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SUMMARY

The first result of this thesis is a generation theorem for bricks. A brick is a 3-

connected graph such that the graph obtained from it by deleting any two distinct vertices

has a perfect matching. The importance of bricks stems from the fact that they are build-

ing blocks of a decomposition procedure of Kotzig, and Lovász and Plummer. We prove

that every brick except for the Petersen graph can be generated from K4 or the prism by

repeatedly applying certain operations in such a way that all the intermediate graphs are

bricks. We use this theorem to prove an exact upper bound on the number of edges in a

minimal brick with given number of vertices and to prove that every minimal brick has at

least three vertices of degree three.

The second half of the thesis is devoted to an investigation of graphs that admit Pfaffian

orientations. We prove that a graph admits a Pfaffian orientation if and only if it can be

drawn in the plane in such a way that every perfect matching crosses itself even number of

times. Using similar techniques, we give a new proof of a theorem of Kleitman on the parity

of crossings in drawings of K2j+1 and K2j+1,2k+1 and develop a new approach to Turan’s

problem of estimating crossing number of complete bipartite graphs.

We further extend our methods to study k-Pfaffian graphs and generalize a theorem

by Gallucio, Loebl and Tessler. Finally, we relate Pfaffian orientations and signs of edge-

colorings and prove a conjecture of Goddyn that every k-edge-colorable k-regular Pfaffian

graph is k-list-edge-colorable. This generalizes a theorem of Ellingham and Goddyn for

planar graphs.

viii



CHAPTER I

INTRODUCTION

In this chapter we give an overview of the problems we will be addressing and of the main

results of this dissertation. Terminology and notation are introduced.

1.1 Perfect Matchings and Bricks

We adopt the definition of a graph from the book by Bondy and Murty [5], except we do

not allow loops. A graph G is an ordered triple (V (G), E(G), ψG) consisting of a finite

non-empty set V (G) of vertices, a finite set E(G), disjoint from V (G), of edges, and an

incidence function ψG that associates with each edge an unordered pair of distinct vertices

of G. We say that a graph is simple if ψG is injective.

If e ∈ E(G) and ψG(e) = {u, v} we say that the edge e joins vertices u and v and

frequently write e = uv. We say that vertices u and v are adjacent if they are joined by an

edge. We say that an edge e is incident with v and that e covers v.

The graph theoretical terminology we will be using is fairly standard and to avoid

getting bogged down in the definitions we refer the reader to the book of Diestel [11] for the

definitions of connectivity, paths, cycles, components, etc. We use “\” for edge and vertex

deletion and “− ” for set-theoretic difference. The cardinality of a set X is denoted by |X|,
and the symmetric difference of sets X and Y is denoted by X4Y .

A perfect matching is a set of edges in a graph that covers every vertex exactly once.

Let M(G) or M, if the graph is understood from the context, denote the set of all perfect

matchings of a graph G. Properties of this set are the main focus of this dissertation. A

brief exposition of the known results in this area follows. See [28] for a comprehensive

overview of matching theory.

The fundamental result of Tutte [53] describes the graphs for which M is non-empty.

Theorem 1.1.1. A graph G has a perfect matching if and only if for every S ⊆ V (G) the
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number of odd components in G \ S is less then or equal to |S|.

In graphs with perfect matchings one can define different objects that describe the

structure of M from different points of view. Let the perfect matching polytope of a graph

PM(G) be defined as the convex hull of incidence vectors of perfect matchings. A famous

theorem of Edmonds [13] gives a description of this polytope. To state this result we need

to give another definition.

A cut in a graph G is a set δ(S) of all edges joining vertices of S to vertices of V (G)−S

for some non-empty S ( V (G). We say that a cut is odd if S and V (G) − S have odd

cardinality and we say that a cut is trivial if S or V (G)− S contains only one vertex.

Theorem 1.1.2. Let G be a graph with V (G) even. A vector x ∈ RE(G) lies in PM(G) if

and only if it satisfies the following constraints:

(i) x ≥ 0;

(ii) x(C) = 1 for every trivial cut C;

(iii) x(C) ≥ 1 for every odd cut C.

We say that an odd cut C in a graph G is tight if every perfect matching of G contains

exactly one edge in it. Clearly every trivial cut is tight. Let us denote by lin(M) the linear

hull of the incidence vectors of perfect matchings. Then x(C) = x(D) for every x ∈ lin(M)

and two tight cuts C and D in G. It turns out that there are no other constraints.

Theorem 1.1.3. [31] Let G be a graph with V (G) even. A vector x ∈ RE(G) lies in lin(M)

if and only if x(C) = x(D) for every two tight cuts C and D in G.

When investigating the structure of M it suffices to restrict our attention to graphs in

which every edge belongs to a perfect matching. We say that such graphs are matching-

covered or 1-extendable.

One might naturally be interested in the dimension of PM(G) or lin(M) for a graph G.

Tight cuts play an important role in this problem. Using notation from [28] let us denote,

for S ⊆ V (G), by G× S the graph obtained from G by contracting S to a single point.

2



Lemma 1.1.4. [28] Let G be a matching-covered graph. Let (S1, S2) be a partition of V (G)

such that C = δ(S1) = δ(S2) is a tight cut. Then

dimPM(G× S1) + dimPM(G× S2) = dimPM(G) + |C| − 1.

It turns out that many important properties of M(G) can be read off from M(G1) and

M(G2), where G1 = G × S, G2 = G × (V (G) − S) and C = δ(S) is a tight cut. If C is

non-trivial then |V (G1)| < |V (G)| and |V (G2)| < |V (G)|. We say that G decomposes along

C into G1 and G2. We can apply this decomposition procedure repeatedly until all the

resulting graphs have no non-trivial tight cuts and reconstruct properties of M(G) (such

as dim PM(G)) from the corresponding properties of these resulting graphs. This tight cut

decomposition procedure is due to Kotzig, and Lovász and Plummer [28].

This motivates the study of the graphs that have no non-trivial tight cuts. There are

two such classes of graphs. A brick is a 3-connected bicritical graph, where a graph G

is bicritical if G\u\v has a perfect matching for every two distinct vertices u, v ∈ V (G).

A brace is a connected bipartite graph such that every matching of size at most two is

contained in a perfect matching.

Theorem 1.1.5. [12, 29] A matching covered graph has no non-trivial tight cuts if and

only if it is either a brick or a brace.

Therefore the tight cut decomposition procedure decomposes every matching-covered

graph into bricks and braces. Moreover, except for parallel edges, the result of such a

decomposition does not depend on our choice of non-trivial tight cuts during the process.

Theorem 1.1.6. [29] The result of any two tight cut decomposition procedures of the same

graph is the same list of bricks and braces, up to multiplicity of edges.

Let us now return our attention to the dimension of perfect matching polytope.

Theorem 1.1.7. [12] The dimension of the perfect matching polytope of a connected

matching-covered bipartite graph G is |E(G)| − |V (G)|+ 1.

The dimension of the perfect matching polytope of a brick G is |E(G)| − |V (G)|.

3



Finally, the next theorem gives the dimension of the perfect matching polytope of a

general matching-covered graph.

Theorem 1.1.8. [12] The dimension of the perfect matching polytope of a matching-covered

graph G is

|E(G)| − |V (G)|+ 1− b,

where b is the number of bricks in the tight cut decomposition of G.

Note that Theorem 1.1.8 is an immediate corollary of Lemma 1.1.4 and Theorem 1.1.7.

The dimension of lin(M) can be calculated in a similar fashion.

Theorem 1.1.9. [12] The dimension of the linear hull of perfect matchings in a matching

covered graph G is |E(G)| − |V (G)|+ 2− b.

Let the matching lattice, lat(M), be the set of all linear combinations with integer co-

efficients of the incidence vectors of perfect matchings. The problem of describing lat(M)

remained unsolved longer than the analogous problems for PM(G) and lin(M). The ana-

logue of Lemma 1.1.4 holds, and the problem reduces to describing lat(M) for bricks and

braces. In [27] Lovász resolved the problem for braces.

Theorem 1.1.10. If G is a brace, then lat(M) consists of all vectors x ∈ ZE(G) such that

x(δ(v)) = x(δ(v′)) for every two vertices v, v′ ∈ V (G).

Theorem 1.1.10 implies that for braces (and therefore for all bipartite graphs) lat(M)

= lin(M) ∩ ZE(G). This is a natural characterization, but, unfortunately, it does not hold

for bricks. The Petersen graph is a counterexample. Consider the incidence vector x of the

edge set of two vertex disjoint cycles of length five in the Petersen graph (see Figure 1).

Then x ∈lin(M) ∩ ZE(G) by Theorem 1.1.3, but x 6∈ lat(M) as every perfect matching in

the Petersen graph has even number of edges in common with every cycle of length five.

However, Lovász [29] proved the following deep result.

Theorem 1.1.11. Let G be a brick other than the Petersen graph. Then lat(M) consists

precisely of all vectors x ∈ ZE(G) such that x(δ(v)) = x(δ(v′)) for every two vertices v, v′ ∈
V (G).

4
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Figure 1: An integer valued vector that lies in lin(M), but not in lat(M)

Many problems of interest concerning perfect matchings are reduced to bricks in similar

fashion via the tight cut decomposition procedure. One such problem is described in detail

in the next section. Thus understanding the properties of bricks is important.

In Chapter 2 we prove a “splitter theorem” for bricks. More precisely, we show that

if a simple brick H is a “matching minor” of a simple brick G, then, except for a few

well-described exceptions, a graph isomorphic to H can be obtained from G by repeatedly

applying a certain operation in such a way that all the intermediate graphs are bricks

and have no parallel edges. The operation is as follows: first delete an edge, and for every

vertex of degree two that results contract both edges incident with it. Precise definitions and

statements are given in Section 2.1. This theorem generalizes a recent result of de Carvalho,

Lucchesi and Murty [7], and immediately implies Theorem 1.1.11.

In Chapter 3 we apply the results of Chapter 2 to prove a generating theorem for minimal

bricks. Such a theorem is preferable to theorems in Chapter 2 for computational purposes.

We also prove two corollaries of this generating theorem. The first one is an exact upper

bound for the number of edges in a minimal brick. The second one establishes the fact that

every minimal brick has at least three vertices of degree three. The conjecture of Lovász

that every minimal brick has at least one such vertex was recently settled by de Carvalho,

Lucchesi and Murty [7].
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Our motivation for generating bricks came from Pfaffian orientations: another matching-

related problem that can be reduced to bricks. An overview of the history of the problem

and our results occupies the remainder of the introduction.

1.2 Pfaffian Orientations: History

Another property of M one might want to compute is its cardinality. Unfortunately the

problem of counting perfect matchings in a bipartite graphs is equivalent to the problem

of computing the permanent of a (0, 1)-matrix, which is known to be ]P -complete [56].

However, if a graph has an orientation satisfying certain properties described below then

the problem can be solved in polynomial time.

In a directed graph we denote by uv an edge directed from u to v. A labeled graph or

digraph is a graph or digraph with vertex-set {1, 2, . . . , n} for some n. Let G be a directed

labeled graph and let M = {u1v1, u2v2, . . . , ukvk} be a perfect matching of G. Define the

sign of M to be the sign of the permutation




1 2 3 4 . . . 2k − 1 2k

u1 v1 u2 v2 . . . uk vk


 .

Note that the sign of a perfect matching is well-defined as it does not depend on the order

in which the edges are listed. We say that a labeled graph G is Pfaffian if there exists

an orientation D of G such that the signs of all perfect matchings in D are positive, in

which case we say that D is a Pfaffian orientation of G. An unlabeled graph G is Pfaffian

if it is isomorphic to a labeled Pfaffian graph. It is well-known and easy to verify that

in this case every labeling of G is Pfaffian. Pfaffian orientations have been introduced by

Kasteleyn [19, 20, 21], who demonstrated that one can enumerate perfect matchings in a

Pfaffian graph in polynomial time. He proved the following.

Theorem 1.2.1. [21] Every planar graph is Pfaffian.

We say that an n × n matrix A(D) = (aij) is a skew adjacency matrix of a directed

6



labeled graph D with n vertices if

aij =





1 if ij ∈ E(D),

−1 if ji ∈ E(D),

0 otherwise.

Let A be a skew-symmetric 2n× 2n matrix. For each partition

P = {{i1, j1}, {i2, j2}, . . . , {in, jn}}

of the set {1, 2, . . . , 2n} into pairs, define

aP = sgn




1 2 . . . 2n− 1 2n

i1 j1 . . . in jn


 ai1j1 . . . ainjn .

Note that aP is well defined as it does not depend on the order of the pairs in the partitions

nor on the order in which the pairs are listed. The Pfaffian of the matrix A is defined by

Pf(A) =
∑

P

aP ,

where the sum is taken over all partitions P of the set {1, 2, . . . , 2n} into pairs. Note that if

D is a Pfaffian orientation of a labeled graph G then Pf(A(D)) is equal to the number of

perfect matchings in G. One can evaluate the Pfaffian efficiently using the following identity

from linear algebra: for a skew-symmetric matrix A

det(A) = (Pf(A))2.

Thus the number of perfect matchings, and more generally the generating function of perfect

matchings of a Pfaffian graph, can be computed in polynomial time.

The problem of recognizing Pfaffian bipartite graphs is equivalent to many problems of

interest outside graph theory, eg. the Pólya permanent problem [39], the even circuit prob-

lem for directed graphs [57], or the problem of determining which real square matrices are

sign non-singular [22], where the latter has applications in economics [44]. Two satisfactory

solutions of this problem are known.

The complete bipartite graph K3,3 is not Pfaffian. Each edge of K3,3 belongs to exactly

two perfect matchings and therefore changing an orientation of any edge does not change

7



Figure 2: The Heawood graph

the parity of the number of perfect matchings with negative sign. One can easily verify that

for some (and therefore for every) orientation of K3,3 this number is odd.

We say that a graph G′ is an even subdivision of a graph G if G′ is obtained from G by

repeatedly replacing edges of G by paths of odd length. A graph is Pfaffian if and only if

every even subdivision of it is Pfaffian. We say that J is a central subgraph of G if G\V (J)

has a perfect matching. The property of being Pfaffian is closed under taking central

subgraphs. Little [24] gave the following characterization of Pfaffian bipartite graphs.

Theorem 1.2.2. A bipartite graph is Pfaffian if and only if it does not contain an even

subdivision of K3,3 as a central subgraph.

Recently several shorter proofs of Theorem 1.2.2 were obtained. See [9, 35, 48].

Another, structural characterization of Pfaffian bipartite graphs was given by Robertson,

Seymour and Thomas [41] and independently by McCuaig [30]. To state this result we need

to introduce some definitions from [41]. Let G0 be a graph, let C be a central cycle in G0 of

length four, and let G1, G2 be two subgraphs of G0 such that G1 ∪G2 = G0, G1 ∩G2 = C,

V (G1)− V (G2) 6= ∅ and V (G2)− V (G1) 6= ∅. Let G be obtained from G0 by deleting some

(possibly none) edges of C. Then we say that G is a 4-sum of G1 and G2. The Heawood

graph is the bipartite graph which is the incidence graph of the Fano plane (see Figure 2).

8



(a)

(b)

Figure 3: (a) Cubeplex, (b) Twinplex.

Theorem 1.2.3. A brace is Pfaffian if and only if either it is isomorphic to the Hea-

wood graph, or it can be obtained from planar braces by repeated application of the 4-sum

operation.

One of the more important aspects of Theorem 1.2.3 is the fact that Robertson, Seymour

and Thomas [41] use it to design a polynomial-time algorithm to decide if a bipartite graph

is Pfaffian.

In [15] Fischer and Little extend Theorem 1.2.2 to characterize near-bipartite Pfaffian

graphs. A matching-covered non-bipartite graph G is near-bipartite if there exist e, f ∈
E(G) such that G\{e, f} is matching-covered and bipartite. A graph G is said to be reducible

to a graph H if H can be obtained from G by a sequence of odd cycle contractions. It is

shown in [26] that the property of being Pfaffian is closed under such reductions. Cubeplex

and twinplex are particular graphs on 12 vertices (see Figure 3).

Theorem 1.2.4. [15] A near-bipartite graph is Pfaffian if and only if it contains no central

9



A1

An-1A2
An

A3 A4

B1

B2

Bn-2

Figure 4: Dense Pfaffian brick

subgraph reducible to an even subdivision of K3,3, cubeplex or twinplex.

The problem of characterizing general Pfaffian graphs is wide open. We will return to

it.

1.3 Pfaffian Orientations: Our Results

By [25, 57] a graph G is Pfaffian if and only if every brick and every brace in its tight cut

decomposition is Pfaffian. This fact motivated our research on generating bricks.

However, we have discovered substantial obstructions to implementing both the struc-

tural approach of Theorem 1.2.3 and the “excluded minor” approach of Theorems 1.2.2 and

1.2.4.

We have found a family of Pfaffian bricks Hn on 2n − 2 vertices and (n2 + 5n − 12)/2

edges that have Kn as a subgraph, which we will now describe. Let V (Hn) = {A1, A2, . . .

An, B1,B2,. . . , Bn−2}. Let the vertices A1, A2, . . . , An form a clique and let Bi be joined by

an edge to A1, Ai+1 and Ai+2 for every 1 ≤ i ≤ n− 2 (see Figure 4). It is easy to see that

Hn is a brick and we will soon see that Hn is Pfaffian.

The existence of these examples implies that most likely there is no structural charac-

terization of Pfaffian bricks similar to Theorem 1.2.3, because such a characterization would

imply a linear upper bound on the number of edges in Pfaffian bricks.

We have also found an infinite family of bricks, which are minimally non-Pfaffian with
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respect to taking central subgraphs and reductions. In fact, this family contains exponen-

tially many elements with given number of vertices. This family obstructs the approach

suggested by Theorems 1.2.2 and 1.2.4.

In Chapter 4 we obtain a characterization of Pfaffian graphs in terms of their drawings

(with crossings) in the plane. Drawings and crossings are formally defined in Section 4.1,

but the definitions are fairly intuitive.

Theorem 1.3.1. A graph is Pfaffian if and only if it can be drawn in the plane in such a

way that every perfect matching crosses itself an even number of times.

It is easy to see using Theorem 1.3.1 that the bricks Hn described above are Pfaffian.

Indeed, no two edges that belong to the same perfect matching cross in the drawing depicted

on Figure 4 (vertices B1,B2,. . . , Bn−2 form an independent set and therefore every perfect

matching contains exactly one edge joining two of the vertices A1, A2, . . . , An).

We prove Theorem 1.3.1 as a corollary of a general, but technical result about parities

of crossings in “T -joins” in different drawings of the same graph. In Section 4.4 we take

a slight detour from our main objective and demonstrate other applications of this result.

We give a new proof of a theorem of Kleitman [23] on the parity of crossings in drawings

of K2j+1 and K2j+1,2k+1. We also give a purely combinatorial reformulation of the famous

Turan’s brickyard problem [52] and prove the uniqueness of the drawing of the Petersen

graph which minimizes the number of crossings.

There are several ways to generalize Pfaffian graphs and Theorem 1.3.1.

In Chapter 5 we consider k-Pfaffian graphs. For a labeled graph G, an orientation D of G

and a perfect matching M of G, denote the sign of M in the directed graph corresponding

to D by D(M). We say that a labeled graph G is k-Pfaffian if there exist orientations

D1, D2, . . . , Dk of G and real numbers α1, α2, . . . , αk, such that for every perfect matching

M of G
k∑

i=1

αiDi(M) = 1.

Clearly a graph is Pfaffian if and only if it is 1-Pfaffian. The number of perfect matchings

in a k-Pfaffian graph is equal to
∑k

i=1 αiPi, where Pi is the Pfaffian of the skew-symmetric
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matrix associated with Di. Therefore if D1, D2, . . . , Dk and α1, α2, . . . , αk are given one can

enumerate perfect matchings in a k-Pfaffian graph efficiently.

The following result was mentioned by Kasteleyn [20] and proved by Galluccio and

Loebl [16] and independently by Tesler [51].

Theorem 1.3.2. Every graph that can be embedded on an orientable surface of genus g is

4g-Pfaffian.

We prove that a graph is 4-Pfaffian if and only if it can be drawn on the torus in such

a way that every perfect matching crosses itself an even number of times. We also prove

that 3-Pfaffian graphs are Pfaffian and that 5-Pfaffian graphs are 4-Pfaffian. For k > 5 we

prove partial results (including a generalization of Theorem 1.3.2) and state conjectures.

Another way to generalize Pfaffian orientations is motivated by the list-edge coloring

conjecture. A graph G is called k-list-colorable if for every set system {Sv : v ∈ V (G)} such

that |Sv| = k there exists a proper vertex coloring c with c(v) ∈ Sv for every v ∈ V (G).

Not every k-colorable graph is k-list colorable. A classic example is K3,3 with bipartition

(A,B) and {Sv : v ∈ A} = {Sv : v ∈ B} = {{1, 2}, {1, 3}, {2, 3}}.
A graph is called k-list-edge-colorable if for every set system {Se : e ∈ E(G)} such

that |Se| = k there exists a proper edge coloring c with c(e) ∈ Se for every e ∈ E(G).

The following famous list-edge-coloring conjecture was suggested independently by various

researchers and first appeared in print in [4].

Conjecture 1.3.3. Every k-edge-colorable graph is k-list-edge-colorable.

In a k-regular graph there is a way to define a sign for every k-edge coloring. By a

beautiful and powerful argument of Alon and Tarsi [1], the list-edge-coloring conjecture

holds for all k-regular k-edge-colorable graphs in which all the k-edge colorings have the

same sign. Ellingham and Goddyn [14] proved using this technique that the list-edge-

coloring conjecture holds for every k-regular k-edge-colorable planar graph. Note that our

definition of graphs allows multiple edges and therefore there exist k-regular planar graphs

with k > 5.
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Goddyn conjectured that this result generalizes to Pfaffian graphs. In Chapter 6 we

generalize Pfaffian orientations to Pfaffian labelings and prove that Goddyn’s conjecture

holds for those graphs that admit Pfaffian labelings. We also give two characterizations of

graphs that admit a Pfaffian labeling: one in terms of bricks and braces in their tight cut

decomposition, and another in terms of their drawings in the projective plane.

Finally, in Chapter 7 we discuss the possibilities of a structural characterization of

Pfaffian graphs and a polynomial time recognition algorithm. We outline possible directions

of further work.
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CHAPTER II

GENERATING BRICKS

In this chapter we prove a generating theorem for bricks. The material presented in this

chapter will also appear in [36].

All the graphs considered in this chapter are simple.

2.1 Introduction

The following well-known theorem of Tutte [54] describes how to generate all 3-connected

graphs, but first a definition. Let v be a vertex of a graph H, and let N1, N2 be a partition

of the neighbors of v into two disjoint sets, each of size at least two. Let G be obtained

from H\v by adding two vertices v1 and v2, where vi has neighbors Ni ∪ {v3−i}. We say

that G was obtained from H by splitting a vertex. Thus for 3-connected graphs splitting a

vertex is the inverse of contracting an edge that belongs to no triangle. A wheel is a graph

obtained from a cycle by adding a vertex joined to every vertex of the cycle.

Theorem 2.1.1. Every 3-connected graph can be obtained from a wheel by repeatedly ap-

plying the operations of adding an edge between two nonadjacent vertices and splitting a

vertex.

A graph is a minor of another if the first can be obtained from a subgraph of the second

by contracting edges. Seymour [46] extended Theorem 2.1.1 as follows.

Theorem 2.1.2. Let H be a 3-connected minor of a 3-connected graph G such that H is

not isomorphic to K4 and G is not a wheel. Then a graph isomorphic to G can be obtained

from H by repeatedly applying the operations of adding an edge between two nonadjacent

vertices and splitting a vertex.

Our objective is to prove an analogous theorem for bricks.
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We need a few definitions before we can describe it. Let G be a graph, and let v0 be

a vertex of G of degree two incident with the edges e1 = v0v1 and e2 = v0v2. Let H be

obtained from G by contracting both e1 and e2 and deleting all resulting parallel edges. We

say that H was obtained from G by bicontracting or bicontracting the vertex v0, and write

H = G/v0. Let us say that a graph H is a reduction of a graph G if H can be obtained from

G by deleting an edge and bicontracting all resulting vertices of degree two. By a prism

we mean the unique 3-regular planar graph on six vertices. The following is a generation

theorem of de Carvalho, Lucchesi and Murty [7].

Theorem 2.1.3. If G is a brick other than K4, the prism, and the Petersen graph, then

some reduction of G is a brick other than the Petersen graph.

Thus if a brick G is not the Petersen graph, then the reduction operation can be repeated

until we reach K4 or the prism. By reversing the process Theorem 2.1.3 can be viewed as

a generation theorem. It is routine to verify that Theorem 2.1.3 implies Theorem 1.1.11,

and that demonstrates the usefulness of Theorem 2.1.3. Our main theorem strengthens

Theorem 2.1.3 in two respects. (We have obtained our result independently of [7], but

later. We are indebted to the authors of [7] for bringing their work to our attention.) The

first strengthening is that the generation procedure can start at graphs other than K4 or

the prism, as we explain next. Let a graph J be a subgraph of a graph G. We say that

a graph H is a matching minor of G if H can be obtained from a central subgraph of G

by repeatedly bicontracting vertices of degree two. Thus if H can be obtained from G by

repeatedly taking reductions, then H is isomorphic to a matching minor of G. We will

denote the fact that G has a matching minor isomorphic to H by writing H ↪→ G. This is

consistent with our notation for embeddings, to be introduced in Section 2.4. Since every

brick has a matching minor isomorphic to K4 or the prism by [28, Theorem 5.4.11], , the

following implies Theorem 2.1.3.

Theorem 2.1.4. Let G be a brick other than the Petersen graph, and let H be a brick

that is a matching minor of G. Then a graph isomorphic to H can be obtained from G by

repeatedly taking reductions in such a way that all the intermediate graphs are bricks not
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isomorphic to the Petersen graph.

We say that a graph H is a proper reduction of a graph G if it is a reduction in such

a way that the bicontractions involved do not produce parallel edges. We would like to

further strengthen Theorem 2.1.4 by replacing reductions by proper reductions; such an

improvement is worthwhile, because in applications it reduces the number of cases that

need to be examined. Unfortunately, Theorem 2.1.4 does not hold for proper reductions,

but all the exceptions can be conveniently described. Let us do that now.

Let C1 and C2 be two vertex-disjoint cycles of length n ≥ 3 with vertex-sets {u1, u2,. . .,

un} and {v1, v2,. . . , vn} (in order), respectively, and let G1 be the graph obtained from the

union of C1 and C2 by adding an edge joining ui and vi for each i = 1, 2, . . . , n. We say

that G1 is a planar ladder. Let G2 be the graph consisting of a cycle C with vertex-set

{u1, u2,. . .,u2n} (in order), where n ≥ 2 is an integer, and n edges with ends ui and un+i for

i = 1, 2,. . . , n. We say that G2 is a Möbius ladder. A ladder is a planar ladder or a Möbius

ladder. Let G1 be a planar ladder as above on at least six vertices, and let G3 be obtained

from G1 by deleting the edge u1u2 and contracting the edges u1v1 and u2v2. We say that

G3 is a staircase. Let t ≥ 2 be an integer, and let P be a path with vertices v1, v2, . . . , vt in

order. Let G4 be obtained from P by adding two distinct vertices x, y and edges xvi and

yvj for i = 1, t and all even i ∈ {1, 2, . . . , t} and j = 1, t and all odd j ∈ {1, 2, . . . , t}. Let

G5 be obtained from G4 by adding the edge xy. We say that G5 is an upper prismoid, and

if t ≥ 4, then we say that G4 is a lower prismoid. A prismoid is a lower prismoid or an

upper prismoid. We are now ready to state our main theorem.

Theorem 2.1.5. Let H, G be bricks, where H is isomorphic to a matching minor of G.

Assume that H is not isomorphic to K4 or the prism, and G is not a ladder, wheel, staircase

or prismoid. Then a graph isomorphic to H can be obtained from G by repeatedly taking

proper reductions in such a way that all the intermediate graphs are bricks not isomorphic

to the Petersen graph.

If H is a brick isomorphic to a matching minor of a brick G and G is a ladder, wheel,

staircase or prismoid, then H itself is a ladder, wheel, staircase or prismoid, and can be
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obtained from a graph isomorphic to G by taking (improper) reductions in such a way that

all intermediate graphs are bricks. Thus Theorem 2.1.5 implies Theorem 2.1.4. (Well, this

is not immediately clear if the graph H from Theorem 2.1.4 is a K4 or a prism, but in those

cases the implication follows with the aid of the next theorem.)

As a counterpart to Theorem 2.1.5 we should describe the starting graphs for the gener-

ation process of Theorem 2.1.5. Notice that K4 is a wheel, a Möbius ladder, a staircase and

an upper prismoid, and that the prism is a planar ladder, a staircase and a lower prismoid.

Later in this section we show

Theorem 2.1.6. Let G be a brick not isomorphic to K4, the prism or the Petersen graph.

Then G has a matching minor isomorphic to one of the following seven graphs: the graph

obtained from the prism by adding an edge, the lower prismoid on eight vertices, the staircase

on eight vertices, the staircase on ten vertices, the planar ladder on ten vertices, the wheel

on six vertices, and the Möbius ladder on eight vertices.

McCuaig [30] proved an analogue of Theorem 2.1.5 for braces. To state his result we need

another exceptional class of graphs. Let C be an even cycle with vertex-set v1, v2, . . . , v2t in

order, where t ≥ 2is an integer and let G6 be obtained from C by adding vertices v2t+1 and

v2t+2 and edges joining v2t+1 to the vertices of C with odd indices and v2t+2 to the vertices

of C with even indices. Let G7 be obtained from G6 by adding an edge v2t+1v2t+2. We say

that G7 is an upper biwheel, and if t ≥ 3 we say that G6 is a lower biwheel. A biwheel is a

lower biwheel or an upper biwheel. McCuaig’s result is as follows.

Theorem 2.1.7. Let H, G be braces, where H is isomorphic to a matching minor of G.

Assume that if H is a planar ladder, then it is the largest planar ladder matching minor

of G, and similarly for Möbius ladders, lower biwheels and upper biwheels. Then a graph

isomorphic to H can be obtained from G by repeatedly taking proper reductions in such a

way that all the intermediate graphs are braces.

Actually, Theorem 2.1.7 follows from a version of our theorem stated in Section 2.11.

Let us now introduce terminology that we will be using in the rest of the thesis. Let

H, G, v0, v1, v2, e1, e2 be as in the definition of bicontraction. Assume that both v1 and v2
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have degree at least three and that they have no common neighbors except v0; then no

parallel edges are produced during the contraction of e1 and e2. Let v be the new vertex

that resulted from the contraction. If both v1 and v2 have degree at least three, then we

say that G was obtained from H by bisplitting the vertex v. We call v0 the new inner vertex

and v1 and v2 the new outer vertices.

Let H be a graph. We wish to define a new graph H ′′ and two vertices of H ′′. Either

H ′′ = H and u, v are two nonadjacent vertices of H, or H ′′ is obtained from H by bisplitting

a vertex, u is the new inner vertex of H ′′ and v ∈ V (H ′′) is not adjacent to u, or H ′′ is

obtained by bisplitting a vertex of a graph obtained from H by bisplitting a vertex, and u

and v are the two new inner vertices of H ′′. Finally, let H ′ = H ′′ + (u, v). We say that

H ′ is a linear extension of H. By the cube we mean the graph of the 1-skeleton of the

3-dimensional cube. Notice that the cube and K3,3 are bipartite, and hence are not bricks.

Using this terminology Theorem 2.1.5 can be restated in a mildly stronger form. It is easy

to check that if G′ is obtained from a brick G by bisplitting a vertex into new outer vertices

v1 and v2, then {v1, v2} is the only set X ⊆ V (G′) such that |X| ≥ 2 and G′\X has at least

|X| odd components. Thus a linear extension of a brick is a brick, and hence Theorem 2.1.8

implies Theorem 2.1.5.

Theorem 2.1.8. Let G be a brick other than the Petersen graph, and let H be a 3-connected

matching minor of G not isomorphic to K4, the prism, the cube, or K3,3. If G is not

isomorphic to H and G is not a ladder, wheel, biwheel, staircase or prismoid, then a linear

extension of H is isomorphic to a matching minor of G.

The main step in the proof of Theorem 2.1.8 is the following.

Theorem 2.1.9. Let G be a brick other than the Petersen graph, and let H be a 3-connected

matching minor of G. Assume that if H is a planar ladder, then there is no strictly larger

planar ladder L with H ↪→ L ↪→ G, and similarly for Möbius ladders, wheels, lower biwheels,

upper biwheels, staircases, lower prismoids and upper prismoids. If H is not isomorphic to

G, then some matching minor of G is isomorphic to a linear extension of H.

It is routine to verify that if G is a ladder, wheel, biwheel, staircase or prismoid, G′ is a
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linear extension of G, and H is a 3-connected matching minor of G not isomorphic to K4,

the prism, the cube, or K3,3, then G′ has a matching minor isomorphic to a linear extension

of H. Thus Theorem 2.1.9 implies Theorem 2.1.8, and we omit the details. The proof of

Theorem 2.1.9 will occupy the rest of the chapter. However, assuming Theorem 2.1.9 we

can now deduce Theorem 2.1.6.

Proof of Theorem 2.1.6, assuming Theorem 2.1.9. Let G be a brick not isomorphic to

K4, the prism or the Petersen graph. By [28], Theorem 5.4.11, G has a matching minor

M isomorphic to K4 or the prism. Since M is not bipartite, it is not a biwheel, a planar

ladder on 4k vertices, or a Möbius ladder on 4k + 2 vertices. Thus if a prismoid, wheel,

ladder or staircase larger than M is isomorphic to a matching minor of G, then G has a

matching minor as required for Theorem 2.1.6. Thus we may assume that the hypothesis

of Theorem 2.1.9 is satisfied, and hence a matching minor of G is isomorphic to a linear

extension of M . But K4 does not have any linear extensions, and the prism has, up to

isomorphism, exactly one, namely the graph obtained from it by adding an edge. This

proves Theorem 2.1.6.

Here is an outline of the chapter. First we need to develop some machinery; that

is be done in Sections 2.2, 2.3, and 2.4. In Section 2.5 we prove a first major step

toward Theorem 2.1.9, namely that the theorem holds provided a graph obtained from H

by bisplitting a vertex is isomorphic to a matching minor of G. Then in Section 2.6 we

reformulate our key lemma in a form that is easier to apply, and introduce several different

types of extensions. In Section 2.7 we use the 3-connectivity of G to show that at least one

of those extensions of H is isomorphic to a matching minor of G, and in Sections 2.8– 2.10

we gradually eliminate all the additional extensions. Theorem Theorem 2.1.9 is proved in

Section 2.10. Finally, in Section 2.11 we state a strengthening of Theorem 2.1.9 that can

be obtained by following the proof of Theorem 2.1.9 with minimal changes. We delegate

the strengthening to the last section, because the statement is somewhat cumbersome and

perhaps of lesser interest. Its applications include Theorem 2.1.9, Theorem 2.1.7 and a

generation theorem for a subclass of factor-critical graphs.
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A word about notation. If H is a graph, and u, v ∈ V (H) are distinct vertices, then

H + (u, v) or H + uv denotes the graph obtained from H by adding an edge with ends

u and v. If u and v are adjacent then H + uv = H. Now let u, v ∈ V (H) be adjacent.

By bisubdividing the edge uv we mean replacing the edge by a path of length three, say a

path with vertices u, x, y, v, in order. Let H ′ be obtained from H by this operation. We

say that x, y (in that order) are the new vertices. Thus y, x are the new vertices resulting

from subdividing the edge vu (we are conveniently exploiting the notational asymmetry for

edges). Now if w ∈ V (H)−{u}, then by H +(w, uv) we mean the graph H ′+(w, x). Notice

that the graphs H +(w, uv) and H +(w, vu) are different. In the same spirit, if a, b ∈ V (H)

are adjacent vertices of H with {u, v} 6= {a, b}, then we define H + (uv, ab) to be the graph

H ′ + (x, ab).

2.2 Octopi and Frames

Let H be a graph with a perfect matching, and let X ⊆ V (H) be a set of size k. If H\X
has at least k odd components, then X is called a barrier in H. The following is easy and

well-known.

Lemma 2.2.1. A brick has no barrier of size at least two.

Now if H and X are as above and H is a subgraph of a brick G, then X cannot be a barrier

in G. If H is a central subgraph of G, then we get the following useful outcome.

Lemma 2.2.2. Let G be a brick and let H be a subgraph of G. Let M be a perfect matching

of G\V (H) and let V (H) be a disjoint union of X, R1, R2, . . . , Rk, where k ≥ 2, |X| ≤ k and

|Ri| is odd for every i ∈ {1, 2, . . . , k}. Then there exist distinct integers i, j ∈ {1, 2, . . . , k}
and an M -alternating path joining a vertex in Ri to a vertex in Rj.

Proof. Suppose for a contradiction that the lemma is false, and let H be a maximal subgraph

of G that satisfies the hypothesis of the lemma, but not the conclusion.

By Lemma 2.2.1 there exists an edge e1 ∈ E(G) with one end v ∈ Ri for some i ∈
{1, 2, . . . , k} and the other end u ∈ V (G) − Ri − X. Without loss of generality we may

assume that i = 1. If u ∈ V (H) then the path with edge-set {e1} is as required. Thus
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u 6∈ V (H), and hence u is incident with an edge e2 ∈ M . Let w be the other end of e2;

then clearly w 6∈ V (H). Let X ′ = X ∪ {u}, Rk+1 = {w}, M ′ = M − {e2} and construct

H ′ by adding the vertices u and w and edges e1 and e2 to H. By the maximality of H the

graph H ′, matching M ′ and sets X ′, R1, R2, . . . , Rk+1 satisfy the conclusion of the lemma.

Thus for some distinct integers i, j ∈ {1, 2, . . . , k + 1} there exists an M ′-alternating path

P joining a vertex in Ri to a vertex in Rj . Since H does not satisfy the conclusion of the

lemma we may assume that j = k + 1. Let P ′ be the graph obtained from P by adding the

edges e1 and e2. If i > 1, then P ′ is a path and satisfies the conclusion of the lemma.

Thus we may assume that i = 1. Let H ′′ = H ∪ P ′, M ′′ = M − E(P ′) and R′
1 =

R1 ∪ V (P ′). Then the graph H ′′, matching M ′′ and sets X,R′
1, R2, . . . , Rk also satisfy the

conclusion of the lemma by the maximality of H. Thus we may assume that there is an

M ′′-alternating path Q joining a vertex in R′
1 to a vertex in Rj for some j ∈ {2, 3, . . . , k}.

If neither of the ends of Q lies in V (P ′) then Q is a required path for H. If one of them,

say x, is in V (P ′), we add to Q one of the subpaths of P ′ with end x to obtain a required

path.

In applications we will need a stronger conclusion and H will have a special structure,

which we now introduce. Let H be a graph, let C be a subgraph of H with an odd number

of vertices, and let P1, P2, ..., Pk be odd paths in H. For i = 1, 2, ..., k let ui and vi be the

ends of Pi. If for i = 1, 2, ..., k we have ui ∈ V (C) and V (Pi)∩ (V (C)∪⋃
j 6=i V (Pj)) = {ui}

we say that Ω = (C,P1, P2, . . . , Pk) is an octopus in H. We say that the paths P1, P2, ..., Pk

are the tentacles of Ω, C is the head of Ω and vi are the ends of Ω. We define the graph of Ω

to be C ∪P1 ∪P2 ∪ · · · ∪Pk, and by abusing notation slightly we will denote this graph also

by Ω. We say that a matching M in G is Ω-compatible if every tentacle is M -alternating

and no vertex of C is incident to an edge of M . See Figure 5.

Let G be a graph, and let k ≥ 1 be an integer. We say that the pair (F , X) is a frame

in G if X ⊆ V (G) and F = {Ω1, Ω2, . . . ,Ωk} satisfy

(1) Ω1, Ω2, . . . , Ωk are octopi,

(2) for i = 1, 2, . . . , k the ends and only the ends of Ωi belong to X,
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Figure 5: An octopus Ω and an Ω-compatible matching

(3) for distinct i, j ∈ {1, 2, . . . , k}, V (Ωi) ∩ V (Ωj) ⊆ X,

(4) |X| ≤ k.

We say that Ω1,Ω2, . . . , Ωk are the components of (F , X). We define the graph of (F , X)

to be Ω1 ∪ Ω2 ∪ . . . ∪ Ωk, and denote it by F , again abusing notation. The following is the

main result of this section. We say that a graph H is M -covered if a subset of M is a perfect

matching of H.

Theorem 2.2.3. Let G be a brick, let M be a matching in G, and let (F , X) be a frame in G

such that G \ (V (F)∪X) is M -covered and M is Ω-compatible for each Ω ∈ F . Then there

exists an M -alternating path P joining vertices of the heads of two different components

Ω1,Ω2 of (F , X). Moreover, there is an edge e ∈ E(P )−M such that the two components

of P \ e can be numbered P1 and P2 in such a way that V (Pi)∩ V (F) ⊆ V (Ωi) for i = 1, 2.

Proof. We say that a subpath Q of a path P is an F-jump in P if the ends of Q belong to

different components of F and Q is otherwise disjoint from F . Let F = {Ω1, Ω2, . . . ,Ωk} and

let Ci denote the vertex-set of the head of Ωi. By Lemma 2.2.2 applied to X,C1, C2, . . . , Ck

there exists an M -alternating path joining vertices of the heads of two different components

of (F , X). Choose such path P with the minimal number of F-jumps in it. We prove that

P satisfies the requirements of the theorem.

Let v1 ∈ C1 and v2 ∈ C2 be the ends of P . Since P is M -alternating and M is Ωi-

compatible for all i = 1, 2, . . . , k, it follows that no internal vertex of P belongs to Ci.

Suppose that P ∩ T 6= ∅ for some tentacle T of Ωi, where i ≥ 3. Let {v0} = V (T ) ∩Ci and
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let v ∈ V (P ) ∩ V (T ) be chosen so that T [v, v0] is minimal. For some j ∈ {1, 2} the path

P [vj , v] ∪ T [v, v0] is M -alternating and contradicts the choice of P . Thus V (P ) ∩ V (F) ⊆
V (Ω1) ∪ V (Ω2).

Define a linear order on V (P ) so that v Â v′ if and only if v′ ∈ P [v1, v]. Let P0 be an

F-jump in P with ends u1 ∈ V (Ω1) and u2 ∈ V (Ω2) chosen so that u1 Â u2 and P [v1, u2] is

minimal. Equivalently we can define P0 as a second F-jump we encounter if we traverse P

from v1 to v2. If such an F-jump P0 in P does not exist then P contains a unique F-jump.

Let e 6∈ M be an edge of this unique F-jump; then P and e satisfy the requirements of the

theorem. Therefore we may assume the existence of P0.

For i ∈ {1, 2} let Ti be the tentacle of Ωi such that ui ∈ V (Ti) and let {wi} = V (Ti)∩Ci.

Let s1 ∈ V (T1) ∩ V (P ) be chosen so that s1 Â u1 and T1[s1, w1] is minimal. Note that

s1 6= w1, because the only vertex in V (P ) ∩ C1 is v1 and s1 Â u1 Â v1. Let s1t1 be the

edge of M incident to s1. We have s1t1 ∈ E(T1 ∩ P ) as both T1 and P are M -alternating,

s1 ∈ T1[t1, w1] by the choice of s1 and s1 Â t1 as otherwise the path T1[w1, s1] ∪ P [s1, v2]

contradicts the choice of P . Let s2 ∈ V (T2)∩V (P ) be chosen so that s2 ≺ s1 and T2[s2, w2]

is minimal. Let s2t2 be the edge of M incident to s2. We again have s2t2 ∈ T2 ∩ P ,

s2 ∈ T2[t2, w2] and s2 ≺ t2, as otherwise the path P [v1, s2]∪T2[s2, w2] contradicts the choice

of P .

Consider P ′ = P [s2, s1]. By the choice of s1 we have V (P [u2, s1])∩V (T1[s1, w1]) = {s1}.
Also if s2 ≺ u2 we have V (P [s2, u2] ∩ V (Ω1) = ∅ by the choice of P0. It follows that

V (P ′) ∩ V (T1[s1, w1]) = {s1}. By the choice of s2 we have V (P ′) ∩ V (T2[s2, w2]) = {s2}.
Therefore T2[w2, s2] ∪ P ′ ∪ T1[w1, s1] is an M -alternating path contradicting the choice of

P .

2.3 Two Paths Meeting

In this section we study the following problem. Let G be a graph, let M be a matching,

and let P1 and P2 be two M -alternating paths. In the applications we will be permitted to

replace the matching M by a matching M ′ saturating the same set of vertices, and to replace

the paths P1 and P2 by a pair of M ′-alternating paths with the same ends. Thus we are
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interested in graphs that are minimal in the sense that there is no replacement as above upon

which an edge of G may be deleted. The main result of this section, Theorem 2.3.3 below,

asserts that there are exactly four types of minimally intersecting pairs of M -alternating

paths, three of which are depicted in Figure 2.3. We start with two auxiliary lemmas.

Lemma 2.3.1. Let M be a matching in G, let P be an M -alternating path with ends x

and y, let C be an M -alternating cycle such that x and y have degree at most two in P ∪C

and let M ′ = M4E(C). Then there exists an M ′-alternating path Q with ends x and y

satisfying E(Q) ⊆ E(P )4E(C).

Proof. Let H be the subgraph of G with vertex-set V (G) and edge-set E(P )4E(C). Then

x, y have degree one in H, every other vertex of H has degree zero or two, and if it has

degree two, then it is incident with an edge of M ′. Thus some component of H is an

M ′-alternating path joining x and y, as desired.

Lemma 2.3.2. Let M be a matching in G, let P be an M -alternating path with ends w and

v, and let R be a path with ends v and z such that R \ v is M -covered, v is incident with

no edge of M , and w 6∈ V (R). Let M ′ = M4E(R). Then there exists an M ′-alternating

path Q with ends w and z satisfying E(Q) ⊆ E(P )4E(R).

Proof. This follows similarly as Lemma 2.3.1 by considering the graph with edge-set

E(P )4E(R).

Let G be a graph, let M be a matching in G, and let P and Q be two M -alternating

paths in G. For the purpose of this definition let a segment be a maximal subpath of P ∩Q,

and let an arc be a maximal subpath of Q with no internal vertex or edge in P . We say

that P and Q intersect transversally if either they are vertex-disjoint, or there exist vertices

q0, q1, . . . , q7 ∈ V (Q) such

(1) q0, q1, . . . , q7 occur on Q in the order listed, and q0 and q7 are the ends of Q,

(2) q2, q1, q3, q4, q6, q5 all belong to P and occur on P in the order listed,

(3) if q0 ∈ V (P ), then q0 = q1 = q2 = q3, and otherwise Q[q0, q1] is an arc,
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(4) if q7 ∈ V (P ), then q7 = q6 = q5 = q4, and otherwise Q[q6, q7] is an arc,

(5) Q[q3, q4] is a segment,

(6) either q1 = q2 = q3, or q1, q2, q3 are pairwise distinct, Q[q1, q2] is a segment, Q[q2, q3] is

an arc and q2 is not an end of P , and

(7) either q4 = q5 = q6, or q4, q5, q6 are pairwise distinct, Q[q5, q6] is a segment, Q[q4, q5] is

an arc and q5 is not an end of P .

It follows that the definition is symmetric in P and Q. There are four cases of transversal

intersection depending on the number of components of P ∩Q; the three cases when P and

Q intersect are depicted in Figure 2.3, where matching edges are drawn thicker. We shall

prove the following lemma.

Lemma 2.3.3. Let M be a matching in a graph G and let P1 and P2 be two M -alternating

paths, where Pi has ends si and ti. Assume that s1, s2, t1 and t2 have degree at most two

in P1 ∪ P2. Then there exist a matching M ′ saturating the same set of vertices as M and

two M ′-alternating paths Q1 and Q2 such that M4M ′ ⊂ E(P1) ∪ E(P2), Qi has ends si

and ti and Q1 and Q2 intersect transversally.

Unfortunately, for later application we need a more general, but less nice result, the

following. Please notice that it immediately implies Lemma 2.3.3 on taking r = t2.

Theorem 2.3.4. Let M be a matching in a graph G and let P1 and P2 be two M -alternating

paths, where Pi has ends si and ti. Assume that s1, s2, t1 and t2 have degree at most two in

P1 ∪ P2. Let r ∈ V (P2), and let P ′
2 = P2[s2, r]. Then one of the following conditions hold:

(1) There exist a matching M ′ saturating the same set of vertices as M and two M ′-

alternating paths Q1 and Q2 such that Qi has ends si and ti, M4M ′ ⊆ E(P1)∪E(P ′
2), Qi

has ends si and ti, Q1 ⊆ P1 ∪ P ′
2, and Q1 ∪Q2 is a proper subgraph of P1 ∪ P2,

(2) r 6= t2, and there exists an M -alternating path R ⊆ P1 ∪ P ′
2 with ends s2 and t1 such

that R and P1 intersect transversally,

(3) P ′
2 intersects P1 transversally.
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Figure 6: Three cases of transversal intersection.
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Proof. We may assume that G = P1 ∪ P2 and (1) does not hold. We shall refer to this as

the minimality of G.

We claim that P1 ∪ P ′
2 contains no M -alternating cycles. Suppose for a contradiction

there exists an M -alternating cycle C ⊆ P1 ∪ P ′
2. Let M ′ = M4E(C) and let Q1, Q2 be

the two M ′-alternating paths obtained by applying Lemma 2.3.1 to P1 and P2, respectively.

Since P1 and P2 are M -alternating and their union includes C, they either share an edge

of M ∩E(C), say e, or P1 and P2 have the same ends. In the later case replacing P2 by P1

contradicts the minimality of G, and so we may assume the former. Now Q1 ⊆ P1 ∪P ′
2 and

Q1 ∪Q2 is a subgraph of (P1 ∪ P2) \ e, contradicting the minimality of G.

For the purpose of this proof let us define an arc as a maximal subpath of P ′
2 that has

at least one edge or contains an end of P ′
2 and has no internal vertex or edge in P1. Define

segment as a maximal subpath of P1 ∩ P2. We say that two vertices of P1 have the same

biparity if their distance on P1 is even, and otherwise we say they have opposite biparity.

We claim that the ends of every arc have the same biparity. To see that, let P ′
2[s, t] be an

arc with ends of opposite biparity. There are two cases. Either both end-edges of P1[s, t]

belong to M , or both of them do not. If they do, then P1[s, t]∪P ′
2[s, t] is an M -alternating

cycle, and if they do not, then P ′
1, P2 contradict the minimality of G, where P ′

1 is obtained

from P1 by replacing the interior of P1[s, t] by P ′
2[s, t]. (Notice that the edge of P1[s, t]

incident with s does not belong to P ′
1 or P2.) This proves our claim that the ends of every

arc have the same biparity.

We may assume that there is an arc with both ends on P1, for otherwise (3) holds.

Let P ′
2[u0, v0] be such an arc. Since u0, v0 have the same biparity, exactly one end-edge of

P1[u0, v0] belongs to M , say the one incident with u0. Then the unique segment incident

with u0, say P1[u0, v1] = P ′
2[u0, v1] has the property that v1 lies between u0 and v0 on P1.

Let P ′
2[v1, u1] be the unique arc incident with v1. Then either u1 is an end of P ′

2, or u1, v1

have the same biparity, opposite to the biparity of u0, v0.

We claim that either u1 is an end of P ′
2, or u1 lies between v1 and v0 on P1. To prove

this claim we need to prove that neither u0 nor v0 lie between u1 and v1 on P1. To this

end suppose first that u0 lies between u1 and v1 on P1. Then P ′′
1 and P2 contradict the
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minimality of G, where P ′′
1 is obtained from P1 by replacing the interior of P1[u1, v0] by

P ′
2[u1, v0] (the edge of P1[v1, v0] incident with v1 does not belong to P ′′

1 ∪P2). Suppose now

that v0 lies between u1 and v1 on P1. Then P ′
2[v0, u1]∪P1[u1, v0] is an M -alternating cycle,

a contradiction. This proves that either u1 is an end of P ′
2, or u1 lies between v1 and v0 on

P1.

Now assume that P ′
2[u0, v0] is chosen so that P1[u0, v0] is maximal, and let u1, v1 be as in

the previous paragraph. If u1 is an end of P ′
2 we stop, and so assume that it is not. Recall

that u1, v1 have opposite biparity from u0, v0. Thus the unique segment incident with u1,

say P1[u1, v2] = P ′
2[u1, v2] has the property that v2 lies between v1 and u1 on P1. Now let

P ′
2[v2, u2] be the unique arc incident with v2. By the result of the previous paragraph either

u2 is an end of P ′
2, or u2 lies between v2 and v1 on P1. By arguing in this manner we arrive

at a sequence of vertices u0, v0, . . . , uk+1, vk+1 such that

(i)u0, v1, u2, v3, . . . , vk+1, . . . , u3, v2, u1, v0 occur on P1 in the order listed,

(ii)uk+1 is an end of P ′
2,

(iii)P ′
2[ui, vi] are arcs for i = 0, 1, . . . , k + 1, and

(iv)P1[ui, vi+1] are segments for i = 0, 1, . . . , k.

It follows that ui, vi have the same biparity and that their biparity depends on the parity of

i. Let P1[v0, v
′
0] be the unique segment incident with v0. Then v0 lies between v′0 and u0 on

P1. Let P ′
2[v

′
0, u

′
0] be the unique arc incident with v′0. The maximality of P1[u0, v0] and the

result of the previous paragraph imply that either u′0 is an end of P ′
2, or that u0, v0, v

′
0, u

′
0

occur on P1 in the order listed. In the latter case by an analogous argument there exists a

sequence of vertices u′0, v
′
0, . . . , u

′
k′+1, v

′
k′+1 such that

(i)u′0, v
′
1, u

′
2, v

′
3, . . . , v

′
k′+1, . . . , u

′
3, v

′
2, u

′
1, v

′
0 occur on P1 in the order listed,

(ii)u′k′+1 is an end of P2,

(iii)P ′
2[u

′
i, v

′
i] are arcs for i = 0, 1, . . . , k′ + 1, and

(iv)P1[u′i, v
′
i+1] are segments for i = 0, 1, . . . , k′.

Suppose r = t2. Then k = 0, for otherwise P1 and and the path obtained from P2 by
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replacing the interior of P2[v0, u1] by P1[v0, u1] contradict the minimality of G. Similarly,

either u′0 is an end of P2 or k′ = 0. Thus (3) holds.

Therefore we may assume r 6= t2. Suppose s2 6= u′0. Then without loss of generality we

assume s2 = uk+1. We define R1 = P ′
2[s2, uk] ∪ P1[uk, t1] and R2 = P ′

2[s2, vk] ∪ P1[vk, t1].

For some i ∈ {1, 2} Ri ⊆ P1 ∪ P ′
2 is an M -alternating path with ends s2 and t1 such that

Ri and P1 intersect transversally. Thus (2) holds.

It remains to consider the case when s2 = u′0 and uk+1 = r. Suppose k ≥ 1. We

claim that E(P1[vk+1, vk]∩P2) = ∅. Suppose for a contradiction P2[x, y] ⊆ P1[vk+1, vk] is a

segment, and let P2[x, y] be chosen so that P2[y, t2] is minimal. If x ∈ V (P1[vk, y]) define

Q2 = P2[s2, vk] ∪ P1[vk, x] ∪ P2[x, t2], and otherwise define Q2 = P2[s2, vk+1] ∪ P1[vk+1, x] ∪
P2[x, t2]. As E(P1[vk+1, vk]∩ P ′

2) = ∅ we see that Q2 is an M -alternating path. We replace

P2 with Q2 to contradict the minimality of G.

Now we claim E(P1[vk−1, uk] ∩ P2) = ∅. Again suppose P2[x, y] ⊆ P1[vk−1, uk] is a

segment, and let P2[x, y] be chosen so that P2[y, t2] is minimal. If x ∈ V (P1[vk−1, y]) define

Q2 = P2[s2, vk−1] ∪ P1[vk−1, x] ∪ P2[x, t2], and otherwise define Q2 = P2[s2, vk] ∪ P1[vk, x] ∪
P2[x, t2]. As E(P1[vk+1, vk] ∩ P2) = ∅ we see that Q2 is an M -alternating path. Again we

replace P2 with Q2 to contradict the minimality of G.

Now let Q2 = P2[s2, vk−1]∪P1[vk−1, uk]∪P2[uk, t2]. As E(P1[vk−1, uk]∩P2) = ∅ we see

that Q2 is an M -alternating path and replacing P2 with Q2 we once again contradict the

minimality of G. Thus k = 0 and (3) holds.

We deduce several corollaries of Theorem 2.3.4. Let Ω be an octopus in a graph G,

where Ω consists of two tentacles and a head C with V (C) = {v}. Then the graph of Ω is

a path. We say that Ω is a path octopus with head v. The head of a path octopus can be

moved along Ω in the sense that if v′ ∈ V (Ω) is at even distance from v in Ω, then there is

another path octopus with the same graph and head v′. The next lemma will use this fact.

Lemma 2.3.5. Let G be a graph, let Ω be a path octopus in G with head v and ends v1 and

v2, let z be the neighbor of v1 in Ω, let M be an Ω-compatible matching, and let P be an

M -alternating path in G\v1\v2 with ends v and w 6∈ V (Ω). Then there exist a path octopus
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Ω′ with head z and ends v1 and v2, an Ω′-compatible matching M ′, and a path P ′ with ends

z and w such that E(Ω′) ⊆ E(Ω ∪ P ), zv1 ∈ E(Ω′), v1 6∈ V (P ′), M coincides with M ′ on

G \ (V (P )∪V (Ω)), Ω∪P \V (Ω′ ∪P ′) is M ′-covered, and P ′ intersects Ω′\v1 transversally.

Proof. Since M is Ω-compatible, v is incident with no edge of M . Let R = Ω[z, v], let

M ′ = M4E(R), and let Ω′ be the octopus with graph Ω and head z. Then M ′ is an

Ω′-compatible matching. By Lemma 2.3.2 there exists an M ′-alternating path P ′ with ends

z and w such that E(P ′) ⊆ E(P )4E(R). By Lemma 2.3.3 we may assume, by replacing

the tentacle Ω′[z, v2] and path P ′, that P ′ intersects Ω′\v1 = Ω′[z, v2] transversally, as

desired.

Let P1, P2, P3 be odd paths in a graph H. For i = 1, 2, 3 let ui and vi be the ends of

Pi. If u1 = u2 = u3 and otherwise P1, P2, P3 are pairwise disjoint, then we say that the

octopus with tentacles P1, P2 and P3 and a head the graph with vertex-set {u1} is a triad

in H. Assume now that P1, P2, P3 are pairwise disjoint, and let Q1, Q2, Q3 be three odd

paths such that for {i, j, k} = {1, 2, 3} the ends of Qk are ui and uj . Assume further that

P1, P2, P3, Q1, Q2, Q3 are pairwise disjoint, except for common ends in the set {u1, u2, u3}.
In those circumstances we say that an octopus with tentacles P1, P2 and P3 and head

Q1 ∪Q2 ∪Q3 is a tripod in H.

Lemma 2.3.6. Let G be a graph. Let T be a triad or tripod in G with ends v1, v2 and v3.

Let M be a T -compatible matching, and let P be an M -alternating path in G \ v1 \ v2 with

one end in the head of T and another end w 6∈ V (T ). Assume that the edge of P incident

with w does not belong to M . Then there exists a triad or tripod T ′ ⊆ T ∪P with ends v1, v2

and w and a T ′-compatible matching M ′ such that M is identical to M ′ on G \ V (P ∪ T )

and (T ∪ P ) \ V (T ′) is M ′-covered.

Proof. If T is triad then the result follows immediately from Lemma 2.3.5. If T is a tripod,

then for i ∈ {1, 2, 3} let Pi, Qi, ui, vi be as in the definition of tripod. Extend M to Q1, Q2

and Q3 in such a way that Q1 ∪ Q2 ∪ Q3 \ u1 is M -covered. Let T ′′ be the path octopus

with tentacles P1 and P2 ∪Q1 ∪Q2. Extend P along Q1 ∪Q2 ∪Q3 to a path P ′′ so that P ′′
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Figure 7: A quasi-tripod.

is an M -alternating path with ends w and u1. It remains to apply Lemma 2.3.5 to P and

T ′′ .

Let Q be an even path with ends u1 and u3, let u2 = u1 and u4 = u3, and for i = 1, 2, 3, 4

let Pi be an odd path with ends ui and vi, disjoint from Q except for ui, and such that the

paths Pi are pairwise disjoint, except that P1 and P2 share a common end u1 = u2 and P3

and P4 share a common end u3 = u4. In those circumstances we say that the octopus with

head Q and tentacles P1, P2, P3, P4 is a quadropod.

Now let P1, P2, P3, Q1, Q2, Q3 be as in the definition of tripod, except that Q2 and Q3

are allowed to intersect beyond the vertex u1. Suppose there exists a perfect matching M

of Q2 ∪Q3 \ u1 \ u2 \u3 such that Q2 and Q3 are M -alternating and intersect transversally.

Then we say that the octopus Ω with tentacles P1, P2 and P3 and a head Q1 ∪Q2 ∪Q3 is

a quasi-tripod in H. Clearly every tripod is a quasi-tripod. It follows from the definition

of transversal intersection that Q2 ∩Q3 consists of one or two paths, one of which contains

the vertex u1. By shortening both Q2 and Q3 and extending P1 we may assume that one of

the components of Q2 ∩Q3 has vertex-set {u1}. If that is the only component of Q2 ∩Q3,

then Ω is a tripod; otherwise Ω looks as depicted in Figure 2.3.
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Lemma 2.3.7. Let G be a graph. Let T be a triad or tripod in G with ends v1, v2 and v3.

Let M be a T -compatible matching, and let P be an M -alternating path in G \ {v1, v2, v3}
with one end in the head of T and another end w 6∈ V (T ). Assume that the edge of P

incident with w does not belong to M . Then there exists an octopus T ′ ⊆ T ∪ P and a

T ′-compatible matching M ′, such that M is identical to M ′ on G \ V (P ∪ T ), the graph

(T ∪ P ) \ V (T ′) is M ′-covered and either T ′ is a quasi-tripod with ends vi, vj and w, for

some distinct indices i, j ∈ {1, 2, 3}, or T ′ is a quadropod with ends v1, v2, v3 and w.

Proof. We may assume that G = T ∪ P and that there do not exist a triad or tripod T ′

with ends v1, v2 and v3, a T ′-compatible matching M ′ and an M ′-alternating path P ′ in

G \ {v1, v2, v3} with one end in the head of T ′ and the other end w such that w 6∈ V (T ′),

(T ∪ P ) \ V (T ′ ∪ P ′) is M ′-covered and P ′ ∪ T ′ is a proper subgraph of G. We refer to this

as the minimality of G.

Let the tentacles of T be P1, P2, P3, where Pi has one end vi, and let ui be the other

end of Pi. If T is a tripod, then let Qi be as in the definition of tripod, and otherwise let

Qi be the null graph. We say that a vertex v of Pi is inbound if Pi[v, ui] is even and we say

that v is outbound otherwise.

Let u0 ∈ V (P ∩ T ) be chosen to minimize P [w, u0]. If T is a triad and u0 is inbound,

then T ∪P [w, u0] is a required quadropod. If T is a tripod and u0 ∈ V (Pi) is inbound then

by replacing Pi[vi, u0] by P [w, u0] in T we obtain a required quasi-tripod. If T is a tripod

and u0 ∈ V (Qi), then we may assume from the symmetry that Qi[u0, uj ] is even, in which

case by replacing Pj by P [w, u0] we obtain a required quasi-tripod.

Therefore for the rest of the proof we may assume that u0 ∈ V (P1) and that u0 is

outbound. Let r ∈ V (T ) ∩ V (P ) − V (P1) be chosen to minimize P [w, r] and if no such r

exists let r 6= w be the end of P . Apply Theorem 2.3.4 to P1 and P with s1 = v1, t1 = u1

and s2 = w. Outcome of Theorem 2.3.4(1) does not hold by the minimality of G. If outcome

(2) holds, then by considering the path guaranteed therein we obtain a desired quasi-tripod

or quadropod. Thus we may assume outcome (3) holds, and hence P1 intersects P [w, r]

transversally.
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Let v0 be such that P [v0, u0] is a component of P ∩P1, and let u be such that P [v0, u] is

a maximal path with no internal vertex or edge in T . If u ∈ V (P1), then by the definition

of transversal intersection the vertices v1, v0, u0, u, u1 occur on P1 in the order listed and u

is inbound. By considering T ∪P [w, u] and deleting P3\u3 and the interior of Q3 we obtain

a required quasi-tripod. Thus we may assume that u 6∈ V (P1), and hence u = r. If r is not

outbound, then a similar argument gives a required quasi-tripod.

It follows that for the remainder of the proof we may assume that r ∈ V (P2), and

that r is outbound. Let M1 be the unique perfect matching of Q1 ∪ Q2 ∪ Q3\u1, and let

M+ = M ∪ M1. We can extend P along Q1 ∪ Q2 ∪ Q3 to an M+-alternating path P+

so that u1 is an end of P+. Apply Lemma 2.3.2 to P+ and P1[v0, u1] to produce an M ′-

alternating path P ′ with ends w and v0, where M ′ = M+4P1[u1, v0]. Let T ′ be obtained

from T ∪ P [v0, r] by deleting the interiors of P2[r, u2] and Q2; then T ′ is a triad with ends

v1, v2, v3. But now T ′ and P ′ contradict the minimality of G.

2.4 Embeddings and Main Lemma

In this section we first formalize the notion of a matching minor by introducing the concept

of an embedding, and show in Lemma 2.4.2 below that a graph H has a matching minor

isomorphic to a graph G if and only if there is an embedding H ↪→ G. Then we study the

following question. Suppose that η : H ↪→ G is an embedding, G is a brick, and v0 ∈ V (H)

has degree two. Since bricks have no vertices of degree two, there is a subgraph of G

that “fixes” this violation of being a brick. What can we say about this subgraph? The

answer leads to the notion of v0-augmentation of η. We define this concept formally, and

then prove two results about its existence. The second, Lemma 2.4.4, will be used when

some graph obtained from H by bisplitting a vertex is isomorphic to a matching minor of

G; otherwise we will use Lemma 2.4.3, the first of these results. Finally, we classify all

“minimal” v0-augmentations into one of four types.

Let T ′ be a tree, and let T be obtained from T ′ by subdividing every edge an odd number

of times. Then V (T ′) ⊆ V (T ). The vertices of T that belong to V (T ′) will be called old and

the vertices of V (T )−V (T ′) will be called new. We say that T is a barycentric tree. Please
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note that the partition into old and new vertices depends on T ′ (there is an ambiguity

concerning vertices of degree two). We shall assume that each barycentric tree has a fixed

partition into new and old vertices. By a branch of a barycentric tree T we mean a subpath

of T with ends old vertices and all internal vertices new.

We need to formalize the concept of matching minor. Let H and G be graphs. A weak

embedding of H to G is a mapping η with domain V (H)∪E(H) such that for v, v′ ∈ V (H)

and e, e′ ∈ E(H)

(1) η(v) is a barycentric subtree in G,

(2) if v 6= v′, then η(v) and η(v′) are vertex-disjoint,

(3) η(e) is an odd path with no internal vertex in any η(v) or η(e′) for e′ 6= e,

(4) if e = u1u2, then the ends of η(e) can be denoted by x1, x2 in such a way that xi is an

old vertex of η(ui), and

(5) G\⋃
x∈V (H)∪E(H) V (η(x)) has a perfect matching.

The next lemma will show that H is isomorphic to a matching minor of G if and only if

there is a weak embedding of H to G. Then we will show that such a weak embedding can

be chosen with two additional properties. Thus we say that a weak embedding from H to

G is an embedding if, in addition, it satisfies

(6)if v has degree one then η(v) has exactly one vertex,

(7) if v ∈ V (H) has degree two and e1, e2 are its incident edges, then η(v) is an even path

with ends x1, x2, say, and η(e1), η(e2) both have length one, one has x1 as its end and the

other has x2 as its end, and

(8)if v has degree at least three and x is an old vertex of η(v) of degree d, then x is an end

of η(e) for at least 3− d distinct edges e.

For every subgraph H ′ of H define η(H ′) =
⋃

x∈V (H)∪E(H) η(x). We denote the fact that η

is an embedding of H into G by writing η : H ↪→ G.

Let T ⊆ H be a barycentric tree, and let (X,Y ) be the unique partition of V (T ) into

two independent sets with X including all the old vertices. The vertices of X will be called

protected and the vertices of Y will be called exposed.
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Lemma 2.4.1. Let H and G be graphs. There exists a weak embedding of H to G if and

only if H is isomorphic to a matching minor of G.

Proof. If η : H ↪→ G then a graph isomorphic to H can be obtained from the central sub-

graph η(H) of G by repeatedly bicontracting exposed vertices of η(v) and internal vertices

of η(e) for v ∈ V (H) and e ∈ E(H). Thus H is a matching minor of G.

To prove the converse we may assume that H is a matching minor of G. Thus there

exist graphs H1,H2, . . . , Hk such that H1 = H, Hk is a central subgraph of G, and for

i = 2, 3, . . . , k the graph Hi−1 is obtained from Hi by bicontracting a vertex. We define

ηk : Hk ↪→ G by saying that if v ∈ V (Hk), then ηk(v) is the graph with vertex-set {v}, and

if e ∈ E(Hk), then ηk(e) is the graph consisting of e and its ends. It is clear that ηk satisfies

(1)-(7). We now construct a sequence of mappings satisfying (1)-(7). Assuming that ηi

has been defined we define ηi−1 as follows. Let v be the vertex of Hi whose bicontraction

produces Hi−1, let x, y be the neighbors of v, and let w be the the new vertex of Hi−1. For

z ∈ V (Hi−1) ∪E(Hi−1)− {w} let ηi−1(z) = ηi(z), and let ηi−1(w) = ηi(x) ∪ ηi(y) ∪ ηi(v) ∪
ηi(xv) ∪ ηi(yv). This completes the construction. It is clear that η1 satisfies (1)-(5).

We now show that if there is weak embedding of H to G, then there is an embedding

of H to G.

Lemma 2.4.2. Let H and G be graphs. There exists an embedding of H to G if and only

if H is isomorphic to a matching minor of G.

Proof. By Lemma 2.4.1 it suffices to show that if η is a weak embedding of H to G, then

there exists an embedding of H to G.

It is easy to modify η so that it satisfies conditions (6) and (7). Thus we may choose a

mapping η with domain V (H) ∪ E(H) satisfying (1)-(7) such that the total number of old

vertices in η(v) over all vertices v ∈ V (H) of degree at least three is minimum. We claim

that η satisfies (8) as well.

To prove that η satisfies (8) let v ∈ V (H) have degree at least three, let x be an old

vertex of η(v), and let d be the degree of x in η(v). If d = 2 and x is not an end of η(e)
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for any e ∈ E(G), then we change the barycentric structure of η(v) by declaring x to be a

new vertex. The new embedding thus obtained contradicts the minimality of η. If d = 0,

then x is the unique vertex of η(v), and it is an end of η(e) for all the (at least three) edges

e incident with v by (4). Thus we may assume that d = 1. If x is not an end of any η(e),

then we remove from η(v) the vertex x and all internal vertices of Q, where Q is the unique

subpath of η(v) between x and the nearest old vertex. Then set of vertices removed has a

perfect matching, because Q is even by the definition of barycentric subdivision, and hence

the new embedding satisfies (5). Thus the new embedding contradicts the minimality of

η. To complete the proof we may therefore suppose for a contradiction that x is incident

with η(e) for exactly one e ∈ E(H). By (4) one end of e is v; let u be the other end. If

u has degree at most two, then we define a new embedding by moving x and the internal

vertices of Q from η(v) to η(u), and changing η(e) accordingly. If u has degree at least

three, then we move x and all internal vertices of Q from η(v) to η(e). In either case the

new embedding contradicts the minimality of η. Thus η satisfies (8), and hence it is an

embedding H ↪→ G, as desired.

Let T be an even subpath of a graph H, and let T be regarded as a barycentric tree,

with its ends designated as old and all internal vertices designated as new. Let us recall

that the notions of protected and exposed were defined prior to Lemma 2.4.1. Let P be a

path with one end, say v, in the interior of T and no other vertex in T . If v is exposed,

then let Q be the null graph, and if v is protected, then let Q be a path with ends exposed

vertices q1, q2 ∈ V (T ) and otherwise disjoint from H ∪ P such that v lies on T between q1

and q2. In those circumstances we say that Q is a cap for P at v with respect to T and H.

Let η : H ↪→ G. For every edge e = uv ∈ E(H) the path η(e) is odd. Let Pe denote its

interior (that is, the path obtained by deleting the ends), and let Me be the unique perfect

matching of Pe (possibly Me = ∅). We define M(η) to be the union of Me over all e ∈ E(H).

Now let v0 ∈ V (H) have degree two, and let v1, v2 be its neighbors. For i = 1, 2 let Ei be

the set of edges of H incident with vi, except for the edge v0vi, and let E1∩E2 = ∅. Let M1

be a perfect matching of G\V (η(H)), and let M = M1 ∪M(η). Let P be an M -alternating
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path with one end x ∈ V (η(v0)) and the other end u in
⋃{η(v) : v ∈ V (H) − {v0, v1, v2}}

with the property that if P intersects η(e) for some e ∈ E(H) not incident with v0, v1, or

v2, then P and η(e) intersect in a path and have a common end. Let S denote the path

η(v0) ∪ η(v0v1) ∪ η(v0v2); then S is obtained from η(v0) by appending two edges, one at

each end. Let Q be an M1-alternating cap for P at x with respect to S and η(H). We say

that the pair (P, Q) is a v0-augmentation of η. It follows that P and Q have no internal

vertices in
⋃

v∈V (H) η(v). We say that x is the origin and u is the terminus of P .

Our first result about augmentations is the following.

Lemma 2.4.3. Let H be a graph on at least four vertices, let v0 be a vertex of H that has

exactly two neighbors v1 and v2, and let v1 and v2 be not adjacent. Let G be a brick and let

η : H ↪→ G be an embedding such that both η(v1) and η(v2) have exactly one vertex. Then

there exists an embedding η′ : H ↪→ G and a v0-augmentation of η′.

Proof. Define E1, E2 and M as in the definition of v0-augmentation. The path η(v0) ∪
η(v0v1) ∪ η(v0v1) is even and can therefore be regarded as path octopus, which we denote

by Ω1. Let Ω2 be the octopus with the set of tentacles {η(e) : e ∈ E1 ∪ E2} and head

η(H\v0\v1\v2). The head of Ω2 is non-null, because H has at least four vertices. We

can convert M to a matching M+ so that M+ is Ωi-compatible for i = 1, 2. We apply

Theorem 2.2.3 to the frame ({Ω1, Ω2}, V (η(v1)) ∪ V (η(v2))) and denote the resulting path

by R. Let R have ends r1 ∈ V (Ω1) and r2 ∈ V (Ω2) and let e ∈ E(R) be such that each of

the components Ri = R[si, ri] of R\e intersects only one of the octopi Ω1 and Ω2.

By Lemma 2.3.5 we may assume, by changing M+, R1, and η(v0), that there exists an

M+-alternating path P1 with ends p1 ∈ V (η(v0)) and s1, and an M+-alternating cap Q1 for

P1 at p1 with respect to Ω1 and η(H) such that P1∪Q1 ⊆ R1. We may also assume that r2

is the only vertex of R in the head of Ω2. If r2 ∈ η(v) for some v ∈ V (H), then let R′
2 be the

null graph, and if r2 ∈ η(e) for some e ∈ E(H), then let R′
2 be an M+-alternating subpath

of η(e) with one end r2 and the other in η(v) for some v ∈ V (H). Then (P1 ∪R2 ∪R′
2, Q1)

is a desired v0-augmentation of η.

In the next section we will need the following lemma.
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Lemma 2.4.4. Let H be a graph, and let v be a vertex of H of degree at least four, let G

be a brick, and let η : H ↪→ G be such that η(v) has at least two vertices. Then either

(1) there exists a graph H1 obtained from H by bisplitting v, an embedding η1 : H1 ↪→ G

and a v0-augmentation of η1, where v0 is the new inner vertex of H1, or

(2) there exists an embedding η2 : H ↪→ G, a path P with ends p1 and p2 in the interiors

of different branches, say B1 and B2, of η2(v) and otherwise disjoint from η2(H) and for

i = 1, 2 there exists a cap Qi for P at pi with respect to Bi and η2(H) such that Q1 and Q2

are disjoint.

Proof. Denote the branches of η(v) by B1, B2, . . . , Bn. They can be considered as octopi,

which we denote by Ω1, Ω2, . . . ,Ωn, respectively. Let Ω0 be the octopus with the set of

tentacles {η(e) : e is incident to v} and head η(H\v), let X be the set of old vertices of

η(v), and let F = {Ω0,Ω1, Ω2, . . . ,Ωn}. We can extend a perfect matching of G \ η(H) to

a matching M so that M is Ω-compatible for every Ω ∈ F . Clearly |X| = n + 1. Therefore

(F , X) is a frame. We apply Theorem 2.2.3 to it and denote the resulting path by R.

Furthermore, there is an edge e ∈ E(R) such that each of the components Ri = R[si, ri] of

R\e intersects only one of the octopi of F .

If for some i ∈ {1, 2} the path Ri intersects Ωj for j ≥ 1 we may assume, by changing

M , and Ωj , that there exists an M -alternating path Pi with ends pi ∈ V (Bj) and si, and an

M -alternating cap Qi for Pi at pi with respect to Bj and η(H) such that Pi∪Qi ⊆ Ri∪Bj .

If this happens for both R1 and R2 define P = P1 ∪ P2 + e and outcome (2) holds.

Therefore we may assume that R2 intersects Ω0 and R1 intersects Ωj for some j ≥ 1,

and furthermore that r2 is the only vertex of R in the head of Ω0. If r2 ∈ η(v) for some

v ∈ V (H), then let R′
2 be the null graph, and if r2 ∈ η(e) for some e ∈ E(H), then let R′

2 be

an M -alternating subpath of η(e) with one end r2 and the other in η(v) for some v ∈ V (H).

Let T1 and T2 be the two components of the graph obtained from η(v) by removing the

internal vertices of Bj . Let H1 be obtained from H by splitting v into new outer vertices v1

and v2 and new inner vertex v0 in such a way that vi is adjacent to a neighbor u of v in H

if η(uvi) has an end in Ti. Let η1(vi) = Ti, let η1(v0) be B1 minus its ends, let η1(v1v0) and
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η1(v2v0) be the two end-edges of B1 and let η1(x) = η(x) for all other x ∈ V (H1) ∪E(H1).

Then (P1 ∪R′
2 ∪ {e}, Q1) is a v0-augmentation of η1 and outcome (1) holds.

Let H and G be graphs, let η : H ↪→ G, let v0 be a vertex of H of degree two, and let

(P, Q) be a v0-augmentation of η. We say that η is minimal if there exists no embedding

η′ : H ↪→ G and a v0-augmentation (P ′, Q′) of η′ such that η′(H) ∪ P ′ ∪ Q′ is a proper

subgraph of η(H) ∪ P ∪Q. In applications we may assume that our v0-augmentations are

minimal. The next lemma will classify minimal augmentations into four types, which we

now introduce.

Let η : H ↪→ G, let v0 ∈ V (H) have degree two, let v1, v2 ∈ V (H) be its neighbors, and

let E1, E2 be as in the definition of v0-augmentation. Let i ∈ {1, 2} and e ∈ Ei. Let xe be

the end of η(e) that belongs to V (η(vi)). We say that an internal vertex x ∈ V (η(e)) is an

inbound vertex if it is at even distance from xe in η(e), and otherwise we say that it is an

outbound vertex.

Let M be a matching containing M(η), let P be an M -alternating path with ends x0

and x5, and let the vertices x0, x1, x2, x3, x4, x5 appear on P in the order listed. Assume

that P [x1, x2] and P [x3, x4] are subpaths of η(e), and that otherwise P is disjoint from
⋃{η(e) : e ∈ E1∪E2}. Assume also that x1 is an inbound vertex of η(e), that x2 and x3 are

outbound, and that either x2 = x3 = x4, or x1, x2, x4, x3, xe are pairwise distinct and occur

on η(e) in the order listed. In those circumstances we say that P intersects η(e) regularly

from x0 to x5.

Let (P,Q) be a v0-augmentation of η and let P have ends a and b where a ∈ V (η(v0)).

We say that (P, Q) is of type A if whenever P intersects η(e) for some e ∈ E1 ∪ E2, then

P and η(e) intersect in a path whose one end is a common end of P and η(e). Thus P

intersects at most one η(e), because the common end must be b, and b does not belong to

η(v1) ∪ η(v2). See Figure 2.4.

We say that (P, Q) is of type B if there exist a vertex x ∈ V (P ), an index i ∈ {1, 2}, and

an edge e ∈ Ei such that the vertex vi has degree at most three, the path P [a, x] intersects

η(e) regularly from a to x, and if P [x, b]\x intersects η(e′) for some e′ ∈ E(H), then P [x, b]\x
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Figure 8: Augmentations of type A.
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Figure 9: Augmentations of type B.

and η(e′) intersect in a path and have a common end. Moreover, if e = e′, then we require

that P [a, x] ∩ η(e) be a path. We say that (P, Q) crosses η(e). See Figure 2.4.

We say that (P, Q) is of type C if there exist vertices x1, x2 ∈ V (P ) such that a, x1, x2, b

occur on P in the order listed, and there exist distinct edges e1, e2, one in E1 and the other

in E2, such that the end of e1 in {v1, v2} has degree at most three, P [a, x1] intersects η(e1)

regularly from a to x1, P [x1, x2] has no internal vertices in η(H) and x2 is an inbound

vertex of η(e2). We say that (P,Q) crosses η(e1). See Figure 2.4.

We say that (P, Q) is of type D if for some i ∈ {1, 2} and some e ∈ Ei the vertex vi has

degree at least four and there exists an inbound vertex x of η(e) such that x ∈ V (P ) and

P [a, x] has no internal vertex in η(H).

The following classification of minimal v0-augmentations is the third main result of this

section.

Lemma 2.4.5. Let H and G be graphs, and let η : H ↪→ G. Let v0 ∈ V (H) have degree two,

and let v1, v2 be its neighbors. Assume that v1 is not adjacent to v2. Then every minimal
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Figure 10: Augmentations of type C.

v0-augmentation of η is of type A, B, C, or D.

Proof. Let (P, Q) be a minimal v0-augmentation of η, let x0 be the end of P in η(v0), and

let b be the other end of P . We wish to think of P as being directed away from x0; thus

language such as “the first vertex of P in a set Z” will mean the vertex of V (P ) ∩ Z that

is closest to x0 on P . Let E1 and E2 be as in the definition of v0-augmentation.

Let us assume for a moment that P includes an internal vertex of some η(e), where

e ∈ E(H) is not incident with v0, v1, or v2. Let z be the first such vertex on P . The

vertex z divides η(e) into two subpaths, one even and one odd. Let R be the even one.

Then (P [x0, z] ∪ R, Q) is a v0-augmentation, and hence the minimality of (P, Q) implies

that R = P [z, b]. If e ∈ E1 ∪ E2 and z is an outbound vertex, then the same conclusion

holds. This will be later referred to as the confluence property of P .

If P includes an internal vertex of η(e1) for no e1 ∈ E1 ∪ E2, then (P, Q) is of type A.

Thus we may assume that P includes such a vertex, and let x1 be the first such vertex on

P . From the symmetry we may assume that e1 = v1v3 ∈ E1. If x1 is an outbound vertex,

then the confluence property of P implies that (P,Q) is of type A. Thus we may assume

that x1 is inbound. If v1 has degree at least four, then (P, Q) is of type D, and so we may
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assume that v1 has degree at most three. It follows from axiom (7) in the definition of an

embedding that v1 has degree exactly three.

Let x2 be the first vertex on P that belongs to η(z) for some z ∈ V (H) ∪ E(H) not

equal, incident or adjacent to v0 and not equal to e1. Then x1 lies on P between x0 and

x2. Let P1 = η(e1). By Theorem 2.3.4 applied to P1, P2 = P , r = x2, s2 = x0, t2 = b and

the ends of P1 numbered so that s1 ∈ V (η(v0)) and t1 ∈ V (η(v3)) we deduce that (1), (2),

or (3) of Theorem 2.3.4 holds. But (1) does not hold by the minimality of (P, Q), and if

(2) holds, then (R, Q) is a v0-augmentation of type A or B. Thus we may assume that (3)

of Theorem 2.3.4 holds. Since x1 is an inbound vertex, this implies that either there exist

vertices y1, y2 ∈ V (P1), such that y1 and y2 are outbound, P [x1, y1] ⊆ P1, x1 ∈ P1[y1, y2]

and P [y1, y2] has no internal vertices in η(H), or P [x0, x2] \ x2 intersects η(e1) regularly

from x0 to x2. In the former case (P [x0, y2]∪P1[y2, t1], Q) is a v0-augmentation of η of type

B, and hence we may assume that the latter case holds. Thus P [x0, x2] \x2 intersects η(e1)

regularly from x0 to x2, and if x2 = t2, then P [x0, x2] \ x2 intersects η(e1) in a path.

If x2 ∈
⋃{V (η(v)) : v ∈ V (H) − {v0, v1, v2}}, then (P,Q) is of type B. Therefore we

may assume that x2 ∈ V (η(e2)) for some e2 ∈ E(H\v0)−{e1}. By the confluence property

of P we may assume that e2 ∈ E1 ∪ E2 and that x2 is inbound, for otherwise (P,Q) is of

type B.

If e2 ∈ E2, then (P,Q) is of type C, and the lemma holds. Thus we may assume that

e2 ∈ E1 − {e1}. Let y be such that η(e2)[x2, y] is a component of η(e2) ∩ P . For simplicity

of notation assume that Q is empty. The argument in the other case is similar. As v1 has

degree three, axiom (8) in the definition of an embedding implies that the tree η(v1) consists

a single vertex, say u1. Since x2 is inbound it follows that y lies between u1 and x2 in η(e2).

Let C be the cycle P [x0, y] ∪ η(e2)[y, u1] ∪ S, where S = η(v0)[x0, u1]. The subgraph of G

with edge-set E(P )4E(C) includes a path with ends x0 and b, say P ′. Let f be the edge of

P [x0, x1] incident to x1. We define a new embedding η′ : H ↪→ G by η′(e1) = η(e1)[x1, t1],

η′(e2) = P [x1, x2]∪ η(e2)[x2, z] (where z 6= u1 is the other end of η(e2)), η′(v1) is the graph

with vertex-set {x1}, we define η′(v0v1) to be the path with edge-set {f}, we define η′(v0)

to be the path obtained from η(v0) by replacing η(v0)[x0, u1] by P [x0, x1]\x1, and we define
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η′(x) = η(x) for all other x ∈ V (H)∪E(H). It follows that (P ′, Q) is a v0-augmentation of

η′, contrary to the minimality of (P, Q), because P ′ ∪Q ∪ η′(H) does not include the edge

of η(e2)[y, x2] incident with x2.

2.5 Disposition Of Bisplits

The purpose of this section is to prove Theorem 2.1.9 under the additional hypothesis that

a graph, say H ′, obtained from H by bisplitting some vertex is isomorphic to a matching

minor of G. If that is the case we apply Lemma 2.4.4 and Lemma 2.4.5. We handle the

four possible outcomes of Lemma 2.4.5 separately.

Lemma 2.5.1. Let H and G be graphs, where H has minimum degree at least three. Let

H ′ be obtained from H by bisplitting a vertex v, and let v0 be the new inner vertex. Let

η : H ′ ↪→ G, and assume that there exists a v0-augmentation of η of type A. Then a linear

extension of H is isomorphic to a matching minor of G.

Proof. Let v1 and v2 be the new outer vertices of H ′, let (P, Q) be a v0-augmentation of

η of type A, and let a and b be the ends of P , where a ∈ V (η(v0)). Let b ∈ η(u), where

u ∈ V (H)−{v0, v1, v2}. Let us assume first that b is protected. If Q is null, then H ′+(v0, u)

is isomorphic to a matching minor of G, and otherwise (by ignoring Q and bicontracting

its ends) we see that that H + (v, u) is isomorphic to a matching minor of G and is a linear

extension of H unless vu ∈ E(H). If vu ∈ E(H) we assume without loss of generality that

uv1 ∈ E(H ′). Then η(H ′ \uv1)∪P ∪Q is isomorphic to a bisubdivision of a linear extension

of H.

Now let us assume that b is exposed. Let T1, T2 be the two components of η(u)\b. For

each neighbor w of u in H the path η(uw) has exactly one end in η(u); that end is an old

vertex by axiom (4) in the definition of an embedding, and hence belongs to either T1 or

T2. For i = 1, 2 let Ni be the set of all neighbors w of u such that the end of η(uw) in η(u)

belongs to Ti. Let H1 be obtained from H by bisplitting u so that one of the new outer

vertices is adjacent to every vertex of N1, and the other new outer vertex is adjacent to

every vertex of N2. (Here we use that u has degree at least three.) Let u0 be the new inner
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vertex of H1. Let H ′
1 be defined similarly, but starting from H ′ rather than H, and let the

new inner vertex be also u0. If Q is null, then H ′
1 + (v0, u0) is isomorphic to a matching

minor of G; otherwise H1 + (v, u0) is isomorphic to a matching minor of G, as desired.

Lemma 2.5.2. Let H and G be graphs, let η : H ↪→ G be an embedding, let v0 be vertex of

H of degree two, and let v1 be a neighbor of v0 of degree three with neighbors v0, v
′
1, v

′′
1 . Let

(P, Q) be a v0-augmentation of η of type B or C that crosses η(v1v
′
1). Then there exists an

embedding η′ : H ↪→ G and a v0-augmentation (P ′, Q′) of η′ of the same type as (P, Q) that

crosses η′(v1v
′′
1) such that η′(H) ∪ P ′ ∪ Q′ ⊆ η(H) ∪ P ∪ Q and P and P ′ have the same

terminus.

Proof. We first define η′. Let x0 be the end of P in η(v0), let x6 be the other end of P , let

x5 ∈ V (P ), and let x0, x1, . . . , x5 be as in the definition of regular intersection, witnessing

that P [x0, x5] intersects η(v1v
′
1) regularly from x0 to x5. We define η′(v1) = x1, we define

η′(v1v
′
1) to be the subpath of η(v1v

′
1) with one end x1 and the other end in η(v′1), we

define η′(v1v
′′
1) to be the union of the complementary subpath of η(v1v

′
1) and η(v1v

′′
1), we

define η′(v0) to be a suitable subgraph of η(v0) ∪ P ∪ Q, define η′(v0v1) to be the edge of

P [x0, x1] incident with x1, and we define η′(x) = η(x) for all other x ∈ V (H)∪E(H). Then

η′ : H ↪→ G.

It is now easy to find subpaths Q′ and P ′′ of η(v0)∪ η(v0v1)∪ η(v1v
′
1)∪P ∪Q such that

(P ′′ ∪ P [x4, x6], Q′) is the desired v0-augmentation of η′.

Lemma 2.5.3. Let H and G be graphs, where H has minimum degree at least three. Let

H ′ be obtained from H by bisplitting a vertex v, and let v0 be the new inner vertex. Let

η : H ′ ↪→ G, and assume that there exists a v0-augmentation of η of type B. Then a linear

extension of H is isomorphic to a matching minor of G.

Proof. Let v1 and v2 be the new outer vertices of H ′. Let (P, Q) be a v0-augmentation of

η of type B, let x0, x6 be the ends of P , where x0 ∈ V (η(v0)) and x6 ∈ V (η(u)), and let

P cross e1 = v1v
′
1, where v′1 6= v0 is a neighbor of v1 in H ′. Let x5 ∈ V (P ) be such that

P [x0, x5] intersects η(e1) regularly from x0 to x5, and let the vertices x0, x1, x2, x3, x4, x5
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be as in the definition of regular intersection. Notice that v1 has degree three; thus η(v1)

consists of a unique vertex by condition (8) in the definition of embedding. Let v′′1 be the

third neighbor of v1. By Lemma 2.5.2 we may assume that u 6= v′1.

Assume first that x2, x3, x4 are pairwise distinct. The path P [x4, x6] proves that a linear

extension of H is isomorphic to a matching minor of G, unless x6 is a protected vertex of

η(u) and u is adjacent to v in H. Let i ∈ {1, 2} be such that u is adjacent to vi in H ′.

Consider the graph obtained from η(H) ∪ P [x4, x0] by deleting the interior of η(viu); the

path P [x2, x3] proves that the linear extension H ′′+(v′0, v
′
1) of H is isomorphic to a matching

minor of G, where H ′′ is obtained from H by bisplitting of the vertex v so that one of the

new outer vertices is adjacent to v′1 and u, the other outer vertex is adjacent to all other

neighbors of v and v′0 is the new inner vertex.

Thus we may assume that x2 = x3 = x4. Again the path P [x4, x6] proves that a linear

extension of H is isomorphic to a matching minor of G, unless x6 is a protected vertex of

η(u) and u is adjacent to v′1 in H. Thus we may assume that x6 is a protected vertex of

η(u) and u is adjacent to v′1 in H. If v′1 has degree at least four, then let H ′′ be obtained

from H ′ by bisplitting v′1 in such a way that one of the new vertices is adjacent to v1 and

u, and let z be the new vertex. Then H ′′ + (v0, z) is a linear extension of H and is clearly

isomorphic to a matching minor of G. If v′1 has degree three we replace η(v′1u) by P [x4, x6]

and notice that (P, Q) can be easily converted to a v0-augmentation (P ′, Q′) of type A of the

embedding thus obtained. (Notice that the terminus of P ′ does not belong to η(v2), because

H ′ is obtained from H by bisplitting v.) Hence the theorem follows from Lemma 2.5.1.

For the next lemma we need the following generalization of v0-augmentations. Let

v0 ∈ V (H) have degree two, and let v1, v2 be its neighbors. For i = 1, 2 let Ei be the set

of edges of H incident with vi, except for the edge v0vi, and let E1 ∩E2 = ∅. Let R be the

interior of η(v0), let M1 be a perfect matching of G\V (η(H)), let x ∈ V (R), let M2 be a

perfect matching of R\x, and let M = M1 ∪M2 ∪M(η). Let P be an M -alternating path

with one end x and the other end u in
⋃{η(v) : v ∈ V (H)− {v0, v1, v2}}. We say that P is

a weak v0-augmentation of η. It follows that P has no internal vertex in
⋃

v∈V (H)−{v0} η(v).
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This is indeed a generalization of v0-augmentation. For let (P, Q) be a v0-augmentation of

η. If Q is null, then P is a weak v0-augmentation of η, and otherwise Q ∪ S ∪ P is a weak

v0-augmentation of η, where S is a subpath of η(v0) with one end the end of P and the

other end an end of Q.

Lemma 2.5.4. Let H,G be graphs, let η : H ↪→ G be an embedding, let v0 be a vertex of

H of degree two belonging to no triangle of H, and let R be a weak v0-augmentation of η.

Then there exist an embedding η′ : H ↪→ G and a v0-augmentation (P, Q) of η′ such that

P ∪Q ∪ η′(H) ⊆ R ∪ η(H).

Proof. We may assume that R is minimal in the sense that there does not exist an embedding

η′ : H ↪→ G and a weak v0-augmentation R′ of η′ such that R′ ∪ η′(H) is a proper subgraph

of R ∪ η(H). It follows that R has the confluence property introduced in the proof of

Lemma 2.4.5. Let v1, v2 be the neighbors of v0, and let E be the set of all edges of H

incident with a neighbor of v0, but not with v0 itself.

Let a, b be the ends of R, where a ∈ V (η(v0)) and let z1, z2 be the ends of η(v0). Assume

first that R has a vertex x such that R[a, x] includes an internal vertex of η(e) for no edge

e ∈ E, and R[x, b] includes no vertex of η(v0). Let Ω be a path octopus with head a and

graph η(v0). We apply Lemma 2.3.5 to Ω and R[a, x] to produce a path octopus Ω′ with

head z and ends z1 and z2 and a path R′ with ends z and x. Define η′ so that η′(v0) is the

graph of Ω′ and otherwise η′ coincides with η. Let P be a maximal subpath of R′ ∪R[x, b]

with no internal vertex in η′(v0) containing b and let Q be a maximal non-empty subpath

of R′\V (P ) with no internal vertex in η′(v0) if such a path exists, and otherwise let Q be

the null graph. It is easy to check that (P, Q) is a v0-augmentation of η′.

Thus we may assume that the assumption of the previous paragraph does not hold.

Thus there exists an edge e ∈ E such that when following R starting from a at some point

we encounter an internal vertex of η(e), and later an internal vertex of η(v0), say t. Let

T be the component of R ∩ η(v0) containing t. Let the ends of e be v1 and v′1, where v1

is adjacent to v0, and let the ends of η(e) be u1 and u′1, where u1 belongs to η(v1) and u′1

belongs to η(v′1). Let S be the component of R[a, t] ∩ η(e) that is closest to u′1 on η(e).
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Let t1, t2 be the ends of T , where a, t1, t2, b occur on R in the order listed, and let s1, s2 be

the ends of S chosen similarly. If t2 lies at an even distance from a on η(v0), then R[t2, b]

is a weak v0-augmentation of η, contrary to the minimality of R. Thus t1 lies at an even

distance from a on η(v0). It follows from the confluence property that s1 is an inbound

vertex of η(e) (that is, its distance from u1 on η(e) is even). Thus s2 is an outbound vertex,

and hence R[t1, s2]∪ η(e)[s2, u
′
1] is a weak v0-augmentation of η, contrary to the minimality

of R.

Let H and G be graphs, let H ′ be obtained from H by bisplitting a vertex v, and let

v0 be the new inner vertex. Let η : H ′ ↪→ G, and let (P, Q) be a v0-augmentation of η.

We say that (P,Q) is strongly minimal if there exists no graph H ′′ obtained from H by

bisplitting v, an embedding η′′ : H ′′ ↪→ G and (letting v′′0 denote the new inner vertex of

H ′′
0 ) a v′′0 -augmentation (P ′′, Q′′) of η′′ such that η′′(H ′′)∪P ′′ ∪Q′′ is a proper subgraph of

η(H ′) ∪ P ∪Q.

Lemma 2.5.5. Let H and G be graphs. Let H ′ be obtained from H by bisplitting a vertex

v, let v0 be the new inner vertex, and let η : H ′ ↪→ G. Then no v0-augmentation of η of

type C is strongly minimal.

Proof. Let v1, v2 be the new outer vertices of H ′, let (P, Q) be a v0-augmentation of η

of type C, let a, b be the ends of P with a ∈ V (η(v0)), and let x1, x2, e1, e2 be as in the

definition of augmentation of type C. The vertex v1 has degree three; let e′1 6∈ {e1, v1v0} be

the third incident edge. Let H ′′ be obtained from H by bisplitting v into new outer vertices

v′′1 , v′′2 and new inner vertex v′′0 , where v′′1 is incident with e1 and e2, and v′′2 is incident with

all the remaining edges of H incident with v. The embedding η can be modified to produce

an embedding η′′ : H ′′ ↪→ G with η′′(H) ⊆ P ∪η(H) by defining η′′(v′′2) = η(v2), by defining

η′′(v′′1) to be the graph with vertex set {x2}, by letting η′′(e2) be a subpath of η(e2) with

end x2, by letting η′′(e1) be the union of a subpath of P [x2, a] with a suitable subpath of

η(e1), and by letting η′′(e′1) = η(v0) ∪ η(v1v0) ∪ η(v2v0) ∪ η(e′1). Now P [x2, b]\x2 is a weak

v′′0 -augmentation of η′′. By Lemma 2.5.4 there exists an embedding ξ : H ′′ ↪→ G and a
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v′′0 -augmentation (P ′′, Q′′) of η′′ such that

P ′′ ∪Q′′ ∪ ξ(H ′′) ⊆ P [x2, b] ∪ η′′(H ′′) ⊆ P ∪ η(H),

but P ′′ ∪ Q′′ ∪ ξ(H ′′) does not use the edge of P incident with a, contrary to the weak

minimality of (P, Q).

Lemma 2.5.6. Let H and G be graphs, let H ′ be obtained from H by bisplitting a vertex

v, let v0 be the new inner vertex, and let η : H ′ ↪→ G. Then no v0-augmentation of η of

type D is strongly minimal.

Proof. Let v1, v2 be the new outer vertices of H ′, let (P, Q) be a v0-augmentation of η of

type D, let a, b be the ends of P with a ∈ V (η(v0)), and let i, e, x be as in the definition

of augmentation of type D. We may assume that i = 1. Let H ′′ be obtained from H by

bisplitting v into new outer vertices v′′1 , v′′2 and new inner vertex v′′0 , where v′′1 is incident with

all the edges of H incident with v1 in H ′ except e (note that v0v1 6∈ E(H)), and v′′2 is incident

with all the remaining edges of H incident with v. The embedding η can be modified to

produce an embedding η′′ : H ′′ ↪→ G with η′′(H) ⊆ P ∪ η(H) by defining η′′(v′′1) = η(v′1)

and letting η′′(v′′2) be a suitable subgraph of η(v2) ∪ η(v0) ∪ η(v0v2) ∪ P [a, x] ∪ Q. Now

P [x, b]\x includes a weak v′′0 -augmentation of η′′. By Lemma 2.5.4 there exists an embedding

ξ : H ′′ ↪→ G and a v′′0 -augmentation (P ′′, Q′′) of η′′ such that

P ′′ ∪Q′′ ∪ ξ(H ′′) ⊆ P [x, b] ∪ η′′(H ′′) ⊆ P ∪ η(H),

but P ′′ ∪Q′′ ∪ ξ(H ′′) does not use one of the edges of η(v0) incident with a, contrary to the

weak minimality of (P,Q).

We summarize Lemmas 2.5.1, 2.5.3, 2.5.5, and 2.5.6 into the following.

Lemma 2.5.7. Let H and G be graphs, where H has minimum degree at least three, let H ′

be obtained from H by bisplitting a vertex v, let v0 be the new inner vertex, let η : H ′ ↪→ G be

an embedding and assume that there exists a v0-augmentation of η. Then a linear extension

is isomorphic to a matching minor of H.
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Proof. We may assume that the v0-augmentation is strongly minimal. By Lemma 2.4.5 it

is of type A, B, C, or D. By Lemmas 2.5.5 and 2.5.6 it is of type A or B, and so the result

holds by Lemmas 2.5.1 and 2.5.3.

We say that an embedding η : H ↪→ G is a homeomorphic embedding if η(v) has exactly

one vertex for every v ∈ V (H) of degree at least three. The next lemma motivates this

definition.

Lemma 2.5.8. Let H and G be graphs. Then there exists an embedding η : H ↪→ G which

is not a homeomorphic embedding if and only if a graph obtained from H by bisplitting a

vertex is isomorphic to a matching minor of G.

Proof. Suppose that η : H ↪→ G and that for some vertex v ∈ V (H) of degree at least three

its image η(v) has more than one vertex. Then there exists a branch B of η(v) with length

greater than zero. The argument from the last paragraph of the proof of Lemma 2.4.4

applied to η(v) and B, provides us with an embedding into G of a graph H1 obtained from

H by bisplitting v and therefore by Lemma 2.4.2 the graph H1 is isomorphic to a matching

minor of G.

On the other hand let a graph H ′, obtained from H by bisplitting some vertex v into

new outer vertices v1 and v2 and new inner vertex v0, be isomorphic to a matching minor

of G. Then by Lemma 2.4.2 there exists an embedding η′ : H ′ ↪→ G. Let J be the subgraph

of H induced by {v0, v1, v2}. Define an embedding η : H ↪→ G by saying that η(v) = η′(J),

η(vu) = η′(viu) for i ∈ {1, 2} and all neighbors u 6= v0 of vi, and otherwise η coincides

with η′. Clearly η(v) has more than one vertex and therefore η is not a homeomorphic

embedding.

The following theorem and its corollary are the main results of this section.

Theorem 2.5.9. Let G be a brick, let H be a graph of minimum degree at least three, and

let η : H ↪→ G. If η is not a homeomorphic embedding, then a linear extension of H is

isomorphic to a matching minor of G.
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Proof. Let v be a vertex of H of degree at least three such that η(v) has at least two

vertices. By axiom (8) in the definition of an embedding the vertex v has degree at least

four. We apply Lemma 2.4.4 to H, G, η and v. If outcome (1) of Lemma 2.4.4 holds then

the theorem holds by Lemma 2.5.7.

Therefore we may assume that (2) of Lemma 2.4.4 holds, and let η2, P , p1, p2, B1, B2,

Q1 and Q2 be as in Lemma 2.4.4. Let G′ be the graph obtained from η2(H)∪ P ∪Q1 ∪Q2

by bicontracting all exposed vertices, except those in B1 ∪B2. Note that G′ is a matching

minor of G and therefore it suffices to prove that a linear extension of H is isomorphic to

a matching minor of G′. If both Q1 and Q2 are null, then the graph G′ is isomorphic to a

bisubdivision of a graph obtained from H by two bisplits and adding an edge joining the

two new inner vertices. Thus a linear extension of H is isomorphic to a matching minor of

G.

Therefore we may assume that Q2 is not null. Let u be the common end of B1 and B2

in G′ and let u1 and u2 be the other ends of B1 and B2 correspondingly. If Q1 is not null,

denote its ends by q and q′ so that q ∈ B1[p1, u1] and let q = q′ = p1 otherwise. If u has

degree at least four in G′ then the graph G′′ obtained from G′ by deleting the interiors of

B1[u, q′], B1[p1, q] and Q2 can be bicontracted to a graph obtained from H by two bisplits

and Q2 can be bicontracted to an edge joining the two new inner vertices. Thus again a

linear extension of H is isomorphic to a matching minor of G.

Therefore we may assume that u has degree three in G′. Hence there exists a unique

vertex w ∈ V (H) such that u ∈ η2(vw). Now G′′ can be bicontracted to a graph obtained

from H by bisplitting v and Q2 can be bicontracted to an edge joining the new inner vertex

to w. We deduce that a linear extension of H is isomorphic to a matching minor of G, as

desired.

The next result follows immediately from Lemma 2.5.8 and Theorem 2.5.9.

Theorem 2.5.10. Let G be a brick, let H be a graph of minimum degree at least three, and

assume that a graph obtained from H by bisplitting a vertex is isomorphic to a matching

minor of G. Then a linear extension of H is isomorphic to a matching minor of G.
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2.6 The Hierarchy of Extensions

For the sake of exposition let us define a split extension of a graph H to be any graph

obtained from H by bisplitting a vertex. We have seen in the previous section that if a split

extension of H is isomorphic to a matching minor of G, then the conclusion of Theorem 2.1.9

holds. The purpose of this short section is to define other types of extensions and to give

an ordering on these extensions, and to reformulate Lemma 2.4.5. The ordering reflects the

order in which these extensions will be dealt with. We will be proving theorems of the form

“if such an such extension is isomorphic to a matching minor of G, then an extension that

is higher on our list of priorities is also isomorpchic to a matching minor of G”. Of course,

the highest priority extensions are linear extensions.

Let us begin the definitions. The lowest on our list will be the following. Let H be

a graph, let v ∈ V (H) be a vertex of degree at least three, and let v1, v2 be two distinct

neighbors of v in H. Let H ′ be obtained from H by bisubdividing the edge vv1, and let x, y

be the new vertices numbered so that x is adjacent to v. We say that the graph H +(y, v2v)

is a vertex-parallel extension of H. We say that H + (y, v2) is an edge-parallel extension of

H.

Let v be a vertex of degree 3 in a graph H and let v1, v2 and v3 be its neighbors. We say

that K is obtained from H by replacing v by a triangle if K is obtained from H by deleting

the vertex v and adding the vertices u1, u2, u3 and edges u1u2, u2u3, u3u1, u1v1, u2v2 and

u3v3.

Let H be a graph, let v be a vertex of H of degree at least three in a graph H, and let

v1 and v2 be two neighbors of v. Let K be obtained from H by bisubdividing the edges

v, v1 and v, v2 and let x1, y1, x2, y2 be the new vertices numbered so that v1y1x1vx2y2 is a

path in K. Let K ′ = K +(x1, y2)+(x2y1), and let J = K ′, or let J be obtained from K ′ by

replacing one or both of the vertices x1, x2 by triangles. We say that J is a cross extension

of H, and that v is its hub. See Figure 11.

Let u be a vertex of H of degree three and let u1,u2 and u3 be its neighbors. Let H0 be

obtained from H by bisubdividing each of the edges uu1, uu2 and uu3. Let the new vertices

be y1, y2, y3 and z1, z2, z3 in such a way that u1y1z3u, u2y2z1u and u3y3z2u are paths. Let
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Figure 11: A cross extension.

H1 := H0 + (y1, z2) + (y2, z3) + (y3, z1), let H2 be obtained from H1 by replacing z1 by a

triangle, let H3 be obtained from H2 by replacing z2 by a triangle, and let H4 be obtained

from H3 by replacing z3 by a triangle. Then each of the graphs H1,H2,H3,H4 is called a

cube extension of H. See Figure 12.

Let H be a graph, let uv ∈ E(H), and let H ′ be obtained from H by bisubdividing uv,

where the new vertices x, y are such that x is adjacent to u and y. Let x′ ∈ V (H)−{u} and

y′ ∈ V (H) − {v} be not necessarily distinct vertices such that not both belong to {u, v}.
In those circumstances we say that H ′ + (x, x′) + (y, y′) is a quadratic extension of H. We

say that uv is the base of this quadratic extension. Now let ab ∈ E(H)−{uv} be such that

a 6= v and u 6= b, let H ′′ be obtained from H ′ by bisubdividing ab, and let x′, y′ be the new

vertices. Then the graph H ′′ + (x, x′) + (y, y′) is called a quartic extension of H. We say

that uv, ab are the bases of this quartic extension.

We are now ready to define the promised linear order on extensions. We define that

linear extensions are better than quartic extensions, quartic extensions are better than

quadratic extensions, which in turn are better than cross extensions, which are better than

cube extensions, which are better than edge-parallel extensions, and those are better than

vertex-parallel extensions.

For later convenience we reformulate Lemma 2.4.5 in a form more suitable for applica-

tions. To do so we will need a definition, but before we can state it, we need to introduce
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a convention. Let G be a graph, let w ∈ V (G), and let uv be an edge of G not incident

with w. Then the graph G′ = G + (w, uv) has two new vertices, and it will be convenient

to have a default notation for them. We shall use τ1 and τ2 to denote the new vertices,

so that τ1 is adjacent to u, w and τ2 in G′. We shall extend this convention naturally to

more complicated scenarios, as exemplified by the following illustration. For instance, if

ab ∈ E(G) − {uv}, then G′′ = G + (w, uv) + (τ2, ab) means the graph G′ + (τ2, ab), and

its new vertices are denoted by τ3 and τ4 so that τ3 is adjacent to a, τ2 and τ4 in G′′. In

general, the new vertices will be numbered τ1, τ2, τ3, . . . in the order they arise as the input

graph is read from left to right. Sometimes we will use ρ1, ρ2, . . . rather than τ1, τ2, . . . in

order to avoid confusion.

Now we are ready for the definition. Let J,G be graphs, let v0 be a vertex of J of

degree two, and let v1, v2 be the neighbors of v0. We wish to reformulate the outcomes of

Lemma 2.4.5. Let v ∈ V (J)−{v0, v1, v2}, let i ∈ {1, 2}, and for j = 1, 2 let v′j be a neighbor

of vj other than v0. We define the following graphs:

• A1(v) = J + (v0, v),

• A2(v) = J + (v0, v1v0) + (τ2, v),

• B1(v′ivi, v) = J + (v0, v
′
ivi) + (τ2, v),

• B2(v′ivi, v) = J + (v0, v
′
ivi) + (τ2, viτ2) + (τ4, v),

• B3(v′ivi, v) = J + (v0, viv0) + (τ2, v
′
ivi) + (τ4, v),

• B4(v′ivi, v) = J + (v0, viv0) + (τ2, v
′
ivi) + (τ4, viτ4) + (τ6, v),

• C1(v′ivi, v
′
3−iv3−i) = J + (v0, v

′
ivi) + (τ2, v

′
3−iv3−i),

• C2(v′ivi, v
′
3−iv3−i) = J + (v0, v

′
ivi) + (τ2, viτ2) + (τ4, v

′
3−iv3−i),

• C3(v′ivi, v
′
3−iv3−i) = J + (v0, viv0) + (τ2, v

′
ivi) + (τ4, v

′
3−iv3−i),

• C4(v′ivi, v
′
3−iv3−i) = J + (v0, viv0) + (τ2, v

′
ivi) + (τ4, viτ4) + (τ6, v

′
3−iv3−i).

Sometimes we will omit the arguments when they will be clear from the context and write,

e.g., B3 instead of B3(v′ivi, v). The following lemma gives the promised reformulation of the

outcomes of Lemma 2.4.5.
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Lemma 2.6.1. Let J be a graph, let G be a brick, let v0 be a vertex of J of degree two, let

v1, v2 be the neighbors of v0, for i = 1, 2 let v′i 6= v0 be a neighbor of vi, assume that v1 is not

adjacent to v2, assume that every vertex v ∈ V (J)−{v0} has a neighbor in V (J)−{v1, v2},
and assume that there exists an embedding J ↪→ G. Then one of the following holds:

(A) there exists a vertex v ∈ V (J)− {v0, v1, v2} such that A1(v) ↪→ G or A2(v) ↪→ G,

(B) there exist a vertex v ∈ V (J) − {v0, v1, v2} and indices i ∈ {1, 2} and j ∈ {1, 2, 3, 4}
such that vi has degree three and Bj(v′ivi, v) ↪→ G,

(C) there exist indices i ∈ {1, 2} and j ∈ {1, 2, 3, 4} such that v1, v2 have degree three and

Cj(v′ivi, v
′
3−iv3−i) ↪→ G,

(D) some split extension of J is isomorphic to a matching minor of G.

Proof. Let η : J ↪→ G. We may assume that η is a homeomorphic embedding, for otherwise

(D) holds by Lemma 2.5.8. By changing η we may assume that η(v1) and η(v2) each have

exactly one vertex, even if v1 or v2 has degree less than three. By Lemma 2.4.4 there exists

an embedding η′ : J ↪→ G and a v0-augmentation (P,Q) of η′. We may assume that (P, Q)

is minimal, and hence by Lemma 2.4.5 it is of type A, B, C or D. Similarly as above, we

may assume that η′ is a homeomorphic embedding. Let P have origin a ∈ V (η′(v0)) and

terminus b ∈ V (η′(u)). We say that (P, Q) is good if either u has degree not equal to two,

or u has degree two and b is at even distance from either end of η′(u) (recall that η′(u) is

an even path when u has degree two, and otherwise η′(u) has exactly one vertex).

Suppose (P,Q) is not good. Then u has degree two and b is at odd distance from the

ends of η(u). Let u′ be a neighbor of u in V (J) − {v1, v2} and let b′ and b′′ be the ends

of η(u), such that b′ ∈ V (η(uu′)). Let G′ be obtained from η(H) ∪ P ∪ Q by contracting

the even path η(u)[b, b′] ∪ η(uu′). Define η′ : J ↪→ G′ as follows. Let η′(u) = η(u)[b′′, b]\b,
η′(uu′) is a length one subpath of η(u)[b, b′′] with one end at b and η′ is otherwise equal to

η. Note that (P, Q) is a good augmentation of η′. Note also that G′ is a matching minor of

G.

Therefore we may assume that (P, Q) is a good augmentation of η of type A, B, C or

D. Now if (P,Q) is of type A, then outcome (A) holds, and similarly for type D, and, by
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Lemma 2.5.2, for type B. Thus we may assume that (P, Q) is of type C. From the symmetry

we may assume that P crosses an edge incident with v1, and by Lemma 2.5.2 we may assume

that it crosses the edge v1v
′
1. In particular, v1 has degree at most three. But it has degree

exactly three by axiom (7) in the definition of an embedding, because η(v1v
′
1) has at least

one internal vertex. The existence of (P, Q) implies, by the same argument as above, that

there is an integer j ∈ {1, 2, 3, 4} such that Cj(v′1v1, v
′′
2v2) ↪→ G for some neighbor v′′2 of v2

other than v0. Let L = C1(v′1v1, v
′′
2v2)\v0v2\τ1τ2 if j = 1, and let it be defined analogously

for j ≥ 2. If v2 has degree at least four, then L is isomorphic to a bisubdivision of a split

extension of H, and hence the lemma holds. Thus we may assume that v2 has degree at

most three, but it has degree exactly three by the same reason as v1. If v′2 = v′′2 , then (C)

holds, and so we may assume not. If j = 1, then by considering L and the edges τ1τ2 and

v0v2 we deduce that C1(v′1v1, v
′
2v2) ↪→ G. An analogous argument works for j = 4, while

for j ∈ {2, 3} the analogous argument proves that C5−j(v′1v1, v
′
2v2) ↪→ G. Thus (C) holds,

as desired.

2.7 Using 3-Connectivity

Recall that, a graph G is matching covered if every edge of G belongs to a perfect matching

of G. Thus every brick is matching covered.

Lemma 2.7.1. Let H and G be graphs such that H has minimum degree at least three,

G is connected and matching covered, and H is isomorphic to a matching minor of G. If

H is not isomorphic to G, then either a linear or split extension of H is isomorphic to a

matching minor of G, or there exists a homeomorphic embedding η′ : H ↪→ G such that

η′(e) has at least three edges for some e ∈ E(H).

Proof. By Lemma 2.4.2 there exists an embedding η : H ↪→ G. We may assume that η is

a homeomorphic embedding, for otherwise the lemma holds by Lemma 2.5.8. We may also

assume that η(e) has exactly one edge for each e ∈ E(H). Thus η(H) is isomorphic to H.

But G is not isomorphic to H, and hence there exists an edge e of G with exactly one end

in η(H). Let M1 be a perfect matching of G containing e, and let M2 be a perfect matching
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of G\V (η(H)). (This exists, because η(H) is a central subgraph of G.) The component of

M14M2 containing e is a path with both ends in η(H); let u, v ∈ V (H) be such that P has

one end in η(v) and the other end in η(u). If u and v are not adjacent in H, then by letting

η(uv) = P the embedding η can be extended to an embedding H + uv ↪→ G, and hence a

linear extension of H is isomorphic to a matching minor of G. On the other hand, if u and

v are adjacent in H, then P has at least three edges, because in that case the unique edge

of G between η(u) and η(v) belongs to η(uv). Thus we obtain the desired homeomorphic

embedding by replacing η(uv) by P .

Let G be a graph, let A,B ⊆ V (G), let M be a perfect matching of G\(A∪B), and let

k ≥ 0 be an integer. We say that the sequence of paths (P, Q1, Q2, . . . , Qk) is an (A,B)-hook

with respect to M if the following conditions hold:

(1)P has ends p0 ∈ A−B and pk+1 ∈ B −A, and is otherwise disjoint from A ∪B,

(2)for i = 1, 2, . . . , k, Qi is an even path with ends pi ∈ V (P )− {p0, pk+1} and qi ∈ A ∩B,

and is otherwise disjoint from A ∪B ∪ V (P ),

(3)V (Qi) ∩ V (Qj) ⊆ {qi, qj} for all distinct indices i, j ∈ {1, 2, . . . , k},

(4)the graph P ∪Q1 ∪Q2 ∪ . . . ∪Qk\(A ∪B) is M -covered, and

(5)the vertices p0, p1, p2, . . . , pk, pk+1 are distinct and occur on P in the order listed.

Lemma 2.7.2. Let G be a matching covered graph, let A,B ⊆ V (G), and let M be a perfect

matching of G\(A ∪ B). If A − B and B − A are both nonempty and belong to the same

component of G\(A ∩B), then there exists an (A,B)-hook with respect to M .

Proof. Suppose for a contradiction that the graph G does not satisfy the lemma, and choose

(A,B) violating the lemma with A ∪ B maximum. Let e be an edge of G with one end in

A − B and the other end in V (G) − A. Let M ′ be a perfect matching of G containing e,

and let P0 be the component of M4M ′ containing e. Then P0 is a path with one end in

A − B, the other end in A ∪ B, and otherwise disjoint from A ∪ B. If the other end of P0

is in B −A, then the sequence with sole term P0 is a required (A,B)-hook, and so we may
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assume that the other end of P0 is in A. Let A′ := A ∪ V (P0). Then A′ ∩ B = A ∩ B. By

the maximality of A ∪B there exists an (A′, B)-hook h = (P, Q1, Q2, . . . , Qk).

Let p0 ∈ A′ be an end of P . If p0 ∈ A, then h is an (A,B)-hook, and the lemma holds.

Thus we may assume that p0 is an internal vertex of P0. Let P1 and P2 be the two subpaths

of P0 with common end p0 and union P0. Exactly one of them, say P1, has the property

that P1 ∪ P ∪Q1 ∪Q2 ∪ . . .∪Qk\(A∪B) is M -covered. If the other end of P1 is in A−B,

then (P ∪ P1, Q1, Q2, . . . , Qk) is a desired (A,B)-hook. Thus we may assume that P1 has

one end in A ∩B, in which case (P ∪ P2, P1, Q1, Q2, . . . , Qk) is a desired (A,B)-hook.

Theorem 2.7.3. Let H and G be graphs, where H has minimum degree at least three and

is isomorphic to a matching minor of G and G is a brick. If H is not isomorphic to G,

then a vertex-parallel, edge-parallel or a linear extension of H is isomorphic to a matching

minor of G.

Proof. By Lemma 2.4.2 and Theorem 2.5.9 we may assume that there exists a homeomorphic

embedding η : H ↪→ G. By Lemma 2.7.1 we may assume that there exists an edge uv ∈
E(H) such that η(uv) has at least three edges. Let A = V (η(uv)) and let B consist of

V (η(H)), except the internal vertices of η(uv). Then A − B and B − A are nonempty

and |A ∩ B| = 2. Thus A − B and B − A belong to the same component of G\(A ∩ B),

because G is 3-connected. We have A ∪B = V (η(H)), and hence G\(A ∪B) has a perfect

matching, say M , because η(H) is a central subgraph of G. By Lemma 2.7.2 there exists

an (A,B)-hook h = (P, Q1, Q2, . . . , Qk) with respect to M . We may choose η, uv and h so

that k is minimum. If k = 0, then by considering the path P we conclude that a required

extension is isomorphic to a matching minor of G.

Thus we may assume that k > 0. Let the notation be as in the definition of (A, B)-hook.

Thus p0 is an internal vertex of η(uv), and from the symmetry we may assume it is located

at even distance from η(v) on η(uv). We have qi ∈ {η(u), η(v)} for all i = 1, 2, . . . , k. We

properly two-color the graph η(uv) ∪ P using the colors black and white so that η(v) is

black and η(u) is white. For convenience let q0 := p0. We will show that q0, q1, q2, ..., qk

all have the same color. Indeed, suppose for some i ∈ {0, 1, . . . , k − 1} the vertices qi and
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qi+1 have different color. We replace η(uv)[qi, qi+1] by Qi ∪ P [pi, pi+1] ∪Qi+1 to obtain an

embedding η′′ : H ↪→ G. Then the sequence h′ = (P [pi+1, pk+1], Qi+2, Qi+3, . . . , Qk) is an

(A′, B′)-hook, where A′ and B′ are defined in the same way as A and B but relative to η′′.

But h′ contradicts the minimality of k. This proves our claim that q0, q1, q2, ..., qk all have

the same color; in particular, q1 = q2 = · · · = qk = η(v).

The graph η(H)∪Qk∪P [pk, pk+1] has a matching minor isomorphic to a desired extension

of H, unless pk+1 belongs to η(vw) for some neighbor w of v other than u. By using the

argument of the previous paragraph we deduce that pk+1 is an internal vertex of η(vw)

located at even distance from η(v) on η(vw) for some neighbor w 6= u of v. Let J be

obtained from H as follows. First we bisubdivide the edges uv and vw; let the new vertices

be p′0,r0 and p′k+1,rk+1 correspondingly, where p′0 is adjacent to u and p′k+1 is adjacent to

w. Denote resulting graph by H ′. Then we add new vertices p′1, p
′
2, . . . , p

′
k and r1, r2, . . . , rk

in such a way that p′0p
′
1 . . . p′kp

′
k+1 is a path, and p′iriv is a path for all i = 1, 2, . . . , k, and

there are no other edges incident with the new vertices. This completes the definition of J .

Now η can be converted to an embedding η′ : J ↪→ G in a natural way; thus, for instance,

η′(p′i) is the graph with vertex-set {pi}.
We apply Lemma 2.6.1 to the graphs J and G and the vertex r0; let J ′ be the resulting

graph, and let η′′ : J ′ ↪→ G. Suppose outcome (D) of Lemma 2.6.1 holds. Then either a

split extension of H is isomorphic to a matching minor of G, in which case the desired result

follows from Theorem 2.5.9, or J ′ is obtained from J by splitting v. Let v1 and v2 be the

new outer vertices and v0 the new inner vertex. As we may assume that no split extension

of H is isomorphic to a matching minor of G, we have that |NJ ′(vi) ∩ NH′(v)| ≥ 2 for at

most one i ∈ {1, 2}, where NJ ′(vi) and NH′(v) denote the neighborhoods of vi and v in

J ′ and H ′ correspondingly. Without loss of generality let |NJ ′(v1) ∩NH′(v)| ≤ 1. Assume

first N(v1) ∩ NH′(v) = ∅, then we can choose 1 ≤ i < i′ ≤ k such that ri, ri′ ∈ N(v1)

and rj 6∈ N(v1) for every j such that 1 ≤ j < i or i′ < j ≤ k. The image of the hook

h′ = (p′0p
′
1 . . . p′iriv1ri′p

′
i′p
′
i′+1 . . . p′k+1, p

′
1r1v2, . . . , p

′
i−1ri−1v2, v1v0v2, p

′
i′+1ri′+1v2, . . .) under

η′′ contradicts the minimality of k. Assume now |NJ ′(v1)∩NH′(v)| = 1. From the symmetry

between r0 and rk+1 we may assume r0 ∈ N(v2). Let i be minimal such that ri ∈ N(v1)

60



then i ≤ k and the image of the hook h′ = (p′0p
′
1 . . . p′iriv1, p

′
1r1v2, . . . , p

′
i−1ri−1v2) under η′′

contradicts the minimality of k. We assume now that one of the outcomes (A),(B) or (C)

of Lemma 2.6.1 holds.

Throughout the rest of the proof let z ∈ V (J)− {v, p′0, r0}. Outcome (C) cannot hold,

because v has degree at least four in J .

Assume next that either J ′ = A1(z), in which case we put τ1 = τ2 = v0, or that

J ′ = A2(z) = J + (r0, p
′
0r0) + (τ2, z), in which case τ1 and τ2 have their usual meaning.

If z ∈ (V (H) − {u}) ∪ {rk+1, p
′
k+1}, then J + (τ2, z) is isomorphic to a bisubdivision of a

suitable extension of H. If z = u we replace η(uv) by η′′(uτ2r0τ1p
′
0p
′
1r1v) and the hook

h′ = (P [p1, pk+1], Q2, Q3, . . . , Qk) contradicts the minimality of k. If z = ri for some

1 ≤ i ≤ k then the hook h′ = (η′′(τ2rip
′
i) ∪ P [pi, pk+1], Qi+1, Qi+2, . . . , Qk) contradicts the

minimality of k. Finally if z = p′i for some 1 ≤ i ≤ k we replace η(uv) by η′′(up′0τ1r0τ2p
′
iriv)

and the hook h′ = (P [pi, pk+1], Qi+1, Qi+2, . . . , Qk) contradicts the minimality of k. This

completes the case J ′ = Ai.

Since v has degree at least four in J we assume that J ′ = Bi(p′1p
′
0, z) for some i ∈

{1, 2, 3, 4}. Note that J ′ contains J ′′ = Aj(z)\p′1p′0 as a matching minor for some j ∈ {1, 2},
and unless z = u the argument from the previous paragraph provides us with a suitable

extension or a contradiction. If z = u we replace η(uv) by η′(uττ ′τ ′′p′1r1v), where τ =

τ ′ = τ ′′ = τ2i if i ∈ {1, 2} and τ = τ2i−2, τ ′ = τ2i−3, τ ′′ = τ2i−4 if i ∈ {3, 4}. The hook

h′ = (P [p1, pk+1], Q2, Q3, . . . , Qk) now contradicts the minimality of k.

2.8 Vertex-Parallel and Edge-Parallel Extensions

The purpose of this section is to replace vertex-parallel and edge-parallel extensions in the

statement of Theorem 2.7.3 by extensions that are closer to linear extensions. Our first

goal is to prove that if a brick G has a matching minor isomorphic to a vertex-parallel

extension of a 2-connected graph H, then it also has a matching minor isomorphic to a

better extension of H. We will proceed in two steps; in the intermediate step we will

produce a better extension or one that is “almost better”, the following. Let H be a graph,

let u be a vertex of degree at least three, let u1 and u2 be distinct neighbors of u, and let
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H ′ = H + (u1, uu1) + (τ2, u2u). We say that H ′ is a semi-edge-parallel extension of H.

Lemma 2.8.1. Let H be a graph of minimum degree at least three, and let G be a brick.

If a vertex-parallel extension of H is isomorphic to a matching minor of G, then an edge-

parallel, a semi-edge-parallel, a linear, a cross, or a split extension of H is isomorphic to a

matching minor of G.

Proof. Let u0 be the vertex of H with neighbors u1 and u2 such that the graph H2 defined

below is isomorphic to a matching minor of G. Let H1 be obtained from H by bisubdividing

the edges u0u1 and u0u2 exactly once, and let x1, y1, x2, y2 be the new vertices, numbered so

that u2y2x2u0x1y1u1 is a path. The graph H2 is defined as H1 + (y1, y2). By Lemma 2.6.1

applied to J = H2 and the vertex x1 there exists a graph J ′ ↪→ G satisfying (A), (B),

(C) or (D) of that lemma. If J ′ is a split extension of J , then the graph obtained from

J ′\y1y2 by bicontracting y1 and y2 is a split extension of H. Thus if (D) holds, then the

theorem holds, and so we may assume that (A), (B) or (C) holds. Throughout this proof let

v ∈ V (J)−{u0, x1, y1}. The symbols τ1, τ2, . . . will refer to the new vertices of J ′ according

to the convention introduced prior to Lemma 2.6.1.

Assume first that J ′ = A1 = J +(x1, v). If v = u1, then J ′ is isomorphic to a semi-edge-

parallel extension of H. If v = x2, then H+(u1, u0u2) ↪→ G; if v = y2, then H+(u1, u2u0) ↪→
G; and in all other cases H + (v, u0u1) ↪→ G. In the last case, if v is not adjacent to u1,

then H + (v, u1) is a linear extension of H, and otherwise H + (v, u0u1) is an edge-parallel

extension of H. The same argument will be used later. We will also use later the fact that

the inclusions above did not use the edge y1y2. This completes the case J ′ = A1.

Now we assume that J ′ = A2 = J +(x1, x1u0)+(τ2, v). If v = x2, then H +(u2, u1u0) ↪→
G; if v = y2, then by deleting the edge y1y2 and bicontracting y1 we see that a semi-edge-

parallel extension of H is isomorphic to a minor of G; if v = u1, then the graph A1\x1\y1

is isomorphic to a bisubdivision of H, and by considering the path y2y1x1τ1 we deduce that

H + (u1, u2u0) ↪→ G; and in all other cases H + (v, u1u0) ↪→ G. This completes the case

J ′ = A2.

Let j ∈ {1, 2, 3, 4} and let J ′ = Bj(y2y1, v). We have A1(v)\y1y2 ↪→ Bj(y2y1, v) for
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j = 1, 2 and A2(v)\y1y2 ↪→ Bj(y2y1, v) for j = 3, 4 (if j = 1 we delete the edges y2τ1 and

y1τ2 and analogously for j ≥ 2). Since the arguments of the previous two paragraphs did

not use the edge y1y2, except for the cases of A1(u1) and A2(u1), we may assume that

J ′ = Bj(y2y1, u1), for some j ∈ {1, 2, 3, 4}. But H + (u1, u2u0) ↪→ Bj(y2y1, u1) (consider

the path u1τ2τ1y2 when j = 1). This completes the cases J ′ = Bj(y2y1, v).

Our next step is to handle the cases J ′ = Bj(x2u0, v) and J ′ = Cj(x2u0, y2y1). If

j ≤ 2, then H + (u1, u2u0) ↪→ G, and if j ≥ 3, then H1 + (x1, x1u0) + (ρ2, x2u0) ↪→ G

and H1 + (x1, x1u0) + (ρ2, x2u0) after bicontraction of y1 and y2 becomes isomorphic to

a semi-edge parallel extension of H. (We are using “ρ” instead of “τ”, because the “τ”

notation is reserved for vertices of J ′.)

Thus the only remaining cases are J ′ = Cj(y2y1, x2u0). If j = 1, then by considering the

path x1τ1τ2τ3 we deduce that H +(u1, u2u0) ↪→ G; for j = 2 the argument is analogous. For

j = 3 notice that C3(y2y1, x2u0)\τ1y1\y2τ3\x1τ2\τ4τ5 is isomorphic to a bisubdivision of H.

By considering the edge τ4τ5 we see that H + (u1, u2u0) ↪→ G. Finally, C4(y2y1, x2u0) has

a matching minor isomorphic to a semi-edge-parallel extension of H. To see that, consider

the edge x1τ1 and path τ2τ3τ4τ5τ6τ7. (The last argument applies to j = 3 as well, but for the

sake of the next proof we wish to avoid semi-parallel extensions as much as possible.)

Lemma 2.8.2. Let H be a 2-connected graph of minimum degree at least three, and let G

be a brick. If a semi-edge-parallel extension of H is isomorphic to a matching minor of

G, then an edge-parallel, a linear, a cross, a cube or a split extension of H is isomorphic

to a matching minor of G, unless H is isomorphic to K4 and G has a matching minor

isomorphic to the Petersen graph.

Proof. By hypothesis there exists a vertex u0 of H with distinct neighbors u1 and u2 such

that the graph H3 is isomorphic to a matching minor of G, where H1,H2, x1, y1, x2, y2 are

defined as in the proof of Lemma 2.8.1, and H3 = H2 + (x2, u2). We may assume that u0

has degree exactly three, for otherwise H3\u2y2\x2u0 is isomorphic to a bisubdivision of a

split extension of H, and hence a split extension of H is isomorphic to a matching minor

of G. Let u3 be the third neighbor of u0. Since H3 ↪→ G, either a split extension of H
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is isomorphic to a matching minor of G, or one of the graphs H3, H4 = H2 + (x2, y2u2),

H5 = H2 + (x2, u
′
2u2), where u′2 6= u0 is a neighbor of u2, has a homeomorphic embedding

into G. Let J denote that graph, and let it be chosen so that J 6= H3, if possible. This

choice implies that if a split extension of J is isomorphic to a matching minor of G, then so is

a split extension of H. Let x′2, y
′
2 be the new vertices of H4 and H5. We apply Lemma 2.6.1

to J and the vertex x1, and so we may assume that (A), (B), or (C) holds, for otherwise

the theorem holds. Let J ′ be the graph satisfying (A), (B) or (C). The symbols τ1, τ2, . . .

will again refer to the new vertices of J ′.

Let us assume first that either J = H3, or that y′2 has degree two in J ′. Then by deleting

the edge x2u2 (and bicontracting y′2 if J 6= H3) we may use the proof of Lemma 2.8.1. By

that argument the theorem holds, unless J ′ = A1(u1), J ′ = A2(y2), J ′ = Bj(y2y1, y2),

J ′ = Bj(x2u0, v), J ′ = Cj(x2u0, y2y1) or J ′ = C4(y2y1, x2u0) for some j ∈ {3, 4} and

v ∈ V (J)− {x1, y1, u0}.
If J ′ = A1(u1), then J ′\u1y1\x1u0\x2u2 is isomorphic to a bisubdivision of H, and by

considering the edge u2x2 we deduce that H + (u2, u0u3) ↪→ G. If J ′ = A2(y2) we delete

the edge y1y2, bicontract the vertex y1 and apply the previous argument.

Next, let J ′ = B3(y2y1, y2). The graph obtained from J ′ by deleting the edges y1τ4 and

τ3y2 and bicontracting the vertices y1 and τ4 is isomorphic to A2(y2). Thus H+(u2, u0u3) ↪→
G. Similarly if J ′ = B4(y2y1, y2) we delete the edges y1τ5, τ4τ6 and τ3y2 and bicontract the

vertices y1, τ4 and τ6 to demonstrate that H + (u2, u0u3) ↪→ G.

Our next step is to handle the cases J ′ = Bj(x2u0, v) and J ′ = Cj(x2u0, y2y1). Assume

first that j = 3. If v 6∈ {u2, x2, y2}, then by considering the edge τ4v we deduce that

H + (v, u0u2) ↪→ B3(x2u0, v) ↪→ G, and similarly H + (u2, u1u0) ↪→ C3(x2u0, y2y1) ↪→
G. For the cases v ∈ {u2, x2, y2} let L3 = B3(x2u0, v)\y1y2\x1τ2\τ1u0\τ4v\x2u2. By

considering the edge τ4v we deduce that H + (u2, u0u3) ↪→ G if v ∈ {u2, x2} and H +

(u3, u2u0) ↪→ G if v = y2. Now assume j = 4. If v 6∈ {u2, x2, y2}, then by considering

the edge τ6v we deduce that H + (v, u2u0) ↪→ B4(x2u0, v) ↪→ G. If v = u2 then let

L4 = B4(x2u0, u2)\x2\y2\x1τ1\τ4τ6\τ5u0. By considering the edge x1τ1 we deduce that

H + (u3, u0u1) ↪→ G. If v = x2 we get the same result by the graph obtained from L4
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by adding the path x2y2u2, and if v = y2 we add the path y2x2u2 instead. The graph

C4(x2u0, y2y1) has a matching minor isomorphic to a cross extension of H (delete the edges

τ7y2 and x2u2; the cross extension has two vertices replaced by triangles). This concludes

the cases J ′ = Bj(x2u0, v) and J ′ = Cj(x2u0, y2y1).

The graph C4(y2y1, x2u0) also has a matching minor isomorphic to a cross extension

of H. To see that, delete the edges u2y2 and x2τ7; the cross extension has two vertices

replaced by triangles.

We may therefore assume that J = H4 or J = H5, and that y′2 has degree three in

J ′. Thus J ′ = Aj(y′2) or J ′ = Bj(y2y1, y
′
2) or J ′ = Bj(x2u0, y

′
2) for some j. Assume first

that J ′ = Aj(y′2). If J = H4, then J ′ is isomorphic to a cross extension of H (with one or

two vertices replaced by triangles depending on the value of j), and so we may assume that

J = H5. If j = 2, then by considering the edge τ2y
′
2 we deduce that H+(u0, u2u

′
2) ↪→ G, and

so we may assume that j = 1. We may assume that u′2 = u1, for otherwise by considering

the edge x1y
′
2 we deduce that H+(u1, u2u

′
2) ↪→ G. Now there is symmetry among u0, u1, u2,

and since we could assume u0 had degree three, we may also assume u1 and u2 have degree

three in H. The graph K := J ′\u0x1\x2y2\u2y
′
2 is isomorphic to a bisubdivision of H. If

u2 is not adjacent to u3, then let u′′2 be the third neighbor of u2; by considering K and the

edge x2y2 we see that H + (u3, u2u
′′
2) ↪→ G, as desired. Thus we may assume that u2 is

adjacent to u3, and by symmetry we may also assume that u1 is adjacent to u3. But H is

2-connected, and hence u3 is not a cutvertex; thus H is isomorphic to K4. It follows that

J ′ is isomorphic to the Petersen graph, as desired. This completes the case J ′ = Aj(y′2).

Now let J ′ = Bj(y2y1, y
′
2) or J ′ = Bj(x2u0, y

′
2). If J = H4, then J ′ is isomorphic to a

cube extension of H, and so we may assume that J = H5. If J ′ = Bj(y2y1, y
′
2) and j = 1,

then by considering the path y2τ1τ2y
′
2 we deduce that H + (u′2, u2u0) ↪→ G. The argument

for j > 1 is analogous. Thus we may assume that J ′ = Bj(x2u0, y
′
2). If j = 1, then by

considering the path τ2y
′
2 we deduce that H + (u′2, u0u2) ↪→ G. The argument is analogous

for j > 1 with the proviso that when j is even the conclusion is H + (u′2, u2u0) ↪→ G.

We now turn our attention to edge-parallel extensions. Let us recall that G/v denotes
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the graph obtained from the graph G by bicontracting the vertex v.

Lemma 2.8.3. Let H be a graph of minimum degree at least three, and let G be a brick.

If an edge-parallel extension of H is isomorphic to a matching minor of G, then a cross,

cube, linear, quadratic, quartic or split extension of H is isomorphic to a matching minor

of G.

Proof. By hypothesis there exists a vertex u0 ∈ V (H) of degree at least three with neighbors

u1 and u2 such that the graph H2 := H + (u2, u1u0) is isomorphic to a matching minor of

G. Let y1, x1 be the new vertices of H2; thus u0x1y1u1 is a path of H2. Let H1 := H2\u2y1.

Since H2 ↪→ G, either a split extension of H is isomorphic to a matching minor of G, or

one of the graphs H2, H3 = H1 + (y1, u0u2), H4 = H1 + (y1, u
′
2u2), where u′2 6= u0 is a

neighbor of u2, has a homeomorphic embedding into G. Let J denote that graph, and let

it be chosen so that J 6= H2, if possible. This choice implies that if a split extension of J

is isomorphic to a matching minor of G, then so is a split extension of H. Let x2, y2 be

the new vertices of H3 and H4. If J = H2 let x2 := u2 and let y2 be undefined. We apply

Lemma 2.6.1 to J and the vertex x1, and so we may assume that (A), (B), or (C) holds, for

otherwise the theorem holds. Let J ′ be the graph satisfying (A), (B) or (C). Throughout

this proof let v ∈ V (J)− {x1, y1, u0} and once again the symbols τ1, τ2, . . . will again refer

to the new vertices of J ′.

We first notice that if u0 has degree at least four, then H2\u0u2 is isomorphic to a split

extension of H, and so we may and will assume that u0 has degree three. Let u3 be the

third neighbor of u0. We now show that we may assume that if J = H4, then u2 has degree

three. Indeed, if J = H4 and u2 has degree at least four then H4\u0u2/x1 is isomorphic

to a split extension of H. So in the case J = H4 let u′′2 be the third neighbor of u2. Let

L be obtained from J ′ by deleting u0u2 and all the “new” edges. Thus, for instance, if

J ′ = A2(v), then L = J ′\u0u2\x1τ1\τ2v. Then L/u0/y2 is isomorphic to H.

Assume first that J ′ = A1(v) = J + (x1, v). If v = y2, then J ∈ {H3,H4}, and J ′ is a

cross extension of H if J = H3, and a quartic or cross extension of H if J = H4. Thus we

may assume that v 6= y2, and hence we may assume (by bicontracting y2) that J = H2. It
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follows that J ′ is a quadratic extension of H, as desired. This completes the case J ′ = A1.

Next we assume that J ′ = A2(v) = J + (x1, u0x1) + (τ2, v). Assume first that v = y2. If

J = H3, then J ′ is a cross extension of H, and so we may assume that J = H4. But then

J ′\x1τ1/x1/τ1 is isomorphic to a quadratic extension of H.

Thus we may assume that v 6= y2, and hence, by bicontracting y2, we may assume that

J = H2. If v 6= u1, then J ′\y1u2/y1 is a quadratic extension of H, and so we may assume

that v = u1. But then by considering the graph L/u0 and edges x1τ1 and τ2u1 we deduce

that a quadratic extension of H is isomorphic to a matching minor of G. This completes

the case J ′ = A2.

Next we handle the cases J ′ = Bj(x2y1, v). We start by assuming that v = y2. If J = H3,

then J ′ is isomorphic to a cube extension of H, and so we may assume that J = H4. Recall

the definiton of L and that u2 has degree three. If j = 1, then by considering L and the edges

x1τ1 and τ2y2 we deduce that a quadratic extension of H, namely H +(u′′2, u0u2)+ (ρ2, u3),

is isomorphic to a matching minor of G. If j = 2, then by considering the edges τ2τ3 and

τ4y2 we deduce that the quadratic extension H + (u′′2, u2u0) + (ρ2, u2) is isomorphic to a

matching minor of G. An analogous argument applies when j = 4. If j = 3 then by deleting

the edge x1τ1 and bicontracting x1 and τ1 we deduce that H + (u′′2, u0u2) + (ρ2, u0) ↪→ G,

as desired. Thus we may assume that v 6= y2, and hence, by bicontracting y2, we may

assume that J = H2. If j = 1, then by considering L and the edges x1τ1 and τ2v we deduce

that the quadratic extension H + (u3, u2u0) + (ρ2, v) is isomorphic to a matching minor of

G. Let j = 2. If v 6= u2, then by considering L and the edges τ2τ3 and τ4v we deduce

that the quadratic extension H + (v, u2u0) + (ρ2, u2) is isomorphic to a matching minor of

G. If v = u2 then by considering the graph obtained from L by replacing the edge x1y1

by τ1x1 and considering the edges τ2τ3 and τ4u2 we deduce that the quadratic extension

H + (u2, u1u0) + (ρ2, u1) is isomorphic to a matching minor of G. Thus we may assume

j ∈ {3, 4}. Let us assume that v = u1. Then we may assume that u1 is adjacent to u2,

for otherwise H + (u1, u2) ↪→ G (consider the path u1τ4τ3u2 when j = 3 and the analogous

path for j = 4). If j = 3, then by replacing the edge u1u2 by the path u1τ4τ3u2 we obtain

a graph isomorphic to a bisubdivision of H, and by considering the edges y1τ4 and τ2τ3 we
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deduce that a quadratic extension of H, namely H + (u0, u2u1) + (ρ2, u0), is isomorphic to

a matching minor of G. If j = 4 then by replacing the edge u1u2 by the path u1τ6τ5τ4τ3u2,

by considering the edges τ4τ6 and y1τ5 and by bicontracting x1 and τ3 we deduce that a

quadratic extension of H, namely H + (u0, u2u1) + (ρ2, u2), is isomorphic to a matching

minor of G. Thus we may assume that v 6= u1. If j = 3, then by considering the edge x1τ1

and path τ2τ3τ4v we see that the quadratic extension H + (v, u1u0) + (ρ2, u1) is isomorphic

to a matching minor of G; an analogous argument gives the same conclusion when j = 4.

The cases J ′ = Bj(u2u0, v) can be reduced to the cases just handled by noticing that

J\u0u2 is isomorphic to a bisubdivision of H, and hence J is isomorphic to the edge-

parallel extension H + (u2, u3u0). Similarly the cases J ′ = Cj(u2y1, u2u0) can be reduced

to J ′ = Cj(u2u0, u2y1), and so it remains to handle the cases J ′ = Cj(u2u0, u2y1). But in

all four of those cases a cross extension of H is isomorphic to a matching minor of G.

The results of this section allow us to strengthen Theorem 2.7.3 as follows.

Theorem 2.8.4. Let H and G be graphs, where H is 2-connected, has minimum degree at

least three and is isomorphic to a matching minor of G, and G is a brick. Assume that if

H is isomorphic to K4, then G has no matching minor isomorphic to the Petersen graph.

If H is not isomorphic to G, then a cross, cube, linear, quadratic or quartic extension of H

is isomorphic to a matching minor of G.

Proof. By Theorem 2.7.3 we may assume that a vertex-parallel or an edge-parallel extension

of H is isomorphic to a matching minor of G. Thus the result follows from Lemmas 2.8.1,

2.8.2 and 2.8.3.

2.9 Cube and Cross Extensions

In this section we strengthen 2.8.4 by eliminating cube and cross extensions from the con-

clusion.

Lemma 2.9.1. Let H be a graph, let u be a vertex of H of degree three, and let u1 and

u2 be two neighbors of u. Let H1 be obtained from H by bisubdividing the edges uu1 and

uu2 once, and let x1, y1, x2, y2 be the new vertices so that u1y1x1ux2y2u2 is a path. Let
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H2 := H1 +(x2, y2x2) + (τ2, x1), let H3 := H1 +(x2, y2x2)+ (τ2, x1y1)+ (τ4, x1), and let H4

be obtained from H2 or H3 by replacing exactly one of the vertices x2, τ1, τ2 by a triangle.

Then each of H2,H3, H4 has a matching minor isomorphic to an alpha or prism extension

of H.

Proof. Throughout this proof let τ1, τ2 denote the new vertices of H2, and let τ1, τ2, τ3, τ4

denote the new vertices of H3 with the usual numbering convention. We can naturally embed

H into H2. By bicontracting y1 and y2 and considering edges x2τ1 and x1τ2, we see that H2

is isomorphic to a bisubdivision of a prism extension of H. The graph H3\τ1x2\x1u\τ3τ4 is

isomorphic to a bisubdivision of H and by bicontracting y1, τ3 and τ4 and considering edges

τ1x2 and x1u we deduce that H3 has a matching minor isomorphic to an alpha extension

of H. This completes the proof for H2 and H3.

Suppose H4 is obtained from H2 by replacing τ2 with a triangle, then H4\x2τ1/x2/τ1/y1

is isomorphic to an alpha extension H +(u1, uu2)+(ρ2, u) of H. Similarly if H4 is obtained

from H2 by replacing x2 or τ1 with a triangle then H4\x1u/x1/u/y1 is isomorphic to an

alpha extension of H.

It remains to consider the case when H4 be obtained from H3 by replacing exactly one

of the vertices x2, τ1, τ2 by a triangle. We need to make the following easy observation. If a

graph G1 is obtained from a graph G by replacing a vertex t ∈ V (G) of degree three with a

triangle T and G2 is obtained from G1 by replacing one of the vertices of T by a triangle,

then G is isomorphic to a matching minor of G2. Let H ′
2 = H1 + (x1, y1x1) + (ρ2, x2).

Clearly a graph obtained from H3 by contracting a triangle with vertex set {x2, τ1, τ2} is

isomorphic to H ′
2. Therefore, by the observation above, H4 contains H ′

2 as a matching

minor and H ′
2/y1/y2 is isomorphic to a quadratic extension of H.

Lemma 2.9.2. Let H be a graph of minimum degree at least three, and let G be a brick.

If a cube extension of H is isomorphic to a matching minor of G, then a linear, cross or

quadratic extension of H is isomorphic to a matching minor of G.

Proof. Let u be a vertex of H of degree three and let u1,u2 and u3 be its neighbors. Let

H0 be obtained from H by bisubdividing each of the edges uu1, uu2 and uu3. Let the
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new vertices be y1, y2, y3 and z1, z2, z3 in such a way that u1y1z3u, u2y2z1u and u3y3z2u

are paths. Let H1 := H0 + (y1, z2) + (y2, z3) + (y3, z1), and let J be obtained from H1

by replacing a subset of {z1, z2, z3} by triangles. If zi is replaced by a triangle, then let

the triangle be Zi; otherwise, let Zi denote the graph with vertex-set {zi}. By hypothesis

the vertex u and graph J may be selected so that J is isomorphic to a matching minor of

G. Let η : J ↪→ G. We may assume that η is a homeomorphic embedding, for otherwise

a split extension of H is isomorphic to a matching minor of G and the result holds by

Theorem 2.5.9.

When v ∈ V (J) we will abuse notation and use η(v) to denote the unique vertex of the

graph η(v). With that in mind let J ′ = η(J), let u′i = η(ui), u′ = η(u) and z′i = η(zi). For

i = 1, 2, 3 let Pi denote the path η(uiyi). We may assume that J and η are chosen so that

|V (P1)|+ |V (P2)|+ |V (P3)| is minimum.

Let Ω1 be the octopus with head η(Z1) and tentacles the paths of η(J) joining u′, y′2

and y′3 to Z1, and let Ω2 and Ω3 be defined analogously. Let Ω4 be the octopus with head

η(J\V (Z1)\V (Z2)\V (Z3)\{y1, y2, y3, u}) and tentacles P1, P2, P3, let F = {Ω1, Ω2, Ω3, Ω4},
and let Y ′ = {y′1, y′2, y′3, u′}. Then (F , Y ′) is a frame in G. Let M be a perfect matching

of G\V (η(J)); then M has a unique extension to a matching M ′ that is Ωi-compatible for

all i = 1, 2, 3, 4. By Theorem 2.2.3 there exist distinct integers i, j ∈ {1, 2, 3, 4} and an

M ′-alternating path S joining vertices vi and vj , where vi belongs to the head of Ωi and vj

belongs to the head of Ωj , such that for some edge e ∈ E(S)\M ′ the two components of S\e
may be denoted by Si and Sj so that V (Si) ∩ V (F) ⊆ V (Ωi) and V (Sj) ∩ V (F) ⊆ V (Ωj).

Assume first that j = 4. Then from the symmetry we may assume that i = 2. In this

case it will be convenient to allow v4 to be an internal vertex of a tentacle of Ω4. By doing

so we may assume (by replacing S by its subpath) that v4 is the only vertex of S ∩ Ω4. If

for some l ∈ {1, 2, 3} we have v4 ∈ V (Pl) and Pl[u′l, v4] is even, then let v = ul; if v4 ∈ V (Pl)

and Pl[u′l, v4] is odd, then v is undefined. If v4 belongs to V (η(z)) for some z ∈ V (J), then

let v = z. Finally, if v ∈ V (η(zz′)) for some edge zz′ ∈ E(H \u), then v4 is at even distance

on η(zz′) from exactly one of η(z), η(z′), say from η(z). In that case we put v = z. Notice

that if v is defined, then v ∈ V (H)− {u}. From the symmetry we may assume v 6= u1 and
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v4 6∈ V (P1). By Lemma 2.3.6 the graph Ω2 ∪ S2 + e includes a triad or tripod T with ends

y′1, u
′, v4.

We claim that if v4 belongs to P3, then the path Pi[v4, u
′
3] is even. Indeed, otherwise by

making use of T , Ω1 and Ω3 we obtain contradiction to the minimality of |V (P1)|+|V (P2)|+
|V (P3)|. This proves that if v is undefined then v4 ∈ V (P2). In that case by deleting the

path of η(J) joining y′2 and Z1 and by considering the path of η(J) joining y′1 and Z3 and

using T we deduce that a cross extension of H is isomorphic to a matching minor of G. If

v is defined, then one of the following graphs is isomorphic to a matching minor of G:

• H + (v, uu1) + (τ2, uu2), if T is a triad and Z3 = {z3},

• H + (v, uu1) + (τ2, u2u), if T is a triad and Z3 is a triangle,

• H + (v, u1u) + (τ2, τ1u1), if T is a tripod.

But each of the above graphs has a matching minor isomorphic to a quadratic extension of

H. This completes the case j = 4.

Thus we may assume that i = 1 and j = 2. By Lemma 2.3.6 Ω1 ∪ S1 + e includes a

triad or tripod T1 with ends y′3, u
′, s2 and Ω2 ∪ S2 + e includes a triad or tripod T2 with

ends y′1, u
′, s1, where s1 ∈ V (S1), s2 ∈ V (S2) are the ends of e. If either T1 or T2 is a tripod

then the required result follows from Lemma 2.9.1 by deleting the path of η(J) joining y′1

and Z3 and making use of T1 and T2. If both T1 and T2 are triads then one of the following

graphs is isomorphic to a matching minor of G:

• H + (uu3, uu1) + (τ4, uu2), if Z3 is not a triangle,

• H + (uu3, uu1) + (τ4, u2u), if Z3 is a triangle.

Both of these graphs have matching minors isomorphic to quadratic extensions of H.

Lemma 2.9.3. Let H be a graph, let J be a cross extension of H and let v be the hub of

J . If the degree of v in H is at least four then a split extension of H is isomorphic to a

matching minor of J .

Proof. Let x1, y1, x2, y2 and K ′ be as in the definition of cross extension. If J = K ′ then

J\vx1\x2y1/x1 is isomorphic to a split extension of H. If J 6= K ′ the argument is analogous.
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Lemma 2.9.4. Let H be a graph of minimum degree at least three, and let G be a brick. If

a cross extension of H is isomorphic to a matching minor of G, then a linear or quadratic

extension of H is isomorphic to a matching minor of G.

Proof. Let u be a vertex of H of degree three and let u1,u2 and u3 be its neighbors. Let

H1 be a cross extension of H obtained by deleting the vertex u and adding the vertices

x1, x2, y1, y2, y3 and edges yjuj and yjxi for all i = 1, 2 and j = 1, 2, 3. Let H2 be obtained

from H1 by replacing x1 by the triangle X1, and let H3 be obtained from H2 by replacing

x2 by the triangle X2. Let the vertices of X1 be a1, a2, a3 such that ai is adjacent to yi, and

let the vertices of X2 be b1, b2, b3 such that bi is adjacent to yi. By hypothesis, Lemma 2.9.3

and Theorem 2.5.10 we may assume that there exist a vertex u of H of degree three, a

graph J ∈ {H1,H2, H3}, and an embedding η : J ↪→ G. If J 6= H3 we define X2 to be the

subgraph of J with vertex-set {x2} and let b1 = b2 = b3 = x2, and if J = H1 we define X1

to be the subgraph of J with vertex-set {x1} and let a1 = a2 = a3 = x1. By Theorem 2.5.9

we may assume that η is a homeomorphic embedding. Let J ′ = η(J), let u′i = η(ui), and

y′i = η(yi). Let Pi denote the path η(uiyi). We may assume that J and η are chosen so that

|V (P1)|+ |V (P2)|+ |V (P3)| is minimum.

Let Ω1 be the octopus with head η(X1) and tentacles η(ajyj), where j = 1, 2, 3, and let

Ω2 be defined analogously. Let Ω3 be the octopus with head η(J\V (X1)\V (X2)\{y1, y2, y3})
and tentacles P1, P2, P3, let F = {Ω1,Ω2, Ω3}, and let Y ′ = {y′1, y′2, y′3}. Then (F , Y ′) is a

frame in G. Let M be a perfect matching of G\V (η(J)); then M has a unique extension to a

matching M ′ that is Ωi-compatible for all i = 1, 2, 3. By Theorem 2.2.3 there exist distinct

integers i, j ∈ {1, 2, 3} and an M ′-alternating path S joining vertices vi and vj , where vi

belongs to the head of Ωi and vj belongs to the head of Ωj , and an edge e ∈ E(S)\M ′ such

that the components of S\e may be denoted by Si and Sj so that V (Si) ∩ V (F) ⊆ V (Ωi)

and V (Sj) ∩ V (F) ⊆ V (Ωj).

Assume first that j = 3. In this case it will be convenient to allow v3 to be an internal

vertex of a tentacle of Ω3. By doing so we may assume (by replacing S by its subpath) that
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v3 is the only vertex of S ∩ Ω3. If v3 ∈ V (Pi), then let v = ui. If v3 belongs to V (η(z)) for

some z ∈ V (J), then let v := z. Finally, if v ∈ V (η(zz′)) for some edge zz′ ∈ E(J), then v3

is at even distance on η(zz′) from exactly one of η(z), η(z′), say from η(z). In that case we

put v := z. We may assume that v ∈ V (H)− {u, u1, u2}, and that if v3 ∈ V (P1 ∪ P2 ∪ P3)

then v3 ∈ V (P3). By Lemma 2.3.6 we may assume that S ∪ Ωi includes a triad or tripod

T with ends y′1, y
′
2, v3. We claim that if v3 belongs to P3, then the path P3[v3, u

′
3] is even.

Indeed, otherwise by making use of T and Ω3−i we obtain contradiction to the minimality

of |V (P1)| + |V (P2)| + |V (P3)|. We deduce that of the following graphs is isomorphic to a

matching minor of G:

• H1\x1y3 + (x1, v),

• H2\x2y3 + (x2, v),

• H2\a3y3 + (a3, v),

• H3\a3y3 + (a3, v).

But each of the above graphs has a matching minor isomorphic to a suitable extension of

H. In the first case we get a prism extension (bicontract y3 and consider the edges x1v

and y1x2), and in the other cases we get alpha extensions. In the second case delete a2a3,

bicontract its ends and consider the edges y1a1 and x2v; in the third case delete y1x2,

bicontract its ends, and consider the edges a1a2 and a3v; and in the fourth case consider

the same two edges, delete y1b1 and b2b3 and bicontract their ends. This completes the case

j = 3.

Thus we may assume that i = 1 and j = 2. Let s1 ∈ V (S1) and s2 ∈ V (S2) be the ends

of e. We apply Lemma 2.3.7 to S2 ∪Ω2 to conclude that Ω2 ∪S2 + e has a central subgraph

T2 such that T2 is either a quadropod with ends y′1, y
′
2, y

′
3, s1, or a quasi-tripod, in which

case we may assume by symmetry that its ends are y′1, y
′
2, s1. By Lemma 2.3.6 the graph

Ω1 ∪ S1 + e has a central subgraph T1 that is a triad or tripod with ends y′1, y
′
3, s2. If T2

is a quasi-tripod then the theorem holds by Lemma 2.9.1. If T2 is a quadropod with ends

y′1, y
′
2, y

′
3, s1, then one of the following graphs is isomorphic to a matching minor of G:

• H1\x1y2 + (x1, x2),
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• H2\a2y2 + (a2, x2).

Both of these graphs have a matching minor isomorphic to a suitable extension of H. In

the first case we get a prism extension by bicontracting y2 and considering the edges x2y1

and x2x1. In the second case we get an alpha extension by deleting x2y1, bicontracting y1

and y2 and considering the edges x2a2 and a1a3.

Using Lemma 2.9.2 and Lemma 2.9.4 we can upgrade Theorem 2.8.4 to the following

statement.

Theorem 2.9.5. Let H and G be graphs, where H is 2-connected and has minimum degree

at least three, G is a brick and H is isomorphic to a matching minor of G. Assume that if

H is isomorphic to K4, then G has no matching minor isomorphic to the Petersen graph. If

H is not isomorphic to G, then a linear, quadratic or quartic extension of H is isomorphic

to a matching minor of G.

Proof. This follows immediately from Theorem 2.8.4 and Lemmas 2.9.2 and 2.9.4.

2.10 Exceptional Families

We now handle quadratic extensions. The next lemma will show that a quadratic exten-

sion gives rise to a linear extension, unless it is of one of the following two types. Let

H, u, v, x, y, x′, y′,H ′ be as in the definition of quadratic extension; that is, H is a graph,

uv ∈ E(H), H ′ is obtained from H by bisubdividing uv, where the new vertices x, y are

such that x is adjacent to u and y. Further, x′ ∈ V (H)− {u} and y′ ∈ V (H)− {v} do not

both belong to {u, v}. Let H1 = H ′ + (x, x′) + (y, y′) be a quadratic extension of H. If

y′ = u, x′ is adjacent to v, and v has degree three, then we say that H1 is an alpha extension

of H. If x′, y′ ∈ V (H) − {u, v}, x′ is adjacent to v, y′ is adjacent to u and both u and v

have degree three, then we say that H1 is a prism extension of H.

Lemma 2.10.1. Let H be a graph of minimum degree at least three, and let K be a quadratic

extension of H. Then K has a matching minor isomorphic to a linear, alpha or prism

extension of H. Furthermore, if H, u, v, x, y, x′, y′,H ′ are as in the definition of quadratic
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extension and x′, y′ ∈ V (H)− {u, v}, then K has a matching minor isomorphic to a linear

or prism extension of H.

Proof. Let H, u, v, x, y, x′, y′,H ′ be as in the definition of quadratic extension, and let K =

H ′ + (x, x′) + (y, y′) be a quadratic extension of H. By symmetry we may assume that

y′ 6= u. If y′ is not adjacent to u, then H + (u, y′) ↪→ K, as desired. Thus we may assume

that y′ is adjacent to u. If u has degree at least four, then K\uy′ is isomorphic to a linear

extension of H, as desired. Thus we may assume that u has degree three. If x′ 6= v, then

by symmetry K is a prism extension of H, and if x′ = v, then K is an alpha extension of

H, as desired.

Lemma 2.10.2. Let K be an alpha extension of a graph H of minimum degree at least

three. Then K has a matching minor isomorphic to a linear or prism extension of H.

Proof. Let H, u, v, x, y, x′, y′,H ′ be as in the definition of quadratic extension, and let K =

H ′+(x, x′)+(y, y′) be an alpha extension of H, where y′ = u. Thus v has degree three and

is adjacent to x′. There exists a homeomorphic embedding η : H ↪→ K with η(v) = x and

η(z) = z for z ∈ V (H)−{v}, and by considering η(H) and the edges vx′ and uy we deduce

that K is isomorphic to a quadratic extension of H that satisfies the second statement of

Lemma 2.10.1. Thus the lemma holds by that statement.

Let H be a graph. By a fan in H we mean a sequence of vertices (x, y, u1, u2, . . . , uk)

such that these vertices are pairwise distinct, except that possibly x = y, and further

k ≥ 2, u1, u2, . . . , uk all have degree three and form a path in H in the order listed, and for

i = 1, 2, . . . , k the vertex ui is adjacent to x if i is even, and otherwise it is adjacent to y.

Lemma 2.10.3. Let K be a prism extension of a 3-connected graph H. If K is not a pris-

moid, a wheel or a biwheel, then K has a matching minor isomorphic to a linear extension

of H.

Proof. By hypothesis there exists a fan (x, y, u1, u2) in H such that K = H + (x, u1u2) +

(y, τ2). Let t1, t2 denote the new vertices τ1, τ2 of K, respectively. Let us choose a maximum

integer k such that H has a fan (x, y, u1, u2, . . . , uk) such that H + (x, u1u2) + (y, τ2) ↪→ K.
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Let u0 be the neighbor of u1 other than u2 and y. Now u0 6= uk, for otherwise H is a

wheel or a biwheel (depending on whether x and y are distinct or not). Assume first that

u0 6= x. There exists an embedding η : H ↪→ K such that η(u1) = t2. By considering the

edges u1y and xt1 we deduce that H + (y, u0u1) + (x, τ2) ↪→ K, and by using the proof of

Lemma 2.10.1 we deduce that either a linear extension of H is isomorphic to a matching

minor of K, or that x is adjacent to u0 and that u0 has degree three. But then the fan

(y, x, u0, u1, . . . , uk) contradicts the maximality of k. Thus we may assume that u0 = x,

and by symmetry we may assume that uk is adjacent to both x and y. It follows from the

3-connectivity of H that K is a prismoid, as desired.

We now turn to quartic extensions. Again, we will show that a quartic extension gives

rise to a linear extension, unless it is of two special types, the following ones. Let H be

a graph, and let u, v, H ′, x, y, a, b be as in the definition of a quartic extension. That is,

uv ∈ E(H), H ′ is obtained from H by bisubdividing uv, where the new vertices are x, y

numbered so that x is adjacent to u and y, and let K = H + (x, ab) + (τ2, y) be a quartic

extension of H. If b = v and the vertices u and a are adjacent and both have degree three,

then we say that K is a staircase extension of H. If a, b, u, v are pairwise distinct, all have

degree three, a is adjacent to u and b is adjacent to v, then we say that K is a ladder

extension of H. We also say that the extension is based at u, v, b, a (in that order).

Lemma 2.10.4. Let H be a graph of minimum degree at least three, and let K be a quartic

extension of H. Then K has a matching minor isomorphic to a linear, staircase or ladder

extension of H.

Proof. If a and u are not equal or adjacent, then H + au ↪→ K (delete xτ1 and bicontract

its ends), and hence the theorem holds. Assume now that a and u are adjacent. If both

u and a have degree at least four, then K\au is a linear extension of H. If exactly one of

a, u has degree three, say a does, then the graph obtained from K\au by bicontracting a

is isomorphic to a linear extension of H. Thus if a 6= u, and either they are not adjacent

or one of them has degree at least four, then a linear extension of H is isomorphic to a

matching minor of K. By symmetry the same conclusion holds about the vertices v and b,
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and the lemma follows.

Lemma 2.10.5. Let K be a staircase extension of a 3-connected graph H. If H has at least

five vertices, then a linear or ladder extension of H is isomorphic to a matching minor of

K.

Proof. Let K = H ′+ x1x2 + y1y2, where H ′ is obtained from H by bisubdividing the edges

vv1 and vv2 so that v1y1x1vx2y2v2 is a path of H ′, and assume that v1, v2 have degree three

and are adjacent to each other. Let v′1, v
′
2 be the third neighbors of v1 and v2, respectively.

If v′1 and v′2 are not equal or adjacent, then H +v′1v
′
2 ↪→ K (bicontract v1 and v2 in K\v1v2),

and so the lemma holds. If v′1 and v′2 are adjacent, then K can be regarded as a ladder

extension of H, and if v′1 = v′2, then the 3-connectivity of H implies that it is isomorphic

to K4, contrary to hypothesis.

A fence in a graph H is a sequence (u1, v1, u2, v2, . . . , uk, vk) of distinct vertices of H

such that k ≥ 2, each of theses vertices has degree three, u1u2 . . . uk and v1v2 . . . vk are

paths and ui is adjacent to vi for all i = 1, 2, . . . , k.

Lemma 2.10.6. Let K be a ladder extension of a 3-connected graph H on an even number

of vertices. If K is not a ladder or a staircase, then K has a matching minor isomorphic

to a linear extension of H.

Proof. By hypothesis there exists a fence (u1, v1, u2, v2, . . . , uk, vk) in H such that K =

H ′ + x1y1 + x2y2, where H ′ is obtained from H by bisubdividing u1u2 and v1v2 and

x1, x2, y1, y2 are the new vertices numbered so that u1x1x2u2v2y2y1v1 is a cycle in H ′.

We may assume that the fence is chosen with k maximum. Let u0, v0 be the third neighbors

of u1, v1, respectively. Assume first that u0 6= v0. Since the quartic extension of H based

at u0, u1, v1, v0 is isomorphic to K, the argument in the proof of Lemma 2.10.4 shows that

either a linear extension of H is isomorphic to a matching minor of K, or that u0 and v0

are adjacent and both have degree three. We may assume the latter, for otherwise the

lemma holds. By the maximality of k the sequence (u0, v0, u1, v1, . . . , uk, vk) is not a fence

in H, and hence we may assume that u0 = uk or u0 = vk. But H is 3-connected, and
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so in the former case K is a planar ladder, and in the latter case it is a Möbius ladder.

Thus we may assume that u0 = v0. The ladder extension of H based at uk−1ukvkvk−1 is

clearly isomorphic to K, and hence the above argument shows that we may assume that

the third neighbors of uk and vk are equal. Since H is 3-connected and has an even number

of vertices, it is a staircase.

The following result summarizes the previous lemmas.

Theorem 2.10.7. Let K be a quadratic or quartic extension of a 3-connected graph H on

an even number of vertices, and assume that K is not a prismoid, wheel, biwheel, ladder or

staircase. Then a linear extension of H is isomorphic to a matching minor of K.

Proof. If H is isomorphic to K4, then K is not a staircase extension of H, because K is not

a staircase. Thus the lemma follows from the results of this section.

We are now ready to prove Theorem 2.1.9. Let H and G be as stated therein, and

assume that they are not isomorphic. Assume first that either H is not isomorphic to K4,

or G has no matching minor isomorphic to the Petersen graph. By Theorem 2.9.5 we may

assume that a quadratic or quartic extension K of H is isomorphic to a matching minor

of G. It follows from the hypothesis of Theorem 2.1.9 that K is not a prismoid, wheel,

biwheel, ladder or staircase. Thus K has a matching minor isomorphic to a linear extension

of H by Theorem 2.10.7, and hence so does G, as desired. Thus we may assume that H is

isomorphic to K4 and G has a matching minor isomorphic to the Petersen graph. But G

is not isomorphic to the Petersen graph by hypothesis. Since we have already shown that

Theorem 2.1.9 holds when H is the Petersen graph, we may now apply it to deduce that G

has a matching minor isomorphic to a linear extension of the Petersen graph. The Petersen

graph has, up to isomorphism, a unique linear extension, and this linear extension has a

matching minor isomorphic to the staircase on eight vertices. But the latter graph has a

matching minor isomorphic to K4, the staircase on four vertices, contrary to hypothesis.
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2.11 A Generalization

In this section we state a generalization of Theorem 2.1.9, and point out how it follows from

the theory that we developed. Let G be a graph with a perfect matching. Let us recall that

a barrier in G is a set X ⊆ V (G) such that G\X has at least |X| odd components, and that

bricks are 3-connected graphs with perfect matchings and no barriers of size at least two.

Braces almost have no barriers, either, for if X is a barrier in a brace and X has at least

two elements, then X is one of the two color classes of G. We use this fact to weaken the

condition on bricks. Let s ≥ 0 be an integer. We say that a set X ⊆ V (G) is an s-barrier in

G if G\X has |X| − 1 odd components such that the union of the remaining components of

G\X has at least s vertices. We say that a graph is an s-brick if it is 3-connected and has

no s-barrier of size at least two. Thus bricks are 1-bricks and braces are 2-bricks. Our proof

of Theorem 2.1.9 actually proves the following more general theorem. A pinched staircase

is a graph obtained from a staircase by contracting the edge v1v2, where the vertices v1 and

v2 are as in the definition of a staircase.

Theorem 2.11.1. Let s ≥ 0 be an integer, G be an s-brick other than the Petersen graph,

and let H be a 3-connected matching minor of G on at least s + 1 vertices. Assume that if

H is a planar ladder, then there is no strictly larger planar ladder L with H ↪→ L ↪→ G,

and similarly for Möbius ladders, wheels, lower biwheels, upper biwheels, staircases, pinched

staircases, lower prismoids and upper prismoids. If H is not isomorphic to G, then some

matching minor of G is isomorphic to a linear extension of H.

Proof. The proof follows the proof of Theorem 2.1.9, with the following minor modifications.

In Lemma 2.2.2 the set Rk is not required to be odd, but instead must have at least s vertices.

The proof goes through with the obvious changes. Then the definition of octopus needs to

be changed to permit heads with even number of vertices, and in the definition of frame we

need to add a condition guaranteeing that the heads of Ω1, Ω2, . . . ,Ωk−1 are odd and that

the head of Ωk has at least s vertices. The assumption that H has at least s + 1 vertices

will guarantee that this additional condition is satisfied whenever Theorem 2.2.3 is applied.

Finally, in Lemma 2.10.6 the assumption that H has an even number of vertices can be
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replaced by assuming that K is not a pinched staircase.

Clearly Theorem 2.11.1 implies Theorem 2.1.9 on taking s = 1. Let us now turn to

braces. Let L be a linear extension of a brace H. Then L need not be a brace, but if L

is bipartite, then it is a brace. Furthermore, if L is isomorphic to a matching minor of

a bipartite graph, then L itself is bipartite. Thus Theorem 2.11.1 implies Theorem 2.1.7

by taking s = 2. The third application of Theorem 2.11.1 is to factor-critical graphs. A

graph G is factor-critical if G\v has a perfect matching for every vertex v ∈ V (G). It is

easy to see that every 1-brick on an odd number of vertices is factor-critical. Thus the

following immediate corollary of Theorem 2.11.1 gives a generation theorem for a subclass

of factor-critical graphs.

Corollary 2.11.2. Let G be a 1-brick on an odd number of vertices, and let H be a 3-

connected matching minor of G. Assume that if H is a wheel, then there is no strictly

larger wheel W with H ↪→ W ↪→ G, and similarly for pinched staircases, lower prismoids

and upper prismoids. If H is not isomorphic to G, then some matching minor of G is

isomorphic to a linear extension of H.

Unfortunately, a linear extension of a 1-brick need not be a 1-brick.
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CHAPTER III

MINIMAL BRICKS

In this chapter we utilize the results of Chapter 2 to prove a generating theorem for minimal

bricks.

The first advantage of such a theorem is computational. The theorem was used by

Robin Thomas in a program that generates all bricks up to a certain number of vertices.

The program allows one to input a starting graph (the graph all the resulting bricks will

contain as a matching minor) and several excluded graphs which the resulting graphs are

not allowed to have as matching minors. The program can test whether the resulting graphs

allow Pfaffian orientation.

This program was tremendously helpful in testing our conjectures and producing inter-

esting examples. The use of generating procedure suggested by Theorem 2.1.5 in such a

program is less efficient. We do not quantify this statement.

Secondly, the corollaries of this generation theorem shed light on the structure of minimal

bricks. We prove an exact upper bound for the number of edges in a minimal brick. We

also prove that every minimal brick has at least three vertices of degree three, generalizing

a recent result of de Carvalho, Lucchesi and Murty [7], which settles a conjecture of Lovász.

The material presented in this chapter will also appear in [37]. All the graphs considered

in this chapter are simple.

3.1 Generating Theorem for Minimal Bricks

A brick G is minimal if for every e ∈ E(G) the graph G \ e is not a brick. In this chapter

we derive a generating theorem for minimal bricks from the results of the previous chapter.

We also prove two corollaries: for n ≥ 4, a minimal brick on 2n vertices has at most 5n− 7

edges; every minimal brick has at least three vertices of degree three.

We need to define new types of extensions that will be used in this generating theorem.
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Figure 13: (a) Bilinear extension, (b) Pseudolinear extension

We say that a linear extension H ′ of a graph H is strict if |V (H ′)| > |V (H)|. Let u, v, w

be pairwise distinct vertices of H, let H ′ be obtained from H by bisplitting u and let u0 be

the new inner vertex and u1 a new outer vertex. If u1v ∈ E(H ′) and vw 6∈ E(H) then the

graph H ′ + (u0, vu1) + (τ2, w) is called a bilinear extension of H. If uw 6∈ E(H) then the

graph H ′ + (u0, u1u0) + (τ2, w) is called a pseudolinear extension of H. See Figure 13.

Let u, v ∈ V (H) be distinct. We say that H ′ is a quasiquadratic extension of H if H ′ is

a quadratic extension of H + uv with base uv. Similarly, if u, v, a, b ∈ V (H) are such that

{u, v} 6= {a, b} we say that a quartic extension of H + uv + ab is a quasiquartic extension

of H with bases uv and ab. Recall our convention that if u and v are adjacent in H, then

H + uv = H. Thus quadratic extensions are quasiquadratic and quartic are quasiquartic.

Note also that quasiquadratic, quasiquartic, bilinear and pseudolinear extensions of bricks

are bricks. Finally, we say that H ′ is a strict extension of H if H ′ is a quasiquadratic,

quasiquartic, bilinear, pseudolinear or strict linear extension of H.
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Theorem 3.1.1. Let G be a brick other than the Petersen graph, and let H be a 3-connected

matching minor of G, such that |V (H)| < |V (G)|. Then some matching minor of G is

isomorphic to a strict extension of H.

Proof. Let a graph H ′ be chosen so that H is a spanning subgraph of H ′, H ′ ↪→ G and

|E(H ′)| is maximal.

Suppose first that H ′ is a planar ladder and there exists a planar ladder L with H ′ ↪→
L ↪→ G and |V (L)| > |V (H ′)|. Then clearly H ′ = H, L is a quartic extension of H

and therefore the theorem holds. Therefore we can assume that if H ′ is a planar ladder,

then there is no strictly larger planar ladder L with H ↪→ L ↪→ G, and similarly for

Möbius ladders, wheels, lower biwheels, upper biwheels, staircases, lower prismoids and

upper prismoids. By Theorem 2.1.9 and the choice of H ′ there exists a strict linear extension

K of H ′ such that K ↪→ G. We denote E(H ′) − E(H) by E′. We break the analysis into

cases depending on the type of strict linear extension.

Suppose first that K = K ′+uv, where K ′ is obtained from H ′ by bisplitting a vertex, v

is the new inner vertex of K ′ and u ∈ V (H ′). Let v1 and v2 be the new outer vertices. We

have E(H ′) ⊆ E(K ′), in a natural way. For i = 1, 2 let di be the number of edges of E(H)

that are incident with vi in K ′ (or K). We assume without loss of generality that d1 ≥ d2.

Note that d1 + d2 ≥ 3, because v has degree at least three in H.

If d2 ≥ 2 then K \ E′ is a strict linear extension of H. If d2 = 1 let f ∈ E′ be an edge

incident with v2; then K \ (E′ − {f}) is a quadratic extension of H. Finally, if d2 = 0 and

f1, f2 ∈ E′ are incident with v2 then K \ (E′−{f1, f2}) is a quasiquadratic extension of H.

Now suppose K = K ′ + u1u2, where K ′ is obtained by bisplitting a vertex of a graph

obtained from H ′ by bisplitting a vertex, and u1 and u2 are the two new inner vertices of

K ′. Let v1 and v2, v3 and v4, respectively, be the corresponding new outer vertices. Let

d1, d2, d3 and d4 be defined analogously as above. We start by assuming that v1, v2, v3 and

v4 are pairwise distinct and without loss of generality assume d1 ≥ d2, d3 ≥ d4 ≥ d2.

If d2 ≥ 2 then K \E′ is a strict linear extension of H. If d2 = 1, d4 ≥ 2 then K \E′/v2 is

isomorphic to a strict linear extension of H unless the edge of H incident with v2 is incident
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also with one of the vertices v3 and v4. In this case K \ (E′ − {f}) is a bilinear extension

of H, for every f ∈ E′ incident with v2. If d2 = d4 = 1 for i ∈ {1, 2} let ei denote the

unique edge in E(H) incident with d2i and let fi denote some edge in E′ incident with d2i.

If e1 = e2 then K \ (E′−{f1, f2}) is a quasiquartic extension of H. Otherwise, without loss

of generality we assume that e2 is not incident with v1 and deduce that K \ (E′ − {f1})/v4

is a quadratic extension of H with base e1.

It remains to consider the subcase when d2 = 0. Let f, f ′ ∈ E′ be incident with v2 such

that f has no end in {v3, v4}. If d4 ≥ 2 then K \ (E′ − {f}) \ u1v1/u1 is a strict linear

extension of H. If d4 = 1 let e denote the unique edge in E(H) incident with d4. If e is not

incident with v1 then K \ (E′ − {f, f ′})/v4 is a quasiquadratic extension of H if f ′ is not

incident with v4 and K \ (E′−{f, f ′}) is a quasiquartic extension of H if f ′ is incident with

v4. If on the other hand e is incident with v1 then K \ (E′−{f, f ′′})\u1v1/u1 is a quadratic

extension of H, where f ′′ is any edge in E′ incident with v4. Finally, if d4 = 0 let f∗ ∈ E′

be incident with v4 and have no end in {v1, v2}. Then K \ (E′ − {f, f ′, f∗}) \ u2v3/u2 is a

quasiquadratic extension of H. This completes the case when v1, v2, v3 and v4 are pairwise

distinct.

We now assume without loss of generality that v1 = v4. Then v1, v2 and v3 are pairwise

distinct and we assume d2 ≥ d3, again without loss of generality. Suppose first d1 = 0.

If d3 ≥ 2 then K \ (E′ − {g}) is a pseudolinear extension of H, where g ∈ E′ is incident

with v1; if d3 = 1 then K \ (E′ − {g})/v3 is a quadratic extension of H and if d3 = 0 then

K \ (E′ − {f, g})/v3 is a quasiquadratic extension of H, where f is an edge in E′ incident

with v3 and not adjacent to g. Therefore we may assume d1 ≥ 1. If d2 ≥ 2 and d3 ≥ 1

then K \ E′ or K \ E′/v3 is a strict linear extension of H. If d2 ≥ 2 and d3 = 0 then

K \ (E′ \ f)/v3 is a quadratic extension of H, where f is as above. If, finally, d2 ≤ 1 then

let E′′ be obtained from E′ by deleting 2− d2 edges of E′ incident with v2 and 1− d3 edges

incident with v3; K \ (E′′)/u2 is a quasiquadratic extension of H.

This completes the case analysis.

Theorem 3.1.1 implies the following generating theorem for minimal bricks.
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Theorem 3.1.2. Let G be a minimal brick other than the Petersen graph. Then G can

be obtained from K4 or the prism by taking strict extensions, in such a way that all the

intermediate graphs are minimal bricks not isomorphic to the Petersen graph.

Proof. Suppose the statement of the theorem is false and let G be a counterexample with

|V (G)| minimum.

Let a minimal brick H ↪→ G be chosen such that H can be obtained from K4 or the

prism by taking strict extensions and |V (H)| is maximum. By [28], Theorem 5.4.11, G has

a matching minor M isomorphic to K4 or the prism and therefore such choice is possible.

If |V (H)| = |V (G)| then H is isomorphic to G by the minimality of G. If, on the other

hand, |V (H)| < |V (G)| then by Theorem 3.1.1 there exists a strict extension H ′ ↪→ G of

H. Let H ′′ ↪→ H ′ be a minimal brick with |V (H ′′)| = |V (H ′)|; then H ′′ ↪→ G. It follows

that H ′′ is not isomorphic to G, for otherwise so is H ′, contrary to our assumption that G

is a counterexample to the theorem. By the minimality of G the graph H ′′ can be obtained

from K4 or the prism by taking strict extensions, contrary to the choice of H.

Note that there exist bricks obtained from K4 or the prism by a sequence of strict

extensions, that are not minimal. A simple example follows.

Let G be the prism, V (G) = {v1, v2, v3, u1, u2, u3}, the vertices v1,v2,v3 are pairwise

adjacent and so are the vertices u1, u2, u3, and ui is adjacent to vi for i ∈ {1, 2, 3}. Let

G′ = G + u1v2 and let G′′ = G′ + (u2, u1v2) + v1τ2. Then G′′ is a quasiquadratic extension

of G and G′′ \u1v1 is a brick, which can be obtained from a prism by a quadratic extension

or a sequence of two linear extensions.

3.2 Edge Bound for Minimal Bricks

In [28], Corollary 5.4.16 an exact upper edge bound for minimal bicritical graphs is given.

Theorem 3.2.1. If G is a minimal bicritical graph with n ≥ 6 vertices, then |E(G)| ≤
5(n− 2)/2.

We use Theorem 3.1.1 to prove a similar bound for bricks.
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Theorem 3.2.2. Let G be a minimal brick on 2n vertices. Then |E(G)| ≤ 5n − 7, unless

G is the prism or the wheel on four, six or eight vertices.

Proof. The theorem holds for the Petersen graph, so from now on we assume that G is not

the Petersen graph, the prism or the wheel on six or eight vertices. Denote the last three

graphs by R6, W6 and W8, respectively.

Note that a strict linear extension increases the number of vertices in a graph by 2 or

4 and the number of edges by 3 or 5, respectively. Similarly, a quasiquadratic extension

increases the number of vertices by 2 and the number of edges by at most 5, while quasi-

quadric, bilinear and pseudolinear extensions increase the number of vertices by 4 and the

number of edges by at most 8.

We say that a brick H is sparse if |E(H)| ≤ 5
2 |V (H)| − 7 and we say that H is dense

otherwise. We claim that any minimal brick that contains a sparse minor is sparse. Suppose

G1 and G2 are bricks, G1 ↪→ G2, G1 is sparse and G2 is minimal. Let the sparse brick

H ↪→ G2 be chosen such that |V (H)| maximal. From Theorem 3.1.1 we deduce that either

|V (H)| = |V (G2)| or some strict extension H ′ of H is a matching minor of G2. In the

latter case, by the calculations above, H ′ is sparse in contradiction with the choice of H.

Therefore |V (H)| = |V (G2)| and G2 is isomorphic to H by the minimality of G2. The claim

follows.

Suppose G is dense. By Theorem 2.1.6 G has a matching minor isomorphic to one of

the following four graphs: R6, W6, the staircase on eight vertices, and the Möbius ladder

on eight vertices. Among these graphs only two are dense: R6 and W6 .

Assume first that G contains R6 as a matching minor. By Theorem 3.1.1 there exists a

strict extension H of the prism such that H ↪→ G. By the calculations above H is sparse,

unless H is a quadratic extension of R6 + uv with the base uv, where uv 6∈ E(R6). We

will show that there exists e ∈ E(H) such that H \ e is a brick. Note that H \ e is sparse.

Therefore it follows that any minimal brick containing the prism as a matching minor and

not equal to it is sparse. We prove the existence of e by listing all possible quasiquadratic

extensions of R6 with 14 edges on Figure 14. An edge e that satisfies the conditions above
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is indicated by a cross. A spanning bisubdivision or bisplit of R6 or W6 in H \e is indicated

by bold lines and allows the reader to easily verify that the claim holds in each of the cases.

Therefore we may assume that G contains W6 as a matching minor and does not contain

R6. By Theorem 2.1.5 G is a wheel or G contains a linear extension of W6 as a matching

minor. All the wheels on at least ten vertices and all strict linear extensions of W6 are sparse

and therefore G must contain a graph obtained from W6 by an edge addition. Such graph

is unique up to isomorphism and contains R6 as a spanning subgraph, in contradiction with

our assumptions.

The bound given in Theorem 3.2.2 is tight for every n ≥ 4. An example of a min-

imal brick Gn on 2n + 4 vertices with 5n + 3 edges follows for n ≥ 2. Let V (Gn) =

{x, y, z, t, v1, u1, v2, u2, . . . , vn, un}. For every i ∈ {1, 2, . . . , n} let xt, yt, zt, xui,yui, yvi,zvi

and uivi be the edges of Gn. Then for every e ∈ E(Gn) the graph Gn \ e contains a vertex

of degree two and is not a brick. It remains to show that Gn is a brick for every n. Note

that Gk is a quasiquadratic extension of Gk−1 for every k > 2. Therefore it suffices to show

that G1 is a brick. The graph G2 \ u1y \ v1y is isomorphic to the prism with one of its

edges bisubdivided and consequently G2 can be obtained from the prism by a quadratic

extension.

3.3 Three Cubic Vertices

The conjecture that every minimal brick contains a vertex of degree three is attributed

to Lovász . This conjecture was verified in [7]. Below we prove a strengthening of this

conjecture.

Theorem 3.3.1. Every minimal brick has at least three vertices of degree three.

Proof. Let a minimal brick G that has at most two vertices of degree three be chosen with

|V (G)| minimal. By Theorem 3.1.2 there exists a minimal brick H ↪→ G with at least three

vertices of degree three, such that G is isomorphic to a strict extension of H.

Note that if a strict linear extension is used to obtain G from H then the degree of at

most one vertex of H increased and at least one vertex in V (G)− V (H) has degree three.
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Figure 14: Quasiquadratic extensions of the prism with 14 edges
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If a quasiquartic, bilinear or pseudolinear extension is used to obtain G then V (G)− V (H)

contains at least three vertices of degree three. Therefore G is isomorphic to a quasiquadratic

extension of H.

We assume without loss of generality that V (G) − V (H) = {u1, u2} and there exist

v1, v2, v3, v4 ∈ V (H) such that E(G)−E(H) = {u1v1, u1v2, u2v3, u2v4, u1v1}, at least three

of the vertices v1, v2, v3, v4 are distinct, v1 6= v2 and v3 6= v4. Note that vertices of degree

three in H must form a subset of {v1, v2, v3, v4} and that v1v3, v2v3, v2v4, v1v4 6∈ E(H), for

the deletion of such an edge results in a quadratic extension of H, contrary to the fact that

G is a minimal brick.

By Theorem 2.1.5 either H is a ladder, wheel, staircase or prismoid or some proper

reduction of H is a brick. If H is a ladder, wheel, staircase or prismoid distinct from

K4 then H has at least 5 vertices of degree three, and consequently G has at least three

vertices of degree three. If H = K4 then G is not minimal, by an observation in the previous

paragraph.

Therefore there exists e ∈ E(H) such that H \e becomes a brick H1 after possible bicon-

tractions of vertices of degree two and no parallel edges are created by these bicontractions.

Note that H is minimal and therefore at least one end of e is a vertex of degree three in H.

Assume first that exactly one end of e has degree three in H. Without loss of generality

this end is v1. The graph G \ e is a brick, because it can be obtained by a linear extension

(first bisplit to produce H\e, then add edge v1v3) followed by a quadratic extension with

base v1v3. Recall that v1 is not adjacent to v3 in H.

It remains to consider the case when both of the ends of e have degree three in H.

Without loss of generality we assume that e = v1v2 and v1, v2, v3 and v4 are pairwise

distinct. It follows that G \ e is a strict linear extension of H + v1v3 + v1v4 and is again a

brick. This completes the case analysis.

We conjecture the following strengthening of Theorem 3.3.1.

Conjecture 3.3.2. There exists α > 0 such that every minimal brick G has at least α|V (G)|
vertices of degree three.
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Even a much weaker strengthening, namely, a conjecture that every brick has at least

four vertices of degree three, seems to require new ideas or a substantial refinement of our

techniques.
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CHAPTER IV

PFAFFIAN GRAPHS, T-JOINS AND CROSSING

NUMBERS

In this chapter we prove a technical theorem about the numbers of crossings in T -joins in

different drawings of a fixed graph.

As a main corollary we characterize Pfaffian graphs in terms of their drawings in the

plane. We also consider applications of this theorem to the theory of crossing numbers. We

give a new proof of a theorem of Kleitman [23] on the parity of crossings in drawings of K2j+1

and K2j+1,2k+1, which in turn gives a new proof of the Hanani-Tutte theorem [17, 55]. We

state a hypergraph conjecture, which if true implies Zarankiewicz’s conjecture on crossing

number of Kn,n and prove a uniqueness of the drawing of the Petersen which minimizes the

number of crossings.

Further applications of the method appear in Chapters 5 and 6. The material presented

in this chapter will also appear in [33].

4.1 Introduction

A pair (G,T ) consisting of a graph G and a set T ⊆ V (G) of even cardinality is called a

graft. A T -join is a subset J ⊆ E(G) such that every vertex v ∈ V (G) is incident with an

odd number of edges in J if and only if v ∈ T .

T -joins were first introduced in relation to the Chinese Postman problem, which can be

reformulated as follows: find the minimum set of edges in a graph whose doubling results in

an Eulerian graph. Note that such set of edges is a T -join, where T is the set of all vertices

of odd degree. A perfect matching is another example of a T -join, where T = V (G). Since

their introduction, T -joins have been extensively studied (see for example [47], [28, sections

6.5 and 6.6], [16], [6, section 2]).

By a drawing Γ of a graph G we mean an immersion of G in the plane such that edges
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are represented by homeomorphic images of [0, 1], not containing vertices in their interiors.

Edges are permitted to intersect, but there are only finitely many intersections and each

intersection is a crossing. For edges e, f of a graph G drawn in the plane let cr(e, f) denote

the number of times the edges e and f cross. For a set J ⊆ E(G) let cr(J,Γ), or cr(J) if

the drawing is understood from context, denote
∑

cr(e, f), where the sum is taken over all

unordered pairs of distinct edges e, f ∈ J .

We say that an unordered pair {e, f} of adjacent edges in G is an angle. We denote

the set of all edges and angles in a graph G by Æ(G). If J ⊆ E(G) we say that e ∈ E(G)

lies in J if e ∈ J , and we say that an angle {e, f} lies in J if e, f ∈ J . For J ⊆ E(G) and

S ⊆ Æ(G) we denote by J u S the set of elements of S which lie in J .

The following theorem is the main result of this chapter. While the theorem itself is

rather technical, it has a number of interesting applications.

Theorem 4.1.1. Let (G,T ) be a graft and let Γ1 and Γ2 be two drawings of G in the

plane. Then there exists S = S(T, Γ1, Γ2) ⊆ Æ(G) such that for every T -join J ⊆ E(G) the

following identity holds modulo 2

cr(J,Γ1) = cr(J,Γ2) + |J u S|, (1)

and if T = ∅ then S contains no edges.

We prove Theorem 4.1.1 in Section 2. In Section 3 Theorem 4.1.1 is used to characterize

Pfaffian graphs in terms of their drawings in the plane.

In Section 4 we consider several applications of Theorem 4.1.1 to the theory of crossing

numbers. We give a new proof of a result of Kleitman on the parity of the number of

crossings in a graph. A well-known theorem of Hanani and Tutte follows as a corollary. We

develop an approach to the problem of estimating the crossing number of complete bipartite

graphs, also known as the Turán’s brickyard problem. Finally, we characterize the drawings

of the Petersen graph that minimize the number of crossings.

4.2 Proof of The Main Theorem

Throughout this section all integer identities are modulo 2.
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For any n and any two sequences (a1, a2, .., an) and (b1, b2, .., bn) of pairwise distinct

points in the plane, there clearly exists a homeomorphic transformation of the plane that

takes ai to bi for all 1 ≤ i ≤ n. Therefore without loss of generality we assume that the

vertices of G are represented by the same points in the plane in both Γ1 and Γ2.

We say that the drawings Γ1 and Γ2 are adjacent if they differ only in the position of a

single edge e = u1u2. We start by proving Theorem 4.1.1 for adjacent drawings.

Let e1 and e2 denote the images of e in Γ1 and Γ2 correspondingly. By changing these

images within the regions of Γ1 \ e1 we can assume that e1 and e2 have finitely many

intersections and each intersection is a crossing. Define C = e1 ∪ e2. The closed curve C

separates its complement into two sets P1 and P2 with the property that every simple curve

with ends a ∈ Pi and b ∈ Pj crosses C an even number of times if and only if i = j.

For x ∈ (V (G) ∪ E(G)) \ {e} we will not distinguish between x and its representation

in Γ1 and Γ2. Define Fi to be the set of all edges f ∈ E(G) \ {e} such that f is adjacent to

uj for some j ∈ {1, 2} and f ∩ U ⊆ Pi ∪ {uj} for every some neighborhood U of uj in the

plane. Define

S = {{e, f}|f ∈ F1}

if |T ∩ P1| is even, and

S = {{e, f}|f ∈ F1} ∪ {e}

if |T ∩ P1| is odd. If T = ∅ then S contains no edges.

If e 6∈ J then cr(J,Γ1) = cr(J,Γ2) and (1) trivially holds, so we assume e ∈ J . We have

cr(J,Γ1) + cr(J,Γ2) = 2
∑

{f,g}⊆J\{e}
cr(f, g) +

∑

f∈J\{e}
(cr(f, e1) + cr(f, e2))

=
∑

f∈J\{e}
cr(f, C)

Therefore it suffices to prove that

|J u S| =
∑

f∈J\{e}
cr(f, C),

or equivalently that

|J ∩ F1|+ |T ∩ P1| =
∑

f∈J\{e}
cr(f, C). (2)
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From the definition of T -join we can deduce that for any X ⊆ V (G)

|T ∩X| = |{uv ∈ J |u ∈ X, v 6∈ X}|.

In particular

|T ∩ P1| = |{uv ∈ J |u ∈ P1, v 6∈ P1}| = |{uv ∈ J |u ∈ P1, v ∈ P2}|+

+|{uv ∈ J |u ∈ P1, v ∈ {u1, u2}}|. (3)

Let J1 = {uv ∈ J ∩ F2|u ∈ P1} and J2 = {uv ∈ J ∩ F1|u ∈ P2}. Note that

(J ∩ F1)4{uv ∈ J |u ∈ P1, v ∈ {u1, u2}} = J1 ∪ J2,

and therefore

|J ∩ F1|+ |{uv ∈ J |u ∈ P1, v ∈ {u1, u2}}| = |J1 ∪ J2|. (4)

Let J3 = {uv ∈ J |u ∈ P1, v ∈ P2}. The sets J1, J2 and J3 are pairwise disjoint. From (3)

and (4) we have

|J ∩ F1|+ |T ∩ P1| = |J1 ∪ J2 ∪ J3|. (5)

But J1∪J2∪J3 is exactly the set of those edges f ∈ J \{e} which cross C an odd number of

times. Therefore (2) follows from (5) and the proof of Theorem 4.1.1 for adjacent drawings

is complete.

For two arbitrary drawings Γ1 and Γ2 of G there always exist an integer n and a sequence

of drawings Γ1 = Γ′1, Γ
′
2, . . . ,Γ

′
n = Γ2 of G such that Γ′i is adjacent to Γ′i+1 for all i ∈

{1, 2, . . . , n−1}. We have proved that there exist sets Si ⊆ Æ(G) for all i ∈ {1, 2, . . . , n−1}
such that

cr(J,Γ′i) = cr(J,Γ′i+1) + |J u Si| (6)

for all T -joins J . Let S = S14S24 . . .4Sn−1. Summing up (6) over all i ∈ {1, 2, . . . , n−1}
we get (1), thereby completing the proof of Theorem 4.1.1 for arbitrary drawings.

4.3 Drawing Pfaffian Graphs

The following theorem is the main result of this section.
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Theorem 4.3.1. A graph G is Pfaffian if and only if there exists a drawing of G in the

plane such that cr(M) is even for every M ∈M(G).

The “if” part of this theorem was known to Kasteleyn [21] and was proved by Tesler [51];

however our proof of this part is different. A self-contained proof of Theorem 4.3.1 has

recently appeared in [34].

We derive Theorem 4.3.1 from a more general theorem. To state it we need a definition.

Recall that M(G) or M if the graph is understood from the context denotes the set of all

perfect matchings of a graph G.

Let Γ be a drawing of a graph G and let s : M→ {−1, 1}. We say that S ⊆ E(G) is an

s-marking of Γ if

s(M) = (−1)cr(M)+|M∩S|

for every M ∈M.

Theorem 4.3.2. Let G be a labeled graph and let s : M → {−1, 1}. Then the following

are equivalent:

(a) there exists an orientation D of G such that for every M ∈ M its sign in the corre-

sponding directed graph is equal to s(M);

(b) some drawing of G in the plane has an s-marking;

(c) every drawing of G in the plane has an s-marking;

(d) there exists a drawing of G in the plane such that for every M ∈M

s(M) = (−1)cr(M).

We say that Γ is a standard drawing of a labeled graph G if the vertices of Γ are arranged

on a circle in order and every edge of Γ is drawn as a straight line.

The equivalence of conditions (a), (b) and (c) of Theorem 4.3.2 immediately follows

from the next two lemmas.

Lemma 4.3.3. Let G be a labeled graph, let Γ be a standard drawing of G and let s : M→
{−1, 1}. Then the following are equivalent:
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(1)there exists an orientation D of G such that for every M ∈ M its sign in the corre-

sponding directed graph is equal to s(M);

(2)there exists an s-marking S of Γ.

Proof. Let D be an orientation of G. Let M = {u1v1, u2v2, . . . , ukvk} be a perfect matching

of D. The sign of M is the sign of the permutation

P =




1 2 3 4 . . . 2k − 1 2k

u1 v1 u2 v2 . . . uk vk


 .

Let i(P ) denote the number of inversions in P . We have

sgn(M) = sgn(P ) = (−1)i(P ) =
∏

1≤i<j≤2k

sgn(P (j)− P (i)) =

=
∏

1≤i<j≤k

sgn((uj − ui)(vj − ui)(uj − vi)(vj − vi))×

×
∏

1≤i≤k

sgn(vi − ui). (7)

In Γ edges uivi and ujvj cross if and only if, in the circle containing the vertices of Γ, each

of the two arcs with ends ui and vi contains one of the vertices uj and vj , in other words if

and only if

sgn((uj − ui)(vj − ui)(uj − vi)(vj − vi)) = −1.

Define SD = {uv ∈ E(D)|u > v}. From (7) we deduce that

sgn(M) = (−1)cr(M) × (−1)|M∩SD|.

It follows that sgn(M) = s(M) in D if and only if SD is an s-marking of Γ.

Notice that we have in fact shown that there exists a one-to-one correspondence between

Pfaffian orientations of a labeled graph and markings of its standard drawing.

Lemma 4.3.4. Let G be a labeled graph and let s : M → {−1, 1}. Let Γ1 and Γ2 be two

drawings of a labeled graph G in the plane. Then Γ1 has an s-marking if and only if Γ2 has

one.
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Proof. Perfect matchings are T -joins in the graft (G,V (G)). Therefore by Theorem 4.1.1

there exists S ⊆ Æ(G) such that for every M ∈M we have

cr(M, Γ1) = cr(M, Γ2) + |M u S|.

modulo 2. Let S′ = S ∩ E(G). As no perfect matching contains an angle we have

cr(M, Γ1) = cr(M, Γ2) + |M ∩ S′|

modulo 2 for every M ∈M. Let S1 be an s-marking of Γ1. Then

s(M) = (−1)cr(M,Γ1)+|M∩S| = (−1)cr(M,Γ2)+|M∩S′|+|M∩S′| = (−1)cr(M,Γ2)+|M∩(S′4S1)|

for every M ∈M. Therefore S′4S1 is an s-marking of Γ2.

Since clearly (d) implies (b), to finish the proof of Theorem 4.3.2 it remains to show

that (b) implies (d). Suppose G satisfies (b) and consider a drawing of G in the plane with

an s-marking S. Suppose there exists e ∈ S. We change the way e is drawn, so that the

closed curve C which is composed from the old and the new drawing of e separates one

vertex of G from the rest. From the proof of Theorem 4.1.1 it follows that S \ {e} is a

marking in the new drawing. By repeating the procedure we produce a drawing of G such

that the empty set is an s-marking, therefore demonstrating that G satisfies condition (d)

of Theorem 4.3.2.

4.4 Applications to Crossing Numbers

We say that a set J of T -joins in a graft (G,T ) is nice if every x ∈ Æ(G) lies in an even

number of elements of J .

Lemma 4.4.1. Let J be a nice set of T -joins in a graft (G,T ). Then the parity of

∑

J∈J
cr(J,Γ) (8)

is independent of the choice of a drawing Γ of G in the plane.

Proof. By Theorem 4.1.1 it suffices to prove that

∑

J∈J
|J u S|
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is even for any S ⊆ Æ(G). This is true by the definition of a nice set of T -joins.

We derive the next theorem from Lemma 4.4.1.

Theorem 4.4.2. (Kleitman [23]) Let G = K2j+1 or G = K2j+1,2k+1 for some positive

integers j and k. Then the parity of the total number of crossings of non-adjacent edges is

independent of the choice of a drawing of G in the plane.

Proof. By Lemma 4.4.1 it suffices to find T ⊆ V (G) and a nice set J of T -joins such that

|{J ∈ J |{e, f} ⊆ J}|

is odd for every two non-adjacent edges e, f of G. (By the definition of a nice set, |{J ∈
J |{e, f} ⊆ J}| is even for every angle {e, f}.)

For G = K2j+1,2k+1 we choose T = ∅ and we choose J to be the set of all cycles of

length 4 in G.

For G = K2j+1 the construction is slightly more complicated. Choose v ∈ V (G) and let

T = V (G) \ {v}. Let J1 be the set of all perfect matchings of G \ {v}. For distinct vertices

u1, u2 ∈ T let

Ju1u2 = {vw|w ∈ T \ {u1, u2}} ∪ {u1u2}

and let J2 = {Ju1u2 |{u1, u2} ⊆ T, u1 6= u2}. Let J3 = {vw|w ∈ T}. Finally, if j is odd let

J = J1 ∪ J2 and if j is even let J = J1 ∪ J2 ∪ {J3}.
In both cases by straightforward counting we can check that J is as required.

Kuratowki’s theorem states that every non-planar graph has a subgraph isomorphic to

a subdivision of K5 or K3,3. One can therefore easily deduce the following well-known

theorem from Theorem 4.4.2 and Kuratowski’s theorem.

Theorem 4.4.3. (Hanani [17], Tutte [55]) Let Γ be a drawing of a non-planar graph G in

the plane. Then there exist distinct non-adjacent edges e, f ∈ E(G) such that cr(e, f) is

odd.

One of the oldest and the most widely known problems in crossing number theory is

the problem of estimating the crossing number of the complete bipartite graph Km,n also
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Figure 15: A Drawing of K4,5 with Z(4, 5) crossings

known as Turán’s brickyard problem [52]. For a graph G the crossing number CR(G) is

equal to the minimum of
∑
{e,f}⊆E(G),e6=f cr(e, f) taken over all drawings of G in the plane.

It has been long conjectured that CR(Km,n) equals the Zarankiewicz’s number

Z(m,n) = bm
2
cbm− 1

2
cbn

2
cbn− 1

2
c.

This conjecture is known as Zarankiewicz’s conjecture. A natural straight line drawing

shows that Z(m,n) ≥ CR(Km,n) for every m and n. An example for m = 5 and n = 4

is shown on Figure 15. The following best known bound for CR(Km,n) has been recently

proved by de Klerk et al. [10].

Theorem 4.4.4. (i) limn−→∞CR(Km,n)/Z(m, n) ≥ 0.83m/(m− 1) for each fixed m ≥ 9;

(ii) limn−→∞CR(Kn,n)/Z(n, n) ≥ 0.83.

There are other possible ways to define the crossing number of a graph. We adopt the

definition first implicit in the paper by Tutte [55] and formalized by Székely in [49]. For

a graph G the independent odd crossing number CR-IODD(G) is equal to the minimum

number of unordered pairs of non-adjacent edges that cross each other odd number of times

taken over all drawings of G in the plane. Clearly CR-IODD(G)≤CR(G) for every G.
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We will state a conjecture about hypergraphs that if true will imply that CR-IODD(G)≥
Z(m,n) for every m,n ∈ Z+ and therefore implies Zarankiewicz’s conjecture. The purpose

of such reformulation is to eliminate the geometrical aspect of the problem.

Let A(m,n) be the set of angles in Km,n. Let G(m,n) be a 4-uniform hypergraph with

V (G(m,n)) = A(m, n) and E(G(m,n)) equal to the set of the sets of angles lying in cycles

of length four in Km,n. We say that C ⊆ E(G) is a circuit if it covers every vertex even

number of times. Then the following lemma holds.

Lemma 4.4.5. There exists a subhypergraph G′ of G(m, n) with no odd circuits such that

|E(G′)| ≥ |E(G(m, n))| − CR-IODD(Km,n).

Proof. Let Γ1 be a straight line drawing of Km,n in the plane with the vertices of parts of

Km,n mapped to two parallel lines. Then cr(C, Γ1) = 1 for every cycle C of length four in

Km,n. Let Γ2 be the drawing of Km,n in the plane that achieves CR-IODD(Km,n). For an

angle A = {e, f} ∈ A(m,n) define cr′(A) = crΓ2(e, f) and let A = {A ∈ A(m,n) | cr′(A) is

odd}. For a cycle C = u1v1u2v2u1 in Km,n define

cr′(C) = crΓ2(u1v1, u2v2) + crΓ2(u2v1, u1v2).

Note that

cr(C, Γ2) = cr′(C) +
∑

A∈A(m,n), A lies in C

cr′(A).

By Theorem 4.1.1 there exists S ⊆ A(m,n) such that for every cycle C of length four

cr(C, Γ2) = cr(C, Γ1) + |C u S|

modulo 2. Let S′ = S4A. Then the following identities hold modulo 2.

cr′(C) = cr(C, Γ2)−
∑

A∈A(m,n), A lies in C

cr′(A) = cr(C, Γ1) + |C u S| − |C u A| =

= 1 + |C u S′|.

Let C be the set of all the cycles C in Km,n of length four with even cr′(C) . Consider

the subhypergraph of G′ of G(m,n) that has only the edges that correspond to the elements
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of C. We have

|E(G′)| ≥ |E(G(m,n))| − CR-IODD(Km,n),

as every cycle C of length four with odd cr′(C) contains a pair of non-adjacent edges that

cross odd number of times in Γ2, and each pair of non-adjacent edges belongs to the unique

cycle of length four in Km,n. Therefore it only remains to show that G′ has no odd circuits.

Suppose the hyperedges corresponding to C1, C2, . . . Ck form an odd circuit of G′. Note

that cr′(Ci) is even and therefore |Ci u S′| is odd for every 1 ≤ i ≤ k. It follows that
∑k

i=1 |Ci u S′| is odd. This is a contradiction as every element of S′ lies in even number of

cycles C1, C2, . . . Ck by the definition of a circuit.

Now we are ready to state our conjecture that implies Zarankiewicz’s conjecture by

Lemma 4.4.5. Note that |E(G(m,n))| = m(m−1)
2

n(n−1)
2 .

Conjecture 4.4.6. For every subhypergraph G′ of G(m,n) with no odd circuits

|E(G′)| ≤ m(m− 1)
2

n(n− 1)
2

− bm
2
cbm− 1

2
cbn

2
cbn− 1

2
c.

The last application of our method that we would like to demonstrate focuses on the

crossing number of the Petersen graph P10. It is well-known that CR(P10) = 2.

Lemma 4.4.7. The drawing Γ of the Petersen graph in the sphere that achieves CR(P10) =

2 is unique up to a homeomorphism of the sphere and an isomorphism of the Petersen graph.

Proof. The Petersen graph P10 has 6 distinct perfect matchings. See Figure 16. We assume

that the vertice s of P10 are labeled v1, . . . , v10 as shown on Figure 16. For e, f ∈ E(P10)

denote by d(e, f) the length of the shortest (possibly trivial) path in P10 that joins an end

of e to an end of f .

We find the following properties of the Petersen graph useful:

(i) every two distinct perfect matchings of the Petersen graph share exactly one edge edge;

(ii) e, f ∈ E(P10) belong to a common perfect matching if and only if d(e, f) = 1;

(iii) if e1, f1, e2, f2 ∈ E(P10) then there exists an isomorphism of the Petersen graph that

maps e1 to e2 and f1 to f2 if and only if d(e1, f1) = d(e2, f2);
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Figure 16: Six perfect matchings of the Petersen graph

(iv) d(e, f) ≤ 2 for every e, f ∈ E(P10);

(v) P10 \ v is non-planar for every v ∈ V (P10).

A standard and simple argument shows that in Γ no two adjacent edges cross (see for

example [49]). Let e1, f1, e2, f2 ∈ E(P10) be such that the image of ei crosses the image

fi in Γ for i = 1, 2 and no other pair of edges of P10 cross in Γ. Then e1, f1, e2 and f2

form a matching in P10. Indeed if two edges among e1, f1, e2 and f2 share a vertex v then

Γ includes a drawing of P10 \ v with no crossings in contradiction with (v). Moreover, by

applying Lemma 4.4.1 to a nice family M(P10) and by (i) and (ii) we have

∑

{e,f}⊂E(P10), d(e,f)=1

crΓ(e, f) = 1

modulo 2. It follows from (iii) and (iv) that we may assume that e1 = v4v9, f1 = v3v8 and

d(e2, f2) = 2. These conditions also determine {e2, f2} uniquely, as G \ {v3, v4, v8, v9} is a

cycle of length five with a pendant edge. Therefore we may assume e2 = v1v6, f2 = v7v10.

Let G be an auxiliary graph constructed from P10 as follows: subdivide edges e1, f1, e2 and

f2 once, identify the vertices obtain by subdividing ei and fi and denote the resulting vertex

by wi for i = 1, 2. Note that Γ can be considered as a drawing of G with no crossings if

we map wi to the point where the images of edges ei and fi cross in Γ. Note also that G
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Figure 17: A drawing of the Petersen graph with two crossings

is 3-connected and therefore has a unique drawing in the sphere without crossings, up to

s homeomorphism of the sphere, by a theorem of Whitney [58]. The theorem follows. A

drawing of P10 with two crossings is shown on Figure 17.

We say that a graph is doublecross if it can be drawn in the plane with two crossings in

such a way that the two crossings belong to the same region. Doublecross graphs play im-

portant role in structural graph theory (see for example [43]). The following is an immediate

corollary of Lemma 4.4.7.

Corollary 4.4.8. The Petersen graph is not doublecross.
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CHAPTER V

DRAWING 4-PFAFFIAN GRAPHS ON THE TORUS

In this chapter we consider an extension of Theorem 4.3.1 to higher surfaces and k-Pfaffian

graphs. We prove that 3-Pfaffian graphs are Pfaffian, 5-Pfaffian graphs are 4-Pfaffian and

characterize 4-Pfaffian graphs in terms of their drawings on the torus. We prove partial

results and state conjectures for higher surfaces and values of k.

The material presented in this chapter will also appear in [32].

5.1 Introduction

We now define drawings on surfaces. The definition is almost identical to the definition

of drawings in the plane in Section 4.1. However, we find it convenient to allow self-

intersections of edges. By a drawing Γ of a graph G on a surface S we mean an immersion

of G in S such that edges are represented by locally homeomorphic images of [0, 1], not

containing vertices in their interiors. Edges are permitted to intersect, but there are only

finitely many intersections and each intersection is a crossing. Let crΓ(e, f) for distinct

e, f ∈ E(G) and cr(M) for M ∈M(G) be defined as in Section 4.1.

The main result of this chapter gives a characterization of 4-Pfaffian graphs, similar to

the characterization of Pfaffian graphs given in Chapter 4.

Theorem 5.1.1. A graph G is 4-Pfaffian if and only if there exists a drawing of G on the

torus such that cr(M) is even for every perfect matching M of G.

In the next section we examine sequences of signs of perfect matchings in orientations

of a k-Pfaffian graph. We prove that 3-Pfaffian graphs are Pfaffian and describe sequences

of signs possible in 4-Pfaffian graphs. In Section 5.3 we prove that 5-Pfaffian graphs are

4-Pfaffian. Theorem 5.1.1 is proved in Section 5.4.
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5.2 Admissible Sets of Sign Sequences

We say that a set M of (1,−1)-vectors of length k is realizable if there exists a graph G

that is labeled k-Pfaffian, but not (k − 1)-Pfaffian, orientations D1, D2, . . . , Dk of G and

real numbers α1, α2, . . . , αk such that

M = {(D1(M), D2(M), . . . , Dk(M)) |M is a perfect matching of G}

and for every perfect matching M of G

k∑

i=1

αiDi(M) = 1.

We say that G realizes M. Next we establish some conditions, which every realizable set

of vectors has to satisfy.

Lemma 5.2.1. Let G be a labeled graph, let k be an odd integer and let S = (D1, D2, . . . , Dk)

be a sequence of orientations of G. Then there exists an orientation DS of G such that

DS(M) = D1(M)D2(M) . . . Dk(M).

Proof. Define DS of G as follows. For every edge uv ∈ E(G), let uv ∈ E(DS) if |{i | 1 ≤ i ≤
k, uv ∈ Di}| is odd and let vu ∈ E(DS) otherwise. Denote by Si the set of edges on which

DS differs from Di. We have

Di(M) = (−1)|M∩Si|DS(M).

It follows that

D1(M)D2(M) . . . Dk(M) = (−1)|M∩S1|+|M∩S2|+...+|M∩Sk|DS(M).

It remains to note that by definition of DS

|E ∩ S1|+ |E ∩ S2|+ . . . + |E ∩ Sk|

is even for every E ⊆ E(G).

For a vector v of length k we denote its i-th coordinate by v(i). We say that a set V of

(1,−1)-vectors of length k is admissible if it satisfies the following properties
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A1 for every odd S ⊆ {1, 2, . . . k} there exist v1, v2 ∈ V such that for i ∈ {1, 2} we have

∏

j∈S

vi(j) = (−1)i,

A2 for any set of real numbers {βv}v∈V such that
∑

v∈V βvv is a zero vector, we have
∑

v∈V βv = 0.

Every realizable set M is admissible. Indeed, let G be a graph that realizes M. Note

that changing the orientation of all edges incident with any given vertex of G changes the

sign of all perfect matchings of G. Therefore by Lemma 5.2.1 M has to satisfy A1 as

otherwise G is Pfaffian. The set M also satisfies condition A2, as it satisfies the following

property

B2 there exist real numbers α1, α2, . . . , αk such that
∑k

i=1 αiv(i) = 1 for every v ∈ V,

and by a standard linear algebra argument A2 and B2 are equivalent.

Note that B2 also implies the following property, which we find useful to state separately.

A3 every two elements of V differ in at least two coordinates.

We say that sets V and W of (1,−1)-vectors of length k are equivalent if W can be

obtained from V as follows: for some permutation π of the set {1, 2, . . . , k} and some

S ⊆ {1, 2, . . . , k} apply π to the coordinates of all vectors in V and change the signs of

all coordinates with indices in S for all vectors in V. The above is clearly an equivalence

relation. Trivially, if the sets V and W are equivalent then V is admissible (realizable) if

and only if W is.

Lemma 5.2.2. No set of (1,−1)-vectors of length two is admissible.

Proof. Suppose V is an admissible set of (1,−1)-vectors of length two. Clearly V is equiva-

lent to a set containing (1, 1) and therefore without loss of generality we assume (1, 1) ∈ V.

By A2 we know that (−1,−1) 6∈ V and therefore by A1 applied to S = {1} we have

(−1, 1) ∈ V in contradiction with A3.

Lemma 5.2.3. No set of (1,−1)-vectors of length three is admissible.
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Proof. Again without loss of generality we assume (1, 1, 1) ∈ V. It implies by A2 that

(−1,−1,−1) 6∈ V and by A1 applied to S = {1, 2, 3} and equivalence we may assume

(1, 1,−1) ∈ V in contradiction with A3.

The next theorem follows immediately from Lemmas 5.2.2 and 5.2.3 and the observa-

tions above.

Theorem 5.2.4. Every 3-Pfaffian graph is Pfaffian.

Next we examine admissible sets of sequences of length four. Denote {(−1, 1, 1, 1),

(1,−1, 1, 1), (1, 1,−1, 1),(1, 1, 1,−1)} by S.

Lemma 5.2.5. Every admissible set V of (1,−1)-vectors of length four is equivalent to S.

Proof. For a vector V of length four we denote
∑4

i=1 vi by σ(V ). Without loss of generality

we assume (1, 1, 1, 1) ∈ V. By A2 and A3 we have σ(V ) ∈ {−2, 0, 4} for every V ∈ V. Let

n denote the number of elements V ∈ V with σ(V ) = −2. By A2 n ≤ 3. We claim that

n = 0.

Suppose not. If n = 3 without loss of generality we assume

(1,−1,−1,−1), (−1, 1,−1,−1), (−1,−1, 1,−1) ∈ V.

By A1 applied to S = {1, 2, 3} we may assume (−1, 1, 1,−1) ∈ V in contradiction with A3.

If n = 2 we assume (1,−1,−1,−1), (−1, 1,−1,−1) ∈ V and A1 applied to S = {1, 2, 3}
and A3 again lead to a contradiction. If n = 1 by equivalence, A1 applied to S = {1, 2, 3}
and A3 we may assume (1,−1,−1,−1), (−1, 1, 1,−1) ∈ V and apply A1 to S = {1, 2, 4}
for a contradiction.

Condition A1 applied to all subsets of {1, 2, 3, 4} of size 3 implies |V| ≥ 4. By A2 we

know that for every V1, V2 ∈ V we have V1 + V2 6= 0. Therefore up to equivalence V = V1 or

V = V2, where

V1 = {(1, 1, 1, 1), (−1, 1, 1,−1), (1,−1, 1,−1), (1, 1,−1,−1)},

and

V2 = {(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)}.
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Applying A1 to S = {1} we have V = V1 and is equivalent to S.

Before we can state the next lemma we need to strengthen our definition of admissibility.

For a vector V of length k and S ⊆ {1, 2, . . . k} denote
∏

i∈S V (i) by V (S). We say that a

set V of (1,−1)-vectors of length k is strongly admissible if it satisfies B2 and

B1 For every odd S1, S2, . . . , Sk−1 ⊆ {1, 2, . . . k} and every real numbers α1, α2, . . . , αk

there exists V ∈ V such that
k−1∑

i=1

αiV (Si) 6= 1.

Every realizable set M is strongly admissible, as the negation of B1 and Lemma 5.2.1

implies that every graph realizing M is (k− 1)-Pfaffian. Note also that B1 and implies A1

and therefore every strongly admissible set of vectors is admissible.

Theorem 5.2.6. No set of (1,−1)-vectors of length five is strongly admissible.

Proof. The only argument we were able to find proceeds by exhaustive case analysis and is

quite long. The proof will appear in a separate section.

The theorem below immediately follows from Theorem 5.2.6.

Theorem 5.2.7. Every 5-Pfaffian graph is 4-Pfaffian.

We now need to introduce some additional notation. Let V and W be (1,−1)-vectors

of length m and n, respectively. We denote by V ×W the vector of length mn defined by

(V ×W )((j − 1)n + i) = V (i)W (j)

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. For sets of (1,−1)-vectors V and W of length m and n

correspondingly let V⊗W = {V ×W |V ∈ V,W ∈ W}. We use the convention ⊗0V = {(1)}
for any set V of (1,−1)-vectors.

Conjecture 5.2.8. Let G be a labeled graph that is k-Pfaffian, but not (k − 1)-Pfaffian,

for some integer k ≥ 1. Then k = 4g for some non-negative integer g and there exist

orientations D1, D2, . . . , Dk of G such that for every perfect matching M of G
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(D1(M), D2(M), . . . , Dk(M)) ∈ ⊗gS.

Note that the results of this section imply that Conjecture 5.2.8 holds for k ≤ 5. Tar-

dos [50] pointed out that there exists a strongly admissible set of (1,−1)-vectors of length

six, namely the set of all vectors with exactly two negative coordinates. Therefore to prove

Conjecture 5.2.8 one needs to use stronger properties of realizable sets then strong admis-

sibility.

5.3 5-Pfaffian Graphs are 4-Pfaffian

In this section we give a proof of Theorem 5.2.6. Suppose V is a strongly admissible set of

vectors of length five.

For a vector V of length five let S(V ) = {i|V (i) = 1} and let σ(V ) = |S(V )|. We assume

without loss of generality that (1, 1, 1, 1, 1) ∈ V. By A2 and A3 we have σ(V ) ∈ {1, 2, 3, 5}
for every V ∈ V. Let nk denote the number of elements V ∈ V with σ(V ) = k. We consider

cases depending on n1. Note that by A2, we have n1 ≤ 4.

Case 1: n1 = 4. We assume without loss of generality that

(1,−1,−1,−1,−1), (−1, 1,−1,−1,−1), (−1,−1, 1,−1,−1), (−1,−1,−1, 1,−1) ∈ V.

By B2, we have V (1)+V (2)+V (3)+V (4)−3V (5) = 1 for every V ∈ V. Therefore |V| = 5

and A1 applied to S = {1, 2, 3, 4, 5} yields a contradiction.

Case 2: n1 = 3. We assume that (1,−1,−1,−1,−1), (−1, 1,−1,−1,−1),

(−1,−1, 1,−1,−1) ∈ V. By A1 applied to S = {1, 2, 3, 4, 5} we have n2 > 0 and therefore

(−1,−1,−1, 1, 1) ∈ V by A3. We have

2(1, 1, 1, 1, 1) + (1,−1,−1,−1,−1) + (−1,−1, 1,−1,−1) + (−1,−1, 1,−1,−1)+

+ (−1,−1,−1, 1, 1) = (0, 0, 0, 0, 0),

in contradiction with A2.

Case 3: n1 = 2. We assume that (1,−1,−1,−1,−1), (−1, 1,−1,−1,−1) ∈ V. By A1

applied to S = {1, 2, 3, 4, 5} and A3 without loss of generality we have (−1,−1, 1, 1,−1) ∈ V.
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By A1 applied to S = {1, 2, 3} there exists W ∈ V such that S(W ) ∩ {1, 2, 3} is even.

Suppose first |S(W ) ∩ {1, 2, 3}| = 0 then W = {−1,−1,−1, 1, 1}. It follows from B2 that

V (1) + V (2)− 2V (3) + 3V (4)− 2V (5) = 1 for every V ∈ V. In particular |S(V ) ∩ {1, 2, 4}|
is odd for every V ∈ V, in contradiction with A1.

Therefore |S(W ) ∩ {1, 2, 3}| = 2. It follows from A3 that σ(W ) = 3. We consider all

possible choices for W up to the symmetry between the first and second coordinates.

W=(1,1,-1,1,-1) or W=(1,-1,1,-1,1): From B2 we have V (1) + V (2) + 2V (3)−V (4)−
2V (5) = 1 for every V ∈ V. Again it follows that |S(V ) ∩ {1, 2, 4}| is odd for every

V ∈ V.

W=(1,1,-1,-1,1): (-1,-1,1,1,-1) and W contadict A2.

W=(1,-1,1,1,-1): (-1,-1,1,1,-1) and W contadict A3.

Case 4: n1 = 1. We assume that (1,−1,−1,−1,−1) ∈ V. Note that by cases 1-3 we

may assume that for every V ∈ V there exists at most one W ∈ V such that |S(V )4S(W )| =
4. By A1 applied to S = {1, 2, 3, 4, 5} and A3 we have (−1, 1, 1,−1,−1) ∈ V up to

equivalence. We will proceed by considering subcases depending on n3, but we would like

to make a couple of observations first.

Note that if W ∈ V, σ(W ) = 3 then 1 ∈ S(W ) by the observation above applied to

(1,−1,−1,−1,−1). Also |S(W ) ∩ {2, 3}| = 1 by A2 and A3 applied to (−1, 1, 1,−1,−1)

and W . Moreover note that if S is a strongly admissible set and V is a (1,−1)-vector that

lies in the affine space spanned by S then S ∪ V is strongly admissible.

4.1: n3 ≥ 3. We assume without loss of generality that (1, 1,−1, 1,−1), (1, 1,−1,−1, 1),

(1,−1, 1, 1,−1), (1,−1, 1,−1, 1) ∈ V. Indeed, no other vector W with σ(W ) = 3 can lie in

V by an observation above, and these four vectors are affinely dependent: (1, 1,−1, 1,−1)+

(1, 1,−1,−1, 1)−(1,−1, 1, 1,−1)−(1,−1, 1,−1, 1) = (0, 0, 0, 0, 0). From B2 we have 2V (1)+

V (2) + V (3)− V (4)− V (5) = 2 for every V ∈ V. It follows that |V| = 7. We have

1
2
(V (1) + V ({1, 2, 4}) + V ({1, 2, 5})− V ({1, 2, 3})) = 1

for every V ∈ V in contradiction with B1. Note that the set V is admissible.
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4.2: 1 ≤ n3 ≤ 2. We assume without loss of generality that (1,−1, 1,−1, 1) ∈ V. If

(1, 1,−1,−1, 1) ∈ V or (1,−1, 1, 1,−1) ∈ V then we again can conclude that 2V (1) +

V (2) + V (3) − V (4) − V (5) = 2 for every V ∈ V for a contradiction. By A1 applied to

S = {1, 2, 4} there must exist W ∈ V with σ(W ) = 2 such that S(W ) ∩ {1, 2, 4} is even.

If S(W ) ∩ {1, 2, 4} = ∅ then W and (1,−1, 1,−1, 1) contradict A2 and if S(W ) ⊆ {1, 2, 4}
then W and (1,−1, 1,−1, 1) contradict A3.

4.3: n3 = 0. Let V ′ = {V ∈ V |σ(V ) = 2}. Note that 1 6∈ S(W ) for every W ∈ V ′ by A3

applied to W and (1,−1,−1,−1,−1). Also S(W1)∩S(W2) 6= ∅ for every W1,W2 ∈ V ′ by A2

applied to W1,W2, (1,−1,−1,−1,−1) and (1, 1, 1, 1, 1). It follows that up to renumbering

of the coordinates V is a subset of one of the following sets

V1 = {(1, 1, 1, 1, 1), (1,−1,−1,−1,−1), (−1, 1, 1,−1,−1),

(−1, 1,−1, 1,−1), (−1,−1, 1, 1,−1)}

or

V2 = {(1, 1, 1, 1, 1), (1,−1,−1,−1,−1), (−1, 1, 1,−1,−1),

(−1, 1,−1, 1,−1), (−1, 1,−1,−1, 1)}.

Moreover, V1 and V2 are equivalent. To verify that, consider changing signs of the last four

coordinates of all vectors in V1. Therefore we assume V ⊆ V1. Then

1
2
(V ({1, 2, 3})) + V ({1, 2, 4} − V ({1, 2, 5})− V (1)) = 1

for every V ∈ V in contradiction with B1.

Case 5: n1 = 0. Note that by the preceding cases we may assume that |S(V ) 4
S(W )| ≤ 3 for all V, W ∈ V. By A1 applied to S = {1, 2, . . . , 5} we assume without loss of

generality that (1, 1,−1,−1,−1) ∈ V. Let V ′ = {V ∈ V | σ(V ) = 2} be defined as before.

By the observation above either there exists x ∈ {1, 2, . . . , 5} such that x ∈ W for every

W ∈ V ′, or n2 = 3 and there exists S ⊆ {1, 2, . . . , 5} such that |S| = 3 and S(W ) ⊂ S for

every W ∈ V ′. Suppose first that the second outcome holds. Without loss of generality

V ′ = {(1, 1,−1,−1,−1), (1,−1, 1,−1,−1), (−1, 1, 1,−1,−1)}. By B1 there must exist
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U ∈ V such that U(4) 6= U(5). It follows however that σ(U) = 3, |S(U)∩ {1, 2, 3}| = 2 and

therefore there exists W ∈ V ′ such that |S(W )4S(U)| = 1 in contradiction with A3.

We assume now without loss of generality that 1 ∈ W for every W ∈ V ′. By A1

applied to S = {1} there exists U ∈ V such that U(1) = −1 and σ(U) = 3. Without

loss of generality U = {−1, 1, 1, 1,−1}. By observations above |S(W )4S(U)| = 1 for every

W ∈ V ′. By A1 applied to S = {2, 3, 4} there exists T ∈ V such that σ(T ) = 3 and

|S(T )∩{2, 3, 4}| = 2. Without loss of generality T = (−1, 1, 1,−1, 1), as |S(T )4S(U)| ≤ 3.

It also follows that n3 = 2. Indeed if Z ∈ V, Z 6= U, T and σ(Z) = 3 then |S(Z)∩{2, 3, 4}| =
|S(T ) ∩ {2, 3, 5}| = 2 and therefore S(Z) = {2, 4, 5} or S(Z) = {1, 2, 3} in contradiction

with A2 or A3 respectively. By A1 applied to S = {2} we have (1,−1, 1,−1,−1) ∈ V. In

fact it follows that

V = {(1, 1, 1, 1, 1), (1, 1,−1,−1,−1), (1,−1, 1,−1,−1),

(−1, 1, 1, 1,−1), (−1, 1, 1,−1, 1)}.

But then S(V ) ∩ {1, 4, 5} is odd for every V ∈ V in contradiction with A1.

5.4 Drawing k-Pfaffian Graphs on Surfaces

The following theorem is the main result of this section.

Theorem 5.4.1. For a labeled graph G and a non-negative integer g the following are

equivalent

1. There exists a drawing of G on an orientable surface of genus g such that cr(M) is

even for every perfect matching M of G.

2. There exist orientations D0, D1, . . . , D4g−1 of G such that for every perfect matching

M of G

(D0(M), D1(M), . . . , D4g−1(M)) ∈ ⊗gS.

It is convenient to prove Theorem 5.4.1 in terms of special kinds of planar drawings.

Let us from now on consider a plane with a fixed collection of g disjoint closed squares

S1, S2, . . . , Sg. We say that S1, S2, . . . , Sg are singularities and that a drawing of G in the
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Figure 18: A 2-drawing of K4

plane is a g-drawing if the images of all the vertices of G lie outside S1 ∪ S2 ∪ . . . ∪ Sg and

the images of the edges of G intersect each Si in a finite number of straight line segments

which are parallel to the sides of Si. Figure 1 shows an example of a g-drawing.

For each singularity Si fix one of its sides. For e ∈ E(G) let e′ be its image in Γ. Denote

by sΓ(i, e) the number of segments in e′ ∩ Si parallel to the fixed side of Si and by s′Γ(i, e)

the number of segments in e′ ∩ Si perpendicular to this side. For e, f ∈ E(G) let

cr′Γ(e, f) = crΓ(e, f)−
g∑

i=1

(sΓ(i, e)s′Γ(i, f) + s′Γ(i, e)sΓ(i, f)).

In the notation introduced above we omit index Γ when the drawing is understood from

context. Clearly for every drawing Γ of a graph G on an orientable surface of genus g

there exists a g-drawing Γ′ of a graph G in the plane such that crΓ(e, f) = cr′Γ′(e, f) for all

e, f ∈ E(G) and vice versa.

We say that S ⊆ E(G) is a marking of a g-drawing Γ of G if cr′Γ(M) and |M ∩ S| have

the same parity for every perfect matching M of G, where cr′Γ(M) =
∑
{e,f}⊆M cr′Γ(e, f).

Let L be a line in the plane and H one of the open half-planes determined by L such that

all the singularities lie in H. We say that a g-drawing Γ of a labeled graph G is standard

if the images of the vertices of G lie on L in order, and the images of the edges of G lie in

H ∪ L.

Lemma 5.4.2. For a labeled graph G and a non-negative integer g the following are equiv-

alent
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1. There exists a standard g-drawing Γ of G and a marking S of Γ.

2. There exist orientations D0, D1, . . . , D4g−1 of G such that for every perfect matching

M of G

(D0(M), D1(M), . . . , D4g−1(M)) ∈ ⊗gS.

Proof. (1)⇒(2). Let S′ = {e ∈ E(G) | ∑g
i=1 s(i, e)s′(i, e) is odd}. For i ∈ {1, 2, . . . , g}

let E(i, 0) = ∅, E(i, 1) = {e ∈ E(G) | s(i, e) is odd}, E(i, 2) = {e ∈ E(G) | s′(i, e) is odd}
and let E(i, 3) = E(i, 1)4E(i, 2). For an integer j let ji denote the i-th digit from the

right in a base two representation of j and let j∗ =
∑2g

i=1 j2i−1j2i. For an orientation D

let χ(D) = {uv ∈ E(D)|u > v}. Note that χ is a bijection between orientations of G and

subsets of E(G). For j ∈ {0, 1, . . . , 4g − 1} let

D′
j = χ−1(S4S′4E(1, j1 + 2j2)4E(2, j3 + 2j4)4 . . .4E(g, j2g−1 + 2j2g)).

We claim that D0, D1, . . . , D4g−1 satisfy (2). From the proof of Lemma 4.3.3 for an orien-

tation D of G and a perfect matching M of G

(∗) D(M) = (−1)cr(M)+|M∩S(D)|.

Let s(i, M) =
∑

e∈M s(i, e) and s′(i,M) =
∑

e∈M s′(i, e). For j ∈ {0, 1, . . . , 4g − 1} the

identities below hold modulo 2

cr(M) + |M ∩ S(D′
j)| = cr(M) + |M ∩ S|+ |M ∩ S′|+

g∑

i=1

|M ∩ E(i, j2i−1 + 2j2i)| =

= (cr′(M)− cr(M)) + |M ∩ S′|+
∑

i:j2i−1=1

s(i,M) +
∑

i:j2i=1

s′(i,M) =

=
g∑

i=1

∑

{e,f}⊆M

(s(i, e)s′(i, f) + s′(i, e)s(i, f)) +
∑

e∈M

s(i, e)s′(i, e) +
∑

i:j2i−1=1

s(i,M) +

+
∑

i:j2i=1

s′(i, M) =
g∑

i=1

(s(i,M))(s′(i, M)) +
∑

i:j2i−1=1

s(i,M) +
∑

i:j2i=1

s′(i,M) =

=
g∑

i=1

(s(i,M) + j2i)(s′(i, M) + j2i−1) + j∗.

Therefore

D′
j(M) = (−1)j∗

g∏

i=1

(−1)(s(i,M)+j2i)(s
′(i,M)+j2i−1).
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Let Dj(M) = D′
j(M) if j∗ is even and let Dj(M) be obtained from D′

j(M) by switching

orientation of all the edges incident with vertex 1 if j∗ is odd. Then

Dj(M) =
g∏

i=1

(−1)(s(i,M)+j2i)(s
′(i,M)+j2i−1).

Let v0 = (1, 1,−1, 1), v1 = (1,−1, 1, 1), v2 = (−1, 1, 1, 1), and v3 = (1, 1, 1,−1). Note

that for all k ∈ {0, 1, 2, 3} and j ∈ {1, 2, 3, 4} we have vk(j) = (−1)(j1+k1)(j2+k2). Let

m(i) = r′i + 2ri, where ri and r′i are the remainders modulo 2 of s(i,M) and s′(i,M)

respectively. We claim that

(D0(M), D1(M), . . . , D4g−1(M)) = vm(1) ⊗ vm(2) ⊗ . . .⊗ vm(g).

Indeed

vm(1) ⊗ vm(2) ⊗ . . .⊗ vm(g)(j) =
g∏

i=1

vm(i)(j2i−1 + 2j2i) =

=
g∏

i=1

(−1)(r
′
i+j2i−1)(ri+j2i) =

g∏

i=1

(−1)(s
′(i,M)+j2i−1)(s(i,M)+j2i) = Dj(M).

(2)⇒(1). Denote by Aj the set of edges of G in which Dj differs from D0. Let Γ be

a standard drawing of G such that for every e ∈ E(G) such that s(i, e) is odd if and only

if e ∈ A22i−2 and s′(i, e) is odd if and only if e ∈ A22i−1 . Such a drawing is not difficult

to construct. We use the notation introduced in the proof of (1)⇒(2) implication. Let

S = S(D0)4S′. We claim that S is a marking of Γ, i.e. that cr′(M) + |M ∩ S| is even for

every perfect matching M of G or by (∗) that D0(M) = (−1)cr′(M)−cr(M)+|M∩S′|. Repeating

part of the argument above we have modulo 2

cr′(M)− cr(M) + |M ∩ S′| =
g∑

i=1

(s(i,M))(s′(i,M)) =
g∑

i=1

|M ∩A22i−1 ||M ∩A22i |.

Note that |M ∩Aj | is even if and only if D0(M)Dj(M) = 1. Let

(D0(M), D1(M), . . . , D4g−1(M)) = w1 ⊗ w2 ⊗ . . .⊗ wg

for some w1, w2, . . . , wg ∈ S. Then

D0(M)D22i−1(M) = wi(1)wi(2) and D0(M)D22i(M) = wi(1)wi(3).
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It follows that |M ∩ A22i−1 ||M ∩ A22i | is odd if and only if wi(1) = −1 as in every element

of S at most one coordinate is negative. Therefore

(−1)cr′(M)−cr(M)+|M∩S′| =
g∏

i=1

wi(1) = D0(M).

We say that g-drawings Γ1 and Γ2 are similar if every vertex of G has the same image

in Γ1 and Γ2 and for every edge of G the symmetric difference of its images in Γ1 and Γ2 is a

union of a family of closed simple curves in the plane none of which intersects a singularity

or has a singularity in its interior. The proof of the following lemma is analogous to the

proof of Lemma 4.3.4.

Lemma 5.4.3. Let Γ1 and Γ2 be similar g-drawings of a labeled graph G. If there exists a

marking of Γ1 then there exists a marking of Γ2.

If there exists a marking of a g-drawing Γ of a labeled graph G then there exists a

g-drawing Γ′of G similar to Γ such that ∅ is a marking of Γ′.

Let L be a line in the plane such that all the singularities lie in one of the open half

planes determined by L. Clearly every g-drawing Γ of G can be transformed by some

homeomorphism of the plane that is identical on the singularities to a g-drawing Γ′, such

that the images of the vertices of G in Γ′ lie on L in order. Such Γ′ is similar to some

standard drawing. This observation and Lemma 5.4.2 imply Theorem 5.4.1. The next

theorem extends Theorem 1.3.2.

Theorem 5.4.4. Let G be a graph. If there exists a drawing of G on an orientable surface

of genus g such that cr(M) is even for every perfect matching M of G then G is 4g-Pfaffian.

Proof. By Theorem 5.4.1 there exist orientations D0, D1, . . . , D4g−1 of G such that for every

perfect matching M of G

(D0(M), D1(M), . . . , D4g−1(M)) ∈ ⊗gS.

It is easy to verify that the sum of the coordinates of every element of ⊗gS is 2g. Therefore

for every perfect matching M of G

1
2g

4g−1∑

i=0

D(i) = 1.
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Theorems 5.2.3, 5.4.1, 5.4.4 and Lemma 5.2.5 imply Theorem 5.1.1. By Theorems 5.4.1

and 5.4.4 Conjecture 5.2.8, implies the following conjecture.

Conjecture 5.4.5. For a graph G and a non-negative integer g the following are equivalent

1. There exists a drawing of G on an orientable surface of genus g such that cr(M) is

even for every perfect matching M of G.

2. G is 4g-Pfaffian.

3. G is (4g+1 − 1)-Pfaffian.
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CHAPTER VI

PFAFFIAN LABELINGS AND SIGNS OF EDGE

COLORINGS

In this chapter we address a conjecture of Goddyn that every k-edge-colorable k-regular

Pfaffian graph is k-list-edge-colorable. We prove Goddyn’s conjecture for a slightly larger

class of graphs that admit a Pfaffian labeling. Conversely, we prove that if a multigraph

does not admit a Pfaffian labeling, then by adding parallel edges we can obtain from it a

d-regular multigraph with two d-edge colorings of different signs.

We also give two descriptions of graphs that admit a Pfaffian labeling. The first one

utilizes the theory developed in Chapter 2 and characterizes graphs with a Pfaffian labeling

in terms of bricks and braces in their tight cut decomposition. The second one, in the spirit

of Theorem 4.3.1, describes graphs with a Pfaffian labeling in terms of their drawings in

the projective plane.

The material presented in this chapter will also appear in [38].

6.1 Introduction

In a k-regular graph G one can define an equivalence relation on k-edge colorings as follows.

Let c1, c2 : E(G) → {1, . . . , k} be two k-edge colorings of G. For v ∈ V (G) let πv :

{1, . . . , k} → {1, . . . , k} be a permutation such that πv(c1(e)) = c2(e) for every e ∈ E(G)

incident with v, and let c1 ∼ c2 if
∏

v∈V (G) sgn(πv) = 1. Obviously ∼ is an equivalence

relation on the set of k-edge colorings of G and ∼ has at most two equivalence classes. We

say that c1 and c2 have the same sign if c1 ∼ c2 and we say that c1 and c2 have opposite

signs otherwise.

A powerful algebraic technique developed by Alon and Tarsi [1] implies that if in a

k-edge-colorable k-regular graph G all k-edge colorings have the same sign then G is k-list-

edge-colorable. In [14] Ellingham and Goddyn prove the following theorem.
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Theorem 6.1.1. In a k-regular planar graph all k-edge colorings have the same sign. There-

fore every k-edge-colorable k-regular planar graph is k-list-edge-colorable.

Goddyn conjectured that Theorem 6.1.1 generalizes to Pfaffian graphs. The main goal

of this chapter is to prove this conjecture and to describe k-edge-colorable graphs in which

all k-edge colorings have the same sign.

6.2 Pfaffian Labelings and Signs of Edge Colorings

We generalize Pfaffian orientations to Pfaffian labelings and prove that Goddyn’s conjecture

holds for those graphs that admit a Pfaffian labeling. Let Γ be an Abelian multiplicative

group, denote by 1 the identity of Γ and denote by −1 some element of order two in Γ.

Let G be a graph with V (G) = {1, 2, . . . , 2n}. (We are only interested in graphs that

have a perfect matching, and hence an even number of vertices.) For a perfect matching

M = {u1v1, u2v2, . . . , unvn} of G, where ui < vi for every 1 ≤ i ≤ n, define

sgn(M) = sgn




1 2 3 4 . . . 2n− 1 2n

u1 v1 u2 v2 . . . un vn


 .

We say that l : E(G) → Γ is a Pfaffian labeling of G if for every perfect matching M

of G, sgn(M) =
∏

e∈M l(e). We say that G admits a Pfaffian Γ-labeling if there exists

a Pfaffian labeling l : E(G) → Γ of G. We say that G admits a Pfaffian labeling if G

admits a Pfaffian Γ-labeling for some Γ. It is easy to see that a graph G admits a Pfaffian

Z2-labeling if and only if G admits a Pfaffian orientation. Note also that the existence of

Pfaffian labeling of a graph does not depend on the ordering of its vertices.

We need the following technical lemma.

Lemma 6.2.1. Let X be a set and let A1, A2, . . . , An, B1, B2, . . . , Bm ⊆ X, such that

|Ai ∩Bj | = 1 for every 1 ≤ i ≤ n, 1 ≤ j ≤ m, and every x ∈ X belongs to exactly two of the

sets A1, A2, . . . , An and exactly two of the sets B1, B2, . . . , Bm. For every 1 ≤ i ≤ n let

Si = {{x, y} ⊆ X| x, y ∈ Ai, x ∈ Bi1 ∩Bi3 , y ∈ Bi2 ∩Bi4 for some

i1 < i2 < i3 < i4}.
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Symmetrically for every 1 ≤ j ≤ m let

Tj = {{x, y} ⊆ X| x, y ∈ Bj , x ∈ Aj1 ∩Aj3 , y ∈ Aj2 ∩Aj4 for some

j1 < j2 < j3 < j4}.

Then
n∑

i=1

|Si| =
m∑

j=1

|Tj |

modulo 2.

Proof. For 1 ≤ i ≤ n, 1 ≤ j ≤ m denote by xij the unique vertex of Ai ∩ Bj . Let

Z = {(a1, b1, a2, b2)| 1 ≤ a1 < a2 ≤ n, 1 ≤ b2 < b1 ≤ m,xa1b1 6= xa2b2}. Clearly |Z| =

n(n−1)m(m−1)/4−|X| and |X| = nm/4. Moreover n and m are even, as n =
∑n

i=1 |B1∩
Ai| = 2|B1| and, similarly, m = 2|A1|. Consequently |Z| is even. For {u, v} ⊆ X let

Zuv = {(a1, b1, a2, b2) ∈ Z| {u, v} = {xa1b1 , xa2b2}}.
We claim that Zuv is odd if and only if {u, v} belongs to exactly one of 4n

i=1Si and

4m
j=1Tj . While simple case analysis can be used to verify this claim, we would like to

demonstrate another proof. Draw a blue straight line between points (0, i) and (1, j) in R2

if {u} = Ai∩Bj and a red straight line if {v} = Ai∩Bj . Then the resulting lines form blue

and red closed curves, and as such they cross an even number of times. Note that |Zuv| is

equal to the number of such crossings in R2 strictly between the lines x = 0 and x = 1; the

number of times {u, v} occurs in the sets S1, . . . , Sn is equal the number of such crossings

on the line x = 0 and the number of times {u, v} occurs in the sets T1, . . . , Tm is equal the

number of crossings on the line x = 1. The claim follows.

From the claim,
∑n

i=1 |Si|+
∑m

j=1 |Tj | =
∑
{u,v}⊆X |Zuv| = |Z| = 0 modulo 2.

Corollary 6.2.2. Let c1 and c2 be two k-edge-colorings of a k-regular graph G and let

V (G) = {1, . . . , 2n}. Then c1 and c2 have the same sign if and only if
∏k

i=1 sgn(c−1
1 (i)) =

∏k
i=1 sgn(c−1

2 (i)).

Proof. Define for 1 ≤ i ≤ 2k, Ai = c−1
1 (i) for 1 ≤ i ≤ k and Ai = c−1

2 (i−k) for k+1 ≤ i ≤ 2k.

Let Bj be the set of all edges incident with the vertex j for 1 ≤ j ≤ 2n. Note that the
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sets A1, A2, . . . , A2k, B1, B2, . . . , B2n satisfy the conditions of Lemma 6.2.1. Let Si and Tj

be defined as in Lemma 6.2.1. Note that sgn(Ai) is equal to

(−1)|{{u,v},{u′,v′}∈Ai|u<u′<v<v′}| = (−1)|Si|.

On the other hand sgn(πj) = (−1)|Tj |, where πj is as in the definition of sign of edge-

colorings. The colorings c1 and c2 have the same sign if and only if
∏2n

j=1 sgn(πj) = 1, but

by Lemma 6.2.1

2n∏

j=1

sgn(πj) =
2k∏

i=1

sgnAi =
k∏

i=1

sgn(c−1
1 (i))

k∏

i=1

sgn(c−1
2 (i)).

Theorem 6.2.3. Let G be a k-regular graph, V (G) = {1, . . . , 2n}. If G admits a Pfaffian

labeling then all k-edge-colorings of G have the same sign.

Proof. Let c1 and c2 be two k-edge-colorings of G. By Corollary 6.2.2 c1 and c2 have the

same sign if and only if
k∏

i=1

sgn(c−1
1 (i))

k∏

i=1

sgn(c−1
2 (i)) = 1.

Let l : E(G) → Γ be a Pfaffian labeling of G for some Abelian group Γ. Then

k∏

i=1

sgn(c−1
1 (i))

k∏

i=1

sgn(c−1
2 (i)) =

∏

e∈E(G)

l(e)×
∏

e∈E(G)

l(e) =

= (
k∏

i=1

sgn(c−1
1 (i))2 = 1.

By Theorem 2.1 in [14], as well as Corollary 3.9 in [2], a k-regular graph is k-list-edge-

colorable if the sum of signs of all of its k-edge colorings is non-zero. Therefore the following

corollary of Theorem 6.2.3 holds.

Corollary 6.2.4. Every k-edge-colorable k-regular graph that admits a Pfaffian labeling is

k-list-edge-colorable.

Next we will prove a partial converse of Theorem 6.2.3. We have to precede it by another

technical lemma.
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Lemma 6.2.5. Let m and n be positive integers. Let A be an integer matrix with m rows

and n columns and let b be a rational column vector of length m. Then either there exists a

rational vector x of length n such that Ax−b is an integer vector, or there exists an integer

vector c, such that cA = 0 and c · b is not an integer.

Proof. There exists a unimodular integer m × m matrix U = (uij) such that H = UA

is in the Hermitian normal form (see for example [45]): if H = (hij) then there exist

1 ≤ k1 < k2 < . . . < kl ≤ n, such that

1. l ≤ m,

2. hiki
6= 0 for every 1 ≤ i ≤ l,

3. hij = 0 for every 1 ≤ i ≤ l, 1 ≤ j < ki,

4. hij = 0 for every l < i ≤ m, 1 ≤ j ≤ n.

There exists x ∈ Qn such that first l coordinates of Hx − Ub are zeros. Let Ub =

(dj)1≤j≤m. If dj 6∈ Z for some j > l then c = {uj1, uj2, . . . , ujm} is as required. If, on

the other hand, dl+1, . . . dm ∈ Z then Hx − Ub is an integer vector and therefore so is

U−1(Hx− Ub) = Ax− b.

Theorem 6.2.6. Let G be a graph with V (G) = {1, . . . , 2l}. If G does not admit a Pfaffian

labeling then there exist an integer k, a k-regular graph G′ whose underlying simple graph

is a subgraph of G and two k-edge colorings of G′ of different signs.

Proof. Let M denote the set of all perfect matchings of G and let Γ be the additive group

Q/Z. The identity of Γ is 0 and the only other element of order two is 1/2. We will use

the additive notation in this proof, instead of the multiplicative one we used before; in

particular sgn(M) ∈ {0, 1/2} for M ∈ M. The graph G does not admit a Pfaffian Γ-

labeling; i.e., there exists no function l : E(G) → Q/Z such that
∑

e∈M l(e) = sgn(M) for

every M ∈M. By Lemma 6.2.5 there exists a function f : M→ Z such that
∑

M3e f(M) =

0 for every e ∈ E(G) and
∑

M∈M f(M)sgn(M) = 1/2. For every edge e ∈ E(G) let

m(e) = 1/2 · ∑M3e |f(M)|; then m(e) is an integer. Let G′ be the graph constructed
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from G by duplicating every edge m(e) − 1 times (if m(e) = 0 we delete e). Then G′ is

k-regular, where k = 1/2 · ∑M∈M |f(M)|. Moreover, there exist a k-edge coloring c1 of

G′ such that a perfect matching M appears as a color class of c1 if and only if f(M) is

positive, in which case it appears f(M) times. Similarly, there exist a k-edge coloring c2

of G′ such that a perfect matching M appears as a color class of c2 if and only if f(M) is

negative, in which case it appears |f(M)| times. Note that
∑k

i=1 c−1
1 (i) +

∑k
i=1 c−1

2 (i) =
∑

M∈M |f(M)|sgn(M) =
∑

M∈M f(M)sgn(M) = 1/2. Therefore c1 and c2 have different

signs by Corollary 6.2.2.

6.3 Pfaffian Labelings and Tight Cut Decomposition

The previous section established a relation between graphs that admit a Pfaffian labeling

and k-regular graphs in which all k-edge colorings have the same sign. This motivates

the study of graphs that admit a Pfaffian labeling. In this section we use the matching

decomposition procedure developed by Kotzig, and Lovász and Plummer [28], which we

briefly review, for this purpose.

We say that a graph is matching-covered if every edge in it belongs to a perfect matching.

Let G be a graph, and let X ⊆ V (G). We use δ(X) to denote the set of edges with one

end in X and the other in V (G) − X. A cut in G is any set of the form δ(X) for some

X ⊆ V (G). A cut C is tight if |C ∩ M | = 1 for every perfect matching M in G. Every

cut of the form δ({v}) is tight; those are called trivial, and all other tight cuts are called

nontrivial. Let δ(X) be a nontrivial tight cut in a graph G, let G1 be obtained from G by

identifying all vertices in X into a single vertex and deleting all resulting parallel edges,

and let G2 be defined analogously by identifying all vertices in V (G)−X. We say that G

decomposes along C into G1 and G2. By repeating this procedure any matching-covered

graph can be decomposed into graphs with no non-trivial tight cuts. This motivates the

study of the graphs that have no non-trivial tight cuts.

The graphs with no non-trivial tight cuts were characterized in [12, 29]. A brick is a

3-connected bicritical graph, where a graph G is bicritical if G\u\v has a perfect matching

for every two distinct vertices u, v ∈ V (G). A brace is a connected bipartite graph such
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that every matching of size at most two is contained in a perfect matching.

Theorem 6.3.1. [12, 29] A matching covered graph has no non-trivial tight cuts if and

only if it is either a brick or a brace.

Thus every matching covered graph G can be decomposed into a set J of bricks and

braces. Lovász [29] proved that, up to isomorphism, the set J does not depend on the

choice of tight cuts in the course of the decomposition. We say that the members of J are

the bricks and braces of G.

The following lemma reduces the study of graphs with Pfaffian labelings to bricks and

braces. Its analogue for Pfaffian orientations is due to Vazirani and Yannakakis [57].

Lemma 6.3.2. Let Γ be a group. A matching-covered graph G admits a Pfaffian Γ-labeling

if and only if each of its bricks and braces admits a Pfaffian Γ-labeling.

Proof. Let C = δ(X) be a tight cut in G and let G1 and G2 be obtained from G by

identifying vertices in X and V (G) − X respectively. It suffices to prove that G admits

a Pfaffian Γ-labeling if and only if both G1 and G2 admit a Pfaffian Γ-labeling. Without

loss of generality, we assume that V (G) = {1, 2, . . . , 2n}, V (X) = {1, 2, . . . 2k + 1} and

that G1 and G2 inherit the order on vertices from G; in particular, the vertex produced by

identifying vertices of V (G)−X has number 2k+2 in G1, the vertex produced by identifying

vertices of X has number 1 in G2. For every perfect matching M of G the sets of edges

M ∩ E(G1) and M ∩ E(G2) are perfect matchings of G1 and G2 respectively. Moreover,

sgn(M) = sgn(M ∩ E(G1))sgn(M ∩ E(G2)).

Suppose first that l : E(G) → Γ is a Pfaffian labeling of G. For every e ∈ C fix a

perfect matching M2(e) of G2 containing e. Define l1(e) = sgn(M2(e))
∏

f∈M2(e) l(f) for

every e ∈ C and define l1(e) = l(e) for every e ∈ E(G1) \ C. For a perfect matching M of

G1 let e ∈ C ∩M . We have

∏

f∈M

l1(f) =
∏

f∈M\{e}
l(f)

∏

f∈M2(e)

l(f) sgn(M2(e)) =

= sgn(M ∪M2(e))sgn(M2(e)) = sgn(M).
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Therefore l1 : E(G1) → Γ is a Pfaffian labeling of G1.

Suppose now that li : E(Gi) → Γ is a Pfaffian labeling of Gi for i ∈ {1, 2}. Define

l(e) = li(e) for every e ∈ E(Gi) \ C and define l(e) = l1(e)l2(e) for every e ∈ C. It is easy

to see that l : E(G) → Γ is a Pfaffian labeling of G.

For our analysis of Pfaffian labelings of bricks and braces we will need two theorems.

The first of them is proved in [8] for bricks and in [28] for braces. It also follows from the

results of Chapter 2.

Theorem 6.3.3. Let G be a brick or brace different from K2, C4, K4, the prism and the

Petersen graph. Then there exists e ∈ E(G) such that G \ e is a matching covered graph

with at most one brick in its brick decomposition and this brick is not the Petersen brick.

For a graph G let the matching lattice, lat(G), be the set of all linear combinations with

integer coefficients of the incidence vectors of perfect matchings of G. The next theorem of

Lovász [29] gives a description of the matching lattice.

Theorem 6.3.4. [29] If G has no brick isomorphic to the Petersen graph, then

lat(G) = {x ∈ ZE(G) | x(C) = x(D) for any two tight cuts C and D}.

Lemma 6.3.5. A brace or a brick not isomorphic to the Petersen graph admits a Pfaffian

labeling if and only if it admits a Pfaffian orientation.

Proof. By induction on |E(G)|. The base holds for K2, C4, K4 and the prism as all those

graphs admit a Pfaffian orientation.

For the induction step let e ∈ E(G) be as in Theorem 6.3.3 and denote G \ e by G′.

The bricks and braces of G′ satisfy the induction hypothesis and therefore by Lemma 6.3.2

either G′ admits a Pfaffian orientation or G′ does not admit a Pfaffian labeling. If G′ does

not admit a Pfaffian labeling then neither does G.

Therefore we can assume that G′ admits a Pfaffian labeling l : E(G′) → Z2. It will be

convenient to use additive notation for the group operation. Suppose l does not extend to

a Pfaffian labeling of G. Then there exist perfect matchings M1 and M2 in G such that

e ∈ M1 ∩M2 and
∑

f∈M1\{e} l(f)−∑
f∈M2\{e} l(f) 6= sgn(M1)− sgn(M2).
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Figure 19: A µ4-labeling of the Petersen graph

We claim that |M1 ∩C| = |M2 ∩C| for any tight cut C = δ(X) in G′. Indeed, G′ has at

most one brick in its decomposition. Therefore we can assume that the graph G′′ obtained

from G′ by identifying vertices in X is bipartite. It follows that |M1∩E(G′′)| = |M2∩E(G′′)|
and, consequently, that |M1 ∩ C| = |M2 ∩ C|.

By Theorem 6.3.4 we have χM1 − χM2 =
∑

M∈M cMχM , where M denotes the set of

perfect matchings of G′ and cM is an integer for every M ∈M. Therefore for every Pfaffian

labeling l′ : E(G′) → Γ of G′

∑

M∈M
cMsgn(M) =

∑

M∈M
(cM

∑

f∈M

l′(f)) =
∑

f∈M1\{e}
l′(f)−

∑

f∈M2\{e}
l′(f).

But for l′ = l this expression is not congruent to sgn(M1) − sgn(M2) modulo 2. It

follows that
∑

f∈M1\{e} l′(f) − ∑
f∈M2\{e} l′(f) 6= sgn(M1) − sgn(M2) for every Pfaffian

labeling l′ : E(G′) → Γ. Therefore no Pfaffian labeling of G′ extends to a Pfaffian labeling

of G, i.e. G does not admit a Pfaffian labeling.

Note that the Petersen graph admits a Pfaffian µ4-labeling, where µn is the multiplicative

group of nth roots of unity. Figure 1 shows an example of such labeling. Note that while

the letter i was used for indexing above, from this point on it is used to denote a square

root of −1.
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The next theorem constitutes the main result of this section. It follows immediately

from the observation above and Lemmas 6.3.2 and 6.3.5.

Theorem 6.3.6. A graph G admits a Pfaffian labeling if and only if every brick and brace

in its decomposition is either Pfaffian or isomorphic to the Petersen graph. If G admits a

Pfaffian Γ-labeling for some Abelian group Γ then G admits a Pfaffian µ4-labeling.

6.4 Drawing Graphs with Pfaffian Labelings

By a drawing Φ of a graph G on a surface S we mean an immersion of G in S such that

edges are represented by homeomorphic images of [0, 1], not containing vertices in their

interiors. Edges are permitted to intersect, but there are only finitely many intersections

and each intersection is a crossing. For edges e, f of a graph G drawn on a surface S let

cr(e, f) denote the number of times the edges e and f cross. For a set M ⊆ E(G) let

crΦ(M), or cr(M) if the drawing is understood from context, denote
∑

cr(e, f), where the

sum is taken over all unordered pairs of distinct edges e, f ∈ M .

We use sgnD(M) to denote the sign of the perfect matching M in the directed labeled

graph D. Note that it can differ from sgn(M) defined in Section 6.2. The next lemma

follows from the Theorem 4.3.2.

Lemma 6.4.1. Let D be an orientation of a graph G and let V (G) = {1, 2, . . . , 2n}. Then

there exists a drawing Φ of G in the plane such that sgnD(M) = (−1)crΦ(M) for every

perfect matching M of G. Moreover, for any S ⊆ E(G) the drawing Φ can be chosen in

such a way that there exists a point in the plane that belongs to the image of each edge in

S and does not belong to the image of any other edge or vertex of G.

Conversely, for any drawing Φ of G in the plane there exists an orientation D of G such

that sgnD(M) = (−1)crΦ(M) for every perfect matching M of G.

For a point p and a drawing Φ of a graph G in the plane, such that Φ maps no vertex

of G to p, let crp,Φ(e, f) denote the number of times the edges e and f cross at points other

than p. For a perfect matching M of G let crp,Φ(M) denote
∑

crp,Φ(e, f), where the sum

is taken over all unordered pairs of distinct edges e, f ∈ M .
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Lemma 6.4.2. For a graph G the following are equivalent.

1. G admits a Pfaffian labeling,

2. There exists a point p and a drawing Φ of a graph G in the plane, such that Φ maps

no vertex of G to p and |M ∩S| and crp,Φ(M) are even for every perfect matching M

of G, where S ⊆ E(G) denotes the set of edges whose images contain p.

Proof. We assume V (G) = {1, 2, . . . , 2n}.
(1) ⇒ (2). By Theorem 6.3.6 there exists a Pfaffian µ4-labeling l : E(G) → {±1,±i}

of G. Let D be the orientation of G such that uv ∈ E(D) if and only if u < v and

l(uv) ∈ {1, i}, or u > v and l(uv) ∈ {−1,−i}. Let S = {e ∈ E(G) | l(e) = ±i} and

let S′ = {e ∈ E(G) | l(e) ∈ {−1,−i}}. Note that sgnD(M) = (−1)|M∩S′|sgn(M) and
∏

e∈M l(e) = (−1)|M∩S′|i|M∩S| for every perfect matching M of G.

By Lemma 6.4.1 there exist a point p and a drawing Φ of the graph G in the plane such

that sgnD(M) = (−1)crΦ(M) for every perfect matching M of G, Φ maps no vertex of G to

p, the images of the edges in S contain p and images of other edges do not contain p. Note

that
∏

e∈M l(e) ∈ R for every perfect matching M and therefore |M ∩ S| is even. Denote

|M ∩ S|/2 by z(M). We have crp,Φ(M) = crΦ(M) + z(M)(2z(M)− 1). It follows that

(−1)crp,Φ(M) = sgnD(M)(−1)z(M) = (−1)|M∩S′|i|M∩S|sgn(M) =

=
∏

e∈M

l(e)sgn(M) = 1.

Therefore crp,Φ(M) is even.

(2) ⇒ (1). By Lemma 6.4.1 there exists an orientation D of G such that sgnD(M) =

(−1)crΦ(M) for every perfect matching M of G. For uv ∈ E(G) with u < v let l1(e) = 1 if

uv ∈ E(D) and let l1(e) = −1 otherwise; let l2(e) = i if uv ∈ S and let l2(e) = 1 otherwise.

Finally, let l(e) = l1(e)l2(e). One can verify that l : E(G) → {±1,±i} is a Pfaffian labeling

of G by reversing the argument used above.

We say that a region C of the projective plane is a crosscap if its boundary is a simple

closed curve and its complement is a disc. We say that a drawing Φ of a graph G in the

projective plane is proper with respect to the crosscap C if no vertex of G is mapped to C
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and for every e ∈ E(G) such that the image of e intersects C and every crosscap C ′ ⊆ C

the image of e intersects C ′.

Now we can reformulate Lemma 6.4.2 in terms of drawings in the projective plane.

Theorem 6.4.3. For a graph G the following are equivalent.

1. G admits a Pfaffian labeling,

2. There exists a crosscap C in the projective plane and a proper drawing Φ of G with

respect to C, such that |M ∩S| and crΦ(M) are even for every perfect matching M of

G, where S ⊆ E(G) denotes the set of edges whose images intersect C.
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CHAPTER VII

CONCLUDING REMARKS

In this chapter we discuss possible approaches to a structural characterization of Pfaffian

graphs and a polynomial time recognition algorithm.

7.1 Even-faced embeddings in the Klein bottle

Let G be a graph embedded on a surface S, which is obtained from a sphere by replacing

k disjoint disks with Möbius strips. If k = 1 then S is the projective plane and if k = 2

then S is the Klein bottle. We say that a cycle C in G is separating if cutting S along C

separates the surface, and we say that C is non-separating otherwise. Finally, we say that

an embedding of G in S is cross-cap-odd if a non-separating cycle C in G is odd if and only

if cutting S along C produces a surface with connected boundary.

Theorem 7.1.1. Every graph that admits a cross-cap-odd embedding in the Klein bottle is

Pfaffian.

Proof. Let G be a graph and let Γ be a cross-cap-odd embedding of G in the Klein bottle.

Without loss of generality, we assume that G is matching-covered and connected, and as

such it is 2-connected. If G does not contain a non-separating cycle then G is planar, and

hence Pfaffian by Theorem 1.2.1. Therefore we assume that G contains a non-separating

cycle.

We claim that every separating cycle is even. We prove the claim by induction on |E(G)|.
If G contains a vertex of degree two then the claim follows from induction hypothesis by

considering the graph obtained from G by contracting one of the edges incident to such a

vertex.

Therefore we assume that G has minimum degree three and fix a non-separating cycle C

in G. By a standard “ear decomposition” argument (see for example [11, Proposition 3.1.1]),

130



there exists e = uv ∈ E(G) − E(C) such that G \ e is 2-connected. We start by proving

that there exists a non-separating cycle containing e in G. Let P1 and P2 be two vertex

disjoint (possibly trivial) paths with ends u and u′, and v and v′ respectively, such that

u′, v′ ∈ V (C), and P1 and P2 are otherwise disjoint from C. The vertices u′ and v′ separate

C into two paths Q1 and Q2. One of the cycles P1 ∪ {e} ∪ P2 ∪Q1 and P1 ∪ {e} ∪ P2 ∪Q2

is non-separating.

Suppose now that there exists an odd separating cycle in G. By induction hypothesis

applied to G \ e every such cycle contains e. We choose a separating cycle C ′ and a

non-separating cycle C ′′, such that C ′ is odd, e ∈ E(C ′) ∩ E(C ′′) and subject to that

E(C ′)∪E(C ′′) is minimal. If C ′\C ′′ is a path then the cycle D with edge set E(C ′)4E(C ′′)

is non-separating and of the same homotopy type as C ′′. Therefore |E(D)| and |E(C ′′)|
have the same parity, in contradiction with the parity of C ′. If C ′ \ C ′′ is not a path then

let P be a subpath of C ′′ with both ends in C ′ and otherwise disjoint from C ′. Let P ′ be

a subpath of C ′ with the same ends as P , such that e ∈ P ′. By the choice of C and C ′ the

cycle D′ = P ∪P ′ is non-separating and even. But then the cycle D′4C ′ is non-separating,

odd and does not contain e, in contradiction with induction hypothesis. This finishes the

proof of the claim.

Consider now the standard representation of the Klein bottle as a disk bounded by

quadrilateral ABCD with pairs of the quadrilateral’s opposite sides identified as follows:

AB with DC, and AD with CB. By bisubdividing edges of G if necessary we assume

that every edge in E(G) crosses the boundary of the quadrilateral at most once. Let

E2, E3 ⊆ E(G) be the sets of all edges of G that cross AB and AD, respectively, and let

E1 = E(G) − E2 − E3. Note that (V (G), E1 ∪ E2) is bipartite with bipartition (X,Y ),

and every edge of E3 joins two vertices of X or two vertices of Y . We may extend Γ to a

drawing Γ′ of G in the plane such that for e, f ∈ E(G) we have cr(e, f) = 1 if and only if

e 6= f , |{e, f} ∩ E3| ≥ 1 and |{e, f} ∩ E1| = 0, and we have cr(e, f) = 0, otherwise.

Let k = (|X| − |Y |)/2. Let E′, E′′ be the sets of all edges in E3 joining two vertices of

X and two vertices of Y , respectively. For a perfect matching M of G denote |M ∩ E′| by
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Figure 20: An cross-cap-odd embedding of K3,3 on a surface with three “crosscaps”.

nM . We have |M ∩ E′′| = nM − k and |M ∩ E3| = 2nM − k. Note that

crΓ′(M) =
(2nM + k)(2nM + k − 1)

2
+ (2nM + k)|M ∩ E2|.

We construct a Pfaffian marking S of Γ′. If k is even then crΓ′(M) = nM + k/2

modulo 2 and therefore S = E′ is a Pfaffian marking of Γ′ if k is divisible by four and

S = E′4δ(v) is a Pfaffian marking of Γ′ for every v ∈ V (G) otherwise. If k is odd then

crΓ′(M) = nM +(k− 1)/2+ |M ∩E2| modulo 2 and S = E′ ∪E2 is a Pfaffian marking of Γ′

if k = 1 modulo 4 and S = (E′ ∪ E2)4δ(v) is a Pfaffian marking of Γ′ for every v ∈ V (G)

otherwise.

It follows from Theorem 4.3.2 that G is Pfaffian.

Note that Theorem 7.1.1 can not be extended to graphs that admit a cross-cap-odd

embedding on surfaces of higher genus, as K3,3 admits a cross-cap-odd embedding on a

surface of Euler characteristic −1 (see Figure 20). Note also that non-bipartite graphs that

admit an embedding in the projective plane with all faces even also admit a cross-cap-odd

embedding in the Klein bottle and are therefore Pfaffian.

7.2 Matching width

For a cut C in a graph G let the tightness of C be defined as maximum of |M ∩ C| over

all perfect matchings M of G. We say that a tree is cubic if the degree of every vertex

in it is either one or three. A matching tree decomposition or an MT-decomposition of a
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graph G is a pair (T, W ), where T is a cubic tree and W = (Wt : t ∈ V (T )), such that
⋃

t∈V (T ) Wt = V (G), and Wt ∩Wt′ = ∅ for every t 6= t′ ∈ V (T ). For e ∈ E(T ) let the order

of e be defined as the tightness of the cut δ(
⋃

t∈V (T1) Wt), where T1 is a component of T \ e.

Let the adhesion of an MT-decomposition be defined as the maximum order of an edge in

it. For t ∈ V (T ) we say that the bag of (T, W ) corresponding to t is the graph obtained

from G by contracting
⋃

t′∈T ′ Wt′ to a single vertex for every component T ′ of T \ t. Note

that for every matching-covered graph G there exists an MT-decomposition (T,W ) of G

with adhesion one such that the bags of (T,W ) are exactly the bricks and braces produced

by the tight cut decomposition of G.

The matching-width of a graph G is the minimum integer k such that G admits an

MT-decomposition (T, W ) of adhesion at most k, in which |Wt| = 1 for every leaf t ∈ V (T )

and |Wt| = 0 for every non-leaf t ∈ V (T ).

Note that the family of dense Pfaffian bricks Hn defined in Section 1.3 has matching

width 2. Let T be a cubic tree with V (T ) = {t1, t2, . . . , tn−2, u2, . . . , un−3} and edges

t1u2, un−3tn−3, un−3tn−2 and uiui+1, uiti for every 2 ≤ i ≤ n − 4. Let Wti = {Ai, Bi} for

1 ≤ i ≤ n− 3, let Wtn−2 = {An−2, An−1, An, Bn−2} and let Wui = ∅ for 2 ≤ i ≤ n− 3.

We claim that the adhesion of (T, W ) is two. It suffices to prove that the tightness

of δ(Xi) is two for every 1 ≤ i ≤ n − 3, where Xi = {A1, . . . , Ai, B1 . . . Bi}. Clearly the

tightness of δ(Xi) is at least two, as Hn is a brick and Xi is even. For every i all the edges

crossing δ(Xi) either belong to the edge-set E1 of the clique induced by {A1, A2, . . . An} or

are incident with A1. Every perfect matching contains at most one edge in E1. It follows

that the order of any edge in T is at most two. The claim follows.

A k × k-grid is a planar graph with k2 vertices, indexed with pairs of integers (i, j),

such that 1 ≤ i, j ≤ k and a vertex (i1, j1) is joined to a vertex (i2, j2) if and only if

|i1 − i2|+ |j1 − j2| = 1.

Conjecture 7.2.1. There exists a function f : Z+ −→ Z+ such that every graph of

matching-width at least f(k) has 2k × 2k-grid as a matching minor.

A similar result for the related concept of tree-width is known [40, 42] and a result for
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directed tree-width is conjectured in [18]. It is not hard to verify that the conjecture for

directed tree-width in [18] would imply Conjecture 7.2.1 for bipartite graphs. We do not

know whether the reverse implication holds.

Note that a standard uncrossing argument that is frequently used in similar problems

can not be applied to prove Conjecture 7.2.1. It is essential in uncrossing arguments that

the order o(C) of a cut C be a submodular function, i.e.

o(δ(X)) + o(δ(Y )) ≥ o(δ(X ∩ Y )) + o(δ(X ∪ Y )) (9)

for every two subsets X and Y of the vertex set. Note that (9) does not necessarily hold if

o(C) denotes tightness of the cut C. An example follows.

Let G be a matching-covered graph and let u, v ∈ V (G) be such that G \ {u, v} consists

of two even components G1 and G2. Let X = V (G1)∪{u} and let Y = V (G1)∪{v}. Then

o(δ(X)) = o(δ(Y )) = 1, o(δ(X∩Y ))+o(δ(X∪Y )) = 2 and (9) is violated. Similar examples

can be constructed even if we further require that G is a brick.

It might be profitable to investigate Pfaffian bricks of “small” and “large” matching

width separately. If Conjecture 7.2.1 holds then the techniques of Chapter 2 might help to

obtain a structural characterization of Pfaffian bricks of “large” matching width. Known ex-

amples of Pfaffian bricks that do not adhere to surface-like behavior have “small” matching

width, and so there is hope that graphs of “large” matching width have more structure.

In this section we present a polynomial time algorithm that produces a Pfaffian orien-

tation or correctly identifies that a graph has no Pfaffian orientation for graphs of “small”

matching width. In fact the algorithm that we present works for a larger class of graphs.

The specifications follow.

Input: A graph G, an MT-decomposition (T,W ) of G of adhesion at most k; for every

t ∈ V (T ) a set St ⊆ Wt, |St| ≤ k such that every subgraph of G[Wt] \ St is Pfaffian;

Output: A Pfaffian orientation of G, or a valid statement that G has no Pfaffian orienta-

tion;

Running time: Polynomial in |V (G)| for fixed integer k.
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Our method is influenced by the general purpose algorithm for graphs of bounded

branch-width by Arnborg, Corneil and Proskurowski [3].

We repeatedly use the following result of Vazirani and Yannakakis [57, Theorem 3.1].

Theorem 7.2.2. The problem of testing whether a graph has a Pfaffian orientation is

polynomial-time equivalent to the problem of testing whether a given orientation of a graph

is Pfaffian.

In fact, the proof of Theorem 7.2.2 in [57] proves the following.

Theorem 7.2.3. There exists a polynomial time algorithm that, given a Pfaffian graph G

and an orientation D of G, tests whether D is Pfaffian.

By Theorem 7.2.2 it suffices to test whether a given orientation D of G is Pfaffian. We

assume that the vertices of G are ordered by a linear order < and that G has a perfect

matching. Let E− = {uv ∈ E(D) | u > v}.
For two disjoint subsets V1, V2 of V (G) let

I(V1, V2) = {(v1, v2)|v1 ∈ V1, v2 ∈ V2, v1 > v2}

and let sgn(V1, V2) = (−1)|I(V1,V2)|. Recall that V (e) = {u, v} for e = uv ∈ E(G). For a

matching M in G we define the sign of M , denoted by sgn(M) as

(−1)|M∩E−| ×
∏

{e1, e2}⊆M, e1 6= e2

sgn(V (e1), V (e2)).

Note that this definition is not limited to perfect matchings, and that for perfect matchings

it is the same as the definition given in Section 1.3.

By possibly introducing new vertices to (T,W ), we may assume that there exists a leaf

r ∈ V (T ) with Wr = ∅. For every t ∈ V (T ) − {r} let et ∈ E(T ) be the edge incident with

t in the unique path between t and r in T and let Gt denote G[
⋃

t′∈T ′ Wt′ ], where T ′ is

the component of T \ e containing t. For t ∈ V (T ) − {r} and X ⊆ Gt let f(X, t) = 1 if

M(Gt \X) 6= ∅ and sgn(M) = 1 for all M ∈M(Gt \X), let f(X, t) = −1 if M(Gt \X) 6= ∅
and sgn(M) = −1 for all M ∈M(Gt \X), and let f(X, t) = 0 otherwise.
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We recursively compute

Ft = {(X, f(X, t)) | X ⊆ V (Gt), |X| ≤ k}

for t ∈ V (T )− {r}.
If t 6= r is a leaf of T then we compute Ft as follows. Fix X ⊆ V (Gt) such that

|X| ≤ k. It suffices to compute f(X, t) in polynomial time. Let Gt,X = Gt \ X and let

St,X = St∩V (Gt,X). LetMt,X be the set of all matchings M in Gt,X , such that M covers all

the vertices in St,X , no edge of M has both vertices in V (Gt,X)−St,X and V (Gt,X)−V (M)

has a perfect matching. Note that Mt,X has polynomial size and can be computed in

polynomial time.

For M ∈Mt,X let g(M, X, t) = 1 if every perfect matching of Gt,X \V (M) has positive

sign, let g(M, X, t) = −1 if every perfect matching of Gt,X \V (M) has negative sign and let

g(M, X, t) = 0 otherwise. We can compute g(M, X, t) for every M ∈ Mt,X in polynomial

time by Theorem 7.2.3 as Gt,X \ V (M) is Pfaffian. Note that f(X, t) = c 6= 0 if and only

if g(M,X, t)sgn(M)sgn(V (Gt,X) − V (M), V (M)) = c for every M ∈ Mt,X . Indeed if a

matching M is a disjoint union of matchings M1 and M2 then

sgn(M) = sgn(M1)sgn(M2)sgn(V (M1), V (M2)).

This finishes the computation of f(X, t) in the base case.

Now we present the recursive step of our algorithm. Parts of it are similar to the base

step described above. Let t ∈ V (T ) have degree three and let t1 and t2 be the two neighbors

of t not incident with et. We compute Ft from Ft1 and Ft2 . Again we fix X ⊆ V (Gt) such

that |X| ≤ k and compute f(X, t). Let Gt,X and St,X be defined as above. Let Mt,X be

the set of all matchings M in Gt,X satisfying the following conditions:

1. M covers all the vertices in St,X ,

2. every edge of M has at most one end in V (G) − V (Gt1) − V (Gt2) and at most one

end in each of V (Gt1) and V (Gt2),

3. |V (M) ∩ V (Gti)| ≤ k for i = 1, 2,
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4. V (Gt,X)− V (M) has a perfect matching.

Again Mt,X has polynomial size and can be computed in polynomial time.

For M ∈ Mt,X and i ∈ {1, 2} denote V (M) ∩ V (Gti) by Vi, let V3 = V (M) and let

V4 = Wt − V (M). Let

s = sgn(M)f(V1, t1)f(V2, t2)
∏

1≤i<j≤4

sgn(Vi, Vj).

Finally, let g(M,X, t) = c 6= 0 if sgn(M ′)s = c for every M ′ ∈ M(G[Wt − V (M)]) and let

g(M, X, t) = 0 otherwise. At this point we computed g(M, X, t) for every M ∈Mt,X . Note

that g(M,X, t) = c 6= 0 if and only if sgn(M∗) = c for every M∗ ∈ M(Gt,X) such that

M ⊆ M∗. Therefore f(X, t) = c 6= 0 if and only if g(M,X, t) = 1 for every M ∈ Mt,X .

This concludes the computation of f(X, t).

To finish off the algorithm we compute f(t0, ∅), where t0 ∈ V (T ) is the unique neighbor

of r. As G has a perfect matching, f(t0, ∅) = 1 if and only if D is Pfaffian.
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