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SUMMARY 
 
 
 

This research focuses on large-scale manufacturing systems having a number of 

stations with multiple tools and product types with different and deterministic processing 

steps. The objective is to determine the production quantities of multiple products and the 

tool requirements of each station that maximizes net profit while satisfying strategic 

constraints such as cycle times, required throughputs, and investment. The formulation of 

the problem, named OptiProfit, is a mixed-integer nonlinear programming (MINLP) with 

the stochastic issues addressed by mean-value analysis (MVA) and queuing network 

models. Observing that OptiProfit is an NP-complete, nonconvex, and nonmonotonic 

problem, the research develops a heuristic method, Differential Coefficient Based Search 

(DCBS). It also performs an upper-bound analysis and a performance comparison with 

six variations of Greedy Ascent Procedure (GAP) heuristics and Modified Simulated 

Annealing (MSA) in a number of randomized cases. An example problem based on a 

semiconductor manufacturing minifab is modeled as an OptiProfit problem and 

numerically analyzed. The proposed methodology provides a very good quality solution 

for the high-level design and operation of manufacturing facilities. 
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CHAPTER 1  
 

INTRODUCTION 
 
 
 

One of the critical paradigms in recent manufacturing systems is lean 

manufacturing. Lean systems typically have the benefits of lower cost, higher 

profitability, shorter cycle times, flexible manufacturing facilities, and fewer work-in-

process (WIP). Currently, however, most  manufacturing systems are not flexible enough 

to completely implement lean manufacturing and realize the benefits.  Therefore, it is 

very important to consider the basic design of facilities at an early phase of system 

development, particularly when the application area is relatively inflexible with respect to 

reconfiguration and capital-intensiveness.  Semiconductor manufacturing is a typical 

example.  The management of manufacturing systems frequently seeks to understand the 

exact maximum production capacity whenever market demands grow. Since system 

behavior with respect to an increase in throughput and the amount of equipment is very 

difficult to evaluate, particularly in complicated cases such as reentrant systems, a critical 

decision is to determine when to expand and how much additional equipment to deploy.  

Even though slight overestimates or underestimates could significantly effect cost, 

managers in the semiconductor industry have been using rough approximations from 

simple heuristic analysis or past experience. This research is directed at describing an 

appropriate mathematical and engineering approach to find the optimal configuration to 

make a system produce the best profit. In this thesis, we refer to this problem as the 

OptiProfit problem. 
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Research in reentrant manufacturing systems – for example, semiconductor 

manufacturing systems – has been categorized based on three issues: design, operations, 

and control. Design issues deal with the reasonable or optimal designs of capacity, 

throughputs, cycle times, WIPs, and costs in the initial installation or capacity expansions 

of manufacturing systems.  A number of studies concerned with operations issues have 

focused on embracing production planning and product-mix strategies (Horiguchi, 2001; 

Lee, 1997). Also, studies on control issues have included the topics of vehicle control, 

part-release scheduling, dispatching policies with priorities, etc. (Holthaus, 1997; Hwang, 

1997). 

The focus of this research is on the design issues. Reviewing the past literature, 

deterministic models for the optimization of capacity expansions have been frequently 

used, as discussed in Toktray (1998), whereas some recent works in this category 

consider the variability of reentrant manufacturing systems, as seen in Rajagopalan 

(2001). Also, Iwata (2002) used an approximate-cost model in semiconductor 

manufacturing. In addition, queuing network models have given fair solutions to several 

problems involving cycle time and WIP estimations, for example, in Chung (2002) and 

Lin (2001).  

In real situations, however, the management of manufacturing systems has raised 

questions about the integrated effects of key performance measures and design factors 

such as throughput, cycle times, and cost constraints. Three typical problems faced 

during the initial design phase, production and capacity planning, can be summarized as 

follows: (i) minimizing cycle time with expansion cost and throughput constraints met; 
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(ii) minimizing expansion cost with cycle time and throughput constraints met; or (iii) 

maximizing profit with cycle time, expansion cost, and throughput constraints met. 

Regarding category (i), Bard (1999) performed milestone research on capacity expansion, 

in which he determined the capacity or the amount of equipment that minimizes the sum 

of cycle times for a single product. The optimization model had constraints of cost and 

fixed throughput settings. Hopp (2002) approached the capacity decision for problems in 

category (ii) in another way, minimizing the cost with the constraints of allowable cycle 

times. This approach included a delicate mean-value analysis (MVA) in evaluating the 

parameters of the optimization model, and a simple and intuitive heuristic was proposed 

to solve the nonlinear constraints with integer properties.  

This research proposes an approach for problems in category (iii), modeling these 

problems as OptiProfit problems. A systematic solution method is described for the 

situation where the configuration with maximal net profit achievable, while meeting the 

strategic constraints on expansion cost, cycle times, and required minimum throughputs, 

is desired. The most prominent difference of the research in this thesis from the other two 

(Bard, 1999; Hoop, 2002) is that this approach finds the best possible performance and 

capacity of systems in terms of the net profit – the ultimate goal of manufacturing 

systems. From a managerial perspective, it is also possible to incorporate the OptiProfit 

model with business strategies such as the timing and magnitude of facility expansion. 

Table 1.1 compares the characteristics of Bard (1999), Hopp (2002), and this thesis. 
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Table 1.1  Summary of the Comparison with Related Researches 
 

 Bard (1999) Hopp (2002) Sohn (2004) 

Objective Minimizing the average cycle time (queuing 
time) 

Minimizing the investment cost Maximizing the profit (production profit 
against investment cost) 

Decision 
variables 

Number of tools in stations Number of tools in stations In-flow rate into the system 
Number of tools in stations 

Constraints Investment cost 
(Fixed throughput) 

Average cycle times of products 
(Fixed throughput) 

Investment cost 
Average cycle times of products 
Minimum throughput requirements 

Property of 
problem 

Nonlinear knapsack problem (NLIP) with 
nonlinear state equations 

Nonlinear integer problem (NLIP) with 
nonlinear state equations 

Mixed-integer nonlinear problem (NLMIP) 
with nonlinear state equations 

Product mix Single product Multiple products Multiple products 
Eff. processing 
times and yield 

No Yes Yes 

Consideration on 
batching effect 

Yes (Process batching) Yes (Moving batching, setup batching, 
processing batching and unbatching) 

Yes (Moving batching, setup batching, 
processing batching and unbatching, 
product-type-sensitive batching) 

Cycle time 
evaluation base 
model 

GI/G/M queue of Jackson network using 
Hybrid Queuing Network Analyzer (HQNA) 
(Srinivasan, 1995) 

GI/G/M queue of Jackson network using 
Traffic Variability Equations (The queueing 
network analyzer) (Whitt, 1983) 

GI/G/M queue of Jackson network using 
Traffic Variability Equations (The queueing 
network analyzer) (Whitt, 1983) 

Solution 
heuristic 

Four heuristics were tested, 
1. Greedy Ascent Procedure (GAP) 
2. Modified Ascent Procedure (MGAP) 
3. Simulated Annealing Procedure (SAP) 
4. Implicit numeration 

Optimized Queuing Network (OQNet), a 
penalty-based heuristic 

1. Differential Coefficient Based Search 
(DCBS) heuristic 
2. Six variations of Modified GAPs 
3. Modified Simulation Annealing  

Example domain Semiconductor Semiconductor Semiconductor 
Result 
observations 

Comparison of the analytic results from the 
four heuristics 

1. Comparison of the result from OQNet 
heuristic with the result found by naïve 
enumeration in a simple example 
2. Cycle time evaluation with the 
comparison with simulation results using 
ManSimTM 

1. Comparison of the result from DCBS 
heuristic with the results from other basic 
GAP and meta-heuristics 
2. Relative optimality gap analysis using 
upper-bound analysis 
3. Cycle time evaluation with the 
comparison with simulation results using 
ArenaTM 

4
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As discussed in CHAPTER 2, the base OptiProfit model is formulated and solved 

as a MINLP. Generally, MINLP problems are more complicated to solve compared to 

mixed-integer linear programming (MIP) and continuous nonlinear programming (NLP) 

problems. To further describe the properties of MINLP problems, difficulty in tracking 

arises within two major areas, the combinatorial domain and the continuous domain. As 

the number of integer variables increases in MINLP problems such as OptiProfit, one is 

faced with a large combinatorial problem, and the resulting complexity analysis 

characterizes the problems as NP-complete (Nemhauser, 1988). The determination of a 

global solution to a non-convex MINLP is also NP-hard (Murty, 1987) since even the 

global optimization of constrained nonlinear programming problems can be NP-hard 

(Pardalos, 1988) and even quadratic problems with one negative eigenvalue are NP-hard 

(Pardalos, 1991). 

Numerous approaches and algorithms for the solution of MINLP problems such 

as Outer Approximation (OA), Generalized Benders Decomposition (GBD), Extended 

Cutting Plane (ECP), Branch and Bound (BB), and Adaptive Random Search (ARS) have 

been proposed in the literature (Gruhn, 1998; Floudas, 1995). Johnson and Brandeau 

(1999) formulate an MINLP problem for the design of shop floor material handling 

systems and seek solutions using the decomposition of workflow. Basically, the 

decomposition approach for MINLP decomposes the problem into several subproblems. 

Figure 1.1 shows a typical approach to the MIP subproblem and the NLP subproblem that 

is iteratively solved in a solution loop. The algorithms shown assume that nonlinear 

functions are convex to allow for convergence to a global optimum. However, very 

frequently the decomposed subproblems are not guaranteed to find the globally optimal 
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solution when the nonlinear problem is non-convex. Grznar (1994) dealt with an MINLP 

problem to minimize a surrogate-weighted cost of intercellular material movement under 

capacity and part-requirement constraints. They found that the model is neither convex 

nor concave in its relaxed noninteger structure, and that the emphasis in the formulation 

was to suggest “good” solutions rather than optimal ones. 

In CHAPTER 3, more insights into the mathematical properties of OptiProfit as a 

MINLP problem are presented. Showing that OptiProfit is NP-complete, nonconvex, and 

nonmonotone, in CHAPTER 4 the research suggests a heuristic method, Differential 

Coefficient Based Search (DCBS), which is compared in CHAPTER 5 with other 

practically used heuristics and a modified meta-heuristic, Modified Simulated Annealing 

(MSA). Finally, in CHAPTER 6 a practical example of semiconductor manufacturing is 

applied to OptiProfit. 

 
 
 

 

Figure 1.1  A Decomposition Method 

Yes 

Start 

Initialization of 
problem P(x,y) 

Solve subproblem 
P1(x) with fixed y 

Solve subproblem 
P2(y) with fixed x 

 

 Improvement? 
No 

Stop 
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CHAPTER 2  
 

PROBLEM MODELING 
 
 
 
2.1. Problem Description 

The reentrant manufacturing system in the OptiProfit problem is assumed to have 

a number of functional areas in which homogeneous manufacturing equipment forming 

the station is logically located. Figure 2.1 depicts a simple example with two products 

and five stations. Physically, identical tools in a station may be deployed in different 

locations. Material moves along its material-flow route which is deterministic and varies 

according to the product type or product. In the design phase of the reentrant 

manufacturing system, due to the aggregated effects of variability in material flows it is 

highly complex to obtain a reasonable configuration of equipment and to predict system 

performance. Critical design objectives are to reduce cycle times, to increase throughputs, 

and to decrease resource investment costs. Considering the interactions of these 

objectives, the main objective of the work in this thesis is to find a mathematical 

formulation to obtain the maximum profit and the corresponding configurations of 

equipment with constrained total cost, allowable cycle times, and required throughputs.  
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Figure 2.1  A Reentrant Manufacturing System with Multiple Products and Stations 

 
 
 

A tradeoff in the OptiProfit problem is conceptually presented in Figure 2.2. With 

a given basic configuration, the increments in tool counts cause an increase in investment 

cost. If the cost constraints are still not violated, the increments are doable; however, they 

cause a deterioration in the objective function, the profit. The increase in part-releasing 

rates will consume the slack cycle times obtained by the increments of tool counts. The 

profit goes up, but the increased cycle time will be bounded by the cycle time constraints 

and require another increment in production capacity, i.e., additional tools in stations. In 

the general situation with multiple stations and products, the decision as to which station 

and product should be selected to increase or decrease the capacity or production is 

critical.  

In general, with numerous stations and product types, it is impossible to visualize 

the alternatives graphically. Figure 2.3 gives a simple example of the 1-station and 2-

product problem. The number of decision variables is three: the part-releasing rates of 

product 1 and 2 are 1x̂  and 2x̂ , and the integer tool count of the station is y . The 
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objective function is formulated as a 3-dimensional surface in the form of 

0ˆˆ 21 =+++ DCyxBxA , and the feasible region is discontinuous due to the integer 

property of y . The linear sides of each feasible region imply the bounds of minimum 

throughput requirements, which is proportional to the part-releasing rates with 

consideration for the yield rates in stations. The behavior of the nonlinear constraints on 

cycle times is not clearly understood due to the complexity of variability evaluations of 

the incoming product streams to every station.  

 
 
 

 

Figure 2.2  Tradeoffs of the Problem 
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Figure 2.3  A Conceptual Example with Two Products and One Station 
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The performance of manufacturing systems has a large variability with respect to 

the kind of control logic used. The control logic, such as the part-releasing policy, has 

been one of the main concerns in manufacturing. Control rules and their effects on the 

measures of performance have been investigated (Lu, 1991; Kim, 1998). In this thesis, 

we concentrate on the design issues of reentrant manufacturing systems, assuming that a 

system deploys basic and naïve control rules. Hence, the assumptions in the research 

imply that, if better control schemes are found later, a good possibility of additional 

improvement in performance. In this research, we have the same understanding in initial 

system design, i.e., we consider simple and fixed control policies in modeling a system. 

• Part-releasing policy: UNIF (Uniform parts inter-releasing time rule) - Parts to be 

released are selected proportional to the product-mix with constant releasing interval. 

• Dispatching policy: FIFO (First-In-First-Out rule) - The stations serve the arrived 

parts in FIFO order. 

• Batch size determination: MBS (Minimum-Batch-Size rule) - The sizes of the process 

batch and the setup batch are assumed to be identical and fixed to the minimum batch 

size of the manufacturing tool. The moving – arriving-at-equipment and departing-

from-equipment – batch size is assumed to be given and constant between the steps. 

• Setup times: The setup times are assumed to have general statistical distributions with 

different means and SCVs. They may vary according to the equipment type, product 

type, and step. 
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2.2. Formulation 

2.2.1. Notation 

K  Number of products in product-mix 

N  Number of stations in manufacturing facility 

kTH  Minimum required throughput rate of product k  ( Kk ,,2,1 L= ) 

im  Number of existing tools in station i  ( Ni ,,2,1 L= ) 

kp  Margin of unit production rate of product k  for unit period of production time 

considering sales revenue and operational costs, which are proportional to 

production rates 

ic  Fixed cost of a tool in station i  for unit period of production time considering the 

fixed costs such as purchase, installation, and operator wages, which are 

proportional to tool counts 

C  Allowable investment in unit period of production which is available for the new 

design or expansion in the facility1 

kln  The station that product k  visits at step l  

kTCT  Expected total cycle time (flow time) of product k  

klCT  Expected cycle time of product k  at step l  in station kln  

klCTq  Expected waiting time in queue of product k  of step l  in station kln  

klBT  Expected waiting time for batching and unbatching of product k  at step l  in 

station kln  

                                                 
1  The investment in unit period of production is the fiscal amount flattened over the entire investment 
period. For example, if the investment period is five years and $5M in the first year and $3M in the third 
year are invested, the investment in unit period of year is $1.6M without considering inflation and the 
interest rate. 
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klTT  Expected transportation time from station 1, −lkn  to station kln  

kACT  Allowable cycle time of product k  which is predefined strategically in design 

kL  Number of steps in the route of product k  

iα  Survival rate due to yield loss at station i  

klα  Cumulative yield of product k  after completing the first l  steps in its routing (i.e. 

∏ =
=

l

l nkl kl1' '
αα ) 

krb  Part-releasing batch size for product k  

kx̂  Part-releasing rate into the route of product k  in krb -batches (Decision variable) 

iy  Number of tools in station i  (Decision variable) 

 
 
 
2.2.2. Descriptions of the decision variables 

We suppose a reentrant manufacturing system with a product-mix of K  products. 

Each product has a minimum throughput kTH  that the system must meet, where 

Kk ,,2,1 L= . The mathematical model must determine the optimal throughputs kx̂  (the 

decision variables) which incur the maximum total net profit in a single period. Station i , 

where Ni ,,2,1 L= , has iy  (the decision variables) pieces of equipment of the same type, 

each of which performs an identical process. Their mechanical properties are assumed to 

be known, e.g., process times and failure information. The number of pieces of 

equipment directly affects the utilization of the corresponding station as well as the 

expected level of the WIP and, finally, average cycle time. The “hat” symbol, as shown 

in kx̂  implies that the flow is in batch form. 
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2.2.3. Objective function 

We maximize the net profit in a single period of operation, e.g., a month. The 

objective function is linear with respect to the profit and cost. However, in real situations, 

frequently we face a nonlinear property of net profit curve from, e.g., market behavior 

and discounts with production quantity changes. This observation leads to future research 

topics. A dimension analysis on profit coefficients and cost coefficients is given in 

Section 2.3. 

 

Maximize ∑∑
==

+−
K

k
kkkLk

N

i
ii xrbpyc

k
11

ˆα   (Total net profit) 

(2.1) 

 
 
 
2.2.4. Cycle time constraints 

The expected cycle times cannot exceed the assigned limits. These constraints are 

derived from the queuing network models resulting in a complex nonlinear property. The 

expected total cycle time of product k , ),ˆ( yxkTCT , is a function of the decision vectors 

of the part-releasing rates, )ˆ,,ˆ,ˆ(ˆ 21 Kxxx L=x , and the quantity of equipment, 

),,,( 21 Nyyy L=y . 

 

kk ACTTCT ≤),ˆ( yx , Kk ,,2,1 L=   (Cycle time constraints) 

(2.2) 
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The total cycle time terms ),ˆ( yxkTCT present highly complex nonlinear functions 

including queuing approximation. ),ˆ( yxkTCT  has the summation of four components: 

batching waiting time, waiting time in queue, process time, and transportation time. 

Batching waiting time is a function of x̂  only, while the waiting time in queue is a 

function of both x̂  and y . Processing time and transportation time are constant in and 

between stations respectively.  

Traffic variability equations are needed for the waiting time in queue. They form 

a system of equations used to calculate },,,{ 22
2

2
1 Ncacaca L=a , the squared coefficient of 

variation (SCV) of the aggregated incoming material streams for each station. Therefore, 

considering the traffic variability equations, we can extend the cycle time constraints as 

follows 

 

kk ACTTCT ≤),ˆ( yx , Kk ,,2,1 L=    (Cycle time constraints) 

∑
=

⋅+=
N

i
iijjj caabca

1

22 ),ˆ(),ˆ( yxyx , Nj ,,2,1 L=  (Traffic variability equations). 

(2.3) 

 
 
 
2.2.5. Investment and operational cost constraints 

The cost in configuration change cannot exceed the budget limitations. The cost 

coefficient ic  is the converted cost considering equipment installation and operations per 

unit period. 
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Cmyc
N

i
iii ≤−∑

=1

)(    (Investment constraint) 

(2.4) 

 
 
 
2.2.6. Throughput constraints 

The throughput of each product should at least meet the required quantity. 

 

kkkkL THxrb
k

≥ˆα , Kk ,,2,1 L=   (Throughput constraints) 

(2.5) 

 
 
 
2.2.7. Existing equipment constraints 

The changed configuration of equipment still has the existing equipments. 

 

ii my ≥ , Ni ,,2,1 L=    (Existing tool constraints) 

(2.6) 

 
 
 
2.2.8. Integer property 

Changes in the amount of equipment are expressed in integer form. 

iy , positive integer 

(2.7) 
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Table 2.1  Formulation Summary 
 

 
OptiProfit:  

Maximize  ∑∑
==

+−=
K

k
kkkLk

N

i
ii xrbpycz

k
11

ˆα    (Total net profit) 

 
Subject to, 
 kk ACTTCT ≤),ˆ( yx , Kk ,,2,1 L=     (Cycle time constraints) 

 ∑
=

⋅+=
N

i
iijjj caabca

1

22 ),ˆ(),ˆ( yxyx , Nj ,,2,1 L=   (Traffic variability equations) 

 Cmyc
N

i
iii ≤−∑

=1
)(       (Investment constraint) 

 kkkkL THxrb
k

≥ˆα , Kk ,,2,1 L=     (Throughput constraints) 

 ii my ≥ , Ni ,,2,1 L=       (Existing tool constraints) 

 
where, }ˆ,,ˆ,ˆ{ˆ 21 Kxxx L=x , },,,{ 21 Nyyy L=y , iy , positive integer 

 
 
 
 
2.3. Profit and Cost Modeling 

2.3.1. Introduction 

The basic idea of the profit and cost modeling derives from the theory of 

constraints (TOC). TOC models the throughput value of each product in a product mix 

by selling price subtracted by raw material cost. Traditional contribution margin 

modeling involves the direct labor and overhead cost into the margin of the products; 

however, in today’s manufacturing environment, variable costs represent a small 

percentage of total cost with the shift to automation that increases a firm’s fixed 

production costs. TOC finally determines the production priority and optimal product mix 

(Atwater, 1997).   
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In this research, the margin coefficients, kp , are defined according to the 

definition of TOC, i.e., throughput value. With the assumption that most of the modern 

manufacturing cost is related to equipment installation and operation, we calculate the 

manufacturing cost coefficient, ic  as a fixed cost.  

 
 
 
2.3.2. Definitions and assumptions 

We propose some definitions and assumptions for the profit and cost modeling as 

follows. 

(1) The earnings of the business are uniquely obtained from the sales of products. 

(2) The tools in a station have identical purchase cost, installation cost, salvage value, 

and length of lifecycle.  

(3) Tools are replaced with the same ones at the end of their lifecycle. 

(4) Cost in a unit period of production is comprised of the overhead cost, fixed cost, 

and variable cost (Lewis, 1995). 

(5) Overhead cost in a unit period of production is a constant cost incurred in the 

business which is proportional neither to the number of tools nor to the 

throughput of production, e.g., computer clusters, customer support, building 

management, etc.2 The modeling of total overhead cost is not included. 

(6) Total fixed cost in a unit period of production is any cost which is proportional to 

the number of tools but not proportional to the throughput of production. For 

example, the costs converted onto the unit period of production for purchase and 

                                                 
2 In reality, some overhead is variable, rising and falling with production, and other overhead is fixed 
remaining fairly constant on the production time horizon.  
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installation of tools considering salvage values at the end of the life cycle of the 

tools and fixed monthly wages of the operators at the tools would be a fixed cost. 

The cost conversion onto the unit period can include the effect of interest rates 

and inflation. Further models for fixed cost can embrace the depreciation, 

maintenance, taxes, insurance, lease rentals, interest on invested capital, and sales 

programs. 

(7) Total variable cost in a unit period of production is the cost of raw materials and 

manufacturing resources including any operational cost which is proportional to 

the throughput of production but not proportional to the number of tools, e.g., the 

cost of raw materials and utilities consumed for the production in a unit period of 

production. 

(8) Incremental costs or marginal costs are not considered.3 

 
 
 
2.3.3. Margin and cost coefficients 

We can formulation the total fixed cost as 

 

∑
=

N

j
jj yc

1

 

(2.8) 

 

where, jc  is the fixed cost in a unit period of production to operate a tool in station j .  

                                                 
3 If they are considered, they might present a nonlinearity in the objective function. 
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See the cash flow diagrams in Figure 2.4. Given that the tools in station j  have a 

lifecycle length of n  periods over the time horizon, all costs are flattened to equivalent 

and constant costs over all periods. This gives a dimension of  ‘cost in dollars per tool per 

period.’ In the cost analysis for jc  –  the equivalence calculation for equal-payment-

series – we could accommodate the effects of interest rates and inflation. 

 
 
 

Purchase
and installation cost

Salvage value

Periodic (e.g. monthly) wages

...... ......
0 1 2 3 n-1 n 0 1 2 3 n-1 n 0 1 2 3 n-1 n

Equivalent fixed costs (cj )

Equivalent

For a tool in station  j on n periods of time horizon,

 
Figure 2.4  Cost Analysis for jc  (Equivalence Calculation for Equal-Payment-Series) 

 
 
 

A brief and simple dimensional analysis shows that [ jc ] = V/NT, [ jy ] = N. 

Hence, [∑
=

N

j
jj yc

1

] = V/T, where [ξ ] is the dimension of ξ , V is the unit of values, e.g.  

‘dollar’, N is the number of tools, and T is the unit of time periods, e.g.  ‘month.’ 

Therefore, the dimension of the total cost is (V/NT) (N) = V/T, e.g. ‘dollar/month.’ 

In a similar fashion, the margin can be expressed considering the sales revenue, 

yield loss, raw material cost, and operational cost. From the basic notation, kx̂  is the part-

release rate of product k  into the production system and kkkL xrb
k

ˆα  gives the expected 

throughput of product k  considering the cumulative yield rate. kp  is defined as the 
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margin of product k  per unit period – the sales revenue subtracted by the yield loss, raw 

material cost, and operational cost per unit period. Note that kp  describes the margin and 

cost which are proportional to the part-releasing rates or throughputs.4 Multiplying these 

together and summing, we find the gross margin in a unit period of production as 

 

∑
=

K

k
kkkLk xrbp

k
1

ˆα . 

(2.9) 

 

Again, the dimensional analysis gives [ kp ] = V/N, [
kkLα ] = 1, [ krb ] = B, and 

[ kx̂ ] = N/B/T where N is the number of products and B is the number of batches. 

Therefore, [∑
=

K

k
kkkLk xrbp

k
1

ˆα ] = (V/N) (1) (B) (N/B/T) = V/T. 

 
 
 
2.3.4.  Allowable investment constant C 

C is a converted cost value, which has a dimension of V/T, e.g., dollar/month. The 

overhead cost can be considered in the evaluation of the investment constant C. Suppose 

management has an allowable investment of $600 million for the next five fiscal years for 

the manufacturing facility and the monthly overhead cost is $0.5 million, then a simple 

                                                 
4 In brief, (margin coefficient) = (unit sales revenue) – (unit raw material cost) – (unit raw material cost + 
unit operational cost) ( 1 – cumulative yield rate) / (cumulative yield rate). As a simple example, suppose 
we have a monthly sales revenue of $50 with one final product per month. The cumulative yield rate is 
80%. The raw material cost is $20 for a product and the operation cost is $10 for a product including the 
scrap. Then, the margin coefficient is $50 - $20 - $ 10 - ($20 + $10) (1 - 0.8) / (0.8) = $12.5. 
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calculation shows that C is ($600M) / (5 years) (12 months/year) – ($0.5M) = 

($9.5M/month) without any consideration of interest rates, inflation, and so forth. 

 
 
 
2.4. Cycle Time Evaluation 

2.4.1. Introduction 

The cycle time or flow time of production is the expected time elapsed from the 

beginning to finishing of a production process. If a manufacturing system is composed of 

a separate sequence of processing steps such as job shop production, the cycle time of a 

product type in the system would be the sum of the individual cycle time at each 

processing step with an assumption that one processing step is independent from any 

other. This assumption is applied to the cycle time estimation in this research, as depicted 

in Figure 2.5.  

The cycle time at each processing step is again decomposed into four parts: 

batching waiting time, waiting time in queue, processing time, and transportation time. 

The batching waiting time includes the batching and unbatching effects considering 

product-type-sensitive-batching and non-product-type-sensitive batching. The waiting 

time in queue is the time elapsed in front of the processing tools. The products in a given 

batch wait for the process in queue because of the variability of production processes. It 

is assumed that the mean and squared coefficient of variation (SCV) values of processing 

times are all known. Finally, the average transportation time of every transportation route 

between two stations is assumed to be given. Therefore, the main challenge in cycle time 

modeling lies in batching waiting time and waiting time in queue, which are generated by 

the variability in production systems. 
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Figure 2.5  Evaluation of the Total Cycle Time 

 
 
 
2.4.2. Additional notation for cycle time evaluation 

klτ , 
2
klγ  Mean natural batch process time and SCV of product k  at step l  

it̂ , 
2ˆ itc  Aggregated mean natural batch process time and SCV in station i  

it
~

, 
2~
itc  Effective batch process time and SCV in station i  with failure 

kls , 
2
klcs  Mean natural batch setup time and SCV of product k  at step l  

iŝ , 
2ˆ isc  Aggregated batch setup time and SCV in station i  

it , 
2
ict  Effective batch process time and SCV in station i  with setup and failure 

ijmb  Moving batch from station i  to station j  in lots (i.e. Arrival batch at 

station  j  from station i ) 

jpb  Process or setup batch size for station j  

Batching Queueing Processing Transporting

Batching Queueing Processing Transporting

Batching Queueing Processing Transporting End

Start 

Step 1 

Step 2 

Step L

CT1

CT2

CTL

Total Cycle Time = ∑
=

L

i
iCT

1
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jλ  Effective arrival rate at the station j  

jρ  Effective utilization of station j  

krĉ  SCV of part-releasing into the routing of product k  in krb -batches 

 
 
 
2.4.3. Flow rates 

The flow rates from station i  to station j  are 

 

∑
=

==
K

k
kkkj jnxrb

1
10 ][ˆλ  

∑ ∑
=

−

=
+ ===

K

k

L

l
lkklklkkij

k

jninxrb
1

1

1
1, ],[ˆ αλ  

∑
=

==
K

k
kLkLikj inxrb

kk
1

0 ][ˆ αλ  

(2.10) 

 

Station 0 represents the raw material inventory (RMI) and the notation ][S  

represents one if statement S  is true and zero otherwise, mainly following the notation 

and expressions of Hopp (2002). Therefore, the in-flow rate into station j  in the unit of 

individual product is 

 

∑
=

+=
N

i
ijjj

1
0 λλλ . 

(2.11) 
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2.4.4. Batching effects  

A basic assumption in batching analysis is that in every station there is a queue 

for processing batches. The processing queue can be located either physically in front of 

the station or logically at different places in the facility. Every product to be processed in 

the station should form a process batch. As soon as each processing batch is constructed, 

it is physically cumulated or logically registered to be processed in the station on a FIFO 

basis.5 

The batching effect incurs delays in two parts, batching and unbatching. Batching 

occurs before the processing queue in front of each station while unbatching is done after 

the station to form the moving batches. Therefore, the batching effect is decomposed into 

two components U
kl

B
klkl BTBTBT += , where B

klBT  is the batching time in front of the 

station and B
klBT  is the unbatching time before departure to the next step. 

While the product types can be different in processing batches for certain process 

equipment, some kinds of equipment require material of the same type in each processing 

batch, as illustrated in Figure 2.6 (a). Typically, when compared with non-product-type-

sensitive batching, product-type-sensitive batching in Figure 2.6 (b) presents a longer 

wait-to-batch time (WTBT) to form process batches in front of the queue in the 

corresponding station.6  

                                                 
5 If we do not have a FIFO assumption, we could deploy other smarter policies, for example, using a pool 
of individual products to dynamically form the processing batches without a queue for processing batches. 
6 As matter of fact, we can intuitively claim that the variabilities of batch arrivals in front of the batch 
queue in two cases are not identical. While the traffic variability equations assume the non-product-type-
sensitive case, in this study we approximate the variability using the traffic variability equations also in the 
product-type-sensitive case. More thorough considerations of this topic could be studied in future research. 
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Station
Arrivals of multiple

product types
in size of moving batch

Batching
in size of process batch

Queue of materials
in size of process batch

Station
Arrivals of multiple

product types
in size of moving batch

Batching
in size of process batch

Queue of materials
in size of process batch

(a) Product-type-sensitive batching

(b) Non-product-type-sensitive batching
 

 
Figure 2.6  Product-type-sensitive Batching and Non-product-sensitive Batching 

 
 
 
 
 (Case 1)  WTBT in product-type-sensitive stations 
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lkkj 1,αβ and kjS  is the set of steps in station j  of product k . 

(2.12) 
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kjβ , as seen in Figure 2.7, is the sum of cumulative yields of product k  streams in front 

of station j . Likewise, the unbatching process is also analyzed with kj'β  which is the 

sum of cumulative yields of product k  streams after station j . 

 
 
 

 
 

 
Figure 2.7  Example of Batching Analysis at the Product-sensitive-batching Station 

 
 
 
(Case 2)  WTBT in non-product-type-sensitive stations 
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At the station j, there exist three incoming streams, whose arrival rates in 
individual product are 1,ˆ −lkkk rbx α , 1,ˆ +lkkk rbx α , and 4,ˆ +lkkk rbx α  
respectively. Aggregated rates of incoming streams at station j is, hence, 

kjkk
Sl

lkkk
Sl

lkkk rbxrbxrbx
kjkj

βαα ˆˆˆ 1,1, == ∑∑
∈

−
∈

− , where kjS  is the set of 

steps in station j of product k, e.g., }4,2,{ ++= lllSkj . 
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2.4.5. Effective processing time and SCV 

Figure 2.8 describes the calculation steps for the effective batch processing time 

with setup and failure effects. Basically, the natural batch processing time information is 

given including the mean batch processing time and SCV with respect to the product type 

and its step in the route. We aggregate the processing time in order to obtain the 

aggregated batch processing time at each station. From the assumption that failures occur 

on the processing time horizon, the failure adjustment on the processing time is 

performed thereafter.7  On the other hand, the natural setup time information gives the 

mean batch setup time and SCV with respect to the product type and its step in the route, 

which is equivalent to the information of batch processing time. Likewise, the aggregated 

batch setup time is calculated on each station. Finally, the aggregated batch processing 

time and the aggregated batch setup time is integrated into the effective batch processing 

time with failure and setup effects. 

We first calculate the aggregated class of batch size batch jpb  for station j . 

Defining jτ  for the mean process time and 2
jγ  for the SCV of a jpb -batch of lots at 

station j , we obtain 
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(2.14) 

                                                 
7 It is also possible to incorporate the effect of preventive maintenance (PM) (Hopp, 1999). 
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Figure 2.8  Effective Batch Processing Time with Failure and Setup Effects 
 
 
 

From the assumption that the processes in the stations are performed in minimum 

batching size (MBS), the process batches are the same size at each station. Therefore, we 

use MBS as the effective process batch size. 

We consider the effects from random failures in order to obtain the aggregated 

batch process time with failure effect in corresponding stations. An analysis of the 

preemptive failures situation gives the failure-adjusted batch-process time and SCV as 

 

jt~  = jj At / , 
jj

j
j mrmf
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A

+
=  

2~
jtc  = 

j

j
jjjj t
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AAcrct )1()1( 22 −++  

where, jmf  is the mean time of failures, jmr  is the mean time of repairs, and 2
jcr  is the 

SCV of repairs in station j .  

(2.15) 

Aggregated batch processing time - it̂  and 2ˆ itc  

Aggregated batch processing time with failure  
- it

~  and 2~
itc  

Natural batch setup time - kls  and 2
klcs

Aggregated batch setup time 
 - iŝ  and 2ˆ isc  

Effective batch processing time with failure and setup effect - it  and 2
ict  

Natural batch processing time - klτ  and 2
klγ  
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We calculate the aggregated batch setup time in the same manner as for the case 

of aggregated processing time. 
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(2.16) 

 

Finally, the effect of setups imposes another adjustment on the aggregated 

processing time information, jt  and 2
jct . Using the notation in Hopp (2002), 

 

jt  = jt~  + jŝ  

222222 ˆˆ~~
jjjjjj scstctctt +=  

(2.17) 

 

where, jŝ  is the average setup time and 2ˆ jsc  is the average SCV at station j . 

 
 
 
2.4.6. Waiting times in queues 

Products arriving at a station normally come from more than one station. The 

mean interarrival time can be easily computed if the mean interarrival times of the 

streams are known. However, even though the in-flows have their own probabilistic 
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distributions for inter-arrival time, the deviation or SCV of the aggregated in-flows with 

all the distributions cannot be calculated in meaningful form. This difficulty is an 

obstacle in the evaluation of cycle time since the variability information of the aggregated 

streams is required for the queuing network analysis. An experimentally fitted 

distribution might be obtained from numerical analysis, but this approach cannot be 

incorporated with the analytical and optimization models in this study. Consequently, we 

approximate the SCV of arrivals using the traffic variability equations (TVEs) (Whitt, 

1983; Hopp, 2002).  

TVEs are based on the multi-class queuing network model for steady state 

analysis. This queuing network model is known to have an advantage in modeling 

various design factors. For example, it can incorporate the effects of yield loss, batching, 

unbatching, setup, failure, preventive maintenance, and most importantly, variability in 

material flows and processing times. On the other hand, when compared to other models, 

such as the fluid model, it has the disadvantage that it is not effective for the reentrant 

material flows and initial system configuration on a finite time horizon. However, 

because of the advantage of the network model in including the consideration of 

variability, this work uses the network model, assuming that the design time horizon is 

sufficiently long.8 

In order to evaluate the waiting time in queue, TVEs need the expected batch size 

of effective arrivals to station j . The expected batch size of external arrivals can be 

                                                 
8  By the nature of large scale manufacturing systems in general, it is assumed that substantial 
reconfiguration of a facility is not frequent. 
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calculated as ∑
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K

k
klkjj jnxxb

1
0 ][ˆλ , Nj ,,2,1 L= . In front of station j , we obtain 

the effective batch size 
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Defining the effective batch arrival rate, ijijij ebλλ =ˆ , we find the rate sum of 

incoming effective batch streams at station j  as, 
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Now, according to the TVEs, the arrival SCV of externally arriving batches to 

each station is approximated as follows. 
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Between the stations inside of the reentrant queuing network, the SCVs can be 

obtained from the expression of Hopp (2002). 
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(2.21) 

 

This formulation induces a system of equations that requires an inverse 

calculation of an NN ×  matrix. We use a G/G/m queuing model for each station. The 

waiting time in queue at station kln , ),( yxklCTq , is approximated using Kingman’s 

equation considering the batching effect in shared queue 
klny  of tools in station kln , i.e.,  
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This system experiences variability pooling occurring in arrivals when the station 

has a process batch size greater than one. 

 
 
 
2.4.7. Transportation time 

The statistical distribution for transportation time between two stations is hard to 

obtain in real situations due to dynamic properties such as transportation route selection, 

vehicle characteristics, and traffic congestion. Consequently, the variability in 

transportation times affects the variability of arrivals in the next station; however, 

assuming that the variability in transportation is relatively low, we consider only the 

variability analysis from the traffic variability equations without the transportation 

effects.9 

Defining klTT  as the average transportation time of product k  from step 1−l  at 

step l  –  dispatching time from station 1, −lkn  to station kln  – we can simply add it to the 

expected total cycle time along the routes of corresponding products. As a result, 

transportation time is modeled as a constant in each itinerary. Note that 1kTT  is the 

transportation time between part-releasing to the first station in the route of product k . 

                                                 
9 In reality, stable and fixed path systems such as conveyer systems have a relatively low coefficient of 
variation. In contrast, free-path transportation systems such as fork lift systems can present a higher 
coefficient of variation, particularly, when congestion situations are frequent. 
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2.4.8. Expected total cycle time 

Combining the above results, we sum the batching, queuing, processing, and 

transportation times of product k  at station kln . Finally, the expected total cycle time of 

product k  is expressed. 

 
kkkkk TTPTCTqBTTCT +++= ),ˆ()ˆ(),ˆ( yxxyx , 

where ∑
=

=
kL

l
klk BTBT

1
)ˆ()ˆ( xx , ∑

=

=
kL

l
klk CTqCTq

1
),ˆ(),ˆ( yxyx , ∑

=

=
k

kl

L

l
nk tPT

1
, and 

FGIL

L

l
klk k

k

TTTTTT ,
1

+= ∑
=

 kLl ,,2,1 L= , Kk ,,2,1 L= . 

 (2.23) 

 

Note that FGIkTT ,  is the expected transportation time from the last station of 

product k , i.e., station 
kkLn , to the finished good inventory (FGI). 
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CHAPTER 3  
 

MODEL ANALYSIS 
 
 
 
3.1. Model Observation 

Observation of the OptiProfit problem begins with the simplest case, which 

models a system of one product flow with one processing step and one station with 

multiple tools, as illustrated in Figure 3.1 and Figure 3.2. Since it does not have 

aggregated or reentrant flows, the main formulation does not contain the traffic 

variability equations. The process queue is assumed to be stable; in other words, the 

utilization is below 100% assuming that the maximum utilization maxρ is less than or 

equal to, say, 0.98. The processing batch size is given as b . The G/G/m/inf queuing 

model is used to estimate the average cycle time with the waiting time to batch. The cycle 

time constraint prevents the part arrival rate from increasing excessively, and the cost 

constraint gives an upper bound on the number of tools deployed. The minimum 

throughput constraint should be met simultaneously. One-product-one-station model 

analysis can be practically applied to the service and manufacturing systems with one 

type of server or station and one type of customer or material, e.g., bank teller service, 

vehicle repair, fast food service, one-process manufacturing, etc. 

The formulation of the simplest case is as follows. 

 

Objective function: 

Maximize cypxyxz −=),(  
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Constraints: 

ACTyxTCT ≤),(  

Ccy ≤  

maxρb
xty ≥ 10 

THx ≥  

y , positive integer 

where, ),( yxTCT = tyxCTqxBT ++ ),()(  = tt
uy

uctca
x

b y

+⋅














−
⋅









 +
+

−+

)1(22

1)1(222

, 

maxρ≤=
yb
xtu . 

(3.1) 

 

Applying calculus, we easily find that ),( yxTCT  is convex with respect to x  and 

is concave with respect to y . 11   Therefore, it is possible to find the set of x s, 

,),(|{ ACTyxTCTxS jj ≤=  }max tybxTH jρ≤≤  for every integer jy j = , 

 cCj /1 ≤≤ . Extracting the maximum value *
jx  in each jS , i.e., jSx

j
max* = ,  we can 

conclude that the global optimal value ),(max **
jjj

yxzz = . This procedure applies only to 

the simplest case of OptiProfit; the global optimal solution is not easy to find. We see in 

                                                 
10 Theoretically, utilization constraints should be bxty > . However, we assign a value close to one for 

maxρ  for the practical tractability of the equation. maxρ  denotes the allowable highest utilization, which is 
strategically assigned. 
11  0),( 22 >∂∂ xyxTCT  with fixed y . 0),( 22 <∂∂ yyxTCT  with fixed x  for integer-relaxed 
TCT . 
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this chapter that the interactions between the decision variables and the effects of 

aggregated variability drive the intractability of OptiProfit.  

 
 
 

 

Figure 3.1  One-product-one station Case 
 
 
 

     

     

Figure 3.2  TCT Surfaces with Varying Processing Time and Batching Size 
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3.2. Properties of OptiProfit 

3.2.1. Complexity classification 

NP-hard problems are computationally intractable; no NP-hard problem can be 

solved by any known polynomial-time algorithm (Papadimitriou, 1982). This section 

shows the NP-hardness of OptiProfit by reduction to the known NP-hard 0-1 knapsack 

problem. 

Consider a simple version of OptiProfit. Fix the real values kx̂  and we have a new 

set of integer variables }~,,~,~{~
21 Nyyy L=y   where jjj ymy ′+=~ , N

jy }1,0{∈′ , and 

1≥jm .12 In addition, assume the number of products to be one, non-reentrant routing, a 

batching size of one at any station, yield rates of one, a squared coefficient of variation of 

arriving flows and processing time at every station of  one13, and negligible transportation 

time. We formulate these assumptions as follows, and call it P. The problem P is 

specified by the parameters, },,,{ 21 Nccc L=c ,  },,,{ 21 Nttt L=t , 

},,2,1{},,,{ 12211 Nnnn N LL ==n , 1λλ = , and 1ACTACT = . 

 

P:  ,1|),,,,{( ≥NACTλntc all numbers are positive}  

i.e., 

P:  Minimize   z  = yc~  =∑
=

N

i
ii yc

1

~    (Total cost) 

 

 
                                                 
12 The solution of P, if solved correctly, provides the decision as to whether to increase one additional tool 
in each station to make the system more profitable. 
13 The system P has exponential interarrival and processing time at every station. As a result, we can 
observe that the traffic variability equations are trivial. 
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Subject to, 

( ) ACT
yuy

yu
yctqTCT

N

j jj

y
j

N

j
j

j

≤
−

== ∑∑
=

−+

= 1

1)1~(2

1 )~(1~
)~(

)~()~(y , Kk ,,2,1 L=    

where, 
j

j
j y

t
yu

⋅
=

λ
)( , }~,,~,~{~

21 Nyyy L=y , jjj ymy ′+=~  , and N
jy }1,0{∈′ . 

(Cycle time constraints) 

(3.2) 

 

We find that )~(yTCT  is a linear summation of nonlinear functions, )~( jj yctq , 

each of which is a function of jy  only. Therefore, )~( jj yctq  can be replaced by a linear 

function of jy′ ,  i.e., 

 

)()~( jjjjj ymctqyctq ′+=  

( ) jjjjjjjjjj dyamctqymctqmctq +′=+′−+= )()()1( . 

(3.3) 

 

Setting ∑
=

−=
N

j
jdACTb

1
, we can rewrite P as, 

 

P: 

Minimize  ∑
=

′
N

i
ii yc

1

    (Total cost) 
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Subject to, 

bya
kRj

jj ≤′∑
∈

, N
jy }1,0{∈′  (Cycle time constraints) 

(3.4) 

 

Note that ja  and b  are negative. Otherwise, the problem would be trivial. 

Now, we take an instance of a 0-1 knapsack problem Q, as follows. 

 

Q:  

Minimize  ω =∑
=

′
N

i
ii y

1
γ   

Subject to  βα ≥′∑
=

N

j
jj y

1
, N

jy }1,0{∈′  

(3.5) 

 

For arbitrary Q, we claim that it can be transformed to an instance of P. To show 

this, the following relations should hold.  

(1) jc  = jγ , Nj ,,2,1 L=  

We can simply assign the values of jc  to secure the relation. 

(2) ja  = jα− , Nj ,,2,1 L=  

In order to make ja  equivalent to the arbitrary negative value of jα− , we show 

ja  can be set to any real positive number. Since ( ))(1
)(

)(
1)2(2

nun
nu

nctq
j

n
j

j −
=

−+

 where 
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n  is a positive integer is monotonically decreasing with respect to n , 

)()1( jjjjj mctqmctqa −+=  is always negative. With fixed n , )(nctq j is a 

function of jt only in ntxnu jjj =)( , where jx  is also determined from the 

assumption. From the observation that ( ) 0)()1(lim
0

=−+
→ jjjjt

mctqmctq
j

, 

( ) −∞=−+
→

)()1(lim
/ jjjjxnt

mctqmctq
j

, and that )()1( jjjj mctqmctq −+  is 

monotonically decreasing, the value of jt  is uniquely determined to make the 

relation (2) hold. 

(3) b  = β−  

Regarding (3), it is simply possible to have the value of b  equivalent to β−  by 

setting an appropriate value of ∑
=

+−=
N

j
jdACT

1
β . 

 

By this reduction, the NP-hardness of the OptiProfit problem follows from the 

NP-hardness of the 0-1 knapsack problem. 

 
 
 
3.2.2. Convexity 

In this section, we observe that the nonlinear constraints of the integrality-relaxed 

version of OptiProfit, i.e., ),( yxkTCT , show nonconvexity.  Consider the example shown 

in Figure 3.3. 
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Figure 3.3  A Simple Example for Convexity Analysis 
 
 
 

In order to illustrate that ),( yxkTCT  may violate the general property of 

convexity, we show that there exist 1α and 2α  satisfying  

 

[ ]))1(,)1((2),(),( 211121112211 yyxxyxyx αααα −+−+<+ TCTTCTTCT  

[ ]))1(,)1((2),(),( 221222122211 yyxxyxyx αααα −+−+>+ TCTTCTTCT  

10 1 ≤≤ α , 10 2 ≤≤ α . 

(3.6) 

 

Assume a model with two inflows and one station with three tools, i.e., 

[ ]1201 =x , [ ]0102 =x , 02
1 =cx , 5.22

2 =cx , 2=b , 4.0=t , 02 =ct , [ ]31 =y , 

[ ]32 =y . 

MathematicaTM produces numeric results for ),( yxkTCT  with traffic variability 

equations for the two incoming flows.14 Plotting ),( yxkTCT  with respect to 10 ≤≤ α ,  

we have Figure 3.4. 

 
 
                                                 
14 Mathematica code for the convex analysis is given in APPENDIX A. 
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Figure 3.4  Nonconvex Property of OptiProfit 
 
 
 

From the plotted Average Queuing Time in Figure 3.4, it is evident that there are 

two distinguished parts, concave and convex, showing that ),( yxkTCT  is not always 

convex. The non-convexity is due to the difference in variability of the two incoming 

streams. The variability at a station is affected by the tool counts and flow rates of 

preceding stations. Therefore, any system with more than one stream and one station 

inevitably has a varying variability at each station which could result in non-convexity of 

the total cycle times. 
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3.2.3. Monotonicity  

If a nonlinear programming problem has monotonicity, it can become more 

tractable, leading to simplified solution methods and increased insight into the problem 

(Papalambros and Wilde, 2000). After a preliminary analysis of ),( yxkTCT , it is evident 

that it has the nonmonotonic property in the nonlinear constraints. To illustrate this, take 

the example problem in the previous section with a different data set, i.e., [ ]401 =x , 

[ ]082 =x , 02
1 =cx , 5.02

2 =cx , 2=b , 6.0=t , 02 =ct , [ ]31 =y , [ ]32 =y . A plot of the 

numerical results is shown in Figure 3.5. 15 
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Figure 3.5  Nonmonotone Property of OptiProfit 

                                                 
15 Mathematica code for the monotonicity analysis is given in APPENDIX A. 
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The aggregated part-releasing rate increases from four to eight. From the plot, one 

can observe that the average waiting time in queue decreases in the interval [0, 0.4] of α  

approximately. This is not surprising since the inflow 2x  has a much higher variability 

than 1x . One observes that, before the utilization becomes sufficiently high, the total 

cycle time is dominated by the variability terms. The total cycle time sharply increases as 

the utilization approaches one. 

In more detail, ),( yxkTCT  contains the )(xjλ ,  which are the linear functions of 

x . With fixed y , we find the behavior of ),( yxkTCT  in domain of x , xD  as, 

 

∞=),( yxkTCT  as 1
)(

maxmax →
⋅

=
∈∈

jj

jj

SjjSj yb
t

u
kk

xλ
 

where },,2,1|{ kklk LlnS L==  is the set of steps in the routing of product k , 

0),( ≥yxkTCT , 





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



=<
⋅

= Nj
yb

t
D

jj

jj
L,2,1,1

)(
|

x
xx

λ
. 

(3.7) 

 

Figure 3.6 (a) depicts conceptually the behavior of ),( yxkTCT  with respect to a 

single variable 'kx , for example. If the utilization of station j  approaches one as 

U
kk xx '' → , i.e., jjjj tyb→)(xλ , 1>jb  with U

kk xx '' → , the waiting time in queue in 

station j , ),( yxjCTq , approaches infinity. So, therefore, does ),( yxkTCT , but only if it 

has at least one visit to station j  in the routing of product k . Figure 3.6 (b) shows a 

),( yxkTCT  curve, with the possible fluctuation due to the variability-dominated effect in 
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the low utilization region. In this setting, if a certain heuristic is intended to find a 

maximum 'kx , satisfying the cycle time constraints with kACT , it should search from U
kx '  

with decreasing 'kx  until it finds bxk =' . 16   If it searches from the left edge with 

increasing 'kx , the heuristic would stop with axk =' , an incorrect termination point. This 

important observation is reflected in the suggested heuristic for the OptiProfit problem, 

Differential Coefficient Based Search (DCBS) in the next chapter.  

 
 
 

 
Figure 3.6  Behavior of ),( yxkTCT  

                                                 
16 In DCBS, the concept of “look-ahead” is implemented to find b . It first searches for a  with 
increasing kx  with a step size of x∆ . When a  is found, DCBS does not stop but proceeds with a 

predefined number of look-ahead steps, lookaheadn , to find a possible b .  
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3.3. Upper-bound Analysis 

In order to obtain an efficient upper bound for OptiProfit, a maximization 

problem, we define a modified version of OptiProfit, called OptiProfitUB. As mentioned 

above, nonconvexity and nonmonotonicity are properties attributed to the nature of the 

squared coefficient of variation (SCV) in arrival flows at the stations. Consequently, 

OptiProfitUB does not include the squared coefficient of variation of arrivals to each 

station, 2ca , nor, accordingly, the traffic variability equations. Mathematically, 

OptiProfitUB is expressed as follows. 

 

OptiProfitUB:  

Maximize ∑∑
==

+−=
K

k
kkkLk

N

i
ii

UB xrbpycz
k

11

ˆα     (Total net profit) 
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k ACTTCT ≤),ˆ( yx , Kk ,,2,1 L=    (Cycle time constraints) 
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i
iii ≤−∑
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kkkkL THxrb
k

≥ˆα , Kk ,,2,1 L=    (Throughput constraints) 

ii my ≥ , Ni ,,2,1 L=      (Existing tool constraints) 
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kk
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}ˆ,,ˆ,ˆ{ˆ 21 Kxxx L=x , },,,{ 21 Nyyy L=y , iy  are positive integers. 

(3.8) 
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We claim that the optimum value of OptiProfitUB is always greater than or equal 

to that of OptiProfit. To prove this, first conceptualize the waiting time in queue into a 

sum of two parts, i.e., the waiting time in queue by the variability of aggregated arriving 

flows, CACTq , and the waiting time in queue by the variability of processing times, 

CTCTq :  
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(3.9) 

 

For 10 <≤
klnρ , 0),ˆ( ≥yxCA

klCTq  since 2
klnca  is non-negative. Therefore, 

0),ˆ(),ˆ(),ˆ( ≥−= yxyxyx CT
klkl

CA
kl CTqCTqCTq . Thus, 0),ˆ(),ˆ( ≥− yxyx UB

klkl CTqCTq , by 

definition. Consequently, ),ˆ(),ˆ( yxyx UB
kk CTqCTq ≥ . Thus,  ),ˆ(),ˆ( yxyx UB

kk TCTTCT ≥  

for arbitrary x̂  and y . From this result, we find that the feasible region of OptiProfitUB, 

UBD ,  is definitely equal to or larger than that of OptiProfit, D , i.e., UBDD ⊂ . 

Consequently, the optimal objective value of OptiProfitUB is always greater than or 

equal to that of OptiProfit, i.e., ** UBzz ≤ .  

Furthermore, by eliminating 2ca  , the source of nonconvexity, OptiProfitUB is a 

convex and monotone program, and we can express OptiProfitUB in a simplified form: 
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OptiProfitUB: Maximize ),ˆ( −+= yxzzUB  

Subject to, 

kk ACTf ≤−+ ),ˆ( yx , Kk ,,2,1 L=  

Cg ≤+ )(y  

THhk ≥+ )(x , Kk ,,2,1 L=  

where, f , g , and h  represent the cycle time constraints for the upper bounds ( UB
kTCT ), 

investment constraint, and required throughput constraints respectively. 

(3.10) 

 
Although the modified model does not represent any reasonable physical system, 

it mathematically serves to develop upper bounds for OptiProfit. A number of state-of-

the-art commercial solvers are especially efficient for convex MINLP. In this work we 

use GAMSTM to calculate OptiProfitUB for example cases and compare the outputs with 

the results from various heuristic solution approaches, including a meta-heuristic. See 

CHAPTER 5. 

 
 
 
3.4. Heuristic Solution for the General Cases of OptiProfit 

3.4.1. Existing approaches 

MINLP problems such as OptiProfit appear in many different applications in 

engineering design, computational chemistry, computational biology, communication, 

finance, and other areas. In particular, there is a lack of MINLP methods for solving 

large-scale MINLPs arising in real-world applications (Lasschuit, 2004;  Barton, 2004; 

Navarro, 2003; Chattopadhyay, 2002).  
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Currently, scientists and engineers believe that NP-complete problems cannot be 

solved by algorithms with less than exponential computation time, in the worst case. One 

way to approach these problems is to design algorithms that do not guarantee a solution 

to every problem instance, but which solve many if not most problems on average, and 

which run fast. Approximation algorithms have been developed in response to the 

impossibility of solving many problems exactly. In the case of NP-complete problems, 

we sacrifice optimality to find a “good” solution that can be computed efficiently. 

Trading-off optimality in favor of tractability is the paradigm of heuristics and 

approximation algorithms.  

Some of the most popular methods for convex MINLP problems are branch-and-

bound (Beale, 1977), generalized Benders decomposition (GBD) (Geoffrion, 1972), and 

outer approximation (OA) (Duran and Grossmann, 1986). The branch-and-bound method, 

applied to MILP, can be extended in a straightforward way to MINLP, using a number of 

tricks that can be used to improve the performance of branch-and-bound for MINLP. 

There exist powerful programs for solving large-scale MILPs (Mixed Integer Linear 

Programs). These are based on a branch-and-cut framework combined with methods from 

constraint programming. Still, difficulties remain in generalizing MILP-techniques to 

MINLP: (i) The LP relaxation must be replaced by a different relaxation, which is often 

not tight enough or is expensive to generate; (ii) The computation of local solutions can 

be expensive;  (iii) It can be difficult to derive efficient cuts. As a result, only medium-

sized MINLPs can usually be solved by branch-and-cut. In practice, large problems are 

often solved either by a MILP approximation or by meta-heuristics combined with local-

search methods. 
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Generalized Benders decomposition and outer approximation solve the MINLP 

by an iterative process. The problem is decomposed into an NLP subproblem, which has 

the integer values fixed, and an MILP master problem. The NLP subproblems optimize 

the continuous variables and provide an upper bound to the MINLP solution, while the 

MILP master problems have the role of predicting a new lower bound for the MINLP 

solution, as well as new integer variables for each iteration. The search terminates when 

the predicted lower bound equals or exceeds the current upper bound. The main 

difference between GBD and OA is in the definition of the MILP master problem. In the 

GBD algorithm, the MILP master problem is given by a dual representation of a 

continuous space, while in the OA method, it is given by a primal approximation. In 

general, the OA method requires fewer iterations and thus the solution of fewer NLP 

subproblems, but the MILP problems require more computation as compared with GBD. 

For more details, see Grossmann (1990). To meet sufficient conditions for convergence, 

all three solution methods require that the MINLP satisfy some form of convexity 

conditions.  

 

 

3.4.2. Intractability of OptiProfit 

(1) No benefits from the decomposition methods 

OptiProfit does not always have the convexity property and is often used for large 

problems. Moreover, the decomposition into subproblems of NLP and MIP is not always 

possible, which is a condition assumed in decomposition methods such as Generalized 

Bender’s. In Figure 3.7, the continuous variables and discrete variables are coupled in 
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highly complex nonlinear terms; even though we decompose the problem into two 

subproblems, one subproblem inevitably is a nonlinear integer program (NLIP), not an 

integer program as intended. In addition there arises a convergence problem; the 

iterations of the two decomposed subproblems do not necessarily converge to a solution. 

 
 
 
 

 

 

 

 

(a) Typical decomposition iterations   (b) Possible decomposition of OptiProfit 

Figure 3.7  Problem in the Decomposition of OptiProfit 
 
 
 
(2) Strategic situation in execution time 

For practical use, several well-designed commercial solvers for MINLP have been 

produced. For example, GAMS/BARON is a numerical solution widely used in a variety 

of problems including the nonconvex cases. Basically, all solvers ultimately seek an exact 

global solution but the calculation frequently requires an excessive execution time and 

sometimes fails to find the answer. As problem size grows, execution-time cost becomes 

more significant. In addition, in most real situations, the analysts and managers of 

industrial systems need a rapid analysis tool to deliver the outputs for various settings of 

their systems. Therefore, a fast and good heuristic approach is highly desirable in large-

scale and concurrent system development. 

Iterations 
Iterations 

Convex? Convex?

NLP fixing 
integer 
decision 
variables 

MILP fixing  
real decision 
variables 

Subproblem P1 Subproblem P2

Convergence? 
NLP fixing y’s NLIP fixing x’s 

Subproblem P1 Subproblem P2
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3.4.3. Heuristic for OptiProfit 

To find an adequate heuristic for OptiProfit, we review some categories of 

frequently used heuristic algorithms. 

(1) Random methods 

A simple way to generate approximations is to find a random feasible solution – 

i.e. a random permutation. Of course, this method yields poor results in general. But the 

runtime of such simple schemes is typically negligible. 

(2) Successive augmentation (greedy heuristic) 

Under the successive augmentation approach, a partial layout is extended to a 

neighborhood solution at which point the arrangement is produced without any attempt to 

improve it. At each step, a better possible free label is assigned to the current solution. 

This class of algorithm has been applied to optimization problems such as the Graph 

Coloring problem and the Traveling Salesman problem. 

(3) Local search 

Local search has been described as an approach in which intuition and empirical 

tests play a crucial role. In spite of this, local search is one of the most-used techniques to 

approximate many combinatorial problems because of its performance and simplicity. 

The basic principle of this heuristic is to iteratively improve a given solution by 

performing local changes. Normally, changes that improve the solution are accepted 

while those that make it worse are rejected. 

(4) Hill climbing 

A hill climbing algorithm is implemented as follows. An initial arrangement is 

generated. Then, proposed moves in the corresponding neighborhood are generated at 
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random and accepted if their gain is positive or, in order to go across a plateau, if it is 

zero. Once a predefined maximum number of consecutive proposed moves have not 

strictly reduced the cost of the arrangement, the algorithm terminates. 

(5) Full search 

At each step of a full search algorithm, the gain of each possible transition is 

computed in order to choose the move with the maximum gain in the current 

neighborhood. Exploiting the fact that the graph is sparse, and using a priority queue, 

time savings are possible because it is not required to re-compute the moves of nodes that 

are not neighbors of previously interchanged nodes. 

(6) Meta-heuristics 

Generally speaking, a heuristic method is developed and tailored for a particular 

problem domain. In contrast, a meta-heuristic is designed for general use in many 

optimization problems. Meta-heuristics such as genetic algorithm, tabu search, and 

simulated annealing, are developed for combinatorial problems. However, some variants 

are intended to accommodate the continuous variables in optimization models (Corana, 

1987). Although most heuristics tend to become trapped in local optima, meta-heuristics 

have mechanisms to escape them and find a better solution closer to the global optimum. 

Consequently, meta-heuristics can be effective in finding a good solution for nonconvex 

problems. Nevertheless, the question of computation time for excessive trials arises when 

one applies a meta-heuristic such as simulated annealing to an MINLP problem such as 

OptiProfit. Computing time is very sensitive to the initial solution and parameter inputs. 

If one imposes a restriction on computation time, requires a fast heuristic, and still 
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requires good results, meta-heuristics are not necessarily appropriate for large MINLP 

problems. 
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CHAPTER 4  
 

SOLUTION APPROACHES 
 
 
 
4.1.  Introduction 

Due to the intractability of the nonlinear cycle time constraints and integer 

decision variables, an exact solution method is not the best approach for large problems. 

Consequently, we investigate both a heuristic and a modified meta-heuristic and compare 

them with some basic heuristics and a numerical solver for upper bound analysis. See 

Table 4.1. 

(1) Basic GAP uses a greedy ascent procedure (GAP), or hill climbing, in a 

decomposed framework of an integer domain and a real domain. This heuristic 

determines the decision variable for incrementing at each iteration step based on 

certain values of product types and stations. 

(2) Differential Coefficient Based Search (DCBS) has the same heuristic framework 

as basic GAP, but uses unique schemes to determine the changes of decision 

variables at each iteration step.  

(3) Modified Simulated Annealing (MSA) for MINLP, the simulated annealing 

algorithm for continuous variables by Corana (1987),  is applied to OptiProfit. 

(4) Upper bound analysis is used as OptiProfitUB is programmed in GAMSTM for 

convex and monotone MINLP optimization. The MINLP solver used is DICOPT. 
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Table 4.1  Heuristic Solvers and Performance Comparison Method for OptiProfit 
 

 Solver Descriptions Classification 

High Utilization / 
High Profit (HUHP) 

High Utilization / 
Large Slack (HULS) 

High Utilization / 
Small Slack (HUSS) 

High Queuing Time / 
High Profit (HQHP) 

High Queuing Time / 
Large Slack (HQLS) 

1 
Basic Greedy 

Ascent Procedure 
(GAPs) 

High Queuing Time / 
Small Slack (HQSS) 

Intuitive, 
conventional, and 

practical selection of 
tools and product to 
control (6 variants) 

2 Differential Coefficient Based Search 
(DCBS) 

Smarter tool and 
product selection 
using Differential 
Coefficient Based 
Search (DCBS) 

A greedy ascent 
procedure (GAP) or 
hill climbing in the 

decomposition 
framework 

3 Modified Simulated Annealing for MINLP 

Customized for 
MINLP problems with 
a modification from a 

meta-heuristic 

A modified meta-
heuristic of 
simulation 
annealing 

 
Performance Comparison 

Method Upper Bound Formulation Solution Method 

Upper Bound Analysis 
OptiProfitUB ( 2ca -
eliminated version of 

OptiProfit) 

GAMS/DICOPT: A 
numerical solver for convex 

MINLP optimization 
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4.2. Basic Greedy Ascent Procedures 

Figure 4.1 summarizes the decomposition framework for a GAP heuristic in this 

work.17  

 
 
 

 

Figure 4.1  A Greedy Ascent Procedure in Decomposition Framework 
 
 
 
4.2.1. Initialization phase 

The initialization phase is the first phase to find a solution that satisfies all 

constraints except that of cycle time in OptiProfit. Initialization finds a system 

configuration that can manufacture the required throughputs with a stable utilization of 

each station, i.e., less than one. This solution provides a seed with which to begin the 

process of finding a basic feasible solution. 

                                                 
17 The basic GAP framework considers the improvement of the objective at the end of each iteration. 
Therefore, it is not a pure greedy ascent procedure. 

Initialization: Solve Max-Profit-Capacity-Feasible problem 
Solve for tool counts with fixed part releasing rates  

(the required throughputs) and relaxed cycle time constraints 

Iteration phase 1 (Station selection):
Select a station and increase the tool count 

Increase the capacity (tool counts) and make the cycle time constraints feasible 
with the investment constraint secured 

Iteration phase 2 (Product type selection): 
Select a product type and increase the part releasing rate 

Increase part releasing rate and  
consume the slack of cycle times made by tool increments 

the objective 
improves and tool 
increment is 
possible 
considering the 
investment bound 
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Fixing the part-releasing rates, the formulation becomes a nonlinear integer 

program, albeit a trivial one. We call this simplified form the Max-Profit-Capacity-

Feasible formulation. 

 

Max-Profit-Capacity-Feasible (MPCF): 

Maximize  ∑∑
==

+−=
K

k
kkkLk

N

j
jj xrbpycz

k
11

ˆα    (Total net profit) 

 

Subject to, 

maxρρ ≤i , Ni ≤≤1     (Utilization constraints) 

Cmyc
N

i
iii ≤−∑

=1

)(     (Investment constraint) 

kkkkL THxrb
k

=ˆα , Kk ,,2,1 L=   (Throughput constraints) 

ii my ≥ , Ni ,,2,1 L=     (Existing tool constraints) 

where, }ˆ,,ˆ,ˆ{ˆ 21 Kxxx L=x , },,,{ 21 Nyyy L=y , iiii ytΛ= ˆρ , iy , positive integer 

(4.1) 

 

Note that maxρ  is strategically assigned to secure a stable system. A quick 

inspection of the formulation to find a solution is quite straightforward using simple 

algebra. From the required throughput constraints, we fix }ˆ,,ˆ,ˆ{ˆ **
2

*
1

*
Kxxx L=x  where 

kkLkk rbTHx
k

α=*ˆ . From the utilization constraints, we can find iy  maximizing MPCF, 
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max(* =iy  max
ˆ ρii tΛ ), im . Note that },,,{ *

1
*
2

*
1

* yyy L=y  satisfies the investment 

constraint; otherwise, the original problem is infeasible.18 

Even though },,,{ *
1

*
2

*
1

* yyy L=y  satisfies the investment constraint, the original 

OptiProfit problem would typically be infeasible since a nontrivial OptiProfit will have 

strict cycle time constraints. During the first visit in Phase 1, we find a feasible solution 

with which to begin the objective improving iterations. 

 
 
 
4.2.2. Iteration phase 1: Station selection 

The first phase of an iteration is the selection of a station to increase its tool count. 

The total cycle time is monotone, decreasing with respect to tool count. Hence, we can 

control the cycle time below that allowable in the cycle time constraints as long as the 

investment constraint is satisfied. 

Practically, we can increase the tool count of the station with the highest 

utilization, a widely accepted scheme. However, the highest utilization of a particular 

station does not always mean that it has the largest average waiting time in queue. Since 

bottlenecking is more related to the time delay at a station rather than its utilization, it is 

more reasonable to select the station with the highest waiting time in queue. Therefore, 

two schemes in station selection are considered, High Utilization (HU) and High Queuing 

Time (HQ). 

 
 
 

                                                 
18 Physically, the manufacturing system would be unable to achieve even the required minimum 
throughputs with given investment. 
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Table 4.2  Station Selection Schemes 
 

Station selection scheme Description 

Highest Utilization (HU) The station that has the highest utilization  
among stations is selected to have additional tool increment. 

Highest  Queuing Time (HQ) The station that has the largest  
average waiting-in-queue time is selected.19 

 
 
 
4.2.3. Iteration phase 2: Product type selection 

The second iteration phase selects the product type to increase the part-releasing 

rate. As discussed in CHAPTER 3, the total cycle time of a product type is not 

necessarily monotone or increasing. In addition, an increase in the part-releasing rate 

does not guarantee an improvement in the objective, compensating for the tool increase in 

the first phase. Consequently, it is necessary to check if the objective has been increased 

each time the part-releasing rate of the selected product type is increased. If it is not 

improved, the heuristic performs several more iterations. The number of such look-ahead 

iterations is predefined. The heuristic terminates when it cannot find improvement or 

when the investment does not allow additional tool increases.  

We consider three schemes for product type selection. The High Profit (HP) 

scheme selects the product type with the highest unit profit. The Largest Slack (LS) 

scheme chooses the product type with the largest slack time in total cycle time, where 

slack time is the allowable cycle time subtracted by current cycle time evaluated. The 

Small Slack (SS) scheme is similar to Largest Slack except that it chooses the product 

type with the smallest slack time. 

 

                                                 
19 The station with the highest utilization does not always have the longest average waiting-in-queue time. 
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Table 4.3  Product Type Selection Scheme 
 

Product type selection scheme Description 

Highest Profit (HP) The product type that has the biggest unit sales profit  
is selected to increase to consume the slack cycle time. 

Largest Slack Cycle Time (LS) The product type that has the largest slack  
in current average cycle time is selected. 

Smallest Slack Cycle Time (SS) The product type that has the smallest slack  
in current average cycle time is selected.20 

 
 
 
4.2.4. Variations 

The two schemes for station selection with the three schemes for product type selection 

constitute six variants of the Basic GAP heuristics, as follows. 

(1) High Utilization / High Profit (HUHP) scheme 

(2) High Utilization / Large Slack (HULS) scheme 

(3) High Utilization / Small Profit (HUSS) scheme 

(4) High Queuing Time / High Profit (HQHP) scheme 

(5) High Queuing Time / Large Slack (HQLS) scheme 

(6) High Queuing Time / Small Slack (HQSS) scheme 

 
 
 
4.3. Differential Coefficient-based Search Heuristic 

4.3.1. Principal idea 

The fundamental intention in developing the DCBS heuristic is to incorporate 

several decision factors in one indexing system. For example, in station selection, we are 

more likely to select a station that has a lower unit cost for the tool and a greater decrease 
                                                 
20 Since the additional increase of production is frustrated by the firstly met bound of cycle time constraints, 
the product type that has the smallest slack may have significant consideration in increasing the part 
releasing rate. 
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in cycle time with one tool increment. To quantify the combined effects of the factors, we 

include the differential coefficient of cycle time with respect to the change in tool number. 

Therefore, DCBS can be categorized as a steepest-ascent heuristic. Figure 4.2 illustrates 

DCBS at a conceptual level.  

 
 
 

 

Figure 4.2  Flow Diagram of the DCBS Heuristic 

Start

Solve Max-Profit-Capacity-Feasible problem (MPCF)

Cycle time constraints  
feasible? 

Increment an additional tool in the station with least DTCT

Evaluate Decrease in Total Cycle Time per unit cost (DTCT)

Tool increment possible 
in cost constraint? 

Impossible to increase 
other part-releasing rates? 

Evaluate Cycle-Time-Sensitive-Profit index (CTSP)

Increase the part-releasing rate with largest CTSP*

End

No

No

Yes

Yes

Yes

No 

Objective value 
improved? 

Yes

No 

Select other 
tool 

(Rollback)

No improvement in several 
iterations in a row? ** 

End 

Yes

No 

Note: 
* The selected part releasing rate increases stepwise unless the cycle time constraints are violated 
** The number of allowed iterations with non-improving objective is predefined 
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4.3.2. Decrease of the Total Cycle Time Index 

(1) Definition 

The Decrease of Total Cycle Time per unit cost (DTCT) is given by 

 

∑
= ==













∂
∂

=
K

k j

k

j
j y

TCT
c

DTCT
1 '~,~

),ˆ(1

yyxx

yx  for station j . 

(4.2) 

 

The DTCT indexing system quantifies the aggregated effect of tool increment 

cost and cycle time reduction by one tool increment. We select the station with the least 

DTCT, i.e.,  j
j

DTCTj minarg* = . Note that all indices are negative.  

 

(2) Evaluation 

The differential coefficient of the total cycle time with respect to the tool 

increment at station j  is numerically estimated as follows. 

 

ε
ε ),ˆ(),ˆ(),ˆ( yxvyxyx kjk

j

k TCTTCT
y

TCT −⋅+
=

∂
∂

 

(4.3) 

 

where, jv  is a unit vector in which the j th element is one, and ε  is a sufficiently small 

real number. 
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4.3.3. Cycle Time Sensitive Profit Index 

(1) Definition 

The Cycle Time Sensitive Profit (CTSP) index is used in the DCBS heuristic for 

the policy to select an appropriate product type whose part-releasing rate is to be 

increased. In brief, the CTSP index system quantifies the priority in selecting the safest 

product type to increase its rate. The increment in a rate is limited by the cycle time 

constraints. Therefore, in the decision to choose a product, the slack cycle times are 

regarded as resources for the rate increase. The increasing part-releasing rates tend to 

draw a steep curve in the cycle times.  

A description of CTSP reveals three components: 

 

• Unit profit: The unit profit of product k  is given  by kkLk rbp
k

α  considering 

cumulative yield and part-releasing batch size. If a product has a high unit profit, 

it is more likely to be select for increase. 

 

• Slack cycle time: The slack cycle time (SCT) is the allowable cycle time 

subtracted by the current total average cycle time of the product type, i.e., 

kkk TCTACTSCT −= . Typically, the slack is consumed as the part-releasing 

rates increase. At the time a product meets its cycle time limitation, i.e., its slack 

time is zero, the heuristic does not further increase the part-releasing rate. 

Therefore, the more slack time a product has, the more it is likely to have a 

higher allowed in-flow rate.  
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• The partial differential coefficient of total cycle time, with respect to the part-

releasing rate, is given by kk xTCT ˆ),(' ∂∂ yx . This coefficient denotes, intuitively 

speaking, how much the total cycle time (TCT) increases with a unit increase in 

the part-releasing rate. The higher is the coefficient the more is slack consumed, 

so the product with a smaller coefficient value is recommended for selection. 

 

Incorporating the effects of the above three components of the TCT of product 'k , 

the unit increase of the part-releasing rate of product k  is given by 
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(4.4) 

 

Since the increase of in-flows is limited by the first-met constraints,  





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


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kk x

TCT
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ˆ
),ˆ(
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''

yx
 could be a limit on the in-flow of product k . Multiplying by 

kkLk rbp
k

α , one can quantify the profit from the possible increase of product type k .  

The product with the largest CTSP index is considered to be the most profitable product 

to manufacture at a higher rate. 

 

k
k

c CTSPk maxarg=  

(4.5) 
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(2) Evaluation 

We perform numeric differentiations as follows. 

 

k

k

x
TCT

ˆ
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∂
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δ

δ ),ˆ(),ˆ( '' yxyux kkk TCTTCT −⋅+
 

where, ku  is a unit vector in which the k th element is one, and δ  is a sufficiently small 

real number. 

(4.6) 

 
 
 
4.3.4. Heuristic summary 

(1) Initialization Phase 

(1.1) Set the number of look-ahead iterations lookaheadm , the number of look-aheads 

of the part-releasing rate lookaheadn , and the rate-increment step ε .21 

(1.2) Solve the Max-Profit-Capacity-Feasible problem (MPCF), of which the 

solution is simply =*ˆkx kkLk rbTH
k

α , Kk ,,2,1 L=  and 

max(* =iy  max
ˆ ρii tΛ ), im , Ni ,,2,1 L= .  

(1.3) Set ),ˆ( *** yxzz = . 

 

                                                 
21 The increment step size ε  can be modeled differently for different product types, i.e., kε , Kk ≤≤1 . 
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(2) Iteration Phase 1 

(2.1) Set *ˆˆ xx = , *yy = , 0=lookaheadcm , and },,2,1|{ NjS L= . 

(2.2) Evaluate the DTCT index, i.e., jDTCT , Nj ,,2,1 L= . 

(2.3) Obtain the station that has the least value, i.e., j
Sj

DTCTj
∈

= minarg* .  

(2.4) If the investment constraint allows an increment in tools in station *j ,  

 update 1+= jj yy .  

Else,  

 }{\ *jSS = and 

 if S  is empty, 

  stop.  

 Else,  

  go to (2.3). 

(2.5) If cycle time constraints are still violated, go to (2). 

 

(3) Iteration Phase 2 

(3.1) Set },,2,1{ KP L=  and the current number of look-aheads of the part-

releasing rate lookaheadcn  = 0. 

(3.2) Evaluate the CTSP index, i.e., kCTSP , Kk ,,2,1 L= . 
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(3.3) Obtain the product type that has the largest value, i.e., k
Pk

CTSPk
∈

= maxarg*  

(3.4) If current x̂  and y  satisfies the cycle time constraints, mark xx ˆˆ * =  and 

update lookaheadcn  = 0. Else, update lookaheadcn  = lookaheadcn  + 1. 

(3.5) Increase the part releasing rate, i.e., ε+= ** ˆˆ
kk

xx . 

(3.6) If lookaheadcn  < lookaheadn  and max),ˆ( ρρ ≤yx ,  go to (3.4). 

(3.7) If *** ),ˆ( zz >yx ,   

 update ),ˆ( *** yxzz =  and go to (2.1).  

Else,  

 lookaheadcm  = lookaheadcm  + 1, 

 }{\ *jSS = and 

 if S  is empty, 

  stop.  

 Else,  

  go to (2.3). 

 
 



 70

4.4. Modified Simulated Annealing for MINLP 

4.4.1. Simulated Annealing algorithm for continuous variables 

The basic idea of the Simulated Annealing (SA) algorithm originates in the 

analogy of liquids freezing or metals recrystalizing in the process of annealing. A cooling 

process controls melting to be structurally ordered, and to slowly approach a 

thermodynamic equilibrium at a “frozen” ground level at a temperature 0=T . When a 

system has too low an initial temperature or too abrupt cooling, it can form defects or 

freezing in metastable states, i.e., trapped in a local minimum energy state. Adopting this 

concept in an algorithm for global optimization, SA allows uphill moves under the 

control of a temperature parameter. At higher temperatures only the gross behavior of the 

cost function is relevant to the search. As temperature decreases, finer details can be 

developed to get a good final point. While the optimality of the final point cannot be 

guaranteed, the method is able to proceed toward better minima even in the presence of 

many local minima. 

Corana (1987) presents a global optimum algorithm for functions of continuous 

variables, which is derived from the original SA algorithm in combinatorial optimization. 

A detailed description of SA for continuous variables is shown in Table 4.4. A clear 

contrast from the original SA algorithm is that every move of the solution point occurs 

inside the continuous domain, as seen in Step 1. New candidate points are generated 

around the current point ix  applying, in turn, continuous random moves along each 

coordinate direction. The new coordinate values are uniformly distributed in intervals 

centered around the corresponding coordinates of ix . Half the size of these intervals 

along each coordinate is recorded in the step vector v . If the point falls outside the 
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definition domain, a new point is randomly generated until a point belonging to the 

definition domain is found (Corona, 1987).  

 
 
 

Table 4.4  Simulated Annealing Algorithm for Continuous Variables (Corana, 1987) 
 

Step 0 (Initialization) 
Choose 

A starting point 0x . 

A starting step vector 0v . 

A starting temperature 0T . 

A terminating criterion ε  and a number of successive temperature reductions 

to test for termination εN ,. 

A test for step variation sN  and a varying criterionc . 

A test for temperature reduction TN  and a reduction coefficient Tr . 

Set i , j , m , k  to 0. i  is the index denoting successive points, j  denotes 
successive cycles along every direction, m  describes successive step adjustments, 
and k  covers successive temperature reductions. 
Set h  to 1. h  is the index denoting the direction along which the trial point is 
generated, starting from the last accepted point. 
Compute 0f  = )( 0xf . 

Set optx = 0x , optf  = 0f . 

Set un  = 0, nu ,,2,1 L= . 

Set *
uf  = 0f , 1,,1,0 +−−= εNu L . 

 
Step 1 

Starting from the point ix , generate a random point x′  along the direction h : 

x′= ix + hmh
rv e  

where r  is a random number generated in the range [-1, l] by a pseudorandom 
number generator; he  is the vector of the h th coordinate direction; and 

hmv  is  

the component of the step vector mv  along the same direction. 
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Table 4.4  (continued) 
 

 
Step 2 

If the h th coordinate of x′  lies outside the definition domain of f , that is, if 

hh a<′x  or hh b<′x , then return to step 1. 

 
Step 3 

Compute f ′  = )(x′f . 

If iff ≤′  then accept the new point: 

set 1+ix = x′ , 

set 1+if = f ′ , 

add 1 to i , 
add 1 to hn ; 

if optff ≤′ , then set 

optx  = x′ , 

optf = f ′ . 

endif; 
else ( iff >′ ) accept or reject the point with acceptance probability p  (Metropolis 

move): 








 ′−
=

k

i

T
ffp exp . 

In practice, a pseudorandom number p′  is generated in the range [0, l] and is 

compared with p . If pp <′ , the point is accepted, otherwise it is rejected. 

In the case of acceptance: 
set 1+ix = x′ , 

set 1+if = f ′ , 

add 1 to i , 
add 1 to hn . 

 
Step 4 

Add 1 to h . 
If nh ≤ , then go to step 1; 

else set h  to 1 and add 1 to j . 
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Table 4.4  (continued) 
 

 
Step 5 

If sNj < , then go to step 1; 

else update the step vector mv : 

for each direction u the new step vector component uv′  is 

uv′ = 





 −

+
4.0

6.01 su
um

Nncv
u

                if su Nn 6.0> , 

uv′ =

4.0
4.01 su

u

m

Nnc

v
u

−
+

                         if su Nn 4.0< , 

umu vv =′                                                   otherwise. 

Set vv ′=+1m ,  

set j  to 0, 

set un  to 0, nu ,,1L= , 

add 1 to m . 
 
The aim of these variations in step length is to maintain the average percentage 
of accepted moves at about one-half of the total number of moves. The rather 
complicated formula used is discussed at the end of this chapter. The uc , parameter 

controls the step variation along each u th direction. 
 
Step 6 

If TNm < , then go to step 1; 

else, it is time to reduce the temperature kT : 

set kTk TrT ⋅=+1 , 

set ik ff =* , 

add 1 to k , 
set m  to 0. 

 
It is worth noting that a temperature reduction occurs every sN . TN  cycles 

of moves along every direction and after TN  step adjustments. 
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Table 4.4  (continued) 
 

 
Step 7 (terminating criterion) 

If: 

ε≤− −
**

ukk ff ,   εNu ,,1L=  

ε≤− **
optk ff  

then stop the search; 
else: 

add 1 to i , 
set ix  = optx , 

set if  = optf . 

Go to step 1. 
 
 
 
 
4.4.2. Modified Simulated Annealing  

Based on SA for continuous variables, an additional modification is applied to 

accommodate both the continuous real variables and the discrete integer variables. 

Table 4.5 shows pseudocode for the modified parts of MSA for MINLP, i.e., the 

generation of randomized solution alternatives (Step 1) and feasibility testing (Step 2). In 

Step 1, MSA assigns a real variate from a random number generated by a uniform 

distribution from –1 to 1 for any continuous variable when the moving direction of a new 

point is along the continuous dimension. For a new point moving to any discrete 

dimension, it rounds the moving distance to obtain an integer variate. The feasibility 

testing in the original algorithm is a simple comparison of the random alternative with the 

corresponding lower and upper bounds since the original version assumed that there is no 

constraint. In OptiProfit, the feasible region D  is determined by a number of complex 

nonlinear constraints, and each alternative is determined to be in the region so that it can 
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be accepted for the next procedure. Thus, MSA is applicable to any form of MINLP, no 

matter where the nonlinear part is located in the formulation.22 

 
 
 

Table 4.5  Modified Steps in Modified Simulated Annealing for MINLP 
 

 
Step 1 (Modified) 

Starting from the point [ ]D
i

C
ii xxx |= , generate a random point [ ]DC xxx ′′=′ |  

along the vector of the h th coordinate direction [ ]D
h

C
hh eee |= : 

hi exx ′+=′  
D
hm

C
hmh hh

rvrv eee +=′  

where, the superscript C  means the vector with continuous variables, superscript 
D  means the vector with discrete variables, x is the rounded value of a real 
number x  at the first digit, r  is a random number generated in the range [-1, 1] by a 
pseudorandom number generator, 

hmv is the component of the step vector mv  along 
the same direction. 

 
Step 2 (Modified) 

If x′  lies outside the definition domain or feasible region of problem, D , return to 
Step 1. 

 
 

                                                 
22 APPENDIX B contains the MathematicaTM code instance of MSA algorithm for OptiProfit. 
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CHAPTER 5  
 

SOLUTION PERFORMANCE 
 
 
 
 
5.1. Description of Test Cases 

In order to quantify and compare the performance of the heuristics, a number of 

test cases with some randomized parameters are analyzed numerically. The test cases 

have several material flows and stations. The flows are deterministic and can be reentrant. 

The model has parameters for process batching, unit margin, unit cost, investment, 

required throughput, and mean and deviation information. However, the effects of setup, 

yield, and existing tools to simplify basic formulations are not included.  This does not 

incur any fundamental loss of model structure. Figure 5.1 shows an example with two 

arrival flows and three stations.23 

Sixty non-trivial cases are tested, three groups with 20 cases each. The number of 

processing steps is fixed for each group. The randomized parameters include the 

allowable investment cost, allowable total cycle time, average processing times, SCV of 

processing time, unit profit coefficients, unit cost coefficients, and required throughputs. 

Note that the uniform random function, UNIF, has somewhat different parameters in 

order to effectively produce feasible and non-trivial cases with respect to the size of test 

groups. Table 5.1 exhibits the specifications of the test groups. 

The upper bound is obtained from the OptiProfitUB model using a numerical 

solver GAMS/DICOPT for the convex programs.24  

                                                 
23 For the detailed formulation of this example, see APPENDIX C. 
24 For example, the GAMS code for Case Group 3, i.e., five products, six stations, and seven steps, is 
presented in APPENDIX D. 
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Table 5.1  Major Model Parameters of 60 Numerical Cases in Three Groups 
 

Major model parameters 
Group 1 

Case(3, 4, 5) 
Group 2 

Case(4, 5, 6) 
Group 3 

Case (5, 6, 7) 

Number of test cases 20 20 20 

Number of product types 3 4 5 

Number of stations 4 5 6 

Number of process steps 5 6 7 

Unit profit coefficients Randomized in 
UNIF[25, 45] 

Randomized in 
UNIF[20, 40] 

Randomized in 
UNIF[20, 40] 

Unit cost coefficients Randomized in 
UNIF[1.0,5.0] 

Randomized in 
UNIF[1.0,4.0] 

Randomized in 
UNIF[1.0,4.0] 

Allowable investment Randomized in 
UNIF[120.0, 160.0] 

Randomized in 
UNIF[130.0, 160.0] 

Randomized in 
UNIF[220.0, 250.0] 

Allowable  
total cycle times 

Randomized in 
UNIF[23, 26] 

Randomized in 
UNIF[23, 26] 

Randomized in 
UNIF[32, 36] 

Required  
minimum throughputs 

Randomized in 
UNIF[1.0, 2.0] 

Randomized in 
UNIF[1.0, 2.0] 

Randomized in 
UNIF[1.0, 2.0] 

Average  
processing times 

Randomized in 
UNIF[1.0, 3.0] 

Randomized in 
UNIF[1.0, 3.0] 

Randomized in 
UNIF[1.5, 2.5] 

Processing time SCVs Randomized in 
UNIF[0.0, 0.5] 

Randomized in 
UNIF[0.0, 0.5] 

Randomized in 
UNIF[0.2, 0.4] 

Process batching size 2,2,3,3 for product 
types respectively 

2,2,3,3,2 for product 
types respectively 

2,2,3,3,2,2 for product 
types respectively 

Parameters for MSA25 

0v ={0.1, 0.1, 0.1, 
2, 2, 2, 2},  

0T  = 10, ε  = 0.1, 

εN  = 4, SN  = 10, 
c  = {0.02, 0.02, 
0.02, 0.01, 0.01, 

0.01, 0.01},  
TN  = 100, Tr  = 

0.85 

0v ={0.1, 0.1, 0.1, 
0.1, 2, 2, 2, 2, 2},  

0T  = 10, ε  = 0.1, 

εN  = 4, SN  = 10, 
c  = {0.02, 0.02, 
0.02, 0.02, 0.01, 
0.01, 0.01, 0.01, 

0.01},  
TN  = 100, Tr  = 

0.85 

0v ={0.1, 0.1, 0.1, 0.1, 
0.1, 2, 2, 2, 2, 2, 2},  

0T  = 10, ε  = 0.1,  

εN  = 4, SN  = 10,  
c  = {0.02, 0.02, 0.02, 
0.02, 0.02, 0.01, 0.01, 
0.01, 0.01, 0.01, 0.01}, 

TN  = 100, Tr  = 0.85 

 

                                                 
25 The notation follows Corana (1987) 
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Figure 5.1  A Two-product Three-station Case 

 
 
 
5.2. Performance Comparison 

5.2.1. Performance measures 

The calculations for all heuristics and MSA are performed on MathematicaTM 

version 5.0 on a personal computer with an Intel Pentium 3 processor at 2.4 GHz. On the 

same machine, GAMS/DICOPT for upper bound analysis was executed to generate the 

proved optimized solution in less than a few seconds. Since OptiProfitUB is a convex 

MINLP, DICOPT performed well and found the optimal value in most cases.  

To evaluate the performance of the heuristics, we define the relative optimality gap 

(ROG) between the upper bound found from OptiProfitUB and the solution to evaluate 

its performance, as follows, 
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100*

**

×
−

=
z

zzROG
UB

 (%) 

where, *UBz  is the optimal value of OptiProfitUB and *z  is the final objective value 

determined by the corresponding heuristic. 

(5.1) 

 

Note that the upper bound solution is more, sometimes far more, than the true 

maximum value of OptiProfit. Therefore, the gap between a result from the heuristic and 

the optimum is well under the gap between the result and the upper bound. The heuristic 

evaluation time (HET) is obtained by a command program, timeUsed[], on 

MathematicaTM version 5.0. For 60 cases in three groups, the objective values determined 

by heuristic and upper bound analysis are calculated.26  

 
 
 
5.2.2. Results of test cases 

From the average over the cases, it can be seen from Table 5.2 that DCBS 

performed better than any of the GAP-based heuristics – by approximately 2.89% over 

HQLS in Case (3,4,5),  4.72% over HUHP in Case (4,5,6), and 7.52% over HQHP in 

Case (5,6,7)). MSA performed well, just a few percentage points below DCBS. The 

performance of MSA tends to be dependent on the number of iterations with significant 

improvement in the solution at the expense of computational cost. Hence the tradeoff in 

performance and time consumption should be considered in implementing MSA, a meta-

                                                 
26 Detailed results are listed in APPENDIX E. 
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heuristic. The experiment applies to an observation of MSA in a specific situation and is 

not a statement that MSA performs inferior to any other method.  

From the standard deviation of the results, it is found that MSA and DCBS are relatively 

more likely to give a stable result. More often, the basic GAP-based heuristics generate 

locally trapped solutions, e.g., the ROG ratio of 44.92% in HQLS, the 12th case of test 

group 1 in Table E.127  

Figure 5.3 shows the minimum, average, and maximum solutions of ROG in 20 

test cases in each test group. DCBS has a few cases in which it falls behind other 

heuristics; however its average is best among the methods. The maximum of ROG means 

the worst solution the heuristic might find. DCBS shows the best performance in terms of 

the maximum error in all test groups. The standard deviation and gap between the 

maximum and minimum of ROG imply the stability of the solutions in the corresponding 

heuristic. 

Figure 5.3 presents the ROG values with respect to three groups. Since the 

problem size is increasing in terms of the number of product types, stations, and step 

numbers in those groups, the sensitivity of performance can be roughly observed from the 

graph.28 Again, DCBS as well as MSA show a stable performance over the test groups. 

                                                 
27 The stability of results can be illustrated in a histogram as shown in APPENDIX E. 
28 Strictly speaking, the performance sensitivity with respect to problem size should be performed in 
accordance with the change in each dimension, e.g., the number of stations. In this work, the three groups 
have a simultaneous change in three dimensions. 
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Table 5.2  Summary of Performance Comparison 
 

(a) Average ROG 
 

Test Group DCBS GAPs MSA 

Case (3,4,5) 11.06 % 13.82 % (HQLS) ~ 44.94 % (HUSS) 13.60 % 

Case (4,5,6) 10.75 % 15.47 % (HUHP) ~ 48.35 % (HUSS) 16.31 % 

Case (5,6,7) 11.03 % 18.65 % (HQHP) ~ 57.37 % (HQSS) 14.45 % 
 
 

(b) Average HET 
 

Test Group DCBS GAPs MSA 

Case (3,4,5) 10.97 sec 6.83 sec (HUSS) ~ 9.52 sec (HULS) 91.35 sec 

Case (4,5,6) 17.32 sec 11.61 sec (HUSS) ~ 14.35 sec (HUHP) 203.78 sec 

Case (5,6,7) 28.24 sec 8.36 sec (HQUU) ~ 19.13 sec (HULS) 456.12 sec 
 
 

(c) Standard Deviation of ROG 
 

Test Group DCBS GAPs MSA 

Case (3,4,5) 8.53 % 11.46 % (HQLS) ~ 48.41 %(HQSS) 8.84 % 

Case (4,5,6) 7.78 % 17.02 % (HQHP) ~ 36.80 % (HQSS) 7.85 % 

Case (5,6,7) 4.60 % 13.75 % (HQHP) ~ 42.79 (HQSS) 8.02 % 
 



 82

ROG Chart, Case (3,4,5)
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(a) ROG Chart, Case (3,4,5) 
 
 

ROG Chart, Case (4,5,6)
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(b) ROG Chart, Case (4,5,6) 
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ROG Chart, Case (5,6,7)
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(c) ROG Chart, Case (5,6,7) 
 

Figure 5.2  Relative Optimality Gap Charts 
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Figure 5.3  Average Relative Optimality Gap in Test Groups 
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5.2.3. Comparison from statistical inferences 

One can observe if the results reject the following null hypothesis H0 in the one-

sided hypothesis testing problem.  

 

H0: The ROG of DCBS is not less than those of any other heuristics in each test group.  

 

By statistical inference, if the null hypothesis is rejected, i.e., H1 is accepted, the 

experimenter can conclude that there is evidence that DCBS has less ROG than any other 

heuristic in each test group. 

For a testing measure we take the “paired t-test in one tail” between DCBS and all 

other heuristics, which makes seven t-tests. This is done to alleviate the effect of 

variabilities in a factor other than the difference between the two populations. The major 

assumptions in the paired t-test for this study are as follows. 

(1) In each test group, the solutions of all heuristics are related, i.e., dependent scores. 

Since all solutions from heuristics are based on the same OptiProfit instance, they 

are not independent and should be compared in pairs.  

(2) The scale of measurement is in terms of ratio, not ordinal. The scale of 

measurement is expressed in ROG, a ratio. Since there is no sequence or order in 

the randomized test cases, the data is not ordinal.  

(3) The differences of the solutions in comparison have normal distributions or the 

number of samples is relatively large. This assumption is reinforced by the p-p 

plotting of the differences in pairs;  one can confirm that the paired t-test is 

applicable to this study. 
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Table 5.3 lists the P-values of the paired t-tests in one tail among DCBS and each 

of other heuristic in 20 test cases in each test group.29  With a significance level of 

α =0.10, the analysis of all tests reveals that H0 is not plausible. That is, it provides 

evidence that DCBS is the most superior in each test group. For α =0.05, we find three P-

values out of the rejection area α≤P . Interestingly, however, with increasing problem 

size, most paired t-tests reveal that the performance of DCBS improves and is finally the 

best in the largest problem size group, test group 3. In particular, basic GAPs have a clear 

performance deterioration compared to DCBS with respect to the size of problem. In 

conclusion, we can claim that our data set provides evidence that DCBS outperforms all 

other heuristics. 30  In addition, DCBS is found to be more efficient in large-sized 

problems. Also, in the test with 60 sampling pairs, the null hypothesis is found to be 

rejected obviously with less than 0.003 P-values. 

 
 
 

Table 5.3  P-values of Paired T-Tests 
 

Heuristics Group 1 Group 2 Group 3 All Groups

HQHP 0.052 0.029 0.012 0.000

HQSS 0.003 0.000 0.000 0.000

HQLS 0.099 0.047 0.020 0.002

HUHP 0.041 0.053 0.009 0.001

HUSS 0.003 0.000 0.000 0.000

HULS 0.099 0.051 0.017 0.001
MSA 0.017 0.007 0.027 0.000

Number of case pairs 20 20 20 60

Maximum p-value 0.099 0.053 0.027 0.002
H0 accepted heuristics(alpha =.05) 3 2 0 0
H0 accepted heuristics(alpha =.10) 0 0 0 0  

                                                 
29 Detailed test information is in APPENDIX E. 
30 Drawn from 10% significance level tests. 



 86

5.3. Computational Costs  

As expected, the computational cost is much higher for MSA compared with 

other heuristics. The heuristic methods are compared with MSA based on the 

computation time measured in seconds, as shown in Figure 5.4. All heuristics show 

approximately 3% to 8% of the computational cost of MSA. The most costly part is the 

evaluation of total cycle times. This includes complex nonlinear calculations and inverse 

operations on non-sparse KK ×  matrices. The number of cycle time evaluations (NCEs) 

is roughly proportional to the calculation time. Since DCBS does not necessarily 

guarantee the best result among the GAPs for every situation, it is not the best strategy to 

rely only on DCBS. It is recommended to test other heuristics as long as the sum of the 

computational costs is strategically acceptable. 
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Figure 5.4  Average Heuristics Evaluation Time in Test Groups 
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CHAPTER 6  
 

AN EXAMPLE: SEMICONDUCTOR MANUFACTURING 
 
 
 
6.1. Semiconductor Manufacturing 

Semiconductor manufacturing is a typical reentrant manufacturing system. Unlike 

non-reentrant manufacturing systems, such as automobile manufacturing 31 , 

semiconductor manufacturing is one of the most advanced and complex types of 

manufacturing system. Generally, such a system has highly automated equipment and 

control modules, including automated material handling systems (AMHSs).  

Figure 6.1 illustrates the major steps in semiconductor manufacturing; in a real 

situation a production facility can have hundreds of reentrant steps and decades of 

product types and stations. Typically, with a large amount of work in process, the average 

cycle time of products is estimated to be a couple of months. Motivated by the capital-

intensive and process-complicated nature of the industry, much research has been 

directed at improving profit, investment, cycle time, and efficiency. 

 
 

                                                 
31 In some cases, with reworking, automobile manufacturing may be reentrant. 
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Figure 6.1  Semiconductor Production32  
 
 
 
6.2. Problem Description 

A small-sized fabrication facility is modeled and analyzed by DCBS in 

comparison with other basic GAPs. Table 6.1 summarizes the example specification and 

Table 6.2 describes the details of the model. The manufacturing system has three 

products and 12 stations.33  The number of steps and allowable cycle times are different 

for the three products. The control schemes are primitive and fixed, such as UNIF for the 

part-releasing policy. Since the average cycle times, kTCT , flatten the transportation 

times, they are assigned differently for each pair of stations, but are constant.  

 
 
 

                                                 
32 Source: SEMATECH Inc. (www.sematech.org) 
33 The example is similar to one in the mini-fab model in Hopp (2002). 
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Table 6.1  Example Summary 
 

Field of application Semiconductor manufacturing (Minifab) 

General properties of system Reentrant flows 

Number of products 3 

Number of stations 12 

Number of steps in recipes 20, 24, and 26 for each product type 

Allowable cycle times 1000, 1100, 1200 for each product type 

Allowable investment 14.00 

Unit profit of product 3.8, 4.6, 6.2 for each product type 

Unit cost of tool 

0.25, 0.32, 0.12, 0.18, 0.65, 0.48, 0.32, 0.22, 0.15, 0.38, 
0.28, 0.14 

(Proclean, Laser, Alignment, Clean, Photo, Etch,  
Strip, Oxide, Mask, Nitride, Poly, Probe) 

Yield, failures, setup 
information Specified 

Distributions for random 
variates Normal and Gamma 

Part releasing policy UNIF (Uniform inter-release time) 

Lot-selection (dispatching) 
policy FIFO (First In First Out) 

Transportation times Constant 

Transporter capacity 1 
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Table 6.2  Minifab Information 
 

Product 1 Product 2 Product 3
Index 1 2 3

Min TH 1.50 1.20 1.00

Unit profit of product (K$/unit)
Index 1 2 3

Pro./cost 3.8 4.6 6.2

Unit cost of tool in station (K$/hour/unit)
Index 1 2 3 4 5 6 7 8 9 10 11 12

Pro./cost 0.25 0.32 0.12 0.18 0.65 0.48 0.32 0.22 0.15 0.38 0.28 0.14

Fab-in Proclean Laser Alignment Clean Photo Etch Strip Oxide Mask Nitride Poly Probe Fab-out
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Min batch size (MBS) 1 1 1 1 4 1 4 4 4 3 2 1 1 1
Prod. Sens. Batch YES YES YES

MTBF 800 600 600 600 500 500 600 600 600 800 800 800
SCV 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5
Dev. 565.6854 424.2641 424.2641 328.6335 273.8613 273.8613 328.6335 328.6335 424.2641 565.6854 565.6854 565.6854

MTTR 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
SCV 0.15 0.15 0.15 0.15 0.3 0.3 0.3 0.15 0.15 0.15 0.15 0.3
Dev. 0.5809 0.5809 0.5809 0.5809 0.8216 0.8216 0.8216 0.5809 0.5809 0.5809 0.5809 0.8216

Availability 0.9981 0.9975 0.9975 0.9975 0.9970 0.9970 0.9975 0.9975 0.9975 0.9981 0.9981 0.9981
Yield 1 1 0.99 1 1 0.98 1 1 1 0.97 1 0.94
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Table 6.2  (continued) 
 

Product 1 Proc. time P.t. SCV Setup time S.t. SCV Cum. yield Product 2 Proc. time P.t. SCV Setup time S.t. SCV Cum. yield Product 3 Proc. time P.t. SCV Setup time S.t. SCV Cum. yield
Preclean 10 0.06 5 0.06 1.0000 Preclean 12 0.06 5 0.06 1.0000 Preclean 12 0.06 10 0.06 1.0000

Laser 20 0.05 10 0.08 1.0000 Laser 22 0.05 10 0.08 1.0000 Laser 20 0.05 12 0.08 1.0000
Alighnment 25 0.04 10 0.04 0.9900 Alighnment 30 0.04 15 0.04 0.9900 Alighnment 28 0.04 10 0.04 0.9900

Clean 20 0.08 5 0.03 0.9900 Clean 20 0.08 12 0.03 0.9900 Clean 20 0.08 5 0.03 0.9900
Photo 15 0.12 10 0.25 0.9900 Photo 12 0.12 5 0.25 0.9900 Photo 18 0.12 10 0.25 0.9900
Etch 10 0.09 5 0.09 0.9702 Etch 8 0.09 3 0.09 0.9702 Etch 10 0.09 5 0.09 0.9702
Strip 5 0.09 2 0.09 0.9702 Strip 5 0.09 2 0.09 0.9702 Strip 5 0.09 2 0.09 0.9702
Oxide 25 0.04 10 0.04 0.9702 Oxide 20 0.04 10 0.04 0.9702 Clean 24 0.08 15 0.03 0.9702
Mask 15 0.11 5 0.11 0.9702 Mask 20 0.11 15 0.11 0.9702 Nitride 25 0.06 10 0.06 0.9411
Photo 25 0.12 10 0.25 0.9702 Photo 20 0.12 15 0.25 0.9702 Mask 15 0.11 5 0.11 0.9411
Etch 15 0.09 8 0.09 0.9508 Etch 10 0.09 5 0.09 0.9508 Photo 18 0.12 10 0.25 0.9411
Strip 10 0.09 5 0.09 0.9508 Strip 15 0.09 5 0.09 0.9508 Etch 20 0.09 5 0.09 0.9223
Clean 25 0.08 10 0.03 0.9508 Clean 20 0.08 10 0.03 0.9508 Strip 5 0.09 3 0.09 0.9223
Nitride 20 0.06 10 0.06 0.9223 Nitride 15 0.06 5 0.06 0.9223 Oxide 20 0.04 10 0.04 0.9223
Mask 15 0.11 5 0.11 0.9223 Mask 15 0.11 10 0.11 0.9223 Mask 18 0.11 8 0.11 0.9223
Photo 15 0.12 12 0.25 0.9223 Photo 15 0.12 12 0.25 0.9223 Photo 20 0.12 10 0.25 0.9223
Etch 20 0.09 10 0.09 0.9038 Etch 25 0.09 15 0.09 0.9038 Etch 10 0.09 12 0.09 0.9038
Strip 5 0.09 2 0.09 0.9038 Strip 5 0.09 2 0.09 0.9038 Strip 5 0.09 2 0.09 0.9038
Poly 20 0.12 10 0.12 0.9038 Clean 25 0.08 12 0.03 0.9038 Clean 20 0.08 10 0.03 0.9038

Probe 45 0.04 30 0.04 0.8496 Mask 10 0.11 5 0.11 0.9038 Nitride 20 0.06 12 0.06 0.8767
Photo 20 0.12 12 0.25 0.9038 Mask 15 0.11 8 0.11 0.8767
Etch 15 0.09 5 0.09 0.8858 Photo 25 0.12 15 0.25 0.8767
Strip 5 0.09 3 0.09 0.8858 Etch 10 0.09 10 0.09 0.8592
Probe 40 0.04 30 0.04 0.8326 Strip 15 0.09 10 0.09 0.8592

Poly 20 0.12 5 0.12 0.8592
Probe 40 0.04 35 0.04 0.8076  
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6.3. Simulation Modeling for Cycle-time Verification 

6.3.1. Simulation analysis 

As illustrated in Figure 6.2, the ideal verification of the mathematical model 

should be based on real data from the physical system described. Many researchers, 

however, frequently encounter a lack of realistic data and rely on other experimental 

alternatives such as the simulation. A fundamental assumption is that the simulation 

model in use is equivalent or similar enough to represent the real system. However, no 

well-designed simulation can perfectly model a real system. Therefore, even though a 

mathematical model can produce similar solutions through simulation, it is not valid to 

assert that the mathematical model perfectly describes the real system. One can only 

claim that the mathematical model has a comparable accuracy to simulation. However, it 

does have the benefit of saving the high cost of simulation modeling and execution. In 

addition, it can be efficiently evaluated using numerical or heuristic algorithms. 

 
 
 

 
 

(a) Ideal Verification 
 

 
 

(b) Simulation Analysis 
 

Figure 6.2  Model Verification 
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6.3.2. Case modeling  

A simulation model using ArenaTM has been designed for the verification of cycle 

time evaluation, which has several complex approximations and nonlinear formulations. 

The simulation model has the same level of detail as OptiProfit. Figure 6.3 presents a part 

of the simulation model for a station with product-type-sensitive batching. It describes 

four components of cycle time, batching, queuing, processing, and transporting time. 

Also, it has an identical specification of all deterministic and randomized design factors 

such as step information, yield, failure, batch size, etc. The simulation model for each 

station is composed of seven modules, or blocks in ArenaTM. The first is “ENTER”, 

which forms a queue incurring the waiting time for batching. The “BATCH” block 

generates either a product-type-sensitive batch or a non-product-type-sensitive batch. 

Once the batches go through a process queue in “SERVER”, the time delay for 

processing takes place. The next blocks, “SPLIT”, “CHOOSE”, “ASSIGN”, and 

“LEAVE”, sort and dispatch the products in accordance with product type and route 

information. 

Table 6.3 shows four cases of model configuration. The simulation model is built 

on ArenaTM version 5.0 and executed with 20 replications for each of four configurations. 

Each is a snapshot of the iteration process of DCBS for a certain example. Case 1 shows 

the tool count configuration of an MPCF situation, i.e., the initialization phase. Cases 2, 3, 

and 4 are variations in fab-in rates and tool counts maintaining the feasibility. 
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6.3.3. Comparison results 

Table 6.4 presents the differences in the cycle times between the analytic solution and 

the simulation analysis. For the error calculation, the following definition is used, 

assuming the average of two simulation results to be the true cycle time. 

 

Simulation cycle time =  

2
1  [ (Result using Normal distributions) + (Result using Gamma distributions) ], 

Error of cycle time evaluation =  

[ (Analytical cycle time) – (Simulation cycle time) ] / (Simulation cycle time) 

(6.1) 

 

We obtain fair results with less than 10% of error in cycle time evaluation, except 

for Case 1, which has the highest maximum station utilization. The MPCF configuration 

generally violates the cycle time constraints and has a very high average utilization 

compared to the feasible configurations in iteration steps. The error tends to be larger 

with the higher maximum station utilization. Also, it can be observed that the analytically 

evaluated cycle times are generally higher than the simulation results. The source of error 

can be traced to several causes including the nature of the approximation functions and 

the effect of reentrant flows. For example, OptiProfit uses a multi-class queuing network 

model with the G/G/m/inf queue approximation. The simulation analysis, using specific 

statistical distributions such as Normal or Gamma, tends to give smaller results for 

waiting time in queue when compared to the G/G/m/inf queue approximation. 34 

                                                 
34 Experimental observations using Normal and Gamma are shown in APPENDIX G. 



 95

Table 6.3  Testing Cases for Cycle-time Evaluation 
 

(a) Case 1
Product 1 Product 2 Product 3

Index 1 2 3
Fab-in rate 1.78 1.45 1.25
Fab-in SCV 0.00 0.00 0.00

Proclean Laser Alignment Clean Photo Etch Strip Oxide Mask Nitride Poly Probe Average
Index 1 2 3 4 5 6 7 8 9 10 11 12

Tool count 2 3 3 2 8 2 1 1 2 2 2 5
Exp. util. 0.6579 0.7780 0.9742 0.7329 0.9320 0.6831 0.6598 0.5728 0.6912 0.6548 0.6268 0.9714 0.7446

(b) Case 2
Product 1 Product 2 Product 3

Index 1 2 3
Fab-in rate 1.78 1.45 1.25
Fab-in SCV 0.00 0.00 0.00

Proclean Laser Alignment Clean Photo Etch Strip Oxide Mask Nitride Poly Probe Average
Index 1 2 3 4 5 6 7 8 9 10 11 12

Tool count 2 3 4 2 9 2 2 1 2 2 2 6
Exp. util. 0.6579 0.7780 0.7307 0.7329 0.8284 0.6831 0.3299 0.5728 0.6912 0.6548 0.6268 0.8095 0.6747
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Table 6.3  (continued) 
 

(c) Case 3
Product 1 Product 2 Product 3

Index 1 2 3
Fab-in rate 1.80 1.46 1.36
Fab-in SCV 0.00 0.00 0.00

Proclean Laser Alignment Clean Photo Etch Strip Oxide Mask Nitride Poly Probe Average
Index 1 2 3 4 5 6 7 8 9 10 11 12

Tool count 2 3 4 2 9 2 2 1 2 2 2 6
Exp. util. 0.6820 0.8027 0.7529 0.7579 0.8573 0.7050 0.3415 0.5895 0.7145 0.6868 0.6510 0.8347 0.6980

(d) Case 4
Product 1 Product 2 Product 3

Index 1 2 3
Fab-in rate 1.80 1.50 1.70
Fab-in SCV 0.00 0.00 0.00

Proclean Laser Alignment Clean Photo Etch Strip Oxide Mask Nitride Poly Probe Average
Index 1 2 3 4 5 6 7 8 9 10 11 12

Tool count 2 3 4 3 9 3 2 1 3 2 2 7
Exp. util. 0.7500 0.8703 0.8144 0.5529 0.9388 0.5105 0.3745 0.6337 0.5213 0.7792 0.7120 0.7736 0.6859  
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Figure 6.3  Simulation Model for a Station in ArenaTM 
 
 
 

Table 6.4  Comparison of Cycle Times from Evaluation and Simulation 
 

Utilization 
Cycle Times 

Evaluated, Simulated w/ Normal dist.’s, Simulated w/ Gamma dist.’s 
Error in % Case 

Min Ave Max Prod.1 Prod.2 Prod.3 

1 0.573 0.745 0.974 
1126.4, 960.0, 944.1 

18.32% 
1305.4, 1123.4, 1101.1 

17.40% 
1408.6, 1247, 1219.8 

14.22% 

2 0.330 0.675 0.828 
886.9, 835, 849.5 

5.32% 
1041.9, 989.1, 991.5 

5.23% 
1145.0, 1104.8, 1113.2 

3.29% 

3 0.341 0.698 0.857 
901.2, 843.5, 854.9 

6.16% 
1058.7, 993.6, 996.56 

6.43% 
1152.2, 1107.6, 1112.3 

3.84% 

4 0.375 0.686 0.939 
929.6, 839.28, 850.85 

9.66% 
1076.84, 984.7, 982.5 

9.48% 
1152.4, 1070.2, 1076.4 

7.37% 

 
 
 
6.4.  Heuristic Solutions 

Six variants of the basic GAP heuristics and DCBS are applied to the 

semiconductor manufacturing example. Performance is compared in terms of final net 

profit obtained, i.e., objective value. Applying DCBS to the example problem, seven 

iterations provide a heuristic solution. The summary of the iteration information is 

presented in Table 6.5. 
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Table 6.5  Iterations in DCBS Heuristics 
 

Part releasing rate of products Tool count in stations Profit Investment
Product 1 Product 2 Product 3 Proclean Laser Alignment Clean Photo Etch Strip Oxide Mask Nitride Poly Probe

Initialization 1.780 1.450 1.250 2 3 4 2 9 2 1 1 2 2 2 6 9.074 12.11
Iteration 1 1.780 1.450 1.583 2 3 4 2 9 2 2 1 2 2 2 6 10.8186 12.43
Iteration 2 1.780 1.566 1.583 2 3 4 3 9 2 2 1 2 2 2 6 11.1722 12.61
Iteration 3 1.780 1.640 1.583 2 3 4 3 9 2 2 1 3 2 2 6 11.3626 12.76
Iteration 4 1.780 1.674 1.583 2 3 4 3 9 2 2 1 3 2 2 7 11.379 12.9
Iteration 5 1.780 1.674 1.914 2 3 4 3 10 2 2 1 3 2 2 7 12.7812 13.55
Iteration 6 1.780 1.806 1.914 2 4 4 3 10 2 2 1 3 2 2 7 13.0684 13.87
Iteration 7 1.780 1.844 1.914 2 4 5 3 10 2 2 1 3 2 2 7 13.1232 13.99  
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Table 6.6 shows the results of the basic heuristics and DCBS on the example 

problem. It is assumed that the basic GAP heuristics are executed in the same iteration 

framework as is DCBS. They differ only in station selection and production selection 

scheme, which are critical in the efficiency of the heuristic. 

In selecting a station for tool increment, the HQ scheme tends to be superior to 

HU. In selecting a product-type for in-flow increment, SS and HP outperformed LS in 

this specific example, even though LS performed better in most cases discussed in 

CHAPTER 4. The choice of the production of highest-profit products only (HP) was not 

always a good way to increase the fab-in rates. As expected, the results show that DCBS 

generates a better solution, from 0.91 (7.45%) to 3.49 (26.60%) respectively.35 

 
 
 

Table 6.6  Performance Comparison of DCBS with Basic Heuristics 
 

Basic GAP Heuristics Fab-in rates 

Station sel. Prod. sel. Prod. 1 Prod. 2 Prod. 3 
Investment 
(UB: 14.00) 

Obj. value 

High util. High profit 1.78 1.45 1.73 13.87 10.29 

High util. Large slack 2.42 1.45 1.25 13.99 9.63 

High util. Small slack 1.78 1.72 1.58 13.87 10.60 

High q. t. High profit 1.78 1.45 2.06 14.00 12.21 

High q. t. Large slack 2.92 1.45 1.25 14.00 11.52 

High q. t. Small slack 1.78 1.98 1.66 14.00 12.16 
 

DCBS Fab-in rates 

Station sel. Prod. sel. Prod. 1 Prod. 2 Prod. 3 
Investment 
(UB: 14.00) 

Obj. value 

DTCT CTSP 1.78 1.85 1.91 13.99 13.12 

                                                 
35 The percentage difference is based on the less objective values, e.g., (13.12 – 12.21) / 12.21 = 7.45%. 
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CHAPTER 7  
 

CONCLUSION 
 
 
 
7.1. System-level Design of Large-scale Manufacturing Systems 

This research focuses on an optimization model for operations capacity planning 

integrating the critical design factors of net profit, investment, cycle times, and 

throughputs at the initial design phase of large-scale manufacturing systems. The 

OptiProfit model is based on mixed integer non-linear programming. From the basic 

concept of the theory of constraints in cost accounting, the objective function, net profit, 

is constructed using margin and cost analysis. The cycle time evaluation, which includes 

complex non linear characteristics, requires a clear breakdown into four components: 

batching, queuing, processing, and transporting time. Mean-value analysis, queuing 

network models, and traffic variability equations are used to effectively evaluate the 

cycle times considering yield rates, batching effect, failure and repair, and variability 

aggregation. 

OptiProfit is found to be intractable from its properties of NP-completeness, 

nonconvexity, and nonmonotonicity. The complexity classification of NP-completeness 

of OptiProfit is derived and proved from a reduction to the binary knapsack problem. By 

showing counterexamples, OptiProfit has constraints that are not always convex and 

monotone. 

To handle the intractability, heuristics are considered. Based on an intuitive and 

practical approach, six variants of greedy ascent procedures and a modified meta-

heuristic, MSA for MINLP, are introduced. A new heuristic approach, Differential 
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Coefficient Based Search is suggested to integrate the design factors such as profit, 

investment, cycle time, and throughput. A relaxed and convex version of OptiProfit, 

OptiProfitUB, provides an upper bound analysis and a quantified performance measure 

for the test heuristics in a number of numerically randomized cases. The heuristics are 

implemented and compared with exact solutions of OptiProfitUB in terms of the relative 

optimality gap. DCBS performs better than any other GAP-based heuristic. The 

performance of MSA is dependent on the number of iterations, which is proportional to 

the execution time cost, DCBS shows a superior result over MSA for OptiProfit problems. 

Finally, a semiconductor manufacturing system with 12 stations and three product 

types is modeled as an OptiProfit problem. This model is successfully formulated and 

implemented, including the detailed system characteristics such as reentrant material 

flows. A simulation model at the same level of fidelity is constructed on ArenaTM for the 

validation of cycle-time evaluation. The numerical results show that DCBS performs well 

in this specific example.  

 
 
 
 
7.2. Next Steps 

This research is conceived for the initial and system-level design and planning 

encompassing a wider spectrum of decision factors for manufacturing systems. The 

results can be used as a basic solution for the next analysis such as control policies, e.g., 

the part-releasing scheme. This research is expected to be an excellent beginning point 

for the study of control issues, which are significant decisions for performance 

improvement.  
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Other further work could include more realistic modeling of the objective function. 

With a consideration of pricing and cost fluctuations and exceptions, the objective can be 

nonlinear or piecewise linear. Finally, an elaborated financial analysis will enrich the 

model quality. 
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APPENDIX A  
 

EXAMPLES FOR NONCONVEXITY AND NONMONOTONICITY ANALYSIS 
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Figure A.1  Nonconvexity 
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Figure A.2  Nonmonotonicity 
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APPENDIX B  
 

MODIFIED SIMULATED ANNEALING (MSA) USING MATHEMATICATM 
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ts = TimeUsed[]; 
Clear[x, y, metaTCT, TCT, CTq, rho, SCT, minCTq, maxCTq, maxProfit, minSCT,  
maxSCT, xTEMP, yTEMP, zTEMP, slackINVEST, i, j, k, s]; numCal = 0; 
dx = 0.01; 
maxINCx = 10; 
maxLookahead = 10; 
gMaxLookahead = 3; 
xINIT = TH; 
yINIT = initConf[xINIT]; 
While[True, 
    metaTCT = funcTCT[xINIT, yINIT]; 
    TCT = metaTCT[[1]]; 
    rho = metaTCT[[2]]; 
    If[tctViolated[TCT], , Break[]]; 
    maxRho = rho[[1]]; jc = 1; 
    For[j = 2, j <= NE, j++,  
      If[maxRho < rho[[j]], maxRho = rho[[j]]; jc = j]]; 
    yINIT = funcINCy[yINIT, jc, 1]; 
    ]; 
x[0] = Join[xINIT, yINIT]; 
Nx = NP + NE; 
typeVector = Join[Table["Real", {NP}], Table["Integer", {NE}]]; 
For[s = 1, s <= Nx, s++; n[s] = 0]; 
v[0] = Join[Table[0.1, {NP}], Table[2, {NE}]]; 
T[0] = 10; 
e = 0.1; 
Ne = 4; 
Ns = 10; 
vc = Join[Table[0.02, {NP}], Table[0.01, {NE}]]; 
Nt = 100; 
rt = 0.85; 
i = 0; j = 0; m = 0; k = 0; 
h = 1; 
cuthalf[vec_, l_] := {Table[vec[[s]], {s, 1, l}],  
      Table[vec[[s]], {s, l + 1, Length[vec]}]}; 
ev[h_] := Table[If[s == h, 1, 0], {s, 1, Nx}]; 
(*Start of SA *) 
( 
    (*Step 0*) 
    f[0] = -funcObj[xINIT, yINIT]; 
    xopt = x[0]; fopt = f[0]; 
    For[u = 1, u <= Nx, u++, n[u] = 0]; 
    For[u = 0, u >= -Ne + 1, u--, fstar[u] = f[0]]; 
    (*Step 1*) 
    Label[Step1]; 
    xprime = x[i]; 
    If[h <= NP, xprime[[h]] = x[i][[h]] + Random[Real, {-1, 1}] v[m][[h]]]; 
    If[h > NP,  
      xprime[[h]] = x[i][[h]] + Round[Random[Real, {-1, 1}] v[m][[h]]]]; 
    (*Step 2*) 
    xx = cuthalf[xprime, NP][[1]]; xy = cuthalf[xprime, NP][[2]]; 
    For[s = 1, s <= NE, s++, If[xy[[s]] < 1, Goto[Step1]]]; 
    For[s = 1, s <= NP, s++, If[xx[[s]] < TH[[s]], Goto[Step1]]]; 
    If[Sum[c[[s]] xy[[s]], {s, 1, NE}] > INVEST, Goto[Step1]]; 
    metaTCTprime = funcTCT[xx, xy]; 
    For[s = 1, s <= NP, s++,  
      If[metaTCTprime[[1, s]] > ACT[[s]], Goto[Step1]]]; 
    For[s = 1, s <= NE, s++,  
      If[metaTCTprime[[2, s]] > MAXUTIL, Goto[Step1]]]; 
    (*Step 3*) 
    fprime = -funcObj[xx, xy]; 
    If[fprime <= f[i], 
      x[i + 1] = xprime; 
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      f[i + 1] = fprime; 
      i++; 
      n[h]++; 
      If[fprime < fopt, 
        xopt = xprime; 
        fopt = fprime; 
        ], 
      pprime = Random[Real, {0, 1}]; pMet = Exp[(f[i] - fprime)/T[k]]; 
      If[pprime < pMet, 
        x[i + 1] = xprime; 
        f[i + 1] = fprime; 
        i++; 
        n[h]++; 
        ] 
      ]; 
    (*Step 4*) 
    h++; 
    If[h <= Nx, Goto[Step1], h = 1; j++]; 
    (*Step 5*) 
    If[j < Ns, 
      Goto[Step1], 
      vtemp = Table[0, {Nx}]; 
      For[u = 1, u <= Nx, u++, 
        If[n[u] > 0.6 Ns,  
          vtemp[[u]] = v[m][[u]] (1 + vc[[u]] (n[u]/Ns - 0.6)/0.4)]; 
        If[n[u] < 0.4 Ns,  
          vtemp[[u]] = v[m][[u]] /(1 + vc[[u]] (0.4 - n[u]/Ns)/0.4)]; 
        If[0.4 Ns <= n[u] <= 0.6 Ns, vtemp[[u]] = v[m][[u]]]; 
        ]; 
      v[m + 1] = vtemp; 
      j = 0; 
      For[u = 1, u <= Nx, u++, n[u] = 0]; 
      m++; 
      ]; 
    (*Step 6*) 
    If[m < Nt, Goto[Step1], 
      T[k + 1] = rt T[k]; 
      fstar[k] = f[i]; 
      k++; 
      m = 0; 
      ]; 
    (*Step 7*) 
    Print["Checking termination condition"]; 
    isTerminiting = True; 
    For[u = 1, u <= Ne, u++,  
      If[Abs[fstar[k] - fstar[k - u]] <= e, , isTerminating = False]]; 
    If[fstar[k] - fopt <= e, , isTerminating = False]; 
    If[isTerminating, , 
      i++; 
      x[i] = xopt; 
      f[i] = fopt; 
      Goto[Step1]; 
      ]; 
    ); 
(*End of SA*) 
Print["Terminated============"]; 
Print["xopt"]; 
Print[xopt]; 
Print["fopt"]; 
Print[fopt]; 
xOptSA = xopt; zOptSA = fopt; numCalSA = numCal; timeSA = ts - 
TimeUsed[];  
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APPENDIX C  
 

FORMULATION FOR A SIMPLE CASE 
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(The system with 2 product types and 3 stations in Figure 5.1) 
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Effective batch size: 
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APPENDIX D  
 

GAMS CODE FOR A 5-STATION 6-PRODUCT 7-STEP CASE 
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* 5-Station 6-Product 7-Step Case 
(1/20) * 
* All randomized parameters have 
been generated in Mathematica(TM) * 
 
Sets 
i product type / 1*5 / 
j station / 1*6 / 
k station (aux) / 1*6 / 
l station including outer system / 
0*6 / 
m station including outer system 
(aux)  
/ 0*6 / 
 
Scalar INVEST investment limitation  
/ 239.369 / ; 
Scalar MAXUTIL maximum utilization 
of station / 0.99 / ; 
 
Parameters 
 
p(i) sales profit of product type i 
/        1       25.4601 
         2       27.0266 
         3       22.9961 
         4       34.7797 
         5       39.7105   / 
c(j) operation cost of station j 
/        1       3.099 
         2       1.31298 
         3       3.87242 
         4       3.13781 
         5       3.91858 
         6       2.48155   / 
cx(j) arriving SCV (from outside of 
system) to station j 
/        1       0.0 
         2       0.0 
         3       0.0 
         4       0.0 
         5       0.0 
         6       0.0     / 
ca(j) arriving SCV to station j 
/        1       0.0 
         2       0.0 
         3       0.0 
         4       0.0 
         5       0.0 
         6       0.0     / 
xb(j) arriving-from-outside batching 
size of station j 
/        1       1 
         2       1 
         3       1 
         4       1 
         5       0 
         6       0       / 
pb(j) process batching size of 
station j 
/        1       2 
         2       2 
         3       3 

         4       3 
         5       2 
         6       2       / 
t(j) average processing time of 
station j 
/        1       1.89393 
         2       1.86584 
         3       2.21652 
         4       1.77928 
         5       2.31486 
         6       2.02615  / 
ct(j) processing SCV of station j 
/        1       0.232227 
         2       0.207838 
         3       0.279101 
         4       0.391742 
         5       0.252781 
         6       0.371712  / 
TH(i) required minimum throughput of 
product type i 
/        1       2.24986 
         2       2.1857 
         3       2.41258 
         4       2.20876 
         5       1.51087  / 
ACT(i) allowable cycle time of 
product type i 
/        1       34.8007 
         2       32.8516 
         3       34.4177 
         4       32.2136 
         5       35.9503  / ; 
 
Table eb(l,m) effective batching 
size of station j 
    0   1   2   3   4   5   6 
0   1   2   2   3   3   2   2 
1   2   2   2   3   3   2   2 
2   2   2   2   3   3   2   2 
3   3   3   3   3   3   3   3 
4   3   3   3   3   3   3   3 
5   3   2   2   3   3   2   2 
6   2   2   2   3   3   2   
2       ; 
 
Variables 
z total profit in unit period 
x(i) part releasing rate 
y(j) number of tool 
lamda(l,m) inter-station flow rate 
lamda_t(l) in-station flow rate 
lamdah(l,m) inter-station flow rate 
in effective batch 
lamdah_t(l) in-station flow rate in 
effective batch 
et(j) effective processting time 
ect(j) effective SCV processting 
time 
rho(j) rho value 
TCT(i) cycle times ; 
 
Positive variable x; 
Integer variable y; 
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* Bounds * 
x.lo(i) = TH(i) ; 
y.lo('i') = 1 ; 
rho.lo(j) = 0 ; 
rho.up(j) = MAXUTIL ; 
TCT.lo(i) = 0 ; 
lamda.lo('0','0') = 0 ; 
lamda.lo('0','1') = TH('1') ; 
lamda.lo('0','2') = TH('2') + 
TH('3') ; 
lamda.lo('0','3') = TH('4') ; 
lamda.lo('0','4') = TH('5') ; 
lamda.lo('0','5') = 0 ; 
lamda.lo('0','6') = 0 ; 
lamda.lo('1','0') = TH('5') ; 
lamda.lo('1','1') = 0 ; 
lamda.lo('1','2') = TH('1') + 
TH('2') ; 
lamda.lo('1','3') = TH('3') + 
TH('5') ; 
lamda.lo('1','4') = 0 ; 
lamda.lo('1','5') = TH('4') ; 
lamda.lo('1','6') = 0 ; 
lamda.lo('2','0') = 0 ; 
lamda.lo('2','1') = TH('4') + 
TH('5') ; 
lamda.lo('2','2') = 0 ; 
lamda.lo('2','3') = TH('2') ; 
lamda.lo('2','4') = TH('1') + 
TH('3') ; 
lamda.lo('2','5') = TH('2') ; 
lamda.lo('2','6') = 0 ; 
lamda.lo('3','0') = TH('2') ; 
lamda.lo('3','1') = TH('3') ; 
lamda.lo('3','2') = TH('4') + 
TH('5') ; 
lamda.lo('3','3') = 0 ; 
lamda.lo('3','4') = TH('1') ; 
lamda.lo('3','5') = 0 ; 
lamda.lo('3','6') = TH('4') + 
TH('5') ; 
lamda.lo('4','0') = 0 ; 
lamda.lo('4','1') = 0 ; 
lamda.lo('4','2') = 0 ; 
lamda.lo('4','3') = TH('4') ; 
lamda.lo('4','4') = 0 ; 
lamda.lo('4','5') = TH('1') + 
TH('5') ; 
lamda.lo('4','6') = TH('1') + 
TH('3') ; 
lamda.lo('5','0') = 0 ; 
lamda.lo('5','1') = TH('2') ; 
lamda.lo('5','2') = 0 ; 
lamda.lo('5','3') = TH('1') ; 
lamda.lo('5','4') = TH('4') ; 
lamda.lo('5','5') = 0 ; 
lamda.lo('5','6') = TH('2') + 
TH('5') ; 
lamda.lo('6','0') = TH('1') + 
TH('3') + TH('4'); 
lamda.lo('6','1') = TH('5') ; 
lamda.lo('6','2') = 0 ; 
lamda.lo('6','3') = TH('3') ; 

lamda.lo('6','4') = 0 ; 
lamda.lo('6','5') = TH('2') ; 
lamda.lo('6','6') = 0 ; 
lamda_t.lo(l) = sum(m, 
lamda.lo(l,m)) ; 
lamdah.lo(l,m) = lamda.lo(l,m) / 
eb(l,m) ; 
lamdah_t.lo(l) = sum(m, 
lamdah.lo(l,m)) ; 
 
Equations 
profit define objective function 
 
eq_lamda00 flow rate from station to 
station 
eq_lamda01 flow rate from station to 
station 
eq_lamda02 flow rate from station to 
station 
eq_lamda03 flow rate from station to 
station 
eq_lamda04 flow rate from station to 
station 
eq_lamda05 flow rate from station to 
station 
eq_lamda06 flow rate from station to 
station 
eq_lamda10 flow rate from station to 
station 
eq_lamda11 flow rate from station to 
station 
eq_lamda12 flow rate from station to 
station 
eq_lamda13 flow rate from station to 
station 
eq_lamda14 flow rate from station to 
station 
eq_lamda15 flow rate from station to 
station 
eq_lamda16 flow rate from station to 
station 
eq_lamda20 flow rate from station to 
station 
eq_lamda21 flow rate from station to 
station 
eq_lamda22 flow rate from station to 
station 
eq_lamda23 flow rate from station to 
station 
eq_lamda24 flow rate from station to 
station 
eq_lamda25 flow rate from station to 
station 
eq_lamda26 flow rate from station to 
station 
eq_lamda30 flow rate from station to 
station 
eq_lamda31 flow rate from station to 
station 
eq_lamda32 flow rate from station to 
station 
eq_lamda33 flow rate from station to 
station 
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eq_lamda34 flow rate from station to 
station 
eq_lamda35 flow rate from station to 
station 
eq_lamda36 flow rate from station to 
station 
eq_lamda40 flow rate from station to 
station 
eq_lamda41 flow rate from station to 
station 
eq_lamda42 flow rate from station to 
station 
eq_lamda43 flow rate from station to 
station 
eq_lamda44 flow rate from station to 
station 
eq_lamda45 flow rate from station to 
station 
eq_lamda46 flow rate from station to 
station 
eq_lamda50 flow rate from station to 
station 
eq_lamda51 flow rate from station to 
station 
eq_lamda52 flow rate from station to 
station 
eq_lamda53 flow rate from station to 
station 
eq_lamda54 flow rate from station to 
station 
eq_lamda55 flow rate from station to 
station 
eq_lamda56 flow rate from station to 
station 
eq_lamda60 flow rate from station to 
station 
eq_lamda61 flow rate from station to 
station 
eq_lamda62 flow rate from station to 
station 
eq_lamda63 flow rate from station to 
station 
eq_lamda64 flow rate from station to 
station 
eq_lamda65 flow rate from station to 
station 
eq_lamda66 flow rate from station to 
station 
eq_lamda_t(l) flow rate in station 
eq_lamdah(l,m) flow rate from 
station to station 
eq_lamdah_t(l) flow rate in station 
eq_et1 equation effective processing 
time 
eq_et2 equation effective processing 
time 
eq_et3 equation effective processing 
time 
eq_et4 equation effective processing 
time 
eq_et5 equation effective processing 
time 

eq_et6 equation effective processing 
time 
eq_ect1 equation effective SCV 
processing time 
eq_ect2 equation effective SCV 
processing time 
eq_ect3 equation effective SCV 
processing time 
eq_ect4 equation effective SCV 
processing time 
eq_ect5 equation effective SCV 
processing time 
eq_ect6 equation effective SCV 
processing time 
eq_rho1 equation rho 
eq_rho2 equation rho 
eq_rho3 equation rho 
eq_rho4 equation rho 
eq_rho5 equation rho 
eq_rho6 equation rho 
eq_CT1 cycle time constraint 
eq_CT2 cycle time constraint 
eq_CT3 cycle time constraint 
eq_CT4 cycle time constraint 
eq_CT5 cycle time constraint 
eq_TCT(i) cycle time constraints 
eq_investment investment 
constraint ; 
 
profit .. z =e= sum(i, p(i)*x(i)) - 
sum(j,c(j)*y(j)) ; 
 
eq_lamda00 .. lamda('0','0') =e= 0 ; 
eq_lamda01 .. lamda('0','1') =e= 
x('1') ; 
eq_lamda02 .. lamda('0','2') =e= 
x('2') + x('3') ; 
eq_lamda03 .. lamda('0','3') =e= 
x('4') ; 
eq_lamda04 .. lamda('0','4') =e= 
x('5') ; 
eq_lamda05 .. lamda('0','5') =e= 0 ; 
eq_lamda06 .. lamda('0','6') =e= 0 ; 
eq_lamda10 .. lamda('1','0') =e= 
x('5') ; 
eq_lamda11 .. lamda('1','1') =e= 0 ; 
eq_lamda12 .. lamda('1','2') =e= 
x('1') + x('2'); 
eq_lamda13 .. lamda('1','3') =e= 
x('3') + x('5') ; 
eq_lamda14 .. lamda('1','4') =e= 0 ; 
eq_lamda15 .. lamda('1','5') =e= 
x('4') ; 
eq_lamda16 .. lamda('1','6') =e= 0 ; 
eq_lamda20 .. lamda('2','0') =e= 0 ; 
eq_lamda21 .. lamda('2','1') =e= 
x('4') + x('5') ; 
eq_lamda22 .. lamda('2','2') =e= 0 ; 
eq_lamda23 .. lamda('2','3') =e= 
x('2') ; 
eq_lamda24 .. lamda('2','4') =e= 
x('1') + x('3'); 
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eq_lamda25 .. lamda('2','5') =e= 
x('2') ; 
eq_lamda26 .. lamda('2','6') =e= 0 ; 
eq_lamda30 .. lamda('3','0') =e= 
x('2') ; 
eq_lamda31 .. lamda('3','1') =e= 
x('3') ; 
eq_lamda32 .. lamda('3','2') =e= 
x('4') + x('5') ; 
eq_lamda33 .. lamda('3','3') =e= 0 ; 
eq_lamda34 .. lamda('3','4') =e= 
x('1') ; 
eq_lamda35 .. lamda('3','5') =e= 0 ; 
eq_lamda36 .. lamda('3','6') =e= 
x('4') + x('5'); 
eq_lamda40 .. lamda('4','0') =e= 0 ; 
eq_lamda41 .. lamda('4','1') =e= 0 ; 
eq_lamda42 .. lamda('4','2') =e= 0 ; 
eq_lamda43 .. lamda('4','3') =e= 
x('4') ; 
eq_lamda44 .. lamda('4','4') =e= 0 ; 
eq_lamda45 .. lamda('4','5') =e= 
x('1') + x('5') ; 
eq_lamda46 .. lamda('4','6') =e= 
x('1') + x('3') ; 
eq_lamda50 .. lamda('5','0') =e= 0 ; 
eq_lamda51 .. lamda('5','1') =e= 
x('2') ; 
eq_lamda52 .. lamda('5','2') =e= 0 ; 
eq_lamda53 .. lamda('5','3') =e= 
x('1') ; 
eq_lamda54 .. lamda('5','4') =e= 
x('4') ; 
eq_lamda55 .. lamda('5','5') =e= 0 ; 
eq_lamda56 .. lamda('5','6') =e= 
x('2') + x('5') ; 
eq_lamda60 .. lamda('6','0') =e= 
x('1') + x('3') + x('4') ; 
eq_lamda61 .. lamda('6','1') =e= 
x('5') ; 
eq_lamda62 .. lamda('6','2') =e= 0 ; 
eq_lamda63 .. lamda('6','3') =e= 
x('3') ; 
eq_lamda64 .. lamda('6','4') =e= 0 ; 
eq_lamda65 .. lamda('6','5') =e= 
x('2') ; 
eq_lamda66 .. lamda('6','6') =e= 0 ; 
eq_lamda_t(l) .. lamda_t(l) =e= 
sum(m, lamda(l,m)) ; 
eq_lamdah(l,m) .. lamdah(l,m) =e= 
lamda(l,m) / eb(l,m) ; 
eq_lamdah_t(l) .. lamdah_t(l) =e= 
sum(m, lamdah(l,m)) ; 
eq_et1 .. 
lamdah_t('1')*pb('1')*et('1') =e= 
lamda_t('1')*t('1'); 
eq_et2 .. 
lamdah_t('2')*pb('2')*et('2') =e= 
lamda_t('2')*t('2'); 
eq_et3 .. 
lamdah_t('3')*pb('3')*et('3') =e= 
lamda_t('3')*t('3'); 

eq_et4 .. 
lamdah_t('4')*pb('4')*et('4') =e= 
lamda_t('4')*t('4'); 
eq_et5 .. 
lamdah_t('5')*pb('5')*et('5') =e= 
lamda_t('5')*t('5'); 
eq_et6 .. 
lamdah_t('6')*pb('6')*et('6') =e= 
lamda_t('6')*t('6'); 
eq_ect1 .. 
power(et('1'),2)*power(pb('1'),2)*la
mdah_t('1')*(ect('1')+1) =e= 
power(t('1'),2)*(pb('1')*lamda_t('1'
)*ct('1')+sum(l,lamda(l,'1')*eb(l,'1
'))); 
eq_ect2 .. 
power(et('2'),2)*power(pb('2'),2)*la
mdah_t('2')*(ect('2')+1) =e= 
power(t('2'),2)*(pb('2')*lamda_t('2'
)*ct('2')+sum(l,lamda(l,'2')*eb(l,'2
'))); 
eq_ect3 .. 
power(et('3'),2)*power(pb('3'),2)*la
mdah_t('3')*(ect('3')+1) =e= 
power(t('3'),2)*(pb('3')*lamda_t('3'
)*ct('3')+sum(l,lamda(l,'3')*eb(l,'3
'))); 
eq_ect4 .. 
power(et('4'),2)*power(pb('4'),2)*la
mdah_t('4')*(ect('4')+1) =e= 
power(t('4'),2)*(pb('4')*lamda_t('4'
)*ct('4')+sum(l,lamda(l,'4')*eb(l,'4
'))); 
eq_ect5 .. 
power(et('5'),2)*power(pb('5'),2)*la
mdah_t('5')*(ect('5')+1) =e= 
power(t('5'),2)*(pb('5')*lamda_t('5'
)*ct('5')+sum(l,lamda(l,'5')*eb(l,'5
'))); 
eq_ect6 .. 
power(et('6'),2)*power(pb('6'),2)*la
mdah_t('6')*(ect('6')+1) =e= 
power(t('6'),2)*(pb('6')*lamda_t('6'
)*ct('6')+sum(l,lamda(l,'6')*eb(l,'6
'))); 
eq_rho1 .. rho('1') =e= 
lamdah_t('1') * et('1') / y('1') ; 
eq_rho2 .. rho('2') =e= 
lamdah_t('2') * et('2') / y('2') ; 
eq_rho3 .. rho('3') =e= 
lamdah_t('3') * et('3') / y('3') ; 
eq_rho4 .. rho('4') =e= 
lamdah_t('4') * et('4') / y('4') ; 
eq_rho5 .. rho('5') =e= 
lamdah_t('5') * et('5') / y('5') ; 
eq_rho6 .. rho('6') =e= 
lamdah_t('6') * et('6') / y('6') ; 
eq_CT1 .. TCT('1') =e= 
*Step 1 1 
         0.5*(pb('1')-
1)/lamda_t('1')+0.5*(ca('1')+ect('1'
)) 
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*rho('1')**(sqrt(2*(y('1'))+1)-
1)/y('1')/(1-rho('1'))*et('1') 
         +et('1')+ 
*Step 2 2 
         0.5*(pb('2')-
1)/lamda_t('2')+0.5*(ca('2')+ect('2'
)) 
         
*rho('2')**(sqrt(2*(y('2'))+1)-
1)/y('2')/(1-rho('2'))*t('2') 
         +et('2')+ 
*Step 3 4 
         0.5*(pb('4')-
1)/lamda_t('4')+0.5*(ca('4')+ect('4'
)) 
         
*rho('4')**(sqrt(2*(y('4'))+1)-
1)/y('4')/(1-rho('4'))*et('4') 
         +et('4')+ 
*Step 4 5 
         0.5*(pb('5')-
1)/lamda_t('5')+0.5*(ca('5')+ect('5'
)) 
         
*rho('5')**(sqrt(2*(y('5'))+1)-
1)/y('5')/(1-rho('5'))*et('5') 
         +et('5')+ 
*Step 5 3 
         0.5*(pb('3')-
1)/lamda_t('3')+0.5*(ca('3')+ect('3'
)) 
         
*rho('3')**(sqrt(2*(y('3'))+1)-
1)/y('3')/(1-rho('3'))*et('3') 
         +et('3')+ 
*Step 6 4 
         0.5*(pb('4')-
1)/lamda_t('4')+0.5*(ca('4')+ect('4'
)) 
         
*rho('4')**(sqrt(2*(y('4'))+1)-
1)/y('4')/(1-rho('4'))*et('4') 
         +et('4')+ 
*Step 7 6 
         0.5*(pb('6')-
1)/lamda_t('6')+0.5*(ca('6')+ect('6'
)) 
         
*rho('6')**(sqrt(2*(y('6'))+1)-
1)/y('6')/(1-rho('6'))*et('6') 
         +et('6') ; 
 
eq_CT2 .. TCT('2') =e= 
*Step 1 2 
         0.5*(pb('2')-
1)/lamda_t('2')+0.5*(ca('2')+ect('2'
)) 
         
*rho('2')**(sqrt(2*(y('2'))+1)-
1)/y('2')/(1-rho('2'))*et('2') 
         +et('2')+ 
*Step 2 5 

         0.5*(pb('5')-
1)/lamda_t('5')+0.5*(ca('5')+ect('5'
)) 
         
*rho('5')**(sqrt(2*(y('5'))+1)-
1)/y('5')/(1-rho('5'))*et('5') 
         +et('5')+ 
*Step 3 6 
         0.5*(pb('6')-
1)/lamda_t('6')+0.5*(ca('6')+ect('6'
)) 
         
*rho('6')**(sqrt(2*(y('6'))+1)-
1)/y('6')/(1-rho('6'))*et('6') 
         +et('6')+ 
*Step 4 5 
         0.5*(pb('5')-
1)/lamda_t('5')+0.5*(ca('5')+ect('5'
)) 
         
*rho('5')**(sqrt(2*(y('5'))+1)-
1)/y('5')/(1-rho('5'))*et('5') 
         +et('5')+ 
*Step 5 1 
         0.5*(pb('1')-
1)/lamda_t('1')+0.5*(ca('1')+ect('1'
)) 
         
*rho('1')**(sqrt(2*(y('1'))+1)-
1)/y('1')/(1-rho('1'))*et('1') 
         +et('1')+ 
*Step 6 2 
         0.5*(pb('2')-
1)/lamda_t('2')+0.5*(ca('2')+ect('2'
)) 
         
*rho('2')**(sqrt(2*(y('2'))+1)-
1)/y('2')/(1-rho('2'))*et('2') 
         +et('2')+ 
*Step 7 3 
         0.5*(pb('3')-
1)/lamda_t('3')+0.5*(ca('3')+ect('3'
)) 
         
*rho('3')**(sqrt(2*(y('3'))+1)-
1)/y('3')/(1-rho('3'))*et('3') 
         +et('3') ; 
 
eq_CT3 .. TCT('3') =e= 
*Step 1 2 
         0.5*(pb('2')-
1)/lamda_t('2')+0.5*(ca('2')+ect('2'
)) 
         
*rho('2')**(sqrt(2*(y('2'))+1)-
1)/y('2')/(1-rho('2'))*et('2') 
         +et('2')+ 
*Step 2 4 
         0.5*(pb('4')-
1)/lamda_t('4')+0.5*(ca('4')+ect('4'
)) 
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*rho('4')**(sqrt(2*(y('4'))+1)-
1)/y('4')/(1-rho('4'))*et('4') 
         +et('4')+ 
*Step 3 6 
         0.5*(pb('6')-
1)/lamda_t('6')+0.5*(ca('6')+ect('6'
)) 
         
*rho('6')**(sqrt(2*(y('6'))+1)-
1)/y('6')/(1-rho('6'))*et('6') 
         +et('6')+ 
*Step 4 3 
         0.5*(pb('3')-
1)/lamda_t('3')+0.5*(ca('3')+ect('3'
)) 
         
*rho('3')**(sqrt(2*(y('3'))+1)-
1)/y('3')/(1-rho('3'))*et('3') 
         +et('3')+ 
*Step 5 1 
         0.5*(pb('1')-
1)/lamda_t('1')+0.5*(ca('1')+ect('1'
)) 
         
*rho('1')**(sqrt(2*(y('1'))+1)-
1)/y('1')/(1-rho('1'))*et('1') 
         +et('1')+ 
*Step 6 3 
         0.5*(pb('3')-
1)/lamda_t('3')+0.5*(ca('3')+ect('3'
)) 
         
*rho('3')**(sqrt(2*(y('3'))+1)-
1)/y('3')/(1-rho('3'))*et('3') 
         +et('3')+ 
*Step 7 6 
         0.5*(pb('6')-
1)/lamda_t('6')+0.5*(ca('6')+ect('6'
)) 
         
*rho('6')**(sqrt(2*(y('6'))+1)-
1)/y('6')/(1-rho('6'))*et('6') 
         +et('6') ; 
 
eq_CT4 .. TCT('4') =e= 
*Step 1 3 
         0.5*(pb('3')-
1)/lamda_t('3')+0.5*(ca('3')+ect('3'
)) 
         
*rho('3')**(sqrt(2*(y('3'))+1)-
1)/y('3')/(1-rho('3'))*et('3') 
         +et('3')+ 
*Step 2 2 
         0.5*(pb('2')-
1)/lamda_t('2')+0.5*(ca('2')+ect('2'
)) 
         
*rho('2')**(sqrt(2*(y('2'))+1)-
1)/y('2')/(1-rho('2'))*et('2') 
         +et('2')+ 
*Step 3 1 

         0.5*(pb('1')-
1)/lamda_t('1')+0.5*(ca('1')+ect('1'
)) 
         
*rho('1')**(sqrt(2*(y('1'))+1)-
1)/y('1')/(1-rho('1'))*et('1') 
         +et('1')+ 
*Step 4 5 
         0.5*(pb('5')-
1)/lamda_t('5')+0.5*(ca('5')+ect('5'
)) 
         
*rho('5')**(sqrt(2*(y('5'))+1)-
1)/y('5')/(1-rho('5'))*et('5') 
         +et('5')+ 
*Step 5 4 
         0.5*(pb('4')-
1)/lamda_t('4')+0.5*(ca('4')+ect('4'
)) 
         
*rho('4')**(sqrt(2*(y('4'))+1)-
1)/y('4')/(1-rho('4'))*et('4') 
         +et('4')+ 
*Step 6 3 
         0.5*(pb('3')-
1)/lamda_t('3')+0.5*(ca('3')+ect('3'
)) 
         
*rho('3')**(sqrt(2*(y('3'))+1)-
1)/y('3')/(1-rho('3'))*et('3') 
         +et('3')+ 
*Step 7 6 
         0.5*(pb('6')-
1)/lamda_t('6')+0.5*(ca('6')+ect('6'
)) 
         
*rho('6')**(sqrt(2*(y('6'))+1)-
1)/y('6')/(1-rho('6'))*et('6') 
         +et('6') ; 
 
eq_CT5 .. TCT('5') =e= 
*Step 1 4 
         0.5*(pb('4')-
1)/lamda_t('4')+0.5*(ca('4')+ect('4'
)) 
         
*rho('4')**(sqrt(2*(y('4'))+1)-
1)/y('4')/(1-rho('4'))*et('4') 
         +et('4')+ 
*Step 2 5 
         0.5*(pb('5')-
1)/lamda_t('5')+0.5*(ca('5')+ect('5'
)) 
         
*rho('5')**(sqrt(2*(y('5'))+1)-
1)/y('5')/(1-rho('5'))*et('5') 
         +et('5')+ 
*Step 3 6 
         0.5*(pb('6')-
1)/lamda_t('6')+0.5*(ca('6')+ect('6'
)) 
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*rho('6')**(sqrt(2*(y('6'))+1)-
1)/y('6')/(1-rho('6'))*et('6') 
         +et('6')+ 
*Step 4 1 
         0.5*(pb('1')-
1)/lamda_t('1')+0.5*(ca('1')+ect('1'
)) 
         
*rho('1')**(sqrt(2*(y('1'))+1)-
1)/y('1')/(1-rho('1'))*et('1') 
         +et('1')+ 
*Step 5 3 
         0.5*(pb('3')-
1)/lamda_t('3')+0.5*(ca('3')+ect('3'
)) 
         
*rho('3')**(sqrt(2*(y('3'))+1)-
1)/y('3')/(1-rho('3'))*et('3') 
         +et('3')+ 
*Step 6 2 
         0.5*(pb('2')-
1)/lamda_t('2')+0.5*(ca('2')+ect('2'
)) 
         
*rho('2')**(sqrt(2*(y('2'))+1)-
1)/y('2')/(1-rho('2'))*et('2') 
         +et('2')+ 
*Step 7 1 
         0.5*(pb('1')-
1)/lamda_t('1')+0.5*(ca('1')+ect('1'
)) 
         
*rho('1')**(sqrt(2*(y('1'))+1)-
1)/y('1')/(1-rho('1'))*et('1') 
         +et('1') ; 
 
eq_investment .. sum(j, c(j) * y(j)) 
=l= INVEST ; 
eq_TCT(i) .. TCT(i) =l= ACT(i) ; 
 
Model example_5_6 /all/ ; 
solve example_5_6 using minlp 
maximizing z ; 
display x.l, x.m, y.l, y.m ;
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APPENDIX E  
 

RESULTS FROM HEURISTICS AND UPPER BOUND ANALYSIS 
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Table E.1  Result Table, 3-Product 4-Station 5-Step Case 
 

DCBS Avg Dev
z 120.68 164.89 668.57 240.15 321.2 103.44 279.13 131.72 139.38 253.85 580.16 135.14 335.52 345.22 199.54 119.38 217.42 81.225 555.68 244.09

ROG 12.45 11.58 2.79 43.17 7.05 13.47 5.86 8.67 15.09 9.27 1.76 12.46 8.46 6.53 7.13 12.70 12.67 16.60 7.41 6.11 11.06 8.53
NCE 817 1236 2165 1424 1235 1148 1805 1402 1145 1269 2431 1096 1589 1482 1054 848 1134 586 2128 1080 1354 472
HET 6.659 10.715 16.173 11.207 9.975 9.875 14.471 11.286 9.534 10.415 19.347 8.913 13.229 12.038 8.522 7.511 8.732 4.647 16.754 9.394 10.97 3.57

HQHP Avg Dev
z 118.53 170.49 622.3 242.65 334.97 100.78 293.04 134.18 133.37 240.59 575.7 138.64 231.08 334.72 137.16 120.8 213.13 82.39 484.96 251.81

ROG 14.49 7.92 10.43 41.70 2.65 16.47 0.84 6.68 20.28 15.29 2.54 9.63 57.48 9.87 55.86 11.37 14.94 14.95 23.07 2.86 16.97 16.33
NCE 588 917 1560 1127 1009 886 1430 959 859 883 2035 877 744 1183 378 737 862 585 1480 883 999 385
HET 4.877 7.922 11.497 8.772 7.971 7.751 11.536 7.801 7.14 7.191 15.983 7.26 6.049 9.633 3.084 6.319 6.58 4.647 11.527 7.56 8.06 2.90

HQSS Avg Dev
z 116.61 82.167 537.72 231.6 284.04 91.976 108.56 119.15 134.3 204.49 486.02 137.85 150.67 329.26 108.15 120.8 231.39 66.363 479.57 218.74

ROG 16.38 123.91 27.80 48.46 21.05 27.61 172.19 20.14 19.45 35.64 21.47 10.25 141.52 11.70 97.68 11.37 5.87 42.72 24.45 18.40 44.90 48.41
NCE 555 180 1832 1095 667 823 411 838 919 1017 1836 848 360 1247 200 731 1091 277 1489 884 865 482
HET 4.457 1.562 13.519 8.573 5.348 7.16 3.305 6.81 7.511 8.372 14.451 7.03 2.914 10.085 1.633 6.269 8.532 2.173 11.686 7.241 6.93 3.69

HQLS Avg Dev
z 128.56 163.21 675.47 252.53 315.18 101.22 245.47 128.15 138.77 258.52 576.57 104.88 352.04 340.42 171.94 117.24 213.55 77.637 580.08 251.81

ROG 5.55 12.73 1.74 36.16 9.09 15.95 20.38 11.70 15.60 7.29 2.39 44.92 3.37 8.04 24.33 14.75 14.72 21.99 2.89 2.86 13.82 11.46
NCE 889 993 1880 1261 1042 1039 1383 1104 1000 1136 2033 998 1374 1206 1166 728 1000 611 1829 893 1178 370
HET 7.21 8.662 13.95 9.794 8.302 9.013 11.116 8.893 8.392 9.303 16.424 8.262 11.246 9.814 9.363 6.429 7.641 4.767 14.171 7.34 9.50 2.77

HUHP Avg Dev
z 119.03 170.49 622.3 242.65 151.87 100.78 293.04 134.18 133.37 240.59 575.7 138.64 231.08 334.72 137.16 120.07 213.13 82.39 484.96 251.81

ROG 14.01 7.92 10.43 41.70 126.39 16.47 0.84 6.68 20.28 15.29 2.54 9.63 57.48 9.87 55.86 12.04 14.94 14.95 23.07 2.86 23.16 29.08
NCE 604 910 1574 1135 145 865 1541 958 838 928 2029 865 744 1219 386 653 879 584 1491 883 962 441
HET 5.018 7.812 11.928 8.862 1.152 7.301 12.418 7.691 6.86 7.561 16.514 7.14 6.169 9.975 3.165 5.458 6.78 4.526 11.596 7.161 7.75 3.48

HUSS Avg Dev
z 116.61 82.167 537.72 231.6 284.04 91.976 108.56 119.15 134.3 204.49 486.02 137.85 150.67 329.26 108.15 120.07 231.39 66.363 479.57 218.74

ROG 16.38 123.91 27.80 48.46 21.05 27.61 172.19 20.14 19.45 35.64 21.47 10.25 141.52 11.70 97.68 12.04 5.87 42.72 24.45 18.40 44.94 48.38
NCE 584 180 1818 1080 659 813 408 838 899 1017 1856 801 360 1258 200 648 1054 290 1484 884 857 482
HET 4.736 1.482 13.569 8.412 5.267 6.89 3.305 6.87 7.421 8.412 14.791 6.56 2.885 10.264 1.572 5.438 8.192 2.274 11.537 7.22 6.85 3.73

HULS Avg Dev
z 128.56 163.21 675.47 252.53 315.18 101.22 239.8 128.15 138.77 265.23 575.7 104.88 357.34 340.99 171.94 116.3 213.55 75.895 578.64 251.81

ROG 5.55 12.73 1.74 36.16 9.09 15.95 23.23 11.70 15.60 4.58 2.54 44.92 1.83 7.85 24.33 15.68 14.72 24.79 3.14 2.86 13.95 11.84
NCE 907 993 1871 1319 1048 1018 1449 1104 1022 1079 2030 1014 1377 1222 1186 681 1012 577 1845 893 1182 378
HET 7.351 8.542 13.89 10.305 8.342 8.582 11.717 8.922 8.282 8.903 16.333 8.432 11.146 10.015 9.574 5.728 8.151 4.556 14.301 7.371 9.52 2.84
MSA Avg Dev

z 117.28 166.08 618.33 239.03 328.6 102.05 258.53 120.5 132.23 252.29 543.7 122.69 345.04 337.71 198.22 118.78 232.57 83.733 525.93 242.82
ROG 15.70 10.78 11.14 43.84 4.63 15.01 14.30 18.80 21.31 9.94 8.58 23.88 5.46 8.90 7.85 13.26 5.33 13.11 13.48 6.66 13.60 8.84
NCE 11030 10244 11674 11312 11974 11559 9290 10268 10136 10942 10683 10469 11609 10891 10354 11515 11235 11623 10039 11980 10941 736
HET 94.206 90.831 91.822 90.17 98.422 102.75 77.811 85.383 85.162 91.842 86.795 88.447 97.049 90.219 86.314 101.05 90.671 94.166 83.49 100.39 91.35 6.41

Objective value at upperbound
z 135.7 183.98 687.23 343.83 343.83 117.37 295.49 143.14 160.41 277.37 590.35 151.99 363.89 367.77 213.78 134.53 244.97 94.71 596.83 259

Note: z: final objective value, ROG: relative optimality gap, NCE: Number of cycle time evaluation, HET: Heuristics evaluation time  
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Table E.2  Result Table, 4-Product 5-Station 6-Step Case 
 

DCBS Avg Dev
z 141.16 167.71 184.87 144.82 305.04 261.61 271.17 93.194 122.17 126.69 123.79 305.12 161.98 135.97 205.36 203.68 247.15 225.93 506.76 183.93

ROG 7.71 6.09 2.89 5.08 13.01 17.77 6.84 11.07 18.91 4.94 34.61 5.97 6.01 11.53 15.59 4.27 4.85 16.50 3.36 17.99 10.75 7.78
NCE 743 1053 1250 1198 1730 1510 1373 898 1020 776 1549 1812 945 882 1260 1227 1069 1128 2659 1037 1256 443
HET 9.914 13.84 14.921 16.293 23.263 18.427 17.405 11.637 12.849 9.744 23.214 26.758 16.834 13.559 24.044 15.362 18.497 14.902 31.385 13.549 17.32 5.74

HQHP Avg Dev
z 140.72 164.99 182.9 144.9 332.67 206.9 257.01 93.014 114.14 116.09 109.58 315.84 164.28 128.51 154.14 201.11 237.29 203.3 511 207.08

ROG 8.04 7.84 4.00 5.02 3.62 48.90 12.72 11.28 27.28 14.52 52.07 2.37 4.53 18.01 54.00 5.60 9.21 29.46 2.51 4.79 16.29 17.02
NCE 500 852 1068 874 1553 958 959 635 670 606 1045 1289 800 680 500 850 800 553 1948 720 893 362
HET 6.58 11.206 12.708 12.008 20.9 12.198 12.107 8.162 8.422 7.711 15.762 19.077 13.99 11.206 9.594 10.676 14.09 7.17 22.733 9.354 12.28 4.47

HQSS Avg Dev
z 134.85 158.31 132.65 105.46 128.96 206.9 223.22 89.229 108.67 96.204 105.5 162.1 148.59 110.33 172.37 124.19 200.01 139.64 427.83 136.66

ROG 12.75 12.39 43.40 44.29 167.30 48.90 29.79 16.01 33.68 38.19 57.96 99.47 15.56 37.46 37.72 71.01 29.57 88.48 22.43 58.80 48.26 36.80
NCE 570 897 1191 878 1083 959 974 624 857 534 1154 597 768 610 946 554 815 195 1889 669 838 347
HET 7.801 11.917 14.181 11.716 14.892 12.037 12.278 8.071 10.926 6.8 17.365 8.802 13.38 9.483 18.246 6.9 15.041 2.584 22.643 8.692 11.69 4.63

HQLS Avg Dev
z 142.01 137.54 184.52 142.68 288.45 168.08 280.67 88.379 112.67 105.31 122.93 315.84 147.86 139.87 219.45 201.3 246.64 234.21 487.02 187.24

ROG 7.07 29.36 3.09 6.65 19.50 83.30 3.22 17.12 28.94 26.23 35.56 2.37 16.14 8.43 8.17 5.50 5.07 12.38 7.55 15.90 17.08 18.45
NCE 553 822 1291 1001 1534 437 1030 708 903 613 1380 1303 914 964 1108 1030 784 880 2460 828 1027 437
HET 6.759 10.415 11.196 11.467 19.458 11.576 12.719 8.262 8.152 7.932 11.987 19.358 9.964 13.109 9.814 10.866 15.092 7.23 23.955 10.405 11.99 4.45

HUHP Avg Dev
z 140.72 164.99 182.9 144.9 331.97 206.9 257.03 93.014 117.81 116.09 109.58 315.84 164.28 143.65 154.14 201.11 237.29 203.3 512.75 206.87

ROG 8.04 7.84 4.00 5.02 3.84 48.90 12.72 11.28 23.31 14.52 52.07 2.37 4.53 5.57 54.00 5.60 9.21 29.46 2.16 4.90 15.47 17.06
NCE 494 781 906 866 1463 936 1014 635 640 629 798 1295 694 720 499 870 835 524 1952 803 868 353
HET 8.022 10.846 15.532 13.619 21.03 5.378 12.938 9.153 11.486 7.781 20.75 19.348 13.509 16.824 21.381 13.068 14.271 11.567 29.722 10.746 14.35 5.81

HUSS Avg Dev
z 134.85 152.67 132.65 105.46 128.96 206.9 223.22 89.229 108.88 96.204 105.5 162.1 148.59 110.33 173.58 124.19 200.01 139.64 431.92 136.66

ROG 12.75 16.54 43.40 44.29 167.30 48.90 29.79 16.01 33.42 38.19 57.96 99.47 15.56 37.46 36.76 71.01 29.57 88.48 21.27 58.80 48.35 36.66
NCE 584 180 1818 1080 659 813 408 838 899 1017 1856 801 360 1258 200 648 1054 290 1484 884 857 482
HET 7.021 12.998 11.417 11.797 14.06 11.677 13.89 7.902 13.599 7.04 14.932 9.764 10.805 10.225 19.068 7.03 15.272 2.684 22.222 8.832 11.61 4.47

HULS Avg Dev
z 141.77 139.25 183.27 142.68 289.12 168.08 280.57 88.379 117.81 105.88 126.39 315.84 137.81 128.66 219.45 203.68 246.64 228.4 499.75 199.2

ROG 7.24 27.77 3.79 6.65 19.23 83.30 3.26 17.12 23.31 25.56 31.84 2.37 24.60 17.87 8.17 4.27 5.07 15.23 4.81 8.94 17.02 18.19
NCE 558 963 935 891 1070 937 1105 615 1026 561 977 663 731 622 997 569 841 192 1881 669 840 336
HET 7.27 12.298 11.406 11.306 20.269 5.418 13.379 9.223 8.693 8.512 19.338 19.498 11.507 14.351 19.468 11.927 14.15 11.757 23.674 10.906 13.22 4.88
MSA Avg Dev

z 142.22 156.44 162.91 110.81 296.2 283.09 259.72 95.215 116.93 112.81 128.96 268.79 148.33 123.12 209.85 198.49 243.96 223.85 457.01 185.72
ROG 6.90 13.73 16.77 37.33 16.38 8.83 11.55 8.71 24.24 17.85 29.22 20.29 15.77 23.17 13.12 6.99 6.23 17.58 14.61 16.84 16.31 7.85
NCE 16414 13367 13524 13267 14320 14820 14203 16366 13744 15041 11744 13238 14781 16808 14175 14093 14999 12872 15538 14047 14368 1271
HET 218.68 219.01 166.87 179.15 187.03 187.07 183.56 212 178.79 193.41 177.69 202.16 209.4 297.41 268.96 179.67 267.99 172.4 188.09 186.28 203.78 35.66

Objective value at upperbound
z 152.04 177.92 190.22 152.17 344.71 308.09 289.72 103.51 145.27 132.94 166.64 323.33 171.72 151.65 237.38 212.37 259.15 263.2 523.8 217.01

Note: z: final objective value, ROG: relative optimality gap, NCE: Number of cycle time evaluation, HET: Heuristics evaluation time  
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Table E.3  Result Table, 5-Product 6-Station 7-Step Case 
 

DCBS Avg Dev
z 132.36 130.12 172.04 293.56 231.79 439.96 274.95 268.9 133.56 144.87 303.98 283.3 144.76 171.76 95.604 273.98 429.23 144.43 400.11 152.49

ROG 9.49 16.94 12.75 5.54 7.60 4.19 18.96 16.78 9.97 15.53 13.86 14.12 7.89 3.66 12.15 9.43 16.90 5.79 12.54 8.63 11.13 4.60
NCE 917 410 741 2020 1290 2347 1688 2190 445 900 1720 1554 1076 615 441 2213 2623 1387 2653 1320 1428 736
HET 18.447 8.272 14.892 40.308 25.847 46.817 33.378 43.803 8.823 18.476 32.106 30.614 21.29 12.478 8.652 46.116 52.536 25.207 48.78 27.91 28.24 14.42

HQHP Avg Dev
z 140.94 131.38 171.92 207.57 230.41 452.52 290.47 231.73 132 129.44 286.3 284.59 145.26 172.82 94.739 273.36 382.3 108.7 330.11 140.32

ROG 2.82 15.82 12.82 49.26 8.24 1.29 12.60 35.52 11.26 29.31 20.89 13.61 7.52 3.02 13.17 9.68 31.25 40.55 36.40 18.05 18.65 13.75
NCE 499 338 562 408 903 1522 1259 1014 290 320 701 1075 668 321 292 1231 1581 417 1017 466 744 424
HET 10.014 6.77 11.276 8.101 17.986 30.404 25.116 20.239 5.838 6.579 13.339 21.271 13.299 6.379 5.779 24.966 31.475 7.47 18.707 9.944 14.75 8.44

HQSS Avg Dev
z 121.76 128.73 155.39 196.89 203.98 197.41 152.89 135.25 132.55 117.26 278.55 199.7 101.84 166.48 95.452 159.8 227.98 84.259 236.17 122.3

ROG 19.02 18.20 24.83 57.37 22.27 132.20 113.93 132.18 10.80 42.74 24.25 61.90 53.36 6.95 12.33 87.62 120.10 81.33 90.66 35.45 57.37 42.79
NCE 409 251 527 361 1114 220 199 393 244 314 759 650 217 369 311 294 701 263 639 240 424 238
HET 8.222 5.047 10.715 7.17 22.252 4.416 3.976 7.752 4.918 6.419 14.301 12.849 4.347 6.95 6.148 5.989 14.02 4.767 11.797 5.058 8.36 4.66

HQLS Avg Dev
z 118.25 130.12 175.31 278.98 153.15 377.61 272.45 268.4 133.56 149.64 295.05 162.89 134.42 164.77 97.435 271.83 434.63 108.37 418.23 142.09

ROG 22.55 16.94 10.64 11.06 62.85 21.39 20.05 17.00 9.97 11.85 17.30 98.48 16.18 8.06 10.04 10.29 15.45 40.99 7.66 16.58 22.27 22.05
NCE 481 282 537 1484 213 1528 1297 1445 302 779 1529 267 959 415 307 1762 1834 790 1990 958 958 601
HET 9.624 5.608 10.846 29.683 4.286 30.384 25.867 28.831 6.038 15.983 29.552 5.357 19.167 7.861 6.019 36.933 36.713 14.371 36.743 20.359 19.01 11.87

HUHP Avg Dev
z 140.94 131.38 171.92 207.57 230.41 452.52 290.47 231.73 132 129.44 285.84 284.59 145.26 172.82 94.739 273.36 384.26 108.7 330.11 123

ROG 2.82 15.82 12.82 49.26 8.24 1.29 12.60 35.52 11.26 29.31 21.08 13.61 7.52 3.02 13.17 9.68 30.58 40.55 36.40 34.68 19.46 14.18
NCE 490 328 561 410 963 1635 1284 1047 290 319 826 1046 707 325 301 1255 1578 440 1068 238 756 451
HET 9.774 6.559 11.266 8.292 19.338 32.747 25.697 20.97 5.789 6.52 15.983 20.83 14.201 6.289 5.969 26.718 31.626 7.931 19.618 4.977 15.05 9.11

HUSS Avg Dev
z 121.76 128.73 155.39 196.89 203.98 197.41 152.89 135.25 132.55 117.26 278.55 199.7 101.84 166.48 95.452 159.8 227.98 84.259 236.17 122.3

ROG 19.02 18.20 24.83 57.37 22.27 132.20 113.93 132.18 10.80 42.74 24.25 61.90 53.36 6.95 12.33 87.62 120.10 81.33 90.66 35.45 57.37 42.79
NCE 422 244 527 361 1124 220 199 393 244 314 759 650 230 369 311 294 701 276 639 229 425 240
HET 8.362 4.917 10.585 7.2 22.592 4.406 4.036 7.882 4.917 6.429 14.632 12.939 4.566 7.931 6.169 6.059 14.02 5.008 11.767 4.917 8.47 4.71

HULS Avg Dev
z 118.25 130.12 175.31 260.83 153.15 353.99 283.3 268.4 133.56 149.64 295.05 162.89 134.42 164.77 97.435 271.78 434.63 116.07 402.88 142.09

ROG 22.55 16.94 10.64 18.78 62.85 29.49 15.45 17.00 9.97 11.85 17.30 98.48 16.18 8.06 10.04 10.31 15.45 31.63 11.76 16.58 22.57 21.58
NCE 456 272 537 1512 213 1600 1322 1475 302 779 1420 267 1011 415 307 1766 1891 934 1761 972 961 590
HET 9.073 5.458 10.726 30.584 4.317 31.906 26.348 29.352 6.088 16.033 28 5.348 20.039 8.402 6.038 35.922 37.714 16.974 33.448 20.76 19.13 11.71
MSA Avg Dev

z 139.19 137.64 173.17 277.04 223.35 423.91 266.04 276.68 133.06 143.17 307.97 245.13 135.31 171.77 98.238 268.34 382.41 120.74 383.35 153.93
ROG 4.11 10.56 12.01 11.83 11.66 8.13 22.94 13.50 10.38 16.91 12.38 31.90 15.42 3.65 9.14 11.73 31.22 26.55 17.46 7.61 14.45 8.02
NCE 22265 28079 23305 16474 16364 16154 17158 19676 65459 20059 16325 17657 20110 28847 40091 15556 16391 15675 16541 19246 22572 11763
HET 448.4 564.61 470.26 332.84 332.43 327.08 345.99 396.58 1306.7 419.11 313.23 354.63 404.19 655.5 797.06 322.21 328.89 290.67 316.83 395.32 456.12 237.71

Objective value at upperbound
z 144.92 152.17 193.97 309.83 249.4 458.37 327.08 314.03 146.86 167.38 346.1 323.32 156.18 178.04 107.22 299.82 501.78 152.79 450.26 165.65

Note: z: final objective value, ROG: relative optimality gap, NCE: Number of cycle time evaluation, HET: Heuristics evaluation time  
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Figure E.1  ROG Chart, 3-Product 4-Station 5-Step Case 
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Figure E.2  ROG Chart, 4-Product 5-Station 6-Step Case 
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Figure E.3  ROG Chart, 5-Product 6-Station 7-Step Case 
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Figure E.4  ROG Histogram, 3-Product 4-Station 5-Step Case 
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Figure E.5  4-Product 5-Station 6-Step Case 
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Figure E.6  5-Product 6-Station 7-Step Case 
 

Histogram, DCBS, Case(5,6,7)

0

1

2

3

4

5

6

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58
More

ROG (%)

Fr
eq

ue
nc

y

  

Histogram, MSA, Case(5,6,7)

0

1

2

3

4

5

6

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58
More

ROG (%)

Fr
eq

ue
nc

y

 
Histogram, HQHP, Case(5,6,7)

0

1

2

3

4

5

6

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58
Mor

e

ROG (%)

Fr
eq

ue
nc

y

  

Histogram, HQSS, Case(5,6,7)

0

1

2

3

4

5

6

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58
More

ROG (%)

Fr
eq

ue
nc

y

  

Histogram, HQLS, Case(5,6,7)
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Histogram, HUHP, Case(5,6,7)
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Histogram, HUSS, Case(5,6,7)
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Histogram, HULS, Case(5,6,7)
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Figure E.7  Heuristics Evaluation Time, 3-Product 4-Station 5-Step Case 
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Figure E.8  Heuristics Evaluation Time, 4-Product 5-Station 6-Step Case 
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Figure E.9  Heuristics Evaluation Time, 5-Product 6-Station 7-Step Case 
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APPENDIX F  
 

PAIRED T TEST TABLES 
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     Table F.1  Result Table of Paired T Test in Group 1 
 

DCBS HQHP
Mean 11.0618388 16.96530076
Variance 72.68409454 266.7770724
Observations 20 20
df 19
t Stat 1.703412631
p Value, one-tail 0.052396383
t Critical one-tail 1.729131327
p Value, two-tail 0.104792766
t Critical two-tail 2.093024705    

DCBS HQSS
Mean 11.0618388 44.90240599
Variance 72.68409454 2343.415588
Observations 20 20
df 19
t Stat 3.049769129
p Value, one-tail 0.003296166
t Critical one-tail 1.729131327
p Value, two-tail 0.006592332
t Critical two-tail 2.093024705    

DCBS HQLS
Mean 11.0618388 13.821912
Variance 72.68409454 131.2462652
Observations 20 20
df 19
t Stat 1.333795554
p Value, one-tail 0.099020116
t Critical one-tail 1.729131327
p Value, two-tail 0.198040232
t Critical two-tail 2.093024705  

 
 

DCBS HUHP
Mean 11.0618388 23.16209919
Variance 72.68409454 845.5542024
Observations 20 20
df 19
t Stat 1.833325787
p Value, one-tail 0.041234997
t Critical one-tail 1.729131327
p Value, two-tail 0.082469994
t Critical two-tail 2.093024705    

DCBS HUSS
Mean 11.0618388 44.93598228
Variance 72.68409454 2341.067856
Observations 20 20
df 19
t Stat 3.054323147
p Value, one-tail 0.003262979
t Critical one-tail 1.729131327
p Value, two-tail 0.006525959
t Critical two-tail 2.093024705    

DCBS HULS
Mean 11.0618388 13.821912
Variance 72.68409454 131.2462652
Observations 20 20
df 19
t Stat 1.333795554
p Value, one-tail 0.099020116
t Critical one-tail 1.729131327
p Value, two-tail 0.198040232
t Critical two-tail 2.093024705  

 
 

DCBS MSA
Mean 11.0618388 13.59957251
Variance 72.68409454 78.14667974
Observations 20 20
df 19
t Stat 2.284009325
p Value, one-tail 0.017024454
t Critical one-tail 1.729131327
p Value, two-tail 0.034048908
t Critical two-tail 2.093024705  
 

134



 

 135

Table F.2  Result Table of Paired T Test in Group 2 
 

DCBS HQHP
Mean 10.74887856 16.2897609
Variance 60.55929571 289.5214795
Observations 20 20
df 19
t Stat 2.024926782
p Value, one-tail 0.028579614
t Critical one-tail 1.729131327
p Value, two-tail 0.057159228
t Critical two-tail 2.093024705     

DCBS HQSS
Mean 10.74887856 48.25758115
Variance 60.55929571 1354.174255
Observations 20 20
df 19
t Stat 4.664372539
p Value, one-tail 8.44921E-05
t Critical one-tail 1.729131327
p Value, two-tail 0.000168984
t Critical two-tail 2.093024705     

DCBS HQLS
Mean 10.74887856 17.07803286
Variance 60.55929571 340.4439598
Observations 20 20
df 19
t Stat 1.761548
p Value, one-tail 0.047114785
t Critical one-tail 1.729131327
p Value, two-tail 0.09422957
t Critical two-tail 2.093024705  

 
 

DCBS HUHP
Mean 10.74887856 15.46773947
Variance 60.55929571 291.0345992
Observations 20 20
df 19
t Stat 1.693450209
p Value, one-tail 0.053350721
t Critical one-tail 1.729131327
p Value, two-tail 0.106701442
t Critical two-tail 2.093024705    

DCBS HUSS
Mean 10.74887856 48.34610497
Variance 60.55929571 1344.147524
Observations 20 20
df 19
t Stat 4.690239101
p Value, one-tail 7.96978E-05
t Critical one-tail 1.729131327
p Value, two-tail 0.000159396
t Critical two-tail 2.093024705   

DCBS HULS
Mean 10.74887856 17.02107824
Variance 60.55929571 330.8911704
Observations 20 20
df 19
t Stat 1.718681677
p Value, one-tail 0.050962128
t Critical one-tail 1.729131327
p Value, two-tail 0.101924256
t Critical two-tail 2.093024705  

 
 

DCBS MSA
Mean 10.74887856 16.30581749
Variance 60.55929571 61.69740221
Observations 20 20
df 19
t Stat 2.710095458
p Value, one-tail 0.006941724
t Critical one-tail 1.729131327
p Value, two-tail 0.013883447
t Critical two-tail 2.093024705  
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Table F.3  Result Table of Paired T Test in Group 3 
 

DCBS HQHP
Mean 11.13490979 18.65492071
Variance 21.14498036 189.029547
Observations 20 20
df 19
t Stat 2.463124883
p Value, one-tail 0.011746734
t Critical one-tail 1.729131327
p Value, two-tail 0.023493468
t Critical two-tail 2.093024705    

DCBS HQSS
Mean 11.13490979 57.37301641
Variance 21.14498036 1831.057019
Observations 20 20
df 19
t Stat 4.916943185
p Value, one-tail 4.78641E-05
t Critical one-tail 1.729131327
p Value, two-tail 9.57283E-05
t Critical two-tail 2.093024705    

DCBS HQLS
Mean 11.13490979 22.26686916
Variance 21.14498036 486.1550362
Observations 20 20
df 19
t Stat 2.210135441
p Value, one-tail 0.019781803
t Critical one-tail 1.729131327
p Value, two-tail 0.039563606
t Critical two-tail 2.093024705  

 
 

DCBS HUHP
Mean 11.13490979 19.46222941
Variance 21.14498036 201.0206442
Observations 20 20
df 19
t Stat 2.612889262
p Value, one-tail 0.008553907
t Critical one-tail 1.729131327
p Value, two-tail 0.017107814
t Critical two-tail 2.093024705     

DCBS HUSS
Mean 11.13490979 57.37301641
Variance 21.14498036 1831.057019
Observations 20 20
df 19
t Stat 4.916943185
p Value, one-tail 4.78641E-05
t Critical one-tail 1.729131327
p Value, two-tail 9.57283E-05
t Critical two-tail 2.093024705      

DCBS HULS
Mean 11.13490979 22.56680096
Variance 21.14498036 465.7006182
Observations 20 20
df 19
t Stat -2.297153114
p Value, one-tail 0.016572674
t Critical one-tail 1.729131327
p Value, two-tail 0.033145348
t Critical two-tail 2.093024705  

 
 

DCBS MSA
Mean 11.13490979 14.45448936
Variance 21.14498036 64.37518929
Observations 20 20
df 19
t Stat 2.045836304
p Value, one-tail 0.02743425
t Critical one-tail 1.729131327
p Value, two-tail 0.054868499
t Critical two-tail 2.093024705  
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Table F.4  Result Table of Paired T Test in All Groups 
 

DCBS HQHP
Mean 10.98187572 17.30332746
Variance 49.74679772 241.0271449
Observations 60 60
df 59
t Stat 3.586783632
P(T<=t) one-tail 0.000340337
t Critical one-tail 1.671091923
P(T<=t) two-tail 0.000680673
t Critical two-tail 2.000997483     

DCBS HQSS
Mean 10.98187572 50.17766785
Variance 49.74679772 1808.644977
Observations 60 60
df 59
t Stat 7.143146636
P(T<=t) one-tail 7.74113E-10
t Critical one-tail 1.671091923
P(T<=t) two-tail 1.54823E-09
t Critical two-tail 2.000997483     

DCBS HQLS
Mean 10.98187572 17.72227134
Variance 49.74679772 320.7573606
Observations 60 60
df 59
t Stat 3.086838978
P(T<=t) one-tail 0.00153998
t Critical one-tail 1.671091923
P(T<=t) two-tail 0.00307996
t Critical two-tail 2.000997483   

 
 

DCBS HUHP
Mean 10.98187572 19.36402269
Variance 49.74679772 440.7949241
Observations 60 60
df 59
t Stat 3.225352243
P(T<=t) one-tail 0.001026616
t Critical one-tail 1.671091923
P(T<=t) two-tail 0.002053232
t Critical two-tail 2.000997483     

DCBS HUSS
Mean 10.98187572 50.21836788
Variance 49.74679772 1804.426014
Observations 60 60
df 59
t Stat 7.157797911
P(T<=t) one-tail 7.31112E-10
t Critical one-tail 1.671091923
P(T<=t) two-tail 1.46222E-09
t Critical two-tail 2.000997483      

DCBS HULS
Mean 10.98187572 17.84589165
Variance 49.74679772 314.6350982
Observations 60 60
df 59
t Stat 3.132952767
P(T<=t) one-tail 0.001347035
t Critical one-tail 1.671091923
P(T<=t) two-tail 0.002694069
t Critical two-tail 2.000997483   

 
 

DCBS MSA
Mean 10.98187572 14.78662645
Variance 49.74679772 67.06293599
Observations 60 60
df 59
t Stat 4.02353924
P(T<=t) one-tail 8.27457E-05
t Critical one-tail 1.671091923
P(T<=t) two-tail 0.000165491
t Critical two-tail 2.000997483
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APPENDIX G  
 

ANALYTIC MODEL AND SIMULATION MODEL FOR G/G/M QUEUE 
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Table G.1  Test Models 
 

Model Arrival Process Number of 
servers 

Analytic Model 

General distribution 
with mean of 1 and 

squared coefficient of 
variation (SCV) of 0.25 

General distribution with 
mean of 1.8 and squared 
coefficient of variation 

(SCV) of 0.25 

2 

Simulation Model 1 

Normal distribution 
with mean of 1 and 

squared coefficient of 
variation (SCV) of 0.25, 

i.e., Normal (1, 0.5) 

Normal distribution with 
mean of 1.8 and squared 
coefficient of variation 

(SCV) of 0.25, i.e., 
Normal (1.8, 0.45) 

2 

Simulation Model 2 

Gamma Distribution 
with mean of 1 and 

squared coefficient of 
variation (SCV) of 0.25, 

i.e., Gamma (0.25, 4) 

Gamma Distribution 
with mean of 1.8 and 
squared coefficient of 

variation (SCV) of 0.25, 
i.e., Gamma (0.45, 4) 

2 

 
 
 

Table G.2  Test Results 
 

Simulation Tool ArenaTM, version 5.0 
Number of Replications 20 

Length of simulation 1000 time units 
Average time in system from the analytic model 3.73 time units 

 

 Average Error in % 0.950 C.I. 
Half Width Inside C.I.? 

Simulation model 1 2.84 31.34% smaller 0.233 No 
Simulation model 2 3.32 12.35% smaller 0.436 Yes 
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