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SUMMARY 

 

Virtualization environments have become basic building blocks in consolidated 

data centers and cloud computing infrastructures. By running multiple virtual machines 

(VMs) in a shared physical machine, virtualization achieves high utilization of hardware 

resources and provides strong isolation between virtual machines. This dissertation 

discusses the implementation and the evaluation of an approach called kernel service 

outsourcing that improves the performance and the reliability of guest systems in 

virtualized, multi-kernel environments. Kernel service outsourcing allows applications to 

exploit operating system (OS) services from an external kernel existing in the shared 

system without limiting application OS service requests to the local kernel. Because OS 

services by external kernels may be more efficient services by local kernels, kernel service 

outsourcing creates new opportunities for better performance by applications in the guest 

OS. Moreover, application of the kernel service outsourcing technique implements natural 

diversity, which improves the reliability of virtualized systems. 

We present two major benefits of kernel service outsourcing. First, we show that 

I/O service outsourcing can improve the I/O performance of guest OSes by up to several 

multiples. In some important cases, the performance of network applications in the guest 

OS using network outsourcing was comparable to that of the native OS. We also applied 

kernel service outsourcing between Windows and Linux, and determined that kernel 

service outsourcing is viable even with two heterogeneous OS kernels. In addition, we 

studied more performance optimization techniques that can be successfully implemented 

in the external kernel when certain OS services are outsourced to the external kernel. 
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The second benefit of kernel service outsourcing is to improve system reliability 

through the natural diversity created by the combination of different kinds of OS kernel 

implementations. Because OS services can be outsourced to different versions or even to 

heterogeneous types of OS kernel for equivalent functions, malicious attacks that target 

certain vulnerabilities in specific versions of OS kernels cannot succeed in the outsourced 

kernels. Our case studies with Windows and Linux show that in the outsourced systems, 

kernel service outsourcing prevented malicious attacks designed to exploit 

implementation-dependent vulnerabilities in the OS kernels. 
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CHAPTER 1 

INTRODUCTION 

 

Virtualized environments [5][14][27][31][32][57] have become basic building 

blocks in consolidated data centers and in cloud computing infrastructures. By running 

multiple virtual machines (VMs) in a shared physical machine, virtualization achieves 

high utilization of hardware resources. Live migration and easy restart of VMs improve 

the manageability of large datacenters. Meanwhile, virtual machine technology provides 

strong isolation among virtual domains. For example, security isolation prevents a 

malicious application from attacking applications or accessing data in other domains. Fault 

isolation prevents one misbehaving application from bringing down the whole system. 

Environment isolation allows multiple operating systems to run on the same machine, 

accommodating legacy applications and cutting-edge software, each with a separate set of 

configurations and parameters. 

Typically, guest OSes in the virtualized environments run heterogeneous OS 

kernels. Some OS kernels have different types of OSes, such as Linux and Windows. 

Different OS kernels often have different functionalities. For example, some OS kernels 

have privileges to access hardware devices directly, while others do not. Vulnerabilities 

found in one OS kernel may not appear in another OS kernel in a different domain. This 

heterogeneity of OS kernels provides an interesting opportunity for combined kernel 

service processing. Kernel processing in one domain may be more efficient because of the 

differences in privileges. Malicious attacks that compromise one guest system may not 

work in another OS kernel because of the kernel implementation differences.  
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In this dissertation, we implemented and evaluated a mechanism called kernel 

service outsourcing. This mechanism allows applications to exploit OS services from an 

OS kernel of another domain in the physical host (an external kernel). Using kernel 

service outsourcing, applications in one guest OS can bypass the kernel services of the OS 

kernel the applications are running on (a local kernel) and forward the kernel service 

requests to an external kernel best suited for processing the requests. 

The concept of kernel service outsourcing among multiple kernels is not entirely 

new: the microkernel approach [2][12][23][38], which implements high-level OS services 

through user-level servers, has been researched extensively in the literature. Applications 

in the microkernel can exploit customized OS services through mechanisms such as inter-

process communication (IPC). Researchers have recently revisited the microkernel 

concept to support better scalability and customized performance in multicore systems. 

Helios [46] introduced satellite kernels that are customized to heterogeneous cores in the 

system. Satellite kernels communicate through a uniform set of OS abstractions across the 

heterogeneous codes. Multikernel [6] suggests a new scalable OS architecture, in which a 

machine is viewed as a network of independent cores and traditional OS functionalities are 

moved to distributed processes that communicate through message passing. On the other 

hand, kernel service outsourcing in virtualized systems allows applications to delegate the 

processing of kernel services into another kernel. 

This dissertation explores two benefits of kernel service outsourcing. First, by 

delegating the I/O services of a guest OS to a privileged OS or a host OS, kernel service 

outsourcing bypasses the overhead of slow kernel processing in the guest OS and achieves 

better I/O performance. This is accomplished by using the efficient kernel processing of a 
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privileged OS kernel. Our experiments with network and filesystem services in different 

guest OSes, such as guest Linux and guest Windows, show that kernel service outsourcing 

improves I/O performance by as much several times compared with a guest OS with para-

virtualized devices.  

The second benefit of kernel service outsourcing is improved system reliability 

through the natural diversity created by combining two different kernel implementations. 

Natural diversity based on kernel service outsourcing has advantages, such as low 

development cost and application backward compatibility, and provides an effective 

defense against malicious attacks targeting implementation-dependent vulnerabilities. We 

present the effectiveness of a defense based on natural diversity by using three real-world 

examples of vulnerabilities present in Windows and Linux kernels.  

1.1. Contributions 

The first contribution of this dissertation is its demonstration of the feasibility of 

kernel service outsourcing with real-world applications and showcasing of effective usage 

cases that benefited from our approach. To show that the proposed approach is a feasible 

solution in practical environments, we applied kernel service outsourcing to several 

different guest OSes, such as Linux and Windows, in order to outsource such kernel 

service processing as network and filesystem of the guest OS to the host OS kernel. In our 

experiments, network service outsourcing significantly increases the throughput of 

network applications, matching the performance of native systems in some important 

cases. We also applied the network service outsourcing mechanism to fully virtualized 

guest systems and delegated network processing services between two heterogeneous 

operating systems, Windows and Linux. In this study, we show that the outsourcing 
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mechanism is a viable solution even with two heterogeneous OSes by enhancing the fully-

virtualized Windows network performance by several times.  

The second contribution of this dissertation is its detailed analysis of the impact of 

kernel service outsourcing on system performance and resource usage. Using low-level 

system characteristic measurement tools, such as dstat and kvm_stat, and a profiling tool, 

OProfile, we monitored low-level system characteristics, such as CPU utilization, the 

number of total instructions executed, number of context switches, number of emulated 

privileged instructions, L2 cache misses, and TLB misses. Our measurement results reveal 

that kernel service outsourcing for network and filesystem significantly reduces such 

system resource usage as CPU utilization.    

The third contribution is to present a collection of techniques that improve system 

performance in guest operating systems. Techniques that communicate via shared memory 

and reduce kernel-user level boundary crossings can significantly increases system 

performance. We present our case study with user-level kernel service and demonstrate 

how a collection of these techniques provides better network performance in a guest OS. 

Furthermore, application of these techniques in the external kernels can lead to several 

multiples of better performance by applications running in the guest systems for such 

activities as file-socket direct data transfer.  

The fourth contribution of this dissertation is to introduce a way to improve the 

reliability of a system. Kernel service outsourcing can be used to implement the natural 

diversity of OS services by combining different kernel service implementations. To 

demonstrate the practicality of our approach, we present a few instances of real-world 

vulnerabilities in widely used OS kernels (Windows and Linux) and show how kernel 
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service outsourcing effectively prevents malicious attacks from succeeding in exploiting 

these vulnerabilities.  

The final contribution of this dissertation is to present a methodical way of 

implementing kernel service outsourcing in various operating systems and virtualization 

platforms. The great variety of operating systems and virtualization platforms prevents 

kernel service outsourcing from being easily deployed in different environments. We 

present a methodical, step-by-step approach for kernel service outsourcing and show how 

this method can be applied to implement network and filesystem service outsourcing. 

1.2. Organization 

The remainder of this dissertation is organized as follows. Chapter 2 is devoted to 

background and related work. In Chapter 3, we describe kernel service outsourcing and 

evaluate the improvement in performance that kernel service outsourcing brings. In 

Chapter 4, we present the mechanism that increases system reliability through the natural 

diversity based on kernel service outsourcing. We describe in Chapter 5 our methodical 

approach to the application of kernel service outsourcing to virtualized systems. And in 

Chapter 6 we conclude the dissertation with a discussion of future directions for research.  
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

Virtual machine (VM) techniques have been explored in earlier efforts to share 

expensive mainframe hardware by many users of different requirements. One of the 

earliest was IBM VM/370, which used virtualization to support legacy binaries [27]. More 

recently, virtualization techniques have become widely used in data centers to implement 

server consolidation that improves resource utilization yet provides the isolation between 

virtual machines.  

Despite advantages virtualization provides, virtualized systems often suffer from 

poor I/O performance due to the overheads incurred by the virtualization layer. Many 

recent research works have focused on improving I/O performance of virtualized systems. 

The para-virtualization techniques [5][14][64] improve the guest OS performance by 

modifying the guest OS kernel code and applying new virtual devices such as the split 

virtual device driver model [5]. Other researchers were able to improve guest I/O 

performance by VMM-bypassing [40]. However, the I/O performance problems still exist 

for some important cases, for example, the I/O performance of hardware-assisted full 

virtual machines (HVM) still remains low because the limitation of being unable to 

modify the guest OS kernel code.  

Bochs project [70] emulates a number of different x86 processor environments on 

commodity OSes. UMLinux [13][31] and UML [18] are direct OS port user-level 

operating systems. King et al. [31] described the overhead associated with UMLinux; 
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frequent host context switches, protecting kernel space, and switching between 

applications. They reduced frequent host context switches by moving some of the 

UMLinux functionalities into the host kernel. Aggregated system calls, which we are 

introducing in Chapter 3, follow a similar approach. The other two sources of overhead 

described [31] were removed by SKAS host patch in recent releases of UML.  

Researchers made efforts to improve the network performance of user-level 

VMMs by context switch reduction, copy avoidance and network stack specialization 

[31][34]. Although their approaches focus on optimization and specialization of guest 

OSes, the kernel service outsourcing approach improves network performance by 

bypassing the entire processing in guest OSes. 

PlanetlabOS [7] enables a number of users to share the same hardware, providing a 

virtualized user-level working environment to each user. However, PlanetlabOS, 

implemented by using Linux vserver [77] and SILK [8], is not a fully virtualized OS 

because its network subsystem is not virtualized.  

Many research efforts have focused on achieving efficient packet processing 

through collapsing layers. Integrated layer processing (ILP) [1][17] increases performance 

by reducing redundant copying and buffering. Synthesis kernel [50] collapses layers by in-

line code substitution and applying factoring invariants for further optimizations. In this 

dissertation, we apply code specialization techniques to the network stack code of user-

level operating system for improved network performance. 

In addition to ILP, several schemes have been proposed to move data between 

layers without copying. Chu [16] describes a zero-copy TCP protocol stack 

implementation for Solaris using page remapping and copy-on-write. Fbufs [20] uses 



8 
 

shared memory space to move data between different address space domains. Our shared 

socket buffer technique uses the same idea of fbuf. 

Other research efforts have been put to improve network performance of guest 

OSes by optimizing device drivers. In the article [43], researchers introduced a new virtual 

network device driver that incorporates common hardware optimization techniques such 

as TCP/IP checksum offloading for better guest OS network performance. VMware 

Workstation batches emulation of several I/O instructions to reduce the number of context 

switches [61]. VMware Virtual Machine Interface (VMI) provides paravirtual I/O 

functions, with which a guest OS can use paravirtual network drivers. While these 

approaches focus on device-level modules based on paravirtualization, our kernel service 

outsourcing approach provides virtualization at the API level. 

XWay [30], XenLoop [63], and XenSocket [67] accelerate inter-VM 

communication in Xen by using shared memory and other communication support of Xen.  

These approaches focus only on improving inter-VM communication performance. Our 

network service outsourcing technique was able to improve inter-VM communication 

performance by eliminating redundant network processing in the guest OSes. We further 

improved inter-VM network performance by applying a specialization technique that 

exploits shared memory between VMs. We present our measurement results in Chapter 3.  

TCP/IP offloading [24][29][55] delegates certain network processing to hardware.  

Other researchers [54] used dedicated CPUs in symmetric multiprocessors (SMPs) and 

dedicated cluster nodes for delegating network processing. Applications must 

communicate the dedicated CPUs and nodes with shared memory and System Area 

Network (SNA). Kumar et al. [36] accelerated the communication processing using 
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network processors. Raj et al. [51] presented the notion of self-virtualized I/O by offering 

virtual interfaces, through which guest domains can access physical devices, improving 

the network throughput and reducing the latency in their experiments using IXP24-based 

boards. Some researchers [26] used network processors to increase the 

computation/communication overlap in the system by dynamically mapping different 

stream processing to best-suited platforms. The kernel service outsourcing for network 

processing can be viewed as software implementation of techniques such as TCP/IP 

offloading. However, unlike other approaches, our kernel service outsourcing approach 

does not require special hardware or dedicated system resources.   

In Menon et al. [43], the guest OS running in a Domain-U could use intelligent 

NIC facilities, including scatter/gather I/O and TCP/IP checksum offloading. The Linux 

kernel after version 2.6.24 includes a framework called Virtio for paravirtual device 

drivers [58]. The VMware Virtual Machine Interface (VMI) provides I/O facilities for 

paravirtual network drivers in the VMware Workstation [61]. These approaches focus on 

low-level modules based on paravirtualization while we focused on a high-level module 

based on kernel service outsourcing.  

Researchers have also put their efforts on virtual disk. Ventana [47] introduces 

virtualization-aware distributed filesystems, offering the benefits of powerful versioning, 

security, and mobility properties of virtual disks. The O2S2 architecture [52] provides 

object-based storage device services to virtual machines, enabling efficient sharing of 

physical devices, dynamic access control, and usability-based performance isolation in 

heterogeneous storage environments. User Mode Linux [18] includes a special file system 

called hostfs to access the files in the host OS. Cooperative Linux (coLinux) [3] is a port 
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of Linux to Windows as well as Linux. Cooperative Linux includes a special file system 

called cofs to access the Windows files. The hostfs filesystem in UML follows the similar 

approach as the kernel service outsourcing for the filesystem. However, our kernel service 

outsourcing achieves better performance by using efficient techniques such as DLL 

injection to intercept systems calls from applications, while UML suffers from heavy 

overhead of intercepting system calls [34].  

In addition, the virtualization of Graphics Processing Units (GPUs) has also been 

explored. Gupta et al. [28] presented the GViM system designed to virtualize and manage 

the resources of a general purpose system accelerated by GPUs.  

Diversity is an important natural defense technique to increase the survivability of 

species in an epidemic outbreak, e.g., during the spread of a novel virus. Researchers have 

applied diversity concepts to computer software in an attempt to improve the reliability of 

the software. N-version programming [4] increases software reliability by implementing 

different versions of software components for the same specification. However, n-version 

programming typically requires high implementation and maintenance costs.  

With the evolution of information technology, recent applications of diversity 

techniques have been more encouraging. Automated techniques, sometimes called 

artificial diversity [65], have been successfully demonstrated to provide effective defenses 

against specific classes of software viruses. A concrete example is address space layout 

randomization (ASLR) [68], a technique that prevents attackers from predicting the 

specific location of codes and data by diversifying memory layout of software.  

In contrast to artificial diversity, kernel service outsourcing explores the use of 

natural diversity among different currently existing operating systems (OS) such as Linux 
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and Windows, to defeat attacks intended for one system but will not work on the others. 

Compared to artificial diversity, natural diversity has three major advantages. The first 

advantage of natural diversity is its effectiveness in defeating attacks that exploit 

vulnerabilities specific to an OS. The effective defense relies on the wide range of 

differences in kernel interfaces and implementations of naturally diverse OSes such as 

Windows and Linux. These differences prevent an attack from working simultaneously on 

two such naturally diverse OSes.  The resulting combination achieves the software 

reliability advantages originally expected of N-version programming: independent failure 

modes among the versions. 
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CHAPTER 3 

ENHANCING SYSTEM PERFORMANCE THROUGH KERNEL 

SERVICE OUTSOURCING 

 

3.1. A Performance Study of User-level Kernel Service 

3.1.1. Problem Statement 

User-level Operating Systems (ULOSes) are operating systems that run “over” 

other operating system kernels as user processes. Many type-II virtual machines follow the 

ULOS approach. As a user process, a ULOS redefines its own core functionalities by 

using host OS interfaces such as system calls instead of the instruction set of the 

underlying processor. A ULOS provides a set of qualities that enables server consolidation. 

Resource allocation. Each guest operating system is a user-level process. 

Resources such as CPU and memory are allocated according to the host OS’ sharing and 

scheduling policy. Idle resources are allocated to busy processes to increase utilization, 

while maintaining fair sharing. 

Easy maintenance. A virtual network server on a ULOS is easily migrated, 

paused, and recovered using traditional process migration and recovery techniques. 

System administrators can easily expand system capacity by adding more hardware and 

migrating the virtual servers to the new hardware. 

Strong isolation and reliability. Since a ULOS is indeed a user-level process, 

isolation among guest ULOSes is naturally achieved by a host OS’s process encapsulation. 
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When a guest operating system is compromised, the fault is sandboxed and can not affect 

the host OS nor other guest ULOSes. 

Easy installation. In contrast to type-I VMM approaches that need installation of 

VMMs on bare hardware, ULOS approaches install guest ULOSes on a host OS. This 

reduces hardware issues in installation, such as incompatibilities with the underlying 

hardware configuration. 

Easy system diagnosis. For diagnosing a ULOS, system administrators are able to 

use common tools, such as gdb and oprofile, installed in a host OS without requiring 

special VMM support or kernel patches. 

Hardware

Host OS

Guest ULOS #1

Network device driver

Network interface card

Virtual network device

Guest ULOS #N

Virtual network device

Guest ULOS #2

Virtual network device

. . . 

 

Figure 1 User-level operating system architecture 
 

On the negative side, ULOSes suffer from significant performance penalties for 

obvious reasons: running at user level, they must invoke the underlying host OS kernel to 

provide kernel services that cannot be emulated. While this indirection provides strong 

isolation, it introduces overhead considered to be unavoidable. From the server-
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consolidation point of view, it significantly increases the packet-processing overhead, 

reducing the maximum network throughput and increasing packet latency. 

In this study, we have chosen one of the direct OS port ULOSes, User-Mode Linux 

(UML) for our experimental ULOS. UML is a port of the Linux kernel that runs as a user 

process on native Linux. It supports the full Linux API through the UML core.1  When 

privileged kernel functions are invoked, the UML core calls the host Linux kernel to 

actually carry out these functions. The support for I/O devices such as network devices is 

provided through corresponding virtual devices.    

We measured the network performance of UML+Linux over a gigabit network. In 

our preliminary experiments, UML+Linux exhibited considerably poor throughput and 

latency characteristics. Figure 2 compares the throughput of UML+Linux and native 

Linux, showing that Linux outperforms UML+Linux by 1.5 to 3 times. We also observed 

a 10 fold increase in packet processing time in UML+Linux. 

                                                 

1 In this dissertation, the term “UML core” refers to the OS code that normally would run 
in kernel mode. Although the term “UML kernel” is the normal usage in the community, 
the slightly different term “UML core” avoids the overloading of the word kernel.   
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Figure 2 Network throughput in Linux and UML+Linux 
 

We analyze the overhead of a ULOS, dividing the sources of overhead into three 

main categories: 

• Privilege management: a ULOS executes privileged instructions and provides 

kernel-level services by invoking the host kernel. 

• Memory management: Extra memory copies to move data through the ULOS 

core and additional virtual address translations. 

• Additional software instructions: More instructions to be executed due to the 

ULOS layer. (e.g., virtual I/O devices) 

 
3.1.1.1. Privilege Management Issues 

A ULOS reuses the large majority of the kernel code of an existing OS. However, 

this simple reuse of the existing code raises an impedance mismatch between the code 

originally written as kernel code and its execution environment in user mode. In particular, 
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the design of the kernel code depends on low-impedance base operations, assuming that 

executing privileged instructions and accessing kernel data structures are simple and 

cheap. This assumption does not hold in a ULOS. The increased cost of base operations 

entails a high-impedance design for the ULOS.  

An important factor leading to the high impedance of base operations in ULOS is 

frequent and expensive user/kernel boundary crossings that typical ULOS facilities (e.g., 

disabling interrupts) trigger to implement privileged operations. Boundary crossings are 

expensive; with a Pentium4 processor machine used in our experiments, the getpid() 

null system call requires more than 1000 cycles (around 0.37 µs) to complete. 

3.1.1.2. Memory Management Issues 

Another major source of overhead in a ULOS is extra data copies between the 

added layers. Since the ULOS core inserts a layer between an application and the host 

kernel, a network packet from the application is copied twice for below layers, the ULOS 

core and the host kernel. Note that native Linux requires only one copy between the 

application and the kernel. Our measurement with MTU-sized UDP packets shows that the 

packet payload copy accounts for around 40% of the latency measured in the virtual 

network device.  

The next overhead related to memory management is introduced by virtual address 

translation. While the virtual-to-physical address translation in a host OS leverages on fast 

hardware such as the translation look-ahead buffer (TLB) and hardware-supported page-

table manipulation, the address translation in a ULOS is implemented entirely in software. 

This software implementation naturally suffers from the additional memory accesses for 

traversing page tables and inefficient error handling without hardware support. 
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3.1.1.3. Additional Software Instructions 

Since a ULOS adds an extra layer between applications and the host operating 

system, packet processing in a ULOS consumes more instructions. First, packets cross 

more protection boundaries and consume instructions at each crossing. Second, each 

packet goes through both the ULOS core and the host kernel, potentially causing extra 

context switches. 

One way to reduce the extra overhead from the layered architecture is to specialize 

the code for a given context [41][50]. Particularly because the network packet processing 

has the tendency to have static parameters, techniques such as program specialization can 

help reduce the overhead [10][11]. 

To illustrate the impact of the overhead on packet processing, we divide the 

network protocol stack into five layers. For concreteness, we use outgoing UDP packets in 

this analysis. 

1) The user/UML core boundary crossing.  An application invokes a 

sendto() system call. Control is transferred to the UML core.  

2) Packet processing in the UML core.  The UML core executes the usual 

steps in packet processing, including routing decisions, header filling, 

network queue processing, and packet forwarding. 

3) The virtual network device.  The UML core sends the packet to the virtual 

network device, which passes the packet to the host kernel. Control is 

transferred from the UML core to the host kernel.  



18 
 

4) Packet processing in the host kernel. The host kernel forwards the packets 

to an appropriate physical network device, e.g., an Ethernet bridge. 

5) The physical network device.  Finally, the physical network device driver 

sends out the network packets through the Network Interface Card (NIC).   

We measured the time spent in each layer. The execution time at each layer is 

divided into two parts: (1) before invoking the lower layer, and (2) after returning from the 

lower layer. Figure 3 shows our experimental results for MTU-sized2 packets in Linux and 

UML+Linux. Note that significant additional latency is introduced by UML in the top 

three layers. 

 
Figure 3 Per-layer latency of UML+Linux and native Linux. The x-axis represents 
latency in µseconds. We use MTU-sized UDP packets for latency analysis. 

 

                                                 

2 The maximum transmission unit (MTU) size in this dissertation is 1500 bytes, unless 
specified otherwise.  
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3.1.2. Optimized User-level Network Kernel Service 

Despite the non-trivial overhead outlined in the previous section, we were able to 

alleviate those problems through a combination of system optimization techniques. First, 

we solve privilege management issues by reducing the need for frequent user/kernel 

boundary crossings and aggregated system calls. Second, we introduce an address 

translation cache and shared socket buffers to resolve memory management issues. Third, 

we apply program specialization techniques to collapse software layers in the ULOS 

network stack, decreasing the total number of instructions executed. We have 

implemented these techniques in an experimental ULOS called Enhanced User-mode 

Linux (EUL). 

In the following paragraphs, we list concrete performance problems and the 

techniques applied to solve those problems. 

3.1.2.1. User-Level Signal Masking (ULSM) 

Problem: UML Signal Overhead. Disabling interrupts is a cheap synchronization 

mechanism in uniprocessors to share kernel data structures. Many critical sections in 

Linux are protected by cli/sti assembly instructions along with a few stack operations 

for saving/restoring the current interrupt flags. 

Meanwhile, UML handles interrupts using process signals from virtual devices to 

the UML core (shown in Figure 4). Therefore, the UML core disables virtual interrupts by 

masking the signals using the sigprocmask()system call. Saving the interrupt state for 

nested critical sections is implemented by the same sigprocmask(), which returns the 

previous value of the signal mask. Consequently, disabling interrupts, cheap in the Linux 

kernel, becomes expensive in the UML core, because invoking a system call is costly. 
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Figure 4 Interrupt handling in UML+Linux. Virtual devices raise SIGIO or SIGALRM 
signals for new events. The common signal handler in the UML core receives the signals 
and invokes appropriate handlers in turn. 

 

Solution: User-Level Signal Masking.  To avoid using sigprocmask(), EUL 

implements user-level signal masking. EUL removes the host system call by keeping the 

signal states in the user level (i.e., in the EUL core) rather than in the host Linux kernel. 

By toggling the interrupt state and keeping track of pending interrupts, the EUL core 

achieves the same synchronization without the host kernel intervention.  

For evaluation of user-level signal masking, we measured the number of system 

calls invoked by the UML and EUL core for a sendto() system call that sends a UDP 

packet.  We show the results in Table 1. 
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Table 1 Latency of a sendto() with a UDP packet. The payload size of 1472 bytes fills 
one full MTU. 

Payload size 1472  bytes 

Operating systems UML+Linux EUL+Linux 

# of sigprocmask() 20 0 

Time (µs) 27.83 16.37 

95% Confidence Interval 
(C.I.) 0.34 0.30 

 

 

For each packet, a sendto() in UML+Linux requires 20 sigprocmask() 

host system calls: four pairs of interrupt disabling/enabling in the protocol stack and one in 

a virtual device driver. EUL+Linux requires no system calls, resulting in 42% less elapsed 

time. Figure 5 illustrates the reduced overhead at the packet processing and virtual device 

layers.    

 

Figure 5 Latency gains due to user-level signal masking 
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After we started the implementation of the EUL core (based on the UML core 

version 2.4.26), the original UML core has also evolved. The UML core version 2.6.12 

includes a mechanism called soft interrupts [80], similar to EUL user-level signal masking. 

3.1.2.2. Aggregated System Calls (AGSC) 

Problem: UML System Call Overhead. The UML core implements UML 

system calls in five steps.  First, the UML core process uses wait() for a system call 

from an application process to be intercepted by the UML core. Second, the UML core 

uses ptrace() to copy system call arguments to UML-core space. Third, the UML 

core executes the system call for the application. Fourth, the UML core copies the return 

value to the application space using ptrace(). Fifth, the UML core resumes the 

application by another ptrace() and goes to the first step—waiting. These steps add up 

to three ptrace() and one wait() host system calls. However, these frequent 

invocations of those system calls are costly.   

Solution: Aggregated Host System Calls. The EUL core avoids the repeated 

callings of ptrace() by expanding the scope of tracing facility slightly. We modified 

the wait() routine in the host kernel. The expanded wait() carries out the whole 

parameter manipulation functions described above. This way, the modified EUL core 

reduces the user/kernel boundary crossing into one per UML system call, compared with 

four times in the UML core. In Table 2, we show the improvement of the elapsed time for 

getpid() and sendto(). 

 

 



23 
 

Table 2 Overhead of ULOS system calls 

Syscalls Getpid() Sendto() 

Operating 
systems UML+Linux EUL+Linux UML+Linux EUL+Linux 

Time (µs) 6.83 4.47 16.37 15.08

95% C.I. 0.07 0.05 0.30 0.28
 

3.1.2.3. Address Translation Cache (ATCA) 

Problem: Address Translation Overhead.  While virtual-to-physical address 

translation in Linux leverages on hardware, the UML core implements the address 

translation in software. This software implementation suffers from the additional memory 

accesses required for traversing page tables. Also, without hardware support for catching 

traps, the error handling in UML gets inefficient because a segmentation fault signal must 

be intercepted by the UML core when an unmapped address is referenced. For the 

protection from accessing the wrong address, the UML core utilizes sigsetjmp() and 

longjmp(). The cost of using sigsetjmp() for error protection and walking 

through page tables has an adverse impact on the network performance. As a concrete 

example, sendto() has five arguments, two of which are the address pointers that cause 

address translations. 

Solution: Address Translation Cache.  To speed up the address translation, we 

added an address translation cache (ATC) to EUL. ATC is a software version of the TLB 

(Translation Look-ahead Buffer). The prefix of a translated address is stored in a hash 

table for future reference. This hash table simplifies the virtual-to-physical address 

translation. In the sendto() example, ATC reduces the overhead of two address 

translations.  
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Figure 6 shows that ATC reduces the latency for the user/UML core boundary 

crossing and packet processing layers, where copying the destination address and payload 

requires address translations.  

 

Figure 6 Latency gains due to ATCA 
 

3.1.2.4. Shared Socket Buffers (SSKB) 

Problem: Additional Copy across Layers. For applications to send data over 

network, the Linux kernel copies the packet content once, from the application buffer to 

kernel space. On the other hand, the UML core copies the packet twice, once from the user 

buffer to the UML core, then another time from the UML core into the host kernel. 

Solution: Shared Socket Buffers. For the implementation of zero-copy between 

the EUL core and the host kernel, we use a technique similar to fbuf [20].  When an 

application sends a packet, the packet content is copied into special memory regions 

shared between the EUL core and the host kernel. The EUL virtual network device passes 
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the identifier of the shared memory region to the host kernel. ZTAP device (for Zero-copy 

TUN/TAP) in the host kernel locates the shared memory address from the identifier and 

creates a socket buffer using the address without copying. Then, the new socket buffer is 

delivered to a network device.  

We measured the packet transfer time spent in a virtual network device of UML 

and EUL. For the experiments with UDP packets, ZTAP in EUL reduces the elapsed time 

significantly as shown in Table 3. EUL packet transfer time using ZTAP is about 60% of 

UML. 

Table 3 Elapsed time of a MTU-sized UDP packet transfer in virtual network devices 
Virtual network device TUN/TAP ZTAP 

Elapsed time (µs) 2.90 1.68 

95% C.I. 0.06 0.05 
 

 

3.1.2.5. Network Stack Specialization (NSSP) 

Problem: Additional Copy across Layers. Because to the ULOS architecture 

causes more layers, such as virtual I/O devices, to process network packets, more CPU 

instructions are to be executed for network processing. 

Solution: Network stack specialization. To reduce the number of CPU 

instructions spent in the multi-layered network protocol stack, we use program 

specialization [10][11][41]. Program specialization has been acknowledged as a powerful 

technique for optimizing operating system code for a given execution context. Network 

protocol stack code particularly provides good opportunities for program specialization 

[10][11], as network parameters, such as IP addresses and port numbers of peers and 

socket options, tend to be static once a network connection is established.  



26 
 

The network code specialized for the given context contains fewer instructions and 

branches by: 

• Eliminating the mapping between the file descriptor and the kernel-level 

socket structure. 

• Avoiding the interpretation of socket options 

• Avoiding making routing decisions for every sendto() 

• Inlining layered functions 

We use specialization templates generated by the Tempo C specializer [41] to 

implement specialized sendto()[10] in the EUL core. The specialized TCP protocol 

stack template is filled with the values of IP addresses and port numbers when a TCP 

connection is established. In the UDP case, we assume that a socket tends to send UDP 

packets to the same end point. (e.g., in multimedia applications) The template is filled with 

the process id, the socket file descriptor, and the address of the sock structure. If these 

values change, the specialized code is invalidated and the EUL core switches back to 

generic code. The following table shows the gains from network specialization. 

Table 4 Specialization impact on UDP processing 
Network stack EUL UDP Specialized EUL UDP 

Elapsed time (µs) 3.23 2.83 

95% C.I. 0.04 0.02 
 
 

To reduce the number of CPU instructions spent in the multi-layered network 

protocol stack, we use program specialization. The network code specialized for the given 

context contains fewer instructions and branches by eliminating the mapping between the 
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file descriptor and the kernel-level socket structure, avoiding the interpretation of socket 

options, avoiding making routing decisions for every sendto(), and inlining layered 

functions 

3.1.3. Performance Evaluation 

3.1.3.1. Experimental Setup 

We conducted our experiments on machines that have a Pentium4 3.06 GHz 

processor with a 512 KB L2 cache, 533MHz front-side bus, 1 GB of main memory and a 

gigabit network adapter card. We used the Linux kernel version 2.4.26 for the host kernel 

and its corresponding UML core, patched by host and guest modifications from the UML 

source tree [80].  

Our packet processing latency was averaged over 200 runs. We also present the 

95% confidence intervals for latency measurements. We use the ttcp tool for measuring 

the maximum network throughput. Each machine is connected to a gigabit switch. 

We show experimental results for four systems: native Linux, UML+Linux, 

EUL+Linux, and XenLinux+Xen. XenLinux results are added to compare with other 

virtualization approaches. (XenLinux version 2.6.11 and Xen 2.0.7) 

Table 5 shows total packet processing latency for outgoing and incoming MTU-

sized UDP packets. EUL+Linux shows less than half the overhead of UML+Linux for 

both cases. 

Table 5 UDP packet processing latency 
UDP packets UML+Linux EUL+Linux Reduction 

Outgoing 27.47µs 11.85µs 57% 

Incoming 40.62µs 18.17µs 55% 
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3.1.3.2. Sensitivity to Packet Size 

Figure 7 shows the elapsed time of the sendto() for various packet sizes. 

Compared with UML+Linux, the latency for small packets in EUL+Linux is lower by 

about 60%. For large ones that are fragmented, the slope of EUL+Linux curve is less steep 

than UML+Linux, since EUL has significantly reduced the overhead. For large packets, 

EUL+Linux incurs only about three folds the overhead of native Linux, compared with 

about ten folds of UML+Linux. 

Figure 8 shows UDP throughput over a gigabit network. Due to the reduced 

overhead in the EUL core, EUL+Linux outperforms UML+Linux by around three times. 

For the large-sized packets, the combined optimizations allow EUL+Linux to match the 

throughput of native Linux even in a gigabit network because the fixed cost per packet is 

amortized over more bytes. 

The elapsed time of sendto() for MTU-sized UDP packets is 11.85 

microseconds in EUL+Linux. Hence, theoretically, the maximum throughput we can get is 

947.7 Mbps, which is larger than the maximum network throughput (around 916 Mbps) of 

native Linux. For UDP packets with 1024-byte payload, the sendto() takes 11.97 

microseconds, which limits the maximum throughput to 653 Mbps. The values in Figure 

10-3 confirm these calculations. 

Figure 9 and Figure 10 show the results of the same optimization techniques 

applied to TCP protocol stack.  We see the same trend as UDP, although the maximum 

throughput of EUL+Linux remains about 5% less than that of native Linux. 
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3.1.3.3. HTTP Server Benchmarks 

In addition to the micro-benchmarks, we compare the performance of HTTP 

servers running apache 1.3, using the httperf benchmark. Two httperf clients connected to 

a gigabit network send requests for 32KB-sized documents to the HTTP server at a 

constant rate.  

Figure 11 shows the throughput of the HTTP server for each setup. The server on 

UML+Linux can process a maximum of 300 requests/sec, while the one on EUL+Linux 

700 requests/sec. (The CPU usage of the machines reaches 100% at the saturation) 

Figure 12 shows that the reply time rapidly increases once the server is saturated. 

Instead of an exponential growth of input queue and response time, the graph shows a 

long but constant response time at saturation. This is due to a timeout mechanism in 

httperf clients, which limits the server load. Figure 10-6 also shows that the server on 

EUL+Linux has a lower response time (by half) compared with the server on UML+Linux 

during overload. 
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Figure 7 UDP latency with outgoing packets 
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Figure 8 Maximum UDP throughput 
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Figure 9 Max. TCP sending throughput 
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Figure 10 Max. TCP receiving throughput 
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Figure 11 Http server throughput 
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Figure 12 Http server reply time 
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3.2. Fast Networking through Socket Outsourcing 

3.2.1. Problem Statement 

Virtual Machine Monitors (VMMs) provide significant advantages in terms of 

isolation and portability of applications. An early classification [27] of VMMs has divided 

them into two types: Type I VMMs, which are hypervisor-based VMMs running on bare 

hardware such as Xen [5] and VMware ESX Server [62], and Type II VMMs (also known 

as hosted VMMs), such as VMware Workstation [81], Linux KVM [32], and User Mode 

Linux (UML) [18]. Compared to Type I VMMs, hosted VMMs have advantages such as 

host operating system (OS) reuse, and OS installation as a normal application program 

[57], but hosted VMMs incur a relatively high performance penalty, especially in I/O 

processing. 

Compared to native operating systems (OSes), there are four main sources of 

additional overhead in a guest OS running on a hosted VMM: (1) heavy costs to capture 

CPU exceptions including system calls and page faults, (2) execution of privileged 

functions in the guest OS kernel in user mode, (3) duplicated functionality between a guest 

OS and a host OS in I/O processing such as network protocol stacks, and (4) redundant 

copying of buffers across multiple user-kernel boundaries. Recent hardware support for 

virtualization, such as Intel Virtualization Technology (VT) and AMD Virtualization 

(AMD-V), have helped to reduce or remove sources (1) and (2) of the performance 

penalty. However, due to the architecture of hosted VMMs and "inherent" duplication of 

functionality between a guest OS and a host OS, sources (3) and (4) of the performance 

penalty constitute serious research challenges that have contributed to the slow adoption of 

hosted VMMs. While some advanced hardware, such as Intel VT for Directed I/O (VT-d) 
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has helped to remove these performance penalty sources in Type-I VMMs, it is hard to use 

such hardware in Type II VMMs.  

In a similar way to optimizing hypervisors (the lower layer in Type I VMMs), 

optimizing hosted VMMs has focused on bypassing the layers in the host OS (the lower 

layer in hosted VMMs). For example, Virtio in Linux [32] helps to link a specialized guest 

OS network driver to a specialized host OS network driver to avoid redundant protocol 

processing and buffer copying in the host OS [58]. While this effectively eliminates some 

of the previously mentioned cost factors, this hosted VMM analog of paravirtualization is 

unable to avoid several sources that incur a performance penalty, including:  

• Duplicate message copying in both the host OS and the guest OS.  

• The high overhead in inter-VM communication. For example, two guest 

OSes on the same host OS need to go through full network protocol stacks.  

3.2.2. The Design of Socket Outsourcing 

We present an alternative approach to optimizing hosted VMMs, called 

outsourcing. In contrast to paravirtualization, which optimizes (low-level modules of) the 

guest OS to communicate with the hypervisor, outsourcing specializes (high-level 

modules of) the guest OS to communicate with high-level facilities of the host OS. 

Specifically, the outsourcing of the socket layer is called socket-outsourcing. As an 

illustrative example, Linux Virtio helps to bypass the host OS protocol stack by invoking a 

low-level host driver from the guest OS. In contrast, socket-outsourcing bypasses the 

guest OS protocol stack by invoking the socket layer in the host OS. This design 

eliminates duplicate message copying and reduces the inter-VM communication overhead.  
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Our experiments revealed that guest OSes using socket-outsourcing can achieve 

the same network throughput as a native OS using up to four Gigabit Ethernet links. Using 

an e-commerce benchmark (RUBiS) that performed significant inter-VM communication 

in a consolidated server environment, socket-outsourcing improved performance by up to 

45 percent compared with conventional hosted VM environments. 

3.2.2.1. Network I/O in VMMs 

In this subsection, we illustrate and compare different network I/O mechanisms 

typically used in virtualized systems. 

Figure 13 shows network I/O with a device emulator to achieve full virtualization. 

The guest OS includes a native device driver for a popular network device, e.g., NE2000 

and RTL8139, since there are no standards such as SCSI and ATA for networking. The 

underlying VMM provides an emulator for these popular network devices. When the guest 

device driver executes an I/O instruction, the VMM traps the execution and emulates it on 

behalf of the hardware. Although full virtualization has good compatibility (no changes to 

the guest OS), there are some well-known performance problems due to emulation of 

devices by the software [61].  

Figure 14 outlines the network I/O processing in hosted VMM through an 

approach similar to paravirtualization, used in Xen, Linux KVM with Virtio support, and 

User Mode Linux. In this method, the guest OS uses a special paravirtual device driver 

that communicates with a low-level network module running in the host OS, such as a 

backend driver in Xen and a TUN/TAP driver in Linux.  

Paravirtualization achieves better performance than full virtualization, but two 

problems still remain. First, it is hard to omit duplicate message copying in both the guest 
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OS and the host OS. For example, let us assume that a guest process sends a message with 

the TCP. The guest OS must perform the first copying for retransmission due to packet 

losses. The host OS must perform the second copying to allow the application to fill the 

buffer with the next message. The second problem involves high overhead in inter-VM 

communications. Message exchanges between two guest OSes in the same host OS 

require processing by two full protocol stacks and a software switch module. 

3.2.2.2. Overview of Socket Outsourcing 

While typical para-virtualization devices avoid device emulation, as described in 

the previous section, by invoking a low-level host driver from the guest OS, socket-

outsourcing bypasses the guest OS protocol stack by invoking the socket layer in the host 

OS,  

Figure 15 illustrates the control flow for network I/O processing in socket-

outsourcing. While paravirtualization attempts to bypass redundant processing by using a 

low-level interface (e.g. device drivers), outsourcing bypasses redundant processing by 

using a high-level interface (e.g. socket API). Outsourcing replaces a high-level module in 

the host OS, which is referred to as a guest module, with one that is specialized. In Figure 

15, the socket layer is a guest module in outsourcing and it is modified as the device driver 

is modified in the paravirtualization in Figure 14. The modified socket layer 

communicates with a program called a host module. The host module receives requests 

from the guest module and issues system calls to the host OS through a standard API. In 

Figure 15, the host module runs in a user-level process. We can also execute the host 

module in the kernel. 
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Socket-outsourcing exploits the standard socket API that both the guest OS and the 

host OS provide. If an application relies on non-standard implementation-specific features 

of the guest OS protocol stack, such an application will not work. To mitigate this 

compatibility problem, we provide global and socket options. The global option controls 

whether or not the kernel is allowed to use the host stack by default. The socket option 

specifies each socket instance that can use or not use the host stack. When we are not 

permitted to use the host stack for a socket, we fall back to the conventional 

paravirtualization method.  
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Figure 13 Full virtualization with device emulation 
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Figure 14 Para-virtualization network model 
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Figure 15 Socket outsourcing network model 
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3.2.2.3. VMM Support for Socket-outsourcing 

To implement socket-outsourcing, the VMM should support communication and 

synchronization facilities between a guest module and a host module.  

Shared memory: For fast communication between a guest module and a host 

module, the guest module allows the host module to access its memory regions.  

Event queues: An event queue is a data structure allocated in the shared memory. 

This queue is used for asynchronous communication between the host module and the 

guest module. 

VM Remote Procedure call (VRPC): The guest module calls the host module 

and blocks until the host module returns a reply.  

VRPC, similar to the remote procedure call (RPC), allows the guest module to 

invoke procedures in the host kernel. VRPC has the following features for the hosted 

VMM environment. First, the VRPC server (the host module) does not block. For 

example, when the guest module invokes the recv() call, the VRPC server should return 

an error immediately with no message arrived. Second, VRPC parameters are passed via 

the shared memory and no marshaling is needed. Third, VRPC does not have to handle 

errors such as when the server is down and the network is disconnected. These design 

choices simplify the implementation of outsourcing.  

In addition to these communication facilities, the VMM maintains a file descriptor 

set (FD set). The FD set is similar to the fd_set type of system call select(). When 

the VMM notices status changes in files in the FD set, it calls back the host module. Since 

the VMM must handle other events such as timer interrupts and console I/O, the VMM 
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manages all file descriptors in a centralized way, and notifies each module of status 

changes in the module's files. On the guest OS side, the VMM provides the facility to 

generate interrupts to notify the guest OS of the events arrived. Generating interrupts is a 

common facility of the VMM.  

Different events used in the host module to notify the guest module of actions of 

interest are shown in Table 6. For example, when the host module notices that a socket has 

an incoming message, it sends event ARRIVED to the guest module. In implementing 

socket-outsourcing, the event queue is only used in one direction; the host module sends 

events to the guest module, but not vice versa. 

Using event queues and VRPC, the processing of socket functions in the guest OS 

is delegated to the host OS. To intercept the socket functions in the guest kernel (Linux), 

we replaced functions in structure proto_ops for TCP and UDP with substitute 

functions. Among the socket functions in the proto_ops structure, we describe how 

inet_recvmsg() is processed with socket-outsourcing to illustrate the key idea behind 

implementing socket-outsourcing. The inet_recvmsg() function is called from not 

only system call recvmsg() but also system calls recv(), recvfrom(), read(), 

and readv() to receive a TCP message.  

When an application invokes one of the socket receiving functions and eventually 

the inet_recvmsg() function is invoked, this function first allocates non-pageable 

memory in the kernel space. Next, it performs a VRPC procedure to the host module. If a 

message has arrived, the VRPC procedure returns the number of bytes received. In this 

case, the function copies the message to the user space, frees the non-pageable memory, 
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and returns the result value. If no message has arrived at the socket, the guest module 

stops current process and lets the process wait for a new message.  

Table 6 Events from host module to guest module for socket-outsourcing 
Names  Descriptions 

ESTABLISHED
A connection has been 
established. 

EMPTY 
The send buffer becomes 
available. 

ARRIVED A message has arrived. 

OOB_ARRIVED
An out-of-bound message 
has arrived. 

ERROR An error occurred. 
 

When the host module notices a message has arrived, it inserts an event into the 

queue for the guest module, and asks the VMM to generate an interrupt to the guest OS. 

The interrupt handler of the guest OS receives the event, and unblocks the waiting process. 

When the process becomes ready again, it tries the VRPC again to obtain the received 

message. To implement socket-outsourcing in Linux, we added 700 lines of code to Linux 

2.4.27, and 1300 lines of code to Linux 2.6.25.  

Simple socket-outsourcing appears to be like the network address translation 

(NAT) mode of regular hosted virtual machines. This means the guest OS shares the same 

IP addresses with the host OS. To allocate one or more dedicate IP addresses to each VM 

instance, we add these IP addresses to network interfaces in the host in advance. When a 

guest process creates a server socket and assigns the IP address with system call bind(), 

we enforce the address by restricting the arguments of system call bind(). When a guest 

process initiates a network connection as a client, we enforce the source IP address with 
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system call bind() in the host module even though the guest process does not issue 

bind() in the guest OS.   

3.2.3. Performance Evaluataion 

3.2.3.1. Experimental Setup 

We present our experimental results, comparing with the performance of the 

baseline case and the socket-outsourcing case. For most of our experiments, we used three 

Intel Xeon 5160 3.0-GHz machines (Dell Power Edge 1900) with 4 MB of L2 cache and 2 

GB of main memory for our experiments. Each machine had four network interface cards 

(NICs), all connected to a gigabit network switch (Nortel 3510-24T). We turned off the 

machine's SMP capabilities to reduce the variance and increase the reproducibility of the 

measurements. We conducted all experiments using Linux 2.6.25 for the guest and host 

OSes in both virtual environments. We used a disk partition as the backing store of a guest 

disk image. We set the main memory of the guest Linux to 256 MB while the host Linux 

was allowed to use all 2 GB of main memory. 

3.2.3.2. Maximum Network Throughput 

We used iperf [76], a tool for measuring network bandwidth, to measure the 

maximum network throughput between our experimental machines. Since each machine 

had multiple NICs, we launched multiple instances of iperf for each NIC simultaneously 

and calculated the combined network throughput by adding the measured bandwidth of 

each NIC. The iperf messages we used for all the experiments were 1 and 32 KB in size. 

The MTU of each NIC was 1500 bytes. 

We compare the performance of different mechanisms such as device emulation, 

para-virtualization devices (Virtio), and network outsourcing. Figure 16 presents the 
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network throughput performance results in the KVM environment. Our experimental 

results show that the outsourcing mechanism increases the network throughput around by 

two folds compared with the para-virtualization approach (Virtio) and achieves 

comparable network throughput to native OSes with larger size of network packets.  
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Figure 16 Maximum TCP throughput measured with iperf 

 

3.2.3.3. Web Application Benchmark 

To evaluate the impact of performance on applications, we measured throughput 

with the RUBiS benchmark [15], consisting of 26 interactions with a Java-based auction 

site running Web servers, application servers, and database servers. Examples of RUBiS 

transactions include: login, browsing, searching, purchasing, and selling. We used the 

servlet version of RUBiS, consisting of servlets running in Tomcat, a database server 

(MySQL), and a client emulator. We ran Apache Tomcat and MySQL servers in a single 

virtual environment, or in two dedicated virtual environments, and executed the client 

emulator on the other machine running native Linux. To measure the best throughputs, we 
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changed the number of clients within a range from 200 to 2000. We used the default 

workload of RUBiS 1.4.3, and initialized the database with a 30-MB set for each 

execution. We ran Apache Tomcat 6.0.16 by Java EE SDK 5.04 and MySQL 5.0. 

Figure 17 and Figure 18 show the RUBiS benchmark throughput measurement 

results. When we ran both Tomcat and MySQL in a single virtual machine (Figure 17), 

socket-outsourcing (KVM-out) increased the throughput by 44 percent compared with 

device emulation (KVM-emu), and showed better performance than that of the para-

virtualized Virtio device (KVM-PVdev). Using two virtual machines, in each of which 

Tomcat and MySQL are deployed respectively, KVM-out improved performance by 46 

percent compared with KVM-emu. These results suggest that socket outsourcing has 

affected the real-world applications and increased the throughput of web services 

significantly compared with the Virtio case. 

3.2.3.4. Inter-VM Communication 

We measured the maximum TCP throughput between two virtual machines 

running on the same host OS by using the iperf tool to measure the throughput of inter-

VM communication. For comparison, we also measured the throughput of two processes 

within a native OS via a local lookback interface.  

Table 7 Throughput of inter-VM communication 

 KVM-PVdev KVM-out Native Linux 

Throughput 790 Mbps 5700 Mbps 18500 Mbps 
 

Table 7 present our experimental results. KVM-out was able to reach throughput 

of 5700 Mbps while the KVM para-virtual device (KVM-PVdev) only achieved 790 Mbps. 

This performance gain of inter-VM communication comes from socket-outsourcing 
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eliminating redundant processing of two different network stacks and using only one stack 

for communicating between VMs. 
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Figure 17 Throughput of RUBiS benchmark in single VM 
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Figure 18 Throughput of RUBiS benchmark in two VMs 
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3.3. Improving Guest Windows Network Performance (Linsock) 

3.3.1. Problem Statement 

Full virtualization (FV) has the advantage of compatibility with production 

operating system (OS) code, but the typical implementation methods (e.g., emulated 

devices) of FV suffer from significant emulation overhead, particularly I/O processing 

such as network protocols. Consequently, FV is typically associated with high overhead. 

To bypass duplicated functions and other sources of overhead in FV, paravirtualization is 

able to improve the I/O performance through kernel-level system interface modifications 

in device drivers. However, paravirtualization can only mitigate the virtualization 

performance overhead partially, typically achieving a fraction of native performance. 

Instead of paravirtualization, we apply the outsourcing method [22] to implement 

FV network processing, achieving significant bandwidth gains compared to device 

emulation and paravirtualization, even comparable to native Windows in several important 

cases. Outsourcing bypasses the overhead in the operating system through the adoption of 

a user-level interface. Concretely, we chose the socket interface (Winsock for Windows 

and a variation of Linux socket interface) in our implementation. Outsourcing avoids 

kernel interface modifications and achieves significant performance gains. 

In this study, we demonstrate an outsourcing method for full virtualization called 

Linsock. This method combines Windows as the guest operating system (OS) and Linux 

as the host OS. A major technical barrier in such heterogeneous combinations is typically 

the incompatibility of kernel level interfaces between the guest OS and host OS. 

Consequently, it is difficult to achieve optimization through low-level kernel 
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programming such as paravirtualization. Outsourcing overcomes this barrier by choosing 

compatible high-level interfaces, e.g., sockets in Linsock. 

We also present a set of experiments that demonstrate Linsock’s performance 

gains in FV. Perhaps contrary to the normal expectations of additional overhead associated 

with full virtualization, we show the significant performance gains in network protocol 

processing achievable through network processing delegation in experiments ranging from 

micro benchmarks to well-known application-level benchmarks. Our experimental results 

show TCP performance increases of more than 300% compared with device 

paravirtualization in a 10Gbps Ethernet networking environment. In addition, Linsock also 

yields a fourfold increase in inter-VM communication performance. 

Linsock achieves application transparency without modifying the operating system 

kernel, but it makes an assumption about network applications running on the guest OS 

(Windows). Linsock supports network applications that use the standard Winsock API, 

however other applications that do not use the Winsock API (e.g. InfiniBand applications) 

will not benefit from the performance gains of Linsock. The application of the outsourcing 

method to other APIs than Winsock is a subject of future research. 

3.3.2. Linsock Approach  

To achieve high-speed network performance in fully virtualized guest Windows, 

we propose an experimental mechanism called Linsock. As in socket-outsourcing in Linux, 

Linsock delegates network processing of fully virtualized guest Windows to that of the 

host Linux. Linsock maintains its application transparency by carefully translating 

Windows socket (Winsock) interfaces to BSD-compatible Linux’s socket interfaces. 
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Unlike Socket-Outsourcing, the Linsock mechanism is implemented mostly in user level, 

only requiring a simple device driver installed in the guest OS.  

The Linsock approach differs from conventional device para-virtualization in a 

couple of ways. First, although paravirtualized device drivers improve performance by 

communicating directly with service domain OSes at the device level, Linsock allows 

applications to facilitate the network processing of host OSes through application 

programming interface (API). This Linsock design allows applications to bypass slow 

guest OS’s processing and to transfer large network packets to the host OS without 

segmentation. Second, Linsock requires no modification of the kernel code, neither in the 

host OS nor in the guest OS. Since most of components are running in user mode, less 

effort in development and maintenance is required than for paravirtualization techniques, 

which typically require the modification of kernel-level codes. Additionally, when known 

vulnerabilities exist in Windows, Linsock provides a way to bypass Windows’ network 

processing without installing patches. 

Linsock requires two program modules, a Winsock-Linsock Translator (WLT) and 

a Linsock server, each of which is running in the guest OS and host OS respectively. The 

WLT, which runs in the guest Windows, intercepts network applications’ Winsock API 

function calls and transfers data to the Linsock server running in the host Linux. The 

Linsock server in turn uses host OS network stacks through BSD sockets to process 

requests for the applications. The Linsock server also notifies the WLT of incoming 

events, such as packet arrivals. Both the WLT and the Linsock server are running as a 

user-level process in the guest OS and host OS. Figure 19 illustrates the system 

architecture of the Linsock approach. 



47 
 

Network
Applications
Network

Applications

WLT
(Win-Lin 

Translator)
Section 3.3

WLT
(Win-Lin 

Translator)
Section 3.3

Guest
Windows
Guest

Windows
Host
Linux
Host
Linux

Linsock
Server

Section 3.2

Linsock
Server

Section 3.2

Winsock

BSD sockets

VMRPC
Section 3.4

Network
Applications
Network

Applications

WLT
(Win-Lin 

Translator)
Section 3.3

WLT
(Win-Lin 

Translator)
Section 3.3

Guest
Windows
Guest

Windows
Host
Linux
Host
Linux

Linsock
Server

Section 3.2

Linsock
Server

Section 3.2

Winsock

BSD sockets

VMRPC
Section 3.4

 
Figure 19 Linsock architecture 

 
 
 

When applications invoke a Winsock function, the WLT intercepts and translates 

the Winsock API function to one or more Linsock API functions, and the WLT remotely 

invokes the Linsock functions. The Linsock server implements Linsock API functions that 

utilize the host OS’s BSD socket API. Also, the Linsock server monitors network events, 

such as message arrival, and notifies the WLT of the event. We list Linsock API functions 

and short descriptions in Table 8. We also define event messages to notify applications of 

asynchronous events. We list and define in Table 9 the types of Linsock event messages. 
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Table 8 Linsock API functions 
Name Description 

WL_init 

Performs initialization. 
Creates an event queue 
between WLT and Linsock 
server 

WL_cleanup 
Frees up any used resources. 
Closes open sockets  

WL_socket Creates a socket instance 
WL_close Closes a socket instance 
WL_bind Binds a name to a socket 

WL_listen 
Listens for incoming 
connections on a socket 

WL_connect Initiates a socket connection 
WL_accept Accepts a socket connection  
WL_sendto Sends a network message  
WL_recvfrom Receives a network message 
WL_shutdown Shuts down a connection  
WL_getsockname Gets the name of a socket 

WL_getpeername
Gets the name of a connected 
peer 

WL_setsockopt Sets options on a socket 
WL_getsockopt Gets options on a socket 

WL_select 
Gets the status of a list of 
sockets 

 

Table 9 Linsock events 
Event Description 

ESTABLISHED A connection has been established 
EMPTY The send buffer becomes available 
ARRIVED A message has arrived 

OOB_ARRIVED
An out-of-bound message has 
arrived 

ERROR An error occurred 
 



49 
 

3.3.2.1. Winsock-Linsock Translator (WLT) 

Although Windows supports BSD-compatible socket interfaces such as 

connect() and accept(),  Windows defines its own socket API, called Winsock 

[78]. To intercept Winsock functions from applications, we use the Winsock Service 

Provider Interface (SPI) [78] provided by the Windows OS. The SPI allows service 

provider software to intercept Winsock functions and implement additional services on top 

of the base Winsock service. The WLT, which exploits the SPI, is built as a Windows 

dynamic linked library (DLL). The WLT DLL is automatically loaded to applications that 

use TCP or UDP network protocols at run time by the Windows kernel. 

The Winsock SPI provides 30 different functions for intercepting Winsock APIs. 

When the WLT DLL is loaded, it registers new function pointers for original Winsock 

API functions. The following describes some of the SPI functions we intercept. Note that 

each WSP-* function replaces the corresponding WSA-* Winsock API function. 

WSPStartup() replaces the original WSAStartup() Winsock API function for 

initialization of network processing. Additionally, WSPStartup() allocates memory 

regions used for shared memory between WLT and the Linsock server. 

WSPSocket() creates a file descriptor that will be passed to the calling application. 

It also creates a Linsock socket by invoking the Linsock API function, WL_socket(). 

WSPBind(), WSPListen(), WSPAccept(), and WSPConnect() implement the 

corresponding Winsock API functions, WSABind(), WSAListen(), WSAAccept(), and 

WSAConnect(), to establish TCP connections. WSPSendto() and WSPRecvfrom() send 

and receive TCP and UDP messages. 
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Figure 20 Event queues, VMRPC, and interrupts. 

 

Since the WLT and the Linsock server are running in different domains, one in the 

guest OS and the other in the host OS, we need efficient and fast communication between 

the WLT and the Linsock server. Our Linsock implementation provides three 

mechanisms, event queues, VM Remote Procedures (VMRPC), and VMM-generated 

interrupts. 

Linsock event queues. An event queue, which is implemented as a ring buffer in 

the shared memory regions, is used for exchanging asynchronous events between the 

WLT and the Linsock server.  

VM remote procedure calls (VMRPC). A remote call invocation from the WLT 

to the Linsock server is provided by a mechanism called VMRPC. Using VMRPC, the 

WLT can remotely invoke Linsock API functions and receive a reply. VMRPC is similar 

to hypercalls in Xen. 

Emulated interrupts. When the Linsock server needs to notify the WLT of an 

event, such as an incoming packet, the Linsock server generates an interrupt to the guest 
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OS through the VMM. Generating an emulated interrupt to the guest OS is a common 

function of VMMs that support full virtualization. 

3.3.2.2. A Linsock Network Processing Example 

We will describe an example of Linsock network processing. Imagine an 

application that starts TCP/IP networking. The application first calls WSAStartup(), 

which will be intercepted by the WLT through WSPStartup(). WSPStartup() 

executes initialization routines such as creating an event queue and invoking WL_init() 

through VMRPC. Next, the application invokes WSASocket() to create a socket. The 

WSASocket() system call is intercepted by the WLT, which in turn initiates a VMRPC 

call for the Linsock function WL_socket(). The Linsock server executes 

WL_socket(),  issuing the system call socket() in the host OS to create an actual 

socket. The Linsock server starts to monitor the status changes for the new socket. Finally, 

The new socket handle is returned to the WLT as the return value of WL_socket().  

When the application tries to receive data using the socket, the application will 

invoke the WSARecv(), which will be translated by the WLT to  the Linsock function 

WL_recvfrom().  If a message has arrived, the VMRPC function returns the number of 

bytes received. In this case, the WSARecv() returns with the received message.   

If no message has arrived on the socket, the WLT blocks the current process and 

waits for a Linsock event message.  When the Linsock server notices a message arrival, 

the Linsock server inserts the Linsock event, ARRIVED, into the event queue and asks the 

VMM to generate an interrupt to the guest OS.   

Because the WLT is in user mode, the WLT cannot receive emulated interrupts 

directly from the Linsock server. In order to deliver the interrupts to user-level processes, 
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we wrote a simple device driver in Windows. The device driver, called the Linsock event 

driver (LVDriver), installs an interrupt service routine for a specific interrupt and creates a 

Windows event object. A user-level program, called the Linsock event dispatcher 

(LVDispatcher), waits on the Windows event object created by the LVDriver. When 

Linsock applications start, the WLT automatically registers the applications with the 

LVDispatcher using Windows inter-process communications (IPC). When Linsock events 

arrive, the LVDriver signals the Windows event object waited by the LVDispatcher, 

which in turn notifies the corresponding Linsock applications of the event’s arrival. 

Once the WLT receives the message arrival event, it unblocks the application 

process and performs WL_recvfrom() to retrieve the received data. 

3.3.2.3. Linsock Implementation 

We implemented Linsock in the Linux Kernel-based Virtualization (KVM) 

environment [32]. KVM is a kernel extension (a pseudo device driver) that provides a 

framework for a VMM, catching execution of privileged instructions and sensitive non-

privileged instructions through hardware support (Intel VT or AMD-V).  KVM includes a 

modified QEMU [79] for emulating I/O devices. 

Using KVM, a program running in the host OS can access guest logical and 

physical memory through ioctl() on the KVM pseudo device. Therefore, shared 

memory regions used for event queues can be set up by simply passing the guest address 

pointer to the Linsock server running in the host OS. 

We have extended KVM to provide VMRPC support. (KVM-Linsock) KVM-

Linsock redirects the vmcall instruction generated in the guest OS to the Linsock server. 

More details of VMRPC implementation are described in Section 3.3.2.6. 
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Because the host Linux running KVM has native device drivers, network 

processing in the host kernel is naturally faster than that of the guest OS. Thus, by 

delegating the guest OS’ network processing to that of host OS, we can achieve higher 

network performance. 

3.3.2.4. Winsock-Linsock Translation 

The Winsock and BSD-compatible socket API defines different structures and type 

values for certain functions. For example, fd_set structure used in the select() call 

is defined differently in Winsock and in the BSD-compatible API. Also, many of the flag 

and option values are defined differently. Consequently, the WLT must perform type 

conversions before it invokes Linsock API functions. 

Winsock provides extended functions such as WSAAcceptEx(), which is not 

supported by BSD-compatible socket interfaces. We implement those extension functions 

by combining several BSD-compatible socket functions. 

By design, all Linsock API functions are non-blocking because blocking Linsock 

functions could stall the entire guest OS. Thus, the Linsock server always replies 

immediately with the return value. Any required blocking of Winsock API functions is 

implemented using Window event objects in the WLT. Once the WLT needs to block a 

function, it waits on a Windows event object, which is signaled when a Linsock event 

from the Linsock server arrives. 

3.3.2.5. Asynchronous Events and Event Queues 

Shared memory regions are used to implement event queues between the WLT and 

the Linsock server. Event queues, which are lock-free ring buffers, are used for 
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asynchronous communication between the two modules. The implementation of event 

queues is similar to that of the ring buffer in Xen [5]. 

Monitoring events on a socket is implemented by exploiting the epoll() system 

calls in the Linsock server. Once the Linsock server notices an event on a socket, the 

Linsock server first inserts an event message in the event queue and generates an interrupt 

to the guest OS through KVM. 

Asynchronous events are handled quite differently in device emulation, 

paravirtualized devices, and Linsock.  In device emulation, each execution of an I/O 

instruction causes a trap into the VMM.  The cost of handling those traps is expensive. In 

paravirtualization, data are transferred between a front-end driver and a back-end driver by 

network frames, the maximum size of which is the MTU of the device.  Therefore, the 

messages larger than the MTU must be divided into smaller network frames. On the 

contrary, because there is no limit on the message size exchanged between the WLT and 

the Linsock server, large messages are transferred without segmentation. This Linsock 

design reduces the number of I/O requests. 

3.3.2.6. VM Remote Procedure Calls (VMRPC) 

VMRPC is used to execute the Linsock API functions remotely from the WLT. 

We have implemented VMRPC using the instruction vmcall in Intel VT-enabled CPUs. 

When the WLT initiates a VMRPC call, the WLT first puts the VMRPC parameters in 

microprocessor registers. Next, it executes the vmcall instruction, which causes a trap into 

the VMM (KVM-Linsock). In Intel's terminology, this process is also known as a VM 

exit. KVM-Linsock analyzes the reason for the trap and transfers the flow of control to the 
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Linsock server, which performs the requested function. When the function is completed, 

the control flows back to the WLT in the reverse direction with the return value.  

Because VMRPC parameters are passed via microprocessor registers, no 

marshaling is needed.  VMRPC simplifies the implementation of remote Linsock API 

invocation with simple interfaces. 

3.3.2.7. IP Adresses of Guest OSes 

Since guest OSes use network protocol stacks in the host OS, the guest OS and the 

host OS share the same IP address. To assign different IP addresses to each guest OS, we 

add these IP addresses to network interfaces in the host OS. When a guest process creates 

a server socket and calls bind(), the Linsock server binds to the corresponding address 

by changing the arguments of the system call bind(). For a client socket, bind() is 

automatically invoked by the Linsock server without an explicit request from the 

application. 

3.3.3. Performance Evaluataion 

3.3.3.1. Experimental Setup 

We used three Intel Xeon 5160 3.0GHz machines (Dell Power Edge 1900) with 

4MB of L2 cache and 2GB of main memory for our experiments. Each machine has two 

10Gbps Ethernet network interface cards (NICs), all connected directly to each other 

without a network switch.     

We conducted our experiments using Linux 2.6.25 for the host OS with KVM 

version 84.  The Windows OS we used is Microsoft Windows XP with Service Pack 2 

installed. We set the main memory of each guest OS to 384Mbytes. For comparison with 
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other full virtualization techniques, we also ran our experiments in the Xen environments. 

We used the Xen hypervisor version 3.2.3.  

We compare performance of device emulation and paravirtualized device in KVM 

and Xen. For network device emulation, we used the e1000 emulation device for our 

experiments. Virtio [37] and GplPV [83] are open-source paravirtualized device 

implementation in KVM and Xen, respectively. Table 10 summarizes the implementation 

used in our experiments.  

 
Table 10 Device emulation and paravirtualized devices in KVM and Xen 

VMM Emulation PVdevice 

KVM e1000 Virtio 

Xen e1000 GplPV 
 
 
 
3.3.3.2. System Call Latency 

We measured the latency of several socket system calls to compare the 

performance of guest system calls with external kernel service calls. In the experiments, 

we use Linux and Windows for our guest OSes and we outsource the network processing 

to the host OS, Linux, in KVM. To measure overheads of individual external kernel calls, 

we created a UDP socket and measured the latency of related calls. 

Table 11 shows our experimental results for several socket system calls measured 

in guest Windows. Calls such as socket(), getsockopt(), and setsockopt() 

suffered from larger overheads due to external kernel redirection compared with native 

guest system calls. However, the sendto() calls were processed faster from the external 

kernel, because the sendto() calls require significant amount of network processing 
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and the gain from more efficient processing in the host kernel dominates the redirection 

cost.  

Table 11 Latency comparison of kernel services in guest Windows 

 baseline External kernel  
service 

socket() 18.3 us 32.9 us 
setsockopt() 1.6 us 10.0 us 
getsockopt() 0.9 us 9.1 us 

sendto() 32bytes 92 us 14 us 

sendto() 2Kbyes 233 us 17 us 

sendto() 8Kbytes 2072 us 59 us 
 

Figure 21-(a) illustrates the slowdown for external kernel service calls compared to 

the baseline case in a logarithmic scale. The outsourced sendto() calls show more 

speedup with larger UDP packets, which require more kernel processing. The same set of 

kernel service functions in a guest Linux shows also similar performance implications as 

shown in Figure 21-(b). 
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(a) Guest Windows Kernel Services 
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(b) Guest Linux Kernel Services 

Figure 21 Relative performance of kernel services in guest Windows and Linux 
 

3.3.3.3. Maximum Network Throughput 

We used iperf [76], a network bandwidth measurement tool, for measuring 

maximum network throughput between our experimental machines. We changed message 

sizes from 1K to 64K using iperf option –l for both iperf server and client. For better 

performance in 10Gbps network, we set the MTU of each NIC (including paravirtualized 
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NICs) to 9000 bytes. We measured TCP throughput between a guest OS and another 

physical machine. 

Figure 22 and Figure 23 show TCP throughput results in KVM with device 

emulation, paravirtualized device (PVdevice), Linsock, and native Windows. Device 

emulation has the lowest performance, saturating its maximum throughput at around 

1Gbps, while PVdevices at best only reaches 1.3Gbps. Linsock guest OSes yield TCP 

throughput of around 5Gbps and 3.1Gbps in sending and receiving, respectively. The TCP 

sending performance of Linsock guest OSes with larger packets is only 10% lower than 

that of native Windows. These performance gains mainly come from bypassing the 

overheads of slow network processing in the guest kernel and avoiding segmentation of 

large packets. For smaller packets, the overhead of VMRPC becomes relatively higher 

compared with system calls in the native Windows. Therefore, Linsock suffers from 

lowered throughput. For TCP receiving throughput presented in Figure 23, Linsock shows 

around 40% lower throughput compared with native OSes, still twofold better 

performance than with the PVdevice. 

TCP throughput of FV guest OSes in Xen was surprisingly low as shown in Figure 

24. The best TCP throughput we were able to reach was 200Mbps when the guest OS was 

receiving TCP streams with paravirtualized devices.  
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Figure 22 TCP sending throughput  
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Figure 23 TCP receiving throughput 
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Figure 24 TCP performance in Xen  

(message size = 64K) 
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Figure 25 Inter-VM TCP performance 

 

3.3.3.4. Inter-VM Communication 

To compare the inter-VM communication performance, we measured maximum 

TCP throughput between two guest Windows OSes running in the same host OS. Figure 

25 presents our results. When device emulation is used, TCP throughput between two 

VMs is significantly low, saturating at around 100Mbps. Paravirtualization improves 

performance up to 550Mbps. With smaller messages, the maximum inter-VM throughput 

with Linsock is around 730Mbps, about a 30% performance increase compared with 

PVdevice. As message size increases, Linsock’s performance increases to 2.2Gbps, a 

fourfold better performance than other virtualized network I/O mechanisms. 

Inter-VM throughput is relatively low compared with TCP throughput over 

network. We believe that Inter-VM communication requires more CPU resource since 

both sender and receiver processes are in the same machine. When two machines 

communicate over network, each peer is responsible for either sending or receiving, which 

reduces the CPU requirement. 
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3.3.3.5. Application Benchmarks 

To evaluate the performance impact of the Linsock approach on real-world 

applications, we measure server performance for two applications, file transfer and Web 

service. For the file transfer test, we chose two different protocols, scp and rsync. We used 

an Apache Web server [69] and a Web service benchmark, httperf to measure the 

performance of a Web server.  

File transfer. We transferred a 500Mbytes file over a 10Gbps Ethernet network 

from a FV guest Windows to a client machine running a native OS.  Figure 26 shows the 

elapsed time to transfer the file using two different applications, scp and rsync. As the 

figure indicates, the Linsock approach reduces the file transfer time significantly, sending 

the file in 21.3 seconds and 48.5 seconds with scp and rsync, respectively. In contrast, the 

device emulation and the PVdevice were much slower, requiring more than 100 seconds 

for the transfer. 

Web service. To evaluate Web server performance, we compare network 

throughput and reply time per http request of an Apache server running in a guest 

Windows OS. Each httperf client requests 128Kbytes html documents. We set to two 

seconds the client timeout for http requests. We changed the request rates of httperf clients 

from 50 requests per second to 500 requests per second. 

Figure 27 presents our experimental results for the web server throughput. The 

web server throughput with device emulation is saturated at around 100Mbps, with the 

server sustaining up to around 91 requests per second. Other requests were either 

disconnected because of client timeout (two seconds) or the connection was refused by the 

system. The PVdevice improves Web server performance, and the Web server was able to 
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handle up to approximately 400 requests per second. However, more than 400 requests per 

second overloaded the server and prevented it from handling more requests. The web 

server throughput decreases as the request rate increases, because more system resources 

are wastefully spent on handling incoming connections, which will eventually be dropped 

because of client timeout. On the other hand, the Web server with Linsock was able to 

handle requests at a rate of 500 requests per second without being overloaded.  
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Figure 26 File transfer application performance 
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Figure 27 Web server throughput 
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We also measured the time between when a TCP/IP connection is initiated and 

when the connection is closed after an http request is completed (reply time). We present, 

in Figure 28, the measured reply time under a light load. We also show the actual time 

spent in transferring html documents (transfer time) during the overall reply time. When 

used with device emulation, the Web server replies an http request in 10.3 milliseconds 

and in 6.5 milliseconds with PVdevice. The Linsock approach significantly reduces total 

reply time to 2.1 milliseconds, with 1.6 milliseconds spent for transfer time. 
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Figure 28 Reply time per http request 
 
 

3.4. Performance Specialization Through Kernel Service Outsourcing 

3.4.1. File-Socket Transfer Specialization 

Some socket implementations provide special mechanisms that transfer data read 

from disks to a socket directly in the kernel. For example, Linux provides the 

sendfile() function, which allows an application to transfer between a file and a 

socket in the kernel space, eliminating the memory copy overheads between the 
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application process and the Linux kernel. Windows provides a similar mechanism through 

the TransmitFile() function.  

When both file and network services are outsourced to an external kernel, we can 

further improve this mechanism, eliminating copying disk data into the guest kernel. 

Avoiding memory copy is particularly important in virtualized environments because of 

high virtualization overheads involved in copying disk data into/from the guest domain. 

Figure 29 and Figure 30 illustrate and compare the original sendfile() mechanism in 

the guest OS and the optimization through kernel service outsourcing. We call this special 

case of kernel service outsourcing, FileTransfer outsourcing. 

Host OS
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NICDisk

Host OS
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Figure 29 Sendfile() process. Application invokes sendfile() ( ) Guest OS 
reads disk blocks ( , ) then, Guest OS sends data through network ( ) 
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Figure 30 FileTransfer outsourcing. Host OS reads and sends data read 
from disk ( , ) without involving guest OS 

 
For performance measurement of FileTransfer outsourcing, we wrote a simple 

program that sends files over network through sendfile() and TransmitFile(). 

In our experiments, we transfer a file, the size of which is 600Mbytes, to a receiver 

machine. Because the file size is bigger than the memory size of guest OS, we eliminate 

the buffer cache effect in our experiments. 

Figure 31 shows our experimental results. We compare the file transfer throughput 

of three cases, baseline without kernel service outsourcing, network outsourcing, and 

FileTransfer outsourcing. In guest Windows, FileTransfer outsourcing improves the file 

transfer throughput by up to five folds compared to the baseline case and around 50% 

improvement over network service outsourcing. FileTransfer outsourcing reaches around 

400Mbps for its maximum throughput, matching the performance of sendfile() in the 

native Linux. In the guest Linux, the gain from FileTransfer outsourcing is relatively 

small, still showing around 40% better performance compared with the baseline case, 

however. 
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Figure 31 Comparison of Achieved Throughput  
 

 

We show the performance impact of FileTransfer outsourcing in the real-world 

applications by measuring file-downloading latency from a web server in guest Windows. 

For our web server application, we ran the Apache http server [69] with EnableSendfile 

option on. In the client machines, we executed the wget application to download a large 

file from the web server. 

As shown in Figure 32, the latency for file download significantly reduces when 

FileTransfer outsourcing is applied. When a client downloads a 300Mbyte file, the 

download latency was only 4.9 seconds, while it was 32.1 seconds without kernel service 

outsourcing. 
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Figure 32 Latency Comparison for File Download 
 

3.4.2. Inter-VM Communication Specialization  

Kernel service outsourcing provides another opportunity that leads to performance 

improvement of inter-VM communication. If a socket connection is between two domains 

running in the same machine, the communication performance can be improved by using 

shared memory.  

Previous works such as XWay [30], XenLoop [63], and XenSocket [67] have 

researched on accelerating inter-domain communication through shared memory. Our 

shared memory mechanism through kernel service outsourcing differs from them in 

several ways. First, our design requires no change in the API or ABI. Second, our 

mechanism is mostly implemented in user level, eliminating the need of modifying the 

underlying kernel for the implementation. Third, inter-domain communication is 

dynamically detected and switched to the special communication automatically. Also, the 

split model of frontend and backend agents allows heterogeneous guest OSes to 
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communicate through shared memory. Therefore, our mechanism can be regarded as a 

superset of other similar mechanisms. 

Once a backend agent determines that a new TCP connection is destined to one of 

the VMs by monitoring the destination address of the connect() calls, the agent opens 

a shared memory channel with the backend agent of the destination domain and uses the 

channel for further communication. Figure 33 illustrates the specialized inter-VM 

communication through shared memory. 
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Figure 33 Specialization of Inter-VM Communications 
 

To show the effectiveness of our optimization, we measured the network 

performance between two guest domains. In our experiments, we used a TCP/IP 

performance measurement tool [76], iperf, and measured the TCP throughput with 

various message sizes. Figure 34 presents maximum TCP throughput between a guest 

Windows and a guest Linux, and Figure 35 between two Windows guests. Network 

service outsourcing alone increases the inter-VM communication throughput, because 

network service outsourcing allows the packets to be processed only once in the host OS 
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kernel. Note that inter-VM packets are processed in each of two guest domains without 

network service outsourcing. Shared memory optimization improves the network 

performance further, increasing the maximum throughput by up to 8 folds compared to the 

baseline case, in which no kernel service outsourcing is used.  
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Figure 34 Inter-VM (Windows-Linux) TCP Throughput 
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Figure 35 Inter-VM (Windows-Windows) TCP Throughput 
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Previous works such as XWay [30], XenLoop [63], and XenSocket [67] have 

researched on accelerating inter-domain communication through shared memory. Our 

shared memory mechanism through kernel service outsourcing differs from them in 

several ways. First, our design requires no change in the API or ABI. Second, our 

mechanism is mostly implemented in user level, eliminating the need of modifying the 

underlying kernel for the implementation. Third, inter-domain communication is 

dynamically detected and switched to the special communication automatically. Also, the 

split model of frontend and backend agents allows heterogeneous guest OSes to 

communicate through shared memory. Therefore, our mechanism can be regarded as a 

superset of other similar mechanisms. 
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CHAPTER 4 

IMPROVING SYSTEM RELIABILITY THROUGH KERNEL 

SERVICE OUTSOURCING 

 

4.1. Defense Based on Natural Diversity 

Diversity is an important natural defense technique to increase the survivability of 

species in an epidemic outbreak, e.g., during the spread of a novel virus. Early attempts to 

apply diversity concepts such as N-version programming [4] for improving software 

reliability have encountered managerial problems such as high development costs and 

technical difficulties such as the overlap of fault modes among versions [33].  

With the evolution of information technology, recent applications of diversity 

techniques have been more encouraging. For example, automated techniques (sometimes 

called artificial diversity [65]) have been successfully demonstrated to provide effective 

defenses against specific classes of software viruses. A concrete example is the use of 

ASLR (address space layout randomization) [68] in Linux and Windows Vista to defeat 

stack/buffer overflow attacks that rely on specific memory layout.  

In contrast to artificial diversity, we explore the use of natural diversity among 

different currently existing operating systems (OS) such as Linux and Windows, to defeat 

attacks intended for one system but will not work on the others. Compared to artificial 

diversity, natural diversity has three major advantages. The first advantage of natural 

diversity is its effectiveness in defeating attacks that exploit vulnerabilities specific to an 

OS. The effective defense relies on the wide range of differences in kernel interfaces and 
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implementations of naturally diverse OSes such as Windows and Linux. These differences 

make it difficult for an attack to work simultaneously on two such naturally diverse OSes.  

The resulting combination achieves the software reliability advantages originally expected 

of N-version programming: independent failure modes among the versions. 

The second advantage of natural diversity is low cost of both development and 

execution. On the software development side, the OSes are developed and maintained by 

different teams of programmers for different purposes. The Windows family of OSes has 

large commercial value. The Linux OS (and other open source software systems) 

represents the best efforts of the open source community. Consequently, natural diversity 

does not require additional programming costs. During execution, we show good 

performance in the outsourcing implementation of natural diversity, due to the better 

execution environment in the host OS for kernel services.  

The third advantage of natural diversity is application-level backward 

compatibility. In our implementation, Windows applications execute without change in 

our environment using the Windows application programming interface (API), and reap 

benefits of increased software reliability and security from running Linux kernel services 

through the kernel service outsourcing method.  

Despite these significant advantages, one potential concern with natural diversity is 

the relatively small number of variants being actively maintained. From our experience 

with two OSes, which is one of the simplest forms of natural diversity, we argue for its 

usefulness despite the minimal number of variants. We show that outsourcing is an 

effective defense against attacks that exploit vulnerabilities in specific guest kernel code 

components. Even though artificial diversity techniques can generate automatically many 
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variants, they are located in a restricted state space (e.g., ASLR on memory layout), which 

may be automatically and systematically explored by attackers who have sufficient 

resources. In comparison, the differences among the naturally diverse OSes extend from 

kernel interfaces to their implementations. Currently, there are very few known 

vulnerabilities shared by both Windows and Linux that can be exploited by a single attack. 

The long term software security offered by natural diversity is an interesting and open 

research challenge. 

Our approach, kernel service outsourcing, achieves natural diversity by leveraging 

the recent virtual machine technology and software tools. The main idea of outsourcing 

[22] is to bypass some kernel services of a guest OS (e.g., Windows) and use equivalent, 

but different kernel services of the host OS (e.g., Linux). This way, a vulnerability in the 

guest OS (either because of the delay in applying patches or due to a completely new 

attack) would not succeed, since the vulnerable code is simply not executed. As a concrete 

example described in Section 4.2, a recent vulnerability, which could cause remote code 

execution, in Windows Vista TCP/IP protocol stack would be simply bypassed in our 

system that outsources guest the Windows network protocol stack with the Linux network 

protocol stack in the host OS. 

 In this study, we present a concrete feasibility demonstration of the natural 

diversity approach for improving software security and reliability. Our implementation 

combines a Windows guest OS with a Linux host OS, outsourcing TCP/IP network 

protocol stack and file systems. To the best of our knowledge, this implementation is the 

first feasibility demonstration of the natural diversity approach. 
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4.2. Effective Defense Through Kernel Service Outsourcing 

Vulnerabilities found in the OS kernel can be particularly critical because they 

often lead to serious security holes such as remote code execution and denial of service. 

We have found that critical vulnerabilities still exist in modern operating system kernel 

from the Common Vulnerabilities and Exposures database [72]. 

Kernel service outsourcing bypasses vulnerabilities in certain parts of the kernel, 

preventing the attacks from exploiting the vulnerabilities in the specific kernel. For 

example, vulnerabilities in the Windows network stack can be defeated by outsourcing 

network service to the Linux kernel, because very few known vulnerabilities are shared by 

both Windows and Linux. We consider three cases of vulnerabilities in the TCP/IP stack 

for showing our effective defense through natural diversity. 

4.2.1. TCP/IP Orphaned Connections Vulnerability 

The TCP/IP implementation in certain versions of Windows operating systems, 

such as Windows XP, Vista Gold, SP1, and SP2, were not cleaning up state information 

properly. (CVE-2009-1926) To exploit the vulnerability, attackers could send specially 

crafted TCP/IP packets to the system that has a TCP/IP listening service, and cause TCP 

connections to stay indefinitely. As a result, the attackers could cause denial of service in 

the system. 

To exploit this vulnerability, attackers need to establish a large number of 

connections closed by the application in the target system. Because of this reason, a 

potentially good target application for attackers is a web server. As an example, we show 

how attackers can exploit the vulnerability through a web service running in the target 

system. 
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1) The attacker establishes a TCP connection to the web server in the target machine 

with the advertized receive window size set to zero. 

2) The attacker sends a GET request. 

3) The web server application sends response data and closes the socket. Because the 

application closes the socket, the connection is now handled by the kernel. 

4) The state of the connection moves to FIN_WAIT_1. 

5) Because of the zero-sized window advertized by the attacker, the kernel sends the 

remaining data to the attacker one byte at a time, using TCP zero window probes. 

6) When all the data are sent, the connection stays and is not cleaned up. 

In step 6), the connection is supposed to be cleaned up and all previously allocated 

resources are required to be freed, when no more data is left to be sent. However, the 

mismanagement of the connection in the kernel code causes the connection to stay 

indefinitely. In consequence, the attackers can cause the system to consume unnecessary 

resources, eventually leading to denial of service in the system. 

To identify the impact of the remaining TCP connections in the system, we 

measured the system memory used in one Windows XP system while we replay the attack 

from client machines. In Figure 36, we show our experimental results. The memory usage 

in the system under attack increases linearly as the number of hanging connections 

increases. In our experiments, we observed that around 35Mbytes of memory were 

consumed for every 10,000 remaining TCP connections. 

Because the Linux kernel does not have the same kind of vulnerability, we can 

defend this attack by the network service outsourcing. First, we assign the target 
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machine’s IP address to the host OS’s network interface. Second, we start outsourcing the 

target machine’s network service to the host OS by running frontend and backend agents. 

Finally, we restart the web server in the target machine. 

Once network service outsourcing starts, the TCP connections are managed by the 

host OS. When we replayed the same attacks with zero-window size, we noticed no 

significant memory usage increase either in the target machine and the host OS, 

successfully nullifying the attacks from attacker machines. 
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Figure 36 System Memory Consumption under DoS Attack 
 

4.2.2. TCP/IP Timestamps Code Execution Vulnerbility 

Another vulnerability found in the certain versions of Windows Vista is the 

TCP/IP Timestamps Code Execution Vulnerability (CVE-2009-1925). As described in 

Microsoft Security Bulletin (MS09-048), an error in the network stack implementation of 

the Windows kernel could cause misinterpretation of some data field as a function pointer. 
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Remote attackers could exploit this bug and execute arbitrary codes in the target machine 

by sending specially crafted packets to a TCP/IP listening service in the machine.  

We were unable to replay this attack due to limited information. However, because 

this critical vulnerability is only to specific versions of Windows Vista, we believe that 

network service outsourcing would defeat the attacks exploiting this vulnerability. 

4.2.3. NULL-pointer Dereference Vulnerability in udp_sendmsg() 

One vulnerability found in the Linux network stack was from the UDP 

implementation in the Linux kernel 2.6.18 or earlier. The Linux kernel did not properly 

handle certain parameters of the udp_sendmsg() function. In consequence, a 

malicious attacker could send specially crafted commands to the system via a UDP socket 

involving the MSG_MORE flag, then, the user could gain privileges or cause denial of 

service by crashing the system due to NULL-pointer dereference. (CVE-2009-2698)  

To exploit this vulnerability, the attacker needs to have a local account in the 

machine. Then, the vulnerability can be exploited as follows. 

1) The attacker creates a UDP socket. 

2) The attacker invokes the sendto() functions with MSG_MORE flag and other 

flags set properly. 

3) The sendto() function eventually invokes the udp_sendmsg() function in the 

kernel. 

4) In the udp_sendmsg() function, the rt routing table is initialized as NULL, but 

some code paths related the MSG_MORE flag leads to call the 

ip_append_data() function with the NULL rt pointer. 
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5) The ip_append_data() raises a NULL-pointer dereference error. 

Through this NULL pointer dereference vulnerability, the attacker may have a 

chance to elevate its privilege or crash the system [72].  

Because this vulnerability does not exist in the more recent Linux kernel (2.6.19 or 

later), network service outsourcing to the host OS kernel with version 2.6.19 or later can 

defend this vulnerability. In our experiments, we used the Linux kernel 2.6.9 for our guest 

machine, and our attack codes were able to cause the NULL-pointer dereference. However, 

the same attack was not successful when we applied network service outsourcing to the 

guest kernel and delegated the network service to the host OS, the kernel version of which 

was 2.6.24.1. 



 
 

80 
 

CHAPTER 5 

A METHODICAL APPROACH FOR IMPLEMENTING KERNEL 

SERVICE OUTSOURCING 

 

In previous chapters, we have shown that kernel service outsourcing is a powerful 

mechanism to improve the performance and the reliability of virtualized systems. 

However, because of many different types of kernel services existing in the operating 

systems and the great variety of operating systems and virtualization environments, 

applying the kernel service outsourcing mechanism to those environments becomes a 

difficult task. To meet these challenges, we present a methodical approach to implement 

kernel service outsourcing in heterogeneous, multi-kernel environments.  

5.1. Four Steps to Implementing Kernel Service Outsourcing 

The great variety of operating systems and virtualization environments prevents 

kernel service outsourcing from being easily applied. Different operating systems often 

have various types of system call interfaces, and the performance implication of each 

system varies because of different implementations of operating system kernels and virtual 

machine monitors (VMMs). To meet these challenges, we present a methodical, step-by-

step approach by describing general steps of applying kernel service outsourcing in 

virtualized systems.  

1) Identify overheads of a kernel service in virtualized systems 

2) Intercept system calls related to the kernel service 

3) Translate system calls to external kernel service calls 
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4) Develop run-time program modules for efficient inter-domain communication 

In next subsections, we explain these steps in greater details. 

5.1.1. Identify Overheads of a Kernel Service in Virtualized Systems 

As a first step, we identify the overhead of kernel services in the guest systems. 

Kernel services with significant virtualization overhead are good candidates for kernel 

service outsourcing because the virtualization overhead often leads to poor performance 

and excessive resource usage for the kernel service processing. 

As an example, in Figure 37, we compare the CPU usage of native systems and 

virtualized systems with two different workloads, network and disk writing. For the disk 

writing task, native Linux consumed around 40% of CPU, however, the guest Linux with 

para-virtualized devices (Linux+PVdev) needed around 62% of CPU for the same task. 

Similarly, with network workload, we observed that native Linux used only 12% of CPU 

to send network packets over 1Gbps Ethernet, while Linux+PVdev consumed around 90% 

of CPU. 

Moreover, we found that the performance of disk and network decreased in 

virtualized systems. In Linux+PVdev, the disk write performance was 17.7Mbytes/sec, 

compared with 25.6Mbytes/sec in native Linux as shown in Figure 38. For more detailed 

performance comparison with network workload, refer to the previous chapters on 

network service outsourcing. 
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Figure 37 CPU Usage comparison of native systems and virtualized systems 
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Figure 38 Disk performance comparison of native systems and virtualized systems 

 

5.1.2. Intercept System Calls Related to the Kernel Service 

Once we identify a kernel service that suffers from virtualization overhead, we 

determine which system calls that related to the kernel service are to be outsourced and be 

processed by an external kernel.  

The network service from the OS kernel is a good candidate for kernel service 

outsourcing, because networking is relatively independent from other kernel services and 
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provides a clear interface (socket interface) for the network service. In order to outsource 

the network service, we intercept all the socket-related functions invoked by applications 

and delegate the processing of these functions to an external kernel. In our implementation 

of network service outsourcing, we intercepted 13 socket functions and 30 Winsock 

functions in guest Linux and Windows, respectively. 

Another good candidate for kernel service outsourcing is the filesystem service. 

Intercepting filesystem-related system calls becomes more sophisticated than intercepting 

the network service system calls, because the filesystem-related system calls are shared by 

other kernel services. For example, the open() function can be used not only for opening 

a file but for opening other resources such as Unix pipe and shared memory. In order to 

outsource only file-related system calls, we inspect the function arguments and track file 

handles in order to determine if the function is file-related (i.e. to be outsourced) or not (i.e. 

to be processed by the guest kernel).  

5.1.3. Translate System Calls into External Kernel Service Calls 

To bypass and delegate the processing of a kernel service, we intercept the system 

calls and redirect them to an external kernel. However, local kernels and external kernels 

often have different implementations, thus, we need to translate the system calls to make 

two different interfaces compatible. 

The translation process involves the conversion of data structures, constant values, 

function behaviors, and different extension functions. 

Data structures. Some data structures have different definitions in different 

implementations. For example, struct fd_set used in the select() function have 

different  structure definitions in Windows and Linux.  
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Constant values. Constant values such as error codes may vary; an error code for 

refused connection in Linux is 111, while the error code in Windows is 10061. 

 Function behaviors. The behaviors of some functions are different. In our 

experiments, for example, we observed that send() in the Linux implementation 

sometimes returns with partially sent results when the sending buffer is almost full. 

However, the Winsock implementation either sends the requested message entirely or 

returns an error. 

Different extensions.  Each implementation has its own extensions other than 

standard socket API functions. For example, Linux provides sendfile() for efficient 

data transfer between a file and a socket. Winsock provides functions such as 

ConnectEx(). 

We translate the system calls into an intermediate interface. As an example, in 

Table 12, we present an intermediate interface for filesystem service outsourcing. 

Currently, our implementation only supports basic file operations such as read and write. 

We plan to support for full filesystem outsourcing in the future. 

 

Table 12 Interface for File-system Service Outsourcing 
Name Description 
EX_openfile Creates a file descriptor 
EX_closefile Closes a file descriptor 
EX_readdir Reads a directory 
EX_getattr Returns information related a file 
EX_readfile Reads the content of a file 
EX_writefile Writes the content of a file 
EX_truncate Truncates a file 
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5.1.4. Develop Run-time Program Modules for Efficient Inter-domain Communication  

The final step of implementing kernel service outsourcing is the development of 

run-time program modules that establish efficient inter-domain communication between a 

local kernel and an external kernel. 

We develop two run-time program modules, frontend agent and backend agent in a 

local kernel and an external kernel, respectively. Both modules can be either a user-level 

program or a kernel-level one. We currently implement them in user-level for easier 

maintenance in our implementations.  

The frontend agent intercepts the system calls to the I/O subsystem we outsource, 

translates the function calls to the intermediate interface, redirects them to the backend 

agent, and monitors asynchronous events from the backend agent.  

The backend agent, running in the external kernel, processes the requests from the 

frontend agent, keeps the states of the outsourced kernel service, and delivers 

asynchronous events to the frontend agent for notification.  

For efficient communication between the frontend and the backend agent, VMM 

support is often required. We described how we used the common facilities of VMM to 

implement the communication channel between two agents in Chapter 3. 

5.2. Evaluating the Performance Impact of Kernel Service Outsourcing 

We have described our methodical, step-by-step approach to implement kernel 

service outsourcing for such kernel services as network and filesystem in different 

combinations of guest OSes. For evaluation, we measure network packet processing 

latency in each layer of the guest and host kernels in order to see how kernel service 
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outsourcing reduces the kernel processing overhead during network packet transmission. 

Moreover, we monitor low-level system characteristics using various tools to collect 

system resource usage information and hardware counters during I/O operations in 

virtualized systems, and explain the performance impact of kernel service outsourcing.  

5.2.1. A Layered Analysis of Packet Processing 

For understanding the overhead of packet processing in different layers of 

virtualized systems, we measured the time a UDP packet spent in each layer. In our 

experiments, we sent a UDP packet of 2Kbytes from a user-level application and 

measured latency per layer by kernel instrumentation and time-stamping the packet at 

each layer. We illustrate the per-layer latency measured in native Linux, guest Linux with 

para-virtualized device (Linux+PVdev), and guest Linux with network outsourcing 

(Linux+Outsourcing) in Figure 39.  

The overall latency for the UDP packet reaching a physical NIC from the 

application was 6.5us and 18.3us for native Linux and Linux+Outsourcing, respectively. 

Surprisingly, the UDP packet latency for Linux+PVdev was around 4ms, which was 

extremely larger than those of other cases. This huge latency comes from the design of 

KVM para-virtualized network device (Virtio), which uses a timer to batch network 

packet transmission. Because the timer resolution is 4ms, the UDP packet is delayed by 

that amount of time. 
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Figure 39 Per-layer latency for native Linux, Linux+PVdev, and Linux+Out 
 

In native Linux, network processing for a UDP packet in the network stack was 

around 6us, but in Linux+PVdev, the network processing time in the guest kernel 

increased to 22us. On the other hand, in Linux+Out, because the network processing in the 

host kernel is much faster (8 us) than that in the guest (22 us), we can see that the overall 

latency for sending a UDP packet is smaller in Linux+Out than that in Linux+PVdev, 

despite the overhead of guest-host crossing and the backagent processing in the host 

kernel. 
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5.2.2. Monitoring Low-level System Characteristics 

5.2.2.1. Tools for Low-level System Characteristic Measurement 

We used three tools to measure low-level system characteristics and to see how 

they change with kernel service outsourcing during I/O operations such as network packet 

transmission in guest OSes.  

Dstat. Dstat is a resource statistics tool that collects system resource information 

such as CPU usage, the number of interrupts generated in the system, the number of 

context switches, and the amount of data processed in disk and network devices. During 

our experiments, we monitor resource statistics using dstat with the interval of one second. 

Kvm_stat. Kvm_stat is a performance monitoring tool that collects statistics 

specifically related to virtual machines and the KVM module in the host OS kernel. The 

system performance numbers collected by kvm_stat include the followings. 

Table 13 System counters collected by kvm_stat 
Name Description 

VMexit the counter for the VMEXIT instructions 

Insn_emulation the number of instructions emulated by the 
host OS on behalf of the guest OS 

Io_exits the number of occasions the guest OS exits 
because of an IRQ 

Irq_injections the number of IRQs raised to the guest OS 
 

OProfile. OProfile is a system-wide profiling tool for Linux systems. OProfile 

collects various system statistics by leveraging hardware counters. OProfile can not only 

profile user-level programs but also kernel-level software routines such as kernel routines, 
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kernel modules, and hardware and software interrupt handlers. Table 14 lists some of the 

hardware counter events OProfile can collect. 

Table 14 Hardware counter events monitored by OProfile 
Event type Description 

LLC_MISSES L2 cache misses 

DTLB_MISSES DTLB misses 

BUS_TRAN_MEM The number of memory bus transactions 

INST_RETIRED The number of instructions retired 
 

 
5.2.2.2. Experimental Setup 

Our experimental machine has an Intel Core 2 Duo 2.4Ghz processor with a 4MB 

L2 cache, 2 GB of main memory and a gigabit network adapter card. The processor has 

two CPU cores, but we turned one CPU core off to eliminate the scheduling effect and 

monitor system resource usage more accurately. We used the Linux kernel version 2.6.25 

for the host kernel and KVM version 84.  

We used two different guest OSes, Linux and Windows for our experiments. For 

the Linux guest, we installed the Debian/Linux distribution with the kernel version 2.6.25. 

For the Windows guest, Windows XP with service pack 2 was used in our experiments. 

In order to generate network workload, we used the iperf TCP/UDP bandwidth 

measurement tool. For disk workload, we wrote a simple benchmark program that reads 

from and writes to disk in order to generate disk I/O operations. Note that we used 

O_DIRECT flag when our disk application opens a test file to eliminate the buffer cache 

effect in the operating systems. 
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Low-level system performance counters are collected during the time the network 

and disk benchmark programs are running. We used three low-level system performance 

counter tools, dstat, kvm_stat, and OProfile, described in the previous subsection. 

In next subsections, we present our measurement results for low-level system 

characteristics and describe how these results explain the performance gain the kernel 

service outsourcing mechanism brings.  

5.2.2.3. CPU Usage 

Dstat collects the CPU usage for five different categories, User, System, Wait, 

SoftInt, and HardInt. “User” denotes the CPU usage from user-level processes. Thus, the 

CPU usage from the guest OS kernel is included in the User category. “System” denotes 

the CPU used by the host kernel, “SoftInt” the CPU used for software interrupt handling. 

“HardInt” measures the CPU usage for hardware interrupt processing. In our workload, 

however, only slight amount of CPU resource was used for hardware interrupt processing, 

therefore, we do not include the category in our graph. “Wait” denotes the CPU time of 

waiting for I/O operations to be completed. Because CPU is simply waiting during that 

time, we do not include this category of CPU usage for our analysis. 

 Figure 40 presents the CPU usage with the network workload generated by iperf. 

We monitored the overall CPU usage in two different guest OSes, Linux and Windows, 

with two network I/O mechanisms, para-virtualized device (Linux+PVdev and 

Win+PVdev) and network service outsourcing (Linux+out and Win+out). Note that iperf 

was able to reach the maximum throughput of 940Mbps with Linux+PVdev, Linux+out, 

and Win+out, but Win+PVdev achieved only 304Mbps for its maximum network 

throughput. 
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Comparing the CPU usage of Linux+PVdev and Linux+out, we observed that 

network service outsourcing significantly reduced the overall CPU usage from 88% to 

32% for the same network performance. Particularly, the CPU usage for the User category 

was decreased from 47% to 10% with network service outsourcing, because most of guest 

network processing was bypassed and delegated to the host kernel with kernel service 

outsourcing. 
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Figure 40 Overall CPU Usage with network workload 
 

In the Windows guest, 31% of CPU resources were used for reaching 304Mbps 

with para-virtualized devices. On the other hand, network outsourcing used 43% of CPU 

to achieve the network throughput of 940Mbps. Therefore, our measurement reveals that 

network outsourcing was able to transmit the same amount of data with less than half of 

the CPU resource required with para-virtualized devices.    

 

 



 
 

92 
 

5.2.2.4. Emulated Instructions 

Because our guest OSes are fully virtualized, some of the native instructions 

executed by the guest kernel must be emulated by the VMM. This emulation causes some 

overhead in the guest kernel processing, therefore, we also measure and compare the 

number of emulated instructions with para-virtualized devices and outsourcing.  
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Figure 41 The number of instructions emulated during 1Mbit network transmission 
 

Figure 41 presents the number of emulated instructions for transmitting the data of 

1Mbits over network. From the measurement results, we observed that network 

outsourcing significantly reduced the number of emulated instructions compared with 

para-virtualized devices. In the guest Windows, we found that more instructions needed to 

be emulated than in the guest Linux. We believe that this higher emulation cost causes the 

greater CPU usage in Win+Out than in the Linux+Out as shown in Figure 40.  

5.2.2.5. Context Switches 

Another system characteristic we found interesting in our experiments is the 

number of context switches. We show the measurement results of the number of context 
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switches for transmitting 1Mbits over network in Figure 42. Note that Linux+PVdev 

causes significantly more context switches than network outsourcing. For example, in the 

guest Windows, context switches of PVdev during 1Mbps data transmission are nearly 10 

times more frequent than those of network outsourcing. 
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Figure 42 The number of context switches during 1Mbit network transmission 
 

We believe that the frequent context switches with PVdev are from the overheads 

of packet segmentation and frequent data transfers between frontend and backend drivers. 

Some researchers found the similar overhead in the Xen hypervisor [43]. On the other 

hand, network outsourcing eliminates the packet segmentation by transferring packet 

payload to the host OS with a high-level interface, socket API. Transferring large packets 

without segmentation reduces the number of frequent data exchange between the guest OS 

kernel and the host kernel, subsequently decreasing the number of context switches. This 

performance benefit of using high-level interfaces and large packet transfer is similar to 

that of the optimization with TCP segmentation offload (TSO) in [43].  
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5.2.2.6. OProfile Results 

We also measured low-level hardware counters such as the number of instruction 

executed and cache misses using OProfile. In this particular study, we collected the 

number of instructions executed, memory bus transactions, L2 misses, and TLB misses. 
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Figure 43 The number of instructions executed with network workload 
 

In Figure 43, we present the number instructions executed in the guest and host, 

respectively. With our measurement results, we observed that Linux+Out reduced the 

number of executed instructions to less than half compared with Linux+PVdev. This 

reduced number of instructions of network outsourcing saves CPU resources, leading to 

better network performance in higher bandwidth environments such as 10Gbps Ethernet. 

Note that Linux+Out eliminates most of processing in the guest, because network 

outsourcing bypasses guest network stack codes.  

We present memory-related hardware counters measured with network workload 

in Figure 44. Note that we normalized the counter values to the Linux-PVdev case so that 
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we can compare the changes in the values with network outsourcing and with native OS. 

While L2 cache misses and TLB misses were smaller with network outsourcing, the 

number of memory bus transactions was nearly identical in all three cases. We believe that 

memory bus transactions occur when network packets are transferred to the physical NIC, 

therefore, this number corresponds to the maximum network throughput. Note that the 

maximum network throughputs in Linux+PVdev, Linux+Out, and native Linux were all 

reaching to 940Mbps.   
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Figure 44 Memory-related hardware counters with network load 
 

 

 

 



 
 

96 
 

CHAPTER 6 

CONCLUSION 

 

6.1. Summary 

Virtualization techniques are being widely used in data centers for high resource 

utilization and easy maintenance of computing resources through running multiple guest 

OSes concurrently on a single physical host. In virtualized environments, different types 

of guest OS kernels with different functionalities may exist simultaneously. This 

dissertation explored the opportunity to improve system performance and reliability 

through kernel service outsourcing that delegates the services of one guest kernel to 

another OS kernel in the system.  

First, we have shown that kernel service outsourcing can achieve significantly 

better performance than native guest OS execution in several important cases. Using 

different guest OSes such as Linux and Windows, we observed that the throughput 

performance of network and filesystems with kernel service outsourcing increased several 

times compared with the performance of guest OS processing with para-virtualized 

devices. These performance gains come from more efficient kernel processing of 

privileged OS kernels such as the host OS kernel than that of guest OS kernels. 

In addition to performance measurement, we monitored low-level system 

characteristics and observed the impact of bypassing guest processing. We found that 

delegation of kernel processing to the privileged kernels reduced CPU usage significantly 

by bypassing slow processing in the guest OS kernel. Our measurement results with low-
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level system characteristics, such as the number of context switches and the number of 

emulated privileged instructions, explain how kernel service outsourcing eliminates 

overhead and achieves improved performance in virtualized systems. 

Second, we have described how kernel service outsourcing can be used to create 

an instance of natural diversity, which improves system software security and reliability. 

Our implementation combining a Windows guest OS with a Linux host OS, outsourcing 

the TCP/IP network protocol stack successfully defended malicious attacks that targeted 

the implementation-dependant vulnerabilities in the network protocol stack. To the best of 

our knowledge, this implementation is the first demonstration of feasibility of the natural 

diversity approach. 

Natural diversity has several advantages. First, it is an effective defense against 

attacks targeting specific OS component vulnerabilities. We demonstrate this by our 

success in defending concrete real attacks targeting network protocol stacks. Second, this 

natural diversity has low development costs (Windows and Linux are maintained by teams 

other than the authors) and low execution penalties. Third, natural diversity supports 

backward compatibility at the application level. In our implementation, Windows 

applications ran unmodified in the Windows guest OS and received the benefits of natural 

diversity through kernel service outsourcing that executed kernel services in the Linux 

host OS. 

6.2. Future Work 

Our approach of kernel service outsourcing has some limitations. First, the 

mechanism to invoke a system call to an external kernel is more sophisticated than the 

system call of a local guest kernel system. Therefore, kernel services that require frequent 
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system call invocations benefit less from I/O service delegation. For example, if a kernel 

service uses the system cache frequently, outsourcing the kernel service would actually 

affect performance adversely because of the cost of the sophisticated mechanism of 

system call invocation. Which kernel service in the OS kernel to choose as a candidate for 

kernel service outsourcing is an interesting question for future research. Second, an 

external OS kernel that provides kernel services to guest OSes needs to keep states for 

each guest OS when multiple guest OSes outsource their kernel processing to the external 

kernel. In the event of failure of the external kernel, the states kept in the external service 

could become a single point for terminating kernel services for guest OSes that use kernel 

service outsourcing. We leave to future work these challenges about the replication and 

restoration of states after such a failure in the external kernel. Third, any application that 

does not use the standard API for I/O operations cannot get the benefit of kernel service 

outsourcing. Application of the kernel service outsourcing mechanism to non-standard 

APIs is a subject for future research. 

When multiple guest OSes use kernel service outsourcing, scheduling kernel 

services among guest OSes could affect the performance of each guest OS. We leave to 

our future work the research on these challenges concerning the fairness and efficient 

scheduling of guest services in the external kernel. 

We believe that kernel service outsourcing can be used for other purposes than 

improved performance and reliability in virtualized systems. For example, kernel service 

outsourcing can be used to speed up the encryption/decryption process by using a special 

CPU core dedicated to another domain. Using kernel service outsourcing with special 

hardware is our future research subject. 
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Our study has shown that natural diversity is a viable approach for improving 

system software security and reliability. Although our approach is limited to the 

combination of two different OSes, one as guest OS and the other as host OS in a 

virtualized environment, our results suggest that further research on natural diversity is 

warranted. Future work on natural diversity includes challenges in implementation 

techniques (e.g., execution overhead due to a level of indirection) and limitations of 

applicability (e.g., characterization of security and reliability problems that can be solved 

by natural diversity). These interesting challenges show that natural diversity represents a 

promising new approach to improved system software security and reliability. 
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