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SUMMARY

This research focuses on large-scale manufacturing systems having a number of
stations with multiple tools and product types with different and deterministic processing
steps. The objective is to determine the production quantities of multiple products and the
tool requirements of each station that maximizes net profit while satisfying strategic
constraints such as cycle times, required throughputs, and investment. The formulation of
the problem, named OptiProfit, is a mixed-integer nonlinear programming (MINLP) with
the stochastic issues addressed by mean-value analysis (MVA) and queuing network
models. Observing that OptiProfit is an NP-complete, nonconvex, and nonmonotonic
problem, the research develops a heuristic method, Differential Coefficient Based Search
(DCBS). It also performs an upper-bound analysis and a performance comparison with
six variations of Greedy Ascent Procedure (GAP) heuristics and Modified Simulated
Annealing (MSA) in a number of randomized cases. An example problem based on a
semiconductor manufacturing minifab is modeled as an OptiProfit problem and
numerically analyzed. The proposed methodology provides a very good quality solution

for the high-level design and operation of manufacturing facilities.
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CHAPTER 1

INTRODUCTION

One of the critical paradigms in recent manufacturing systems is /lean
manufacturing. Lean systems typically have the benefits of lower cost, higher
profitability, shorter cycle times, flexible manufacturing facilities, and fewer work-in-
process (WIP). Currently, however, most manufacturing systems are not flexible enough
to completely implement lean manufacturing and realize the benefits. Therefore, it is
very important to consider the basic design of facilities at an early phase of system
development, particularly when the application area is relatively inflexible with respect to
reconfiguration and capital-intensiveness. Semiconductor manufacturing is a typical
example. The management of manufacturing systems frequently seeks to understand the
exact maximum production capacity whenever market demands grow. Since system
behavior with respect to an increase in throughput and the amount of equipment is very
difficult to evaluate, particularly in complicated cases such as reentrant systems, a critical
decision is to determine when to expand and how much additional equipment to deploy.
Even though slight overestimates or underestimates could significantly effect cost,
managers in the semiconductor industry have been using rough approximations from
simple heuristic analysis or past experience. This research is directed at describing an
appropriate mathematical and engineering approach to find the optimal configuration to
make a system produce the best profit. In this thesis, we refer to this problem as the

OptiProfit problem.



Research in reentrant manufacturing systems — for example, semiconductor
manufacturing systems — has been categorized based on three issues: design, operations,
and control. Design issues deal with the reasonable or optimal designs of capacity,
throughputs, cycle times, WIPs, and costs in the initial installation or capacity expansions
of manufacturing systems. A number of studies concerned with operations issues have
focused on embracing production planning and product-mix strategies (Horiguchi, 2001;
Lee, 1997). Also, studies on control issues have included the topics of vehicle control,
part-release scheduling, dispatching policies with priorities, etc. (Holthaus, 1997; Hwang,
1997).

The focus of this research is on the design issues. Reviewing the past literature,
deterministic models for the optimization of capacity expansions have been frequently
used, as discussed in Toktray (1998), whereas some recent works in this category
consider the variability of reentrant manufacturing systems, as seen in Rajagopalan
(2001). Also, Iwata (2002) used an approximate-cost model in semiconductor
manufacturing. In addition, queuing network models have given fair solutions to several
problems involving cycle time and WIP estimations, for example, in Chung (2002) and
Lin (2001).

In real situations, however, the management of manufacturing systems has raised
questions about the integrated effects of key performance measures and design factors
such as throughput, cycle times, and cost constraints. Three typical problems faced
during the initial design phase, production and capacity planning, can be summarized as

follows: (i) minimizing cycle time with expansion cost and throughput constraints met;



(i1) minimizing expansion cost with cycle time and throughput constraints met; or (iii)
maximizing profit with cycle time, expansion cost, and throughput constraints met.
Regarding category (i), Bard (1999) performed milestone research on capacity expansion,
in which he determined the capacity or the amount of equipment that minimizes the sum
of cycle times for a single product. The optimization model had constraints of cost and
fixed throughput settings. Hopp (2002) approached the capacity decision for problems in
category (ii) in another way, minimizing the cost with the constraints of allowable cycle
times. This approach included a delicate mean-value analysis (MVA) in evaluating the
parameters of the optimization model, and a simple and intuitive heuristic was proposed
to solve the nonlinear constraints with integer properties.

This research proposes an approach for problems in category (iii), modeling these
problems as OptiProfit problems. A systematic solution method is described for the
situation where the configuration with maximal net profit achievable, while meeting the
strategic constraints on expansion cost, cycle times, and required minimum throughputs,
is desired. The most prominent difference of the research in this thesis from the other two
(Bard, 1999; Hoop, 2002) is that this approach finds the best possible performance and
capacity of systems in terms of the net profit — the ultimate goal of manufacturing
systems. From a managerial perspective, it is also possible to incorporate the OptiProfit
model with business strategies such as the timing and magnitude of facility expansion.

Table 1.1 compares the characteristics of Bard (1999), Hopp (2002), and this thesis.



Table 1.1 Summary of the Comparison with Related Researches

Bard (1999) Hopp (2002) Sohn (2004)
Objective Minimizing the average cycle time (queuing | Minimizing the investment cost Maximizing the profit (production profit
time) against investment cost)
Decision Number of tools in stations Number of tools in stations In-flow rate into the system
variables Number of tools in stations
Constraints Investment cost Average cycle times of products Investment cost
(Fixed throughput) (Fixed throughput) Average cycle times of products
Minimum throughput requirements
Property of Nonlinear knapsack problem (NLIP) with Nonlinear integer problem (NLIP) with Mixed-integer nonlinear problem (NLMIP)
problem nonlinear state equations nonlinear state equations with nonlinear state equations
Product mix Single product Multiple products Multiple products
Eff. processing No Yes Yes
times and yield
Consideration on | Yes (Process batching) Yes (Moving batching, setup batching, Yes (Moving batching, setup batching,

batching effect

processing batching and unbatching)

processing batching and unbatching,
product-type-sensitive batching)

Cycle time
evaluation base
model

GI/G/M queue of Jackson network using
Hybrid Queuing Network Analyzer (HQNA)
(Srinivasan, 1995)

GI/G/M queue of Jackson network using
Traffic Variability Equations (The queueing
network analyzer) (Whitt, 1983)

GI/G/M queue of Jackson network using
Traffic Variability Equations (The queueing
network analyzer) (Whitt, 1983)

Solution
heuristic

Four heuristics were tested,

1. Greedy Ascent Procedure (GAP)

2. Modified Ascent Procedure (MGAP)
3. Simulated Annealing Procedure (SAP)
4. Implicit numeration

Optimized Queuing Network (OQNet), a
penalty-based heuristic

1. Differential Coefficient Based Search
(DCBS) heuristic

2. Six variations of Modified GAPs

3. Modified Simulation Annealing

Example domain

Semiconductor

Semiconductor

Semiconductor

Result
observations

Comparison of the analytic results from the
four heuristics

1. Comparison of the result from OQNet
heuristic with the result found by naive
enumeration in a simple example

2. Cycle time evaluation with the
comparison with simulation results using
ManSim™

1. Comparison of the result from DCBS
heuristic with the results from other basic
GAP and meta-heuristics

2. Relative optimality gap analysis using
upper-bound analysis

3. Cycle time evaluation with the
comparison with simulation results using
Arena™




As discussed in CHAPTER 2, the base OptiProfit model is formulated and solved
as a MINLP. Generally, MINLP problems are more complicated to solve compared to
mixed-integer linear programming (MIP) and continuous nonlinear programming (NLP)
problems. To further describe the properties of MINLP problems, difficulty in tracking
arises within two major areas, the combinatorial domain and the continuous domain. As
the number of integer variables increases in MINLP problems such as OptiProfit, one is
faced with a large combinatorial problem, and the resulting complexity analysis
characterizes the problems as NP-complete (Nemhauser, 1988). The determination of a
global solution to a non-convex MINLP is also NP-hard (Murty, 1987) since even the
global optimization of constrained nonlinear programming problems can be NP-hard
(Pardalos, 1988) and even quadratic problems with one negative eigenvalue are NP-hard
(Pardalos, 1991).

Numerous approaches and algorithms for the solution of MINLP problems such
as Outer Approximation (OA), Generalized Benders Decomposition (GBD), Extended
Cutting Plane (ECP), Branch and Bound (BB), and Adaptive Random Search (ARS) have
been proposed in the literature (Gruhn, 1998; Floudas, 1995). Johnson and Brandeau
(1999) formulate an MINLP problem for the design of shop floor material handling
systems and seek solutions using the decomposition of workflow. Basically, the
decomposition approach for MINLP decomposes the problem into several subproblems.
Figure 1.1 shows a typical approach to the MIP subproblem and the NLP subproblem that
is iteratively solved in a solution loop. The algorithms shown assume that nonlinear
functions are convex to allow for convergence to a global optimum. However, very

frequently the decomposed subproblems are not guaranteed to find the globally optimal



solution when the nonlinear problem is non-convex. Grznar (1994) dealt with an MINLP
problem to minimize a surrogate-weighted cost of intercellular material movement under
capacity and part-requirement constraints. They found that the model is neither convex
nor concave in its relaxed noninteger structure, and that the emphasis in the formulation
was to suggest “good” solutions rather than optimal ones.

In CHAPTER 3, more insights into the mathematical properties of OptiProfit as a
MINLP problem are presented. Showing that OptiProfit is NP-complete, nonconvex, and
nonmonotone, in CHAPTER 4 the research suggests a heuristic method, Differential
Coefficient Based Search (DCBS), which is compared in CHAPTER 5 with other
practically used heuristics and a modified meta-heuristic, Modified Simulated Annealing
(MSA). Finally, in CHAPTER 6 a practical example of semiconductor manufacturing is

applied to OptiProfit.

Initialization of
problem P(x,y)

v

Solve subproblem
P1(x) with fixed y

v

Solve subproblem
P2(y) with fixed x

Improvement?

Figure 1.1 A Decomposition Method



CHAPTER 2

PROBLEM MODELING

2.1.  Problem Description

The reentrant manufacturing system in the OptiProfit problem is assumed to have
a number of functional areas in which homogeneous manufacturing equipment forming
the station is logically located. Figure 2.1 depicts a simple example with two products
and five stations. Physically, identical tools in a station may be deployed in different
locations. Material moves along its material-flow route which is deterministic and varies
according to the product type or product. In the design phase of the reentrant
manufacturing system, due to the aggregated effects of variability in material flows it is
highly complex to obtain a reasonable configuration of equipment and to predict system
performance. Critical design objectives are to reduce cycle times, to increase throughputs,
and to decrease resource investment costs. Considering the interactions of these
objectives, the main objective of the work in this thesis is to find a mathematical
formulation to obtain the maximum profit and the corresponding configurations of

equipment with constrained total cost, allowable cycle times, and required throughputs.



Station 1
Station 2
Station 3
Station 4
Station 5

A Reentrant Manufacturing System

Device 1

Device 2

Figure 2.1 A Reentrant Manufacturing System with Multiple Products and Stations

A tradeoff in the OptiProfit problem is conceptually presented in Figure 2.2. With
a given basic configuration, the increments in tool counts cause an increase in investment
cost. If the cost constraints are still not violated, the increments are doable; however, they
cause a deterioration in the objective function, the profit. The increase in part-releasing
rates will consume the slack cycle times obtained by the increments of tool counts. The
profit goes up, but the increased cycle time will be bounded by the cycle time constraints
and require another increment in production capacity, i.e., additional tools in stations. In
the general situation with multiple stations and products, the decision as to which station
and product should be selected to increase or decrease the capacity or production is
critical.

In general, with numerous stations and product types, it is impossible to visualize
the alternatives graphically. Figure 2.3 gives a simple example of the I-station and 2-
product problem. The number of decision variables is three: the part-releasing rates of

product 1 and 2 are X, and *x,, and the integer tool count of the station is y . The



objective function is formulated as a 3-dimensional surface in the form of
Ax, +Bx,+Cy+ D =0, and the feasible region is discontinuous due to the integer
property of y. The linear sides of each feasible region imply the bounds of minimum

throughput requirements, which is proportional to the part-releasing rates with
consideration for the yield rates in stations. The behavior of the nonlinear constraints on
cycle times is not clearly understood due to the complexity of variability evaluations of

the incoming product streams to every station.

Got slacks?
Cost Cycle time Releasing
increased decreased rate
Tool count Cycle time Profit
increased increased* increased
Allowable?

Figure 2.2 Tradeoffs of the Problem

Part releasing rate
T of Product 1

Station Objective function

Arrival
> . Tools. v
——————— >
Arrival 4
Tool count

flow t. ol
/ Feasible regions
Part releasing rate

Xy, szz
of Product 2

Figure 2.3 A Conceptual Example with Two Products and One Station



The performance of manufacturing systems has a large variability with respect to
the kind of control logic used. The control logic, such as the part-releasing policy, has
been one of the main concerns in manufacturing. Control rules and their effects on the
measures of performance have been investigated (Lu, 1991; Kim, 1998). In this thesis,
we concentrate on the design issues of reentrant manufacturing systems, assuming that a
system deploys basic and naive control rules. Hence, the assumptions in the research
imply that, if better control schemes are found later, a good possibility of additional
improvement in performance. In this research, we have the same understanding in initial
system design, i.e., we consider simple and fixed control policies in modeling a system.

e Part-releasing policy: UNIF (Uniform parts inter-releasing time rule) - Parts to be
released are selected proportional to the product-mix with constant releasing interval.

e Dispatching policy: FIFO (First-In-First-Out rule) - The stations serve the arrived
parts in FIFO order.

e Batch size determination: MBS (Minimum-Batch-Size rule) - The sizes of the process
batch and the setup batch are assumed to be identical and fixed to the minimum batch
size of the manufacturing tool. The moving — arriving-at-equipment and departing-
from-equipment — batch size is assumed to be given and constant between the steps.

e Setup times: The setup times are assumed to have general statistical distributions with
different means and SCVs. They may vary according to the equipment type, product

type, and step.

10



2.2,

2.2.1.

ICT,
CT,
CTqy

BT,

Formulation

Notation
Number of products in product-mix
Number of stations in manufacturing facility

Minimum required throughput rate of product £ (k=1,2,---,K)
Number of existing tools in station i (i =1,2,---,N)
Margin of unit production rate of product £ for unit period of production time

considering sales revenue and operational costs, which are proportional to
production rates

Fixed cost of a tool in station i for unit period of production time considering the

fixed costs such as purchase, installation, and operator wages, which are
proportional to tool counts

Allowable investment in unit period of production which is available for the new
design or expansion in the facility'

The station that product & visits at step /

Expected total cycle time (flow time) of product &

Expected cycle time of product & at step / in station n,,

Expected waiting time in queue of product £ of step / in station n,,

Expected waiting time for batching and unbatching of product & at step / in

station #,,

! The investment in unit period of production is the fiscal amount flattened over the entire investment
period. For example, if the investment period is five years and $5M in the first year and $3M in the third
year are invested, the investment in unit period of year is $1.6M without considering inflation and the
interest rate.
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TT,,  Expected transportation time from station #n,,_, to station n,,

ACT, Allowable cycle time of product & which is predefined strategically in design

L, Number of steps in the route of product &

a, Survival rate due to yield loss at station i

a,  Cumulative yield of product &k after completing the first / steps in its routing (i.e.

1
ak/ - HI':I a"x/' )

rb,  Part-releasing batch size for product &

X, Part-releasing rate into the route of product £ in rb, -batches (Decision variable)
v Number of tools in station i (Decision variable)
2.2.2. Descriptions of the decision variables

We suppose a reentrant manufacturing system with a product-mix of K products.

Each product has a minimum throughput 7H, that the system must meet, where
k=12,---,K . The mathematical model must determine the optimal throughputs x, (the
decision variables) which incur the maximum total net profit in a single period. Station i,
where i =1,2,---, N , has y, (the decision variables) pieces of equipment of the same type,

each of which performs an identical process. Their mechanical properties are assumed to
be known, e.g., process times and failure information. The number of pieces of
equipment directly affects the utilization of the corresponding station as well as the
expected level of the WIP and, finally, average cycle time. The “hat” symbol, as shown

in x, implies that the flow is in batch form.
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2.2.3. Objective function

We maximize the net profit in a single period of operation, e.g., a month. The
objective function is linear with respect to the profit and cost. However, in real situations,
frequently we face a nonlinear property of net profit curve from, e.g., market behavior
and discounts with production quantity changes. This observation leads to future research
topics. A dimension analysis on profit coefficients and cost coefficients is given in

Section 2.3.

N K
Maximize — Zci Vv, + z Pi%y, b X, (Total net profit)

i=1 k=1

2.1)

2.2.4. Cycle time constraints

The expected cycle times cannot exceed the assigned limits. These constraints are
derived from the queuing network models resulting in a complex nonlinear property. The

expected total cycle time of product k£, TCT, (X,y), is a function of the decision vectors
of the part-releasing rates, X =(X,,X,,":-,X;) , and the quantity of equipment,

Y=Y n)-

TCT, (X,y) < ACT,, k=12,---,K (Cycle time constraints)

(2.2)
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The total cycle time terms 7CT, (X,y) present highly complex nonlinear functions
including queuing approximation. 7C7, (X,y) has the summation of four components:

batching waiting time, waiting time in queue, process time, and transportation time.
Batching waiting time is a function of X only, while the waiting time in queue is a
function of both X and y. Processing time and transportation time are constant in and
between stations respectively.

Traffic variability equations are needed for the waiting time in queue. They form
a system of equations used to calculate a = {ca,,ca;,---,ca} }, the squared coefficient of
variation (SCV) of the aggregated incoming material streams for each station. Therefore,

considering the traffic variability equations, we can extend the cycle time constraints as

follows
TCT, (X,y) < ACT,, k=1.2,--- K (Cycle time constraints)
N
ca? =b,(X,y)+ Zaij(f(, y)-ca’, j=12,---,N  (Traffic variability equations).
i=1
(2.3)
2.2.5. Investment and operational cost constraints

The cost in configuration change cannot exceed the budget limitations. The cost

coefficient ¢, is the converted cost considering equipment installation and operations per

unit period.
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N
z ¢;(y,—m;)<C (Investment constraint)
i=1

(2.4)
2.2.6. Throughput constraints
The throughput of each product should at least meet the required quantity.
oy rbx, 2TH, , k=12, K (Throughput constraints)
(2.5)
2.2.7. Existing equipment constraints
The changed configuration of equipment still has the existing equipments.
yvizm,i=12,--- N (Existing tool constraints)
(2.6)
2.2.8. Integer property
Changes in the amount of equipment are expressed in integer form.
¥, , positive integer
(2.7)
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Table 2.1 Formulation Summary

OptiProfit:
N K
Maximize z= —Z eyt z PiCyy, 1%, (Total net profit)
i=1 k=1
Subject to,
TCT, (X,y) < ACT, , k=12,---,K (Cycle time constraints)

N
caf =b,(X,y)+ Zaij (X,y)-ca’, j=12,---,N (Traffic variability equations)

i=1

N
z c,(y;—m,)<C (Investment constraint)

i=l1

oy, rhyx, 2TH, , k=12,---,K (Throughput constraints)
y;zm,,i=12,--- N (Existing tool constraints)

where, X = {X,X,,"*", X}, ¥ =1V, ,,"""» Yy }» V;, Dositive integer

2.3.  Profit and Cost Modeling
2.3.1. Introduction

The basic idea of the profit and cost modeling derives from the theory of
constraints (TOC). TOC models the throughput value of each product in a product mix
by selling price subtracted by raw material cost. Traditional contribution margin
modeling involves the direct labor and overhead cost into the margin of the products;
however, in today’s manufacturing environment, variable costs represent a small
percentage of total cost with the shift to automation that increases a firm’s fixed
production costs. TOC finally determines the production priority and optimal product mix

(Atwater, 1997).
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In this research, the margin coefficients, p, , are defined according to the

definition of TOC, i.e., throughput value. With the assumption that most of the modern

manufacturing cost is related to equipment installation and operation, we calculate the

manufacturing cost coefficient, ¢, as a fixed cost.

2.3.2.

follows.

(1)
2)

)
(4)

)

(6)

Definitions and assumptions

We propose some definitions and assumptions for the profit and cost modeling as

The earnings of the business are uniquely obtained from the sales of products.
The tools in a station have identical purchase cost, installation cost, salvage value,
and length of lifecycle.

Tools are replaced with the same ones at the end of their lifecycle.

Cost in a unit period of production is comprised of the overhead cost, fixed cost,
and variable cost (Lewis, 1995).

Overhead cost in a unit period of production is a constant cost incurred in the
business which is proportional neither to the number of tools nor to the
throughput of production, e.g., computer clusters, customer support, building
management, etc.” The modeling of total overhead cost is not included.

Total fixed cost in a unit period of production is any cost which is proportional to
the number of tools but not proportional to the throughput of production. For

example, the costs converted onto the unit period of production for purchase and

? In reality, some overhead is variable, rising and falling with production, and other overhead is fixed
remaining fairly constant on the production time horizon.

17



(7

®)

2.3.3.

installation of tools considering salvage values at the end of the life cycle of the
tools and fixed monthly wages of the operators at the tools would be a fixed cost.
The cost conversion onto the unit period can include the effect of interest rates
and inflation. Further models for fixed cost can embrace the depreciation,
maintenance, taxes, insurance, lease rentals, interest on invested capital, and sales
programs.

Total variable cost in a unit period of production is the cost of raw materials and
manufacturing resources including any operational cost which is proportional to
the throughput of production but not proportional to the number of tools, e.g., the
cost of raw materials and utilities consumed for the production in a unit period of
production.

: . 3
Incremental costs or marginal costs are not considered.

Margin and cost coefficients

We can formulation the total fixed cost as

N
Z €Y,
Jj=1

(2.8)

where, ¢, is the fixed cost in a unit period of production to operate a tool in station j .

3 If they are considered, they might present a nonlinearity in the objective function.
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See the cash flow diagrams in Figure 2.4. Given that the tools in station j have a
lifecycle length of n periods over the time horizon, all costs are flattened to equivalent
and constant costs over all periods. This gives a dimension of ‘cost in dollars per tool per

period.” In the cost analysis for ¢, — the equivalence calculation for equal-payment-

series — we could accommodate the effects of interest rates and inflation.

For a tool in station j on n periods of time horizon,

Salvage value

Equivalent

o i 2y wh R R B
L [ _I_ ‘*** ...... ** —_— ¢¢¢ ¢¢

Periodic (e.g. monthly) wages

Equivalent fixed costs (¢/)
Purchase

and installation cost

Figure 2.4 Cost Analysis for ¢; (Equivalence Calculation for Equal-Payment-Series)

A brief and simple dimensional analysis shows that [¢,] = V/NT, [y,] = N.

N
Hence, [chyj ] = V/T, where [ £] is the dimension of &, V is the unit of values, e.g.

=
‘dollar’, N is the number of tools, and T is the unit of time periods, e.g. ‘month.’
Therefore, the dimension of the total cost is (V/NT) (N) = V/T, e.g. ‘dollar/month.’
In a similar fashion, the margin can be expressed considering the sales revenue,

yield loss, raw material cost, and operational cost. From the basic notation, X, is the part-
release rate of product £ into the production system and ¢, rb X, gives the expected

throughput of product £ considering the cumulative yield rate. p, is defined as the
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margin of product k& per unit period — the sales revenue subtracted by the yield loss, raw

material cost, and operational cost per unit period. Note that p, describes the margin and

cost which are proportional to the part-releasing rates or throughputs.* Multiplying these

together and summing, we find the gross margin in a unit period of production as

K
ZpkakLkrbkxk .

k=1

(2.9)

Again, the dimensional analysis gives [p,] = V/N, [« ] =1, [rb;] = B, and

[ X, ] = N/B/T where N is the number of products and B is the number of batches.

K
Therefore, [ 3 p,ar, rb 5, 1= (VIN) (1) (B) (N/B/T) = V/T.

k=1

2.3.4. Allowable investment constant C

C is a converted cost value, which has a dimension of V/T, e.g., dollar/month. The
overhead cost can be considered in the evaluation of the investment constant C. Suppose
management has an allowable investment of $600 million for the next five fiscal years for

the manufacturing facility and the monthly overhead cost is $0.5 million, then a simple

* In brief, (margin coefficient) = (unit sales revenue) — (unit raw material cost) — (unit raw material cost +
unit operational cost) ( 1 — cumulative yield rate) / (cumulative yield rate). As a simple example, suppose
we have a monthly sales revenue of $50 with one final product per month. The cumulative yield rate is
80%. The raw material cost is $20 for a product and the operation cost is $10 for a product including the
scrap. Then, the margin coefficient is $50 - $20 - $ 10 - ($20 + $10) (1 - 0.8) / (0.8) = $12.5.
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calculation shows that C is ($600M) / (5 years) (12 months/year) — ($0.5M) =

($9.5M/month) without any consideration of interest rates, inflation, and so forth.

2.4. Cycle Time Evaluation
24.1. Introduction

The cycle time or flow time of production is the expected time elapsed from the
beginning to finishing of a production process. If a manufacturing system is composed of
a separate sequence of processing steps such as job shop production, the cycle time of a
product type in the system would be the sum of the individual cycle time at each
processing step with an assumption that one processing step is independent from any
other. This assumption is applied to the cycle time estimation in this research, as depicted
in Figure 2.5.

The cycle time at each processing step is again decomposed into four parts:
batching waiting time, waiting time in queue, processing time, and transportation time.
The batching waiting time includes the batching and unbatching effects considering
product-type-sensitive-batching and non-product-type-sensitive batching. The waiting
time in queue is the time elapsed in front of the processing tools. The products in a given
batch wait for the process in queue because of the variability of production processes. It
is assumed that the mean and squared coefficient of variation (SCV) values of processing
times are all known. Finally, the average transportation time of every transportation route
between two stations is assumed to be given. Therefore, the main challenge in cycle time
modeling lies in batching waiting time and waiting time in queue, which are generated by

the variability in production systems.
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Batching Queueing Processing | Transporting

Step 1

242

pb;

CT,

] Batching Queueing | Processing

Transporting

CT,

Step 2

; Batching

Queueing

CT;
Processing Transportin

Step L

L
Total Cycle Time = z CT,

i=1

Figure 2.5 Evaluation of the Total Cycle Time

Additional notation for cycle time evaluation

Mean natural batch process time and SCV of product & at step /

Aggregated mean natural batch process time and SCV in station i

Effective batch process time and SCV in station i with failure

Mean natural batch setup time and SCV of product £ at step /

Aggregated batch setup time and SCV in station i

Effective batch process time and SCV in station i with setup and failure

Moving batch from station i to station ;j in lots (i.e. Arrival batch at

station j from station i)

Process or setup batch size for station j

22



A Effective arrival rate at the station j

Pj Effective utilization of station j

i SCV of part-releasing into the routing of product k£ in rb, -batches

2.4.3. Flow rates

The flow rates from station i to station ;j are

K
/10,' = Zrbk)’ek[nkl =Jl
=1

K
Ay = Z
k=1

-1
rbyx, o [ny, = I,y 0 = J]
=1

K
2’]0 = zrbkxiakLk [nkLk =1]

k=1

(2.10)

Station 0 represents the raw material inventory (RMI) and the notation [S]

represents one if statement S is true and zero otherwise, mainly following the notation

and expressions of Hopp (2002). Therefore, the in-flow rate into station j in the unit of

individual product is

A, =204 D4

i=1

2.11)
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2.4.4. Batching effects

A basic assumption in batching analysis is that in every station there is a queue
for processing batches. The processing queue can be located either physically in front of
the station or logically at different places in the facility. Every product to be processed in
the station should form a process batch. As soon as each processing batch is constructed,
it is physically cumulated or logically registered to be processed in the station on a FIFO
basis.’

The batching effect incurs delays in two parts, batching and unbatching. Batching
occurs before the processing queue in front of each station while unbatching is done after

the station to form the moving batches. Therefore, the batching effect is decomposed into

two components BT,, = BT,; + BT, , where BT, is the batching time in front of the

station and BT, is the unbatching time before departure to the next step.

While the product types can be different in processing batches for certain process
equipment, some kinds of equipment require material of the same type in each processing
batch, as illustrated in Figure 2.6 (a). Typically, when compared with non-product-type-
sensitive batching, product-type-sensitive batching in Figure 2.6 (b) presents a longer
wait-to-batch time (WTBT) to form process batches in front of the queue in the

corresponding station.’

> If we do not have a FIFO assumption, we could deploy other smarter policies, for example, using a pool
of individual products to dynamically form the processing batches without a queue for processing batches.
® As matter of fact, we can intuitively claim that the variabilities of batch arrivals in front of the batch
queue in two cases are not identical. While the traffic variability equations assume the non-product-type-
sensitive case, in this study we approximate the variability using the traffic variability equations also in the
product-type-sensitive case. More thorough considerations of this topic could be studied in future research.
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Batching
in size of process batch

Arrivals of multiple - o~ [T
~ producttypes [} » [T - > [ > | Station
in size of moving batch . < (111
bl s Queue of materials

in size of process batch

(a) Product-type-sensitive batching

Batching
in size of process batch

Arrivals of multiple [T
product types [ }——# [ [ ] -~ > L — » | Station
in size of moving batch . .:D

Queue of materials
in size of process batch

(b) Non-product-type-sensitive batching

Figure 2.6 Product-type-sensitive Batching and Non-product-sensitive Batching

(Case 1) WTBT in product-type-sensitive stations

(pbnk, —mby, )+ mb,, ., 1 (p b, —mby )+ (Batching)

Bka = l - =——=
2 mby xkrbkﬁk,nk, 2 xkrbkﬂk,nk,
mb, ., — pb, )
BT, =%( o Phu) (Unbatching)

where, [, = Zak’,_l and S, is the set of steps in station j of product & .
leSy;

(2.12)
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B,;» as seen in Figure 2.7, is the sum of cumulative yields of product k£ streams in front

of station j. Likewise, the unbatching process is also analyzed with ', which is the

sum of cumulative yields of product & streams after station ;.

Product k£
os]
&
g
—» &
ga

[ uonelg

Suryojeq
[+/ uonels

Suryorequn

Suryojequn)

Juiyojeg
¢+ uonelg
uryojequn)

’—P

—p
_|

Step information

ng=Jj
Rg =j +1
g2 =J
R =j +1

Mg =J T2

Nia =]

At the station j, there exist three incoming streams, whose arrival rates in
individual product are X,7b, &, , |, X,rb,2, ,.,,and X, 7b,, ,.,

respectively. Aggregated rates of incoming streams at station j is, hence,

Z:xkrbkak’[_1 =x,7rb, Zak’l_l = xkrbkﬂ,q., where S,V. is the set of

leS,g- ZES,{/

steps in station j of product £, e.g., Sy, ={/,/+2,/ +4}.

Figure 2.7 Example of Batching Analysis at the Product-sensitive-batching Station

(Case 2) WTBT in non-product-type-sensitive stations
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2.4.5. Effective processing time and SCV

Figure 2.8 describes the calculation steps for the effective batch processing time
with setup and failure effects. Basically, the natural batch processing time information is
given including the mean batch processing time and SCV with respect to the product type
and its step in the route. We aggregate the processing time in order to obtain the
aggregated batch processing time at each station. From the assumption that failures occur
on the processing time horizon, the failure adjustment on the processing time is
performed thereafter.” On the other hand, the natural setup time information gives the
mean batch setup time and SCV with respect to the product type and its step in the route,
which is equivalent to the information of batch processing time. Likewise, the aggregated
batch setup time is calculated on each station. Finally, the aggregated batch processing
time and the aggregated batch setup time is integrated into the effective batch processing
time with failure and setup effects.

We first calculate the aggregated class of batch size batch pb, for station ;.

Defining 7, for the mean process time and }/f for the SCV of a pb, -batch of lots at

station j, we obtain

Ly

K K L
t, = Z rbyx o Tylng =l erbkxkak,l—l [, = Jjl,

k=1 =1 k=1 I=1

K Lk K Lk
tjz(Ctjz +1)= erbk)’ekak,l—lrklz(yklz +D[ny, = Jj] erbk)’ekak,l—l [, = J].

k=1 I=1 k=1 I=1

(2.14)

"1t is also possible to incorporate the effect of preventive maintenance (PM) (Hopp, 1999).
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N 2
Natural batch processing time - 7, and ¥,

v

Aggregated batch processing time - t: and étiz Natural batch setup time - §,;, and cs klz
Aggregated batch processing time with failure Aggregated batch setup time
- Z and Etiz = §i and éSiz

v

Effective batch processing time with failure and setup effect - 7, and cz‘l.2

Figure 2.8 Effective Batch Processing Time with Failure and Setup Effects

From the assumption that the processes in the stations are performed in minimum
batching size (MBS), the process batches are the same size at each station. Therefore, we
use MBS as the effective process batch size.

We consider the effects from random failures in order to obtain the aggregated
batch process time with failure effect in corresponding stations. An analysis of the

preemptive failures situation gives the failure-adjusted batch-process time and SCV as

mr;
¢

et =t +(1+a)4,(1-4)
J

where, mf’ is the mean time of failures, mr; is the mean time of repairs, and cr;” is the

SCV of repairs in station ;.

(2.15)
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We calculate the aggregated batch setup time in the same manner as for the case

of aggregated processing time.

Ly

K L
Ay aSulng = Jjl Zz/lkak,m[nkl =Jjl,

K
Sj:z

k=1 I=1 k=1 I=1
2 2 K & 2 2 £
s (es;”+D)= Zzikak,l—lskl (esy” +DIny, = J] Zzﬂ’kak,l—l [y = Jj].
k=1 121 k=1 121

(2.16)

Finally, the effect of setups imposes another adjustment on the aggregated

processing time information, ¢, and ct jz . Using the notation in Hopp (2002),

(2.17)

where, §; is the average setup time and ¢s j2 is the average SCV at station ;.

2.4.6. Waiting times in queues

Products arriving at a station normally come from more than one station. The
mean interarrival time can be easily computed if the mean interarrival times of the

streams are known. However, even though the in-flows have their own probabilistic
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distributions for inter-arrival time, the deviation or SCV of the aggregated in-flows with
all the distributions cannot be calculated in meaningful form. This difficulty is an
obstacle in the evaluation of cycle time since the variability information of the aggregated
streams is required for the queuing network analysis. An experimentally fitted
distribution might be obtained from numerical analysis, but this approach cannot be
incorporated with the analytical and optimization models in this study. Consequently, we
approximate the SCV of arrivals using the traffic variability equations (TVEs) (Whitt,
1983; Hopp, 2002).

TVEs are based on the multi-class queuing network model for steady state
analysis. This queuing network model is known to have an advantage in modeling
various design factors. For example, it can incorporate the effects of yield loss, batching,
unbatching, setup, failure, preventive maintenance, and most importantly, variability in
material flows and processing times. On the other hand, when compared to other models,
such as the fluid model, it has the disadvantage that it is not effective for the reentrant
material flows and initial system configuration on a finite time horizon. However,
because of the advantage of the network model in including the consideration of
variability, this work uses the network model, assuming that the design time horizon is
sufficiently long.®

In order to evaluate the waiting time in queue, TVEs need the expected batch size

of effective arrivals to station j. The expected batch size of external arrivals can be

¥ By the nature of large scale manufacturing systems in general, it is assumed that substantial
reconfiguration of a facility is not frequent.
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K
calculated as xb, = /10j/2£k[nk, =j], j=12,---,N . In front of station j, we obtain
k=1

the effective batch size

eb;

B max(xb,, pb;) i=0
a max(pb,, pb;) 1<i<N’

(2.18)

Defining the effective batch arrival rate, ﬁ;j =4, / eb, , we find the rate sum of

i >

incoming effective batch streams at station j as,

>
I

Il
f=}

(2.19)

Now, according to the TVEs, the arrival SCV of externally arriving batches to

each station is approximated as follows.

K . N o
cx? =1= Wj + Wchrkz[ik[nkl =] Z/L{v[nkvl = j]j,
k=1

k=1

K [ . N 2!
where, "T’j =[1+4(1- p‘/’)z(vj -D], ‘7_; = |:Z(/1k [ = J]/z Al = J]j ] , and
=1 k=1

the effective utilization at station j is p, =A #; / V-

(2.20)
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Between the stations inside of the reentrant queuing network, the SCVs can be

obtained from the expression of Hopp (2002).

N
2 2 .
ca; =b, +Zaijcai , j=12,---/N,

i=l1

where, a; =~ —————— |5~ a,q,;,(1-p;),
"A, max(pb,, pb;) | A,

| xb.A,.
b,=1-w, + g ij—ojjcsz +

w, & A4 [ A
: SN TN Zgg pté + pb(1—ag,) |,
A\ eby, Aj;eb,[A 4P 9+ Ph ,q,])}

N
G, =4 D Ay ¢ =1+ (max{ct?,0.2} - 1)/ [y, ,
J'=0

w; = [1+4(1—P1)2(Vj -n]’, v = {i(’iﬁ//&f)z} '

i=0

2.21)

This formulation induces a system of equations that requires an inverse
calculation of an N x N matrix. We use a G/G/m queuing model for each station. The

waiting time in queue at station n,,, CTq,(X,y), is approximated using Kingman'’s

equation considering the batching effect in shared queue y, of tools in station n,,, i.e.,

ny

CT ca’i‘] +Ct5k[ pn[;IZ(ynk[ +1)_l
W T T

(2.22)
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This system experiences variability pooling occurring in arrivals when the station

has a process batch size greater than one.

2.4.7. Transportation time

The statistical distribution for transportation time between two stations is hard to
obtain in real situations due to dynamic properties such as transportation route selection,
vehicle characteristics, and traffic congestion. Consequently, the wvariability in
transportation times affects the variability of arrivals in the next station; however,
assuming that the variability in transportation is relatively low, we consider only the
variability analysis from the traffic variability equations without the transportation
effects.’

Defining 77, as the average transportation time of product k£ from step /—1 at
step / — dispatching time from station n,,_, to station n,, — we can simply add it to the

expected total cycle time along the routes of corresponding products. As a result,

transportation time is modeled as a constant in each itinerary. Note that 77, is the

transportation time between part-releasing to the first station in the route of product % .

? In reality, stable and fixed path systems such as conveyer systems have a relatively low coefficient of
variation. In contrast, free-path transportation systems such as fork lift systems can present a higher
coefficient of variation, particularly, when congestion situations are frequent.
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2.4.8. Expected total cycle time

Combining the above results, we sum the batching, queuing, processing, and

transportation times of product & at station n,,. Finally, the expected total cycle time of

product £ is expressed.
TCT, (x,y) =BT, (X)+CTq, (X,y)+ PT, +TT,,

Ly Ly Ly
where BT, (X) = Y BT, (%), CTq,(X,y)= D CTq,(X,y), PT, =) t, ,and
=1 =1

=1
Ly
1T, = ZTTk, +TT, g [ =12, L, k=12,---K.
=1

(2.23)

Note that 77, .., is the expected transportation time from the last station of

product &, i.e., station n,, , to the finished good inventory (FGI).
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CHAPTER 3

MODEL ANALYSIS

3.1. Model Observation

Observation of the OptiProfit problem begins with the simplest case, which
models a system of one product flow with one processing step and one station with
multiple tools, as illustrated in Figure 3.1 and Figure 3.2. Since it does not have
aggregated or reentrant flows, the main formulation does not contain the traffic
variability equations. The process queue is assumed to be stable; in other words, the

utilization is below 100% assuming that the maximum utilization p,, is less than or

equal to, say, 0.98. The processing batch size is given as b. The G/G/m/inf queuing
model is used to estimate the average cycle time with the waiting time to batch. The cycle
time constraint prevents the part arrival rate from increasing excessively, and the cost
constraint gives an upper bound on the number of tools deployed. The minimum
throughput constraint should be met simultaneously. One-product-one-station model
analysis can be practically applied to the service and manufacturing systems with one
type of server or station and one type of customer or material, e.g., bank teller service,
vehicle repair, fast food service, one-process manufacturing, etc.

The formulation of the simplest case is as follows.

Objective function:

Maximize z(x,y) = px —cy
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Constraints:
TCT(x,y) < ACT

cy<C

v, positive integer

b ca® + ct BB
where, TCT(x,y) = BT(x)+CTq(x,y)+t = —+ . t+t,
2x 2 y(1-u)
u="L<,
yb - max
(3.1)

Applying calculus, we easily find that 7CT'(x, y) is convex with respect to x and

1

is concave with respect to y .'' Therefore, it is possible to find the set of x s,

S; ={x|TCT(x,y;)<ACT, TH<x<bp, y, [t} for every integer y, =j ,
I1<j< |_C / cj. Extracting the maximum value x; in each S s ie, x =maxS ;» Wwe can

conclude that the global optimal value z* = max z(x; ,¥;) . This procedure applies only to
J

the simplest case of OptiProfit; the global optimal solution is not easy to find. We see in

' Theoretically, utilization constraints should be y > xt / b . However, we assign a value close to one for

Pmax Tor the practical tractability of the equation. p, . denotes the allowable highest utilization, which is
strategically assigned.

a 82TCT()C,y)/8x2 > 0 with fixed y. 0°TCT(x, y)/ay2 < 0 with fixed x for integer-relaxed
TCT .
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this chapter that the interactions between the decision variables and the effects of

aggregated variability drive the intractability of OptiProfit.

Queue w/ )
batching Station
Arrival flow, ~ S7¢P & Tools, y
X1, sz 1
7 e

Figure 3.1 One-product-one station Case

(TET suzface, t=10, k=Z} {TCT murface, ©=20, k=2} {TCT surface, +=30, k=2}

b )
TCT (w3 30 S Ll TCT (5, 7) B
20 - z0
1a 10
o 3 o

{TCT surface, =20, k=2}

{TCT =surface, t=10, k=2} {TCT surface, =20, k=32}

@
TOT (a3 20
En
1o
i

4
TCT (3, 3) 20
z0
1o
i

Figure 3.2 TCT Surfaces with Varying Processing Time and Batching Size
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3.2.  Properties of OptiProfit

3.2.1. Complexity classification

NP-hard problems are computationally intractable; no NP-hard problem can be
solved by any known polynomial-time algorithm (Papadimitriou, 1982). This section
shows the NP-hardness of OptiProfit by reduction to the known NP-hard 0-1 knapsack
problem.

Consider a simple version of OptiProfit. Fix the real values X, and we have a new
set of integer variables ¥ =1{¥,,¥,,~-,¥y} where ¥, =m, +)", )’ e {0,13V , and
m; > 1."* In addition, assume the number of products to be one, non-reentrant routing, a
batching size of one at any station, yield rates of one, a squared coefficient of variation of
arriving flows and processing time at every station of one", and negligible transportation
time. We formulate these assumptions as follows, and call it P. The problem P is

specified by the parameters, c¢={c,c,,-:-,cy} , t={t,t,,,ty}

n={n Ny, 0yt =4,2,--,N}, A=4,and ACT = ACT,.

P: {(e,t,n, A, ACT)| N =1, all numbers are positive }

1e.,

P: Minimize z = ¢y ZZQ Y (Total cost)

12 The solution of P, if solved correctly, provides the decision as to whether to increase one additional tool
in each station to make the system more profitable.

" The system P has exponential interarrival and processing time at every station. As a result, we can
observe that the traffic variability equations are trivial.
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Subject to,

v v u(5 ) PG, -1
TCT(Y) =Y ctq(y;) = 7J—NFSACTJ€=1,2,"',K
Jj=1 j=1 Y l_u(y])

At N N , ,
where, u(yj):—ja Y={VLVo 0 Vnts yy=m;+y; , and Y E{O,I}N.

j
(Cycle time constraints)

(3.2)

We find that 7CT(y) is a linear summation of nonlinear functions, ctg,(y,),
each of which is a function of y, only. Therefore, ctq,(y,) can be replaced by a linear

function of ", i.e.,
thj(:)\;j) = thj (mj + y;)
= (Cf‘],- (m; +1)—ctq;(m, ))y} +ctq;(my)=a;y; +d,.

(3.3)

N
Setting b = ACT - z dj , we can rewrite P as,
j=1

N
Minimize Z ¢,y (Total cost)
i=1
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Subject to,

Z a;y,<b,y, {0}  (Cycle time constraints)

JERy
(3.4)
Note that @, and b are negative. Otherwise, the problem would be trivial.
Now, we take an instance of a 0-1 knapsack problem Q, as follows.
Q:
N
Minimize 0= Z V.V
i=1
N
Subject to day =B,y e}
j=1
(3.5)

For arbitrary Q, we claim that it can be transformed to an instance of P. To show
this, the following relations should hold.
(1) Cj:7]) j=]‘929".9N

We can simply assign the values of ¢ to secure the relation.

2 a;=-a;, j=12,---.N

J

In order to make a; equivalent to the arbitrary negative value of — « ; , we show

J2(n+2)-1
. . u,;(n)
a, can be set to any real positive number. Since citq;(n) = W where
n\l—u . (n
J
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n 1s a positive integer is monotonically decreasing with respect to n,

a; =ctq,(m; +1)—ctq,;(m;) is always negative. With fixed n, ctq;(n)is a
function of 7, only in u ,(n) = x,z, / n, where x; is also determined from the

assumption. From the observation that }iir(l)(ctq J(m; +1)—ctq (m; )): 0,

lim (ctq,(m, +1)—ctq,(m,))=—o, and that ctq,(m, +1)~ctq,(m,) is

t—>n/xj

monotonically decreasing, the value of ¢, is uniquely determined to make the

relation (2) hold.

G  b=-p

Regarding (3), it is simply possible to have the value of » equivalent to — S by

N
setting an appropriate value of ACT =—/f + Z d;.

J=1

By this reduction, the NP-hardness of the OptiProfit problem follows from the

NP-hardness of the 0-1 knapsack problem.

3.2.2. Convexity

In this section, we observe that the nonlinear constraints of the integrality-relaxed

version of OptiProfit, i.e., TCT, (X,y) , show nonconvexity. Consider the example shown

in Figure 3.3.
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Arrival flow,
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156X size b & Tools, y
Arrival flow,
X, cxzz 1 ct2

Figure 3.3 A Simple Example for Convexity Analysis

In order to illustrate that 7CT7,(x,y) may violate the general property of

convexity, we show that there exist ¢, and «, satisfying

ICT(x,,y,) +TCT(x,,y,) <2[TCT(Q1X1 +(l-a)x,,ay, +(1_a1)}’2)]
ICT(x,,y,)+TCT(x,,y,) > 2[TCT(052xl +(1-a,)x,,a,y, +(1—a2)y2)]

0<a <1,0<a,<1.

(3.6)

Assume a model with two inflows and one station with three tools, i.e.,

xlz[O 12], X2=[10 0], cxlz—

0, ex?=25,b=2,1t=04, ct*=0, y, =[3],
Y. = [3]
Mathematica™ produces numeric results for T CT, (x,y) with traffic variability

equations for the two incoming flows.'* Plotting Tt CT, (x,y) with respect to 0<a <1,

we have Figure 3.4.

' Mathematica code for the convex analysis is given in APPENDIX A.

42



Aggregated Inflow Rate
14 0.9

13 0.85

0.8
12

0.75
11 0.7

10

Utilization

Ipha
alpha alp
0.2 0.4 0.6 0.8 1 02 04 06 0.8 !

Squared Coefficient  of Variance Average Queuing Time
2.5 0.8

1.5

0.5

. . . . alpha . . . . ~ alpha
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Figure 3.4 Nonconvex Property of OptiProfit

From the plotted Average Queuing Time in Figure 3.4, it is evident that there are

two distinguished parts, concave and convex, showing that 7C7, (x,y) is not always

convex. The non-convexity is due to the difference in variability of the two incoming
streams. The variability at a station is affected by the tool counts and flow rates of
preceding stations. Therefore, any system with more than one stream and one station
inevitably has a varying variability at each station which could result in non-convexity of

the total cycle times.
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3.2.3. Monotonicity

If a nonlinear programming problem has monotonicity, it can become more
tractable, leading to simplified solution methods and increased insight into the problem

(Papalambros and Wilde, 2000). After a preliminary analysis of 7CT,(X,y), it is evident

that it has the nonmonotonic property in the nonlinear constraints. To illustrate this, take

the example problem in the previous section with a different data set, i.e., x, = [O ],
x,=[8 0], ex?=0,ex?=05,b=2,1=06, ct* =0, y, =[3], y, =[3]. A plot of the

numerical results is shown in Figure 3.5. "

Aggregated  Inflow Rate Utilization
10¢ 0.9
9t 0.8
8 0.7
7,
0.6
6,
0.5
5,
4 0.4
3, 0;3
. . . . — alpha . . . .
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8
Squared Coefficient  of Variance Average Queuing Time
0.5
0.9
0.4
0.85
0.3
0.2 0.8
0.1 0.75
alpha
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8

Figure 3.5 Nonmonotone Property of OptiProfit

!5 Mathematica code for the monotonicity analysis is given in APPENDIX A.

44

alpha

alpha



The aggregated part-releasing rate increases from four to eight. From the plot, one
can observe that the average waiting time in queue decreases in the interval [0, 0.4] of «

approximately. This is not surprising since the inflow x, has a much higher variability
than x,. One observes that, before the utilization becomes sufficiently high, the total

cycle time is dominated by the variability terms. The total cycle time sharply increases as
the utilization approaches one.

In more detail, 7C7, (x,y) contains the A,(x), which are the linear functions of
x . With fixed y, we find the behavior of TCT, (x,y) in domain of x, D, as,
A,(x)-1, N

TCT, (x,y) = as maxu, = max—
JES; ‘ JES, bjyj

where S, =1{n, |/ =12,---,L,} is the set of steps in the routing of product &,

A, (%),

ICT,(x,y) 20, D, :{x|
by,

<1,j:1,2,---N}.

(3.7)

Figure 3.6 (a) depicts conceptually the behavior of 7CT, (x,y) with respect to a
single variable x, , for example. If the utilization of station j approaches one as
X = Xp ie,,(x)>b,y;/t;, b,>1 with x,, — x,., the waiting time in queue in
station j, CTq,(x,y), approaches infinity. So, therefore, does TCT, (x,y), but only if it

has at least one visit to station j in the routing of product k. Figure 3.6 (b) shows a

TCT, (x,y) curve, with the possible fluctuation due to the variability-dominated effect in
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the low utilization region. In this setting, if a certain heuristic is intended to find a

maximum x,., satisfying the cycle time constraints with 4CT,, it should search from x;.
with decreasing x,. until it finds x, =5 .'°

If it searches from the left edge with

increasing Xx,., the heuristic would stop with x,, = a, an incorrect termination point. This

important observation is reflected in the suggested heuristic for the OptiProfit problem,

Differential Coefficient Based Search (DCBS) in the next chapter.

S

A
\
\
ll\ TCTy (xx)=BT; (x) + CTqy (xi) + PTy + TT
\\ CTqy (xy)
b PT,+ TT,
e BT
>
q hﬁ X’g X
Variability dominates in CTq;. (x;) Utilization dominates in CTgq; (x;)
(a)
A
TCTk ()Ck )
ACT;,
>
U ,
a b oo Mk
(b)

Figure 3.6 Behavior of 7CT, (x,y)

' In DCBS, the concept of “look-ahead” is implemented to find b . It first searches for a with

increasing x, with a step size of Ax. When a is found, DCBS does not stop but proceeds with a
predefined number of look-ahead steps, n, ..., to find a possible b.
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3.3. Upper-bound Analysis

In order to obtain an efficient upper bound for OptiProfit, a maximization
problem, we define a modified version of OptiProfit, called OptiProfitUB. As mentioned
above, nonconvexity and nonmonotonicity are properties attributed to the nature of the
squared coefficient of variation (SCV) in arrival flows at the stations. Consequently,
OptiProfitUB does not include the squared coefficient of variation of arrivals to each
station, ca’ , mnor, accordingly, the traffic variability equations. Mathematically,

OptiProfitUB is expressed as follows.

OptiProfitUB:
N K
Maximize z% ==Y c,y, + Y. p,a;, b, %, (Total net profit)
i=1 k=1
Subject to,
TCT” (X,y) < ACT,, k =1,2,---.K (Cycle time constraints)
N
Z c,(y,—m)<C (Investment constraint)
i=1
oy X, 2TH, , k=12,---,K (Throughput constraints)
yvizm,i=12,-- N (Existing tool constraints)

where, TCT,” (},y) = BT, (X) + CTq;” (X,y) + PT, +TT,,

ny 2

£2 p1/2<yw+1)—1
2

L .
C’qul{]B (&, y)= z CquZB (f(’y) , CTQZB (f(,y) _ W H
o Voe 1=p,.)

A

X={X,X,,, X¢}, Y={V, V", Vy}, ¥, are positive integers.

(3.8)
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We claim that the optimum value of OptiProfitUB is always greater than or equal
to that of OptiProfit. To prove this, first conceptualize the waiting time in queue into a

sum of two parts, i.e., the waiting time in queue by the variability of aggregated arriving

flows, CTg“*, and the waiting time in queue by the variability of processing times,

CTq“":

CTq, (},y) = CTq;" (X,y) + CTq, (X,y), where

2 V2(yi+D)-1 2 2y +D)-1
ca ct
CTq (Ry) =| Snw | P ¢, and CTyS (Ryy) =| 2w | P .
2 y”k[ (l_p”kl) ’ 2 ynkz (l_pi’lkl) '

(3.9)

For 0<p, <1, CTq,' (Xy)>0 since ca, is non-negative. Therefore,
CTq;' (k,y)=CTq, (X,y)-CTq, (X,y) >0 . Thus, CTq, (X,y)—CTq;’(X,y)>0 , by
definition. Consequently, CTgq, (X,y)> CTq.”(X,y) . Thus, TCT (X,y)>TCT””(X,y)
for arbitrary X and y. From this result, we find that the feasible region of OptiProfitUB,

D is definitely equal to or larger than that of OptiProfit, D, ie., Dc D, .

UB >
Consequently, the optimal objective value of OptiProfitUB is always greater than or
equal to that of OptiProfit, i.e., z* <z .

Furthermore, by eliminating ca’ , the source of nonconvexity, OptiProfitUB is a

convex and monotone program, and we can express OptiProfitUB in a simplified form:

48



OptiProfitUB: Maximize z” = z(x",y")
Subject to,

[ X",y )< ACT,, k=12,---.K

glyH<c

h(x)2TH, k=12,---,K
where, f, g, and & represent the cycle time constraints for the upper bounds (TCT”*),

investment constraint, and required throughput constraints respectively.

(3.10)

Although the modified model does not represent any reasonable physical system,
it mathematically serves to develop upper bounds for OptiProfit. A number of state-of-
the-art commercial solvers are especially efficient for convex MINLP. In this work we
use GAMS™ to calculate OptiProfitUB for example cases and compare the outputs with
the results from various heuristic solution approaches, including a meta-heuristic. See

CHAPTER 5.

3.4. Heuristic Solution for the General Cases of OptiProfit

34.1. Existing approaches

MINLP problems such as OptiProfit appear in many different applications in
engineering design, computational chemistry, computational biology, communication,
finance, and other areas. In particular, there is a lack of MINLP methods for solving
large-scale MINLPs arising in real-world applications (Lasschuit, 2004; Barton, 2004;

Navarro, 2003; Chattopadhyay, 2002).
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Currently, scientists and engineers believe that NP-complete problems cannot be
solved by algorithms with less than exponential computation time, in the worst case. One
way to approach these problems is to design algorithms that do not guarantee a solution
to every problem instance, but which solve many if not most problems on average, and
which run fast. Approximation algorithms have been developed in response to the
impossibility of solving many problems exactly. In the case of NP-complete problems,
we sacrifice optimality to find a “good” solution that can be computed efficiently.
Trading-off optimality in favor of tractability is the paradigm of heuristics and
approximation algorithms.

Some of the most popular methods for convex MINLP problems are branch-and-
bound (Beale, 1977), generalized Benders decomposition (GBD) (Geoffrion, 1972), and
outer approximation (OA) (Duran and Grossmann, 1986). The branch-and-bound method,
applied to MILP, can be extended in a straightforward way to MINLP, using a number of
tricks that can be used to improve the performance of branch-and-bound for MINLP.
There exist powerful programs for solving large-scale MILPs (Mixed Integer Linear
Programs). These are based on a branch-and-cut framework combined with methods from
constraint programming. Still, difficulties remain in generalizing MILP-techniques to
MINLP: (i) The LP relaxation must be replaced by a different relaxation, which is often
not tight enough or is expensive to generate; (i1) The computation of local solutions can
be expensive; (iii) It can be difficult to derive efficient cuts. As a result, only medium-
sized MINLPs can usually be solved by branch-and-cut. In practice, large problems are
often solved either by a MILP approximation or by meta-heuristics combined with local-

search methods.
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Generalized Benders decomposition and outer approximation solve the MINLP
by an iterative process. The problem is decomposed into an NLP subproblem, which has
the integer values fixed, and an MILP master problem. The NLP subproblems optimize
the continuous variables and provide an upper bound to the MINLP solution, while the
MILP master problems have the role of predicting a new lower bound for the MINLP
solution, as well as new integer variables for each iteration. The search terminates when
the predicted lower bound equals or exceeds the current upper bound. The main
difference between GBD and OA is in the definition of the MILP master problem. In the
GBD algorithm, the MILP master problem is given by a dual representation of a
continuous space, while in the OA method, it is given by a primal approximation. In
general, the OA method requires fewer iterations and thus the solution of fewer NLP
subproblems, but the MILP problems require more computation as compared with GBD.
For more details, see Grossmann (1990). To meet sufficient conditions for convergence,

all three solution methods require that the MINLP satisfy some form of convexity

conditions.
34.2. Intractability of OptiProfit
(1) No benefits from the decomposition methods

OptiProfit does not always have the convexity property and is often used for large
problems. Moreover, the decomposition into subproblems of NLP and MIP is not always
possible, which is a condition assumed in decomposition methods such as Generalized

Bender’s. In Figure 3.7, the continuous variables and discrete variables are coupled in
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highly complex nonlinear terms; even though we decompose the problem into two
subproblems, one subproblem inevitably is a nonlinear integer program (NLIP), not an
integer program as intended. In addition there arises a convergence problem; the

iterations of the two decomposed subproblems do not necessarily converge to a solution.

Iterations
Subproblem P4 Subproblem P, [terations
NLP fixing m MILP fixing Subproblem P, @ Subproblem P,
integer real decision - )
decision variables . ) 1n 5
variables NLP fixing y's | Convergence? | NLIP fixing x's

Convex? w Convex?

(a) Typical decomposition iterations (b) Possible decomposition of OptiProfit

Figure 3.7 Problem in the Decomposition of OptiProfit

(2) Strategic situation in execution time

For practical use, several well-designed commercial solvers for MINLP have been
produced. For example, GAMS/BARON is a numerical solution widely used in a variety
of problems including the nonconvex cases. Basically, all solvers ultimately seek an exact
global solution but the calculation frequently requires an excessive execution time and
sometimes fails to find the answer. As problem size grows, execution-time cost becomes
more significant. In addition, in most real situations, the analysts and managers of
industrial systems need a rapid analysis tool to deliver the outputs for various settings of
their systems. Therefore, a fast and good heuristic approach is highly desirable in large-

scale and concurrent system development.
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3.4.3. Heuristic for OptiProfit

To find an adequate heuristic for OptiProfit, we review some categories of
frequently used heuristic algorithms.
(1) Random methods

A simple way to generate approximations is to find a random feasible solution —
i.e. a random permutation. Of course, this method yields poor results in general. But the
runtime of such simple schemes is typically negligible.

(2) Successive augmentation (greedy heuristic)

Under the successive augmentation approach, a partial layout is extended to a
neighborhood solution at which point the arrangement is produced without any attempt to
improve it. At each step, a better possible free label is assigned to the current solution.
This class of algorithm has been applied to optimization problems such as the Graph
Coloring problem and the Traveling Salesman problem.

3) Local search

Local search has been described as an approach in which intuition and empirical
tests play a crucial role. In spite of this, local search is one of the most-used techniques to
approximate many combinatorial problems because of its performance and simplicity.
The basic principle of this heuristic is to iteratively improve a given solution by
performing local changes. Normally, changes that improve the solution are accepted
while those that make it worse are rejected.

4) Hill climbing
A hill climbing algorithm is implemented as follows. An initial arrangement is

generated. Then, proposed moves in the corresponding neighborhood are generated at
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random and accepted if their gain is positive or, in order to go across a plateau, if it is
zero. Once a predefined maximum number of consecutive proposed moves have not
strictly reduced the cost of the arrangement, the algorithm terminates.
(®)) Full search

At each step of a full search algorithm, the gain of each possible transition is
computed in order to choose the move with the maximum gain in the current
neighborhood. Exploiting the fact that the graph is sparse, and using a priority queue,
time savings are possible because it is not required to re-compute the moves of nodes that
are not neighbors of previously interchanged nodes.
(6) Meta-heuristics

Generally speaking, a heuristic method is developed and tailored for a particular
problem domain. In contrast, a meta-heuristic is designed for general use in many
optimization problems. Meta-heuristics such as genetic algorithm, tabu search, and
simulated annealing, are developed for combinatorial problems. However, some variants
are intended to accommodate the continuous variables in optimization models (Corana,
1987). Although most heuristics tend to become trapped in local optima, meta-heuristics
have mechanisms to escape them and find a better solution closer to the global optimum.
Consequently, meta-heuristics can be effective in finding a good solution for nonconvex
problems. Nevertheless, the question of computation time for excessive trials arises when
one applies a meta-heuristic such as simulated annealing to an MINLP problem such as
OptiProfit. Computing time is very sensitive to the initial solution and parameter inputs.

If one imposes a restriction on computation time, requires a fast heuristic, and still
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requires good results, meta-heuristics are not necessarily appropriate for large MINLP

problems.
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CHAPTER 4

SOLUTION APPROACHES

4.1. Introduction
Due to the intractability of the nonlinear cycle time constraints and integer
decision variables, an exact solution method is not the best approach for large problems.

Consequently, we investigate both a heuristic and a modified meta-heuristic and compare

them with some basic heuristics and a numerical solver for upper bound analysis. See

Table 4.1.

(1) Basic GAP uses a greedy ascent procedure (GAP), or hill climbing, in a
decomposed framework of an integer domain and a real domain. This heuristic
determines the decision variable for incrementing at each iteration step based on
certain values of product types and stations.

(2) Differential Coefficient Based Search (DCBS) has the same heuristic framework
as basic GAP, but uses unique schemes to determine the changes of decision
variables at each iteration step.

3) Modified Simulated Annealing (MSA) for MINLP, the simulated annealing
algorithm for continuous variables by Corana (1987), is applied to OptiProfit.

4) Upper bound analysis is used as OptiProfitUB is programmed in GAMS™ for

convex and monotone MINLP optimization. The MINLP solver used is DICOPT.
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Table 4.1 Heuristic Solvers and Performance Comparison Method for OptiProfit

Solver Descriptions Classification

High Utilization /

High Profit (HUHP)
High Utilization /

Large Slack (HULS)

_ High Utilization / Intuitive,
Basic Greedy Small Slack (HUSS) conventional, and
1 Ascent Procedure : - - practical selection of
(GAPs) High Queuing Time / tools and product to A greedy ascent

High Profit (HQHP) control (6 variants) procedure (GAP) or
. . . hill climbing in the

High Queuing Time / decomposition

Large Slack (HQLS) framework

High Queuing Time /

Small Slack (HQSS)

Differential Coefficient Based Search
(DCBS)

Smarter tool and
product selection
using Differential
Coefficient Based

Search (DCBS)

3 Modified Simulated Annealing for MINLP

Customized for
MINLP problems with

A modified meta-
heuristic of

OptiProfit)

a modification from a simulation
meta-heuristic annealing
ot Comigio Upper Bound Formulation Solution Method
Method pp
OptiProfitUB (ca’ - GAMS/DICOPT: A
Upper Bound Analysis eliminated version of numerical solver for convex

MINLP optimization
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4.2. Basic Greedy Ascent Procedures

Figure 4.1 summarizes the decomposition framework for a GAP heuristic in this

work."”

Initialization: Solve Max-Profit-Capacity-Feasible problem
Solve for tool counts with fixed part releasing rates
(the required throughputs) and relaxed cycle time constraints

\ 4

Iteration phase 1 (Station selection):
Select a station and increase the tool count
Increase the capacity (tool counts) and make the cycle time constraints feasible
with the investment constraint secured

\ 4

Iteration phase 2 (Product type selection):
Select a product type and increase the part releasing rate
Increase part releasing rate and
consume the slack of cycle times made by tool increments

the objective
improves and tool
increment is
possible
considering the
investment bound

Figure 4.1 A Greedy Ascent Procedure in Decomposition Framework

4.2.1. Initialization phase

The initialization phase is the first phase to find a solution that satisfies all

constraints except that of cycle time in OptiProfit. Initialization finds a system

configuration that can manufacture the required throughputs with a stable utilization of

each station, i.e., less than one. This solution provides a seed with which to begin the

process of finding a basic feasible solution.

' The basic GAP framework considers the improvement of the objective at the end of each iteration.

Therefore, it is not a pure greedy ascent procedure.
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Fixing the part-releasing rates, the formulation becomes a nonlinear integer

program, albeit a trivial one. We call this simplified form the Max-Profit-Capacity-

Feasible formulation.

Max-Profit-Capacity-Feasible (MPCF):

Maximize

Subject to,

N K
z= —chyj + ZpkakLkrbkxk
j=1 k=1

piSpmaX’ISiSN

N

Zci(yi -m;)<C

i=1

b i, =TH,, k=12,-K

yvizm,, i=12,--- N

l

(Total net profit)

(Utilization constraints)

(Investment constraint)

(Throughput constraints)

(Existing tool constraints)

Where: ﬁ:{)%p)%z:“’o)%]{}: Y= {ylayzv"'vyN}a Pi :/’\\iti/yi > yiJPOSitive integer

4.1)

Note that p, . 1is strategically assigned to secure a stable system. A quick

inspection of the formulation to find a solution is quite straightforward using simple

A*  AE

algebra. From the required throughput constraints, we fix X = {% ,X,,":-,X,} where

%, =TH, / @, b, . From the utilization constraints, we can find y, maximizing MPCF,
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y; = max( L/A\iti/pmaxj ,m.) . Note that y ={y;,y,,--,, } satisfies the investment
constraint; otherwise, the original problem is infeasible.'®
Even though y” = {y,,y,,---,y, } satisfies the investment constraint, the original

OptiProfit problem would typically be infeasible since a nontrivial OptiProfit will have
strict cycle time constraints. During the first visit in Phase 1, we find a feasible solution

with which to begin the objective improving iterations.

4.2.2. Iteration phase 1: Station selection

The first phase of an iteration is the selection of a station to increase its tool count.
The total cycle time is monotone, decreasing with respect to tool count. Hence, we can
control the cycle time below that allowable in the cycle time constraints as long as the
investment constraint is satisfied.

Practically, we can increase the tool count of the station with the highest
utilization, a widely accepted scheme. However, the highest utilization of a particular
station does not always mean that it has the largest average waiting time in queue. Since
bottlenecking is more related to the time delay at a station rather than its utilization, it is
more reasonable to select the station with the highest waiting time in queue. Therefore,
two schemes in station selection are considered, High Utilization (HU) and High Queuing

Time (HQ).

'8 Physically, the manufacturing system would be unable to achieve even the required minimum
throughputs with given investment.
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Table 4.2 Station Selection Schemes

Station selection scheme Description

Highest Utilization (HU) The station that has the highest utilization
among stations is selected to have additional tool increment.

Highest Queuing Time (HQ) The station that has the largest
average waiting-in-queue time is selected."”

4.2.3. Iteration phase 2: Product type selection

The second iteration phase selects the product type to increase the part-releasing
rate. As discussed in CHAPTER 3, the total cycle time of a product type is not
necessarily monotone or increasing. In addition, an increase in the part-releasing rate
does not guarantee an improvement in the objective, compensating for the tool increase in
the first phase. Consequently, it is necessary to check if the objective has been increased
each time the part-releasing rate of the selected product type is increased. If it is not
improved, the heuristic performs several more iterations. The number of such look-ahead
iterations is predefined. The heuristic terminates when it cannot find improvement or
when the investment does not allow additional tool increases.

We consider three schemes for product type selection. The High Profit (HP)
scheme selects the product type with the highest unit profit. The Largest Slack (LS)
scheme chooses the product type with the largest slack time in total cycle time, where
slack time is the allowable cycle time subtracted by current cycle time evaluated. The
Small Slack (SS) scheme is similar to Largest Slack except that it chooses the product

type with the smallest slack time.

' The station with the highest utilization does not always have the longest average waiting-in-queue time.
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Table 4.3 Product Type Selection Scheme

Product type selection scheme Description

The product type that has the biggest unit sales profit

Highest Profit (HP) is selected to increase to consume the slack cycle time.

The product type that has the largest slack

Largest Slack Cycle Time (LS) in current average cycle time is selected.

The product type that has the smallest slack

Smallest Slack Cycle Time (SS) in current average cycle time is selected.”’

4.2.4. Variations

The two schemes for station selection with the three schemes for product type selection
constitute six variants of the Basic GAP heuristics, as follows.

(1) High Utilization / High Profit (HUHP) scheme

(2) High Utilization / Large Slack (HULS) scheme

3) High Utilization / Small Profit (HUSS) scheme

(4) High Queuing Time / High Profit (HQHP) scheme

(%) High Queuing Time / Large Slack (HQLS) scheme

(6) High Queuing Time / Small Slack (HQSS) scheme

4.3. Differential Coefficient-based Search Heuristic
4.3.1. Principal idea

The fundamental intention in developing the DCBS heuristic is to incorporate
several decision factors in one indexing system. For example, in station selection, we are

more likely to select a station that has a lower unit cost for the tool and a greater decrease

2 Since the additional increase of production is frustrated by the firstly met bound of cycle time constraints,
the product type that has the smallest slack may have significant consideration in increasing the part
releasing rate.
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in cycle time with one tool increment. To quantify the combined effects of the factors, we
include the differential coefficient of cycle time with respect to the change in tool number.
Therefore, DCBS can be categorized as a steepest-ascent heuristic. Figure 4.2 illustrates

DCBS at a conceptual level.

Solve Max-Profit-Capacity-Feasible problem (MPCF)

v

Evaluate Decrease in Total Cycle Time per unit cost (DTCT)

v

Increment an additional tool in the station with least DTCT

AAA

Tool increment possible
in cost constraint?

Cycle time constraints

feasible?
Select other
tool
Evaluate Cycle-Time-Sensitive-Profit index (CTSP) — (Rollback)

¢ A

Increase the part-releasing rate with largest CTSP”

Impossible to increase No
other part-releasing rates?
o Yes No improvement in several No
Objective value No iterations in a row?
improved?
Yes Yes
End

Note:
" The selected part releasing rate increases stepwise unless the cycle time constraints are violated
The number of allowed iterations with non-improving objective is predefined

Figure 4.2 Flow Diagram of the DCBS Heuristic
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4.3.2. Decrease of the Total Cycle Time Index

(1) Definition

The Decrease of Total Cycle Time per unit cost (DTCT) is given by

K A

for station ;.
k=1C; oy f

x=X,y=y'

(4.2)

The DTCT indexing system quantifies the aggregated effect of tool increment

cost and cycle time reduction by one tool increment. We select the station with the least

DTCT,i.e., j =argmin DTCT ;. Note that all indices are negative.

J

(2) Evaluation
The differential coefficient of the total cycle time with respect to the tool

increment at station j is numerically estimated as follows.

OTCT, (X,y) _ TCT, (X,y +¢&-v,;)-TCT (X,y)
oy, £

(4.3)

where, v is a unit vector in which the jth element is one, and ¢ is a sufficiently small

real number.
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4.3.3. Cycle Time Sensitive Profit Index

(1) Definition

The Cycle Time Sensitive Profit (CTSP) index is used in the DCBS heuristic for
the policy to select an appropriate product type whose part-releasing rate is to be
increased. In brief, the CTSP index system quantifies the priority in selecting the safest
product type to increase its rate. The increment in a rate is limited by the cycle time
constraints. Therefore, in the decision to choose a product, the slack cycle times are
regarded as resources for the rate increase. The increasing part-releasing rates tend to
draw a steep curve in the cycle times.

A description of CTSP reveals three components:

*  Unit profit: The unit profit of product k is given by p, e, rb, considering

cumulative yield and part-releasing batch size. If a product has a high unit profit,

it is more likely to be select for increase.

o Slack cycle time: The slack cycle time (SCT) is the allowable cycle time
subtracted by the current total average cycle time of the product type, i.e.,
SCT, = ACT, —TCT, . Typically, the slack is consumed as the part-releasing
rates increase. At the time a product meets its cycle time limitation, i.e., its slack
time is zero, the heuristic does not further increase the part-releasing rate.
Therefore, the more slack time a product has, the more it is likely to have a

higher allowed in-flow rate.
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e The partial differential coefficient of total cycle time, with respect to the part-

releasing rate, is given by 0TCT,.(x,y)/0%, . This coefficient denotes, intuitively

speaking, how much the total cycle time (TCT) increases with a unit increase in
the part-releasing rate. The higher is the coefficient the more is slack consumed,

so the product with a smaller coefficient value is recommended for selection.

Incorporating the effects of the above three components of the TCT of product &',

the unit increase of the part-releasing rate of product % is given by

dTCT, (f(,y)j

CTSP, = p,a,, rb, min| SCT,, A
. ke ox,

(4.4)

Since the increase of in-flows is limited by the first-met constraints,

rr}ci'n(SCT k/ aTCg"MJ could be a limit on the in-flow of product k. Multiplying by

X
P2, D, , one can quantify the profit from the possible increase of product type .

The product with the largest CTSP index is considered to be the most profitable product

to manufacture at a higher rate.

k¢ = arg max CTSP,
k

(4.5)
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(2) Evaluation

We perform numeric differentiations as follows.

OTCT,.(X,y) _ ICT, (X+u, -98,y)-TCT,.(X,y)
OX, 0

where, u, is a unit vector in which the & th element is one, and J is a sufficiently small

real number.

(4.6)

4.3.4. Heuristic summary
(1) Initialization Phase
(1.1)  Set the number of look-ahead iterations m,,,,, ., » the number of look-aheads
of the part-releasing raten, ., ., and the rate-increment step & .>'
(1.2) Solve the Max-Profit-Capacity-Feasible problem (MPCF), of which the
solution  is  simply % = TH,/a,rb, , k=12,--,K and
y; = max( \_/A\iti/pmaxj,mi) ,i1=12,--,N.
(13) Setz =z(x,y).

2! The increment step size £ can be modeled differently for different product types, i.e., s 1<k<K.
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(2) Iteration Phase 1
(2.1) Set X=X ,y=Y , Myyupes =0,and S=1{j[1,2,---,N}.
(2.2) Evaluate the DTCT index, i.e., DTCT,, j=12,--,N .

(2.3) Obtain the station that has the least value, i.e., j* = argmin DTCT Iz

Jjes

(2.4) If the investment constraint allows an increment in tools in station j*,
update y, =y, +1.
Else,
S=8\{j }and
if S is empty,
stop.
Else,

go to (2.3).

(2.5) If cycle time constraints are still violated, go to (2).

3) Iteration Phase 2

(3.1) Set P={L2,---,K} and the current number of look-aheads of the part-

releaSing rate cnlookahead = 0

(3.2) Evaluate the CTSP index, 1.e., CTSP,, k=12,--- K.
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(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Obtain the product type that has the largest value, i.c., K~ = argmax CTSP,

keP

If current X and y satisfies the cycle time constraints, mark X =X and

update Cnlookahead = O Else’ upda'te cnlookuhead = cnlookahead + 1

A

Increase the part releasing rate, i.e., X . =X. +¢.

If Cnlookahead < nlookahead a'nd ,0(5(, y) < pmax ’ gO to (34)

If z&,y)>z",

update z* = z(X",y") and go to (2.1).
Else,

Migokanead = Miookaread T 1>

S=8\{j }and

if S is empty,

stop.
Else,

go to (2.3).
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4.4. Modified Simulated Annealing for MINLP

4.4.1. Simulated Annealing algorithm for continuous variables

The basic idea of the Simulated Annealing (SA) algorithm originates in the
analogy of liquids freezing or metals recrystalizing in the process of annealing. A cooling
process controls melting to be structurally ordered, and to slowly approach a
thermodynamic equilibrium at a “frozen” ground level at a temperature 7 = 0. When a
system has too low an initial temperature or too abrupt cooling, it can form defects or
freezing in metastable states, i.e., trapped in a local minimum energy state. Adopting this
concept in an algorithm for global optimization, SA allows uphill moves under the
control of a temperature parameter. At higher temperatures only the gross behavior of the
cost function is relevant to the search. As temperature decreases, finer details can be
developed to get a good final point. While the optimality of the final point cannot be
guaranteed, the method is able to proceed toward better minima even in the presence of
many local minima.

Corana (1987) presents a global optimum algorithm for functions of continuous
variables, which is derived from the original SA algorithm in combinatorial optimization.
A detailed description of SA for continuous variables is shown in Table 4.4. A clear
contrast from the original SA algorithm is that every move of the solution point occurs
inside the continuous domain, as seen in Step 1. New candidate points are generated

around the current point x, applying, in turn, continuous random moves along each

coordinate direction. The new coordinate values are uniformly distributed in intervals

centered around the corresponding coordinates of x,. Half the size of these intervals

along each coordinate is recorded in the step vector v. If the point falls outside the
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definition domain, a new point is randomly generated until a point belonging to the

definition domain is found (Corona, 1987).

Table 4.4 Simulated Annealing Algorithm for Continuous Variables (Corana, 1987)

Step 0 (Initialization)
Choose

A starting point X, .

A starting step vector V.

A starting temperature 7, .

A terminating criterion & and a number of successive temperature reductions
to test for termination N ,.

A test for step variation /V_ and a varying criterionc .

A test for temperature reduction N, and a reduction coefficient 7.

Set i, j, m, k to0. i isthe index denoting successive points, j denotes

successive cycles along every direction, m describes successive step adjustments,
and k& covers successive temperature reductions.

Set & to 1. & is the index denoting the direction along which the trial point is
generated, starting from the last accepted point.

Compute f, = f(X,).
Set X, = X,, f(,,,, = f,-

Setn, =0, u=12,---,n.

Set f = f, u=0-1--—N,+1.

Step 1
Starting from the point X,, generate a random point X' along the direction 4 :
X'=x,+ 1, €,
where r is a random number generated in the range [-1, 1] by a pseudorandom

number generator; e, is the vector of the / th coordinate direction; and v,, is

the component of the step vector v, along the same direction.
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Table 4.4 (continued)

Step 2
If the A th coordinate of X' lies outside the definition domain of £, that is, if

! !
X, <a, or X, <b,, then return to step 1.

Step 3
Compute f' = f(x).
If f'< f, then accept the new point:

!

set X;,,= X',

set j;+1:f"
add1to i,
add 1to n,;

if f'<f,,,thenset

!

Xopt =X ’
Jom=I"
endif;
else (f" > f,) accept or reject the point with acceptance probability p (Metropolis
move):
p =exp Sz S .
T,

In practice, a pseudorandom number p' is generated in the range [0, 1] and is
compared with p . If p’ < p, the point is accepted, otherwise it is rejected.
In the case of acceptance:

set X,,,= X,

set fi,=/1",

add1to i,

add 1to n,.

Step 4
Add1to h.
If h < n,then go to step 1;
elseset 4 to1andadd 1to ;.
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Table 4.4 (continued)

Step 5
If j<N,,then gotostep 1;

else update the step vectorv, :

for each direction u the new step vector component v/, is

vi=v, 1+cuM if n, >0.6N_,
‘ 0.4
' o if 1, < 0.4N
= - <0.
Y 04-n /N, = 5
R LT
0.4
v, =V, otherwise.
Setv,,, =V,
set j to 0,

set n, 00, u=1,---,n,

add 1to m .

The aim of these variations in step length is to maintain the average percentage
of accepted moves at about one-half of the total number of moves. The rather

complicated formula used is discussed at the end of this chapter. The ¢, , parameter

controls the step variation along each u th direction.

Step 6
If m < N, then go to step 1;

else, it is time to reduce the temperature 7, :
set T, =11},
set f, = f,,

add1to k,
set m to 0.

It is worth noting that a temperature reduction occurs every N . N, cycles

of moves along every direction and after V, step adjustments.
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Table 4.4 (continued)

Step 7 (terminating criterion)

If:
- f]ge, =1,
f}c - ﬁ)pt S 2

then stop the search;
else:

add1to i,

set X, = Xt 5

set f, = fopt.
Go to step 1.

4.4.2. Modified Simulated Annealing

Based on SA for continuous variables, an additional modification is applied to
accommodate both the continuous real variables and the discrete integer variables.
Table 4.5 shows pseudocode for the modified parts of MSA for MINLP, i.e., the
generation of randomized solution alternatives (Step 1) and feasibility testing (Step 2). In
Step 1, MSA assigns a real variate from a random number generated by a uniform
distribution from —1 to 1 for any continuous variable when the moving direction of a new
point is along the continuous dimension. For a new point moving to any discrete
dimension, it rounds the moving distance to obtain an integer variate. The feasibility
testing in the original algorithm is a simple comparison of the random alternative with the
corresponding lower and upper bounds since the original version assumed that there is no
constraint. In OptiProfit, the feasible region D is determined by a number of complex

nonlinear constraints, and each alternative is determined to be in the region so that it can
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be accepted for the next procedure. Thus, MSA is applicable to any form of MINLP, no

matter where the nonlinear part is located in the formulation.

Table 4.5 Modified Steps in Modified Simulated Annealing for MINLP

Step 1 (Modified)
Starting from the point X, = [ch |x} ], generate a random point X' = [X’C | X’D]
along the vector of the / th coordinate direction e, = [ehc e ]:
! !
X' =X, +e)
' C D
e, =1, e, +<”th >eh
where, the superscript C means the vector with continuous variables, superscript

D means the vector with discrete variables, <x> is the rounded value of a real

number x at the first digit, » is a random number generated in the range [-1, 1] by a
pseudorandom number generator, v,, is the component of the step vector v, along

the same direction.

Step 2 (Modified)
If x' lies outside the definition domain or feasible region of problem, D, return to
Step 1.

2 APPENDIX B contains the Mathematica™ code instance of MSA algorithm for OptiProfit.
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CHAPTER 5

SOLUTION PERFORMANCE

5.1.  Description of Test Cases

In order to quantify and compare the performance of the heuristics, a number of
test cases with some randomized parameters are analyzed numerically. The test cases
have several material flows and stations. The flows are deterministic and can be reentrant.
The model has parameters for process batching, unit margin, unit cost, investment,
required throughput, and mean and deviation information. However, the effects of setup,
yield, and existing tools to simplify basic formulations are not included. This does not
incur any fundamental loss of model structure. Figure 5.1 shows an example with two
arrival flows and three stations.*

Sixty non-trivial cases are tested, three groups with 20 cases each. The number of
processing steps is fixed for each group. The randomized parameters include the
allowable investment cost, allowable total cycle time, average processing times, SCV of
processing time, unit profit coefficients, unit cost coefficients, and required throughputs.
Note that the uniform random function, UNIF, has somewhat different parameters in
order to effectively produce feasible and non-trivial cases with respect to the size of test
groups. Table 5.1 exhibits the specifications of the test groups.

The upper bound is obtained from the OptiProfitUB model using a numerical

solver GAMS/DICOPT for the convex programs.”*

2 For the detailed formulation of this example, see APPENDIX C.
2 For example, the GAMS code for Case Group 3, i.e., five products, six stations, and seven steps, is
presented in APPENDIX D.
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Table 5.1 Major Model Parameters of 60 Numerical Cases in Three Groups

. Group 1 Group 2 Group 3
Major model parameters
Case(3, 4, 5) Case(4, 5, 6) Case (5,6, 7)
Number of test cases 20 20 20
Number of product types 3 4 5
Number of stations 4 5 6
Number of process steps 5 6 7

Unit profit coefficients

Randomized in
UNIF[25, 45]

Randomized in
UNIF[20, 40]

Randomized in
UNIF[20, 40]

Unit cost coefficients

Randomized in
UNIF[1.0,5.0]

Randomized in
UNIF[1.0,4.0]

Randomized in
UNIF[1.0,4.0]

Allowable investment

Randomized in

UNIF[120.0, 160.0]

Randomized in
UNIF[130.0, 160.0]

Randomized in
UNIF[220.0, 250.0]

Allowable
total cycle times

Randomized in
UNIF[23, 26]

Randomized in
UNIF[23, 26]

Randomized in
UNIF[32, 36]

Required
minimum throughputs

Randomized in
UNIF[1.0, 2.0]

Randomized in
UNIFJ[1.0, 2.0]

Randomized in
UNIFJ[1.0, 2.0]

Average
processing times

Randomized in
UNIF[1.0, 3.0]

Randomized in
UNIF[1.0, 3.0]

Randomized in
UNIF[1.5, 2.5]

Processing time SCVs

Randomized in
UNIF[0.0, 0.5]

Randomized in
UNIFJ[0.0, 0.5]

Randomized in
UNIF[0.2, 0.4]

Process batching size

2,2,3,3 for product

2,2,3,3,2 for product

2,2,3,3,2,2 for product

types respectively types respectively types respectively
_ v,={0.1,0.1, 0.1,
v,=10.1,0.1, 0.1, 0.1.2.2,2.2.2) v,={0.1,0.1,0.1,0.1,
2, 2, 2, 2}’ b b b b b b
T :10 & :01 0'1,252525252>2}5
T, =10, ¢ =0.1, 0 ’ ’ _ a
_ _ T, =10, ¢ =0.1,
_ _ N, =4, N, =10, 0
N =4 Ny =10, = ¢ ’ N =4, N, =10
Parameters for MSA* ¢ = {0.02, 0.02 ¢ ={0.02, 0.02, e = H Ng =10,
0.02 0'01 ’ 0'01 ’ 0.02, 0.02, 0.01, ¢ ={0.02,0.02, 0.02,
'0(’)1'0(’)1,; ’ 0.01, 0.01, 0.01, 0.02, 0.02, 0.01, 0.01,
N '_’10'0 T 0.01}, 0.01,0.01, 0.01, 0.01},
r = T N, =100, r, = N, =100, r, =0.85
0.85 0.85

%% The notation follows Corana (1987)
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Station 1

Tools, y;

Arrival flow, x; , ex’)
] ’

i M Station 2

Arrival flow, x, , x5

£

v

Station 3 t

Tools, y;3

Figure 5.1 A Two-product Three-station Case

5.2. Performance Comparison

5.2.1. Performance measures

The calculations for all heuristics and MSA are performed on Mathematica™
version 5.0 on a personal computer with an Intel Pentium 3 processor at 2.4 GHz. On the
same machine, GAMS/DICOPT for upper bound analysis was executed to generate the
proved optimized solution in less than a few seconds. Since OptiProfitUB is a convex
MINLP, DICOPT performed well and found the optimal value in most cases.

To evaluate the performance of the heuristics, we define the relative optimality gap
(ROG) between the upper bound found from OptiProfitUB and the solution to evaluate

its performance, as follows,
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uB® *

ROG =2 "% %100 (%)

z

where, 2" is the optimal value of OptiProfitUB and z* is the final objective value

determined by the corresponding heuristic.

(5.1)

Note that the upper bound solution is more, sometimes far more, than the true
maximum value of OptiProfit. Therefore, the gap between a result from the heuristic and
the optimum is well under the gap between the result and the upper bound. The heuristic
evaluation time (HET) is obtained by a command program, timeUsed[], on
Mathematica™ version 5.0. For 60 cases in three groups, the objective values determined

by heuristic and upper bound analysis are calculated.?

5.2.2. Results of test cases

From the average over the cases, it can be seen from Table 5.2 that DCBS
performed better than any of the GAP-based heuristics — by approximately 2.89% over
HQLS in Case (3.,4,5), 4.72% over HUHP in Case (4,5,6), and 7.52% over HQHP in
Case (5,6,7)). MSA performed well, just a few percentage points below DCBS. The
performance of MSA tends to be dependent on the number of iterations with significant
improvement in the solution at the expense of computational cost. Hence the tradeoff in

performance and time consumption should be considered in implementing MSA, a meta-

26 Detailed results are listed in APPENDIX E.
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heuristic. The experiment applies to an observation of MSA in a specific situation and is
not a statement that MSA performs inferior to any other method.
From the standard deviation of the results, it is found that MSA and DCBS are relatively
more likely to give a stable result. More often, the basic GAP-based heuristics generate
locally trapped solutions, e.g., the ROG ratio of 44.92% in HQLS, the 12th case of test
group 1 in Table E.17

Figure 5.3 shows the minimum, average, and maximum solutions of ROG in 20
test cases in each test group. DCBS has a few cases in which it falls behind other
heuristics; however its average is best among the methods. The maximum of ROG means
the worst solution the heuristic might find. DCBS shows the best performance in terms of
the maximum error in all test groups. The standard deviation and gap between the
maximum and minimum of ROG imply the stability of the solutions in the corresponding
heuristic.

Figure 5.3 presents the ROG values with respect to three groups. Since the
problem size is increasing in terms of the number of product types, stations, and step
numbers in those groups, the sensitivity of performance can be roughly observed from the

graph.”® Again, DCBS as well as MSA show a stable performance over the test groups.

27 The stability of results can be illustrated in a histogram as shown in APPENDIX E.

2 Strictly speaking, the performance sensitivity with respect to problem size should be performed in
accordance with the change in each dimension, e.g., the number of stations. In this work, the three groups
have a simultaneous change in three dimensions.
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Table 5.2 Summary of Performance Comparison

(a) Average ROG
Test Group DCBS GAPs MSA
Case (3,4,5) 11.06 % 13.82 % (HQLS) ~ 44.94 % (HUSS) 13.60 %
Case (4,5,6) 10.75 % 15.47 % (HUHP) ~ 48.35 % (HUSS) 16.31 %
Case (5,6,7) 11.03 % 18.65 % (HQHP) ~ 57.37 % (HQSS) 14.45 %
(b) Average HET
Test Group DCBS GAPs MSA
Case (3.,4,5) 10.97 sec 6.83 sec (HUSS) ~ 9.52 sec (HULS) 91.35 sec
Case (4,5,6) 17.32 sec 11.61 sec (HUSS) ~ 14.35 sec (HUHP) 203.78 sec
Case (5,6,7) 28.24 sec 8.36 sec (HQUU) ~ 19.13 sec (HULS) 456.12 sec
(c) Standard Deviation of ROG
Test Group DCBS GAPs MSA
Case (3,4,5) 8.53 % 11.46 % (HQLS) ~ 48.41 %(HQSS) 8.84 %
Case (4,5,6) 7.78 % 17.02 % (HQHP) ~ 36.80 % (HQSS) 7.85 %
Case (5,6,7) 4.60 % 13.75 % (HQHP) ~ 42.79 (HQSS) 8.02 %
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ROG Chart, Case (3,4,5)
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(b) ROG Chart, Case (4,5,6)
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ROG Chart, Case (5,6,7)
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Figure 5.2 Relative Optimality Gap Charts
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Figure 5.3 Average Relative Optimality Gap in Test Groups
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5.2.3. Comparison from statistical inferences

One can observe if the results reject the following null hypothesis Hy in the one-

sided hypothesis testing problem.

Hy: The ROG of DCBS is not less than those of any other heuristics in each test group.

By statistical inference, if the null hypothesis is rejected, i.e., H; is accepted, the
experimenter can conclude that there is evidence that DCBS has less ROG than any other
heuristic in each test group.

For a testing measure we take the “paired t-test in one tail” between DCBS and all
other heuristics, which makes seven t-tests. This is done to alleviate the effect of
variabilities in a factor other than the difference between the two populations. The major
assumptions in the paired t-test for this study are as follows.

(1) In each test group, the solutions of all heuristics are related, i.e., dependent scores.
Since all solutions from heuristics are based on the same OptiProfit instance, they
are not independent and should be compared in pairs.

(2) The scale of measurement is in terms of ratio, not ordinal. The scale of
measurement is expressed in ROG, a ratio. Since there is no sequence or order in
the randomized test cases, the data is not ordinal.

(3) The differences of the solutions in comparison have normal distributions or the
number of samples is relatively large. This assumption is reinforced by the p-p
plotting of the differences in pairs; one can confirm that the paired t-test is

applicable to this study.
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Table 5.3 lists the P-values of the paired t-tests in one tail among DCBS and each
of other heuristic in 20 test cases in each test group.” With a significance level of
a =0.10, the analysis of all tests reveals that Hy is not plausible. That is, it provides
evidence that DCBS is the most superior in each test group. For & =0.05, we find three P-
values out of the rejection area P < « . Interestingly, however, with increasing problem
size, most paired t-tests reveal that the performance of DCBS improves and is finally the
best in the largest problem size group, test group 3. In particular, basic GAPs have a clear
performance deterioration compared to DCBS with respect to the size of problem. In
conclusion, we can claim that our data set provides evidence that DCBS outperforms all
other heuristics.”® In addition, DCBS is found to be more efficient in large-sized
problems. Also, in the test with 60 sampling pairs, the null hypothesis is found to be

rejected obviously with less than 0.003 P-values.

Table 5.3 P-values of Paired T-Tests

Heuristics Group 1 Group 2 Group 3 All Groups

HQHP 0.052 0.029 0.012 0.000

HQSS 0.003 0.000 0.000 0.000

HQLS 0.099 0.047 0.020 0.002

HUHP 0.041 0.053 0.009 0.001

HUSS 0.003 0.000 0.000 0.000

HULS 0.099 0.051 0.017 0.001

MSA 0.017 0.007 0.027 0.000
Number of case pairs 20 20 20 60

Maximum p-value 0.099 0.053 0.027 0.002
HO accepted heuristics(alpha =.05) 3 2 0 0
HO accepted heuristics(alpha =.10) 0 0 0 0

% Detailed test information is in APPENDIX E.
3% Drawn from 10% significance level tests.
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5.3.  Computational Costs

As expected, the computational cost is much higher for MSA compared with
other heuristics. The heuristic methods are compared with MSA based on the
computation time measured in seconds, as shown in Figure 5.4. All heuristics show
approximately 3% to 8% of the computational cost of MSA. The most costly part is the
evaluation of total cycle times. This includes complex nonlinear calculations and inverse
operations on non-sparse K x K matrices. The number of cycle time evaluations (NCEs)
is roughly proportional to the calculation time. Since DCBS does not necessarily
guarantee the best result among the GAPs for every situation, it is not the best strategy to
rely only on DCBS. It is recommended to test other heuristics as long as the sum of the

computational costs is strategically acceptable.

Sensitivity of Heuristics Evaluation Time with respect to Size of Problems
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Figure 5.4 Average Heuristics Evaluation Time in Test Groups
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CHAPTER 6

AN EXAMPLE: SEMICONDUCTOR MANUFACTURING

6.1. Semiconductor Manufacturing

Semiconductor manufacturing is a typical reentrant manufacturing system. Unlike
non-reentrant manufacturing systems, such as automobile manufacturing 3
semiconductor manufacturing is one of the most advanced and complex types of
manufacturing system. Generally, such a system has highly automated equipment and
control modules, including automated material handling systems (AMHSs).

Figure 6.1 illustrates the major steps in semiconductor manufacturing; in a real
situation a production facility can have hundreds of reentrant steps and decades of
product types and stations. Typically, with a large amount of work in process, the average
cycle time of products is estimated to be a couple of months. Motivated by the capital-
intensive and process-complicated nature of the industry, much research has been

directed at improving profit, investment, cycle time, and efficiency.

3! In some cases, with reworking, automobile manufacturing may be reentrant.
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Figure 6.1 Semiconductor Production™

6.2. Problem Description

A small-sized fabrication facility is modeled and analyzed by DCBS in
comparison with other basic GAPs. Table 6.1 summarizes the example specification and
Table 6.2 describes the details of the model. The manufacturing system has three
products and 12 stations.> The number of steps and allowable cycle times are different
for the three products. The control schemes are primitive and fixed, such as UNIF for the

part-releasing policy. Since the average cycle times, 7C7, , flatten the transportation

times, they are assigned differently for each pair of stations, but are constant.

32 Source: SEMATECH Inc. (www.sematech.org)
33 The example is similar to one in the mini-fab model in Hopp (2002).
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Table 6.1 Example Summary

Field of application Semiconductor manufacturing (Minifab)
General properties of system Reentrant flows

Number of products 3

Number of stations 12

Number of steps in recipes

20, 24, and 26 for each product type

Allowable cycle times

1000, 1100, 1200 for each product type

Allowable investment

14.00

Unit profit of product

3.8, 4.6, 6.2 for each product type

Unit cost of tool

0.25,0.32,0.12,0.18, 0.65, 0.48, 0.32, 0.22, 0.15, 0.38,
0.28,0.14
(Proclean, Laser, Alignment, Clean, Photo, Etch,
Strip, Oxide, Mask, Nitride, Poly, Probe)

Yield, failures, setup
information

Specified

Distributions for random
variates

Normal and Gamma

Part releasing policy

UNIF (Uniform inter-release time)

Lot-selection (dispatching)

FIFO (First In First Out)

policy
Transportation times Constant
Transporter capacity 1
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Table 6.2 Minifab Information

Product 1 Product 2 Product 3
Index 1 2 3
Min TH 1.50 1.20 1.00
Unit profit of product (K$/unit)
Index 1 2 3
Pro./cost 3.8 4.6 6.2
Unit cost of tool in station (K$/hour/unit)
Index 1 2 3 4 5 6 7 8 9 10 11 12
Pro./cost 0.25 0.32 0.12 0.18 0.65 0.48 0.32 0.22 0.15 0.38 0.28 0.14
Fab-in Proclean Laser  Alignment Clean Photo Etch Strip Oxide Mask Nitride Poly Probe Fab-out
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Min batch size (MBS) 1 1 1 1 4 1 4 4 4 3 2 1 1 1
Prod. Sens. Batch YES YES YES
MTBF 800 600 600 600 500 500 600 600 600 800 800 800
SCV 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5
Dev. 565.6854 424.2641 424.2641 328.6335 273.8613 273.8613 328.6335 328.6335 424.2641 565.6854 565.6854 565.6854
MTTR 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
SCV 0.15 0.15 0.15 0.15 0.3 0.3 0.3 0.15 0.15 0.15 0.15 0.3
Dev. 0.5809 0.5809 0.5809 0.5809 0.8216 0.8216 0.8216 0.5809 0.5809 0.5809 0.5809 0.8216
Availability 0.9981 0.9975 0.9975 0.9975 0.9970 0.9970 0.9975 0.9975 0.9975 0.9981 0.9981 0.9981
Yield 1 1 0.99 1 1 0.98 1 1 1 0.97 1 0.94




Table 6.2 (continued)

16

Product 1 Proc. time P.t. SCV  Setup time S.t. SCV  Cum. yield Product 2 Proc. time P.t. SCV  Setup time S.t. SCV Cum. yield Product 3 Proc. time P.t. SCV  Setup time S.t. SCV  Cum. yield
Preclean 10 0.06 5 0.06 1.0000 Preclean 12 0.06 5 0.06 1.0000 Preclean 12 0.06 10 0.06 1.0000
Laser 20 0.05 10 0.08 1.0000 Laser 22 0.05 10 0.08 1.0000 Laser 20 0.05 12 0.08 1.0000
Alighnment 25 0.04 10 0.04 0.9900 Alighnment 30 0.04 15 0.04 0.9900 Alighnment 28 0.04 10 0.04 0.9900
Clean 20 0.08 5 0.03 0.9900 Clean 20 0.08 12 0.03 0.9900 Clean 20 0.08 5 0.03 0.9900
Photo 15 0.12 10 0.25 0.9900 Photo 12 0.12 5 0.25 0.9900 Photo 18 0.12 10 0.25 0.9900
Etch 10 0.09 5 0.09 0.9702 Etch 8 0.09 3 0.09 0.9702 Etch 10 0.09 5 0.09 0.9702
Strip 5 0.09 2 0.09 0.9702 Strip 5 0.09 2 0.09 0.9702 Strip 5 0.09 2 0.09 0.9702
Oxide 25 0.04 10 0.04 0.9702 Oxide 20 0.04 10 0.04 0.9702 Clean 24 0.08 15 0.03 0.9702
Mask 15 0.11 5 0.11 0.9702 Mask 20 0.11 15 0.11 0.9702 Nitride 25 0.06 10 0.06 0.9411
Photo 25 0.12 10 0.25 0.9702 Photo 20 0.12 15 0.25 0.9702 Mask 15 0.11 5 0.11 0.9411
Etch 15 0.09 8 0.09 0.9508 Etch 10 0.09 5 0.09 0.9508 Photo 18 0.12 10 0.25 0.9411
Strip 10 0.09 5 0.09 0.9508 Strip 15 0.09 5 0.09 0.9508 Etch 20 0.09 5 0.09 0.9223
Clean 25 0.08 10 0.03 0.9508 Clean 20 0.08 10 0.03 0.9508 Strip 5 0.09 3 0.09 0.9223
Nitride 20 0.06 10 0.06 0.9223 Nitride 15 0.06 5 0.06 0.9223 Oxide 20 0.04 10 0.04 0.9223
Mask 15 0.11 5 0.11 0.9223 Mask 15 0.11 10 0.11 0.9223 Mask 18 0.11 8 0.11 0.9223
Photo 15 0.12 12 0.25 0.9223 Photo 15 0.12 12 0.25 0.9223 Photo 20 0.12 10 0.25 0.9223
Etch 20 0.09 10 0.09 0.9038 Etch 25 0.09 15 0.09 0.9038 Etch 10 0.09 12 0.09 0.9038
Strip 5 0.09 2 0.09 0.9038 Strip 5 0.09 2 0.09 0.9038 Strip 5 0.09 2 0.09 0.9038
Poly 20 0.12 10 0.12 0.9038 Clean 25 0.08 12 0.03 0.9038 Clean 20 0.08 10 0.03 0.9038
Probe 45 0.04 30 0.04 0.8496 Mask 10 0.11 5 0.11 0.9038 Nitride 20 0.06 12 0.06 0.8767
Photo 20 0.12 12 0.25 0.9038 Mask 15 0.11 8 0.11 0.8767
Etch 15 0.09 5 0.09 0.8858 Photo 25 0.12 15 0.25 0.8767
Strip 5 0.09 3 0.09 0.8858 Etch 10 0.09 10 0.09 0.8592
Probe 40 0.04 30 0.04 0.8326 Strip 15 0.09 10 0.09 0.8592
Poly 20 0.12 5 0.12 0.8592

Probe 40 0.04 35 0.04 0.8076




6.3. Simulation Modeling for Cycle-time Verification

6.3.1. Simulation analysis

As illustrated in Figure 6.2, the ideal verification of the mathematical model
should be based on real data from the physical system described. Many researchers,
however, frequently encounter a lack of realistic data and rely on other experimental
alternatives such as the simulation. A fundamental assumption is that the simulation
model in use is equivalent or similar enough to represent the real system. However, no
well-designed simulation can perfectly model a real system. Therefore, even though a
mathematical model can produce similar solutions through simulation, it is not valid to
assert that the mathematical model perfectly describes the real system. One can only
claim that the mathematical model has a comparable accuracy to simulation. However, it
does have the benefit of saving the high cost of simulation modeling and execution. In

addition, it can be efficiently evaluated using numerical or heuristic algorithms.

Comparison
Mathematical Model Physical Systems

(a) Ideal Verification

Comparison Assumption

Mathematical Model Simulation Model ===ss=z  Physical Systems

(b) Simulation Analysis

Figure 6.2 Model Verification
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6.3.2. Case modeling

A simulation model using Arena™ has been designed for the verification of cycle
time evaluation, which has several complex approximations and nonlinear formulations.
The simulation model has the same level of detail as OptiProfit. Figure 6.3 presents a part
of the simulation model for a station with product-type-sensitive batching. It describes
four components of cycle time, batching, queuing, processing, and transporting time.
Also, it has an identical specification of all deterministic and randomized design factors
such as step information, yield, failure, batch size, etc. The simulation model for each
station is composed of seven modules, or blocks in Arena™. The first is “ENTER”,
which forms a queue incurring the waiting time for batching. The “BATCH” block
generates either a product-type-sensitive batch or a non-product-type-sensitive batch.
Once the batches go through a process queue in “SERVER”, the time delay for
processing takes place. The next blocks, “SPLIT”, “CHOOSE”, “ASSIGN”, and
“LEAVE”, sort and dispatch the products in accordance with product type and route
information.

Table 6.3 shows four cases of model configuration. The simulation model is built
on Arena'™ version 5.0 and executed with 20 replications for each of four configurations.
Each is a snapshot of the iteration process of DCBS for a certain example. Case 1 shows
the tool count configuration of an MPCF situation, i.e., the initialization phase. Cases 2, 3,

and 4 are variations in fab-in rates and tool counts maintaining the feasibility.
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6.3.3. Comparison results

Table 6.4 presents the differences in the cycle times between the analytic solution and
the simulation analysis. For the error calculation, the following definition is used,

assuming the average of two simulation results to be the true cycle time.

Simulation cycle time =

% [ (Result using Normal distributions) + (Result using Gamma distributions) ],

Error of cycle time evaluation =

[ (Analytical cycle time) — (Simulation cycle time) | / (Simulation cycle time)

(6.1)

We obtain fair results with less than 10% of error in cycle time evaluation, except
for Case 1, which has the highest maximum station utilization. The MPCF configuration
generally violates the cycle time constraints and has a very high average utilization
compared to the feasible configurations in iteration steps. The error tends to be larger
with the higher maximum station utilization. Also, it can be observed that the analytically
evaluated cycle times are generally higher than the simulation results. The source of error
can be traced to several causes including the nature of the approximation functions and
the effect of reentrant flows. For example, OptiProfit uses a multi-class queuing network
model with the G/G/m/inf queue approximation. The simulation analysis, using specific
statistical distributions such as Normal or Gamma, tends to give smaller results for

waiting time in queue when compared to the G/G/m/inf queue approximation. **

* Experimental observations using Normal and Gamma are shown in APPENDIX G.
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Table 6.3 Testing Cases for Cycle-time Evaluation

(a) Case 1
Product 1 Product2 Product 3
Index 1 2 3
Fab-in rate 1.78 1.45 1.25
Fab-in SCV_ 0.00 0.00 0.00
Proclean Laser  Alignment Clean Photo Etch Strip Oxide Mask Nitride Poly Probe Average
Index 1 2 3 4 5 6 7 8 9 10 11 12
Tool count 2 3 3 2 8 2 1 1 2 2 2 5
Exp. util. 0.6579 0.7780 0.9742 0.7329 0.9320 0.6831 0.6598 0.5728 0.6912 0.6548 0.6268 0.9714 0.7446
(b) Case 2
Product 1  Product 2 Product 3
Index 1 2 3
Fab-in rate 1.78 1.45 1.25
Fab-in SCV  0.00 0.00 0.00
Proclean Laser  Alignment  Clean Photo Etch Strip Oxide Mask Nitride Poly Probe Average
Index 1 2 3 4 5 6 7 8 9 10 11 12
Tool count 2 3 4 2 9 2 2 1 2 2 2 6

Exp. util. 0.6579 0.7780 0.7307 0.7329 0.8284 0.6831 0.3299 0.5728 0.6912 0.6548 0.6268 0.8095 0.6747
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Table 6.3 (continued)

(c) Case 3
Product 2
Index 2
Fab-in rate 1.46
Fab-in SCV 0.00
Proclean Photo Etch Strip Oxide Mask Nitride Poly Probe Average
Index 1 5 6 7 8 9 10 11 12
Tool count 2 9 2 2 1 2 2 2 6
Exp. util. 0.6820 0.8573 0.7050 0.3415 0.5895 0.7145 0.6868 0.6510 0.8347 0.6980
(d) Case 4
Product 2
Index 2
Fab-in rate 1.50
Fab-in SCV 0.00
Proclean Photo Etch Strip Oxide Mask Nitride Poly Probe Average
Index 1 5 6 7 8 9 10 11 12
Tool count 2 9 3 2 1 3 2 2 7
Exp. util. 0.7500 0.9388 0.5105 0.3745 0.6337 0.5213 0.7792 0.7120 0.7736 0.6859
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Table 6.4 Comparison of Cycle Times from Evaluation and Simulation

Cycle Times
Utilization Evaluated, Simulated w/ Normal dist.’s, Simulated w/ Gamma dist.’s
Case .
Error in %
Min Ave Max Prod.1 Prod.2 Prod.3
1126.4, 960.0, 944.1 1305.4,1123.4,1101.1 1408.6, 1247, 1219.8
1 0.573 0.745 0974
18.32% 17.40% 14.22%
886.9, 835, 849.5 1041.9, 989.1,991.5 1145.0,1104.8,1113.2
2 0.330  0.675 0.828
5.32% 5.23% 3.29%
901.2, 843.5, 854.9 1058.7, 993.6, 996.56 1152.2,1107.6, 1112.3
3 0.341  0.698  0.857
6.16% 6.43% 3.84%
929.6, 839.28, 850.85 1076.84., 984.7, 982.5 1152.4, 1070.2, 1076.4
4 0.375 0.686  0.939
9.66% 9.48% 7.37%

6.4. Heuristic Solutions

Six variants of the basic GAP heuristics and DCBS are applied to the

semiconductor manufacturing example. Performance is compared in terms of final net

profit obtained, i.e., objective value. Applying DCBS to the example problem, seven

iterations provide a heuristic solution. The summary of the iteration information is

presented in Table 6.5.
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Table 6.5 Iterations in DCBS Heuristics

Part releasing rate of products Tool count in stations Profit Investment
Product 1 Product 2 Product3 Proclean Laser Alignment Clean  Photo Etch Strip Oxide  Mask Nitride Poly Probe
Initialization 1.780 1.450 1.250 2 3 4 2 9 2 1 1 2 2 2 6 9.074 12.11
Iteration 1 1.780 1.450 1.583 2 3 4 2 9 2 2 1 2 2 2 6 10.8186 12.43
Iteration 2 1.780 1.566 1.583 2 3 4 3 9 2 2 1 2 2 2 6 11.1722 12.61
Iteration 3 1.780 1.640 1.583 2 3 4 3 9 2 2 1 3 2 2 6 11.3626 12.76
Iteration 4 1.780 1.674 1.583 2 3 4 3 9 2 2 1 3 2 2 7 11.379 12.9
Iteration 5 1.780 1.674 1.914 2 3 4 3 10 2 2 1 3 2 2 7 12.7812 13.55
Iteration 6 1.780 1.806 1.914 2 4 4 3 10 2 2 1 3 2 2 7 13.0684 13.87
Iteration 7 1.780 1.844 1.914 2 4 5 3 10 2 2 1 3 2 2 7 13.1232 13.99




Table 6.6 shows the results of the basic heuristics and DCBS on the example
problem. It is assumed that the basic GAP heuristics are executed in the same iteration
framework as is DCBS. They differ only in station selection and production selection
scheme, which are critical in the efficiency of the heuristic.

In selecting a station for tool increment, the HQ scheme tends to be superior to
HU. In selecting a product-type for in-flow increment, SS and HP outperformed LS in
this specific example, even though LS performed better in most cases discussed in
CHAPTER 4. The choice of the production of highest-profit products only (HP) was not
always a good way to increase the fab-in rates. As expected, the results show that DCBS

generates a better solution, from 0.91 (7.45%) to 3.49 (26.60%) respectively.35

Table 6.6 Performance Comparison of DCBS with Basic Heuristics

Basic GAP Heuristics Fab-in rates Investment i
Obj. value
Station sel. Prod. sel. Prod. 1 Prod. 2 Prod. 3 (UB: 14.00)
High util. High profit 1.78 1.45 1.73 13.87 10.29
High util. Large slack 2.42 1.45 1.25 13.99 9.63
High util. Small slack 1.78 1.72 1.58 13.87 10.60
High q. t. High profit 1.78 1.45 2.06 14.00 12.21
High q. t. Large slack 2.92 1.45 1.25 14.00 11.52
High q. t. Small slack 1.78 1.98 1.66 14.00 12.16
DCBS Fab-in rates Investment )
Ob;j. value
Station sel. Prod. sel. Prod. 1 Prod. 2 Prod. 3 (UB: 14.00)
DTCT CTSP 1.78 1.85 1.91 13.99 13.12

3 The percentage difference is based on the less objective values, e.g., (13.12 — 12.21) / 12.21 = 7.45%.
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CHAPTER 7

CONCLUSION

7.1.  System-level Design of Large-scale Manufacturing Systems

This research focuses on an optimization model for operations capacity planning
integrating the critical design factors of net profit, investment, cycle times, and
throughputs at the initial design phase of large-scale manufacturing systems. The
OptiProfit model is based on mixed integer non-linear programming. From the basic
concept of the theory of constraints in cost accounting, the objective function, net profit,
is constructed using margin and cost analysis. The cycle time evaluation, which includes
complex non linear characteristics, requires a clear breakdown into four components:
batching, queuing, processing, and transporting time. Mean-value analysis, queuing
network models, and traffic variability equations are used to effectively evaluate the
cycle times considering yield rates, batching effect, failure and repair, and variability
aggregation.

OptiProfit is found to be intractable from its properties of NP-completeness,
nonconvexity, and nonmonotonicity. The complexity classification of NP-completeness
of OptiProfit is derived and proved from a reduction to the binary knapsack problem. By
showing counterexamples, OptiProfit has constraints that are not always convex and
monotone.

To handle the intractability, heuristics are considered. Based on an intuitive and
practical approach, six variants of greedy ascent procedures and a modified meta-

heuristicc, MSA for MINLP, are introduced. A new heuristic approach, Differential
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Coefficient Based Search is suggested to integrate the design factors such as profit,
investment, cycle time, and throughput. A relaxed and convex version of OptiProfit,
OptiProfitUB, provides an upper bound analysis and a quantified performance measure
for the test heuristics in a number of numerically randomized cases. The heuristics are
implemented and compared with exact solutions of OptiProfitUB in terms of the relative
optimality gap. DCBS performs better than any other GAP-based heuristic. The
performance of MSA is dependent on the number of iterations, which is proportional to
the execution time cost, DCBS shows a superior result over MSA for OptiProfit problems.

Finally, a semiconductor manufacturing system with 12 stations and three product
types is modeled as an OptiProfit problem. This model is successfully formulated and
implemented, including the detailed system characteristics such as reentrant material
flows. A simulation model at the same level of fidelity is constructed on Arena™ for the
validation of cycle-time evaluation. The numerical results show that DCBS performs well

in this specific example.

7.2.  Next Steps

This research is conceived for the initial and system-level design and planning
encompassing a wider spectrum of decision factors for manufacturing systems. The
results can be used as a basic solution for the next analysis such as control policies, e.g.,
the part-releasing scheme. This research is expected to be an excellent beginning point
for the study of control issues, which are significant decisions for performance

improvement.
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Other further work could include more realistic modeling of the objective function.
With a consideration of pricing and cost fluctuations and exceptions, the objective can be
nonlinear or piecewise linear. Finally, an elaborated financial analysis will enrich the

model quality.
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APPENDIX A

EXAMPLES FOR NONCONVEXITY AND NONMONOTONICITY ANALYSIS
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x11=0.; x12=12.;crl=0.;%21=10.; x22=0.; cx2=2.5; b=2;t=0.4; ct=0.;y=3;

xl[a ] :=x1la+x12 (1-a);

x2[a ] :=x2la+ x22(1-a) ;

via_] :=1/({x1[a] / (x1[a] +x2[a])) "2+ (x2[a] / (x1[a] +x2[a]})"2);

wla_] :=1/(1+4(1-(x1[a] +x2[a]) t/¥) "2 (v[a]-1));

ex[a ] :=1-w[a]l +w[a] (crlxl[a] / (xl[a] +x2[a]) +cr2x2[a] / (x1[a] +x2[a]));

ufa ] := {x1[a] +x2[a]) t/ {(bY)}/

TCT[a_] := b/ (2 (x1[a] +x2[a])) +(cx[a] +ct) /2=x (u[a] " (Sqrt[2y+1]1 -1) /y/ (1-u[a])) t+t

Table[TCT[a] , {a, 0, 1, 0.1}]

[0.483333, 0.561623, 0.604671, 0.628648, 0.642452, 0.651987, 0.661971, 0.676387, 0.69776, 0.725723, 0.756547)

Table[u[a], {a, 0, 1, 0.1}]

{0.8, 0.786667, 0.773333, 0.76, 0.746667, 0.733333, 0.72, 0.706667, 0.693333, 0.68, 0.666667)

Table[cx[a], {a, 0, 1, 0.1}]

{0., 0.365134, 0.614876, 0.796991, 0.941342, 1.07344, 1.22152, 1.41838, 1.659446, 2,06168, 2.5}

21 = Plot[x1l[a] + x2[a] , {a, 0, 1}, PlotLabel - "Aggregated Inflow Rate', AxeslLabel - {"alpha', """}, PlotRange - {8.0, 14.0}]

g22 = Plot[TCT[a] , {a, 0, 1}, PlotLabel - "Average Queuing Time", AxesLabel - {"alpha", """}, PlotRange - {0.40, 0.80}]

23 = Plot[u[a], {a, 0, 1}, PlotLabel - "Utilization", AxesLabel - ("alpha", """}, PlotRange - {0.5, 0.9}]

924 = Plot[ex[a]l, {a, 0, 1}, PlotLabel - "Squared Coefficient of Variance", AxesLabel - {"alpha', ""}]

Show[GraphiesArray[ {{g21, 9231, {924, g22}11]
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Figure A.1 Nonconvexity
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®l1=0.; ®12=4.;¢crl=0.;%821 =8.; x22=0.;cr2=0.5; b=2;t=0.6;ct=0.;y=3;
#l[a]:=x1la+x12(1-a);

L[a ] :=x2la+x2 (1-a);

via ] :=1/ ((x1[a] / (xl[a] + x2[a])) "2+ (x2[a] / (¥l [a] +x2[a])) "2);

wla]:=1/(1+4 (1- (xl[a] +x2[a]) t/y) "2 (v[a]l-1))/

cxf[a ] :=1l-w[a] +w[a] (crlxl[a] / (xl[a] +x2[a]) + cx2x2[a] / (xl[a] + x2[a]) )/

ufa ] := (xl[a] +=x2[a]) £t/ (by);

TCT[a ] :=b/ (2 (xl[a] +x2[a])) + (cx[a] +ct) /2% (u[a] "~ (Sqrt[2y +1]1 -1) /y/ (1-u[a])) t+t

Table[TCT[a] , {a, 0, 1, 0.1}]

{0.85, 0.832478, 0.818155, 0.80904, 0.806854, 0.810777, 0.819415, 0.832341, 0.84983, 0.872154, 0.898161}

Table[ul[a] , {a, 0,1, 0.1}]

10,4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8}

Table[cx[a] , {a, 0, 1, 0.13}]

{0, GJN12558, 0. 170812, 0.235604, 0.323142, 0.408953, 0.47397%7, 0.514625, 0.535339, 0.529995, 0.5]

gll = Plot[xl[a] +®2[a] , {a, O, 1}, Plctlabel —» '"Bggregated Inflow Rate'", Axreslabel - {"alpha", """}, PlotRange - {2, 10}]
gl2 = Plot[TCT[a] , {a, 0, 1}, Pletlabel - "Average Queuing Time", BAxreslabel - {"alpha', ""}, PlotRange —» {0.70, 0.95}]
gl3=Plot[ula] , {a, 0, 1}, PlotLabel - "Utilization', AxesLabel - {"alpha", """}, PlctRange - {0.2, 0.9}]

gl4 = Plot[cx[a]l , {a, 0, 1}, PlotLabel - "Squared Coefficient of Variance", AxesLabel - {"alpha", ""}]

Show [GraphicsArray[{{gll, gl13}, {gl4d, gl2}}]]
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Figure A.2 Nonmonotonicity
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APPENDIX B

MODIFIED SIMULATED ANNEALING (MSA) USING MATHEMATICA™
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ts = TimeUsed[];

Clear[x, y, metaTCT, TCT, CTgq, rho, SCT, minCTq, maxCTq, maxProfit, minSCT,

maxSCT, xTEMP, yTEMP, zTEMP, slackINVEST, i, j, k, s]; numCal = 0;
dx = 0.01;
maxINCx = 10;
maxLookahead = 10;
gMaxLookahead = 3;
xINIT = TH;
yINIT = initConf [xINIT];
While[True,
metaTCT = funcTCT[xINIT, yINIT];
TCT = metaTCT[[1]];
rho = metaTCT[[2]];
If[tctViolated[TCT], , Break[]];
maxRho = rho[[1]]; jc = 1;
For[j = 2, j <= NE, j++,
If [maxRho < rho[[j]], maxRho = rho[[]J]]; jc = jl1;
yINIT = funcINCy[yINIT, Jjc, 11;
1
x[0] = Join[xXINIT, yINIT];
Nx = NP + NE;
typeVector = Join[Table["Real", {NP}], Table["Integer", {NE}]];
For[s = 1, s <= Nx, s++; n[s] = 0];

v[0] = Join[Table[0.1, {NP}], Table[2, {NE}]];

T[O0] = 10;

e = 0.1;

Ne = 4;

Ns = 10;

vce = Join[Table[0.02, {NP}], Table[0.01, {NE}11;

Nt = 100;

rt = 0.85;

i=0; Jj=0;, m=20; k=0;

h =1;

cuthalf[vec , 1 ] := {Table[vec[[s]], {s, 1, 1}1,
Table([vec[[s]], {s, 1 + 1, Length[vec]}]};

ev[h ] := Table[If[s == h, 1, 0], {s, 1, Nx}];

(*Start of SA *)
(

(*Step 0%*)
£f[0] = -funcObj[xINIT, yINIT];
xopt = x[0]; fopt = £[0];
For[u = 1, u <= Nx, u++, nf[u] = 0];
For[u = 0, u > -Ne + 1, u--, fstar[u] = £[0]];
(*Step 1%*)
Label[Stepl];
xprime = x[1i];
If[h <= NP, xprime[[h]] = x[i][[h]] + Random[Real, {-1, 1}] v[m][[h]]];
If[h > NP,
xprime[[h]] = x[i]1[[h]] + Round[Random[Real, {-1, 1}1 vIml[[h]]]1];
(*Step 2%*)

xx = cuthalf[xprime, NP][[1]]; xy = cuthalf[xprime, NP][[2]];
For[s =1, s <= NE, s++, If[xyl[[s]] < 1, Goto[Stepl]l]];
For[s =1, s <= NP, s++, If[xx[[s]] < TH[[s]], Goto[Stepl]ll];
If(Sum[c[[s]] xyl[[s]], {s, 1, NE}] > INVEST, Goto[Steplll];
metaTCTprime = funcTCT[xx, xV];
For[s = 1, s <= NP, s++,

If[metaTCTprime[[1l, s]] > ACT[[s]], Goto[Stepl]ll]l;
For[s = 1, s <= NE, s++,

If [metaTCTprime([[2, s]] > MAXUTIL, Gotol[Stepllll]:;

(*Step 3%*)
fprime = -funcObj[xx, xVv];
If[fprime <= f[i],

x[1i + 1] = xprime;
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fli + 1] = fprime;

i++;

n[h]++;

If[fprime < fopt,
xopt = xprime;

fopt = fprime;
1,

pprime = Random[Real, {0, 1}]; pMet = Exp[(f[i] - fprime)/T[k]];
If [pprime < pMet,
x[1i + 1] = xprime;
fli + 1] = fprime;
i++;
n[h]++;
1
1
(*Step 4%*)
h++;
If[h <= Nx, Goto[Stepl], h = 1; j++];
(*Step 5%)
If[j < Ns,

Goto[Stepl],
vtemp = Table[0, {Nx}];
For[u = 1, u <= Nx, u+t+,
If(n{u] > 0.6 Ns,
vtemp[[u]] = v[m][[u]] (1 + vcl[[ul]l (n[u]/Ns - 0.6)/0.4)];
If[n[u] < 0.4 Ns,

vtemp[[ul]l = v[m][[u]] /(1 + vc([[u]] (0.4 - n[u]l/Ns)/0.4)];
If[0.4 Ns <= n[u] <= 0.6 Ns, vtemp[[u]] = v[m][[u]]];
1
vim + 1] = vtemp;
J = 0;
For[u = 1, u <= Nx, u++, nf[u] = 0];
m++;
1
(*Step 6%*)

If[m < Nt, Goto[Stepl],
T[k + 1] = rt TI[k];
fstar([k] = f[i];
k++;
m = 0;
1
(*Step 7%)
Print ["Checking termination condition"];
isTerminiting = True;
For[u = 1, u <= Ne, u+t+,

If[Abs[fstar[k] - fstar[k - u]] <= e, , isTerminating = Falsel]];
If[fstar[k] - fopt <= e, , isTerminating = False];
If[isTerminating, ,

i++;

x[1] = xopt;

f[i] = fopt;

Goto[Stepl];

1

)7

(*End of SA*)
Print ["Terminated============"];
Print["xopt"];
Print [xopt];
Print["fopt"];
Print[fopt];
xOptSA = xopt; zOptSA = fopt; numCalSA = numCal; timeSA = ts -
TimeUsed[];
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APPENDIX C

FORMULATION FOR A SIMPLE CASE
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(The system with 2 product types and 3 stations in Figure 5.1)

Objective function:

3 2
Maximize — ZCiyi + Zpkxk

i=1 k=1
Constraints:

TCT,(x,y,a) < ACT,, k=12,---,K

N
2 2 .
caj—bj+2aijcai ,1<j<N,

i=1

N
2.6y, <C
i=1

x,2TH,, k=12,---,K
»,, Integer

Inter-station flow rates:

0 x+x, O 0

X 0 x x
A,]=] b ]Li=0023, j=0123.
/ 0 0 0 x +x,
X, X, X, 0

In-station flow rate:

A_/.z[)c1+x2 2x,+x, X +x, x1+2x2]

Minimum batch size:

b= 2 3]
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Effective batch size:

02 2 3
2 2 2 3
[ebi']:
Y 2 2 2 3
3 3 3 3
Inter-station effective batch arrival rate:
0 .)C1 + x2 0 0
2
N, B OX
A _| 2 2 3
[’117]— [;té/'/ebii]_ . 0 X+,
3
Ynoon %
| 3 3 3 i

In-station effective batch arrival rate:
A =[S =Bk Su, 6 5 % i+
/ — Y 2 3 6 2 2 3 3

Traffic Variability Equations:

A

w, ) A
a =t T A -2,
A, (max(pbi,pbj)]Ai 410

1

w. [ A . w. A A
by=1-w,;+ ’(i}xﬁ " Z—’K qyp,»2¢%+pbi(1—qy)},
N
4, =2 > Ao ¢ =1+ (max{ct?, 0.2} - 1)/ [y, ,
j'=0

w; =[1+4(1—pj)2(vj _1)]_1> V; ={ﬁ:(il//1’\x])2j| > IOJ :[\Jt.i/yj ’
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APPENDIX D

GAMS CODE FOR A 5-STATION 6-PRODUCT 7-STEP CASE
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* 5-Station 6-Product 7-Step Case
(1/20) *

* All randomized parameters have
been generated in Mathematica (TM) *

Sets

i product
j station
k station
1 station
0*6 /

m station
(aux)

/ 0*6 /

type / 1*5 /

/ 1*6 /

(aux) / 1*6 /

including outer system /

including outer system

Scalar INVEST investment limitation
/ 239.369 / ;

Scalar MAXUTIL maximum utilization
of station / 0.99 / ;

Parameters
p(i) sales profit of product type 1
/ 1 25.4601

2 27.0266

3 22.9961

4 34.7797

5 39.7105 /
c(j) operation cost of station j
/ 1 3.099

2 1.31298

3 3.87242

4 3.13781

5 3.91858

6 2.48155 /
cx(j) arriving SCV (from outside of
system) to station j
/ 1 0.0

2 0.0

3 0.0

4 0.0

5 0.0

6 0.0 /
ca(j) arriving SCV to station j
/ 1 0.0

2 0.0

3 0.0

4 0.0

5 0.0

6 0.0 /
xb (j) arriving-from-outside batching
size of station j
/ 1 1

2 1

3 1

4 1

5 0

6 0 /

pb(j) process batching size of
station j

/ 1 2
2 2
3 3
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4 3

5 2

6 2 /
t(j) average processing time of
station j
/ 1 1.89393

2 1.86584

3 2.21652

4 1.77928

5 2.31486

6 2.02615 /
ct(j) processing SCV of station j
/ 1 0.232227

2 0.207838

3 0.279101

4 0.391742

5 0.252781

6 0.371712 /
TH (1) required minimum throughput of
product type i
/ 1 2.24986

2 2.1857

3 2.41258

4 2.20876

5 1.51087 /
ACT (1) allowable cycle time of
product type i
/ 1 34.8007

2 32.8516

3 34.4177

4 32.2136

5 35.9503 / ;

Table eb(l,m) effective batching
size of station j
1 2 3

NDoYOLd WN O
NWwwNhN O
NN WWNDNDN
NN WWwWND NN
wwwwwww
wWwwwwwwdbd
DN WWwWNDNDDND O

NDwWwhNNDND OO

’

Variables

z total profit in unit period

x (1) part releasing rate

v (j) number of tool

lamda (1,m) inter-station flow rate
lamda t (1) in-station flow rate
lamdah (1,m) inter-station flow rate
in effective batch

lamdah t(l) in-station flow rate in
effective batch

et (j) effective processting time

ect (j) effective SCV processting
time

rho(j) rho value

TCT (1) cycle times ;

Positive variable x;
Integer variable y;



* Bounds *

x.lo (1) = TH(i) ;
y.lo('i") =1 ;
rho.lo(j) 0 ;
rho.up(j) = MAXUTIL
TCT.lo(i) = 0 ;
lamda.lo('0','0") =
lamda.lo('0','1") =
lamda.lo('0','2") =
TH('3'") ;
lamda.lo('0','3") =
lamda.lo('0','4") =
lamda.lo('0','5") =
lamda.lo('0','6'") =
lamda.lo('1','0") =
lamda.lo('1','1l") =
lamda.lo('1l','2") =
TH('2') ;
lamda.lo('1','3") =
TH('S'") ;
lamda.lo('1','4') =
lamda.lo('1','5") =
lamda.lo('1l','6') =
lamda.lo('2','0") =
lamda.lo('2','1") =
TH('S'") ;
lamda.lo('2','2"') =
lamda.lo('2','3") =
lamda.lo('2','4') =
TH('3'") ;
lamda.lo('2','5") =
lamda.lo('2','6'") =
lamda.lo ('3','0") =
lamda.lo('3','1l") =
lamda.lo ('3','2") =
TH('S'")

lamda.lo ('3','3") =
lamda.lo('3','4") =
lamda.lo ('3','5") =
lamda.lo('3','6") =
TH('S'") ;
lamda.lo('4','0") =
lamda.lo('4','1l") =
lamda.lo('4"','2") =
lamda.lo('4"','3") =
lamda.lo('4"','4') =
lamda.lo('4','5") =
TH('S'") ;
lamda.lo('4','6") =
TH('3'") ;
lamda.lo('5','0") =
lamda.lo('5','1'") =
lamda.lo('5','2") =
lamda.lo('5','3'") =
lamda.lo('5'",'4") =
lamda.lo('5','5") =
lamda.lo('5','6") =
TH('S'") ;
lamda.lo('6','0") =
TH('3'") + TH('4'
lamda.lo('6','1l") =
lamda.lo('6','2") =
lamda.lo('6','3") =

O 4
TH('1")
TH('2")
TH('4")
TH('5")
0
0
TH('5")
0
TH('1")
TH('3")
0 ;
TH('4")
0 ;
0 ;
TH('4")
0 ;
TH('2'
TH('1")
TH('2")
0 ;
TH('2")
TH('3")
TH('4")
0 5
TH('1")
0
TH('4")
0
0
0
TH('4")
0 ;
TH('1")
TH('1")
0 ;
TH('2")
0 ;
TH('1")
TH('4")
0 ;
TH('2")
TH('1")
TH('5")
0 ;
TH('3")

~e
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lamda.
lamda.
lamda.l

lamda t.lo(l) =
lamda.lo(1l,m))
lamdah.lo (1, m)

eb(l,m) ;

lamdah t.lo (1)
lamdah.lo(1,m))

Equations

’

6','4') — O ;

6','5') = TH('2") ;
("6','6") =0 ;
sum (m,

lamda.lo(l,m) /

sum (m,

’

profit define objective function

eq lamda00
station
eq lamda01l
station
eq lamda02
station
eq lamda03
station
eq lamda04
station
eq lamda05
station
eq lamda06
station
eq lamdalO
station
eq lamdall
station
eq lamdal2
station
eq lamdal3
station
eq lamdali4
station
eq lamdalb
station
eq lamdalé
station
eq lamda20
station
eq lamdaZ2l
station
eq lamda22
station
eq lamdaZ23
station
eq lamdaZ24
station
eq lamda25
station
eq lamdaZ26
station
eq lamda30
station
eq lamda31l
station
eq lamda32
station
eq lamda33
station

flow rate

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

flow

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

rate

from

from

from

from

from

from

from

from

from

from

from

from

from

from

from

from

from

from

from

from

from

from

from

from

from

station

station

station

station

station

station

station

station

station

station

station

station

station

station

station

station

station

station

station

station

station

station

station

station

station

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to



eq lamda34 flow rate from station to eq et6 equation effective processing
station time

eq lamda35 flow rate from station to eq ectl equation effective SCV
station processing time

eq lamda36 flow rate from station to eq ect2 equation effective SCV
station processing time

eq lamda40 flow rate from station to eq ect3 equation effective SCV
station processing time

eq lamdad4l flow rate from station to eq _ect4 equation effective SCV
station processing time

eq lamda42 flow rate from station to eq _ectb5 equation effective SCV
station processing time

eq lamda43 flow rate from station to eq _ect6 equation effective SCV
station processing time

eq lamdad44 flow rate from station to eq _rhol equation rho

station eq_rho2 equation rho

eq lamdad45 flow rate from station to eq _rho3 equation rho

station eq_rho4 equation rho

eq lamdad46 flow rate from station to eq _rho5 equation rho

station eq_rho6 equation rho

eq lamda50 flow rate from station to eq CT1 cycle time constraint
station eq CT2 cycle time constraint

eq lamda5l flow rate from station to eq CT3 cycle time constraint
station eq CT4 cycle time constraint

eq lamda52 flow rate from station to eq CT5 cycle time constraint
station eq TCT (i) cycle time constraints
eq lamda53 flow rate from station to eq investment investment

station constraint ;

eq lamda54 flow rate from station to

station profit z =e= sum(i, p(i)*x(i)) -
eq lamda55 flow rate from station to sum(j,c(J)*v(3))

station

eq lamda56 flow rate from station to eq lamda00 lamda ('0','0") =e=
station eq lamda0l lamda ('0','1l'") =e=
eq lamda60 flow rate from station to x('1") ;

station eq lamda02 lamda ('0','2") =e=
eq lamda6l flow rate from station to x('2") + x('3") ;

station eq lamda03 lamda ('0', '3") =e=
eq lamda62 flow rate from station to x('4') ;

station eq lamda04 lamda ('0', '4") =e=
eq lamda63 flow rate from station to x('5")

station eq lamda05 lamda ('0','5") =e=
eq lamda64 flow rate from station to eq lamda06 lamda ('0','6") =e=
station eq lamdalO lamda ('1','0'") =e=
eq lamda65 flow rate from station to x('5")

station eq lamdall lamda ('1','1l'") =e=
eq lamda66 flow rate from station to eq lamdal2 lamda('1l','2") =e=
station x('"1") + x('2");

eq lamda t(l) flow rate in station eq lamdal3 lamda('1l','3") =e=
eq lamdah(l,m) flow rate from x('3"'") + x('5") ;

station to station eq lamdali4 lamda('1l','4") =e=
eq lamdah t(l) flow rate in station eq lamdalb lamda ('1','5") =e=
eq _etl equation effective processing x('4') ;

time eq lamdalé lamda ('1','6'"') =e=
eq _et2 equation effective processing eq lamda20 lamda ('2','0"') =e=
time eq lamdaZ2l lamda ('2','1l'") =e=
eq et3 equation effective processing X('4') + x('5") ;

time eq lamda22 lamda ('2','2'") =e=
eq etd4 equation effective processing eq lamda23 lamda ('2','3"') =e=
time x('2") ;

eq _etb equation effective processing eq lamdaZ24 lamda ('2','4"') =e=
time x('"1l'") + x('3");
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eq lamda25 .. lamda('2',

x('2")

eq lamda26 .. lamda('2',
eq lamda30 .. lamda('3"',
x('2") ;

eq lamda31l .. lamda('3"',
x("3") ;

eq lamda32 .. lamda('3"',
x('4") + x('5")

eq lamda33 .. lamda('3"',
eq lamda34 .. lamda('3"',
x('"1")

eq lamda35 .. lamda('3"',
eq lamda36 .. lamda('3"',

x('4") + x('5");

eq lamdad40 .. lamda('4',
eq lamdad4l .. lamda('4',
eq lamdad42 .. lamda('4',
eq lamda43 .. lamda('4',
x('4') ;

eq lamdad44 .. lamda('4',

eq lamda45 .. lamda('4',

x('"l') + x('5")

eq lamdad46 .. lamda('4',

x('1") + x('3") ;

eq lamda50 .. lamda('5',
eq lamda51 .. lamda('5',
x('2") ;
eq lamda52 .. lamda('5',
eq lamda53 .. lamda('5',
x('1") ;
eq lamda54 .. lamda('5',
x('4") ;
eq lamda55 .. lamda('S',

eq lamda56 .. lamda('5',

x("2") + x('5")

eq lamda60 .. lamda('6',

x("1') + x('3") + x('4’

eq lamda6l .. lamda('6',
x('S")

eq lamda62 .. lamda('6',
eq lamda63 .. lamda('6',
x('3")

eq lamda64 .. lamda('6',
eq lamda65 .. lamda('6',

x('2") ;

eq lamda66 lamda ('6"',
eq lamda t(l) .. lamda t (1)

sum(m, lamda(l,m)) ;

eq lamdah(l,m) .. lamdah(l,m)

lamda (l,m) / eb(l,m) ;

eq lamdah t(l) .. lamdah t(1l)

sum(m, lamdah(l,m)) ;
eq etl

lamdah t('1")*pb('1") *et ('

lamda t('1")*t('1");
eq et2
lamdah_t('2" )*pb(
lamda_t('2")*t('2"'
eq et3

lamdah t('3'")*pb('3") *et ('

lamda_t ('3'")*t('3");

2')*et ('2")
)

eq _et4

lamdah t('4')*pb ('
lamda t('4')*t('4"'
eq etb

lamdah t('5'")*pb('5")*et ('5') =e=
lamda t('5")*t('5");

eq eté6

lamdah_t('6')*pb('6')*et('6') =e=
lamda _t('6')*t('6");

eq ectl

power (et ('1'"),2)*power (pb('1l'),2)*1la
mdah t('1')*(ect('1")+1) =e=

power (t('1'),2)*(pb('1l"')*lamda t('l'
)*ct ('"1'")+sum(l,lamda (1, '1") *eb (1, 'l
"))

eq ect2

power (et ('2'"),2) *power (pb('2'),2) *1la
mdah t('2')*(ect('2")+1) =e=

power (£ ('2"),2)*(pb('2")*lamda_t('2"'
)*ct ('2'")+sum(l,lamda (1, '2") *eb (1, '2
"))

eq ect3

power (et ('3"),2) *power (pb('3'),2) *1la
mdah £ ('3")*(ect('3")+1) =e=

power (£ ('3"),2)*(pb('3")*lamda t('3"'
)*ct ('3")+sum(l,lamda (1, '3"') *eb (1, '3
"))

eq_ectd

power (et ('4'"),2) *power (pb('4'),2)*1la
mdah t('4")*(ect('4"')+1l) =e=

power (t('4'),2)*(pb('4"')*lamda t('4'
)*ct ('4')+sum(l,lamda(l, '4"') *eb (1, '4
"))

eq_ectd

power (et ('5"),2) *power (pb('5"),2) *1la
mdah t£('5")*(ect ('5")+1) =e=

power (£ ('5"),2)*(pb('5")*lamda t('5"'
y*ct ('5'")+sum(l,lamda (1, '5")*eb(1,'5
"))

eq ecté6

power (et ('6'),2) *power (pb('6'),2)*1la
mdah t('6')*(ect('6")+1l) =e=

power (£t ('6'),2)*(pb('6')*lamda t('6"'
y*ct ('6'")+sum(l,lamda(l,'6")*eb(1l,'6
"))

4')*et ('4"') =e=
)

eq rhol .. rho('l') =e=
lamdah t('1") * et('1l") / y('1") ;
eq rho2 .. rho('2') =e=
lamdah _t('2") * et('2") / y('2") ;
eq rho3 .. rho('3') =e=
lamdah t('3") * et ('3") / y('3") ;
eq rho4 .. rho('4') =e=
lamdah t('4"') * et('4") / y('4") ;
eq rho5 .. rho('5') =e=
lamdah t('5") * et ('5") / y('5") ;
eq rho6 .. rho('6') =e=
lamdah t('6"') * et('6') / y('6") ;
eq CT1 .. TCT('1l') =e=
*Step 1 1

0.5*(pb('1") -

l)/lamda_t('l')+0.5*(ca('l')+ect('l'
))



*rho('l'")** (sgqrt(2*(y('1"))+1)-
1)/y('1")/(1l-rho('1"))*et ('1")

+et ("1")+
*Step 2 2

0.5%(pb ('2") -
1)/lamda_t('2')+0.5*(ca('2")+ect('2"
))

*rho('2") ** (sgrt (2* (y('2'))+1) -
1)/y('2")/(1-rho('2"))*t('2")

tet ('2")+
*Step 3 4

0.5*(pb('4") -
l)/lamda_t('4')+0.5*(ca('4')+ect('4'
))

*rho('4'")** (sqrt(2* (y('4"))+1) -
1)/y('4")/(1-rho('4")) *et ('4")

tet ('4')+
*Step 4 5

0.5*%(pb('5") -
1) /lamda_t('5')+0.5* (ca('5")+ect ('S5
))

*rho ('5') ** (sqrt (2* (y('5'))+1) -
1)/y('5")/(l-rho('5"))*et ('5")

+et ('5")+
*Step 5 3

0.5*(pb ('3") -
1) /lamda_t('3')+0.5* (ca('3")+ect ('3
))

*rho ('3")** (sqrt (2* (y('3"))+1) -
1) /y('3")/(l-rho('3"))*et ('3")

+et ('3")+
*Step 6 4

0.5%(pb('4") -
1)/lamda_t('4')+O.5*(ca('4')+ect('4'
))

*rho ('4'")** (sqrt (2% (y('4"))+1) -
1)/y("4")/(1-rho('4"')) *et ('4")

+tet ('4')+
*Step 7 6

0.5%(pb('6") -
1) /lamda_t('6')+0.5* (ca('6"')+ect('6"
))

*rho('6"'")** (sgqrt(2*(y('6"))+1) -
1)/y('6")/(l-rho('6"))*et ('6")
+et('6') ;
eq CT2 . TCT('2') =e=
*Step 1 2
0.5%(pb('2") -
1) /lamda_t('2')+0.5* (ca('2")+ect ('2"
))

*rho ('2")** (sqrt(2* (y('2"))+1) -

1) /y('2")/(l-rho('2"))*et ('2")
tet('2")+

*Step 2 5
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0.5*(pb ('5") -
1)/lamda_t('5')+0.5*(ca('5')+ect('5'
))

*rho ('5'") ** (sgrt (2* (y('5"))+1) -
1)/y('5")/(l-rho('5"))*et ('5")

+et ('5")+
*Step 3 6

0.5%(pb('6") -
1)/lamda_t('6')+O.5*(ca('6')+ect('6'

*rho ('6'")** (sqrt (2* (y('6"))+1) -
'6'")/(l-rho('6"))*et('6")
+tet ('6'")+
*Step 4 5
0.5%(pb ('5") -
1)/lamda_t('5')+O.5*(ca('5‘)+ect('5'
))

*rho ('5") ** (sgrt (2* (y('5"))+1) -
1)/y('5")/(1-rho('5")) *et ('5")

+tet ('S5')+
*Step 5 1

0.5*%(pb('1") -
1) /lamda_t('1')+0.5*(ca('l")+ect('1"
))

*rho('l'")** (sgqrt(2*(y('1"))+1)-
1)/y('1")/(1-rho('1"))*et ('1")

tet ("1")+
*Step 6 2

0.5%(pb ('2") -
l)/lamda_t('Z')+O.5*(ca('2')+ect('2'
))

*rho ('2')** (sgrt (2* (y('2"))+1) -
1)/y('2")/(1l-rho('2"))*et('2")

tet ('2')+
*Step 7 3

0.5*(pb ('3") -
l)/lamda_t('B')+O.5*(ca('3')+ect('3'
)

) ** (sqrt(2* (y('3"))+1)~
)/ (1-rho('3"))*et ('3")
+tet ('3") ;

eq CT3 .. TCT('3")
*Step 1 2

0.5*(pb ('2") -
1)/lamda_t('Z')+O.5*(ca('2')+ect('2'
))

==

*rho ('2') ** (sqrt(2*(y('2'))+1) -
1)/y('2")/(1l-rho('2"))*et ('2")

+et ('2")+
*Step 2 4

0.5%(pb ('4") -
1)/lamda t('4')+0.5*(ca('4')+tect('4"'
))



*rho('4'")** (sqrt(2*(y('4"))+1)-
1)/y('4")/(1l-rho('4"))*et ('4")

+tet ('4")+
*Step 3 6

0.5* (pb('6") -
1)/lamda _t('6')+0.5*(ca('6"')+ect('6"
))

*rho ('6') ** (sqrt (2% (v ('6'))+1) -
1)/y('6')/(l-rho('6"))*et ('6")

tet ('6')+
*Step 4 3

0.5*(pb ('3") -
l)/lamda_t('3')+0.5*(ca('3')+ect('3'
))

*rho ('3") ** (sqrt (2* (y('3"))+1) -
1)/y('3")/(1-rho('3")) *et ('3")

tet ('3")+
*Step 5 1

0.5*%(pb('1") -
1) /lamda_t('1')+0.5*(ca('l"')+ect ("1’
))

*rho('1') ** (sqrt(2*(y('1'))+1) -
1)/y('1")/(l-rho('1"))*et ('1")

+tet ("1")+
*Step 6 3

0.5*(pb ('3") -
1) /lamda_t('3')+0.5* (ca('3")+ect ('3
))

*rho ('3")** (sqrt (2* (y('3"))+1) -
1) /y('3")/(l-rho('3"))*et ('3")

+et ('3")+
*Step 7 6

0.5*(pb('6") -
1)/lamda_t('6')+O.5*(ca('6‘)+ect('6'
))

*rho ('6'")** (sqgrt (2*(y('6"))+1) -
1)/y('6')/(l-rho('6"')) *et ('6")
tet('6") ;
eq CT4 . TCT('4') =e=
*Step 1 3
0.5%(pb ('3") -
1) /lamda_t('3")+0.5* (ca('3")+ect ('3
))

*rho ('3") ** (sgqrt (2*(y('3"))+1) -
1)/y('3")/(l-rho('3"))*et ('3")

+et ('3")+
*Step 2 2

0.5* (pb('2") -
1) /lamda_t('2')+0.5* (ca('2")+ect ('2"
))

*rho ('2")** (sqrt(2* (y('2"))+1) -

1) /y('2")/(l-rho('2"))*et ('2")
tet('2")+

*Step 3 1
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0.5*(pb('1") -
1)/lamda_t('l')+0.5*(ca('l')+ect('1'
))

*rho ('1l'")** (sgqrt(2*(y('1"))+1) -
1)/y('1")/(l-rho('1"))*et ('1")

+tet ("1")+
*Step 4 5

0.5%(pb ('5") -
1) /lamda t('5')+0.5*% (ca('5")+ect ('S5
))

*rho ('5")** (sqrt (2* (y('5"))+1) -
1) /y('5")/(l-rho('5"))*et ('5")

tet ('5")+
*Step 5 4

0.5*%(pb('4") -
1)/lamda_t('4')+O.5*(ca('4‘)+ect('4'
))

*rho('4"')** (sgqrt(2*(y('4"))+1) -
1)/y('4')/(l-rho('4"))*et ('4")

+tet ('4")+
*Step 6 3

0.5* (pb ('3") -
1) /lamda_t('3'")+0.5* (ca('3")+ect ('3
))

*rho ('3")** (sgrt (2* (y('3"))+1) -
1)/y('3")/(l-rho('3"))*et ('3")

+et ('3")+
*Step 7 6

0.5%(pb('6") -
l)/lamda_t('6')+0.5*(ca('6')+ect('6'
))

*rho('6"')** (sgqrt (2*(y('6"))+1) -
1)/y('6")/(1l-rho('6"'))*et ('6")
+et('6") ;

eq CT5 .. TCT('5")
*Step 1 4

0.5*(pb('4") -
l)/lamda_t('4')+0.5*(ca('4')+ect('4'
))

=e=

*rho ('4')** (sqrt (2*(y('4'))+1) -
1)/y('4")/(l-rho('4"))*et ('4")

tet ('4')+
*Step 2 5

0.5*(pb ('5") -
1)/lamda_t('5')+0.5*(ca('5')+ect('5'
))

*rho ('5') ** (sqrt (2* (y('5'))+1) -
1)/y('5")/(l-rho('5"))*et ('5")

tet ('5")+
*Step 3 6

0.5%(pb ('6") -
1)/lamda t('6')+0.5* (ca('6"')+tect('6’
))



*rho('6'")** (sgqrt(2*(y('6"))+1) -
1)/y('6")/(1l-rho('6")) *et ('6")

+tet ('6")+
*Step 4 1

0.5%(pb ('1") -
1)/lamda_t('1')+0.5*(ca('l")+ect('1l"
))

*rho('1l'")** (sgqrt(2*(y('1"))+1) -
1)/y('1")/(l-rho('1"))*et ('1")

tet ("1")+
*Step 5 3

0.5*(pb ('3") -
l)/lamda_t('3')+0.5*(ca('3')+ect('3'
))

*rho ('3") ** (sqrt (2* (y('3"))+1) -
1)/y('3")/(1-rho('3")) *et ('3")

tet ('3")+
*Step 6 2

0.5*%(pb('2") -
1) /lamda_t('2')+0.5* (ca('2")+ect ('2"
))

*rho ('2')** (sqrt (2*(y('2'))+1) -
1)/y('2")/(l-rho('2"))*et ('2")

tet ('2")+
*Step 7 1

0.5*(pb('1") -
1) /lamda_t('1')+0.5* (ca('l"')+ect ("1’
))

*rho ('1'")** (sqrt(2* (y('1"))+1) -
1)/y('1")/(1l-rho('1"))*et ('1")

tet('1l'") ;
eq investment .. sum(j, c(j) * y(3))
=1= INVEST ;
eq_TCT(i) .. TCT (i) =1= ACT (1)

Model example 5 6 /all/ ;
solve example 5 6 using minlp
maximizing z ;

display x.1, x.m, y.l, y.m ;
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APPENDIX E

RESULTS FROM HEURISTICS AND UPPER BOUND ANALYSIS
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Table E.1 Result Table, 3-Product 4-Station 5-Step Case

DCBS Avg Dev

z 120.68 164.89 668.57 240.15 321.2 103.44 279.13 131.72 139.38 253.85 580.16 135.14 335.52 345.22 199.54 119.38 217.42 81.225 555.68 244.09
ROG 1245 1158 279 4317 7.05 1347 586 867 1509 9.27 1.76 1246 846 6.53 713 1270 12,67 16.60 7.41 6.11 11.06 8.53
NCE 817 1236 2165 1424 1235 1148 1805 1402 1145 1269 2431 1096 1589 1482 1054 848 1134 586 2128 1080 1354 472
HET 6.659 10.715 16.173 11.207 9.975 9.875 14.471 11.286 9.534 10.415 19.347 8.913 13.229 12.038 8.522 7.511 8.732 4.647 16.754 9.394 10.97 3.57

HQHP Avg Dev

z 118.53 170.49 622.3 242.65 334.97 100.78 293.04 134.18 133.37 240.59 575.7 138.64 231.08 334.72 137.16 120.8 213.13 82.39 484.96 251.81
ROG 1449 792 1043 4170 265 1647 084 668 2028 1529 254 963 5748 987 5586 1137 1494 1495 23.07 286 16.97 16.33
NCE 588 917 1560 1127 1009 886 1430 959 859 883 2035 877 744 1183 378 737 862 585 1480 883 999 385
HET 4.877 7922 11497 8772 7971 7.751 11536 7.801 7.14 7.191 15983 7.26 6.049 9.633 3.084 6.319 6.58 4.647 11527 7.56 8.06 2.90

HQSS Avg Dev

z 116.61 82.167 537.72 231.6 284.04 91.976 108.56 119.15 134.3 204.49 486.02 137.85 150.67 329.26 108.15 120.8 231.39 66.363 479.57 218.74
ROG 16.38 123.91 27.80 4846 21.05 27.61 17219 20.14 19.45 35.64 2147 1025 14152 11.70 97.68 1137 587 4272 2445 1840 4490 48.41
NCE 555 180 1832 1095 667 823 41 838 919 1017 1836 848 360 1247 200 731 1091 277 1489 884 865 482
HET 4.457 1.562 13.519 8.573 5348 7.16 3.305 6.81 7.511 8.372 14451 7.03 2914 10.085 1.633 6.269 8.532 2.173 11.686 7.241 6.93 3.69

HQLS Avg Dev

z 128.56 163.21 675.47 252.53 315.18 101.22 245.47 128.15 138.77 258.52 576.57 104.88 352.04 340.42 171.94 117.24 213.55 77.637 580.08 251.81
ROG 555 1273 174 36.16 9.09 1595 20.38 11.70 1560 7.29 239 4492 337 8.04 2433 1475 1472 2199 289 286 13.82 11.46
NCE 889 993 1880 1261 1042 1039 1383 1104 1000 1136 2033 998 1374 1206 1166 728 1000 611 1829 893 1178 370
HET 721 8662 13.95 9.794 8.302 9.013 11.116 8.893 8.392 9.303 16.424 8.262 11.246 9.814 9.363 6.429 7.641 4.767 14171 7.34 9.50 2.77

HUHP Avg  Dev

|K4!

z 119.03 170.49 622.3 242.65 151.87 100.78 293.04 134.18 133.37 240.59 575.7 138.64 231.08 334.72 137.16 120.07 213.13 82.39 484.96 251.81
ROG 14.01 792 1043 4170 126.39 16.47 084 6.68 20.28 1529 254 9.63 5748 987 5586 12.04 1494 1495 23.07 286 23.16 29.08
NCE 604 910 1574 1135 145 865 1541 958 838 928 2029 865 744 1219 386 653 879 584 1491 883 962 441
HET 5.018 7.812 11.928 8.862 1.152 7.301 12.418 7.691 6.86 7.561 16.514 7.14 6.169 9.975 3.165 5458 6.78 4.526 11.596 7.161 7.75 3.48

HUSS Avg Dev

z 116.61 82.167 537.72 231.6 284.04 91.976 108.56 119.15 134.3 204.49 486.02 137.85 150.67 329.26 108.15 120.07 231.39 66.363 479.57 218.74
ROG 16.38 123.91 27.80 4846 21.05 27.61 17219 20.14 1945 3564 21.47 1025 14152 1170 97.68 12.04 587 4272 2445 1840 44.94 48.38
NCE 584 180 1818 1080 659 813 408 838 899 1017 1856 801 360 1258 200 648 1054 290 1484 884 857 482
HET 4.736 1.482 13.569 8.412 5267 6.89 3.305 6.87 7.421 8412 14791 6.56 2.885 10.264 1.572 5.438 8.192 2.274 11537 722 6.85 3.73

HULS Avg_ Dev

z 128.56 163.21 675.47 252.53 315.18 101.22 239.8 128.15 138.77 265.23 575.7 104.88 357.34 340.99 171.94 116.3 213.55 75.895 578.64 251.81

ROG 555 1273 174 36.16 9.09 1595 2323 11.70 1560 458 254 4492 183 7.85 2433 1568 1472 2479 314 286 13.95 11.84
NCE 907 993 1871 1319 1048 1018 1449 1104 1022 1079 2030 1014 1377 1222 1186 681 1012 577 1845 893 1182 378
HET 7.351 8.542 13.89 10.305 8.342 8.582 11.717 8.922 8.282 8.903 16.333 8.432 11.146 10.015 9.574 5.728 8.151 4.556 14.301 7.371 9.52  2.84

MSA Avg Dev

z 117.28 166.08 618.33 239.03 328.6 102.05 258.53 120.5 132.23 252.29 543.7 122.69 345.04 337.71 198.22 118.78 232.57 83.733 525.93 242.82
ROG 1570 10.78 11.14 43.84 463 1501 1430 1880 2131 994 858 23838 546 890 785 1326 533 1311 1348 6.66 13.60 8.84
NCE 11030 10244 11674 11312 11974 11559 9290 10268 10136 10942 10683 10469 11609 10891 10354 11515 11235 11623 10039 11980 10941 736
HET 94.206 90.831 91.822 90.17 98.422 102.75 77.811 85.383 85.162 91.842 86.795 88.447 97.049 90.219 86.314 101.05 90.671 94.166 83.49 100.39 91.35 6.41

Objective value at upperbound

z 135.7 183.98 687.23 343.83 343.83 117.37 295.49 143.14 160.41 277.37 590.35 151.99 363.89 367.77 213.78 134.53 244.97 94.71 596.83 259

Note: z: final objective value, ROG: relative optimality gap, NCE: Number of cycle time evaluation, HET: Heuristics evaluation time



Table E.2 Result Table, 4-Product 5-Station 6-Step Case

DCBS Avg Dev

z 141.16 167.71 184.87 144.82 305.04 261.61 271.17 93.194 122.17 126.69 123.79 305.12 161.98 135.97 205.36 203.68 247.15 225.93 506.76 183.93

ROG 7.71 6.09 289 508 13.01 1777 6.84 1107 1891 494 3461 597 6.01 1153 1559 427 485 1650 336 1799 10.75 7.78
NCE 743 1053 1250 1198 1730 1510 1373 898 1020 776 1549 1812 945 882 1260 1227 1069 1128 2659 1037 1256 443
HET 9.914 13.84 14.921 16.293 23.263 18.427 17.405 11.637 12.849 9.744 23.214 26.758 16.834 13.559 24.044 15.362 18.497 14.902 31.385 13.549 17.32 5.74

HQHP Avg Dev

z 140.72 164.99 1829 144.9 332.67 206.9 257.01 93.014 114.14 116.09 109.58 315.84 164.28 128.51 154.14 201.11 237.29 203.3 511 207.08
ROG 804 784 400 5.02 362 4890 1272 1128 27.28 1452 5207 237 453 18.01 54.00 560 921 2946 251 479 16.29 17.02
NCE 500 852 1068 874 1553 958 959 635 670 606 1045 1289 800 680 500 850 800 553 1948 720 893 362
HET 6.58 11.206 12.708 12.008 20.9 12.198 12.107 8.162 8.422 7.711 15.762 19.077 13.99 11.206 9.594 10.676 14.09 7.17 22.733 9.354 12.28 4.47

HQSS Avg Dev

z 134.85 158.31 132.65 105.46 128.96 206.9 223.22 89.229 108.67 96.204 105.5 162.1 148.59 110.33 172.37 124.19 200.01 139.64 427.83 136.66
ROG 1275 1239 4340 4429 167.30 48.90 29.79 16.01 33.68 38.19 57.96 9947 1556 37.46 37.72 71.01 29.57 88.48 2243 58.80 48.26 36.80
NCE 570 897 1191 878 1083 959 974 624 857 534 1154 597 768 610 946 554 815 195 1889 669 838 347
HET 7.801 11.917 14.181 11.716 14.892 12.037 12.278 8.071 10.926 6.8 17.365 8.802 13.38 9.483 18.246 6.9 15.041 2.584 22.643 8.692 11.69 4.63

HQLS Avg Dev

z 142.01 137.54 184.52 142.68 288.45 168.08 280.67 88.379 112.67 105.31 122.93 315.84 147.86 139.87 219.45 201.3 246.64 234.21 487.02 187.24

ROG 7.07 2936 3.09 6.65 1950 83.30 322 17.12 2894 2623 3556 237 16.14 843 817 550 507 1238 755 1590 17.08 18.45
NCE 553 822 1291 1001 1534 437 1030 708 903 613 1380 1303 914 964 1108 1030 784 880 2460 828 1027 437
HET 6.759 10.415 11.196 11.467 19.458 11.576 12.719 8.262 8.152 7.932 11.987 19.358 9.964 13.109 9.814 10.866 15.092 7.23 23.955 10.405 11.99 4.45

HUHP Avg  Dev

[44!

z  140.72 164.99 1829 1449 331.97 206.9 257.03 93.014 117.81 116.09 109.58 315.84 164.28 143.65 154.14 201.11 237.29 203.3 512.75 206.87

ROG 804 784 400 502 384 4890 1272 1128 2331 1452 5207 237 453 557 5400 560 921 2946 216 490 1547 17.06
NCE 494 781 906 866 1463 936 1014 635 640 629 798 1295 694 720 499 870 835 524 1952 803 868 353
HET 8.022 10.846 15.532 13.619 21.03 5.378 12.938 9.153 11.486 7.781 20.75 19.348 13.509 16.824 21.381 13.068 14.271 11.567 29.722 10.746 14.35 5.81

HUSS Avg  Dev

z 134.85 152.67 132.65 105.46 128.96 206.9 223.22 89.229 108.88 96.204 105.5 162.1 148.59 110.33 173.58 124.19 200.01 139.64 431.92 136.66

ROG 1275 16.54 4340 4429 167.30 4890 29.79 16.01 3342 3819 5796 99.47 1556 3746 36.76 71.01 2957 8848 21.27 5880 48.35 36.66
NCE 584 180 1818 1080 659 813 408 838 899 1017 1856 801 360 1258 200 648 1054 290 1484 884 857 482
HET 7.021 12.998 11.417 11.797 14.06 11.677 13.89 7.902 13.599 7.04 14.932 9.764 10.805 10.225 19.068 7.03 15272 2.684 22222 8.832 11.61 4.47

HULS Avg Dev

z 14177 139.25 183.27 142.68 289.12 168.08 280.57 88.379 117.81 105.88 126.39 315.84 137.81 128.66 219.45 203.68 246.64 228.4 499.75 199.2

ROG 724 2777 379 6.65 1923 8330 326 1712 2331 2556 31.84 237 2460 1787 817 427 507 1523 481 894 17.02 18.19
NCE 558 963 935 891 1070 937 1105 615 1026 561 977 663 731 622 997 569 841 192 1881 669 840 336
HET 7.27 12.298 11.406 11.306 20.269 5.418 13.379 9.223 8.693 8.512 19.338 19.498 11.507 14.351 19.468 11.927 14.15 11.757 23.674 10.906 13.22 4.88

MSA Avg Dev

z 14222 156.44 162.91 110.81 296.2 283.09 259.72 95.215 116.93 112.81 128.96 268.79 148.33 123.12 209.85 198.49 243.96 223.85 457.01 185.72

ROG 690 13.73 16.77 37.33 16.38 883 1155 871 2424 1785 29.22 2029 1577 2317 1312 699 6.23 1758 1461 16.84 16.31 7.85
NCE 16414 13367 13524 13267 14320 14820 14203 16366 13744 15041 11744 13238 14781 16808 14175 14093 14999 12872 15538 14047 14368 1271
HET 218.68 219.01 166.87 179.15 187.03 187.07 183.56 212 178.79 193.41 177.69 202.16 209.4 297.41 268.96 179.67 267.99 1724 188.09 186.28 203.78 35.66

Objective value at upperbound

z 152.04 177.92 190.22 152.17 344.71 308.09 289.72 103.51 145.27 132.94 166.64 323.33 171.72 151.65 237.38 212.37 259.15 263.2 523.8 217.01

Note: z: final objective value, ROG: relative optimality gap, NCE: Number of cycle time evaluation, HET: Heuristics evaluation time



Table E.3 Result Table, 5-Product 6-Station 7-Step Case

DCBS Avg Dev

z 132.36 130.12 172.04 293.56 231.79 439.96 274.95 268.9 133.56 144.87 303.98 283.3 144.76 171.76 95.604 273.98 429.23 144.43 400.11 152.49
ROG 949 16.94 1275 554 760 419 1896 16.78 997 1553 1386 14.12 789 366 1215 943 1690 579 1254 863 1113 4.60
NCE 917 410 741 2020 1290 2347 1688 2190 445 900 1720 1554 1076 615 441 2213 2623 1387 2653 1320 1428 736
HET 18.447 8.272 14.892 40.308 25.847 46.817 33.378 43.803 8.823 18.476 32.106 30.614 21.29 12.478 8.652 46.116 52.536 25.207 48.78 27.91 28.24 14.42

HQHP Avg Dev

z 140.94 131.38 171.92 207.57 230.41 452.52 290.47 231.73 132 129.44 286.3 284.59 145.26 172.82 94.739 273.36 382.3 108.7 330.11 140.32
ROG 282 1582 1282 4926 8.24 1.29 1260 3552 11.26 2931 2089 13.61 752 3.02 1317 9.68 31.25 4055 36.40 18.05 18.65 13.75
NCE 499 338 562 408 903 1522 1259 1014 290 320 701 1075 668 321 292 1231 1581 417 1017 466 744 424
HET 10.014 6.77 11.276 8.101 17.986 30.404 25.116 20.239 5.838 6.579 13.339 21.271 13.299 6.379 5.779 24.966 31.475 7.47 18.707 9.944 14.75 8.44

HQSS Avg Dev

z 121.76 128.73 155.39 196.89 203.98 197.41 152.89 135.25 132.556 117.26 278.55 199.7 101.84 166.48 95.452 159.8 227.98 84.259 236.17 122.3
ROG 19.02 18.20 24.83 57.37 2227 132.20 113.93 132.18 10.80 42.74 2425 61.90 53.36 6.95 1233 87.62 120.10 81.33 90.66 3545 57.37 4279
NCE 409 251 527 361 1114 220 199 393 244 314 759 650 217 369 311 294 701 263 639 240 424 238
HET 8.222 5.047 10.715 7.17 22.252 4.416 3.976 7.752 4.918 6.419 14.301 12.849 4.347 6.95 6.148 5.989 14.02 4.767 11.797 5.058 8.36 4.66

HQLS Avg Dev

z 118.25 130.12 175.31 278.98 153.15 377.61 272.45 268.4 133.56 149.64 295.05 162.89 134.42 164.77 97.435 271.83 434.63 108.37 418.23 142.09
ROG 2255 16.94 10.64 11.06 6285 21.39 20.05 17.00 997 1185 17.30 9848 16.18 8.06 10.04 10.29 1545 40.99 7.66 16.58 22.27 22.05
NCE 481 282 537 1484 213 1528 1297 1445 302 779 1529 267 959 415 307 1762 1834 790 1990 958 958 601
HET 9.624 5.608 10.846 29.683 4.286 30.384 25.867 28.831 6.038 15.983 29.552 5.357 19.167 7.861 6.019 36.933 36.713 14.371 36.743 20.359 19.01 11.87

HUHP Avg  Dev

eCl

z  140.94 131.38 171.92 207.57 230.41 452.52 290.47 231.73 132 129.44 285.84 284.59 14526 172.82 94.739 273.36 384.26 108.7 330.11 123
ROG 282 1582 1282 4926 824 129 1260 3552 1126 2931 2108 1361 752 302 1317 9.68 30.58 4055 36.40 34.68 19.46 14.18
NCE 490 328 561 410 963 1635 1284 1047 290 319 826 1046 707 325 301 1255 1578 440 1068 238 756 451
HET 9.774 6.559 11.266 8.292 19.338 32.747 25.697 20.97 5.789 6.52 15.983 20.83 14.201 6.289 5.969 26.718 31.626 7.931 19.618 4.977 15.05 9.11

HUSS Avg  Dev

z 121.76 128.73 155.39 196.89 203.98 197.41 152.89 135.25 132.55 117.26 278.55 199.7 101.84 166.48 95.452 159.8 227.98 84.259 236.17 122.3

ROG 19.02 18.20 24.83 57.37 2227 13220 113.93 132.18 10.80 4274 2425 6190 53.36 6.95 1233 87.62 120.10 81.33 90.66 3545 57.37 42.79
NCE 422 244 527 361 1124 220 199 393 244 314 759 650 230 369 311 294 701 276 639 229 425 240
HET 8.362 4.917 10.585 7.2 22592 4.406 4.036 7.882 4.917 6.429 14.632 12.939 4.566 7.931 6.169 6.059 14.02 5.008 11.767 4.917 8.47 4.71

HULS Avg_ Dev

z 118.25 130.12 175.31 260.83 153.15 353.99 283.3 268.4 133.56 149.64 295.05 162.89 134.42 164.77 97.435 271.78 434.63 116.07 402.88 142.09
ROG 2255 16.94 1064 1878 6285 29.49 1545 17.00 997 1185 17.30 9848 16.18 8.06 10.04 10.31 1545 3163 11.76 16.58 22.57 21.58
NCE 456 272 537 1512 213 1600 1322 1475 302 779 1420 267 1011 415 307 1766 1891 934 1761 972 961 590
HET 9.073 5.458 10.726 30.584 4.317 31.906 26.348 29.352 6.088 16.033 28 5.348 20.039 8.402 6.038 35.922 37.714 16.974 33.448 20.76 19.13 11.71

MSA Avg Dev

z  139.19 137.64 173.17 277.04 223.35 423.91 266.04 276.68 133.06 143.17 307.97 245.13 135.31 171.77 98.238 268.34 382.41 120.74 383.35 153.93

ROG 4.11 1056 1201 11.83 11.66 8.13 2294 13,50 10.38 16.91 1238 3190 1542 365 914 11.73 3122 2655 1746 7.61 14.45 8.02
NCE 22265 28079 23305 16474 16364 16154 17158 19676 65459 20059 16325 17657 20110 28847 40091 15556 16391 15675 16541 19246 22572 11763
HET 448.4 564.61 470.26 332.84 332.43 327.08 345.99 396.58 1306.7 419.11 313.23 354.63 404.19 655.5 797.06 322.21 328.89 290.67 316.83 395.32 456.12 237.71

Objective value at upperbound

z 144.92 152.17 193.97 309.83 249.4 458.37 327.08 314.03 146.86 167.38 346.1 323.32 156.18 178.04 107.22 299.82 501.78 152.79 450.26 165.65

Note: z: final objective value, ROG: relative optimality gap, NCE: Number of cycle time evaluation, HET: Heuristics evaluation time
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Figure E.1 ROG Chart, 3-Product 4-Station 5-Step Case
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Figure E.2 ROG Chart, 4-Product 5-Station 6-Step Case
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Figure E.3 ROG Chart, 5-Product 6-Station 7-Step Case
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Figure E.4 ROG Histogram, 3-Product 4-Station 5-Step Case
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Figure E.5 4-Product 5-Station 6-Step Case
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Figure E.6 5-Product 6-Station 7-Step Case
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Figure E.7 Heuristics Evaluation Time, 3-Product 4-Station 5-Step Case
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Figure E.8 Heuristics Evaluation Time, 4-Product 5-Station 6-Step Case
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Figure E.9 Heuristics Evaluation Time, 5-Product 6-Station 7-Step Case
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Table F.1 Result Table of Paired T Test in Group 1

DCBS HQHP DCBS HQSS DCBS HQLS
Mean 11.0618388 16.96530076  Mean 11.0618388 4490240599  Mean 11.0618388 13.821912
Variance 72.68409454 266.7770724  Variance 72.68409454 2343.415588  Variance 72.68409454 131.2462652
Observations 20 20  Observations 20 20  Observations 20 20
df 19 df 19 df 19
t Stat 1.703412631 t Stat 3.049769129 t Stat 1.333795554
p Value, one-tail 0.052396383 p Value, one-tail 0.003296166 p Value, one-tail 0.099020116
t Critical one-tail 1.729131327 t Critical one-tail 1.729131327 t Critical one-tail 1.729131327
p Value, two-tail 0.104792766 p Value, two-tail 0.006592332 p Value, two-tail 0.198040232
t Critical two-tail 2.093024705 t Critical two-tail 2.093024705 t Critical two-tail 2.093024705

DCBS HUHP DCBS HUSS DCBS HULS
Mean 11.0618388 23.16209919  Mean 11.0618388 44.93598228 Mean 11.0618388 13.821912
Variance 72.68409454 845.5542024  Variance 72.68409454 2341.067856  Variance 72.68409454 131.2462652
Observations 20 20 Observations 20 20  Observations 20 20
df 19 df 19 df 19
t Stat 1.833325787 t Stat 3.054323147 t Stat 1.333795554
p Value, one-tail 0.041234997 p Value, one-tail 0.003262979 p Value, one-tail 0.099020116
t Critical one-tail 1.729131327 t Critical one-tail 1.729131327 t Critical one-tail 1.729131327
p Value, two-tail 0.082469994 p Value, two-tail 0.006525959 p Value, two-tail 0.198040232

t Critical two-tail

2.093024705

t Critical two-tail

2.093024705

t Critical two-tail

2.093024705

DCBS MSA
Mean 11.0618388 13.59957251
Variance 72.68409454 78.14667974
Observations 20 20
df 19
t Stat 2.284009325
p Value, one-tail 0.017024454
t Critical one-tail 1.729131327
p Value, two-tail 0.034048908

t Critical two-tail

2.093024705
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Table F.2 Result Table of Paired T Test in Group 2

DCBS HQHP DCBS HQSS DCBS HQLS
Mean 10.74887856 16.2897609 Mean 10.74887856 48.25758115 Mean 10.74887856 17.07803286
Variance 60.55929571 289.5214795 Variance 60.55929571 1354.174255 Variance 60.55929571 340.4439598
Observations 20 20 Observations 20 20 Observations 20 20
df 19 df 19 df 19
t Stat 2.024926782 t Stat 4.664372539 t Stat 1.761548
p Value, one-tail 0.028579614 p Value, one-tail 8.44921E-05 p Value, one-tail 0.047114785
t Critical one-tail 1.729131327 t Critical one-tail 1.729131327 t Critical one-tail 1.729131327
p Value, two-tail 0.057159228 p Value, two-tail 0.000168984 p Value, two-tail 0.09422957
t Critical two-tail 2.093024705 t Critical two-tail 2.093024705 t Critical two-tail 2.093024705
DCBS HUHP DCBS HUSS DCBS HULS
Mean 10.74887856 15.46773947  Mean 10.74887856 48.34610497 Mean 10.74887856 17.02107824
Variance 60.55929571 291.0345992  Variance 60.55929571 1344.147524 Variance 60.55929571 330.8911704
Observations 20 20  Observations 20 20 Observations 20 20
df 19 df 19 df 19
t Stat 1.693450209 t Stat 4.690239101 t Stat 1.718681677
p Value, one-tail 0.053350721 p Value, one-tail 7.96978E-05 p Value, one-tail 0.050962128
t Critical one-tail 1.729131327 t Critical one-tail 1.729131327 t Critical one-tail 1.729131327
p Value, two-tail 0.106701442 p Value, two-tail 0.000159396 p Value, two-tail 0.101924256
t Critical two-tail 2.093024705 t Critical two-tail 2.093024705 t Critical two-tail 2.093024705
DCBS MSA
Mean 10.74887856 16.30581749
Variance 60.55929571 61.69740221
Observations 20 20
df 19
t Stat 2.710095458
p Value, one-tail 0.006941724
t Critical one-tail 1.729131327
p Value, two-tail 0.013883447
t Critical two-tail 2.093024705
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Table F.3 Result Table of Paired T Test in Group 3

DCBS HQHP DCBS HQSS DCBS HQLS
Mean 11.13490979 18.65492071 Mean 11.13490979 57.37301641 Mean 11.13490979 22.26686916
Variance 21.14498036 189.029547  Variance 21.14498036 1831.057019  Variance 21.14498036 486.1550362
Observations 20 20  Observations 20 20  Observations 20 20
df 19 df 19 df 19
t Stat 2.463124883 t Stat 4.916943185 t Stat 2.210135441
p Value, one-tail 0.011746734 p Value, one-tail 4.78641E-05 p Value, one-tail 0.019781803
t Critical one-tail 1.729131327 t Critical one-tail 1.729131327 t Critical one-tail 1.729131327
p Value, two-tail 0.023493468 p Value, two-tail 9.57283E-05 p Value, two-tail 0.039563606
t Critical two-tail 2.093024705 t Critical two-tail 2.093024705 t Critical two-tail 2.093024705
DCBS HUHP DCBS HUSS DCBS HULS
Mean 11.13490979 19.46222941 Mean 11.13490979 57.37301641 Mean 11.13490979 22.56680096
Variance 21.14498036 201.0206442 Variance 21.14498036 1831.057019 Variance 21.14498036 465.7006182
Observations 20 20 Observations 20 20 Observations 20 20
df 19 df 19 df 19
t Stat 2.612889262 t Stat 4.916943185 t Stat -2.297153114
p Value, one-tail 0.008553907 p Value, one-tail 4.78641E-05 p Value, one-tail 0.016572674
t Critical one-tail 1.729131327 t Critical one-tail 1.729131327 t Critical one-tail 1.729131327
p Value, two-tail 0.017107814 p Value, two-tail 9.57283E-05 p Value, two-tail 0.033145348
t Critical two-tail 2.093024705 t Critical two-tail 2.093024705 t Critical two-tail 2.093024705

DCBS

MSA

Mean

Variance
Observations

df

t Stat

p Value, one-tail
t Critical one-tail
p Value, two-tail
t Critical two-tail

11.13490979
21.14498036
20

19
2.045836304
0.02743425
1.729131327
0.054868499
2.093024705

14.45448936
64.37518929
20




LET

Table F.4 Result Table of Paired T Test in All Groups

DCBS HQHP DCBS HQSS DCBS HQLS
Mean 10.98187572 17.30332746 Mean 10.98187572 50.17766785 Mean 10.98187572 17.72227134
Variance 49.74679772 241.0271449 Variance 49.74679772 1808.644977 Variance 49.74679772 320.7573606
Observations 60 60 Observations 60 60 Observations 60 60
df 59 df 59 df 59
t Stat 3.586783632 t Stat 7.143146636 t Stat 3.086838978
P(T<=t) one-tail 0.000340337 P(T<=t) one-tail 7.74113E-10 P(T<=t) one-tail 0.00153998
t Critical one-tail 1.671091923 t Critical one-tail 1.671091923 t Critical one-tail 1.671091923
P(T<=t) two-tail 0.000680673 P(T<=t) two-tail 1.54823E-09 P(T<=t) two-tail 0.00307996
t Critical two-tail 2.000997483 t Critical two-tail 2.000997483 t Critical two-tail 2.000997483
DCBS HUHP DCBS HUSS DCBS HULS
Mean 10.98187572 19.36402269 Mean 10.98187572 50.21836788 Mean 10.98187572 17.84589165
Variance 49.74679772 440.7949241 Variance 49.74679772 1804.426014 Variance 49.74679772 314.6350982
Observations 60 60 Observations 60 60 Observations 60 60
df 59 df 59 df 59
t Stat 3.225352243 t Stat 7.157797911 t Stat 3.132952767
P(T<=t) one-tail 0.001026616 P(T<=t) one-tail 7.31112E-10 P(T<=t) one-tail 0.001347035
t Critical one-tail 1.671091923 t Critical one-tail 1.671091923 t Critical one-tail 1.671091923
P(T<=t) two-tail 0.002053232 P(T<=t) two-tail 1.46222E-09 P(T<=t) two-tail 0.002694069
t Critical two-tail 2.000997483 t Critical two-tail 2.000997483 t Critical two-tail 2.000997483
DCBS MSA
Mean 10.98187572 14.78662645
Variance 49.74679772 67.06293599
Observations 60 60
df 59
t Stat 4.02353924
P(T<=t) one-tail 8.27457E-05
t Critical one-tail 1.671091923
P(T<=t) two-tail 0.000165491
t Critical two-tail 2.000997483
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ANALYTIC MODEL AND SIMULATION MODEL FOR G/G/M QUEUE
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Table G.1 Test Models

Model Arrival Process NSOt
servers
General distribution General distribution with
. with mean of 1 and mean of 1.8 and squared
Analytic Model squared coefficient of coefficient of variation 2
variation (SCV) of 0.25 (SCV) of 0.25
Normal distribution Normal distribution with
with mean of 1 and mean of 1.8 and squared
Simulation Model 1 squared coefficient of coefficient of variation 2
variation (SCV) of 0.25, (SCV) of 0.25, i.e.,
i.e., Normal (1, 0.5) Normal (1.8, 0.45)
Gamma Distribution Gamma Distribution
with mean of 1 and with mean of 1.8 and
Simulation Model 2 squared coefficient of squared coefficient of 2
variation (SCV) of 0.25, variation (SCV) of 0.25,
i.e., Gamma (0.25, 4) i.e., Gamma (0.45, 4)
Table G.2 Test Results
Simulation Tool Arena™, version 5.0
Number of Replications 20
Length of simulation 1000 time units
Average time in system from the analytic model 3.73 time units
. 0.950 C.I. .
0 ?
Average Error in % Half Width Inside C.1.7
Simulation model 1 2.84 31.34% smaller 0.233 No
Simulation model 2 3.32 12.35% smaller 0.436 Yes
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