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SUMMARY

Integer programming (IP) can be used to model a variety of industrial problems, es-
pecially those related to planning and systems design. One of the most successful ways of
solving IPs has been the use of branch-and-cut algorithms, wlﬁch corﬁbine-a branch-and-
bound framework with the use of cutting planes. This dissertation co-nsiders..measures of
cutting planes with the aim of predicting and uindeIk'stan'di(ng their. u§efulne§s i.n’brar‘u-:h-and—
cut. Measures considered include the volume of the facet, the shoofing experifnent size of
the facet, the best-case improvement that the facet provides, and the Chvatal-Gomory rank
of the facet. B

We show that the shooting experiment size of a facet of a polyhedron is the same as the
probability that the corresponding extreme point of the pdlér ‘ﬁolyhedfdn is obi:iinal. This
result is also extended to blocking and anti-blocking pairs of polyhedra. Therefore, per-
forming one shot of the shooting experiment on a polyhedron is polynomial-time equivalent
to optimizing over the polyhedron. |

In the case of master cyclic group and master knapsack polyhedra, we derive a deter-

ministic partial order of the facets that is consistent with the order defined by their shooting
experiment sizes. We evaluate several measures for 19 master cyclic group problems and
9 master knapsack problems. We find that the shooting experiment size and best-case im-
provement measures correlate best with empirical usefulness, és determined by the size of
the branch-and-bound tree.

We also consider matching polytopes defined by complete graphs. The facets of interest
for this problem are deﬁned by odd sets of nodes. We prove that for sets up to size
o(n/logn), the shooting experiment will almost always hit facets defined by larger odd sets
- rather than facets defined by smaller odd sets. In contrast, we show that the best-case

improvement ratio is better for facets defined by smaller odd sets. Computational tests

xiii



based on the branch-and-bound tree size show that both evaluations have merit. Larger
odd sets are better when all facets of a given size are used, as is the case in the shooting
experiment analysis. When only a few facets are used, small odd sets are better, as suggested
by best-case improvement, which is based on consideration of individual facets.

We consider node packing, a classical combinatorial optimization problem in which two
primary classes of cutting planes are defined by cliques and odd holes. We show that both
best-case improvement and the shooting experiment predict that cuts defined by cliques
are much more useful than those defined by odd holes. These results are consistent with
experimental results found by Nemhauser and Sigismondi.

Among the measures considered, the shooting experiment and best-case improvement
seem to offer the best correlation with usefulness across the four'pfolb'le‘ms‘ ‘st:udied. In
.most cases, analyses of Both of these measures were tractable and agreed with empirical
tests. Chvdtal-Gomory rank presented conflicting predlctlons For the knapsack problems, .
a low Chvétal-Gomory rank was weakly correlated with good empmcal performance For
node packing, high Chvétal-Gomory rank was a good predictor of usefulness. On matching,
Chvétal-Gomory rank did not distinguish among the facets. Taken together, these results
suggest that Chvatal-Gomory rank is not a reliable predictor of facet usefulness in general.

Finally, we consider an examplé of the limits of facet -usefulness. We extend a result of

Chvatal’s concerning the minimum size of a branch-and-bound tree. For certain random

instances of partitioning, modeled as knapsack instances, we show that even with the use of
simple lifted cover inequalities, the branch-and-bound tree will have an exponential number

of nodes with high probability.
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CHAPTER, I

INTRODUCTION

Integer Programming (IP) deals with modeling and solving problems of maximizing or min-
imizing a linear function of variables subject to a set of linear constraints on the variables,
with the additiopal requirement that some or all of the variables must take on integer val-
ues. The requirement of integrality allows variables to model yes/no or other limited-choice
decisions, which makes IP useful in many planning and design problems. For example, IP
can be used to determine the shortest route for a delivery vehicle, the minimum number of
school buses for a school district, balanced and legal ménthly schedules for airline crews,
or the optimal locations for factories and warehouses. In addition, IP techniques are used
for a number of classical optimization problems, such as the Traveling Salesperson Problem
(TSP), node packing, and the knapsack problem. | o

This diséertation considers branch-and-cut, a common and eﬁ'ective solution method
{for IP. Specifically, it considers measures of cutting planés with f‘,}{le' aim of predicting and
understanding their usefulness in branch-and-cut. Section 1.1 reviews the background nec-
essary to more fuily state the focus and scope of this dissertation, which are laid out in
Section 1.2. Section 1.3 reviews the relevant litefature. Section 1.4 p:e'sentsvadditional

background material, and Section 1.5 describés the remaining chapters of the dissertation.

1.1 Background on branch?iaénd-cut algorithms fo'r integer |
programming 5

We assume that the reader is familiar with; iiﬂ_ear and integer programming, including LP

duality and branch-and-cut solution methods ifor integer programs. This section includes

a brief review of the most relevant material in%linear programming, polyhedral theory, and

integer programming. | |

We denote the set of real numbers by R and the set of integers by Z. The nonnegative



real numbers and nonnegative integers are denoted R and Z., respectively. We will often
use matrix notation, and vectors will typically be assumed to be column vectors. We denote

the transposes of matrix A and vector z by AT and z7.
1.1.1 Linear programming and polyhedral theory

A linear program (LP) is a problem of the following form: maximize (alternatively, mini-
mize) cI'z such that z € 5, where ¢ € R" is a constant vector, z € R™ is a variable vector,
and the set S C R™ may be expressed by a finite set of linear equalities and inequalities
in z. (Equivalently, S is the intersection of a finite set of half-spacgs in R™.) The vector
c is the objective vector, the Qa]ue cT'z is the objective ,vailu.e, and the lineér equalities and
inequalities are also called constraints.

We will often present linear programs in the following matrix notation, where Q’ectors

c € R", b € R™, and matrix A € R™*" are constant: '

min L'z

st. Az < b

Alternatively, we may use algebraic notation, such as the following;: .

min Y% ¢z
s.t. E}‘:l ai;z; < b i=1,...,m.

Linear programs often include constraints of the form z; > 0 for some or all variables.
These constraints are known as nonnegativity _consbéraints. When nonnegativity constraints
are present, we may refer to the set of ‘ot‘her lconstra;ints as non-trivial constraints. To fefer
to a single linear constraint E:;l a;z; < ag, we may also use the notation (a,ap), where
a = (a1,a2,-..,an)-

The set of points that satisfy the constraints of the linear program is called the feasible
region, which may be empty, bounded, or unbounded. Since it is the intersection of closed
half-spaces, the feasible region is a polyhedron in R™. A bounded polyhedron is also called
a polytope.

If an inequality (a,ag) is satisfied by all points in a polyhedron P, we say that it is a

valid inequality for P. The intersection of P and a valid inequality of P is called a face of



P. This intersection could be empty, a single p‘oi‘nt, a line segment, or a higher dimensional
set; If the dimension of the face is one less than the dimension of P, then the face is a facet.
If there are no redundant inequalities _in the set of constraints for P, then every inequality
determines a facet of P.

A face that has dimension 0 (a point) is known as a vertex or extreme point of P.
Because the objective function and constraints are linear, it is true that if there is an
optimal solution to the LP, then there is an optimal solution that is an extreme point of
the feasible region.

In general, linear programs may be solved relatively quickly by using either a vari-
ant of the simplez algorithm or an interior-point method. Historically first, the simplex
algorithm has fhe disadvantage that it may take super-polynomial time to solve but the ad-
vantage that it allows for quick resolves after adding a constraint or variable to the instance.
Interior-point methods give rise to polynomial-time algorithms, but resolving problems after
modifications is not as easy.

.Every linear program has a dual linear program. In this context, the original linear
program is called the primal. There is a variable in the dual for each constraint in the

primal and a constraint in the dual for each variable in the primal. Specifically, the primal

LP

min ¢’z
st. Az < .b
z 2 0
has dual LP
max bTy
st yTA > ¢
y =2 0.

The LP duality theorem states that if either LP has an optin’ia] solution,‘ then both do
‘and the optimal objective values are equal.
See a textbook on linear programming, such as Chvital [9] or Bertsimas & 1Tsitsik1is"[3],

for more details.



1.1.2 Integer programming

A mired integer program (MIP) is a generalization of a linear program in which one or -
more variables are required to take on integer values. If all variables are required to be
integral, then it is a pure integer program. The term integer program is sometimes used
as a synonym for mixed integer program and at other times as a synonym of pure integer
program. We will generally use the term integer program in the -broad'ervsense, though the
problems studied in this dissertation are all pure integer"pro;grams.

- Unlike linear programs, integer programs geﬁerally ‘have a feasible region ‘that is not
convex or even connected. The problem of solving'av‘?gé'n‘lerai ﬁiﬂtég"er "pxioAgrarri Ais NP-hlz;xrd.i

A common method for solving integer progr’ar‘rvls ié branclz;and-g(;und. The integrality
requirements of the IP are relaxed and the resulting linea.r‘prolgram, knownvasl the linear
relazation or LP relazation, is solved. If the resulfing solution is z;nteger feasible—all the
integer variables have integer values—then the solution is optimal. . E‘igure 1 shows the
constraints and feasible region of an IP. The white dofs ére the feasfble integef .points, and
the shaded region is the feasible region of the LP relaxation. In this example, exactly one
of the vertices of the LP relaxation is integer feasible. In general, there may be no, some,
or many integer feasible vertices in the LP relaxation.

If the optimal solution to the LP relaxation is not integer feasible, the problem, called
the parent, is split into several subproblems, called child subproblems. This process is called
branching. Most commonly, two subproblems are created based on an integer variable z;
that does not have an integer vahig in ﬁhe solution. If the value of z; is z}, then one
subproblem has the added constraiﬁf z; ‘S |z} | and the other subproblem has the added
constraint z; > [z}]. It is clear that any c;ptimal solution to the parent IP must be feasible
for one of these subproblems. Each of these branches must be explored and may lead to
further branching.

Branch-and-bound is more efficient than simply enumerating all possible soiutions pri-
marily because of bounding. If a given subproblem has a relaxed objective value that is no

| better than a currently known integer feasible solution, then this subproblem does not need

to be explored any further. It is said to be fathomed, and its branch is said to be pruned.



The four lines are constramts The white dots show the IP feasible set, and the shaded
area is the feasible region of the LP relaxation.

Figure 1: IP example



As the algorithm progresses, a tree is formed by the LP subproblems, which therefore are
also referred to as nodes. The size and shape of this tree, as well as the efficiency of the
algorithm, depend on the exact choice of rules for branching and exploring subproblems.

Because the child subproblems are closely related to their parent problem, it is much
quicker to use the simplex method starting from the parent’s optimal solution to solve the
LP than to solve it from scratch. For this reason, simplex-based algorithms are generally
used to solve the LPs in the branch-and-bound tree.

In practice, the most successful genéral method for solving integer programs is branch-
and-cut. In this variant of branch-and-bound, additional valid inequalities, or cutting planes,
- may be added to the problem, either at the root node of the l;ranch-and-bound tree or at
other nodes. For example, Figure 1.1.2 shows additional valid inéqualities added to the IP
from Figure 1. These valid inequalitiés do not change the feasible set of the IP, but they
do create a tighter LP relaxation by reducing the size of its feasible set. This may help
the branch-and-bound algorithm by exposing integer solutions to the LP relaxation and by
tightening the optimal valﬁe of the LP.relaxation, which may allow it to be fathomed.

Figure 3 shows the tightest possible inequalities for the‘ IP from Fi“gtvn‘e 1. | Thé feasible -
set of the LP relaxation is now the same as the convex hull of the integer 1feasib1e solutioné,
also known as the integer hull. Every vertex of the LP rela.xati»o.n is an integer feasibl;z
solution, so no branching will be necessary. As a consequence, the facets of the intéger hull
are of particular interest for use as cutting planes. v

If one polyhedron contains another polyhedron, then the first ié said to be a fela:;atibn
of the second. The term LP relazation comes from the fact that the LP defines a relaxation
of the integer hull. |

See a textbook such as Nemhauser énd Wolsey [34] or Wolsey [38] for more details on

integer programming and branch-and-cut.

1.2 Purpose and scope of this dissertation

Cutting planes can benefit a branch-and-bound algorithm by more quickly exposing integer

solutions and by causing nodes to be fathomed through tighter LP relaxations. The use of



The dashed lines are cuts that have been added.

Figure 2: IP with cuts



All extreme points of the LP relaxation are now integer feasible. The seven dashed lines
correspond to facets of the integer hull. -

Figure 3: Integer hull



each cutting plane incurs computational costs in time and memory, however. These costs
result not only from the generation of the cut and the need to perform simplex pivots with
more rows but also from the possibility that the cutting plane may negatively affect the
sparsity of the matrix. For these reasons it is not obvious how useful a particular cutting
plane or set of cutting planes will be.

This dissertation explores the question of usefulness from two points of view. The
bulk of the dissertation is motivated by the desire to understand and predict the relatiive
usefulness of different cutting planes, particularlvy ‘facét‘s,; b); examlnmgways that—"they
can be measured. Several possible measures are considered and applied to classical IP
problems, including knapsack and cyclic group problems, matching, 'and.node packing.
The tractability of analytical or empirical results for each msasure is\co-nsidered as well as
whether the measure appears to correlate with usefulness in bransh and cut.

Chapter 7 takes another view and considers limits on the usefulness of branch-and-cut.
The main result of this chapter is a proof that a certain class of random knapsack instances

requires an exponential number of branch-and-bound nodes with probability converging to

1 as the size of instance incredses, even if a large class of facet-defining cuts is added.

1.3 Literature review

This section discusses prior work on measuring cuts, empirical studies of cutting planes,

and limits on the minimum size of the branch-and-bound tree. Some later chapters present

additional references that are specific to the topic of that chapter.
1.3.1 Measures of facets

To our knowledge, there have been only three general measures of facets/cuts proposed in
the literature: a worst-case improvement measure used 'by Goemans [18] to analyze the
graphical TSP polyhedron, the shooting experirﬁent used by Kuhn [29, 30] for the TSP
and more recently by Gomory, Johhsoﬁ, and Evans [23] for cyclic group polyhedra, and
the Chvatal-Gomory rank .of inequalities, which stems from the work of Gomory [20] and

Chvétal [7). In addition to these, Evans [15] and Gomory and Johnson [22] considered a



“merit” function that applies only to facets of master cyclic group and master knapsack
polyhedra.
For a minimization problem, Goemans [18)] defined the strength of an inequality az > b,

where a,b > 0, with respect to a polyhedron P of blocking type as

b
min{az: z € P}’

This definition is based on the fact that if the objective vector ¢ = a, then the strength
of the inequality is the ratio of the optimal objective value with the inequality present to
the optimal objective value without the inequality. Goemans pros/ed that choosing c=a
gives the largest such ratio. As Goemans himself pointed out, this is really a “best-case”.
measure, though it falls in the category known as “worst-case” analyses. This méasure was
used again by Goemans and Hall [19]. An advantage of Goemans’s apbroéch is that it lends
some tractability to the problem. Goemans was able to evaluate the measure for quite a
few of the common TSP cuts, includiﬁg comb inequalities at 10/ 9,’clieu'e tree ihequalities
at 8/7, and path configuration inequalities at 4/3. A disadvantage is that the measure
doesn’t address typical-use considerations. Is this best-case objective function very likely?
Is the cut almost as good for other objective functions or does it do poorly except on a few
exceptional objective functions?

We believe the name “shooting experiment” was first used by Gomory several years
ago in his work on cyclic ‘group polyhedra, which was r‘ecently published in a paper jointly
authored with Johnson and Evans [23] Kuhn used the techmque much earlier in mostly
unpublished experiments on the 5- c1ty TSP polytope from 1953 [29], with some follow-up
in 1991 [30]. After selecting a; pomt in the 1nter10r of a polytope, rays—or “shots” —are sent
from that point in random dlrectlons, and the facets that they intersect are recorded. The
number of rays which hit a glven facet glves an estlmate of its size. For the TSP, we do not
have a complete description of the facets i 1n 1;he general case. Kuhn used an explicit list of the
extreme points for the 5-city polytope to: ;lerform the shooting experlment Gomory’s use
of the shooting experiment is different in that he is shooting from outside an unbounded

polyhedron and one “shot” of the experiment can be performed in polynomial time on
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master cyclic group polyhedra by solving an LP, even without an explicit list of the facets.
This allows for better use of the shooting experiment to investigate important facets as
the size of the problem increases. Additional work on cyclic group and knapsack problems
appears in Evans’s dissertation [15]. »

Gomory and Johnson [22] and Evans [15] noticed that cyclic group facets that were hit
often by the shooting experiment also exhibited more degeneracy in a system of inequalities
" that characterizes the facets. Gomory and Johnson refer to a measure based on the amount
of degeneracy as the “merit function”, which they presented in a more general continu-
ous model of cutting planes. In both references, the measure is considered because of its

correlation with the shooting experiment.
1.3.2 Computational studies

There are a number of computational studies of the relative usefulnes_s; \oii lcuts for particular
problems. Nemhauser and Sigismondi [33] found that clique inequalities are much more
useful than odd-hole inequalities for node-packing problems in random graphs, though fof
lower density random graphs odd-hole inequalities were also important. We consider their
results in Chapter 6. | |
Aardal [1] considered many cuts for the Capacitated Facility Location (CFL) problem
and found that the single most effective class was knapsack cover mequahtles, even though
they ignore the flow variables in the formulation. Fischetti, Gonzalez and Toth [16] studied
the orienteering problem. They d1d ‘not compa.re performance using different cuts, but they
did find that the most often v1olated cuts were generallzed subtour elimination constramts,
logical constraints linking nodes and vertlces, ‘a,nd a new class that they call condltlonal cuts.
Magnanti, Mirchandani, and Vachani [32] corj[ls:1dered the two-facility loadmg problem, and

found that cutset and 3-partition inequalities were more effective at reducing the integrality

gap than arc residual capacity inequalities werle
y
1.3.3 Size of the branch-and-bound tr}ee

For optimization problems, an implementation of an algorithm is generally evaluated based

on the time it takes and the amount of memory it uses. These two measures depend on
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many details of the implementation and are therefore not the only ways that we wish to
evaluate the usefulness of facets for branch-and-cut algorithms. An additional performance
measure that we have used is based on the size of the branch-and-bound tree when the facet
is added at the root node. This size depends on the choice of branching variable and the
node exploration strategy.

This measure has been considered previously, particularly_inv‘the context of proving
that branch-and-bound will require an exponential number of nodeé for certain problem
instances when branching is done on variables.

Jeroslow [28] presented an instance of the ‘knapsack problle-r'n whic‘h‘requirés én e}.cpo-
nential number of branch-and-bound nodes. |

Chvétal [8] considered a set of random instances of the knapsack problem in which the
objective coefficients were the same as the constraint coefficients and the right-handéside
was the floor of half the sum of all the coefficients. Note that this can be considered a
bipaftition problem in the form of a knapsack problem. Chvétal showed that with b‘prolba-
bility converging. to 1, it‘ takes exponentially many nodes to solve such a random instance
by branch-and-bound. More details on Chvétal’s results are given in Chapter 7.

Gu, Nemhauser, énd Savelsbergh [26] also considered the knapsack problem, but with
~ the addition of cutting planes to the algorithm. Speciﬁcally, they presented a family of
instances that require an exponential number of branch-and-bound nodes even with the
addition of simple lifted coVer_inequalitie_s.'

More recent work in proviﬁg expvohenti‘al‘worst-case bounds in the presence of various
cutting planes has been done by Dash [12], who proved worst-case exponential bounds in the
presence of lift-and-project cuts, Chvdatal-Gomory inequalities, and matrix cuts as described

by Lovasz and Schrijver.

1.4 Additional bcickground

This section provides additional background on topics and techniques used in the disser-
tation, including Chvétal-Gomory inequalities, complexity, probability, graph theory, and

polarity.
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1.4.1 Chvétal-Gomory inequalities and rank

Chvdtal-Gomory rounding is one method of using known valid inequalities to generate
Aadditi'onal—hopefully stronger—valid inequalities. The resulting inequalities are called
Chvdtal-Gomory inequalities, which we will often abbreviate as C-G inequalities. The round-
ing procedure was explicitly presented by Chvétal [7] but was implicit in earlier work by
Gomory [20]. See Nemhauser and Wolsey [34] or Wolsey [38], for example, for a detailed
discussion of Chvital-Gomory rounding. We present a summary for the case in which all
variables are nonnegative, which is sufficient for this dissertation.

Given two inequalities Z;Ll c1;z; < dp and E;’:l c2jz; < dg, we say that the first
dominates the second if c1; > cz; for all j and d; 5 do. If an inequality is valid, then

because the variables must be nonnegative, any inequality it dominates is also valid.

Let E};l a;jz; < b; be the currently known valid inequalities, where i = 1,...,m. Let
u1,...,Um be nonnegative multipliers for the inequalities. Then the linear combination
n m
S e < 3w 0
j=11i=1 =1

is a valid inequality.
We can round down in (1) to get a dominated inequality, which is also valid:
Z [Z u,a,JJ z; < Zu,
=1 Lo o
Since the coefficients on the left hand- s1de are all 1ntegers, thie-sum’ of the:left- hand 51de "
must be integer for any mteger solutlon z. Therefore we can round the nght hand-side
down and still have a vahd 1nequa11ty. That 1;s the crucial step in the process, :whlch allows

D

us to generate stronger inequaliﬁies. Thé ';r'ésﬁlting Chvétal-Gomory inequality is
‘ ' n i m :4‘
| [}: U,J 5 < {2 o J
‘L ‘1-. =1
Once some C-G inequaulitie_sl have. béén generated, they can be used along with the
original inequalities to generate further iﬁédﬁalities. This iterated approach to C-G rounding
leads to the idea of C’hvdtal—Gom'ory rank. We define the C-G rank of the initial inequalities

and any inequality dominated by a nonnegative linear combination of the initial inequalities
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to be 0. Any inequality which can be generated as a C-G inequality based on rank 0
inequalities—but is not rank 0 itself—has C-G rank 1. Similarly, a valid inequality has C-G
rank k if it can be generated as a C-G inequality based on inequalities of rank 0,1,...,k—1,

but it is does not have rank less than k.
1.4.2 Complexity and asymptotic notation

We expect that readers are familiar with the cOmple'xii_:y classes P and NP. -

We will use the following standard notation for asymptotic behavior. Given functions
f(n) and g(n), we say f(n) = O(g(n)) if there exists a constant ¢ > 0 such that f(n) <
cg(n) for all sufficiently high n. We also say f(n) = Q(g('n)) if g(n) = O(f(n)), and
f(n) = ©(g(n)) if both f(n) = O(g(n)) and f(n) = Q(g(n)). If the ratio f(n)/g(n) goes to

0 as n increases, we say that f(n) = o(g(n)).
1.4.3 Probability

We expect that readers are familiar with the concept of a random variable, as well as

continuous and discrete probability functions. We will use the abbreviation iid to refer to
variables that are independent and identically distributed.

Given an event A, we denote the probability that A occurs by P (A). Given an event

A, parametrized by an integer n, we -say that event A, occurs almost always if P (A,) = 1

as n — 0.

We will use the standard normal distribution often. The density function for the stan-

dard normal distribution is
1 =22
e 2
\/271’

If X is a standard normal random variable, then ¥ = | X| is a positive standard normal

fl=) =

random variable and has distribution function

0, ify <0,
fly) =

2
\/—2-2—776—21(—, ify >0.

Although the normal distribution has great importance in its own right, in the context

of this dissertation the importance comes from a desire to generate uniformly random points
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on the unit sphere. This can be done in n dimensions by generating n coordinates as iid
normal random variables with mean 0 and then scaling the resulting vector to have unit
magnitude. In fact, since the direction is what we are concerned with, it is not generally
important to scale the result. In either case, we say th‘at the distribution is spherically
symmetric. See Bryc [5], for example, for a proof of this fact.

We will make use of two standard bounds in the field of probabilistic analysis. The first
is the Chernoff bound [6]. Recall that a binomial distribution is the same as the sum of iid

Bernoulli trials.

Theorem 1.1 (Chernoff Bound) Let X be a binomial v_ra'n'dom 'va_riabl_e with parameters,
p,n (X may be considered the sum of n iid Bernoulli random‘uafidb?e;s wiil_z probabilitg‘/ip

that each is 1). Then p = E[X] = np and for any § > 0,

&8 B e

A slightly more general theorem is true, but this will suffice for our needs. Note that if p
and ¢ are constants then y = ©(n), and the right-hand-side; abo;fe is eiponentiaily smali iﬁ
n.

Another bound we will use is a Hoeffding bound [27] There are several forms for this

inequality.

Theorem 1.2 (Hoeffding Bound) Let X1,Xo,...,X, be independent random variables
with 0 < X; < B for each i, where B is constant. Let X = Y7 X; and let p = E[X].
Then for any § > 0, | |

L 52

P(X > (1+0)u) < & 07D,

and

8

P(X<(1-6)u)<e 5.
1.4.4 Graph theory

We expect readers are familiar with the notion of a graph, as well as the notions of adjacent
nodes, paths, cycles, subgraphs, and induced subgraphs. We will typically denote a graph

by G = (V, E), where V is the vertex or node set of the graph and E is the edge set.
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A clique is a set C C V such that every pair of nodes in C is adjacent. A hole is a set
H C V such that the induced subgraph on H is a cycle containing all the nodes of H. An
odd hole is a hole such that |H| is odd.

Given a subset S C V, let §(S) = {{u,v} € E:u € S,v ¢ S} and let 7(S) = {{u,v} €
E :u € S,v € S}. That is, §(S) is the set of edges in the cut defined by S, and (S)
is the set of edges interior to S. When S = {v} contains a single node, we abbreviate
5({v}) = §(v) and 7({v}) = 1(v).

To generate random instances of graphs, we will use the notion of a random graph with
density p. For such a graph, the number of nodes is given ahead of time, and each possible
edge is present with probability p, independently of all other edges. For example, let n = 10
and p = 1/4. There are (120) = 45 possible edges in a graph with lQ nodes. ’i‘o geﬂerate a
random instance, we independently include each edge with probabiiity 1/4.

See Bollobds [4], for example, for more information about:tfge theory pf random graphs.

We will maké use of the following result about the size of the iargest clique in a random

. graph (sge [4]).

Proposition 1.3 For a random. graph with density p, given a constant € > 0, the size of

the largest clique C' in the graph almost always satisfies
I.d(n1p) - EJ < Icll < [d(n,p) + 6]7

where

d(n,p) = 210g% 7%:'—_2(10g% log%d-i—l +10g%(§).

1.4.5 Pélyhedra and pélarity

ENE
I

Given a set of points S C R", the co‘fz%eziizull of S is the set

om LE m
hull(S) =;{Z a,-:c;f::‘jm >1,z; € S,Z a; =1,0; > 0}.
3 i=1 ‘ i=1

This is the smallest convex set conta‘injing S.

The cone generéted by a set of S 'of vectors is

m
cone(S) = {Z a;zi:m > 0,z; € S,0; > 0}.

i=1
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The sum of two sets Sand Pis S+ P={z+y:z € S,y € P}.

Given a set P C R", the polar of P is the set
P*={zeR" : 2Tz <1 forall z € P}.

If P is a polyhedron containing the origin, then it can be shown that P* is also a polyhedron

and that P** = P. Moreover, if P = hull{zy,...,Zn} + cone{y1,...,yx}, then
P*={zeR":2lz; <1 fori=1,...,m,zTy; <0forj=1,...,k}.

That is, the extreme points and extreme rays of P are'éhc;ugh: to ‘specify P*. If Pis
full-dimensional, then the extreme points of P are in 1-1’ cofréspondéhce with.t‘he facets of
P*, and vice-versa. See Schrijver [37], for example, for prbofs of these facts.

The origin plays a‘ special role in polarity, as indicated by thé above results. It is also
possible to consider the polar with respect to another point in the polyhedron. Conceptuz_llly,
this is done by translating the polyhedron prior to C(;mputing the polaf. Equivzilent]y, we

may define the polar of P with respect to point a as
Pr={zeR" : (z—a)(z—a)<1forall z € P}.

There are special kinds of polarity for certain polyhedra. A polyhedron P is of blocking
~ type if P C Rﬁ and z € P,y > = = y € P. The blocker of P is denoted by B(P) and
is given by B(P) = {z € R" : Tg > 1}. Similar to polarity, B(B(P)) = P as long as
P is of blocking type. If P has extreme points zl,:z:gv, ..., Zm and is of blocking type, then

B(P)={zeR" : 2Tg; > 1fori =1, . ,m} In fact, the extreme points of P correspond
to the facets of B(P), and vice versa. |

A polyhedron P is of anti-blocking t_;/;)e if PC RI_;_’ and z € P,y <z =y € P. The anti-
blocker of P is denoted by A(P) and’is éiven' by A(P) = {z € R" : 2Tz < 1}. As before,
A(A(P)) = P as long as P is of anti-blo%:king type. If P has extreme points z;,z2,...,Zn
and is of anti-blocking type, then A(P) E= {zeR" : 2Tz; <1fori=1,...,m}. In fact,
the extreme points of P correspond to tl;ie facets of A(P), and vice versa.

Schrijver [37] includes an excellent presentation of polarity, including blocking and anti-

blocking polyhedra.
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1.5 Structure of this dissertation

Chapters 2 through 6 consider the possibility of measuring facets to predict their relative
usefulness in branch-and-cut. Chapter 2 presents a set -of candidate measures along with a
discussion of their inherent similarities and differences. Measures considered include best-
case improvement, shooting experiment size, probability of integrality; Chvéital-Gomory
rank, and facet volume. R

Chapter 3 examines some polar properties of the shooting experiment size, showing that
performing the shooting experiment ls equivalent to optimizing over the polar polyhedron.
A consequence is that performing the shooting experiment on a polyhedron is polynomial-
time equivalent to optimizing over the polyhedron.

. Chapters 4, 5, and 6 apply the measures to several classical IP problems: master cyclic
group and master knapsack problems, matching, and node packing, respectively.

For cyclic group and knapsack problems, a variety of measures-are evaluated for com-
parison to one another and to an emp_iricztl measure of usefulness based on branch-and-
bound tree size. In part, the results indicate that best-case improvement and the shooting
experiment provide the strongest correlation to empirical usefulness for master- knapsack

problems.

In Chapter 5, analyses of the shooting expenment and best-case 1mprovement on match-

ing polytopes show that the measures make opposite- predlctlons of facet usefulness wlnle

Chvatal- Gomory rank falls to dlfferentlate among the facets. Emplrlcal results show tlla.t in

a sense, both the best-case 1mprovement and shootmg expenment pred1ct10ns are correct

Node packing polytopes are cons1dered 1n Chapter 6. The results of the analysis are

compared to an empirical study by Nemhauser and Slglsmondl, wh1ch made use of cllque‘

inequalities and odd-hole inequalities. Analyses of the shootlng experlment and best -case

improvement both predict that clique 1nequaht1es are much more useful than odd-hole
S lll ‘r ;

1nequa11t1es, consistent with the results of Nemhauser and Sigismondi.

As mentioned earlier, Chapter 7 takes a different view, looking instead at the limits of

cutting-plane usefulness. The main result is a proof that a certain class of random knapsack

instances almost always requires an exponential number of branch-and-bound nodes, even
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if a large class of facet-defining cutting planes is added to the relaxation.
Finally, Chapter 8 summarizes the contributions of the dissertation and considers pos-

sible future research.
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'CHAPTER II

POSSIBLE MEASURES OF FACETS AND CUTTING
PLANES

We will consider the following quantities, which can be used as measurés of facets.

Best-case improvement in the objective value when the facét is added to a given

relaxed polyhedron

Shooting experiment size

Chvétal-Gomory rank

Facet volume

Probability of an integer optimum when the facet is added to a given relaxed polyhe-

dron

Each measure is described more carefully in Section 2.1, and Section 2.2 discusses some

of the inherent differences between the measures. Section 2.3 addressesv_the application of

these measures to cutting planes that do not define facets. Finally, Section 2.4 presents

best-case improvement, the shooting experiment, and Chvital-Gomory rank in more depth.

2.1 Ezxplanation of each measure

This section presents a formal description of each measure as well as a brief discussion of

the intuition that motivates it.

2.1.1 Best-case improvement in the objective value when the facet is added to
a given relaxed polyhedron

This measure was proposed by Goemans in the context of the Graphical Traveling Salesman

Problem (GTSP) [18] and was used by Goemans and Hall [19] on the acyclic subgraph
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polytope. The GTSP polyhedron is of blocking type and the objective is to minimize, while
the acyclic subgraph polytope is of anti-blocking type and the objective is to maximize.
We will only apply the best-case improvement measure to anti-blocking polytopes, so we
present the second version here.- »

Given an anti-blocking polyhedron @ C Ri and a relaxation P O @, we define the
best-case improvement ratio of Q@ with respect to P to be

max{c’z : z € P}
sup = .
cery max{cTz : z € Q}

In words, this is the inverse of the maximum ratio of improvement in t.he objective value
between polyhedra P and Q. St

To apply the best-case improvement measure to a single facet, we étart with a relaxation
P of the integer hull under consideration and let () be the polyhedror_l_ deﬁned by ‘adding‘
the facet in question to P. Alternatively, we may consider a group,of fécets in cohjl‘lncfion,
in which case we add all of them simultaneously to form Q.

Intuit»ively, this measure indicates the most that a facet could help the objective value.
Goemans referred to this as a “worst-case” measure, since it falls in the category known as
worst-case analysis. It is in a sense a best-case measure, however, which is why we have .
chosen the term best-case improvement for use in this dissertation.

Section 2.4.1 presents best-case improvement in more detail.

2.1.2 Shooting experiment size

The shooting experiment §vas first considered by Kuhn in the context of the TSP [29, 30].
After selecting a point in thé interior of ia. polytope, rays—or “shots”—are sent from that
point .in ‘randorri directions, and the faéétslt‘hét they intersect are recorded. Intuitively, a
facet that is hit by a large number of Sh(i)ifé; is ipr‘obably “larger” and more important than
a facet hit by few shots. At the time of K:iu_hn’s? investigation, computing power was limited

and he did not develop or pursue the tecjhjniquie.
More recently, Gomory applied a similar idea to cyclic group polyhedra, developing it
further and performing more extensive tests along with Johnson and Evans [23]. In this

case, the originating point is external.
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We will refer to the originating point as the shooting point, and we define the shooting
experiment size of a facet to be the probability that a ray in a random direction will hit
that facet. Note that this probability depends on the shooting point as well as the random
distribution we are using. Actually performing the shooting experiment gives a Monte Carlo
estimate of the shooting experiment size. |

We will consider two possibilities for the distribution of directions. If all directions are of
interest, then the directions will be chosen from a spherically symmetric distribution. If only
nonnegative directions are of interest, then the directions will be chosen from a spherically
symmetric distribution that is limited to the nonnegative orthant. See Section 1.4.3 for a
method of generating such random directions. |

When comparing a subset of facets or inequalities, we may also ponsider the shooting
experiment sizes on the polyhedron defined by ddding bniy those i"n'equalities to the LP re-
laxation of the problem. Although these values are not the same as the shooting experiment
sizes on the integer hull, they provide a way to compare sets of facets, especially when not

all facets of the integer hull are known.
2.1.3 Chvéatal-Gomory rank

The definitions of Chvatal-Gomory inequalities and their rank are given in Section 1.4.1.
Since C-G rank is often considered when new inequalities are investigated, we wish to
consider whether this rank can be used as an indicator of the usefulness of the inequality

as well.
2.1.4 Facet volume

Let the integer polyhedron P have cllirhe:néioh n. Then the facets of P are polyhedra of
dimension n — 1. The volumes of fhéée_ polyhedra give a direct measure of their size.
Intuitively, we suspect that facets wiﬂif larger volumes might be more useful than facets

with smaller volumes. e
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Table 1: Parameters required for each measure

Relaxed Probability | Shooting
, ‘Measure | polyhéedron | distribution point
Best-case improvement Vv
Shooting experiment size V4 V4
C-G rank v
Facet volume
Probability of integrality v V4

2.1.5 Probability of an integer optimum when the facet is added to a given
relaxed polyhedron

Given a relaxation P of an integer null and a distribution for random objective functions,
there is a well-defined probability (possibly zero) that the optimum extreme point of P is an
extreme point of the integer hnll. We will call this the probability of integrality for relaxation
P and the given objective distribution. The probability of integrality is of interest because
finding feasible integer solutions more quickly can significantly .improve the performance of

~a branch-and-bound algorithm.
2.1.6 Other possible measures

Our list of candidate measures is by no means exhaustive. In Chapter 8, we mention other
measures as possible subjects of future research.
2.2 Measures make use of‘ different information

P
- The measures descrlbed above do not all 'use the same 1nforrnat10n For example, the facet
volume depends only the 1nteger hull, whlle the best-case 1mprovement ratlo depends on,the
chosen relaxation. The shooting experlment requ1res a shooting point, which is not needed
. for any other measure. ‘

As indicated. in Table 1, the measui‘es under con31derat10n may depend on a choice of
relaxed polyhedron, a probability dlstrll?utlon erj:a vector (either the objective or a shooting
direction), and/or a shooting point. | :

What implications do these differences have for the measures? On one hand, it may be
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simpler to analyze measures for which little or no extra information is considered. ‘Facet
volume, for example, depends only on the integer hull being considered. We do not need to
consider specific reléxations or the objective vector.

In practice, however, branch-and-cut is performed by starting with a relaxed polyhedron
and a known ’objective vector. A measure that ignores these two elements may not have
the same potential benefits of one that considers them. Considering the information is not
always straightforward, however. What is an appropriate random distribution for obbje(A:tive
functions? As is often the case in probabilistic analysis, when this'question comes up we
make simplifying assumptions that do not accurately descfibé I;eal-:v;/c;rld ihé_tances. ’

It is particularly significant that none of the measures under consideration mékes use
of an explicit objective function, even though that information is readily available during
branch-and-cut. We will say more about this when we discuss potential future wo'rl% in
Chapter 8. |

It is not the goal of this dissertation t;(.),.pgg_cisely examine the efféc';s of ﬁéing or ignéring
particular information. Instead, we wish to fo'cus on the relative usefulness of the measures.

For this reason, we will not pursue the issues raised in this section.

2.3 Measuring non-facetial cutting planes

All of the measures above can be applied to facets, but not all can be naturally applied to

cutting planes that do pot‘deﬁvne:facets.’ For exampie, cutting planes do not have a “facet
volume” or shooting experimeﬁf size in terms of the integer hull.

It is possible to use such a me%aéufe, howevefi by considering a relaxation in which the
cutting plane defines a facet. Fori exaniple, in Chapter 6 we will consider a relaxation of
the node-packing polyhedron in wfhich c;nly certain inequalities are present. The resulting

cutting-plane measures depend on? the relaxation used, of course.

2.4 Fundamental thebry of the best-case improvement ra-
tio, the shooting experiment, and Chvdtal-Gomory rank

This section discusses the application of best-case improvement to anti-blocking polyhedra,

the process of performing the shooting experiment, and our method of determining partial
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information about Chvatal-Gomory rank computationally.
(IR i
2.4.1 Best-case improvement applied to anti-blocking polyhedra
We assume that P C R is a relaxation of a polyhedron @ C R, both of anti-blocking

type. Given constant o > 1, we say that P is an a-relaxation of Q.if @ D -};P.

Definition 2.1 The best-case improvement ratio of P relative to Q, denoted t(P,Q), is

“the minimum value of o such that P is an a-relazation of Q.

It is clear that ¢(P, Q) > 1, and t(P,Q) = 1 if and only if P = Q. The motivation for the
name “best-case improvement ratio” is given by the following proposition, due to Goemans
and Hall [19]. We present our own proof of the proposition, which is more complete than

that in [19].

Proposition 2.2 (Goemans, Hall) Given P and Q as defined above,

max{c’z : z € P}
t(P,Q) = su .
(F.Q) cef% max{cTz : z € Q}

Proof: If P is an a-relaxation of @, then for any c € R1,
T 1 T
max{c' z:z € Q} > Emax{c z:z € P}.

Therefore, ‘
max{cl'z : z € P}
max{cTa; e}

a>

Since this holds for any nonnegative c, we: ha.ve shown that
I'nax{c z:z € P}
t(P,Q) > sup — .
(P.Q) 2 cEIg; max{cTz : z € Q}

T a - .

Now let a = supcersn %&%. For a contradiction, assume that P is not an a-
relaxation of . Then there exists a point y € P such that 1 <y ¢ Q. Therefore there exists
a hyperplane aT'z = b such that a¥(1y) > b and aTz <bforallz € Q.

Let o' be defined by a; = max{a;,0}. ' We claim o' is also a separating hyperplane.

Clearly (a' )T(%y) > b. Given z € @, let =’ be defined so that ] =0if a; =0 and z} = z;
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otherwise. Since 2’ < z, we know that =’ € @, and thus a”2' < b. But oz’ = (a’)Tz, so
(") Tz < b, which proves that o’ is a separating hyperplane. V
Since ' > 0, we may set ¢ = @/, and we must have

S max{(a')Tx : z € P}
=~ max{(a')Tz:z € Q}’

The denominator is clearly no more than b, while the numerator is at least (a')Ty > ab.

This gives : :
max{(a')Tz : z € P}
=~ max{(a’)Tz: z € Q}

This contradiction proves that P is an a-relaxation of @, so that

- = Q.

max{c’'z : z € P}
PR S B e Ta s e Q)

We have already shown the reverse inequality, so this proves the proposition. | |

Definition 2.3 For an inequality aTx < b, its strength relative to anti-blocking p.olyhedron

’ . maxjaT:r::rePi
P is b .

This definition is justified by the following theorerﬁ, due to Gbemaﬁs and Hall (19]:.
Theorem 2.4 Let anti-blocking polyhedron @ be defined by inequalities a,T:z: < b; fori =

1,...,m, where a; > 0,b; > 0 for all i. Let P be a relazation of Q. ‘Then

t(P Q) = male

z L ; !
where d; = ma.x{a?x tT € P} That' z's, t(P,.Q) is the strength of the strongest inequality of

Q relative to P.

2.4.2 The shooting experiment

Given a shooting point z and a direction d, the points along the ray are of the form z + td,

where ¢ > 0 is a scalar. The digtb.nce from z to z +td is t ||d||.
Definition 2.5 The value t z:'s?;tl_ze scaled shooting distance from z to z + td.

Since d is constant, the scaled shooting distance can be used to compare the distances

from z to the intersections of the ray with the inequalities that define the polyhedron.
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Proposition 2.6 The scaled shooting distance from poznt z to mequalth z 145%; <b,

where z satisfies the inequalily, is given by

b—>i a5z

t=
ajdj ’

n
j=1

if this value is defined and positive.

Proof: To determine the scaled distance along the ray to the inequality, we must solve

> j=1;(zj +td;) = b for t. This gives
n

n .
Zajzj + tZajdj = b
7=1 j=1

b— ZJ lanJ .
P = = (2)
2_7 laJ

Since z satisfies the inequality, the numerator of (2) is nonnegative. If z lies in the hyperplane
defined by the inequality, then we may ignore it, so we may restrict attention to inequalities
for which the numerator of (2) is positive. If the denominator of (2) is zero, then the
direction d lies in the same hyperplane Sleﬁned by a, so the inequality is never intersected.
If the denominator is negative, then the ray does not intersect the vinequality. Therefore,

we may restrict our attention to inequalities for which ¢ is positive. |

Consider the case that z is inside the polyhedron. Since z is inside the polyhedron, the
ray leaves the polyhedron at the first inequality that it intersects. So the facet that is hit

is the one that minimizes the value of ¢ among those for which ¢ is positive.

Proposition 2.7 The scaled shooting distance from point z to inequality Z_?=1 a;z; > b,

where z does not satisfy the inequality, is given by

‘= b— Z—lanJ
AT

’

_if this value 1s defined and positive.

Proof: The derivation of the equation is the same as in the previous proof.
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Since z does not satisfy the inequality, the numerator is positive. If the denominator is
zero, then the direction d lies in the same hyperplane defined by a, so tl_le_inequzility is never
intersected. If the denominator is negative, then the ray does not intersect the inequality.

- Therefore, we ‘may restrict our attention to inequalities for which # is positive. =~ MW

In the case of blocking polyhedra, we are interested in'an external :sh'oot'in"g point, the
origin. The ray enters the polyhedron when it intersects the last inequality. Therefore, the
facet that is intersected is the one that maximizes the value of t.

This general approach to the shooting experiment will be used in several later chapters.
2.4.3 Computational determination of Chvatal-Gomory rank .

In general, it is not easy to determine the Chvatal-Gomory rank of an inequality. For some
well-known facets, the rank or bounds on the rank have been determined. This is not the
case for master cyclic group or knapsack facets, however, so we have devised a computational
approach to determine those facets that have Chvatal-Gomory rank 1.

‘Consider the following IP:

max clx

s.t. a’{:z: < b 1=12,....,m
z > 0
T integer

where z,¢,a; € R",b; € R. The standard LP relaxation is found by removing the integrality
requirement.
As discussed in Section 1.4.1, Rank 1 C-G inequalities are of the form
n m ‘ . m
> l Ui@ijJ z; < lz UibiJ ,
j=1 Li=1 i=1

where u; € Ry.

Assume we are presented with a can:didate inequality fTz < g with f € Z", g € Z. If

this is a rank 1 C-G inequality, then there exist nonnegative u; such that 27;1 u;iai; 2> fj
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for all j and such that ) 7", u;b; < g + 1. We can determine this with the following LP:

min bTu
st Do uiai > fi 7=1...,n .

uy 2 0 i=1,...,m

If the optimal objective value is less than g + 1, then the inequality is rank 1. Otherwise it

is not. Note that the value g is not present in the LP itself.
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CHAPTER I

POLARITY RELATIONSHIP BETWEEN THE
SHOOTING EXPERIMENT AND PROBABILITY OF
OPTIMALITY

This chapter presents connections between the shooting experiment and polyhedral analy-
sis. These connections stem from a polarity relationship between performing the shooting
experiment and optimizing over a polyhedron. See Section 1.4.5 for a review of polarity. A
- consequence of these connections is a polar relationship between two measures: the shooting

experiment and the probability of integrality.

3.1 Central polarity relationship

Definitions for polarity are given in Section 1.4.5.

Theorem 3.1 Let P C R™ be a polyhedron containing the origin. Let ¢ be an objective

vector with dimension n. Let P = hull{0,z1,z2,...,Tm} + cone{y1,y2,...,ys}. Let P* be

the polar of P, so that P* = {z € R" | 2Tz; <1 for 1 <i<m,2Ty; <0 for 1 <k < £}
Then xj is an optimal extreme point of PP for objective vector c zf and only if zT:cj <1

defines a facet of P* that is hit by the f'ray from ftl:zve oﬁgih in direction c.

Proof: We will first shvathat the distance frofp th:e origin to the hyperplane z7z; = 1
along ray c is given by gql%- The vector that gives t}:liS distance is a multiple ac of c. We
must solve (ac)Tz; = 1 for @, which gives o = 1/ (cT:z:,) Thus, the distance is ||ac|| =
a|le]l = |lell/ (¢ z;), as claimed.

Now assume that z; is an optimal extreme point of P for objective vector ¢. Then

c'z; > clz; Vi and Ty < 0 VK. The second set of inequalities indicates that direction

c goes into the interior of P* even if some constraints contain the origin. Then we have
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llell/(cTz;) < |lell/(cFzi) Vi, which means that the first constraint of P* intersected in the
direction of ¢ is zT:cj <1
It is clear that each of the implications in the above paragraph is in fact an “if and only

if” relation, which proves the theorem. : .

Theorem 3.1 states that performing the shooting experiment on the polar P* with the
origin as the shootihg point gives the same information as solving the optimization problem
on P. If we wish to use a shooting point other than the origin, then the result would apply
to the polar of P with resi)ect to that point.

As discussed in Section 1.4.5, two other types of polarity exist for blocking and anti- v
blocking polyhedra. Similar results apply in these cases. For a blocking polyhedron P, let
B (P) be its blocker. For an anti-blocking polyhedron P, let A(P) be its anti-blocker.

Theorem 3.2 Given a blocking polyhedron P and a nonnegative objective vector ¢ for min-
imization, z; is an optimal extreme point of P if and only if zT:rJ >1 deﬁnes a facet of

B(P) that is intersected by the ray from the origin in direction c.

Proof: As in the proof of Theorem 3.1,‘the distance to the cdnstraint defined by :ij is g}%‘;
In this case, however, a facet that is hit must maximize this valué, since ;;hel origin is not in
the polyhedron. o o

If z; is an optimal extreme point, then cT;vj < cT'z; for all z Thllé, g,lnc?y]- ‘2 g%l: for all

i, so the facet defined by z; is hit. The converse is clear. v |

Theorem 3.3 Given an anti-blocking polyhedron P and a nonnegative objective vector c
for mazimization, z; is an optimal extreme point of P if and only if zT:vj < 1 defines a

facet of A(P) that is intersected by the ray from the origin in direction c.

Proof: The argument is the same as in the proof of Theorem 3.1 in the case that there are

no extreme rays yy. | |

Note that in the blocking and anti-blocking cases, it is not possible to consider a shooting

point other than the origin, since the blocker or anti-blocker is only defined with respect to
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the origin. If a shooting point inside the polyhedron is used, however, then Theorem 3.1

can be applied using a traditional polar polyhedron.

3.2 Complexity results o . iy

We will distinguish between solving the shooting ezperiment, by which we mean determining
the shooting experiment size of one or more facets, and performing the shooting exzperiment,
by which we mean determining the facet that is hit by a shot in an arbitrary direction.

We do not know the complexity of solving the shooting experiment. We know of no
efficient methods to determine the shooting experiment size, and the problem has Strong
similarities to computing the volume of a polytope, which is known to be #P-hard. For
this reason, we speculate that solving the shooting experiment may also be #P-hard. To
our knowledge this is an open question.

In contrast, we can use the polar relutionship of Theorem 3.1 to relate the complexity

of performing the shooting experiment to the complexity of optimizing.

Theorem 3.4 There ezists an algorithm OPT such that given input (n, L, SHOOT, ¢), where
e n and L are positive integers

e SHOOT is an algorithm that performs the shooting ezperiment on a polyhedron P € R™

defined by linear inequalities of size at most L

e ¢ is a rational vector with n coordinates, .
i . C

then OPT optimizes over polyhedron P 'h_n'th objéctive ¢, in time polynomially bounded by

n, L, the size of ¢, and the running time of SHCQT.

~ Proof: Performing the shooting experlment prov1des a way to separate: Given a point z

,frl1

wlnch may or may not lie in the polyhedron P perform the shooting experiment from point

< .

g in the direction z — ¢g. This identifies a facet (a ao) Check whether az < ag to determine
\ \ \ '

whether £ € P. The running time of this' separa.tlon algorithm is polynomial in n, L,z and

the running time of SHOOT.
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By the polynomial-time equivalence of separation and optimization, we conclude that
optimizing can be done in time as indicated in the theorem. See Schrijver [37] for details

of how the ellipsoid algorithm is used to prove this equivalence. B S |
Theorem 3.5 There exists an algorithm SHOOT such that given input (n, L, OPT,d), where

e n and L are positive integers

e OPT is an optimization algorithm for a polyhedron P € R" defined by linear inequal-

ities of size at most L
e d is a rational vector with n coordinates,

then SHOOT performs the shooting experiment on polyhedron P in direction d, in time

polynomially bounded by n, L, the size of d, and the running time of OPT.

Proof: Optimizing over P is the same as performing the shooting experiment in P*. By
Theorem 3.4, we can optimize over P* in time polynomially bounded by n, L, the size of d,
and the running time of OPT. This algorithm also performs the shooting experiment on P.

By restricting to nonnegative objective vectors and nonnegative points =, Theorems 3.4
and 3.5 may be applied to blocking and anti-blocking polyhedra as well, as the following

corollaries indicate.
Corollary 3.6 There exists an algorithm OPT such that given input (n, L, SHOOT, ¢), where
e n and L are positive integers

e SHOOT is an algorithm that performs‘t{z'g shootiqg experiment on a polyhedron P € R}

of blocking type, defined by linear ineq:ﬁialiﬁtz'es of size at most L

L

e c is a nonnegative rational vector with n coordinates,

then OPT optimizes over polyhedron P with objective c, in time polynomially bounded by

n, L, the size of ¢, and the running time of SHOOT.
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Corollary 3.7 There ezists an algorithm SHOOT such that given input (n,L,OPT,d),

where
e n and L are positive integers

e OPT is an optimization algorithm for a polyhedron P € R} of blocking type, defined

by linear inequalities of size at most L
e d is a nonnegative rational vector with n coordinates,

then SHOOT performs the shooting experiment on polyhedron P in direction d, in time

polynomially bounded by n, L, the size of d, and the running time of OPT.

Proof of Corollaries 3.6 and 3.7: Performing the shooting experiment provides a way
to separate. Given a point z > 0, we can shoot in direction z and test againét the
inequality hit. The rest of the proof is the same as the proofs of Theorems 3.4 and 3.5 with
B(P) replacing P*. | |
Corollary 3.8 There ezists an algorithm OPT such that given input (n, L, SHOOT, c), where

e n and L are positive integers

e SHOOT is an algorithm that performs the shooting experiment on a polyhedron P € R

of anti-blocking type, defined by linear inequalities of size at most L
e c is a nonnegative rational vector with n coordinates,

then OPT optimizes over polyhedron P with objective c, in time polynomially bounded by

n, L, the size of ¢, and the running time of SHOOT.

Corollary 3.9 Th;ere exists an algorithm SHOOT such that given input (n,L,OPT,d),

where
e n and L are positive integers

e OPT is an optimization algorithm for a polyhedron P € R% of anti-blocking type,

defined by linear inequalities of size at most L
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¢ d is a nonnegative rational vector with n coordinates,

then SHOOT performs the shooting ezperiment on polyhedron P-in direction d, in time

polynomially bounded by n, L, the size of d, and the running time of OPT.

Proof of Corollaries 3.8 and 3.9: The proof is identical to the proof of Corollaries 3.6
and 3.7 with A(P) replacing B(P). . [ ]

The proofs of Theorems 3.4 and 3.5 have several additional consequences:

¢ Optimization over the polyhedron'P is polynomial-time equivalent to optimization

over P* (or B(P) or A(P), as appropriate).

o Performing the shooting experiment with respect to one shooting point is p.olynomial-
time equivalent to performing the shooting experiment with respect to any other

shooting point, as long as both are interior points of P (for the general polar case).
o Performing the shooting experiment is polynomial-time equivalent to separating.

One direction of the last equivalence is perhaps not obvious, since separation merely requires
the identification of any violated inequality, while performing the shooting experiment gives,
in a sense, a most-violated inequality.

A consequence of Theorem 3.4 is that we can perform the shooting experiment in poly-
nomial time on]:y for problems that are in P. It is unlikely, therefore, that the shooting
experiment would be a.n efficient tool for deciding the relative importance of facets “on the
fly” during computation, since the problem being solved is presumably not i P. This does
not rule out the potential value of the shooting experiment as a tool for analyzing and

better understanding polyhedra, however.

3.3 FEzxamples of the polar relationship ;

In this section we consider two examples that illustrate the results of the previous isections.
First we consider the Chinese postman problem and the odd-cut problem, whose pblyhedra
form a blocking pair. Next we consider the spanning set and partition problems, which also

form a blocking pair.
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3.3.1 Chinese postman and odd-cut problems

Given a graph G = (V, E), let T C V such that |T| is even. The Chinese postman problem

on G with set T is

min Tz

st YeesmyTe = [TN{v}] (mod2) YweV
ze 2> 0 Vee E
T, integer VYee E

‘The set of edges with z, =1 is called a postman set.

The name “postman” comes from the special case in which T is the set of nodes with
odd degree (that is, nodes with an odd number of incident edges). :Iri A'this‘case, the graph
represents the streets that a postmah must deliver mail to,' and the qptimal postman set
leads to the shortest walk that traverses every edge in the graph. Spgciﬁcally, the postman
 set shows those edges that must be traversed twice in an opt.im.aii_' \wa.l_k. | B

| It is called the Chinese postman problem after Mei-ko Kwan [31], who gave necessary
and sufficient conditions for a postman set to represent an o‘ptimal solution.
| The modular congruence in the Chinese postman problem does notﬂ lend itself naturally
to polyhedral analysis, but we can still consider the convex hull of int(;ge_r feasible solutions.-
Note that by increasing any value z, by 2 in a feasible integer solution, we get another
feasible integer solutioﬁ. Therefore, the integer hull of the Chinese postman problem is of
blocking type.

Edmonds and Johnson [13] showed that this integer hull is given by

Yecss)Te = 1 VSCV,|SNT|odd "
Ze > 0 VeeE

An edge set 6(S) where S C V,[SNT]| odd is called an odd cut.

From the description above, it is clear that the blockel; for (3) has extfeme points that
correspond to the odd cuts. Specifically, consider the points in R™ whose coordinates match
the coefficients of an odd-cut constraint. The blocker of (3) is the polyhedron formed by

the convex hull of these points along with all points that are greater than or equal to a

point in the convex hull. We call this the odd-cut polyhedron.
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Corollary 3.10 Performing the shooting ezperiment on the Chinese pOsthan polyhedron
with the origin as the shooting point may be accomplished by minimizing over the odd-cut

polyhedron.

Proof: This follows from the proof of Theorem 3.5, but the point here is to conﬁrm it
directly.

Shooting from the origin, it is not possible to ‘hit a nonnegativity facet, so we are
concerned only with the facets defined by odd cuts. Using the analysis of Section 2.4.2, the

distance in direction d to the facet defined by the set S is given by

ey
ZeGJ(S’) de

Since we are shooting from an exterior point, the facet hit is thé one with the greatest
distance. Since the numerator is constant, this can be found by minimizing the denominator
above.

That is, the facet that is hit corresponds to the minimum odd cut where the direction

dv is used as the objective vector. |

Of course, the result is also true with the polyhedra switched: shooting on the odd cut
polyhedron may be accomplished by minimizing over the Chinese postman polyhedron.

The proof of Theorem 3.5 also indicates that the complexity of the Chinese postman
.problem and odd-cut problem must be the same. In fact, both problems are in P, which
means that we can also perform the shoéting expefiment on cither polyhedron in polynomial

time.
3.3.2 Minimum spanning set and partition polyhedra

Another example of a blocking polyhedron comes from the minimum spanning set problem.
The variables in this problem correspcnd to edges in flle graph under consideration, so that
0-1 points represent edge subsets of the graph. The polyhedroﬁ is the blocking pblyhedron
whose extreme points are exactly the 0-1 points that define épanning trees. If the objective
vector is nonnegative, then minimizing over this polyhedron will always yield a minimum

<

spanning tree.
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Let S1,8,...,S5, with k& > 2 represent a partition of V. That IS, SiNS; = 0 for all
i#jand S;USU---US, =V. Let §(S1,...,5%) = {{u v} eE u € S,,v € S],'t #g}

Fulkerson [17] showed that the spanning set polyhedron is given by the following system:

ZCE(S(Sl,S2,---,Sk) .’Ee Z k - 1 V pa,rtitions Sl,'S2, e e ,Sk
Te > 0 Vee E T

The first set of inequalities are called | partition inequalitiqs. ;

From the form above, the vertices of the blocker of the minimum si)anning tree poly-A
hedron have values z, = 1 for e € 6(Si,...,Sk) and z, = 0 otherwise, corresponding to
partitions of V. The blocker is formed by taking the convex hull of these points and all
points that are greater than or equal to a point in the c‘onvex hull. We will call this the
partition polyhedron.

Using Theorem 3.5, we know that we can perform the shooting experiment on the
partition polyhedron by finding a minimum spanning tree, which can be done in polynomial
time. Conversely we can perform the shooting experiment on the spanning set polyhedron
by finding a minimum partition. As a consequence of the proof of Theorem 3.5, this must
be possible in polynomial time. In fact, Cunningham [11] showed that it is possible to find
the optimal partition in polynomial time by solving a polynomial number of network flow

problems.
3.4 The shooting experiment and probability of integrality

The probability of integrality is a méasure that is the sum of probabilities of optimality
for certain extreme points. Therefdré’:, Theorem 3.1 provides a relationship between the
probability of integrality and the s_hboting experiment, provided that we use the same

distribution for the random vectors in each case.

Corollary 3.11 Let a random objective vector be taken from a spherically symmetric dis-
tribution. Then the probability that an extreme point x; of a polyhedron P is optimal equals

the shooting experiment size of the corresponding facet of P*.
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Corollary 3.12 Let P be a polyhedron that is a relazation of an integer hull, and let a
random objective vector be taken from a spherically symmetric distribution. Then the prob-
ability of integrality is the same as the sum of the shooting ezperiment sizes of the facets of

P* that correspond to feasible integral extreme points of P.

Corollary 3.12 indicates a clear relationship between these two measures, but the conse-
quences of that relationship are less clear. When examining the probability of integrality we
also want to understand the possible changes when additional cutting .planes are added to
P. In that case P* changes by adding additional extreme points, which ca,usés some facets
to be replaced with new ones. What does the shooting experiment mean in that qontext?
To more fully understand this relationship, it would be necessa.ry‘tro‘ explore vthe dynamics

of this interplay between changing polyhedra. This is a possible area of future research. .
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CHAPTER IV

CYCLIC GROUP AND KNAPSACK POLYHEDRA

Gomory studied group problems in his work with corner polyhedra for integer programs.
He developed a shooting experiment in order to study their facetial structure [23]. The

master cyclic group problem with n variables and right-hand-side r is

min L'z

s.t. Z1+2z0+...+nz, =r (modn+1)

.’I)GZ+.

The term “master” refers to the fact that all integer coefficients 1,2,...,n—1 are present
in the congruence. Although there is no natural LP relaxation, the integer hull is formed as
usual by taking the convex hull of all integer solutions to the modular congruence. Given
an integer feasible point (zy,...,%;,...,Z5), we may find another feasible integer point .

| (z1,--.,%; +n,...,Z,) in any cocrdinate direction, so the polyhedron has a recession cone
equal to the nonnegative orthant. That is, starting at a point z in the polyhedron, all
directions in the nonnegative orthant remain in the polyhedron.

There is a close relationship between master cyclic group polyhedra and master knapsack
polyhedra. This ‘relationship was c@ﬁSideréﬁ by Aréoz, Evans, Gomory, and jéllnson 2]
The master packing knapsack probl»en‘l‘;with n variables is

max CT.’E

s.t. T1+2c+...+nz, <n
z2>0

T € Z.

In this case, the LP relaxation is formed as usual. We call the non-trivial inequality in the

formulation the defining inequality for the knapsack.
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In this chapter we consider many of the measures from Chapter 2. applied to master
cyclic group and master packing knapsack polyhedra. Section 4.1 discusses performing
the shooting experiment to obtain a Monte Carlo estimate of the shooting experiment
size. Section 4.2 presents a deterministic partial ordering of the facets fhat is consistent
with the ordering determined by their shooting experiment sizes. Sections 4.3 through 4.6
describe four other measures used: best-case improvement, facet volume, Chvétal-Gomofy
rank, and a measure based on the polyhedral characterization of the facets. Section 4.7
presents an empirical measure Of usefulness based on the size of the branch-and-bound tree.
Section 4.8 presents a summary of the results, including a discussion of correlations between

the measures for each polyhedron. The data itself appears for reference in Appendix B.

4.1 Performing the shooting ea:per.'_&'im‘ént\

Gomory [21] showed that the facets of the master c&ciic groﬂp polyhedfon with dimension
n and right-hand-side r # 0 are of the form > 1, mz; > =, Where the coeﬂipients ; are

given by the extfeme rays of the following cone:

7Ti+7Tj > Tk, 151,3,k§n—1,z+_75k (mOdn) L
w4+ = m, 1<4,j<n-1i+j=r (modn) (4)

m > 0, 1<i<n.

The first set of inequalities are called_ subadditivity constraints, and the set of equations -
are called complementarz'iy constraints. Sééling the coefficients does not change the facet,
so it is also possible to add a scale factor such as 7, = 1 to the above system. In that case,
the facets correspond to the extreme points of the resulting polytope. The case for r = 0 is
slightly different, and we will not consider it in this dissertation.

Shooting from the origin in direction given by vector d, we can determine the distance

to each inequality based on Proposition 2.7. For the inequality (m, 7), ¢ is given by

r

t= ‘
n 'n'idi’ ‘

i=1

and the facet that is hit is the one that maximizes this value.
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Therefore, as Gomory showed, it is possible to perform the shooting expérim‘ent on a

cyclic group polyhedron by solving the following LP:

min Z?=1 d,-'fr,-

st. m+w; 2 ™, 1L4,5,k<n-1i+j=k (modn)

mi+m = m, 1<4,j<n-1Li+j=r (modn) (5)
m > 0, 1=1, 1
T = 1.

To calculate a Monte Carlo estimate of the shooting experiment size, we iteratively
generate random directions d to serve as the objective vector and solve (5). If facet A is hit
X 4 times during n trials, then )—;A is an estimate of its shooting experiment size.

The data for the shooting experiment performed on cyclic group polyhedra was provided
by Lisa Evans and appears along with other measures in Appendix B.

When comparing the results for two facets, it is important to know whether the difference
between them is statistically significant. The test we used for’statistical 'signiﬁcance appears

in Appendix A.
4.1.1 Application to the master packing knapsack problem

By using -the relationship between cyclic group and knapsack polyhedra, it is possible to
perform the shooting experiment on master knapsack polyhedra in a similar way.

Ardoz et al. [2] showed that the facets of the master packing knapsack polytope—other
than nonnegativity—have the form "1, p;z; < pn; where p is given by the extreme rays

of the following polyhedron:

pit+p; < piygy 154,5,i+5<n
pitpn-i = pn, 1<i<n-1 (6)
pi = 0, 1<i<n.
Note the similarity to (4), except that supéradditivity constraints have replaced subaddi-

tivity constraints, and there is no modularity.

palld

i In this case,

Shooting from the origin, the distance to the hyperplane (p, pn) is

it is the nearest inequality that is hit, so we can performﬂle shooting experiment by fixing
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pn and maximizing the denominator:

max E?:l dip;

st.  pitp; < pivjy 1<45,i+5<n

pitpn—i = pn, 1<i<n-—1 (7)
pn = 1.

Thus, we can perform the shooting experiment in polynomial time on both cyclic group

and knapsack polyhedra.
4.1.2 Determining the shooting point

In the case of the knapsack polytope, it is not clear that the origin is the best point to

use as the shooting point. Advantages of using the origin include that only nonnegative

directions are needed and that all such directions will intersect non-trivial facets.
Shooting from another point in the polytope is also possible, however. Let z be the point

we wish to shoot from. Then using Proposition 2.6, for facet (p, p,) the scaled distance t is

. ;
Pn — 2 =1 Pi%i

t — _1—. 8

> i pidi (®)

Note that some directions will never intersect a particular hyperplane. In that case the
value for ¢ will be negative, so by maximizing ¢ we will correctly avoid these inequalities.
Since z is constant, we can scale p so that the numerator of (8) is constant and then

maximize the denominator as before:

max 3R dip;

st. pitp; < pitj, 1<4,5,1+5<n
Pi+pn—i =|pn, 1<i<n (9)
pi 2.0, 1=1, R

I
=

P = Yoiq PiZi

This gives the first non-trivial inequality intefsected, but it is possible that a nonnegativity

facet was in fact intersected first. This possibility can be checked directly.
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Table 2: Shooting point candidates for the knapsack polytope for n =9

Description T T T3 T4 Ts ‘T . T7 Ty  Tg
Origin 0 0 0 0 -0 0 0 0 0
Centroid estimate 0.971 0.461 0.312 0.225 0.164 0.142--0.121 0.108 0.100
Moving average  0.281 0.255 0.213 0.203 0.150 0.150. 0.138 0.141 ; 0.136
Defining ineq. ~ 0.016 0.032 0.047 0.063 0079 0.095 0.111 0.26 0.142

Selection of the shooting point z has a significant impact on the shooting experirﬁént
sizes. Intuitively, if we shoot from a point that is near a particular facet, then that facet
will be hit more often than it otherwise would be.

We considered several possibilities for the shooting point for knapsack polytopes:
.0 the origin

o the centroid of the polytope (estimated)

¢ the moving average of points hit by shots

¢ a point halfway between the origin and the defining inequality

The centroid was estimated as the average of a set of random points generated uniformly
in the polytope. The “moving average” was found by shooting from the origin a number of
times and taking the average of the points where those shots intersected the boundary of

the polytope. This average point was used as the new shooting point, and the process was
repeated until the “moving average” pintiappeared to stabilize.

These possible points were testedgon knapsacks of sizes n = 9,10,11, and 12. As an
example, Table 2 shows the points that were considered for n = 9 and Table 3 indicates the
sample results for these points.

The results for these different choices ;;re largely similar. The most significant differences
occur in the number of times the deﬁﬁiﬁg inequality was hit and in the number of times
the nonnegativity inequalities were hit.

Shooting from the origin, in particular, did not hit the defining inequality as much as

we expected, given its clear importance to the polytope. The moving average seemed to
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Table 3: Alternate shooting point trials forn =9 .

Facet Origin Centroid Moving Average Defining Inequality
000011111 313 187 437 1130
000112222 181 36 289 541
001122333 133 4 67 ' 120
002334666 119 6 190 229
011223344 104 11 377 126
012244566 60 2 ' 58 39
012334566 32 2 86 36
023456799 30 1 70 34
123456789 28 32176 1104 76
nonnegativity 0 67575 7322 97669

Table 4: Interior shooting points based on the “moving average”

“Moving average” shooting point

0.444 0.282 0.236 0.201 0.187 0.190

0.435 0.278 0.250 0.185 0.178 0.152 0.158

0.330 0.324 0.216 0.194 0.181 0.164 0.142 0.136

0.281 0.255 0.213 0.203 0.150 0.150 0.138 0.141 0.136

0.270 0.250 0.195 0.174 0.165 0.140 0.137 0.126 0.126 0.121

11 0.261 0.229 0.208 0.172 0.149 0.138 0.124 0.125 0.117 0.112 0.118

12 0.234 0.230 0.185 0.173 0.137 0.135 0.124 0.120 0.115 0.106 0.108 0.109

13 0.179 0.196 0.138 0.179 0.112 0.135 0.124 0.107 0.104 0.101 0.111 0.119 0.101

14 0.141 0.152 0.149 0.154 0.140 0.111 0.175 0.116 0.096 0.098 0.094 0.096 0.096 0.094

—
OCDOO\]C’)j

offer the best contrast with the origin in that the defining inequality was hit a great deal,
but not so often as to overéhadow the differences among other facets. For this reason, we
consider only shooting from the origi.n‘anid shboting from the movihg average interior point
in the full results of Section B. The poi%ntS ﬁsed for each value of n should be viewed as
heuristic values. They are given in Tablé§4. B

The data for shooting from the qrigin was provided by Lisa Evans, while tests for

shooting from interior points were perf(‘)ffned By the author.

4.2 A partial order on the shooting experiment sizes

In addition to the Monte Carlo estimate, we may compute a deterministic partial order on

the facets of a master cyclic group polyhedron or master packing knapsack polytope that is
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consistent with the total order determined by their shooting experiment. sizes. Although the
results of this section can be applied to either problem, we present them using the notation
of the knapsack problem.

Let the ineqﬁality >k aiz; < an be denoted simply by the vector a = (a1, a2,...,an).
Assume that the facet is scaled so that a, = 1 and deﬁne‘& = (a1,a2,...,an/2)) (that is,

the first half of the vector).

Definition 4.1 Given facets a and b, we say that a > b if for every facet ¢ ¢ {a,b},
@-9"@-5=E-h"@-»a.

Theorem 4.2 The partial order of Definition 4.1 is consistent with the total order deter-

mined by the shooting experiment sizes of the facet.é.

To prove Theorem 4.2, we will use several definitions and lemmas. First note that the
use of partial vectors &, b, and & does not sacrifice any information about the facets. The
value a, = 1, and if n/2 is an integer, a,/2 = 1/2. By the complementarity constraints

of (6), we know that a,_; =1 — a;, so it is possible to reconstruct a from a.
4.2.1 Definitions

Consider two facets a and b. Their shooting experiment sizes are defined as probabilities on
the space of directions d € R}, where the coordinates of d are iid positive normal values,
as discussed in Section 1.4.3. Letm = I_"—;lj Just as a,b € R™, we will find it more
convenient to consider a space df direction véctors in R™. Define the map p(d) = d =
(dnt — d1ydp_g — da, ..., dnm — dm)

Note that d is a random vectof, a%ld each coordinate is iid with mean zero. Also, even
though many vectors d map to th_egsiame vector d, d allows us to compare facets just as
d did. Since a, = b, = 1, the scaliec‘jl ’shooting distance to facet a in direction d is E'}—d' ‘
The same is true for b, cf course, sb ;we can determine which facet is intersected first by
comparing a”d and b7d, or by consiiiéring the difference a’d — bT'd = (a — b)Td. It is easy
to confirm that because of complementarity (a—b)Td = (b—&)Td. Thus, d intersects a first

if (b —a)Td > 0 and b first if (b— a)Td < 0.

46



The map ¢ takes many directions d to a single d, so the inverse ¢! is a set function.
That is, ¢~ 1(d) = {d € R". : ¢(d) = d}. We will also consider ¢ and ¢~ acting on sets in
the obvious way. |

Given a subset T C R%, let P(T") be the probability that a random direction d falls in
T. For § C R™, define P(S) = P(¢~1(S)). This is the probability of a direction d such
that p(d) € S.

For ease of exposition, we will refer to a vector d € R™ as a direction and say that d
intersects facet a before facet b when we mean that any direction d such that d € ¢~1(d)
intersects a before b. This is well-defined, since (a — b)Td = (b — @)Td for any d € ¢~1(d).

Let A C R™ be the set of directions d that hit facet a. For any facet i ¢ {a, b}, let A;
be the set of directions d such that facet a is intersected before facet i or facet b. Then
A; D A, but the reverse is not necessarily true, since some directions in A; may hit a facet
other than a,b, or 7. Define B and B; similarly. |

It is clear that A = N;A4; and B = N;B;, where the intersections are taken over all facets

7 other than a and b.
4.2:2 Lemmas and Proof

We will call the plane (b — @)Td = 0 the ab-plane. We already noted that direction d
intersects a before b if (b — @)Td > 0 and b before a if (b —)Td < 0.
Given a point de Rm, let d' be the image of the point reflected across the ab-planec.

For set § C R™, let S’ = {d' : d € S} be the.image of S reflected across the ab-plane.
Lemma 4.3 For any set S € R™, P(S) = P(S').

Proof: We have P(S') = P(p~1(S")) = P({d : ¢(d) € S'}). Reflecting ¢(d) across the
ab-plane may be viewed as changing the sign of a single coordinate in a suitable basis. This
is equivalent to exchanging two coordinates in d-space. Given d € R%, let d’ be the point
defined by this mapping, so that Vd € ¢~1(d), o(d') = d'. o

From the spherical symmetry of the distribution of directions in R™, e#clianging two

coordinates gives a point with the same probability density. Therefore P({d : ¢(d) € S'}) =
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P({d"': ¢(d) € S'}). Noting that the condition ¢(d) € S’ is the same as <p(d’ ) €S, we have

P({d: p(d) € §'}) = ({d' (@) € 5}) = P(p™(8)) = P(8)-

This completes the proof that P(S’) = P(S). L

Lemma 4.4 If (@ —&7T(a—b) > (- )T (@ —b), then B, C A..

Proof: Change from the standard basis to an orthonormal basis in which the first coordinate
is in the direction b — @, which is normal to the ab-plane. For a point d and facet a,let d
and @ be the vectors expressed in the new basis.
Because the ab-plane is normal to the first coordinate direction, d’ is found by simply
changing the sign of the first coordinate of d. Also, (b — @)Td > 0 if and only if d; > 0.
Consider sets A, and B;. We have

~

Ac = {d:(b—a)Td>0,(c—a)Td>0}
= {d:dy >0,(c—a)Td> 0}
B, = {d:(b-a)Td <0,E-b7d >0}

= {d:d,>0,@E-b)Td > o).

Examining the last condition in each of the above, we have

(e — a)Td = (& — al)dl + Z(cl — @;)d; (10)
) : i=2
and
_ _ m
@-b)"d = (@ —b)d+ Y (&-Db)d
=2

m

= (&1 - bi)( d1)+z - b)d;

=

= (hh-a)d + Z(Ei — b;)d; (11)
=2

Note that @ and b must agree on all coordinates except the first, since b — @ has zeros
in all other coordinates. Thus @; = b; for i = 2,3,...,m, and the summation terms in (10)

.and (11) are equal.
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Figure 4: Partial order for the master packing knapsack polytope with n =9

We are given that (@ — &)T(a — b) > (€ — b)T(@ —b), or equivalenﬂy @-oTh-a) <
(¢ — b)T(b — &). This means that the component of @ — & in direction b — @ is less than the

corresponding component of ¢ —- b. In terms of the new basis, we conclude that

a1—¢ < a-b

cg—a; > b-—a.

Thus, the coefficient of dj in (10) is greater than the coefficient of d; in (11) while all
other coefficients are the same in both equations. Since d; > 0, we conclude that the set
of directions d for which (10) is positive is a superset of the set for which (11) is positive.
This proves that B, C A.. : 1 |

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2: If A~ B, then (@ — &)7 (& — b) > (¢ — b)T(@ — b) for all facets
¢ ¢ {a,b}. By Lemma 4.4, B, C A, for all facets-c¢ # a,b. Then B’ C A.

Because it is a subset, P(B') < P(A). By Lemma 4.3, P(B) = P(B'), so that P(B) <

P(A). [ ]

4.2.3 Example results

Examples of the resulting partial order are given in Figures 4 and 5. For comparison, results
of the shooting experiment are given in Tables 5 and 6. In the figures, lines connect two
facets that are comparable; the higher facet has a greater shooting experiment size than

the lower.
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Table 5: Facets of the master packing knapsack polytope with n =9

Facet Coefficients Shooting %
A 000011111 31.3
B 000112222 18.1
C 123456789 13.3
D 002334666 11.9
E 011223344 10.4
F 001122333 6.0
G 023456799 3.2
H 012334566 3.0
I 012244566 2.8

A
B %\
\CDEFGHIJL
K

Figure 5: Partial order for the master cyclic group polyhedron with n =10, =9

Table 6: Facets of the master cyclic group polyhedron with n = 10,» =9

Facet Coefficients Shooting %
A 101010101 28.9
B 123401234 16.2
C 432604326 12.1
D 123456789 : “11.8
E 918761514312 21 8.6
F 364253147 5.6
G 9876543211 4.6
H 432154326 34
I 246352468 3.0
J 673456239 2.7
K 121212123 1.8
L 623456739 1.3
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In Figure 4, the partiai order indicates that facet A has the largest shooting experiment
size, which is confirmed by the shooting experiment. The partial order also suggests that
facets B and C have large shooting experiment sizes, and Table 5 reveals that they were hit
the most often after facet A.

In Figure 5, the partial order suggests that fz_tcets A and B are good, which is confirmed
by the shooting experiment. It also correctly suggests that facet K is not good. It doesn’t
give any information on thé comparisons of other facets. S —

The partial order for each polyhedron studied is given 1n Appendix B along with the
tables of measures. . S L i ~

Although it does not give as much informatior; as performing th’e> shooting experiment,
the partial order has the advantage of being a deterministic result, unlike the Monte Carlo
estimate of the shooting experiment sizes.

The partial order is also signiﬁcAant in that it demonstrates a wéy in which the shooting
experiment can be used beyond simply performing the shootix;g'exp‘érime;lt'fo ‘get a Monte

Carlo estimate.

4.3 Best-case improvement

For knapsack problems, we may consider best-case improvement as presented in

Section 2.4.1. The strength of a facet-defining inequality (p,pn) with p, scaled to equal

lis mp—ﬁﬂe—‘pl, where P is the LP relaxation. Since P is defined by nonnegativity and
a single inequality, the extreme points all lie on coordinate axes. Therefore the maximum
is determined by a single coordinate direction. The value in the direction of coordinate 7 is
np; /i, so the best-case improvement measure has value n max; %

For cyclic group problems, best-case improvement doesn’t make sense as we've defined
it, because there is no standard relaxation of the polyhedron. One option is to use the entire
nonnegative orthant as the relaxation, in which case the optimal extreme point is always
the origin. Unfortunaﬁely, the dptimal objective value is zero, so using the best-case ratio
doesn’t provide useful information.

We may look at the absolute improvement instead, however, based on nonnegative
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objective vectors that are scaled to be unit vectors (without scaling, comparing absolute
improvements would make no sense). Since the relaxation has an objective value of 0, we
want an objective vector that maximizes the objective value with the constraint present.
This objective vector is normal to the facet, and the change is p /llell-

For both knapsack and cyclic group problems these values are easy to compute. Results
of the correlation with other measures is given in Section 4.8, and the measures themselves

are in Appendix B.

4.4 Facet volume

This section describes how we can find Monte Carlo estimates of the facet volume for both

master cyclic group problems and master packing knapsack problems.
4.4.1 Sampling points in a simplex uniformly

In order to estimate the volumes, we will need to sample points uniformly from a simplex.

Definition 4.5 The following algorithm generates coordinates zi,...,T, for a uniformly

random point from the simplex defined by 3 7 ; ajz; < b,z > 0.
1. Initialize r = b and i = n. |
2. Generate a uniform (0,1) random variable Z.
3. Setzi=(1-VZ)L.
4. Set r =1 — a;z;.
5 Seti=1i-1.
6. Ifi > 1, return vto Step 2.

Proposition 4.6 The algorithm of Definition 4.5 gives a ‘unifbrr;i random point in the

simplez defined by 3, aiz; < b,z > 0.

Proof: Consider the intersection of the simplex with the plane z,'= z}, where 0 < z}, < %.

This intersection is a simplex in n — 1 dimensions, where the coordinates z,...,z,—1 lie
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in the (n — 1)-dimensional simplex given by nonnegativity and the inequality Z:-:ll a;z; <
b— apzy,.
The volume of this simplex is
(b= anz})* !
(n - 1) a;
For a uniform distribution in the original simplex, the marginal probability density for

Zn = xy, is given by

(b—anzy, -1
(-7, _ nag(b—apz})"!

*\ __ 1=1 ai
fzp) = fb/an b—ant)"—1 : = pn
0 (n—1)MI7" s

Therefore the cumulative distribution function is given by

5 h— z5n-—1
F(x*)':/o 'nan( Qn ) dt:l'—’bln'(b_anx:l)n-

n bn
Inverting the function F' gives

FYU) = i(1 - Y1-0).

an
To sample z;,, we simply evaluate F~1 at a uniform (0,1) value U. Since uniform random
variables are symmetric about their mean, we can use Z = 1 — U, which is also a uniform
(0,1) random variable. This gives the equation used in the aigorithm.
Once we have fixed a value for z,,, the remaining coordinates lie in a smaller-dimensional
simplex and are uniformly distributed in it. Thus, we must change the right-hand-side, but
then we may repeat the process to s‘am’pl‘e: the éoordinates Tn—1,Tn—2,---,%1- This proves

the proposition. o |

4.4.2 Master cyclic group problems
I

i
.

This section describes how to obtain a M:jorjlte Carlo estimate of the volume of master cyclic

group facets. Consider a facet defined b‘y‘in.'c > 7 in R, If any coordinates of 7 are
zero, then the volume is infinite. i
Otherwise, use Proposition 4.6 to choose zj;...,Zn—2 uniformly at random from the

simplex defined by E;:lz m;x; < 7. Project this point onto the inequa}ity’s hyperplane by
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computing z,—; to make the inequality tight:

n—2
Tn-1=Tr — E TiZq.
i=1

Check whether the resulting point z is a feasible point for the polyhedron. In practice,
we have done this by comparing against every other facet, though it is"p‘ossible to separate
in polynomial time without an explicit list of facets.

The volume of the original simplex is = 1),H:l 11';: There i is also a factor that results

from the projection of z,,_;: the final space is larger by a factor of T —n- If the fraction of

valid points in the sample is p, then the volume estimate is

1 . Tn—1 -
— H’.l_—l_r) —n-1
Pln—1) ( =17 ) T

Estimates of cyclic group facet volumes appear along with other measures in Ap-
pendix B, while their correlations are discussed in Section 4.8. At times the difference
in the volume estimates of two facets is not statistically significant. The test we used for

statistical significance appears in Appendix A.
4.4.3 Master packing knapsack problems

It is possible to obtain a Monte Carlo estimate for knapsack facet volumes in a similar way.
Use Proposition 4.6 to choose T1,Z2,...,Zn—1 uniformly at random from the simplex
defined by nonnegativity and E::ll iz; < n. Project onto the hyperplane defined by (p, pr)

by setting .
. n—1
A $n = Pn ~ 2ui=1 Pimi.
C Pn

Every facet has a strictly positive coefficient 1n the nth coefficient (in fact, in every coefficient

after n/2), so this value is always defined.

! :
Check whether the resulting point its in the polytope. We currently do this by checking
A
an explicit list of facets, though as before we could separate without such a list.

The volume of the original simplex is (—(‘:—2;)—1')2' There is also a factor that results from
the projection of z,: the final space is larger by a factor of n";"”. If the fraction of valid
points in the sample is p, then the volume estimate is

nn—l Pn

Pl =020l
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Because the same base simplex is used, we don’t actually do separate tests for each
facet. Each time a point is generated, the projection is checked on every facet. In at most
one case, the projected point still lies in the polytope. This makes the process of estimating
the volumes of all facets more efficient, similar to the way that the shooting experiment is
simultaneously performed for all facets.

Estimates of facet volumes appear along with other measures in Appendix B, and cor-

_relations with other measures appear in Section 4.8.

4.5 Chvdtal-Gomory rank

Chvéatal-Gomory rank only applies to knapsack facets, because the cyclic group problem
does not have a natural LP relaxation. For knapsack polytopes, we cannot easily deter-
mined the exact Chvital-Gomory rank of facets, but as described in Section 1.4.1 we can
computationally determine which facets have rank 1 and which do not. In addition, the
defining inequality of the knapsack has rank 0, so the facets are divided into three rank
groups. This provides another method for vcompa.ring facets.

The correlation of C-G rank with other measures is presented in Section 4.8 and the

C-G ranks themselves are given in Appendix B.

4.6 Number of tight inequalities

We consider an additional measure that was not presented in Chapter 2 sjnce it applies only
to cyclic group and knapsack problems. The measure is the number of fight inequalities in
formulation (4) or (6). All facets satisfy some of the inequalities in thése formulations at
equality, but due to degeneracy some facets satisfy more of them at equality. The number
satisfied at equality is easily checked directly.

Evans [15] and Gomory and Johnson [22] found that this measure has a strong nonlinear

correlation with shooting experiment size.

4.7 An empirical measure of usefulness

This section describes an empirical measure of the usefulnesq of knapsack facets in branch-

and-bound, which we have added for comparison with the other measures. Thelje is no
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similar measure for cyclic group facets, since the cyclic group problem is not naturally
| solved by brancll-anrl-bOund. '

The measure of usefulness is based on the minimum number of branch-and-bound nodes
required to solve an instance, assuming that Ithe method of selecting the branching variable
is fixed. Specifically, all branch-and-bound nodes that are not fatllorned':by the true optimal
solution are counted, but any others are not. This removes any variability based on the
choice of backtracking rule, though it does still depend on the branclung rule. In these tests
we always branched on the most fractional varlable We will call the resultmg number of
nodes the BBT size of the tree. | |

For each master knapsack polytope, 1000 random ob _]ectWe vectors were generated The
objective coefﬁc1ents came from 11d positive normal values, each multlphed by its index.
For example, the coefficient ¢4 was 4 times a positive normal random value. Without this
weighting, fhe knapsack constraint would tend to cause a strong preferencé for the lower-
indexed variables, since rnore of them “fit” in the knapsack. In fact, we are really multiplying
by the coefficient of the corresponding variable in the knapsack constraint, which happens
to be the same as the index.

Each instance was solved by branch-and-bound after the addition of each facet singly
as well as each pair of facets. The reason for considering pairs is that facets may interact
with one another in ways that magnify or suppress any benefits. It is possible to test larger
sets of facets simultaneously as well, but we chose to limit our tests to singletons and pairs

for reasons of practlcahty

The measure for a facet is the average{qf ‘BBT sizes each time that facet was used, either

iR
alone or as one of a pair. The correlatxons of this measure with other measures is given in
.‘ 4 " i

Section 4.8. The actual results of the' BBT tests are given along with other measures in
' ‘ 1 ‘1., .

Appendix B. We also performed tests of statlstlcal significance for the differences between

the values. This test is described in Appendlx A.
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Table 7: Measures for the packing knapsack polytope withn =29

Best-case Tight C-G Shooting BBT
Facet Imp. Ineq Rank Volume Origin Interior  Size
000011111 1.800 14 1 5.671e-04 313 437 2.856
000112222 1.500 11 24+ 2.977e-04 181 289 2.652
001122333 1.286 10 1 1.494e-04 60 67 3.141
002334666 1.286 9 2+ 3.024e-04 119 190 2.898
011223344 1.125 14 1 1.080e-03 104 377 2.104
012244566 1.200 10 2+ 1.531e-04 28 58 3.368
012334566 1.125 10. 1 1.535e-04 30 86 3.159
023456799 - 1.125 10 2+  2.262e-04 32 70 3.607
123456789 1 20 0 9.279e-03 133 1104 n/a

Table 8: Measures for the cyclic group polyhedron with n =10,r =9

Best-case Tight
Facet . Adaptation Inequalities =~ Volume Shooting
101010101 0.447 28 00 289
121212123 0.557 12 1.909e-04 18
123401234 0.516 22 00 162
123456789 0.533 20 9.142¢-03 118
246352468 0.552 13  6.387e-04 30
364253147 0.545 15 2.624e-03 56
432154326 0.548 15 1.147e-03 34
432604326 0.526 . 18 00 121
623456739 0.553 12 5.010e-04 13
673456239 0.553 12 5.016e-04 27
9876543211 0.547 16 1.484e-03 46

918761514312 21 0.541 14 3.958e-03 86

4.8 Comparing the measures

This section presents results of the correlations between measures. Measures were compiled
for knapsack problems of size n = 6 to n = 14 and cyclic group problems with n = 7 to

n = 14 and nonzero 7. Complete tables of the measures are given in Appendix B.

4.8.1 Example tables of measures

§

Example results of the measures are given in Table 7 and _Table 8.

The measures presented first are deterministic: best-case improvement (adapted in the
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case of cyclic group polyhedra), number of tiglit inequalities, and Chvatal-Gomory rank. In
these measures there are often ties between facets. The reni}aininé measures are estimatésﬁ
volume, shooting experiment sizes, and empirical tests of branch-and-bound tree size. These
measures are much less likely to have exact ties, but in many cases the difference between
two measures is not statistically significant. For example, in Table 7, the difference between
the volume estimates for the second. and fourth facets is not statistically significant. The
third, sixth, and seventh facets are mutually insignificant differences as well. The tests used
for statistical significance for each measure are described in Appendix A.

In Table 7, the last facet does not have a BBT size measure since it is the defining

inequality of the knapsack and therefore present in the LP relaxation.
4.8.2 Correlation between measures

We are most interested in correlation between measures. Because of significant differences
in the scales used by the measures, we have considered correlation non-parametrically by
examining pairwise concordance and discordance. Given two measures, we consider each
pair of facets. Either the two measures “agree” on which of the facets is better, they
“disagree”, -they both indiC;i.tC a tie, or one indicates a tie and the other does not. A tie
occurs either because of a true tie in the measure or because of estimated values whose
difference is not statistically significant at the 0.05 level.

For most measures, we consider a larger value to be better. This is true for best-case
improvement, the number of tight inequalities, the volume, and shooting experiment sizes.
For Chvétal-Gomory rank and BBT size, we consider a lower value to be better. Therefore,
concbrdance may indicate positive or negative correlation, depending on the pair of measures
considered.

We summarize the results by indicating the percentage of pairs of facets that are for
which the measures are concordant (“agree”, including both indicate ties), the percentage for
which the measures are discordant (“disagree”), and the percentage for which one indicates
a tie and the other does not. We call the last possibility a weak pair because it does not

strongly indicate concordance or discordance.
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Table 9: Pairwise concordance of knapsack measures

B-CI|Ineq| Vol | ShO |[ShI|C-G|BBT
Concordant Pairs 38% [ 43% | 57% | 52% | 20% | 64%
Best-case | Discordant Pairs 43% | 42% | 19% | 32% | 32% | 14%
Improvement Weak Pairs 19% | 15% | 24% | 16% | 48% | 22%
Concordant Pairs | 38% 1% | 58% | 70% | 56% | 57%
Tight | Discordant Pairs | 43% 13% | 15% | 12% | 4% | 19%
Ineq Weak Pairs | 19% 16% | 27% | 18% | 40% | 24%
Concordant Pairs | 43% | 71% 66% | 68% | 39% | 60%
Volume | Discordant Pairs | 42% | 13% 12% | 17% | 12% | 23%
Weak Pairs | 15% | 16% 23% | 156% | 48% | 17%
Concordant Pairs | 57% | 58% | 66% 65% | 41% | 62%
Shooting | Discordant Pairs | 19% | 15% | 12% 10% | 15% | 9%
Origin Weak Pairs 24% | 27% | 23% 25% | 44% | 29%
Concordant Pairs | 52% | 70% | 68% | 65% 47% | 66%
Shooting | Discordant Pairs | 32% | 12% | 17% | 10% 9% | 14%
Interior Weak Pairs | 16% | 18% | 15% | 25% 44% | 20%
‘ Concordant Pairs [ 20% | 56% | 39% | 41% | 47% 36%
C-G | Discordant Pairs | 32% | 4% | 12% | 15% | 9% 12%
Rank Weak Pairs | 48% | 40% | 48% | 44% | 44% 52%
Concordant Pairs | 64% | 57% | 60% | 62% | 66% | 36%
BBT | Discordant Pairs | 14% | 19% | 23% 9% | 14% | 12%
Size Weak Pairs | 22% | 24% | 17% | 29% | 20% | 52%

4.8.3 | Summary results

By aggregating data, we may consider the pairwise correlation across all knapsack problems.

These results are given in Table 9.

The labels on the top row are abbreviations for the measures and appear in the same
order as the rows. By looking across a row, it is possible to see how one measure correlates
with each of the others. There al.‘e“zil tqtal of 906 pairs of facets. When the EBT size is
considered, the defining inequality is‘:oﬁlitted, and there are 804 pairs of facets.

Note that concordance and discbrdgince should generally be considered together, or
misleading conclusions may be dra\\%n. .. For example, the volume measure is concordant
with best-case improvement on 43% ojf piairs and concordant with C-G rank on 39% of pairs.
Alone, these numbers appear similar. When we consider discordance as well, however, we

see that volume and best-case improvement are discordant on 42% of pairs. This indicates
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no correlation between volume and best-case improvement. In contrast, volume and C-G
rank are discordant on only 12% of pairs. Therefore, there is a correlation between volume
and C-G rank, albeit not an exceptionally strong one.

Looking at concordance alone, the highest value is 71%, between the number of tight
inequalities and volume. With a discordance of 13%, this does indicate a relatively strong
correlation.

The smallest discordance is 4%, between the number of tight inequalities and C-G rank.
Their concordance is only 56%, but this still indicates a strong correlation. The high number
of weak pairs is mostly due to the fact that our test for C-G rank distinguished only 3 levels,
so there were many ties. Both C-G rank and the number of tight inequalities come from the
interaction of systems of inequalities. Whether there is a theoretical basis in those systems
for the strong correlation between the measures is an open question.

We may also consider some other measures that we expect to be correlated. For example,
shooting from the origin and shooting from the interior were discordant for only 10% of pairs
and were concordant for 65%. We also expect a relationship between volume and shooting
experiment size, since both are geometric sizes. In fact, both shooting experiment sizes are
correlated with facet volume, with 66% and 68% concordance and 12% and 17% discordance.

Finally, we consider BBT size. The most concordant measure is shooting from the
interior at 66%. Next is best-case improvement with 64% and shooting from the origin with
62%. When we.lodk at discordance, however, shooting from the origin is best, with only
9% discordance.. Overall, the shooting experiment and best-case improvement appear to be
the best predictors bf BBT size, with %rieither measure élearly superior.

A similar summary of cyclic group .njleasure correlation appears in Table 10. These aire
aggregate results based on the 18 master cyclic group polyhedra with 7 <n <14 and
nonzero r. The total number of facet palrs is 9238. '

Perhaps the most notable feature of these results is the 11igh degree of correlation among
all the measures. The highest discordance is only 15% and tlig lowest concordance 72%. This
72% is between the shooting experiment and volume, and it .iﬁdicates a strb_ngel"vcérrelation

than it appears since the discordance between them is only 5%.

60



Table 10: Pairwise concordance of cyclic group measures

B-C1I | Ineq| Vol | Shoot
Concordant Pairs 8% | 81% | 73%
Best-case | Discordant Pairs 15% | 10% | - 5%
Improvement Weak Pairs % | 8% | 21%
Concordant Pairs | 78% S| T% | 5%
Tight | Discordant Pairs | 15% 12% 5%
Ineq Weak Pairs ™% | 12% 1 20%
Concordant Pairs | 81% |- 77% | 72% |
Discordant Pairs | 10% | 12% | . 5%
Volume Weak Pairs 8% | 12% 23%
Concordant Pairs | - 73% | 75% | 72%
Discordant Pairs 5% 5% | 5%
Shooting Weak Pairs | 21% | 20% | 23%

Note that for the adaptation of best-case improvement, the fésﬁlts indicated that a
lower value should be judged as better, since this gives the strong concordances indicated.
That is, the facet that provides a smaller potential absolute difference in objective values
is more likely to have a large volume and shooting experiment size. Thus the intuition of
“best-case” is exactly backward in this case.

| Since the number of fight inequalities and adapted best-case improvement are well cor-
related with volume and shooting experiment size and are much easier to compute, these
results suggest that giving more attention to the two simpler measures may be worthwhile

for researchers.

4.8.4 Tables of Correlations |

o
i i

. |
4.8.4.1 Knapsack polytopes R
] R “}
Master packing knapsack polytopeé of idir.nje'hsions n = 6 through n = 14 were tested. For
each polytope, there is a table contbi‘rjl‘ing{dorrelation information.

i

Table 11 contains the correlation ir_'esullt)s for the knapsack polytope with n = 6. There

are only 3 facets, and therefore 3 pairs. ?Be.cause of these small values, the many 100%

R i
values should not be considered too impressive.
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Table 11: Concordance of measures for knapsack polytope with n = 6

B-CI| Ineq Vol | ShO| ShI| C-G| BBT
Concordant Pairs 33% 0% | 67% | 33% | 33% | 100%
Best-case | Discordant Pairs 67% | 100% | 33% | 67% | 67% 0%
Imp. Weak Pairs 0% 0% 0% 0% 0% 0%
Concordant Pairs | 33% 67% | 67% | 100% | 100% | 100%
Tight | Discordant Pairs [ 67% 33% | 33% 0% 0% 0%
Ineq Weak Pairs 0% 0% 0% 0% 0% 0%
Concordant Pairs 0% | 67% 33% | 67% | 67% 0%
Volume | Discordant Pairs | 100% | 33% |- 67% | 33% | 33% | 100%
Weak Pairs 0% 0% 0% | 0% 0% 0%
Concordant Pairs | 67% | 67% | 33% 67% | 67% | 100%
Shooting | Discordant Pairs | 33% | 33% | 67% 33% | 33% 0%
- Origin Weak Pairs 0% 0% 0% 0% 0% 0%
Concordant Pairs | 33% | 100% | 67% | 67% 100% | 100%
Shooting | Discordant Pairs | 67% 0% | 33% | 33% : 0% 0%
Interior Weak Pairs 0% |° 0% 0% 0% 0% 0%
Concordant Pairs 33% | 100% | 67% | 67% | 100% 100%
C-G | Discordant Pairs | 67% 0% | 33% | 33% 0% | - 0%
Rank Weak Pairs 0% | 0% 0% 0% 0% - 0%
Concordant Pairs | 100% | 100% 0% | 100% | 100% | 100%
BBT | Discordant Pairs 0% | 0% |100% | 0% | 0% | 0%
Size Weak Pairs 0% 0% 0% 0% 0% 0%
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Table 12: Concordance of measures for kna,psacli polytope withn =7

: B-CI|Ineq| Vol |[ShO |ShI | C-G | BBT
Concordant Pairs 30% | 30% | 70% | 60% | 0% | 33%
Best-case | Discordant Pairs 50% | 70% | 20% { 40% | 40% | 50%
Improvement Weak Pairs 20% | 0% | 10% | 0% | 60% | 17%
Concordant Pairs | 30% 80% | 40% | 70% | 60% | 33%
Tight | Discordant Pairs | 50% 0% | 30% [10% | 0% | 17%
Ineq Weak Pairs | 20% 20% | 30% | 20% | 40% | 50%
Concordant Pairs | 30% | 80% 40% | 70% | 40% | 50%
Volume | Discordant Pairs | 70% | 0% 50% | 30% | 0% | 33%
Weak Pairs 0% | 20% 10% | 0% | 60% | 17%
Concordant Pairs | 70% | 40% | 40% 70% | 30% | 17%
Shooting | Discordant Pairs | 20% | 30% | 50% 20% | 20% | 50%
Origin Weak Pairs | 10% | 30% | 10% 10% | 50% | 33%
Concordant Pairs | 60% | 70% | 70% | 70% 40% | 33%
Shooting | Discordant Pairs | 40% | 10% | 30% | 20% 0% | 50%
Interior Weak Pairs 0% | 20% | 0% | 10% 60% | 17%
Concordant Pairs 0% | 60% | 40% | 30% | 40% 17%
C-G | Discordant Pairs | 40% | 0% | 0% | 20% | 0% 0%
Rank Weak Pairs | 60% | 40% | 60% | 50% | 60% 83%
Concordant Pairs | 33% | 33% | 50% | 17% | 33% | 17%
BBT | Discordant Pairs | 50% | 17% | 33% | 50% | 50% | 0%
Size Weak Pairs | 17% | 50% | 17% | 33% | 17% | 83%

Table 12 contains the correlation results for the knapsack. polytope with n = 7. This
polytope has 5 facets, and therefore 10 pairs. Comparisons with BBT size only consider 4

facets and so 6 pairs. Again because of the small number of pairs, the results vary a great

deal. One notable entry is between the number of tight inequalities and volume, which had

80% concordance and no discordance. .
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Table 13: Concordance of measures for knapsack polytope with n =8

c-G

B-CI|Ineq| Vol |ShO | ShI 'BBT
Concordant Pairs 40% | 40% | 70% | 60% | 20% | 83%
Best-case | Discordant Pairs 50% | 50% | 20% | 40% |.60% |. 17%
Improvement Weak Pairs 10% [ 10% | 10% | 0% | 20% | 0%
, Concordant Pairs | 40% 80% | 50% | 80% | 70% | 83%
Tight | Discordant Pairs | 50% 0% | 30% [10% | 0% | 0%
Ineq Weak Pairs | 10% 20% | 20% | 10% | 30% | 17%
Concordant Pairs | 40% | 80% 70% | 80% | 60% | 83%
Volume | Discordant Pairs | 50% | 0% 30% | 10% | 10% | 0%
Weak Pairs | 10% | 20% 0% | 10% | 30% | 17%
Concordant Pairs | 70% | 50% | 70% 70% | 30% | 67%
Shooting | Discordant Pairs | 20% | 30% | 30% 20% | 40% | 17%
Origin Weak Pairs | 10% | 20% | 0% 10% | 30% | 17%
Concordant Pairs 60% | 80% | 80% | 70% 60% | 83%
Shooting | Discordant Pairs | 40% | 10% | 10% | 20% 20% | 17%
Interior Weak Pairs 0% | 10% | 10% | 10% 20% | 0%
Concordant Pairs | 20% | 70% | 60% | 30% | 60% 50%
C-G | Discordant Pairs | 60% | 0% | 10% | 40% | 20% 17%
Rank Weak Pairs 20% | 30% | 30% | 30% | 20% 33%
Concordant Pairs | 83% | 83% | 83% | 67% | 83% | 50%
BBT | Discordant Pairs | 17% | 0% | 0% | 17% | 17% | 17%
Size Weak Pairs 0% | 17% | 17% | 17% | 0% | 33%

Table 13 contains the correlation results for the knapsack polytope with n = 8. Like the
previous one, this polytope has 5 facets, and therefore 10 pairs. Comparisons with BBT
size only consider 4 facets and therefore 6 pairs. Despite the small number of pairs, most

measures do indicate a strong correla.tiqn with BBT size.
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Table 14: Concordance of measures for knapsack polytope with n =9

B-CI|Ineq| Vol [ShO |[ShI|C-G | BBT
Concordant Pairs 33% | 36% | 61% | 44% | 19% | 54%
Best-case | Discordant Pairs 42% | 42% | 17% | 44% | 42% | 25%
Improvement Weak Pairs 25% | 22% | 22% | 11% | 39% | 21%
Concordant Pairs | 33% %% | 61% | 69% | 58% | 57%
Tight | Discordant Pairs | 42% 11% | 19% | 11% | 6% | 18%
Ineq Weak Pairs | 25% 14% | 19% | 19% | 36% | 25%
Concordant Pairs | 36% | 75% 64% | 83% | 50% | 71%
Volume | Discordant Pairs | 42% | 11% 14% | 6% | 17% | 14%
Weak Pairs | 22% | 14% 22% | 11% | 33% | 14%
Concordant Pairs | 61% | 61% | 64% 69% | 36% | 68%
Shooting | Discordant Pairs | 17% | 19% | 14% 14% | 19% | 11%
Origin .. Weak Pairs | 22% | 19% | 22% 17% | 4% | 21%
Concordant Pairs | 44% | 69% | 83% | 69% 53% | 79%
Shooting | Discordant Pairs | 44% | 11% | 6% | 14% 14% | 14%
Interior Weak Pairs | 11% | 19% | 11% | 17% 33% ™%
Concordant Pairs | 19% | 58% | 50% | 36% | 53% 39%
C-G | Discordant Pairs | 42% | 6% | 17% | 19% | 14% 18%
Rank Weak Pairs | 39% | 36% | 33% | 44% | 33% 43%
Concordant Pairs | 54% | 57% | 71% | 68% | 79% | 39%
BBT | Discordant Pairs { 25% | 18% | 14% | 11% | 14% | 18%
Size Weak Pairs | 21% | 26% | 14% | 21% | 7% | 43%

Table 14 contains the correlation results for the knapsack polytope with n = 9. This
polytope has 9 facets, and therefore 36 pairs.' Comparisons with BBT size only consider

8 facets and therefore 28 pairs. Shooting from the interior is particularly well correlated

with BBT size on this polytope with a concordance of 79% and discordance of 14%. The
relationship between the number of tight inequalities and C-G rank is also pronounced, with

a discordance of only 6%.

65



Table 15: Concordance of measures for knapsack polytope with n = 10

B-CI|Ineq| Vol |ShO |ShI|C-G|BBT
. Concordant Pairs 32% [ 29% | 75% | 57% | 18% | 57%
~ Best-case | Discordant Pairs 43% | 57% | 21% | 39% | 43% | 5%
Improvement Weak Pairs 25% .| 14% 4% 4% |{.39% | 38%
Concordant Pairs | 32% 79% | 54% | 75% | 64% | 57% |
Tight | Discordant Pairs | 43% 4% | 18% | 4% | 0% | 10%
Ineq Weak Pairs | 25% 18% | 29% | 21% | 36% | 33%
Concordant Pairs | 29% | 79% 50% | 1% | 54% | 38%
Volume | Discordant Pairs | 57% | 4% 32% | 18% | ™% | 24%
Weak Pairs | 14% | 18% 18% | 11% 4 39% | 38%
Concordant Pairs | 75% | 54% | 50% 79% | 36% | 52%
Shooting | Discordant Pairs | 21% | 18% | 32% 14% | 21% | 5%
Origin Weak Pairs | 4% | 29% | 18% | 7% | 43% | 43%
Concordant Pairs | 57% | 75% | 71% | 79% 46% | 48%
Shooting | Discordant Pairs | 39% | 4% | 18% | 14% 11% | 10%
Interior Weak Pairs 4% | 21% | 11% ™% 43% | 43%
- | Concordant Pairs | 18% | 64% | 54% | 36% | 46% 38%
C-G | Discordant Pairs | 43% | 0% | 7% | 21% | 11% 0%
Rank Weak Pairs 39% | 36% | 39% | 43% | 43% 62%
Concordant Pairs | 57% | 57% | 38% | 52% | 48% | 38%
BBT | Discordant Pairs 5% | 10% | 24% 5% | 10% | 0%
Size Weak Pairs 38% | 33% | 38% | 43% | 43% | 62%

Table 15 contains the correlation results for the knapsack polytope with n = 10. This
polytope has 8 facets, and therefore 28 pairs. Comparisons with BBT size only consider

"7 facets and therefore 21 pairs. Best-case improvement is particularly well correlated with

BBT size on this instance, with 57% concordance and only 5% discordance. Even more
striking, the number of tight inequalities is extremely well correlated with C-G rank, with
0% discordance, as well as volume and shooting from the interior. This group of three are

all well correlated on this instance.
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Table 16: Concordance of measures for knapsack polytope with n =11

, B-CI|Ineq| Vol | ShO | ShI| C-G|BBT
Concordant Pairs 41% | 40% | 57% | 57% | 24% | 60%
Best-case | Discordant Pairs 41% | 46% | 16% | 33% | 31% | 17%
Improvement Weak Pairs 19% | 14% | 26% | 10% | 45% | 23%
Concordant Pairs | 41% 81% | 62% | 74% | 52% | 59%
Tight | Discordant Pairs | 41% 8% | 15% [ 15% | 9% | 19%
Ineq Weak Pairs | 19% 11% | 23% | 11% | 40% | 22%
Concordant Pairs | 40% | 81% 59% | 80% | 41% | 67%
Volume | Discordant Pairs | 46% | 8% 15% | 15% | 18% | 19%
Weak Pairs 14% | 11% 25% | 4% | 42% | 14%
Concordant Pairs | 57% | 62% | 59% 73% | 38% | 69%
Shooting | Discordant Pairs | 16% | 15% | 15% ™% | 21% | 9%
Origin Weak Pairs | 26% | 23% | 25% 21% | 41% | 22%
Concordant Pairs | 57% | 74% | 80% | 73% 38% | 69%
Shooting | Discordant Pairs | 33% | 15% | 15% | 7% 20% | 19%
Interior Weak Pairs | 10% | 11% | 4% | 21% 42% | 12%
Concordant Pairs | 24% | 52% | 41% | 38% | 38% 41%
C-G | Discordant Pairs | 31% | 9% | 18% | 21% | 20% 12%
Rank Weak Pairs | 45% | 40% | 42% | 41% | 42% 47%
Concordant Pairs | 60% | 59% | 67% | 69% | 69% | 41%
BBT | Discordant Pairs | 17% | 19% | 19% 9% | 19% | 12%
Size Weak Pairs | 23% | 22% | 14% | 22% | 12% | 47%

Table 16 contains the correlation results for the knapsack polytope with n = 11. This
polytope has 14 facets, and therefore 91 pairs. Comparisons with BBT size only consider
13 facets and therefore 78 pairs. Shooting from the origin is very well correlated with
BBT size on this instance, with 69% concordance and 9% discordance. There are als_o
several examples of uncorrelated measures. Bést-é:ase irrjlprovement and the number of tight
inequalities have 41% concordance and 41% disdo:fdan%cve‘.‘ Best-case improvement is also

relatively uncorrelated with volume and C-G r'ank. ;NeVgrtheless, it is reasoha.bly correlated

with BBT size, with 60% concordance and 17% discordance:
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Table 17: Concordance of measures for knapsack polytope with n = 12

B-CI|Ineg| Vol | ShO | ShI| C-G | BBT
Concordant Pairs 40% | 48% | 64% | 55% | 12% | 78%
Best-case | Discordant Pairs 45% [ 43% | 17% | 37% | 23% 3%
Improvement Weak Pairs 15% | 8% | 19% | 8% | 65% | 19%
Concordant Pairs | 40% 80% | 62% | 78% | 37% | 51%
Tight | Discordant Pairs | 45% 10% | 14% | 12% | 3% | 26%
Ineq Weak Pairs | 15% 10% | 24% | 10% | 60% | 23%
Concordant Pairs | 48% | 80% 67% | 89% | 32% | 58%
Volume | Discordant Pairs | 43% | 10% 14% | 8% | 3% | 2%
Weak Pairs 8% | 10% 19% | 3% | 65% | 15%
Concordant Pairs | 64% | 62% | 67% % | 32% | 2%
Shooting | Discordant Pairs | 17% | 14% | 14% 8% | 9% | 7%
Origin Weak Pairs | 19% | 24% | 19% | - 18% | 59% | 21%
Concordant Pairs | 55% | 78% | 89% | 75% 28% | 65% .
Shooting | Discordant Pairs | 37% | 12% | 8% | 8% ™ 22%
Interior Weak Pairs 8% | 10% | 3% | 18% 65% | 13%
Concordant Pairs | 12% | 37% | 32% | 32% | 28% 21%
C-G | Discordant Pairs | 23% | 3% | 3% 9% | ™% 9%
Rank Weak Pairs | 65% | 60% | 65% | 59% | 65% 70%
Concordant Pairs | 78% | 51% | 58% | 72% | 65% | 21%
BBT | Discordant Pairs | 3% | 26% | 27% | 7% | 22% | 9%
Size Weak Pairs | 19% | 23% | 15% | 21% | 13% | 70%

Table 17 contains the correlation results for the knapsack polytope with n = 12. This
polytope has 16 facets, and therefore 120 pairs. Comparisons with BBT size only consider
15 facets and therefore 105 pairs. The most striking result is the strong correlation between
best-case improvement and BBT size' 8% concordance and only 3% discordance. As in
the polytope for n = 11, best-case 1mprovement appears relatively uncorrelated with the

number of tight inequalities and volume Y 1
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Table 18: Concordance of measures for knapsack polytope with n = 13

B-CI|Ineq| Vol | ShO | ShI| C-G | BBT
Concordant Pairs 38% | 47% | 57% | 53% | 25% | 55%
Best-case | Discordant Pairs 40% | 36% | 18% | 29% | 32% | 21%
Improvement Weak Pairs 21% | 17% | 25% | 18% | 42% | 24%
Concordant Pairs | 38% 64% | 55% | 73% | 64% | 61%
Tight | Discordant Pairs 40% 1% | 15% | ™% | 2% | 14%
Ineq Weak Pairs | 21% 19% | 30% | 20% | 34% | 25%
Concordant Pairs | 47% | 64% 69% | 65% | 42% | 64%
Volume | Discordant Pairs | 36% | 17% ™% | 16% | 12% | 1%
Weak Pairs 17% | 19% 24% | 19% | 46% | 18%
Concordant Pairs | 57% | 55% | 69% 65% | 44% | 57%
Shooting | Discordant Pairs | 18% | 15% | 7% ™% | 11% | 9%
Origin Weak Pairs | 25% | 30% | 24% 27% | 45% | 34%
Concordant Pairs | 53% | 73% | 66% | 65% 54% | 68%
Shooting | Discordant Pairs | 29% | 7% | 16% ™% ™% | 8%
Interior Weak Pairs | 18% | 20% | 19% | 27% 39% | 24%
Concordant Pairs | 25% | 64% | 42% | 44% | 54% 42%
C-G | Discordant Pairs | 32% | 2% | 12% | 11% | ™% 11%
Rank Weak Pairs | 42% | 34% | 46% | 45% | 39% 47%
Concordant Pairs | 55% | 61% | 64% | 57% | 68% | 42%
BBT | Discordant Pairs | 21% | 14% | 17% | 9% | 8% | 11%
Size Weak Pairs | 24% | 25% | 18% | 34% | 24% | 47%

Table 18 contains the correlation results for the knapsack polytope with n = 13. This
polytope has 25 facets, and therefore 300 pairs. Comparisons with BBT size only consider
24 facets and therefore 276 pairs. There are more weak pairs on this polytope than on most
earlier ones. Shooting from the ;interior provides a strong correlation with BBT size at 68%
concordance and 8% discordanc‘ei.; The felationship betwéen the number of tight inequalities

and C-G rank is particularly strong, Savfith;64% concordance and 2% discordance.
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Table 19: Concordance of measures for knapsack polytope with n = 14

B-CI|Ineq| Vol |ShO | ShI| C-G | BBT
Concordant Pairs 43% | 43% | 58% | 53% | 19% | 72%
~ Best-case | Discordant Pairs 41% | 40% | 15% | 23% | 25% 5%
Improvement Weak Pairs 16% | 17% | 27% | 24% | 56% | 23%
Concordant Pairs | 43% 8% | 62% | 52% | 41% | 60%
Tight | Discordant Pairs | 41% 9% | 14% [25% | 8% | 18%
Ineq Weak Pairs | 16% 13% | 25% | 23% | 51% | 22%
Concordant Pairs | 43% | 78% 63% | 54% | 28% | 60%
Volume | Discordant Pairs | 40% | 9% 11% | 26% | 14% | 20%
Weak Pairs 17% | 13% 26% | 21% | 57% | 20%
Concordant Pairs | 58% | 62% | 63% 54% | 41% | 67%
Shooting | Discordant Pairs | 15% | 14% | 11% 14% | 17% | 4%
Origin Weak Pairs 27% | 25% | 26% 32% | 42% | 29%
Concordant Pairs 53% | 52% | 54% | 54% 36% | 67%
Shooting | Discordant Pairs | 23% | 26% | 26% | 14% 10% | 11%
Interior Weak Pairs 24% | 23% | 21% | 32% 54% | 22%
Concordant Pairs | 19% | 41% | 28% | 41% | 36% 29%
C-G | Discordant Pairs | 26% | 8% | 14% | 17% | 10% 12%
Rank Weak Pairs | 56% | 51% | 57% | 42% | 54% 59%
Concordant Pairs | .72% | 60% | 60% | 67% | 67% | 29%
BBT | Discordant Pairs 5% | 18% | 20% 4% | 11% | 12%
Size Weak Pairs 23% | 22% | 20% | 29% | 22% | 59%

Table 19 contains the correlation results for the knapsack polytope with n = 14. This
polytope has 20 facets, and therefore 190 pairs. Comparisons with BBT size only consider
19 facets and therefore 171 pairs. Best-case improvement and shooting from the origin are
both well;correlated with BBTY 81ze, witl} 5% and 4% discordances, respectively, compared -

! o
to 72% and 67% concordances. S
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4.8.4.2  Cyclic Group Polyhedra

This section contains data on master cyclic group polyhedra; Polyhedra with n=17to

n = 14 were tested.

Table 20: Concordance of measures for the cyclic group polyhedron withn="7,r=6.-

| B-C1I|Ineq.| Vol | Shoot
Concordant Pairs 67% | 100% | 83% | -
Best-case | Discordant Pairs 17% 0% 0%
Improvement Weak Pairs 17% 0% | 1%
Concordant Pairs | 67% 67% | 50%
Tight | Discordant Pairs | 17% 17% | 17%
Ineq Weak Pairs | 17% 17% | 33%
Concordant Pairs | 100% | 67% 83%
Discordant Pairs 0% | 17% 0%
Volume Weak Pairs 0% | 17% 17%
Concordant Pairs | 83% | 50% | 83%
Discordant Pairs 0% | 17% 0%
Shooting Weak Pairs | 17% | 33% | 17%

Table 20 contains the correlation results for the cyclic group polyhedron with n = 7 and
r = 6. This polyhedron has 4 facets, and therefore 6 pairs. Despite the small number of

pairs, the concordances between measures is reasonably strong.

Table 21: Concordance of measures for the cyclic group polyhedron withn =8,r =7

B-C1I|Ineq| Vol | Shoot
Concordant Pairs 81% [ 95% | 81%
Best-case | Discordant Pairs 10% | 0% 5%
Improvement Weak Pairs 10% | 5% | 14%
Concordant Pairs | 81% 76% | 67%
Tight | Discordant Pairs | 10% 10% | 10%
Ineq|  Weak Pairs | 10% 14% | 24%
Concordant Pairs | 95% | 76% 76%
Discordant Pairs 0% | 10% 5%
Volume Weak Pairs 5% | 14% - 19%
Concordant Pairs | 81% | 67% | 76%
Discordant Pairs 5% | 10% | 5%
Shooting Weak Pairs | 14% | 24% | 19%

Table 21 contains the correlation results for the cyclic group polyhedron with n = 8 and
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r = 7. This polyhedron has 7 facets, and therefore 21 pairs. Adapted best-case improvement

and volume are particularly well correlated with 95% concordance and 0% discordance.

Table 22: Concordance of measures for the cyclic group polyhedron with n = 8,r = 2

B-CI| Ineq| Vol | Shoot
Concordant Pairs 100% | 67% | 67%
Best-case | Discordant Pairs 0% | 0% 0%
Improvement Weak Pairs 0% | 33% | 33%
| Concordant Pairs | 100% 67% | 6%
Tight | Discordant Pairs 0% 0% 0%
Ineq Weak Pairs 0% 33% | 33%
Concordant Pairs | 67% | 67% 33%
Discordant Pairs 0% 0% 0%
Volume Weak Pairs | 33% | 33% 67%
Concordant Pairs | 67% | 67% | 33%
Discordant Pairs 0% 0% | 0%
Shooting Weak Pairs | 33% | 33% | 67%

Table 22 contains the correlation results for the cyclic group polyhedrdn with n = 8 and

r = 2. This polyhedron has 3 facets, and therefore only 3 pairs.

Table 23: Concordance of measures for the cyclic group polyhedron with n =8,r =4

B-CI | Ineq | Vol | Shoot
Concordant Pairs 33% | 33% | 100%
Best-case | Discordant Pairs 0% | 0% 0%
Improvement Weak Pairs 67% | 67% 0%
Concordant Pairs | 33% 17% | 33%
Tight | Discordant Pairs 0% | 17% 0%
Ineq Weak Pairs | 67% | - |67% | 6%
Concordant Pairs | 33% | 17% 33%
Discordant Pairs 0% | 17% | 0% | -
Volume Weak Pairs | 67% | 67% | . | .67%
| Concordant Pairs | 100% | 33% | 33% |~ -
Discordant Pairs 0% | 0% | 0%
Shooting Weak Pairs 0% | 67% | 67%

Table 23 contains the correlation results for the cyclic group polyhedron with n = 8 and
r = 4. This polyhedron has 4 facets, and therefore 6:pz_1irs.;A'dapted best-case improifément

and the shooting experiment are perfectly correlated on this pdlyhedron.
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Table 24: Concordance of measures for the cyclic group polyhedron with n =9,r =8

B-C1 | Ineq Vol | Shoot
Concordant Pairs 81% | 100% | 81%
Best-case | Discordant Pairs 10% 0% 0%
Improvement Weak Pairs 10% 0% | 19%
Concordant Pairs | 81% 81% | 6%
Tight | Discordant Pairs | 10% 10% 5%
Ineq Weak Pairs | 10% 10% | 29%
Concordant Pairs | 100% | 81% 81%
Discordant Pairs 0% | 10% 0%
Volume Weak Pairs 0% | 10% 19%
Concordant Pairs | 81% | 67% | 81%
Discordant Pairs 0% | 5% 0%
Shooting Weak Pairs | 19% | 29% | 19%

Table 24 contains the correlation results for the cyclic group polyhedron with n = 9
and r = 8. This polyhedron has 7 facets, and therefore 21 pairs. In this case, volume and

adapted best-case improvement are perfectly correlated.

Table 25: Concordance of measures for the cyclic group polyhedron withn=9,r =3

B-C1I | Ineq | Vol | Shoot
Concordant Pairs 68% | 61% | 64%
Best-case | Discordant Pairs 32% | 18% 0%
Improvement Weak Pairs 0% | 21% | 36%
Concordant Pairs | 68% 43% | 43%
Tight | Discordant Pairs | 32% 36% | 21%
Ineq Weak Pairs 0% 21% | 36%
Concordant Pairs | 61% | 43% 46% |
Discordant Pairs | 18% | 36% 4%
Volume Weak Pairs | 21% | 21% 50%
Concordant Pairs | 64% | 43% | 46%
Discordant Pairs 0% | 21% | 4%
Shooting Weak Pairs | 36% | 36% | 50%

i

Table 25 contains the correlation results for the cyclic group polyhedron with n = 9 and
7 = 3. This polyhedron has 8 facets, and therefore 28 pairs: This polyhedron has more
weak pairs than previous ones, so the concordance perceﬁtdgés are lower.

Table 26 contains the correlation results for the cyclic group polyhedron with n = 10
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Table 26: Concordance of measures for the cyclic group polyhedron with n = 10,7 =9

B-CI | Ineq| Vol | Shoot
Concordant Pairs 88% | 95% | 83%
Best-case | Discordant Pairs 8% | 0% 0%
Improvement Weak Pairs 5% | 5% | 1%
Concordant Pairs | 88% 83% | 80%
Tight | Discordant Pairs 8% 8% 5%
Ineq Weak Pairs 5% 9% | 15%
Concordant Pairs | 95% | 83% 79%
Discordant Pairs 0% | 8% 0%
Volume Weak Pairs 5% | 9% 21%
Concordant Pairs | 83% | 80% | 79%
Discordant Pairs 0% | 5% | 0%
Shooting Weak Pairs | 17% | 15% | 21%

and 7 = 9. This polyhedron has 12 facets, and therefore 66 pairs. This polyhedron has

particularly low discordances. Three of the six pairs of measures have 0% discordance, and

the highest value is 8%.

Table 27: Concordance of measures for the cyclic group polyhedron with n = 10,7 = 2

B-C1I | Ineq | Vol | Shoot
Concordant Pairs 90% | 67% | 67%
Best-case | Discordant Pairs 10% | 24% 0%
Improvement Weak Pairs 0% | 10% | 33%
Concordant Pairs | 90% 57% | 62%
Tight | Discordant Pairs | 10% 33% 5%
Ineq Weak Pairs 0% 10% | 33%
Concordant Pairs | 67% | 57% 48%
Discordant Pairs | 24% | 33% - 19%
Volume Weak Pairs | 10% | 10% 33%
Concordant Pairs | 67% | 62% | 48%
Discordant Pairs 0% | 5% | 19%
Shooting Weak Pairs | 33% | 33% | 33%

Table 27 contains the correlation results for the cyclic group polyhedron with n = 10
and 7 = 2. This polyhedron has 7 facets, and therefore 21 pairs. The number of tight
inequalities and adapted best-case improvement are particularly well correlated with 90%

concordance and 10% discordance.
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Table 28: Concordance of measures for the cyclic group polyhedron with n = 10,r =5

B-C1I | Ineq | Vol | Shoot
Concordant Pairs %% | 66% | 1%
Best-case | Discordant Pairs ™% | 11% 0%
Improvement Weak Pairs 18% | 24% | 29%
Concordant Pairs | 75% 58% | 69%
Tight | Discordant Pairs ™% 12% 5%
Ineq Weak Pairs | 18% 29% | 26%
Concordant Pairs | 65% | 58% 48%
Discordant Pairs | 11% | 12% 10% |-
Volume Weak Pairs | 24% | 29% 42%
Concordant Pairs | 71% | 69% | 48%
Discordant Pairs 0% | 5% | 10%
Shooting Weak Pairs | 29% | 26% | 42%

Table 28 contains the correlation results for the cyclic group polyhedron with n =10
and r = 5. This polyhedron has 16 facets, and therefore 120 pairs. This polyhedron has a

relatively high number of weak pairs, though correlation is strong among the other pairs.

Table 29: Concordance of measures for the cyclic group polyhedron with n = 11,» = 10

B-CI | Ineq | Vol | Shoot

Concordant Pairs 7% | 94% | 72%

Best-case | Discordant Pairs 14% | 5% 0%

Improvement Weak Pairs 8% | 1% | 28%

- Concordant Pairs | 77% % | 69%

Tight | Discordant Pairs | 14% 13% 3%

Ineq Weak Pairs 8% 10% | 27%

Concordant Pairs | 94% | 77% 72%

Discordant Pairs 5% | 13% 0%

Volume Weak Pairs 1% | 10% 28%
Concordant Pairs | 72% | 69% | 72%
. Discordant Pairs 0% | 3% | 0%
Shooting Weak Pairs | 28% | 27% | 28%

Table 29 contains the correlation results for the cyclic group polyhedron with n = 11
and r = 10. This polyhedron has 18 facets, and therefore 153 pairs. Volume and best-case
improvement are particularly well correlated, with 94% concordance and 5% discordance.

Table 30 contains the correlation results for the cyclic group polyhedron with n =12
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Table 30: Concordance of measures for the cyclic group pblyhedron withn =12, =11

B-C1I | Ineq | Vol .| Shoot’
Concordant Pairs 79% | 89% | 69%
Best-case | Discordant Pairs 11% | 3% 0%
Improvement Weak Pairs 10% | 8% | 31%
Concordant Pairs | 79% 83% | 65%
Tight | Discordant Pairs | 11% 8% 3%
Ineq Weak Pairs | 10% 9% | 31%
Concordant Pairs | 89% | 83% 67%
Discordant Pairs | 3% | 8% 0%
Volume Weak Pairs 8% | 9% 33%
Concordant Pairs | 69% | 65% | 67%
Discordant Pairs 0% | 3% | 0%
Shooting Weak Pairs | 31% | 31% | 33%

and r» = 11. This polyhedron has 22 facets, and therefore 231 pairs. Discordance with the

shooting experiment is particularly low, with values of 0%, 0%, and 3%, but there are more

weak pairs: 31%, 31%, and 33%.

Table 31: Concordance of measures for the cyclic group polyhedron with n = 12,7 = 2

B-CI| Ineq | Vol | Shoot
Concordant Pairs 100% | 75% | 83%
Best-case | Discordant Pairs 0% | 11% 0%
Improvement Weak Pairs 0% [ 14% | 1%
Concordant Pairs | 100% 5% | 83%
Tight | Discordant Pairs 0% 11% 0%
Ineq Weak Pairs 0% 14% | 17%
Concordant Pairs | 75% | 75% 67%
- Discordant Pairs | 11% | 11% 8%
Volume Weak Pairs | 14% | 14% 25%
Concordant Pairs | 83% | 83% | 67%
Discordant Pairs 0% 0% | 8%
Shooting Weak Pairs | 17% | 17% | 25%

Table 31 contains the correlation results for the cyclic group polyhedron with n = 12 and
r = 2. This polyhedron has 9 facets, and therefore 36 pairs. The number of tight inequalities
and adapted best-case improvement are perfectly correlated on this polyhedron.

Table 32 contains the correlation results for the -cyclic group polyhedron with n = 12
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Table 32: Concordance of measures for the cyclic group polyhedron with n =12,r =3

1 B-C1I|Ineq| Vol | Shoot
Concordant Pairs 83% | 0% | 66%
Best-case | Discordant Pairs 4% | 15% 6%
Improvement Weak Pairs 12% | 15% | 28%
Concordant Pairs | 83% 2% | 66%
Tight | Discordant Pairs 4% 12% 5%
Ineq Weak Pairs | 12% 16% | 29%
Concordant Pairs | 70% | 72% 58%
Discordant Pairs | 15% | 12% 9%
Volume Weak Pairs | 15% | 16% 33%
Concordant Pairs | 66% | 66% | 58%
Discordant Pairs 6% | 5% | 9%
Shooting Weak Pairs | 28% | 29% | 33%

and r = 3. This polyhedron has 30 facets, and therefore 435 pairs. Concordances are weaker

than average on this polyhedron, with more weak pairs.

Table 33: Concordance of measures for the cyclic group polyhedron with n =12,r =4

B-C1I {Ineq | Vol | Shoot
Concordant Pairs 79% | 60% | 82%
* Best-case | Discordant Pairs 10% | 16% 0%
Improvement Weak Pairs 11% | 24% | 18%
Concordant Pairs | 79% 65% | 74%
Tight | Discordant Pairs | 10% 23% | 10%
Ineq Weak Pairs | 11% 12% | 16%
Concordant Pairs | 60% | 65% 60%.
Discordant Pairs |  16% |.23% 15%
Volume Weak Pairs | 24% | 12% 25%
Concordant Pairs | 82% | 74% | 60% | -
Discordant Pairs | 0% | 10% | 15% | - -
Shooting Weak Pairs | 18% | 16% | 256%

Table 33 contains the correlationfes%@ﬂ}tg for the cyclic‘ group polyhedrc;n with n = 12
and r = 4. This polyhedron has 15 fa:cet% arjl_{iii‘therefore 210 pairs. These concordances are
similar to the previous polyhedron, w1tha re:lf%tively high pércénﬁégé of weak paifs.:

Table 34 contains the correlation‘reséultslf:c")‘r the cyclic group polyhedron with n = 12

and r = 6. This polyhedron also has 15 facets, and therefore 210 pairs. As with other
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Table 34: Concordance of measures for the cyclic group polyhedron withn =12,r =6

B-C1I | Ineq| Vol | Shoot
, Concordant Pairs 81% | 60% | T78%
Best-case | Discordant Pairs 8% | 20% 3%
Improvement Weak Pairs 11% | 20% | 19%
Concordant Pairs | 81% 55% | T1%
Tight | Discordant Pairs 8% 23% 8%
Ineq Weak Pairs | 11% 22% | 21%
Concordant Pairs | 60% | 55% 46%
Discordant Pairs | 20% | 23% 19%
Volume Weak Pairs | 20% | 22% 35%
Concordant Pairs | 78% | 71% | 46%
Discordant Pairs 3% | 8% | 19%
Shooting Weak Pairs | 19% | 21% | 35%

n = 12 polyhedra, this one has a high percentage of weak pairs.

Table 35: Concordance of measures for the cyclic group polyhedron with n = 13,r =12

B-C1I | Ineq | Vol | Shoot
Concordant Pairs 76% | 86% | 60%
Best-case | Discordant Pairs 17% | 10% 4%
Improvement Weak Pairs % | 4% | 3%
Concordant Pairs | 76% 81% | 64%
Tight | Discordant Pairs | 17% 10% 3%
Ineq Weak Pairs | 7% 9% | 32%
Concordant Pairs | 86% | 81% 65%
Discordant Pairs | 10% | 10% 0%
Volume Weak Pairs 1% | 9% 34%
Concordant Pairs | 60% | 64% | 65%
Discordant Pairs 1% | 3% | 0%
Shooting Weak Pairs | 37% | 32% | 34%

Table 35 contains the correlation results for the cyclic group pdlyhédron ,\;vith n =13
and r = 12. This polyhedron has 40 facets, and therefore 780 pairs. These concordances are
lower than many of the pOthedra with small n, as was tbe case w1th the n =12 polyhedrzi.

Table 36 contains the correlation results for the cyclic group polyﬂedron with n:' 14
and r = 13. This polyhedron has 65 facets, and therefore 2080 pairs. Volume is particu]aﬂy

well correlated with best-case improvement, with 89% concordance and 5% discordance.
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Table 36: Concordance of measures for the cyclic group polyhedron with n = 14,r =13

B-CI | Ineq| Vol | Shoot
Concordant Pairs 82% | 89% | 78%
Best-case | Discordant Pairs 12% | 5% 4%
Improvement Weak Pairs ™% | 6% | 18%
Concordant Pairs | 82% 83% | 79%
Tight | Discordant Pairs | 12% 8% 4%
Ineq Weak Pairs 7% 10% | 17%
Concordant Pairs | 89% | 83% 84%
Discordant Pairs 5% | 8% 0%
Volume Weak Pairs 6% | 10% 16%
Concordant Pairs | 78% | 79% | 84%
Discordant Pairs 1% | 4% | 0%
Shooting Weak Pairs | 18% | 17% | 16%

Table 37: Concordance of measures for the cyclic group polyhedron with n = 14,r = 2

B-C1I | Ineq | Vol | Shoot
Concordant Pairs 83% | 80% 83%
Best-case | Discordant Pairs 12% | 15% 6%
Improvement Weak Pairs 5% | 5% | 11%
Concordant Pairs | 83% 81% | 8%
Tight | Discordant Pairs | 12% 13% 4%
Ineq Weak Pairs 5% 6% 9%
Concordant Pairs | 80% | 81% 7%
Discordant Pairs | 15% | 13% 11%
Volume Weak Pairs 5% | 6% 12%
Concordant Pairs | 83% | 87% | 77%
Discordant Pairs 6% | 4% | 11%
Shooting Weak Pairs | 11% | 9% | 12%
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Table 37 contains the correlation results for the cyclic group polyhedron with n = 14
and r = 2. This polyhedron has 31 facets, and therefore 465 pairs. The percentage of weak

pairs is not as high as for recent polyhedra, and concordances are at or near 80%.

Table 38: Concordance of measures for the cyclic group polyhedron with n =14,r =7

‘ B-C1 | Ineq | Vol | Shoot
Concordant Pairs 69% | 1% | 75%
Best-case | Discordant Pairs 24% | 17% 9%
Improvement Weak Pairs ™% | 12% | 16%
Concordant Pairs | 69% 0% | 79%
Tight | Discordant Pairs | 24% 17% ™%
Ineq Weak Pairs 7% 13% | 13%
Concordant Pairs | 71% | 70% 69%
Discordant Pairs | 17% | 17% 10%
Volume Weak Pairs | 12% | 13% 21%
Concordant Pairs | 75% | 79% | 69%
Discordant Pairs 9% | ™% | 10%
Shooting Weak Pairs | 16% | 13% | 21%

Table 38 contains the correlation results for the cyclic group polyhedron with n = 14
and r = 7. This polyhedron has 68 facets, and therefore 2278 pairs. This is the most of any
polyhedron studied in this dissertation. There are quite a few weak pairs, however, leaving

concordances between 69% and 79%.
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CHAPTER V

MATCHING POLYTOPES

The maximum matching problem on a graph G = (V,E) is :

max CTfB

s.t. 2665(‘0) Te S 1 YveV
z. € {0,1} Vee€EFE,
where §(v) denotes all edges incident with v. The standard LP relaxation replaces the final

constraints above with z, > 0.

Edmonds [14] proved that the followiﬁg system describes the matching polytope:

Eeea(v) Te S 1 4 YweV
SeensyTe < L VS CV,|Slodd
z > 0,

where (S) is the set of edges with both ends in S. We will call the first set of constraints
node constraints since there is one for each node. Togetller with nonnegativity, the node
constraints define the LP relaxation. The constraints in the second line are called odd-set
constraints, many of which denote facets.

The matching problem can be solved by a relatively efficient combinatorial algorithm,
so we are not motivated by a desire to ifrifpro&e computation on this problem. Since we have
full knowledge of the facets of the matCi;ing ?'po'lytope, however, matching provides a good
opportunity to test facet measures. 5‘ ‘

The only facets that are not includjed m the LP relaxation are defined by the odd-
set constraints. We consider the case o:f a vcfomplete graph, so the polytope is fixed for a
particular graph size |V| = n, and all ofdd—sjet constraints of a given size k are equivalent
by symmetry. The question of interest, therefore, is how the facets defined by odd sets of

different sizes compare.
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Section 5.1 shows that larger-odd-set constraints are almost always intersected before
smaller-odd-set constraints by the shooting experiment. Section 5.2 shows that in contrast,
smaller-odd-set constraints provide better best-case improvement. Section 5.3 shows that
Chvétal-Gomory rank does not distinguish among odd-set constraints. Section 5.4 discusses
the possibility of performing the shooting experiment. Section 5.5 explains the difficulty of
- performing computational experiments, and computational results appear in Section 5.6.
They offer insight into the conflicting predictions of the shooting experiment and best-case

improvement: it turns out that both predictions are correct in their own way.

5.1 Analysis.of the shooting exrperiment

In this section, we show that when considering only two sizes of odd-set constraints, the
shooting experiment sizes of the larger-odd-set constraints are mucll larger than the shooting
experiment sizes of the smaller-odd-set constraints. In fact, we show that the smaller-odd-
set constraints will almost always not be hit by the shooting experiment.

To perform an analysis of shooting, it is necessary to decide on a shooting point. One
natural choice for matching is the origin. This is a‘fea.sible point and all directions in the
nonnegative orthant will hit facets defined by odd-set constraints. A consequence of using
the origin is that it is not possible to hit the nonnegativity facets, llqwever. If we wish to
consider the nonnegativity facets as well, we must use an i'rit'éri’or point. By symmetry of
the formulation, it is only reasonable to consider pomts of the form (z Z,. z) for some
positive z. To handle both the origin and interior pomts we w1ll analyze shots from such a.

point Z = (2, 2,...,2), where z > 0 and the point Z is in the polytope.:

Theorem 5.1 For mazimum niatching on complete grdphs and for k = q(n/ logn), facets
corresponding to odd sets of size less than k will almost always not be hit by the shooting

ezperiment with shooting point Z = (2,2,...,2), where 2 > 0 ah_d Z is in the polytope.

Theorem 5.1 says that as a group, larger-odd-set facets have a much larger shooting
experiment size than smaller-odd-set facets, at least when only two sets are considered at

a time. The rest of this section presents its proof.
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Using Proposition 2.6, a facet given by the inequality («, ) has a scaled shooting distance

t= _T_S_(%, if that value is nonnegative.

Theorem 5.2 For k = o(n/logn), a random shot from a point Z will almost always inter-
sect an odd-set constraint of size k + 2 before any of size k. In particular, if k > 7, then the

probability of intersecting a k-set constraint before a k + 2-set constraint is no more than

nk (%)L%J_

An odd-set constraint of size k has the form

In terms of the (a,r) notation above, we have a, = 1 for e € y(S) and @, = 0 otherwise.

Using Proposition 2.6, the scaled shooting distance is

B —ahy(s)| _ 5 - 200

t= 2 2 2

Zee'y(S) de B Zeé’y(S) de

We may assume the numerator is nonnegative; otherwise, the point Z is not inside the

polytope. If the denominator is negative or zefo, then the shot never intersects that in-
equality, so we may restrict our attention to cases where the denominator is positive. Since
the numerator is constant, we can determine which of the odd-set constraints of size k is
intersected first by maximizing the denominator, since this minimizes {. This minimum
value is o

k=1 _ k(k=1)

tmin = 2 2 . 12
min max|$|=k 2667(3) de ( )

For a set S’ with |S'| =k + 2, the scaled shooting distance is

ktl _  (k42)(k41) ‘

2 2
266’7(5') d'?

We wish to show that almost always, there exists a set S’ such that 0 < ¢/ < tmin- Tllat‘is;

t =

we wish to show that such a set exists with probability converging to 1 as the size of the
graph increases.
Let § C E be such that |S| =k and 5§ = arg MaX|s|=k D_ecr(s) De- It will be enough to

restrict our search to sets S’ that satisfy S’ O S.

83



Given an arbitrary set S such that |S| =k, let dg = mls—)[ 2ecn(s) de be the average
weight of the edges in (S). If dg < 0, then this constraint is never intersected by shot d,
so we may restrict our attention to the case that dg > 0. For §' O §,|S'| = k + 2, consider

the 2k + 1 edges of v(S’) \ 7(9).

Definition 5.3 Given set S such that |S| = k, we say that S is undominated if the average
edge weight of the set v(S') \ v(S) is less than ds/2 for every set S’ O S,|S'| = k + 2.

Otherwise we say that set S is dominated.

Lemma 5.4 If S is dominated by the set S', then the facet corresponding to S’ is intersected

prior to the facet corresponding to S by a shot in direction d.

Proof: Let |S| = k and |S'| = k + 2. Then by the definition of dominated, the average
edge weight of y(S5’) \ 7(S) is at least ds/2. Then we have

’—“—'—l—z—ﬁ—)—kk;l _Bl1-zk)  1-2k

tS =-2 = 1 == 9
zéE’Y(S) de ﬁiz—._llds kds
"and
b = &g—sz—t}ﬁz EA1(1 — 2(k +2))
2ieex(sy e Deey(s) de T Leen(sy\n(s) e
. _Ba-ek+2) _Ha-z(k+2)
T MEDgs 2k +1)% ME) g + ds
. Ba-ak+2)
2 .
_1-2z(k+2)
=

Using the fact that z > 0 and ds >0, wéf ha.véf

1—z(k+3‘2) < i?zk _

tg =1g.
S ST kds = ks °

Therefore the odd-set constraint corresponding to fS”‘; revents the odd-set constraint corre-
. g - [T p Ty

sponding to S from being hit by the shot. =~ j’ ] ‘ _ \ '
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Lemma 5.5 For k = o(n/logn), there is almost always no undominated set of size k. In
particular, for k > 7, the probability that there exists an undominated set S of size k is no

more than n (%)ln kJ

Proof: Let X be the number of undominated sets of size k and let Xg be an indicator
variable that is 1 if S is undominated and 0 otherwise, so that X = ZI sj=k Xs- Then
=E[)_ Xs]= Y E[Xs]= ( ) E[Xs]<nfP(Xs=1). (13)
|S|=k |S|=k
We can get an upper bound on P (Xg = 1) by considering possible supersets S’ O S.
Each S’ is formed by choosing 2 of the n — k nodes not in S. To preserve independence,
we partition these nodes arbitrarily, so that we have ["QL’CJ independent possibilities. Let
1—py. be the probability that 2k+1 iid edge weights have average weight at least dg/2. This
is the probability that a particular S’ dominates S. Then we have P (Xg=1) < pllcn%kj.

Using (13), we have
ﬂ;k
P(X >1) < B[X] < nFpl 2 1. (14)

For any constant value of %, it is clear that pr < 1 and constant, so the exponential
term in (14) causes the probability to go to zero as n increases. In particular, this is true
for p3 and ps.

If k > 7, we claim that py < 3/4. Let Y1 = -3} d; and Y = = S0 dj, where
d; and d;. are iid standard normal variables. Then Y; and Yg‘are-normallyidlstrlbuted with
mean 0 and variances m—l—l and m%, respectively.

For an arbitrary set S, the edge weights of v(S) are iid stapdard normal, so py, satisfies
1—pr = P(Y1> 3Ya|Y2 > 0), where m; = 2k + 1 and m2 = ﬂ@ ’fhat is, we are
comparing the averages of two sets of iid standard normal random variables, conditioned
on the fact that one of the averages, dgs, is positive. Sincé k > 17, we have m1"<. ma. Then,

P (V1| > |Y2]) > 1, since both Y7 and Y are normal with mean 0, and ¥; has a greater

variance. Using this, we have

1
P(YI > 5Y2|Y2>o) > PM>Tlta>0)=P 1> Y% >0,% >0 P (%> 0)

= P(MI>MDPE>0)> 7 5

1
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We conclude that pg < %

The logarithm of the right-hand-side of (14) is klogn + [ﬂ;—k_l log px. We know that
k = o(n/logn), so the first term is o(n). The second term is négzitiire since :'lo.‘g pr <0, and
its opposite, — [ﬂ;—k_l log px. is ©(n). Thus the second term dominates, which means p,tcn_;ij

dominates (14), and P (X > 1) goes to zero exponehtially as n increases. In the case that

k > 7, we can replace p; by % to get the bound in the statement of the lemma. |

Proof of Theorem 5.2: Combining Lemmas 5.5 and 5.4, there are almost always no
undominated sets of size k, so no corresponding odd-set constraint will be hit. In partic-
ular, the probability that a set of size k is hit is no more than the probability that it is

undominated. Therefore, the bound in Lemma 5.5 applies. |

We have shown that as a group, the facets corresponding to odd sets of size k+A2 almost
always are intersected prior to facets corresponding to sets of size k. In fact, we have the

following corollary:

Corollary 5.6 Consider the polytope defined by the LP relazation of matching with the
addition of k-set constraints and (k + 2)-set constraints, where k is odd. Let s; represent
the shooting experiment size of a single facet corresponding to an odd set of size i. Then

Sk ; =
s — 0 as n increases for k o(n/logn).

Proof: By symmetry, all facets corresponding to sets of size k& have the same shooting
experiment size, so si and Sk4.o are ‘we_:.ll-deﬁnedf

The number of k-set constraints is )= k,(n—"lky Thus, Theorem 5.2 states that

e

! o n—k

Sk FmR)! <l ok (3 15"
) n! = n ‘A
Sk+2 TF2)i(n—k—2)! ST S

sk(k +2)(k +1) 3\
S —Rn k-1 =" (Z)
B <ﬁnﬁkc%z—k)<n—k—1)(§>”5—”
ske2 - (B+2)(B+1) 4 '

Since k = o(n/logn), the exponential expression dominates and the right-hand-side goes

to 0 as n increases. : ]
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We’ve shown that smaller-odd-set constraints are “blocked” by larger-odd-set constraints. .
This allows us to prove Theorem 5.1.
Proof of Theorem 5.1: The probability that the facet corresponding to an odd set of
size less than £ is hit is no more than the sum of the probabilities that a facet corresponding
to an odd set of size 7 is hit for ¢ < k. Let p; be defined as in the proof of Lemma 5.5. Let
p = max{ps, ps, g—} Then p < 1, And Theorem 5.2 shows that the probability of bhitting a
facet corresponding to an odd set of size ¢ is bounded by nkp[n%kj.

The probability that a facet corresponding to an odd set of size less than £ is hit is

therefore bounded by

(k-1)/2 pid
z n2i+1p[—(—2"- it 5
i=1

Since k = o(n/logn), the number of terms is no more than linear, and each one is expo-

nentially small, so the overall probability goes to 0 as n increases. - |

If shooting experiment size is indicative of usefulness, Theorem 5.1 suggests that larger-

odd-set constraints are more useful than smaller-odd-set constraints for sizes that are

o(n/logn).
5.2 Best-case tmprovement

This section shows that the best-case improvement ratios of smaller-odd-set constraints are

better than those of larger-odd-set constraints, in contrast with the results of the previous

section on the shooting experiment.
. 4 . . S
Theorem 5.7 The strength of the odd-set constraint corresponding to set S is TgI_—‘T

Proof: The matching polytope is of anti-blocking type, so Theorem’ 2.4 applies. Recall

that the strength of a facet 3 ;- ; a;z; < b relative to relaxation P is defined as

max{a’z : z € P}
. b ¢
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We are considering complete graphs and the standard LP relaxation P. For an odd-set

constraint based on set S, the strength is

max{}_.cq(s) Te : T € P}
S|—1 :
2

For complete graphs, max{}cc.(s) Te : ¢ € P} can be no more than ]%l This bound comes
from summing all the node constraints for nodes in S and dividing by 2, since each edge
variable appears twice. In fact, this bound can be achieved by setting z, = 1 for a cycle
that includes every node in S and z, = 0 otherwise.

Therefore, the strength of the inequality is

Il El

2 _ )
SI-1 = 15[ —1
2

For example, |S| = 3 gives a strength of 3. Larger odd sets have strengths of 2,Z, 2,
and so on.

Thus, the strength of inequalities corresponding to smaller odd sets is greater than
the strength of those corresponding to larger odd sets. If best-case improvement strength
correlates with the usefulness, then these results suggest that smaller-odd-set constraints
are more useful than larger-odd-set constraints. This contrasts with our analysis of the

shooting experiment in the previous chapter.

5.3 Chvdtal-Gomory rank R

¢

For complete graphs, Chvatal-Gomory rank provides no differentiation among the odd-set

constraints:
: DL

Proposition 5.8 For the matching problem on a complete graph, all odd-set inequalities

have Chvdtal-Gomory rank 1.

Proof: We will use the notation of Section 1.4.1. To see that odd-set constraints are
not rank 0, note that any weighted sum of edge constraints that dominates an bdd_—set

constraint of size k must have weights that total at least £/2. This is because each constraint
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contributes only twice its weight in left-hand-side coefficients. Then the right-hand-side of
the weiéhted sum is at least k£/2. Since this is greater than E—E—l, the weighted sum does not
dominate the constraint.

Now let u; =1 for all constraints of the form

Z . <1, vES
e€d(v)

and let u; = 0 for all other constraints. The resulting weighted sum is
>, ) =sISh
VES e€é(v)

Edges in v(S) appear twice, once for each endpoint, while edges in §(S) appear only

once, so we have

2 Z T, + Z z. < |{S|.

e€7(S) e€d(S)
We can remove terms from the left-hand-side because of nonnegativity, which gives

erslzﬂ.

Finally we round down the right-hand-side to an integer. Since |S| is odd, we have

S s |S|—1

e€v(S)
||

For matching, therefore, Cllvéte{lflGomory rank does not help differentiate among con-

straints cofresponding to odd sets of di‘f'ferent‘sizes.

“."

5.4 Performing the shootmg ea:perzment

‘. I ‘\
' 1

Since matching can be solved in polynomlal time, Theorem 3.5 1nd1cates that there must be

a polynomial-time algonthm to perform the shooting experlment on the ma,tchlng polytope
|-

Given a direction vector d, performllng the shootmg expenment would solve the following

problem:
S|-1
2

min -
SCV,|S|0dd 3 eeq(s) de
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In fact, the proof of Theorem 3.5 leads to a polynomial-time algorithm using the ellipsoid
algorithm, but such an algorithm would not be efficient. Whether there is a combinatorial

algorithm for this problem is an open question.

5.5 Complexity of odd-set constraints

In Section 5.6 we present computational results on the usefulness of odd-set inequalities on
test instances. Unfortunately, we are limited to instances of small size, and this section
presents two results that help explain why testing with odd-set constraints is difficult. In
each case, we prove the result for the more restricted case of maximum perfect matching
and then show that it applies to maximum matching as well.

The maximum perfect matching problem on G = (V, E) is

max CTIL‘

s.t. Eeéé(v) ze = 1 YveV
ze € {0,1} Ve€E.
The only difference is that the node constraints must be satisfied at equality. For ease of
notation, we will abbreviate the set of node constraints as Az = 1, where A represents the
node-edge incidence matrix of the graph, and the right-hand-side is a vector of all 1’s. The
corresponding abbreviation for maximum matching is Az < 1. |

Because of the equality node constraints, odd-set constraints for perfect matching may

be written as

gEJ(S)

for each odd set S C V. We will use jthis form for odd-set constraints in this section.
Section 5.5.1 shows that the problém of separating k-set constraints is NP-hard when
k = Q(n). Section 5.5.2 shows that in most cases, the polytope defined by the LP relaxation
and a collection of k-set constraints hés very fractional extreme poiﬁts. Together, these
results suggest that there is not a combinator‘ia'l algorithm for. solving the optimization
problem with k-set constraints or for separating k-set constraints, which would have made

the testing of Section 5.6 easier.
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5.5.1 Complexity

In this section, we consider the separation problem for sets of odd-set‘ccfnsirajints and the
corresponding optimization problems. Padberg anci Rao [36] gave a polynomial-time sepa-_
ration algorithm over all odd-set constraints. For the case tl;at. o;lly 3-set.constraints ére
added, Cbrnuéjols and Pulleyblank [10] gave a polynomial-time algorithm for tile optimiza-

tion problem. We show that for many other subsets of odd-set constraints, the separation

problem is NP-hard.
5.5.1.1 Including only odd sets of size n/2 is NP-hard

Consider the case that the only odd-set constraints that we wish to enforce are those of
size n/2 (we are assuming n/2 is odd). Note that there are (n'/'2) = Q(2"?) such sets, so
enumeration is not possible in polynomial time.

The separation problem-is then a search problem as follows:

Definition 5.9 Given a vector E-R|E|, determine that = satisfies x > 0, Az = 1, and all
(n/2)-set constraints, or demonstrate a constraint that z violates.

Since £ > 0 and Az = 1 comprise a polynomial number of constraints, these can be
checked directly, and the separation problem is no easier than the following recognition
problem:

Definition 5.10 BISECTION < 1,Az = 1,z > 0,n/2 odd: Given z € RIFl such that
z > 0,Az =1, and n/2 is odd, 'detérrﬁine that T satisfies all n/2¥cuts (so all are > 1) or

determine that one is violated.
Theorem 5.11 The problem BISECTI;O?V' <1,Az =1,z > 0,n/2 odd is NP-complete.

_Corollary 5.12 Optimizing over the pojlfy’tope formed from the perfect matching LP relaz-

ation with the addition of constraint.é for“':odd sets of size nf2 is NP-hard.

Corollary 5.12 will follow from Theorem 5.11 by the equivzﬂence of separation and op-
timization [24]. To prove Theorem 5.113,; we will reduce from MAXCUT. The next five
subsections show steps in the reduction. Note that the nonnegativity constraint already

applies to MAXCUT, and we maintain it throughout the reduction.
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MAXCUT to MAXCUT, Az =T, n odd.
If n is even, add an isolated vertex to the instance of MAXCUT to get an equivalent instance
with n odd.

Let T' > maXyev D5, Te- Add two new nodes v',v" for each vertex v to form a triangle.

Let T' = 5" ,., Te. Let edges {v,v'} and {v,v"} have weight (T'—7")/2 and let edge {v',v"}

edv
have weight (T + 7")/2. Then the new graph satisfies Az = T, and 3n is odd.

We are looking for a max cut (S,S5’). Assume that v € S. Then it will always be to the
best advantage to have v’ and v” in opposite sets for a cut contribution of 7. Putting both

in S’ is not as good since the contribution is T' — 7”. Thus, the max cut in the new graph

will have weight nT" + (max cut in old graph).

MAXCUT, Az =T, n odd to MAX BISECTION, Az =T", n/2 odd.

Let the current graph be G = (V, E) with |V| = n. Form a new graph G’ by adding n

additional vertices with edges of weight T'/(n — 1) between each pair and edges of weight

T/(2(n — 1)) between each original vertex and each new vertex. Then G’ satisfies Az = 77,

where T = T + Tn/(2(n — 1)), and the number of vertices in G’ is twice an odd number.
Any bisection of G’ has edges within G and other edges iﬁvolving the neW vertices. The

contribution from these “other” edges will always»be n2T/(2(n —1)). Therefore, the max _

bisection of G’ will be determined by the max cut in'G and vice-versa.

MAX BISECTION, Az =T, n/2 odd to MIN BISECTION, vAa: =T', n/2 odd.
Let the current graph be G = (V,E) with |V| = n. Let M > max; z,. Form a new
graph G’ by replacing each edge weight z, with z, = M - Ze. (Treat the graph G as a
complete graph, where non-existent edges have weight: O) | Since every bisecﬁion: has ‘the
same number of edges, the contribution due to M is constant, and the min bisection in
G' will be determined by the max bisection in G and vice versa. Also, G’ will satisfy

Az =(n-1)M -T.

MIN BISECTION, Az =T, n/2 odd to BISECTION < k", Az =T, k" > 2T, n/2
odd.
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Note that MIN BISECTION is really BISECTION < k, where threshold % 'is an unrestricted
parameter. First, if & < 2T, add weights T'//(n — 1) to every edge in G (treating G as a
complete graph as in the previous step). Then Az = T+ T = 2T for the new vector z, and
the value of every bisection increases by 2 (2) (n—:f—l) > 2T. Setting k' =k + 2 (2) (%)
gives an instance with threshold k' > 2T. Second, scale T, all edge weights, and £’ by

integer M to make all values integers. Set ¥ = MK +1/2.

BISECTION < k, Az =T, k > 2T, n/2 odd to Separation.

In this step we show that being able to choose any & > 2T doesn’t help us more than
having only the choice T'. Then we can simply scale all edges by a factor of 1/T to get the
separation problem:.

For each vertex v, add two new nodes v’,v” as in Section 5.5.1.1, now with edge weights
(k—=T)/2 and (k +T)/2, such that every node has incident edges totaling weight k (where
k >2T).

If there is a bisection of weight < k in the origihal graph, then we can use that same
bisection (this time putting both v’ and v” on the same side of the cut as v) to get a
bisection of weight < k in the new graph. Conversely, if there is a bisection of weight < k
in the new graph then we need to show a bisection in the original graph.

Note that the bisection in the new graph cannot‘split up two or more triplets, since
such a split has weight at least 2(k — T), which is at least & by the assumption k > 27.
The bisection also cannot split onlyg one triplet, or it isn’t really a i)isection. Tlnérefore, the
bisection does not split any triplets‘and so determines a bisection in the original graph with
weight < k. o ' :

We have now reduced to the problem BISECTION < 'k,vA:z: = ‘k, n/2 odd.. By scaling |

every edge, we have the separation problem: BISECTION < 1; Aa: =1, n/2 odd.
5.5.1.2 Other size odd sets

We have shown that the separation problem is NP-hard when oniy n/ 2-sets are included.
In this section we prove that we can reduce to the separation problem for odd sets of size

2[%t] — 1, where 0 < o < 1/2 is a constant. Note that the expression simply gives the
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greatest odd number less than or equal to an.

Theorem 5.13 For any 0 < o < 1/2, the separation problem for a cut of size 2[S*] — 1

with weight < 1 in a graph that satisfies Ax = 1 is NP-hard.

Proof: We will reduce to this problem from BISECTION < 1, Az =1, n/2 odd. Choose

nonnegative even integers m; and mg such that

n
my > 5
m > o n
2 2 — 4o
m = goltmrnd) o

To see that such a choice is possible, first choose even integers m; and my large enough
to satisfy the inequalities. Then consider the equzﬂity constraint. If the right hand side is

less than the left hand side, fix ; and increase the value of ms to

_2(%-mn¥u—amu+1
m2= 2«

This is an even integer that satisfies the equality constraint.
If the right hand side of the equation is greater than the left hand side, fix my and

increase mi to

amg — (3 —a)n—-1
m1=2[ M) ]

Again, this is an even integer that satisfies the equality constraint.

Now, we are given a graph on n vertices where n/2 is odd and the g;aph satisfies Az = 1.
Add mj 4+ mg new vertices. Add new edges to form two cliques from the new vertices: one
of size m) and one of size my. Make the edge weights be 1 /(m1 — 1) in the first ciique and
1/(mg — 1) in the second clique. Then the new graph satisfies Az = 1.

Note that the size of the “small” side of the cut is 2[a(n +m1 +mg) /2] -1 = m1 +n/ 2,.’
which is odd. In any cut of size m; + n/2, if either of the cliques is split by the cut; the
clique edges in the cut will have total weight at least 1. Therefore in any cut of weight
less than 1, neither clique will be split. The numbers m; and ms Qere chosen such that

me > my + n/2 and my 4+ my > ma + n/2. Thus, the ms clique is too large to go on
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the “small” side of the cut and both cliques together are too “large” to go on either side.
Therefore in any cut of weight less than 1 (and size m; +n/2), the m; clique will go on the
small side along with n/2 original nodes and the my clique will go on the large side (also
with n/2 original nodes).

Therefore, if there exists a cut of weight strictly less than 1 in the new graph, it must
be formed entirely of edges among the original vertices, and it gives a bisection of weight
less than 1 in the original graph. The converse is easy.

Note that we can choose m; and my to be polynomial in n, so constructing the graph

can be done in polynomial time. This completes the proof. |

Again, we get a corollary from the equivalence of separation and optimization [24].

Corollary 5.14 For any 0 < a < 1/2, the optimization problem over the polytope formed
from the perfect matching LP relazation with the addition of constraints for odd sets of size

2[%2] — 1 is NP-hard.
5.5.1.83 Ranges of cuts

In this section, we extend the previous result to ranges of odd-set sizes. If the lower end
of the range is of the form 2[%!] — 1 as above, then the sep‘afation ‘problem is NP-hard

regardless of which other values are allowed.

Theorem 5.15 Given 0 < o < 1/2 and a function S(n) mapping n-to a subset of odd
integers between 2[S] — 1 and n/2, where 2[%}] — 1 € S(n), the separation problem for

cuts of sizes in S(n) with weight <1 in a graph that satisfies Az =1 is NP-hard.
i - -

; ‘ . . ) '
Proof: We can reduce from the separation problem for sets of size k(n) := 2[4%] -1, which

o . :
we proved is NP-hard in the previous section. We are given a graph satisfying Az = 1. Add

| - |
1 to the weight of every edge in the gra,p:h (treating it as a complete graph), so that the
graph now satisfies Az = n. There exisfq a cut in the new graph with size in the desired

range and weight < 1+ k(n)(n —k(n)) if »aind only if there exists a cut in the original graph

with size k(n) and weight < 1.
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To see this, note that aﬁy cut in the new graph of size grea"cer th‘anAk(n) will have at
least 1+ k(n)(n—k(n)) edges aﬁd so will have weight at least 1+ k(n)(n—k(n)). Therefore,
a cut of lower weight must be of size k(n), and so it has weight < 1 in the original graph.
The converse is easy.

To complete the reductioﬁ, we need to account for the fact that Az = n, but we are
looking for a cut of weight < 1+ k(n)(n — k(n)). For sufficiently high n, 1+ k(n)(n — k(n))
is greater than 2n, so we are almost in the situation that is covered in Section 5.5.1.1. As
in that section, we add two new nodes v’,v” for each node v, to increase the incideﬁt edge
erights on each node to 1 + k(n)(n — k(n)).

We must argue that if there is a cut in the new graph with weight < 1+ k(n)(n — k(n)),
then there is such a cut that does not split up a triplet. Note that no such cut can split
two triplets, since then the weight of the cut would be too high. It is also not possiblé to
split exactly one triplet, since then there couldn’t be exactly k(3n) vertices on one side. By
scaling, we have reduced to the case that Az = 1 and we wish to find a cut of weight < 1,

which proves that the problem with ranges is NP-hard. B

Corollary 5.16 Given 0 < a < 1/2 and a function S(n) mapping n to a subset of odd
integers between 2[%*] —1 and n/2, .where 2[F] - 1€ S(n), the optimization problem for
the polytope formed from the perfect matching LP relazation with the addition of constraints
for odd sets of sizes in S(n) is NP-hard.

5.5.1./ Extension to mazimum matching

These complexity results apply to maximum matching as well. The analogs of Definition 5.9

and 5.10 for maximum matching are the following:

Definition 5.17 Given a vector z € RIEl, determine that = satisfies z > 0, Az < 1, and

all (n/2)-set constraints, or demonstrate a constraint that T violates.

Definition 5.18 BISECTION < 1,Az < 1,z > 0,n/2 odd: Given = € R'El such that
z>0,Az S 1, and n/2 is odd, determine that = satisfies all n/2-cuts (so all are > 1) or

determine that one is violated.
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Each of the theorems also has a corollary for maximum matching.
Corollary 5.19 The problem BISECTION < 1,Az <1,z > 0,n/2 odd is NP-complete.

Proof: The reductions that prove Theorem 5.11 work in this case as well. The resulting
problem satisfies Az = 1, so it also satisfies Az < 1 and a polynomial-time algorithm for

BISECTION < 1, Az < 1,z > 0,n/2 odd would solve it. | n

By the equivalence‘of separation and optimization, we have a corollary for optimization:

Corollary 5.20 Optimizing over the polytope formed from the mazimum matching LP re-

lazation with the addition of constraints for odd sets of size n/2 is NP-hard.

The same argument as in the proof of Corollary 5.19 proves corollaries to Theorems 5.13

and 5.15.

Corollary 5.21 For any 0 < o < 1/2, the separation problem for a cut of size 2[%¢] — 1

with weight < 1 in a graph that satisfies Az <1 is NP-hard.

Corollary 5.22 Given 0 < o < 1/2 and a function S(n) mapping n to a subsét of odd
integers between 2[22] — 1 and n/2, where 2[“”] ~1le€ S(n), ‘the separatzon problem for

cuts of sizes in S(n) with weight <1 in a graph that satzsﬁes Az < 11is NP-hard
Finally, we have the following optimization corollaries:

Corollary 5.23 For any 0 < o < 1/2, the optzmzzatwr problem over the polytope formed
from the mazimum matchmg LP relazation with the addztzon of constramts for odd sets of

size 2[S] — 1 is NP-hard.

Corollary 5.24 Given 0 < a < 1/2 and a function S(n) mapping n to a subset of odd
integers between 2[%] — 1 and n/2, where 2[%] — 1 € S(n), the optimization problem
for the polytope formed from the mazimum matching LP relazation with the addition of

~ constraints for odd sets of sizes in S(n) is NP-hard.
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Figure 6: Edges with weight zero

5.5.2 Fractionality

Cornuéjols and Pulleyblank [10] showed that when only 3-set constraints are added to the LP
relaxation of matching, the resulting polytope is %-integral. When any other combination of
odd-set constraints is added to the perfect matching LP relaxation, however, the guarantee
of 1-integrality is lost.

In this section, we prove the following theorem:

Theorem 5.25 For any positive integer m and any odd integer k > 3, the perfect matching
polytope for the complete graph on 6 + 2m(k — 3) nodes with constraints for all odd sets of

size less than or equal to k is not %-integial for any integer ¢ < 2m — 1.

The rest of this section is devoted to proving Theorem 5.25 ‘b}’r demonstrating a family
of complete graphs with 6 + 2m(k — 3) nodes, edge weights is {0 1}, and minimum perfect
matching of value 1/(2m —1). Section 5. 5 2.1 glves a small counteréxample to demonstrate‘~
the idea, while Section 5.5.2.2 presents:the entire family along with the proof that the -
optimal solution in each case has value:: 1/ (2m — 1). Section 5.5.2.4 extends the result to

maximum matching polytopes. i , B

5.5.2.1 A small counterezample

First, consider the case that £k =5 and m = 2, so we have a complete graph on 14 vertices.

We set the weight of each of the edges to elther zero or one. In particular, the edge weights

we set to zero are shown in Figure 6.
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Figure 7: Optimal Solution

Then the minimum perfect matching with 3-set and 5-set inequalities enforced has total
weight 1/3. Each edge in the optimal solution is matched with a value of 0,1/3, or 2/3, as
shown in Figure 7.

To prove tHat this solution is optimal, we would need to demonstrate a dual feasible
solution that satisfies complementary slackness and also has an objective value of 1/3.
Rather than do that for this small problem, we will now present the general family of

counterexamples.
5.5.2.2 A family of counterezamples

Consider minimum perfect matching with odd-set constraints up to size k. The primal

problem is

minimize E WeTe
eckE

subject to  z(d(v)).
| 2(6()). > 1 VSCV|S|odd|S|<k S

1 ’V'vEV

'a¢e > 0 Ve €F
where §(v) denotes the set of edges incident W1th v, 6(.5') denotés the set of edges that cross

out of set S, and z(A) means the sum of z varlables for edges in the set!A (wheré A is 6(v)

or 5(5)).
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Figure 8: Edges with weight zero in the general graph

Edges in each -% »  Edges in each
loop alternate z oo | ln(llp alternate
E_:::__Ij and 11 mloops, | mloops | = mo) and
2m-1 = g  amot
2
Figure 9: Primal Solution
The dual is
maximize Z Yy + Z Ys
veV SCV,|S| odd,|S|<k o )
subject to Z Ys+Yu+ye < we Ve= {u,v} € E
S:e€é(S) o o
free
ys = 0

Our counterexample graph is a complete graph with 6 + 2m(k 3) nodes, and we again
1 i
make most of the edge weights equal to one. Those edges w1th welght Zero are shown in

Figure 8. The primal solution is shown in Flgure 9. The dual node values are shown in
Figure 10. The complete dual solution also 1nc1udes a number of k-set dual values, which
are not shown on the dlagram. In partlcular,gieach loop of k nodes has a dual value of

2(2m-1)"
We must show that these solutions each have an objective value of 1/(2m — 1), satisfy

complementary slackness, and are feasible.
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Each loop of k£ nodes also has a dual value of m

Figure 10: Dual Solution

For ease of discussion, we will refer to the three types of nodes as follows:

center nodes: These are the two nodes (one in each half) of degree 2 in Figure 8 that are

contained in every loop.
branching nodes: These are the four nodes with degree greater than 2 in Figure 8.

corner nodes: These are the remaining nodes, each of which has degree 2 in Figure 8 and

is contained in exactly one loop.

. Objective Values. In the primal solution, note that the only edge with weight 1 that is
used is the dashed edge between the two center nodes. This has value 2m+1 in the solution,
so the objective value is also that value. .

In the dual solution, each half of the graph has node duals totaling m, so the

(m on each half), each with a

2m
k-set dual value of 7——5 The sum of k set duals is therefore 5, for a total objective

m=1 1

value of 57" — J"=% = o—'—. This shows that the primal and dual solutions have the

same objective value.

Complementary Slackness. We must show that edges with positive values in the primal
solution correspond to dual constraints that are satisfied at equality and that non-zero dual

values correspond to primal constraints that are satisfied at equality.
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First examine primal edges. All of the zero weight edges have positive values, as does
the “bridge” edge between the twb center nodes. There are three types of zero weight edges:
edges from a center node to a branching node (of which there are 4), edges from a branching
node to a corner node (of which there are 4m), and edges between two corner nodes (of
which there are 2m(k — 4)).

The dual constraint that must be satisfied at equality for each edge is

> Us+Yu+ vy < e
S:e€5(S)
Edges from a center node to a branching node do not cross any of the k-sets with positive
dual values, and their node duals are opposite, so their LHS sums to zero, which equals
their weight. |

Similarly, edges between corner nodes do not cross any 5-sets with positive dual values,
and their endpoints have duals of zero, so they trivially sa.tisfy t_hf; constraint at equality.

Edges from Branching nodes to corner nodes each cross m — 1 of the k-set constraints,
all of them except the one they are contained in. This‘is a ('lual'contri_butior} of ﬂ%
" However, the branching node has a dual value of —mﬂm:_—fﬁ, which ‘makes the total sum zero,
as required.

Finally, the bridge edge crosses every one of the 2m %-set constraints, for a dual contri-

bution of ﬂi%n——li The contribution from its two endpoints is 22277':1___11 , for a total dual sum

f 2m+2(m-1) __ 2(2m—1) __
2(2m-1)  — 2(2m-1) —

1. Since the weight of this edge is also one, the complementary
slackness condition is met. S | o |
Now consider the nonzero dual values. The nodes are not a concern, since the primal
constraints on nodes are equality constraints anyway. We must simply confirm that the
primal constraints corresponding to the positive 5-set duals are satisfied at equality. Those

constraints are

2(6(S)) 2 1.

Each k-set constraint contains the k£ nodes in a single loop, so the (positive) edges
“passing out of the set include two branching-corner edges for each of the m — 1 other loops

in the same half of the graph, as well as the bridge edge to the other half of the graph. The
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sum of these primal values is

1 1 2m —-2+1
2(m ~1 = =1.
2(m )2m—1+2m—-1 2m -1

So the primal constraint is satisfied at equality, and all complementary slackness conditions

are satisfied.

Primal Feasibility. It is easy to confirm that the equality constraints on nodes are all
satisfied. Keep in mind that each branching node has one edge to a center node and m
~ edges to corner nodes.

For odd sets, the constraints we must satisfy are
z(6(S)) > 1 VS CV,|S| odd,|S| < k.

We will prove that all odd-set constraints except k-set constraints are satisfied by an in-
ductive argument. The base case is the individual node constraints, which we already
mentioned.

Now assume we have that all cdd sets of size less than or equal to k' are satisfied. We
now consider odd sets of size k’'+2, assuming k'+2 < k. Note that any such set which is not
connected in the graph in Figure 9 will have at least one odd connected component. Since
that odd component has size at most &', it satisfies an odd-set éoflstraint, which means that
the sum of primal edge variables leaving the component is at 1east 1. Thils,_the (K’ +2)-set
constraint we are considering is also satisfied. Tlleref‘c;.:re, we .néecifo’nly consider odd ;efs
that are connected in Figure 9.

We consider the case that all of the nodes in the odd set are corner nodes.. Since the set
is connected, these must all belong to the same loop. Thercfore there are only two primal
edges leaving the set. It is easy to verify that given an odd path of nodes, one of these edges
will have primal value 1 /(2m — 1) while the other will have brimal value (2m —2)/(2m —1).
The sum is 1, so the constraint is satisfied.

Next, note that the highest primal values are (2m—2)/(2m—1), which occur alternatingly
between corner nodes in a loop. If any one of these edges crosses out of the set we are

considering, then the odd-set constraint is almost satisfied. Any other edge crossing out
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of the set will bring the total to 1 or higher. Since there must be at least one such edge,
any set with a (2m — 2)/(2m — 1) crossing out is satisfied. This means we may restrict our

attention to sets in which corner nodes always appear in pairs so that no (2m —2)/(2m —1)
edge leaves the set.

We are now considering (k' + 2)-sets in which the nodes are connected (in Figure 9), in
which at least one branching or center node appears, and in which corner nodes appear in
adjacent pairs as described above. 'Since k' + 2 < k, we cannot include an entire loop, so
if any corner nodes are included, they must form a terminating path of pairs from one of
the branching nodes. Note that the edge leaving this set in the loop has value 1/(2m — 1),
which is the same as if the corner pairs were not in the set at all (then the .edge leaving
the set would be the 1/(2m — 1) edge that is incident with the branching node). Thus, this
odd-set constraint is satisfied if the corresponding smaller odd-set constraint without the
corner nodes is satisfied. Since we are assuming by induction that this is so, we no longer
need to consider sets which contain any corner nodes.

The sets that remain contain only center and/or branching nodes. There are two types of
such 3-sets, and one type of 5-set. One 3-set possibility is a center node and its two adjacent.
branching nodes. The outgoing edges are the bridge edge and 2m branching-corner edges.
The sum of primal values is 1/(2m — 1) + (2m)/ (2m —1) > 1, so the constraint is satisfied.
The other 3-set possibility is both center nodes and one branching nodes. In this case, three
center-branching edges leave the set, which is already enough to satisfy theconst;ai_nt. The
only 5-set possibility is both center nodes and all but one branclling nodes. The edges
leaving this set are one center-branching edge and 3m branching-corner edgqs, whiqh easily
satisfies the constraint.

Thus, we have shown that all odd-set constraints are sa£isﬁed except k-set constraints.
Note that most k-set constraints can be inductively handled in the same manner. The only
new possibility is that an entire loop is the set. The edges that leave such a set a;e the
bridge edge and 2(m — 1) branching-corner edges (2 for cach of the other loops). The sum of
primal values is 1/(2m — 1)+ (2m —2)/(2m —1) = 1, so the constrainf is satis;ﬁejd. Actually, A

we already mentioned that earlier when dealing with complementary slackness.
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Thus, we have shown that all odd-set constraints are satisfied, which proves primal

feasibility.
Dual Feasibility. For dual feasibility we must check the constraint

Z Ys +Yu+Yv < We
S:e€d(S)

for each edge. Note that in the complementary slackness section, we already did this for all
edges with positive values in the primal solution. Thus, we must only check the remaining
| edges, which are those edges that do not appear in Figure 8 (except the bridge edge, which
was already handled).

All of thé unused edges have weight 1, so we just need to show that the dual sum for
any edge is no more than one. Note that since edges with endpoints in different halves of
the graph cross every one of the k-set duals, checking these edges is enough (for example,
if a corner-center edge in one half violated the constraint, than a corner-center edge that

crosses halves would certainly, violate it as well).

The effective dual values for the three types of nodes when crossing halves are as follows:

. _m—1 m 1
center: 5573y + 3@m_1y) = 2-

. ~1 = 1
branching: —2(?,,1_1) + 2(277:_1) - 2(2m-1)°

corner: 0+ 2(2,,11_1) = 2(2771;—1)'

Since none of these effective duals is more than 1 /2, there is no chance that a dual sum can
be more than one.

This proves dual feasibility.
5.5.2.83 Summary.

We have presented a graph with 6+2m(k—3) nodes, edge weights in {0, 1}, and a minimum
perfect matching of weight 2?1_—1 This completes the proof of Theorem 5.25.

In fact, only the k-set dual values were used. When we checked primal feasibility we -

showed that all smaller odd-set constraints are satisfied, but since none of their dual values
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were used, excluding them does not affect the proof. Therefore, we have proved the following

slightly stronger theorem:

Theorem 5.26 For any positive integer m and any odd integer k > 3, the perfect matching
polytope for the complete graph on 6+ 2m(k — 3) nodes with constraints for odd sets of size

k and any subset of smaller odd sets is not %-integral for any integer g < 2m — 1.
5.5.2.4 Ezxtension to mazimum matching

~ The fractional vertices found in the preceding sections are present when odd-set constraints

are added to the maximum matching LP relaxation as well.

Corollary 5.27 For any positive integer m and any odd integer k > 3, the mazimum
matching polytope for the complete graph on 6 + 2m(k — 3) nodes with constraints for odd

sets of size k and any subset of smaller odd sets is not %-integral for any integer ¢ < 2m—1.

Proof: Let P be the perfect matching LP relaxation polytope with somé odd-set constraints
present, and let @ be the maximum matching LP relaxation polytope Qith the same odd-set
constraints. The only difference between P and Q is that P satisfies all node constraints at
equality. Since node constraints are valid inequalities for @, P is a face of Q.

An extreme point of P is a face of dimension zero, and every face of P is a face of Q

because P is a face of Q (see Schrijver [37], for example). Thus the extreme points of P are
also faces of Q with dimension zero, so they are extreme points of Q. ‘

The corollary now follows from Theorem 5.26. |

5.6 "Computational results

We performed several computational tésts of the facets. The measure-used is the minimum
size of the branch-and-bound tree, assuming that branching is done on variables and the
most fractional variable is chosen for branching. This measure is desg;ibed in more detail
in Section 4.7, where it was used for knapsack problems. -

Graphs of even sizes from |V| = 14 to [Vl = 24 were tested. In each size, i:ests were

performed with all the 3-set constraints present and with all the 5-set ‘cqnstra,ints'presént. :
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Table 39: Branch-and-bound performance of matching instances

Number of nodes
Facets included 14 16 18 20 22 24
All 3-sets 1.0380 1.0720 1.0700 1.0820 1.1100 1.1040
All 5-sets 1.0140 1.0180 1.0120 1.0080 1.0140 1.0100
100 3-sets 1.2580 1.3688 1.4040 1.5170 1.5344 1.6744
100 5-sets 1.2920 1.4126 1.4476 1.5502 1.5640 1.6972
100 7-sets 1.3050 1.4290 1.4508 1.5614 1.5688 1.7052
100 9-sets : 1.4562 1.5612 1.5708 1.7046
100 11-sets 1.5746 1.7056

In addition, tests were done using only 100 randomly selected odd-set constraints of each
size. In each case 1000 trials were performed, with objective coefficients taken iid from the
positive normal distribution. For the random sets of facets, the test was performed with 10
different random sets and the results were averaged. Note that since k—sets ,are equivalent
to (n — k)-sets, odd sets were only tested up to size |V|/2. |

Table 39 gives the average minimum tree size for each test. Because of the small sizes
of the graphs, in many cases the instances were solved at the root node. For this reason the
averages are all near 1.

The trends are consistent. Adding all the five-set cértstraints is clearly better than all
the three-set constraints. On the other hand, when a constant Iturnbér of constraints is
added, the 3-sets perform the best and smaller-odd-set.constraints. perform better than
larger-odd-set constraints in general. ‘

The data may explain the apparent contradiction between the shooting experiment
analysis of Section 5.1 and best-case improvement analysis of Section 5.2.

The shooting experiment analysis considered the constraints in groups, and suggested
that the larger-odd-set constraints would be more useful. When used as a group, this
analysis is consistent with the data, since adding all 5-set constraints was always significantly
better than all 3-set constraints. This analysis apparently does not carry over to small
groups of facets. Note that Corollary 5.6 does not contradict this statement. It is true

that when considering only k-sets and (k + 2)-sets, each (k + 2)-set facet has a much larger
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shooting experiment size than each k-set facet, but these sizes are caused by the interéctions
of all the k-set and (k + 2)-set facets. Therefore, despite its appearance Corollary 5.6 is also
a statement comparing the groups of facets.

On the other hand, best-case improvement is found by considering individual facets.
The analysis of Section 5.2 suggests that smaller-odd-set constraints are better, and the
data supports this prediction on a facet-for-facet comparison. Best-case improvement can
also be appiied to groups of facets, however, and the data does not support its predictions
in that case.

Thus, the data suggest that best-case improvement is best considered on the facet level,
and that shooting experiment size should be considered in the context in which it is analyzed,

in this case with all of the facets in the same class.

5.7 Summary

The shooting experiment, best-case improvement, and Chvaital—Gorhory, rank make different
predictions of usefulness for the facets of the<matching polytopé. The shooting experiment
suggests that larger-odd-set constraints are more useful, while best-case imi)rovement sug-
gests that smaller-odd-set constraints are more useful. Cll\féfal-Gomory rank does not
differentiate between them.

Empirical tests seem to support both the shooting Qxlr)e.r‘i“ment‘"ahci bgst-case;:i.rnpréw-‘ ,.
ment predictions when considered in the context of the analyses. That is, when all fagcts
of a given size are present, as in the shooting experiment analsrsis, fplle_ shoopiné éxperiment
analysis agrees with the data: larger-odd-set constraints are more usefull‘. When only a
small number of facets are present, however, the data agrees with the best-case improve-
ment prediction: smaller-odd-set constraiﬁts are better.

For best-case improvement, this highlights the fact that the measure is at heart a mea-
sure of individual facets and casts doubt on its usefulness as a measure of polyhedra with
many facets. For the shooting experiment, the results point to the importance of making

predictions in the same context as the analysis that produced them.
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CHAPTER VI

NODE-PACKING POLYTOPES

Given a graph G = (V, E), unweighted node packing is the problem

max »_.cy Ty

st. Ty+z <1 V{u,v} € E
z, € {0,1} VweV.

This problem is also known as the maximum independent set problem or the maximum
stable set problem. We will call the inequalities edge inequalities, since there is one for each
edge in the graph.

In this chapter we consider several measures a'ppl}ied to the node-packing problem. Sec-
tion 6.2 discusses an empirical study by Nemhauser and Sigismondi of cli(jue and o‘dd-hole
inequalities, which motivates our analysis. Section 6.3 shows that the shooting experiment
will almost always hit clique inequalities rather than odd-holé inequalities. Section 6.4 shows
a similar result for best-case improvement. In contrast, Section 6.5 shows that odd-hole in-
equalities have a much lower Chvital-Gomory rank than clique inequalities. In Sectioﬁ 6.6,

we consider lifted odd-hole inequalities. Section 6.7 summarizes the results of the 'chapter.

6.1 Facets and valid inequalities for node 'ﬁacking

Not all the facets of the node-packing polytope are known, but ine‘qualifies that ‘are com-
monly used as cutting planes include clique inequalities and odd-hole inequalities.
Clique inequalities are of the form

Z-’BUSL

veC
. -

where C is the node set of a clique in the graph. Padberg [35] showed that clique inequalities

are facet-defining for node packing if the cl.ique is maximal.
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An odd hole is a set H of vertices such that |H| is odd and the induced subgraph on H
is a chordless cycle containing all the nodes of H. Given such a set H, the corresponding

odd-hole inequality is

va_|H|~1

vEH

Note that odd holes of size 3 are cliques, so we assume that |[H| > 5. An odd-hole inequality
is facet-defining on the node-packing polytope of the induced subgraph. Odd-hole inequal-
ities are generally not facet-defining on the largér graph, though they can always be used
to generate facef;-deﬁning inequalities through a process called lifting.

A lifted odd-hole inequality has the form

Yoot Y avmy < 2L

veEH vg¢H

The coefficients o, are called lifted coefficients. One approach to lifting that ensures that
the resulting lifted inequality is facet-defining is sequéntial ma:z:imdl lifting. This is done by
determining each lifted coefficient in t’urr.1, selecting the éreatest possible value for which
the intermediate inequality remains valid.

That is, let Y oveH Tv T+ D yer QuTy < L-L— be the 1nequahty S0 far and let i ¢ HUL.
Let S be the set of integer feasible node-packing solutlons for the graph under consideration.
For a maximal lifting of ¢, set )

H-—l
oz,-:l 12 {va+Zavxv meSm,—l}

veEH veL

Padberg [35] proved that the resulting inequality is facet-defining. It may be possible
to generate more than one facet-defining lifted inequality from a single odd-hole inequality

by lifting the coefficients in different orders.

6.2 Computational study by Nemhauser and Sigismondi

Nemhauser and Sigismondi did empirical tests on node-packing instances using a cut-and-
branch algorithm with clique inequalities and odd-hole inequalities [33]. They added a
large number of clique inequalities before solving at the root node and separated additional

clique inequalities heuristically. Odd-hole inequalities were separated exacﬂy and then
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lifted to form facet-defining inequalities. Since separation was done over unlifted odd-hole
‘inequalities., it is possible that violated lifted bdd-hole inequalities existed but were not
found by the algorithm.

Their test instances were random graphs of various densities. The sizes of the graphs
ranged from |[V| = 30 to |V|'= 120. They found that performance and usefulness of the
facets varied with the density of the graph. Overall, they found that clique inequalities
were much more useful than odd-hole inequalities. For medium density graphs (0.4 < p <
: 0‘.6) they found that violated odd-hole inequalities were almost never present once clique
inequalities had been added. For lower densities (0.1 < p < 0.2) odd-hole inequalities did
lleli) in solving the insta.nées, though to a lesser extent than clique inequalities.

In the remainder of this chapter, we consider several facet measures in light of the

empirical results of Nemhauser and Sigismondi.

6.3 Shooting experiment

In this section we show that in a comparison of clique inequalities and odd-hole inequalities,
“the shooting experiment sizes of clique inequalities are in general much larger than the
shooting experiment sizes of odd-hole inequalities. Recall that although Nemhauser and
Sigismondi lifted odd-hole inequalities before applying them to the instance, they separated

only over unlifted odd-hole ineqﬁalities.

Definition 6.1 The clique and hole relaxation of node-packing is the polytope defined by
the LP relaxation of the node-paékz'ng problem with the addition of all cligue and odd-hole

inequalities.

L
I ;

Theorem 6.2 For random graphs wth ;con’stﬁnt density parameter p, the shooting exper-
Ly e !

: Co b ; ‘
iment on the cligue and hole relawati?n} of :the node-packing polytope with the origin as
* shooting point will almost always not hit a facet defined by an’ odd-hole inequality.

N ,

In the theorem, the implied probability sﬁdce takes into account both the random graph

of the instance and the random direction of the shot.
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Proof: Let d be a spherically symmetric random vector in the nonnegative orthant. Using

Proposition 2.6, the scaled shooting distance to a clique inequality is

1
tc= =——r
ZvEC U’
and to an odd-hole inequality is
_ [H|=1
= =—2—.
EvEH dv

We will show that ¢ty for all odd-hole inequalities is almost always greater than the
minimum value of ¢¢, so that a clique inequality is almost always hit by the shooting
experiment.

Let dmax = maxyey dy be the value of the greatest coordinate in the random direction

d. Then an odd hole of size |H| satisfies

H|-1 . 3
s 1 |H] -1

Zveydmax _,2dmax . IHI

TR

Since |H| > 5, we have in particular that IR

2
5dmax )

ty > (15)

Next we consider the probability that dpax is a large valhe. Let k- > 0 be arbitrary.
Recall that the spherically syn{metric distribution of d’ comes from iid positive normal
coordinates. For a given coordinate d,, we have B | |

*® 2

P(d, > k) = -2,
(dv )/k e

Since k > 0 we know that e=*"/2 < ¢=#/2 4 ;12'6_22/2 for all z > k. Thus,

o0
© 2 2 1 2 21 2
P(d _L (.—z /2 = ,—zi2 _ _ P )
( v>k)</k m(e + e )dz ——¢

21
e—kz/ 2,

mk

Since there are n = |V| coordinates, we have

P (dmax > k) < > P(dy > k) < \/g%e—“/?

veV

In particular,

2 n 1 [T 1
P (d V21 e =
( max > ogn) < m+/2lognn 7 +/logn
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This value goes to zero as n increases. Using the last expression with (15), we have that

almost always, for all odd-hole inequalities, g is no less than ﬁ.

To show that there exists a clique with i¢ < ﬁ, consider only the n/2 nodes with
the greatest d, values. Let ¢ > 0 be any constant smaller than the median of the positive
normal distribution. Then almost always, all of these values d, are greater than c.

Using Proposition 1.3 from Section 1.4.4, among these nodes there is almost always a

clique C' of size 2log; /,(n/2) — 2log,, l0g; /,(n/2). Then almost always,

1

tor <
¢ = 2clogy /,(n/2) — 2clogy log; /,(n/2)

There exists ng such that

5

Vn > ng, 2clog;p(n/2) —2clog, p,logy p(n/2) 2 3 2logn.

Therefore, almost always tor < ﬁ and almost always ty; > ﬁ for all odd-holes
H. This proves that almost always, no odd-hole inequality will be hit by the shooting
experiment. T |

In their computational experiments, Nemhauser and Sigisniondi found that once clique
inequalities were added, no violated odd-hole inequalities were found for medium density
grziphs (0.4 < p < 0.6) that they tested. Violated odd-hole inequalities were fduﬁa for lower |
density‘graphs (0.1 < p £0.2), however. | |

Notice that for smaller values of p, the expected size of the largest clique is smaller, so
.from our analysis above we would expect odd-hole inequalities to be more cofnpetitive in
terms of the shooting experiment as well.

If there is a correlation between the shooting experiment size and ‘the usefulnéss of fhe
facets, then Theorem 6.2 suggests that as n increases, violated odd-hole inequalitieé would
become rare once clique inequalities are added, even for low density random graphs. Testing

this hypothesis is one possible area for future research.

6.4 Best-case improvement

We show in this section that the best-case improvement value for clique inequalities is

much larger than for odd-hole inequalities. The node-packing polytope is an anti-blocking
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polytope, so we can use Theorem 2.4 from Section 2.4.1.

Theorem 6.3 The strength of an odd-hole constraint defined by vertex set H relative to
the standard node-packing relazation is HI{'IH-I-_I The strength of a clique constraint defined

by clique C relative to the standard node-packing relazation is J—g—'l

Proof: The strength of an odd-hole constraint with respect to the standard LP relaxation
Pis
max{)  cy Ty : T € P}

H|-1
2

An upper bound for the numerator comes from summing the edge inequalities for edges

in the hole. There are |H| such edges and each node is adjacent to two of them, so we have
2> enTv < |H| or Y ven Ty < 1121_1 In fact we can achieve this upper bound by setting
zy = 1/2 for v € H. Therefore, max{} .y zy : = € P} = 1121-1, and the strength of the

inequality is
B 1A

J£J2—_1"|H|—1'

Clique inequalities have a strength of

max{) ,cc v : T € P}
T .

Summing all the edge inequalities in the clique gives an upper bound on the strength of
(IC = 1) X pecmv < lglﬂgl_—ll or Y ,ec®w < J—f—l Again, setting z, = 1/2 for v € C gives
the upper bound, so the strength of the inequality is J%l ' L SN

Among odd-hole inequalities, 5-holes (the smallest ddd holés) are the strongest, with

a strength of -2— Larger odd-hole inequalities have strengths of %, -g—; %, and so on. If we

allowed odd holes of size 3, then the strength would start at % and decreé.se as‘ the size of
_the hole increases.

Clique inequalities, on the other hand, start with a strength of % wl'len ]C | = 3 and then
increase in strength as the size of the clique increases.

If best-case improvement correlates with usefulness, then these strengths suggest that

clique inequalities are much more valuable than odd-hole inequalities. This conclusion
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agrees with the shooting experiment analysis from the last section as well as the empirical

findings of Nemhauser and Sigismondi.

6.5 Chvadtal-Gomory rank

In this section, we show that clique inequalities have much higher Chvatal-Gomory ranks

than odd-hole inequalities.
Proposition 6.4 Odd-hole constraints have Chvdtal-Gomory rank 1.

Proof: Let H be the set of odd-hole vertices. If the odd-hole constraint corresponding to H
were rank 0, it would be dominated by a nonnegative sum of edge constraints. Since there
are |H| edges in the hole and each constraint cannot contribute more than 2, the weights
in the sum must total at least [H|/2. Thus the right-hand-side of the weighted sum is at
least |H|/2. Since this is greater than 1_11|2_—_1_, odd-hole constraints are not rank 0. |

Using the notation of Section 1.4.1, set u; = 1 for all inequalities of the form
Ty + 2y <1, V{v,w} € E, v,we€E H,

and u; = 0 otherwise. There are |H| such edges, and each vertex in H is adjacent to two of

the edges, so the weighted sum of inequalities is

2>z, < |H|.

veH

Dividing by 2 and rounding down gives

Z:L‘v < |H|2_ 1.

vEH

This shows that the odd-hole constraint has rark 1. | |

In contrast, Chvétal [7] stated without proof that the clique inequality based on clique
C has rank O(log|C]). |

Based on the results of Nemhauser and Sigismondi, then, larger Chvétal-Gomory rank is
indicative of greater usefulness. This makes some intuitive sense, since inequalities of higher

C-G rank are in a sense more powerful by construction. However, these results contradict
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the perception that the lower ranked cuts provide most of the benefits. Recall that the
knapsack tests in Chapter 4 supported this perception with a mild correlation between low
C-G rank and usefulness in branch-and-bound tests. The conflicting conclusions of the two

chapters suggest that C-G rank may not be a good general indicator of facet usefulness.

6.6 Lifted odd-hole inequalities

Nemhauser and Sigismondi separated over unlifted odd-hole inequalities, but they lifted the
inequalities before applying them to the problem. Therefore, their results on the usefulness
of odd-hole inequalities relate in part to lifted inequalities, though their results on the
presence of violated odd-hole inequalities reflect only unlifted inequalities.

They acknowledged that the performance of their implementation might improve if
_efforts were made to identify violated lifted odd-hole inequalities., although these efforts
would have to be heuristic in nature. In this section we consider what the fzicet measures

i R

suggest about the potential usefulness of lifted odd-hole inequalities.
6.6.1 Shooting experiment

Using the notation from the proof of Theorem 6.2, a‘liftﬁe‘d odd-hol.elinequail_i'ty has a scaled

shooting distance of
H|-1
2

toy = .
EUEH dy + ZU¢H oy dy

As long as some oy, are greater than zero, this scaled shooting distance is better than

that of the unlifted odd-hole iniequavli:ty:;1 vI‘rl‘ltuiti;vely t.:his; Iiidkes s‘.‘ensé,wsir‘ic:e’ ﬂlé lift&lsod"d-
hole inequality is facet-defining, vxiliilé‘tilé imlifted inequality is not facet-defining unless the
two are the same.

Determining the minimum possible value of i1,y is difficult, however, primarily due to
the complexity of lifting. We will consider only a subset of lifted odd-hole inequalities.
Given H, the lifted inequality will have a low value of tym if Ev¢ 5 Qwdy is high. With this
motivation, we consider those liftings in which o, € {O, jﬂ]2—_1}’ since J%_—l is the highest
' possible lifted coefficient.

fa,= 1212:1—, then it must be the case that v is adjacent to every node in H and every.
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other node with positive lifted coefficient: Thus, the nodes with ;d,,“ = Jﬂ#\form' a clique,

and each is also adjacent to. every node in H.

Definition 6.5 A clique-lifted odd-hole inequality is an ihequality of the form

veH vel’
where C' N H = 0.

Due to the restriction on the allowable values of the lifting coefficients, it is possible
that a clique-lifted odd-hole inequality is not facet-defining even if no other coefficients can
be lifted into the clique.

We will consider the expécted values of shooting distance, and prove the following result:

Theorem 6.6 Let ic,,, be the scaled shooting distance to the inequality defined by the
largest clique in the graph. Given an odd-hole H, let typ,_ .. be the scaled shooting distance
to the clique-lifted odd-hole inequality based on H and the largest clique C' such that all -
nodes in C' are adjacent to every node in H. Then Eltc,...| > EltLu,,..], almost always,
where the ezpectation is over the space of directions, and the “almost always” is over the

“space of random graphs with density p.

Proof: In the case of a clique, we have

1 1 1
Bliel= = cal ~ 101 T

In the case of a clique-lifted odd-hole, we have
H|=1

1 1
2 _ . .
B[ ey b+ Soee B52dy) i +107) Bl

E[tLH] =

Since |H| > 5,
!
('] + ) Bldy)’

Therefore, we only need to show that |C] > |C'| + %, almost always.

EltLg) <

Let € > 0 be a constant. From Proposition 1.3, the largest clique C in the graph almost

always satisfies |C| > d(n,p) — €, where

d(n,p) =2login—2logilogin+1 +logl(f). (16)
4 P P P 2
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In contrast C' is a clique such that every node in C' is adjacent to every node in H.
Then C’ is a clique in the subgraph defined by nodes adjacent to every node of H.

Let Xy be an indicator variable such that X, = 1 if v is adjacent to every node in H and
Xy = 0 otherwise. Then X = EveV\ g Xv is the size of the set of candidate nodes for .

X is a binomial random variable with parameters n — |H| and pl#|.

Note that decreasing
the value of |H| makes both parameters larger, so that if X! corresponds to odd-hole H'
and |H'| < |H|, then |

P(X>a)<P(X'>a) (17)

for any positive constant a. Therefore, we can get an upper bound on P (x | > a) for any
odd-hole by considering a smaller odd-hole. _ »

With this in mind, let X’ be the value for the case |H'| = 5. The;n‘ X / ilés expectation
(n—=5)E[X!] = (n—5)P (X! =1) = (n— 5)p°. Using a Hoeffding bound, we know that for
any 6 > 0,

62!n—5!p5

P(X'>(n-5p°(1+0)) <e w73,

The right-hand-side is exponentially small in n, so X’ < (n — 5)p®(1 4 §) almost always.

Using (17), for any odd-hole H with corresponding random variable X, we have
) 62(n—5)p°
P(X>@m—5)p(1+8) <P (X'> (n—5)p°1+8) < e 20775,

so X < (n — 5)p°(1 + ) almost always.
To determine a bound on the size of C’, we can plug our upper bound on X into (16).

For ease of notation, let logz = log; /p T in the following equations. The size of C' almost
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always satisfies

d((n - 5)p°(1 + 8),p) +e+ g

IA

5
' —
']+ 3

IA

5
d(np5(1 +94),p) +e+ 3

5
2log(np5(1 +6)) — 2loglog(np®(1 4+ 6)) + 1+ log(e/2) + €+ 7.

2logn —2loglogn + 1+ log(e/2) — €

+ 2log(p®) + 2log(1 + 8) — 2loglog(np®(1 + 6)) + 2loglogn + % + g

= d(n,p) — e — 10 + 2log(1 + §) — 2log log(np®(1 + 6)) + 2}lo'g ldg*ﬁ + 2 + g C

< |C| - 10+ 2log(1 + ) — 2log log(np®(1 + 8)) + 2loglogn + 2¢ + g
15 -
= |C|- 5+ 2log(1 + 8) — 2loglog(np®(1 + 68)) +2loglogn + 2. ~ (18)

Finally, we will have [C'|+ 2 < |C| if we confirm that the sum of the terms of (18) other

than |C| is nonpositive. We wish to show

1; + 2log log(np°(1 + 6))

15
7t log log(np°(1 + 6))

v

2loglogn + 2log(1 + 4) + 2¢

v

loglogn + log(1+d) + ¢
log p~1%/4 + log log(np®(1 + 6))
log (p~1%/4 log(np®(1 +)))
p~ ¥ log(np®(1 + 6))

(p~%/* — (1 +6)p~¢)logn

v

loglogn + log(1 + d) + logp™¢

v

log (log n(1 + 8)p™*)

v

logn(l+8)p~¢

—p~ /1 10g(p°(1 + 6)).

v

We can choose § and € such that the coefficient of logn is positive, so that the expression
is almost always satisfied. This means that |C'| + 3 < |C| almost always, which completes

the proof. o

Theorem 6.6 indicates that we expect a clique-lifted odd-hole inequality based on the
largest clique possible to have a smaller scaled shooting distance than the facet defined
by the largest clique in the graph. This is not as strong as the earlier result on unlifted
odd-hole inequalities, however, for two reasons. First, it is only a result on expected scaled

distances, when it is the minimum scaled distance that determines which facet is hit. In
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addition, the cliques C and C’ that minimize t¢ and {7y may not be the largest cliques,
since a smaller clique with particularly high direction coordinates would be better.
Nevertheless, this result suggests that the shooting experiment sizes of clique inequalities

are larger than even lifted odd-hole ineQualities.
6.6.2 Best-case improvement

Using Definition 2.3, the strength of a lifted odd-hole inequality is

max{> yeq Tv + Dugn WTy : T € P}
H|-1 ’
2

where P is the LP relaxation of node-packing.

By setting =, = % for all v, we get a lower bound on strength:

%l’Hl + %ZuéHaU _ 'Hl +Zv¢HaU

H|-1  |H|-1
2

The strongest lower bound on a lifted inequality is therefore the one that maximizes
Zv¢H Qy-
Thus, best-case improvement indicates that lifted odd-hole inequalities are significantly

stronger than unlifted odd-hole inequalities, and the difference depends on the sum 2vgH Y-

6.7 Summary

For node packing, the shooting experiment and best-case improvement suggest that clique
inequalities are much more useful than odd-hole inequalities. This agrees with the empirical
tests of Nemhauser and Sigismondi. The analysis of the shooting experiment suggests that
for lower densities, odd-hole inequalities will be more competitive with cliques, which may
explain why Nemhauser and Sigismondi found odd-hole inequalitiés more useful on instances
with low densities. This hypothesis could be confirmed by testing larger graphs with the
low densities to see whether the usefulhess of odd-hole inequalities diminishes with size, as
the shooting experiment predicts.

For both measures, lifted odd-hole inequalities appear much better than unlifted odd-
hole inequalities, though we do not know exactly how much. This suggests that efforts to

separate lifted odd-hole inequalities directly may be worthwhile.
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The clique inequalities have a much higher Chvatal-Gomory rank than odd-hole in-
equaiities. This contradicts the notion that inequalities with lower rank provide most of
the benefit. The results of Chapter 4, on the other hand, indicate that inequalities with
lower Chvatal-Gomory rank are more useful. These conflicting results suggest the Chvétal-

Gomory rank is not a good general predictor of facet usefulness.
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CHAPTER VII

EXPONENTIAL SIZE BRANCH-AND-BOUND TREES

The previous three chapters used the facet measures of Chapter 2 to compare the facets of
several combinatorial optimization problems. This chapter instead presents an example of
the limits of facet usefulness.

In Sections 4.8 and 5.6 we used the size of the branch—a.nd-bound tree as an empirical
measure of the usefulness of facets. In this chapter, we consider the size of the branch-and-
bound tree again, demonstrating a collection of instances for which a large class of facets
has limited usefulness in reducing the branch-and-bound tree size.

Previous work showing lower bounds on the size of a branch-and-bound tree has been
done by Jeroslow [28]; Chvétal [8]; Gu, Nemhauser, and Savelsbergh [26]; and Dash [12].
In most of these cases, the goal was to demonstrate particular instances in which branch-
and-bound would perform badly, thereby proving complexity results about worst-case per-
formance. More details on these results are given in Section 1.3.

We are more concerned with average-case performance, so Chvatal’s analysis stands out.

He gives a class of random instances for which an exponential number of branch-and-bound

nodes are required with probability converging to 1 as the size of the instance increases.
Building on Chvdtal’s results, we consider the case in which simple lifted cover inequal-

ities are added to his formulation.
7.1 Statement of the result
Following Chvétal [8], we consider knapsack instances of the following form:

max .o Q%
st Y qair; < I_E'%ﬂj _ (19)

z € {0,1} i=1,...,n,
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where the coefficients a; are integers selected independently and uniformly such that 1 <
a; < 1072

For ease of discussion, we denote the right-hand-side of the inéﬁuality by r = [2%1&_]
and the upper bound on coefficients by B = 10™/2,

Rather than a standard branch-and-bound framework, Chvétal considered a slight gen-
eralization, a class of algorithms that he called recursive algorithms. These have the capabil-
ities of branching, fathoming, dominance, and improving the cqrrent solution. Branching,
fathoming, and improving the current solution all match the description of brdnch-and-
bound in Section 1.1. In particular, branching is performed on a single variable, though
the selection of branching variable and the process of e'xplloring‘ndde’s may “béarbitrary.
In terms of branch-and-bound, dominance allows the removal of a node if there is another
node with the same set of fixed variables that has—considering only the fixed variables—at
least as much slack in the constraint and at least as good an objective value. For a precise
definition of this class of algorithms, see [8].

We will present our results using the language of branch-and-bound, though the results

of this chapter do apply to Chvatal’s class of recursive algorithms.

Theorem 7.1 (Chvatal) With probability converging to lasn = 00, every recursive
algorithm (as described in the previous paragraph) operating on an instance of (19) will

create at least 210 nodes in the process of solving.

For a knapsack problem with constraint 7 ; ajz; < b, a cover is a set C C {1,...,n}
such that ) ;.- a; > b. A minimal cover is a cover C such that no subsets of C are covers.
A minimal cover C defines the following cover inequality, which is a valid inequality for the

knapsack problem:

> oz <|Cl -1

i€C
Although cover inequalities are not facet-defining in general, they can be strengthened

to form facet-defining inequalities through a process called lifting. We will consider a special

case of a lifted cover inequality called a simple lifted cover. Given a cover C, a simple lifted
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cover inequality has the form

Zwi + Zaiwi <|C| -1,

ieC i¢C
The values «; are called lifted coefficients and are determined through a process. called
sequential lifting. See Gu et al.[25] or Wolsey [38] for discussions of lifted cover inequalities.

Here we describe the process briefly for simple lifted cover inequalities.

Definition 7.2 The sequential lifting process for simple cover inequalities is as follows. Let

C be the cover. Let the indices not in C be ordered arbitrarily i1,12,:..,%m.

1. Initialize K =0, a = 1.
2. Let § = iq. o

3. Determine lifted coefficient a; as follows:
=lC|—1—max{Zwi+Zakwk:a:ES,a:j=1}, (20)
i€C keK

where S is the set of feasible integer solutions to the original knapsack problem.
4. Set K = KU{J}, anda=a+1.

5. If a < m, return to Step 2.

Note that a; < IC’I — 1. Also note that by induction, (20) shows that o; is integer for

all 5. s

Gu et al. [26] considered the use of 51mple llfted cover inequalities on knapsack prob-
lems. They showed that branch-and-cut 1}smg simple lifted cover inequalities requires an
exponential number of nodes for the follolwmg class of knapsack instances, parametrized by
scalar n and vectors ¢ and ¢&: : : ;

fim
max 33321 (20 — &)z + E%Ig:zl-lll (30 — &5)z;
st TiH(2-2" - &)z + %Orizn+1(3 2" =)z < 6n- 20 (21)

z € {0,1}*",
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where n-Z 10, 6 = (60n - 27)20n+1] 5 ¢ {1,...,[2"‘1/3ﬁj} for all 1 < ] < 20n, and
& e{1,...,2"} for all 1 < j < 20n. _ »

Like system (19), system (21) requires large coefficients. Note that (21) can be viewed
as perturbations of the underlying instance given v‘vhen 0; =& =0 for all j.

Iﬁ this chapter, we consider the same random instances as Chvatal but with the pres-
ence of simple lifted cover inequalities. We assume that all simple lifted cover inequalities
are present, so our results represent the best possible performance of a branch-and-cut
algorithm.

Recall from Section 1.4.3 that an event parametrized by n occurs almost always if
the probability of the event converges to 1 as the value goes to infinity. Note that the
intersection of a finite number of events that occur almost always also occurs almost always.

The central result of this chapter is the following:

Theorem 7.3 With probability converging to 1 as n — oo, every branch-and-bound al-
gorithm that branches on variables operating on an instance of (19) with the addition of
all simple lifted cover inequalities will create at least 230 branch-and-bound nodes in the

process of solving.

Section 7.2 presents several properties that an instance of (19) possesses with probability
converging to 1 as n increases. The fact that they occur with this probability is proven in
Section 7.3. Section 7.4 proves that any instance possessing the properties will require an
exponential number of branch—a.nd-bouﬁd hodeé, which leads to the proof of Theorem 7.3.

A summary of the chapter appears in Séction 7.5.

7.2 Properties of the random instances

For convenience in later discussion, let the knapsack coefficients be labeled so that a; <
az < --- < ap. We denote the upper bound of the distribution of coefficients by B = 107/2
and the right-hand-side of the knapsack in€quality by r = [% > ail.

Let 6 > 0 ’pe a constant that will be chosen later. We consider instances that possess

the following properties:
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1. For every q such that 55 < ¢ < S{S’Tg, the gth largest coefficient, a,_q41, satisfies

an—g+1 < (B2B +1) (1 +9).

2. The right-hand-side of the knapsack constraint, r = [3 > ai], satisfies

n(B +1)
4

n(B +1)

1-9)<r< 2

(1+6).

3. All covers include at least 7 variables with coefficients larger than %B.

We will refer to these as Properties 1, 2, and 3, respectively.

7.3 Instances almost always possess the properties

In this section we show that Properties 1, 2, and 3 are satisfied by an ihstance of (19) with

probability going to 1 as n increases without bound.

Lemma 7.4 Property 1: Let § > 0 be an arbitrary constant. " Almost always, for ev-

ery q such that {&; < q < 22, the gth largest coefficient, Gn_qi1, Satisfies an_g41 <

(24B +1) (1+9).

Proof: For each g such that 155 < ¢ < QT let m4 be the number of coefficients greater

than (24B + 1) (1 + ). Then m, is a binomial random variable, with expected value’

Zimg = n —[("—;QBBH) (1+§)J
B = I4B(1+9)
- n(1—ﬁ;“1(1+5))=q.-5(n-q).

<

Note that E[mg] = ©(n), since 1—0—0 <q< ggg

Using a Chernoff bound, we have that i'or constant &,
2(g-d(n—g)1+d ) =q—06(n—gq)+8'qg~58(n-g),

with probability at most

;ie‘s' 14 A
(m) ! (22)

where p = E[mg] = O(n).
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By choosing ¢’ < M , (22) gives a bound on P (m, > q). The probability that there

S{gg probability

ex1sts a coefficient that exceeds its bound is no more than the sum of the
bounds. Since it is a linear sum of exponentially small terms, this sum is also exponéntially

small, so the lemma is proven. [}

Lemma 7.5 Property 2: For any constant 6 > 0, the right-hand-side of the knapsack

constraint, r = |13 a;], satisfies

n(B +1)
4

n(B +1)

1-d)<r< 2 =(1+9),

almost always.

Proof: The right-hand-side of the knapsack constraint, I.'.}Z > ai], has expected value at
least n(B + 1) — 1 and no more than in(B +1).

Given ¢ and sufficiently high n, we can choose ' > 0 such that (§n(B + 1) — 1) (1-¢") >
@(1 — 6). Then, using a Hoeflding bound as described in Section 1.4.3, we have

4 1
< e B EVEl < o~ @ (Gn(B+)-1),

p(r<M(1—5)) < P(r<(-1-n(B+1)—1)(1—6’))

Similarly,
§2E[r 82(fn(B+1)-1)
( E a; > n(B+1)(1+6)) <e” _(_[5'L7231+/3 <e —'}F(W

Together these two bounds prove the lemma B

»
\

The next lemma states that the sum (?f glll the coefficients less than %B is almost always
not enough to form a cover. This is used m Lemma 7.7 to show that there are some large

coefficients in any cover.

Lemma 7.6 There exists constant §; > 0 s:uch that for all 0 < § < 61, the following relation

holds almost always:

T a< BNy

{i:0;<£ B} 4
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Proof: Note that B is evenly divisible byv5, and divide the range of cgeﬁiciénts into five
“bins”: (0, +B), (3B, %B),(¢B,3B),(2B,$B], (3B, B]. Let b; be the number of knapsack
coefficients that fall into bin (’ lp, ’B] for i =1,...,5. Then the sum of the coefficients
in the first three bins is no more than lel + 2Bbg + 331)3. | -

Note that b; is a binomial random variable with expected value sn. Using a Chernoff

bound as described in Section 1.4.3, we have that for all § > 0, 5

é n/s
P(b > 5(1+<5)) (?l—wh%)m) .
The right hand side is exponentially small in n if § is constant.
We can sum the three probabilities for b;,b2, and b3 to get an exponentially small

probability that any of them is more than % (14 4). So with probability converging to 1 as

n increases, the sum of all coefficients less than 3/5 is no more than

2 3 6 6 nB 6nB
—Bb Bby + -Bb3; < -B b < —— (146 14 9).
Bbi+ gBha+ £Bby < ¢ B max b < p==(146) = 5= (1+9)
For any § < %, we have
n(B + 1) n(B+1),24, 6n(B+1) 6nB
7 U=0> =G = > 5
Therefore we can choose 0 < 6 < §13 such that
n(B +1) 6nB
—4——-(1 - (S) > —E'(l -+ (5)
Thus, we have proven the lemma with §; = 513 |

Lemma 7.6 has given the first requirement on §, specifically that é < %

Lemma 7.7 Property 3: All covers have at least 7 coefficients greater than 3/5, almost

always.

Proof: Using Lemma 7.6, we see that there must be at least one coefficient greater than
3/5. In fact, by considering the proof of Lemma 7.6, we see that the gap between the two

quantities is almost always

"43 (1-4)— GnB(1+6) QnB),
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if0<d< -21—5 is constant.
Since coefficients are bounded by B, this proves that almost always Q(n) coefficients
greater than 3/5 are needed in order to form a cover. In particular, we almost always have

at least 7 such coefficients. o ||

Theorem 7.8 Let 0 < § < §; be constant, where 6y is a constant s'at'isfg:}ihg‘f,ér:’n'nia 7.5.
Then with probability converging to 1 as n — oo, an instance of (19) has Properties 1, 2,

and 8.

Proof: By Lemmas 7.4, 7.5, and 7.6, each of the three properties holds almost always. The

intersection of this finite number of events also holds almost always. =~ -~ ' 3 ]

7.4 Instances that satisfy the properties require exponential
trees

In this section, we show that instances possessing properties 1, 2, and 3 will require an
exponential number of branch-and-bound nodes to solve. Together with Theorem 7.8, this
will prove Theorem 7.3.

This section is split into three stage;‘;. Section 7.4.1 presents results on the lifted coef-
ficients in any cover. Section 7.4.2 uses these results to prove a central lemma about the

form of lifted cover inequalities. Section 7.4.3 uses the lemmas to prove Theorem 7.3.

7.4.1 Lifted coeflicients are Sma]l' |

In this section we prove that lifted coéfﬁciénts 11ave value 0, 1, or 2, with at most a small

number of coefficients with value 2. For the first lemma, recall from (19) that a; is the
i

knapsack coefficient of variable x;, whiich c’jorrespo.nds to lifted coefficient «;.

o !
Lemma 7.9 Consider the lifting procéss of Deﬁni’tion 7.2. In step 3 of the process, if the
lifted coefficient is oj, then the corresponding kndpsack coefficient a; must be at least as
large as the optimal objective value of the following IP. |

C is the cover set, and K is as defined in Definition 7.2. There are binary variables

x; and y; for each i € C U K and a single continuous variable A. We continue to use
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r= [2 riail.

max ZlGCUK a1y1 -+ A

Yicc Ti + Dorex CkTk IC| -1

A = 71— icouk T
A >0 (23)
YiecYit Xrex Yk = o5—1
i <z VieCUK
zi, i € {0,1} VieCUK

Note that A is in fact constrained to be integer since all coefficients and variables are
integer.

Proof: We will think of the binary variable vectors z and y as representing subsets of the
original variables. For example, to represent the cover set C' with z, we would set z; =1
for 1 € C and z; = 0 otherwise.

First note that the IP is always feasible. To see this, let = represent the cover set C
less any one element, so that the first equality of (23) is satisfied. Such a set z cannot
violate the original knapsack constraint, so A as defined in the second equality must be
nonnegative, satisfying the third constraint. Let y represent any sﬁbset of z of size aj — 1.
Since a; < |C| —1 by Definition 7.2, such subsets exist. This value for y satisfies the fourth
and fifth constraints in (23), so the solution is feasible.

Assume the lemma is not true, so that a; is smaller than the optimal objective value
to (23). Let (z*,y*, A*) be an optimal solution to (23) and let 2* = z* — y*. Note that
z* € {0,1}", since yj = 1 implies z} = 1.

Define z by Z; =1, Z; = 2} for all i € CU K, and Z; = 0 otherwise.

Consider Z in light of the maximization in (20). We have

Zaz,-—aj+ Z a;z; =a;+ Z a;x; — Z aiy; =a;+r— A" - Z a;y; .
1€ECUK i€ECUK 1€ECUK i€ECUK
Since aj < Y ;ccuk @iy +A* by assumption, this gives ) 7, ai%; < 1. Therefore, Z satisfies

the knapsack constraint and Z € S.
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The value of the maximization in (20) is given by

St Yah = DA+ Yar= e+ Y ai- Yok - Y awi
ieC keK ieC keK ieC keK ieC keK
‘ ICl -1~ (aj —1) =|C| — ;.

I

This proves that a; < |C| —1—(|C] — ;) = o — 1. This contradiction proves the lemma.

Lemma 7.10 For instances that possess Prbperty 3, all simple lifted cover inequalities will

have o; < 2 for all 1.

Proof: Assume that o; > 3. Let z be defined by the original cover, and let y represent
the set containing the two largest coefficients from the cover. Let these two coefﬁments be‘
ar, and a;. These values of z and y satisfy (23), so the ob_]ectlve value ar + a; + A gives a
l‘ower bound on the optimum. By Property 3 we know that a; and a; are greater than gB,
so we conclude that a; > gB +A > —g—B. But this is impossihle, S0 the.lemma_ is proved by

contradiction. [}

Lemma 7.11 For instances that possess Property 3, the number of indices fof which o; =2

in any simple lifted cover inequality is no more than 3.

Proof: Consider IP (23) of Lemma 7.9. We will consider lower bounds on the objective
value. In this case the aj value is 2, so y represents a set containing a single variable, either
from the cover set or one with a llfted coefﬁc1ent of 1.

Assume for a contradiction that there are at least four lifted coefficients with value 2
and that the first four are oy,, 04,, 045, and a“

For a;,, let (1) be given by the varlables in the cover C with the |C| — 1 largest
coefficients a;. Clearly this leads to a feeslble solution (z(1),y(M, AM) to (23). Let the 7
largest coefficients in C be ki, ko, ..., k7. These must exist by Property 3.

‘Consider o;,. We construct a feasible solutlon z® by “trading” indices k; and ks for

® _ 1,4 = 0,4 )

1. Spec1ﬁcally, construct z(2) by setting z; " = 1,z;” = 0,2z, = 0, and ;" = xgl) for

all other indices 7. To see that z(?) satisfies the first equality in (23); note that we have
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replaced two variables from the cover with «;; = 2. Any choice of a single variable for y

PR

from z() other than %, leads to a feasible system. The value for A is given.by
A® =y Z aim?) =r- Z aiwgl) +ag, +ar, —a;; = AD 4 ag, + ag, — ag,.

By Property 3, the two coeflicients ay, and a, are each over %B while a;, is most B, so
A®D > AW+ 2B+ Ep-B=AW+1B.

For a;,, we construct a solution z(3) by “trading” the next two lafgest coeflicients, k3
and kg4, for ¢;,. That is, let zg‘) = l,w,(f;) =0, :v,(f;) =0, and mga) = m§2) for all other 7. This
leads to a feasible solution as before, and by Property 3, A®) > A® 4+ 1B > AW 4 2B
| Finally, for «;,, we construct z(4) by removing k5 and kg and adding 3. By Property 3,
AW > AD 4 %B. In the objective -of (23), y represents a single variable in the set repre-
sented by z. We can choose z,, which is at least %B by Property 3. Therefore we have
shown that a;, > A 4 % + % > g This is impossible, which proves that we cannot have

four lifted coefficients with value 2. n

7.4.2 The ratio of cover size to sum of coefficients
In this section, we present the key lemma leading to the proof of Theorem 7.3.

Lemma 7.12 There exists 6o > 0 such that for every instance that satisfies Properties 1,
2, and 8 with 0 < & < 89, every simple lifted cover inequality satisfies Wﬁ% > %

Proof: Based on Property 2 and tlie “upper bound of B on coefficients, we need at least
2(1 —6) > % variables to form a covsar Con51der a simple lifted cover constraint and let T
be the set of variables with non—zerlo‘coeﬂ"lments Let t = |T'|, so we know % <t < n.

For a given t, we wish to cons1der the minimum value of el + . The denominator is
between t and t + 3, since at most‘3 yar}ables have o; = 2 and no values of ¢; are higher. .
For the numerator, we would like t6 know how small the cover itself can be.

Since the lifted cover inequality‘:is Ia véxlid inequality, it must be the case that no feasible
sblution to the knapsack problemﬁhias ‘Iijndre than |C| — 1 variables from T, so any set
UcCT,|U| > |C| must satisfy Z;eU a; > r. We get a lower bbun,d on the size of |C| by

considering the variables in T with the smallest coefficients and determining the number of
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them that it takes to exceed . For fixed ¢, we want the lowest of these lower bounds. This
occurs when T contains the variables with the ¢ highest coefﬁments overall
We will show that even in this case, at least 3/5 of the coeﬂiments are needed in the_ _

cover. Assume that the coefficients are indexed so that a; < ag < --- < ap. Then we are

considering the coeflicients ap—t41,an—t42,. .. 1 G [24] and their sum,
5
n—[2t] [2t]-1
X= Y m= Y tg @)
i=n—t+1 q=t

By Property 1, the gth largest coefficient is no more than ("-2B + 1) (1 + 6), for 1 <
q < ?gg Let Y be the contribution to the sum from values of g outside this Tange. The
contribution to Y from values of ¢ < 155 is at most 355 B, while the contnbutlon from the

values of g > 2 is at most 135 (135 + 1) (1 + 6). Thus,

n B n (101B
Y<mB+m(l—0-6+l)(l+5) 100 (—100 +1)(1+5).

Using the bounds on a,_4_1, we have

[2t]-1 :
n—gq
< -4
X < Y+ ; ( ~ B+l)(1+6)
[2¢]-1
_ _ 9
= Y+(1+96) ; (B+1--B)
[1-1 f%ﬂ—lq v
= Y+(1408) Y (B+1)-(1+06) >, ~B
g=t g=t
3 B['g’t] -1
< —
< Y+A+0zHB+1) - (1+8)— > q
=i
(3¢
< Y+(1+5)§t(3+1)—(1+5)§@2(5—)

- Y+(1+6)gt<B+l-——:—0§E)

By taking the derivative with respect to ¢, we find that this value is max1m1zed when

t= ﬂ%‘"ﬁn at Wthh point we have
3 (B+1)? n (101B 3 (B+1)2
< p—r < — == = X
X_Y+14n 5 (1+6)._100<100 +1)(1+6) " B (1+9)

133



We need to show that X < r. By Property 2, that is equivalent to

146 <B4, (25)

'10—0 —+1 (1+5)+ﬁn 2] 7

n (101B 3 (B+1)?
100

: 1018 3 (B+1)2 _ n(B+1)
Since 155 (*1gp '*’1)""17“( B <"1

, we can choose ¢’ > 0 such that (25) holds for
all0 < d < ¢
The one other requirement on § is that it be less than §; from Theorem 7.8. Therefore,

we choose d2 < min{d’,d;} and have proven the lemma. ' . m

Lemma 7.12 has given the final condition on the choice of ¢ for Properties 1, 2, and 3
from Section 7.2. Specifically, we choose 0 < § < d3 so that ;111 the pre\}ious lémmas will

hold.

7.4.3 Chvatal’s class of problems requires an exponential tree even in the
presence of simple lifted cover inequalities

We are now ready to prove Theorem 7.3. In part this is based on Chvétal’s proof. The key
additional idea comes from Lemma 7.12.

Proof of Theorem 7.3: We claim that if no more than n/30 variables are fixed by
branching, then the LP solution of the resulting node cannot be fathomed.

Chvaital [8] proved that almost always the following properties hold:
4. Y icrai < r whenever |I| < n/10.
5. There is no set I C {1,2,...,n} such that 7, ;a; = 7.

By Theorem 7.8, Properties 1, 2, and 3 also hold almost always.

By Property 4, fixing at most n/30 < n/ 10 variables leaves the LP relaxation feasible.
We claim that the LP relaxation almost always has optimal objective value r. Then by
Property 5, the node cannot be fathomed.

We claim that by setting all unfixed variables to %, the left-hand-side sum of the
knapsack constraint will exceed r and no simple lifted cover constraints will be violated.

Reducing the value of some of the unfixed variables will then give a feasible fractional

solution with left-hand-side sum—and therefore objective value—of r exactly.
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First we check that we can exceed r in the objective. Let F' be the set of fixed variables,
so we are interested in Zi¢ F —%ai = %—(1] Zi¢ F @;. Since the maximum coefficient value is B,

we have

iai > 2r
=1
S > w-Ya

i¢F i€F
Zai > 2r— %B

i¢F

Z aG > 2r— %(B +1).
i¢F

Using the lower bound for r from Property 2 gives that for any constant §; > 0, the following

holds almost always:

1 JUu/aB+1) o o naB+1)) _nB+1) /11 _E_
20@“’220( 5 (=0 30 )77 4 0 %~ 15

Choose §; > 0 and 62 > 0 such that 1 61 + 69 < 150 Then §; < — . l‘iﬁ — %62, and

11 n(B+1) (11 11
moe = O (5= - 1)

n(B +1)
4 ( (150 %) - 150)
= @(1—52)>7‘.

This shows that almost aiways, our fractional solution has objective value 7.

Next we check that no simple lifted cover inequalities are violated. Let an inequality be
specified by the sets C and K. From Lemma 7.11, we know that almost always at most 3
lifted coefficients have value 2. Then we need to verify that |

S om+ Y am<|C| -1 (26)
ieC ieK .
A worst-case assumption is that all fixed variables are fixed tp_ 1 and that all of them appear

in an inequality, so we have
n, 11

Dowit Y esmi< 3 ai+3< g5 +3+ (014K - 55)5
1€eC ieK 1€CUK
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C|-1 . .
Lemma 7.12 showed that @;lz];;(—a; > 3/5 almost always for all simple lifted cover
inequalities, from which we will use |K| < %gl - % Using this in the previous equation, we

wish to confirm

n ) 5 n 11

— 0 - == =)= < -1

3O+3+(3|0| 3 30)20 < Ic]
n 9, 0l
30 20 12 — 12

n 9 11 n
—_— - < —
30 2o+4 12 = 60
0 on
12 = 600

This verifies that the original inequality (26) holds almost alwayé. ;Therefor(’;, aiﬁlc;st él}Nays
there are no violated inequalities.
Note that the conclusion applies to all simple lifted cover inequalities simultaneously.
That is, we relied on Lemma 7.12, which applies to every simple lifted cover iheéﬁality.
We have shown that with at most n/30 variables fixed, the LP relaxation has optimal
objective value r. Therefore, no such node can be fatﬁdmedf Smce we are branchihglon
variables, there are at least 2*/3? such nodes in the branch-and-bound tree, almost always.

The main idea of the proof is that as long as not too many variables are fixed, the simple
lifted cover inequalitiecs do not prevent us from having all fractional variables set to values

strictly greater than 1/2.

7.5 Summary

We have shown that for a particular family of random knapsack instances, even the presence
.of every simple lifted cover inequality will noﬁ prevent the branch-and-bound tree from

!
almost always having an exponential number of nodes.

It is not surprising that there are some knz!mpsack instances for which the branch-and-
|
bound tree has exponential size, since the knapsack problem is NP-hard. The fact that

almost every random instance as considered in this chapter requires an exponential number

of nodes even with a large number of cuts present is more significant.
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It is possible that the result is specific to the type of instance being considered and
th'at branch-and-cut algorithms will perform better on other knapsack instances and other
problems. The fact that almost always no integer solution satisfies the knapsack constraint
at equality is one indication that these izstances are special.

If this result is indicative of general branch-aﬁd-cut performance, however, than it sug-
gests that while cutting planes may help reduce the number of nodes, the number is still
exponential most of the time. Whether similar results apply to other instances and problems

is an important open question.
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CHAPTER VIII. :

CONTRIBUTIONS AND FUTURE RESEARCH

. $
: '

This chapter summarizes the results and contributions of the dissertation, discusses conclu-

sions about measure performance overall, and presents future research possibilities.

8.1 Summary of contributions

In Chapter 2, we presented several measures of facets or cutting planes and discussed some
inherent similarities and differences among them.

We presented polar properties of the shooting experiment in Chapter 3. In particular,
we showed that the shooting experiment on a polyhedron is equivalent to optimization on
its polar polyhedron. A consequence is that optimizing over a polyhedron and performing
the shooting experiment are polynomial-time equivalent, as long as a shooting point in the
polyhedron is known. These results were extended to blockers of blocking polyhedra and
anti-blockers of anti-blocking polyhedra as well.

Chapter 4 considered master cyclic group polyhedra and master knapsack polytopes.
We developed a deterministic partial order on the shooting experiment sizes to complement
previous research on performing the shooting experiment. We also developed Monte Carlo
methods for estimating facet volume for both types of polyhedra and a linear 'program to
determine whether the Chvatal-Gomory rank is 1 or higher for knapsack polyhedra. We
discussed an empirical measure of the usefulhess of cutting planes: the minimum size of the
branch-and-bound tree when branching on variables with a specified branching rule.

‘“We computed or estimated each measure for 9 master knapsack polyhedra and 19 mas-
ter cyclic group polyhedra. For master knapsack polytopes, we found that best-case im-
provement and the shooting experiment provided the best correlation with our measure of
branch—and-boﬁnd tree size, with neither measure clearly superior. A low Chvital-Gomory

rank was positively but less strongly correlated with better branch-and-bound performance.
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Other notable relationships were strong correlations between voluroe and sllooting experi-
ment size and between low Chvétal-Gomory rank and a high numbér of tight inequalities
in the facet formulation. For master cyclic group polyhedra, wé found -that all four. mea-
sures considered were well correlated. In particular, the straightforward computations of
the number of tight inequalities and best-case improvement were relatively well correlated
with the more expensive estimates of shooting experiment size and fa'cet'volume‘. '

In Chapter 5, we considored matching polyhedra for complete graphs. We focused on
the odd-set constraints, which provide all the non-trivial facets. An s.halysis of the shooting
" experiment to oompare two sizes of odd-set constraints showed that as a group, larger-odd-
set constraints will almost always be hit by the shooting experiment rather than smaller-odd-
set constraints. In contrast, the best-case improvement strength of a facet corresponding
to an odd set of size & is %, suggesting that smaller-odd-set constraints are better than
larger-odd-set constraints. Chvatal-Gomory rank does not distinguish among the sizes: all
odd-set constraints have a Chvétal-Gomory rank of 1. We performed computational tests
to check these contradictory predictions and found that with a constant number of random
constraints of a given size present, smaller-odd-set constraints reduced the branch-and-
bound tree size more than larger-odd-set constraints. When all constraints of a given size
were present, however, larger-odd-set constraints reduced the branch-and-bound tree size
more. Thus, both the best-case improvement and shooting experiment predictions were
correct in the appropriate context. This demonstrates the importance of differentiating
between isolated facets and large sets of facets

We considered node-packing polytopes 1n Chapter 6 in light of an empirical study by
Nembhauser and Sigismondi, which tested chque 1nequa11t1es and odd-hole inequalities. We
determined that on the clique-and-hole relaxatlon of node-packing, clique 1nequaht1es are
almost always hit by the shooting experlroent i We showed that the best-case improvement
ratio of the constraint defined by a chque Ci 1s 19[ whlle the best-case improvement ratio
of an odd-hole constraint based on an odd hole H is LlLl‘ Thus, both measures predict
that clique inequalities are significantly stronger than odd-hole inequalities, in agreement

with the results of Nemhauser and Sigismondi.
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In Chapter 7 we considered the limits of facet usefulness. We extended a result of
Chvéital by demonstrating that the class of random knapsack instances he studied will
almost always require an exponential number of branch-and-bound nodes even when all
simple lifted cover inequalities are added to the relaxation.

Perhaps the most significant contribution of this dissertation is the evidence we found
supporting the use of the shooting experiment and best-case improvement ratio. These
measures were generally tractable to analyze and the results were generally well correlated
with the size of the branch-and-bound trees in our empirical tests. This adds more credibility

to the study and use of these two measures to examine cutting planes.

8.2 Conclusions

Among the measures considered, the shooting experiment and best-case improvement offer
the best correlation with usefulness across the four problems studied. In most cases, analyses
of both of these measures were tractable. Both measures provided results that agreed
with the empirical tests of knapsack problems in Chapter 4 and node-packing problems in
Chapter 6.

For the matching broblem, however, the two measures disagreed. The computational
results of that chapter offer a possible explanation: it is necessary to treat isolated facets

and large sets of facets differently. Since best-case improvement is based on consideration
of individual facets, we should be cautious when trying to apply best-case improvement to ‘
relaxations with many facets present. Fo‘r fliéislllo:ogt‘ing experiment, our analyses have tended
to consider large groups of facets, and the fésults L)f the analysis seem to apply best to that
case. Therefore, a possible area of future‘ WOrk is? to analyze the shooting experiment in a
way that better considers individual facets. Note ‘that performing the shooting experiment
does exactly that.

Chvatal-Gomory rank presented conflicting pfédictio_ns. 'F('Sr the knapsack problems, a
low Chvital-Gomory rank was weakly correldted? with géod empirical performance. This

supports the intuition that low-rank facets provide most.of the benefit of cuts. For node

packing, on the other hand, high Chvatal-Gomory rank was a good predictor of usefulness.
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This supports the idea that as the rank increases, the value of the cuts becomes greater and
greater. On matching, Chvétal-Gomory rank did not distinguish among the facets. Taken
together, these results suggest that Chvétal-Gemory rank is not a reliable predictor of facet
usefulness in general. Perhaps it can be effectively considered for specific problem classes,

but it is not consistent across problems.

8.3 Possible future research
8.3.1 Specific questions

In performing empirical tests on matching polytopes in Chapter 5, we qdnsidefed the poly-
tope with all odd-set constraints of a given size presentyaxid,“‘rith 100 randorilly ciloséh_
~constraints present. It may be that different results are obtained if a fixed number of wvio-
lated constraints of a given size are added. Thié could be tested by adding:cuts"through a
call-back routine, though the complexity results of Section 5.5 suggest tliat the constraiﬁts
may have to be separated through enumecration or.‘anotl_ler inefficient manner. Neverthe-
less, the results rhay aid in better understanding the confiicting predictions of shooting and
best-case improvement. |
In Chapter 6, our analysis of lifted odd-hole inequalities suggested that they are con-
siderably stronger than unlifted odd-holes. An empirical comparison Aof the two groups’
usefulness could confirm or disprove this hypothesis. In particular, it might help indicate
whether it is worthwhile to try to find violated lifted odd-hole constraints for which the
underlying odd-hole constraints are not violated. This was a possibility that Nemhauser
and Sigismondi mentioned but did not test.
| The result of Chapter 7 on exponential branch-and-bound trees brings up an impor-
tant question: Is the result telling us something about inherent limits in branch;and-cut
algorithms, or about the difficulty of the particular instances considered? Trying to extend
this analysis to knapsack problems with a much lower righi;;hand-side would be a first step
towards answering this question. :
' An incidental problem that arose was computatioﬁ of Chvdtal-Gomory ranks for facets

of the master knapsack polyhedra. Our computational approach could only distinguish
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between rank 1 and higher ranks. Theoretically, it should be possible to distinguish rank
2 facets as well, though this proved to be a challenge computationally. Overcoming these
obstacles and extending this approach further would provide a tool for consideration of

facets on other problems.
8.3.2 Theoretical relationships between measures

~ Chapter 3 presented a polar relationship between the shooting experiment and the proba-
bi]ity of integrality. This suggests a way that theoretical results on one of the measures can
be translated to theoretical results on the other. Since the polar changes as cuts are added
to a polyhedron, however, the exact nature of this relationship is unclear.

Another pair of measures that merits additional theoretical consideration is the Chvatal-
Gomory rank of knapsack facets and the number of tight inequalities in the formulation for
knapsack facets from Chapter 4. The empirical tests showed a strong correlation between
low Chvétal-Gomory rank and.high number of tight inequalities. It may be that there is a

theoretical explanation for this correlation.
8.3.3 General extensions

The problems considered in this dissertation are classical IP problems. Although they
can play important roles in real-world formulations, it is almost never in the pure form
analyzed here. One important question is whether the best-case improvement and shooting
experiment predictions carry over to more complicated IPs used in real-world a.pplications.'
A next step in that direction might be consideration of problems such as capacitated facility
location, which has aspects of the problems studied in this dissertation but is more widely
used in practice. |
- Investigation of other facet measures also seems warranted. In particular, none of the
measures considered in this dissertation take a known objéctive vector into account, even
though this information is known to branch-and-cut algorii}{ms. For fhat reason, none of
these measures are strong candidates for use in actual célnputation, especialIy for general
IPs. An example of a measure that does take 'tAhe‘bbjecf.iive Qgciop ih‘to. account is the angle

between the objective and the hyperplane defined by the facet. An attempt at analyzing
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this or a related measure would provide another step toward improving the performance of

branch-and-cut in practice.
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APPENDIX A

TESTS OF STATISTICAL SIGNIFICANCE FOR
MEASURES USED ON KNAPSACK AND CYCLIC
GROUP POLYHEDRA .

This appendix presents the methodology used to test for statistical significance of pairwise
differences in three measures used in Chapter 4: the shooting experiment, volume estimate,

and empirical tests of branch-and-bound tree sizes.

A.1 ShOotz’ng experiment

We are considering the ':sllooting experiment sizes of two facets, A and B. Recall that
shooting experiment sizes are probabilities, and let p4 and pp represent the true shooting
experiment sizes of the facets.

Performing IV trials of the shooting experiment gives‘random variables X 4 and X p such
that E[X4/N] = pa and E[Xp/N] = pp. Together X4 and Xp come from a multinomial
distribution. Given X 4, Xp, and N , we wish to consider the null hypothesis that py = pp
with alternative hypothesis pa # pp. Since we calculate X4 and Xp in the same sot of
trials, the values are dependent, and we cannot use a traditidnal t-test for this hypothesis.

Instead, we consider the random variable Z = )—"A;,—X‘i, which has expected value pz =
(pa — pp)- The null hypothesis is now uz = 0.
Since X4 and Xp come from a multinomial distribution, their covariance is —Npapp.

Therefore, we have

pa(l1 —pa) 4+ pp(1 —pB) +2papB

Var(Z) = N

Approximating pg = AN-’l,pB ~ ANE gives an estimated variance, which we denote Var(Z).

Since we have a large sample, we use the central-limit theorem and form an approximate
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95%-confidence interval of

(M—IQGVVM +196V arZ)

N

We reject the null hypothesis at the 0.05 level if this interval does not contain 0.

These tests were performed with code written by the author in Perl.

A.2 Volume estimates

Volume estimates were obtained using a Monte Carlo estimation. The underlying random
variable is therefore a binomial random variable, which is scaled based on the number of
trials, the volume of the sample set, and the facet being tested.

Let X4 and Xp be the binomial random vafiables for two facets. If there are N trials,
then the volume estimates are aX4/N and bXp/N for some constants d and b.

To test whether the difference is significant, we consider the random variable defined by

Z = ﬂd—ﬁb—)‘ﬂ- If p4 and pp are the true parameters of X4 and Xpg, then

ElZ) = aE[XA]J;bE[XB] = aps — bpp (27)

(S)2Var(Xa) + (=

228 Cov(X 4, Xi) (28)

)?Var(Xp) — N2

Var(Z) =
A.2.1 Cyeclic group tests

The cyclic group tests were performed independently, so the covariance is zero, and
Var(Xa) = Npa(l ﬁ'PA), Var(Xp) = Npp(1 - pp).

Then Var(Z) = $pa(l — pa) + %pB(l ;pB)

Since we have a large sample, we approx1ma.te the variance by substituting our sample
proportions X4 /N and Xp/N for pa and j2:2 Then, using the central-limit theorem, we
compute an approximate 95% conﬁdenc‘e 1_nterva1 for E[Z). If this interval does not contain

0, then we reject the null hypothesis th‘}zﬁ.:;(‘sz = bpp.
A.2.2 XKnapsack tests

The knapsack tests were not done independently. A given Monte Carlo trial could only

register a valid point for at most one facet. Therefore, the values X4 and Xp come from a
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multinomial distribution, and their covariance is given by Cov(X 4, Xp) = —Npapp. Using
this in (28) gives Var(Z2) = %p,;(l —pa) + %pg(l —pB) + 27‘\’,9;0,41)3. |

» Again, since we have a large sample, we approximate the variance by substituting our
saxnple proportions X4 /N and Xp /N for p4 and pp. Then, using the central-limit theorem,
we compute an approximate 95% confidence interval for E[Z]. If this interval does not
contain 0, then we reject the null hypothesis that ap4 = bpp. -

These tests were performed using code written by the author in Perl.

A.3 Branch-and-bound tree sizes . | i

Let X;; be a random variable corresponding to the minimnr_n size of a branch—anel-bound
~ tree when only facet 7 is added to the relaxation. Similarly, ’1et'Xij _be,random' variables
corresponding to the minimum size of the tree when facets 7 and j are edded. If there are
m facets total, let X; = L 37, z;;). Then X; is the random variable we estimated. - -
'IOne trial to estimatebX ;j is done by performing one test each of Xj; for i = 1,...,m.
We performed 1000 such trials for each facet and averaged the result to get our sample
mean for X;. To determine whether two facet means are different, we performed a paired
t-test on the 1000 trials for each facet, and tested at the 0.05 level. The values X; and
Xy, are not independent, since both depend on X, but the paired ¢-test does not require

independence.

The t-tests were done using the software R or S-plus.
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APPENDIX B

MEASUREMENTS OF CYCLIC GROUP AND
KNAPSACK POLYHEDRA

This section presents data from the tests of Chapter 4. All tests were performed by the
author with the exceptions of the shooting experiment for cyclic group polyhedra and shoot-
ing from the origin for knapsack polyhedra. These shooting results were supplied by Lisa

Evans.

B.1 Knapsack polytopes

Master packing knapsack polytopes of dimensions n = 6 through n = 14 were tested. For
each polytope, there is a table containing the measure results and a diagram of the partial
order In the partial order, numbers represeﬁt facets in the order they appear in the table
of measures. If a number is not present, that facet is not comparable to any other in the

partial order.

" Table 40: Measures for the packing knapsack polytépe withn =6

Best-case Tight C-G Shooting BBT
Facet Imp. Ineq Rank ° Volume ' Origin Interior Size
001222 1.500 ) 1 2.722¢-02° 446 + 748 © 1.101
023466 1.200 4 24+ 2.977e-02 . 240 . 289 1.237

123456 1 9 0 2.523e-01 314 1972  n/a
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Figure 11: Partial order for the packing knapsack polytope with n = 6

Table 41: Measures for the packing knapsack polytope withn =7

Best-case Tight C-G Shooting BBT
Facet Imp. Ineq Rank  Volume Origin Interior  Size
0001111 1.750 8 1 7.537e-03 384 576 2.300
0011222 1.400 7 1 5.993e-03 218 401 2.168
0112233 1.167 8 1 1.185e-02 112 167 1.910
0122344 1.167 7 1 6.387¢-03 108 141 2.285
1234567 1 12 0 8.045e-02 178 1568 n/a

1
AN
2 4 5
|
3

Figure 12: Partial order for the packing knapsack polytope with n =17

Table 42: Measures for the packing knapsack polytope with n = 8

Best-case Tight C-G Shooting BBT
Facet Imp. 1Ineq Rank  Volume Origin Interior Size
00012222 1.600 9 2+ 2.136e-03 387 490 1.613
00111222 1.333 11 1 3.295e-03 268 319 1.464
01123344 1.200 9 1 1.739e-03 88 217 1.894
02345688 1.143 . 8 2+ 1.699e-03 70 157 2.117
12345678 1 16 0 3.190e-02 187 1635 n/a
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Figure 13: Partial order for the packing knapsack polytope with n = 8

Table 43: Measures for the packing knapsack polytope with n =9

Best-case Tight C-G Shooting BBT
Facet Imp. Ineq Rank  Volume Origin Interior  Size
000011111 1.800 14 1 5.671e-04 313 437 2.856
000112222 1.500 11 2+ 2.977e-04 181 289 2.652
001122333 1.286 10 1 1.494e-04 60 67 3.141
002334666 1.286 9 24+ 3.024e-04 119 190 2.898
011223344 1.125 14 1 1.080e-03 104 377 2.104
012244566 1.200 10 2+ 1.531e-04 28 58 3.368
012334566 1.125 10 1 1.535e-04 30 86 3.159
023456799 1.125 10 2+ 2.262¢-04 32 70 3.607
123456789 1 20 0 9.279e-03 133 1104 n/a

1
S .

29457

N
368

Figure 14: Partial order for the packing knapsack polytope with n =9
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Table 44: Measures for the packing knapsack polytope with n = 10

Best-case Tight C-G Shooting BBT
Facet Imp. Ineq Rank Volume Origin Interior  Size
0000122222 1.667 15 24+ 1.223e-04 307 475 2.542
0001112222 1.429 15 1 9.551e-05 194 298 2.530
0012223444 1.250 14 2+ 8.674e-05 109 118 2.819
0022344666 1.250 12 24+ 7.044e-05 98 96 2.643
0122344566 1.111 15 1 1.188e-04 46 113  2.623
022456881010 1.143 12 24+ 8.217e-05 33 83 3.021
023456781010 1.111 14 2+ 1.100e-04 62 113 3.429
12345678910 1 25 0 2.805e-03 151 1165 n/a
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Table 45: Measures for the packing knapsack polytope with n =11

Best Tight C-G. Shooting BBT
Facet Case Ineq Rank  Volume Orig. Int. Size
00000111111 1.833 21 1 2.625e-05 302 403 4.401

00001122222 1.571 17 2+ 1.330e-05 166 167 -4.647
00011112222 1.375 20 3.106e-05 188 245 3.908

00111222333 1.222 20 3.180e-05 98 168 4.223
00112233444 1.222 14 2.395e-06. 20 26 4.775

00234456888 1.222 13 24+ 4.044e:06 28 ' 42 4.986
01122334455 1.100 21 4.898¢-05° 50 121 3.776
01123345566 1.146 15 4.448e-06 10 14 5.004

+t R, Rr Rt R

01223455677 1122 15 3.605¢-06 7 21 5510
01224466788 1179 14 2+ 3.035e-06 ~ 19 <17 5.039
01234456788 1100 14 2.094e-06 6. 12 5.256

0234567891111 1.100 17
02346689101212 1.100 14
1234567891011 1 30

1.459e-05 19 53 5.667
6.130¢-06 - 17~ 24 5.085
6.422e-04 70 1064 n/a

R
o+ + ~

1
N

2 /3%
1|4 456 89101113
12

Figure 16: Partial order for the packing knapsack polytope with n = 11

1

2 16 4567 8 9101112 15
N\
3 13 14
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Table 46: Measures for the packing knapsack polytope with n = 12

Best  Tight = C-G Shooting BBT
Facet Case Ineq Rank Volume Orig. Int. Size
000001222222 1.714 22 24+ 4.799¢-06 295 388 2.361
000011122222 1.500 21 2+ 3.067e-06 178 138 2.251
000223446666 1.333 15 2+ 8.257e-07 56 37 2.744
000233346666 1.333 17 24+  2.482e-06 101 107 2.511
001112333444 1.286 19 24+ 1.710e-06 45 43 2.945
001122233444 - 1.200 21 1 3.151e-06 56 75 2.858
001233345666 ~1.200 17 24+ 1.081e-06 28 17 2.867
003446889121212 1.200 14 2+ 1.036e-06 21 24 3.184
0034567891212 12 1.200 14 2+ 8.514e-07 19 20 3.417
011223445566 1.143 21 1 3.661e-06 27 85 3.137
012234566788 1.125 16 24+ 3.550e-07 6 13 3.496
013446889111212 1.143 15 24+  5.366e-07 9 13 3.291
0224567810101212 1.111 17 24+ 2.154e-06 10 41 3.340
0234567891012 12 1.091 22 2+ 7.035e-06 47 109 3.621
02447891212141616 1.125 15 24+ 6.989e-07 9 16, 3.574
1234567891011 12 1 36 0 1.683e-04 93 1124 n/a

1

/’7|\

2347 23
610 25

Figure 18: Partial order for the packing knapsack polytope with n = 13

1

3 2 o
4567 91214 1519

Figure 19: Partial order for the packing knapsack polytope with n = 14
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Table 47: Measures for the packing knapsack polytope with n = 13

Best Tight C-G Shooting  BBT
Facet Case Ineq Rank  Volume Orig. Int. Size
0000001111111 1.857 30 1 1.012e-06 293 507 6.000
0000011222222 1.625 24 2+ 4.238¢-07 124 200 5.793
0000111122222 1.444 26 1 5.882e-07 144 113 5.597
0001112223333 1.300 22 1 1.885e-07 35 95 6.243
0001222234444 1.300 23 2+  4.414e-07 69 95 5.981
0002233446666 1.300 18 2+ 1.865e-07 34 120 6.019
0011122333444 1.219 24 1 4.191e-07 38 69 5478
0011223344555 1.182 18 1 1.748e-08 6 21 7.359
0012224445666 1.238 21 24+ 1.750e-07 18 5 6.467
0012233445666 1.182 18 24+ 5.584e-08 9 12 6.228
0022344566888 1.182 20 2+ 2.483e-07 18 22 6.046
0023345667999 1.182 18 24+ 1.504e-07 13 1 6.765
0023446678101010 1.182 17 24 3.705e-08 5 9 7.610
0023455678101010 1.182 17 2+ 3.845e-08 3 46 7.216
00345678910131313 1.182 17 2+ 7.047e-08 4 20 7.561
0112233445566 1.083 30 1 2.302e-06 47 370 4.913
0112334456677 1.114 24 1 3.706e-07 22 40 17.017
0122344566788 11.083 26 1 7.559e-07 15 81 5.887
012244668891010 1.156 18 24 2.578e-08 5 9 7.212
0123345667899 1.083 22 1 1.713e-07 5 39 6.866
012344667891010 1.114 18 24 1.840e-08 2 1 7.585
012345567891010 1.083 18 1 1.978e-08 1 38 7177
02345678910111313 1.083 26 2+  T7.174e-07 18 4 7.807
023466991112131515 1.114 18 24+ 4.497e-08 2 4 17.567
12345678910111213 1 42 0 3.281e-05 70 423 n/a
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Table 48: Measures for the packing knapsack polytope with n = 14

Best Tight CG Shooting BBT
Facet Case Ineq Rk Volume Ori. Int. Size
00000012222222 1.750 31 2+ 1.552e-07 258 477 4.245
00000111222222 1.556 28 2+ 7.516e-08 152 114 4.116
00001111122222 1.400 33 1 1.824e-07 177 260 3.781
00011222334444 1.273 22 2+ 1.078e-08 25 161 4.738
00022234446666 1.273 25 2+ 6.522e-08 65 23 4.326
00023444568888 1.273 21 24+ 2.047e-08 26 49 4.922
00111222333444 1.167 33 1 2.326e-07 74 143 4.134
00122234445666 1.167 27 2+ 9.025e-08 37 27 4.619
00123444567888 1.167 21 2+ 1.090e-08 4 43 5.309
00224456688101010 1.167 22 2+ 2.170e-08 11 174 5.154
0034567891011141414 1.167 21 2+ 1.442e-08 11 8 5.831
01123345567788 1.114 23 1 1.196e-08 3 52 5.495
0122445668891010 1.120 25 24+ 3.658e-08 12 46 5.169
0123345677891010 1.089 23 1 7.115e-09 0 15 b5.817
02244678101012121414 1.111 25 2+ 8.756e-08 16 197 5.275
0224567891012121414 1.091 24 2+ 6.561e-08 16 31 5.523
0234567891011121414 1.077 32 2+ 2421e-07 28 10 5.912
023466810101213141616 1.094 22 2+ 1.416e-08 8 44 5.695
0244689101214 1416 1818 1.089 22 2+ 1.855e-08 7 15 5.752
1234567891011121314 1 49 0 6.872¢-06 70 390 n/a
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Table 49: Measures for the cyclic group polyhedron withn = 7,7 =6

Best-case Tight
Facet Adaptation Inequalities =~ Volume Shooting
123456 0.629 9 2.505e-01 332
4852610 0.639 7 1.600e-01 245
654328 0.645 7 8.787e-02 170
9468312 0.641 6 1.280e-01 253

3

Figure 20: Partial order for the cyclic group polyhedron withn = 7,7 =6

B.2 Cyclic Group Polyhedra

This section contains data on master cyclic group polyhedra. Polyhedra with n = 7 to
n = 14 were tested. For each polyhedron, there is a table of facet measures and a diagram

of the partial order. In the partial order diagrams, a purely horizontal line indicates a tie

between the two facets.

i :
I

‘Table 50: Measures for the cy{:lic group polyhedron with n=8,7r =7

Best-case | -+ Tight - = :
Facet Adaptation'’ Inequalities ~ Volume . Shooting
1010101 0.500 16 o 303
1212123 0.612;: . 8 1.003e-02 68
1230123 0567, 13 . o0 230
1234567 0.592. 12 8.116e-02 144
3214325 0.606 9 2.582-02 ' 92
7654329 0.607 9 1.563e-02 43

9103125615 0.602 8  3.762e-02 120

[
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234567

Figure 21: Partial order for the cyclic group polyhedron withn =8,r =7

Table 51: Measures for the cyclic group polyhedron with n = 8,r = 2

Best-case Tight
Facet Adaptation Inequalities = Volume Shooting
1210121 0.577 12 00 367
3614325 0.600 10 5.526e-02 321
3654321 0.600 10 2.244e-03 312

LS

Figure 22: Partial order for the éyélic group polyhedron with n = 8,7 = 2
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Table 52: Measures for the cyclic group polyhedron with n =8,r =4

Best-case Tight
Facet ' Adaptation Inequalities Volume Shooting
1234321 - 0.603 11 3.023e-02 228
1234123 0.603 8 3.391e-03 259
3214123 0.603 8 3.003e-02 259
3214321 0.603 11  3.408e-03 254

1 tied 2 tied 3

Figure 23: Partial order for the cyclic group polyhedron with n = 8,7 =4

Table 53: Measures for the cyclic group polyhedron with n =9,r =8

Best-case Tight
Facet Adaptation Inequalities = Volume Shooting
12012012 0.516 20 00 312
12345678 0.560 16 3.221e-02 170
21321324 0.577 11 5.508e-03 79
48127261014 0.567 13 2.241e-02 173
876543210 0.574 13 9.321e-03 94
114681012516 0.580 10 3.759e-03 57

16 512108154 20 0.570 10 1.374e-02 115

;
34567

Figure 24: Partial order for the cyclic group polyhedron with n = 9,7 =8

No comparable pairs

Figure 25: Partial order for the cyclic group polyhedron withn =9,r =3
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Table 54: Measures for the cyclic group polyhedron with n =9,r =3

Best-case Tight
Facet Adaptation Inequalities Volume Shooting
24621354 0.569 11  7.184e-03 151
24624324 0.586 10 2.738e-03 138
24654321 0.569 11  4.502e-04 159
42642342 0.586 10 2.348¢-04 40
4812726105 0.573 12 1.911e-03 115
51624324 0.569 11 7.124¢-03 152
7512108642 0.573 12 3.079¢-04 116
1021245678 0.573 12 4.879¢-03 129

Table 55: Measures for the cyclic group polyhedron with n = 10,7 =9

. Best-case . Tight
Facet Adaptation Inequalities = Volume Shooting
101010101 0.447 28 00 289
121212123 0.557 12 1.909e-04 18
123401234 - 0.516 22 00 162
123456789 0.533 20 9.142e-03 118
246352468 0.552 13  6.387e-04 30
364253147 0.545 15  2.624e-03 56
432154326 0.548 15 1.147e-03 34
432604326 0.526 - 18 00 121
623456739 0.553 12 5.010e-04 13
673456239 0.553 12 5.016e-04 27
9876543211 0.547 16 1.484¢-03 46
918761514312 21 0.541 14  3.958e-03 86

3 1
\m
l24 567 91011 12
8

Figure 26: Partial order for the cyclic group polyhedrbn withn =10,7=9
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Table 56: Measures for the cyclic group polyhedron with n = ld, r=2

Best-case Tight »
Facet Adaptation Inequalities Volume Shootmg '
241302413 0.516 22 o0 198
364203642 0.526 18 00 177
364253142 - 0.548 16 3.635e-04 141
482654326 0.552 14 9.717e-04 7
487654321 0.539 17 1.203e-04 199
6123456789 0.560 11 3.521e-04 40
61234106289 0.542 13 2.882e-03 168
N 7

6

Figure 27: Partial order for the cyclic group polyhedron with n = 10,7 = 2

1
2'“16

Figure 28: Partial order for the cyclic group polyhedron with n =10,r =5

No comparable pairs

Figure 29: Partial order for the cyclic group polyhedron with n = 11,7 = 10

1 2

= S~~———
22161514 9 86 345 712 131718192021 11
10

Figure 30: Partial order for the cyclic group polyhedron with n = 12,7 =11
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Table 57: Measures for the cyclic group polyhedron with n = 10,7 =5

Best-case Tight
Facet Adaptation Inequalities = Volume Shooting
101010101 0.447 28 00 27
121232121 0.557 12 2.172e-05 25
123451234 0.542 18 2.147e-03 87
123454321 - 0.542 12 1.201e-04 62
241352413 0.542 18 1.185e-03 -9
2468107463 0.550 12 7.555e-05 33
314253142 0.542 18 5.369e-04 82
341252143 0.542 12 1.080e-03 48
3647108642 0.550 12 3.149¢-05 35
369121581147 0.550 13 2.662e-04 30
432154321 0.542 18 1.360e-04 81
4826104376 0.550 12 2.819e-04 24
6734106284 0.550 12 1.344e-04 36
741181512963 0.550 13 5.029e-05 30
987615431211 0.550 13 6.628e-04 34
111234156789 0.550 13 4.363e-04 31

Table 58: Measures for the cyclic group polyhedron with n = 11,7 =10

Best-case Tight
Facet Adaptation Inequalities = Volume Shooting
12345678910 0.510 25 2.797e-03 134
4812591361014 18 0.530 16 1.542e-04 22
4812169261014 18 0.515 21 1.989e-03 140
61272814941016 0.520 19 8.307e-04 69
61271383941016 0.526 17 3.302e-04 38
8521074129614 0.524 19 6.8146-04 - 70
9185141210196 15 24 0.528 14 1.344e-04 26
918163122186 1524 0.517 18  1.220e-03 -89
9181614121086 1524 0.536 -~ 13 7.112e-05 17
109876543212 0.522 . ', 21. '8.732-04 92
1346810121416 720 0.529 .16 2.245¢-04 37
131568101214 5720 0.533 14 5.725e-05 12
14 6 20 12 15 18 10 24 16 30 0.534 13 1.268e-04 13
1581259136103 18 0.525 16~ 4.070e-04 » 30
162142014824 71228 0.518 16 1.138¢-03 80
181410 6 13 20 16 12 8 26 0.535 14 7.034e-05 15
207161412108 174 24 0.525 - 15 2.826e-04 - 33
25620121518 10245 30 0.518 S 15 1.024e-03 83
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Table 59: Measures for the cyclic group polyhedron with n = 1l2,r =11"

Facet

Volu;ne Shootihg.

10101010101
12012012012
12111222123
12121212123
12221211123
12301230123
12342312345
12345012345

1234567891011

21321321324
32143214325
32341412325
42342312315
52341634527

54321654327

54351624327

5109876543813
723456789411 .
111098765432 13
1110920 718 5 16 15 14 25
13141516 518 78 9 10 23
25 14 15 28 5 30 7 20 21 10 35

Best-case Tight
Adaptation Inequalities
0.408 42

- 0.447 38
0.514 15
0.514 18
0.514 15
0.463 35
0.505 21
0.477 32
0.489 30
0.508 20
0.505 22
0.505 16
0.505 19
0.503 19
0.503 24
0.503 18
0.515 16

. 0.507 19
L, 1.0:501 25
{0510 16
0,512 16
18

1.0.496

161

foe) 239

00 162
4.840e-06 8
7.221e-06 7
5.25%¢e-06 10

00 139
6.883e-05 23

fo'e) 88
6.310e-04 94
2.063e-05 9
6.623e-05 18
2.552¢-05 11
6.261e-05 13
8.128e-05 14
1.216e-04 - 33
5.361e-05 22
7.543e-06 6
3.062¢e-05 10
1.053e-04 35
1.049e-05 10
7.110e-06 6
2.012¢-04 43



Table 60: Measures for the cyclic group polyhedron with n =12,r = 2

Best-case Tight :
Facet Adaptation Inequalities Volume Shooting
12101210121 0.471 32 0o 242
12012012012 0.447 38 00 220
24321024321 0.485 27 00 129
24321321321 0.508 21  3.275e-06 42
510387654327 0.509 20  2.696e-05 39
510987654321 0.494 26 5.428e-06 146
510381654927 0.494 26 2.671e-04 132
71434567891011 0.513 18 1.412e-05 23
71494116783105 0.513 18  2.921e-06 27

v

4895

Figure 31: Partial order for the cyclic group polyhedron with n = 12,7 =2

1
N
2+9 10 1215 17-30

2022 23 24 30

Figure 32: Partial order for the cyclic group polyhédron withn=12,r =3

16 815
Figure 33: Partial order for the cyclic groﬁp polyhedron with n = 12,r =4
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Table 61: Measures for the cyclic group polyhedron with n = 12,r =3

163

Best-case Tight
Facet Adaptation Inequalities =~ Volume Shooting
10101010101 0.408 42 00 224
12321121221 0.514 14 5.145e-07 4
12311212122 0.514 15 6.581e-06 14
12321221121 0.514 15 1.683e-06 17
12321212121 0.514 18  2.215e-06 20
12322212111 0.514 14 5.639e-07 5
12311112222 0.514 14 2.302e-06 6
12312212112 0.514 16 7.012e-06 11
12312012312 0.487 28 00 63
12301230123 0.463 35 00 153
12321012321 0.487 24 00 68
21321021321 0.487 28 00 a7
21321212121 - 0.514 14 4.942e-07 5
21321221121 0.514 16 1.642e-06 19
24654324321 0.507 18 6.204e-07 9
32543214321 0.505 22 2.726e-06 23
36947654325 0.514 15  2.329e-06 9
36987654321 0.495 22 3.514e-06 74
42642315342 0.507 18 2.567e-06 17
54927654327 0.508 19 8.807e-06 4
54987654321 0.498 23 2.374e-06 42
510158136114927 0.503 22 1.078e-05 20
72947654325 .. 0.508 16 4.878e-06 1
72945672345 -1 0.508 19 4.419e-06 4
72945618345 1,.0.498 23 5.877e-05 33
72943618365 1 70.495 22 8.930e-05 65
72943654365 ;‘j5,0.5_14‘ 15 2.531e-06 8
714211611613815105  '-0.512' 16 3.141e-07 5
111021876516 1514 13 1:0.512! 16 2.447e-06 4
132154567891011 22 2.641e-05 16



Table 62: Measures for the cyclic group polyhedron with n = 12,r =4

Best-case Tight
Facet Adaptation Inequalities Volume Shooting
12342312312 0.508 21  1.774e-05 27
12341212323 0.508 18  2.945e-05 37
12341232123 0.508 21 4.566e-05 51
12343212321 0.508 18  3.313e-06 31
12343232121 0.508 18  2.519e-06 33
12342012342 0.485 27 00 146
21021021021 0.447 38 00 220
24687654321 0.496 20 4.939e-06 115
24684654324 0.514 15 4.486e-06 21
32141212323 0.508 18 2.380e-05 23
32143212321 - 0.508 21 5.054e-06 59
54384624624 0.514 15 4.396e-06 13
54387654321 0.502 23 2.922¢-06 60
54381654327 0.502 23 1.437e-04 67

54381624627 0.496 20 2.378e-04 97

Table 63: Measures for the cyclic group polyhedron with n = 12,7 =6

Best-case Tight
Facet Adaptation Inequalities Volume Shooting
12101210121 0.471 32 00 239
12345634323 0.511 16 9.703e-06 . 17
12345642342 . 0.507 : 19  7.420e-06 - 54
12345654321 0.497 . 18 8.761e-06 115
12345612345 0.497 28  2.245e-04 102
24324624324 0.518 16 9.122e-06 36
24324654321 0.507 19 1.897e-06 54
32343654321 0.511 16 1.115e-06 32
32343614325 0.511 16 2.777e-05 24
42342612345 0.507 19  4.523e-05 36
42342642342 0.518 16  2.207e-06 40
52341614325 0.497 18 2.175e-04 85
52341634323 0.511 16 1.011e-05 30
54321654321 0.497 28  8.999e-06 92
54321624324 0.507 19 3.028e-05 44
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Figure 34: Partial order for the cyclic group polyhedron with n =12,7=6

No comparable"pairs

Figure 35: Partial order for the cyclic group polyhedron with n = 13,r = 12
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Table 64: Measures for the cyclic group polyhedron with n = 13,r = 12

Best-case ~  Tight .
Facet : Adaptation Inequalities ' Volume Shooting
1234567891011 12 0471 - - - 36 1.698e-04 - 106
481216711156 1014 18 22 0.490 - 23 7.054e-06 20
481216201126 1014 18 22 0.475 731 1.133e-04 - 81
61251141016 9 158 14 20 0.490 23 -7.963e-06 12
612511171039 158 14 20 0.487 _ 24  1.205e-05 10
6121811410169 281420 0.479 28 4.867e-05. 51
831161494127151018 0.487. . . . 25 1673¢-05° . 32
816116149412721018 0.483 ‘ 27 4.005e-05 36
918142361524 7161221 30 0.489 A 20 6.181e-06 8
91814106 15 24 20 16 12 21 30 0.495 19 3.106e-06 7
918 27106 1524 20 3 12 21 30 0.476 27 7.125e-05 72
107414118521296 16 : 0.484 28 3.088e-05 53
10 20 30 14 24 21 18 28 12 22 32 42 0.497 17 8.823e-07 6
11227181614 12 10 21 6 17 28 0.493 18 1.436e-06 7
112220181614 12108 6 17 28 0.495 20 2.148e-06 11
1211109876543214 0.482 31 4.244e-05 43
14 28 16 30 18 19 20 8 22 10 24 38 0.495 18  2.042¢-06 4
1546810121416 18209 24 ' 0.488 24 1.497e-05 34
154198101214165209 24 0.485 22 1.609e-05 27
151762110121431879 24 0.483 23 2.129¢-05 30
151768101214 1618 79 24 0.496 19 1.931e-06 7
151719810121416579 24 0.493 20 1.759e-06 8
1619 91228 18 8 24 27 17 20 36 0.494 17  1.744¢-06 7
16 32 912 28 18 8 24 27 4 20 36 0.477 24 6.852e-05 63
1781216711156 10 14 5 22 0.493 20 1.670e-06 5
17 34 12 16-20 24 28 32 36 14 31 48 0.495 16 1.302e-06 2
18102820121722146 24 16 34 0.494 20 2.605e-06 13
2014828916 234241812 32 0.483 22 1.395e-05 20
2027 8152216101724 512 32 0.487 20 5.575e-06 13
2251410191511 2016 25 8 30 0.489 19  2.967e-06 6
2218142361524 716128 30 0.488 20 6.330e-06 9
221814106 1524 20.16 12 8 30 0.493 22 9.258e-06 33
24 920 18 16 14 12 10 8 19 4 28 0.487 22 1.156e-05 26
2524 10 358 20 325 30 16 15 40 v 0.477 22 5.126e-05 44
252410 22 8 20 32 18 30 16 15 40 0.493 17 2.899e-06 3
29 6221215182124 14307 36 0.485 19  6.595e-06 - 16
30 21 12 16 33 24 15 32 36 27 18 48 0.498 16 1.260e-06 6
3034 1216 33 24 15 32 36 14 18 48 0.493 16 1.185e-06 2
367 30 14 24 21 18 28 12 35 6 42 0.478 21 5.652¢-05 61

36 20 30 14 24 21 18 28 12 22 6 42 0.490 19 6.992¢-06 6
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Table 65: Measures for the cyclic group polyhedron with n = 14,7 = 13

Best-case Tight
Facet Adaptation Ineq.  Volume Shooting
1010101010101 0.378 60 (%) 2308
1112121212223 0.480 19  4.164e-08 15
1211112222123 0.480 19  3.747e-08 11
1211121222123 0.480 19 2.998e-08 11
1212112212123 0.480 18 3.914¢-08 6
1212121212123 0.480 24 1.790e-07 49
1222121211123 0.480 19 4.330e-08 5
1222212111123 0.480 19  4.330e-08 16
1234560123456 0.445 = 45 00 929
12345678910111213 0.454 42  3.276e-05 641
2112221112213 0.480 19 3.664e¢-08 9
2212121212113 0.480 18 3.498e-08 14
2212221112113 0.480 19 5.913e-08 10
246835794681012 0.473 27 8.970e-07 82
2468105724681012 0.468 30 3.010e-06 173
3412323234125 0.475 20 2.053e-07 28
36258473695811 0.474 26 6.499e-07 57
369514710625811 0.462 33 8.889e-06 279
36958473625811 0.474 26 4.776e-07 51
48526374852610 0.472 28 1.224e-06 95
4852610048526 10 0.452 =~ 37 00 591
5316427538649 0.467 32 5.573e-06 280
5386427531649 0.467 31 1.955e-06 139
5101561116 71217 813 18 23 0.476 24 1.915e-07 20
6543217654328 0.467 34 3.695e-06 239
6543280654328 0.456 37 00 363
651110287135410915 0.471 25 6.813e-07 42
61243987612113915 0.471 25. 1.498e-06 91
61241098765113915 0.477 21 2.690e-07 - 40
61211398761243915 0.471: 25 1.479e-06 101
61211109876543915 0.477 24 7.810e-07 100
8234567891011513 0471 28 1.462¢-06 124
893456789104 513 1 0.480 ¢ 22 .1.500e:07 18
891045678934513 -0.480 21 4.017e-08 4
81631112614891741220 0.469 22 8.333e-07 62
94683579468312 0.478 - 22 2.583e-07 43
946831209468312 0.454 33 . oo 618
9468105724683 12 0.473 25 4.977e-07 53
94138312716116151019 0.470 29 1.869e-06 93
91868101214161820817 26 0.478:. 19 8.754e-08 22
91827817122116256 1524 33 0.472 23 5.906e-07 53
91827223122130116 152433 0.459 32 1.334e-05 419
918272217122116 116 15 24 33 0.477 22 3.473e-07 35
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Table 65: (cont’d)

Best-case Tight
Facet Adaptation Ineq.  Volume Shooting
1069121541436912818 0.472 22 4.334e-07 28
1013212841410616 58 18 0.465 26 2.714e-06 154
11852131074151296 17 0.467 32 2.509e-06 126
1122516 13 10 21 18 15 26 9 20 31 0.475 22 2.128e-07 40
1238649712108 13416 0.472 23 6.344e-07 50
1224 8201892112 10226 18 30 0.473 18 1.915e-07 23
1224152018 9211210156 18 30 0.479 18 1.693e-07 21
135111098765410215 0.471 25 6.754e-07 51
131211109876543215 0464 = 36 6.819e-06 374
1516318196 21 89 24 11 12 27 0.465 27 4.123e-06 158
15161718 5621 22 9 10 11 12 27 0.473 25  6.033e-07 67
151617185207 22910 11 12 27 0.475 22 1.563e-07 32
15161718196 21 8 910 11 12 27 0.479 20  6.204e-08 14
1769121518 71013 1619 8 25 0.479 21 4.257e-08 11
172091215421101316 5825 0.470 26 1.735e-06 75
17209121518 71013 16 58 25 0.477 23  2.178e-07 18
1815121661014 1881296 24 0.479 19 1.511e-07 12
18151216 61771881296 24 0.475 19 1.438e-07 13
19248201816 141210226 11 30 0.477 18  1.630e-07 17
25 36 5 30 27 10 35.18 15 40 9 20 45 0.460 26 1.026e-05 323
25 36 19 30 27 10 35 18 15 26 9 20 45 0.475 19  2.792e-07 36
33 24 15 34 39 30 21 12 17 36 27 18 51 0.480 19 9.547e-08 18

%\
28 10-20 2225 2765

Figure 36: Partial order for the cyclic group polyhedron with n = 14,r = 13
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Table 66: Measures for the cyclic group polyhedron with n = 14,r =2

169

Best-case Tight
Facet Adaptation Inequalities Volume Shooting
2412323212123 0.478 19  1.210e-07 50
3625140362514 0.445 45 0 1103
4852630485263 0.456 37 .00 570
4852637415263 0.467 35 1.104e-06 550
51016427538649 0.465 32 7.057e-06 511
510864205108642 0.452 37 0o 799
51086427538642 0.472 29 1.196e-07 342
612432876541098 0.473 26 8.293e-07 224
612439806124398 0.454 33 00 782
61243987654398 0.478 23 3.091e-07 153
6124102876541028 0.468 31 2.055e-06 376
612410987654328 0.473 28 1.276e-06 342
6121110987654321 0.458 37 1.915e-07 1053
816345678910111213 0.475 27  9.990e-07 192
816341267891041213 0.472 24 1.165e-06 172
816311126789104 513 0.475 22 2.701e-07 69
816104567891011126 0.484 18 1.587e-08 31
8161045614821011126 0.469 26 3.628e-07 243
9186831214946 151012 0.472 23  6.065e-07 169
9186810121494681012 0.483 18 6.656e-08 39
9181383127911615105 0.476 24 7.940e-08 132
9181383121494615105 0.469 23 1.251e-07 199
10202121541410616 58 18 0.460 29  1.234e-05 662
1020912154710131658 11 0.478 22 1.951e-07 83
10209121541410616 58 11 0.476 21  1.996e-07 77
1224156416141210820189 0.474 20 1.003e-07 96
122415641621 123820189 0.461 25 1.865e-06 665
1224156111671217813189 0.482 18 1.481e-08 33
1224156111621 123813189 0.472 23 2.437e-07 148
1224156 18167121786 189 0.475 20 5.417e-08 79
1224156181614121086 189 0.479 20 5.566e-08 56



No comparable pairs

Figure 37: Partial order for the cyclic group polyhedron with n = 14,r =2

Table 67: Measures for the cyclic group polyhedron with n =14,r =7

Best-case Tight
Facet Adaptation Inequalities = Volume Shooting
1010101010101 0.378 60 oo 2320
1112223212121 0.480 19 3.701e-09 12
1212123112122 0.480 19 1.629e-08 13
1212123211221 0.480 19 3.701e-09 7
1212123212121 0.480 24 2.063e-08 63
1212123222111 0.480 19  5.922¢-09 13
1221123212121 0.480 19 4.812¢-09 12
1232345432321 0.475 20 6.066e-09 31
1234567123456 0.461 39 8.714e-06 492
1234567654321 0.461 24 1.906e-07 267
2212113212121 0.480 19 5.737e-09 12
2461357246135 0.461 39  6.156e-06 506
24681012149468105 0.471 27 2.129e-07 136
24681012149116835 0.468 25 3.422e-07 118
3214325234123 0.475 20 5.123e-08 21
3432125212343 0.475 20 3.989¢-08 17
3625147362514 0.461 39  3.953e-06 465
3652147412563 0.461 24 1.701e-06 276
3695811141069584 0.479 20 '4.434e-09 10
36912151821 1013165 811 0.470 28  7.122¢-07 142
36912151821171391284 0.467 22 3.932¢-08 59
4152637415263 0.461 39 2.235e-06 446
485961014481226 10 0.471 27 8.795e-07 112
4859610141185963 0.479 20 2.833e-09 : 10
481226101448596 10 0.471 26 4.619e-07 - 63
48129131721181512963 0.467 22 2.307e-08 82
5316427531642 0.461 39 9.756e-07 471
53861191412108642 0.468 25 5.761e-08 100
5416327236145 0.461 24 4.715e-06 258
5108649145386119 0.479 20 1.979¢-08 15
5108649141210864 2 0.471. 27 3:538¢-08 131
510156111621 123813 189 0.470 28 4.900e-07 159
510156111621121781349 0.473 26 1.265e-07 63
510 15 20 25 30 35 26 17 22 1318 9 0.471 22 3.242¢-08 42
6543217654321 0.461 39 * 2.465e-07 452
6541098146511398 0.479 20 1.804e-08 12
6541098146124102 8 0.471 26 2.801e-07 55
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Table 67: (cont’d)

1
D e 68

1.201e-07

Best-case - . Tight . -
Facet o Adaptation ~ Inequalities ~ Volume Shooting"
61241028146541098 0.471 27 5.564e-07 108
61211328146541098 0.468 25 8.447e-07 112
82104126148910456 0.471 .26 1.699e-07 59
8931156148910456 0.479 20 1.184e¢-08 18
89104561482311126 -0.468 25 4.931e-07 112
89104561482104126 0.471 27  3.233e-07 - 144
94681051424681012 0.471 26" 6.497e-07 - 58
941381712211611615105 0.473 26 3.516e-08 65
9116835149468105 0.479 20 6.694e-09 11
9018138312219461517 12 0.467 22 3.545e-07 69
918138312211611615105 0.470 28 1.503e-07 148
91813221726 3530252015105 0.471 22 9.742e-09 43
10621284143695811 0.468 25 1.637e-06 122
10621284141069584 0.471 27 1.441e-07 136
10695841410621284 0.471 26 7.322e-08 - 59
118596314481226 10 0.468 25  1.365e-06 103
1185161310214151296 17 0.473 26 4.340e-07 63
118516131021 181512963 0.470 28 5.518e-08 159
1210864214510864 9 0.471 26 3.649e-07 63
12171564921123813189 0.467 22 2.162e-07 80
13124179821612183915 0.467 22 6.196e-07 74
0131211109821 654 171615 0.473 26 3.177e-07 61
131211109821 6518 31615 0.470 28 1.347e-06 149
13 26 25 109 22 35 20 5 18 17 30 15 0471 22 8.503e-08 47
15931812621891741213 " 0.467 22 4.188e-07 73
15163185621 8910111213 0.470 28 9.953e-07 154
15161745621 8910111213 0473 26 2.340e-07 57
153017 18 520 3522 9 10 25 26 13 0.471 22 6.307e-08 55
17691215421 10131658 11 0.473 26  1.652e-07 59
17 20 9 26 15 18 35 10 13 30 5 22 25 0.471 22 2.391e-07 36
252253013 10351815269 2017 0.471 22 44

Figure 38: Partial order for the cyclic group polyhedron withn =14,r =7
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