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SUMMARY

In networks, using large buffers tend to increase end-to-end packet delay and its

deviations, conflicting with real-time applications such as online gaming, audio-video ser-

vices, IPTV, and VoIP. Further, large buffers complicate the design of high speed routers,

leading to more power consumption and board space. According to Moore’s law, switching

speeds double every 18 months while memory access speeds double only every 10 years.

Hence, as memory requirements increasingly become a limiting aspect of router design,

studying networks in finite-buffer regime seems necessary for network engineers.

This work focuses on both practical and theoretical aspectsof finite-buffer networks. In

Chapters 1−7, we investigate the effects of finite buffer sizes on the throughput and packet

delay in different networks. These performance measures are shown to be linked to the

stationary distribution of an underlying irreducible Markov chain that exactly models the

changes in the network. An iterative scheme is proposed to approximate the steady-state

distribution of buffer occupancies by decoupling the exact chain to smaller chains. These

approximate solutions are used to analytically characterize network throughput and packet

delay, and are also applied to some network performance optimization problems. Further,

using simulations, it is confirmed that the proposed framework yields accurate estimates of

the throughput and delay performance measures and capturesthe vital trends and tradeoffs

in these networks. In Chapters 8− 10, we address the problem of modeling and analysis

of the performance of finite-memory random linear network coding in erasure networks.

When using random linear network coding, the content of buffers creates dependencies

which cannot be captured directly using the classical queueing theoretical models. A care-

ful derivation of the buffer occupancy states and their transition rules are presented as well

as decodability conditions when random linear network coding is performed on a stream of

arriving packets.
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CHAPTER 1

INTRODUCTION AND RELATED WORK

In networks, packets have to be routed between nodes througha series of intermediate

relay nodes (i.e., routers). Each intermediate node in the network may receive packets

via multiple data streams that are routed simultaneously from their source nodes to their

respective destinations. In such conditions, packets may have to be stored at intermediate

nodes for transmission at a later time due to various reasonssuch as full buffers, packet loss,

or scheduling. If an unlimited buffer space is available, the intermediate nodes need not

have to reject or drop the arriving packets. However, in practice, buffers are limited in size.

Although increasing the buffer space tends to minimize packet drops and increase the link

utilization, large buffers have an adverse effect on thelatency, i.e., the delay experienced

by packets stored in the network. Further, using larger buffer sizes at intermediate nodes

would also result in secondary practical issues such as on-chip board space and increased

memory-access latency. Consequently, a simple but fundamental question is the following:

what is the minimum buffer requirement for each router given certain constraints onthe

throughput and queueing delay?

The problem of buffer sizing and congestion control is of paramount interest torouter

design engineers. Typical routers today route several tensof gigabits of data each second.

Realistic studies have shown that, at times, Internet routers handle about ten thousand in-

dependent streams/flows of data packets. With a reasonable buffer size of few Gigabytes

of data, each stream can only be allocated a few tens of data packets. Therefore, at times

when long parallel flows congest a router, the effects of such a small buffer space per flow

come to play. Though motivated by such practical concerns, our work is far from model-

ing realistic conditions. This work modestly aims at providing a theoretical framework to

understand the fundamental limits of single information flow in finite-buffer networks and

investigates the tradeoffs between throughput, packet delay and buffer size.

2



Broadly speaking, this work is in the area of performance modeling and analysis of

networks. Our main objective is to develop a general framework for studying the latency

and fundamental limits on the information carrying capacity of different networks (e.g.,

wired/wireless, mobile/fixed topology) in a finite-buffer setting. We aim at completing the

following major research tasks:

• Develop a theoretical framework to study the information-theoretic capacity of wired/wireless

networks in finite-buffer regime.

• Study of the latency and throughput trade-offs with the buffer size in general wired/wireless

networks.

• Extension to various communication, routing, source-traffic, scheduling scenarios.

• Modeling the dynamics of finite-buffer random linear network coding in general net-

works.

Next, we motivate our problem by explaining the necessity ofaddressing the perfor-

mance analysis of networks in finite buffer regime, and present the previous works in the

literature relevant to this topic.

1.1 New Trends in Buffer Size Reduction for Internet Routers

Until quite recently, Internet routers were widely believed to need large buffers. Typi-

cally, the size of router buffers is determined by the well-known “bandwidth-delay prod-

uct” (BDP) rule-of-thumb [1]. The BDP states that the buffer size should be equal to the

bandwidth of the link multiplied by the round-trip time (RTT) of a TCP1 connection that

can be bottlenecked at that link. Today, backbone links commonly carry around 10, 000

flows and operate at 2.5 Gb/s or 10Gb/s. Hence, for a typical RTT of 250 ms and link

bandwidth of 10Gb/s, BDP mandates a buffer size of 2.5 Gb. Assuming 1000 bytes per

packet, the approximate buffer storage is equal to 300K packets which is shared by all TCP

1Transmission control protocol

3



flows. Assuming only 500 concurrent flows [2], this is about 600 packets per flow, on the

average. However, a recent work by Appenzeller [2], referred to as the “Stanford model”,

has challenged the BDP rule advocating the use of much smaller buffers. The authors in [2]

proposed an alternative ruleBDP/
√

N instead, whereN is the number of flows, resulting

in significantly smaller buffers (i.e., only 3K packets vs 300K in the above example, which

is shared by all the flows). Equivalently, this is about six packets per concurrent flow, on

the average!

With declining memory prices, why not just over-buffer routers? The reasonings behind

the Stanford model are explained in great detail in [2–4]. Webriefly discuss two of them

in the following. (1) Large buffers complicate the design of high speed routers, leading

to high power consumption and more board space. If a few dozenpacket buffers would

suffice, then packet buffers could be incorporated inside the network processor (or ASIC)

in a small on-chip SRAM; in fact, the buffers would only occupy a tiny portion of the chip.

Hence, not only would external memories be removed, but alsoit would allow the use of

fast on-chip SRAM or all-optical buffering, which scales in speeds that are much faster

than DRAM. Additionally, with recent advances in all-optical switching, low storage all-

optical buffering will open the door to routers with huge capacity and lower power than

electronic routers. (2) Over-buffering increases end-to-end delay, conflicting with real-

time applications such as online gaming, audio-video services, IPTV, and VoIP that have

the UDP type traffic. Additionally, large buffers may increase the variance of the latency,

making congestion control algorithms unstable. Since the work of [2], other researchers

have also advocated small buffer sizes [5–17]. Some have studied new congestion control

mechanisms for small buffer routers [18–21]. The experimental work is also performedto

validate this direction [22,23].

In summary, today, we have arrived at a juncture wherein the Internet handles a large

volume of data. Realistic studies have shown that, at times,Internet routers handle about

10, 000 independent flows of data packets. Hence, only a few tens of data packets from

4



each flow can be stored. As discussed above, the storage of buffers per flow, on the aver-

age, varies from six packets (using the Stanford model) to 600 packets (using the current

BDP rule), assuming 500 concurrent flows. Therefore, at times when long parallel flows

congest a router, the effects of such a small buffer space per flow come to play. Our work is

motivated by such concerns. The matter gets worse for multi-hop wireless networks where

the buffer sizes at the intermediate nodes are more restricted, due to wireless device and

link constraints. Therefore, several fundamental questions rise. What is the capacity of

finite-buffer wired/wireless networks and how does it vary with the buffer size? What is the

latency of the finite-buffer wired/wireless networks and its variation with the buffer size?

What is the interplay of the latency and throughput in a finite-buffer regime?

1.2 Finite-Buffer Networks vs. Information Theory

A finite-buffer queue has been studied in the information theory community as a finite-

state Markov channel for a communication link in [24–26]. Various coding strategies for

achieving capacity in infinite-buffer erasure line networks is outlined in [27]. Later, [28]

considered the limitations posed by finite memory, specifically in a simple line network

involving a single intermediate node. Inspired by this work, [29, 30] investigated bounds

for the capacity of general multi-hop wireline networks. Several challenges arise when

extending the study from a single intermediate node to a multi-hop line network as detailed

in [31].

Advances in the area of error control coding have already ledto the design of capacity-

achieving codes for channels such as the binary erasure channel [32–39]. The design of

such good codes has kindled greater interest in the study of theoretical limits such as ca-

pacity and throughput in several classes of wired and wireless networks. For example, for

multicast in wireline networks, it was shown that the max-flow min-cut upper bound can

be achieved [40–42] if every node sends out packets generated by random linear combina-

tions of previously received packets. However, this technique assumes that nodes store all

5



previously received packets, resulting in buffer growth as the source injects new packets in

the network. Since then there has been considerable work in the areas of capacity study and

network coding for both wired and wireless networks under the infinite-buffer assumption

[27, 43–52]. Despite all the exciting results, the study of capacity of networks with finite

buffer sizes has been limited. This can be attributed to the fact that analysis of finite-buffer

systems are generally more challenging.

1.3 Finite-Buffer Networks vs. Queueing Theory

Studying capacity alone, information theory assumes infinite buffer; hurting the informa-

tion delay which is of great interest for communication network community. Queuing

theory, on the other hand, provides analysis for the delay with little regard to capacity. The

problem of studying lossy networks with finite buffers has been investigated in the area of

queueing theory [53–58]. The queueing theory framework attempts to model the packets

of the network as customers, the delay due to packet loss overlinks as service times in the

nodes, and the buffer size at intermediate nodes as the queue size. Also, the phenomenon

of packet overflow in the network can be modeled by blocking (commonly known astype

II or blocking after service) in queueing networks [59]. However, this packet-customer

equivalence fails in general network topologies due to the following reasons. When the

communication network contains multiple disjoint paths from the source to the destination,

the source node can choose to duplicate packets on multiple paths to minimize the delay.

This replicating strategy cannot be captured directly in the customer-server based queue-

ing model. Moreover, communication schemes such as networkcoding in finite-buffer

networks introduces redundant innovative packets, which cannot be studied using such a

framework.

Although the other works provide some insight into the analysis of capacity of net-

works, they are limited to either infinite-buffer cases or finite-memory line networks with

a simple single intermediate node. Moreover, the interplayof the throughput and latency
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with the buffer size is not considered. All of this inspires us to obtain a framework to study

the effect of finite memory in general multi-hop wired/wireless networks. In the process,

we expect to develop tools and techniques that will be suitable for analyzing the capacity,

and the throughput-latency trade-off in such networks in various communication scenarios

such as unicast, multiple unicast, and multicast. Clearly,the previous techniques do not

lead to the goals that are sought out in our proposed research.

1.4 Finite-Buffer Networks with Scheduling Policies

Since the seminal paper of Tassiulas and Ephremides which proposed a throughput-optimal

joint routing/scheduling algorithm [60] (backpresure routing), there has been a great effort

to develop throughput-optimal schemes for different networks [61–66]. [61, 62] investi-

gated throughput optimal scheduling policies for finite-buffer wired and wireless networks

with performance guarantees. Also recently, [67] has proposed a buffer management strat-

egy to improve the delay-throughput trade-offs in backpressure routing. Network coding

in wireless queueing networks has also been studied to examine the effects of the saturated

queues [68,69]. However, both [68] and [69] considered the infinite queue over single-hop

channels and examined the stability condition to ensure thedelay will not grow without

bound. Recently, [70] presents a rough estimate for the performance of finite-buffer net-

works. However, as explained before, the tools developed inqueueing theory are inad-

equate for the analysis of random linear coding scheme, which we employ to study the

capacity of general finite-buffer networks. In Chapter 5, inspired by the routing/scheduling

scheme used in [63] for wireless erasure networks and in [62]for the finite-buffer case, we

adapt a modified backpressure routing policy for the sake of our analysis.
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CHAPTER 2

TOWARDS A GENERAL FRAMEWORK FOR ANALYSIS OF
FINITE-BUFFER NETWORKS

In this chapter, we first motivate our study of finite-buffer networks by some examples.

Then, we introduce the notations and definitions used in our proposed framework for anal-

ysis of finite-buffer networks. Finally, we present the general framework and its application

in performance analysis and modeling.

2.1 Preliminary Discussion and Motivation

There are three major observations that we wish to present tomotivate our study of finite-

buffer networks. First, for small-size buffers as in the Stanford model, the max-flow min-

cut result (of the infinite-buffer case) does not hold and, hence, a new framework and

tool must be developed to obtain maximum achievable rates. Second, to our knowledge,

the relation of latency with the buffer size in the finite-buffer regime remains unknown in

most cases. Additionally, there is a trade-off between delay and capacity (or throughput

in general). In particular, the penalty, in the form of increased latency, is severe for any

subtle improvement in the information rate. Third, the typeof the node (defined below) is a

determining factor for allocating the buffer space to various incoming flows (i.e., the buffer

management strategy). Our study is fruitful for network engineering by shedding light on

the above issues. Here, we present some simulation results to establish these motivating

factors and we defer some details to the later subsections. We will consider a discrete-time

model in which every node transmits one packet per epoch to the next-hop node. First, an

eight-hop line network with the probability of packet erasure on each link set toε = 0.2 is

considered. Note that a finely discretized version of the system approximates the dynamics

of the continuous-time system to any degree of precision foran appropriate choice of link

erasures in the discrete model [31]. That explains the use ofrelatively large link erasures.
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At each setup of experiment, for all intermediate nodes, thesame buffer sizesm of 10,

25 or 500 packets are used (which covers the range from the Stanford model to the BDP

model, refer to the introduction chapter). It is assumed that the source has infinite number

of information packets and it attempts to send one packet to the next-hop neighbor in every

epoch with probabilityRs. We denoteRs as the source injection rate. Figure 2.1 shows the

trade-off between the throughput and average information packet delay for three different

buffer sizes obtained from the actual simulations. It is concluded that both throughput and
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Figure 2.1: Throughput and delay versus the source injection rate.

delay increase with the buffer size. However, the delay undergoes an exponential growth

compared to the throughput which saturates to the min-cut value of the line. In theory,

the min-cut value (1− εmax = 0.8) is achieved when the buffer size approaches infinity

for a very large block size. We also observe a large loss in thethroughput if the average

delay is bounded. For example, when the average delay is 26 epochs (i.e.,Rs = 0.85), the

throughput gap from the min-cut value is 16% for the considered buffer sizes.

Next, we consider two cases of a four-hop line network (with the vertex set{s, v1, v2, v3, d},

wheres andd are the source and the destination nodes, respectively) with packet erasure

probability for each hop from the setE = {0.3, 0.5, 0.5, 0.2}. Further, intermediate nodes

9



v1, v2, andv3 have the same buffer of 10 packets (or 20 packets for the second setup) each.

We assumed a lossless hop-by-hop feedback scheme (without any coding). Now, one might

ask the question:when it comes to buffer management strategy, is the more, the merrier?

Surprisingly, sometimes it is damaging to use all buffer slots for the same flow even when

the space is available. To illustrate this claim, the estimated distribution of packet occu-

pancy at the intermediate nodes under both buffer sizes is presented in Figure 2.2. As the

buffer size is doubled, it is noticed that nodev1 that is congested remains congested, nodev3

that has low occupancy registers a marginal change in the occupancy distribution, and node

v2, which is the node following the bottleneck edge in the network, registers a significant

change in the occupancy distribution.

Figure 2.2: Estimated buffer occupancy distribution for different types of nodes.

Figure 2.3 presents the simulation for the contribution to capacity and average delay

by varying the buffer size of one node while keeping the buffer size of the remaining two
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nodes fixed at 10 packets. Using Figure 2.3, we conclude that contribution to mean delay

from v1 increases almost linearly with the increase in its buffer size whereas the change

in capacity is subtle. Changing the buffer-size ofv3 is insignificant on both capacity and

delay. Lastly, doubling the buffer size ofv2 increases both the capacity and average packet

delay. However, the rate of increase of the delay with the increase in the buffer size of

v2 is smaller than that caused by the increase of the buffer size ofv1. By identifying these
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Figure 2.3: Capacity and average delay contribution of eachnode versus buffer size.

nodes, our proposed work will make it possible to design buffer management strategies that

make efficient use of the buffers without compromising much on the throughput or average

packet delay. For example, if the capacity of the four-hop network example above is to

be maximized albeit with a reasonable price in the average delay, all 20 buffer slots ofv2

must be used for the flow whereas that ofv1 may be kept at around four. In the following

subsections, we first present the framework for finite-buffer analysis, irrespective of the

underlying communication scenario or the loss recovery scheme. Then, we present the

specific application of the framework for a line network witherasure links.
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2.2 Models and Definitions

The following notations and definitions will be used in the next chapters. However, at each

chapter, we will try to clarify the notations and definitionsthat are not precisely defined

here, or even may reiterate them to avoid confusion.

We consider each communication channel to be a memoryless erasure channel. We

model a “general” packet erasure network as an acyclic directed graph
−→
G(V,

−→
E). The ele-

ments ofV are callednodesand the directed pairs ofV that are elements of
−→
E are called

links. A nodeu can communicate with another nodev if and only if there is a link between

them, i.e., (u, v) ∈ −→E. The links are assumed to be unidirectional, memoryless andlossy,

i.e., packets transmitted on a link−→e = (u, v) ∈ −→E are lost at random with a probability of

ε−→e = ε(u,v). Note that the erasures are due to the quality of links and do not represent packet

losses due to finite buffers. We assume that every intermediate nodeu is equipped with a

fixed buffer sizemu packets per flow. This implies that the entire relaying storage of every

node is divided to segments of sizemu packets, one segment for each flow. We assume

that communication happens in a discrete-time fashion. In each unit of time, referred as

epoch, a packet per flow is transmitted by a node on each outgoing link. It is assumed

that the source and the destination nodes has no buffer constraints. The unicast informa-

tion theoretic capacity between the source and destinationin a network is defined to be the

maximum achievable rate of transmission of information packets (in packets per epoch)

between the pair of nodes1. Throughout this work, we distinguish between information

theoretic capacity (in short capacity) and the throughput of a scheme. Here, the throughput

of a scheme is defined to be the rate of transmission of information packets (in packets

per epoch) between the source and destination nodes for a fixed communication scheme.

Further, unless a source packet arrival model is defined, we assume that the source node

can generates new information packets at every epoch. The delay or latency of a packet

1The maximum is calculated over all possible means used for packet generation and buffer update at
network nodes.
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is defined as the time taken from the instant when the source starts serving the packet by

injecting it to the network to the instant when the destination node obtains it.

Further, we employ the following notations. LetN−(u) denote the set of all the neigh-

boring nodes thatu can send packets via outgoing links. Likewise, the setN+(u) is defined

using the incoming links ofu. For anyx ∈ [0, 1], x , 1− x. Nodes and noded represent

the source and the destination nodes respectively.

2.3 Analytical Framework for Finite-Bu ffer Analysis

In this section, our objective is to develop a general analytic framework which can be

applied to as many communication scenarios and network coding/routing schemes as pos-

sible. The first step in the construction of the proposed framework is the characterization

of the buffer states of the intermediate nodes at each particular epoch. Often, this charac-

terization is simple because the occupancy of a node is measured by the number of packets

presently stored at the node. However, there are exceptionsto such characterization, and

it occurs when the occupancy of each buffer cannot be described by the number of phys-

ical packets stored. For example, when using random linear coding (RLC), even with a

single packet reception, the entire buffer of a node becomes physically full with multiples

of the same packet. Thus, although the node’s buffer would always be physically full, its

occupancy is measured as the number of packets of information (i.e., innovative or linearly

independent encoded packets) stored. In Chapter 3, we will see that for a line network

scenario, the characterization of buffer states with RLC is exactly the same as a non-RLC

scheme such as hop-by-hop feedback. However, in Chapter 9, complications of modeling

the buffer states for RLC in a general network topology will be described.

For any single-copy routing scheme, we can assume the numberof packets physically

stored at each node as the buffer state. In such routing schemes, a node forwards each

packet to only one other node and deletes the packet from its buffer which leads to increas-

ing the occupancy of the receiving node and decreasing the occupancy of the sending node,
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both by one. Hence, the state of the network buffers can be clearly defined. Specifically,

the occupancy of nodeu ∈ V is denoted by the state of a queueXu(t). We say the queue

Xu(t) is full and hence would block an incoming packet (to nodeu) if its state is equal to

mu (the size of the buffer). Obviously, the incoming packet would not be blocked only if

the state of the queue is less thanmu.

The above setup provides an elegant way of analyzing the performance of the system

usingMarkov chains(MC). We proceed in modeling the problem using a discrete-time

finite-state MC. For every nodeu, consider a queueXu(t). For a network ofN intermediate

nodes, we needN queue variables. Further, each queue variable can take values from 0 up

to mu. Assuming that all the nodes have a buffer size ofm packets, we see that the number

of states in the MC that is needed to completely track the dynamics of the network is in the

order of (m+1)N; growing exponentially withN. Note that transitions between states in the

chain is based on the channel realization at that time instant. For instance, it must be noted

thatsuccessful transmission(“conveyance”) of a packet fromu to a next-hop neighborv is

possible only when the packet is not erased by the channel andwhen nodev’s queues are

not full. Upon a successful transmission on an edge from a node u to v, both the queues

corresponding to the two nodes must be updated.

Due to the exponential growth in the size of the exact Markov chain in most of the

scenarios, exact calculation of the steady-state probabilities and the network performance

is computationally intractable. Further, the finite-buffer constraint introduces a strong de-

pendency in the state transitions of a queue at nodeu on the state of its next-hop neighbors.

Finally, the intractability of the EMC is compounded by a non-memoryless output process

at each node. Thus, approximation is a more favorable option.

We propose an approximation method that updates a queue for nodeu considering: (1)

The effect of blocking imposed by the next-hop neighborsN−(u) (on the packets departing

from u), and (2) The packet arrival process atu from the previous-hop neighborsN+(u).

Hence, we will only consider the dependency of the state transition probabilities of the
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queue for each nodeu to the state of the queues corresponding to nodes inN+(u) and

N−(u). Note that this will be exact for most of the schemes on a general network as well

as when RLC is applied on a line network. The main idea of the approximation framework

is to divide the multi-dimensional MC with multiple reflections into multiple simple MCs

whose steady-state probabilities can be calculated independently. Note that although each

MC process is assumed independent of the other MC processes,the interdependency of

the states of their queues are captured by the approximationmethod via their steady-state

probability distributions.

Let X denote the set of all the queuesXu(t) required for the analysis, whereu ∈ V.

Note that, each queueXu(t) ∈ X must form an irreducible ergodic Markov chain whose

state transition probabilities must be systematically computable given all the information

regarding the communication scheme, buffer management strategy, the erasure probabil-

ities on the links, and the network topology. As a result, allthe MCs will have unique

steady-state probability distributions which are denotedby πu(·), i.e., πu(k) = Pr{Xu(t) = k}

for k = 0, 1, . . . ,mu. It is notable that in general, by means of our approximationmethod,

the state transition probabilities for MC of every queueXu(t) depend on the steady-state

distributions of the queues corresponding to nodes inN+(u) andN−(u). Since there is no

prior information about the probability distribution of these queues, the proposed estima-

tion must be done iteratively. To determine the state transition probabilities for each MC,

we need to know the dynamics of arrival and departure of packets to its corresponding

queue. In general, for every queueXu(t) ∈ X, we define multiple incoming and outgoing

streams of packets which are assumed to be statistically independent for the purpose of our

approximation procedure. LetΛu = {λ1, . . . , λzin} be the set of arrival rates, wherezin is

the number of arriving streams at the queueXu(t). Similarly, letΩu = {µ1, . . . , µzout} be the

set of departure rates, wherezout is the number of departing streams. Thus, at each epoch,

the total number of arriving packets can range from 0 tozin, since each arrival occurs with

probabilityλi for i = 1, . . . , zin. Similarly, the number of departing packets can range from
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0 to zout. Hence, at each epoch, givenXu(t) = nu, its state can change to any other state in

the set{max{nu − zout, 0}, . . . ,min{nu + zin,mu}}. The state dynamics of the queueXu(t) at

the tth epoch is a Markov chain that is similar to the one depicted in Figure 2.4. Given the

current state of the queue,i.e., Xu(t) = nu, we define its arrival and departure polynomials

as

A(nu)(x) =
zin
∑

k=0

a(nu)
k xk =

zin
∏

j=1

(λ j(nu)+λ j(nu)x) , E(nu)(x) =
zout
∑

k=0

e(nu)
k xk =

zout
∏

j=1

(µ j(nu)+µ j(nu)x),

wherea(nu)
k can be interpreted as the probability of the event that the number of packet

arrivals to the queueXu(t) is equal tok in a single epoch. Similarly,e(nu)
k can be interpreted

as the probability of the event that the number of packet departures from the queueXu(t)

is equal tok in a single epoch. The superscript on the coefficients represents the current

state of the queue,Xu(t) = nu. We included this dependency of the arrival and departure

polynomials on the current state of queue to account for somecases such as the wireless

networks with backpressure routing as we will see in Chapter5.

0 1 2 3 4 5

Figure 2.4: MC of the queueXu(t) with mu = 5 andzin = zout = 2.

To put everything in a more systematic form, let∆u = {A(nu)(x)}mu
nu=0 andΓu = {E(nu)(x)}mu

nu=0

be the sets of arrival and departure polynomials for the queue Xu(t), respectively, wheremu

is the buffer size of nodeu. Given∆u andΓu, the queue’s state transition probabilities can

be easily computed. As an example, for 0< j < mu, we have the following:

Pr{Xu(t + 1) = j|Xu(t) = i} =
zin
∑

k=0

a(i)
k e(i)

k+i− j . (2.1)

For notational consistency, we can extendek = 0 for k < 0 or k > zout andak = 0 for k < 0

or k > zin. As a result, the proper approximate MC is formed forXu(t) with steady-state

probability distributionπu(·).
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In summary, given all the information regarding the performance problem, for any node

u, a queue with its incoming and outgoing streams will be identified properly. Then, the

corresponding arrival and departure polynomials will be obtained in a parametrical fashion.

These polynomials describe the state transitions of the queue from which the steady-state

probability distribution can be computed for the MC. Then, we propose the following al-

gorithm, denoted as the “iterative estimation algorithm” (IEA), to compute steady-state

probability distributions for all queues:

Step 1. Initialization (iteration 0): Start with arbitraryvalues forΛ(0)
u andΩ(0)

u and com-

pute∆(0)
u andΓ(0)

u for each queue, where the superscript denotes the iterationnumber.

However, apply prior information regarding the queues for initialization. For exam-

ple, in our initial model, destination node does not block any arriving packet. Also,

the source node has infinitely many packets.

Step 2. Increase the iteration index by one (e.g., iterationi). Given∆(i−1)
u andΓ(i−1)

u for all the

queuesXu(t) ∈ X, compute their steady-state probability distributionsπ
(i−1)
u (·).

Step 3. Givenπ(i−1)
u (·) for all the MCs, compute the new sets of arrival/departure polynomials

∆
(i)
u andΓ(i)

u for each queueXu(t) ∈ X.

Step 4. Go back to Step 2 until all the steady-state probabilities converge to fixed distribu-

tions.

Note that at Step 3, usingπ(i−1)
u (·) for all queues, we compute each arrival rateλi by

applying its definition for each queueXu(t) ∈ X. That is,λi is the probability that a packet

arrives on the streami (without being erased), which may or may not be blocked byu.

Hence,λi is computed by multiplying the probability of two events: 1. The event that

the packet is not erased by the corresponding incoming link,and 2. The event that the

corresponding queue of the node inN+(u) is not in the empty state (obtained at Step 2 of

IEA). Similarly, for each queueXu(t) ∈ X, we compute the departure rateµ j by using its
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definition, which is the probability of the event that the link j does not erase the packet,

and the event that the queue of the corresponding receiving node inN−(u) is not at the full

buffer state (and hence, it does not block the packet fromu). The calculation of∆u andΓu

fromΛu andΩu will be straightforward then. Finally, once steady-state distributions of all

queues are computed, we can obtain analytical expressions for the performance parameters

such as capacity, throughput, and latency distribution. This will be discussed and in more

details in the following Chapters.
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CHAPTER 3

ANALYSIS OF THROUGHPUT AND DELAY IN LINE
NETWORKS

In this chapter, we study the effects of finite buffers on the throughput and delay of line

networks with erasure links.1 As identified in Chapter 2, the calculation of performance

parameters such as throughput and delay is equivalent to determining the stationary distri-

bution of an irreducible Markov chain. We note that the number of states in the Markov

chain grows exponentially in the size of the buffers with the exponent scaling linearly with

the number of hops in a line network. We apply the proposed iterative estimation algorithm

to approximately identify the steady-state distribution of the exact Markov chain by decou-

pling the chain into smaller chains. The approximate solution is then used to analytically

characterize the effect of buffer size on throughput and distribution of packet delay. Fur-

ther, the results of this chapter can be used to classify nodes based on congestion that yields

an intelligent scheme for memory allocation using the proposed framework. An example

of such applications is presented in Chapter 2.1. Finally, simulations will confirm that

our framework yields an accurate prediction of the variation of the throughput and delay

distribution.

As mentioned in Chapter 1.1, in [28], Lunet al. consider a discrete-time model, where

each node can transmit and receive a packet during each epoch, to analyze the capacity of

a simple two-hop lossy network. In [29], upper and lower bounds on the throughput of line

networks are derived, but were unable to provide good approximations for packet delay

and buffer occupancy statistics. While our approach employs a modelof network similar

to that in [28, 29], we extend their results not only to deriveestimates for the throughput

of line networks of any hop-length and intermediate node buffer size, but also to derive

quantitative estimates for packet delay distribution.

1This work is done in collaboration with my former lab-mate, Dr. Badri N. Vellambi [31].
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3.1 Problem Statement and Network Model

We define a line network of hop-lengthh to be a directed graph with vertex setV = {s =

v0, v1, v2, ..., vh−1, d = vh} and edge set−→e = {{vi, vi+1} : i = 0, ..., h−1}. The links are assumed

to be unidirectional, memoryless and lossy with erasure probability εi on link {vi−1, vi} for

i = 1, ..., h. A lossless hop-by-hop acknowledgement setup is in place toindicate the suc-

cessful receipt of a packet2. Moreover, the packet processes on different links are assumed

to be independent. Each nodevi ∈ V has a buffer of sizemi packets with each packet having

a fixed size. Note that the buffer size can vary with the node index. Lastly, the source and

destination nodes are assumed to have sufficient memory to store any amount of data.

The system is analyzed using a discrete-time model, where each node can transmit at

most one packet over a link per epoch. The unicast capacity between a pair of nodes is

defined to be the supremum of all achievable rates of transmission of information pack-

ets (in packets per epoch) between a pair of nodes. The supremum is calculated over all

possible means used for packet generation and buffer update at intermediate nodes. Note

that the source node can generate innovative packets duringeach epoch. For instance, in

the particular case of the line network defined above, we would like to identify the unicast

capacity between the sourcev0 and the destinationvh.

Before we proceed to the modeling, we briefly motivate the assumed discrete-time

model with an example. Consider a continuous-time model with the discrete-time model

for varying times of epoch for a simple continuous-time two-hop line network with a Pois-

son packet generation process at the source with parameterλ1 = 10 pkts/sec. The service

time at the intermediate node is also Poisson with parameterλ2 = 10 pkts/sec, and the links

connecting the source to the intermediate node and the intermediate node to the destination

are both packet-erasure channels with erasure probabilitiesε1 = ε2 = 0.1. Finally, suppose

that the intermediate node has a finite buffer of m = 10 packets. Figure 3.1 presents the

2This assumption is made to simplify modeling. In the absenceof perfect ACK, one can use random
linear coding over a large finite field to achieve the same desired throughput. See SectionIII − D in [31].
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(simulated) capacity for the continuous model and the time-discretized models for various

epoch durations. It is noticed that as the epoch duration is made smaller, the discrete-time

model becomes more accurate in predicting the capacity. This was verified to be the case

for all line networks with Poisson arrivals and service times.
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Figure 3.1: An illustration of the precision of the discrete-time model.

Lastly, we use the following notations.G(p) denotes the geometric distribution with

mean inter-arrival time 1
1−p. σ(·) denotes the indicator function forZ>0. For anyx ∈ R,

x , 1− x. Finally,⊗ denotes the convolution operator.

3.2 Finite-Buffer Analysis

In this section, we will apply our general framework of finite-buffer analysis to the problem

of identifying buffer occupancy distributions, and consequently, performance parameters

such as throughput in line networks.

One of the most important performance parameters of a network is its throughput and

the problem of identifying capacity is directly related to the problem of finding schemes

that arerate-optimal. In our model of line network, a scheme that performs the following

in the same order can be seen to be rate-optimal.

1. If the buffer of a node is not empty at a particular epoch, then it must transmit at least
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one of the packets.

2. A node deletes the packet transmitted at an epoch if it receives an acknowledgement

from the next hop.

3. A node accepts an arriving packet if it has space in its buffer. It then sends an ACK

to the previous node.

In the absence of feedback, rate-optimality can be achievedby employing random linear

combinations based network coding over a large finite field asis described in [28,29].

In order to model the network with lossless feedback, we needto track the number of

packets that each node possesses at every instant of time. Wedo so by using the rules

of buffer update under the optimal scheme. LetX(t) = (X1(t), . . . ,Xh−1(t)) be the vector

whosei th component denotes the number of packets thei th intermediate node possesses at

time t. Also, letE(t) = (E1(t), . . . ,Eh(t)) be a vector of channel conditions at timet, where

Ei(t) = 1 if and only if the link (vi−1, vi) does not erase the packet at thetth epoch.

Hence, we see that{X(t)}t∈Z≥0 forms a Markov chain. It is readily checked that this chain

has
∏h−1

i=1 (mi + 1) states. Further, this chain isirreducible, aperiodic, positive-recurrent,

andergodic [71] and therefore has a unique steady-state probability. By ergodicity, we

can obtain temporal averages by statistical averages. We then see that the computation of

throughput is equivalent to the computation of the likelihood of the event thatXh > 0 and

Eh = 1.

The exponential growth in the size of the chain and the presence of boundaries (due to

finite buffers), exact calculation of the steady-state probabilities(and hence the throughput)

becomes very cumbersome even for networks of reasonable buffer sizes and hop-lengths.

The exact chain for the dynamics of the system is such that a state update at a node has

a strong dependence on the states of both its previous-hop and its next-hop neighbors.

Additionally, the process of packet transmission over intermediate edge can be shown to

be non-memoryless. These facts add to the intractability ofthe exact computation of the
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distribution. However, it is possible to decouple the chaininto several Markov chains with

a single finite-boundary under some simplifying assumptions. To have an approximate

decoupled model, we need to identify the transition probabilities of the decoupled chains,

which is possible only if we know the arrival and departure processes on each edge. The

rate of information on any edge is directly related to the fraction of time the sending node

is non-empty and the fraction of time a successfully delivered packet will get blocked (and

this happens if the receiving node is full at the time of packet arrival). Hence, to have

a model for a node, we need to have the approximate buffer occupancy distributions for

neighboring nodes. This hints naturally at aniterative approach to the problem. In this

section, we develop an iterative estimation method that considers the effect of blocking

with some simplifying assumptions. To develop an iterativetechnique, we assume the

following.

A1. The packets are ejected from nodes in a memoryless fashion. Equivalently, we as-

sume that Pr[(Xi−1(t) > 0)∧ (Ei(t) = 1)|Xi(t) = k] does not vary with the occupancy

k of the i th node. This allows us to track just the information rate and not the exact

statistics.

A2. The blocking event occurs independent of the state of a node, i.e., Pr[(Xi+1(t) =

0)∧ (Ei+1(t) = 1)|(Xi(t) = k)] is the same fork = 1, . . . ,mi. This allows us to track

just the blocking probability and not the joint statistics.

A3. At any epoch, given the occupancy of a particular node, the arrival process is inde-

pendent of the blocking process.

Under these assumptions, for nodevi, the arrival stream of packets is coming only from

the link (vi−1, vi) (i.e., zin = 1) with rateλi. Similarly, there is only one departure stream of

innovative packets from nodevi, leaving through the link (vi , vi+1) (i.e., zout = 1) with rate

µi. Here, the subscripts of arrival and departure rates denotethe index of the node. Thus,

givenzin = zout = 1 and the arrival and departure rates, the set of arrival polynomials∆vi
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and departure polynomialsΓvi for nodevi (i.e., the queueXi) can be simply obtained as

∆vi = a0 + a1x = λi + λi x, Γvi = e0 + e1x = µi + µi x. (3.1)

Then, we can show that the resulting MC3 for nodevi with the buffer sizemi is given by

the chain depicted in Figure 3.2, with the parameters obtained via (2.1) asα = a1e0 = λiµi,

β = a0e1 = λiµi, andα0 = a1 = λi. Then, the steady-state distribution for the chain in

Figure 3.2 can be computed (see Step 2 of the IEA algorithm in Chapter 2.3) using

Pr{Xi = k} =



































1

1+
α0
β

(

∑mi−1
l=0

αl

βl

) k = 0

α0α
k−1

βk

1+
α0
β

(

∑mi−1
l=0

αl

βl

) 0 < k ≤ mi

. (3.2)

α0
α + βα + βα + β β

α0
αααα

ββ
βββ

0 1 2 mi-1 mi

Figure 3.2: The chain for the nodevi obtained by the assumptions A1-A3.

The blocking probability that the nodevi−1 perceives from the nodevi, assuming that

vi sees a blocking probability ofpbi+1 caused byvi+1
4, can then be calculated fori =

1, 2, . . . , h− 1 as follows.

pbi =
(

εi+1 + εi+1pbi+1
)

Pr{Xi = mi} (3.3)

Then, we haveµi = pbi+1εi+1 for i = 1, 2, . . . , h−1. Further, a packet arrives at nodevi only

if it is not erased on the link (vi−1, vi) and buffer of nodevi−1 is non-empty. Hence, for the

arrival rate to nodevi, we haveλi = εi (1− Pr{Xi−1 = 0}).
3Due to the discrete-time nature of the framework, two distinct MCs are associated with each intermediate

node. Here, we considered the transmit first MC in which, at each epoch, the event of transmitting a packet
occurs before the event of receiving a packet.

4Note that the arrival rate at the nodev1 is λ1 = ε1 and that the blocking probability ofvh is zero,i.e.
pbh = 0.
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Given (3.1) and (3.2), the The approximate solution to the buffer occupancy distribu-

tions for each intermediate node follows from our proposed iterative estimation algorithm

introduced in Chapter 2.3. Finally, the estimate of the throughput capacity can be obtained

from the approximate solution as

C = λ∗h,

whereλ∗h is the approximate packet arrival rate (result of the convergence after iteration) at

the destination.

3.3 Packet Delay Distribution

In this section, we use the approximate solution of Section 3.2 to obtain the estimates on

the probability distribution of the delay of a packet. We define the packet delay as the

time taken from the instant when the source starts sending the packet to the instant when

the destination receives it. We assume afirst-come first-servetreatment of packets at the

intermediate node buffers.

In order to compute the distribution of delay that a packet experiences in the network,

one can proceed in a hop-by-hop fashion. Considering the last relay node, the additional

delay of an arriving packet (at timet) at nodevh−1 depends on the occupancy of the node

vh−1 and the erasure channel that follows it to the destination. Suppose at epocht, node

vh−1 hask ≤ mh−1 − 1 packets in addition to the arriving packet. Then, the packet has

to wait for the firstk packets to leave before it can be served. Since each transmission

takes place independently, the distribution of delay is sumof k + 1 independent geometric

distribution with mean inter-arrival time1
1−εh

, which is denoted by⊗k+1G(εh). Suppose that

the distribution of buffer occupancyat time of packet arrivalis given byπh−1(i), then the

distribution of delay added byvh−1 to the packet is

Dh−1 =

mh−1−1
∑

i=0

πh−1(i)⊗i+1G(έh). (3.4)

However, the situation is different for other intermediate delays because of the effect of

blocking. The additional delay incurred while being storedat the nodevj , 0 < j < h− 1, is
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given by

D j =

mj−1
∑

i=0

π j(i)⊗i+1G( ´ε j+1), (3.5)

where we used the following to consider blocking.

ε′i =























εi + θvi (mi)(1− εi) i = 1, 2, . . . , h− 1

εh i = h
, (3.6)

whereθvi (k) is the steady state probability of that nodevi already hask packets when the

packet is transmitted successfully fromvi−1. π j(i) andθvi (k) are related by

π j(i) =























θvj (i)

1−θvj (mj )
i = 1, 2, . . . ,mj − 1

0 i = mj

. (3.7)

By assuming that the delays incurred by each node and its adjoining outgoing link is inde-

pendent of each other, we obtain the total delay consideringall hops to be

D = G(έ1) ⊗ D1 ⊗ · · · ⊗ Dh−1.

Hence, the delay distribution is known if the steady-state distributions of buffer states

(π j(·), j = 1, ..., h−1) as seen by arriving packets is known. However, it is a simple exercise

to derive these distributions from the results of Section 3.2. The method of deriving both

the transmit-first and receive-first distributions are described in details in Chapter 4.

3.4 Simulation Results

We have so far presented some fundamental tools for finite-buffer analysis of line networks.

In this section, we show that they are very helpful to obtain accurate estimates of the perfor-

mance parameters such as throughput, delay distribution and buffer occupancy distribution

for line networks.

To understand the variation of our throughput capacity estimate of Section 3.2, in each

of the figures, the simulation of the actual capacity is presented in addition to our analytical

results. Figure 3.3 presents the variation of the capacity with the hop length for a network

with each intermediate node having a buffer size of five packets. Moreover, the simulations
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are performed when the probability of erasure on every link is set to either 0.25 or 0.5. It is

noticed that the estimate captures the variation of the actual capacity of the network within

about 1.5% of error.
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Figure 3.3: Capacity of a line network withm= 5 vs. the number of hopsh.

In order to study the effect of buffer size, we simulated a line network of eight hops

having the same erasures as in the previous setting. Figure 3.4 presents the variation of our

results and the actual capacity as the buffer size of the intermediate node is varied. It can

be seen that as the buffer size is increased, all curves approach the ideal min-cut capacity

of 1− ε.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

 

 

Buffer sizem

C
ap

ac
ity

(p
ac

ke
ts/e

po
ch

)

Sim. Cap. (ε = 0.25)
Sim. Cap. (ε = 0.50)
Iter. Estm. (ε = 0.50)
Iter. Estm. (ε = 0.50)

Figure 3.4: Capacity of a line network withh = 8 vs. the buffer sizem.

27



Figure 3.5 presents the variation of delay distribution with respect to the buffer size for

an eight-hop line network with the erasure probability on every link set to 0.25. It can be

seen that both the mean and the variance of the distribution increases with the increase in

the buffer size. It is noted that the analytic prediction of the delayis more conservative

than the actual simulation i.e., the analytic estimate of the variance is higher than the actual

simulated one.
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CHAPTER 4

ANALYSIS OF THROUGHPUT AND DELAY IN WIRED ACYCLIC
ERASURE NETWORKS

In this chapter, we apply our proposed iterative method to estimate the performance param-

eters such as throughput and average latency in general wired acyclic networks with erasure

links.1 As a case study, a random packet routing scheme with ideal feedback on the links

is used. We will show that the proposed framework yields a fairly accurate estimate of the

probability distribution of buffer occupancies at the intermediate nodes using which we can

not only identify the congested and starving nodes but also obtain analytical expressions

for throughput and average delay of a packet in the network.

4.1 Network Model and Routing Scheme

We model the network by an acyclic directed graph
−→
G(V,

−→
E), where packets can be trans-

mitted over a link−→e = (u, v) only from the nodeu to v. The system is analyzed using a

discrete-time model, where each node can transmit at most a single packet over a link in

an epoch. The links are assumed to be unidirectional, memoryless and lossy, i.e., packets

transmitted on a link−→e = (u, v) ∈ −→E are lost randomly with a probability ofε−→e = ε(u,v).

Each nodev ∈ V has a buffer size ofmv packets with each packet having a fixed size.

Source and destination pairs are assumed to have sufficient memory to store any data pack-

ets. Also, the source node can generate infinitely many packets during each epoch. Nodes

and noded represent the source and destination nodes respectively. Also, for anyx ∈ [0, 1],

x , 1− x.

we consider a directed random routing scheme for packets together with lossless zero-

delay feedback on the links. To be more precise, the nodes operate using the following

rules, one after another.

1This work is done in collaboration with my former lab-mate, Dr. Badri N. Vellambi [72].
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1. At each epoch, every nodeu selects a random ordering of the outgoing edges and

transmits the packets it houses one by one. If the packet is successfully received and

stored at a neighbor,u deletes the packet from its buffer and transmits the next packet

(if any) on the next edge in the selected order. Else, it triesto transmit the same packet

on the next (in the selected order) outgoing edge. This process is continued until all

packets are transmitted or a transmission is attempted on each link. Therefore, a node

with zo outgoing links transmits at mostzo packets per epoch.

2. After the transmission attempts are made, the node attempts to accept the arriving

packets. If more packets are received than it can store, it selects a random subset

of the arriving packets whose size equals the amount of spaceavailable and stores

the selected packets. Consistent with the previous step, appropriate acknowledgment

messages are then sent.

4.2 Understanding Finite-Buffer Analysis

Here, we study the tools and steps that enable our framework for analyzing finite-buffer

wired acyclic erasure networks. As mentioned in previous chapters, the problem of identi-

fying the throughput and delay is equivalent to the problem of finding the buffer occupancy

distribution of the intermediate nodes as a result of ergodicity of the corresponding Markov

chain. The routing scheme described in Section 4.1, performs no replication and hence, the

buffer state of a node can simply be defined to be the number of physical packets it stores.

As seen before, this concept of occupancy follows a Markovian behavior and hence can be

studies using our proposed framework.

4.2.1 Approximate Markov Chain for an intermediate Node

Consider a nodeu ∈ V in a network
−→
G(V,

−→
E) with zi incoming andzo outgoing edges and

a buffer size ofmu as depicted in Figure 4.1. Let the nodes that can send packetsto u be

denoted byN+(u) , {vi, . . . , vzi }. Similarly, let the nodes to whichu can send packets be
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v1

vzi

w1

wzo

mu

Figure 4.1: A Node in a general wired network.

denoted byN−(u) , {wi , . . . ,wzo}. We assume that the following assumptions hold in the

network regarding the arrival and departure processes.

A1. For eachk = 1, . . . , zi, suppose that the packets arrive on (vk, u) in a memoryless

fashion with a rate ofλk packets/epoch. Also, the processes on different incoming

links are statistically independent.

A2. At any instant, for everyk = 1, . . . , zo, a packet is sent on (u,wk) it is successfully

received and stored atwk with a probabilityωk independent of the past and future

events on the edge.

Note that this is hypothetical since in any realistic model of a network, the probability that

a packet is successfully transmitted and stored at the next hop depends not only on the

channel conditions, but also state of the next-hop node. Since the state of the next-hop

node has dependence on its past, the probability of successful receipt can also be expected

to have a dependence on its past. In fact this mode of node operation can be replaced by

any other scheme that fits into the Markovian set-up of the assumptions above.

At any instant, the number of packets arriving can range from0 up tozi and the number

of packets departing can range from 0 tozo. Hence, at each epoch, the statenu can change

to any other in the set{nu − zo, . . . , nu + zi} ∩ {0, . . . ,mu}. At any epoch, the probabilityak

with whichk packets arrive and the probabilityek with whichk packets depart are given by
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A(x) =
zi

∑

k=0

akxk =

zi
∏

j=1

(λ j + λ j x) (4.1)

E(x) =
zo
∑

k=0

ekxk =

zo
∏

j=1

(ω j + ω j x). (4.2)

The dynamics of the number of packets stored atu at thel th epoch is a Markov chain that

is similar to the one depicted in Figure 4.2.

0 1 2 3 4 5

Figure 4.2: The dynamics of a nodeu with mu = 5 andzi = zo = 2.

For all input parameters, the Markov chain can be shown to be aperiodic, irreducible

and ergodic. Therefore, it possesses a unique steady-statedistribution. LettingΛ =

(λ1, . . . , λzi ) to denote the vector of arrival rates andΩ = (ω1, . . . , ωzo) to denote the vector

of departure rates, the unique steady-state distributionϑ(·,Λ,Ω,mu) for the chain can be

computed using a pair of probability transition matricesTE andTA
2 that correspond to the

transitions between states that are effected by the departure and arrival of packets, respec-

tively. Note thatϑ is the steady-state distribution after the arriving packets are processed.

These transition matrices are defined as follows.

TE =
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
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. (4.3)

2For notational consistency, we can extendek = 0 for k > zo andak = 0 for k > zi . Also, for notational
convenience, we useϑ(·) as a short-handϑ(·,Λ,Ω,mu).
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. (4.4)

Note that, thei, j th entry inTE corresponds to the transition of the occupancy fromi − 1

to j − 1 with the departure ofi − j packets. Similarly, thei, j th entry in TA corresponds

to the transition fromi − 1 to j − 1 with the arrival ofi − j packets. The actual transition

matrix for the Markov chain is then seen to beTETA. The steady-state distributionϑ of

the occupancy just after the arriving packets are accepted and the steady-state distribution

ϑ† of the occupancy just after the packets have been sent but before arriving packets are

accommodated are given by

ϑTETA = ϑ andϑ†TATE = ϑ
†. (4.5)

However, these two steady-state distributions are relatedby ϑ† = ϑTE andϑ = ϑ†TA. To

evaluate the rate of information on the link (u,wi), one must investigate the rule for packet

departure. If at an epoch, more packets are stored than the number of links that allow

successful transmission, then each link conveys a packet ofinformation to its neighbors.

However, if the occupancynu at an epochl is smaller than the numberh of outgoing links

that allow for transmission, each link can be assumed to equally receive nu

h packets on the

average – a consequence of the random selection of ordering for outgoing links. Then, the

time average of the information rate on the edge (u,wi) can be seen as

I ({(u,wi)},Λ,Ω,mu) =
∑

H⊂{0,...,zo}
i∈H

(
∏

k∈H
ωk

)

×

(
∏

k′∈Hc

ωk′
)(

∑

j≥|H|
ϑ( j) +

∑

j<|H|

j
|H|ϑ( j)

)

.

(4.6)
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In a similar argument, we notice that some of the arriving packets get randomly blocked

if all the arriving packets cannot be stored. We can evaluatethe probability with which a

packet arriving on the edge (vi , u) is blocked from

pb({(vi , u)};Λ,Ω,mu) =
∑

H⊂{0,...,zi}
i∈H

(
∏

k∈H\{i}
λk

)

×

(
∏

k′∈Hc

λk′
)(

∑

mu− j<|H|

|H| −mu + j
|H| ϑ†( j)

)

.

(4.7)

4.2.2 Iterative Estimation of the Buffer Occupancy Distributions

In this section, we discuss our iterative estimation technique in details based on the ap-

proximate Markov chain model introduced in Section 4.2.1. Considering that blocking will

introduce dependence of the packet incoming/outgoing process over each edge on its past,

in order to use the results of Section 4.2.1, we have to make certain simplifying assump-

tions on the blocking phenomenon. We model the blocking on every edge−→e = (u, v) of the

network as follows.

• Every packet that arrives atv successfully (without getting erased) is blocked in a

memoryless fashion with probabilityquv. Also, at any epoch, the blocking of packets

on any subset of incoming edges ofv is assumed to be independent of one another.

Under the above assumption, the blocking process and hence the departure process on every

link of the network is modeled as a memoryless process. Sinceeach packet arriving on an

edge−→e = (u, v) is blocked with a probability ofquv, a packet arriving on−→e is accepted

only if both the channel allows the packet and the node accepts it. Therefore, the effective

departure rate on the edge (u, v) is seen to beεuvquv. Assuming that the node operates in

the mode described in Section 4.1, we can use (4.6) and (4.7) to identify both the rate of

information flow and the blocking probabilities on every edge of the network. Thus, the

problem reduces to finding a solution (̺uv, quv)(u,v)∈−→E that satisfies the following system of

non-linear equations for each (u, v) ∈ −→E.
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̺uv=
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




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



εuv u = s

I ({(u,v)},(̺wu)w∈N+(u),(εuu′quu′ )u′∈N−(u),mu)
quv

u , s
,

quv=






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













pb({(u, v)}; (̺wv)w∈N+(v), (εvv′qvv′)v′∈N−(v),mv) v , d

0 v = d
.

Note that in the above equations̺uv represents the fraction of time at which packets will

be delivered tov. However, the actual rate of information flow is equal toρuv = quv̺uv.

Finally, the solution to the system of equations can be foundby identifying the limit of

the sequence defined by the following iterative procedure3.

1. Seti = 1 and for each edge (u, v) ∈ −→E, setquv = 0 and̺(1)
uv =























0 u , s

εuv u = s
.

2. Compute̺ (i+1)
uv , q(i+1)

uv by using̺(i)
uv, q

(i)
uv on the right-hand side of the above system of

nonlinear equations and incrementi by 1.

3. If i < L + 1, perform step 2.

4.3 Estimation of the Throughput and Average Packet Delay

In this section, we exploit the results of the iterative estimation method for buffer occupancy

distributions and obtain analytical expressions for throughput and average delay.

Since the routing scheme is such that information is not replicated at any node, the

estimate of the total information that arrives at the destination is the sum total of the infor-

mation rate arriving on each of its incoming edges. Hence,

Ĉ(s, d,
−→
G) =

∑

v∈N+(d)

̺∗vd(1− q∗vd) =
∑

v∈N+(d)

̺∗vd, (4.8)

where we let (̺∗uv, q
∗
uv) to be either the component-wise limit of the sequence{̺(i)

uv, q
(i)
uv}i∈N

whenL = ∞, or (̺ (L)
uv , q

(L)
uv ) whenL < ∞. Additionally, by the conservation of information

3In practice, the number of iterationsL which suffice to converge to the solution within reasonable accu-
racy depends on the structure of the network. Alternatively, one may use|ϑ(i+1)−ϑ(i)|+ |ϑ†(i+1)−ϑ†(i)| < ǫ for
the convergence criteria.
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flow, the above estimate can be obtained by computing the rateof flow of information

through any cutF using the following.

Ĉ(s, d,
−→
G) =

∑

uv∈F
̺∗uv(1− q∗uv). (4.9)

As defined in Section 4.1, the routing scheme assumes feedback on all the links and we

treat packets in a First-Come First-Serve (FCFS) fashion atthe buffers. Also, the absence

of directed cycles allows us to assign an orderv1, v2, . . . , vn to all the nodes of the network

in a manner that we havei < j for every link (vi , vj) ∈
−→
E.

In order to estimate the average delay that a packet experiences in the network, one can

proceed in a recursive fashion. The average delay that an arriving packet (at timel) at node

u ∈ V experiences depends on the buffer occupancy of the nodeu and its outgoing links.

For example, suppose at epochl (packet arrival time), nodeu has alreadyk packets where

k ≤ mu − 1. Then, the arriving packet has to wait for the firstk packets to leave nodeu

before it can be transmitted. We defineDu(k) as the average time it takes from the instant

that nodeu receives a packet given that it has already storedk packets, until the time that

the destination node receives that packet. We compute the average delay functionDu(.) for

all the intermediate nodesu ∈ V using the following proposition.

Proposition 4.1 Let ruv = εuvquv be the average packet transfer rate on link(u, v) ∈ −→E and

r−u be the sum of the rates on all outgoing edges (i.e., r−u =
∑

v∈N−(u) ruv). Also, letπv( j)

( j = 0, 1, . . . ,mv − 1) be the steady state probability of the buffer of node v∈ V storing

already j packets right before a new packet arrives and is stored in the buffer. For every

intermediate node u∈ V, given the average delay functions of all its next-hop neighbors

(Dv( j) for all v ∈ N−(u) and j= 0, 1, . . . ,mv − 1),Du(.) can be obtained by

Du(k) =
k+ 1

r−u
+

∑

w∈N−(u)

ruw

r−u

(

mw−1
∑

j=0

πw( j)Dw( j)
)

(4.10)

for k = 0, 1, . . . ,mu − 1.

Proof. Equation (4.10) can be interpreted as follows:
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1. The first term represents the average time it takes for a total of k+1 packets (counting

our selected packet) to leave nodeu successfully.

2. The second term relates to the average delay due to the restof the network. The

probability of conveying a packet from nodeu to nodev can be estimated byruv

r−u
. An

arriving packet at nodev finds its buffer already occupied byj packets with probabil-

ity πv( j). Thus, the packet will experience an average delay ofDv( j) from this node

to the destination. Hence, the average packet delay from node v to the destination is

equal to
∑mw−1

j=0 πw( j)Dw( j).

It is easy to see thatπv( j) can be calculated using

πv( j) =























ϑ
†
v( j)

1−ϑ†v(mv)
j = 1, 2, . . . ,mv − 1

0 j = mv

(4.11)

To obtain the average packet delay from the source to the destination, the average delay

functionDu(.) is computed for all the nodes in the reverse order4 (i.e.,{vn, . . . , v2, v1}). Then,

the total average packet delay (Ds(0)) is computed by applying Proposition 4.1 to the source

node.

4.4 Simulation Results

In this section, we present the results of actual network simulations in comparison with our

analysis and will show that our framework gives accurate estimates of buffer occupancy

distributions as well as throughput and average delay.

We consider the network shown in Figure 4.3 to compare the results of the simulation

and inferences. In this network, all the edges haveε = 0.5 (erasure probability) except the

edges{(1, 2), (1, 3), (15, 17), (16, 17)} for whichε = 0.05. All the intermediate nodes are as-

sumed to have the same buffer size. In order to measure the exact performance parameters

of this network, millions of packets are sent from the source(Node 1) to the destination

4Note that we haveDd(k) = 0 for every k whered denotes the destination node.
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Figure 4.3: A general wired acyclic directed network chosenfor simulation).

(Node 17). Figure 4.4 presents a comparison between the actual buffer occupancy dis-
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Figure 4.4: buffer occupancy distributions for nodes 3, 4, 11 and 15.

tributions and our iterative estimates for four of the nodesin the network of Figure 4.3.

Also, Figure 4.5 presents the variations of the actual throughput and average packet delay

and our analytical results versus the buffer size. Note that, the throughput is presented in

packets/epochand average packet delay is presented inepochs. As it can be observed, our

estimation is very close to the actual simulation results.
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CHAPTER 5

PERFORMANCE OF WIRELESS ERASURE NETWORKS WITH
BACKPRESSURE ROUTING

In this chapter, we focus on the problem of performance analysis in wireless erasure net-

works and investigate the trade-offs between throughput, average packet delay and buffer

size when a modified backpressure routing policy is used. Ourapproach employs a discrete-

time model to approximate the buffer occupancy distributions at the intermediate nodes. We

then obtain analytical expressions for throughput and average packet delay in terms of the

estimated buffer occupancy distributions.

5.1 Network Model and Routing Scheme

We adapt the wireless model used in [49, 63]: For any nodev ∈ V with multiple outgoing

links, by the broadcast property of the wireless medium, thesame packet is sent over all

the outgoing links at the same time epocht (t is an integer). Further, multiple arriving

packets for a nodeu ∈ V from different incoming links do not interfere and can be stored

in a single epoch1 if there is enough space available in the buffer of nodeu. In case there

is not enough space available in the buffer, some of the arriving packets will be randomly

blockedby nodeu. Further, at each epoch, we assume the transmission of a single packet

by every node.

Here, our goal is to analyze the performance of Diversity Backpressure Routing (DI-

VBAR) [63]. DIVBAR is generally desirable because of its flexible approach which can dy-

namically adjust routing decisions in response to the random outcome of the transmissions.

In this scheme, every nodeu ∈ V transmits a packet in each epoch (blind packet trans-

missions). After receiving ACK/NACK feedbacks from the various receiversR ⊂ N−(u),

nodeu chooses the receiver nodev ∈ R with the largest positive differential backlog (i.e.,

1Interferences are avoided in such environments using some form of time, frequency or code division
multiple access schemes.
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Qu(t) − Qv(t)) to take the responsibility of forwarding the packet on thepath. Here, the

backlog parameterQu(t) is defined as the current number of packets stored in any nodeu at

the beginning of the time epocht. Next, nodeu and all the other receivers delete the packet

from their buffers. The algorithm, also breaks ties arbitrarily and retains the packet inu

if no receiver has a positive differential backlog. Note that the backlog parameter of each

receiver can simply be included in the ACK/NACK signal to be sent back to nodeu. Note

that, the routing scheme is asymptotically throughput optimal meaning that it achieves the

wireless min-cut capacity [49] when the buffer sizes are sufficiently large. However, here

we only aim to study the interplay of throughput and average latency achieved by the back-

pressure routing in finite-buffer regime.

5.2 Markov Chain Modeling

Thoroughly investigated in [29] for the exact analysis of a finite-buffer line network, as a

result of ergodicity of the corresponding MCs, the problem of identifying the throughput

is equivalent to the problem of finding the buffer occupancy distribution of the intermedi-

ate nodes. Further, due to the exponential growth in the sizeof the exact Markov chain,

exact calculation of the steady-state probability distributions of the buffer occupancies and

the network performance is computationally intractable even for networks of reasonable

size2. Hence, we propose an approximation method that for every node u ∈ V updates

its queue (Qu(t)) considering: 1. The probability of packet arrival atu from the previous-

hop neighborsN+(u), and 2. The effect of blocking imposed by the next-hop neighbors

N−(u). Hence, we will only consider the dependency of the state transition probabilities of

the queue for each nodeu to the state of the queues corresponding to nodes inN+(u) and

N−(u). Moreover, the main idea of the approximation framework isto divide the multi-

dimensional MC with multiple reflections into multiple simple MCs (i.e., Only Qu(t) for

every nodeu ∈ V) whose steady-state probability distributions can be calculated separately

2For a network ofN intermediate nodes, the exact MC has (m+ 1)N states
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in terms of the steady state probability distributions of the other related MCs. Note that

although each MC process is assumed independent of the otherMC processes, the interde-

pendency of the states of their queues are captured by the approximation method via their

state transition probabilities.

Consider a nodeu ∈ V in a network
−→
G(V,

−→
E) with di incoming anddo outgoing edges

and a buffer size ofm. Let N+(u) , {v1, . . . , vdi } andN−(u) , {w1, . . . ,wdo}. By means

of our approximation method, the state transition probabilities for MC of any queueQu(t)

depend on the steady-state distributions of the queues of nodes inN+(u) andN−(u). Since

there is no prior information about the probability distribution of these queues, the proposed

estimation algorithm must be performed iteratively. To determine the state transition prob-

abilities for each MC, we need to know the dynamics of arrivaland departure of packets

to its corresponding queue. As a result of our approximationassumptions, for every queue

Qu(t), we define multiple incomming and outgoing streams of packets which are assumed

to be statistically independent. In our model, since we allow the reception of multiple

packets in an epoch, the number of arriving streams is the same as the number of incoming

links to a node. Also note that, the occupancy of nodeu (Qu(t)) directly affects the arrival

rates, since the probability that nodeu is selected as the receiver with the largest positive

differential backlog is higher whenQu(t) is smaller. Further, as a result of the broadcast

property, only one packet can be conveyed to the set of receivers which implies that there

is only one departing stream. In a similar argument,Qu(t) has a considerable effect on

the departure rate since the expected number of receivers with positive differential backlog

increases withQu(t).

As a result, givenQu(t) = nu for an arbitrary nodeu, we define the set of arrival rates

asΛu = {λ1(nu), . . . , λdin(nu)} and the departure rate asΩu = {µ(nu)}. In other words,λi(nu)

is the probability of an arrival of a packet at nodeu coming from nodevi (i.e., shifting the

responsibility of forwarding a packet fromvi to u) given there are alreadynu packets stored

at u. Similarly, µ(nu) is the probability of a departure of a packet from nodeu to one of
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its receivers inN−(u). Further, for the systematic representation, we define thearrival and

departure polynomials by

A(nu)(x) =
din
∑

k=0

a(nu)
k xk =

din
∏

j=1

(λ j(nu) + λ j(nu)x),

E(nu)(x) = e(nu)
0 + e(nu)

0 x = µ(nu) + µ(nu)x.

Let ∆u = {A(nu)(x)}mnu=0 andΓu = {E(nu)(x)}mnu=0 be the sets of all arrival and departure

polynomials for the queueQu(t), respectively. Given∆u andΓu, the state transition prob-

abilities of the MC forQu(t) can be easily computed. As an example, for 0< j < m, we

have the following3:

Pr{Qu(t + 1) = j|Qu(t) = i} =
din
∑

k=0

a(i)
k e(i)

k+i− j .

As a result, the proper approximate MC is formed forQu(t) with steady-state probability

distribution denoted byπu(·).

In summary, for every nodeu in network, a queue with its incoming and outgoing

streams will be identified properly. Then, the corresponding arrival and departure polyno-

mials will be obtained parametrically. These polynomials describe the state transitions of

the queue from which the steady-state probability distribution can be computed for the MC.

Then, we apply IEA to compute steady-state probability distributions for all the nodes as

follows:

Step 1. Initialization (iteration 0): Start with arbitraryrates for the arrival/departure in every

nodeu (i.e.,Λ(0)
u andΩ(0)

u ) and compute∆(0)
u andΓ(0)

u for each queue, where the super-

script denotes the iteration number. However, apply prior information regarding the

queues for initialization. For example, in our model, destination node does not block

any arriving packet. Also, the source node has infinitely many packets.

Step 2. Increase the iteration index by one (e.g., iterationi). Given∆(i−1)
u andΓ(i−1)

u for every

nodeu, compute their steady-state probability distributionsπ
(i−1)
u (·).

3For notational consistency, we can extendek = 0 for k < 0 ork > 1 andak = 0 for k < 0 ork > din.
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Step 3. Givenπ(i−1)
u (·) for all the MCs, compute the new sets of arrival/departure polynomials

∆
(i)
u andΓ(i)

u for every nodeu.

Step 4. Go back to Step 2 until all the steady-state probabilities converge to fixed distribu-

tions4.

Note that at Step 3, given the steady state probability distribution for every node, we

need to find the arrival/departure polynomials for all the queues. First, we notice that some

of the arriving packets on the link (vi , u) get blocked randomly when all the arriving packets

cannot be stored due to nodeu’s state full buffer at timet. Given∆u andQu(t) = nu, the

blocking probability on the link (vi , u) can be evaluated using

pb{(vi , u)|nu}=
∑

H⊂{0,...,di }\{i}

(
∏

k∈H\{i}
λk(nu)

)(
∏

k′∈Hc

λk′(nu)
)

max

{

nu + |H| + 1−m
|H| + 1

, 0

}

.

Similarly, a packet is “conveyed” over the link (u,wi) only when it is not erased on the

link and nodewi has the largest positive differential backlog with respect to nodeu in

comparison to all the other successful recipients of the packet at an epoch. Then, givenΓu

andQwi (t) = nwi , the rate with which the packets are conveyed over the link (u,wi) can be

obtained as

I {(u,wi)|nwi } =
m

∑

l=nwi+1

πu(l)
∑

H⊂{0,...,do}

















∏

k∈H
ε(u,wk)

































∏

k′∈Hc

ε(u,wk′ )































































∑

Q⊂H

∏

q∈Q\{i}
πwq(nwi )

∏

q′∈Qc

(

m
∑

j=nwi+1

πw′q( j)
)

|Q|















































.

Finally, givenQu(t) = nu the arrival/departure rates can be obtained by

µ(nu) = 1−
∑

Q⊂{1,...,dout}

(
∏

k∈Q
ε(u,wk)

)(
∏

k′∈Qc

ε(u,wk)

)(
∏

q∈Q

(

nu−1
∑

i=0

πwq(i)pb{(u,wq)|i} +
m

∑

j=nu

πwq( j)
))

,

λk(nu) = I {(vk, u)|nu}.

4Convergence of the steady-state probabilities is measuredby checking the distance between their esti-
mates for two consecutive iterations and stopping the iterations when the distance becomes less than a certain
threshold.
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5.3 Estimation of the Throughput and Average Packet Delay

In this section, we exploit the resulting buffer occupancy distributions and obtain analytical

expressions for throughput and average delay. Since the information rate (The rate of con-

veying packets) on different links are independent, the throughput estimateĈ(s, d,
−→
G) from

the source nodes to the destination noded is the sum of the information rates arriving to

the destination node. Hence,

Ĉ(s, d,
−→
G) =

∑

v∈N+(d)

I {(v, d)}.

In order to estimate the average delay, one can proceed in a recursive fashion. The

average delay that an arriving packet at nodeu ∈ V experiences depends on the buffer

occupancy of the nodeu as well as the dynamics of its packet departures. For example,

suppose at epocht (packet arrival time), nodeu has alreadynu packets wherenu ≤ m− 1.

Then, the arriving packet has to wait for the firstnu packets to leave nodeu before it can be

served. We defineDu(nu) as the average time it takes from the instant that nodeu stores an

arriving packet at timet whenQu(t) = nu until the time that the destination node receives

that packet. Further, LetLu(x, y) be the average delay fory packets to depart from nodeu

given it has alreadyx packets in its buffer, x ≥ y. In order to obtainDu(nu), first we need to

computeLu(x, y) by solving the corresponding transient MC using the following lemma.

Lemma 5.1 Let T(0) and T(1) be (m+ 1) × (m+ 1) matrices, where T(1)
i, j is the transition

probability from state{i − 1} to state{ j − 1} for Qu(t) when a single departure occurs, and

T(0)
i, j is the transition probability from state{i −1} to state{ j −1} when no departure occurs.

Then, givenLu(x, 0) = 0, for x = 1, . . . ,m and y≤ x, we have

Lu(x, y) =
1

1− T(0)
x+1,x+1

(

1+
m−x
∑

i=1

T(0)
x+1,x+1+iLu(x+ i, y) +

m−x
∑

j=−1

T(1)
x+1,x+1+ jLu(x+ j, y− 1)

)

.

Next, using Lemma 5.1, we computeDu(·) for all the intermediate nodesu ∈ V by the

following proposition.
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Proposition 5.1 Letφv(nv) for nv = 0, 1, . . . ,m− 1, be the steady state probability of node

v ∈ V storing nv packets right before it stores a new arriving packet. In other words,

φv(nv) is the conditional probability of the event Qv(t) = nv given that Qv(t) < m. Also, let

I {(u, v)} =
m−1
∑

nv=0

I {(u, v)|nv}πv(nv). GivenDv(·) for all nodes v∈ N−(u), for every node u∈ V,

we can obtainDu(nu) for nu = 0, 1, . . . ,m− 1 using:

Du(nu) = Lu(nu + 1, nu + 1)+
∑

w∈N−(u)

m−1
∑

nw=0

I {(u,w)|nw}
∑

v∈N−(u) I {(u, v)}φw(nw)Dw(nw) (5.1)

Proof. Equation (5.1) can be interpreted as follows:

1. The first term represents the average time it takes for a total of k+1 packets (counting

the selected subject packet) to leave nodeu successfully (and to be stored at one of

the next-hop nodes) which is obtained using Lemma 5.1.

2. The second term relates to the average delay due to the travel of the packet through

the rest of the network. The probability of conveying a packet from nodeu to node

w can be estimated by I {(u,w)|nw}
∑

v∈N− (u) I {(u,v)} . An arriving packet at nodew finds its buffer

already occupied bynw packets with probabilityφw(nw). Thus, the packet will ex-

perience an average delay ofDw(nw), computed from this node to the destination.

Hence, the average packet delay computed from nodev to the destination is equal to
∑m−1

nw=0
I {(u,w)|nw}

∑

v∈N−(u) I {(u,v)}φw(nw)Dw(nw).

Finally, the total average packet delay,Ds(0), can be computed by applying Proposi-

tion 5.1 to the source node.

5.4 Simulation Results

In this section, we present the results of actual network simulations in comparison with our

analysis and show that our framework gives accurate estimates of throughput and average

delay.
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Figure 5.1: A sample network.

Consider the sample network in Figure 5.1. In this network, all the erasure probabili-

ties are chosen to be 0.5 except for the link (s, 1) which is chosen to be 0.05. Figure 5.2

presents the variation of our analytical results and the actual simulations for both through-

put and average latency, as the buffer sizem is varied. Note that, the throughput is presented

in packets/epochand average packet delay is presented inepochs. It is noticed that the it-

erative estimate accurately captures the variation of the performance parameters obtained

by simulations. It can be seen that as the buffer size is increased, all curves approach the

wireless min-cut capacity [49] of 1− ε(1,2)ε(1,3) = 0.75. An important observation in this

example is that increasing the buffer size beyondm = 5 does not improve the through-

put significantly. However, it dramatically increases the average latency. This implies that

even if a large buffer is available at nodes, it is not a good idea to allocate morethan about

5 packets to the same flow. Finally, It can be observed that form = 1 the estimations are

not as accurate as the ones for other buffer sizes. The reason could be the separation of

dependent MCs as a part of our approximation assumptions mentioned in Section 5.2.
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Figure 5.2: Throughput and Average packet delay for the sample network.
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CHAPTER 6

BUFFER SIZE OPTIMIZATION FOR DELAY-SENSITIVE
APPLICATIONS IN WIRELESS NETWORKS

In this chapter, we study the effect of finite buffer size on the performance parameters of

multihomed wireless networks and address the problem of buffer size optimization to meet

the requirements of delay-sensitive applications. We use the generalized approximation

framework developed in Chapter 2 for analysis which provides an iterative estimation for

the distribution of buffer occupancies. We then obtain analytic expressions for thethrough-

put and delay distribution of packets in the network. Finally, using the analytic results, we

propose an optimization algorithm to maximize the throughput while bounding the packet

delay to an application-dependent threshold for an arbitrarily large portion of the packets.

6.1 Introduction and Motivation

Wireless local area networking (WLAN) is a commonly used technology today. Although

there are many options for wide area network (WAN) connections such as ad-hoc network-

ing, many organizations and schools today, provide WLAN access points (AP) for their

employees and students to be able to connect to a wired backbone network such as the

Internet. While the current Internet traffic mostly consists of Web and email, real time ap-

plications such as IPTV and VoIP are becoming increasingly important. Such applications

are fundamentally different from data traffic in their sensitivity to delay and loss which has

led to a great interest in addressing quality of service (QoS) for delay-sensitive traffic.

There are often multiple APs connected to the Internet backbone through a gateway [73].

The gateway can be a WLAN controller for WiFi networks or a Serving GPRS Support

Node (SGSN) in cellular network. The gateway divides the traffic among different APs

to reduce the effects of the wireless channel erasures. This is called multihoming which

is intended to increase the reliability of network but it does not necessarily improve their
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performance. Given the wireless channel erasures, the packets may have to be stored at the

APs for transmission at a later time. If an unlimited buffer is available, the APs do not have

to reject or drop any arriving packets. However, there are several disadvantages for large

buffers [2]: 1. Over-buffering increases end-to-end delay, conflicting with real-time appli-

cations such as online gaming, IPTV, and VoIP. Additionally, large buffers can increase the

variance of the latency, making congestion control algorithms unstable. 2. Large buffers

lead to high power consumption, and more board space. Therefore, although increasing the

buffer sizes tends to increase the link utilization (and hence throughput), it also tends to in-

crease the queuing delay. Hence, a fundamental question is:what is the buffer requirement

given certain constraints on the throughput and delay?

Despite extensive studies of buffer sizing for wired networks and its optimization [74–

76], there have been very limited works on the impact of buffer sizes on wireless network

performance [77–79]. In [77], a loose upper bound for achievable capacity is used to

size the buffers in a wireless mesh network. Further, a dynamic buffer sizing protocol

is presented in [79] to lower the delay in 802.11-based WLANswhich is not necessarily

optimal. Compared to sizing buffers in wired routers, a number of fundamental new issues

arise when considering wireless networks. For example, in addition to link utilization

(which is a determining factor in buffer sizing of wired networks), the packet loss rate

due to wireless channels is also an important metric to consider. Wireless networks are

also throughput constrained, and hence buffer sizing can have a profound impact on the

application performance. Moreover, new-age applicationssuch as online gaming, IPTV,

and VoIP place strict requirements on latency, and hence maximizing the throughput alone

is not a sufficient objective. We depart from the past work not only because of our focus

on wireless networks but also because of achieving different objectives. The main goals

of previous works are to size buffers either to maximize the throughput or to minimize the

blocking probability. To the best of our knowledge, no work has considered an analytical

sizing of the buffers for maximizing throughput while meeting the delay demands of the

50



application.

There are two important factors to take into account: 1. A fixed buffer size is problem-

atic in wireless networks and may not maximize the link utilization (and hence the through-

put), and 2. Some applications would require the enforcing of strict delay requirements.

Our work is motivated by such concerns. In other words, we would like to choose buffer

sizes adaptively while maximizing the goodput (defined as the throughput that meets the

latency requirements on the packets). Several fundamentalquestions consequently arise:

What is the throughput and capacity of finite-buffer wireless networks? What is the delay

distribution in such networks? What is the interplay of the latency, throughput and buffer

size? Some of these questions have been addressed in the previous chapters. However,

computing the delay distribution of packets in a general finite-buffer network has not been

addressed. Thus, our objective is to develop a general framework for adaptive buffer siz-

ing. This requires the study of delay distribution and throughput of wireless networks as a

function of buffer sizes. We believe that the developed framework can help tounderstand,

design, and analyze practical delay constrained networks,and to design more suitable pro-

tocols for real-time applications. Our contributions in this chapter can be summarized as

follows:

• Derivation of analytical expressions for the important performance parameters such

as network throughput and delay distribution of packets in terms of the buffer occu-

pancy distributions for the case of multihomed wireless LANtopology.

• Applying the analytical estimation results to develop optimization procedures for

buffer sizing in wireless networks.

6.2 Problem Statement and Network Model

We can model a multihomed finite-buffer wireless LAN by a directed graph with a sources

which represents the gateway,n intermediate nodesv1, . . . , vn with buffer sizesm1, . . . ,mn

representing the access points and a destination noded representing the user. Further, the
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destination node has no buffer constraints. The set of lossy links are{(s, vi) : i = 1, . . . , n}

and{(vi, d) : i = 1, . . . , n}. Also, packets are admitted from the wired backbone network

into the gateway in a memoryless fashion with mean arrival rateRin. The packet admission

rateRin will be used later to control the trade-off between throughput and delay. Finally,

at each epoch,s transmits at most one packet to each of the APs and each AP transmits

at most one packet to the destination. In our model, multiplearriving packets to a node

from different incoming links do not interfere and can be stored in a single epoch. The

throughput of a scheme is defined to be the rate of transmission of information packets (in

packets per epoch) between the source and destination nodesfor a fixed queue management

and communication scheme. Further, we define delay or latency of a packet as the time

taken from the instant when the source stores the packet to the instant when the destination

node receives it. Finally, we define goodput the same as throughput but considering only

those packets that met the latency requirements.

We employ the following notations:G(p) denotes the geometric distribution with mean

inter-arrival time 1
1−p. Further, LetN−(u) denote the set of all the neighboring nodes thatu

can send packets via outgoing links. Likewise, the setN+(u) is defined using the incoming

links of u. For anyx ∈ [0, 1], x , 1− x. The convolution operator is denoted by⊗.

For a network with a set of buffer sizesM, set of erasure probabilitiesE, and packet

admission rateRin, the throughput between the sourcesand the destinationd, is denoted by

Ts,d(E,M,Rin). Further, the steady-state probability distribution of packet delay, is denoted

by Pr{D = k} for k = 1, 2, . . ., whereD is the random variable representing the delay of a

packet. Delay constraints may take various forms dependingon the application. Here, as

the delay constraint, we assume that at least a certain fractionδ of packets (where 0< δ < 1)

is required to reach the destination with a delay smaller than an application-dependent

threshold value∆. Finally, the buffer sizing problem is formulated as

maximize
M,Rin

Ts,d(E,M,Rin)

subject to Pr{D ≤ ∆} = f (M,Rin) ≥ δ,
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where Pr{D ≤ ∆} is a function of node buffer sizes and the arrival rate at the source (i.e.,

the wireless gateway).

6.3 Finding the Performance parameters

In this section, we use the results of Chapter 2 and assume that the approximate buffer

occupancy distributions are obtained from the iterative estimation algorithm. Next, using

the buffer occupancy estimates, we derive analytic expressions fornetwork throughput and

packet delay distribution in a multihomed finite-buffer wireless LAN scenario.

In order to apply the framework of Chapter 2 to this setting, we only need to identify

the set of queues and their incoming and outgoing streams. Asmentioned before, since the

routing scheme is single-copy and independent of buffer occupancies, the buffer states are

simply defined as the number of packets each node possesses and are denoted byXs and

Xvi for i = 1, . . . , n. The arrival/departure streams for each queue is also clearly via their in-

coming/outgoing links besides the gateway which has an exogenous bernoulli packet arrival

stream. Therefore, using the proposed framework, we assumethe steady-state probability

distribution of buffer occupancies can be easily obtained and are denoted byπs(·) andpivi (·)

for i = 1, . . . , n.

Given the occupancy distributions, the network throughputcan be easily derived from

Ts,d =

n
∑

i=1

εvi ,d(1− πvi (0)). (6.1)

This is because the probability of receiving a packet from any of the APs is equal to the

probability of the event that it has at least one packet in itsbuffer and the channel does not

erase that packet.

In order to compute the packet delay distribution, we proceed in a hop-by-hop fashion.

The additional delay of an arriving packet at nodevi depends on the occupancy of the node

and the erasure channel that follows it to the destination. Suppose nodevh−1 hask ≤ mi − 1

packets in addition to the arriving packet. Then, the packethas to wait for the firstk packets

to leave before it can be serviced. Since each transmission takes place independently, the
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distribution of delay is sum ofk + 1 independent geometric distribution with mean inter-

arrival time 1
1−εvi ,d

, which is denoted by⊗k+1G(εvi ,d). Given the occupancy distributions

πvi (·) for i = 1, . . . , n, the distribution of delay added by the access points is

DAP =

n
∑

i=1

Pi

mi−1
∑

k=0

πvi (k)⊗k+1G(εvi ,d), (6.2)

where,Pi is the probability of the event that a packet is routed through nodevi and can be

obtained from

Pi =
εs,viπvi (mi)

∑n
j=1 εs,vjπvj (mj)

. (6.3)

Further, in a similar fashion, the distribution of delay added by the source is

DS =

ms−1
∑

k=0

πs(k){⊗n
i=1G( ´εs,vi )}k+1, (6.4)

where, ´εs,vi represents the effective erasure of the link (s, vi) by taking care of the blocking

probability of nodevi.

By assuming that the delays incurred by each node and its adjoining outgoing links are

independent of each other, we obtain the total delay distribution to be

D = DS ⊗ DAP.

6.4 Buffer Sizing for Wireless Networks

Thus far, we established a framework to estimate the networkperformance parameters

such as throughput and delay distribution in a finite-buffer regime for an arbitrary given

set of buffer sizes. In this section, we use the obtained estimates for delay distribution and

throughput (as functions of the buffer sizes) in an optimization problem to answer the buffer

sizing questions.

6.4.1 Optimization Algorithm

As formulated in Section 6.2, Our goal is to find the optimal buffer sizing for the entities in

wireless networks such that the goodput is maximized (for a fixed delay constraint).
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We approach this optimization problem by dividing it into two stages. First, for any

given set of buffer sizesM, the maximum admission rateRin can be easily found to meet

the delay constraint. This is because: (1)f (M,Rin) is a non-decreasing function ofRin,

and (2) the maximum throughput that satisfies the delay constraint is resulting from the

maximum arrival rateRin that meets the delay constraint. Next, a greedy search algorithm

is used to find the optimal choices of buffer sizesM. This algorithm leads to the max-

imum throughput while meeting the delay constraint if a global maximum exists for the

throughput. We claim the existence of such a condition since: (1) the throughput is a non-

decreasing concave function of the buffer sizes [80], and (2) the amount of back-off from

the maximum throughput to meet the delay constraint is a non-decreasing function of buffer

sizesM. Note that the amount of back-off from the maximum throughput is closely related

to the optimal choice ofRin which approaches a constant value for sufficiently large buffer

sizes.

6.4.2 Simulation Results

We demonstrate the optimization process by a toy example. Consider a network where

packets are admitted through nodes (wireless gateway) that is connected to an access

point with buffer sizem through a wired link with a packet erasure rate of 0.05. Further

a mobile noded receives the packets through a wireless link with an erasurerate of 0.9

from the access point. Assume the objective is to maximize the throughput while more

than 95% of the packets reach to the destination with a delay smaller than 150 epochs.

Using our analytical framework, we start from a random buffer sizem = m∗ and find the

corresponding maximum admission (arrival) rateRin that meets the delay constraint. This

admission rate is then used to analytically compute the throughput form= m∗, which is the

maximum possible throughput to meet the delay constraint given the buffer sizem = m∗.

Next, we employ a greedy search algorithm by increasing or decreasingm and similarly

finding the corresponding maximum delay-constrained throughput until an optimal value

for m is determined. The variations of the goodput with buffer size is depicted in Figure 6.1

55



for both simulation and the analytical estimation of the parameters. It is also observed that

the optimal goodput of 0.088 packets per epoch is achieved atm = 9 which potentially

improves the network goodput by 15%. Note that the maximum achievable throughput

(with no delay constraint) is equal to 0.1 which would be obtained by using infinite buffer

sizes.
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Figure 6.1: Maximized delay-constrained network goodput for varying buffer sizes.

Next, another example is considered in which two APs are connected to the gateway

through wired links with a packet erasure rate of 0.05. A mobile noded can also receive

packets through wireless links with erasure rates of 0.6 and 0.8 from AP 1 and AP 2,

respectively. In this case, the objective is to maximize thethroughput while more than 90%

of the packets reach to the destination with a delay smaller than 50 epochs. We repeat

the same optimization procedure described above and obtainthe optimal goodput of 0.584

packets per epoch at non-trivial buffer sizes (m1,m2) = (13, 5) which potentially improves

the network goodput by 55%. The variations of the goodput with buffer size is depicted in

Figure 6.2 to demonstrate the fact that a global optimum exists for this example as well.
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CHAPTER 7

DELAY ANALYSIS OF BURSTY TRAFFIC IN
DISRUPTION-TOLERANT NETWORKS

In this chapter, we study sparse mobile ad-hoc networks (i.e., disruption-tolerant networks

or DTNs). Our goal is to analytically find the packet latency in such networks for a two-hop

unicast scenario with bursty packet arrivals at the source.Similar to the previous chapters,

we assume that the intermediate nodes have finite buffers. We exploit an embedded Markov

chain approach combined with our proposed iterative estimation technique to study both

network delay and queuing delay.

7.1 Introduction and Motivation

Disruption-tolerant networks (DTNs), also referred to as delay-tolerant networks, are a

special type of mobile ad-hoc networks. They are often used when there is no backbone

infrastructure and hence have applications in military networks, vehicular networks, and

providing basic network services to rural areas.

Conventional mobile ad-hoc Networks (MANETs) rely on the existence of end-to-end

paths between source and destination regardless of node mobility. However, simultaneous

end-to-end connectivity is very rare in DTNs because of the sparseness of nodes in the

network. Hence, communication protocols designed for MANETs are unable to perform

efficiently for DTNs. Most of the efficient DTN-based schemes [81, 82], use the “store,

carry, and forward” paradigm for message delivery, whereina source node opportunisti-

cally transmits packets upon contacting any other node, andrelies on the mobility of these

“relay” nodes to deliver the message to a certain destination.

Analytical performance modeling for delay-tolerant networks has recently drawn a con-

siderable amount of attention [83–88]. In many cases, the performance of DTNs have
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been modeled using Poisson process approximations [85–87]. Investigated in [89], a ma-

jor drawback of this approximation is that assuming Poissonprocess for contact times does

not incorporate the spatial-temporal dependence between contact times of any pair of nodes

which is not a realistic assumption in general. Inspired by such shortcomings of the pre-

vious works, in [89], Subramanianet al. proposed a generalized framework for through-

put analysis of finite-buffer delay-tolerant networks. The framework uses the embedded

Markov chain approach using which the throughput of such networks can be identified by

computing certain well-defined characteristic parametersfrom the mobility model. Fur-

ther, the problem of throughput analysis in DTNs has been considered for many different

communication scenarios and mobility models in [89–91], and hence, is well-motivated.

Although such a framework is useful and valuable for throughput analysis, it is insufficient

for modeling the latency performance of DTNs under different types of source-traffic, for

the following reasons:

• In order to compute the throughput in the previous model, thesource is assumed to

be constantly backlogged,i.e., it has infinite number of information packets. Hence,

the relay nodes tend to be as congested as possible. Thus, having such an assumption

for the source will lead to computing the maximum average “network delay” only.

• The fact that the source is constantly backlogged will naturally eliminate the ne-

cessity of defining queueing delay at the source which is an important performance

parameter itself.

• The problem of performance analysis of multiple unicast sessions [90] can be use-

ful only when different sources could have different traffic characteristics. In other

words, resource sharing protocols will not have a great impact on the performance

of the network if all the flows are backlogged at the source andhave the same share

from the network resources such as buffer space and bandwidth.

Here, as an initial step towards addressing such shortcomings of the previous work [89],

59



we consider the problem of delay analysis for a single unicast session, where a single source

node attempts to transmit packets to a single destination using mobile relays. To do so, as

our main contribution, a dynamic queue is assumed for the source node with exogenous

bursty packet arrivals. By incorporating this seemingly simple addition to the previous

problem setting, the new problem turns out to be challengingas we will see in Section 7.3.

We will use analytical tools such as embedded Markov chain and Chain-collapsing idea

combined with our proposed iterative estimation techniqueof Chapter 2 to estimate the

steady-state distributions of buffer occupancies for relays and the source. We then use

these buffer occupancy distributions to obtain analytical expressions for the average delay

of packets in a DTN with a general mobility model. Finally, the analytical results are

validated using simulations for certain well-known mobility paradigms such as random

walk on a grid and random waypoint mobility.

7.2 Network Model

The following setup is considered:n identical nodes, referred to as “relay” nodes, and two

other nodes, referred to as “source” and “destination” nodes, are located randomly in a field

and moving independently according to a certain mobility model. The relay nodes have the

same buffer size ofB packets where each packet have a fixed length. However, source and

destination nodes have unlimited storage capacity. A discrete-time model is used where at

each time epoch, only one packet may be transmitted/received by any node. Further, it is

assumed that communication is error-free. Analysis of the problem in presence of channel

erasure can be shown to be a straightforward extension of thecurrent framework and will

not be discussed here.

7.2.1 Bursty Packet Arrivals at Source

It is known that traffic in communication networks introduces correlations [92, 93]. Here,

we use a Bernoulli bursty packet arrival process [94] to model such correlations. Packets

are generated according to the model depicted in Fig. 7.1. Tobe precise, the source alter-
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Figure 7.1: Bernoulli bursty arrival model

nates between on-periods, during which exactly one packet is generated per time epoch,

and off-period, during which no packets are generated. If the source is “On” or “Off”,

then it remains in the same state with probabilityp or q, respectively. At each time epoch,

the generated packets are stored at source in a buffer with infinite storage capacity, and

are served on a first-come first-served basis. Intuitively, it is more convenient to use mean

steady-state arrival rateλ (Packets per epoch) and burstiness factorF instead of the pa-

rametersp andq. Givenλ, the burstiness factorF takes values betweenmax{λ, 1− λ} and

infinity and is a measure for the absolute lengths of on/off periods. The burstiness factor of

F = 1 represents uncorrelated arrivals which is basically a simple Bernoulli arrival model.

The parametersλ andF are derived from the following equations [94]

λ =
1− q

2− p− q
, F =

1
2− p− q

.

Here, we only consider mean arrival ratesλ which are less than the maximum through-

put of the network1, meaning that the queue at the source remains bounded with high prob-

ability and hence, the network is stable2. This guarantees the boundedness of the average

queueing delay at the source. Note that, by choosingλ above the throughput rate, the queue

at the source will grow unboundedly since the network could not deliver packets with such

a rate. Thus, without loss of generality, we assume thatλ is smaller than the throughput

obtained in [89].

1We define the maximum throughput as the average number of packets delivered to the destination in each
time epoch when the network operates at steady state.

2Note that, the queues at relays cannot grow to infinity since they have a finite buffer size.
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7.2.2 Interference Model

We assume the communication between a pair of nodes is possible only if they are within

the communication range of each other. All the other nodes within the communication

ranges of the busy pair are assumed to be silent for the duration of the communication

which is one epoch in our problem setup. This is to ensure thatthere is no wireless in-

terference issues such as hidden-terminal and exposed-terminal situations. Moreover, the

source/destination node tries to establish a new link at each epoch,for which several re-

lay nodes may contend. In each time epoch, if the source and destination are within the

communication range of each other, then they will form a link, otherwise, if the source

or destination are within the communication range of multiple relays, a random relay is

selected to setup a link with source or destination, respectively. We say that a “contact” oc-

curs between two nodes whenever they are within the communication range of each other,

though they may not communicate. If a pair of nodes win the channel contention, we say

that a “link” is established between the communicating nodes.

7.2.3 Routing Protocol

Here, we use a two-hop single-copy routing scheme, meaning,whenever a relay node with

available space in its buffer establishes a link with the source, it accepts a packet if the

source has any packets available in its queue,i.e. it is non-empty, and retains the packet until

a link is established with the destination. Packets are served on a first-come first-served

basis and no relay-to-relay communication occurs. In addition, the source and destination

may, though very rarely, establish a direct link.

7.2.4 Mobility Models

Our framework of analysis is designed to perform well for anymobility model which has

stationary properties. This would apply to many well-knownmodels such as random walk
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on a grid, random waypoint, Brownian motion etc., commonly used in mobile ad-hoc net-

works research. We assume that each node moves according to the particular chosen mo-

bility model independent of the other nodes in the network. LetSmob be the set of all states

possible in the mobility model. Each “state” of mobility maycorrespond to information

regarding position, direction, velocity, etc. depending upon the underlying mobility model.

Let χ(t) ∈ Smob be the state of a single node at any time. It is important to mention thatχ(t)

has enough information to determine the probability distribution ofχ(t + 1), the state at the

next time-step. Typically, one can describe the state transitions for the mobility model by

means of a transition functionΨmob(·) as follows. Letp(t) be the probability distribution of

a node’s mobility state at timet. Then,p(t + 1) = Ψmob
[

p(t)
]

. The transition functionΨmob

depends on the mobility model. Since the mobility model is assumed to be stationary, it

has a steady-state probability distribution,πmob, which satisfiesπmob= Ψmob[πmob].

7.3 Markov Chain Analysis

In a DTN with n relay nodes and a single source destination pair, thestate of the network

is defined as the (2n+ 3)-tuple

X(t) = (χ1(t), · · · , χn(t), ϕ1(t), · · · , ϕn(t), χs, ϕs(t), χd, ) ,

whereχk ∈ Smob is the component describing current mobility state of nodek at time

epocht. Also,χs andχd are the physical mobility states of the source and the destination.

The componentϕk(t) denotes the buffer occupancy of nodek (in packets) at time epocht.

Hence, 0≤ ϕk(t) ≤ B at any timet for any nodek. Also,ϕs(t) denotes the buffer occupancy

of the source at time epocht, where 0≤ ϕs(t) < ∞. Clearly, this describes the state

of the network completely: The probabilities of transitions ofX(t) within its state-space

can be determined from the mobility model and the communication protocols described

previously in Section 7.2. Assuming that the mobility modelexhibits stationarity,X(t) also

has a steady state.

The network goes through states wherein packets arrive at the source node, or wherein
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packets are picked up from the source nodes, or wherein packets are delivered to the desti-

nation nodes; these are designated asactive statesfor our purpose of delay analysis. Hence,

it is sufficient to obtain the steady-state distribution of the entiresystem described by the

state variableX(t). Steady-state analysis of the network is employed since weare interested

in the behavior of the network in the long run. Clearly, the full state-space description of

the network is very large to work with. However, we will use the idea of chain-collapsing

in the following section to considerably reduce the state-space of the network. Further, for

anyx ∈ [0, 1], we definex , 1− x.

7.3.1 The Idea of Chain Collapsing

The full state-space description of the network described above is prohibitively large to

work with. In order to reduce the state-space and simplify the analysis, we use the idea of

chain-collapsing as in [89]. As the first step, we may try to identify certain symmetries in

the network that simplifies the state space. For example, in ascenario where relay nodes are

identical, one can view the state of the network from a singlerelay’s perspective. However,

the state-space is still very large. Note that, by claiming the full state-space description

of the network to be very large, we temporarily ignore the state element corresponding to

the buffer occupancy of the source (0≤ ϕs(t) < ∞) which is of infinite size. Later, we

will observe the challenges of such an extension and will introduce our innovative iterative

algorithm to resolve this issue. As the next step, to reduce the state-space further, one can

derive a Markov chain from the original state-space such that the steady-state probability

distributions are preserved. The above discussion about reducing subsets of states into

individual states is thoroughly described in the followingtheorem from [89]:

Theorem 7.1 (Chain Collapsing) LetM be a Markov chain with a set of states denoted

by A, with a steady-state distributionπ for its states. For each a∈ A, π(a) corresponds

to the steady-state probability of state a. Let{Ai}zi=1 be disjoint subsets of A such that
⋃z

i=1 Ai = A. Then, a new Markov chain defined with i= 1, . . . , z corresponding to each
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of the above subsets, with transition probabilities corresponding to the “subset-averaged”

values of those from the original Markov chainM, has a steady state distributionπ′ =

[π(1)π(2) · · · π(z)] such thatπ′(Ai) =
∑

aj∈Ai
π(a j). Moreover, the transition probabilities for

the new chain are given by the following relationship:

p′Ar Al
=

∑

j∈Ar

∑

k∈Al

p jkπ( j|Ar) =
1

π′(Ar)

∑

j∈Ar

∑

k∈Al

p jkπ( j)

Hence, for a particular relay node, we identify all the “desirable” states which contribute

to the time packets spend inside the relays and the source, together with certain additional

“auxiliary” states to arrive at an “embedded” Markov chain.The idea of chain-collapsing

enables us to extract only the necessary information from the original Markov chain. In

particular, the performance computation problem is reduced to computing the steady-state

probabilities of certain subsets of a well-defined embeddedMarkov chain. Note that, we

are not interested to find individual steady-state probabilities of states within one particular

desired subset. The rest of the analysis involves the computation of the transition probabili-

ties between the desired subsets followed by computation oftheir steady-state probabilities

using the collapsed chain.

7.3.2 Embedded Markov Chain for a Relay Node

Here, our main goal is to define the desired states of the embedded Markov chain for

a single relay node so that the resulting steady-state probabilities could provide us with

sufficient information to approach the problem of delay analysis. Hence, we define the

embedded Markov chain for a relay node according to the following subsets of states:

• Let Si (1 ≤ i ≤ B) be the set of network states wherein the most recent link that node

v had was with a non-empty source, resulting ini packets in the buffer after receiving

a packet.

• Similarly, letD j (0 ≤ j ≤ B− 1) be the set of network states wherein the most recent

link that nodev had was with the destination, resulting inj packets in its buffer after
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Figure 7.2: The embedded Markov chain for a relay node (RMC)

transmitting a packet.

• Let F be the set of network states wherein the most recent link thatnodev had was

with a non-empty source, butv was unable to accept any packet due to lack of buffer

space (i.e., Full buffer state).

• Similarly, let E be the set of network states wherein the most recent link thatnode

v had was with the destination, butv had no packet to transmit (i.e., Empty buffer

state).

Given the state transition probabilities for the embedded Markov chain in Fig. 7.2 (RMC),

a closed-form expression for its steady-state probabilities can be easily obtained using

Pr{F} =
(

αr

βr

)B
βr

αr
Pr{E},

Pr{Si+1} = Pr{Di} =
(

αr

βr

)i
βr

βr
Pr{E},

for i = 0, . . . , B− 1, and,

Pr{E} =































1
2

{

1+ βr

βr
B
}−1

, if αr = βr

αr−βr

αr+βr

{

1− βr

αr

(

αr

βr

)B
}−1

, if αr , βr

.

Further, the state transition probabilities for RMC,i.e., αr andβr , can be obtained using

the following lemma.
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Lemma 7.1 Letα0 be the probability that a node currently in contact with the source (or

destination) will have a contact with the destination (or source) before coming in contact

with the former again. Also, let pc be the probability that a relay node loses contention on

meeting the source/destination node. Finally, let pe be the probability that source node is

empty,i.e. has no packets in its queue, when meeting a relay or destination node. Then,

αr =
α0

pe(2α0pc + pc) + α0pe
, βr = peαr .

The proof is very similar to the proof of Lemma 7.4 which can befound in section A.1 of

Appendix A.

The parameterα0 in Lemma 7.1 is characterized for a general mobility model inthe

following lemma.

Lemma 7.2 Let T0 be a random variable representing the inter-contact duration of two

nodes, and let T∞ be the random variable representing the waiting time until two nodes

meet, given that they are distributed according to the steady-state spatial location distribu-

tion. Then we have

α0 =

∞
∑

τ=1

FT∞(τ)PT0(τ),

where PT0(τ) and FT∞(τ) are the probability density function of T0 and the cumulative

density function of T∞, respectively.

The proof is very similar to the proof of Lemma 7.6 which can befound in section A.2 of

Appendix A.

Finally, since the contention failure probabilitypc in Lemma 7.1 only depends on the

mobility and routing protocol, hence the result from [89] can be exploited to derivepc using

the following lemma.

Lemma 7.3 Let x′ be the subset of states wherein a contact with a node in statex ∈ Smob

can be established andπspt be the steady-state spatial node-location distribution due to the

67



underlying mobility model.

pc = 1−
(

1− E[T0]
−1

)

n−1
∑

k=0

∑

x

πspt(x)
k+1

(

n−1
k

)

πk
spt(x

′)

×
{

1− πspt(x′)
}n−1−k

7.3.3 Embedded Markov Chain for the Source

Here, we define the desired states of the embedded Markov chain for the source node

so that the resulting steady-state probabilities could be helpful for the problem of delay

analysis. Hence, the embedded Markov chain for the source node is defined according to

the following subsets of states:

• Let Ai (i = 1, 2, . . .) be the set of network states wherein the most recent event atthe

source is a packet arrival (on-period) resulting ini packets in the source queue.

• Also, letRj ( j = 0, 1, . . .) be the set of network states wherein the most recent event at

the source is meeting a non-full relay or the destination during an off-period, resulting

in j packets in the source buffer.

• Finally, letE be the set of network states wherein the most recent event at the source

is meeting a non-full relay or the destination during an off-period while the source

node is empty and hence no packet is transmitted.

Given the state transition probabilities for the embedded Markov chain in Fig. 7.3

(SMC), a closed-form expression for its steady-state probabilities can be easily obtained

using

Pr{Ri} = γs Pr{Ai+1} =
(

γs + αs

βs γs

)i
βs

βs

Pr{E}, i ≥ 0

Pr{E} = αs− γsβs

αs+ βs
.

Moreover, the state transition probabilities of SMC,i.e., αs, βs andγs, can be derived using

the following lemmas.
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Figure 7.3: The embedded Markov chain for the source node (SMC)

Lemma 7.4 Let α1 be the probability that the source node in its on-period, will have a

contact with any other node (relay or destination) before another packet arrives. Further,

let α2 be the probability that the source node, currently in contact with a node (relay or

destination), will have an arriving packet before coming incontact with any other node.

Finally, let pf be the probability that a relay node is full when meeting withthe source and

is unable to accept any packets. Then, we have

αs =
α1pb

α2pb + pb
, βs =

α2

α2pb + pb
,

where, pb = n
n+1 pf .

The proof can be found in section A.1 of Appendix A.

Lemma 7.5 Let β1 be the probability that given the source node has no contactswith any

other node (relay or destination), it will contact a node during the next time epoch. Further,

let β2 be the probability that the source node, currently in contact with a node (relay or

destination), will have contact with none of the other nodesduring the next time epoch.

Then, we have

γs =
β1pb

β2pb + pb
,

where, pb is as defined in Lemma 7.4.
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The proof is very similar to the proof of Lemma 7.4 which can befound in section A.1 of

Appendix A..

Finally, the parametersα1, α2, β1 andβ2, can be characterized for a general mobility

model and source traffic model using the following lemma.

Lemma 7.6 Let S0 be a random variable representing the inter-arrival duration of packets

arriving at source, and let S∞ be the random variable representing the waiting time until

an arrival given the source is currently in off-period. Further, let T∞,n be a random variable

representing the waiting time until a contact with at least one of the n+1 relays/destination

occur for the source, given that the nodes are distributed according to the steady-state

spatial location distribution. Also, let T0,n be a random variable representing the waiting

time until source makes contacts with at least one of the n+ 1 relays/destination nodes,

given that the source is currently in contact with a relay/destination and the other n nodes

are distributed according to the steady-state spatial location distribution. Then, we have

α1 =

∞
∑

τ=1

FT∞,n(τ)PS0(τ),

α2 =

∞
∑

τ=1

(

1− FT0,n(τ)
)

PS∞(τ),

β1 = Pr{T∞,n = 1},

β2 = 1− Pr{T0,n = 1}.

The proof can be found in section A.2 of Appendix A.

7.3.4 Iterative Estimation

Thus far, we have developed two different collapsed Markov chains RMC and SMC origi-

nated from the full state-space of the entire network. In other words, we have observed the

desired states in the network from the point of view of a single relay node and the source

node. However, it is notable that deriving the state transition probabilities for RMC and

SMC requires using Lemmas 7.1, 7.4 and 7.5 in which the parameters pf and pe are not

known in advance. In this section, we will see that these two Markov chains are not only
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dependent on each other but also closely related. Further, their dependency could lead us

into solving both of them using an iterative algorithm.

We start from the problem of finding the probabilitypf . We need to know the portion

of relay-source links during which a relay is full. Using steady-state probabilities of RMC,

we have the following

pf = α0 pc
Pr{F} + Pr{SB}

Pr{F} +∑B
i=1 Pr{Si}

. (7.1)

Further, obtaining the steady-state probabilities of RMC requires having its state transition

probabilities by using Lemma 7.1. Hence, we need to find the probability pe which is the

portion of source-relay/destination links during which the source is empty. Using steady-

state probabilities of SMC, the following relation can be obtained

pe = α2 + β2
Pr{E} + Pr{R0}

Pr{E} +∑∞
i=0 Pr{Ri}

. (7.2)

Finally, obtaining the steady-state probabilities of SMC requires having its state transition

probabilities by using Lemmas 7.4, 7.5 and consequently, knowing pf . Interestingly, we are

back to where we started. This hints us that the problem mighttend to have an iterative so-

lution. In [31], we developed an iterative algorithm to estimate the capacity of finite-buffer

line networks (non-mobile). Likewise, here we propose an iterative estimation algorithm to

estimate the unknown parameters stated in the discussion above, starting from some initial

values,e.g., pf = 0. The schematic in Fig. 7.4 shows the iteration steps. The iteration

procedure will go on until convergence of the steady-state probability vectors. One way

to measure the convergence of our method is to compare the Euclidean distance between

the vectors of each two consecutive iterations and stop the procedure when the distance

becomes smaller than a previously chosen thresholdǫ.

7.3.5 Delay Analysis

Using the iterative estimation technique of Section 7.3.4,the estimated steady-state proba-

bilities for RMC and SMC are obtained. In this section, we usesuch results to find analyt-

ical expressions for the average packet delay in DTNs.
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Figure 7.4: A graphical presentation of the iterative estimation algorithm

We divide the latency experienced by each packet to two parts: “Network Delay” and

“Queueing Delay”. The network delay is defined as the total time spent by a packet inside

the buffer of a relay node which is the time it takes from the instant when the packet leaves

the source node until when it reaches the destination node. The queueing delay is defined

as the time spent by a packet inside the queue of the source node which is the time it takes

from the instant when the packet arrives at the source node until successfully leaving it. The

analytical expressions for both average network delay and average queueing delay at the

source are obtained by using the following propositions. The total average packet latency

can be simply derived by adding both the average network delay and the average queueing

delay.

Proposition 7.1 Let Pz be the portion of the packets that experience zero network delay

due to the event that a direct link between the source and the destination is established.

GivenPr{Si} for i = 1, 2, . . . , B from the steady-state analysis of RMC, the average network
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delay can be obtained from

Dnet = Pz

B
∑

i=1

Pr{Si}
∑B

j=1 Pr{S j}
(E[T∞] + (i − 1)E[T0]) ,

where Pz =
(n+1)E[T0,n]

npcE[T0] , and the contention failure probability pc is derived in Lemma 7.3.

The proof can be found in section A.3 of Appendix A.

Proposition 7.2 GivenPr{Ai} for i = 1, 2, . . . from the steady-state analysis of SMC, the

average queueing delay at the source can be derived using

Dqueue= pb
−1
∞
∑

i=1

Pr{Ai}
∑∞

j=1 Pr{A j}
(

E[T∞,n] + (i − 1)E[T0,n]
)

,

where the blocking probability pb is defined in Lemma 7.4.

The proof can be found in section A.4 of Appendix A.

7.4 Simulation Results

In this section, we present the simulation results for validation of our analytical framework.

Our analytical results are compared to the simulations of sparse mobile ad-hoc networks

for two well-known mobility models.

7.4.1 Random Walk on a Grid Mobility Model

In this model, nodes are randomly moving on aM × M square grid as shown in Fig. 7.5.

At each time epoch, nodes may remain in the same cell in the grid, or move to an adjacent

cell in the next time step with a certain probability. The transition probabilities for the

random walk are chosen so that it results in a uniform steady-state spatial distribution,

i.e., a node is located in a specific cell with probability1M2 . Hence, the probability of

transition to adjacent cells is15 and the self-transition probability for each cell will be 1−
No. of adj. cells

5 . As an example, for the cell in the corner, the self-transition probability is

equal to3
5. The contention failure probabilitypc can be derived using Lemma 7.3 from the
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Figure 7.5: Network Model

following relation

pc = 1− M2

n

(

1−
(

1− 1
M2

)n)

.

The mobility parameters needed for Lemmas 7.1, 7.4, 7.5 can be obtained as well. In [89],

an analytical approximation is proposed to find such parameters for the case of random-

walk on a grid.

Here, we choose the node buffer size to be 10 packets, while the number of relay nodes

is kept at 10 and the grid size is 8× 8. Fig. 7.6 and Fig. 7.7 demonstrate the accuracy of

our estimation for average queueing delay at the source and average network delay, respec-

tively. Further, variations of both queueing delay and network delay with mean arrival rate

λ and burstiness factorF are presented. As stated before, validation of our iterative estima-

tion algorithm is performed for arrival ratesλ smaller than the throughput of the network.

By increasingλ to the values close to the network throughput, the average queueing delay

at the source goes to infinity. However, average network delay will remain bounded from

above since all the relays have finite buffer size. In other words, by approaching more and

more to the network throughput, queueing delay at the sourcebecomes the dominant term

comparing to the network delay. Finally, it can be observed that, higher burstieness factor

results in larger latencies for packets inside the queue of the source.
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Figure 7.6: Variations of average queueing delay at the source with mean arrival rateλ and
burstieness factorF for a random walk on a grid mobility model
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Figure 7.7: Variations of average network delay with mean arrival rateλ and burstieness
factorF for a random walk on a grid mobility model
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Figure 7.8: Variations of average queueing delay at the source with mean arrival rateλ and
burstieness factorF for a random waypoint mobility model

7.4.2 Random Waypoint Mobility Model

The random waypoint mobility model is commonly used in simulation studies of network-

ing protocols. Here, each node selects a random location in the deployment area, and moves

towards that location with a random speed. Upon reaching to its target location, it waits for

a random amount of time, and then the next location and speed are chosen. The mobility

parameters needed for Lemmas 7.1, 7.4, 7.5 have not been obtained in closed form in the

literature, to the best of our knowledge. However, some approximations [89] are available

for the steady-state spatial node distribution, and can be used to compute the contention

failure probabilitypc. Here, we have obtained the mentioned mobility parameters numer-

ically by a quick simulation of the mobility only. The deployment area is chosen to be

a 5km× 5kmsquare region where 10 nodes are deployed in random locations. The node

velocity is chosen from a uniform distribution withVmin = 3m/s andVmax = 30m/s. The

communication range is chosen to be 500m. The pause-time is also modeled as an expo-

nential distribution with a mean of 20s. Finally, the node buffer size is chosen to be 10

packets.

Fig. 7.8 and Fig. 7.9 demonstrate the accuracy of our estimation for average queue-

ing delay at the source and average network delay, respectively. Here, for clarity of the
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Figure 7.9: Variations of average network delay with mean arrival rateλ and burstieness
factorF for a random waypoint mobility model

presentation, we only demonstrate the average delay variations for the casesF = 5 and

F = 20 since the curves were close together. It is interesting toobserve that, in Fig. 7.9,

by increasing the mean arrival rateλ the average network delay decreases. The reason for

such a behavior is solely contributed to the slow nature of the specific mobility parameters

(due to lower speed comparing to the area and the waiting periods). As an example, for

the random waypoint mobility, the quantityE[T∞,n] is about 30 times larger thanE[T0,n],

where the former is only about 2 times larger than the latter for the case of random walk on

a grid mobility model. This means that when the mean arrival rate increases, many packets

will be trapped inside the relays and take too much time to be released while keeping the

relays full. Meanwhile, the proportion of packets with zeronetwork delay will increase as

the proportion of the packets transferring directly from source to the destination increases.

However, this comes with a cost which would be a huge increasein average queueing delay

as it can be observed in Fig. 7.8.
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CHAPTER 8

THROUGHPUT AND DELAY OF BLOCK-BASED RANDOM
LINEAR CODING IN LINE NETWORKS

In this chapter, a block-by-block random linear network coding (RLC) scheme with feed-

back on the links is selected for reliability and more importantly guaranteed decoding of

each block in a certain time. We use our proposed iterative estimation algorithm to find

the performance parameters of the network and more importantly reduces the computa-

tional complexity compared to the exact analysis. We will see that the proposed framework

yields an accurate estimate of the distribution of buffer occupancies using which we obtain

analytical expressions for network throughput and delay distribution of a block of packets.

The RLC scheme for finite-buffer networks introduced in [28] has the limitation that

it cannot be used to characterize the latency profile. This isbecause, the typical notion

of latency is not meaningful for the RLC scheme. Since latency is critical for real-time

applications (such as video streaming), a block-by-block encoding of the stream is required.

Hence, we introduce ourBlock-based Random Linear Codingscheme, which applies RLC

on each individual block1. We will see that our approach guarantees a decoding delay

within a certain amount of time while this is not the case in general for RLC which is a

rate-optimal scheme with potentially a large decoding delay as we will see in Chapter 10.

Further, by using out proposed block-by-block RLC scheme, only one feedback is required

for transmission ofK packets which considerably limits the average number of feedbacks

per transmission.

8.1 Network Model and Coding Scheme

We consider a line network ofh hops with the vertex setV = {v0, v1, . . . , vh} and the edge

set
−→
E = {(vi , vi+1) : i = 0, . . . , h − 1} for some integerh ≥ 2. Let εi denote the packet

1Just as in any network coding scheme, the packets received bythe destination are linear combinations of
the original data in a block. Hence, with the knowledge of this linear transformation at the decoder, inversion
can be performed to recover the data block.
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erasure probability over the link (vi−1, vi). Each nodevi ∈ V has a buffer size ofmi packets.

It is assumed the destination node has no buffer constraints and that the source node has

infinitely many innovative packets2.

The system is analyzed using a discrete-time model, where each node transmits one

packet over a link per epoch. We introduce a practical network coding scheme, which is

well-suited for transmitting real-time data streams in a block-by-block fashion using RLC

and feedback. In the proposed scheme, the source node takes the stream of packets and

divides them into blocks ofK packets each. The buffer of each intermediate nodevi ∈ V

is then segmented intoMi blocks. In other words, we havemi = MiK. Each block is

then served using RLC over all the packets in the block. The blocks are served based on a

first-come first-servepolicy. An instant lossless hop-by-hop acknowledgment perblock is

also employed to indicate the successful receipt of a complete block ofK packets. In each

epoch, one or multiple of the following events occur in different orders:

1. If a node neither receives any innovative packet nor conveys any innovative packet to

the next node, then the content of its buffer does not change3.

2. Upon receiving an innovative packet, it will be stored in the last available block (a

block of memory with less thanK innovative packets stored in it). The packets of

this block will be served after all the previously received blocks in the buffer are

completely served.

3. In each epoch, every node transmits a packet formed by the RLC encoding over its

current block (oldest block in the queue), until the node receives an acknowledgment

indicating that the block is fully conveyed to the next-hop node. The block will then

be removed from the buffer and the next block in the queue will be served. This also

implies that free space in the buffer will be increased byK packets.

2A received packet is calledinnovativewith respect to a node if the packet cannot be generated by a linear
combination of the current buffer contents of the node.

3Here, byconveying a packet, we mean thatthe packet is successfully transmitted and stored at the
next-hop node.
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To implement the per-block feedback mechanism, a node must distinguish innovative

packets upon their reception. One way is to compute the rank of the received packets

in a block. A more practical protocol is to use a variable CMB in the header of each

encoded packet, indicating the number of innovative packets used by RLC to form the

packet. Further, every node maintains a counter INV indicating the number of innovative

packets received in its current block so far. Every node setsINV = 0 for each new incoming

block4 and increments it by one for each incoming packet whose CMB isgreater than INV

of the receiving node. Note that, if the current block in the queue of a node hasK innovative

packets then CMB is equal toK for all the packets to be transmitted by that node.

We will employ the following notations. For anyx ∈ [0, 1], x , 1− x. The convolution

operator is denoted by⊗ and⊗l f is used as a shorthand for thel-fold convolution of f with

itself.G(p) denotes the geometric distribution with mean inter-arrival time 1
1−p.

8.2 Exact analysis and Network States

In [29], a Markov-chain approach for exact analysis of a finite-buffer line network identifies

the throughput as equivalent to the problem of finding the buffer occupancy distribution of

the intermediate nodes. However, the size of the Exact Markov Chain (EMC) and the multi-

ple reflections due to the finiteness of buffers at each intermediate node render this problem

mathematically intractable for even networks of small hop-lengths and buffer sizes. We

therefore aim to approximate the distribution of buffer occupancies.

To approach this approximation problem properly, it is necessary to clearly define the

buffer states in a manner that (a) an irreducible ergodic Markov chain is obtained, and (b)

the steady-state distribution of the chain allows tractable expressions for the performance

parameters of the network. Thus, a proper definition for the buffer states cannot be proposed

unless the communication scheme is known. For the scheme in Section 8.1, two variables

are needed to track all the buffer states of a node. Lets be the total number of innovative
4If INV = K, then the counter is reset to 0 and an acknowledgment is sent to the previous node.
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(with respect to the next-hop node) packets stored at a node.Denotet to be the number

of successfully conveyed innovative packets by the node from the current block. Then, the

pair (s, t) can be defined as the state of the buffer of the node. Note thats is the minimum

number of packets that a node has to store in its buffer. Also note that, since a new block

starts to be served after theKth packet of the current block,t ∈ {0, . . . ,K − 1}. As an

example, assuming that nodevi is in state (s, t) at the start of the epoch, given that during

the epoch it only sends a packet successfully but does not receive any packets, the state of

the network will change to (s, t + 1) if t = {0, 1, . . . ,K − 2} or it will change to (s− K, 0) if

t = K − 1.

8.3 Approximate Markov Chain Modeling

In this section, we determine the distribution of buffer occupancy of an intermediate node,

which will later be used to analyze network parameters such as throughput and latency of

a block.

Due to the discrete-time nature of the analysis framework, two Markov chains need to

be constructed for each intermediate node. The first one considers the buffer occupancy

at instants when a packet has just been transmitted (either successfully or unsuccessfully),

which is calledreceive-first Markov chain(RFMC). This is required to compute the proba-

bility of blocking, which is caused when the state of a node isforced to remain unchanged

because the transmitted packet was successfully deliveredto the next-hop node, but the

latter does not store the packet due to full buffer occupancy . The second one considers the

buffer occupancy at instants when a packet has just been received/stored, which is called

transmit-first Markov chain(TFMC). This will be used to calculate the incoming rate of

innovative packets at each node.

Note that the problem of exactly identifying the steady-state probabilities of the RFMC

and TFMC suffers the same difficulties as identifying that of the EMC [31]. The finite

buffer condition introduces a strong dependency of state updateat a node on the state of

81



the node that is downstream. To develop an estimation schemethat considers blocking, we

make the following assumptions.

1. Packets are ejected from nodes in a memoryless fashion. This assumption allows us

to keep track of only the information rate.

2. The blocking event occurs independent of the state of a node. This allows us to track

just the blocking probability.

3. At any epoch, given the occupancy of a particular node, packet arrival and blocking

events are independent of each other.

These assumptions spread the effect of blocking equally over all non-zero states of

occupancy at each node. Now, given that the arrival rate of innovative packets at nodevi is

r i packets/epoch, and that the probability of the next node being full, (i.e.,s= mi+1 for node

vi+1) is pbi+1, we can show that transition dynamics of the state change fornodevi is given

by the Markov chain depicted in Fig. 8.1 for both TFMC and RFMC5. Also, obtaining the

Figure 8.1: The general structure for both TFMC and RFMC for anode with buffer size
m= MK.

state transition probabilities is straightforward usingr i, pbi+1, εi andεi+1. As an example,

5Self-loops are not demonstrated in the figure.
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for TFMC we have the following

PT F
(s,t)→(s+1,t) =







































r i s= t

r i(εi+1 + εi+1pbi+1) s− 1 ≥ t

0 Otherwise

. (8.1)

Note that we notates and t instead ofsi and ti for the simplicity of notation when

considering nodevi. The same transition probability for RFMC is different from TFMC

and is given by

PRF
(s,t)→(s+1,t) = r i(εi+1 + εi+1pbi+1). (8.2)

Note that, both (8.1) and (8.2) are valid fors= {0, 1, . . . ,MiK−1} andt = {0, 1, . . . ,K−

1}.

For all input parameters, the Markov chains can be shown to beaperiodic, irreducible

and ergodic. Therefore, it possesses a unique steady-statedistribution. The steady state

probability of nodevi being in state (s, t), is denoted byPRF
i (s, t) andPTF

i (s, t) for RFMC

and TFMC, respectively.

The blocking probability that the nodevi−1 perceives from the nodevi is the same as the

probability ofvi being full (s = MiK) at the instant when a packet is transmitted success-

fully by the previous node. Hence, this probability have to be calculated using the steady

state probability distribution of RFMC as follows

pbi =

K−1
∑

t=0

PRF
i (MiK, t). (8.3)

Similarly, the steady state probability distribution of TFMC can be used to compute the

arrival rate at the next node using

r i+1 = (1−
K−1
∑

t=0

PTF
i (t, t))εi+1. (8.4)

Note that if a node is in the state (t, t) (t ∈ {0, . . . ,K − 1}), it means that it has storedt

innovative packets from the current block so far and it has also sentt linear combinations

of them successfully. Therefore, there is no more innovative packets to send.

The approximate solution is obtained iteratively by the following procedure:

83



Step 1. Initialization:r = (ε1, . . . , εh) andpb = (0, . . . , 0)

Step 2. Construct TFMC and RFMC respectively and compute their steady-state probabili-

ties.

Step 3. UsingPRF
i (s, t) and PTF

i (s, t) (obtained from step 2) calculate the new values forr

andpb by (8.3) and (8.4), respectively, fori = 1, 2, . . . , h− 1 and auxiliary equations

r1 = 1− ε1 andpbh = 0.

Step 4. Repeat Step 2 and Step 3 until all the distributions converge.

8.4 Computation of Network Parameters

In this section, we exploit the results of the iterative estimation of buffer occupancy distri-

butions in Sec. 8.3 to obtain analytical expressions for both network throughput and delay

distribution of a block. TheBlock Delayis defined as the time taken for a block ofK in-

formation packets (at the source) to be transferred througha line network from the instant

when the first packet of that block is transmitted from the source node to the instant when

the Kth innovative packet of that block is received by the destination node (i.e., the block

can be decoded at the destination).

Given a line network with link erasuresE = (ε1, . . . , εh), intermediate node buffer sizes

M = (m1, . . . ,mh−1), we can find the approximate solution (r , pb). Using this, an estimate

of the throughput is obtained using the following

C(E,M,K) = rh(1− pbh) = rh.

To compute the distribution of the totalblock delay, one can proceed in a hop-by-hop

fashion in the following way:

D = T1 ⊗W1 ⊗W2 ⊗ . . . ⊗Wh−2 ⊗ F, (8.5)

whereT1 is the probability distribution of the time taken for a packet in the source to

be conveyed to nodev1. Further,W i is the probability distribution of the time taken from
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the instant when nodevi stores the first innovative packet of a block to the instant the first

packet of the corresponding block invi is conveyed to nodevi+1. FinallyF is the probability

distribution of the time taken for all theK packets of a block in nodevh−1 to be conveyed

to the destination node from the instant when the first innovative packet of the same block

is stored in the buffer of nodevh−1. Thus, using the definition, we haveT1 = G(έ1), where

έ1 is the effective erasure probability (after considering blocking) and is given by

έi =























εi + pbiεi i = 1, 2, . . . , h− 1

εh i = h
. (8.6)

Also, the average waiting time in nodevi is formulated as

W i = πi(0, 0)Si(0, 0)+
Mi−1
∑

d=1

K−1
∑

t=0

πi(dK, t)Si(dK, t), (8.7)

where,πi(s, t) is the probability that an arriving packet finds nodevi in state (s, t) given that

it is the first packet of its corresponding block. Also,Si(s, t) is the probability distribution

of the time taken for the first innovative packet of a block invi to be conveyed to nodevi+1

from the instant when the first innovative packet of that block arrives at nodevi and finds

its buffer at state (s, t).

If an arriving packet is the first of its corresponding block,it finds the buffer at states

of the form (dK, t) whered can take any value between 0 andMi − 1. This is because of

the fact that the last block had been completely served before the first packet of the current

block arrives. Hence, bothSi(s, t) andπi(s, t) will be 0 if s is not a multiple ofK. Finally,

πi(s, t) can be formulated as follows forn ∈ {0, 1, . . . ,Mi − 1},

πi(s, t) =























PRF
i (s,t)

∑Mi−1
d=0 Φ

RF
i (dK)

s= nK

0 Otherwise
, (8.8)

whereΦRF
i (s) is the marginal probability distribution ofs for an arriving packet (i.e., the

probability that an arriving packet finds the buffer of nodevi in the states of the form (s, .)).

Φi can be computed as follows

Φi(s) =
min{K−1,s}

∑

t=0

PRF
i (s, t). (8.9)
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Also, Si(s, t) can be derived using the following relation forn ∈ {0, 1, . . . ,Mi − 1}

Si(s, t) =







































G(έi) s= 0

⊗{(n−1)K+(K+1−t)}G(έi) s= nK

0 Otherwise

.

Finally, F can be calculated by taking the average over all the conditional delay distri-

butionsL (s, t) as

F = πh−1(0, 0)L (0, 0)+
mh−1−1
∑

d=1

K−1
∑

t=0

πh−1(dK, t)L (dK, t),

whereL (s, t) is the probability distribution of the time taken for the whole block to be

conveyed to the destination node given that the first packet of that block found the buffer

of nodevh−1 in state (s, t) when arrived. Note that after receiving the first packet of ablock,

nodevh−1 has to wait until all its previously stored blocks are conveyed to the destination,

during which some of the packets of the corresponding block might have already been

arrived. LetV(x, y) be the probability distribution of the time to conveyy innovative packets

to the next node whenx of those packets (x ≤ y) has yet to arrive for the same block,

knowing that a packet departs with probabilityPout and an innovative packet arrives with

probability Pin in each time epoch. Hence,L (s, t) is derived using the following relation

for n ∈ {0, 1, . . . ,Mi − 1}

L (s, t) =







































V(K − 1,K) s= 0

{⊗α(n,t)G(εh)} + V(K − β,K) s= nK

0 otherwise

,

whereα(n, t) = (n − 1)K + (K − t) is the number of packets that have to leave nodevh−1

before the next block to be served andβ = min{K − 1,
⌊

α(n,t)Pin

Pout

⌋

} is the expected number

of packets from the corresponding block that arrived duringthe time when thoseα(n, t)

packets were being conveyed. Further,Pin = εh−1(1−
∑K−1

t=0 PTF
h−1(t, t)) for h > 2, Pin = εh−1

for h = 2, andPout = εh. V(x, y) will be determined by the following lemma.
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Lemma 8.1 V(x, y) (defined for x≤ y) is the solution to the following equation,

V(x, y) =
[ p1V(x, y− 1)+ p2V(x− 1, y) + p3V(x− 1, y− 1)

p1 + p2 + p3

] ⊗G(p4)

with boundary conditions:

V(0, y) = ⊗yG(1− Pout)

V(x, x) = G(1− Pin) ⊗ V(x− 1, x)
, (8.10)

where,

p1 = Pout(1− Pin) p2 = Pin(1− Pout)

p3 = PinPout p4 = (1− Pin)(1− Pout).
(8.11)

8.5 Results of Simulation

In this section, we compare our analytical results to the actual simulations. To study the

effect of buffer size on throughput and block delay, we simulated a line network of eight

hops for two cases where all the links have the same probability of erasure of 0.1 or 0.2.

The buffer sizem (in packets) is divided intoM blocks ofK packets.

Fig. 8.2 presents the variation of our analytical results and the actual simulations for

both throughput and average delay of a block, as the buffer sizemof the intermediate nodes

is varied while the block size is fixed atK = 5 packets. It can be seen that as the buffer size

is increased, average delay also increases linearly. It appears that above memory sizes of

10, the gain in capacity is negligible, while the latency increases significantly. Hence, there

is no need to allocate more storage to the flow even if the spaceis available in the router.

Further, for buffer sizes of less than 10 packets, there is a gap from the min-cut capacity, a

diverging point from asymptotic results due to the finite buffer effect.

Fig. 8.3 presents a comparison between the actual and the estimated delay profile for a

five-hop line network with the erasure probability on every link set to 0.05. It also compares

the delay profiles for different buffer sizes whenK = 4. It is noticed that as the buffer size

of the intermediate nodes is increased, both average delay and its standard deviation are
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increased. This is undesirable since any increase in the standard deviation of the delay can

make congestion control algorithms unstable.
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CHAPTER 9

EXACT MODELING OF THE PERFORMANCE OF
FINITE-BUFFER RANDOM LINEAR NETWORK CODING

In this chapter, we present an exact model for the analysis ofthe performance of random

linear network coding (RLNC) in general wired networks withfinite buffers.1 We assert

that because of RLNC, the content of buffers have dependencies which cannot be captured

directly using the classical results of queueing theory. Here, we model the performance of

the network using Markov chains by a careful derivation of the buffer occupancy states and

their transition rules.

9.1 Introduction and Motivation

It is well-known that linear network codes achieve the min-cut capacity of networks for

unicast applications [52]. In fact, random linear codes over large Galois fields suffice to

achieve the min-cut capacity [96, 97].Random linear network coding(RLNC) has been

shown to improve the performance in distributed settings with time-varying network pa-

rameters. In these networks, a distributed and packetized network coding scheme, where

each node stores the received packets and forwards random linear combinations of the

stored packets when required, was introduced in [98, 99]. Asa result, for a network of

nodes with no buffer limitations, all arriving packets at a node are stored andthen used

to generate new packets to send. Hence, there is no information loss. However, in this

case, upon reception of a packet, a node has to determine whether the incoming packet is in

the linear span of its previously stored packets or not. Further, for generating every coded

packet, all stored packets need to be accessed. It is therefore desirable to have limited buffer

sizes, since it limits the complexity of storage and coded packet generation process.

Our objective is to study the relation between throughput ofRLNC and the buffer sizes

1This work is done in collaboration with my former lab-mates,Dr. Badri N. Vellambi and Ahmad
Beirami [95].
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of intermediate nodes in the small buffer regime. The first and the key step in our approach

is to derive, using algebraic tools, the state of the buffers using which the dynamics of

the network can be completely characterized. We then derivethe state update rules for

each transmission in the network. Finally, using the developed state space and update

rules, we obtain the throughput of the network using Monte Carlo simulations and compare

the results to the actual packetized implementation of RLNC. We believe the proposed

modeling framework is a significant step towards developinga theoretical framework for

computing the throughput capacity and the packet delay distribution in general finite-buffer

wired networks.

9.2 Problem Setup and Challenges

We model the network by an acyclic directed graph
−→
G(V,

−→
E), where packets can be trans-

mitted over a link−→e = (u, v) only from the nodeu to v. The system is analyzed using a

discrete-time model; each node can transmit at most one packet over a link in an epoch.

The loss process on each link is assumed to be memoryless, i.e., packets transmitted on a

link −→e = (u, v) ∈ −→E are lost randomly with a probability ofε−→e = ε(u,v). Each nodev ∈ V

has a buffer size ofmv packets with each packet having a fixed size. Source and destination

are assumed to be able to store an infinitude of packets. Nodes and noded represent the

source and the destination nodes, respectively. The unicast information-theoretic through-

put capacity is also defined as the expected rate (in packets/epoch) at which information

packets are transferred from the source to the destination when the network is in steady-

state. In other words, ifτk is the time it takes fork information packets to be transmitted to

the destination, the throughput capacity is given by

C(
−→
G) = lim

k→∞

k
τk
. (9.1)

There are two key challenges in finite-buffer networks. The first challenge is the choice

of optimal buffer management strategy, which also depends on the routing/coding scheme

that is in use. Due to losses on links, and finiteness of buffers, transmission of a packet
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by a nodeu on −→e = (u, v) does not guarantee successful reception by the nodev. Thus,

in the absence of any feedback, a nodeu does not know if it can delete a packet from its

buffer to make room for its next incoming packet. Further, it is also unclear if transmitting

a packet via several parallel paths will increase the throughput of the system. The second

challenge in these networks is the following. Due to possible replication of packets in the

network, it is neither possible to model the system dynamicsby a simple queueing model

where packets are customers and the buffers as queue sizes, nor is it feasible to treat the

packets as flows in the network.

Random Linear Network Coding (RLNC) attractively bypassesthese two challenges. It

eliminates the need for a feedback strategy to delete the stored packets because the physical

act of storing a packet becomes immaterial. It also eliminates the need for active replication

by allowing transmitted/stored packets to be treated as elements of an abstract vector space.

This makes RLNC a favorable choice for practical schemes in finite-buffer scenarios.

We consider the following packet-coding scheme introducedin [28], which is a finite-

buffer adaptation of RLNC. In this scheme, at each epoch, random linear coding is used for

both the packet generation and storage by intermediate nodes. As an example, consider a

nodeu of buffer sizemu. At a given epoch,u generates an encoded packet by performing

a random linear combinations ofmu stored data packets (over a sufficiently large Galois

field2 Fq), and transmits the coded packet on an outgoing link. For storage, suppose a

packet successfully arrives atv. Then, instead of storing the packet as is, nodev multiplies

the received packet by a random vector chosen uniformly fromFmv
q , and adds the resultant

vector components to each of the present buffer contents.

Therefore, using RLNC, after just a single packet reception, the entire buffer becomes

physically full with multiples of the received packet. Thus, even though the buffer of the

nodeu is almost always physically full, the number of stored packets that is innovative

with respect to any other subset of nodes can vary from 0 tomu. As an example, when

2The size of the Galois field needs to be sufficiently large, in order to increase the chance of innovativeness
of the coded packet.
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performing RLNC, suppose that two nodesa andb receive and store two packets each gen-

erated from three original information packets from a relayc. In this case,a andb will have

two innovative packets each for the destination. Now, supposea delivers a packet to the

destination. Then,b still contains two innovative packets for the destination.However, if

a delivers another packet to the destination,b will only have one innovative packet for the

destination, since both nodes together originally possessed only three innovative packets

for the destination. In this example, the challenges of tracking the number of innovative

packets and the interdependency between buffer contents gets compounded further as the

packets froma and b are propagated to the other intermediate nodes. This interdepen-

dency between buffer contents signals the need for a novel notion ofoccupancyto track

the number of innovative packets each node has for the destination, and hence to determine

the throughput capacity of the network. This notion will be formalized in the following

section.

The main motivating factor to develop a theoretical model for these networks is to

understand the throughput capacity under RLNC. In order to measure the throughput of

RLNC in these networks, one option is to perform a Monte Carlosimulation where en-

coded packets are generated using coefficients in a large finite fieldFq, and buffer updates

are performed upon each successful reception. This is a significantly time-consuming sim-

ulation due to large field operations. A theoretical model tracking buffer dynamics based

on occupancy of buffers will be a simpler alternate means. As we will see, the devel-

oped model provides a more efficient way of measuring the performance of finite-buffer

networks. Additionally, it provide us with intuitive insights on the dynamics of buffer up-

dates, which is a major step towards computing performance metrics for such networks,

and analyzing the key trade-offs among them.
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9.3 Exact Modeling of Finite-buffer RLNC

Here, we introduce the tools and steps that enable us to trackchanges in the buffer contents

of nodes.

To identify the throughput as defined in (9.1), we assume thatthe source possesses a

sufficiently large block of packets that has to be transmitted to the destination. The first

aim is to formalize the notion of buffer occupancy by investigating the dimension of span

of the stored packets in the buffers. Let{T1,T2, . . . ,Tk} be the original information packets

at the source. Let [n] , {1, 2, . . . , n} denote the set of all intermediate nodes, wheren =

|V| − 2. Let Pi, j(t) be the packet contained in buffer slot j of relay i at time epocht, where

Pi, j(t) =
∑k

l=1 ai, j,lTl, i ∈ [n], j ∈ [mi], andai, j,l is a coefficient in the chosen Galois fieldFq.

LetV(S)(t) , span{Pi, j(t)| j ∈ [mi], i ∈ S} for all S ⊆ [n]. To simplify the notations, we

will drop the reference to time inV(S)(t) by usingV(S). Also, we defineSc
, [n] \ S.

Definition 9.1 For any two subsets of the intermediate nodes S,S′ ⊆ [n], we define the

innovativenessof S w.r.t. S′ at time instant t as:

IS→S′ = dim
(V(S)

) − dim
(V(S) ∩V(S′)

)

. (9.2)

In other words,IS→S′ gives the number of innovative packets that buffer contents of nodes

in S can generate which cannot be generated by the contents of thebuffers of nodes inS′.

Definition 9.2 The occupancy vector{bS}S⊆[n] of the network is defined3 to be

bS , dim
(V(S)

) − dim
(V(S) ∩V(Sc)

)

, S ⊆ [n]. (9.3)

The following lemma shows that the knowledge of occupancy vector {bS}S⊆[n] is equivalent

to knowing the innovativeness of any subset of the relay nodes w.r.t. any other subset. This

result significantly reduces the number of state space variables.

3The precise definition of the occupancy vector must considerthe packets that have already reached{d}
by usingbS , dim(V(S)) − dim(V(S) ∩ V(Sc ∪ {d})). However, the inclusion of{d} affects update rules
only when dealing with the destination. For simplicity, theequivalent definition without the inclusion of{d}
is used in all cases not involving the destination.
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Lemma 9.1 For S,S′ ⊆ [n], IS→S′ = bS′c − b{S∪S′}c.

The proof can be found in Section B.1 of Appendix B.

Since the occupancy vector provides the innovativeness of the contents of each node

w.r.t the remaining nodes, we need to be able to track the dynamics of the occupancy vec-

tor for successful transmissions on links to complete the system modeling. To do so, let

superscripts− and+ denote the status of a system parameter before and after a successful

packet transmission on a link. The following results derivethe rules for updating the oc-

cupancy vector when successful transmissions occur. Throughout these results, we denote

whp/wlp to qualify an event if its probability of occurrence can be made arbitrarily close to

unity/zero by increasing the field size alone.

Lemma 9.2 (Source-to-Relay update) The update rules when a relay i successfully re-

ceives a packet from s are as followswhp.

• If i ∈ S ⊆ [n] and b{i} < mi, then b+S = b−S + 1.

• If i < S ⊆ [n], b{i} < mi and I{i}→Sc\{i} = mi, then b+S = b−S + 1.

• Otherwise, b+S = b−S.

The proof can be found in Section B.2 of Appendix B.

Lemma 9.3 (Relay-to-Relay update) The update rules when relay j successfully receives

a packet from relay i are as followswhp.

• If i ∈ S ⊆ [n], j ∈ Sc, I{ j}→Sc\{ j} < mj and I{i}→Sc > 0, then b+S = b−S − 1.

• Otherwise, b+S = b−S.

The proof can be found in Section B.3 of Appendix B.

Lemma 9.4 (Relay-to-Destination update) The update rules when d successfully receives

a packet from relay j are as followswhp.

95



• If i ∈ S ⊆ [n] and I{i}→Sc > 0, then b+S = b−S − 1.

• Otherwise, b+S = b−S.

The proof can be found in Section B.4 of Appendix B.

On the whole, an update of buffer occupancy occurs only when the delivered packet is

innovative for the receiving node and the buffer of the receiving node is not full. Next, we

describe how the state update rules could be utilized to obtain the throughput of a network.

Let
−→
E∗ = (−→e1, . . . ,

−→e |−→E|) be an ordering of the edge set
−→
E, and letl(t) ∈ {0, 1}|

−→
E| represent the

realization of the channels at timet. That isl i(t) = 1 if the i th edge−→e i in
−→
E∗ does not erase

the transmitted packet during the epocht. Then, given the occupancy vector{bS(t)}S⊆[n] and

the channel realizationl(t), the occupancy vector{bS(t + 1)}S⊆[n] can be determined using

the state update rules presented in Lemmas 9.2, 9.3, 9.4.

Further, the state transition probability matrixT for the corresponding Markov chain

can be identified as follows. Also, letT−→e be the state transition matrix given a successful

packet transmission on the link−→e. For any−→e ∈ −→E, T−→e can be determined using Lem-

mas 9.2, 9.3, 9.4. Therefore,T = ∑

l∈{0,1}|
−→
E |

(
∏

j:l j=0

ε−→e j

)(
∏

i:li=1

ε−→e i
T−→e i

)

. (9.4)

This Markov chain can be proved to beirreducible, aperiodic, and ergodic [100]4.

Therefore, it possesses a unique steady-state probabilitydistribution. Moreover, due to er-

godicity, the time averages are equivalent to the statistical averages. Therefore, the through-

put capacityC(
−→
G) can be determined using the steady state probability of theevent that the

network is in a state wherein the nodes possessing a link to the destination have innovative

packets as follows.

4The proof for the case of a line network is presented in [31].
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C(
−→
G) =

∑

l∈{0,1}|
−→
E |,{bS(t)}

N(l, {bS(t)}) · Pr
(

{bS(t)}
)

, (9.5)

whereN(l, {bS(t)}) represents the number of successfully transmitted packets when state

{bS(t)} and channel realizationl occur together.

9.4 State Size Reduction in a Class of Networks

In Section 9.3, we observed that the number of state variables that we need to track at

each time epoch is 2n − 1 sincebS, the innovativeness of every subset of relay nodes w.r.t.

its complement, must be considered. In this section, we define a class of acyclic network

for which the number of state variables is significantly smaller than 2n − 1 and hence the

complexity of the modeling is considerably reduced.

Consider a partition of the set of relay nodes into types{H1,H2, . . .}, where a relay

nodev belongs toHk if the shortest hop-distance fromv to the destinationd is k, and

H0 , {d}. Define a class of networksN as those where there exists no link (v, v′) such that

v ∈ Hk, v′ ∈ Hk′ andk < k′. Figure 9.1 illustrates a network from this class. Intuitively, in

such a network, a link can exist only if it is between nodes of the same type of the partition,

or start in a node belonging to a type with a higher index and end in a node belonging to

a type with a lower index. This structure enables us to track significantly lesser number of

innovativeness components as stated in the following result.

Theorem 9.1 If the network belongs toN , then we need only track IS→S′ where (1) S⊆ Hk,

and (2) S′ ⊆ ∪0≤k′≤kHk′ such that∪0≤k′<k+1Hk′ ⊆ S′ and S* S′.

Therefore, in these networks, we only need to track
(

∑

k>1[2
2|Hk|+|Hk−1| − 3|Hk|2|Hk−1| −

2|Hk| + 1]
)

state variables. As an example, line networks belong toN . Hence, in a line

network withn intermediate nodes, the number of state variables reduces to n, where they

are exactly the same state variables developed in [31].
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Figure 9.1: An example of a directed acyclic network inN .

9.5 Simulation Results

In this section, we present the results of our performance modeling framework using state

update rules in comparison with an actual packetized implementation of RLNC, and will

show that our framework accurately models the buffer dynamics of the network.

We consider Network 1 and Network 2 shown in Figure 9.2 to compare the results of our

simulations. In Network 1, the edges have erasure probabilitiesε(s,1) = 0.1, ε(1,2) = 0.6,

Figure 9.2: Network 1.

Figure 9.3: Network 2.

ε(1,3) = 0.5, ε(2,4) = 0.4, ε(3,4) = 0.5, andε(4,d) = 0.1. In Network 2, all the edges have
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ε = 0.5 except the edges{(s, 1), (s, 2), (5, d), (6, d)} for whichε = 0.25. All the intermediate

nodes are assumed to have the same buffer size. In order to measure the exact performance

parameters of this network, a block of sizek = 105 packets is sent from the source to the

destination. Figure 9.4 and Figure 9.5 present the variations of the throughput measured
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Figure 9.4: Throughput of Network 1 for different buffer sizes.

by actual simulation of RLNC and the throughput measured by simulation based on the

state update rules developed in our work versus the buffer size. As it can be observed, our

model is very close to the actual simulation results. Further, it confirms the optimality of

RLNC for the infinite buffer setting as the curve approaches to the min-cut capacity for

both networks. It is notable that the time it takes for the actual simulation of RLNC to be

completed is roughly 1000 times the time it takes to simulatethe state update rules.

Another important observation is presented in Table 9.1 which compares the number of

states actually visited (identified by simulations), and a crude upper bound on the number

of states in the Markov chain model. For Network 1, the numberof state variables is

24 − 1 = 15, and a provable upper bound for the number of states is (m+ 1)15, wherem is

the buffer size of each intermediate node. However, it is noticed from simulations that the
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Figure 9.5: Throughput of Network 2 for different buffer sizes.

Table 9.1: Variation of the number of active states vs. buffer size in Network 1.

Buffer Size No. of Active States Upper Bound (m+ 1)15

1 44 32768
2 600 14348907
3 4358 1073741824
4 21061 30517578125

number of states that is actually realized is much lesser than the bound. This observation

signals the need to have a closer look at the Markov chain to reduce its size.
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CHAPTER 10

DECODABILITY ANALYSIS OF RANDOM LINEAR NETWORK
CODING IN LINE NETWORKS

In this section, we will address the problem of decodabilitywhen RLC is performed on a

stream of arriving packets. The following questions arise when addressing such a problem.

What does decodability of a stream of arriving packets at thesource mean? Which parame-

ters in the network rule the behaviour of decoding? How do we guarantee the decodability

of a stream of arriving packets? First, we clearly define the problem of decodability of a

stream of arriving packets, and discuss its importance withsome examples. Then, we will

find the limits on the mean arrival rate and will find expressions for the average length of a

decoded block of packets.

10.1 Notations and Definitions

We consider a memoryless packet arrival process with mean rateλ for the source which is

able to accommodate infinitely many packets until they are decoded at the destination. The

block of packets that are decoded will then be deleted from the source buffer. We consider

a line network of hop-lengthh, a graph with vertex setV = {s = v0, v1, v2, ..., vh−1, d = vh}

and edge set−→e = {{vi, vi+1} : i = 0, ..., h − 1} with erasure probabilityεi on link {vi−1, vi}

for i = 1, ..., h. It is assumed that random linear coding (RLC) overFq is performed at the

source as well as the intermediate nodes, whereFq is the Galois field of sizeq. 1 Moreover,

we employ the following notations. For anyx ∈ [0, 1], x , 1 − x. Nodes and noded

represent the source and destination nodes, respectively.

10.2 Maximum Decodable Throughput

To answer the questions asked at the beginning of the chapter, first we have to identify

the rules and conditions under which a block of RLC encoded packets is decoded at the

1Throughout this chapter, we only consider the case whereq is sufficiently large.
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destination. As an example, similar to the model in [28], assume the source (encoder) has

a finite memory of sizem. Further, the destination (decoder) receives packets directly from

the source,i.e., there is no relay node. For now, we define the state of the network as the

difference between the number of packets arrived at the source and the number of packets

received by the destination,i.e., transmitted to the destination and not lost. At the beginning

of the first time epoch, the memory of the source is empty and weare in state 0. We remain

in this state until the first packetp1 arrives. Suppose the next packet transmitted from the

source to the destination is not lost. Then we still remain instate 0, but the destination

receives a packet that is a random linear combination of onlythe packetp1, i.e., a random

scalar multiple ofp1. Hence, the decoder recoversp1 from the received packet. Now sup-

pose after the first packetp1 arrives, the next outgoing packet is lost and we reach state 1.

Suppose packetp2 arrives before an outgoing packet is successfully transmitted,i.e., trans-

mitted and not lost. Then, any packet to be transmitted by thesource is a random linear

combination ofp1 andp2. Suppose further that a packet is received by the destination, so

we are again in state 1. This packet is currently useless to the destination node, since it is

neitherp1 nor p2. Nevertheless, it contains some information previously unknown to the

destination node,e.g. p1 and p2 lie in a certain linear subspace. Consequently, the next

packet received by the destination delivers previously unknown information, provided that

it is linearly independent of the packet already stored. Such a packet is called an “innova-

tive” packet. Further, it is notable that packetsp1 andp2 will be decoded simultaneously

at the destination and hence will generate adecoded blockof length 2. Basically, every

packet that is transmitted from a non-zero state is innovative at the destination because we

assumeq is sufficiently large. Also, every time the state returns to 0, a block of packets

will be decoded and the length of the decoded block corresponds to the number of packets

arrived during the time that the state was non-zero.

However, as claimed in [28], the statement above is true onlywhen packets arrive at
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the source in states 0, 1, . . . ,m− 1. If a packet arrives at source in statem, the current con-

tents of the source will be overwritten and hence corrupted,and will never be recovered.

This is because a source with a buffer sizem can only generatem innovative packets and

after that any linear combination would be linearly dependent to the previously generated

ones. In other words, the source has exactlym innovative packets to transmit before and

after receiving the new packet, meaning that a packet worth of information is lost by this

arrival. Moreover, the current contents of the source are corrupted and impossible to re-

cover. In [28], the probability of packet loss is defined to characterize such behavior. In

this work, however, an infinitely large buffer size is assumed for the source to investigate

the characteristics and behavior of the decoding process atthe destination for a multi-hop

line network, without having to worry about packet loss or corruption of the contents of

the source buffer. We will realize that such advantages come at the cost of decoding delay,

i.e., occasionally having to wait a long time for a block of packets to be decoded. We call

a stream of packets with a fixed mean arrival rateλ decodableif the expected waiting time

for a block of packets to be decoded is finite. The mean arrivalrateλ associated with a

decodable stream will be called adecodable arrival rate. However, the question is whether

there are any arrival rates for which a stream of packets is not decodable. To answer this

question, next, we will define parameters that have a critical role in characterizing decod-

ability.

In the example above, we realize that each coded packet received at the destination is in

fact a linear “equation” for which the original informationpackets arrived at the source

are its “unknowns” to be found. Hence, upon receiving as manylinearly independent

equations at the destination as the number of unknowns, the system of linear equations

is solvable and hence, a block of packets is decoded. The sizeof the decoded blocks is

equal to the number of unknowns at the moment the system of linear equations is solved.

Therefore, to guarantee that a stream of packets with arrival rateλ is decodable, the number

of unknowns received at the destination should not grow unboundedly with respect to the
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number of equations received. To address such a problem, we need to be able to charac-

terize the growth rate and dependencies of both the number ofinnovative packets at the

destination (equations) and the number of original packetsused in those innovative packets

(unknowns). Previously, in Chapter 3, analytical results have been developed regarding the

arrival rate of innovative packets at the destination when the network performs at steady

state,i.e., throughput.

In a line network setting, we define the innovativeness of node vi with respect to node

vi+1 at time epocht, denoted byI i(t), as the number of packets stored invi that are innovative

for vi+1. The innovativeness of a node is limited to its buffer size,i.e., 0 ≤ I i(t) ≤ mvi .

Further, each arrival at the source increases its innovativeness,IS(t), by one. With RLC

being performed on potentially a large number of information packets at the source, the

buffer of the intermediate nodes contains a limited number of linearly independent packets

(equations) including a large number of source-originatedPackets (unknown variables).

For the purpose of decoding analysis, in addition to the innovativeness of each node, the

number of original packets involved in the buffer contents of each intermediate node is also

considered. Hence, we definePi(t) as the number of original packets used in forming the

linear combinations stored at the buffer of nodevi.

10.2.1 Decodability condition for a Two-hop Line Network

In this section, for simplicity of representation, we consider three nodes: A sourceS, a

relayR, and a destinationD. Further, their innovativeness are denoted byIS(t), IR(t), ID(t),

and the number of original packets used in forming the linearcombinations stored at their

buffers are denoted byPS(t), PR(t), PD(t), respectively.

Previously, we have seen how the innovativeness of each nodechanges with arrival

and/or departure of packets. For example,IS increases by one with each packet arrival

at the source, but potentially2 decreases by one when a packet is transmitted successfully

2IS is non-negative.
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while IR < m, wherem is the buffer size of the relayR. Further,IR potentially3 increases

by one if a packet is successfully transmitted to the relay from the source whenIS > 0, and

potentially decreases by one when a packet is transmitted successfully to the destination.

Finally, ID only increases by one if a packet is successfully transmitted to the destination

from the relay node whenIR > 0.

The changes in parametersPS(t), PR(t), PD(t) are quite different from how innovative-

ness of each node behaves. For the source node, since each arriving packet contributes a

new unknown variable for decoding,PS(t) increases by one with each packet arrival at the

source. Further,PR(t) either remains the same or takes the value ofPS(t − 1) where the

latter occurs when a packet is received at relayR from the source no matter what are the

buffer contents. In other words, when a packet is transmitted by the source and not lost, it

brings a linear combination of all the packets stored at the source and combines it with the

previously stored contents of the relay. Similarly,PD(t) either remains the same or takes

the value ofPR(t − 1) where the latter occurs when a packet is received at the destination.

Note that, the above changes occur regardless of the innovativeness of the packets. To

summarize, letBp(t) be a Bernoulli random variable taking the value 1 with probability p

at time epocht and the value 0 otherwise. The following represents the changes inPS(t),

PR(t), PD(t) in terms ofλ, ε1, andε2.

PS(t + 1) = PS(t) + Bλ(t) (10.1)

PR(t + 1) = PR(t) + Bε1(t) (PS(t) − PR(t)) (10.2)

PD(t + 1) = PD(t) + Bε2(t) (PR(t) − PD(t)) (10.3)

The following lemma summarizes the necessary and sufficient conditions for a block of

packets to be decoded using the parameters described above.

Lemma 10.1 A block of length K is decoded at time t∗ if and only if both the following

relations hold:
3IR should not exceedm.
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1. PD(t∗) = ID(t∗)

2. ID(t∗) − ID(t0) = K, where t0 = max({t < t∗ : PD(t) = ID(t)})

The proof can be found in Appendix C.1.

Lemma 10.1 only presents the conditions for a single event ofdecoding of a block

of packets. However, we are more interested in conditions that must hold to ensure the

decodability of a stream of packets in the long run. At the beginning of this section, using

a toy example, we observed that every time the state of the source returns to 0, a block of

packets will be decoded. Although this statement is not truefor a general multi-hop line

network, later we will see that at steady-state, a block of packets is decoded if and only if

the source revisits the state 0 at least once before the moment of decoding. Lemma 10.3

will present the necessary and sufficient condition for decodability at steady-state.

Lemma 10.2 The ordered tuple(IS(t), IR(t)) forms an irreducible Markov chain.

The proof can be found in Appendix C.2.

Lemma 10.3 A stream of packets with source arrival rateλ is decodable if and only if

in the Markov chain(IS(t), IR(t)), any state of the form(0,Y) is recurrent, where Y=

0, 1, . . . ,m.

The proof can be found in Appendix C.3.

Theorem 7.1 introduces a powerful tool to simplify and analyze complicated Markov

chains with a large number of states [89]. We will use Theorem7.1, to reduce the dimen-

sions of the Markov chain defined in Lemma 10.2 as presented inthe following corollaries.

Corollary 10.1 The Markov chain(IS(t), IR(t)) can be collapsed into a new Markov chain

IR(t) which represents the set of states of the form(X, IR(t)), where X= 0, 1, . . ..

Corollary 10.2 The Markov chain(IS(t), IR(t)) can be collapsed into a new Markov chain

IS(t) which represents the set of states of the form(IS(t),Y), where Y= 0, 1, . . . ,m.
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Lemma 10.4 simplifies the condition of decodability introduced in Lemma 10.3 to in-

clude only the collapsed Markov chainIS(t) instead of the Markov chain (IS(t), IR(t)).

Lemma 10.4 All the states of the Markov chain(IS(t), IR(t)) are recurrent if and only if all

the states of the collapsed Markov chain IS(t) are recurrent.

The proof can be found in Appendix C.4.

The following assumption is used to approximate the limit onthe arrival rateλ. How-

ever, the assumption is not needed to prove the existence of such a limit. To avoid confu-

sion and simplify the presentation, the Markov chainsIS(t), andIR(t), are considered to be

receive-first. The method of deriving both the transmit-first and receive-first distributions

are described in details in Chapter 4.

Assumption 10.1 Let Pr{(IS, IR)}, Pr{IS}, Pr{IR} be the steady-state probability distribu-

tions of the Markov chains(IS(t), IR(t)), IS(t), and IR(t), respectively. Then, the steady-state

probability distributions of source and relay are independent of each other,i.e., Pr{(IS, IR)|IS} =

Pr{IR}, andPr{(IS, IR)|IR} = Pr{IS}.

Finally, the following results summarizes the decodability condition in terms of the

source arrival rateλ.

Lemma 10.5 In the collapsed Markov chain IR(t), the steady state probabilityπR(m) =

lim
t→∞

Pr{IR(t) = m} is a non-decreasing continuous function ofλ, achieving its maximum,

πmax
R (m), when all the states in the collapsed Markov chain IS(t) are transient or null-

recurrent.

The proof can be found in Appendix C.5.

Theorem 10.1 A stream of packets with source arrival rateλ is decodable if and only if

λ < C∗, where C∗ is the maximum throughput,i.e., C∗ = ε1π
max
R (m).

The proof can be found in Appendix C.6.
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10.3 Decoding Delay

In section 10.2, the existence of an upper limit to the decodable arrival rateλ is proved

and derived. However, as mentioned before, decodability with no packet loss or corruption

of the buffer contents, comes at the cost of decoding delay. In this section, we address

the problem of finding analytical expressions for the average length of decoded blocks and

its variations with arrival rateλ. The average length of a decoded block is a measure of

decoding delay at the network since a larger decoded block implies a larger average packet

delay.

First, we start with the familiar two-hop example and propose an upper bound on the

average length of decoded blocks. Then, we will generalize the bound for a multi-hop line

network.

10.3.1 Average Length of Decoded Blocks: Two-hop Line Network

Given a stream of packets is decodable, the Markov chainIS(t) is ergodic and therefore, has

a steady-state probability distribution, denoted byπS(.), whereπS(i) = limt→∞ Pr{IS(t) = i}

for i = 0, 1, 2, . . .. Further, the steady-state probability distribution for the Markov chain

IR(t) is denoted byπR(.), whereπR(i) = limt→∞ Pr{IR(t) = i} for i = 0, 1, . . . ,m. Finally,

Theorem 10.2 provides an upper bound on the average length ofa decoded block in a

two-hop line network setting.

Lemma 10.6 Let T+0 be the time to return to zero for the Markov chain IS(t), i.e. T+0 =

min{t > t0 : IS(t) = IS(t0) = 0}. Then, the expected time to return to zero at steady-state is

E
[

T+0
]

= πS
−1(0).

For the proof, See the proof of Lemma 5 in chapter 2 of [71].

Lemma 10.7 Let Pdec
R (k) be the probability that right after IS(t) returns to zero at time t0,

i.e. IS(t0) = 0, a block of packets including only the original packets arrived at the source
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up to time t0 is decoded, given IR(t0) = k. Then, we have the following for k= 1, 2, . . . ,m:

Pdec
R (k) > {ε1ε2}k−1

ε2 ekε1ε2.

The proof can be found in Appendix C.7.

Theorem 10.2 Let πrcv
R (k) be the conditional steady-state probability that IR(t) = k right

after the relay receives a packet given that the relay is not full before the packet arrives,i.e.

IR < m. Let ldec be the random variable representing the length of a decoded block. Then,

the following provides an upper bound for the average lengthof a decoded block:

E [ldec] < λE
[

T+0
]















m
∑

k=1

πrcv
R (k)Pdec

R (k)















−1

. (10.4)

The proof can be found in Appendix C.8.

10.3.2 Average Length of Decoded Blocks: Multi-hop Line Network

Here, we extend the results of Section10.3.1 to a line network with h hops. The steady-state

probability distribution for the Markov chainI j(t) corresponding to the relayvj is denoted

by π j(·) for j = 1, 2, . . . , h, whereπ j(i) = limt→∞ Pr{I j(t) = i}.

Lemma 10.8 Let Pdec
1 (k1) be the probability that right after IS(t) returns to zero at time

t0, i.e. IS(t0) = 0, all the information required to decode the original packets arrived at

the source up to time t0 is passed to the relay node v1, given I1(t0) = k1. Similarly, Let

Pdec
2 (k2) be the probability that right after I1(t) becomes zero at a time t1, i.e. I1(t1) = 0,

all the required information to decode the original packetsarrived at the source up to time

t0 is passed to the relay node v2, given I2(t1) = k2. Further, Let Pdec
3 (k3), · · · ,P(kh−1)

h−1 be

defined in a similar fashion, where h is the number of hops. Then, we have the following

for j = 1, 2, . . . , h− 1 and kj = 1, 2, . . . ,mi:

Pdec
j (kj) >

{

ε jr j+1

}kj−1
r j+1 ekjε j r j+1,
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where, rj = ε jπ j(mj).

The proof can be found in Appendix C.9.

Theorem 10.3 Let πrcv
j (k) be the conditional steady-state probability that Ij(t) = k right

after node vj receives a packet given that the relay is not full before the packet arrives,i.e.

I j < m. Then, the following provides an upper bound for the average length of a decoded

block in a line network of h hops:

E [ldec] < λE
[

T+0
]

h−1
∏

j=1















mj
∑

k=1

πrcv
j (k)Pdec

j (k)















−1

. (10.5)

The proof can be found in Appendix C.10

10.3.3 Simulation Results

In this section, the proposed upper bounds are validated by comparing it with simulations.

In our simulation setup, the buffer size of all the relay nodes are assumed to be equal,

m = 5 packets. Further, the probability of erasure on all the links are assumed to be the

same,ε = 0.1. The mean arrival rate at the source,λ, is varied in a range that the stream

of packets remain decodable. Then, the variations of the average length of a decoded block

are presented in Fig. 10.1, Fig. 10.2, Fig. 10.3, and Fig. 10.4 for a line network with 2, 3, 4,

and 5 hops, respectively. Clearly, from the simulation results, the upper bound is fairly tight

for a two-hop line network, and as the number of hops increases, the upper bound becomes

looser. The reason for such behavior is multiplication of the upper bound introduced for

the two-hop case for a multi-hop scenario.
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Figure 10.1: Variations of the average length of a decoded block in a two-hop line network
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Figure 10.2: Variations of the average length of a decoded block in a three-hop line network
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Figure 10.3: Variations of the average length of a decoded block in a four-hop line network
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Figure 10.4: Variations of the average length of a decoded block in a five-hop line network
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CHAPTER 11

CONCLUSION OF THE THESIS

In this dissertation, we investigate the problem of performance analysis in finite-buffer net-

works, where the throughput and packet delay are introducedas the main performance

parameters to be characterized. The dissertation addresses issues ranging from the compu-

tation of network throughput and probability distributionof packet delay to modeling the

network buffer dynamics when finite-memory random linear network codingis performed.

In Chapter 1, the problem of performance analysis in finite-buffer networks is motivated

by presenting the related works in the literature. The performance measures are linked to

the stationary distribution of an underlying irreducible Markov chain that exactly models

the network dynamics. In Chapter 2, a general framework is proposed for studying the

latency and throughput of different network scenarios (e.g., wired/wireless, mobile/fixed

topology) in finite-buffer regime. In particular, given the communication protocols and

network settings, an iterative scheme is proposed to approximate the occupancy distribu-

tion of buffers by modeling the states of the network with Markov chains of appropriate

size and complexity. These buffer occupancy distributions can then be used to determine

packet delay and its interplay with network throughput. We believe that our developed

framework can help to understand, and to design more suitable protocols for real-time ap-

plications with high speed (finite-buffer) routers. In Chapter 3, the proposed analytical

framework is used to obtain analytical expressions for the throughput and probability dis-

tribution of packet delay in multi-hop line networks with erasure links. It is claimed that the

problem of identifying capacity is directly related to the problem of finding schemes that

are rate-optimal. Hence, the communication protocol is chosen to be hop by hop lossless

feedback. However, rate-optimality can be achieved by employing random linear network

coding over a large finite field in the absence of feedback. Using simulations, the proposed
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iterative techniques were noticed to be computationally-efficient and near-accurate to an-

alyze and study the behavior of line networks. In Chapter 4, the performance parameters

such as throughput and average latency were analyzed in general wired acyclic networks

with erasure links when a random packet routing scheme with ideal feedback on the links

is used. Here, the main difference with multi-hop line network setting is having nodes with

multiple incoming and outgoing packet streams. In Chapter 5, the framework of analysis is

tuned to include wireless erasure networks and investigatethe trade-offs between through-

put, average packet delay and buffer size when a modified backpressure routing policy is

used. When dealing with backpressure routing scheme, the main difference in applying our

iterative framework is to account for dependency of the arrival and departure rates on the

current occupancy of each node. One of the main reasons that such a routing algorithm

is chosen for analysis is its throughput-optimality for theinfinite-buffer case. In Chap-

ter 6, the effect of finite buffer size on the performance parameters of multihomed wireless

networks is investigated along with the problem of buffer size optimization to meet the re-

quirements of delay-sensitive applications. Here, the delay constraint is assumed such that

at least a certain fraction of packets is required to reach the destination with a delay smaller

than an application-dependent threshold value, and then, the delay-constrained throughput,

also known as goodput, is considered for maximization. In Chapter 7, We have considered

finite-buffer disruption-tolerant networks (DTNs) wherein a direct path between two par-

ticular nodes does not exist due to the mobility and sparseness of the nodes. Hence, the

nodes will deliver messages from source to destination using a “store, carry, and forward”

strategy. Our goal is to obtain analytical expressions for packet latency in such networks

for any mobility model which has stationary properties. Since, the full state-space descrip-

tion of the network is very large, to reduce the state-space and simplify the analysis, we

use the idea of chain-collapsing, meaning that, for a particular relay node and the source

node, we identify all the “desirable” states which contribute to the delay problem, together

with certain additional “auxiliary” states to arrive at an “embedded” Markov chain. Then,
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we developed two collapsed Markov chains RMC and SMC originated from the full state-

space of the network. However, these two Markov chains are not only dependent on each

other but also closely related. Further, their dependency leads us into solving both of them

using our proposed iterative estimation technique. We haveconsidered constraints posed by

contention between nodes for wireless channel to obtain a more realistic model. Our ana-

lytical results are validated using simulations for mobility models such as two-dimensional

random walk and the random waypoint mobility model. In Chapter 8, the problem of

performance analysis for multi-hop line networks with erasures is extended to include a

block-by-block random linear network coding scheme with feedback on the links which

guarantees the length of each decoded block to be the same. InChapter 9, a novel notion

of buffer occupancy for finite-memory random linear network coding(RLNC) in wired

networks is derived. Using this notion, a Markov-chain-based framework is developed to

identify the throughput offered by RLNC using Monte Carlo simulations. This framework

offers significant computational benefits over a complete simulation of RLNC. Though the

size of the Markov chain is exponentially growing with the network size, simulations sug-

gest that a very small portion of the state space is actually visited in reality. As future work,

a closer look at the state space and a thorough analysis to reduce the state space can be

performed to eventually derive analytical throughput estimates. In Chapter 10, the problem

of decodability when RLNC is performed on a stream of arriving packets is addressed. We

first define the decodability of a stream of arriving packets as the finiteness of the waiting

time for a block of packets to be decoded at the destination. Further, we prove that for any

mean source arrival rate smaller that the finite-buffer throughput capacity of a two-hop line

network, the stream is decodable. finally, upper bounds are derived for the average decoded

block length in multi-hop line networks, and validated by simulations.
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APPENDIX A

PROOFS OF RESULTS IN CHAPTER 7

A.1 Proof of Lemma 7.4

Consider the following subsets of states in the original state-space description of the net-

work.

• A: The source is in its on-period and its most recent event was apacket arrival.

• R: The source is in its off-period and its most recent event was meeting a non-full

relay or the destination.

• RF: The source is in its off-period and its most recent event was meeting a full relay.

Here, we collapse these subsets into just three states, resulting in the new Markov chain

shown in Fig. A.1. Clearly,αs from the original chain in Fig. 7.3 is given by the proba-

bility that the chain in Fig. A.1, starting from stateA, visits stateR before coming back to

stateA again. Similarly,βs is given by the probability that the chain in Fig. A.1, starting

from stateR, visits stateA before coming back to stateR again. Such probabilities can be

obtained from the fundamental matrix of the Ergodic Markov Chain (see chapter 2 of [71]

for a discussion on the fundamental Matrix of an ergodic chain) in Fig. A.1. LetZ be the

fundamental matrix for this chain. The probabilitiesαs andβs can be derived using

αs =
πR

πA {ZRR− ZAR} + πR {ZAA− ZRA}
,

βs =
πA

πA {ZRR− ZAR} + πR {ZAA− ZRA}
.

The results will follow after performing the necessary computation which would be com-

puting the fundamental matrixZ for Markov chain shown in Fig. A.1.
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Figure A.1: Three state MC for obtainingαs andβs

A.2 Proof of Lemma 7.6

Considering the network at steady-state,S0 is the random variable representing the time

until the next arrival at the source, given that the source isin its on-period at timeτ = 0.

At this point, the random location of the othern+ 1 nodes follows the steady-state spatial

distribution of the mobility model. Hence,T∞,n is the random variable representing the

waiting time until the source comes in contact with one of then+ 1 nodes. Further,S0 and

T∞,n are independent since the arrival process is independent ofthe mobility. Hence, the

parameterα1 can be expressed as

α1 = Pr{T∞,n < S0}

=

∞
∑

τ=1

Pr{S0 = τ}Pr{T∞,n < τ|S0 = τ}

=

∞
∑

τ=1

FT∞,n(τ)PS0(τ).

The results for the parameterα2 can be proved in a similar fashion.

As for the parameterβ1, given that the source node has no contacts with any other node

(relay or destination) at timeτ = 0, meeting a node during the next time epoch means that
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T∞,n = 1 and hence the result follows. As for the parameterβ2, given that the source node

is in contact with a node (relay or destination) at timeτ = 0, meeting with none of the other

nodes during the next time epoch means thatT0,n > 1 and henceβ2 = 1− Pr{T0,n = 1}.

A.3 Proof of Proposition 7.1

Let pi be the probability that a packet is stored at thei th buffer space of a relay node upon

its reception from the source. In this case, such a packet needs to wait fori − 1 previously

stored packets to be delivered to the destination before being served. Hence, for the packet

to be delivered to the destination, that particular relay node must establishi links with

the destination. Since upon receiving the packet the remaining n + 1 nodes follow the

steady-state spatial distribution of the mobility model, the average waiting time to meet the

destination for the first time isE[T∞] epochs. Note that meeting the destination node is

equivalent to establishing a link with it since there is no contention when the source and

the destination are in the same communication range. Afterwards, the remainingi −1 links

will take an average time of (i − 1)E[T0] epochs to be established. Therefore, by taking an

average, we have the following

Dnet = Pz. (0) + Pz.















B
∑

i=1

pi (E[T∞] + (i − 1)E[T0])















. (A.1)

Further,pi can be characterized as the conditional probability of having i packets in the

buffer of a relay node given that the most recent link that the relay node had is with a

non-empty source, and it can be obtained using

pi =
Pr{Si}

∑B
j=1 Pr{S j}

, (A.2)

where, Pr{Si} is known for i = 1, 2, . . . , B from the steady-state analysis of RMC. Next,

Pz is the conditional probability of the source meeting the destination given that its most

recent link was established with a non-full relay or the destination. After incorporating the

contention between relays,Pz can be determined from

Pz =
E[T0]−1

n
n+1 pcE[T0,n]−1

, (A.3)
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where, the contention failure probabilitypc is derived in Lemma 7.3. Finally, by plugging

(A.2) and (A.3) into (A.1) the result will follow.

A.4 Proof of Proposition 7.2

Let p′i be the probability that a packet is stored at thei th buffer space of the source node

upon its arrival. In this case, such a packet needs to wait fori − 1 previously stored packets

to leave the source before being served. Hence, the source node must establishi links with a

non-full relay or the destination. Since upon arrival of thepacket the remainingn+1 nodes

follow the steady-state spatial distribution of the mobility model, the average waiting time

to meet a relay or the destination for the first time isE[T∞,n] epochs. Further, because the

relays might be full, the average waiting time to establish alink with a non-full relay or the

destination for the first time would beE[T∞,n]pb
−1 epochs. Similarly, the remainingi − 1

links will take an average time of (i − 1)E[T0,n]pb
−1 epochs to be established. Therefore,

by taking an average, we have the following

Dqueue= pb
−1
∞
∑

i=1

p′i
(

E[T∞,n] + (i − 1)E[T0,n]
)

, (A.4)

Further,p′i is the conditional probability of havingi packets in the buffer of the source

given that the most recent event at the source is a packet arrival, and it can be obtained

from

p′i =
Pr{Ai}

∑∞
j=1 Pr{A j}

, (A.5)

where, Pr{Ai} is known fori = 1, 2, . . . from the steady-state analysis of SMC. Finally, by

plugging (A.5) into (A.4) the result will follow.
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APPENDIX B

PROOFS OF RESULTS IN CHAPTER 9

B.1 Proof of Lemma 9.1

bS′c − b{S∪S′}c = dim(V(S′c)) − dim(V(S′c) ∩V(S′))

+ dim(V({S ∪ S′}c) ∩V(S ∪ S′))

− dim(V({S ∪ S′}c)) (B.1)

= dim(V(S′c ∪ S′)) − dim(V(S′))

− dim(V({S ∪ S′}c ∪V{S ∪ S′}))

+ dim(V(S ∪ S′)) (B.2)

= dim(V([n])) − dim(V(S′))

+ dim(V(S ∪ S′)) − dim(V([n])) (B.3)

= dim(V(S ∪ S′)) − dim(V(S′)) (B.4)

= dim(V(S)) − dim(V(S) ∩V(S′)) (B.5)

= IS→S′ (B.6)

Here, we used the fact that for anyA, B ⊂ [n], dim(V(A) ∩ V(B)) = dim(V(A)) +

dim(V(B)) − dim(V(A∪ B)). �

B.2 Proof of Lemma 9.2

First, we consider the case wherei ∈ S. LetA− = {A−1 ,A−2 , . . . ,A−mi
},B− = {B−1 , B−2 , . . . , B−|B−|},

C− = {C−1 ,C−2 , . . . ,C−|C− |} be the buffer contents of relayi, relaysS\{i}, and relaysSc, before

update, respectively. Similar to the proof of Lemma 9.1,

bS = dim(span{A ∪ B ∪ C}) − dim(span{C}). (B.7)
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Let E be the packet received by nodei from the source, and is innovative forA,B, and

C. We consider two cases:

• Case 1: Suppose there exist coefficientsλl , θk, πd s.t. λl , 0 for at least onel, and
∑

l λlA−l +
∑

k θkB−k +
∑

d πdC−d = 0. The existence of such coefficients is equivalent

to I{i}→[n]\{i} < mi, which is equivalent tob{i} < mi. By similar arguments, we can

show thatE ∈ span{A+ ∪ B+ ∪ C+} whp. Therefore, dim(span{A+ ∪ B+ ∪ C+}) =

span{A− ∪ B− ∪ C−} + 1, which results inb+S = b−S + 1.

• Case 2: Suppose no suchλl, θk, πd as in Case 1 exists. In this case, it can be shown

that dim(span{A+ ∪ B+ ∪ C+}) ⊆ dim(span{A− ∪ B− ∪ C−}), and henceb+S = b−S.

Now, let i ∈ Sc. Here, letA− = {A−1 ,A−2 , . . . ,A−|A− |}, B− = {B−1 , B−2 , . . . , B−mi
}, C− =

{C−1 ,C−2 , . . . ,C−|C− |} be the buffer contents of relaysS, relay i, and relaysSc, before update,

respectively. In this case, the only setting where a non-trivial change occurs can be shown to

be the case when there exists noλl , θk s.t.λl , 0 for at least onel, and
∑

l λlB−l +
∑

k θkC−k = 0,

but there existsλl, θk, πd s.t.λl , 0 for at least onel, and
∑

l λlB−l +
∑

k θkC−k +
∑

k′ πdA−k′ = 0.

Here, it can be shown that dim(span{A+ ∪ B+ ∪ C+}) = span{A− ∪ B− ∪ C−} + 1 whp, and

henceb+S = b−S + 1 whp. In all other cases, the state vector remains unchangedwhp. �

B.3 Proof of Lemma 9.3

From Definition 9.2 it is clear that ifi, j ∈ S, thenb+S = b−S. The same applies when

i, j ∈ Sc. In the following, we investigate the update rule for the case i ∈ S, j ∈ Sc. For the

casei ∈ Sc, j ∈ S, the update rule isb+S = b−S and the proof is similar to the one presented

for the casei ∈ S, j ∈ Sc.

Hence, we only consider the case wherei ∈ S, j ∈ Sc. LetA− = {A−1 ,A−2 , . . . ,A−mi
},

B− = {B−1 , B−2 , . . . , B−|B−|}, C− = {C−1 ,C−2 , . . . ,C−mj
} andD− = {D−1 ,D−2 , . . . ,D−|D− |} be the

buffer contents of relayi, relaysS\{i}, relay j, and relaysSc\{ j} before packet transmission,

respectively. Suppose packetE =
∑mi

l=1αlA−l successfully transfers from relayi to relay
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j. Then, for anyS ⊆ [n], We will haveA+ = A−, B+ = B−, D+ = D−, andC+ =

{C−1 + β1E,C−2 + β2E, . . . ,C−mj
+ βmj E}. Note that the coefficientsαl and βk are chosen

randomly fromFq. LetG− = span{A−} ∩ span{C− ∪D−}. We consider two cases:

• Case 1: Suppose there existsλl , θk such thatλl , 0 for at least onel and
∑

l λlC−l +
∑

k θkD−k = 0. Hence,

∑

l

λlC
+
l +

∑

k

θkD
−
k = (

∑

l

λlβl)E ∈ span{C+ ∪D+}

Therefore,E ∈ span{C+ ∪ D+} whp. Further, ifG− , span{A−}, thenE < G− whp,

and span{C+ ∪D+} = span{C− ∪D− ∪ {E}}. Hence,

b+S = dim(span{A+ ∪ B+})

− dim(span{A+ ∪ B+} ∩ span{C+ ∪D+})

= dim(span{A− ∪ B−})

− dim(span{A− ∪ B−} ∩ span{C− ∪D− ∪ {E}})

= b−S − 1

Note thatG− , span{A−} ⇔ I{i}→Sc > 0, and the existence of suchλl , θk⇔ I{ j}→Sc\{ j} <

mj.

On the other hand, ifG− = span{A−}, thenE ∈ G− and sinceG+ = G−, we will have

span{C+ ∪ D+} = span{C− ∪ D−}, and henceb+S = b−S.

• Case 2: Suppose no suchλl, θk as in Case 1 exist. LetF − = {F−i , i ∈ [|F −|]} be a

basis for span{A− ∪B−} ∩ span{C− ∪D−} with F−l =
∑

k γlkC−k +
∑

k′ µlk′D−k′ . Also, let

F + = {F+1 , F+2 , . . . , F+|F −|}, where

F+l =F−l +(
∑

k

γlkβk)E, l ∈ {1, 2, . . . , |F −|}. (B.8)

Note thatF+l ∈ span{A+ ∪ B+} ∩ span{C+ ∪ D+}.

Supposex ∈ span{A+ ∪ B+} ∩ span{C+ ∪ D+}, then there exists representations ofx

as follows.
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x =
∑

k

ηkA
−
k +

∑

k′

δk′B
−
k′ (B.9)

=
∑

l

ξl(C
−
l + βlE) +

∑

l′

ζl′D
−
l′ (B.10)

Therefore, we have

x− (
∑

l

ξlβl)E ∈ span{A− ∪ B−} ∩ span{C− ∪D−}

⇒ x− (
∑

l

ξlβl)E =
∑

l

τlF
−
l =

∑

l

τl(F
+
l −

∑

k

γlkβk)E)

Therefore,

x−
∑

l

τlF
+
l =

(
∑

l

ξlβl−
∑

k,l

τlγlkβk

)

E=Φ(x)E (B.11)

We consider two cases here.

Sub-case 2a: First, suppose thatΦ(x) = 0 for all x ∈ span{A+∪B+}∩span{C+∪D+}.

Then, span{A+∪B+}∩span{C+∪D+} ⊆ span{F +}. However, span{F +} ⊆ span{A+∪

B+} ∩ span{C+ ∪ D+}. Hence, span{F +} = span{A+ ∪ B+} ∩ span{C+ ∪ D+}. Next,

we prove that members ofF + are linearly independent. Suppose
∑

l ωlF+l = 0, then

by (B.8),
∑

l

ωlF
−
l =

(
∑

l,k

ωlλlkβk

)

E (B.12)

Here, ifG− , span{A−}, thenE < F − whp, andF + are linearly independent, again

whp. On the other hand, ifG− = span{A−}, thenE ∈ F − can be uniquely represented

as a linear combination ofF−i , i ∈ [|F −|]. Let E =
∑

l ψlF−l . Given a particular

value of (ω1, · · · , ω|F − |) , 0, due to the randomness of theβk’s, the probability that
∑

l ωlF+l = 0 happens is equal to1
q−1 which can be made as small as required by

choosing a large field size.

Thus,F + are linearly independent in this case. Therefore,

dim(span{A+ ∪ B+}) = dim(span{F+})

= dim(span{F−}).
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Therefore, the update rule will beb+S = b−S.

Sub-case 2b: suppose thatΦ(x) , 0 for somex ∈ span{A+ ∪ B+} ∩ span{C+ ∪ D+}.

Then, from (B.11),E ∈ span{A+ ∪ B+} ∩ span{C+ ∪ D+}. Now, if G− = span{A−},

thenE ∈ span{C− ∪ D−} which means that span{C+ ∪ D+} = span{C− ∪ D−}. Thus,

the update rule in this case is given byb+S = b−S. On the other hand, ifG− , span{A−},

thenE < span{C− ∪ D−}. However, by (B.11),E ∈ span{C+ ∪ D+}. Hence, there

exists a representation ofE as follows

E =
∑

l

πl(C
−
l + βlE) +

∑

l′

ϕl′D
−
l′ . (B.13)

This yields














1−
∑

l

πlβl















E =
∑

l

πlC
−
l +

∑

l′

ϕl′D
−
l′ . (B.14)

Given thatE < span{C− ∪D−}, it follows from (B.14) that
∑

l πlβl = 1 which implies

that
∑

l

πlC
−
l +

∑

l′

ϕl′D
−
l′ = 0. (B.15)

However, in Case 2, there cannot be an equation of the form (B.15), unless we have

πl = 0 for all l. Substitutingπl = 0 in (B.13) results in havingE ∈ span{D−}. This

is a contradiction, sinceA− has innovative packets forC− ∪ D−. Thus, the event

Φ(x) , 0 for somex ∈ span{A+ ∪ B+} ∩ span{C+ ∪D+} occurs wlp. �

B.4 Proof of Lemma 9.4

Here, we will use the complete definition of the occupancy vector, since we are considering

the destination node. It is clear that ifS ⊆ [n] and i ∈ Sc, thenb+S = b−S.

Hence, we consider allS ⊆ [n] wherei ∈ S. Suppose packetE successfully transfers

from relay i to d. Using the same argument as in the relay-to-relay case, if packet E is

innovative toSc∪{d} (i.e., I{i}→Sc > 0), successful transmission can increase dim(span{S}∩

span{Sc∪{d}}) by one becaused always has enough space to store packets. Since dim(span{S})

does not change by transmission ofE, the update rule isb+S = b−S − 1. Further, if packetE
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is not innovative toSc ∪ {d} (i.e., I{i}→Sc = 0), then eitherE ∈ span{d} which results in no

change inbS, or E ∈ span{Sc}. The latter despite increasing dim(span{Sc∪ {d}}) by at most

one, will not change dim(span{S} ∩ span{Sc ∪ {d}}) and hence does not alterbS. �
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APPENDIX C

PROOFS OF RESULTS IN CHAPTER 10

C.1 Proof of Lemma 10.1

Suppose that a block of lengthK is decoded at timet∗. Then, at timet∗, the number

of equations at the destination must have become equal to thenumber of unknowns,i.e.,

ID(t∗) = PD(t∗). Further, by definition,t0 is the last time that the eventPD(t) = ID(t)

has occurred beforet∗, hence,PD(t) > ID(t) for t0 < t < t∗. Therefore,ID(t∗) − ID(t0)

is the number of equations in the latest solvable set of linear equations, leading to find

ID(t∗)−ID(t0) unknowns. The length of the decoded block beingK, results inID(t∗)−ID(t0) =

K. The proof of the reverse statement is straightforward and follows the same steps as

mentioned.

C.2 Proof of Lemma 10.2

Given the channel realizations at timet, i.e., whether if a packet is lost or not at timet, and

knowing the way the innovativeness of each node changes witharrival and/or departure of

packets, it is clear that (IS(t), IR(t)) only depends on (IS(t − 1), IR(t − 1)).

C.3 Proof of Lemma 10.3

Suppose that a stream of packets with source arrival rateλ is decodable. Assume that all

of the states of the form (0,Y) are transient, whereY = 0, 1, . . . ,m. In this case, after a

certain amount of time and also after the last block of packetis decoded, the Markov chain

(IS(t), IR(t)) will never visit any of the states of the form (0,Y). Hence, at no point in time

the number of equations generated and transmitted at the source will be as many as the

number of unknowns used and hence, no block of packets will beever decoded from that

certain time forward. Next, suppose that in the Markov chain(IS(t), IR(t)), any state of the

form (0,Y) is recurrent, whereY = 0, 1, . . . ,m. Then, after visiting an arbitrary state (0, i),
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the block of packets will be decoded with the successful transmission ofi packets to the

destination without receiving more packets from the source. Sincei is finite (i ≤ m), this

event happens with a positive probability. Since a return tosuch states of the form (0,Y) is

recurrent, in a finite time the block of packets will be decoded.

C.4 Proof of Lemma 10.4

First, suppose all the states of the Markov chain (IS(t), IR(t)) are recurrent. Assuming an

arbitrary stateIS = i of the collapsed Markov chainIS(t) is transient means that there is

a non-zero probability thatIS(t) will never return to the statei and hence, the steady-state

probability of statei is zero. Using Theorem 7.1, the sum of the steady-state probabilities

of the group of states of the form (i,Y) in the Markov chain (IS(t), IR(t)) is equal to the

steady-state probability of the statei in the collapsed Markov chainIS(t) which is zero,

whereY = 0, 1, . . . ,m. This implies that the sum of the steady-state probabilities of the

group of states of the form (i,Y) in the Markov chain (IS(t), IR(t)) is equal to zero which

contradicts the assumption that all the states of the Markovchain (IS(t), IR(t)) are recurrent.

Therefore, the initial assumption that an arbitrary stateIS = i of the collapsed Markov

chainIS(t) is transient must be false, and all the states of the collapsed Markov chainIS(t)

are recurrent.

Next, suppose all the states of the collapsed Markov chainIS(t) are recurrent. Assuming

an arbitrary state (IS, IR) = (i, j) in the Markov chain (IS(t), IR(t)) is transient means that

there is a non-zero probability that (IS(t), IR(t)) will never return to the state (i, j). Using

Theorem 7.1. the sum of the steady-state probabilities of the group of states of the form

(i,Y) in the Markov chain (IS(t), IR(t)) is equal to the steady-state probability of the statei

in the collapsed Markov chainIS(t), whereY = 0, 1, . . . ,m. The steady-state probability of

the statei in the collapsed Markov chainIS(t) is non-zero since all the states of the collapsed

Markov chainIS(t) are recurrent. Hence, there is at least one state of the form(i,Y), in the

Markov chain (IS(t), IR(t)) has a non-zero steady-state probability. Suppose that the state
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(i, k) in the Markov chain (IS(t), IR(t)) has a non-zero steady state probability. Because of

the structure of The the Markov chain (IS(t), IR(t)), the state (i, j) can be reached from the

state (i, k) with a positive probability,e.g. by sending or receiving packets at the relay.

Therefore, the state (i, j) is not transient and the result follows from this contradiction.

C.5 Proof of Lemma 10.5

Assumption?? implies that the steady state probabilityπR(m) equals the blocking proba-

bility that the sourceS perceives from the relay nodeR and can be calculated from Equa-

tion (3.3) to beε2 Pr{XR = m}, where Pr{XR = m} is the steady-state probability of the

transmit-first Markov chain depicted in Figure 3.2. Sinceε2 is assumed to be a constant,

to prove the lemma, we need to prove the results for Pr{XR = m} instead ofπR(m). In the

transmit-first Markov chain depicted in Figure 3.2,α = r inε2, β = r inε2, andα0 = r in, where

r in is the arrival rate of packets from the source. Clearly,r in increases withλ because larger

λ increases the probability of the source to be non-empty and hence increases the arrival

rate of innovative packets to the relay from the sourse. Therefore,α andα0 increase withλ

andβ decreases withλ. Intuitively, by examining the Markov chain in Figure 3.2, largerα

andα0, and smallerβ leads to a larger steady-state probability for statem, i.e., Pr{XR = m}.

Hence, Pr{XR = m} is a non-decreasing function ofλ and from Equation (3.2), it can be

seen that it is a continuous function as well. Further, by increasingλ the probability of

the source being in empty state decreases. However, at some point increasingλ leads to a

situation in which the empty state of the source becomes transient or null-recurrent. In this

case, the parametersα, α0 andβ will not change anymore andπR(m) achieves its maximum

πmax
R (m).

C.6 Proof of Theorem 10.1

Using Lemma 10.3 and Lemma 10.4, it is clear that to prove the theorem we need to prove

that the state 0 in the collapsed Markov chainIS(t) is recurrent if and only ifλ < C∗, where
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C∗ = ε1π
max
R (m).

Suppose that former holds,i.e., the state 0 in the Markov chainIS(t) is recurrent. Then,

assume thatλ ≥ C∗. Further, letrout(λ) be the maximum possible departure rate at the

source which equalsε1πR(m). From Lemma 10.5, we know thatπR(m) is a non-decreasing

continuous function ofλ, achieving its maximum,πmax
R (m), when all the states in the col-

lapsed Markov chainIS(t) are transient or null-recurrent. Hence,rout(λ) is a non-increasing

continuous function ofλ, achieving its minimum,rmin
out = ε1π

max
R (m) = C∗, when all the

states in the collapsed Markov chainIS(t) are transient or null-recurrent. Since the state

0 in the Markov chainIS(t) is recurrent, it is clear that the arrival rate at the sourceis

smaller than the maximum possible departure rate,i.e., λ < rout(λ). It is also known that

rout(λ) ≥ C∗ sinceC∗ = rmin
out . Let λ∗ be the smallest arrival rate at the source for which

the state 0 of the Markov chainIS(t) is transient or null-recurrent meaning for any arrival

rate smaller thanλ∗ the state 0 is recurrent,i.e., λ < rout(λ) for anyλ < λ∗. Then, because

rout(λ) is a continuous function ofλ, we haveλ∗ = rout(λ∗). Further,rout(λ∗) = rmin
out = C∗

becauserout(·) achieves its minimum when all the states in the Markov chainIS(t) are tran-

sient or null-recurrent. Note that, if state 0 is transient,then every other state inIS(t) is also

transient. Hence, we haveλ∗ = C∗ and consequently,λ < C∗ which is a contradiction to

the assumptionλ ≥ C∗. Therefore, the assumptionλ ≥ C∗ must be false which proves the

results.

The proof of the reverse is straightforward. Assumingλ < C∗ guarantees that the

state 0 in the Markov chainIS(t) is recurrent sinceC∗ = ε1π
max
R (m) is the minimum of the

maximum possible departure rates at the source and hence guarantees that the arrival rate

λ is smaller than any maximum departure rates at the source.

C.7 Proof of Lemma 10.7

First, we need to find the condition for decoding the packets arrived at the source up to

time t0. Right afterIS(t) becomes zero, all the needed useful equations for the destination
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to decode the packets arrived at the source up to timet0 are now stored at the relay node.

Further,IR(t0) = k implies that there are onlyk of such equations available at the relay node.

Therefore, to be able to decode, the relay node should not receive any innovative packet

from the source while the destination is receivingk packets from the relay. Letδ be the

probability of the event that in a single time epoch source transmits a packet and the packet

is either lost or not innovative for the relay. Since the source is empty att0, there is a higher

chance that the source remains empty at the next few epochs, leading toδ = 1. However,

after a few epochs, a packet arrives at the source and we haveδ = ε1. Hence, assuming

δ ≥ ε1 is a reasonable approximation for the purpose of steady-state analysis. Consider the

scenario in which the task of decoding will be completed in exactly k + i epochs1, where

i = 0, 1, 2, . . .. We proceed to compute the probability of this scenario. Ini of the epochs

from the firsti + k− 1 epochs, at the relay, neither an innovative packet should be received

nor a packet should be successfully transmitted, which happens with probabilityδε2 in a

single epoch. Further, ink − 1 of the epochs from the firsti + k − 1 epochs, At the relay, a

packet has to be successfully transmitted to the destination while no packet arrives from the

source, which happens with probabilityδε2 in a single epoch. Finally, in the last epoch, a

packet has to be received by the destination, which happens with probabilityε2. Therefore,

we have the following:

Pdec
R (k) =

∞
∑

i=0

(

k+ i − 1
i

)

{δε2}i{δε2}k−1
ε2 (C.1)

≥
∞
∑

i=0

(

k+ i − 1
i

)

{ε1ε2}i{ε1ε2}k−1
ε2 (C.2)

= {ε1ε2}k−1
ε2

∞
∑

i=0

(k + i − 1) · · · (k)
i!

{ε1ε2}i (C.3)

> {ε1ε2}k−1
ε2

∞
∑

i=0

ki

i!
{ε1ε2}i (C.4)

= {ε1ε2}k−1
ε2ekε1ε2 (C.5)

Note that, (C.2) is the result of assumingδ ≥ ε1.

1The minimum number of epochs to complete the decoding isk.
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C.8 Proof of Theorem 10.2

Before any block of packets is decoded at the destination, the following events must occur:

IS(t′) returns to the state 0, andIR(t′) = k with probabilityπrcv
R (k), wherek = 1, 2, . . . ,m.

For eachk, all the packets arrived at the source up to timet′ will be decoded with probability

Pdec
R (k). Therefore, every timeIS(t) returns to zero at epocht′, all the packets arrived at the

source up to timet′ will be decoded with the average probability
m

∑

k=1

πrcv
R (k)Pdec

R (k). Further,

since the expected waiting time forIS(t) to return to zero isE
[

T+0
]

, the average time it takes

for a block of packets to be decoded at the destination isE
[

T+0
]















m
∑

k=1

πrcv
R (k)Pdec

R (k)















−1

.

Finally, the rate at which the destination receives innovative packets isλ given that the

Markov chainIS(t) is ergodic, which is the case since we assume the stream is decodable.

Hence,λE
[

T+0
]















m
∑

k=1

πrcv
R (k)Pdec

R (k)















−1

will be the average length of a decoded block, and

the results follows.

C.9 Proof of Lemma 10.8

The proof is very similar to the proof of Lemma 10.7. In Lemma 10.7, ε2 represents

the probability that a packet is successfully transmitted from the relay to the destination.

However, here, if a relayvj is transmitting a packet tovj+1, it would count as successful

only when the packet is not lost, which occurs with probability ε j+1, and also the relay

vj+1 is not full, which occurs with probabilityπ j+1(mj+1). Therefore, the probability that a

packet is successfully transferred fromvj to vj+1 is r j+1 = ε j+1π j+1(mj+1)

C.10 Proof of Theorem 10.3

A block of packets is decoded at the destination when the following events occur:IS(t′)

returns to the state 0, andI1(t′) = k1 with probabilityπrcv
1 (k1), wherek1 = 1, 2, . . . ,m1. For

eachk1, all the information required to decode the original packets arrived at the source up

to timet′ will be passed tov1 with a probability bounded above byPdec
1 (k1). Therefore, ev-

ery timeIS(t) returns to zero at epocht′, all the information required to decode the original

131



packets arrived at the source up to timet′ will be passed tov1 with an average probability

bounded above by
m1
∑

k1=1

πrcv
1 (k1)P

dec
1 (k1). Similarly, all the information required to decode

only the original packets arrived at the source up to timet′ will be passed tov2 with the

average probability bounded above by
m2
∑

k2=1

πrcv
2 (k2)P

dec
2 (k2), and so on. Finally, all the pack-

ets arrived at the source up to timet′ will be decoded with an average probability bounded

above by
mhe1
∑

kh−1=1

πrcv
h−1(kh−1)P

dec
1 (k1). Further, since the expected waiting time forIS(t) to re-

turn to zero isE
[

T+0
]

, the average time it takes for a block of packets to be decodedat

the destination isE
[

T+0
]

∏h−1
j=1















mj
∑

k=1

πrcv
j (k)Pdec

j (k)















−1

. The rest of the proof is similar to the

proof of Theorem 10.2.
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