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SUMMARY

As computer and communication networks become prevalent, the Internet has

been a battlefield for attackers and defenders. One of the most powerful weapons

for attackers is the Internet worm. Specifically, a worm attacks vulnerable computer

systems and employs self-propagating methods to flood the Internet rapidly. As a

result, worms, such as Code Red, Slammer, and Witty, have infected hundreds of

thousands of hosts and become a significant threat to network security and manage-

ment. Moreover, the attacking methods generated by worms’ designers have become

increasingly sophisticated, which poses considerable challenges to defenders.

The objective of this research is to characterize worm attack behaviors, analyze

Internet vulnerabilities, and develop effective countermeasures. More specifically,

some fundamental factors that enable a worm to be designed with advanced scanning

methods are presented and investigated through mathematical modeling, simulations,

and real measurements.

First, one factor is an uneven vulnerable-host distribution that leads to an optimal

scanning method called importance scanning. Such a new method is developed from

and named after importance sampling in statistics and enables a worm to spread much

faster than both random and routable scanning. The information of vulnerable-host

distributions, however, may not be known before a worm is released. To overcome this,

worms using two sub-optimal methods are then investigated. One is a self-learning

worm that can accurately estimate the underlying vulnerable-host distribution while

propagating. The other is a localized-scanning worm that has been exploited by Code

xv



Red II and Nimda worms. The optimal localized scanning and three variants of lo-

calized scanning are also studied. To fight against importance-scanning, self-learning,

and localized-scanning worms, defenders should scatter applications uniformly in the

entire IP-address space from the viewpoint of game theory. Next, a new metric, re-

ferred to as the non-uniformity factor, is presented to quantify both the unevenness

of a vulnerable-host distribution and the spreading ability of network-aware worms.

This metric is essentially the Renyi information entropy and better characterizes the

non-uniformity of a distribution than the Shannon entropy. With the help of the

non-uniformity factor, five data sets from real measurements show that vulnerable

hosts are indeed highly unevenly distributed in the Internet.

Finally, another fundamental factor is topology information that enables topological-

scanning worms. The spreading dynamics of topological-scanning worms are modeled

through a spatial-temporal random process and simulated with both real and synthe-

sized topologies.

xvi



CHAPTER I

INTRODUCTION

Since the Morris worm arose in 1988, Internet worms have been a persistent security

threat. For example, the Code Red worm compromised at least 359,000 machines in

24 hours on July 19, 2001 [39]. The Slammer worm was unleashed with a 376-byte

user datagram protocol (UDP) packet and infected more than 90% of vulnerable hosts

in 10 minutes on January 25, 2003 [41]. These active worms caused large parts of

the Internet to be temporarily inaccessible and cost both public and private sectors

millions of dollars. Moreover, the frequency and the virulence of active-worm out-

breaks have been increasing dramatically in the last few years, presenting a significant

threat to today’s Internet. Therefore, it is imperative to characterize the worm attack

behaviors, analyze Internet vulnerabilities, and study countermeasures accordingly.

1.1 Internet Worm Attacks

A key characteristic of an Internet worm is self-propagation. That is, active worms

can spread rapidly by infecting computer systems and by using infected hosts to

disseminate the worms in an automated fashion. Based on the target-search process,

we can divide Internet worms into two types: scan-based and topology-based worms.

1.1.1 Scan-Based Worms

A scan-based worm probes the entire IPv4 address space or the routable address

space. For example, when a worm is released into the Internet, it simultaneously

scans many hosts in an attempt to find a vulnerable host. When a target is found,

the worm sends out a probe to infect it. After this target is compromised, the worm

transfers a copy of itself to this host. The newly infected host then begins to run

1



the worm program and to compromise other targets. All these steps are combined

into one for the Slammer worm [41]. That is, the Slammer worm uses a single UDP

packet to scan, compromise, and spread the worm to targets.

1.1.2 Topology-Based Worms

A topology-based worm spreads through topological neighbors. For example, the

Morris worm retrieves the neighbor list from the local Unix files /ect/hosts.equiv and

/.rhosts and in individual users’ .forward and .rhosts files. Another topological worm

is a SSH worm, which locates new targets by searching its current host for the names

and the addresses of other hosts that are likely to be susceptible to infection [55]. An

email virus is another example of topological worms. When an email user receives an

email message and opens the attachment containing a virus program, the virus infects

the user’s machine and uses the recipient’s address book to send copies of itself to

other email addresses. The addresses in the address book disclose the neighborhood

relationship.

1.2 Research Objectives and Solutions

The objective of this thesis is to model and defend against worm attacks that use

different advanced scanning methods. Specifically, we investigate the fundamental

factors that enable a worm to be designed with advanced scanning methods. We

attempt to answer the following important questions:

• What factors can help a worm spread faster and why?

• When worms take advantage of a specific factor, what is the “best-case scenario”

for worm attacks?

• How can we analyze quantitatively the relationship between the spreading speed

that worms can achieve and the factors that worms can use?

2



• How can we defend against such fast-spreading worms?

To investigate these questions, we apply mathematical modeling methodology and

verify analytical results through simulations and real measurements. Mathematical

models can provide quantitative analysis on the propagation dynamics of worms and

the effectiveness of defense systems. Specifically, our mathematical models ignore the

details of the infection process inside a single computer and focus on key character-

istics of worm-spreading dynamics. For example, we consider a vulnerable host to

be in one of two possible discrete statuses, infected or susceptible. A susceptible host

can be infected by other infectious hosts, while an infected host can be recovered and

become susceptible. Combining infection and recovery provides one of the simplest

models, the susceptible → infected → susceptible (SIS) model. Here, the susceptible

→ infected (SI) model, which further ignores recovery, is regarded as a special case

of the SIS model. Although simple, the SIS (or SI) model captures the most im-

portant characteristics of worm-scanning methods. Meanwhile, simulations and real

measurements are used to verify our analytical results and approximations.

In this thesis, the following four topics are investigated:

1. Designing an optimal worm-scanning method: Most Internet worms use

random scanning. The distribution of vulnerable hosts on the Internet, how-

ever, is highly non-uniform over the IP-address space. This implies that random

scanning wastes many scans on invulnerable addresses and more virulent scan-

ning schemes may take advantage of the non-uniformity of a vulnerable-host

distribution. An optimal scanning method, importance scanning, is presented.

Importance scanning is developed from and named after importance sampling

in statistics and scans the IP-address space according to an empirical distribu-

tion of vulnerable hosts. Furthermore, a game-theory approach is applied to

counteract importance-scanning worms.

3



2. Analyzing sub-optimal worm-scanning methods: The use of side infor-

mation by an attacker can help a worm speed up the propagation. This philoso-

phy has been the basis for advanced worm-scanning mechanisms such as hitlist

scanning, routable scanning, and importance scanning. Some of these scan-

ning methods use information on vulnerable hosts. Such information, however,

may not be easy to collect before a worm is released. As the optimal scanning

strategy is difficult to implement, two practical sub-optimal scanning methods

are investigated. Specifically, a self-learning worm using importance scanning

is presented. The self-learning worm is demonstrated to have the ability to

accurately estimate the underlying vulnerable-host distribution if a sufficient

number of infected hosts are observed. Another sub-optimal scanning method

is localized scanning that has been used by Code Red II and Nimda worms.

The optimal localized scanning and three variants of localized scanning are also

studied.

3. Evaluating the vulnerability of the Internet: Five data sets from real mea-

surements show the clustered vulnerable-hosts distributions consistently. The

information on the highly uneven distributions of vulnerable hosts is exploited

by network-aware worms, such as importance-scanning and localized-scanning

worms. It is not well understood, however, how to characterize the relation-

ships between vulnerable-host distributions and network-aware worms. A new

metric, referred to as the non-uniformity factor, is presented to quantify both

the unevenness of a vulnerable-host distribution and the spreading ability of

network-aware worms. This metric is essentially the Renyi information entropy

and better characterizes the non-uniformity of a distribution than the Shannon

entropy.
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4. Modeling the spread of topological-scanning worms: It is important

that defenders understand how topological worms spread quantitatively. The

spread of topological-scanning worms, however, is especially hard to model. The

difficulty lies in characterizing the impact of topologies and the interactions

among nodes in both space and time. A spatial-temporal model for worm

propagation in networks is proposed. As the spatial dependence is particularly

difficult to characterize, we propose the independent model and the Markov

model as simple approximations. Our models are motivated by probabilistic

graphs, which have been widely investigated in machine learning.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 surveys the related work.

Chapter 3 presents an optimal worm-scanning method using vulnerable-host distribu-

tions and the corresponding countermeasure from the viewpoint of game theory. Since

the optimal worm-scanning method is difficult to implement, Chapter 4 and 5 focus

on worms exploiting two sub-optimal scanning methods: a self-learning worm and a

localized-scanning worm. Chapter 6 further studies a new metric, the non-uniformity

factor, to quantify the unevenness of a vulnerable-host distribution and the spreading

ability of network-aware worms. Next, Chapter 7 models topological-scanning worm

propagation in network, using a spatial-temporal random process. Finally, Chapter

8 summarizes the research contributions and identifies several future research direc-

tions.
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CHAPTER II

RELATED WORK

In this thesis, we focus on two types of worms: scan-based and topology-based worms.

A scan-based worm probes the entire IPv4 address space or the routable address space,

while a topology-based worm spreads through topological neighbors. These two types

of worms are the most important worms and have been widely studied.

2.1 Scan-Based Worms

A scan-based worm spreads by employing distinct scanning mechanisms such as ran-

dom, selective random, and localized scanning [59, 70]. Random scanning selects

target IPv4 addresses at random and is used by such famous worms as Code Red and

Slammer. Selective random scanning reduces the scanning space, using the informa-

tion such as the Bogon list [62] and/or the IANA’s IPv4 address allocation map [87],

and is used by the Slapper worm. Localized scanning preferentially scans for hosts in

the “local” address space and is used by Code Red II and Nimda worms.

Some advanced scanning methods have been developed in the research community.

For example, Weaver presented the hitlist-scanning idea [68] to speed up the spread

of worms at the initial stage. There, a list of vulnerable machines is built beforehand

and targeted first when the worm is released. An extreme case for the hitlist-scanning

worms is called flash worms [60], where IP addresses of all vulnerable machines are

known in advance and gathered into the list. The flash worms are considered the

fastest possible worms, as every worm scan can hit a vulnerable host. One other

scanning method to improve the spread of worms is to use the information provided

by BGP routing tables. This scanning method is called routable scanning [70, 79]

and is a special case of selective random scanning. Zou et al. designed two types of
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routable-scanning worms (also called routing worms) [79]. One is based on class-A

(x.0.0.0/8) address allocations and is thus called a “Class-A routing worm.” Such a

worm can reduce the scanning space to 45.3% of the entire IPv4 address space. The

other is based on BGP routing tables and is thus called a “BGP routing worm.”

Such a worm can reduce the scanning space to only about 28.6% of the entire IPv4

address space. One other strategy that a worm can potentially employ is DNS random

scanning [26], where a worm uses the DNS infrastructure to locate likely targets by

guessing DNS names instead of IP addresses. Such a worm in an IPv6 Internet is

shown to exhibit a propagation speed comparable to that of an IPv4 random-scanning

worm.

Most of these advanced worms can propagate far faster than a traditional random-

scanning worm. When these advanced worms are studied, however, vulnerable hosts

are assumed to be uniformly distributed in either the entire IPv4 address or the scan-

ning space. Hence, the information on a vulnerable-host distribution is not exploited

by the worms.

Moreover, these advanced scanning mechanisms have been developed based on the

philosophy: The use of side information by an attacker can help a worm speed up the

propagation. In the Internet, however, it may not be easy for attackers to collect the

information on vulnerable hosts. For example, Windows SQL database servers do not

advertise their addresses [41, 79]. Therefore, it is difficult for the Slammer worm to

obtain the list of vulnerable hosts or the underlying distribution of vulnerable hosts

before the worm is released.

Only a handful of works have been carried out on localized scanning. Chen et al.

pointed out that if the vulnerable hosts are uniformly distributed in the IPv4 address

space, localized scanning spreads at a slightly slower rate than random scanning [8].

Zou et al. showed that if the vulnerable hosts are uniformly distributed only in the
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routable address space, localized scanning has a spreading speed comparable to Class-

A routable scanning [81]. Rajab et al. further demonstrated that if the vulnerable

hosts follow a power law distribution, localized scanning can propagate much faster

than random scanning [49]. The prior work, however, focuses on simulation compar-

isons between localized scanning and random scanning. The mathematical reasoning

on these comparisons has not been studied.

2.2 Topology-Based Worms

Topology-based worms (or topological-scanning worms) rely on the “address” infor-

mation contained in the victim machines to locate new targets and is used by the

Morris worm.

Several approaches have been proposed to model and simulate worm spreading in

different topologies. Kephart and White presented the Epidemiological model, which

is suitable for analyzing virus spreading in random graphs [32]. This work points out

the difficulty in applying the Epidemiological model to study arbitrary topologies.

Garetto et al. analyzed worm spreading in small-world topologies using a variation

of the influence model, where the influence of neighbors is constrained to take a mul-

tilinear form [28]. Boguñá et al. studied epidemic spreading in complex networks [6],

and Wang et al. proposed a model for virus propagation in arbitrary topologies [67].

Both works [6, 67] are proposed to obtain the epidemic threshold of virus infection.

Zou et al. and Wang et al. investigated the effect of topologies and immunization

on the propagation of computer viruses through simulation [80, 66]. Ganesh et al.

modeled the spread of an epidemic as a contact process [36] to study what makes an

epidemic either weak or potent [27]. The model assumes that a vulnerable node can

be infected by its infectious neighbors at a rate that is proportional to the number

of infected neighbors. Some recent investigations focus on random-scanning worms.

Zou et al. modeled the spread of the Code Red worm, taking into consideration of the
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human countermeasures and the worm’s impact on the Internet infrastructure [78].

Chen et al. studied the propagation of active worms employing random scanning

and extended the proposed modeling method to investigate the spread of localized-

scanning worms [8]. Moore et al. applied the Epidemiological model to investigate the

requirements for containing the self-propagation worm with random target selection

[40]. The prior work, however, has not incorporated the spatial dependence on worm

propagation in networks. This motivates the development of mathematical models

to capture the spatial dependence and the use of spatial models to characterize both

the transient and equilibrium behaviors of worm propagation with different scanning

methods in arbitrary topologies. Furthermore, based on the models proposed in this

thesis we studied the significance of the spatial dependence in determining epidemic

thresholds and the speed of propagation [42].
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CHAPTER III

OPTIMAL WORM-SCANNING METHOD

3.1 Introduction

As the number of computers and communication networks increases, Internet worms

have become increasingly prevalent [39, 41, 56]. Using malicious, self-propagating

codes, worms spread rapidly by infecting computer systems and disseminating them-

selves in an automated fashion using the infected hosts.

Most worms employ random scanning to select target IP addresses. Since the

density of vulnerable hosts is low, a random scan hits a vulnerable machine with a

small probability. For example, the Code Red worm infected a vulnerable population

of 360,000 machines among 232 IP addresses [77]. Thus, the probability that a random

scan will hit a vulnerable target is only 360,000
232 = 8.38 × 10−5. Therefore, random

scanning wastes many scans on invulnerable addresses.

Future worms, however, are likely to employ more effective scanning strategies

to identify their targets. Hence, it is important that advanced scanning strategies

that can potentially be used to access worst-case scenarios be studied. This chapter

proposes such an optimal scanning method referred to as importance scanning. Im-

portance scanning is inspired by importance sampling in statistics [72, 31, 57]. The

basic idea of importance sampling is to make rare events occur more frequently and

thus reduce the number of samples needed for accurately estimating the correspond-

ing probability. Rare events for worm scanning correspond to hitting a target in a

large population. Thus, importance scanning allows attackers to focus on the most

relevant parts of an address space so that the probability of hitting vulnerable hosts

increases.

Importance scanning relies on a certain statistic of an underlying vulnerable-host
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distribution. An attacker can potentially obtain such information by querying a

database of parties to the vulnerable protocol, stealthy scanning the (partial) target

address space, and/or searching the records of old worms [59].

In view of the amount of information an attacker can obtain, random, flash [60],

and routing [79] worms can be regarded as special cases of importance-scanning

worms. In particular, a random worm has no information about the vulnerable-

host distribution and thus regards the distribution as uniform in the IPv4 space. A

flash worm acquires all knowledge, and the target distribution is uniform only in the

vulnerable-population space. A routing worm has the knowledge from BGP routing

tables about the space of existing hosts, and the corresponding distribution can be

considered as uniform in the routing space.

In this chapter, we assume that a probability distribution of vulnerable hosts is

available/obtainable. We then intend to answer the following questions:

• How can an attacker design a fast importance-scanning worm by taking advan-

tage of the knowledge of the vulnerable-host distribution?

• How can we quantitatively analyze the relationship between the speed that

worms can achieve and the knowledge that attackers can obtain?

• How can a defender counteract such importance-scanning worms?

To answer these questions, we focus on two quantities: the infection rate that char-

acterizes how fast worms can spread at an early stage and the scanning strategy that

is used to locate vulnerable hosts. We first derive relationships between the infec-

tion rate and scanning strategies. We then model the spread of importance-scanning

worms, using the analytical active worm propagation (AAWP) model [8]. We derive

the optimal scanning strategy that maximizes the infection rate. That is, the opti-

mal strategy corresponds to the best-case scenario for attackers and the worst-case

scenario for defenders. As the optimal strategy is difficult to achieve in reality, we
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derive a sub-optimal scanning strategy as an approximation. To assess the virulence,

we compare importance scanning with random and routable scanning. We take the

empirical distributions of Witty-worm victims and Web servers as examples of the

vulnerable-host distribution. We show that an importance-scanning worm based on

parameters chosen from real measurements can spread nearly twice as fast as a routing

worm before the victim population becomes saturated.

Moreover, we demonstrate, from the viewpoint of game theory, that a defense

mechanism against importance-scanning worms requires the uniform distribution of

an application. Under this defense strategy, the best strategy of importance scanning

is equivalent to the random-scanning strategy.

Our designed importance scanning is inspired by importance sampling [72, 31, 57].

Our work, however, is different from [72] in that [72] is on estimating the density of

Web servers and we focus on optimal scanning worms that use an uneven vulnerable-

host distribution. Hence, while [72] studies a static quantity as the density of Web

servers, we consider a dynamic process as the worm propagation. Moreover, [72] uses

the variance of an estimator as the performance indicator, and we employ the worm

propagation speed, such as the infection rate, as the objective function.

The remainder of this chapter is structured as follows. Section 3.2 provides the

background on vulnerable-host distributions and a random worm propagation model.

Section 3.3 describes the problem. Section 3.4 characterizes the importance-scanning

strategy through the theoretical analysis. Section 3.5 shows the propagation speed

of importance-scanning worms empirically. Section 3.6 further discusses the defense

strategy and Section 3.7 concludes the chapter.

12



3.2 Preliminaries

3.2.1 Vulnerable-Host Distributions

The distribution of vulnerable hosts in the Internet is not uniform. This is evident as

no hosts can exist in reserved or multicast IPv4 address ranges assigned by the Internet

Assigned Number Authority (IANA) [87, 73]. More importantly, the vulnerable-host

distribution may be highly non-uniform over the registered IPv4 address space as

indicated by our two collected traces.

The first trace is a traffic log of the Witty worm obtained from CAIDA [92].

The Witty worm attacks ISS firewall products and carries a destructive payload [56].

CAIDA used a Network Telescope to record the packets from the victims of the Witty

worm. Since the network telescope approximately contains 224 addresses, the collected

trace can accurately reflect the distribution of hosts that are vulnerable to the Witty

worm [56]. The collected victim addresses are then used to form a group distribution

in /8 subnets, where

pg(i) =
number of addresses with the first byte equal to i

total number of collected addresses
, (1)

where i = 0, 1, · · · , 255. The results are shown in Figure 1(a). It is observed that

the distribution of vulnerable hosts is far from uniform. We further plot the comple-

mentary cumulative distribution function (CCDF) of the distribution of Witty-worm

victims in /16 subnets in log-log scales in Figure 1(b) for collected data. The CCDF,

denoted by F (d), is defined as the fraction of the /16 subnets with the number of

vulnerable hosts greater than d. We find that a lognormal distribution with mean 1.2

and standard deviation 1.55 closely fits these measurement data. This indicates that

the distribution of Witty-worm victims nearly follows a power law distribution.

The second trace is the Web-server (port 80) distribution. To estimate the dis-

tribution of Web servers, we exploited a random uniform resource locator (URL)
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Figure 1: Uneven distribution of hosts vulnerable to the Witty worm.
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Figure 2: Uneven distribution of Web servers.

generator from UROULETTE (http://www.uroulette.com/) to collect 13,866 IP ad-

dresses of Web servers on January 24, 2005. Figures 2(a) and 2(b) show the group

distribution in /8 subnets and the CCDF in /16 subnets for Web servers. The log-

normal distribution has mean 0.15 and standard deviation 1.25, and closely fits the

measurement data.

To summarize, the distributions on Web servers and Witty-worm victims are

both non-uniform. These two distributions can both be approximated by lognormal
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distributions but with different means and variances. In particular, the distribution

of Witty-worm victims has a larger mean and a larger standard deviation than that

of Web servers. This means that the Witty-worm victim distribution is more non-

uniform than the Web-server distribution.

3.2.2 Random Worm Propagation Model

We now review a worm propagation model as preparation for relating the rate of

worm spreading with the distribution of vulnerable hosts. A simple model, known as

the susceptible → infected (SI) model, has been used to model the spread of random-

scanning worms in various earlier works [59, 79, 26]. The model assumes that each

host has only two states: susceptible or infected. Once infected, a host remains

infected.

As importance scanning (sampling) is usually performed in discrete time [72], we

adopt a discrete-time SI model. In particular, we use the analytical active worm

propagation (AAWP) model, developed by Chen et al. in [8]. In the AAWP model,

the spread of random-scanning worms is characterized as follows:

It+1 = It + (N − It)[1− (1− 1

Ω
)sIt ], (2)

where It is the number of infected hosts at time t (t ≥ 0); N is the number of

vulnerable hosts; s is the scanning rate of the worm; and Ω is the scanning space. At

t = 0, I0 represents the number of hosts on the hitlist.

When a worm begins to spread, It << N and sIt << Ω. The AAWP model can

be approximated by

It+1 ≈ It + N · sIt

Ω
= (1 + α)It, (3)

where α = sN
Ω

is the infection rate [79]. The infection rate represents the average

number of vulnerable hosts that can be infected per unit time by one infected host

during the early stage of worm propagation. Based on Equation (3), It ≈ (1 + α)tI0,

i.e., the number of infected hosts increases exponentially. Therefore, to speed up

15



the spread of worms at the early stage, attackers should design effective scanning

methods to increase the infection rate. For instance, a traditional random worm

scans the entire IPv4 address space, and thus Ω = 232. The infection rate of this

worm is α0 = sN
232 . In contrast, a BGP and a Class-A routing worm can achieve faster

infection rates with the same scanning rate and the same number of targets [79]:

α1 = sN
0.286×232 = 3.5α0 and α2 = sN

0.453×232 = 2.2α0.

3.3 Problem Description

We now describe the problems studied in this chapter. Let s be the scanning rate or

the number of scans that an infected host sends per unit time. Define An (1 ≤ n ≤ s)

as an IPv4 address probed by the nth scan from an infected host at the early stage

of worm propagation. Thus, An is a random variable, and An ∈ {1, 2, · · · , 232}. Let

I(An) denote the vulnerability of address An,

I(An) =





1, if address An is vulnerable to a worm;

0, otherwise.
(4)

Thus,
∑

An
I(An) = N . Let p(An) denote the actual vulnerable-host distribution,

i.e., the probability that I(An) = 1.

p(An) =
I(An)

N
=





1
N

, if I(An) = 1;

0, if I(An) = 0.
(5)

It is noted that
∑

An
p(An) = 1.

Let p∗(An) denote the probability that the worm scans address An. Note that

∑
An

p∗(An) = 1. p∗(An) can be a uniform distribution as in random-scanning worms

or a non-uniform biasing distribution as in flash worms. p∗(An) is chosen by an at-

tacker. The choice of the scanning distribution p∗(An) is essential to the effectiveness

of importance scanning. As we shall see, p∗(An) depends on the actual probability

distribution p(An).

In this chapter, we intend to answer the following questions:
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• Given complete knowledge about p(An), what is the optimal choice of p∗(An)

that maximizes infection rate α?

• Given partial knowledge about p(An), what is the optimal choice of p∗(An) that

maximizes α?

• What are the spread dynamics of importance-scanning worms using the optimal

or the practical choice of p∗(An)?

• How much faster can an importance-scanning worm spread than a random or a

routing worm?

• How can we defend against such importance-scanning worms by customizing

p(An)?

Table 1 shows the notations used in this thesis.

3.4 Importance Scanning

We begin by answering the first three of these five questions in this section. This

suffices to deriving the infection rate of importance-scanning worms and modeling

the spread of importance-scanning worms.

3.4.1 Infection Rate

Let R be the number of hosts that can be infected per unit time by one infected host

during the early stage of worm propagation. R can be expressed as

R =
s∑

n=1

I(An), (6)

where we assume that different scans do not hit the same target at the early stage of

worm propagation, i.e., if i 6= j, then Ai 6= Aj. Therefore, the infection rate is given
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Table 1: Notations used in this thesis.
Notation Explanation
s Scanning rate: Number of scans that an infected host sends per unit time
N Total number of vulnerable hosts
Ω Scanning space: address space that a worm scans
p(An) Actual vulnerable-host distribution: Probability of address An being

vulnerable to a worm
p∗(An) Scanning distribution: Probability of a worm scan hitting address An

R Number of vulnerable hosts that can be infected per unit time by one
infected host during the early stage of worm propagation

α Infection rate: α = E[R]
It Expected number of infected host at time t

m Number of groups in the Internet
Ni Number of vulnerable hosts in group i

Ωi Size of the address space in group i

Di Set of addresses in network i

It,i Expected number of infected hosts in group i at time t

pg(i) Group distribution: Percentage of vulnerable hosts in group i

p∗g(i) Group scanning distribution: Probability of a worm scan hitting group i

pi(b) Interface distribution: Probability of finding a vulnerable host with the
interface equal to b, given that the host is in network i

p∗i (b) Interface scanning distribution: Probability of scanning interface b,
given that a scan hits network i

vi Vulnerable-host density: vi = pg(i)
Ωi

by

α = E∗[R] (7)

=
s∑

n=1

E∗[I(An)] (8)

=
s∑

n=1

∑

An

I(An)p∗(An) (9)

= N

s∑

n=1

∑

An

p(An)p∗(An) (10)

= sN
∑

An

p(An)p∗(An), (11)

where E∗[·] denotes the expectation with respect to the scanning distribution p∗(An).

It is noted that

α ≤
s∑

n=1

∑
An

p∗(An) = s, (12)
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for any p∗(An).

Hence, the infection rate is strongly influenced by the choice of scanning distribu-

tion p∗(An). A choice of p∗(An) determines a scanning strategy, and a good choice,

in the view of an attacker, should maximize infection rate α. Two special cases have

been observed on “choosing” p∗(An). The first case is the random-scanning worms,

in which p∗(An) = 1
232 . Thus, α = sN

232 = α0. The second case is the flash worms, in

which p∗(An) = p(An). In this case, p∗(An) obtains the optimal scanning strategy

p∗opt(An), which leads to maxp∗(An){α} = s, indicating that every scan from the worm

would hit a vulnerable host.

One interpretation of p∗opt(An) suggests that a good worm scanning strategy should

concentrate the scans on the areas that are more likely to find a vulnerable host. The

vulnerable-host probability distribution p(An), however, cannot be obtained with-

out probing the entire IP address space or gathering a complete database of parties

to the vulnerable protocol. Therefore, attackers may not acquire the entire knowl-

edge of p(An). However, partial knowledge can be obtained, e.g., by aggregating the

subspaces of IP addresses.

3.4.2 Group Distributions

Such partial information is referred to as group distributions, which capture the statis-

tics of groups of addresses rather than individual addresses. The vulnerable-host

probability distribution in groups is essentially the marginal of the actual distribu-

tion p(An). Such groups of addresses can be formed in several ways. For example,

IP addresses can be grouped by using the conventional 4-byte description. In [72],

this approach is applied to measure the size of the Internet via importance sampling.

Here, we extract relevant groups in a more general setting by defining the networks.

In particular, we regard a network as a group of IP addresses that can be identified

by such diverse methods as either the first byte of IP addresses (/8 subnets) or IP
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prefixes in classless inter-domain routing (CIDR).

We assume that the Internet is partitioned into m networks. Let Di (i = 1, 2, · · · ,m)

denote the partition set of addresses in network i, which has Ωi (Ωi ≥ 0) addresses.

Thus,
∑m

i=1 Ωi = Ω = 232. We define the group distribution pg(i) (i = 1, 2, · · · ,m) as

the proportion of vulnerable hosts in network i, i.e.,

pg(i) =
Ni

N
=

∑
An∈Di

p(An), (13)

where Ni is the population of vulnerable hosts in network i.

The partition of networks reflects the knowledge that attackers can obtain. For

example, in one extreme case of random-scanning worms, m = 1 and Ω1 = 232. In the

other extreme case of flash worms, m = 232 and Ωi = 1 (i = 1, 2, · · · , 232). Another

choice of partitioning networks is based on the first byte of IP addresses (/8 subnets),

where m = 28 and Ωi = 224 (i = 1, 2, · · · , 28). The amount of knowledge collected by

the worm with the /8 subnet distribution is only partial, somewhere between that by

the random worm and that by the flash worm.

Recall that the goal of importance scanning is to maximize the infection rate.

From Equation (11), we have the infection rate

α = sN

m∑
i=1

∑
An∈Di

p(An)p∗(An). (14)

Refer to the location of an address An that is in network i as the interface denoted

by b (b = 0, 1, · · · , Ωi − 1). Let pi(b) denote the actual probability of finding a

vulnerable host with the interface equal to b, given that the host is in network i, i.e.,

pi(b) = I(An)
Ni

. Similarly, define group scanning distribution p∗g(i) as the probability

of scanning network i and interface scanning distribution p∗i (b) as the probability of

scanning interface b, given that a scan hits network i for the scanning distribution

p∗(An). We can obtain

p(An) = pg(i) · pi(b) (15)

p∗(An) = p∗g(i) · p∗i (b), (16)
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where An is in network i with interface b. From Equations (15) and (16), the infection

rate becomes

α = sN

m∑
i=1

Ωi−1∑

b=0

pg(i)pi(b)p
∗
g(i)p

∗
i (b) (17)

= sN

m∑
i=1

[
pg(i)p

∗
g(i)

Ωi−1∑

b=0

pi(b)p
∗
i (b)

]
. (18)

We assume that attackers can obtain information only about group distribution pg(i)

and cannot acquire further knowledge about interface distribution pi(b). Therefore,

if a scan hits network i, the Ωi hosts in this network are targeted by that scan with

the same likelihood, i.e., p∗i (b) = 1
Ωi

. Hence, Equation (18) yields

α = sN

m∑
i=1

pg(i)p
∗
g(i)

Ωi

. (19)

Equation (19) provides the relationships among the infection rate, the group dis-

tribution, and the group scanning distribution. Let vi = pg(i)

Ωi
, referred to as the

vulnerable-host density in group i, then

α = sN

m∑
i=1

vip
∗
g(i) (20)

≤ sN

m∑
i=1

max
k
{vk}p∗g(i) (21)

= sN max
k
{vk}. (22)

The equality holds when

p∗g(j) =





1, j = arg maxk {vk};
0, otherwise.

(23)

This means that the optimal importance scanning of a worm is to scan only the

network with the largest vulnerable-host density.

3.4.3 Importance-Scanning Worm Propagation Model

We now model the spreading dynamics of importance-scanning worms based on the

information of a group distribution.
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At time t (t ≥ 0), let It,i denote the average number of infected hosts in network

i. Thus, the total number of infected hosts It =
∑m

i=1 It,i. The rate at which network

i is scanned is sItp
∗
g(i). As an importance scanning worm employs random scanning

within each network, on the next time epoch, the number of infected hosts in network

i can be derived by the AAWP model, i.e.,

It+1,i = It,i + (Ni − It,i)[1− (1− 1

Ωi

)sItp∗g(i)], (24)

where i = 1, 2, · · · ,m and t ≥ 0. I0,i is the number of initially infected hosts in

network i. The above equation yields

It+1,i = It,i + sIt

(Ni − It,i)p
∗
g(i)

Ωi

−O(
1

Ωi
2 ). (25)

Since 1
Ωi

<< 1, we ignore item O( 1
Ωi

2 ). Summing over i = 1, 2, · · · ,m on both sides,

we obtain

It+1 = It + sIt

m∑
i=1

(
Ni − It,i

Ωi

)p∗g(i) (26)

≤ It + sIt

m∑
i=1

max
k
{Nk − It,k

Ωk

}p∗g(i) (27)

= [1 + s ·max
k
{Nk − It,k

Ωk

}]It. (28)

The equality holds when

p∗g(j) =





1, j = arg maxk {Nk−It,k

Ωk
};

0, otherwise.
(29)

When t = 0, Ni >> It,i and then maxk {Nk−It,k

Ωk
} ≈ N maxk {vk}, which leads to

α = sN maxk {vk}. The above derivation results in an optimal importance-scanning

strategy that maximizes the infection rate.

Optimal importance scanning:

1. At each time step t, the worm first finds the network that has the largest value

of the left vulnerable-host density, i.e., j = arg maxk {Nk−It,k

Ωk
}.
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2. Then all infected hosts concentrate on scanning this network. That is, p∗g(j) = 1

and p∗g(i) = 0, ∀i 6= j.

This optimal importance scanning strategy, however, is difficult to implement.

First, N may not be known in advance. Second, the network that has the largest

value of the left vulnerable-host density changes with time, and therefore, the opti-

mal assignment of p∗g(i) is time-varying. Even when N were given, it would require

that each infected host knows It,i, which leads to numerous information exchanges

between infected hosts. However, the essence of optimal importance scanning is that

it provides the best scenario of worm scanning using the vulnerable-host distribution,

which can be used as the baseline for a sub-optimal selection of p∗g(i).

A simple strategy for sub-optimal importance scanning is to assume p∗g(i) =
pg(i)/ΩiPm

j=1 pg(j)/Ωj
. That is, the probability that a worm scans network i is proportional

to the vulnerable-host density of this network. If Ω1 = Ω2 = · · · = Ωm, then

p∗g(i) = pg(i). For this scanning strategy, Equation (24) becomes

It+1,i = It,i + (Ni − It,i)[1− (1− 1
Ωi

)
sIt

pg(i)/ΩiPm
j=1 pg(j)/Ωj ]. (30)

Sub-optimal importance scanning:

1. Before a worm is released, an attacker first obtains vulnerable-host group distri-

bution pg(i) and then encodes group scanning distribution p∗g(i) = pg(i)/ΩiPm
j=1 pg(j)/Ωj

in the worm code.

2. At each time step t, the worm scans network i with probability p∗g(i).

3.5 Experiments

In this section, we study the propagation speed of importance-scanning worms based

on parameters chosen from the real measurements. We first introduce the experimen-

tal set-up. We then show the effect of knowledge and vulnerable-host distributions
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on the propagation of importance-scanning worms. Finally, we compare importance

scanning with random and routable scanning.

3.5.1 Experimental Set-up

In our experiments, we use the model in Equation (2) to imitate the spread of random-

scanning and routing worms. Meanwhile, we employ the model in Equations (24) and

(29) to study propagation as a result of the optimal importance-scanning strategy. We

also use the model in Equation (30) to simulate the spread of sub-optimal importance-

scanning worms. To implement the models in Equations (24), (29), and (30), we need

to obtain group distribution pg(i). Here, we use the Witty-worm victim and the Web-

server distributions as examples of the vulnerable-host distribution. In other words,

we assume that worms attack vulnerable hosts with the same group distribution as

that of Witty-worm victims or Web servers. Our collected trace of Web servers does

not include all Web servers. However, we assume that the estimated results obtained

by Equation (1) are the actual group distribution of Web servers.

The parameters we use in simulated worms are comparable to those in Witty

and Code Red worms for evaluating propagation. The Witty worm has a vulnerable

population N = 12, 000 and a scanning rate s = 1, 200 per second [56, 81]. The Code

Red worm has parameters N = 360, 000 and s = 358 per minute [77]. The victims of

the Code Red worm is assumed to have the same group distribution as Web servers.

We then refer to such an importance-scanning worm as the importance-scanning (IS)

Witty or Code Red. Since the experimental results of the Code Red worm are similar

to those of the Witty worm, we mainly present the observations from the Witty worm.

3.5.2 Knowledge Effect

The amount of knowledge about a vulnerable-host distribution affects the rate of

spread of importance-scanning worms. Figure 3 shows the propagation compari-

son among sub-optimal importance-scanning Witty worms with different amounts
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Figure 3: Effect of knowledge.

of knowledge about the vulnerable-host distribution, assuming a hitlist of 10 (i.e.,

I0 = 10). If a worm has the /0 subnet distribution, it knows nothing about the distri-

bution and thus has to use random scanning. We assume that all three Witty worms

have the same scanning rate, although a worm that contains more information about

the group distribution might slow down for a larger payload. It takes the Witty worm

with a /0 subnet distribution 46.3 minutes to infect 90% of vulnerable hosts, whereas

the Witty worms with a /8 subnet distribution and a /16 subnet distribution take

only 6.6 minutes and 1.6 minutes, respectively. Therefore, more information about

the vulnerable-host distribution may help an attacker design a faster worm.

3.5.3 Vulnerable-Host Distribution Effect

A vulnerable-host distribution also affects the rate of propagation of importance-

scanning worms. Figure 4 demonstrates the spread of the sub-optimal importance-

scanning Witty worms using the /8 subnet distribution, in which vulnerable hosts

follow different distributions, assuming a hitlist of 10 (i.e., I0 = 10). A uniform

distribution in IPv4 can slow down the worm at least six times than the Witty-worm

victim distribution before the victim population becomes saturated. Therefore, the

distribution of vulnerable hosts strongly affects the rate of spread of importance-

scanning worms.
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Figure 4: Effect of distributions.

3.5.4 Propagation Comparisons

Importance scanning also helps hasten the propagation of a worm. Figure 5(a) shows

how propagation as a result of importance-scanning Witty worms compares with that

of random and BGP routing Witty worms, assuming a hitlist of 10 (i.e., I0 = 10).

The rate of spread of importance-scanning Witty worms increases significantly by

using the information on the /8 subnet distribution of vulnerable hosts. The op-

timal importance-scanning Witty worm can infect 90% vulnerable hosts in as few

as 4.2 minutes, whereas the BGP routing Witty worm requires 13.3 minutes. The

sub-optimal importance-scanning Witty worm spreads more slowly than the optimal

worm, but only takes 6.6 minutes to infect the same number of hosts. A BGP routing

worm obtains the refined information about the routable space than the worm using

the /8 subnet distribution. The BGP routing worm, however, employs random scan-

ning in the BGP routable space. Hence, such a worm, most of time, spreads more

slowly than the importance-scanning worms with the /8 subnet distribution, which

exploits the underlying uneven distribution of vulnerable hosts.

Once most of the vulnerable hosts are infected, the spread of the sub-optimal

importance-scanning Witty worm slows down. This is because the sub-optimal strat-

egy always uses the same group scanning distribution. As the infected hosts become
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0 100 200 300 400 500 600
0

2000

4000

6000

8000

10000

12000

 Time t (second)

 N
um

be
r 

of
 in

fe
ct

ed
 h

os
ts

 BGP routing Witty
 Suboptimal IS + Class−A routing Witty
 Optimal IS Witty

(b) Witty worm with a hitlist of 1,000

Figure 5: Witty worm propagation comparisons.

saturated, a network that initially has more vulnerable hosts actually contains fewer

uninfected vulnerable machines. To overcome this problem, sub-optimal importance

scanning can choose to switch to the routable scanning when only a few uninfected

vulnerable hosts are left. Figure 5(b) shows the results for the same experiments,

assuming a hitlist of 1,000. Sub-optimal importance scanning switches to Class-A

routable scanning when 90% vulnerable hosts are infected. Compared with the prop-

agation of a BGP routing worm, importance-scanning worms spread faster before the

victim population becomes saturated.

Figure 6 shows the propagation comparison among an optimal importance-scanning

Code Red worm, a sub-optimal importance-scanning Code Red worm, a Class-A

routing Code Red worm, and a random Code Red worm, assuming I0 = 10. The

importance-scanning Code Red worms use the /8 subnet distribution. The sub-

optimal importance-scanning Code Red worm can propagate nearly twice as fast as

the Class-A routing Code Red worm before the victim population becomes saturated.

With regard to the storage requirement for /8 subnet group-distribution infor-

mation, each pg(i) requires 4 bytes, and each /8 prefix 1 byte. Therefore, the total

number of bytes is 5 × 256 = 1280. We can reduce this payload by removing the

entries with pg(i) = 0, where i ∈ {0, 1, · · · , 255}. Since there are only 97 entries with
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Figure 6: Code Red worm propagation comparisons.

non-zero pg(i)’s according to the empirical distribution in Figure 1(a), the table can

be stored in a 97 × 5 = 485 byte payload. Hence, the scanning rate of importance-

scanning worms will not decrease much.

3.6 Game Theory for Attackers and Defenders

Defense against such importance-scanning worms can be modeled by relating it to

the interaction between attackers and defenders in game theory. Assume that when

an application is introduced to the Internet, defenders can choose how to deploy this

application in networks. That is, group distribution pg(i) can be controlled by defend-

ers, thus leading to a game between attackers and defenders. The attackers attempt

to maximize the infection speed (characterized by infection rate α in Equation (19))

by choosing optimal group scanning distribution p∗g(i), while the defenders endeavor

to minimize the worm propagation speed by customizing group distribution pg(i). Let

V = {p∗g :
∑m

i=1 p∗g(i) = 1} stand for the set of group scanning probability vectors p∗g.

Let U = {pg :
∑m

i=1 pg(i) = 1} represent the set of feasible probability assignments

for the application distribution. An attacker fears that if a defender knows about the

worm-scanning strategy, the defender would then choose a strategy that minpg∈U{α}.
Therefore, the objective of an attacker is to choose group scanning distribution p∗g(i)
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that maximizes the minimum value, i.e.,

max
p∗g∈V

min
pg∈U

sN

m∑
i=1

pg(i)p
∗
g(i)

Ωi

. (31)

In a similar argument, the objective of a defender is

min
pg∈U

max
p∗g∈V

sN

m∑
i=1

pg(i)p
∗
g(i)

Ωi

. (32)

This is a classical two-person zero-sum game, and the following well-known theorem

[45] gives an optimal solution.

Theorem 1 There exists an optimal solution to the worm-scanning game, where

αopt = max
p∗g∈V

min
pg∈U

sN

m∑
i=1

pg(i)p
∗
g(i)

Ωi

(33)

= min
pg∈U

max
p∗g∈V

sN

m∑
i=1

pg(i)p
∗
g(i)

Ωi

, (34)

where αopt is the value of the game.

The solution of this minmax problem is derived in the following theorem.

Theorem 2 The value of the worm-scanning game is αopt = sN
232 , and the best strategy

for a defender is to distribute the application uniformly in the Internet, i.e., pg(i) =

Ωi

232 , where i = 1, 2, · · · ,m.

Proof: From Equation (22), we have

max
p∗g∈V

α = sN max
k
{pg(k)

Ωk

}. (35)

Set J = maxk {pg(k)

Ωk
}. The optimal choice of pg(i)

′s requires that J be minimized.

Since pg(i)

Ωi
≤ maxk {pg(k)

Ωk
} = J , pg(i) ≤ JΩi for ∀i. Thus,

1 =
m∑

i=1

pg(i) ≤
m∑

i=1

JΩi = JΩ, (36)

which leads to J ≥ 1
Ω
. The inequality holds when pg(i)

Ωi
= J = 1

Ω
for ∀i. That

is, pg(i) = Ωi

Ω
= Ωi

232 , where i = 1, 2, · · · ,m, i.e., the defenders should deploy the

application uniformly in the entire IP-address space.
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Combining pg(i) = Ωi

232 with Equation (35), the game value is αopt = sN
232 .

From Theorem 2, we note that when the defender uses the optimal strategy, the

best strategy that the attacker exploits is equivalent to the random-scanning strategy.

Meanwhile, Figure 4 demonstrates that the vulnerable-host distribution has a strong

effect on worm propagation. Therefore, the design of the future Internet should

consider how to distribute an application in security engineering.

In the current Internet, however, the application distributor may not control how

to deploy the application in the entire IPv4 address space. Although not applicable

for the entire Internet, the best strategy of defenders can still apply for enterprise

networks. That is, if an enterprise network attempts to defend against importance-

scanning worms, the administrator of this network should distribute the application

uniformly in the entire enterprise network from the viewpoint of game theory.

3.7 Summary

In order to effectively defend against Internet worms, we must study potential scan-

ning techniques that attackers may employ. In this chapter, we present an opti-

mal worm-scanning method, called importance scanning, using the information of a

vulnerable-host distribution. This scanning strategy then provide a best-case scenario

for attackers when the vulnerable-host distribution is available. Importance scanning

can be combined with other scanning methods such as hitlist scanning. Moreover, the

division of groups can be very general, such as domain name system (DNS) top-level

domains, countries, Autonomous Systems, IP prefixes in CIDR, the first byte of IP

addresses (/8 subnets), or the first two bytes of IP addresses (/16 subnets). For ex-

ample, when naming distribution information is exploited, importance scanning can

also be applied to DNS worms [26], which is worth further investigation. In addition,

when IPv4 is updated to IPv6, an importance-scanning worm will not be slowed down
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very much if vulnerable hosts are still distributed in a clustered fashion. A game-

theoretical approach suggests that the best strategy for defenders is to distribute the

applications evenly in the entire address space or in each enterprise network.
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CHAPTER IV

SUB-OPTIMAL WORM-SCANNING METHOD: A
SELF-LEARNING WORM

4.1 Introduction

Some advanced scanning mechanisms, such as hitlist scanning, routable scanning, and

importance scanning, have been developed based on the philosophy: The use of side

information by an attacker can help a worm speed up the propagation. In the Internet,

however, it may not be easy for attackers to collect information on vulnerable hosts.

For example, Windows SQL database servers do not advertise their addresses [41, 79].

It is therefore difficult that the Slammer worm obtain a list of vulnerable hosts or

an underlying vulnerable-host distribution before the worm is released. Nevertheless,

future worms can become more intelligent and potentially learn a certain knowledge

about, e.g. the vulnerable-host distribution, while propagating. For example, attack-

ers can estimate the distribution using measurements1. In this work, we study worm

behaviors that utilize information on the vulnerable-host distribution. In particular,

we focus on self-learning worms and intend to answer the following questions:

• How can a worm self-learn about a vulnerable-host distribution from measure-

ments and make use of such information?

• What is the performance of a self-learning worm?

Here the performance refers to the propagation speed of worms. If a worm spreads

faster, it has a better performance and is thus more virulent.

When a group vulnerable-host distribution is available, the optimal way for worms

to scan is to perform importance sampling, resulting in importance-scanning worms

1Yes, attackers can use measurement-based approaches in a similar way to networking researchers.
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as studied initially in the previous chapter and our prior work [10, 17]. When the

knowledge of the vulnerable-host group distribution is unavailable before spreading,

we design a self-learning worm. Such a worm begins with random scanning or routable

scanning and collects information on the IP addresses of infected hosts while prop-

agating. The key capability of this worm is to learn an underlying vulnerable-host

group distribution. The resulting worm spreading then consists of two stages: a learn-

ing stage where worms (attackers) obtain an empirical vulnerable-host distribution

from measurements and a sampling stage where worms scan vulnerable hosts using

the group distribution. The virulence of such a worm can be characterized through a

dynamic worm-propagation model.

We show analytically and empirically that the self-learning worm can accurately

estimate the group distribution in /8 subnets through a simple and unbiased propor-

tion estimator using as few as 500 samples (IP addresses of infected hosts). After

estimating the vulnerable-host distribution, this self-learning worm switches to im-

portance scanning. The optimal importance-scanning method has been proposed in

our prior work [10]. This optimal approach, however, is difficult to implement, since

it requires numerous information exchanges between infected hosts. Therefore, we

derive a practical importance-scanning strategy that optimizes a new metric on the

effectiveness of scanning. This metric reflects the average number of worm scans re-

quired until the first scan hits a randomly chosen vulnerable host. We demonstrate

the optimality of such importance scanning through analysis and simulation.

To evaluate the performance of our proposed self-learning worms, we use two data

sets, the distributions of Web servers and Witty-worm victims, as the examples of the

vulnerable-host distribution. We show that a self-learning worm based on parameters

chosen from the real measurements of the Code Red v2 worm spreads nearly five times

faster than a random-scanning worm, four times faster than a permutation-scanning

worm, and two times faster than a Class-A routing worm, after collecting 500 samples
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and estimating the group distribution in /8 subnets.

The remainder of this chapter is structured as follows. In Section 4.2, we give a

problem description. In Section 4.3, we characterize the optimal static importance-

scanning strategy through theoretical analysis. We then design a self-learning worm

in detail in Section 4.4 and show the performance of such a self-learning worm in

Section 4.5.We further discuss some guidelines for detecting and defending against

such self-learning worms in Section 4.6. We conclude this chapter in Section 4.7 with

a brief summary.

4.2 Problem Description

Assume that the Internet is composed of m groups. Let Ni and Ωi denote the num-

ber of vulnerable hosts and the size of the address space in group i (i = 1, 2, · · · ,m),

respectively. Thus,
∑m

i=1 Ni = N and
∑m

i=1 Ωi = Ω. Define the group distribution

of vulnerable hosts, pg(i) (i = 1, 2, · · · ,m), as the ratio between the number of vul-

nerable hosts in group i and the total number of vulnerable hosts, i.e., pg(i) = Ni

N
.

Define the group scanning distribution, p∗g(i) (i = 1, 2, · · · ,m), as the probability that

a worm scan hits group i. Thus,
∑m

i=1 pg(i) = 1 and
∑m

i=1 p∗g(i) = 1.

There are two types of importance scanning: dynamic importance scanning if

p∗g(i)’s vary with time and static importance scanning if p∗g(i)’s are fixed at all time.

For static importance-scanning strategies, assuming that Ω1 = Ω2 = · · · = Ωm = 232

m
,

we can relate the group scanning distributions p∗g(i) with the group distributions pg(i)

in the following formula:

p∗g(i) =
(pg(i))

n

∑m
k=1 (pg(k))n ∝ (pg(i))

n . (37)

In our study, pg(i)’s represent an underlying group probability distribution of

vulnerable hosts2. pg(i) may or may not be available in advance. An intelligent

2For example, if pg(i) is a uniform distribution, vulnerable hosts are uniformly distributed in the
entire IP address space.
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worm, however, can learn this distribution by observing the measurements (e.g. IP

addresses of vulnerable hosts). Given a set of L measurements for estimating pg(i),

we study a self-learning worm through

1. learning, where attackers (worms) estimate pg(i) using given measurements;

2. sampling, where worms scan the IP-address space based on an optimal use of

the learned vulnerable-host distribution;

3. accessing the performance, where we obtain the speed of worm propagation

through dynamic models for worm spreading;

4. deriving defense strategies for self-learning worms.

4.3 Optimal Static Importance-Scanning Strategy

In this section, we derive an optimal static importance-scanning strategy, assuming

that a vulnerable-host distribution is given.

As stated in the previous chapter, the optimal dynamic importance-scanning strat-

egy is difficult to implement. One alternative selection is the static importance scan-

ning that avoids information exchanges between infected hosts. We design the optimal

strategy for static importance scanning through a new metric. The metric is the av-

erage number of worm scans required until the first scan hits a randomly chosen

vulnerable host. Such a metric is motivated by the intuition that a fewer scans a

worm uses to hit a vulnerable host, the faster the worm spreads.

When a worm scan hits group i (i ∈ {1, 2, · · · ,m}), Ωi hosts in this group are

targeted by that scan with the same likelihood. That is, when considering a vulnerable

host in group i, it has a probability of 1
Ωi

to be hit by a worm scan given that the scan

hits the group. Thus, a vulnerable host in group i is hit by an importance-scanning

worm scan with probability

ph(i) = p∗g(i) ·
1

Ωi

. (38)

35



Since the events of a vulnerable host being hit are independent in static importance

scanning, the number of scans required until the first scan hits an appointed vulner-

able host in group i, denoted by Fi, follows a geometric distribution [53]

P (Fi = j) = ph(i) (1− ph(i))
j−1 , j = 1, 2, · · · . (39)

Then, the expected number of scans needed until this vulnerable host is hit is

E[Fi] = (ph(i))
−1 =

Ωi

p∗g(i)
. (40)

Therefore, if we randomly choose a vulnerable host in the Internet, the average num-

ber of scans required until the first scan hits this host, denoted by Y , is

Y =
1

N

m∑
i=1

Npg(i)
Ωi

p∗g(i)
=

m∑
i=1

Ωipg(i)

p∗g(i)
, (41)

where Npg(i) is Ni, the number of vulnerable hosts in group i. Intuitively, a good

metric for measuring the effectiveness of scanning strategies is the average number of

scans required for hitting all vulnerable hosts divided by the number of vulnerable

hosts. The expression of this metric, however, is complex and difficult to obtain.

Instead, Y gives an alternative metric for the effectiveness of scanning strategies. A

better static importance-scanning strategy leads to a smaller Y . Thus, the goal of the

static importance scanning is to minimize Y . The optimal static importance-scanning

strategy can be found by the Lagrangian optimization of Y as shown in the following

theorem.

Theorem 3 Among all possible static importance-scanning strategies, the group scan-

ning distribution p̃∗g(i) is optimal in minimizing Y subject to
∑m

i=1 p∗g(i) = 1, where

p̃∗g(i) =

√
Ωipg(i)∑m

k=1

√
Ωkpg(k)

. (42)

Proof: The optimal static importance-scanning strategy can be found by minimizing

Y . Let the Lagrangian objective function be

J =
m∑

i=1

Ωipg(i)

p∗g(i)
+ λ

(
m∑

i=1

p∗g(i)− 1

)
. (43)
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For each group i, differentiating with respect to p∗g(i) and setting the result equal to

zero yield p̃∗g(i) =
√

Ωipg(i)

λ
. The constraint

∑m
i=1 p̃∗g(i) = 1 gives λ =

(∑m
i=1

√
Ωipg(i)

)2

,

which leads to Equation (42). Since ∇2J
(
p∗g(i)

) ≥ 0, p̃∗g(i) is the optimal static

importance-scanning strategy that minimizes Y .

Putting p̃∗g(i) into Equation (41), we obtain

Ỹmin =

(
m∑

i=1

√
Ωipg(i)

)2

. (44)

When Ω1 = Ω2 = · · · = Ωm = 232

m
, p̃∗g(i) =

√
pg(i)

Pm
k=1

√
pg(k)

and Ỹmin =
232×

�Pm
i=1

√
pg(i)

�2

m
.

For example, using pg(i)’s from the /8 subnet distribution of Witty-worm victims,

Ỹmin = 8.6 × 108, and using pg(i)’s from the /8 subnet distribution of Web servers,

Ỹmin = 1.1 × 109. Thus, the /8 subnet distribution of Witty-worm victims is more

vulnerable to a static importance-scanning worm than that of Web servers.

Optimal static importance scanning results in n = 1
2

in Equation (37) and

can be described as:

1. Before a worm is released, attackers first obtain the group distribution of vul-

nerable hosts pg(i) and then encode the group scanning distribution p∗g(i) =√
Ωipg(i)

Pm
k=1

√
Ωkpg(k)

in the worm code.

2. At each time step t, the worm scans the group i with the probability p∗g(i).

This optimal static importance scanning can be exploited by a self-learning worm

that is described in the next section.

4.4 A Self-Learning Worm Without the Group Distribution

We now assume that the knowledge of the group distribution is not available before a

worm begins to spread. We focus on a self-learning worm that learns the distribution

while propagating.
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4.4.1 Algorithm

For practicality, we assume that learning takes place, using as few information ex-

changes between hosts as possible. Such a worm system is shown in Figure 7. A host

with a high Internet bandwidth capacity, called the worm server, is responsible for

collecting and processing information about the IP addresses of infected hosts. An

infected host is called a worm client and may communicate with the worm server, but

not with other infected hosts. If the communication uses Internet relay chat (IRC),

this worm system forms a Botnet [18, 47].

The propagation process of this self-learning worm can be divided into two stages:

• Learning stage: Each infected host (worm client) performs random scanning

or routable scanning [79, 70]. Once a vulnerable host is infected and becomes

a new worm client, it reports its IP address to the worm server. The worm

server records the clients’ IP addresses in a list. When the worm server records

a sufficient number of IP addresses, it estimates the group distribution of the

vulnerable hosts (pg(i)) based on collected data and sends the corresponding

group scanning distribution (p∗g(i)) to all worm clients on the list.

• Importance-scanning stage: Upon receiving p∗g(i), a worm client switches

from either random scanning or routable scanning to static importance scanning

using p∗g(i). The newly infected hosts at this stage do not need to communicate

with the worm server, but perform static importance scanning directly.

This spreading algorithm of the self-learning worm is simple and effective, behaving

in a similar way to the query process in the Napster peer-to-peer system [54].

4.4.2 Estimating the Group Distribution

The propagation speed of the self-learning worm strongly depends on how the worm

server accurately estimates the group distribution of vulnerable hosts. Let L denote
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Figure 7: A self-learning worm system.

the number of measurements (clients’ IP addresses) collected on the worm server.

How large should L be for accurately estimating the group distribution? We answer

this question by deriving the bias and the variance of an estimator.

Let Li (i = 1, 2, · · · ,m) denote the number of worm clients’ IP addresses from

group i among all L addresses. Then, a simple proportion estimator for group i’s

distribution is

p̂g(i) =
Li

L
. (45)

Let Zj (j = 1, 2, · · · , L) denote the event that the jth worm client is in group i,

i.e.,

Zj =





1, if the jth worm client is in group i;

0, otherwise.

Thus,
∑L

j=1 Zj = Li. Since the worm uses random scanning or routable scanning

in the learning stage of worm propagation, Zj follows a Bernoulli distribution with

parameter pg(i). Then, E[Zj] = pg(i), and V ar[Zj] = pg(i) (1− pg(i)). Thus,

E[p̂g(i)] = E

[∑L
j=1 Zj

L

]
=

1

L

L∑
j=1

E[Zj] = pg(i). (46)

This means that the estimator is unbiased, which is desirable.

The variance of the estimator can now be calculated as follows. When j 6= k,

E[ZjZk] = P (Zj = 1, Zk = 1) = P (Zj = 1)P (Zk = 1|Zj = 1) = Ni

N
· Ni−1

N−1
, and
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E[Zj]E[Zk] = (pg(i))
2 = (Ni

N
)2. Thus,

Cov[Zj, Zk] = E[ZjZk]− E[Zj]E[Zk] = −pg(i)
1− pg(i)

N − 1
, (47)

which leads to

V ar[p̂g(i)] = V ar

[∑L
j=1 Zj

L

]
(48)

=

∑L
j=1 V ar[Zj] + 2

∑
j<k Cov[Zj, Zk]

L2
(49)

=
1

L
· N − L

N − 1
· pg(i)(1− pg(i)). (50)

The mean squared error (MSE) of the estimator is defined as in [5]:

MSE[p̂g(i)] = E

[
m∑

i=1

(p̂g(i)− pg(i))
2

]
. (51)

That is,

MSE[p̂g(i)] =
m∑

i=1

V ar[p̂g(i)] =
1

L
· N − L

N − 1
·
(

1−
m∑

i=1

p2
g(i)

)
. (52)

Thus, the error of the estimator is the square root of MSE[p̂g(i)]. Note that MSE[p̂g(i)]

mainly depends on L and the vulnerable-host distribution. For example, if L = 500

and N = 12, 000, then MSE[p̂g(i)] = 0.00191 for the /8 subnet distribution of Witty-

worm victims, and MSE[p̂g(i)] = 0.00194 for the /8 subnet distribution of Web

servers. Thus, even using a sample size of 500, a worm can estimate the group

distributions with an error less than
√

2× 10−3 = 4.5 × 10−2 for these two cases.

Meanwhile, as MSE[p̂g(i)] is smaller for the Witty worm than for the Web-attacking

worm, the proportion estimator works slightly better in the case of the Witty worm.

Since
∑m

i=1 p2
g(i) ·

∑m
i=1 12 ≥ (

∑m
i=1 pg(i))

2
by the Cauchy-Schwarz inequality,

∑m
i=1 p2

g(i) ≥ 1
m

. Therefore,

MSE[p̂g(i)] ≤ 1

L
· N − L

N − 1
· m− 1

m
≤ 1

L
. (53)

This means that we can choose the number of samples L to achieve a desired accuracy

of the estimation. For example, if L = 13, 866, which is the number of Web servers

collected from UROULETTE, we have MSE[p̂g(i)] < 10−4.
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4.4.3 Final Size of Infection

The proportion estimator given in Equation (45) may miss some groups that contain

vulnerable hosts. That is, for some i, the actual distribution pg(i) > 0, but its

estimator p̂g(i) = 0. If this happens, the self-learning worm based on such a estimator

may never scans some groups that contain vulnerable hosts, resulting in a fewer

number of infected hosts than the total population of vulnerable machines. Let the

total number of hosts infected by the self-learning worm be the final size of infection

Nf . We attempt to answer the question: What is the percentage of vulnerable hosts

that would be missed by a self-learning worm, given L IP addresses of worm clients

collected on the worm server? That is, we want to compute pl =
N−Nf

N
, given L.

Let Xi (i = 1, 2, · · · ,m) denote the event that the group i is not scanned by the

self-learning worm, i.e.,

Xi =





1, if the group i is not scanned by the worm;

0, otherwise.

Since the worm uses random scanning or routable scanning in the learning stage of

worm propagation, L1, L2, · · · , Lm form a multinormial distribution, and Xi follows

a Bernoulli distribution with parameter (1−pg(i))
L. Then, E[Xi] = (1−pg(i))

L, and

V ar[Xi] = (1−pg(i))
L

[
1− (1− pg(i))

L
]
. Moreover, when j 6= k, E[XjXk] = P (Xj =

1, Xk = 1) = (1 − pg(j) − pg(k))L. Thus, Cov[Xj, Xk] = E[XjXk] − E[Xj]E[Xk] =

(1− pg(j)− pg(k))L − (1− pg(j))
L(1− pg(k))L.

The percentage of vulnerable hosts missed by the worm is

pl =
m∑

i=1

pg(i)Xi. (54)

Therefore, the expected value of pl is

E[pl] =
m∑

i=1

pg(i)E[Xi] =
m∑

i=1

pg(i)(1− pg(i))
L, (55)
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and the variance of pl is

V ar[pl] =
m∑

i=1

p2
g(i)V ar[Xi] + 2

∑

j<k

pg(j)pg(k)Cov[Xj, Xk]. (56)

Both E[pl] and V ar[pl] only depend on the group distribution pg(i) and sample

size L. For example, if L = 500, E[pl] = 0.0279 and V ar[pl] = 4.3080 × 10−5 for

the /8 subnet distribution of Witty-worm victims, and E[pl] = 0.0334 and V ar[pl] =

6.7692×10−5 for the /8 subnet distribution of Web servers. Thus, even using a sample

size of 500, a self-learning worm only misses about 3% vulnerable hosts in these two

cases. Moreover, the worm misses a fewer vulnerable hosts for the Witty worm than

for the Web-server attacking worm.

4.5 Performance Evaluation

In this section, we evaluate the performance of self-learning worms empirically, where

the performance refers to the propagation speed of worms as described in Section

4.1. First, we introduce the simulation set-up. We then show the optimality of our

proposed static importance scanning, which is used in the importance-scanning stage

of self-learning worms. We also demonstrate that a self-learning worm can learn the

underlying group distribution in /8 subnets, using as few as 500 samples. Finally, we

compare a self-learning worm with a random-scanning worm, a permutation-scanning

worm, and a Class-A routing worm.

4.5.1 Simulation Set-up

In our simulation, we employ the model in Equation (2) to study the spread of

random-scanning and Class-A routing worms. Meanwhile, we use the model in

Equations (24), (29), and (37) to imitate the propagation of dynamic and static

importance-scanning worms, assuming that the group distribution pg(i) is given. For

a self-learning worm, we adopt the model in Equation (2) to simulate the spread in
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the learning stage and the model in Equations (24) and (37) to emulate the propa-

gation in the importance-scanning stage. There in Equation (37), pg(i) changes to

p̂g(i), and n = 1
2
. To mimic the effect of the self-learning, we simulate 1000 runs for

the importance-scanning stage with estimated group distribution p̂g(i). To generate

p̂g(i), we write a random-scanning worm propagation simulator. When L hosts are

infected, the number of infected hosts in each group (e.g., /8 subnet) is counted, and

the proportion estimator is performed using Equation (45).

The simulated worms have parameters comparable to those of Code Red v2 and

Witty worms. The Code Red v2 worm has a vulnerable population N = 360, 000,

a scanning rate s = 358 per minute, and a hitlist size I0 = 10 [39, 77]. The Witty

worm has a vulnerable population N = 12, 000, a scanning rate s = 1200 per second,

and a hitlist size I0 = 110 [56, 76]. We ignore the effect of disk damage on the spread

in the case of the Witty worm. We also assume that the victims of the Code Red v2

worm have the same distribution as the Web servers. Since the experimental results

of the Witty worm are similar to those of Code Red v2, here we mainly present the

observations for the Code Red v2 worm.

4.5.2 Static Important-Scanning Strategies

We first examine the propagation speed of static importance-scanning strategies.

Figure 8(a) compares different static importance-scanning (IS) Code Red worms

(n = 1
3
, 1

2
, 1, 2) as well as the optimal dynamic IS Code Red worm with the /8 subnet

distribution. As expected, when n = 1
2
, static IS infects 99% vulnerable hosts in the

shortest time duration among all static strategies. Therefore, we choose n = 1
2

for a

self-learning worm in the importance-scanning stage. One interesting observation is

that if a static strategy (e.g. n = 2) spreads faster at the early stage, it will propagate

slower at the late stage; or vise verse (e.g. n = 1
3
). This is because a static IS uses

the same group scanning distribution all the time. A larger n corresponds to an IS
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Figure 8: Comparison of static importance-scanning (IS) strategies.

worm that preferentially scans the groups containing more vulnerable hosts at the

early stage, but unfavorably probes the groups having more left vulnerable hosts at

the late stage. Therefore, attackers may choose a corresponding static IS strategy

based on the purpose of attacks, e.g. infecting some amount of hosts as quickly as

possible.

We also inspect the effect of the amount of knowledge on the spreading speed of

static importance-scanning worms. Figure 8(b) shows the propagation comparison

among a Class-A routing Code Red worm, a static IS Code Red worm with the /8

subnet distribution, and a static IS Code Red worm with the /16 subnet distribution.

Here, static IS Code Red worms use the optimal strategy, i.e. n = 1
2
. We assume that

all three worms have the same scanning rate, although an IS worm may slow down

for a larger payload if it contains more information about the group distribution.

The Class-A routing worm needs 227 minutes to infect 99% vulnerable hosts, while

the static IS worm with the /8 subnet distribution and the /16 subnet distribution

can use only 126 minutes and 25 minutes, respectively. A Class-A routing worm can

be regarded as a worm that only has the knowledge about the routable space in /8

subnets. Therefore, more knowledge about the vulnerable-host distribution may help

44



an attacker in designing a faster worm.

4.5.3 Sample Size

Next, we study the effect of the sample size (L) on the spread of a self-learning worm.

Figure 9(a) compares different sample sizes (L = 50, 100, 200, 500, 1000). These self-

learning worms employ random scanning to estimate the /8 subnet distribution in

the learning stage and use the optimal static importance-scanning strategy (i.e. n =

1
2
) in the importance-scanning stage. In this figure, a curve expresses the average

of experimental results over 1000 runs, while an error-bar represents the standard

deviation of experimental results based on 1000 runs. If a self-learning worm uses

fewer samples, it can usually spread faster at the early stage, but propagate with a

larger variation and infect fewer vulnerable hosts at the late stage. This is because

both the MSE in Equation (52) and the expected percentage of vulnerable hosts

missed E[pl] in Equation (55) increase, when the sample size L decreases. We further

plot an example of a self-learning worm with 500 samples in Figure 9(b). This figure

shows the worst case and the best case among 1000 runs for worm propagation,

as well as the average case and the propagation with the actual group distribution

in the importance-scanning stage. It is observed that all four cases close to each

other. Therefore, even with 500 samples, a self-learning worm can estimate the group

distribution accurately.

4.5.4 Self-Learning Worms

Now, we are ready to compare a self-learning worm with a random-scanning worm,

a permutation-scanning worm, and a Class-A routing worm. A self-learning worm

uses either random scanning or routable scanning and collects 500 samples in the

learning stage, and employs the optimal static importance-scanning strategy p∗g(i) =√
Ωip̂g(i)

Pm
k=1

√
Ωkp̂g(k)

in the importance-scanning stage. In permutation scanning, all worms

share the common pseudo random permutation of the IP address space and coordinate
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Figure 9: Effect of sample size.

to provide comprehensive scanning [68]. Such permutation scanning is implemented

by Weaver’s simulator, which uses the 32-bit, 6-round variant of RC5 to generate all

permutations and random numbers. Figure 10(a) shows the propagation compari-

son among a self-learning Code Red worm (average over 1000 runs), a permutation-

scanning Code Red worm, and a random-scanning Code Red worm. It is observed

that the self-learning Code Red worm spends about 50% of the spreading time to in-

fect the first 500 hosts, but uses the left 50% of time to infect the other 3.5×105 hosts.

Thus, the self-learning worm has an astounding spreading speed at the importance-

scanning stage. Figure 10(b) demonstrates the spread of another self-learning Code

Red worm if the worm uses the Class-A routable scanning in the learning stage. Af-

ter collecting the information of 500 worm clients, the self-learning worms (exploiting

random scanning or routable scanning in the learning stage) use only 64 minutes to

infect the other 3.2 × 105 (90%) vulnerable hosts in the importance-scanning stage.

In comparison, a random-scanning Code Red worm, a permutation-scanning Code

Red worm, and a Class-A routing Code Red worm need 293 minutes, 254 minutes,

and 133 minutes, respectively, to infect the same number of vulnerable hosts. Hence,

a simple self-learning process can greatly increase worms’ spreading speed.
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Figure 10: Performance of self-learning Code Red worms.

4.6 Detecting and Defending Against Self-Learning Worms

How can we detect and defend against self-learning worms? Our study on self-learning

worms provides the following guidelines:

• When a new application is introduced to the future Internet, how can we deploy

this application? From Equation (41), attackers attempt to minimize Y by

choosing the optimal static group scanning distribution p∗g(i), while defenders

endeavor to maximize Y by customizing the group distribution pg(i). This is a

classic two-person zero-sum game [45] between the attackers and the defenders,

which leads to

Yopt = min
p∗g(i)

max
pg(i)

{Y } = max
pg(i)

min
p∗g(i)

{Y }. (57)

Similar to the derivation in the previous chapter, we find that the optimal strat-

egy for the defenders is to deploy a new application uniformly in the Internet

for any grouping criteria, such as /8 subnets, /16 subnets, and DNS top-level

domains [26]. Thus, the self-learning process cannot help the worm in speeding

up the propagation. It is a common belief that IPv6 can slow down the spread

of scanning worms effectively due to the large address space. An importance-

scanning worm, however, can have an astonishing spreading speed, if vulnerable
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hosts are still distributed in a non-uniform fashion and the group distribution

can be obtained. On the other hand, current traffic engineering requires the

non-uniform partition of the address space for routing aggregation. How to

balance the tradeoff between traffic engineering and security engineering is a

challenging task for designing the future Internet.

• Since a self-learning worm has an astounding spreading speed at the importance-

scanning stage, defenders need to detect the worm during the learning stage of

worm propagation. Scan or probe detection can be combined with content-

based anomaly detection to improve the speed and the accuracy of detection.

Moreover, a good detection system should be distributed as proposed in [49].

Interestingly, the effectiveness of this worm monitoring system [49] strongly

depends on obtaining the information of the underlying vulnerable-host group

distribution in /8 subnets and /16 subnets. Thus, the weapon race between the

attackers and the defenders relies on how each side can collect and process the

information of the vulnerable-host distribution. The cooperation between the

defenders from different domains provides information sharing and therefore a

possibly more effective detection system [37].

• For the self-learning worm system proposed in this chapter, a key issue in defense

is to detect and disable the worm server before the importance-scanning stage.

One possible method to detect the worm server, for example, is to use the

host contact graph presented in [71]. After detecting the worm server, different

mechanisms can be applied to disable the worm server, for example, putting the

IP address of the worm server in the address blacklist [40]; providing the false

information of worm clients to the worm server; or even performing the denial

of service (DoS) attack on the worm server.
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4.7 Summary

We have characterized attack behaviors through both analysis and simulation. Our

designed “self-learning worm” has the intelligence to gather and process the mea-

surements while propagating and thus increases the propagation speed. Our findings

include

• A worm can learn the group distribution in /8 subnets well, using a proportion

estimator and as few as 500 samples. The estimator is unbiased, and the MSE

of the estimator approximately decreases in reverse proportion to the number

of measurements.

• An optimal yet practical importance-scanning method can be derived based on

static importance sampling to speed up the propagation of a worm.

• A self-learning worm based on parameters chosen from real measurements of

the Code Red v2 worm spreads nearly five times faster than a random-scanning

worm, four times faster than a permutation-scanning worm, and two times faster

than a Class-A routing worm, after collecting 500 samples and estimating the

group distribution in /8 subnets.
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CHAPTER V

SUB-OPTIMAL WORM-SCANNING METHOD: A
LOCALIZED-SCANNING WORM

5.1 Introduction

In this chapter, our focus is on localized scanning, which has been used by such

famous worms as Code Red II and Nimda. Localized scanning preferentially searches

for vulnerable hosts in the “local” address space. For example, the Code Red II worm

selects target IP addresses as follows [82]:

• 50% of the time, an address with the same first byte is chosen as the target,

• 37.5% of the time, an address with the same first two bytes is chosen as the

target,

• 12.5% of the time, a random address is chosen.

Song et al. showed that Nimda and Code Red II worms accounted for 90% in-

fection attempts in the seven-week period from September 19 to November 3, 2001

[58]. Why is such a localized strategy so effective? It has been observed that in

the current Internet, a sub-network intends to have many computers with the same

operating systems and applications for easy management [49]. Hence, vulnerable

hosts usually form clusters [8]. Once a vulnerable host in such a subnet is infected, a

localized-scanning worm can rapidly compromise all the other local vulnerable hosts.

The goal of this work is to better understand the spreading ability and character-

istics of localized-scanning worms. Specifically, we attempt to answer the following

questions:

• What is the effect of vulnerable-host distributions on the spread of localized-

scanning worms? The prior work has studied this effect empirically [8, 81, 49].
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In this work, we use mathematical reasoning to show the relationships between

vulnerable-host distributions and localized-scanning worms. Specifically, it is

shown analytically that localized-scanning worms spread slower than random-

scanning worms if vulnerable hosts are uniformly distributed, or faster if highly

unevenly distributed. Moreover, if infected hosts are uniformly distributed,

localized-scanning worms can speed up the propagation with nearly a rate of

the non-uniformity factor that quantifies the non-uniformity of a vulnerable-

host distribution [11].

• What is the propagation capacity of a localized-scanning worm? We design

an optimal localized-scanning strategy that maximizes the localized-scanning

worm propagation speed. Such a strategy dynamically adapts the parameters

used for scanning the local sub-network and the global Internet, based on the

distribution of uninfected vulnerable hosts. Although the optimal localized

scanning is difficult to implement, it provides an upper bound on the spreading

speeds of the currently used localized scanning and its variants. Moreover, we

empirically show that the propagation speed of the currently used localized

scanning can approach that of the optimal strategy.

• What are some possible variants of localized-scanning worms? We study three

variants of localized scanning that can be easily implemented. The first one

makes an infected host focus on scanning either locally or globally. Such a

variant, however, is shown empirically to spread slower and have a larger vari-

ance than localized scanning. Therefore, it may not be a good candidate for

worm attacks. The second variant is inspired by the optimal localized scan-

ning. Specifically, an infected host initiates to scan the local sub-network and

switches to scanning the global Internet when it probes a local host that has

been already infected. Such a strategy makes an infected host adapt scanning
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strategies dynamically, based on the feedback from the probed host. We show

that this simple variant can spread faster than localized scanning and has a

smaller variance. Therefore, this scanning method is a potential tool for attack-

ers. The second variant is easily extended to a “ping-pong” algorithm, which

further improves the worm spreading speed at the late stage.

The remainder of this chapter is structured as follows. Section 5.2 provides the

background on localized scanning and vulnerable-host distributions. Section 5.3

shows the effect of vulnerable-host distributions on localized scanning analytically.

Sections 5.4 and 5.5 design the optimum and the variants of localized scanning. Sec-

tion 5.6 concludes the chapter.

5.2 Preliminaries

5.2.1 Localized Scanning

Localized scanning preferentially scans for targets in the address space that is close to

the victim. The basic idea of such a scanning method is that if vulnerable hosts are

clustered, an infected host searching for local hosts would have a higher probability to

find a target than random guessing. Localized scanning has been exploited by Code

Red II and Nimda worms [82, 83]. Moreover, the Blaster worm also uses localized

scanning to select its starting point [85]. The successes of these worms indicate the

effectiveness of such a simple scanning strategy.

In this work, we consider two types of localized scanning (LS). The first type is a

simplified version of LS, called /l LS, which scans the Internet as follows:

• pa (0 ≤ pa ≤ 1) of the time, an address with the same first l bits is chosen as

the target,

• 1− pa of the time, a random address is chosen.

When pa = 0, /l LS is identical to random scanning (RS). Here, we use the classless

inter-domain routing (CIDR) notation. The IPv4 address space is partitioned into
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subnets according to the first l bits of IP addresses, i.e., /l prefixes or /l subnets, where

l ∈ {0, 1, , · · · , 32}. Thus, each /l subnet i (i = 1, 2, · · · , 2l) has 232−l addresses.

The second type is called two-level LS (2LLS), which has been used by the Code

Red II and Nimda worms. 2LLS scans the Internet as follows:

• pb (0 ≤ pb ≤ 1) of the time, an address with the same first byte is chosen as the

target,

• pc (0 ≤ pc ≤ 1 − pb) of the time, an address with the same first two bytes is

chosen as the target,

• 1− pb − pc of the time, a random address is chosen.

For example, for the Code Red II worm, pb = 0.5 and pc = 0.375 [82]; for the Nimda

worm, pb = 0.25 and pc = 0.5 [83].

5.2.2 Vulnerable-Host Distribution

The prerequisite for localized scanning is that vulnerable hosts are non-uniformly

distributed in the Internet. The non-uniformity of vulnerable-host distributions has

been observed in prior work [3, 39, 41, 56, 49, 10]. Taking the distribution of Witty-

worm victims among /16 subnets as an example, we process the data provided by

CAIDA [92] as follows. First, the /16 subnets are sorted decreasingly according to

the number of vulnerable hosts. Then, the empirical cumulative distribution function

(CDF) of the percentage of vulnerable hosts in the sorted /16 subnets is computed and

plotted in Figure 11. We find that 1,573 (2.4%) /16 subnets contain 80% vulnerable

hosts, whereas 2,453 (3.7%) /16 subnets hold 90% vulnerable hosts. Therefore, only

a small percentage of /16 subnets contain a large portion of vulnerable hosts, and the

distribution of Witty-worm victims is highly non-uniform.
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Figure 11: CDF of the percentage of Witty-worm victims in sorted /16 subnets.

5.2.3 Non-Uniformity Factor

How can we quantify the non-uniformity of a vulnerable-host distribution? In our

prior work [11], we use a simple metric, called the non-uniformity factor, to measure

the non-uniformity of a distribution.

Let N be the total number of vulnerable hosts and N
(l)
i be the number of vul-

nerable hosts in /l subnet i (i = 1, 2, · · · , 2l). Define p
(l)
g (i) =

N
(l)
i

N
, which is called

the group distribution in /l subnets. Then, the non-uniformity factor in /l subnets is

defined as

β(l) = 2l

2l∑
i=1

(
p(l)

g (i)
)2

. (58)

A larger non-uniformity factor indicates a more non-uniform distribution. When a

vulnerable-host distribution is uniform among /l subnets, β(l) = 1. For the Witty-

worm victim distribution, β(8) = 12.0 and β(16) = 126.7. We will further discuss the

non-uniformity factor in the next chapter.

5.3 Effect of Vulnerable-Host Distributions on Localized Scan-
ning

In this section, we study the effect of vulnerable-host distributions on localized scan-

ning and compare the spreading dynamics of localized-scanning (LS) worms with
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those of random-scanning (RS) worms by modeling their propagation. As a dynamic

worm-propagation model is non-linear, it is difficult to result in a close-form solution.

Hence, we gain some insights through exploring extreme cases of vulnerable-host and

infected-host distributions among subnets. Specifically, we consider three extreme

cases: (1) Vulnerable hosts are evenly distributed, (2) Vulnerable hosts are highly

unevenly distributed, and (3) Infected hosts are uniformly distributed.

A simple abstract model, known as the susceptible→ infected (SI) model, has been

exploited to model the spread of worms in various earlier work [59, 79]. The SI model

assumes that each host has two states: susceptible and infected. Once infected, a host

stays in the infected state. Here, we adopt a discrete-time SI model. In particular, we

employ the analytical active worm propagation (AAWP) model, which was proposed

by Chen et al. in [8] and has been applied in [49, 30, 70].

5.3.1 Random Scanning

In the AAWP model, the spread of RS worms is characterized as follows [10]:

It+1 = It + (N − It)

[
1−

(
1− 1

Ω

)Its
]

(59)

= It + (N − It)
Its

Ω
−O

(
1

Ω2

)
, (60)

where It is the average number of infected hosts at time t (t ≥ 0); N is the total

number of vulnerable hosts; s is the scanning rate; and Ω is the scanning space. Since

Ω = 232 >> 1, we ignore O
(

1
Ω2

)
and have

It+1 = It +
(N − It)Its

Ω
. (61)

5.3.2 /l Localized Scanning

The AAWP model can be extended to model the spread of /l LS worms:

I
(l)
t+1,i = I

(l)
t,i + (N

(l)
i − I

(l)
t,i )

[
1−

(
1− 1

Ωi

)St,i

]
(62)

= I
(l)
t,i + (N

(l)
i − I

(l)
t,i )

St,i

Ωi

−O

(
1

Ω2
i

)
, (63)
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where i = 1, 2, · · · , 2l; I
(l)
t,i is the expected number of infected hosts in /l subnet i at

time t (t ≥ 0); N
(l)
i is the number of vulnerable hosts in /l subnet i; Ωi is the size

of the address space in /l subnet i; and St,i is the average number of scans hitting

/l subnet i during time period (t, t + 1]. Since Ωi = 232−l >> 1, we ignore O
(

1
Ω2

i

)
.

Summing over i = 1, 2, · · · , 2l on both sides of Equation (63), we have

It+1 = It +
2l∑

i=1

(
N

(l)
i − I

(l)
t,i

)
St,i

232−l
, (64)

where It =
∑2l

i=1 I
(l)
t,i .

The average number of scans that fall into /l subnet i during the time period

(t, t + 1] (i.e., St,i) consists of two parts: (a) paI
(l)
t,i s scans from local infected hosts

within subnet i and (b) (1−pa)Its
2l scans from all infected hosts. That is,

St,i =

(
paI

(l)
t,i +

1− pa

2l
It

)
s, i = 1, 2, · · · , 2l. (65)

Putting Equation (65) into Equation (64), we have

It+1 = It + (1− pa)
(N − It)Its

Ω
+ pa

s

Ω
· 2l

2l∑
i=1

(
N

(l)
i − I

(l)
t,i

)
I

(l)
t,i . (66)

On the right-hand side of the above equation, the second term represents the random-

scanning component in the /l LS, while the third term corresponds to the preference

of scanning the local /l subnet. If (N−It)Its
Ω

≤ s
Ω
· 2l

∑2l

i=1

(
N

(l)
i − I

(l)
t,i

)
I

(l)
t,i , a /l LS

worm should choose a large value of pa to speed up the propagation.

As a close-form expression for It is difficult to obtain, we consider three extreme

cases of vulnerable-host and infected-host distributions. The first case assumes that

vulnerable hosts are uniformly distributed, i.e., N
(l)
1 = N

(l)
2 = · · · = N

(l)

2l . Then, when

I
(l)
t,i > I

(l)
t,j , N

(l)
i − I

(l)
t,i < N

(l)
j − I

(l)
t,j , i, j ∈ {1, 2, · · · , 2l}. This results in

2l

2l∑
i=1

(
N

(l)
i − I

(l)
t,i

)
I

(l)
t,i <




2l∑
i=1

(
N

(l)
i − I

(l)
t,i

)






2l∑
i=1

I
(l)
t,i


 = (N − It)It, (67)

assuming that the numbers of infected hosts among subnets are not all equal. The

above relation is obtained by the Chebyshev sum inequality [69] or the rearrangement
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inequality [90]. When applying the result of Equation (67) to Equation (66), we obtain

that It+1 < It+
(N−It)Its

Ω
. Therefore, the uniform distribution of vulnerable hosts leads

to a low value of pa for an effective /l LS worm. Moreover, the spread of /l LS worms

is slower than that of RS worms in this case.

The second case assumes that vulnerable hosts are highly unevenly distributed so

that when a /l subnet has more infected hosts, it would also contain more uninfected

vulnerable hosts. That is, when I
(l)
t,i > I

(l)
t,j , N

(l)
i −I

(l)
t,i > N

(l)
j −I

(l)
t,j , i, j ∈ {1, 2, · · · , 2l}.

We can then derive

2l

2l∑
i=1

(
N

(l)
i − I

(l)
t,i

)
I

(l)
t,i > (N − It)It, (68)

assuming that the numbers of infected hosts among subnets are not all equal. The

above relation is obtained by the Chebyshev sum inequality. When applying the result

of Equation (68) to Equation (66), we obtain that It+1 > It + (N−It)Its
Ω

. Therefore,

for such an extreme case, a large value of pa is preferred for an effective /l LS worm.

Moreover, the spread of /l LS worms is faster than that of RS worms.

The last case assumes a uniform distribution of infected hosts among subnets.

That is, the number of infected hosts in /l subnet i is proportional to the number of

vulnerable hosts in this subnet, i.e., I
(l)
t,i = It ·p(l)

g (i), i = 1, 2, · · · , 2l. This assumption

changes Equation (66) to

It+1 = It +
(
1− pa + paβ

(l)
) (N − It)Its

Ω
, (69)

where β(l) is the non-uniformity factor as defined in Equation (58). Thus, compared

with RS (Equation (61)), /l LS can increase the propagation speed with a rate of

1− pa + paβ
(l). For example, when pa = 0.75, a /8 LS Witty worm can increase the

spreading speed with a factor of 9.25, whereas a /16 LS Witty worm can increase the

speed with a factor of 95.28.
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5.3.3 Two-Level Localized Scanning

For 2LLS, Equation (64) still holds when l = 16. The average number of scans hitting

/16 subnet i during time period (t, t + 1] is

St,i =


pcI

(16)
t,i +

pb

28

∑

j∈A
(8)
i

I
(16)
t,j +

1− pb − pc

216
It


 s, (70)

where i = 1, 2, · · · , 216; A
(8)
i denotes the set of /16 subnets that have the same first

byte of the subnet address as /16 subnet i; and
∑

j∈A
(8)
i

I
(16)
t,j represents the expected

number of the infected hosts in the Class-A subnet that has the same first byte of the

address as the /16 subnet i. Putting Equation (70) into Equation (64) and setting

l = 16, we have,

It+1 = It + (1− pb − pc)
(N − It)Its

Ω
+

28pbs

Ω

28∑
i=1

(
N

(8)
i − I

(8)
t,i

)
I

(8)
t,i

+
216pcs

Ω

216∑
i=1

(
N

(16)
i − I

(16)
t,i

)
I

(16)
t,i . (71)

Similar to /l LS, 2LLS can be shown to spread slower (or faster) than RS if

vulnerable hosts are uniformly (or highly unevenly) distributed1. Moreover, if infected

hosts are uniformly distributed, the model for the 2LLS (i.e., Equation (71)) becomes

It+1 = It +
(
1− pb − pc + pbβ

(8) + pcβ
(16)

) · (N − It)Its

Ω
. (72)

Comparing Equations (61) with (72), we find that when pc is large and the uniformity

condition of infected hosts holds, a 2LLS worm can speed up the propagation nearly

β(16) times compared with an RS worm.

Our findings provide quantifications to some of the previous observations [8, 81,

49]. For example, when vulnerable hosts are uniformly distributed, an LS worm

propagates slower than an RS worm [8]. On the other hand, when the underlying

vulnerable-host distribution follows nearly a power law, an LS worm can spread much

faster than an RS worm [49].

1We omit the details of derivation for brevity.
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5.4 Optimal Dynamic Localized Scanning

What is the “best-case scenario” for LS worms? How different is the currently used LS

from the optimal LS? To answer these questions, we study the optimal LS, focusing on

/l LS for simplicity. The essential of the optimal LS is to choose the best parameters

(i.e., pa, pb, and pc) to maximize the propagation speed. Intuitively, the optimal LS

should be dynamic and adjust its parameters during the scanning process. Hence,

these parameters depend on the location of infected hosts and vary with time. We

use p
(a)
t,i to denote pa at time t for an infected host in /l subnet i.

5.4.1 Optimal /l Localized Scanning

The optimal /l LS should determine p
(a)
t,i (0 ≤ p

(a)
t,i ≤ 1) to maximize the probability

of finding an uninfected vulnerable host. To obtain this, we assume that the number

of vulnerable hosts and the number of infected hosts in each subnet at time t (i.e.,

N
(l)
i ’s and I

(l)
t,i ’s) are known to the worm. Therefore, our problem reduces to obtaining

the optimal p
(a)
t,i ’s for worm propagation, given N

(l)
i ’s and I

(l)
t,i ’s.

For the dynamic /l LS, the average number of scans that fall into /l subnet

i during time period (t, t + 1] (i.e., St,i) consists of two parts: (a) p
(a)
t,i I

(l)
t,i s scans

from local infected hosts within subnet i and (b) 1
2l

∑2l

j=1 (1− p
(a)
t,j )I

(l)
t,j s scans from all

infected hosts. That is,

St,i =

[
p

(a)
t,i I

(l)
t,i +

∑2l

j=1 (1− p
(a)
t,j )I

(l)
t,j

2l

]
s, (73)

where i = 1, 2, · · · , 2l. Putting Equation (73) into Equation (64), we have

It+1 = It +
s

232−l

2l∑
i=1

I
(l)
t,i

[
p

(a)
t,i (N

(l)
i − I

(l)
t,i ) + (1− p

(a)
t,i )

N − It

2l

]
. (74)

To maximize It+1, p
(a)
t,i needs to satisfy

p
(a)
t,i =





1, if N
(l)
i − I

(l)
t,i > N−It

2l ;

0, otherwise.
(75)
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That is, if the number of uninfected vulnerable hosts in subnet i is larger than the

average number of uninfected vulnerable hosts among 2l subnets at time t, the infected

hosts in sunbet i should scan only the local subnet; otherwise, the infected hosts

should use random scanning. Thus, the propagation model for the optimal dynamic

/l LS is

It+1 = It +
s

232−l

2l∑
i=1

I
(l)
t,i max

{
N

(l)
i − I

(l)
t,i ,

N − It

2l

}
. (76)

Using this optimal scanning method, a worm starting from a subnet that contains

many vulnerable hosts would first scan locally. The infected hosts in this subnet then

switch from scanning locally to scanning globally later when few uninfected vulnerable

hosts remain. The key is that the worm switches the scanning strategy when it is

aware of the change of the distribution of uninfected vulnerable hosts.

It should be noted that implementing such optimal LS is difficult. First, N
(l)
i ’s

may not be known in advance. Second, to perform this LS, each infected host needs to

know I
(l)
t,i ’s, which leads to numerous information exchanges between infected hosts.

The optimal dynamic LS, however, provides the best scenario of LS and can be used

as the baseline for designing some realistic LS worms.

5.4.2 Optimal Two-Level Localized Scanning

We can easily extend the above derivation to the optimal dynamic 2LLS and conclude

the results here. Similar to p
(a)
t,i , let p

(b)
t,i and p

(c)
t,i (0 ≤ p

(b)
t,i ≤ 1−p

(c)
t,i ≤ 1) denote pb and

pc at time t for an infected host in /16 subnet i. Assume that N
(16)
i is the number of

vulnerable hosts in /16 subnet i; I
(16)
t,i is the number of infected hosts in /16 subnet

i at time t; and A
(8)
i is the set of /16 subnets that have the same first byte of the

subnet address as /16 subnet i. Three items, N
(16)
i − I

(16)
t,i , 1

28

∑
j∈A

(8)
i

(N
(16)
j − I

(16)
t,j ),

and 1
216 (N − It), are compared. The corresponding optimal 2LLS worm-scanning

strategy is summarized in Table 2.
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Table 2: Summary of the optimal 2LLS.
Compare three items Result Scanning strategy Meaning

max {N (16)
i − I

(16)
t,i , first p

(b)
t,i = 0, p

(c)
t,i = 1 scan the local /16 subnet

1
28

∑
j∈A

(8)
i

(N
(16)
j − I

(16)
t,j ), second p

(b)
t,i = 1, p

(c)
t,i = 0 scan the local /8 subnet

1
216 (N − It)} third p

(b)
t,i = p

(c)
t,i = 0 scan the global Internet

5.4.3 Experimental Results

In our experiments, we simulate the spread of a Witty worm, which has a vulnerable

population N = 55, 909 [92] and a scanning rate s = 1, 200 per second [56]. The effect

of disk damage on the Witty worm propagation is ignored. The worm is assumed to

begin spreading from one initially infected host (i.e., I0 = 1).

We evaluate the propagation speed of optimal LS worms by two methods. The first

method is the numerical analysis of the worm propagation models. Specifically, the

spread of /l LS worms is simulated by Equations (62) and (65), while the propagation

of 2LLS worms is implemented by Equations (62) and (70). The optimal /l LS uses

Equations (62), (73), and (75). RS is regarded as a special case of the /l LS when

pa = 0 and an extreme example of the 2LLS when pb = pc = 0. The initially infected

host is assumed to be located in the subnet that contains the smallest number of

vulnerable hosts. Figure 12(a) compares the propagation speeds of RS, optimal /8

LS, and the /8 LS with pa = 0.75. Figure 12(b) compares the spreading speeds of

optimal 2LLS and the 2LLS with pb = 0.25 and pc = 0.5. It is shown that LS can

spread the worm much faster than RS, and the spreading speed of the currently used

LS (i.e., 2LLS) can approach that of the optimal LS.

The second evaluation method uses a discrete event simulator to imitate the spread

of LS worms. Our simulator implements each worm scan through a random number

generator and simulates each scenario with 100 runs using different seeds. The initially

infected host is located in the subnet that contains the largest number of vulnerable
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Figure 12: Numerical analysis of (optimal) LS worm propagation.

hosts. Figure 13(a) plots the mean and the variance of /16 LS worm propagation with

pa = 0.75. If a worm has a smaller variance, its spread is more predictable and stable.

The “5%” (or “95%”) propagation curve denotes that a worm spreads no slower (or

faster) than this curve in 95 out of 100 simulation runs. The standard derivation

(STD) error-bar reflects the variance of worm propagation among 100 simulation

runs. It is observed that a /16 LS infected 50,318 (90%) vulnerable hosts in 138

seconds averagely. Figure 13(b) plots the simulation results of optimal /16 LS worm

propagation. Such an optimal worm only takes 65 seconds to infected 90% vulnerable

hosts. Moreover, the optimal /16 LS has a smaller variance compared with the /16

LS.

5.5 Variants of Localized Scanning

In this section, we study three variants of LS that can be easily implemented and do

not require information exchanges between infected hosts.

5.5.1 Decision-First Localized Scanning

The first variant is called decision-first localized scanning (DFLS). Instead of com-

bining local scanning and global scanning, DFLS makes an infected host focus on
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Figure 13: Simulations of /16 LS and optimal /16 LS worm propagation.

scanning either locally or globally. For example, when a host is infected, it flips a

coin and makes a decision:

• Scan only the local /l subnet with probability pa,

• Scan globally with probability 1− pa.

This scanning strategy is called /l DFLS, which is the counterpart of /l LS. Since

in a /l subnet pa percentage of infected hosts scan locally and 1 − pa percentage of

infected hosts use random scanning, Equations (62) and (65) still hold for /l DFLS.

We write a simulator to imitate the spread of DFLS worms and use the same

setting as in Figure 13. Figure 14 plots the mean and the variance of /16 DFLS

worm propagation with pa = 0.75. It is observed that /16 DFLS spreads slower than

/16 LS and on average takes 140 seconds to infect 40,000 vulnerable hosts. Moreover,

/16 DFLS has a large variance as shown in the figure. This is because each infected

host scans only either locally or globally. The hosts scanning globally have a slower

speed to find a target. On the other hand, the hosts scanning locally waste scans after

the local infected hosts become saturated. Thus, DFLS lacks a randomized algorithm

to search for targets both locally and globally and may not be a good candidate for
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Figure 14: Simulations of /16 DFLS worm propagation.

worm attacks.

5.5.2 Feedback Localized Scanning and Ping-Pong Localized Scanning

The second variant is called feedback localized scanning (FLS), which is inspired by

the optimal LS. The optimal strategy adapts the scanning methods, based on the

local density of uninfected vulnerable hosts. In the similar way, we design a variant

of LS, based on the feedback from the local probed host. For example, an infected

host behaves as follows:

• First, initiates to scan the local /l subnet until probing a local host that has

been already infected,

• Then, switches from scanning locally to scanning the global Internet.

This scanning strategy is called /l FLS. The basic idea is that when the infected host

probes a local host that has been already infected, it realizes that the infected hosts

in the subnet probably have become saturated and had better switch to scanning

globally.

We also write a simulator for FLS and show the results in Figure 15. Figure 15(a)

plots the mean and the variance of /16 FLS worm propagation. It is observed that /16
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Figure 15: Simulations of /16 FLS worm propagation.

FLS takes only 93 seconds to infect 90% vulnerable hosts and further approaches the

spreading capacity of the optimal /16 LS. Moreover, /16 FLS has a small variance.

Figure 15(b) further plots how the number of infected hosts that scans locally changes

with time. It is shown that the number first increases with time and reaches the

maximum after about 40 seconds and then decreases with time. This indicates that

in the beginning many infected hosts focus on scanning locally and later switch to

scanning globally. Therefore, FLS shows a better performance than the original LS

and can be a potential tool for attackers.

FLS can further be extended to a “ping-pong” localized scanning (PPLS) method

by adding the following algorithm:

• An infected host that uses random scanning will switch to scanning the local /l

subnet when it probes a host that has been already infected.

Thus, an infected host switches between local scanning and global scanning, in an

attempt to adapt to the underlying distribution of uninfected vulnerable hosts. Figure

16 plots the mean and the variance of /16 PPLS worm propagation. /16 PPLS further

improves worm propagation at the late stage and only takes 81 seconds to infected

90% vulnerable hosts.

65



0 20 40 60 80 100
0

1

2

3

4

5

6
x 10

4

 Time (second)

 N
um

be
r 

of
 in

fe
ct

ed
 h

os
ts

 STD of /16 PPLS
 Mean of /16 PPLS
 5% of /16 PPLS
 95% of /16 PPLS

Figure 16: Simulations of /16 PPLS worm propagation.

5.6 Summary

In this chapter, we attempt to understand the behaviors of localized-scanning (LS)

worms through both analysis and simulation. We have shown analytically that an

LS worm spreads slower than a random-scanning (RS) worm if the vulnerable-host

distribution is uniform, or faster if highly uneven. Moreover, if the infected hosts are

uniformly distributed, the LS method can increase the spreading speed by nearly a

non-uniformity factor compared with the RS scheme.

We have designed the optimal dynamic LS worms. The spreading speed of such

optimal LS can be approached by the currently used LS, showing that the existing LS

is near-optimal. We have also constructed three variants of LS. While the decision-

first localized scanning (DFLS) shows a poor performance empirically, the feedback

localized scanning (FLS) and the ping-pong localized scanning (PPLS) demonstrate

better performances than the original LS and can be good candidates for worm at-

tacks. The key of FLS and PPLS is that a worm adapts its scanning strategies based

on the feedback from the probed host.
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CHAPTER VI

NON-UNIFORMITY FACTOR: NETWORK-AWARE
WORM ATTACKS AND DEFENSE

6.1 Introduction

Worm scanning has become more and more sophisticated since the initial attacks

of Internet worms. Most of the real, especially “old” worms, such as Code Red [39],

Slammer [41], and latter Witty [56], exploit naive random scanning that chooses target

IP addresses uniformly and does not use any information on network vulnerabilities.

Advanced scanning methods, however, have been developed that take the IP address

structure into consideration. One example is routable scanning that selects targets

only in the routable address space, using the information provided by the BGP routing

table [70, 79]. Another example is evasive worms that exploit lightweight sampling

to obtain the knowledge of live subnets of the address space and spread only in these

networks [48].

This chapter focuses on a class of network-aware worms. Such worms exploit the

information on the highly uneven distributions of vulnerable hosts. The vulnerable-

host distributions have been observed to be bursty and spatially inhomogeneous by

Barford et al. [3]. A non-uniform distribution of Witty-worm victims has been

reported by Rajab et al. [49]. We have also found that a Web-server distribution is

non-uniform in the IP address space [10]. These discoveries suggest that vulnerable

hosts and Web servers may be “clustered” (i.e., non-uniform). The clustering/non-

uniformity makes the network vulnerable since if one host is compromised in a cluster,

the rest may be compromised rather quickly.

In our prior chapters, we have studied a class of “worst-case” worms, called

importance-scanning worms, which exploit non-uniform vulnerable-host distributions
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[10, 16]. Importance scanning is developed from and named after importance sam-

pling in statistics. Importance scanning probes the Internet according to an underly-

ing vulnerable-host distribution. Such a scanning method forces worm scans on the

most relevant parts of an address space and supplies the optimal strategy1. Impor-

tance scanning thus provides a “what-if” scenario: When there are many ways for

intelligent worms to exploit such a vulnerability, importance scanning is a worst-case

threat-model. Hence, importance scanning can serve as a benchmark for studying

real worms.

Are there any real network-aware worms? Code Red II and Nimda worms have

used localized scanning [82, 83]. Localized scanning preferentially searches for vul-

nerable hosts in the “local” address space. The Blaster worm has used sequential

scanning in addition to localized scanning [85]. Sequential scanning searches for vul-

nerable hosts through their closeness in the IP address space. It is not well understood,

however, how to characterize the relationships between vulnerable-host distributions

and these network-aware worms.

What has been observed is that real network-aware and importance-scanning

worms spread much faster than random-scanning worms [49, 10]. This shows the

importance of the problem. Does there exist a generic characteristic across different

vulnerable-host distributions? If so, how do intelligent worms exploit such a vulner-

ability, and how can we defend against such worms?

Our goal is to investigate such a generic characteristic in vulnerable-host distribu-

tions, to quantify its relationship with network-aware worms, and to understand the

effectiveness of defense strategies. In particular, we would like to answer the following

questions:

• How to quantify the non-uniformity of a vulnerable-host distribution by a simple

1Hitlist scanning [60] can be regarded as a special case of importance scanning when the complete
information of vulnerable hosts is known.
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metric?

• How to measure the spreading ability of network-aware worms quantitatively?

• How to relate vulnerable-host distributions with network-aware worm spreading

ability?

• What are the challenges to defense strategies on slowing down the spread of a

network-aware worm?

To answer these questions, we first observe, from five measurement sets, com-

mon characteristics of non-uniform vulnerable-host distributions. We then derive

a new metric as the non-uniformity factor to characterize the non-uniformity of a

vulnerable-host distribution. A larger non-uniformity factor reflects a more non-

uniform distribution of vulnerable hosts. We obtain the non-uniformity factors from

the data sets on vulnerable-host distributions and show that all data sets have large

non-uniformity factors. Moreover, the non-uniformity factor is a function of the Renyi

entropy, a generalized entropy, of order two [50]. We show that the non-uniformity

factor better characterizes the unevenness of a distribution than the Shannon en-

tropy. Therefore, in view of information theory, the non-uniformity factor provides a

quantitative measure of the unevenness/uncertainty of a vulnerable-host distribution.

Next, we analyze the spreading speed of network-aware worms, especially at an

early stage. A worm that spreads faster at the early stage can in general infect most of

the vulnerable hosts in a shorter time. The propagation ability of a worm at the early

stage is characterized by the infection rate [79]. Therefore, we derive the infection

rates of network-aware worms. We find that the infection rates of representative

network-aware worms can be represented explicitly as a function of the non-uniformity

factor. For example, localized scanning can increase the infection rate by nearly the

non-uniformity factor, comparing to random scanning. Thus, the spreading speed of

localized scanning can approach the capacity of sub-optimal importance scanning [10].
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These analytical results on the relationships between vulnerable-host distributions

and network-aware worm spreading ability are validated by simulation. Furthermore,

to show the generality of our approach, we study sequential scanning. We demonstrate

that a combination of sequential scanning and random scanning can increase the

infection rate significantly.

Finally, we study new challenges to worm defense posed by network-aware worms.

Using the non-uniformity factor, we show quantitatively that the host-based defense

strategies, such as proactive protection [7] and virus throttling [63], should be de-

ployed at almost all hosts to slow down network-aware worms at the early stage. A

partial deployment would nearly invalidate such host-based defense. Moreover, we

demonstrate that the infection rate of a network-aware worm in the IPv6 Internet

can be comparable to that of the Code Red v2 worm in the IPv4 Internet. Therefore,

fighting network-aware worms is a real challenge.

The remainder of this chapter is structured as follows. Section 6.2 presents our col-

lected data sets. Sections 6.3 and 6.4 introduce a new metric called the non-uniformity

factor and compare this metric to the Shannon entropy. Sections 6.5 and 6.6 char-

acterize the spreading ability of network-aware worms through theoretical analysis

and simulations. Section 6.7 further studies the effectiveness of defense strategies on

network-aware worms. Section 6.8 concludes this chapter.

6.2 Measurements and Vulnerable-Host Distribution

How significant is the unevenness of vulnerable-host distributions? To answer this

question, we study five data sets.

6.2.1 Measurements

DShield (D1): DShield collects intrusion detection system (IDS) logs [84]. Specifi-

cally, DShield provides the information of vulnerable hosts by aggregating logs from

more than 1,600 IDSes distributed throughout the Internet. We further focus on the
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following ports that were attacked by worms: 80 (HTTP), 135 (DCE/RPC), 445 (Net-

BIOS/SMB), 1023 (FTP servers and the remote shell attacked by W32.Sasser.E.Worm),

and 6129 (DameWare).

iSinks (P1 and C1): Two unused address space monitors run the iSink system

[75]. The monitors record the unwanted traffic arriving at the unused address spaces

that include a Class-A network (referred to as “Provider” or P1) and two Class B

networks at the campus of the University of Wisconsin (referred to as “Campus” or

C1) [3].

Witty-worm victims (W1): A list of Witty-worm victims is provided by CAIDA

[56]. CAIDA used a network telescope with approximate 224 IP addresses to log the

traffic of Witty-worm victims that are Internet security systems (ISS) products.

Web-server list (W2): IP addresses of Web servers were collected through UROULETTE

(http://www.uroulette.com/). UROULETTE provides a random uniform resource

locator (URL) generator to obtain a list of IP addresses of Web servers.

The first three data sets (D1, P1, and C1) were collected over a seven-day period

from 10-16 December 2004 and have been studied in [3] to demonstrate the bursty

and spatially inhomogeneous distribution of (malicious) source IP addresses. The

last two data sets (W1 and W2) have been used in our prior work [10] to show the

virulence of importance-scanning worms. The summary of our data sets is given in

Table 3.

Table 3: Summary of the data sets.
Trace Description # of unique source addresses

D1 DShield 7,694,291
P1 Provider 2,355,150
C1 Campus 448,894
W1 Witty-worm victims 55,909
W2 Web servers 13,866
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6.2.2 Vulnerable-Host Distribution

To obtain vulnerable-host group distributions, we use the classless inter-domain rout-

ing (CIDR) notation [34]. The Internet is partitioned into subnets according to the

first l bits of IP addresses, i.e., /l prefixes or /l subnets. In this division, there are

2l subnets, and each subnet contains 232−l addresses, where l ∈ {0, 1, · · · , 32}. For

example, when l = 8, the Internet is grouped into Class-A subnets (i.e., /8 subnets);

when l = 16, the Internet is partitioned into Class-B subnets (i.e., /16 subnets).

We plot the complementary cumulative distribution functions (CCDF) of our col-

lected data sets in /8 and /16 subnets in Figure 17 in log-log scales. CCDF is defined

as the faction of the subnets with the number of hosts greater than a given value.

Figure 17(a) shows population distributions in /8 subnets for D1, P1, C1, W1, and

W2, whereas Figure 17(b) exhibits host distributions in /16 subnets for D1 with dif-

ferent ports (80, 135, 445, 1023, and 6129). Figure 17 demonstrates a wide range

of populations, indicating highly inhomogeneous address structures. Specifically, the

relatively straight lines, such as W2 and D1-135, imply that vulnerable hosts follow

a power law distribution. Similar observations were given in [3, 49, 46, 39, 41, 10].

Why is the vulnerable-host distribution non-uniform in the IPv4 address space?

First, no vulnerable hosts can exist in reserved or multicast address ranges [87].

Second, different subnet administrators make different use of their own IP address

space. Third, a subnet intends to have many computers with the same operating

systems and applications for easy management [59, 8]. Last, some subnets are more

protected than others [3, 49].

How can we quantify the non-uniformity of a vulnerable-host distribution? One

way is to use the population distribution such as CCDF plotted in Figure 17. But it

is complex to compare the unevenness of two distributions.
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Figure 17: CCDF of collected data sets.

6.3 Non-Uniformity Factor

In this section, we derive a simple metric, called the non-uniformity factor, to quantify

the non-uniformity of a vulnerable-host distribution.

6.3.1 Definition and Property

Let p
(l)
g (i) (i = 1, 2, · · · , 2l) denote the group distribution of vulnerable hosts in /l

subnets. Let N
(l)
i be the number of vulnerable hosts in /l subnet i and N be the

total number of vulnerable hosts. Then, p
(l)
g (i) =

N
(l)
i

N
, which is the ratio between the

number of vulnerable hosts in group i and the total number of vulnerable hosts. It is

noted that
∑2l

i=1 p
(l)
g (i) = 1 and

∑2l

i=1 N
(l)
i = N .

Definition: The non-uniformity factor in /l subnets is defined as

β(l) = 2l

2l∑
i=1

(
p(l)

g (i)
)2

. (77)

It is noted that

β(l) ≥



2l∑
i=1

p(l)
g (i)




2

= 1. (78)

The above inequality is derived by the Cauchy-Schwarz inequality. The equality holds

if and only if p
(l)
g (i) = 2−l, for i = 1, 2, · · · , 2l. In other words, when the vulnerable-

host distribution is uniform, β(l) achieves the minimum value 1. On the other hand,
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since p
(l)
g (i) ≥ 0,

β(l) ≤ 2l ·



2l∑
i=1

p(l)
g (i)




2

= 2l. (79)

The equality holds when p
(l)
g (j) = 1 for some j and p

(l)
g (i) = 0, i 6= j, i.e., all vul-

nerable hosts concentrate on one subnet. This means that when the vulnerable-host

distribution is extremely non-uniform, β(l) obtains the maximum value 2l. There-

fore, β(l) characterizes the non-uniformity of a vulnerable-host distribution. A larger

non-uniformity factor reflects a more non-uniform distribution of vulnerable hosts.

How does β(l) vary with l? When l = 0, β(0) = 1. In the other extreme where

l = 32,

p(32)
g (i) =





1
N

, address i is vulnerable to the worm;

0, otherwise,
(80)

which results in β(32) = 232

N
. More importantly, β(l) is a non-decreasing function of l,

as shown below.

Theorem 4 If l > r, β(l) ≥ β(r), where l, r ∈ {0, 1, · · · , 32}.

Proof: Let k = l − r. Group i (i = 1, 2, · · · , 2r) of /r subnets is partitioned into

groups 2k · (i− 1) + 1, 2k · (i− 1) + 2, · · · , 2k · (i− 1) + 2k of /l subnets. Thus,

p(r)
g (i) =

2k∑
j=1

p(l)
g (2k · (i− 1) + j), i = 1, 2, · · · , 2r. (81)

Then, β(l) is related to β(r) by the Cauchy-Schwarz inequality.

β(l) = 2r

2r∑
i=1








2k∑
j=1

12







2k∑
j=1

(
p(l)

g (2k · (i− 1) + j)
)2






 (82)

≥ 2r

2r∑
i=1




2k∑
j=1

p(l)
g (2k · (i− 1) + j)




2

(83)

= β(r). (84)
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Figure 18: Non-uniformity factors of collected data sets. The y-axis uses a log scale.

The equality holds when p
(l)
g (2k · (i−1)+ j) =

p
(r)
g (i)

2k , j = 1, 2, · · · , 2k, i = 1, 2, · · · , 2r.

That is, in each /r subnet, the vulnerable hosts are uniformly distributed in 2k groups.

An intuitive explanation of this theorem is as follows. For /l and /(l +1) subnets,

group i (i = 1, 2, · · · , 2l) of /l subnets is partitioned into groups 2i − 1 and 2i of

/(l + 1) subnets. If vulnerable hosts in each group of /l subnets are equally divided

into groups of /(l + 1) subnets (i.e., p
(l+1)
g (2i − 1) = p

(l+1)
g (2i) = 1

2
p

(l)
g (i), ∀ i), then

β(l+1) = β(l). Otherwise, if the division of vulnerable hosts is uneven for a group (i.e.,

p
(l+1)
g (2i− 1) 6= p

(l+1)
g (2i), ∃ i), then β(l+1) > β(l).

6.3.2 Estimated Non-Uniformity Factor

Figure 18 shows the non-uniformity factors estimated from our data sets. The non-

uniformity factors increase with the prefix length for all data sets. The y-axis is in

a log scale. Thus, β(l) increases almost exponentially with a wide range of l. To gain

intuition on how large β(l) can be, β(8) and β(16) are summarized for all data sets in

Table 4. We observe that β(8) and β(16) have large values, indicating the significant

unevenness of collected distributions.
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Table 4: β(8) and β(16) of collected distributions.
β(l) D1 P1 C1 W1 W2

β(8) 7.9 8.4 9.0 12.0 7.8
β(16) 31.2 43.2 52.2 126.7 50.2

β(l) D1-80 D1-135 D1-445 D1-1023 D1-6129

β(8) 7.9 15.4 10.5 48.2 9.1
β(16) 153.3 186.6 71.7 416.3 128.9

6.4 Entropy and Non-Uniformity Factor

It is well-known that the Shannon entropy can be used to measure the non-uniformity

of a distribution [20]. Why do we choose the non-uniformity factor instead?

Consider a general entropy, called the Renyi entropy [50], which is defined as

Hq

(
P (l)

)
=

1

1− q
log2

2l∑
i=1

(
p(l)

g (i)
)q

, for q 6= 1, (85)

where P (l) = {p(l)
g (1), p

(l)
g (2), · · · , p

(l)
g (2l)}. The non-uniformity factor can relate to

the Renyi entropy of order two in the following equation:

β(l) = 2l−H2(P (l)). (86)

Thus, the non-uniformity factor is essentially an entropy.

The Shannon entropy, H
(
P (l)

)
= −∑2l

i=1 p
(l)
g (i) log2 p

(l)
g (i), is a special case of the

Renyi entropy [50], i.e.,

H
(
P (l)

)
= lim

q→1
Hq

(
P (l)

)
. (87)

Figure 19 shows the Shannon entropies of our empirical distributions from the data

sets. If a distribution is uniform, H
(
P (l)

)
= l as denoted by the diagonal line

in the figure. On the other hand, if a distribution is extremely non-uniform, e.g.,

all vulnerable hosts concentrate on one subnet, H
(
P (l)

)
= 0. Hence, the distance

between H
(
P (l)

)
and 0 in Figure 19 reflects how uniform a distribution is. Similarly,

the distance between β(l) and the horizontal access 1 in Figure 18 measures the

degree of unevenness. A larger H
(
P (l)

)
corresponds to a more even distribution,
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Figure 19: Shannon entropies of collected data sets.

whereas a larger β(l) corresponds to a more non-uniform distribution. Evidenced by

Figure 18, the non-uniformity factor magnifies the unevenness of a distribution. In

addition, if two distributions have different prefix lengths, we can directly apply the

non-uniformity factor to compare the unevenness between them. Therefore, the non-

uniformity factor provides a better measure for describing the non-uniformity of a

distribution.

More importantly, the non-uniformity factor can directly reflect how much faster

a network-aware worm spreads than a random-scanning worm, which is shown in the

next section.

From an information theoretical viewpoint, the entropy provides a quantitative

measure of uncertainty. The uncertainty of a vulnerable-host probability distribution

is important for an attacker to design an intelligent network-aware worm. If there is no

uncertainty about the distribution of vulnerable hosts (e.g., either all vulnerable hosts

are concentrated on a subnet or all information about vulnerable hosts is known), the

entropy is minimum, and the worm that uses the information on the distribution can

spread fastest by employing the optimal importance scanning [10]. On the other hand,

if there is maximum uncertainty (e.g., vulnerable hosts are uniformly distributed), the

entropy is maximum. But the worm cannot take advantage of the information of the
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distribution and can only use random scanning. Moreover, when an attacker obtains

more information about the vulnerable-host distribution, in general, the resulting

worm can spread faster.

6.5 Network-Aware Worm Spreading Ability

How to quantify the spreading speed of a network-aware worm with the information

of a vulnerable-host distribution? We characterize the spread of a network-aware

worm at an early stage by deriving the infection rate.

6.5.1 Infection Rate

The infection rate, denoted by α, is defined as the average number of vulnerable

hosts that can be infected per unit time by one infected host during the early stage

of worm propagation [79]. The infection rate is an important metric for studying

network-aware worm spreading ability for two reasons. First, since the number of

infected hosts increases exponentially with the rate 1 + α during the early stage, a

worm with a higher infection rate can spread much faster at the beginning and thus

infect a large number of hosts in a shorter time [10]. Second, while it is generally

difficult to derive a close-form solution for dynamic worm propagation, we can obtain

a close-form expression of the infection rate for different worm-scanning methods.

Let R denote the (random) number of vulnerable hosts that can be infected per

unit time by one infected host during the early stage of worm propagation. The

infection rate is the expected value of R, i.e., α = E[R]. Let s be the scanning rate

or the number of scans sent by an infected host per unit time, N be the number of

vulnerable hosts, and Ω be the scanning space (i.e., Ω = 232).

For random scanning (RS) [79, 10], an infected host sends out s random scans per

unit time, and the probability that one scan hits a vulnerable host is N
Ω

. Thus, R
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follows a Binomial distribution B(s, N
Ω

)2, resulting in

αRS = E[R] =
sN

Ω
. (88)

6.5.2 Importance Scanning

We derive the infection rates of importance scanning (IS) [10, 16]. An infected host

scans /l subnet i with the probability q
(l)
g (i). q

(l)
g (i) is called the group scanning distri-

bution and is to be chosen with respect to the group distribution p
(l)
g (i). If a worm scan

hits /l subnet i, it would have a probability of
Np

(l)
g (i)

232−l to find a vulnerable host. Thus,

a worm scan hits a vulnerable host with a likelihood of
∑2l

i=1

(
q
(l)
g (i) · Np

(l)
g (i)

232−l

)
. Similar

to random scanning, R of IS follows a Binomial distribution B(s,
∑2l

i=1
Np

(l)
g (i)q

(l)
g (i)

232−l ),

which leads to

αIS = E[R] = sN

2l∑
i=1

p
(l)
g (i)q

(l)
g (i)

232−l
. (89)

The same result was derived in [10] but by a different approach.

We now consider a special case of IS, where the group scanning distribution q
(l)
g (i)

is chosen to be proportional to the number of vulnerable hosts in group i, i.e., q
(l)
g (i) =

p
(l)
g (i). This results in sub-optimal IS [10], called /l IS. Thus, the infection rate is

α
(l)
IS =

sN

232−l

2l∑
i=1

(pg(i))
2 = αRS · β(l). (90)

Compared with RS, this /l IS can increase the infection rate by a factor of β(l).

Such an infection rate can be considered as a benchmark for comparison with other

network-aware worms.

6.5.3 Localized Scanning

Localized scanning (LS) has been used by such real worms as Code Red II and Nimda

[49, 8]. We first consider a simplified version of LS, called /l LS, which scans the

Internet as follows:

2In our derivation, we ignore the dependency of the events that different scans hit the same target
at the early stage of worm propagation.
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• pa (0 ≤ pa ≤ 1) of the time, an address with the same first l bits is chosen as

the target,

• 1− pa of the time, a random address is chosen.

Assume that an initially infected host is randomly chosen from the vulnerable hosts.

Let Ig denote the subnet where an initially infected host locates. Thus, P (Ig = i) =

p
(l)
g (i), where i = 1, 2, · · · , 2l. For an infected host located in /l subnet i, a scan from

this host probes globally with the probability of 1 − pa and hits /l subnet j (j 6= i)

with the likelihood of 1−pa

2l . Thus, the group scanning distribution for this host is

q(l)
g (j) =





pa + 1−pa

2l , if j = i;

1−pa

2l , otherwise,
(91)

where j = 1, 2, · · · , 2l. Given the subnet location of an initially infected host, we

can apply the results of IS. Specifically, putting Equation (91) into Equation (89), we

have

E[R|Ig = i] =
sN

232−l

(
pap

(l)
g (i) +

1− pa

2l

)
. (92)

Therefore, we can compute the infection rate of /l LS as

α
(l)
LS = E[R] = E[E[R|Ig]] =

2l∑
i=1

p(l)
g (i)E[R|Ig = i], (93)

resulting in

α
(l)
LS = αRS

(
1− pa + paβ

(l)
)
. (94)

Since β(l) > 1 (β(l) = 1 is for a uniform distribution and is excluded here), α
(l)
LS

increases with respect to pa. Specifically, when pa → 1, α
(l)
LS → αRSβ(l) = α

(l)
IS. Thus,

/l LS has an infection rate comparable to that of /l IS. In reality, pa cannot be 1. This

is because an LS worm begins spreading from one infected host that is specifically in

a subnet; and if pa = 1, the worm can never spread out of this subnet. Therefore, we

expect that the optimal value of pa should be large but not 1.
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Next, we further consider another LS, called two-level LS (2LLS), which has been

used by the Code Red II and Nimda worms [82, 83]. 2LLS scans the Internet as

follows:

• pb (0 ≤ pb ≤ 1) of the time, an address with the same first byte is chosen as the

target,

• pc (0 ≤ pc ≤ 1 − pb) of the time, an address with the same first two bytes is

chosen as the target,

• 1− pb − pc of the time, a random address is chosen.

For example, for the Code Red II worm, pb = 0.5 and pc = 0.375 [82]; for the Nimda

worm, pb = 0.25 and pc = 0.5 [83]. Using the similar analysis for /l LS, we can derive

the infection rate of 2LLS:

α2LLS = αRS

(
1− pb − pc + pbβ

(8) + pcβ
(16)

)
. (95)

Since β(16) ≥ β(8) ≥ 1 from Theorem 4, α2LLS holds or increases when both pb and

pc increase. Specially, when pc → 1, α2LLS → αRSβ(16) = α
(16)
IS . Thus, 2LLS has an

infection rate comparable to that of /16 IS. Moreover, β(16) is much larger than β(8)

as shown in Table 4 for the collected distributions. Hence, pc is more significant than

pb for 2LLS.

6.5.4 Modified Sequential Scanning

The Blaster worm is a real worm that exploits sequential scanning in combination

with localized scanning. A sequential-scanning worm studied in [81, 30] begins to

scan addresses sequentially from a randomly chosen starting IP address and has a

similar propagation speed as a random-scanning worm. The Blaster worm selects its

starting point locally as the first address of its Class-C subnet with probability 0.4

[85, 81]. To analyze the effect of sequential scanning, we do not incorporate localized
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scanning. Specifically, we consider our /l modified sequential-scanning (MSS) worm,

which scans the Internet as follows:

• Newly infected host A begins with random scanning until finding a vulnerable

host with address B.

• After infecting the target B, host A continues to sequentially scan IP addresses

B + 1, B + 2, · · · (or B − 1, B − 2, · · · ) in the /l subnet where B locates.

Such a sequential worm-scanning strategy is in a similar spirit to the nearest neighbor

rule, which is widely used in pattern classification [19]. The basic idea is that if

the vulnerable hosts are clustered, the neighbor of a vulnerable host is likely to be

vulnerable also.

Such a /l MSS worm has two stages. In the first stage (called MSS 1), the worm

uses random scanning and has an infection rate of αRS, i.e., αMSS 1 = αRS. In the

second stage (called MSS 2), the worm scans sequentially in a /l subnet. The fist

l bits of a target address are fixed, whereas the last 32 − l bits of the address are

generated additively or subtractively and are modulated by 232−l. Let Ig denote the

sunbet where B locates. Thus, P (Ig = i) = p
(l)
g (i), where i = 1, 2, · · · , 2l. Since a

sequential worm scan in subnet i has a probability of
N

(l)
i

232−l to hit a vulnerable host,

E[R|Ig = i] =
N

(l)
i

232−l s = αRS · 2lp
(l)
g (i), which leads to

αMSS 2 = E[R] = E[E[R|Ig]] = αRS · β(l). (96)

Therefore, the infection rate of /l MSS is between αRS and αRSβ(l).

In Summary, the infection rates of all three network-aware worms (IS, LS, and

MSS) can be far larger than that of an RS worm, depending on the non-uniformity

factors.
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6.6 Simulation and Validation

In this section, we validate our analytical results through simulations and the collected

data sets.

6.6.1 Infection Rate

We first focus on validating infection rates. We apply the discrete event simulation

to our experiments [52]. Specifically, we simulate the searching process of a worm

using different scanning methods at the early stage. We use the C1 data set for

the vulnerable-host distribution. The worm spreads over the C1 distribution with

N = 448, 894 and has a scanning rate s = 100. Note that the C1 distribution has the

non-uniformity factors β(8) = 9.0 and β(16) = 52.2. The simulation stops when the

worm has sent out 103 scans for RS, /16 IS, /16 LS, and 2LLS, and 65,535 scans for

/16 MSS 2. Then, we count the number of vulnerable hosts hit by the worm scans

and compute the infection rate. The results are averaged over 104 runs. Table 5

compares the simulation results (i.e., sample mean) with the analytical results (i.e.,

Equations (88), (90), (94), (95), and (96)). Here, a /16 LS worm uses pa = 0.75,

whereas a 2LLS worm employs pb = 0.25 and pc = 0.5. We observe that the sample

means and the analytical results are almost identical.

Table 5: Infection rates of different scanning methods.
Scanning method RS /16 IS /16 LS 2LLS /16 MSS 2
Analytical result 0.0105 0.5456 0.4118 0.2989 0.5456

Sample mean 0.0103 0.5454 0.4023 0.2942 0.5489
Sample variance 0.0010 0.0543 0.2072 0.1053 0.3186

We observe that network-aware worms have much larger infection rates than

random-scanning worms. LS indeed increases the infection rate with nearly the non-

uniformity factor and approaches the capacity of sub-optimal IS. This is significant

as LS only depends on one or two parameters (i.e., pa for /l LS and pb, pc for 2LLS),
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while IS requires the information of the vulnerable-host distribution. On the other

hand, LS has a larger sample variance than IS as indicated by Table 5. This implies

that the infection speed of an LS worm depends on the location of initially infected

hosts. If the LS worm begins spreading from a subnet containing densely populated

vulnerable hosts, the worm would spread rapidly. Furthermore, we notice that the

MSS worm also has a large infection rate at the second stage, indicating that MSS

can indeed exploit the clustering pattern of the distribution. Meanwhile, the large

sample variance of the infection rate of MSS 2 reflects that an MSS worm strongly

depends on the initially infected hosts. We further compute the infection rate of a

/16 MSS worm that includes both random-scanning and sequential-scanning stages.

Simulation results are averaged over 106 runs and are summarized in Table 6. These

results strongly depend on the total number of worm scans. When the number of

worm scans is small, an MSS worm behaves similar to a random-scanning worm.

When the number of worm scans increases, the MSS worm spends more scans on the

second stage and thus has a larger infection rate.

Table 6: Infection rates of a /16 MSS worm.
# of worm scans 10 100 1000 10000 50000

Sample mean 0.0108 0.0190 0.0728 0.2866 0.4298
Sample variance 0.1246 0.1346 0.1659 0.2498 0.2311

6.6.2 Dynamic Worm Propagation

An infection rate only characterizes the early stage of worm propagation. We now

employ the analytical active worm propagation (AAWP) model and its extensions to

characterize the entire spreading process of worms [8]. Specifically, the spread of RS

and IS worms is implemented as described in [10], whereas the propagation of LS

worms is modeled according to [49]. The parameters that we use to simulate a worm

are comparable to those of the Code Red v2 worm. Code Red v2 has a vulnerable
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Figure 20: A network-aware worm spreads over the D1-80 distribution.

population N = 360, 000 and a scanning rate s = 358 per minute [77]. We assume

that the worm begins spreading from an initially infected host that is located in the

subnet containing the largest number of vulnerable hosts.

We first show the propagation speeds of network-aware worms for the same vulnerable-

host distribution from data set D1-80. From Section 6.5, we expect that a network-

aware worm can spread much faster than an RS worm. Figure 20 demonstrates such

an example on a worm that uses different scanning methods. It takes an RS worm

10 hours to infect 99% of vulnerable hosts, whereas a /8 LS worm with pa = 0.75 or

a /8 IS worm takes only about 3.5 hours. A /16 LS worm with pa = 0.75 or a 2LLS

worm with pb = 0.25 and pc = 0.5 can further reduce the time to 1 hour. A /16 IS

worm spreads fastest and takes only 0.5 hour.

We also study the effect of vulnerable-host distributions on the propagation of

network-aware worms. From Table 4, we observe that β
(16)
D1−1023 > β

(16)
W1 > β

(16)
C1 > β

(16)
D1 .

Thus, we expect that a network-aware worm using the /16 D1-1023 distribution would

spread faster than using other three distributions. Figure 21 verifies this through

the simulations of the spread of a 2LLS worm that uses different vulnerable-host

distributions (i.e., D1-1023, W1, C1, and D1). Here, the 2LLS worm employs the

same parameters as the Nimda worm, i.e., pb = 0.25 and pc = 0.5. As expected, the
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Figure 21: A 2LLS worm spreads over different distributions.

worm using the D1-1023 distribution spreads fastest, especially at the early stage of

worm propagation.

6.7 Effectiveness of defense strategies

What are new requirements and challenges for a defense system to slow down the

spread of a network-aware worm? We study the effectiveness of defense strategies

through non-uniformity factors.

6.7.1 Host-Based Defense

Host-based defense has been widely used for random-scanning worms. Proactive

protection and virus throttling are examples of host-based defense strategies.

A proactive protection (PP) strategy proactively hardens a system, making it

difficult for a worm to exploit vulnerabilities [7]. Techniques used by PP include

address-space randomization, pointer encryption, instruction-set randomization, and

password protection. Thus, a worm requires multiple trials to compromise a host

that implements PP. Specifically, let p (0 ≤ p ≤ 1) denote the protection probability

or the probability that a single worm attempt succeeds in infecting a vulnerable host

that implements PP. On the average, a worm should make 1
p

exploit attempts to

compromise the target. We assume that hosts with PP are uniformly deployed in the
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Internet. Let d (0 < d ≤ 1) denote the deployment ratio between the number of hosts

with PP and the total number of hosts.

To show the effectiveness of the PP strategy, we consider the infection rate of a

/l IS worm. Since now some of the vulnerable hosts implement PP, Equation (90)

changes to

α
(l)
IS =

sN

232−l

2l∑
i=1

[
dp

(
p(l)

g (i)
)2

+ (1− d)
(
p(l)

g (i)
)2

]
(97)

= αRSβ(l)(1− d + dp). (98)

To slow down the spread of a sub-optimal IS worm to that of a random-scanning

worm, β(l)(1− d + dp) ≤ 1, resulting in

p ≤ 1− (1− d)β(l)

dβ(l)
. (99)

When PP is fully deployed, i.e., d = 1, p can be at most 1
β(l) . On the other hand, if

PP provides perfect protection, i.e., p = 0, d should be at least 1 − 1
β(l) . Therefore,

when β(l) is large, Inequality (99) presents high requirements for the PP strategy. For

example, if β(16) = 50 (most of β(16)’s in Table 4 are larger than this value), p ≤ 0.02

and d ≥ 0.98. That is, a PP strategy should be almost fully deployed and provide a

nearly perfect protection for a vulnerable host.

We extend the model described in [10] to characterize the spread of sub-optimal

IS worms under the defense of the PP strategy and show the results in Figure 22.

Here, Code-Red-v2-like worms spread over the C1 distribution with β(16) = 52.2. It

is observed that even when the protection probability is small (e.g., p = 0.01) and the

deployment ratio is high (e.g., d = 0.8), a /16 IS worm is slowed down a little at the

early stage, compared with a /16 IS worm without the PP defense (i.e., p = 1 and

d = 0). Moreover, when p is small (e.g., p ≤ 0.02), d is a more sensitive parameter

than p.

We next consider the virus throttling (VT) strategy that constrains the number

of outgoing connections of a host [63]. Thus, VT can reduce the scanning rate of an
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Figure 22: A /16 IS worm spreads under the defense of PP.

infected host. We find that Equation (98) also holds for this strategy, except that p

is the ratio between the scanning rate of infected hosts with VT and that of infected

hosts without VT. Therefore, VT also requires to be almost fully deployed for fighting

network-aware worms effectively.

From these two strategies, we have learned that an effective strategy should reduce

either αRS or β(l). Host-based defense, however, is limited in such capabilities shown

in this section.

6.7.2 IPv6

IPv6 can decrease αRS significantly [79] by increasing the scanning space. But the

non-uniformity factor would increase the infection rate if the vulnerable-host distribu-

tion is still non-uniform. Hence, an important question is whether IPv6 can counteract

network-aware worms when both αRS and β(l) are taken into consideration.

We study this issue by computing the infection rate of a network-aware worm

in the IPv6 Internet. As pointed out by [4], a smart worm can first detect some

vulnerable hosts in /64 subnets containing many vulnerable hosts, then release to the

hosts on the hitlist, and finally spread inside these subnets. Such a worm only scans

the local /64 subnet. Thus, we focus on the spreading speed of a network-aware worm
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in a /64 subnet. From Figure 18, we extrapolate that β(32) in the IPv6 Internet can

be in the order of 105 if hosts are still distributed in a clustered fashion. Using the

parameters N = 108 proposed by [26] and s = 4, 000 used by the Slammer worm [41],

we derive the infection rate of a /32 IS worm in a /64 subnet of the IPv6 Internet:

αIPv6
IS = sN

264 · β(32) = 2.2 × 10−3. αIPv6
IS is larger than the infection rate of the Code

Red v2 worm in the IPv4 Internet, where αCR
RS = 360,000×358/60

232 = 5× 10−4.

Therefore, IPv6 can only slow down the spread of a network-aware worm to that of

a random-scanning worm in IPv4. To defend against the worm effectively, we should

further consider how to slow down the increase rate of β(l) as l increases when IPv4

is updated to IPv6.

6.8 Summary

In this chapter, we have observed and characterized non-uniform vulnerable-host dis-

tributions across five measurement sets from different sources. We have derived a

simple metric, known as the non-uniformity factor, to quantify an uneven distribu-

tion of vulnerable hosts. The non-uniformity factors have been obtained using our

collected data, and all of which demonstrate large values. This implies that the non-

uniformity of the vulnerable-host distribution is significant and seems to be consistent

across networks and applications. Moreover, the non-uniformity factor, shown as a

function of the Renyi entropy of order two, better characterizes the uneven feature of

a distribution than the Shannon entropy.

The importance of a non-uniformity factor is that it quantifies the spreading

ability of network-aware worms. We have derived analytical expressions relating

the non-uniformity factors with the infection rates of network-aware worms. We

have empirically verified that localized scanning and modified sequential scanning

can increase the infection rate by nearly the non-uniformity factor when compared to

random scanning and thus approach the capacity of sub-optimal importance scanning.
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Furthermore, we have evaluated the effectiveness of several commonly used de-

fense strategies on network-aware worms. The host-based defense, such as proactive

protection or virus throttle, requires to be almost fully deployed to slow down worm

spreading at the early stage. This implies that host-based defense would be weakened

significantly by network-aware scanning. More surprisingly, different from previous

findings, we have shown that network-aware worms can be zero-day worms in the

IPv6 Internet if vulnerable hosts are still clustered. These findings present a sig-

nificant challenge to worm defense: Entirely different strategies may be needed for

fighting network-aware worms.
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CHAPTER VII

SPATIAL-TEMPORAL MODELING OF WORM
PROPAGATION IN NETWORKS

7.1 Introduction

In this chapter, “worms” are used to cover an entire gamut of hostile softwares in-

cluding viruses and network worms [88, 61]. There are mainly two types of worms

categorized by how they spread. Active network worms such as Slammer and Mor-

ris exploit self-propagating malicious code [40], whereas viruses such as Melissa and

Concept need human interactions to spread [28]. Spreading can take place rapidly,

resulting in potential network damages and service disruptions. Hence, an important

step towards preventing such catastrophic events is to study the dynamic behavior of

worm spreading.

The recent investigations of worm propagation mostly focus on modeling the

spread of worms employing a random scanning scheme [40, 78, 8]. Random scan-

ning selects targets to infect randomly. Worms, however, can use other scanning

methods. For example, the Morris worm exploits topological scanning that examines

local configuration files to find potential neighbors [44]. Although only a few topo-

logical worms are known, topological scanning is a potential threat to the network

routing infrastructure, World Wide Web (WWW) networks, and peer-to-peer sys-

tems [59], where topologies play an important role for worm propagation [80]. Only

a handful of works, however, have been done on topological-scanning worms. For

instance, a contact process is used to analyze the ease of propagation on different

topologies [27]. The difficulty lies in characterizing the impact of topologies and the

interactions among nodes in both space and time [32]. Such interactions result in a

complex spatial-temporal dependence, which is especially hard to model.
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The goal of this work is to develop a modeling framework and mathematical mod-

els that can characterize the spread of worms employing different scanning strategies

and the impact of the underlying topology on worm propagation. To this purpose, we

first abstract the problem of worm propagation using a graphical representation so

that different scanning methods can be mapped to the corresponding topologies and

parameters. With the help of the graphical representation, we then formulate worm

propagation through a spatial-temporal random process based on the interactions

among nodes. We take advantage of a discrete-time model and detailed topology

information to describe the spatial and temporal statistical dependencies of worm

propagation in arbitrary networks.

As the temporal dependence can be naturally modeled as Markov, the spatial

dependence requires calculations with a multivariate probability distribution. When

the number of random variables is large, an exact solution to the spatial dependence

is computationally too expensive to obtain. The problem then becomes how to ap-

proximate the spatial dependence using a simple (i.e., biased) model in a general

setting of machine learning. In particular, the spatial approximation is studied in

light of the mean-field approximation [43]. The mean-field approximation is widely

studied in machine learning [43] but usually for static networks where time is not

involved. Exact mean-field solutions for dynamic networks are complex. Hence, we

consider in this work simple approximations. The simplest approximation assumes

spatial independence, which is asserted in our independent model. The spatial in-

dependence assumption factorizes an exact joint probability distribution into a form

that only depends on one-node marginal probabilities. Although the independent

model ignores the spatial dependence, it captures the temporal dependence and the

detailed topology information. Simulation results show that the independent model

performs better than the previous models in characterizing the transient behavior of

worm propagation. A test on spatial correlation though indicates a strong spatial
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dependence among nodes. We therefore present the Markov model that incorporates

the simplest spatial dependence as the conditional independence, motivated by the

Bethe approximation used in graphical models [74]. The spatial Markov assumption

factorizes an exact joint probability distribution into a form that only depends on

one-node and two-node marginal probabilities. We have conducted both theoretical

analysis and extensive simulations on the real and synthesized topologies of large

networks. Our results demonstrate that the Markov model equipped with the sim-

ple spatial dependence can achieve a greater accuracy than the independent model,

especially in the sparse graphs. We then use a relative entropy to illustrate a per-

formance gap between the Markov model and the reality, suggesting directions for

further improvements.

We apply our proposed models to describe the final size of infection that corre-

sponds to the equilibrium solution and characterizes the potential damage of worm

propagation. Simulation results show that the Markov model can characterize the

final size of infection no matter whether the underlying network is a homogeneous

network or a complex network.

The rest of this chapter is organized as follows. In Section 7.2, we provide a

problem formulation of worm propagation. In Section 7.3, we model the spread of

worms accurately through a spatial-temporal random process. To approximate the

spatial dependence, we present the independent model and the Markov model in

Sections 7.4 and 7.5, respectively. In Section 7.6, we apply our proposed models to

estimate the final size of infection. We conclude this chapter in Section 7.7 with a

brief summary.
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7.2 Worm Propagation in Networks

In this section, we first introduce worm propagation briefly. We then abstract the

problem, using a susceptible → infected → susceptible (SIS) model and a graphi-

cal representation. Finally, we model different scanning mechanisms using graphical

representations.

7.2.1 Worm Propagation

A computer is called infected if a worm is present there, and susceptible if it could

be infected by the intrusion of the worm. If a worm cannot exist on the computer,

we call this computer insusceptible to the worm. An infected computer is cured if

it removes the copy of the worm and recovers to be susceptible. The final size of

infection is defined as the number of initially susceptible computers that ultimately

become infected in a network. The widespread occurrence of a worm is referred to

as an epidemic [1]. Worm propagation is a procedure that the worm infects as many

computers as possible through network connections. Those connections can be logical

as to be described below.

A worm can propagate in many ways. For example, when a worm is released

into the Internet, it scans many machines among its neighbors in an attempt to

find a susceptible machine. When a vulnerable host is found, the worm sends out

a probe to infect the target. If successful, a copy of this worm is transferred to the

new host, which then begins to run the worm code and tries to infect other targets.

The Morris worm is a typical self-propagation worm and moves from node to node,

using only its own and the infected node’s local information [44]. Specifically, the

Morris worm retrieves the neighbor list from the local Unix files /ect/hosts.equiv

and /.rhosts and in individual users’ .forward and .rhosts files. Another topological

worm is a SSH worm, which locates new targets by searching its current host for the

names and the addresses of other hosts that are likely to be susceptible to infection
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[55]. An email virus is another example of topological worms. When an email user

receives an email message and opens the attachment containing a virus program,

the virus infects the user’s machine and uses the recipient’s address book to send

copies of itself to other email addresses. The addresses in the address book represent

the neighborhood relationship. A birth rate (or an infection rate) is introduced to

denote the rate at which an infected computer can infect a susceptible neighbor. The

birth rate is affected by many factors. For example, for worms, the factors include

the number of computer’s susceptible neighbors, the payload size of a worm copy,

the exploited computer vulnerability, and network congestion. For email viruses,

the factors include the email checking frequency, user vigilance in opening an email

attachment, and mailbox configuration. Some worms may have a large birth rate

to flood the network as quickly as possible, whereas other worms spread slowly and

surreptitiously to evade detection and thus have a small birth rate.

An infected computer might die for encountering an unexpected resource limit on

the computer. Moreover, during the spreading of a worm, some infected computers

may stop functioning properly, forcing the users to reboot these machines or kill some

of the processes exploited by the worm. These computers are then cured, but subject

to further infection. A death rate (or a cure rate) is introduced to denote the rate at

which an infected computer becomes susceptible. The death rate is affected by many

factors, such as resources on the computers, user alertness, the ability of a worm to

disguise, and the performance of intrusion detection systems (IDS).

Combining infection and recovery, we have one of the simplest epidemiological

models, the susceptible → infected → susceptible (SIS) model, which is widely used

in epidemiological research [1]. Such a model neglects the details of infection inside

a single computer, abstracts the worm transmission and removal as probabilities per

unit time in the form of the birth rate and the death rate, and considers a computer

to be in one of the two possible discrete statuses, infected or susceptible. Although
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simple, the SIS model can capture key characteristics of worm spreading dynamics.

The susceptible → infected (SI) model further ignores recovery and is regarded as a

special case of the SIS model.

The SIS model assumes that an infected computer cannot be re-infected. The

model also assumes that users do not become more vigilant after experiencing a

worm infection. Therefore, the birth rate and the death rate do not change with time.

Moreover, we ignore patching that is usually employed to repair security holes at the

computers. This is because the spreading of worms can be much faster compared

with traditional patching techniques that need human intervention, and a patch may

not be available when some worm attacks unknown vulnerabilities. Nevertheless, our

proposed models can be easily extended to take patching into consideration.

7.2.2 Graphical Representation

A worm network consists of all nodes in a network that are either infected or suscepti-

ble. The worm network can be constructed by removing insusceptible nodes and the

edges associated with these nodes in the original network. Hence, a worm network is

an abstraction of vulnerable nodes that can be either end-hosts, routers, and servers,

or email addresses.

We use a directed graph G(V,E) to represent the worm network, where V is the

set of nodes and E is the set of edges. As defined in Section 7.2.1, each node has

two statuses, susceptible or infected, as illustrated in Figure 23. Each edge (j, i) is

associated with βji, the birth rate at which an infected node j can infect a susceptible

neighbor i. Similarly, each node i is associated with δi, the death rate at which an

infected node i becomes susceptible. The neighborhood of node i, denoted by Ni, is

a subset of V such that every node j in this subset has an edge from node j to node

i, i.e., Ni = {j|(j, i) ∈ E}. Figure 23 shows an example of a directed graph wherein

the neighborhood of node 1 is given as N1 = {3, 4, 5}.
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Figure 23: Directed graph (S=Susceptible, I=Infected).

We consider two widely used types of networks in the research of epidemic mod-

eling: homogeneous networks and complex networks [6]. In a homogeneous network,

each node has roughly the same nodal degree. A fully connected topology, a stan-

dard hypercubic lattice, and an Erdös-Rényi (ER) random network are three typical

examples of homogeneous networks [23]. In a complex network, the nodal degree

complies to a particular distribution. A widely studied representative complex net-

work has a power law topology, where the nodal degree distribution is characterized

as P (k) ∼ k−r with P (k) being the probability that a node has a degree of k [25].

It has been shown that the AS-level Internet topology, WWW networks, and some

overlay topologies of peer-to-peer systems can be described by power law characteris-

tics [2, 54]. Moreover, email groups and networks exhibit the power law distribution,

which is observed in [80] and [22]. Hence, worm networks with a power law topology

can be used to study potential worm propagation on those networks.

7.2.3 Scanning Methods

A worm spreads by employing distinct scanning mechanisms such as random, local-

ized, and topological scanning [59]. Although the nature of each scanning method is

different, they can be modeled using the same graphical representation.
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Figure 24: Graphical representations of scanning methods.

Random scanning is used by some well-known worms such as Code Red v2 and

Sapphire worms. A worm that employs random scanning selects target IP addresses

at random. If each IP address is visualized as a network node, random scanning

results in a fully connected topology illustrated in Figure 24(a), where the birth rate

(β) is identical for every edge.

Localized scanning is used by Code Red II and Nimda worms. Instead of selecting

targets randomly, a worm preferentially scans for hosts in the “local” address space.

Such a scanning scheme results in a fully connected topology such as the one illus-

trated in Figure 24(b), where nodes within a group (e.g., IP addresses with the same

first two octets) infect one another with the same birth rate (β1), whereas nodes in

different groups infect one another with a different birth rate (β2).

Topological scanning is used by email viruses and Morris/SSH worms. The worm

relies on the information contained in the victim machine to locate new targets. The

information may include routing tables, email addresses, a list of peers, and uniform

resource locations (URLs). The topological-scanning scheme can result in an arbitrary

topology such as an undirected power law topology illustrated in Figure 24(c), where

βi’s and δi’s (i = 1, 2, · · · , 5) represent different birth rates and death rates.

Although only a few topological worms are known, topological scanning is worth

investigating for the following reasons. First, the network routing infrastructure,

WWW networks, and peer-to-peer systems are vulnerable to topological scanning.
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For example, a worm attacking a Web site could look for neighboring Web sites in its

URLs and use these Web sites as targets. Second, when IPv4 is upgraded to IPv6, the

address space will be much sparser. It would be difficult for either random-scanning

or localized-scanning worms to find a target in the IPv6 address space. Therefore,

topological scanning may be preferred by attackers. Finally, models of topological-

worm propagation would provide insights for the development of countermeasures,

which are lacking for such worms.

7.3 Spatial-temporal Model

The problem of modeling worm propagation in networks can be stated as follows:

Given a worm network topology, values of βji’s and δi’s, and an initial infection node,

what is the expected number of infected nodes at time t? To approach this problem,

we formulate worm propagation through a spatial-temporal random process based on

local interactions of nodes in networks.

Let Xi(t) denote the status of node i at time t, where t represents discrete time,

i.e.,

Xi(t) =





1, if node i is infected at time t;

0, if node i is susceptible at time t.

As node i can be infected only by its neighbors, Xi(t) is statistically dependent on

Xi(t−1) and the statuses of its neighbors. Since the status of a neighbor also depends

on its own neighbors, conceptually, the statuses of all nodes is statistically dependent

in space and time. Let vector X(t) denote the statuses of all nodes at time t, i.e.,

X(t) = {X1(t), X2(t), · · · , XM(t)}, where M represents the total number of nodes in

the network. X(t) is then a spatial-temporal process.

If node i is susceptible, it can be compromised by any of its infected neighbors,

e.g., node j, with a birth rate βji. Therefore, given the statuses of the neighbors of

node i, at the next time step the susceptible node i can get infected with probability

βi(t) = 1 −∏
j∈Ni

(1 − βji)
xj(t), where xj(t) is the realization of the status of node j
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at time t and xj(t) = 0 or 1. Otherwise, node i is infected and has a death rate δi to

recover at the next time step. This procedure can be expressed by a Markov chain

as in Figure 25. Therefore, the temporal dependence of node i can be shown as

P (Xi(t + 1) = 0|Xi(t) = 1) = δi, (100)

P (Xi(t + 1) = 1|Xi(t) = 0,XNi
(t) = xNi

(t)) = βi(t), (101)

where vector XNi
(t) is used to denote the statuses of all neighbors of node i at time

t and vector xNi
(t) is the realization of XNi

(t), i.e., XNi
(t) = {Xj(t), j ∈ Ni} and

xNi
(t) = {xj(t), j ∈ Ni}. If for ∀j, βji << 1, the birth rate (β) is identical for every

edge, and the death rate (δ) is identical for every node, then βi(t) ≈
∑

j∈Ni
βjixj(t) =

β
∑

j∈Ni
xj(t) and δi = δ, which are assumptions used in the contact process [27].

The probability that node i recovers from the infected to the susceptible status at

time t + 1 is expressed by Ri(t) = P (Xi(t + 1) = 0, Xi(t) = 1). Thus, Equation (100)

leads to

Ri(t) = δiP (Xi(t) = 1). (102)

Given node i is susceptible at time t, the probability that node i remains susceptible

at the next time step can be defined as Si(t) = P (Xi(t+1) = 0|Xi(t) = 0). From the

local dependence of Equation (101), we have

Si(t) =
∑

xNi
(t)

[P (XNi
(t) = xNi

(t)|Xi(t) = 0)(1− βi(t))] . (103)

Therefore, the definitions of Ri(t) and Si(t) yield that for ∀i ∈ {1, 2, · · · ,M},

P (Xi(t + 1) = 1) = 1−Ri(t)− P (Xi(t) = 0)Si(t). (104)
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Figure 26: Dependency graph.

Combined with Equations (102) and (103), Equation (104) provides a recursive re-

lationship between Xi(t+1) and Xi(t), Xj(t) for j ∈ Ni, and gives a formal stochastic

model. This model explicitly characterizes the spatial and temporal statistical depen-

dencies. In particular, the joint probability P (XNi
(t) = xNi

(t)|Xi(t) = 0) character-

izes the spatial dependence as a result of network topologies and nodal interactions.

The transition probabilities, βi(t) and δi, characterize the temporal evolution as a

result of infection and recovery. Together, they describe the spatial-temporal process

of worm propagation in networks. The expected number of infected nodes at time

t, n(t), can be easily computed from P (Xi(t) = 1), i.e., n(t) = E[
∑M

i=1 Xi(t)] =

∑M
i=1 P (Xi(t) = 1).

Although in principle Equation (104) can be used to study the behavior of worm

propagation, it is challenging to model the spatial dependence. This is because the

joint probability P (XNi
(t) = xNi

(t)|Xi(t) = 0) is computationally too expensive to

obtain, especially when the size of the neighborhood is large. For example, if node

i has k neighbors, the total number of statuses needed to describe this joint proba-

bility is O(2k). Therefore, we introduce approximations for the spatial dependence

in Sections 7.4 and 7.5. An example of the dependency graph of the joint probabil-

ity P (XNi
(t) = xNi

(t)|Xi(t) = 0) is shown in Figure 26(a), where node i has three

neighbors (i.e., nodes 1, 2, 3) and all nodes are dependent on each other.

Remark: It is noted that mean-field methods are used to reduce the computational
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complexity involved in typical calculations with multivariate probability distributions

when the number of random variables is large [43]. The mean-field methods, however,

are difficult to be employed directly to our problem. A typical context for a mean-field

approximation is to compute marginal probabilities and expectations of a given joint

distribution. Our problem, however, requires to obtain an accurate joint distribution

based on the marginal probabilities. Moreover, in many cases the mean-field methods

use a set of recursions to find a stationary solution of a corresponding optimization

problem in space [65], whereas the topological worm propagation involves both space

and time. Although the mean-field methods are currently difficult to be grafted

directly to worm propagation problem, the spirit of the mean-field theory motivates

our approach for approximating the spatial dependence. For example, the naive mean

field assumes that each random variable acts independently and thus approximates

the true distribution through a complete factorization [43]. This idea is adopted by

our independent model.

7.4 Independent Model

The simplest spatial approximation is to assume independence, resulting in our inde-

pendent model.

7.4.1 Model

In the independent model, we assume that the statuses of all nodes at time t (t =

0, 1, 2, · · · ) is spatially independent. That is,

P (X(t) = x(t)) =
M∏
i=1

P (Xi(t) = xi(t)), (105)

where x(t) is the realization of X(t), i.e., x(t) = {x1(t), x2(t), · · · , xM(t)}. With the

spatial independence assumption, the dependency graph shown in Figure 26(a) is

reduced to the graph shown in Figure 26(b), which is a graph with no edges. Thus,

the joint probability P (XNi
(t) = xNi

(t)|Xi(t) = 0) can be factorized into a form that
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only depends on one-node marginal probabilities. This kind of the full factorization is

also employed in the naive mean-field approach, where each factor is obtained through

the mean-field equations [65].

Theorem 5 (Independent Model) If the statuses of all nodes at the same time step

is spatially independent, the state evolution of node i from Equation (104) satisfies

P (Xi(t + 1) = 1) = 1−Ri(t)− P (Xi(t) = 0)Sind
i (t), (106)

where

Sind
i (t) =

∏
j∈Ni

[1− βjiP (Xj(t) = 1)]. (107)

Proof: Since the statuses of all nodes at time t is spatially independent, it is true

that

P (XNi
(t) = xNi

(t)|Xi(t) = 0) =
∏
j∈Ni

P (Xj(t) = xj(t)). (108)

With this assumption, it follows from Equation (103) that

Sind
i (t) =

∑

xNi
(t)

∏
j∈Ni

[
P (Xj(t) = xj(t))(1− βji)

xj(t)
]

(109)

=
∏
j∈Ni

∑

xj(t)

[
P (Xj(t) = xj(t))(1− βji)

xj(t)
]

(110)

=
∏
j∈Ni

[P (Xj(t) = 0) + P (Xj(t) = 1)(1− βji)] (111)

=
∏
j∈Ni

[1− βjiP (Xj(t) = 1)], (112)

where the exchange of the summation and product signs is because: Set f(xj(t)) =

P (Xj(t) = xj(t))(1 − βji)
xj(t) and j = 1, 2, · · · , K, where K is the number of the
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neighborhood of node i; thus

∑

xNi
(t)

K∏
j=1

f(xj(t)) =
∑

x1(t)

∑

x2(t)

· · ·
∑

xK(t)

f(x1(t))f(x2(t)) · · · f(xK(t)) (113)

=


∑

x1(t)

f(x1(t))





∑

x2(t)

f(x2(t))


 · · ·


 ∑

xK(t)

f(xK(t))


(114)

=
K∏

j=1

∑

xj(t)

f(xj(t)). (115)

Such an independent model is intuitive. That is, node j, one of the neighbors of

node i, can infect node i with probability βjiP (Xj(t) = 1). Thus, the probability that

node i cannot be infected by its neighbors at time t+1 is
∏

j∈Ni
[1− βjiP (Xj(t) = 1)],

according to the independence assumption. Although ignoring the spatial depen-

dence, the independent model maintains the temporal dependence and the detailed

topology information. Moreover, if node i has k neighbors, the total number of sta-

tuses needed to describe the joint probability P (XNi
(t) = xNi

(t)|Xi(t) = 0) is reduced

from O(2k) to O(k).

Remark: It should be noted that the spatial independence assumption is implicitly

used in the prior work [67]. The independent model given here, however, is different

from the model proposed in [67] in the following aspects. First, our proposed model is

derived from the accurate spatial-temporal process and the explicit approximation on

the spatial dependence. Second, our independent model only allows one event (i.e.,

susceptible → infected or infected → susceptible) in one single discrete time step,

whereas the model in [67] grants the concurrence of infection and recovery. Finally,

our model focuses on the transient behavior of worm propagation, whereas the model

in [67] emphasizes on the steady-state solution and the epidemic threshold.
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7.4.2 Performance

How accurate is this independent model? We compare the outcomes of the indepen-

dent model with those of some well-known models and the simulation results in both

homogeneous and complex networks. For simplicity, we consider the special cases

where the birth rate (β) is identical for every edge and the death rate (δ) is identical

for every node. Such assumptions are used in all previous models. Simulation results

provide a benchmark for assessing the accuracy of models. For the simulation, we

track each node’s status (infected or susceptible) in discrete time. Each simulation

has 100 individual runs and is averaged over the cases that the worm survives1.

7.4.2.1 Homogeneous Networks

In homogeneous networks, the standard Epidemiological model uses a nonlinear dif-

ferential equation to measure the worm population dynamics [32]:

dn(t)

dt
= βkn(t)[1− n(t)

M
]− δn(t), (116)

where k is the average nodal degree. The solution to the above equation is

n(t) =
n(0)M(1− ρ)

n(0) + [M(1− ρ)− n(0)]e−(β′−δ)t
, (117)

where β′ = βk and ρ = δ
β′ . Another model used in homogeneous networks is the ana-

lytical active worm propagation (AAWP) model, which uses a discrete time equation

[8]:

n(t + 1) = (1− δ)n(t) + [M − n(t)][1− (1− 1

M
)sn(t)], (118)

where the scanning rate s = βk and the patching rate is ignored. Both the Epi-

demiological model and the AAWP model have been used to model the spread of

active worms that employ random scanning and shown to perform accurately if the

1We focus on the transient behavior of epidemic worms and ignore the cases that the worms die
out.
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Figure 27: Worm propagation in a two-dimensional lattice with 10,000 nodes, β =
0.1, and δ = 0.1.

underlying graph is an ER random graph with a large k or a fully connected topology

[32, 8].

Figure 27 shows the evolution of the average number of infected nodes for the

Epidemiological model, the AAWP model, the independent model, and the simulation

on a four-neighbor two-dimensional lattice with 10,000 nodes, β = 0.1, and δ = 0.1.

The two-dimensional lattice is wrapped around in both dimensions to form a torus.

It is observed that all three models over-predict the growth of infected nodes. The

independent model, however, describes the transient behavior of worm propagation

better than the other two models.

7.4.2.2 Complex Networks

Boguñá et al. classify complex networks into two types: uncorrelated and correlated

complex networks, and present epidemic models for each type [6]. We name these two

models as the uncorrelated complex network (UCN) model and the correlated complex

network (CCN) model. In these models, the number of infected nodes with a degree

of k at time t, nk(t), can be described by the following equation [6]:

dnk(t)

dt
= βk[1− nk(t)

Mk

]Θk(t)− δnk(t), (119)
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Figure 28: Worm propagation in a BA network with 10,000 nodes, k = 1.9998,
β = 0.5, and δ = 0.1.

where Mk is the total number of nodes with a degree of k and
∑

k Mk = M . In the

UCN model, Θk(t) is independent of k and defined as

Θk(t) =
Mk

k

∑

k′
k′P (k′)

nk′(t)

Mk′
; (120)

whereas in the CCN model, the effect of the degree k is considered and the expression

for Θk(t) is

Θk(t) = Mk

∑

k′
P (k′|k)

nk′(t)

Mk′
. (121)

Figure 28 compares the predictions of the independent model against the UCN

model in a Barabási-Albert (BA) network, which is a type of power law networks [2].

BA networks are generated using the AS-level BA model in the BRITE simulator

[38] that is a tool for topology generation. The BRITE simulator can provide good

synthetic topologies that are the base of our simulations. In Figure 28, the BA network

has 10,000 nodes, with k = 1.9998, β = 0.5, and δ = 0.1. The infection starts at a

single node with a degree of 5. Since the BA networks lack correlations [64], we only

consider the UCN model for BA networks. It is observed that both the independent

model and the UCN model over-predict the spread of worm. When compared with

the simulation results, however, the independent model yields a greater accuracy than

the UCN model.
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An intuitive explanation for the results in Figures 27 and 28 can be given as follows:

The Epidemiological model, the AAWP model, and the UCN model express the

propagation dynamics in terms of how many nodes are infected, without delving into

the details of which nodes are infected [32], whereas the independent model considers

the details of how nodes are connected to one another. Therefore, the topology

information can help us obtain models better than the previous ones. Moreover, the

independent model can be used in arbitrary graphs and with varying βji’s or δi’s,

whereas the other models are used in special graphs and assume that βji (or δi) is

identical for every edge (or node).

7.4.3 Test of the Spatial Independence Assumption

As the independent model achieves a better performance than the previous models,

Figures 27 and 28 still show obvious performance gaps between the independent model

and the simulation results. Is the spatial independence a good enough assumption?

To answer this question, we consider the correlation coefficient ρij(t) between the

statuses of node i and node j, which is defined as

ρij(t) =
E[Xi(t)Xj(t)]− E[Xi(t)]E[Xj(t)]√

V ar[Xi(t)]V ar[Xj(t)]
, (122)

where E[Xi(t)Xj(t)] = P (Xi(t) = 1, Xj(t) = 1), E[Xi(t)] = P (Xi(t) = 1), and

V ar[Xi(t)] = P (Xi(t) = 1)[1 − P (Xi(t) = 1)]. If the status of node i is independent

of that of node j, ρij = 0. Otherwise, if the statuses of nodes i, j are positively (or

negatively) correlated, ρij > 0 (or ρij < 0). We obtain the correlation coefficients

through simulation on a four-neighbor two-dimensional lattice with 10,000 nodes,

β = 0.1, δ = 0.1, and 1,000 individual runs. In this two-dimensional lattice, each

node is represented by its coordinate (x, y), where x, y are integers and 0 ≤ x, y ≤ 99.

Node (x, y) has four neighbors (x− 1, y), (x + 1, y), (x, y − 1), and (x, y + 1), where

arithmetic operations are modular on 100. We assume that the worm begins to spread

from node (0, 0) and consider the correlation coefficients between the statuses of node
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Figure 29: Spatial correlation in a two-dimensional lattice with 10,000 nodes, β =
0.1, and δ = 0.1.

(0, 0) and node (0, i) (denoted by ρi(t)) for i = 1, 2, 3. Figure 29 shows how the

correlation coefficients vary with time. It is observed that the correlation coefficients

are initially close to 0, but increase with time. When t > 50, all coefficients are larger

than 0.25. This shows a strong dependence in space among nodes and suggests a

better model that accounts for the spatial dependence.

7.5 Markov Model

7.5.1 Model

Our Markov model assumes a conditional independence in space [35]. That is, at

time t (t = 1, 2, 3, · · · ), given the status of node i, the statuses of its neighbors is

(conditionally) independent,

P (XNi
(t) = xNi

(t)|Xi(t) = xi(t)) =
∏
j∈Ni

P (Xj(t) = xj(t)|Xi(t) = xi(t)). (123)

With the spatial Markov assumption, the dependency graph shown in Figure 26(a) is

changed to the graph shown in Figure 26(c), where the edges between the neighbors

of node i are deleted. The spatial Markov assumption is motivated by the Bethe

approximation [74], a way of deriving and correcting the mean-field theory, which has

been widely investigated in the area of machine learning. The Bethe approximation
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factorizes an exact joint probability distribution into a form that only depends on

one-node and two-node marginal probabilities in a Markov network. Moreover, the

Bethe approximation is shown to be equivalent to belief propagation in [74]. Here

we adopt the spirit of the Bethe approximation by incorporating a simple spatial

dependence into the Markov model.

Theorem 6 (Markov Model) If the statuses of node i’s neighbors at the same time

step is spatially independent given the status of node i, then the state evolution of

node i from Equation (104) satisfies

P (Xi(t + 1) = 1) = 1−Ri(t)− P (Xi(t) = 0)Smar
i (t), (124)

where

Smar
i (t) =

∏
j∈Ni

[1− βjiP (Xj(t) = 1|Xi(t) = 0)]. (125)

Proof: Since the statuses of node i’s neighbors at time t is spatially independent

given the status of node i, as shown by Equation (123), Equation (103) yields

Smar
i (t) =

∑

xNi
(t)

∏
j∈Ni

[
P (Xj(t) = xj(t)|Xi(t) = 0)(1− βji)

xj(t)
]

(126)

=
∏
j∈Ni

∑

xj(t)

[
P (Xj(t) = xj(t)|Xi(t) = 0)(1− βji)

xj(t)
]

(127)

=
∏
j∈Ni

[1− βjiP (Xj(t) = 1|Xi(t) = 0)] . (128)

The computation of the conditional probability P (Xj(t) = 1|Xi(t) = 0) is cal-

culated in the following way. We introduce a two-node joint probability P (Xi(t) =

1, Xj(t) = 1). Thus,

P (Xj(t) = 1|Xi(t) = 0) =
P (Xj(t) = 1)− P (Xi(t) = 1, Xj(t) = 1)

P (Xi(t) = 0)
. (129)

To simply the notation, we set Puv(t) = P (Xi(t + 1) = 1, Xj(t + 1) = 1|Xi(t) =

u,Xj(t) = v), where u, v ∈ {0, 1}. The two-node joint probability can be obtained by
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the following equations:

P (Xi(t + 1) = 1, Xj(t + 1) = 1) =
∑
u,v

[P (Xi(t) = u,Xj(t) = v)Puv(t)] , (130)

where the total probability theorem is used and

P11(t) = (1− δi)(1− δj), (131)

since given that both node i and node j are infected at time t, they independently

choose to stay in the infected status;

P01(t) = (1− δj)[1− S ′i(t)], (132)

in that S ′i(t) = P (Xi(t + 1) = 0|Xi(t) = 0, Xj(t) = 1) and thus

S ′i(t) = (1− βji)
∏

l∈Ni−{j}
[1− βliP (Xl(t) = 1|Xi(t) = 0)], (133)

where the spatial Markov assumption is used; similarly,

P10(t) = (1− δi)[1− S ′j(t)], (134)

in that

S ′j(t) = (1− βij)
∏

l∈Nj−{i}
[1− βljP (Xl(t) = 1|Xj(t) = 0)]; (135)

P00(t) ≈ [1− S ′′i (t)][1− S ′′j (t)], (136)

where

S ′′i (t) =
∏

l∈Ni−{j}
[1− βliP (Xl(t) = 1|Xi(t) = 0)], (137)

S ′′j (t) =
∏

l∈Nj−{i}
[1− βljP (Xl(t) = 1|Xj(t) = 0)]. (138)

Equation (136) uses an approximation to avoid the introduction of a three-node joint

probability P (Xi(t) = 0, Xj(t) = 0, Xl(t) = xl(t)) if nodes i, j, l construct a triangle.

Equation (130) is obtained by replacing Puv(t) with the results from Equations (131)∼
(136). Equations (124) and (130) provide a recursive relationship between (Xi(t+1),
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Xj(t + 1)) and (Xi(t), Xj(t)) for j ∈ Ni. It is assumed that the statuses of all nodes

are independent at time 0.

The Markov model takes into account a part of the neglected correlations be-

tween random variables (i.e., node i and its neighbors at time t) and thus improves

the approximation. The Markov model differs from the independent model only in

the probability that one of node i’s neighbors infects node i. This probability is

βjiP (Xj(t) = 1|Xi(t) = 0) for the Markov model, whereas it is βjiP (Xj(t) = 1) for

the independent model. If the dependence between node i and its neighbors is ig-

nored, the Markov model is reduced to the independent model. Moreover, with the

spatial Markov assumption, if node i has k neighbors, the total number of statuses

needed to describe the joint probability P (XNi
(t) = xNi

(t)|Xi(t) = 0) is O(k).

Is it always beneficial to incorporate the spatial dependence? We investigate this

issue by introducing the notion of association defined in [24].

Definition 1 Random variables T1, · · · , Tn are associated if

Cov[f(T), g(T)] = E[f(T)g(T)]− E[f(T)]E[g(T)] ≥ 0 (139)

for all nondecreasing functions f and g for which E[f(T)], E[g(T)], and E[f(T)g(T)]

exist, and T = {T1, · · · , Tn}.

In most cases, if one neighbor of node i, e.g., node j, is infected, node i then has

an increasing probability to be infected. That is, node i and node j are positively

correlated as shown in Figure 29. Therefore, the statuses of nodes i and j, Xi(t) and

Xj(t), are associated by definition. Furthermore, if Xi(t) and XNi
(t) are associated

random variables, we can show in the following theorem that the Markov model indeed

achieves a better performance than the independent model.

Theorem 7 (Performance Bound) If Xi(t) and XNi
(t) are associated, then

Sind
i (t) ≤ Smar

i (t) ≤ Si(t). (140)
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Proof: Since Xi(t) and Xj(t) (j ∈ Ni) are associated, Cov[Xi(t), Xj(t)] ≥ 0. We

can write

P (Xi(t) = 1, Xj(t) = 1) ≥ P (Xi(t) = 1) · P (Xj(t) = 1), (141)

which leads to

P (Xj(t) = 1) ≥ P (Xj(t) = 1|Xi(t) = 0). (142)

Therefore, Sind
i (t) ≤ Smar

i (t).

Given Xi(t) = 0, let f(XNi
(t)) = −(1− βli)

Xl(t) and g(XNi
(t)) = −∏

j∈Ni−{l}(1−
βji)

Xj(t), where l ∈ Ni. Since XNi
(t) are associated, from the definition of association

we have

Cov [f(XNi
(t)), g(XNi

(t))|Xi(t) = 0] ≥ 0, (143)

which leads to

E [f(XNi
(t))|Xi(t) = 0]·E [g(XNi

(t))|Xi(t) = 0] ≤ E [f(XNi
(t))g(XNi

(t))|Xi(t) = 0] .

(144)

The repeated use of the above argument yields

∏
j∈Ni

E
[
(1− βji)

Xj(t)|Xi(t) = 0
] ≤ E

[ ∏
j∈Ni

(1− βji)
Xj(t)|Xi(t) = 0

]
. (145)

That is, Smar
i ≤ Si(t).

7.5.2 Performance

How much does the spatial Markov dependence help in improving the performance?

We compare the performance of our proposed models with the simulation results in

a two-dimensional lattice, an ER random graph, a BA power law network, a real

topology, and a top-down hierarchical topology. Except for the two-dimensional lat-

tice, which is a regular graph, we begin each simulation and models with a single,

randomly chosen infected node on a given topology. Each plot considers 10 different

initially infected nodes, and each simulation plot also has 10 individual runs for an

initially infected node.
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(a) A two-dimensional lattice with 160,000 nodes
and δ = 0.1.
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(b) An ER random graph with 160,000 nodes, k =
4, and β = 0.1.
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(c) A BA network with 160,000 nodes, β = 0.1,
and δ = 0.1.

Figure 30: Worm propagation in different topologies.

Figure 30(a) compares the predictions of the independent model and the Markov

model with the simulation results on a four-neighbor two-dimensional lattice. The

number of nodes M = 160, 000, and the death rate δ = 0.1. For the case of the birth

rate β = 0.5, the three curves nearly coincide with each other. When β decreases,

however, the infection spreads at a faster rate in both the independent and the Markov

models than the simulation. In all three cases (β = 0.5, β = 0.1, β = 0.05), the

Markov model yields more accurate results than the independent model.

Figure 30(b) shows the predictions of two models with the simulation results on an
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ER random graph, with 160,000 nodes, an average nodal degree k = 4, and β = 0.1.

When we constructed the ER random graph, the generated graph was disconnected

for that k is small. Therefore, in this disconnected graph we chose the largest cluster

with 156,763 nodes and an average degree of 4.07 as the target network. It can be

seen that the Markov model yields a far better performance than the independent

model when compared with the simulation results.

Figure 30(c) depicts the simulation results against two models on a BA network,

with 160,000 nodes, β = 0.1, δ = 0.1, and < k >= k. For the case when k = 6,

both models give precise results. When k decreases, however, the predictions of both

models become worse. In all three cases (k = 6, k = 4, k = 2), the Markov model

predicts worm propagation more accurately than the independent model.

It is observed that the parameters can affect the accuracy of the models. When

β or k is large, both the independent model and the Markov model perform well.

When both β and k are small, however, both models fail to predict the slow growth

of worm propagation. Therefore, both models are suited for dense graphs, where each

node fluctuates independently about its mean value. On the other hand, the Markov

model outperforms the independent model in all cases with different parameters and

underlying topologies. That is, Theorem 7 is confirmed by the results shown in Figure

30.

Another observation is that the underlying topology can affect the speed of worm

propagation and the final size of infection. For the case of β = 0.1 and δ = 0.1,

although all three graphs (Figure 30) have the same number of nodes and edges, the

worm spreading dynamics in these graphs are significantly different. It takes the worm

about 1,716 time steps to enter an equilibrium stage in the two-dimensional lattice,

whereas it needs about 100 time steps and 66 time steps in the ER random graph

and the BA network, respectively. Moreover, after entering the equilibrium stage, the

worm infects a total of 112,506 nodes in the two-dimensional lattice, 106,023 nodes in
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the ER random graph, and 105,511 nodes in the BA network. This shows the effect

of network structures on the dynamics of worm propagation.

Figure 31 shows worm propagation in a real topology, an ER random graph, a BA

network, and a four-neighbor two-dimensional lattice for the special case when β = 1

and δ = 0.1. The real topology is an AS graph collected at the Oregon router server

route-views.oregon-ix.net, which is a site for collecting BGP data [91]. The dataset is

selected on 1 June 2004 and contains 38,086 links among 17,653 ASes (k = 4.3). The

constructed ER random graph has a largest cluster with 17,648 nodes and k = 4.3,

and the worm only propagates in this largest cluster. The BA network has 17,652

links among 17,653 nodes (k = 2). The generated BA network is connected and thus

is a tree. The two-dimensional lattice is with 17,689 nodes and k = 4. Among all

these four topologies, the curves of both models overlap with the simulation results

in this special case. Therefore, both models can achieve the best performance in the

case of β = 1. Although the AS graph and the ER random graph have almost the

same number of (connected) nodes and the average nodal degree, the worm takes

only 6 time steps to enter an equilibrium stage in the AS graph, whereas it needs

about 9 time steps in the ER random graph. This shows that these two topologies

have different diameters and the AS graph is more vulnerable to worm propagation

than the ER random graph. It is interesting to notice that although the dynamics

of worm spreading in different topologies are distinct, the final sizes of infection are

almost the same, i.e., n(t) ≈ 16, 000, when t = 150. This reflects that for the case

when β = 1 and δ = 0.1, the final size of infection is not dependent on the network

structure, but on the total number of nodes.

Figure 32 demonstrates another special case when δ = 0, which corresponds to

the susceptible → infected (SI) model. The worm spreads in a top-down hierarchical

topology generated by BRITE [38]. The top AS-level topology is from NLANR on 2
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Figure 31: Worm propagation in a real topology, an ER random graph, a BA
network, and a two-dimensional lattice with β = 1 and δ = 0.1.
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Figure 32: Worm propagation in a top-down hierarchical topology with 129,480
nodes, 266,005 edges, and δ = 0.

January 2000 [89], with 6,474 ASes and 13,895 interconnections. The down router-

level topology is generated by the BRITE router-level BA model, with 20 nodes per

AS. The constructed top-down hierarchical topology has 129,480 nodes and 266,005

edges. The merit of the Markov model can also be observed in this special case when

δ = 0.

7.5.3 Test of the Spatial Markov Assumption

To further examine the goodness of the spatial Markov assumption, we use a relative

entropy (or Kullback-Leibler distance) between two probability mass functions p(x, t)
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and q(x, t) as defined in [20]:

D(p‖q) =
∑

x

p(x, t)log
p(x, t)

q(x, t)
. (146)

The relative entropy is a measure of the distance between two distributions p(x, t)

and q(x, t). If q(x, t) is “closer” to p(x, t), D(p‖q) is smaller; and D(p‖q) = 0 if and

only if p = q.

For our case, p(x, t) = P (XNi
(t) = xNi

(t)|Xi(t) = 0) is the joint distribution

of the statuses of node i’s neighbors given node i is susceptible at time t. For

the independent model, q1(x, t) =
∏

j∈Ni
P (Xj(t) = xj(t)); for the Markov model,

q2(x, t) =
∏

j∈Ni
P (Xj(t) = xj(t)|Xi(t) = 0). We obtain the relative entropies

D(p‖q1) and D(p‖q2) through simulation on a four-neighbor two-dimensional lat-

tice with 10,000 nodes, β = 0.1, δ = 0.1, and 1,000 individual runs. As described

in Section 7.4.3, each node is represented by its coordinate, and the worm begins

to spread from node (0, 0). Node i is specified at (1, 1). Figure 33 shows how the

relative entropies D(p‖q1) and D(p‖q2) change with time. It is observed that the

relative entropies are initially close to 0, but increase with time. D(p‖q2) is smaller

than D(p‖q1) for all time t, suggesting that the spatial Markov model is indeed a

better approximation than the spatial independent model. On the other hand, when

t > 60, D(p‖q2) > 0.5. This explains the performance gap between the Markov model

and the simulation observed in Figures 30 and 32. Hence, a model that incorporates

the more spatial dependence than the Markov model may result in a smaller relative

entropy.

7.6 Final Size of Infection

The final size of infection corresponds to the equilibrium state of a worm network

that is the average number of infected nodes when time t approaches infinity, i.e.,

limt→+∞ n(t). The final size of infection characterizes the potential damage as a

result of worm propagation. If the final size of infection can be predicted at an early
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Figure 33: Relative entropies in a two-dimensional lattice with 10,000 nodes, β =
0.1, and δ = 0.1.

stage of worm spreading, the potential damage can be assessed, and preventive actions

can be taken accordingly. In this section, we compare our proposed models with the

simulation results and the other models in estimating the final size of infection in

homogeneous and complex networks. Each simulation scenario has 100 individual

runs and is averaged over the cases that worms survive. The final size of infection is

sampled at time t = 2000.

Figure 34(a) shows a comparison of the Epidemiological model, the AAWP model,

the independent model, the Markov model, and the simulation results on a connected

ER random graph with 10,000 nodes, k = 10, and δ = 0.1. When compared with the

simulation results, the Epidemiological model over-predicts the final size of infection

when β ≥ 0.02, whereas the AAWP model and the independent model slightly over-

predict it. The results of the Markov model and the simulation overlap for 0.001 ≤
β ≤ 1. Therefore, the Markov model is the most accurate one among all these models.

Figure 34(b) gives another comparison of the UCN model, the independent model,

the Markov model, and the simulation results on a BA network with 10,000 nodes,

k = 4, and β = 0.1. The UCN model over-predicts the final size of infection, whereas

the independent model slightly over-predicts it. The results of the Markov model and
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Figure 34: Performance comparisons in estimating the final size of infection.

the simulation overlap for 0.001 ≤ δ ≤ 1. Therefore, both the independent model

and the Markov model are shown to be good estimators of the final size of infection,

and the Markov model is more accurate than the independent model.

7.7 Summary

In this chapter, we have presented a spatial-temporal model to study the dynamic

spreading of worms that employ different scanning methods. Making use of this

model, we have studied the impact of the underlying topology on worm propagation.

We show that the detailed topology information and the spatial dependence are key

factors in modeling the spread of worms. The independent model incorporates the de-

tailed topology information and thus outperforms the previous models. Our Markov

model incorporates both the detailed topology information and the simple spatial

dependence, and thus achieves a greater accuracy than the independent model, espe-

cially when both the birth rate and the average nodal degree are small. Moreover,

when the graph is dense, each node fluctuates independently about its mean value,

and thus both models perform well. These results are validated through analysis and

extensive simulations on large networks using real and synthesized topologies.
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The class of models we have investigated are biased, i.e., with a reduced complex-

ity. Hence, the accuracy of such models is important. The relative entropy is used

as a performance measure and shows that a performance gap still exists between the

Markov model and the reality. Formulations are needed to incorporate the more spa-

tial dependence into the model. Furthermore, as both models are motivated by the

spirit of the mean-field approximation in machine learning, a formal treatment of the

mean-field approximation to include the temporal dependence will be studied in our

future work. As part of the ongoing work, we also plan to estimate the parameters

of worm propagation (e.g., the birth rate and the death rate) and use our proposed

models to study the countermeasures for controlling the spread of worms. Our mod-

eling approach may also help to understand a wide range of information propagation

behaviors in Internet, such as BGP update streams and file sharing in peer-to-peer

applications.
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CHAPTER VIII

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

8.1 Research Contributions

In this thesis, the research on characterizing worm attack behaviors, analyzing In-

ternet vulnerabilities, and developing effective countermeasures has been conducted.

Research contributions have been made in the following areas:

1. Designing an optimal worm-scanning method.

2. Analyzing two sub-optimal worm-scanning methods.

3. Evaluating the vulnerability of the Internet.

4. Modeling the spread of topological-scanning worms.

8.1.1 Designing an Optimal Worm-Scanning Method

Most Internet worms use random scanning. The distribution of vulnerable hosts on

the Internet, however, is highly non-uniform over the IP-address space. This implies

that random scanning wastes many scans on invulnerable addresses and more viru-

lent scanning schemes may take advantage of the non-uniformity of a vulnerable-host

distribution. Questions then arise as to how attackers may exploit such information

and how virulent the resulting worm may be. These issues provide “worst-case sce-

narios” for defenders and “best-case scenarios” for attackers when the vulnerable-host

distribution is available.

In Chapter 3, a new worm-scanning method, called importance scanning, is de-

signed. Important scanning results from importance sampling in statistics and scans

the IP-address space according to an empirical distribution of vulnerable hosts. An
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analytical model is developed to relate the infection rate of worms with the importance-

scanning strategies. Based on parameters chosen from Witty and Code Red worms,

the experimental results show that an importance-scanning worm can spread much

faster than either a random-scanning worm or a routing worm. In addition, a game-

theoretical approach suggests that the best strategy for defenders is to scatter appli-

cations uniformly in the entire IP-address space.

8.1.2 Analyzing Two Sub-Optimal Worm-Scanning Methods

The use of side information by an attacker can help a worm speed up the propagation.

This philosophy has been the basis for advanced worm-scanning mechanisms such as

hitlist scanning, routable scanning, and importance scanning. Some of these scanning

methods use information on vulnerable hosts. Such information, however, may not

be easy to collect before a worm is released. Questions then arise whether and how a

worm can self-learn or exploit such information while propagating; and how virulent

the resulting worms may be. As an optimal scanning strategy is difficult to implement,

two practical sub-optimal scanning methods are investigated.

In Chapter 4, a self-learning worm using the static importance scanning and the

botnet structure is designed and studied. The self-learning worm is demonstrated

analytically and empirically to have the ability to accurately estimate the under-

lying vulnerable-host distribution in /8 subnets when only 500 infected hosts are

observed. Experimental results based on parameters chosen from Code Red v2 and

Witty worms show that a self-learning worm can spread much faster than a random-

scanning worm, a permutation-scanning worm, and a Class-A routing worm. Further-

more, some guidelines for detecting and defending against such self-learning worms

are also discussed.

In Chapter 5, localized scanning, a simple yet effective technique used by attackers

to search for vulnerable hosts, is studied. Localized scanning trades off between the
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local and the global search of vulnerable hosts and has been used by Code Red II and

Nimda worms. First, the relationships between vulnerable-host distributions and the

spread of localized-scanning worms are characterized through mathematical modeling

and analysis. Then, an optimal localized-scanning strategy that provides an upper

bound on the spreading speed of localized-scanning self-propagating codes is designed.

Furthermore, three variants of localized scanning are constructed. Specifically, the

feedback localized scanning and the ping-pong localized scanning adapt the scanning

methods based on the feedback from the probed host, and thus spread faster than

the original localized scanning and meanwhile have a smaller variance.

8.1.3 Evaluating the Vulnerability of the Internet

In Chapter 6, three aspects are investigated jointly: (a) a network vulnerability as

the non-uniform vulnerable-host distribution, (b) threats, i.e., intelligent worms that

exploit such a vulnerability, and (c) defense, i.e., challenges for fighting the threats.

First, five data sets are studied, and consistent clustered vulnerable-host distribu-

tions are observed. Then, a new metric, referred to as the non-uniformity factor, is

presented. The non-uniformity factor quantifies the unevenness of a vulnerable-host

distribution. This metric is essentially the Renyi information entropy and better char-

acterizes the non-uniformity of a distribution than the Shannon entropy. Next, the

infection rate and the propagation speed of network-aware worms are measured ana-

lytically and empirically. A representative network-aware worm is shown to increase

the spreading speed by exactly or nearly a non-uniformity factor when compared

to a random-scanning worm at the early stage of worm propagation. This implies

that when a worm exploits an uneven vulnerable-host distribution as a network-wide

vulnerability, the Internet can be infected much more rapidly. Furthermore, the ef-

fectiveness of defense strategies on the spread of network-aware worms is analyzed.
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Experimental results demonstrate that counteracting network-aware worms is a sig-

nificant challenge for the strategies that include host-based defense and IPv6.

8.1.4 Modeling the Spread of Topological-Scanning Worms

Topology information is a fundamental element that enables topological-scanning

worms, such as the Morris worm. The spread of topological-scanning worms, how-

ever, is especially hard to model. The difficulty lies in characterizing the impact of

topologies and the interactions among nodes in both space and time.

In Chapter 7, the spread of topological worms is modeled. Our model is moti-

vated by probabilistic graphs, which have been widely investigated in machine learn-

ing. First, a graphical representation is used to abstract the propagation of worms

that employ different scanning methods. Then, a spatial-temporal random process

is presented to describe the statistical dependence of worm propagation in arbitrary

topologies. As the spatial dependence is particularly difficult to characterize, the

problem becomes how to use simple (i.e., biased) models to approximate the spatially

dependent process. In particular, the independent model and the Markov model are

proposed as simple approximations. Both theoretical analysis and extensive simula-

tions on large networks using both real measurements and synthesized topologies are

conducted to test the performance of the proposed models. Our results show that the

independent model can capture the temporal dependence and the detailed topology

information and thus outperforms the previous models, whereas the Markov model

incorporates a certain spatial dependence and thus achieves a greater accuracy in

characterizing both the transient and equilibrium behaviors of worm propagation.

8.2 Future Research Directions

• Worm Defense System Design and Analysis: An effective yet practical

worm defense system is important and urgent. Since some areas of the Internet

are responsible for a disproportionate number of vulnerable hosts, the problem is
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how to adequately secure these areas. A collaboration system among firewalls

will be developed, exploiting the vulnerable-host distribution. The following

important questions will be answered: How can firewalls cooperate with each

other to block worm traffic effectively? How do firewalls treat traffic differently

based on where the traffic is generated? How can the system defeat the malicious

firewall(s)?

• Worm Tomography: Internet security and resilience require methods to de-

tect and estimate worm behaviors. Most worms use random scanning to re-

cruit new bots, which can be observed by Darknet that is defined as a globally

routable address space in which no active services or servers reside. The term,

worm tomography, is used to describe the process of inferring the characteris-

tics of worms from Darknet observations. The primary difficulty in using this

approach lies in the growth trend of background noise [51].

• Malicious Sources Analysis: It is important that defenders identify Internet

areas that are responsible for a significant portion of attacks. We have obtained

402-day traces from DShield [84]. We attempt to discover how the malicious

sources distribute across the Internet and how they change with time.

• Game Theory Between Attackers and Defenders: The evolution of the

Internet has created a real arms race between attackers and defenders. Defend-

ers attempt to understand the skills that attackers use and develop systems

against them. On the other hand, attackers endeavor to learn the weakness of

the systems that defenders build and design new methods to overcome or evade

these systems. Both attackers and defenders can eventually learn about the op-

ponent’s strategies and design the optimal tactics. Therefore, this interaction

naturally leads to a game theory framework between attackers and defenders.

A simple game theory approach has been applied to the optimal worm-scanning
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attack and defense described in this thesis. The more complex interaction in

the game, however, should be considered in the future research.
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