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SUMMARY

This dissertation first studies two-dimensional wavelet codes (TDWCs). TDWCs

are introduced as a solution to the problem of designing a 2-D code that has low decoding-

complexity and has the maximum erasure-correcting property for rectangular burst erasures.

The half-rate TDWCs of dimensions N1 × N2 satisfy the Reiger bound with equality for

burst erasures of dimensions N1×N2/2 and N1/2×N2, where GCD(N1, N2) = 2. Examples

of TDWC are provided that recover any rectangular burst erasure of area N1N2/2. These

lattice-cyclic codes can recover burst erasures with a simple and efficient ML decoding.

This work then studies the problem of distributed source coding for two and three cor-

related signals using channel codes. We propose to model the distributed source coding

problem with a set of parallel channel that simplifies the distributed source coding to de-

signing non-uniform channel codes. This design criterion improves the performance of the

source coding considerably. LDPC codes are used for lossless and lossy distributed source

coding, when the correlation parameter is known or unknown at the time of code design.

We show that distributed source coding at the corner point using LDPC codes is simplified

to non-uniform LDPC code and semi-random punctured LDPC codes for a system of two

and three correlated sources, respectively. We also investigate distributed source coding at

any arbitrary rate on the Slepian-Wolf rate region. This problem is simplified to designing

a rate-compatible LDPC code that has unequal error protection property. This dissertation

finally studies the distributed source coding problem for applications whose wireless chan-

nel is an erasure channel with unknown erasure probability. For these application, rateless

codes are better candidates than LDPC codes. Non-uniform rateless codes and improved

decoding algorithm are proposed for this purpose. We introduce a reliable, rate-optimal,

and energy-efficient multicast algorithm that uses distributed source coding and rateless

coding. The proposed multicast algorithm performs very close to network coding, while it

has lower complexity and higher adaptability.

xiv



CHAPTER I

INTRODUCTION

In this work, the theoretical and practical aspects of recently developed or rediscovered

error control codes are studied. We consider wavelet codes, LDPC codes and fountain

codes as modern error control codes. First, we introduce two-dimensional wavelet codes

and investigate their application in recovering 2-D burst erasures. Then, we study the

application of LDPC codes in distributed source coding. Finally, we explore fountain codes

and their applications in distributed source coding and multicasting over lossy wireless

networks.

1.1 Two-Dimensional Wavelet Codes

The first application of finite-field wavelet transforms to error-control coding was intro-

duced in [18, 19]. We extend this modern error control code to the 2-D case. To construct

two-dimensional wavelet codes (TDWCs), we employ two-channel maximally decimated or-

thogonal filter banks. The synthesis bank constructs the encoder of the TDWC and the

corresponding analysis bank constructs the syndrome generator. By using a sampling ma-

trix with determinant of two, a half-rate TDWC is generated. To find codes with desired

properties such as good minimum distance, self duality, or burst erasure correctability, we

add two pre-filters to the two channels of the synthesis bank. Minimum distance is an im-

portant property of error-control codes, which is defined as the minimum Hamming distance

between all pairs of codewords. Using a proper prefilter, we generate a half-rate TDWC

of length 24 that has minimum distance of eight. Self-dual codes attract a great deal of

attention, mainly due to their intimate connections with important problems in algebra,

combinatorics, and number theory [32]. Therefore, we develop criteria to construct 2-D

self-dual codes and weakly self-dual codes. We also investigate the problem of designing

a 2-D code that has low decoding complexity and has the maximum erasure-correcting
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Figure 1: (a) Joint encoding of X1 and X2. (b) Distributed encoding of X1 and X2.

property for erasure bursts of dimension b1 × b2. There are many data transmission and

storage systems with two-dimensional (2-D) data structures that suffer from 2-D bursts of

error and erasures. 2-D codes can be used to combat such errors and erasures. We design

half-rate TDWCs of dimension N1×N2 that are capable of recovering erasure bursts of size

N1/2×N2 and N1×N2/2. The only constraint on the parameters (N1 and N2) of our codes

is that the greatest common devisor of them must be two, GCD(N1, N2) = 2. TDWCs

are lattice cyclic that makes them to have a simple and efficient ML decoding for burst

erasures. We present examples of TDWCs that satisfy the Reiger bound with equality, i.e.,

they are capable of correcting any burst of size N1N2
2 .

1.2 Distributed Source Coding

Consider a communication system that is consist of two sources X1 and X2. Let {X1i , X2i}inf
i=1

be a sequence of independent and identically distributed (i.i.d.) drawings of a pair of cor-

related discrete random variables X1 and X2. The compression techniques, exploiting this

correlation, eliminate any redundancy in data transmission.

We know from Shannon’s source coding theory [13] that a rate given by the joint entropy

h(X1, X2) of X1 and X2 is sufficient, if we are encoding them together as in Fig. 1a. For

example, we can first compress X1 into h(X1) bits per sample and based on the complete

knowledge of X1 at both the encoder and decoder, we then compress X2 into h(X2|X1)

bits per sample. But what if X1 and X2 must be encoded separately for some user to

reconstruct both of them, as in Fig. 1b? As shown in Fig. 1b, each source compresses its

data without communicating with the other source and sends the compressed data to the

sink. The decoder, on the other hand has access to both compressed data. This procedure
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is known as distributed source coding, since sources are distributed and being compressed

independently.

To motivate the distributed source coding, as an application, consider a wireless sensor

network. In recent years, wireless sensor networks have received a great deal of attention by

researchers. Wireless sensor networks consist of several small nodes deployed throughout

an area of interest to sense and collect data. The data observed by each sensor node is

transmitted through multiple hops (the path nodes) to a base station. These tiny nodes

have limited power recourses. Since applications involving wireless sensor networks require

long system lifetimes, energy usage must be minimized. Our main goal is to reduce the

transmission power usage in the wireless sensor networks. Since different sensor nodes

partially monitor the same spatial region, data is often correlated. Thus, it is desirable to

remove the redundant information among the nodes and hence reduce the amount of data

to be transmitted.

According to the Slepian-Wolf theorem [69], the output of two correlated sources that

do not communicate can be compressed with the same rate as if they were communicating.

This is true when the decoder has access to both of the compressed outputs. In other words,

knowledge of the joint entropy of X1 and X2, h(X1, X2), is sufficient to optimally compress

X1 and X2 in Fig. 1(b). The Slepian-Wolf rate region for two arbitrarily correlated sources

X1 and X2, as shown in Fig. 2, is bounded by the following inequalities:

RX1 ≥ h(X1|X2), RX2 ≥ h(X2|X1),

RX1 + RX2 ≥ h(X1, X2). (1)

For implementation, Wyner proposed to use channel coding for distributed source cod-

ing [75]. He proposed to partition the space of all possible source outcomes into disjoint sets

that are the cosets of some good linear channel codes. The index of each coset constructs

the compressed version of the elements of that coset. In distributed source coding via chan-

nel coding, this index is either the syndrome or the parity sequence corresponding to the
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Figure 2: Slepian-Wolf rate region for two sources.

elements of the coset. We investigate the application of low-density parity-check (LDPC)

codes and Bose, Ray-Chaudhuri, Hocquenghem (BCH) codes into distributed source coding.

The simulation results show that for moderate-length sequences, a LDPC code corrects the

same number of error bits/ packets as a BCH code does, while it has a lower redundancy.

We also compare LDPC codes with BCH codes considering the decoding energy. As shown

in [58], the energy-efficiency factor involves the energy efficiency and the reliability factor,

where the energy efficiency is defined as the energy for communication of the information

bits divided by the sum of total energy for communication of both the information bits

and the redundant bits and decoding energy consumption. The simulation results in [59]

confirm that LDPC codes are more energy-efficient than BCH codes. Therefore, the focus

of our work is on distributed source coding using LDPC codes.

1.2.1 Distributed Source Coding Using LDPC Codes

LDPC codes were first discovered by Gallager [21] in 1962. Recently, there has been a

tremendous amount of work on these codes which resulted in considerable improvement in

this area. These codes have been shown to approach the theoretical Shannon limit, while

having efficient decoding algorithms. We investigate the application of LDPC codes into

distributed source coding. To design the LDPC code for such applications, we propose to

use non-uniform LDPC codes for distributed source coding at the asymmetric rates. As

opposed to previous work which design the LDPC code for the equivalent channel, we take

a completely new approach. We take both the correlation channel and the wireless channel

and formulate the source coding problem to the code design over parallel channels. We

design a non-uniform LDPC code for this set of parallel channels. Our proposed design
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criteria improve the performance of the distributed source coding, significantly. We also

extend our method to three sources. We study the distributed source coding of three

sources that are pairwise correlated with arbitrary correlation probability. As a special

case, we also study a simpler case, where sources are correlated with the same correlation

probability. We show that this problem can be modeled with a set of parallel channels,

which simplifies the problem to semi-random puncturing. This new model improves the

performance of the distributed source coding significantly. Then, we study the distributed

source coding of correlated sources that can achieve every arbitrary coding rate on the

Slepian-Wolf rate region. We propose a scheme for this problem using a single systematic

channel code. By modeling the distributed source coding with a set of parallel channels, we

simplify the distributed source coding problem to the rate-compatible LDPC code design

with an unequal error protection property.

1.2.2 Distributed Source Coding Using Rateless Codes

Rateless codes are a new class of codes that have been invented recently. LT codes [41],

raptor codes [68], and Online codes [44] are examples of such codes. Unlike the traditional

codes, rateless codes on lossy channels do not assume any knowledge about the channel.

Therefore, rateless codes are very suitable candidates in the applications that the channel

erasure probability is unknown, nonuniform, or time-varying. It was shown that rateless

codes have very simple encoding and decoding algorithms. Asymptotically good degree

distributions for them were also developed in introduced in [41,44,68]. We study distributed

source coding using rateless codes. We show that our method is applicable to any wireless

channel whose erasure probability is unknown in advance. A technique for designing LT-

codes over a set of parallel subchannels is proposed. The simulation results show that

our proposed method performs very close to distributed source coding using LDPC codes.

However, the LT code-based distributed source coding has the additional advantage that we

do not need to know the erasure probability. We also introduce an improved LT-decoding

algorithm that improves the performance of the LT-codes, significantly.
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1.3 Lossy Distributed Source Coding Using LDPC Codes

In many applications such as sensor networks, some distortion can be tolerated. In these

cases, lossy distributed source coding results in compression with higher rates and conse-

quently saves more energy. Wyner and Ziv were the first who studied the lossy distributed

source coding and provided a rate-distortion function for lossy distributed source coding of

two sources. We introduce a method for lossy distributed source coding based on parity

bits using LDPC codes. LDPC codes are chosen because of their good performance and

their practically feasible belief propagation decoding. We provide the design procedure for

the LDPC code that guarantees performance close to the Wyner-Ziv limit for long-length

LDPC codes. We show that there exists an LDPC code with specific column weight that

attains the rate-distortion function asymptotically.

1.4 Energy-Efficient and Rate-optimal Multicasting Using
Rateless Codes

We propose a Distributed Source Coding-based Multicast algorithm (DSCM) that is energy-

efficient, rate-optimal, and reliable over multiple disjoint paths. Our proposed algorithm

consists of rateless coding and distributed source coding. Rateless coding is used to provide

reliability and rate optimality, while distributed source coding is used to ensure energy

efficiency. First, we develop a unicast algorithm for a randomly deployed lossy wireless

network with a single source and a single receiver. Then, we modify our proposed method

for multicasting over lossy wireless networks with local information. For these networks,

we also provide a multicast subgraph algorithm with the goal of delivering information

to destinations by maximizing the use of common links. We show that distributed source

coding coupled with the multicast subgraph algorithm generate a reliable, rate-optimal, and

energy-efficient multicast algorithm. We compare our scheme with energy-efficient network

coding. Our simulations reveal that our schemes perform very close to network coding,

while having lower complexity and higher adaptability.
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1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 introduces two-dimensional wavelet codes

and investigates the properties of these codes and their burst erasure recovery. Chapter

3 studies distributed source coding using non-uniform LDPC codes at asymmetric rate.

Chapter 4 extends the distributed source coding at asymmetric rate to any arbitrary rate

on the Slepian-Wolf rate region using a single LDPC code. This chapter shows how this

problem can be simplified to designing a rate-compatible LDPC code with non-equal error

correction property. Chapter 5 introduces a technique for lossy distributed source coding

using LDPC codes. This chapter also provides the design procedure for the LDPC code that

guarantees a performance close to the Wyner-Ziv limit for long-length LDPC codes. Chapter

6 investigates two problems related to distributed source coding . 1: Distributed source

codingwhen the correlation parameter in unknown in advance and 2: Distributed source

codingusing rateless codes. The latter is suitable for applications when the noise of wireless

channel is unknown in advance. Chapter 7 introduces a new multicast algorithm that is

rate-optimal, energy-efficient, and reliable. Finally, Chapter 8 summarizes the complete

work and points out some of the possible future research directions.
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CHAPTER II

TWO-DIMENSIONAL WAVELET CODE

2.1 Introduction

This chapter introduces two-dimensional wavelet codes (TDWCs). The synthesis bank of a

two-channel two-variable filter bank over the finite field is used to design a two-dimensional

(2-D) code, and the corresponding analysis bank is used to generate the syndrome of the

code. First, we study the encoder of half-rate TDWCs and show that these linear codes

are lattice cyclic. It is proven that any 2-D lattice-cyclic code can also be generated by

a 2-D wavelet transform. Second, we introduce a methodology to design TDWCs over

binary erasure channels. These codes have simple and efficient maximum likelihood (ML)

decoding for burst erasures. We show that half-rate TDWCs of dimensions N1 × N2 can

recover burst erasures of size up to N1 × N2/2 and N1/2 × N2 using the proposed simple

decoding technique. Finally, we present examples of TDWCs that satisfy the Reiger bound

with equality, i.e., they are capable of correcting any burst of size N1N2
2 .

2.1.1 Related Work

There are many data transmission and storage systems with 2-D data structures that suffer

from 2-D bursts of error and erasures. 2-D codes can be used to combat such errors and

erasures. Elspas [16] showed that the product of two cyclic codes is capable of correcting

2-D burst errors. Later, Imai [26] studied 2-D fire codes, which are cyclic and are capable

of correcting bursts of size b1 × b2 (for some b1 and b2). To evaluate the performance of

a 2-D (n, k) code that can correct burst errors of the area up to b, the parameter burst-

correcting efficiency is used. This parameter is denoted by z and defined as z = 2b
n−k . It

is clear that for erasure correcting, z is modified as z = b
n−k . According to the Reiger

bound [56], z ≤ 1. An important goal in the study of 2-D codes is introducing families of

codes whose efficiency approaches one. One problem of the product codes is the unnecessary
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redundancies. However, it is worth noting that the capability of these codes is not limited

to correcting burst errors. Although 2-D fire codes have less redundancy compared to the

product codes, their burst-correcting efficiency is still less than 0.4. In [2, 7, 10], different

2-D codes were suggested to correct a single rectangular cluster of errors of size b1×b2. The

2-D codes introduced in [10] have the highest efficiency that is equal to 2/3.

Array codes were introduced in [8]. These codes have simple structures and are able to

correct multiple bursts along the diagonal with efficiency 1/2. A 2-D code was proposed

in [6] that has efficiency 4/5 and can correct one diagonal error. These array codes have a

simple decoding algorithm, but their efficiency is less than one. In [9], a new class of array

codes was presented that is maximum distance separable (MDS). The dimension of these

codes is N1×N2, where N1 +1 must be a prime number and N2 must be less than N1. The

decoding complexity of these codes is less than that of regular Reed-Solomon (RS) codes.

In [29], another class of 2-D codes was proposed whose lengths are longer than the codes

in [9]. These constraints on the code length are quite restrictive. To overcome this problem,

a family of binary array codes was introduced in [28] that is MDS and has lengths longer

than the codes suggested in [29]. These codes also have a decoding algorithm that has lower

complexity compared to RS codes. These codes are MDS over GF (2N1), where N1 denotes

the length of each column. In other words, using r redundant columns, r column erasures

can be recovered. However, these codes are not necessarily capable of recovering erasure

bursts of dimension b1 × b2, even if b1b2 < rN1.

2.1.2 Contribution

We introduce two-dimensional wavelet codes (TDWCs). The main goal of our approach is to

construct a code that has low decoding complexity and has the maximum erasure-recovering

property for erasure bursts of dimension b1× b2. The first application of finite-field wavelet

transforms to error-control coding was introduced in [18], [19]. Here, we extend wavelet

coding to the 2-D case [64]. We employ two-channel maximally decimated orthogonal filter

banks. The synthesis bank constructs the encoder of the TDWC and the corresponding

analysis bank constructs the syndrome generator. We design half-rate TDWCs of dimension
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N1×N2 that are capable of recovering erasure bursts of dimension N1/2×N2 and N1×N2/2.

Therefore, TDWC has efficiency one for these burst patterns. The only constraint on the

parameters N1 and N2 of our codes is that their greatest common devisor must be two,

GCD(N1, N2) = 2. These codes are lattice cyclic. Thus, their encoding and decoding

algorithms are significantly simplified. We also develop criteria to construct 2-D self-dual

codes. By extending these codes, we generate weakly self-dual codes.

2.1.3 Notation

1. Notation: Boldfaced lowercase letters are used for vectors. Matrices and tensors

are denoted by boldfaced uppercase letters. A two-dimensional (2-D) array x is

represented by x(n) in the time domain, where n = (n1, n2) is a vector with in-

teger elements that denotes the index for the array x. As an example, the 2-D

array x =




1 0 4

2 3 6


 is represented by x(n1, n2), where x(1, 2) = 6. In the poly-

nomial representation, we use the vector D = (D1, D2) as the intermediate variables.

For example, the polynomial representation of the above array is given by X(D) =

1 + 4D2
2 + 2D1 + 3D1D2 + 6D1D

2
2. The ring of integers is denoted by Z. The symbol

F is used for an arbitrary Galois field of characteristic two. If m =
[
m1, m2

]T ∈ Z2,

then we use the shorthand notation Dm for Dm1
1 Dm2

2 . If M =
[
m1, m2

]
, where

m1,m2 ∈ Z2 are the columns of the matrix M, then DM , (Dm1 , Dm2). For the

sampling matrix M, the LAT(M) consists of all integral linear combinations of the

column vectors of M.

2. Convolution Operators: The symbol ~ is used for 2-D circular convolution. If x(n)

and h(n) are 2-D arrays whose support is limited to the rectangle 0 ≤ n1 < N1, 0 ≤
n2 < N2, then

y(n) = (h ~ x)(n)

,
N1−1∑

i=0

N2−1∑

j=0

h(i, j)x(((n1 − i))N1 , ((n2 − j))N2),
(2)
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where ((·))N denotes reduction modulo N . The symbol ~↓M denotes circular convo-

lution followed by an M-fold decimator, i.e.,

y(n) = (h~↓M x)(n)

, (h ~ x)(Mn).
(3)

Similarly, the symbol ↑M~ denotes the circular convolution preceded by an M-fold

expander, i.e.,

y(n) = (h ↑M~x)(n)

,





(h ~ x)(n′), n = Mn′ ∈ LAT (M), n′ ∈ Z2

0, n /∈ LAT (M).

(4)

3. Unitary: A matrix A for positive integers n and k is unitary if ATA = I.

4. Paraunitary: Let us define the involution tilde as follows:

Ẽ(D1) , ET (D−1
1 ), (5a)

Ẽ(D1, D2) , ET (D−1
1 , D−1

2 ). (5b)

A bivariate polynomial matrix E(D1, D2) is called “paraunitary (PU) in F” if [72]

Ẽ(D1, D2)E(D1, D2) ≡ I, (6)

and is called “PU in the ring F[x]” if

Ẽ(D1, D2)E(D1, D2) ≡ α̃(D1)α(D1)I, α(D1) ∈ F[D1]. (7)

The term “paraunitary” is used in this correspondence interchangeably with “parau-

nitary in the field F.”

5. FIR: A finite impulse response filter is represented by a finite-degree laurant polyno-

mial with only positive exponents of D.
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2.2 Brief Review of Filter Banks

In this section, we give a quick review of two-channel two-variable filter banks that are the

realization of two-variable wavelets. A thorough introduction can be found in [27,31,71,72].

As shown in Fig. 3a, the two-channel two-variable filter bank consists of a bank of two

analysis filters, h0(n) and h1(n), each followed by a 2 × 2 sampling matrix M such that

| detM| = 2. These filters split the 2-D input signal x(n) into two sub-band signals y1(n)

h0(n)
y1(n)

y2(n)
h1(n)

g0(n)

g1(n)

M

M

M

M

x(n) x(n)^

Analysis Bank Synthesis Bank

y1

y2

M

M

M

M

x(n) x(n)^

E(D) R(D)

D
nNL

D
-nNL

(a)

(b)

Figure 3: (a) Two-channel two-variable maximally decimated filter bank; (b) Polyphase
representation of the system in (a).

and y2(n). At the receiver end, these signals are up-sampled by the same matrix M and

passed through a bank of synthesis filters, g0(n) and g1(n). This process results in the

signal x̂(n) that is aimed to be the best approximation for the original signal x(n). If the

filter bank is designed properly, x̂(n) becomes a replica of x(n) up to a constant amplitude

scale and time shift.

The task of 2-D sampling by the matrix M is clarified by Fig. 4, where M =




3 1

1 1


.

An integral linear combination of the columns of the matrix M generates LAT(M). In other

words, a point with coordinates (n1, n2) belongs to LAT(M) if there exists t1, t2 ∈ Z, such

that t1m1 + t2m2 = (n1, n2). The black points in Fig. 4 construct LAT(M). These points

are called lattice points and the rest of the points are referred to as non-lattice points. Any

lattice point can be reached from any other lattice points by vector w ∈ LAT(M), while

12



the non-lattice points are not reachable from lattice points.

Down-sampling a signal x(n) by the matrix M is defined as xd(n) = x(Mn), which can

be explained as follows. The non-lattice points in x(n) are discarded and the lattice points

with index n has the value of x(Mn). The up-sampling of the signal x(n) by the matrix

M is defined as follows:

xu(n) =





x(k), if n = Mk

0, else

Thus, by upsampling, the non-lattice points get the value of zero, while the lattice points

with index n get the value of x(M−1n).

1
n

2
n

Figure 4: An example of LAT(M) and 2-D sampling. The black points construct the
LAT(M) and are called lattice points and the white points that are not located on the
LAT(M) are called non-lattice points.

Polyphase representations of the analysis and synthesis filters result in the equivalent

system of Fig. 3b. The polyphase representation provides a technique to design the filter

banks. In this representation, the 2 × 2 matrices E(D) and R(D) are polyphase matrices

of the analysis and synthesis banks, respectively. The relation between polyphase matrices

and impulse responses of the filters in analysis and synthesis banks is as follows:

Hi(D) = E0i(DM) + DnNLE1i(DM), (8)

Gi(D) = R0i(DM) + D−nNLR1i(DM),
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where nNL is the index of an arbitrary non-lattice point. Here, Eij(D) and Rij(D) are the

ijth entries of the matrices E(D) and R(D), respectively. The perfect reconstruction (PR)

property implies that

R(D)E(D) = I. (9)

If the analysis bank consists of FIR filters, E(D) is a square matrix whose entries are

bivariate polynomials. In this situation, R(D) the inverse system of E(D) is IIR. To avoid

IIR synthesis filters, the class of FIR paraunitary (PU) matrices that have FIR inverses is

used. In light of (6), with the choice of R(D) = Ẽ(D), the synthesis bank becomes FIR as

well.

One way of constructing PU matrices is to represent them as a product of some elemen-

tary building blocks. In the following, we present two-variable elementary building blocks

over the ring F[D±1
1 ]. These building blocks are used to generate two-channel two-variable

wavelets over finite fields.

The two-variable degree-one PU building block in F[D±1
1 ] is defined as [15]

U (D2; v(D1)) , α(D1)I + v(D1)ṽ(D1) + v(D1)ṽ(D1)D−1
2 , (10)

where v(D1) ∈ (F[D±1
1 ])2 is a none self-orthogonal polynomial vector and α(x) , ṽ(D1)v(D1) ∈

F[D±1
1 ] \ {0}. A direct computation shows that U (D2; v(D1)) is PU in F[D±1

1 ], i.e.,

Ũ (D2; v(D1))U (D2; v(D1)) ≡ α2(D1)I. (11)

The two-variable degree-2τ PU building block in F[D±1
1 ] is defines as [15]

Vτ (D2; u(D1),v(D1), ζ(D1)) ,




Dm−r
1 p(D1)q(D−1

1 ) 0

0 p(D−1
1 )q(D1)


 D−τ

2

+ ζ(D1)u(D1)ṽ(D1) + ζ(D1)u(D1)ṽ(D1) D−2τ
2 . (12)

Here, τ is a positive integer, ζ(D1) ∈ F[D±1
1 ] is a univariate polynomial such that ζ̃(D1) =

ζ(D1), and

u(D1) =




Dm
1 p(D1)

p(D−1
1 )


 , v(D1) =




Dr
1q(D1)

q(D−1
1 )


 . (13)
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In (13), m, r ∈ Z and p(D1), q(D1) ∈ F[D±1
1 ]. Note that u(D1) and v(D1) in (13) are

both self-orthogonal polynomial vectors. Therefore, Vτ (D2; u(D1),v(D1), ζ(D1)) is not

factorable into the product of degree-one building blocks. It is straightforward to show that

Vτ (D2; u(D1),v(D1), ζ(D1)) is PU in F[D±1
1 ]. In other words, we have

Ṽτ (D2; u(D1),v(D1), ζ(D1))Vτ (D2; u(D1),v(D1), ζ(D1)) ≡ p(D1)p(D−1
1 )q(D1)q(D−1

1 )I.

(14)

Thus, to construct a two-variable filter bank, first we use the above elementary building

blocks to generate a paraunitary polyphase matrix in two variables over a finite field. Then,

we use (8) to determine the filters in the synthesis and analysis banks and generate the

corresponding two-channel two-variable maximally decimated orthogonal filter bank. In

the following sections, we study the application of these filter banks in constructing and

decoding 2-D error-control codes.

2.3 2-D Codes Using Finite-Field Wavelets

A 2-D binary code of dimension N1 ×N2 is a set of N1 ×N2 binary arrays whose elements

are called codewords. A 2-D codeword c represented by c(n) is an N1 ×N2 array such as

c(n) = [c(i, j)] =




c(0, 0) c(0, 1) · · · c(0, N2 − 1)

c(1, 0) c(1, 1) · · · c(1, N2 − 1)
...

...
...

...

c(N1 − 1, 0) c(N1 − 1, 1) · · · c(N1 − 1, N2 − 1)




, (15)

where n = (n1, n2) is a vector with integer elements that denotes the index for the codeword

c. The set of all N1 ×N2 arrays over the binary field forms an (N1N2)-dimensional vector

space over F. Any subvector space C is called a 2-D linear code. We assume a 2-D message

array m(n) with area k is fed into the encoder and the 2-D codeword array c(n) is generated.

All 2-D linear codes can be represented by generator tensors or parity-check tensors. The

parity-check tensor H consists of r layers of N1 × N2 arrays hs(n), 1 ≤ s ≤ r, where

r = N1N2 − k. Codeword array c(n) of area N1 ×N2 satisfies the equation
N1−1∑

i=0

N2−1∑

j=0

c(i, j)hs(i, j) = 0, s = 1, . . . , r (16)
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We propose to use finite-field wavelets to construct 2-D codes [64]. In the proposed

two-dimensional wavelet code (TDWC), we use the synthesis filter bank of the two-channel

two-variable filter bank in Fig. 3a. First, the 2-D message array m(n) passes through

an M-fold expander whose determinant is two and generates the expanded message array

m↑M(n). As shown later, the area of m↑M(n) is twice as much as that of array m(n). The

fact that signal m↑M(n) is expanded by a factor of two results in a code rate of 1/2. Then,

array m↑M(n) passes through the bank of synthesis filters g0(n) and g1(n), whose region

of support N1 × N2 is identical to the size of the codeword array. The summation of the

outputs of the synthesis filters generates the codeword array.

The 2-D upsampling is explained by pursuing a specific example. Suppose the area of

the 2-D input signal is 12. Label the elements in the 2-D signal by numbers one through

12 and rearrange them to form the array m(n) in Fig. 5. As shown in Fig. 5, applying the

upsampling by the matrix M to the signal m(n), the signal m↑M(n) of dimension 4× 6 is

generated. Half of the elements of the output of the expander are zero. The inserted zeros

are non-lattice points, while the rest of the points are lattice points.

m(n1,n2) = 2   11

3   12

1   10

1   1

3   1

9   6

     5

7   4

8

M =

n2

n1

1   0    9    0    5    0

0   2    0   10   0    6

7   0    3    0   11   0

0   8    0    4    0   12

m      =↑M

Figure 5: An example for illustration of 2-D upsampling.

We note that the TDWC is lattice cyclic. Code C is lattice cyclic, if
(
DwC(D) mod

(DN1
1 − 1, DN2

2 − 1)
)
∈ C for all C(D) ∈ C and all w ∈ LAT(M). In other words, the cyclic

shift of any codeword array in the direction of an arbitrary vector w ∈ LAT(M) is itself a

codeword. Because of the lattice-cyclic property of the TDWC, the generator tensor consists

of layers that are cyclic shift of each other. The same is true about the parity-check tensor.

This property simplifies the encoding and the syndrome computing. These operations are
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simplified to calculate 2-D circular convolutions or equivalently to polynomial operations

in the quotient ring F[D]/
(
DN1

1 − 1, DN2
2 − 1

)
. As an example, (16) can be rewritten as

(c ~↓M hs) (n) = 0. Note that ~↓M is defined as in (3) and the array hs(n) is one layer of

the parity-check tensor H and the rest of the layers are cyclic shifts of hs in directions of

the points in LAT(M).

To find codes with the desired properties such as good minimum distance, self duality,

or burst erasure correctability, we add two prefilters to the two channels of the synthesis

bank. As shown later, the only constraint on the prefilters is that at least one of them needs

to be circularly invertible. Figure 6 shows the encoder of the TDWC with two prefilters

λ0(n) and λ1(n). The properties of the proposed TDWC are summarized in the following

lemma.

λ0(n)

λ1(n)

g0(n)

g1(n)

M

M

m(n) c(n)

Figure 6: The filter bank structure of the half-rate encoder of the TDWC.

Lemma 1. Consider the encoder in Fig. 6. We assume that at least one of the prefilters is

invertible. The generated TDWC has the following properties:

i. Let c(n) be a 2-D codeword with dimension N1 × N2. If N1 and N2 are both even

integers, then the generated code is lattice cyclic.

ii. There is a one-to-one mapping between the message and the codeword.

iii. The code generated by the system in Fig. 7 is equivalent to the one generated by the

system in Fig. 6.

λ(n)

g0(n)

g1(n)

M

M

m(n) c(n)

Figure 7: The equivalent filter bank structure of the half-rate encoder of the TDWC.
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Proof. As stated earlier, a binary 2-D code is lattice cyclic if any cyclic shift of the codeword

in the direction of points in LAT(M) is still a codeword. Up-sampling the codeword with

the matrix M gives an array of size N1 × N2 with message bits on the lattice points and

zeros on non-lattice points. Since N1 and N2 are both even, the zeros in the non-lattice

points are preserved by shifting in the direction of the points in LAT(M). Therefore, any

such cyclic shift generates another valid message sequence. The corresponding codeword is

a cyclic shift of the original codeword in the direction of the points in LAT(M). Hence, the

TDWC is lattice cyclic.

To show property ii), notice that the filter bank is designed using a PU matrix that

is generated by multiplying the PU elementary building blocks introduced in Section 2.2.

Therefore, applying c(n) to the analysis bank gives back the message if one of the prefilters

is invertible. Since we assume that at least one of the prefilters is invertible, the generated

TDWC has this property.

Finally, to show property iii, assume the prefilter λ0 in Fig. 6 is invertible. Choose

λ(n) = (λ−1
0 ~ λ1)(n) in Fig. 7. It can be verified that the codeword generated for the

message m(n) in Fig. 6 is the same as the codeword generated for the message (m ~ λ0)(n)

in Fig. 7. Hence, the encoders in these two figures are equivalent.

The following lemma shows that the encoder in Fig. 6 is able to generate an arbitrary

lattice-cyclic 2-D code.

Lemma 2. Let CG be an arbitrary lattice-cyclic 2-D code with generator tensor G and

dimension N1 ×N2, where N1 and N2 are both even integers. Then, the encoder of Fig. 6

generates a code equivalent to CG.

Proof. Consider the TDWC encoder in Fig. 6. We need to show that there exist prefilters

λ0(n) and λ1(n) such that the encoder in Fig. 6 generates a code equivalent to the code CG.

As stated in Section 2.3, the generator tensor G consists of 2-D array g(n) and its cyclic

shifts. We write g(n) as the summation of two arrays g(n) = ig(n) + ug(n), where ig(n) is
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invertible. We need to find prefilters λ0(n) and λ1(n) in Fig. 6 such that

ig(n) =
(
λ̂0 ~ g0

)
(n) and

ug(n) =
(
λ̂1 ~ g1

)
(n),

(17)

where λ̂i(n) is the M-fold expansion of λi(n) for i = 1, 2. This choice of prefilters guarantees

the invertibility of prefilter λ̂0(n). Now, we need to find the solutions for (17). We show

that the following prefilters are valid solutions for the equations in (17).

λ0(n) = (g ~↓M h0) (n) and

λ1(n) = (g ~↓M h1) (n),
(18)

where h0(n) and h1(n) are the analysis filters of the two-channel filter bank used in the

encoder of Fig. 6.

(g ~↓M h0) (n) =
(
(λ̂0 ~ g0 + λ̂1 ~ g1) ~↓M h0

)
(n)

=
(
λ̂0 ~↓M(g0 ~ h0) + λ̂1 ~↓M(g1 ~ h0)

)
(n)

= λ0(n),

(19)

where the last equality is due to the perfect reconstruction property of the filter bank. In

summary, we show that any 2-D lattice-cyclic code CG can also be generated by the encoder

of TDWCs.

The TDWC offers an efficient implementation by using a simplified structure. It can

be easily shown that the system in Fig. 8 is equivalent to the encoder in Fig. 7, where

Geq(D) = G0(D) + G1(D)Λ(DM). Equivalently, geq(n) = g0(n) + (λ̂ ~ g1)(n), where λ̂(n)

is the M-fold expansion of λ. Hence, the codeword c(n) can be computed as follows:

geq(n)Mm(n) c(n)

Figure 8: Simplified structure of the wavelet encoder.

c(n) = (m ↑M~ geq)(n), (20)

where ↑M~ is introduced in (4). Example 1 shows how the TDWC is constructed.
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Example 1. We construct a TDWC of dimension 4× 6 using the encoder of Fig. 7. The

filters g0(n), g1(n), λ̂(n), and the up-sampling matrix M are chosen as follows:

g0(n) =




0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 1 1




g1(n) =




0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 1




λ̂(n) =




0 0 0 0 0 0

0 0 0 1 0 0

1 0 1 0 1 0

0 1 0 1 0 1




M =




3 1

1 1


 .

An important property of error-control codes is minimum distance, which is defined as the

minimum Hamming distance between all pairs of codewords. It can be verified that the

minimum distance of this code is eight.

In the next section, we study the conditions on the synthesis filters in Fig. 3a under

which the TDWC becomes self dual or weakly self dual.

2.4 Self-Dual Two-Dimensional Wavelet Code

Now, we give construction for 2-D self-dual codes. Let x =
[
xij

]
and y =

[
yij

]
be 2-D

arrays of size N1 ×N2. Their inner product is defined by

< x, y > ,
N1−1∑

i=0

N2−1∑

j=0

xijyij

= Tr(xyT ).

(21)

The dual of a code C is a subset of all 2-D arrays of size N1 ×N2 that is defined as

C⊥ = {x :< x, y >= 0, ∀y ∈ C}.

If C = C⊥, then C⊥ is said to be self dual. If C ⊆ C⊥, then C⊥ is said to be weakly self dual.

The following lemma states the necessary and sufficient condition on geq(n) (in Fig. 8) by

which the generated TDWC is self dual.
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Lemma 3. The TDWC is self dual if and only if the inner product of geq(n) and any cyclic

shift of geq(n) in the direction of any lattice point is zero.

Proof. Lemma can be proved using the property that, in any TDWC, we have < x ↑M~ geq, y ↑M~ geq >=

0 for all possible distinct message sequences x and y. The complete proof of Lemma 3 is

given in Appendix A.

The code designed in Example 1 is self dual, since geq(n) satisfies the condition of

Lemma 3. We also extend the self-dual codes generated by Fig. 7 to construct new codes.

The following lemma gives the extension.

Lemma 4. Let C1 be an N1 × N2 self-dual TDWC. Let C2 be the code constructed from

C1 by adding a new column to all codeword arrays in C1 such that the parity of each row

becomes zero. If all rows of the codewords in C1 have the same sum, then the minimum

distance of C2 is at least the same as that of C1. Moreover, C2 is weakly self dual.

Proof. Since all rows of the original codewords have the same sum, the entries of the added

column are all either one or zero. Therefore, the minimum distance of the new code remains

either unchanged or increased by N1 with respect to the original code. To show C2 is weakly

self dual, we first note that for two distinct extended codewords x and y, we have

< x, y > =
N1−1∑

i=0

N2−1∑

j=0

x(i, j)y(i, j)

︸ ︷︷ ︸
P1

+
N1−1∑

i=0

x(i,N2)y(i,N2)

︸ ︷︷ ︸
P2

.
(22)

The expression P1 is equal to zero, since the original code is self dual. The expression P2

is either equal to zero or N1. Since N1 is an even number, it is equivalent to zero in F.

Therefore, the new code is weakly self dual.

Specifically, we have the following lemma.

Lemma 5. If the rows of geq(n) have the same weight, then the extended self-dual code is

weakly self dual.
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Proof. According to Lemma 4, we only need to show that the sum of all rows of the original

codewords generated by geq are the same. We note that

∑
n2

c(n1, n2) =
N2−1∑

n2=0

∑

(i,j)∈LAT (M)

x(i, j)geq(((n1 − i))N1 , ((n2 − j))N2)

=
∑

(i,j)∈LAT (M)

x(i, j)
∑
n2

geq(((n1 − i))N1 , ((n2 − j))N2). (23)

Since the row weights of geq are the same, we can conclude that the row-weights of the

codewords are also the same by (23).

Example 2. The filter geq(n) of the code in Example 1 is

geq(n) =




0 0 1 1 0 1

1 0 0 1 1 0

0 1 1 0 1 0

1 0 1 1 0 0




(24)

where all rows have weight three. Therefore, the resulting extended code is weakly self dual

by Lemma 4 and has minimum distance of eight.

2.5 The Syndrome Generator of Two-Dimensional Wavelet
Code

The wavelet construction of the 2-D code has the benefit of simple syndrome generation. It

can be shown that the syndrome generator consists of the analysis bank of the two-channel

filter bank used in the encoder. Figure 9a shows the syndrome generator for the encoder in

Fig. 6. The output s(n) of the system in Fig. 9a is obtained by

s(n) =
(
c ~↓M

(
h1 + λ̂ ~ h0

))
(n), (25)

where c(n) is the received word. To reduce the computation further, we simplify the syn-

drome generator in Fig. 9a using the mentioned filter properties. The simplified syndrome

generator of the TDWC is shown in Fig. 9b, where heq(n) =
(
h1 + λ̂ ~ h0

)
(n).

Since the filter bank is designed to have the PR property, the expression in the right

side of (25) is zero for a valid codeword. If the received array contains an error, then s(n)

gives the syndrome corresponding to that error. Hence, the following lemma can be stated.
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heq(n)c(n) s(n)

λ(n)h0(n)

h1(n)

M

M

c(n) s(n)

M

(a)

(b)

Figure 9: (a) The syndrome generator of the TDWC, (b) Simplified structure of the
syndrome generator of the TDWC.

Lemma 6. Assume there exists a parity-check tensor H for an arbitrary 2-D lattice-cyclic

code CH such that (c~↓M h) (n) = 0, for all c ∈ CH, where h(n) is one layer of the parity-

check tensor H. Then, there exists a TDWC equivalent to CH with analysis filters h0(n)

and h1(n) and prefilter λ such that
(
h1 + λ̂ ~ h0

)
(n) = h(n).

In the following section, we study the erasure decoding and burst erasure correcting

capability of the TDWC.

2.6 TDWC for Burst Erasure

In this section, we consider 2-D codes for burst erasure recovering. The area of a 2-D burst

E is defined by the region of the support of the smallest rectangle that contains the nonzero

elements of E. A code C can correct a burst of erasures of size b1 × b2, if it corrects every

2-D burst of size b′1 × b′2, where b′1 ≤ b1 and b′2 ≤ b2. A 2-D linear code is able to correct

burst erasures of dimension b1 × b2 if and only if no burst of area b1 × b2 or smaller can be

a codeword [26].

Let bivariate polynomial b(D) represent the burst pattern, whose upper left corner is

on the lattice and satisfies

degD1
b(D) = b1 − 1,

degD2
b(D) = b2 − 1.

(26)

Also let polynomial b′(D) represent a burst that has the same pattern as b(D), but its

upper left corner is a non-lattice point. Then, because of the lattice-cyclic property of the
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TDWC, any burst of size b1 × b2 can be expressed as

Dwb(D) or Dwb′(D), (27)

where w ∈ LAT(M). It is clear that a TDWC with the capability of correcting burst-erasures

of dimension b1 × b2 also corrects any bursts of the pattern expressed in (27).

In this work, we consider bursts of dimensions N1 ×N2/2 and N1/2×N2. The Reiger

bound states that an (n, k) block code must have more than b parity bits to be able to

correct an erasure burst of length b, i.e., n − k ≥ b. Later, we show that we can design

a half-rate TDWC that corrects any burst erasure of the mentioned sizes. Therefore, the

TDWC satisfies the Reiger bound with equality [64].

We use a simple and efficient ML decoding to recover the erased bits. In other words, we

find the unknowns by solving the equation (c~↓M heq)(n) = 0, where heq(n) is introduced

in Section 2.5. We represent this equation by Hc = 0, where H is an N/2 × N matrix,

c is an N × 1 vector whose first N/2 elements are values of c(n) at the lattice points and

the second N/2 elements are values of the non-lattice points of c(n), and N = N1N2. The

matrix H is constructed using two N/2 × N/2 circulant matrices A1 and A2 as [A1|A2].

The first column of the matrix A1 is a vector of size N/2 whose components are values of

heq(n) at the lattice points. Matrix A2 is constructed similarly, with the exception that it

contains the values of the non-lattice points of heq(n).

Now we need to specify the order in which the lattice points and non-lattice points are

read. Let the lattice and non-lattice points be xl and x′l for l = 1, 2, . . . , N1N2
2 , respectively.

It can be verified that the vector




2

2


 is in LAT(M) for any 2 × 2 matrix M whose

determinant is two. Therefore, ordering the lattice points and non-lattice points can be

defined as

a = (i, j) → b = (((i + 2))N1 , ((j + 2))N2),

where a → b denotes that point a is followed by point b. Since




2

2


 is in LAT(M), a and

b are both lattice points or non-lattice points. The process of enumerating lattice and non-

lattice points is clarified by the following example. Let assume we have an array of dimension
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4× 6, as shown in Fig. 10, where (1, 1) and (1, 2) are coordinates for lattice and non-lattice

points, respectively. As stated earlier, (2, 2) is picked as the traveling vector. Thus, the

second lattice point x2 has the value of the element at the position (((3))N1 , ((3))N2) and

so on. As we can see, after x6 we reach to x1 again. However, not all the lattice points are

enumerated yet. In such cases, an unlabeled lattice point that is the closest to the point

(1, 1) is used to continue. The procedure is continued till all lattice points are filled. The

same method is used to enumerate the non-lattice points.

x1 x′1 x5 x′5 x3 x′3
x′7 x7 x′11 x11 x′9 x9

x4 x′4 x2 x′2 x6 x′6
x′10 x10 x′8 x8 x′12 x12

Figure 10: An example for enumerating lattice and non-lattice points.

Let [E](b1b2)×1 be the set of erasure bits and [c\E](N/2−b1b2)×1 be the bits received exclud-

ing the erased bits. Additionally, let us denote [hE](N/2)×(b1b2) and [hc\E](N/2)×(N/2−b1b2)

as the columns of heq(n) that correspond to the erased bits and correct bits, respectively.

Using this notation, the maximum likelihood decoding is simplified to solving

[hE][E] = [hc\E][c \E]. (28)

Since the TDWC is lattice cyclic, any burst erasure can be represented by (27). Therefore,

prior to solving (28), we can shift the received sequence in the direction of a vector in

LAT(M) such that we get a burst of the form b(D) or b′(D) in (27). Thus, only two

possible choices exist for [E]. The cyclic property of the TDWC simplifies the erasure

decoding, because the inverse of [hE] for those two configurations can be computed off-line.

Hence, only XOR and AND operations are performed in the decoding process. Since C is a

valid codeword, (28) has at least one solution. The ML decoder can recover the codeword

uniquely, if and only if [hE] is full rank. The following lemma shows the existence of a half-

rate TDWC whose corresponding matrices [hE] are full rank and invertible for the specified

burst erasure dimensions.

Lemma 7. There exist half-rate TDWCs capable of correcting erasure bursts of size b1×b2,

where either 0 < b1 ≤ N1/2 and 0 < b2 ≤ N2 or 0 < b1 ≤ N1 and 0 < b2 ≤ N2/2.

25



Proof. We prove this lemma for the following two cases:

1. GCD(N1, N2) = 2 and either N1 or N2 is a multiple of four.

2. GCD(N1, N2) = 2 and neither N1 nor N2 is a multiple of four.

First, we prove this lemma for Case 1 using the following lemma.

Lemma 8. Let A be a 2-D array of size N1 ×N2, where GCD(N1, N2) = 2 and either N1

or N2 is a multiple of four. Also let M be a 2× 2 matrix whose determinant is two. If the

element at position (1, 1) is a lattice point, then the element at position (N1/2+1, N2/2+1)

is a non-lattice point.

The proof of Lemma 8 is given in Appendix A. To complete the proof of Lemma 7

for Case 1, we need to show that there exists an arbitrary lattice-cyclic 2-D code CG of

dimension N1 × N2, whose matrix [hE] is full rank for erasure bursts of sizes N1 × N2/2

and N1/2×N2. The codeword array c ∈ CG satisfies Hc = 0, where the matrix H and the

vector c are obtained as explained before. According to Lemma 8, the point at the position

(N1/2, N2/2) is non-lattice. Assume that the number associated to this non-lattice point is

k. A1 is chosen to be a full rank circulant matrix. Then, A2 is constructed as follows: The

kth column of the matrix A2 is chosen to be the same as the first column of the matrix A1.

It can be verified that the matrix [hE] generated by matrices A1 and A2 is full rank. Thus,

this code can recover the specified erasure bursts.

The proof for Case 2 is similar to that of Case 1, with a slight change in the construction

of the matrix A2. Matrix A2 is obtained such that its kth column is summation of columns

i and j of matrix A1, where k is the number associated to the non-lattice point at position

(1, 2) and i and j correspond to lattice-pints at positions (1, N2/2) and (N1/2, N2/2). It can

be verified that the matrix [hE] generated by matrices A1 and A2 is full rank. Thus, this

code can recover the specified erasure bursts. By Lemma 6, we conclude that there always

exists a TDWC that can recover burst erasures of dimensions N1 ×N2/2 and N1/2 ×N2,

where GCD(N1, N2) = 2.
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Collectively, to design a TDWC with dimension N1 × N2 that is capable of recovering

erasure bursts of sizes N1 ×N2/2 and N1/2 ×N2, we proceed as follows: First, we design

a two-channel maximally decimated filter bank whose synthesis and analysis filters have

impulse responses with a region of support of N1 × N2. Then, we search for the prefilter

λ(n) such that the corresponding columns in matrix [hE ] are independent for burst erasures

of sizes N1 ×N2/2 and N1/2×N2. According to Lemma 7, we are guaranteed that such a

prefilter exists.

Example 3. We construct two codes of dimensions 4× 6 and 10× 4. The generator filters

and the burst correction capabilities of the designed codes are as follows.

• Code with dimension 4 × 6 corrects burst patterns of sizes 2 × 6, 3 × 4, and 4 × 3.

As we can see, this code has the efficiency of one for any rectangular burst erasure of

area N1N2
2 . The synthesis bank filters and the prefilter are given as

G0(D) = 1 + D1 + D2
1D2 + D2

1D
2
2 + D3

1D
2
2,

G1(D) = 1 + D1 + D1D2 + D2
1D

2
2 + D3

1D
2
2,

λ̂(D) = D3
1y + D4

1D
2
2.

In designing this code, one degree-2τ building block as in (12) with the parameters

u(D1) =




1

1


 v(D1) =




D1

1


 ζ(D1) = 1

is used. With these parameters, the building block is as follows

V1 (D2; u(D1),v(D1), ζ(D1)) =




D1(1 + D2 + D2
2) 1 + D2

2

D1(1 + D2
2) 1 + D2 + D2

2


 .

• Code with dimension 10 × 4 corrects burst patterns of sizes 5 × 4 and 4 × 5. The

synthesis bank filters and the prefilter are as follows

G0(D) = D1D2 + D7
1D

3
2 + D2

1D2 + D5
1D

2
2 + D8

1D
3
2,

G1(D) = D1D2 + D7
1D

3
2 + D4

1D
2
2 + D2

1D2 + D8
1D

3
2,

Λ(DM) = D9
1D

3
2 + D2

2.

In designing this code, the building block of previous example is used.
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2.7 Conclusion

We introduced half-rate two-dimensional wavelet codes (TDWCs). The encoder consists

of a synthesis bank of a two-channel two-variable filter bank. The corresponding analysis

bank generates the syndrome of the code. We investigated properties of these codes. We

showed that these linear codes are lattice cyclic. This property simplified the encoding and

the erasure decoding of TDWCs. We also introduced a methodology to design TDWCs

over binary erasure channels. We showed that the half-rate TDWCs of dimensions N1×N2

satisfy the Reiger bound with equality for burst erasures of dimensions to N1 ×N2/2 and

N1/2×N2. These codes can recover burst erasures with a simple and efficient ML decoding.
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CHAPTER III

DISTRIBUTED SOURCE CODING AT THE

ASYMMETRIC RATE

3.1 Introduction

In this chapter, we propose a scheme for distributed source coding of correlated sources at

the asymmetric rate. We show that our approach reaches the Slepian-Wolf limit, if we use

a channel code that achieves the capacity of the equivalent channel. For coding, we use

LDPC codes, because of their potentially capacity-approaching performance. This is true

for infinite-length sequences. For finite-length sources, we take a new approach. For the

first time, we take both the correlation channel and the actual channel and formulate the

source coding problem to the code design over non-uniform channels. This is in contrast

with the previous works, which design the LDPC code for the equivalent channel. As shown

later, our design significantly benefits from our framework to design optimal LDPC codes for

parallel channels. This benefit is more stressed for applications with finite-length sequences.

First, we investigate a system of two correlated sources. We present a methodology that

involves construction of LDPC codes for non-uniform channels. We further study an exten-

sion of our approach to three correlated sources. We investigate two cases: a more general

case, where sources are pairwise correlated with arbitrary correlation probabilities and a

special case, where sources are pairwise correlated with the same correlation probability. We

show that the former is simplified to non-uniform LDPC codes and the latter is simplified

to semi-random punctured LDPC codes. This is a new formulation for distributed source

coding using LDPC codes. We note that our proposed distributed source coding is well

suited for sensor networks (where short length codes are used) and many other distributed

source coding applications.
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3.1.1 Related Work

The link between conventional channel coding and lossless distributed source coding with

side information available at the decoder was established based on Wyner’s scheme [75].

The basic idea was to partition the space of all possible source outcomes into disjoint bins

(sets) that are the cosets of some good linear channel codes for the specific correlation

model. If the correlation between X1 and X2 can be modeled by a binary channel, Wyner’s

syndrome concept can be extended to all binary linear codes; and state-of-the-art near-

capacity channel codes such as turbo [5] and low-density parity-check (LDPC) codes [20,43]

can be employed to approach the Slepian-Wolf limit.

In [51], the first practical framework for distributed source coding using syndromes

(DISCUS) was introduced. Advanced schemes based on turbo codes and LDPC codes were

proposed in [1, 4, 23, 38, 46] and [36, 37, 59, 65], respectively. Irregular repeat accumulate

(IRA) codes were also used for distributed source coding in [39] and [70]. Extension of

distributed source coding to three correlated sources is studied in [35].

3.1.2 Contribution

In this chapter, we propose to apply non-uniform LDPC codes for distributed source coding

at the asymmetric rates. As opposed to previous works, which design the LDPC code for

the equivalent channel, we take a completely new approach. We take both the correlation

channel and the wireless channel and formulate the source coding problem to the code

design over parallel channels. We design a non-uniform LDPC code for this set of parallel

channels. Our proposed design criteria improve the performance of the distributed source

coding significantly for finite-length cases [59,60].

We also extend our method to three sources. We study the distributed source coding of

three sources that are pairwise correlated with arbitrary correlation probability. As a special

case, we also study a simpler case, where sources are correlated with the same correlation

probability. This problem is also studied in [35]. However, we take a new approach based

on LDPC codes with emphasis on finite-length sequences. We model this problem with a

set of parallel channels that simplifies the problem to semi-random puncturing. This new
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model improves the performance of the distributed source coding significantly.

3.2 Distributed Source Coding of Two Correlated Sources
at The Asymmetric Rate

Consider a communication system of two sequences X1 and X2. Let {X1i , X2i}inf
i=1 be a

sequence of independent and identically distributed (i.i.d.) drawings of a pair of correlated

discrete random variables X1 and X2. In this chapter, we assume that the correlation

value is known in advance. Each node compresses its data without communicating with

the other node and sends the compressed data to the sink. A suitable source encoder that

removes the redundant bits, reduces both the length of the transmission information and

power consumption. Such a system requires distributed source coding. In this chapter, we

focus on distributed source coding at the asymmetric rate. Distributed source coding at

the asymmetric rate corresponds to the case that one of the sources, X1, is compressed

conventionally at the rate RX1 = h(X1) and is recovered perfectly at the decoder, while

the other signal, X2, is compressed as close as possible to the Slepian-Wolf limit RX2 =

h(X2|X1) to achieve the overall rate RX1 + RX2 close to h(X1, X2). This procedure is

also known as distributed source coding X2 with the side information X1 available at the

decoder.

To study the distributed source coding of two sources, first we need to model the cor-

relation between sources. In this work, we consider the system of statistically dependent

sources whose dependency can be fully explained by their conditional probability mass

function P [X2|X1]. This correlation can also be modeled by a BSC whose input and out-

put are X1 and X2 and has a crossover probability of P [X1 6= X2|X1] = p. In this case

h(X2|X1) = h(p) = −p log2 p− (1− p) log2(1− p).

Source coding of X2 with side information X1 available at the decoder is performed as

follows: X2 is fed into a rate R systematic LDPC encoder. At the output of the encoder,

we only send the corresponding parity bits, PX2 , of the codewords while disregarding the

information bits. This results in an encoding rate of RX2 = 1
R − 1 bits per input bit.

The rate R is chosen such that the compression rate RX2 gets as close as possible to the
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Slepian-Wolf limit. The decoder tries to recover X2 by using PX2 and X1, which are also

available at the decoder. The only difference between this decoding and the original LDPC

decoding is the initialization of the log-likelihood ratios (LLRs) which will be discussed

more in Section 3.2.2.

3.2.1 Non-uniform LDPC Code Design

We propose to model the procedure for distributed source coding of X2 at the asymmetric

rate with a set of parallel channels as shown in Fig. 11. Suppose the length of the LDPC

code of rate R is n. Information bits (Rn bits) are transmitted over the dependency channel

and parity bits ((1−R)n bits) are transmitted over the wireless channel, which is assumed to

be an ideal channel, unless otherwise stated. The solid line in this figure shows the bits that

are actually transmitted to the decoder and dashed lines show the bits that are not sent.

Let Zi, i = 1, 2, denotes the random variable that is equal to the LLR of the received bit for

the ith channel. The set of two channels can be modeled as a single channel having the LLR

distribution of PZ(z) = (1−R)PZ1(z)+RPZ2(z). Using the methods in [57], a good degree

distribution for LDPC code is set up for the equivalent channel. Designing the LDPC code

for the equivalent channel works well for infinite lengths, which may not be the case for

some applications such as sensor networks. In this work, we consider LDPC codes with

finite lengths. Thus, instead of designing the best LDPC code for the equivalent channel,

we propose to design a non-uniform LDPC code by considering the fact that different bits

are subject to different sources of noise [59]. In [50] the authors introduced the ensemble of

Systematic

LDPC

Encoder

Rate R

X2 LDPC

Decoder

X2(X2,P  )X2

Correlation
Channel

Wireless
Channel

X2

PX2

X1

PX2

‘

Figure 11: Source coding X2 with side information X1 available at the decoder.

graphs that is used over parallel channels and they showed that better results for parallel

channels are achievable by designing non-uniform LDPC codes, especially for short and
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moderate length cases. In this section, we discuss the design methodology for the non-

uniform LDPC codes.

To encode X2, we have two sets of bits, the first set is passing through the ideal channel

and the second set is passing through the correlated channel. We introduce an ensemble

g(Λ, ρ) of bipartite graphs for non-uniform error correction. Distinct degree distributions

are chosen for each set. Let Λ = {λ1(x), λ2(x)}, where λi(x) is the variable node degree

distribution of each set. Also, let ρ(x) be the check node degree distribution. We choose

Λ and ρ according to the guideline of [50] for non-uniform channels. This guideline in the

nutshell suggests higher degree for the bits that experience more error prone channels. Then,

for a codeword of length n and a degree distribution (Λ(x), ρ(x)), a random realization of

H is generated. Using Gaussian elimination, the parity-check matrix H ′ for the equivalent

systematic LDPC code is constructed. Matrix H ′ is used to find the generator matrix G

for the systematic LDPC code. For encoding a sequence, we compute the parity bits of this

sequence using the matrix G.

3.2.2 Decoding

The decoder needs to determine an n-length sequence of X2 from its parity bits PX2 and

its correlated sequence X1. To apply the message passing algorithm, LLR values of all bits

are required to be known. LLRs of the parity bits and the information bits are infinity and

ln (1−p
p ) , respectively, since these bits are transmitted through ideal channel and BSC with

crossover probability p. Knowing the LLRs of all bits and the value of the signal X1, the

message passing algorithm can be executed to decode X2.

In this section, we investigated the problem of distributed source coding of two correlated

sources at the asymmetric rate. In the following section, we extend our method to three

correlated sources. Exploiting the correlation between three sources simultaneously obtains

rate savings compared to the two-source setup.
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3.3 Distributed Source Coding of Three Correlated Sources
at the Asymmetric Rate

Consider a communication system of three sources X1, X2, and X3 each of which is i.i.d.

binary sequences of length k. The bits of these sources are assumed to be zero and one,

with equal probability. Sources X1, X2 and X3 are statistically dependent to each other.

As stated in the previous section, the correlation between sources can be fully explained

by their conditional probability mass function. First, we consider a more general case in

which P [Xk 6= Xi|Xi] = pik, ∀i, k ∈ {1, 2, 3} and i 6= k. Then, we study a simpler case,

where sources are pairwise correlated with the same correlation probability. The correlation

values are known in advance. Since the dependency of two correlated sources Xi and Xk

can be represented by their conditional probability mass function P [Xk 6= Xi|Xi] = pik, we

can model this dependency with a BSC whose cross over probability is pik. The dependency

between Xi and Xk while Xj is also available at the decoder cannot be simply modeled by

a single BSC with a fixed crossover probability. The crossover probability depends on the

values of Xi and Xj . The correlation between Xi and Xk given that Xj is also present error

free at the decoder can be computed as

P [Xk 6= Xi|Xi = Xj , Xj ] =
pik + pjk − pij

2(1− pij)
, (29)

P [Xk 6= Xi|Xi 6= Xj , Xj ] =
pik − pjk + pij

2pij
.

Figure 12 represents the model of the correlation between source Xi and Xk. As we can

see in Fig. 12, with probability pij and (1 − pij), Xk is the input to a BSC with cross

over probability pik−pjk+pij

2pij
and pik+pjk−pij

2(1−pij)
, respectively. The BSC with input Xk whose

crossover probability depends on the values of Xi and Xj is denoted by Qij(k).

If  X1=X2

(1-p)Rn
Xk Xi

Pik+Pjk-Pij

2(1-Pij)

BSC

Pik-Pjk+Pij

2Pij

BSCIf  X1≠X2

pRn

Xk Xi

Qij(k)

Channel

Xi Xj

Figure 12: The correlation model between Xk and both Xi and Xj .
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In this section, we study on distributed source coding of three correlated sources at the

asymmetric rate. The achievable rate for compression of three correlated sources X1, X2,

and X3 at the asymmetric rate must satisfy the following inequalities [74]:

RX1 ≥ h(X1), RX2 ≥ h(X2|X1), RX3 ≥ h(X3|X1, X2),

RX1 + RX2 + RX3 ≥ h(X1, X2, X3).

The source coding of sources X1 and X2 is done with the same method described in

Section 3.2, and the third one is compressed with the rate as close as possible to the

theoretical limit h(X3|X1, X2). Since h(X3|X1, X2) ≤ h(X3|X1), exploiting the correlation

between all sources simultaneously obtains rate savings compared to the two-source setup.

The source coding of X3 is done as follows: source X3 is fed into a systematic LDPC code

of rate R = 1
1+h(X3|X1,X2) . The distributed source encoder sends only the corresponding

parity bits PX3 . As shown in Fig. 13, the distributed source coding model involves a set of

parallel channels. Therefore, we require a non-uniform LDPC code for this set of parallel

channels.

If  X1=X2

(1-p12)Rn
X3

p13+p23-p12

2(1-p12)

BSC

p13-p23+p12     

2p12

BSCIf  X1≠X2

p12Rn

Wireless

  Rn

  (1-R)n Channel

(X3,P  )X3

(X1,P  )X3

P X3

Figure 13: Source coding of X3 using the side information X1 and X2 available at the
decoder.

3.3.1 Decoding

We note that X1 and X2 are recovered as in Section 3.2. However, X3 is recovered by using

PX3 and the side information provided by both X1 and X2. We assume that X1 and X2

are known error free at the decoder. The decoder requires to have the LLR values of all

bits. Identical and different bits of X1 and X2 indicate that X3 is passed through a BSC

with crossover probability p13+p23−p12

2(1−p12) and p13−p23+p12

2p12
, respectively. The latter probability
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is greater than 1/2 if P13 > P23. Therefore, based on the values of these correlation

probabilities, we choose one of the following decoding procedures:

• P13 < P23: First, we compare X1 and X2 bitwise. The LLR values of bits in X3 that

correspond to the identical bits are set to ln(2−p12−p13−p23

p13+p23−p12
). Otherwise, their values

are set to ln(p12−p13+p23

p13−p23+p12
). Having the LLR values of all the bits and X1, the message

passing algorithm can be executed to recover X3.

• P13 > P23: First, we compare X1 and X2 bitwise. The LLR values of bits in X3

are set to ln(2−p12−p13−p23
p13+p23−p12

), if the corresponding bits in X1 and X2 are identical.

Otherwise, their LLR are equal to ln(p13−p23+p12

p12−p13+p23
). The value of X1 is modified as

follows to compensate for error probability greater than 1/2:

X1 =





X1, if X1 = X2

−X1, if X1 6= X2

Having the LLR values of all the bits and the modified value of X1, the message

passing algorithm can be executed to recover X3.

3.4 Distributed Source Coding of Three Sources- A Special
Case

As a special case, we study the problem of distributed source coding of three sources that

are pairwise correlated with the same correlation probability p. The correlation between Xi

and Xk given that the signal Xj is also present error free at the decoder can be computed

as

P [Xk 6= Xi|Xi = Xj ] =
p/2

1− p
, P [Xk 6= Xi|Xi 6= Xj ] =

1
2
. (30)

Using (30), we can say that with probability p, Xk is the input to a BSC with cross over

probability p/2
1−p , and with probability 1− p it is the input to a BSC channel with cross over

probability 1/2. The output of the channel with cross over probability 1/2 can be considered

as erased (punctured) bits. Therefore, X1 is punctured X3 that has passed through a BSC

with cross over probability p/2
1−p . This is a semi-random puncturing, since we only know a

fraction p of the information bits is erased but we have no further information about the
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positions of these bits. Thus, the distribution source coding is reduced to the design of an

LDPC code with semi-random puncturing.

The compression rate of X3 with both X1 and X2 present at the decoder is computed

by h(X3|X1, X2) = h(q) = (1 − p)h(1−3p/2
1−p ) + p, while the compression rate for the case

that only one signal is present at the decoder can be found from h(Xi|Xj) = h(p). As we

can see, the compression rate for the case of three correlated sources is lower. Therefore,

it is more efficient to consider the three correlated sources together instead of the pairwise

study.

In the following section, we investigate the problem of designing an LDPC code of

rate R = 1
1+h(X3|X1,X2) whose performance does not degrade after puncturing (here, by

performance we mean the ratio R
C , where C is the capacity of the channel and R is the

maximum rate of the code for which the error probability is less than a required value).

To design the LDPC code, we consider the fact that some bits are punctured randomly. It

is worth noting that in [35], the authors designed an LDPC code by applying the density

evolution to the initial distribution of the equivalent channel. However, we show that

our non-uniform formulation and the puncturing model perform considerably better than

previous methods for finite-length codes.

If  X1=X2

(1-p)Rn

X3

       p

2(1-p)

BSC

If  X1≠X2

pRn

Wireless

  Rn

  (1-R)n Channel

(X3,P  )X3

(X1,P   )X3

P X3

n

Puncture

      p

2(1-p)

BSC

Wireless

  pRn

  (1-pR)n

Channel(X3,P  )X3

(X1,P  )X3

n

Puncture

1-pR

(1-R)n

1-pR

R(1-p)n

Figure 14: Source coding of X3 for three correlated sources with identical correlation
probabilities.

3.4.1 Rate-Compatible LDPC Code Design

Figure 14 shows that a fraction 1 − p of the information bits are passing through the

BSC with crossover probability p/2
1−p whose capacity is denoted by c∗, while the rest of the

information bits are punctured. To design an appropriate LDPC code for this channel, first
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we design a parent LDPC code for the case that no puncturing has occurred, as shown in

Fig. 15. We can then apply the puncturing to revert to the original system of Fig. 14. The

goal is to construct a parent LDPC code, such that its performance does not degrade after

puncturing. The channel c1 in Fig. 15 has a capacity lower than c∗, which requires more bits

to be transmitted. To compute the value of c1 in Fig. 15, we use the results in [48], which

states that the performance of an arbitrary code does not change after random puncturing

if and only if the ratio of the rate/capacity for the channels of dotted section in Fig. 14b and

the channels in Fig. 15 are identical. The overall capacity of the dotted section in Fig. 14b

and the overall capacity of the channel in Fig. 15 are equal to Ceq = 1−R
1−pR + R(1−p)c∗

1−pR and

C = 1−R+Rc1, respectively. The rate of the LDPC code for the dotted section in Fig. 14b

and the rate of the LDPC code for channels in Fig. 15 are R
1−pR and R, respectively.

Wireless

Channel

(X3,P  )X3 (X1,P  )X3

(1-R)n

Rn

n

X3

PX3

C1

Figure 15: A model that describes the channel of Fig. 14 before puncturing.

Equating the ratios of rate/capacity for these two channels, we obtain c1 = (1 − p)c∗.

Therefore, if the parent LDPC code reaches the overall capacity of the channels in Fig. 15,

we can conclude that the punctured parent code also reaches the capacity of Fig. 14. To

design the best LDPC code of rate R for the channel of Fig. 15, we suggest using a non-

uniform framework introduced in [50].

3.4.2 Decoding

At the decoder, X3 is recovered by using PX3 and the side information provided by both X1

and X2. We note that X1 and X2 are assumed to be known at the decoder error free. The

decoder requires to have the LLR values of all bits. Equation (29) shows that identical bits

of X1 and X2 indicate that those bits are passed through a BSC with crossover probability

p/2
1−p but different bits indicate that those bits must be considered punctured bits. Therefore,

by comparing the values of X1 and X2 at each index, we can compute the LLR value of
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X3 at the associated index. If X1 and X2 are identical, then the LLR value of X3 equal to

ln(1−3p/2
p/2 ). Otherwise the LLR value is set to zero. Having LLR values of all bits and the

values of the side information, the message passing algorithm is executed to recover X3.

3.5 Simulation Results

First, we investigate the application of LDPC codes and BCH codes to distributed source

coding. The simulation results show that for moderate-length sequences, a LDPC code

corrects the same number of error bits/ packets as a BCH code does, while it has a lower

redundancy. As an example, simulation results show that LDPC code of rate 0.55 has

packet error rate (PER) of PER < 10−4 for p = 0.045. The performance of the BCH code

is given by

1− PER =
t∑

j=0

(
n

k

)
pj(1− p)n−j ,

where t is the error correcting capability of the BCH code. For p = 0.045 and 1− PER =

1−10−4, t needs to be equal to 73. BCH code of length 1023 and error correcting capability

of 73 has rate 0.43 [34]. As we can see, LDPC code has lower redundancy compared with

BCH code. We also compare LDPC codes with BCH codes considering the decoding energy.

Similar to [58], we define the energy-efficiency factor as follows:

η = ηe(1− PER), (31)

where ηe, energy efficiency, is defined as the energy for communication of the information

bits divided by the sum of total energy for communication of both the information bits and

the redundant bits and decoding energy consumption. The expression (1−PER) indicates

the reliability. For p = 0.045, energy efficiency factor is equal to 0.5427 and 0.4231 for

LDPC code of (n=1000,R=0.55) and BCH code of (n=1023,R=0.43), respectively. The

following figure compare the energy efficiency of LDPC codec and BCH codes. In design

of these codes the PER of less than 10−4 was sought. The simulation results confirm that

LDPC codes are more energy-efficient than BCH codes [59]. Therefore, the focus of our

work is on distributed source coding using LDPC codes.
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Figure 16: Energy efficiency of BCH codes of length 1023 and LDPC codes of length 1000

3.5.1 Two Correlated Sources

We simulate and test our proposed model for distributed source coding of two correlated

sources using LDPC codes. We choose p = 0.11, which results in the joint entropy of

h(X1, X2) = 1.5. In distributed source coding at the asymmetric rate, X1 is compressed

conventionally and sent at the full rate of RX1 = h(X1) = 1 and is recovered perfectly at

the decoder. The signal X2 is compressed as close as possible to the Slepian-Wolf limit

which is equal to RX2 = h(X2|X1) = 0.5. Hence, we design an LDPC code of rate R = 2/3

and length n = 1000. This code was chosen randomly from the ensemble that is defined by

the following degree distribution to achieve nonuniform property.

Λ(x) = {x2, 0.7585x3 + 0.1422x4 + 0.0993x8},

ρ(x) = {0.5x10, 0.5x11}.

The Slepian-Wolf theoretical limit for this code is 0.5 bits for ideal channels. Figure 17

compares the performance of the distributed source coding of the non-uniform LDPC code

with the results of [65]. We note that the nonuniform LDPC code of length 1000 outperforms

the DISCUS using LDPC code of the same length by more than 60%.

To show that the performance gap of our proposed method from the Slepian-Wolf limit

reduces as the code length increases, we run the simulation for LDPC code of (34) with

lengths 2000 and 4000. The following table summarizes the gap to the Slepian-Wolf theoret-

ical limit for code lengths 1000, 2000, and 4000. As we can see, the gap from the theoretical
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Figure 17: Comparison of distributed source coding using non-uniform LDPC codes and
the method in [65] for n = 1000.

limit decreases as the code length increases.

Table 1: Gap from the Slepian-Wolf theoretical limit for code lengths 1000, 2000, and
4000.

Code length 1000 2000 4000
Gap from the theoretical limit 0.1726 0.1416 0.1267

3.5.2 Three Correlated Sources

We simulate and test our proposed model at the asymmetric rate. Similar to Section 3.5.1,

we choose p = 0.11 that results in the compression rates of RX2 = 0.5 and RX3 = 0.4 for

sources X2 and X3, respectively. The desired rate of LDPC code for distributed source

coding of X3 is equal to R = 1
1+RX3

= 0.71. Therefore, we design a parent nonuniform

LDPC code of rate R for the channel of Fig. 15. The resulting code has the following

degree distributions:

Λ(x) = {x2, 0.7054x3 + 0.1793x4 + 0.1153x8}, ρ(x) = {0.5x10 + 0.5x11}.

The simulation results show that for length 1000, convergence of the nonuniform LDPC code

is achieved by p∗ = 0.08 for which the compression rate is RX3 = H(X3|X1, X2) = 0.3174.

In other words, this code is about 0.0826 bits away from the Slepian-Wolf limit. In [35],

the authors report the simulation results of an LDPC code of length 5× 105. To compare
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our method with the method of [35], we generate an LDPC code of length 1000 with the

degree distribution reported in [35]. We find the value of p∗ at which the convergence of this

LDPC code is achieved. The following table summarizes the gap between the Slepian-Wolf

limit and the convergence of the LDPC code of length 1000 for both the proposed method

and the method in [35]. As we can see, the gap from the theoretical limit in [35] is twice as

much as our proposed method.

Table 2: Gap of H(p∗) from the Slepian-Wolf limit.
p∗ S-W limit Gap

Proposed method 0.08 0.4 0.0826
Method of [35] 0.21 0.8247 0.1712

3.6 Conclusion

We studied the problem of source coding for two and three correlated sources. We pro-

posed to use nonuniform LDPC codes for distributed source coding of correlated sources.

This design criterion improved the performance of the source coding considerably. The

convergence of the nonuniform LDPC code of our method is almost 60% closer to the

Slepian-Wolf limit than the uniform design for two sources. Through simulation results, we

also verified that the gap from the Slepian-Wolf theoretical limit decreases significantly as

we increase the code length. For three correlated sources, first we studied the case where

sources are correlated with arbitrary correlation probabilities and then we studied a spe-

cial case, where sources are pairwise correlated with the same correlation probability. We

showed that these problems simplified to the design procedure of nonuniform LDPC codes

and randomly punctured LDPC codes, respectively. The simulation results of our approach

shows that the convergence of the LDPC code of length 1000 is only 0.08 away from the

Slepian-Wolf limit.
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CHAPTER IV

DISTRIBUTED SOURCE CODING AT ARBITRARY

RATE

4.1 Introduction

In this chapter, we study the distributed source coding of correlated sources that can achieve

every arbitrary coding rate on the Slepian-Wolf rate region. We propose a scheme for this

problem using a single systematic channel code. Similar to Chapter 3, we are interested in

applications with finite-length sequences. By modeling the distributed source coding with

a set of parallel channels, we simplify the distributed source coding problem to the rate-

compatible LDPC code design with an unequal error protection property. At the decoder,

each source is decoded independently (only part of information bits are exchanged) which

prevents the propagation of errors. The simulation results confirm that the gap from the

theoretical limit remains almost the same for different rates on the Slepian-Wolf rate region.

In summary, our design significantly benefits from our framework to design optimal LDPC

codes for nonuniform channels, rate-compatible punctured LDPC codes, and unequal error

protection codes.

4.1.1 Related Work

Most of the previous works on distributed source coding are based on compressing at a corner

point (points A and B in Fig. 2), i.e. the signal X1 is compressed conventionally and sent at

the full rate of RX1 = h(X1) and is recovered perfectly at the decoder, while the signal X2

is compressed as close as possible to the Slepian-Wolf limit h(X2|X1). However, for some

applications, it is required to operate at rates other than corner points. For example, at

the midpoint of the Slepian-Wolf rate region, the sources are compressed at the same rates.

This is desirable in sensor networks because of the uniform energy consumption among

sources. Distributed source coding at arbitrary rates has been studied as an important
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problem in recent years [12,22,52,61,62,66,70]. In [52], Pradhan et al. studied the problem

of distributed source coding of two sources at the symmetric rate (point C in Fig. 2) using

trellis and lattice codes. They showed that the performance of these symmetric methods are

the same as that of asymmetric ones. Garcia-Frias also considered the compression of two

sources at the symmetric rate using turbo codes for the joint source-channel coding [22].

The extension of this work is proposed recently in [12]. In this paper, the authors studied

distributed source coding of two correlated sources at any arbitrary rate on the Slepian-

Wolf rate region using turbo codes. In [66] and [70], the authors have considered not

only the symmetric rate, but also any arbitrary rates on the Slepian-Wolf rate region. We

note that both [66] and [70] are based on sending syndromes. In [70], using IRA and

turbo codes, the authors designed distributed source coding by channel code partitioning.

Recently, Gehrig and Dragotti proposed an approach using systematic and non-systematic

channel codes [24]. Their method is based on sending partial information bits along with

the syndromes generated by the channel encoder.

4.1.2 Contribution

To clarify the significance of our work, we want to stress on two points. First, this work

studies the distributed source coding of applications with finite-length sequences. Dis-

tributed source coding using finite-length channel codes introduces new challenges, since

the assumption of capacity-approaching channel code is not valid anymore. We model the

distributed source coding problem with code design for a set of parallel channels. This

model for short-length sequences provides the advantage of using nonuniform, rate adap-

tive and unequal error protection codes. Second, our work focuses on distributed source

coding based on sending parity bits. This is a substantial diversion over the other possible

method which is based on syndromes. If the wireless channel is ideal, both syndrome and

parity methods can be used. However, in applications where wireless channels are not error

free, the syndrome-based method needs to be modified to be applied for distributed source

coding. The methods in [24,66,70] are based on sending syndromes.

- The decoding procedure in [66] consists of decoding the difference between sources
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before decoding either source. Once the first decoding is complete, the second de-

coding can be done to either source. The second decoding is in essence an entropy

decoding. The code is designed to be strong enough to decode the difference. How-

ever, this design procedure does not guarantee a successful entropy decoding. The

simulation results reported in [66] shows that the gap from theoretical limit increases

as compression rate raises.

- The decoding procedure in [70] consists of a channel decoding and source encodings.

Therefore, the decoding of sources are dependent to each other, i.e., both sources

are either recovered perfectly or corrupted. The authors also extend their method to

more than two sources. The method works when the summation of the sources has a

Bernoulli distribution.

- In [24], the decoder first decodes the difference between sources. Then, using the dif-

ference and the invertible section of the parity check matrix, both sources are decoded.

This decoding algorithm propagates the error. The authors extend their technique to

more than two sources. However, their method only considers two correlated sources

at a time. Therefore, for cases with more than two sources, we expect that the scheme

to be bounded away from the theoretical limit.

As we see later, the decoding procedure we proposed avoids dependent decoding. Hence,

it prevents error propagation. Moreover, for more than two sources, no particular correlation

model among sources is necessary for our approach and we consider the correlation between

all sources simultaneously which results in rate savings in comparison with the two-source

setup.

The authors in [12] studied distributed source coding of two sources using the parity

bits generated by turbo codes. Our work differs from this paper in the sense that we

design the LDPC code for the set of parallel channels, which improves the performance

significantly for short-length sequences. As we see in Section 6.6, our method has a gap of

0.173 bits and 0.1416 bits from the Slepian-Wolf limit for LDPC code of length only 1000

and 2000, respectively. The simulation results in [12] reports a gap of 0.13 for turbo code of
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length 16384. We note that our method performs almost the same as [12] for much shorter

code lengths. We also study the problem of distributed source coding, when correlation

parameter is unknown in advance.

4.2 Distributed Source Coding of Two Sources at Arbitrary
Rates

First, we study source coding of two correlated sources and then we apply our approach

to three or more correlated sources. Consider a communication system consisted of two

correlated binary sequences X1 and X2, where P [X1 = 0] = P [X2 = 0] = 1/2. The

correlation between X1 and X2 is modeled as the input and output of a BSC with crossover

probability P [X2 6= X1|X1] = p.

We propose a method for compression of two correlated sources at every arbitrary rate

on the Slepian-Wolf rate region using a single channel code. To describe the procedure,

first we assume that each source uses a separate systematic LDPC code of rate Ri, where

i ∈ {1, 2}. Then, we show how the same procedure compresses both sources at rates close to

the theoretical limit using only a single systematic channel code. The encoding procedure

for the k-bit sequence of source X1 is done as follows: source X1 is fed into a systematic

code of rate R1 = k
k+|PX1

| , where |PX1 | denotes the cardinality of the parity bits PX1 . The

distributed-source encoder sends the corresponding parity bits PX1 and the first ak bits of

the information bits in X1. Thus, the compression rate can be computed by

RX1 =
ak + |PX1 |

k
. (32)

The same procedure with a few modification is applied to encode source X2. For source

X2, we assume a systematic channel code of rate R2. The source encoder sends the corre-

sponding parity bits PX2 and the remaining (1− a) fraction of the information bits in X2.

The distributed source coding procedure is demonstrated in Fig. 18.

We show that the encoding procedure in Fig. 18 can be demonstrated as bits passing

through a set of parallel channels. As an example in Fig. 18, a fraction (1 − a) of the

information bits in X2 and the parity bits PX2 are transmitted through the wireless channel,
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Figure 18: Distributed source coding of two correlated sources at an arbitrary rate.

and the remaining a fraction of the information bits are sent through a BSC with crossover

probability p, which models the correlation between the sources X1 and X2. As we can

see, bits are sent over two different independent channels. This process is shown in Fig. 19,

where n2 = k + |PX2 |. Wireless channel is assumed to be an ideal channel unless indicated

otherwise. The following lemma computes PX1 and PX2 using the parallel channel model

in Fig. 19.
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Figure 19: Parallel channel model for distributed source coding of two sources (ni is the
length of the LDPC code): source Xi.

Lemma 9. Let PX1 and PX2 be the parity bits generated by the encoders of Fig. 18. Then,

to recover both sources with low bit error rates at the decoder, the number of the parity bits

|PX1 | and |PX2 | are at least equal to (1− a)kh(p) and akh(p), respectively.

Proof. We prove the lemma for the source X2. The overall channel capacity in Fig. 19b is

computed from Ceq = (1 − a)R2 + aR2c(p) + (1 − R2), where c(p) = 1 − h(p) denotes the
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capacity of BSC with cross over probability p. The highest code rate for this channel is

R2 ≤ Ceq, that results in R2 = k
k+|PX2

| ≤ 1
1+ah(p) . This implies |PX2 | ≥ akh(p).

The procedure we discussed above involves two channel codes. However, we are in-

terested in a method that distributed source codes two sources at every valid rate on the

Slepian-Wolf rate region using a single channel code. First, we need to identify the rate of

such a code that is capable of encoding all sources. The rate of the LDPC code in Fig. 19b

is R2 = 1
1+ah(p) . As we can see R2 increases from R = 1

1+h(p) to 1 as a varies from one to

zero. Similarly, the rate of the LDPC code for X1 is R1 = 1
1+(1−a)h(p) that decreases from 1

to R as a varies from one to zero. The range of the rates that needs to be covered for both

sources are identical. Therefore, for code design, it is sufficient to consider only one of the

sources and the other one will be automatically covered.

Using a rate-compatible code, we design a parent code for the lowest rate, R. Puncturing

the parity bits of the parent code, higher rates are achievable. The parent code corresponds

to the case that no information bits but all parity bits are sent (a = 1). The corresponding

parallel channel model is demonstrated in Fig. 20. For this set of parallel channels, we

design a parent code whose performance, ideally, does not degrade by puncturing (here, by

performance we mean the ratio R
C , where C is the capacity of the channel and R is the

maximum rate of the code for which the error probability is less than a required value).

p

BSC

Wireless

Channel

(1-R)n

Rn

n

Figure 20: An equivalent model for the channel of Fig. 19 when a = 1.

The resulting distributed source coding for source X2 at every arbitrary rate is demon-

strated by Fig. 21. Source X2 is fed into a systematic channel code of rate R = 1
1+h(p) ,

fraction (1 − a) of the information bits in X2 along with the fraction a of the generated

parity bits are transmitted. The same procedure is applied to X1 with the exception that

the remaining fraction of information bits in X1 and parity bits in P are transmitted. The
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Figure 21: Parallel channel model for distributed source coding of two sources (n in the
length of the LDPC code): source X2.

corresponding compression rates for X1 and X2 are equal to RX1 = a + (1 − a)h(p) and

RX2 = (1 − a) + ah(p), respectively. It can be easily verified that these compression rates

satisfy (1) with equality. By changing the value of a, every valid rate on the Slepian-Wolf

rate region is achievable by using a single systematic channel code. The total compression

rate for sources X1 and X2 is at least 1 + h(p). We note that although we considered

Bernoulli sources with parameter 1/2, a similar method can be used for other choices of the

Bernoulli parameter Q. It suffices to modify the scheme such that the total compression

rate be at least h(Q) + h(p).

The following lemma asserts that if the parent code has performance very close to the

overall capacity of the channel in Fig. 20, then the distributed source coding at every ar-

bitrary rate on the Slepian-Wolf limit approaches its theoretical limit. More precisely, the

lemma shows that by using a single systematic rate-compatible parent code that approaches

the Shannon limit, not only every arbitrary compression rate is achievable, but the com-

pression rates are very close to the Slepian-Wolf limits.

Lemma 10. If a rate-compatible channel code of parent rate R achieves the capacity of the

channel in Fig. 20, then it also approaches the capacity of the channel in Fig. 21.

Proof. Let R and R2 denote the rates of the codes and C and Cp be the overall capacities

of the channels in Fig. 20 and Fig. 21, respectively. It can be easily verified that R/C and

R2/Cp are identical. Using [49], we are assured that the code for Fig. 20 also performs well
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for channels in Fig. 21.

We conclude that, if the parent code reaches the overall capacity of the channels in

Fig. 20, then the punctured parent code will achieve the capacity of the Fig. 21. Thus,

the compression rate reaches the Slepian-Wolf limit. A long-length LDPC code performs

very close to the Shannon capacity and is resistant to random puncturing. Therefore, the

scheme in Fig. 21 with an infinite-length LDPC code performs close to the theoretical limit.

However, as stated earlier, we are interested in applications such as sensor networks where

the length of the code is finite. For finite-length LDPC codes, there is a performance loss

due to puncturing. In the following section, we study the design procedure for finite-length

rate-compatible LDPC codes that result in performance close to the Slepian-Wolf limit.

4.2.1 Encoding

In the design procedure, we consider the fact that not all data bits have equal importance,

because certain bits may need a higher level of protection against error than the other parts.

In [53], the authors showed that unequal error protection using LDPC codes can be utilized

for such applications. Information bits are the most important bits, i.e., the parity bits

are only used to recover the information bits and their bit value are not of our interest in

the systematic LDPC code. Therefore, we divide the codeword bits into two groups and

consider two levels of protection. One group consists of information bits which are the

most important bits (MIB). The other group contains the parity bits which are the least

important bits (LIB). Thus, we design a systematic parent rate-compatible LDPC code of

rate R with distinct variable node degree distributions for its information bits and parity

bits.

We introduce an ensemble g(Λ, ρ) of bipartite graphs for unequal error protection, where

Λ(x) and ρ(x) denotes the degree distribution for variable nodes and check nodes, respec-

tively. For unequal error protection, we use two sets of degree distributions λ1(x) and λ2(x)

correspond to information bits and parity bits, respectively. A random realization of H is

generated based on the degree distribution (Λ(x), ρ(x)). Using Gaussian elimination, the

parity-check matrix H ′ for the equivalent systematic LDPC code is constructed. Matrix
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H ′ is used to find the generator matrix G for the systematic LDPC code. For encoding a

sequence, we compute the parity bits of this sequence using the matrix G. The same matrix

G is used to encode both sources X1 and X2.

4.2.2 Decoding

The decoder needs to determine a length-n sequence of X1 from its available parity bits PX1 ,

its partially available information bits, and its correlated sequence X2. As shown in Fig. 21,

the decoder has three sets of bits available: the error free set which is the fraction (1− a)

of information bits in X2 and fraction a of parity bits, punctured set which is the fraction

(1 − a) of parity bits, and the noisy set which is the fraction a of information bits in X1.

In order to apply the message passing algorithm, LLR values of all bits are required to be

known. LLRs of the fraction of the bits that passes through the ideal channel are infinity,

the LLR’s of the fraction that passes through the BSC are ln(1−p
p ), and the punctured

bits have zero LLRs. Then, the message passing algorithm can be executed to decode the

source message X2. As we can see, the fraction (1−a) of the parity bits in X2 is considered

to be punctured. However, the same fraction of the parity bits in X1 is available at the

decoder error free. We note that we do not use these bits of X1 in the decoding process

of X2. To explain the rationale, we need to find the correlation probability between the

parity bits of sources X1 and X2 given that the correlation probability between information

bits in X1 and X2 is p. More precisely, we need to compute P [PX2 6= PX1 |PX1 ] subject to

P [X2 6= X1|X1] = p. It can be verified that the quantity is given by

P [PX2 6= PX1 |PX1 ] =
1
2
− 1

2
(1− 2p)k,

where k is the average degree of the generator matrix. Since the correlation probability is

very close to 1/2, the missing fraction of the parity bits in X2 may be viewed as punctured

bits. The source X1 is decoded similarly. We note that, the decoders communicate to each

other to exchange some of the information bits prior to decoding. However, thereafter, each

performs the decoding independently. Therefore, errors in one decoder does not affect the

other one.
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In this section, we investigated the problem of distributed source coding of two correlated

sources at any arbitrary rate on the Slepian-Wolf limit. In the following section, we extend

our method to three or more correlated sources and we show how our method exploits the

correlation between all sources simultaneously as opposed to the previous work that only

considers the pair wise correlation, separately.

4.3 Distributed Source Coding of Three Sources at Arbi-
trary Rates

Consider a communication system of three sources X1, X2, and X3 each of which is i.i.d.

binary sequences of length k. Sources X1, X2 and X3 are statistically dependent to each

other such that P [Xk 6= Xi|Xi] = pik, ∀i, k ∈ {1, 2, 3} and i 6= k. The correlation between

source Xi and Xk, while Xj is present at the decoder is modeled with Qij(k) as shown in

Fig. 12.

The source coding of Xi is done as follows: source Xi is fed into a systematic LDPC

code of rate Ri. The distributed source encoder sends the corresponding parity bits along

with only ai fraction of the information bits in Xi. This results in compression rate of

RXi = aik+Pi
k , where PXi is the number of the parity bits associated with the LDPC code

of rate Ri. By changing the values of ais, every point on the Slepian-Wolf rate region is

achievable by this method. To apply the distributed source coding of three sources by using

a single systematic LDPC code, we need to know the rate of the parent LDPC code. Then,

arbitrary compression rate on the Slepian-Wolf limit is achieved by puncturing specific

fraction of the parity bits of the parent code. In order to know the rate of the parent LDPC

code we need to know the number of the required parity bits. As stated earlier, source Xi

needs PXi parity bits. The following lemma shows that the total number of the required

parity bits |P | = |PX1 |+ |PX2 |+ |PX3 | is fixed and is independent of the values of parameter

ais.

Lemma 11. The total number of the parity bits required for source coding of three sources

with the method explained above is at least equal to k(h(X1, X2, X3)− 1).

Proof. According to Slepian-Wolf theorem, the lowest compression rates for three sources
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must satisfy the following:

RX1 + RX2 + RX3 = h(X1, X2, X3).

Using the chain rule, we have

a1k + PX1 + a2k + PX2 + a3k + PX3

k
= 1 + h(X2|X1) + h(X3|X2, X1).

Thus, we have P = PX1 +PX2 +PX3 = k(h(X1, X2, X3)−1). We note that P depends only

on the correlation probabilities of sources. The rate of the required LDPC code is computed

from R = 1
h(X1,X2,X3) .

Similar to the two-source case, we use a parallel channel model for sources to find the

value of PXi with respect to P . The model is obtained as follows: At the receiver, the

bitstreams of three sources need to be combined for full recovery. The decoder of X1 has

a1k information bits and PX1 parity bits perfectly. To construct the whole sequence, the

decoder tries to recover the remaining bits from the fraction a2 of the information bits of

X2 and the fraction a3 of the information bits of X3 which are available at the decoder.

The decoder considers those bits as the output of BSC with crossover probability p12 and

p13, respectively. Therefore, the decoder would access parity bits PX1 and three sets of

information bits: error free bits and the bits passed through BSC with cross over probability

p12 and p13. The decoding procedure of the source X2 is different from that of source X1.

In addition to parity bits PX2 , the decoder has fraction a2 of the information bits error

free. For the fraction a1 of the information bits of X2, the decoder considers those bits of

source X1 (that is available error free) as the output of the BSC with cross over probability

p12. For the fraction a3 of the information bits, the procedure is a little bit different. For

this set of bits, we have the values of both sources X1 and X3 perfectly. Therefore, the

fraction a3 of the information bits of X2 are received from the output of the channel Q13.

Therefore, to recover the source X2, the decoder uses the parity bits and three different sets

of information bits: error free bits, bits passed through BSC with cross over probability

p12, and bits passed through the channel Q13. To recover the source X3, the decoder has

the fraction a3 of the information bits error free. The decoder utilizes the fraction (1− a3)
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of the information bits of both X1 and X2. The decoder considers those bits of X3 as the

output of channel Q12. Therefore, the decoder has two sets of information bits: error free

bits and the bits passed through channel Q12. As an example, distributed source coding of

source X2 can be demonstrated in Fig. 22b.
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Figure 22: Parallel channel model for distributed source coding of three correlated sources:
(a) source X1, (b) source X2, and (c) source X3.

The following lemma indicates the number of the required parity bits for each source

based on the value of ais.

Lemma 12. For distributed source coding of X1, X2, and X3 as described in Section 4.3,

we must have |PX1 | ≥ k(a2h(p12)+ a3h(p13)), |PX2 | ≥ k(a1h(p12)+ a3h(Q13)), and |PX3 | ≥
k(1− a3)h(Q12), where h(pij) = h(Xj |Xi) and h(Qij) = h(Xk|Xi, Xj).

Proof. The proof for PX1 and PX3 is omitted because of the similarity to Lemma 15. The

overall capacity for the channel of Fig. 23 is Ceq = R2(a1c(p12) + a2 + a3cQ13) + (1 − R2),

where cQ13 is the capacity of the channel Q13. The highest code rate for this channel

is R2 ≤ Ceq which results in the code rate of R2 ≤ 1
1+a1h(p12)+a3h(Q13)

. This implies

|PX2 | ≥ k(a1h(p12) + a3h(Q13)).

Therefore, by using a systematic rate-compatible parent LDPC code of rate R =

1
h(X1,X2,X3) , and puncturing fraction of the parity bits, every arbitrary rate on the Slepian-

Wolf rate region is achieved. To decode sources, we apply message passing algorithm to the

bits observed from the channel and the bits available at the decoder. The decoder of Xi

has its available parity bits PXi , its partially available information bits, and its available
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Figure 23: An equivalent model for the channel of Fig. 22b.

correlated sequences. In order to apply the message passing algorithm, LLR values of all

bits are required. LLRs of the fraction of the bits that are passed through the ideal channel

are infinity, the fraction that is passed through the BSC with cross over probability pij has

LLR of ln(1−pij

pij
), and the fraction that passed through the channel Qij has LLR that is

equal to ln(2−pij−pik−pjk

pik+pjk−pij
), if Xi and Xj are identical and to ln(pij−pik+pjk

pik−pjk+pij
) otherwise. Then,

we decode Xi by applying the message passing algorithm.

4.4 Distributed Source Coding of M Sources at General
Rates

Consider a communication system of M sources X1, X2, · · · , and XM which are identically

distributed binary sequences of length k. Each bit is assumed to be zero and one with

equal probability. These sources are statistically dependent to each other in which the

dependency between each pair can be fully described by the conditional probability mass

function P [Xi|Xj ] = pij . Let source Xi be compressed at rate RXi , then the Slepian-Wolf

rate region for distributed source coding of these M sources is given by [74]:

RXi1
+ RXi2

+ · · ·+ RXil
≥ h(Xi1 , · · · , Xil |Xj1 , · · · , XjM−l

), (33)

where l ≤ M , {i1, i2, · · · , il} ⊆ {1, · · · ,M} and {j1, j2, · · · , jM−l} = {1, · · · ,M}/{i1, i2, · · · , il}.
Similar to three-correlated sources case, total number of the parity bits required for

source coding of M sources is equal to k(h(X1, · · · , XM )− 1). Thus, a parent LDPC code

of rate R = 1
h(X1,··· ,XM ) is required. Here, we consider the encoding of source Xi. The
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same procedure with a few modification is applied to encode the rest of the sources. After

encoding by the systematic parent LDPC code of rate R, the fraction ai of the information

bits in Xi and the fraction xi of the generated parity bits are transmitted. The fractions

of the information bits in each source are chosen such that
∑M

i=1 ai = 1. Moreover, the

bit positions are complimentary of each other (i.e., each bit position is sent from only one

encoder). By changing the value of ais, any arbitrary rate on the Slepian-Wolf rate region

can be achieved. Similar to Lemma 15 and Lemma 12, the values of xis are determined

based on the values of ais.

At the receiver, the bitstreams of all sources need to be combined for full recovery. The

decoder needs to determine a length-n sequence Xi from its partially available parity bits,

aik information bits, and its (1− ai)k information bits in Xjs, where j ∈ {1, 2, · · ·M} and

j 6= i.

4.5 Simulation Results

We give experimental results for distributed source coding of two and three correlated

sources at different rates. First, we simulate the distributed source coding of two sources

at an asymmetric rate (a = 1), a symmetric rate (a = 1/2), and two arbitrary rates on

the Slepian-Wolf rate region (a = 1/3 and a = 2/3). Next, we provide the distributed

source coding results of three sources at an asymmetric rate (a1 = 1, a2 = 0, and a3 = 0),

a symmetric rate (a1 = 0.28, a2 = 0.34, and a3 = 0.38), and an arbitrary rate on the

Slepian-Wolf region (a1 = 1/3, a2 = 1/3, and a3 = 1/3).

The parameter p is assumed to be equal to 0.11, which is assumed to be known at the

encoder. Using p = 0.11 and the mentioned distribution for X1 and X2 , we obtain the joint

entropy h(X1, X2) = 1.5 and the conditional entropy h(X2|X1) = h(p) = 0.5. We design

a rate-compatible LDPC code of rate R = 1
1+h(p) = 2/3 with an unequal error protection

property whose length is n = 1000. The same code is used to distributed source code a

system of any number of correlated sources at any arbitrary compression rate. This code
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was chosen randomly from the ensemble that is defined by the following degree distribution

Λ(x) = {λ1(x), λ2(x)} = {0.6406x + 0.0319x6 + 0.3043x8, 0.1784x + 0.6372x4 + 0.1845x6}
(34)

ρ(x) = {0.52x12 + 0.48x13}.

Here λ1(x) and λ2(x) denote the variable-node degree distribution of the parity bits and

information bits, respectively. We utilize two sets of degree distribution for the variable

nodes to achieve unequal error protection property. Note that ρ(x) is the check-node degree

distribution.

4.5.1 Two Correlated Sources

To study performance for different rates on the Slepian-Wolf rate region, we consider the

following rates:

RX1 = 2/3, RX2 = 5/6 (point a )

RX1 = 3/4, RX2 = 3/4 (point b )

RX1 = 5/6, RX2 = 2/3 (point c )

(35)

The above rates are taken when parameter a has values 1/3, 1/2, and 2/3, respectively. To

achieve the compression rates in (49), puncturing is applied to the LDPC code with the

degree distribution given in (34).

Figure 32 shows the results of the bit error rate averaged over the two sources X1

and X2 as a function of the joint entropy for the rates in (49). In addition to the rates

in (49), the result of the asymmetric rate is also presented. As we can see, there is a subtle

performance degradation in comparison with the asymmetric rate. For the length of 1000,

convergence of the LDPC codes is achieved at h(X1, X2) = 1.327, h(X1, X2) = 1.317, and

h(X1, X2) = 1.317, for the asymmetric rates, point a, and point b, respectively.

In this experiment, bit error rates (BER) lower than 10−5 are desired. For the length of

1000, convergence of the LDPC codes is achieved at h(X1, X2) = 1.327, h(X1, X2) = 1.317,

and h(X1, X2) = 1.317, for the asymmetric rates, point a, and point b, respectively. As we

can see, there is a subtle performance degradation in comparison with the asymmetric rate.
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Figure 24: The gap between Slepian-Wolf limit and the convergence of the LDPC code
and length 1000 for different rates of distributed source coding.

4.5.2 Three Correlated Sources

In this section, we provide simulation results for distributed source coding of three corre-

lated sources. For simplicity, we assume sources to be correlated with the same correlation

probability p = 0.11, which results in RX1 + RX2 + RX3 = h(X1, X2, X3) = 1.92. To study

performance for different rates on the Slepian-Wolf rate region, we considered the following

rates:

• Point a: Asymmetric rate (i.e., RX1 = 1, RX2 = 0.5, and RX3 = 0.42) resulting from:

a1 = 1, a2 = 0, and a3 = 0.

• Point b: Symmetric rate (i.e., RXi = 0.64, for i ∈ {1, 2, 3}) resulting from: a1 = 0.28,

a2 = 0.34, and a3 = 0.38.

• Point c: RX1 = 0.67, RX2 = 0.64, and RX3 = 0.61 resulting from: ai = 1/3, for

i ∈ {1, 2, 3}.

The following table summarizes the results for three sources at three different rates using

LDPC code of length 1000. In this experiment, BER lower than 10−5 were desired.

Table 3: Total compression rate achieved using a rate-compatible systematic LDPC code
with the unequal error protection property and length 1000.

Point h(X1, X2, X3) Gap from the theoretical limit
a 1.61 0.3
b 1.59 0.32
c 1.59 0.32
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The simulation results suggest that there is a very small performance degradation for

points b and c in comparison with the asymmetric rate (point a). For the length of 1000,

convergence of the LDPC codes for point a, point b, and point c are achieved at h(X1,

X2, X3) = 1.61, h(X1, X2, X3) = 1.59, and h(X1, X2, X3) = 1.59, respectively.

4.6 Conclusion

We proposed a scheme for distributed source coding of correlated sources that achieves

every arbitrary rate on the Slepian-Wolf rate region. This method is based on sending

a fraction of the information bits along with a fraction of the parity bits generated by a

systematic LDPC code. We showed that the distributed source coding problem is simplified

to designing a rate-compatible LDPC code that has unequal error protection property. We

proved that there is no rate loss across the Slepian-Wolf rate region for every arbitrary

compression rate. This was also confirmed by simulation results. The simulation results

showed that performance improvement is achieved by our proposed scheme. First, we

considered two correlated sources. Since each source is decoded independently (only part

of information bits is exchanged between the decoders), the system does not suffer from

the problem of error propagation. Then, we studied distributed source coding of three

sources. No particular correlation model among sources is necessary for this approach. The

simulation results confirm that the gap from the theoretical limit remains almost intact for

different compression rates.
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CHAPTER V

LOSSY DISTRIBUTED SOURCE CODING

5.1 Introduction

So far, we considered the problem of lossless distributed source coding. In many applications

such as sensor networks, some distortion can be tolerated. In these cases, lossy distributed

source coding results in compression with higher rates and consequently saves more energy.

In this chapter, we propose a scheme for lossy distributed source coding with side informa-

tion available at the decoder based on sending parity bits using LDPC codes. LDPC codes

are chosen because of their good performance and their practically feasible belief propa-

gation decoding. We provide the design procedure for the LDPC code that guarantees

performance close to the Wyner-Ziv limit for long-length LDPC codes. Simulation results

are obtained for short-length sequences.

Wyner and Ziv studied the lossy distributed source coding with side information avail-

able at the decoder [76]. This is a generalization to the setup of Slepian-Wolf theorem [69]

in that coding is with respect to a fidelity criterion rather than lossless. A theoretical study

of this problem in the binary case was recently presented by Shamai, Verdu and Zamir [67].

The work can be viewed as an extension of Wyner’s scheme to the lossy case. The authors

suggested to use nested linear codes and send the corresponding syndromes. They showed

that lossy distributed source coding using a set of good linear codes can perform close to

the Wyner-Ziv limit. The authors did not provide any practical designs for nested codes.

Liveris et al. provide a practical designs for nested codes using convolutional codes [40].

Our proposed lossy distributed source coding is based on sending parity bits that is a sub-

stantial diversion over the previous work which is based on syndromes [67]. As mentioned

in Chapter 4, in applications where wireless channels is not error free, the syndrome-based

method cannot be applied for distributed source coding, while the parity-based method can

be used.
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5.2 Lossy Distributed Source Coding

Wyner and Ziv were the first who studied the lossy distributed source coding . The result

of their work is Wyner-Ziv theorem that is a generalization to the Slepian-Wolf theorem

and provides a rate-distortion function for lossy distributed source coding of two sources.

Consider a communication system of two statistically Bernoulli sequences X and Y (with

parameter 0.5). The dependency between these two sources can be fully explained by their

conditional probability mass function P [X|Y 6= X] = p. In lossy distributed source coding

with side information available at the decoder , one of the signals, X, is compressed con-

ventionally and recovered perfectly at the decoder, while the other signal, Y , is compressed

at a rate close to the Wyner-Ziv theoretical limit RWZ(d). The goal is to reproduce the

source Y by Yd at the receiver such that ρ(Y, Yd) does not exceed d, where ρ(Y, Yd) is the

distortion measure between Y and its recovered sequence Yd. It is convention to use Eu-

clidean distance as distortion measure. However, instead, the Hamming distance can be

used for binary sources. Rate-distortion function RWZ(d) is defined as [76]

RWZ(d) =





g(d) 0 ≤ d ≤ dc,

g(dc)
(
1− d−dc

p−dc

)
dc ≤ d ≤ p,

where

g(d) =





h(p ∗ d)− h(d) 0 ≤ d < p,

0 d = p,

h(x) is the entropy function of x, p ∗ d , p(1 − d) + (1 − p)d, and dc is the solution to

g(dc)
dc−p = g′(dc). In Fig. 25, RWZ(d) is plotted for p = 0.27. In this figure RY |X(d) is also

plotted, where RY |X(d) denotes the rate-distortion function of lossy coding of Y given X

available at both the encoder and the decoder. RY |X(d) is computed from

RY |X(d) =





h(p)− h(d) 0 ≤ d ≤ min {p, 1− p},
0 d > min {p, 1− p}.

As we can see, unlike the Slepian-Wolf region, the Wyner-Ziv function suffers a loss in rate

relative to the case, where both the encoder and the decoder have access to X.

Lossy source coding of Y with length k and the side information X available at the

decoder is studied in [67]. Their method is based on nested linear codes. Two linear codes
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Figure 25: Wyner-Ziv limit and RY |X(d) for p = 0.27 as a function d.

defined by parity-check matrices H1(m1×n) and H2(m2×n) are chosen such that m1
n = h(d)

and m2
n = h(p ∗ d), and code 2 is a subcode of code 1. Therefore, the parity-check matrices

H1 and H2 satisfy the following:

H2 =
[H1

Ha

]
. (36)

Every codeword Yd of H1 satisfies H1Y
T
d = 0. The Wyner-Ziv encoding of two binary

sources consists of the following steps:

1. Among the codewords of H1, select Yd which is the closest to Y in the Hamming

distance.

2. HaY
T
d is sent to the receiver.

The compression rate of the Wyner-Ziv encoder is R = m2−m1
n = h(p ∗ d)−h(d) as desired.

The decoder receives HaY
T
d and has X as the side information. Since Yd is a codeword of

H1, H1Y
T
d = 0 and

H2Y
T
d =

[ 0
HaY T

d

]
. (37)

We know that Yd = Y + N1 = X + N2 + N1, where N1 and N2 are Bernoulli(d) and

Bernoulli(p), respectively. Therefore, Yd = X ⊕ N , where N = N1 + N2 is Bernoulli with

parameter p∗d. Using a set of good linear codes, Yd is recovered using X and the syndromes
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of (37). In [67], the authors show that lossy distributed source coding with side information

available at the decoder using a set of good linear codes can perform close to Wyner-Ziv

limit. However, the authors did not provide any practical designs for these nested codes.

In [40], the authors used nested convolutional codes whose performance was 0.09 bits away

from the theoretical limit for code of length 5× 105.

5.2.1 Proposed Method for Lossy Distributed Source Coding

In this section, we introduce a method for lossy distributed source coding based on parity

bits using low-density parity-check (LDPC) codes [63]. LDPC codes are chosen because

of their good performance and their practically feasible belief propagation decoding. We

provide the design procedure for the LDPC code that guarantees performance close to the

Wyner-Ziv limit for long-length LDPC codes. We show that there exists an LDPC code

with specific column weight that attains the rate-distortion function asymptotically.

Lossy coding of Y with length k and the side information X available at the decoder is

done as follows: First, Y is mapped to a sequence Yd, where ρ(Y, Yd) < d. The mapping of

Y to Yd will be discussed later in details. Then, Yd is fed into a rate R systematic channel

encoder. At the output of the encoder, we only send a fraction of the generated parity bits.

This results in compression rate of less than 1
R − 1.

Suppose the generator matrix of the channel code is G = [I|P1|P2], where I is the

identity matrix of dimension k × k, and P1 and P2 are matrices of dimensions k × kh(d)

and k × k(h(p ∗ d) − h(d)), respectively. For signal Yd, the corresponding codeword is

[Yd|YdP1|YdP2]. The Wyner-Ziv encoding of the binary source Y consists of two steps:

1. Among the codewords associated with P T
1 , select Yd which is the closest to Y in

Hamming distance.

2. Yd is fed into the systematic generator and the corresponding parity bits are sent to

the receiver. The generated parity bits are [YdP1 = 0|YdP2]. We only need to send

parity bits YdP2.

Lemma 13. The procedure explained above results in compression rate of h(p ∗ d)− h(d).
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Proof. The correlation between Yd and X can be modeled by a BSC with crossover prob-

ability p ∗ d. As shown in Chapter 3, for lossless distributed source coding of Yd with side

information X available at the decoder, a code of rate 1
1+h(p∗d) is required. Therefore, the

length of the generated parity bits is kh(p ∗ d), from which kh(d) bits are zero. Therefore,

k(h(p ∗ d)− h(d)) parity bits are adequate to be sent, which results in compression rate of

h(p ∗ d)− h(d).

Now, we need to explain how Yd can be generated from Y . In other words, we need

to determine Yd as a codeword of the parity-check matrix P T
1 such that ρ(Y, Yd) < d. The

connection between Y and Yd can be modeled by a BSC with crossover probability d, as

shown in Fig. 26. Applying the decoding algorithm to Y , the desired Yd is generated. Having

Yd, the parity bits YdP2 are generated and sent to the decoder. Lossy source coding of Y

d

BSCYd Y

Figure 26: Correlation between Y and its distorted version Yd.

with side information X is shown in Fig. 27, where the solid line shows the bits that are sent

to the decoder and dashed lines show the bits that are not sent. The decoder determines
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Figure 27: Lossy source coding of Y with side information X at the decoder.

the sequence Yd using parity bits and the side information available at the decoder. As

stated before, we assume that the wireless channel is an ideal channel.

5.2.2 Code Design

In this section, we study the design procedure of the systematic LDPC code that achieves

the Wyner-Ziv theoretical limit. The parity-check matrix associated with the generator
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matrix G is of the form

H =

[
P T

1

P T
2

∣∣∣∣∣I
]
. (38)

First, we design the equivalent LDPC code with parity-check matrix H =
[

C1
C2

∣∣C3

]
. Then,

we use Gaussian elimination to derive an equivalent parity-check matrix in the systematic

form of (38). The matrix H should be designed such that the following two conditions are

satisfied:

1. C1 must be designed such that Y can be mapped to Yd.

2. The matrix H must be designed such that Yd can be recovered from the available

parity bits and the correlated source X.

We use the MacKay LDPC code to design H. MacKay’s ensemble is an ensemble of LDPC

codes with m×n parity-check matrices, each is constructed as follows: for every column of

H, first, set the column to all 0s and repeat the following procedure t times. Choose an index

uniformly at random and independently from {1, 2, . . . , m} and flip the corresponding bit of

the column. If an index is chosen an odd number of times in t repetitions, the corresponding

element of the column becomes one, and otherwise, the element becomes zero [43]. The

generated code is called (m,n, t)-LDPC codes. In this section, we show how the value of t

must be chosen to ensure a lossy distributed source coding with performance close to the

theoretical limit.

To design C1, we consider the fact that the corresponding codeword is passing through

BSC with crossover probability of d. Thus, a code rate of at most 1 − h(d) is required to

ensure a reliable recovery for Yd. We know that C1 is parity-check matrix of a code with

rate 1 − h(d). According to [43], given a noise distribution P (n) with entropy h(n) and a

ratio λ = 1
h(d) < 1

h(n) , there exists an integer t such that for any desired error rate ε > 0,

there is an integer m such that (m, k, t)-LDPC code recovers Yd from Y with probability

of error less than ε. Based on this theorem we choose C1 as (m, k, t)-LDPC code, where

m ≥ kh(d).

To design the matrix H, we consider the fact that different bits are subject to different

noise as shown in Fig. 27. Thus, C =
[

C1
C2

]
and C3 are designed differently. These codes
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are designed for BSC(p ∗d) and ideal channel, respectively. The following procedure shows

how t1 and t2 must be chosen for C and C3 to ensure a reliable recovery for Yd.

We have two sets of noise, n1 with probability distribution P (n1) and length l1 = k and

n2 with probability distribution P (n2) and length l2 = kh(p ∗ d). The typical set for these

two sets of bits is defined as follows:

Ti =
{
n ∈ {0, 1}li :

∣∣ 1
li

log2

1
P (ni)

− h(ni)
∣∣ ≤ ηi

}
, (39)

where i ∈ 1, 2. The probability that decoder fails is denoted by Perr and bounded as follows:

Perr([C|C3]) ≤
[ ∑

n1∈T1

P (n1)
∑

n′1∈T1

n′1 6=n1

δ(C(n1 − n′1) = 0 mod 2)+

∑

n2∈T2

P (n2)
∑

n′2∈T2

n′2 6=n2

δ(C3(n2 − n′2) = 0 mod 2)
]
,

(40)

where δ(s) denotes the indicator function which has value 1 if the statement s is true and

has value 0, otherwise. We now average (40) over codes [C|C3]:

Perr ≤
[ ∑

n1,n′1∈T1

n′1 6=n1

P (n1)
∑

C

prob(C)δ(C(n1 − n′1) = 0)+

∑

n2,n′2∈T2

n′2 6=n2

P (n2)
∑

C3

prob(C3)δ(C3(n2 − n′2) = 0)
]
.

(41)

Following the same procedure as in [43], the condition for vanishing Perr is

exp[−2H−1(h(ni) + η′i)λiti] < log2[1− λi(h(ni) + η′i)], (42)

where λi = li
kh(p∗d) and η′i ≥ ηi + 1

li
log2(li + 1). The parameter ti can be found from (42).

Based on these values of ti, matrix H is generated.

5.2.3 Simulation Results

In this section, we give experimental results for lossy distributed source coding with side

information available at the decoder . The correlation p and the distortion d are assumed

to be equal to 0.27 and 0.11, respectively. These parameters result in RWZ(0.11) = 0.405.
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The required LDPC code has rate 1
1+h(p∗d) = 0.525. Code C1 which maps Y to Yd has

rate RC1 = 1 − h(d) = 0.5. This code is generated from the ensemble (250, 500, 3). The

matrix H recovers Yd from the parity bits received from the channel and the parity and

information bits available at the decoder. For this purpose, C3 is chosen from ensemble

(452, 452, 8) and C2 is chosen such that C belongs to the ensemble (452, 500, 5), considering

the fact that C1 belongs to ensemble (250, 500, 3)). The values for t1 and t2 are obtained

using (42). The simulation results show that at d = 0.063, Y is mapped to Yd such that

on the average ρ(Y − Yd) < d. Moreover, our distributed source code can recover Yd at

p = 0.14 and d = 0.063 with negligible error. In other words, our scheme performs 0.2 bits

away from the Wyner-Ziv theoretical limit for the LDPC code of length 952. We also run

the simulation results for LDPC code of length 1905. The gap from the theoretical limit

decreases to 0.18. We expect that if longer LDPC codes are used, the performance would

approach to the theoretical limit.

5.3 Conclusion

We proposed a scheme for lossy distributed source coding with side information available

at the decoder using LDPC codes. Our proposed lossy distributed source coding is based

on sending parity bits that is a substantial diversion over the previous work which is based

on syndromes. The design methodology for the LDPC code that guarantees performance

close to the Wyner-Ziv limit for long-length LDPC codes is provided. Simulation results

for short-length sequences are obtained.
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CHAPTER VI

ADDITIONAL PROBLEMS RELATED TO

DISTRIBUTED SOURCE CODING

6.1 Introduction

In this chapter, we study two additional problems related to distributed source coding. So

far, we assumed the correlation parameter to be known in advance. Here, we investigate

the distributed source coding of correlated sources, when there is no prior knowledge about

the correlation parameter at the time of code design (prior to the network deployment).

Although, the emphasize in on lossless distributed source coding, the proposed method can

be easily extended to lossy distributed source coding. Instead of designing the channel code

for the lowest correlation, we introduce a method that involves rate adaptive channel coding.

The simulation results confirm that our compression technique is superior to the design of

the code for the lowest possible correlation probability, when the correlation parameter is

unknown in advance.

Then, we study distributed joint source-channel coding of two sources over wireless

erasure channels whose erasure probability is unknown. In this chapter, we show that

rateless LT codes are more suitable for these applications than the standard block codes.

All papers on distributed source coding assume that the compressed data arrives at the

decoder with no error (ideal wireless channel) or passes through a noisy channel with a

known noise level.

As shown in previous chapters, distributed source coding can be modeled with a set

of parallel channels. Instead of designing the best LT code for the equivalent channel, we

propose to design a nonuniform LT code by considering the fact that different bits are

subject to different sources of noise. We also propose an improved decoding algorithm for

LT codes. The proposed decoding algorithm improves the performance of the LT codes,
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considerably. We show that distributed source coding using nonuniform LT codes and the

proposed decoding algorithm performs close to the theoretical limit. The simulation results

confirm that the gap from the theoretical limit remains almost the same for any erasure

probability and every arbitrary rate on the Slepian-Wolf rate region.

6.2 Distributed Source Coding with Unknown Correlation
Parameter

In this Section, we focus on distributed source coding of two correlated sources of length k

with unknown correlation property at the time of code design [63]. Although the emphasize

is on lossless distributed source coding at the asymmetric rate, the proposed method can be

easily applied to lossy distributed source coding with the side information available at the

decoder. We assume that source X is compressed conventionally and recovered perfectly

at the decoder, and source Y is compresses using a systematic channel code. According to

Chapter 3, if P [Y 6= X|X] = p, then a code of rate 1
1+h(p) is required to generate kh(p)

parity bits, where the generated parity bits construct the compressed Y . As stated earlier,

the value of p is unknown in advance, but it will be available after the network deployment.

One approach to solve this problem is designing the channel code for the least correlation

probability, pw. In other words, a channel code of rate Rw = 1
1+h(pw) is designed, which

generates kh(pw) parity bits. Then, after obtaining the correlation probability p, the encoder

punctures k(h(pw) − h(p)) parity bits and send the remaining kh(p) parity bits to the

receiver. This method performs weakly. In [48], the authors proved the existence of LDPC

code ensemble with no performance degradation after puncturing for asymptotic cases over

erasure channels. However, for finite-length codes and non-erasure channels, performance

loss was reported as we puncture more bits [25]. Therefore, we propose a method that

would puncture fewer bits than the first method.

6.2.1 Proposed Method for Distributed Source Coding with Unknown Corre-
lation Parameter

We propose to design a LDPC code of rate 1
1+t , where the value of t is determined shortly.

As stated earlier, after deployment the correlation value between X and Y is found to be
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equal to p. According to the Slepian-Wolf theorem, a total number of k(1 + h(p)) bits is

required at the receiver. Based on the value of the parameter p, one of the following cases

is possible:

1. h(p) < t: Hence, source X is compressed conventionally. For the source Y , we send

kh(p) parity bits to the receiver and puncture the remaining k(t − h(p)) parity bits.

This procedure is demonstrated in Fig. 28
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Figure 28: Distributed source coding with unknown correlation parameter-case 1.

2. h(p) > t: This case will result in distributed source coding at rates other than the

corner point. Since the required number of the parity bits is not available, we com-

pensate by sending a fraction of the information bits. In other words, a fraction of

the information bits along with the required number of the parity bits are sent. The

other source sends the complementary (1−a) fraction of the information bits with the

required parity bits. As shown in Chapter 4, k(1− a)h(p) and kah(p) parity bits are

required to recover both sources at the receiver, respectively. Therefore, the following

two inequalities must be satisfied:




(1− a)h(p) < t,

ah(p) < t.

Solving these inequalities results in h(p) < 2t. Since max (h(p)) = h(pw), t must

satisfy t > h(pw)
2 . The value of the parameter a can be chosen such that (1−a)h(p) = t.
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Therefore, no puncturing is required for the first source. However, for the second

source, k(t − ah(p)) parity bits are punctured and the remaining kah(p) parity bits

are transmitted. This procedure is shown in Fig. 29. As we can see, the proposed

method results in compressing the sources at arbitrary rates in Chapter 4.
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Figure 29: Distributed source coding with unknown correlation parameter-case 2.

In the following section, we compare the performance of the proposed method with the

performance of the code optimized for a known value of correlation parameter. To design

the channel code for this application, we use rate-compatible LDPC codes.

6.2.2 Simulation Results

We give experimental results for our proposed distributed source coding scheme, when

correlation property is unknown at the time of code design and it becomes available at

time of encoding. We assume that the least correlation between sources is pw = 0.2.

The first method, which is designed for the worst case, requires an LDPC code of rate

RW = 1
1.72 = 0.58. Our proposed scheme requires an LDPC code of rate 1

1.36 = 0.735.

Suppose the actual correlation between sources is p = 0.11. The simulation results show that

the first method and the proposed method are 0.24 and 0.195 bits away from the Slepian-

Wolf limit. As we can see, our method performs better than the LDPC code designed for

the worst case scenario. We also give the simulation results of the code optimized for the

correlation parameter, i.e., the correlation parameter is known at the time of code design.
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The following table summarizes these results.

Table 4: Gap from the Slepian-Wolf Limit using LDPC code of length 1000 with different
methods for unknown/known correlation parameter.

First Method Proposed Method DSC with Known p

Gap from the Slepian-Wolf Limit 0.24 0.195 0.18 ( [61])

6.3 LT codes

Rateless codes are a new class of codes that have been invented recently. LT codes [41],

raptor codes [68], and Online codes [44] are examples of such codes. The idea behind the

rateless codes is that every receiver continues collecting the encoded data until decoding

can be finished successfully. Unlike the traditional codes, rateless codes on lossy channels

do not assume any knowledge about the channel. Therefore, rateless codes are very suitable

candidates in the applications that the channel erasure probability is unknown, nonuniform,

or time-varying. A rateless code produces a potentially limitless stream of output symbols

for a given set of k input symbols. The receiver collects the output bits of the encoder from

the channel. If the channel is erasure, then decoder collects any set of n output symbols,

where n = k(1+γ) and γ is a small number representing the coding overhead. However, if the

channel is of any other types of symmetric channels, the receiver collects bits until the sum

of the information of the individual bits is k(1+γ) [17]. As stated in Chapter 3, distributed

source coding can be modeled with a set of parallel channels consisting of binary symmetric

channels with cross over probabilities varying from 0 to 1/2 and an erasure wireless channel

with erasure probability ranging from 0 to 1/2. In this case, we have n ∝ k
Ceq

where Ceq

denotes the overall capacity for the set of parallel channels. It was shown that rateless

codes have very simple encoding and decoding algorithms. Asymptotically good degree

distributions for them were also developed in [41,44,68].

We briefly review the traditional construction of LT codes invented by [41]. Suppose

we want to transmit a information sequence M = (m1, . . . ,mk). Each output symbol

is generated independently and randomly by first sampling from the distribution Ω(x) =
∑k

i=1 Ωix
i to obtain a weight ω between 1 and k. Then, a vector (v1, · · · , vk) of weight ω is
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chosen uniformly at random with probability Ωω

(k
ω)

. The value of the output symbol is then

calculated as
∑

i vimi (rateless code is defined by parameters (k, Ω(x)). This procedure can

also be demonstrated by matrix multiplication. The generator matrix Gn×k is constructed

from row vectors v, where a row vector v is obtained by sampling independently from the

distribution Ω(x) and the output symbols are calculated from mGT = y.

6.3.1 Nonuniform LT Codes

To design the LT code for distributed source coding , we introduce the degree distribution

Υ(x). Suppose the length of the codeword to be n. Each codeword is transmitted over a

set of channels such that ni bits from every codeword is passed through the ith channel. We

define Υ = {Ω(i)(x) : i = 1, . . . , s}, where Ω(i)(x) is the output degree distribution for output

node of type i. In other words, we propose to use the prior knowledge about which bits are

transmitting over each channel in the design procedure. We use Gaussian approximation to

find the degree distribution Υ(x). Let m
(l)
i,o denotes the message send from an input node

to its incident output node in the lth iteration of the message passing algorithm. Also,

let m
(l),(j)
o,i denotes the message that is sent from an output node of type j to its incident

input node. The edge degree distribution of the decoding graph for the output nodes of

type j and the input nodes is given by ω(j)(x) =
∑

d ω
(j)
d xd−1 and ν(x) =

∑
d νdx

d−1,

respectively. Note that we can approximate ν(x) by eα(x−1), where α is the average degree

of the input nodes [17]. Assume that E[tanh(Z
(j)
o
2 )] = s(j), where Z

(j)
o denotes log-likelihood

ratios (LLR) corresponding to the output bit of type j. Following the steps of [17], it can

be shown that the mean of a message sent from an output node of type j at iteration l + 1

is given by

E[m(l+1),(j)
o,i ] =

∑

b

ω
(j)
b ϕ−1

(
1− s(j)

(
1−

∑

d

νdϕ
(
(d− 1)E[m(l)

o,i]
))b−1

)
,

and

E[m(l+1)
o,i ] =

∑

j

q(j)E[m(l+1),(j)
o,i ],
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where q(j) = nj

n and ϕ(x) is defined as

ϕ(x) =





1− 1
2
√

πx

∫∞
−∞ tanh(u

2 )e−
(u−x)2

4x du, if x > 0,

1, if x = 0.

Using the convexity of ϕ(x), one can write the following expression for the update rule of

E[mo,i]:

E[m(l+1)
o,i ] ≥

∑

j

q(j)ϕ−1

(
1− s(j)

∑

b

ω
(j)
b

(
1−

∑

d

νdϕ
(
(d− 1)E[m(l)

o,i]
))b−1

)

≥
∑

j

q(j)ϕ−1

(
1− s(j)

∑

b

ω
(j)
b

(
1−

∑

d

ϕ
(
αE[m(l)

o,i]
))b−1

)

=
∑

j

q(j)ϕ−1

(
1− s(j)ω(j)

(
1− ϕ

(
αE[m(l)

o,i]
)))

.

Let µl = E[m(l+1)
o,i ]. Since ϕ(x) is monotically decreasing, we have

ϕ(µl+1) ≤ 1−
∑

j

q(j)s(j)ω(j)(1− ϕ(αµl)).

Since the means can take any value between 0 and ∞, we obtain the inequality

ϕ(x) ≤ 1−
∑

j

q(j)s(j)ω(j)(1− ϕ(αx)),

for x ∈ (0,∞). This also means that the derivative of the left hand side is maximized by

the derivative of the right hand side at x = 0. Since ϕ′(0) 6= 0, we have

α
∑

j

q(j)s(j)ω
′(j)(0) ≥ 1.

Note that ω
′(j)(0) = ω

(j)
2 = 2Ω(j)/β(j), where β(j) is the average degree of the output nodes

of type j. Therefore, we obtain

∑

j

q(j)s(j)Ω(j)
2

α

β(j)
≥ 1/2.

The minimum value for α
β(j) is

P
i q(i)β(i)

Ceqβ(j) , where Ceq denotes the overall capacity of the

parallel subchannels. Therefore, to have a capacity-achieving LT code, we need to have

∑

j

q(j)s(i)Ω(j)
2

∑
i q

(i)β(i)

Ceqβ(j)
≥ 1/2. (43)
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Using (43), we can optimize the degree distribution of the LT code for the given channels.

In Gaussian approximation, it is assumed that all messages passed at every iteration is

Gaussian. A more refined Gaussian approximation is studied in [17], which assumes that

only messages passed from input nodes to their incident output nodes are Gaussian. The

expectation of the message sent from output nodes to the input node is obtained from

E[mo,i] =
∑

j

∑

d

q(j)ω
(j)
d 2E

[
tanh−1

(Z
(j)
o

2
)
tanh

(X

2
)d−1

]

︸ ︷︷ ︸
f
(j)
d (µ)

, (44)

where X is a random variable with a Gaussian distribution N(µ, 2µ). The update rule for

the E[mi,o] is computed from

E[mi,o] = αE[mo,i] = α
( ∑

j

∑

d

q(j)ω
(j)
d f

(j)
d (µ)

)
. (45)

The maximum value of
P

q(j)β(j)

α is Ceq. The goal is to maximize

( ∑

j

q(j)

∑
d

ω
(j)
d
d

)
/
(
Ceqα

)
(46)

subject to the following constraints:





α
(∑

j

∑
d

q(j)ω
(j)
d f

(j)
d (µi)

)
< µi,

∑
d

ω
(j)
d = 1, ∀j ∈ {1, · · · , s},

ω
(j)
d > 0, ∀j ∈ {1, · · · , s}, ∀d > 0.

The above linear programming gives a degree distribution for an LT code that performs

well for the set of parallel channels.

6.3.2 Systematic LT code

As stated in Chapter 3, distributed joint source-channel coding using channel codes requires

a systematic code. In this section, we study the systematic LT codes. Let us define R

as a k × k matrix consisting of the invertible section of the generator matrix G. The

encoding procedure of input symbols (m1, . . . , mk) consists of two steps. First, the inverse

of the matrix R is used to transform the information symbols into intermediate symbols
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(z1, . . . , zk), i.e, (z1, . . . , zk)T = R−1(m1, . . . ,mk)T. Then, a LT code with parameters

(k, Ω(x)) is applied to the intermediate symbols (z1, . . . , zk). The output of the encoder is

(y1 = m1, . . . , yk = mk, yk+1, . . . , yn) [17]. The following lemma provides a lower bound on

the probability that the matrix G has an invertible submatrix R.

Lemma 14. The probability that the matrix G is full rank is at least

1−
k−1∑

r=1

(
k

r

)( ∑

d

Ωd

min(b d
2
c,b r

2
c)∑

i=max(0,
dd−k+re

2
)

(
r
2i

)(
k−r
d−2i

)
(
k
d

)
)n

.

Proof. Let us define hyperplane(µ) as the set of binary vectors X such that
∑k

i=1 aiXi = 0,

where a = (a1, a2, . . . , ak) is a binary vector of weight µ. The probability that all rows of

the matrix G belong to the hyperplane(µ) for some value of µ is equal to

(∑

d

Ωd

min(b d
2
c,b r

2
c)∑

i=max(0,
dd−k+re

2
)

(
r
2i

)(
k−r
d−2i

)
(
k
d

)
)n

.

There are
(
k
r

)
of these hyperplanes. Therefore, the probability that the matrix is not full

rank is at most
k∑

r=1

(
k

r

)(∑

d

Ωd

min(b d
2
c,b r

2
c)∑

i=max(0,
dd−k+re

2
)

(
r
2i

)(
k−r
d−2i

)
(
k
d

)
)n

.

As we can see, increasing n (i.e., increasing the overhead) increases the probability that

G is full rank. This lemma gives the number of symbols needed to be generated to guarantee

the existence of a full rank matrix R.

6.3.3 Improved LT Decoding

As stated before, in many practical applications including distributed source coding in sensor

networks, we should use finite-length codes. However, one of the problems in LT coding is

the analysis and design of finite-length codes. Although LT codes have good asymptotic

performance, they do not perform very well for finite lengths. To compensate for this

problem, we introduce an improved decoding algorithm that decreases the error probability

while keeping the decoding fast and efficient. First, we briefly review the conventional
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message passing algorithm that is used for decoding LT codes over symmetric channels.

The conventional message passing algorithm is applied to the bipartite graph which has

n vertices (output nodes) on one side and k vertices (input nodes) on the other side. To

apply the algorithm, the LLR values of all bits are required. The LLR values of the output

nodes are initialized based on the observation of the channel output while the LLR values of

the input nodes are initialized to zero. The algorithm proceeds in several rounds. At each

round, the LLR values of the input bits are updated. The LLR value of each bit represents

the reliability of that bit. The decoding process continues till all output bits are satisfied

or maximum number of iterations is reached. If the message passing algorithm decodes

the received word completely, we are done. If the decoding fails, our proposed algorithm

attempts to decode the received word.

The proposed algorithm is based on guessing the value of a few input nodes (γ nodes).

Since guessing the values of some nodes are more critical than others for successful decoding,

we use the following method to choose the input nodes whose values must be guessed.

At the end of the unsuccessful standard message passing decoding, γ intermediate bits

with the smallest reliability are marked. These bits are guessed prior to restarting the

message passing decoding. Standard decoding is repeated with a modification on the LLR

initialization of the guessed input nodes. The LLR values of the guessed bits that have value

of one and zero are set to +∞ and −∞, respectively. The LLR values of the remaining input

nodes are set to zero. This procedure is repeated till either decoding finishes successfully

or all 2γ choices are examined.

In our experiments, we have two values for number of guesses. First we guess γ input

nodes and if the decoding fails, we guess ρ (ρ > γ) input nodes. The reason for having

two numbers of guesses is to reduce the complexity of decoding. With high probability, the

small number of guesses γ is sufficient for successful decoding. However, for few cases a

greater number of guesses ρ is required. This is also confirmed by simulations. Choosing

one large value for the number of guesses improves the decoding, but it also increases the

decoding complexity. Therefore, we need to keep the number of guesses in a reasonable

range. We believe that having two number of guesses help to have more successful decoding
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with low decoding complexity. Our experiments show that we can improve bit error rate

by using the proposed decoding algorithm, while the increment in the decoding complexity

is kept low.

In the following section, we study distributed joint source-channel coding of two corre-

lated sources using systematic LT codes with the proposed decoding algorithm.

6.4 Distributed Joint Source-Channel Coding of Two Sources
at the Corner Point

Similar to Chapters 3, 4, we consider a communication system consisting of two sources

X1 and X2 that are independent, identically distributed binary sequences of length k. The

bits of these signals are assumed to be zero and one, with equal probability. Signals X1

and X2 are statistically dependent to each other and the dependency between them can be

fully described by the conditional probability mass function P [X1|X2]. In this chapter, the

wireless channel is assumed to be an erasure channel.

First, we study distributed joint source-channel coding at the asymmetric rate, in which

X1 is compressed conventionally and sent at full rate RX1 ≥ H(X1) and is recovered per-

fectly at the decoder, and X2 is fed into a rate R systematic channel encoder. At the output

of the encoder, we only send the corresponding parity bits, P2, of the codewords. Source

coding of X2 with side information X1 at the decoder can be modeled with a set of parallel

channels whose overall capacity is given by

Ceq = R(1−H(p) + (1−R)(1− δ), (47)

where (1−H(p)) and (1− δ) represent the capacity of the corerlation channel and erasure

wireless channel with unknown erasure probability δ, respectively. The following lemma

gives the required number of parity bits for distributed source coding of X2.

Lemma 15. For distributed joint source-channel coding of X2 with side information X1

available at the decoder with the method explained above, P2 needs to be at least kH(p)
1−δ .

Proof. The highest code rate for this channel is R ≤ Ceq, which results in a coding rate of

R = k
k+P2

≤ 1
1+H(p)/(1−δ) . This implies P2 ≥ kH(p)

1−δ .
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As stated earlier, we are dealing with wireless channels whose erasure probability is

unknown. Therefore, the total number of the required parity bits is unknown a priori.

One solution is to design different channel codes for each distinct value of δ. However,

this method is highly complex and suboptimal. An alternative solution is to design a single

channel code for the worst case which puts unnecessary burdens on the network. We propose

to use LT codes for this scheme, which is optimal in the number of required parity bits.

As stated in the lemma, kH(p)
1−δ parity bits is required to be generated by the encoder.

After passing through the wireless channel with erasure probability of δ, on the average

kH(p) of the parity bits are available at the decoder. Hence, LT codes in this system, the

encoder generates limitless stream of parity bits. The receiver collects parity bits till it

receives kH(p) bits. Then, the joint source-channel decoder recovers source X2 by using

the information bits in X1 and the collected parity bits. In then, notify the encoder to stop

generating parity bits. In the following section, we extend our method to distributed source

coding at any arbitrary rate.

6.5 Distributed Joint Source-Channel Coding of Two Sources
at Arbitrary Rates

As stated in Chapter 4, for some applications, we are interested in distributed source coding

at rates other than the corner point. The method of distributed source coding at arbitrary

rate introduced in Chapter 4 needs to be modified, because of the non-ideal wireless channel

whose erasure probability is unknown.

We encode source X1 as follows: X1 is fed into a systematic channel encoder. At the

output of the encoder, only the first a fraction of the information bits in X1 along with

the corresponding parity bits P1 are sent. The compression process of the source X2 is

similar to that of source X1, with the modification that for the second source we send the

remaining (1− a) fraction of the information bits along with the parity bits P2. These bits

are passed through the wireless channel whose erasure probability is unknown. As shown

later, the required number of parity bits depends on the number of the information bits in

X1 and X2 that are not erased during the transmission and are available at the decoder.
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At the receiver, the decoders need to communicate to each other for recovering both

X1 and X2. The decoder of X1 receives a1 = a(1 − δ) fraction of the information bits

in X1 perfectly (aδ fraction of the bits in X1 are dropped during the transmission). To

construct the whole sequence, the decoder tries to recover the remaining bits from the

a2 = (1− a)(1− δ) fraction of the information bits of X2 which is available at the decoder

and P1 parity bits. The distributed source coding can be demonstrated by a set of parallel

channels whose overall capacity is given by

Ceq = aR(1− δ) + R(1− a)(1− δ)c(p) + (1−R)(1− δ), (48)

where δ represents the erasure probability of the wireless channel. The overall capacity

depends on the parameters a and δ. Since we have no prior knowledge about delta, we are

dealing with a channel whose capacity is unknown in advance With the same argument as

the one in Section 6.4, we can conclude that LT code is a suitable choice for this application.

For distributed joint source-channel coding of X1, we send the first a fraction of the

information bits in X1 and P1 parity bits, which are generated using the LT code. Source

X2 is coded similarly with the exception that the remaining a2 = (1 − a) fraction of the

information bits in X2 along with P2 parity bits are sent. Assume a1 fraction of X1 and a2

fraction of X2 are present at the decoder. Then, P1 must be at least 1−(a1+a2)+a2H(p)
1−δ k to

recover source X1 with arbitrary small error rates at the decoder.

The new source coding of X1 is done as follows: source X1 is fed into a systematic LT

code. The encoder sends the first a fraction of the information bits and limitless sequence

of parity bits. The source X2 is coded similarly with the modification that the remaining

(1 − a) fraction of the information bits in X2 are sent. At the receiver, the decoders

communicate and discover the fraction of the information bits they have received perfectly

(i.e. they know the values of a1 and a2). The decoder of source X1 waits till it collects

(1− (a1 + a2) + a2H(p))k parity bits. This results in compression rate of

RX1 =
ka + P1

k
= a +

δ + a2H(p)
1− δ

.

It can be verified that the required number of parity bits for source X2 is P2 = (1−a2)H(p)
1−δ .
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Thus, the compression rate of the second source is equal to RX2 = (1− a) + P2 = (1− a) +

(1−a2)H(p)
1−δ .

As we can see RX1 +RX2 = 1+H(p)
1−δ = H(X1,X2)

CWC
, where CWC denotes the capacity of the

wireless channel. Therefore, by changing the value of the parameter a, any point on the

Slepian-Wolf rate region is achievable using a single LT code regardless of the value of the

erasure probability.

In the following section, the simulation results for distributed source coding using LT

codes is provided.

6.6 Simulation Results

We provide experimental results for distributed source coding using our proposed improved

decoding and nonuniform LT codes. We assume that the correlation between sources is

p = 0.11, which results in RX1 + RX2 = H(X1, X2) = 1.5. We also assume the length of

the information bits to be k = 666. First, we give the simulation results for the improved

decoding algorithm.

6.6.1 Improved Decoding Algorithm

First, we provide the results for distributed source coding at the corner point. In this case,

the decoder needs to determine a length-k sequence of X2 from its available parity bits P2

and side information X1. LLR values of the input nodes are assigned with the same method

described in Section 6.3.3. LLR values of the fraction of the output bits that correspond to

parity bits are infinity and LLR values of the fraction that correspond to the information

bits are ln(1−p
p ). Then, by knowing the LLRs of all bits, the improved decoding algorithm

can be executed to decode the source message X2. In this experiment γ and ρ are equal to

five and nine, respectively. The simulation result shows that in 75% of the cases guessing

is not needed, in 23% of the cases five guesses are needed and in the remaining 2% of the

cases nine guesses are needed for bit error rates (BERs) lower than 10−5. This shows that

in the worst case the time that improved decoding algorithm needs to decode a received

word can be 18 times the average running time for a standard algorithm.
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The following degree distribution is used [68]:

Ω(x) = 0.008x + 0.494x2 + 0.166x3 + 0.073x4 + 0.083x5+

0.056x8 + 0.037x9 + 0.056x19 + 0.025x65 + 0.003x66.

First, we assume the wireless channel to be ideal. We allow the number of guesses to vary

from zero to maximum of 12. Figure 30 shows the average number of guesses required to

achieve BER lower than 10−4 for different values of p. As we can see, in more than 90%

of cases, five guesses is sufficient while nine guesses is sufficient to achieve BER lower than

10−4 in more than 95% cases. Therefore, γ and ρ are chosen to be equal to five and nine,

respectively.
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Figure 30: Required number of guesses to achieve BER lower than 10−4.

Figure 31 demonstrates the results of distributed source coding using LT code at the

corner point with the standard and improved decoding along with the results of [59] and [65].

As we can see, the LT code with improved decoding algorithm performs considerably better

than the LT code with the standard decoding algorithm. In other words, more than one
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Figure 31: Comparison of distributed source coding using LT code of length 1000 with
the proposed decoding algorithm and the standard algorithm at the asymmetric rate along
with the results of [65] and Chapter 3.

order of magnitude improvement is achieved by using the proposed decoding algorithm

compared to the conventional decoding algorithm. To check on performance variation over

noisy wireless channel, we vary δ from 0 to 0.5. The simulation result shows that the gap

from the theoretical limit, H(p)
(1−δ) , remains the same. Although, distributed source coding

using LDPC codes performs the same as distributed source coding using LT codes, the LT

code-based distributed source coding has the additional advantage that we do not need to

know the erasure probability δ.

Then, we study performance of distributed source coding algorithm for different rates

on the Slepian-Wolf rate region. Compressing at the following rates are considered

RX1 = 2/3, RX2 = 5/6 (point a in Fig. 32)

RX1 = 3/4, RX2 = 3/4 (point b in Fig. 32)

RX1 = 5/6, RX2 = 2/3 (point c in Fig. 32).

(49)

The above rates are taken when the parameter a having the values 1/3, 1/2, and 2/3,

respectively. Figure 32 shows the results of the bit error rate averaged over the two sources

X1 and X2 as a function of the joint entropy for rates in (49). In this experiment, BER

lower than 10−5 was desired. In addition to the rates in (49), the result of the asymmetric

rate is also presented. As we can see, there is a small performance degradation for points a,

b and c in compare with the asymmetric rate. For length 1000, convergence of the LT codes
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for asymmetric rate, point a, point b, and point c are achieved at H(X1, X2) = 1.3353,

H(X1, X2) = 1.3195, H(X1, X2) = 1.3227, and H(X1, X2) = 1.3195, respectively.

RX1

RX2

H(X2|X1)=0.5

H(X2)=1

H(X1|X2)=0.5 H(X1)=1

Asymmetric

aa
bb
cc

0.17
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Figure 32: The gap between Slepian-Wolf limit and the convergence of the LT code of
length 1000 for different rates of distributed source coding.

6.6.2 Nonuniform LT Code

Here, we provide the results for distributed source coding using nonuniform LT codes.

As shown in Section 6.4, the process of distributed source coding consists of bits passing

through two independent channels: information bits passed through a BSC with crossover

probability of p1 = 0.11 and the received parity bits passed through ideal wireless channel.

Suppose we want to use an LT code of length 1000 in which 666 bits are information bits

and the receiver needs to collect 334 parity bits, q(1) = 2/3 and q(2) = 1/3.

To reduce the complexity of the linear programming in (46), we make a few assumptions.

First, we assume that the degrees are chosen from the set D = {1, 2, 3, 4, 10, 15, 20, 30}⋃
, {50, 51, . . . , 70}.

Since the second channel is ideal, we assume all degree-one bits are passing through this

channel, i.e., Ω(1)
1 = 0. Based on this assumption we run the linear programming and find

the following degree distribution Υ(x) = {Ω(1)(x), Ω(2)(x)}.

Ω(1)(x) = 0.07x + 0.4x2 + 0.21x3 + 0.16x4 + 0.04x10 + 0.05x20 + 0.043x30 + 0.035x69,

Ω(2)(x) = 0.5x2 + 0.17x3 + 0.15x4 + 0.07x10 + 0.05x15 + 0.06x58.

Figure 33 compares the performance of the distributed source coding using the nonuni-

form LT code of length 1000 with the results of distributed source coding using LT code

designed for the equivalent channel (a BSC with total capacity of Ceq = 2/3). As we can
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Figure 33: Comparison of distributed source coding using the nonuniform LT code and
the LT code designed for the BSC with ceq = 2/3 and the code length of 1000.

see the nonuniform LT code performs considerably better than the LT code designed for

the equivalent channel.

6.7 Conclusion

First, we proposed a scheme for lossy distributed source coding with side information avail-

able at the decoder based on sending parity bits using LDPC codes. The design procedure

for the LDPC code that guarantees a performance close to the Wyner-Ziv limit for long-

length LDPC codes is provided. Simulation results for short-length sequences are obtained.

We expect that if longer LDPC codes were used, the performance would approach the

theoretical limit. Then, we studied the problem of distributed source coding of correlated

sources when there is no prior knowledge about the correlation parameter. The proposed

method results in compressing the sources at rates other than the corner-point rate of the

Slepian-Wolf rate region. The simulation results confirmed that our compression technique

is superior to the design of the code for the lowest possible correlation probability when the

correlation parameter is unknown in advance. Finally, we proposed a scheme for distributed

joint source-channel coding of correlated sources at every arbitrary rate on the Slepian-Wolf

rate region when the erasure probability of the wireless channel is unknown. The proposed

scheme requires systematic LT codes. Therefore, we studied systematic LT codes and found

a bound on the number of generated codeword bits. We also introduced nonuniform LT

codes, since the distributed source coding can be modeled with a set a parallel channels.
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We proposed a decoding algorithm that improves the performance of LT codes, while keeps

the decoding fast and efficient.
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CHAPTER VII

APPLICATION OF DISTRIBUTED SOURCE CODING

TO MULTICAST OVER LOSSY WIRELESS NETWORKS

7.1 Introduction

In this chapter, we study the application of distributed source coding to unicast and mul-

ticast over noisy wireless channels. In wireless networks, multicast is an elementary service

that is used by many applications. Examples of multicast applications include notifica-

tion to a set of nodes, one-to-many delivery in peer-to-peer networks, cellular phone-based

teleconference / game among a group of people. In this work, we specifically consider ad

hoc networks with stationary nodes such as distributed sensor networks. Although, it is

focused on non-mobile nodes, we expect that the work can be extended to the mobile ad

hoc networks. In a large and dense wireless network, multicast should be done efficiently

given the resource constraints. In this work, the following constraints are considered:

• Energy efficiency: Minimizing total number of transmissions. This would save energy

in wireless devices that are equipped with limited power supplies, e.g., batteries.

• Reliability: Providing robustness against lossy links in the network.

• Rate optimality: Maximizing the throughput of the network.

Our method uses rateless error correcting codes to provide reliability and rate opti-

mality, and distributed source coding to ensure the energy efficiency. First, we develop a

unicast algorithm for a randomly deployed lossy wireless network with a single source and

a single receiver. Then, we modify our proposed method for multicast over lossy wireless

networks with local information. For these networks, we also provide a multicast subgraph

algorithm with the goal of delivering information to destinations by maximizing the use of

common links. We show that distributed source coding coupled with the multicast subgraph

algorithm generate a reliable, rate-optimal, and energy-efficient multicast algorithm. We
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compare our scheme with energy-efficient network coding. Our simulations reveal that our

schemes perform very close to network coding, while having lower complexity and higher

adaptability.

7.1.1 Related Work

Multicast problem has two different solutions in the following two scenarios. In the first

scenario, nodes only have relaying capability. In this case, reliable and energy-efficient

multicast for a lossy wireless network becomes the problem of finding minimum-cost mul-

ticast tree that is a NP-hard problem. Moreover, for networks involve only relaying nodes,

it is not possible to achieve the min-cut capacity of the network [14]. In the second sce-

nario, in addition to relaying, each node has the capability of local processing and coding.

Network coding was the first method that allows intermediate nodes to encode. Network

coding provides a rate-optimal, reliable, and energy-efficient multicast technique using the

full knowledge of the network topology [3]. An algebraic framework for network coding

was developed by Koetter and Médard [30], who translated the network code design to an

algebraic problem which depends on the structure of the underlying graph. In network cod-

ing, the intermediate nodes are allowed to encode the information they receive. Therefore,

the information capacity between a sender and a receiver can come close to the network

min-cut capacity, which makes network coding a rate-optimal technique. Network coding

uses linear programming to find a subgraph on which coding is performed. The objective of

the linear programming is to minimize the number of transmissions making network coding

energy efficient. The coding consists of random linear combinations of received packets.

The coefficients of the linear combination is selected from Fq. The work of Li, Yeung, and

Cai [33] shows that the network multicast is possible, if linear coding is performed over a

sufficiently large finite field. However, the larger the size of the field, the more complicated

the operations of encoding and decoding. Furthermore, the complexity of decoding is cubic

in the length of the packet. Another drawback of the network coding is its scalability. The

deterministic network code methods proposed so far may need to be completely redesigned

to accommodate addition of any single node.
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The problem of reliable and energy-efficient data dissemination in multi-hop wireless

network has been studied in [54, 55] in the context of broadcast (which is a special case

of multicast). These schemes employ rateless error correcting codes to provide reliability

and reduce the number of transmissions. In the case of broadcasting, it is necessary that

every node other than the source receive all the necessary data to retrieve the original data.

Therefore, each node is able to generate new packets based on decoding and re-encoding

on the original data. However, this is not the case in optimal multicast. Since in multicast

non-destination nodes might receive a portion of data, decoding and re-encoding would not

be possible at all nodes. Therefore, these schemes cannot be applied for multicast.

The closest work to our approach is the work on reliable multicast in lossy networks

using rateless codes [11, 45, 68]. In single-hop networks, this method is rate optimal and

reliable. In this method, no prior knowledge of the channel noise is needed and coding

is performed only at the source. However, in wireless networks, we are more interested

in multi-hop routes because of the power-saving in multi-hop transmissions. Recently,

Pakzad et. al. [47] proposed a coding scheme for unicast on line networks. They allow

the intermediate nodes to perform decoding and re-encoding, greedy random coding, or

encoding. Based on the application and the constraint, the operation of the intermediate

nodes are chosen. Our work extends this to multicast on wireless networks by combing

the rateless coding with distributed source coding. As shown later, unicast or multicast in

wireless network using only rateless codes is not energy efficient because of the redundant

transmissions at intermediate nodes.

7.1.2 Contribution

First, we show that multicast using only rateless coding is not energy efficient, because

of redundant packet transmissions. We address the energy efficiency problem in wireless

networks by exploring cooperation among nodes in the network. This method is based on

the philosophy that a single node may not be able to achieve significant energy savings,

but collaborating with other nodes enables it to achieve much larger energy savings. One

should note this collaboration is done without nodes communicating with each other.
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For a single source / single destination network, we propose a Distributed Source Coding-

based Unicast algorithm (DSCU) that is energy efficient, rate optimal (for a given directed

subgraph), and reliable over multiple disjoint paths. Our proposed algorithm consists of

rateless coding and distributed source coding (nodes collaboration). Rateless coding is used

to provide reliability and rate optimality, while distributed source coding is used to ensure

energy efficiency. The DSCU can be modified for multicast applications. For Distributed

Source Coding-based Multicast (DSCM), first we develop a simple multicast subgraph using

local information available for each node. This algorithm is based on finding the path that

uses the minimum number of transmissions. The proposed multicast subgraph algorithm

can be applied to wireless networks that has property P defined as follows:

1. Nodes are aware of their neighbors.

2. Nodes are aware of destination node locations.

For DSCM, then we show how modified DSCU can be applied on this subgraph to generate

a multicast algorithm that would satisfy all the required multicast constraints.

In the presentation of this chapter, we first address the following question, given a

subgraph, how to provide a mechanism for energy-efficient, rate-optimal, and reliable unicast

/ multicast. Next, we will address the problem of designing such subgraphs for Unicast /

multicast. In designing such subgraphs, our main goal is the simplicity of the unicast /

multicast subgraph, rather than optimality of such constructions.

7.2 Wireless Erasure Network

The wireless erasure network is modeled by a directed graph g = (V, E), where V denotes

the set of nodes and E denotes the set of edges. The set V can be partitioned into S,

D, and I disjoint subsets. S, D, and I contain the source node, destination nodes, and

intermediate nodes, respectively. In other words, I is the collection of nodes in V that are

neither source nor destination. Each link (i, j) ∈ E represents a memoryless erasure channel

from node i to node j with erasure probability εi,j . The message transmitted from source

s is denoted by w(s). The input of all channels originating from node i in I is denoted by

90



Xi and Xn
i represents Xi consisting of n packets. We define Yi,j as the packets received

from edge (i, j). We denote the packets received at node i from all incoming channels by

Yi. The wireless nature of the network constrains each node to transmit the same packet

on all its outgoing edges, i.e., all neighbors of the node can potentially receive the packet.

We also assume that each node receives the packets from all its incoming edges without

interference. In other words, we assume that the medium access control (MAC) layer would

handle the medium access issues. The packet losses due to channel noise and congestion are

all embedded in the link erasure probability εi,j . In our model, we consider only the energy

spent for radio frequency (RF) transmission as in [73]. Therefore, the energy consumption

is proportional to the number of packet transmissions in the network.

7.2.1 Capacity of Wireless Network

Consider a single source / single destination wireless erasure network described by the

directed graph g(V, E) and assumptions in Section 7.2. Let s and d denote the source and

the destination, respectively. Similar to [14], we define x−y cut, for x, y ∈ V, as a partition

of V into two subsets Vx and Vy such that x ∈ Vx and y ∈ Vy. The x-set Vx (or y-set Vy)

determines the cut uniquely. For the x− y cut given by Vx, the cut-set [Vx,Vy] is the set of

edges from the x-set to y-set, i.e.,

[Vx,Vy] = {(i, j)|(i, j) ∈ E , i ∈ Vx, j ∈ Vy}.

The capacity of such a network is given by [14]

Cd = min
Vs:Vs a s-d cut

C(Vs), (50)

where C(Vs) corresponds to cut-capacity of a s-d cut and is computed by

C(Vs) =
∑

i∈Vs

(1−
∏

j:(i,j)∈[Vs,Vd]

εij). (51)

The capacity in (51) is achievable, if the side information about the location of the erased

packets is available at the decoder. This overhead is negligible when the number of packets

is large enough.
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For a lossy wireless network with single source and multiple destinations di, di ∈ D, the

capacity of the network is given by the minimum value of the capacity between the source

and any of the destinations, i.e.,

C = min
di∈D

Cdi (52)

One should note that the capacity in (52) can be reached, if the intermediate nodes are

allowed to encode.

Example 1. Consider the directed graphs in Fig. 34. We assume all edges have the same

erasure probability ε. In both graphs the goal is to send the information from source s to

destination d. In Fig. 34(a), the message is transmitted to the destination through two paths

while in Fig. 34(b), the message is transmitted through one path. According to (52), the

capacity of these two networks are Ca = 1− ε2 and Cb = 1− ε. As we can see, the network

in Fig. 34(a) has a higher min-cut capacity than that of Fig. 34(b). Therefore, we can

conclude that the greater the number of the paths, the higher the capacity. One should note

that although the packets in Fig. 34(a) flow through more links than that of Fig. 34(b), this

does not necessarily increase the energy consumption. As shown later, the total number of

packets sent after hop 1 is the same in both cases. In situations, where the number of hops

is the same, energy consumption is equal.

( a )

( b )

Source Destination

Source Destination

Node 1

Node 2

Node

Hop 1 Hop 2

Hop 1 Hop 2

s d

s d

Figure 34: Single source / single destination wireless network: Source information is sent
to the destination through (a) two paths, (b) single path.

From now on, we are focusing on unicast / multicast over subgraphs with more than
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one path from the source to the destination. First, we will assume that these subgraphs

with certain properties are given, but later, we will provide a simple algorithm to construct

them.

7.3 Unicast Using Rateless Coding

In this section, we show that unicast using only rateless coding can be rate optimal and

reliable, but it is not energy efficient. For a single source / single destination network, we

assume two disjoint shortest paths from source s to destination d are given. These paths

construct graph gs = (Vs, Es). The neighbors of the source node are called hop-1 nodes. We

assume all links of gs have the same erasure probability of ε. We also assume that the source

has information traffic consisting of k packets to send to the destination node. According

to (52), the capacity of the network is C = 1− ε2.

We propose to use rateless coding for unicast. The operation of nodes are as follows:

• Source node s: Source s encodes the information packets using a channel code with

a rate close to the capacity of the network. Since we are using rateless codes, source

s generates n = k
1−ε2

encoded packets.

• Intermediate nodes I: Node i ∈ I receives on average k
1+ε packets. Node i encodes

the received packets using a channel code with a rate close to the capacity of its

outgoing link. In other words, node i generates k/(1+ε)
1−ε = n encoded packets using

rateless codes. The intermediate node are allowed to encode but they are not required

to decode.

• Destination node d: The receiver recovers the information at hop-1 nodes by sequen-

tially decoding on intermediate nodes starting from neighbors of destination node

going toward the source node. By comparing Y1 and Y2, (1− ε2)n = k encoded pack-

ets would be available at the destination node. Therefore, out of n encoded packets

by the source, k packets are received by at least one of the immediate-intermediate

nodes. According to rateless code properties, for large k, any k encoded symbols is

sufficient for recover k information packets. Thus, the destination node recovers the

information packets.
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Example 2. Consider the single source / single destination network shown in Fig. 34(a).

As mentioned in Example 1, the capacity of the network is (1 − ε2). Therefore, the in-

formation traffic consisting of k packets is mapped to w(s) consisting of n = k
1−ε2

packets.

Each of these encoded packets is reached by node 1 and node 2 via a single transmission

with probability 1 − ε. During the transmission of w(s) over lossy links of (s, 1) and (s, 2),

some of the packets are erased. Nodes 1 and 2 receive Y1 and Y2 consisting of the average

number of n(1 − ε) packets. Nodes 1 and 2 encode Y1 and Y2 to Xn
1 and Xn

2 , respectively

using rateless coding. The destination node receives information from both edges without

interference and attempts to recover the information traffic using the side information about

the erasure locations (the sequence number of lost packets).

7.3.1 Analysis of Unicast Using Rateless Coding

Now, we evaluate the performance of the proposed unicast algorithm using rateless codes

in terms of reliability, rate optimality, and energy efficiency.

Reliability : As explained above, the destination can recover the information packets

perfectly. This shows that the proposed method is reliable.

Rate optimality : Since the ratio of number of the packets in information traffic to the

number of encoded packets is 1 − ε2, the same as min-cut capacity, this method is rate

optimal. It is worth noting that this is achievable because we let the intermediate nodes to

encode.

Energy efficiency : This method is not energy efficient. As an example, consider the

network in Fig. 35. For this network we assume that information traffic consists of three

packets. Source node generates w(s) using rateless codes. Receiving any three of the packets

in w(s), would be sufficient for recovering the original information traffic. Nodes 1 and 2

receive some of the packets. They apply rateless coding on Y1 and Y2 to generate X1 and X2

consisting of four encoded packets. The destination node receives packets from both paths

(s,1,3) and (s,2,3). Applying decoding on the received packets, Y1 and Y2 are recovered.

Some of these packets are redundant. As an example, consider the packets at nodes 1 and

2 in Fig. 35. The packets in Y1 and Y2 can be categorized as follows:
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1. Received at both nodes,

2. Received at only one of the nodes,

3. Erased at both nodes.

Clearly, packets in the first category is redundant and should not be transmitted by both

nodes 1 and 2. Therefore, unicast via rateless coding does not meet all the requirements.

In the next section, we propose a method that is not only rate optimal and reliable, but

also energy efficient. Our proposed method eliminates redundant transmissions, because

correlated information at nodes are eliminated by appropriate distributed source coding

algorithm. In the following section, we introduce the Distributed Source Coding-based

Unicast (DSCU).

Node 1
s d

a    b    c    d

a    b    c    d

a    b    c    d

W   :
(s)

Y :
1

x    y    z    wX :
1→

Y :
2

l    m    n    oX :
2→

Node 2
Node 3

Figure 35: Single source / single destination wireless network of Fig. 34a, when ε = .5.

7.4 The DSCU Scheme with Equal Erasure Probabilities on
All Edges

For a single source / single destination network, we perform DSCU on graph gs = (Vs, Es).

As shown later in Section 7.6, gs consists of two disjoint shortest paths from the source node

to the destination node. According to [14], the capacity of the gs under the assumption that

erasure locations on all links of the network are provided to the destination is Cs = 1− ε2,

where ε is the erasure probability of all links. We assume that the information traffic consists

of k packets, where k is large. The nodes are divided into four disjoint sets based on their

operations:

• Broadcasting (S) nodes: Consists of source node s.
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• Distributed Source Coding (DSC) nodes: Consists of nodes i ∈ DSC such that (j, i) ∈
Es and j ∈ S.

• Destinations (D) nodes: Consists of destination node d.

• Intermediate (I) nodes: Consists of nodes that do not belong to the previous three

sets.

Operation of each set of the nodes is as follows:

1. S-Set: Source node s generates k
Cs

encoded packets using rateless codes. These packets

are sent out on all outgoing edges of s.

2. I-Set: Node i ∈ I applies rateless encoding on the received packets such that |Yi|
1−ε

encoded packets are generated, where |Yi| denotes the number of the packets received

by node i. We are assuming that I nodes only perform encoding. All the operations

introduced for line networks introduced in [47] can also be performed by intermediate

nodes. As an example if node i does decoding and re-encoding, the system can be

adaptive to cases where the erasure is unknown. However, for simplicity, we assume

that intermediate nodes apply only encoding.

3. DSC-Set: First, node i ∈ DSC operates distributed source coding explained in Sec-

tion 7.4.1. Then, on the resulting ki packets applies rateless coding to compensate

the lossy link. In other words, node i sends out ki
1−ε packets on its outgoing links.

4. D-Set: Destination node d gathers information from all its neighbors. Using the chan-

nel coding property and the side information about the erasure locations, d recovers

the source information.

7.4.1 Distributed Source Coding

To describe distributed source coding algorithm, consider a single source / single destination

network whose source node is s and DSC nodes are 1 and 2. As stated above, the source

node s sends n = k
1−ε2

packets over both links (s, 1) and (s, 2). On the average, nε packets

are erased in Y1 and Y2 during the transmission from which nε2 encoded packets are lost

in both of them, these packets are shaded with solid black in Fig. 36. The dotted sections
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in Fig. 36 show n(ε − ε2) packets that are lost in only one of the Y1 or Y2. As we can

see, there are packets that both Y1 and Y2 received. Applying the encoding on Y1 and

Y2 results in sending redundant packets. The goal is to compress Y1 and Y2 such that all

redundant packets are eliminated. One should note that this compression must be done

without any communication between nodes 1 and 2. This is because the intercommunication

between nodes consume energy which is in contrast with our goal. Since the sources are

distributed and are being compressed independently, this system requires distributed source

coding. According to Slepian-Wolf theorem [69], the output of two correlated sources that

do not communicate can be compressed with the same rate as if they were communicating.

This is true when the decoder has access to both compressed outputs. Because of the

specific correlation between Y1 and Y2, the distributed source coding methods mentioned in

Chapters 3, 4 cannot be applied here.

n(1- ε)

2

n(ε- ε )

2

2 nε

2

2

1 2 3 4 5 6

Y1

Y2

n

2

n

Figure 36: Illustration of correlation between Y1 and Y2.

If Y1 and Y2 communicate with each other, then the total number of n(1−ε2) packets are

sufficient to be sent from both nodes 1 and 2. According to Slepian-Wolf theorem, although

nodes 1 and 2 are compressing their information without communicating with each other,

it is sufficient for them to send total of n(1− ε2) packets.

We focus on distributed source coding at the middle point, i.e, Y1 and Y2 are getting

compressed at the same rate. In other words, each node sends n(1− ε2)/2 encoded packets.

Distributed source coding requires a systematic channel code [61]. Y1 is compressed as

follows: Y1 is fed into systematic rateless encoder. At the output of the encoder, the

packets received in the first half of the Y1 along with parity PY1 are sent. The number of

packets in PY1 is n(ε − ε2)/2. It is important to note that PY1 is generated using all the
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received packets in Y1. The same procedure is applied at node 2, with the modification

that the packets in second half of Y2 with generated PY2 are sent. The correlation between

Y1 and Y2 is eliminated and the generated signals X1 and X2 are independent. Figure 37

clarifies our description.

Y1

X1 X2

Y2

Systematic

Channel

Encoder

PY2PY1

Systematic

Channel

Encoder

Y1a Y1b

Y2a Y2b

Y1a Y1b
Y2a Y2b

Figure 37: Distributed source coding of correlated signals Y1 and Y2.

7.4.2 DSCU over l > 2 Disjoint Paths

In this section, we assume that gs consists of l > 2 disjoint shortest paths. The min-cut

capacity of this network is

Cs = 1− εl. (53)

In this case, the method described for l = 2 can be applied with a minor modification to

the operation of the DSC nodes. Set A is defined such that it contains nodes ih, for all

h ∈ {1, 2, . . . , l}, where ih ∈ DSC-set and (s, i) ∈ Es. A systematic LT-code is applied

to the information of these nodes and then fraction 1/l of their information packets along

with the corresponding parity packets are sent. The fractions of the information packets

in each node is chosen such that the bit positions are complimentary of each other (i.e.,

each bit position is sent from only one node). This process generates X
(

n(1+ε)
l

)

ih
. With the

same reasoning as before, this method provides a reliable, rate-optimal, and energy-efficient

multicast method.

From (53), one can see that the greater the number of the paths, the higher the capacity.

We would like to emphasize that increasing the number of paths does not necessarily increase
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the energy usage. In fact, in this case the total number of the packets after Hop i, where i is

a number smaller than the length of the paths in gs, is equal to n(1+ε) which is the same as

that of the network with l = 2. In other words, our proposed method uniformly distribute

the packets over the disjoint paths. Therefore, the total number of the packets remain the

same as the case with smaller number of paths and so is the energy consumption. We

assume there are always two edge-disjoint paths from source to each destination. Studying

the impact of having l outgoing edges from source is part of the ongoing research.

7.5 Extension of DSCU

In this section, we study DSCU on a lossy single source / single destination network, where

erasure probabilities are different on different links. For a single source / single destination

network, DSCU is done on graph gs = (Vs, Es). As shown later in Section 7.6, gs consists

of two edge-disjoint minimum-cost paths from the source node to the destination node,

where the cost is defined as the total number of packet transmission by the entire network.

Neighbors of the source nodes are labeled as 1 and 2. The capacity of gs, Cs is computed

by (52), where εij denotes the erasure probability of the link (i, j). The information traffic

consists of k packets. The nodes are divided into the four disjoint sets similar to the previous

section. The operations of nodes belonging to S-set, D-set, and I-set remain the same as

before. In other words, source encodes k packets to n = k
Cs

encoded packets, intermediate

nodes apply rateless coding to compensate the lossy edges, and destination nodes gather all

the packets from their neighbors and using decoding algorithm they find the original packets.

However, the operation of DSC nodes, for the following reason, need to be modified.

According to Section 7.4, it can be shown that node 1 needs to generate

n
2 (1− εs1) + n

2 (εs2 − εs1εs2)
1− ε13

(54)

packets, where the numerator corresponds to the total number of the information packets

and parity packets needed by the Slepian-Wolf theorem, and the denominator is required

for compensation of the packet loss on the link (1, 3). Similarly, node 2 generates

n
2 (1− εs2) + n

2 (εs1 − εs1εs2)
1− ε24

(55)
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packets. The total number of the packets in (54) and (55) might be greater than the

available bandwidth, depending on the value of the erasure probabilities (we assume that

in each second n packets are sent, which this makes the network to have bandwidth of n

packets/sec). In that case, compression with higher rates is required. Assume εmax denotes

the largest erasure probability of the network. Also, assume node 1 requires to send k1
1−ε13

packets and node 2 required to send k2
1−ε24

packets. To find the value of k1 and k2, the

following equations must be solved for λ and a:





λa(1− εs1) + (1− λ)a(εs2 − εs1εs2) = k1

(1− λ)a(1− εs2) + λa(εs1 − εs1εs2) = k2

k1 + k2 = k

k1
1−εmax

< n and k2
1−εmax

< n

• The first two equations show the total number of the packets each node has to send.

In both Y1 and Y2, the first (n − a) packets are punctured and the compression is

applied on the last a packets. From these a packets, a(1 − εs1) packets are received

correctly at node 1, from which λ fraction is sent along with (1 − λ)a(ε13 − ε12ε13)

parity packets, according to Slepian-Wolf theorem. For node 2, the received packets

in the remaining (1 − λ) packets along with λa(εs1 − εs1εs2) parity packets are sent

on link (2, 4).

• The third equation shows the total number of the packets send out from nodes 1 and

2, before considering the extra parity packets needed for the noisy links (1, 3) and

(2, 4). According to the rateless code properties, any k encoded packets are sufficient

for recovery of the source message consisting of k packets.

• The fourth equation guarantees that the number of the packets injected to the links

at any node is less than n.

Solving these equation, we have

a =
k

1− εs1εs2
, (56)

and the value of λ is bounded by the fourth equation. Figure 38 shows Y1 and Y2 after

puncturing. One should note that extra parity packets are generated to compensate the
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Figure 38: Signals Y1 and Y2 after puncturing.

lossy links (1, 3) and (2, 4). In summary X
k1

1−ε13
1 and X

k2
1−ε24
2 are sent out on links (1, 3) and

(2, 4), respectively.

Now, we evaluate the performance of the proposed unicast algorithm using rateless

codes in terms of reliability, rate optimality, and energy efficiency. The proposed algorithm

is reliable and rate optimal with the same reasoning as the one presented in 7.3.1. DSCU

is also energy efficient, since all correlated packets at are eliminated by distributed source

coding algorithm.

7.6 Multicast Subgraph for Grid Networks

In this section, we introduce a suboptimal algorithm that finds a suitable multicast subgraph

on the network graph g(V, E) with property P. We specifically, consider g(V, E) to be a

gird network. However, we note that our algorithm can also be applied to every network

with property P. In other words, our proposed multicast protocol applies to a large class

of networks and is not confined to the grid networks. The grid network is restricted to a

square of 2r−1 rows and columns with neighbors spaced equally away from each other. We

define Ni as a set of neighbors of i. After running the multicast subgraph algorithm, node

i finds node π[i] ∈ Ni to forward the message to.

The multicast subgraph algorithm is a modified version of Bellman-Ford algorithm and

is based on finding two edge-disjoint minimum-cost paths from source to each destination

nodes. Cost of node i, ξ[i], is defined as the total number of packets required to be sent from

node i and its descendant to destination for full recovery of the message. The cost considers

rateless coding at all intermediate nodes based on the erasure on the links. Given a lossy,
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directed graph g(V, E) with source s, and destination nodes D, the multicast subgraph

algorithm finds two minimum-cost paths for each destination node. The paths to each

destination node are edge-disjoint, but the paths to multiple destinations can have edges in

common.

Algorithm 1 Multicast subgraph Algorithm
Require: g(V, E) with destination node set D.

for d ∈ D do
R(g(V, E), d).

end for

Algorithm 2 R(g(V, E), d)
Require: g(V, E) with d ∈ D

for i ∈ V do
ξ[i] ←∞
π[i] ← Unknown

end for
ξ[d] ← 0
for i ∈ V do

for each neighbor j do
RELAX(g, i, j)

end for
end for

Algorithm 3 RELAX(g, i, j)
Require: g(V, E) with (i, j) ∈ E

if ξ[j] > ξ[i] + ξ[i]
1−εij

then

ξ[j] ← ξ[i] + ξ[i]
1−εij

π[j] ← i
end if
if ξ[j] = ξ[i] + ξ[i]

1−εij
and j 6= s then

if i is closer to more destination nodes than j then
π[j] ← i

end if
end if
if ξ[j] = ξ[i] + ξ[i]

1−εij
and j = s then

π[j] ← π[j]
⋃

i
end if

The proposed algorithm finds one minimum-cost path for each destination. For each

destination, we have at most |Ns| paths, from which we choose the one that has the largest

overlap with paths to other other destination nodes. As stated in Section 7.4.2, we want to

have two edge-disjoint paths from source to each destination. After determining the first
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path for each destination, we delete the edges on these paths while keeping the vertices.

The new graph is indicated with gp(V, E). Then, we execute the algorithm again. The

first and second sets of paths construct the graph gs. The following examples show how

the execution of the proposed algorithm works on a single source / single destination grid

network and single source / two destination grid network.

Example 3. Figure 39 shows a single source / single destination network with equal erasure

probability on all edges. The proposed routing algorithm finds two paths from which one is

randomly chosen. Figure 40 finds the second path. The edges on the path found in Fig. 39
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Figure 39: The execution of the proposed algorithm. The node values and shaded edges
indicate the cost values and the values of π with the iteration of algorithm, respectively.
(a) Before the first pass over the edges. (b)-(e) After each successive pass over the edges.
(f) shows two paths from source to destination d. The path with lighter shade is chosen.

are deleted and the routing algorithm is executed to find the second path on the network of

Fig. 40(a). This process is shown in Fig. 40.

Example 4. The network in Fig. 41 consists of one source and two destination nodes.

Figures 41(c) and 42(c) show paths from the source to destination nodes d1 and d2.

The proposed algorithm only uses the local information available for each node and has

low complexity.
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Figure 40: The execution of the proposed algorithm to find the second path for network
of Fig. 39(a). (a) The network on which the routing algorithm is executed. (b) The second
path from source to the destination.

 (a)

(b)

s

d0k
1-ε

2k
1-ε

k
1-ε

2k
1-ε

2k
1-ε

3k
1-ε

3k
1-ε

4k
1-ε

1

d2

 (b)

(b)

s

d2k
1-ε

3k
1-ε

0
 k
1-ε

 k
1-ε

2k
1-ε

2k
1-ε

3k
1-ε

1

d2

 (c)

(b)

s

d1

d2

Figure 41: (a) The result of the execution of the proposed algorithm for destination d1.
(b) The result of the execution of the proposed algorithm for destination d2. (c) The first
path from source to both destinations.
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Figure 42: The proposed algorithm finds the second path for network of Fig. 41(a) after
deleting the edges of the first path. (a) and (b) The paths from source to destination node
d1 and d2, respectively. (c) The second path from source to destinations.

7.6.1 Multicast on Grid Network

In this Section, we study the DSCM on the subgraph gs generated based on the method

proposed in Section 7.6. The nodes on the generated subgraph find the class they belong

to and their operation is defined based on their class. One should note destination nodes

might belong to more than one class. In other words, a destination node might perform as
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an intermediate node for other destination nodes. For nodes belonging to the set DSC, we

imply the following restriction: node i ∈ DSC, sends out the information packets from the

first half of the packets, and the generated parity packets, if edge (j, i) ∈ gs is horizontal

and sends out the information packets from the second half of the information packets

along with the parity packets otherwise. As an example, we explain the proposed multicast

algorithm for the network of Fig. 43.

(b)

s

d1

d2

2 3

4 5

7 8

Figure 43: A single source / two destination network.

The nodes s, 2, 3, 4, 5, 8, d1, and d2 and the shaded edges in Fig. 43 construct graph gs.

The nodes are divided as follows: S = {s}, D = {d1, d2}, DSC = {2, 4}, and I = {3, 5, d2, 8}.
The min-cut capacity of gs is equal to 1 − ε2. Therefore, the source node s, encodes the

information traffic consisting of k packets to n = k
1−ε2

encoded packets. Nodes 2 and 4,

on average, receive n(1 − ε) packets. Node 2, first performs distributed source coding to

generate Z2. Z2 consists of the information packets from the first half of the packets in Y2,

and generated parity packets. The required number of parity packets is n(ε− ε2)/2. Then,

rateless coding is done on Z2 to generate X
k/2
1−ε

2 . Node 4 uses the information packets from

the second half of the packets in Y4, and generated parity packets to construct Z4. Then,

using rateless coding, X4 consisting of k/2
1−ε2

packets is generated. Nodes 3, d1, and 8 apply

rateless coding on their received packets such that each send out k/2
1−ε packets. Since there

are two edges entering node 5, this node generates k/2
1−ε encoded packets from the packets

received from each link. Therefore, this node sends out k
1−ε encoded packets. Node d2

receives total of k independent encoded packets from links (3, d2) and (5, d2). According to

the rateless code properties, the information packets can be recovered at the destination d2.

Similarly, the destination node d2 recovers the original message. Node d1 receives packets

from links (d1, d2) and (8, d1) and recovers the original message from its received packets.
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7.7 Simulation Results

In this section, we demonstrate the performance of the multicast method using distributed

source coding with the proposed multicast subgraph. We performed simulations to compare

our method with network coding scheme for grid wireless network. For network coding, we

used the scheme proposed in [42] to find the data rates to be sent on each link. We assume

that the direction of the edges is either to the right or up. We present the total number of

transmissions per packet for lossy grid networks of different sizes, different source location,

and different destination locations. The location of the source node and destinations are

reported in the first and second columns of the table, respectively. The node labeling is

shown in Fig. 44. We assume that k = 1000 packets are sent from source node to the

destination nodes.
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Figure 44: The grid networks used for simulation results.

Tables 5, 6, and 7 show the total number of transmissions per packet by the entire

network, when all edges have the same erasure probability of ε = 0.1.

Table 5: Total number of transmissions per packet for network grid 3× 3, where all edges
have the same erasure probability of ε = 0.1.

S D DSCM Network Coding
1 9 4.14 4.14
1 5,9 4.24 4.24
1 5,6,8 4.3 3.23
2 7,9 4.3 4.14

As we can see, the simulation results for our method perform very close to the results of

network coding for the majority of the cases. One should note that although network coding

performs better than our method in some cases, network coding assumes full knowledge of
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Table 6: Total number of transmissions per packet for network grid 5× 5, where all edges
have the same erasure probability of ε = 0.1 and source is located at point 1.

D DSCM Network Coding
19 6.5 6.28

7,18,25 8.7 8.40
7,15,17,25 9.34 9.14

Table 7: Total number of transmissions per packet for network grid 7× 7, where all edges
have the same erasure probability of ε = 0.1 and source is located at point 1.

D DSCM Network Coding
9,25,34,49 13.1 12.54
9,24,34,46 12 10.75

the network topology to perform a computationally intensive optimization. Network coding

uses linear programming to find a subgraph on which coding is performed. Therefore, when

complete knowledge of the network topology is unavailable, network coding is impossible

while one can still use our method. Moreover, the decoding complexity of network coding is

higher than that of DSCM. To retrieve k packets, decoding complexity is in order of O(k3)

and O(k) for network coding and DSCM, respectively.

We also provide simulation results for network grid of size 3 × 3, where erasure prob-

abilities are different. The erasure values are shown in Fig. 45. Total number of packet

transmissions per packet for this network is shown in Table 8.
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Figure 45: The grid networks whose links have different erasure probabilities.

First, we need to solve the set of equations in Section 7.5 to find the number of the

packets each nodes 2 and 4 have to send.




k2 = 1
0.97(0.63λ + 0.27),

k4 = 1
0.97(−0.63λ + 0.7),

where 0.1587 < λ < 0.5238. We choose λ = 0.2, which results in k2 = 0.4k and k4 = 0.6k.

The following table summarizes the simulation results for this network.
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Table 8: Total number of transmissions per packet by the entire network in Fig. 45.
S D DSCM Network Coding
1 9 4.63 4.33
1 5,9 5.27 4.67
1 5,6,8 5.07 4.1

7.8 Conclusion

In this chapter, we study the application of distributed source coding to unicast and mul-

ticast over lossy wireless networks. First, we showed that unicast / multicast using only

rateless error correcting codes on lossy wireless networks is not energy efficient. Then, we

proposed a unicast scheme that uses rateless error correcting codes and distributed source

coding. This algorithm is reliable, rate optimal, and energy efficient. We modified the

unicast algorithm for multicast application on lossy wireless networks, where every node

only has the local information of its neighbors and their positions and the destination node

positions. We also provided a subgraph multicast algorithm that is based on finding a sub-

graph with minimum number of packet transmission. This suboptimal algorithm provides

two edge-disjoint paths from source to each destination. The paths to different destinations

can have edges in common. Finally, we compared the energy efficiency of our multicast

method with network coding that assumes global knowledge. We found that our algorithm

performs very close to network coding with lower decoding complexity.
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CHAPTER VIII

CONCLUSIONS

The goal of this dissertation was to study the theoretical and practical aspects of modern

error-correcting codes. Wavelet codes, LDPC codes, and rateless codes are considered as

modern error control codes.

8.1 Two-Dimensional Wavelet Codes

We extended the idea of one-dimensional wavelet coding to two-dimensional case and in-

troduced half-rate two-dimensional wavelet codes (TDWCs). We investigated properties of

these codes. We showed that these linear codes are lattice cyclic. This property simplifies

the encoding and the erasure decoding of TDWCs. We also introduced a methodology to

design TDWCs over binary erasure channels. We showed that the half-rate TDWCs of

dimensions N1×N2 satisfy the Reiger bound with equality for burst erasures of dimensions

to N1×N2/2 and N1/2×N2. These codes can recover burst erasures with a simple and ef-

ficient ML decoding. We also provided examples that recover any rectangular burst erasure

of area N1N2/2.

8.2 Distributed Source Coding

We studied the problem of distributed source coding for two and three correlated signals

using LDPC code or rateless codes. Our method is based on sending a fraction of information

bits and a fraction of parity bits. Since our method is based on parity bits, it can be

adapted to the applications whose wireless channels are noisy. We proposed to model

the distributed source coding problem with a set of parallel channel that simplifies the

distributed source coding to designing non-uniform channel codes. This design criterion

improves the performance of the source coding considerably. We studied the following

problems related to distributed source coding.
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8.2.1 Lossless Distributed Source Coding, when the Correlation Parameter is
Known

We studied the distributed source coding at the corner point. We showed that this problem

is simplified to non-uniform LDPC code and semi-random punctured LDPC codes for a

system of two and three correlated sources, respectively. Then, we extended our method to

distributed source coding at any arbitrary rate on the Slepian-Wolf rate region. We showed

that the distributed source coding problem is simplified to designing a rate-compatible

LDPC code that has unequal error protection property. We proved that there is no rate

loss across the Slepian-Wolf rate region for every arbitrary compression rate. This was

also confirmed by simulation results. We also provided a decoding algorithm that lets

the sources be decoded independently, thus avoids any error propagation. The simulation

results confirmed that our proposed method for both corner point and arbitrary rate on

the Slepian-Wold rate region performs considerably better than the previous works on this

field.

8.2.2 Lossless Distributed Source Coding, when the Correlation Parameter is
Unknown in Advance

We undertook the problem of distributed source coding, when there is no information about

the correlation value at the time of code design. In this problem, we assumed the nodes

become aware of their correlation parameters after deployment. We showed that the solution

to this problem is similar to distributed source coding at arbitrary rates on the Slepian-

Wolf limit. The simulation results confirmed that our compression technique is superior to

the design of the code for the lowest possible correlation probability, when the correlation

parameter is unknown in advance.

8.2.3 Lossy Distributed Source Coding

We extended the idea of lossless distributed source coding to the problem of lossy distributed

source coding, when the side information is available at the decoder. Our proposed method

is based on sending parity bits generated by LDPC codes. We provided a design procedure

for the LDPC code that guarantees performance close to the Wyner-Ziv limit for long LDPC
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codes.

8.2.4 Lossless Distributed Joint Source-Channel Coding, when the Channel
Status is Unknown

We studied the distributed source coding problem for applications whose wireless channel is

an erasure channel with unknown erasure probability. We showed that for these application,

rateless codes are better candidates than standard error correcting codes. As stated above,

we modeled the distributed source coding problem with a set of parallel channels, which

requires non-uniform channel coding. We introduced non-uniform LT codes and proposed

a decoding algorithm that improves the performance of LT codes, while keeps the decoding

fast and efficient. The simulation results showed that distributed source coding using non-

uniform rateless code with the proposed improved decoding algorithm performs almost the

same as LDPC code, while they are a better fit for the applications with erasure wireless

channels.

8.2.5 Multicast

We studied, for the first time, the application of distributed source coding to unicast /

multicast over lossy wireless channels. We showed that unicast / multicast via only rateless

error-correcting codes is not energy efficient. We proposed a unicast scheme that uses

rateless error-correcting codes and distributed source coding. Rateless coding is used to

provide reliability and rate optimality, while distributed source coding is used to ensure

energy efficiency. Therefore, this algorithm is reliable, rate optimal, and energy efficient.

We modified the unicast algorithm to arrive at a multicast scheme on lossy wireless networks,

where nodes only have the local information of their neighbors and the destination node

positions. We also provided an algorithm that finds a multicast subgraph with minimum

number of packet transmission. This suboptimal algorithm provides two edge-disjoint paths

from source to each destination. The paths to different destinations can have edges in

common. The proposed algorithm is low complex. We compared the energy efficiency of

our multicast method with network coding that assumes global knowledge. With, respect

to energy efficiency, we found that our algorithm performs very close to the network coding,
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however, with lower decoding complexity.

8.3 Suggestions for Future Work

This dissertation opened up many theoretical and practical research possibilities in error-

control coding and related areas in signal processing and communications. In the following,

only some of the several interesting and potentially rich problems are listed.

• Problems related to distributed source coding

– Studying finite-length non-uniform LDPC codes

– Investigating finite-length rate-compatible LDPC codes

– Extending distributed source coding to more than three sources

– Applying coding methods to applications such as

1. Watermarking and data hiding

2. Multimedia data transmission

• Problems related to multicasting over lossy wireless networks

– Providing an optimal routing using only local information about the network

– Investigating the optimal number of paths from source to destinations
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APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Proof of Lemma 3

First, we show that < geq, g
′
eq >= 0, if the 2-D code generated using geq is self dual. The

array geq(n) is a valid 2-D codeword and so is g′eq(n), because of the lattice-cyclic property

of the code. Since the code is self dual, the inner product of any two codewords is zero, i.e.,

< geq, g
′
eq >= 0.

Next, we need to show that if < geq, g
′
eq >= 0, then the code is self dual. Let c(n)

and c′(n) be codewords corresponding to the message arrays m(n) and m′(n), respectively.

The codeword array c′(n) can also be generated from c′(n) = (m ↑M~ g′eq)(n). The inner

product of codewords c and c′ can be written as

< c, c′ >=
∑

i,j,k,l

m↑M(i, j)m↑M(k, l) < geq[i, j], g′eq[k, l] >, (57)

where geq[i, j] is a cyclic shift of geq in the direction of lattice point (i, j). One should note

that (i, j) and (k, l) are lattice points, since the m↑M has value of zero at non-lattice points.

Since we assumed the inner product of the geq(n) and any cyclic shift of that is zero, (57)

is equal to zero. In other words, the code is self dual.

A.2 Proof of Lemma 8

It is assumed that the element at position (1, 1) is a lattice point. We know that | detM| = 2.

Thus half of the elements are non-lattice points. We note that at least one of the elements

at positions (1, 2) or (2, 1) is a non-lattice point. We may assume the element at (1, 2) is a

non-lattice point. As mentioned earlier, the traveling vector is




2

2


. Therefore, to prove

that (N1/2 + 1, N2/2 + 1) is the coordinate for a non-lattice point, we need to show that

there exists an integer k such that
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(((1 + 2k))N1 , ((2 + 2k))N2) = (N1/2 + 1, N2/2 + 1). (58)

has an answer. This equation can be rewritten as the following:





1 + 2k ≡ N1
2 + 1 mod N1

2 + 2k ≡ N2
2 + 1 mod N2

N1 must be a multiple of four to have an answer for the equation. Thus N2 must be an

even number such that GCD(N1, N2) = 2 for the second equation to have an answer.
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