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SUMMARY

A novel microarchitecture and circuit design techniques are presented for an

asynchronous datapath that not only exhibits an extremely high rate of performance,

but is also energy efficient. A 0.5 um chip was fabricated and tested that contains test

circuits for the asynchronous datapath. Results show an adder and multiplier design

that due to the 2-dimensional bit pipelining techniques, speculative completion, dy-

namic asynchronous circuits, and bit-level reservation stations and reorder buffers can

commit 16-bit additions and multiplications at 1 giga operation per second (GOPS).

The synchronicity simulator is also shown that simulates the same architecture except

at more modern transistor nodes showing adder and multiplier performances at up

to 11.1 GOPS in a commerically available 65 nm process. When compared to other

designs and results, these prove to be some of the fastest if not the fastest adders

and multipliers to date. The chip technology also was tested down to supply voltages

below threshold making it extremely energy efficient. The asynchronous architecture

also allows more exotic technologies, which are presented. Learning digital circuits

are presented whereby the current supplied to a digital gate can be dynamically up-

dated with floating gate technology. Probabilistic digital signal processing is also

presented where the probabilistic operation is due to the statistical delay through the

asynchronous circuits. Results show successful image processing with probabilistic

operation in the least significant bits of the datapath resulting in large performance

and energy gains.

xviii



CHAPTER I

INTRODUCTION

As we enter a unique age in the development of computing where the straight-forward

path of simple transistor scaling to create performance and efficiency gains is coming

to an end, this dissertation presents research that shows novel microarchitectural

and circuit design techniques that continue to allow leaps in sequential computing

performance, which is the bottle neck to single application performance speedups

shown by Ahmdal’s law [106]. This work not only makes a case for the technologies

presented, which are independent of technology size and logic family, but also for the

continuing importance of good circuit designers in our engineering community.

This dissertation will focus on a novel chip that was fabricated and tested and is

built with completely deterministic asynchronous technology. One of the technologies

introduced is a 2-dimensional bit-level pipelining scheme only possible in the asyn-

chronous domain that allows unprecedented performance gains. This architecture is

also fully functional and tested at subthreshold voltage levels, making it extremely

energy efficient when needed. The subthreshold to nominal supply range of operation

with no additional overhead circuitry is also only possible with asynchronous technol-

ogy. Results will show a chip built in 0.6 µm AMI technology whereby the multiplies

and adds in the datapath run as fast as 1 GHz [77]. As a comparison, no other silicon

results in this technology show speeds faster than 370 MHz for full N -bit additions

and multiplications [83, 114]. The chip is laid out and simulated in 180 nm and 65

nm technology which show even faster results presenting an argument for the most

efficient datapath architecture available.

Probabilistic CMOS concepts are introduced and used to motivate a new paradigm
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Figure 1: Distributed and parallel processing are a popular trend to increase per-
formance in computing. However, for single threads with centralized data, we see
the communication bandwidth increases with the amount of parallel processing and
becomes a bottleneck to improving single threaded performance.

implemented on chip called Speculative Completion which uses the principles devel-

oped during pcmos research to improve the performance of asynchronous, delay-

based technology. The author also gives evidence of why thermally based and syn-

chronously based pcmos techniques are not preferred methods to achieve computing

gains.

Finally, a second 0.35 µm chip is presented that introduces floating gate technology

to further supplement the asynchronous architecture and ushers in a new paradigm

of Learning Digital Circuits [76].

1.1 Chip-Level Parallelism Can Only Take Us So Far

Many interesting trends start to emerge in computing as we enter this era where we

see the “Death” of Moore’s Law in regards to frequency scaling with transistor size.

One such trend is obviously parallel computing and distributed processing, however

this trend has its own problems as shown in Figure 1.

The fact that communication bandwidth becomes a bottleneck to single-threaded

performance in distributed computing paradigms becomes a huge problem as we know
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Figure 2: An interesting trend emerges as we plot Chip-Level Parallelism vs Perfor-
mance per Watt. There is a point at which applications can no longer be parallelized
and efficiency drops as parallelism increases. The Cell Broadband Engine Architec-
ture (CBEA), which was built in part by me, is the most efficient chip on the market
at the time of the survey.

that Ahmdal’s law says that the gains of an application are limited by how fast the

sequential portions (e.g. single thread) can perform [29].

The author surveyed several state-of-the-art chip architectures as of 2006 and

interestingly we see a trend emerge when performance per watt is plotted vs paral-

lelism for the chips shown in Figure 2. Note that in these plots we refer to chip-level

parallelism in the macro-architectural or course-grained sense of the word.

Because applications only have a certain amount of parallelism that can be taken

advantage of at the chip level, again according to Ahmdal’s law, we see a saturation

point in Figure 2 where increased parallelism decreases the efficiency of the applica-

tion. The cell processor is the most efficient chip on the market that was surveyed [15].

This leads us to the obvious conclusion that in order to continue to increase
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(a) (b) (c)

Figure 3: Fundamental limit of the switching energy of a digital bit. The calculation
is derived from first physical principles shown as a thought experiment. (a) Initial
state is we have two equally possible states at which the particle can arrive, 0 or
1, giving us no information about which state it will end up in. Energy=kT ln2,
assuming a heat bath at temperature T. (b) Energy is used to assure the particle
is in state 1. The energy used is ∆E = kT ln2 − kT ln1 = kT ln2. (c) We can use
less energy to assure the particle only has a probabiliy p of ending up in state 1.
∆E = kT ln2p. Energy Savings of kT ln1

p
is seen for the probabilistic case.

performance and efficiency, single cores and single-threaded processing not only must

continue to improve, but this is the key to continued improvement.

1.2 First Attempts at Improving Single-Thread Efficiency

Due to the apparent death of instruction level parallelism (ILP) [105], alternative

methods were looked at to improve efficiency. An extremely interesting discovery was

made that is dubbed “Probabilistic Computing”.

It turns out that if the physics of a transistor and the associated energy equations

are taken into account, there is a relationship that shows an exponential decrease

in energy consumption of a transistor as the probability of correct operation of this

transistor decreases linearly [34] assuming a fixed noise level. Hence, one can trade

a small loss in probability of correct operation, for a large gain in energy savings.

Indeed, this energy-probability relationship is confirmed at the quantum level by

Richard Feynman in [30] and illustrated in Figure 3.

Figure 3 shows that the fundamental energy per switching step used for digital
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bits can be lowered using probabilistic computing techniques whereby we only know

with probability p that the bit is in the intended state.

Thus, we have discovered and implemented a probabilistic computing principle

used to gain energy savings at the cost of some incorrect operation.

1.2.1 Failure of Thermal Noise

The initial simulation results shown in Chapter 2 and published in [34] on this topic

by the author assume a level of thermal noise of 200 − 300 mV as the source of

probabilistic error.

This affect becomes dominant when supply voltage is lowered into the noise margin

of the digital gate, which is a region defined by Equation 2 where UT = kT
q

.

Vdd > 4UT or (1)

UT < 0.25Vdd (2)

Positive results are achieved by using a BIased VOltage Scaling scheme we call

bivos which biases the more significant bits with higher voltage and the least signif-

icant bits with a lower voltage to allow more energy gains for less error. This works

because the result of an error in the least significant bits is much less costly to the

total error magnitude and thus we extract our energy savings here.

Upon closer inspection, UT never really gets above 25mV and even with scaling

of technologies, nominal supply voltages have stopped scaling at about 800 mV ,

far above the VDSAT = 4UT requirement for thermal noise to factor in. Even with

subthreshold voltage scaling in the most current technologies, we scale the supply

down to a minimum of around 150 mV [65]. Perhaps in the future, pcmos due

to thermal noise will become a viable technology, and thus results are outlined in

Chapter 2, but delay and performance penalties are the much more dominant effect.

5



Table 1: Energy savings for H.264 image benchmark data sets where source of
probability is voltage scaling causing delay faults. Energy savings are with respect to
the energy used at the nominal supply voltage.

Element Benchmark pδ E(pδ) ∆E(pδ) Energy Savings

Adder Uniform 0.9999 0.88pJ 2.59pJ 75%
Enom = 3.47pJ Low Quality h.264 0.9993 0.62pJ 2.85pJ 82%

δ threshold = 127 High Quality h.264 0.9998 0.62pJ 2.85pJ 82%
Multiplier Uniform 0.9998 8.30pJ 11.73pJ 59%

Enom = 20.03pJ Low Quality h.264 0.9549 2.11pJ 17.92pJ 89%
δ threshold = 127 High Quality h.264 0.9862 2.11pJ 17.92pJ 89%

fir Uniform 0.9999 102.89pJ 34.67pJ 25%
Enom = 137.56pJ Low Quality h.264 0.9998 37.37pJ 100.19pJ 73%
δ threshold = 255 High Quality h.264 0.9999 57.46pJ 80.1pJ 58%

However, these probabilistic results can be extended to delay to increase both

energy efficiency and performance.

1.3 Probabilistic Results Extended to Delay

Although thermal noise is not a dominant effect in current technology, delay errors,

where somehow the timing and latching of operations does not happen correctly

due to voltage scaling and device mismatch, are the dominant effect. Indeed initial

experiments were setup to test this effect.

A Fixed Point Adder, Multiplier and FIR Filter were built in cadence and simu-

lated with 0.25 µm TSMC technology. A metric pδ was used whereby the calculation

is only considered incorrect if it is more than δ from the correct answer. The δ is

listed and results compared to nominal operation in Table 1.

The results from Table 1 are very encouraging but are in simulation only and do

not take into account the real circuits problem of latching and metastability which

makes the concept impossible to implement in synchronous technology.

Thus the introduction of the idea for a Probabilistic Asynchronous Datapath!
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1.4 Target Applications

The target applications of this research are applications that are datapath and math-

ematically intensive, which spend a large percentage of their computing power doing

arithmetic. As a counterexample, in general purpose computing, a large percentage

of the instructions are control based, involve memory lookups and memory address

manipulation, and the key innovation to achieve low power in those designs are low

power memories. Further, a memory address lookup must be exact so probabilis-

tic computing principles would not be applicable to this area. Alternatively, signal

processing applications involve as much as thousands of addition and multiplication

operations per every memory lookup, and a large percentage of the power is used

in the datapath. Signal processing applications also regularly operate with error,

namely quantization errors, so this domain is particulary well-suited to probabilistic

computing principles. The embedded computing domain is dominated by these types

of applications and thus the focus will be in this area, not general purpose computing.

1.5 Introducing the rest of the Dissertation

Chapter 2 reviews the advances made by the author up to date on probabilistic

computing principles. These are derived from formula and simulation only, and serve

as a guide to the asynchronous research pursued in the later chapters. Chapters 3

and 4 introduce the necessary background for the asynchronous and floating gate

circuits .

Chapter 5 details macro-architectural superscalar ideas that are used and trans-

ferred in a novel way to the micro-architecture used on chip. Chapter 6 presents this

asynchronous micro-architecture.

Chapter 7 discusses the details of the 0.6 µm AMI asynchronous chip that was

built and Chapter 8 presents the silicon results. Chapter 9 presents simulation results

for the asynchronous chip architecture with more modern process technologies.
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Chapter 10 reviews how pcmos results can be applied to the asynchronous system

presented. Chapter 11 presents an exciting learning digital floating gate technology

that is still in the early stage in a technology’s development lifetime, but is used to

nicely supplement the asynchronous technology presented. The thesis is summarized

and contributions are given in Chapter 12.
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CHAPTER II

FUNDAMENTALS OF PROBABILISTIC DESIGN AND

COMPUTING

Probabilistic design takes advantage of the fact that in many embedded and DSP

calculations such as image processing, the result of a calculation need not be exactly

correct to get an acceptable overall result, e.g. image quality. This phenomenon

is already apparent with the effect of quantization noise in DSP systems. There

are two interesting properties that arise from this fact. One is that it takes much

less computing power to get an estimate of a calculation as opposed to the exact

result. The second interesting property is that the completion detection logic that is

necessary in asynchronous systems can be significantly reduced with a probabilistic

implemention. These two properties combined allow for a new design space to be

explored in arithmetic-intensive applications.

Probabilistic design of digital systems is viewed as an inevitable eventuality as

cmos device feature sizes continue to shrink into the nanometer regime [11] in ac-

cordance with Moore’s Law. Due to a variety of phenomena ranging from noise [58],

parameter variations [131], and manufacturing defects [113], computing circuits are

becoming non-deterministic or probabilistic. As a response to the need for a design

strategy to cope with these probabilistic faults, the concept of probabilistic cmos

(pcmos ) based architectures in date-2006 [16] have been developed.

The inevitability of these error-causing phenomena has led to the creation of

the concept of probabilistic design: designing deterministic circuits in the presence of

probabilistic errors. As this proposed research focuses on arithmetic, special attention

to probabilistic arithmetic will be paid here. Probabilistic arithmetic is defined in
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previous work by the author [34]:

Informally, a probabilistic arithmetic operation is an operation where each

ith bit of the computational primitive—addition studied here—has an as-

sociated probability of correctness, pi. A k bit probabilistic arithmetic

operation is a function OP where O : {0, 1}k×{0, 1}k → {0, 1}l is a func-

tion and P =< p0, p1, · · · , pl−1 >: 0 ≤ pi ≤ 1 is the probability parameter

where pi corresponds to the probability that the ith bit of the output is

correct. The case where P ≡< 1 > corresponds to a conventional (deter-

ministic) function.

Previous research on probabilistic computing has focused on achieving low energy

applications [34, 61, 44, 16, 46] in the presence of thermal noise. To summarize,

one can lower the supply voltage of computing circuits so much so that the supply

voltage becomes comparable with the voltage level of thermal noise causing errors. By

employing probabilistic computing techniques, these errors due to thermal noise can

be tolerated and thus allow for overscaling the supply voltage to achieve extremely

low energy consumption. Figure 2 shows the probability distribution function (PDF)

of a noisy gate where the output is correct on a probabilistic basis due to thermal

noise. This figure illustrates the effect of thermal noise changing the desired output

voltage to the incorrect value.

An experiment that was done in [78] shows the effects of thermal noise on an

ultra-voltage scaled H.264 decoder circuit simulation. The resulting images can be

seen in Figure 5 where the energy-performance product epp was improved by a factor

of 4.62X by using probabilistic design, and the degradation in the image due to the

probabilistic errors are practically unobservable.

Another type of probabilistic design methodology is to lower the supply voltage

such that the circuit no longer operates at a speed fast enough to do all computations
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Figure 4: The probability distribution function (PDF) of the output voltage of a
digital switch affected by thermal noise.
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Figure 5: Application level impact of probabilistic design on 3 frames of a military,
h.264 video comparing voltage scaled pcmos [bottom](with an epp ratio of 4.62X)
to the original h.264 frames [top]
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Figure 6: Histogram of maximum propagation delay over a uniform input set for
an 18x18 bit array multiplier. A 33% increase in clock speed would only cause delay
faults (when the switching speed of the circuit is longer than the clock period) in 1%
of the inputs.

before the clock pulse resulting in delay faults [7, 46]. Since the speed at which

datapath circuits compute is highly dependent on the input data, these delay faults

occur probabilistically based on the input set. An illustration of this phenomenon

can be seen in Figure 6. This figure shows that if the nominal clock speed is increased

33%, a delay fault would occur on only 1% of the input set.

Instead of increasing the performance for an 18x18 bit multiplier as illustrated in

Figure 6, the energy consumption of the multiplier could be lowered such that the

circuit performed 33% slower to achieve the same accuracy of 99% correctness.

Probabilistic operation of circuits due to thermal noise has been well studied,

but it is the goal of this research to shed light on probabilistic operation of circuits

due to temporal noise (delay faults) which has not been well studied, particularly in

asynchronous design.
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CHAPTER III

FUNDAMENTALS OF ASYNCHRONOUS DESIGN

The definition of an asynchronous circuit is a circuit that is self-timed and operates

without a clock or other synchronizing device. The origins of asynchronous design

started with Huffman who proposed the fundamental mode assumption where self-

timed circuits operated under the assumption that the environment will apply only a

single input change at a time and not another until the circuit has stabilized otherwise

known as a bounded delay model [49].

Muller introduced a new model to greatly widen the class of available asynchronous

circuits. He proposed a model with unbounded delays – that is the circuits had no

assumption on which path would finish first making the circuit delay insensitive – and

that the completion of these circuits would be detected via a Muller C-element [92].

This is the most important classical innovation although the full history can be seen

in [5, 9, 93, 97, 127, 31, 32].

The next series of important innovations in asynchronous design were developed

by Martin’s group [83]. He fundamentally changed asynchronous computing by defin-

ing two important principles:

Definition: A circuit is quasi delay-insensitive (QDI) if no assumptions are made

about the delays within the circuit except that the delay on different paths of an

isochronic fork are equal.

Definition: An isochronic fork is when the output of a gate is connected to the

input of multiple other gates. In other words, there is an isochronic fork when a gate

13



Figure 7: Dual rail encoding for bit ‘A’ over two data wires.

has a fanout greater than 1.

By making the QDI assumption, Martin proved that all Turing-computable func-

tions, and thus all computing functions of interest, could be built asynchronously [83,

1, 79, 84, 82]. Martin also developed the concept of delay-insensitive hazard free

coding of the bitlines resulting in the code of choice: a dual rail code [81], which can

be seen in Figure 7.

In order for correct completion detection, before each calculation all bits are set

to a neutral value. After a calculation, all bits are set to a valid value. Since all

transitions are hazard-free and make only a single transition for any change in input,

any time all ouptut bits in a dataword for a functional unit are neutral, the processor

knows the functional unit is ready for the next input. Any time all output bits in the

dataword are valid, the processor knows the calculation is complete. This allows for a

simple handshaking system where all values in the datapath are constantly switching

from neutral to valid back to neutral.

An example of a typical completion tree that signals when all bits in a dataword

are either ‘valid’ or ‘neutral’ is seen in Figure 8.

A pipelined handshake removes an intermediate variable and also removes data

dependency so that handshaking operations can be done in parallel. The most com-

monly used circuit in Martin’s work, the pre-charged half buffer (PCHB) handshake

circuit, is used to send a signal from channel L to channel R as in Equation 3. A

schematic of the PCHB can also be seen in Figure 9. The symbols v(L) and v(R)

represent completion trees on all the bits of channel L and R that validate whether
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Figure 8: A completion tree for a typical N-bit dataword that sends a write ac-
knowledge (wack) signal when write is complete.

Figure 9: Schematic of an asynchronous pre-charged half buffer circuit that uses
pipelined handshaking.

the data is completely valid or completely neutral. The symbol F represents a block

that implements a function of the variables from channel L. The symbol en is a sleep

transistor and unimportant for this example.

PCHB ≡ ∗[[Re]; [L0 → R0 ↑ ‖L1 → R1 ↑]; Le ↓];
[¬Re] ; R0 ↓; R1 ↓; [¬L0&¬L1]; Le ↑]

(3)

There have been many n-bit adders proposed that are deemed both power and

speed effecient in the asynchronous domain. Evaluation of adders is an extremely
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important topic in computing, particuarly in digital signal processing and other data

intensive computing, due to the fact that 72% of datapath instructions are addi-

tions [24]. The most efficient QDI, asynchronous implementation for a full addder

was found in [81], which will be used in this research and is shown in Figure 10. In

this figure, the two inputs to the full adder are a and b with dual rails at, af , bt, bf

and carry in c with dual rails ct and cf . The outputs are the sum bit s with dual rails

st and sf and carry out d with dual rails dt and df . The sum and carry out outputs

are inverted.

16



Figure 10: A QDI, dual rail full adder implemtation with inverted outputs.
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CHAPTER IV

FUNDAMENTALS OF FLOATING-GATES

A floating-gate is a transistor that has the ability to hold charge on its gate because

of a capacitance and a lack of any paths to discharge. In this way electrons ‘float’

on the gate until such time as they are discharged by the transistor switching. The

first floating-gate was discovered in 1967 in Bell Labs as a mechanism for non-volatile

memory storage [53]. Because of its ability to hold charge for extremely long periods

of time without further energy requirements, floating-gates have become popular in

non-volatile memories and memories for mobile devices such as in flash memory and

EEPROM’s [85, 66].

The most wide use of floating-gates is for digital memory systems, however re-

cently they have been used as circuit elements [41]. An initial example of this was

in the ETAN chip in 1989 where analog floating-gate cells were used to create a neu-

ral network where the gates were used as direct inputs to multipliers to do intense

arithmetic and neuromorphic calculations [47].

Althoug the majority of the floating-gate circuits are used in neuromorphic ap-

plications, they have also shown themselves to be quite useful in capacitive-based

circuits such as digital arithmetic [41]. In [40], Hasler et al. showed that pFET

floating-gate circuit elements could be ‘programmed’ or charged by electron tunnel-

ing and charge was removed through hot-electron injection. With this programming

ability, floating-gates can be used as dynamic and adaptive circuit elements to act as

potentiometers, voltage sources, or a varying capacitive circuit.

Floating-gates allow for the placement of programmable capacitive circuit ele-

ments in the paths of arithmetic units that allow for additional charge or additional
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Figure 11: Inverter with a programmable floating-gate connected to each transistor
to control the input voltage at which the transistor switches.

capacitance to be added so that these paths are slowed down (and consume less en-

ergy) or sped up [42]. To summarize, the voltage threshold (Vth) of a gate can be

dynamically altered [120]. In [27], it is shown that the switching speed of an inverter

can be controlled by programmable floating-gates that are connected to each transis-

tor (FET) in the design. A transistor-level circuit diagram of this circuit can be seen

in Figure 11.

It is possible that only one floating-gate on each pull-down, pull-up network in

a CMOS instantiation is possible, and on-going work is being done to test the best

implementation on other gates [27]. It is in this regard that floating-gates will be

used in the proposed research.
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CHAPTER V

FINE-GRAINED PARALLEL ASYNCHRONOUS

PIPELINED ARCHITECTURE: A PREFACE

5.1 Motivation

Presented here is an asynchronous architecture that allows for parallel computation

and pipelining at the finest grained level available in digital systems: the bit level.

This parallel asynchronous pipelined architecture (PAPA) takes advantage of the

statistical nature of data dependencies to allow functional units at the bit level to

compute and commit data instead of being hindered by having to wait for all the bits

in the datapath to finish before committing data.

An illustrative example of this phenomenon is shown by the standard 16-bit,

ripple-carry adder. The example of an adder is also appropriate here because statistics

show that in general purpose computing it is estimated that up to 70% of instructions

are adds, and this number is suspected to be even higher for digital signal processing

(DSP) systems. A ripple-carry adder is shown in Figure 12.

In synchronous architectures, the adder is generally a single pipeline stage, and

the adder is also considered to compute as a single unit with all bits completing their

calculation according to the same clock.

This PAPA asynchronous design is motivated by similar techniques used in super-

scalar computing, such as deep-pipelining and instruction level parallelism.
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Figure 12: A 12-bit ripple-carry adder. Adders are generally not pipelined in syn-
chronous systems due to their simplicity and the limitations of synchronous systems.
Also because of the global clock paradigm where all bit-level computations are con-
sidered complete according to the same clock pulse.

5.2 Super Scalar Architecture

5.2.1 A Brief History

Super scalar architectures, which spawned a revolution in computer design, were

arguably first presented in their modern form with the 1995 release of the MIPS

R10000 [128]. Perhaps the defining characteristic of a superscalar architecture is that

it issues multiple instructions per clock cycle and implements a group of techniques

called instruction level paralleslim (ILP). Data dependencies are detected and elimi-

nated between instructions with register renaming and other substitutations to allow

multiple instructions to be issued at a time from a single instruction stream.

Specialized functional units allow multiple instructions to be executed at a time

by employing several execution units on a single CPU such as adders, multipliers, and

ALUS of which a single superscalar CPU may have 3 or more of each.

Pipelining is also a critical part of a superscalar architecture where only fractions

of instructions are executed per clock cycle which allows copies of the same instruction
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to be issued faster and not have to wait for the previous copy of the instruction to

complete before a new copy is dispatched.

Speculative branch prediciton, introduced in the 1990s, was employed to keep the

pipelines and funcitonal units at capacity with instructions and operations to execute.

The computer must ”guess” what future instructions will be to keep the pipelines

full [105].

However, many of these concepts date back much further than 1995. Availability

of multiple arithmetic units and exploiting them for multiple instruction issue was

developed by Tomasulo in a seminal paper resulting in the famous Tomasulo’s algo-

rithm in 1967 [118]. For the next 3 decades this allowed shorter and shorter pipeline

stages, deeper and deeper pipelines and ever increasing clock frequencies and higher

throughputs.

However, the MIPS R10000 is arguably given credit for the rise of the modern

superscalar architecture with the invention of out of order instruction scheduling,

and reservation stations in addition to implementations of branch prediction, deep

pipelines, and specialized funcitonal units. Reservation stations allow the ability for

multiple instructions to queue for a specific functional unit, such as an adder, ALU,

or multiplier, and for them to get issued to the functional unit when the operands

are available, possibly out of order. A schematic of a superscalar architecture with

reservation stations is show in Figure 13.

With the use of reservation stations and out-of-order execution, we can continue

to keep the pipeline full so as to take advantage of the novel form of asynchronous

pipelining presented here.

There are many that would argue that instruction level parallelism and improve-

ment in sequential processing is dead, however according to Amdhal’s law, improving

the processing of a sequential element of a program is the only way we can increase the

performance of individual applications [29]. Bit-level parallel asynchronous pipelined
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Figure 13: A high level schematic of a modern superscalar architecture in its simplest
form. There is a single instruction dispatch queue reading and writing from a block
of memory. Operations are dispatched to reservation station which buffer operations
and scan the common data bus for the needed operands. When these operands are
received, the reservation station commits the operation to the functional unit for
(possibly out-of-order) execution.
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architecture is presented here as a solution to increasing sequential execution perfor-

mance.
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CHAPTER VI

A NOVEL BIT-LEVEL ASYNCHRONOUS PIPELINE

6.1 Death of Small Depth Synchronous Pipelines

Barriers associated with synchronous architectures have arisen to halt pipelining in

synchronous architectures resulting in the death of frequency scaling and the move to

multi-core and heavily parallel architectures to continue to scale up performance and

throughput.

Clock skew, difficulty in routing such an extensive clock network, and most im-

portantly circuit variations have presented the fundamental barriers to scaling of

synchronous pipeline stages [13]. An example of a multi-stage pipeline is shown in

Figure 14.

As the pipeline stages from Figure 14 get smaller down to the gate level, circuit

variations start to become the dominant timing effect where more timing margin is

allowed for circuit varitions and latch setup and hold times than the actual gate delays

themselves. Single gate pipeline stages in synchronous systems become infeasable due

to this effect. Figure 15 shows the extreme delay variation in single gates in an Intel

Figure 14: A typical N-stage pipeline originating at the program counter (PC)
going through several multi-stage flip-flops (MSFF) and finally being written back to
memory courtesy Keith Bowman.
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Figure 15: Plot showing delay variation in gates in an Intel 45 nm process due to
supply voltage droop of 150 mV . The plot shows that single-stage and 2-stage gates
have as much as 80% variation in their delay courtesy Keith Bowman.

45 nm process with just a 150 mV droop in supply voltage, which is quite common.

From Figure 15 we see that delays vary as much as 80% in pipeline stages with

single gate and 2 gate delays due to parametric, voltage, and temperature variations.

Accounting for clock skew, a synchronous designer would be forced to leave a margin

of 2X the actual delay, making timing gains non-existent in such short pipeline stages.

Another study done by Professor Saibal Mukhopadhyay [2] illustrated in Figure 16

shows that as the logic depth of a pipeline stage increases from 16 to 49, the effect

of current variation on delay variation decreases. However, below a logic depth of 16

there is almost a one-to-one correspondance between current variation through a given

device and the variation in the delay of the pipeline stage. Once again, a fundamental

limitation to synchronous pipeline scaling is presented due to PVT variations.

6.2 An Asynchronous Pipeline Solution

Asynchronous architectures allow for the most fine-grained pipelines possible down

to single gate pipeline stages unlike synchronous architectures that have become ef-

fectively limited to 3-16 gates per pipeline due to the reasons listed in Section 6.1.

Asynchronous dual rail completion logic explained in Section 3 is the technology

at the heart of the single gate asynchronous pipeline, shown in Figure 17. This is an
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Figure 16: Graph showing that as the logic depth of a pipeline stage increases, the
effect of current variation on delay variation decreases. This implies longer pipeline
stages are more delay variation-tolerant. courtesy Saibal Mukhopadhyay.

interleaved computation and control style [114, 83].

The functional blocks in Figure 17 can be as complex or as simple as the designer

wishes, although for high-throughput datapath operations, these functional blocks

will often be single-gate or single-bit functions.

Figure 18 shows the full cycle for block F1, and each block goes through this same

cycle. Since block F1 feeds data to block F2, block F2 must complete its operations

Figure 17: An asynchronous pipeline with interleaved computation and control. A
function is evaluated in the FN blocks and the result sent to the next pipeline stage,
FN+1. A conrol signal is then generated DN and sent to the previous block FN−1.
Alternate waves of data and reset signals are sent through the pipeline, the reset
signal is used to reset the asynchronous blocks to prepare them for a new calculation
in accordance with dual-rail logic.
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Figure 18: A graph showing the pipelining of the evaluation, completion, and reset
operations of the structure shown in Figure 17. A functional block FN computes and
sends the data to block FN+1. In parallel, the completion block DN+1 signals that
computation FN+1 is complete, which signals to the previous block FN to reset, then
FN+1 is reset and so on. The same completion block DN+1 signals that block FN+1

has completed resetting, which signals that block FN is ready for a new cycle.
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before F1 starts a new calculation. The cycle time for this architecture is given in

Equation 4 where tEval is the time for block FN to evaluate or compute the data, tCD

is time to do completion detection, and tReset is the time to reset block FN .

Tinterleave = 2 · tEval + 2 · tCD + 2 · tReset (4)

In single-bit pipelines where each functional block FN represents a single bit, tCD

is almost insignificant as each bit takes the time of a single transistor switching on

the completion detection block. However, as the bit width scales by N , tCD scales

by NlogN due to the nature of the completion tree in asynchronous handshaking.

Thus scaling down to a single bit is highly advantageous on reducing the timing

of completion signals. And of course, asynchronous logic is not affected by delay

variation since the delays do not have to be synced with a clocking system, making

asynchronous logic very amenable to short stages.

6.3 A Decoupled Asynchronous Pipeline Solution

A more efficient way to do bit level pipelinig is to decouple the control and evaluate

logic, which is the style proposed in this dissertation, at the risk of device mismatch.

A decoupled asynchronous pipeline is shown in Figure 19.

As Figure 19 shows, the completion blocks CN and the functional blocks FN are

decoupled. The completion mechanism shown here actually uses a lookahead pipeline

(LP) method first proposed in [115], although the design presented here is adapted

for dual-rail static logic rather than the power inefficient dynamic logic in [115].

Before block FN is reset, block FN+1 must be done evaluating and block FN+2

must be done resetting, so that 2 out of the 3 blocks are always in evaluate phase.

This technique effectively takes the ‘reset’ computation out of the critical path of the

cycle since stage N evaluates when stage N + 1 has started to reset.

However, with single-stage, gate-level pipelining where block FN has a single gate
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Figure 19: A decoupled asynchronous pipeline architecture. Instead of the com-
pletion block, CN+1, detecting the completion of block FN+1, it simply detects when
block FN+1 has started its evaluation/reset calculation and uses the delay through
the F-Delay block to make sure FN is not reset before FN+1 is done with the data.
The F-Delay block is designed to be a matched delay to the FN blocks.

delay which is equal to or greater the gate delay of the C-element gate, no matched

delay is needed taking out yet another delay as shown in Figure 20.

This new architecture brings the cycle time of an asynchronous handshake system

down by several gate delays. The cycle flow graph is given in Figure 21.

Because the control logic and evaluation logic are decoupled, the completion gate

can operate in parallel with the function blocks, a change from the original architec-

ture presented. First F1 evaluates with block C1 asserting in parallel then block C2

asserts while F2 is evaluating. F1 resets while F3 is evaluating all while C1 signals that

F1 is done resetting and starting the reset signal on C2. Thus while F2 is resetting,

the reset signal from C2 and evaluate signal from C3 are already being sent back to

let block F1 know it can evaluate again. It reduces the evaluation time as shown in

Equation 5.

Tdecoupled = tEval + tCD + tReset + tNAND (5)

This modern pipeling architecture has reduced the cycle time of the asynchronous
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Figure 20: A decoupled asynchronous, gate-level pipeline architecture. Since the FN

blocks are singel gates in this implementation, no matched delay is needed, removing
an additional delay from the timing cycle.

handshake to less than the setup time and margin time put into asynchronous sys-

tems giving this asynchronous architecture a design win even without considering the

average case timing and gate-level pipelining paradigms that also give asynchronous

technology a decided timing advantage.

31



Figure 21: In the new architecture seen in Figure 19, the completion gates switch
concurrently with the function blocks and use the matched delay buffers to make sure
timing errors do not occur. Another improvement is stage FN can evaluate as again
as soon as either stage FN+1 starts its reset phase since the completion gate switches
at the start of this reset phase, or as soon as stage FN+2 finishes its evaluate phase.
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CHAPTER VII

ASYNCHRONOUS CHIP ARCHITECTURE, ANALYSIS,

AND SIMULATED RESULTS

7.1 Summary of Design and Motivation

7.1.1 Executive Summary of Design

Motivated by the unwillingness to accept the worst-case timing constraint that syn-

chronous logic imposes, and additionally motivated by finding a supply voltage scaling

scheme for datapath circuits that is unconstrained by timing errors in memory ele-

ments, this chapter presents an asynchronous datapath that is embedded seamlessly

into a synchronous register file system. This chapter will show that not only does

asynchronous arithmetic logic exhibit many characteristics that allow it to be inher-

ently lower power, but it is significantly faster than any synchronous counterpart and

is a perfect candidate technology for datapath acceleration. Further, novel circuits are

presented that allow asynchronous datapath units to be embedded in a synchronous

environment with little overhead while the dual-rail asynchronous encoding scheme

is successfully converted with equally low overhead. A fully functioning chip is pre-

sented, and simulated results are given. The circuits on this chip will be discussed

showing this design to be both energy and performance efficient when compared to

other known datapath designs.

“The danger is generally in the delay” - M. de Cervantes. Don Quixote

7.1.2 Design Motivation

Embedded devices loom as the most challenging digital systems problem to date

because of the dual reality of needing performance capable of real-time multi-media
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and graphics processing, but also long battery life, and battery life does not scale

with Moore’s Law. It is clear by now the importance of solving these problems as

an array of interesting statics emerge such as by 2011, it is predicted more users

will gain internet access through mobile devices than PCs [119]. Applications once

programmed to be used on super computers are being used on cell phones.

This chapter seeks to address some of these challenges through a novel concept,

asynchronously embedded datapath design. The idea is to take advantage of asyn-

chronous circuits and place them where they are best suited to yield performance

gains and energy savings, and use synchronous logic for control and other types of

operations where asynchronous circuits would need extraneous overhead. The great

advantage asynchronous logic has over its synchronous counterpart is twofold: it

takes advantage of average-case timing instead of worse-case timing and is immune

to timing errors that result from voltage scaling or process variations [83].

Hence datapath circuits are a prime candidate for such a study. Asynchronous

logic is much more performance efficient in arithmetic computations because the

average-case delay is orders of magnitude faster than the worse case for these types of

calculations; the delay complexity is O(loglogN) instead of O(N) [72]. Asynchronous

circuits also do not suffer from static and dynamic switching hazards that cause spu-

rious dynamic switching currents to drain power, and these hazards are much more

prevalent in datapath calculations then anywhere else in digital circuits [18].

This chapter will illustrate several novel concepts inherent to an asynchronously

embedded datapath and will present the architecture, simulations, and results of a

0.5 µm chip that puts these theories into practice, the layout of which is seen in

Figure 26. The contributions this chapter makes are the following:

• Methods, circuits, and architectures for seamlessly embedding an asynchronous

datapath within a synchronous design.

• A novel asynchronous full-adder circuit design to reduce the critical path in
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aritmetic units to a single transition per bit.

• A completion algorithm for probabilistic or bit-pipelined completion detection

to increase performance and decrease energy consumption of the asynchronous

handshake.

• Complexity and power analysis of the aforementioned circuits as well as several

other general arithmetic circuits.

• Simulation results from the chip being presented.

A brief discussion, background, and analysis on asynchronous logic as well as

the proposed asynchronous full adder circuits will be presented in Section 7.2. The

chip and the accompanying architecture is illustrated in Section 7.3, and results and

conclusions are given in Section 10.4.

7.2 Trading Datapath Timing Information for Energy

7.2.1 Asynchronous Design

Asynchronous design is the key to being able to trade timing observability for both

lower power and more performance-efficient design. Note that in this work we seek

to separate the concepts of timing or clocking a circuit from performance efficiency.

The easiest way to relax this concept of time observability is through asynchronous

design on which a brief introduction and background will be given here.

In synchronous designs, a clock pulses at regular intervals into memory elements

where these memory elements latch and store a calculation on the clock pulse. Thus a

calculation must begin and complete within the clock interval to be latched correctly,

and consequently every calculation is observed to take time τ = 1
f

where f is the

frequency of the clock.

Conversely, asynchronous design is built with hazard-free logic where each bit in

the datapath is guaranteed to switch only once per calculation and the completion of
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Figure 22: A 2-input Muller C-element for asynchronous completion detection.
Detects whether 2 signals are both ‘0’ or both ‘1’ and holds its current state otherwise.

this transition is flagged immediately with a completion element known as a Muller

C-element shown in Figure 22.

To be hazard-free, asynchronous logic must use an encoding scheme, the most

space-efficient of which is dual-rail encoding where each bit is encoded with a ‘True’

line and a ‘False’ line so that a signal S is encoded as St and Sf . The circuit to

calculate the ‘True’ line of the carry-out bit of a full adder, Dt, is shown in Figure 23.

The output is inverted that is designated by the underscore, Dt. Dual-rail encoded

datapaths were first proposed in [81].

The circuit in Figure 24 is a single-bit adder used to calculate every odd carry-out

bit, Dt, because it can utilize the inverted carry-out bit from the previous full-adder

circuit shown in Figure 23. By using these alternating inverted/noninverted-output

carry functions, no extra inverters are needed in the critical path of an adder or other
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Figure 23: The carry-out signals of a dual-rail asynchronous full adder with inputs
A and B, carry-in C, and carry-out D. Because PMOS transistors are more efficient
at pulling voltage at its source node up (passing a ‘1’), but PMOS transistors are
used to produce the off-set (the ‘0’ logic) for the carry-out function, the outputs are
inverted.

arithmetic units built with this technology. This is one of the novel contributions of

this work: there is only a single gate (transition) per bit in the critical path. The

circuit to calculate the sum bit is similarly built, and the design alternates every

other bit. Note that on average, each full adder only uses 44 transistors, which is

only slightly more than the 40 transistors used in the ‘conventional’ full-adder so

popular in the literature [18].

Dual-rail encoded logic has a simple encoding scheme outlined in Equation 6.

if St ↑ ∧Sf ↓ then S = 1

if St ↓ ∧Sf ↑ then S = 0

if St ↓ ∧Sf ↓ then S = Neutral

(6)

A neutral state, where the dual-rail encoded bit does not represent a valid state, is

necessary so that completion detection and handshaking algorithms can be used. If

the state of a circuit is neutral, the circuit is ready for new inputs, and if the circuit

is in a valid state (e.g. S = 1 ‖ S = 0), the circuit has completed its calculation.
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Figure 24: ‘True’ and ‘False’ lines of non-inverted carryout bit for an asynchronous
full-adder. The Dt bit of the inverted-output full adder from above feeds into the Ct

bit of this noninverted-output full adder so that no inverters are needed in the critical
path.

Thus a tree of completion elements are fed by the output bits of the datapath, and

the entire N -bit calculation is complete when the completion element at the root of

the tree goes high or low depending on the convention used.

Version 2 of the chip presents another method for resetting the functional units

(full adders) on the chip to allow bit-level pipelining. The pullup network is replaced

with single reset switches. This is a form of dynamic asynchronous logic as shown in

Figure 25.

7.2.2 Power Comparison

Asynchronous circuits have several attractive properties in regard to power consump-

tion. The power consumption of digital CMOS circuits is derived from the now

well-known equation [18]:

Ptotal = αfCV 2
dd + IshortVdd + IleakVdd (7)

For current technology nodes, dynamic switching consumes the majority of the
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Figure 25: The pullup network of the full adder designs are replaced with reset
transistors and a form of dynamic asynchronous full adders are created on version 2
of the chip.

power, and this is especially so in datapath circuits [18, 110]. Dynamic switching

power is encompassed by the term αfCV 2
dd where α is the activity factor or the

probability that a circuit will make a power consuming transition during the current

computational step, f is the switching frequency or number of computational steps,

C is the load capacitance, and Vdd is the supply voltage.

We will analyze the critical path of adder circuits here. For both asynchronous

circuits and conventional static synchronous full adder circuits the activity factor α

is 1
4
. This is because the probability that power will be consumed, or when charge is

drawn from the power supply on a 0 → 1 transition, is the probability the carry-out

is a 0 multiplied by the probability that the next value is a 1 or p(0)p(1) = (1
2
)(1

2
).

However, it has been shown that static arithmetic circuits suffer from switching

hazards due to spurious timing causing bit transitions to occur multiple times for

a single input. This adds up to 30% onto the activity factor for static arithmetic

circuits [18]. On the other hand, since asynchronous circuits are hazard-free and are

designed to switch only a single time for every input, they do not suffer from extra

dynamic energy consumption.
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Further, if the load capacitance is calculated on the carry output of conventional

synchronous static full-adders, the result is a load of 5 − inverter or the load of 5

minimum-sized inverters. The asynchronous circuits presented here on the other hand

have only a 4.5−inverter load. The total dynamic power consumption is summarized

in Equation 8. We assume the number of computational steps and the supply voltage

is the same for both circuits.

Pasync = αasyncfCasyncV
2
dd

Psynchronous = 13
10

αasyncf
10
9
CasyncV

2
dd

= 13
9
αasyncfCasyncV

2
dd

= 13
9
Pasync

≈ 1.44Pasync

(8)

Thus a first order power approximation shows conventional static arithmetic cir-

cuits consume up to 44% more dynamic power than their asynchronous counterparts.

Because asynchronous logic spends a disproportionate about of time in a single state,

the neutral state, leakage current can more easily be reduced as well. Many studies

have shown that voltage scaling, which has been shown to allow the biggest energy

savings across design paradigms [18], can be done in asynchronous logic without limi-

tation because no timing faults or metastability results. Asynchronous logic has many

power saving advantages.

7.3 Chip Features

7.3.1 Chip Architecture

To carry out the high-performance, low-power, bit-pipelining experiments with asyn-

chronous datapath circuits, a test chip was built shown in Figure 26

The chip was fabricated in 0.5µm technology available through MOSIS due to

economic factors, but the concepts that will be demonstrated are technology inde-

pendent. The datapath is “asynchronously embedded” because several architectural
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Figure 26: An asynchronously embedded 16-bit fixed point datapath testchip. Built
in 0.5µm technology available through MOSIS. Multiple registerfiles are loaded from
off chip via an on chip shift-register. The registerfiles feed reservation stations via mul-
tiplexers that are controlled with off-chip control signals. These units together make
up the “Sync-to-Async Gating Circuits”. The datapath includes an asynchronous
carry-skip adder with probabilistic, bit-pipelined completion and allows multiplica-
tion with the same asynchronous full adder technology. A counter has also been
added to track the performance of the functional units.
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constructs were used to create a seamless conversion between a synchronous register

file and asynchronous fixed-point computational units so that asynchronous arith-

metic units could be “embedded” in a synchronous system.

The macro-architecture behind the asynchronous embedded concept can be seen

in Figure 27(a). The micro-architecture is shown in Figure 27(b). The embedded

asynchronous circuits with completion-flagged reservation stations are unique to this

work but the general macro-architecture is discussed in [106].

7.3.2 Bit Pipelining On Chip

The adder shown in Figure 26 is a single 16-bit fixed point asynchronous carry-skip

adder unit where the results are multiplexed such that they can be fed directly back

into the reservation station, data registers or off chip to “memory”. Completion

detection logic is used on all bits but are multiplexed such that only the bits most

likely to be in the critical path, or the most significant bits (MSB), can be used to

writeback results and set the C flag. We coin this concept Asynchronous Speculative

Completion. However, each bit is also multiplexed such that each bit can individually

commit and flag the reservation station that it is ready for a new result. This concept

is demonstrated in Figure 28.

Using the asynchronous bit pipelining technology presented in Figure 28, each bit

is free to compute as fast as possible. And since each completion tree is connected to

the clock input of the latches in the asynchronous reservation station, new inputs can

be clocked through on a bit-by-bit basis. This cuts down on cycle times from having

to wait for the worst case of all N bits having to compute as in synchronous systems

to waiting for only 1 bit to compute for an N -bit datapath.

In order to commit the operations, a bit-level buffer similar to a reorder buffer is

used. This phenomenon is shown in Figure 29. As soon as a column of registers has

valid data and the completion tree asserts, the data is ready to be committed and is
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(a)

(b)

Figure 27: Architecture behind embedded asychronous datapath concept, syn-
chronous units are shown in yellow, asynchronous-compatible units in purple. (a)
The macro-architecture of the chip is shown, which is a subset of the super scalar
design referenced in Figure 13. A standard synchronous instruction queue, memory
lookup, and register file is used, although the intruction queue and memory are oper-
ated off chip. The register file is operated on chip, fed by an off chip instruction and
data memory system. The fixed-point and computationally intensive units are be ac-
celerated with asynchronous design. Reservation stations are used to buffer the inputs
to these units and to transfer from asynchronous to synchronous domains. When the
completion flag C is issued new operations are written back and dispatched. (b) The
transition to dual-rail logic is done by a standard single-rail register being split into
two lines and logically ANDED with the completion flag C to create neutral values.
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Figure 28: Schematic of fixed-point, asynchronous adder interacting with the reser-
vation station in a bit-pipelined fashion. Bit N and bit N + 1 feed the completion
gate for bit N , which is fed back to the reservation station. Upon a successful com-
pletion, each bit is shifted up one position for bit N , allowing bit-level pipelineing. A
C-CTRL line is used to flag the reservation station that the current operations have
been committed and the reservation station is ready for new ops. Conversely it stalls
the pipeline if the data is not ready, and invalid data sits at the input of the adders
until the reservation station, which is just a FIFO register, shifts in valid data.
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Figure 29: The reorder buffer used to commit and writeback the data at the bit-
parallel level. The individual bit completion signal for bit i clocks the reorder buffer
registers for bit i. As adds are commited, the result is demultiplexed to one of
four columns of registers. The registers all have restorative clock buffers so that
the completion signals are only loaded by one register. The completion tree and
completion flag are raised in the register column signaling the column of data is
ready to commit. Once the data is grabbed, a control signal resets the registers and
notifies the reservation station that data can continue to be sent through.

fed to the bus. An off chip control C-CTRL signal is used to both commit the data

in the commit buffer and to allow the continuation of data flow in the reservation

station. If C-CTRL is not asserted, the pipeline stalls to allow all the data already

in the pipeline to be processed before new data is allowed in the pipeline.

All of the registers were built with restoring clock signal buffers so that each

completion gate only has to load a single register. Another energy saving advantage

is seen here: all of the registers are automatically “clock gated” by this system. No

register switches unless it is clocking in data.

7.3.3 Speculative Completion

Speculative completion is another experimental concept tested on this chip. Com-

pletion speculation allows faster completion (2 less transistions necessary for a 16-bit
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Figure 30: An asynchronous carry-skip adder with speculative completion. This
concept allows results to commit with logN less gate delays where N is the bit width
of the datapath. It also reduces power usage from O(N) to O(logN).

datapath) and uses much less power (O(logN) instead of O(N)) than a full comple-

tion tree paradigm. Speculative completion is defined here as using completion data

for only the most significant bits, and is shown in Figure 30 for a carry-skip adder.

This design takes advantage of the fact that the path with the longest completion

delays will most likely occur in the critical path of the design, and thus only uses

these completion signals instead of wasting valuable resources reading the completion

signals for all paths.

This concept draws from probabilistic computing principles which say that by

far the most likely bit position to finish last will be in the MSBs and that on the

small probability that an error does occur, this will not degrade application output

in digital signal processing systems [34]. This concept also draws from superscalar

processing which often uses speculative instruction execution. Again, a schematic of

the adder is shown in Figure 30.
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This completion algorithm is significant because comparatively insignificant over-

head is needed for completion detection. Further, setting the computation circuits

back to neutral is also pipelined and interleaved with computations so that very

little delay overhead is required and more than made up for with the accelerated

bit-pipelining and average-case completion time of asynchronous logic [83].

7.4 Promising Results and Complexity Analysis

7.4.1 Complexity Analysis

Before simulation results are presented, the complexity analysis of the power and per-

formance of the asynchronous arithmetic proposed will be discussed. The comparison

to synchronous logic is inevitable, and complexity analysis of performance is one of

the clearest ways to show the advantages of this flavor of asynchronous logic design

over its synchronous counterpart.

In regard to performance, synchronous logic must always abide by worst-case

timing rules because in synchronous logic, the timing of each calculation is defined as

the amount of time to complete the worste-case critical path computation. Among

N − bit synchronous adders based on the ripple-carry adder such as the propagate-

generate adder, the carry-skip adder, and even the carry-look-ahead (CLA) adder, the

best-case performance is O(N/2) = O(N); the time to ripple through all N bits [39].

The CLA is the fastest of the aforementioned group, but still has order O(N) delay,

but uses the most power on the order of 3N for a power-delay complexity of O(N2).

Complexity analysis is important because it predicts how the power and performance

will scale for wider bit-widths or larger data sets.

Tree adders or parallel prefix adders are popular because they use a tree struc-

ture to achieve O(logN) delay complexity such as the Brent-Kung and Kogge-Stone

adders. However, due to the density of logic needed to achieve such performance

efficiency, these adders are even more power hungry, burning order O(NlogN) power
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for a power-delay complexity of O(Nlog2N).

Alternatively, asynchronous adders are not bound by any timing observability

constraints. For example, a ripple-carry adder on average only has logN ripples,

and thus when the timing is defined asynchronously, the performance complexity is

O(logN). Manohar et al. has created a parallel-prefix asynchronous adder exhibiting

O(loglogN) performance complexity for its computation [72]. However, the comple-

tion detection of such an N -bit elements has O(logN) and has O(NlogN) power

complexity as discussed previously.

The adder presented in this work, because of its bit-pipelined completion which

only detects completion on the most significant logN bits and the fact that completion

detection on M bits takes logM time, has completion performance complexity of

loglogN . However, because it is implemented with a carry-skip architecture its power

complexity is only N resulting in the lowest delay-energy complexity of any known

adder.

7.4.2 Simulation Results

The chip was simulated in Hspice with the help of a wrapper written in C++. Ten-

thousand random input combinations were fed into the arithmetic unit and the supply

voltage was scaled to study the resulting delay and energy effects. Completion gating

was used to interleave each calculation with a neutral input to reset the asynchronous

unit.

Hspice schematics and the C-wrapper were used to simulate the delay for Martin’s

asynchronous arithmetic using the same architecture but a full completion tree [81],

and the results were compared to the energy and delay for carry-select and ripple-carry

adders built in the same AMI 0.5 µm technology. Results can be seen in Table 2.

Results were also compared to a fast synchronous non parallel-prefix adder, a
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Table 2: 16-bit Asynchronous Arithmetic Spice Simulation Results. Delay results
are given for only VDD = 5 because performance data at lower voltages was not
available for the systems being compared.

Avg. Total Delay Avg. Energy per
per Input (ns) Calculation (pJ)

Vdd Our Async. Martin’s (Fast) Sync. Our Async. Carry Ripple
Carry-Skip adder Carry-Select adder Select Carry

5 V 1.02 2.87 4.785 5.21 20.96 7.33
4.5 V – – – 3.52 16.64 4.89
4 V – – – 2.18 13.08 3.004

3.5 V – – – 1.41 9.904 1.643

carry-select adder, which happens to be the most energy efficient in terms of com-

plexity. A parallel prefix adder was discounted due to the comparitively much higher

energy consumption.

Delay numbers were only given for the adder at full VDD, which for 0.6 µm AMI

technology is 5 Volts, because these results were not available for the systems being

compared. The real data matched perfectly with simulation results at full VDD. Real

data from silicon will be presented in the next chapter for these lower voltages.

In conclusion, the asynchronous arithmetic units and the accompanying architec-

ture shown in this work outperform both asynchronous and synchronous counterparts

in terms of both energy and performance. Theoretical performance results are pre-

sented here in terms of complexity analysis and energy calculations are given in terms

of Spice simulations. Real performance data will be given in the next chapter.

A novel asynchronous adder architecture along with a novel bit-pipelined com-

pletion scheme was proposed. The power and performance analysis of not only this

circuit, but of asynchronous logic compared to synchronous logic in general was given.

However, because of the many advantages synchronous logic has over asynchronous

in terms of control logic and memory retrieval, the authors have proposed that just

an asynchronous datapath be embedded in a synchronous system. Completion gating
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and buffered reservation stations with a completion flag detector were proposed to

integrate synchronous and asynchronous components.
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CHAPTER VIII

CHIP DATA

Version 2 of the bit pipelined asynchronous chip presented in the last chapter was

fabricated and returned for testing in July 2009. Several metal mask changes were

required for correct latch operation to go from Version 1 to Version 2. Several improve-

ments to the chip architecture were also made, namely the bit pipelined architecture

presented in the last chapter.

8.1 Design of Experiment

8.1.1 Experimental setup

The chip was packaged in a 40 pin DIP and placed into a bread board. The breadboard

had 8 opamps for analog voltage inputs and 8 inverters for digital inputs. A Bus line

was connected from a desktop workstation to the 16 analog and digital voltage lines

on the breadboard and controlled via matlab commands. A voltage source was hooked

up to the bread board to serve as the supply. An oscilloscope was connected to the

board and was recorded via a GPIB connection.

Experimental trials run:

• To account for randomness, random inputs were shifted into the on-chip shift

registers via matlab and the resulting wave forms were averaged.

• The outputs from the shift register were put through a buffer and sent off chip

to be measured as were the outputs from the arithmetic units. The delay was

measured using the 50%− 50%VDD point from the output of the register to the

arithmetic completion signal.

• This measurement was taken for incremental voltages from 550 mV up to 5 V .
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Figure 31: Data being shifted in at 200 Hz and read out. The shift register was
buffered to a pin so it could be checked and tested. Note the ground bounce. The
measurements were taken after the data was shifted into the register so the speed at
this point is irrelevant. The data was read out of the commit buffer and the registers
there at a similar speed due to limitations of equipment.

8.2 Data Plots and Analysis

The first plot shows data being clocked in at a 200 Hz rate using an off-chip clock

signal generated by matlab via an op-amp on the bread board, shown in Figure 31.

Figure 31 shows the signal being clocked into the shift register at 200 Hz, an

alternating pulse train was used to test that alternating 1’s and 0’s did not cause any

problems and that every bit in the shift register was switching.

After the data was shifted into the shift registers, a scope was used to capture

rising and falling edges off of the output of the registerfile and the completion signal

off of the adder as shown in Figure 32.

The feature to note in Figure 32 is that the difference between the signals is

unnoticable at the scale of µs.
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Figure 32: Screen shot of the rising edge being captured off of the completion flag
off a full adder and the shift register that feeds the adder pipeline.

The next plot is a zoomed in version by about 1000X of the last image to show

the 50% − 50% delay of a single bit in the asynchronous bitpipelined adder; this is

illustrated in Figure 33.

The data in Figure 33 show 1 GHz clock rates for adds to be committed at

VDD = 5V in 0.6 µm AMI technology. These results are quite encouraging given

these are the fastest results reported on silicon in this technology to date, all other

results of similar quality reported thus far are simulation results. Given that, the

only results reported thus far that are competitive and in the same technology node

are 1 GHz times for single bit additions using the much less power efficient dynamic

logic family reported in [115]. The 1 GHz time reported is for single bit additions,

not entire add commits. The results shown in Figure 33 is the average times for an

entire 16-bit addition to be committed assuming the pipeline presented in Chapter 7

is full.
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Figure 33: Zoomed in screen shot of the oscilloscope measurements from Figure 32.
Note that at the 50%− 50% delay point of 2.5 V , the delay is actually less than 1 ns.
On average the time from the data leaving the register to the time the completion
flag was asserted was 1 ns at VDD = 5V . Due to the bit-pipelined nature of the adder,
adds were able to complete at a rate of up to 1 GHz in the 0.6 µm AMI technology.
These are the fastest results reported to date for data from silicon. The precision of
the measurements was limited by the oscilloscope used. The delay measured here is
conservative since the signals were loaded with large capacitances so they could be
read off chip.
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Figure 34: Plot of the completion signal response from the add operation, such as
in the previous plots, at lower voltages. Note that Vth = 0.57 V for this process, thus
the 550mV measurements were taken below threshold. This is not only significant
because of the significant power savings and the fact that the chip is operational at
the optimal energy-delay product point, but that the chip is operational at over an
order of magnitude of range in supply voltage. Also note that the rise time gradually
increases as the voltage increases as expected.

Measurements were also taken for delay at several voltages ranging all the way

down to the subthreshold regime at 550 mV . These results can be seen in Figure 34.

Many studies have shown that the optimal energy-delay product point of a device

occurs right at threshold. The results in Figure 34 is very encouraging then because

the chip is operational at this point (Vth = 0.57 V in 0.6 µm AMI) and at subthreshold

points. The rise times become very sharp at VDD = 2Vth and beyond as is shown by

the sharpt rise time at 1 V in Figure 34.

Figure 35 shows the timing of the completion signal of the adder at VDD = 550

mV.

As stated in the caption of Figure 35 the completion signal was seen fluctuating
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Figure 35: Plot of the delay measurement from register to completion assertation
for the adder at VDD = 550 mV . Note that the signal is reaching its stability point
at this voltage, as seen by the enormous ripples even after the signal is supposed to
be stable with a high assertation. Voltage fluctuations were seen at lower voltages,
but it is believed they were unmeasurable in part because of the high capacitive load
the signal sees to get off chip. Interestingly, the delay was measured at 36 µs.

56



at lower voltages, but it is believed that it was immeasurable due to the high load

capacitance.

These results have confirmed that not only can the chip operate at almost any

voltage conditions, making it extremely adaptable to both energy and performance

needs, but that it can operate at an unprecedented speed of 1 GHz, and commit full

16-bit adds at this speed.

To verify results at smaller technology nodes, the datapath of the chip was laid

out in TSMC 0.18 µm technology and simulated for speed. Adds were able to be

committed at between 3− 4 GHz. As a comparison, the Pentium 4 was fabricated in

0.18 µm technology and was able to commit adds at only 1.5 GHz.
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CHAPTER IX

PRESENTING THE SYNCHRONICITY SIMULATOR

AND RESULTS

A simluation environment was created and has been worked on since 2006 to allow

experimentation with a variety of exotic architectures while still capturing extremely

accurate circuit level voltage, timing, and energy results. The simulation structure is

also used here to extrapolate the silicon results for the 0.5 µm chip to more modern

technologies. Complete layout is done for 180 nm TSMC technology giving highly

accurate results including parasitic and wire capacitances. Results are also given for

the most modern commercially available process for which our lab could gain access

to a design kit, namely a 65 nm process. Simulation models are available for even

smaller transistor sizes through the Berkeley Predictive Technology Models (PTM),

but these have been deemed to be highly inaccurate when compared to actual silicon

(since in many cases there is no silicon comparison) and are of little value to the

engineer of high moral character wishing to truthfully report accurate results.

9.1 Simulation Structure and Methodology

The simulator allows for an arbitrary combinatorial structure to be built. In this case

adders, multipliers, an FIR filter, and an H.264 movie decoder datapath were built.

Simulations were performed in a custom simulator designed to emulate probabilistic,

asynchronous, and floating gate behavior.

The architecture is based on a 24-transistor, full adder as specified in [39]. Outputs

from the full adder are left in their natural, inverted states to allow for datapath

optimizations. External inverters then act as level converters between individually
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biased full adders, maintaining positive logic along the datapath.

There is a design heirarchy such that a ripple-carry adder object is created for

example, which is divided into smaller subcircuits comprised of either a single full

adder or inverter. The subcircuit objects, in turn, are simulated behaviorally based

on model data derived from HSpice simulation for the specific subcircuit. Within

the simulator, inputs to each subcircuit are first evaluated to determine correct out-

puts, then errors are injected at a rate determined through HSpice simulation for

given configuration parameters (noise RMS, supply voltage, and drive voltage). Indi-

vidual subcircuits are “wired” to create the ripple-carry adder architecture and any

errors that occur on the output of one subcircuit propagate to the input of adjacent

subcircuit. Once a given input combination is simulated across all subcircuits the

resulting output bits are compared against correct operation to determine bit error

rates. Energy consumption is then determined as the sum of the energy consumption

for all subcircuits comprising the ripple-carry adder for specified configuration pa-

rameters (again as determined by HSpice characterization). The simulation structure

is illustarted in Figure 36

To accomplish HSpice characterization of the subcircuits necessary to implement a

ripple-carry adder, layout was performed for each of the subcircuits in TSMC 0.18µm

technology (layout for a complete ripple-carry adder is shown in Figure 51). HSpice

simulation files were then extracted from the resulting circuits. Each subcircuit was

simulated in HSpice over 1000 uniformly distributed random input combinations with

supply and drive voltages varied between 0.5V and 2.1V in 0.1V increments. For

thermally based probabilitic experiments, in the case of full adders, noise was injected

at each input bit with a noise RMS of 0.2V (shown in Figure 38). Subcircuits were

then evaluated for energy consumption, probability of correctness, and delay to realize

characterization data necessary for the simulator.
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Figure 36: Pictoral example of the simulation structure used. Circuit level data
for energy and delay for different voltages and noise levels were collected at the
transistor and subcircuit (full adder in this case) level. Several levels of heirarchy
are built around this data and a behavioral or transaction level simulator is built.
Abstractions allow for an arbitrary datapath architecture to be simulated with exotic
technologies such as probabilistic, asynchronous, and floating gate technologies.

Figure 37: Circuit layout for an 8-bit, ripple-carry adder implemented in TSMC
0.18µm technology. The resulting adder is comprised of individual full-adder and
inverter subcircuits and layout is performed to allow for voltage biasing of individual
bit positions.
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Figure 38: PCMOS full adder with noise injected at subcircuit inputs (An, Bn, and
Cn). External inverters along the carry chain serve as level converters, minimizing
static current flow to a pair of transistors at the interface across biased bit positions.

9.2 Simulation Results

The asynchronous datapath architecture that was built, fabricated, tested, and pre-

sented here that is described in Chapter 7 was built in the simulation structure. Cir-

cuit layout was done in a 180 nm process and simulated results inclusive of parasitic

and wire length capacitive effects were taken into account.

Results of the simulation showing performance comparisons between the bit pipelined

parallel asynchronous 16-bit adder and a synchronous 16-bit adder are shown in Fig-

ure 39.

The 0.18 µm simulations of the bit-asynchronous adder produced results that

were an order of magnitude faster at all voltage levels than a custom built carry-skip

synchronous adder. The bit-asycnhronous adder performed at a top speed of 3 GHz

at this technology node, which is over twice as fast as the commercially built Intel

Pentium 4 add commit unit built in dynamic logic. Note that this version of the

bit-asynchronous adder is built in low power CMOS technology and other sections

show that this adder built with dynamic logic attains much higher speeds.
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Figure 39: Delay vs Voltage on a semilog axis of a 16-bit adder built with both a
synchronous carry-skip sytle and the bit pipelined parallel asynchronous architecture
presented in this dissertation. Both versions were designed and laid out in 180 nm
technology. Note that the bit-asynchronous architecture is an order of magnitude
faster than the synchronous counter part, with the bit-asynchronous version operating
at a top speed of 3 GHz. This speed also compares quite well to commercially available
chips built in the same technology with the Pentium 4 committing adds at about half
the bit-asynchronous speed.
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Figure 40: Delay vs Voltage on a linear plot of a 16-bit adder comparing the bit-
asynchronous vs a fast synchronous architecture. This plot shows the delay for a
voltage range of 0.5−1.0 Volts to show that the bit-asynchronous design also performs
exponentially better at low voltages. The nominal supply voltage for this process is
1.8 Volts.

A linear plot in Figure 40 shows the large advantage in speed the bit-asynchronous

architecture has over the synchronous architecture at low voltages.

Figure 40 shows the exponential gains is performance at lower voltages of the

novel bit-asynchronous architecture over a fast carry-skip synchronous architecture.

The simulation environment also allows precise energy numbers to be measured

for both architectures. The energy delay product (EDP) for computations is a direct

measure of efficiency of a design. The EDP calculation for the a fast synchronous

design and my bit-asynchronous design is shown in Figure 41.

The EDP plot shows the bit-asynchronous design is more efficient at every voltage

than the synchronous design. Notably, it becomes exponentially more efficient at

lower voltages. A zoomed in version of this plot is shown in Figure 42.

At the nominal supply voltage of 1.8 Volts we see from Figure 42 there is an order

of magnitude improvement in EDP when going from a bit-asynchronous architecture

to a synchronous architecture. Further, the bit-asynchronous EDP trend stays flat.

This tells us that the bit-asynchronous architecture is equally efficient at a wide range
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Figure 41: Energy-Delay-Product (EDP) vs Voltage of a 16-bit adder implemented
in the bit-asynchronous architecture presented here and a fast carry-skip synchronous
architecture for a synchronous comparison. In this plot, of note is the exponential
behavior the synchronous design has: as voltage is lowered, the EDP spikes for the
synchronous design where the bit-asynchronous design stays relatively flat. Thus it
becomes exponentially more efficient than the synchronous design as voltages are
lowered. Also of note is the bit-asynchronous design is more efficient at every voltage
level.
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Figure 42: Zoomed in Energy-Delay-Product for the 16-bit adder implemented in
bit-asynchronous and a fast synchronous architecture. Results from 0.7 Volts and
below are removed to allow a zoomed in view. There is about a 10X improvement
in EDP of the bit-asynchronous design over its synchronous counterpart. The en-
ergy consumption is similar for the asynchronous and synchronous architectures thus
the order-of-magnitude gap in delay dominates the EDP measure. Note that the
synchronous design gets more efficient as the supply voltage is scaled towards the
threshold voltage VTH to a certain point and then degrades with further voltage
scaling while the asynchronous design continues to slightly improve at all voltages.
Between this fact and the fact that the bit-asynchronous architecture can easily move
into sub-threshold regimes argues for bit-asynchronous design when efficiency and low
power is concerned.
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Table 3: 16-bit Adder Results with Architectures of Varying Synchronicity

Architecture Type
Bit Piped Fast Async. State- Pentium
Async. Sync. -of-the-Art 4

Time to Commit 0.33 3.084 1.063 0.66
(ns) VDD = 1.8

Time to Commit 24 210 76 –
(ns) VDD = 0.5

Top Speed (GHz) 3 0.325 0.940 1.5
Energy-Perf. 0.326 2.97 1.02 –

Prod. VDD = 1.8 (pico-J-ns)

of voltage levels allowing for a voltage scaling implementation where optimal effiency

is guaranteed at all voltages.

The results are summarized in Table 3

Table 3 shows several remarkable comparisons. Note that several blank entries are

listed for the Pentium 4.1 First, the bit-asynchronous architecture presented here can

commit additions must faster than the fast synchronous adder built by the author

for comparison, by a factor of almost 10X, it is 3.11X faster than state-of-the-art

asynchronous designs (before this work), and is even about twice as fast as the fastest

commercially available Pentium 4 Processor. The Pentium 4 was chosen because it is

one of the most highly regarded processors in terms of speed ever built on a 180 nm

procees, the documentation behind these numbers can be found here [55].

Another interesting comparison from Table 3 is the low power comparison at

VDD = 0.5. The bit-asynchronous architecture comes in at a healthy 24 ns while

the fast synchronous architecture clocks in at 0.21 µs! The conversation switches

from nanosecond times to microsecond times when one moves from asynchronous to

synchronous designs with low power, 180 nm designs. Interestingly, the Pentium 4

1The Pentium 4 could not operate at VDD = 0.5 Volts. Energy information is also not available
for just the add unit.
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Figure 43: Delay vs Capacitive Load h = Cout

Cin
for a half cycle of one of the 2-D

bit pipelined asynchronous function blocks with a 180 nm processing resulting in an
average delay of about 0.21 ns or an average speed of about 4.76 GHz.

chip can not even operate at such low speeds because of the delecate deep pipelining

used to achieve such speeds [55].

9.3 Advanced Process Simulation Results

Simulations are also presented in an advanced and well tested commercially available

65 nm process node to give results for modern transistor technologies.

Simulations were done in a commerically available 180 nm with dynamic logic

this time instead of the static logic presented in previous simulation results. In

Figure 43 we see the delay results through a half cycle of one of the 2-D bit pipelined

asynchronous function blocks with a 180 nm process resulting in an average delay of

about 0.21 ns or an average speed of about 4.76 GHz.

Figure 44 shows the voltage swing characteristics of the dynamic circuit for dif-

ferent loads (h values).

In Figure 45 we see the delay results through a half cycle of one of the 2-D bit
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Figure 44: Voltage vs Time of the input and output voltages for a function block
from the 2-D bit pipeline asynchronous system for a 180 nm process.

pipelined asynchronous function blocks with a 65 nm process resulting in an average

delay of about 90 ps or an average speed of about 11.1 GHz.

Figure 46 shows the voltage swing characteristics of the dynamic circuit for dif-

ferent loads (h values).

As a comparison, other works show a maximum speed of additions being completed

at about 4 GHz in the high end IBM and Pentium chips. Academic results that have

been reported are all slower than this.

9.4 Multiplication Results

An array multiplier was built using the same technology, a schematic is shown in

Figure 47.

Not only were the multiplies able to commit at rates similar to the additions, but

using the probabilistic technology spoken about in the next chapter, they could sped

up to 2X the synchronous speed while reducing power by 38%.
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Figure 45: Delay vs Capacitive Load h = Cout

Cin
for a half cycle of one of the 2-D

bit pipelined asynchronous function blocks with a 65 nm processing resulting in an
average delay of about 90 ps or an average speed of about 11.1 GHz.
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Figure 46: Voltage vs Time of the input and output voltages for a function block
from the 2-D bit pipeline asynchronous system for a 65 nm process.
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Figure 47: Schematic of array multiplier used in experiments. Array Multiplier was
able to commit at approximately 600 MHz is 180 nm technology without pipelin-
ing and with static CMOS. Including the bit pipelining, the multiplies were able to
commit at the same rate as the additions, assuming the pipeline was kept full.
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CHAPTER X

USING PROBABILISTIC DELAY IN ASYNCHRONOUS

CIRCUITS

Probabilistic CMOS technology or pcmos , which has shown possibilities of an ultra-

low-power solution particularly well suited to DSP systems, is used to build a low-

power, fixed-point datapath. Novel results are presented here showing that pcmos

computes with less noise and less power than a reduced bit width, or truncated,

deterministic datapath due to quantization noise injected by limited-precision, fixed-

point processing. Simulation results derived from physical layout of a pcmos fixed

point datapath are given showing energy savings of up to 3X can be achieved while

still meeting quantization noise constraints. Further, analysis shows that this result

is more fundamental than the case study presented here.

10.1 Introduction

As energy continues to remain a chief design constraint in the signal processing com-

munity, reduced precision fixed point arithmetic has become a viable and interesting

design solutions for low power. Recent works have demonstrated many signal pro-

cessing applications, particuarly image processing, do not need perfect or precise

computations for acceptable and even desirable results.

To this end, Probabilistic CMOS (pcmos ) has been suggested as a low-power,

computing solution. As a technique, pcmos reduces operating voltages such that the

circuits are subject circuits to bit errors due to delay. The tradeoff is energy savings

not otherwise realizable. Previous work applying pcmos to arithmetic was presented

in [35]. The authors use a technique dubbed bivos where voltage scaling is biased
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to low-order bit positions. As a result, bit errors are then biased to low-order-bit

positions and the impact of any bit errors is minimized.

PCMOS has the potential to significantly decrease the power consumed in signal

processing systems. However, a question often raised is, ’how do the power savings

compare with those realized by using fewer bits in a fixed-point representation?’ We

address this question for 16-bit PCMOS arithmetic on a simulated 0.18 micron process

and show that for a given allowable noise level, PCMOS is more power efficient.

Presented here are several novel and interesting contributions:

• A comparison between pcmos and reduced bit width fixed point implying a

design win for pcmos depending on the energy needs.

• A “cutoff” point whereby depending on the noise or energy constraint, above

this bit width pcmos is the better choice, below is reduced precision fixed-point.

• An optimal bivos voltage biasing algorithm is discovered for optimizing noise

power per energy in fixed point arithmetic.

• Up to 3X energy savings is achieved with acceptable noise levels for both pcmos

and reduced fixed point over a full precision baseline case of 16-bits.

10.2 PCMOS Fixed Point Analysis

A pcmos fixed point hardware unit is defined as a functional unit such that the N -bit

output has an associated probability vector P < p0, p1, ..., pN−1 > corresponding to

bits B < 0 : N−1 > whereby each pi is the probability that bit i is computed correctly

and follows 0.5 < pi < 1. The advantage of pcmos is that each bit i whereby pi < 1

has an associated energy savings. We will see that these pi’s are not independent,

but can also be individually tuned which will turn out to be a powerful result.

A digital bit is correct in this context if the output voltage is at the correct

level at the time when the bit is latched. This condition is defined more formally in
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Equation 9:

at time τ = tpulse − tsetup

B < i >=





1 : Vo,i > Vdd

2

0 : Vo,i < Vdd

2

where tpulse is time at which clock pulses

tsetup is latch setup time

and Vo,i is output voltage at bit i

(9)

There are two fundamental phenomena that would cause digital bits to violate

Equation 9 in our fixed-point signal processing system, both of which become factors

as we reduce supply voltage Vdd to reduce power. The more dominant effect is delay:

as supply voltages are lowered to save power, delay especially in asynchronous systems

is shown to increase by several orders of magnitude.

In the speculative asynchronous completion system proposed in this work in Chap-

ter 7 excessive delay will cause errors and violate the condition Equations 9.

Image and audio processing are uniquely suited as applications where some noise

is allowable. They exhibit a sliding scale of quality with power, but are extremely

resilient to noise compared to other applications. One must still be careful to stay

under the quantization noise-power level. If this barrier is broken an H.264 image

such as in Figure 48 may result.

Thus a voltage biasing scheme has been developed such that lower order bits that

affect the answer exponentially less are assigned lower voltages and higher order bits

are assigned higher voltages. We call this Biased Voltage Scaling or bivos . The

voltage is dropped at each bit by a small value, less than the threshold voltage Vt so

as to not cause leakage currents in subsequent gates and so no level shifters need to be

added causing power overhead. This leakage phenomenon is illustrated in Figure 49
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Figure 48: Example of how image processing applications can slowly be degraded
with noise unlike other applications which fail completely. This is the output of an
H.264 image with an extremely noisy datapath.

Figure 49: If a voltage drop occurs between two logic gates greater than the thresh-
old voltage Vt the pFET transistor will turn ON when it is designed to be OFF causing
exponentially greater leakage currents.
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10.2.1 Delay Faults

As discussed previously, the main condition that can cause failure is a delay fault

whereby the delay to calculate a new value through a circuit path i is longer than the

clock period minus the latch setup time, δi > tclk − tsetup.

The delay through a logic gate is based on how fast charge can be moved on

and off the capacitive load of the gate thus for a first order derivation assuming ON

transistors are above threshold (Vdd À Vt) and saturated we have the relations for

delay in Equation 10.

δCMOS =
VddCL

I
(10)

δCMOS ∝ Vdd

(Vdd − Vt)2
(11)

=
1

Vdd

where Vdd À Vt In Above Vt (12)

δCMOS ∝ Vdd

eVdd
In Sub− Vt (13)

Thus the delay for a single bit addition for example is quite deterministic depend-

ing only on the capacitive load CL, the supply voltage Vdd and the threshold voltage

Vt. However in a multi-bit adder, the length of the circuit path in question, δi is data

dependent and follows the probabilistic distribution of the input set. For example the

well known relationship in an N-bit adder is that the average carry chain is
√

N for

a uniformly random input set. A partial carry-chain addition example is shown in

Figure 56.

So while scaling down the supply voltage causes a linear (or exponential in subt-Vt)

increase in delay, this can be taken advantage of because of the fact that an arbitrary

δi is rarely longer than the critical path of the circuit.

10.3 Architecture used and Simulation Methodology

To evaluate the effectiveness of pcmos as compared to reduced precision arithmetic,

we consider a ripple-carry adder. The architecture is based on a 24-transistor, full
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Figure 50: Addition example. Note that the carry chain does does not excite the
critical path in the addition. Thus the delay seen at any given bit is no more than
4 ∗ δFA where δFA is the delay of a single Full Adder.

adder as specified in [39]. Outputs from the full adder are left in their natural,

inverted states to allow for datapath optimizations. External inverters then act as

level converters between individually biased full adders, maintaining positive logic

along the datapath.

Simulation of the ripple-carry adder was performed in a custom pcmos simulator

designed to emulate probabilistic behavior. The adder is divided into smaller sub-

circuits comprised of either a single full adder or inverter. The subcircuits, in turn,

are simulated behaviorally based on model data derived from HSpice simulation for

the specific subcircuit. Within the pcmos simulator, inputs to each subcircuit are

first evaluated to determine correct outputs. Individual subcircuits are “wired” to

create the ripple-carry-adder architecture and any errors that occur on the output

of one subcircuit propagate to the input of adjacent subcircuits. Once a given input

combination is simulated across all subcircuits the resulting output bits are com-

pared against correct operation to determine bit error rates. Energy consumption is

then determined as the sum of the energy consumption for all subcircuits comprising
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Figure 51: Circuit layout for an 8-bit, ripple-carry adder implemented in TSMC
0.18µm technology. The resulting adder is comprised of individual full-adder and
inverter subcircuits and layout is performed to allow for PCMOS biasing of individual
bit positions.

the ripple-carry adder for specified configuration parameters (again as determined by

HSpice characterization).

To accomplish HSpice characterization of the subcircuits necessary to implement a

ripple-carry adder, layout was performed for each of the subcircuits in TSMC 0.18µm

technology (layout for a complete ripple-carry adder is shown in Figure 51). HSpice

simulation files were then extracted from the resulting circuits. Each subcircuit was

simulated in HSpice over 1000 uniformly distributed random input combinations with

supply and drive voltages varied between 0.5V and 2.1V in 0.1V increments. Sub-

circuits were then evaluated for energy consumption, probability of correctness, and

delay to realize characterization data necessary for the pcmos simulator.

10.4 Results and Comparison to Truncated Fixed Point

As specified in Section 10.3, a 16-bit, fixed-point, ripple-carry adder was simulated

using the previously mentioned pcmos simulator. The resulting noise power per

energy was then compared between the pcmos adder and deterministic adders of
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different bit widths to identify the better design solution for low power implementa-

tion: a full bit width probabilistic datapath or a reduced precsion datapath subject

to quantization noise. To compare different adder designs, the standard definition for

quantization noise power was used as in Equation 17.

σ2
e =

∫ ∆
2

−∆
2

x2 1

∆
dx (14)

=
∆2

12
where ∆ =

RFS

2B
(15)

σ2
e =

(
RFS

2B

)2

12
(16)

=
RFS

12× 22B
(17)

Similarly we define a value for probabilistic noise power for an N -bit adder in

Equation 18

∑N−1
i=0 (2N−i−1∆)2(1− pi)

where piis probability of correctness
(18)

In this context the range full-scale (RFS) of 256 was used and quantization noise

was compared to the base case of 16 bits. These values were chosen because of the

prevalence in image processing applications and particuarly in H.264. For compar-

ision, optimal voltage biasing schemes were found for noise powers comparable to

reduced-bit-width adders.

Of note in Figure 52, both reduced precision and the pcmos fixed point technique

yield over 3X energy savings. When comparing the two energy saving methods in

Figure 53, the pcmos approach has a lower noise power for a given energy for all

points. pcmos also has the advantage of a full 16-bit datapath allowing the noise

power to be reduced back to 0 when the supply voltage is brougth back to full Vdd on

the probabilistic bits.
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Figure 52: Noise Power vs Energy for a Fixed Point Adder. Chart comparing
both the reduced bit width and 16-bit probabilistic fixed point adders against a full
precision 16-bit adder. The energy savings is significant, over 3X in both cases.
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Figure 53: Zoomed in version of chart in (a). Notice that the probabilistic 16-bit
adder has less noise power per given energy at all points.

10.4.1 Fundamental Result and Conclusion

These results are also more fundamental than this simple comarison. When using the

bivos scheme, the voltage can only be dropped by an amount less than the threshold

voltage Vt or about 100 mV so as to avoid leakage currents. And by the definitions

of noise power in Equation 17 and Equation 18, any probability of error at bit 10 or

above in the pcmos fixed point unit will yield a greater noise power than an 8-bit,

reduced fixed point unit. Thus with these two previous results: that we can only drop

the voltage below full Vdd at bit 9 and below, and we can only reduce the voltage by

about 100 mV at each subsequent bit to minimize energy consumption due to leakage

currents, we have found an optimal biasing scheme for energy per noise. This energy

per noise power is lower for deterministic adders of reduced bit width down to 8 bits.

However, at below 8-bits the probabilistic adder can no longer yield better results

when using a 16-bit baseline case, and thus we have a design cutoff point at 8-bits.
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CHAPTER XI

LEARNING DIGITAL CIRCUITS

11.1 Introducing The Concept of Learning Hardware

The concept of learning digital hardware is presented here. A proof of concept of a

circuit that can arbitrarily control the current, and hence the switching speed and

power consumption, of a digital circuit is given. This control of current is directly

tuned by the feedback from the digital circuit itself thus a learning digital system.

An argument for a completely new paradigm in digital computing follows whereby

an entire system of learning digital circuits is proposed.

What if processors could learn? With all of the myriad applications that our

embedded systems, general purpose processors, and reconfigurable arrays of hardware

are required to run, we could benefit greatly if our processors could learn exactly what

it was we wanted them to do and how we wanted them to do it. Better software is

not the solution for this adaptibility problem; after all, the ultimate performance of

software is limited by the hardware itself. For low power processors, software only

complicates the matter – the more software, the more instructions, and the more

power is burned.

Proposed is a processor where the hardware itself learns. The hardware will

learn which application it is running, adapt to create stronger circuits in the critical

path of the application, will learn which paths are not critical, and tune down the

power in those areas. The processor will remember what it has learned so that

even when the hardware is powered down and the application reloaded at some later

time, the processor will go back to the optimal state it learned for that application.

Hardware designers or synthesis algorithms would no longer have to spend hours
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tweaking designs when the designer does not even know for which application the

circuit will ultimately be tweaked. Microcontrollers and complicated dynamic voltage

scaling (DVS) algorithms would become unnecessary. Software or firmware will not

be what tweaks the processor but the fabric of the circuits themselves.

Alas, many have proposed neuronal models of learning and implemented these in

analog hardware [68], and some have even proposed this neuronal process in digital by

implementing equations that model learning in FPGAs [14]. However, these methods

all depend on spike-based neuron models using the spike time dependent plasticitiy

(STDP) algorithm and cannot be of use to us for a general theory on a learning digital

hardware.

11.2 A Key Circuit Element

In order for a processor or a digital circuit to learn, a novel circuit element must be

introduced with a couple of key features. It must be able to

• Be dynamically programmable (during run-time).

• Control current flow arbitrarily in digital circuits.

• Remember or have a memory capacity.

• Be implemented with insignificant overhead to performance or power.

Since the flow of current is what ultimately determines the speed at which a

digital circuit switches and its power consumption, a circuit element with the above

characteristics would allow digital circuits to tune their own performance and power.

Such a circuit element is given in Figure 54.

Represented in Figure 54 is a floating gate transistor used to control the speed

and power of a digital circuit. The gate of the pFET is floating as it has no DC

connection to a supply rail and is only capacitively coupled to other nodes, which

means it can hold an arbitrary charge on the node. For a faster digital circuit, more
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Figure 54: A floating gate transistor with digital feedback to control charge injection
onto the pFET’s floating node and to control electron tunneling off of the pFET’s
floating node. This node is also connected to a FET in the digital circuit allowing for
a bias current of an arbitrary value (digital circuit of arbitrary speed).
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charge is allowed onto the floating node, opening up the FET allowing more current

to flow. Charge can be taken off for a more power efficient digital circuit. The voltage

on the gate, Vfg, is reduced by charge injection (putting electrons onto the gate node)

and is increased through Fowler-Nordheim electron tunneling [43], but otherwise does

not change and remembers the current charge.

Recall that current through a transistor in the saturated region where VDS ≥
(κ(VG − VTH)− VS) neglecting velocity saturation is

IDS =
µCox

2

W

L
((VGS − VTH)2) (19)

Assuming κ = 1 (20)

Itransistor ∝ V 2
fg (21)

Hence changing the charge on the floating node linearly would change the current,

and thus the speed, in the digital circuit quadratically. In subthreshold digital, of

which there has been much interest of late, the relationship is I ∝ eVfg , which allows

for an exponential response to the floating-gate control in ulta-low power circuits [43].

An experimental chip has been fabricated showing this concept, and a prototype

is shown in Figure 55.

11.3 Datapath: A Case Study

Now that we have our key circuit element, a case study of how a processor’s datapath

would benefit is given. Take for example the image processing path of a digital signal

processor (DSP). In many compression algorithms, video clips, and movie sequences

the pixel data only changes for a very few pixels from frame to frame. Typical image

data for an H.264 decoder yields repeated inputs to an FIR filter, which are made up

strictly of adders and multipliers, due to the repeated pixel values being generated

by the movie.

Using this H.264 movie decoder example, Figure 56 shows there are 4 carry-overs

needed in the addition of a pixel value, 39, being incremented by 1, and this is the
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Figure 55: Die photo a Reconfirgurable Adaptive Floating-Gate Test Chip used to
show proof of concept of this work. It has several dynamic floating gate structures
which can be connected through the reconfigurable switching fabric to arbitrary cir-
cuits consisting of nFET and pFET transistors.
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(a) (b)

Figure 56: Example showing number of carry operations in the addition of 39 and 1
where 4 carry overs are needed for the critical path. (a) Each 1-bit addition takes unit
time, the critical path is equal to 4 time units here. (b) Our learning adder speeds up
the first 3 1-bit additions to 1

2
, 1

4
, and 1

4
time units respectively so the critical path

only takes 2 time units total, increasing the speed of the adder dynamically by 2X.

critical path using a standard ripple-carry adder. If each 1-bit addition takes unit

time, the critical path takes 4 time units to complete. Now, since pixel values are

repeated 100s if not 1000s of times in a typical movie scene, it is likely this exact

addition, or one close to it, would be repeated 1000s of times. Our datapath learns

and strengthens the critical path (Figure 56b); the first 3 1-bit additions are sped up,

and the critical path now takes only 2 time units total for a 2X speed increase. It

has been shown that a 2X current increase, and thus this scenario, is quite plausible

with floating gate technology [8].

11.4 Chip Results

The onchip dynamically programmable floating gate circuit is shown in Figure 57.

To summarize the caption of Figure 57, two versions of dynamic floating gate

circuits were built and tested. One version uses a single input and the other uses a

logical combination of two inputs to dynamically and in real time control the tunneling

and injection of the floating gate circuit. A current starved inverter is built with

floating gates to programmatically alter the period of the input signals to the floating

gate system to normalize them to the time frames needed for tunneling and injection.
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Figure 57: Test circuit schematic used to test the properties of the dynamic floating
gate. The chip was built in conjunction with another chip design where the same
circuit was used to build a circuit version of a synapse. The top diagram shows a
current starved inverter where the current is restricted by floating gates (FG). This
is used to alter the period of any incoming input signals to the dynamic floating gate
so as to allow a proper time frame for tunneling and injection. The second diagram
shows one version of the circuit where a single input “A” is used to control tunneling
and injection. The third diagram shows another version of the dynamic floating gate
where a logical combination of an “A” and “B” input are used to control tunneling
and injection.
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Figure 58: Drain Voltage vs Time of a floating gate dynamically programmed with
5 second long tunneling pulses, which are used to lower the floating gate voltage, Vfg.
We see the range of voltages that can be obtained in this time frame are quite large,
100 mV.

11.4.1 Data Graphs

The goal of the test circuit shown in Figure 57 is to demonstrate the resolution, range,

and speed of the dynamically adjustable floating gate circuits. Figure 58 shows the

drain voltage changing on the floating gate with 5 second tunneling pulses applied.

Figure 58 shows a 100 mV range by using 5 second pulses over 50 seconds. In

modern processes for which this design is targeted, this is fully 10% of the entire

supply voltage range. Of course floating gates allow voltages outside the supply

voltage range of operation as well in order to overdrive gates.

Figure 59 shows the fastest speed of 100 Hz at which the 0.35 µm floating gate

could be dynamically tunneled. The average voltage change at this speed is approxi-

mately 200 µV.

Figure 60 shows the floating gate voltage being raised through injection at 200 Hz

with 500 µV of change per pulse. We see that injection is much faster at ∆ = 100mV
sec

than tunneling which occurs at a rate of ∆ = 2mV
sec

.
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Figure 59: Drain Voltage vs Time of a floating gate with 10ms tunneling pulses.
This is the smallest time frame (fastest speed at 100 Hz) at which the gate could be
reliably dynamically programmed with the 0.35 µm process.
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Figure 60: Drain Voltage vs Time of a floating gate with 10ms injection pulses used
to raise the floating gate voltage, Vfg. This shows injection happening as fast as about
200 Hz with a voltage change of approximately 500 µV each pulse.
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Figure 61: Drain Voltage vs Time of a floating gate with 10x100ms injection pulses
used to raise the floating gate voltage, Vfg. This simply shows that injection is
smoother over longer time periods.

Figure 61 shows that injection can be done quite smoothly with longer time frames

allowing for an averaging effect of the electron movement onto the floating node.

11.5 System of the Future

In summary, the techniques presented here are a proof of concept used to create an

entirely new paradigm of a learning digital computer. The next steps to be taken are

to determine the best feedback mechanism (asynchronous completion cells are one

method), the range of current, speedups, and power gains that can be realized, and

to fabricate a datapath with this technology.
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CHAPTER XII

CONCLUSION: THE CONTRIBUTION

The primary goal of any dissertation is to make a contribution to the field. What has

been contributed with this thesis? The author believes the results from silicon speak

for themselves. I was able to commit adds in the outdated 0.6 µm AMI technology

at a very modern rate of 1 GHz. With a fully laid out datapath taking into account

parasitic capacitances and interconnect delays in a more modern 0.18 µm technology

(but still 4 technology generations behind today’s technology), I was able to commit

adds at 3− 4 GHz.

An improvement of this magnitude is due to circuit level and micro-architectural

improvements inspired by superscalar and probabilistic computing techniques. A

new paradigm called Speculative Completion is presented as well as the novel 2-

Dimensional Bit-level Pipeline. The use of pcmos techniques with ultra voltage

scaling such that thermal noise is the cause for probabilistic behavior is discounted in

this work, which is valuable to the community so as valuable resources are not used on

pursuing this technology. However, out of the fire of thermally based pcmos comes

the pheonix that is image processing with partial image degradation and showing that

image processing with occasionally incorrect bits (due to out of order asynchronous

bit completion in this case) is actually an improvement over the quantization noise

that results from reduced bit width fixed point computation.

Overall, this work argues for continued pursuits in microarchitectural and cir-

cuit improvements to improve performance and energy efficiency, and that these

improvements to speedup single threads are more important to overall application

performance than more parallelism. Finally, due to the growing problem of circuit
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variability and an inability to increase pipeline stages with synchronous technology,

as well as the ability to pipeline and dynamically voltage scale at the bit level, asyn-

chronous technology is presented as a solution for this continued performance and

efficiency improvement.

Contributions for circuit and system level design in DSP and datapath systems

have been presented arguing for the potential for asynchronous, probabilistic, and

dynamic floating gate technologies.
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