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SUMMARY

In networks, using large liiers tend to increase end-to-end packet delay and its
deviations, conflicting with real-time applications sushaamline gaming, audio-video ser-
vices, IPTV, and VoIP. Further, large fiers complicate the design of high speed routers,
leading to more power consumption and board space. Acaptdikloore’s law, switching
speeds double every 18 months while memory access speekle doly every 10 years.
Hence, as memory requirements increasingly become angnéspect of router design,
studying networks in finite-lfter regime seems necessary for network engineers.

This work focuses on both practical and theoretical aspdisite-bufer networks. In
Chapters X 7, we investigate thefects of finite bifer sizes on the throughput and packet
delay in diferent networks. These performance measures are shown iiokbd to the
stationary distribution of an underlying irreducible Maxkchain that exactly models the
changes in the network. An iterative scheme is proposedpooapnate the steady-state
distribution of bufer occupancies by decoupling the exact chain to smallenshdihese
approximate solutions are used to analytically charamaretwork throughput and packet
delay, and are also applied to some network performancenatiion problems. Further,
using simulations, it is confirmed that the proposed framkwalds accurate estimates of
the throughput and delay performance measures and cafiteresal trends and tradés
in these networks. In Chapters-810, we address the problem of modeling and analysis
of the performance of finite-memory random linear networ#liog in erasure networks.
When using random linear network coding, the content dfdvs creates dependencies
which cannot be captured directly using the classical guegleeoretical models. A care-
ful derivation of the bfer occupancy states and their transition rules are presasteell
as decodability conditions when random linear network egds performed on a stream of

arriving packets.



CHAPTER 1
INTRODUCTION AND RELATED WORK

In networks, packets have to be routed between nodes thrawggiies of intermediate
relay nodesi(e., routers). Each intermediate node in the network may recpackets
via multiple data streams that are routed simultaneousiy ftheir source nodes to their
respective destinations. In such conditions, packets raag to be stored at intermediate
nodes for transmission at a later time due to various reasoisas full béers, packet loss,
or scheduling. If an unlimited biter space is available, the intermediate nodes need not
have to reject or drop the arriving packets. However, infiwacbufers are limited in size.
Although increasing the liter space tends to minimize packet drops and increase the link
utilization, large bifers have an adverséect on thelatency i.e., the delay experienced
by packets stored in the network. Further, using largéfebsizes at intermediate nodes
would also result in secondary practical issues such ahigboard space and increased
memory-access latency. Consequently, a simple but funali@hsuestion is the following:
what is the minimum bfier requirement for each router given certain constraintghen
throughput and queueing delay?

The problem of bffer sizing and congestion control is of paramount interesbtiber
design engineers. Typical routers today route severaldkggabits of data each second.
Realistic studies have shown that, at times, Internet redtandle about ten thousand in-
dependent strearfilbws of data packets. With a reasonabldfeusize of few Gigabytes
of data, each stream can only be allocated a few tens of dak&tsa Therefore, at times
when long parallel flows congest a router, tifkeets of such a small ifier space per flow
come to play. Though motivated by such practical concemasywork is far from model-
ing realistic conditions. This work modestly aims at prongla theoretical framework to
understand the fundamental limits of single informatiomfla finite-bufter networks and

investigates the tradés between throughput, packet delay anfdusize.



Broadly speaking, this work is in the area of performance @lad and analysis of

networks. Our main objective is to develop a general framkviar studying the latency

and fundamental limits on the information carrying capacoi different networks€.g,

wired/wireless, mobildixed topology) in a finite-bffer setting. We aim at completing the

following major research tasks:

e Develop a theoretical framework to study the informatibaetretic capacity of wirgdireless

networks in finite-bffer regime.

¢ Study of the latency and throughput trad&savith the bifer size in general wirgdireless

networks.
e Extension to various communication, routing, sourcéitrascheduling scenarios.

¢ Modeling the dynamics of finite-fier random linear network coding in general net-

works.

Next, we motivate our problem by explaining the necessitpddressing the perfor-

mance analysis of networks in finite fber regime, and present the previous works in the

literature relevant to this topic.

1.1 New Trends in Bufer Size Reduction for Internet Routers

Until quite recently, Internet routers were widely belidvi® need large Hiers. Typi-

cally, the size of router Wters is determined by the well-known “bandwidth-delay prod-

uct” (BDP) rule-of-thumb [1]. The BDP states that thefflen size should be equal to the

bandwidth of the link multiplied by the round-trip time (RY®f a TCP connection that

can be bottlenecked at that link. Today, backbone links comiyncarry around 100

flows and operate at2Gb/s or 10Gb/s. Hence, for a typical RTT of 250 ms and link

bandwidth of 10Gb/s, BDP mandates a ffiier size of 25 Gb. Assuming 1000 bytes per

packet, the approximate fiar storage is equal to 3BQpackets which is shared by all TCP

Transmission control protocol



flows. Assuming only 500 concurrent flows [2], this is aboud @@ckets per flow, on the
average. However, a recent work by Appenzeller [2], reteteeas the “Stanford model”,
has challenged the BDP rule advocating the use of much srbatters. The authorsin [2]
proposed an alternative ruBDP/ VN instead, wherd\ is the number of flows, resulting
in significantly smaller bfiers {.e., only 3K packets vs 30K in the above example, which
is shared by all the flows). Equivalently, this is about sixlgs per concurrent flow, on
the average!

With declining memory prices, why not just overfber routers? The reasonings behind
the Stanford model are explained in great detail in [2—4]. Bfefly discuss two of them
in the following. (1) Large bffers complicate the design of high speed routers, leading
to high power consumption and more board space. If a few dpaeket bifers would
sufice, then packet liters could be incorporated inside the network processor CA
in a small on-chip SRAM,; in fact, the Ifiiers would only occupy a tiny portion of the chip.
Hence, not only would external memories be removed, butitdsould allow the use of
fast on-chip SRAM or all-optical Hiering, which scales in speeds that are much faster
than DRAM. Additionally, with recent advances in all-o@iswitching, low storage all-
optical butering will open the door to routers with huge capacity anddowower than
electronic routers. (2) Over-figring increases end-to-end delay, conflicting with real-
time applications such as online gaming, audio-video sesyilPTV, and VoIP that have
the UDP type trfic. Additionally, large btfers may increase the variance of the latency,
making congestion control algorithms unstable. Since thekwf [2], other researchers
have also advocated smallfBer sizes [5-17]. Some have studied new congestion control
mechanisms for small lier routers [18—21]. The experimental work is also perforneed
validate this direction [22, 23].

In summary, today, we have arrived at a juncture whereinnterhet handles a large
volume of data. Realistic studies have shown that, at titmésinet routers handle about

10,000 independent flows of data packets. Hence, only a few tedata packets from



each flow can be stored. As discussed above, the storagdfefdper flow, on the aver-
age, varies from six packets (using the Stanford model) @Xkets (using the current
BDP rule), assuming 500 concurrent flows. Therefore, atdimieen long parallel flows
congest a router, thefects of such a small fier space per flow come to play. Our work is
motivated by such concerns. The matter gets worse for rhaftiwireless networks where
the bufer sizes at the intermediate nodes are more restricted,odwedless device and
link constraints. Therefore, several fundamental questitse. What is the capacity of
finite-buffer wiregwireless networks and how does it vary with thétbusize? What is the
latency of the finite-bfier wiredwireless networks and its variation with theflar size?

What is the interplay of the latency and throughput in a fibier regime?

1.2 Finite-Buffer Networks vs. Information Theory

A finite-buffer queue has been studied in the information theory commasita finite-
state Markov channel for a communication link in [24—26].rivas coding strategies for
achieving capacity in infinite-ter erasure line networks is outlined in [27]. Later, [28]
considered the limitations posed by finite memory, spedificga a simple line network
involving a single intermediate node. Inspired by this wd#9, 30] investigated bounds
for the capacity of general multi-hop wireline networks.v&=l challenges arise when
extending the study from a single intermediate node to aifhalft line network as detailed
in [31].

Advances in the area of error control coding have alreadydéke design of capacity-
achieving codes for channels such as the binary erasureeh@2—-39]. The design of
such good codes has kindled greater interest in the studyeofétical limits such as ca-
pacity and throughput in several classes of wired and vasatetworks. For example, for
multicast in wireline networks, it was shown that the maxvfimin-cut upper bound can
be achieved [40—-42] if every node sends out packets geddrgteandom linear combina-

tions of previously received packets. However, this tegheiassumes that nodes store all



previously received packets, resulting infiles growth as the source injects new packets in
the network. Since then there has been considerable wahk iareas of capacity study and
network coding for both wired and wireless networks underittiinite-buter assumption
[27,43-52]. Despite all the exciting results, the study aparcity of networks with finite
buffer sizes has been limited. This can be attributed to theliat&mnalysis of finite-kitier

systems are generally more challenging.

1.3 Finite-Buffer Networks vs. Queueing Theory

Studying capacity alone, information theory assumes tefibiffer; hurting the informa-
tion delay which is of great interest for communication natevcommunity. Queuing
theory, on the other hand, provides analysis for the deldly htile regard to capacity. The
problem of studying lossy networks with finite fiiers has been investigated in the area of
gueueing theory [53-58]. The queueing theory framewomnaptts to model the packets
of the network as customers, the delay due to packet losdialsras service times in the
nodes, and the Itier size at intermediate nodes as the queue size. Also, tmoptenon
of packet overflow in the network can be modeled by blockirap{monly known asype
Il or blocking after servicein queueing networks [59]. However, this packet-customer
equivalence fails in general network topologies due to tiewing reasons. When the
communication network contains multiple disjoint pattenirthe source to the destination,
the source node can choose to duplicate packets on mulfgies po minimize the delay.
This replicating strategy cannot be captured directly en¢bhstomer-server based queue-
ing model. Moreover, communication schemes such as netamding in finite-bidfer
networks introduces redundant innovative packets, whasinot be studied using such a
framework.

Although the other works provide some insight into the asialyf capacity of net-
works, they are limited to either infinite-Her cases or finite-memory line networks with

a simple single intermediate node. Moreover, the interplaje throughput and latency



with the bufer size is not considered. All of this inspires us to obtaireatework to study
the dfect of finite memory in general multi-hop wirgdreless networks. In the process,
we expect to develop tools and techniques that will be slgtimy analyzing the capacity,
and the throughput-latency trad€é-m such networks in various communication scenarios
such as unicast, multiple unicast, and multicast. Clednky,previous techniques do not

lead to the goals that are sought out in our proposed research

1.4 Finite-Buffer Networks with Scheduling Policies

Since the seminal paper of Tassiulas and Ephremides whigtoped a throughput-optimal
joint routing'scheduling algorithm [60] (backpresure routing), there Ibeen a great¥ort
to develop throughput-optimal schemes foffelient networks [61-66]. [61, 62] investi-
gated throughput optimal scheduling policies for finitéfbuwired and wireless networks
with performance guarantees. Also recently, [67] has ed@ bffer management strat-
egy to improve the delay-throughput tradésan backpressure routing. Network coding
in wireless queueing networks has also been studied to exaime &ects of the saturated
gueues [68,69]. However, both [68] and [69] consideredtfiaite queue over single-hop
channels and examined the stability condition to ensurelétay will not grow without
bound. Recently, [70] presents a rough estimate for theopwaence of finite-bfier net-
works. However, as explained before, the tools developeglgueing theory are inad-
equate for the analysis of random linear coding scheme, hwvie employ to study the
capacity of general finite-tfier networks. In Chapter 5, inspired by the routsapeduling
scheme used in [63] for wireless erasure networks and inf@2he finite-bdter case, we

adapt a modified backpressure routing policy for the sakeipfnalysis.



CHAPTER 2

TOWARDS A GENERAL FRAMEWORK FOR ANALYSIS OF
FINITE-BUFFER NETWORKS

In this chapter, we first motivate our study of finiteffar networks by some examples.
Then, we introduce the notations and definitions used in oypgsed framework for anal-
ysis of finite-bufer networks. Finally, we present the general framework tsajiplication

in performance analysis and modeling.

2.1 Preliminary Discussion and Motivation

There are three major observations that we wish to presenotivate our study of finite-
buffer networks. First, for small-size fiars as in the Stanford model, the max-flow min-
cut result (of the infinite-bfier case) does not hold and, hence, a new framework and
tool must be developed to obtain maximum achievable ratesor@l, to our knowledge,
the relation of latency with the Ioier size in the finite-bilier regime remains unknown in
most cases. Additionally, there is a trad&doetween delay and capacity (or throughput
in general). In particular, the penalty, in the form of irgsed latency, is severe for any
subtle improvement in the information rate. Third, the tgpthe node (defined below) is a
determining factor for allocating the tier space to various incoming flows (i.e., theteu
management strategy). Our study is fruitful for networkieegring by shedding light on
the above issues. Here, we present some simulation reswdtstadblish these motivating
factors and we defer some details to the later subsectioasviidconsider a discrete-time
model in which every node transmits one packet per epochetaéikt-hop node. First, an
eight-hop line network with the probability of packet ergson each link sette = 0.2 is
considered. Note that a finely discretized version of théesg@approximates the dynamics
of the continuous-time system to any degree of precisiomfoappropriate choice of link

erasures in the discrete model [31]. That explains the uselatively large link erasures.



At each setup of experiment, for all intermediate nodes,stiree bffer sizesm of 10,

25 or 500 packets are used (which covers the range from timéo&tamodel to the BDP
model, refer to the introduction chapter). It is assumedtt@asource has infinite number
of information packets and it attempts to send one packéigoext-hop neighbor in every
epoch with probabilityR,. We denoteRs as the source injection rate. Figure 2.1 shows the
trade-df between the throughput and average information packey defahree diferent

buffer sizes obtained from the actual simulations. It is cortlithat both throughput and
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Figure 2.1: Throughput and delay versus the source injectite.

delay increase with the lfier size. However, the delay undergoes an exponential growth
compared to the throughput which saturates to the min-duevaf the line. In theory,
the min-cut value (} enax = 0.8) is achieved when the Her size approaches infinity
for a very large block size. We also observe a large loss inhtaughput if the average
delay is bounded. For example, when the average delay is@thsgffi.e. Rs = 0.85), the
throughput gap from the min-cut value is 16% for the congddnffer sizes.

Next, we consider two cases of a four-hop line network (With\tertex sets, vy, Vo, Vs, d},
wheres andd are the source and the destination nodes, respectivelly)paitket erasure

probability for each hop from the sé&t= {0.3, 0.5, 0.5, 0.2}. Further, intermediate nodes



V1, Vo, andvs have the same Ifiier of 10 packets (or 20 packets for the second setup) each.
We assumed a lossless hop-by-hop feedback scheme (withoobding). Now, one might
ask the questionwhen it comes to bfier management strategy, is the more, the merrier?
Surprisingly, sometimes it is damaging to use affeuslots for the same flow even when
the space is available. To illustrate this claim, the esthalistribution of packet occu-
pancy at the intermediate nodes under botfidnsizes is presented in Figure 2.2. As the
buffer size is doubled, it is noticed that nogehat is congested remains congested, ngde
that has low occupancy registers a marginal change in thgpaocy distribution, and node

V,, which is the node following the bottleneck edge in the nekyeegisters a significant

change in the occupancy distribution.

Buffer Occupancy for node v, form = 10,20

T T T T T T T T T T T T
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Buffer Occupancy for node Vv, for m = 10,20
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Buffer Occupancy for node V, for m = 10,20
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Figure 2.2: Estimated Isier occupancy distribution for fierent types of nodes.

Figure 2.3 presents the simulation for the contributiondpacity and average delay

by varying the bfer size of one node while keeping theflau size of the remaining two
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nodes fixed at 10 packets. Using Figure 2.3, we conclude tmdtibution to mean delay

from v; increases almost linearly with the increase in itéféusize whereas the change

in capacity is subtle. Changing thefter-size ofvs is insignificant on both capacity and

delay. Lastly, doubling the Itter size ofv, increases both the capacity and average packet

delay. However, the rate of increase of the delay with theemse in the hiier size of

V, is smaller than that caused by the increase of tHEebsize ofv;. By identifying these
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Figure 2.3: Capacity and average delay contribution of eacte versus tier size.

nodes, our proposed work will make it possible to desidgifidilumanagement strategies that

make dficient use of the hiiers without compromising much on the throughput or average

packet delay. For example, if the capacity of the four-hopwvoek example above is to

be maximized albeit with a reasonable price in the averatgydall 20 bufer slots ofv,

must be used for the flow whereas thatvpimay be kept at around four. In the following

subsections, we first present the framework for finitédauanalysis, irrespective of the

underlying communication scenario or the loss recovergeseh Then, we present the

specific application of the framework for a line network wattasure links.
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2.2 Models and Definitions

The following notations and definitions will be used in thetnehapters. However, at each
chapter, we will try to clarify the notations and definitiothet are not precisely defined
here, or even may reiterate them to avoid confusion.

We consider each communication channel to be a memorylassrerchannel. We
model a “general” packet erasure network as an acyclic tdzidegrapha(\/,_é). The ele-
ments ofV are calledhodesand the directed pairs of that are elements & are called
links. A nodeu can communicate with another nodd and only if there is a link between
them, i.e., ¢, V) € E. The links are assumed to be unidirectional, memorylesda@syy,
i.e., packets transmitted on a lir&k = (u,V) € E are lost at random with a probability of
gz = &uy. Note that the erasures are due to the quality of links andticepresent packet
losses due to finite fters. We assume that every intermediate nogeequipped with a
fixed bufer sizem, packets per flow. This implies that the entire relaying sieraf every
node is divided to segments of siag packets, one segment for each flow. We assume
that communication happens in a discrete-time fashion.ath ainit of time, referred as
epoch a packet per flow is transmitted by a node on each outgoitkg linis assumed
that the source and the destination nodes has fierbconstraints. The unicast informa-
tion theoretic capacity between the source and destinatiametwork is defined to be the
maximum achievable rate of transmission of informationkeés (in packets per epoch)
between the pair of nodes Throughout this work, we distinguish between information
theoretic capacity (in short capacity) and the throughpatscheme. Here, the throughput
of a scheme is defined to be the rate of transmission of infbomgackets (in packets
per epoch) between the source and destination nodes fordaddamunication scheme.
Further, unless a source packet arrival model is defined,ssenae that the source node

can generates new information packets at every epoch. Thg delatency of a packet

1The maximum is calculated over all possible means used fockgtageneration and fier update at
network nodes.
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is defined as the time taken from the instant when the souacts sterving the packet by
injecting it to the network to the instant when the destoratiode obtains it.

Further, we employ the following notations. L&t (u) denote the set of all the neigh-
boring nodes thai can send packets via outgoing links. Likewise, theréétu) is defined
using the incoming links ofil. For anyx € [0, 1], X # 1 — x. Nodes and nodel represent

the source and the destination nodes respectively.

2.3 Analytical Framework for Finite-Bu ffer Analysis

In this section, our objective is to develop a general amalyamework which can be
applied to as many communication scenarios and networkgaoduting schemes as pos-
sible. The first step in the construction of the proposed é&work is the characterization
of the bufer states of the intermediate nodes at each particular efitén, this charac-
terization is simple because the occupancy of a node is mexhby the number of packets
presently stored at the node. However, there are exceptiosisch characterization, and
it occurs when the occupancy of eachfieu cannot be described by the number of phys-
ical packets stored. For example, when using random lineding (RLC), even with a
single packet reception, the entireffar of a node becomes physically full with multiples
of the same packet. Thus, although the nodef$dowould always be physically full, its
occupancy is measured as the number of packets of inform@ieq innovative or linearly
independent encoded packets) stored. In Chapter 3, we esltisat for a line network
scenario, the characterization offfar states with RLC is exactly the same as a non-RLC
scheme such as hop-by-hop feedback. However, in Chaptenfplcations of modeling
the buter states for RLC in a general network topology will be ddsemli

For any single-copy routing scheme, we can assume the nushpackets physically
stored at each node as thefilem state. In such routing schemes, a node forwards each
packet to only one other node and deletes the packet fromfiisrlwhich leads to increas-

ing the occupancy of the receiving node and decreasing thgaacy of the sending node,
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both by one. Hence, the state of the networkéns can be clearly defined. Specifically,
the occupancy of node € V is denoted by the state of a queXigt). We say the queue
Xu(t) is full and hence would block an incoming packet (to nogiéf its state is equal to
my, (the size of the bflier). Obviously, the incoming packet would not be blockedyahl
the state of the queue is less than

The above setup provides an elegant way of analyzing thenpeaihce of the system
using Markov chains(MC). We proceed in modeling the problem using a discreteti
finite-state MC. For every nodg consider a queuX,(t). For a network oN intermediate
nodes, we neell queue variables. Further, each queue variable can takes/athm O up
to m,. Assuming that all the nodes have dilen size ofm packets, we see that the number
of states in the MC that is needed to completely track the olyosof the network is in the
order of (n+1)N; growing exponentially withN. Note that transitions between states in the
chain is based on the channel realization at that time ihsfamn instance, it must be noted
thatsuccessful transmissighconveyanch of a packet fromu to a next-hop neighboris
possible only when the packet is not erased by the channeibad node/s queues are
not full. Upon a successful transmission on an edge from & ndd v, both the queues
corresponding to the two nodes must be updated.

Due to the exponential growth in the size of the exact Markio&irt in most of the
scenarios, exact calculation of the steady-state prababiand the network performance
is computationally intractable. Further, the finitefllen constraint introduces a strong de-
pendency in the state transitions of a queue at naglethe state of its next-hop neighbors.
Finally, the intractability of the EMC is compounded by a roemoryless output process
at each node. Thus, approximation is a more favorable option

We propose an approximation method that updates a queuedeurconsidering: (1)
The dfect of blocking imposed by the next-hop neighbsf3(u) (on the packets departing
from u), and (2) The packet arrival processuairom the previous-hop neighborg*(u).

Hence, we will only consider the dependency of the statesttian probabilities of the
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gueue for each node to the state of the queues corresponding to node¥“ifu) and
N~(u). Note that this will be exact for most of the schemes on a ggmetwork as well
as when RLC is applied on a line network. The main idea of tleapmation framework
is to divide the multi-dimensional MC with multiple refleatis into multiple simple MCs
whose steady-state probabilities can be calculated imidlgmetly. Note that although each
MC process is assumed independent of the other MC procdbsemiterdependency of
the states of their queues are captured by the approximaugdhod via their steady-state
probability distributions.

Let X denote the set of all the queug(t) required for the analysis, wheree V.
Note that, each queu§,(t) € X must form an irreducible ergodic Markov chain whose
state transition probabilities must be systematically gotable given all the information
regarding the communication schemeffbumanagement strategy, the erasure probabil-
ities on the links, and the network topology. As a result,tla MCs will have unique
steady-state probability distributions which are dendted,(-), i.e., my(k) = Pr{X,(t) = k}
fork =0,1,...,m,. Itis notable that in general, by means of our approximatiethod,
the state transition probabilities for MC of every queXigt) depend on the steady-state
distributions of the queues corresponding to node§fiiu) and N~ (u). Since there is no
prior information about the probability distribution ofebe queues, the proposed estima-
tion must be done iteratively. To determine the state ttemmsprobabilities for each MC,
we need to know the dynamics of arrival and departure of gadkeits corresponding
gueue. In general, for every queMg(t) € X, we define multiple incoming and outgoing
streams of packets which are assumed to be statisticalypamtient for the purpose of our
approximation procedure. Leét, = {A;,...,4,,} be the set of arrival rates, wherg is
the number of arriving streams at the que{yé). Similarly, letQ, = {ua, ..., uz,} be the
set of departure rates, whezg; is the number of departing streams. Thus, at each epoch,
the total number of arriving packets can range from @tosince each arrival occurs with

probability A; fori = 1,..., z,. Similarly, the number of departing packets can range from
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0 to z,,+. Hence, at each epoch, giv&p(t) = n, its state can change to any other state in
the settmaxXn, — Zoy, 0}, . . ., min{n, + z,, My}}. The state dynamics of the quekg(t) at
thet™ epoch is a Markov chain that is similar to the one depictedguie 2.4. Given the

current state of the queueg., X (t) = ny, we define its arrival and departure polynomials

as
Zin Zin Zout Zout

A (x) = Z Mk = ]—[(—Aj(nu)Jr ()X . EM™(x) = Z &)y = l_l('“ 1(NW)+(Ny)X),
k=0 j=1 k=0 j=1

whereaf(”“) can be interpreted as the probability of the event that thabmu of packet

arrivals to the queu,(t) is equal tdk in a single epoch. Similarlyel((”“) can be interpreted

as the probability of the event that the number of packet degas from the queu,(t)

is equal tok in a single epoch. The superscript on theftioents represents the current
state of the queueX,(t) = n,. We included this dependency of the arrival and departure
polynomials on the current state of queue to account for stases such as the wireless

networks with backpressure routing as we will see in Chater

Figure 2.4: MC of the queuX,(t) with m, = 5 andz, = z,; = 2.

To put everything in a more systematic form,Agt= {A™)(x)} " andl’, = {E™ (X)),
be the sets of arrival and departure polynomials for the gXg(t), respectively, wherey,
is the bufer size of nodel. GivenA, andI'y, the queue’s state transition probabilities can

be easily computed. As an example, fot(J < m,, we have the following:
Zin o
PriX,(t+1) = jIX,(®0 =i} = > alel) ;. (2.1)
k=0
For notational consistency, we can extend- 0 fork < 0 ork > z,,; anda, = 0 fork < 0

ork > z,. As a result, the proper approximate MC is formed XQ(t) with steady-state

probability distributionr,(-).
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In summary, given all the information regarding the perfante problem, for any node
u, a queue with its incoming and outgoing streams will be iidiexk properly. Then, the
corresponding arrival and departure polynomials will b&aoted in a parametrical fashion.
These polynomials describe the state transitions of thaefrem which the steady-state
probability distribution can be computed for the MC. Ther, propose the following al-
gorithm, denoted as the “iterative estimation algorithiiZA), to compute steady-state

probability distributions for all queues:

Step 1. Initialization (iteration 0): Start with arbitragalues forA® and Q and com-
puteA? andr’? for each queue, where the superscript denotes the iteratimber.
However, apply prior information regarding the queues fatialization. For exam-
ple, in our initial model, destination node does not block arriving packet. Also,

the source node has infinitely many packets.

Step 2. Increase the iteration index by one (e.qg., iterajic@ivenA{™ andr{= for all the

queuesX,(t) € X, compute their steady-state probability distributiafis”().

Step 3. Givenr{ V(. for all the MCs, compute the new sets of arridaiparture polynomials

AY andr® for each queu,(t) € X.

Step 4. Go back to Step 2 until all the steady-state prolhigsilconverge to fixed distribu-

tions.

Note that at Step 3, using V() for all queues, we compute each arrival ratey
applying its definition for each queug(t) € X. That is,4; is the probability that a packet
arrives on the strearm(without being erased), which may or may not be blockeduby
Hence, 4; is computed by multiplying the probability of two events: Tlhe event that
the packet is not erased by the corresponding incoming ankl, 2 The event that the
corresponding queue of the nodeAft (u) is not in the empty state (obtained at Step 2 of

IEA). Similarly, for each queu,(t) € X, we compute the departure rateby using its
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definition, which is the probability of the event that theklipn does not erase the packet,
and the event that the queue of the corresponding receiddg m/N~(u) is not at the full
buffer state (and hence, it does not block the packet fupnThe calculation of\, andI’,
from A, andQ, will be straightforward then. Finally, once steady-stasgributions of all
gueues are computed, we can obtain analytical expressiotisef performance parameters
such as capacity, throughput, and latency distributions Wil be discussed and in more

details in the following Chapters.
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CHAPTER 3

ANALYSIS OF THROUGHPUT AND DELAY IN LINE
NETWORKS

In this chapter, we study thefects of finite bifers on the throughput and delay of line
networks with erasure links.As identified in Chapter 2, the calculation of performance
parameters such as throughput and delay is equivalenteéondi@ing the stationary distri-
bution of an irreducible Markov chain. We note that the nuntfestates in the Markov
chain grows exponentially in the size of theffaus with the exponent scaling linearly with
the number of hops in a line network. We apply the proposedtites estimation algorithm
to approximately identify the steady-state distributiéthe exact Markov chain by decou-
pling the chain into smaller chains. The approximate sofuis then used to analytically
characterize thefect of bufer size on throughput and distribution of packet delay. Fur-
ther, the results of this chapter can be used to classifysioaged on congestion that yields
an intelligent scheme for memory allocation using the psggoframework. An example
of such applications is presented in Chapter 2.1. Finallgukations will confirm that
our framework yields an accurate prediction of the varratd the throughput and delay
distribution.

As mentioned in Chapter 1.1, in [28], Lwt al. consider a discrete-time model, where
each node can transmit and receive a packet during each,d@pantalyze the capacity of
a simple two-hop lossy network. In [29], upper and lower bisian the throughput of line
networks are derived, but were unable to provide good apmetions for packet delay
and bufer occupancy statistics. While our approach employs a mafdetwork similar
to that in [28, 29], we extend their results not only to demgtimates for the throughput
of line networks of any hop-length and intermediate nodgdosize, but also to derive

guantitative estimates for packet delay distribution.

1This work is done in collaboration with my former lab-mate, Badri N. Vellambi [31].
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3.1 Problem Statement and Network Model

We define a line network of hop-lengthto be a directed graph with vertex 3ét= {s =

Vo, V1, Vo, ..., Vi1, d = i} and edge sé8 = {{vi, Vi,q) 1 i1 = 0, ..., h—1}. The links are assumed
to be unidirectional, memoryless and lossy with erasurbatndity ; on link {v;_,, v;} for

i =1,...,h. Alossless hop-by-hop acknowledgement setup is in plagcedioate the suc-
cessful receipt of a packetMoreover, the packet processes ofatent links are assumed
to be independent. Each noges V has a bifer of sizem packets with each packet having

a fixed size. Note that the Her size can vary with the node index. Lastly, the source and
destination nodes are assumed to ha¥Bcent memory to store any amount of data.

The system is analyzed using a discrete-time model, whete made can transmit at
most one packet over a link per epoch. The unicast capacityele@ a pair of nodes is
defined to be the supremum of all achievable rates of trassoni®f information pack-
ets (in packets per epoch) between a pair of nodes. The suprasncalculated over all
possible means used for packet generation aticcbupdate at intermediate nodes. Note
that the source node can generate innovative packets degictyepoch. For instance, in
the particular case of the line network defined above, we avidkg to identify the unicast
capacity between the sourggand the destination,.

Before we proceed to the modeling, we briefly motivate theimesl discrete-time
model with an example. Consider a continuous-time moddi thié discrete-time model
for varying times of epoch for a simple continuous-time tiaap line network with a Pois-
son packet generation process at the source with parameted O pktgsec. The service
time at the intermediate node is also Poisson with parameterl 0 pktgsec, and the links
connecting the source to the intermediate node and themetiiate node to the destination
are both packet-erasure channels with erasure probabilit= £, = 0.1. Finally, suppose

that the intermediate node has a finiteéfbuof m = 10 packets. Figure 3.1 presents the

2This assumption is made to simplify modeling. In the absesfagerfect ACK, one can use random
linear coding over a large finite field to achieve the samerdéshroughput. See SectibH — D in [31].
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(simulated) capacity for the continuous model and the tthseretized models for various
epoch durations. It is noticed that as the epoch duratioragensmaller, the discrete-time
model becomes more accurate in predicting the capacitys Vs verified to be the case

for all line networks with Poisson arrivals and service time
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Capacity (in packetspoch)
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Figure 3.1: An illustration of the precision of the discréitee model.

Lastly, we use the following notationsx(p) denotes the geometric distribution with
mean inter-arrival timel}—p. o(-) denotes the indicator function f@t.,. For anyx € R,

X £ 1 — x. Finally, ® denotes the convolution operator.

3.2 Finite-Buffer Analysis

In this section, we will apply our general framework of finligffer analysis to the problem
of identifying bufer occupancy distributions, and consequently, performgarameters
such as throughput in line networks.

One of the most important performance parameters of a nktiwats throughput and
the problem of identifying capacity is directly related teetproblem of finding schemes
that arerate-optimal In our model of line network, a scheme that performs thefuithg

in the same order can be seen to be rate-optimal.

1. If the buter of a node is not empty at a particular epoch, then it mussirat at least
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one of the packets.

2. A node deletes the packet transmitted at an epoch if itves@an acknowledgement

from the next hop.

3. A node accepts an arriving packet if it has space in iteebult then sends an ACK

to the previous node.

In the absence of feedback, rate-optimality can be achibyegimploying random linear
combinations based network coding over a large finite field described in [28, 29].

In order to model the network with lossless feedback, we neddck the number of
packets that each node possesses at every instant of timedo\de by using the rules
of buffer update under the optimal scheme. Rgt) = (Xy(t),..., Xn_1(t)) be the vector
whosei component denotes the number of packets'fhatermediate node possesses at
timet. Also, letE(t) = (E1(t),..., En(t)) be a vector of channel conditions at timevhere
Ei(t) = 1 if and only if the link {_1, ;) does not erase the packet at tHepoch.

Hence, we see th&X (t)}z., forms a Markov chain. It is readily checked that this chain
has]‘[{‘;ll(m + 1) states. Further, this chainiiseducible, aperiodic, positive-recurrent
andergodic[71] and therefore has a unique steady-state probability.efgodicity, we
can obtain temporal averages by statistical averages. &vestte that the computation of
throughput is equivalent to the computation of the liketil®f the event thaX;, > 0 and
En=1.

The exponential growth in the size of the chain and the prEsehboundaries (due to
finite buffers), exact calculation of the steady-state probabil{ies hence the throughput)
becomes very cumbersome even for networks of reasonaliler Isizes and hop-lengths.
The exact chain for the dynamics of the system is such thaita gpdate at a node has
a strong dependence on the states of both its previous-hbptsanext-hop neighbors.
Additionally, the process of packet transmission overrmidiate edge can be shown to

be non-memoryless. These facts add to the intractabilith@®exact computation of the

22



distribution. However, it is possible to decouple the chaton several Markov chains with
a single finite-boundary under some simplifying assumpgtiomo have an approximate
decoupled model, we need to identify the transition prdiiads of the decoupled chains,
which is possible only if we know the arrival and departuregesses on each edge. The
rate of information on any edge is directly related to theticn of time the sending node
is non-empty and the fraction of time a successfully deéidgracket will get blocked (and
this happens if the receiving node is full at the time of packeival). Hence, to have
a model for a node, we need to have the approximatieboccupancy distributions for
neighboring nodes. This hints naturally at iterative approach to the problem. In this
section, we develop an iterative estimation method thasidens the ffect of blocking
with some simplifying assumptions. To develop an iterateehnique, we assume the

following.

Al. The packets are ejected from nodes in a memoryless faskiquivalently, we as-
sume that Pr{;i_1(t) > 0) A (Ei(t) = 1)|Xi(t) = k] does not vary with the occupancy
k of thei®™ node. This allows us to track just the information rate antthe exact

statistics.

A2. The blocking event occurs independent of the state ofdenice., Pr[(Xi.(t) =
0) A (Eis1(t) = DI(Xi(t) = K)] is the same fok = 1,...,m. This allows us to track

just the blocking probability and not the joint statistics.

A3. At any epoch, given the occupancy of a particular node attnival process is inde-

pendent of the blocking process.

Under these assumptions, for noglehe arrival stream of packets is coming only from
the link (vi_1, v)) (i.e., z, = 1) with raten;. Similarly, there is only one departure stream of
innovative packets from nodg, leaving through the link\{, vi,1) (i.e., Zoy,: = 1) with rate
ui. Here, the subscripts of arrival and departure rates dehetandex of the node. Thus,

givenz, = z,,; = 1 and the arrival and departure rates, the set of arrivalnooiyalsA,,
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and departure polynomial, for nodey; (i.e., the queue;) can be simply obtained as
Ay = 89+ apX = A + X, T, =€+ eX=10+ X (3.1)

Then, we can show that the resulting Rfor nodev; with the bufer sizem is given by
the chain depicted in Figure 3.2, with the parameters obthuma (2.1) asr = a;e = Ay,
B = age, = A, andag = a; = A;. Then, the steady-state distribution for the chain in

Figure 3.2 can be computed (see Step 2 of the IEA algorithmhepr 2.3) using

—l =
e ey B
Pr{Xl = k} = (YO(Yk_l g . (3.2)
B
L2y O<k=m
a

L e -85
Q\/ o D

a+p a+,8 a+p

Figure 3.2: The chain for the nodgobtained by the assumptions A1-A3.

The blocking probability that the node ; perceives from the node, assuming that

v; sees a blocking probability ofy,,, caused by, can then be calculated far =

1,2,...,h—1 as follows.

Poi = (€is1 + Eir1Pois1) PHX = my} (3.3)

Then, we havey = Pyi,18i-1 fori = 1,2,...,h—1. Further, a packet arrives at nogenly
if it is not erased on the linkv(_,, v;) and buter of nodev;_; is non-empty. Hence, for the

arrival rate to node;, we havel; = & (1 - Pr{X;_; = 0}).

3Due to the discrete-time nature of the framework, two distMCs are associated with each intermediate
node. Here, we considered the transmit first MC in which, ahegpoch, the event of transmitting a packet
occurs before the event of receiving a packet.

“Note that the arrival rate at the noslgis 1; = &, and that the blocking probability of, is zeroi.e.
Pop = 0.
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Given (3.1) and (3.2), the The approximate solution to th&eowccupancy distribu-
tions for each intermediate node follows from our proposerhtive estimation algorithm
introduced in Chapter 2.3. Finally, the estimate of theulgtgput capacity can be obtained
from the approximate solution as

C =4,
whered; is the approximate packet arrival rate (result of the cayeece after iteration) at

the destination.

3.3 Packet Delay Distribution

In this section, we use the approximate solution of Secti@i@ obtain the estimates on
the probability distribution of the delay of a packet. We defthe packet delay as the
time taken from the instant when the source starts sendmg@adbket to the instant when
the destination receives it. We assumfirst-come first-servéreatment of packets at the
intermediate node hiters.

In order to compute the distribution of delay that a pack@esiences in the network,
one can proceed in a hop-by-hop fashion. Considering thedis/ node, the additional
delay of an arriving packet (at tint¢ at nodev,,_; depends on the occupancy of the node
Vi1 and the erasure channel that follows it to the destinatiarpp8se at epoch) node
Vi1 hask < my_; — 1 packets in addition to the arriving packet. Then, the pabkes
to wait for the firstk packets to leave before it can be served. Since each tragiemis
takes place independently, the distribution of delay is sfiln+ 1 independent geometric
distribution with mean inter-arrival timg_ls—h, which is denoted bg G (en). Suppose that
the distribution of béfer occupancyat time of packet arrivais given byn,_4(i), then the

distribution of delay added by,_; to the packet is

mh-1-1

Dha= ) mna(i)® Cién). (34)
i=0

However, the situation is fferent for other intermediate delays because of tfeceof

blocking. The additional delay incurred while being stoa¢the nodey;, 0 < j <h-1,is
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given by

mj-1
Dj = Z ()8 G (), (3.5)
i=0
where we used the following to consider blocking.
i + 6y l1-g) i=12...,h-1
o = & + by (m)(1- &) , 5.6
&h i=h

whereg,, (k) is the steady state probability of that nodealready hak packets when the

packet is transmitted successfully frasn;. 7;(i) andé,, (k) are related by

% i:l,z,...,mj—l
ri(y =4 : (3.7)

0 i = m;
By assuming that the delays incurred by each node and itshatjooutgoing link is inde-

pendent of each other, we obtain the total delay considatiipps to be
D= G(é1)®D1®"'®Dh_1.

Hence, the delay distribution is known if the steady-staséridutions of bifer states
(7;(-), j =1,..,h-1)as seen by arriving packets is known. However, it is a srapércise
to derive these distributions from the results of Sectidh 3he method of deriving both

the transmit-first and receive-first distributions are diégtl in details in Chapter 4.

3.4 Simulation Results

We have so far presented some fundamental tools for finifietanalysis of line networks.
In this section, we show that they are very helpful to obtatuaate estimates of the perfor-
mance parameters such as throughput, delay distributidbbuater occupancy distribution
for line networks.

To understand the variation of our throughput capacityveste of Section 3.2, in each
of the figures, the simulation of the actual capacity is preskin addition to our analytical
results. Figure 3.3 presents the variation of the capadity tve hop length for a network

with each intermediate node having dliem size of five packets. Moreover, the simulations
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are performed when the probability of erasure on every krdet to either @5 or Q5. Itis
noticed that the estimate captures the variation of theahctaipacity of the network within

about 15% of error.
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In order to study theféect of bufer size, we simulated a line network of eight hops
having the same erasures as in the previous setting. Fighipreésents the variation of our
results and the actual capacity as th&@usize of the intermediate node is varied. It can

be seen that as the fber size is increased, all curves approach the ideal minapaaity

of 1-e¢.
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Figure 3.5 presents the variation of delay distributiorhwéspect to the biter size for
an eight-hop line network with the erasure probability oergJink set to 025. It can be
seen that both the mean and the variance of the distributieases with the increase in
the bufer size. It is noted that the analytic prediction of the detaynore conservative
than the actual simulation i.e., the analytic estimate efdriance is higher than the actual

simulated one.
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Figure 3.5: Delay distribution in an 8 hop line network foryiag bufer sizes.
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CHAPTER 4

ANALYSIS OF THROUGHPUT AND DELAY IN WIRED ACYCLIC
ERASURE NETWORKS

In this chapter, we apply our proposed iterative methodtion@se the performance param-
eters such as throughput and average latency in general agyelic networks with erasure
links.! As a case study, a random packet routing scheme with idedib&ek on the links

is used. We will show that the proposed framework yields dyfaiccurate estimate of the
probability distribution of bffer occupancies at the intermediate nodes using which we can
not only identify the congested and starving nodes but dtgaio analytical expressions

for throughput and average delay of a packet in the network.

4.1 Network Model and Routing Scheme

We model the network by an acyclic directed grfb(v,_E)), where packets can be trans-
mitted over a linké = (u,Vv) only from the nodau to v. The system is analyzed using a
discrete-time model, where each node can transmit at masgke acket over a link in
an epoch. The links are assumed to be unidirectional, mdassnand lossy, i.e., packets
transmitted on a link€ = (u,v) € E are lost randomly with a probability afz = g(,).
Each nodev € V has a bffer size ofm, packets with each packet having a fixed size.
Source and destination pairs are assumed to hdlieisnt memory to store any data pack-
ets. Also, the source node can generate infinitely many padkeing each epoch. Node
and nodel represent the source and destination nodes respectivsly, far anyx € [0, 1],
X=1-x

we consider a directed random routing scheme for packegthiegwith lossless zero-
delay feedback on the links. To be more precise, the nodest@pesing the following

rules, one after another.

1This work is done in collaboration with my former lab-mate, Badri N. Vellambi [72].
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1. At each epoch, every nodeselects a random ordering of the outgoing edges and
transmits the packets it houses one by one. If the packeteessfully received and
stored at a neighbou,deletes the packet from its fiar and transmits the next packet
(if any) on the next edge in the selected order. Else, ittadéansmit the same packet
on the next (in the selected order) outgoing edge. This geoecontinued until all
packets are transmitted or a transmission is attemptedabrliel. Therefore, a node

with z, outgoing links transmits at moz§ packets per epoch.

2. After the transmission attempts are made, the node at$etm@ccept the arriving
packets. If more packets are received than it can storelettsea random subset
of the arriving packets whose size equals the amount of spaaitable and stores
the selected packets. Consistent with the previous stgpoppate acknowledgment

messages are then sent.

4.2 Understanding Finite-Bufer Analysis

Here, we study the tools and steps that enable our frameworanalyzing finite-btfer
wired acyclic erasure networks. As mentioned in previowsptérs, the problem of identi-
fying the throughput and delay is equivalent to the probléfimding the bufer occupancy
distribution of the intermediate nodes as a result of ergtydof the corresponding Markov
chain. The routing scheme described in Section 4.1, pedomreplication and hence, the
buffer state of a node can simply be defined to be the number ofgaiysickets it stores.
As seen before, this concept of occupancy follows a Markolighavior and hence can be

studies using our proposed framework.

4.2.1 Approximate Markov Chain for an intermediate Node
Consider a node € V in a network(_ﬁ(\/,_E)) with z incoming andz, outgoing edges and
a bufer size ofm, as depicted in Figure 4.1. Let the nodes that can send packetse

denoted byN*(u) = {vi,...,Vv;}. Similarly, let the nodes to which can send packets be
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Figure 4.1: A Node in a general wired network.

denoted byN~—(u) = {w;,...,w,}. We assume that the following assumptions hold in the

network regarding the arrival and departure processes.

Al. For eachk = 1,...,z, suppose that the packets arrive o ) in a memoryless
fashion with a rate ofty packetgepoch. Also, the processes orffeient incoming

links are statistically independent.

A2. At any instant, for everk = 1,..., 2, a packet is sent oru(w) it is successfully
received and stored at with a probabilitywy independent of the past and future

events on the edge.

Note that this is hypothetical since in any realistic moded aetwork, the probability that
a packet is successfully transmitted and stored at the regxtdepends not only on the
channel conditions, but also state of the next-hop nodeceSiine state of the next-hop
node has dependence on its past, the probability of suctesseipt can also be expected
to have a dependence on its past. In fact this mode of nodatopecan be replaced by
any other scheme that fits into the Markovian set-up of theraptions above.

At any instant, the number of packets arriving can range 0arp toz and the number
of packets departing can range from ztoHence, at each epoch, the stateean change
to any other in the s¢h, — 7,,...,n, + z} N {0, ..., my}. At any epoch, the probabilits

with which k packets arrive and the probabildywith whichk packets depart are given by
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Z
A = > ax = [—](Ij + 2)X) (4.1)

k=0 j=1
2 2
EX) = > e = [ |@) +w;X). (4.2)
k=0 j=1

The dynamics of the number of packets stored at thel™ epoch is a Markov chain that

is similar to the one depicted in Figure 4.2.

Figure 4.2: The dynamics of a nodevith m, =5 andz = z, = 2.

For all input parameters, the Markov chain can be shown topleei@dic, irreducible
and ergodic. Therefore, it possesses a unique steadyeitdtibution. LettingA =
(41, ..., ;) to denote the vector of arrival rates afd= (w;, . . ., w,) to denote the vector
of departure rates, the unique steady-state distribut{am, Q2, m,) for the chain can be
computed using a pair of probability transition matridesand T A? that correspond to the
transitions between states that afieeted by the departure and arrival of packets, respec-
tively. Note that? is the steady-state distribution after the arriving paslege processed.

These transition matrices are defined as follows.

1 0 0 0 0
& & 0 0 0
Yh,& e & 0 0
Te=| (4.3)
Yis& & e 0 0
e & €n-1 €m2 ... €& &

2For notational consistency, we can exted= 0 fork > 7, anda, = 0 for k > z. Also, for notational
convenience, we us#-) as a short-hand(-, A, Q, my).
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8 a @ 8 v Am1 Mg &
0 @ @& @& - a8m-2 X1
0 0 a & - 3 X2 &
Ta= . S Semz (4.4)
0 0 0 0 -+ & P
0 0 0 0 -~ 0 1

Note that, the, j" entry inTg corresponds to the transition of the occupancy fren
to j — 1 with the departure of — j packets. Similarly, the, j"" entry in T corresponds
to the transition from — 1 to j — 1 with the arrival ofi — j packets. The actual transition
matrix for the Markov chain is then seen to DeTa. The steady-state distributiah of
the occupancy just after the arriving packets are acceptédhee steady-state distribution
9" of the occupancy just after the packets have been sent bortebafriving packets are

accommodated are given by
ITeTa =9 andd TaTe = 9. (4.5)

However, these two steady-state distributions are relaye#f = 9Tz and® = 9'TA. To
evaluate the rate of information on the link (), one must investigate the rule for packet
departure. If at an epoch, more packets are stored than théeruof links that allow
successful transmission, then each link conveys a packefamation to its neighbors.
However, if the occupanay, at an epochh is smaller than the numbérof outgoing links
that allow for transmission, each link can be assumed tolhgqlmeive”—hu packets on the
average — a consequence of the random selection of orderogifgoing links. Then, the

time average of the information rate on the edge\y) can be seen as

lGwnAm) = > (] Jarx

Hc{O,..., Z,} keH

ieH (4.6)

([Ta) Y, o)+ Y, o).

k'eHe jzHI j<MHI

33



In a similar argument, we notice that some of the arrivingkptgs get randomly blocked
if all the arriving packets cannot be stored. We can evaltreerobability with which a

packet arriving on the edge;(u) is blocked from

Pl WE A, Qm) = > (] Ja)x

Hc{O...., z} keH\{i}

eH 4.7)

keHe  my—j<[H| IH|

4.2.2 Iterative Estimation of the Bufer Occupancy Distributions

In this section, we discuss our iterative estimation teghaiin details based on the ap-
proximate Markov chain model introduced in Section 4.2.dnsidering that blocking will
introduce dependence of the packet inconfoaggoing process over each edge on its past,
in order to use the results of Section 4.2.1, we have to mataicesimplifying assump-
tions on the blocking phenomenon. We model the blocking emyesgdgée = (u, v) of the

network as follows.

e Every packet that arrives atsuccessfully (without getting erased) is blocked in a
memoryless fashion with probability,. Also, at any epoch, the blocking of packets

on any subset of incoming edgeswis assumed to be independent of one another.

Under the above assumption, the blocking process and headeparture process on every
link of the network is modeled as a memoryless process. Siack packet arriving on an
edge@ = (u,V) is blocked with a probability ofy.,, a packet arriving org is accepted
only if both the channel allows the packet and the node asdeptherefore, theféective
departure rate on the edge ) is seen to b&,,q,,. Assuming that the node operates in
the mode described in Section 4.1, we can use (4.6) and @idgntify both the rate of
information flow and the blocking probabilities on every edyg the network. Thus, the
problem reduces to finding a solutiag, quv)(u,v)eE that satisfies the following system of

. . =4
non-linear equations for each, {) € E.
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Euv u=-=s
QU= 1 (1) e 0 B T D e ™) .
3 U#s
iuv

. {pb({(u, V) (Qudwen - BB Ien-0e M)V # d
v=d
Note that in the above equatiopg, represents the fraction of time at which packets will
be delivered tor. However, the actual rate of information flow is equabte = G, 0uv-
Finally, the solution to the system of equations can be fdunuientifying the limit of

the sequence defined by the following iterative procetiure

_ - " Uu#s
1. Seti = 1 and for each edgei(v) € E, setq,, = 0 andoyy =
Ew U=Ss

(i+1) A(i+1)

2. Computeot?, g by usingol, o on the right-hand side of the above system of

nonlinear equations and incremeiy 1.

3. Ifi <L+ 1, perform step 2.

4.3 Estimation of the Throughput and Average Packet Delay

In this section, we exploit the results of the iterativerestiion method for bfier occupancy
distributions and obtain analytical expressions for tiglquut and average delay.

Since the routing scheme is such that information is noticefgd at any node, the
estimate of the total information that arrives at the deditom is the sum total of the infor-
mation rate arriving on each of its incoming edges. Hence,

C(sdC) = ) ol-dd= Y do (4.8)
veN+(d) veN*(d)
where we let ¢, q,) to be either the component-wise limit of the sequefa® ql)icx

whenL = oo, or (0%, o)) whenL < . Additionally, by the conservation of information

3In practice, the number of iteratiomswhich sufice to converge to the solution within reasonable accu-
racy depends on the structure of the network. Alternatiae may us@?+0 — 90| + 191+ — 90| < ¢ for
the convergence criteria.

35



flow, the above estimate can be obtained by computing theofafiew of information

through any cuf using the following.

6(sd.G)= ) o1 -dp). (4.9)

uveF

As defined in Section 4.1, the routing scheme assumes feledbad! the links and we
treat packets in a First-Come First-Serve (FCFS) fashidheabuters. Also, the absence
of directed cycles allows us to assign an ordgks, . . ., V, to all the nodes of the network
in a manner that we have< j for every link (4, v;) € E.

In order to estimate the average delay that a packet exjgesen the network, one can
proceed in a recursive fashion. The average delay that singrpacket (at timé) at node
u € V experiences depends on thefleu occupancy of the nodeand its outgoing links.
For example, suppose at epddipacket arrival time), node has alreadk packets where
k < m, - 1. Then, the arriving packet has to wait for the fikgpackets to leave node
before it can be transmitted. We defifig(k) as the average time it takes from the instant
that nodeu receives a packet given that it has already stérpeckets, until the time that
the destination node receives that packet. We compute #rage delay functio®,(.) for

all the intermediate nodese V using the following proposition.

Proposition 4.1 Let r,, = €,0,, be the average packet transfer rate on l{kv) € E and
r, be the sum of the rates on all outgoing edges. (r; = X ien-@ fuw)- Also, letn())

(j =0,1,...,m,— 1) be the steady state probability of theffam of node ve V storing
already j packets right before a new packet arrives and isestan the byer. For every
intermediate node & V, given the average delay functions of all its next-hop Inledys

@DOy(j)forallve N~(u)and j=0,1,...,m,— 1), Dy(.) can be obtained by

my—1
D= S N yDuh) (4.10)
u weN-(u) Y j=0

fork=0,1,...,m,— 1.

Proof. Equation (4.10) can be interpreted as follows:
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1. The first term represents the average time it takes foehdbk+ 1 packets (counting

our selected packet) to leave nagdsuccessfully.

2. The second term relates to the average delay due to thefrés network. The
probability of conveying a packet from nodeo nodev can be estimated b% An
arriving packet at nodefinds its bufer already occupied bypackets with probabil-
ity my(j). Thus, the packet will experience an average delaipgf) from this node

to the destination. Hence, the average packet delay frora wtmthe destination is

equal toy ™0 7w () Du(j).

It is easy to see that,(j) can be calculated using

WD 12
—wl_ j=12...,m-1
r(j) ={ (4.11)
0 j=m,
To obtain the average packet delay from the source to théndésh, the average delay
functionD,(.) is computed for all the nodes in the reverse otdieg. (v, . . ., V2, V1}). Then,

the total average packet del&®{(0)) is computed by applying Proposition 4.1 to the source

node.

4.4 Simulation Results

In this section, we present the results of actual networkikitions in comparison with our
analysis and will show that our framework gives accuratareges of bifer occupancy
distributions as well as throughput and average delay.

We consider the network shown in Figure 4.3 to compare thdtsesf the simulation
and inferences. In this network, all the edges have0.5 (erasure probability) except the
edgeq(1, 2), (1, 3), (15,17), (16, 17)} for whiche = 0.05. All the intermediate nodes are as-
sumed to have the sameffer size. In order to measure the exact performance paraneter

of this network, millions of packets are sent from the soyidede 1) to the destination

“Note that we haveDy(k) = O for every k wheral denotes the destination node.
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Figure 4.3: A general wired acyclic directed network choersimulation).

(Node 17). Figure 4.4 presents a comparison between thaldnfier occupancy dis-
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Figure 4.4: btter occupancy distributions for nodes 3, 4, 11 and 15.

tributions and our iterative estimates for four of the nogtethe network of Figure 4.3.
Also, Figure 4.5 presents the variations of the actual thinput and average packet delay
and our analytical results versus thetleu size. Note that, the throughput is presented in
packetgepochand average packet delay is presenteedachs As it can be observed, our

estimation is very close to the actual simulation results.
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CHAPTER 5

PERFORMANCE OF WIRELESS ERASURE NETWORKS WITH
BACKPRESSURE ROUTING

In this chapter, we focus on the problem of performance a&malin wireless erasure net-
works and investigate the trad&®between throughput, average packet delay affi@ibu
size when a modified backpressure routing policy is used aPpiroach employs a discrete-
time model to approximate the fiar occupancy distributions at the intermediate nodes. We
then obtain analytical expressions for throughput andamepacket delay in terms of the

estimated bfier occupancy distributions.

5.1 Network Model and Routing Scheme

We adapt the wireless model used in [49, 63]: For any node/ with multiple outgoing
links, by the broadcast property of the wireless medium stimae packet is sent over all
the outgoing links at the same time epdcft is an integer). Further, multiple arriving
packets for a noda € V from different incoming links do not interfere and can be stored
in a single epochif there is enough space available in thefbuof nodeu. In case there

is not enough space available in theflen some of the arriving packets will be randomly
blockedby nodeu. Further, at each epoch, we assume the transmission of la piacket

by every node.

Here, our goal is to analyze the performance of Diversitykpaessure Routing (DI-
VBAR) [63]. DIVBAR is generally desirable because of its flebe approach which can dy-
namically adjust routing decisions in response to the remdotcome of the transmissions.
In this scheme, every node € V transmits a packet in each epoch (blind packet trans-
missions). After receiving ACKNACK feedbacks from the various receivéRsc N~ (u),

nodeu chooses the receiver nogle= R with the largest positive élierential backlogi(e.,

interferences are avoided in such environments using some &f time, frequency or code division
multiple access schemes.
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Qu(t) — Qu(t)) to take the responsibility of forwarding the packet on gagh. Here, the
backlog paramete®,(t) is defined as the current number of packets stored in anyuatie
the beginning of the time epo¢hNext, nodeu and all the other receivers delete the packet
from their bufers. The algorithm, also breaks ties arbitrarily and retdive packet iru

if no receiver has a positive fierential backlog. Note that the backlog parameter of each
receiver can simply be included in the AOWACK signal to be sent back to node Note
that, the routing scheme is asymptotically throughputroptimeaning that it achieves the
wireless min-cut capacity [49] when thefber sizes are dticiently large. However, here
we only aim to study the interplay of throughput and averaggnicy achieved by the back-

pressure routing in finite-lfier regime.

5.2 Markov Chain Modeling

Thoroughly investigated in [29] for the exact analysis ofraté-bufer line network, as a
result of ergodicity of the corresponding MCs, the problendentifying the throughput
is equivalent to the problem of finding thefter occupancy distribution of the intermedi-
ate nodes. Further, due to the exponential growth in thedfizlee exact Markov chain,
exact calculation of the steady-state probability distiitns of the béfer occupancies and
the network performance is computationally intractablerefor networks of reasonable
siz€. Hence, we propose an approximation method that for evetl¢ noe V updates
its queue Q,(t)) considering: 1. The probability of packet arrivallatrom the previous-
hop neighborsv*(u), and 2. The ffect of blocking imposed by the next-hop neighbors
N~(u). Hence, we will only consider the dependency of the statasition probabilities of
the queue for each nodeto the state of the queues corresponding to nodégifu) and
N~(u). Moreover, the main idea of the approximation frameworkoislivide the multi-
dimensional MC with multiple reflections into multiple sitegVICs (.e., Only Qu(t) for

every nodal € V) whose steady-state probability distributions can beutated separately

2For a network oN intermediate nodes, the exact MC has 1)N states
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in terms of the steady state probability distributions of tther related MCs. Note that
although each MC process is assumed independent of theM@erocesses, the interde-
pendency of the states of their queues are captured by thexam@ation method via their
state transition probabilities.

Consider a node € V in a networka(\/,_é) with d; incoming andd, outgoing edges
and a btfer size ofm. Let N*(u) = {vq,...,Vg} andN~(u) = {wy,...,wy}. By means
of our approximation method, the state transition prolitadsl for MC of any queud,(t)
depend on the steady-state distributions of the queuesdeisnaN*(u) and N~ (u). Since
there is no prior information about the probability distriion of these queues, the proposed
estimation algorithm must be performed iteratively. Tcedetine the state transition prob-
abilities for each MC, we need to know the dynamics of arraradl departure of packets
to its corresponding queue. As a result of our approximagsumptions, for every queue
Qu(t), we define multiple incomming and outgoing streams of peckéich are assumed
to be statistically independent. In our model, since wevallbe reception of multiple
packets in an epoch, the number of arriving streams is the sarthe number of incoming
links to a node. Also note that, the occupancy of nod€,(t)) directly afects the arrival
rates, since the probability that nodes selected as the receiver with the largest positive
differential backlog is higher whe@,(t) is smaller. Further, as a result of the broadcast
property, only one packet can be conveyed to the set of rekewhich implies that there
is only one departing stream. In a similar argumépi(t) has a considerablefect on
the departure rate since the expected number of receivérpositive diferential backlog
increases withQ,(t).

As a result, giverQy(t) = n, for an arbitrary node, we define the set of arrival rates
asAy = {A1(ny), . .., g, (ny)} and the departure rate & = {u(ny)}. In other wordsa;(n,)
is the probability of an arrival of a packet at nadeoming from nodey; (i.e., shifting the
responsibility of forwarding a packet fromto u) given there are already, packets stored

atu. Similarly, u(n,) is the probability of a departure of a packet from nad&® one of
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its receivers inN~(u). Further, for the systematic representation, we definatteal and

departure polynomials by
din din

AMG) = Y aMx =T @0 + ()X,
k=0 j=1

(Nu)

EM) = eV + e x=p(n) +p(ng)x.

Let A, = {AM(X)IN_ andly, = {E™(x)}7_ be the sets of all arrival and departure
polynomials for the queu@,(t), respectively. Givem, andT’, the state transition prob-
abilities of the MC forQ,(t) can be easily computed. As an example, for § < m, we
have the following:

din
PrQuUt+1) = jlQu®) =i} = > ale!, .
k=0
As a result, the proper approximate MC is formed @(t) with steady-state probability
distribution denoted by,(-).

In summary, for every noda in network, a queue with its incoming and outgoing
streams will be identified properly. Then, the correspogdirrival and departure polyno-
mials will be obtained parametrically. These polynomiasdaibe the state transitions of
the queue from which the steady-state probability distittoucan be computed for the MC.
Then, we apply IEA to compute steady-state probabilityritistions for all the nodes as

follows:

Step 1. Initialization (iteration 0): Start with arbitrargtes for the arrivatleparture in every
nodeu (i.e., AY andQ?) and computeY andr® for each queue, where the super-
script denotes the iteration number. However, apply pni@yrmation regarding the
gueues for initialization. For example, in our model, destiion node does not block

any arriving packet. Also, the source node has infinitely yraackets.

Step 2. Increase the iteration index by one (e.g., iterajioBivenAl™ andr{? for every

nodeu, compute their steady-state probability distributiafis’().

3For notational consistency, we can extepd- 0 fork < 0 ork > 1 anday = 0 fork < 0 ork > di,.
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Step 3. Givenr{"V(-) for all the MCs, compute the new sets of arridaiparture polynomials

AY andr® for every nodeu.

Step 4. Go back to Step 2 until all the steady-state prolsilconverge to fixed distribu-

tions".

Note that at Step 3, given the steady state probabilityidigion for every node, we
need to find the arrivadeparture polynomials for all the queues. First, we notieg some
of the arriving packets on the link;( u) get blocked randomly when all the arriving packets
cannot be stored due to nodis state full buter at timet. GivenA, andQy(t) = ny, the

blocking probability on the link\{, u) can be evaluated using

ng+H/+1-m }

Pol(vi, WInu}= > (ﬂﬂk(”u))(nﬂk’(”“))max{ HI+1

Hc{O,...,di}\{i} keH\{i} k'eH¢

Similarly, a packet is “conveyed” over the link,{;) only when it is not erased on the
link and nodew; has the largest positive ftierential backlog with respect to nodein
comparison to all the other successful recipients of th&gtaat an epoch. Then, givéi
andQy (t) = ny,, the rate with which the packets are conveyed over the lin;j can be

obtained as

m

m [1 mad [] (2 mD)
e = 3 0 3 [T | o] [52—
)

I:nWi +1 Hc{O,..., keH k’eH¢ QcH

Finally, givenQy(t) = n, the arrivaldeparture rates can be obtained by

ng—-1 m
pig) = 1= > ([ [za@m)( [ | sawo)([ (D mua@pot(uwo)liy + > 7)),

Qcfl.....dout} keQ keQe geQ =0 j=ny
Ak(ny) H{(Vk, U)Ing}.

4Convergence of the steady-state probabilities is measwrathecking the distance between their esti-
mates for two consecutive iterations and stopping thetiterawhen the distance becomes less than a certain
threshold.
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5.3 Estimation of the Throughput and Average Packet Delay

In this section, we exploit the resultingfier occupancy distributions and obtain analytical
expressions for throughput and average delay. Since tbhenation rate (The rate of con-
veying packets) on élierent links are independent, the throughput estirﬁ&ed,a) from
the source nodsto the destination node is the sum of the information rates arriving to
the destination node. Hence,
ésdB)= > H(v.d).
veN*(d)

In order to estimate the average delay, one can proceed icuasiee fashion. The
average delay that an arriving packet at nade V experiences depends on theffien
occupancy of the node as well as the dynamics of its packet departures. For example
suppose at epodh(packet arrival time), node has already,, packets where, < m- 1.
Then, the arriving packet has to wait for the fingfpackets to leave nodebefore it can be
served. We defin®,(n,) as the average time it takes from the instant that nosteres an
arriving packet at tim¢ whenQ,(t) = ny until the time that the destination node receives
that packet. Further, Lef,(x,y) be the average delay fgrpackets to depart from node
given it has already packets in its bfiier, x > y. In order to obtaiD,(n,), first we need to

compute/,(x, y) by solving the corresponding transient MC using the follapemma.

Lemma 5.1 Let T® and T be (m + 1) x (m + 1) matrices, where fl? is the transition
probability from statei — 1} to state{j — 1} for Qu(t) when a single departure occurs, and
Tif?) is the transition probability from statg — 1} to state{j — 1} when no departure occurs.

Then, givenLy(x,0) = 0, for x=1,...,m and y< X, we have

1 m-—X . m—X .
Luxy) = 57— (14> T i Lax+iy) + " T L Lix+ Ly -1)).
- i=1

X+1,x+1 j=-1

Next, using Lemma 5.1, we compui®,(-) for all the intermediate nodase V by the

following proposition.
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Proposition 5.1 Let¢y(n,) forn, =0,1,...,m—- 1, be the steady state probability of node
v € V storing R packets right before it stores a new arriving packet. In otiverds,
¢v(ny) is the conditional probability of the event,@ = n, given that Q(t) < m. Also, let
H{(u, v)} :S‘j H{(u, v)Iny}my(ny). GivenD,(-) for all nodes ve N~(u), for every node & V,

ny=0
we can obtaimDy(n,) forn, =0,1,...,m- 1 using:

S H{(uw)iny)

ZveN—(u) | {(U, V)}

Dy(ng) = Lu(nu +Lng + 1) + Z

weN~(u) ny=0

Gl Pwr) D) (5.1)

Proof. Equation (5.1) can be interpreted as follows:

1. The firstterm represents the average time it takes foehdbk+ 1 packets (counting
the selected subject packet) to leave nadeiccessfully (and to be stored at one of

the next-hop nodes) which is obtained using Lemma 5.1.

2. The second term relates to the average delay due to thet trfathe packet through
the rest of the network. The probability of conveying a padkem nodeu to node
w can be estimated bg% An arriving packet at node finds its buter
already occupied bw, packets with probability,(n,). Thus, the packet will ex-
perience an average delay ©%,(n,), computed from this node to the destination.
Hence, the average packet delay computed from ndadehe destination is equal to

1 1{(u,
an_:O Zvel{\fij(z\)l)fr{}zvu},v)}¢W(nw)1)w(nw).

Finally, the total average packet deldys(0), can be computed by applying Proposi-

tion 5.1 to the source node.

5.4 Simulation Results

In this section, we present the results of actual networkiEtions in comparison with our
analysis and show that our framework gives accurate esswadtthroughput and average

delay.
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Figure 5.1: A sample network.

Consider the sample network in Figure 5.1. In this netwolikha erasure probabili-
ties are chosen to be®except for the link ¢, 1) which is chosen to be.@5. Figure 5.2
presents the variation of our analytical results and theshsimulations for both through-
put and average latency, as thdfbusizemis varied. Note that, the throughput is presented
in packetgepochand average packet delay is presentedgachs It is noticed that the it-
erative estimate accurately captures the variation of @rf@®opnance parameters obtained
by simulations. It can be seen that as théduusize is increased, all curves approach the
wireless min-cut capacity [49] of 4 g1 2e13 = 0.75. An important observation in this
example is that increasing the fber size beyondan = 5 does not improve the through-
put significantly. However, it dramatically increases thierage latency. This implies that
even if a large bfier is available at nodes, it is not a good idea to allocate rizne about
5 packets to the same flow. Finally, It can be observed thanhfer 1 the estimations are
not as accurate as the ones for otheffdrusizes. The reason could be the separation of

dependent MCs as a part of our approximation assumptionsaned in Section 5.2.
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CHAPTER 6

BUFFER SIZE OPTIMIZATION FOR DELAY-SENSITIVE
APPLICATIONS IN WIRELESS NETWORKS

In this chapter, we study thetect of finite buter size on the performance parameters of
multihomed wireless networks and address the problemfbéibsize optimization to meet
the requirements of delay-sensitive applications. We heegeneralized approximation
framework developed in Chapter 2 for analysis which prowide iterative estimation for
the distribution of bffer occupancies. We then obtain analytic expressions fahtbeigh-
put and delay distribution of packets in the network. Fipalking the analytic results, we
propose an optimization algorithm to maximize the throughhile bounding the packet

delay to an application-dependent threshold for an aritriarge portion of the packets.

6.1 Introduction and Motivation

Wireless local area networking (WLAN) is a commonly usedtexdogy today. Although
there are many options for wide area network (WAN) connestsuch as ad-hoc network-
ing, many organizations and schools today, provide WLANeas@oints (AP) for their
employees and students to be able to connect to a wired baekietwork such as the
Internet. While the current Internet i@ mostly consists of Web and email, real time ap-
plications such as IPTV and VoIP are becoming increasingjyartant. Such applications
are fundamentally diierent from data trdic in their sensitivity to delay and loss which has
led to a great interest in addressing quality of service (QoiSdelay-sensitive tiféc.

There are often multiple APs connected to the Internet bailthrough a gateway [73].
The gateway can be a WLAN controller for WiFi networks or avdegy GPRS Support
Node (SGSN) in cellular network. The gateway divides théitramong diferent APs
to reduce the féects of the wireless channel erasures. This is called noufithg which

is intended to increase the reliability of network but it daet necessarily improve their
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performance. Given the wireless channel erasures, thetsaclay have to be stored at the
APs for transmission at a later time. If an unlimitedilen is available, the APs do not have
to reject or drop any arriving packets. However, there avers¢ disadvantages for large
buffers [2]: 1. Over-bffering increases end-to-end delay, conflicting with reaktappli-
cations such as online gaming, IPTV, and VoIP. Additionaélyge buifers can increase the
variance of the latency, making congestion control algong unstable. 2. Large fers
lead to high power consumption, and more board space. Tdrerefithough increasing the
buffer sizes tends to increase the link utilization (and henautihput), it also tends to in-
crease the queuing delay. Hence, a fundamental questishég:is the bifer requirement
given certain constraints on the throughput and delay?

Despite extensive studies offler sizing for wired networks and its optimization [74—
76], there have been very limited works on the impact dfdnsizes on wireless network
performance [77-79]. In [77], a loose upper bound for adié capacity is used to
size the bffers in a wireless mesh network. Further, a dynamifdousizing protocol
is presented in [79] to lower the delay in 802.11-based WLAMNgch is not necessarily
optimal. Compared to sizing Hiers in wired routers, a number of fundamental new issues
arise when considering wireless networks. For exampledditian to link utilization
(which is a determining factor in Ifier sizing of wired networks), the packet loss rate
due to wireless channels is also an important metric to densiWireless networks are
also throughput constrained, and hencédiusizing can have a profound impact on the
application performance. Moreover, new-age applicatgurch as online gaming, IPTV,
and VoIP place strict requirements on latency, and hencemizirg the throughput alone
is not a stiicient objective. We depart from the past work not only beeaafsour focus
on wireless networks but also because of achievifi@int objectives. The main goals
of previous works are to size fiars either to maximize the throughput or to minimize the
blocking probability. To the best of our knowledge, no wodslktonsidered an analytical

sizing of the bdfers for maximizing throughput while meeting the delay dedsaof the
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application.

There are two important factors to take into account: 1. Adfilzefer size is problem-
atic in wireless networks and may not maximize the link métion (and hence the through-
put), and 2. Some applications would require the enforcingtrict delay requirements.
Our work is motivated by such concerns. In other words, welgvbke to choose bfier
sizes adaptively while maximizing the goodput (defined a&stkinoughput that meets the
latency requirements on the packets). Several fundameguéations consequently arise:
What is the throughput and capacity of finitetflan wireless networks? What is the delay
distribution in such networks? What is the interplay of taehcy, throughput and Her
size? Some of these questions have been addressed in theupreliapters. However,
computing the delay distribution of packets in a generatdibitfer network has not been
addressed. Thus, our objective is to develop a general Wanmkeor adaptive bffer siz-
ing. This requires the study of delay distribution and tlgimout of wireless networks as a
function of bufer sizes. We believe that the developed framework can helpderstand,
design, and analyze practical delay constrained netwaridto design more suitable pro-
tocols for real-time applications. Our contributions ifmstbhapter can be summarized as

follows:

¢ Derivation of analytical expressions for the importantfpenance parameters such
as network throughput and delay distribution of packet&rms of the btfer occu-

pancy distributions for the case of multihomed wireless LidNology.

e Applying the analytical estimation results to develop optation procedures for

buffer sizing in wireless networks.

6.2 Problem Statement and Network Model

We can model a multihomed finite-fvar wireless LAN by a directed graph with a sousce
which represents the gatewayintermediate nodeg, . . ., v, with buffer sizean, ..., m,

representing the access points and a destination dioeleresenting the user. Further, the
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destination node has no fber constraints. The set of lossy links &g v;) : i =1,...,n}
and{(v,d) : i = 1,...,n}. Also, packets are admitted from the wired backbone network
into the gateway in a memoryless fashion with mean arrivalRg. The packet admission
rate Ry, will be used later to control the trade¢kdetween throughput and delay. Finally,
at each epochs transmits at most one packet to each of the APs and each Agirtitsn
at most one packet to the destination. In our model, multipieving packets to a node
from different incoming links do not interfere and can be stored imglsiepoch. The
throughput of a scheme is defined to be the rate of transmis$imformation packets (in
packets per epoch) between the source and destination fus@eixed queue management
and communication scheme. Further, we define delay or kateha packet as the time
taken from the instant when the source stores the packet iagkant when the destination
node receives it. Finally, we define goodput the same as ghimut but considering only
those packets that met the latency requirements.

We employ the following notationd:(p) denotes the geometric distribution with mean
inter-arrival timerlp. Further, LetN'~(u) denote the set of all the neighboring nodes that
can send packets via outgoing links. Likewise, thergéfu) is defined using the incoming
links of u. For anyx € [0, 1], X = 1 — x. The convolution operator is denoted ®y

For a network with a set of ltter sizesM, set of erasure probabiliti€s and packet
admission rat&;,, the throughput between the sousznd the destinatiod, is denoted by
Tsd(E, M, Ryy). Further, the steady-state probability distribution atket delay, is denoted
by P{D =k} for k = 1,2,..., where?D is the random variable representing the delay of a
packet. Delay constraints may take various forms deperaiintipe application. Here, as
the delay constraint, we assume that at least a certaimdfinaodf packets (where & § < 1)
is required to reach the destination with a delay smallen thia application-dependent

threshold value\. Finally, the bufer sizing problem is formulated as
maximize 7¢q4(E, M, Rp)
M.Rin

subjectto P <A} = f(M,Rp) > 6,

52



where P{D < A} is a function of node Hifier sizes and the arrival rate at the source (i.e.,

the wireless gateway).

6.3 Finding the Performance parameters

In this section, we use the results of Chapter 2 and assuméehihapproximate kter
occupancy distributions are obtained from the iteratieregtion algorithm. Next, using
the bufer occupancy estimates, we derive analytic expressiomsetarork throughput and
packet delay distribution in a multihomed finitefter wireless LAN scenario.

In order to apply the framework of Chapter 2 to this setting,amly need to identify
the set of queues and their incoming and outgoing streammseidioned before, since the
routing scheme is single-copy and independent défdowccupancies, the ber states are
simply defined as the number of packets each node possessaseatienoted b¥s and
X, fori =1,...,n. The arrivaldeparture streams for each queue is also clearly via their in
comingoutgoing links besides the gateway which has an exogenonsudé packet arrival
stream. Therefore, using the proposed framework, we astwrsteady-state probability
distribution of bufer occupancies can be easily obtained and are denoted-pgndpiy, (-)
fori=1,...,n.

Given the occupancy distributions, the network througlgaumt be easily derived from

n

Tea = ) Evall—m(0)). (6.1)

i=1

This is because the probability of receiving a packet from @finthe APs is equal to the
probability of the event that it has at least one packet ibuter and the channel does not
erase that packet.

In order to compute the packet delay distribution, we prdéeea hop-by-hop fashion.
The additional delay of an arriving packet at nagldepends on the occupancy of the node
and the erasure channel that follows it to the destinatiopp8se node,_; hask <m -1
packets in addition to the arriving packet. Then, the pals&stto wait for the firsk packets

to leave before it can be serviced. Since each transmissias {place independently, the
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distribution of delay is sum dk + 1 independent geometric distribution with mean inter-

arrival time which is denoted b®*'G(ey q). Given the occupancy distributions

1
l_gvi,d'
ny(-) fori =1,...,n, the distribution of delay added by the access points is

n m-1
DAP = Z Pi Tty (k)®k+1G(8vi’d), (62)
i=1 k=0

where,P; is the probability of the event that a packet is routed thiongdev; and can be

obtained from

P, = ngsﬂﬂ. (6.3)
Zj:l Esy; My, (mj)
Further, in a similar fashion, the distribution of delay addy the source is
mg—1
Ds = ) m(K@[L,Gle)} ™, (6.4)
k=0

where,gg,, represents thefiective erasure of the links(v;) by taking care of the blocking
probability of nodev;.
By assuming that the delays incurred by each node and it;aujooutgoing links are

independent of each other, we obtain the total delay digtoh to be

D = Ds ® Dap.

6.4 Bufer Sizing for Wireless Networks

Thus far, we established a framework to estimate the netwerformance parameters
such as throughput and delay distribution in a finitéfauregime for an arbitrary given
set of bufer sizes. In this section, we use the obtained estimatesfay dlistribution and
throughput (as functions of the fdar sizes) in an optimization problem to answer thédu

sizing questions.

6.4.1 Optimization Algorithm
As formulated in Section 6.2, Our goal is to find the optimafeusizing for the entities in

wireless networks such that the goodput is maximized (foxeadfdelay constraint).
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We approach this optimization problem by dividing it intootstages. First, for any
given set of bifer sizesM, the maximum admission raf&, can be easily found to meet
the delay constraint. This is because: (DM, Ry) is a non-decreasing function &,
and (2) the maximum throughput that satisfies the delay cainsts resulting from the
maximum arrival ratdr, that meets the delay constraint. Next, a greedy searchiidgor
is used to find the optimal choices offber sizesM. This algorithm leads to the max-
imum throughput while meeting the delay constraint if a glomaximum exists for the
throughput. We claim the existence of such a condition sifitethe throughput is a non-
decreasing concave function of thefflan sizes [80], and (2) the amount of badk-wom
the maximum throughput to meet the delay constraint is adesmeasing function of lster
sizesM. Note that the amount of back¥drom the maximum throughput is closely related
to the optimal choice oR, which approaches a constant value foffisiently large bifer

sizes.

6.4.2 Simulation Results

We demonstrate the optimization process by a toy examplasi@er a network where
packets are admitted through noddwireless gateway) that is connected to an access
point with buter sizem through a wired link with a packet erasure rate di3 Further

a mobile noddal receives the packets through a wireless link with an erasateeof Q9
from the access point. Assume the objective is to maximieethihoughput while more
than 95% of the packets reach to the destination with a detajler than 150 epochs.
Using our analytical framework, we start from a randonfféusizem = m* and find the
corresponding maximum admission (arrival) reiethat meets the delay constraint. This
admission rate is then used to analytically compute theutffipput form = m*, which is the
maximum possible throughput to meet the delay constrauggihe biffer sizem = m*.
Next, we employ a greedy search algorithm by increasing oredsingm and similarly
finding the corresponding maximum delay-constrained thinput until an optimal value

for mis determined. The variations of the goodput witlitbusize is depicted in Figure 6.1
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for both simulation and the analytical estimation of thegpaeters. It is also observed that
the optimal goodput of 088 packets per epoch is achievedrat 9 which potentially
improves the network goodput by 15%. Note that the maximubhieaable throughput

(with no delay constraint) is equal tolOwhich would be obtained by using infinite fiier

sizes.
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Figure 6.1: Maximized delay-constrained network goodput/arying buter sizes.

Next, another example is considered in which two APs are ected to the gateway
through wired links with a packet erasure rate di3) A mobile nodeal can also receive
packets through wireless links with erasure rates.6fdhd 08 from AP 1 and AP 2,
respectively. In this case, the objective is to maximizetineughput while more than 90%
of the packets reach to the destination with a delay smdikm 60 epochs. We repeat
the same optimization procedure described above and ab&wptimal goodput of 884
packets per epoch at non-trivialfber sizes iy, my) = (13,5) which potentially improves
the network goodput by 55%. The variations of the goodput Wifter size is depicted in

Figure 6.2 to demonstrate the fact that a global optimuntekis this example as well.
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CHAPTER 7

DELAY ANALYSIS OF BURSTY TRAFFIC IN
DISRUPTION-TOLERANT NETWORKS

In this chapter, we study sparse mobile ad-hoc netwar&s disruption-tolerant networks
or DTNs). Our goal is to analytically find the packet latentguch networks for a two-hop
unicast scenario with bursty packet arrivals at the sousaailar to the previous chapters,
we assume that the intermediate nodes have finitetsu We exploit an embedded Markov
chain approach combined with our proposed iterative esitimaechnique to study both

network delay and queuing delay.

7.1 Introduction and Motivation

Disruption-tolerant networks (DTNSs), also referred to atag-tolerant networks, are a
special type of mobile ad-hoc networks. They are often useeivthere is no backbone
infrastructure and hence have applications in militarywoeks, vehicular networks, and
providing basic network services to rural areas.

Conventional mobile ad-hoc Networks (MANETS) rely on théstance of end-to-end
paths between source and destination regardless of nodétyndtowever, simultaneous
end-to-end connectivity is very rare in DTNs because of fherseness of nodes in the
network. Hence, communication protocols designed for MANIE&re unable to perform
efficiently for DTNs. Most of the iicient DTN-based schemes [81, 82], use the “store,
carry, and forward” paradigm for message delivery, wheeesource node opportunisti-
cally transmits packets upon contacting any other noderelies on the mobility of these
“relay” nodes to deliver the message to a certain destinatio

Analytical performance modeling for delay-tolerant netikgohas recently drawn a con-

siderable amount of attention [83—88]. In many cases, thfopeance of DTNs have

58



been modeled using Poisson process approximations [85#8@stigated in [89], a ma-
jor drawback of this approximation is that assuming Poigsogess for contact times does
not incorporate the spatial-temporal dependence betwsm@aa times of any pair of nodes
which is not a realistic assumption in general. Inspired doghsshortcomings of the pre-
vious works, in [89], Subramaniaat al. proposed a generalized framework for through-
put analysis of finite-bfiier delay-tolerant networks. The framework uses the emizedde
Markov chain approach using which the throughput of suctvorts can be identified by
computing certain well-defined characteristic paramefiens the mobility model. Fur-
ther, the problem of throughput analysis in DTNs has beesidened for many dierent
communication scenarios and mobility models in [89-91Yf hence, is well-motivated.
Although such a framework is useful and valuable for thrquglanalysis, it is insflicient

for modeling the latency performance of DTNs unddfetent types of source-ftitec, for

the following reasons:

¢ In order to compute the throughput in the previous modelsthece is assumed to
be constantly backloggede., it has infinite number of information packets. Hence,
the relay nodes tend to be as congested as possible. Thugy Baegh an assumption

for the source will lead to computing the maximum averagevinek delay” only.

e The fact that the source is constantly backlogged will rehyreliminate the ne-
cessity of defining queueing delay at the source which is gortant performance

parameter itself.

e The problem of performance analysis of multiple unicassiees [90] can be use-
ful only when ditferent sources could havefidirent trdfic characteristics. In other
words, resource sharing protocols will not have a great ahpa the performance
of the network if all the flows are backlogged at the sourcelea the same share

from the network resources such astbuspace and bandwidth.

Here, as an initial step towards addressing such shortgswoiithe previous work [89],
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we consider the problem of delay analysis for a single uhgassion, where a single source
node attempts to transmit packets to a single destinatiog wmsobile relays. To do so, as
our main contribution, a dynamic queue is assumed for theceauode with exogenous
bursty packet arrivals. By incorporating this seemingip@ie addition to the previous
problem setting, the new problem turns out to be challengswye will see in Section 7.3.
We will use analytical tools such as embedded Markov chathGmain-collapsing idea
combined with our proposed iterative estimation technigli€hapter 2 to estimate the
steady-state distributions of fdar occupancies for relays and the source. We then use
these bffer occupancy distributions to obtain analytical expressior the average delay
of packets in a DTN with a general mobility model. Finallyetanalytical results are
validated using simulations for certain well-known madfyilparadigms such as random

walk on a grid and random waypoint mobility.

7.2 Network Model

The following setup is considered:identical nodes, referred to as “relay” nodes, and two
other nodes, referred to as “source” and “destination” spdee located randomly in a field
and moving independently according to a certain mobilitydeloThe relay nodes have the
same bffer size ofB packets where each packet have a fixed length. However,esantt
destination nodes have unlimited storage capacity. A éiseiime model is used where at
each time epoch, only one packet may be transnjittedived by any node. Further, it is
assumed that communication is error-free. Analysis of tioblem in presence of channel
erasure can be shown to be a straightforward extension autiient framework and will

not be discussed here.

7.2.1 Bursty Packet Arrivals at Source
It is known that tréfic in communication networks introduces correlations [&2, $Here,
we use a Bernoulli bursty packet arrival process [94] to rhedeh correlations. Packets

are generated according to the model depicted in Fig. 7.-aeTorecise, the source alter-
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Figure 7.1: Bernoulli bursty arrival model

nates between on-periods, during which exactly one paskgéemerated per time epoch,
and df-period, during which no packets are generated. If the soig¢On” or “Oft”,
then it remains in the same state with probabiptgr g, respectively. At each time epoch,
the generated packets are stored at source inffaerbwith infinite storage capacity, and
are served on a first-come first-served basis. Intuitivelg,more convenient to use mean
steady-state arrival raté (Packets per epoch) and burstiness faétanstead of the pa-
rameterg andqg. Given4, the burstiness factd¥ takes values betweanax4,1 — A} and
infinity and is a measure for the absolute lengths gbfiperiods. The burstiness factor of
F = 1 represents uncorrelated arrivals which is basically gkrBernoulli arrival model.

The parameters andF are derived from the following equations [94]

1-¢g 1
Here, we only consider mean arrival ratewhich are less than the maximum through-
put of the network meaning that the queue at the source remains bounded @htphib-
ability and hence, the network is stabl@ his guarantees the boundedness of the average
gueueing delay at the source. Note that, by choosialgove the throughput rate, the queue
at the source will grow unboundedly since the network cowlddeliver packets with such
a rate. Thus, without loss of generality, we assume Ahiatsmaller than the throughput

obtained in [89].

IWe define the maximum throughput as the average number oéfsadé&livered to the destination in each
time epoch when the network operates at steady state.
2Note that, the queues at relays cannot grow to infinity siheg have a finite kitier size.

61



7.2.2 Interference Model

We assume the communication between a pair of nodes is possily if they are within
the communication range of each other. All the other nodékinvihe communication
ranges of the busy pair are assumed to be silent for the darafithe communication
which is one epoch in our problem setup. This is to ensurettieat is no wireless in-
terference issues such as hidden-terminal and exposedhitdrsituations. Moreover, the
sourcé¢destination node tries to establish a new link at each edochwhich several re-
lay nodes may contend. In each time epoch, if the source astthdgon are within the
communication range of each other, then they will form a liatherwise, if the source
or destination are within the communication range of midtiglays, a random relay is
selected to setup a link with source or destination, respygt We say that a “contact” oc-
curs between two nodes whenever they are within the comratimicrange of each other,
though they may not communicate. If a pair of nodes win theankhcontention, we say

that a “link” is established between the communicating sode

7.2.3 Routing Protocol

Here, we use a two-hop single-copy routing scheme, meawimgnever a relay node with

available space in its Ifier establishes a link with the source, it accepts a packéieif t
source has any packets available in its guesiét is non-empty, and retains the packet until
a link is established with the destination. Packets areeskeon a first-come first-served

basis and no relay-to-relay communication occurs. In &fdithe source and destination

may, though very rarely, establish a direct link.

7.2.4 Mobility Models
Our framework of analysis is designed to perform well for amybility model which has

stationary properties. This would apply to many well-knawadels such as random walk
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on a grid, random waypoint, Brownian motion etc., commordgdiin mobile ad-hoc net-
works research. We assume that each node moves accordimg particular chosen mo-
bility model independent of the other nodes in the netwolt. 8, be the set of all states
possible in the mobility model. Each “state” of mobility magrrespond to information
regarding position, direction, velocity, etc. dependipgmithe underlying mobility model.
Let x(t) € Smop be the state of a single node at any time. It is important totimethaty (t)
has enough information to determine the probability disiion ofy(t + 1), the state at the
next time-step. Typically, one can describe the state ititans for the mobility model by
means of a transition functioM,o,(:) as follows. Letp(t) be the probability distribution of
a node’s mobility state at timte Then,p(t + 1) = ¥mop[p(t)]. The transition functioN mep
depends on the mobility model. Since the mobility model suased to be stationary, it

has a steady-state probability distributiaf,on, Which satisfiestmon = ¥mob[Zmonl-

7.3 Markov Chain Analysis

In a DTN with n relay nodes and a single source destination pairstha of the network

is defined as the 2+ 3)-tuple

X(t) = (Xl(t)’ e ’Xn(t)’ QDl(t), B Qon(t)’XSa QDS(t)’Xda ) s

whereyx € Smob iS the component describing current mobility state of nkd# time
epocht. Also, ys andyq are the physical mobility states of the source and the degtim
The componengy(t) denotes the kier occupancy of nodk (in packets) at time epodh
Hence, 0< ¢« (t) < B at any timet for any nodek. Also, ¢s(t) denotes the Hier occupancy
of the source at time epodh where 0< ¢4(t) < oo. Clearly, this describes the state
of the network completely: The probabilities of transisoof X(t) within its state-space
can be determined from the mobility model and the commuiaingtrotocols described
previously in Section 7.2. Assuming that the mobility moebehibits stationarityX(t) also
has a steady state.

The network goes through states wherein packets arriveeadhrce node, or wherein
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packets are picked up from the source nodes, or wherein {saatedelivered to the desti-
nation nodes; these are designatedas/e stateor our purpose of delay analysis. Hence,
it is suficient to obtain the steady-state distribution of the ergygtem described by the
state variabl(t). Steady-state analysis of the network is employed sincareventerested
in the behavior of the network in the long run. Clearly, thi $tate-space description of
the network is very large to work with. However, we will use tidea of chain-collapsing
in the following section to considerably reduce the stat@es of the network. Further, for

anyx € [0, 1], we definex = 1 - x.

7.3.1 The Idea of Chain Collapsing

The full state-space description of the network descrideala is prohibitively large to
work with. In order to reduce the state-space and simpliéyahalysis, we use the idea of
chain-collapsing as in [89]. As the first step, we may try tentify certain symmetries in
the network that simplifies the state space. For examples@eaario where relay nodes are
identical, one can view the state of the network from a singley’s perspective. However,
the state-space is still very large. Note that, by claimimg full state-space description
of the network to be very large, we temporarily ignore théesedement corresponding to
the bufer occupancy of the source @ ¢4(t) < o) which is of infinite size. Later, we
will observe the challenges of such an extension and wilbaice our innovative iterative
algorithm to resolve this issue. As the next step, to redneestate-space further, one can
derive a Markov chain from the original state-space suchttiesteady-state probability
distributions are preserved. The above discussion abouicheg subsets of states into

individual states is thoroughly described in the followthgorem from [89]:

Theorem 7.1 (Chain Collapsing) LetM be a Markov chain with a set of states denoted
by A, with a steady-state distributionfor its states. For each & A, n(a) corresponds
to the steady-state probability of state a. L&}, be disjoint subsets of A such that

UL, A = A. Then, a new Markov chain defined witki1, ...,z corresponding to each
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of the above subsets, with transition probabilities cop@sding to the “subset-averaged”
values of those from the original Markov chaM, has a steady state distributiori =
[7(1)m(2) - - - n(2)] such thatr’ (A) = X, ca 7(a)). Moreover, the transition probabilities for

the new chain are given by the following relationship:

Phos, = 20, 0 PrilA) = s > Py

€A keA J€Ar keAy
Hence, for a particular relay node, we identify all the “dable” states which contribute

to the time packets spend inside the relays and the sougmther with certain additional
“auxiliary” states to arrive at an “embedded” Markov chairhe idea of chain-collapsing
enables us to extract only the necessary information fraotiginal Markov chain. In
particular, the performance computation problem is reduoecomputing the steady-state
probabilities of certain subsets of a well-defined embeddadov chain. Note that, we
are not interested to find individual steady-state proliaslof states within one particular
desired subset. The rest of the analysis involves the catipaotof the transition probabili-
ties between the desired subsets followed by computatitreafsteady-state probabilities

using the collapsed chain.

7.3.2 Embedded Markov Chain for a Relay Node

Here, our main goal is to define the desired states of the emeldeMarkov chain for
a single relay node so that the resulting steady-state pildbes could provide us with
suficient information to approach the problem of delay analysience, we define the

embedded Markov chain for a relay node according to theviatig subsets of states:

e LetS; (1 <i < B)be the set of network states wherein the most recent lirtknibde
v had was with a non-empty source, resultingackets in the kiier after receiving

a packet.

o Similarly, letD; (0 < j < B-1) be the set of network states wherein the most recent

link that nodev had was with the destination, resultingjipackets in its bffer after
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Figure 7.2: The embedded Markov chain for a relay node (RMC)

transmitting a packet.

e Let F be the set of network states wherein the most recent linkrtb@év had was
with a non-empty source, butwas unable to accept any packet due to lack difdsu

spaceiie., Full buffer state).

e Similarly, let E be the set of network states wherein the most recent linknibaé
v had was with the destination, buthad no packet to transmit€., Empty bufer

state).

Given the state transition probabilities for the embeddedkdv chain in Fig. 7.2 (RMC),

a closed-form expression for its steady-state probadslitan be easily obtained using

PrF} = (Z)Bﬁ—' Pr{E},

Br @y
A\
PiSi;1} = PiDi} = (ﬂ) B PHE},
ﬂf ﬁr
fori=0,...,B-1, and,
-1
Ha+8) if 0 = B,
PrE} = "

B) 1 .
ar—Pr Br [ ar 1
fl/r_%{l_a_r(ﬂzr) } , |f ay iﬁr

Further, the state transition probabilities for RM@,, @, andg;, can be obtained using

the following lemma.
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Lemma 7.1 Let ag be the probability that a node currently in contact with tleeisce (or
destination) will have a contact with the destination (ouss®) before coming in contact
with the former again. Also, let.fbe the probability that a relay node loses contention on
meeting the sourgdestination node. Finally, letgdbe the probability that source node is
empty,.e. has no packets in its queue, when meeting a relay or desimatde. Then,

@
Ay = — p— 5
' Pe(200Pc + Pc) + @oPe

Br = Pettr.

The proof is very similar to the proof of Lemma 7.4 which carfdnend in section A.1 of
Appendix A.
The parametetyy in Lemma 7.1 is characterized for a general mobility modehim

following lemma.

Lemma 7.2 Let Ty be a random variable representing the inter-contact dunatof two
nodes, and let T be the random variable representing the waiting time untib thodes
meet, given that they are distributed according to the stestdte spatial location distribu-

tion. Then we have
a0 = ) Fr.(0)Pr(7),
=1
where R, (r) and F_(7) are the probability density function of,Tand the cumulative

density function of T, respectively.

The proof is very similar to the proof of Lemma 7.6 which carftnend in section A.2 of
Appendix A.

Finally, since the contention failure probabilipy in Lemma 7.1 only depends on the
mobility and routing protocol, hence the result from [89hdee exploited to derivp. using

the following lemma.

Lemma 7.3 Let X’ be the subset of states wherein a contact with a node in stat&op

can be established arrd; be the steady-state spatial node-location distributioa thuthe
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underlying mobility model.

=
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7.3.3 Embedded Markov Chain for the Source

Here, we define the desired states of the embedded Markon &trathe source node
so that the resulting steady-state probabilities could ddpfal for the problem of delay
analysis. Hence, the embedded Markov chain for the sourde isodefined according to

the following subsets of states:

e LetA (i =1,2,...) be the set of network states wherein the most recent evéms at

source is a packet arrival (on-period) resulting packets in the source queue.

e Also, letR; (j = 0,1,...) be the set of network states wherein the most recent event at
the source is meeting a non-full relay or the destinatiomdpain df-period, resulting

in j packets in the source fiar.

e Finally, letE be the set of network states wherein the most recent evemt aburce
is meeting a non-full relay or the destination during dhperiod while the source

node is empty and hence no packet is transmitted.

Given the state transition probabilities for the embeddeatkdv chain in Fig. 7.3

(SMC), a closed-form expression for its steady-state (hilitias can be easily obtained

using
PR} = ysPlA 1} = (yi+fs) ’& PHE}, i>0
,BSE Bs
prE; = 35 YFs
as+fs

Moreover, the state transition probabilities of SME,, a, Bs andys, can be derived using

the following lemmas.
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Figure 7.3: The embedded Markov chain for the source nodeX)SM

Lemma 7.4 Let a; be the probability that the source node in its on-period| Wdve a
contact with any other node (relay or destination) beforethier packet arrives. Further,
let a, be the probability that the source node, currently in contaith a node (relay or
destination), will have an arriving packet before comingcontact with any other node.
Finally, let ps be the probability that a relay node is full when meeting wiié source and
is unable to accept any packets. Then, we have

a1y . m
as - T — BS — T —
a2Pp + Po @2Pp + Po

where, p = -5 ps.

The proof can be found in section A.1 of Appendix A.

Lemma 7.5 LetB; be the probability that given the source node has no contaittsany
other node (relay or destination), it will contact a node ohgrthe next time epoch. Further,
let B, be the probability that the source node, currently in cohtaith a node (relay or
destination), will have contact with none of the other nodegng the next time epoch.

Then, we have
oz —PiPb_
B2Po + Po
where, g is as defined in Lemma 7.4.
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The proof is very similar to the proof of Lemma 7.4 which carfdnend in section A.1 of
Appendix A..
Finally, the parameters,, a,, 81 andp,, can be characterized for a general mobility

model and source tfidc model using the following lemma.

Lemma 7.6 Let S be a random variable representing the inter-arrival duaatiof packets
arriving at source, and let S be the random variable representing the waiting time until
an arrival given the source is currently igffeperiod. Further, let T, , be a random variable
representing the waiting time until a contact with at leasé®f the i+ 1 relaygdestination
occur for the source, given that the nodes are distributecbating to the steady-state
spatial location distribution. Also, letgk, be a random variable representing the waiting
time until source makes contacts with at least one of thelnrelaygdestination nodes,
given that the source is currently in contact with a rethgstination and the other n nodes

are distributed according to the steady-state spatial taoadistribution. Then, we have

o = Z Fr.(1)Pso(7),

ay = 1 FTOn(T) PS (T)
‘r=1

pr = PTewn =1},

B2 = 1-PrTon =1}

The proof can be found in section A.2 of Appendix A.

7.3.4 lterative Estimation

Thus far, we have developed twdldrent collapsed Markov chains RMC and SMC origi-
nated from the full state-space of the entire network. Ireptiords, we have observed the
desired states in the network from the point of view of a fmglay node and the source
node. However, it is notable that deriving the state tramsiprobabilities for RMC and
SMC requires using Lemmas 7.1, 7.4 and 7.5 in which the passye; and p. are not

known in advance. In this section, we will see that these tvawkdv chains are not only
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dependent on each other but also closely related. Furtier,dependency could lead us
into solving both of them using an iterative algorithm.

We start from the problem of finding the probability. We need to know the portion
of relay-source links during which a relay is full. Usingatly-state probabilities of RMC,

we have the following
Pr{F} + Pr{Sg}
Pr{F} + X2, PriSi}

Further, obtaining the steady-state probabilities of RMQuires having its state transition

Pr = @o Pc (7.1)

probabilities by using Lemma 7.1. Hence, we need to find tbhéatility p. which is the
portion of source-relagestination links during which the source is empty. Usiregady-

state probabilities of SMC, the following relation can beaobed

PHE} + Pr{R}
HE} + Xi2o PR}

Pe = a2 + B ) (7-2)

Finally, obtaining the steady-state probabilities of SMQ@Quires having its state transition
probabilities by using Lemmas 7.4, 7.5 and consequenttywkmg p;. Interestingly, we are
back to where we started. This hints us that the problem niégiat to have an iterative so-
lution. In [31], we developed an iterative algorithm to esdte the capacity of finite-Ibier
line networks (non-mobile). Likewise, here we propose arative estimation algorithm to
estimate the unknown parameters stated in the discussowe agtarting from some initial
values,e.g, ps = 0. The schematic in Fig. 7.4 shows the iteration steps. Tdratibn
procedure will go on until convergence of the steady-stabdability vectors. One way
to measure the convergence of our method is to compare tHal&ar distance between
the vectors of each two consecutive iterations and stop itheedure when the distance

becomes smaller than a previously chosen threshold

7.3.5 Delay Analysis
Using the iterative estimation technique of Section 7.8d estimated steady-state proba-
bilities for RMC and SMC are obtained. In this section, we siseh results to find analyt-

ical expressions for the average packet delay in DTNSs.
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Figure 7.4: A graphical presentation of the iterative eation algorithm

We divide the latency experienced by each packet to two ;parstwork Delay and
“Queueing Delay The network delay is defined as the total time spent by agiadkide
the bufer of a relay node which is the time it takes from the instan¢mvtine packet leaves
the source node until when it reaches the destination node.qlieueing delay is defined
as the time spent by a packet inside the queue of the soureawladh is the time it takes
from the instant when the packet arrives at the source nalesuocessfully leaving it. The
analytical expressions for both average network delay &edage queueing delay at the
source are obtained by using the following propositionse Wdtal average packet latency
can be simply derived by adding both the average network/deld the average queueing

delay.

Proposition 7.1 Let P, be the portion of the packets that experience zero netwddyde
due to the event that a direct link between the source and élsérdition is established.

GivenPr{S;} fori = 1,2,..., B from the steady-state analysis of RMC, the average network
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delay can be obtained from

B

— PI’{Si} .
Dnet = P, — (B[ T, - 1DE[To]),
t gz?ﬂpr{sj}( [To] + (i — 1)E[To])

_ (m+1)E[Ton]
where B = TET

and the contention failure probability. jis derived in Lemma 7.3.

The proof can be found in section A.3 of Appendix A.

Proposition 7.2 GivenPr{A;} for i = 1,2, ... from the steady-state analysis of SMC, the

average queueing delay at the source can be derived using

v PrA}

Dqueue= Po | (E[Teon] + (i = DE[Ton]),

21 S, A,

where the blocking probabilityyas defined in Lemma 7.4.

The proof can be found in section A.4 of Appendix A.

7.4 Simulation Results

In this section, we present the simulation results for \alah of our analytical framework.
Our analytical results are compared to the simulations afsgpmobile ad-hoc networks

for two well-known mobility models.

7.4.1 Random Walk on a Grid Mobility Model

In this model, nodes are randomly moving oiMax M square grid as shown in Fig. 7.5.
At each time epoch, nodes may remain in the same cell in the @rimove to an adjacent
cell in the next time step with a certain probability. Thens#@ion probabilities for the

random walk are chosen so that it results in a uniform stesaaly spatial distribution,

i.e., a node is located in a specific cell with probabili@!. Hence, the probability of

transition to adjacent cells @and the self-transition probability for each cell will be-1

No. of adj cells

= . As an example, for the cell in the corner, the self-traasifprobability is

equal tog. The contention failure probability, can be derived using Lemma 7.3 from the
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The mobility parameters needed for Lemmas 7.1, 7.4, 7.5 eabtained as well. In [89],

following relation

an analytical approximation is proposed to find such pararador the case of random-
walk on a grid.

Here, we choose the nodefter size to be 10 packets, while the number of relay nodes
is kept at 10 and the grid size is88. Fig. 7.6 and Fig. 7.7 demonstrate the accuracy of
our estimation for average queueing delay at the source\aardge network delay, respec-
tively. Further, variations of both queueing delay and rmekndelay with mean arrival rate
A and burstiness factdét are presented. As stated before, validation of our itezastima-
tion algorithm is performed for arrival rata@ssmaller than the throughput of the network.
By increasingl to the values close to the network throughput, the averagaejng delay
at the source goes to infinity. However, average networkydslth remain bounded from
above since all the relays have finiteffian size. In other words, by approaching more and
more to the network throughput, queueing delay at the scagcemes the dominant term
comparing to the network delay. Finally, it can be obseryed, thigher burstieness factor

results in larger latencies for packets inside the queuleeo$ource.
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Figure 7.6: Variations of average queueing delay at thecgowith mean arrival raté and
burstieness factdf for a random walk on a grid mobility model
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Figure 7.8: Variations of average queueing delay at thecgowith mean arrival raté and
burstieness factdf for a random waypoint mobility model

7.4.2 Random Waypoint Mobility Model
The random waypoint mobility model is commonly used in siatioin studies of network-
ing protocols. Here, each node selects a random locatitve idéployment area, and moves
towards that location with a random speed. Upon reachinig taiiget location, it waits for
a random amount of time, and then the next location and speechasen. The mobility
parameters needed for Lemmas 7.1, 7.4, 7.5 have not bedneabta closed form in the
literature, to the best of our knowledge. However, some@pprations [89] are available
for the steady-state spatial node distribution, and candeel to compute the contention
failure probabilityp.. Here, we have obtained the mentioned mobility parametarsen-
ically by a quick simulation of the mobility only. The deplment area is chosen to be
a 5kmx 5kmsquare region where 10 nodes are deployed in random losatiime node
velocity is chosen from a uniform distribution wit,;, = 3m/sandVax = 30m/s. The
communication range is chosen to be 800rhe pause-time is also modeled as an expo-
nential distribution with a mean of 20 Finally, the node bffier size is chosen to be 10
packets.

Fig. 7.8 and Fig. 7.9 demonstrate the accuracy of our esom&br average queue-

ing delay at the source and average network delay, respbctitdere, for clarity of the
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presentation, we only demonstrate the average delay ioensator the casef = 5 and

F = 20 since the curves were close together. It is interestirabserve that, in Fig. 7.9,
by increasing the mean arrival ratedhe average network delay decreases. The reason for
such a behavior is solely contributed to the slow nature @fttecific mobility parameters
(due to lower speed comparing to the area and the waitingq®xi As an example, for
the random waypoint mobility, the quantiB{T.. ] is about 30 times larger thaf[To,],
where the former is only about 2 times larger than the lattettfe case of random walk on
a grid mobility model. This means that when the mean arrat@ mcreases, many packets
will be trapped inside the relays and take too much time toeleased while keeping the
relays full. Meanwhile, the proportion of packets with zeetwork delay will increase as
the proportion of the packets transferring directly fromse to the destination increases.
However, this comes with a cost which would be a huge increeseerage queueing delay

as it can be observed in Fig. 7.8.
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CHAPTER 8

THROUGHPUT AND DELAY OF BLOCK-BASED RANDOM
LINEAR CODING IN LINE NETWORKS

In this chapter, a block-by-block random linear networkiogd RLC) scheme with feed-
back on the links is selected for reliability and more impaotty guaranteed decoding of
each block in a certain time. We use our proposed iteratitimason algorithm to find
the performance parameters of the network and more imgtyteeduces the computa-
tional complexity compared to the exact analysis. We wil &t the proposed framework
yields an accurate estimate of the distribution af&uoccupancies using which we obtain
analytical expressions for network throughput and delagrithution of a block of packets.
The RLC scheme for finite-fier networks introduced in [28] has the limitation that
it cannot be used to characterize the latency profile. Thixeause, the typical notion
of latency is not meaningful for the RLC scheme. Since lataacritical for real-time
applications (such as video streaming), a block-by-bladoeding of the stream is required.
Hence, we introduce olBlock-based Random Linear Codiagheme, which applies RLC
on each individual block We will see that our approach guarantees a decoding delay
within a certain amount of time while this is not the case ingyal for RLC which is a
rate-optimal scheme with potentially a large decodingylalwe will see in Chapter 10.
Further, by using out proposed block-by-block RLC schemsy, one feedback is required
for transmission oK packets which considerably limits the average number aflfaeks

per transmission.

8.1 Network Model and Coding Scheme

We consider a line network df hops with the vertex s&f = {vp, Vs, ..., Vy} and the edge

set_E) = {(v,viy1) : i = 0,...,h =1} for some integeh > 2. Letg; denote the packet

LJust as in any network coding scheme, the packets receiviieklmestination are linear combinations of
the original data in a block. Hence, with the knowledge dd tiriear transformation at the decoder, inversion
can be performed to recover the data block.
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erasure probability over the link;(4, v;). Each nodey; € V has a bffer size ofm packets.
It is assumed the destination node has nfidsiconstraints and that the source node has
infinitely many innovative packets

The system is analyzed using a discrete-time model, whexie eade transmits one
packet over a link per epoch. We introduce a practical nééwording scheme, which is
well-suited for transmitting real-time data streams in@cktby-block fashion using RLC
and feedback. In the proposed scheme, the source node kekeg¢gam of packets and
divides them into blocks oK packets each. The Her of each intermediate nodee V
is then segmented inthl; blocks. In other words, we have = M;K. Each block is
then served using RLC over all the packets in the block. Thelsl are served based on a
first-come first-servpolicy. An instant lossless hop-by-hop acknowledgmentiybeck is
also employed to indicate the successful receipt of a campleck ofK packets. In each

epoch, one or multiple of the following events occur iffelient orders:

1. If anode neither receives any innovative packet nor cggmaay innovative packet to

the next node, then the content of itstam does not chande

2. Upon receiving an innovative packet, it will be storedhie tast available block (a
block of memory with less thaK innovative packets stored in it). The packets of
this block will be served after all the previously receivdddis in the bifer are

completely served.

3. In each epoch, every node transmits a packet formed byltkeeRcoding over its
current block (oldest block in the queue), until the nodenees an acknowledgment
indicating that the block is fully conveyed to the next-haula. The block will then
be removed from the lsier and the next block in the queue will be served. This also

implies that free space in the fier will be increased b¥X packets.

2A received packet is callédnovativewith respect to a node if the packet cannot be generated bgarli
combination of the current ifier contents of the node.

SHere, byconveying a packetwe mean thathe packet is successfully transmitted and stored at the
next-hop node
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To implement the per-block feedback mechanism, a node mststgliish innovative
packets upon their reception. One way is to compute the rérkeoreceived packets
in a block. A more practical protocol is to use a variable CMBthe header of each
encoded packet, indicating the number of innovative packeed by RLC to form the
packet. Further, every node maintains a counter INV indgigathe number of innovative
packets received in its current block so far. Every nodeldits= 0 for each new incoming
block* and increments it by one for each incoming packet whose CMfBaater than INV
of the receiving node. Note that, if the current block in thhiege of a node hds innovative
packets then CMB is equal t for all the packets to be transmitted by that node.

We will employ the following notations. For anye [0, 1], X 2 1 — x. The convolution
operator is denoted by and®' f is used as a shorthand for théold convolution off with

itself. G(p) denotes the geometric distribution with mean inter-atriime rlp

8.2 Exact analysis and Network States

In [29], a Markov-chain approach for exact analysis of adititffer line network identifies
the throughput as equivalent to the problem of finding thi@dowccupancy distribution of
the intermediate nodes. However, the size of the Exact Matkain (EMC) and the multi-
ple reflections due to the finiteness ofiaus at each intermediate node render this problem
mathematically intractable for even networks of small hepgths and bflier sizes. We
therefore aim to approximate the distribution offlen occupancies.

To approach this approximation problem properly, it is 58egy to clearly define the
buffer states in a manner that (a) an irreducible ergodic Markaincis obtained, and (b)
the steady-state distribution of the chain allows traetabipressions for the performance
parameters of the network. Thus, a proper definition for titfiebstates cannot be proposed
unless the communication scheme is known. For the schemectio8 8.1, two variables

are needed to track all the fber states of a node. Lstbe the total number of innovative

4f INV = K, then the counter is reset to 0 and an acknowledgment isG#m previous node.
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(with respect to the next-hop node) packets stored at a nbdaotet to be the number
of successfully conveyed innovative packets by the noda fiee current block. Then, the
pair (s,t) can be defined as the state of théfbuof the node. Note thatis the minimum
number of packets that a node has to store in ifgelbuAlso note that, since a new block
starts to be served after th€" packet of the current block, € {0,...,K — 1}. As an
example, assuming that nodeis in state §,t) at the start of the epoch, given that during
the epoch it only sends a packet successfully but does neiveeany packets, the state of
the network will change tog(t + 1) if t = {0, 1,..., K — 2} or it will change to 6 - K, 0) if
t=K-1.

8.3 Approximate Markov Chain Modeling

In this section, we determine the distribution offiew occupancy of an intermediate node,
which will later be used to analyze network parameters ssdh@ughput and latency of
a block.

Due to the discrete-time nature of the analysis framewav&,Markov chains need to
be constructed for each intermediate node. The first onedmnssthe béfer occupancy
at instants when a packet has just been transmitted (eitlceessfully or unsuccessfully),
which is calledreceive-first Markov chai(RFMC). This is required to compute the proba-
bility of blocking, which is caused when the state of a nodelised to remain unchanged
because the transmitted packet was successfully delitertdte next-hop node, but the
latter does not store the packet due to fulffeuoccupancy . The second one considers the
buffer occupancy at instants when a packet has just been refstored, which is called
transmit-first Markov chai{TFMC). This will be used to calculate the incoming rate of
innovative packets at each node.

Note that the problem of exactly identifying the steadytestaobabilities of the RFMC
and TFMC stffers the same fliculties as identifying that of the EMC [31]. The finite

buffer condition introduces a strong dependency of state ugdaenode on the state of
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the node that is downstream. To develop an estimation sctieheonsiders blocking, we

make the following assumptions.

1. Packets are ejected from nodes in a memoryless fashiasnaFbumption allows us

to keep track of only the information rate.

2. The blocking event occurs independent of the state of a.nbuis allows us to track

just the blocking probability.

3. At any epoch, given the occupancy of a particular nodekgiaarrival and blocking

events are independent of each other.

These assumptions spread tHEeet of blocking equally over all non-zero states of
occupancy at each node. Now, given that the arrival rateraivative packets at nodeis
ri packetgepoch, and that the probability of the next node being fud, (s = m,; for node
Vi;1) IS Prir1, We can show that transition dynamics of the state changed@ev; is given

by the Markov chain depicted in Fig. 8.1 for both TFMC and RFRI@Iso, obtaining the
AVANREN
NN TN
. . . \
N \=\

Figure 8.1: The general structure for both TFMC and RFMC foode with bdfer size
m = MK.

state transition probabilities is straightforward usmgpy,,;, € andei;1. As an example,

5Self-loops are not demonstrated in the figure.
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for TFMC we have the following

I s=t
P(ng'i)—>(5+1,t) =1\ li(&is1 + Es1Pois) S—12>t (8.1)
0 Otherwise

Note that we notates andt instead ofs andt; for the simplicity of notation when
considering node;. The same transition probability for RFMC isfidirent from TFMC
and is given by

PRy (sety = Mi(Eie1 + Eiv1Poisy)- (8.2)

Note that, both (8.1) and (8.2) are valid ®& {0,1,..., M\ijK-1}andt = {0, 1,..., K-
1}

For all input parameters, the Markov chains can be shown &pkeodic, irreducible
and ergodic. Therefore, it possesses a unique steadyessatibution. The steady state
probability of nodev; being in state ¢ t), is denoted byPRF(s, t) and P]F(s, t) for RFMC
and TFMC, respectively.

The blocking probability that the node ; perceives from the nodgis the same as the
probability ofyv; being full (s = M;K) at the instant when a packet is transmitted success-
fully by the previous node. Hence, this probability have éochlculated using the steady

state probability distribution of RFMC as follows
K-1

Py = > PRA(MIK, 1), (8.3)

t=0

Similarly, the steady state probability distribution of MIE can be used to compute the

arrival rate at the next node using

K-1

1= (1= ) PI(L )8, (8.4)

t=0
Note that if a node is in the statet) (t € {0, ..., K — 1}), it means that it has stored

innovative packets from the current block so far and it has aknt linear combinations
of them successfully. Therefore, there is no more innoegiackets to send.

The approximate solution is obtained iteratively by thédi@ing procedure:
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Step 1. Initializationr = (4,...,&n) andp, = (0,...,0)

Step 2. Construct TFMC and RFMC respectively and compute skeady-state probabili-

ties.

Step 3. UsingPRf(s,t) and PTF(s t) (obtained from step 2) calculate the new valuesrfor
andpy, by (8.3) and (8.4), respectively, foe 1, 2,...,h -1 and auxiliary equations

rnh=1-¢g andpbh =0.

Step 4. Repeat Step 2 and Step 3 until all the distributiongerge.

8.4 Computation of Network Parameters

In this section, we exploit the results of the iterativerastiion of bufer occupancy distri-
butions in Sec. 8.3 to obtain analytical expressions foh Inetwork throughput and delay
distribution of a block. Thélock Delayis defined as the time taken for a blockkfin-
formation packets (at the source) to be transferred thraugie network from the instant
when the first packet of that block is transmitted from therseunode to the instant when
the K" innovative packet of that block is received by the destoratiode (i.e., the block
can be decoded at the destination).

Given a line network with link erasurés= (¢4, .. ., &), intermediate node lfier sizes
M= (m,...,m_1), we can find the approximate solutianf,). Using this, an estimate

of the throughput is obtained using the following
CEMK)=ry(1- pbh) =TIh.

To compute the distribution of the totalock delay one can proceed in a hop-by-hop

fashion in the following way:
D=Ti W oW,®..dW,L-®F, (8.5)

whereT is the probability distribution of the time taken for a packethe source to

be conveyed to node,. Further,W; is the probability distribution of the time taken from
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the instant when node stores the first innovative packet of a block to the instaetfitst
packet of the corresponding blockvnis conveyed to node. ;. Finally F is the probability
distribution of the time taken for all th packets of a block in node,_; to be conveyed
to the destination node from the instant when the first intie@gacket of the same block
is stored in the bflier of nodewv,,_;. Thus, using the definition, we haVg = G(g;), where

£, iIs the dfective erasure probability (after considering blockingdl & given by

g+pud i=12...h-1
o) O PoiE . (8.6)
Eh i=h

Also, the average waiting time in noggis formulated as
Mj-1 K-1

Wi = 7(0,005(0,0)+ >’ > m(dK )S(dK, 1), (8.7)

d=1 t=0
where (s, t) is the probability that an arriving packet finds noglen state 6, t) given that

it is the first packet of its corresponding block. AlSs,t) is the probability distribution
of the time taken for the first innovative packet of a blockiito be conveyed to node, ;
from the instant when the first innovative packet of that klatrives at node; and finds
its buffer at stateg, t).

If an arriving packet is the first of its corresponding bloitkjnds the bdfer at states
of the form @K, t) whered can take any value between O all— 1. This is because of
the fact that the last block had been completely served bdiharfirst packet of the current
block arrives. Hence, botB (s, t) andr;(s,t) will be 0 if sis not a multiple ofK. Finally,
mi(s,t) can be formulated as follows fore {0,1,..., M; — 1},

PRF(s1)
—————— S=nK
ri(st) = oo OFF(AK) , (8.8)
0 Otherwise

where®RF(s) is the marginal probability distribution of for an arriving packeti(e., the
probability that an arriving packet finds thefter of nodev; in the states of the forns(.)).

®; can be computed as follows

min{K-1,s}

o= > PH(st). (8.9)

t=0
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Also, S(s,t) can be derived using the following relation foe {0, 1,..., M; — 1}

G(é\) s=0
S(st) = { gEDRHEADG(E) 5= nK

0 Otherwise

Finally, F can be calculated by taking the average over all the comditidelay distri-

butionsL (s, t) as

Mh-1-1 K-1

F = m.1(0, 0)L (0, 0) + D 7 a(dK DL K, ),

d=1 t=

wherelL (s, t) is the probability distribution of the time taken for the @& block to be
conveyed to the destination node given that the first padkistad block found the bfiier
of nodevy_; in state §,t) when arrived. Note that after receiving the first packet blcek,
nodev,,_; has to wait until all its previously stored blocks are coreayo the destination,
during which some of the packets of the corresponding bloahtrhave already been
arrived. LetV(x,y) be the probability distribution of the time to conweinnovative packets
to the next node wher of those packetsx( < y) has yet to arrive for the same block,
knowing that a packet departs with probabilRy,: and an innovative packet arrives with
probability Py, in each time epoch. Henck(s,t) is derived using the following relation

forne{0,1,...,M;, -1}

V(K - 1,K) s=0
L(st) ={ (& ™G(en)} + VK -8,K) s=nK

0 otherwise

wherea(n,t) = (n— 1)K + (K —t) is the number of packets that have to leave nade
before the next block to be served ghd min{K — 1, ["('F‘,%?MH”J} is the expected number
of packets from the corresponding block that arrived duthegytime when those(n,t)
packets were being conveyed. Furti@s, = &n_1(1 - X" PIF, (t, 1) for h > 2, Py = 814

for h = 2, andP, = &n. V(X, y) will be determined by the following lemma.
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Lemma 8.1 V(x,Y) (defined for x< y) is the solution to the following equation,

piV(xy—-1)+ pV(x-1y) + psV(x-1y-1)

Ve =1 P11+ P2 + p3

| ® G(pa)

with boundary conditions:

V(0, = @G@A-P
( Y) ( out) , (8.10)
V(x,x) = G(1-Pp)®V(x-1,X)
where,
P1 = Pout(:L - I:)in) P2 = I:)in(:l- - Pout) (8.11)

P3 = PinPout Pg4 = (1 - Pin)(l - Pout)-

8.5 Results of Simulation

In this section, we compare our analytical results to theaimulations. To study the
effect of bufer size on throughput and block delay, we simulated a linevorét of eight
hops for two cases where all the links have the same prohabflierasure of A or 0.2.
The bufer sizem (in packets) is divided intd1 blocks ofK packets.

Fig. 8.2 presents the variation of our analytical resultd #ne actual simulations for
both throughput and average delay of a block, as tlfkebsizem of the intermediate nodes
is varied while the block size is fixed Et= 5 packets. It can be seen that as th&dnsize
is increased, average delay also increases linearly. #aappghat above memory sizes of
10, the gain in capacity is negligible, while the latencye@sases significantly. Hence, there
is no need to allocate more storage to the flow even if the sigameilable in the router.
Further, for biffer sizes of less than 10 packets, there is a gap from the nhicapacity, a
diverging point from asymptotic results due to the finitéfbuefect.

Fig. 8.3 presents a comparison between the actual and theatedl delay profile for a
five-hop line network with the erasure probability on evenk ket to 005. It also compares
the delay profiles for dierent bifer sizes wherK = 4. It is noticed that as the Hir size

of the intermediate nodes is increased, both average daethytastandard deviation are
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increased. This is undesirable since any increase in thdatd deviation of the delay can

make congestion control algorithms unstable.
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Figure 8.2: Delay and throughput of an 8-hop line network aasation ofm.
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CHAPTER 9

EXACT MODELING OF THE PERFORMANCE OF
FINITE-BUFFER RANDOM LINEAR NETWORK CODING

In this chapter, we present an exact model for the analydiseoperformance of random
linear network coding (RLNC) in general wired networks wiithite bufers! We assert
that because of RLNC, the content offfars have dependencies which cannot be captured
directly using the classical results of queueing theoryreHere model the performance of
the network using Markov chains by a careful derivation eflffer occupancy states and

their transition rules.

9.1 Introduction and Motivation

It is well-known that linear network codes achieve the min-capacity of networks for
unicast applications [52]. In fact, random linear codesrdarge Galois fields Hfice to
achieve the min-cut capacity [96, 97Random linear network codin@RLNC) has been
shown to improve the performance in distributed settings wime-varying network pa-
rameters. In these networks, a distributed and packetieedank coding scheme, where
each node stores the received packets and forwards randear lkombinations of the
stored packets when required, was introduced in [98, 99].a Assult, for a network of
nodes with no bfiier limitations, all arriving packets at a node are stored theth used
to generate new packets to send. Hence, there is no infamiatss. However, in this
case, upon reception of a packet, a node has to determinbevtieé incoming packet is in
the linear span of its previously stored packets or not.Hewytfor generating every coded
packet, all stored packets need to be accessed. Itis theddsirable to have limited Her
sizes, since it limits the complexity of storage and codezkpbgeneration process.

Our objective is to study the relation between throughpURIdNC and the bffer sizes

1This work is done in collaboration with my former lab-mat&, Badri N. Vellambi and Ahmad
Beirami [95].
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of intermediate nodes in the smallfBer regime. The first and the key step in our approach
is to derive, using algebraic tools, the state of th&dms using which the dynamics of
the network can be completely characterized. We then dénwestate update rules for
each transmission in the network. Finally, using the deyatbstate space and update
rules, we obtain the throughput of the network using MontédCamulations and compare
the results to the actual packetized implementation of RLNE believe the proposed
modeling framework is a significant step towards developirigeoretical framework for
computing the throughput capacity and the packet delayiloligion in general finite-bfiier

wired networks.

9.2 Problem Setup and Challenges

We model the network by an acyclic directed grfb(v,_E)), where packets can be trans-
mitted over a linké = (u,Vv) only from the nodau to v. The system is analyzed using a
discrete-time model; each node can transmit at most onespaekr a link in an epoch.
The loss process on each link is assumed to be memorylespaakets transmitted on a
link € = (u,v) € E are lost randomly with a probability ef; = ¢. Each noder € V
has a bifer size ofm, packets with each packet having a fixed size. Source andhdégsti
are assumed to be able to store an infinitude of packets. Bladd noded represent the
source and the destination nodes, respectively. The unidasmation-theoretic through-
put capacity is also defined as the expected rate (in pdeketsh) at which information
packets are transferred from the source to the destinatimmwhe network is in steady-
state. In other words, ify is the time it takes fok information packets to be transmitted to

the destination, the throughput capacity is given by

c@) = im X (9.1)
k— oo Tk

There are two key challenges in finiteffer networks. The first challenge is the choice
of optimal bufer management strategy, which also depends on the rgctisiog scheme

that is in use. Due to losses on links, and finiteness éebs; transmission of a packet
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by a nodeu on& = (u,Vv) does not guarantee successful reception by the modéus,

in the absence of any feedback, a naddoes not know if it can delete a packet from its
buffer to make room for its next incoming packet. Further, it &alnclear if transmitting

a packet via several parallel paths will increase the thnpugof the system. The second
challenge in these networks is the following. Due to possibplication of packets in the
network, it is neither possible to model the system dynaiyca simple queueing model
where packets are customers and thfdra as queue sizes, nor is it feasible to treat the
packets as flows in the network.

Random Linear Network Coding (RLNC) attractively bypastese two challenges. It
eliminates the need for a feedback strategy to delete thedspackets because the physical
act of storing a packet becomes immaterial. It also elinesttie need for active replication
by allowing transmittestored packets to be treated as elements of an abstract spatie.
This makes RLNC a favorable choice for practical schemesitefbuter scenarios.

We consider the following packet-coding scheme introdund@8], which is a finite-
buffer adaptation of RLNC. In this scheme, at each epoch, ranoh@arlcoding is used for
both the packet generation and storage by intermediatesnddean example, consider a
nodeu of buffer sizem,. At a given epochu generates an encoded packet by performing
a random linear combinations af, stored data packets (over afistiently large Galois
field® Fq), and transmits the coded packet on an outgoing link. Faagt suppose a
packet successfully arrivesatThen, instead of storing the packet as is, nodaultiplies
the received packet by a random vector chosen uniformly ffgnand adds the resultant
vector components to each of the preserttdncontents.

Therefore, using RLNC, after just a single packet receptioa entire btfer becomes
physically full with multiples of the received packet. Thewen though the liter of the
nodeu is almost always physically full, the number of stored paskeat is innovative

with respect to any other subset of nodes can vary from i,toAs an example, when

°The size of the Galois field needs to béfsiently large, in order to increase the chance of innovatigs
of the coded packet.

92



performing RLNC, suppose that two nodeandb receive and store two packets each gen-
erated from three original information packets from a relaiy this casea andb will have
two innovative packets each for the destination. Now, sappalelivers a packet to the
destination. Therb still contains two innovative packets for the destinatiblowever, if

a delivers another packet to the destinatibmyill only have one innovative packet for the
destination, since both nodes together originally pogsksesly three innovative packets
for the destination. In this example, the challenges ofkiragthe number of innovative
packets and the interdependency betwedtebeontents gets compounded further as the
packets froma andb are propagated to the other intermediate nodes. This eperd
dency between Hter contents signals the need for a novel notiomofupancyto track
the number of innovative packets each node has for the déistm and hence to determine
the throughput capacity of the network. This notion will lmenhalized in the following
section.

The main motivating factor to develop a theoretical modeltfeese networks is to
understand the throughput capacity under RLNC. In order éasure the throughput of
RLNC in these networks, one option is to perform a Monte Canfoulation where en-
coded packets are generated usingiodents in a large finite fiel@,, and bdfer updates
are performed upon each successful reception. This is disagrily time-consuming sim-
ulation due to large field operations. A theoretical modatking bufer dynamics based
on occupancy of htiers will be a simpler alternate means. As we will see, the ldeve
oped model provides a moréfieient way of measuring the performance of finitefbu
networks. Additionally, it provide us with intuitive indigs on the dynamics of Ifier up-
dates, which is a major step towards computing performareteica for such networks,

and analyzing the key tradd¥fe among them.
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9.3 Exact Modeling of Finite-buffer RLNC

Here, we introduce the tools and steps that enable us todreiges in the ldier contents
of nodes.

To identify the throughput as defined in (9.1), we assumetti@tource possesses a
suficiently large block of packets that has to be transmittechéodestination. The first
aim is to formalize the notion of liter occupancy by investigating the dimension of span
of the stored packets in the fiers. Let{T,, T, ..., Ty} be the original information packets
at the source. Letn] = {1,2,...,n} denote the set of all intermediate nodes, where
V| - 2. LetP; j(t) be the packet contained in fier slot] of relayi at time epoch, where
Pi;(t) = Zl‘zl g Ti, 1 €[n], j € [m], anda;  is a codficient in the chosen Galois fiel,.
Let V(S)(t) = spaniP;(t)l j € [m],i € S} for all S c [n]. To simplify the notations, we
will drop the reference to time i¥(S)(t) by usingV(S). Also, we defines® = [n] \ S.

Definition 9.1 For any two subsets of the intermediate nodeS’Sc [n], we define the
innovativenessf S w.r.t. S at time instantt as:

Isos = dim(V(S)) — dim(V(S) N V(S)). (9.2)
In other words)s_,s gives the number of innovative packets thaffeucontents of nodes
in S can generate which cannot be generated by the contents lodifflees of nodes irfg'.

Definition 9.2 The occupancy vectdbs}scy of the network is definetito be

bs 2 dim (V(S)) - dim (V(S) N V(S%), S C [nl. (9.3)

The following lemma shows that the knowledge of occupancyorgbs}scy is equivalent
to knowing the innovativeness of any subset of the relay s@det. any other subset. This

result significantly reduces the number of state spaceblasa

3The precise definition of the occupancy vector must conslipackets that have already reackad
by usingbs = dim(V(S)) — dim(V(S) N V(S® U {d})). However, the inclusion ofd} affects update rules
only when dealing with the destination. For simplicity, #guivalent definition without the inclusion ¢}
is used in all cases not involving the destination.
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Lemma 9.1 For S, S’ C [n], Is,s = bse — bysugrye.

The proof can be found in Section B.1 of Appendix B.

Since the occupancy vector provides the innovativenesiseotontents of each node
w.r.t the remaining nodes, we need to be able to track therdigseof the occupancy vec-
tor for successful transmissions on links to complete ttetesy modeling. To do so, let
superscripts- and+ denote the status of a system parameter before and aftecessifiud
packet transmission on a link. The following results detive rules for updating the oc-
cupancy vector when successful transmissions occur. ghmu these results, we denote
whpwlp to qualify an event if its probability of occurrence can bedmarbitrarily close to

unity/zero by increasing the field size alone.

Lemma 9.2 (Source-to-Relay updgtdhe update rules when a relay i successfully re-

ceives a packet from s are as followhp.
e Ifi € SC[n] and by < m, thenl§ = bg + 1.
o Ifi ¢ Scn], by <m and ljsei = m, then g = bg + 1.

e Otherwise, B = bg.

The proof can be found in Section B.2 of Appendix B.

Lemma 9.3 (Relay-to-Relay updajelrhe update rules when relay j successfully receives

a packet from relay i are as followshp.
o IfieSC [n], j e S¢, l{j}—»SC\{j} < m; and I{i}—)SC > 0, then tg = bg -1
e Otherwise, B = bs.

The proof can be found in Section B.3 of Appendix B.

Lemma 9.4 (Relay-to-Destination updgt@he update rules when d successfully receives

a packet from relay j are as followshp.
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e Ifi € SC[n]and lj_sc > 0, then lf = bg — 1.

e Otherwise, B = bs.

The proof can be found in Section B.4 of Appendix B.

On the whole, an update of fiar occupancy occurs only when the delivered packet is
innovative for the receiving node and thefliau of the receiving node is not full. Next, we
describe how the state update rules could be utilized tarotita throughput of a network.
LetE* = (€4,... ,3|—E>|) be an ordering of the edge sl_ét and letl(t) € {0, 1}IEI represent the
realization of the channels at tineThat isl;(t) = 1 if the i edge@; in E* does not erase
the transmitted packet during the epdciihen, given the occupancy vectbk(t)}sc, and
the channel realizatiolft), the occupancy vectdbs(t + 1)}sc;y can be determined using
the state update rules presented in Lemmas 9.2, 9.3, 9.4.

Further, the state transition probability matiixfor the corresponding Markov chain
can be identified as follows. Also, |18 be the state transition matrix given a successful
packet transmission on the lin€. For any € e _E) T+ can be determined using Lem-

mas 9.2, 9.3, 9.4. Therefore,

= Z ( l—[ 8_8’1')( l_l E@iT_e’i)' (94)

lejo. Bl 111=0 ih=1

This Markov chain can be proved to lreducible, aperiodi¢ and ergodic [100]*.
Therefore, it possesses a unique steady-state probabditybution. Moreover, due to er-
godicity, the time averages are equivalent to the stadilsiverages. Therefore, the through-
put capacit)C(a) can be determined using the steady state probability aftkat that the
network is in a state wherein the nodes possessing a linletdghtination have innovative

packets as follows.

4The proof for the case of a line network is presented in [31].
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c@= >  9.ibst)N-Pr(ibst)). (9.5)

1€(0,1)/E1 {bs (1))

whered(l, {bs(t)}) represents the number of successfully transmitted paakkén state

{bs(t)} and channel realizatidnoccur together.

9.4 State Size Reduction in a Class of Networks

In Section 9.3, we observed that the number of state vasabiat we need to track at
each time epoch is"2- 1 sincebs, the innovativeness of every subset of relay nodes w.r.t.
its complement, must be considered. In this section, we el@fidlass of acyclic network
for which the number of state variables is significantly derahan 2 — 1 and hence the
complexity of the modeling is considerably reduced.

Consider a partition of the set of relay nodes into tyfldg H,, ...}, where a relay
nodev belongs toHy if the shortest hop-distance fromto the destinatiord is k, and
Ho = {d}. Define a class of network¥ as those where there exists no linky) such that
Vv e Hy,V € Hy andk < k. Figure 9.1 illustrates a network from this class. Intuaty in
such a network, a link can exist only if it is between nodesefdame type of the partition,
or start in a node belonging to a type with a higher index artliera node belonging to
a type with a lower index. This structure enables us to traghkificantly lesser number of

innovativeness components as stated in the following tesul

Theorem 9.1 If the network belongs 1/, then we need only track l.ss where (1) SC Hy,

and (2) S € Upae<Hi such thatuge iHw € S"and SZ S'.

Therefore, in these networks, we only need to tré@q(>1[22'Hk'+'Hk-1' — kil
2IHd 4 1]) state variables. As an example, line networks belongytoHence, in a line
network withn intermediate nodes, the number of state variables redacgsmhere they

are exactly the same state variables developed in [31].
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Figure 9.1: An example of a directed acyclic networl\n

9.5 Simulation Results

In this section, we present the results of our performanceeatmg framework using state
update rules in comparison with an actual packetized imetgation of RLNC, and will
show that our framework accurately models th&d&udynamics of the network.

We consider Network 1 and Network 2 shown in Figure 9.2 to camghe results of our

simulations. In Network 1, the edges have erasure protiabitis;) = 0.1, g12) = 0.6,

Figure 9.3: Network 2.

a3 = 0.5, gp4) = 0.4, g34) = 05, andeyg = 0.1. In Network 2, all the edges have
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e = 0.5 except the edgdss, 1), (s, 2), (5, d), (6, d)} for whiche = 0.25. All the intermediate
nodes are assumed to have the santkebsize. In order to measure the exact performance
parameters of this network, a block of size- 10° packets is sent from the source to the

destination. Figure 9.4 and Figure 9.5 present the vanatad the throughput measured

0.9
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-8 Simulation using state update rules
> Simulation of actual packetized RLNC

Throughput packetgepoch

1 2 3 4 5 6 7 8 9 10
Buffer size packet$

Figure 9.4: Throughput of Network 1 forftierent bifer sizes.

by actual simulation of RLNC and the throughput measuredifyiation based on the
state update rules developed in our work versus tlkebsgize. As it can be observed, our
model is very close to the actual simulation results. Fuytiheonfirms the optimality of
RLNC for the infinite bdifer setting as the curve approaches to the min-cut capagity fo
both networks. It is notable that the time it takes for thexatsimulation of RLNC to be
completed is roughly 1000 times the time it takes to simulagestate update rules.

Another important observation is presented in Table 9.XlWwhompares the number of
states actually visited (identified by simulations), andwde upper bound on the number
of states in the Markov chain model. For Network 1, the nunidfestate variables is
2* — 1 =15, and a provable upper bound for the number of statem is1)*°, wheremis

the bufer size of each intermediate node. However, it is noticechfsomulations that the
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Figure 9.5: Throughput of Network 2 forftierent bifer sizes.

Table 9.1: Variation of the number of active states vSfdnsize in Network 1.

| Buiffer Size| No. of Active States Upper Bound ifn + 1)'5 ||

1 44 32768

2 600 14348907

3 4358 1073741824
4 21061 30517578125

number of states that is actually realized is much lesser i@ bound. This observation

signals the need to have a closer look at the Markov chairdiaceeits size.
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CHAPTER 10

DECODABILITY ANALYSIS OF RANDOM LINEAR NETWORK
CODING IN LINE NETWORKS

In this section, we will address the problem of decodabiityen RLC is performed on a
stream of arriving packets. The following questions arifemwaddressing such a problem.
What does decodability of a stream of arriving packets asthuece mean? Which parame-
ters in the network rule the behaviour of decoding? How do uargntee the decodability
of a stream of arriving packets? First, we clearly define ttodblem of decodability of a
stream of arriving packets, and discuss its importance sathe examples. Then, we will
find the limits on the mean arrival rate and will find expreasitor the average length of a

decoded block of packets.

10.1 Notations and Definitions

We consider a memoryless packet arrival process with mean far the source which is
able to accommodate infinitely many packets until they aoeded at the destination. The
block of packets that are decoded will then be deleted frasturce bfier. We consider
a line network of hop-length, a graph with vertex s&f = {s = Vg, V1, V2, ..., Vh_1, d = Wi}
and edge séB = {{v,Vi,1} : i = 0,....h — 1} with erasure probabilitg; on link {vi_1, vi}
fori =1,...,h. Itis assumed that random linear coding (RLC) aigis performed at the
source as well as the intermediate nodes, whgie the Galois field of sizg. * Moreover,
we employ the following notations. For amye [0,1], X £ 1 — x. Node s and noded

represent the source and destination nodes, respectively.

10.2 Maximum Decodable Throughput

To answer the questions asked at the beginning of the chdjpstrwe have to identify

the rules and conditions under which a block of RLC encodatketa is decoded at the

Throughout this chapter, we only consider the case whéseuficiently large.
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destination. As an example, similar to the model in [28]uass the source (encoder) has
a finite memory of sizen. Further, the destination (decoder) receives packetsttjifeom

the sourcei.e., there is no relay node. For now, we define the state of theanktas the
difference between the number of packets arrived at the souda@mumber of packets
received by the destinatione., transmitted to the destination and not lost. At the begigni

of the first time epoch, the memory of the source is empty andreén state 0. We remain

in this state until the first packey arrives. Suppose the next packet transmitted from the
source to the destination is not lost. Then we still remaistate O, but the destination
receives a packet that is a random linear combination of trdypackefp, i.e,, a random
scalar multiple ofp;. Hence, the decoder recoversfrom the received packet. Now sup-
pose after the first packet arrives, the next outgoing packet is lost and we reach state 1
Suppose packet, arrives before an outgoing packet is successfully trartethite., trans-
mitted and not lost. Then, any packet to be transmitted bysthece is a random linear
combination ofp; and p,. Suppose further that a packet is received by the destmatm

we are again in state 1. This packet is currently uselesstdeitination node, since it is
neitherp, nor p,. Nevertheless, it contains some information previouslynanvn to the
destination nodeg.g. p andp; lie in a certain linear subspace. Consequently, the next
packet received by the destination delivers previouslynomn information, provided that

it is linearly independent of the packet already stored.hSupacket is called an “innova-
tive” packet. Further, it is notable that packgisand p, will be decoded simultaneously
at the destination and hence will generatdegoded bloclof length 2. Basically, every
packet that is transmitted from a non-zero state is inne#ati the destination because we
assumg is suficiently large. Also, every time the state returns to 0, a bloicpackets

will be decoded and the length of the decoded block corredptmthe number of packets
arrived during the time that the state was non-zero.

However, as claimed in [28], the statement above is true whign packets arrive at
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the source in states 0,..., m— 1. If a packet arrives at source in statethe current con-
tents of the source will be overwritten and hence corrupded, will never be recovered.
This is because a source with affi@n sizem can only generaten innovative packets and
after that any linear combination would be linearly depernide the previously generated
ones. In other words, the source has exaatlynnovative packets to transmit before and
after receiving the new packet, meaning that a packet wdrihfermation is lost by this
arrival. Moreover, the current contents of the source areupted and impossible to re-
cover. In [28], the probability of packet loss is defined t@ar&cterize such behavior. In
this work, however, an infinitely large Her size is assumed for the source to investigate
the characteristics and behavior of the decoding procethe atestination for a multi-hop
line network, without having to worry about packet loss orraption of the contents of
the source bftier. We will realize that such advantages come at the costaufdieg delay,
i.e,, occasionally having to wait a long time for a block of paskiet be decoded. We call
a stream of packets with a fixed mean arrival ratteecodablef the expected waiting time
for a block of packets to be decoded is finite. The mean arratell associated with a
decodable stream will be calledlacodable arrival rateHowever, the question is whether
there are any arrival rates for which a stream of packetstisiecodable. To answer this
guestion, next, we will define parameters that have a critada in characterizing decod-
ability.

In the example above, we realize that each coded packeveekai the destination is in
fact a linear “equation” for which the original informatigrackets arrived at the source
are its “unknowns” to be found. Hence, upon receiving as marearly independent
equations at the destination as the number of unknowns,y$ters of linear equations
is solvable and hence, a block of packets is decoded. TheoSile decoded blocks is
equal to the number of unknowns at the moment the systemexsdiiaquations is solved.
Therefore, to guarantee that a stream of packets with arate is decodable, the number

of unknowns received at the destination should not grow untledly with respect to the
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number of equations received. To address such a problemeacetto be able to charac-
terize the growth rate and dependencies of both the numbi@nofative packets at the
destination (equations) and the number of original paakstsl in those innovative packets
(unknowns). Previously, in Chapter 3, analytical resuttgehbeen developed regarding the
arrival rate of innovative packets at the destination whenretwork performs at steady
state,.e., throughput.

In a line network setting, we define the innovativeness ofengavith respect to node
Vi,1 attime epocli, denoted by;(t), as the number of packets storediithat are innovative
for vi;1. The innovativeness of a node is limited to itsfflew size,i.e,, 0 < Ii(t) < m,.
Further, each arrival at the source increases its innaméiss)s(t), by one. With RLC
being performed on potentially a large number of infornagpackets at the source, the
buffer of the intermediate nodes contains a limited number eflity independent packets
(equations) including a large number of source-origind&adkets (unknown variables).
For the purpose of decoding analysis, in addition to thevatieeness of each node, the
number of original packets involved in thefBer contents of each intermediate node is also
considered. Hence, we defiRgt) as the number of original packets used in forming the

linear combinations stored at thefter of nodev;.

10.2.1 Decodability condition for a Two-hop Line Network
In this section, for simplicity of representation, we calesithree nodes: A sourc® a
relayR, and a destinatioD®. Further, their innovativeness are denoteddty), Ir(t), Ip(t),
and the number of original packets used in forming the limeanbinations stored at their
buffers are denoted biys(t), Pr(t), Pp(t), respectively.

Previously, we have seen how the innovativeness of each cloaleges with arrival
andor departure of packets. For examplg,increases by one with each packet arrival

at the source, but potentiaflylecreases by one when a packet is transmitted successfully

2| is non-negative.
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while Ig < m, wherem is the bufer size of the relayR. Further,|g potentially? increases
by one if a packet is successfully transmitted to the relagnfthe source whelky > 0, and
potentially decreases by one when a packet is transmitiszkssfully to the destination.
Finally, Ip only increases by one if a packet is successfully transchitighe destination
from the relay node wheky > O.

The changes in parametd?g(t), Pr(t), Pp(t) are quite diferent from how innovative-
ness of each node behaves. For the source node, since aatiggracket contributes a
new unknown variable for decodinBg(t) increases by one with each packet arrival at the
source. FurtherPy(t) either remains the same or takes the valu®gt — 1) where the
latter occurs when a packet is received at rékyom the source no matter what are the
buffer contents. In other words, when a packet is transmittethdpdurce and not lost, it
brings a linear combination of all the packets stored at thece and combines it with the
previously stored contents of the relay. SimilafPy(t) either remains the same or takes
the value ofPr(t — 1) where the latter occurs when a packet is received at thendgen.
Note that, the above changes occur regardless of the inmemnass of the packets. To
summarize, leBy(t) be a Bernoulli random variable taking the value 1 with pluliy p
at time epoch and the value 0 otherwise. The following represents the gémimPs(t),

Pr(1), Pp(t) in terms ofa, &1, ande,.

Ps(t+1) = Ps(t)+ By(t) (10.1)
Prt+1) = Pr(t) + Bz, (1) (Ps(t) - Pr(t)) (10.2)
Po(t+1) = Po(t) + Bg, (1) (Pr(t) - Po(t)) (10.3)

The following lemma summarizes the necessary affitcgent conditions for a block of

packets to be decoded using the parameters described above.

Lemma 10.1 A block of length K is decoded at timeit and only if both the following

relations hold:

3| should not exceerh.
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1. Po(t") = Ip(t")

2. ID(t*) - ID(tO) = K, where § = maX({t <t': PD(t) = ID(t)})

The proof can be found in Appendix C.1.

Lemma 10.1 only presents the conditions for a single everttegbding of a block
of packets. However, we are more interested in conditioas tfust hold to ensure the
decodability of a stream of packets in the long run. At theiln@igg of this section, using
a toy example, we observed that every time the state of thesoeaturns to 0, a block of
packets will be decoded. Although this statement is not foue general multi-hop line
network, later we will see that at steady-state, a block ckpts is decoded if and only if
the source revisits the state 0 at least once before the marhdecoding. Lemma 10.3

will present the necessary andistient condition for decodability at steady-state.

Lemma 10.2 The ordered tupl€ls(t), Ir(t)) forms an irreducible Markov chain.

The proof can be found in Appendix C.2.

Lemma 10.3 A stream of packets with source arrival rateis decodable if and only if
in the Markov chain(ls(t), Ir(t)), any state of the fornf0, Y) is recurrent, where Y=

0,1,...,m.

The proof can be found in Appendix C.3.
Theorem 7.1 introduces a powerful tool to simplify and amalgomplicated Markov
chains with a large number of states [89]. We will use Theorelyto reduce the dimen-

sions of the Markov chain defined in Lemma 10.2 as presentiéeifollowing corollaries.

Corollary 10.1 The Markov chair{ls(t), Ir(t)) can be collapsed into a new Markov chain

Ir(t) which represents the set of states of the f@xig(t)), where X=0,1,.. ..

Corollary 10.2 The Markov chair{ls(t), Ir(t)) can be collapsed into a new Markov chain

Is(t) which represents the set of states of the fi«(t), Y), where Y=0,1,...,m.
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Lemma 10.4 simplifies the condition of decodability intradd in Lemma 10.3 to in-

clude only the collapsed Markov chdig(t) instead of the Markov chaind(t), Ir(t)).

Lemma 10.4 All the states of the Markov chalis(t), Ir(t)) are recurrent if and only if all

the states of the collapsed Markov chaifit) are recurrent.

The proof can be found in Appendix C.4.

The following assumption is used to approximate the limitlomarrival ratel. How-
ever, the assumption is not needed to prove the existenagbfaslimit. To avoid confu-
sion and simplify the presentation, the Markov chdi($), andly(t), are considered to be
receive-first. The method of deriving both the transmittfnsd receive-first distributions

are described in details in Chapter 4.

Assumption 10.1 Let Pr{(ls, Ir)}, Pr{ls}, Pr{lgr} be the steady-state probability distribu-
tions of the Markov chainds(t), Ir(t)), Is(t), and k(t), respectively. Then, the steady-state
probability distributions of source and relay are indepentiof each other,e., Pr{(ls, Ir)|Is} =

Pr{IR}, and Pr{(ls, IR)“R} = Pr{ls}

Finally, the following results summarizes the decodapitibndition in terms of the

source arrival ratq.

Lemma 10.5 In the collapsed Markov chairk(t), the steady state probabilityr(m) =
tIim Pr{lr(t) = m} is a non-decreasing continuous function.pfachieving its maximum,
ap®{(m), when all the states in the collapsed Markov chaift)l are transient or null-

recurrent.

The proof can be found in Appendix C.5.

Theorem 10.1 A stream of packets with source arrival ratds decodable if and only if

A < C*, where C is the maximum throughptite., C* = iz (m).

The proof can be found in Appendix C.6.
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10.3 Decoding Delay

In section 10.2, the existence of an upper limit to the debladarrival rated is proved
and derived. However, as mentioned before, decodabiliy mo packet loss or corruption
of the bufer contents, comes at the cost of decoding delay. In thisoseate address
the problem of finding analytical expressions for the avelaggth of decoded blocks and
its variations with arrival rate. The average length of a decoded block is a measure of
decoding delay at the network since a larger decoded blopkesa larger average packet
delay.

First, we start with the familiar two-hop example and prapas upper bound on the
average length of decoded blocks. Then, we will generatizgdobund for a multi-hop line

network.

10.3.1 Average Length of Decoded Blocks: Two-hop Line Netwk

Given a stream of packets is decodable, the Markov digihis ergodic and therefore, has
a steady-state probability distribution, denotedrgy.), wherens(i) = limq_,., Pr{ls(t) = i}
fori = 0,1,2,.... Further, the steady-state probability distribution foe Markov chain
Ir(t) is denoted byrr(.), whereng(i) = limy., Pr{lg(t) = i} fori = 0,1,...,m. Finally,
Theorem 10.2 provides an upper bound on the average lengihdetoded block in a

two-hop line network setting.

Lemma 10.6 Let T; be the time to return to zero for the Markov chaitt), i.e. T§ =
min{t > to : Is(t) = Is(tg) = 0}. Then, the expected time to return to zero at steady-state is

E[Ts] = 7s%0).
For the proof, See the proof of Lemma 5 in chapter 2 of [71].

Lemma 10.7 Let %e%k) be the probability that right afters|(t) returns to zero at timeyt

i.e. Is(tg) = 0, a block of packets including only the original packets aed at the source
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up to time § is decoded, giveri(to) = k. Then, we have the following fork1,2,...,m:

PE(K) > {182} " &, €412,

The proof can be found in Appendix C.7.

Theorem 10.2 Let 75"(k) be the conditional steady-state probability thaft) = k right
after the relay receives a packet given that the relay is mibbkfore the packet arrivesg.
Ir < m. Let k. be the random variable representing the length of a decodleekb Then,

the following provides an upper bound for the average lemdih decoded block:

m

-1
E[leed < AE[T§] {Z nfRCV(k)ngC(k)} . (10.4)

k=1

The proof can be found in Appendix C.8.

10.3.2 Average Length of Decoded Blocks: Multi-hop Line Nevork

Here, we extend the results of Section10.3.1 to a line né&twidh h hops. The steady-state
probability distribution for the Markov chaih(t) corresponding to the relay is denoted
by m;(-) for j = 1,2,..., h, wherern;(i) = lim, Pr{l;(t) = i}.

Lemma 10.8 Let P‘jec(kl) be the probability that right afterg|(t) returns to zero at time
to, i.e. Is(ty) = O, all the information required to decode the original packetrived at
the source up to time tis passed to the relay node,\wgiven k(ty)) = k;. Similarly, Let
P‘z‘ec(kz) be the probability that right after,(t) becomes zero at a time f.e. 1.(t;) = 0,
all the required information to decode the original packatsved at the source up to time
to is passed to the relay nodg,\given b(t;) = k.. Further, Let B®%(ks), -, P be
defined in a similar fashion, where h is the number of hopsnTive have the following

forj=12...,h—-1landk =1,2,...,m:

kj—1 —
Pek) > {esrjuaf i @9,
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where, § = gjm;(m;).
The proof can be found in Appendix C.9.

Theorem 10.3 Let nECV(k) be the conditional steady-state probability thait) = k right
after node yreceives a packet given that the relay is not full before thekpt arrivesi.e.
l; < m. Then, the following provides an upper bound for the avetaggth of a decoded

block in a line network of h hops:

h-1 ( m; -1
Elleed < AE[Tg]] | {Z n;CV(k)P?eC(k)} . (10.5)
k=1

=1

The proof can be found in Appendix C.10

10.3.3 Simulation Results

In this section, the proposed upper bounds are validatedtmparing it with simulations.

In our simulation setup, the Hier size of all the relay nodes are assumed to be equal,
m = 5 packets. Further, the probability of erasure on all thksliare assumed to be the
sameg = 0.1. The mean arrival rate at the sourdejs varied in a range that the stream
of packets remain decodable. Then, the variations of theagedength of a decoded block
are presented in Fig. 10.1, Fig. 10.2, Fig. 10.3, and Fig! fid.a line network with 2, 3, 4,
and 5 hops, respectively. Clearly, from the simulation itssthe upper bound is fairly tight

for a two-hop line network, and as the number of hops incedbe upper bound becomes
looser. The reason for such behavior is multiplication & tipper bound introduced for

the two-hop case for a multi-hop scenario.
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CHAPTER 11
CONCLUSION OF THE THESIS

In this dissertation, we investigate the problem of perfamge analysis in finite-lster net-
works, where the throughput and packet delay are introdasethe main performance
parameters to be characterized. The dissertation addnssses ranging from the compu-
tation of network throughput and probability distributiohpacket delay to modeling the
network bufer dynamics when finite-memory random linear network codrmgerformed.

In Chapter 1, the problem of performance analysis in finitédr networks is motivated
by presenting the related works in the literature. The perémce measures are linked to
the stationary distribution of an underlying irreducible@Mov chain that exactly models
the network dynamics. In Chapter 2, a general framework apgsed for studying the
latency and throughput of fierent network scenario®.g, wiredwireless, mobildixed
topology) in finite-bdfer regime. In particular, given the communication protecahd
network settings, an iterative scheme is proposed to appeig the occupancy distribu-
tion of buffers by modeling the states of the network with Markov chaihappropriate
size and complexity. These fbar occupancy distributions can then be used to determine
packet delay and its interplay with network throughput. Veédidwve that our developed
framework can help to understand, and to design more saifabtocols for real-time ap-
plications with high speed (finite-ifier) routers. In Chapter 3, the proposed analytical
framework is used to obtain analytical expressions for tiheughput and probability dis-
tribution of packet delay in multi-hop line networks withasure links. Itis claimed that the
problem of identifying capacity is directly related to theplem of finding schemes that
are rate-optimal. Hence, the communication protocol issehdo be hop by hop lossless
feedback. However, rate-optimality can be achieved by eyipd random linear network

coding over a large finite field in the absence of feedbackndJsimulations, the proposed

113



iterative techniques were noticed to be computationdligient and near-accurate to an-
alyze and study the behavior of line networks. In Chaptehd,pgerformance parameters
such as throughput and average latency were analyzed imajj@vieed acyclic networks
with erasure links when a random packet routing scheme wdéhlifeedback on the links
is used. Here, the mainfeierence with multi-hop line network setting is having nodéhw
multiple incoming and outgoing packet streams. In Chaptérébframework of analysis is
tuned to include wireless erasure networks and investihatarade-€s between through-
put, average packet delay andfieu size when a modified backpressure routing policy is
used. When dealing with backpressure routing scheme, threditerence in applying our
iterative framework is to account for dependency of thevat@nd departure rates on the
current occupancy of each node. One of the main reasonsublatasrouting algorithm
is chosen for analysis is its throughput-optimality for thénite-buter case. In Chap-
ter 6, the &ect of finite bufer size on the performance parameters of multihomed wseles
networks is investigated along with the problem offbusize optimization to meet the re-
guirements of delay-sensitive applications. Here, thaydebnstraint is assumed such that
at least a certain fraction of packets is required to reaeliéstination with a delay smaller
than an application-dependent threshold value, and therdlay-constrained throughput,
also known as goodput, is considered for maximization. lag@ér 7, We have considered
finite-buffer disruption-tolerant networks (DTNs) wherein a diredihpaetween two par-
ticular nodes does not exist due to the mobility and spasseogthe nodes. Hence, the
nodes will deliver messages from source to destinatiorgusifstore, carry, and forward”
strategy. Our goal is to obtain analytical expressions &mkpt latency in such networks
for any mobility model which has stationary properties.c®irthe full state-space descrip-
tion of the network is very large, to reduce the state-spacesamplify the analysis, we
use the idea of chain-collapsing, meaning that, for a pddiaelay node and the source
node, we identify all the “desirable” states which conttéto the delay problem, together

with certain additional “auxiliary” states to arrive at amtibedded” Markov chain. Then,
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we developed two collapsed Markov chains RMC and SMC ortgohérom the full state-
space of the network. However, these two Markov chains aremlyg dependent on each
other but also closely related. Further, their dependesagd us into solving both of them
using our proposed iterative estimation technique. We bawusidered constraints posed by
contention between nodes for wireless channel to obtainra nealistic model. Our ana-
lytical results are validated using simulations for mdpitnodels such as two-dimensional
random walk and the random waypoint mobility model. In Clka@, the problem of
performance analysis for multi-hop line networks with eras is extended to include a
block-by-block random linear network coding scheme witbdigack on the links which
guarantees the length of each decoded block to be the sarialter 9, a novel notion
of buffer occupancy for finite-memory random linear network codiRgNC) in wired
networks is derived. Using this notion, a Markov-chaindshffamework is developed to
identify the throughput fbered by RLNC using Monte Carlo simulations. This framework
offers significant computational benefits over a complete sitimr of RLNC. Though the
size of the Markov chain is exponentially growing with theéwerk size, simulations sug-
gest that a very small portion of the state space is actusited in reality. As future work,

a closer look at the state space and a thorough analysis wocedHe state space can be
performed to eventually derive analytical throughputreates. In Chapter 10, the problem
of decodability when RLNC is performed on a stream of argviackets is addressed. We
first define the decodability of a stream of arriving packstshe finiteness of the waiting
time for a block of packets to be decoded at the destinatiarthEr, we prove that for any
mean source arrival rate smaller that the finitéiauthroughput capacity of a two-hop line
network, the stream is decodable. finally, upper boundsexreeat! for the average decoded

block length in multi-hop line networks, and validated bynalations.
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APPENDIX A
PROOFS OF RESULTS IN CHAPTER 7

A.1 Proofof Lemma 7.4

Consider the following subsets of states in the originaiesspace description of the net-

work.
e A: The source is in its on-period and its most recent event vypaket arrival.

e R The source is in itsfé-period and its most recent event was meeting a non-full

relay or the destination.
e Rr: The source is in itsfé-period and its most recent event was meeting a full relay.

Here, we collapse these subsets into just three statedtimgsa the new Markov chain
shown in Fig. A.1. Clearlyas from the original chain in Fig. 7.3 is given by the proba-
bility that the chain in Fig. A.1, starting from stafe visits stateR before coming back to
stateA again. SimilarlyBs is given by the probability that the chain in Fig. A.1, stagfi
from stateR, visits stateA before coming back to staieagain. Such probabilities can be
obtained from the fundamental matrix of the Ergodic Markda{® (see chapter 2 of [71]
for a discussion on the fundamental Matrix of an ergodicrchiai Fig. A.1. LetZ be the

fundamental matrix for this chain. The probabilitiesandgs can be derived using

TR
s = ,
° TA{Zrr— ZaR} + TR {ZaA — ZRA)
b4
Bs = A

 ma{Zrr— ZaR} + MR{ZAA— ZrA}
The results will follow after performing the necessary catgion which would be com-

puting the fundamental matrix for Markov chain shown in Fig. A.1.
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Figure A.1: Three state MC for obtainirag andgs

A.2 Proof of Lemma 7.6

Considering the network at steady-stég,is the random variable representing the time
until the next arrival at the source, given that the souraa its on-period at timer = 0.

At this point, the random location of the other 1 nodes follows the steady-state spatial
distribution of the mobility model. Hencd,., is the random variable representing the
waiting time until the source comes in contact with one ofrikel nodes. Furthe5y and
T..n are independent since the arrival process is independeheahobility. Hence, the

parameterr; can be expressed as

a1 Pr{Ten < So}

Z PrSo = 7} P T < 71So = 7}
=1

Fr.,.(T)Ps, (7).

Ms

1l
=

T

The results for the parametes can be proved in a similar fashion.
As for the parametesy, given that the source node has no contacts with any other nod

(relay or destination) at time = 0, meeting a node during the next time epoch means that
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T.n = 1 and hence the result follows. As for the paramgtegiven that the source node
is in contact with a node (relay or destination) at time 0, meeting with none of the other

nodes during the next time epoch means That> 1 and henc@g, = 1 — Pr{Tq,, = 1}.

A.3 Proof of Proposition 7.1

Let p; be the probability that a packet is stored atithduffer space of a relay node upon
its reception from the source. In this case, such a packelsrteewait fori — 1 previously
stored packets to be delivered to the destination beforegylssrved. Hence, for the packet
to be delivered to the destination, that particular relagenmust establish links with

the destination. Since upon receiving the packet the rangaim+ 1 nodes follow the
steady-state spatial distribution of the mobility mode& average waiting time to meet the
destination for the first time i&[T.] epochs. Note that meeting the destination node is
equivalent to establishing a link with it since there is natemtion when the source and
the destination are in the same communication range. Aftetsy the remaining- 1 links

will take an average time of ¢ 1)E[T] epochs to be established. Therefore, by taking an

average, we have the following

B
Dret = Py (0) + Py | ) pi (E[To] + (i - DE[TG]) |- (A1)

i=1
Further, p; can be characterized as the conditional probability of i@vipackets in the
buffer of a relay node given that the most recent link that theyralade had is with a
non-empty source, and it can be obtained using

PSSy}
> PrSY

where, P{S;} is known fori = 1,2,..., B from the steady-state analysis of RMC. Next,

(A.2)

P, is the conditional probability of the source meeting thetidesion given that its most
recent link was established with a non-full relay or the ihegiton. After incorporating the
contention between relayB; can be determined from

E[To]
o, _EITd

S L S A.3
?nl Pc E[TO,n] -1 ( )
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where, the contention failure probabilipy is derived in Lemma 7.3. Finally, by plugging

(A.2) and (A.3) into (A.1) the result will follow.

A.4 Proof of Proposition 7.2

Let p/ be the probability that a packet is stored at iidouffer space of the source node
upon its arrival. In this case, such a packet needs to waitfdrpreviously stored packets
to leave the source before being served. Hence, the soutleeamast establishlinks with a
non-full relay or the destination. Since upon arrival of gaeket the remaining+ 1 nodes
follow the steady-state spatial distribution of the mdpitnodel, the average waiting time
to meet a relay or the destination for the first tim&[g ., ,] epochs. Further, because the
relays might be full, the average waiting time to establishlawith a non-full relay or the
destination for the first time would hx‘e[Too,n]E‘l epochs. Similarly, the remaining- 1
links will take an average time of ¢ 1)E[To.]Ps - epochs to be established. Therefore,

by taking an average, we have the following

Daueve=P5 * ), Pl (E[Teon] + (i — LE[Tonl) (A4)
i=1

Further, p/ is the conditional probability of havingpackets in the Wiier of the source
given that the most recent event at the source is a packealarand it can be obtained

from
oo _PIAL
LY PHAY

where, PfA;} is known fori = 1,2, ... from the steady-state analysis of SMC. Finally, by

(A.5)

plugging (A.5) into (A.4) the result will follow.
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APPENDIX B
PROOFS OF RESULTS IN CHAPTER 9

B.1 Proof of Lemma9.1

be — bisusye = dimM(V(S)) - dim(V(S) N V(S"))
+dim(V({ISUS) N V(S US))
—dim(V({S U S'}%)) (B.1)
= dim(V(S° U S)) - dim(V(S"))
—dim(V({SUSIFUVSUS))
+dim(SUS)) (B.2)

= dim(V([n])) — dim(V(S))

+dim(V(S U S)) — dim(V([n])) (B.3)
= dim(V(SU S')) - dim((S")) (B.4)
= dim(V(S)) - dim(V(S) N V(S) (B.5)
= Iss (B.6)

Here, we used the fact that for a®yB c [n], dim(V(A) n V(B)) = dim(V(A)) +
dim(V(B)) — dim(V(A U B)). ]

B.2 Proof of Lemma9.2

First, we consider the case whereS. LetA™ = (AL, A, ..., AnLB ={B,B;,....Bg },
Cc ={C.C;,..., Clg;,l} be the bifer contents of relay, relaysS\ {i}, and relayss®, before

update, respectively. Similar to the proof of Lemma 9.1,

bs = dim(spafA U B U C}) — dim(sparC}). (B.7)
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Let E be the packet received by nodigom the source, and is innovative fat, 8, and

C. We consider two cases:

e Case 1: Suppose there exist fimentsA,, 6y, n4 S.t. A, # O for at least oné, and
2 AN+ 6B + XgmqCy = 0. The existence of such ddieients is equivalent
to Iy < M, which is equivalent tdy;, < m. By similar arguments, we can
show thatE € spadA* U B* U C*} whp. Therefore, dim(spdifi* U B* U C*}) =
spanA~ U B~ U C} + 1, which results i = bg + 1.

e Case 2: Suppose no sughbg, g as in Case 1 exists. In this case, it can be shown

that dim(spafA* U 8* U C*}) C dim(spafA~ U 8~ U C™}), and hencé{ = bg.

Now, leti € S¢ Here, letA™ = {ALA;,...,A}, 8 = {B,B,,....B.}, C =
{C[.C;,...,C ) be the biifer contents of relayS, relayi, and relaysS¢, before update,
respectively. In this case, the only setting where a nasiatrthange occurs can be shown to
be the case when there existshd@y s.t. 4; # O for atleastong and};, 4B+, 6,C, =0,
but there existd,, 6, mq S.t. 4 # O for at least oné, and}; 4B + X« Cy + X maA, = 0.
Here, it can be shown that dim(sgaf U B8* U C*}) = spad A~ U B~ UC} + 1 whp, and

henceb$ = bg + 1 whp. In all other cases, the state vector remains unchamgpd =

B.3 Proof of Lemma 9.3

From Definition 9.2 it is clear that if, ] € S, thenbi = bg. The same applies when
i, ] € S In the following, we investigate the update rule for theedas S, j € S°. For the
casei € S¢ | € S, the update rule iB§ = bg and the proof is similar to the one presented
forthe case € S, | € SC.

Hence, we only consider the case where S, j € S¢. Let A~ = {A[ A, ..., ALL,
B~ = {B,B;,....Bg )}, € = {C[.C;,....C ) and D™ = {D;,D3,...,Dy ) be the
buffer contents of relai, relaysS\{i}, relayj, and relayss®\{j} before packet transmission,

respectively. Suppose packet= Y a/A" successfully transfers from relayto relay
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j- Then, for anyS C [n], We will have A" = A~, B* = B8, D" = D7, andC* =
{C] + BLE.C; + B2E,....Cy, + BmE}. Note that the ca@icientse; and g are chosen

randomly fromF,. LetG~ = spa A~} N spariC~ U D~}. We consider two cases:

e Case 1: Suppose there exidtsd, such thati, # O for at least on¢ and | 4,C; +
2k D, = 0. Hence,

DACH+ ) 6D = (O AB)E € spaiC* U D*)
| k |

Therefore E € spaifC* U D*} whp. Further, ifG- # spafA~}, thenE ¢ G- whp,
and spafC* U D"} = spatC- U D~ U {E}}. Hence,

b = dim(spafA* u B*Y))
—dim(spaiA* U BT} N spanC*t U D*})
= dim(spafA- U B7})
—dim(spanA~ U B} nspafC- U D~ U{E}})
= bg-1
Note thatz~ # spafi A~} & lj_sc > 0, and the existence of sugh b, < |j—se\j) <
mj.
On the other hand, 7~ = spafA~}, thenE € G~ and sincegg* = G, we will have
spanC* U O*} = spafC- U O}, and henc®f = bg.

e Case 2: Suppose no sughé as in Case 1 exist. Let~ = {F;,i € [|[¥[]} be a
basis for spafii~ U B~} nspadC- U D~} with F; = ¥, yikCp, + X ti Dy - Also, let
F* ={F{,F3,....Fj_}, where

|:,+:F|-+(Z YBIE, 1 € (L,2,.. ., |F L. (B.8)
k

Note thatF," € spadA* U 8"} N spafC* U D*}.

Suppose € spaf AT U B} N spafCt U D}, then there exists representationsof

as follows.
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X= > A+ Y 6By (B.9)
k k’

= Y &(Ci +BE)+ ) 4Dy (B.10)
I I

Therefore, we have

X=()_ &B)E € spanA” U B7} N spariC” U D)
|

= X — (Z &B)E = ZT'F'_ = Zn(ﬁ* - Z%kﬁk)E)
| | k

|
Therefore,

ZT|F| = Zflﬁl ZTWlkﬁk)E:@(X)E (B.11)

We consider two cases here.

Sub-case 2a: First, suppose tthék) = O for all x € spaA* U B} NnspaC* U D*}.
Then, spafiA*UB*}NnspafC*UD*} C spanF *}. However, spa¥ *} C spaf A+ U
BN spafC*t U D). Hence, spalif '} = spafA*™ U B} N spafC* U D*}. Next,
we prove that members gf* are linearly independent. Supposew F;" = 0, then
by (B.8),

D @F = () olkBE (8.12)
Here, ifG~ # spafA~}, thenlE ¢ F whpl;l,( andfF " are linearly independent, again
whp. On the other hand, &~ = spaiA~}, thenE € ¥~ can be uniquely represented
as a linear combination d¥.", i € [|[F[]. LetE = X, ysF;. Given a particular
value of w1, -+ ,wr|) # 0, due to the randomness of thgs, the probability that
2uwF = 0 happens is equal tg}—l which can be made as small as required by

choosing a large field size.
Thus, 7+ are linearly independent in this case. Therefore,

dim(spatA* U B*}) = dim(spafF+})
dim(spanF-}).
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Therefore, the update rule will b = bg.

Sub-case 2b: suppose thitx) # 0 for somex € spafA* U B*} N spafCt U D*}.
Then, from (B.11)E € spafA* U B*} N spaC* U D*}. Now, if G- = spaf A},
thenE € spaC~ U D~} which means that sp&* U D*} = spafC~ U D~}. Thus,
the update rule in this case is givenlly= bg. On the other hand, &~ # spafA~},
thenE ¢ spaidC- U ©7}. However, by (B.11)E € spaiC* U D*}. Hence, there

exists a representation Bfas follows

E= > m(C +BE)+ ) @Dy (B.13)
| I

This yields

[l—Zm,&]E = Zn.c; +Z¢.,D;. (B.14)
| | I

Given thatt ¢ spaC~ U D}, it follows from (B.14) that}, 3 = 1 which implies
that

> mCi+ ) @Dy =0. (B.15)
| I’
However, in Case 2, there cannot be an equation of the forrbjBunless we have
m = 0 for alll. Substitutingr, = 0 in (B.13) results in having € spaf?D~}. This

is a contradiction, sinceA™ has innovative packets f@~ U D~. Thus, the event

®(x) # 0 for somex € spaA* U BT} N spaC* U D*} occurs wip. [

B.4 Proof of Lemma 9.4

Here, we will use the complete definition of the occupancymesince we are considering

the destination node. It is clear thaSfc [n] andi € S¢, thenb§ = bg.

Hence, we consider a8 C [n] wherei € S. Suppose packdf successfully transfers

from relayi to d. Using the same argument as in the relay-to-relay caseckep& is

innovative toS°u {dj} (i.e., lj-sc > 0), successful transmission can increase dim(splam

spariScu{d}}) by one becausgalways has enough space to store packets. Since ding&pan

does not change by transmissionEfthe update rule ibg = bg — 1. Further, if packeE
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IS not innovative tdS° U {d} (i.e., Ij,-sc = 0), then eitheE e sparid} which results in no
change irbs, or E € spaniS¢}. The latter despite increasing dim(sp@hu {d}}) by at most

one, will not change dim(sp&8} N spandS°© U {d}}) and hence does not alties. [
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APPENDIX C
PROOFS OF RESULTS IN CHAPTER 10

C.1 Proof of Lemma 10.1

Suppose that a block of lengt is decoded at tim¢*. Then, at timet*, the number
of equations at the destination must have become equal toutmder of unknownsg,e.,
Ip(t*) = Pp(t*). Further, by definitiont, is the last time that the evelpy(t) = 1p(t)
has occurred beforg, hence,Pp(t) > Ip(t) for to < t < t*. Therefore,lp(t*) — Ip(to)

is the number of equations in the latest solvable set of tiegaations, leading to find
Ip(t*)—Ip(to) unknowns. The length of the decoded block befngesults in(t*)—1p(to) =

K. The proof of the reverse statement is straightforward atidwWs the same steps as

mentioned.

C.2 Proof of Lemma 10.2

Given the channel realizations at tim&.e., whether if a packet is lost or not at tiheand
knowing the way the innovativeness of each node changesanitral andor departure of

packets, it is clear that{(t), Ir(t)) only depends onl§(t — 1), Ir(t — 1)).

C.3 Proof of Lemma 10.3

Suppose that a stream of packets with source arrivalréealecodable. Assume that all
of the states of the form (§) are transient, wher¥ = 0,1,...,m. In this case, after a
certain amount of time and also after the last block of paskéécoded, the Markov chain
(Is(t), Ir(t)) will never visit any of the states of the form,(0). Hence, at no point in time

the number of equations generated and transmitted at threeswill be as many as the
number of unknowns used and hence, no block of packets walvkbe decoded from that
certain time forward. Next, suppose that in the Markov clfgi(t), Ir(t)), any state of the

form (O, Y) is recurrent, wher®& = 0, 1,..., m. Then, after visiting an arbitrary state, ()
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the block of packets will be decoded with the successfulstraasion ofi packets to the
destination without receiving more packets from the sauBiacei is finite (| < m), this
event happens with a positive probability. Since a retursuicth states of the form (¥) is

recurrent, in a finite time the block of packets will be deahde

C.4 Proof of Lemma 10.4

First, suppose all the states of the Markov chaytt], Ir(t)) are recurrent. Assuming an
arbitrary statds = i of the collapsed Markov chaihs(t) is transient means that there is
a non-zero probability thdt(t) will never return to the stateand hence, the steady-state
probability of state is zero. Using Theorem 7.1, the sum of the steady-state pildhes

of the group of states of the form, ) in the Markov chain Is(t), Ir(t)) is equal to the
steady-state probability of the statén the collapsed Markov chaihs(t) which is zero,
whereY = 0,1,...,m. This implies that the sum of the steady-state probalslitkthe
group of states of the form,(Y) in the Markov chain Is(t), Ir(t)) is equal to zero which
contradicts the assumption that all the states of the Mackain (s(t), Ir(t)) are recurrent.
Therefore, the initial assumption that an arbitrary stgte= i of the collapsed Markov
chainls(t) is transient must be false, and all the states of the cathptarkov chairls(t)
are recurrent.

Next, suppose all the states of the collapsed Markov didiipare recurrent. Assuming
an arbitrary statel§, Ir) = (i, j) in the Markov chain Is(t), Ir(t)) is transient means that
there is a non-zero probability thdi(t), Ir(t)) will never return to the state,(j). Using
Theorem 7.1. the sum of the steady-state probabilitiesefjtbup of states of the form
(i,Y) in the Markov chainls(t), Ir(t)) is equal to the steady-state probability of the state
in the collapsed Markov chaiig(t), whereY = 0, 1, ..., m. The steady-state probability of
the state in the collapsed Markov chaig(t) is non-zero since all the states of the collapsed
Markov chainls(t) are recurrent. Hence, there is at least one state of the(folf)) in the

Markov chain (s(t), Ir(t)) has a non-zero steady-state probability. Suppose teaittdie
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(i, k) in the Markov chainls(t), Ir(t)) has a non-zero steady state probability. Because of
the structure of The the Markov chaihs(t), Ir(t)), the statei( j) can be reached from the
state {, k) with a positive probabilitye.g. by sending or receiving packets at the relay.

Therefore, the state,(j) is not transient and the result follows from this contréidit.

C.5 Proof of Lemma 10.5

Assumption?? implies that the steady state probability(m) equals the blocking proba-
bility that the sourcé perceives from the relay nod@and can be calculated from Equa-
tion (3.3) to bee, Pr{Xgr = m}, where PfXg = m} is the steady-state probability of the
transmit-first Markov chain depicted in Figure 3.2. Simgas assumed to be a constant,
to prove the lemma, we need to prove the results fOX§e= m} instead otrr(m). In the
transmit-first Markov chain depicted in Figure 3e25 rine2, 8 = Tine2, andag = rin, Where
rin Is the arrival rate of packets from the source. Cleaglyincreases witkl because larger
A increases the probability of the source to be non-empty anddincreases the arrival
rate of innovative packets to the relay from the sourse. dfoeg,a andag increase witht
andg decreases withi. Intuitively, by examining the Markov chain in Figure 3.2rdera
andag, and smallep leads to a larger steady-state probability for statee., P{Xg = m}.
Hence, PfXg = m} is a non-decreasing function afand from Equation (3.2), it can be
seen that it is a continuous function as well. Further, bydasinga the probability of
the source being in empty state decreases. However, at smintaérncreasingl leads to a
situation in which the empty state of the source becomesiganor null-recurrent. In this
case, the parametearsag andg will not change anymore an;(m) achieves its maximum

aRE(m).

C.6 Proof of Theorem 10.1

Using Lemma 10.3 and Lemma 10.4, it is clear that to provettberem we need to prove

that the state O in the collapsed Markov chkgj(t) is recurrent if and only ift < C*, where
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C* = &g (m).

Suppose that former holdsg., the state 0 in the Markov chalg(t) is recurrent. Then,
assume that > C*. Further, letry,(1) be the maximum possible departure rate at the
source which equalg 7r(m). From Lemma 10.5, we know thag(m) is a non-decreasing
continuous function oft, achieving its maximunyg®{m), when all the states in the col-
lapsed Markov chail(t) are transient or null-recurrent. Hencgy(1) is a non-increasing
continuous function oft, achieving its minimumr™ = z,75*{(m) = C*, when all the
states in the collapsed Markov chdi(t) are transient or null-recurrent. Since the state
0 in the Markov chainls(t) is recurrent, it is clear that the arrival rate at the sousce
smaller than the maximum possible departure rege, 1 < rou(1). It is also known that
rou(d) > C* sinceC* = rMin | et 2* be the smallest arrival rate at the source for which
the state O of the Markov chaia(t) is transient or null-recurrent meaning for any arrival
rate smaller than* the state O is recurrente., 1 < rou(4) for anyA < A*. Then, because
rout(A) is @ continuous function of, we havel* = rqo(1*). Further,ro,(1*) = riin = C*
because,(-) achieves its minimum when all the states in the Markov chg(t) are tran-
sient or null-recurrent. Note that, if state O is transiémn every other state ig(t) is also
transient. Hence, we havé = C* and consequently} < C* which is a contradiction to
the assumption > C*. Therefore, the assumptian> C* must be false which proves the
results.

The proof of the reverse is straightforward. Assumihg< C* guarantees that the
state 0 in the Markov chaih(t) is recurrent sinc€* = gz (M) is the minimum of the

maximum possible departure rates at the source and hencantges that the arrival rate

Ais smaller than any maximum departure rates at the source.

C.7 Proof of Lemma 10.7

First, we need to find the condition for decoding the packatsea at the source up to

time ty. Right afterls(t) becomes zero, all the needed useful equations for thendésti
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to decode the packets arrived at the source up to tjraee now stored at the relay node.
Further,lr(tp) = kimplies that there are onk/of such equations available at the relay node.
Therefore, to be able to decode, the relay node should neiveeany innovative packet
from the source while the destination is receivigackets from the relay. L&t be the
probability of the event that in a single time epoch souraagmits a packet and the packet
is either lost or not innovative for the relay. Since the seus empty aty, there is a higher
chance that the source remains empty at the next few ep@&atsng tod = 1. However,
after a few epochs, a packet arrives at the source and weshave;. Hence, assuming
0 > g1 is a reasonable approximation for the purpose of steadg-atealysis. Consider the
scenario in which the task of decoding will be completed iaatly k + i epochs, where

i =0,12,.... We proceed to compute the probability of this scenaria. dhthe epochs
from the firsti + k — 1 epochs, at the relay, neither an innovative packet shautddeived
nor a packet should be successfully transmitted, which éapvith probabilityse, in a
single epoch. Further, ik— 1 of the epochs from the first+ k — 1 epochs, At the relay, a
packet has to be successfully transmitted to the destmatidle no packet arrives from the
source, which happens with probabilify, in a single epoch. Finally, in the last epoch, a
packet has to be received by the destination, which happighgwmbabilitys,. Therefore,

we have the following:

o i f
PEK) = ;( +: ){582}'{552}k_152 (C.1)
S (k+i-1 o ele
> Z( i ){slsz} (6182 (C2)
i=0
© (K+i=1)--- (K :
= {8152}k_1522( ! i') (){8182}I (C.3)
i=0 '
> I (C.4)
i=0
= {£182) B2 (C.5)

Note that, (C.2) is the result of assumifig ;.

1The minimum number of epochs to complete the decodikg is
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C.8 Proof of Theorem 10.2

Before any block of packets is decoded at the destinatierfolfowing events must occur:
Is(t") returns to the state 0, ang(t’) = k with probability 75"(k), wherek = 1,2,

For eaclk, all the packets arrived at the source up to tthveill be decoded with probability

Pdeqk). Therefore, every timés(t) returns to zero at epoch all ntqhe packets arrived at the

source up to timé& will be decoded with the average probabilE mV(k)Pee(k). Further,
k=1

since the expected waiting time fiy(t) to return to zero i€ [Tg], the average time it takes
-1

m

for a block of packets to be decoded at the destinatio [Eg] {Z TY(K)PEe(K)
k=1

Finally, the rate at which the destination receives inneeapackets ist given that the

Markov chainls(t) is ergodic, which is the case since we assume the streancaslaele.

-1
Hence,1E T+ anc"(k)Pdec(k)} will be the average length of a decoded block, and

the results follows.

C.9 Proof of Lemma 10.8

The proof is very similar to the proof of Lemma 10.7. In Lemnta7l &, represents

the probability that a packet is successfully transmittednfthe relay to the destination.
However, here, if a relay; is transmitting a packet tgj,,, it would count as successful
only when the packet is not lost, which occurs with prob&pii.;, and also the relay
Vj.1 is not full, which occurs with probabiliti;,;(m;.1). Therefore, the probability that a

packet is successfully transferred frofito vj,1 IS rj,1 = €417 j1(M;j41)

C.10 Proof of Theorem 10.3

A block of packets is decoded at the destination when thevatlg events occuris(t’)
returns to the state 0, angt’) = k; with probability zi®(k;), wherek; = 1,2,..., my. For
eachk,, all the information required to decode the original pasketived at the source up
to timet” will be passed ta; with a probability bounded above lﬁgec(kl). Therefore, ev-

ery timels(t) returns to zero at epodh all the information required to decode the original
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packets arrived at the source up to tithevill be passed ta; with an average probability
bounded above bi mi(k))PSek,). Similarly, all the information required to decode
only the original p%zlkets arrived at the source up to ttmaill be passed tos, with the
average probability bounded aboveﬁz)l/ (k) P3*%(ks), and so on. Finally, all the pack-
ets arrived at the source up to time/vlﬁlzt)e decoded with an average probability bounded

Mher

above by Z % (kn_1)PSe%(k,). Further, since the expected waiting time fg(t) to re-
Kn-1=1

turn to zero isk [Tg], the average time it takes for a block of packets to be decatled

mj -1
the destination i&€ [Tg] T;i {Z nﬁc"(k)P‘j’eC(k)} . The rest of the proof is similar to the
k=1

proof of Theorem 10.2.
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