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SUMMARY

The divisor theories on finite graphs and metric graphs were introduced sys-

tematically as an analogue to the divisor theory on algebraic curves, and these theories

are deeply connected to each other via tropical geometry and non-archimedean geom-

etry. In particular, rational functions, divisors and linear systems on algebraic curves

can be specialized to those on finite graphs and metric graphs. Important results

and interesting problems, including a graph-theoretic Riemann-Roch theorem, trop-

ical proofs of conventional Brill-Noether theorem and Gieseker-Petri theorem, limit

linear series on metrized complexes, and relations among moduli spaces of algebraic

curves, nonarchimedean analytic curves, and metric graphs are discovered or under

intense investigations. The content in this thesis is divided into three main subjects,

all of which are based on my research and are essentially related to the divisor theory

of linear systems on metric graphs and its application to tropical geometry and non-

archimedean geometry. Chapter 1 gives an overview of the background and a general

introduction of the main results. Chapter 2 is on the theory of rank-determining

sets, which are subsets of a metric graph that can be used for the computation of the

rank function. A general criterion is provided for rank-determining sets and certain

specific examples of finite rank-determining sets are presented. Chapter 3 is on the

subject of a tropical convexity theory on linear systems on metric graphs. In par-

ticular, the notion of general reduced divisors is introduced as the main tool used

to study this tropical convexity theory. Chapter 4 is on the subject of smoothing

of limit linear series of rank one on refined metrized complexes. A general criterion

for smoothable limit g1
d is presented and the relations between limit g1

d and possible

harmonic morphisms to genus 0 metrized complexes are studied.

ix



CHAPTER I

INTRODUCTION

The divisor theory on finite graphs was introduced systematically as an analogue to

the divisor theory on algebraic curves. Baker and Norine found a graph-theoretic

version of the famous Riemann-Roch theorem on algebraic curves in their ground-

breaking paper [13] as follows: if G is a graph of genus g and K the canonical divisor

on G, then for all divisors D ∈ Div(G), r(D) − r(K − D) = deg(D) + 1 − g where

r(D) is the rank of D, which is conventionally the dimension of the linear system

|D| associated to D in the algebraic curve case. Such RR-type theorems have been

extended to other combinatorial and geometric settings, such as weighted graphs [7],

metric graphs/tropical curves [36, 54], lattices [8], and finite sets [45]. In addition,

analogous notions of Jacobians, Abel-Jacobi maps and Picard groups have also been

transplanted to combinatorial settings.

More than just a collateral theory, the divisor theory on graphs or metric graphs

is actually deeply related to the divisor theory on curves, and these connections will

benefit both sides [5, 6, 11, 15, 16, 20, 22–24, 28]: studying classical algebraic geome-

try problems using more combinatorial approaches and studying combinatorics using

tools in algebraic geometry. For example, one connection is from the specialization

map between rational functions (or equivalence classes) on curves and graphs. Let K

be a non-Archimedean field with the valuation ring R and residue field k. For a com-

plete nonsingular curve X/K together with a strongly semistable model X, consider

the dual graph G of the special fiber of Xs (when K is discretely valued) or a skele-

ton Γ of the Berkovich analytification Xan [15, 16, 21] (e.g. when K is algebraically

closed). Then there exists a canonical specialization map τ∗ from divisors on X to
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divisors on G (or divisors on Γ) which respects linear equivalence, and by Baker’s

specialization lemma [11,15,57], the rank of a divisor D (the dimension of |D|) on X

is less than or equal to the rank of τ∗(D) on G (or on Γ). Based on such connections,

recently people have obtained tropical proofs of the Brill-Noether theorem [28] and

Gieseker-Petri theorem [20, 46]. In addition, the lifting problems on the other hand

also attract lots of research efforts in recent years [5,6,17,25], as well as the study of

relations among moduli spaces of algebraic curves, nonarchimedean analytic curves,

and metric graphs/tropical curves [1].

This thesis is mainly focused on three subjects I’ve worked on which are essentially

related to linear systems on metric graphs and its application: (1) rank-determining

sets of metric graphs [51], which provide algorithms to actually compute the rank

function of arbitrary divisors on an arbitrary metric graph, (2) a tropical convexity

theory for linear systems on metric graphs [52], and (3) smoothing of limit linear

series of rank one on refined metrized complexes (an intermediate object between

metric graphs and algebraic curves [4]), which is a lifting problem. In the following,

each subject is expanded with main results listed.

1.1 Some basic notions

There are several very basic notions that will be mentioned throughout this thesis.

Here we list some of them with conventional notations.

G: a connected, finite graph with vertex set V (G) and edge set E(G) (multiple

edges allowed) with genus g(G) (its first Betti number). A finite graph G also

arises as the dual graph of a semistable algebraic curve (a reduced algebraic

curve whose singular points are ordinary double points) in the following way:

each irreducible component corresponds to a vertex of G, and each double point

corresponds to an edge of G connecting vertices representing the two irreducible

components containing the double point.
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Γ: a (compact) metric graph, which can be considered as a geometric realization of

a finite graph G by identifying each edge with a real interval. G is called a model

of Γ. If we allow some edges incident with vertices of valence 1 (leaves) to have

infinite length, then Γ can also be considered as an abstract tropical curve (a

tropicalization of some algebraic curve over a field with non-archimedean valu-

ation). Moreover, a skeleton of a Berkovich analytic curve is also a metric

graph (refer to [15,16] for a framework relating non-archimedean analytification

and tropicalization).

Div(G): the divisor group of G which is the free abelian group generated by V (G).

The elements D of Div(G) are called divisors on G. For
∑

v∈V (G) D(v) · (v),

the degree deg(D) of D is
∑

v∈V (G) D(v), and we say D is effective (written as

D > 0) if D(v) > 0 for all v ∈ V (G). We let Div+(G) = {D ∈ Div(G) : D > 0},

Divd(G) = {D ∈ Div(G) : deg(D) = d}, and Divd
+(G) = {D ∈ Div(G) :

deg(D) = d}. The canonical divisor is defined by K =
∑

v∈V (G)(deg(v)− 2)(v)

which has degree 2g − 2.

M(G): the space of all integer-valued functions (called rational functions) on

V (G). For f ∈ M(G), and define the Laplacian ∆ : M(G) → Div(G) by

∆f =
∑

v∈V (G) ordv(f)(v), where ordv(f) =
∑
{v,w}∈E(G)(f(v) − f(w))(v). We

call ∆f the divisor associated to f (such divisors are also called principal di-

visors) and denote by Prin(G) the space of all principal divisors. We say two

divisor D1 and D2 are linearly equivalent (D1 ∼ D2) if they differ by a principal

divisor.

Div(Γ): the divisor group of Γ which is the free abelian group generated by the

points of Γ. We also have notions of degree of a divisor, effectiveness, rational

functions, principal divisors, and linear equivalence defined in a similar way.

3



In particular, a rational function f on Γ is a continuous, piecewise linear real-

valued function with integer slopes, and ∆f =
∑

p∈Γ ordp(f)(p) where − ordp(f)

is the sum of outgoing slopes of f at point p. Moreover, supp(D) = {p ∈ Γ :

D(v) 6= 0}.

|D|: A (complete) linear system (or linear series) on G or Γ which is defined as

the set of all effective divisors linearly equivalent to D.

r(D): the Baker-Norine [13] rank function of D ∈ Div(G) (or D ∈ Div(Γ) for metric-

graph case), which is defined as the maximum value d such that for every

E ∈ Divd
+(G) (respectively, E ∈ Divd

+(Γ)), |D − E| 6= ∅.

1.2 Rank-determining sets of metric graphs

One may directly associate a metric graph Γ to a finite graph by requiring all edges

to have the same length and a natural question is whether a divisor D ∈ Div(G) has

the same rank when computed as a divisor on the associated metric graph Γ. More

generally, the edge lengths of a metric graph Γ arising as a Berkovich skeleton can be

arbitrary. Even though we define the rank functions on divisor groups Div(G) and

Div(Γ) in the same way, there is a huge difference in practice that Div(G) is finitely

generated while Div(Γ) is not, and one needs to verify infinitely many cases before

being able to determine the rank of a divisor in Div(Γ). This problem is completely

solved in Chapter 2 by introducing a notion of rank-determining sets which is a subset

of Γ that can be finite [51]. Therefore, one only needs to verify finitely many cases to

compute the rank of a divisor in Div(Γ). In particular, a full criterion for determining

whether a subset of Γ is rank-determining is provided.

More precisely, rank-determining sets are defined in the following way: a subset

A of Γ is rank-determining if for all D ∈ Div(Γ), r(D) is equal to the maximum value

d such that for every E ∈ Divd
+(Γ) with supp(E) ⊆ A, |D − E| 6= ∅. Therefore if

there exists a finite rank-determining set, then we can use it to compute the rank of

4



all divisors in Div(Γ).

Instead of stating the complete but technical criterion for rank-determining sets

(stated in Theorem 2.3.17), here are some corollaries of the main criterion that are

more useful in applications.

Theorem 1.2.1. Any vertex set of a metric graph Γ is a rank-determining set of Γ.

The following theorem was first proved in the preprint version of [44], but directly

follows from the theory of rank-determining sets.

Theorem 1.2.2. Let Γ be the metric graph corresponding to a graph G. Let D be a

divisor on G. Let rG(D) be the rank of D on G, and rΓ(D) the rank of D on Γ. Then

we have rG(D) = rΓ(D).

We may also define a similar notion of rank-determining sets on algebraic curves.

In particular a subset of a curve of genus g is rank-determining if and only if it has

cardinality at least g + 1 (cf. Theorem 2.1.8). The following is a similar theorem for

metric graphs.

Theorem 1.2.3. For every metric graph Γ, there always exist finite rank-determining

sets of with cardinality g + 1.

By definition, the rank function actually depends on the metric on Γ. However, a

little surprisingly, rank-determining sets are not as stated in the following theorem.

Theorem 1.2.4. Rank-determining sets are topological (preserved under homeomor-

phisms).

The theory of rank-determining sets has been applied in the work of the tropical

proof of a classical algebraic geometry problem, e.g., the Brill-Noether theorem [28].

They found a Brill-Noether general metric graph Γ (as a degeneration of a Brill-

Noether general curve) by computing explicitly the rank function on all divisors.
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Some other applications of rank-determining sets also directly use the fact that there

exist finite ones [3, 4, 50]. In addition, the notion of rank-determining sets has been

extended to metrized complexes [4] (also see Chapter 4).

1.3 Tropical convexity and general reduced divisors on lin-
ear systems

Recall that a complete linear system (or linear series) |D| on an algebraic curve X is

the space of global sections of a line bundle on X, and |D| is just a projective space [43]

with its linear subspaces called linear systems. On the other hand, a complete linear

system on a finite graph G is a finite set. A complete linear system on a metric graph

is actually a polyhedral complex without a pure dimension in general, which as a

geometric object itself is the most complicated among the three.

There are lots of signs showing that specialization of a complete linear system on a

curve X to a metric graph/tropical curve Γ does not result in a complete linear system

on Γ. Natural questions are what should be the right notion of linear (sub)systems

on Γ (subspaces of a complete linear system |D|), and what kind of rank function

can be associated to those subsystems. More refined investigations of the linear

systems on metric graphs are essential to answer what is actually happening during

the specialization of linear systems from curves to metric graphs.

Tropical convexity is a convexity theory built on tropical semirings and semimod-

ules [2, 29, 47, 48]. Conventionally, tropical convexity is studied on Euclidean spaces

or tropical projective spaces (a Euclidean space modulo tropical translation). In par-

ticular, people also studied complete linear systems |D| on metric graphs/tropical

curves utilizing some tropical convexity techniques [39].

Indeed, linear systems on metric graphs have richer geometric properties and we

have developed a geometric foundation for the notion of tropical convexity in the

space of all divisors [52]. In particular, there is a canonical metric structure on the

space of divisors with associated topological and geometric properties. The notion of

6



tropical convexity is intrinsically built on this metric structure, and the linear systems

|D| are path-connected components which are finitely generated tropical convex hulls

(also called tropical polytopes). Moreover, the sub-linear systems of |D| are defined

to be finitely generated tropical subconvex hulls of |D|.

The metric function on |D| is defined in the following way. For D1 and D2 in

|D|, since they are linearly equivalent, there exists a rational function f (unique up

to translation by constants) such that D1 − D2 = ∆f . The distance between D1

and D2 is defined to be max(f) − min(f). This metric function is well-defined and

induces a topology on |D|. Moreover, roughly speaking, the level sets of f also define

a tropical segment connecting D1 and D2. Therefore, we can extend the notion of

tropical segment to tropical convexity in a natural way as follows: a subset T of |D|

is tropically convex if the tropical segment connecting any two elements in T also

lies in T .

The following theorems are some fundamental properties about tropical convexity.

Theorem 1.3.1. Tropical convex sets are contractible.

Theorem 1.3.2. Every finitely generated tropical convex hull is compact.

Simple as the above theorems appear, the proofs are actually technical and need

to utilize a notion called “general reduced divisors” (or equivalently “canonical pro-

jections”).

The notion of reduced divisors (under different names, e.g., critical configurations

and G-parking functions) and a related notion of chip-firing games were originally

introduced in a self-organized sandpile model on grids and then on arbitrary graphs

[27,30,56], and have aroused interest in various fields of research (see the short survey

article [49]) including combinatorics, theoretical physics, and arithmetic geometry. In

particular, they are the fundamental tool employed by Baker and Norine [13] to prove

the graph-theoretical Riemann-Roch theorem and they appear in lots of subsequent

works by different authors including the tropical proof of Brill-Noether theorem [28].
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In the context of metric graphs, reduced divisors arise in the following way: for

any linear system |D| (or more generally, any linear equivalence class of divisors) and

any point p on the metric graph, there is a canonical divisor in |D| which is “reduced”

with respect to p.

There are several equivalent ways [54,56] to characterize reduced divisors. Recent-

ly, Baker and Shokrieh made a connection to potential theory on (metric) graphs [19].

The main tool in their theory is called the energy pairing, and for a fixed q ∈ Γ, it

can be used to define two functions on the divisor group, the energy function Eq and

the b-function bq. Then the reduced divisor in |D| with respect to q is the minimizer

of either Eq or bq. We generalize Baker-Shokrieh b-function to a function B(D1, D2)

which can be consider as a pseudo-metric between two divisors D1 and D2 in |D|.

It is worth mentioning that the aforementioned conventional notion of reduced

divisor is defined for a complete linear system |D| and a specific point p on the metric

graph which has to be specified first. In Chapter 3, the notion of reduced divisors is

generalized in the following sense:

1. Reduced divisors exist not only just for complete linear systems |D| but also

for tropically convex sub-linear systems T of |D|.

2. Reduced divisors can be defined not only with respect to a point p on the

metric graph but also any divisor E of the same degree as D. In particular, if

deg(D) = d, then the general reduced divisor in |D| with respect to d · (p) is

the conventional reduced divisor in |D| with respect to p.

Based on this notion of general reduced divisors, several strong tools are developed

to investigate tropical convexity theory and the geometric properties of linear systems

on metric graphs. The existence and uniqueness of general reduced divisors can

actually be used in a definition of canonical projections γ : Divd
+(Γ) → T where

T ⊆ Divd
+(Γ) is tropically convex by sending a divisor D ∈ Divd

+(Γ) to the reduced
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divisor in T with respect to D. In particular, the reduced-divisor maps introduced by

Amini [3] (related to the induced map in [39] as an analogue of the map from a curve

to its linear systems in algebraic geometry) are special cases of canonical projections

restricted to the divisors of the form d · (p) where p ∈ Γ and the codomain T is

a complete linear system |D|. However, using general reduced divisors, the target

linear system T does not need to be complete. Therefore, this notion of canonical

projections is actually closer to the conventional map from an algebraic curve to its

linear systems (not necessarily complete).

1.4 Smoothability of limit linear series of rank one

One of the most potent approaches to the study of smooth algebraic curves and their

linear series is degeneration of smooth curves to singular curves and the respective

degenerations of a family of linear series varying on the smooth fibers in the family.

Fundamental results on algebraic curves such as the Brill-Noether theorem, Giesker-

Petri Theorem, non-unirationality results of the moduli space of curves are established

via degeneration to singular curves [31,32,34,37,38,40,41].

While degenerations to irreducible curves such as cuspidal curves and nodal curves

were considered by Castelnuovo and several researchers subsequently [26], Eisenbud

and Harris in a series of papers [32, 34] developed a theory of the degeneration of

linear series, which is called limit linear series, to certain reducible curves. The

theory of limit linear series had numerous applications, for instance proofs of non-

unirationality of moduli spaces of curves Mg for g > 23 [34], a detailed study of the

monodromy of Weierstrass points [33, 35], and an alternative simpler and complete

proof of the Brill-Noether theorem [32]. This theory was further developed by several

researchers. Osserman [55] generalized the theory of limit linear series to curves

in positive characteristic and obtained a functorial description of limit linear series.

However, the limit linear series was largely restricted to curves of compact-type i.e.,
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reducible curves whose dual graphs are trees or equivalently those curves having

compact Jacobians.

On the other hand, the tropical proof of the Brill-Noether theorem [28] made use

of Baker’s framework [11] of degenerating linear series on a regular semistable family

of curves to a linear system on the dual graph of the special fiber which works best

when the degeneration is maximal (the genus of the dual graph equals the genus of

the curve as the generic fiber).

In a recent paper of Amini and Baker [4], a notion of metrized complexes of al-

gebraic curves is introduced as a generalized framework of the above two orthogonal

approaches. Roughly speaking, a metrized complex over an algebraically closed field

k is a metric graph together with marked smooth algebraic curves Cv associated to

all vertices v of Γ. They also generalized the notion of limit linear series, which only

applies to curves of compact type in the Eisenbud-Harris theory, to all metrized com-

plexes of curves. They show that their general notion of limit linear series coincides

with that of Eisenbud and Harris on a metrized complex associated to a curve of

compact-type.

Both the notions of limit linear series due to Eisenbud and Harris and due to

Amini and Baker satisfy two key properties:

1. For any family of smooth curves degenerating to a curve of compact type

(metrized complex respectively), any linear series on the smooth curves in the

family degenerates to a limit linear series on the curve of compact type (metrized

complex respectively).

2. The limit linear series is formulated in terms of linear series on each irreducible

component and with relations between the linear series on each irreducible com-

ponent that depends on the dual graph.

However, even in the case of curves of compact type the converse of Property 1
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does not hold in general, in other words not every limit linear series arises as a “limit”

of linear series. A limit grd (a limit linear series of degree d and rank r) is said to be

smoothable if it arises as a limit of linear series, i.e., it is specialized from a grd (a

linear series of degree d and rank r) on some smooth curve. Eisenbud and Harris [32]

also considered a refinement of the notion of limit linear series called “refined” limit

linear series, and showed that every refined limit g1
d is smoothable and for r ≥ 2 a

generic limit grd is smoothable, which they call the regeneration theorem.

In this work, we consider a refinement of the notion of metrized complex called a

refined metrized complex and undertake a detailed study of smoothability of a limit

g1
d on refined metrized complexes of algebraic curves. Our following main result (also

cf. Theorem 4.1.13 which actually states the theorem for pre-limit linear series) is an

effective characterization of smoothable limit g1
d.

Theorem 1.4.1. A limit g1
d is smoothable if and only it is a diagrammatic limit g1

d

that is solvable and satisfies the intrinsic global compatibility conditions.

The terms “diagrammatic limit g1
d” (see Definition 4.1.19), “solvability” (see Def-

inition 4.1.20) and “intrinsic global compatibility” (see Definition 4.1.23) will be ex-

plained in details in Chapter 4. Here let us briefly explain the main technical in-

gredient of our effective characterization for smoothability of a limit g1
d on a refined

metrized complex. Suppose that X is a smooth proper curve over K and let Σ(Xan)

be a skeleton of the Berkovich analytification Σ(Xan) of X (see [15] for a precise

definition). Let C(Σ) be the refined metrized complex associated to Σ(Xan). A base

point free g1
d on X induces a morphism f : X → P1 of degree d. By the functoriality

of analytification, we have an induced map f an : Xan → P1
Berk where P1

Berk is the

Berkovich projective line. The retraction from the Xan to the skeleton Σ induces a

pseudo-harmonic morphism Cφ from the refined metrized complex C(Σ) to a refined

metrized complex C(T ) of genus zero and C(T ) is a retract of P1
Berk. The construction

is summarized by the following commutative diagram:
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X
f−−−→ P1y y

Xan fan

−−−→ P1
Berky y

C(Σ)
Cφ−−−→ C(T )

The main technical ingredient of our smoothing theorem is the characterization

of all genus zero refined metrized complexes C(T ) that can arise in this commutative

diagram in terms of the data of the limit g1
d that is induced by f .

An alternative viewpoint on degeneration of g1
d is via degeneration of maps from

each smooth curve in the family to P1, giving rise to the notion of admissible covers

between reducible curves developed by Mumford-Harris [42] and to the notion of

harmonic morphism of refined metrized complexes developed by Amini et al. [5,6]. A

harmonic morphism from a refined metrized complex to a refined metrized complex of

genus zero is smoothable to a g1
d on the smooth fiber. However, in several applications

that involve the gonality stratification of M̄g, the harmonic morphism from a refined

metrized complex to refined metrized complex of genus zero is not a part of the

starting data. Instead, it is important to start with a limit g1
d on a refined metrized

complex and determine if it is smoothable or not.

1.5 Organization of the thesis

Chapter 2 is on the subject of rank-determining sets. In Section 2.2, we generalize

Dhar’s algorithm for determining whether a given effective divisor on a finite graph

is v0-reduced to the corresponding metric graph case, and then develop an algorithm

for computing the v0-reduced divisor linearly equivalent to a given effective divisor

on Γ based on Dhar’s algorithm. In Section 2.3, we introduce the notion of rank-

determining sets and develop a criterion to characterize all rank-determining sets

on a given metric graph (Theorem 2.3.17), from which more useful properties of
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rank-determining sets are developed. We also introduce the notion of minimal rank-

determining sets. In Section 2.4, several applications of rank-determining sets are

mentioned.

Chapter 3 is on the subject of a tropical convexity theory on linear systems on

metric graphs. In Section 3.2, potential theory on metric graphs is briefly reviewed.

In Section 3.3 and Section 3.4, we define a canonical metric structure on the set of

real divisors RDivd
+(Γ) on Γ, and introduce the notion of tropical convexity with

some basic properties stated. In Section 3.5, the notion of general reduced divisors is

introduced. We provide several criteria for general reduced divisors and develop some

useful tools with which to prove the theorems about the basic properties of tropical

convex sets stated in Section 3.4. In Section 3.8, we discuss canonical projections

which is derived from the notion of general reduced divisors.

Chapter 4 is on the subject of smoothing of limit linear series of rank one on refined

metrized complexes, and is based on my collaboration with Madhusudan Manjunath.

In Section 4.1, we state the main smoothing theorem for pre-limit g1
d with several

related notions defined. In Section 4.2, we introduce two crucial technical concept-

s: bifurcation trees and tropical dominant trees. In Section 4.3, 4.4, 4.5 and 4.6,

we discuss the specialization map and the relation to our problem of smoothability.

In Section 4.7, 4.8 and 4.9, we investigate the possible genus zero refined metrized

complex and its underlying metric tree that can appear in the image of harmonic

morphisms with a given pre-limit g1
d, and then come to the proof of our main result.
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CHAPTER II

RANK-DETERMINING SETS OF METRIC GRAPHS

2.1 Introduction

The work of Hladký, Král’ and Norine [44] shows that the rank of a divisor D on

a graph equals the rank of D on the corresponding metric graph Γ. However, their

result requires that all the edges of Γ have length 1 and D is zero on the interiors of the

edges. As an initial step, we assert that these restrictions are not necessary by proving

that for an arbitrary metric graph Γ with a vertex set Ω and an arbitrary divisor D on

Γ, the rank r(D) of D equals the Ω-restricted rank rΩ(D) of D. This result motivates

us into further investigations on the subsets of Γ having such a property, to which we

give the name rank-determining sets.

2.1.1 Preliminaries

Throughout this chapter, a graph G means a finite connected multigraph with no

loop edges, and a metric graph Γ means a graph having each edge assigned a positive

length. Roughly speaking, a tropical curve is a metric graph where we admit some

edges incident with vertices of degree 1 having infinite length [53,54]. We will expand

our discussions within the framework of metric graphs, while the conclusions also

apply for tropical curves. (We abuse notation throughout this chapter that the set of

points of a metric graph Γ is also denoted by Γ.)

Denote the vertex set and the edge set of a graph G by V (G) and E(G), respec-

tively. The genus g of G is the first Betti number of G or the maximum number of

independent cycles of G, which equals #E(G)−#V (G) + 1.

We can also define vertices and edges on a metric graph Γ. We call Ω a vertex set

of Γ and the elements of Ω vertices, if Ω is a nonempty finite subset of Γ satisfying
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the following conditions:

(i) Γ \ Ω is a disjoint union of subspaces eoi isometric to open intervals.

(ii) Let ei be the closure of eoi . For all i, ei \ eoi contains exactly two distinct points,

which are both elements of Ω. We call ei an edge of Γ, eoi the interior of ei, and

v ∈ eoi an internal point of ei. And we say that the two vertices in ei \eoi are two

ends (or end-points) of ei or eoi , while ei is an edge connecting these vertices.

Clearly, Γ is loopless with respect to a vertex set Ω. By our definition of a vertex set,

there might be multiple edges between two vertices, which is not allowed in definitions

of vertex sets by other authors (see, e.g., [12]).

By identifying each edge with a closed interval, the connected subsets or subinter-

vals are called segments of Γ, which can be open, closed or half-open/half-closed. The

boundary points of a segment are called the ends (or end-points) of that segment. For

any point v ∈ Γ, we define the degree of v, denoted by deg(v), to be the maximum

number of disjoint open segments with one end at v. Note that internal points always

have degree 2, which means {v ∈ Γ : deg(v) 6= 2} is a finite subset of all vertex sets.

We can refine any vertex set Ω by adding some internal points to Ω.

Throughout this chapter, whenever we mention a vertex or an edge of a metric

graph Γ, we always assume a vertex set of Γ is predetermined, whether or not it is

presented explicitly. Given a vertex set of Γ, the genus of Γ can be computed just like

in the graph case (note that the genus is independent of how we choose vertex sets).

In addition, we transport the conventional notations for intervals onto metric

graphs. For example, let w1 and w2 be two vertices that are neighbors, e be one of

the edges connecting them, and v be an internal point e. Then (w1, w2) represents all

the internal points of the edges connecting w1 and w2. And to avoid confusion in case

of multiple edges, e can be represented by [w1, v, w2]. We use dist(x, y) to denote the

distance between two points x and y measured on Γ, and define the distance between

two subsets X and Y of Γ, denoted by dist(X, Y ), to be inf{dist(x, y), x ∈ X, y ∈ Y }.
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If e′ is a segment, and x, y ∈ e′, then we use diste′(x, y) to denote the distance between

x and y measured on e′.

For simplicity of notation, if v is a point of a metric graph, sometimes we refer to

the singleton {v} by just writing v.

Baker and Norine [13] systematically explored the analogies between finite graphs

and Riemann surfaces in the context of linear equivalence of divisors. We give a

series of definitions here following their work. A divisor D on G is an element of

the free abelian group DivG on the vertex set of G. We can uniquely write a divisor

D ∈ DivG as D =
∑

v∈V (G) D(v)(v), where D(v) ∈ Z evaluates D at v. The degree of

D is defined by the formula deg(D) =
∑

v∈V (G) D(v). A divisor D is called effective

if D(v) > 0 for all v ∈ V (G). We denote the set of all effective divisors on G by

Div+ G, and the set of all effective divisors of degree s on G by Divs+G. Provided a

function f : V (G)→ Z, the divisor associated to f is given by

∆f =
∑

v∈V (G)

∑
e=wv∈E(G)

(f(v)− f(w))(v),

and called principal. It is easy to see that the principal divisors have degree 0. For

two divisors D and D′, we say that D is linearly equivalent to D′ or D ∼ D′ if D−D′

is principal. And we defined the linear system associated to a divisor D to be the set

|D| of all effective divisors linearly equivalent to D. The rank of a divisor D, denoted

by rG(D), is an integer defined as, rG(D) = −1 if |D| = ∅, and rG(D) > s > 0 if and

only if |D − E| 6= ∅ for all E ∈ Divs+G. When it is clear that D is defined on G, we

usually omit the subscript and write r(D) instead of rG(D). Note that the rank of a

divisor is invariant under linear equivalence.

Analogously, for a metric graph (or a tropical curve) Γ, elements of the free abelian

group Div Γ on the set of points of Γ are called divisors on Γ. We can define the degree

of a divisor and the notion of effective divisors in a similar way. A rational function

f on Γ is a continuous, piecewise linear real function with integer slopes. The order
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ordvf of f at a point v ∈ Γ is the negative of the sum of the outgoing slopes of all

the segments emanating from v. Any rational function f has an associated divisor

∆f =
∑

v∈Γ ordvf · (v) (we also write (f) = ∆f in this chapter for simplicity). We

say (f) is principal for all rational functions f , and define linear equivalence relations

and linear systems as on graphs. Also, we may define the rank rΓ(D) of a divisor D

on Γ. Explicitly, rΓ(D) = −1 if |D| = ∅, and rΓ(D) > s > 0 if and only if |D−E| 6= ∅

for all E ∈ Divs+ Γ. We may omit the subscript and use r(D) to represent the rank

of a divisor D, when there is no confusion that D is defined on Γ.

Remark 2.1.1. In the classical Riemann surface case, the linear system |D| associated

to a divisor D is the r(D)-dimensional projective space of a (r(D) + 1)-dimensional

vector space. However, |D| is a finite set in the finite graph case and a polyhedral

complex in the metric graph case [36]. We give analogous definitions of rank r(D) in

these cases, even if r(D) should no longer be interpreted as a dimension.

For a divisorD on Γ, let suppD = {v ∈ Γ|D(v) 6= 0} and supp |D| =
⋃
D′∈|D| suppD′.

We call suppD the support of D and call supp |D| the support of |D|. Note that even

though suppD is always a finite subset of Γ, supp |D| is not in general.

2.1.2 Overview of related work

As an analogue of the classical Riemann-Roch theorem on Riemann surfaces, Baker

and Norine formulated and proved the Riemann-Roch theorem for the rank of divisors

on finite graphs [13]. We define the canonical divisor on a graph G to be the divisor

K given by K =
∑

v∈V (G)(deg(v)− 2)(v).

Theorem 2.1.2 (Riemann-Roch theorem for graphs). Let G be a graph of genus g

and K the canonical divisor on G. Then for all D ∈ DivG, we have

rG(D)− rG(K −D) = deg(D) + 1− g.

Not long after, such an analogy was extended to metric graphs and tropical curves

by Gathmann and Kerber [36], by Hladký, Král’ and Norine [44], and by Mikhalkin
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and Zharkov [54]. For a metric graph (or a tropical curve) Γ, we may also define the

canonical divisor on Γ to be the divisor K given by K =
∑

v∈Γ(deg(v)− 2)(v). Here

deg(v) is the number of outgoing segments at a point v.

Theorem 2.1.3 (Riemann-Roch thoerem for metric graphs and tropical curves). Let

Γ be a metric graph (or a tropical curve) of genus g and K the canonical divisor on

Γ. Then for all D ∈ Div Γ, we have

rΓ(D)− rΓ(K −D) = deg(D) + 1− g.

The following theorem, conjectured by Baker and proved by Hladký, Král’ and

Norine [44], states another important property about rank of divisors. For a graph

G, by assigning all edges length 1, we obtain a metric graph corresponding to G.

Theorem 2.1.4 (Hladký, Král’ and Norine). Let Γ be the metric graph corresponding

to a graph G. Let D be a divisor on G. Let rG(D) be the rank of D on G, and rΓ(D)

the rank of D on Γ. Then we have rG(D) = rΓ(D).

2.1.3 Main results in this chapter

We introduce a new notion of rank here.

Definition 2.1.5. Let Γ be a metric graph and A a nonempty subset of Γ. Let

Divs+ A be {E ∈ Divs+ Γ : suppE ⊆ A}.

(i) Define the A-restricted rank rA(D) of a divisor D ∈ Div Γ by rA(D) = −1 if

|D| = ∅, and rA(D) > s > 0 if and only if |D − E| 6= ∅ for all E ∈ Divs+A.

(ii) A is said to be a rank-determining set of Γ, if it holds for every divisor D ∈ Div Γ

that r(D) = rA(D).

One may also call rA(D) the rank of D restricted on A. Clearly, Γ itself is a rank-

determining set of Γ and we say it is trivial. Following the definition, any superset

of a rank-determining set is also rank-determining. It is natural to ask if all metric
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graphs have nontrivial rank-determining sets, or more ambitiously, finite ones? One

of the main results of this chapter is the following theorem, which gives an affirmative

answer.

Theorem 2.1.6. Let Ω be a vertex set of a metric graph Γ. Then Ω is a rank-

determining set of Γ.

It is easy to see that Theorem 2.1.6 generalizes Theorem 2.1.4 to all metric graphs

Γ and all divisors D on Γ. And since Divs+ Ω is always a finite set, this theorem also

provides an algorithm for computing the rank of a divisor on Γ.

There exist finite rank-determining sets other than vertex sets. In particular, we

will prove the following conjecture of Baker.

Theorem 2.1.7. Let Γ be a metric graph of genus g. Then there exists a finite

rank-determining set of cardinality g + 1.

Theorem 2.1.7 has a counterpart in the algebraic curve case, as stated in the

following theorem. (See Remark 2.3.13 for a sketch of the proof.)

Theorem 2.1.8 (R. Varley). For a nonsingular projective algebraic curve C, any set

of g + 1 distinct points is a rank-determining set.

The linear equivalence among divisors on Γ changes if we use a different metric.

Actually, if f : Γ → Γ′ is a homeomorphism between two metric graphs Γ and Γ′,

then by sending the supporting points of a divisor on Γ to points on Γ′, f induces a

push-forward map f∗ : Div Γ → Div Γ′ between divisors on Γ and Γ′. Consider two

linear equivalent divisors D1 and D2 on Γ. Then f∗(D1) and f∗(D2) are not linearly

equivalent in general. Example 2.1.9 shows a simple case that rΓ(D) 6= rΓ′(f∗(D)).

However, we state in Theorem 2.1.10 that rank-determining sets will not be affected

at all, even though their definition uses the notion of linear equivalence and linear

systems.
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Figure 1: Two divisors, D and D′, which are defined on two homeomorphic metric
graphs Γ and Γ′ respectively, and have different ranks.

Example 2.1.9. Let Γ and Γ′ be two metric graphs with vertex sets {w1, w2, w3, w4}

and {w5, w6, w7} respectively (Figure 1). Assume all edges have length 1. By con-

tracting [w1, w2]
⋃

[w2, w3], the union of two edges of Γ, proportionally onto the edge

e of Γ′, we get a piecewise-linear homeomorphism f : Γ→ Γ′ between Γ and Γ′ that is

not an isometry. Let D = 2(w1) and D′ = 2(w5). Then D′ = f∗(D) since f(w1) = w5.

However, we observe that rΓ(D) = 0, while rΓ′(D
′) = 1. This is because the support

of |D| is [w1, w2]
⋃

[w1, w3], which is a proper subset of Γ, and the support of |D′| is

the whole metric graph Γ′.

Theorem 2.1.10. Rank-determining sets are preserved under homeomorphisms.

In Section 2.2, we present an algorithm for computing the v0-reduced divisor lin-

early equivalent to a given effective divisor on Γ. In Section 2.3, we investigate prop-

erties of rank-determining sets based on this algorithm, which are generalized into a

criterion (Theorem 2.3.17) for rank-determining sets, from which Theorem 2.1.6, 2.1.7

and 2.1.10 easily follow. We also explore several concrete examples as applications of

the criterion.

2.2 From effective divisors to reduced ones

2.2.1 Reduced divisors

The notion of reduced divisors was adopted in [13] as an important tool in the proof

of the Riemann-Roch theorem for finite graphs. The definition of reduced divisors on
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finite graphs is based on the notion of G-parking functions [56].

Let G be a finite graph. For A ⊆ V (G) and v ∈ A, the out-degree of v from A,

denoted by outdegA(v), is defined as the number of edges of G with one end at v and

the other end in V (G)\A. Choose a vertex v0. We say a function f : V (G)\{v0} → Z

is a G-parking function based at v0 if

(i) f(v) > 0 for all v ∈ V (G) \ {v0}, and

(ii) every nonempty subset A of V (G) \ {v0} contains a vertex v such that f(v) <

outdegA(v).

A divisor D ∈ DivG is called v0-reduced if the map v 7→ D(v) restricted to

V (G) \ {v0} is a G-parking function based at v0. An important property of reduced

divisors is stated in the following proposition.

Proposition 2.2.1 (See Proposition 3.1 in [13]). If we fix a base vertex v0 ∈ V (G),

then for every D ∈ DivG, there exists a unique v0-reduced divisor D′ ∈ DivG such

that D′ ∼ D.

Proposition 2.2.1 is quite useful when dealing with equivalence classes of divisors,

since we can select a reduced divisor as a concrete representative for each equivalence

class of divisors.

The notion of reduced divisors has been extended to metric graphs by several

authors. We adopt the definition of reduced divisors on metric graphs as in [44],

which follows closely the definition of reduced divisors on finite graphs as discussed

above. Other authors suggest to define reduced divisors on metric graphs in more

abstract ways [54], and it can be proved that these definitions are all equivalent.

Let Γ be a metric graph. If X is a subset of Γ with finitely many connected

components, we use Xc to denote the complement of X on Γ, X the closure of X, Xo

the interior of X, and ∂X the set of boundary points of X. Note that ∂X = ∂(Xc). In

addition, if X is closed, then for v ∈ X, we define the out-degree of v from X, denoted

by outdegX(v), to be the number of segments leaving X at v, or more precisely, the
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maximum number of internally disjoint segments of Xc with an open end at v. Note

that outdegX(v) = 0 for all v ∈ X \ ∂X. For D ∈ Div Γ, we call a boundary point

v of X saturated with respect to X and D if D(v) > outdegX(v), and non-saturated

otherwise.

Definition 2.2.2. Fix a base point v0 ∈ Γ. We say that a divisor D is v0-reduced if

D is non-negative on Γ \ v0, and every closed connected subset X of Γ \ v0 contains

a non-saturated point v ∈ ∂X.

As a counterpart of Proposition 2.2.1, the following theorem asserts the existence

and uniqueness of a v0-reduced divisor in any equivalence class of Div Γ [44] [54].

Theorem 2.2.3 (See Theorem 10 in [44]). Let D be a divisor on a metric graph Γ.

For any v0 ∈ Γ, there exists a unique v0-reduced divisor Dv0 that is linearly equivalent

to D.

For any finite subset S of Γ, we denote by US,v0 the connected component of Sc

which contains v0. In particular, if v0 ∈ S, then US,v0 = ∅. We emphasize here that

US,v0 is connected and open, while U cS,v0
is closed and might have several connected

components. We say that S is v0-minimal if U cS,v0
is connected and S equals the set

of boundary points of U cS,v0
.

Assume now that D is effective. To verify if D is v0-reduced, we do not need to

go through all closed connected subsets of Γ \ v0. The following lemma shows that

we only need to consider finitely many of them.

Lemma 2.2.4. Let v0 be a point of Γ and D an effective divisor on Γ. Then D is

v0-reduced if and only if for any subset S of suppD\v0, U cS,v0
contains a non-saturated

boundary point with respect to D.

Proof. First assume D is v0-reduced and consider a subset S of suppD \ v0. Then

U cS,v0
is a closed subset of Γ which has finitely many components. Apply the defining
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property of v0-reduced divisors to any of these components, and we obtain non-

saturated boundary points on each of them.

Conversely, assume that for any subset S of suppD \ v0, U cS,v0
contains a non-

saturated point. If D is not v0-reduced, then there exists a closed connected subset

X of Γ \ v0, such that every point of ∂X is saturated with respect to X and D.

Since outdegX(v) > 0 for all v ∈ ∂X, it follows that ∂X ⊆ suppD \ v0. And since

X ⊆ U c∂X,v0
, the edges leaving U c∂X,v0

must also be edges leaving X. Therefore, for

every v ∈ ∂U∂X,v0 , we have

D(v) > outdegX(v) > outdegUc∂X,v0
(v).

This is equivalent to saying that U c∂X,v0
contains no non-saturated boundary points,

which contradicts our assumption.

Lemma 2.2.4 tells us that to determine if an effective divisor D is v0-reduced, it

suffices to consider only the subsets of suppD \ v0. But the number of cases still

grows exponentially with respect to #{suppD}. For finite graphs, there is an elegant

algorithm for verifying if a given function is a G-parking function, which is adapted

from an algorithm provided by Dhar [30] in the context of sandpile models (see [27]).

Here we naturally extend Dhar’s algorithm to metric graphs, as a consequence of

which we just need to test the points in suppD \ v0 one by one in order to judge

whether an effective divisor D is v0-reduced.

Algorithm 2.2.5. (Dhar’s algorithm for metric graphs)

Input: An effective divisor D ∈ Div+ Γ, and a point v0 ∈ Γ.

Output: A subset S of suppD \ v0.

Initially, set S0 = suppD \ v0, and k = 0.

(1) If Sk = ∅ or all the boundary points of U cSk,v0
are saturated with respect to D, set

S = Sk and stop the procedure.
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(2) Let Nk be the set of all non-saturated boundary points of U cSk,v0
. Set Sk+1 =

Sk \Nk. Set k ← k + 1 and go to step (1).

Lemma 2.2.6. Run Dhar’s algorithm for an effective divisor D and a point v0. Then

D is v0-reduced if and only if the output S is empty.

Proof. If S is nonempty, then all the boundary points of U cS,v0
are saturated. Thus D

is not v0-reduced by Lemma 2.2.4.

Otherwise, S = ∅. For a subset S ′ of suppD \ v0, let Nk be such that Nk

⋂
S ′ 6= ∅

and Nk′
⋂
S ′ = ∅ for k′ < k. Note that S ′ ⊆ Sk. If v ∈ Nk

⋂
S ′, then v must be a

non-saturated boundary point of U cS′,v0
, since

D(v) < outdegUcSk,v0
(v) 6 outdegUc

S′,v0
(v).

By Lemma 2.2.4, D is v0-reduced.

Remark 2.2.7. The out-degrees are topological invariants, which implies that whether

or not a divisor is v0-reduced is preserved under homeomorphisms. If we let supp |D|

be a subset of the defined vertex set Ω, then Algorithm 2.2.5 reduces to a regular

Dhar’s algorithm on the underlying finite graph G of the metric graph Γ, where we re-

quire V (G) = Ω (edge lengths does not play a role here). This means Algorithm 2.2.5

has O(#Ω) time complexity.

Remark 2.2.8. If an effective divisor D is not v0-reduced, then running Algorith-

m 2.2.5 for D and v0 can actually provide the unique “smallest” open neighborhood

US,v0 of v0 such that all its boundary points are saturated with respect to D and

U cS,v0
. Intuitively, “saturated” may be think of as “ready to move”. When all the

boundary points are saturated, we can launch a “move” of D towards the v0-reduced

divisor linearly equivalent to D. This motivates to develop an algorithm of computing

reduced divisors (Algorithm 2.2.13), as will be discussed in the next subsection.
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Figure 2: (a) A metric graph Γ and two effective divisors D1 and D2 on Γ. (b) Dhar’s
algorithm for D1 and v0. (c) Dhar’s algorithm for D2 and v0.

Example 2.2.9. Let Γ be a metric graph as illustrated in Figure 2(a) with a vertex

set {w1, w2, w3, w4}. Let D1 = (v1)+(w3)+2(w4) and D2 = 2(v1)+(v2)+(w3)+2(w4).

Run Dhar’s algorithm for D1 and v0. The dashed areas in Figure 2(b) illustrate USk,v0

step by step. Initially, we have S0 = {v1, w3, w4} and U cS0,v0
= {v1}

⋃
[w3, w4]. The set

N0 of all non-saturated boundary points of U cS0,v0
is {v1, w3}. Then S1 = S0 \ N0 =

{w4} and U cS1,v0
= {w4}. Since w4 is a non-saturated point, we have N1 = {w4} and

S2 = ∅. Now U cS2,v0
is the whole graph and we get the output S = ∅. Therefore D1

is v0-reduced. We leave it to the readers to verify the output of Dhar’s algorithm for

D2 and v0 is {v1, v2, w4} and D2 is not v0-reduced (Figure 2(c)).
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2.2.2 An algorithm for computing reduced divisors

Based on Dhar’s algorithm and the criterion from Lemma 2.2.6, we formulate an

algorithm to derive from an effective divisor D the unique v0-reduced divisor linearly

equivalent to D.

Recall from [44] the notion of basic v0-extremal functions on Γ. We say a rational

function f is a basic v0-extremal function if there exist closed connected disjoint

subsets Γmax(f) and Γmin(f) of Γ such that:

(i) v0 ∈ Γmax(f);

(ii) Γ−Γmin(f)−Γmin(f) is the union of disjoint open segments of the same length;

(iii) f achieves its maximum on Γmax(f) and its minimum on Γmin(f);

Definition 2.2.10. Let D be an effective divisor on Γ and S a subset of suppD \ v0

such that all the boundary points of U cS,v0
are saturated with respect to D. Let Ω be

a fixed vertex set of Γ. We call the following parameterizing process ∆D,S,v0 : [0, 1]→

Div+ Γ the v0-move of D with respect to S and Ω:

(i) ∆
(0)
D,S,v0

= D.

(ii) Let J be the number of connected components of U cS,v0
, and denote these com-

ponents by X1 through XJ .

For j = 1, 2, · · · , J and t ∈ (0, 1], let

d
(t)
j = t · dist

(
Xj,US,v0

⋂
(Ω
⋃
v0)
)
,

P
(t)
j = {p ∈ US,v0 | dist(Xj, p) = d

(t)
j },

Q
(t)
j = {q ∈ US,v0 | dist(Xj, q) 6 d

(t)
j }, and

f
(t)
j a basic v0-extremal function such that

Γmin(f
(t)
j ) = Xj, and ∂ Γmax(f

(t)
j ) = P

(t)
j .

(iii) ∆
(t)
D,S,v0

= D +
∑J

j=1(f
(t)
j ), for t ∈ (0, 1].
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Figure 3: A v0-move of D.

Example 2.2.11. Let Γ be the same metric graph as in Example 2.2.9 and D =

D2, as shown in Figure 3. In particular, we assign length 1 to all edges and let vi

be the middle point of the corresponding edge for i = 0, 1, 2, 3, 4. We know from

Example 2.2.9 that the output S of Dhar’s algorithm for D and v0 is {v1, v2, w4}.

Let us consider a v0-move ∆D,S,v0 . Note that U cS,v0
has two connected components,

v1 and [v2, w4], which we denote by X1 and X2 respectively. We observe that d
(t)
1 =

d
(t)
2 = 0.5t for t ∈ (0, 1]. And at the end of the move (t = 1), we get P

(1)
1 = {w1, w2},

Q
(1)
1 = [w1, v1, w2] \ v1, P

(1)
2 = {v3, v4, w3}, and Q

(1)
2 = (w4, v3]

⋃
(w4, v4]

⋃
(v2, w3]. In

addition, (f
(1)
1 ) = (w1) + (w2)− 2(v1) and (f

(1)
2 ) = (v3) + (v4) + (w3)− (v2)− 2(w4).

Then we get ∆
(1)
D,S,v0

= D + (f
(1)
1 ) + (f

(1)
2 ) = (v3) + (v4) + (w1) + (w2) + 2(w3).

The reader is suggested to go through the above example before reading the proofs

of the following statements.

Lemma 2.2.12. Let D be an effective divisor which is zero at v0 and ∆D,S,v0 a move

of D. Denote supp(∆
(t)
D,S,v0

) by O(t) for t ∈ [0, 1]. Then UO(t),v0
is non-expanding

with respect to t. Moreover, UO(t),v0
evolves continuously unless possibly undergoing
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an abrupt shrink at t = 1.

Proof. Let Q
(t)
j be as defined in Definition 2.2.10 for t ∈ (0, 1]. Let Q(0) = ∂US,v0 and

Q(t) =
J⋃
j=1

Q
(t)
j , for t ∈ (0, 1].

Clearly, Q(t) continuously expands with respect to t. For t ∈ [0, 1), we have

UO(t),v0
= UO(0),v0

\Q(t),

which means UO(t),v0
is non-expanding as t increases and its evolution is continuous.

The case t = 1 is somehow special, since the continuous expansion of Q(t) might result

in a hit at certain vertices or v0. But we still have

UO(1),v0
⊆ UO(0),v0

\Q(1).

This means that an abrupt shrink of UO(t),v0
might happen at t = 1.

Based on making v0-moves iteratively, we propose the following algorithm to derive

the v0-reduced divisor linearly equivalent to an effective divisor D.

Algorithm 2.2.13. Input: An effective divisor D ∈ Div+ Γ, and a point v0 ∈ Γ.

Output: The unique v0-reduced divisor Dv0 linearly equivalent to D.

Initially, set D(0) = D, and i = 0.

(1) Run Dhar’s algorithm for D(i) and v0 with the output denoted by S(i). If S(i) =

∅, then set Dv0 = D(i) and stop the procedure. In addition, we say that the

procedure terminates at i. And for convenience, we set D(t) = D(i) for all real

numbers t > i. Otherwise, go to step (2).

(2) Define D(i+t) = ∆
(t)

D(i),S(i),v0
for t ∈ (0, 1]. Set i← i+ 1, and go to step (1).

If the procedure in Algorithm 2.2.13 terminates at I, then by Lemma 2.2.6, Dv0

is v0-reduced as desired, and the evolution of D into Dv0 is parameterized by D(t),

t ∈ [0, I]. The main goal of this section is to prove such a procedure always terminates
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(Theorem 2.2.15), which means that we will always get to a reduced divisor using

finitely many moves.

Lemma 2.2.14. We have the following properties of the parameterizing procedure in

Algorithm 2.2.13:

(i) D(t)(v0) is integer-valued, bounded, and non-decreasing with respect to t, and it

can jump only when t is an integer. In addition, there exists an integer I1 such

that D(t)(v0) = D(I1)(v0) for all t > I1.

(ii) For a non-negative integer i0, let d = D(i0)(v0) and D
(t)
0 = D(t) − d · (v0). Then

for all real numbers t > i0, U
suppD

(t)
0 ,v0

is non-expanding with respect to t. In

particular, U
suppD

(t)
0 ,v0

evolves continuously unless possibly undergoing an abrupt

shrink when t is an integer.

(iii) Denote UsuppD(t)\v0,v0
by U(t). For t > I1, let K(t) = #{Ω

⋂
U(t)}, which counts

the number of vertices in U(t) after D(t)(v0) reaches its maximum. Then K(t) is

integer-valued, bounded, and non-increasing with respect to t, and it can jump

only when t is an integer. Furthermore, there exists an integer I2 > I1 such that

K(t) = K(I2) for all t > I2.

Proof. Clearly D(t)(v0) is integer-valued. Note that v0 /∈ S(i) for any i, which implies

that D(t)(v0) is non-decreasing and can only change its value when t is an integer.

Moreover, D(t)(v0) is bounded from below by D(v0) and from above by deg (D), which

guarantees the existence of the finite integer I1. Thus Property (i) holds.

D
(i0)
0 has value 0 at v0. Thus by Lemma 2.2.12, for t > i0, U

suppD
(t)
0 ,v0

is non-

expanding, and evolves continuously unless possibly undergoing an abrupt shrink

when t is an integer. In particular, whenever v0 is hit by a move, U
suppD

(t)
0 ,v0

will

always be empty afterwards. And Property (ii) is proved.

After D(t)(v0) reaches its maximum at t = I1, v0 will never be hit anymore. The

above argument implies that for t > I1, U(t) is non-expanding, and continuously

evolves unless possibly undergoing an abrupt shrink when t is an integer. It follows
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immediately that K(t) is integer-valued, and non-increasing with respect to t, while it

only possibly changes when t is an integer. Clearly K(t) is lower-bounded by 0, which

also implies the existence of I2 and finishes the proof of Property (iii).

Theorem 2.2.15. The procedure in Algorithm 2.2.13 always terminates.

Proof. We proceed by induction on deg (D). Clearly Theorem 2.2.15 holds when

degD = 0 since this implies that D = 0. Now suppose deg (D) > 0.

By Lemma 2.2.14(i), if D(I1)(v0) > 0, then D(t)(v0) > 0 for all t > 0 and the result

follows by induction (applied toD(I1) − (v0)). Now we assume D(I1)(v0) = 0. By

Lemma 2.2.14(iii), there exists an integer I2, such that K(t) = K(I2) for all t > I2. We

let t > I2 in the remaining parts of the proof. Note that U(t) might keep shrinking.

However, such a shrink can never hit a vertex anymore, which also means that U(t)

evolves continuously for t > I2. Let X be a connected component of U(I2)c. Let U0 be

a subset of U(I2) derived by removing the open segments with one end a boundary

point of ∂U(I2) and the other end a vertex or v0. By definition U0 is closed and

connected, and U(I2) \ U0 is a union of some disjoint open segments. Denote by EX

the set of these segments. For e ∈ EX , we use we to denote the end of e on X. We

say e ∈ EX is obstructed at t if suppD(t)
⋂
e 6= ∅ or we is saturated with respect to

D(t) and X. Note that if an edge is obstructed at t, then it is obstructed at all t′ > t.

We claim that there exists e ∈ EX that never becomes obstructed. Otherwise,

there exists an integer I3 such that for t > I3, the component of U(t)c corresponding

to X has all its boundary points saturated. Then one additional move from Algorith-

m 2.2.13 will result in a hit at a vertex, which contradicts the minimality of K(I2). So

let e be an element of EX that never becomes obstructed. Then we does not belong

to any output S(i) of Dhar’s algorithm for D(i) when i > I2. So Algorithm 2.2.13

for D(I2) terminates if and only if the algorithm for D(I2) − (we) terminates, and the

induction applies.
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Remark 2.2.16. What should X look like in the above proof? Since X must contain

non-saturated boundary points with respect to D(I2), there are only two possibilities.

X can be a single non-vertex point with D(I2)(X) = 1, or else X(I2) must contain a

vertex on its boundary.

Remark 2.2.17. We know from the Riemann-Roch theorem that the rank of the divisor

n · (v0) as a function of n can be arbitrarily large. Hence given a divisor D (not

necessarily effective) on Γ, there always exists a divisor D′ which is non-negative

on Γ \ v0 and linearly equivalent to D. In particular, [44] presents an algorithm to

construct such a divisor D′ as the first step in the proof of the existence part of

Theorem 2.2.3 (Theorem 10 in [44]). By running Algorithm 2.2.13 for D′ −D′(v0) ·

(v0) and v0, we can always obtain a v0-reduced divisor D′′ linearly equivalent to

D −D′(v0) · (v0). Then D′′ + D′(v0) · (v0) is a v0-reduced divisor linearly equivalent

to D. This provides an alternative proof of the existence part of Theorem 2.2.3.

Corollary 2.2.18. Let D be a divisor on Γ and |D| the linear system associated to

D. For v0 ∈ Γ, let Dv0 be the unique v0-reduced divisor Dv0 in |D|.

(i) If v0 ∈ supp |D|, then Dv0(v0) > 0.

(ii) If |D| 6= ∅ and v0 /∈ supp |D|, then Usupp(Dv0 ),v0 is nonempty and for all v ∈

Usupp(Dv0 ),v0, we have v /∈ supp |D| and Dv0 is also v-reduced.

Proof. If v0 ∈ supp |D|, let D′ be an effective divisor such that D′ ∈ |D| and D′(v0) >

0. Applying Algorithm 2.2.13 for D′ and v0, we can derive Dv0 . Note that Dv0(v0) >

D′(v0). Thus Dv0(v0) > 0.

If |D| 6= ∅ and v0 /∈ supp |D|, then Dv0(v0) = 0, which means Usupp(Dv0 ),v0 is

nonempty. For all v ∈ Usupp(Dv0 ),v0 , clearly Dv0(v) = 0, and using Dhar’s algorithm, it

is easy to see that Dv0 is also v-reduced. Moreover, we have v /∈ supp |D| by (i).

Remark 2.2.19. In the sense of Corollary 2.2.18(ii), if X is a subset of UsuppDv0 ,v0 ,

then we may also say Dv0 is X-reduced.
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Remark 2.2.20. Corollary 2.2.18 is what we are going to employ in the next section.

2.3 Rank-determining sets

We say a subset Γ′ of a metric graph Γ is a subgraph of Γ if Γ′ is connected and closed.

Let Ω be a vertex set of Γ. Then (Ω
⋂

Γ′)
⋃
∂Γ′ (considered in Γ) is automatically

a vertex set of Γ′, which we call the vertex set of Γ′ induced by Γ. A tree on Γ is a

subgraph of Γ with genus 0 (or equally a contractible subgraph), and a spanning tree

of Γ is a tree on Γ that is minimal among those which contain all vertices of Γ. We

call a point v a cut point in a metric graph if Γ \ v is disconnected.

2.3.1 A is a rank-determining set if and only if L(A) = Γ

Consider a point v in a metric tree T and an effective divisor D on T such that

v ∈ suppD. Then for all v′ ∈ T , there exist an effective divisor D′ such that D′ ∼ D

and v′ ∈ suppD′. Actually since all divisors on T of the same degree are linearly

equivalent, we can let D′ be any effective divisor which has the same degree as D

and has v in its support. This means that for a linear system |D|, whenever we know

v ∈ supp |D|, we know supp |D| = T . Now we want to generalize this observation

from a metric tree T to an arbitrary metric graph and from a singleton {v} to any

subset of the metric graph.

For a nonempty subset A of a metric graph Γ, we use L(A) to denote the maximal

subset of Γ such that L(A) ⊆ supp |D| whenever A ⊆ supp |D|. For simplicity of

notation, we denote L(
⋃n
i=1Ai) by writing L(A1, A2, · · · , An). Note that we can

always find a linear system whose support contains A (for example, the support of

the linear system associated to
∑

v∈Ω(v) is the whole graph Γ). Therefore we can

write

L(A) =
⋂

supp |D|⊇A

supp |D|.

Obviously, A ⊆ L(A), and if A′ is a subset of L(A), then L(A,A′) = L(A). In case
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we want to emphasize that A and all the linear systems are defined on Γ, we may

write LΓ(A) in stead of L(A).

Proposition 2.3.1. Let A be a nonempty subset of Γ. The following are equivalent.

(i) L(A) = Γ.

(ii) If rA(D) > 1, then r(D) > 1.

(iii) A is a rank-determining set of Γ.

Proof. (i)⇔(ii). L(A) = Γ, if and only if A ⊆ supp |D| implies supp |D| = Γ, if and

only if |D −E ′1| 6= ∅ for all E ′1 ∈ Div1
+A, implies |D −E1| 6= ∅ for all E1 ∈ Div1

+ Γ, if

and only if rA(D) > 1 implies r(D) > 1.

(iii)⇒(ii). This follows directly from the definition of rank-determining sets.

(ii)⇒(iii). If |D| = ∅, then rA(D) = r(D) = −1. We will only consider the case

|D| 6= ∅ in the following. Since A is a subset of Γ, it is easy to see that rA(D) > r(D)

by definition. Therefore, to prove A is a rank-determining set, it suffices to show that

rA(D) > s implies r(D) > s for each integer s > 0. The case s = 0 is trivial, since

Div0
+ A = Div0

+ Γ = 0. And the case s = 1 is stated in (ii).

Let k ∈ {0, 1, · · · , s−1}. We claim that if rA(D−Ek) > s−k for all Ek ∈ Divk+ Γ,

then rA(D − Ek+1) > s− k − 1, for all Ek+1 ∈ Divk+1
+ Γ. This can be proved by the

following deduction:

rA(D − Ek) > s− k, ∀Ek ∈ Divk+ Γ

⇐⇒

|D − Ek − E ′s−k| 6= ∅, ∀Ek ∈ Divk+ Γ, ∀E ′s−k ∈ Divs−k+ A

⇐⇒

|(D−Ek−E ′s−k−1)−E ′1| 6= ∅, ∀Ek ∈ Divk+ Γ, ∀E ′s−k−1 ∈ Divs−k−1
+ A, ∀E ′1 ∈ Div1

+A

(By (ii)) =⇒
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|(D−Ek−E ′s−k−1)−E1| 6= ∅, ∀Ek ∈ Divk+ Γ, ∀E ′s−k−1 ∈ Divs−k−1
+ A, ∀E1 ∈ Div1

+ Γ

⇐⇒

|D − Ek+1 − E ′s−k−1| 6= ∅, ∀Ek+1 ∈ Divk+1
+ Γ, ∀E ′s−k−1 ∈ Divs−k−1

+ A

⇐⇒

rA(D − Ek+1) > s− k − 1, ∀Ek+1 ∈ Divk+1
+ Γ.

Therefore, by applying the above deduction for k going from 0 through s− 1, we

have:

rA(D) > s =⇒

rA(D − E1) > s− 1, ∀E1 ∈ Div1
+ Γ =⇒

· · · =⇒

rA(D − Es−1) > 1, ∀Es−1 ∈ Divs−1
+ Γ =⇒

rA(D − Es) > 0, ∀Es ∈ Divs+ Γ ⇐⇒

r(D) > s.

Thus (ii) is sufficient to make A a rank-determining set of Γ.

2.3.2 Special open sets and a criterion for L(A)

By the definition of reduced divisors, we observe that by just knowing an effective

divisor D is v0-reduced, we can say something about UsuppD\v0,v0 . Actually it cannot

be an arbitrary connected open set. We define “special open sets” to describe these

sets.

Definition 2.3.2. A connected open subset U of Γ is called a special open set on Γ if

either U = ∅ or Γ, or every connected component X of U c contains a boundary point

v such that outdegX(v) > 2. In particular, we say Γ is trivial if U = ∅ or Γ. And we

use SΓ to denote the set of all special open sets on Γ.
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Lemma 2.3.3 through 2.3.7 present some simple properties of special open sets.

Lemma 2.3.3. Let U be a connected open set on Γ, and D =
∑

v∈∂U(v). Then U is

a special open set if and only if D is U-reduced.

Proof. We just need to consider U nontrivial. And it follows directly by running

Dhar’s algorithm for D and any point v ∈ U .

Lemma 2.3.4. For v0 ∈ Γ, if D is a v0-reduced divisor, then UsuppD\v0,v0 is a special

open set.

Proof. Let D′ =
∑

v∈suppD\v0
(v). Since D is a v0-reduced divisor, D′ must also be

v0-reduced. Thus UsuppD\v0,v0 is a special open set by Lemma 2.3.3.

Lemma 2.3.5. Let Γ be a metric graph of genus g. If U is a nontrivial special open

set on Γ, then U has genus at least 1. In addition, every family of pairwise disjoint

special open sets of Γ has at most g members.

Proof. Suppose U is a nontrivial special open set such that U is a tree. Then for

every v ∈ ∂U , outdegUc(v) = 1, which contradicts the definition of special open sets.

And it follows immediately that Γ can sustain at most g disjoint nonempty special

open set.

Lemma 2.3.6. Let X be a nonempty connected subset of Γ, and |D| a linear system

such that supp |D|
⋂
X = ∅. Then there exists a special open set U such that X ⊆

U ⊆ (supp |D|)c.

Proof. Let v ∈ X and D′ be the v-reduced divisor in |D|. Then by Corollary 2.2.18

and Lemma 2.3.4, UsuppD′,v is a special open set with the desired properties.

Lemma 2.3.7. Let D be a divisor on Γ and |D| the corresponding linear system.

Then (supp |D|)c is a disjoint union of finitely many nonempty special open sets.
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Proof. Let v1 and v2 be two points in (supp |D|)c. Let D1 and D2 be elements

of |D| that are v1-reduced and v2-reduced, respectively. Let U1 = UsuppD1,v1 and

U2 = UsuppD2,v2 . Then by Lemma 2.3.4, U1 and U2 are special open sets. In addition,

we have either U1 = U2 or U1

⋂
U2 = ∅ by Corollary 2.2.18. Thus (supp |D|)c must

be a disjoint union of nonempty special open sets. And we know from Lemma 2.3.5

that there are only finitely many of them.

Based on the notion of special open sets, we formulate a sufficient condition for v to

belong to L(A), as stated in the following theorem. (We will show in Theorem 2.3.17

that it is also a necessary condition.)

Theorem 2.3.8. Let v ∈ Γ and let A be a nonempty subset of Γ. Then v ∈ L(A) if

for all special open sets U containing v, we have A
⋂
U 6= ∅. Moreover,

L(A) ⊇
⋂

U∈SΓ,U
⋂
A=∅

U c.

In addition, A is a rank-determining set if all nonempty special open sets intersect A.

Proof. Suppose |D| is a linear system such that A ⊆ supp |D|. Then by Lemma 2.3.6,

for every v /∈ supp |D|, there exists a neighborhood U of v which is a special open

set disjoint from supp |D|. Thus if all special open sets containing v intersect A, then

A ⊆ supp |D| implies v ∈ supp |D|, which means v ∈ L(A). It follows immediately

that

L(A) ⊇
⋂

U∈SΓ,U
⋂
A=∅

U c.

If all nonempty special open sets intersect A, then L(A) = Γ. Thus A is a rank-

determining set by Proposition 2.3.1.

Proposition 2.3.9. Let U be a nonempty connected open proper subset of Γ such

that U is a tree. Then U ⊆ L(∂U).

36



Proof. ∂U is nonempty since U is a proper subset of Γ. Then by Lemma 2.3.5, for

every v ∈ U , if U ′ is a special open set containing v, then U ′ has genus at least 1

unless possibly U ′ is the whole graph. Thus U ′ must intersect ∂U , since any connected

closed subset of U has genus 0. Therefore we have v ∈ L(∂U) by Theorem 2.3.8.

Example 2.3.10. (a) Let Ω be an arbitrary vertex set of Γ. By Proposition 2.3.9, we

immediately have [wi, wj] ⊆ L(wi, wj) for two adjacent vertices wi and wj (note that it

doesn’t matter whether there are multiple edges between wi and wj). Thus L(Ω) = Γ,

which implies Ω is a rank-determining set of Γ, as claimed in Theorem 2.1.6.

(b) Let A be a finite set formed by choosing one internal point from each edge.

Then it is also easy to show that A is a rank-determining set using Proposition 2.3.9.

Proposition 2.3.11. Let U be a nonempty connected open proper subset of a metric

graph Γ such that U has genus g′. Let T be a spanning tree of U . Then U \ T is a

disjoint union of g′ open segments. Choosing one point from each of these segments,

we get a finite set B of cardinality g′. Then U ⊆ L(∂U,B)

Proof. If g′ = 0, then U ⊆ L(∂U) by Proposition 2.3.9. Now we suppose g′ > 1.

Consider a point v ∈ U . If v /∈ L(∂U), then there exists a special open set U ′ such

that v ∈ U ′ and U ′ ⊆ U by Theorem 2.3.8. We claim that U ′
⋂
B 6= ∅, which implies

v ∈ L(∂U,B).

Denote the g′ open segments of U \T by e1, e2, · · · , eg′ . If U ′
⋂
T is not connected,

then there must exist some ei ⊆ U ′ \ T to make U ′ connected. Thus U ′
⋂
B 6= ∅.

Now suppose U ′
⋂
T is connected. By definition of special open sets, every connected

component of (U ′)c contains a boundary point with out-degree at least 2, which means

that there exists some ei ⊆ U ′ \ T having one end in ∂U ′ and the other in U ′
⋂
T .

Thus we also have U ′
⋂
B 6= ∅.

Remark 2.3.12. Theorem 2.1.7 can be deduced from Proposition 2.3.11 by the

following argument. Let Γ be a metric graph of genus g and T a spanning tree of Γ.
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Then Γ \ T is a disjoint union of g open segments e1, e2, · · · , eg. Choose an arbitrary

point v0 from T , and an arbitrary point vi from ei for i = 1, 2, · · · , g. Let A =

{v0, v1, · · · , vg}. If v0 is not a cut point, then we can directly apply Proposition 2.3.11

to Γ\v0 and conclude that L(A) = Γ. Otherwise, applying Proposition 2.3.11 to each

connected component X of Γ\v0 (note that the induced spanning tree of X is T
⋂
X),

we also get L(A) = Γ. Therefore A is a rank-determining set of cardinality g + 1 as

desired.

Remark 2.3.13. For readers who know some algebraic geometry, we sketch Varley’s

proof of Theorem 2.1.8 here (see chapter 4 of [43] for some terms used in this proof).

Consider a nonsingular projective algebraic curve C. First note that the rank r(D) of

a divisor D on C has the same value as dimL(D)−1. Recall that we say a point p ∈ C

is a base point of a linear system |D| if p belongs to the support of every element of

|D|, i.e., p ∈ BL(|D|) where BL(|D|) =
⋂
D′∈|D| suppD′ which is called the base locus

of |D|. Varley’s argument uses the fact that a point p ∈ C is a base point of |D| if and

only if r(D−(p)) = r(D). (Note that this is not true for metric graphs.) Take any set

S of g + 1 distinct points on C. To prove that S is a rank-determining set, it suffices

to show that for a divisor D on C, if r(D) > 0, then there exists a point p in S such

that r(D− (p)) = r(D)−1. Let B =
∑

q∈BL(|D|)(q) which is the full base locus divisor

of |D|. Note that |B| = {B} since B cannot “move”. If deg(B) 6 g, then there is

a point p of S not contained in BL(|D|), which means r(D − (p)) = r(D) − 1. If

deg(B) > g + 1, then r(B) > 1 (by Riemann-Roch) which is impossible. The desired

result follows by induction.

Example 2.3.14. Let Γ be a metric graph corresponding to K4 with a vertex set Ω

being {w1, w2, w3, w4} as shown in Figure 4. Clearly Ω itself is a rank-determining

set by Theorem 2.1.6. But a proper subset of Ω can also be a rank-determining

set. Note that [w1, w3]
⋃

[w2, w3]
⋃

[w4, w3] is a spanning tree of Γ, which implies

w3 ∈ L(w1, w2, w4) by Proposition 2.3.9. Thus {w1, w2, w4} is a rank-determining
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Figure 4: A metric graph corresponding to K4.

set as desired. Let v1, v2, · · · , v6 be some internal points. It is also easy to see that

{w3, v1, v5, v6} and {v1, v3, v5, v6} are rank-determining sets by Proposition 2.3.11. We

recommend the reader to use Theorem 2.3.8 to verify that {v1, v2, v3, v4} is another

rank-determining set, which is not obvious at first sight.

Remark 2.3.15. We see from Example 2.3.14 that a proper subset of a vertex set

can also be rank-determining. Recall that a vertex cover is a set of vertices such

that each edge is incident to at least one vertex of the set. In fact, for every metric

graph and a vertex set which does not allow multiple edges, all vertex covers are

rank-determining sets, following from Proposition 2.3.9. We may even delete some

points from a minimal vertex cover, while still keeping the set rank-determining. We

will discuss such a problem in general using the notion minimal rank-determining sets

in Section 2.3.4.

Proposition 2.3.16. Let U be a special open set on Γ. Then there exists a divisor

D such that supp |D| = U c.

Proof. We only need to consider U nontrivial. Assume (∂U)c has n connected compo-

nents X1, X2, · · · , Xn other than U . Let Ti be a spanning tree of X i, i = 1, 2, · · · , n.

Then Xi \ Ti is a disjoint union of gi open segments. Choosing one point from each

of these segments, we get a finite set Bi of cardinality gi. Let B =
⋃n
i=1Bi and

D =
∑

v∈∂U(v) +
∑

v∈B(v). Then by Proposition 2.3.11, we have U c =
⋃n
i=1X i ⊆
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L(∂U,B) ⊆ supp |D|. Therefore, to prove supp |D| = U c, it suffices to show that D

is U -reduced.

Let D′ =
∑

v∈∂U(v). Then D′ is U -reduced since U is a special open set. Thus by

running Dhar’s algorithm for D′ and a point in U step by step and taking the set of

non-saturated points in each step, we can get a partition of ∂U by N ′0, N
′
1, · · · , N ′K−1.

Note that for every Xi, there exists some N ′k such that either ∂Xi is a subset of N ′k

or Xi connects points in ∂Xi

⋂
N ′k and ∂Xi

⋂
N ′k+1, i.e., ∂Xi

⋂
N ′k and ∂Xi

⋂
N ′k+1

are nonempty and ∂Xi ⊆ N ′k
⋃
N ′k+1. Therefore we may define a function λ :

{1, 2, · · · , n} → {1, 2, · · · , K − 1} by λ(i) = k if ∂Xi

⋂
N ′k 6= ∅ and ∂Xi

⋂
N ′k−1 = ∅.

Let Nk = (
⋃
λ(i)=k Bi)

⋃
N ′k for k = 0, 1, · · · , K−1. Obviously these Nk’s form a par-

tition of ∂U
⋃
B. Running Dhar’s algorithm for D and a point in U step by step, we

observe that the set of non-saturated points in each step is precisely N0, N1, · · · , NK−1

in sequence. Therefore the output is empty, which means D is U -reduced.

Now we come to the main conclusion of this subsection, which states that the

condition in Theorem 2.3.8 is both necessary and sufficient.

Theorem 2.3.17 (Criterion for L(A) and rank-determining sets). Let v ∈ Γ

and let A be a nonempty subset of Γ. Then v ∈ L(A) if and only if for all special

open sets U containing v, we have A
⋂
U 6= ∅. Furthermore,

L(A) =
⋂

U∈SΓ,U
⋂
A=∅

U c.

In addition, A is a rank-determining set if and only if all nonempty special open sets

intersect A.

Proof. We just need to prove that if v ∈ L(A), then all special open sets containing

v must intersect A.

Suppose for the sake of contradiction that there exists U ∈ SΓ such that v ∈ U

and A
⋂
U = ∅. Then by Proposition 2.3.16, there exists a divisor D such that
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supp |D| = U c. Thus we have A ⊆ supp |D|, which means that L(A) ⊆ supp |D|. But

then v /∈ L(A).

Figure 5: (a) A metric graph with a vertex set {w1, w2, w3}. (b) Three examples of
special open sets disjoint from {v1, v2}.

Example 2.3.18. Let Γ be a metric graph with a vertex set {w1, w2, w3} as shown

in Figure 5(a), and let v1, v2, v3 be some internal points. Clearly [v1, v2] ⊆ L(v1, v2).

The dashed areas of Figure 5(b), U1, U2 and U3, are three examples of special open

sets disjoint from {v1, v2}. Hence we have L(v1, v2) = [v1, v2] by Theorem 2.3.17.

Now let us consider L(v1, v2, v3). We observe that any special open set disjoint from

{v1, v2, v3} must be a subset of U3, which implies L(v1, v2, v3) = U c
3 .

2.3.3 Consequences of the criterion

Corollary 2.3.19. Let A be a nonempty subset of Γ. If Ac has n connected compo-

nents X1, X2, · · · , Xn, then A is a rank-determining set if and only if Xi ⊆ L(∂Xi),

for i = 1, 2, · · · , n.

Proof. For a point v ∈ Xi, if a special open set U containing v intersects A, then U

must intersect ∂Xi. Thus by Theorem 2.3.17, A is a rank-determining set, if and only
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if all nonempty special open sets intersect A, if and only if for all v ∈ Γ, if v ∈ Xi,

then all special open sets U containing v intersect ∂Xi, if and only if Xi ⊆ L(∂Xi),

for i = 1, 2, · · · , n.

Corollary 2.3.20. Let Γ be a metric graph with a cut point v. Let Γ′ be the closure

of a connected component of Γ \ v. Then for every nonempty subset A of Γ′, we have

LΓ′(A) ⊆ LΓ(A).

Proof. For v′ ∈ Γ′, if v′ /∈ LΓ(A), then there exists U ∈ SΓ such that v′ ∈ U and

U
⋂
A = ∅ by Theorem 2.3.17. Then U

⋂
Γ′ ∈ S ′Γ, which means v′ /∈ LΓ′(A).

Proposition 2.3.21. Let Γ be a metric graph with a vertex set Ω and A a finite

rank-determining set of Γ. Suppose there exists a point v in A which has degree

m > 2 and is not a cut point of Γ. Let Uv be an open neighborhood of v such that

(Uv \ v)
⋂

(Ω
⋃
A) = ∅. Denote Γ − Uv by Γ′. Then Γ′ is a subgraph of Γ and A \ v

is a rank-determining set of Γ′.

Proof. Γ′ is connected since v is not a cut point of Γ and Uv \ v contains no vertices.

Thus Γ′ is a subgraph of Γ.

Clearly Uv \v is a disjoint union of m open segments. Denote these open segments

by e1, e2, · · · , em. Note that the total number of ei’s ends other than v may be strictly

less than m because of the existence of multiple edges.

Suppose A \ v is not a rank-determining set of Γ′. Then there exists U ′ ∈ SΓ′

disjoint from A by Theorem 2.3.17. Without loss of generality, we assume that m′

is an integer such that ei has an end in U ′ for 1 6 i 6 m′ and ei has no end in U ′

for m′ < i 6 m. Let U = U ′
⋃

(
⋃m′

i=1 ei). Obviously U is a connected open set on Γ

disjoint from A. We claim U ∈ SΓ. This is because if m′ < m, then (
⋃m
i=m′+1 ei)

⋃
v

may glue together some of the connected components of Γ′ − U ′ into one connected

component of Γ − U while the out-degrees of those boundary points are unchanged,

and if m′ = m, then v itself forms a connected component of Γ−U and has out-degree
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at least 2. But this means A is not a rank-determining set of Γ by Theorem 2.3.17,

a contradiction.

Remark 2.3.22. The converse proposition of Proposition 2.3.21 is not true. That is, A

is not guaranteed to be a rank-determining set of Γ by A\v being a rank-determining

set of Γ′. For example, let Γ be the metric graph corresponding to K4 as shown in

Figure 4. Let Γ′ = [w1, w2]
⋃

[w2, w4]
⋃

[w4, w1]. Then {v5, v6} is a rank-determining

set of Γ′. However {v5, v6, w3} is not a rank-determining set of Γ.

It is clear that special open sets are preserved under homeomorphisms since

out-degrees are topological invariants. Thus Theorem 2.3.17 tells us that rank-

determining sets are also preserved under homeomorphisms (Theorem 2.1.10). The

following theorem provides a more general description of this fact.

Theorem 2.3.23. Let f : Γ→ Γ′ be a homeomorphism between two metric graphs Γ

and Γ′. Let A be a nonempty subset of Γ. Then LΓ′(f(A)) = f(LΓ(A)). In particular,

A is a rank-determining set of Γ if and only if f(A) is a rank-determining set of Γ′.

For a closed segment e on a metric graph Γ, we say φe : Γ → Γ′ is an edge

contraction of Γ with respect to e if φe merges together all the points in e into a single

point while keeping every point in Γ \ e unchanged. Clearly an edge contraction φe

may change the topology of Γ. We now give some some examples which show that

rank-determining sets may not be preserved under edge contractions.

Example 2.3.24. (a) Consider a metric graph Γ corresponding to K4 as in Exam-

ple 2.3.14. An edge contraction with respect to [w2, w3] results in a new graph Γ′

(Figure 6(a)). Let v′1, v′2, v′3, v′4, w′1, w′4 and w′ be the points in Γ′ corresponding

to v1, v2, v3, v4, w1, w4 and [w2, w3], respectively. We know that {v1, v2, v3, v4} is a

rank-determining set of Γ. However, as shown in Figure 6(a), U is a special open set

disjoint from {v′1, v′2, v′3, v′4}. Thus {v′1, v′2, v′3, v′4} is not a rank-determining set of Γ′.
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Figure 6: Two examples illustrating that edge contractions do not maintain rank-
determining sets.

(b) Now let Γ be the metric graph as in Example 2.3.18. By contracting [w1, w2],

we get a new graph Γ′ (Figure 6(b)). Let v′1, v′2, w′3 and w′ be the points in Γ′

corresponding to v1, v2, w3 and [w1, w2], respectively. Note that w′ ∈ LΓ′(v
′
1, v
′
2)

by Corollary 2.3.20. Thus {v′1, v′2, w′3} is a rank-determining set of Γ′. However,

{v1, v2, w3} is not a rank-determining set of Γ.

2.3.4 Minimal rank-determining sets

Definition 2.3.25. We say that a rank-determining set A of Γ is minimal if A \ v is

not a rank-determining set for every v ∈ A.

It is easy to see from Proposition 2.3.9 that minimal rank-determining sets must

be finite. In particular, the intersection of a minimal rank-determining set and an

edge contains at most 2 points. We have the following criterion for minimal rank-

determining sets as an immediate corollary of Theorem 2.3.17.
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Proposition 2.3.26. Let A be a subset of a metric graph Γ. Then A is a minimal

rank-determining set if and only if

(i) all nonempty special open sets intersect A, and

(ii) for every point v ∈ A, there exists a special open set that intersects A only at v.

Figure 7: Two examples of special open sets on the metric graph corresponding to
K4.

Example 2.3.27. Let us reconsider a metric graph corresponding to K4 as in Ex-

ample 2.3.14. Let U1 = Γ \ [w2, w4] and U2 = Γ \ [w3, w4] \ {v2}, shown as the dashed

areas of Figure 7. Then U1 and U2 are two special open sets. Let A1 = {w1, w2, w4}

and A2 = {v1, v2, v3, v4}. By Example 2.3.14, A1 and A2 are both rank-determining

sets. We claim that they are actually minimal rank-determining sets. Note that the

points in A1,2 are symmetrically distributed. Thus by Proposition 2.3.26, to show

they are minimal, it only requires us to find some special open sets that intersect A1

or A2 at exactly one point. We observe that U1

⋂
A1 = {w1} and U2

⋂
A2 = {v1}.

Thus U1 and U2 are the desired special open sets.

We’ve given a proof of Theorem 2.1.7 by showing constructively that a family of

finite subsets of Γ, all having cardinality g + 1, are rank-determining sets. Now we

will prove that these rank-determining sets are minimal.

Proposition 2.3.28. Let Γ be a metric graph of genus g and let T be a spanning tree

of Γ. Denote the g disjoint open segments of Γ\T by e1, e2, · · · , eg. Choose arbitrarily
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a point v0 from T and a point vi from ei for i = 1, 2, · · · , g. Let A = {v0, v1, · · · , vg}.

Then A is a minimal rank-determining set of Γ.

Proof. It suffices to find g+1 special open sets U0, U1, · · · , Ug such that Ui
⋂
A = {vi}

for i = 0, 1, · · · , g by Proposition 2.3.26.

Let U0 = Γ\{v1, · · · , vg}. Clearly U0 is connected and U0

⋂
A = {v0}. It is easy to

see that U0 is a desired special open set. Now let us find the remaining g special open

sets as required. Without loss of generality, we only need to find U1 for v1. Let ua and

ub be the two ends of e1. Note that if x and y are two points (not necessarily distinct)

in T , then there exists a unique simple path (no repeated points) on T connecting

x and y, which we denote Λ
[x,y]
T . We observe that Λ

[ua,ub]
T

⋂
Λ

[ua,v0]
T

⋂
Λ

[ub,v0]
T contains

exactly one point, which we denote uc. Let U1 = U{uc,v2,··· ,vg},v1 . Then U1

⋂
A = {v1}

and a connected component of U c
1 is either a single point in {v2, · · · , vg} or a closed

subset X of Γ with uc on its boundary such that outdegX(uc) = 2. Thus U1 is a special

open set intersecting A only at v1. It follows that A is a minimal rank-determining

set of Γ.

Example 2.3.29. The cardinality of minimal rank-determining sets are not neces-

sarily smaller than or equal to g + 1. Here is an example called “loops of loops”

which is constructed by inserting a series of loops into one loop (this example first

appears in [50]). Figure 8 shows such a metric graph of genus 4. Consider a vertex

set V = {v1, v2, v3, w1, w2, w3}. Then V is a minimal rank-determining set since by

removing one point from V one can always generate a special open set not intersecting

the remaining points in V . However, the cardinality of V is 6, larger than g+1 where

g = 4.

2.4 Further topics of rank-determining sets

Here we will mention several interesting topics related to the theory rank-determining

sets.
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Figure 8: A “loops of loops” metric graph of genus 4.

Recently, Backman gave an elegant reproof to the main criterion for rank-determining

sets (see Theorem 2.3.17) using a theory of generalized cycle, cocycle reversal system-

s he developed for investigating partial orientations on graphs in his thesis [9]. He

showed that for each partial orientation O on a finite graph one may associate a di-

visor DO with DO(v) = indeg(v)− 1 where indeg(v) is the number of edges oriented

towards v in O, and a divisor associated to an acyclic orientation has negative rank.

He proved that the Baker-Norine rank of a divisor DO is one less than the minimum

number of directed paths which need to be reversed in the generalized cocyle reverse

system to produce an acyclic orientation. He also noticed that orientation problems

on metric graph can be reduced to finite graph by “pushing” the change of direc-

tion to one of the two incident vertices. With a thorough investigation, he used his

newly developed techniques to prove strengthened versions of Baker-Norine’s criteria

RR1 and RR2 for Riemann-Roch theorem [13], the criterion for rank-determining sets

(Theorem 2.3.17) and some other interesting results.

In the tropical proof the Brill-Noether theorem in [28], a metric graph which is

composed of a chain of loops with generic edge lengths (Figure 9) is proved to be Brill-

Noether general metric graph, i.e., satisfying the following theorem. Then together

with Baker’s specialization lemma [11], the conventional Brill-Noether theorem for
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Figure 9: A “chain of loops” metric graph of genus 4.

algebraic curves is proved tropically.

Theorem 2.4.1. Let Γ be a chain of g loops with generic edge lengths. Let ρ =

g− (r+1)(g−d+ r). Let W r
d (Γ) be the subset of the real torus Picd(Γ) parametrizing

divisor classes of degree d and rank at least r.

(i) If ρ is negative then Γ has no effective divisor of degree d and rank at least r.

(ii) If ρ is negative then the dimension of W r
d (Γ) is min(ρ, g).

The proof of the above theorem involves an explicit computation of rank of all

divisors which use a vertex set of Γ as a rank-determining set.

Amini and Baker [4] introduced the notion of metrized complexes and developed

a theory of limit linear series on metrized complexes (see also Chapter 4). Roughly

speaking, a metrized complex is a metric graph with curves associated to its vertices.

We have defined and investigated the notion of rank-determining sets for both metric

graphs and algebraic curves in this chapter, and they extended this notion to metrized

complexes which was applied in their proof of the equivalence of their notion of limit

linear series when restricted to curves of compact type and the notion of limit linear

series of Eisenbud-Harris theory [32].
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CHAPTER III

TROPICAL CONVEXITY ON LINEAR SYSTEMS,

GENERAL REDUCED DIVISORS AND CANONICAL

PROJECTIONS

3.1 Introduction

3.1.1 Notations and terminologies

Throughout this chapter, we stick to the following very basic notations and termi-

nologies. Let Γ be a compact metric graph with finite edge lengths. For simplicity,

we also denote the set of points of Γ by Γ. Let Div(Γ) be the free abelian group on Γ.

Let RDiv(Γ) = Div(Γ)⊗R. As in convention, we call the elements of Div(Γ) divisors

(or Z-divisors when we want to emphasize the integer coefficients), and elements of

RDiv(Γ) R-divisors. In cases of no confusion, we may also call R-divisors just as

divisors throughout this paper. Let Div+(Γ) and RDiv+(Γ) be the semigroups of

effective Z-divisors and effective R-divisors respectively. If d is a nonnegative integer,

denote the set of effective divisors of degree d by Divd
+(Γ). If d is a nonnegative real,

denote the set of effective R-divisors of degree d by RDivd
+(Γ).

For a continuous function f on Γ. Let N (f) = f − min f . Let Γmin(f) :=

f−1(min f) = {v ∈ Γ|f(v) = min f} and Γmax(f) := f−1(max f) = {v ∈ Γ|f(v) =

max f}. In other words, Γmin(f) and Γmax(f) are the minimizer and maximizer of f

respectively.

3.1.2 Overview

There are several equivalent ways [54, 56] to characterize reduced divisors. Recently,

Baker and Shokrieh made a connection to potential theory on (metric) graphs [19].
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The main tool in their theory is the energy pairing, and for a fixed q ∈ Γ, it can

be used to define two functions on the divisor group, the energy function Eq and the

b-function bq. Then the reduced divisor in |D| with respect to q is the minimizer of

either Eq or bq. In this chapter, we are particularly interested in b-functions and have

made an extension in our settings.

In [39], the authors studied the linear systems using the conventional theory of

tropical convexity [29]. In this sense, complete linear systems are tropically convex.

In this chapter, we have also generalized the notion of tropical convexity. More specifi-

cally, we have developed a geometric foundation for the notion of tropical convexity in

the space of all R-divisors. In particular, we have found a canonical metric structure

on the space of divisors, which can be used to study the topology and geometry on it.

The notion of tropical convexity is intrinsically built on this metric structure. In this

sense, the linear systems |D| are tropical-path-connected components of Div+(Γ).

With our extended notions of b-functions and tropical convexity, we are able to

generalize the notion of reduced divisors in the following sense:

1. Reduced divisors exist not only just for complete linear systems |D| but also

for any compact tropically convex subset of RDivd
+(Γ) with a given d.

2. Reduced divisors can be defined not only with respect to a point p on the metric

graph but also any divisor E ∈ RDiv+(Γ).

Using general reduced divisors, we further develop tools to investigate some basic

properties of tropical convexity, e.g., the contractibility and compactness of tropical

convex hulls. In addition, tropical projection maps are canonically derived from

general reduced divisors.

The chapter is structured as follows. The potential theory on metric graphs is

briefly reviewed in Section 3.2. We then define a metric structure on RDivd
+(Γ) and

study the induced topology in Section 3.3. Our settings of tropical convexity are
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discussed in Section 3.4, where we also make statements of some basic properties

of tropical convex sets. We introduce the notion of general reduced divisors and

provide several criterions in Section 3.5. Then we investigate several particular cases

about general reduced divisors on tropical segments and develop some useful tools in

Section 3.6. As an application of these tools, the theorems about the basic properties

of tropical convex sets (stated in Section 3.4) are proved in Section 3.7. Finally, we

discuss canonical projections in Section 3.8.

3.2 Potential theory on metric graphs

We list here some standard terminologies and basic facts concerning potential theory

on metric graphs. The reader may refer [10,12] for details.

For a metric graph Γ, we let C(Γ) be the R-algebra of continuous real-valued

functions on Γ, and let CPA(Γ) ⊂ C(Γ) be the vector space consisting of all continuous

piecewise-affine (or piecewise-linear) functions on Γ. Note that CPA(Γ) is dense in

C(Γ). Let Meas0(Γ) be the vector space of finite signed Borel measures of total mass

zero on Γ. Denote by R ∈ C(Γ) the space of constant functions on Γ.

In terms of electric network theory, we may think of Γ as an electrical network

with resistances given by the edge lengths. For p, q, x ∈ Γ, we define a j-function

jq(x, p) as the potential at x when one unit of current enters the network at p and

exits at q with q grounded (potential 0).

We have the following properties of the j-function.

1. jq(x, p) is jointly continuous in p, q and x.

2. jq(x, p) ∈ CPA(Γ).

3. jq(q, p) = 0.

4. 0 6 jq(x, p) 6 jq(p, p).

5. jq(x, p) = jq(p, x).
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6. jq(x, p) + jp(x, q) is constant for all x ∈ Γ. Denoted by r(p, q), this constant is

the effective resistance between p and q.

7. r(p, q) = jq(p, p) = jp(q, q).

8. r(p, q) 6 distΓ(p, q) where distΓ(p, q) is the distance between p and q on Γ.

9. r(p,q)
distΓ(p,q)

→ 1 as distΓ(p, q)→ 0.

Let BDV(Γ) be the vector space of functions of bounded differential variation [10].

Then we have CPA(Γ) ⊂ BDV(Γ) ⊂ C(Γ).

The Laplacian ∆ : BDV(Γ)→ Meas0(Γ) is defined as an operator in the following

sense.

1. ∆ induces an isomorphism between BDV(Γ) /R and Meas0(Γ) as vector spaces.

2. For f ∈ CPA(Γ), we have

∆f =
∑
p∈Γ

ordp(f)δp

where − ordp(f) is the sum of the slopes of f in all tangent directions emanating

from p and δp is the Dirac measure (unit point mass) at p. In particular,

∆jq(x, p) = δp(x)− δq(x).

3. An inverse to ∆ is given by

ν 7→
∫

Γ

jq(x, y)dν(y) ∈ {f ∈ BDV(Γ) : f(q) = 0}.

3.3 A metric structure defined on RDivd
+(Γ)

If D =
∑

p∈Γmp · (p) ∈ RDiv, we let δD :=
∑

p∈Γ mp · δp with δp the Dirac measure

at p. Let D1, D2 ∈ RDivd
+(Γ). Then based on the potential theory on Γ, there exists

a piecewise-linear function fD2−D1 ∈ CPA(Γ) on Γ such that ∆fD2−D1 = δD2 − δD1 .

Note that any two such associated functions differ in a constant. In this sense, we say
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div(f) := D2 −D1 is the associated divisor of fD2−D1 , and correspondingly fD2−D1 is

an associated function of D2 − D1. Then N (fD2−D1) has minimum 0 and is unique

with D1 and D2 provided.

More precisely, if D1 = (q) and D2 = (p) for some p, q ∈ Γ, then N (fD2−D1)(x) =

jq(x, p). Now let D1 =
∑d1

i=1 m1,i · (p1,i) and D2 =
∑d2

i=1m2,i · (p2,i) such that D1, D2 ∈

RDivd
+(Γ) (this means d =

∑d1

i=1m1,i =
∑d2

i=1 m2,i). Then by the linearity of the

Laplacian, for an arbitrary q ∈ Γ,

d1∑
i=1

m1,i · jq(x, p1,i)−
d2∑
i=1

m2,i · jq(x, p2,i)

is an associated function of D2 −D1 .

Define the distance function

ρ(D1, D2) := max(fD2−D1)−min(fD2−D1) = max(N (fD2−D1)).

Immediately, we get ρ(D1, D2) = 0 if and only if D1 = D2. Furthermore, note that

N (fD3−D1) = N (fD2−D1 + fD3−D2).

By the linearity of the Laplacian, we get the triangle inequality

ρ(D1, D3) 6 ρ(D1, D2) + ρ(D2, D3)

since

N (fD2−D1 + fD3−D2) 6 N (fD2−D1) +N (fD3−D2),

while the equalities hold if and only if

Γmin(fD2−D1)
⋂

Γmin(fD3−D2) 6= ∅

and

Γmax(fD2−D1)
⋂

Γmax(fD3−D2) 6= ∅.

Thus ρ is well-defined as a metric on RDivd
+(Γ).
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Still, we let D1, D2 ∈ RDivd
+(Γ). Let D1 = D1,1 +D1,2 and D2 = D2,1 +D2,2. Here

we suppose D1,1 and D2,1 are effective divisors of the same degree d1, and D1,2 and

D2,2 are effective divisors of the same degree d2. By the linearity of the Laplacian,

we get

N (fD2−D1) = N (fD2,1−D1,1 + fD2,2−D1,2)

and

ρ(D1, D2) 6 ρ(D1,1, D2,1) + ρ(D1,2, D2,2),

since

D2 −D1 = (D2,1 −D1,1) + (D2,2 −D1,2).

The tropical path (or t-path) from D1 to D2 in RDivd
+(Γ) is a map PD2−D1 :

[0, 1]→ RDivd
+(Γ) given by

PD2−D1(t) = ∆ min(t · ρ(D1, D2),N (fD2−D1)) +D1.

In particular, PD2−D1(0) = D1 and PD2−D1(1) = D2.

Remark 3.3.1. 1. This map is well-defined since PD2−D1(t) lies in RDivd
+(Γ). In

other words, there exists a unique t-path from D1 to D2.

2. If we let D(t) = PD2−D1(t), then

N (fD(t)−D1) = min(t · ρ(D1, D2),N (fD2−D1)),

and

N (fD2−D(t)) = N (max(t · ρ(D1, D2),N (fD2−D1))).

3. PD1−D2 is continuous.

We call Im(PD2−D1) the tropical segment (or t-segment) connecting D1 and D2.

Note that PD2−D1(t) = PD1−D2(1 − t) and therefore Im(PD2−D1) = Im(PD1−D2). We

say D1 and D2 are the end points of the t-segment Im(PD2−D1).
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Given a function f with domain [κ1, κ2] for some κ1 6 κ2, we say the function

f �sα is a linear scaling of f with α > 0 the scaling factor such that f �sα(t) = f(t/α),

and the function f � τβ is a linear translation of f with β the translation factor such

that f � τβ(t) = f(t− β). Then it is clear f � sα has domain [ακ1, ακ2] and f � τβ has

domain [κ1 + β, κ2 + β].

PD2−D1 is actually an isometry after a linear scaling. We give a basic characteri-

zation of PD2−D1 in the following lemma.

Lemma 3.3.2. For D1, D2 ∈ RDivd
+(Γ), we have the following fundamental proper-

ties of the t-path PD2−D1.

1. For any D′1, D
′
2 ∈ Im(PD2−D1), the t-segment Im(PD′2−D′1) is a subset of the

t-segment Im(PD2−D1).

2. Let P̂D2−D1 : [0, ρ(D1, D2)] → RDivd
+(Γ) be given by P̂D2−D1(t) = PD2−D1 �

sρ(D1,D2) if D1 6= D2 and P̂D2−D1(0) = D1 if D1 = D2. Then P̂D2−D1 is an

isometry from [0, ρ(D1, D2)] to Im(PD2−D1).

3. The t-segment Im(PD2−D1) is compact and thus a closed subset of RDivd
+(Γ).

Proof. We may write uniquely D′1 = PD2−D1(t1) and D′2 = PD2−D1(t2) where t1, t2 ∈

[0, 1]. Switching the positions of D′1 and D′2 if necessary, we may assume t1 6 t2.

Then

N (fD′2−D′1) = N (max(t1 · ρ(D1, D2),min(t2 · ρ(D1, D2),N (fD2−D1)))).

Thus we have Im(PD′2−D′1) = PD2−D1([t1, t2]) ⊆ Im(PD2−D1) (for statement (1)) and

ρ(D′1, D
′
2) = (t2 − t1) · ρ(D1, D2) (for statement (2)).

The compactness of Im(PD2−D1) follows from the compactness of [0, 1] and the

continuity of PD2−D1 .

Corollary 3.3.3. The intersection of two t-segments in RDivd
+(Γ) is again a t-

segment in RDivd
+(Γ).
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Proof. Let T1 and T2 be two t-segments in RDivd
+(Γ) with T being their intersection.

Then by Lemma 3.3.2 (1), if T contains two divisors D1 and D2, then it must contain

the whole t-segment connecting D1 and D2. This actually means that T is either a

t-segment itself or a t-segment without one or both of the end points. But T must also

be a compact closed subset of RDivd
+(Γ) by Lemma 3.3.2 (3). Thus T is a t-segment

itself.

Remark 3.3.4. Suppose D1 6= D2 and we have the t-path PD2−D1 from D1 to D2 with

an associated function fD2−D1 . In particular, we may assume fD2−D1 = N (fD2−D1).

To simplify notation, we let D(t) = PD2−D1(t) and l = ρ(D1, D2). Then it is easy to

see that

1. Γmin(fD(t)−D1) = Γ for t = 0, and Γmin(fD(t)−D1) = Γmin(fD2−D1) for t ∈ (0, 1];

2. Γmax(fD(t)−D1) = f−1
D2−D1

([tl, l]) for t ∈ [0, 1], and Γmax(fD(t)−D1) shrinks as t

increases; in addition, Γmax(fD(t)−D1) shrinks continuously as t increase in (0, s)

for some s small enough and limt↘0 Γmax(fD(t)−D1) = (Γmin(fD2−D1)c.

3. Γmin(fD2−D(t)) = f−1
D2−D1

([0, tl]) for t ∈ [0, 1], and Γmin(fD2−D(t)) expands as

t increases; in addition, Γmin(fD2−D(t)) expands continuously as t increase in

(s′, 1) for some s′ big enough and limt↗1 Γmin(fD2−D(t)) = (Γmax(fD2−D1)c.

4. Γmax(fD2−D(t)) = Γ for t = 1, and Γmax(fD2−D(t)) = Γmax(fD2−D1) for t ∈ [0, 1);

5. Γmin(fD2−D1)
⋂

supp(D1) 6= ∅ and Γmax(fD2−D1)
⋂

supp(D2) 6= ∅; and

6. Let X = Γmax(fD(t)−D1). Let Xo, Xc and ∂X be the interior, complement and

boundary of X, respectively. Then D(t)|Xo = D1|Xo , D(t)|Xc = D2|Xc and

D(t)|∂X > D2|∂X .

Lemma 3.3.5. Let D,D1, D2 ∈ RDivd
+(Γ). Then the following properties are equiv-

alent.
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1. D ∈ Im(PD2−D1).

2. Im(PD2−D1) = Im(PD1−D)
⋃

Im(PD2−D).

3. Γmin(fD1−D)
⋃

Γmin(fD2−D) = Γ.

Proof. The equivalence of (1) and (2) is straightforward from the definition of the

tropical paths. The equivalence of (2) and (3) follows from the facts that Γmin(fD1−D) =

Γmax(fD−D1) and fD2−D + fD−D1 is an associated function of D2 −D1.

Remark 3.3.6. One should be careful that ρ(D1, D2) = ρ(D1, D) + ρ(D2, D) does not

guarantee that D lies in the t-segment connecting D1 and D2.

Recall that Corollary 3.3.3 says we will get a t-segment by intersecting two t-

segments. The following corollary tells us that if glued properly, the union of two

t-segments will also be a t-segment.

Corollary 3.3.7. For 0 6 t1 < t2 6 1, let Λ : [0, 1]→ RDivd
+(Γ) be a map such that

Λ|[0,t2] � s 1
t2

is the t-path from Λ(0) to Λ(t2) and Λ|[t1,1] � τ−t1 � s 1
1−t1

is the t-path from

Λ(t1) to Λ(1). Then Λ is the t-path from Λ(0) to Λ(1).

Proof. Under the assumptions, we have Λ(t1) ∈ Im(PΛ(t2)−Λ(0)) = Λ([0, t2]) and

Λ(t2) ∈ Im(PΛ(1)−Λ(t1)) = Λ([t1, 1]). Note that a special case is that Λ(t1) = Λ(t2),

which implies Λ(0) = Λ(1) = Λ(t1) since t2 > t1. Now we assume Λ(t1) 6= Λ(t2).

Applying Lemma 3.3.5, we get

Γmin(fΛ(0)−Λ(t1))
⋃

Γmin(fΛ(t2)−Λ(t1)) = Γ.

By Remark 3.3.4, we get

Γmin(fΛ(t2)−Λ(t1)) = Γmin(fΛ(1)−Λ(t1)).

Therefore,

Γmin(fΛ(0)−Λ(t1))
⋃

Γmin(fΛ(1)−Λ(t1)) = Γ,
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and it again follows from Lemma 3.3.5 that Λ(t1) ∈ Im(PΛ(1)−Λ(0)).

Using a similar argument, we get Λ(t2) ∈ Im(PΛ(1)−Λ(0)). Thus

Im(PΛ(1)−Λ(0)) = Im(PΛ(t2)−Λ(0))
⋃

Im(PΛ(1)−Λ(t1) = Im(Λ).

Note that

ρ(Λ(t1),Λ(t2)) =
t2 − t1
t2

ρ(Λ(0),Λ(t2)) =
t2 − t1
1− t1

ρ(Λ(t1),Λ(1)).

Therefore, we must have Λ = PΛ(1)−Λ(0) as claimed.

If d is an integer and Sd is the symmetric group of degree d, then Divd
+(Γ) = Γd/Sd

set-theoretically. Therefore, other than the metric topology, Divd
+(Γ) has a topology

induced from Γ as a d-fold symmetric product. The following proposition says that

these two topologies on Divd
+(Γ) are actually the same.

Proposition 3.3.8. On Divd
+(Γ), the metric topology is the same as the the induced

topology as a d-fold symmetric product of Γ.

Proof. Denote the first topology by T1 and the second by T2. To show T1 = T2, it

suffices to show that for a divisor D =
∑d

i=1(qi) with qi ∈ Γ, a sequence {D(n)}n

converges to D in T2 if and only if ρ(D(n), D) → 0. In addition, we note that to say

D(n) → D in T2 is equivalent to say that there exists d sequences of points on Γ,

{p(n)
i }n for i = 1, . . . , d, such that D(n) =

∑d
i=1(p

(n)
i ) and p

(n)
i → qi on Γ.

Suppose D(n) → D in T2. Since

ρ(D(n), D) 6
d∑
i=1

ρ((p
(n)
i ), (qi)) =

d∑
i=1

r(p
(n)
i , qi) 6

d∑
i=1

distΓ(p
(n)
i , qi)

where r(p
(n)
i , qi) is the effective index between p

(n)
i and qi (see Section 3.2), we conclude

that D(n) → D in T1.

Now suppose D(n) → D in T1 which means ρ(D(n), D) = max(N (fD(n)−D)) → 0.

Considering the divisors D and D(n), for each point qi ∈ suppD, we will associate a

point p
(n)
i suppD(n) with an procedure as follows.
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Let M be the maximum number of degrees among all the points in Γ. This means

each point p ∈ Γ has at most M adjacent edges. Denote the sum of slopes of fD(n)−D

for all outgoing directions from p ∈ Γ by χ(p). Then χ(p) = −(∆fD(n)−D)(p) =

D(p)−D(n)(p). Let V (Γ) be a vertex set of Γ.

First, we will determine p
(n)
1 for q1.

If q1 ∈ suppD(n), we let p
(n)
1 = q1.

Otherwise, we must have χ(q1) > 1 and there must be an outgoing direction ~Vq1

from q1 with a slope at least 1/M . Let w(q1) ∈ V (Γ) be the adjacent vertex of q1 in

direction ~Vq1 . If there exists a point in suppD(n) that lies in the half-open-half-closed

segment (q1, w(q1)], then we let p
(n)
1 be this point. Clearly, fD(n)−D(q1) < fD(n)−D(p

(n)
1 )

and distΓ(p
(n)
1 , q1) 6M · ρ(D(n), D) in this case.

Otherwise, we must have χ(w(q1)) > 0. Since the slope of the outgoing direction

from w(q1) to q1 is at most −1/M , the sum of slopes in the remaining outgoing

directions from w(q1) is at least 1/M and there must be an outgoing direction ~Vw(q1)

from w(q1) with a slope at least 1/(M(M − 1)). Let w2(q1) ∈ V (Γ) be the adjacent

vertex of w(q1) in direction ~Vw(q1). Following the same procedure, we let p
(n)
1 be a

point contained in both suppD(n) and (w(q1), w2(q1)] if their intersection is nonempty,

and otherwise keep seeking p
(n)
1 in the next outgoing direction from w2(q1) with slope

at least 1/(M(M − 1)2).

The procedure must terminate in finitely many steps since we only have finitely

many elements in V (Γ). Let N = |V (Γ)|. We conclude that we can find p
(n)
1 within

N steps and distΓ(p
(n)
1 , q1) 6 C1 · ρ(D(n), D) where C1 = M(M − 1)N .

Next we will determine p
(n)
i one by one inductively. Suppose for i = 2, . . . , d′

(d′ < d), we have determined p
(n)
i and known that distΓ(p

(n)
i , qi) 6 Ci · ρ(D(n), D)

where Ci’s are constants. We let D
(n)
d′ = D(n) −

∑d′

i=1(p
(n)
i ) and Dd′ = D −

∑d′

i=1(qi).
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Then

ρ(D
(n)
d′ , Dd′) 6 ρ(D(n), D) +

d′∑
i=1

r(p
(n)
i , qi)

6 ρ(D(n), D) +
d′∑
i=1

distΓ(p
(n)
i , qi)

= (1 +
d′∑
i=1

Ci)ρ(D(n), D).

Following exactly the same procedure we used to seek p
(n)
1 , we can find p

(n)
d′+1 ∈

suppD
(n)
d′ such that

distΓ(p
(n)
d′+1, qd′+1) 6 C1 · ρ(D

(n)
d′ , Dd′) = Cd′+1 · ρ(D(n), D)

where Cd′+1 = C1(1 +
∑d′

i=1 Ci).

In this way, for each D(n), we can find p
(n)
i such that D(n) =

∑d
i=1(p

(n)
i ) and

distΓ(p
(n)
i , qi) is bounded by Ci · ρ(D(n), D). This means D(n) → D in T1 implies

D(n) → D in T2.

Lemma 3.3.9. The scaling map φ : RDivd
′

+(Γ) → RDivd+(Γ) given by φ(D) = d
d′
D

is a homeomorphism. Moreover,

ρ(φ(D1), φ(D2)) =
d

d′
ρ(D1, D2)

for D1, D2 ∈ RDivd+(Γ).

Proof. It follows directly from the linearity of the Laplacian.

3.4 Tropical convex sets: a generalization of complete lin-
ear systems

Definition 3.4.1. A set T ⊆ RDivd
+(Γ) is tropically convex (t-convex ) or equiv-

alently t-path-connected of degree d if for every D1, D2 ∈ T , the whole t-segment

imag(PD2−D1) connecting D1 and D2 is contained in T .
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Note that the intersection of an arbitrary collection of tropically convex sets of the

same degree is tropically convex. Thus we define the tropical convex hull generated by

S ⊆ RDivd
+(Γ), denoted by tconv(S), as the intersection of all tropically convex sets in

RDivd
+(Γ) containing S, and we say S is a generating set of tconv(S). If, in addition,

x /∈ tconv(S \ {x}) for every x ∈ S, then we say S is tropical convex (t-convex) inde-

pendent. We say a tropical convex hull is finitely generated if it can be generated by a

finite set. In particular, we abuse notation here to write tconv(D1, . . . , Dn, S1, . . . , Sm)

as a simplification of tconv({D1, . . . , Dn}
⋃
S1 . . .

⋃
Sm) when it is clear thatD1, . . . , Dn

are divisors in RDivd
+(Γ) and S1 . . .

⋃
Sm are subsets of RDivd

+(Γ). In particular, by

Lemma 3.3.2 (1), it is easy to verify that tconv(D1, D2) = Im(PD2−D1), and we use

them both interchangeably to represent the t-segment connecting D1 and D2.

If d is an integer and D1, D2 ∈ Divd
+(Γ), we say D1 is linearly equivalent to D2

(denoted D1 ∼ D2) if fD2−D1 is rational, i.e., piecewise-linear with integral slopes.

This is equivalent to say tconv(D1, D2) ⊆ Divd
+(Γ). The complete linear system |D|

associated to D ∈ Divd
+(Γ) is the set of effective divisors linearly equivalent to D.

We have the following facts:

1. All complete linear systems |D| are t-path-connected.

2. Divd
+(Γ) is not t-path-connected in general, and the nonempty complete linear

systems of degree d are the t-path-connected components in Divd
+(Γ).

3. RDivd
+(Γ) is t-path-connected, but not finitely generated. When d is an integer,

we have in general RDivd
+(Γ) ) tconv(Divd

+(Γ)).

Lemma 3.4.2. Every complete linear system is finitely generated.

Proof. A complete linear system |D| can always be generated by the extremals (we

only have finitely many of them) in |D|.
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Remark 3.4.3. The extremals of complete linear systems are introduced in [39]. (They

actually define extremals in L(D) instead of |D|.) We will generalize this notion to

all tropical convex sets in Section 3.7.

Now let us consider tropical convex sets in general. Theorem 3.4.4 and Theo-

rem 3.4.5 state some fundamental properties of tropical convex sets. In particular, as

it is well-known that conventional convex subsets of Euclidean spaces are contractible,

Theorem 3.4.4 says this is also true for all tropical convex sets. Theorem 3.4.5 tells

us how to generate a tropical convex set from its subsets and provides a compactness

criterion. Then we may deduce an important conclusion immediately that finitely

generated tropical convex hulls are always compact (Corollary 3.4.6). To prove these

theorems, we need to employ a machinery based on general reduced divisors which

will be introduced in the next section, and we will finish the proofs in Section 3.7.

Theorem 3.4.4. Tropical convex sets are contractible.

Theorem 3.4.5. Let T, T ′ ⊆ RDivd
+(Γ) be tropically convex set. Then we have

tconv(T, T ′) =
⋃
D∈T,D′∈T ′ tconv(D,D′). If T and T ′ are compact in addition, then

tconv(T, T ′) is compact.

Corollary 3.4.6. Every finitely generated tropical convex hull is compact.

Proof. It follows immediately from Lemma 3.3.2 (3) and an induction on Theo-

rem 3.4.5.

Remark 3.4.7. The complete linear systems are finitely generated (Lemma 3.4.2) and

thus compact in our metric topology (Corollary 3.4.6).

Example 3.4.8. As shown in Figure 10, we give an example of a tropical convex set

and its tropical convex subsets. The graph Γ is a loop with vertices {v1, w12, v2, w23, v3, w13}.

All edges have the same length. Then the following divisors are all linearly equivalent,

D0 = (v1) + (v2) + (v3), D1 = 3(v1), D2 = 3(v2), D3 = 3(v3), D12 = 2(w12) + (v3),
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D23 = 2(w23) + (v1), and D13 = 2(w13) + (v2). Indeed, the complete linear system

|D0| can be tropically generated by D1, D2 and D3. We also show the tropical seg-

ments tconv(D1, D2), tconv(D1, D23) and tconv(D12, D23). In particular, D0 lies on

the segments tconv(D1, D23) and tconv(D12, D23). For tropical convex sets generated

by three divisors, tconv(D12, D23, D13) is purely 1-dimensional, while the last three

cases in Figure 10 does not have a pure dimension.

3.5 General reduced divisors

3.5.1 B-functions

Let the B-function B : RDiv0(Γ) → R+ be given by B(D2 − D1) =
∫

Γ
(fD2−D1 −

min(fD2−D1)) =
∫

Γ
N (fD2−D1), where D1 and D2 are effective R-divisors of the same

degree. In addition, for d > 0, we define the B-function restricted to degree d as

Bd : RDivd
+(Γ) × RDivd

+(Γ) → R+ given by Bd(D1, D2) = B(D2 − D1). Unlike the

distance function, we have B(D2−D1) 6= B(D1−D2) in general. It is straightforward

to verify that (1) B(D1 − D2) + B(D2 − D1) = ρ(D1, D2)ltot where ltot is the total

length of Γ, and (2) B(D1 −D2) = 0 if and only if ρ(D1, D2) = 0. Fixing D1 or D2,

we get the functions B?−D1 : RDivd
+(Γ)→ R+ given by B?−D1(D) = B(D −D1) and

BD2−? : RDivd
+(Γ)→ R+ given by BD2−?(D) = B(D2 −D), respectively.

Remark 3.5.1. For D ∈ Divd
+(Γ) and q ∈ Γ, the b-function bq(D) Baker and Shokrieh

introduced in [19] is essentially a special case of the B-function in the following sense:

bq(D) = B(D − d · (q)).

Lemma 3.5.2. 1. For D1, D2, D3 ∈ RDivd
+(Γ), we have the triangle inequality

B(D3 −D1) 6 B(D3 −D2) + B(D2 −D1).

The equality holds if and only if

Γmin(fD3−D2)
⋂

Γmin(fD2−D1) 6= ∅
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Figure 10: The loop Γ has a vertex set {v1, w12, v2, w23, v3, w13}, which are equally
spaced for all adjacent vertices. The linear system |D0| is indeed a solid triangle. Here
D0 = (v1) + (v2) + (v3), D1 = 3(v1), D2 = 3(v2), D3 = 3(v3), D12 = 2(w12) + (v3),
D23 = 2(w23) + (v1), and D13 = 2(w13) + (v2).
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if and only if

Γmin(fD3−D1) = Γmin(fD3−D2)
⋂

Γmin(fD2−D1).

2. For D1, D2, D3 ∈ RDivd
+(Γ), ρ(D1, D3) = ρ(D1, D2) + ρ(D2, D3) if and only if

B(D3 −D1) = B(D3 −D2) + B(D2 −D1)

and

B(D1 −D3) = B(D1 −D2) + B(D2 −D3).

3. The functions Bd, B?−D and BD−? are continuous.

Proof. For the triangle inequality, we let fD3−D2 and fD2−D1 be associated to D3−D2

and D2−D1 respectively, and assume fD3−D2 = N (fD3−D2) and fD2−D1 = N (fD2−D1).

Let fD3−D1 = fD3−D2 + fD2−D1 , which is associated to D3 −D1. Note that

min(fD3−D1) > min(fD3−D2) + min(fD2−D1) = 0,

while the equality holds if and only if

Γmin(fD3−D2)
⋂

Γmin(fD2−D1) 6= ∅

if and only if

Γmin(fD3−D1) = Γmin(fD3−D2)
⋂

Γmin(fD2−D1).

Thus

B(D3 −D1) =

∫
Γ

(fD3−D1 −min(fD3−D1))

6
∫

Γ

fD3−D1

=

∫
Γ

fD3−D2 +

∫
Γ

fD2−D1

= B(D3 −D2) + B(D2 −D1),
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with the equality holds under the same conditions.

For (2), ρ(D1, D3) = ρ(D1, D2) + ρ(D2, D3) if and only if

Γmin(fD2−D1)
⋂

Γmin(fD3−D2) 6= ∅

and

Γmax(fD2−D1)
⋂

Γmax(fD3−D2) 6= ∅.

Note that Γmax(fD2−D1) = Γmin(fD1−D2) and Γmax(fD3−D2) = Γmin(fD2−D3), and hence

(2) follows from (1).

For (3), it suffices to show B(D′2−D′1)→ B(D2−D1) as D′1 → D1 and D′2 → D2.

Actually, if ltot is the total length of Γ, we have

B(D′2 −D′1)− B(D2 −D1) = B((D′2 −D2) + (D2 −D1) + (D1 −D′1))− B(D2 −D1)

6 B(D′2 −D2) + B(D1 −D′1)

6 (ρ(D2, D
′
2) + ρ(D1, D

′
1))ltot

and

B(D2 −D1)− B(D′2 −D′1) = B((D2 −D′2) + (D′2 −D′1) + (D′1 −D1))− B(D′2 −D′1)

6 B(D2 −D′2) + B(D′1 −D1)

6 (ρ(D2, D
′
2) + ρ(D1, D

′
1))ltot.

3.5.2 General reduced divisors

Theorem 3.5.3. Let T ⊆ RDivd
+(Γ) be tropically convex and compact. For every

E ∈ RDivd
+(Γ), there exists a unique R-divisor TE ∈ T , which minimizes B?−E |T .

According to Lemma 3.5.2 (3), B?−E is a continuous function. Since T is compact,

B?−E |T can reach its minimal value. Hence, it only remains to show that the minimum

can only be reached at a single divisor in T . We will finish our proof of Theorem 3.5.3
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in Remark 3.5.9 after proving some useful facts in Proposition 3.5.7. Provided this

theorem, we are now ready to bring up a central notion of this chapter.

Definition 3.5.4. Under the hypotheses of Theorem 3.5.3, we say the divisor TE is

the (general) reduced divisor in T with respect to E (or the E-reduced divisor in T ).

Remark 3.5.5. For D ∈ Divd
+(Γ) and q ∈ Γ, Baker and Shokrieh [19] showed that a

conventional reduced divisor Dq is the unique divisor in the complete linear system |D|

such that the b-function bq(D) is minimized. Note that |D| is compact (Remark 3.4.7)

and we may express the b-function by an equivalent B-function (Remark 3.5.1). Hence

if we let T = |D| and E = d · (q), the conventional reduced divisors fit well in our

new setting by the identity Dq = |D|d·(q).

Remark 3.5.6. Throughout this chapter, when we mention reduced divisors, we mean

general reduced divisors unless otherwise stated.

Proposition 3.5.7. Let E,D1, D2 ∈ RDivd
+(Γ) and D1 6= D2. Let PD2−D1 be the

t-path from D1 to D2. Let D(t) = PD2−D1(t) for t ∈ [0, 1]. Consider the functions

gρ(t) = ρ(E,D(t)) and gB(t) = B(D(t) − E) for t ∈ [0, 1]. Then exactly one of the

following two cases occur:

1. Γmin(fD1−E)
⋂

Γmin(fD2−D1) 6= ∅. In this case, gρ(t) is increasing and gB(t) is

strictly increasing for t ∈ [0, 1]. And precisely, for t ∈ (0, 1], we have

Γmin(fD(t)−E) = Γmin(fD(t)−D1)
⋂

Γmin(fD1−E)

= Γmin(fD2−E) = Γmin(fD2−D1)
⋂

Γmin(fD1−E)

and gB(t) = B(D(t)−D1) + B(D1 − E).

2. Γmin(fD1−E)
⋂

Γmin(fD2−D1) = ∅. In this case, at t = 0, gρ(t) is decreasing and

gB(t) is strictly decreasing.
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Remark 3.5.8. We say a function f(t) is increasing (resp. decreasing, strictly increas-

ing, strictly decreasing, or locally constant) at t0 if there exists δ > 0 such that g(t)

is increasing (resp. decreasing, strictly increasing, strictly decreasing, or constant) on

[t0, t0 + δ]. Note that we adopt the usual definition of increasing (resp. decreasing)

functions here, which actually means non-decreasing (resp. non-increasing).

Proof. Let l = ρ(D1, D2). For simplicity of notations, we assume

min(fD1−E) = min(fD2−D1) = min(fD(t)−D1) = 0

from now on. It then follows fD(t)−D1 = min(tl, fD2−D1). In addition, we let fD2−E =

fD2−D1 +fD1−E, which is associated to D2−E, and fD(t)−E = fD(t)−D1 +fD1−E, which

is associated to D(t)− E.

If

Γmin(fD1−E)
⋂

Γmin(fD2−D1) 6= ∅,

then we have

Γmin(fD2−E) = Γmin(fD2−D1)
⋂

Γmin(fD1−E)

and

min(fD2−E) = min(fD2−D1 + fD1−E) = min(fD2−D1) + min(fD1−E) = 0.

By Remark 3.3.4 (1), Γmin(fD(t)−D1) = Γmin(fD2−D1) for t ∈ (0, 1]. Therefore,

Γmin(fD(t)−E) = Γmin(fD(t)−D1)
⋂

Γmin(fD1−E) = Γmin(fD2−D1)
⋂

Γmin(fD1−E) 6= ∅

and

min(fD(t)−E) = min(fD(t)−D1 + fD1−E) = min(fD(t)−D1) + min(fD1−E) = 0

for t ∈ [0, 1]. On the other hand, max(fD(t)−E) is an increasing function since

max(fD(t)−E) = max(fD(t)−D1 + fD1−E) and the value of fD(t)−D1(v) at any point

v ∈ Γ is an increasing function with respect to t. Therefore, gρ(t) is also an increasing
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function since gρ(t) = max(fD(t)−E) − min(fD(t)−E) = max(fD(t)−E). Moreover, it

follows from Lemma 3.5.2 that

gB(t) = B(D(t)− E)

= B(D(t)−D1) + B(D1 − E).

Therefore gB(t) is strictly increasing for t ∈ [0, 1] since B(D(t) − D1) is strictly in-

creasing.

Now consider the case Γmin(fD2−D1)
⋂

Γmin(fD1−E) = ∅. Note that both f−1
D2−D1

([0, δ])

and f−1
D1−E([0, δ]) are closed subsets of Γ with finitely many connected components,

and for a small enough positive δ0, both f−1
D2−D1

([0, δ]) and f−1
D1−E([0, δ]) expand con-

tinuously as δ increases in [0, δ0]. In particular, we have

lim
δ↘0

f−1
D2−D1

([0, δ]) = Γmin(fD2−D1)

and

lim
δ↘0

f−1
D1−E([0, δ]) = Γmin(fD1−E).

Hence we may even choose δ0 such that

f−1
D2−D1

([0, δ])
⋂

f−1
D1−E([0, δ]) = ∅

for all δ ∈ [0, δ0]. Then for t ∈ [0, δ0/l], we have

• fD(t)−D1 = tl, fD1−E(v) = 0 and fD(t)−E(v) = tl if v ∈ Γmin(fD1−E);

• fD(t)−D1 > 0, fD1−E(v) > tl and fD(t)−E(v) > tl if v ∈ f−1
D2−D1

([0, tl]); and

• fD(t)−D1 = tl, fD1−E(v) > 0 and fD(t)−E(v) > tl if v ∈ (f−1
D2−D1

([0, tl])
⋃

Γmin(fD1−E))c.

Therefore, we conclude min(fD(t)−E) = tl and Γmin(fD1−E) ⊆ Γmin(fD(t)−E) for t ∈

[0, δ0/l]. Let fD1−D(t) = ρ(D1, D(t)) − fD(t)−D1 , and we have min(fD1−D(t)) = 0 and
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the value of fD1−D(t)(v) at any point v ∈ Γ is an increasing function with respect to

t. Then for t ∈ [0, δ0/l],

N (fD(t)−E) = fD(t)−E − tl

= fD1−E + fD(t)−D1 − ρ(D1, D(t))

= fD1−E − fD1−D(t).

Note that gρ(t) = max(N (fD(t)−E)), which means gρ(t) is decreasing for t ∈ [0, δ0/l].

Thus gρ(t) is decreasing at t = 0. Moreover,

gB(t) = B(D(t)− E)

=

∫
Γ

N (fD(t)−E)

=

∫
Γ

(fD1−E − fD1−D(t))

= B(D1 − E)− B(D1 −D(t)),

for t ∈ [0, δ0/l]. This means gB(t) is strictly decreasing for t ∈ [0, δ0/l] since B(D1 −

D(t)) is strictly increasing. Thus gB(t) is strictly decreasing at t = 0.

Remark 3.5.9. We observe some easy facts following from Proposition 3.5.7.

1. gρ(t) can be locally constant, while gB(t) cannot.

2. If gρ(t) is strictly increasing at t = 0, then gρ(t) is increasing on [0, 1]. If gB(t)

is strictly increasing at t = 0, then gB(t) is strictly increasing on [0, 1].

3. Recall that we’ve assumed D1 6= D2. If gρ(0) = gρ(1) = κρ, then gB(t) is

decreasing at t = 0 (locally constant is possible) and gρ(t) 6 κρ for t ∈ (0, 1).

If gB(0) = gB(1) = κB, then gB(t) is strictly decreasing at t = 0 and gB(t) < κB

for t ∈ (0, 1).

4. We can finish the proof of Theorem 3.5.3 now. If there exist divisors D1

and D2 in T , both minimizing B?−E |D∈T , then we must have D1 = D2 by (3).
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5. By applying Proposition 3.5.7 to the t-paths from D1 to D2 and from D1 to D2

respectively, we see that

Γmin(fD2−D1)
⋂

Γmin(fD1−E) 6= ∅

implies

Γmin(fD1−D2)
⋂

Γmin(fD2−E) = ∅

(still under the assumption D1 6= D2).

Proposition 3.5.7 can actually provide us with criterions of reduced divisors from

different aspects, as summarized in the following corollary.

Corollary 3.5.10 (Criterions for general reduced divisors). Let T ⊆ RDivd
+(Γ)

be tropically convex and compact. Let E ∈ RDivd
+(Γ) and D0 ∈ T . The following

properties are equivalent.

1. D0 is the E-reduced divisor of T .

2. For every D ∈ T and t ∈ [0, 1], the function B(PD−D0(t) − E) is strictly in-

creasing.

3. For every D ∈ T and t ∈ [0, 1], the function B(PD−D0(t) − E) is strictly in-

creasing at t = 0. (Equivalently, we say B?−E is strictly increasing at D0 along

all possible firing directions.)

4. For every D ∈ T ,

Γmin(fD−D0)
⋂

Γmin(fD0−E) 6= ∅.

5. For every D ∈ T ,

Γmin(fD−E) = Γmin(fD−D0)
⋂

Γmin(fD0−E).

6. For every D ∈ T ,

B(D − E) = B(D −D0) + B(D0 − E).
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7. For every D ∈ T and D 6= D0,

Γmin(fD0−D)
⋂

Γmin(fD−E) = ∅.

Proof. All the criterions easily follows from Proposition 3.5.7.

3.5.3 Some properties of general reduced divisors

Unless otherwise stated, we let T ⊆ RDivd
+(Γ) be tropically convex and compact in

the following discussions.

Lemma 3.5.11. If E ∈ T , then TE = E.

Lemma 3.5.12. Let T ′ be a compact tropical convex subset of T . For E ∈ RDivd
+(Γ),

if TE ∈ T ′, then T ′E = TE.

The easy facts as stated in the above two lemmas can be verified using any criterion

of reduced divisors in Corollary 3.5.10, and we skip the detailed proofs.

Lemma 3.5.13. Let E ′ ∈ tconv(E, TE). Then TE′ = TE.

Proof. By Corollary 3.5.10, we have

Γmin(fD−TE)
⋂

Γmin(fTE−E) 6= ∅

for every D ∈ T . Taking D1 = E and D2 = TE in Remark 3.3.4 (3), we have

Γmin(fTE−E′) ⊇ Γmin(fTE−E), which means

Γmin(fD−TE)
⋂

Γmin(fTE−E′) 6= ∅

for every D ∈ T . Using Corollary 3.5.10 again, we see that TE is also E ′-reduced in

T .

Lemma 3.5.14. For D0, E, E
′ ∈ RDivd

+(Γ), suppose D0 ∈ T and E ′ ∈ tconv(E,D0).

Then E ′ ∈ tconv(E, TE′).
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Proof. By Corollary 3.5.10, Γmin(fD0−E′) ⊆ Γmin(fTE′−E′). By Lemma 3.3.5,

Γmin(fD0−E′)
⋃

Γmin(fE−E′) = Γ.

Thus

Γmin(fTE′−E′)
⋃

Γmin(fE−E′) = Γ.

Again, by Lemma 3.3.5, we have E ′ ∈ tconv(E, TE′).

Lemma 3.5.15. Let E1, E2 ∈ RDivd
+(Γ). Then ρ(TE1 , TE2) 6 ρ(E1, E2). The equal-

ity holds if and only if

B(TE2 − E1) = B(TE2 − E2) + B(E2 − E1)

and

B(TE1 − E2) = B(TE1 − E1) + B(E1 − E2).

Proof. Let ltot be the total length of Γ. By Corollary 3.5.10, we have

B(TE2 − TE1) = B(TE2 − E1)− B(TE1 − E1)

and

B(TE1 − TE2) = B(TE1 − E2)− B(TE2 − E2).

By Lemma3.5.2, we have

B(TE2 − E1)− B(TE2 − E2) 6 B(E2 − E1)

and

B(TE1 − E2)− B(TE1 − E1) 6 B(E1 − E2).
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Therefore,

ρ(TE1 , TE2)ltot

= B(TE2 − TE1) + B(TE1 − TE2)

= (B(TE2 − E1)− B(TE1 − E1)) + (B(TE1 − E2)− B(TE2 − E2))

= (B(TE2 − E1)− B(TE2 − E2)) + (B(TE1 − E2)− B(TE1 − E1))

6 B(E2 − E1) + B(E1 − E2)

= ρ(E1, E2)ltot.

Corollary 3.5.16. Let E1, E2 ∈ RDivd
+(Γ). If ρ(E1, E2) = ρ(TE1 , TE2), then for

each E ∈ RDivd
+(Γ) such that ρ(E1, E) + ρ(E2, E) = ρ(E1, E2), we have ρ(E1, E) =

ρ(TE1 , TE) and ρ(E2, E) = ρ(TE2 , TE).

Proof. By Lemma3.5.15, we get ρ(TE1 , TE) 6 ρ(E1, E) and ρ(TE2 , TE) 6 ρ(E2, E).

Thus

ρ(E1, E2) = ρ(TE1 , TE2) 6 ρ(TE1 , TE)+ρ(TE2 , TE) 6 ρ(E1, E)+ρ(E2, E) = ρ(E1, E2),

which implies ρ(E1, E) = ρ(TE1 , TE) and ρ(E2, E) = ρ(TE2 , TE).

Remark 3.5.17. Each divisor E ∈ tconv(E1, E2) satisfies the condition ρ(E1, E) +

ρ(E2, E) = ρ(E1, E2) in Corollary 3.5.16. Therefore, we must have ρ(E1, E) =

ρ(TE1 , TE) and ρ(E2, E) = ρ(TE2 , TE). However, we should note that the set {TE :

E ∈ tconv(E1, E2)} is not necessarily a tropical convex set.

Lemma 3.5.18. Let E ∈ RDivd
+(Γ) and T ′ be a compact tropical convex subset of

T . Then T ′E = T ′TE .

Proof. To prove T ′E = T ′TE , it suffices to show that

B(D′ − E) = B(D′ − T ′TE) + B(T ′TE − E)
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for every D′ ∈ T ′ by Corollary 3.5.10.

Actually, applying Corollary 3.5.10 to T with respect to E, we get

B(D − E) = B(D − TE) + B(TE − E)

for every D ∈ T , and in particular

B(T ′TE − E) = B(T ′TE − TE) + B(D1 − E).

Applying Corollary 3.5.10 to T ′ with respect to TE, we get

B(D′ − TE) = B(D′ − T ′TE) + B(T ′TE − TE)

for every D′ ∈ T ′.

Therefore,

B(D′ − E) = B(D′ − TE) + B(TE − E)

= B(D′ − T ′TE) + B(T ′TE − TE) + B(TE − E)

= B(D′ − T ′TE) + B(T ′TE − E)

for every D′ ∈ T ′, and T ′TE is exactly the E-reduced divisor in T ′ as claimed.

Let E ∈ RDivd
+(Γ) and rmin = infD∈T ρ(E,D) (knowing T is compact, actually

we have rmin = minD∈T ρ(E,D)). The following proposition shows that sublevel sets

of the distance function ρE := ρ(E, ?) and the B-function B?−E on T are all tropically

convex. For r, s ∈ R+, we let LT6r(ρE) = {D ∈ T |ρ(E,D) 6 r}, LT=r(ρE) = {D ∈

T |ρ(E,D) = r}, LT6s(B?−E) = {D ∈ T | B?−E(D) 6 s}, and LT=s(B?−E) = {D ∈

T | B?−E(D) = s}. In particular, we also denote the the level set LT=rmin
(ρE) of ρE at

the minimum distance by LTmin(ρE).

Proposition 3.5.19. Under the above hypotheses and notations, we have
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1. The E-reduced divisor TE lies in LTmin(ρE).

2. LTmin(ρE), LT6r(ρE), LT=r(ρE), LT6s(B?−E) and LT=s(B?−E) are all compact subsets

of T .

3. LTmin(ρE), LT6r(ρE) and LT6s(B?−E) are tropically convex with the compactness

assumption of T removed.

Proof. Let D be any divisor in T . By Corollary 3.5.10, we have

Γmin(fD−E) = Γmin(fD−TE)
⋂

Γmin(fTE−E) 6= ∅.

Therefore,

ρ(E,D) = max(N (fD−E)) = max(N (fD−TE) +N (fTE−E))

> max(N (fTE−E)) = ρ(E, TE),

which implies ρ(E, TE) = rmin and thus TE ∈ LTmin(ρE).

For (2), the compactness of LTmin(ρE), LT6r(ρE), LT=r(ρE), LT6s(B?−E) and LT=s(B?−E)

follows from the compactness of T and the continuity of the distance function and

the B-function.

Now let us show LT6r(ρE) and LT6s(B?−E) are tropically convex. In the following

arguments, we do not require T to be compact. The tropical convexity of LTmin(ρE) will

follow from the tropical convexity of LT6r(ρE) by setting r = rmin. By Proposition 3.5.7

and Remark 3.5.9, if D1, D2 ∈ LT6r(ρE), then

ρ(E,D) 6 max{ρ(E,D1), ρ(E,D2)} 6 r

for all D in tconv(D1, D2) and thus tconv(D1, D2) ⊆ LT6r(ρE). Respectively, if

D1, D2 ∈ LT6s(B?−E), then

B?−E(D) < max{B?−E(D1),B?−E(D2)} 6 s

for all D in the interior of tconv(D1, D2) and thus tconv(D1, D2) ⊆ LT6s(B?−E). There-

fore, both LT6r(ρE) and LT6s(B?−E) are tropically convex.
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3.6 Reduced divisors in tropical segments

As t-segments are tropically convex and compact (Lemma 3.3.2), the reduced divisors

are well-defined for t-segments. In this section, we study the properties of reduced

divisors in t-segments, and the results will be employed intensively in the next section

where we give proofs to some prestated theorems.

3.6.1 Basic properties

Lemma 3.6.1. For E,D1, D2 ∈ RDivd
+(Γ), let D0 be the E-reduced divisor in

tconv(D1, D2). Then we have

Γmin(fD0−E) = Γmin(fD1−E)
⋃

Γmin(fD2−E),

and for all D ∈ tconv(D1, D2),

Γmin(fD−E) ⊆ Γmin(fD1−E)
⋃

Γmin(fD2−E).

Proof. Applying Corollary 3.5.10 to tconv(D1, D2) with respect to E and knowing

that D0 is the corresponding reduced divisor, we have

Γmin(fD1−E) = Γmin(fD1−D0)
⋂

Γmin(fD0−E),

Γmin(fD2−E) = Γmin(fD2−D0)
⋂

Γmin(fD0−E),

and

Γmin(fD−E) = Γmin(fD−D0)
⋂

Γmin(fD0−E).

Moreover, we have

Γmin(fD1−D0)
⋂

Γmin(fD2−D0) = Γ

by Lemma 3.3.5. Therefore,

Γmin(fD−E) ⊆ Γmin(fD0−E) = Γmin(fD1−E)
⋃

Γmin(fD2−E).
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Lemma 3.6.2. Let E,D1, D2 ∈ RDivd
+(Γ) and D′1, D

′
2 ∈ tconv(D1, D2). Suppose

D′1 ∈ tconv(D1, D
′
2). Let D0 be the E-reduced divisor in tconv(D1, D2) and D′0 be the

E-reduced divisor in tconv(D′1, D
′
2). Then

1. D′0 = D0 if and only if D0 ∈ tconv(D′1, D
′
2);

2. D′0 = D′1 if and only if D0 ∈ tconv(D1, D
′
1);

3. D′0 = D′2 if and only if D0 ∈ tconv(D′2, D2).

Proof. This is an immediate consequence of the fact that the functions B(PD1−D0(t)−

E) and B(PD2−D0(t)− E) are both strictly increasing (Corollary 3.5.10).

Lemma 3.6.3. For D1, D2, D3 ∈ RDivd
+(Γ), we have

1. D2 is the D1-reduced divisor in tconv(D2, D3) if and only if

B(D3 −D1) = B(D3 −D2) + B(D2 −D1).

2. D2 is simultaneously the D1-reduced divisor in tconv(D2, D3) and the D3-reduced

divisor in tconv(D1, D2) if and only if

ρ(D1, D3) = ρ(D1, D2) + ρ(D2, D3).

Proof. (1) follows easily from Lemma 3.5.2 (1), Proposition 3.5.7 and the criterions

for reduced divisors (Corollary 3.5.10).

Recall that by Lemma 3.5.2 (2), we have ρ(D1, D3) = ρ(D1, D2) + ρ(D2, D3) if

and only if

B(D3 −D1) = B(D3 −D2) + B(D2 −D1)

and

B(D1 −D3) = B(D1 −D2) + B(D2 −D3).

Then (2) follows from (1).
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Remark 3.6.4. By Lemma 3.6.3, the for the sufficient and necessary conditions for

equality in Lemma 3.5.15 can be equivalently stated as E2 is the E1-reduced divisor

in tconv(E2, TE2) and E1 is the E2-reduced divisor in tconv(E1, TE1).

3.6.2 Tropical triangles

Roughly, we may call the tropical convex hull generated by three divisors in RDivd
+(Γ)

a tropical triangle. We will show that tropical triangles are made of tropical segments.

Proposition 3.6.5. Let D0, D1, D2 ∈ RDivd
+(Γ) (see Figure 11), D3 ∈ tconv(D0, D1)

and D4 ∈ tconv(D0, D2). Then we have we have the following properties.

1. For every D5 ∈ tconv(D3, D4), there exists D′5 ∈ tconv(D1, D2) such that

D5 ∈ tconv(D0, D
′
5). In particular, we can let D′5 be the D5-reduced divisor

in tconv(D1, D2).

2. Conversely, for every D′5 ∈ tconv(D1, D2), there exists D5 ∈ tconv(D3, D4) such

that D5 ∈ tconv(D0, D
′
5). (In other words, tconv(D3, D4)

⋂
tconv(D0, D

′
5) 6= ∅.)

More precisely, assuming D′3 is the D3-reduced divisor in tconv(D1, D2) and D′4

is the D4-reduced divisor in tconv(D1, D2), we have

• if D′5 ∈ tconv(D′3, D
′
4), then D5 can be chosen such that D′5 be the D5-

reduced divisor in tconv(D1, D2);

• if D′5 ∈ tconv(D1, D
′
3), then D5 can be chosen to be D3; and

• if D′5 ∈ tconv(D2, D
′
4), then D5 can be chosen to be D4.

Proof. For (1), we suppose D′5 is the D5-reduced divisor in tconv(D1, D2), and claim

that D5 ∈ tconv(D0, D
′
5). By Lemma 3.6.1, we have

Γmin(fD′5−D5
) = Γmin(fD1−D5)

⋃
Γmin(fD2−D5).
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Figure 11: An illustration for Proposition 3.6.5.

Applying Lemma 3.6.1 again, we have

Γmin(fD3−D5) ⊆ Γmin(fD0−D5)
⋃

Γmin(fD1−D5)

and

Γmin(fD4−D5) ⊆ Γmin(fD0−D5)
⋃

Γmin(fD2−D5).

Note that Γmin(fD3−D5)
⋃

Γmin(fD4−D5) = Γ by Lemma 3.3.5. Therefore,

Γmin(fD0−D5)
⋃

Γmin(fD′5−D5
)

= Γmin(fD0−D5)
⋃

(Γmin(fD1−D5)
⋃

Γmin(fD2−D5))

= (Γmin(fD0−D5)
⋃

Γmin(fD1−D5))
⋃

(Γmin(fD0−D5)
⋃

Γmin(fD2−D5))

⊇ Γmin(fD3−D5)
⋃

Γmin(fD4−D5) = Γ,

which means D5 ∈ tconv(D0, D
′
5) by Lemma 3.3.5.

For (2), we need to use a fact in Section 3.8 that reduced-divisor maps (Defini-

tion 3.8.1) are continuous (Lemma 3.8.2). Then it follows that if D′5 ∈ tconv(D′3, D
′
4),

then there exists D5 ∈ tconv(D3, D4) such that D′5 be the D5-reduced divisor in

tconv(D1, D2). By (1), this also means that D5 ∈ tconv(D0, D
′
5) as expected.

If D′5 ∈ tconv(D1, D
′
3), then by Proposition 3.5.7 and Corollary 3.5.10,

Γmin(fD′5−D3
) = Γmin(fD′5−D′3)

⋂
Γmin(fD′3−D3

)
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and

Γmin(fD1−D3) = Γmin(fD1−D′3)
⋂

Γmin(fD′3−D3
),

which imply Γmin(fD1−D3) ⊆ Γmin(fD′5−D3
). (Actually, if in addition D′5 6= D′3, then

Γmin(fD1−D3) = Γmin(fD′5−D3
).) By Lemma 3.3.5, since D3 ∈ tconv(D0, D1) which

implies

Γmin(fD0−D3)
⋃

Γmin(fD1−D3) = Γ,

we have

Γmin(fD0−D3)
⋃

Γmin(fD′5−D3
) = Γ

which implies D3 ∈ tconv(D0, D
′
5).

If D′5 ∈ tconv(D2, D
′
4), a similar argument can show that D4 ∈ tconv(D0, D

′
5).

Remark 3.6.6. In our proof of Proposition 3.6.5 (2), in the case thatD′5 ∈ tconv(D′3, D
′
4)

and D′5 is the D5-reduced divisor in tconv(D1, D2), we do not need an additional as-

sumption that D′3, D
′
5, D

′
4 lie in tconv(D1, D2) in the same order as D3, D5, D4 lie in

tconv(D3, D4) as illustrated in Figure 11. But this is actually true, i.e., we must have

D′3 ∈ tconv(D1, D
′
4) (or equivalently D′4 ∈ tconv(D2, D

′
3)) and D′5 ∈ tconv(D′3, D

′
4).

Here is why. First we show that D′3 ∈ tconv(D1, D
′
4). If D′3 /∈ tconv(D1, D

′
4), then

D3 6= D4. Referring to our proof of Proposition 3.6.5 (2), we see that D3, D4 ∈

tconv(D0, D
′
3) and D3, D4 ∈ tconv(D0, D

′
4). Let us draw contradictions from all pos-

sible cases. Recall that by Lemma 3.5.13, given a compact tropical convex set T , a

divisor E of the same degree and TE the corresponding E-reduced divisor in T , all

the divisors on tconv(E, TE) share the same reduced divisor in T .

• D4 ∈ tconv(D3, D
′
3): It implies D′4 = D′3, a contradiction.

• D3 ∈ tconv(D4, D
′
4): It implies D′3 = D′4, a contradiction.

• D4 ∈ tconv(D0, D3): It goes back to the case D3 ∈ tconv(D4, D
′
4). (To see
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this, you may want to use Lemma 3.3.5 and refer to our proof of Proposi-

tion 3.6.5 (2).)

• D3 ∈ tconv(D0, D4): It goes back to the case D4 ∈ tconv(D3, D
′
3).

Thus we get D′3 ∈ tconv(D1, D
′
4) as claimed. Now suppose there exists D5 ∈

tconv(D3, D4) such that D′5 /∈ tconv(D′3, D
′
4). Actually we may suppose D′5 ∈

tconv(D1, D
′
3) \ {D′3} and D′3 ∈ tconv(D′4, D

′
5). Then by the continuity of reduced-

divisor maps, there must exist D6 ∈ tconv(D4, D5) such that D′3 is also the D6-

reduced divisor in tconv(D1, D2). Then following from Proposition 3.6.5 (1), both

D3 and D6 lie in tconv(D0, D
′
3). Since D5 ∈ tconv(D3, D6), we get D′5 = D′3 no

matter D6 ∈ tconv(D3, D
′
3) or D3 ∈ tconv(D6, D

′
3) by Lemma 3.5.13, which is a

contradiction.

Remark 3.6.7. There are several aspects of Proposition 3.6.5. First, as in (1), if

we choose arbitrarily a divisor (e.g. D3) in tconv(D0, D1), a divisor (e.g. D4) in

tconv(D0, D2), and then arbitrarily a divisor (e.g. D5) in tconv(D3, D4), we may add

a t-segment tconv(D5, D
′
5) with D′5 ∈ tconv(D1, D2) to the t-segment tconv(D0, D5)

while the result of such an extension is exactly tconv(D0, D
′
5). With one step further,

we can derive Corollary 3.6.8, which is a special case of Theorem 3.4.5. Second,

the D5-reduced divisor in tconv(D1, D2) (as we’ve done throughout the proof) is a

desired choice for D′5. On the other hand, in some cases, we can choose D′5 which is not

necessarily D5-reduced. Third, as in (2), it says that tconv(D3, D4) and tconv(D0, D
′
5)

must intersect. But the intersection might not be just a single point.

Corollary 3.6.8. For D0, D1, D2 ∈ RDivd
+(Γ), choose arbitrarily D′1 in tconv(D0, D1)

and D′2 in tconv(D0, D2). Then we have

tconv(D′1, D
′
2) ⊆

⋃
D∈tconv(D1,D2)

tconv(D0, D)
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Figure 12: An illustration for Proposition 3.6.9.

and

tconv(D0, D1, D2) =
⋃

D∈tconv(D1,D2)

tconv(D0, D).

Proof. By Proposition 3.6.5, we see immediately

tconv(D′1, D
′
2) ⊆

⋃
D∈tconv(D1,D2)

tconv(D0, D).

Then
⋃
D∈tconv(D1,D2) tconv(D0, D) is tropically convex by definition, and must be the

minimal to contain D0, D1 and D2. Thus

tconv(D0, D1, D2) =
⋃

D∈tconv(D1,D2)

tconv(D0, D).

3.6.3 Useful length inequalities

Proposition 3.6.9. For D0
1, D

0
2, D1, D2 ∈ RDivd

+(Γ) (Figure 12), let E1 ∈ tconv(D0
1, D1)

and E2 ∈ tconv(D0
2, D2). Let D′1 be the E2-reduced divisor in tconv(D0, D1) and D′2

the E1-reduced divisor in tconv(D0, D2). If D′1 ∈ tconv(D0
1, E1) and D′2 ∈ tconv(D0

2, E2),

then ρ(E1, E2) 6 ρ(D′′1 , D
′′
2) for all D′′1 ∈ tconv(E1, D1) and D′′2 ∈ tconv(E2, D2).

Proof. Let ltot be the total length of Γ. Under the assumptions and applying Lem-

ma 3.6.2, D′1 must also be theE2-reduced divisor in both tconv(D0
1, E1) and tconv(D0

1, D
′′
1),
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and D′2 must also E1-reduced divisor in both tconv(D0
2, E2) tconv(D0

2, D
′′
2). Therefore,

applying Corollary 3.5.10, we get the following equalities.

B(D′′1 − E2)

= B(D′1 − E2) + B(D′′1 −D′1)

= B(D′1 − E2) + B(D′′1 − E1) + B(E1 −D′1)

= B(D′′1 − E1) + B(E1 − E2),

and analogously

B(D′′2 − E1) = B(D′′2 − E2) + B(E2 − E1).

Therefore,

ρ(E1, E2)ltot = B(E1 − E2) + B(E2 − E1)

= (B(D′′1 − E2)− B(D′′1 − E1)) + (B(D′′2 − E1)− B(D′′2 − E2))

= (B(D′′1 − E2)− B(D′′2 − E2)) + (B(D′′2 − E1)− B(D′′1 − E1))

6 B(D′′1 −D′′2) + B(D′′2 −D′′1) = ρ(D′′1 , D
′′
2)ltot.

The last inequality follows from the triangle inequality for B-functions(Lemma 3.5.2).

The following corollaries of Proposition 3.6.9 are two special cases convenient for

applications.

Corollary 3.6.10. Let D0
1, D

0
2, D1, D2, E1, E2 be under the same hypotheses as in

Proposition 3.6.9. If E1 is the E2-reduced divisor in tconv(D0
1, D1), then

ρ(E1, E2) 6 max(ρ(D1, D2), ρ(D0
1, D

0
2)).

In particular, if in addition D0
1 = D0

2, then ρ(E1, E2) 6 ρ(D′′1 , D
′′
2) for all D′′1 ∈

tconv(E1, D1) and D′′2 ∈ tconv(E2, D2).
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Proof. Let D′1 be the E2-reduced divisor in tconv(D0
1, D1) and D′2 the E1-reduced

divisor in tconv(D0
2, D2). Then D′1 is exactly E1 which means D′1 ∈ tconv(D0, E1)

automatically. Thus by Proposition 3.6.9, if D′2 ∈ tconv(D0
2, E2), then ρ(E1, E2) 6

ρ(D1, D2), and if D′2 ∈ tconv(D2, E2), then ρ(E1, E2) 6 ρ(D0
1, D

0
2). In both cases,

ρ(E1, E2) 6 max(ρ(D1, D2), ρ(D0
1, D

0
2)).

Recall that by Lemma3.5.15, the distance between reduced divisors is at most

the distance between the original divisors. Thus if in addition D0
1 = D0

2 = D0, then

ρ(D0, D
′
2) 6 ρ(D0, E1) 6 ρ(D0, E2), which implies D′2 ∈ tconv(D0, E2). It follows

from Proposition 3.6.9 that ρ(E1, E2) 6 ρ(D′′1 , D
′′
2).

Corollary 3.6.11. Let D0
1, D

0
2, D1, D2, E1, E2 be under the same hypotheses as in

Proposition 3.6.9 and suppose D0
1 = D0

2 = D0. If ρ(D0, E1) = ρ(D0, E2), then

ρ(E1, E2) 6 ρ(D′′1 , D
′′
2) for all D′′1 ∈ tconv(E1, D1) and D′′2 ∈ tconv(E2, D2).

Proof. By Lemma3.5.15 and get ρ(D0, D
′
1) 6 ρ(D0, E2) and ρ(D0, D

′
2) 6 ρ(D0, E1).

Since ρ(D0, E1) = ρ(D0, E2), we get ρ(D0, D
′
1) 6 ρ(D0, E1) and ρ(D0, D

′
2) 6 ρ(D0, E2).

Thus we have D′1 ∈ tconv(D0, E1) and D′2 ∈ tconv(D0, E2), and it follows from Propo-

sition 3.6.9 that ρ(E1, E2) 6 ρ(D′′1 , D
′′
2).

3.7 A revisit of the general properties of tropical convex
sets

3.7.1 Proofs of Theorem 3.4.4 and Theorem 3.4.5

Proof of Theorem 3.4.4. Let T ⊆ RDivd
+(Γ) be tropically convex. To show T is

contractible, it suffices to find a continuous function h : [0, 1] × T → T such that

for some D0 ∈ T and all D ∈ T , h(0, D) = D and h(1, D) = D0. Indeed, we

can define the contraction map h as follows. Choose D0 arbitrarily from T and let

κ = supD′∈T ρ(D0, D
′). For any D ∈ T , we let h(t,D) = D if t ∈ [0, 1 − ρ(D0,D)

κ
),

and h(t,D) = PD0−D( κ
ρ(D0,D)

(t − 1) + 1) if t ∈ [1 − ρ(D0,D)
κ

, 1]. More explicitly, the

contraction happens in the following way: for any t ∈ [0, 1], if ρ(D0, D) < κ(1 − t),
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then h(t,D) = D, and otherwise, h(t,D) lies on the t-segment tconv(D0, D) with

distance κ(1 − t) to D0. Then it is clear that h(0, D) = D and h(1, D) = D0.

Therefore the only remaining fact to verify is the continuity of h. In other words, we

need to show that h(tn, Dn) → h(t,D) whenever tn → t and Dn → D (we let n > 0

for Dn to avoid confusion with D0). Note that

ρ(h(tn, Dn), h(t,D)) 6 ρ(h(tn, Dn), h(t,Dn)) + ρ(h(t,Dn), h(t,D)),

and

ρ(h(tn, Dn), h(t,Dn)) 6 ρ(D0, Dn)|tn − t| 6 κ|tn − t|.

Therefore, to show the continuity of h, it suffices to show ρ(h(t,Dn), h(t,D)) 6

ρ(Dn, D).

Case (1): ρ(D0, Dn) < κ(1−t) and ρ(D0, D) < κ(1−t). In this case, h(t,Dn) = Dn

and h(t,D) = D.

Case (2): ρ(D0, Dn) < κ(1−t) and ρ(D0, D) > κ(1−t). In this case, h(t,Dn) = Dn

and h(t,D) ∈ tconv(D0, D) with distance κ(1− t) to D0. Let D′ ∈ tconv(D0, D) be

the Dn-reduced divisor in tconv(D0, D). Then by Lemma 3.5.15,

ρ(D0, D
′) 6 ρ(D0, Dn) < κ(1− t) = ρ(D0, h(t,D)).

This means D′ ∈ tconv(D0, h(t,D)), and by Proposition 3.6.9,

ρ(h(t,Dn), h(t,D)) = ρ(Dn, h(t,D)) 6 ρ(Dn, D).

Case (3): ρ(D0, Dn) > κ(1− t) and ρ(D0, D) < κ(1− t). In this case, h(t,D) = D

and h(t,Dn) ∈ tconv(D0, Dn) with distance κ(1− t) to D0. Let D′n ∈ tconv(D0, Dn)

be the D-reduced divisor in tconv(D0, Dn). Using an analogous argument as in case

(2), we see that ρ(h(t,Dn), h(t,D)) 6 ρ(Dn, D).

Case (4): ρ(D0, Dn) > κ(1− t) and ρ(D0, D) > κ(1− t). In this case, h(t,Dn) ∈

tconv(D0, Dn) and h(t,D) ∈ tconv(D0, D), both with distance κ(1− t) to D0. There-

fore, by Corollary 3.6.11, we have ρ(h(t,Dn), h(t,D)) 6 ρ(Dn, D).
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Remark 3.7.1. The contraction map h constructed in the above proof deforms the

whole T to a point D0 ∈ T . In particular, one can notice that at each t ∈ [0, 1], the

set h(t, T ) is actually the sublevel set LT6r(ρD0) of the distance function ρD0 to D0

where r = κ(1− t). Therefore, h(t, T ) is tropically convex by Proposition 3.5.19 (3).

Proof of Theorem 3.4.5. Denote
⋃
D∈T,D′∈T ′ tconv(D,D′) by T̃ . Then clearly

T̃ ⊆ tconv(T,D). We claim that T̃ is tropically convex, which will imply T̃ =

tconv(T,D).

Choose arbitrarily E1 and E2 from T̃ . Then there exist D1, D2 ∈ T and D′1, D
′
2 ∈

T ′ such that E1 ∈ tconv(D1, D
′
1) and E2 ∈ tconv(D2, D

′
2). Since T and T ′ are

tropically convex, we have tconv(D1, D2) ⊆ T and tconv(D′1, D
′
2) ⊆ T ′. For every

E ∈ tconv(E1, E2), let D ∈ tconv(D1, D2) be the E-reduced divisor in tconv(D1, D2)

and D′ ∈ tconv(D′1, D
′
2) be the E-reduced divisor in tconv(D′1, D

′
2). To show T̃ is

tropically convex, it suffices to show that E ∈ tconv(D,D′).

By Lemma 3.6.1, we have

Γmin(fD−E) = Γmin(fD1−E)
⋃

Γmin(fD2−E),

Γmin(fD′−E) = Γmin(fD′1−E)
⋃

Γmin(fD′2−E),

Γmin(fE1−E) ⊆ Γmin(fD1−E)
⋃

Γmin(fD′1−E),

and

Γmin(fE2−E) ⊆ Γmin(fD2−E)
⋃

Γmin(fD′2−E).

Note that since E ∈ tconv(E1, E2), we have Γmin(fE1−E)
⋃

Γmin(fE2−E) = Γ by Lem-

ma 3.3.5. Therefore,

Γmin(fD−E)
⋃

Γmin(fD′−E)

= (Γmin(fD1−E)
⋃

Γmin(fD2−E))
⋃

(Γmin(fD′1−E)
⋃

Γmin(fD′2−E))

= (Γmin(fD1−E)
⋃

Γmin(fD′1−E))
⋃

(Γmin(fD2−E)
⋃

Γmin(fD′2−E))

⊇ Γmin(fE1−E)
⋃

Γmin(fE2−E) = Γ,
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which means E ∈ tconv(D,D′) by Lemma 3.3.5.

Recall that a metric space is compact if and only if it is complete and totally

bounded. Now let us show that if in addition T and T ′ are complete and totally

bounded, then T̃ is also complete and totally bounded.

First, we show that T̃ is complete. Let E1, E2, . . . be a Cauchy sequence in T̃ ,

i.e., ρ(Em, En) → 0 as m,n → ∞. We claim that there exists E0 ∈ T̃ such that

ρ(En, E0) → 0 as n → ∞, which implies the completeness of T̃ . Since T is com-

pact, there exist a unique Ei-reduced divisor Di in T and a unique Ei-reduced di-

visor D′i in T ′. Then D1, D2, . . . is a Cauchy sequence in T and D′1, D
′
2, . . . is a

Cauchy sequence in T ′, since ρ(Dm, Dn) 6 ρ(Em, En) and ρ(D′m, D
′
n) 6 ρ(Em, En)

by Lemma3.5.15. Let D0 ∈ T be the limit of D1, D2, . . . and D′0 ∈ T be the

limit of D′1, D
′
2, . . .. Consider the t-segments tconv(D0, D

′
0). Then we get another

Cauchy sequence F1, F2, . . . in tconv(D0, D
′
0), where Fi be the Ei-reduced divisor in

tconv(D0, D
′
0). If E0 ∈ tconv(D,D0) is the limit of F1, F2, . . ., then we have

ρ(En, E0) 6 ρ(En, Fn) + ρ(Fn, E0) 6 max(ρ(Dn, D0), ρ(D′n, D
′
0) + ρ(Fn, E0),

where the second inequality follows from Corollary 3.6.10. Thus ρ(En, E0) → 0 as

n→∞ as claimed.

Second, we show that T̃ is totally bounded, i.e., for every real ε > 0, there exists

a finite cover of T̃ by open balls of radius ε. We start with a finite cover of T by

open balls BT (Di, ε/2) ⊆ T of radius ε/2 with centers Di ∈ T for i = 1, . . . , n,

and a finite cover of T ′ by open balls BT ′(D′j, ε/2) ⊆ T ′ of radius ε/2 with centers

D′j ∈ T ′ for j = 1, . . . ,m. Then for each tconv(Di, D
′
j), we have a finite cover by

open balls B(i,j)(D
(i,j)

k(i,j) , ε/2) ⊆ tconv(Di, D
′
j) of radius ε/2 with the centers D

(i,j)

k(i,j) ∈

tconv(Di, D
′
j) for k(i,j) = 1, . . . ,m(i,j). We claim that there is a finite cover of T̃ by

open balls BT̃ (D
(i,j)

k(i,j) , ε) ⊆ T̃ of radius ε with the centers D
(i,j)

k(i,j) ∈ T̃ for i = 1, . . . , n,

j = 1, . . . ,m and k(i,j) = 1, . . . ,m(i,j). For any E ∈ T̃ , there exist D ∈ T and

D′ ∈ T ′ such that E ∈ tconv(D,D′). Suppose D ∈ BT (Di, ε/2) for some i and D′ ∈
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BT ′(D′j, ε/2) for some j. Furthermore, let F be the E-reduced divisor in tconv(Di, D
′
j)

and suppose F ∈ B(i,j)(D
(i,j)

k(i,j) , ε/2) for some D
(i,j)

k(i,j) . We have

ρ(E,D
(i,j)

k(i,j)) 6 ρ(E,F )+ρ(F,D
(i,j)

k(i,j)) 6 max(ρ(D,Di), ρ(D′, D′j))+ρ(D′′, D
(i,j)

k(i,j)) < ε/2+ε/2 = ε,

where the second inequality follows from Corollary 3.6.10. Thus E lies inBT̃ (D
(i,j)

k(i,j) , ε),

which means T̃ is covered by this finite collection of open balls as claimed.

3.7.2 Finitely generated tropical convex hulls

Recall that Lemma 3.3.5 provides a criterion for judging whether a divisor D lies

in a tropical segment tconv(D1, D2), and Lemma 3.6.1 extends the criterion. The

following theorem generalizes these results to all finitely generated tropical convex

hulls, which are compact according to Corollary 3.4.6.

Theorem 3.7.2. Let T ⊆ RDivd
+ be a tropical convex hull finitely generated by

D1, . . . , Dn. Then for any E ∈ RDivd
+, we have E ∈ T if and only if

⋃n
i=1 Γmin(fDi−E) =

Γ. Furthermore, if D0 is the E-reduced divisor in T and D is an arbitrary divisor in

T , then

Γmin(fD−E) ⊆ Γmin(fD0−E) =
n⋃
i=1

Γmin(fDi−E).

Proof. We prove by induction on the number of generators. Suppose the statements

are true for all tropical convex hulls generated by n divisors. Now consider a tropical

convex hull T generated by n+ 1 divisors D1, . . . , Dn+1. Let T ′ = tconv(D1, . . . , Dn)

be a t-convex subset of T . For E ∈ RDivd
+, let D0 be the E-reduced divisor in T .

By Theorem 3.4.5, there exists D′0 ∈ T ′ such that D0 ∈ tconv(D′0, Dn), which implies

Γmin(fD′0−D0
)
⋃

Γmin(fDn−D0) = Γ by Lemma 3.3.5. By assumption, we have

Γmin(fD′0−D0
) ⊆

n⋃
i=1

Γmin(fDi−D0).

Thus,
⋃n+1
i=1 Γmin(fDi−D0) = Γ.
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In addition, Γmin(fDi−D0) = Γmin(fD0−E)
⋂

Γmin(fDi−D0). Therefore,

Γmin(fD0−E) = Γmin(fD0−E)
⋂

(
n+1⋃
i=1

Γmin(fDi−D0))

=
n+1⋃
i=1

(Γmin(fD0−E)
⋂

Γmin(fDi−D0))

=
n+1⋃
i=1

Γmin(fDi−E).

And this also implies E ∈ T if and only if
⋃n+1
i=1 Γmin(fDi−E) = Γ.

Let T be a tropical convex set. For D ∈ T , if D /∈ tconv(T \ {D}), (note

that equivalently this means T \ {D} is also tropically convex) then we say D is an

extremal of T . It is clear from definition that any generating set of T must contain

all the extremals of T .

Theorem 3.7.3. Every finitely generated tropical convex hull T contains finitely

many extremals. The set S of all extremals of T generates T and is minimal among

all generating sets of T .

Proof. Let S ′ be a finite generating set of T , i.e., tconv(S ′) = T . We may choose

a subset S of S ′ such that tconv(S) = T and S is t-convex independent. (The

uniqueness of the choice of S, which follows from the assertion in the theorem, is not

required now.) We claim S is the set of all extremals of T , which also implies the

minimality of S.

Let S = {D0, D1, D2, . . . , Dn} and T = tconv(D1, . . . , Dn). Since S is t-convex

independent, we must have D0 /∈ T ′, which implies
⋃n
i=1 Γmin(fDi−D0) 6= Γ by Theo-

rem 3.7.2. It suffices to show that D0 is an extremal of T , i.e., T \ {D0} is tropically

convex. Choose arbitrarily E1 and E2 in T \{D0}. According to Theorem 3.4.5, there

exist F1 and F2 in T ′ such that E1 ∈ tconv(D0, F1) and E2 ∈ tconv(D0, F2). Note

that it follows Γmin(fE1−D0) = Γmin(fF1−D0) and Γmin(fE2−D0) = Γmin(fF2−D0). By
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Theorem 3.7.2, we have

Γmin(fF1−D0) ⊆
n⋃
i=1

Γmin(fDi−D0)

and

Γmin(fF2−D0) ⊆
n⋃
i=1

Γmin(fDi−D0).

Then,

Γmin(fE1−D0)
⋃

Γmin(fE2−D0) = Γmin(fF1−D0)
⋃

Γmin(fF2−D0) ⊆
n⋃
i=1

Γmin(fDi−D0) 6= Γ,

which implies D0 /∈ tconv(E1, E2). Therefore, T \{D0} is tropically convex as claimed.

3.8 Canonical projections

The existence and uniqueness of a reduced divisor in a compact tropical convex set

T with respect to an effective R-divisor of the same degree enable us to define a

projection map to T .

Definition 3.8.1. For a compact tropical convex set T of degree d, the canonical

projection to T , γT : RDiv+ → T , is given by sending E to the E ′-reduced divisor

TE′ in T where E ′ = d
degE

E.

Lemma 3.8.2. Restricted to degree d, a reduced-divisor map γT |RDivd
+

is continuous.

Proof. This is an immediate corollary of Lemma 3.5.15 and Lemma 3.3.9.

Remark 3.8.3. For a complete linear system |D|, Omini [3] defined the reduced-divisor

map: Red : Γ → |D| by sending a point q ∈ Γ to the (conventional) reduced divisor

Dq ∈ |D|. In our setting, the map Red is precisely γ|D||Div1
+

.

Let us recall some basic topological notions of retractions and retracts. If Y is

a subspace of a topological space X, then a retraction of X onto Y is a continuous

surjection r : X � Y such that r|Y = idY . A deformation retraction of X onto Y is
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a homotopy between the identity map of X and a retraction of X onto Y , or more

explicitly, a continuous map h : [0, 1] ×X → X such that for all x ∈ X and y ∈ Y ,

h(0, x) = x, h(1, x) ∈ Y , and h(1, y) = y. If in addition h(t, y) = y for all t ∈ [0, 1]

and y ∈ Y , then h is called a strong deformation retraction. With respect to the

existence of a retraction, a deformation retraction or a strong deformation retraction

of X onto Y , we say Y is a retract, a deformation retract or a strong deformation

retract of X.

Now let T ⊆ RDivd
+ be a compact tropical convex set. We know that the canonical

projection γT |RDivd
+

is continuous (Lemma 3.8.2) and γT |T = idT (Lemma 3.5.11).

Therefore, T is a retract of RDivd
+ with γT |RDivd

+
the retraction. In addition, we can

use the reduced-divisor map to construct a strong deformation retraction on T .

Definition 3.8.4. Let X ⊆ RDivd
+ be tropically convex. Let T ⊆ X be a compact

tropical convex subset of X. Then we say a strong deformation retraction h : [0, 1]×

X → X of X onto T is a tropical retraction if at each t ∈ [0, 1], the set h(t,X) is

tropically convex. In this sense, we say T is a tropical retract of X.

Theorem 3.8.5. For each compact tropical convex subset T of a tropical convex set

X ⊆ RDivd
+, there exists a tropical retraction of X onto T .

Proof. Our proof will be very similar to the proof of Theorem 3.4.4. We will explicitly

construct such a tropical retraction h : [0, 1]×X → X. In particular, for each D ∈ W ,

we want h(0, D) = D and h(1, D) = γT (D).

Let ρT (D) := minD′∈T ρ(D,D′). Note that ρ(D, γT (D)) = ρT (D) (Proposi-

tion 3.5.19 (1)). Let κ = supD∈X ρT (D). We define h in the following way. For any

D ∈ W , we let h(t,D) = D if t ∈ [0, 1−ρT (D)
κ

), and h(t,D) = PγT (D)−D( κ
ρT (D)

(t−1)+1)

if t ∈ [1− ρT (D)
κ

, 1]. In other words, if ρT (D) < κ(1− t), then h(t,D) = D, and other-

wise, h(t,D) lies on the t-segment tconv(D, γT (D)) with distance κ(1− t) to γT (D).

It can be easily verified that h(0, D) = D and h(1, D) = γT (D). In addition, if
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D ∈ T , then h(t,D) = D = γT (D) for all t ∈ [0, 1]. Now, to show h is actually a

tropical retraction of X onto T , it remains to show that h is continuous, and h(t,X)

is tropically convex for all t ∈ [0, 1].

To say h is continuous is equivalent to say h(tn, Dn) → h(t,D) whenever tn → t

and Dn → D. We have

ρ(h(tn, Dn), h(t,D)) 6 ρ(h(tn, Dn), h(t,Dn)) + ρ(h(t,Dn), h(t,D)),

and

ρ(h(tn, Dn), h(t,Dn)) 6 ρ(D0, Dn)|tn − t| 6 κ|tn − t|.

In stead of proving ρ(h(t,Dn), h(t,D)) 6 ρ(Dn, D) as in the proof of Theorem 3.4.4,

here we claim that ρ(h(t,Dn), h(t,D)) is bounded by 2 · ρ(Dn, D), which is still suf-

ficient to guarantee the continuity of h.

Let h(t,Dn) = D′n and h(t,D) = D′. Note that γT (Dn) = γT (D′n) and γT (D) =

γT (D′) (Lemma 3.5.13). Denote these reduced divisors by Cn and C respectively.

Also, we note that ρ(Dn, D) > ρ(Cn, C) (Lemma 3.5.15).

Case (1): ρT (Dn) < κ(1− t) and ρT (D) < κ(1− t). Then D′n = Dn and D′ = D.

We automatically have ρ(D′n, D
′) = ρ(Dn, D).

Case (2): ρT (Dn) < κ(1− t) and ρT (D) > κ(1− t). Then D′n = Dn and

ρ(Dn, Cn) = ρT (Dn) < ρ(D′, C) = ρT (D′) = κ(1− t).

Let D′′ ∈ tconv(C,D) be the Dn-reduced divisor in tconv(C,D). Depending on the

relative positions of D′ and D′′ in tconv(C,D), there are two subcases.

Subcase (2a): D′′ ∈ tconv(C,D′). By Proposition 3.6.9, we have

ρ(D′n, D
′) = ρ(Dn, D

′) 6 ρ(Dn, D).

Subcase (2b): D′ ∈ tconv(C,D′′). Now let C ′′ be the Cn-reduced divisor in
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tconv(C,D). Then we have ρ(C ′′, C) 6 ρ(Cn, C) and ρ(D′′, C ′′) 6 ρ(Dn, Cn) (Lem-

ma 3.5.15). Also, we note that ρ(Dn, Cn) < ρ(D′, C) = κ(1− t). Therefore,

ρ(D′′, D′) = ρ(D′′, C)− ρ(D′, C) 6 (ρ(D′′, C ′′) + ρ(C ′′, C))− ρ(D′, C)

6 (ρ(Dn, Cn) + ρ(Cn, C))− ρ(D′, C) < ρ(Cn, C) 6 ρ(Dn, D).

Moreover, by Corollary 3.6.10, we have

ρ(Dn, D
′′) 6 max(ρ(Cn, C), ρ(Dn, D)) = ρ(Dn, D).

It follows

ρ(D′n, D
′) = ρ(Dn, D

′) 6 ρ(Dn, D
′′) + ρ(D′′, D′) < 2 · ρ(Dn, D).

Case (3): ρT (Dn) > κ(1 − t) and ρT (D) < κ(1 − t). Then D′ = D and ρT (D) <

ρT (D′n) = κ(1 − t). Exchanging the roles of Dn and D, we may analyze this case in

the same way as in Case (2), and conclude that ρ(D′n, D
′) < 2 · ρ(Dn, D) in general.

Case (4): ρT (Dn) > κ(1− t) and ρT (D) > κ(1− t). In this case,

ρ(D′n, Cn) = ρT (Dn) = ρ(D′, C) = ρT (D′) = κ(1− t).

LetD′′ ∈ tconv(C,D) be theD′n-reduced divisor in tconv(C,D) andD′′n ∈ tconv(Cn, Dn)

be the D′-reduced divisor in tconv(Cn, Dn). We need to consider the relative the po-

sitions of D′ and D′′ in tconv(C,D) and the relative positions of D′n and D′′n in

tconv(Cn, Dn).

Case (4a): D′′ ∈ tconv(C,D′) and D′′n ∈ tconv(Cn, D
′
n). Then we can apply

Proposition 3.6.9 and see that ρ(D′n, D
′) 6 ρ(Dn, D).

Case (4b): D′′ ∈ tconv(D′, D) and D′′n ∈ tconv(D′n, Dn). Again we can apply

Proposition 3.6.9 and get ρ(D′n, D
′) 6 ρ(Cn, C) 6 ρ(Dn, D).

Case (4c): D′′ ∈ tconv(D′, D) and D′′n ∈ tconv(Cn, D
′
n). We can use an analogous

analysis as in Case (2b) and get

ρ(D′n, D
′) 6 ρ(D′n, D

′′) + ρ(D′′, D′) 6 2 · ρ(Dn, D).
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Note that we get “ 6′′ instead of “ <′′ as in Case (2b) because we now have

ρ(D′n, Cn) = ρ(D′, C) = κ(1− t).

Case (4d): D′′ ∈ tconv(C,D′) and D′′n ∈ tconv(D′n, Dn). Base on a similar analysis

as in Case (4c), we get

ρ(D′n, D
′) 6 ρ(D′n, D

′′
n) + ρ(D′′n, D

′) 6 2 · ρ(Dn, D).

So far we’ve finished the proof of the continuity of h. To show h(t,X) is tropically

convex, we note that h(t, T ) is the sublevel set LT6r(ρT ) of the distance function ρT

where r = κ(1 − t). Hence we only need to show that choosing arbitrarily D1 and

D2 from X such that ρT (D1) 6 r and ρT (D2) 6 r, we must have ρT (D) 6 r for

every D ∈ tconv(D1, D2). Let C1 and C2 the reduced divisors in T with respect

to D1, D2 respectively. Let C be the D-reduced divisor in tconv(C1, C2). Then by

Corollary 3.6.10, we must have

ρT (D) 6 ρ(D,C) 6 max(ρ(D1, C1), ρ(D2, C2)) = max(ρT (D1), ρT (D2)) 6 r.
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CHAPTER IV

SMOOTHING OF LIMIT LINEAR SERIES OF RANK

ONE ON REFINED METRIZED COMPLEXES OF

ALGEBRAIC CURVES

In this chapter, we study the smoothing problem of limit linear series of rank one on

refined metrized complexes.

4.1 Statement of the main result

In the following section, we provide a self-contained explanation of the effective cri-

terion for smoothing and the key steps in the proof.

4.1.1 Refined metrized complexes

Let K be an algebraically closed field complete with respect to a non-trivial non-

archimedean absolute value. Let κ be the residue field of K and let R be the valuation

ring of K. Furthermore, we assume that κ has characteristic 0 the value group of K

is R.

Definition 4.1.1. A refined metrized complex C over an algebraically closed field

κ is the following data:

• A metric graph Γ.

• An algebraic curve Cp associated to each point p ∈ Γ such that Cp is a projective

line except for p in a finite subset of Γ.

• For every point p ∈ Γ, a bijection redp : TanΓ(p) → Ap called the reduc-

tion map where TanΓ(p) is the set of outgoing tangent directions at p and
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Ap = {xpt}t∈TanΓ(p) is a finite subset of Cp where xpt is called the marked point

associated to the tangent direction t.

Definition 4.1.2. The genus g(C) of a refined metrized complex C is defined as

g(Γ) +
∑

p∈Γ g(Cp) where g(Γ) is the genus of the metric graph Γ and g(Cp) is the

genus of the algebraic curve Cp. The genus of a refined metrized complex is finite

since Cp has genus zero for all but a finite number of points p in Γ.

The notion of refined metrized complex comes from the notion of metrized complex

introduced by Amini and Baker [4] where the difference is that they only associate

algebraic curves to a vertex set of Γ.

4.1.2 Divisor theory on a refined metrized complex

The basic notions for the divisor theory on refined metrized complexes also come

straightforwardly as correspondences to notions on metrized complexes developed by

Baker and Amini [4].

Definition 4.1.3. Let C be a refined metrized complex with underlying metric graph

Γ and algebraic curve Cp at point p. Let DΓ be a divisor on Γ and let Dp be a divisor

on the curve Cp. A pseudo-divisor D on C is the data (DΓ, {Dp}p∈Γ) satisfying the

relation DΓ(p) = deg(Dp) for every point p ∈ Γ. A divisor D on a refined metrized

complex is a pseudo-divisor where Dp = 0 for all but finitely many points.

Note that for any pseudo-divisor D on a refined metrized complex, Dp will be a

principal divisor for all but finitely many points p ∈ Γ. But, Dp can be non-zero

for infinitely many points in Γ. This is unconventional from the viewpoint of divisor

theory and the notion of divisor on a refined metrized complex rectifies this aspect.

Remark 4.1.4. Note that the space of pseudo-divisors on C is a subgroup of

Div(Γ)
⊕∏

p∈Γ Div(Cp). The space of divisors on C is a subgroup of

Div(Γ)
⊕

(
⊕

p∈Γ Div(Cp)) that is itself isomorphic to
⊕

p∈Γ Div(Cp), which is the free
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abelian group on
∐

p∈ΓCp. Moreover, we say a pseudo-divisor D = (DΓ, {Dp}p∈Γ) is

effective if the divisor DΓ is effective and Dp is effective for all points p ∈ Γ.

Definition 4.1.5. A pseudo-rational function f on C is the data (fΓ, {fp}p∈Γ)

where fΓ is a rational function on Γ and fp is a rational function on the algebraic

curve Cp. Here we let the associated divisor of fΓ be div(fΓ) =
∑

p∈Γ ordp(fΓ)(p)

where ordp(fΓ) is the sum of slopes slt(fΓ) of fΓ along all outgoing tangent directions

t at p. The principal pseudo-divisor div(f) associated with the rational function is

defined as (div(fΓ), {div(fp) + divp(fΓ)}p∈Γ) where divp(fΓ) =
∑

t∈TanΓ(p) slt(fΓ)xpt . A

rational function is a pseudo rational function whose associated principal pseudo-

divisor is a divisor. We also call a principal pseudo-divisor associated to a rational

function a principal divisor. We say divisors D1 and D2 are linearly equivalent if

they differ by a principal divisor.

Remark 4.1.6. Note that just by definition, the associated divisor div(fΓ) defined

here is actually negative to the associated divisor ∆fΓ defined in the previous two

chapters, since in this chapter we are following the conventional notions in paper [4].

As in the case of principal divisors on an algebraic curve or principal divisors on

a metric graph, the principal divisors on a refined metrized complex form an Abelian

group under addition.

4.1.3 Pre-limit linear series and limit linear series on a refined metrized
Complex

We introduce notions of pre-limit linear series and limit linear series on a refined

metrized complex.

Definition 4.1.7. A pre-limit linear series of rank r and degree d on a refined

metrized complex C, also known as a pre-limit grd, is the data (D,H) where D is an

effective divisor of degree d on C and H = {Hp}p∈Γ where Hp is an (r+1)-dimensional

subspace of the function field of Cp.
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Definition 4.1.8. A limit linear series of rank r and degree d, also known as a limit

grd, on a refined metrized complex is a pre-limit grd such that for every effective divisor

E on C of degree r, there exists a rational function f such that D − E + div(f) ≥ 0.

Definition 4.1.9. A refined limit grd (respectively, a refined pre-limit grd) is a

limit grd (respectively, a pre-limit grd) with the following additional properties:

1. The constant function is contained in Hp for every point p ∈ Γ.

2. For every point p, the support of Dp is disjoint from the set Ap of marked points

of Cp.

Remark 4.1.10. More precisely, in all the above definitions of limit/pre-limit linear

series, (D,H) is only a representative of the limit/pre-limit linear series which is

actually an equivalence class defined in the following way: we say (D,H) ∼ (D′,H′)

if (1) there exists a rational function f such that D′ = D + div(f), (2) fp ∈ Hp for all

p ∈ Γ, and (3) H ′p = { f
fp
|f ∈ Hp}. However, throughout this chapter, we directly call

(D,H) limit/pre-limit linear series.

4.1.4 Statement of the smoothing theorem

The following notion of harmonic morphisms between refined metrized complexes is

also a correspondence of harmonic morphisms on metrized complexes [5, 6]. (Here

the notion harmonic morphism is actually an enrichment of the notion of admissible

covers of Harris and Mumford [42]).

Definition 4.1.11. A harmonic morphism between refined metrized complexes C′

and C is the data {φΓ′ , {φp′}p′∈Γ′} where φΓ′ : Γ′ → Γ is a harmonic morphism between

Γ′ and Γ (cf. [14] for harmonic morphisms between graphs) and φp′ : Cp′ → CφΓ′ (p)
is

a finite morphism of curves satisfying the following compatibility conditions:

1. Tangent directions t′1, t
′
2 ∈ TanΓ′(p

′) are mapped to the same tangent direction

t ∈ TanΓ(φΓ′(p
′)) by φΓ′ if and only if the marked points corresponding to t′1
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and t′2 are mapped to the marked point corresponding to the tangent direction

t.

2. The expansion factor of φΓ′ along a tangent direction t′ ∈ Tan(v′) coincides with

the ramification index of φv′ at the marked point corresponding to the tangent

direction t′.

A characterization of smoothable limit g1
d following the recent work in [5,6] is the

starting point of our work.

Theorem 4.1.12. A limit g1
d (D, {Hp}p∈Γ) on C is smoothable if and only if there

exists a modification Cmod of C and a harmonic morphism (φΓmod , {φp}p∈Γmod) from

Cmod to a genus zero refined metrized complex such that φp = fp where fp is a non-

constant function in Hp.

The characterization of a smoothable limit g1
d in Theorem 4.1.12 is not effective

since given a limit g1
d the construction of the modification and the genus zero metrized

complex is not evident. Furthermore, it is not evident from Theorem 4.1.12 if every

limit g1
d is smoothable. It turns out that not every limit g1

d is smoothable. Our main

result is an effective characterization of smoothable limit g1
d, in particular we identify

all the obstructions to smoothing a limit g1
d. For the rest of this section, we focus

on formulating a precise statement of the effective characterization of a smoothable

limit g1
d. In order to give the reader an impression of the statement, we start with

the statement despite not having defined the obstructions to smoothing. We then

explain the obstructions to smoothing.

Theorem 4.1.13. (Smoothing Theorem) A pre-limit g1
d is smoothable if and only

it is a diagrammatic pre-limit g1
d that is solvable and satisfies the intrinsic global

compatibility conditions.

In the following, we explain the terms “diagrammatic” pre-limit g1
d, the notion of
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“solvability” and “intrinsic global compatibility” conditions. In particular, we explain

that these conditions are effective.

4.1.5 Diagrammatic pre-limit g1
d and solvability

Let (D,H) with D = (DΓ, {Dp}p∈Γ) and H = {Hp}p∈Γ be a refined limit grd and let

the subspace Hp have a basis of the form {1, fp} where fp is a non-constant rational

function on the algebraic curve Cp.

Definition 4.1.14. RD,H is a subset of |DΓ| defined as follows: D′Γ ∈ RD,H if there

exists an effective divisor D′ = (D′Γ, {D′p}p∈Γ) and a rational function f = (fΓ, {fp}p∈Γ)

such that (1) fp ∈ Hp for all p ∈ Γ and (2) D′ −D = div(f).

Suppose that (D,H) is smoothable and consider the metric tree T underlying a

genus zero metrized complex satisfying Theorem 4.1.12. Then we can actually identify

T to a subset of RD,H.

From the properties of the harmonic morphisms of tropical curves [14], we know

that T is tropically convex and each point p ∈ Γ is a supporting point of a divisor in

T (actually we will call T satisfying these conditions tropical dominant trees in this

chapter).

A key step in our smoothing theorem is a characterization of tropical dominant

subtrees of RD,H. However not every such tropically convex dominant subtree of RD,H

can appear as the metric tree underlying the genus zero metrized complex in Theorem

4.1.12. We will characterize tropical dominant subtrees that can appear as the metric

tree underlying the genus zero metrized complex.

From the point of view of investigating trees in RD,H, it is convenient to reorganize

the information in the subspace Hp via local diagrams and global diagrams on Γ

defined as follows:

Definition 4.1.15. A local diagram at a point p in a metric graph Γ is following

data:
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1. A nonzero integer m(p, t) called the multiplicity associated to each tangent di-

rection t ∈ TanΓ(p), where TanΓ(p) is the set of tangent directions emanating

from p. We refer to those tangent directions with negative multiplicity as in-

coming tangent directions and denote it by In(p). Similarly, we refer to those

tangent directions with positive multiplicity as outgoing tangent directions and

denote it by Out(p).

2. The elements in TanΓ(p) are partitioned into equivalence classes and these e-

quivalence classes satisfy the property that for every point p, the set In(p) is an

equivalence class. We refer to this partition of TanΓ(p) as the local partition at

p and refer to the tangent directions that belong to the same equivalence class

as locally equivalent.

An open neighborhood of a point p ∈ Γ is called a simple neighborhood if it is

simply connected and every point in the neighborhood except possibly p has valence

two.

Remark 4.1.16. For a simple neighborhood U of a point p ∈ Γ, a local diagram at

a point p induces a local diagram on any point in U as follows: suppose the point

q ∈ U lies in the tangent direction t ∈ TanΓ(p). Note that q has valence two. Assign

the integer −m(p, t) to the tangent direction at q corresponding to the edge joining

p and q and assign the integer m(p, t) to the other tangent direction. Assign the two

tangent directions at q to different equivalence classes.

Definition 4.1.17. A global diagram on a metric graph Γ is a collection of local

diagrams at all the points in Γ such that the local diagrams satisfy the following

continuity property: For every point p, there is a simple neighborhood U of p such

that for every point q ∈ U the local diagram induced by p at q coincides with the

local diagram at q.
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Remark 4.1.18. In the following, given a refined pre-limit g1
d (D,H), we associate a

local diagram to every point on the metric graph. From the definition of a refined

pre-limit g1
d, we know that the two dimensional subspace Hp of rational functions

of Cp associated to a point p has a basis {1, fp} where fp is a nonconstant rational

function on Cp. We construct the local diagram at p as follows: for a tangent direction

t of Cp, we assign the ramification index of fp at the marked point corresponding to

the tangent direction t as the multiplicity m(p, t) with sign ‘−’ if redp(t) is a pole of

fp and sign ‘+’ otherwise. The local partition at p is defined by declaring that two

tangent directions are locally equivalent if and only if their marked points are in the

same level set of fp. Hence, In(p) is the set of tangent directions whose corresponding

marked points are poles of fp and the elements of In(p) are all locally equivalent.

Note that this construction is independent of the choice of basis for Hp. In addition,

we say a local diagram is compatible with (D,H) if Dp − Σt∈In(p)m(p, t)(xpt ) > D−fp

where D−fp is div(fp) restricted to the poles. For example, Figure 13 shows the local

diagram generated by fv of degree 3 which has the red points on vv as poles, the

black points as zeros and maps the blue points to value c. Two out of the three poles

are marked points of Cv which correspond to the red incoming tangent directions at

v ∈ Γ. Both zeros are marked points corresponding to the two black outgoing tangent

directions, while one has multiplicity 1 and the other has multiplicity 2. Only one out

of the three points mapped to c is a marked point, which correspond to the unique

blue outgoing tangent direction.

Definition 4.1.19. We say a refined limit g1
d (D,H) (respectively pre-limit g1

d)on

C = (Γ, {Cp}p∈Γ) is a diagrammatic limit g1
d (respectively diagrammatic pre-

limit g1
d) if the collection of associated local diagrams at all points of Γ is compatible

with (D,H) and forms a global diagram.

As we shall see in Theorem 4.6.3, a smoothable limit g1
d is a diagrammatic limit

g1
d.
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Figure 13: An illustration of a local diagram generated by Hv expanded by a basis
{1, fv}.

Definition 4.1.20. ( Characteristic Equation of a Global Diagram) A global

diagram on Γ is called solvable if there exists a tropical rational function ρ on Γ such

that the outgoing slope of ρ at the tangent direction t ∈ Tan(p) for any point p ∈ Γ

coincides with the multiplicity. Formally, this means that the following differential

equation is satisfied:

slt(ρ) = m(p, t). (1)

We refer to this equation as the characteristic equation of the global diagram. If

the global diagram obtained from a diagrammatic limit/pre-limit g1
d is solvable, then

we may directly say that the diagrammatic limit/pre-limit g1
d is solvable.

4.1.6 Intrinsic global compatibility conditions

In general, the characteristic equation of a global diagram associated to diagrammatic

pre-limit g1
d does not have a solution (see Example 4.7.7 and Section 4.7.2 for a detailed

discussion). However, the global diagram associated to a smoothable limit g1
d has a

solution (cf. our main result in Theorem 4.1.13). When a global diagram is solvable,

the solutions of the characteristic equation differ by a constant and have everywhere

nonzero slopes. We refer to a solution to the characteristic equation as a timing
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function if its minimum value is zero.

Solvability is only a necessary condition for a limit g1
d being smoothable. In order

to completely characterize a smoothable limit g1
d we impose compatibility conditions

between the bifurcation tree and the local partitions in the global diagram associated

with the diagrammatic limit g1
d. We refer to these compatibility conditions as intrinsic

global compatibility conditions, which is stated in Definition 4.1.23.

For a point p in Γ, recall that TanΓ(p) is the set of tangent directions emanat-

ing from p. Let Tanρ+
Γ (p) denote the set of tangent directions in TanΓ(p) where ρ

locally increases. Given a rational function ρ with everywhere nonzero slopes, we

may canonically associate to ρ a pair (B, π) where B is rooted metric tree (having a

specific point as the ‘root’) and πB : Γ → B is a canonical projection from Γ onto B

(see details in Section ??). Moreover, πB induces a pushforward map πB∗ from the

tangent directions on Γ to tangent directions on B, and if we let Tan+
B (x) be the set

of forward tangent directions (meaning the distance function from the root increases

along these directions) at x ∈ B, then for any p ∈ Γ and t ∈ Tanρ+
Γ (p), we have

πB∗(t) ∈ Tan+
B (π(p)).

Definition 4.1.21. A bifurcation partition system {~Px}x∈B on B is a collection

of partitions ~Px of tangent directions in Tan+
B (x) for all points x ∈ B.

It is easy to see that there are only finitely many possible bifurcation partition

systems on B since Tan+
B (x) is a singleton or for all but finitely many points x ∈ B

whereas the exceptional partitions are also made over finite sets.

Definition 4.1.22. A point p ∈ Γ is called an ordinary point of ρ if its valence

is two and the slopes of ρ at p in the two tangent directions are opposite numbers.

Denote the set of ordinary points by Oρ. The points in Eρ := Γ \ Oρ and the values

in the image of ρ restricted to Eρ are called exceptional points and exceptional

values of ρ, respectively.
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Again, it is obvious that Eρ is finite.

With the introduction of the above notions, we formulate the intrinsic global

compatibility conditions as follows.

Definition 4.1.23. (Intrinsic global compatibility) A solvable diagrammatic pre-

limit g1
d (D, {Hp}p∈Γ) with the normalized solution ρ and the corresponding projec-

tion π onto a bifurcation tree B is said to satisfy intrinsic global compatibil-

ity conditions if there exists a bifurcation partition system {~Px}x∈B on B and a

collection {gp}p∈Eρ of non-constant functions gp ∈ Hp over all exceptional points

p ∈ Eρ, such that whenever t1 ∈ Tanρ+
Γ (p1) and t2 ∈ Tanρ+

Γ (p2) where p1, p2 ∈ Eρ and

πB(p1) = πB(p2), we have gp1(red(t1)) = gp2(red(t2)) if and only if πB∗(t1) and πB∗(t2)

are equivalent in {~Px}x∈B.

Note that if we fix a basis {1, fp} of Hp, then any rational function gp ∈ Hp can be

expanded linearly as gp = αp,1 + αp,2fp. We emphasize here that whether a solvable

diagrammatic pre-limit g1
d satisfies intrinsic global compatibility conditions is finitely

verifiable, since (1) the number of possible bifurcation partition systems is finite, (2)

Eρ is finite, and (3) the intrinsic global compatibility actually provides finitely many

linear equalities and inequalities on αp,1 and αp,2 for all p ∈ Eρ.

4.1.7 Key steps in the proof of Theorem 4.1.13

(⇒) Given a smoothable limit g1
d, by Theorem 4.1.12 it induces a harmonic morphism

of refined metrized complexes. By Theorem 4.6.3, we know that this limit g1
d is a solv-

able diagrammatic limit g1
d. Consider the genus zero metrized complex of the refined

harmonic morphism. Using the compatibility properties of the harmonic morphisms

we deduce that the diagrammatic limit g1
d is solvable and satisfies the intrinsic global

compatibility condition.

(⇐) We construct a refined harmonic morphism satisfying the conditions of Theo-

rem 4.1.12. Intrinsic global compatibility conditions guarantee the existence of genus
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zero refined metrized complex in RH,D. We modify the metrized complex by adding

marked points using Hp with additional care on the expansion factors. We construct

{gp}p∈Γ using the intrinsic global compatibility conditions and verify that this choice

satisfies the compatibility properties of harmonic morphisms of refined metrized com-

plexes. By Theorem 4.1.12, this implies that the limit g1
d is smoothable.

4.1.8 Obstructions of pre-limit g1
d’s from being smoothable

By Theorem 4.1.13, solvability and intrinsic global compatibility are two levels of

obstructions of a diagrammatic pre-limit g1
d from being smoothable. While solvability

is weaker and intrinsic global compatibility is stronger, we add two other intermediate

levels of obstruction with natural characterizations.

For a diagrammatic pre-limit g1
d which is solvable with a solution ρ and the cor-

responding bifurcation tree B, we say a bifurcation partition system {~Px}x∈B is ad-

missible (respectively, strongly admissible) if it satisfies the following property:

for each exceptional point p ∈ Eρ, the tangent directions t1 and t2 in Tan+
Γ (p) are

equivalent in the local diagram at p (we may also say t1 and t2 are locally equivalent),

if (respectively, if and only if) πB∗(t1) and πB∗(t2) are equivalent in Pπ(p).

Definition 4.1.24. A solvable diagrammatic pre-limit g1
d is said to satisfy local-

bifurcation compatibility (respectively, strong local-bifurcation compatibili-

ty) conditions if there exists a admissible (respectively, strongly admissible) bifur-

cation partition system compatible (respectively, strongly compatible).

Alternatively, we also call solvability (respectively, local-bifurcation compatibility,

strong local-bifurcation compatibility and intrinsic global compatibility) Level I (re-

spectively, II, III and IV) obstruction, and we have “Level IV⇒ Level III⇒ Level II

⇒ Level I”. For the above relations, we only need to verify Level IV impies Level III:

by considering only the cases p1 = p2 in the definition of intrinsic global compatibility

(Definition 4.1.23), it is easy to see that {Px}x∈B is strongly compatible to the local
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diagrams.).

For local-bifurcation compatibility (Level II obstruction), we have the following

results.

Theorem 4.1.25. Let (D,H) be a solvable diagrammatic pre-limit g1
d. Then RD,H

has a tropical dominant subtree which contains the tropical part DΓ of D if and only

if (D,H) satisfies local-bifurcation compatibility conditions.

Proposition 4.1.26. A solvable diagrammatic pre-limit g1
d satisfying local-bifurcation

compatibility conditions is a limit g1
d.

The obstructions up to the strong local-bifurcation compatibility (Level III ob-

struction) are combinatoric, which means unlike Hp’s are involved in determining

whether Level IV is satisfied, we only need to refer to the local diagrams or the glob-

al diagram for levels 6 3. Moreover, for certain metric graphs underlying a refined

metrized complex, we only need to verify up to Level III to test smoothability.

4.2 Preliminaries

4.2.1 Bifurcation trees

We can associate a metric tree canonically to the timing function called called bi-

furcation tree. The bifurcation tree is “fundamental” to RH,D in the sense that

any tropical dominant subtree of RH,D can be obtained by gluing branches of the

bifurcation tree. Let ρ be a rational function on Γ with everywhere nonzero slopes,

and let ρ̂ := ρ−min ρ be the normalized function of ρ with minimum value zero. For

a real number c and ∗ ∈ {≥,≤, <,>,=}, the set Sρ∗c is defined as {p ∈ Γ| ρ(p) ∗ c}.

Denote the set of connected components of Sρ∗c by Comp(Sρ∗c).

Definition 4.2.1. For each value c ∈ Im ρ, the connected components of Sρ>c are

called closed superlevel components at c, and the connected components of Sρ>c

are called open superlevel components at c.

108



Remark 4.2.2. For c ∈ Im ρ, for any open superlevel component β ∈ Sρ>c, there exists

a unique closed superlevel component α ∈ Sρ>c such that α ⊇ β. For each c′ ∈ Im ρ

such that c′ 6 c, there exists a unique element β′ ∈ Sρ>c′ such that β′ ⊇ α. There

exists δ small enough such that for all c′′ ∈ (c, c + δ), there exists a unique element

α′′ ∈ Sρ>c′′ such that β ⊇ α′′. Moreover, there exists exactly one element in Sρ>min ρ

which is the whole metric graph Γ. These facts also imply that for α1 ∈ Sρ>c1 and

α2 ∈ Sρ>c2 , there exists a largest c3 ∈ Im ρ such that there exists α3 ∈ Sρ>c3 with

α3 ⊇ α1

⋃
α2. In particular, c3 6 min(c1, c2) and α3 is the unique smallest closed

superlevel component containing α1

⋃
α2.

We now define the bifurcation tree associated to ρ as follows.

Definition 4.2.3. Consider a rational function ρ with everywhere nonzero slopes.

The bifurcation tree B with respect to ρ is a rooted metric tree constructed in the

following way:

1. By abuse of notation, we also use B to represent the set of points of B. We

identify the set of points of B with the set of all closed superlevel components

of ρ by the bijection ιB : B →
∐

c∈Im ρ Comp(Sρ>c).

2. We assign a metric structure dB to B. For x1, x2 ∈ B, denote x1 ∨x2 be the ele-

ment in B such that ιB(x1∨x2) is the smallest closed superlevel component which

contains ιB(x1)
⋃
ιB(x2). Suppose ιB(x1) ∈ Comp(Sρ>c1), ιB(x2) ∈ Comp(Sρ>c2)

and ιB(x1 ∨ x2) ∈ Comp(Sρ>c3). Then we let dB(x1, x2) = c1 + c2 − 2c3.

3. The root r(B) of B corresponds to the unique closed superlevel component at

min(ρ).

If ιB(x) ∈ Comp(Sρ>c) where c ∈ Im ρ, we let dρB(x) = c and d0
B(x) = c − min ρ.

We now show B is well-defined. In particular, a partial order is associated to B.

Proposition 4.2.4. B constructed in Definition 4.2.3 is a metric tree.
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Proof. We first note that a partial order can be associated to B, i.e., for two points

x1 and x2, we say x > x′ if ιB(x) ⊇ ιB(x′). By Remark 4.2.2, this partial order is

well-defined and is actually a join-semilattice since any two elements x and x′ in B

always have a join x ∨ x′ corresponding to the smallest closed superlevel component

which contains ιB(x)
⋃
ιB(x′), and in addition, we have for each x ∈ B, the set

{x′ ∈ B|x′ > x} = {x ∨ x′|x′ ∈ B}

is totally ordered.

Now let us show dB is a metric on B. For x1, x2 ∈ B, suppose dρB(x1) = c1 and

dρB(x2) = c2. If x1 > x2, then c1 6 c2, x1 ∨ x2 = x1 and dB(x1, x2) = c2 − c1 by

definition. In particular, since r(B) > x for all x ∈ B, it follows d0
B(x) = dB(r(B), x).

More generally, one may verify that dB(x1, x2) = dB(x1, x1∨x2)+dB(x2, x1∨x2) from

definition. For each x3 ∈ B, consider x1 ∨ x3 and x2 ∨ x3. Without loss of generality,

we may assume: (1) x1 ∨ x3 > x2 ∨ x3 or (2) x1 ∨ x3 = x2 ∨ x3. For case (1), we have

x1 ∨ x2 ∨ x3 = x1 ∨ x2 = x1 ∨ x3, and thus

dB(x1, x2) =dB(x1, x1 ∨ x2 ∨ x3) + dB(x1 ∨ x2 ∨ x3, x2 ∨ x3) + dB(x2 ∨ x3, x2)

6(dB(x1, x1 ∨ x2 ∨ x3) + dB(x1 ∨ x2 ∨ x3, x2 ∨ x3) + dB(x2 ∨ x3, x3))

+ (dB(x2 ∨ x3, x2) + dB(x2 ∨ x3, x3))

=dB(x1, x3) + dB(x2, x3)

where equality holds if and only if x3 > x2. For case (2), we have x1 ∨ x2 ∨ x3 =

x1 ∨ x3 = x2 ∨ x3 > x1 ∨ x2, and thus

dB(x1, x2) =dB(x1, x1 ∨ x2) + dB(x2, x1 ∨ x2)

6(dB(x1, x1 ∨ x2) + dB(x1 ∨ x2, x1 ∨ x2 ∨ x3) + dB(x3, x1 ∨ x2 ∨ x3))

+ (dB(x2, x1 ∨ x2) + dB(x1 ∨ x2, x1 ∨ x2 ∨ x3) + dB(x3, x1 ∨ x2 ∨ x3))

=dB(x1, x3) + dB(x2, x3)
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where equality holds if and only if x3 = x1 ∨ x2. Therefore, the triangle equality is

satisfied and dB is a metric.

Then the construction of rooted metric tree can follow exactly from Appendix B5

of Baker-Rumley’s book [18].

Remark 4.2.5. The leafs of B other than r(B) are in one-to-one correspondence with

those closed superlevel sets which are singletons, and one-to-one correspondence with

local maximum points of ρ (which we may also call sink points of ρ). Denote the set of

leaf of B by Leaf(B). We call a point x of B with |Tan+
B (x)| > 2 a bifurcation point

of B, and denote the set of bifurcation points by Bif(B). Then Leaf(B)
⋂

Bif(B) =

∅ and Leaf(B)
⋃

Bif(B) is the minimal vertex set of B (another translation of the

minimal vertex set of B is the set of points of valence other than 2 in B together

with r(B)). Note that we have either r(B) ∈ Leaf(B) or r(B) ∈ Bif(B). We call the

image of dρB restricted to the minimal vertex set of B the set of bifurcation values,

denoted by Bifρ. Then Bifρ is finite and we have Bifρ ⊆ Eρ.

For a point p in Γ, recall that Tanρ+
Γ (p) is the set of tangent directions in TanΓ(p)

emanating from p where ρ locally increases. Similarly, we let Tanρ−Γ (p) be the set of

tangent directions where ρ locally decreases. Then TanΓ(p) = Tanρ+
Γ (p)

∐
Tanρ−Γ (p).

Let T be a metric tree rooted at r(T ). For a point x in T , we say a tangent

direction t ∈ TanT (x) is a forward (respectively backward) tangent direction at x if

the distance function from the root increases (respectively decreases) along t. Denote

by Tan+
T (x) (respectively Tan−T (x)) the set of forward (respectively backward) tangent

directions at x. Note that Tan−T (x) is empty if x is the root of T and a singleton

otherwise.

Based on the construction of the bifurcation tree B with respect to ρ, it follows

the following simple lemmas. Lemma 4.2.6 shows ρ actually factors through dρB by

a canonical projection πB : Γ → B. Lemma 4.2.7 shows the set of forward tangent

directions on B can be identified with the set of all open superlevel components of ρ.
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We state these lemmas without proofs.

Lemma 4.2.6. For p ∈ Γ, there is a unique closed superlevel component α at ρ(p)

which contains p. By sending p to ι−1
B (α), it induces a canonical projection πB :

Γ→ B. Moreover, the map πB is continuous, piecewise-linear, surjective and satisfies

ρ = dρB ◦ πB.

Lemma 4.2.7. There is a canonical bijection ~ιB :
∐

x∈B Tan+
B (x)→

∐
c∈Im ρ Comp(Sρ>c).

In particular, Tan+
B (x) is in bijection with {β ∈ Comp(Sρ

>dρB(x)
)|β ⊆ ιB(x)} by ~ιB.

Remark 4.2.8. The projection πB naturally induces a pushforward map πB∗ :
∐

p∈Γ TanΓ(p)→∐
x∈B TanB(x). In particular, (1) if t ∈ Tanρ−Γ (p), then πB∗(t) is the unique element

in Tan−B (π(p)); (2) if t ∈ Tanρ+
Γ (p), then πB∗(t) ∈ Tan+

B (π(p)) and more precisely

~ιB(πB∗(t)) is the unique open superlevel component of ρ with p on its boundary and

t pointing inwards. It can be easily verified that πB∗ is surjective.

Remark 4.2.9. Recall that (dρB)−1(c) is bijective to Comp(Sρ>c) by ιB. For t ∈
∐

x∈B Tan+
B (x)

with ~ιB(t) ∈ Comp(Sρ>c) where c ∈ Im ρ, we let ~dρB(t) = c and ~d0
B(t) = c−min ρ. Then

(~dρB)−1(c) =
∐

x∈(dρB)−1(c) Tan+
B (x) and is bijective to Comp(Sρ>c) by ~ιB. We may define

natural maps for the fibers of dρB and ~dρB.

If d 6 c and c, d ∈ Im ρ, then there are natural maps

ωc,dB :(dρB)−1(c)→ (dρB)−1(d) with xc 7→ xd,

ωc∗,dB :(~dρB)−1(c)→ (dρB)−1(d) with tc 7→ xd,

ωc,d∗B :(dρB)−1(c)→ (~dρB)−1(d) with xc 7→ td (defined when d < c),

and ωc∗,d∗B :(~dρB)−1(c)→ (~dρB)−1(d) with tc 7→ td.

that are defined as follows: for each tc ∈ Tan+
B (xc), we let xd ∈ (~dρB)−1(d) and

td ∈ Tan+
B (xd) be the unique elements in (dρB)−1(d) and (~dρB)−1(d) such that ιB(xd) ⊇
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~ιB(td) ⊇ ιB(xc) ⊇ ~ιB(tc). For each d′ ∈ (d, c), the following diagram commutes.

(dρB)−1(c) (dρB)−1(d′) (dρB)−1(d)

(~dρB)−1(c) (~dρB)−1(d′) (~dρB)−1(d)

ωc,d
′

B ωd
′,d
B

ωc,dB

ωc,d
′∗

B

ωd
′,d∗
B

ωc,d∗B

ωc∗,d
′∗

B ωd
′∗,d∗
B

ωc∗,d∗B

ωc∗,d
′

B

ωd
′∗,d
B

ωc∗,dB

ωc∗,cB

ωd
′∗,d′
B

ωd∗,dB

Let Bifρ = {b1, b2, · · · , bm} be the set of bifurcation values where b1 < b2 <

· · · < bm. In particular, we note b1 = min ρ and bm = max ρ. Then for each i =

1, 2, · · · ,m− 1, we can define

ωc∗,dB :(~dρB)−1(c)→ (dρB)−1(d) with tc 7→ xd for all c and d such that bi 6 c < d 6 bi+1

and ωc∗,d∗B :(~dρB)−1(c)→ (~dρB)−1(d) with tc 7→ td for all c and d such that bi 6 c 6 d < bi+1

as follows: xd ∈ (dρB)−1(d) (respectively td ∈ (~dρB)−1(d)) is the unique element in

(dρB)−1(d) (respectively (~dρB)−1(d)) such that ιB(xd) ⊆ ~ιB(tc) (respectively ~ιB(td) ⊆

~ιB(tc)). It can be verified easily that ωc∗,dB (respectively ωc∗,d∗B ) is always a bijection

with inverse ωd,c∗B (respectively ωd∗,c∗B ) in this case.

4.2.2 Tropical dominant trees

For a linear system |D|, we say a set T ∈ |D| is a tropical dominant tree if T is

tropically convex and 1-dimensional and for each point p ∈ Γ, there is a divisor
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D ∈ T such that p ∈ supp(D).

4.3 Refined metrized complex associated to a Berkovich skele-
ton

We begin by briefly recalling the concept of Berkovich skeleton of Xan. A semistable

vertex set V of X is a finite set of type-II of points of Xan such that the complement of

V in Xan is a disjoint union of a finite number of open annuli and an infinite number

of open balls. Let Σ(Xan, V ) be a skeleton of Xan with respect to the the semistable

vertex set V .

In order to associate a refined metrized complex C(V ) to Σ(Xan, V ), we must

associate the following data to it: a metric graph Γ, a smooth algebraic curve Cp for

each point p ∈ Γ and for each Cp, we must specify a set Ap of marked points that are

in bijection with the set of tangent directions at p. The metric graph Γ underlying

the refined metrized complex is defined as the metric graph associated to Σ(Xan, V ).

We associate the algebraic curve Cp to each point p ∈ Γ as follows: since the value

group of K is R, every point in Σ(Xan, V ) is a type (2) point [15]. Hence, the double

residue field has transcendence one over κ and is isomorphic to the function field of

a smooth curve over κ. This smooth curve is well defined up to isomorphism and

we associate this curve Cp to the point p ∈ Γ. We defined marked points associated

to the algebraic curve Cp using Berkovich theory as follows: let x be the type (2)

point corresponding to p, the set of tangent directions at any type (2) point in Xan

is in canonical bijection with the set of discrete valuations of the double residue field.

The set of discrete valuations of the double residue field is in turn in bijection with

the set of closed points of Cp. For each tangent direction t ∈ Tan(p), we define its

marked point as the point in Cp associated to the corresponding tangent direction

in the skeleton Σ(Xan, V ). Note that the marked point associated to each tangent

direction is distinct.
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Lemma 4.3.1. For any skeleton Σ(Xan, V ) of Xan, the data C(V ) defines a refined

metrized complex. In particular, for all but a finite number of points in Γ, the curve

Cp is a projective line over κ.

Proof. To show that C(V ) is a refined metrized complex, we must verify that the

curve Cp has genus zero for all but finitely many points of Γ. Using Formula (5.45.1)

of [], we have g(X) = g(Γ) +
∑

p∈Γ g(Cp). Hence, g(Cp) = 0 for all but finitely many

p.

Remark 4.3.2. The semistable vertex sets of X are in one to one correspondence with

the semistable models of X, we refer to [15] for a detailed treatment of the topic.

Via this correspondence, we can associate a refined metrized complex to a semistable

model of X. This refined metrized complex is the “limit” of the metrized complexes

associated to semistable models obtained by successively blowing up the special fiber

at its nodes.

4.4 Specialization and reduction map

We define a morphism from τ∗ : Div(X)→ Div(C(V )) called the specialization map

and a map that takes a rational function on X to a rational function on C(V ) called

the reduction map. We follow the analogous construction for metrized complexes

by Amini and Baker [4].

4.4.1 Specialization map

Suppose that rV : Xan → Σ(Xan, V ) is the retraction map and let {rV,s}s∈[0,1] be the

continuous family of retraction maps associated with the deformation retraction from

Xan to Σ(Xan, V ). In particular, rV,1 = rV . For a closed point p ∈ X, the point rV (p)

has a unique tangent direction tan
V (p) that lies in the image of the retraction map

rV,s where s is in an open neighborhood of one. The map τ∗ takes p to the divisor

(rV (p), red(tan
V (p)) on C(V ) where red(tan

V (p)) is the marked point in Cp corresponding
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to the tangent direction tan
V (p). We extend this map linearly to define a map from

Div(X) to Div(C(V )).

Lemma 4.4.1. The specialization map τ∗ is a homomorphism from Div(X)→ Div(C(V ))

that takes effective divisors on Div(X) to effective divisors on Div(C(V )). The image

of τ∗ is the set of all divisors (DΓ, {Dp}p∈Γ) ∈ Div(C(V )) such that the support of Dp

is contained in the set Cp \ Ap for all p ∈ Γ.

4.4.2 Reduction of rational functions

Consider a point p ∈ Γ and let x be the corresponding type (2) point in Σ(Xan, V ).

By f(x), we denote the multiplicative semi norm defined by x evaluated at f and let

|c| = |f(x)|. Let H̃(x) is the double residue field of x and note that the field H̃(x)

is isomorphic to the function field of Cp. Suppose that f maps to fx in H̃(x). The

reduction map takes f to c−1fx, we denote c−1fx by f̃x and the corresponding rational

function in Cp by f̃p. Note that fx is only defined up to multiplication by κ∗ and

hence, its divisor is well-defined.

Lemma 4.4.2. The dimension of any finite dimensional subspace of κ(X) is pre-

served by reduction.

Given a rational function f on X, we let fΓ be a rational function on Γ given by the

restriction to Σ(Xan, V ) of the function log|f | onXan. Hence, given a rational function

f on X we associate a rational function f = (fΓ, {f̃p}p∈Γ) on C(V ). The following

version of the Poincare-Lelong Formula for refined metrized complexes establishes a

compatibility between the specialization and the reduction maps.

Theorem 4.4.3. (Poincaré-Lelong Formula) For any non-zero rational function

f on X, suppose that f is the reduction of f on C(V ), we have τ∗(div(f)) = div(f).

Hence, the map τ∗ takes principal divisors in X to principal divisors in C(V ).
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Proof. For a point x in the the skeleton Σ(Xan, V ) partition T an
x the set of tangent

directions at x into the tangent directions in Σ(Xan, V ) and its complement and

denote it by T an
i,x and T an

r,x respectively. By parts (2) and (5) of the slope formula [],

we note that ordt(f̃x) = 0 for all but points x ∈ Σ(Xan, V ) and t ∈ T an
r,x except those

that lie in the image (under the retraction map) of the support of div(f). By part (2)

of the slope formula, slt(fΓ) = ordt(fx). Hence, div(f) has support at a finite number

of points and its support coincides with the support of τ∗(div(f)). Hence, div(f) is

a divisor (not just a pseudo-divisor). Let S be the the union of the support of div(f)

and the point of Γ of valence at least three. Thus, τ ∗(div(f)) and div(f) coincide on

points in Γ \ S. Consider the metrized complex C(V )|S obtained by restricting C to

S, by the Poincare-Lelong formula shown in Amini and Baker [4], we have τ ∗(div(f))

and div(f) coincide on C(V )|S.

4.5 Smoothability

The following theorem is the analogue of Theorem 5.9 in [4] for refined metrized

complexes.

Theorem 4.5.1. For any grd on X, given by the data (D,H) where H is an (r + 1)-

dimensional subspace of rational functions of X, the data (τ∗(D), {Hp}p∈Γ) where Hp

is the image of H under the reduction map at p is a limit grd on C(V ).

Proof. By Lemma 4.4.2, the dimension of the space H is preserved by the specializa-

tion map. Using the notion rank-determining sets of algebraic curves, it suffices to

exhibit a family {Sp}p∈Γ where |Sp| = g(Cp) + 1 such that for every effective divisor

E = (EΓ, {Ep}p∈Γ) of degree r with the support of Ep in Sp there exists a rational

function on (fΓ, {fp}p∈Γ) with fp ∈ Hp such that τ∗(D) − E + div(f) ≥ 0. Taking

cue from Lemma 4.4.1, we let Sp be any subset of Cp \ Ap of size g(Cp) + 1. From

Lemma 4.4.1, we know that for any effective divisor E = (EΓ, {Ep}p∈Γ) such that

Ep has support in Sp for every p ∈ Γ, there exists an effective divisor E on X such
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that τ∗(E) = E . Since (D,H) is a grd on X, there must a rational function f ∈ H

such that D − E + div(f) ≥ 0. We apply the specialization map to this inequality.

Using the property that the specialization map is a homomorphism between divisor

groups that preserves effective divisors, along with Theorem 4.4.3 , we conclude that

ρ(D)− E + div(f) ≥ 0.

Definition 4.5.2. (Smoothable Limit Linear Series) A limit grd (or a pre-limit grd)

given by the data (D,H) on a refined metrized complex C is said to be smoothable

if there exists a smooth proper curve X over K and a skeleton Σ(Xan, V ) of the

Berkovich analytification Xan of X with respect to a semistable vertex set V of Xan

such that C is isomorphic to the refined metrized complex associated to Σ(Xan, V )

and there exists a grd on X such that the associated limit grd is (D,H).

4.6 Application of the specialization and reduction map

Let K be any algebraically closed field. Note that on a smooth proper curve over

K, a two-dimensional subspace of rational functions containing the constant function

defines a morphism from the curve to P1
K and conversely, a morphism φ from the

curve to P1
K corresponds to a two dimensional space generated by a rational function

that is equivalent to φ up to the action of PGL(2, K) on P1
K .

We restate Theorem 4.1.12 as follows.

Theorem 4.6.1. A limit g1
d given by the data (D, {Hp}p∈Γ) on C is smoothable if

and only if there exists a modification Cmod of C and a harmonic morphism Cφmod =

(φΓmod , {φp}p∈Γmod) of degree deg(D) from Cmod to a genus zero refined metrized com-

plex such that D is the retract onto C of a fiber of Cφmod and φp coincides with the

map to P1
K defined by Hp for points p ∈ Γ.

Proof. Suppose that (D, {Hp}p∈Γ) is smoothable, there exists a smooth proper curve

X over K and a skeleton Σ(Xan, V ) of Xan such that the refined metrized complex
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associated to Xan is isomorphic to C. Let (D,H) be a grd on X corresponding to

(D, {Hp}p∈Γ). Note that the divisor D is the fiber over the point ∞ of P1
K. Consider

the map φ : X → P1
K defined by H. The analytification functor induces a map

φan : Xan → P1
Berk, where P1

Berk is the Berkovich projective line over K. We restrict

the map φan to the skeleton Σ(Xan, V ) and via the isometry between Σ(Xan, V ) and

C to obtain a tropical rational function φΓ : Γ → T where T is a retract of P1
Berk.

We apply the reduction map to H to obtain maps φp : Cp → P1
κ for each p ∈ Γ.

The data (φΓ, {φp}p∈Γ) satisfies the compatibility properties (Definition 4.1.11) of a

harmonic morphism and can be modified to a harmonic morphism of degree deg(D).

Furthermore, from the slope formula, D is the fiber of (φΓ, {φp}p∈Γ) over the image

of the retraction map P1
K → T .

Conversely, suppose that there is a harmonic morphism Cφmod = (φΓ, {φp}p∈Γmod)

between refined metrized complexes Cmod and a genus zero metrized complex. Con-

sider the retract onto C of the fiber D over a point u ∈ T and let Hp be the two-

dimensional subspace of κ(Cp) corresponding to φp. By the properties of a harmonic

morphism (D, {Hp}p∈Γ) is a limit g1
d. To show that (D, {Hp}p∈Γ) is smoothable, we

use the lifting theorem of Amini et al. [5] that there exists a smooth proper curve

X over K and a skeleton Σ(Xan, V ) of Xan such that the refined metrized complex

associated to Xan is isomorphic to C and a morphism from φ : X → P1
K such that:

• φΓ is the restriction of the map φan : Xan → P1
Berk to Σ(Xan, V ).

• φp coincides with the map to P1
κ defined by the reduction, at the type-(2) point in

Σ(Xan, V ) corresponding to p, of the two-dimensional subspace of κ(X) defined

by φ.

Thus D is a fiber of φ over a point in the pre image of u under the retraction map.

Let H be the subspace of κ(X) corresponding to φ. Note that (D,H) is a g1
d on X.

In particular, (D, {Hp}p∈Γ) is smoothable to (D,H).
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Lemma 4.6.2. A smoothable limit grd on a refined metrized complex is a refined limit

grd.

Proof. We show that a smoothable limit grd satisfies the two properties of refined

limit grd. For the first property of refined limit g1
d: note that the constant function

is contained in H where (D,H) is any smoothing of the limit grd and the Poincaré-

Lelong Formula (Theorem 4.4.3). Using the characterization of the image of the

specialization map obtained in Lemma 4.4.1, we deduce that a smoothable limit g1
d

satisfies the second property of a refined limit grd.

Theorem 4.6.3. A smoothable limit g1
d on a refined metrized complex is a diagram-

matic limit g1
d.

Proof. Let (D, {Hp}p∈Γ) be a smoothable limit g1
d. Using Theorem 4.1.12, we know

that there exists a harmonic morphism Cφ = (φΓmod , {φp}p∈Γmod) of degree deg(D)

from Cmod to a genus zero refined metrized complex such that D is a fiber of Cφ

and φp coincides with the morphism to P1
κ defined by Hp. By the compatibility

property of the harmonic morphism we know that for any point p ∈ Γ and for any

tangent direction t ∈ Tan(p), the ramification index of φp at the marked point red(t)

corresponding to t equals the slope of φΓ at t. Recall that the multiplicity m(p, t) in

the local diagram associated to (D, {Hp}p∈Γ) is the ramification index of φp at red(t).

Since φΓ is continuous, for any point p ∈ Γ, there exists a local neighborhood U of p

such that the local diagram induced by p at any point q ∈ U coincides with the local

diagram at q. Hence, (D, {Hp}p∈Γ) is a diagrammatic limit g1
d.

4.7 Characterization of tropical dominant subtrees of RD,H

4.7.1 Slope-multiplicity principle for diagrammatic pre-limit g1
d.

We formulate a property of a diagrammatic pre-limit g1
d on a refined metrized complex

that we call the slope-multiplicity principle. The slope-multiplicity principle states

that the slope at certain tangent directions t of any tropical rational function gΓ such
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that DΓ + div(gΓ) is in RD,H (cf. Definition 4.1.14) coincides with the negative of the

multiplicity of the global diagram at t. This will be very useful for the study of the

space of tropical dominant subtrees of RD,H.

Definition 4.7.1. Let (D,H) with D = (DΓ, {Dp}p∈Γ) and H = {Hp}p∈Γ be a

diagrammatic pre-limit g1
d on a refined metrized complex C with underlying metric

graph Γ and algebraic curves {Cp}p∈Γ. An effectivizing pair at a point u ∈ Γ is a

pair (E , g) with the effective divisor E = (EΓ, {Ep}p∈Γ) of degree one and a rational

function g = (gΓ, {gp}p∈Γ) on C satisfying the following properties:

1. For all p ∈ Γ, we have gp ∈ Hp.

2. EΓ = (u) and the divisor Eu on the curve Cu is a point not contained in

the support supp(Du) of Du and is not a marked point corresponding to any

incoming tangent direction at u, i.e., supp(Eu) * redu(In(u))
⋃

supp(Du).

3. The divisor D − E + div(g) ≥ 0.

Remark 4.7.2. With the above notations, given an effectivizing pair (E , g), we will

have DΓ + div(gΓ) ∈ RD,H.

Conversely, for any tropical rational function gΓ such that DΓ + div(gΓ) ∈ RD,H,

by definition there exists a rational function g = (gΓ, {gp}p∈Γ) such that gp ∈ Hp for

all p ∈ Γ and an effective divisor D′ = (D′Γ, {D′p}p∈Γ) such that D′ −D = div(g). As

long as D′ 6= D, (E , g) will be an effectivizing pair at u ∈ Γ where E = ((u), {Ep}p∈Γ)

is an effective divisor of degree one such that E is dominated by the effective part

of div(g). In particular, if in addition gΓ itself is nonzero, then there always exists

a rational function g with gΓ being the tropical part of g such that for any u in the

support of the effective part of div(gΓ) we can always find an effectivizing pair (E , g)

at u.

Consider a closed directed path P on Γ. Then any point p in the interior of

this path has two tangent directions on this path, we denote by t−(p,P) the tangent
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direction at p inverse to the orientation of P at p and by t+(p,P) the tangent direction

at p oriented along P . If p is the starting point P , we denote the unique tangent

direction on P by t+(p,P) and if p is the end point of P , we denote the unique tangent

direction on P by t−(p,P).

Lemma 4.7.3. Let (E , g) be an effectivizing pair with g = (gΓ, {gp}p∈Γ). Then for

any point v ∈ Γ and any tangent direction t ∈ TanΓ(v), the outgoing slope slt(gΓ) is

either −m(v, t) or 0.

Proof. Let P be any directed path with the starting point being v and the end point

being a valence-two point v′ 6= v along the tangent direction t. Let n = slt(gΓ).

Then from the piecewise-linear nature of gΓ, the continuity property of the global

diagram and the discreteness of div(g), we have slt+(w,P)(gΓ) = n, slt−(w,P1)(gΓ) = −n,

m(w, t+(w,P)) = m(v, t), m(w, t−(w,P)) = −m(v, t) and div(g)(w) = 0 for any

point w in the interior of P as long as v′ is sufficiently close to v. This implies that

div(gw) = − divw(gΓ) = −n · redw(t+(w,P)) + n · redw(t−(w,P)) = −n · xwt+(w,P) + n ·

xwt−(w,P). Now since gw ∈ Hw, we can only have n = 0 if gw is a constant function or

n = m(w, t−(w,P)) = −m(v, t) if gw is a non-constant function in Hw.

Theorem 4.7.4. (Slope-Multiplicity Principle) Let (D,H) with D = (DΓ, {Dp}p∈Γ)

and H = {Hp}p∈Γ be a diagrammatic pre-limit g1
d. Let (E , g) be an effectivizing pair at

u ∈ Γ with g = (gΓ, {gp}p∈Γ). Consider any closed directed path P with u as the end

point which is compatible with the global diagram i.e., P is oriented along the global di-

agram. For every point r in the interior of this path P and for each of the two tangent

directions at r on this path, the outgoing slope of gΓ is equal to the negative of the

multiplicity i.e., slt−(r,P)(gΓ) = −m(r, t−(r,P)) and slt+(r,P)(gΓ) = −m(r, t+(r,P)).

Furthermore, the rational function gr is non-constant.

Proof. By assumption of g, D − E + div(g) ≥ 0, or equivalently, for every w ∈ Γ and

hence Dw−Ew + div(gw) + divw(gΓ) > 0. By the assumption of Eu, we may let Eu =
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(qu) with qu ∈ Cu and qu /∈ redu(In(u))
⋃

supp(Du). Since Du−Eu+div(gu)+divu(gΓ)

is effective, gu must be non-constant with div(gu) having poles in a nonempty subset

of redu(In(u))
⋃

supp(Du) and a zero at qu, which also means slt−(u,P)(gΓ) cannot be

0. By Lemma 4.7.3, we know slt−(u,P)(gΓ) is exactly −m(u, t−(u,P)).

Now suppose for sake of contradiction that there exists a point r in the interior of

the path P such that r 6= u and slt+(r,P)(gΓ) 6= −m(r, t+(u,P)). Then by Lemma 4.7.3,

we get slt+(r,P)(gΓ) = 0. Since gΓ is piecewise-linear and continuous, there must

exist a point v on the path P between r and u such that slt−(v,P)(gΓ) = 0 and

slt+(v,P)(gΓ) is nonzero. However, this is impossible since Dv−Ev+div(gv)+divv(gΓ) =

Dv + div(gv) + divv(gΓ) > 0 won’t be satisfied no matter gv is a constant or non-

constant function. Therefore, we conclude that slt+(r,P)(gΓ) = −m(r, t+(u,P)) and

furthermore, all gr must be non-constant function with a zero at xrt+(r,P).

Finally, the continuity of the global diagram guarantees that slt−(r,P)(gΓ) is nonzero

when r is a non-starting point on P . Otherwise, you will be able to find a point r′ on

path P in the infinitesimal neighborhood of r with slt+(r′,P)(gΓ) = 0, contradicting our

previous conclusion. Again, by Lemma 4.7.3, we get slt−(r,P)(gΓ) = −m(r, t−(u,P)).

Corollary 4.7.5. For a global diagram associated to an diagrammatic limit g1
d, the

orientation induced by the global diagram on the metric graph Γ is acyclic i.e., there

are no directed cycles.

Proof. Assume the contrary, suppose that there is a directed cycle C on the global

diagram and consider any point w in C. Consider an effectivizing pair (E , g) at the

point v. On the one hand, we know that the integral of the slopes of gΓ over the

directed cycle is zero. On the other hand, from the slope-multiplicity principle we

know that the slope of gΓ at any tangent to the directed cycle coincides with the

negative of the multiplicity. Since, we are integrating along a directed cycle C in the

global diagram, we know that for any point v on C, the multiplicity m(v, t+(v, C)) =
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mC(v) is a natural number. Hence, |
∫
CmC| is at least the length of C. This gives the

desired contradiction.

4.7.2 Solvability of an diagrammatic pre-limit g1
d

Consider any model G of Γ. We fix an arbitrary orientation on G and regard the mul-

tiplicity function m on Γ as an element in C1(G,Z) defined as m(e) is the multiplicity

of the edge e in the global diagram if the orientation on e in the global diagram is

consistent with the orientation on e and the negative of the multiplicity of the edge

e otherwise. Consider the integration pairing C1(G,Z) × C1(G,Z) → Z defined as∫
α
f =

∑
e αef(e) where f ∈ C1(G,Z) and α =

∑
e αe · e ∈ C1(G,Z). Recall that

H1(Γ,Z) is the space of integer-valued flows on G. The following lemma provides

alternate formulations for the existence of a solution to the characteristic equation of

a global diagram.

Lemma 4.7.6. The following statements are equivalent:

1. The characteristic equation of the global diagram has a solution.

2. The integral
∫
Cj m = 0 for a basis C1, . . . , Cg for H1(Γ,Z).

3. The integral
∫
Cm = 0 for every element C ∈ H1(Γ,Z).

4. For any pair of points u, v, the integral
∫
P m of the multiplicity function along

a closed directed path P between u and v does not depend on the path.

Proof. 1⇒ 2: If the characteristic equation of the global diagram has a solution then

from the first fundamental theorem of calculus we know that every pair of points u,

v of Γ, the integral of the multiplicity along any closed directed path between u and

v is the same and is equal to y(u)− y(v). If the closed directed path is a cycle then

u = v and this integral is zero.

2⇒ 3: Follows from linearity of the integration pairing with respect to the second

argument.
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Figure 14: (a) An unsolvable global diagram (b) A solvable global diagram.

3 ⇒ 4: Consider any two closed directed paths P1, P2 between u and v, P1 − P2

is a directed cycle. Since the integral along this directed cycle is zero and since, the

integration pairing is linear in the second argument, the integration of the multiplicity

along P1 and P2 are equal.

4 ⇒ 1: If for any pair of points u, v of Γ, the integral of the multiplicity along

any closed directed path between u and v is the same, we construct a solution y by

choosing an arbitrary point w0 and by setting y(w0) = 0. For any other point w1,

consider any closed directed path P (not necessarily oriented according to the global

diagram) from w0 to w1 in the metric graph and suppose y(w1,P) is the integral

of the multiplicity function of the global diagram along this path. Since, y(w1,P)

does not depend on P , let y(w1,P) = y(w1). By construction, y is piecewise linear,

continuous and has integral slopes.

Note that the solutions to the characteristic equation differ by a constant. Hence,

up to translation by a constant the characteristic equation can either have no solutions

or have a unique solution. In general, the characteristic equation of a global diagram

does not have a solution, as an example is shown in Figure 14(a) where a vertex set
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Figure 15: An example of a diagrammatic limit g1
d such that the characteristic

equation associated to the global diagram does not have a solution.

is {v1, v2, v3, v4} and all edge lengths are the same. To see that the characteristic

equation does not have a solution, suppose the contrary and assume without loss of

generality that the solution ρ is zero at v1. Integrating along the edge between v1 and

v4 with multiplicity three, we find that ρ(v4) = 3 and integrating along the path v1

and v4 that contains v3, we find that ρ(v4) = 0. On the contrary, we can easily verify

that Figure 14(b) is a solvable global diagram. In fact, there exist diagrammatic

limit g1
d such that the characteristic equation associated to the global diagram does

not have a solution as the following example shows:

Example 4.7.7. Consider the global diagram on a cycle shown in Figure 15 with

the multiplicity on each edge one. The metric graph Γ has the lengths: `v2,v3 = `v2,v8 ,

`v4,v3 = `v4,v5 , `v1,v5 = `v1,v7 and `v1,v6 = `v1,v8 . The algebraic curve Cp at every point

p ∈ Γ is a P1. The diagrammatic limit g1
d is defined by the data: DΓ = 2(v1) + (v3)

and Dv1 sum of two arbitrary non-marked points in Cv1 and Dv3 any non-marked

point on Cv3 .

We claim that this is a limit g1
d. To this end: we must show that for every effective

divisor E = (u, qu) where u is a point in Γ and qu ∈ Cu on the refined metrized complex

of degree one, there exists a rational function g = (gΓ, {gp}p∈Γ). We first specify gΓ.

126



We describe gΓ in terms of chip-firing moves: if u lies in [v1, v8] and [v1, v6], we can

fire both chips from v1 to u. If u lies in [v2, v8] and [v2, v3] then fire v1 till a chip

reaches v8 and fire along v3 and v8 simultaneously. If u lies in [v4, v5] and [v4, v3] then

fire v1 till a chip reaches v5 and then fire v3 and v5 simultaneously.

For a point p ∈ Γ, we construct gp based on gΓ in a neighborhood of p. Case i.

Take gp that satisfies div(gp) = red(ti) − red(to). Case ii. If p = u, then let gp be

the (unique) element in Hp such that div(gp) ≥ qu. Case iii. Take gp = 1. Case iv.

−Dp + red(t1) + red(t2) where t1, t2 are the two outgoing directions. Case v. is not

possible by the slope-multiplicity principle.

For this choice of g, we have: D − E + div(g) ≥ 0. On the other hand, the

characteristic equation does not have a solution since the integral of the multiplicities

along the cycle is nonzero and its absolute value is equal to `v5,v6 .

Nevertheless, the characteristic equation of a global diagram associated to a s-

moothable limit g1
d always has a solution.

Lemma 4.7.8. Suppose φ is a harmonic morphism between tropical curves. The

equation slt(g) = dt(φ) where dt(φ) is the expansion factor of φ along the tangent

direction t has a solution.

Theorem 4.7.9. The characteristic equation of a global diagram associated to a s-

moothable limit g1
d has a solution and hence satisfies Level I.

Proof. Consider the harmonic morphism of refined metrized complexes Cφ : Cmod →

CT obtained from Theorem 4.1.12 where Cφ = (φΓ, {φp}p∈Γ). By the first property of

harmonic morphisms of refined metrized complexes, the expansion factor of φΓ along

the tangent direction t ∈ TanΓ(p) of any point p ∈ Γ coincides with the multiplicity

m(p, t). Lemma 4.7.8 completes the proof.

Combining Example 4.7.7 and Theorem 4.7.9 leads us to the first obstruction

towards smoothing a limit g1
d:
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Corollary 4.7.10. There exists a non-smoothable diagrammatic limit g1
d. In partic-

ular, there exists a diagrammatic limit g1
d that does not satisfy Level I.

4.7.3 Partition systems and partition trees

We characterize the set of tropical dominant subtrees of RD,H in terms of certain

partition systems that we call “admissible partition systems”.

Definition 4.7.11. (Burning Function) Given a pair (T , πT ) where T is a metric

tree rooted at a point r(T ) ∈ T and a continuous finite surjection πT from Γ to T

(finite means all fibers are finite), the function bT that takes a point p ∈ Γ to the

distance between r(T ) and πT (p) on T is called the burning function associated to

(T , πT ).

Let ρ : Γ → R be a rational function on Γ with everywhere nonzero slopes. By

Λρ, we denote the set of all pairs (T , πT ) where T is a rooted metric tree and a map

π from Γ to T with burning function bT = ρ̂ where ρ̂ = ρ−min ρ.

Lemma 4.7.12. Let B be the bifurcation tree with respect to ρ and π be the canonical

projection from Γ onto B. Then (B, π) ∈ Λρ.

Proof. It follows from Lemma 4.2.6 directly.

Definition 4.7.13. (Partition Systems) A closed partition system Pρ with

respect to ρ is a collection {Pc}c∈Im ρ where Pc is a partition of (dρB)−1(c). An open

partition system ~Pρ with respect to ρ is a collection {~Pc}c∈Im ρ where ~Pc is a partition

of (~dρB)−1(c). For e ∈ Pc (respectively, ~e ∈ ~Pc), we say supp(e) :=
⋃
x∈e(ιB(x)) is the

support of e (respectively, supp(~e) :=
⋃
t∈~e(~ιB(t)) is the support of ~e).

We denote the set of closed and open partition systems with respect to ρ by CP(ρ)

and OP(ρ) respectively.

Example 4.7.14. One example of a closed (respectively, open) partition system

is the finest closed (respectively, open) partition system with respect to ρ, i.e., for
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c ∈ Im ρ, each element in (dρB)−1(c) (respectively, (~dρB)−1(c)) makes an equivalence

class. Another example is the coarsest closed (respectively, open) partition systems

with respect to ρ i.e., all elements in (dρB)−1(c) (respectively, (~dρB)−1(c)) are equivalent.

Recall that in Property 4.2.9, we defined maps between partitions at different

values of Im ρ. Adding more restrictions based on these correlations of partitions, we

have the following notion of properness for (closed and open) partition systems.

Definition 4.7.15. (Proper Partition Systems) A closed partition system {Pc}c∈Im ρ

with respect to ρ is called proper if for every pair of real numbers d < c in Im ρ,

x1 ∼ x2 in Pc implies ωc,dB (x1) ∼ ωc,dB (x2) in Pd. An open partition system {~Pc}c∈Im ρ

with respect to ρ is called proper if for each c ∈ Im ρ there exists a small enough

neighborhood U of c such that (1) the map ωc∗,d∗ is well-defined for all d ∈ U , and

(2) t1 ∼ t2 in ~Pc implies ωc∗,d∗B (t1) ∼ ωc∗,d∗B (t2) in ~Pd for all d ∈ U .

We denote the set of proper closed and open partition systems with respect to ρ

by PCP(ρ) and POP(ρ) respectively.

Example 4.7.16. The finest and coarsest partition system corresponding to ρ are

both proper.

Lemma 4.7.17. There is a one-to-one correspondence between PCP(ρ) and POP(ρ).

Proof. For a proper closed partition system Pρ and each c ∈ [min ρ,max ρ), there

exists δ small enough such that ωc∗,dB is a well-defined bijection with inverse ωd,c∗B

where d = c + δ. This induces an open partition system ~Pρ by letting t1 ∼ t2 in ~Pc

if and only if ωc∗,dB (t1) ∼ ωc∗,dB (t2) in Pd. By this construction, it is straightforwardly

verifiable that ~Pρ is proper.

Conversely, given a proper open partition system ~Pρ, for each d ∈ (min ρ,max ρ],

there exists δ small enough such that ωc∗,dB is a well-defined bijection with inverse

ωd,c∗B where c = d − δ. This induces a closed partition system Pρ by letting x1 ∼ x2
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in Pd if and only if ωd,c∗B (x1) ∼ ωd,c∗B (x2) in ~Pc. One may also verify straightforwardly

that ~Pρ is proper and by all these constructions, the correspondence of proper closed

partition systems and proper open partition systems is one-to-one.

Remark 4.7.18. By this lemma, when saying a proper partition system, we mean

a pair (Pρ, ~Pρ) of a proper closed partition system Pρ and its corresponding open

partition system ~Pρ, while only one may be referred to in practice. We also call Pρ

the closed section of (Pρ, ~Pρ) and ~Pρ the open section of (Pρ, ~Pρ).

Let Pρ be a proper closed partition system. Guaranteed by the properness of the

partition system, we have similar properties of the supports of equivalence classes in

Pρ as the properties stated in Remark 4.2.2. Therefore, we can construct a rooted

metric tree T called the partition tree associated to this proper partition system

essentially the same way as the construction of the bifurcation tree B with respect to

ρ in Definition 4.2.3.

Definition 4.7.19. Let B be the bifurcation tree B with respect to ρ and Pρ =

{Pc}c∈Im ρ be a proper closed partition system. The partition tree T associated to

Pρ is a rooted metric tree constructed in the following way:

1. By abuse of notation, we also use T to represent the set of points of T . We

identify the set of points of T with the set of all equivalence classes in {Pc}c∈Im ρ

by the bijection ιT : T →
∐

c∈Im ρ Pc.

2. We assign a metric structure dT to T . For x1, x2 ∈ T , denote x1∨x2 be the ele-

ment in T such that supp(ιT (x1∨x2)) is the smallest among all the supports of

equivalence classes in {Pc}c∈Im ρ which contains supp(ιT (x1))
⋃

supp(ιT (x2)).

Suppose ιT (x1) ∈ Pc1 , ιT (x2) ∈ Pc2 and ιT (x1 ∨ x2) ∈ Pc3 . Then we let

dT (x1, x2) = c1 + c2 − 2c3.

3. The root r(T ) of T corresponds to the unique equivalence class {r(B)} at Pmin ρ.
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We note that the construction of the partition tree associated to the finest partition

system is essentially the same as the construction of the bifurcation tree B. In general,

we can also assign a partial order to the points of T in the same way as to the points

of B, i.e., x > x′ if supp(ιT (x)) ⊇ supp(ιT (x′)). If ιT (x) ∈ Pc where c ∈ Im ρ, we let

dρT (x) = c and d0
T (x) = c−min ρ. In particular, we also have d0

T (x) = dT (r(T ), x).

Again, analogous to the canonical projection πB : Γ→ B, we can construct an in-

duced projection πT : Γ→ T (Lemma 4.7.20) such that (T , πT ) ∈ Λρ. Let {~Pc}c∈Im ρ

be the proper open partition system corresponding to {Pc}c∈Im ρ. Lemma 4.7.21 shows

the set of forward tangent directions on T can be identified with the set of all equiv-

alence classes in {~Pc}c∈Im ρ. We state these lemmas without proofs since they are

straightforward by the construction of partition trees.

Lemma 4.7.20. For p ∈ Γ, there is a unique element x with dρT (x) = ρ(p) such that

p ∈ supp(ιT (x)). By sending p to x, this induces a projection πT : Γ→ T . Moreover,

the map πT is continuous, piecewise-linear, surjective and satisfies ρ = dρT ◦ πT .

Lemma 4.7.21. There is a canonical bijection ~ιT :
∐

x∈T Tan+
T (x)→

∐
c∈Im ρ

~Pc. In

particular, Tan+
B (x) is in bijection with {~e ∈ ~PdρT (x)| supp(~e) ⊆ supp(ιT (x))} by ~ιT .

Remark 4.7.22. Like the pushforward πB∗ induced by the canonical projection πB, we

also have the pushforward map πT ∗ :
∐

p∈Γ TanΓ(p)→
∐

x∈T TanT (x) such that (1) if

t ∈ Tanρ−Γ (p), then πT ∗(t) is the unique element in Tan−T (πT (p)); (2) if t ∈ Tanρ+
Γ (p),

then πT ∗(t) ∈ Tan+
T (π(p)).

The following theorem tells us that we may identify each element in Λρ as a

partition tree (with the induced projection).

Theorem 4.7.23. There is a one to one correspondence between proper partition

systems with respect to ρ and elements in Λρ.

Proof. Using the construction in Definition 4.7.19 and Lemma 4.7.20, we can associate

a pair (T , πT ) ∈ Λρ to a proper partition of ρ.
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Conversely, let (T , πT ) be an element in Λρ. For c ∈ Im ρ and y ∈ T , suppose c =

dT (r(T ), y) + min ρ. Note that for any p ∈ π−1
T (y), ρ(p) = c and hence dρB(πB(p)) = c.

Let ey be πB(π−1
T (y)) which is a subset of (dρB)−1(c). By the continuity of πT , we must

have π−1
T (y) = supp(ey)

⋂
ρ−1(c), and hence Pc := {ey′|dT (r(T ), y′) + min ρ = c} is a

partition of (dρB)−1(c). Therefore we derive a closed partition system {Pc}c∈Im ρ from

(T , πT ). Again the continuity of πT implies {Pc}c∈Im ρ is proper. Moreover, the parti-

tion tree associated to {Pc}c∈Im ρ as constructed in Definition 4.7.19 is exactly T and

the induced projection in Lemma 4.7.20 is exactly πT . Therefore, this correspondence

between PCP(ρ) and Λρ is one-to-one.

Recall that the collection of all partitions of a finite set A is a lattice ordered

by refinement. More precisely, for two partitions P and Q, we say P1 6 P2 if P1

is a refinement of P2, i.e., x ∼P1 y implies x ∼P2 y for each two elements x, y ∈ A

where the equivalence relation associated to a partition P is denoted by ∼P ; the

meet (greatest lower bound) P1

∧
P2of P1 and P2 can be afforded in the way that

x ∼P1
∧
P2 y if and only if both x ∼P1 y and x ∼P2 y for each two elements x, y ∈ A;

the joint (least upper bound) P1

∨
P2 can be afforded in the way that x ∼P1

∨
P2 y if

and only if either x ∼P1 y or x ∼P2 y for each two elements x, y ∈ A.

Analogously such a partial order and lattice structure can be extended to CP(ρ)

and OP(ρ). Let Pρ = {Pc}c∈Im ρ and Qρ = { ~Qc}c∈Im ρ be closed partition systems.

Then we say Pρ 6 Qρ if Pc 6 Qc for each c ∈ Im ρ, and the meet
∧

and join
∨

of par-

tition systems as follows: Pρ
∧
Qρ = {Pc

∧
Qc}c∈Im ρ and Pρ

∨
Qρ = {Pc

∨
Qc}c∈Im ρ

while it is straight forward that Pρ
∨
Qρ and Pρ

∧
Qρ are both in CP(ρ). Similarly,

for open partition systems ~Pρ = {~Pc}c∈Im ρ and ~Qρ = { ~Qc}c∈Im ρ, we have the par-

tial order defined as ~Pρ 6 ~Qρ if ~Pc 6 ~Qc for each c ∈ Im ρ, the meet defined as

~Pρ
∧ ~Qρ = {~Pc

∧ ~Qc}c∈Im ρ and the join defined as ~Pρ
∨ ~Qρ = {~Pc

∨ ~Qc}c∈Im ρ. We

then note that the maximum partition system is the coarsest partition system and

the minimum partition system is the finest partition system.
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The following simple lemma says the meet and join operations are closed when

restricted to PCP(ρ) and POP(ρ).

Lemma 4.7.24. Let Pρ,Qρ ∈ PCP(ρ) and ~Pρ, ~Qρ ∈ POP(ρ). Then Pρ
∧
Qρ ∈

PCP(ρ), Pρ
∨
Qρ ∈ PCP(ρ), ~Pρ

∧ ~Qρ ∈ POP(ρ), ~Pρ
∨ ~Qρ ∈ POP(ρ). In addition,

if ~Pρ and ~Qρ are the open partition systems corresponding to Pρ and Qρ respectively,

then ~Pρ
∧ ~Qρ and ~Pρ

∨ ~Qρ are the open partition systems corresponding to Pρ
∧
Qρ

and Pρ
∨
Qρ respectively.

Remark 4.7.25. Using the bijection provided by Theorem 4.7.23, we may associate

Λρ with the same partial order and lattice structure. In particular, let TP and TQ be

the partition trees associated to Pρ,Qρ ∈ PCP(ρ) with induced projections πTP and

πTQ respectively. We say (TP , πTP ) 6 (TQ, πTQ) or simply TP 6 TQ if Pρ 6 Qρ, i.e.,

Pρ is finer than Qρ. Moreover, if TP 6 TQ, there is a natural map: ΘTPTQ : TP → TQ

with x 7→ y such that ιTQ(y) is the equivalence class dominating ιTP (x). Clearly,

(Im ρ, ρ) and (B, πB) are the maximum and minimum of Λρ respectively (as a rooted

metric tree, Im ρ = [min ρ,max ρ] has its root at min ρ), since they correspond to the

coarsest and finest partition systems respectively.

In general, we write

(TP , πTP )
∧

(TQ, πTQ) = (TP
∧
TQ, πTP

∧
πTQ)

and

(TP , πTP )
∨

(TQ, πTQ) = (TP
∨
TQ, πTP

∨
πTQ),

whereTP
∧
TQ and TP

∨
TQ are the partition trees associated to Pρ

∧
Qρ and Pρ

∨
Qρ

with induced projections πTP
∧
πTQ := πTP

∧
TQ and πTP

∧
πTQ := πTP

∨
TQ respectively.

The following lemma follows straightforwardly from our definitions of partition

trees and the maps between them.
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Lemma 4.7.26. If TP 6 TQ 6 TR as partition trees, the following diagram commutes.

Γ TP

TQ

TR Im ρ
πTP

πTQ

πTR

ρ

Θ
TP
TQ

Θ
TP
TR

dρTP

Θ
TQ
TR

dρTQ

dρTR

Now we will associate another one-to-one correspondence to Λρ, i.e., partition

trees can be identified with tropical dominant trees.

Note that for every two points x1 and x2 in a partition tree T , there is a unique

segment [x1, x2]T connecting x1 and x2. By sending a point p ∈ Γ to dρT (x) where x is

the retraction of πT (p) onto [x1, x2]T , we can define a rational function on Γ, denoted

by fρ[x1,x2]T
. With this definition, if p ∈ (πT )−1([x1, x2]T ) then fρ[x1,x2]T

(p) = ρ(p), oth-

erwise for each connected components C of T \[x1, x2]T , fρ[x1,x2]T
is a constant function

restricted to (πT )−1(C). Moreover, since fρ[x1,x2]T
is composition of continuous func-

tions, it is itself a continuous function and hence well-defined as a rational function on

Γ. Clearly, with this construction, different segments on T induces rational functions.

Let fρT ,x := −fρ[r(T ),x]T
and Dρ be the effective part of div(ρ). Then we observe

that fρT ,x1
= fρT ,x2

on (πT )−1(x1 ∨ x2).

Remark 4.7.27. Given a tropical dominant tree T , there is a natural map πT = Γ→ T

such that πT is continuous and for each p ∈ Γ, p ∈ supp(πT (p)). More specifically,

using the language of chip firing, for a divisor D ∈ T , consider p ∈ supp(D), then

πT (p) = D if and only if there exists at least one tangent direction t at D in T such

that as D fires along t, a chip at p moves. Pick any point r(T ) ∈ T as the root of

T . Let ρT be a function on Γ which sends p ∈ Γ to the distance between r(T ) and

πT (p). Then clearly ρT is a rational function on Γ with everywhere nonzero slopes
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and clearly (T, πT ) ∈ ΛρT . We call ρT the associated rational function with respect

to T rooted at r(T ).

Theorem 4.7.28. Elements in Λρ is in one-to-one correspondence with tropical dom-

inant subtrees of |Dρ| rooted Dρ whose associated rational function is ρ − min ρ. In

addition, the correspondence on each element in Λρ is an isometric embedding into

Λρ.

Proof. For a partition tree T and every x ∈ T to Dx := Dρ + div(fρT ,x). Then

Dx ∼ Dρ. By definition, fρT ,x = −ρ on (πT )−1([r(T ), x]T ) and otherwise fρT ,x is

componentwise constant. Therefore Dx is effective and we have Dx ∈ |Dρ|. In

particular, Dr(T ) = Dρ. Moreover, for any p ∈ (πT )−1(x) where x 6= r(T ), fρT ,x(p)

just reaches its minimum value since each t ∈ Tan−Γ (p) maps to the unique backward

tangent direction at x by πT ∗, which means Dx must be effective at p. Therefore, by

sending x to Dx, we can embed T into |Dρ|. We will show that the image is tropically

convex and the embedding is isometric. Let T = {Dx|x ∈ T }. as a tropical dominant

tree containing Dρ.

Conversely, let T be a tropical dominant subtree of |Dρ| minimally generated by

{Dρ, D1, . . . , Dm}. Then (T, πT ) ∈ ΛρT .

4.7.4 Admissible and strongly admissible partition systems

Suppose (D,H) is a solvable diagrammatic pre-limit g1
d with a solution ρ and the

corresponding bifurcation tree B, where D = (DΓ, {Dp}p∈Γ). Let Λ1
D,H := Λρ.

In general, we cannot tropically embed partition trees into |DΓ| as done for |Dρ|

in Theorem 4.7.28, since DΓ + div(fρT ,x) may not be effective. However, it is possible

that some partition trees can be even embedded into RD,H ∈ |DΓ|, which will be

characterized in the this section.

Now we will consider the restriction of Λ1
D,H to RD,H, i.e., the set of partition
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trees (T , πT ) ∈ Λρ such that T tropically embeds into RD,H. We will show that

these partition trees accounts for all possible tropical dominant subtrees of RD,H,

and describe this set in terms of more restricted partition systems called admissible

partition systems that take into account the local partitions at all points p ∈ Γ.

Definition 4.7.29. (Admissible and strongly admissible partition system-

s) A proper partition system with its open section ~Pρ is admissible (respectively,

strongly admissible) if for every point p ∈ Γ and each pair of tangent directions

t1, t2 ∈ Tan+
Γ (p), we have t1 is locally equivalent to t2 if (respectively, if and only if)

πB∗(t1) is equivalent to πB∗(t2) in ~Pρ.

In addition, we say a partition tree is admissible (respectively, strongly admis-

sible) if it is associated to an admissible (respectively admissible) partition system.

Denote by Λ2
D,H the set of admissible partition trees, and by Λ3

D,H the set of strongly

admissible partition trees. Clearly Λ1
D,H ⊇ Λ2

D,H ⊇ Λ3
D,H.

Remark 4.7.30. Recall that a bifurcation partition system is determined by the par-

titions of forward tangent directions at finitely many points of B, and thus there are

only finitely many of them. Denote the set of bifurcation partition systems on B by

BP(ρ). Then there is a natural map φPOP : POP(ρ) → BP(ρ) such that for every

x ∈ B, every two forward tangent directions t1 and t2 in Tan+
B (x) are equivalent in

φPOP( ~Pρ) if and only if they are equivalent in ~Pρ. In other words, the partition of

Tan+
B (x) in φPOP( ~Pρ) is exactly the partition at dρB(x) in ~Pρ restricted to Tan+

B (x).

We also define maps φPCP : PCP(ρ)→ BP(ρ) and φΛ : Λρ → BP(ρ) in the natural

way based on the the correspondence between POP(ρ), PCP(ρ) and Λρ. Then these

maps are surjective for the following reasons. Consider a bifurcation partition system

{~Px}x∈B. For a small enough δ (precisely, we can let δ be less than the minimal

distance between two bifurcation values) and each point x ∈ Bif(B), let c = dρB(x)

and for all d ∈ (c, c + δ], we make ωc∗,dB (Tan+
B (x)) into an equivalence class. And

by letting all the remaining equivalence classes being singletons, we derive a closed
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partition system Pρ which is clearly proper. We call the partition tree T associated to

Pρ the δ-glued partition tree with respect to {~Px}x∈B. Then it is easily verifiable

that φPCP(Pρ) = φΛ(T ) = {~Px}x∈B.

Denote the set of admissible bifurcation partition systems on B by BPa(ρ) and

the set of strongly admissible bifurcation partition systems on B by BPsa(ρ). Then

we have the following lemma which can be directly derived from the definitions.

Lemma 4.7.31. The image of φΛ restricted to Λ2
D,H is BPa(ρ) and the image of φΛ

restricted to Λ3
D,H is BPsa(ρ).

Proof. Consider an admissible (respectively, strongly admissible) open partition sys-

tem ~Pρ. Then φPOP( ~Pρ) is essentially a restriction of the partitions in ~Pρ to all

Tan+
B (x) for all x ∈ Γ. Therefore, for all p ∈ Γ and each pair t1, t2 ∈ Tan+

Γ (p), we

have πB∗(t1), πB∗(t2) ∈ Tan+
B (πB(p)) and to say πB∗(t1) and πB∗(t2) are equivalent in

~Pρ is the same to say they are equivalent in φPOP( ~Pρ). Therefore, by the definition of

admissible (respectively, strongly admissible) partition systems, t1 and t2 are locally

equivalent if (respectively, if and only if) πB∗(t1) and πB∗(t2) are equivalent in ~Pρ or

equivalently in φPOP( ~Pρ). Therefore, φPOP( ~Pρ) is a admissible (respectively, strongly

admissible) bifurcation partition systems on B.

The following lemma says that Λ2
D,H is lower closed.

Lemma 4.7.32. If T ∈ Λ2
D,H is then any element T ′ ∈ Λ1

D,H with T ′ 6 T is also in

Λ2
D,H.

Proof. Let ~Pρ and ~P ′ρ be the admissible open partition systems corresponding to

T and T ′ respectively. Then T ′ 6 T means that ~P ′ρ 6 ~Pρ, i.e., ~P ′ρ is finer than

~Pρ. Therefore, for all p ∈ Γ and each pair t1, t2 ∈ Tan+
Γ (p), πB∗(t1) and πB∗(t2) are

equivalent in ~P ′ρ implies they are equivalent in ~Pρ which further implies t1 and t2 are

locally equivalent. Thus we conclude T ′ ∈ Λ2
D,H.
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Remark 4.7.33. If T ∈ Λ2
D,H is nonempty, then B is an element of Λ2

D,H since B is the

minimum of Λ1
D,H.

Lemma 4.7.34. Λ2
D,H and Λ3

D,H are sublattices of Λ1
D,H.

Proof. Just need to show Λ2
D,H and Λ3

D,H are closed under the meet
∧

and join
∨

operations. We consider equivalent cases for open partition systems.

Let ~Pρ, ~Qρ ∈ POP(ρ) be admissible. Then for all p ∈ Γ and each pair t1, t2 ∈

Tan+
Γ (p), we have t1 and t2 are locally equivalent if πB∗(t1) and πB∗(t2) are equivalent

in ~Pρ or ~Qρ, which equally means they are equivalent in both ~Pρ
∧ ~Qρ and ~Pρ

∨ ~Qρ.

Hence ~Pρ
∧ ~Qρ and ~Pρ

∨ ~Qρ are both admissible.

Suppose now that ~Pρ and ~Qρ ∈ POP(ρ) are strongly admissible, then in addition

we have t1 and t2 are locally equivalent implies πB∗(t1) and πB∗(t2) are equivalent in

both ~Pρ and ~Qρ, while it follows they are equivalent in both ~Pρ
∧ ~Qρ and ~Pρ

∨ ~Qρ.

Hence ~Pρ
∧ ~Qρ and ~Pρ

∨ ~Qρ are both strongly admissible.

Theorem 4.7.35. Elements in Λ2
D,H is in one-to-one correspondence with tropical

dominant subtrees of RD,H containing DΓ.

Proof. First suppose (D,H) is solvable with a solution ρ. For a partition tree T and

every x ∈ T to Dx := Dρ + div(fρT ,x). Then we show that Dx ∈ RD,H. Let fΓ = fρT ,x.

For each p ∈ Γ, let y = πT (p). Then if y ∈ [r(T ), x)T , we have

divp(fΓ) = −Σt∈Tanρ−Γ (p)m(p, t)(redp(t))− Σt∈Tanρ+Γ (p)
⋂

(πT ∗)−1(t+y )m(p, t)(redp(t))

where t+y is the forward tangent direction at y along the path from r(T ) to x. Since

T is admissible, we see that the tangent directions in Tanρ+
Γ (p)

⋂
(πT ∗)

−1(t+y ) are

locally equivalent. Therefore, there exist a rational function fp ∈ Hp such that

Dp + divp(fΓ) + div(fp) is effective.

If y = x, we have divp(fΓ) = −Σt∈Tanρ−Γ (p)m(p, t)(redp(t)). Let fp be any noncon-

stant function in Hp. The remaining case is when y ∈ T \ [r(T ), x)T and divp(fΓ) = 0.
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Let fp be a constant function. Then for all the cases, there will be a rational function

fp ∈ Hp such that Dp + divp(fΓ) + div(fp) is effective. Let f be (fΓ, {fp}p ∈ Γ). Then

D + div((f)) is effective, which proves Dx ∈ RD,H. Therefore, we can tropically and

isometrically embed T into RD,H exactly following the way we embed T into |Dρ| in

the proof of Theorem 4.7.28.

Conversely, let T ∈ RD,H be a tropical dominant tree rooted at DΓ. Then by

Remark 4.7.27, there is natural πT : Γ→ T and a function ρT such that (T, πT ) ∈ ΛπT .

Therefore, T can be considered as a partition tree with respect to ρT . Then what we

want to show is that ρT is a solution to the global diagram. But this follows from the

slope-multiplicity principle.

We now formulate a condition on the bifurcation map that characterizes the exis-

tence of a tropically convex burning subtree in RD,H.

Theorem 4.7.36. A solvable diagrammatic pre-limit g1
d (D,H) satisfies local-bifurcation

condition (level II) if and only if RD,H contain a tropical dominant subtree DΓ.

Proof. (D,H) satisfies local-bifurcation condition, if and only if BPa(ρ) is nonempty,

if and only if Λ2
D,H is nonempty, if and only if RD,H contain a tropical dominant

subtree DΓ.

4.8 Construction of a harmonic morphism from an dia-
grammatic limit g1d that satisfies the condition of The-
orem 4.1.12

In this section, we explain the construction of a harmonic morphism of refined

metrized complexes starting from an diagrammatic limit that is diagrammatic and

satisfies the intrinsic global compatibility conditions. The diagrammatic limit g1
d is

diagrammatic the local diagram fits into a global diagram. Since, it is solvable the

characteristic equation has a solution. Consider the bifurcation tree B associated to

the timing function and let πB be the canonical projection.
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Modification: We perform two types of modification:

I. For every point u in Γ with only incoming tangent directions, by Property ii of

a refined limit g1
d (see Definition 4.1.9) we know that no point in the support of Du

is a marked point of Cu. We mark each point u in the support of the divisor Du on

Cu, glue a copy of the connected component of B \ {πB(u)} that contains the root of

B and associate the multiplicity of Du at the marked point as the expansion factor

along this copy.

II. For every point u ∈ Γ and for each class C of tangent directions consisting of all

tangent directions that map to the same tangent direction via the push-forward map,

since the limit g1
d satisfies the local-bifurcation compatibility conditions, there exists

a rational function gC ∈ Hu that has zeroes at each tangent direction in C. Mark the

zeroes of gC that are not already marked points of Cu. For each additionally marked

zero, we glue in a copy of u of the connected component B \ {πB(u)} that does not

contain the root. We associate multiplicity of gC as the expansion factor along this

branch.

Further branching: To extend the harmonic morphism of metrized complexes

to metrized complexes to the modified metrized complex, it is important to further

”split” the modification as follows: for each branch of B added in the modification,

suppose that the multiplicity along B is d and q is the point of valence three or more

that is closest to the root of the branch.

Note that the orientation of the bifurcation tree B induces an orientation on the

newly added branches of Γmod. According to this orientation, there is one incoming

tangent directions and d outgoing tangent directions at q. There are (d− 1) outgoing

subranches rooted at q, replicate each of these branches by m-branches. We denote

this metrized complex by Xmod. Mark m ·d generic points on Cq corresponding to the

tangent directions.

Construction of the Harmonic Morphism of Tropical Curves: Extend πB
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to a map φ such that a point in the newly added branches map to the corresponding

point in B and with the prescribed expansion factor.

Promoting the Bifurcation tree to a Genus Zero Metrized Complex: For

each u ∈ Γmod, we take Cu to be a rational curve for each u ∈ B. We mark points

on the curves we plugged in as follows: for each tangent direction t in Γmod mark the

image of t under the pushforward π∗B. We denote the resulting genus zero metrized

complex by T.

Construction of the Harmonic Morphism of Metrized Complexes:. We

promote φ to a harmonic morphism of metrized complexes between Xmod and T as

follows: we must additionally specify rational functions on the curves Cp for each

point p of the metric graph. For every point p ∈ Γ, we take fp as any non-constant

element in Hp. For each branch B in Γmod \ Γ with root u ∈ Γ and suppose v is the

point in B \ {q} that is closest to the root u. For any point that is closer to the root

u than v take fv is a rational function of degree m with a pole of order m at the

marked point corresponding to the incoming tangent direction and a zero of order m

at the marked point corresponding to the outgoing tangent direction. Consider the

rational function fv = P/Q where P is a generic polynomial of degree m and Q is a

polynomial of degree m with a zero of order m at the marked point corresponding to

incoming tangent direction on the rational curve Cq, where m is the multiplicity of

the incoming tangent direction.

Lemma 4.8.1. The map φ : Γmod → B is a harmonic morphism of tropical curves.

The collection (φ, {fp}p∈Γ) is a harmonic morphism of metrized complexes of degree

deg(DΓ).

Proof. The map φ is a harmonic morphism between Γmod and the bifurcation tree

since the first type of modification ensures that the map has degree deg(DΓ) at the

root of B and the second type modification ensures the harmonicity condition is

satisfied at every point.
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We show that the three compatibility conditions for a harmonic morphism of

metrized complexes are satisfied:

Condition i: By the construction of the genus zero metrized complex T enriching

B, we note that the marked points in the metrized complex Xmod are mapped to

marked point in B.

Condition ii: By the construction of the genus zero metrized complex B enriching

B, we know that for every point u, the function fu takes a marked point to another

marked point if and only if the corresponding tangent direction are mapped to a

tangent direction by the harmonic morphism φ. Since the limit g1
d satisfies the intrinsic

global compatibility conditions, we know that for every pair of points u, v ∈ Γmod

such that φ(u) = φ(v), we know that the tangent directions t1, t2 ∈ Tan(p) are

mapped to the same tangent direction by πB if and only if fu(t1) = fv(t2).

Condition iii: We must show that for every p ∈ Γmod and for every tangent

direction t ∈ Tan(p) the expansion factor of φ is equal to ramification index of fp at

Tan(p). This is a consequence of the construction of the modification Γmod.

By construction, (φ, {fp}p∈Γ) is a harmonic morphism of degree deg(DΓ).

4.9 Proof of the smoothing theorem.

This remaining section is sketchy. For more detailed explanations, readers should

refer to the upcoming paper of me and Madhusudan Manjunath.

Suppose that the diagrammatic pre-limit g1
d (D,H) is solvable and satisfies the in-

trinsic global compatibility conditions. Then we can construct a harmonic morphism

from a modification of the metrized complex Xmod to a genus zero metrized complex

with a δ-glued partition tree as the underlying metric tree, which implies (D,H) is

smoothable by Theorem 4.1.12.

Conversely, suppose that the diagrammatic pre-limit g1
d is smoothable and thus
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by Theorem 4.1.12 gives a harmonic morphism of metrized complexes between a

modification Xmod and a genus zero metrized complex T . Then we can show that

the metric tree underlying this metrized complex is contained in RD,H. Using the

classification of elements in Λ2
D,H, we conclude that this tree is dominated by the

bifurcation tree and the local-bifurcation conditions (intrinsic global compatibility

conditions resp.) with respect to the bifurcation tree B are satisfied.
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[5] Amini, O., Baker, M., Brugallé, E., and Rabinoff, J., “Lifting harmonic
morphisms i: metrized complexes and berkovich skeleta,” arXiv preprint arX-
iv:1303.4812, 2013.
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