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SUMMARY

Mobile computing devices like handhelds are becoming ubiquitous and so is comput-

ing embedded in cyber-physical systems like cameras, smart sensors, vehicles, and many

others. Further, the computation and communication resources present in these settings

are becoming increasingly powerful. The resulting, rich execution platforms are enabling

increasingly complex applications and system uses. These trends enable richer execution

platforms for running ever more complex distributed applications. This thesis explores

these opportunities (i) for cooperative mobile platforms, where the combined resources of

multiple computing devices and the sensors attached to them can be shared to better ad-

dress certain application needs, and (ii) for distributed platforms where opportunities for

cooperation are further strengthened by virtualization. The latter offers efficient abstrac-

tions for device sharing and application migration that enable applications to operate across

dynamically changing and heterogeneous systems without their explicit involvement.

An important property of cooperative distributed platforms is that they jointly and

cooperatively provide and maintain the collective resources needed by applications. Another

property is that these platforms make decisions about the resources allocated to certain

tasks in a decentralized fashion. In contrast to volunteer computing systems, however,

cooperation implies the commitment of resources as well as the commitment to jointly

managing them. The resulting technical challenges for the mobile environments on which

this thesis is focused include coping with dynamic network topology, the runtime addition

and removal of devices, and resource management issues that go beyond resource usage and

scheduling to also include topics like energy consumption and battery drain.

Platform and resource virtualization can provide important benefits to cooperative mo-

bile platforms, the key one being the ability to hide from operating systems and applications

the complexities implied by collective resource usage. To realize this opportunity, this thesis

x



extends current techniques for device access and sharing in virtualized systems, particularly

to improve their flexibility in terms of their ability to make the implementation choices

needed for efficient service provision and realization in the mobile and embedded systems

targeted by this work. Specifically, we use middleware-based approaches to flexibly extend

device and service implementations across cooperative and virtualized mobile platforms.

First, for cooperating platforms, application-specific overlay networks are constructed and

managed in response to dynamics at the application level and in the underlying infras-

tructure. When virtualizing these platforms, these same middleware techniques are shown

capable of providing uniform services to applications despite platform heterogeneity and

dynamics. The approach is shown useful for sharing and remotely accessing devices and

services, and for device emulation in mobile settings.
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CHAPTER I

INTRODUCTION

1.1 Background

Rapid improvements in hardware technologies have resulted in a continuing proliferation of

sensors and handheld devices connected by wireless networks. Microprocessors designed to

target the mobile domain have grown in speed and complexity over the last two decades.

For instance, as Figure 1 shows, the clock frequency of the ARM 32-bit microprocessor that

dominates the mobile microprocessor industry, has been rapidly increasing over the years,

presently touching 1GHz with the Cortex cores. The trend towards multi-core architectures

in the desktop and enterprise computing platforms have also influenced the mobile processor

market [2]. Developments in communication technologies have been equally rapid, with

several competing wireless standards targeting various metrics such as price, performance,

power, etc. Table 1 lists a few current and future technologies with throughputs as high as

4Gbps. These hardware developments are being accepted into mainstream products, fueled

by high current and projected demands (Figure 2).

Positive trends in hardware have spurred developments in systems software as well,

where mainstream operating systems like Windows, Linux [7], and MacOS [9], have been
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Figure 1: Trends in Clock Frequencies of ARM Processors
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Table 1: Wireless Technologies and Data Rates
Wireless Technology Maximum Data Rates
EDGE 120 Kbps
3GSM 300 Kbps
Bluetooth 3 Mbps
WiMAX 70 Mbps
Wi-Fi (802.11b) 11/54/100 Mbps
Wireless USB 110/480 Mbps
Ultra-wideband 110/500 Mbps
WirelessHD 4 Gbps
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Figure 2: Current and Projected Global Sales of Mobile Phones

modified to target mobile platforms, in addition to operating systems like Symbian [11] and

QNX [10] that are designed exclusively for such platforms. Further, the Java language [20]

coupled with the Java Virtual Machine (JVM) was developed to provide a uniform inter-

face for applications to run on mobile platforms, irrespective of the underlying hardware.

Recently, this technology is being used as part of a toolkit [1] to speed up application devel-

opment on such platforms. Finally, virtualization techniques that allow multiple operating

systems to coexist on the same physical platform – currently extensively used in desktop

and enterprise platforms – are also being redesigned for mobile settings, with Xen [71] and

L4 [147] being two examples.

Advances in processor technologies allow resource-intensive applications to be success-

fully executed on ever faster chips. Improvements in communications enable inexpensive

2



sharing of device resources among each other, leading to more opportunities for cooper-

ation and sharing. Platform-level cooperation among devices also helps improve resource

sharing and manageability [89], where cooperation can range from simple interactions via

remote procedure calls [29], to more complex ones, analogous to the use of SSI(Single Sys-

tem Image) operating systems such as Plan 9 [116] in a computing cluster. In mobile

scenarios, MANETs (Mobile Ad hoc NETworks) provide opportunities for the cooperative

execution of applications. Mobile devices in MANETs communicate with each other via

ad hoc network connections requiring no networking infrastructure to operate. As a result,

these are useful even when infrastructure is sparse, non-existent, or non-operational, as in

disaster relief efforts. MANETs are also used in autonomous robotics [43] and vehicular

networks [95]. In robotics, network interactions allow individual robots to share sensor data,

behaviors learned over time, etc., and in vehicular networks, vehicles can benefit from traffic

details in a remote area, in order to perform corrective actions in anticipation. Here, current

systems suffer from limitations in communication capabilities, but improved systems like

WiFi will further improve the opportunities derived from shared services or even low-level

resources like the processor, memory capacity, for certain devices (e.g., sensors), translating

to faster/better application behaviors. For instance, in well-networked systems, one robot

could perform data processing on another’s behalf, if the latter’s battery level were low, or

if it required faster response times.

Virtualization mechanisms introduce well-defined abstractions that simplify coopera-

tion and sharing. Originally developed for enterprise computing, virtualization divides all

physical resources into different and strongly isolated domains, termed VMs (Virtual Ma-

chines), and then mediates domains’ access to the hardware via a thin software layer termed

VMM (Virtual Machine Monitor). Since VMs are largely self-contained, VMMs also allow

migration of a VM from one physical machine to another. This facilitates hardware mainte-

nance, besides providing other benefits such as load balancing. Although developed for the

enterprise domain, virtualization has also found widespread use in desktop environments,

primarily for its isolation properties, and also because it allows legacy operating systems to

3



be run in their own VMs alongside others. More recently, there has been increased inter-

est in extending virtualization to the mobile domain [71, 147]. Here, while security is one

key focus of these efforts, designs also address other important issues. For instance, the

support of VM migration provided on these platforms simplifies the migration of applica-

tions to appropriate neighboring physical devices depending on the context and on current

power/performance requirements [121].

Virtualization can be used to help address challenges in the area of pervasive computing.

Pervasive computing [154] refers to a mobile computing model where computers, in con-

junction with sensor devices, surround the environment of a user and interact with him/her

in a seamless fashion. In such an environment, the proliferation of devices poses problems,

including discovering these devices, accessing them, and controlling their use, especially in

a multi-user setting where sharing becomes necessary. Further complications are due to

the need to support diverse applications and operating systems, each with their own device

interaction mechanisms. As virtualization introduces well-defined abstractions to mediate

access to physical devices, virtualization-based solutions help mediate such complexity.

1.2 Motivation

A basic challenge in MANET-based platforms is to deal with dynamics in the environment,

which arise from nodes joining or leaving the network as well as from changes in connec-

tivity due to mobility. Network-related services like routing have been developed to deal

with such uncertainties (e.g., AODV [115]). For complex distributed applications to be

run on cooperative networked nodes, however, additional support is needed for collectively

managing the set of computing and device resources they require. Important problems in

such settings include the following:

• managing energy resources to extend application lifetime: as mobile nodes depend on

onboard power sources, careful management of energy consumption is necessary;

• balancing loads to meet end-to-end performance constraints: since load balancing

involves distributing computation among multiple nodes, it is important to ensure

4



that applications’ end-to-end requirements are not violated as a result of larger data

exchange latencies;

• dealing with heterogeneity in terms of resource availability and device characteristics;

and

• adaptation to dynamics arising from mobility.

Solutions to these problems must be scalable to large numbers of devices, offer low overhead,

and be easy to adopt in practice.

On extending cooperative execution to virtual mobile platforms, we find that the features

provided by existing virtualization solutions in sharing devices and computations among

different machines are limited. While efficient methods exist to share resources among VMs

in a single machine, only recently have research efforts started addressing the problems in

managing resources among multiple VMs running in different machines [87, 150] and in

sharing remote devices among VMs [84]. Issues to be addressed for enabling cooperative

execution in virtual mobile systems include those below:

• providing methods to share devices among VMs running in different machines in a

VM-transparent manner: implementing such methods at the platform level frees VMs

from being aware of all the accessible devices, individually dealing with them and

adapting to dynamics;

• enabling greater flexibility in sharing resources among remote VMs: the separation

of a device from its use gives rise to challenges in matching the capabilities of the

device to the using entity’s requirements; since the platform manages remote devices

on behalf of VMs, performing such capability matching becomes a difficult problem;

• allowing trading off the isolation properties provided by VMs for increased sharing

and efficient execution: current virtualization technologies provide a tight separation

between VMs; while useful for securing VMs from one another, this proves to be rigid

for VMs desiring to cooperate with each other.
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This dissertation develops and evaluates solutions to these problems using middleware-

based services. Specifically, it adopts a service-oriented approach, where middleware is

used to provide useful functionality to higher layers via a set of services. Higher layers

can then utilize these services according to their needs. By reducing the dependencies on

the middleware, such a design facilitates (i) easy adaptation of existing applications to

the middleware, (ii) better security, by securing data exchange via the services, and (iii)

flexibility in the use of these services. The approach leverages the fact that distributed

middleware including CORBA [149], DCOM [32], EJB [127], etc., have been key enablers

in cooperative platforms in the desktop and enterprise domains and that there are also

effective middleware-based solutions for the mobile domain [16].

1.3 Terminology

Some of the terms used in this dissertation are defined below.

Middleware: Middleware is a generic term used to describe system software that is lay-

ered between an application and the operating system, and connects software components

within the same machine or across machines. In the latter case, it is usually termed dis-

tributed middleware. Initially designed to allow inter-operation with legacy applications,

later efforts have enhanced middleware systems to provide more complex functionalities

to the supported applications. Interactions supported by middleware range from remote

procedure calls to event-based messaging such as publish/subscribe.

Service: A service is a software abstraction that enables an implementation of a software

functionality by one entity on behalf of another, via a common well-defined interface. The

clean separation of an implementation from its use afforded by services have made them a

popular option for separating levels of abstraction in software. Services may exist within

a single machine (e.g., scheduling, memory management) or across machines (e.g., domain

name service, web services).
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Cooperative Platform: In the context of this dissertation, a cooperative platform is

a distributed software framework that allows an executing application to access resources

existing in any participating node in the framework and its underlying hardware. Since

it allows cooperation at the platform level, its application interfaces are generic enough to

support a variety of applications.

MANET: MANET, or Mobile Ad hoc NETwork, is a wireless network formed by mobile

nodes where data transfers between two end nodes is carried out by other nodes belonging

to the network, without relying on external infrastructure such as wireless access points.

Virtual Platform: A virtual platform, in the context of this dissertation, is a distributed

software framework based on virtualization techniques that provides Virtual Machines

(VMs) executing within the framework with access to resources belonging to its partic-

pating nodes, via a service-based interface.

1.4 Thesis Statement

Rapidly evolving hardware and software systems in the mobile domain make it possible

to run powerful applications across multiple cooperating platforms, but this introduces

new challenges arising from the need to manage resources under dynamics in a mobile

environment.

The thesis of this dissertation is:

Next generation mobile systems enable the construction of cooperative and virtual plat-

forms in ways that balance resource availability with applications’ requirements. Flexibility

in functionality and resource sharing on such platforms can be achieved using familiar ser-

vice abstractions realized with existing middleware techniques.

The dissertation demonstrates how services constructed with state-of-the-art middleware

techniques can be used to achieve:

• self-management of the collective resources of multiple mobile nodes, to continuously

adapt an application running across such a cooperative platform to dynamics in its

environment, in a decentralized fashion;
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• providing a uniform interface to access and share devices in a cooperative virtual

platform, using multimedia as example; and

• flexibility in trading off access and sharing of resources against isolation mechanisms

in a virtual platform.

1.5 Organization

The dissertation is organized as follows. Chapters 2 and 3 focus on middleware in co-

operative platforms, while Chapters 4 and 5 study the role of virtualization in cooperative

platforms. Chapter 2 describes Mobile Service Overlays (MSO), the distributed middleware

framework used to support execution of an application over a cooperative mobile platform,

and describes the services offered by this framework, while Chapter 3 demonstrates the

use of these services to perform platform-level energy management. Chapter 4 discusses

a device sharing framework in a cooperative virtual platform applied to multimedia de-

vices, termed VMedia, and an extension of it termed CustomCam that allows functionality

customization over the device interface. Chapter 5 describes VServices, a framework that

performs service-level virtualization and demonstrates its use in mobile settings through

examples. Chapter 6 discusses related work, and Chapter 7 concludes the dissertation and

charts future directions.
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CHAPTER II

MOBILE SERVICE OVERLAYS

Distributed applications running on Mobile Adhoc NETworks (MANETs) are being used

in a wide range of domains, from autonomous robotics to emergency management. Ex-

amples include robots collaboratively undertaking a search and rescue mission [76], co-

ordinated actions of geographically dispersed agents in an emergency rescue operation [99],

distributed surveillance in the battlefield, distributed gaming, and offloading an application

to surrounding entities in a ubiquitous computing environment [101], among others. Such

complex applications require significant processing power from its underlying platform. If

the underlying platform is distributed, as in the scenarios considered above, mapping por-

tions of the application on to the various participating nodes in the network becomes an

important issue to be addressed.

The dynamic nature of the MANET systems and applications considered in this work

implies that the mapping problems formulated for prior work in static systems [31] have

become dynamic mapping and reconfiguration problems. This requires solutions that are ef-

ficient in terms of their implied overheads and effective in terms of their ability to continually

improve the Quality of Service metrics applied to distributed MANET applications. The

Mobile Service Overlay (MSO) middleware makes the following contributions to addressing

the dynamic resource management problems faced by MANET-based systems:

1. MSOs implement low-overhead computational overlays across cooperating distributed

MANET devices;

2. MSOs provide efficient and scalable runtime abstractions, termed chains, for describ-

ing and then managing the overlays that run the computation graphs used by dis-

tributed applications;
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3. MSOs provide efficient base support for online monitoring to assess the current re-

sources used by and accessible to chains; and

4. MSOs permit developers to deploy alternative management policies based on different

or multiple application-level metrics and SLOs.

2.1 Design Goals

MSO overlays are constructed and configured by the management layer of the MSO mid-

dleware. The design goals for MSO overlay management are the following:

• Low overhead, low latency reconfiguration. In a dynamic environment, the middle-

ware, on detecting a change, must quickly arrive at an updated mapping, since the

time available before the next change might be limited. In keeping with prior work on

‘missed opportunities’ in the real-time domain [126], this implies the need for efficient

heuristic solution methods. Optimality is not the goal, because accurate system-wide

resource information and precise knowledge about current application needs are not

typically available for MANET systems.

• Fault resilience. Since cooperative solutions imply that participating nodes can arrive

or leave dynamically, with similar effects caused by application mobility, MSO man-

agement must be resilient to change and failures. In contrast to full application-level

fault tolerance, however, our goal is to have middleware stay “online” after faults

occur. Applications can then realize their own fault tolerance methods on that basis.

• Scalability through decentralization. Centralized solutions will not scale in MANET

environments. While respecting the dependence graphs of applications, the chain ab-

stractions used by MSO middleware is the basis for localized configuration heuristics.

• Localized reaction to changes. The number of nodes that need to participate in react-

ing to dynamics (such as mobility, recovery after a fault or due to energy needs) must

be kept to a minimum. Since decentralized solutions store the state of the system in

a distributed fashion, it is important that the fewest number of nodes are involved in

changes to the state.
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In keeping with these goals, MSO middleware both (1) implements completely decen-

tralized reconfiguration solutions and (2) enables remapping at various levels of granularity,

ranging from a pair of nodes to the entire network. The MSO implementation consists of a

set of services distributed over the network, so that identical instances run at each of the

nodes. Each instance of MSO consists of a monitoring component, a decision-making com-

ponent, and mechanisms for reconfiguration. Reconfiguration rules are used in the decision

making process to decide which events obtained from the monitoring component can trigger

the different levels of reconfigurations. The MSO middleware’s design and implementation

do not create additional dependencies across cooperating nodes. That is, each MSO node

provides to the application an identical set of middleware services. The reason, of course,

is that for MANET systems to attain failure resilience, each device must be able to operate

independently of other devices.

Centralized solutions clearly do not work in the dynamics of a MANET environment.

On the other hand, completely decentralized approaches allow scalability and fault re-

silience, but also replicate the state of the overlay network over several nodes, so that quick

reconstruction of the overall state in the event of changes/failures becomes difficult. A

cluster-based approach appears to be a compromise between these two extreme approaches,

where the nodes are divided into clusters, and a special node, typically termed a “cluster

head”, is elected, to manage the state of its local nodes. This approach is shown to be

efficient for routing in MANETs [136], since the communication among the cluster heads

can be minimized through appropriate choice of the heads. However, the election of cluster

heads itself requires computational effort, and further, the set of cluster heads might change

over time. To avoid these costs, MSO lets the application flow graph automatically deter-

mine these special nodes. Instead of choosing special nodes based on several factors such

as proximity of these nodes to other nodes, computation and communication capabilities,

etc., as typically done in cluster head election, this election is implicitly performed using

local metrics and the structure of the flow graph. The penalty paid for this benefit is that

since the choice of cluster heads is automatic, it may not be optimal.
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2.2 MSO Architecture

2.2.1 Programming Model

MSO implements an event-based model of data exchange, as commonly used in pervasive

applications like robotics and distributed simulation, as well as in enterprise computing [130]

for complex event processing and in real-time systems [93]. The event-based model is known

to provide a clean separation between different application services and their interactions.

In this model, the application is represented as a directed flow graph, with each vertex

signifying some processing and acting as a data source and/or sink. Data exchanges are

represented as directed edges. Associated with each edge is a format that describes the

data it transmits. MSO programs, therefore, consist of code modules running in vertices

mapped to overlay nodes, receiving formatted inputs from and generating outputs to other

vertices. The event-based programming model used by MSO is used by applications ranging

from distributed sensor systems [83], to autonomous robotics [146], to multimedia [157], and

even including select applications in the enterprise domain, as described in [93]. However,

not all event based applications will be suited for environments targeted by MSO. For

instance, windowing and similar component object model based applications commonly

rely on event based interactions in order to maintain application neutrality. However, many

such events are of a cascading nature (i.e., one event gives rise to several others), thus

complicating the application structure and countervailing any benefits from distributing

the application components. To run non-event based applications with MSO, they would

have to be re-programmed. Typically, this would involve an analysis of their control and

data flows and a subsequent decomposition of the application into modules communicating
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via events [167, 45]. Such decomposition followed by a mapping to pervasive platforms

would be impractical for applications in which program modules share substantial state

and/or have tight dependencies.

2.2.2 The Chains Abstraction

MSO partitions the event-based application’s flow graph into its constituent and indepen-

dently manageable computational chains. Formally, a chain is a maximal set of sequential

vertices and edges of the flow graph, with a single entry and a single exit. Events enter the

first vertex of the chain, the head, sequentially pass through and are operated on at each

node in the chain, and finally exit at the last node, the tail.

Chains also represent a smaller unit to use for runtime reconfiguration, thus reducing

the graph mapping problem described earlier to the simpler chain mapping problem. In this

fashion, chains compartmentalize management to be confined to more “local” portions of

the application. The effects of compartmentalization are discussed further in Section 2.3.2.

Chains also serve to capture desired end-to-end behaviors and node-node connectivity. Since

an application’s QoS can be formulated to depend on the QoS of each chain (e.g., consider

end-to-end delay), each chain can be managed independently in order to guarantee such QoS

properties (though not all QoS properties are composable in this manner [141].) Chains

have also previously been used to enable computational offloading [107].

Algorithm 1 Chain formation
1: ∀ vertex v, unmark v
2: repeat
3: Choose an unmarked vertex v and add it to an empty chain C giving it a unique id
4: Set u← v
5: while ∃ unique unmarked pred(v) and v is its unique successor do
6: C ← C ∪ pred(v)
7: v ← pred(v)
8: Mark v
9: end while

10: while ∃ unique unmarked succ(u) and u is its unique successor do
11: C ← C ∪ succ(u)
12: u← succ(u)
13: Mark u
14: end while
15: until ∀v, v is marked
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The algorithm used for chain formation (Algorithm 1) is straightforward. Intuitively, it

selects some vertex and then creates a chain starting at this vertex, considering its successors

and predecessors in the application’s data flow graph. An example is shown in Figure 4,

where the flow graph with source vertices A & F and sink vertices E & I, is partitioned

into the list of chains (A-B-C-D, D-E, F-G, G-D, G-H-I). These chains have the property

that there is one entry and one exit. A chain may have both a source and a sink, or only

either of them, or even none at all. More importantly, the chain construction algorithm is

of complexity O(|V |+ |E|) and can be run by each node in the overlay.

2.3 Services

MSO provides a few basic services to create and change the assignment (of the vertices of the

flow graph to the mobile nodes). These services are then used by higher level management

algorithms to effect policy decisions (Section 2.3.4). These services are described below:

2.3.1 Deployment

Application deployment involves mapping chains of the flow graph onto the underlying

physical network, by assigning a node to each vertex in each chain, then constructing

the overlay network based on this mapping, and finally, commencing data movement in

the constructed overlay. Since more than one node participates in this effort, this is a

distributed procedure initiated by the node to which the head of the chain is assigned.

Deployment itself is subject to dependencies, where each chain is not deployed until all of

the chains leading to it have been deployed. Hence, the deployment process is partially
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parallel, dependent upon the average number of outputs of the flow graph vertices.

Algorithm 2 Deployment
1: repeat
2: If a chain has no dependences and the head of the chain is assigned to this node,

then start the assignment by exploring the route taken by a packet to the sink node
furthest away, collecting the capacities of all nodes along the route.

3: Allocate nodes to vertices of the chain in proportion to the fraction of the overall
costs contributed by the vertices. Perform assignments of nodes to vertices.

4: Activate the node corresponding to the next chain by decreasing its dependence count
and assigning the node to the head of its chain.

5: until all chains have been assigned to nodes.
6: Each node that has a chain head mapped to it constructs the actual overlay network

along its chain.

In realistic systems, source and sink vertices can often be assigned only to certain nodes

(e.g., those that possess sensors/actuators that produce or consume data). We therefore,

assume the source and sink vertices to be preassigned to particular nodes. If this is not the

case, a distributed process can be used by which nodes possessing the capabilities required

by the source/sink vertices are chosen according to their abilities and assigned to nodes

before deployment.

As indicated in Algorithm 2, route exploration is a key step of the deployment process.

MSO uses probing for this purpose, by sending a probe packet to a sink node furthest away,

and obtaining the capacities of each node along the route taken by the probe packet. These

capacities constitute metrics like processing capability, battery lifetimes, etc. To better

illustrate the route exploration procedure, consider a simple example, where a flow graph

consisting of three chains A-B-C-D, E-D, and D-F is mapped onto a network with four

nodes, with the connectivity between them represented as N1-N2-N3-N4. Suppose that A

is preassigned to N1 and F to N4. Now, while assigning the first chain, the route taken

is obtained (N1-N2-N3-N4), and each node’s capacities are queried in the process. Then,

chain A-B-C-D is assigned a fraction of nodes Nabcd from among N1,N2,N3,N4 such that

cost(Nabcd)
Σ(Nx) = cost(A−B−C−D)

cost(A−B−C−D)+cost(D−F ) . Now assume that this leads Nabcd to be N1-N2-N3.

Then, B, C, and D are mapped among N1-N2-N3 (A is already mapped to N1). Note

that deployment is linear on the number of vertices and network nodes, and uses a greedy

method to assign vertices to nodes. While it is therefore not optimal, the MSO middleware
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continuously seeks to improve local optimality metrics through its intra-chain remapping

services discussed in the following section.

2.3.2 Reconfiguration Services

Reconfiguration involves remapping portions of the overlay network, to create a different

assignment between vertices in the overlay and underlying machines. The primary goal of

MSO is efficient reconfiguration, and for this purpose, it provides capabilities to perform

remapping at various granularities, as detailed below. Some assumptions are made by our

current mapping and remapping methods: (1) the flow graph is a directed acyclic graph, and

it remains static throughout the lifetime of the application, (2) node discovery, naming, and

message routing are performed at a lower layer independent of the middleware, (3) all faults

are fail-stop, and (4) the “source” and the “sink” modules of the flow graph are pre-assigned

to specific nodes. We observe that these assumptions serve to simplify the implementation

of MSO but are not the limitations of the approach itself. For instance these assumptions,

may respectively, be relaxed as follows: for (1) any changes to the application flow graph are

propagated to all participants, each of which update their own flow graphs; the deployment

of new chains that have not been deployed yet, are triggered by their respective chain heads,

and removal of old chains is performed similarly, for (2) other research such as [41, 67, 115]

can be leveraged, for (3) other types of faults may be handled using replication [63], and

finally, for (4) discovery of source and sink modules using techniques such as [41] may be

used. In our current implementation, the state within a node is not transferred during a

reconfiguration. Adding this functionality is straightforward when the nodes involved in

the reconfiguration remain ‘alive’. In cases when the node dies or loses connectivity (due to

mobility, for instance), more involved mechanisms such as the use of a hot standby prove

useful.

2.3.2.1 Intra-chain Remapping

Intra-chain remapping may be used continuously throughout the application’s lifetime. It

is triggered by monitoring events reporting changes in local resource availability and/or in

application requirements or resource usage. An intra-chain remapping constitutes relocating
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a single vertex from one node to another. The steps involved in a typical relocation, where

a vertex v is moved from n1 to n2, as shown in Figure 5, involve (1) suspending event sends

at each of v’s predecessor vertices, (2) creating a new v vertex at n2 and (2) connecting it

to the same destination as the previous v, followed by (3) linking the output from each of

v’s predecessors to the new v, and then (4) freeing up the old v. Note that these remapping

strategies affect only the nodes in the vicinity of the change (i.e., local nodes), and other

nodes in the network are neither involved in nor aware of this remapping. This process has

low overhead and can be run fairly frequently.

Intra-chain remapping is useful in obtaining a local optimum. That is, based on the

metric we seek to optimize, each node housing a vertex evaluates the cost of relocating it,

against making no changes. The costs of relocating state associated with the vertices are

to be included in estimating total costs. Each vertex can independently (but sequentially)

perform this check and carry out the remapping.

2.3.2.2 Chain Remapping

In contrast to intra-chain remapping involving only two nodes, chain remapping affects all of

the nodes to which a chain is mapped. The “head” and “tail” of the chain remain unchanged.

The operation is performed in three stages. First, the chains chosen for remapping are

reassigned to the nodes after a route exploration, ignoring the existing mapping. Next, the

edges that lead to the older instances of the chains are rerouted to the just-assigned ones.
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Finally, the overlay network corresponding to the older instances of the chains is freed.

This procedure is illustrated in Figure 6, where the shorter route from A to C achieved

due to node mobility results in remapping the chain along the new route, with the result

that vertex 3 is now mapped to node C, from node B. Chain remapping is useful in the

event of a change in route between the nodes housing the head and tail of the chain. Under

these circumstances, only the affected chain needs to be remapped, leaving other chains

unchanged.

2.3.2.3 Multi-Chain Remapping

Multi-chain remapping is carried out to effect changes that involve more than a single chain,

and it involves performing the mapping operations described in Section 2.3.1, over a set of

the chains. Synchronization between the nodes during the remapping process is enforced by

the dependence relationship between chains, and it is achieved by remapping a chain only

after all chains depending on have been remapped. Note that the procedure is identical to

the mapping methods described earlier, except that in general, only a subset of the chains

are remapped. Global remapping is useful when node failures or movements affect the

head/tail of a chain, thus affecting multiple chains. It can also be used to remap all the

chains, i.e., entire flowgraph. Due to the high cost and involvement of a number of nodes,

this is used relatively less frequently, in comparison to the other remapping techniques

discussed before.
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As noted previously, these remapping schemes also incur costs proportional to their

granularity, and it is important to consider these costs, before deciding to apply them.

During unavoidable cases such as recovering from a node failure, one may not have an

option in the remapping type. However, for remapping actions taken to meet an objective,

such as energy efficiency, this becomes important. This point is discussed in more detail in

Section 3.1.2.

2.3.3 Monitoring Services

Each MSO node runs a separate monitoring thread that is used to maintain metrics like a

measure of the amount of computation carried out, the amount of data transferred from/to

the node and the expected lifetime of the battery. Similar metrics are also maintained

at the vertex level. In addition, monitoring also periodically checks for the liveness of its

neighbors (as determined by the routing layer) and for changes in the routing layer. The

metrics monitored are available for use by the higher layers for remapping decisions. This

part of the subsystem requires access to the routing layer to detect any changes, but does

not depend on the type of routing protocol used. Monitored metrics are also available for

sharing, as each monitor exposes its data to other nodes through SOAP calls. In addition

to per-node metrics, per chain and application level metrics may also be maintained. All

the node-level and vertex-level metrics discussed here have been implemented and are made

available to other nodes via SOAP calls.

Monitoring services are typically designed to be lightweight, in order to allow them to be

invoked repeatedly. For instance, measuring battery levels, CPU frequency and utilization,

are very inexpensive, as these are based on statistics already made available by the operating

system (e.g., via /proc in Linux). On the other hand, monitoring remote metrics also add a

SOAP call to the basic costs, and are more expensive in comparison. For this reason, these

are performed less frequently. As an example, in experiments conducted to evaluate MSO’s

energy-aware reallocation (Section 3.1.2), monitoring neighboring nodes’ energy levels are

performed once every few minutes. Monitoring of protocols can lead to several insights on

the current state of the system that cannot be captured otherwise, however, this may entail
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heavy costs for deconstructing the packets and/or prior knowledge of the protocol itself.

Although MSO doesn’t rely on protocol monitoring, support for this can be added with

modest effort.

2.3.4 Management Services

MANETs undergo dynamics in connectivity among the nodes due to mobility, possible

changes in the application’s resource requirements as well as characteristics of the nodes

themselves, such as energy levels, utilization, etc. Depending on the severity of the change,

a remapping can be performed at the appropriate level of granularity, as a counter-measure.

The decision as to what type of remapping is to be carried out, and when, is taken based

both on continuous monitoring of the environment and on the formulated management

rules.

As shown in Figure 7, a generic management framework in MSO involves (i) monitoring

for specific changes in observed metrics, and (ii) triggering reconfiguration mechanisms at

the appropriate granularity to counter the change, based on a predefined ruleset. As MSO

is decentralized, any node that observes a change can trigger a reconfiguration according

to predefined rules tailored towards specific objectives. Further, as this is a generic proce-

dure, it can be applied to different management goals like load balancing, mobility & fault

resilience, latency minimization, etc.

Management rules describe the action that needs to be taken in response to monitored

events. For example, as discussed in Chapter 3, energy management relies on monitored
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events such as the battery levels, as well as CPU utilization, frequency and slack periods of

the application. In response to these events and predefined rules, actions such as performing

offloading, using and propagating slack, etc. are carried out.

2.4 Evaluation

Mobile Service Overlays has been implemented in C/C++ using the EVPath [4] toolkit

for creating and managing overlay networks. EVPath uses processing entities called stones

that perform processing and routing actions. Associated with each stone is a queue, and

stones are connected via links that support a variety of transport protocols. EVPath also

provides a SOAP interface using gSOAP [49] to enable remote management of stones.

EVPath uses PBIO [113] binary format for data exchange. PBIO supports several data

formats using receiver-side data conversion, and permits native formats when both the

sender and the receiver share the same platform characteristics. Kernel AODV [81], an

AODV implementation for Linux 2.4, is used to perform routing. MobiEmu [165] is used to

emulate the wireless network topology. MobiEmu uses the kernel netfilter to filter packets.

The hardware platform used for the experiments is a Sitsang handheld computer prototype

platform (Figure 8) described in Section 3.2.

2.4.1 Microbenchmarks

We conduct a set of experiments to determine the costs for the basic deployment and recon-

figuration services provided by MSO. This is evaluated using a single chain deployed over a

set of nodes in a network with a linear topology. The overheads resulting from deployment,

and chain remapping are presented for different chain lengths (and consequently, different

network sizes), with the costs of performing a null SOAP RPC call presented alongside for

comparison. The results are shown in Figures 9 and 10, respectively.

With the null SOAP calls, the cost of each call increases linearly with the number of

nodes in the network. Due to the topology, as the number of nodes increases, so does the

end-to-end hopcount and latencies, thus increasing the cost of a SOAP call proportionally.

With the chain deployment and remapping costs, however, the increasing hop count

and the increasing chain lengths compound to show a higher increase in the costs. In the
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Figure 8: The Sitsang Handheld Prototype

Figure 9: Chain Deployment, Remapping Costs
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Figure 10: Null SOAP RPC Costs

Table 2: Overheads for Intra-Chain Remapping
Operation Cost (µs)
Freeze predecessor 902
Create new vertex 57064
Connect the new vertex 267025
Free old vertex 33958
Unfreeze, update capacities 34094
Total 414,229

case of deployment, the main costs involve (i) determining the capacities of all nodes in

the path and performing a suitable allocation of vertices of the chain to nodes in the path,

and (ii) invoking EVPath calls to create stones according to the allocation and creating

the links between them. While step (i) shows a linear increase with increasing path length

(the computational cost of assigning vertices to the route obtained is negligible), step (ii)

requires creation of more vertices (with increasing chain lengths), at greater hop counts

(with increasing number of nodes) from the source node. The cost of chain remapping is

comparable to that of deployment. In addition to the steps involved in deployment, in

remapping, the chain head also frees the old chain and updates the capacities of each node

before proceeding with the deployment. These steps incur additional overheads. However,

during the initial deployment phase, the routes are computed on-demand, during the route

exploration step (since AODV is a reactive routing protocol). This cost is absent during

remapping, as the routes are already computed.

Next, the costs involved in performing an intra-chain remapping are studied. Using the
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same experimental setup as the previous experiment, we randomly move a vertex from one

node to its neighbor among nodes in the five-node linear network. The various costs involved

are shown in Table 2. The overall cost is about 400ms, on an average. Of this, almost half

the cost is due to making edges between the predecessor of the vertex and the new vertex,

and between the new vertex and its successor. This translates to multiple SOAP calls to

at least three different nodes, as well as dependencies among the SOAP calls themselves

(i.e., since the calls are blocking, this leads to a cascade of dependent calls). In comparison,

other operations involve calls only to one or two different nodes with no dependencies.

2.4.2 Sample Application

The next experiment is conducted on a netlab testbed [106], consisting of four nodes. The

CPUs are run at 350MHz, in order to mimic embedded computers. We construct a robotics

application to mimic a scenario with four robots proceeding in a convoy, in a search-and-

rescue mission. The application consists of a navigation pipeline, where laser and odometry

data from sensors are used to locate the current position of the robots in a map, and to

plan a path through it. It also consists of a target recognition pipeline, where images from

visible light and infrared cameras are processed and Bayesian inference used to estimate

the chances of finding a target in an area. The results from both these pipelines are then

stored for later analysis. Of the four robots that cooperatively run this application, the

leader robot is assumed to possess the sensors, and the trailing robot, the storage. Clearly,

running all of the above tasks in the leader robot due to the proximity of processing to

data, and communicating the results to the trailing robot, will drain the former’s batteries

quickly. Hence, MSO can be applied to offload the computations to the intermediate robots.

We model this scenario using four nodes lying in a straight line, with each node con-

nected only to its physical neighbors. The application makes use of the localization and

navigation modules from CMU’s CARMEN [36] robotics software suite, and CMVision for

image analysis. Other parts of the application are developed in-house. The data for laser

and odometry sensors were taken from a sample simulation run of CARMEN. The data

sizes from these sensors are 967 bytes and 38 bytes, respectively, and are sent at the rate

24



LASER

LOG

CAMERA

ODOMETRY

INFRARED

Localization

Navigation

Edge
Detection

CMVision

Bayesian
Classifier

Figure 11: DFG of Robotics Application

of 5 events/sec. The images used in place of the cameras are scaled down to roughly 3KB

in size and sent at 0.5 events/sec. The resulting flow graph is shown in Figure 11. All the

computational vertices of the flow graph are assigned the same cost, and the capacities of

the nodes are allocated such that each node in the network is assigned at least one vertex.

The overheads of mapping and remapping the flowgraph onto the four node network are

measured over several iterations (Table 3). The cost of mapping the flowgraph is around

1.4 seconds. A large portion of this cost is due to route exploration by the nodes along

the linear path. However, since data transfer has not commenced, the nodes are lightly

loaded and overhead is low. Table 3 shows the costs of performing remapping at various

granularities – remapping the laser-navigation chain alone, the entire navigation pipeline,

and finally, the entire flowgraph, respectively (Figure 11). These costs are significantly

higher, arising due to the data volume passing through the nodes. The high variations in

their values (σ in the table) is also due to this. This causes a slowdown in the SOAP-based

control messages, which form a dominant portion of the remapping processes. Indeed, when

run at 2.8GHz, these costs went down by as much as 10x. To overcome this effect, a more

efficient cross-platform RPC protocol could replace SOAP. For instance, our own previous

work [133] has studied the overheads of XML in SOAP and proposes alternatives. Other

optimizations like queueing data during remapping, asynchronous remapping, etc. may also

be applied, in order to minimize the interference of data traffic on control.
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Table 3: Overheads for the Robotics Application
Operation Cost (ms) σ(ms)
Mapping 1,390.0 77.7

Chain remapping 2,759.1 217.0
Multi-Chain remapping (par) 2,943.1 265.8

Multi-Chain remapping (whole) 3,327.2 335.2

2.5 Discussion

The MSO middleware follows a modular design in permitting distributed applications to

be run on MANETs, consisting of monitoring and reconfiguration services, rooted in the

chains abstraction. This design allows other services to be added to this list, as well as

permitting high level decision making algorithms to offer specific functionalities. As a

result, MSO can be implemented in Java or using virtualization, without departing from its

basic design. However, the data-flow nature of MSO-supported applications is essential, in

order for the middleware to be aware of modular dependencies. Applications already written

to be compatible with component-based middleware implementations can be, in principle,

adapted to MSO, as these dependencies are already made explicit. Finally, the current

implementation of MSO relies completely on simple request-response based interactions. It

uses SOAP for control messages, and as mentioned previously (Section 2.4), may be replaced

with other cross-platform RPC mechanisms that incur lower overheads. The rationale

behind the request-response interaction style arises from the peer-based environments that

MSO is designed to operate in. Consequently, more complex models of interaction such as

multicast or other group communication methods will add maintenance overheads.

The absence of any organization (such as centralized, hierarchical, etc.), although de-

signed to address node dynamics, also serves to improve MSO’s scalability. MSO uses the

AODV protocol for routing, which has been shown to be scalable [115]. Algorithm 2 car-

ries out the mapping of graph vertices to nodes by mapping the individual chains, whose

mapping cost is dependent on the route taken by a packet from the source node to the sink.

Similarly, the costs of remapping depend on the number of nodes involved in the operation.

Additionally, monitoring services are carried out independently in each node. The result of

these design choices makes MSO highly scalable.

26



MSO supports a computing model where all the nodes involved in running the applica-

tion explicitly change their functionality within the cooperative effort – i.e., by relocating

vertices of the application’s flow graph from one node to another. This model can be mod-

ified to support computational offloading, whereby such functionality relocation is carried

out without prior sharing of codes. In such cases, the offloaded node needs to be supplied

with the code in a form that it can execute, in an isolated manner. Other features such as

resource accounting, fault management, Service Level Agreement (SLA) negotiation, etc.

also need to be supported in order to run applications in a delegative fashion. MSO’s

monitoring and reconfiguration services can be used to implement the first two features

respectively, whereas SLA negotiation and mechanisms for code exchange need to be added

to the existing implementation of MSO, in order to extend it to support such applications.
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CHAPTER III

ENERGY MANAGEMENT WITH MSO

This chapter discusses cooperative energy management strategies developed for MANET

applications, to enhance energy profiles, (i) by decreasing energy consumption to the extent

permitted by current application performance constraints, and (ii) by extending overall

system and application lifetime, via migration of application services that are critical to

the application away from energy constrained nodes. Specifically, concerning (i), for each

single platform, we reduce its energy consumption by using common techniques for energy

management, which include dynamic voltage and frequency scaling (DVFS). The resulting

degradation in application execution can be reduced by utilizing memory-bound phases

for such scaling [72], or, in real-time environments where there is a notion of slack, by

increasing execution times (thereby reducing energy needs) only to the extent permitted

by application deadlines [22]. Similar energy-performance tradeoffs are available for other

devices like memory, peripherals (network and disk interfaces), display, etc. Concerning (ii),

we use computational offloading, whereby portions of the mobile workload are dynamically

offloaded to nodes with better energy resources [117]. The former set of techniques have a

direct effect on energy savings at distinct nodes, whereas the latter helps in longevity by

sharing energy resources amongst multiple participants.

The reconfiguration and monitoring services discussed in the previous chapters are

used to develop decentralized management protocols that (i) dynamically distribute and

re-distribute application components among participating nodes, considering the overlay

routes that satisfy the application’s latency requirements while at the same time, deter-

mining the most energy-efficient allocations, (ii) recover unused portions of resources in

an overprovisioned system with little or no impact on application performance, and (iii)

use de-centralized online monitoring and reconfiguration to locally, and thereby, with low

28



delay and overhead, respond to dynamic changes in application requirements and environ-

ment conditions. The management algorithms being used, specifically the algorithm for

dynamic resource reclamation, are experimentally demonstrated to track optimality, with

low overhead. MSOs using this algorithm – energy-aware MSOs – offer notable benefits.

On a wireless, multi-hop ad-hoc network of handheld computing platforms, for instance, an

energy-aware MSO extends system lifetime up to 10% for a five-node network.

3.1 Techniques for Energy Management

Energy management in a dynamic environment is a continuous process, requiring an energy-

aware assignment, followed by online monitoring to trigger actions that shift the system

towards optimality. MSO provides three techniques for energy management, viz., energy-

aware allocation, reallocation, and dynamic resource reclaiming.

3.1.1 Energy Aware Allocation

The chain deployment procedure (detailed in [131]) is modified to address energy manage-

ment concerns, using the following techniques: (i) modifying route exploration to include

Ad-hoc Route Neighborhoods and (ii) using the Global Lifetime Sustainability heuristic to

determine the best assignment of vertices to nodes from among the routes in the neighbor-

hood.

Ad-Hoc Route Neighborhoods: The allocation algorithm in MSO uses the route ex-

plored from the source node(s) to the sink(s) to perform the assignment over each chain.

However, the route thus found is entirely dependent on the ad-hoc routing protocol em-

ployed in the underlying layer. While protocols like AODV, DSR, etc. typically use the

shortest route, recent research has explored a variety of techniques for power management

at the network routing layer, including probabilistic routing [134], multipath routing, and

using multiple radios. Hence, prior to allocation, no assumptions can be made by MSO

about the underlying protocol’s behavior. As a result, MSO explores all possible routes

that can be taken from the source to the destination (bounded by a maximum hopcount),

and chooses the “best” route from among those for the assignment. The set of all the routes
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Figure 12: Ad-hoc Route Neighborhood

discovered in this manner is termed the ad-hoc route neighborhood of the chain. The end-

to-end latency requirements of the chain limits the maximum hop count for the route, and

consequently, the length of each route in the ad-hoc neighborhood, and the number of routes

obtained. Figure 12 illustrates this concept, enumerating the ad-hoc route neighborhood of

routes from node a to g in the topology, with hopcount strictly less than 5.

We rely on a distributed protocol to find the route neighborhood of a chain, given con-

straints that include maximum latency and maximum hopcount. The protocol is similar to

that used by AODV for route discovery [115], with two differences: (i) the destination node

stores all the routes it obtains, and (ii) after the maximum latency period, the source node

queries the destination to directly obtain all the routes stored. This protocol enumerates all

of the routes satisfying the latency constraints. Since no state is saved in any nodes (except

at the destination), its overhead is low. Further, each packet not reaching the destination

is eventually dropped, as the monotonically increasing hopcount reaches the upper bound.

Global Lifetime Sustainability (GLS) Heuristic: The placement of software com-

ponents during allocation and reallocation can directly affect the lifetime of a MANET

scenario. In the simplest case, with two nodes and a single component, energy can be

depleted fairly and system lifetime is maximized by migrating the workload to the partic-

ipant with larger battery capacity whenever a reallocation is triggered. When there are

multiple components and multiple nodes, all with varying requirements and energy levels,

optimal decisions cannot be made within reasonable complexity constraints. Instead, we

use a heuristic to determine where to place various components. In particular, we define

30



a GLS metric for a set of candidate nodes and energy levels and utilize a heuristic that

attempts to maximize this metric and/or minimize potential decreases in metric values.

Specifically, for this work, we define the GLS metric to be the product of the remaining

energy levels on nodes under consideration when deciding where to place a software com-

ponent. This approach works well for the scenarios addressed here since nodes are treated

equally and are homogeneous. We note that the GLS metric can also be effective when used

in more general settings, to express variations among nodes in heterogeneous environments

(since power consumption profiles vary accordingly) and when tuning allocation policies at

runtime.

Chain assignment decisions in MSO use the GLS heuristic and ad-hoc neighborhoods.

Intuitively, from among all possible routes discovered (ad-hoc route neighborhood) for each

chain, (1) a greedy assignment is determined based on resource availability and the GLS

heuristic, and (2) a cost is associated with the route and allocation scheme. The route

with the smallest cost is then chosen for the chain. In particular, we define the cost as

the projected difference in the GLS metric based upon the allocation over some period of

time. Additional detail about the algorithm appears in [131]. The GLS heuristic arises

from earlier research efforts on energy-aware assignment of workloads to data centers with

heterogeneous platforms [104].

3.1.2 Energy-Aware Reallocation

Energy-Aware reallocation consists of moving application components in response to chang-

ing conditions. It utilizes the monitoring, management, and reconfiguration services pro-

vided by MSO (see Algorithm 3). Here, local variations in node lifetimes are overcome by

relocating vertices to neighboring nodes with higher lifetimes. Global variations are ad-

dressed by remapping entire chains, but this is performed less frequently due to its higher

costs.

Algorithm 3 does not factor the cost of data transfers into and out of a node (for a

processing vertex housed here). Hence it is suitable only if these costs are negligible, and

the energy drain is dominated by compute-bound processes. However, with data intensive
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Algorithm 3 Energy-Aware Reallocation
1: Each node n, periodically queries the expected lifetime of all of its neighbors
2: Select node n′ s.t. lifetime(n′) is the largest among all neighbors
3: if lifetime(n′)− lifetime(n) > threshold then
4: while ∃ v′ in n not considered for relocation do
5: Select vertex v s.t. Cost(v) > Cost(v′), ∀v′ in n not considered for relocation
6: if v’s relocation to n′ does not affect event latencies along the chain then
7: Relocate v to n′

8: Break out of while loop
9: end if

10: end while
11: end if
12: During long periods of idleness, ∀v housed at n : v is a chain head, check for any changes

in the ad-hoc neighborhood, and remap the chain if a more optimal neighborhood is
found.

applications these costs must also be considered. For example, consider a local vertex that

gets its input from and provides output to other local vertices. Further, assume that the

vertex corresponds to data-intensive processing. Relocating this vertex to a neighboring

node is clearly not energy-efficient, because more energy will be expended in the data

transfers, rather than the processing. To allow these factors to be considered, the following

metrics are monitored for each vertex in the flow graph:

1. Event input rate (in bytes per second).

2. Event output rate (in bytes per second).

3. Processing cost (CPU utilization, time to process an event).

These metrics are averaged over a period of time, before being used in the decision making.

Further, the energy associated with data transfers, and CPU utilization are also considered.

Using this method, we can express the three quantities in the same units, (watts, for ex-

ample). Let us denote these three quantities by i, o, and c, respectively. Note that these

metrics are platform dependent. For instance, in the Sitsang platform, the data transfer

rates are also dominated by the CPU utilization (due to packet processing). It is not im-

portant that these values are highly accurate, for the simple fact that these are used only

for decision making in vertex relocation, and hence estimates are sufficient. For the Sitsang,
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the quantities i and o roughly equate to 300mW at 4Mbps (the peak bandwidth achieved).

The values for c can be obtained using the methodology outlined in Section 3.2.

After these metrics are estimated, the decision rules are formulated as follows:

Algorithm 4 Vertex Relocation
1: if Input of the vertex is outside then
2: if Output of the vertex is outside then
3: Always perform vertex relocation
4: else
5: Perform relocation if i + c > o { Node pays for input and computation}
6: end if
7: else
8: if Output of the vertex is outside then
9: Perform relocation if o + c > i { Node pays for output and computation}

10: else
11: Perform relocation if c > i + o { Node pays only for computation}
12: end if
13: end if

The rationale for these decisions result from energy cost-benefit analyses of retaining the

vertex in the old node versus relocating it to the neighbor. Since each node initiates vertex

relocations only on those vertices that it hosts, it computes the tradeoffs in maintaining the

vertex at the same location versus offloading it to another node, before making the decision.

3.1.3 Workload-Aware Dynamic Resource Reclaiming

To conserve energy in overprovisioned nodes, we design a distributed protocol that explores

energy-performance tradeoffs in a distributed system through resource reclaiming – i.e.,

recovering any resource from the system to the extent that it does not affect the perfor-

mance and hence, the quality of the application. Such resources include peripheral inter-

faces like storage (via sleep modes), memory (via switching off banks), and CPU (dynamic

voltage/frequency scaling). In this work, we demonstrate this approach with CPU-based

techniques.

Each node attempts to reclaim as many of the resources as possible to minimize energy

consumption, then distributes the remaining opportunities to other nodes. Event sources in

MSO associate a deadline with each event, sending it along with the event itself. Where this

is not available/known, the event inter-arrival period is used. When the processed event
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reaches the sink, its slack is computed, i.e., the time difference between the deadline of the

event processing and the actual time of completion. A positive slack value serves as a mea-

sure of overprovisioning, in that unnecessary effort was expended in processing the event.

This presents an opportunity to ‘reclaim’ the slack by scaling down the voltage/frequency in

some/all of the CPUs involved in event processing, thereby reducing energy consumption.

An implicit assumption made here is that the nodes’ clocks are synchronized.

Slack reclaiming starts at the sink node, since only it can compute the slack value.

Starting from this node, each node, on obtaining the slack values from all its downstream

nodes (a node n1 is downstream to n2 if ∃v1, v2 : v1 is assigned to n1, v2 to n2, and ∃

a directed edge from v2 to v1), attempts to scale down its own CPU frequency/voltage

so as to maximize energy savings. Next, it computes the slack available to each of its

upstream nodes and sends them these values. Starting at the sink node(s), the algorithm

thus propagates towards the source(s).

Algorithm 5 Slack reclamation
1: repeat
2: if ∃v : ∀v′ and v → v′, v has received slack(v′), then
3: for all f : f is a CPU frequency do
4: Set slackf (v) = minv′{slackf (v′)} − tf (v) , { where tf (v) is the estimated exe-

cution time of the computation of v at frequency f}
5: ∀vp : vp → v and vp is in the same node as v, send slack(v) to vp

6: end for
7: end if
8: until all the vertices in the node have been considered {Slacks for each frequency have

been computed}
9: for all v : v′′ → v, and v′′ is not in this node, do

10: fchoose(v)← min{f}s.t.slackf (v) ≥ 0
11: end for{ The minimum feasible freq. for each vertex}
12: Set the new frequency, fnew = max{fchoose(v)}
13: ∀v : v′′ → v, and v′′ is not in this node, send slackfnew(v) to v′′

Within each node, Algorithm 5 is used to determine its best CPU frequency. It computes

the minimum feasible frequencies for each vertex (lines 1-11) in a node, then chooses the

maximum from among them as the frequency for that node (line 12), finally propagating

this value to all vertices upstream (line 13). Figure 13 illustrates this procedure, with the

slacks along the edges represented by Sx’s and the execution time of the computation at
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Figure 13: Slack Propagation Within a Node

each vertex represented by tx’s, and shows how the slack is “consumed” by each node and

the remainder passed on to vertices upstream.

Being a greedy algorithm, its focus is to quickly reclaim any slack made available,

hence it seeks only local optima. As a result, the closer a node is to the sink, the greater

will be its energy savings. Fairer methods for slack reclamation would require additional

coordination among MSO nodes, thereby introducing additional protocol complexity. The

main assumption in this algorithm is that the expected execution time at each frequency

for the vertices can be estimated. Research efforts in workload characterization can be used

to perform such estimates [40]. Even with accurate application characterization, factors

like network jitter, mobility related effects, or even changing application needs can cause

changes in slack availability. The response time to such events primarily depends on the

frequency at which slack reclamation is initiated. Additionally, since a side effect of the

greedy algorithm results in concentrating the bulk of reclaimed slack closer to the sink

nodes, this also enables quick reversion of the reclaimed slack, during such conditions.

3.2 Power Tradeoffs and System Implications

In order to effectively manipulate energy usage amongst distributed nodes, it is essential for

MSO to understand the power and performance tradeoffs of the underlying hardware. In

this section, we present results from detailed power measurements of our evaluation platform

which provide the intuition and tradeoffs that drive the system’s power management policies.

The hardware environment used in our experiments is the Intel Sitsang platform, with a
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PXA255 processor, and 64MB RAM. It runs the Linux-2.4.19 kernel, modified with Xscale

and platform specific patches. Each node also has an 802.11b wireless interface, in ad-hoc

mode, in addition to a 10Mbps base-T ethernet interface. All power measurements are

performed using a Tektronix TDS5104B oscilloscope, Tektronix TCP202 current probes,

and Tektronix P6139A voltage probes.

3.2.1 Platform Power Trends and DVFS

The Sitsang platform is designed around a PXA255 XScale processor. The processor sup-

ports frequency and voltage scaling via multiple operating points that vary CPU frequency

as well as the frequency to the internal PXA bus, thereby affecting latency to memory and

I/O devices. The core frequencies available are 400MHz, 300MHz, 200MHz, 150MHz, and

100MHz. Though multiple bus frequencies are plausible for certain core frequencies, for

the purposes of analysis and experiments in this work, we always utilize the maximum bus

speed possible for a given core speed. This results in five operating points with core/bus

frequencies of 400/200, 300/100, 200/100, 150/50, and 100/50. The voltages used are 1.3V

for 400MHz, 1.1V for 300MHz, and 1.0V for all other frequencies (the PXA255 electrical

specifications prescribe the operating points used, along with the 1V minimum requirement).

For power analysis, we utilize a tunable synthetic workload that has characteristics

similar to the robotics applications used in our MSO research [132]. Specifically, for these

applications, we find memory access behavior to be an attribute that can vary significantly.

Software components like Bayesian classifiers are CPU bound, where performance scales

with frequency, whereas image analysis like blob finding displays increased memory activity

due to footprints larger than the 32K cache size on the PXA255 processor. In order to

provide a fair comparison across this attribute, we have developed a synthetic workload

that can be tuned to vary memory boundedness while maintaining the amount of work (i.e.

instruction count) performed. This benchmark is used in subsequent evaluations.

When completely idle, the Sitsang consumes 2.5W-2.64W depending upon the operating

point to which it is set. A more significant variation can be observed between the different

frequencies when active, as illustrated in Figure 14. The figure provides power data when
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Figure 14: Sitsang Active Platform Power Consumption
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Figure 15: Power Dependence on CPU Utilization, MAR = 0.063

the platform is one hundred percent utilized and executing workloads with varying memory

accesses per instruction (MAR), a parameter that in turn affects the cycles per instruction

(CPI) required to execute each application. As expected, we see decreasing power consump-

tion as frequency is reduced, with the difference between 400MHz and 100MHz being as high

as 25%. These system-level trends underscore the possibilities of energy savings available

via DVFS. We also observe from the figure that the system power is not only a function

of frequency, but can also vary significantly based upon workload characteristics. Indeed,

at 400MHz, the power varies by as much as 11% between the different applications. This

highlights the potential benefits and necessity of online monitoring in MSO to dynamically

tune energy management for application specific behavior.

37



 0.9

 0.95

 1

 1.05

 1.1

 0  0.2  0.4  0.6  0.8  1N
or

m
al

iz
ed

 C
yc

le
 P

ow
er

 C
on

su
m

pt
io

n

Utilization at 400MHz

400 MHz
300 MHz
200 MHz
150 MHz
100 MHz

Figure 16: Power Dependence on CPU Utilization, MAR = 0.012

From the results in Figure 14, it is clear that reducing the operating point of our plat-

form, when possible from a performance standpoint, can reduce power consumption. The

resulting energy savings, however, are not quite as apparent. For periodic applications,

frequency can be reduced when there is slack without a performance penalty. This reduc-

tion increases the active portion of a period while reducing the idle period. As recent work

has shown, reducing processor frequency may result in reduced power consumption during

active portions of the period, but it can also increase energy consumption after some point

of slack reclaiming [102, 75]. The existence of these counterintuitive trends can be affected

further by the presence of other power management schemes with which DVFS must coex-

ist [52, 103]. We consider these trends by obtaining the cycle energy, the combination of

the active and idle energy signatures in a period, of the three MAR varying applications

across different CPU utilizations in Figures 15, 16 and 17.

Figure 15 illustrates the tradeoffs of the different operating points across utilization

behavior for a memory-bound workload with resulting high CPI. As utilization increases,

it becomes infeasible to execute at certain frequencies until eventually, only the highest

operating point can maintain the performance of the application. Since the application is

memory-bound, the performance of reduced frequencies can closely match those of higher

frequencies, especially when the bus frequency can be maintained. This is exhibited between

the 300MHz and 200MHz operating points as well as the 150MHz and 100MHz frequencies
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Figure 17: Power Dependence on CPU Utilization, MAR = 0.001

by the fact that the respective energy curves end at about the same utilization (i.e., the

modes become unusable at similar load). The reason for this is that the performance

of the application is driven by bus frequency instead of core frequency due to the high

memory access rate. We can see from the figure that the optimal operating point is only

the smallest one possible for very low utilizations, after which 200MHz is optimal even

though 150MHz and 100MHz would be options as well. Similar inflection points can also be

observed for lower MARs in Figures 16 and 17, though in the latter the optimal operating

point gets pushed even further to 300MHz at high utilizations. These trends show that the

energy optimal operating point can vary based upon workload characteristics as well as the

utilization required to execute the workload. It should be noted that even simply monitoring

MAR is not adequate (our own results show data stalls per cycle should also be monitored),

a full list of required attributes can be obtained via existing workload characterization

research [40].

The platform power trends discovered in our experiments directly affect DVFS-based

energy management in MSOs. First, they show that when utilizing DVFS to dynamically

tune energy behavior via slack reclaiming of periodic applications, MSO middleware must

monitor resource utilization information for software components so that it can be aware of

‘where’ the system is located along the utilization curve, thereby determining the minimum

operating point to utilize at a particular node. Second, with online monitoring, MSO can
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also determine the performance scalability of an application by determining metrics such as

MAR and the resulting data stalls per cycle. By coupling this information with platform

power characteristics, MSO can more readily determine application specific inflection points

at runtime than can be done by static policies.

3.2.2 Wireless Communication Overheads

In addition to platform energy savings with respect to utilizing frequency scaling, our ap-

proach also exploits cooperative systems by offloading computations to take advantage of

remote resources and energy reserves. This type of offloading has been shown to provide

significant system lifetime benefits in previous work [107]. Here, we continue to leverage

this type of energy management by considering the possibility of migrating software compo-

nents in MSOs during reallocations. A question that arises, however, is how the associated

communication energy overheads compare to the benefits of offloading. To obtain insights

into this tradeoff, we stream data between two Sitsang platforms over a wireless link. We

then monitor the system, CPU, and radio power of one of the systems at different data

rates of UDP/IP. These experiments result in the following findings. First, we find that the

link becomes saturated at 4Mbps. At this extreme, system power consumption increases

by 300mW, while the radio power signature is only elevated by 90mW. The CPU power

signature explains this discrepancy, as we observe that the processor is consuming active

power during 25% of the time due to packet processing overheads. Therefore, the majority

of the power increase can be captured by simply monitoring system utilization. The reason

for the minimal increase in radio power consumption, even at high link utilization, is that

in ad-hoc mode, the radio cannot be placed into a sleep state—it is always in a promis-

cuous read mode, the power signature of which varies little from sending. Since the radio

power consumption changes negligibly with use, the overheads of utilizing it, for the sake of

our flowgraphs with little communication utilization, can be effectively ignored. Therefore,

in MSO energy management, we only consider the computational overheads of software

components when performing energy load balancing.
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3.3 Evaluation

Power consumption at each node is estimated through a daemon that monitors the CPU

usage periodically at 0.1s intervals, and computes energy consumed based on the CPU

frequency and with an application dependent power model (which in turn is obtained by

power measurements performed using the oscilloscopes on an instrumented node). Two

sets of experiments are performed: to study the effects of energy-aware reallocation, and

dynamic resource reclaiming.

3.3.1 Reallocation

The first set of experiments uses two Sitsang nodes running a single application (CPU

intensive, with 30% utilization), such that only one node runs at any time, with the other

node is idle. By monitoring each others’ battery levels, the nodes can cooperatively run the

application so that they maximize their battery lifetimes. Overall lifetime of the system is

defined as the lifetime of the first node that exhausts its battery completely. Starting from

2kJ for each node, the polling frequency for monitoring is increased, and the corresponding

increases in node lifetimes are observed (Figure 18). The results are compared to a static

assignment, where one node is always idle and the other is always busy. As we increase the

frequency of reallocation, the system lifetime increases, but more time was also devoted in

performing the reallocations than performing the actual work. The net yield thus shows an

increase, followed by a decrease, with the highest increase found to be roughly 11.5%

Next, we study an example on a five node testbed, with the topology in Figure 19.

The application flow graph is chosen to accommodate all three different kinds of event flow

combinations possible, i.e., linear, split, and join flows. Each node runs an instance of MSO,

and begins with a fixed energy level. The threshold for reallocation decisions is set to 50J,

and the frequency of polling (for monitoring neighbors’ energy levels) is chosen to be 25

sec. All application components are CPU bound, and while two of them run at 80% CPU

utilization, the other three run at 15%. These values are deliberately chosen, to allow an

imbalance in processing, among the nodes. Such a workload is representative of applications

that perform different pipelined processing on data. For instance, in an image processing
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Figure 18: Reallocation in Two Nodes
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pipeline in the robotics domain, the pre-processing stages like edge detection, scaling, etc.

are data intensive, whereas applying learning algorithms on the images are typically CPU

intensive. Events of size 4KB are sent via a single source at the rate of 1 per 1.5 seconds.

For this experiment, we ignore the timeliness of event delivery (causing the check in line

6, in algorithm 3 to always return true). This enables aggressive relocation of vertices to

the best available neighbors. We discuss the benefits of using MSO along two parameters:

(i) the system lifetime of a cooperating group and (ii) the parity in the lifetimes of the

nodes forming the group. An example of the first type of requirement is in collaborative

tasks that require the participation of all mobile nodes. The second rule can be useful

in enforcing a uniform policy for all participants in the task. For our purposes, we term

the lifetime of the first dying entity in the group as the system lifetime, and we quantify

lifetime parity by measuring the standard deviation of individual node lifetimes. We observe

the trend of these metrics, as the initial energy available with the nodes are varied. We

compare the results of our reallocation with a static assignment (Figure 20). The difference

in the lifetimes afforded by these strategies increases, as the initial energy increases, with

the differences being close to 10% at 5kJ. This is a consequence of the fact that the lifetime

of the node(s) executing the computationally intensive components of the application flow

graph exhibits a linear relationship with the initial energy. However, as reallocation shifts

the heavy computation among all the nodes, this effect is mitigated. Similarly, the lifetime

parity with reallocation shows no particular trend with increasing initial energy (Figure 21),

as against the widening gap in node lifetimes observed with a static allocation.

3.3.2 Effects on Applications

Next, we study the effects of MSO-based energy-aware reallocation on an example appli-

cation. We consider a network of five Sitsang nodes in a linear configuration, and map an

image processing pipeline consisting of (i) blob detector, followed by (ii) grayscaling, and

finally, (iii) edge detection. Images from a source (such as a camera) are sent to the blob

detector as events roughly every 1.2s (in order to obtain 70% utilization when all the com-

ponents are co-located), which then get processed in the pipeline. Simultaneously, a robot
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Figure 20: Application Lifetime

Figure 21: Node Lifetime Parity
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Table 4: Application Lifetime vs. Performance

Non-Cooperative Cooperative Gain (%)
Lifetime 294s 336s 14
Image events σ 20.7ms 225.3ms 988
Navigation events σ 19.3ms 90.1ms 366

navigation pipeline consisting of a localization module, which computes the location of the

robot from its odometry data, and a navigation module, which uses the location to send

drive commands in order to reach a predetermined destination, is also run in the first node,

with the rationale that while the first robot navigates to its destination, the other robots

will follow this leader in a linear fashion. Starting from 2kJ, the application lifetimes, as

well as the event inter-arrival times with energy-aware reallocation is compared against a

static allocation (cooperative vs. non-cooperative), and the results are shown in Table 4.

A gain of about 14% in application lifetime is achieved with our scheme, however, the

event inter-arrival times suffer high variations, as can be seen by the standard deviations

shown in the table. This results from differing hop counts as events get processed through

the chains, arising from relocation of the application components.

A second experiment performed under an identical scenario, replacing the linear network

with a network forming a complete graph, shows a similar behavior (Figure 22). In this case,

however, variations in the cooperative case are actually lower, with the navigation events.

This is due to the fact that, as offloading other components decreases the utilization of the

node running the navigation pipeline, events get processed at more regular intervals.

3.3.3 Dynamic Resource Reclaiming

The next set of experiments evaluate the dynamic resource reclaiming algorithm, over a

synthetic workload. As discussed previously, we apply this technique to source-defined

event slack available at the application sink node. The setup for the experiment consists

of five Sitsang nodes in the same configuration as in the previous study. Each vertex

executes a memory-intensive synthetic application. The application is run at three different

scenarios, corresponding to having a CPU utilization of 40%, 60% and 80%, by increasing
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Figure 22: Offloading - Application Results

the duration of execution of each event in the application. Events of size 8 KB are sent with

a periodicity of 2.5 seconds. The execution time of each event, when run at 80% utilization

and the highest frequency (400 MHz) is found to be roughly 2s at each node.

The resulting energy consumption of the application is measured in the presence of the

resource reclaiming algorithm. This figure is compared against a choice of frequencies for

each possible slack value that is optimal in that it minimizes energy consumption. The

energy values are normalized against the default case where all nodes run at the highest

frequency. As shown in Figure 23, the algorithm is found to closely track the most optimal

settings. In some cases, especially at the top frequencies, our algorithm appears to out-

perform even the optimal solution, but this is only because of missed deadlines, i.e., the

algorithm reclaims more slack than available, thus saving more energy but hurting perfor-

mance. This is due to errors in predicting the execution time at various frequencies, and

other sources of error in event delivery. For the higher utilization workload, as both the

slack available, as well as the execution time are high, any errors in estimation can cause

large deviations from the optimum frequency settings.

Finally, we evaluate the overheads of various strategies that can be employed for resource

reclaiming. We consider three strategies in this study: (i) Aggressive, where slack is polled

frequently (every 30 sec), and positive as well as negative slacks are immediately propagated

throughout the network, (ii) Conservative, which polls for slack less frequently (60 sec), and
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Table 5: Slack Reclaiming – Strategies

Strategy Mean slack (ms) Mean |slack| (ms) Reclaims
None 1188 1204 0
Aggressive -23 305 1012
Conservative 59 245 528
Opportunistic -45 215 822

(iii) Opportunistic, where positive slacks are propagated at a low rate (60s), and negative

slacks at a high rate (30s), so as to conserve energy without a high overhead, but react

relatively quickly when performance is hurt. The event traffic was such that all the ranges

of slack values were used in the test, over a period of about 15 minutes. The results of these

strategies are shown in Table 5.

The aggressive strategy is more prone to mispredictions and overcorrections, than the

others, but it is able to utilize all of the slack. The conservative approach is relatively more

stable, with almost half the number of reclaims, but it can let the slack available for shorter

periods of time go unrecovered. The opportunistic strategy strikes a balance between these

extremes, to react quickly during performance critical phases alone. Correspondingly, the

number of slack reclaims also lies between these strategies.

47



3.4 Discussion

As mentioned previously in Table 1, modern wireless technologies allow much higher data

rates, and this trend is poised to cross even 4Gbps soon, with WirelessHD. This increases the

opportunities to perform offloading, since communication costs are expected to go down (for

instance, wirelessHD targets mobile devices). A heterogeneous computing environment in

the next generation of pervasive systems also provides us with choices in mapping portions of

the application to specific platforms, resulting in more flexibility and choice. Previous work

has shown that for mobile applications, use of memory in a remote machine can be more

power-efficient than local memory, under certain scenarios [55]. This has the potential to

increase the level of cooperation among nodes, by decomposing the distributed application

at a much finer granularity. Currently, the division is fairly coarse in order to minimize the

volume of data flow between components. The rationale for this is further supported by

trends in server systems indicating that over 40% of system power consumption is due to

the DRAM memory, and nodes with more power-efficient memory can address the memory

needs of other nodes in the network.

Slack reclaiming is used for energy management purposes in this work, but can be used

in other tradeoffs that balance application performance with resource saving. This can

apply to co-processors as well as devices, in increasing their idle periods. The energy aware

reallocation method described in this chapter can be applied to multi-core systems as well,

as it provides a low overhead mechanism for completely decentralized energy management.
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CHAPTER IV

ENHANCED DEVICE SERVICES IN VIRTUALIZED SYSTEMS

Prior chapters describe the role of middleware in presenting services to distributed appli-

cations, that allow them to be run on MANETs. By sharing the underlying resources,

the middleware allows cooperative execution. With the increased interest in virtualization

and the generic resource sharing capabilities it enables, we identify the opportunity to use

similar middleware-based techniques to share device functionalities in such environments.

This is especially useful in mobile environments, as platforms in this domain are typically

required to support a diversity of devices.

In this chapter, we explore sharing opportunities and methods for multimedia devices,

the goal being to make it easy to dynamically compose, share, and use these devices to

provide efficient multimedia services. Termed VMedia, our method enables media-rich

applications by better supporting flexible access to and use of the many media devices

present in today’s systems. Specifically, VMedia offers new hypervisor-level support both

(1) for efficient and flexible device sharing and (2) for dealing with and exploiting device

differences and diversity. We then present an extension to VMedia, termed CustomCam,

that allows customization of a multimedia device to particular uses.

In virtualized systems, a workload can be run in its own isolated container, called a

virtual machine (VM), each with its own runtime components, including operating and file

systems. A Hypervisor or Virtual Machine Monitor (VMM), in conjunction with one or more

privileged VMs, termed ‘Service VM’ or ‘Domain 0’ (Dom0), implement virtual instances of

physical resources, such as CPU, memory, and I/O devices. Constituting a virtual platform

for the VM, these virtual resources are multiplexed over the physical resources existing

on the machine. Virtualization of basic resources like CPU and memory is implemented

by the low-level hypervisor or VMM resident on the machine, whereas the Service VM is

responsible for virtualizing devices. Using a Service VM allows ready utilization of device
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drivers for the multitude of I/O devices employed by VMs. For high end I/O devices, the

functionality of the Service VM may also be provided directly by the device itself, in the

form of self-virtualized devices [123, 91]. VMedia is such a service VM based approach to

virtualize multimedia devices.

Device virtualization is a key element of virtualized systems. A simple, non-intrusive

method is to create a virtual device that emulates a physical one. In this case, the virtual

platform provides I/O resources (configuration registers/memory) just like the physical

platform, and the guest OS interacts with the virtual device in the same fashion as it

did with the physical device, using its own device driver. However, this approach has

inherent performance limitations, because device emulation requires fine-grain involvement

from the VMM and/or Service VM (i.e., at the level of memory/register access). As an

alternative, all current system virtualization solutions provide simpler virtual I/O devices,

which present different access interfaces to guest VMs, such as shared memory circular

buffer rings, rather than I/O memory and registers. Device drivers hide these interfaces

from the guest OS kernel, providing it with standard device interfaces. For example, a

virtual NIC device driver provides an ethernet interface that is identical to the interface

provided by the physical NIC’s device driver. Using these simpler virtual I/O devices and

the corresponding device drivers provides substantial performance benefits compared to the

emulation approach. Above this layer, guest operating systems, then, operate just like in

non-virtualized environments, using their device drivers and other internal functionality to

present applications with efficient higher level system abstractions like sockets, files, etc.

4.1 Multimedia Device Virtualization

Researchers and developers have already recognized that standard virtualization methods

like those described earlier have limitations. Consequently, they have introduced the notions

of para-virtualization [23] vs. full virtualization (e.g., through device emulation), where

device drivers still export standard APIs, but are handled by the VMM to implement

the appropriate functionality [139]. Further, more recently, researchers have introduced

the notion of application virtualization [17] where a library operating system extends the
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Exokernel idea [50] of providing customized operating system to applications, thus delivering

only the functionality needed by the applications. Libra provides services required by a Java

application running within a JVM, by implementing frequently accessed services locally and

relying on the hypervisor for other, less frequently used services. This opens interesting

avenues for new investigations and for exploring opportunities for improved performance or

even functionality, such as combining multiple devices, as discussed in Section 4.5.

This work addresses these questions for multimedia systems and applications, by devel-

oping and experimenting with the VMedia approach to I/O virtualization. This approach

exports to applications logical devices that are semantically enhanced versions of the phys-

ical devices present in the underlying platforms. Specifically, a VMedia logical device has

attributes and provides access methods that go beyond defining “what the device is”, as

in current systems, to also define “how it is used”. For example, a logical camera device

might provide a rich multimedia access interface, like Video4Linux [13] (V4L), instead of the

low-level API presented by a USB camera. Another example is an iSCSI-capable NIC [6],

which provides both a SCSI access interface for block devices and a normal ethernet access

API.

Previous research has already demonstrated the utility of using logical rather than phys-

ical device interfaces. In our own work with V4L, for instance, we have shown that this

interface can be used for transparent access to both local and remote physical camera de-

vices [82]. The VMedia approach exploits I/O virtualization to go beyond such transparent

device remoting. It provides a service-based interface to media devices, in order to (1)

allow sharing of these devices, and (2) make it possible to dynamically create from physical

devices virtual ones with different properties and capabilities. We note here a similarity in

approach between VMedia’s service-based logical devices and modern file system services,

such as NFS [8] and GPFS [129], provided by today’s network storage solutions. Such file

services can be seen as a logical device, which are provided in addition to block-based virtual

disk devices (e.g. devices supporting SCSI interface). Utilizing filesystem level abstraction,

these storage logical devices allow sharing of content (files) in a straightforward manner,

while the usual block-based virtual devices do not.
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Previous work has also shown the utility of using semantic information to enhance

certain physical devices, as with smart disks [137], for instance. However, for cost reasons,

these solutions have not been widely popular. VMedia addresses this issue by using software

to enhance the virtual platform, rather than requiring new or extended device hardware

(e.g., expensive device controllers). Furthermore, the service-based virtualization used by

VMedia affords several additional advantages.

First, it can simplify the guest VM’s OS kernel without sacrificing any of the func-

tionality presented to applications. Second, by using domain-specific semantic knowledge,

I/O virtualization at higher levels like V4L can provide better performance than solutions

operating at the device level. Third, the use of logical devices can provide better opportu-

nities for consolidation in the Service VM, based on information from multiple guest VMs.

Fourth, a logical device may provide better performance and/or more functionality than

that offered by a single physical device, by having the Service VM use an ensemble of phys-

ical devices to realize the logical device, for example. Shifting logical functionality to the

Service VM also frees up computational resources at the guest VM side. A guest VM can

then use these resources to implement other useful functionality. It may also increase the

platform’s scalability in terms of the number of VMs it can support. Shifting computations

related to I/O also allows guests to function better in the presence of resource restrictions,

such as limited availability of cores or licensing restrictions imposed by software for certain

number of cores.

In summary, this work presents the VMedia framework for logical devices, focused on

the multimedia domain:

• VMedia is used to export a ‘multimedia’ device to guest VMs, using the standard

Video4Linux [13] interface.

• The multimedia device is implemented with software running in the Service VM,

Dom0. By acting as a ‘hub’ for such logical virtual devices, the Service VM can

provide enhanced multimedia services to guest VMs, with efficient and flexible device

sharing, and offering new device capabilities.
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4.2 VMedia Design and Architecture

VMedia Design. Unlike network and storage devices, which are virtualized via time-

and space-sharing respectively, the rich semantics associated with multimedia devices make

sharing at the device level more difficult. Web cameras and microphones, for instance, can

be time-multiplexed among multiple VMs, but arbitration of the device will be difficult.

For example, different VMs may want to change the attributes of the device in mutually

exclusive ways. This means that the virtualization system must maintain a ‘context’ for the

device per VM, and change the device to a particular context whenever the corresponding

VM requests access. Additionally, in sensor devices such as cameras, sharing can be achieved

more efficiently by replicating sensed data (e.g., frames) to data consumers, rather than

using time-sharing techniques. Current virtualization solutions ensure that multimedia

devices are used exclusively by one VM. Virtualization of these devices is done at a lower

level, such as USB and PCI, and access is provided to a single VM as a passthrough.

The VMedia framework creates enhanced opportunities for sharing, by implementing

logical devices that are accessed via a standard multimedia API, which is Video4Linux

(V4L). Guest VMs’ device drivers interact with the VMedia Service VM using a higher

level API, again similar to V4L. VMedia’s virtual multimedia device thus exported has

several interesting properties. First, such a device need not be a simple mapping of the

physical device that is being virtualized. In fact, additional interesting properties of a

virtual device can be entirely implemented in software, an example being a virtual device

that supports multiple palettes and image resolutions, while the physical camera supports

only one of these. Second, device implementations can be entirely dynamic, using runtime

code generation and extension techniques [56] and placing such extensions into Service

VMs for shared use by all/some logical device users. Extensions may implement data

transformations, for instance, to guarantee certain privacy constraints on the data captured

by the device [82] or to provide data to end user applications in certain forms. Third and

as explained next, multiple guests can efficiently share VMedia’s multimedia devices, via its

MediaGraph abstraction, described in detail in Section 4.2.3. The outcome is that a guest

VM can be oblivious to how the physical device is being accessed, and that end users need
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Figure 24: VMedia Architecture

not rely on complex applications hosted by guest VMs for such purposes.

The VMedia design also makes it possible to compose new virtual devices from multiple,

possibly heterogeneous physical devices. For example, by using two similar camera devices

and with appropriate phase lag, it is possible to support twice the frame rate than what

could otherwise be afforded by a single device. As another example, a context sensitive

camera device can be created using a camera and a microphone where an image is only

captured in the presence of sound, else returning an image from a cache without capturing

a new physical image.

VMedia Architecture The VMedia framework consists of two main components: (1)

virtual multimedia devices and associated drivers running in guest VMs (client side), and

(2) the VMedia runtime that executes in the Service VM, or Dom0 (server side). The

VMedia runtime accesses the physical multimedia devices and provides guest VMs with

access to the media data via virtual devices. Figure 24 depicts a high-level overview of

these components.

4.2.1 Client Side Components

Client (Guest VM) side components include a virtual multimedia device and the corre-

sponding kernel device driver. The virtual multimedia device is an extension of the virtual

interface (VIF) abstraction presented previously [123]. The device is assigned a unique ID
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and consists of two message queues, each of which is a circular ring buffer. One message

queue, called the send queue is for outgoing messages to the physical device, sent from the

guest VM to the VMedia runtime. The other queue, called the receive queue is for incoming

messages from the device, sent from the VMedia runtime to the guest VM.

A pair of signals is associated with each queue. For the send queue, one signal is intended

for use by the guest VM, to notify the VMedia runtime that the guest has enqueued a

message in the send queue. The other signal is used by the VMedia runtime to notify

the guest domain that it has received the message. The receive queue has signals similar

to those of the send queue, except that the roles of guest VM and VMedia runtime are

interchanged.

The kernel driver, called the VMedia frontend driver, registers a V4L device with the

guest VM kernel. Applications running in the guest VM access the V4L device via V4L

specific ioctls or file access system calls (e.g. read). These calls are converted into VMedia

messages by the frontend driver, and sent to the other end via the send queue, where

the backend component of the VMedia runtime receives them and performs appropriate

actions. In response to these messages, the VMedia runtime may generate messages for

guest VMs, which are received by the frontend via the receive queue. These messages in

turn are mapped to application-specific calls.

These messages do not carry media data themselves. All media I/O takes place via

a pool of shared memory buffers shared between the guest VM and the VMedia runtime.

These buffers can also be mapped directly in application address space, thereby allowing

I/O with minimal copying.

The virtual devices we have implemented to date are those focused on the multimedia

domain, supporting properties related to a video capture device, such as image size, image

depth and palette, via the V4L interface. Properties for devices other than video, e.g.

audio and VBI, can also be provided via this interface, and this is part of our future work.

Virtual devices also support some VMedia-specific logical properties, such as orientation

and quality, exported to applications via an extension of V4L API. These properties, along

with the multimedia properties discussed above, are used by the VMedia framework to

55



compose efficient and enhanced virtualized I/O solutions. Improved performance coupled

with transparency to applications and to the guest VM’s operating system are the potential

outcomes of this approach, as shown in more detail in Section 4.5 below.

4.2.2 VMedia Runtime

The VMedia runtime realizes the self-virtualized I/O abstraction [123] with software resident

in a Service VM. The runtime is responsible for:

• scalable and isolated multiplexing/demultiplexing of a large number of virtual devices

mapped to one or more physical devices;

• providing a lightweight API to the hypervisor and guest VMs for managing virtual

devices;

• efficiently interacting with guest VMs via simple APIs for accessing the virtual devices;

and

• implementing multimedia domain-specific extensions that enable semantically en-

hanced logical virtual devices.

These functionalities can be broadly categorized as ‘management’ and as ‘I/O virtual-

ization’. For a virtual multimedia device, management functionality is provided to the hy-

pervisor and to the guest VM using the device. In addition to obvious management actions

like device creation and removal, the VMedia runtime provides additional, domain-specific

reconfiguration functionality. For example, a video capture device may allow changes in

image properties, such as colormap (color or grayscale), image depth and image size itself.

The application running on the client side may request these changes, which in turn are

sent to the VMedia runtime as management actions by the client side driver. The runtime

makes appropriate changes in the properties associated with the virtual devices, along with

any changes that may be necessary related to the I/O processing in order to satisfy these.

For example, if the image size requested of a virtual multimedia device is different than

that of physical device, an appropriate scaling filter may be installed in order to meet this

mismatch. These reconfiguration actions are discussed in detail in Section 4.2.3.
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The key functionality of the VMedia runtime is to implement I/O virtualization via

sharing of physical multimedia devices among multiple virtual devices. The runtime utilizes

semantic knowledge of virtual devices in order to perform this sharing. Since the runtime

knows about the multimedia properties of the virtual device, e.g., the direction of I/O (input

vs. output), type of content (such as image and audio), information about content (such as

image size and colormap), it can use these properties in order to build an information flow

from physical devices to virtual devices. For example, for input multimedia device, such as

cameras, images, rather than bytes, are sent to virtual devices.

The VMedia runtime is composed of multiple entities that jointly realize the function-

alities described above. These entities can be categorized broadly as (i) Physical Device

Access, (ii) Virtual Device Backend, and (iii) Media Manipulation and Dissemination.

Physical device access entities implement the media device-specific methods for obtain-

ing media data from or sending media data to the physical device, one entity per device.

For example, the data could be obtained from the USB based camera via a V4L-based

device driver, or it could be obtained over the network if the camera is attached to a remote

device, such as a cellphone connected to the host system via USB, bluetooth, or wireless.

Depending on the type of device and how it is connected to the host system, the latency

and throughput of media data will vary.

Corresponding to every guest VM frontend, the VMedia runtime contains a backend

entity. These form a point-to-point connection with the frontend, and merely work as a

gateway of information from (to) guest VMs to (from) VMedia runtime.

For input devices, such as cameras, captured media data from device access entities is

provided to the VMedia manipulation and dissemination component (VMediaMD), where

this data is transformed if required and is disseminated to the virtual device backend(s),

which then flows to the guest VM frontend. For output devices, such as speakers, media

data received from the guest VM is provided to the VMediaMD, where it is transformed

if required and is provided to the appropriate physical device access entity for output.

Currently, the VMedia framework only supports input devices, and hence, the remainder

of this discussion is limited to these devices only.
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The control flow for input multimedia devices (e.g., image capture requests and property

changes) is similar to that of media data flow for output devices, with some exceptions.

Management control requests may change the VMediaMD component itself. For example,

if a virtual camera device requests a grayscale palette, the VMediaMD component may

need to add another component to provide this functionality. Further, depending on the

sharing of physical devices, if there is a common property/functionality required by all

virtual devices and if it can be directly provided by the hardware, this control flow may

reach the physical device access components themselves. Some of the management control

decisions may only be taken at the service VM level itself, such as the orientation of the

physical device.

I/O control requests go through a minimal path of the VMediaMD component, mostly

providing arbitration. Arbitration decides which of the physical device access entities should

receive this request (there may be more than one). VMedia-specific logical properties can

also be used for arbitration. For example, a guest VM may indicate its preference for a

certain viewing area via orientation. The arbitration logic matches this preference to one

or more physical devices. Arbitration also decides whether it is necessary to forward a

request to a physical device, since it may already be involved in the I/O. The request is

only forwarded if it is not.

Media sharing in VMedia is governed by a simple arbitration principle – any request

received from the guest VM during the time when a media capture I/O is pending can

be satisfied from the result of this capture. Hence, if multiple VMs issue capture requests

simultaneously, the capture is performed only once and the result is distributed to all VMs.

This type of device sharing is a special case of space sharing, where a device can be shared

by all virtual devices at all times due to the semantic properties of the device.

4.2.3 The MediaGraph Abstraction

MediaGraph forms the core sharing infrastructure of VMedia. Implemented over an event-

based overlay network, it handles each multimedia frame as an event, propagating it through

the network. Appropriate transformations are performed on the events as they flow through

58



the network. Finally, events exiting the network are fed to the appropriate VMs.

Abstractly, the VMedia runtime entities described above and the control and data flows

implemented by them form a di-graph structure, termed MediaGraph. This graph is built

to meet the properties specified by end user applications for the virtual multimedia devices

they are using. Specifically, the MediaGraph implements efficient media dissemination by

consolidating common computations and by reducing communication costs via data filtering.

Moreover, the MediaGraph abstraction is dynamic – it can be modified when new virtual

devices are added and/or when the properties of existing multimedia devices are modified.

Such modifications are triggered by configuration events generated by guest VMs and/or

by monitored changes to devices.

Physical device access entities and virtual device backends form the edge vertices of the

MediaGraph (sources and sinks, respectively), whereas VMediaMD entities form the inter-

nal vertices. These internal vertices correspond to various arbitration and transformation

functions. Transformation functions perform the necessary conversions from the media for-

mat provided by the physical sources to formats desired by the backend at the guest VMs,

and directed edges in the MediaGraph represent the control and data flows.

A sample MediaGraph is shown in Figure 25. As seen in the figure, the cameras,

represented by the source nodes S1 and S2, generate image frames, that are then sent to

the transformation nodes T1 through T4, that perform transform operations on the images

and send the final outputs to the backend nodes K1 through K4, which provide the processed

images to the multimedia guest VMs.

The MediaGraph abstraction enables efficient sharing of the multimedia content by

avoiding redundant transformations that may be required by multiple sink nodes (backends)

in order to support the properties. For instance, the graph shown in Figure 25 combines

the common transformation T1 for backend K2, K3 and K4, thereby reducing the overall

cost paid by the VMedia runtime. Such transformation sharing by structuring components

in a di-graph is not unique to MediaGraph, similar approaches have been considered else-

where [109, 148]. Next we describe an algorithm to maintain the efficient sharing when a

sink node is added or deleted for a MediaGraph containing single source node.
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Figure 25: An Example MediaGraph

Maintaining the MediaGraph for Efficient Sharing of a Single Source The

amount of computation required to carry out the transformations in the MediaGraph is

dependent on the topology of the graph. For instance, if the source image needs to be

transformed into a grayscaled and scaled down image in order to serve a VM, performing

the grayscaling prior to the scaling down operation involves extra computation than per-

forming the other way round (since the grayscaling is applied on a larger image). Further,

the structure of the MediaGraph is dynamic, due to addition/deletion of sinks, and also

due to changing content parameters (e.g., resolution, color depth, etc.). In this work, we

use a greedy algorithm to build and maintain the MediaGraph, in response to changes in

the sinks.

To select the sequence of transformations to be performed in the graph, we group its

transformation actions along the various parameters that define the content, and further

define an ordering relation among the parameters within each group. For any two parame-

ters a and b within a group, we define the ordering relation a < b if the information content

in b is more than that in a. Using this relation, for instance, we can define the depth of

the image with the ordering 8bpp < 16bpp < 32bpp. The groups themselves are ordered

in the graph in such a manner that data reducing operations (like scaling down, for in-

stance) are closer to the sources than data increasing operations, in order to minimize the

computation costs. The multimedia content at any node can thus be represented using the

n-tuple < a1, a2, ..., an >, with each tuple corresponding to a group, and a1, a2, etc. each
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represents the parameter within its group. As discussed previously, the groups themselves

are ordered in non-decreasing order of computational complexity, to minimize the amount

of processing carried out in the transformations. An example 3-tuple is <resolution, depth,

grayscale/color>.

Algorithm 6 Addition of a sink
1: Let the sink’s required parameters be < r1, r2, ..., rn >, and the source parameters be

< s1, s2, ..., sn >.
2: if ∃k, 1 ≤ k ≤ n, such that rk > sk then
3: Change the source’s content to match < max(r1, s1),max(r2, s2), ...,max(rn, sn) >,

where max(a, b) = a, if a > b and b otherwise
4: for all j, 1 ≤ j ≤ n do
5: sj ← max(rj , sj)
6: ∀ transformation node N if input(N) 6= sj , change the transformation so that

input(N) = sj

7: end for
8: end if
9: N ← sourcenode, j ← 0 {Now, ∀k, 1 ≤ k ≤ n, rk ≤ sk}

10: repeat
11: parentnode← N , j ← j + 1
12: until ∀N , such that parent(N) = parentnode, output(N) 6= rj ,∀j, 1 ≤ j ≤ n
13: currentnode← parentnode
14: for all j, 1 ≤ j ≤ n do
15: if rj < sj then
16: Create a transformation node T , such that input(T ) = sj , output(T ) = rj

17: Connect currentnode to T , such that parent(T ) = currentnode
18: currentnode← T
19: end if
20: end for
21: Connect sink to currentnode

When a virtual camera is opened by a process in a guest VM, this action is translated to

an addition of a sink corresponding to the VM, to the MediaGraph. Conversely, when the

virtual camera is closed by the process, or if the guest VM is destroyed, the corresponding

sinks are deleted from the graph. On the addition (Algorithm 6) of a sink (with desired

content parameters < r1, r2, ..., rn >) to a source node with parameters < s1, s2, ..., sn >,

a check is performed to see if any of the desired parameters exceed the source parameters

(line 2), and if so, the source parameters are updated to the maximum of the existing and

the desired parameters (line 3), with all other transformations updated accordingly (lines

4-7). Next, the graph is traversed starting from the source node to find a maximal match of
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the desired parameters among those of the existing transformations (lines 9-12), and finally

the sink is connected to this node via necessary transformations (lines 13-20).

Deletion of a sink (Algorithm 7) begins with removing the sink node from its parent

(line 1), and then traversing towards the source node until all unnecessary transformation

nodes (those that serve no other nodes) are removed (lines 2-3). Finally, it is determined if

the source’s parameters can be lowered due to the removal of the sink, (lines 5), and if so,

carried out (lines 6-11).

Changing a sink’s parameters results in the actions of the deletion of the sink node from

the MediaGraph, followed by an addition of a sink node with the new parameters.

Algorithm 7 Deletion of a sink
1: Disconnect sink from parent(sink), set currentnode← parent(sink)
2: while |children(currentnode)| = 0 do
3: Delete currentnode, set currentnode← parent(currentnode)
4: end while
5: if currentnode = sourcenode then
6: while |children(sourcenode)| = 1 and the child is not a sink node do
7: Set N ← child(sourcenode)
8: Change source’s parameter sj to output(N) for appropriate j
9: Delete node N

10: ∀T , such that parent(T ) = N , connect sourcenode to T
11: end while
12: end if

The middleware-based approach for implementing sharing in VMedia also makes it easy

to extend the implementation to sharing of devices across distinct physical machines. As

a result, remote device sharing and local device sharing are treated by higher levels in an

identical manner. Section 4.5.5 presents an example of using a remote device via VMedia

and CustomCam (described in the following pages).

4.3 CustomCam

CustomCam [111] addresses device sharing and interoperation in the mobile domain, where

challenges for device emulation and extension are due to the diversity of actual devices,

of device capabilities, and of the contexts in which they operate. Additional challenges in

the mobile domain are caused by the fact that virtual machine migration, an important
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function in virtualized systems, will be difficult [121] without functionality in addition to

that provided by commercial products for data centers [150]. For instance, an approach that

allows VMs to maintain a consistent view of physical devices by presenting only a common

minimal set of device features is too limiting and worse, it cannot account for changes in

the environmental conditions or contexts in which devices are used.

Device sharing and interoperation in mobile systems requires models and interfaces with

which virtualization infrastructures can dynamically change device functionality to account

for runtime changes in device use, conditions, and contexts. Hence, CustomCam implements

the safe, runtime extension of device functionality, by enabling the virtualization layer, guest

operating systems, or applications to safely specify and deploy custom code that runs in

conjunction with device accesses. This approach entails a number of benefits, as detailed

below:

• It provides a uniform view of devices to VMs, independent of the physical host. For

instance, a TCP network device may be implemented in software, by providing the

TCP stack to the virtualization layer, or in hardware, by exploiting the TCP offloading

functions of an enhanced network interface [161]. The VMs using such a device need

not be cognizant of how the TCP device is realized.

• It can be tuned to available hardware resources. For instance, in the previous example,

a node lacking a network interface supporting the offloading feature may instead have

a coprocessor that can be used to implement the feature [123], without the VM being

aware of this fact.

• It enables efficient use of remote devices. For instance, an imaging application that

requires only those frames captured by a remote camera that contain specific features

can provide feature selection code that determines said features. Such an extension can

use this code to filter traffic, providing only the frames of interest to the application,

thereby reducing communication and computational overheads experienced by the

application and the platform on which it runs [34].

• It opens up new possibilities for sharing device functionality. Extending the previous
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example, when multiple VMs are interested in the same image features, common data

can be shared at the device driver layer itself.

A known problem associated with the runtime extension of system-level software by

applications is safety [27], where faulty or even malicious code injected by applications into

the system layer can affect the behavior of other VMs that rely on the system. In our

implementation, we use the split device driver model afforded by the Xen hypervisor, on

which we implement an overlay-based middleware framework in the device backend (i.e.,

in the device driver layer). This middleware permits the runtime extension of overlay

functions by allowing arbitrary code fragments to be included into the overlay, i.e., into the

device feature set, at any time deemed appropriate by the application. Safety is attained

by use of dynamic code generation, where code fragments specified in a safe subset of the

C language [47], and runtime binary code generation guarantees that such code cannot

damage other elements of the device driver layer.

The EVPath middleware used by VMedia backend makes it possible to compose higher

level services or applications as sets of computations that can filter events, forward them,

or transform them. These computations are specified in ECL (a subset of the C language

supporting loop, conditional, and return statements), and hence they can serve the needs

of individual applications and diverse devices. Further, ECL uses dynamic binary code

generation to deploy specified computations into stones, supporting an anywhere, anytime

code deployment model. Finally, for complex computations, the option exists to associate

pre-compiled shared object modules with stones. Jointly, these features constitute a pow-

erful means for dynamically extending the methods used for device access and control. We

next explain how these are used to create custom camera devices in mobile settings.

4.3.1 CustomCam Architecture

Extending the basic V4L API, CustomCam provides an ioctl interface to the video driver

for managing custom functionality, adding the request codes vidioscustom and vidiog-

custom to the existing set of V4L codes. These commands are used to set and get the

custom functions associated with CustomCam, respectively. The prototypes of these calls

64



V4L
frontend

V4L
frontend

V4L
frontend

VMedia
backend

f()

g()

dom2

dom3

dom1

dom0

process1

process2

Figure 26: CustomCam Example Usage

are as follows:

int fd;

char *func;

int ioctl(fd, VIDIOSCUSTOM, func); // set

int ioctl(fd, VIDIOGCUSTOM, func); // get

A custom code, represented as an ECL function, is passed as a string argument. The first

call sets the custom function to the string passed as func, whereas the second call obtains

the current custom code. An example ECL function is shown in Section 4.3.4.

The overall architecture of CustomCam is illustrated with an example in Figure 26. Im-

plemented as an extension of VMedia, CustomCam is shown serving three domains, dom1-3,

all using the custom functionality feature. Stones are represented as ovals/circles. On the

receipt of a vidioscustom ioctl call, the backend creates a new process (process1 in the

figure, for domain dom1), and creates a stone within the process, deploying the given cus-

tom function to it. Next, it also makes the connections between output from the VMedia

backend, as well as to the domain-specific backend. The domain-specific backend is linked

with the frontend using Xen’s event channel mechanism. In the absence of the vidioscus-

tom call, the output from the VMedia backend is directly sent to the frontend, without

any overheads. A NULL function passed via the vidioscustom call undoes any previous

custom functionality already set, by freeing the stones and terminating the corresponding

process.
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4.3.2 Code Isolation and Accounting

In order to conform with the goals of virtualization, namely, providing isolation between

VMs, every custom function is executed in a separate address space. As a result, a VM

injecting malicious code will end up corrupting only its own device accesses, and other VMs

are not affected. This allows mutually untrusting VMs to share the same device, with the

illusion of exclusivity maintained.

In addition to the isolation mechanism, guest VMs can also benefit from recovery func-

tionality. To handle cases where a VM ends up corrupting its custom functionality be-

cause of malicious code, the parent process can periodically check the status of its children

processes and create a new process to continue serving the VM. On the other hand, the

designer can also decide to notify the affected VM via an error code, on the next operation

performed, thus allowing the VM to take its own recovery actions. The error notification

already supported by CustomCam can be easily extended to perform such recovery.

Although custom functionality is performed in separate address spaces, such function are

always run within the service domain, or dom0 – the domain that handles all device I/O. We

exploit this fact to implement performance isolation. Specifically, since dom0 implements

the functionality on behalf of the corresponding VM, accounting is performed by having each

child process in dom0 periodically track its resource usage, using the SystemV getrusage()

call. It shares this information with the VMM via hypercalls. In Xen, the VMM, then, can

use this information to track the resource usage (and limit it, if needed) in the driver domain

by each guest VM. This information, in conjunction with the information the Xen scheduler

already maintains about the guest VM (i.e., time spent in various runstates – running,

runnable, blocked and offline) can then be used to ensure fair resource allocation across each

guest VM and the associated dom0 resident device extension functionality required/used

by the guest. An extension of this functionality can provide support for Quality of Service

(QoS), by making the underlying VM scheduler aware of the QoS needs of individual VMs.
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4.3.3 Sharing in CustomCam

A potential advantage of solutions like CustomCam is the ability to share code and code

executions across multiple clients. In CustomCam, the results of certain custom code could

be shared by several mutually trusting domains that require the same functionality. This is

achieved by maintaining a list of the custom codes set by VMs. If a new VM requests setting

a custom code, it compares this against the list, and if a match is found, the overlay’s stones

are appropriately linked in order to share the same resources. The current implementation

uses a simple string-based comparison of the codes, but a more sophisticated matching

mechanism based on formal methods, or comparing the intermediate representations of the

codes, can be used to detect nonidentical codes with the same functionality. In the example

shown in Figure 26, domains dom2 and dom3 share the custom code defined by g().

Since isolation is absent, it is important that only mutually trusting domains share their

resources. Furthermore, in such cases, the resources spent in executing the custom code are

accounted for equally across all the domains sharing it. We have not yet considered more

sophisticated accounting methods. A related problem addressed by CustomCam is code

reuse, where custom codes previously used by a domain are not discarded but saved for

future use [152]. In response to new domains requesting the same custom code, the existing

resources are simply reused, thereby speeding up code deployment.

4.3.4 CustomCam Usage Scenarios

All ECL functions in EVPath accept an input and an output as their parameters, and

return an integer value. This return value determines whether the data should be further

processed or dropped (depending on whether it is non-zero or zero, respectively). In Cus-

tomCam, this can be used, for instance, when an application requires images conditionally.

An example is an application monitoring an area of interest that may be lit or not. If the

application desires images from the camera only if the area is lit, it may select a custom

code that performs this check and returns the image only if the check is successful. This

functionality is particularly useful when the camera is remote because unnecessary frames

discarded ‘at the source’ do not needlessly use potentially scarce network resources. Further,
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though ECL codes allow some state to be maintained, it is primarily used for event-based

computation, and hence, no state is assumed. This is especially important with VM mi-

gration. CustomCam maintains the state of the device entirely in the frontend, and hence

state-maintenance during migration is handled by the VMM.

CustomCam makes it easy to use specialized hardware. For example, in the presence

of an on-board DSP processor, some image processing functions specified via ECL can

be executed directly on the specialized processor. In mobile domains, this can also be

realized by offloading this functionality to a nearby, more powerful processor. Allowing the

CustomCam implementation to make such choices based on currently available hardware

frees the individual guest domains and their applications from adapting to platform specifics,

including during VM migration.

The concepts embedded in CustomCam can be extended to other sensor devices. Since

applications using sensor data typically perform continuous data acquisition and processing,

they can potentially benefit from use-specific device customizability.

4.4 Implementation Details

The VMedia runtime is implemented as a user space application in the Service VM (Dom0)

which completely encapsulates the I/O virtualization for the multimedia devices. Backend

entities communicate with the frontends in guest VMs via Xen VMM-specific communi-

cation mechanisms, which provide for the shared message queues and signaling. Different

physical device access entities are run as separate threads to provide maximize concurrency

in the runtime. These threads use device-specific methods for I/O. For example, for a USB

based camera, the corresponding thread uses V4L ioctl calls for image capture, similar to

applications such as camE [3]. For a cellphone based camera, the corresponding threads

communicates with a server process running on the cellphone that provides images over

network.

For information dissemination between these edge nodes of the graph and to implement

VMediaMD entities, the runtime utilizes an event-driven middleware, called EVPath [4].

EVPath allows data flow as events among nodes of an overlay termed stones. Stones can
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perform event processing, and can can transform an input event to an output event, possibly

of different type, before passing it on to another stone. Stones can also perform routing

decisions based on the event contents. This allows EVPath to perform content adaptation,

which is required to support the logical functionality provide by VMedia.

The VMedia framework allows two types of logical functionality – one encoded in the

V4L attributes of the virtual device itself, e.g. image size and colormap, the other com-

pletely based on guest VM. In the former case, the VMedia runtime installs well-defined

processing entities as stones in the MediaGraph. For example, if the image size of a virtual

device is smaller than the physical device, a stone containing a scaledown filter is installed

in the MediaGraph. Other filters, such as crop and grayscale, are installed in a similar

fashion. VMedia also allows further predefined logical functionality via the extension of

V4L attributes. For example, a virtual camera device may provide image data in specific

image formats, such as JPEG and PNG. These functionalities can be provided in a manner

similar to the earlier ones. These image processing-specific functionalities are implemented

using the Imlib [5] library.

Current VMedia implementation as a user level application is one of the many possible

ways to implement services in a virtualized environment. Another approach would be to

implement this service at the kernel level in the dom0. It is also possible to build spe-

cialized domains for providing this service [18]. Although a detailed comparison of various

approaches to implement VMedia functionality is out of the scope of this dissertation, we

argue that a user level implementation provides certain advantages over other approaches.

Specifically, current implementation allows for better debugging and ready reuse of many

other software components, while providing reasonable performance tradeoffs. By utilizing

shared memory communication channels, most of the data movement happens without any

involvement of the dom0 kernel and Xen. Only time the dom0 kernel must be involved is to

route signals between guest VMs and VMedia runtime. Since such signals are sent on a V4L

message granularity (e.g., after the complete image has been transferred to the guest VM in

response to a read), we anticipate that the overhead imposed by the user-kernel transitions

in dom0 for VMedia runtime has minimal effect on the overall VMedia performance.
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4.5 Experimental Evaluation

We evaluate the VMedia framework on a desktop system with 3.2GHz dual-core Pentium-

D processor and 3GB of RAM. To this machine are attached a Kensington SE401 USB-

based camera, and a second Motorola e680 cellphone with a built-in camera. The e680

cellphone runs the Linux 2.4.20 kernel and is connected to the desktop via USB. The

camera communicates with the desktop using the TCP/IP protocol, supported by a virtual

network driver over USB stack. Service VM (Dom0) running VMedia runtime is allocated

512 MB RAM and one of the physical CPUs, and runs the Linux 2.6.16 kernel. The other

CPU is shared among guest VMs, as determined by Xen’s scheduling policy. The VMM

virtualizing the desktop system is Xen version 3.0.3.

4.5.1 Overheads of VMedia Framework

This set of experiments quantifies the overhead of multimedia virtualization via the VMedia

framework, measured as the difference between the latency of image capture experienced

by a guest VM from the virtual multimedia device and the latency of image capture ex-

perienced by the VMedia framework from the physical device. This overhead includes the

cost of transformations performed on the media data (computation), and its dissemination

to virtual device frontends (communication). The content is delivered only to those virtual

devices that request it, even if these virtual devices share some (or all) of the VMediaMD

components with other devices that did not request it. For these experiments, the image

properties (size, palette etc.) for virtual and physical media devices are kept the same, so

the only overhead incurred is due to dissemination.

The scalability of VMedia is demonstrated by increasing the number of VMs and mea-

suring the amortized overhead. As the number of VMs is increased, transmission costs of

VMedia runtime increase as media data needs to be disseminated to more and more VMs.

However, the latency of image capture as experienced by a guest VM depends on the amount

of sharing, as the cost of a physical I/O gets amortized over multiple virtual I/O requests.

To capture this sharing effect, we only account for the net positive overhead experienced by

a guest VM, which includes VMedia’s dissemination cost. We average over all net positive
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overheads experienced by N VMs sharing a physical device, and report it as amortized

overhead. The overall cost of virtualization also increases due to scheduling, since context

switching of VMs is required on a single CPU. In future multi- and many-core systems, the

scheduling costs will be smaller, or even negligible, if there are enough physical CPUs.

We compare the VMedia overhead with a time-sharing approach of virtualizing the

multimedia device. In this approach, every guest VM image capture request results in a

image capture from physical device. In the presence of no contention, this approach is

comparable to VMedia. However, in case when multiple VMs require access to the media

device, the overhead of this approach not only includes communication of media data from

the service VM, it may also include image capture latency from physical device for another

VM. The overhead of this approach, hence, is always positive, and we report the average

overhead per request.

We evaluate both VMedia and time-sharing approaches in two scenarios. In one scenario,

termed ‘no-wait’, VMs successively request image capture from virtual devices without any

wait between them. In another scenario, termed ‘random-wait’, a VM waits a random

amount of time between [0, 1] seconds before making another request.

Figure 27 compares the overheads of VMedia and time-sharing approaches. For a single

VM, the overhead of both the approaches are negligible. However, as the number of VMs

increase, the overhead of time-sharing approach increases rapidly, including multiples of

physical capture time as a factor, in both ‘no-wait’ and ‘random-wait’, with latter being

slightly better than the former. The overhead of VMedia approach also increases, but only

due to the communication cost of VMedia and context-switching cost of VMs. Both of these

overheads are small when compared to the physical capture time. The overall overhead of

I/O for an image capture from the virtual device with increasing number of guest VMs

becomes as high as ∼ 25% of the overall virtual device capture cost.

For each scenario, we also present the sharing factor, which demonstrates the underlying

approach’s ability to share the device, the higher the better. This factor is calculated as∑N

i=1
captures from virtual device i

captures from physical device , N being the number of guest VMs. Figure 28 compares

the sharing factor for different virtualization approaches in two scenarios, as mentioned
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Figure 27: Overheads (y-axis is log-scaled)

Figure 28: Sharing Factor

earlier. For perfect sharing, the sharing factor should increase linearly with increasing

number of guest VMs. However, due to high context switching costs, we observe the best

case sharing factor to be ∼ 8. The sharing factor of time-sharing approach is always 1, since

every virtual capture request results in a physical capture request. The VMedia approach

attains best sharing factor for the ’no-wait’ case, while the sharing factor reduces as the

contention for the physical device is reduced in the ’random-wait’ case.

These results show that the VMedia framework shares physical devices efficiently, which

in turn contributes to its performance and scalability. Further, using higher level ‘V4L’

requests, the no-sharing passthrough type virtualization for a single VM can be achieved at

a lower cost than, e.g., using USB level requests [84] – where every single USB level request

adds an overhead of about 25%.

4.5.2 Enhanced Functionality Sharing

Results in the previous section demonstrate the performance benefits derived from device

sharing and the consequent amortization of I/O costs. However, using MediaGraph, the

VMedia framework affords further benefits by sharing at the logical level. To demonstrate

the benefits of enhanced sharing via the MediaGraph, we construct the following scenario.
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Figure 29: Enhanced and Naive Sharing

Four guest VMs are created in Xen – two VMs, VM1 and VM2, require images of size

640x480, while VM3 and VM4 require images of size 160x120. VM4 also requires grayscale

images. We compare two approaches to sharing – the naive way, where the VMedia frame-

work only shares the physical device and any transformations are performed by the guest

VMs themselves and the enhanced way, where the VMedia framework also performs any

required transformations. These transformations are derived by the framework based on

the parameters of the virtual devices, namely image size and color palette.

In this case, since the MediaGraph reduces the amount of redundant transformations

performed, we expect to see lower processing costs. As shown in Figure 29, since all

transformation-related processing is performed in the Service VM with the MediaGraph,

we see a higher cost. In the naive sharing case, the images are simply sent to all VMs. How-

ever, the guest VMs perform all of the transformations in the latter, which is completely

absent in the former. The overall costs, as shown in the figure, are almost 50% lower due

to elimination of redundant computation.

4.5.3 Dynamic Restructuring of MediaGraph

In this section, we quantify the overheads of VMedia framework associated with dynamic

restructuring of MediaGraph. Restructuring is performed in response to the management

actions performed on the virtual media devices. These actions include opening and closing

of devices, and changing their properties, such as image size and color palette, via ioctl

calls. The framework translates these actions into MediaGraph modifications, as described
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Figure 30: Number of Distinct Frames from Two Cameras in Response to Changing Frame
Differentiation Threshold.

earlier in Section 4.2.3. The modifications require creation and removal of nodes from the

graph, which in turn require EVpath stones to be added/removed.

We measure the cost associated with a management action as (1) the time it takes

VMedia runtime running in dom0 to carry out the modifications, and (2) the amount of

change in the MediaGraph resulting from these modifications. Since the removal of stones

takes significantly less time compared to their additions, we only consider the number of

stone additions as the metric for the amount of change in the MediaGraph. Figure 31

depicts these results. On x-axis, we vary the number of VMs (and hence the number of

virtual devices). Each VM performs 100 management actions related to device property

changes. Each action is drawn randomly-uniformly from a set of 5 such changes - 3 related

to image size changes and 2 related to color palette changes. Each VM also waits for a

random amount between [0, 1000) milliseconds, between two consecutive actions.

Results demonstrate that with increasing number of VMs, the average cost per action

decreases, since the cost of MediaGraph change could be amortized over actions from differ-

ent VMs. Also, the amount of change required for MediaGraph increases sub-linearly. Put

differently, the amount of change per management action decreases with increasing number

of VMs. This explains the decreasing average cost of management actions.
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Figure 31: Management Cost of VMedia Runtime

4.5.4 Enhanced Logical Devices via Multi-Device Aggregation

Depending on the requirements of a guest VM and the availability of physical devices,

certain services can be composed that allow a guest VM improved quality of service. For

example, if a guest requests a wide image (of aspect other than regular 4:3), VMedia can

aggregate images from multiple cameras either horizontally and/or vertically. Similarly, if

a better resolution image is required, e.g. 640X480, but physical cameras can only provide

320X240, four such cameras can be aggregated. This is better than just using scaling –

since it will not result in any quality loss. This can be further extended with additional

processing to create a video wall [153]. Table 6 shows the microbenchmarks for a virtual

camera device created by the concatenation of two cameras, the USB camera and the

cellphone camera. The cost of physical device capture is taken as the maximum of these

two devices, which corresponds to the cellphone camera. VMedia framework overhead

includes the concatenation transformation action and the communication cost, and is very

small compared to I/O latency.

Another example of aggregation is to use multiple media capture devices, possibly with

a phase lag, in order to minimize the average latency of media access to guest VMs, where
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Table 6: Cost Components for Multi-Camera Aggregation via Concatenation
Cost (ms) Cost (% of Vdev Cost)

Vdev Capture 622.023 100
Phys Capture 619.624 99.61

Transformation 0.907 0.15
Communication 0.366 0.06
Miscellaneous 1.127 0.18

these devices are sampling the same environment. For example, for a single continuous

image source with interframe latency L, average latency for capturing an image is L/2 –

assuming accesses arrive randomly over a uniform distribution. However, by using two such

image sources, and running then with phase lag L/2, the average latency can be reduced to

L/4, effectively doubling the frame rate. To demonstrate the viability of this approach, we

use two cameras, one USB and one cellphone camera, to capture frames in parallel, in a time

period T, and timestamp them. The latency of frame capture from USB camera is ∼ 200ms,

while from cellphone camera, it is ∼ 600ms (∼ 300ms of which is the core physical capture

latency on cellphone and rest of it is the network transfer over USB to desktop machine.)

Next, we coalesce i’th frame from device 1 (fi,1) and j’th frame from device 2 (fj,2), iff

|Tfi,1
− Tfj,2

| < δ, where δ is the frame differentiation threshold. This threshold quantifies

the difference in media content, and hence the value, provided by successive frames captured

by different devices. At lower values of frame differentiation threshold, the added value of

extra frame is less. The resultant number of frames denote the valuable content. We plot the

resultant number of frames obtained in a 2 minute time-period against different values of δ,

as shown in Figure 30. The result shows that the aggregate device can achieve more distinct

frames than a single camera, and hence can provide better frame rate to the clients. Note

that for high values of δ, the number of distinct frames are small, and asymptotically reach

the number of frames provided by the faster device (∼ 580 in this case), thereby limiting

the benefits from using multiple devices. For lower values of δ, the number of frames are

larger, although the difference in media content may be smaller, again limiting the benefits

from using multiple devices.

Alternatively, such services can be created in the guest VM itself – if we provide one
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Table 7: Costs of CustomCam ioctl Operations
Operations Cost (ms)
VIDIOSCUSTOM 16.11

Process creation and setup 11.96
EVPath operations 4.11
Miscellaneous 0.04

VIDIOSCUSTOM (Sharing) 0.12
VIDIOGCUSTOM 0.03
Undo VIDIOSCUSTOM 1.16

virtual media device per physical device. This can be accomplished, e.g., by the VMedia

framework itself, by creating multiple MediaGraphs, one for each physical camera. The

passthrough access to physical devices can be utilized in a similar fashion. As argued

earlier, the latter approach does not provide sharing, and hence is of little interest. We

believe that a single MediaGraph with support for aggregation is better than aggregation

in guest VMs, for the following reasons:

• The guest VM implementation couples virtual devices with the physical environment,

e.g., in number of devices and their orientation. This is usually a concern in virtualized

environments, since a VM may be migrated to a different physical platform. Hence,

the service implementation on guest VMs must be able to adapt to any changes in

the physical platform. This adds complexity for VMs. By keeping this functionality

purely in the VMedia framework, the framework – local to a single physical platform

– provides a better way to provide this service.

• A single MediaGraph allows for enhanced sharing, in case aggregation is utilized by

multiple VMs. Computations for logical functionality can be performed once, and

results can be shared among multiple guest VMs.

4.5.5 CustomCam Evaluation

We conduct microbenchmarks on the ioctl() operations supported by CustomCam. This

consists of a VIDIOSCUSTOM, VIDIOGCUSTOM and a NULL call that undoes the operations of

a VIDIOSCUSTOM. The results are shown in Table 7.

As shown, process creation takes up roughly 75% of the overall cost of setting up the
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Figure 33: CustomCam vs. User-space Transformation

custom code, and EVPath operations take up most of the rest, with an overall cost of about

16.11ms. Since only the first such call needs to perform these actions, with all subsequent

calls simply sharing the same process and stones, subsequent calls require only 0.12ms.

Undoing the VIDIOSCUSTOM call, i.e., freeing the process and the stones, costs roughly

1.16ms, whereas getting the custom code is a very light-weight operation, since it involves

only a send to the appropriate domain.

Next, we apply example custom codes and compare them against executing the respec-

tive code within the domain. Figure 33 shows these costs for three image transformation

codes drawn from real world applications – grey scaling, linear contrast scaling and edge

detection. On average, the performance attained using CustomCam is very close to that

when transformation is performed within a domain, in user space. It is to be noted that
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Figure 34: Jitter Comparison

Figure 35: Remote vs. Local Access

these ECL codes were hand optimized due to the absence of many optimizations in binary

code generation. Since the binary code generator is designed to be invoked during run-

time and has a limited memory footprint, its output is unable to match compiler generated

code’s optimizations. This can be rectified by enabling the execution of functions in shared

objects. The loss in portability of such a scheme is traded off against the gain in code

performance.

Figure 32 plots the latency observed for each read access, over multiple reads performed

continuously. Three cases – (i) reading the image, (ii) reading the image when transfor-

mation is handled by the CustomCam, and (iii) reading the image with transformation

handled by the user space – are compared. The figure shows that with CustomCam, the jit-

ter is mostly comparable to and only slightly higher than for the other two cases. Since the
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transformation action runs in the user space of a different domain(dom0) in CustomCam,

scheduling actions on both the domains affect the latency of its reads. However, Figure 34

shows the effect of number of VMs on the jitter observed. Grey scaling is used as the trans-

formation, and with CustomCam, this code is shared among the VMs. Jitter is measured

as the standard deviation of read latencies. As the number of VMs is increased, the jitter

experienced by CustomCam and raw reads stays almost constant, whereas with user space

transformation, the value increases rapidly. These benefits are achieved due to sharing: as

CustomCam allows different VMs to perform their transformations in a centralized manner,

repeated switching among VMs is reduced.

The final portion of the experiments are conducted across two instances of CustomCam,

running in two separate nodes linked by a Gigabit ethernet switch. A domain served

by CustomCam makes use of a remote camera, which is physically accessed by another

instance of CustomCam. Reads are performed on the devices repeatedly and the latencies

measured. As seen in Figure 35, remote reads incur slightly higher latency and jitter than

local ones. The remote CustomCam implementation has a slightly higher cost and jitter

than performing a remote read and carrying out the transformation itself locally, in user-

space. However, if the transformation can also perform filtering – i.e., selectively allowing

remote images depending on their content, unnecessary reads can be avoided. CustomCam

allows this functionality whereas the user-space transformation does not.

4.6 Discussion

VMedia and CustomCam demonstrate the role that middleware could play in presenting

device enhancements to VMs. The implementation details of the devices can be hidden

from the VM effectively using such techniques. However, depending on the implementa-

tion, middleware failures, if not appropriately handled or exposed to the VM, may present

problems due to the VM’s assumption of the existence of physical devices. It is also noted

that overuse of these functionalities may lead to increased dependence of the VM on other

domains’ capabilities.

However, this separation also presents several benefits including those discussed in the
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chapter. A key benefit is to allow existing software including the operating systems, to work

with rapidly improving hardware functionalities. Recent trends indicate the penetration of

multi-cores in everyday computing. Coupled with a sensor-rich environment that future

mobile platforms are expected to work in, techniques outlined in this chapter permit these

hardware improvements to occur independent of slower adaptation of existing operating

systems code. An extension of this concept to include services, as shown in the next chapter,

provides more opportunities to decouple software and hardware units.

81



CHAPTER V

VIRTUAL COOPERATIVE PLATFORMS WITH V(IRTUALIZED)

SERVICES

Chapter 4 addressed the sharing of local/remote devices among virtual machines, using

middleware-based services. In this chapter, we extend this theme, to include arbitrary

services to be offered, used and shared in this manner, and offering several capabilities to

the virtual machines, found useful in the mobile/pervasive environments. We also show how

arbitrary middleware can serve as the backend for such an implementation.

In this chapter, we address the problem of creating consistent and uniform execution

environments for guest virtual machines and applications in mobile systems. The approach,

termed Virtualized Services (VServices), enhances the execution platforms provided by hy-

pervisors (or Virtual Machine Monitors, VMMs) with additional mechanisms and methods

to virtualize the services required by guest VMs. Since service virtualization is performed

at a higher level of abstraction than the devices virtualized by typical VMMs, opportunities

are created to introduce optimizations to improve resource utilization and access and/or to

share services so as to remove redundancies in their use. In addition, new or enhanced de-

vices and device capabilities can be supported, without introducing additional complexities

into guest VMs. Similarly, service realizations can be based on physical devices, on software

enhancements of such devices, or on software device emulations. Finally, remote service ac-

cess, even with mobility, can be implemented with any or multiple of the many existing

middleware-based access methods, without requiring guests to adopt specific middleware

solutions (e.g., .NET vs. Java).

Basic properties of VServices demonstrated in this dissertation include the following:

• low overhead of service access and activation,

• high performance in service execution, and
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• opportunities for service consolidation leading to improved efficiency in resource use

5.1 Design of Virtualized Services

Services afford the clean separation of an implementation from its use, and are a popular

option for separating levels of abstraction in software. They may exist within a single

machine, such as system calls, or across machines, like remote procedure calls. They may

also differ in their interaction types (request-response, publish-subscribe, etc.) or their

interfaces (object-based, web-based, etc.). This generality in services lends them applicable

to a variety of scenarios. As a result, several middleware techniques rely on service-based

architectures [112] to interact with applications.

In current virtualization mechanisms, devices are virtualized using hosted virtual ma-

chine architecture [139] (or a similar mechanism), where one domain (termed the ‘host’)

is permitted direct access to the physical devices (using the corresponding device drivers

belonging to the OS running in the domain). I/O from other domains are directed by the

hypervisor to the host, which mediates access to the device. Paravirtualization techniques

use a similar mechanism – for instance, Xen uses a split driver model where device I/O of

guest domains are handled by the frontend device driver within the domain, which inter-

acts with a backend in the control domain via the hypervisor’s sharing infrastructure. The

backend uses native device drivers to directly access the hardware.

In order to support this mechanism, modern virtualization techniques support methods

to share memory among VMs, in addition to low latency message passing between VMs.

Device virtualization is then built on top of this infrastructure by using the memory sharing

mechanism to transfer data and the messaging to emulate interrupts. For instance, Xen

supports the event channel interface coupled with shared pages for these purposes [118].

5.1.1 Virtualized Services Architecture

Virtualized services reuse the same mechanisms used by VMMs for device virtualization.

Shared memory is used to transfer data between the service provider and the consumer, and

the messaging infrastructure is used for control (such as initialization, parameter changes,

shutdown, etc.). Although these mechanisms do not impose any restrictions on the service
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interfaces and hence allow general services to be implemented, we reuse the file-based inter-

faces commonly used in all UNIX-based systems for the following reasons: (i) this interface

is standardized so that adapting it to non-UNIX platforms is also straightforward, (ii) it

makes bundling services with existing devices simpler, and (iii) since operating systems have

been optimized around this interface, its efficiency does not pose a concern.

The overall architecture of VServices, as implemented in the Xen VMM hosting two

Linux domains is shown in Figure 36. The domain dom1 acts as a service provider, and an

application in domain dom2 uses this service. The OS inside dom2 provides a device frontend

which exports a /dev/service file as a character device (termed service device). Any

application needing to use the service accesses the service device via regular file operations,

which are translated to the appropriate commands by the frontend device driver for the

service, which in turn are exchanged with dom1 via the event channel interface provided by

the hypervisor.

In the remainder of the section, we discuss the design and implementation of two types

of services – directory, and group communication services, both realized using the VServices

architecture.

5.1.2 Directory Service

A directory service uses a request-response based interaction to perform directory lookups

based on request parameters, and serve the information retrieved back to the requester.
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Table 8: File operations and service semantics
File operations Directory Pub-Sub
open init init
close cleanup cleanup
write send request publish event
read receive response receive event
select/poll wait for response wait for event
ioctl control operations channel management

Common directory services include Domain Name Service (DNS), and LDAP-based address

book or yellow pages lookups. A virtualized directory service implementation propagates

writes to the service device into the domain that hosts the service (or acts as a proxy to the

service). Here, the write is translated to a request call. The response returned by the service

is communicated to the requesting domain via a soft IRQ. Upon a read, this response is

passed on to the application. Additionally, ioctl() calls exported by the service device are

used to set and get parameters (server name, buffer sizes, etc.). Errors from the service are

transparently reported as appropriate file access errors. Due to the generic nature of the

interface, this service can be extended to work as RPC service (Sun-RPC, XML-RPC) or

web services (SOAP-based) with light modifications.

5.1.3 Group Communication Service

The group communication service is realized using an event-based publish-subscribe middle-

ware. Pub-sub middleware provides transparent construction and maintenance of multicast

trees among participating nodes in a group, and exposes simple interfaces to enable com-

munications (via publish and subscribe). In the virtualized group communication service

implementation, writes from the application are translated to publish calls, and received

events are passed to the application when read calls are issued. As in the directory ser-

vice, ioctl() calls are used to set and get parameters (buffer sizes, for example) as well as

to initiate control actions (creation of a channel, subscribing to a channel, etc.). Table 8

summarizes the interfaces used by these services.

VServices are accessed by applications via the service device, and hence require applica-

tions to use the device interface instead of service calls. In order to allow legacy applications
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to use this interface, a library is used to provide wrapper calls that translate service calls

to device accesses (Figure 37). Applications using the service via dynamic libraries require

no changes to use VServices. However, those that are built via static linking need to be

rebuilt to link with the wrapper library.

The entire state associated with each VService is stored in the guest VM’s frontend (in

addition to in the backend), and hence requires no changes to the implementation of VM

migration. On the commencement of migration, the backend simply discards its copy of the

state corresponding to the VM, and the state is communicated to the backend on completion

of a migration, which is then handled by the new backend. For instance, the channel

identifier of a pub-sub channel is stored in the frontend as well as in the backend, and on

migration, the new backend acquires the ID from the frontend and completes subscription,

while the old backend unsubscribes from the channel and discards the channel ID.

Although VService has been implemented and demonstrated using network-based ser-

vices, it must be noted that it is not limited to such services. For instance, other capabilities

such as vector processing, cryptographic operations, etc. can be offered as local services via

the VService interface.
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5.2 Virtualized Services Management

As VServices provide centralized implementations of service functionality, they present op-

portunities to improve service management, either via performance optimizations or quality

management, discussed next.

5.2.1 Performance Optimizations

The two primary capabilities enabled by the centralized service implementations in VSer-

vices are

• Concurrency: As many service implementations within individual domains are avoided

and the corresponding service access stack eliminated (for instance, a domain running

a SOAP client application can get rid of its own implementations of HTTP and the

entire network stack), this leads to lightweight OSes in guest domains with smaller

memory footprints. The consolidation of the implementations also leads to more

efficient scaling as compared to the isolated case. Additionally, any specialized pro-

cessor/other hardware in the platform that can speed up service implementations can

be utilized effectively, especially if a guest OS does not possess capabilities to handle

the hardware.

• Sharing: VServices enable the semantic information exchanged upon their use, to ex-

pose opportunities to share functionality. For instance, consider a virtualized DNS

service where DNS requests and responses from guest domains are relayed to the

nameserver, by the backend at the control domain. If the backend now caches the

responses for the various requests locally, the responses to previously unrelated re-

quests from separate domains can possibly be sped up. On the other hand, sharing

also opens up potential security/privacy concerns. In the same example, a domain

receiving an immediate response to the first DNS request it makes could infer that

some other domain had recently made the same request.
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5.2.2 Quality Management

Another benefit of semantically higher-level virtualization is the opportunity to specify and

implement meaningful Service Level Agreements (SLAs). For instance, instead of guarantee-

ing network packet level metrics agnostic of the data movement, content-based service level

guarantees can be provided. These can also be enhanced with policies for sharing services

among domains, to address security related issues that arise as discussed in Section 5.2.1.

Further, the ability to decouple the quality of service implementation for a domain from its

scheduling priority is also enabled, giving greater flexibility.

5.2.3 Limitations

VServices provide benefits as outlined in Sections 5.2.1 and 5.2.2, besides enabling the

innovative functionality discussed in Section 5.3. On the other hand, VServices virtualize at

levels of abstraction – at the application level – for which there may not exist well-defined,

standard APIs. This can be remedied by emulating the standard file- or object-based

interfaces used in operating systems or by exploiting subsystem-specific standards (e.g.,

using the Linux v4L interface [124] or the T10 standard for object-based file systems [120].

Another remedy is to use wrapper libraries OS virtualization, of providing an abstraction

that is closest to the bare hardware [151]. An issue with all such solutions, however, is that

during VM migration, additional support is required for dealing with the VServices being

used. Since standard hypervisors do not provide such support, this results in the need for

extensions in the ‘host’ domain.

5.3 Device Enhancements

Reusing the split driver model designed for devices to implement VServices provides several

means for transparently provisioning these services along with an existing device driver

interface. Examples include extending device functionality, device emulation (discussed

in Sections 5.3.1 and 5.3.2), device remoting (linking a local device driver with a remote

device), device consolidation (using the functionalities of different devices to present a single

emulated device), device functionality isolation, etc.
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5.3.1 Extending Device Functionality

Extending an existing device’s functionality is useful in some scenarios. An example of this is

providing a uniform set of functionalities to guest VMs, independent of the physical device’s

capabilities. Any deficiencies in the capabilities are made up for using services that emulate

these features. For instance, Linux uses the common Video4Linux(v4l) device driver API to

access multimedia devices such as camera, TV/radio tuners, encoder/decoders, etc. Here it

is possible to provide a TV/radio tuner functionality to the VM even though the physical

device may not support it. The multimedia streaming content for the tuner device can be

provided by a service. In this work, we use the capabilities of a USB-based webcamera to

provide a v4l interface to the guest VMs, but enhance it to provide TV tuner capabilities

as well, and rely on the service backend to subscribe to a channel in a publish-subscribe

middleware for the media content. Figure 38 shows the design of such a device.

This mechanism can be further extended to provide capabilities that do not exist in any

physical devices at all. For instance, content from a location-based information service can

be overlaid on content from the camera to provide location-based images. An example of

such a functionality is achieved using a location- and orientation-based service that provides

information such as the directions to nearest conveniences overlaid on the image from the

camera itself. An extension of this notion allows users to compose a chain of services coupled

with devices to provide rich platforms to the guest VMs, resembling the system architecture

for pervasive computing project described in [62], using simple techniques similar to web

service mashups [73], already used in the OS context [69].
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5.3.2 Device Emulation

Emulating a non-existent device to the guest VM is one of the many features provided by

modern virtualization frameworks, and the split driver model designed in Xen enables this

using simple implementations. In contrast to the traditional approach of realizing device

emulation using software at the backend [124], or by linking to a remote device [84], here

we rely on services. Additionally, we also gain the flexibility to switch between services,

depending on a diversity of factors, so that the device implementation can also be variable.

In this work, we describe how a Global Positioning System (GPS) device, that provides

location information based on timing differences of signals received from various GPS satel-

lites, is emulated indoors using services. We use two types of methods here: (i) using the

strength of signals from various bluetooth devices in the vicinity and the predetermined

knowledge of these signals at various locations in the area [68], and (ii) detecting the posi-

tion using external cameras that detect and track the target, then deduce its position based

on a precalibrated scale. Each of these are available as services, and the backend can choose

the service to be used based on factors such as the environment (i.e., whether the target

is in the camera’s range), accuracy desired (between the two methods), power consumed

(bluetooth vs. camera), etc. By not possessing the physical device itself, or in situations

when it cannot be used (such as indoors), other alternatives are made available using this

technique. Figure 39 shows the design of such a device, where the shaded boxes repre-

sent remote components and the clear boxes, local ones. Here, we assume that although

the bluetooth signal strengths are determined by the local device, an external service that

translates signal strengths to precise coordinates (based on previous surveys) exists as a

network-based service. Current GPS devices are typically accessed via the serial port, and

vary slightly in their interface to applications. As a result, higher level daemons have been

developed (e.g., gpsd in Linux) to present a standard interface to applications. VService-

based localization can be emulated as a serial device, or allow applications to access via a

modified gpsd wrapper daemon.
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5.4 Experimental Evaluation

VServices is implemented in Xen 3.0.4 running a Linux kernel 2.6.16.33. Experiments are

conducted on a Dell Latitude notebook with a 1.66GHz Intel Centrino Duo dual-core proces-

sor, and 1GB memory. The control domain, or dom0, uses both the cores for execution, and

512MB memory. All guest VMs share one of the two cores, with each VM getting 64MB of

memory, permitting a maximum of 8 VMs to be run concurrently. A directory service and a

publish-subscribe service are implemented. The directory service is implemented using the

domain name service as an example. It translates write()’s of server names to IP addresses,

which are then accessed using read() calls. The publish-subscribe service uses the ioctl()

call for channel management and buffer sizing, as discussed in Section 5.1.3. The backend

implements the ECho pub-sub middleware [48], a portable event-based middleware which

provides support for installing event filters at run-time using dynamically generated code.

However, the interface is general enough to allow substitution of other event-based pub-sub

middleware in its place. Time measurements use the rdtsc instruction for accuracy.

5.4.1 Service Costs and Scalability

Our first set of experiments measure the costs involved in performing DNS service calls,

with the hostname of another host in the same LAN, as the request. As Table 9 shows,

the main contribution is from the write() call, which signals the backend about the new

request, and blocks on the response. The backend directs the request to one of the threads

in a thread pool, which performs a gethostbyname() call, that involves searching the local

cache (/etc/hosts in Linux) for a match, and if found to be missing, obtaining the IP from

the nameserver. The init() and connect() calls are involved in opening and connecting

a socket to the nameserver, while send() and recvfrom() perform the lookup, following
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Table 9: Cost breakdown for the DNS VService, starred operations occur in backend
Operation Cost (cycles)
open 4232
write 736691
∗socket init 30760
∗connect 5660
∗send 14247
∗recvfrom 564064
∗socket close 11154
read 7175
close 35543

which the socket is closed. The blocking recvfrom() call takes up about 90% of the overall

backend costs. read() performed at the guest VM is a simple copy from the buffer. close()

releases the thread back to the pool.

Figure 40 compares the overall cost of performing the DNS call using the VService

implementation, against the traditional gethostbyname() implementation from the guest

VM. gethostbyname() takes roughly 1ms for each lookup, when only one VM is present,

and shows a small increase for up to 4 VMs, but shoots up rapidly to over 7ms for 8 VMs.

Since each VM performs these operations over its own TCP stack and relies on the control

domain only for access to the physical device, there is considerably more work. In contrast,

the VService implementation scales much better since most of the work is performed by

the control domain. Even for a single domain, VService exhibits about 50% lower latency.

The benefits are entirely due to low overheads, since no caching of IP is undertaken in the

control domain (i.e., each DNS request is propagated to the nameserver in all the cases).

Next, we evaluate VServices for high performance, using the pub-sub implementation.

In these experiments, another host in the same network creates a channel, and applica-

tions inside the VMs publish or subscribe to the channel. During each run, 1000 events of

size 4KB are sent continuously by the publisher(s), and several runs are conducted. Fig-

ures 41(a) and 41(b) show the performance of publish and subscribe operations, as the

number of VMs (and hence the number of publishers/ subscribers) is increased. It com-

pares the naive implementation that uses the guest VM’s virtual network, against use of

VService. In the case of publish, we notice that the naive implementation performs better
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Figure 40: DNS Costs Comparison and Scalability

than VService, but scales worse. The primary reason for this is that publish operations

translate to blocking write() calls on the device, which are handled only in batches by

the backend (in order to minimize frequent VM context switches). This can be rectified

by having a thread continuously handle these operations at the backend, without waiting

for explicit signals from the frontend. While this may improve performance, it may also

increase the CPU utilization. Alternatively, by changing the buffer size, it is possible to

obtain better throughput (discussed in Section 5.4.2).

In the subscribe scenario, we find almost equivalent performance with the naive- and

VService-based subscribes for the single VM case, but the latter scales much better than

the former–in fact, it almost stays constant, as the number of VMs increases. The reason

for this behavior stems from two factors – (i) the implementation of the ECho middleware,

and (ii) the VService read() implementation. Firstly, since each subscriber in the naive

implementation has a unique IP address, a multicast tree is constructed by ECho such that

each VM becomes an endpoint. The same events traverse through multiple virtual interfaces

to reach the endpoints. In the case of VService, there exists only one such endpoint, and

the events are copied to the buffers corresponding to each VM, which are then directly
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(a) Publish (b) Subscribe

Figure 41: Costs Comparison and Scalability for Publish and Subscribe

read by the applications. Since these copies are inexpensive, they do not significantly add

to the overall cost. Secondly, subscribe buffers are implemented as ring buffers, where the

application can read from the buffer concurrently with backend’s writes to it. As a result,

the throughput is not affected as long as the CPU is not fully-utilized.

5.4.2 Services Management

With the use of multiple, or specialized cores, allowing the backend to efficiently manage

the core assignment to various operations becomes possible, as discussed in Section 5.2.

In this experiment, we evaluate the assignment of the VService backend operations to the

same core as the VM, or to the other core, and report our findings in Table 10. While

the DNS example has only one running VM, the pub-sub example has two VMs (no gains

were found with only one VM). However, the gains are found to be very small (less than

5% in all the cases). We may attribute this to the fact that since VService is implemented

using blocking write()’s, the service consumer is idle during service fulfillment as well, and

this dependency limits parallelism. In the case of subscribe, we find that the backend is

able to fill the subscribe buffers with incoming events much faster than the frontend can

read and pass them on to the application. This stems from the batched nature of event

handling (in order to minimize VM context switches), that allows for limited gains. We may

conclude that, to realize the potential of multiple cores, a redesign of the current VServices
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Table 10: Effect of core use
VService Cost (us)

same core different core
DNS (1000 requests) 412.4 407.1
Publish (per event) 3013.4 2898.4
Subscribe (per event) 1902.0 1902.6

implementation to allow for non-blocked writes and unbatched reads is necessary.

VServices are implemented with a total buffer size of 64KB, though this can be changed

easily. The read and write buffer sizes can be changed to values less than this limit, implying

that the frontend will signal the backend for handling data as soon as the limit is reached,

and vice-versa. As write()s are currently implemented as blocking writes, and read()’s

buffers are implemented as ring buffers, this leads to differences in their behavior with

respect to buffer size changes. Since each event is 4KB in size, writes would block for

each event when the buffer size is 4KB or less, whereas with a 32KB buffer, every eighth

write is blocked before it is handled, along with the previous seven writes. This allows

latency to be traded off for throughput. read()s do not follow this behavior and show

steady performance, for reasons previously mentioned in Section 5.4.1. Figure 42 shows

the results, which closely follow our discussion. Note that these effects do not apply to the

DNS service, since latency is important in DNS interactions. Consequently, any write/read

is handled immediately by the other end.

5.4.3 Device Enhancements

To implement the TV tuner VService example, we use another Linux desktop in the same

network with a 3GHz dual-core Pentium 4 processor and 512MB memory, that possesses a

Conexant Brooktree 878 PCI-based TV tuner card to act as the media server, connected

through a 100Mbps switch. We use the fftv-0.8.3 open source software to grab frames from

the card using the V4L driver, and publish it using ECho (Figure 38). VService is used to

subscribe to this channel and obtain the frames inside the guest VM. The three different

strategies we evaluate in this experiment are: (i) Local frame grab using the read() system

call, (ii) Local frame grab using the mmap() system call, and (iii) Remote frame grab using
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Figure 42: Effects of VService Buffer Sizes on Pub-sub Costs

VService, that uses the mmap() based call to access the TV tuner. Frames are continuously

grabbed and the period between frames noted. We also evaluate three sizes of images –

160x128 pixels (large), 96x64 (medium), and 48x32 (small). These sizes are chosen in order

to avoid the need for compression. The same software (fftv-0.8.3) is used within guest VMs

to obtain the frames from the driver to the application. The results are shown in Figure 43,

along with the jitter values represented using error bars. VService adds a 50% overhead

to mmap() based calls while transferring the frames across the network, and higher jitter

values to smaller frames. It is noted that these costs are comparable to local read() based

frame grabs.

For the indoor localization device, we present costs for each of the operations involved

in obtaining the data. We use a Logitech Quickcam USB-based webcam with the gspca-

based V4L driver to capture images, then process them using the CMVision blobfinder tool,

which detects objects with pre-defined colors in the image as “blobs”. The position of the

blob is then translated to absolute physical coordinates, using precalibrated readings (the

camera is assumed to be static). These coordinates are published through an ECho channel.

The bluetooth-based localization is performed using a USB-based Belkin bluetooth adapter

attached to the local machine. We assume the presence of other fixed bluetooth devices in
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Figure 43: Cost per Frame Using Different Grab Techniques, on Different Frame Sizes

Table 11: GPS device component costs
Component Cost (us)
Frame grab 108.33
Blob detection 4210.18
Bluetooth scan (s) 11.85
Bluetooth connect (s) 6.47
Bluetooth link quality 5095.40
Pub-sub delay 213.25

the vicinity that act as beacons, as mentioned in Section 5.3.2. We present the basic costs

of this service in Table 11. The time taken to grab a frame, process it, and receive the

coordinates add up to less than 5ms. The time taken to determine link quality and infer

coordinates might be slightly higher (depending on the number of beacons, as well as link

quality to coordinate conversions), however, this can still be performed well under 1s, the

latency that outdoor GPS devices typically offer. Despite the low latency in determining the

link quality of a bluetooth device, the time involved to scan for other devices and connect

to them are significantly higher. Fortunately, these are one-time operations, and do not

introduce additional latencies after a connection is established.
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5.5 Discussion

VServices have been implemented in Xen, and uses its split driver model. However, as

mentioned in Sections 5.1 and 6.6, other virtualization techniques use mechanisms similar

to the split driver model to implement device virtualization. Hence, VServices can be

ported to other virtualization mechanisms with little effort. Similarly, as VServices use the

standard device interface, and since the device drivers used in conjunction with VServices

provide the actual interface with the applications that use it, adapting it to work with

various operating systems takes the same effort as porting a device driver from one operating

system to another. We also note that the shifting of functionality from one VM to another

(usually the control domain) enabled by VServices does not pose any scalability issues, since

(i) VServices do not increase the overall computation, but merely shift some processing from

one VM to another, and (ii) the number of VM context switches does not increase due to

VService. In fact, often it is the opposite, due to the use of higher level functionality.

As noted towards the end of Chapter 4, middleware in conjunction with virtualization

provides several opportunities to decouple software and hardware entities. For future mobile

and pervasive systems, this decoupling enables the rapid composition and use of specific

applications, from basic ubiquitous software and hardware components. Extending the

ideas of dynamically composable platforms, providing application users with the tools to

compose their own applications has the potential to introduce new paradigms to pervasive

computing [154].
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CHAPTER VI

RELATED WORK

6.1 Middleware Systems

Middleware systems (like CORBA [149], DCOM [32] and Enterprise Java Beans [127]) en-

able the construction and execution of componentized software across distributed systems.

A main focus of such systems is interoperability across heterogeneous hardware and oper-

ating system platforms. Middleware has also been used in the high performance domain.

PM-2 [143] permits MPI-based applications to run over a cluster with heterogeneous net-

work interfaces. Grid computing [53] has enabled parallel computing on the Internet. The

middleware listed above has evolved from the client-server domain, typically using RPC or

related communication paradigms across communicating components. Other useful execu-

tion models include messaging [60, 78], publish-subscribe [28, 46], and distributed query

models [162].

A common paradigm used by implementations of modern distributed middleware is that

of overlay networks (an early use of which is described in [65]). Sometimes termed ‘under-

lays’ when used with higher level models like data streaming or publish-subscribe, the use of

overlays provides degrees of freedom in how nodes and node communications are managed

beyond those provided by underlying operating systems, networks, or hardware. They may

provide robustness in naming or resource location for peer-to-peer applications [138], they

may be enhanced with autonomic management methods and algorithms [85], and enable

adaptation to changes in network behavior [35] or provide resilience to failures [19]. MSO

uses overlays to realize its component deployment and reconfiguration services.

6.1.1 Middleware for Mobile Systems

Middleware for MANETs has experimented both with overlay-based approaches and with al-

ternative programming and execution models. Event-based publish-subscribe systems have

also been extended recently to the mobile systems domain [70, 39]. Adaptability includes
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opportunistic overlays [38] in which overlays are adjusted to cope with runtime changes

in network topology, including runtime service redeployment. A similar approach is used

by Solar [37], which allows context discovery using application-specified operators deployed

over the network for pervasive systems. Expeerience [30] is a JXTA-based middleware that

has been adapted to run on MANETs. MagnetOS [90] uses a distributed framework to par-

tition a monolithic Java application into its constituent classes for cooperative execution on

a MANET. Efficient placement of application components is carried out by monitoring data

traffic among nodes, and by using distributed algorithms to shorten the mean path lengths

of data transfers. Unlike these middleware solutions which use Java, MSO is written in

C/C++ for more fine grained monitoring, accounting and energy management. DFuse [83]

manages distributed fusion of data streams, performing dynamic assignment of fusion op-

erators to nodes and adapting it at run-time, including for iPAQ handheld devices. MSO

supports fusion among other operators, and is also able to provide other features such as

heterogeneity and adaptation to mobility, absent in DFuse.

Smart messages [79] leverages prior work in Active Networks [144] for MANET sys-

tems. This middleware permits specialized distributed programs, termed smart messages,

to autonomously execute at nodes of interest, and route themselves towards their destina-

tion via migration. This is further extended in [125] so that migration is driven by the

operating context. While this is suitable for delay tolerant lightweight applications, it is

not suitable for the cooperative applications targeted by MSO. XMIDDLE [98] is a middle-

ware framework for reconciling multiple inconsistent replicas of a file (arising from changes

made when disconnected) on a multi-hop ad hoc network. It represents XML documents

as trees and implements protocols to reconcile differences in trees. The COMMAND [25]

middleware provides transparent rebinding for client-server interactions through the use of

proxies elected in an ad-hoc fashion. Proxies are responsible for dealing with dynamics in

the environment. COMMAND also utilizes code mobility to move functionality to prox-

ies on-demand, thus enabling the proxies to provide multiple services. This removes the

necessity to have all of the functionality residing at all nodes. [26] discusses extending

the mobile-agent based middleware paradigm to mobile computing. A survey of various

100



middleware implementations for mobile environments appears in [97].

6.1.2 Robot and Sensor Networks

In the area of autonomous robotics, Miro [146] is a CORBA-based middleware designed

to support multi-platform robotics. It also provides generic services like localization which

can be applied to different platforms. Another CORBA-based middleware is presented in

[155]. These middleware do not provide adaptation to mobility and energy management, the

important features in MSO. Middleware solutions for sensor networks include MiLAN [66],

which collects quality of service details from the application layer and network conditions

from the sensors, then decides on the best configuration to support data aggregation under

current constraints. Impala [92], the middleware used in Zebranet, is designed to support

adaptability and allows easy software updates of sensor nodes. MSO is not optimized for

sensor networks, as it supports not only data aggregation, but other data flow models as

well.

Self configuration is an important theme of all of the work presented above. [119]

identifies the design paradigms for self-configuring networks to be (i) maintaining local

behavior to achieve global properties, (ii) enabling simple coordination, (iii) minimizing

long-lived state and (iv) adapting to changes. The MSO approach attempts to address

these requirements by (i) providing local remapping, (ii) making simplifying assumptions

during remapping and conservatively resorting to global remapping if these are violated,

(iii) maintaining state locally, and (iv) monitoring for and reacting to changes.

Unlike the middleware approaches described in this section, MSO takes a holistic ap-

proach to run applications in the MANET environment by recognizing that several dif-

ferent higher level mechanisms in such systems can be built from basic low level abstrac-

tions and services. This allows autonomic management mechanisms to be more easily

constructed/extended from these services.

6.2 Energy Management in Mobile Systems

Prior research on energy conservation in ad-hoc networks has mainly focused on energy-

aware routing protocols – by improving existing protocols like AODV [115], by factoring
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the energy levels of each node in the routing cost metric [64], or through novel protocols

like probabilistic routing [134]. The former classifies nodes into various classes depending

on their energies, and uses this instead of the hop count, to determine the energy-optimal

route. The latter uses a similar cost metric by aggregating the energy values of the nodes in

each route, then randomly chooses a route with a probability proportional to the cost metric

along the route. While these approaches are suitable for network-bound applications and

sensor nodes, where the network interface accounts for a significant portion of the power

budget, for the applications and platforms considered in our work experimental results that

the energy consumed by the network interface is quite small compared to CPU energy. Our

research, therefore, primarily leverages prior work on reducing CPU energy consumption,

including reducing energy usage by applying dynamic voltage and frequency scaling [75] on

multiprocessor systems. [94] uses dynamic slack reclamation in conjunction with DVFS in

a real-time setting, on a multiprocessor system. A static schedule is first constructed for

periodic tasks, then slack reclaiming is used to save power, yet satisfy real-time constraints.

Resource reclaiming in multiprocessor real-time systems has been dealt with in great detail

in [135], where the authors describe two algorithms to perform online reclaiming on a static

schedule. The impact of user interfaces on energy saving schemes is studied in detail in [166].

Coolspots [114] exploits the varying power consumption profiles of various wireless radios,

and switches to the appropriate radio, based on the desired level of performance. Through

this scheme, the authors demonstrate up to 50% savings in energy.

Computational offloading has been used extensively for power-aware load balancing

ranging from clusters of workstations [117], to embedded devices [159]. The latter performs

computational offloading in conjunction with setting the CPU frequencies, to minimize en-

ergy consumption. Distributed middleware can be useful to manage computational entities

in such environments. [97] surveys the various middleware implementations for a mobile en-

vironment. Research efforts to include mobile nodes in Grid technology include [33], which

proposes a mobile agent framework to provide/use Grid services at the mobile nodes, so

that distributed resources from the Grid can be accessed by such users.

102



6.3 Device Virtualization

Efficient methods to virtualize basic system resources like CPU and memory have been

well studied. Recent efforts in virtualization have focused on efficient sharing of I/O de-

vices such as network interface [123]. The VMGL [86] approach virtualizes a video card to

provide hardware-based 3D acceleration to guest VMs. As identified in the paper, standard-

ized higher level interfaces improve both the ease of implementation and the adoption of

such solutions. VMGL uses the OpenGL abstraction as the interface, whereas the VMedia

framework uses the Video4Linux [13] interface. The Boxwood project [96] of the Singularity

operating system provides storage at higher abstraction levels such as B-Trees for example,

hiding lower level disk virtualization details from applications. The T10 industry-standard

for next generation SCSI devices [12] is another interface that is amenable to device virtu-

alization, particulary for object stores.

Device virtualization is dealt with in different virtualization techniques in different ways.

Xen and VMware use the methods outlined in Section 5.1. KVM [21] uses similar meth-

ods, but relies on Qemu [51] running on the host kernel for device emulation. User mode

Linux [74] relies on the parent kernel for device access, since its kernel runs as a user-space

process. In order to improve device virtualization, providing exclusive unmediated control

of a device by a single VM has been studied. The PCI passthrough [163] feature in Xen

allows such access to the PCI device by a single VM, and thus avoids control domain over-

heads, but it also precludes sharing. Efforts to improve the network device virtualization in

Xen VMM include Xensocket [164], which recommends bypassing the TCP stack and using

copy instead of page flipping, when exchanging data between domains. This shows signifi-

cant improvements in throughput, especially with large message sizes. VServices similarly

avoids the guest VM TCP stack for network accesses, allowing the backend to package the

data on the guests’ behalf. Other research has proposed several network optimizations to

Xen, that include performing hardware-based optimizations either at the hardware (if they

support) or in the control domain (if hardware doesn’t support these optimizations) [100].

The VService approach allows such an optimization to be cleanly implemented for services

by completely bypassing the virtual network interface.
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6.4 Middleware-based Device Enhancements

Aggregating multiple devices to provide richer services has been studied along several di-

mensions. Superimposed projection [42] discusses fundamental issues arising when using

multiple projectors to produce a single high-resolution image. The Princeton scalable dis-

play wall project [153] also discusses algorithms to solve alignment, color balancing, and

other problems arising in a distributed environment. The Lyra system [160] studies timing

services that can be provided to multimedia applications, for achieving better quality of

service. Such services can be harnessed in multimedia scheduling in a virtualized environ-

ment to provide QoS guarantees to guest VMs, as well as to schedule fine-grained captures

in frame aggregation (Section 4.5.4) for example.

Research focusing on sharing multimedia include the Irisnet project [59], which applies

filtering on distributed multimedia sensors to deliver customized content. Feeds from sev-

eral remote webcams connected to the Internet are used to compose useful content and

services built on top. MSODA [157] proposes a multimedia service overlay among VMs

for media service access and composition. VMedia framework focuses on providing mul-

timedia services to VMs via higher level ‘logical’ devices, while services are implemented

in the Service VM. The Indiva middleware [108] also provides a higher level, file system

abstraction, for composing distributed multimedia content. The Ninja project [61] builds

abstractions to simplify scalable application construction over wide area networks. MSO

does not explicitly support multimedia workload, but multimedia applications and query

algorithms can be implemented using the services provided by it.

6.5 Customizable Devices

The extension of data streams with application-specific codes has been studied at multiple

levels of abstraction. At the network level, in Active Networks [152], code injected by a

user to a router operates on and possibly modifies, packets passing through it. Further,

Smart Messages [80] enable user-defined distributed applications to execute over a wireless

network of embedded systems. At middleware levels, runtime code injection is a key part

of publish-subscribe software (e.g., ECho [48]), which uses this to filter and modify events,
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based on a subscriber’s requirements. CustomCam exploits the methods used in ECho to

implement this, namely, via ECL codes [47]. Though ECL does not guarantee type-safety,

other type-safe implementations (e.g., Cyclone [77]) could also be used.

Safety properties must be guaranteed when applications are permitted to extend trusted

domains. Proof carrying code [105] is one way to attain safety, whereby the code carries a

‘proof’ generated by a certifying compiler, that the code satisfies the properties an agreed

safety policy. The proof can then be verified, prior to execution. Safe languages are an-

other way to provide safety properties [27]. In contrast, practical techniques like those

used by kernel plugins [57] exploit certain features of computer architectures to guarantee

isolation between extensions and OS kernels. Our work uses a combination of language

safety and hardware support to isolate the extensions performed by different applications

and to continue to guarantee safe operation when extensions are faulty or malicious. The

Nooks project [140] extends this idea to isolate device drivers into lightweight protection

domains inside the kernel address space, and further restarts a failed driver transparent to

the client. The idea of isolating device drivers into their own VMs has also been studied

previously [88].

As discussed previously, the concepts discussed in this dissertation are implemented

using the VMedia multimedia virtualization framework [124]. While VMedia addresses

media devices, its concepts can also be used to virtualize arbitrary devices and services

[122]. Finally, some of the concepts presented in this work have been evaluated for a kernel-

level implementation, with the CameraCast [82] set of mechanisms, which enforce capability

based differential data protection on remote multimedia feeds, exploiting the aforementioned

kernel plugins [57] isolation mechanism.

The concept of extended or ‘smart’ devices has been shown useful in many other contexts,

including with our own work on self-virtualizing network interfaces and on smart NICs [15],

the latter performing application-specific processing of network packets at the device level,

thereby freeing the CPU to perform other work [58]. ‘Smart’ devices have also been shown

useful for storage [14].
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6.6 Virtualized Services

Recent efforts in middleware have resulted in implementations based on the concepts of

Service Oriented Architecture (SOA) [112], and service virtualization [158]. SOA eases

the creation of enterprise applications by allowing the composition of various services that

serve to accomplish specific tasks, to align with business processes. Service virtualization

helps in adapting the SOA model to a heterogeneous environment, by providing consistent

interfaces for its management. Combining middleware concepts with virtualization mecha-

nisms, it benefits from the well-defined interfaces provided by SOA and from management

mechanisms such as load balancing, migration, isolation and resource monitoring provided

by virtualization. As a result, it is gaining adoption in grid computing [54]. VService com-

bines services with virtualization techniques at a lower level, thus making device emulation

and composition possible, by interfacing services with device drivers. Service Oriented De-

vice Architecture (SODA) [44] allows accesses to devices via services (in contrast to the

VService approach of presenting services via device interface), in order to simplify device

management. It is developed for use in enterprise systems, where the same interfaces de-

signed to access enterprise services are also used to access and control devices (such as

RFID tags, and other sensors or actuators). UPnP [145] (Universal Plug and Play) is a

middleware standard designed to allow linking of devices in a seamless manner. Targeting

personal area networks such as a home network, it aims at minimizing user involvement in

setup. VService can be easily adapted to such a setup, by replacing the directory or group

communication services demonstrated in this paper with UPnP compatible protocols. The

use of component middleware to implement resource-intensive applications such as software

defined radios, radar systems, etc., using parallelization techniques is described in [128].

Use of the device interface for implementing services is a well-established practice, orig-

inating with Unix file-based APIs. Examples include the use of the /dev/random device

in several flavors of UNIX to generate pseudo-random numbers in software. Other exam-

ples include the /dev/evtchn in Xen [118], [156] to exchange events between domains, and

/dev/binder in Openbinder [110] to exchange data between components. The Plan 9 oper-

ating system [116] extended this idea to include all resources in the system to be available

106



via the file system interface. For instance, a TCP connection is made by accessing files

under /net/tcp.

The Libra [17] library operating system extends the Exokernel idea [50] of providing

customized operating system to applications, thus delivering only the functionality needed

by the applications. Libra provides services required by a Java application running within

a JVM, by implementing frequently accessed services locally and relying on the hypervisor

for other services. Libra uses the 9P distributed file system protocol to access remote

services, whereas VService offers common services implemented by the control domain, for

use by other VMs. Both these efforts are valuable in minimizing the size of guest operating

systems. Proxos [142] allows negotiation of trust between a commodity operating system

and a running application so that parts of the application remain secure if the operating

system’s security is compromised. It allows this by the application, splitting its system calls

into those that are handled by the commodity OS and those that would be handled by its

own private OS. Liquid VM [24] runs a Java VM with middleware directly on a hypervisor,

in order to reduce OS overheads.

There are multiple ways to virtualize devices. Xen and VMware use the methods out-

lined in Section 5.1. KVM [21] uses similar methods, but relies on Qemu [51] running on

the host kernel for device emulation. User mode Linux [74] relies on the parent kernel for

device access, since its kernel runs as a user-space process. In order to improve device

virtualization, providing exclusive unmediated control of a device by a single VM has been

studied. The PCI passthrough [163] feature in Xen allows such access to the PCI device

by a single VM, and thus avoids control domain overheads, but it also precludes sharing.

Efforts to improve the network device virtualization in Xen VMM include Xensocket [164],

which recommends bypassing the TCP stack and using copy instead of page flipping, when

exchanging data between domains. This shows significant improvements in throughput,

especially with large message sizes. VServices similarly avoids the guest VM TCP stack for

network accesses, allowing the backend to package the data on the guests’ behalf. Other

research has proposed several network optimizations to Xen, which include performing opti-

mizations either with hardware (if supported) or in the control domain (if hardware doesn’t
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support these optimizations) [100]. The VService approach allows such an optimization

to be cleanly implemented for services by completely bypassing the virtual network inter-

face. Vmedia [124] and Netchannel [84] are examples of efforts aimed at extending device

functionality and transparent use of remote devices in the VM context, respectively.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis, we have presented novel approaches to address the challenges encountered

in running applications over cooperative mobile platforms, and have also extended our so-

lutions to virtual mobile platforms. We adopt a service-based approach, where existing

middleware techniques are used to implement services that are used by the application

and higher level algorithms to adapt to dynamics in the mobile environment. We demon-

strate the practical benefits of our approach by evaluating its implementation on real-world

applications.

We develop an overlay network based middleware to enable cooperating nodes in a mo-

bile ad hoc network to collectively execute an application, using decentralized management

techniques. We develop general monitoring and (re)configuration services that permit auto-

nomic management of the platform. We demonstrate higher level functionality such as load

balancing and energy management built from services provided by the middleware. Energy-

aware reallocation provided by MSO could increase the lifetime of an example robotics

workload running on a network of five prototype handheld devices, by about 14%. Slack

reclamation capabilities provided by MSO was found to closely match optimal frequency

and voltage settings in a similar network.

We identify device management and sharing in a virtualized system as a key problem in

cooperative mobile platforms, and develop middleware-based techniques to share, emulate,

enhance and customize device properties in such an environment, then demonstrate our

techniques experimentally on a multimedia device. Features enabled by our low-overhead

middleware include the ability to emulate a single multimedia device using a collection of

devices, better scalability on the number of virtual machines sharing the device, and a

roughly 50% savings in sharing costs. Implementation of device customization techniques
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described in this dissertation show negligible overheads, and low jitter values for the multi-

media device, in both local and remote settings.

We extend our ideas to share arbitrary services among virtual machines in a cooperative

mobile platform, and implement middleware-based service sharing. The service latency is

reduced by 50% using this method, and improved scalability for high-throughput applica-

tions were demonstrated. Additionally, practical realizations of novel devices were built

using these services, to explain the usefulness of the technique.

In summary, the primary contributions of this thesis are:

• developing middleware-based services to build autonomic management functionality

in a cooperative mobile platform,

• applying middleware-based services to virtual platforms, thus enabling enhanced de-

vice functionalities, and

• identifying higher-level features that can be built on top of these services, that are

directly useful to applications.

7.2 Future Work

The ideas presented in this dissertation can be applied to a variety of mobile scenarios.

In the personal computing space, methods to access each others’ computing resources may

lead to novel use of such functionality, in environments with diverse device presence such

as a home, as well as in areas such as concerts, conferences, and public areas where a

large number of people with mobile devices gather. In the latter case, there is also a

potential for supporting social networking-based applications. In such cases, the mobile

devices may be enhanced with devices made available via the surrounding infrastructure,

one example being making display boards in airports and railway stations suitable for use

by surrounding users (with the appropriate usage policies). As explored in Chapters 2 and

3, mobile robots possess several sensors, and the applications they run make extensive use

of the sensor data. MSO can be used to support such application execution over a network

of mobile nodes. Additionally, the use of one robot’s sensors/actuators by another can
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be enabled using ideas discussed in subsequent chapters. This capability is also useful in

vehicular networks. Modern automobiles and roadside infrastructure carry several devices

to sense their environment. Sharing of such devices can aid in better vehicular navigation

(by informing the driver about accident hot spots, congested areas, etc.) and automate

some aspects of driving. Advances in wireless technologies further serve to extend existing

pervasive applications into the vehicular space. This thesis can be extended in three major

areas.

Services developed as part of MSO can be used to provide other management function-

alities not considered in the thesis, such as for instance, assigning application modules to

nodes that are best suited to run them. The monitoring capabilities provided by MSO can

be used to understand detailed requirements of the modules, and accordingly mapped to an

appropriate node. Moreover, while the management techniques provided by MSO are satis-

ficing in nature (since its goal is to arrive at a node mapping for the application as quickly

as possible in a decentralized manner), it would be a useful step to consider if optimality

can be achieved. For instance, mapping application components to underlying nodes with

the goal of minimizing energy consumption or of guaranteeing minimal end-to-end delays.

Solutions based on heuristics can serve as a good starting point for such efforts.

Secondly, the device enhancements and sharing features demonstrated in this thesis

used webcamera as the example. More sophisticated cameras with onboard processing

capabilities (e.g., Faymax cameras) being developed in the market allow some of the VMe-

dia/CustomCam functionalities pushed onboard, rather than on the control domain as

demonstrated in the thesis. Further, techniques developed to share multimedia data can be

improved to share arbitrary data from other types of sensing devices.

Finally, the services developed with VServices demonstrated its use with network-based

services as example, but there is no conceptual reason to restrict ourselves to these types

alone. Other types, such as (i) cryptographic services ( provided by IBM’s crypto cards, for

instance), (ii) vector-based services in a Cell-like multi-core processor or graphics acceler-

ator, (iii) storage-based services such as provenance, etc. can also be used with VServices.

In conjunction with virtual devices enabled by VMedia/CustomCam efforts, VServices can
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be used to develop dynamic composable platforms, in which all the services and the de-

vices available, along with the interfaces, are presented to the application designer/user,

who decides how they can be combined to address a specific application. For instance, an

advertising display board in a public spot can serve as a game console and images from

surveillance cameras can be used to control the game, in addition to a user’s handheld

computer. Other surrounding devices may also be used to share the computational load as

necessary. Several challenges need to be overcome before this vision is realized. Some of

them include (i) maintaining directory services that enable users to query services/devices

available for use, (ii) addressing isolation, sharing, accounting and QoS features in this sce-

nario, (iii) handling and recovering from failures, and (iv) agreeing on common standards

for data and control transfers.

112



REFERENCES

[1] “Android.” http://code.google.com/android, accessed April 2008.

[2] “ARM11 MPCore.” http://www.arm.com/products/CPUs/
ARM11MPCoreMultiprocessor.html, accessed April 2008.

[3] “CamE.” http://directory.fsf.org/camE.html, accessed April 2008.

[4] “EVPath.” http://www.cc.gatech.edu/systems/projects/EVPath/, accessed
April 2008.

[5] “imlib.” http://freshmeat.net/projects/imlib/, accessed April 2008.

[6] “Internet small computer systems interface.” RFC 3720.

[7] “Mobile linux.” http://www.linux-foundation.org/en/Mobile_Linux, accessed
April 2008.

[8] “Network file system version 4 protocol.” RFC 3530.

[9] “OS X.” http://www.apple.com/iphone/features/index.html#macosx, accessed
April 2008.

[10] “QNX Neutrino.” http://www.qnx.com/products/neutrino_rtos/, accessed April
2008.

[11] “Symbian.” http://www.symbian.com, accessed April 2008.

[12] “T10.” http://www.t10.org/.

[13] “Video4Linux Resources.” http://www.exploits.org/v4l, accessed April 2008.

[14] Acharya, A., Uysal, M., and Saltz, J., “Active disks,” in Proceedings of the Con-
ference on Architectural Support for Programming Languages and Operating Systems,
1998.

[15] Adiletta, M., Rosenbluth, M., Bernstein, D., Wolrich, G., and Wilkin-
son, H., “The next generation of the intel ixp network processors,” Intel Technology
Journal, vol. 6, no. 3, 2002.

[16] Adwankar, S., “Mobile corba,” in Intl. Symposium on Distributed Objects and Ap-
plications, 2001.

[17] Ammons, G., Appavoo, J., Butrico, M. A., Silva, D. D., Grove, D.,
Kawachiya, K., Krieger, O., Rosenburg, B. S., Hensbergen, E. V., and
Wisniewski, R. W., “Libra: a library operating system for a jvm in a virtualized
execution environment,” in Proc. of VEE, 2007.

113



[18] Ammons, G., Appavoo, J., Butrico, M. A., Silva, D. D., Grove, D.,
Kawachiya, K., Krieger, O., Rosenburg, B. S., Hensbergen, E. V., and
Wisniewski, R. W., “Libra: a library operating system for a jvm in a virtualized
execution environment,” in Proc. of VEE, 2007.

[19] Andersen, D., Balakrishnan, H., Kaashoek, F., and Morris, R., “Resilient
overlay networks,” in ACM Symposium on Operating System Principles, 2001.

[20] Arnold, K. and Gosling, J., The Java Programming Language. 1996.

[21] Avi Kivity and Yaniv Kamay and Dor Laor and Uri Lublin and Anthony
Liguori, “kvm: the linux virtual machine monitor,” in Ottawa Linux Symposium,
2007.

[22] Aydin, H., Melhem, R., Mosse, D., and Mejia-Alvarez, P., “Power-aware
scheduling for periodic real-time tasks,” IEEE Transactions on Computers, vol. 53,
May 2004.

[23] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neuge-
bauer, R., Pratt, I., and Warfield, A., “Xen and the art of virtualization,” in
Proceedings of the 19th Symposium on Operating Systems Principles, ACM Press,
October 2003.

[24] BEA, “LiquidVM.” http://e-docs.bea.com/wls-ve/docs92-v11/config/
lvmintro.html.

[25] Bellavista, P., Corradi, A., and Magistretti, E., “Lightweight code mobility
for proxy-based service rebinding in manet,” in International Symposium on Wireless
Communication Systems, 2004.

[26] Bellavista, P., Corradi, A., and Stefanelli, C., “Mobile agent middleware for
mobile computing,” IEEE Computer, vol. 34, pp. 73–81, 2001.

[27] Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M. E.,
Becker, D., Chambers, C., and Eggers, S., “Extensibility safety and perfor-
mance in the SPIN operating system,” in Proceedings of the 15th ACM Symposium
on Operating Systems Principles, pp. 267–283, ACM Press, 1995.

[28] Birman, K., “The process group approach to reliable distributed computing,” Com-
munications of the ACM, vol. 36(12), pp. 36–53, 1993.

[29] Birrell, A. D. and Nelson, B. J., “Implementing remote procedure calls,” ACM
Transactions on Computer Systems, vol. 2, no. 1, pp. 39–59, 1984.

[30] Bisignano, M., Calvagna, A., Modica, G., and Tomarchio, O., “Expeerience:
A jxta middleware for mobile ad-hoc networks,” in Peer-to-Peer Computing, 2003.

[31] Braun, T., Siegel, H., Beck, N., Boloni, L., Reuther, A., Theys, M., Yao,
B., Freund, R., Maheswaran, M., Robertson, J., and Hensgen, D., “A com-
parison study of static mapping heuristics for a class of meta-tasks on heterogeneous
computing systems,” in Hetereogeneous Computing Workshop, 1999.

114



[32] Brown, N. and Kindel, C., “Distributed component object model protocol –
dcom/1.0,” in Internet Draft, Network Working Group, 1998.

[33] Bruneo, D., Scarpa, M., Zaia, A., and Puliafito, A., “Communication
paradigms for mobile grid users,” in International Symposium on Cluster Comput-
ing and the Grid, 2003.

[34] Bustamante, F. E., Eisenhauer, G., Widener, P., Schwan, K., and Pu, C.,
“Active streams: An approach to adaptive distributed systems,” in Proceedings of the
8th Workshop on Hot Topics in Operating Systems, 2001.

[35] Cai, Z., Eisenhauer, G., He, Q., Kumar, V., Schwan, K., and Wolf, M., “Iq-
services: Network-aware middleware for interactive large-data applications,” IEEE
Concurrency and Computation: Practice and Experience, 2006.

[36] http://carmen.sourceforge.net/.

[37] Chen, G. and Kotz, D., “Solar: An open platform for context-aware mobile appli-
cations,” in International Conference on Pervasive Computing (short paper), 2002.

[38] Chen, Y. and Schwan, K., “Opportunistic overlays: Efficient content delivery in
mobile ad hoc networks,” in International Middleware Conference, 2005.

[39] Chen, Y., Schwan, K., and Zhou, D., “Opportunistic channels: Mobility-aware
event delivery,” in Middleware, 2003.

[40] Chou, Y., Fahs, B., and Abraham, S., “Microarchitecture optimizations for ex-
ploiting memory-level parallelism,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2004.

[41] Clausen, T., Dearlove, C., and Dean, J., “Manet neighborhood discovery pro-
tocol.” IETF work in progress draft, 2008.

[42] Damera-Venkata, N. and Chang, N. L., “Realizing super-resolution with super-
imposed projection,” in Proceedings of IEEE International Workshop on Projector-
Camera Systems, 2007.

[43] Das, A., Spletzer, J., Kumar, V., and Taylor, C., “Ad hoc networks for local-
ization and control,” in IEEE Conf. on Decision and Control, 2002.

[44] de Deugd, S., Carroll, R., Kelly, K. E., Millett, B., and Ricker, J., “Service
oriented device architecture,” IEEE Pervasive Computing, vol. 5, no. 3, 2006.

[45] Diamos, G. and Yalamanchili, S., “Harmony: An execution model and runtime
for heterogeneous many core systems,” in HPDC, 2008.

[46] Eisenhauer, G., Bustamante, F., and Schwan, K., “Event services for high
performance computing,” in IEEE International Symposium on High Performance
Distributed Computing, 2000.

[47] Eisenhauer, G., “Dynamic code generation with the e-code language,” Tech. Rep.
GIT-CC-02-42, College of Computing, Georgia Institute of Technology, 2002.

115



[48] Eisenhauer, G., Bustamante, F. E., and Schwan, K., “Event services in high
performance systems,” Cluster Computing: The Journal of Networks, Software Tools,
and Applications, vol. 4, no. 3, 2001.

[49] Engelen, R., “Code generation techniques for developing light-weight xml web ser-
vices for embedded devices,” in ACM Symposium on Applied Computing, 2004.

[50] Engler, D. R., Kaashoek, M. F., and O’Toole, J., “Exokernel: An operating
system architecture for application-level resource management,” in Symposium on
Operating Systems Principles, pp. 251–266, 1995.

[51] Fabrice Bellard, “Qemu, a fast and portable dynamic translator,” in Proc. of
USENIX ATC, 2005.

[52] Fan, X., Ellis, C., and Lebeck, A., “The synergy between power-aware memory
systems and processor voltage scaling,” in Proceedings of the Workshop on Power-
Aware Computer Systems (PACS), December 2003.

[53] Foster, I. and Kesselman, C., The Grid: Blueprint for a New Computing Infras-
tructure. 1999.

[54] Foster, I., Kesselman, C., Nick, J., and Tuecke, S., “”grid services for dis-
tributed system integration”,” Computer, vol. 35, no. 6, 2002.

[55] Fryman, C., Huneycutt, H., Lee, K., and Mackenzie, D., “Energy efficient
network memory for ubiquitous devices,” in IEEE MICRO, 2003.

[56] Ganev, I., A Pliable Hybrid Architecture for Run-time Kernel Adaptation. PhD
thesis, College of Computing, Georgia Institute of Technology, 2007.

[57] Ganev, I., Eisenhauer, G., and Schwan, K., “Kernel Plugins: When a VM is too
much,” in Proceedings of the 3rd Virtual Machine Research and Technology Sympo-
sium, May 2004.

[58] Gavrilovska, A., Kumar, S., Schwan, K., and Sundaragopalan, S., “Platform
overlays: Enabling in network stream processing in largescale distributed application,”
in NOSSDAV, 2005.

[59] Gibbons, P., Karp, B., Ke, Y., Nath, S., and Seshan, S., “Irisnet: An architec-
ture for a world-wide sensor web,” IEEE Pervasive Computing, vol. 2(4), 2003.

[60] Gilman, L. and Schreiber, R., Distributed Computing with IBM MQSeries. 1996.

[61] Gribble, S., Welsh, M., Behren, R., Brewer, E., Culler, D., Borisov, N.,
Czerwinski, S., Gummadi, R., Hill, J., Joseph, A., Katz, R., Mao, Z., Ross,
S., and Zhao, B., “The ninja architecture for robust internet-scale systems and
services,” Computer Networks, vol. 35(4), pp. 473–497, 2001.

[62] Grimm, R., Davis, J., Lemar, E., Macbeth, A., Swanson, S., Anderson, T.,
Bershad, B., Borriello, G., Gribble, S., and Wetherall, D., “System support
for pervasive applications,” ACM Trans. on computer systems, vol. 22, no. 4, 2004.

[63] Guerraoui, R. and Schiper, A., “Software-based replication for fault tolerance,”
Computer, vol. 30, no. 4, pp. 68–74, 1997.

116



[64] Gupta, N. and Das, S., “Energy-aware on-demand routing for mobile ad hoc net-
works,” in Workshop on Distributed Computing, Mobile and Wireless Computing,
2002.

[65] Hagens, R., Hall, N., and Rose, M., “Use of the internet as a subnetwork for
experimentation with the osi network layer,” in Request For Comments, RFC 1070,
1989.

[66] Heinzelman, W., Murphy, A., Carvalho, H., and Perillo, M., “Middleware to
support sensor network applications,” IEEE Network, vol. 18(1), pp. 6–14, 2004.

[67] Hong, X., Liu, J., Smith, R., and Lee, Y.-Z., “Distributed naming system for
mobile ad-hoc networks,” in ICWN, 2005.

[68] Hossain, M. and Soh, W.-S., “A comprehensive study of bluetooth signal parame-
ters for localization,” in IEEE PIMRC, 2007.

[69] Howell, J., Jackson, C., Wang, H., and Fan, X., “Mashupos: Operating system
abstractions for client mashups,” in USENIX HotOS, 2007.

[70] Huang, Y. and Garcia-Molina, H., “Publish/subscribe in a mobile environment,”
in ACM International Workshop on Data Engineering for Wireless and Mobile Access,
2001.

[71] Hwang, J.-Y., Suh, S.-B., Heo, S.-K., Park, C.-J., Ryu, J.-M., Park, S.-Y.,
and Kim, C.-R., “Xen on arm: System virtualization using xen hypervisor for arm-
based secure mobile phones,” in IEEE CCNC, 2008.

[72] Isci, C. and Martonosi, M., “Phase characterization for power: Evaluating control-
flow-based and event-counter-based techniques,” in Proceedings of the 12th Inter-
national Symposium on High-Performance Computer Architecture(HPCA), February
2006.

[73] Jackson, C. and Wang, H., “Subspace: secure cross-domain communication for
web mashups,” in Intl. conf. on WWW, 2007.

[74] Jeff Dike, “User-mode linux,” in Proc. Linux showcase and conference, 2001.

[75] Jejurikar, R. and Gupta, R., “Dynamic voltage scaling for system-wide energy
minimization in real-time embedded systems,” in Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED), August 2004.

[76] Jennings, J., Whelan, G., and Evans, W., “Cooperative search and rescue with a
team of mobile robots,” in International Conference on Advanced Robotics, pp. 193–
200, July 1997.

[77] Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., and Wang, Y.,
“Cyclone: A safe dialect of C,” in Proceedings of the USENIX 2002 Annual Technical
Conference, June 2002.

[78] http://java.sun.com/products/jms, accessed April 2008.

117



[79] Kang, P., Borcea, C., Xu, G., Saxena, A., Kremer, U., and Iftode, L.,
“Smart messages: A distributed computing platform for networks of embedded sys-
tems,” The Computer Journal, British Computer Society, 2004.

[80] Kang, P., Borcea, C., Xu, G., Saxena, A., Kremer, U., and Iftode, L.,
“Smart messages: A distributed computing platform for networks of embedded sys-
tems,” The Computer Journal, vol. 47, no. 4, 2004.

[81] http://w3.antd.nist.gov/wctg/aodv-kernel, accessed April 2008.

[82] Kong, J., Ganev, I., Schwan, K., and Widener, P., “Cameracast: Flexible access
to remote video sensors,” in Multimedia Computing and Networking (MMCN’07),
(San Jose, CA, USA), Jan. 2007.

[83] Kumar, R., Wolenetz, M., Agarwalla, B., Shin, J., Hutto, P., Paul, A.,
and Ramachandran, U., “Dfuse: A framework for distributed data fusion,” in ACM
Conference on Embedded Networked Sensor Systems, 2003.

[84] Kumar, S. and Schwan, K., “Netchannel: a vmm-level mechanism for continuous,
transparentdevice access during vm migration,” in ACM VEE, 2008.

[85] Kumar, V., Cai, Z., Cooper, B., Eisenhauer, G., Schwan, K., Mansour,
M., Seshasayee, B., and Widener, P., “Implementing diverse messaging models
with self-managing properties using iflow,” in International Conference on Autonomic
Computing, 2006.

[86] Lagar-Cavilla, H. A., Tolia, N., Satyanarayanan, M., and de Lara, E.,
“Vmm-independent graphics acceleration,” in VEE ’07: Proceedings of the 3rd inter-
national conference on Virtual execution environments, 2007.

[87] Lanfranchi, G., Peruta, P. D., Perrone, A., and Calvanese, D., “Toward
a new landscape of systems management in an autonomic computing environment,”
vol. 42, pp. 119–128, 2003.

[88] LeVasseur, J., Uhlig, V., Stoess, J., and Gtz, S., “Unmodified device driver
reuse and improved system dependability via virtual machines,” in Proc. of OSDI,
2004.

[89] Li, Y., Wang, G., Yang, S., Shi, M., and Xu, J., “Research on grid-based coop-
erative platform,” in IEEE CSCWD, 2002.

[90] Liu, H., Roeder, T., Walsh, K., Barr, R., and Sirer, E., “Design and im-
plementation of a single system image operating system for ad hoc networks,” in
International Conference on Mobile Systems, 2005.

[91] Liu, J., Huang, W., Abali, B., and Panda, D. K., “High Performance VMM-
Bypass I/O in Virtual Machines,” in Proc. of USENIX ATC, 2006.

[92] Liu, T. and Martonosi, M., “Impala: A middleware system for managing auto-
nomic, parallel sensor systems,” in Symposium on Principles and Practice of Parallel
Programming, 2003.

118



[93] Luckham, D. and Frasca, B., “Complex event processing in distributed systems,”
tech. rep., Stanford University Technical Report, 1998.

[94] Luo, J. and Jha, N., “Power-conscious joint scheduling of periodic task graphs and
aperiodic tasks in distributed real-time embedded systems,” in International Confer-
ence on Computer Aided Design, 2000.

[95] Luo, J. and Hubaux, J.-P., “A survey of inter-vehicle communication,” Tech. Rep.
IC/2004/24, EPFL, 2004.

[96] MacCormick, J., Murphy, N., Najork, M., Thekkath, C., and Zhou, L.,
“Boxwood: Abstractions as the foundation for storage infrastructure,” in OSDI, 2004.

[97] Mascolo, C., Capra, L., and Emmerich, W., “Mobile computing middleware,”
Advanced Lectures on Networking, LNCS, 2002.

[98] Mascolo, C., Capra, L., Zachariadis, S., and Emmerich, W., “Xmiddle: A
data-sharing middleware for mobile computing,” International Journal on Personal
and Wireless Communications, 2002.

[99] Mecella, M., Angelaccio, M., Krek, A., Catarci, T., Buttarazzi, B., and
Dustdar, S., “Workpad: an adaptive peer-to-peer software infrastructure for sup-
porting collaborative work of human operators in emergency/disaster scenarios,” in
IEEE Collaborative Technologies and Systems, May 2006.

[100] Menon, A., Cox, A. L., and Zwaenepoel, W., “Optimizing network virtualization
in xen,” in Proc. of USENIX ATC, 2006.

[101] Messer, A., Greeberg, I., Bernadat, P., and Milojicic, D., “Towards a dis-
tributed platform for resource-constrained devices,” in International Conference on
Distributed Computing Systems, 2002.

[102] Miyoshi, A., Lefurgy, C., Van Hensbergen, E., Rajamony, R., and Rajku-
mar, R., “Critical power slope: Understanding the runtime effects of frequency scal-
ing,” in Proceedings of the 16th Annual ACM International Conference on Supercom-
puting, June 2002.

[103] Nathuji, R., O’Hara, K., Schwan, K., and Balch, T., “Compatpm: Enabling
energy efficient multimedia workloads for distributed mobile platforms,” in Proceed-
ings of the ACM Multimedia Computing and Networking Conference (MMCN), 2007.

[104] Nathuji, R., Isci, C., and Gorbatov, E., “Exploiting platform heterogeneity for
power efficient data centers,” in ICAC, 2007.

[105] Necula, G. C., “Proof-carrying code,” in Proceedings of the 24th Annual Symposium
on Principles of Programming Languages, pp. 106–119, ACM Press, 1997.

[106] http://www.netlab.cc.gatech.edu.

[107] O’Hara, K., Nathuji, R., Raj, H., Schwan, K., and Balch, T., “Autopower:
Toward energy-aware software systems for distributed mobile robots,” in IEEE Inter-
national Conference on Robotics and Automation, 2006.

119



[108] Ooi, W., Pletcher, P., and Rowe, L., “Indiva: A middleware for managing
distributed media environment,” in Multimedia Computing and Networking, 2004.

[109] Ooi, W. T. and van Renesse, R., “Distributing media transformation over multiple
media gateways,” in ACM Multimedia, pp. 159–168, 2001.

[110] “Openbinder.” http://www.open-binder.org/, accessed April 2008.

[111] Pai, A., Seshasayee, B., Raj, H., and Schwan, K., “Customizable multimedia
devices in virtual environments,” in Intl. Workshop on Mobile Device and Urban
Sensing, 2008.

[112] Papazoglou, M. and Georgakopoulos, D., “Service-oriented computing,” Com-
munications of the ACM, vol. 46, no. 10, 2003.

[113] http://http://www.cc.gatech.edu/systems/projects/PBIO/.

[114] Pering, T., Agarwal, Y., Gupta, R., and Want, R., “Coolspots: reducing the
power consumption of wireless mobile devices with multiple radio interfaces,” in Mo-
biSys, 2006.

[115] Perkins, C. and Royer, E., “Ad hoc on-demand distance vector routing,” in IEEE
Workshop on Mobile Computing Systems and Applications, 1999.

[116] Pike, R., Presotto, D., Dorward, S., Flandrena, B., Thompson, K.,
Trickey, H., and Winterbottom, P., “Plan 9 from Bell Labs,” Computing Sys-
tems, vol. 8, no. 3, 1995.

[117] Pinheiro, E., Bianchini, R., Carrera, E., and Heath, T., “Dynamic cluster
reconfiguration for power and performance,” Compilers and Operating systems for
low power, 2003.

[118] Pratt, I., Fraser, K., Hand, S., Limpach, C., Warfield, A., Magenheimer,
D., Nakajima, J., and Mallick, A., “Xen 3.0 and the Art of Virtualization,” in
Proc. of the Ottawa Linux Symposium, 2005.

[119] Prehofer, C. and Bettstetter, C., “Self-organization in communication net-
works: principles and design paradigms,” IEEE Communications Magazine, 2005.

[120] Raj, H. and Schwan, K., “O2s2: Enhanced object-based virtualized storage,” in
SPEED, 2008.

[121] Raj, H., Seshasayee, B., O’Hara, K., Nathuji, R., Schwan, K., and Balch,
T., “Spirits: Using virtualization and pervasiveness to manage mobile robot software
systems,” in IEEE International Workshop on Self-Managed Networks, Systems &
Services, 2006.

[122] Raj, H., Kumar, S., Seshasayee, B., Niranjan, R., Gavrilovska, A., and
Schwan, K., “Enabling semantic communications for virtual machines via iconnect,”
in International Workshop on Virtual Technologies in Distributed Computing, 2007.

[123] Raj, H. and Schwan, K., “High Performance and Scalable I/O Virtualization via
Self-Virtualized Devices,” in Proc. of HPDC, 2007.

120



[124] Raj, H., Seshasayee, B., and Schwan, K., “Vmedia: Enhanced multimedia ser-
vices in virtualized systems,” in Proceedings of Multimedia Computing and Network-
ing, 2008.

[125] Riva, O., Nadeem, T., Borcea, C., and Iftode, L., “Context-aware migratory
services in ad hoc networks,” IEEE Transactions on Mobile Computing, 2007.

[126] Rosu, D. and Schwan, K., “Faracost: An adaptation cost model aware of pending
constraints,” in Real Time Systems Symposium, 1999.

[127] Roth, C., “An introduction to enterprise javabeans technology,” in
http://java.sun.com/developer/technicalArticles/ebeans/IntroEJB/index.html, 1998.

[128] Schmidt, D. C., Gokhale, A., and Gill, C. D., “Patterns and performance of real-
time and data parallel corba for high-performance embedded computing applications,”
in HPEC, 2002.

[129] Schmuck, F. and Haskin, R., “Gpfs: A shared-disk file system for large computing
clusters,” in Proc. of FAST, 2002.

[130] Schwan, K., Cooper, B., Eisenhauer, G., Gavrilovska, A., Wolf, M., Ab-
basi, H., Agarwala, S., Cai, Z., Kumar, V., Lofstead, J., Mansour, M.,
Seshasayee, B., and Widener, P., “Autoflow: Autonomic information flows for
critical information systems,” Autonomic Computing: Concepts, Infrastructure, and
Applications, 2006.

[131] Seshasayee, B., Nathuji, R., and Schwan, K., “Energy-aware mobile service
overlays: Cooperative dynamic power management in distributed mobile systems,”
tech. rep., GIT-CERCS-07-05, Georgia Tech, 2007.

[132] Seshasayee, B. and Schwan, K., “Mobile service overlays: Reconfigurable middle-
ware for manets,” in ACM International Workshop on Decentralized Resource Sharing
in Mobile Networks, 2006.

[133] Seshasayee, B., Schwan, K., and Widener, P., “Soap-binq: High-performance
soap with continuous quality management,” in icdcs, 2004.

[134] Shah, R. and Rabaey, J., “Energy-aware routing for low energy ad hoc sensor
networks,” in Wireless Communications and Networking Conference, 2002.

[135] Shen, C., Ramamritham, K., and Stankovic, J., “Resource reclaiming in multi-
processor real-time systems,” in IEEE Transactions on Parallel and Distributed Sys-
tems, 1993.

[136] Sivakumar, R., Sinha, P., and Bharghavan, V., “Cedar: a core-extraction dis-
tributed ad hoc routing algorithm,” IEEE Journal on Selected Areas in Communica-
tions, vol. 17(8), pp. 1454–1465, 1999.

[137] Sivathanu, M., Prabhakaran, V., Popovici, F., Denehy, T. E., Arpaci-
Dusseau, A. C., and Arpaci-Dusseau, R. H., “Semantically-Smart Disk Systems,”
in Proceedings of the Second USENIX Symposium on File and Storage Technologies
(FAST ’03), 2003.

121



[138] Stoica, I., Morris, R., Karger, D., Kaashoek, M., and Balakrishnan, H.,
“Chord: A scalable peer-to-peer lookup service for internet applications,” in ACM
conference on Applications, technologies, architectures, and protocols for computer
communications, 2001.

[139] Sugerman, J., Venkitachalam, G., and Lim, B.-H., “Virtualizing I/O Devices
on VMware Workstation’s Hosted Virtual Machine Monitor,” in Proc. of USENIX
ATC, 2001.

[140] Swift, M., Annamalai, M., Bershad, B., and Levy, H., “Recovering Device
Drivers,” ACM Transactions on Computer Systems, November 2006.

[141] Swint, G., Pu, C., Koh, Y., Liu, L., Yan, W., Consel, C., Moriyama, K.,
and Walpole, J., “Infopipes: The isl/isg implementation evaluation,” in Network
Computing and Applications, 2004.

[142] Ta-Min, R., Litty, L., and Lie, D., “Splitting interfaces: making trust between
applications and operating systems configurable,” in USENIX OSDI, 2006.

[143] Takahashi, T., Sumimoto, S., Hori, A., Harada, H., and Ishikawa, Y., “Pm-
2: High performance communication middleware for heterogeneous network environ-
ments,” in ACM/IEEE Supercomputing Conference, 2000.

[144] Tennenhouse, D., Smith, J., Sincoskie, W., Wetherall, D. J., and Min-
den, G. J., “A survey of active network research,” IEEE Communications Magazine,
vol. 35, pp. 80–86, 1997.

[145] UPnP, “Universal Plug and Play forum.” http://www.upnp.org/.

[146] Utz, H., Sablatnog, S., Enderle, S., and Kraetzschmar, G., “Miro - middle-
ware for mobile robot applications,” IEEE Transactions on Robotics and Automation,
vol. 18(4), pp. 493–497, 2002.

[147] van Schaik, C. and Heiser, G., “High-performance microkernels and virtualisa-
tion on arm and segmented architectures,” in Intl. Workshop on Microkernels for
Embedded Systems, 2007.

[148] Vik, K.-H., Griwodz, C., and Halvorsen, P., “Dynamic group membership man-
agement for distributed interactive applications,” in LCN, 2007.

[149] Vinoski, S., “Corba: integrating diverse applications within distributed heteroge-
neous environments,” IEEE Communications Magazine, vol. 35, pp. 46–55, 1997.

[150] VMware, Inc., “VMware virtual platform, technical white paper,” 1999.

[151] VMware white paper, “Understanding Full Virtualization, Paravirtual-
ization and Hardware Assist.” http://www.vmware.com/files/pdf/VMware_
paravirtualization.pdf.

[152] von Eicken, T., Culler, D. E., Goldstein, S. C., and Schauser, K. E., “Active
messages: a mechanism for integrated communication and computation,” in Proceed-
ings of International Symposium on Computer Architecture, 1992.

122



[153] Wallace, G. and others, “Tools and Applications for Large-Scale Display Walls,”
IEEE Computer Graphics and Applications, July 2005.

[154] Weiser, M., “The computer for the 21st century,” Scientific American, vol. 265,
no. 3, 1991.

[155] Woo, E., MacDonald, B., and Trepanier, F., “Distributed mobile robot appli-
cation infrastructure,” in Intelligent Robots and Systems, 2003.

[156] “Xenintro.” http://wiki.xensource.com/xenwiki/XenIntro, accessed April 2008.

[157] Xu, D. and Jiang, X., “Towards an integrated multimedia service hosting overlay,”
in MULTIMEDIA ’04: Proceedings of the 12th annual ACM international conference
on Multimedia, 2004.

[158] Xu, M., Hu, Z., Long, W., and Liu, W., “Service virtualization: Infrastructure
and applications,” The Grid: Blueprint for a New Computing Infrastructure, 2004.

[159] Xu, R., Zhu, D., Rusu, C., Melhem, R., and Mosse, D., “Energy efficient policies
for embedded clusters,” in Languages, Compilers and Tools for Embedded Systems,
2005.

[160] Yang, C.-W., Lee, P. C. H., and Chang, R.-C., “Lyra: A system framework in
supporting multimedia applications,” in Proceedings of IEEE International Confer-
ence on Multimedia Computing and Systems, 1999.

[161] youb Kim, H. and Rixner, S., “Tcp offload through connection handoff,” in Eu-
roSys, 2006.

[162] Yu, C. and Chang, C., “Distributed query processing,” ACM Computing Surveys,
vol. 16(4), 1984.

[163] Zana, G., “Hvm pci passthrough.” XenSummit, 2007.

[164] Zhang, X., McIntosh, S., Rohatgi, P., and Griffin, J. L., “Xensocket: A
high-throughput interdomain transport for virtual machines,” in Middleware, 2007.

[165] Zhang, Y. and Li, W., “An integrated environment for testing mobile ad-hoc net-
works,” in International Symposium on Mobile Ad Hoc Networking and Computing,
2002.

[166] Zhong, L. and Jha, N. K., “Energy efficiency of handheld computer interfaces:
limits, characterization and practice,” in MobiSys, 2005.

[167] Zhou, D., Pande, S., and Schwan, K., “Method partitioning - runtime customiza-
tion of pervasive programs without design-time application knowledge,” in ICDCS,
2003.

123


