
MIXED INTEGER PROGRAMMING APPROACHES FOR
NONLINEAR AND STOCHASTIC PROGRAMMING

A Thesis
Presented to

The Academic Faculty

by

Juan Pablo Vielma Centeno

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
August 2009

MIXED INTEGER PROGRAMMING APPROACHES FOR
NONLINEAR AND STOCHASTIC PROGRAMMING

Approved by:

Professor George Nemhauser, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Zonghao Gu
Gurobi Optimization

Professor Shabbir Ahmed, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Ellis Johnson
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor William J. Cook
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: 2 July 2009

To my wife Johana,

and my mother Maŕıa Angélica.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisors Prof. George L. Nemhauser and Prof. Shabbir Ahmed

for their support throughout my PhD. I am extremely grateful for their advice, guidance

and inspiration in my research and career. Thanks also to the remaining member of my

committee Professor William J. Cook, Dr. Zonghao Gu and Professor Ellis Johnson.

I would specially like to thank my wife and parents for their unconditional love and

constant encouragement. I am deeply appreciate all the sacrifices they did to support me

over many years of study.

I would also like to thank the faculty and staff of the H. Milton Stewart School of

Industrial and Systems Engineering for the high quality education I received during my

PhD. I would specially like to thank my fellow students and friends for helping make the

time I spent at Georgia Tech some of the best years of my life.

Finally, I would like to acknowledge the partial support for this research from National

Science Foundation grants DMI-0121495, DMI-0522485, DMI-0133943, CMMI-0522485 and

CMMI-0758234, AFOSR grant FA9550-07-1-0177, a grant from Exxon Mobil Upstream Re-

search Company and the John Morris Fellowship from the Georgia Institute of Technology.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . x

SUMMARY . xi

I INTRODUCTION . 1

1.1 Background . 1

1.1.1 LP based solvers . 1

1.1.2 Modeling with MILP . 3

1.2 Dissertation Overview . 10

II A LIFTED LINEAR PROGRAMMING BRANCH-AND-BOUND ALGORITHM
FOR MIXED INTEGER CONIC QUADRATIC PROGRAMS 13

2.1 Introduction . 13

2.2 A Branch-and-Bound Algorithm for Convex MINLP 17

2.3 Lifted Polyhedral Relaxations . 21

2.4 Computational Results . 24

2.4.1 Implementation . 25

2.4.2 Test Instances . 25

2.4.3 Results . 27

2.5 Conclusions and Further Work . 39

III MODELING DISJUNCTIVE CONSTRAINTS WITH A LOGARITHMIC NUM-
BER OF BINARY VARIABLES AND CONSTRAINTS 41

3.1 Introduction . 41

3.2 Modeling a Class of Hard Combinatorial Constraints 43

3.3 Branching and Logarithmic Size Formulations 48

3.4 Modeling Nonseparable Piecewise Linear Functions 52

3.5 Extension of the Model to Ground Set [0, 1]J 57

3.6 Computational Results . 61

v

3.7 Conclusions . 65

IV MIXED-INTEGER MODELS FOR NONSEPARABLE PIECEWISE LINEAR
OPTIMIZATION: UNIFYING FRAMEWORK AND EXTENSIONS 67

4.1 Introduction . 67

4.2 Modeling Piecewise Linear Functions . 68

4.3 Mixed Integer Programming Models for Piecewise Linear Functions . . . 71

4.3.1 Disaggregated convex combination models 71

4.3.2 Convex combination models . 73

4.3.3 Multiple choice model . 76

4.3.4 Incremental model . 77

4.4 Properties of Mixed Integer Programming Formulations 78

4.5 Computational Experiments for Continuous Functions 83

4.5.1 Continuous Separable Concave Functions 83

4.5.2 Continuous Non-Separable Functions 89

4.6 Extension to Lower Semicontinuous Functions 92

4.6.1 Formulations with Direct Extension 94

4.6.2 Ad-Hoc Extension for Univariate Functions 95

4.6.3 Theoretical Properties of Formulations 100

4.7 Computational Experiments for Lower Semicontinuous Functions 101

4.7.1 Discontinuous Separable Functions 101

4.7.2 Discontinuous Non-Separable Functions 104

4.8 Conclusions . 105

V MIXED INTER LINEAR PROGRAMMING FORMULATIONS FOR LINEAR
PROGRAMMING WITH PROBABILISTIC CONSTRAINTS 107

5.1 Introduction . 107

5.2 Existing MILP Formulations . 108

5.2.1 1-row Relaxation . 109

5.2.2 Extended 1-row Formulation . 111

5.2.3 Blending . 114

5.3 Extended Formulation for d > 1 . 114

5.4 Strength of 1-row Relaxation . 117

vi

5.4.1 Negative results . 118

5.4.2 Positive Results . 123

5.5 Computational Results . 129

5.5.1 Sharpness Tests d = 2 . 130

5.5.2 Interaction with Other Constraints 133

5.6 Conclusions . 137

REFERENCES . 142

vii

LIST OF TABLES

1 Problem Sizes for Different Values of ε . 28

2 Number of Nodes for Different Values of ε 29

3 Solve Time for Different Values of ε [s] . 29

4 Number of Nodes that Solve CPP(lk, uk) . 29

5 Solve Times for Small Instances [s] . 32

6 Solve Times for Medium Instances [s] . 33

7 Solve Times for Large Instances [s] . 35

8 Solve Time for Root Relaxation [s] . 36

9 Accuracy of Relaxation zLP(ε) [%] . 37

10 Problem Sizes for Different Values of n . 37

11 Total Number of Nodes and Calls to Relaxations for All Instances 38

12 Total Number of Nodes and Calls to Relaxations for Small Instances 39

13 Solve times for one variable functions [s]. 63

14 Solve times for two variable functions on a 4× 4, 8× 8 and 16× 16 grids [s]. 65

15 Sizes of Formulations . 82

16 Solve times for univariate continuous functions [s]. 85

17 Solve characteristics for univariate continuous functions and K = 4. 87

18 Solve characteristics for univariate continuous functions and K = 8. 87

19 Solve characteristics for univariate continuous functions and K = 16. 88

20 Solve characteristics for univariate continuous functions and K = 32. 89

21 Solve times for two variable multi-commodity transportation problems. [s]. 91

22 Solve times for univariate discontinuous functions [s]. 103

23 Solve times for non-separable functions [s]. 105

24 Marginal GAP for d = 2 [%]. 132

25 1-row GAP for d = 2 [%]. 133

26 Transportation Problems 1-row GAP for d = 2 [%]. 135

27 Transportation Problem 2-row GAP for d = 2 [%]. 136

28 Marginal GAP for d = 4 [%]. 137

29 1-row GAP for d = 4 [%]. 138

viii

30 2-row GAP for d = 4 [%]. 139

31 Transportation Problem 1-row GAP for d = 4 [%] 140

32 Transportation Problem 2-row GAP for d = 4 [%] 141

ix

LIST OF FIGURES

1 Basic LP Based Branch-and-Bound Algorithm. 2

2 Univariate Interpolated Piecewise Linear Function. 8

3 Interpolating Bivariate Functions. 9

4 A Lifted LP Branch-and-Bound Algorithm. 19

5 Performance Profile for Different Values of ε 30

6 Performance Profile for Small Instances . 31

7 Performance Profile for Medium Instances 34

8 Performance Profile for Large Instances . 36

9 Two level binary trees for example 3.3. 49

10 Triangulations . 53

11 Partial B&B tree for Example 3.6 . 56

12 A continuous piecewise linear function and its epigraph as the union of poly-
hedra. 69

13 Examples of triangulations of subsets of R2. 76

14 Lower semicontinuous piecewise linear functions. 92

15 Decomposition of fixed charged lower semicontinuous piecewise linear function. 98

16 Example 5.1. 110

17 Example 5.3 for L = 0. 119

18 Example 5.5. 123

19 Simple Configuration. 124

20 Cases of Proposition 5.3. 128

21 Integers in box for d = 2, M1 = 13, M2 = 9 and δ = 0.4. 129

22 Example distribution realizations for d = 1. 131

x

SUMMARY

In this thesis we study how to solve some nonconvex optimization problems by using

methods that capitalize on the success of Linear Programming (LP) based solvers for Mixed

Integer Linear Programming (MILP). A common aspect of our solution approaches is the

use, development and analysis of small but strong extended LP/MILP formulations and

approximations.

In the first part of this work we develop an LP based branch-and-bound algorithm for

mixed integer conic quadratic programs. The algorithm is based on a higher dimensional or

lifted polyhedral relaxation of conic quadratic constraints introduced by Ben-Tal and Ne-

mirovski. The algorithm is different from other LP based branch-and-bound algorithms for

mixed integer nonlinear programs in that, it is not based on cuts from gradient inequalities

and it sometimes branches on integer feasible solutions. We test the algorithm on a series

of portfolio optimization problems and show that it significantly outperforms commercial

and open source solvers based on both linear and nonlinear relaxations.

In the second part we study the modeling of a class of disjunctive constraints with a

logarithmic number of binary variables and constraints. Many combinatorial constraints

over continuous variables such as SOS1 and SOS2 constraints can be interpreted as disjunc-

tive constraints that restrict the variables to lie in the union of a finite number of specially

structured polyhedra. Known mixed integer formulations for these constraints have a num-

ber of binary variables and extra constraints linear in the number of polyhedra. We give

sufficient conditions for constructing formulations for these constraints with a number of

binary variables and extra constraints logarithmic in the number of polyhedra. Using these

conditions we introduce mixed integer binary formulations for SOS1 and SOS2 constraints

that have a number of binary variables and extra constraints logarithmic in the number

of continuous variables. We also introduce the first mixed integer binary formulations for

piecewise linear functions of one and two variables that use a number of binary variables and

xi

extra constraints logarithmic in the number of linear pieces of the functions. We prove that

the new formulations for piecewise linear functions have favorable tightness properties and

present computational results showing that they can significantly outperform other mixed

integer binary formulations.

In the third part we study the modeling of non-convex piecewise linear functions as

MILPs. We review several new and existing MILP formulations for continuous piecewise

linear functions with special attention paid to multivariate non-separable functions. We

compare these formulations with respect to their theoretical properties and their relative

computational performance. In addition, we study the extension of these formulations to

lower semicontinuous piecewise linear functions.

Finally, in the fourth part we study the strength of MILP formulations for LPs with

Probabilistic Constraints. We first study the strength of existing MILP formulations that

only considers one row of the probabilistic constraint at a time. We then introduce an

extended formulation that considers more than one row of the constraint at a time and use

it to computationally compare the relative strength between formulations that consider one

and two rows at a time.

xii

CHAPTER I

INTRODUCTION

1.1 Background

A Mixed Integer Linear Programming (MILP) problem is a nonconvex optimization problem

given by

zMILPP := max cx+ dy (1a)

s.t.

Dx+ Ey ≤ f (1b)

y ∈ Rp (1c)

x ∈ Zn (1d)

where R is the set of real numbers, Z is the set of integers, c ∈ Rn, d ∈ Rp, D ∈ Rm×n,

E ∈ Rm×p and f ∈ Rm. We denote this problem by MILPP and say a solution (x̃, ỹ) is

feasible for MILPP if it satisfies constraints (1b)–(1d).

In its 50+ years of history, MILP theory and algorithms have been significantly devel-

oped [22, 52, 58, 80, 104, 115, 141] and MILP is now considered standard practice in many

applications areas (e.g. [20, 47, 57, 76, 96, 106, 107, 129, 135]). Two reasons for the success

of MILP are its modeling flexibility [40, 67, 139] and the effectiveness of state of the art

Linear Programming (LP) based solvers [24, 25, 69].

1.1.1 LP based solvers

LP based solvers for MILP rely heavily on the LP relaxation of MILPP given by (1a)–(1c),

which we denote by LPP. The basis for these solvers is the Branch-and-Bound algorithm

[77] that performs an intelligent enumeration of the feasible solutions to MILPP by solving a

series of LP problems based on LPP. The simplest version of this algorithm can be described

as follows. For any (lk, uk) ∈ (Z ∪ {−∞})n × (Z ∪ {+∞})n we denote by LPP(lk, uk) and

MILPP(lk, uk) the problem obtained by adding constraints lk ≤ x ≤ uk to LPP and MILPP

1

respectively. We also denote by zLPP(lk,uk) and zMILPP(lk,uk) the optimal objective value

of LPP(lk, uk) and MILPP(lk, uk). In addition, we say that a solution (x̃, ỹ) feasible for

LPP(lk, uk) is integer feasible if it is also feasible for MILPP. A branch-and-bound node k

is defined by some (lk, uk,UBk) ∈ Z2n× (R∪{+∞}) where (lk, uk) are the bounds defining

the node and UBk is an upper bound on zMILPP(lk,uk). Finally, we denote by LB the global

lower bound on zMILPP and by H the set of active branch-and-bound nodes. With these

definitions the basic branch-and-bound algorithm is given by the pseudocode in Figure 1

Set global lower bound LB := −∞.1

Set l0i := −∞, u0
i := +∞ for all i ∈ {1, . . . , n}.2

Set UB0 = +∞.3

Set node list H := {(l0, u0,UB0)}.4

while H 6= ∅ do5

Select and remove a node (lk, uk,UBk) ∈ H.6

Solve LPP(lk, uk).7

if LPP(lk, uk) is feasible and zLPP(lk,uk) > LB then8

Let (x̂k, ŷk) be the optimal solution to LPP(lk, uk).9

if x̂k ∈ Zn then10

LB := zLPP(lk,uk).11

else /* Branch on x̂k */12

Pick i0 in {i ∈ {1, . . . , n} : x̂ki /∈ Z}.13

Let li = lki , ui = uki for all i ∈ {1, . . . , n} \ {io}.14

Let ui0 = bx̂ki0c, li0 = bx̂ki0c+ 1.15

H := H ∪ {(lk, u, zLPP(lk,uk)), (l, uk, zLPP(lk,uk))}16

end17

end18

Remove every node (lk, uk,UBk) ∈ H such that UBk ≤ LB.19

end20

Figure 1: Basic LP Based Branch-and-Bound Algorithm.

Lines 8 and 19 of the algorithm eliminate all nodes that cannot have any integer feasible

solutions with an objective value larger than that of the best integer feasible solution found

so far. If we omit these lines the algorithm will essentially enumerate every x̃ ∈ Zn that can

be completed to a solution (x̃, ỹ) feasible for MILPP and chose the one for which zLPP(x̃,x̃)

is largest. Hence, these steps are crucial for the performance of the algorithm. One of

the reasons for effectiveness of modern LP based solvers for MILP is that they use a wide

2

array of techniques to improve bounds zLPP(lk,uk) in line 8 and UBk in line 19 to a number

closer to zMILPP(lk,uk). This is also the reason that zLPP being close to zMILPP is a desirable

property for MILPs.

Another reason for the effectiveness of modern solvers is the use of the warm start

capabilities of the simplex algorithm for solving a series of very similar LP problems. For

example, LPP(lk, u) constructed in line 16 of the algorithm in Figure 1 is almost identical

to LPP(lk, uk) so we can hope that a few dual simplex iterations starting from the optimal

solution to LPP(lk, uk) would suffice to solve LPP(lk, u). Usually, this is significantly faster

than solving LPP(lk, u) from scratch.

1.1.2 Modeling with MILP

MILP can clearly be used to model problems where the decision variables are discrete

or indivisible such as the number of cars sold or the number of workers assigned to a

task. However, MILP can also be used to model additional types of constraints such as

implications or other logical conditions. A study of the types of constraints that can be

modeled as MILPs began with Meyer [98, 99, 100, 101] and was continued by Jeroslow

and Lowe [64, 66, 67, 68, 87]. They showed that the constraints that can be modeled as

MILPs are essentially those of the form x ∈ ⋃i∈I Pi ⊂ Rn, where {Pi}i∈I is a finite family

of polyhedra with a special property that is satisfied if, for instance, all the polyhedra are

bounded.

For example, if we wish to model the constraint x ∈ Q4 for

Q4 := {x ∈ R4 : |x1|+ |x2| ≤ 1, x3 = x4 = 0} ∪ {x ∈ R4 : |x2|+ |x3| ≤ 1, x1 = x4 = 0}

∪ {x ∈ R4 : |x3|+ |x4| ≤ 1, x1 = x2 = 0} (2)

3

we can use the MILP formulation given by

rx1 + sx2 ≤ 1 ∀r ∈ {−1, 1}, s ∈ {−1, 1} (3a)

rx2 + sx3 ≤ 1 ∀r ∈ {−1, 1}, s ∈ {−1, 1} (3b)

rx3 + sx4 ≤ 1 ∀r ∈ {−1, 1}, s ∈ {−1, 1} (3c)

rx1 ≤ z1 ∀r ∈ {−1, 1} (3d)

rx2 ≤ z1 + z2 ∀r ∈ {−1, 1} (3e)

rx3 ≤ z2 + z3 ∀r ∈ {−1, 1} (3f)

rx4 ≤ z3 ∀r ∈ {−1, 1} (3g)

z1 + z2 + z3 = 1 (3h)

0 ≤ zj ≤ 1 ∀j ∈ {1, 2, 3} (3i)

z ∈Z3 . (3j)

Of course, there are alternative MILP formulations for this constraint, which raises the

question of what is a good. One desirable property of the formulation is for its size to be

small. However, having the LP relaxation of a MILP be “similar” to the MILP is also a very

desirable property. We explore these issues in the next two sections and then give a more

practical example of modeling with MILP which is related to two chapters of this thesis.

1.1.2.1 Quality of MILP Formulations

If we want to maximize
∑4

j=1 cjxj over all x ∈ Q4 for some c ∈ R4 we can solve the MILP

given by zMILPP := max{∑4
j=1 cjxj : (3a)–(3j)}. As noted in Section 1.1.1, the performance

of an LP based algorithm when solving this MILP will be highly dependent on how close

zLPP := max{∑4
j=1 cjxj : (3a)–(3i)} is to zMILPP. Ideally we would like zMILPP = zLPP

or at least δ := (zLPP − zMILPP)/zMILPP � 1 for all c ∈ R4. Unfortunately, we have that

δ ≥ 1 for any c ∈ {−1, 1}4. In effect, any (x, z) feasible for (3a)–(3j) has
∑4

j=1 |xj | ≤ 1

which implies zMILPP = 1 and, for c ∈ {−1, 1}4, (x, z) given by xi = ci/2 for i ∈ {1, . . . , 4}
z1 = z3 = 1/2 and z2 = 0 is feasible for (3a)–(3i) which implies zLPP ≥ 2. However, we can

4

achieve zMILPP = zLPP for all c ∈ R4 by adding to (3a)–(3j) the 16 inequalities given by

4∑
i=1

rixi ≤ 1 ∀r ∈ {−1, 1}4. (4)

The condition zMILPP = zLPP for all c ∈ R4 is equivalent to asking for the projection of

(3a)–(3i) onto the x variables to be equal to the convex hull of Q4. A MILP formulation

with this property is referred to as sharp by Jeroslow and Lowe, who also showed that it is

the best we can ask from a MILP formulation if we only consider the original x variables

[67, 87].

But if we consider the integrality requirements on the z variables of MILPP, there is

an even stronger property. We can ask that every optimal solution to LPP should also be

feasible for MILPP. This property is equivalent to requiring the extreme points of LPP to

naturally comply with the integrality requirements of MILPP. When x ∈ ⋃i∈I Pi is included

in a larger problem that includes additional constraints this property is usually required to

hold in the absence of these additional constraint and in this case the formulation is referred

to as locally ideal [105, 106].

A locally ideal formulation is always sharp, but not vice versa. For example, the

formulation of x ∈ Q4 given by (3a)–(3j) and (4) is sharp, but its LP relaxation has

x1 = x2 = z1 = z3 = 1/2, x3 = x4 = z2 = 0 as an extreme point and hence is not locally

ideal.

1.1.2.2 Extended Formulations

Constructing good formulations of x ∈ ⋃i∈I Pi using only the original x variables and binary

variables z ∈ {0, 1}|I| can sometimes require a large number of constraints. For example,

let Qn be the generalization of Q4 given by

Qn :=
n−1⋃
i=1

{x ∈ Rn : |xi|+ |xi+1| ≤ 1, xj = 0∀j /∈ {i, i+ 1}} . (5)

5

A sharp MILP formulation of x ∈ Qn is given by

n∑
j=0

rjxj ≤ 1 ∀s ∈ {−1, 1}n (6a)

rx1 ≤ z1 ∀r ∈ {−1, 1} (6b)

rxj ≤ zj + zj−1 ∀i ∈ {2, . . . , n− 1}, r ∈ {−1, 1} (6c)

rxn ≤ zn−1 ∀r ∈ {−1, 1} (6d)

n−1∑
j=1

zj = 1 (6e)

z ∈ {0, 1}n−1. (6f)

This formulation has 2n + 2n+ 1 constraints besides the integrality requirements on z and

this number cannot be significantly reduced while preserving the sharpness property if we

remain in the (x, z) space. In effect, it is easy to show that constraints (6a) are facet defining

for both conv(Qn) and conv
({

(x, z) ∈ R2n : (6a)–(6f)
})

.

In contrast, if we allow the use of auxiliary variables we can construct formulations with a

significantly smaller number of constraints. For example, by using a well known formulation

trick we can construct a sharp MILP formulation of x ∈ Qn with 4n + 2 constraints given

by

rxj ≤ yj ∀j ∈ {1, . . . , n}, r ∈ {−1, 1} (7a)
n∑
j=0

yj ≤ 1 (7b)

rx1 ≤ z1 ∀r ∈ {−1, 1} (7c)

rxj ≤ zj + zj−1 ∀j ∈ {2, . . . , n− 1}, r ∈ {−1, 1} (7d)

rxn ≤ zn−1 ∀r ∈ {−1, 1} (7e)

n−1∑
j=1

zj = 1 (7f)

z ∈ {0, 1}n−1. (7g)

However, this formulation is still not locally ideal for n = 4 since its LP relaxation has

x1 = x2 = y1 = y2 = z1 = z3 = 1/2, x3 = x4 = z2 = 0 as an extreme point. Fortunately,

6

the following theorem by Balas shows us how to construct a locally ideal formulation for a

disjunctive set such as Qn.

Theorem 1.1 (Balas [9]). Let

D :=
r⋃
i=1

{x ∈ Rn : Aix ≤ bi} (8)

for Ai ∈ Rmi×n, bi ∈ Rmi such that

{x ∈ Rn : Aix = 0} = {x ∈ Rn : Ajx = 0} ∀i, j ∈ {1, . . . , r}. (9)

A locally ideal formulation with r(n+ 1) variables and r + n+ 1 +
∑r

i=1mi constraints for

x ∈ D is given by

Aixi ≤ zibi ∀i ∈ {1, . . . , r} (10a)
r∑
i=1

xi = x (10b)

r∑
i=1

zi = 1 (10c)

z ∈ {0, 1}r. (10d)

The auxiliary variables used in formulation (10) correspond to a copy of variables x for

each polyhedron on the right hand side of (8) and binary variables that indicate which one

of these polyhedrons is selected. Condition (9) simply require that all polyhedrons on the

right hand side of (8) should have the same directions of unboundedness.

Using Theorem 1.1 we obtain the locally ideal formulation of x ∈ Qn with 4n − 3

variables and 2n constraints given by

rxjj + sxjj+1 ≤ zj ∀j ∈ {1, . . . , n− 1}, r ∈ {−1, 1}, s ∈ {−1, 1} (11a)

x1 = x1
1 (11b)

xj = xjj + xj−1
j ∀j ∈ {2, . . . , n− 1}, r ∈ {−1, 1} (11c)

xn = xn−1
n (11d)

n−1∑
j=1

zj = 1 (11e)

z ∈ {0, 1}n−1. (11f)

7

MILP formulations that use additional auxiliary variables are usually referred to as ex-

tended formulations and have been used to construct strong compact formulations for many

problems (for example, see [34] and the references within). The idea of using auxiliary vari-

ables to exploit the favorable properties of projection [10] have also been used to construct

compact polyhedral approximations of convex sets [15].

1.1.2.3 Example: MILP Models for Piecewise Linear Interpolations

We now show how MILP can be used to model an approximation of a nonlinear function.

We first detail the construction for univariate functions and then sketch it for bivariate

functions.

A common way to approximate a univariate non-linear function g : [l, u] → R is to

subdivide [l, u] into subintervals of the form [dk−1, dk] for breakpoints l = d0 < d1 < . . . <

dK−1 < dK = u and construct the piecewise linear interpolation given by

f(x) :=
{
g(dk−1) + g(dk)−g(dk−1)

dk−dk−1
(x− dk−1) x ∈ [dk−1, dk]. (12)

The resulting function f is also referred to as the piecewise Lagrange polynomial of degree

1 or the linear spline interpolation of g (e.g. [102, 110]) and is the only function that is

continuous on [l, u], affine on each subinterval [dk−1, dk] and agrees with g on all of the break

points. This procedure is illustrated in Figure 2, where g is given by the dashed curve and

f by the three thick line segments.

d0 d1 d2 d3

f(d3)
0

f(d0)

f(d1)

f(d2)

Figure 2: Univariate Interpolated Piecewise Linear Function.

For the resulting piecewise linear function f : [l, u] → R we have that f(x) = z is

8

equivalent to (x, z) ∈ Qk for

Qk :=
K⋃
k=1

{
(x, z) ∈ R2 : z = f(dk−1) +

f(dk)− f(dk−1)
dk − dk−1

(x− dk−1) , dk−1 ≤ x ≤ dk
}
,

which we can model as the MILP (see for example section I.1.4 of [104]) given by
K∑
k=0

dkλk = x,
K∑
k=0

f(dk)λk = z,
K∑
k=0

λk = 1, λk ≥ 0 ∀k ∈ {0, . . . ,K} (13a)

λ0 ≤ y1, λK ≤ yK , λk ≤ (yk + yk+1) ∀k ∈ {1, . . . ,K − 1} (13b)

K∑
k=1

yk = 1, yk ∈ {0, 1} ∀k ∈ {1, . . . ,K}. (13c)

Constraints (13a) describe (x, z) = (x, f(x)) as the convex combination of points (dk, f(dk))Kk=0.

Constraints (13b)–(13c) assures the validity of this convex combination by enforcing the

combinatorial requirement on (λk)Kk=0 that at most two λk’s can be non-zero and that if

two λk’s are non-zero their indices must be adjacent (i.e. if λi > 0 and λj > 0 then j = i+1).

This combinatorial requirement is known as SOS2 constraints [12].

Formulation (13) is sharp, but it not locally ideal [36, 72, 105]. However, we can again

use Corollary 2.1.2 of [9] to get an extended formulation of (x, z) ∈ Qk that is locally ideal.

This formulation is described in Section 4.3.3 of Chapter 4.

f(x,y)

y

x

(a) Bivariate Piecewise Linear Function.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

(b) Triangulation

Figure 3: Interpolating Bivariate Functions.

A similar procedure can be used for multivariate functions. For example, for a bivariate

function g : [l, u]2 → R we can triangulate (e.g. [126, 142]) [l, u]2 by subdividing it into a

9

finite number of simplices and construct a linear spline interpolation f that is continuous,

affine on each of the simplices and agrees with g on all the vertices of the triangulation

(e.g. [75]). This procedure is illustrated in Figure 3 where Figure 3(a) shows the piecewise

linear function resulting from the interpolation of g(x, y) := sin
(
x/2 + (y/5)2

)
over the

triangulation of [0, 8]2 given in Figure 3(b). The vertices of this triangulation are the points

in {0, 1, . . . , 8}2.

For the resulting piecewise linear function f : [l, u]2 → R we can use an extension of

formulation (13) for multivariate piecewise linear functions given in [82, 96, 127]. This exten-

sion describes (x, y, z) = (x, y, f(x, y)) as the convex combination of points (v1, v2, f(v1, v2))

for each vertex (v1, v2) of the triangulation used to define f . Validity of this convex com-

bination is assured by a combinatorial constraint that is the analog of SOS2 constraints

for triangulations. This extension is described in detail in Section 3.4 of Chapter 3 and

Section 4.3.2 of Chapter 4. This formulation is again sharp and not locally ideal, but we

can also use Corollary 2.1.2 of [9] to construct a locally ideal formulation that is described

in Section 4.3.3 of Chapter 4.

1.2 Dissertation Overview

In this thesis we study how to solve some nonconvex optimization problems by using meth-

ods that capitalize on the success of LP based solvers for MILP. A common aspect of

our solution approaches is the use, development and analysis of small but strong extended

LP/MILP formulations and approximations.

In Chapter 2 work we develop a LP based branch-and-bound algorithm for Mixed Integer

Conic Quadratic programs (MICQP). The algorithm is based on an extended or lifted

polyhedral relaxation of conic quadratic constraints introduced by Ben-Tal and Nemirovski

[15]. The algorithm is different from other LP based branch-and-bound algorithms for mixed

integer nonlinear programs in that, it is not based on cuts from gradient inequalities and

it sometimes branches on integer feasible solutions. The algorithm is conceptually valid for

any mixed integer nonlinear programming problem whose continuous relaxation is a convex

optimization problem, but we only test it on MICQP problems as we are only aware of the

10

existence of an efficient lifted polyhedral relaxation for this case. We test the algorithm

on a series of portfolio optimization problems and show that it significantly outperforms

commercial and open source solvers based on both linear and nonlinear relaxations.

In Chapter 3 we study the modeling of a class of disjunctive constraints with a loga-

rithmic number of binary variables and constraints. Many combinatorial constraints over

continuous variables such as SOS1 and SOS2 constraints [12] can be interpreted as disjunc-

tive constraints that restrict the variables to lie in the union of a finite number of specially

structured polyhedra. Known mixed integer binary formulations for these constraints have a

number of binary variables and extra constraints linear in the number of polyhedra. We give

sufficient conditions for constructing formulations for these constraints with a number of

binary variables and extra constraints logarithmic in the number of polyhedra. Using these

conditions we introduce mixed integer binary formulations for SOS1 and SOS2 constraints

that have a number of binary variables and extra constraints logarithmic in the number

of continuous variables. We also introduce the first mixed integer binary formulations for

piecewise linear functions of one and two variables that use a number of binary variables and

extra constraints logarithmic in the number of linear pieces of the functions. We prove that

the new formulations for piecewise linear functions have favorable tightness properties and

present computational results showing that they can significantly outperform other mixed

integer binary formulations.

In Chapter 4 we study the modeling of non-convex piecewise linear functions as MILPs.

We review several new and existing MILP formulations for continuous piecewise linear func-

tions including the one introduced in Chapter 3. We pay special attention to the modeling

of multivariate non-separable functions such as the one depicted in Figure 3(a). We compare

the formulations with respect to their theoretical properties and their relative computational

performance. In particular, we study which formulations are sharp and which are locally

ideal. In addition, we study the extension of the formulations to lower semicontinuous

piecewise linear functions through a general technique and ad-hoc approaches.

Finally, in Chapter 5 we study the strength of MILP formulations for LPs with Prob-

abilistic Constraints. We first study the strength of existing MILP formulations that only

11

considers one row of the probabilistic constraint at a time. We then introduce an extended

formulation that considers more than one row of the constraint at a time and use it to

computationally compare the relative strength between formulations that consider one and

two rows at a time.

12

CHAPTER II

A LIFTED LINEAR PROGRAMMING BRANCH-AND-BOUND

ALGORITHM FOR MIXED INTEGER CONIC QUADRATIC

PROGRAMS

2.1 Introduction

This chapter deals with the development of an algorithm for the class of mixed integer

nonlinear programming (MINLP) problems known as mixed integer conic quadratic pro-

gramming problems. This class of problems arises from adding integrality requirements to

conic quadratic programming problems [86], and is used to model several applications from

engineering and finance [3, 13, 31, 86, 85, 23, 32, 94, 21]. Conic quadratic programming

problems are also known as second order cone programming problems, and together with

semidefinite and linear programming (LP) problems are special cases of the more general

conic programming problems [14]. For ease of exposition, we will refer to conic quadratic

and mixed integer conic quadratic programming problems simply as conic programming

(CP) and mixed integer conic programming (MICP) problems respectively.

We are interested in solving MICP problems of the form

zMICPP := max
x,y

cx+ dy (14)

s.t.

Dx+ Ey ≤ f (15)

(x, y) ∈ CCi i ∈ I (16)

(x, y) ∈ Rn+p (17)

x ∈ Zn (18)

where c ∈ Rn, d ∈ Rp, D ∈ Rm×n, E ∈ Rm×p, f ∈ Rm, I ⊂ Z+, |I| <∞ and for each i ∈ I
(x, y) ∈ CCi is a conic constraint of the form

(x, y) ∈ CC := {(x, y) ∈ Rn+p : ||Ax+By + δ||2 ≤ ax+ by + δ0} (19)

13

for some r ∈ Z+, A ∈ Rr×n, B ∈ Rr×p, δ ∈ Rr, a ∈ Rn, b ∈ Rp, δ0 ∈ R and where || · ||2
is the Euclidean norm and for two vectors u, v ∈ Rk of the same dimension uv denotes the

inner product
∑k

i=1 uivi. We denote the MICP problem given by (14)–(18) as MICPP and

its CP relaxation given by (14)–(17) as CPP.

MICPP includes many portfolio optimization problems (see for example [13], [31], [86]

and [85]). A specific example is the portfolio optimization problem with cardinality con-

straints (see for example [23], [32], [94] and [21]) which can be formulated as

max
x,y

āy (20)

s.t.

||Q1/2y||2 ≤ σ (21)
n∑
j=1

yj = 1 (22)

yj ≤ xj ∀j ∈ {1, . . . , n} (23)
n∑
j=1

xj ≤ K (24)

x ∈ {0, 1}n (25)

y ∈ Rn+, (26)

where n is the number of assets available, y indicates the fraction of the portfolio invested

in each asset, ā ∈ Rn is the vector of expected returns of the stocks, Q1/2 is the positive

semidefinite square root of the covariance matrix of the returns of the stocks, σ is the

maximum allowed risk and K < n is the maximum number of stocks that can be held in

the portfolio. Objective (20) is to maximize the expected return of the portfolio, constraint

(21) limits the risk of the portfolio, and constraints (23)–(25) limit the number of stocks that

can be held in the portfolio to K. Finally, constraints (22) and (26) force the investment

of the entire budget in the portfolio.

Most algorithms for solving MICP problems (and in general for solving MINLP problems

whose continuous relaxations are convex optimization problems) can be classified into two

major groups depending on what type of continuous relaxations they use (see for example

14

[28] and [56]).

The first group only uses the nonlinear relaxation CPP in a branch-and-bound procedure

[29, 59, 84, 123]. This procedure is the direct analog of the LP based branch-and-bound

procedure for mixed integer linear programming (MILP) problems and is the basis for the

MICP solver in CPLEX 9.0 and 10.0 [62] and the I-BB solver in Bonmin [28]. We refer to

these algorithms as NLP based branch-and-bound algorithms.

The second group is related to domain decomposition techniques in global optimization

(see for example Section 7 of [60] and [124]) and uses polyhedral relaxations of the nonlinear

constraints of MICPP, possibly together with the nonlinear relaxation CPP. These polyhe-

dral relaxations are usually updated after solving an associated MILP problem or inside a

branch-and-bound procedure. Additionally the nonlinear relaxation of MICPP is sporadi-

cally solved to obtain integer feasible solutions, to improve the polyhedral relaxations, to

fathom nodes in a branch-and-bound procedure or as a local search procedure. Some of

the algorithms in this group include outer approximation [49, 50], generalized Benders de-

composition [53], LP/NLP-based branch-and-bound [111] and the extended cutting plane

method [136, 137]. This approach is the basis for the I-OA, I-QG and I-Hyb solvers in

Bonmin [28] and the MINLP solver FilMINT [1]. We refer to these algorithms as polyhedral

relaxation based algorithms.

For algorithms in the second group to perform efficiently, it is essential to have polyhe-

dral relaxations of the nonlinear constraints that are both tight and have few constraints.

To the best of our knowledge, the polyhedral relaxations used by all the algorithms pro-

posed so far are based on gradient inequalities for the nonlinear constraints. This approach

yields a polyhedral relaxation which is constructed in the space of the original variables

of the problem. The difficulty with these types of polyhedral relaxations is that they can

require an unmanageable number of inequalities to yield tight approximations of the nonlin-

ear constraints. In particular, it is known that obtaining a tight polyhedral approximation

of the Euclidean ball without using extra variables requires an exponential number of in-

equalities [11]. To try to resolve this issue, current polyhedral based algorithms generate

the relaxations dynamically.

15

In the context of CP problems, an alternative polyhedral relaxation that is not based

on gradient inequalities was introduced in 1999 by Ben-Tal and Nemirovski [15]. This

approach uses the projection of a higher dimensional or lifted polyhedral set to generate

a polyhedral relaxation of a conic quadratic constraint of the form CC. By exploiting the

fact that projection can significantly multiply the number of facets of a polyhedron, this

approach constructs a relaxation that is “efficient” in the sense that it is very tight and

yet it is defined using a relatively small number of constraints and extra variables. The

relaxation of Ben-Tal and Nemirovski has been further studied by Glineur [54] who also

tested it computationally on continuous CP problems. These tests showed that solving the

original CP problem with state of the art interior point solvers was usually much faster

than solving the polyhedral relaxation.

Although the polyhedral relaxation of [15] and [54] might not be practical for solving

purely continuous CP problems, it could be useful for polyhedral relaxation based algo-

rithms for solving MICP problems. In particular, solving the polyhedral relaxation in a

branch-and-bound procedure instead of the original CP relaxations could benefit from the

“warm start” capabilities of the simplex algorithm for LP problems and the various integer

programming enhancements such as cutting planes and preprocessing that are available in

commercial MILP solvers. The objective of this paper is to develop such a polyhedral relax-

ation based algorithm and to demonstrate that this approach can significantly outperform

other methods. The algorithm is conceptually valid for any MINLP problem whose contin-

uous relaxation is a convex optimization problem, but we only test it on MICP problems as

we are only aware of the existence of an efficient lifted polyhedral relaxation for this case.

The remainder of the chapter is organized as follows. In Section 2.2 we introduce a

branch-and-bound algorithm based on a lifted polyhedral relaxation. In Section 2.3 we

describe the polyhedral relaxation of [15] and [54] we use in our test. Then, in Section

2.4 we present computational results which demonstrate that the algorithm significantly

outperforms other methods. Finally, in Section 2.5 we give some conclusions and possible

future work in this area.

16

2.2 A Branch-and-Bound Algorithm for Convex MINLP

We describe the algorithm for MINLP problems whose continuous relaxations are convex

programs. These problems are usually referred to as convex MINLPs [59, 111, 123, 136]. The

algorithm is somewhat similar to other polyhedral relaxation algorithms and in particular to

enhanced versions of the LP/NLP-based branch-and-bound algorithm such as Bonmin’s I-

Hyb solver and FilMINT. The main differences between the proposed algorithm and existing

polyhedral relaxation based algorithms for convex MINLPs are that:

(i) it is based on a lifted polyhedral relaxation instead of one constructed using gradient

inequalities,

(ii) it does not update the relaxation using gradient inequalities, and

(iii) it will sometimes branch on integer feasible solutions.

The MINLP we solve is of the form

zMINLPP := max
x,y

cx+ dy (27)

s.t.

(x, y) ∈ C ⊂ Rn+p (28)

x ∈ Zn (29)

where C is a compact convex set. We denote the problem given by (27)–(29) by MINLPP.

We also denote by NLPP the continuous relaxation of MINLPP given by (27)–(28) and we

assume for simplicity that MINLPP is feasible. Note that MINLPP includes all MINLPs

for which their continuous relaxation is a convex optimization problem, as a problem with

nonlinear concave (we are maximizing) objective functions can always be converted to one

with a linear objective function.

We further assume that we have a lifted polyhedral relaxation of the convex set C. In

other words there exists q ∈ Z+ and a bounded polyhedron P ⊂ Rn+p+q such that

C ⊂ {(x, y) ∈ Rn+p : ∃ v ∈ Rq s.t. (x, y, v) ∈ P}.

17

Thus we have the lifted linear programming relaxation of MINLPP given by

zLLPP := max
x,y,v

cx+ dy (30)

s.t.

(x, y, v) ∈ P, (31)

which we denote by LLPP.

Note that we could very well choose q = 0 in the construction of LLPP, but as we will

discuss in Section 2.3, the key idea for the effectiveness of our algorithm is the use of a tight

lifted LP relaxation that requires q > 0.

The final problem we use in the algorithm is defined for any x̂ ∈ Zn as

zNLPP(x̂) := max
y

cx̂+ dy

s.t.

(x̂, y) ∈ C ⊂ Rn+p.

We denote this problem by NLPP(x̂).

We use these auxiliary problems to construct a branch-and-bound algorithm for solving

MINLPP as follows. For any (lk, uk) ∈ Z2n we denote by LLPP(lk, uk) and NLPP(lk, uk)

the problems obtained by adding constraints lk ≤ x ≤ uk to LLPP and NLPP respectively.

We also adopt the convention that a node k in a branch-and-bound tree is defined by some

(lk, uk,UBk) ∈ Z2n× (R∪{+∞}) where (lk, uk) are the bounds defining the node and UBk

is an upper bound on zNLPP(lk,uk). Furthermore, we denote by LB the global lower bound

on zMINLPP and by H the set of active branch-and-bound nodes. We give in Figure 4 a lifted

LP branch-and-bound algorithm for solving MINLPP.

A pure NLP based branch-and-bound algorithm solves NLPP(lk, uk) at each node k of the

branch-and-bound tree. The idea of the lifted LP branch-and-bound algorithm of Figure 4

is to replace each call to NLPP(lk, uk) in an NLP based branch-and-bound algorithm by a

call to LLPP(lk, uk). After this replacement special care has to be taken when fathoming by

integrality as an integer feasible solution to LLPP(lk, uk) is not necessarily an integer feasible

18

Set global lower bound LB := −∞.1

Set l0i := −∞, u0
i := +∞ for all i ∈ {1, . . . , n}.2

Set UB0 = +∞.3

Set node list H := {(l0, u0,UB0)}.4

while H 6= ∅ do5

Select and remove a node (lk, uk,UBk) ∈ H.6

Solve LLPP(lk, uk).7

if LLPP(lk, uk) is feasible and zLLPP(lk,uk) > LB then8

Let (x̂k, ŷk) be the optimal solution to LLPP(lk, uk).9

if x̂k ∈ Zn then10

Solve NLPP(x̂k).11

if NLPP(x̂k) is feasible and zNLPP(x̂k) > LB then12

LB := zNLPP(x̂k).13

end14

if lk 6= uk and zLLPP(lk,uk) > LB then15

Solve NLPP(lk, uk).16

if NLPP(lk, uk) is feasible and zNLPP(lk,uk) > LB then17

Let (x̃k, ỹk) be the optimal solution to NLPP(lk, uk).18

if x̃k ∈ Zn then /* Fathom by Integrality */19

LB := zNLPP(lk,uk).20

else /* Branch on x̃k */21

Pick i0 in {i ∈ {1, . . . , n} : x̃ki /∈ Z}.22

Let li = lki , ui = uki for all i ∈ {1, . . . , n} \ {io}.23

Let ui0 = bx̃ki0c, li0 = bx̃ki0c+ 1.24

H := H ∪ {(lk, u, zNLPP(lk,uk)), (l, uk, zNLPP(lk,uk))}25

end26

end27

end28

else /* Branch on x̂k */29

Pick i0 in {i ∈ {1, . . . , n} : x̂ki /∈ Z}.30

Let li = lki , ui = uki for all i ∈ {1, . . . , n} \ {io}.31

Let ui0 = bx̂ki0c, li0 = bx̂ki0c+ 1.32

H := H ∪ {(lk, u, zLLPP(lk,uk)), (l, uk, zLLPP(lk,uk))}33

end34

end35

Remove every node (lk, uk,UBk) ∈ H such that UBk ≤ LB.36

end37

Figure 4: A Lifted LP Branch-and-Bound Algorithm.

19

solution to NLPP(lk, uk). This is handled by the algorithm in lines 11–28. The first step is to

solve NLPP(x̂k) to attempt to correct an integer feasible solution (x̂k, ŷk) to LLPP(lk, uk) into

an integer feasible solution to NLPP(lk, uk). If the correction is successful and zNLPP(x̂k) >

LB we can update LB. This step is carried out in lines 11–14 of the algorithm. Another

complication arises when the optimal solution to LLPP(lk, uk) is integer feasible, but lk 6= uk.

The problem in this case is that integer optimal solutions to LLPP(lk, uk) and NLPP(x̂k)

may not be solutions to MINLPP(lk, uk). In fact, in this case, it is possible for NLPP(x̂k)

to be infeasible and for MINLPP(lk, uk) to be feasible. To resolve this issue, the algorithm

of Figure 4 solves NLPP(lk, uk) to process the node in the same way it would be processed

in an NLP based branch-and-bound algorithm for MINLPP. This last step is carried out in

lines 15–28.

Note that, in lines 21–26, the algorithm is effectively branching on a variable xi such

that x̂ki is integer but for which lki < uki . Branching on integer feasible variables is sometimes

used in MILP (it can be used for example to find alternative optimal solutions) and global

optimization (see for example [124]), but to the best of our knowledge it has never been

used in the context of polyhedral relaxation based algorithms for convex MINLPs.

We show the correctness of the algorithm in the following proposition.

Proposition 2.1. For any polyhedral relaxation LLPP of NLPP using a bounded polyhedron

P, the lifted LP branch-and-bound algorithm of Figure 4 terminates with LB equal to the

optimal objective value of MINLPP.

Proof. Finiteness of the algorithm is direct from the fact that P is bounded. However after

branching in lines 21–26, solution (x̂k, ŷk) could be repeated in one of the newly created

nodes, which could cause (x̂k, ŷk) to be generated again in several nodes. This can only

happen a finite number of times though, as the branching will eventually cause lk = uk or

LLPP(lk, uk) will become infeasible.

All that remains to prove is that the sub-tree rooted at a fathomed node cannot contain

an integer feasible solution to MINLPP which has an objective value strictly larger than

the current incumbent integer solution. The algorithm fathoms a node only in lines 8, 15,

20

17 and 19. In line 8, the node is fathomed if LLPP(lk, uk) is infeasible or if zLLPP(lk,uk) ≤
LB. Because LLPP(lk, uk) is a relaxation of NLPP(lk, uk) we have that infeasibility of

LLPP(lk, uk) implies infeasibility of NLPP(lk, uk) and zNLPP(lk,uk) ≤ zLLPP(lk,uk), hence in

both cases we have that the sub-tree rooted at node (lk, uk) cannot contain an integer

feasible solution strictly better than the incumbent. In line 15, the node is fathomed if

lk = uk or if zLLPP(lk,uk) ≤ LB. In the first case, NLPP(lk, uk) = NLPP(x̂k) and hence

processing node k is correctly done by lines 12–14. In the second case, the node is correctly

fathomed for the same reasons for correctness in line 8. In line 17, the node is fathomed if

NLPP(lk, uk) is infeasible or if zNLPP(lk,uk) ≤ LB, in either case the sub-tree rooted at the

fathomed node cannot contain a integer feasible solution strictly better that the incumbent.

Finally, in line 19 the node is fathomed because solution (x̃k, ỹk) to NLPP(lk, uk) is integer

feasible and hence it is the best integer feasible solution that can be found at the sub-tree

rooted at the fathomed node.

We note that, as in other branch-and-bound algorithms, at any point in the execution

of the algorithm we have a lower bound of zMINLPP given by LB and an upper bound given

by max{UBk : (lk, uk,UBk) ∈ H}. This can be used for early termination of the algorithm

given a target optimality gap.

2.3 Lifted Polyhedral Relaxations

The key idea for the effectiveness of the lifted LP branch-and-bound algorithm is the use

of a lifted polyhedral relaxation (q > 0) for the construction of LLPP. For the algorithm to

be effective we need NLPP(lk, uk) to be called in as few nodes as possible, so we need LLPP

to be a tight approximation of NLPP. On the other hand we need to solve LLPP(lk, uk)

quickly, which requires the polyhedral relaxation to have relatively few constraints and extra

variables. The problem is that using a relaxation with q = 0, such as those constructed

using gradient inequalities, can require a polyhedron P with an exponential number of facets

to approximate the convex set C tightly. In fact, it is known (see for example [11]) that

for any ε > 0 approximating the d-dimensional unit euclidean ball Bd with a polyhedron

P ⊂ Rd such that Bd ⊂ P ⊂ (1 + ε)Bd requires P to have at least exp(d/(2(1 + ε)2)) facets.

21

However, in many instances, only a few inequalities are needed to optimize over a convex set

to a given accuracy. Therefore, current polyhedral relaxation based algorithms do not use

a fixed polyhedral relaxation of C and instead dynamically refine the relaxation as needed.

On the other hand, when we allow for a polyhedron P in a higher dimensional space

we can take advantage of the fact that a lifted polyhedron with a polynomial number of

constraints and extra variables can have the same effect as a polyhedron in the original space

with an exponential number of facets. Exploiting this property, it is sometimes possible to

have a tight lifted polyhedral relaxation of C that can be described by a reasonable number

of inequalities and extra variables. [15] introduced such a lifted polyhedral relaxation for

MICP problems. We now give a compact description of the version of the lifted polyhedral

relaxation of [15] and [54] we use in this study.

We start by noting that a set CC given by (19) can be written as

CC = {(x, y) ∈ Rn+p : ∃(z0, z) ∈ R+ × Rr s.t. Ax+By + δ = z,

ax+ by + δ0 = z0,

(z0, z) ∈ Lr}

where Lr is the (r + 1)-dimensional Lorentz cone given by

Lr := {(z0, z) ∈ R+ × Rr :
r∑

k=1

z2
k ≤ z2

0}.

Hence a polyhedral relaxation of Lr induces a polyhedral relaxation of CC. Then, for a

given tightness parameter ε > 0 we want to construct a polyhedron Lrε such that

Lr (Lrε ({(z0, z) ∈ R+ × Rr : ||z||2 ≤ (1 + ε)z0}. (32)

To describe this polyhedral relaxation of Lr we assume at first that r = 2p for some

p ∈ Z+. We then begin by grouping variables z in Lr into k = r/2 pairs and associate a

new variable ρk for the kth pair. We can then rewrite Lr as

Lr = {(z0, z) ∈ R+ × Rr : ∃ρ ∈ Rr/2 s.t.

r/2∑
k=1

ρ2
k ≤ z2

0

z2
2k−1 + z2

2k ≤ ρ2
k for k ∈ {1, . . . , r/2}}.

22

In other words, we can rewrite Lr using (r/2) 3-dimensional Lorentz cones and one (r/2+1)-

dimensional Lorentz cone as

Lr = {(z0, z) ∈ R+ × Rr :∃ρ ∈ Rr/2 s.t.

(ρ, z0) ∈ Lr/2

(z2k−1, z2k, ρk) ∈ L2 for k ∈ {1, . . . , r/2}}.

By recursively applying this procedure to the (r/2 + 1)-dimensional Lorentz cone we

can rewrite Lr using only (r − 2) 3-dimensional Lorentz cones. We can then replace each

of these 3-dimensional Lorentz cones with the polyhedral relaxation of L2 given by

Ws := {(z0, z1, z2) ∈ R+ × R2 : ∃(α, β) ∈ R2s s.t.

z0 = αs cos
(π

2s
)

+ βs sin
(π

2s
)

α1 = z1 cos (π) + z2 sin (π)

β1 ≥ |z2 cos (π)− z1 sin (π)|

αi+1 = αi cos
(π

2i
)

+ βi sin
(π

2i
)

βi+1 ≥
∣∣∣βi cos

(π
2i
)
− αi sin

(π
2i
)∣∣∣

for i ∈ {1, . . . , s− 1}},

for some s ∈ Z.

For a general r, not necessarily a power of two, these ideas and some careful selection

of the parameter s in Ws yield the polyhedral relaxation of Lr given by

Lrε := {(z0, z) ∈ R+ × Rr : ∃(ζk)Kk=0 ∈ RT (r) s.t.

z0 = ζK1

ζ0
i = zi for i ∈ {1, . . . , r},

(ζk2i−1, ζ
k
2i, ζ

k+1
i) ∈ Wsk(ε) for i ∈ {1, . . . , btk/2c},

k ∈ {0, . . . ,K − 1},

ζktk = ζk+1
dtk/2e for k ∈ {0, . . . ,K − 1} s.t.

tk is odd}

23

where K = dlog2(r)e, {tk}Kk=0 is defined by the recursion t0 = r, tk+1 = dtk/2e for k ∈
{0, . . . ,K − 1}, T (r) =

∑K
k=0 tk and

sk(ε) =
⌈
k + 1

2

⌉
−
⌈

log4

(
16
9
π−2 log(1 + ε)

)⌉
. (33)

From [15] and [54] we have that Lrε complies with (32) for any ε > 0 and hasO(n log(1/ε))

variables and constraints for any 0 < ε < 1/2.

We can then use Lrε to define the relaxation of CC given by

P(CC, ε) = {(x, y) ∈ Rn+p : ∃(z0, z) ∈ R+ × Rr s.t. Ax+By + δ = z,

ax+ by + δ0 = z0,

(z0, z) ∈ Lrε},

which complies with

CC (P(CC, ε) ({(x, y) ∈ Rn+p : ||Ax + By + δ||2 ≤ (1 + ε)(ax + by + δ0)}.

Using this relaxation we can construct the lifted polyhedral relaxation of CPP given by

zLP(ε) := max
x,y,v

cx+ dy (34)

s.t.

Dx+ Ey ≤ f (35)

(x, y, v) ∈ P(CCi, ε) i ∈ I (36)

(x, y, v) ∈ Rn+p+q (37)

where v ∈ Rq are the auxiliary variables used to construct all P(CCi, ε)’s and P(CCi, ε) is

the polyhedron in Rn+p+q whose projection to Rn+p is P(CCi, ε). We denote the problem

given by (34)–(37) as LP(ε) and the problem given by (34)–(37) and (18) as MILP(ε).

2.4 Computational Results

In this Section we present the results of computational tests showing the effectiveness of

the lifted LP branch-and-bound algorithm based on LP(ε). We begin by describing how the

algorithm was implemented, then describe the problem instances we used in the tests and

finally we present the computational results.

24

2.4.1 Implementation

We implemented the lifted LP branch-and-bound algorithm of Figure 4 for LLPP = LP(ε)

and NLPP = CPP by modifying CPLEX 10.0’s MILP solver. We used the branch callback

feature to implement branching on integer feasible solutions when necessary and we used

the incumbent and heuristic callback features to implement the solve of NLPP(x̂k). All

coding was done in C++ using Ilog Concert Technology. We used CPLEX’s barrier solver

to solve CPP(lk, uk) and CPP(x̂). In all cases we used CPLEX’s default settings. We denote

this implementation as LP(ε) -BB .

There are some technical differences between this implementation and the lifted LP

branch-and-bound algorithm of Figure 4. First, in the CPLEX based implementation,

NLPP(x̂k) is solved for all integer feasible solutions found. This is a difference because

the algorithm of Figure 4 only finds integer solutions when LLPP(lk, uk) is integer feasi-

ble, but CPLEX also finds integer feasible solutions by using primal heuristics. Finally,

the implementation benefits from other advanced CPLEX features such as preprocessing,

cutting planes and sophisticated branching and node selection schemes. In particular, the

addition of cutting planes conceptually modifies the algorithm as adding these cuts updates

the polyhedral relaxation defining LLPP. This updating does not use any information from

the nonlinear constraints though, as CPLEX’s cutting planes are only derived using the

linear constraints of LLPP and the integrality of the x variables.

2.4.2 Test Instances

Our test set consists of three different portfolio optimization problems with cardinality

constraints from the literature [31, 86, 85]. For most portfolio optimization problems only

the continuous variables are present in the nonlinear constraints and hence the convex hull

of integer feasible solutions to these problems is almost never a polyhedron. Furthermore,

polyhedral relaxation based algorithms for the purely continuous versions of these problems

are known to converge slowly. For these reasons we believe that portfolio optimization

problems are a good set of problems to test the effectiveness of the lifted LP branch-and-

bound algorithm based on LP(ε).

25

For all three problems we let ai be the random return on stock i and let the expected

value and covariance matrix of the joint distribution of a = (a1, . . . , an) be ā ∈ Rn+ and Q

respectively. Also, let yi be the fraction of the portfolio invested in stock i and Q1/2 be the

positive semidefinite square root of Q.

The first problem is obtained by adding a cardinality constraint to the classical mean-

variance portfolio optimization model to obtain the MICP problem already explained in

(20)–(26). We refer to the set of instances of this problem as the classical instances.

The second problem is constructed by replacing the variance risk constraint (21) of the

classical mean-variance model with two shortfall risk constraints of the form Prob(āy ≥W low) ≥ η.

Following [86] and [85] we formulate this model as a conic quadratic programming problem

obtained by replacing constraint (21) in the classical mean-variance problem with

Φ−1(ηi)||Q1/2y||2 ≤ āy −W low
i i ∈ {1, 2}

where Φ(·) is the cumulative distribution function of a zero mean, unit variance Gaussian

random variable. We refer to the set of instances of this problem as the shortfall instances.

The final problem is a robust portfolio optimization problem studied in [31]. This

model assumes that there is some uncertainty in the expected returns ā and that the true

expected return vector is normally distributed with mean ā and covariance matrix R. The

model is similar to one introduced in [13] and can be formulated as the conic quadratic

programming problem obtained by replacing the objective function (20) of the classical

mean-variance with maxx,y,r r and adding the constraint āy−α||R1/2y||2 ≥ r where R1/2 is

the positive semidefinite square root of R. The effect of this change is the maximization of

āy − α||R1/2y||2 which is a robust version of the maximization of the expected return āy.

We refer to the set of instances of this problem as the robust instances.

We generated the data for the classical instances in a manner similar to the test instances

of [85]. We first estimated ā and Q from 251 daily closing prices of S&P 500 stocks starting

with the 22nd of August 2005 and we scaled the distributions for a portfolio holding period

of 20 days. Then, for each n we generated an instance by randomly selecting n stocks out

of the 462 stocks for which we had closing price data. We also arbitrarily selected σ = 0.2

26

and K = 10.

For the shortfall instances we used the same data generated for the classical mean-

variance instances, but we additionally included a risk-less asset with unit return to make

these instances differ even more from the classical mean-variance instances. Also, in a

manner similar to the test sets of [85] we arbitrarily selected η1 = 80%, W low
1 = 0.9,

η2 = 97%, W low
2 = 0.7.

Finally, we generated the data for the robust instances in a manner similar to the test

instances of [31]. We used the same daily closing prices used for the classical mean-variance

and shortfall risk constraints instances, but we randomly selected different groups of n stocks

and we generated the data in a slightly different way. For stock i we begin by calculating

µi as the mean daily return from the first 120 days available. We then let āi = 0.1µi + 0.9r

where r is the daily return for the 121st day. Finally Q is estimated from the same first 120

days and following [31] we let R = (0.9/120)Q. We also arbitrarily selected α = 3 and we

again selected σ = 0.2 and K = 10.

For the three sets of instances we generated 100 instances for each n in {20, 30, 40, 50}
and 10 instanced for each n in {100, 200}. All data sets are available at http://www2.

isye.gatech.edu/~jvielma/portfolio.

2.4.3 Results

All computational tests where done on a dual 2.4GHz Xeon workstation with 2GB of RAM

running Linux Kernel 2.4. The first set of experiments show calibration results for different

values of ε. We then study how LP(ε) -BB compares to other algorithms. Finally, we

study some factors that might affect the effectiveness of LP(ε).

2.4.3.1 Selection of ε

Note that as ε gets smaller the size of LP(ε) grows as O(n log(1/ε)), on the other hand the

relaxation gets tighter. To select the value of ε for subsequent runs we first studied the sizes

of LP(ε) for n in {20, 30} and for values of ε in {1, 0.1, 0.01, 0.001, 0.0001}. Table 1 presents

the number of columns, rows and non-zero coefficients for the different values of n and ε.

27

Table 1: Problem Sizes for Different Values of ε

classical shortfall robust
n ε cols+rows nz cols+rows nz cols+rows nz
20 1 484 1172 908 2310 956 2368

0.1 579 1343 1098 2652 1156 2728
0.01 769 1685 1478 3336 1556 3448
0.001 959 2027 1858 4020 1956 4168
0.0001 1054 2198 2048 4362 2156 4528
CPP 105 501 150 968 154 948

30 1 734 2076 1378 4098 1426 4146
0.1 879 2337 1668 4620 1726 4686
0.01 1169 2859 2248 5664 2326 5766
0.001 1459 3381 2828 6708 2926 6846
0.0001 1604 3642 3118 7230 3226 7386
CPP 155 1051 220 2048 224 2018

The table also includes the same information for CPP.

We see that the sizes of LP(ε) are considerable larger that the sizes of CPP. On the

other hand we confirm that sizes only grow logarithmically with ε.

We additionally devised the following simple computational experiment for selecting the

appropriate value of ε. For n equal to 20 and 30 we selected the first 10 instances of each

instance class and tried to solve them with values of ε in {1, 0.1, 0.01, 0.001, 0.0001}. A time

limit of 100 seconds was set. Note that, although Proposition 2.1 shows that LP(ε) -BB

solves the problem exactly (up to the precision of the continuous relaxation solvers) for any

ε, for efficiency reasons we would probably never select ε = 1 as the resulting relaxation

is too weak. However, we decided to test it anyway to illustrate that the procedure works

even for this extreme choice of ε.

Table 2 shows the minimum, average, maximum and standard deviation of the number

of nodes needed by LP(ε) -BB to solve the instances. Tables 3 and 4 show the same

statistics for solve times in seconds and the number of branch-and-bound nodes in which

nonlinear relaxation CPP(lk, uk) is solved.

Figure 5 shows the performance profile (see [48]) for all the instances using solve time as

28

Table 2: Number of Nodes for Different Values of ε

stat ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001
min 0 0 0 0 0
avg 7760 1497 166 193 239
max 36443 14281 2390 2228 3995
std 3087 1342 196 303 289

Table 3: Solve Time for Different Values of ε [s]

stat ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001
min 0.14 0.07 0.09 0.12 0.18
avg 37.18 3.71 1.10 3.19 5.79
max 100.31 21.28 8.64 35.38 71.16
std 21.61 3.33 1.16 5.53 10.53

Table 4: Number of Nodes that Solve CPP(lk, uk)

stat ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001
min 1 1 1 0 0
avg 1700 74 4 3 3
max 6178 367 18 22 23
std 436 25 2 3 1

a performance metric. For a given value m on the horizontal axis and a given method, the

value f plotted in the performance profile indicates the fraction f of the instances that were

solved by that method within m times the length of time required by the fastest method for

each instance. In particular, the intercepts of the plot (if any) with the vertical axis to the

left and right indicate the fraction of the instances for which the method was the fastest and

the fraction of the instances which the method could solve in the alloted time, respectively.

For example, the method for ε = 1 was the fastest in about 5% of the instances, could solve

almost 80% of the instances and could solve under 30% of the instances within 10 times the

length of time required by the fastest solver. Note that these profiles are step functions. In

Figure 5, and all subsequent performance figures, we mark a small subset of the data points

to distinguish the individual profiles. We refer the reader to [48] for more details about the

construction and interpretation of performance profiles.

29

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

1
0.1

0.01
0.001

0.0001

Figure 5: Performance Profile for Different Values of ε

We see that ε = 0.01 is the best choice on average. It also has the best performance

profile and it yields the fastest method for 80% of the instances. Furthermore, for ε = 0.01

we have very few nodes solving CPP(lk, uk).

It is also interesting to note that the procedure still works fairly well for values of ε as

big as 0.1 and even for the extreme case of ε = 1 the procedure was still able to solve almost

80% of the instances in the alloted time of 100 seconds. For this last case though, the high

number of nodes that solve CPP(lk, uk) makes the algorithm behave almost like an NLP

based branch-and-bound algorithm.

Finally, we note that the result that ε = 0.01 requires the smallest number of branch-

and-bound nodes on average is somewhat unexpected. This contradicts the belief that the

algorithm of Figure 4 should require fewer branch-and-bound nodes if tighter relaxations

are used. An explanation of this apparent contradiction comes from the difference between

the algorithm of Figure 4 and the implementation of LP(ε) -BB as discussed in Section

2.4.1, since the use of CPLEX’s advanced features in LP(ε) -BB makes it hard to predict

the behavior of the algorithm.

30

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

I-BB
I-Hyb
I-QG

CPLEX
LP(!)-BB

Figure 6: Performance Profile for Small Instances

2.4.3.2 Performance of LP(ε) -BB against other methods

In this Section we compare LP(ε) -BB with ε = 0.01 against other solvers. The solvers

we choose for the comparison are the NLP based branch-and-bound algorithms CPLEX 10

MICP solver and Bonmin’s I-BB and the polyhedral relaxation based algorithms I-QG and

I-Hyb from Bonmin. We did not include Bonmin’s I-OA algorithm as it performed very

badly in preliminary tests.

For CPLEX we used its default settings and for the Bonmin solvers we set parameters

allowable gap and allowable fraction gap to 10−6 and 10−4 respectively to have the

same target gaps as CPLEX. All tests were run with a time limit of 10000 seconds.

We first tested all solvers for all instances for n in {20, 30}. We denote this set of

instances as the small instances. Table 5 shows the minimum, average, maximum and

standard deviations of the solve times. Figure 6 shows the performance profile for all the

instances using solve time as a performance metric.

From Table 5 we see that LP(ε) -BB is the fastest algorithm on average for all but one

31

Table 5: Solve Times for Small Instances [s]

instance(n) stat LP(ε) -BB I-QG I-Hyb I-BB CPLEX
classical(20) min 0.08 0.38 0.22 0.28 0.02

avg 0.29 26.41 24.84 1.28 1.31
max 1.06 222.19 164.71 13.33 7.95
std 0.18 42.92 26.37 2.31 1.17

classical(30) min 0.25 1.62 0.33 0.38 0.73
avg 1.65 1434.86 217.25 13.19 9.68
max 27.0 10005.2 10003.3 573.97 324.63
std 3.21 2768.34 1016.68 59.17 33.68

shortfall(20) min 0.19 0.18 0.26 0.34 0.03
avg 0.48 17.42 16.78 0.63 1.68
max 1.65 174.62 58.45 3.52 5.19
std 0.21 30.77 17.96 0.52 0.89

shortfall(30) min 0.4 1.25 0.57 0.47 1.26
avg 2.20 847.63 136.39 5.00 9.26
max 29.34 10003.1 5907.32 73.81 80.36
std 3.21 1992.86 588.61 10.00 12.20

robust(20) min 0.19 0.39 0.12 0.37 0.03
avg 0.39 4.99 15.51 2.57 1.03
max 1.05 33.85 599.46 57.22 3.5
std 0.20 5.60 60.37 10.25 0.90

robust(30) min 0.43 0.59 0.29 0.48 0.07
avg 1.20 75.07 23.43 1.02 3.54
max 4.72 2071.47 134.08 4.92 10.76
std 0.81 284.39 25.49 0.87 2.45

set of instances and that this average can be up to five times better than the average for its

closest competitor. Furthermore, as the standard deviation and maximum numbers show,

LP(ε) -BB is far more consistent in providing good solve times than the other methods.

From Figure 6 we can also see that LP(ε) -BB has the best performance profile, that it is

the fastest solver in 60% of the instances and that it is almost never an order of magnitude

slower than the best solver.

Our second set of tests include all instances for n in {40, 50}. We denote this set of

instances as the medium instances. We did not include I-QG in these tests as it performed

very poorly on the instances for n = 30 and reached the time limit in several instances.

Although I-Hyb performed close to I-QC we included it in these tests as it had only reached

the time limit in one instance and we wanted to have at least one of the original LP/NLP

32

based branch-and-bound solvers in our tests. Table 6 shows the minimum, average, maxi-

mum and standard deviation of the solve times. Figure 7 shows the performance profile for

all the instances using solve time as a performance metric.

Table 6: Solve Times for Medium Instances [s]

instance(n) stat LP(ε) -BB I-Hyb I-BB CPLEX
classical(40) min 0.56 35.04 0.61 1.55

avg 14.84 1412.23 144.17 63.41
max 554.52 10006.0 8518.95 2033.65
std 56.64 2631.92 848.84 208.86

classical(50) min 0.76 35.17 0.75 4.12
avg 102.88 4139.92 894.00 636.83
max 1950.81 12577.8 10030.1 10000.0
std 270.96 4343.71 2048.96 1626.37

shortfall(40) min 1.17 34.72 0.7 4.93
avg 16.60 956.98 92.85 111.97
max 389.57 10004.6 4888.26 4259.5
std 43.85 2133.56 489.98 430.95

shortfall(50) min 1.58 33.22 0.96 5.69
avg 163.10 3143.84 452.05 567.74
max 7674.86 10006.0 10034.1 10000.0
std 771.98 3803.14 1285.52 1319.39

robust(40) min 0.51 0.43 0.69 0.14
avg 3.82 59.10 4.31 11.17
max 42.57 1141.91 129.82 160.71
std 6.04 130.37 14.64 18.58

robust(50) min 0.92 0.65 0.93 0.25
avg 20.44 435.43 23.67 41.71
max 443.29 10002.1 746.37 876.31
std 63.47 1702.15 95.68 120.24

We see from Table 6 that LP(ε) -BB is now the fastest algorithm on average for all

instances and this average can be up to six times better than the average for its closest

competitor. Again, as the standard deviation and maximum numbers show, LP(ε) -BB is

far more consistent in providing good solve times than the other methods. From Figure 7

we again see that LP(ε) -BB has the best performance profile, that it is the fastest solver

in over 60% of the instances and that it is almost never an order of magnitude slower than

the best solver. Moreover, it is the only solver with this last property.

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

I-BB
I-Hyb

CPLEX
LP(!)-BB

Figure 7: Performance Profile for Medium Instances

Our last set of tests include instances for n in {100, 200}. We denote this set of instances

as the large instances. We do not include the results for I-Hyb as it was not able to solve

any of the instances in this group. Neither did we include results for the classical or shortfall

instances for n = 200 as none of the methods could solve a single instance in the alloted

time. Table 7 shows the minimum, average and maximum of the solve times. We did not

include standard deviations as time limits were reached for too many instances. We instead

include the number of instances (out of a total of 10 per instance class) that each method

could solve in the alloted time. Figure 8 shows the performance profile for all the instances

using solve time as a performance metric.

From Table 7 we see that LP(ε) -BB is the fastest algorithm on average for all but one

set of instances in this group. Furthermore, for all instance classes it is the method that

solves the largest number of instances. From Figure 8 we can also see that LP(ε) -BB has

the best performance profile, that it is the fastest solver in about 40% of the instances and

that it is the method that is able to solve the greatest number of instances in the alloted

34

Table 7: Solve Times for Large Instances [s]

instance(n) stat LP(ε) -BB I-BB CPLEX
classical(100) min 1653 3497 4503

avg 7443 8605 8767
max 10012 10035 10000
solved 4 3 3

shortfall(100) min 2014 4105 8733
avg 6660 8497 9818
max 10003 10163 10000
solved 6 4 2

robust(100) min 30 4 85
avg 956 612 1395
max 4943 2684 5294
solved 10 10 10

robust(200) min 1458 1775 9789
avg 6207 7346 9979
max 10138 10016 10000
solved 6 5 1

time.

2.4.3.3 Factors that affect the effectiveness of LP(ε) -BB

In this subsection we study some factors that might affect the effectiveness of LP(ε) including

solve times, accuracy and size of the polyhedral relaxation LP(ε), number of branch-and-

bound nodes processed and number of calls to the nonlinear relaxations.

We begin by confirming the results from [54] that solving the polyhedral relaxation LP(ε)

is slower than solving CPP directly still hold for our tests instances. To confirm this we

solved CPP with CPLEX 10’s barrier solver and LP(0.01) with CPLEX 10’s primal simplex,

dual simplex and LP barrier solvers. We did this for all instances for n equal to 100 and

200. Table 8 shows the minimum, average, maximum and standard deviation of the solve

times.

We see that solving LP(0.01) is slower than solving CPP. In fact, solving LP(0.01) with

dual simplex is more than twice as slow as solving CPP with barrier. Hence, it is not the

solve times of a single relaxation that gives the LP(ε) -BB algorithm the advantage over

the NLP based branch-and-bound algorithms. Note that the “warm start” capabilities of an

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

I-BB
CPLEX

LP(!)-BB

Figure 8: Performance Profile for Large Instances

Table 8: Solve Time for Root Relaxation [s]

CPP LP(0.01)
stat Barrier P. Simplex D. Simplex Barrier
min 0.09 0.72 0.58 0.19
avg 4.88 34.94 11.66 6.94
max 20.39 174.45 49.69 29.7
std 1.50 10.45 2.86 2.05

LP solver might still make solving a series of similar LP(0.01) problems faster than solving

a series of similar CPP problems.

It is noted in [54] that although the relaxation used to construct LP(ε) gives accuracy

guarantees on Lrε, it is in general not possible to give a priori guarantees on the accuracy

of LP(ε) or its optimal objective value zLP(ε). For this reason we studied empirically the

accuracy of zLP(ε) on our set of test instances. To do this we calculated the value of the

accuracy measure 100×(zLP(ε)−zCPP)/zCPP for all of our test instances and for values of ε in

{1, 0.1, 0.01, 0.001, 0.0001}. Table 9 shows the minimum, average, maximum and standard

36

Table 9: Accuracy of Relaxation zLP(ε) [%]

stat ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001
min 0.25 0.07 0.00 0.00 0.00
avg 4.30 1.14 0.07 0.00 0.00
max 13.94 5.16 0.29 0.02 0.01
std 0.80 0.21 0.01 0.00 0.00

deviation of this accuracy measure.

We see that even for the extreme case ε = 1 the accuracy of zLP(ε) is fairly good and for

our chosen value of ε = 0.01 the accuracy is extremely good. This accuracy is likely one of

the reasons for the effectiveness of the LP(ε) -BB algorithm. We note that Proposition 2.1

implies that LP(ε) -BB would still be exact (up to the precision of the continuous relaxation

solvers) even if the accuracy of zLP(ε) was not good, but in this case its performance could

be significantly reduced by the need to solve more nonlinear relaxations.

We next study the sizes of LP(0.01) as n varies. Table 10 presents the number of columns,

rows and non-zero coefficients for different values of n. Again, we also include the sizes of

CPP. We see that LP(0.01) can be up to about an order of magnitude larger than CPP.

However, we also confirm that the size of LP(0.01) only grows linearly with n.

Table 10: Problem Sizes for Different Values of n

classical shortfall robust
n Relaxation cols+rows nz cols+rows nz cols+rows nz
20 CPP 105 501 150 968 154 948

LP(0.01) 769 1685 1478 3336 1556 3448
30 CPP 155 1051 220 2048 224 2018

LP(0.01) 1169 2859 2248 5664 2326 5766
40 CPP 205 1801 290 3528 294 3488

LP(0.01) 1574 4242 3028 8410 3116 8520
50 CPP 255 2751 360 5408 364 5358

LP(0.01) 1979 5825 3808 11556 3886 11638
100 CPP 505 10501 710 20808 714 20708

LP(0.01) 3994 16722 7688 33250 7766 33282
200 CPP 1005 41001 1410 81608 1414 81408

LP(0.01) 8024 53516 15448 106638 15536 106588

37

Finally, we study the number of branch-and-bound nodes processed and the number of

calls to the nonlinear relaxations. We begin by comparing LP(ε) -BB to the two NLP

based branch-and-bound solvers. To do this, we selected all instances that solved within

the time limit by I-BB, CPLEX and LP(ε) -BB . For these instances we present in Table

11 the total number of branch-and-bound nodes processed by each method and the total

number of calls to nonlinear relaxations CPP(lk, uk) and CPP(x̂) made by LP(ε) -BB .

Table 11: Total Number of Nodes and Calls to Relaxations for All Instances

B-and-b nodes I-BB 3007029
B-and-b nodes CPLEX 3224115
B-and-b nodes LP(ε) -BB 2027332
LP(ε) -BB calls to CPP(lk, uk) 5818
LP(ε) -BB calls to CPP(x̂) 17784

We see that the total number of calls to the nonlinear relaxations made by LP(ε) -BB

is only around 1% of the total number of branch-and-bound nodes processed. This is

another reason for the effectiveness of LP(ε) -BB as it has to solve very few expensive

nonlinear relaxations. An interesting observation is that CPP(x̂) is solved more times than

CPP(lk, uk). This is expected as CPLEX usually finds most of the integer feasible solutions

with its primal heuristic than at integer feasible nodes. On the other hand, the fact that

LP(ε) -BB processed fewer branch-and-bound nodes than the two NLP based branch-and-

bound methods is somewhat unexpected. Because LP(ε) is a relaxation of CPP we would

expect that a pure branch-and-bound algorithm based on LP(ε) should process at least the

same number of nodes as an algorithm based on CPP. We believe that the reason for this

unexpected behavior is that CPLEX is not a pure branch-and-bound solver. LP(ε) -BB

benefits from CPLEX being able to use some features which are currently available for

MILP problems, but not for MICP problems, such as advanced preprocessing, branching

rules, cutting planes and heuristics.

Finally, we compared LP(ε) -BB to the polyhedral relaxation based solvers by selecting

all instances that were solved within the time limit by I-QG, I-Hyb and LP(ε) -BB . For

38

these instances we present in Table 12 the total number of branch-and-bound nodes pro-

cessed by each method. Because the instances used to generate Table 12 are not the same

as the ones used to generate Table 11 we also include, as a reference, the total number of

branch-and-bound nodes processed by I-BB and CPLEX and the total number of calls to

nonlinear relaxations CPP(lk, uk) and CPP(x̂) made by LP(ε) -BB .

Table 12: Total Number of Nodes and Calls to Relaxations for Small Instances

B-and-b nodes I-QG 3580051
B-and-b nodes I-Hyb 328316
B-and-b nodes I-BB 68915
B-and-b nodes CPLEX 85957
B-and-b nodes LP(ε) -BB 57933
LP(ε) -BB calls to CPP(lk, uk) 2305
LP(ε) -BB calls to CPP(x̂) 7810

We see that I-Hyb needed almost four times the number of nodes needed by CPLEX

and I-QG needed over 40 times as many nodes as CPLEX. In contrast, LP(ε) -BB was the

algorithm that needed the fewest number of nodes. This confirms that the relaxation LP(ε)

is extremely good for our set of instances.

2.5 Conclusions and Further Work

We have introduced a branch-and-bound algorithm for convex MINLP problems that is

based on a lifted polyhedral relaxation, does not update the relaxation using gradient in-

equalities and sometimes branches on integer feasible variables. We have also demonstrated

how this lifted LP branch-and-bound algorithm can be very effective when a good lifted

polyhedral relaxation is available. More specifically, we have shown that the lifted LP

branch-and-bound algorithm based on LP(ε) can significantly outperform other methods

for solving a series of portfolio optimization problems with cardinality constraints. One

reason for this good performance is that, for these problems, high accuracy of Lrε translates

into high accuracy of LP(ε) which results in the construction of a tight but small polyhedral

relaxation. Another factor is that by using a polyhedral relaxation of the nonlinear con-

straints we can benefit from “warm start” capabilities of the simplex LP algorithm and the

39

many advanced features of CPLEX’s MILP solver. It is curious to note that a statement

similar to this last one can also be made for the other polyhedral relaxation based algo-

rithms we tested and these were the worst performers in our tests. It seems then that using

LP(ε) provides a middle point between NLP based branch-and-bound solvers and polyhe-

dral relaxation based solvers which only use gradient inequalities by inheriting most of the

good properties of this last class without suffering from slow convergence of the relaxations.

Although the lifted LP branch-and-bound algorithm based on LP(ε) we have presented

is already very efficient there are many improvements that can be made to it. While the

version of LP(ε) that we used achieves the best possible asymptotic order of magnitude of

variables and constraints (see [15] and [54]), it is shown in [54] that for a fixed r and ε it can

be improved further. Using a slightly smaller version of LP(ε) would probably not increase

significantly the performance of the algorithm for our test instances, but it could provide

an advantages for problems with many conic constraints of the form CC.
The choice of value ε for LP(ε) is another aspect that can be studied further. The depen-

dence of LP(ε) on ε is through the function
⌈
log4

(
16
9 π
−2 log(1 + ε)

)⌉
in (33). Hence, there

is only a discrete set of possible choices of ε in a certain interval that yield different relax-

ations LP(ε). This allows for a refinement of the calibration experiments of Section 2.4.3.1.

For example, in our calibration experiment the only different relaxations LP(ε) for values

of ε in [0.001, 0.1] are the ones corresponding to values of ε in {0.1, 0.03, 0.01, 0.004, 0.001}.
By re-running our calibration experiments for all of these values of ε we discovered that

ε = 0.01 was still the best choice on average. This suggests the existence of, in some sense,

an optimal choice of ε. The choice of this ε could become more complicated though when

the more elaborate constructions of [54] are used. An alternative to choosing ε a priori is

to choose a moderate initial value and refine the relaxation inside the branch-and-bound

procedure. It is not clear how to do this efficiently though.

We are currently studying some of these issues and the possibility of extending this work

to other classes of convex MINLP problems.

40

CHAPTER III

MODELING DISJUNCTIVE CONSTRAINTS WITH A

LOGARITHMIC NUMBER OF BINARY VARIABLES AND

CONSTRAINTS

3.1 Introduction

Since the 1957 paper by Dantzig [39], the issue of modeling problems as mixed integer

programs (MIPs) has been extensively studied. A study of the problems that can be modeled

as MIPs began with Meyer [98, 99, 100, 101] and was continued by Jeroslow and Lowe

[64, 66, 67, 68, 87].

An important question in the area of mixed integer programming (MIP) is characterizing

when a disjunctive constraint of the form

z ∈
⋃
i∈I

Pi ⊂ Rn, (38)

where Pi = {z ∈ Rn : Aiz ≤ bi} and I is a finite index set, can be modeled as a binary

integer program. Jeroslow and Lowe [64, 67, 87] showed that a necessary and sufficient

condition is for {Pi}i∈I to be a finite family of polyhedra with a common recession cone.

That is, the directions of unboundedness of the polyheda given by {z ∈ Rn : Aiz ≤ 0} for

i ∈ I are all equal. Using results from disjunctive programming [6, 7, 9, 26, 63, 119] they

showed that, in this case, constraint (38) can be simply modeled as

Aizi ≤ xibi ∀i ∈ I, z =
∑
i∈I

zi,
∑
i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I. (39)

The possibility of reducing the number of continuous variables in these models has been

studied in [8, 27, 65], but the number of binary variables and extra constraints needed

to model (38) has received little attention. However, it has been observed that a careful

construction can yield a much smaller model than a naive approach. Perhaps the simplest

example comes from the equivalence between general integer and binary integer program-

ming. The requirement x ∈ [0, u] ∩ Z can be written in the form (38) by letting Pi := {i}

41

for all i in I := [0, u]∩Z which, after some algebraic simplifications, yields a representation

of the form (39) given by

z =
∑
i∈I

i xi,
∑
i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I. (40)

This formulation has a number of binary variables that is linear in |I| and can be replaced

by

z =
blog2 uc∑
i=0

2i xi, z ≤ u, xi ∈ {0, 1} ∀i ∈ {0, . . . , blog2 uc}. (41)

In contrast to (40), (41) has a number of binary variables that is logarithmic in |I|. Another

example of a model with a logarithmic number of variables is the work in [79], which also

considers polytopes of the form Pi := {i} to model different choices from an abstract set I.

This work is used in [81] to model edge coloring problems by using I = {possible colors}.
Although (41) appears in the mathematical programming literature as early as [134],

and the possibility of modeling with a logarithmic number of binary variables and a linear

number of constraints is studied in the theory of disjunctive programming [7] and in [61],

we are not aware of any formulation with a logarithmic number of binary variables and

extra constraints for the case in which each polyhedron Pi contains more than one point.

The main objective of this chapter is to show that some well known classes of constraints

of the form (38) can be modeled with a logarithmic number of binary variables and extra

constraints. Although modeling with fewer binary variables and constraints might seem ad-

vantageous, a smaller formulation is not necessarily a better formulation. More constraints

might provide a tighter LP relaxation and more variables might do the same by exploiting

the favorable properties of projection [10]. For this reason, we will also show that under

some conditions our new formulations are as tight as any other mixed integer formulation,

and we empirically show that they can provide a significant computational advantage.

The chapter is organized as follows. In Section 3.2 we study the modeling of a class of

hard combinatorial constraints. In particular we introduce the first formulations for SOS1

and SOS2 constraints that use only a logarithmic number of binary variables and extra

constraints. In Section 3.3 we relate the modeling with a logarithmic number of binary

variables to branching and we introduce sufficient conditions for these models to exist. We

42

then show that for a broad class of problems the new formulations are as tight as any other

mixed integer programming formulation. In Section 3.4 we use the sufficient conditions

to present a new formulation for non-separable piecewise linear functions of one and two

variables that uses only a logarithmic number of binary variables and extra constraints.

In Section 3.5 we study the extension of the formulations from Sections 3.2 and 3.3 to a

slightly different class of constraints and study the strength of these formulations. In Section

3.6 we show that the new models for piecewise linear functions of one and two variables

can perform significantly better than the standard binary models. Section 3.7 gives some

conclusions.

3.2 Modeling a Class of Hard Combinatorial Constraints

In this section we study a class of constraints of the form (38) in which the polyhedra Pi have

the simple structure of only allowing some subsets of variables to be non-zero. Specifically,

we study constraints over a vector of continuous variables λ indexed by a finite set J that

are of the form

λ ∈
⋃
i∈I

Q(Si) ⊂ ∆J , (42)

where I is a finite set such that |I| is a power of two, ∆J := {λ ∈ R|J |+ :
∑

j∈J λj ≤ 1} is

the |J |-dimensional simplex in R|J |, Si ⊂ J for each i ∈ I and

Q(Si) =
{
λ ∈ ∆J : λj = 0 ∀ j /∈ Si

}
. (43)

Furthermore, without loss of generality we assume that
⋃
i∈I Si = J . Since Q(Si) is a face of

∆J we call ∆J the ground set of the constraint. Except for Theorem 3.8, our results easily

extend to the case in which the simplex is replaced by a box in R|J |+ , but the restriction

to ∆J greatly simplifies the presentation. We will study this extension in Section 3.5. We

finally note that the requirement of |I| being a power of two is without loss of generality

as we can allways add 2dlog2 |I|e − |I| polyhedra Q(Si) with Si = ∅ to (42). We study the

implications of this completion on formulation sizes in Section 3.3.

Disjunctive constraint (42) includes SOS1 and SOS2 constraints [12] over continuous

variables in ∆J . SOS1 constraints on λ ∈ Rn+ allow at most one of the λ variables to be

43

non-zero which can be modeled by letting I = J = {1, . . . , n} and Si = {i} for each i ∈ I.

SOS2 constraints on (λj)nj=0 ∈ Rn+1
+ allow at most two λ variables to be non-zero and have

the extra requirement that if two variables are non-zero their indices must be adjacent. This

can be modeled by letting I = {1, . . . , n}, J = {0, . . . , n} and Si = {i− 1, i} for each i ∈ I.

Mixed integer binary models for SOS1 and SOS2 constraints have been known for many

years [40, 95], and some recent research has focused on branch-and-cut algorithms that do

not use binary variables [42, 72, 73, 96]. However, the incentive of being able to use state

of the art MIP solvers (see for example the discussion in section 5 of [131]) makes binary

models for these constraints very attractive [36, 92, 105, 118].

We first review a formulation for (42) with a linear number of binary variables and a

formulation with a logarithmic number of binary variables and a linear number of extra

constraints. We then study how to obtain a formulation with a logarithmic number of

variables and a logarithmic number of extra constraints and show that this can be achieved

for SOS1 and SOS2 constraints.

The most direct way of formulating (42) as an integer programming problem is by

assigning a binary variable for each set Q(Si) and using formulation (39). After some

algebraic simplifications this yields the formulation of (42) given by

λ ∈ ∆J , λj ≤
∑
i∈I(j)

xi ∀j ∈ J,
∑
i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I (44)

where I(j) = {i ∈ I : j ∈ Si}. This gives a formulation with |I| binary variables and

|J |+ 1 extra constraints and yields standard formulations for SOS1 and SOS2 constraints.

(We consider the inequalities of ground set ∆J as the original constraints and disregard the

bounds on x.)

The following theorem shows that by using techniques from [61] we can obtain a formu-

lation with log2 |I| binary variables and |I| extra constraints.

Theorem 3.1. Let L(r) := {1, . . . , log2 r}, B : I → {0, 1}log2 |I| be any injective function

and σ(B) be the support of vector B. Then

∑
j /∈Si

λj ≤
∑

l /∈σ(B(i))

xl +
∑

l∈σ(B(i))

(1− xl) ∀i ∈ I, λ ∈ ∆J , xl ∈ {0, 1} ∀l ∈ L(|I|) (45)

44

is a valid formulation for (42).

Proof. The formulation simply fixes λj to zero for all j /∈ Si when x takes the value B(i).

The following example illustrates formulation (45) for SOS1 and SOS2 constraints.

Example 3.1. Let J = {1, . . . , 4}, (λj)4j=1 ∈ ∆J be SOS1 constrained and let B∗(1) =

(1, 1)T , B∗(2) = (1, 0)T , B∗(3) = (0, 1)T and B∗(4) = (0, 0)T . Formulation (45) for this

case with B = B∗ is

λ ∈ ∆J , x1, x2 ∈ {0, 1}, λ2 + λ3 + λ4 ≤ 2− x1 − x2, λ1 + λ3 + λ4 ≤ 1− x1 + x2,

λ1 + λ2 + λ4 ≤ 1 + x1 − x2, λ1 + λ2 + λ3 ≤ x1 + x2.

Let J = {0, . . . , 4} and (λj)4j=0 ∈ ∆J be SOS2 constrained. Formulation (45) for this

case with B = B∗ is

λ ∈ ∆J , x1, x2 ∈ {0, 1}, λ2 + λ3 + λ4 ≤ 2− x1 − x2, λ0 + λ3 + λ4 ≤ 1− x1 + x2,

λ0 + λ1 + λ4 ≤ 1 + x1 − x2, λ0 + λ1 + λ2 ≤ x1 + x2.

For SOS1 constraints, for which |I(j)| = 1 for all j ∈ J , we obtain the following alterna-

tive formulation of (42) which has log2 |I| binary variables and 2 log2 |I| extra constraints.

Theorem 3.2. Let B : I → {0, 1}log2 |I| be any injective function. Then

λ ∈ ∆J ,
∑

j∈J+(l,B)

λj ≤ xl,
∑

j∈J0(l,B)

λj ≤ (1− xl) ∀j ∈ J, xl ∈ {0, 1} ∀l ∈ L(|I|), (46)

where J+(l, B) = {j ∈ J : ∀i ∈ I(j) l ∈ σ(B(i))} and J0(l, B) = {j ∈ J : ∀i ∈ I(j)

l /∈ σ(B(i))}, is a valid formulation for SOS1 constraints.

Proof. For SOS1 constraints we have I = J = {1, . . . , n} and Sj = {j} for each i ∈ I. This

implies that I(j) = {j} and hence J+(l, B) = {j ∈ J : l ∈ σ(B(j))} and J0(l, B) = {j ∈
J : l /∈ σ(B(j))}. Then, in formulation (46), we have that λj = 0 for all x 6= B(j).

45

The following example illustrates formulation (46) for SOS1 constraints.

Example 3.2. Let J = {1, . . . , 4}, (λj)4j=1 ∈ ∆J be SOS1 constrained. Formulation (46)

for this case with B = B∗ from Example 1 is

λ ∈ ∆J , x1, x2 ∈ {0, 1}, λ1+λ2 ≤ x1, λ3+λ4 ≤ 1−x1, λ1+λ3 ≤ x2, λ2+λ4 ≤ 1−x2.

We don’t know how to give meaning to the binary variables in formulation (45) be-

cause fixing them individually has little effect on the λ variables. For example fixing x1 = 1

and letting x2 be free in either of the formulations of Example 1 has no effect on the λ

variables. In contrast fixing xl = 1 individually in (46) has the very precise effect fixing

to zero all λj ’s for which B(i)l = 0 for all i such that j ∈ Si. Analogously, fixing xl = 0

individually in (46) fixes to zero all λj ’s for which B(i)l = 1 for all i such that j ∈ Si.

Fixing the binary variables then gives a way of enforcing λ ∈ Q(Si) by systematically fixing

certain λ variables to zero.

Formulation (46) is valid for SOS1 constraints independent of the choice of B. In con-

trast, for SOS2 constraints, where |I(j)| = 2 for some j ∈ J , formulation (46) can be invalid

for some choices of B. This is illustrated by the following example.

Example 3.3. Let J = {0, . . . , 4} and (λj)4j=0 ∈ ∆J be SOS2 constrained. Formulation

(46) for this case with B = B∗ is

λ ∈ ∆J , x1, x2 ∈ {0, 1}, λ0 + λ1 ≤ x1, λ3 + λ4 ≤ 1− x1, λ0 ≤ x2, λ4 ≤ 1− x2

which has the feasible solution λ0 = 1/2, λ2 = 1/2, λ1 = λ3 = λ4 = 0, x1 = x2 = 1 that

does not comply with SOS2 constraints. However, the formulation can be made valid by

adding constraints

λ2 ≤ x1 + x2, λ2 ≤ 2− x1 − x2. (47)

For any B we can always correct formulation (46) for SOS2 constraints by adding a

46

number of extra linear inequalities, but with a careful selection of B the validity of the

model can be preserved without the need for additional constraints.

Definition 3.3 (SOS2 Compatible Function). A function B : {1, . . . , n} → {0, 1}log2(n)

is compatible with an SOS2 constraint on (λj)nj=0 ∈ Rn+1
+ if it is injective and for all

i ∈ {1, . . . , n− 1} the vectors B(i) and B(i+ 1) differ in at most one component.

Theorem 3.4. If B is an SOS2 compatible function then (46) is valid for SOS2 constraints.

Proof. For SOS2 constraints we have that I = {1, . . . , n}, J = {0, . . . , n} and Si = {i−1, i}
for each i ∈ I. This implies that I(0) = {1} and I(n) = {n}. Then, in a similar way to the

proof of Theorem 3.2 for SOS1 constraints, we have that for j ∈ {0, n} formulation (46)

imposes λj = 0 for all x 6= B(j).

In contrast, for j ∈ J \ {0, n} we have I(j) = {j, j + 1} and hence J+(l, B) = {j ∈ J :

l ∈ σ(B(j)) ∩ σ(B(j + 1))} and J0(l, B) = {j ∈ J : l /∈ σ(B(j)) and l /∈ σ(B(j + 1))}.
Using the fact that B is SOS2 compatible we have that, in formulation (46), λj = 0 for all

x /∈ {B(j), B(j + 1)}.

The following example illustrates how an SOS2 compatible function yields a valid for-

mulation.

Example 3.3.continued Let B0(1) = (1, 0)T , B0(2) = (1, 1)T , B0(3) = (0, 1)T and B0(4) =

(0, 0)T . Formulation (46) with B = B0 for the same SOS2 constraints is

λ ∈ ∆J , x1, x2 ∈ {0, 1}

λ0 + λ1 ≤ x1, λ3 + λ4 ≤ (1− x1) (48)

λ2 ≤ x2, λ0 + λ4 ≤ (1− x2). (49)

Finally, the following lemma shows that an SOS2 compatible function can always be

constructed.

47

Lemma 3.5. For any n ∈ Z+ there exists a compatible function for SOS2 constraints on

(λ)nj=0.

Proof. We construct an SOS2 compatible function B̄ : {1, . . . , 2r} → {0, 1}r inductively on

r. The case r = 1 follows immediately. Now assume that we have an SOS2 compatible

function B̄ : {1, . . . , 2r} → {0, 1}r. We define B̃ : {1, . . . , 2r+1} → {0, 1}r+1 as

B̃(i)l :=


B̄(i)l if i ≤ 2r

B̄(2r+1 − i+ 1)l o.w.
∀l ∈ {1, . . . , r}, B̃(i)r+1 :=


1 if i ≤ 2r

0 o.w.
,

which is also SOS2 compatible.

The function from the proof of Lemma 3.5 is not the only possible SOS2 compatible

function. In fact, Definition 3.3 is equivalent to requiring (B(i))ni=1 to be a reflected binary

or Gray code [138] and the construction from Lemma 3.5 corresponds to a version of this

code that is usually called the standard reflected Gray code. Definition 3.3 is also equivalent

to requiring (B(i))ni=1 to be a Hamiltonian path on the hypercube.

3.3 Branching and Logarithmic Size Formulations

We have seen that fixing the binary variables of (46) provides a systematic procedure for

enforcing λ ∈ Q(Si). In this section we exploit the relation between this procedure and

specialized branching schemes to extend the formulation to a more general framework.

We can identify each vector in {0, 1}log2 |I| with a leaf in a binary tree with log2 |I| levels

such that each component corresponds to a level and the value of that component indicates

the selected branch in that level. Then, using function B we can identify each set Q(Si)

with a leaf in the binary tree and we can interpret each of the log2 |I| variables as the

execution of a branching scheme on sets Q(Si). The formulations in Example 3.3 illustrate

this idea.

In formulation (46) with B = B0 the branching scheme associated with x1 sets λ0 =

λ1 = 0 when x1 = 0 and λ3 = λ4 = 0 when x1 = 1, which is equivalent to the traditional

SOS2 constraint branching of [12] whose dichotomy is fixing to zero variables to the “left

of” (smaller than) a certain index in one branch and to the “right” (greater) in the other.

48

In contrast, the scheme associated with x2 sets λ2 = 0 when x2 = 0 and λ0 = λ4 = 0

when x2 = 1, which is different from the traditional branching as its dichotomy can be

interpreted as fixing variables in the “center” and on the “sides” respectively. If we use

function B∗ instead we recover the traditional branching. The drawback of the B∗ scheme

is that the second level branching cannot be implemented independently of the first level

branching using linear inequalities. For B0 the branch alternatives associated with x2 are

implemented by (49), which only include binary variable x2. In contrast, for B∗ one of the

branching alternatives requires additional constraints (47) which involve both x1 and x2.

The binary tree associated with the model for B∗ and B0 are shown in Figure 9, where

the arc labels indicate the values taken by the binary variables and the indices of the λ

variables which are fixed to zero because of this and the node labels indicate the indices of

the λ variables that are set to zero because of the cumulative effect of the binary variable

fixing. The main difference in the trees is that for B = B∗ the effect on the λ variables

of fixing x2 to a particular value depends on the value previously assigned to x1 while for

B = B0 this effect is independent of the previous assignment to x1.

7

as fixing variables in the “center” and on the “sides” respectively. If we use function B∗
instead we recover the traditional branching. The drawback of the B∗ scheme is that the
second level branching cannot be implemented independently of the first level branching
using linear inequalities. For B0 the branch alternatives associated with x2 are implemented
by (12), which only include binary variable x2. In contrast, for B∗ one of the branching
alternatives requires additional constraints (10) which involve both x1 and x2. The binary
tree associated with the model for B∗ and B0 are shown in Figure 1, where the arc labels
indicate the values taken by the binary variables and the indices of the λ variables which
are fixed to zero because of this and the node labels indicate the indices of the λ variables
that are set to zero because of the cumulative effect of the binary variable fixing. The main
difference in the trees is that for B = B∗ the effect on the λ variables of fixing x2 to a
particular value depends on the value previously assigned to x1 while for B = B0 this effect
is independent of the previous assignment to x1.

/0

{0,1}

{0,1,2}

x2 = 0
{0,2}

{0,1,4}

x2 = 1
{4}

x1 = 0
{0,1}

{3,4}

{0,3,4}

x2 = 0
{0}

{2,3,4}

x2 = 1
{2,4}

x1 = 1
{3,4}

(a) B = B∗.

/0

{0,1}

{0,1,2}

x2 = 0
{2}

{0,1,4}

x2 = 1
{0,4}

x1 = 0
{0,1}

{3,4}

{2,3,4}

x2 = 0
{2}

{0,3,4}

x2 = 1
{0,4}

x1 = 1
{3,4}

(b) B = B0.

Fig. 1 Two level binary trees for example 3.

This example illustrates that a sufficient condition for modeling (5) with a logarithmic
number of binary variables and extra constraints is to have a binary branching scheme for
λ ∈ ⋃i∈I Q(Si) with a logarithmic number of dichotomies and for which each dichotomy
can be implemented independently. This condition is formalized in the following definition.

Definition 2 (Independent Branching Scheme) {Lk,Rk}d
k=1 with Lk,Rk ⊂ J is an indepen-

dent branching scheme of depth d for disjunctive constraint (5) if

⋃
i∈I

Q(Si) =
d⋂

k=1

(
Q(Lk)∪Q(Rk)

)
. (13)

This definition can then be used in the following theorem and immediately gives a suf-
ficient condition for modeling with a logarithmic number of variables and constraints.

Theorem 4 Let {Q(Si)}i∈I be a finite family of polyhedra of the form (6) and {Lk,Rk}log2 |I|
k=1

be an independent branching scheme for λ ∈⋃i∈I Q(Si). Then

λ ∈ ∆ J , ∑
j/∈Lk

λ j ≤ xk, ∑
j/∈Rk

λ j ≤ (1 − xk), xk ∈ {0,1} ∀k ∈ L(|I|) (14)

(a) B = B∗.

7

as fixing variables in the “center” and on the “sides” respectively. If we use function B∗
instead we recover the traditional branching. The drawback of the B∗ scheme is that the
second level branching cannot be implemented independently of the first level branching
using linear inequalities. For B0 the branch alternatives associated with x2 are implemented
by (12), which only include binary variable x2. In contrast, for B∗ one of the branching
alternatives requires additional constraints (10) which involve both x1 and x2. The binary
tree associated with the model for B∗ and B0 are shown in Figure 1, where the arc labels
indicate the values taken by the binary variables and the indices of the λ variables which
are fixed to zero because of this and the node labels indicate the indices of the λ variables
that are set to zero because of the cumulative effect of the binary variable fixing. The main
difference in the trees is that for B = B∗ the effect on the λ variables of fixing x2 to a
particular value depends on the value previously assigned to x1 while for B = B0 this effect
is independent of the previous assignment to x1.

/0

{0,1}

{0,1,2}

x2 = 0
{0,2}

{0,1,4}

x2 = 1
{4}

x1 = 0
{0,1}

{3,4}

{0,3,4}

x2 = 0
{0}

{2,3,4}

x2 = 1
{2,4}

x1 = 1
{3,4}

(a) B = B∗.

/0

{0,1}

{0,1,2}

x2 = 0
{2}

{0,1,4}

x2 = 1
{0,4}

x1 = 0
{0,1}

{3,4}

{2,3,4}

x2 = 0
{2}

{0,3,4}

x2 = 1
{0,4}

x1 = 1
{3,4}

(b) B = B0.

Fig. 1 Two level binary trees for example 3.

This example illustrates that a sufficient condition for modeling (5) with a logarithmic
number of binary variables and extra constraints is to have a binary branching scheme for
λ ∈ ⋃i∈I Q(Si) with a logarithmic number of dichotomies and for which each dichotomy
can be implemented independently. This condition is formalized in the following definition.

Definition 2 (Independent Branching Scheme) {Lk,Rk}d
k=1 with Lk,Rk ⊂ J is an indepen-

dent branching scheme of depth d for disjunctive constraint (5) if

⋃
i∈I

Q(Si) =
d⋂

k=1

(
Q(Lk)∪Q(Rk)

)
. (13)

This definition can then be used in the following theorem and immediately gives a suf-
ficient condition for modeling with a logarithmic number of variables and constraints.

Theorem 4 Let {Q(Si)}i∈I be a finite family of polyhedra of the form (6) and {Lk,Rk}log2 |I|
k=1

be an independent branching scheme for λ ∈⋃i∈I Q(Si). Then

λ ∈ ∆ J , ∑
j/∈Lk

λ j ≤ xk, ∑
j/∈Rk

λ j ≤ (1 − xk), xk ∈ {0,1} ∀k ∈ L(|I|) (14)

(b) B = B0.

Figure 9: Two level binary trees for example 3.3.

This example illustrates that a sufficient condition for modeling (42) with a logarithmic

number of binary variables and extra constraints is to have a binary branching scheme for

49

λ ∈ ⋃i∈I Q(Si) with a logarithmic number of dichotomies and for which each dichotomy

can be implemented independently. This condition is formalized in the following definition.

Definition 3.6. (Independent Branching Scheme) {Lk, Rk}dk=1 with Lk, Rk ⊂ J is an

independent branching scheme of depth d for disjunctive constraint (42) if

⋃
i∈I

Q(Si) =
d⋂

k=1

(
Q(Lk) ∪Q(Rk)

)
. (50)

This definition can then be used in the following theorem and immediately gives a

sufficient condition for modeling with a logarithmic number of variables and constraints.

Theorem 3.7. Let {Q(Si)}i∈I be a finite family of polyhedra of the form (43) and {Lk, Rk}log2 |I|
k=1

be an independent branching scheme for λ ∈ ⋃i∈I Q(Si). Then

λ ∈ ∆J ,
∑
j /∈Lk

λj ≤ xk,
∑
j /∈Rk

λj ≤ (1 − xk), xk ∈ {0, 1} ∀k ∈ L(|I|) (51)

is a valid formulation for (42) with log2 |I| binary variables and 2 log2 |I| extra constraints.

Formulation (46) with B = B0 in Example 3.3 illustrates how an SOS2 compatible func-

tion induces an independent branching scheme for SOS2 constraints. In general, given an

SOS2 compatible function B : {1, . . . , n} → {0, 1}log2(n) the induced independent branching

is given by Lk = J \ J+(k,B), Rk = J \ J0(l, B) for all k ∈ {1, . . . , n}.
Formulation (51) in Theorem 3.7 can be interpreted as a way of implementing a special-

ized branching scheme using binary variables. Similar techniques for implementing special-

ized branching schemes have been given in [4] and [120], but the resulting models require at

least a linear number of binary variables. To the best of our knowledge the first indepen-

dent branching schemes of logarithmic depth for the case in which polytopes Q(Si) contain

more than one point are the ones for SOS1 constraints from Theorem 3.2 and for SOS2

constraints induced by an SOS2 compatible function.

Formulation (51) can be obtained by algebraic simplifications from formulation (39) of

(42) rewritten as the conjunction of two-term polyhedral disjunctions. Both the simplifi-

cations and the rewrite can result in a significant reduction in the tightness of the linear

programming relaxation of (51) [7, 8, 27, 65]. Fortunately, as the following theorem shows,

the restriction to ∆J makes (51) as tight as any other mixed integer formulation for (42).

50

Theorem 3.8. Let Pλ and Qλ be the projection onto the λ variables of the LP relaxation

of formulation (51) and of any other mixed integer programming formulation of (42) re-

spectively. Then Pλ = conv
(⋃

i∈I Q(Si)
)

and hence Pλ ⊆ Qλ.

Proof. Without loss of generality
⋃
i∈I Si = J and hence for every j ∈ J there is a i ∈ I

such that j ∈ Si. Using this, it follows that Pλ = ∆J = conv
(⋃

i∈I Q(Si)
)
. The relation

with other mixed integer programming formulations follows directly from Theorem 3.1 of

[67].

Theorem 3.8 might not be true if we do not use ground set ∆J , but this restriction is not

too severe as it includes a popular way of modeling piecewise linear functions. We explore

this modeling in Section 3.4 and the potential loss of Theorem 3.8 when using a different

ground set in Section 3.5.

We finally study the effect on formulation (51) of dropping the assumption that |I| is a

power of two. As mentioned in Section 3.2, if |I| is not a power of two we can complete I

to an index set of size 2dlog2 |I|e without changing (42). If we now construct a formulation

that is of logarithmic size with respect to the completed index set we obtain a formulation

that is still of logarithmic order with respect to the original index set. For instance, if I is

not a power of two we can complete it and apply Theorem 3.1 to obtain a formulation with

dlog2 |I|e < log2 |I| + 1 binary variables and 2dlog2 |I|e < 2|I| extra constraints with respect

to the original index set I. This is illustrated in the following example.

Example 3.4. Let J = {1, . . . , 3}, (λj)3j=1 ∈ ∆J be SOS1 constrained. In this case I =

{1, . . . , 3} and Si = {i} for all i ∈ I. We can complete I so that |I| is a power of two by

letting I = {1, . . . , 4} and S4 = ∅. Using B = B∗ from example 1 formulation (45) for the

completed constraint is

λ ∈ ∆J , x1, x2 ∈ {0, 1}, λ2 + λ3 ≤ 2− x1 − x2, λ1 + λ3 ≤ 1− x1 + x2,

λ1 + λ2 ≤ 1 + x1 − x2, λ1 + λ2 + λ3 ≤ x1 + x2.

Formulation (51) deals with the requirement that |I| is a power of two somewhat dif-

ferently. It is clear that (51) does not have this requirement explicitly as it only needs the

51

existence of an independent branching scheme. Fortunately, if a family of constraints has

an independent branching scheme when |I| is a power of two we can easily construct an

independent branching scheme for the cases in which |I| is not a power of two. This is

illustrated in the following example.

Example 3.5. Let {Lk, Rk}dlog2 ne
k=1 be an independent branching scheme for an SOS2 con-

straint on (λj)nj=0 ∈ ∆J for n := 2dlog2 ne and J = {0, . . . , n}. Then {Lk, Rk}dlog2 ne
k=1 defined

by

Lk := Lk ∩ {0, . . . , n}, Rk := Rk ∩ {0, . . . , n} ∀k ∈ {1, . . . , dlog2 ne} (52)

is an independent branching scheme for an SOS2 constraint on (λj)nj=0 ∈ ∆J for J =

{0, . . . , n}.
For example, for n = 3 and n = 4, SOS2 compatible function B0 from example 3 yields

the independent branching scheme for SOS2 on (λj)4j=0 ∈ ∆J given by L1 := {2, 3, 4}, R1 :=

{0, 1, 2}, L2 := {0, 1, 3, 4} and R2 := {1, 2, 3}. By restricting this scheme to {0, . . . , 3} we get

the independent branching scheme for SOS2 on (λj)3j=0 ∈ ∆J given by L1 := {2, 3}, R1 :=

{0, 1, 2}, L2 := {0, 1, 3} and R2 := {1, 2, 3}. This scheme yields the following formulation

of SOS2 on (λj)3j=0 ∈ ∆J .

λ ∈ ∆J , x1, x2 ∈ {0, 1}

λ0 + λ1 ≤ x1, λ3 ≤ (1− x1)

λ2 ≤ x2, λ0 ≤ (1− x2).

Note that this formulation can also be obtained by completing the constraint to I =

{1, . . . , 4} by adding S4 = ∅ and using formulation (46) for B = B0 from example 3.

We could show the validity of this procedure without referring to independent branching

schemes by proving an analog to Theorem 3.4 for the case in which |I| is not a power of

two.

3.4 Modeling Nonseparable Piecewise Linear Functions

In this section we use Theorem 3.7 to construct a model for non-separable piecewise lin-

ear functions of two variables that use a number of binary variables and extra constraints

52

logarithmic in the number of linear pieces of the functions. We also extend this formula-

tion to functions of n variables, in which case the formulation is slightly larger, but still

asymptotically logarithmic for fixed n.

As described in Section 1.1.2.3 of Chapter 1, imposing SOS2 constraints on (λj)nj=0 ∈ ∆J

with J = {0, . . . , n} is a popular way of modeling a one variable piecewise-linear function

which is linear in n different intervals [72, 73, 82, 96, 127]. This approach has been ex-

tended to non-separable piecewise linear functions in [82, 96, 127, 140]. For functions of

two variables this approach can be described as follows.

We assume that for an even integer w we have a continuous function f : [0, w]2 → R

which we want to approximate by a piecewise linear function. A common approach is

to partition [0, w]2 into a number of triangles and approximate f with a piecewise linear

function that is linear in each triangle. One possible triangulation of [0, w]2 is the J1 or

“Union Jack” triangulation [125] which is depicted in Figure 10(a) for w = 4. The J1

triangulation of [0, w]2 for any even w is obtained by adding copies of the 8 triangles shaded

gray in Figure 10(a). This yields a triangulation with 2w2 triangles.

8

Imposing SOS2 constraints on (λj)n
j=0 ∈ ∆J with J = {0, . . . , n} is a popular

way of modeling a one variable piecewise-linear function which is linear in n
different intervals (see for example [22, 23]). This approach has been extended to
non-separable piecewise linear functions in [33, 24, 34, 35]. For functions of two
variables this approach can be described as follows.

We assume that for an even integer w we have a continuous function f :
[0, w]2 → IR which we want to approximate by a piecewise linear function. A
common approach is to partition [0, w]2 into a number of triangles and approx-
imate f with a piecewise linear function that is linear in each triangle. One
possible triangulation of [0, w]2 is the J1 or “Union Jack” triangulation (see for
example [36]) which is depicted in Figure 1(a) for w = 4. The J1 triangulation
of [0, w]2 for any even integer w is simply obtained by adding copies of the 8
triangles shaded gray in Figure 1(a). This yields a triangulation with a total of
2w2 triangles.

We use this triangulation to approximate f with a piecewise linear function
that we denote by g. Let I be the set of all the triangles of the J1 triangulation
of [0, w]2 and let Si be the vertices of triangle i. For example, in Figure 1(a), the
vertices of the triangle labeled T are ST := {(0, 0), (1, 0), (1, 1)}. A valid model
for g(y) (see for example [33, 24, 34]) is

∑

j∈J

λj = 1, y =
∑

j∈J

vjλj , g(y) =
∑

j∈J

f(vj)λj (13a)

λ ∈
⋃

i∈I

Q(Si) ⊂ ∆J , (13b)

where J := {0, . . . , w}2, vj = j for j ∈ J . This model becomes a traditional
model for one variable piecewise linear functions (see for example [22, 23]) when
we restrict it to one coordinate of [0, w]2.

0 1 2 3 4
0

1

2

3

4

T

(a) Example of “Union Jack” Trian-
gulation

0 1 2 3 4
0

1

2

3

4

(b) Triangle selecting branching

Figure 10: Triangulations

We use this triangulation to approximate f with a piecewise linear function that we

denote by g. Let I be the set of all the triangles of the J1 triangulation of [0, w]2 and let

Si be the vertices of triangle i. For example, in Figure 10(a), the vertices of the triangle

53

labeled T are ST := {(0, 0), (1, 0), (1, 1)}. A valid model for g(y) [82, 96, 127] is∑
j∈J

λj = 1, y =
∑
j∈J

vjλj , g(y) =
∑
j∈J

f(vj)λj (53a)

λ ∈
⋃
i∈I

Q(Si) ⊂ ∆J , (53b)

where J := {0, . . . , w}2, vj = j for j ∈ J . This model becomes a traditional model for one

variable piecewise linear functions when we restrict it to one coordinate of [0, w]2 by setting

y2 = 0 and λ(s,t) = 0 for all 0 ≤ s ≤ w, 1 ≤ t ≤ w.

To obtain a mixed integer formulation of (53) with a logarithmic number of binary

variables and extra constraints it suffices to construct an independent binary branching

scheme of logarithmic depth for (53b) and use formulation (51). Binary branching schemes

for (53b) with a similar triangulation have been developed in [127] and [96], but they are

either not independent or have too many dichotomies. We adapt some of the ideas of these

branching schemes to develop an independent branching scheme for the two-dimensional

J1 triangulation. Our independent branching scheme will basically select a triangle by

forbidding the use of vertices in J . We divide this selection into two phases. We first

select the square in the grid induced by the triangulation and we then select one of the two

triangles inside this square.

To implement the first branching phase we use the observation made in [96, 127] that

selecting a square can be achieved by applying SOS2 branching to each component. To make

this type of branching independent it then suffices to use the independent SOS2 branching

induced by an SOS2 compatible function. This results in the set of constraints
w∑

v2=0

∑
v1∈J+

2 (l,B,w)

λ(v1,v2) ≤ x1
l ,

w∑
v2=0

∑
v1∈J0

2 (l,B,w)

λ(v1,v2) ≤ 1− x1
l ,

x1
l ∈ {0, 1} ∀l ∈ L(w), (54a)
w∑

v1=0

∑
v2∈J+

2 (l,B,w)

λ(v1,v2) ≤ x2
l ,

w∑
v1=0

∑
v2∈J0

2 (l,B,w)

λ(v1,v2) ≤ 1− x2
l ,

x2
l ∈ {0, 1} ∀l ∈ L(w), (54b)

where B is an SOS2 compatible function and J+
2 (l, B,w), J0

2 (l, B,w) are the specializations

of J+(l, B), J0(l, B) for SOS2 constraints on (λj)wj=0. Constraints (54a) and binary variables

54

x1
l implement the independent SOS2 branching for the first coordinate and (54b) and binary

variables x2
l do the same for the second one.

To implement the second phase we use the branching scheme depicted in Figure 10(b) for

the case w = 4. The dichotomy of this scheme is to select the triangles colored white in one

branch and the ones colored gray in the other. For general w, this translates to forbidding

the vertices (v1, v2) with v1 even and v2 odd in one branch (square vertices in the figure)

and forbidding the vertices (v1, v2) with v1 odd and v2 even in the other (diamond vertices

in the figure). This branching scheme selects exactly one triangle of every square in each

branch and induces the set of constraints

∑
(v1,v2)∈L

λ(v1,v2) ≤ y0,
∑

(v1,v2)∈R

λ(v1,v2) ≤ 1− y0, y0 ∈ {0, 1}, (55)

where L = {(v1, v2) ∈ J : v1 is even and v2 is odd} andR = {(v1, v2) ∈ J : v1 is odd and v2

is even}. When w is a power of two the resulting formulation has exactly log2 T binary vari-

ables and 2 log2 T extra constraints where T is the number of triangles in the triangulation.

We illustrate the formulation with the following example.

Example 3.6. Constraints (54)–(55) for w = 2 are

λ(0,0) + λ(0,1) + λ(0,2) ≤ x(1,1), λ(2,0) + λ(2,1) + λ(2,2) ≤ 1− x(1,1)

λ(0,0) + λ(1,0) + λ(2,0) ≤ x(2,1), λ(0,2) + λ(1,2) + λ(2,2) ≤ 1− x(2,1)

λ(0,1) + λ(2,1) ≤ x0, λ(1,0) + λ(1,2) ≤ 1− x0.

A portion of the associated branching scheme is shown in Figure 11. The shaded trian-

gles inside the nodes indicates the triangles forbidden by the corresponding assignment of

the binary variables.

The restriction to the first coordinate of [0, w]2 yields a logarithmic formulation for

piecewise linear functions of one variable that only uses one of the SOS2 branchings and

does not use the triangle selecting branching. Furthermore, under some mild assumptions,

55

x1
1 = 0 x1

1 = 1

x2
1 = 1x2

1 = 0

y0 = 0 y0 = 1

Figure 11: Partial B&B tree for Example 3.6

the model can be extended to non-uniform grids by selecting different values of vj . This

last extension is described in Section 4.3.2.2 of Chapter 4.

The extension of the formulation to functions of n variables is direct from the definition of

the n-dimensional J1 triangulation [125]. For D = [0, w]n with w an even integer the vertex

set of the triangulation is defined to be {0, . . . , w}n and the triangulation is composed by the

finite family of simplices defined as follows. Let N = {1, . . . , n}, V0 = {v ∈ {0, . . . , w}n :

vi is odd, ∀i ∈ N}, Sym(N) be the group of all permutations on N and ei be the i-th unit

vector of Rn. For each (v0, π, s) ∈ V0 × Sym(N) × {−1, 1}n we define j1(v0, π, s) to be

the simplex whose extreme points are {yi}ni=0 where yi = yi−1 + sπ(i)e
π(i) for each i ∈ N .

The J1 triangulation of D = [0, w]n is given by all the simplices j1(v0, π, s). By letting

J = {0, . . . , w}n and I be the set of triangles of the J1 of D = [0, w]n we have that (53) is a

model for the piecewise linear approximation g of function f : [0, w]n → R. For this case, to

implement the independent branching scheme for (53b) we can use the fact that indices v0

and s of the simplices determines the hypercube in which the simplex is contained and index

π determines the selection of one of the n! simplices contained in a given hypercube (For

example for the triangulation in Figure 1(a), the simplices for v0 = (1, 1) and s = (−1,−1)

56

are the two triangles contained in box [0, 1]2 and the triangle labeled T corresponds to

the permutation π(1) = 2, π(2) = 1). Then to select the hypercube we can again apply

independent SOS2 branching for each component which yields the constraints given by∑
v∈J̃+

2 (l,B,w,k)

λv ≤ xkl ,
∑

v∈J̃0
2 (l,B,w,k)

λv ≤ 1− xkl , xkl ∈ {0, 1} ∀l ∈ L(w), ∀k ∈ N (56)

where J̃+
2 (l, B,w, k) = {v ∈ J : vk ∈ J+

2 (l, B,w)} and J̃0
2 (l, B,w, k) = {v ∈ J : vk ∈

J0
2 (l, B,w)}. To select a permutation π it suffices to select between π−1(r) < π−1(s) or

π−1(r) > π−1(s) for each r, s ∈ N , r < s. If we select a permutation with π−1(r) < π−1(s)

we have that no vertex v of the resulting triangulation will have an odd vr component and

even vs component. In contrast, if we select a permutation with π−1(s) < π−1(r) we have

that no vertex v of the resulting triangulation will have an even vr component and odd vs

component. Hence to select a simplex if suffices to apply the triangle selection branching

depicted in Figure 10(b) to each pair of indices r, s ∈ N , r < s which yields the constraints

given by∑
v∈L(r,s)

λv ≤ y(r,s),
∑

v∈R(r,s)

λv ≤ 1− y(r,s), y(r,s) ∈ {0, 1} ∀r, s ∈ N, r < s (57)

where L(r, s) = {v ∈ J : vr is even and vs is odd} and R = {v ∈ J : vr is odd and vs

is even}. The resulting formulation has L := ndlog2we + n(n − 1)/2 binary variables

(and twice as many extra constraints) and the J1 triangulation has T := wnn! simplices. In

contrast to the two dimensional case, it is not clear how to explicitly relate these two numbers

even for the case when w is a power of two. However we can see that L grows asymptotically

as log2 T only when n is fixed. More specifically, for fixed n we have L ∼ log2 T (i.e.

limw→∞ L/ log2 T = 1), but for fixed w we have log2 T ∈ o(L) (i.e. limn→∞ log2 T /L = 0).

3.5 Extension of the Model to Ground Set [0, 1]J

We replace λ ∈ ∆J in definition (43) of Q(Si) with the box constraint λ ∈ [0, 1]J to

obtain Q(Si) =
{
λ ∈ [0, 1]J : λj = 0∀ j /∈ Si

}
. We have that an independent branching

{Lk, Rk}dk=1 for (42) is also an independent branching for

λ ∈
⋃
i∈I

Q(Si) (58)

57

since ⋃
i∈I

Q(Si) =
d⋂

k=1

(
Q(Lk) ∪Q(Rk)

)
. (59)

However, to preserve validity formulation (51) needs to be modified to

λ ∈ [0, 1]J (60a)∑
j /∈Lk

λj ≤ |J \ Lk|xk,
∑
j /∈Rk

λj ≤ |J \Rk| (1− xk), xk ∈ {0, 1} ∀k ∈ {1, . . . , d}. (60b)

This formulation still has d binary variables and 2d extra constraints, but Theorem 3.8 is

no longer true for this formulation.

To understand the potential sources of weakness of formulation (60) we study how this

formulation can be constructed from the standard disjunctive programming formulation of

(58) in three steps, two of which have the potential for weakening the formulation. The

first step is to use identity (59) to reduce the formulation of (58) to the formulation of

λ ∈ Q(Lk) ∪Q(Rk) (61)

for each k ∈ {1, . . . , d}. The second step is to eliminate the duplicated continuous variables

of formulation (39) for (61) in the following way. Formulation (39) for (61) is given by

λ1,k
j , λ2,k ∈ R|J |+ , xk ∈ {0, 1} (62a)

λ1,k
j ≤ (1− xk) ∀j ∈ Lk, λ1,k

j ≤ 0 ∀j /∈ Lk (62b)

λ2,k
j ≤ xk ∀j ∈ Rk, λ2,k

j ≤ 0 ∀j /∈ Rk (62c)

λ = λ1,k + λ2,k. (62d)

Using (62d) we can eliminate variables λ1,k, λ2,k to obtain the formulation of (61) given by

λ ∈ [0, 1]J , xk ∈ {0, 1} (63a)

λj ≤ xk ∀j /∈ Lk (63b)

λj ≤ (1− xk) ∀j /∈ Rk. (63c)

The third and final step is to aggregate constraints (63b)–(63c) and combine the resulting

formulation of (61) for all k ∈ {1, . . . , d} to obtain (60).

58

With regard to the first step, we have that (59) shows how an independent branch-

ing scheme rewrites disjunctive constraint (42) from its disjunctive normal form (DNF)

as the union of polyhedra (left hand side) to a conjunction of two-term polyhedral dis-

junctions (right hand side). It is well known that this rewrite can significantly reduce the

tightness of mixed integer programming formulations [7]. More specifically, Theorem 3.1

of [67] tells us that if we directly formulate constraint (58) the best we can hope is for

the projection onto the original λ variables of the LP relaxation of our formulation to be

equal to conv(
⋃
i∈I Q(Si)). In contrast, if we construct a formulation for constraints (61)

for each k ∈ {1, . . . , d} and then combine them, the best we can hope is for the projec-

tion onto the original λ variables of the LP relaxation of our formulation to be equal to⋂d
k=1 conv(Q(Lk)∪Q(Rk)). Because the convex hull and intersection operations usually do

not commute we only have

conv

(⋃
i∈I

Q(Si)

)
⊂

d⋂
k=1

conv(Q(Lk) ∪Q(Rk)) (64)

and we can expect strict containment resulting in the first formulation being stronger. This

is illustrated in the following example.

Example 3.7. Let J = {0, . . . , 4} and (λj)4j=0 ∈ ∆J be SOS2 constrained. We then have

S1 = {0, 1}, S2 = {1, 2}, S3 = {2, 3}, S4 = {3, 4} and using PORTA [33] we get that

conv

(
4⋃
i=1

Q(Si)

)
=
{

(λj)4j=0 ∈ [0, 1]5 : λ1 + λ4 ≤ 1, λ1 + λ3 ≤ 1, λ0 + λ3 ≤ 1,

λ0 + λ2 + λ4 ≤ 1
}
. (65)

If we let d = 1, L1 = {2, 3, 4}, R1 = {0, 1, 2}, L2 = {0, 1, 3, 4} and R2 = {1, 2, 3} we have⋃4
i=1Q(Si) =

(
Q(L1) ∪Q(R1)

) ∩ (Q(L2) ∪Q(R2)
)
. Again using PORTA we get that

conv
(
Q(L1) ∪Q(R1)

)
=
{

(λj)4j=0 ∈ [0, 1]5 : λ2 ≤ 1, λ1 + λ4 ≤ 1, λ1 + λ3 ≤ 1,

λ0 + λ4 ≤ 1, λ0 + λ3 ≤ 1}

59

and

conv
(
Q(L2) ∪Q(R2)

)
=
{

(λj)4j=0 ∈ [0, 1]5 : λ3 ≤ 1, λ1 ≤ 1, λ2 + λ4 ≤ 1,

λ0 + λ2 ≤ 1, λ3 + λ4 − λ0 − λ1 ≤ 1}.

Clearly (1/2, 1/2, 1/2, 1/2, 1/2) ∈ conv (Q(L1) ∪Q(R1)) ∩ conv (Q(L2) ∪Q(R2)), but from

(65) we have (1/2, 1/2, 1/2, 1/2, 1/2) /∈ conv(
⋃4
i=1Q(Si)). Hence

conv

(
4⋃
i=0

Q(Si)

)
(

2⋂
k=1

conv(Q(Lk) ∪Q(Rk)).

This source of weakness could be avoided by applying techniques from [7] at the ex-

pense of increasing the number of continuous variables.

With respect to the second step, it is well known that eliminating the multiple copies

of the continuous variables in formulation (39) can result in a weaker formulation [8, 27,

65]. Fortunately, as the following theorem shows, for constraints of the form (42) or (58)

eliminating the multiple copies of the continuous variables does not make the formulations

weaker.

Theorem 3.9. Let Pλ be the projection onto the λ variables of the LP relaxation of for-

mulation (44) for (42) and let P λ the projection onto the λ variables of the LP relaxation

of the formulation of (58) given by

λ ∈ [0, 1]J , λj ≤
∑
i∈I(j)

xi ∀j ∈ J,
∑
i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I. (66)

Then Pλ = conv
(⋃

i∈I Q(Si)
)

and P λ = conv
(⋃

i∈I Q(Si)
)
. In particular the projec-

tions onto the λ variables of the LP relaxations of formulations (62) and (63) are equal

to conv(Q(Lk) ∪Q(Rk)).

Proof. For Pλ the result follows directly from Theorem 3.8. For P λ the result follows directly

from Section 3.1 of [65] because
⋃
i∈I Q(Si) is the union of multidimensional intervals as

defined in that section.

60

Theorem 3.9 shows that the traditional formulations for SOS1 and SOS2 constraints are

as tight as possible, which could explain their success. In addition, Theorem 3.9 shows that

the second step does not weaken the formulation as we get the following corollary.

Corollary 3.10. The projection onto the λ variables of the LP relaxation of the formulation

given by (63) for all k ∈ {1, . . . , d} is
⋂d
k=1 conv(Q(Lk) ∪Q(Rk)).

Finally, with respect to the third step, it is well known that a weaker integer program-

ming formulations can result from aggregating constraints. As expected it is also easy to

construct examples where formulation (63) is stronger than formulation (60) (the example

for the strict containment in (64) also works here). Of course, this source of weakness can

be avoided by simply choosing formulation (63) instead of (60) at the expense of increasing

the number of constraints from 2d to at most |J |d.

3.6 Computational Results

In this section we computationally test the logarithmic models for piecewise linear functions

of one and two variables against some other existing models. For a set of transportation

problems with piecewise linear cost functions, the logarithmic models provide a significant

advantage in almost all of our experiments.

We denote the model for piecewise linear functions of one and two variables from Sec-

tion 3.4 by Log. From the traditional models we selected the so called incremental and

multiple choice models. The incremental model for one variable functions appears as early

as [40, 41, 95], was extended to functions of several variables in [140] and it has been recently

shown to have favorable integrality and tightness properties [36, 105, 118]. This model is

described in detail in Section 4.3.4 of Chapter 4 and we denote it by Inc. The multiple

choice model appears in [5, 36, 87] and also has favorable integrality and tightness proper-

ties. This model is described in detail in Section 4.3.3 of Chapter 4 and we denote it by

MC. We also include two models that are based on independent branching schemes of linear

depth. The first model is based on the independent branching scheme for SOS2 constraints

on (λj)nj=0 given by Lk = {k, . . . , n}, Rk = {0, . . . , k} for every k ∈ {1, . . . , n − 1}. This

formulation has been independently developed in [120] and is currently defined only for

61

functions of one variable. We denote this model by CC:Lin1. The second model is based on

an independent branching defined in [96, p. 573]. This branching scheme is defined for any

triangulation and its depth is equal to the number of vertices in the triangulation. In par-

ticular for piecewise linear functions of one variable with k intervals or segments its depth

is k+1 and for piecewise linear functions on a k×k grid it is (k+1)2. We denote the model

by CC:Lin2. We also tested some other piecewise linear models, but do not report results

for them since they did not significantly improve the worst results reported here. We refer

the reader to [130] for a more detailed study and evaluation of mixed integer formulations

for piecewise linear functions. In addition to the mixed integer programming formulations

we tested the traditional SOS2 formulation of univariate piecewise linear functions which

does not include binary variables. We implemented this formulation using CPLEX’s built

in support for SOS2 constraints and we denote it by SOS2. All models were generated

using Ilog Concert Technology and solved using CPLEX 11 on a dual 2.4GHz Xeon Linux

workstation with 2GB of RAM. Furthermore, all tests were run with a time limit of 10000

seconds.

We note that Log, Inc, MC, CC:Lin1 and CC:Lin2 are mixed integer programming prob-

lems that do not include SOS2 constraints such as the ones supported by CPLEX. Hence,

when CPLEX solves these formulations the only type of branching that occurs is due to the

fixing of binary variables to zero or one. For Log, CC:Lin1 and CC:Lin2 this binary branch-

ing induces a specialized branching schemes that fixes some λ variables to zero, but CPLEX

does not directly fix λ variables to zero. In contrast, formulation SOS2 does not contain

any binary variables and to solve it CPLEX executes the traditional SOS2 branching of [12]

by directly fixing λ variables to zero.

The first set of experiments correspond to piecewise linear functions of one variable

for which we used the transportation models from [131]. We selected the instances with

10 supply and 10 demand nodes and for each of the 5 available instances we generated

several randomly generated objective functions. We generated a separable piecewise linear

objective function given by the sum of concave non-decreasing piecewise linear functions of

the flow in each arc. We use concave functions because they are widely used in practice

62

and because using them results in NP-hard problems [72] that are challenging for our

experiments. For each instance and number of segments we generated 20 objective functions

to obtain a total of 100 instances for each number of segments. We excluded LB2 as

LB1 performed consistently better. Table 13 shows the minimum, average, maximum and

standard deviation of the solve times in seconds for 4, 8, 16 and 32 segments. The tables

also shows the number of times the solves failed because the time limit was reached and the

number of times each formulation had the fastest solve time (win or tie). MC is the best

model for 4 and 8 segments and Log is clearly the best model for 16 and 32 segments.

Table 13: Solve times for one variable functions [s].
(a) 4 segments.

stat Log LB1 MC Inc SOS2
min 0 0 0 0 0
avg 2 3 1 3 2
max 12 16 8 15 8
std 2 3 2 3 1
wins 25 1 46 2 27
fail 0 0 0 0 0

(b) 8 segments.

stat Log LB1 MC Inc SOS2
min 1 3 1 5 1
avg 12 26 10 47 16
max 84 116 39 160 202
std 11 17 7 31 23
wins 34 0 43 0 23
fail 0 0 0 0 0

(c) 16 segments.

stat Log LB1 MC Inc SOS2
min 0 7 2 23 2
avg 24 124 97 284 109
max 96 376 730 1250 1030
std 18 78 122 201 167
wins 95 0 3 0 2
fail 0 0 0 0 0

(d) 32 segments.

stat Log LB1 MC Inc SOS2
min 2 117 23 214 10
avg 43 569 2246 889 925
max 194 2665 10000 3943 10000
std 39 476 3208 662 1900
wins 98 0 0 0 2
fail 0 0 9 0 2

The next set of experiments correspond to piecewise linear functions of two variables for

which we selected a series of two commodity transportation problems with 5 supply nodes

and 2 demand nodes. These instances were constructed by combining two 5×2 transporta-

tion problems generated in a manner similar to the instances used in [131]. The supplies,

demands and individual commodity arc capacities for each commodity were obtained from

two different transportation problems and the joint arc capacities were set to 3/4 of the

sum of the corresponding individual arc capacities. We considered an objective function

of the form
∑

e∈E fe(x
1
e, x

2
e) where E is the common set of 10 arcs of the transportation

63

problems and fe(x1
e, x

2
e) is a piecewise linear function of the flows xie in arc e of commodity

i for i = 1, 2. Each component fe(x1
e, x

2
e) for arc e with individual arc capacities uie for

commodity i = 1, 2 was constructed as follows. We begin by triangulating [0, u1
e] × [0, u2

e]

as described in Section 3.4 with a K ×K segment grid. Using this triangulation we then

obtained fe(x1
e, x

2
e) by interpolating g

(∥∥(x1
e, x

2
e

)∥∥) where ‖ · ‖ is the euclidean norm and

g :
[
0,
∥∥(u1

e, u
2
e

)∥∥] → R is a continuous concave piecewise linear function which was ran-

domly generated independently for each arc in a similar way to the one variable functions of

the previous set of experiments. The idea of this function is to use the sub-linearity of the

euclidean norm to consider discounts for sending the two commodities in the same arc and

concave function g to consider economies of scale. We note that although g is concave its

interpolation is not always concave due to the known fact that multivariate interpolation on

a predefined triangulation is not always shape preserving [30]. We selected 5 combinations

of different pairs of the original transportation problems and for each one of these we gen-

erated 20 objective functions for a total of 100 instances for each K. For these instances we

excluded SOS2 and LB1 as they are only defined for univariate functions. Table 14 shows

the statistics for this set of instances. In the two variable case, Log is best for all sizes and

the advantage becomes overwhelming for the largest instances.

64

Table 14: Solve times for two variable functions on a 4× 4, 8× 8 and 16× 16 grids [s].
(a) 4× 4 grid.

stat Log LB2 MC Inc
min 0 1 1 3
avg 3 6 6 32
max 9 22 17 127
std 2 4 3 26
wins 87 9 5 0
fail 0 0 0 0

(b) 8× 8 grid.

stat Log LB2 MC Inc
min 2 37 31 100
avg 13 196 398 769
max 33 804 5328 6543
std 5 129 584 1111
wins 100 0 0 0
fail 0 0 0 31

(c) 16× 16 grid.

stat Log LB2 MC Inc
min 27 3116 2853 772
avg 56 9825 9266 4857
max 118 10000 10000 10000
std 19 866 1678 3429
wins 100 0 0 0
fail 0 94 77 20

It is clear that one of the advantages of Log is that it is smaller than the other formu-

lations while retaining favorable tightness properties. In addition, formulation Log effec-

tively transforms CPLEX’s binary variable branching into a specialized branching scheme

for piecewise linear functions. This allows formulation Log to combine the favorable prop-

erties of specialized branching schemes and the technology in CPLEX’s variable branching.

Given its computational advantages, we anticipate that Log will become a valuable tool in

practice. Results for aditional computational experiments including other formulations are

included in Section 4.5 of Chapter 4.

3.7 Conclusions

We have introduced a technique for modeling hard combinatorial problems with a mixed 0-1

integer programing formulation that uses a logarithmic number of binary variable and extra

constraints. It is based on the concept of independent branching which is closely related to

specialized branching schemes for combinatorial optimization. Using this technique we have

introduced the first binary formulations for SOS1 and SOS2 constraints and for one and two

variable piecewise linear functions that use a logarithmic number of binary variables and

extra constraints. Finally, we have illustrated the usefulness of these new formulations by

65

showing that for one and two variable piecewise linear functions they provide a significant

computational advantage.

There are still a number of unanswered questions concerning necessary and more general

sufficient conditions for the existence of formulations with a logarithmic number of binary

variables and extra constraints. For example, if we allow the formulation to have a number of

binary variables and extra constraints whose asymptotic growth is logarithmic our sufficient

conditions do not seem to be necessary. Consider cardinality constraints that restrict at

most K components of λ ∈ [0, 1]n to be non-zero. We do not know of an independent

branching scheme for this constraint, but it does have a formulation with a number of

variables and constraints of logarithmic order. We can write cardinality constraints in the

form (42) by letting J = {1, . . . , n}, I = {1, . . . ,m} for m =
(
n
K

)
and {Sj}mj=1 be the

family of all subsets of J such that |Si| = K. The traditional formulation for cardinality

constraints is [40, 95]

n∑
j=1

xj ≤ K; λj ∈ [0, 1], λj ≤ xj , xj ∈ {0, 1} ∀j ∈ J. (67)

Let n be an even number. By choosing K = n/2, which is the non-trivial cardinality

constraint with the largest number of sets Si, we can use the fact that for K = n/2 we

have n ≤ 2 log2

((
n
K

))
to conclude that (67) has O(log2(|I|)) binary variables and extra

constraints.

Another question concerns the case in which I is not a power of two. Theoretical, this

does not pose a problem because we can complete I or adapt the independent branching

scheme. However, preliminary tests in [130] showed that the computational effectiveness of

independent branching schemes can be significantly reduced if I is not a power of two. This

is a common problem with binary encoded formulations, that can be mitigated by the use

of techniques developed in [35].

66

CHAPTER IV

MIXED-INTEGER MODELS FOR NONSEPARABLE PIECEWISE

LINEAR OPTIMIZATION: UNIFYING FRAMEWORK AND

EXTENSIONS

4.1 Introduction

We consider optimization problems involving piecewise linear functions modeled as Mixed

Integer Programming (MIP) problems. When the functions considered are convex these

problems can be modeled as Linear Programming (LP) problems, so we focus on non-convex

functions for which the optimization problem is NP-hard even when all the functions are

univariate [73].

Non-convex piecewise linear functions are generally used to approximate non-linearities

arising from factors such as economies of scale or complex technological processes. They

also naturally appear as cost functions of supply chain problems to model discounts for high

volume and fixed charges. Applications of optimization problems with non-convex piecewise

linear functions include production planning [51], optimization of electronic circuits [55],

operation planning of gas networks [96], process engineering [18, 19], wetland restoration

[122], merge-in-transit [37] and other network flow problems with non-convex piecewise

linear objective functions [38].

Optimization problems involving non-convex piecewise linear functions can be solved

with specialized algorithms [43, 73, 127] or they can be modeled as MIPs [87, 118, 36, 5,

72, 40, 140, 82, 68, 105, 132, 92, 95] and solved with a general purpose MIP solver. The

advantage of this latter approach is that it capitalizes on the advanced technology available

in state of the art MIP solvers [131]. MIP models for non-convex piecewise linear functions

have been extensively studied, but existing comparisons [36, 72, 68] only concentrate on the

case in which the functions are separable (i.e. can be written as the sum of univariate func-

tions). When a non-separable function is known analytically it can sometimes be converted

67

into a separable one by algebraic manipulations [127]. However this conversion might be

undesirable for numerical reasons [96] and because it can result in weaker formulations [38].

Furthermore, in many applications the functions come from complicated simulation models

[78] and are not known analytically.

The main objective of this chapter is to unify the numerous MIP models for piecewise

linear functions into a common framework which considers the possibility of non-separable

functions and discontinuities directly. In addition, we present a theoretical and compu-

tational comparison of the models considered. Because models for separable multivariate

functions can be obtained directly from models for univariate functions we will assume that

multivariate functions are non-separable.

The remainder of chapter is organized as follows. In Section 4.2 we study the MIP

modeling of continuous piecewise linear functions and define concepts that will be used

throughout the paper. In Section 4.3 we give several MIP models for continuous piecewise

linear functions and in Section 4.4 we study some properties of these formulations. In

Section 4.5, we present computational results comparing the formulations for continuous

functions. In Section 4.6, we study the extension of the formulations to lower semicontinuous

functions and in Section 4.7 we present computational results comparing the formulations

for this class of functions. In Section 4.8 we present some final remarks.

4.2 Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f : D ⊂ Rn → R is to model

its epigraph given by epi(f) := {(x, z) ∈ D × R : f(x) ≤ z}. For example, the epigraph of

the function in Figure 12(a) is depicted in Figure 12(b).

For simplicity, we assume that the function domain D is bounded and f is only used

in a constraint of the form f(x) ≤ 0 or as an objective function that is being minimized.

We then need a model of epi(f) since f(x) ≤ 0 can be modeled as (x, z) ∈ epi(f), z ≤ 0

and the minimization of f can be achieved by minimizing z subject to (x, z) ∈ epi(f).

For continuous functions we can also work with its graph, but modeling the epigraph will

allow us to extend most of the results to some discontinuous functions and will simplify the

68

0 1 2 4 5

f(4) = 5
0

f(0) = 10

f(1) = 32
f(2) = 40

f(5) = 15

(a) f .

0 1 2 4 5

5
0

10

32
40

15

(b) epi(f).

Figure 12: A continuous piecewise linear function and its epigraph as the union of poly-
hedra.

analysis of formulation properties.

Following the theory developed by Jeroslow and Lowe [64, 66, 67, 68, 87], we say that a

polyhedron P ⊂ Rn × R× Rp × Rq is a binary mixed-integer programming model for a set

S ⊂ Rn × R if

(x, z) ∈ S ⇔ ∃(λ, y) ∈ Rp × {0, 1}q s.t. (x, z, λ, y) ∈ P. (68)

Under the bounded domain assumption, Jeroslow and Lowe prove that the epigraph

of a function can be modeled as a binary mixed-integer programming model if and only

if it is a union of polyhedra with a common recession cone given by C+
n := {(0, z) ∈

Rn × R : z ≥ 0}. This condition is a special case of the results in [66], which also consider

unbounded domains and more general uses of f in a mathematical program. Furthermore,

this condition implies that for a function f : D ⊂ R → R we have that epi(f) can be

modeled as a binary mixed-integer programming model if and only if f is piecewise linear

and lower semicontinuous. Our definition of a piecewise linear function is motivated by the

extension of this characterization to the multivariate case.

A single variable continuous piecewise linear function f : [0, u]→ R can be described as

f(x) :=
{
mix+ ci x ∈ [di−1, di] ∀i ∈ {1, . . . ,K} (69)

for some K ∈ Z+, {mi}Ki=1 ⊂ R, {ci}Ki=1 ⊂ R and {dk}Kk=0 ⊂ R such that 0 = d0 < d1 <

69

. . . < dK = u. For example, function f depicted Figure 12(a) can be described as

f(x) :=



22x+ 10 x ∈ [0, 1]

8x+ 24 x ∈ [1, 2]

−17.5x+ 75 x ∈ [2, 4]

10x− 35 x ∈ [4, 5].

(70)

A natural extension to the multivariate case is given by

Definition 4.1 (Continuous Piecewise Linear Function). Let D ⊂ Rn be a compact set. A

continuous function f : D ⊂ Rn → R is a piecewise linear function if and only if there exists

{mP }P∈P ⊆ Rn, {cP }P∈P ⊆ R and a finite family of polytopes P such that D =
⋃
P∈P P

and

f(x) :=
{
mPx+ cP x ∈ P ∀P ∈ P. (71)

Note that D does not need to be convex or connected and that the boundedness as-

sumption is for simplicity. Furthermore, if x ∈ P1 ∩ P2 for two polytopes P1, P2 ∈ P the

definition implies that mP1x+ cP1 = mP2x+ cP2 which ensures the continuity of f on D. In

addition, Definition 4.1 does not specify how the polytopes are described as this is formula-

tion dependent. In some formulations the polytopes are given as the convex hull of a finite

number of points and in others the polytopes are given as a system of linear inequalities.

The finite family of polytopes P is usually taken to be a triangulation of D [82, 96, 140] and

in fact some models will require this. For any family of polytopes P we denote the set of

vertices of the family by V(P) :=
⋃
P∈P V (P) where V (P) is the set of vertices of P . When

P is a triangulation this coincides with the usual definition of vertices of a triangulation.

Using the approach of modeling epi(f) as a union of polyhedra, Balas [6] and Jeroslow

and Lowe introduce two standard ways of modeling f . An advantage of this approach is that

it allows for a simple treatment of lower semicontinuous functions. In addition, with this

definition the epigraph of a continuous piecewise linear function is the union of polyhedra

given by

epi(f) = C+
n +

⋃
P∈P

conv
(
{(v, f(v))}v∈V (P)

)
(72)

70

where conv denotes the convex hull operation and + denotes the Minkowski addition of

sets. For the function defined in (70) and depicted in Figure 12(a) this characterization is

given by

epi(f) = {(0, r) : r ≥ 0}+
(

conv
({(0, 10), (1, 32)}) ∪ conv

({(1, 32), (2, 40)})
∪ conv

({(2, 40), (4, 5)}) ∪ conv
({(4, 5), (5, 15)}))

and illustrated in Figure 12(b). Note that this representation can be simplified by replacing

conv({(2, 40), (4, 5)})∪conv({(4, 5), (5, 15)}) with conv({(2, 40), (4, 5), (5, 15)}), but this re-

quires detecting that (conv({(2, 40), (4, 5)}) + {(0, r) : r ≥ 0}) ∪ (conv({(4, 5), (5, 15)}) +

{(0, r) : r ≥ 0}) is in fact a polyhedron.

4.3 Mixed Integer Programming Models for Piecewise Linear Functions

In this section we review several new and existing formulations for continuous functions.

We illustrate the formulations for the function defined in (70) and depicted in Figure 12(a).

4.3.1 Disaggregated convex combination models

All formulations in this section represent (x, z) ∈ epi(f) as the convex combination of

points (v, f(v)) for v ∈ V(P) plus a ray in cone C+
n . They have one continuous vari-

able for each v ∈ V (P) and for each P ∈ P to represent a point (x, z) ∈ epi(f) as

(x, z) = r +
∑

P∈P
∑

v∈V (P) λP,v(v, f(v)), for r ∈ C+
n and {λP,v}P∈P, v∈V (P) ⊂ R+ such

that
∑

P∈P
∑

v∈V (P) λP,v = 1.

4.3.1.1 Basic Model

This formulation has no requirement on the family of polytopes and is given by

∑
P∈P

∑
v∈V (P)

λP,vv = x,
∑
P∈P

∑
v∈V (P)

λP,v (mP v + cP) ≤ z (73a)

λP,v ≥ 0 ∀P ∈ P, v ∈ V (P),
∑

v∈V (P)

λP,v = yP ∀P ∈ P (73b)

∑
P∈P

yP = 1, yP ∈ {0, 1} ∀P ∈ P. (73c)

71

This formulation has been studied in [36, 64, 67, 87, 100, 103] and [118] and is sometimes

referred to as the convex combination model. To distinguish it from the formulation in

Section 4.3.2 we instead refer to it as the disaggregated convex combination model and

denote it by DCC. For the function defined in (70) it is given by

0λ[0,1],0 + 1
(
λ[0,1],1 + λ[1,2],1

)
+ 2

(
λ[1,2],2 + λ[2,4],2

)
+ 4

(
λ[2,4],4 + λ[4,5],4

)
+ 5λ[4,5],5 = x

10λ[0,1],0 + 32
(
λ[0,1],1 + λ[1,2],1

)
+ 40

(
λ[1,2],2 + λ[2,4],2

)
+ 5

(
λ[2,4],4 + λ[4,5],4

)
+ 15λ[4,5],5 ≤ z

λ[0,1],0, λ[0,1],1, λ[1,2],1, λ[1,2],2, λ[2,4],2, λ[2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0

λ[0,1],0 + λ[0,1],1 = y[0,1], λ[1,2],1 + λ[1,2],2 = y[1,2],

λ[2,4],2 + λ[2,4],4 = y[2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,1] + y[1,2] + y[2,4] + y[4,5] = 1, y[0,1], y[1,2], y[2,4], y[4,5] ∈ {0, 1}.

4.3.1.2 Logarithmic Model

Using ideas from [61, 132] and [133] we can reduce the number of binary variables and

constraints of DCC. To do this we identify each polytope in P with a binary vector in

{0, 1}dlog2 |P|e through an injective function B : P → {0, 1}dlog2 |P|e. We then use dlog2 |P|e
binary variables y ∈ {0, 1}dlog2 |P|e to force

∑
v∈V (P) λP,v = 1 when y = B(P).

The resulting formulation has no requirement on the family of polytopes and is given

by

∑
P∈P

∑
v∈V (P)

λP,vv = x,
∑
P∈P

∑
v∈V (P)

λP,v (mP v + cP) ≤ z (74a)

λP,v ≥ 0 ∀P ∈ P, v ∈ V (P),
∑
P∈P

∑
v∈V (P)

λP,v = 1 (74b)

∑
P∈P+(B,l)

∑
v∈V (P)

λP,v ≤ yl,
∑

P∈P0(B,l)

∑
v∈V (P)

λP,v ≤ (1− yl), (74c)

yl ∈ {0, 1} ∀l ∈ L(P), (74d)

where B : P → {0, 1}dlog2 |P|e is any injective function, P+(B, l) := {P ∈ P : B(P)l =

1}, P0(B, l) := {P ∈ P : B(P)l = 0} and L(P) := {1, . . . , dlog2 |P|e}. We refer to it

as the logarithmic dissagregated convex combination model and denote it by DLog. For

72

the function defined in (70) and for B([0, 1]) = (0, 0)T , B([1, 2]) = (0, 1)T , B([2, 4]) =

(1, 1)T , B([4, 5]) = (1, 0)T it is given by

0λ[0,1],0 + 1
(
λ[0,1],1 + λ[1,2],1

)
+ 2

(
λ[1,2],2 + λ[2,4],2

)
+ 4

(
λ[2,4],4 + λ[4,5],4

)
+ 5λ[4,5],5 = x

10λ[0,1],0 + 32
(
λ[0,1],1 + λ[1,2],1

)
+ 40

(
λ[1,2],2 + λ[2,4],2

)
+ 5

(
λ[2,4],4 + λ[4,5],4

)
+ 15λ[4,5],5 ≤ z

λ[0,1],0, λ[0,1],1, λ[1,2],1, λ[1,2],2, λ[2,4],2, λ[2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0

λ[2,4],2 + λ[2,4],4 + λ[4,5],4 + λ[4,5],5 ≤ y1, λ[0,1],0 + λ[0,1],1 + λ[1,2],1 + λ[1,2],2 ≤ (1− y1)

λ[1,2],1 + λ[1,2],2 + λ[2,4],2 + λ[2,4],4 ≤ y2, λ[0,1],0 + λ[0,1],1 + λ[4,5],4 + λ[4,5],5 ≤ (1− y2)

y1, y2 ∈ {0, 1}.

4.3.2 Convex combination models

The formulations in this section reduce the number of continuous variables of DCC by ag-

gregating variables associated with a point in V(P) that belongs to more than one polytope

in P. The resulting formulations have one continuous variable for each v ∈ V(P) and hence

represent point (x, z) ∈ epi(f) as (x, z) = r+
∑

v∈V(P) λv(v, f(v)), for r ∈ C+
n and λ ∈ RV(P)

+

such that
∑

v∈V(P) λv = 1.

4.3.2.1 Basic Model

This formulation has no requirement on the family of polytopes and is given by

∑
v∈V(P)

λvv = x,
∑

v∈V(P)

λv (mP v + cP) ≤ z (75a)

λv ≥ 0 ∀v ∈ V(P),
∑

v∈V(P)

λv = 1 (75b)

λv ≤
∑

P∈P(v)

yP ∀v ∈ V(P),
∑
P∈P

yP = 1, yP ∈ {0, 1} ∀P ∈ P, (75c)

where P(v) := {P ∈ P : v ∈ P}. This formulation is studied in [41, 40, 52, 68, 72, 82, 87,

103, 104, 105] and [140] and is sometimes referred to as the lambda method. We refer to

this formulation as the convex combination model and denote it by CC. For the function

73

defined in (70) it is given by

0λ0 + 1λ1 + 2λ2 + 4λ4 + 5λ5 = x, 10λ0 + 32λ1 + 40λ2 + 5λ4 + 15λ5 ≤ z

λ0, λ1, λ2, λ4, λ5 ≥ 0, λ0 + λ1 + λ2 + λ4 + λ5 = 1

λ0 ≤ y[0,1], λ1 ≤ y[0,1] + y[1,2], λ2 ≤ y[1,2] + y[2,4], λ4 ≤ y[2,4] + y[4,5], λ5 ≤ y[4,5]

y[0,1] + y[1,2] + y[2,4] + y[4,5] = 1, y[0,1], y[1,2], y[2,4], y[4,5] ∈ {0, 1}.

4.3.2.2 Logarithmic Model

As in DLog’s construction we can reduce the number of binary variables and constraints

of CC by identifying each polytope in P with a binary vector in {0, 1}dlog2 |P|e through

an injective function B : P → {0, 1}dlog2 |P|e. However, we now need B to comply with

conditions that can be interpreted as the construction of a binary branching scheme for

the effect of (75c) on λ ∈ RV(P). This constraint requires the non-zero λ variables to be

associated with the vertices of a polytope in P:

∃P ∈ P s.t. {v ∈ V(P) : λv > 0} ⊂ V (P). (76)

A binary branching scheme for (76) imposes it by fixing to zero disjoint sets of λ variables

in each side of a series of branching dichotomies. For example, for the function depicted in

Figure 12(a) we have P = {[0, 1], [1, 2], [2, 4], [4, 5]} and we can force (76) by the branching

scheme given by the following two dichotomies: (λ2 = 0 or λ0 = λ5 = 0) and (λ4 = λ5 =

0 or λ0 = λ1 = 0).

In general, a branching scheme for (76) is a family of dichotomies {Ls, Rs}s∈S indexed

by a finite set S and with Ls, Rs ⊂ V(P) such that for every P ∈ P we have V (P) =⋂
s∈S
(V(P) \ Ts

)
, where Ts = Ls or Ts = Rs for each s ∈ S. For such a branching scheme

a valid formulation is given by ∑
v∈V(P)

λvv = x,
∑

v∈V(P)

λv (mP v + cP) ≤ z (77a)

λv ≥ 0 ∀v ∈ V(P),
∑

v∈V(P)

λv = 1 (77b)

∑
v∈Ls

λv ≤ ys,
∑
v∈Rs

λv ≤ (1− ys), ys ∈ {0, 1} ∀s ∈ S. (77c)

74

For (77) to have a logarithmic number of binary variables, we need a branching scheme

with a logarithmic number of dichotomies. Such a scheme was introduced in [132] and [133]

for the case when the family of polytopes P is topologically equivalent or compatible [2]

with a triangulation known as J1 or “Union Jack” [125]. For simplicity we first describe

the formulation for the case when P = J1 and then show how to extend the formulation to

the case where P is compatible with J1.

J1 is defined for D = [0,K]n for K ∈ Z even. The vertex set of J1 is given by V =

{0, . . . ,K}n. The simplices of J1 are constructed as follows. Let N = {1, . . . , n}, V0 =

{v ∈ V : vi is odd, ∀i ∈ N}, Sym(N) be the group of all permutations on N and ei be

the i-th unit vector of Rn. For each (v0, π, s) ∈ V0 × Sym(N)× {−1, 1}n define j1(v0, π, s)

to be the simplex whose vertices are {yi}ni=0 where y0 = v0 and yi = yi−1 + sπ(i)e
π(i) for

each i ∈ N . Triangulation J1 of D is given by all these simplices, which is illustrated in

Figure 13(a) for D = [0, 2]2. A branching scheme for J1 is constructed by dividing index

set S into two sets S1 and S2. The first set is given by S1 := N × {1, . . . , dlog2(K)e} and

L(s1,s2) := {v ∈ V : vs1 ∈ O(s2, 1)}, R(s1,s2) := {v ∈ V : vs1 ∈ O(s2, 0)} for each (s1, s2) ∈
S1, where O(l, b) :=

{
k ∈ {0, . . . ,K} :

(
k = 0 or Gkl = b

)
and

(
k = K or Gk+1

l = b
)}

for

an arbitrary but fixed set of binary vectors (Gl)Kl=1 ⊂ {0, 1}dlog2(K)e such that Gl and Gl+1

differ in at most one component for each l ∈ {1, . . . , dlog2(K)e−1}. There are many different

sets of vectors with this property and they are usually referred to as reflective binary or

Gray codes [138]. The second set is given by S2 := {(s1, s2) ∈ N2 : s1 < s2} and L(s1,s2) :=

{v ∈ V : vs1 is even and vs2 is odd}, R(s1,s2) := {v ∈ V : vs1 is odd and vs2 is even} for

each (s1, s2) ∈ S2.

Following [132] and [133] we refer to the formulation obtained with this scheme as

the logarithmic branching convex combination model and denote it by Log. As mentioned

before, Log can be extended to any family of polytopes P that is compatible with the J1

triangulation. This requires the existence of a bijection ϕ : {0, . . . ,K}n → V(P) between

the vertices of J1 and the family P such that v1, . . . , vn+1 are the vertices of a simplex in

J1 if and only if ϕ(v1), . . . , ϕ(vn+1) are the vertices of a polytope in P. For example, taking

75

0 1 2
0

1

2

(a) J1 triangulation of [0, 2]2.

0 1 2
0

1

2

(b) 1/2 scaled J1 triangulation of [0, 2]2.

Figure 13: Examples of triangulations of subsets of R2.

ϕ : {0, . . . , 4}2 → {0, 1/2, 1, 3/2, 2}2 given by ϕ(v1, v2) = (v1/2, v2/2) we have that the 1/2

scaled J1 triangulation depicted in Figure 13(b) is compatible with the J1 triangulation of

[0, 4]2. Using bijection ϕ the formulation for P is simply obtained by replacing (77a) by∑
v∈V(P) λvϕ(v) = x and

∑
v∈V(P) λv (mPϕ(v) + cP) ≤ z. For the function defined in (70),

for G1 = (0, 0)T , G2 = (1, 0)T , G3 = (1, 1)T , G4 = (0, 1)T and ϕ(0) = 0, ϕ(1) = 1, ϕ(2) =

2, ϕ(3) = 4, ϕ(4) = 5, Log is given by

0λ0 + 1λ1 + 2λ2 + 4λ3 + 5λ4 = x, 10λ0 + 32λ1 + 40λ2 + 5λ3 + 15λ4 ≤ z

λ0, λ1, λ2, λ3, λ4 ≥ 0, λ0 + λ1 + λ2 + λ3 + λ4 = 1

λ2 ≤ y1, λ0 + λ4 ≤ (1− y1), λ3 + λ4 ≤ y2, λ0 + λ1 ≤ (1− y2), y1, y2 ∈ {0, 1}.

A similar formulation can be obtained from a branching scheme introduced in [96], but the

resulting formulation has a linear instead of logarithmic number of binary variables.

4.3.3 Multiple choice model

This formulation has no requirement on the family of polytopes and is given by

∑
P∈P

xP = x,
∑
P∈P

(
mPx

P + cP yP
) ≤ z (78a)

APx
P ≤ yP bP ∀P ∈ P (78b)∑

P∈P
yP = 1, yP ∈ {0, 1} ∀P ∈ P, (78c)

where APx ≤ bP is the set of linear inequalities describing P . This formulation has been

studied in [5, 36, 67, 87] and [103]. We refer to this formulation as the multiple choice

76

model and denote it by MC. For the function defined in (70) it is given by

x[0,1] + x[1,2] + x[2,4] + x[4,5] = x

(22x[0,1] + 10y[0,1]) + (8x[1,2] + 24y[1,2]) + (−17.5x[2,4] + 75y[2,4]) + (10x[4,5] − 35y[4,5]) ≤ z

0y[0,1] ≤ x[0,1] ≤ y[0,1], 1y[1,2] ≤ x[1,2] ≤ 2y[1,2],

2y[2,4] ≤ x[2,4] ≤ 4y[2,4], 4y[4,5] ≤ x[4,5] ≤ 5y[4,5]

y[0,1] + y[1,2] + y[2,4] + y[4,5] = 1, y[0,1], y[1,2], y[2,4], y[4,5] ∈ {0, 1}

4.3.4 Incremental model

This formulation requires P to be a triangulation with a special ordering property. This

property always holds for univariate functions so for simplicity we describe the formulation

for this case first. For univariate function f : [l, u]→ R and for P = {[dk−1, dk]}Kk=1 where

l = d0 ≤ d1 ≤ . . . ≤ dK = u, the formulation is given by

d0 +
K∑
k=1

δk (dk − dk−1) = x, f(d0) +
K∑
k=1

δk (f(dk)− f(dk−1)) ≤ z (79a)

δ1 ≤ 1, δK ≥ 0, δk+1 ≤ yk ≤ δk, yk ∈ {0, 1} ∀k ∈ {1, . . . ,K − 1}. (79b)

The extension to multivariate functions [140] requires the family of polytopes to be a

triangulation T that complies with the following ordering properties:

O1. The simplices in T can be ordered as T1, . . . , T|T | so that Ti ∩ Ti−1 6= ∅ for each i ∈
{2, . . . , |T |}.

O2. For the order above, the vertices of each simplex Ti can be ordered as v0
i , . . . , v

|V (Ti)|−1
i

in a way such that v|V (Ti)|−1
i−1 = v0

i for i ∈ {2, . . . , |T |}.

These properties are required to represent (x, z) incrementally akin to (79a) for the uni-

variate case. Fortunately these conditions are met for many triangulations including J1

[140].

77

For a given order complying with O1–O2 the formulation is given by

v0
0 +

|T |∑
i=1

|V (Ti)|−1∑
j=1

δji

(
vji − v0

i

)
= x, f(v0

0) +
|T |∑
i=1

|V (Ti)|−1∑
j=1

δji

(
f(vji)− f(v0

i)
)
≤ z (80a)

|V (T1)|−1∑
j=1

δj1 ≤ 1, δji ≥ 0 ∀i ∈ {1, . . . , |T |}, j ∈ {1, . . . , |V (Ti)| − 1} (80b)

yi ≤ δ|V (Ti)|−1
i ,

|V (Ti+1)|−1∑
j=1

δji+1 ≤ yi, yi ∈ {0, 1} ∀i ∈ {1, . . . , |T | − 1}. (80c)

This formulation has been studied in [36, 41, 40, 72, 95, 105, 112, 118, 128] and [140]

and it is sometimes referred to as the delta method. Following [36] and [72] we refer to it as

the incremental model and denote it by Inc. For the function defined in (70) it is given by

10 + 22δ1 + 8δ2 − 35δ3 + 10δ4 ≤ z, 0 + δ1 + δ2 + 2δ3 + δ4 = x

y1 ≤ δ1 ≤ 1, y2 ≤ δ2 ≤ y1, y3 ≤ δ3 ≤ y2, 0 ≤ δ4 ≤ y3, y1, y2, y3 ∈ {0, 1}.

4.4 Properties of Mixed Integer Programming Formulations

In this section we study some properties of the formulations. We begin by studying the

strength of the formulations as a model of epi(f) ignoring possible interactions with other

constraints. For this case a motivating problem is the minimization of f : D ⊂ Rn → R

over its domain D given by

min
x∈D

f(x) = min
(x,z)∈epi(f)

z. (81)

We then study the effects of interactions with other constraints using as a motivating

problem

min
x∈X

f(x) = min
(x,z)∈epi(f)∩(X×R)

z, (82)

where X ⊂ D is any compact set. Finally, we study the sizes of the formulations and their

requirements on the family of polytopes P used to describe the piecewise linear function.

Consider a MIP formulation of epi(f) given by a polytope P ⊂ Rn+p+q+1 complying

with (68). The linear programming (LP) relaxation of the formulation is then simply P .

Alternative MIP formulations are usually compared with respect to the tightness of their

LP relaxation in the absence of additional constraints. In this regard, the strongest possible

78

property of a MIP formulation is to require that all vertices of its LP relaxation comply with

the corresponding integrality requirements. Formulations with this property are referred to

as locally ideal in [105] and [106]. It is shown in [82, 105] and [140] that CC is not locally

ideal. However all of the other formulations from Section 4.3 are locally ideal.

Theorem 4.2. All formulations from Section 4.3 except CC are locally ideal.

Proof. All models except CC, DLog and Log have been previously shown to be locally

ideal [6, 67, 87, 105, 118, 140], so we only need to prove that DLog and Log are locally

ideal.

For Log assume for contradiction that there exists an vertex (x, z, λ, y) of (77) such

that ys ∈ (0, 1) for some s ∈ S. We divide the proof in two main cases.

Case 1:
∑

v∈Ls
λv < ys and

∑
v∈Rs

λv < (1− ys). For ε > 0 define (x1, z1, λ1, y1) and

(x2, z2, λ2, y2) as x1 = x2 = x, z1 = z2 = z, λ1 = λ2 = λ, y1 = y + ε and y2 = y − ε.
For sufficiently small ε we have that (x1, z1, λ1, y1) and (x2, z2, λ2, y2) comply with (77)

and (x, z, λ, y) = 1/2(x1, z1, λ1, y1) + 1/2(x2, z2, λ2, y2). This contradicts (x, z, λ, y) being a

vertex.

Case 2:
∑

v∈Ls
λv = ys or

∑
v∈Rs

λv = (1 − ys). Without loss of generality we may

assume that
∑

v∈Ls
λv = ys. We then have vs ∈ Ls such that 0 < λvs < 1 and vl /∈ Ls

such that 0 < λvl
< 1. If

∑
v∈Rs

λv = (1 − ys) we additionally select vl ∈ Rs. For ε > 0

we define (x1, z1, λ1, y1) and (x2, z2, λ2, y2) in the following way. First let λ1
k = λ1

k = λk for

all k /∈ {vs, vl}, λ1
vs

= λvs + ε, y1
s = ys + ε, λ2

vs
= λvs − ε, y2

s = ys − ε, λ1
vl

= λ1
vl
− ε and

λ2
vl

= λ2
vl

+ε. To define y1
t and y2

t for each t ∈ S \{s} we only need to consider the following

four cases (note that Lt ∩ Rt = ∅ and that without loss of generality we can exchange Rt

and Lt):

(a) vs, vl ∈ Lt and vs, vl /∈ Rt.

(b) vs ∈ Lt and vl ∈ Rt.

(c) vs ∈ Lt, vl /∈ Lt and vl /∈ Rt (case vl ∈ Lt, vs /∈ Lt and vs /∈ Rt is analogous).

(d) vs, vl /∈ Lt and vs, vl /∈ Rt.

79

For case a) we can simply set y1
t = y2

t = y. For case b) we have 0 < yt < 1 and we can

set y1
t = yt + ε and y2

t = yt− ε. For case c) we either have
∑

v∈Lt
λv < yt or

∑
v∈Lt

λv = yt.

For the first case we can simply set y1
t = y2

t = y. For the second case we have 0 < yt < 1

and
∑

v∈Rt
λv < (1− yt) and we can set y1

t = yt + ε and y2
t = yt− ε. For case d) we can set

y1
t = y2

t = y. Finally we set x1 = x+ε(vs−vl), x2 = x−ε(vs−vl), z1 = z+ε(f(vs)−f(vl))

and z2 = z− ε(f(vs)−f(vl)). We again have that for sufficiently small ε (x1, z1, λ1, y1) and

(x2, z2, λ2, y2) comply with (77) and (x, z, λ, y) = 1/2(x1, z1, λ1, y1) + 1/2(x2, z2, λ2, y2).

For DLog the proof is analogous.

For a locally ideal formulation P of epi(f) we have

min
(x,z,λ,y)∈P

z = min
x∈D

f(x), (83)

which allows solving (81) directly as an LP and can be useful for solving (82) with a branch-

and-bound algorithm. However, as noted in [36] and [72], property (83) might still hold

for non-locally ideal formulations such as CC. In fact, we will see that (83) is implied by a

geometric property introduced by Jeroslow and Lowe, but is weaker than the locally ideal

property.

A slightly restricted version of Proposition 3.1 in [67] states that for any closed set

S ⊂ Rn×R and for any binary mixed-integer programming model P ⊂ Rn+p+q+1 for S, the

projection of P onto the first n + 1 variables contains the convex hull of S. Jeroslow and

Lowe referred to a model P of S as sharp when the projection is exactly the convex hull of

S. By letting S be the epigraph of piecewise linear function f we directly get the following

result.

Theorem 4.3. [36, 67, 87] Let D ⊂ Rn be a polytope, f : D → R be a continuous piecewise

linear function, P ⊂ Rn+p+q+1 be a MIP formulation for epi(f) satisfying (68) and P(x,z)

the projection of P onto (x, z). Then epi(convenvD(f)) = conv(epi(f)) ⊂ P(x,y) where

convenvD is the lower convex envelope of f over D.

A formulation P of epi(f) is said to be sharp when epi(convenvD(f)) = conv(epi(f)) =

P(x,y). Because minx∈D f(x) = minx∈D convenvD(f)(x) we have that (83) holds for sharp

80

formulations. Sharpness has been shown to hold for some formulations in [36, 64, 66, 67,

68, 72, 87, 105] and [118] and the following proposition states that it holds for any locally

ideal formulation.

Proposition 4.4. Any locally ideal formulation is sharp.

Proof. We need to prove P(x,y) ⊂ conv(epi(f)). If x ∈ P(x,y) then because P is locally ideal

there exist λ ∈ Rp, y ∈ [0, 1]q such that (x, z, λ, y) = (0, h, 0, 0) +
∑

i∈I µi(x
i, zi, λi, yi) for

h ≥ 0, |I| < ∞, µ ∈ RI+,
∑

i∈I µi = 1, and (xi, zi, λi, yi) ∈ P with yi ∈ {0, 1}q for every

i ∈ I. Then by (68) (xi, zi) ∈ epi(f) for all i ∈ I and hence (x, z) ∈ conv(epi(f)).

We then directly have that all formulations except CC are sharp. As noted in Sec-

tion 4.3.2, CC can be obtained from DCC in a way which reduces its tightness. Fortu-

nately, this loss of tightness does not affect the sharpness properties of CC so the following

theorem holds.

Theorem 4.5. All formulations from Section 4.3 are sharp.

Proof. This is direct from Theorem 4.2 for all formulations except CC. For CC the result

follows by noting that the projection onto the x and z variables of the polyhedron given by∑
v∈V(P) λvv = x,

∑
v∈V(P) λvf(v) ≤ z, λv ≥ 0 ∀v ∈ V(P) and

∑
v∈V(P) λv = 1 is clearly

contained in conv(epi(f)).

Sharpness is not preserved when x complies with additional constraints, so a property

similar to (83) does not hold for (82). However, it is still possible to characterize the LP

bound obtained when a sharp formulation is used to model the objective function of a larger

model. The following theorem follows directly from the definitions of sharpness and convex

envelopes.

Theorem 4.6. Let D ⊂ Rn be a polytope, f : D → R be a continuous piecewise linear func-

tion, P ⊂ Rn+p+q+1 be a sharp binary mixed-integer programming model for epi(f) and X

be a compact set. Then minx,z,λ,y{z : (x, z, λ, y) ∈ P, x ∈ X} = minx∈X convenvD(f)(x).

For the case where X is a polytope this has also been studied in [36] and [38] and

together with Theorem 4.5 yields the following corollary.

81

Corollary 4.7. All formulations from Section 4.3 give the same LP bound for solving (82).

Now we present the sizes of all the formulations given in Section 4.3. We give the number

of extra constraints and extra variables besides z and x and also indicate the number of

extra variables that are binary. Table 15 shows this information for all models. Except for

Log and MC the sizes are given as a function of n, |P| and the number of vertices |V(P)|
or |V (P)|. For MC the size is a function of n, |P| and the number of facets of polytope

P denoted by F (P). In particular if P is a triangulation we have that |F (P)| ≤ n + 1

for all P ∈ P. For Log the size is a function of |V(P)| and |S| where S is the branching

scheme for the J1 triangulation of [0,K]n. In this case we have |P| = Knn! and |S| =

ndlog2(K)e+n(n− 1)/2, but it is not clear how to explicitly relate these numbers together

when n > 2. However we can see that |S| grows asymptotically as log2(|P|) only when n is

fixed. More specifically, for fixed n we have |S| ∼ log2(|P|) (i.e. limK→∞ |S|/ log2(|P|) = 1)

with |S| = log2(|P|) for K of the form 2r, but for fixed K we have log2(|P|) ∈ o(|S|) (i.e.

limn→∞ log2(|P|)/|S| = 0).

Table 15: Sizes of Formulations
Model Constraints Additional Variables Binaries
DCC n+ |P|+ 2 |P|+∑P∈P |V (P)| |P|
DLog n+ 2dlog2(|P|)e+ 2 2dlog2(|P|)e+

∑
P∈P |V (P)| 2dlog2(|P|)e

CC n+ 3 + |V(P)| |V(P)|+ |P| |P|
Log n+ 2 + 2|S| |V(P)|+ |S| |S|
MC n+ 2 +

∑
P∈P F (P) (n+ 1)|P| |P|

Inc 1 + 2|P| |P| − 1 +
∑

P∈P(|V (P)| − 1) |P| − 1

Finally, we summarize the requirements that the different formulations have on the

family of polytopes P used to describe the piecewise linear function. The first type of

requirement concerns the description of the polytopes in P as either the convex hull of a

finite number of points (vertex representation) or as the feasible region of a system of linear

inequalities (inequality representation). Although conversion between the two descriptions

can be done efficiently for special cases of P such as triangulations, the description require-

ments can be an important factor in the choice of the formulation when general polytopes

are used. We have seen that every formulation except MC uses the vertex representation.

82

The second type of requirements concerns the need for a particular family of polytopes P.

Although requiring P to be of a special class such as a triangulation is usually not too re-

strictive, it can be an important factor when the function is constructed as the interpolation

of a non-linear function [30, 108]. We have seen that DCC, DLog, CC, and MC have no

requirement on P. Inc requires P to be any triangulation which complies with conditions

O1–O2 described in Section 4.3.4 and Log requires P to be the J1 triangulation.

4.5 Computational Experiments for Continuous Functions

In this section we computationally test the formulations for continuous piecewise linear func-

tions. Our tests are on transportation problems with piecewise linear objective functions.

We believe these problems provide enough additional constraints to provide meaningful

results while allowing the piecewise linear objectives to dominate the optimization effort.

All models were generated using Ilog Concert 2 and solved using CPLEX 11 on a 2.4GHz

workstation with 2GB of RAM. Furthermore, all tests were run with a time limit of 10000

seconds.

4.5.1 Continuous Separable Concave Functions

The first set of experiments considers formulations for univariate functions. The instances

tested for these formulations are the same transportation problems with concave separable

piecewise linear objectives considered in [132]. These instances are based on the 10 × 10

transportation problems used in [73] and [131]. Each of the problems include the supply

and demand information and capacities ue for each arc e. The problems also include the

subdivision of [0, ue] into 4 randomly selected intervals and their generation is described

in [73]. For each of the 5 instances we constructed several randomly generated piecewise

linear separable objective functions. These objective functions are of the form
∑

e∈E fe(xe)

where E is the set of arcs of the transportation problem and fe(xe) is a continuous non-

decreasing concave piecewise linear function of the flow xe on arc e. We chose to use this

class of functions because they are widely used in practice and are challenging enough to

provide meaningful computational results. Each fe(xe) is affine in K segments and has

fe(0) = 0. The slopes for each segment of a particular fe were generated by obtaining

83

a sample of size K from set {z/1000 : z ∈ {1, . . . , 2000}} and sorting them to ensure

concavity. We considered K = 4, 8, 16, and 32 and for each K and for each of the 5

transportation problems we generated 20 objective functions for a total of 100 instances for

each K. To obtain the subdivisions of [0, ue] into 8, 16 and 32 intervals we simply recursively

divided in half each of the intervals starting with the original 4 from [73]. Furthermore, we

independently generated the objective functions for each choice of K.

We tested all mixed integer formulations from Section 4.3 and in addition we tested

the traditional SOS2 formulation of piecewise linear functions (see for example [72]) which

does not include binary variables. We implemented this formulation using CPLEX’s built

in support for SOS2 constraints and we refer to it as SOS2 in the computational results.

Table 16 shows the minimum, average, maximum and standard deviation of the solve

times in seconds. The table also shows the number of times the solves failed because the

time limit was reached and the number of times each formulation had the fastest solve time

(win or tie).

For K = 4 we see that the average solve time for all formulations is of the same order

of magnitude, but for larger K’s the difference between models becomes noticeable. Many

conclusions could be extracted from these results, but they should be taken with care as

they can depend on both the instances and the solver used. For example, MC is faster on

average than Inc for K’s ranging from 4 to 16, but in previous tests using CPLEX 9.1 the

average solve time for Inc was always better than or comparable to MC. Nevertheless, we

make the following observations.

We see that the logarithmic formulations Log and DLog can have a significant ad-

vantage over the other formulations (up to over an order of magnitude for K = 32) for

K’s larger than 4 and that, as expected, this advantage grows with K. Another interest-

ing observation concerns SOS2, which in previous tests with CPLEX 9.1 was significantly

slower than most mixed integer programming formulations. It seems that the reason for

this bad performance was more of an implementation issue than a property of the SOS2

based formulation [131]. As the results show, the implementation of SOS2 constraints has

84

Table 16: Solve times for univariate continuous functions [s].
(a) 4 segments.

model min avg max std win fail
MC 0.2 1.3 8.3 1.5 45 0
SOS2 0.1 1.7 7.9 1.3 26 0
Log 0.2 2.1 12.4 2.3 24 0
DLog 0.3 2.1 10.3 2.2 4 0
Inc 0.4 2.4 11.6 2.5 2 0
DCC 0.3 2.6 14.0 2.5 0 0
CC 0.3 4.6 23.0 4.3 0 0

(b) 8 segments.

model min avg max std win fail
MC 1.2 9.9 39 7.0 41 0
Log 0.6 12.3 84 10.5 31 0
DLog 0.8 13.2 91 11.6 5 0
SOS2 0.8 15.8 202 23.0 23 0
DCC 2.6 42.7 252 46.6 0 0
Inc 5.1 43.0 163 29.3 0 0
CC 2.6 81.0 570 96.6 0 0

(c) 16 segments.

model min avg max std win fail
Log 0.5 24 96 18 80 0
DLog 0.8 32 132 25 17 0
MC 1.9 97 730 122 2 0
SOS2 1.9 109 1030 167 1 0
Inc 29.8 302 1442 239 0 0
CC 3.9 351 3691 517 0 0
DCC 3.9 1366 10000 2120 0 3

(d) 32 segments.

model min avg max std win fail
Log 2.5 43 194 39 90 0
DLog 5.5 63 328 53 8 0
SOS2 10.0 925 10000 1900 2 2
Inc 271.0 981 4039 685 0 0
CC 67.5 1938 10000 2560 0 4
MC 22.5 2246 10000 3208 0 9
DCC 89.6 8163 10000 3141 0 69

85

been significantly improved in CPLEX 11 which allows SOS2 to always be among the 5

best formulations. In fact, it is only for K = 32 that we have mixed integer formulations

outperforming SOS2 by more than an order of magnitude.

In an attempt to explain the results from Table 16 we study some characteristics of the

solves by CPLEX. In Tables 17, 18, 19 and 20 we present some results for the instances

with K = 4, K = 8, K = 16 and K = 32 respectively. Corollary 4.7 states that all MIP

formulations should provide the same LP relaxation bound and so should SOS2 [72]. We

confirmed this is true up to small numerical errors and, as expected, the common bound

was not equal to the optimal MIP solution resulting in an average integrality GAP of 4%,

5%, 6% and 6% (calculated as 100(zIP − zLP)/zIP where zIP and zLP are the optimal

values of the mixed integer program and its LP relaxation respectively) for K = 4, K = 8,

K = 16 and K = 32 respectively. However, an equality in the LP relaxation bound

does not necessarily imply an equality on the LP bound obtained at the root node by

CPLEX as this includes preprocessing and cuts. For this reason we present in Tables 18(a),

19(a), 20(a) and 21(a) the percentage of the integrality GAP that was closed by CPLEX

at the root node for the different formulations and values of K (this was calculated as

100(zroot−zLP)/(zIP−zLP) where zroot is the optimal values of the root relaxation obtained

by CPLEX after preprocessing and cutting planes). A second issue is the time required to

solve the LP relaxation of the different formulations, which we present in Tables 18(b),

19(b), 20(b) and 21(b). Because the solve times were very small for all formulations, the

results from these tables are in milliseconds. Finally, in Tables 18(c), 19(c), 20(c) and 21(c)

we present the number of nodes processed by CPLEX.

86

Table 17: Solve characteristics for univariate continuous functions and K = 4.
(a) GAP closed at root node by CPLEX. [%]

model min avg max std
MC 26 58 100 17.7
DLog 16 37 62 10.8
Inc 12 37 100 16.0
DCC 16 36 60 10.2
Log 13 36 61 10.0
CC 11 25 43 6.7
SOS2 0 0 0 0.0

(b) LP relaxation solve time. [ms]

model min avg max std
SOS2 0 2.8 10 2.8
Log 0 5.3 10 5.3
DLog 0 5.7 10 5.7
DCC 0 5.9 10 5.9
CC 0 7.1 10 7.1
MC 0 9.4 20 9.4
Inc 0 12.4 20 12.4

(c) Branch-and-bound nodes processed.

model min avg max std
MC 0 234 891 216
Inc 1 357 2081 365
DLog 22 504 2677 529
Log 14 587 3569 617
DCC 10 798 5960 897
CC 30 964 8938 1139
SOS2 220 1974 13434 1833

Table 18: Solve characteristics for univariate continuous functions and K = 8.
(a) GAP closed at root node by CPLEX. [%]

model min avg max std
MC 17.4 37 61.2 9.5
DCC 11.8 23 38.6 6.0
DLog 4.7 20 46.7 7.2
Log 6.2 19 35.6 6.6
Inc 5.3 19 39.3 6.9
CC 9.3 16 39.2 4.9
SOS2 0.0 0 1.2 0.1

(b) LP relaxation solve time. [ms]

model min avg max std
SOS2 0 4.3 10 4.3
Log 0 9.5 20 9.5
DCC 0 11.5 20 11.5
CC 0 11.6 20 11.6
DLog 0 11.9 20 11.9
MC 10 24.3 40 24.3
Inc 20 38.1 50 38.1

(c) Branch-and-bound nodes processed.

model min avg max std
MC 64 535 2003 301
Inc 142 1970 8814 1611
DLog 134 2419 17114 2415
Log 120 2591 22541 2777
DCC 549 13956 120035 19253
CC 500 17276 127110 22467
SOS2 606 21833 337199 39081

87

Table 19: Solve characteristics for univariate continuous functions and K = 16.
(a) GAP closed at root node by CPLEX. [%]

model min avg max std
MC 10.9 26 53 7.2
DCC 7.1 17 48 5.9
DLog 2.0 17 51 8.1
Log 2.0 17 51 7.7
Inc 2.6 14 35 5.9
CC 5.6 10 21 2.8
SOS2 0.0 0 0 0.0

(b) LP relaxation solve time. [ms]

model min avg max std
SOS2 0 5.9 10 5.9
Log 0 15.8 20 15.8
CC 10 23.3 40 23.3
DLog 10 27.7 40 27.7
DCC 10 29.9 40 29.9
MC 50 89.6 120 89.5
Inc 90 139.0 180 138.9

(c) Branch-and-bound nodes processed.

model min avg max std
MC 52 2809 27890 4392
DLog 44 4129 19900 3978
Log 45 4428 23921 4167
Inc 204 5139 25162 4118
CC 245 28895 241524 38696
SOS2 1487 98050 959307 155930
DCC 461 302134 2345087 461223

The complexity of CPLEX makes it hard to infer categorical conclusions about these

results, but we will comment on some interesting patterns. Note that a larger formulation

might have an LP relaxation which is slower to solve, but it might allow CPLEX to close a

larger percentage of the integrality GAP. This can lead to fewer branch-and-bound nodes

needed to solve the problem, which can translate to faster solve speeds. An example of

this behavior is MC, which has the second slowest solve time for its LP relaxation, but

allows CPLEX to close the largest percentage of the integrality GAP resulting in the best

performances in number of nodes for every K but 32 and in solve times for K = 4 and 8. On

the other hand, having a small formulation can have the reverse effect on the LP relaxation

solve speeds and closed GAP, but might still provide an advantage. For example, SOS2 is

one of the smallest formulations as it does not include any binary variables. We can see

that CPLEX does not close a significant percentage of the integrality GAP for SOS2, which

translates into a need to process a large number of nodes. However, having the fastest solve

time for its LP relaxation allows this formulation to still have an excellent performance with

respect to solve times. Still, faster solves of its LP relaxation and large percentages of root

GAP closed might not necessarily translate to better performance. For example, DCC is on

88

Table 20: Solve characteristics for univariate continuous functions and K = 32.
(a) GAP closed at root node by CPLEX. [%]

model min avg max std
MC 9.5 18.8 31.4 4.8
Log 1.7 15.0 32.3 6.7
DCC 5.8 13.4 25.4 3.7
Inc 1.8 9.5 24.4 4.3
CC 2.0 5.6 9.5 1.5
DLog 0.1 1.8 11.6 1.9
SOS2 0.0 0.0 0.0 0.0

(b) LP relaxation solve time. [ms]

model min avg max std
SOS2 0 12 20 11
Log 10 30 40 30
CC 20 39 60 39
DLog 40 60 70 60
DCC 60 93 110 93
MC 230 418 600 418
Inc 410 534 670 534

(c) Branch-and-bound nodes processed.

model min avg max std
DLog 382 4776 27375 4926
Log 276 5287 25797 5505
Inc 964 8196 40352 7315
MC 471 28855 146197 37678
CC 1762 80224 505999 103995
SOS2 2752 471156 4707352 943424
DCC 5097 916227 1485910 389175

average comparable to or better than Inc and DLog with respect to both solve speed of its

LP relaxation and GAP closed at the root node. However, Inc and DLog have a better or

comparable performance than DCC in terms of both solve times and nodes processed. This

is particularly surprising for DLog which is essentially the same as DCC but with fewer

variables. A possible explanation for this behavior is that Log, Inc and DLog allow CPLEX

to perform a more effective branch-and-bound search. DCC produces unbalanced branch-

and-bound trees as fixing a binary variable to zero produces very little change compared

to fixing the same variable to one. In contrast, Log and DLog are designed to produce

balanced branch-and-bound trees, and Inc also produces a fairly balanced tree since fixing

a binary to a particular value in Inc usually fixes many other variables to take the same

value.

4.5.2 Continuous Non-Separable Functions

We now consider non-separable functions of two variables. For these experiments we selected

a series of two commodity transportation problems with 5 supply nodes and 2 demand

nodes. These instances were constructed by combining two 5 × 2 transportation problems

89

generated in a manner similar to the instances used in [131]. The supplies, demands and

individual commodity arc capacities for each commodity were obtained from two different

transportation problems and the joint arc capacities were set to 3/4 of the sum of the

corresponding individual arc capacities. We considered an objective function of the form∑
e∈E fe(x

1
e, x

2
e) where E is the common set of 10 arcs of the transportation problems and

fe(x1
e, x

2
e) is a piecewise linear function of the flows xie in arc e of commodity i for i = 1, 2.

Each fe(x1
e, x

2
e) for arc e with individual arc capacities uie for commodity i = 1, 2 was

constructed by triangulating [0, u1
e] × [0, u2

e] with the J1 triangulation induced by the grid

obtained from the subdivision of [0, u1
e] and [0, u2

e] into K intervals as determined from the

respective original transportation problems. For K ranging from 4 to 16 the number of

vertices and triangles range from 25 to 289 and from 32 to 512 respectively. Using this

triangulation we then obtained fe(x1
e, x

2
e) by interpolating g

(∥∥(x1
e, x

2
e

)∥∥) where ‖ · ‖ is the

Euclidean norm and g :
[
0,
∥∥(u1

e, u
2
e

)∥∥]→ R is a continuous concave piecewise linear function

randomly generated in a similar way to the univariate functions of Section 4.5.1. The idea

of this function is to use the sub-linearity of the Euclidean norm to consider discounts for

sending the two commodities in the same arc and concave function g to consider economies of

scale. We selected 5 combinations of different pairs of the original transportation problems

and for each one of these we generated 20 objective functions for a total of 100 instances

for each K.

Table 21 shows the usual statistics for the solve times with different grid sizes for all

the appropriate formulations. We again used a limit of 10000 seconds and only tested a

formulation for the next largest K if it had failed in less than 5 instances in the previous

K.

Logarithmic models Log and DLog were among the best performers for all grid sizes,

probably because for two variable functions |P| grows much faster with k than in the

univariate case. For example, for k = 4 a k × k grid yields |P| = 32 which is comparable

to k = 32 in the univariate case. In addition, the smaller number of continuous variables is

what probably allows Log to be the best performer overall.

90

Table 21: Solve times for two variable multi-commodity transportation problems. [s].
(a) 4× 4 grid.

model min avg max std wins fail
Log 0.4 2.7 9.3 2.0 93 0
MC 1.2 5.6 17.1 3.1 7 0
DLog 1.6 7.6 25.5 5.2 0 0
CC 5.9 17.8 107.2 14.5 0 0
Inc 2.8 31.7 126.5 25.8 0 0
DCC 8.1 36.8 476.1 50.6 0 0

(b) 8× 8 grid.

model min avg max std wins fail
Log 1.7 13 33 5.4 100 0
DLog 17.8 45 135 20.2 0 0
MC 30.9 398 5328 583.6 0 0
Inc 99.5 769 6543 1110.5 0 0
CC 102.9 4412 10000 3554.6 0 13
DCC 237.0 6176 10000 3385.9 0 31

(c) 16× 16 grid.

model min avg max std wins fail
Log 27 56 118 19 100 0
DLog 125 325 1064 128 0 0
Inc 772 4857 10000 3429 0 20
MC 2853 9266 10000 1678 0 77

91

4.6 Extension to Lower Semicontinuous Functions

In this section we study the extension of the formulations to discontinuous functions such

as the ones in Figure 14. Consider first the univariate piecewise linear discontinuous func-

tion f depicted in Figure 14(a), for which f−(d) = limx→d
x≤d

f(x) and f+(d) = limx→d
x≥d

f(x).

Function f is now only affine in [0, 2), {2}, (2, 4] and (4, 5]. However, because f is lower

semicontinuous we have that epi(f) is closed and is still the union of polyhedra with com-

mon recession cone C+
1 . Hence we can model epi(f) as a binary mixed-integer programming

problem. The example from Figure 14(a) shows that to consider discontinuous univariate

0 2 4 5
f(4) = 0

f(0) = f+(4) = 1

f−(2) = 4

f+(2) = f(5) = 3

f(2) = 2

(a) Univariate Function f .

x

y

(b) Bivariate Function h.

Figure 14: Lower semicontinuous piecewise linear functions.

piecewise linear functions we need to use intervals that are not necessarily of the form

[di−1, di] for di−1 < di. The inclusion of points described as {d} = [d, d] complies with

Definition 4.1 as we did not require the polytopes to be full dimensional. In contrast, the

inclusion of non closed intervals such as [0, 2) requires the use of sets other than polytopes.

The simplest extension we can use is to consider bounded sets that can be described by a

finite number of strict and non-strict linear inequalities. These sets are usually referred to

as copolytopes [70]. Using copolytopes instead of polytopes we get the following definition

for not necessarily continuous piecewise linear functions.

Definition 4.8 (Piecewise Linear Function). Let D ⊂ Rn be a compact set. A (not nec-

essarily continuous) function f : D ⊂ Rn → R is piecewise linear if and only if there

exists a finite family of copolytopes P complying with D =
⋃
P∈P P and (71) for some

92

{mP }P∈P ⊆ Rn and {cP }P∈P ⊆ R.

For example, function f from Figure 14(a) can be described as

f(x) :=



1.5x+ 1 x ∈ [0, 1)

2 x ∈ [2, 2]

−1.5x+ 6 x ∈ (2, 4]

2x− 7 x ∈ (4, 5]

(84)

and function h from Figure 14(b) can be described as

h(x, y) :=



3 (x, y) ∈ P1

2 (x, y) ∈ P2

2 (x, y) ∈ P3

0 (x, y) ∈ P4.

(85)

for P1 = (0, 1]2, P2 = {(x, y) ∈ R2 : x = 0, y > 0}, P3 = {(x, y) ∈ R2 : y = 0, x > 0} and

P4 = {(0, 0)}.
A piecewise linear function as defined in Definition 4.8 is not necessarily lower semicon-

tinuous, but this condition is crucial for obtaining a mixed integer programming model. For

a lower semicontinuous piecewise linear function f we have a direct extension of character-

ization (72) to

epi(f) = C+
n +

⋃
P∈P

conv
(
{(v,mP v + cP)}v∈V (P)

)
, (86)

where V (P) denotes the set of vertices of the closure P of P . We note that the closure

of a copolytope P = {x ∈ Rn : aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p + 1, . . . ,m}} is

P = {x ∈ Rn : aix ≤ bi ∀i ∈ {1, . . . ,m}}. For example, for function f defined in (84) we

have

epi(f) = {(0, r) : r ≥ 0}+
(

conv
({(0, 1), (2, 4)}) ∪ conv

({(2, 2)})
∪ conv

({(2, 3), (4, 0)}) ∪ conv
({(4, 1), (5, 3)})).

93

This characterization allows some formulations from Section 4.3 to be directly extended to

lower semicontinuous functions. Other formulations can be extended by using ad-hoc tech-

niques when the discontinuities considered are simple enough. We study these extensions

and techniques in the following subsections. We also comment on the theoretical properties

of the resulting formulations.

4.6.1 Formulations with Direct Extension

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower

semicontinuous case is achieved by replacing characterization (72) of epi(f) for continuous

f by characterization (86) of epi(f) for lower semicontinuous f . Because V (P) in (72) is

replaced by V (P) in (86) the extension of DCC is obtained by replacing V (P) by V (P) in

(73). For univariate functions this extension has been noted in [36] and [118]. For function

f defined in (84) DCC is given by

0λ[0,2),0 + 2
(
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

)
+ 4

(
λ(2,4],4 + λ(4,5],4

)
+ 5λ(4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ(4,5],4 + 3λ(4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ(4,5],4, λ(4,5],5 ≥ 0

λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2],

λ(2,4],2 + λ(2,4],4 = y(2,4], λ(4,5],4 + λ(4,5],5 = y(4,5]

y[0,2) + y[2,2] + y(2,4] + y(4,5] = 1, y[0,2), y[2,2], y(2,4], y(4,5] ∈ {0, 1}.

Similarly, the extension of DLog is obtained by replacing V (P) by V (P) in (74). For

function f defined in (84) and for B([0, 2)) = (0, 0)T , B([2, 2]) = (0, 1)T , B((2, 4]) =

94

(1, 1)T , B((4, 5]) = (1, 0)T DLog is given by

0λ[0,2),0 + 2
(
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

)
+ 4

(
λ(2,4],4 + λ(4,5],4

)
+ 5λ(4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ(4,5],4 + 3λ(4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ(4,5],4, λ(4,5],5 ≥ 0

λ(2,4],2 + λ(2,4],4 + λ(4,5],4 + λ(4,5],5 ≤ y1, λ[0,2),0 + λ[0,2),2 + λ[2,2],2 ≤ (1− y1)

λ[2,2],2 + λ(2,4],2 + λ(2,4],4 ≤ y2, λ[0,2),0 + λ[0,2),2 + λ(4,5],4 + λ(4,5],5 ≤ (1− y2)

y1, y2 ∈ {0, 1}.

The extension of MC is obtained from (78) by replacing (78b) by APλP ≤ yP bP ∀P ∈
P where APλP ≤ bP is the set of linear inequalities describing polytope P . For univariate

functions this extension has been noted in [36]. For function f defined in (84) MC is given

by

x[0,2) + x[2,2] + x(2,4] + x(4,5] = x

(1.5x[0,2) + 1y[0,2)) + (0x[2,2] + 2y[2,2]) + (−1.5x(2,4] + 6y(2,4]) + (2x(4,5] − 7y[4,5]) ≤ z

0y[0,2) ≤ x[0,2) ≤ y[0,2), 2y[2,2] ≤ x[2,2] ≤ 2y[2,2],

2y(2,4] ≤ x(2,4] ≤ 4y(2,4], 4y(4,5] ≤ x(4,5] ≤ 5y(4,5]

y[0,2) + y[2,2] + y(2,4] + y(4,5] = 1, y[0,2), y[2,2], y(2,4], y(4,5] ∈ {0, 1}.

4.6.2 Ad-Hoc Extension for Univariate Functions

For simple discontinuities we can use ad-hoc techniques to adapt formulations that cannot

handle discontinuities directly. We explore two such techniques for univariate functions.

4.6.2.1 Break Point Duplication Technique

The first technique is from [131] and involves duplicating break points at which a univariate

function is discontinuous. For a univariate lower semicontinuous piecewise linear function

f : [0, u]→ R we always have an integer K and real numbers (dk)Kk=0 and (fk)Kk=0 such that

0 = d0 ≤ d1 ≤ . . . ≤ dK = u, fk is equal to f(dk), f−(dk) or f+(dk) and

epi(f) = C+
1 +

(
K⋃
k=1

conv ({(dk−1, fk−1), (dk, fk)})
)

(87)

95

For example, for f defined in (84) characterization (87) is obtained with K = 6, d0 = 0,

d1 = d2 = d3 = 2, d4 = d5 = 4, d6 = 5, f0 = f(0) = 1, f1 = f−(2) = 4, f2 = f(2) = 2,

f3 = f+(2) = 3, f4 = f(4) = 0, f5 = f+(4) = 1 and f6 = f(5) = 3.

Using this characterization (87) we can adapt CC to obtain the formulation given by

K∑
k=0

λkdk = x,
K∑
k=0

λkfk ≤ z,
K∑
k=0

λk = 1, λk ≥ 0 ∀k ∈ {0, . . . ,K} (88a)

λ0 ≤ y1, λK ≤ yK , λk ≤ yk + yk+1 ∀k ∈ {1, . . . ,K − 1}, (88b)

K∑
k=1

yk = 1, y ∈ {0, 1}K . (88c)

We can also adapt Inc, Log and SOS2. For Log we replace (88b) by the corresponding

constraints (77c), which in this case are
∑

k∈Ls
λk ≤ ys,

∑
k∈Rs

λk ≤ (1−ys) and ys ∈ {0, 1}
for all s ∈ {1, . . . , dlog2(K)e}, where

Ls :=
{
k ∈ {0, . . . ,K} :

(
k = 0 or Gkl = 1

)
and

(
k = K or Gk+1

l = 1
)}

and

Rs :=
{
k ∈ {0, . . . ,K} :

(
k = 0 or Gkl = 0

)
and

(
k = K or Gk+1

l = 0
)}

for an arbitrary but fixed set of vectors (Gl)Kl=1 ⊂ {0, 1}dlog2(K)e that form a Gray code. For

Inc we obtain the formulation given by

d0 +
K∑
k=1

δk (dk − dk−1) = x, f0 +
K∑
k=1

δk (fk − fk−1) ≤ z, (89a)

δ1 ≤ 1, δK ≥ 0, δk+1 ≤ yk ≤ δk, yk ∈ {0, 1} ∀k ∈ {1, . . . ,K − 1}. (89b)

For SOS2 the adaptation is analoguous to the one for CC and is described in [131]. We

denote these models CC Dup, Inc Dup, Log Dup and SOS2 Dup. For f defined in (84)

96

CC Dup is given by

0λ0 + 2 (λ1 + λ2 + λ3) + 4 (λ4 + λ5) + 5λ6 = x,

1λ0 + 4λ1 + 2λ2 + 3λ3 + 0λ4 + 1λ5 + 3λ6 ≤ z

λ0, λ1, λ2, λ3, λ4, λ5, λ6 ≥ 0, λ0 + λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1

λ0 ≤ y0, λ1 ≤ y1 + y2, λ2 ≤ y2 + y3, λ3 ≤ y3 + y4,

λ4 ≤ y4 + y5, λ5 ≤ y5 + y6, λ6 ≤ y6

y1 + y2 + y3 + y4 + y5 + y6 = 1, y ∈ {0, 1}6,

for G1 = (0, 0, 0)T , G2 = (1, 0, 0)T , G3 = (1, 1, 0)T , G4 = (0, 1, 0)T , G5 = (0, 1, 1)T , G6 =

(1, 1, 1)T Log Dup is given by

0λ0 + 2 (λ1 + λ2 + λ3) + 4 (λ4 + λ5) + 5λ6 = x,

1λ0 + 4λ1 + 2λ2 + 3λ3 + 0λ4 + 1λ5 + 3λ6 ≤ z

λ0, λ1, λ2, λ3, λ4, λ5, λ6 ≥ 0, λ0 + λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1

λ2 + λ6 ≤ y1, λ0 + λ4 ≤ (1− y1), λ3 + λ4 + λ5 + λ6 ≤ y2, λ0 + λ1 ≤ (1− y2)

λ5 + λ6 ≤ y3, λ0 + λ1 + λ2 + λ3 ≤ (1− y3), y ∈ {0, 1}3

and Inc Dup is given by

0 + 2δ1 + 0δ2 + 0δ3 + 2δ4 + 0δ5 + 1δ6 = x,

1 + 3δ1 − 2δ2 + 1δ3 − 3δ4 + 1δ5 + 2δ6 ≤ z

y1 ≤ δ1 ≤ 1, y2 ≤ δ2 ≤ y1, y3 ≤ δ3 ≤ y2,

y4 ≤ δ4 ≤ y3, y5 ≤ δ5 ≤ y4, 0 ≤ δ6 ≤ y5,

y ∈ {0, 1}5.

4.6.2.2 Fixed Charge Technique

The second technique can be applied when all discontinuities of f are caused by fixed charge

type jumps. In this case, f is the sum of a continuous function fC of the form (69) and a

97

lower semicontinuous non-decreasing step function

fJ(x) :=


0 x = 0

bk x ∈ (dk−1, dk] ∀k ∈ {1, . . . ,K}
(90)

for (dk)Kk=0 ∈ RK+1, (bk)Kk=1 ∈ RK+ such that 0 = d0 < d1 < . . . < dK = u and 0 ≤ b1 ≤
b2 ≤ . . . ≤ bK . Hence, for (mk)Kk=1 ∈ RK and (ck)Kk=1 ∈ RK , f can be described as

f(x) :=


c1 x = 0

mkx+ ck + bk x ∈ (dk−1, dk] ∀k ∈ {1, . . . ,K}.
(91)

This is illustrated by function g̃ = g̃C + g̃J in Figure 15. g̃ can be described in form (91) for

0 1 2
0

2

3

(a) g̃C .

0 1 2
0

1

(b) g̃J .

0 1 2
0

2

3

4

(c) g̃.

Figure 15: Decomposition of fixed charged lower semicontinuous piecewise linear function.

K = 2, d0 = 0, d1 = 1, d2 = 2, m1 = 2, m2 = 1, c1 = 0, c2 = 1, b1 = 0 and b2 = 1, which

yields

g̃(x) :=


2x x ∈ [0, 1]

x+ 2 x ∈ (1, 2].
(92)

By using the relation f = fC + fJ we can construct a model for epi(f) from models

for epi(fC) and epi(fJ). This combination of models is referred to as model linkage in [68]

where it is shown to computationally perform relatively poorly, in part because formula-

tion sharpness is not preserved by model linkage and in part because of poor coordination

between the binary variables of the linked models. Fortunately, as noted in [87], it is some-

times possible to improve model coordination by using ad-hoc techniques. We illustrate

this possible coordination by using two specific examples. In both cases we need a lower

98

semicontinuous function f : [0, u] → R which is continuous and zero valued at zero and

hence has 0 = c1 = b1 in characterizations (90) and (91). The first coordination is for the

model obtained by linking CC and the model of fJ given by

K∑
k=0

dkλdk
= x,

K∑
k=1

bkwk ≤ z,
K∑
k=0

λdk
= 1,

K∑
k=1

wk = 1, (93a)

0 ≤ λd0 ≤ w1, 0 ≤ λdK
≤ wK (93b)

0 ≤ λdk
≤ (wk + wk+1) ∀k ∈ {1, . . . ,K − 1}, wk ∈ {0, 1} ∀k ∈ {1, . . . ,K}. (93c)

To coordinate we identify the λdk
variables of the models and force wk = y[dk−1,dk]. The

resulting model is given by

K∑
k=0

dkλdk
= x, λd0m1d0 +

K∑
k=1

(
λdk

(mkdk + ck) + bkwk

)
≤ z, (94a)

K∑
k=0

λdk
= 1, 0 ≤ λd0 ≤ w1 (94b)

0 ≤ λdK
≤ wK , 0 ≤ λdk

≤ (wk + wk+1) ∀k ∈ {1, . . . ,K − 1}, (94c)

K∑
k=1

wk = 1, w ∈ {0, 1}K . (94d)

We refer to this formulation as the coordinated convex combination model and denote it

by CC Coord. For g̃ defined in (92) CC Coord is given by

0λ0 + 1λ1 + 2λ2 = x, 0w1 + 1w2 + 0λ0 + 2λ1 + 3λ2 ≤ z,

λ0 + λ1 + λ2 = 1

λ0 ≤ w1, λ1 ≤ w1 + w2, λ2 ≤ w2, λ0, λ1, λ2 ≥ 0, w1 + w2 = 1, w1, w2 ∈ {0, 1}

A similar coordination can be achieved by linking Inc and another model of fJ . The

resulting model is given by

K∑
k=1

δk (dk − dk−1) = x,

K∑
k=1

(
mkdk −mkdk−1

)
δk +

K−1∑
k=1

(
bk+1 − bk

)
yk ≤ z (95a)

δ1 ≤ 1, δK ≥ 0, δk+1 ≤ yk ≤ δk, yk ∈ {0, 1} ∀k ∈ {1, . . . ,K − 1}. (95b)

This model has been studied in [71]. We refer to this formulation as the coordinated

incremental model and denote it by Inc Coord. For g̃ defined in (92) Inc Coord is given

99

by

δ1 + δ2 = x, 2δ1 + 1δ2 + w1 ≤ z, w1 ≤ δ1 ≤ 1, 0 ≤ δ2 ≤ w1, w1 ∈ {0, 1}.

4.6.3 Theoretical Properties of Formulations

Regarding the properties of the formulations, it is direct that Proposition 4.4, Theorem 4.3

and Theorem 4.6 also hold for lower semicontinuous piecewiselinear functions. It is also

direct that DCC, DLog and MC remain locally ideal for lower semicontinuous functions,

that Inc Dup, Log Dup and Inc Coord are locally ideal and that CC Dup is sharp, but

not locally ideal. Finally, it is direct that CC Coord is not locally ideal, but the following

proposition holds.

Proposition 4.9. CC Coord is sharp.

Proof. It suffices to show that for f defined in (91) and for any vertex (λ∗, w∗) of

K∑
k=0

λdk
= 1,

K∑
k=1

wk = 1, w ∈ {0, 1}K (96a)

0 ≤ λd0 ≤ w1, 0 ≤ λdK
≤ wK , (96b)

0 ≤ λdk
≤ (wk + wk+1) ∀k ∈ {1, . . . ,K − 1} (96c)

we have (x∗, z∗) ∈ conv(epi(f)) for z∗ := λ∗d0m1d0 +
∑K

k=1

(
λ∗dk

(mkdk + ck) + bkw
∗
k

)
,

x∗ :=
∑K

k=0 dkλ
∗
dk

.

From Proposition 4 of [82] we have that the vertices of (96) are of the following forms:

1. λ∗dl
= w∗l = 1, λ∗dk

= 0 ∀k 6= l, w∗k = 0 ∀k 6= l.

2. λ∗dl
= w∗l+1 = 1, λ∗dk

= 0 ∀k 6= l, w∗k = 0 ∀k 6= l + 1.

3. λ∗dl−1
= λ∗dl

= w∗l = w∗l+1 = 1/2, λ∗dk
= 0 ∀k /∈ {l− 1, l}, w∗k = 0 ∀k /∈ {l, l+ 1}.

4. λ∗dl−1
= λ∗dl

= w∗l−1 = w∗l = 1/2, λ∗dk
= 0 ∀k /∈ {l− 1, l}, w∗k = 0 ∀k /∈ {l− 1, l}.

For case 1 we have x∗ = dl and z∗ = mldl+cl+bl so (x∗, z∗) ∈ epi(f). For case 2 and l ≥ 1 we

have x∗ = dl and z∗ = mldl+cl+bl+1 ≥ mldl+cl+bl so (x∗, z∗) ∈ epi(f). For case 2 and l = 0

we have x∗ = d0 and z∗ = 0 so (x∗, z∗) ∈ epi(f). For case 3 we have x∗ = (dl−1 + dl)/2 and

100

z∗ = (ml−1dl−1+cl−1+bl+mldl+cl+bl+1)/2 ≥ (ml(dl−1+dl)/2+cl+bl so (x∗, z∗) ∈ epi(f).

For case 4 we have x∗ = (dl−1 + dl)/2 and z∗ = (ml−1dl−1 + cl−1 + bl−1 +mldl + cl + bl)/2,

but (dk,mkdk + ck + bk) ∈ epi(f) so (x∗, z∗) ∈ conv(epi(f)).

4.7 Computational Experiments for Lower Semicontinuous Functions

In this section we computationally test the MIP formulations for lower semicontinuous

piecewise linear functions. We use the same transportation problems from Section 4.5.

4.7.1 Discontinuous Separable Functions

The first set of experiments considers formulations for univariate lower semicontinuous func-

tions. The instances tested in this section were obtained from the transportation problems

from Section 4.5.1 by modifying functions fe(xe) of the flow xe on arc e. Each function

fe(xe) affine in segments {[dk−1, dk]}Kk=1 was transformed into a discontinuous function by

adding fixed charge jumps in each of the breakpoints {dk}Kk=0. Each jump was randomly

generated by independently selecting an integer in [10, 50] using a uniform distribution.

We tested MC, DCC and DLog as they can directly handle lower semicontinuous func-

tions. However, we modified DLog as it initially performed poorly (for K = 4 it had an

average solve time of 562 seconds and a maximum solve time of 6615 seconds). We believe

that this poor performance was due to |P| not being a power of two (for K = 4 we have

P = {d0 = 0, (d0, d1], (d1, d2], (d2, d3], (d3, d4]}) as this is a common problem with binary

encoded formulations [35]. To resolve this we subtracted f+
e (0) from each function fe(xe)

and reset the value of fe(0) to 0. This eliminated the fixed charges at 0 leaving each fe(xe)

continuous and zero valued at 0. To restore the fixed charges we added a binary variable

ye ∈ {0, 1} for each e ∈ E with objective coefficient equal to the original fixed charge f+
e (0)

and constraint xe ≤ uey
e. We also tested CC Coord and Inc Coord with the fixed charge

elimination technique because they require functions that are continuous and zero valued at

0. We additionally tested the formulations obtained by applying the break point duplication

technique to CC, Log, Inc and SOS2. Additional combinations of models and techniques

are not included either because they are redundant (e.g. DCC directly handles lower semi-

continuous functions and hence does not require the break point duplication technique)

101

or because they are not compatible (e.g. we are not aware of any effective coordination

technique for Log). Table 22 shows the usual statistics for these instances.

102

Table 22: Solve times for univariate discontinuous functions [s].
(a) 4 segments.

model min avg max std win fail
MC 0.5 5.5 30 5.2 76 0
Inc Coord 0.8 7.3 40 6.3 15 0
DLog FC 0.8 9.0 41 6.5 6 0
Inc Dup 1.0 10.7 61 8.4 3 0
Log Dup 1.0 13.0 69 8.7 0 0
DCC 2.0 14.8 75 9.5 0 0
CC Coord 1.1 15.7 116 14.1 0 0
SOS2 Dup 3.2 56.7 522 75.3 0 0
CC Dup 7.4 78.9 646 105.3 0 0

(b) 8 segments.

model min avg max std win fail
MC 0.0 16 107 23 86 0
DLog FC 0.3 32 123 21 9 0
Log Dup 2.1 43 241 38 4 0
Inc Coord 7.9 70 298 51 0 0
Inc Dup 18.7 84 300 51 0 0
DCC 0.0 366 10000 1110 1 1
SOS2 Dup 8.8 476 5919 853 0 0
CC Coord 21.3 699 5438 1014 0 0
CC Dup 8.1 895 10000 1644 0 2

(c) 16 segments.

model min avg max std win fail
DLog FC 23 106 445 88 55 0
MC 13 263 2697 401 29 0
Log Dup 12 331 10000 1055 16 1
Inc Coord 108 333 2037 247 0 0
Inc Dup 105 405 1548 278 0 0
SOS2 Dup 51 1952 10000 2587 0 6
CC Dup 177 4409 10000 3223 0 18
CC Coord 342 6018 10000 3624 0 36
DCC 110 8046 10000 3551 0 76

(d) 32 segments.

model min avg max std win fail
DLog FC 54 779 5395 958 84 0
Inc Coord 287 1586 10000 1457 1 1
Inc Dup 315 1935 10000 1984 2 4
Log Dup 77 2661 10000 3268 4 12
MC 116 4282 10000 4070 9 30

Again MC is one of the best performers except for K = 32 where the logarithmic

models again have the advantage. The duplication and coordination techniques only seem

103

to work well for Inc and Log which were already faster than CC in the continuous case.

This could explain their advantage when using the duplication and coordination techniques

as well. However, this explanation does not hold for SOS2, which did very well in the

continuous case, but performed poorly here.

4.7.2 Discontinuous Non-Separable Functions

The set of experiments in this section considers non-separable functions of two variables.

The instances tested in this section where obtained from the 5× 2 multi commodity trans-

portation problems from Section 4.5.2 by replacing function fe(x1
e, x

2
e) of the flows xie in

arc e of commodity i for i = 1, 2. To define the new function we use the K × K grid

{d1
0, . . . , d

1
K} × {d2

0, . . . , d
2
K} obtained from the subdivision of [0, u1

e] and [0, u2
e] into K in-

tervals as determined from the respective original transportation problems. We select two

random samples of size K from set {0, 1, . . . , 10K−1} and sort them in non-increasing order

to obtain (rik)
K
k=1 for each i = 1, 2. We then define si0 = 0 and sik = rik(d

i
k − dik−1) + sik−1

for each k ∈ {1, . . . ,K} and i = 1, 2. fe(x1
e, x

2
e) is defined as

fe(x1
e, x

2
e) :=



x1
e + x2

e (x, y) = (0, 0)

x1
e + x2

e + s1k x ∈ (d1
k−1, d

1
k], y = 0

x1
e + x2

e + s2k y ∈ (d2
k−1, d

2
k], x = 0

x1
e + x2

e + 0.75(s1k + s2l) (x, y) ∈ (d1
k−1, d

1
k]× (d2

l−1, d
2
l].

The idea is that for each commodity there is a fixed shipping charge for arc e that depends

on the interval (dik−1, d
i
k] in which the amount xie shipped falls. We have that this fixed

charge divided by the amount shipped is non-increasing because of economies of scale and

that if both commodities are shipped through arc e there is a 75% discount on the sum of

the fixed charges.

We only tested MC, DCC and DLog as they can handle general lower semicontinu-

ous piecewise linear functions. Table 23 shows the usual statistics for different grid sizes.

We again see that MC is always faster than DCC and is only significantly slower than

DLog for the largest grids. Finally, we note that the smaller solve times for these instances

104

Table 23: Solve times for non-separable functions [s].
(a) 4× 4 grid.

stat min avg max std wins fail
MC 0.1 2.3 8.8 1.8 97 0
DLog 0.4 6.0 19.3 3.9 3 0
DCC 0.9 9.9 29.8 6.6 0 0

(b) 8× 8 grid.

stat min avg max std wins fail
DLog 1.1 17 59 11 51 0
MC 1.0 19 122 18 49 0
DCC 8.4 83 377 64 0 0

(c) 16× 16 grid.

stat min avg max std wins fail
DLog 4.8 55 201 36 96 0
MC 10.2 209 1138 195 4 0
DCC 51.2 890 2993 542 0 0

(d) 32× 32 grid.

stat min avg max std wins fail
DLog 56 319 1385 201 100 0
MC 151 4310 10000 3780 0 25
DCC 1648 8504 10000 2545 0 65

when compared to the ones in Section 4.5.2 could be due to the fact that here the only

nonlinearities in the objective functions are fixed charges.

4.8 Conclusions

We studied the modeling of piecewise linear functions as MIPs. We reviewed several new

and existing formulations for continuous functions with particular attention paid to their

extension to the multivariate non-separable case. We also compared these formulations

both with respect to their theoretical properties and their relative computational perfor-

mance. In addition we studied several ways to extend these formulations to consider lower

semicontinuous functions.

Because of the limited computational experiments it is hard to reach categorical con-

clusions. However there are several trends that, combined with the theoretical properties

of the formulations, provide general guidelines for the use of the different formulations by

practitioners. For example, when the number of polytopes defining the piecewise linear

105

function is small MC seems to be one of the best choices. Furthermore it seems to be

always preferable to CC and DCC. Another example concerns functions defined by a large

number of polytopes. In this case the sizes of logarithmic formulations DLog and Log can

give them a significant computational advantage. Finally, for lower semicontinuous func-

tions it seems that, with the exception of SOS2 Dup, special ad-hoc techniques only provide

an advantage when they are used to adapt formulations that already performed well in the

continuous case.

106

CHAPTER V

MIXED INTER LINEAR PROGRAMMING FORMULATIONS FOR

LINEAR PROGRAMMING WITH PROBABILISTIC CONSTRAINTS

5.1 Introduction

Let ξ be a d-dimensional random vector with finite support on {ξ1, . . . , ξS} ⊂ Rd+ such that

P(ξ = ξs) = 1/S for each s ∈ {1, . . . , S}. We consider Mixed Integer Linear Programming

(MILP) formulations for the Linear Programming (LP) problem with a joint probabilistic

constraints given by

max cx (97a)

s.t.

P
(
x ≥ ξ) ≥ 1− δ (97b)

x ∈ Rd+ (97c)

x ∈ X (97d)

where c ∈ Rd, X ⊂ Rd+ is a polyhedron and δ ∈ (0, 1). Note that (97) can also consider

probabilistic constraints of the form P
(
Ax ≥ ξ

) ≥ 1 − δ for a deterministic matrix A by

appropriately modifying X and {ξ1, . . . , ξS}.
LPs with joint probabilistic or chance constraints of the form (97b) for arbitrary dis-

tributions of ξ have been extensively studied and have many applications (see for example

[109, 117] and the references within). The discrete distribution case has been studied in

[16, 45, 74, 89, 90, 116] and used in applications in [16, 17, 83, 91, 114]. In particular, [114]

studies MILP formulations for binary distributions and [74, 89, 90, 113] study MILP for-

mulation for general finite distributions. Discrete finite distributions also appear naturally

in Sample Average Approximations (SAA) of general probabilistic constraints [88].

107

A standard MILP formulation of probabilistic constraint (97b) [113] is

x ≥ (1− zs)ξs ∀s ∈ {1, . . . , S} (98a)

S∑
s=1

zs ≤ bδSc, (98b)

zs ∈ {0, 1} ∀s ∈ {1, . . . , S}. (98c)

This formulation uses binary variables z ∈ {0, 1}S such that zs = 0 if x ≥ ξs and zs = 1

if x � ξs and restricts the number of violated x ≥ ξs inequalities through cardinality

constraint (98b). Formulation, (98) can be very weak, so valid inequalities for it have been

developed in [74, 89, 90]. These valid inequalities significantly strengthen the formulation,

but are deduced by only considering one row of d-row system (98a) at a time. In this

chapter we study the strength of these 1-row valid inequalities and evaluate the potential

advantage of developing valid inequalities that consider more than one row at a time.

In Section 5.2 we review existing MILP formulations for constraint (97b). In Section 5.3

we introduce an extended MILP formulation of (97b) that generalizes a formulation intro-

duced in [74] for the case d = 1. In Section 5.4 we study the strength of the 1-row relaxation

theoretically and in Section 5.5 we compare the strength of the 1-row and 2-row relaxations

computationally. Finally, in Section 5.6 we present some conclusions.

5.2 Existing MILP Formulations

We now review existing MILP formulations for Qx := {x ∈ Rd : P
(
x ≥ ξ) ≥ 1− δ}.

Let k := bδSc and for each x ∈ Rd let v(x) := {s ∈ {1, . . . , S} : x � ξs} be the index

set for which x violates constraint x ≥ ξ. We then have that Qx = {x ∈ Rd : |v(x)| ≤ k}
and hence we have the following disjunctive characterization

Qx =
⋃

J⊂{1,...,S}
|J |=S−k

{
x ∈ Rd : x ≥ ξs ∀s ∈ J

}
. (99)

Then using Corollary 2.1.2 of [9] we can construct an extended MILP formulation of Qx that

is as strong as any MILP formulation for Qx. Unfortunately, the size of this formulation

is Θ
(
d
(
S

S−k
))

and hence exponential in S for fixed δ, which makes it computationally

108

impractical. The number of disjunctions of the right hand side of (99) can be significantly

reduced by considering so-called (1 − δ)-efficient points [16, 45, 109, 116]. A point p ∈ Rd

is (1− δ)-efficient if

P(p ≥ ξ) ≥ 1− δ and P(p− q ≥ ξ) < 1− δ ∀q ∈ Rd+ \ {0},

which for a finite distribution is equivalent to

|v(p)| ≤ k and |v(p− q)| > k ∀q ∈ Rd+ \ {0}.

By letting B be the set of (1− δ)-efficient points of Qx we have that

Qx =
⋃
b∈B
{x ∈ Rd : x ≥ b}. (100)

The number of disjunctions in (100) is never larger than the number in (99) and as the

following example shows it is usually much smaller.

Example 5.1. Let d = 2, S = 5, ξ1 = (0, 20), ξ2 = (10, 10), ξ3 = (20, 0), ξ4 = (11, 21),

ξ5 = (21, 11) and k = 3. This data is illustrated in Figure 16, where the solid lines indicate

the borders of sets {x ≥ ξi} and Qx is given by the shaded region. The number of disjunctions

in (99) is 10 and the (1− δ)-efficient points (10, 20) and (20, 10) are circled in the figure.

In Section 5.3 we will see that although |B| is not exponential in S it is exponential in

d. Although it is not practical to use these disjunctive formulations directly they can be

used as a base for specialized algorithms [16, 44, 45, 46] or to construct valid inequalities

[116, 113].

Formulation (98) is a much smaller but weaker alternative to the disjunctive formulations

(99) and (100). However, it can be significantly strengthened with the valid inequalities

developed in [74, 89, 90]. These inequalities are all based on a 1-row relaxation of (98) that

we review in the following section.

5.2.1 1-row Relaxation

We denote the feasible region of formulation (98) by Q so that Qx is the projection of Q onto

the x variables. We can strengthen formulation (98) by adding strong valid inequalities for

109

0 10 20
0

10

20

2111

11

21

Figure 16: Example 5.1.

conv(Q), but this set can be extremely complicated. Instead of studying conv(Q) directly

we can study a natural relaxation of Q given by Qj := {(xj , z) ∈ R × {0, 1}S : xj ≥
(1 − zs)ξsj ∀s ∈ {1, . . . , S}, ∑S

s=1 zs ≤ k}. Qj is the projection of Q onto the (xj , z)

variables and Q =
⋃d
j=1{(x, z) ∈ Rd × {0, 1}S : (xj , z) ∈ Qj} so we can strengthen Q with

valid inequalities for conv(Qj). Qj only considers one row of constraints (98a) so we refer to

conv(Qj) as a 1-row relaxation of Q and to its valid inequalities as 1-row valid inequalities

A simple strengthening from studying conv(Qj) can be obtained by noting that if xj ∈
Qj then xj ≥ ξ

[k+1]j
j where ξ[1]j

j ≥ ξ
[2]j
j ≥ . . . ξ

[S]j
j [89, 90]. This requirement can also be

deduced by studying the one-dimensional marginal distributions of ξ [16, 44] and yields

Qx ⊂Mx :=
{
x ∈ Rd : xj ≥ ξ[k+1]j

j ∀j ∈ {1, . . . , d}
}
. (101)

110

We refer to Mx as the marginal relaxation of Qx. By using Mx formulation (98) is strength-

ened in [89, 90] to

xj ≥ ξsj + (ξ[k+1]j
j − ξsj)zs ∀s ∈ {[1]j , . . . , [k]j}, j ∈ {1, . . . , n} (102a)

S∑
s=1

zs ≤ k (102b)

zs ∈ {0, 1} ∀s ∈ {1, . . . , S}. (102c)

Formulation (102) is additionally strengthened in [74, 89, 90] by adding strong 1-row valid

inequalities. These 1-row valid inequalities could be considered to be somewhat myopic,

but computational results in [74, 89, 90] show that they are extremely effective. This raises

the question of how good is the relaxation obtained by adding all 1-row inequalities and

if it is worth developing multi-row inequalities. To answer these questions we need to

be able to study Hx,z :=
{

(x, z) ∈ Rd × [0, 1]S : (xj , z) ∈ conv(Qj)∀j ∈ {1, . . . , d}
}

and its

projection onto the x variables that we denote by Hx. Fortunately, extended formulations

for Q developed in [74, 89, 90] are such that their LP relaxations are equivalent to Hx,z.

We describe the smaller of these formulations in the next section.

5.2.2 Extended 1-row Formulation

We present a compact extended formulation for Qj introduced in [74]. For simplicity, we

first fix j and assume that ξ1j ≥ ξ2j ≥ . . . ≥ ξSj . Let

Qrj :=

{
(xj , z) ∈ R× {0, 1}S : xj = ξr, zs = 1∀s ≤ r − 1,

S∑
s=r

zs ≤ (k − r + 1)

}
∩Qj
(103)

be the set of feasible solutions to Qj such that xj = ξr. We have that Qrj = ∅ for all r > k+1

and

Qj =
{

(xj , z) ∈ RS+1 : xj ≥ 0, zs = 0,∀s ∈ {1, . . . , S}}+
k+1⋃
r=1

Qrj . (104)

111

Formulation (10) in Chapter 1 for disjunctive set (104) results in the MILP formulation for

Qj given by

xj ≥
k+1∑
r=1

yrξ
rj
j (105a)

k+1∑
r=1

yr = 1 (105b)

0 ≤ yr ≤ 1 ∀r ∈ {1, . . . , k + 1} (105c)

ws,r ≥ 0 r ∈ {1, . . . , k + 1}, s ∈ {1, . . . , S} (105d)

ws,r ≤ yr r ∈ {1, . . . , k + 1}, s ∈ {1, . . . , S} (105e)

ws,r ≥ yr r ∈ {1, . . . , k + 1}, s ∈ {1, . . . , r − 1} (105f)

S∑
s=r

ws,r ≤ yr(k − r + 1) ∀r ∈ {1, . . . , k + 1} (105g)

zs =
k+1∑
r=1

ws,r ∀s ∈ {1, . . . , S} (105h)

0 ≤ zs ≤ 1 ∀s ∈ {1, . . . , S} (105i)

z ∈ ZS (105j)

y ∈ Zk+1 (105k)

Variables w in this formulation are the copies of the z variables for each polytope on the

right hand side of (104) and variables y indicate which one of these polytopes is selected.

The extreme points of Qrj have integral z variables because it is a totally unimodular sys-

tem. Hence, by Theorem 1.1 in Chapter 1 we have that the LP relaxation of (105) given by

(105a)–(105i) has extreme points that naturally comply with the integrality requirements.

A formulation for Q is also constructed in [74] by combining formulations (105) for each

j ∈ {1, . . . , d}. This formulation does not require assumption ξ1j ≥ ξ2j ≥ . . . ξSj and is given

112

by

xj ≥
k+1∑
r=1

yj,rξ
[r]j
j ∀j ∈ {1, . . . , d} (106a)

k+1∑
r=1

yj,r = 1 ∀j ∈ {1, . . . , d} (106b)

0 ≤ yj,r ≤ 1 ∀r ∈ {1, . . . , k + 1}, j ∈ {1, . . . , d} (106c)

wj,s,r ≥ 0 r ∈ {1, . . . , k + 1}, s ∈ {1, . . . , S}, j ∈ {1, . . . , d} (106d)

wj,s,r ≤ yj,r r ∈ {1, . . . , k + 1}, s ∈ {1, . . . , S} j ∈ {1, . . . , d} (106e)

wj,[s]j ,r ≥ yj,r r ∈ {1, . . . , k + 1}, s ∈ {1, . . . , r − 1}, j ∈ {1, . . . , d} (106f)

S∑
s=r

wj,[s]j ,r ≤ yj,r(k − r + 1) ∀r ∈ {1, . . . , k + 1}, j ∈ {1, . . . , d} (106g)

zs =
k+1∑
r=1

wj,s,r ∀s ∈ {1, . . . , S}, j ∈ {1, . . . , d} (106h)

0 ≤ zs ≤ 1 ∀s ∈ {1, . . . , S} (106i)

z ∈ Zs (106j)

yj,r ∈ Z ∀r ∈ {1, . . . , k + 1}, j ∈ {1, . . . , d} (106k)

The extreme points of the LP relaxation of (106) given by (106a)–(106i) do not necessarily

comply with the integrality requirements. However, it is clear that the projection onto

the (x, z) variables of the LP relaxation of (106) is equal to Hx,z. Formulation (106)

is compact in the sense that it has a polynomial number of variables and constraints:

S+ d(2 + k+S+ kS) variables and S+ d/2(8 + 5k+ k2 + 2(2 + k)S) constraints except for

non-negativity. Furthermore, Theorem 8 of [74] shows that formulation (106) is at least as

strong as formulation (102).

Another extended formulation for Q was given earlier in [89, 90], but this early formu-

lation has an exponential number of constraints. We note however, that formulation (105)

can also be obtained by using Corollary 1 of [90] and Proposition 1 of [97].

113

5.2.3 Blending

1-row inequalities for general MILPs are usually combined with row aggregation to obtain

stronger results (e.g. [93]). An analogous procedure for 1-row valid inequalities for conv(Q)

was introduced in [74], where it was referred to as blending. The procedure can be described

as follows.

For any π ∈ Rd+ [74] introduces the blending set given by Q(π) := {(y, z) ∈ R×{0, 1}S :

y ≥ (1− zs)πT ξs ∀s ∈ {1, . . . , S}, ∑S
s=1 zs ≤ k}. The interest of the blending set is that

if y ≥ δT z + δ0 is a valid inequality for Q(π) then πTx ≥ δT z + δ0 is a valid inequality

for Q. When π = ej the blending set gives the usual 1-row relaxation Qj of Q, but it

was shown in [74] that other choices of π can yield inequalities that cannot be obtained

from the 1-row relaxations. For d = 2 [74] also gives simple necessary conditions on π for

(x̄, z̄) /∈ conv(Q(π)) when (x̄j , z̄) ∈ conv(Qj) for j ∈ {1, 2}.

5.3 Extended Formulation for d > 1

We now construct an extended formulation for Q that generalizes formulation (105) for Qj

by considering multiple rows of the probabilistic constraint system. The first step of this

generalization is to identify the d-dimensional analog of Qrj defined in (103). For g ∈ Rd

this analog is the set of feasible solutions to Q such that x = g given by

Qg :=

(x, z) ∈ Rd × {0, 1}S : x = g, zs = 1∀s ∈ v(g),
∑
s/∈v(g)

zs ≤ (k − |v(g)|)

(107)

where v(g) = {s ∈ {1, . . . , S} : g � ξs} is the set of realizations of ξ for which g violates

constraint g ≥ ξ. The second step is to select an appropriate set of points g to construct

the analog for Qx of disjunctive characterization (104) of Qj . An initial candidate set is

G = Qx ∩
∏d
j=1{ξ[1]j

j , . . . , ξ
[k+1]j
j } for which we clearly have

Q =
{

(x, z) ∈ RS+d : x ≥ 0, zs = 0,∀s ∈ {1, . . . , S}}+
⋃
g∈G

Qg, (108)

but, as the following simple proposition shows, we can reduce the size of G while maintaining

validity of (108).

114

Proposition 5.1. Let

G̃ :=
k⋃
l=0

{
x ∈ Rd : v(p) ≤ l and v(p− q) > l ∀q ∈ Rd+ \ {0}.

}
(109)

be the set of points that are (1− δ′)-efficient points for some δ′ ∈ [0, δ). Then

Q =
{

(x, z) ∈ RS+d : x ≥ 0, zs = 0,∀s ∈ {1, . . . , S}}+
⋃
g∈G̃

Qg, (110)

Proof. Let (x0, z0) ∈ Q and let sj := arg maxSs=1{ξsj : x0
j ≥ ξsj} and ξ0 ∈ Rd such that

ξ0j := ξ
sj

j . Let k0 := |v(ξ0)|. Then ξ0 is (1− k0/S)-efficient, and hence in G̃, and (x0, z0) ∈
Qξ

0
+
{

(x, z) ∈ RS+d : x ≥ 0, zs = 0, ∀s ∈ {1, . . . , S}}. Hence

(x0, z0) ∈ {(x, z) ∈ RS+d : x ≥ 0, zs = 0, ∀s ∈ {1, . . . , S}}+
⋃
g∈G̃

Qg.

The reverse inclusion is direct.

We can again use formulation (10) in Chapter 1 for disjunctive set (110) to get the

MILP formulation of Q given by

x ≥
∑
g∈G̃

ygg (111a)

∑
g∈G̃

yg = 1 (111b)

0 ≤ yg ≤ 1 ∀g ∈ G̃ (111c)

ws,g ≥ 0 g ∈ G̃, s ∈ {1, . . . , S} (111d)

ws,g ≤ yg g ∈ G̃, s ∈ {1, . . . , S} (111e)

ws,g ≥ yg g ∈ G̃, s ∈ v(g) (111f)∑
s/∈v(g)

ws,g ≤ yg(k − |v(g)|) ∀g ∈ G̃ (111g)

zs =
∑
g∈G̃

ws,g ∀s ∈ {1, . . . , S} (111h)

0 ≤ zs ≤ 1 ∀s ∈ {1, . . . , S} (111i)

z ∈ ZS (111j)

yg ∈ Z ∀g ∈ G̃. (111k)

115

We also have that the extreme points of Qg have integral z variables because it is a totally

unimodular system so by Theorem 1.1 in Chapter 1 we have that the LP relaxation of (111)

given by (111a)–(111i) also has extreme points that naturally comply with the integrality

requirements.

The size of formulation (111) is Θ(|G̃|∗S) and because G̃ ⊂ G we have that |G̃| is O(kd).

However, |G̃| is usually strictly smaller than |G|. For instance, in Example 5.1 we have

that G = {(10, 21), (11, 21), (20, 21), (21, 21), (10, 20), (11, 20), (20, 20), (21, 20), (20, 11),

(21, 11), (20, 10), (21, 10)}, but G̃ = G \ {(10, 21), (11, 20), (21, 10), (20, 11)}. Furthermore,

for ξ’s with special structures |G| can be significantly smaller than |G̃|. For example, if

ξ1 ≥ ξ2 ≥ . . . ≥ ξS then |G| = (k + 1)d, but G̃ = {ξs}k+1
s=1 and (111) reduces to the

formulation in Theorem 9 of [74]. Unfortunately, as the following example shows, it is also

easy to construct instances for which |G̃| is Ω(kd).

Example 5.2. Let d ≥ 3, S = d k and {ξs}Ss=1 :=
⋃d
j=1

⋃k
l=1{ξ ∈ Rd : ξj = l, ξi = 0∀i 6=

j}. Then the (1− k/S)-efficient points are the solutions to

d∑
i=1

xi = (d− 1)k (112a)

x ∈ Zd+. (112b)

The solutions to (112) are the so-called weak s-compositions of (d− 1)k of which there are

exactly
((d−1)k+d−1

d−1

)
(e.g. [121, p.15]). Hence the number of (1− k/S)-efficient points is at

least (1 + k)d−1 and |G̃| is Ω(kd) because G̃ contains all (1− k/S)-efficient points.

Because of its size, formulation (111) is only useful for very small values of d. Fortunately,

in a similar way to the construction of formulation (106) we can combine several copies of

formulation (111) for small values of d to obtain a formulation of Q for large d. To achieve

this we select set Dl ⊂ {1, . . . , d} for l ∈ {1, . . . , L} such that ∪Ll=1Dl = {1, . . . , d}. Then

for each g ∈ RDl we let vl(g) := {s ∈ {1, . . . , S} : ∃j ∈ Dl s.t. gl < ξsl } and for each

l ∈ {1, . . . , L} we let

G̃l :=
k⋃
l=0

{
x ∈ RDl : vl(x) ≤ l, vl(x− q) > l ∀q ∈ RDl

+ \ {0}
}
. (113)

116

Using these sets we obtain the formulation of Q given by

xj ≥
∑
g∈G̃l

yggj ∀j ∈ Dl, l ∈ {1, . . . , L} (114a)

∑
g∈G̃l

yg = 1 ∀l ∈ {1, . . . , L} (114b)

0 ≤ yg ≤ 1 ∀g ∈ G̃l, l ∈ {1, . . . , L} (114c)

ws,g ≥ 0 g ∈ G̃l, s ∈ {1, . . . , S} (114d)

ws,g ≤ yg g ∈ G̃l, s ∈ {1, . . . , S} (114e)

ws,g ≥ yg g ∈ G̃l, s ∈ vl(g) (114f)

S∑
s/∈vl(g)

ws,g ≤ yg(k − |vl(g)|) ∀g ∈ G̃l (114g)

zs =
∑
g∈G̃l

ws,g ∀s ∈ {1, . . . , S}, l ∈ {1, . . . , L} (114h)

0 ≤ zs ≤ 1 ∀s ∈ {1, . . . , S} (114i)

zs ∈ Z ∀s ∈ {1, . . . , S} (114j)

yg ∈ Z ∀g ∈ G̃l, l ∈ {1, . . . , L}. (114k)

If we let xDl
:= (xj)j∈Dl

⊂ R|Dl|, it is straightforward that the projection onto the (x, z)

variables of the LP relaxation of (114) given by (114a)–(114i) is equal to

Hx,z

({Dl}Ll=1

)
:=
{

(x, z) ∈ Rd × [0, 1]S : (xDl
, z) ∈ conv(QDl

) ∀l ∈ {1, . . . , L}
}

(115)

where

QDl
:= {(xDl

, z) ∈ R|Dl| × {0, 1}S :
S∑
s=1

zs ≤ k,

xj ≥ (1− zs)ξsj ∀s ∈ {1, . . . , S}, j ∈ Dl}. (116)

5.4 Strength of 1-row Relaxation

We now study the strength of 1-row relaxations of Q. Our aim is to understand the ad-

vantages of MILP formulations of Qx whose LP relaxation is equal or close to Hx,z such as

(106) or (102) strengthened by the valid inequalities from [74, 89, 90] respectively.

117

The strength of an MILP formulation of disjunctive sets such as Qx is usually evaluated

by two possible properties. The first property is to require that the extreme points of the

LP relaxation of the MILP naturally comply with the MILP’s integrality requirements. A

MILP that has this property while modeling the disjunctive set in the absence of additional

constraints is usually referred to as locally ideal [105, 106]. In our case, a formulation of Qx

whose LP relaxation is equal to Hx,z will be locally ideal if Hx,z = conv(Q). The second

property is slightly weaker as it only considers the original variables of the disjunctive

set. This property is to require that the projection of the LP relaxation of the MILP

formulation onto the original variables is equal to the convex hull of the disjunctive set.

A formulation that complies with this property is usually referred to as sharp [67, 87]. In

our case, a formulation of Qx whose LP relaxation is equal to Hx,z will be locally ideal if

Hx = conv(Qx). Because optimizing linear functions over Qx is NP-hard [90] we would

not expect formulations with Hx,z as their LP relaxation to be either locally ideal or sharp

in general. However, the favorable computational results in [74, 89, 90] suggest that these

formulations could be almost sharp for some classes of problems.

We begin our study with some negative results by showing that in the worst case Hx is

not only far from conv(Qx), but that it can be arbitrarily close to marginal relaxation Mx.

We also show that, as expected, adding valid inequalities obtained through the blending

procedure introduced in [74] will not always yield Hx,z = conv(Q) or Hx = conv(Qx).

We then present some positive results showing that formulations with Hx,z as their LP

relaxation can be sharp or close to sharp for some simple cases.

5.4.1 Negative results

The following example shows that Hx can be arbitrarily close to marginal relaxation Mx.

Example 5.3. Let ε > 0, L ≥ 0, d = 2, S = 2m, k = S − 1, ξs = (D + ε(s− 1), D +M −
ε(s− 1)) for all s ∈ {1, . . . ,m} and ξs = (D +M − ε(s−m− 1), D + ε(s−m− 1)) for all

s ∈ {m+ 1, . . . , 2m}. Figure 17 illustrates this data for L = 0.

The marginal relaxation for this data is Mx = {x ∈ Rn : x1, x2 ≥ L}. We now show

that by varying m and ε we can obtain a solution (x̃1, x̃2, z̃) ∈ Hx,z such that (x̃1, x̃2) is as

118

close as desired to (L,L), the shortest element in Mx. For simplicity we assume L = 0.

The case L > 0 follows directly by a simple translation.

For every i ∈ {1, . . . ,m} we have that (xi1, z
i) given by xi1 = ε(i− 1), zii = 0 and zij = 1

for j 6= i is in Q1. We also have that (xα1 , z
α) given by xα1 = M , zαj = 1 for j ∈ {1, . . . ,m}

and zαj = 0 for j ∈ {m + 1, . . . , 2m} is also in Q1. Hence (x̃1, z̃) = 1/(m + 1)(xα1 , z
α) +∑m

i=1 1/(m+ 1)(xi1, z
i) ∈ conv(Q1). Similarly, for every i ∈ {m+ 1, . . . , 2m} we have that

(xi2, z
i) given by xi2 = ε(i − 1), zii = 0 and zij = 1 for j 6= i is in Q2. We also have that

(xβ2 , z
β) given by xβ2 = M , zβj = 0 for j ∈ {1, . . . ,m} and zβj = 1 for j ∈ {m+ 1, . . . , 2m} is

also in Q2. Hence (x̃2, z̃) = 1/(m+1)(xβ1 , z
β)+

∑2m
i=m+1 1/(m+1)(xi1, z

i) ∈ conv(Q2). Then,

(x̃1, x̃2, z̃) ∈ Hx,z and (x̃1, x̃2) ∈ Hx. We also have that x̃1 = x̃2 ≤ (m(m−1)ε+M)/(m+1)

so by taking ε = 1/m2 we get that x̃1 = x̃2 ≤ (m− 1 +mM)/(m+m2) m→∞−−−−→ 0.

Figure 17: Example 5.3 for L = 0.

Example 5.3 can be modified to obtain examples with other characteristics. For example,

119

the example still works if we take {ξi}mi=1 and {ξi}2mi=m+1 to be any set of points in [0, (m−
1)ε] × [M − (m − 1)ε,M] and [M − (m − 1)ε,M] × [0, (m − 1)ε] respectively such that

ξ12 = maxmi=1 ξ
i
2 and ξm+1

1 = max2m
i=m+1 ξ

i
1. For L > 0 the example also works if we add

points {ξi}(2m−1)p
i=2m+1 ⊂ {x ∈ R2

+ : x1, x2 < L} and change k to S/p for p ∈ Z.

The blending procedure described in Section 5.2.3 can be used to strengthen Hx,z.

However, as the following example shows, it does not always yield conv(Qx).

Example 5.4. Let d = 2, S = 5, ξ1 = (0, 20), ξ2 = (10, 10), ξ3 = (20, 0), ξ4 = (11, 21),

ξ5 = (21, 11) and k = 3. Figure 16 illustrates this data.

For this case we have that (x1
1, z

1) = (10, 0, 0, 1, 1, 1), (x2
1, z

2) = (11, 1, 0, 1, 0, 1) and

(x3
1, z

3) = (21, 1, 0, 0, 1, 0) are all in Q1 so (x̃1, z̃) = (14, 2/3, 0, 2/3, 2/3, 2/3) = 1/3(x1
1, z

1)+

1/3(x2
1, z

2) + 1/3(x2
1, z

2) ∈ conv(Q1). Similarly, we have that (x4
2, z

4) = (10, 1, 0, 0, 1, 1),

(x5
2, z

5) = (11, 1, 0, 1, 1, 0) and (x6
2, z

6) = (21, 0, 0, 1, 0, 1) are all in Q2 so (x̃2, z̃) = (14,2/3,0,

2/3,2/3, 2/3) = 1/3(x4
2, z

4) + 1/3(x5
2, z

5) + 1/3(x6
2, z

6) ∈ conv(Q2). Hence (x̃1, x̃2, z̃) =

(14, 14, 2/3, 0, 2/3, 2/3, 2/3) ∈ Hx,z and then (14, 14) ∈ Hx. We also have that Qx = {x ∈
R2 : x1 ≥ 10, x2 ≥ 20} ∪ {x ∈ R2 : x1 ≥ 20, x2 ≥ 10} and hence (14, 14) /∈ conv(Qx).

We now show that (ŷ, ẑ) = (π114 + π214, 2/3, 0, 2/3, 2/3, 2/3) ∈ conv(Q(π)) for all

π ∈ R2
+. If π1 = 0 or π2 = 0 we have that Q(π) = Q1 or Q(π) = Q2 so the result follows

directly. We divide the remaining possibilities into the following cases

(a) 0 < π2 ≤ 3/7π1 ⇔ πT ξ1 < πT ξ2 < πT ξ4 ≤ πT ξ3 < πT ξ5

(b) 0 < 3/7π1 < π2 ≤ π1 ⇔ πT ξ1 ≤ πT ξ2 ≤ πT ξ3 < πT ξ4 ≤ πT ξ5

(c) 0 < π1 ≤ 3/7π2 ⇔ πT ξ3 < πT ξ2 < πT ξ5 ≤ πT ξ1 < πT ξ4

(d) 0 < 3/7π2 < π1 ≤ π2 ⇔ πT ξ3 ≤ πT ξ2 ≤ πT ξ1 < πT ξ5 ≤ πT ξ4

For case (a) we have that (y1, z1) = (πT ξ2, 0, 0, 1, 1, 1), (y2, z2) = (πT ξ4, 1, 0, 1, 0, 1) and

(y3, z3) = (πT ξ5, 1, 0, 0, 1, 0) are all in Q(π) so (ŷ, ẑ) = 1/3(y1, z1)+1/3(y2, z2)+1/3(y2, z2) ∈
conv(Q(π)). For case (b) (y4, z4) = (πT ξ2, 0, 0, 1, 1, 1), (y5, z5) = (πT ξ4, 1, 0, 0, 0, 1) and

(y6, z6) = (πT ξ5, 1, 0, 1, 1, 0) are all in Q(π) so (ŷ, ẑ) = 1/3(y4, z4)+1/3(y5, z5)+1/3(y6, z6) ∈
conv(Q(π)). Cases (c) and (d) follow from the symmetry of the data.

120

In contrast to the results in Example 5.4, it is possible for the blending procedure to

strengthen Hx,z to the point that its projection onto the x variables is exactly conv(Qx).

However, as the next example shows, even when this condition hold the blending procedure

might still not give conv(Q).

Example 5.5. Let d = 2, S = 4, ξ1 = (0, 10), ξ2 = (1, 11), ξ3 = (10, 0), ξ4 = (11, 1) and

k = 3. Figure 18 illustrates this data.

Using Porta [33] we can check that conv(Q1) is given by

x1 ≥ 11 − z2− 9z3− z4 (117a)

x1 ≥ 11 − z2 −10z4 (117b)

x1 ≥ 11 −10z3− z4 (117c)

x1 ≥ 11 −11z4 (117d)

x1 ≥ 10+ z1 − 9z3− z4 (117e)

x1 ≥ 10+ z1 −10z4 (117f)

x1 ≥ −8+10z1+9z2 − z4 (117g)

3 ≥ z1+ z2+ z3+ z4 (117h)

zi ∈[0, 1] ∀i ∈ {1, . . . , 4} (117i)

and conv(Q2) is given by

x2 ≥ 11− 9z1− z2 − z4 (118a)

x2 ≥ 11 −10z2 − z4 (118b)

x2 ≥ 11−10z1− z2 (118c)

x2 ≥ 11 −11z2 (118d)

x2 ≥ 10− 9z1− z2+ z3 (118e)

x2 ≥ 10 −10z2+ z3 (118f)

x2 ≥ −8 − z2+10z3+9z4 (118g)

3 ≥ z1+ z2+ z3+ z4 (118h)

zi ∈[0, 1] ∀i ∈ {1, . . . , 4}. (118i)

121

We can also check that (x̄1, x̄2, z̄) = (4, 4, 2/3, 2/3, 2/3, 2/3) is feasible for (117a)–(118i)

and x̄ /∈ conv(Qx) = {x ∈ R2 : x1 + x2 ≥ 10, x1, x2 ≥ 0}. To obtain conv(Qx) we can

use the blending procedure for π̄1 = π̄2 = 1. Using Porta we can check that conv(Q(π̄)) is

given by

x1 + x2 ≥ 12 −2z2 (119a)

x1 + x2 ≥ 12 −2z4 (119b)

x1 + x2 ≥ 8+2z1 +2z3 (119c)

3 ≥ z1+ z2+ z3+ z4 (119d)

zi ∈[0, 1] ∀i ∈ {1, . . . , 4} (119e)

and that the extreme points (x̂, ẑ) of (117a)–(119e) are all such that x̂ ∈ conv(Qx). However,

(x̃, z̃) = (11/2, 11/2, 1/2, 1/2, 1/2, 1/2) is an extreme points of (117a)–(119e), which shows

that these inequalities do not give conv(Q).

We now show that (ŷ, ẑ) = (π111/2 + π211/2, 1/2, 1/2, 1/2, 1/2) ∈ conv(Q(π)) for all

π ∈ R2
+. If π1 = 0 or π2 = 0 we have that Q(π) = Q1 or Q(π) = Q2 so the result follows

directly. We divide the remaining possibilities into the following cases

(a) 0 < π2 ≤ 9/11π1 ⇔ πT ξ1 < πT ξ2 ≤ πT ξ3 < πT ξ4

(b) 0 < 9/11π1 < π2 < π1 ⇔ πT ξ1 ≤ πT ξ3 < πT ξ2 ≤ πT ξ4

(c) 0 < π1 ≤ 9/11π2 ⇔ πT ξ3 < πT ξ4 ≤ πT ξ1 < πT ξ2

(d) 0 < 9/11π2 < π1 < π2 ⇔ πT ξ3 ≤ πT ξ1 < πT ξ4 ≤ πT ξ2

For case (a) we have that (y1, z1) = (πT ξ1, 0, 1, 1, 1) and (y2, z2) = (πT ξ4, 1, 0, 0, 0) are in

Q(π) so (ŷ, ẑ) = 1/2(y1, z1) + 1/2(y2, z2) ∈ conv(Q(π)). For case (b) we also have that

(y1, z1) and (y2, z2) are in Q(π) so (ŷ, ẑ) = 1/2(y1, z1) + 1/2(y2, z2) ∈ conv(Q(π)). Cases

(c) and (d) follow from the symmetry of the data.

122

0 10
0

10

11

11

1

1

Figure 18: Example 5.5.

5.4.2 Positive Results

We now give some positive results concerning the strength of Hx. We first show that for

simple cases Hx is sharp and we then show that for an interesting example Hx is nearly

sharp in a very specific sense.

5.4.2.1 Simple Structures for d = 2

We now show that formulation (106) is sharp for simple configurations with d = 2. To

achieve this we study how formulation (106) could fail to be sharp for simple configurations.

For example, suppose that d = 2, S = 2, k = 1, ξ1 = (a1, b2) and ξ2 = (a2, b2) for a1 < a2

and b1 < b2. As illustrated in Figure 19, for this simple two point configuration we have

123

that x ∈ conv(Qx) if and only if

x1 ≥ λa1 + (1− λ)a2,

x2 ≥ λb2 + (1− λ)b1

for λ ∈ [0, 1], but constraints (106a)–(106c) of formulation (106) only force

x1 ≥ λa1 + (1− λ)a2 (120a)

x2 ≥ µb1 + (1− µ)b2 (120b)

for λ, µ ∈ [0, 1], which allows x to be equal to (a1, b1) /∈ conv(Qx).

0
0

Figure 19: Simple Configuration.

To prove that formulation (106) is sharp for this case we need to show that its remain-

ing constraints restrict convex combination multipliers λ, µ in (120) to only yield points

in conv ({(a1, b2), (a2, b1)}) on the right hand side of (120). The following lemma gives

sufficient requirements on the multipliers to achieve this condition for the two point config-

uration in Figure 19 and a similar three point configuration.

Lemma 5.2. (a) Let a1, a2, b1, b2 ∈ R such that a1 < a2 and b1 < b2. Also let (x1, x2) ∈

124

R2 be such that

x1 ≥ λa1 + (1− λ)a2 (121)

x2 ≥ µb1 + (1− µ)b2 (122)

1 ≥ λ+ µ (123)

for λ, µ ∈ R+. Then

conv ({(a1, b2), (a2, b1)}) + R2
+

(b) Let a1, a2, a3, b1, b2, b3 ∈ R such that a1 < a2 < a3 and b1 < b2, b3. Also let (x1, x2) ∈
R2 be such that

x1 ≥ λ1a1 + λ2a2 + (1− λ1 − λ2)a3 (124)

x2 ≥ µ1b1 + µ2b2 + (1− µ1 − µ2)b3 (125)

1 ≥ µ1 + µ2 + λ1 (126)

1 ≥ λ1 + λ2 + µ1 (127)

for λ, µ ∈ R+. Then

conv ({(a1, b3), (a2, b2), (a3, b1)}) + R2
+

Proof. For (a) the result follows because by multiplying (123) by (a2 − a1) > 0 and adding

it to (122) we get x1 ≥ µa2 + (1− µ)a1.

For (b) the result follows because by multiplying (126) by (a2 − a1) > 0 and (127) by

(a3 − a2) > 0 and adding them to (124) we get x1 ≥ µ1a3 + µ2a2 + (1− µ1 − µ2)a1.

Using this lemma we can show that if the structure associated to the marginals is simple

then (106) is sharp.

Proposition 5.3. Let s1 = [k+1]1 and s2 = [k+1]2. Hx = conv(Qx) if any of the following

conditions hold

1. s1 = s2.

125

2. ∃j ∈ {1, 2} such that ξs1j = ξs2j .

3. For every s ∈ {1, . . . , S} \ {s1, s2} we have that

ξs ≤ ξsi ∀i ∈ {1, 2} or ξs ≥ ξsi ∀i ∈ {1, 2}. (128)

4. There is a single s0 ∈ {1, . . . , S} such that (128) holds for every s ∈ {1, . . . , S} \
{s0, s1, s2}, ξs11 < ξs01 < ξs21 and ξs12 > ξs02 > ξs22 .

Proof. The cases of Proposition 5.3 are depicted in Figure 20.

For cases 1 and 2 we have that Mx = conv(Qx) so the result follows from Mx ⊂ Hx.

For case 3 without loss of generality we may assume that ξs11 < ξs21 and ξs22 < ξs12 . In

this case we have that, thanks to constraint (106b)–(106c), a solution to the LP relaxation

of (106) has

x1 ≥
k+1∑
r=1

y1,rξ
[r]1
1 ≥ y1,k+1ξ

s1
1 + (1− y1,k+1)ξs21 (129)

x2 ≥
k+1∑
r=1

y2,rξ
[r]2
2 ≥ y2,k+1ξ

s2
2 + (1− y2,k+1)ξs12 (130)

Now, because s2 = [k]1 we have that constraint (106d), (106f) and (106h) imply

y1,k+1 ≤ w1,s2,k+1 ≤ zs2 . (131)

In addition, we have that constraint (106g) implies that w2,s2,k+1 = 0 and hence constraints

(106h), (106e) and (106b) imply

zs2 =
k∑
r=1

w2,s2,r ≤
k∑
r=1

y2,r = 1− y2,k+1. (132)

We then have that y1,k+1 + y2,k+1 ≤ 1 and the result follows from Lemma 5.2 part (a) and

the fact that conv(Qx) = conv ({ξs1 , ξs2}) + R2
+.

For case 4 we have that, thanks to constraint (106b)–(106c), a solution to the LP

relaxation of (106) has

x1 ≥
k+1∑
r=1

y1,rξ
[r]1
1 ≥ y1,k+1ξ

s1
1 + y1,kξ

s0
1 + (1− y1,k+1 − y1,k)ξs21 (133)

x2 ≥
k+1∑
r=1

y2,rξ
[r]2
2 ≥ y2,k+1ξ

s2
2 + y1,kξ

s0
2 + (1− y2,k+1 − y1,k)ξs12 (134)

126

Now, because s2 = [k − 1]1 we have that constraint (106d), (106f) and (106h) imply

y1,k+1, y1,k ≤ w1,s2,k+1 ≤ zs2 . (135)

In addition, we again have that constraint (106g) implies that w2,s2,k+1 = 0 and hence

constraints (106h), (106e) and (106b) imply (132). We then have that

y1,k+1 + y1,k + y2,k+1 ≤ 1 (136)

By a symmetric argument we also have that

y2,k+1 + y2,k + y1,k+1 ≤ 1. (137)

The result follows from Lemma 5.2 part (b) and the fact that conv(Qx) = conv ({ξs1 , ξs2 , ξs0})+
R2

+.

5.4.2.2 Integers in Box

We now study the case in which {ξs}Ss=1 are all the points with integer coordinates in a

box
∏d
j=1[1,Mj] ⊂ Rd for M ∈ Zd. These points can be thought as the equally probable

realizations of the random variable ξ = dηe for η uniformly distributed in
∏d
j=1[0,Mj].

Because the distribution function of η is log-concave on Rd we have that the distribution

of ξ is log-concave on Zd and hence Qx ∩ Zd = conv(Qx) ∩ Zd [45, 117]. Furthermore, this

property allows us to precisely characterize Qx as a mixed integer nonlinear programming

problem.

Lemma 5.4. Let ξ be uniformly distributed in
∏d
j=1{1, . . . ,Mj} for M ∈ Zd. Then x ∈ Qx

is equivalent to the nonlinear integer programming problem given by

x ≥ y (138a)

d∏
j=1

yj ≥ (1− δ)
d∏
j=1

Mj (138b)

M ≥ y ≥ 0 (138c)

y ∈ Zd (138d)

127

(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

Figure 20: Cases of Proposition 5.3.

Proof. ξ uniformly distributed in
∏d
j=1{1, . . . ,Mj} is equivalent to ξ = dηe for η uniformly

distributed in
∏d
j=1[0,Mj] with the roundup operation taken componentwise. The result

then follows from

Pξ(x ≥ ξ) = Pη(x ≥ dηe) = Pη
(
∃y ∈ Zd s.t. x ≥ y ≥ η

)
.

(138) is a nonlinear formulation of Qx for the specific form of ξ considered. It is straight-

forward that this formulation is nearly sharp in the following sense.

Lemma 5.5. Let M ∈ Zd and let Wx := {x ∈ Rd :
∏
j∈J xj ≥ (1 − δ)

∏
j∈JMj ∀J ⊂

{1, . . . , d}} be the projection onto the x variables of the continuous relaxation of (138) given

128

by (138a)–(138c).Then Wx ⊂ Qx +B∞ for ξ uniformly distributed in
∏d
j=1{1, . . . ,Mj} and

B∞ := {x ∈ Rd : ||x||∞ ≤ 1}.

Figure 21 illustrates this problem for d = 2, M1 = 13, M2 = 9 and δ = 0.4. Points

{ξs}Ss=1 are depicted by the blue dots, Qx is the region above the thick line and Wx is given

by the shaded region.

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x10

1

2

3

4

5

6

7

8

9

10

11
x2

Figure 21: Integers in box for d = 2, M1 = 13, M2 = 9 and δ = 0.4.

We conjecture that for ξ uniformly distributed in
∏d
j=1{1, . . . ,Mj} with M ∈ Zd any

formulation of Qx, such as (106), whose LP relaxation projected onto the x variables is

contained in Hx is stronger than (138).

Conjecture 5.6. Hx ⊂Wx for ξ uniformly distributed in
∏d
j=1{1, . . . ,Mj} with M ∈ Zd.

Lemma 5.4 and Conjecture 5.6 would also show that any MILP formulation of Qx for

ξ uniformly distributed in
∏d
j=1{1, . . . ,Mj} with the strength of (106) is a strong MILP

formulation for the nonlinear integer programming problem (138).

5.5 Computational Results

We now present a computational study of the strength of the 1-row relaxation Hx,z. To

evaluate the potential advantage of valid inequalities that consider more than one row of

(98a) at a time we also study the strength of the 2-row relaxation for even d given by

H2
x,z := Hx,z

({Dl}Ll=1

)
for l = d/2 and Dl := {2l − 1, 2l}.

129

To test the strength of the 1-row relaxation we use the LP relaxation of formulation

(106) and to test the 2-row relaxation we use the LP relaxation of formulation (114) for

l = d/2 and Dl := {2l−1, 2l}. All formulations are generated using Ilog Concert and solved

using CPLEX 11 in a 2.4GHz Xeon workstation with 2GB of RAM.

We test the fomulations using {ξs}Ss=1 obtained as independent samples from the fol-

lowing distributions:

Box Uniform in [1, 50]d.

Circle Uniform in {x ∈ Rd+ : ||x||2 = 50}.

Box-Box Uniform in [0, 1]d with probability 0.88 and uniform in [1, 2]d with probability

0.12.

Box-Circle Uniform in [0, 1]d with probability 0.88 and uniform in {x ∈ R2
+ : ||x− 1||2 =

50, x ≥ 1} with probability 0.12.

Multi-Log An equally weighted mixture of Gaussians with 18 modes. Each center is

obtained from two independent samples from a lognormal distribution.

Multi-R4 A equally weighted mixture of Gaussians with 4 modes. Each center is selected

uniform in [1, 100]× [1, 100].

Examples of the points obtained from each distribution for d = 2 are depicted in Figure 22.

5.5.1 Sharpness Tests d = 2

To study the sharpness of 1-row formulation Hx,z for d = 2 we compare the values vQ :=

min{x1 + x2 : x ∈ Qx} and vH := min{x1 + x2 : x ∈ Hx}. We calculate vQ by solving the

MILP given by minx,z,y,w{x1 + x2 : (106a)–(106k)} and we calculate vH by solving the LP

given by minx,z,y,w{x1 + x2 : (106a)–(106i)}.
Because we are interested in the strength of 1-row formulation Hx,z beyond marginal

relaxationMx we first compare vQ against vM := min{x1+x2 : x ∈Mx}, which we calculate

130

10 20 30 40 50
x1

10

20

30

40

50

x2

(a) Box.

10 20 30 40 50
x1

10

20

30

40

50

x2

(b) Circle.

0.5 1.0 1.5
x1

0.5

1.0

1.5

2.0

x2

(c) Box-Box.

0.5 1.0 1.5 2.0
x1

0.5

1.0

1.5

2.0

x2

(d) Box-Circle.

0 100 200 300 400
x10

100

200

300

400
x2

(e) Multi-Log.

20 40 60 80
x1

20

40

60

80

100

x2

(f) Multi-4M.

Figure 22: Example distribution realizations for d = 1.

directly. Table 24 shows statistics for the marginal GAP given by 100 ∗ (vQ− vM)/(vQ) for

100 instances for each of the distributions considered. We use sample sizes S of 100 and

300 and probabilities δ = 0.05, δ = 0.10, δ = 0.15 and δ = 0.20.

We see that the GAPs tend to increase both with S and δ. However, this increment is

moderate and in some cases, such as Box-Box and Box-Circle, an increment in δ can result

131

Table 24: Marginal GAP for d = 2 [%].
100 300

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
Box min 0.34 1.52 2.81 4.69 1.13 2.50 4.13 5.78

avg 1.66 3.84 6.19 8.50 1.82 4.10 6.58 9.18
max 3.79 8.63 11.19 12.57 2.71 6.04 9.00 11.98
std 0.01 0.09 0.05 0.14 0.02 0.05 0.13 0.04

Circle min 0.02 0.15 0.43 0.94 0.04 0.26 0.75 1.44
avg 0.13 0.51 1.14 2.13 0.13 0.55 1.20 2.20
max 0.47 1.12 2.87 3.60 0.30 1.06 1.95 3.22
std 0.01 0.02 0.05 0.09 0.01 0.00 0.01 0.03

Box-Box min 0.00 0.00 0.00 0.00 4.18 0.00 0.00 1.19
avg 6.48 5.66 2.04 3.69 8.16 9.68 1.77 3.93
max 15.85 22.19 12.65 8.86 15.88 23.78 18.71 6.64
std 0.12 0.36 0.16 0.14 0.10 0.59 0.11 0.01

Box-Circle min 0.00 0.00 0.00 0.00 0.75 0.00 0.00 0.73
avg 5.00 11.76 4.48 3.58 4.71 15.74 3.90 3.59
max 22.50 32.64 29.04 26.70 9.93 31.54 33.04 6.28
std 0.43 1.14 0.25 0.12 0.24 0.64 0.24 0.10

Multi-Log min 0.09 0.94 1.26 2.51 0.00 1.47 2.27 4.32
avg 4.36 12.28 16.82 18.94 3.67 12.28 18.25 20.41
max 32.39 48.25 55.00 49.30 35.26 47.70 52.16 50.96
std 0.39 0.91 1.12 1.12 0.28 0.24 0.45 0.44

Multi-4M min 0.08 0.18 0.12 0.00 0.18 0.27 0.35 0.53
avg 0.38 0.53 0.72 1.09 0.43 0.62 0.82 1.16
max 1.17 1.18 1.36 3.06 0.74 1.19 1.60 2.24
std 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.03

in a dramatic decrement of the GAP. Furthermore, the marginal GAP seems to be highly

dependent on the distribution used.

Table 25 shows the same statistics for the 1-row GAP given by 100∗(vQ−vH)/(vQ). We

see that the 1-row GAP provides a significant improvement over the marginal GAP, as the

former are quite small even for the cases in which the marginal GAP was large. However,

for Box-Circle and Multi-Log we can still find instances with a large 1-row GAP.

We do not include results for the 2-row relaxations as these would always provide a

GAP of zero.

132

Table 25: 1-row GAP for d = 2 [%].
100 300

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

avg 0.00 0.01 0.01 0.03 0.00 0.01 0.02 0.02
max 0.19 0.39 0.23 0.63 0.04 0.11 0.45 0.60
std 0.02 0.06 0.05 0.10 0.01 0.02 0.06 0.07

Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max 0.00 0.03 0.01 0.02 0.01 0.01 0.00 0.00
std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Box-Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.05 0.06 0.00 0.02 0.05 0.12 0.02 0.01
max 1.29 2.56 0.30 0.53 0.74 2.01 1.78 0.13
std 0.22 0.31 0.03 0.08 0.14 0.36 0.18 0.03

Box-Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.01 1.29 0.64 0.22 0.00 2.26 1.06 0.01
max 0.56 11.15 11.66 13.92 0.00 14.65 20.56 0.13
std 0.06 2.76 2.30 1.57 0.00 3.72 3.71 0.02

Multi-Log min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.11 0.27 0.60 0.48 0.02 0.83 1.09 1.01
max 9.55 14.48 24.76 14.50 1.16 16.91 32.81 22.66
std 0.97 1.56 2.75 2.00 0.13 2.60 4.09 3.45

Multi-4M min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max 0.05 0.06 0.02 0.16 0.01 0.01 0.02 0.06
std 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.01

5.5.2 Interaction with Other Constraints

To study the interaction of the 1-row and 2-row relaxations with other constraints we now

study the probabilistically constrained transportation problem given by

vt,Q := min
n∑
i=1

d∑
j=1

ci,jfi,j (139a)

s.t.

d∑
j=1

fi,j ≤ bi (139b)

n∑
i=1

fi,j = xj (139c)

fi,j ≥ 0 ∀i ∈ {1, . . . , d}, j ∈ {1, . . . , n} (139d)

P
(
x ≥ ξ) ≥ 1− δ. (139e)

133

We set d = 2, n = 40 and we randomly generate new ci,j ’s and bi’s for each instance of

{ξs}Ss=1 from the previous sections. Each ci,j is independently generated from the uniform

distribution on [1, 100]. To obtain b we first generate each bi independently from the uniform

distribution on [1, 100] and then rescale b with respect to {ξs}Ss=1 to obtain a feasible

transportation problem for each scenario.

For the finite distribution case we have that (139e) is equivalent to x ∈ Qx so problem

(139) corresponds to the minimization of a convex piecewise linear function of x over Qx.

Hence, we have that vt,conv(Qx) := minf,x{
∑n

i=1

∑d
j=1 ci,jfi,j : x ∈ conv(Qx), (139b)–(139d)}

is not necessarily equal to vt,Q. For this reason, in addition to studying the 1-row relaxation

optimal value given by vt,H := minf,x{
∑n

i=1

∑d
j=1 ci,jfi,j : x ∈ Hx, (139b)–(139d)} we also

study the 2-row relaxation optimal value given by vt,H2 := minf,x{
∑n

i=1

∑d
j=1 ci,jfi,j :

x ∈ H2
x, (139b)–(139d)} where H2

x is the projection onto the x variables of H2
x,z. For d = 2

we have that vt,H2 = vt,conv(Qx).

Table 26 shows the statistics for the 1-row GAP given by 100 ∗ (vt,Q − vt,H)/(vt,Q) and

Table 27 shows the statistics for the 2-row GAP given by 100 ∗ (vt,Q − vt,H2)/(vt,Q).

Comparing Table 26 and Table 25 we see that the 1-row GAPs have been at least doubled

for most cases. This is expected as now having a tight formulation does not guarantee good

GAPs, which is confirmed by Table 27. However, also see that using a sharp formulation of

Qx does result in fairly small GAPs.

5.5.2.1 Experiments for d = 4

We now repeat the experiments from Sections 5.5.1 and 5.5.2 for d = 4. For this case all

formulations were much bigger and solve times increased significantly so we only tested 10

instances for each distribution. We begin with Table 28 that shows the marginal GAPs for

this case.

As expected, we can see a moderate increment of the GAPs. We note that some values,

such as the maximum for Multi-Log for S = 300 and δ = 0.1, are larger in Table 24 than

Table 28 because the former considers 100 instances per distribution and the later only 10.

134

Table 26: Transportation Problems 1-row GAP for d = 2 [%].
100 300

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

avg 0.01 0.05 0.06 0.10 0.01 0.03 0.06 0.11
max 0.58 0.86 1.22 1.28 0.17 0.39 1.51 1.40
std 0.06 0.17 0.18 0.24 0.03 0.07 0.19 0.22

Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max 0.00 0.10 0.07 0.06 0.01 0.02 0.03 0.10
std 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01

Box-Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.12 0.16 0.00 0.06 0.13 0.32 0.03 0.03
max 3.20 4.81 0.00 1.31 1.81 7.02 2.41 0.56
std 0.47 0.68 0.00 0.20 0.33 1.00 0.24 0.08

Box-Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.16 3.06 1.37 0.55 0.01 5.18 2.23 0.03
max 3.30 22.91 23.92 29.90 0.31 30.36 40.98 1.29
std 0.63 5.94 4.50 3.81 0.04 7.78 7.63 0.14

Multi-Log min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.19 0.98 2.04 1.57 0.14 2.20 2.60 2.67
max 16.27 37.05 50.92 29.10 8.79 39.80 62.34 30.10
std 1.64 4.37 6.16 4.66 1.00 6.11 7.76 6.70

Multi-4M min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
max 0.10 0.22 0.12 0.36 0.00 0.07 0.07 0.15
std 0.01 0.02 0.01 0.04 0.00 0.01 0.01 0.02

Tables 29 and (30) present the 1-row and 2-row GAPs. We note that because d > 2

we can now have conv(Qx) (H2
x and hence vH2 < vconv(Qx). We also note that in many

instances of Box, Circle, Multi-Log and Multi-4M with S = 300 the 2-row relaxations

did not reach optimality after 10, 000 seconds of dual simplex iterations so the results on

Table 30 are only upper bounds on the GAPs for these cases. This explains why the 2-row

GAPs are sometimes larger than the 1-row GAPs.

We can see that the 1-row GAPs have increased, but with few exceptions remain fairly

small. However, because Table 25 considers 100 instances per distribution and Table 29

only considers 10, it is again difficult to compare them specially for distributions that yield

high GAP variability such as Box-Circle and Multi-Log. With respect to the 2-row GAPs

135

Table 27: Transportation Problem 2-row GAP for d = 2 [%].
100 300

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

avg 0.00 0.00 0.01 0.02 0.00 0.01 0.01 0.02
max 0.23 0.00 0.30 0.86 0.00 0.39 0.39 0.71
std 0.02 0.00 0.04 0.09 0.00 0.04 0.05 0.09

Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max 0.00 0.00 0.02 0.00 0.00 0.02 0.03 0.10
std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Box-Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.02 0.02 0.00 0.01 0.02 0.03 0.00 0.01
max 0.66 1.37 0.00 0.46 0.49 2.03 0.05 0.50
std 0.08 0.14 0.00 0.06 0.07 0.22 0.01 0.06

Box-Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.05 0.21 0.14 0.06 0.01 0.47 0.17 0.01
max 2.58 4.85 5.64 2.74 0.31 6.36 3.71 0.86
std 0.32 0.65 0.65 0.34 0.04 1.08 0.66 0.09

Multi-Log min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.02 0.13 0.37 0.49 0.10 0.10 0.39 0.49
max 2.37 9.04 13.27 13.77 5.91 6.10 14.03 13.71
std 0.24 0.94 1.63 1.94 0.72 0.66 1.76 1.79

Multi-4M min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

we can see that they are in fact greater than zero, but can be significantly smaller than the

1-row GAPs.

Our final set of tables considers transportation problem (139) for d = 4. Table 31

presents the 1-row GAPs and Table 32 presents the 2-row GAPs. We note that again in

many instances of Box, Circle, Multi-Log and Multi-4M with S = 300 the 2-row relaxations

did not reach optimality after 10, 000 seconds of dual simplex iterations so the results on

Table 32 are only upper bounds on the GAPs for these cases.

We can see that 1-row gaps can be quite large, but that the GAPs are significantly

reduced when using a 2-row relaxation.

136

Table 28: Marginal GAP for d = 4 [%].
100 300

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
Box min 1.67 5.01 7.82 10.92 2.56 5.62 8.99 12.13

avg 3.03 6.20 9.64 12.77 2.96 6.43 10.01 13.66
max 4.82 7.67 12.47 15.75 3.35 7.78 10.98 15.49
std 0.45 0.12 0.44 0.25 0.10 0.21 0.11 0.23

Circle min 4.44 8.99 14.69 19.33 6.03 10.41 15.65 20.00
avg 5.48 10.80 15.85 20.89 6.59 11.83 16.70 21.05
max 6.64 12.51 17.11 23.02 7.06 13.19 17.63 22.42
std 0.05 0.57 0.01 0.28 0.05 0.45 0.21 0.00

Box-Box min 5.57 0.00 0.67 2.10 10.14 0.59 1.12 4.53
avg 9.67 13.35 6.85 4.87 13.15 19.22 2.26 6.16
max 18.29 25.07 21.26 8.44 17.74 24.61 4.28 9.23
std 0.21 2.82 2.06 0.33 0.04 1.33 0.05 0.04

Box-Circle min 8.19 1.04 0.00 3.26 14.04 0.60 0.43 4.59
avg 13.39 17.36 1.92 5.43 16.58 23.57 2.35 6.50
max 20.18 24.24 5.85 9.98 20.72 28.03 4.76 9.68
std 0.42 1.98 0.39 0.28 0.03 0.84 0.24 0.20

Multi-Log min 1.15 7.32 12.14 22.73 1.48 8.93 14.20 16.96
avg 10.80 15.36 27.60 33.20 6.01 18.08 28.56 33.63
max 28.93 29.86 51.41 52.65 19.98 26.84 52.52 44.49
std 2.17 2.94 0.89 0.26 0.62 0.47 3.26 3.45

Multi-4M min 0.22 0.55 0.74 1.10 0.58 0.82 1.03 1.35
avg 0.56 0.84 1.17 1.75 0.75 1.02 1.28 1.75
max 0.85 1.18 1.41 2.79 0.95 1.22 1.54 2.15
std 0.02 0.07 0.06 0.17 0.06 0.04 0.05 0.07

5.6 Conclusions

Although we showed that the 1-row relaxations can be as bad as the trivial marginal relax-

ation in the worse case, we also saw some theoretical and computational evidence that it

might be a very strong relaxation for many cases. In fact, the 1-row relaxation was weak

only on instance classes that were purposely constructed to be problematic, and even then,

the 1-row relaxation managed to be strong in many of these instances.

Using a new multi-row extended formulation we also compared the strength of the 1-row

and 2-row relaxations computationally. We saw that in the few instances in which the 1-row

relaxation was weak the 2-row relaxation could close a large portion of the GAPs showing

that 2-row valid inequalities could provide an advantage in some cases.

137

Table 29: 1-row GAP for d = 4 [%].
100 300

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.05

avg 0.03 0.02 0.10 0.27 0.01 0.06 0.25 0.47
max 0.30 0.10 0.34 0.76 0.08 0.27 0.58 1.39
std 0.09 0.03 0.12 0.30 0.02 0.08 0.14 0.46

Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.03 0.05 0.03 0.03 0.03 0.05 0.04
max 0.03 0.25 0.19 0.10 0.11 0.09 0.14 0.11
std 0.01 0.08 0.07 0.04 0.04 0.03 0.05 0.04

Box-Box min 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00
avg 0.41 1.69 0.27 0.00 1.63 3.10 0.01 0.08
max 2.72 5.22 2.20 0.03 3.52 5.62 0.03 0.31
std 0.87 2.07 0.68 0.01 0.92 1.80 0.01 0.09

Box-Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.26 2.35 0.00 0.02 0.82 6.98 0.00 0.07
max 1.01 5.87 0.00 0.09 3.07 9.56 0.03 0.31
std 0.38 1.98 0.00 0.04 0.93 2.62 0.01 0.10

Multi-Log min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.17 0.03 0.30 1.86 0.00 0.53 1.02 0.60
max 1.73 0.30 1.99 7.69 0.02 2.61 3.73 3.47
std 0.55 0.10 0.63 2.61 0.01 0.91 1.62 1.27

Multi-4M min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.02
max 0.03 0.02 0.02 0.06 0.02 0.02 0.05 0.08
std 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.03

138

Table 30: 2-row GAP for d = 4 [%].
100 300

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02

avg 0.02 0.01 0.03 0.09 0.01 0.04 0.12 0.25
max 0.15 0.03 0.29 0.34 0.06 0.11 0.25 0.79
std 0.05 0.01 0.09 0.14 0.02 0.05 0.06 0.26

Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.01 0.04 0.02 0.02 0.02 0.04 0.05
max 0.03 0.08 0.17 0.09 0.09 0.08 0.12 0.11
std 0.01 0.03 0.06 0.03 0.03 0.03 0.04 0.04

Box-Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.04 0.37 0.03 0.00 0.17 0.34 0.00 0.04
max 0.23 1.96 0.26 0.00 0.57 1.15 0.03 0.11
std 0.08 0.67 0.08 0.00 0.19 0.45 0.01 0.04

Box-Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.01 0.42 0.00 0.01 0.09 1.16 0.00 0.04
max 0.11 1.77 0.00 0.06 0.39 2.69 0.03 0.17
std 0.04 0.60 0.00 0.02 0.15 1.12 0.01 0.06

Multi-Log min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.03 0.11 1.77 0.00 0.44 0.91 0.64
max 0.00 0.30 1.06 7.45 0.00 2.45 3.73 3.53
std 0.00 0.10 0.34 2.56 0.00 0.84 1.51 1.30

Multi-4M min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
max 0.00 0.00 0.01 0.05 0.02 0.01 0.01 0.04
std 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.02

139

Table 31: Transportation Problem 1-row GAP for d = 4 [%]
100 300

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10

avg 0.09 0.06 0.25 0.62 0.04 0.14 0.64 1.54
max 0.71 0.30 0.83 2.73 0.25 0.40 2.21 3.88
std 0.23 0.11 0.31 0.84 0.08 0.15 0.62 1.31

Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.09 0.29 0.17 0.06 0.05 0.12 0.06
max 0.00 0.44 1.01 0.55 0.16 0.25 0.31 0.16
std 0.00 0.17 0.30 0.21 0.05 0.09 0.11 0.07

Box-Box min 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00
avg 1.28 4.13 0.91 0.03 4.22 6.78 0.04 0.10
max 7.13 13.11 4.82 0.17 7.97 13.51 0.14 0.42
std 2.30 5.14 1.55 0.05 2.23 4.18 0.05 0.13

Box-Circle min 0.00 0.00 0.00 0.00 0.52 0.00 0.00 0.00
avg 0.79 5.18 0.00 0.03 1.96 14.58 0.00 0.06
max 4.42 9.55 0.01 0.15 7.59 21.11 0.01 0.20
std 1.40 3.78 0.00 0.06 2.06 5.69 0.00 0.08

Multi-Log min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.67 0.36 3.69 3.53 0.00 1.80 3.77 1.91
max 3.83 2.53 19.46 15.54 0.05 6.55 19.94 9.70
std 1.26 0.79 6.49 4.96 0.02 2.47 6.67 3.89

Multi-4M min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.01 0.01 0.04 0.01 0.03 0.02 0.05
max 0.02 0.10 0.04 0.16 0.08 0.16 0.13 0.14
std 0.01 0.03 0.01 0.06 0.02 0.05 0.04 0.05

140

Table 32: Transportation Problem 2-row GAP for d = 4 [%]
100 300

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

avg 0.05 0.03 0.05 0.19 0.03 0.06 0.29 0.92
max 0.30 0.26 0.25 0.91 0.22 0.28 1.25 2.32
std 0.10 0.08 0.08 0.34 0.07 0.11 0.36 0.78

Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.04 0.24 0.12 0.04 0.03 0.10 0.07
max 0.00 0.32 0.94 0.55 0.09 0.25 0.23 0.18
std 0.00 0.10 0.28 0.18 0.04 0.08 0.09 0.07

Box-Box min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.08 1.07 0.22 0.00 0.74 0.78 0.03 0.05
max 0.70 6.65 1.43 0.01 2.86 3.42 0.14 0.21
std 0.22 2.28 0.47 0.00 0.81 1.15 0.05 0.08

Box-Circle min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.26 1.45 0.00 0.02 0.49 3.93 0.00 0.03
max 2.24 3.40 0.01 0.12 3.12 7.83 0.00 0.11
std 0.71 1.42 0.00 0.05 0.97 2.45 0.00 0.04

Multi-Log min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.29 0.34 2.45 3.18 0.00 1.51 3.70 1.91
max 1.45 2.53 19.44 15.16 0.04 5.90 19.80 9.40
std 0.61 0.80 6.08 4.85 0.01 2.15 6.64 3.94

Multi-4M min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.01 0.00 0.03 0.01 0.01 0.00 0.04
max 0.00 0.06 0.02 0.16 0.07 0.05 0.02 0.20
std 0.00 0.02 0.01 0.06 0.02 0.02 0.01 0.06

141

REFERENCES

[1] Abhishek, K., Leyffer, S., and Linderoth, J. T., “Filmint: An outer-
approximation-based solver for nonlinear mixed integer programs,” Preprint
ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics and Computer
Science Division, Argonne, IL, September 2006.

[2] Aichholzer, O., Aurenhammer, F., Hurtado, F., and Krasser, H., “Towards
compatible triangulations,” Theoretical Computer Science, vol. 296, pp. 3–13, 2003.

[3] Akturk, M. S., Atamturk, A., and Gurel, S., “A strong conic quadratic refor-
mulation for machine-job assignment with controllable processing times,” Operations
Research Letters (To appear), 2009. doi:10.1016/j.orl.2008.12.009.

[4] Appleget, J. A. and Wood, R. K., “Explicit-constraint branching for solving
mixed-integer programs,” in Computing tools for modeling, optimization, and sim-
ulation: interfaces in computer science and operations research (Laguna, M. and
González , J. L., eds.), vol. 12 of Operations research / computer science interfaces
series, pp. 245–261, Kluwer, 2000.

[5] Balakrishnan, A. and Graves, S. C., “A composite algorithm for a concave-cost
network flow problem,” Networks, vol. 19, pp. 175–202, 1989.

[6] Balas, E., “Disjunctive programming,” Annals of Discrete Mathematics, vol. 5,
pp. 3–51, 1979.

[7] Balas, E., “Disjunctive programming and a hierarchy of relaxations for discrete
optimization problems,” SIAM Journal on Algebraic and Discrete Methods, vol. 6,
pp. 466–486, 1985.

[8] Balas, E., “On the convex-hull of the union of certain polyhedra,” Operations Re-
search Letters, vol. 7, pp. 279–283, 1988.

[9] Balas, E., “Disjunctive programming: Properties of the convex hull of feasible
points,” Discrete Applied Mathematics, vol. 89, pp. 3–44, 1998.

[10] Balas, E., “Projection, lifting and extended formulation in integer and combinatorial
optimization,” Annals of Operations Research, vol. 140, pp. 125–161, 2005.

[11] Ball, K. M., “An elementary introduction to modern convex geometry,” in Flavors
of Geometry (Levy, S., ed.), vol. 31 of Mathematical Sciences Research Institute
Publications, pp. 1–58, Cambridge: Cambridge University Press, 1997.

[12] Beale, E. M. L. and Tomlin, J. A., “Special facilities in a general mathemati-
cal programming system for non-convex problems using ordered sets of variables,”
in OR 69: Proceedings of the fifth international conference on operational research
(Lawrence, J., ed.), pp. 447–454, Tavistock Publications, 1970.

142

[13] Ben-Tal, A. and Nemirovski, A., “Robust solutions of uncertain linear programs,”
Operations Research Letters, vol. 25, pp. 1–13, 1999.

[14] Ben-Tal, A. and Nemirovski, A., Lectures on modern convex optimization: analy-
sis, algorithms, and engineering applications. Philadelphia, PA: Society for Industrial
and Applied Mathematics, 2001.

[15] Ben-Tal, A. and Nemirovski, A., “On polyhedral approximations of the second-
order cone,” Mathematics of Operations Research, vol. 26, pp. 193–205, 2001.

[16] Beraldi, P. and Ruszczynski, A., “A Branch and Bound Method for Stochastic In-
teger Problems Under Probabilistic Constraints,” Optimization Methods & Software,
vol. 17, pp. 359–382, 2002.

[17] Beraldi, P. and Ruszczynski, A., “The probabilistic set-covering problem,” Op-
erations Research, vol. 50, pp. 956–967, 2002.

[18] Bergamini, M. L., Aguirre, P., and Grossmann, I., “Logic-based outer approx-
imation for globally optimal synthesis of process networks,” Computers & Chemical
Engineering, vol. 29, pp. 1914–1933, 2005.

[19] Bergamini, M. L., Grossmann, I., Scenna, N., and Aguirre, P., “An improved
piecewise outer-approximation algorithm for the global optimization of minlp models
involving concave and bilinear terms,” Computers & Chemical Engineering, vol. 32,
pp. 477–493, 2008.

[20] Bertsimas, D., Darnell, C., and Soucy, R., “Portfolio construction through
mixed-integer programming at grantham, mayo, van otterloo and company,” Inter-
faces, vol. 29, pp. 49–66, 1999.

[21] Bertsimas, D. and Shioda, R., “Algorithm for cardinality-constrained quadratic
optimization,” Computational Optimization and Applications (To appear), 2007.
doi:10.1007/s10589-007-9126-9.

[22] Bertsimas, D. and Weismantel, R., Optimization Over Integers. Dynamic Ideas,
2005.

[23] Bienstock, D., “Computational study of a family of mixed-integer quadratic pro-
gramming problems,” Mathematical Programming, vol. 74, pp. 121–140, 1996.

[24] Bixby, R. and Rothberg, E., “Progress in computational mixed integer program-
ming - a look back from the other side of the tipping point,” Annals of Operations
Research, vol. 149, pp. 37–41, 2007.

[25] Bixby, R. E., Fenelon, M., Gu, Z., Rothberg, E., and Wunderling, R., “Mip:
Theory and practice - closing the gap,” in System Modelling and Optimization (Pow-
ell, M. J. D. and Scholtes, S., eds.), vol. 174 of IFIP Conference Proceedings,
pp. 19–50, Kluwer, 1999.

[26] Blair, C., “2 rules for deducing valid inequalities for 0-1 problems,” SIAM Journal
on Applied Mathematics, vol. 31, pp. 614–617, 1976.

143

[27] Blair, C., “Representation for multiple right-hand sides,” Mathematical Program-
ming, vol. 49, pp. 1–5, 1990.

[28] Bonami, P., Biegler, L. T., Conn, A. R., Cornuejols, G., Grossmann, I. E.,
Laird, C. D., Lee, J., Lodi, A., Margot, F., Sawaya, N., and Waechter, A.,
“An algorithmic framework for convex mixed integer nonlinear programs,” Discrete
Optimization, vol. 5, pp. 186–204, 2007.

[29] Borchers, B. and Mitchell, J. E., “An improved branch and bound algorithm
for mixed integer nonlinear programs,” Computers and Operations Research, vol. 21,
pp. 359–367, 1994.

[30] Carnicer, J. M. and Floater, M. S., “Piecewise linear interpolants to lagrange
and hermite convex scattered data,” Numerical Algorithms, vol. 13, pp. 345–364, 1996.

[31] Ceria, S. and Stubbs, R. A., “Incorporating estimation errors into portfolio selec-
tion: Robust portfolio construction,” Journal of Asset Management, vol. 7, pp. 109–
127, 2006.

[32] Chang, T.-J., Meade, N., Beasley, J. E., and Sharaiha, Y. M., “Heuristics for
cardinality constrained portfolio optimisation,” Computers & Operations Research,
vol. 27, pp. 1271–1302, 2000.

[33] Christof, T. and Loebel, A., “PORTA – POlyhedron Representation Transfor-
mation Algorithm, version 1.3.” Available at http://www.iwr.uni-heidelberg.de/
groups/comopt/software/PORTA/ (Date accessed: June/2009).

[34] Conforti, M. and Wolsey, L. A., “Compact formulations as a union of polyhedra,”
Mathematical Programming, vol. 114, pp. 277–289, 2008.

[35] Coppersmith, D. and Lee, J., “Parsimonious binary-encoding in integer program-
ming,” Discrete Optimization, vol. 2, pp. 190–200, 2005.

[36] Croxton, K. L., Gendron, B., and Magnanti, T. L., “A comparison of mixed-
integer programming models for nonconvex piecewise linear cost minimization prob-
lems,” Management Science, vol. 49, pp. 1268–1273, 2003.

[37] Croxton, K. L., Gendron, B., and Magnanti, T. L., “Models and methods for
merge-in-transit operations,” Transportation Science, vol. 37, pp. 1–22, 2003.

[38] Croxton, K. L., Gendron, B., and Magnanti, T. L., “Variable disaggregation
in network flow problems with piecewise linear costs,” Operations Research, vol. 55,
pp. 146–157, 2007.

[39] Dantzig, G. B., “Discrete-variable extremum problems,” Operations Research,
vol. 5, pp. 266–277, 1957.

[40] Dantzig, G. B., “On the significance of solving linear-programming problems with
some integer variables,” Econometrica, vol. 28, pp. 30–44, 1960.

[41] Dantzig, G. B., Linear Programming and Extensions. Princeton University Press,
1963.

144

[42] de Farias Jr., I. R., Johnson, E. L., and Nemhauser, G. L., “Branch-and-
cut for combinatorial optimization problems without auxiliary binary variables,” The
Knowledge Engineering Review, vol. 16, pp. 25–39, 2001.

[43] de Farias Jr., I. R., Zhao, M., and Zhao, H., “A special ordered set approach for
optimizing a discontinuous separable piecewise linear function,” Operations Research
Letters, vol. 36, pp. 234–238, 2008.

[44] Dentcheva, D., Lai, B., and Ruszczynski, A., “Dual methods for probabilis-
tic optimization problems,” Mathematical Methods of Operations Research, vol. 60,
pp. 331–346, 2004.

[45] Dentcheva, D., Prekopa, A., and Ruszczynski, A., “Concavity and efficient
points of discrete distributions in probabilistic programming,” Mathematical Program-
ming, vol. 89, pp. 55–77, 2000.

[46] Dentcheva, D., Prekopa, A., and Ruszczynski, A., “On convex probabilistic
programming with discrete distributions,” Nonlinear Analysis-Theory Methods & Ap-
plications, vol. 47, pp. 1997–2009, 2001.

[47] Dietrich, B., “Some of my favorite integer programming applications at IBM,”
Annals of Operations Research, vol. 149, pp. 75–80, 2007.

[48] Dolan, E. D. and Moré, J. J., “Benchmarking optimization software with perfor-
mance profiles,” Mathematical Programming, vol. 91, pp. 201–213, 2002.

[49] Duran, M. A. and Grossmann, I. E., “An outer-approximation algorithm for
a class of mixed-integer nonlinear programs,” Mathematical Programming, vol. 36,
pp. 307–339, 1986.

[50] Fletcher, R. and Leyffer, S., “Solving mixed integer nonlinear programs by outer
approximation,” Mathematical Programming, vol. 66, pp. 327–349, 1994.

[51] Fourer, R., Gay, D. M., and Kernighan, B. W., AMPL–A Modeling Language
for Mathematical Programming. The Scientific Press, 1993.

[52] Garfinkel, R. S. and Nemhauser, G. L., Integer Programming. Wiley, 1972.

[53] Geoffrion, A., “Generalized benders decomposition,” Journal of Optimization The-
ory and Applications, vol. 10, pp. 237–260, 1972.

[54] Glineur, F., “Computational experiments with a linear approximation of second or-
der cone optimization,” Image Technical Report 0001, Service de Mathématique et de
Recherche Opérationnelle, Faculté Polytechnique de Mons, Mons, Belgium, November
2000.

[55] Graf, T., Vanhentenryck, P., Pradelleslasserre, C., and Zimmer, L., “Sim-
ulation of hybrid circuits in constraint logic programming,” Computers & Mathematics
with Applications, vol. 20, pp. 45–56, 1990.

[56] Grossmann, I. E., “Review of nonlinear mixed-integer and disjunctive programming
techniques,” Optimization and Engineering, vol. 3, pp. 227–252, 2002.

145

[57] Gryffenberg, I., Lausberg, J., Smith, W., Uys, S., Botha, S., Hofmeyr, F.,
Nicolay, R., vanderMerwe, W., and Wessels, G., “Guns or butter: Decision
support for determining the size and shape of the South African National Defense
Force,” Interfaces, vol. 27, pp. 7–27, 1997.

[58] Guignard-Spielberg, M. and Spielberg, K., “Integer programming: State of the
art and recent advances,” Annals of Operations Research, vol. 139–140, 2005.

[59] Gupta, O. K. and Ravindran, A., “Branch and bound experiments in convex
nonlinear integer programming,” Management Science, vol. 31, pp. 1533–1546, 1985.

[60] Horst, R., Pardalos, P. M., and Thoai, N. V., Introduction to Global Optimiza-
tion, vol. 3 of Nonconvex optimization and its applications. Dordrecht, The Nether-
lands: Kluwer Academic Publishers, 1995.

[61] Ibaraki, T., “Integer programming formulation of combinatorial optimization prob-
lems,” Discrete Mathematics, vol. 16, pp. 39–52, 1976.

[62] ILOG, Cplex 10: User’s Manual and Reference Manual. ILOG, S.A., 2005.

[63] Jeroslow, R. G., “Cutting plane theory: disjunctive methods,” Annals of Discrete
Mathematics, vol. 1, pp. 293–330, 1977.

[64] Jeroslow, R. G., “Representability in mixed integer programming 1: characteriza-
tion results,” Discrete Applied Mathematics, vol. 17, pp. 223–243, 1987.

[65] Jeroslow, R. G., “A simplification for some disjunctive formulations,” European
Journal of Operational Research, vol. 36, pp. 116–121, 1988.

[66] Jeroslow, R. G., “Representability of functions,” Discrete Applied Mathematics,
vol. 23, pp. 125–137, 1989.

[67] Jeroslow, R. G. and Lowe, J. K., “Modeling with integer variables,” Mathematical
Programming Study, vol. 22, pp. 167–184, 1984.

[68] Jeroslow, R. G. and Lowe, J. K., “Experimental results on the new techniques
for integer programming formulations,” Journal of the Operational Research Society,
vol. 36, pp. 393–403, 1985.

[69] Johnson, E. L., Nemhauser, G. L., and Savelsbergh, M. W. P., “Progress
in linear programming-based algorithms for integer programming: An exposition,”
INFORMS Journal on Computing, vol. 12, pp. 2–23, 2000.

[70] Kannan, R., “Lattice translates of a polytope and the frobenius problem,” Combi-
natorica, vol. 12, pp. 161–177, 1992.

[71] Keha, A. B., A polyhedral study of nonconvex piecewise linear optimization. PhD
thesis, Georgia Institute of Technology, 2003.

[72] Keha, A. B., de Farias, I. R., and Nemhauser, G. L., “Models for representing
piecewise linear cost functions,” Operations Research Letters, vol. 32, pp. 44–48, 2004.

146

[73] Keha, A. B., de Farias, I. R., and Nemhauser, G. L., “A branch-and-cut algo-
rithm without binary variables for nonconvex piecewise linear optimization,” Opera-
tions Research, vol. 54, pp. 847–858, 2006.

[74] Kucukyavuz, S., “On mixing sets arising in probabilistic programming,” Opti-
mization Online, 2009. http://www.optimization-online.org/DB_HTML/2009/03/
2255.html (Date accessed:June/2009).

[75] Lai, M. and Schumaker, L. L., Spline functions on triangulations, vol. 110 of
Encyclopedia of mathematics and its applications. Cambridge University Press, 2007.

[76] Land, A. and Powell, S., “A survey of the operational use of ilp models,” Annals
of Operations Research, vol. 149, pp. 147–156, 2007.

[77] Land, A. H. and Doig, A. G., “An automatic method for solving discrete program-
ming problems,” Econometrica, vol. 28, pp. 497–520, 1960.

[78] Lasdon, L. S. and Waren, A. D., “A survey of nonlinear programming applica-
tions,” Operations Research, vol. 28, pp. 1029–1073, 1980.

[79] Lee, J., “All-different polytopes,” Journal of Combinatorial Optimization, vol. 6,
pp. 335–352, 2002.

[80] Lee, J., “A celebration of 50 years of integer programming,” Optima, vol. 76, pp. 10–
14, 2008.

[81] Lee, J. and Margot, F., “On a binary-encoded ilp coloring formulation,” INFORMS
Journal on Computing, vol. 19, pp. 406–415, 2007.

[82] Lee, J. and Wilson, D., “Polyhedral methods for piecewise-linear functions I: the
lambda method,” Discrete Applied Mathematics, vol. 108, pp. 269–285, 2001.

[83] Lejeune, M. A. and Ruszczynski, A., “An efficient trajectory method for prob-
abilistic production-inventory-distribution problems,” Operations Research, vol. 55,
pp. 378–394, 2007.

[84] Leyffer, S., “Integrating SQP and branch-and-bound for mixed integer nonlinear
programming,” Computational Optimization and Applications, vol. 18, pp. 295–309,
2001.

[85] Lobo, M. S., Fazel, M., and Boyd, S., “Portfolio optimization with linear and
fixed transaction costs,” Annals of Operations Research, vol. 152, pp. 341–365, 2007.

[86] Lobo, M. S., Vandenberghe, L., and Boyd, S., “Applications of second-order
cone programming,” Linear Algebra and its Applications, vol. 284, pp. 193–228, 1998.

[87] Lowe, J. K., Modelling with Integer Variables. PhD thesis, Georgia Institute of
Technology, 1984.

[88] Luedtke, J. and Ahmed, S., “A Sample Approximation Approach for Optimization
with Probabilistic Constraints,” SIAM Journal on Optimization, vol. 19, pp. 674–699,
2008.

147

[89] Luedtke, J., Ahmed, S., and Nemhauser, G., “An integer programming approach
for linear programs with probabilistic constraints,” in IPCO ’07: Proceedings of the
12th international conference on Integer Programming and Combinatorial Optimiza-
tion, pp. 410–423, 2007.

[90] Luedtke, J., Ahmed, S., and Nemhauser, G., “An integer programming approach
for linear programs with probabilistic constraints,” Mathematical Programming (To
appear), 2008. doi:10.1007/s10107-008-0247-4.

[91] Lulli, G. and Sen, S., “A branch-and-price algorithm for multistage stochastic inte-
ger programming with application to stochastic batch-sizing problems,” Management
Science, vol. 50, pp. 786–796, 2004.

[92] Magnanti, T. L. and Stratila, D., “Separable concave optimization approx-
imately equals piecewise linear optimization.,” in IPCO (Bienstock, D. and
Nemhauser, G. L., eds.), vol. 3064 of Lecture Notes in Computer Science, pp. 234–
243, Springer, 2004.

[93] Marchand, H. and Wolsey, L., “Aggregation and mixed integer rounding to solve
mips,” Operations Research, vol. 49, pp. 363–371, 2001.

[94] Maringer, D. and Kellerer, H., “Optimization of cardinality constrained portfo-
lios with a hybrid local search algorithm,” OR Spectrum, vol. 25, pp. 481–495, 2003.

[95] Markowitz, H. M. and Manne, A. S., “On the solution of discrete programming-
problems,” Econometrica, vol. 25, pp. 84–110, 1957.

[96] Martin, A., Moller, M., and Moritz, S., “Mixed integer models for the stationary
case of gas network optimization,” Mathematical Programming, vol. 105, pp. 563–582,
2006.

[97] Martin, R., “Using separation algorithms to generate mixed integer model reformu-
lations,” Operations Research Letters, vol. 10, pp. 119–128, 1991.

[98] Meyer, R. R., “On the existence of optimal solutions to integer and mixed-integer
programming problems,” Mathematical Programming, vol. 7, pp. 223–235, 1974.

[99] Meyer, R. R., “Integer and mixed-integer programming models - general proper-
ties,” Journal of Optimization Theory Applications, vol. 16, pp. 191–206, 1975.

[100] Meyer, R. R., “Mixed integer minimization models for piecewise-linear functions of
a single variable,” Discrete Mathematics, vol. 16, pp. 163–171, 1976.

[101] Meyer, R. R., “A theoretical and computational comparison of equivalent mixed-
integer formulations,” Naval Research Logistics, vol. 28, pp. 115–131, 1981.

[102] Mhaskar, H. N. and Pai, D. V., Fundamentals of approximation theory. Boca
Raton: CRC Press, 2000.

[103] Misener, R., Gounaris, C. E., and Floudas, C. A., “Global optimization of gas
lifting operations: A comparative study of piecewise linear formulations,” Industrial
& Engineering Chemistry Research (To appear), 2008. doi:10.1021/ie8012117.

148

[104] Nemhauser, G. L. and Wolsey, L. A., Integer and combinatorial optimization.
Wiley-Interscience, 1988.

[105] Padberg, M., “Approximating separable nonlinear functions via mixed zero-one pro-
grams,” Operations Research Letters, vol. 27, pp. 1–5, 2000.

[106] Padberg, M. W. and Rijal, M. P., Location, Scheduling, Design, and Integer
Programming. Springer, 1996.

[107] Pochet, Y. and Wolsey, L. A., Production planning by mixed integer programming.
Springer, 2006.

[108] Pottmann, H., Krasauskas, R., Hamann, B., Joy, K. I., and Seibold, W.,
“On piecewise linear approximation of quadratic functions,” Journal for Geometry
and Graphics, vol. 4, pp. 9–31, 2000.

[109] Prekopa, A., “Probabilistic programming,” in Stochastic Programming (Shapiro,
A. and Ruszczynski, A., eds.), vol. 10 of Handbooks in Operations Research and
Management Science, pp. 267–351, Elsevier, 2003.

[110] Prenter, P. M., Splines and Variational Methods. Dover, 1975.

[111] Quesada, I. and Grossmann, I., “An lp/nlp based branch and bound algorithm for
convex minlp optimization problems,” Computers & Chemical Engineering, vol. 16,
pp. 937–947, 1992.

[112] Rardin, R. L., Optimization in Operations Research. Prentice Hall, 1998.

[113] Ruszczynski, A., “Probabilistic programming with discrete distributions and prece-
dence constrained knapsack polyhedra,” Mathematical Programming, vol. 93, pp. 195–
215, 2002.

[114] Saxena, A., Goyal, V., and Lejeune, M. A., “MIP reformulations of the
probabilistic set covering problem,” Mathematical Programming (To appear), 2008.
doi:10.1007/s10107-008-0224-y.

[115] Schrijver, A., Theory of linear and integer programming. John Wiley & Sons, Inc.,
1986.

[116] Sen, S., “Rrelaxations for probabilistically constrained programs with discrete ran-
dom variables,” Operations Research Letters, vol. 11, pp. 81–86, 1992.

[117] Shapiro, A., Dentcheva, D., and Ruszczynski, A., Lectures on Stochastic Pro-
gramming: Modeling and Theory. SIAM, 2009.

[118] Sherali, H. D., “On mixed-integer zero-one representations for separable lower-
semicontinuous piecewise-linear functions,” Operations Research Letters, vol. 28,
pp. 155–160, 2001.

[119] Sherali, H. D. and Shetty, C. M., Optimization with Disjunctive Constraints,
vol. 181 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag,
1980.

[120] Shields, R. personal communication, 2007.

149

[121] Stanley, R. P., Enumerative Combinatorics, vol. 1. Cambridge University Press,
1997.

[122] Stralberg, D., Applegate, D. L., Phillips, S. J., Herzog, M. P., Nur, N.,
and Warnock, N., “Optimizing wetland restoration and management for avian com-
munities using a mixed integer programming approach,” Biological Conservation,
vol. 142, pp. 94–109, 2009.

[123] Stubbs, R. A. and Mehrotra, S., “A branch-and-cut method for 0-1 mixed convex
programming,” Mathematical Programming, vol. 86, pp. 515–532, 1999.

[124] Tawarmalani, M. and Sahinidis, N. V., “Global optimization of mixed-integer
nonlinear programs: A theoretical and computational study,” Mathematical Program-
ming, vol. 99, pp. 563–591, 2004.

[125] Todd, M. J., “Union jack triangulations,” in Fixed Points: algorithms and applica-
tions (Karamardian, S., ed.), pp. 315–336, Academic Press, 1977.

[126] Todd, M. J., The computation of fixed points, vol. 124 of Lecture Notes in Economics
and Mathematical Systems. Springer-Verlag, 1979.

[127] Tomlin, J. A., “A suggested extension of special ordered sets to non-separable non-
convex programming problems,” in Studies on Graphs and Discrete Programming
(Hansen, P., ed.), vol. 11 of Annals of Discrete Mathematics, pp. 359–370, North
Holland, 1981.

[128] Vajda, S., Mathematical Programming. Addison-Wesley, 1964.

[129] Vance, P. H., Barnhart, C., Johnson, E. L., and Nemhauser, G. L., “Air-
line crew scheduling: A new formulation and decomposition algorithm,” Operations
Research, vol. 45, pp. 188–200, 1995.

[130] Vielma, J. P., Ahmed, S., and Nemhauser, G. L., “Mixed-integer models for
nonseparable piecewise linear optimization: Unifying framework and extensions,” Op-
erations Research (To appear), 2009.

[131] Vielma, J. P., Keha, A. B., and Nemhauser, G. L., “Nonconvex, lower semi-
continuous piecewise linear optimization,” Discrete Optimization, vol. 5, pp. 467–488,
2008.

[132] Vielma, J. P. and Nemhauser, G. L., “Modeling disjunctive constraints with a
logarithmic number of binary variables and constraints,” in IPCO (Lodi, A., Pan-
conesi, A., and Rinaldi, G., eds.), vol. 5035 of Lecture Notes in Computer Science,
pp. 199–213, Springer, 2008.

[133] Vielma, J. P. and Nemhauser, G. L., “Modeling disjunctive constraints with a
logarithmic number of binary variables and constraints,” Mathematical Programming
(To appear), 2008.

[134] Watters, L. J., “Reduction of integer polynomial programming problems to zero-one
linear programming problems,” Operations Research, vol. 15, pp. 1171–1174, 1967.

150

[135] Weintraub, A., “Integer programming in forestry,” Annals of Operations Research,
vol. 149, pp. 209–216, 2007.

[136] Westerlund, T. and Pettersson, F., “An extended cutting plane method for solv-
ing convex minlp problems,” Computers & Chemical Engineering, vol. 19, pp. S131–
S136, 1995.

[137] Westerlund, T., Pettersson, F., and Grossmann, I., “Optimization of pump
configurations as a minlp problem,” Computers & Chemical Engineering, vol. 18,
pp. 845–858, 1994.

[138] Wilf., H. S., Combinatorial algorithms–an update, vol. 55 of CBMS-NSF regional
conference series in applied mathematics. Society for Industrial and Applied Mathe-
matics, 1989.

[139] Williams, H. P., Model building in mathematical programming. Wiley, 4th ed., 1999.

[140] Wilson, D., Polyhedral methods for piecewise-linear functions. PhD thesis, Univer-
sity of Kentucky, 1998.

[141] Wolsey, L. A., Integer Programming. Wiley and Sons, 1998.

[142] Ziegler, G. M., Lectures on Polytopes. Springer-Verlag, 1995.

151

