖PX‖2F − ‖P̂X‖2F =
s∑
i=1

[
‖P̃iZ‖2F − ‖PiZ‖2F

]
.

Then Lemma 18 can be applied to show that ‖P̃iZ‖2F − ‖PiZ‖2F is indeed small.

The bound on ‖PX − P̂X‖2F can also be proved by a similar argument. The

complete proof can be found in Appendix B.3.

3.3.2 Distributed Clustering

In this subsection, we show that any good approximation solution on the projected

data constructed by the distributed PCA algorithm is also a good approximation on

the original data.

Theorem 14. Let x be a set of k centers in Rd. Let ε ∈ (0, 1] and t ∈ N with

d − 1 ≥ t ≥ k + d50k/ε2e. Then there exists a constant c0 ≥ 0, such that the output

of Algorithm 11 satisfies (1− ε)cost(P,x) ≤ cost(P̂ ,x) + c0 ≤ (1 + ε)cost(P,x).
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The analysis follows the ideas in [46]. Let X ∈ Rd×k has orthonormal columns

that span x. The cost of P can be decomposed into two parts: the squared distances

d2(P,L(X)) to the subspace spanned byX, and the squared distances
∑

i d
2(ΠX(pi),x)

between the projection of the points on L(X) and x. The cost of P̂ can be decomposed

similarly. Their difference in the first part (compensated by c0 = ‖P‖2F − ‖P̂‖2F ) can

be bounded by ‖PX‖2F −‖P̂X‖2F . The difference in the second part can be bounded

approximately by
∑

i d
2(ΠX(pi),ΠX(p̂i))/ε = ‖PX − P̂X‖2F/ε. Then the theorem

follows from Theorem 13. The complete proof is provided in the appendix.

By Theorem 14, the distributed coreset construction algorithm in the last section

can be applied on the projected data to get a coreset of size independent of the

original dimension. Then we get an algorithm with low communication cost for high

dimensional data, which is summarized in Theorem 15.

Theorem 15. Given an α-approximation algorithm for k-means as a subroutine,

there exists an algorithm that with probability at least 1 − δ outputs a (1 + ε)α-

approximation solution for distributed k-means clustering. The total communication

cost is O(msk
ε2

) vectors in Rd plus O
(
m
ε4

(k
2

ε2
+ log 1

δ
) +msk log sk

δ

)
vectors in RO(k/ε2).

3.4 Experiments

The empirical study consists of two sets of experiments. The first set evaluates the

coreset-based algorithm in Section 3.2, and the second set evaluates the approach in

Section 3.3 that first reduces data dimension by distributed PCA and then applies

the coreset-based algorithm.

3.4.1 Experiments on Distributed Coreset-Based Clustering

In these experiments, we seek to determine whether our algorithm is effective for the

clustering tasks and how it compares to the other distributed coreset algorithms 5.

5Our theoretical analysis shows that our algorithm has better bounds on the communication
cost. Since the bounds are from worst-case analysis, it is meaningful to verify that our algorithm
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We present the k-means cost of the solution produced by our algorithm with varying

communication cost, and compare to those of other algorithms when they use the

same amount of communication.

Data sets. Following the setup of [104, 12], for the synthetic data we randomly

choose k = 5 centers from the standard Gaussian distribution in R10, and sample

equal number of 20, 000 points from the Gaussian distribution around each center.

Note that, as in [104, 12], we use the cost of the centers as a baseline for comparing

the clustering quality. We choose the following real world data sets from [11]: Spam

(4601 points in R58), Pendigits (10992 points in R16), Letter (20000 points in R16),

and ColorHistogram of the Corel Image data set (68040 points in R32). We use k = 10

for these data sets. We further choose YearPredictionMSD (515345 points in R90)

for larger scale experiments, and use k = 50 for this data set.

Experimental Methodology. To transform the centralized clustering data sets

into distributed data sets we first generate a communication graph connecting local

sites, and then partition the data into local data sets. To evaluate our algorithm, we

consider several network topologies and partition methods.

The algorithms are evaluated on three types of communication graphs: random,

grid, and preferential. The random graphs are Erdös-Renyi graphs G(s, p) with

p = 0.3, i.e. they are generated by including each potential edge independently with

probability 0.3. The preferential graphs are generated according to the preferen-

tial attachment mechanism in the Barabási-Albert model [3]. For data sets Spam,

Pendigits, and Letter, we use random/preferential graphs with 10 sites and 3 × 3

grid graphs. For synthetic data set and ColorHistogram, we use random/preferential

graphs with 25 sites and 5 × 5 grid graphs. For large data set YearPredictionMSD,

we use random/preferential graphs with 100 sites and 10× 10 grid graphs.

The data is then distributed over the local sites. When the communication network

also empirically outperforms other distributed coreset algorithms.
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is a random graph, we consider three partition methods: uniform, similarity-based,

and weighted. In the uniform partition, each data point in the global data set is

assigned to the local sites with equal probability. In the similarity-based partition,

each site has an associated data point randomly selected from the global data. Each

data point in the global data is then assigned to the site with probability proportional

to its similarity to the associated point of the site, where the similarities are computed

by Gaussian kernel function. In the weighted partition, each local site is assigned

a weight chosen by |N(0, 1)| and then each data point is distributed to the local

sites with probability proportional to the site’s weight. When the network is a grid

graph, we consider the similarity-based and weighted partitions. When the network

is a preferential graph, we consider the degree-based partition, where each point is

assigned with probability proportional to the site’s degree.

To measure the quality of the coreset generated, we run Lloyd’s algorithm on the

coreset and the global data respectively to get two solutions, and compute the ratio

between the costs of the two solutions over the global data. The average ratio over

30 runs is then reported. We compare our algorithm with COMBINE, the method

of combining a coreset from each local data set, and with the algorithm of [104]

(Zhang et al.). When running the algorithm of Zhang et al., we restrict the general

communication network to a spanning tree by picking a root uniformly at random

and performing a breadth first search.

Results. Here we focus on the results of the largest data set YearPredictionMSD,

and in Appendix B.2 we present the experimental results for all the data sets.

Figure 12 shows the results over different network topologies and partition meth-

ods, where the subtitles indicate the network topology and the partition method (for

example, “random, uniform” means the plot is for the random graph and the uniform

partition method). We observe that the algorithms perform well with much smaller

coreset sizes than predicted by the theoretical bounds. For example, to get 1.1 cost
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Figure 12: Normalized k-means cost v.s. communication cost over graphs. The
subtitles indicate the network topology and the partition method.

ratio, the coreset size and thus the communication needed is only 0.1% − 1% of the

theoretical bound.

In the uniform partition, our algorithm performs nearly the same as COMBINE.

This is not surprising since our algorithm reduces to the COMBINE algorithm when

each local site has the same cost and the two algorithms use the same amount of

communication. In this case, since in our algorithm the sizes of the local samples

are proportional to the costs of the local solutions, it samples the same number of

points from each local data set. This is equivalent to the COMBINE algorithm with

the same amount of communication. In the similarity-based partition, similar results

are observed as it also leads to balanced local costs. However, when the local sites

have significantly different costs (as in the weighted and degree-based partitions),

our algorithm outperforms COMBINE. As observed in Figure 12, the costs of our

solutions consistently improve over those of COMBINE by 2%− 5%. Our algorithm
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Figure 13: Normalized k-means cost v.s. communication cost over the spanning trees
of the graphs. The subtitles indicate the network topology and the partition method.

then saves 10%− 20% communication cost to achieve the same approximation ratio.

Figure 13 shows the results over the spanning trees of the graphs. Our algorithm

performs much better than the algorithm of Zhang et al., achieving about 20% im-

provement in cost. This is due to the fact that their algorithm needs larger coresets to

prevent the accumulation of errors when constructing coresets from component core-

sets, and thus needs higher communication cost to achieve the same approximation

ratio.

Similar results are observed on the other data sets, which are presented in Ap-

pendix B.2.

3.4.2 Experiments on High Dimensional Data

In these experiments we seek to understand how well the projected data approximates

the original data, by measuring the k-means costs of the clustering solutions obtained
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after dimension reduction.

Data sets. We choose the following real world data sets from [11]: Daily and Sports

Activities data (9210 points in R5625), MNIST handwritten digits (70, 000 points in

R784). We use k = 10 for these data sets. We further choose Bag of Words (NYTimes)

(300, 000 points in R102660) and use k = 20 for this data set.

Experimental Methodology. Following the setup in the last subsection, we first

generate a communication graph, which can be a grid graph, or a random graph

that includes each edge independently with probability 0.3. For Daily and Sports

Activities data set, we use random graphs with 10 nodes and 3× 3 grid graphs. For

the other data sets, we use random graphs with 100 nodes and 10 × 10 grid graphs.

Then we distribute the data over the graphs using weighted partition, where each

data point is distributed to the local sites with probability proportional to the site’s

weight chosen from |N(0, 1)|.

For each projection dimension, we first construct a coreset on the projected data,

using the COMBINE or distributed coreset algorithm in the last section. After build-

ing the coreset, we then run Lloyd’s method on it to get a k-means clustering solution.

Finally, we compute the ratio of its cost to the k-means cost obtained by running

Lloyd’s method on the original data. The average results over 10 runs are reported.

We lower the projection dimension until there is a significant increase in the k-means

costs.

Results. Figure 14 shows the results of the data sets. The plots show the increase

in k-means cost ratio upon decreasing the dimension of the data. We can observe

that there is a slight increase compared to the huge reduction in dimension and thus

communication cost. For example, on Daily and Sports Activities data, the k-means

cost increases less than 4% when the dimension is reduced from 5625 to as low as

40. This is even more significant on higher dimensional data: on Bag of Words, the

dimension can be reduced from 102660 to around 20. Such reduction then lowers
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Figure 14: Normalized k-means cost v.s. communication cost for different projection
dimensions. Rows: random graphs, grid graphs. Columns: Daily and Sports Activi-
ties, MNIST, and Bag of Words data sets. In each subfigure, the x-axis represents the
communication cost, the y-axis represents the k-means cost (normalized by baseline),
and the number labels are the projection dimensions.

the communication cost by magnitudes. The plots also indicate that the distributed

coreset algorithm in the last section performs better than the COMBINE algorithm,

when applied with our distributed PCA algorithm.
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CHAPTER IV

COMMUNITY DETECTION

As we are entering into a network age, there is an increasing interest in analyzing

network data in many disciplines, ranging from mathematics and computer science

to sociology and biology. A significant amount of recent work in this area has focused

on community detection, which is graph clustering viewing the network as a graph.

The community structure reflects how entities in a network form meaningful groups

such that interactions within the groups are more active compared to those between

the groups and the outside world. The discovery of these communities is useful for

understanding the structure of the underlying network, or making decisions in the

network [49, 52, 88, 89].

Generally, a community should be thought of as a subset whose members have

more interactions with each other than with the remainder of the network. This

intuition is captured by some recently proposed models [34, 4, 21, 2, 58, 65]. Addi-

tionally, recent studies show that networks often exhibit hierarchical organization, in

which communities can contain groups of sub-communities, and so forth over multiple

scales. For example, this can be observed in ecological niches in food webs, modules

in biochemical networks or groups of common interest in social websites [94, 71, 33].

It is also shown empirically and theoretically that hierarchical structures can simul-

taneously explain and quantitatively reproduce many commonly observed topological

properties of networks [32, 97, 51]. This suggests that the hierarchical structure

should also be reflected when modeling real world communities, which distinguishes

community detection from the classic objective-based clustering approaches discussed

in the previous chapters.
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Although some heuristic approaches [51, 73] have been proposed to detect com-

munity hierarchies, few works have formalized this hierarchical property, and there

are no theoretical performance guarantees for the algorithms. Inspired by the related

work in clustering [16], in this chapter we define a notion of communities that reflects

the tight connections within communities and explicitly models the hierarchy of com-

munities. In our model, each member of a community falls into a sub-community, and

the sub-communities within this community have active interactions with each other

while entities outside this community have fewer interactions with members inside.

Given this formalization, we then propose an efficient algorithm that detects all the

communities in this model, and prove that all the communities form a hierarchy. Em-

pirical evaluations demonstrate that our formalization successfully models real world

communities, and our algorithm compares favorably with existing approaches.

4.1 Hierarchical Community Model

A network is typically represented as a graph G = (V,E) on a set of n = |V | points 1,

where the edges could be undirected or directed, unweighted or weighted. The graph

implicitly specifies a neighborhood structure on the points, i.e. for each point there

is a ranking of all other points according to the level of possible interaction. More

precisely, we assume that we have a neighborhood function N which given a point

p and a threshold t outputs a list Nt(p) containing the t nearest neighbors of p in

V . Note that we do not assume the pairwise dissimilarity function for the points is

a metric as in the previous chapters, but only assume the access to a neighborhood

function.

The neighborhood function can be used to formalize a model of hierarchical com-

munities. Using this neighborhood function, the tight connections within communities

can be naturally rephrased as follows: for suitable t, most points p in the community

1We distinguish the nodes in the hierarchy our algorithm builds from the points in the graph.
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have most of the nearest neighbors Nt(p) from the community while points outside

have just a few nearest neighbors from the community. Besides this, we also want

to formalize the hierarchical structure that sub-communities in a lower, more local

level actively interacting with each other form a community in a higher, more global

level. The connections between the sub-communities can also be rephrased using the

language of neighborhood: a majority of points in each sub-community have most of

the nearest neighbors from the sub-communities in the same community.

In the remainder of the section, we specify our model based on the neighborhood

function. We begin with the following notion of compact blobs, which will serve as a

building block for our model.

Definition 12. A subset A of points is called an α-compact blob, if out of the |A|

nearest neighbors:

• any point p ∈ A has at most αn neighbors outside A, i.e. |N|A|(p) \ A| ≤ αn;

• any point q 6∈ A has at most αn neighbors inside A, i.e. |N|A|(q) ∩ A| ≤ αn.

p

q

Figure 15: α-compact blob. An edge (x, y) means that y is one of x’s nearest neigh-
bors.

Note that the notion of compact blobs is the same as the clusters that satisfy

the α-good neighborhood property defined in [16]. The notion captures the desired

property of communities to be detected: members in the community have many more
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interactions with other members inside the community and have fewer interactions

with those outside. However, in practice, the notion may seem somewhat restricted.

First, it requires all the members in the community have most interactions with other

members inside the community, which may not be the case in real life. For example,

some members in the boundary may have more interactions with the outside world,

i.e. they have more than αn neighbors from outside. Based on this consideration, we

define the (α, β)-stable property as follows.

Definition 13. A community C is (α, β)-stable if

• any point p ∈ C falls into a α-compact blob Ap ⊆ C of size greater than 6αn,

• for any point p ∈ C, at least β fraction of points in Ap have all but at most αn

nearest neighbors from C out of their |C| nearest neighbors,

• any point q outside C has at most αn nearest neighbors from C out of their |C|

nearest neighbors.

Ap

p w
q

Figure 16: (α, β)-stable community. An edge (x, y) means that y is one of x’s nearest
neighbors. Note that point w lies on the “boundary” of the community. It falls
into the compact blob Ap, but does not have most of its nearest neighbors from the
community.

Informally, the first condition means that every point falls into a sufficiently large

compact blob in its community. This condition formalizes the local neighborhood

structure that each member interacts actively with sufficiently many members in
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the community. Note that the compact blob should be large enough so that the

membership of the point is clearly established. That is, it should have size comparable

to αn, the number of connections to points outside. Here we choose a minimum size

of 6αn mainly because it guarantees that our algorithm can still identify the blob

in the worst case. The second condition means that at least β fraction of points in

these compact blobs have most of their nearest neighbors from the community. This

condition formalizes more global neighborhood structure about how the compact

blobs interact with each other to form a community. The third condition formalizes

how the community is separated from the outside.

Note that we no longer require all the members in the community have most

interactions inside; we only require each member interacts with sufficiently many

members and a majority of members in these local groups interact actively. Also

note that the definition is hierarchical in nature: sufficiently large compact blobs

clearly satisfy the definition of (α, β)-stable property and thus can be viewed as

communities in lower levels. Furthermore, in the next section we will show that all the

(α, β)-stable communities form a hierarchy. We show this by presenting an algorithm

and proving that each (α, β)-stable community is a node in the hierarchy output

by the algorithm. So our formulation explicitly models the hierarchical structure of

communities observed in networks.

Next we propose a further generalization that considers possible noise in real world

data. There may be some abnormal points that do not exhibit clear membership to

any community, in the presence of which our definition above does not model the

communities well. For example, suppose there is a point that has connections to all

other points in the network, then no non-trivial subsets satisfy our definition above.

We call such points bad since they do not fit into our community model above. To deal

with the noise, we can naturally relax the (α, β)-stable property to the (α, β, ν)-stable

property defined as follows. Informally, it requires that the target community satisfies
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the (α, β)-stable property after removing a few bad points B. For convenience, we

call the other points in V \B good points.

Definition 14. A community C is (α, β, ν)-stable if there exist a subset of bad points

B of size at most νn, such that

• any good point p ∈ G = C \ B falls into a compact blob Ap ⊆ C of size greater

than 6(α + ν)n,

• for any point p ∈ G, at least β fraction of points in Ap have all but at most αn

nearest neighbors from G out of their |G| nearest neighbors in V \B,

• any good point q outside C ∪B has at most αn nearest neighbors from G out of

their |G| nearest neighbors in V \B.

Ap

p w
q

b ∈ B

Figure 17: (α, β, ν)-stable community. An edge (x, y) means that y is one of x’s
nearest neighbors. Point b is a bad point and does not exhibit clear membership to
any community.

Note 1 The parameters α, ν are defined globally, that is, they are defined as ratios

with respect to the total number of points. So a local change to some community

can affect the values of these parameters for the other communities. For example,

suppose we add Kn new points to some community, with all the new points having

neighbors only inside this special community. Since the number of points increases
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to (K + 1)n, the communities outside the modified community are now (α/(1 +

K), β, ν/(1 +K))-stable. However, the local change does not affect the identifiability

of these communities. Our algorithm described in the next section can still detect

these communities, given the value of (α + ν)n.

Note 2 The input of the community detection task is usually a graph representing

the network, and there are different ways to lift the graph to a neighborhood function.

The simplest one is to directly sort for each point p all the other points q according

to the weights of the edges (p, q) and break ties randomly (we assume without loss

of generality that the weights are in [0, 1] and the weight of an edge not in E is

regarded as 0). However, as pointed out in [21], we also have alternative approaches

to convert the observed graph into a neighborhood function. More specifically, we

assume the observed graph reflects some underlying unobserved set of relations, and

thus we can lift the graph to an affinity system based on various beliefs about the

connection between the latent relations and the observed graph, and then sort the

points according to the affinity system to get the neighborhood function. For example,

based on the belief that random walks on the graph can reflect the similarities between

entities, we can define the affinity to be the diffusion kernel exp{λA} where A is the

adjacent matrix and λ is a parameter. Note that the results of appropriate lifting

procedures can better reflect the true relationships between entities, and thus the

conversion can address the challenging issue of sparsity in the observed graph.

4.2 Hierarchical Community Detection Algorithm

In the section, we propose an algorithm for detecting communities satisfying the

(α, β, ν)-stable property. The goal of our algorithm is to output a set of communities

such that each community satisfying the (α, β, ν)-stable property is close to one in the

output. To be precise, we say that a community C is ν-close to another community

C ′ if |C \C ′|+ |C ′ \C| ≤ νn. We first describe the details in Algorithm 12, and then
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Algorithm 12 Hierarchical Community Detection Algorithm

Input: Neighborhood function N on a set of points V , n = |V |, α > 0, ν > 0.
1: Initialize C ′ to be a set of singleton points, and t = 6(α + ν)n+ 1.
2: while |C ′| > 1 do
3: Build Ft on V as follows.
4: for any x, y ∈ V that satisfy |Nt(x) ∩Nt(y)| ≥ t− 2(α + ν)n do
5: Connect x, y in Ft.
6: end for
7: Build Ht on C ′ as follows. Let NF (x) denote the neighbors of x in Ft.
8: for any U,W ∈ C ′ do
9: if U,W are singleton subsets, i.e. U = {x},W = {y} then

10: Connect U,W in Ht, if |NF (x) ∩NF (y)| > (α + ν)n.
11: else
12: Set St(x, y) = |NF (x) ∩NF (y) ∩ (U ∪W )|, ∀x ∈ U, y ∈ W .

13: Connect U,W in Ht, if medianx∈U,y∈WSt(x, y) > |U |+|W |
4

.
14: end if
15: end for
16: for any component R in Ht that satisfies | ∪C∈R C| ≥ 4(α + ν)n do
17: Update C ′ by merging subsets in R into one subset.
18: end for
19: t = t+ 1.
20: end while
Output: Hierarchy T with single points as leaves and internal nodes corresponding

to the merges performed.

present the analysis in Theorem 16.

Now we prove that the algorithm successfully outputs a hierarchy such that any

community satisfying the (α, β, ν)-stable property with sufficiently large β is close to

one of the nodes in the hierarchy. Formally,

Theorem 16. Algorithm 12 outputs a hierarchy such that any community satisfy-

ing the (α, β, ν)-stable property with β ≥ 5/6 is ν-close to a node in the hierarchy.

The algorithm runs in time O(nω+1), where O(nω) is the state of the art for matrix

multiplication.

The correctness of the theorem follows from Lemma 21 and the running time

follows from Lemma 22. In the following analysis, we always assume β ≥ 5/6. Before

presenting the analysis for the general communities in Lemma 21, we first prove a
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lemma for the base case of compact blobs, showing that for any compact blob, a node

close to it will be formed.

Lemma 19. For any good point p, when t ≤ |Ap|, good points from Ap will not be

merged with good points outside Ap. At the end of the threshold t = |Ap|, all points

in Ap have been merged into a subset.

Proof. We prove this by induction on t. The claim is clearly true initially. Now

assume for induction that at the beginning of a threshold t ≤ |Ap|, in C ′ good points

from Ap are not merged with good points outside Ap, i.e. any subset can contain good

points from only one of Ap and V \ B \ Ap. We now analyze the properties of the

graphs Ft and Ht, and show that at the end of the current threshold, the claim is still

true.

First, as long as t ≤ |Ap|, the graph Ft has the following properties.

• No good point x in Ap is connected to a good point y outside Ap. By the

definition of compact blobs, out of the t nearest neighbors, x has at most (α+ν)n

neighbors outside Ap. For y ∈ V \B \Ap, y has at most (α+ ν)n neighbors in

Ap. Then x, y have at most 2(α + ν)n < t − 2(α + ν)n common neighbors, so

they are not connected.

• No bad point z is connected to both a good point x in Ap and a good point y

outside Ap. We know that out of the t nearest neighbors, x has at most (α+ν)n

neighbors outside Ap. So if z is connected to x, then z must have more than

t − 3(α + ν)n neighbors in Ap and less than 3(α + ν)n neighbors outside Ap.

Since y has at most (α+ ν)n neighbors in Ap, we have that y, z share less than

3(α + ν)n+ (α + ν)n < t− 2(α + ν)n neighbors, so they are not connected.

Based on the properties of Ft and the inductive assumption that any subset can

contain good points from only one of Ap and V \B \Ap, we show that the graph Ht

has the following properties.
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• No subset U containing good points from Ap is connected to a subset W con-

taining good points outside Ap. This is clearly true if they are singleton subsets.

In the other cases, note that the fraction of bad points in U or W is at most

1/4. Then the number of pairs (x, y) with good points x ∈ U and y ∈ W is

at least 3
4
|U | × 3

4
|W | > |U ||W |/2, i.e. more than half of the pairs (x, y) with

x ∈ U and y ∈ W are pairs of good points. This means there exist good points

x∗ ∈ U, y∗ ∈ W such that St(x
∗, y∗) is no less than medianx∈U,y∈WSt(x, y). By

the properties of Ft, x
∗, y∗ have no common neighbors. Therefore, U and W

are not connected.

• If a subset W contains only bad points, then it cannot be connected to both

a subset containing good points from Ap and a subset containing good points

outside Ap. Suppose it is connected to U which contains good points from Ap.

Note that since W contains only bad points, it must contain only a single point

z. If U = {x} is singleton, then x, z share more than (α + ν)n neighbors in

Ft. Since in Ft, x is only connected to good points from Ap and bad points, z

and x must share some common neighbors from Ap, then z must be connected

to some good points in Ap. In the other cases, note that the fraction of bad

points in U is at most 1/4. So there exists a good point x∗ ∈ U such that

St(x
∗, z) ≥ medianx∈USt(x, z). Then we have St(x

∗, z) > (|U | + |W |)/4 > νn,

and thus z must also be connected to some good points in Ap. Similarly, if W

is connected to a subset containing good points outside Ap, then the point in

W must connect to some good point outside Ap. But this is contradictory to

the fact that in Ft no bad point is connected to both a good point in Ap and a

good point outside Ap.

By the properties of Ht, no connected component contains both good points in

Ap and good points outside Ap. So at the end of this threshold t, the claim is still
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true. Then by induction, we know that when t ≤ |Ap|, we will not merge good points

from Ap with good points outside Ap.

Next we show that at the end of the threshold t = |Ap|, we will merge all points in

Ap into a subset. First, at this threshold, all good points in Ap are connected in Ft.

Any good point in Ap has at most (α+ν)n neighbors outside Ap, so when t = |Ap|, any

two good points x, y in Ap are connected, and thus they share at least |Ap| common

neighbors in Ft. Second, all subsets containing good points in Ap are connected in

Ht. If no good points in Ap have been merged, then these singleton points will be

connected in Ht since they share at least |Ap| singleton subsets as common neighbors

in Ft. If some good points in Ap have already been merged into non-singleton subsets,

we can show that in Ht these non-singleton subsets will be connected to each other

and connected to singleton subsets containing good points from Ap. For any such

pair of subsets U and W , the fraction of bad points in U or W is at most 1/4, so

there exist good points x∗ ∈ U, y∗ ∈ W such that medianx∈U,y∈WSt(x, y) is no less

than St(x
∗, y∗). Since x∗, y∗ are connected to all good points in Ap in Ft, St(x

∗, y∗)

is no less than the number of good points in U and W . So medianx∈U,y∈WSt(x, y) ≥

St(x
∗, y∗) > (|U |+ |W |)/4, and thus U,W are connected in Ht. Therefore, all points

in Ap are merged into a subset.

The following is a consequence of Lemma 19, which will be used in the analysis

for the general communities in Lemma 21.

Lemma 20. In Algorithm 12, if a subset U satisfies that for any good point p ∈ U ,

Ap ⊆ U , then there exist a subset of good points P ⊆ U , such that {Ap : p ∈ P} is a

partition of U \B.

Proof. We have U\B = ∪p∈U\BAp. We only need to show that sets in {Ap : p ∈ U\B}

are laminar, i.e. for any p, q ∈ U \ B, either Ap ∩ Aq = ∅ or Ap ⊆ Aq or Aq ⊆ Ap.
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Assume for contradiction that there exist Ap and Aq such that Ap\Aq 6= ∅, Aq\Ap 6= ∅

and Ap∩Aq 6= ∅. Without loss of generality, suppose |Ap| ≤ |Aq|. Then by Lemma 19,

at the end of the threshold t = |Ap|, we have merged all good points in Ap into a

subset. Specifically, this means that we have merged Ap ∩ Aq with Ap \ Aq. So for

t ≤ |Aq|, we have merged good points in Aq with good points outside Aq, which is

contradictory to Lemma 19.

By the above lemmas, for any good point p, the subset Ap will be formed before

points in it are merged with good points outside. Once these subsets are formed, we

can show that subsets in the same target community will be merged together before

they are merged with those from other communities, and thus the hierarchy produced

has a node close to the target community. Formally, we have the following result.

Lemma 21. For any community C satisfying the (α, β, ν)-stable property with β ≥

5/6, C ′ \ B in Algorithm 12 is always laminar to C \ B, i.e. for any C ′ ∈ C ′, either

(C ′ \ B) ∩ (C \ B) = ∅ or (C ′ \ B) ⊆ (C \ B) or (C \ B) ⊆ (C ′ \ B). Furthermore,

there is a node U in the hierarchy produced such that U \B = C \B.

Proof. we will show by induction on t that: for any community C satisfying the

(α, β, ν)-stable property with β ≥ 5/6,

• at the end of threshold t, C ′ \B is laminar to C \B,

• at the end of threshold t, for any C such that |C \ B| ≤ t, we have merged all

points in C \B into a subset.

These claims are clearly true initially. Assume for induction that they are true

for the threshold t− 1, we now show that they are also true for the threshold t.

We first show that the laminarity is preserved. The laminarity is broken only when

we connect in Ht two subsets U,W such that U is a strict subset of C after removing

the bad points, and W is a subset containing good points from outside. If there is a
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good point p ∈ U such that Ap 6⊆ U , then by Lemma 19, they cannot be connected.

So we only need to consider the other case when for any good point p ∈ U,Ap ⊆ U .

For convenience, we call a point great if it is a good point in C, and it has less than

αn neighbors outside C \ B out of the |C \ B| nearest neighbors in V \ B. We now

show that U,W are not connected in Ht. Since U \ B is a strict subset of C \ B,

by induction on the second claim, we have t ≤ |C \ B|. Then great points in U and

points in W share at most 2(α+ ν)n < t− 2(α+ ν)n common neighbors, so they are

not connected in Ft. By Lemma 20 and the second condition of the (α, β, ν)-stable

property, we know that at least 5/6 fraction of points in U \B are great points. Then

there exist a great point x∗ ∈ U and a point y∗ ∈ W such that St(x
∗, y∗) is no less

than medianx∈U,y∈WSt(x, y). Since in Ft great points in U are not connected to points

in W , we have St(x
∗, y∗) ≤ (|U |+ |W |)/4. So medianx∈U,y∈WSt(x, y) ≤ (|U |+ |W |)/4

and U,W are not connected in Ht. Therefore, the laminarity is preserved.

Next we show that at the end of the threshold t = |C \B|, all points in C \B are

merged into a subset. By Lemma 19, all good points in C \B are now in sufficiently

large subsets. We claim that any two of these subsets U,W are connected in Ht, and

thus will be merged. Again by Lemma 20, we know at least 5/6 fraction of points in

U \ B or W \ B are great points, and thus there exist great points x∗ ∈ U, y∗ ∈ W

such that St(x
∗, y∗) is no more than medianx∈U,y∈WSt(x, y). Notice that all great

points in U are connected to great points in W in Ft, since they share at least

t− 2(α+ ν)n neighbors. Then St(x
∗, y∗) ≥ 3(|U |+ |W |)/4 > (|U |+ |W |)/4, and thus

medianx∈U,y∈WSt(x, y) > (|U | + |W |)/4. Therefore, any two subsets containing good

points from C \B are connected in Ht and thus are merged.

So the two claims hold for all t, specially for t = n. Then the algorithm must stop

after this threshold, and we have the lemma as desired.

Lemma 22. Algorithm 12 has a running time of O(nω+1).

Proof. To implement the algorithm, we introduce some data structures. For any
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x ∈ V , if y is within the t nearest neighbors of x, let It(x, y) = 1, otherwise It(x, y) =

0. Initializing It takes O(n2) time. Next we compute CNt(x, y), the number of

common neighbors between x and y. Notice that CNt(x, y) =
∑

z∈V It(x, z)It(y, z),

so CNt = ItI
T
t . Then we can compute the adjacent matrix Ft (overloading the

notation for the graph Ft) from CNt. These take O(nω) time.

To compute the graphHt, we introduce the following data structures. Let FSt(x, y) =

1 if x, y are singleton subsets and Ft(x, y) = 1, and let FSt(x, y) = 0 otherwise. Let

NSt = FSt(FSt)
T , then for two singleton subsets x, y, NSt(x, y) is the number of sin-

gleton subsets they share as neighbors in common in Ft. Similarly, let FCt(x, y) = 1

if x and y are in the same subset and Ft(x, y) = 1, and let FCt(x, y) = 0 otherwise.

Let St = Ft(FCt)
T + FCt(Ft)

T , then for two points x ∈ U, y ∈ W where U,W are

two non-singleton subsets, St(x, y) is the number of points in U ∪W they share as

neighbors in common in Ft. Based on NSt and St we can build the graph Ht. All

these take O(nω) time.

When we perform merge or increase the threshold, we need to update the data

structures, which takes O(nω) time. Since there are O(n) merges and O(n) thresholds,

Algorithm 12 takes time O(nω+1) in total.

4.3 Local Community Detection Algorithm

For networks with millions of nodes, the algorithm in the last section is too compu-

tationally expensive. Fortunately, in practical networks, the communities often have

size much smaller than that of the whole network. For example, a social network can

have millions members, while a member typically has no more than hundreds of close

friends. Therefore, it is often sufficient to consider the following problem:

• Given some p, which is a good point in a community C, and the size of C, how

to identify C in time independent of the size of the whole network?
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Algorithm 13 Local Community Detection Algorithm

Input: Neighborhood function N on a set of points V , a point p ∈ V , an integer
c > 0, parameters α > 0, ν > 0.

1: Let Nt(A) denote the union of the t nearest neighbors of points in A.
Set N2 = N2c(N2c(p)).

2: Set C ′in = {q ∈ N2 : |Nc(q) ∩N6(α+ν)n(p)| ≥ 3(α + ν)n}.
3: Set C ′ = {q ∈ N2 : |Nc(q) ∩ C ′in| ≥ 3(α + ν)n}.

Output: C ′.

Such algorithms are called local algorithms in the literature of community detection.

Note that the independence of the size of the whole network can only be achieved

under some assumption about the input, since reading the similarities between p and

the other points already takes time linear in the size of the network. Here we assume

that the algorithm has access to a sorted neighborhood function Nt. Formally, we

assume the following mild condition.

(A) For any p and t, Nt(p) can be computed in time O(t).

This assumption can be satisfied by building a sorting list of nearest neighbors for

each point, which can be precomputed once in time O(n2 log n) from the pairwise

similarities or dissimilarities.

Here we design a local algorithm (described in Algorithm 13), which solves the

aforementioned problem under Assumption (A). To analyze the algorithm, first recall

the definition of the stable community C, which requires some good points in the

community have all but at most αn nearest neighbors from C \B out of their C \B

nearest neighbors in V \ B. Call them inner points of C and denote as Cin for

convenience. Intuitively, the algorithm is designed such that C ′in is a good estimation

of Cin. From this, the algorithm then builds C ′ such that C ′ ≈ C. The construction is

localized to an approximate superset N2 of C, so that the running time is independent

of the size of the network.

Theorem 17. Suppose C is an (α, β, ν)-stable community with β ≥ 5/6. Given
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p ∈ C\B and c = |C|, Algorithm 13 outputs C ′ such that |C ′\C|+|C\C ′| ≤ (α+ν)n.

The running time is O(|C|4) under Assumption (A).

Proof. First, N2 is approximately a superset of C. More precisely, we have |C \ B \

N2| ≤ αn. By definition, at most αn points in Ap are outside N2c(p). Since at least

β ≥ 5/6 fraction of Ap are inner points, N2c(p) contains at least one inner point.

Then N2 = N2c(N2c(p)) contains all but at most αn good points in C. For analysis,

denote these missing points as M = C \B \N2.

Second, C ′in contains all inner points in C \M but contains no good points outside

C. By definition, |Ap ∩ N6(α+ν)n(p)| ≥ 5(α + ν)n. If q ∈ Cin, then |Ap \ Nc(q)| ≤

(α+ ν)n. Combining the two leads to |Nc(q)∩N6(α+ν)n(p)| > 3(α+ ν)n since Ap has

size at least 6(α + ν)n. This means that C ′in contains all inner points in C \M . To

show that C ′in contains no good points q outside C, note that |Nc(q)∩Ap| ≤ (α+ν)n.

Also, |N6(α+ν)n(p) \ Ap| ≤ (α + ν)n. So we have |Nc(q) ∩N6(α+ν)n(p)| ≤ 2(α + ν)n.

Finally, C ′ contains all good points in C \M but contains no good points outside

C, which then means |C ′ \C|+ |C \C ′| ≤ (α+ ν)n. If q ∈ C \B, then |Aq \Nc(q)| ≤

(α + ν)n. Since C ′in contains all points in Cin \ M , and at least β fraction of the

points Aq are in Cin, we have that |Aq ∩ C ′in| ≥ β|Aq| − |M | ≥ 4(α + ν)n. Then

|C ′in ∩ Nc(q)| ≥ 3(α + ν)n, and thus C ′ contains all good points in C \M . To show

C ′ contains no good points q outside C, note that |Nc(q) ∩ C| ≤ (α + ν)n. Since

C ′in ⊆ C ∪B, we have |Nc(q) ∩ C ′in| ≤ (α + ν)n+ |B| < 3(α + ν)n.

To bound the running time, first note that N2 can be computed in time |C|2

under Assumption (A). To build C ′in, we can search over all O(|C|2) points in N2.

For each q ∈ N2, finding Nc(q) takes time O(|C|); for each q′ ∈ Nc(q), testing whether

q′ ∈ N6(α+ν)n(p) takes time O((α + ν)n) = O(|C|). Then the total time to build C ′in

is O(|C|4). Similarly, building C ′ takes time O(|C|4). Therefore, the algorithm takes

time O(|C|4).
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4.4 Experiments

In this section, we present our experimental results on evaluating our model and

algorithm. While our main concern is building theoretical model for communities,

empirical study is valuable in verifying the model and providing guidance for further

improvement. Therefore, we applied our algorithm on both real world and synthetic

data sets.

Note that the networks are represented as graphs, and we need to lift the graphs

to get neighborhood functions for our algorithm. We use two lifting approaches for

our experiments. The first approach is direct lifting: first, for any x, y set the affinity

between x and y to be 1 if (x, y) ∈ E and 0 otherwise; then for each x, sort all

the other points according to the affinities; break ties randomly to avoid bias. The

second approach is diffusion lifting: first set the affinity matrix K between entities to

be K = exp{λA} where λ = 0.05 and A is the adjacent matrix of the graph; then for

each x, sort all the other points according to the affinities.

For comparison, we implemented two other algorithms: the lazy random walk al-

gorithm (LRW [99]) and the Girvan-Newman algorithm (GN [51]). The lazy random

walk algorithm performs truncated random walk from a seed point in the network

and outputs selected communities where the selection is guided by the walk distri-

bution and conductance. The conductance has been widely used as a criterion for

quantifying the tight connections within communities, and thus the comparison to

the lazy random walk algorithm provides an evaluation on how well our model and

algorithm capture this intuition. The GN algorithm repeatedly removes the edge

with the maximum edge-betweenness and regards the created connected components

as communities. Although no theoretical model of hierarchical communities is tar-

geted, the algorithm builds a hierarchy during its execution. It has been shown that

the algorithm performs remarkably well on modeling communities in real-world data

sets [51, 89]. We use the code from [28] for fast computation of edge betweenness in
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the algorithm.

For algorithms with parameters, we run them multiple times with different values

of parameters, and report the best result. More specifically, we run our algorithm

using parameters (α + ν) = i
5n

(i = 1, 2, . . . , 5). For the lazy random walk algorithm,

we enumerate the parameters θ0 = 0.05i(i = 1, . . . , 4) and b = 1, 2, . . . , dlogme. In

each run, 100 seed points are generated uniformly at random, each of which leads to a

community. Since not all communities are meaningful (e.g. a singleton subset or the

entire set of points), communities containing less than 10 points or containing more

than n− 10 points are removed, and the rest communities are regarded as the output

communities. We then evaluate the average error of the output communities. The

error for a ground-truth community C with respect to a set C of output communities

is defined as

error(C, C) = min
C′∈C

|C \ C ′|+ |C ′ \ C|
n

.

This criterion measures how well the ground-truth communities are recovered by the

algorithm. We further note that our algorithm outputs fewer communities than the

other algorithms in all the conducted experiments, and thus has advantage when they

achieve similar performance.

4.4.1 Evaluation on Real-World Networks

To evaluate the accuracy of the proposed method, we conduct experiments on the

following real world data sets2: karate [103], dolphins [82], polbooks [68], and foot-

ball [51].

Figure 18 shows the average error and running time of the algorithms. We observe

that our algorithm with diffusion lifting achieves the best performance on 3 out of 4

data sets, and achieves performance comparable to the GN algorithm on the football

data set. It recovers the ground truth communities remarkably well over all the data

2Detailed descriptions and links for download can be found on the following website:
http://www-personal.umich.edu/ mejn/netdata/.
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Figure 18: The average error and running time using our hierarchical community
detection algorithm with direct lifting (HCD+direct) or diffusion lifting neighborhood
function (HCD+diffusion), Lazy Random Walk (LRW [99]) and the Girvan-Newman
algorithm (GN [51]). Note that the running time is in log scale.

sets. Our algorithm with direct lifting does not achieve good results. Note that this

is due to the fact that diffusion lifting reflects the true neighborhood structure more

accurately than direct lifting. More precisely, when we sort neighbors for a point p in

direct lifting, all points not adjacent to p are ranked randomly. In fact some of them

can be reached by a few steps and thus should be ranked as close neighbors, while

others are actually far away from the point p. On the other hand, diffusion lifting

leads to a neighborhood function that more accurately reflects the neighborhood

information. The LRW algorithm has the worst performance, though it is the fastest.

Our algorithm, especially with the diffusion lifting, runs 10-100 faster than the GN

algorithm. Therefore, our algorithm with suitable neighborhood functions is the most

favorable for detecting real world communities.
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Table 1: The parameters of the synthetic data sets for community detection.
n/m: number of nodes/edges; k/maxk: average/maximum degree of the nodes;
minc/maxc: minimum/maximum size of the lower level communities; minC/maxC:
minimum/maximum size of the higher level communities.

Data set n m k maxk minc maxc minC maxC

LF50 50 ≈500 10 15 10 15 20 30
LF100 100 ≈1500 15 20 15 20 30 40
LF150 150 ≈3000 20 30 20 30 40 60
LF200 200 ≈6000 30 40 30 40 60 80
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Figure 19: The average error on the synthetic networks

4.4.2 Evaluation on Synthetic Networks

Besides real-world networks, we further use the Lancichinetti-Fortunato (LF) bench-

mark3 graphs [72] to evaluate the performance of the algorithms. By varying the

3The source code we use and details about the parameters can be found on
https://sites.google.com/site/andrealancichinetti/software.
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Figure 20: The running time on synthetic networks

parameters of the networks, we can analyze the behavior of the algorithms in detail.

We generate four unweighted undirected benchmark networks with two level com-

munity hierarchies. The numbers of nodes are 50, 100, 150 and 200 respectively, and

some important parameters of the networks are given in Table 1. For each type of

data set, we range the mixing parameter µ from 0.1 to 0.5 with a span of 0.1, and

set the low-level mixing parameter µ1 = µ/4 and the high-level mixing parameter

µ2 = µ − µ1, resulting in five networks. Generally, the higher the mixing parameter

of a network is, the more difficult it is to reveal the community structure.

Figure 19 shows the average errors of the algorithms and Figure 20 shows the

running time. Our algorithm with direct or diffusion lifting and the GN algorithm

achieve similar results on all the benchmark networks. The errors of these algorithms

are below 5%, and hardly increase with the mixing parameter. This suggests that

they recover the ground truth communities remarkably well even in the hard case

when the members of the communities have significant connections with the outside.

In contrast, the LRW algorithm does not recover the communities well, even though
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it runs much faster than the other algorithms. Our algorithm runs about 50 times

faster than the GN algorithm over all the data sets. These results are consistent with

those observed on real world data sets, and again demonstrate the advantage of our

algorithm.
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APPENDIX A

CLUSTERING UNDER PERTURBATION RESILIENCE

A.1 Dynamic Programming to Find the Minimum Cost k-
Cluster Pruning

The idea of using dynamic programming to find the optimal k-clustering in a tree

of clusters is proposed in [9]. We can find the optimal clustering by examining the

entire tree of clusters produced. Denote the cost of the optimal m-clustering of a tree

node R as cost(R,m). The optimal m-clustering of a tree node R is either the entire

subtree as one cluster (m = 1), or the minimum over all choices of m1-clustering over

its left subtree and m2-clustering over its right subtree (1 < m ≤ k), where m1,m2

are positive integers such that m1 + m2 = m. Therefore, we can traverse the tree

bottom up, recursively solving the m-clustering problem for 1 ≤ m ≤ k for each tree

node. The algorithm is presented in Algorithm 14. Suppose that computing the cost

of a cluster takes time t (t = O(n2) for k-median, k-means and min-sum). Since there

are O(n) nodes, and on each node R, computing cost(R, 1) takes time t, computing

cost(R,m)(1 < m ≤ k) takes O(k2), in total the algorithm takes time O(nt+ nk2).

Notice when T is a multi-branch tree and not suitable for dynamic programming,

we need to turn it into a 2-branch tree T ′ as follows. For each node with more

than 2 children, for example, the node R with children R1, R2, . . . , Rt(t > 2), we

first merge R1 and R2 into one node, then merge this node with R3; repeat until we

merge all nodes R1, R2, · · · , Rt into R. In this way, we get a 2-branch tree T ′ and can

run dynamic programming on it. Note that each pruning in T has a corresponding

pruning in T ′, so the minimum cost pruning of T ′ has no greater cost than the

minimum cost pruning of T .
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Also note that when the cost function is center-based, such as k-median, the

algorithm essentially computes a center for the node R when computing cost(R, 1).

So it can output the centers together with the pruning.

Algorithm 14 Dynamic Programming in Tree of Clusters

Input: A tree of clusters T on a data set P , distance function d(·, ·) on P , k.
1: Traverse T bottom up.
2: for each node R ∈ T do
3: Calculate cost(R, 1). For 1 < m ≤ k, calculate cost(R,m) as follows.
4: if R is a leaf then
5: cost(R,m) = cost(R, 1).
6: else
7: cost(R,m) = min[cost(R1,m1)+cost(R2,m2)], where R1, R2 are R’s children

and m1 +m2 = m.
8: end if
9: end for

10: Traverse backwards to get the k-clustering C that achieves cost(r, k) where r is
the root.

Output: The k-clustering C.

A.2 An Efficient Implementation of Algorithm 1

Here we show an efficient implementation of Algorithm 1, namely Algorithm 15. The

Phase 1 of this implementation takes time only O(n3).

Notice at each merge step in Algorithm 1, we only need to find the two clusters

with the minimum closure distance. So we hope to compute the minimum closure

distance without computing all the distances between any two current clusters. First

we notice the following facts.

Fact 3. In the execution of Algorithm 1, if d is the minimum closure distance for the

current clustering, then

(1) there exist c, p ∈ P such that d = d(c, p);

(2) d is no less than the minimum closure distances in previous clusterings.

Proof. For the first claim, let c be the center of the ball in the definition of closure

distance, and p be the farthest point from the center in the ball, then d = d(c, p).
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Algorithm 15 Efficient Implementation of Algorithm 1

Input: Data set P , distance function d(·, ·) on P .
1: Sort all the pairwise distances in ascending order.
2: for each p ∈ P and 1 ≤ i ≤ n do
3: Compute Lp, χ(p, i). Then compute χ∗(p, i) by Equation (18).
4: end for
5: Let the current clustering be n singleton clusters.
6: for d(p, q) in ascending order do
7: Suppose q = Lpi . Check if d(p, q) satisfies the three claims in Fact 4, where the

third claim can be checked by verifying if χ∗(p, i) = −1.
8: If so, merge all the clusters covered by B(p, d(p, q)).
9: end for

10: Construct the tree T with points as leaves and internal nodes corresponding to
the merges performed.

11: Run dynamic programming on T to get the minimum cost pruning C̃.
Output: The clustering C̃.

The second claim comes from the fact that the clusters in the current clustering are

supersets of those in previous clusterings.

Fact 3 implies that we can check in ascending order the pairwise distances no

less than the minimum closure distance in the last clustering, and determine if the

checked pairwise distance is the minimum closure distance in the current clustering.

More specifically, suppose we have some black-box method for checking if a pairwise

distance is the minimum closure distance in the current clustering, we can perform

the closure linkage as follows: sort the pairwise distances in a list in ascending order;

start from the first distance in the list; check if the current distance is the minimum

closure distance in the current clustering; if it is, merge clusters covered by the ball

defined by the checked distance; continue to check the next distance in the list. So it

is sufficient to design a method to determine if a pairwise distance is the minimum

closure distance in the current clustering. Our method is based on the following facts.

Fact 4. In Algorithm 1, if d(c, p) is the minimum closure distance for the current

clustering, then

(1) at least 2 clusters intersects B(c, d(c, p));
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(2) all the clusters intersecting B(c, d(c, p)) are covered by B(c, d(c, p));

(3) for any p′ ∈ B(c, d(c, p)), q 6∈ B(c, d(c, p)), d(c, p′) < d(p′, q).

Proof. The first claim and the third claim follow from the definition. We can prove

the second claim by induction. This is trivial at the beginning. Suppose it is true up

to any previous clustering, we prove it for the current clustering C ′. We need to show

that for any C ′ ∈ C ′ such that C ′ ∩ B(c, d(c, p)) 6= ∅, C ′ ⊆ B(c, d(c, p)). If c ∈ C ′,

then by definition, C ′ ⊆ B(c, d(c, p)). If C ′ is a single point set {c1}, then trivially

C ′ ⊆ B(c, d(c, p)). What is left is the case when c 6∈ C ′ and C ′ is generated by merging

clusters in a previous step. Suppose when C ′ is formed, the closure distance between

those clusters is defined by c1 ∈ C ′ and p1. By induction, if c ∈ B(c1, d(c1, p1)), c would

have been merged into C ′ when C ′ is merged, which is contradictory to c 6∈ C ′. So

we have c 6∈ B(c1, d(c1, p1)), i.e. d(c, c1) > d(c1, p1). Then by the margin requirement

of B(c1, d(c1, p1)), d(c, q) > d(c1, q) for any q ∈ B(c, d(c, p)) ∩ C ′. This further leads

to c1 ∈ B(c, d(c, p)), since otherwise by the margin requirement of B(c, d(c, p)) and

q ∈ B(c, d(c, p)), we would have d(c, q) < d(c1, q). So for any point q′ ∈ C ′, since

d(c1, q
′) ≤ d(c1, p1) < d(c, c1), we have q′ ∈ B(c, d(c, p)) from the margin requirement,

so C ′ ⊆ B(c, d(c, q)).

Notice if a pairwise distance satisfies the three claims, then it defines a closure

distance for the clusters covered. So if we check the pairwise distances in ascending

order, then the first one that satisfies the three claims must be the minimum closure

distance in the current clustering. So we have a method to determine if a pairwise

distance is the minimum closure distance.

However, naively checking the third claim in Fact 4 takes O(n2), which is still not

good enough. We can refine this step since intuitively, for every c, if d(c, q) comes after

d(c, p) in the distance list, then when checking d(c, q), we can utilize the information

obtained from checking d(c, p). Specifically, for every p ∈ P , define Lp = (Lp1, . . . , L
p
n)

to be a sorted list of points in P , according to their distances to p in ascending order.
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Let χ∗(p, i) denote the index of the farthest point in Lp, which makes d(p, Lpi ) fail

the third claim in Fact 4. Formally, define χ∗(p, i) to be the maximum j > i such

that there exits s ≤ i satisfying d(p, Lps) ≥ d(Lps, L
p
j). If no such point Lpj exists, let

χ∗(p, i) = −1. Then d(p, Lpi ) satisfies the third claim if and only if χ∗(p, i) = −1, thus

we turn the task of checking the claim into computing χ∗(p, i). In order to use the

information obtained when previously checking d(p, Lpi−1), we compute χ∗(p, i) from

χ∗(p, i− 1). By the definition of χ∗, what is new of χ∗(p, i) compared to χ∗(p, i− 1)

is just the maximum j > i such that d(p, Lpi ) ≥ d(Lpi , L
p
j). Define χ(p, i) to be the

maximum j > i such that d(p, Lpi ) ≥ d(Lpi , L
p
j); if no such j exists, let χ(p, i) = −1.

Then it is easy to verify that

χ∗(p, i) = max{χ∗(p, i− 1), χ(p, i)}. (18)

It takes O(n) time to compute χ(p, i), thus we can compute χ∗(p, i) for all p ∈ P, 1 ≤

i ≤ n in O(n3) time. The implementation is finally summarized in Algorithm 15.

A.3 Proofs for Bounding the Number of Bad Points for
k-Median

We now present the proof of Fact 1, which is used in Claims 1 and 2 for translating

d′ to d. For notations used, see Figure 21 in Section 2.3.1 for illustration. We begin

with the following technical fact:

Fact 5. Suppose the clustering instance is (α, ε)-perturbation resilient. If mini |Ci| >

( 2
α−1 + 3)εn+ 1, then c′i 6= cj(∀j 6= i).

Proof. The intuition is that if c′i = cj, then under d′, points in Wj should be closer to

c′j than to c′i = cj. So under d, these points are α time closer to c′j than to cj. This

means that the distance between cj and c′j is no so large compared to the average

distance between cj and Wj by the triangle inequality. On the other hand, this also

means that cj has (1−1/α)d(cj,Wj) more cost than c′j on Wj. Then cj should save this
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cost on other parts of Cj. In other words, c′j has at least (1−1/α)d(cj,Wj) more cost

on these points than cj has. By the triangle inequality, the distance between cj and c′j

is much larger than the average distance between cj and Wj, which is contradictory.

Formally, assume for contradiction that c′i = cj. To apply the intuition described

above, we first need to show c′j 6= cl(∀l). Clearly, c′j 6= cj, since otherwise, moving all

the points in C ′j to C ′i will not increase the cost, which violates (α, ε)-perturbation

resilience. We also know that c′j 6= cl(l 6= j) since otherwise, there is p ∈ Wj,

d(cl, p) = d(c′j, p) ≤ d′(c′j, p) < d′(c′i, p) = d(cj, p), which contradicts the fact that

p ∈ Cj.

Now we can apply the intuition described above to show that c′i = cj and c′j 6=

cl(∀l) lead to an contradiction. Note that points in Wj ∪Vj = Cj ∩C ′j are closer to c′j

than to c′i = cj under d′. Then back to d, for any p ∈ Wj, since c′j 6= cl(∀l), αd(c′j, p) =

d′(c′j, p) ≤ d′(c′i, p) = d(cj, p), resulting in d(c′j,Wj) ≤ d(cj,Wj)/α. Similarly, for any

p ∈ Vj, αd(c′j, p) = d′(c′j, p) ≤ d′(c′i, p) = αd(cj, p), resulting in d(c′j, Vj) ≤ d(cj, Vj).

These facts have two consequences.

First, since points in Wj are α time closer to c′j than to cj, the distance between

c′j and cj is small:

d(c′j, cj) ≤
d(c′j,Wj)

|Wj|
+
d(cj,Wj)

|Wj|
≤ (1 +

1

α
)d(cj,Wj). (19)

Second, since cj is the optimal center for Cj = Wj ∪ Vj ∪Mj, it should save a lot

of cost on Mj compared to c′j, which suggests cj and c′j would be far apart. Formally,

d(c′j, Cj) = d(c′j,Wj ∪ Vj ∪Mj) ≥ d(cj, Cj) = d(cj,Wj ∪ Vj ∪Mj).

Since d(c′j,Wj) ≤ d(cj,Wj)/α and d(c′j, Vj) ≤ d(cj, Vj), we have

d(c′j,Mj)− d(cj,Mj) ≥ d(cj,Wj)−
1

α
d(cj,Wj),

|Mi|d(c′j, cj) ≥ (1− 1

α
)d(cj,Wj). (20)
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When |Cj| > ( 2
α−1 + 3)εn + 1, we have (1− 1/α)|Wj| > (1 + 1/α)|Mj|. Then In-

equalities 20 and 19 lead to d(cj, c
′
j) = 0. This means cj = c′j which is a contradiction

to the assumptions.

Fact 1. Suppose the clustering instance is (α, ε)-perturbation resilient and mini |Ci| >

( 2
α−1 + 3)εn+ 1. If ci 6= c′i, then we have

d′(c′i,Wi) ≥ αd(c′i,Wi \ {c(c′i)}),

d′(c′i, Vi) = αd(c′i, Vi),

d′(c′i, Ai) ≥ αd(c′i, Ai \ {c(c′i)}),

d′(ci,Wi) = d(ci,Wi),

d′(ci, Vi) = αd(ci, Vi),

d′(ci, Ai) ≤ αd(ci, Ai \ {c(c′i)}) + α(1 + α)d(c′i, ci).

Proof. These translations can be verified by the definition of d′. In most cases,

d′(·, ·) = αd(·, ·); the only exceptions are the distances between p and c(p). The

detailed verification is presented below.

Since c′i 6= ci, and by Fact 5, we know c′i 6= cj(∀j). So when translating d′(c′i, C)(C

is Wi, Vi or Ai), we only need to check if c(c′i) ∈ C. For Wi, d
′(c′i,Wi) ≥ d′(c′i,Wi \

{c(c′i)}) = αd(c′i,Wi \ {c(c′i)}). For Vi, since there is no center in Vi, d
′(c′i, Vi) =

αd(c′i, Vi). For Ai, d
′(c′i, Ai) ≥ d′(c′i, Ai \ {c(c′i)}) = αd(c′i, Ai \ {c(c′i)}).

Now consider the sum of distances concerning ci. For d′(ci,Wi) and d′(ci, Vi), the

equations follow from the definition of d′. For Ai, if c(c′i) 6∈ Ai, then the inequality is

trivial. If c(c′i) ∈ Ai, then

d′(ci, Ai) = d′(ci, Ai \ {c(c′i)}) + d′(ci, c(c
′
i)) ≤ αd(ci, Ai \ {c(c′i)}) + αd(ci, c(c

′
i)).

We have d(ci, c(c
′
i)) ≤ d(ci, c

′
i) + d(c′i, c(c

′
i)). If c′i is a selected bad point, then

d(c′i, c(c
′
i)) ≤ αd(c′i, ci). Otherwise, c(c′i) is the nearest center for c′i, then d(c′i, c(c

′
i)) ≤

d(c′i, ci). In any case, the inequality for d′(ci, Ai) follows.
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A.4 Structural Properties of (α, ε)-Perturbation Resilient
Min-Sum Instances

A.4.1 Proofs for Bounding the Number of Bad Points for Min-Sum

Recall the definitions of the bad points and the perturbation constructed to bound

the number of bad points in Section 2.5.1.1. Suppose an intervals [r, 2r] contains the

costs of more than 2εn bad points. Let B̂ denote a subset of 2εn bad points in this

interval, and let B̂i = B̂ ∩ Ci, Ki = Ci \ B̂i. Suppose for a bad point p ∈ B̂i, Cj is

its second nearest cluster, that is, j = arg min`6=i d(p, C`). Denote this as p ∈ Dj. Let

C̃i = Ki ∪Di. The perturbation is constructed as follows: blow up all distances by a

factor of α except those within C̃i, 1 ≤ i ≤ k. Let {C ′i} denote the optimal clustering

after perturbation. Recall the definitions of Ui, Vi,Wi and Ũi, Ṽi, W̃i, and see Figure 6

for an illustration. The following facts come from their definitions.

Fact 6. We have ∪iUi = ∪iŨi, ∪iVi = ∪iṼi and ∪iWi = ∪iW̃i. Furthermore,

∑
i

d(Ũi, Ci) ≤ β
∑
i

d(Ui, Ci),∑
i

d(Ṽi, Ci) ≤
∑
i

d(Vi, Ci),∑
i

d(W̃i, Ci) ≤
∑
i

d(Wi, Ci).

We are ready to prove the claim needed for bounding the number of bad points.

Claim 3.(a). The costs saved and added by moving {Ui, 1 ≤ i ≤ k} satisfy

2
∑
i

d′(Ui, C
′
i ∩Ki)− 2

∑
i

d′(Ũi, C̃i)

≥ 3

10
α
∑
i

d(Ui, Ci)−
2α

100

∑
i

d(Wi, Ci)−
8α + 16

100
rεn.

Proof. Intuitively,
∑

i d
′(Ui, C

′
i∩Ki) ≈ α

∑
i d(Ui, Ci) and

∑
i d
′(Ũi, C̃i) ≈

∑
i d(Ũi, Ci).

Their difference is then roughly (α−β)
∑

i d(Ui, Ci), since
∑

i d(Ũi, Ci) ≤ β
∑

i d(Ui, Ci).
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Formally, we have

d′(Ui, C
′
i ∩Ki) = αd(Ui, C

′
i ∩Ki) = αd(Ui, Ci)− αd(Ui, W̃i + B̂i), (21)

d′(Ũi, C̃i) = d(Ũi, C̃i) = d(Ũi, Ki) + d(Ũi, Di) ≤ d(Ũi, Ci) + d(Ũi, Di). (22)

Then it suffices to bound the approximation error d(Ui, W̃i + B̂i) and d(Ũi, Di).

First,

d(Ui, W̃i + B̂i) ≤
|W̃i + B̂i|
|Ci|

d(Ui, Ci) +
|Ui|
|Ci|

d(Ci, W̃i + B̂i)

≤ 3

100
d(Ui, Ci) +

1

100
d(Ci, W̃i + B̂i)

where the first inequality is by Fact 7, and the second is from the fact that |W̃i| ≤

εn, |B̂i| ≤ 2εn, |Ui| ≤ εn and |Ci| ≥ 100εn. For the second term on the right hand

side, we have
∑

i d(Ci, W̃i) ≤
∑

i d(Wi, Ci), and points in B̂i has cost at most 2r:

d(B̂i, Ci) ≤ 2r|B̂i|. So

∑
i

d(Ui, W̃i + B̂i) ≤
3

100

∑
i

d(Ui, Ci) +
1

100

∑
i

d(Ci,Wi) +
4rεn

100
.

Similarly, for d(Ũi, Di) we have

∑
i

d(Ũi, Di) ≤
∑
i

[
|Di|
|Ci|

d(Ũi, Ci) +
|Ũi|
|Ci|

d(Ci, Di)

]
≤ 2β

100

∑
i

d(Ui, Ci) +
8rεn

100
.

The claim follows by summing (21) and (22) over 1 ≤ i ≤ k and plugging the last

two inequalities.

Claim 3.(b). The costs saved and added by moving {Vi, 1 ≤ i ≤ k} satisfy

2
∑
i

d′(Vi, C
′
i ∩ Ci)− 2

∑
i

d′(Ṽi, C̃i)

≥ 99

50
(α− 2)

∑
i

d(Vi, Ci)−
2α

100

∑
i

d(Wi, Ci)−
8α + 16β

100
rεn.

Proof. The intuition is similar to that of Claim 3.(a):
∑

i d
′(Vi, C

′
i∩Ci) ≈ α

∑
i d(Vi, Ci)

and
∑

i d
′(Ṽi, C̃i) ≈

∑
i d(Ṽi, Ci). Since

∑
i d(Vi, Ci) ≥

∑
i d(Ṽi, Ci), their difference is

roughly (α− 1)
∑

i d(Vi, Ci).
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Formally, we have

d′(Vi, C
′
i ∩ Ci) = αd(Vi, C

′
i ∩ Ci) = αd(Vi, Ci)− αd(Vi, Ci \ C ′i), (23)

d′(Ṽi, C̃i) = d(Ṽi, C̃i) ≤ d(Ṽi, Ci) + d(Ṽi, Di). (24)

Then it suffices to bound the approximation error d(Vi, Ci \ C ′i) and d(Ṽi, Di). First,

d(Vi, Ci \ C ′i) ≤
|Ci \ C ′i|
|Ci|

d(Vi, Ci) +
|Vi|
|Ci|

d(Ci \ C ′i, Ci)

≤ 1

100
d(Vi, Ci) +

1

100
d(Ci \ C ′i, Ci)

where the first inequality is by Fact 7 and the second is from the fact that |Ci \C ′i| ≤

εn, |Vi| ≤ εn and |Ci| ≥ 100εn. For the second term on the right hand side, we have

d(Ci \ C ′i, Ci) ≤ d(W̃i, Ci) + d(B̂i \ C ′i, Ci). Noting that
∑

i d(W̃i, Ci) ≤
∑

i d(Wi, Ci)

and that the points in B̂i have cost at most 2r, we have

∑
i

d(Vi, Ci \ C ′i) ≤
1

100

∑
i

d(Vi, Ci) +
1

100

∑
i

d(Wi, Ci) +
4rεn

100
.

Similarly, for d(Ṽi, Di) we have

∑
i

d(Ṽi, Di) ≤
∑
i

[
|Di|
|Ci|

d(Ṽi, Ci) +
|Ṽi|
|Ci|

d(Ci, Di)

]
≤ 2

100

∑
i

d(Vi, Ci) +
8βrεn

100
.

The claim follows by summing (23) and (24) over 1 ≤ i ≤ k and plugging the last

two inequalities.

Claim 3.(c). The costs saved and added by moving {Wi, 1 ≤ i ≤ k} satisfy

2
∑
i

d′(Wi, C
′
i ∩ Ci)− 2

∑
i

d′(W̃i, W̃i + C ′i ∩ C̃i)

≥ 98

50
(α− 2)

∑
i

d(Wi, Ci)−
8α + 8β

100
rεn.

Proof. The intuition is similar to that of Claim 3.(a):
∑

i d
′(Wi, C

′
i∩Ci) ≈ α

∑
i d(Wi, Ci)

and
∑

i d
′(W̃i, W̃i+C

′
i∩C̃i) ≈

∑
i d(W̃i, Ci). Since

∑
i d(Wi, Ci) ≥

∑
i d(W̃i, Ci), their

difference is roughly (α− 1)
∑

i d(Wi, Ci).
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Formally, we have

d′(Wi, C
′
i ∩ Ci) = αd(Wi, C

′
i ∩ Ci) = αd(Wi, Ci)− αd(Wi, Ci \ C ′i). (25)

d′(W̃i, W̃i + C ′i ∩ C̃i) = d(W̃i, C
′
i ∩Di + Ci ∩ C̃i) ≤ d(W̃i, C

′
i ∩Di) + d(W̃i, Ci). (26)

Then it suffices to bound the approximation error d(Wi, Ci \ C ′i) and d(W̃i, C
′
i ∩Di).

First,

d(Wi, Ci \ C ′i) ≤
|Ci \ C ′i|
|Ci|

d(Wi, Ci) +
|Wi|
|Ci|

d(Ci \ C ′i, Ci)

≤ 1

100
d(Wi, Ci) +

1

100
d(Ci \ C ′i, Ci)

where the first inequality is by Fact 7 and the second from the fact that |Ci \ C ′i| ≤

εn, |Wi| ≤ εn and |Ci| ≥ 100εn. For the second term on the right hand side, we have

d(Ci \ C ′i, Ci) = d(W̃i, Ci) + d(B̂i \ C ′i, Ci). Noting that
∑

i d(W̃i, Ci) ≤
∑

i d(Wi, Ci)

and that points in B̂i have cost at most 2r, we have∑
i

d(Wi, Ci \ C ′i) ≤
2

100

∑
i

d(Wi, Ci) +
4rεn

100
.

Similarly, for d(W̃i, C
′
i ∩Di) we have∑

i

d(W̃i, C
′
i ∩Di) ≤

∑
i

[
|C ′i ∩Di|
|Ci|

d(W̃i, Ci) +
|W̃i|
|Ci|

d(C ′i ∩Di, Ci)

]

≤ 1

100

∑
i

d(Wi, Ci) +
4βrεn

100
.

The claim follows by summing (25) and (26) over 1 ≤ i ≤ k and plugging the last

two inequalities.

A.4.2 Properties of Good Points in Min-Sum

The first property is that the cost between two optimal clusters is roughly that be-

tween sufficiently large subsets of their good points (Lemma 10). To prove this, we

begin with the following useful fact.

Fact 7. For any non-empty sets A,B and C, we have da(A,B) ≤ da(A,C)+da(C,B),

and thus d(A,B) ≤ |B|
|C|d(A,C) + |A|

|C|d(C,B).
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Then we have the following useful property for good points, which shows that good

points are much closer to its own cluster than to good points in any other cluster.

This property then leads to Lemma 10.

Lemma 23. For GA ⊆ Gi, GB ⊆ Gj, j 6= i, we have

da(GA, Ci) ≤ γji da(GA, GB),where γji =
|Cj|

(β − 1/β)|Ci|
+

1

β2 − 1
.

Consequently, if α > 8maxi |Ci|
mini |Ci| , we have da(GA, Ci) ≤ 11

50
da(GA, GB).

Proof. For any p ∈ GA, we have βd(p, Ci) < d(p, Cj). It follows from Fact 7 that

βd(GA, Ci) < d(GA, Cj) ≤
|Cj|
|GB|

d(GA, GB) +
|GA|
|GB|

d(Cj, GB)

βd(GB, Cj) < d(GB, Ci) ≤
|Ci|
|GA|

d(GB, GA) +
|GB|
|GA|

d(Ci, GA).

Plug the second inequality into the first inequality, then the lemma follows.

Lemma 10. Suppose α > 8maxi |Ci|
mini |Ci| and Wi ⊆ Gi,Wj ⊆ Gj. When |Ci| ≥ 50|Ci \Wi|

and |Cj| ≥ 50|Cj \Wj|, we have d(Ci, Cj) ≤ 3
2
d(Wi,Wj).

Proof. By Fact 7 and Lemma 23, we have

da(Ci, Cj) ≤ da(Ci,Wi) + da(Wi,Wj) + da(Wj, Cj) ≤ (
11

50
+ 1 +

11

50
)da(Wi,Wj)

which leads to d(Ci, Cj) ≤ 36
25

|Ci||Cj |
|Wi||Wj |d(Wi,Wj) ≤ 3

2
d(Wi,Wj).

Another property of good points is that the good points from two different clusters

have cost much larger than those in a third cluster have (Lemma 11). To prove this, we

need to prove Lemma 24, which bounds the cost of the optimal clustering C ′ = {C ′t}

under the perturbed distance function. Recall the definitions of the perturbation and

C ′ in Section 2.5.1.2. The perturbation blows up all pairwise distances by a factor

of α except the intra-cluster distances in C̃, where C̃ is the clustering obtained from

the optimal clustering by splitting Ci into A and Ci \A and merging Cj and Cl. Let
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C ′ = {C ′i} denote the optimal clustering under the perturbed distance function d′,

where the clusters are indexed so that C ′i corresponds to Ci and the distance between

the two clustering is
∑

i |Ci \ C ′i|.

To bound the cost of C ′ = {C ′t}, we compare it to the cost of the optimal clustering

C = {Ct} before perturbation. If C ′ = C, then the cost is only increased by blowing

up the distances between A and Ci \ A (Claim 10). However, the optimal clustering

may change after the perturbation, so we need to consider how much cost is saved by

the change (Claim 11).

Intuitively, the cost saved should be small. To see this, consider a point p moved

from Cs to C ′t. Then we need to pay d′(p, C ′t) instead of d(p, Cs). Note that p is in Cs

but not Ct, so d(p, Cs) ≤ d(p, Ct). Also, C ′t and Ct differ only on at most εn points,

then d′(p, C ′t) is larger or comparable to d(p, Ct) and thus d(p, Cs).

There are two technical details in the above description. The first is to translate

d′(p, C ′t) to d(p, C ′t). We consider two cases (as in the proof of Claim 11). If p is moved

between Cj and Cl, then d′(p, C ′t) is roughly d(p, C ′t) since the distances between Cj, Cl

are not blown up. Otherwise, d′(p, C ′t) is roughly αd(p, C ′t). Another technical detail

is to show that d(p, C ′t) roughly equals d(p, Ct). Since d(p, C ′t) ≥ d(p, C ′t ∩ Ct), it

suffices to show that d(p, C ′t ∩ Ct) is comparable to d(p, Ct), where Fact 2 turns out

to be useful.

Lemma 24. Suppose α > 6maxi |Ci|
mini |Ci| and mini |Ci| ≥ 100mB. We have

k∑
t=1

d′(C ′t, C
′
t)−

k∑
t=1

d(Ct, Ct) ≥ 2(α− 1)d(A,Gi \ A)− 4α + 8

100
d(Cj, Cl).

Proof. Let Kt = Ct∩C ′t, At = C ′t \Ct,Mt = Ct \C ′t. See Figure 21 for an illustration.
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Ci Ĉi

Mi Ki Ai

Figure 21: Notations in Lemma 24.

We have

k∑
t=1

d′(C ′t, C
′
t)−

k∑
t=1

d(Ct, Ct)

≥
k∑
t=1

[d′(Kt, Kt) + 2d′(At, Kt)]−
k∑
t=1

[d(Kt, Kt) + 2d(Mt, Ct)]

=

[
k∑
t=1

d′(Kt, Kt)−
k∑
t=1

d(Kt, Kt)

]
+ 2

[
k∑
t=1

d′(At, Kt)−
k∑
t=1

d(Mt, Ct)

]
.

The first term on the right hand side corresponds to the cost increased by blowing up

the distances within the clusters, the second term corresponds to the cost increased

by moving points away. We will bound the two terms respectively in the following

two claims, which then lead to the lemma.

Let l(p) denote the index of the optimal cluster in C that p falls in: if p ∈ Ct,

then l(p) = t. Similarly, let l′(p) denote the optimal cluster in C ′ that p falls in after

perturbation: if p ∈ C ′t, then l′(p) = t.

The first term is roughly the cost increased by blowing the distances between Ai

and Ci\Ai, which is about 2(α−1)d(A,Ci\A). However, some points in Ci may move

away, so we need to exclude the cost of these points. More precisely, we only consider

good points, and also exclude the cost of the good points moved away (Gi ∩Mi).

Claim 10.

k∑
t=1

d′(Kt, Kt)−
k∑
t=1

d(Kt, Kt) ≥ 2(α− 1)d(A,Gi \ A)− 2(α− 1)

β

∑
p∈Gi∩Mi

d(p, Cl′(p)).

(27)
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Proof. By the definition of the perturbation, we have

k∑
t=1

d′(Kt, Kt)−
k∑
t=1

d(Kt, Kt)

≥ 2d′(A ∩Ki, (Gi \ A) ∩Ki)− 2d(A ∩Ki, (Gi \ A) ∩Ki)

≥ 2(α− 1)d(A ∩Ki, (Gi \ A) ∩Ki)

≥ 2(α− 1) [d(A,Gi \ A)− d(A ∩Mi, Gi \ A)− d((Gi \ A) ∩Mi, A)]

≥ 2(α− 1) [d(A,Gi \ A)− d(Gi ∩Mi, Ci)] .

The proof is completed by noting that for any point p ∈ Gi ∩ Mi, d(p, Ci) ≤
1
β
d(p, Cl′(p)).

The second term is roughly the cost increased by moving points away. Consider a

point p ∈ C1 that moves to C ′2. The new cost is d′(p, C ′2) ≈ d′(p, C2) = αd(p, C2), and

the old cost is d(p, C1) ≤ d(p, C2), so the cost increased is roughly (α − 1)d(p, C2).

Note that C ′2 only approximately equals C2. Also, the above intuition does not hold

for points that move between Cj and Cl since the distances between them are not

blown up. These facts only decrease the bound slightly, as shown in the following

claim.

Claim 11. Let X = (∪tAt) \ (Al ∩ Cj) \ (Aj ∩ Cl).

k∑
t=1

d′(At, Kt)−
k∑
t=1

d(Mt, Ct) ≥
(

98α

100
− 1

)∑
p∈X

d(p, Cl′(p))−
2α + 4

100
d(Cj, Cl). (28)

Proof. We have

k∑
t=1

d′(At, Kt)−
k∑
t=1

d(Mt, Ct) ≥
k∑
t=1

∑
p∈At

[
d′(p,Kt)− d(p, Cl(p))

]
. (29)

Intuitively, d′(p,Kl′(p)) should be larger or comparable to d(p, Cl(p)). On one hand,

d(p, Cl(p)) ≤ d(p, Cl′(p)) since p is assigned to Cl(p) instead of Cl′(p) in the optimal

clustering under d. On the other hand, we also know that d(p,Kl′(p)) is comparable

to d(p, Cl′(p)) by Fact 2.
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Before using this intuition, we first need to translate d′(p,Kl′(p)) to d(p,Kl′(p)).

Since the distances between Cj and Cl is not blown up, we need to consider separately

the case when p is moved between Cj and Cl. Equivalently, we divide ∪tAt into two

parts: V = (Aj ∩ Cl) ∪ (Al ∩ Cj) and X = (∪tAt) \ (Al ∩ Cj) \ (Aj ∩ Cl). Now we

consider the two parts respectively.

Case 1: Suppose p ∈ Aj ∩ Cl. By Fact 2, we have d′(p,Kl′(p)) = d(p,Kj) ≥
|Kj |
|Cj |d(p, Cj) − 1

|Cj |d(Mj, Cj). Since d(p, Cl(p)) = d(p, Cl) ≤ d(p, Cj), and d(Mj, Cj) ≤

d(Mj, Cl) ≤ d(Cj, Cl),

d′(p,Kl′(p))− d(p, Cl(p)) ≥ −|Mj|
|Cj|

d(p, Cj)−
1

|Cj|
d(Cj, Cl),∑

p∈Aj∩Cl

[d′(p,Kl′(p))− d(p, Cl(p))] ≥ −
[ |Mj|
|Cj|

+
|Aj ∩ Cl|
|Cj|

]
d(Cj, Cl).

Since |Mj| ≤ εn, |Aj| ≤ εn, this is bounded by − 2
100
d(Cj, Cl). A similar argument

holds for Aj ∩ Cl. So

∑
p∈V

[d′(p,Kl′(p))− d(p, Cl(p))] ≥ − 4

100
d(Cj, Cl). (30)

Case 2: For p ∈ X, we have by Fact 2

d′(p,Kl′(p)) = αd(p,Kl′(p)) ≥ α

[ |Kl′(p)|
|Cl′(p)|

d(p, Cl′(p))−
1

|Cl′(p)|
d(Ml′(p), Cl′(p))

]
.

Then for X, since d(p, Cl(p)) ≤ d(p, Cl′(p)) and
|Kl′(p)|
|Cl(p)|

≥ 99
100

, we have

∑
p∈X

[d′(p,Kl′(p))− d(p, Cl(p))] ≥
(

99α

100
− 1

)∑
p∈X

d(p, Cl′(p))−
∑
p∈X

α

|Cl′(p)|
d(Ml′(p), Cl′(p)).

(31)

Since X ⊆ ∪tAt, and |Ct| ≥ 100|At|, the second term on the right hand side is
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bounded by

∑
t

α|At|
|Ct|

d(Mt, Ct) ≤
α

100

∑
t

d(Mt, Ct) =
α

100

∑
p∈∪tAt

d(p, Cl(p))

=
α

100

[∑
p∈V

d(p, Cl(p)) +
∑
p∈V

d(p, Cl(p))

]

≤ α

100

[∑
p∈V

d(p, Cl′(p)) + 2d(Ci, Cj)

]
. (32)

The claim follows from the inequalities (30), (31), and (32).

The proof is completed by combining the two claims.

Lemma 11. Suppose α > 8maxi |Ci|
mini |Ci| and ε < mini |Ci|

600n
. For any three different optimal

clusters Ci, Cj, and Cl, and any A ⊂ Gi,
18
5
d(A,Gi \ A) < d(Gj, Gl). Consequently,

9
5
d(Gi, Gi) < d(Gj, Gl).

Proof. The key idea is as follows. Let C̃ denote the clustering obtained from the

optimal clustering by splitting Ci into A and Ci \A and merging Cj and Cl, i.e. C̃ =

{A,Ci \A,Cj ∪Cl}∪{Ct, t 6= i, j, l}. Suppose we construct a perturbation that favors

the clustering C̃: blow up all pairwise distances by a factor of α except the intra-cluster

distances in C̃. Let C ′ = {C ′i} denote the optimal clustering under the perturbed

distance function d′, where the clusters are indexed so that C ′i corresponds to Ci

and the distance between the two clustering is
∑

i |Ci \ C ′i|. By (α, ε)-perturbation

resilience, we know that C ′ is different from C̃ and has no greater cost than C̃. We

then show that compared to the optimal cost under the original distances, the cost

of C̃ under perturbed distances d′ is larger by at most O(d(Cj, Cl)) = O(d(Gj, Gl)),

while the cost of C ′ under perturbed distances d′ is larger by roughly O(α)d(A,Gi\A).

These then leads to the first statement.

More precisely, the cost of C̃ under d′ is larger than that of C under d by at most

2d(Cj, Cl). For C ′, we have
∑k

t=1 d
′(C ′t, C

′
t)−

∑k
t=1 d(Ct, Ct) ≥ 2(α− 1)d(A,Gi \A)−
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Figure 22: Notations in Claim 4.

4α+8
100

d(Cj, Cl) by Lemma 24. Since C ′ has smaller cost than C̃, we have

2(α− 1)d(A,Gi \ A)− 4α + 8

100
d(Cj, Cl) ≤ 2d(Cj, Cl).

When α > 8maxi |Ci|
mini |Ci| , we have 27

5
d(A,Gi \ A) ≤ d(Cj, Cl). By Lemma 10, d(Cj, Cl) ≤

3
2
d(Gj, Gl), which then leads to the first part of the lemma.

The second part of the lemma follows from the fact that
∑

A⊆Gi
d(A,Gi \ A) =

2|Gi|

2
d(Gi, Gi).

A.4.3 Properties of Potential Good Points in Min-Sum

A key property of the potential good points is that the cost between any point p and

the potential good points in a sufficiently large set A is roughly the cost between p

and any sufficiently large subset H of A (Lemma 12). In its proof in Section 2.5.1.2,

we need the following claim.

Claim 4. Suppose H ⊆ A such that |A \H| ≤ mB. Let F = F (A), P = P (A), H̄ =

A \ H. Let W = H ∩ P, V = H̄ ∩ F,X = F ∩ H, Y = H̄ ∩ P . See Figure 22 for

illustration. If |A| ≥ 20mB, then d(W,X) ≥ d(Y,W + Y ).

Proof. The claim is true if Y = ∅. Otherwise, by definition of the potential bad points

F = F (A), we have da(X,A) ≥ da(Y,A). By definition,

|A|da(X,A) = |W |da(X,W ) + |V |da(X, V ) + |Y |da(X, Y ) + |X|da(X,X), (33)

|A|da(Y,A) = |W + Y |da(Y,W + Y ) + |V |da(Y, V ) + |X|da(Y,X). (34)
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To compare d(X,W ) and d(Y,W +Y ), we need to bound the other terms in (33) and

(34). By Fact 7,

da(X, V ) ≤ da(X,W ) + da(W,Y ) + da(Y, V ),

da(X, Y ) ≤ da(X,W ) + da(Y,W ), da(X,X) ≤ 2da(X,W ).

Now we plug these into (33), and then plug (33) and (34) into da(X,A) ≥ da(Y,A).

Since d(W,Y ) ≤ d(Y,W + Y ) and da(Y,X) ≥ 0, we have

[
|W | − |Y | − |V |

]
d(Y,W + Y ) ≤

[
|W |+ 2|X|+ |Y |+ |V |

] |Y |
|X|d(X,W ).

Since |X + V | = |F | = 2mB and |Y + V | = |A \H| ≤ mB, we have |Y ||X| ≤ 1/2. Then

the lemma follows from the fact that |A| ≥ 20mB, |F | = 2mB and |A \H| ≤ mB.

A.5 Approximation Algorithm for (α, ε)-Perturbation Re-
silient Min-Sum

A.5.1 Proofs for Tree Construction for Min-Sum

To show that the robust average linkage algorithm keeps the laminarity of the clus-

tering L with respect to the optimal clustering (after removing the bad points), we

need to show the following claim.

Claim 6. (a) Suppose A ∈ L, A ∩ G ( Gi, and D ∈ L, D ∩ G ( Gj(j 6= i). Then

there exists A′ 6= A in L such that A′ ∩G ( Gi and dra(A,A
′) < dra(A,D).

(b) Suppose A ∈ L, A ∩ G ( Gi, and D ∈ L, D ∩ G is the union of good points in

several optimal clusters. Then there exists A′ 6= A in L such that A′ ∩ G ( Gi and

dra(A,A
′) < dra(A,D).

Proof. (a) The claim follows from the following three statements:

1. da(A ∩G,A′ ∩G) < 1
2
da(A ∩G,D ∩G);

2. dra(A,A
′) ≤ 7

5
da(A ∩G,A′ ∩G);
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3. 9
10
da(A ∩G,D ∩G) ≤ dra(A,D).

1. For simplicity, let GA = A ∩G,GD = D ∩G. From Lemma 23, we have

da(GA, Ci) ≤ γji da(GA, GD),where γji =
|Cj|

(β − 1/β)|Ci|
+

1

β2 − 1
.

Since d(GA, Gi \GA) ≤ d(GA, Ci), we have

da(GA, Gi \GA) ≤ |Ci|
|Gi \GA|

da(GA, Ci) ≤ γji
|Ci|

|Gi \GA|
da(GA, GD) ≤ 1

2
da(GA, GD)

where the last step follows from α ≥ 6maxi |Ci|
mini |Ci| +2, |Gi \A| is at least 1

2
mini |Ci|−mB.

2. By Lemma 12 and the fact that |A| ≥ 1
2

mini |Ci|, |A′| ≥ 1
2

mini |Ci| and mini |Ci| >

100mB, we have

d(P (A), P (A′)) ≤ 10

9
d(P (A), A′ ∩G) ≤ 100

81
d(A ∩G,A′ ∩G).

Then the claim follows from the fact that |P (A)| ≥ 48
50
|A|, |P (A′)| ≥ 48

50
|A′|.

3. For simplicity, let GA = A ∩ G,GD = D ∩ G. Divide GA into two parts: WA =

GA ∩ P (A) and XA = GA ∩ F (A). Define WD and XD similarly. See Figure 23 for

illustration.

WD

XD

D

P (D)

F (D)

GD

WA

XA

A

P (A)

F (A)

GA

Figure 23: Notations in Claim 6.

To show d(GA, GD) ≤ O(1)d(P (A), P (D)), it suffices to show d(GA, GD) ≤ O(1)d(WA,WD).

Since d(GA, GD) ≤ d(WA,WD) + d(GA, XD) + d(GD, XA), we only need to bound

d(GA, XD) and d(GD, XA). By Fact 7 and Lemma 23 we have

da(GA, XD) ≤ da(GA, GD) + da(GD, XD) ≤ (1 +
11

50
)da(GA, GD).
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Since |XD| ≤ 2mB and |D| ≥ 1
2

mini |Ci| ≥ 50mB, we have d(GA, XD) ≤ 61
50
|XD|
|GD|

d(GA, GD) ≤
1
20
d(GA, GD). Similarly, d(GD, XA) ≤ 1

20
d(GA, GD). Therefore,

d(GA, GD) ≤ d(WA,WD) + +d(GA, XD) + d(GD, XA) ≤ d(WA,WD) +
1

10
d(GA, GD)

which leads to 9
10
d(GA, GD) ≤ d(WA,WD) ≤ d(P (A), P (D)). Then the claim follows

from the fact that |GA| ≥ |P (A)|, |GD| ≥ |P (D)|.

(b) The proof idea is similar to that for (a). The only difference is the proof for

da(A ∩G,A′ ∩G) < 1
2
da(A ∩G,D ∩G). Since D ∩G = ∪j∈IDGj, it suffices to show

that da(A ∩G,A′ ∩G) < 1
2
da(A ∩G,Gj) for any j ∈ ID, which can be proved by the

same argument in Claim 6.

A.5.2 Proofs for Getting the Pruning Close to the Optimal Clustering

The same argument as that for Claim 8 leads to a corollary for the general case when

multiple clusters are merged.

Corollary 1. Let I ⊆ [k]. Suppose for any t ∈ I, |Ct| ≥ 100mB, and C ′t contains all

good points in Ct but no good points in other optimal clusters. Then

drs (∪t∈IC ′t)−
∑
t∈I

d(Gt, Gt) ≥
(

4

3
− 4

β

) ∑
s 6=t∈I

d(Gt, Gs).

Lemma 14. Suppose the pruning C ′ = {C ′1, . . . , C ′k} in the tree T assigns all good

points correctly. Then C ′ is the minimum robust min-sum cost pruning in the tree.

Proof. First, by Lemma 11, good points from different clusters are far apart while

good points in the same cluster are close. Second, by Claim 7 and Corollary 1, the

cost of good points can be approximated by the cost of the potential good points (the

robust min-sum cost). We now use the above lemmas to show that C ′ has minimum

robust min-sum cost, so that we can use dynamic programming on the tree to get the

pruning.

135



Suppose a pruning P is obtained by splitting h clusters in C ′ and at the same time

joining some other clusters into g unions. Specifically, for 1 ≤ i ≤ h, split C ′i into

mi ≥ 2 clusters Pi,1, . . . , Pi,mi
; after that, merge C ′h+1, . . . , C

′
h+lg

into g unions, i.e. for

1 ≤ j ≤ g, l0 = 0, merge lj − lj−1 ≥ 2 clusters C ′h+lj−1+1, . . . , C
′
h+lj

into a union Uj;

the other clusters in C ′ remain the same in P . Since the number of clusters is still k,

we have
∑

imi − h = lg − g.

By Claim 7, the cost saved by splitting the h clusters is∑
1≤i≤h

drs(C
′
i)−

∑
1≤i≤h

∑
1≤p≤mi

drs(Pi,p) ≤
∑
1≤i≤h

drs(C
′
i) ≤

∑
1≤i≤h

d(Gi, Gi). (35)

The cost increased by joining clusters is

∑
1≤j≤g

drs(Uj)− ∑
h+lj−1<t≤h+lj

drs(C
′
t)


≥
∑

1≤j≤g

drs(Uj)− ∑
h+lj−1<t≤h+lj

d(Gt, Gt)


≥
∑

1≤j≤g

 ∑
h+lj−1<t 6=s≤h+lj

(
4

3
− 4

β
)d(Gt, Gs)

 (36)

where the first inequality follows from Claim 7, and the second inequality follows from

Corollary 1. To prove C ′ is the minimum cost pruning, we need to show that the saved

cost (35) is less than the increased cost (36). Since by Lemma 11, each term in (36)

is larger than any term in (35), it is sufficient to show that the number of the terms

in (36) is no less than the number of the terms in (35), that is
∑

1≤j≤g
(
lj−lj−1

2

)
≥ h.

We have
∑

j

(
lj−lj−1

2

)
= 1

2

∑
j(lj − lj−1)(lj − lj−1 − 1) ≥ ∑j(lj − lj−1 − 1) = lg − g,

where the inequality is from lj − lj−1 ≥ 2. Since mi ≥ 2, lg − g =
∑h

i−1mi − h ≥ h,

which completes the proof.

A.5.3 Getting a Good Approximation

To get a good approximation from a clustering C ′ that assigns all good points correctly,

Algorithm 7 reassigns each point p to the index i that minimizes the cost between
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Figure 24: Notations in Lemma 15 and Claim 9.

p and the potential good points in C ′i. The following lemma shows that after this

reassignment, all good points are still assigned correctly.

Lemma 15. For any p ∈ Gi, any j 6= i, d(p, P (C ′j)) > d(p, P (C ′i)).

Proof. Let Wi = Gi ∩ P (C ′i) denote the good points that are also potential good

points, and let Zi = Ci \ Wi denote all other points in Ci. See Figure 24 for an

illustration. By Lemma 12, d(p, P (C ′i)) ≈ d(p, Ci). By definition of good points,

βd(p, Ci) ≤ d(p, Cj). So it suffices to show that d(p, P (C ′j)) is not so small compared

to d(p, Cj). Since Wj ⊆ P (C ′j), it suffices to prove that d(p,Wj) is large compared to

d(p, Zj).

First, by triangle inequality, d(p, Zj) ≤ |Zj |
|Wj |d(p,Wj)+

1
|Wj |d(Zj,Wj). Also, d(Zj,Wj) ≤

d(Cj,Wj) ≤ 1
β
d(Ci,Wj) by definition of good points. Furthermore, d(Ci,Wj) ≤

|Wj|d(p, Ci) + |Ci|d(p,Wj). So

d(p, Zj) ≤
( |Zj|
|Wj|

+
|Ci|
β|Wj|

)
d(p,Wj) +

1

β
d(p, Ci)

≤
( |Zj|
|Wj|

+
|Ci|
β|Wj|

)
d(p,Wj) +

1

β2
[d(p, Zj) + d(p,Wj)].

Therefore, we have d(p, Zj) ≤ 1
3
d(p,Wj), since |Zj| ≤ 4mB, |Wj| ≥ 95

100
|Cj| ≥ 95mB.

This leads to d(p,Wj) ≥ 3
4
d(p, Cj). Then the lemma follows from

d(p, P (C ′j)) ≥ d(p,Wj) ≥
3

4
d(p, Cj) ≥

3

4
βd(p, Ci) ≥

3

4
βd(p,Gi) ≥

30

44
βd(p, P (C ′i))

where the last step follows from Lemma 12.
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Recall that Ai are all the bad points reassigned to index i by Algorithm 7. To

bound the cost of the clustering after reassignment, we need to bound d(Ai, Gi) as

follows.

Claim 9.
∑

i d(Ai, Gi) ≤ r2

(r−5)2
∑

i d(Ci, Ci)− r2−1
(r−5)2

∑
i d(Gi, Gi), where r = mini |Ci|

mB
.

Proof. Let Wi = P (C ′i) ∩Gi. See Figure 24 for an illustration. By Fact 6, we have

d(Ai, Gi) ≤
|Gi|
|Wi|

d(Ai,Wi) +
|Ai|
|Wi|

d(Gi,Wi) ≤
|Gi|
|Wi|

d(Ai, P (C ′i)) +
|Ai|
|Wi|

d(Gi, Gi). (37)

So it suffices to bound d(Ai, P (C ′i)). Fix p ∈ Ai, and suppose p ∈ Cj. We have

d(p, P (C ′i)) ≤ d(p, P (C ′j)) ≤
|Wj|+ |Yj|
|Wj| − |Xj|

d(p,Gj)

≤ |Cj|
|Cj| − 2|Xj| − |Yj|

d(p,Gj) =
r

r − 5
d(p,Gj)

where the second step follows from Lemma 12 and the last from |Xj| ≤ 2mB and

|Yj| ≤ mB. Then

k∑
i=1

d(Ai, P (C ′i)) ≤
r

r − 5

∑
j

∑
p∈(∪iAi)∩Cj

d(p,Gj) =
r

r − 5

k∑
j=1

d(Bj, Gj)

≤ r

r − 5

k∑
j=1

[d(Cj, Cj)− d(Gj, Gj)]. (38)

The claim follows from the inequalities (37) and (38) and |Xi| ≤ 2mB, |Ai| ≤ mB.
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APPENDIX B

DISTRIBUTED CLUSTERING

B.1 Proofs for Section 3.2.1

The proof of Lemma 16 follows from the analysis in [45], although not explicitly stated

there. We begin with the following theorem for uniform sampling on a function space.

The theorem is from [45] but rephrased for convenience.

Theorem 18 (Theorem 6.9 in [45]). Let F be a set of functions from P to R≥0, and

let ε ∈ (0, 1). Let S be a sample of

|S| = c

ε2
(dim(F, P ) + log

1

δ
)

i.i.d items from P , where c is a sufficiently large constant. Then, with probability at

least 1− δ, for any f ∈ F and any r ≥ 0,∣∣∣∣∣
∑

p∈P,f(p)≤r f(p)

|P | −
∑

q∈S,f(q)≤r f(q)

|S|

∣∣∣∣∣ ≤ εr.

Proof of Lemma 16. Without loss of generality, assume mp ∈ N+. Define G as fol-

lows: for each p ∈ P , include mp copies {pi}mp

i=1 of p in G and define f(pi) = f(p)/mp.

Then S is equivalent to a sample draw i.i.d. and uniformly at random from G. We

now apply Theorem 18 on G and r = maxf∈F,p′∈G f(p′). By Theorem 18, we know

that for any f ∈ F ,∣∣∣∣
∑

p′∈G f(p′)

|G| −
∑

q′∈S f(q′)

|S|

∣∣∣∣ ≤ εmax
p′∈G

f(p′). (39)

The lemma then follows from multiplying both sides of (39) by |G| = ∑p∈P mp. Also

note that the dimension dim(F,G) is the same as that of dim(F, P ) as pointed out

by [45].
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Lemma 25. If d(p, bp)
2/ε ≤ |d(p,x)2 − d(bp,x)2|, then

|d(p,x)2 − d(bp,x)2| ≤ 8εmin{d(p,x)2, d(bp,x)2}.

Proof. We first have by triangle inequality

|d(p,x)2 − d(bp,x)2| ≤ d(p, bp)[d(p,x) + d(bp,x)].

Then by d(p, bp)
2/ε ≤ |d(p,x)2 − d(bp,x)2|,

d(p, bp) ≤ ε[d(p,x) + d(bp,x)].

Therefore, we have

|d(p,x)2 − d(bp,x)2| ≤ d(p, bp)[d(p,x) + d(bp,x)] ≤ ε[d(p,x) + d(bp,x)]2

≤ 2ε[d(p,x)2 + d(bp,x)2] ≤ 2ε[d(p,x)2 + (d(p,x) + d(p, bp))
2]

≤ 2ε[d(p,x)2 + 2d(p,x)2 + 2d(p, bp)
2] ≤ 6εd(p,x)2 + 4εd(p, bp)

2

≤ 6εd(p,x)2 + 4ε2|d(p,x)2 − d(bp,x)2|

for sufficiently small ε. Then

|d(p,x)2 − d(bp,x)2| ≤ 6ε

1− 4ε2
d(p,x)2 ≤ 8εd(p,x)2.

Similarly, |d(p,x)2 − d(bp,x)2| ≤ 8εd(bp,x)2. The lemma follows from the last two

inequalities.

Lemma 26 (Corollary 15.4 in [45]). Let 0 < δ < 1/2, and t ≥ c|B| log |B|
δ

for a

sufficiently large c. Then with probability at least 1− δ, ∀b ∈ Bi,
∑

q∈Pb∩S wq ≤ 2|Pb|.

B.2 Complete Experimental Results

Here we present the results of all the data sets over different network topologies and

data partition methods.

Figure 25 shows the results of all the data sets on random graphs. The first column

of Figure 25 shows that our algorithm and COMBINE perform nearly the same in

140



the uniform data partition. This is not surprising since our algorithm reduces to the

COMBINE algorithm when each local site has the same cost and the two algorithms

use the same amount of communication. In this case, since in our algorithm the sizes

of the local samples are proportional to the costs of the local solutions, it samples the

same number of points from each local data set. This is equivalent to the COMBINE

algorithm with the same amount of communication. In the similarity-based partition,

similar results are observed as this partition method also leads to balanced local

costs. However, in the weighted partition where local sites have significantly different

contributions to the total cost, our algorithm outperforms COMBINE. It improves

the k-means cost by 2% − 5%, and thus saves 10% − 30% communication cost to

achieve the same approximation ratio.

Figure 26 shows the results of all the data sets on grid and preferential graphs.

Similar to the results on random graphs, our algorithm performs nearly the same

as COMBINE in the similarity-based partition and outperforms COMBINE in the

weighted partition and degree-based partition. Furthermore, Figure 25 and 26 also

show that the performance of our algorithm merely changes over different network

topologies and partition methods.

Figure 27 shows the results of all the data sets on the spanning trees of the random

graphs and Figure 28 shows those on the spanning trees of the grid and preferential

graphs. Compared to the algorithm of Zhang et al., our algorithm consistently shows

much better performance on all the data sets in different settings. It improves the

k-means cost by 10% − 30%, and thus can achieve even better approximation ratio

with only 10% communication cost. This is because the algorithm of Zhang et al.

constructs coresets from component coresets and needs larger coresets to prevent the

accumulation of errors. Figure 27 also shows that although their costs decrease with

the increase of the communication, the decrease is slower on larger graphs (e.g., as in

the experiments for YearPredictionMSD). This is due to the fact that the spanning
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tree of a larger graph has larger height, leading to more accumulation of errors. In

this case, more communication is needed to prevent the accumulation.
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Figure 25: k-means cost on random graphs. Columns: random graph with uni-
form partition, random graph with similarity-based partition, and random graph
with weighted partition. Rows: Spam, Pendigits, Letter, synthetic, ColorHistogram,
and YearPredictionMSD.
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Figure 26: k-means cost on grid and preferential graphs. Columns: grid graph with
similarity-based partition, grid graph with weighted partition, and preferential graph
with degree-based partition. Rows: Spam, Pendigits, Letter, synthetic, ColorHis-
togram, and YearPredictionMSD.
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Figure 27: k-means cost on the spanning trees of the random graphs. Columns:
random graph with uniform partition, random graph with similarity-based partition,
and random graph with weighted partition. Rows: Spam, Pendigits, Letter, synthetic,
ColorHistogram, and YearPredictionMSD.
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Figure 28: k-means cost on the spanning trees of the grid and preferential graphs.
Columns: grid graph with similarity-based partition, grid graph with weighted par-
tition, and preferential graph with degree-based partition. Rows: Spam, Pendigits,
Letter, synthetic, ColorHistogram, and YearPredictionMSD.
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B.3 Distributed k-Means Clustering of High Dimensional
Data

B.3.1 Proof of Lemma 18

Lemma 18. Let A ∈ Rn×d be an n × d matrix with singular value decomposition

A = UDV >. Let ε ∈ (0, 1] and r, t ∈ N+ with d − 1 ≥ t ≥ r + dr/εe − 1, and let

Ã = AV (t)(V (t))>. Then for any matrix X with d rows and ‖X‖2F ≤ r, we have

‖(A− Ã)X‖2F = ‖AX‖2F − ‖ÃX‖2F ≤ ε
d∑

i=r+1

σ2
i (A).

Proof. The proof follows the idea in the proof of Lemma 6.1 in [46].

For convenience, let D(t) denote the diagonal matrix that contains the first t

diagonal entries in D and is 0 otherwise. Then Ã = UD(t)V > We first have

‖AX‖2F − ‖ÃX‖2F = ‖UDV >X‖2F − ‖UD(t)V >X‖2F

= ‖DV >X‖2F − ‖D(t)V >X‖2F

= ‖(D −D(t))V >X‖2F

= ‖U(D −D(t))V >X‖2F

= ‖AX − ÃX‖2F .

where the second and fourth equalities follow since U has orthonormal columns, and

the third equality follows since for M = V >X we have

‖DM‖2F − ‖D(t)M‖2F =
d∑
i=1

d∑
j=1

σ2
i (A)m2

ij −
t∑
i=1

d∑
j=1

σ2
i (A)m2

ij

=
d∑

i=t+1

d∑
j=1

σ2
i (A)m2

ij = ‖(D −D(t))M‖2F .

Next, we bound ‖AX − ÃX‖2F . We have

‖AX − ÃX‖2F = ‖(D −D(t))V >X‖2F ≤ ‖(D −D(t))‖2S‖X‖2F = rσ2
t+1(A)
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where the inequality follows because the spectral norm is consistent with the Eu-

clidean norm. This implies the lemma since

rσ2
t+1(A) ≤ ε(t− r + 1)σ2

t+1(A) ≤ ε
t+1∑
i=r+1

σ2
i (A) ≤ ε

d∑
i=r+1

σ2
i (A). (40)

where the first inequality follows for our choice of t.

B.3.2 Proof of Theorem 13

We first introduce some intermediate variables for analysis. Imagine we perform

two projections: first project Pi to P̃i = PiVi
(t)(Vi

(t))>, then project P̃i to P i =

P̃iV
(t)(V (t))>. Let P̃ denote the vertical concatenation of P̃i and let P denote the

vertical concatenation of P i, i.e.

P̃ =


P̃1

...

P̃s

 and P =


P 1

...

P s


The following is a technical lemma that will be used in the proof of Theorem 13.

Lemma 27.

d2(P̃ , L(X)) ≤ (1 + ε)d2(P,L(X)).

Proof. We have

d2(P̃ , L(X))− d2(P,L(X)) = ‖P̃ − P̃XX>‖2F − ‖P − PXX>‖2F

= ‖P̃‖2F − ‖P̃XX>‖2F − (‖P‖2F − ‖PXX>‖2F )

=
s∑
i=1

[
‖P̃i‖2F − ‖Pi‖2F

]
+

s∑
i=1

[
‖PiXX>‖2F − ‖P̃iXX>‖2F

]
.

By the Pythagorean Theorem, ‖P̃i‖2F ≤ ‖Pi‖2F . Also, sinceX is orthonormal, ‖PiXX>‖2F =

‖PiX‖2F and ‖P̃iXX>‖2F = ‖P̃iX‖2F . Then

d2(P̃ , L(X))− d2(P,L(X)) ≤
s∑
i=1

[
‖PiX‖2F − ‖P̃iX‖2F

]
≤

s∑
i=1

εd2(Pi, L(X)) = εd2(P,L(X)) (41)

where the second inequality follows from Lemma 18.
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Theorem 13. Let X be a d×j matrix whose columns are orthonormal. Let ε ∈ (0, 1]

and t ∈ N with d− 1 ≥ t ≥ j + d8j/εe− 1. Then the output of Algorithm 11 satisfies

0 ≤ ‖PX − P̂X‖2F ≤ εd2(P,L(X)) and 0 ≤ ‖PX‖2F − ‖P̂X‖2F ≤ εd2(P,L(X)).

Proof. For the first statement, we have

‖PX − P̂X‖2F ≤ 2‖PX − P̃X‖2F (42)

+ 2‖P̃X − PX‖2F (43)

+ 2‖PX − P̂X‖2F . (44)

For (42), we have by Lemma 18

‖PX − P̃X‖2F =
s∑
i=1

‖PiX − P̃iX‖2F ≤
s∑
i=1

ε

4
d2(Pi, L(X)) =

ε

8
d2(P,L(X)). (45)

Similarly, for (43) we have by Lemma 18

‖P̃X − PX‖2F ≤
ε

8
d2(P̃ , L(X)). (46)

To bound (44), let Y = V (t)(V (t))>X. Then by definition, P iX = P̃iY and P̂iX =

PiY . By Lemma 18, we have

‖PX − P̂X‖2F =
s∑
i=1

‖P̃iY − PiY ‖2F ≤
s∑
i=1

ε

8

s∑
i=r+1

σ2
i (Pi)

≤ ε

8

s∑
i=1

d2(Pi, L(X)) =
ε

8
d2(P,L(X)). (47)

Combining (45)(46) and (47) leads to

‖PX − P̂X‖2F ≤
ε

2
d2(P,L(X)) +

ε

4
d2(P̃ , L(X)). (48)

The first statement then follows from (48) and Lemma 27.

For the second statement, we have a similar argument.

‖PX‖2F − ‖P̂X‖2F = ‖PX‖2F − ‖P̃X‖2F (49)

+ ‖P̃X‖2F − ‖PX‖2F (50)

+ ‖PX‖2F − ‖P̂X‖2F . (51)
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For (49), we have by Lemma 18

‖PX‖2F − ‖P̃X‖2F =
s∑
i=1

[
‖PiX‖2F − ‖P̃iX‖2F

]
(52)

≤
s∑
i=1

ε

4
d2(Pi, L(X)) =

ε

4
d2(P,L(X)). (53)

Similarly, for (50) we have by Lemma 18

‖P̃X‖2F − ‖PX‖2F ≤
ε

4
d2(P̃ , L(X)). (54)

By Lemma 18, we have

‖PX‖2F − ‖P̂X‖2F =
s∑
i=1

[
‖P̃iY ‖2F − ‖PiY ‖2F

]
≤

s∑
i=1

ε

4

s∑
i=r+1

σ2
i (Pi)

≤ ε

4

s∑
i=1

d2(Pi, L(X)) =
ε

4
d2(P,L(X)). (55)

Combining (53)(54) and (55) leads to

‖PX‖2F − ‖P̂X‖2F ≤
ε

2
d2(P,L(X)) +

ε

4
d2(P̃ , L(X)). (56)

The second statement then follows from (56) and Lemma 27.

B.3.3 Proof of Theorem 14

The analysis follows the ideas in [46], but is tailored for the distributed setting. We

first begin with the following lemma, showing that the cost of the projected data to

any low dimension subspace approximates that of the original data, compensated by

a positive constant.

Lemma 28. Let X be a d× j matrix whose columns are orthonormal. Let ε ∈ (0, 1]

and t ∈ N with d− 1 ≥ t ≥ j + d4j/εe − 1. Then there exists c1 ≥ 0 such that

0 ≤ d2(P̂ , L(X)) + c1 − d2(P,L(X)) ≤ εd2(P,L(X)).
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Proof. We have from Pythagorean Theorem

d2(P̂ , L(X))− d2(P,L(X)) = ||P̂ ||22 − ||P̂X||22 − (||P ||22 − ||PX||22)

= ||PX||22 − ||P̂X||22 − c1

where c1 = ||P ||22 − ||P̂ ||22. Note that by Lemma 18,

c1 =
n∑
i=1

[
||Pi||22 − ||P (t)

i ||22
]

+ ||P (t)||22 − ||P̂ ||22 ≥ 0.

Then the lemma follows from Theorem 13.

The next lemma shows that the projection of the projected data to any low di-

mension subspace approximates the projection of the projected data in the sense that

their distances are small.

Let pi denote the ith row of the data P , and let p̂i denote the ith row of P̂ .

Lemma 29. Let X be a d× j matrix whose columns are orthonormal. Let ε ∈ (0, 1]

and t ∈ N with d− 1 ≥ t ≥ j + d4j/εe − 1. Then

|P |∑
i=1

d(ΠX(pi),ΠX(p̂i))
2 ≤ εd2(P,L(X)).

Proof. Since X is orthogonal, ΠX(p) = pXXT . Then

|P |∑
i=1

d(ΠX(pi),ΠX(p̂i))
2 =

|P |∑
i=1

||piXXT − p̂iXXT ||22 = ||PXXT − P̂XXT ||22.

This can be simplified to ||(P − P̂ )X||22 since

||PXXT − P̂XXT ||22 = ||(P − P̂ )XXT ||22 = trace[(P − P̂ )XXTXXT (P − P̂ )T )]

= trace[(P − P̂ )XXT (P − P̂ )T )] = ||(P − P̂ )X||22.

The lemma then follows from Theorem 13.

The above two lemmas are the key elements needed to show our final theorem.

Before proving the theorem, we further need the following “weak triangle inequality”,

which is well known in the coreset literature. The proof is included in the appendix

for completeness.

151



Lemma 30 (Lemma 7.1 in [46]). For any 0 ≤ ε ≤ 1, a compact set C ⊆ Rd, and

p, q ∈ Rd,

|d(p, C)2 − d(q, C)2| ≤ 12d(p, q)2

ε
+
ε

2
d(p, C)2.

Proof. Using the triangle inequality,

d(p, C)2 − d(q, C)2| = |d(p, C)− d(q, C)| · (d(p, C) + d(q, C))

≤ d(p, q)(2d(p, C) + d(p, q))

≤ d(p, q)2 + 2d(p, C)d(p, q). (57)

Either d(p, C) ≤ d(p, q)/ε or d(p, q) < εd(p, C). Hence,

d(p, C)d(p, q) ≤ d(p, q)2

ε
+ εd(p, C)2.

Combining the last inequality with (57) yields

|d(p, C)2 − d(q, C)2| ≤ d(p, q)2 +
2d(p, q)2

ε
+ 2εd(p, C)2 ≤ 3d(p, q)2

ε
+ 2εd(p, C)2.

Finally, the lemma follows by replacing ε with ε/4.

We are now ready to prove the theorem, which guarantees that a coreset for the

output of the distributed PCA algorithm is also a coreset for the original data.

Theorem 14. Let x be a set of k centers in Rd. Let ε ∈ (0, 1] and t ∈ N with

d − 1 ≥ t ≥ k + d50k/ε2e. Then there exists a constant c0 ≥ 0, such that the output

of Algorithm 11 satisfies

(1− ε)d2(P,x) ≤ d2(P̂ ,x) + c0 ≤ (1 + ε)d2(P,x).

Proof. Let X ∈ Rd×k has orthonormal columns that span x. Let c0 be the constant

c1 in Lemma 28. Then by Pythagorean theorem we have

|d2(P̂ ,x) + c0 − d2(P,x)|

=

∣∣∣∣d2(P̂ , L(X)) + c0 − d2(P,L(X)) +

|P |∑
i=1

[
d(ΠX(pi),x)2 − d(ΠX(p̂i),x)2

]∣∣∣∣.
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By Lemma 28 we have∣∣∣d2(P̂ , L(X)) + c0 − d2(P,L(X))
∣∣∣ ≤ ε2

4
d2(P,L(X)). (58)

By Lemma 29 and Lemma 30 we have

|P |∑
i=1

∣∣d(ΠX(pi),x)2 − d(ΠX(p̂i),x)2
∣∣ ≤ |P |∑

i=1

[
12d(ΠX(pi),ΠX(p̂i))

2

ε
+
ε

2
d(ΠX(pi),x)2

]

≤ ε

4
d2(P,x) +

ε

2

|P |∑
i=1

d(ΠX(pi),x)2. (59)

Since d2(P,L(X)) ≤ d2(P,x) and d(ΠX(pi),x) ≤ d(pi,x), the theorem follows from

(58) and (59).
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