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SUMMARY

A mobile ad hoc network (MANET) consists of a group of autonomous mobile

nodes with no infrastructure support. The MANET environment is particularly vulnerable

due to its dynamic topology, less powerful mobile devices and distributed environment. Un-

fortunately, many existing protection and defense mechanisms designed for wired networks

cannot be applied in this new environment without modifications. In this research, we de-

velop a distributed intrusion detection and response system for MANET specific attacks,

and we believe it presents a second line of defense that cannot be replaced by prevention

schemes, especially in common MANET scenarios where attacks can easily be launched

by insiders or compromised nodes.

In our distributed framework, Intrusion Detection System (IDS) agents are deployed

independently on individual mobile hosts. This is desired because we do not have a single

traffic concentration point where a centralized IDS server can be deployed. In addition,

collaboration among IDS agents can be enabled optionally for a more effective detection

model.

The foundation of our detection infrastructure is based on systematic attack analysis in

the MANET environment. We use an attack taxonomy study for that purpose. Based on

this study, we propose a set of misuse and anomaly detection methods that are suitable of

detecting different categories of attacks, and they can handle both known and new attacks

effectively. Our approaches are based on routing protocol specification with both cate-

gorical and statistical measures. They are collectively known as node-based approaches

because the only input to these approaches comes from the local data collected by each

node itself.

Node-based approaches is most secure but they may be too restrictive in scenarios

xiv



where attack or malicious patterns cannot be observed by any isolated node. To address

this problem, we have developed cooperative detection approaches to enable collaboration

among multiple IDS agents. One approach is to form IDS clusters by grouping nearby

nodes, and information can be exchanged within clusters. The cluster-based scheme can

result in lower false positive rate and also provide better efficiency in terms of power con-

sumption and resource utilization compared with node-based approaches. As we have

learned, security is a big issue in any distributed network without centralized authority. Our

clustering protocol can be proved resilient against common security compromises without

changing the decentralized assumption.

Intrusion detection will not be very useful unless proper response actions can be taken

subsequently. In this research, we further address two important response techniques, trace-

back and filtering. Traceback schemes are useful to identify the source of a spoofing attack.

Existing traceback systems are not suitable for MANET because they rely on incompati-

ble assumptions such as trustworthy routers and static route topology. Instead, we propose

a different solution, which we call hotspot-based traceback, that does not rely on these

assumptions. Our solution is resilient in the face of arbitrary number of collaborative ad-

versaries. We also develop smart filtering schemes where filters are deployed on selected

routers so as to maximize the dropping rate of attack packets while minimizing the drop-

ping rate of normal packets.

To validate our research, we present case study using both ns-2 simulation and Mo-

biEmu emulation platform with three major ad hoc routing protocols: AODV, DSR and

OLSR. We implemented various attacks that are representative based on the attack tax-

onomy. Our experiments show very promising results on detecting attacks in most attack

categories using node-based and cluster-based approaches.
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CHAPTER I

INTRODUCTION

A mobile ad hoc network (MANET) consists of a group of autonomous mobile nodes with

no infrastructure support. The MANET environment is known to be vulnerable compared

with traditional wired networks, due to its dynamic and distributed nature. Many recent

research efforts [94, 32] attempted to apply cryptographic solutions to secure MANET,

especially on routing protocols. However, existing experience in security has taught us that

it is also necessary to develop intrusion detection and response techniques.

This research presents a new attack analysis technique. We first analyze routing activi-

ties by decomposing them into basic events, and then propose a new attack taxonomy based

on basic events. In our work, a basic event is defined as a series of causally related net-

work and system operations within a single node. Furthermore, normal basic events can be

enumerated from protocol specifications. On the other hand, attacks targeting for routing

protocols can also be considered as routing activities, except where anomalous basic events

may be involved. In this study, we define a taxonomy of anomalous basic events based on

the basic security goals that the adversaries attempt to compromise. This taxonomy pro-

vides a useful guideline for designing security solutions, as a general soultion should cover

as many anomalous basic events as possible.

Based on the attack taxonomy study, we first develop protocol specifications in a scheme

known as Extended Finite State Automata (EFSA). We then propose a node-based IDS

framework that relies entirely on local information of each individual node. This frame-

work makes use of features collected from the EFSA. In this framework, we apply two

detection approaches. The first approach detects violations of the specification directly,

which is referred to as a specification-based approach. The second approach, instead,
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detects statistical anomalies by constructing statistical features from the specification and

then apply machine learning methods. This statistics-based approach is more suitable for

attacks that are temporal and statistical in nature.

The node-based framework is not perfect. There are certain classes of routing attacks

that cannot be detected well with this framework. A second collaborative framework we

develop attempts to address this problem. In this framework, nodes are grouped as clusters

and clusterheads are elected from cluster members. Features can then be collected from

multiple cluster members. Therefore, this new framework has the capability to detect more

attacks that the node-based solution fails to address.

We understand the passive nature of intrusion detection systems makes it only half of

the whole story. In this research, we further address two important response techniques,

traceback and filtering. Without them, a defense system would not be complete. We note

that a naive response scheme will not be effective if IP addresses can be easily spoofed.

Hence a reliable traceback protocol is desired as it targets specifically the spoofing problem.

However, a number of MANET specific vulnerabilities make existing traceback schemes

designed for the wired networks unsuitable. In particular, most techniques rely on some

strong assumptions such as trustworthy routers and static routes that are used by multiple

packets in the same attack flow. These assumptions generally do not hold in MANET.

Instead, we propose a different solution, hotspot-based traceback, that does not rely on

these assumptions. Our solution is resilient in the face of arbitrary number of collaborative

adversaries. We further develop smart filtering schemes where filters are deployed on se-

lected routers so as to maximize the dropping rate of attack packets while minimizing the

dropping rate of normal packets.
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1.1 Motivation
1.1.1 MANET Characteristics

Mobile ad hoc networks are particularly vulnerable due to some of their fundamental char-

acteristics, such as open medium, dynamic topology, distributed cooperation, and con-

strained capability. Ironically, many of the listed features also contribute to the fact that ad

hoc networks become useful and popular.

First of all, the use of wireless links renders a MANET susceptible to attacks ranging

from passive eavesdropping to active interfering. Unlike wired networks where an adver-

sary must gain physical access to the network wires or pass through several lines of defense

at firewalls and gateways, attacks on a MANET can come from all directions and target at

any nodes. Mobile nodes are typically autonomous units capable of roaming independently.

It implies that nodes with inadequate physical protection are receptive to being captured,

compromised, and hijacked. A compromised node can result in leaks of confidential infor-

mation, message contamination, and node impersonation. To summarize, MANETs will

unlikely have a clear line of defense, and thus every node must be prepared for encounters

with an adversary directly or indirectly [95].

Decision making in ad hoc networks is typically decentralized and ad hoc network

algorithms often rely on cooperative participation of all nodes. The lack of centralized

authority provides golden opportunity to adversaries who can bring new types of attacks

specifically designed to break these cooperative algorithms. Routing protocols are a perfect

example. Most ad hoc routing protocols are inherently cooperative. Unlike in a wired

network where extra protection can be (and typically is) placed on routers and gateways

which are only a small subset of the entire network, any mobile node in an ad hoc network

could be hijacked by an adversary who could then paralyze the entire wireless network

by disseminating false routing information from that node. Such false routing information

could also result in, for example, messages from all nodes being fed to the compromised

node, which is hard to track down but extremely dangerous.
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Finally, due to limits of current technology, most mobile hosts have limited network

capacity. Disconnected operations are very common in wireless network applications [74].

For some nodes which rely on battery for power supply, energy efficiency is also an impor-

tant issue, as it makes computation-intensive security measures often infeasible.

1.1.2 Challenges and Issues

Security threats have grown rapidly on the Internet in the past several years. For example,

a Denial-of-Service (DoS) attack is designed to bring down a web site (or a number of

sites) by flooding it (them) with huge amount of traffic. Even worse, its distributed variant

DDoS, which may come from multiple sources, is much more dangerous and it has become

increasingly popular.

There are two general methodologies to improve the security of any public system,

either to prevent it from happening at all, or to detect it as soon as possible and take proper

countermeasures. Intuitively, the former approach is more effective, and therefore, it is not

surprising that most recent MANET security efforts [94, 32] adopt this approach. However,

the approach has several practical issues. First, many attacks cannot be fully prevented. The

highly popular and disruptive Denial-of-Service (DoS) attack, for example, would overload

most prevention schemes. In practice, heavy use of cryptographical primitives often results

in prohibitive computational and storage requirement to some application. For example, a

500 MHz Pentium can only compute digital signatures on the order of 100 1024-bit RSA

signatures per second.

Therefore, we need a second wall of defense that provides the capability to detect in-

trusions and to alarm users. Intrusion Detection Systems (IDS) can provide such type of

defense.

While IDSes have been widely used in wired networks, IDS design in MANET remains

a challenging task. One of the largest issues is the lack of trust. In a typical MANET sce-

nario, mobile nodes are self-autonomous and do not necessarily trust each other. It should
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be noted that authentication and authorization schemes, even available, do not fully solve

the problem, because these schemes themselves can be circumvented with node compro-

mise, due to the lack of physical security of mobile nodes.

Second, IDS requires a well-defined attack taxonomy. In a relatively new environment

such as MANET, traditional attack analysis is not effective, because most traditional tech-

niques rely heavily on details of known vulnerabilities and attack incidents. MANET has

many potential applications but none of them are widely used yet. Therefore, only limited

MANET attacks have been studied in the literature.

Unlike wired networks, MANET has no single traffic concentration point, and thus no

convenient place for security station or network administration either. From the architec-

tural point of view, it implies that intrusion detection systems must be fully distributed.

Unfortunately, most of today’s wired IDSes rely on centralized traffic analysis, filtering

and monitoring at switches, routers and gateway and thus less effective.

Furthermore, MANET nodes typically have limited resources, e.g., memory and battery

power. Therefore, intrusion detection architecture and algorithms must be very efficient in

such a way that complex analysis is called upon only when necessary.

Intrusion detection techniques can be categorized into misuse detection and anomaly

detection. Misuse detection systems, e.g., IDIOT [48] and STAT [35], use patterns of

known attacks or weak spots of the system to match and identify known intrusions. Anomaly

detection systems, such as IDES [37], flag observed activities that deviate significantly from

the established normal usage profiles as anomalies. Misuse detection has a low false pos-

itive rate on known attacks but anomaly detection is the only means to catch new attacks.

Nevertheless, attacks are not well studied yet in the context of MANET, and therefore the

effectiveness of misuse detection is fairly restricted, while anomaly detection could play a

more important role for this platform.

Effective detection would not be useful unless some actions were to be taken, and taken

promptly. One naive solution is to filter out subsequent packets from the same attack flow.
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This simple approach has a serious pitfall: the source address appeared in an offending

packet may be faked easily without proper countermeasures. Revealing the true identity of

such an IP spoofing attack is non-trivial, and it has become the central topic of many recent

researches [80, 75, 81, 92, 10, 4, 90]. These solutions often involve traceback schemes.

Similar to the design of IDS, response solutions for MANET should be distributed as well.

1.2 System and Threat Model

The MANET environment is generally considered as a peer network. In other words, no

node should be trusted more than others. In some special cases, reliable servers may be

available (an access point in a hybrid network may be such an example), but any of them

becomes a single point of failure because the number of these reliable servers is typically

much smaller than the number of peer mobile nodes. In general, a scalable protocol in

MANET should not rely on the availability of any reliable nodes.

We assume any node (router) may be malicious. There may be multiple malicious

nodes and they can collaborate and exchange information (probably through out-of-band

channels).

A malicious node may send many packets and each packet may be delivered in a dif-

ferent attack path.

We assume all nodes, including adversaries, have the same transmission power and all

wireless links are bidirectional.

1.3 Problem Statement

Since existing IDS cannot be readily applied to Mobile Ad Hoc Networks (MANET), in this

work, we study efficient and scalable distributed approaches to build intrusion detection

and response systems for this new platform. It should be noted that although our work uses

MANET as the main evaluation platform, various pieces of our work may be suitable for a

more general distributed network platform where centralized control may not be in place.
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1.4 Contribution of the Thesis

The main contribution of this work is a detailed design of a distributed intrusion detection

and response system for ad hoc networks. In particular, our main contributions include

• Systematic attack analysis for ad hoc networks. Essential preparation step from

which we can understand the strengths and limits of different security approaches,

and choose the most effective solutions based on different scenarios.

• Systematic feature collection. We use protocol specification to categorize system

behavior and collect features based on statistics of protocol states and transitions.

This approach relies less on domain knowledge to find out useful features, as domain

knowledge is often lacking in new areas and environment such as MANET.

• Anomaly detection system working with large feature sets. As we rely on sys-

tematic approach to extract features, it is inevitable to introduce a huge number of

features. While we have also developed effective feature selection approach, a scal-

able anomaly detection system with a large set of features remains essential. In fact,

the algorithm, known as Cross Feature Analysis, is a general approach, and we be-

lieve that it can be applied in many applications and different platforms.

• Node-based and cluster-based detection two complimentary detection frameworks

that are especially suitable for ad hoc networks. In the first approach, each IDS agent

resides on a different mobile node and performs independent detection based on its

own observation. In the second approach, IDS agents collaborate with immediate

neighbors to cooperate. While more effective approaches may be possible with larger

scale of collaboration, we are very cautious not to achieve “better” accuracy with the

cost of IDS itself being easily compromised.

• Distributed traceback and filtering As we have addressed, IDS will not be useful

without effective response actions. It is another difficult problem as response actions

7



may also suffer from the lack of trust. For example, can you trust the alert sent

by your neighbor that claims a third node is or may be malicious? With certain

assumptions, we developed a distributed response system that can accurately identify

the approximate location of attackers and filter traffic effectively with that piece of

information.

1.5 Architecture

Let us have a brief overview about the overall IDS architecture and and then introduce four

main components of our system, namely, a systematic feature collection approach, node-

based detection, cluster-based detection and distributed traceback and filtering protocols.

1.5.1 Overview

Intrusion detection and response in MANET must be distributed and cooperative. In our

proposed architecture, as shown in Figure 1, “monitoring nodes” throughout the network

each runs an IDS agent. In the node-based scheme, every node can be the monitoring

node for itself. Alternatively, for better efficiency, in the cluster-based scheme, a cluster of

neighboring nodes can elect a node (or a few nodes) to be the monitoring node(s) for the

neighborhood.

Each IDS agent runs independently and is responsible for detecting intrusions for the

local node or cluster. IDS agents on neighboring monitoring nodes can investigate collab-

oratively in order to not only reduce the chances of producing false alarms, but also detect

intrusions that affect the whole or a part of the network. These IDS agents collectively

form an integrated intrusion detection framework. The internal of an IDS agent, as shown

in Figure 1, can be conceptually structured into five pieces: the feature collection module,

the node-based detection engine, the cooperative detection engine, the traceback and filter-

ing module, and a secure communication module that provides a reliable communication

channel among IDS agents.
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Figure 1: Architecture of a MANET IDS Agent

1.5.2 Components

Feature Collection (Feature Construction and Selection) Detection algorithms use ob-

servable information, known as features or attributes, that summarizes certain aspects of

the underlying system or network behavior. Features can be constructed from various au-

dit logs and system or network sensors. We develop a new systematic approach to con-

struct features based on protocol specification. The specification-based study is presented

in Chapter 3. We further perform specialized feature selection to improve detection perfor-

mance.

Node-Based Detection The node-based detection engine analyzes the local data traces

gathered by the local data collection module. It can use both misuse and anomaly detection

algorithms. We present a comprehensive study of node-based detection for ad hoc routing

protocols in Chapter 4.

Cooperative Detection An IDS agent that detects locally a known intrusion or anomaly

with strong evidence (i.e., the detection rule triggered has a very high accuracy rate) can

9



determine independently that the network is under attack and can initiate a response. How-

ever, if a node detects an anomaly or intrusion with weak evidence, or the evidence is

inconclusive but warrants broader investigation, it can initiate a cooperative global intru-

sion detection procedure. This procedure works by propagating the intrusion detection state

information among neighboring agents. If an agent who uses alert information from other

agents now finds the intrusion evidence to be sufficiently strong, they can initiate certain

response action collectively. Cluster-based IDS is an inexpensive cooperative detection

framework which remains very powerful. We present this work in Chapter 5.

Traceback and Filtering Intrusion response in MANET depends on the type of intru-

sion, the help (if any) from other security mechanisms, and the application-specific policy.

Two typical examples of response actions include traceback and filtering. A traceback

session reveals the true identity of a spoofing attack, while a filtering mechanism tries to

filter out attack traffic with minimal impact on normal traffic. We present these response

techniques in Chapter 7.

Secure Communication Data communication among IDS agents must be secured to en-

sure confidentiality, authenticity, and integrity. We do not consider the potential issue of

insider attacks or compromised nodes. These issues should be taken care of by IDS it-

self. In other words, an IDS agent should not generally assume that another IDS agent is

well-behaving unless there is some strong supportive evidence.

Secure communication primitives can be provided by either asymmetric or symmet-

ric cryptographic operations, such as the work presented by [14] where public keys are

managed in a self-organized fashion, and the one-way hash chains [31, 55] or one-way

Merkle-Winternitz chains [30]. Both asymmetric and symmetric primitives have advan-

tages and disadvantages. In our implementation, we prefer symmetric primitives because

we believe public key cryptography is rather expensive and thus often prohibitive in today’s

technology.
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1.6 Organization of the Thesis

In this chapter, we introduced the basic problem in security design in mobile ad hoc net-

works and motivated the need to introduce distributed intrusion detection systems. In the

remainder of this dissertation, we present the contributions and research activities in details

as follow.

In Chapter 2, we discuss the related concepts of basic events and presents a taxonomy

of anomalous basic events in MANET. It is used as a basis as to understand what kind

of attacks can be covered in our IDS framework. Chapter 3 presents EFSA specification

and shows how features can be collected systematically. Using these features, Chapter 4

describes the design of the node-based IDS. Chapter 5 explains why a collaborative frame-

work should be considered and then illustrates the design of the cluster-based scheme.

Chapter 6 demonstrates the effectiveness of feature selection and the performance using

both node-based and cluster-based IDS frameworks with experimental results. Chapter

7 defines the general intrusion response problem in general followed by our distributed

hotspot-based solution. Chapter 9 compares our work with other related work. The whole

dissertation is concluded in Chapter 10.
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CHAPTER II

ATTACK ANALYSIS

Designing an effective intrusion detection system (IDS), as well as other security mecha-

nisms, requires a deep understanding of threat models and adversaries’ attack capabilities.

We note that since MANET uses a TCP/IP stack, many well-known attacks can be applied

to MANET but existing security measures in wired networks can address these attacks. On

the other hand, some protocols, especially routing protocols, are MANET specific. Very

few attack instances of these protocols have been well studied. It follows that traditional

attack analysis cannot work effectively. In this work, we describe a systematic approach to

study MANET attacks based on the concept of anomalous basic events. We use MANET

routing as the subject of our study.

2.1 Concepts

A routing process in MANET involves causally related, cooperative operations from a

number of nodes.

A basic routing event is defined as an indivisible local segment of a routing process.

More precisely, it is the smallest set of causally related routing operations on a single node.

We will use the term basic event for short.

For instance, Route Discovery is a routing process that appears in many on-demand

routing protocols [39, 66]. It consists of chained actions from the source node to the des-

tination node (or an intermediate node who knows a route to the destination) and back to

the source node. This process can be decomposed into a series of basic routing events

(referring to Figure 2 for an example, where A is the source node and D is the destination

node):
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Figure 2: Basic Events in Routing Discovery Process

• The source node delivers an initial Route Request (Event 1);

• Each node (except for the source node and the node that has a route to the destination)

in the forward path receives a Route Request from the previous node and forwards it

(Events 2 and 3);

• The replying node receives the Route Request and replies with a Route Reply message

(Event 4);

• An intermediate node in the reverse path receives a Route Reply message and for-

wards it (Events 5 and 6); and finally,

• the source node receives the Route Reply message and establishes a route to the

destination (Event 7).

Eventually, we can find seven basic events in Figure 2.

Note that a basic (routing) event may contain one or more network or in-memory op-

erations, such as receiving a packet, modify a routing parameter, or delivering a packet.

However, the integrity of routing logic requires every basic event to be conducted in a

transactional fashion, i.e., a basic event is considered successful (or normal) if and only if

all these operations are performed, and performed in the specified order. We further note

that in this definition, we only consider operations on a single MANET node. In princi-

ple, some event in one node may have causal relationship with another event in a second
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node. However, inter-node causal relationship may not be enforceable due to the general

only-trust-local-information assumption.

The requirements for normal routing behavior can thus be abstracted as a protocol

specification where all possible normal basic events on a single routing agent are enu-

merated.

Therefore, any basic event that does not follow the specification can be classified as an

anomalous basic event. Because of that, it is useful to study the anomalous basic events,

because they help categorize the characteristics of basic attack components.

We should note that it is possible that some attacks may not trigger any anomalous basic

events. There are a few possibilities: an attack may either involve malicious behavior on a

different layer that the specification for routing protocols does not characterize, or it may

involve abnormal patterns beyond a single node.

Wormhole attacks [31] are an example of the first case, where two wireless nodes can

create a hidden tunnel through wires or wireless links with stronger transmission power. To

deal with the issue, a multiple-layer framework may be desired. While this work mainly

focuses on routing protocols, we believe it can be generalized to protect other network

layers as well because most components in our framework are designed for general use and

not routing specific.

A network scan on some known (vulnerable) ports is an example of the latter case,

because each single node in this attack may not observe any illegitimate use at all. The

second issue can be addressed with a collaborative IDS, such as the one we are going to

present in Chapter 5.

2.2 Taxonomy of Anomalous Basic Events in MANET Routing Proto-
cols

We identify an anomalous basic event by two components, the target and the operation. A

protocol agent running on a single node has different elements to operate on, with different

semantics. The routing behavior of MANET typically involves three elements or targets:
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routing messages, data packets and routing table (or routing cache) entries. Furthermore,

we need to study what are the possible attack operations on these targets. Individual secu-

rity requirements can be identified by examining the following well-known security goals:

Confidentiality, Integrity and Availability. We summarize all possible combinations of rout-

ing targets and operations in Table 1. Here, we distinguish Integrity compromise into three

distinct subcategories: add, delete and change. The exact meanings of these subcategories,

however, could be interpreted slightly differently within the context of individual targets.

Conceptually, we could have characterized a normal basic event in a similar way, i.e.,

based on its target and its operation type. Nevertheless, different protocols define different

types of normal operations and it is unlikely to combine everything into a universal tax-

onomy. A more logical way is probably to represent normal basic events with a different

structure, such as the extended state machine approach we introduce in Chapter 3.1.1.

In MANET routing security, cryptography addresses many problems, especially those

involving confidentiality and integrity issues on data packets. Intrusion detection tech-

niques are more suitable for other security requirements. Availability issue, for example,

is difficult for protection techniques because attack packets appear indistinguishable from

normal user packets. Some integrity problems also require non-cryptographic solutions for

efficiency reasons. For example, an attacker can compromise the routing table in a local

node and change the cost of any specific route entry. It may change the sequence number

or a hop count so that some specific route appears more attractive than other valid routes.

Encrypting every access operation on routing entries could have been too expensive. Intru-

sion detection solutions can better address these issues, based on existing experience in the

wired networks. We identify a number of anomalous basic events that are more suitable for

intrusion detection systems in bold face in Table 1.

There are two types of anomalous basic events with asterisks in the table, Fabrication

of Routing Messages and Modification of Routing Messages. There are cryptographic solu-

tions for these types of problems, but they are not very efficient and sometimes require an
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expensive key establishment phase. We want to study them in our IDS work because they

are related to the routing logic and we can see later that some attacks in these categories

can be detected easily.

Table 1: Taxonomy of Anomalous Basic Events

Compromises to Events by Targets
Security Goals Routing Messages Data Packets Routing Table Entries
Confidentiality Location Disclosure Data Disclosure N/A

Integrity

Add Fabrication* Fabrication Add Route
Delete Interruption Interruption Delete Route

Change
Modification* Modification Change Route Cost
Rushing

Availability Flooding Flooding Routing Table Overflow

We examine a number of basic MANET routing attacks noted in the literature [61, 85].

By comparing them (shown in Table 2) with taxonomy in Table 1, we find they match

very well with the definitions of anomalous basic events. We refer to each attack with a

unique name and optionally a suffix letter to denote attack variations. For example, “Route

Flooding (S)” is a flooding attack of routing messages that uses a unique source address.

In addition, we use a number of more complex attack scenarios for the purpose of

evaluation. These attacks may contain more than one anomalous basic events and therefore

more realistic. We borrow some examples studied by Ning and Sun [61] on AODV [66]

misuse. These scenarios are summarized in Table 3.

2.3 Summary

We proposed a new systematic approach to categorize attacks. Our approach decomposes

an attack into a number of basic events, which is very useful for the sake of attack taxonomy

analysis.

The taxonomy of anomalous basic events is important because it provides an objective

basis to determine how useful an IDS can be. We expect a good IDS to address as many

anomalous basic events as possible. Using the taxonomy as a guideline, we propose a
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Table 2: Basic MANET Attacks

Attacks Attack Description Corresponding Anomalous
Basic Events

Active Reply Actively forge a Route Reply message while there are no
corresponding incoming Route Request messages.

Fabrication of Routing
Messages

False Reply Forge Route Reply for a Route Request message for which the
node is not supposed to reply.

Route Drop (R) Drop routing packets with Random source and destination
addresses.

Interruption of Routing
Messages

Route Drop (S) Drop a fixed percentage of routing packets with the given
Source address.

Route Drop (D) Drop a fixed percentage of routing packets with the given
Destination address.

Modify Sequence (R) Modify the destination’s sequence number Randomly. Modification of Routing
Messages

Modify Sequence (M) Increase the destination’s sequence number to the Maximal
allowed value.

Modify Hop Reduce the hop count to a smaller value.
Rushing (F) Shorten the waiting time for Route Replies when a route is

unavailable to increase the discovery Failure ratio.
Rushing of Routing Messages

Rushing (Y) Shorten the waiting time to replY a Route Reply message
after a Route Request is received.

Route Flooding (R) Flood with both source and destination addresses randomized. Flooding of Routing Messages
Route Flooding (S) Flood with the same source address but random destination

addresses.
Route Flooding (D) Flood with the same destination address but random source

addresses.

Data Drop (R | S | D) Similar to Route Drop attacks but with data packets instead. Interruption of Data Packets
Data Flooding (R | S | D) Similar to Route Flooding attacks but with data packets

instead.
Flooding of Data Packets

Add Route (I) Randomly select and validate an Invalid route entry. Add Route of Routing Table
Entries

Add Route (N) Insert a New route entry with random destination address.
Delete Route Invalidate a random valid route. Delete Route of Routing Table

Entries
Change Sequence (R |M) Similar to Modify Sequence attacks but sequence numbers

are altered directly on the routing table.
Change Route Cost of Routing
Table Entries

Change Hop Similar to Modify Hop, but hop counts are altered directly on
the routing table.

Overflow Table Add excessive routes to overflow the routing table in order to
evict good routes.

Routing Table Overflow of
Routing Table Entries

Table 3: More Complex MANET Attacks

Attacks Attack Description Corresponding Anomalous Basic Events
Route
Invasion

Inject a node in an
active route.

Fabrication of Routing Messages (two RREQs)

Route Loop Create a route
loop.

Fabrication of Routing Messages (two RREPs)

Partition Separate a network
into two partitions.

Fabrication of Routing Messages (RREP)
Interruption of Data Packets

number of different IDS frameworks, illustrated in Chapter 4 and 5 respectively.

17



CHAPTER III

FEATURE COLLECTION

Many detection systems use one or a few features, such as system calls [91] or call stack

information [25], as model input. It is often the case that features used in these detection

systems are either manually selected or derived from domain knowledge. Hence they are

inherently restricted in the types of attacks to be detected. As we know, MANET is a

relatively new platform, attacks are not well understood, while a few known attacks have

already been found to be very different from attacks in traditional networks. We therefore

believe that a more general approach is desired to collect model features. In this chapter,

we develop a new systematic feature collection approach. It involves two parts, feature

construction and feature selection.

3.1 EFSA

In our previous study, we define a total of 141 features according to domain knowledge.

These features belong to two categories, non-traffic related and traffic related. They cap-

ture the basic view of network topology and routing operations. However, since the feature

set was defined manually, the effectiveness of a statistical learning model is based on the

assumption that the feature set is relatively complete to cover all possible aspects of sys-

tem behavior. There is no guarantee that our manually selected features could satisfy this

requirement.

We address this problem by enumerating possible features derived from activities in an

EFSA of the underlying routing protocol.

An extended finite state automaton (EFSA) is similar to a finite-state machine except

that transitions and states can carry a finite set of parameters. Conventionally, we call

them transition parameters and state variables. Formally, we define EFSA in Definition

18



1, which was originally introduced from [78]. EFSA can be derived from documentation,

implementations, RFCs or other published materials.

Definition 1. Extended finite state automaton EFSA L ≡ (E,Q, s, f ,V,D, δ), where

E: an alphabet of events. Each event has zero or more parameters;

Q: a finite set of EFSA states;

s: the start state. s ∈ Q;

f : the finish state. f ∈ Q;

V: state variables: V ≡ (v1, . . . , vn);

D: variable domains: D ≡ (d1, . . . , dn), where di denotes the value domain for variable vi;

δ : Q × D × E → (Q,D): transition relation.

We further distinguish two types of events: input and output events. Input events can

be triggered by an incoming packet or timeouts. Output events can be sending out a packet

or other actions before state transition occurs.

According to the original definition in [78], input and output events must be defined

in separate transitions, as only one event is allowed in each transition. In this work, we

relax the transition definition by allowing a transition to have at most one incoming event

(known as the input condition) and one outgoing event (known as the outgoing action),

either of which can be optional. The new definition can be described alternatively as:

δ = {S o → S n, input → output}, where the old and new states are specified in S o and S n

respectively. The new definition should define the following semantics: if an output action

is defined, it must be performed immediately after the input condition is met, before the

new state is arrived. No other transitions are allowed unless the output action has been

accomplished.
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Protocol state machines are in general non-deterministic, as one incoming packet can

lead to multiple states. We solve non-determinism by introducing a set of separated finite

state automata. They initiate from the same state, but fork into different paths on an incom-

ing event when the state may lead to multiple transitions. For instance, an EFSA can be

defined in the context of TCP, where each EFSA corresponds to a unique connection. In

on-demand routing protocols such as AODV or DSR, an extended finite state automaton

may define all operations targeting a unique destination. For example, an incoming Route

Reply message may add new routes to both the destination node and the previous hop, thus

we need two EFSAs, one for each destination, to process the same message in parallel. The

same Route Reply message may also need to be forwarded, which is conducted by a third

EFSA corresponding to the originator of the Route Recovery process.

3.1.1 Case study: AODV Specification

We take Ad hoc On-demand Distance Vector (AODV), one of the popular MANET routing

protocols [66], as a case study. In AODV, operations on a particular route entry to a single

destination can be defined with a single EFSA.

We construct an AODV EFSA by following the AODV Internet draft version [66].

Our AODV EFSA is based on the AODV state machine from Bhargavan et al.’s work [5].

AODV uses hop-by-hop routing similar to distant vector based protocols such as RIP [57],

but there are no periodical route advertisements. Instead, a route is created only if it is

requested by data traffic where routes are not available [66].

It should be noted that the number of state machines may consistently increase, up to

the number of possible nodes in the system if their lifetime is unbounded. Thus, we should

remove unnecessary state machines for better memory usage. In AODV, a route entry is

removed after it has been invalidated for a certain period. In other words, we can identify

a final state from which no further progress could be made. Therefore, state machines

reaching the final state can be deleted from the state machine repository safely.
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The AODV EFSA (per destination) is shown in Figures 3 and 4. The reason that one

EFSA is split into two sub-graphs are purely for the purpose of a better layout. Figure 4 is

used within a certain period after a node has rebooted. After that, the normal graph (Figure

3) should be used.

The EFSA specification defines input conditions and output actions on each transition.

An input condition (input) can specify timeouts or predicates and at most one packet-

receiving event. It uses a C-like expression syntax where operators like &&, || etc., can

be used. State variables (of the original state) and transition parameters can be accessed

in input conditions. To distinguish, state variables always start with lower case letters and

transition parameters start with capitalized letters. Packet-receiving events, predicates and

timeouts can be used as Boolean functions within input conditions. A packet-receiving

event or a predicate has its own parameters, which must be matched with provided values,

unless the value is a dash (-), which specifies that the corresponding parameter can match

any value. An output action (output) can specify state variable modifications, tasks and

at most one packet-delivery event. Either input or output can be optional but at least one

must be present.

In addition, a number of auxiliary functions can be used in either input conditions or

output actions. They are not actually evaluated by IDS, and we use auxiliary functions

mainly to improve the overall readability.

The complete AODV EFSA specification can be found at Appendix A.

3.1.2 Other Protocols: DSR and OLSR

We have also studied two other major routing protocols. Appendix B and Appendix C list

the EFSA specification for DSR (Dynamic Source Routing) [39] and OLSR respectively.

3.2 Feature Construction

Once we have EFSA, statistical features can be easily enumerated by looking at a few

statistical properties from the EFSA. Here, we classify two different types of statistical
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(T9) RREP_FORWARD
RREP?[Prev,ob,Dst,Dst_Seq,Hops]&&ob!=cur->

RREP![nxt,ob,Dst.Dst_Seq,Hops+1]

(T1) DONE
DELETE_PERIOD->

(T5) RREQ_FORWARD
RREQ?[-, Src,Src_Seq,ob,Dst_Seq,Hops,
    ID] && noduplicate?[Src,ID] && ttl > 0->
RREQ![Src,Src_Seq,ob,
    max(oSeq,Dst_Seq),Hops+1,ID]

(T8) LEARN
(RREQ?[Prev,ob,Seq,-,-,Hops,ID]&&
    noduplicate?[ob,ID] ||
RREP?[Prev,Src,ob,Seq,Hops])&&
better?[(Seq,Hops+1).(oSeq,nHop)]->
oSeq=Seq;nHops=Hops+1;nxt=Prev
flush_buffer[ob, nxt]

(T12) INVALIDATE
ob!=cur&& (route_invalidated?[ob]||
    ACTIVE_ROUTE_TIMEOUT
         (from last T10))->
RERR![(extend[ob]]; oSeq++

(T11) REPLY
RREQ?[Prev,Src,SSeq,ob,Dst_Seq,Hops,ID] && 
    noduplicate?[Src,ID] &&
    (ob==cur||oSeq>=Dst_Seq)->
if(ob==cur&&oSeq==Dst_Seq) cSeq=oSeq++;
RREP![Prev,Src,ob,oSeq,nHops]

(T10) DATA_FORWARD
DATA?[Src,ob] ->
if (ob!=cur) DATA![Src,ob,nxt]

(T2) REQUEST_1
DATA?[cur, ob] ->

save_buffer[ob,DATA];
RREQ![cur,++cSeq,ob,

oSeq,0,++rreqid]; 
retries=0

(T6)
NET_TRAVERSAL_TIME&&
    retries==RREQ_RETRIES->
clear_buffer[ob]; oSeq++;
RERR![extend(ob)]

(T7) NEIGHBOR_LEARN
(RREQ?[ob,From,-,-,-,-,-] ||
RREP?[ob,-,From-,-] ) && 

From!=ob->
 oSeq=?;nHops=1;

nxt = ob;
flush_buffer[ob, nxt]

(T4) REQUEST_N
NET_TRAVERSAL_TIME&&
    retries<RREQ_RETRIES->
RREQ![cur,cSeq, ob, oSeq,0,++rreqid];
retries++

(T7’)=T7 (T8’)=T8

WaitRREP[ob,oSeq, 
nHops, retries]

Invalid[ob,oSeq,nHops]

Valid[ob,oSeq,nHops,nxt]

(T5’)=T5

(T7’’)=T7 (T8’’)=T8

DONE[ob]

(T0) INITIATE
packet?[ob]->
oSeq=?;
nHops=?;
continue

(T12’) INVALIDATE
ob!=cur&&

RERR?[nxt, ob, Dst_Seq]->
RERR![(extend[ob]];

oSeq=Dst_Seq

Start[ob]

(T3) DATA_PENDING
DATA?[cur,ob]->

save_buffer[ob,DATA]

Figure 3: AODV Extended Finite State Automaton (for Destination ob): In Normal Use

features:

• Frequencies of states and transitions;

• Mean and standard deviation of state variables and transition parameters.

In this way, we can construct features systematically from all states and transitions.

3.3 Feature Selection

When a large set of features are involved, many detection algorithms can be slow and inef-

ficient due to irrelevant features that cause over-fitting during learning. In addition, features

are not obtained for free. They are typically derived from audit traces which may consume

CPU power and disk storage. As a consequence, feature selection is often necessary for

both detection accuracy and performance reasons.
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(TR4) LEARN_REBOOT
(RREQ?[Prev,ob,Seq,-,-,Hops,ID]&&
    noduplicate?[ob,ID] ||
    RREP?[Prev,Src,ob,Seq,Hops])&&
    better?[(Seq,Hops+1).(oSeq,nHop)]->
oSeq=Seq;nHops=Hops+1;nxt=Prev

(TR6) NO_REPLY_REBOOT
RREQ?[Prev,Src,SSeq,ob,Dst_Seq,Hops,ID] && 
    noduplicate?[Src,ID] &&
    (ob==cur||oSeq>=Dst_Seq)->
if(ob==cur&&oSeq==Dst_Seq) cSeq=oSeq++

(TR5) NO_DATA_REBOOT
DATA?[Src,ob]->
if (ob!=cur) RERR![extend[ob]]];
oSeq++

(TR2) NO_ROUTE_REBOOT
DATA?[Src, ob]->
RERR![extend[ob]]; oSeq++

(TR3) NEIGHBOR_LEARN_
REBOOT

(RREQ?[ob,From,-,-,-,-,-] ||
RREP?[ob,-,From-,-] ) && 

From!=ob->
 oSeq=?;nHops=1;

nxt = ob
 

REBOOT_Invalid[ob,oSeq,nHops]

REBOOT_Valid[ob,oSeq,nHops,nxt]

REBOOT[ob]

(TR3’’)=TR3
(TR4’)=TR4

(TR0) INITIATE_REBOOT
ob!=cur && packet?[ob]->
oSeq=? ;
nHops=?

(TR7’) INVALIDATE_
REBOOT

ob!=cur&&
RRER?[nxt, ob, Dst_Seq]->

oSeq=Dst_Seq

(TR7) INVALIDATE_REBOOT
ob!=cur&&(route_invalidated?[ob]||
    ACTIVE_ROUTE_TIMEOUT
        (from last T10))->
oSeq++

(TR1) DONE_REBOOT
DELETE_PERIOD->

(from last TR2 or TR5 of ALL nodes)

Valid[ob,oSeq,nHops,nxt]

Start[ob]

(TR1) DONE_REBOOT
ob==cur && DELETE_PERIOD

(from last TR2 or TR5 of all nodes)->

(TR0’) INITIATE_MYSELF
ob==cur->

oSeq=0;
nHops=0

Figure 4: AODV Extended Finite State Automaton (for Destination ob): After Reboot

Finding an optimal solution to the feature selection problem is known to be NP-hard.

However, many heuristics and approximation algorithms exist with fairly reasonable per-

formance in practice. A well known feature selection algorithm is forward selection with

Kullback-Leibler distance. At each step, a selected feature set G is expanded with a new

feature F that maximizes the relative entropy (also known as Kullback-Leibler distance)

between Pr(C|G) and Pr(C|G ∪ {F}) where C is the class distribution, until some criterion

is met [29]. This approach is straightforward, easy to compute, and works quite effectively

in practice. However, it requires the knowledge of class distribution, which is not always

known. Anomaly detection methods often have to operate on one-class data, and therefore,

an alternative method may be necessary.

Standard techniques, such as Principal Component Analysis (PCA) [60], can be used to

perform feature selection. However, Tax and Müller [84] has pointed out that the standard
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technique does not work well for one-class classification (OCC) by presenting the bias-

variance dilemma: removing low-variance directions is desired in standard feature selection

problem, however low-variance directions may be more useful to capture outliers than high-

variance directions, therefore, such removal can be counter-productive.

Based on this observation, we present a new feature selection algorithm in this work.

Our idea is to estimate the tightness of the decision surface computed by classifiers, po-

tentially with a different set of features. We expect a better feature subset will generate a

“tighter” boundary. To determine how “tight” a model is, we use a “skewing” technique

that generates new dataset which slightly offsets from the original training data. Therefore,

a “tighter” model should have higher false positive rates than a “looser” model when test-

ing with the “skewed” dataset. Using this notion, we present a forward selection method

that incrementally adds a new feature which leads to the “tightest” model among all possi-

ble candidates. The method stops when adding a new feature no longer produces a better

model.

3.3.1 Concepts

Definition 2. Feature Set F is the set of all possible features: { f1, f2, . . . , fl} in an appli-

cation domain, where l = |F|. For simplicity, let us assume every feature can take any

real value in real domain R. With some quick normalization, we can always reduce value

domains to any finite real range.

Definition 3. Feature Space Xs ∈ R
|s| with respect to feature subset s ∈ 2F is the set of all

possible feature values when only features from the subset s are used. X ≡ XF .

Definition 4. Projection function p(x, s) : X × 2F → Xs outputs the sub-vector of input

feature vector x with regard to the specified feature subset s.

Definition 5. One-Class Classifier Cs with respect to feature subset s is an algorithm that

accepts a set of training examples X1
s ⊆ Xs as input and outputs a function f : Xs → {0, 1}.
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When an example x ∈ Xs (which may or may not in X1
s) is given, f (x) outputs 0 if x is

predicted as normal, or 1 otherwise. As a special case, CF can be written as C.

3.3.2 Skewed Data Generation

Definition 6. For data point x ≡ {x1, x2, . . . , xm} and x ∈ Rm, we define a “skewing” func-

tion y = sk(x), where y ≡ {y1, y2, . . . , ym} and yi = xi + αviri for all i ∈ [1,m], where,

• α describes the skew degree, α > 0;

• v is the normalized standard deviation (s.t.d) vector. If σi is the s.t.d on the ith di-

mension, then vi ≡
σi√∑m
j=1 σ

2
j

. It may be necessary to evaluate statistics on the whole

training dataset in order to compute v; and

• r is a normalized random unit vector. There are different ways to define what a

random unit vector means. In this work, we choose to generate a random vector {Ri}

with length m with Ri is generated with an independent Gaussian distribution N(0, 1),

then ri ≡
Ri√∑m
j=1 R2

j

is a random unit vector [84].

Definition 7. Based on the definition of a “skewing” function, the skewed image of Y

(where Y ⊆ X) is: sk(Y) ≡ {sk(y)|y ∈ Y}.

Figure 5 illustrates an example how skewed image of data point x is created. v1 and

v2 shows the normalized standard deviation of the training dataset. Possible locations for

sk(x) can be seen residing on the small ellipse around point x.

3.3.3 Skewed False Positive Rate

Assume the same feature set F and training set X1 are used by all classifiers.We use the

procedure in Algorithm 1 to compare two One-Class Classifiers C1
F and C2

F .

It should be noted that in the second step, we exclude the false positives examples

before “skewing”. In other words, only true negative points will be “skewed”.
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Figure 5: Skewed Data Generation Example

Generate f 1 from C1
F and X1 and f 2 from C2

F and X1;1

Find the pre-image X1,1
F of f 1 in X1 that maps to 0, i.e., X1,1

F ≡ {x ∈ X1| f 1(x) = 0}. X2,1
F can2

be similarly defined;
Compute the skewed images of X1,1

F and X1,1
F as X1,2

F ≡ sk(X1,1
F ) and X2,2

F ≡ sk(X2,1
F );3

Evaluate the skewed false positive rate FP1 using f 1 on X1,2
F , i.e., FP1 ≡

|{x∈X1,2
F | f

1(x)=1}|

|X1,2
F |

. FP2
4

can be similarly defined;
If FP1 > FP2, C1

F is better. Otherwise, C2
F is better.5

Algorithm 1: Skewed False Positive Rate Computation

Figure 6 illustrates two classifiers. Dark boxes show data points that may become a

skewed false positive point. We say “may” because of the randomization effect. When the

number of these boundary points becomes very large, we can almost be certain that Clas-

sifier 1 (Figure 6(a)) shows a smaller skewed false positive rate compared with Classifier 2

(Figure 6(b)). Classifier 2 is thus “tighter”, or better.

3.3.4 Feature Selection using Skewed False Positive Rates

Currently, we apply a simple forward selection method to choose features based on the

“tightness” measure. We assume the same algorithm C but different feature subsets may

be used. In other words, we can define a derived classifier Cs(X1) with respect to feature

subset s (where X1
⊆ XF) as C(p(X1, s)) where p is the projection function from Definition

4, and then compare two “classifiers” using Algorithm 1. The actual procedure is shown as

follows (Here, we introduce a new parameter β which is explained below).

26



(a) Classifier 1 (b) Classifier 2

Figure 6: Skewed False Positive Rates Example

1. Start with the empty feature set s0 = {}.

2. Assume we have obtained si−1. Evaluate classifiers L j
i ≡ Csi−1∪{ f j} for all feature

f j < si−1. We discard those classifiers whose true false positive rate is larger than

β. In addition to these classifiers, we add the base classifier L0
i ≡ Csi−1 with no new

features added. Given li + 1 classifiers, we compute the best classifier L j0
i using the

procedure described in Chapter 3.3.3.

3. If si = F, no more features can be added. Return si.

4. Otherwise, if j0 = 0, return si−1.

5. Otherwise, compute si ≡ si−1 ∪ { f j0} and proceed with Step 2.
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3.3.5 Discussion

Weighted by Variance In Chapter 3.3.2, the random vector is weighted by the standard

deviations of features. It is needed and we can illustrate this with a simple example. Con-

sider an example with two dimensions where the s.t.d is σ1 on the x-axis direction and σ2

on the y-axis direction. Assume σ1 >> σ2 and an random vector with magnitude σ2 is

used to skew data points. If the vector is parallel to the y-axis, it is easy to see that almost

all data points will become skewed false positives. If it is parallel to the x-axis however,

the skewed false positive rate would become much smaller. This is unfair and weighting

random vectors with standard deviations ensures that the skewed false positive rate is not

affected by whichever direction the random vector points to.

Parameter α α controls the skew degree on each data point. Currently, we choose α =

0.1 ×
√∑m

j=1 σ
2
j where σ j is the standard deviation on dimension j.

Parameter β β controls the threshold level of false positive rates at which a classifier

should be discarded. We currently use β = 0.1 which turns out to be a good trade-off.

3.4 Summary

In this chapter, we present a systematic feature construction strategy and a new feature

selection algorithm for the one-class classification problem. A smaller feature set is critical

to improve the efficiency of large scale intrusion detection systems, in particular anomaly

detection systems. We will show this with experimental results in Chapter 6.2.
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CHAPTER IV

NODE-BASED INTRUSION DETECTION

We first present the node-based framework where each IDS agent runs independently on

different mobile nodes and monitors itself and its neighborhood. It provides maximum se-

curity in a decentralized platform where strong mutual trust can be very difficult to achieve.

In later chapters, we will discuss how to relax this assumption.

Before we analyze design issues of an Intrusion Detection System (IDS), let us make

the following assumptions: 1) IDS should have access to internal routing elements, such as

routing table entries. 2) IDS should also have the capability of intercepting incoming and

outgoing packets, including data and routing messages.

In general, statistical-based detection technique, equipped with machine learning tools,

can be used to detect abnormal patterns. It has the potential advantage of detecting un-

known attacks. But it usually comes with a high false positive rate. Its detection perfor-

mance heavily depends on selected features.

In contrast, specification-based techniques use specifications to model legitimate sys-

tem behavior and do not produce false alarms. However, specification development is time

consuming. Furthermore, many complex attacks do not violate the specification directly

and cannot be detected using this approach.

Our detection approach combines the advantages of both techniques. Consequently, we

separate anomalous basic events into two sets, events that directly violate the semantics of

EFSAs, and events that require statistical measures.

4.1 Detection of Specification Violations

Some anomalous basic events can be directly translated into violations of EFSAs. We

identify three types of violations: Invalid State Violation, Incorrect Transition Violation
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and Unexpected Action Violation.

Invalid State Violation involves a state that does not appear to be valid in the specifica-

tion. In our specification, an invalid state means the combination of state variables in the

current state is invalid according to the specification. For example, a state with a negative

hop count is considered an invalid state. In our implementation, we keep a copy of state

variables updated periodically. Thus, we can track invalid changes in state variables.

Incorrect Transition Violations occur if invalid transitions are detected. We verify the

proper transition by comparing possible input conditions on all transitions from the current

state. If a state change occurs while no input conditions can be met, this type of violation

is detected. In addition, there are self-looping transitions that do not change the current

state. For these transitions, we examine output actions. If some of these output actions

(which include packet delivery events and state variable modifications) are detected while

corresponding input conditions do not match, we also identify this type of violation. Our

implementation monitors incoming and outgoing traffic to determine if input conditions

and output actions are properly handled.

Unexpected Action Violation corresponds to the situation when the input condition dur-

ing a transition matches and the new state is as expected, but the output action is not cor-

rectly or fully performed.

Let us use AODV as a case study (Figure 3 and Figure 4. We show that the specification-

based approach can detect the following anomalous basic events:

Interruption of Data Packets: We monitor the transition T10, where data is forwarded

when a valid route is available. An attacker interrupts data packets by receiving

but not forwarding data. It is observed as a type of Unexpected Action Violation in

the transition.

Interruption of Routing Messages: An attacker may choose to interrupt certain types of

routing messages by conducting the corresponding transition but not actually send-

ing the routing packets. For more details, Route Request messages are delivered in
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transition T4, T5, or T5’; Route Reply messages are delivered in T9 or T11; Route

Error messages are delivered in TR2, TR5, T6, T12 or T12’. They can always be

identified as Unexpected Action Violations in the corresponding transition.

Add Route of Routing Table Entries: We monitor state change to the state when a route

to ob becomes available (state Valid) from other states. If it does not go through

legitimate transitions (which include T7, T8, T7’ and T8’), it implies that a new

route is created bypassing the normal route creation path. It is an Incorrect Transition

Violation in these transitions.

Delete Route of Routing Table Entries: Similarly, we monitor state change in a reverse

direction, i.e., from a valid state (state Valid) to a state when a route becomes un-

available (state Invalid). If it does not go through legitimate transitions (T12 and

T12’), it is detected as an Incorrect Transition Violation of these transitions.

Change Route Cost of Routing Table Entries: We can identify changes in sequence num-

bers or hop counts to the routing table using the memorized state variable copy, when

a valid route is available (state Valid). They are examples of Invalid State Violations.

Fabrication of Routing Messages: Currently, our approach can identify a special type of

Fabrication of Routing Messages, namely, Route Reply Fabrication. We examine the

transitions that deliver Route Reply messages (transitions T9 and T11). If the output

actions are found but the input conditions do not match, we will identify an Incorrect

Transition Violation in these transitions, which is an indication that outgoing routing

messages are in fact fabricated.

To summarize, we define a violation detection matrix. It maps violation information

(the violated transition(s) or state and the violation type) to an anomalous basic event. The

matrix is shown in Table 4. It can be used to detect attacks that directly violate the AODV

specification where we can identify the corresponding types of anomalous basic events.

Detection results are summarized in Chapter 6.3.
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Table 4: Violation Detection Matrix in AODV

State or
Transition(s)

Invalid State
Violation

Incorrect Transition
Violation

Unexpected Action
Violation

TR2, TR5, T6 Interruption of
Route Errors

T4, T5, T5’ Interruption of
Route Requests

T7, T8, T7’, T8’ Add Route
T9, T11 Fabrication of

Route Replies
Interruption of
Route Replies

T10 Interruption of Data
Packets

T12, T12’ Delete Route Interruption of
Route Errors

Valid Change Route Cost

4.2 Detection of Statistical Deviations

For anomalous events that are temporal and statistical in nature, statistical features can be

constructed and applied to build a machine learning model that distinguishes normal and

anomalous events.

Using the taxonomy of anomalous basic events in Table 1, we identify the following

anomalous basic events that cannot be addressed well using the specification-based ap-

proach.

• Flooding of Data Packets

• Flooding of Routing Messages

• Modification of Routing Messages

• Rushing of Rushing Messages

There are two different detection methods: misuse detection and anomaly detection.

It is well known that misuse detection has better precision but works poorly on unknown
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attacks. On the other hand, anomaly detection can detect possible anomalies without learn-

ing existing attack instances, therefore it is not biased towards known attacks. However, it

is usually less accurate on the same attack whose attack signature has been known. Let us

start from misuse detection first.

4.2.1 Misuse Detection

We first determine a set of statistical features based on activities from anomalous basic

events that cannot be effectively detected using the specification-based approach. Features

are computed periodically based on the specified statistics from all running EFSAs, and

stored in audit logs for further inspection. To build a detection model, we use a number of

off-line audit logs (known as training data) which contain attacks matching these anomalous

basic events. Furthermore, each record is pre-labeled with the type of the corresponding

anomalous basic event (or normal if the record is not associated with any attacks) because

we know which attacks are used. They are processed by a classifier and a detection model

is generated. The model can be a set of detection rules, or other types of detection models,

depending on the actual classifier. The model is then used to detect attacks in the test data.

4.2.2 Anomaly Detection: Cross Feature Analysis

Anomaly detection methods are especially appealing in ad hoc networks, because they only

use established normal profiles and can identify any unreasonable deviation from normal

profiles as the result of some attacks. Since MANET is still under heavy development and

not many MANET-specific attacks have emerged, we believe that anomaly detection is the

preferred technique in the current stage.

Our anomaly detection approach is based on data mining technologies because we are

interested in automatically constructing detection models using logs (or trails) of system

and network activity data. Some intrusion detection techniques suggested in literature use

probabilistic analysis where the resulting models are not straightforward to be re-evaluated

by human experts [28]. Some data mining models require temporal sequence from data
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stream [49], which is domain specific and highly inefficient when a large feature set is

involved. The problem of anomaly detection in MANET involves a large feature set. It

requires us to develop new data mining approaches.

We have developed a new approach based on Cross-Feature Analysis that we believe is

suitable for MANET anomaly detection. We observe that strong feature correlation exists in

normal behavior patterns. And such correlation can be used to detect deviations caused by

abnormal (or intrusive) activities. For instance, consider a home network which is mainly

composed of wireless connected home appliances and possibly a few human held wireless

devices (such as PDAs). Networking controllers reside in all such nodes so that they can

form an ad-hoc network. Naturally, we would expect that major portion of the established

routing fabric remains stable for a long time since home appliances rarely change locations.

We also require that some sensor device be installed on each node which can record useful

statistics information. Let’s imagine that one sensor finds out that the packet dropping rate

increases dramatically without any noticeable change in the change rate of routing entries,

it is highly likely something unusual has happened. The controller in the node may have

been compromised to refuse forwarding incoming traffic while no route change actually

takes place (which, if happens, may result in temporary packet dropping due to invalid

stale routes). The relationship between the features packet dropping rate and change rate

of routing entries can be captured by analyzing the normal patterns of historical data and

be used later to detect (unseen) anomalies.

More formally, in the Cross-Feature Analysis approach, we explore correlations be-

tween each feature and all other features. Thus, the anomaly detection problem can be

transformed into a set of classification sub-problems, where each sub-problem chooses a

different feature as a new class label and all other features from the original problem are

used as the new set of features. The outputs of each classifier are then combined to provide

an anomaly detector.
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The basic idea of a cross-feature analysis framework is to explore the correlation be-

tween one feature and all the other features, i.e., try to solve the classification problem

{ f1, f2, . . . , fi−1, fi+1, . . . , fL} → fi where { f1, f2, . . . , fL} is the feature vector. Note that in

the machine learning area, the terminology class in a classification system represents the

task to be learned based on a set of features, and the class labels are all possible values a

class can take. In the domain of intrusion detection, we would most likely to learn the sys-

tem healthy status (the class) from known system information (the features), and normal

or abnormal are both possible class labels.

A basic assumption for anomaly detection is that normal and abnormal events should

be able to separate from each other based on their corresponding feature vectors. In other

words, given a feature vector, we can tell whether the related event is normal or not without

ambiguity. This assumption is reasonable since otherwise the feature set is not sufficient

and must be redefined. Under this assumption, we can name a feature vector related to a

normal event a normal vector, for short. Similarly, we call a feature vector not related to

any normal events an abnormal vector. Here, we assume that all feature values are dis-

crete. A generalized extension will be discussed later in this dissertation. We re-formulate

the problem as follows. For all normal vectors, we choose one feature as the target to

classify (which is called the labeled feature), and then compute a model using all normal

vectors to predict the chosen target feature value based on remaining features. In other

words, we train a classification model Ci : { f1, . . . , fi−1, fi+1, . . . , fL} → { fi}. For normal

events, the prediction by Ci is very likely to be the same as the true value of the feature;

however, for anomalies, this prediction is likely to be different. The reason is that Ci is

trained from normal data, and their feature distribution and pattern are assumed to be dif-

ferent from those of anomalies. This implies that when normal vectors are tested against Ci,

it has a higher probability for the true and predicted values of fi to match. Such probability

is significantly lower for abnormal vectors. Therefore, by evaluating the degree of result

matching, we are more likely to find difference between normal and abnormal patterns.
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We name the model defined above a sub-model with respect to fi. Obviously, relying on

one sub-model with respect to one labeled feature is insufficient as we haven’t considered

the correlation among other features yet. Therefore the model building process is repeated

for every feature and up to L sub-models are trained. Once done, we have accomplished

the first step of our cross-feature analysis approach, i.e. the training procedure, which is

summarized in Algorithm 2.

Data: feature vectors of training data f1, . . . , fL;
Result: classifiers C1, . . . ,CL;
begin
∀i, train Ci : { f1, . . . , fi−1, fi+1, . . . , fL} → fi;
return C1, . . . ,CL;

end

Algorithm 2: Cross-Feature Analysis: Training Procedure

To generalize the framework to continuous features or discrete features with an infinite

value space (e.g., the integer set), we should keep in mind that they cannot be used directly

as class labels since only discrete (nominal) values are accepted. We can either discretize

them based on frequency or use multiple linear regression. With multiple linear regression,

we use the log distance, |log(Ci(x)
fi(x) )|, to measure the difference between the prediction and

the true value, where Ci(x) is the predicted value from sub-model with respect to fi.

Once all sub-models have been trained, we analyze trace logs as follows. When an

event is analyzed, we apply the feature vector to all sub-models, and count the number of

models whose predictions match the true values of the labeled features. The count is then

divided by L, so that the output, which is called the average match count throughout this

dissertation, is normalized. We do not need all sub-models to match. In fact, what we need

is a decision threshold. An event is classified as anomaly if and only if the average match

count is below the threshold. Since it is hard to develop a perfect solution to determine

the decision threshold for a general anomaly detection problem directly, and in practice,

a small value of false positive rate is often allowed, we can determine the threshold as

follows: compute the average match count values on all normal events, and use a lower
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bound of output values with certain confidence level (which is one minus false positive

rate). As a summary, Algorithm 3 lists the strawman version of the test procedure. For

convenience, fi(x) denotes the value of feature fi belonging to event x. [[π]] returns 1 if the

predicate π is true.

Data: classifiers C1, . . . ,CL, event x = ( f1, . . . , fL), decision threshold θ;
Result: either normal or anomaly;
begin

AvgMatchCount←
∑

i[[Ci(x) = fi(x)]]/L;
if AvgMatchCount ≥ θ then return “normal”;
else return “anomaly”;

end

Algorithm 3: Cross-Feature Analysis: Testing Procedure Using Average Match
Count

One straightforward improvement to the strawman algorithm is to use probability in-

stead of the 0-1 count, the probability values for every possible class are available from

most inductive learners (e.g., decision trees, induction rules, naive Bayes, etc.) This ap-

proach can improve detection accuracy since a sub-model should be preferred where the

labeled feature has stronger confidence to appear in normal data. Algorithm 3 can actually

be regarded as a special case under the assumption that the predicted class is the only valid

class and hence has a probability of 1.0, so the probability for the true class is either 1

(when the rule matches) or 0 (otherwise). More strictly, assume that p( fi(x)|x) is the esti-

mated probability for the true class of the labeled feature, we define average probability

as the average output value of probabilities associated with true classes over all classifiers.

The optimized version is shown in Algorithm 4.

We now discuss in detail how the probability function can be calculated in some popular

classification algorithms. Decision tree learners (such as C4.5 [72]) uses a divide-and-

conquer strategy to group examples with the same feature values until it reaches the leaves

of the tree where it cannot distinguish the examples any further. Suppose that n is the

total number of examples in a leaf node and ni is the number of examples with class label
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Data: classifiers C1, . . . ,CL, event x = ( f1, . . . , fL), decision threshold θ;
Result: either normal or anomaly;
begin

AvgProbability←
∑

i p( fi(x)|x)/L;
if AvgProbability ≥ θ then return “normal”;
else return “anomaly”;

end

Algorithm 4: Cross-Feature Analysis: Testing Procedure Using Average Probability

`i in the same leaf. p(`i|x) = ni
n is the probability that x is an instance of class `i. We

calculate probability in a similar way for decision rule classifiers, e.g. RIPPER [19]. For

naive Bayes classifiers1, we assume that a j’s are the feature values of x, p(`i) is the prior

probability or frequency of class `i in the training data, and p(a j|`i) is the prior probability

to observe feature attribute value a j given class label `i, then the score n(`i|x) for class label

`i is: n(`i|x) = p(`i)
∏

j p(a j|`i) and the probability is calculated on the basis of n(`i|x) as

p(`i|x) = n(`i |x)∑
k n(`k |x) .

An Illustrative Example We use a simplified example to demonstrate our framework.

Consider an ad-hoc network with two nodes. Packets can only be delivered from one end

to the other if they are within each other’s transmission range. We define the following

three features. 1) Is the other node reachable? 2) Is there any packet delivered during

last 5 seconds, and 3) is there any packet cached for delivery during last 5 seconds? For

simplicity, we assume all features are binary valued, i.e., either True or False. All normal

events are enumerated in Table 5. We then construct three sub-models with respect to

each feature, shown in Table 6. The “Probability” columns here denote the probability

associated with predicted classes. We use an illustrative classifier in this example that

works as follows. If only one class is seen in all normal events where other non-labeled

features have been assigned with a particular set of values, the single class is selected as the

1One such implementation (NBC) is publicly available at http://fuzzy.cs.uni-
magdeburg.de/∼borgelt/software.html.
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predicted class with the associated probability of 1.0. If both classes are seen, label True is

always selected with the associated probability of 0.5. If none are seen (which means the

combination of the other two feature values never appears in normal data), we select the

label which appears more in other rules, with the associated probability of 0.5. To compute

the probability for the true class, we use the probability associated with the predicted class

if it matches, or one minus the associated probability if it does not. For example, the

situation when a route is viable, no data is cached and no data is therefore delivered is a

normal case. We apply the corresponding feature vector, {True, False, False}, into all three

sub-models and all match the predicted classes. But the first sub-model with respect to the

feature “Reachable?” has a probability of 0.5 only, which is obvious since when no data

is delivered, it does not matter whether the route is up or not. The average match count is

then calculated as (1 + 1 + 1)/3 = 1, and the average probability is (1 + 1 + 0.5)/3 = 0.83.

Suppose we use a threshold of 0.5, then both values tell that the event is normal, which is

right. A complete list of the average match counts and average probabilities for all possible

events (both normal and abnormal) is shown in Table 7. Note that we use abbreviations here

where AMC stands for the Average match count, and AP is the Average probability. The

results clearly show that given a threshold of 0.5, both Algorithm 3 and 4 work well to

separate normal and abnormal events, while Algorithm 4 works better as it achieves perfect

accuracy (Algorithm 3 has one false alarm with the input {False, False, False}).

Table 5: Normal Events in the 2-node Network Example

Reachable? Delivered? Cached?
True True True
True False False
False False True
False False False
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Table 6: Cross-Feature Analysis Models in the 2-node Example

(a) Sub-model with respect to ‘Reachable?’

Delivered? Cached? Reachable? Probability
True True True 1.0
False False True 0.5
False True False 1.0
True False True 0.5

(b) Sub-model with respect to ‘Delivered?’

Reachable? Cached? Delivered? Probability
True True True 1.0
True False False 1.0
False True False 1.0
False False False 1.0

(c) Sub-model with respect to ‘Cached?’

Reachable? Delivered? Cached? Probability
True True True 1.0
True False False 1.0
False False True 0.5
False True True 0.5

4.3 Topology Aware Normalization

A typical procedure to perform anomaly detection is to collect example data from a train-

ing profile and then to build the anomaly detection model (or simply model) based on

the training data. However, ad hoc networks are well known for their dynamic topology

and ever-changing routing structure. Therefore, one training profile must choose a set of

topology and scenario parameters. One parameter example is the maximum moving speed

(speed) enforced by all nodes. It varies greatly for different application scenarios. For ex-

ample, PDAs held by pedestrians will have a different speed range from wireless devices

installed on moving vehicles.

To address the problem caused by profiles using different topology parameters, one

simple approach is to build a series of models, one for each profile. The limitation of

this approach is obvious. There are simply infinite number of possible profiles. It is very
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Table 7: Event Outcome in the 2-node Example

Reachable? Delivered? Cached? Class AMC AP
True True True Normal 1 1
True False False Normal 1 0.83
False False True Normal 1 0.83
False False False Normal 0.33 0.67
True True False Abnormal 0.33 0.17
True False True Abnormal 0 0
False True True Abnormal 0.33 0.17
False True False Abnormal 0 0.33

uncommon that a specific application can fix all topology parameters. Generally, there are

always some parameters remain variable. Therefore, an efficient topology aware detection

approach is highly desired.

In this work, we present a topology-aware method to normalize features, where all

profiles are merged into a cluster, and a single (anomaly detection) model can be applied to

all profiles in the cluster. We present comparison results in terms of detection accuracy to

validate the approach.

We first present a brief overview how existing anomaly detection algorithms work and

why it is not practical to be used by scenarios with a variety of possible topology parame-

ters. We then present a topology aware algorithm that can address this problem.

4.3.1 Concepts

Here, we consider anomaly detection as a machine learning based One-Class Classification

problem. It consists of two steps. During the training step, examples are collected from

a training dataset that contains only normal data. Each example is composed of a number

of features (or attributes). We use the Cross Feature Analysis algorithm in Chapter 4.2.2.

It should be noted that, however, the proposed procedures can be easily migrated to other

algorithms in general.

A topology parameter, or simply parameter, is a variable that defines the basic charac-

teristics of a topology. We list the parameters in Table 8. Each parameter also defines a
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default value. These default values define the “standard” scenario which is used in other

experiments in our experiments. We note that these parameters are used in many other

research work as well.

Table 8: A Typical Ad Hoc Scenario

parameter meaning default value
nn number of nodes 20
speed maximum speed of nodes 20 meters/second
pause pause time between any two moves 50 seconds
radius transmission range 250 meters
mc maximum number of connections 20

A scenario is defined as a set of value assignments for all parameters. Similarly, an ap-

plication restricts the value ranges of certain parameters, but not necessarily all. A “pedes-

trian” application may specify the speed range as [0, 5] and the pause range as [0, 600], for

example.

4.3.2 Analysis on Feature Patterns

It is important to realize that the features that are collected either through domain knowl-

edge or EFSA may be implicitly dependent on topology parameters. To understand that,

we perform a simple test. We first choose a "standard" scenario. We then vary only one

parameter from the "standard" scenario, and obtain the means of all features on the varied

scenarios.

For a case study, we use the AODV EFSA feature set (for details, please see Chapter

6.6). We then demonstrate the means on some relevant feature values in Table 9.

From this table, we can see that many features are affected by topology parameters. We

can characterize the trends how parameters affect the means of each feature. For example,

when radius increases, all features (including those not listed here) will decrease except

for T10, which will also increase. The phenomenon can be explained as follows. When
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Table 9: Feature Statistics with Different Topology Parameters

Features Valid T2 T5 T10 seq rreq_seq
nn = 5 1.6 0.16 1.3 63 1.8 0.29
nn = 20 2 0.015 1.7 23 0.54 0.2
nn = 50 2.2 0.0094 2.1 9.7 0.24 0.062
radius = 100 3.8 0.41 3.5 12 3.8 0.28
radius = 250 1.5 0.035 1.1 50 0.77 0.31
radius = 800 0.34 0.036 0.26 58 0.24 0.042
speed = 5 1.1 0.025 0.81 52 0.56 0.19
speed = 20 1.4 0.021 1 44 0.78 0.31
speed = 80 2.7 0.051 2 45 1.4 0.49
pause = 40 1.3 0.031 0.97 45 0.71 0.28
pause = 160 1.3 0.043 1 50 0.66 0.28
pause = 640 1.1 0.068 0.97 54 0.73 0.14
mc = 3 1.1 0.039 0.82 19 0.68 0.2
mc = 20 4.6 0.053 3.1 110 2.4 0.76
mc = 80 99 0.92 65 290 70 1.5

radius increases, more nodes are connected directly (in 1-hop), therefore most routing ac-

tivity are reduced, so as the number of transitions and the number of route messages (route

requests and route replies). The data forward transition (T10) increases since successful

data forwarding rate now becomes more likely. Similar observations can also be seen on

other parameters.

4.3.3 Challenge

Based on the above observation, it is unwise to feed examples from different scenarios

blindly into one “super” model (experimental results in Chapter 6.6 also verify that). An-

other alternative is to build a separate model for each possible scenario. This is not always

feasible, because the possible combinations of parameter values are infinite in general.

Even in applications where the possible parameter combinations are limited, the mainte-

nance of multiple models remains extremely expensive.
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4.3.4 Topology Aware Normalization Algorithm

We propose the following changes to the anomaly detection algorithm as part of the topol-

ogy aware effort:

Add topology parameters as features;1

Normalize feature values in such a way that each feature has a zero-mean and a standard2

deviation of one.

Algorithm 5: Topology Aware Normalization Algorithm

Either step can be optional. In our current experiment however, both are used.

The first step can be implemented trivially (we assume the topology parameters are

always known in advance). The second step involves a pre-learning step for each different

scenario, where the statistics of every feature can be obtained (per scenario). The pre-

learning step in unbiased, because we always use the normal data (only) as the training

dataset, and therefore they are not influenced by attacks.

In practice, it is not always practical to do pre-learning for each individual scenario.

Instead, we can perform pre-learning for a group of scenarios where parameter values are

close to each other. One variation is to divide the value space of each parameter into n

buckets (where n is a pre-determined parameter). Scenarios with all parameters belong

to the same bucket will share the same statistics. We will show more results using this

variation scheme in Chapter 6.6.

4.4 Summary

Based on the attack taxonomy study, we use protocol specifications to model normal pro-

tocol behavior, and develop features that can be used by intrusion detection systems. By

applying both specification-based and statistical-based detection approaches using these

features, we have the advantages of both. Specification-based approach has no false alarm,

statistical-based approach can detect attacks that are statistical or temporal in nature.

In particular, we developed an innovative anomaly detection approach that explores the
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correlation among different features and use them to build a detection model purely based

on normal data.

We also present a novel topology aware anomaly detection mechanism. Using this

mechanism, samples collected from multiple profiles can be used to build a single anomaly

detection model. So far, we are not aware of any published literature that addresses how to

perform topology aware intrusion detection so far, partially because this problem is more

or less specific to MANETs and remains less explored.
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CHAPTER V

CLUSTER-BASED INTRUSION DETECTION

5.1 Motivation

It may not be efficient and often not necessary to run an IDS agent on every MANET node.

Furthermore, some sophisticated attacks can evade a node-based IDS or make it rather

inefficient. Let us consider the following scenarios:

System level adversaries: An IDS agent should not be trusted when its hosting system

encounters a powerful adversary, which we call a system level adversary. A sys-

tem level adversary can control the whole system and thus alter the IDS behavior

arbitrarily. Neighbor-monitoring sensors [59] can mitigate the issue, but only when

the number of system level adversaries can be bounded. Furthermore, the use of

neighbor-monitoring sensors can be prohibitive because of energy consumption, as

we have discussed in Chapter 1.5.

Grouped attacks: In situations where attacks affect nodes in a whole network segment

in a similar way, IDS agents on these nodes may eventually come up with similar

detection outputs. We call these attacks grouped attacks. One common example

is DoS attacks such as flooding or packet dropping. Redundancy with IDS agents

can be helpful in terms of fault-tolerance, where network sustainability is the highest

priority, but a more efficient solution may be preferred in other scenarios.

Distributed attacks: Local observations do not always contain sufficient evidence to detect

an attack. In other words, an attack may behave benignly from the view of every

affected node individually. They are known as distributed attacks. Consider the

Sinkhole attack where all traffic is redirected to go through a particular node (here
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the node is known as the sinkhole). When an individual IDS agent detects that all

outbound traffic is forwarded by the same next hop, it cannot ascertain whether there

is an attack or not simply because there is one neighbor connecting to the outside

world.

These problems can be mitigated by a new cluster-based framework. We define a cluster

as a group of mobile nodes that includes one or more special nodes, known as clusterheads.

To ensure that the clusterhead has the ability to watch the activities on every node of the

cluster, we require that all wireless interfaces support promiscuous mode operations. In

our design, nodes belonging to a cluster must reside within one hop from the clusterhead,

while IDS agents are only enabled on clusterheads.

Using the cluster-based framework, the above issues can be handled effectively:

System level adversaries: In a cluster-based IDS, clusterheads can optimize energy use

by scheduling only a subset of cluster members who will activate their neighbor-

monitoring sensors at one time. Other members can minimize their energy consump-

tion at the same time.

Grouped attacks: In a cluster-based IDS, only clusterheads run IDS agents, and only a

subset of cluster members collects information through local IDS sensors at one time.

Therefore, the overall computational overhead can be significantly reduced.

Distributed attacks: A cluster-based structure can help detect these attacks. We take Sink-

hole as an example. If a source routing based protocol, such as DSR [39], is used, we

can easily verify that a single host appears in every source route from every cluster

member to every possible destination. With high probability, the evidence is con-

vincing enough to raise an alarm. In a general routing protocol, we can also perform

traffic analysis based on the distribution of the last hops before a packet is delivered

outside the whole cluster. Given destinations of all packets are distributed uniformly
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throughout the whole network, alarms can be raised with certain confidence if some

member appears with extremely high usage as the last hop.

While the cluster-based framework has many advantages, it cannot completely replace

the node-based solution. For example, it can be more vulnerable in the case of Denial-

of-Service attacks because IDS agents are now run on fewer nodes. It remains our future

work to improve its security and reliability. We will study a few factors that impact the

effectiveness of a cluster-based solution in Chapter 6.4 and Chapter 6.5.

5.2 Cluster Formation Protocols
5.2.1 Overview

A MANET can be organized into a number of clusters in such a way that every node is a

member of at least one cluster. A cluster is defined as a group of nodes that are close to

each other. The criteria of ‘close’ is that a node in the cluster, the clusterhead, has all other

members, known as citizens, in its 1-hop vicinity. As a special case, a node that cannot be

reached by anyone else (or under other special circumstances as described below) forms a

single node cluster, or SNC. The size of a cluster is defined as the number of nodes in the

cluster (including both clusterhead and citizens) and is denoted as S C.

It is imperative that the clusterhead assignment be fair and secure. By fairness, we mean

that every node should have a fair chance to serve as a clusterhead. Note that fairness has

two components, fair election, and equal service time. We currently do not consider differ-

entiated capability and preference (such as criteria based on network or CPU load, unless

they can be verifiable) and assume that every node is equally eligible. Thus, fair election

implies randomness in election decision, while equal service time can be implemented by

periodical fair re-election. By security, we mean that none of the nodes can manipulate the

selection process to increase (or decrease) the chance for it (or another node) to be selected.

Obviously, if randomness of the election process can be guaranteed, then security can be

guaranteed too.
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Although there are other cluster formation protocols available, they do not satisfy our

requirements discussed above. For example, the Leader Election (or cluster organization)

algorithms in [86, 3] choose either a common evaluation function or node-specific utility

functions to compute a score for every node, and the node with maximal score is elected

as the clusterhead. It does not guarantee the random selection of clusterheads, because a

node can easily advertise a high score for itself, unless care is taken to make the evaluation

process verifiable and with non-repudiation.

Before we describe our clustering formation protocols, let us state a few assumptions.

• Each node contains a unique and ordered identifier.

• Every node can overhear traffic within its transmission range (this is a common re-

quirement by MANET monitoring schemes, e.g. [59]).

• Neighbor information is always available. Usually this is implemented by periodi-

cally broadcasting HELLO messages and listening to the neighbors’ response. Given

the assumption, we can obtain the number of neighbors of node i. Let us denote the

value to be Ni.

• A secure, fast and reliable node to node communication infrastructure is available.

The infrastructure has to be light-weighted because MANET nodes are often resource-

constrained. Recently, efficient protocols for MANET are proposed, such as TESLA [70],

which carries only symmetric cryptographic functions. These protocols make certain

assumption that loose synchronized clocks are available.

The basic idea of our cluster formation protocols is as follows.

Clique Formation: We first form special head-less clusters, known as cliques. This stage

provides necessary preparation for a later clusterhead election. Clique formation

algorithms have been extensively studied. In particular, we adopt the algorithm

from [45].
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Clusterhead Election: Each clique member chooses a random token and broadcasts it to

the whole clique. After a full round of token exchange, each member independently

runs a modulo-XOR function that combines all random tokens. The modulo-XOR

function satisfies the full randomness property in that as long as at least one non-

malicious member produces a true random input, the output from that function will

be randomized. The function output is then used as the initial seed of a cryptograph-

ically secure pseudo-random sequence generator. Assume we need to generate m

clusterheads per cluster, we can generate the random sequence until m distinct values

have appeared. These values identify the m elected clusterheads.

Cluster Reconstruction: We deal with node mobility by dynamically adjusting cluster

membership, in an optional Cluster Recovery Stage. If a citizen loses the connec-

tion with its previous clusterhead or a clusterhead loses all its citizens, it broadcasts

an ADD_REQUEST message. A clusterhead who receives the message replies with

an ADD_REPLY. The lost node acknowledges the first received ADD_REPLY and

establishes cluster membership accordingly. If there is no ADD_REPLY after a pre-

defined timeout, the orphan creates a single member cluster.

To ensure long-term fairness, even if there is no membership change involved, each

cluster will have a limited life cycle. After a re-election period from its formation,

every cluster will invalidate itself and start a new election. Note that the new election

chooses a set of new clusterheads that completely independent from the previous

elected clusterheads.

Note that it may be necessary to have multiple clusterheads elected for a cluster so that

clusterheads are also being watched through mutual monitoring. This will reduce the risk

of compromise. It is obvious that if there is only one clusterhead and it is compromised, the

whole IDS cluster would not be functional. It also discourages a clusterhead from behaving

selfishly, e.g., not doing the required monitoring work. We will investigate how to decide
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the number of clusterheads needed and the election schedules based on run-time conditions

in Chapter 6.4.

The details of cluster formation algorithms are discussed in the next subsection.

5.2.2 Details of Cluster Formation Protocols

Figure 7 shows a finite state machine demonstrating the states of the MANET nodes and

the state transitions that are enabled by the cluster formation protocols.
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Figure 7: Finite State Machine of the Cluster Formation Protocols

Initially, all nodes are in an INITIAL state. They temporarily assume themselves SNCs,

so that they can do intrusion detection for themselves, just as in the per-node based ap-

proach. We perform an initial clusterhead setup round, which is composed with two proto-

cols: Clique Computation and Clusterhead Computation.

Clique Computation Protocol A clique is defined as a group of nodes where every pair

of members can communicate via a direct wireless link. Note that the definition of a clique

is stricter than the definition of a cluster. The clique requirement can be relaxed right after

the clusterhead has been computed. That is, only the clusterhead needs to have direct links

with all members. We use the cluster formation algorithm from [45] to compute cliques.

Once the protocol is finished, every node is aware of its fellow clique members. We denote

the clique containing i as CLi, i.e., ∀ j ∈ CLi,CL j = CLi. We define CL′i = CLi − {i}.

Once the Clique Computation Protocol has finished, all nodes enter CLIQUE state.
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Clusterhead Computation Protocol The purpose of this protocol is to randomly select

m nodes in the computed clique as clusterheads. Without loss of generality, let us describe

the procedure on the i-th node in Algorithm 6.

Generate a random integer Ri;1

Broadcast a message ELECTION_START=(IDi,HASH(IDi,Ri)) to CL′i . HASH is a2

common hash function. A corresponding timer T1 is set up. On Receiving all
ELECTION_START from CL′i , broadcast the message ELECTION=(IDi,Ri) to clique CL′i ;
If T1 is up, every node for whom ELECTION_START has not be received is excluded from3

CLiJ̇ump to Step 4; On Receiving ELECTION from node j, verify its hash value matches the4

value in the ELECTION_START message from j. R j is then stored locally;
If R j from all members CL′i have arrived, compute H=SEL(R0,R1,R2, ...,RS C−1) where SEL5

is the selection function;
The function output is then used as the initial seed of a cryptographically secure6

pseudo-random sequence generator. Assume we need to generate m clusterheads, we can
generate the random sequence until m distinct values have appeared. These values identify
the m elected clusterheads: H1 to Hm. Assume they are ordered so that all nodes have
consistent view of indices of each clusterhead;
For clusterhead Hk, if Hk , i (i.e., node i is a citizen), do the following;7

a) Send ELECTION_DONE to Hk;
b) Wait for ELECTION_REPLY from Hk, then enter DONE state;

Otherwise, as a clusterhead, Hk (or i) performs following ;8

a) Set up a timer T2;
b) On Receiving ELECTION_DONE, verify it is from CL′i ;

c) If T2 is up, citizens from whom ELECTION_DONE has not be received are excluded
from CLi. Broadcast ELECTION_REPLY to CL′i and enter DONE state.

Algorithm 6: Clusterhead Computation Protocol

We use several techniques to guarantee the fairness and security of the election process.

Most importantly, each node i contributes a random value Ri to the input, and then a com-

mon selection function is used by all nodes to compute a integer from 0 to S C − 1 from a

total of S C inputs. The output of the election function must have a uniform distribution in

[0, S C − 1]. The selection function we use is simply the modular Exclusive OR (or XOR)

function, i.e., f (R0,R1,R2, ...,RS C−1) = (
⊕S C−1

i=0 Ri) MOD S C. A nice property of XOR is

that as long as one input is random (i.e., from a “well-behaving” node), the output is ran-

dom. The random values are fully exchanged within the cluster (clique) and the selection

function is computed in a distributed manner, i.e., on each node, to decide the clusterhead.
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This guarantees that the same clusterhead be computed by all cluster members.

Once a clusterhead is determined, it copies the clique member list to a citizen list CTC.

The suffix C denotes the current cluster controlled by the clusterhead. All cluster are inde-

pendent, even if memberships of two clusters may overlap.

Cluster Valid Assertion Protocol All nodes in the DONE state should perform the as-

sertion protocol listed in Algorithm 7.

Since the network topology tends to change in an ad hoc network, connections between the1

elected clusterhead and some citizens nodes may be broken from time to time. If a link
between a citizen Z and a clusterhead H has been broken, Z will check if it is in another
cluster. If not, it enters LOST state and activates the Cluster Recovery Protocol. Also, Z is
removed from H’s citizen list CTC . If there is no more citizens in cluster C, H becomes a
citizen if it belongs to another cluster. Otherwise, H enters LOST state and activates the
Cluster Recovery Protocol;
Even if no membership change has occurred, the clusterhead cannot function forever because2

it is neither fair in terms of service and unsafe in terms of the long time single-point control
and monitoring. We enforce a mandatory re-election timeout, Tr. Once the Tr expires, all
nodes in the cluster enters the INITIAL state and start a new clusterhead setup round. If the
clique property still holds, the Clique Computation step can be skipped.

Algorithm 7: Cluster Valid Assertion Protocol

Cluster Recovery Protocol In the case that a citizen loses its connection with previous

clusterhead or a clusterhead loses all its citizens, the node enters LOST state and initiate

the Cluster Recovery Protocol to re-discover a new clusterhead. Again, without loss of

generality, we discuss the protocol on the i-th node in Algorithm 8.

5.2.2.1 Discussion

Since clusters can overlap, a node can belong to multiple clusters. Therefore, the notation

CLi of node i can actually take multiple values. For simplicity of the protocol description,

we use the singular form but keep in mind that a node in multiple clusters should perform

the Clusterhead Computation Protocol for each of its clusters independently.
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A request message ADD_REQUEST=(IDi) is broadcast with a timer T3;1

A clusterhead H receives the request and replies ADD_REPLY=(IDH) only after a short2

delay Td (0.5s in our implementation). The delay is introduced in hope that a connection has
been stable for Td can remain to be stable for a fairly long time;
Node i replies the first ADD_REPLY it received, i.e., ADD_ACK=(IDi). And enters DONE3

state. Additional ADD_REPLYs are ignored;
On Receiving ADD_ACK, H adds i into its CTC;4

If T3 is up and no ADD_REPLY is received, there is no active clusterhead nearby. Node i5

enters INITIAL state to wait for other lost citizens to form new cliques and elect their new
clusterheads.

Algorithm 8: Cluster Recovery Protocol

In the Clusterhead Computation Protocol, we assume the topology remains static dur-

ing computation. In a mobile environment, this assumption does not always hold. A rem-

edy is for each cluster member to monitor the neighborhood actively. Once a link is broken,

a REPAIR message is broadcast by both ends of the link, and all other nodes in the cluster

will be aware of that. All nodes in the cluster then re-enter INITIAL state and restart the

Clique Computation Protocol.

We require that all nodes have direct links to each other (i.e., they are in a clique) in

the cluster formation process. This is intentional so that spoofed messages can be detected

and contested because the nodes can overhear each other. Whenever such dispute arises, the

nodes can switch to a more secure way (e.g., authenticated channels) to exchange messages.

Finally, our protocols are meant to be a framework that can be customized according to

operational conditions and security needs. For example, a malicious node has a 1
S C

chance

to be elected as the clusterhead. It can then launch certain attacks without being detected

because it is the only node in the neighborhood that is supposed to run the IDS and its IDS

may have been disabled already. If this chance is not acceptable, we can elect multiple

clusterheads each of which runs a separate IDS to monitor the whole cluster. The worst

case is to run an IDS agent on each cluster member. There is obviously a trade-off be-

tween efficiency and security. We will investigate how to dynamically adjust the number of

clusterheads (or monitoring nodes) according to resource constraints and potential threats.
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5.2.3 Security Concerns

As an approach dedicated to detect malicious behavior, our protocol itself has to be secure

in the first place. In addition to conventional attacks such as man-in-the-middle and replay

attacks (which are addressed by enforcing a secure communication channel and sequence

numbers verifiable by neighbors), we also address the following specialized attacks with

particular consideration.

Defending against delayed random value distribution In order to prevent a malicious

node from manipulating the election outcome, e.g., by sending its random number only

after it receives the random numbers from all other nodes, the exchange of random numbers

among the nodes proceeds in two rounds. First, each node computes a random number and

its hash using a common hash function, then sends out only the hash value. Second, only

after receiving all hash values from all other nodes, a node sends out the actual random

number. A multi-round process for exchanging the random numbers, which corresponds to

Steps 1 through 4 in the Clusterhead Computation Protocol, is used to prevent cheating.

Defending against intentional timeout for certain advantages In the Cluster Recov-

ery Protocol, the new member will not have a chance to be elected as a clusterhead in the

beginning unless a new re-election period occurs (or if the clusterhead leaves the area).

This is intentional so as to reduce the chance that change of clusterhead occurs too often.

However, the property involves a fairness issue. A node can refuse to acknowledge be-

ing elected as a clusterhead in the cluster computation stages but later on dispatches an

ADD_REQUEST to join the cluster. In this way, it will be exempted from serving as a

clusterhead (a special type of Denial-of-Service). A similar attack works in the opposite

way. An attacker can refuse to take the responsibility as a citizen (or non-clusterhead mem-

ber) by repeated timeout until the compromised node is elected as a clusterhead. This gives

the attacker the advantage of a clusterhead but not willing to conform to a citizen’s liability
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when other nodes are clusterheads. To defeat both of these attacks, we add a retreating sus-

picion counter in the cluster computation protocol which counts how many times an elected

node refuses to respond. If it happens more than certain times (three in our experiments),

the node is excluded from further clusterhead computation and an exception is reported

about the misbehavior of that node.

5.3 IDS Agents in a Cluster-Based IDS

In each cluster, clusterheads independently run IDS agents, while citizens do not. A cluster-

head sends a FEATURE_REQUEST message that specifies what features the clusterhead

needs to a randomly chosen cluster member. The requested node begins to collect the re-

quired information and replies with a FEATURE_REPLY after a feature-sampling period.

The clusterhead can then make another request. In practice, the sampling period is often

chosen based on the threat model in a real environment.

5.3.1 General Detection Methods

In general, similar detection methods can be applied in a cluster-based IDS. For example,

we can apply a similar statistical method as what Chapter 4.2 describes, except that fea-

tures may be collected from multiple nodes. However, the nodes in a cluster need to have

the incentive to participate in this cluster-based scheme. We envision that the following

scenarios can achieve better performance when cluster-based models are applied.

Anomaly Detection In the case of grouped attacks, one approach is to instruct the clus-

terhead to use the detection model similar to the one used in the node-based scheme. In-

stead of measuring features and analyzing events only for the local node, the “new” detec-

tion model, at the same sampling rate, randomly selects a node belonging to the cluster,

and computes the same features and analyzes the corresponding event. It is easy to see that

over time, when compared with the node-based scheme, each node spends only a fraction

of the energy.
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Misuse Detection A cluster-based framework also has a greater potential in detecting

attacks where attack patterns cannot be observed by any single node. Because a clusterhead

can collect features from all members in the cluster, it can evaluate a complicated misuse

rule using features spanning on multiple nodes. One example can be found in Chapter 5.1.

5.3.2 Cluster-Based Specific Methods

We can also use misuse detection techniques with customized detection rules such as the

Sinkhole detection discussed in Chapter 5.1. We show more techniques to detect other

attacks below.

Dropping: An attacker drops packets that it should forward according to the routing topol-

ogy. Depending on the purpose of the adversary, packets can be dropped either

unconditionally, probabilistically or selectively, based on the destination address or

other criteria. Detection of the attack can be done by either Route Analysis or Traffic

Analysis.

Route Analysis: For source routing based protocols such as DSR [39], the detection

of this attack can be achieved by neighbor-monitoring. If a node receives a

packet with a source route that specifies itself is not the destination, other nodes

can detect the anomaly if A does not forward it after a certain timeout. For

distance vector based protocols, it cannot be directly applied without protocol

modification [93].

Traffic Analysis: A node (A) can identify that flow consistency does not hold, i.e.,

the number of incoming packets minus the number of packets destined to A

does not match the number of outgoing packets minus the number of packets

originated from A. Different from Route analysis, a neighbor B should only

analyze flows that were forwarded from B to A. As packets received by A from

other directions may not be overheard by B. This approach applies to both

source routing based and distance vector based protocols.
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Flooding: An attacker requests services that a certain node has to offer repeatedly in order

to prevent the node from going into an idle or power preserving state [82]. Sleep

deprivation is a typical example of Denial-of-Service attacks that can significantly

reduce the capability of IDS response. For that purpose, we do not recommend the

victim to perform further detections. Instead, if a feature-sampling request arrives,

a node suffering this attack can choose to ignore it. As a special passive response, a

clusterhead should treat the lack of response as a signal of DoS type of attacks. Even

not directly on the victim node, it is hardly a problem for many nodes to detect huge

volume of traffic in the victim’s neighborhood. Once an early detection of the attack

signature is found, it is recommended that other nodes reduce their overhearing that

would otherwise significantly suffer from energy loss as well.

Sinkhole: An attacker attempts to absorb data to all destinations by claiming itself has the

best route to every destination. The attack is realized by altering route topology. Once

successful, collected data packets can be silently discarded, altered or forwarded

as usual, but the risk of traffic analysis or information disclosure will significantly

increase [40]. Sinkhole detection has been addressed in Chapter 5.1.

Partition: A network (or one of its sub-regions) is separated into two or more partitions

so that every route path originating from a node in one partition and destined to a

node in a different partition will always include some attackers. The attack may

also be realized by altering route topology. Attackers can further drop all traffic that

comes across them, which is actually the narrow definition in some literature. We

use the current definition for two reasons. First, the narrow definition can be easily

implemented by adding an additional Dropping attack. Second, partition can still be

harmful without dropping if it instead performs some other attacks similar to what

Sinkhole does. Detection of the attack can be done using either Route Analysis or

Traffic Analysis methods.
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Route Analysis: Detection of this attacks benefits from DSR where source routes

from multiple nodes can be used for further analysis. For each feature-sampling

period, a random member can return a random source route to the clusterhead.

The clusterhead in turn compares the source route with previous ones from other

members. A partition can be recognized if a small number of nodes appear in

each of source route. Note that we currently adopt this approach only to detect a

partition implemented with a single node. Otherwise, the response time appears

to be very long before an attack is detected. We are investigating on methods

that are more efficient.

Traffic Analysis: Traffic can be analyzed similarly as Sinkhole detection does. We

should monitor the outbound traffic volume on last hops. The only difference is

Sinkhole corrupts traffic to all possible destinations, while this attack only ma-

nipulates the traffic to another network partition. Thus, the last hop distribution

looks much flatter than Sinkhole does.

5.4 Summary

Compared with node-based IDS framework, a cluster-based IDS framework has many ad-

vantages. First, it can detect anomalous basic events that the node-based agent can detect

because we can always use the same features. However, since the cluster-based solution can

collect information from multiple nodes, it has a better chance to detect inter-node modifi-

cation patterns. Sinkhole detection is such an example. Furthermore, since the same sets of

anomalous basic events can often be found in many nodes in the context of group attacks,

a cluster-based IDS agent can also avoid running the same detection model unnecessarily

on every individual node.

However, the chance of clusterhead compromise introduces more risks with the cluster-

based framework. Although we have introduced a fair and secure cluster formation proto-

col, there is still a non-zero possibility that clusterheads may be compromised. In Chapter

59



6, we evaluate the performance of both frameworks and compare trade-offs under different

system parameters.
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CHAPTER VI

PERFORMANCE EVALUATION OF INTRUSION DETECTION

SYSTEMS

In this chapter, we present experimental results for our proposed detection frameworks. We

first discuss the effectiveness of feature selection, followed by the study of detection accu-

racy using node-based and cluster-based frameworks. We then evaluate a number of factors

that affect the stability of the cluster-based framework and compare the performance of

node-based and cluster-based frameworks. Finally, we show how topology aware normal-

ization can be used to reduce the space requirement of detection models while remaining

fairly accurate.

6.1 General Setup

Testing Environment We use MobiEmu [96] as the basic evaluation platform. MobiEmu

is an experimental testbed that emulates MANET environment with a local wired network.

Mobile topology is emulated through Linux’s packet filtering mechanism. Different from

many simulation tools, MobiEmu provides a scalable application-level emulation platform,

which is critical for us to evaluate the intrusion detection framework efficiently on a reason-

ably large network. We choose the AODV-UIUC implementation [41], which is designed

specifically to work with the MobiEmu platform. We further extend MobiEmu with a

toolset of security library and utilities. The toolset, known as S-MobiEmu, is further ex-

plained in Chapter 8. We build our IDS system on top of S-MobiEmu, but the toolset is

not limited for IDS use and therefore greatly simplifies general development of security

protocols for ad hoc networks.
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Since MobiEmu is still in development and AODV is currently the only protocol sup-

ported by MobiEmu, we use AODV as the main case study, for which we also performed

experiments on the ns-2 [22] simulator with very similar results. For comparison, we also

studied two other popular ad hoc protocols, DSR and OLSR, but on ns-2 only. We also use

EFSA-based study for these protocols, with their EFSA specifications are shown in Ap-

pendix B and C. We will show some interesting results that are unique to these protocols in

later sections.

Experimental Parameters The following parameters are used throughout our experi-

ments. Mobility scenarios are generated using a random way-point model with 50 nodes

moving in an area of 1000m by 1000m. The pause time between movements is 10s and

the maximum movement speed is 20.0m/s. Randomized TCP and UDP/CBR (Constant Bit

Rate) traffic are used but the maximum number of connections is set to 20; and the average

traffic rate is 4 packets per second. These parameters define a typical MANET scenario

with modest traffic load and mobility, and they are similar to the parameters used in other

MANET experiments, such as [69, 58, 59].

One problem is each experiment can only explore one possible scenario. Therefore the

detection model may not work for all possible scenarios (for instance, with high mobility

or under high traffic load). The topology aware normalization experiments 6.6 partially

address this problem.

We test our framework with multiple independent runs. A normal run contains only

normal background traffic. An attack run, in addition, contains multiple attack instances

which are randomly generated from attacks specified in Tables 2 and 3 or a subset according

to certain criteria.

Misuse Detection we generate five normal profiles (NORMAL), with 10000 examples

each, is used. We also generate set of five basic intrusion profiles (ALL), with 20000 ex-

amples each are generated for evaluation purposes. In these profiles, a number of basic
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attacks are randomly injected at random locations and with a duration length of 200 exam-

ples. Within the total number of examples, 80% are normal. Finally, a set of complicated

intrusion profiles (COMP) of 1000 records, which implement some complicated intrusion

scenarios are used for evaluation purposes.

Anomaly Detection We use the NORMAL profiles for training, and ALL and COMP

for testing. We control the false positive rate on the training data to be no more than 1%

during the training process, whenever possible, because in practice, a low false positive rate

is essential to be useful for human adminstrators to perform useful analysis.

6.2 Feature Selection

In our case study using the AODV protocol [66], the feature set contains 118 statistical

features.

Figure 8 shows the skewed false positive rates when more features are added. For

illustration purposes, we do not stop immediately when the stop threshold would have held

us from continuing the algorithm. Instead, we show the possible consequence when more

features are added even after the threshold.
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Figure 8: Skewed False Positive Rates

The stop threshold would have stopped the algorithm when 9 features are used, since
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the skewed false positive rates would start decreasing if more features were added.

Figure 9 shows the true false positive rates and detection rates on the test data with

various number of features. Since the test data contains both normal and intrusion data, we

show both the false positive rate and the detection rate. For reference, the base rates (i.e.,

when all features are used) are about false positive rate = 0.013 and true positive rate =

0.78.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  2  4  6  8  10  12  14  16  18  20

F
al

se
 P

os
iti

ve
 R

at
e

Features

’true_fp.data’ u ($0+1):1

(a) Real False Positive Rate

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  2  4  6  8  10  12  14  16  18  20

D
et

ec
tio

n 
R

at
e

Features

’true_detection.data’ u ($0+1):1

(b) Real Detection Rate

Figure 9: Feature Selection Evaluation Results

In fact, we find out that the performance with a subset of features can be better than

with the full feature set. In particular, if more than 18 features are added, the performance

(both the skewed false positive rates and the accuracy on the test data) becomes to drop

again. This is a well known issue in many classifiers because of the potential noise and

over-fitting on some “poisoning” features. Therefore, our experiment validates our claim

that feature selection can actually improve the overall accuracy as well as the performance

gain with reduced number of features.

While we are testing more features than required, we see that the performance no longer

increases in general. This shows that our stop threshold is effective enough in practice.

However, we do observe that in a few circumstances, the detection rate remains the same,

but the (real) false positive rate can still be improved (for example, with 13 and 18 features).

Since this is not a constant factor, we believe that it is possibly due to a sampling issue. To
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reduce the potential variances in the sampling data, we need to perform more experiments

to smooth them out in future.

6.3 Node-Based Detection
6.3.1 Detection of AODV Specification Violations

The following attacks are detected in the test data as direct violations of the EFSA, verifying

our previous analysis that these attacks match anomalous basic events that can be directly

detected by verifying the specification. For complex attacks, a different network size may

be used if appropriate. Note that detection rates are 100% and false positive rates are

0% for attacks when the specification-based approach is used, based on the assumption

that specfications are 100% accurate. While it is not actually perfect, our specification

characterizes most major functionalities and therefore the assumption is mostly reasonable.

Data Drop (R | S | D): detected as Interruption of Data Packets.

Route Drop (R | S | D): detected as Interruption of Routing Messages.

Add Route (I | N): detected as Add Route of Routing Table Entries.

Delete Route: detected as Delete Route of Routing Table Entries.

Change Sequence (R | M); Change Hop: detected as Change Route Cost of Routing Ta-

ble Entries.

Active Reply; False Reply: detected as Route Reply Fabrication.

Route Invasion; Route Loop: They are detected since they use fabricated routing mes-

sages similar to what the Active Reply attack does. In particular, Route Invasion

uses Route Request messages, and Route Loop uses Route Reply messages. With the

same set of transitions in Route Drop, we can detect them as Incorrect Transition

Violations in Route Request or Route Reply delivery transitions.
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Partition: This attack can be detected since it uses a fabricated routing message (Route

Reply) and interrupts data packets. Therefore, monitoring the transitions related to

Route Reply (as in Route Drop), and the transition related to data packet forwarding

(T10, as described in Data Drop), we can detect this attack with the following vio-

lations identified: Incorrect Transition Violation in Route Reply delivery transitions

and Unexpected Action Violation in the data forwarding transition.

6.3.2 Detection of AODV Statistical Deviations

Some attacks are temporal and statistical in nature and should be detected using the sta-

tistical approach. The following are four representative examples of such attacks: Data

Flooding (S | D | R); Route Flooding (S | D | R); Modify sequence (R |M); Rushing (F |

Y).

Misuse detection We first train separately with each training dataset with known intru-

sion data. The same test dataset is used to evaluate the learned model.

For each type of anomalous basic event described in Chapter 4.2.1, we discuss what

features are needed to capture its behavior. All features are defined within a sampling

window. We use a sampling window of five seconds in all cases. In addition, features are

normalized in a scale of 0 to 50.

Flooding of Data Packets: In order to capture this anomalous event, we need to capture

the volume of incoming data packets. In AODV, data packets can be accepted under

three different situations: when a valid route is available (which is transition T10),

when a route is unavailable and no route request has been sent yet (transition T2) or

when a route is unavailable and a route request has been sent to solicit a route for the

destination (transition T3). Accordingly, we should monitor frequencies of all these

data packet receiving transitions. We define three statistical features, Data1, Data2,

and Data3, for each transition (T10, T2 and T3) respectively.
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Flooding of Routing Messages: Similarly, we need to monitor the frequencies of tran-

sitions where routing messages are received. However, a larger set of transitions

need to be observed because we need to take into account of every type of routing

messages (which include 15 transitions, T5, T5’, T7, T8, T7’, T8’, T7", T8", T9,

T11, TR3, TR4, TR3’, TR4’, and TR6). In order not to introduce too many fea-

tures, we use an aggregated feature Routing which denotes the frequency of all these

transitions. Note that it is not the same as monitoring the rate of incoming routing

messages. An incoming routing message may not be processed by any EFSA in a

node. We need only to consider messages that are being processed.

Modification of Routing Messages: Currently, we consider only modifications to the se-

quence number field. We define Seq as the highest destination sequence number in

routing messages during transitions where they are received (see above for the tran-

sitions involved in routing messages).

Rushing of Routing Messages: We monitor two features where some typical routing pro-

cess may be rushed. Rushing1 is the frequency of the transition where a route discov-

ery process fails because the number of Route Requests sent has exceeded a thresh-

old (RREQ_RETRIES) or certain timeout has elapsed (NET_TRAVERSAL_TIME

in transition T6). Rushing2 is the frequency of the transition where a Route Request

message was received and it is replied by delivering a Route Reply message (transi-

tion T11).

To demonstrate, we use RIPPER [19] as the classifier. The output rules are combined

into a single rule set. One example of the rule set is shown below.

Data_Flooding :- Data1>=29 (1068/43).

Data_Flooding :- Data2>=26 (309/10).

Data_Flooding :- Data3>=47 (1032/17).

Routing_Flooding :- Routing>=20 (1988/103).
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Routing_Flooding :- Routing>=16, Rushing2>=4 (291/17).

Routing_Modification :- Rushing2>=4, Seq>=27 (49/3).

Routing_Modification :- Data1>=13, Seq>=32 (842/380).

Routing_Modification :- Seq>=50 (1231/0).

Routing_Rushing :- Data3<=10, Rushing1>=19 (1173/120).

Routing_Rushing :- Rushing2>=6 (1038/191).

For example, the first rule says the anomalous basic event Flooding of Data Packets is

detected if Data1, the normalized frequency of transition T10, is larger than 29. Using this

rule, 1068 attack instances are correctly detected, while 43 normal instances are incorrectly

identified as attacks.

Table 10: AODV: Detection and False Positive Rates with Statistical-based Approach

(a) Attack Detection Rates

Attack Detection rate
Data Flooding (S) 93±3%
Data Flooding (D) 91±4%
Data Flooding (R) 92±4%
Route Flooding (S) 89±3%
Route Flooding (D) 91±2%
Route Flooding (R) 89±3%
Modify sequence (R) 59±19%
Modify sequence (M) 100±0%
Rushing (F) 91±3%
Rushing (Y) 85±4%

(b) Detection and False Positive Rates of Anomalous
Basic Events

Anomalous
Basic Event

Detection
Rate

False
Positive
Rate

Flooding of
Data
Packets

92±3% 5±1%

Flooding of
Routing
Messages

91±3% 9±4%

Modification
of Routing
Messages

79±10% 32±8%

Rushing of
Routing
Messages

88±4% 14±2%

The detailed detection results are shown in Table 10. We show the detection rates of

tested attacks (in Table 10(a)). We consider a successful detection of an attack record if and

only if the corresponding anomalous basic event is correctly identified. We also show the
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detection and false positive rates (in Table 10(b)) directly against anomalous basic events.

We analyze these results for each type of anomalous basic event below.

Flooding of Data Packets and Routing Messages: We implement flooding as traffic over

20 packets per second. For flooding of data packets, 92% can be detected. They are

detected by observing abnormally high volume on at least one of related statistics,

Data1, Data2, or Data3. Similar results are also observed for flooding of routing

messages.

Modification of Routing Messages: The corresponding detection result is not very satis-

factory. It shows high variations in both the detection and false positive rates. In

fact, the corresponding detection rule assumes that this anomalous basic event can

be predicted when at least some incoming packet has a sequence number larger than

certain threshold. It is not a rule that can be generally applied. Randomly gener-

ated sequence numbers may only be partially detected as attacks. We further discuss

problem in the end of this section. In contrast, for a special type of sequence modifi-

cation (Modify Sequence (M)), the detection rate is perfect. Because we know that it

is very rare for the largest sequence number to appear in the sequence number field

of routing messages.

Rushing of Routing Messages: Detection performance varies significantly on different

rushing attacks, namely, Rushing (F) and Rushing (Y). In Rushing (F), the attacker

tries to shorten the waiting time for a Route Reply message even if a route is not

available yet. Because more requests to the same destination may follow if route dis-

covery was prematurely interrupted, the attack results in abnormally high frequency

where the route discovery process is terminated (Rushing1). In Rushing (Y), the

attacker expedites Route Reply delivery when a Route Request message has been re-

ceived. It can be captured because the corresponding transition (T11) now occurs
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more frequently than a computed threshold (Rushing2). Nevertheless, we also ob-

serve significant false alarms in detecting these attacks. It results from irregularity of

route topology change due to MANET’s dynamic nature. Some normal nodes may

temporarily suffer a high route request volume that exceeds these thresholds.

Discussion Comparing with the taxonomy of anomalous basic events in Table 1, we re-

alize that a few of them cannot be detected effectively yet. First, we cannot detect Route

Message Modification with incoming packets in which the modification patterns are not

known in advance. We identify the problem as it requires knowledge beyond a local node.

However, these attacks can usually be detected using other security mechanisms or by other

nodes. If the message comes from external sources, it may be successfully prevented by a

cryptographic authentication scheme. Otherwise (i.e., it was delivered by the routing agent

from another legitimate node), the IDS agent running on that node may have detected the

attack. In addition, Rushing attacks cannot be detected very effectively, especially when

features beyond the routing protocol, such as delays in the MAC layer, are involved. Our

system can be improved if we were able to extend our detection architecture across multiple

network layers. It is part of our future work.

Anomaly Detection The evaluation procedure is similar to misuse detection learning

models, except that we only label data as normal or abnormal (instead of the anomalous

basic events). However, we should point out that for certain attacks, especially the ones

related to routing, it is not necessary to identify every anomalous event (or data point)

in order to detect the attack because there may be many anomalous events caused by the

attack. Therefore, we can use a post-processing procedure to count the number of detected

anomalous events within each sliding time window, and conclude that an attack is present

if the count is the majority or above a threshold. Using such a post-processing scheme, we

can improve the detection rate and lower the false positive rate. Another observation is that

our detection models run at a frequency of the feature sample rate rather than continuously.

70



They can potentially be the more efficient alternative than cryptography-based prevention

scheme.

Our simulation shows that our anomaly detection method, using Cross-Feature Analy-

sis, can detect flooding attacks with a detection rate of 95% and a false positive rate less

than 1%. Its performance on packet modification attacks is also close to what the misuse

detection rules can achieve in general. Considering that the anomaly detection model is

trained with pure normal data, the results are very promising.

6.3.3 Detection of OLSR Specification Violations

OLSR is a proactive routing protocol, and therefore it has several unique properties. We

show the detection results for OLSR specific attacks in the following sections.

Detection of a typical message fabrication attack, Hello message insertion, has been

illustrated by Orset et al. [62]. In this attack, an adversary attempts to advertise a non-

existent symmetric link to other nodes and by doing that, can perturb the routing calculation

of these nodes. According to the EFSA in Appendix C, if the receiver of the Hello message

is not its neighbor, it will stay in State I, but a transition that can accept a Hello message

with link code SYM (denoting a symmetric link) can only occur from State A, S or M.

Therefore, it can be detected as Fabrication of Routing Messages.

Another OLSR specific attack, known as MPR attack [73], prevents a MPR from for-

warding messages. Because the OLSR specifications [18] state that a node will never re-

transmit a message if the sender is not in its MPR selector list, this optimization is used

for performance reasons but it can be easily abused. For example in Figure 10, B is an

MPR of A and C is an MPR of B. A misbehaving node X can overhear messages sent by

node A. Since X is not the MPR of any node, it should do nothing. Instead, X maliciously

retransmits the message to C. C discards this message because X is not one of its MPR

selectors. However, this also implies that C will not forward the same message from B as

well. Therefore, the message is lost.
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Figure 10: MPR Attack Example

MPR attack can also be detected in a similar way to Hello message insertion. Note that

the only transition that perform message forwarding is transition T20 which can only be

satisfied when the forwarding node is an MPR of the receiver. Because the input conditions

are not fully satisfied while the output action is taken anyway, this is one typical example

of Incorrect Transition Violation.

In addition, the following attacks can also be detected by detecting OLSR specification

violations:

Data Drop (R | S | D): detected as Interruption of Data Packets.

Route Drop (R | S | D): detected as Interruption of Routing Messages.

Add Link (I | N): detected as Add Route of Routing Table Entries.

Delete Link: detected as Delete Route of Routing Table Entries.

6.3.4 Detection of OLSR Statistical Deviations

One typical OLSR attack that is statistical in nature is “message bombing" [73]. It is

essentially equivalent to data or route message flooding in the previous AODV analysis.

Nevertheless, it should be noted that for better performance, we need to perform some
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optimization. Since MPRs are the only nodes that forward data packets, we add one ad-

ditional boolean feature MPR to the standard feature list used by node-based IDS agents.

MPR is 1 if and only if the current node has been chosen as one MPR by some node. Since

MPR and non-MPR nodes may observe different types and volumes of traffic, we expect

the additional feature can help improving detection performance. Table 11 shows that this

is actually the case. For simplicity, we use labeled training datasets in this table.

Table 11: OLSR: Detection and False Positive Rates of Anomalous Basic Events

Anomalous Basic Event Without MPR With MPR
Detection False Positive Detection False Positive
Rate Rate Rate Rate

Flooding of Data Packets 88±4% 2±1% 93±4% 4±2%
Flooding of Routing Messages 85±4% 3±2% 91±3% 5±2%

6.4 Cluster-Based Detection: Detection Accuracy Study

Chapter 5.1 argued that distributed attacks could evade a node-based IDS, but not so easily

with a cluster-based IDS. We used the Sinkhole detection as an example, because it is very

difficult for a node-based IDS to detect Sinkholes, while the cluster-based approach can be

applied in neighboring clusterheads to detect these attacks.

We show the detection accuracy of both solutions in Figure 11. For the cluster-based

solution, we use m=5 clusterheads per cluster and we assume the maximum number of

system level compromised nodes k is 2. In all cases, we control the false positive rates

to be no more than 2%. We can see that the cluster-based solution does have fairly good

detection accuracy where the average detection rate is 91% at a modest mobility level

(pause time = 300s).

Furthermore, the cluster-based solution can mitigate the problem of system level adver-

saries where the node-based solution can be easily defeated. We choose a modest mobility

level (pause time = 300s) and experiment with various numbers of collaborative attackers.
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We assume that if a clusterhead is compromised, its IDS functionality is completely dis-

abled. By varying k from 1 to 10, we see the detection rate decreases sharply when m is

fixed. If k = 10, Figure 11(b) shows the true positive rate can be as low as 53% with a sin-

gle clusterhead. With the help of multiple clusters, the detection accuracy quickly recovers

to a relatively high level. We can see that if m = 5, 70% of the attacks can be detected even

under very high compromise level.
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Figure 11: Cluster-Based Detection Accuracy Study

6.5 Cluster-Based Detection: Effectiveness Study

As we have shown, many attacks can be detected effectively with a node-based IDS. Chap-

ter 5.1 discussed a number of limitations of this approach. We verify two statements made

there.

First, we argued that a cluster-based IDS introduces less energy consumption while

achieving the same detection accuracy. The impact of communication overhead is widely

agreed to be the largest source of energy consumption in a MANET environment. At first

glance, it seems that the node-based IDS does not deliver or receive any messages at all and

it should not cause any communication overhead. We note that it is not the case if we con-

sider that overhearing neighboring traffic also consumes energy. As we have explained, the

use of overhearing capability is essential to defeat system level adversaries. We compare
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the communication overhead in Figure 12(a) and 12(b), with the only difference between

the two figures lies in whether we consider the overhearing effect or not. We measure the

overhead in packets per second. We note that Figure 12(a) shows that a node-based solution

has zero energy consumption without considering the overhearing effect! It appears inap-

propriate to ignore this effect. Figure 12(b) shows that the cluster-based scheme, provided

with appropriate parameters, is a more energy efficient solution.
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Figure 12: Cluster-Based Detection Effectiveness Study

Another issue relates to grouped attacks such as data flooding. They can be detected

effectively by both the node-based and cluster-based solutions. Therefore, an intuitive way

of determining which solution is better is to study the cluster stability. If the formed clusters

are stable, the cluster-based solution is more efficient because few IDS agents and sensors
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are used. On the other hand, if clusters change too frequently or the average cluster size

is too small, the communication overhead during the cluster formation stage dominates.

We use two measures, the average cluster size and the average cluster lifetime, to measure

cluster stability.

We evaluate several factors that may affect cluster stability. We first consider the impact

due to node mobility. By varying the pause time, we test against different mobility levels in

Figure 12(c) and 12(d) when different numbers of clusterheads (m) are used. We observe

that increasing m reduces a cluster’s lifetime. Yet the reduction is only observable when

the mobility level is very high (i.e., when the pause time is near zero). In that case, a low

m is preferred. However, in the worst case we have experimented, where the pause time is

zero and m is 5, we still have an average cluster size of 2 and average cluster lifetime of 20

seconds, in which four feature-sampling periods can be finished. Note that m only specifies

the maximum number of clusterheads and a smaller value may be used if there are less than

m members. We observe that the cluster-based solution is more stable and thus probably

more feasible in a relatively static ad hoc network.

Another factor that matters is the mobility model that we use. By default, we assume

a Random Waypoint mobility model. In many application scenarios, it may not be the best

one. In particular, group models can be more suitable when mobile nodes move together

in groups. Numerous studies have shown that the choice of a mobility model can have

significant influence on the performance of a MANET network protocol [13]. In our study,

we experiment with a generic group model, the Reference Point Group Mobility model.

In such a model, group movements are based on a logical center for the group. Random

motion vectors are generated independently for each group center and each individual node

from its group center. The overall movement vector for each node is then the summation

of both. In our experiments, we define ten groups with five nodes per group. We compare

its performance with the Random Waypoint model in Figure 12(c) and 12(d). We learn that

the effective cluster lifetime by applying the group model is in fact only bounded by the
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cluster re-election period (500 seconds). It is not hard to understand, since nodes within a

group are much closer to each other, they can always form a cluster with an adequate size

among themselves. Nodes outside a group help build a larger cluster only when the low

mobility allows.

6.6 Topology Aware Normalization

We again use the AODV protocol [66] as a case study for topology aware normalization

experiments, with the same 118 feature set constructed from EFSA.

6.6.1 Unconditional Grouping

Recall that we define a scenario as a group of topology parameters. We show the detection

rate and false positive rates using the following four methods: separate models, one for

each scenario (model 1); a global “super” model with no normalization (model 2); a global

“super model” where each example is normalized based on the Gaussian parameters (mean

and standard deviation) computed from each individual scenario through “pre-learning”

(model 3); and finally, a global “super” model with feature normalization and parameter

grouping (with bucket parameter n = 5) (model 4). The results for AODV is shown in Table

12. Note that to simulate the whole feature space, we need to generate many scenarios. We

currently use 500.

Table 12: AODV Detection and False Positive Fates: Comparison Study

Model Detection Rate False Positive Rate
1 81.2 1.0%
2 68.3 34.2%
3 73.2 9.83%
4 73.8 12.2%

We can see that a all-in-one model without normalization behaves the worst. The false

positive rate is extremely high, partially reflecting the analysis we presented before. A

normalization step greatly improves the false positive rates. The detection rates, however,
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are still worse compared with separate models. This is due to the fact abnormal records

are normalized using the base statistics collected from normal dataset, and therefore attack

features tend to become more “normal”. We also observe the bucketing scheme has similar

performance compared with the model where pre-learning is conducted on per scenario

basis, with only slight degradation in the performance.

It should be noted although the separate model seems to work best, it is extremely

costly, becausewe essentially recompute the whole detection model on the fly whenever

a new scenario is added. It is therefore infeasible to obtain real-time performance on a

rapid changing environment. The second slowest model is model 3, because “pre-learning”

should still be conducted on a per scenario basis. However, since the process involves only

statistical estimation, a sampling with a small subset can be relatively safe and therefore

it is still much faster than the separate model. Model 4 is faster, because of parameter

bucketing, and the performance degradation is still acceptable compared with model 3.

6.6.2 Subgrouping

We can view the separate model as one end of a scale spectrum where examples from

different scenarios are always separated into different training sets. On the other hand, the

“super” models go to the other end where examples from all scenarios (after normalization)

are clustered and used to build a single model. Hence, a further improvement could be

made if we allowed the existence of multiple models, where each model clusters a subset

of scenarios. These subsets are mutually exclusive but add up to the whole feature space.

Finding the optimal splitting strategy is NP-hard. But it is a good heuristic to split

along topology parameters. We again use a bucket size n. For each topology parameter,

we divide the value space of that parameter evenly into n buckets and thus split the whole

feature space into n buckets. We then train all scenarios in each bucket using either model

3 or 4 above, and then compare the average performance over n buckets. The first round is

evaluated by testing all possible topology parameters and choose the best one. This process
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can be continued as needed, and it is in fact, a standard feature selection problem.

In reality, the computation is so expensive that we cannot go very deep. In fact, we are

only able to evaluate the first round. By using model 3 (pre-learning only), we obtain the

best result by splitting along parameter nn (the number of nodes) in Table 13.

Table 13: AODV Detection and False Positive Fates: Comparison Study by Subgrouping

Feature Detection Rate False Positive Rate
nn 76.7% 5.31%
radius 77.4% 7.29%
speed 73.5% 11.7%
pause 74.8% 8.66%
mc 74.9% 9.01%

6.7 Summary

We showed that effective use of feature selection and topology aware normalization can im-

prove the overall detection accuracy or space requirement. We also illustrated the detection

results using different frameworks: node-based and cluster-based.

It is very difficult to provide a guideline on how to choose between node-based IDS

and cluster-based IDS. With experimental results, we show that cluster-based IDS is more

energy efficient and it can mitigate the problem of system level adversaries. However,

the additional benefit is highly related with the cluster size. It is probably more suitable

to apply cluster-based IDS in a relatively static network or with a generic group model

where cluster sizes are more stable. Overall, the framework choice depends on the actual

application scenarios, potential security threats, and parameter settings.
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CHAPTER VII

HOTSPOT-BASED TRACEBACK

7.1 Introduction

Since MANET makes use of existing protocols such as TCP/IP, it suffers from many attacks

in a similar way as the wired networks do, especially IP spoofing attacks. However, a

number of MANET specific vulnerabilities make existing traceback schemes designed for

the wired networks unsuitable. In particular, most techniques rely on strong assumptions

such as trustworthy routers and static routes that are used by multiple packets in the same

attack flow. While these assumptions are typically valid in wired networks, they generally

do not hold in MANET.

The closest candidate that we can base our work on is the Source Path Isolation En-

gine (SPIE) proposed by Snoeren et al. [80], which only requires a single attack packet as

evidence. The major problem with this scheme is its centralized design where a number

of trusted global and regional servers to collect and process information are required. In

a pure form of ad hoc networks, it is not always feasible to find nodes that can be fully

trusted. In this chapter, we propose a fully distributed design without this requirement. In

addition, our protocol is able to reconstruct the attack path even when the topology has

been changed from the time the path was actually used. The original SPIE protocol cannot

address this because it relies on static network topology.

We further address the problem when the victim may have very limited resource to han-

dle the necessary computation under a heavy bandwidth consumption attack by proposing

three different protocols: Investigator Directed, Volunteer Directed and Fast Filtering. We

argue that by performing differentiated response actions in different critical levels, we can

provide the best trade-off in terms of resource consumption, usability and security.

80



7.2 Problem Statement

The original traceback problem defined in the wired network attempts to identify the true

identity of the source of an attack packet. In this work, we study how to identify at least one

malicious node that involves in the attack that is being investigated. The original problem is

much harder to be addressed in a highly vulnerable environment such as MANET, because

a malicious router may modify any packet it forwards in an arbitrary way and it is not

always possible to reveal the original source based on the modified packet.

We assume that an Intrusion Detection System (IDS) agent, which may or may not

reside on the victim host (for example, the cluster-based agent in Chapter 5) can detect

intrusions on behalf of the victim. Therefore, the traceback can be triggered even if the vic-

tim itself is compromised. In this work, we refer to the IDS agent that triggers a traceback

session as the investigator.

7.2.1 Secure Communication

In the protocols discussed in this work, a broadcast authentication protocol is required as the

underlying mechanism for the traceback protocols. There are several choices. The common

choice utilizes public-key cryptography in a self-organized fashion [14]. Alternatively, we

can use light-weighted symmetric cryptography based on one-way hash chains and time

synchronization, such as TESLA [31] or µTESLA [55]. Both asymmetric and symmetric

primitives have their advantages and disadvantages. In our protocols, we prefer public-

key signatures. Since traceback is infrequent, it introduces little impact on the overall

performance.

We assume that a pre-deployment key establishment protocol, such as [33], is in place

so that key credentials are stored securely in every node during the system initialization

stage. The key credentials may be revealed, but only when the node who holds the cre-

dential is compromised. In general, node compromise may require significant efforts.

Therefore, we also assume that there will be no node being newly compromised during
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a traceback session.

Furthermore, we assume that traceback messages will eventually reach their destina-

tions as long as the network is fully connected. First, a reliable transmission protocol,

such as TCP, is used to prevent accidental packet loss due to wireless congestion or other

transmission errors. Second, in order to mitigate the problem where packets may be in-

tentionally dropped by intermediate malicious routers, a number of existing solutions can

be considered. One possible solution is to explore the network for alternative uncompro-

mised paths [32], if there are multiple paths available to the destination and the adversary

cannot control all of them. Another approach is to require that any router that transmits

an authenticated traceback message must ensure that the packet is forwarded by the next

hop correctly, using either neighbor monitoring [59] or IDS based solutions. Since we use

a reliable transmission protocol, a message being dropped by an intermediate router will

result in retransmissions and thus monitoring techniques, for example, our statistics-based

IDS, may be used to detect such an attack. Note that the source addresses of the traceback

messages cannot be spoofed because they are always authenticated. This eliminates the

need to run tracebacks recursively.

Note that we do not require normal traffic to be secured in a similar way as the traceback

protocols does, because not all protocols or applications can afford the computational costs

implied by the authentication schemes.

7.2.2 Goals

The best result from a traceback solution in the wired network is an attack path from the ad-

versary site to the victim site. Many wired traceback schemes consider only one malicious

attack source, and assume that intermediate routers are secure and reliable. In MANET,

these assumptions do not hold and thus alternative approaches are needed. In addition, the

“first-hop” problem also has to be addressed differently: the attack source may be aware

of being traced, thus the best a traceback scheme can do is to identify the first (gateway)
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router that forwards the attack flow. In a typical wired environment, the adversary and the

gateway router belongs to the same administrative domain where audit logs and other lo-

cal measures often provide sufficient clues to identify the adversary. In MANET, there are

no equivalent administrative domains with a physical boundary, thus making the problem

much harder.

In this work, we propose a different approach what we call hotspot-based traceback. A

hotspot is a suspicious area where one or more unknown adversaries may reside or resided

and it is covered by the transmission range of a particular node. The node itself may or

may not be malicious. Once a hotspot is identified, offline or online investigation can be

conducted there to identify the exact identity of the adversaries. Solutions ranging from

neighbor monitoring [59], physical security [82, 15] to human intelligence may be used.

Our protocols rely on these underlying mechanisms. It should be noted that there may be

multiple hotspots detected in a single traceback. However, hotspot analysis is generally

expensive, thus our goal is to find the hotspots as accurate as possible.

We present the related concepts and a more formal problem statement below.

7.2.3 Definitions

Formally, we define an attack path of a specific packet P as the transmission path from the

attack source to the victim. A path does not contain loops, branches, or duplicated nodes.

We say a node (or router) is malicious or compromised if it can perform arbitrary ac-

tions that do not follow normal behavior. Otherwise, it is referred to as well-behaving or

non-malicious. Let us define an AP fragment as a consecutive sequence of well-behaving

routers within the attack path. The whole attack path can thus be seen as an interleaving

sequence of compromised routers and AP fragments. We define an observable AP frag-

ment, OAF, as an AP fragment where all routers compute the same digest1 of packet P as

the victim does. Since packet headers may be modified by compromised routers, not all

1We will define the digest function in Chapter 7.3.1.
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AP fragments are observable. However, we know the last OAF which ends at the victim

must be observable based on the definition of an OAF. We define this special OAF as the

essential attack path, or EAP. Note that the victim itself may or may not be included in

EAP, depending on whether it is well-behaving or not.

A hotspot-based traceback scheme is then expected to discover the well-behaving router(s)

next to one of the malicious nodes as a hotspot. In addition, a malicious node not in the

attack path may want to mislead the traceback investigation by providing false information.

Our approach would identify such node directly as a hotspot, thus thwarting these types of

attacks.

B1 G1 B2 G3 G4 B4 G5 G6 V

Attack Path (AP)

unobservable
AP

Fragment
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Fragment
(OAF)

Essential
Attack

Path (EAP)

B3G2

Figure 13: Attack Path

Figure 13 illustrates the example of an attack path from the attack source B1 to the

victim V . Assume all B nodes are malicious (bad) and all G nodes are well-behaving

(good). Further assume B3 alters the packet digest, while B4 does not (it can still introduce

other attacks as we will show later), then we can identify two observable AP fragments,

including the EAP, as shown in Figure 13. The hotspot-based scheme may not identify the

attack source B1 because G1 is not observable any more. But it would find at least some (if

not all) of the three hotspots (shown in dash circles) centered at G3, G4 and G5, respectively,

because B3 and B4 are malicious.

To summarize, the traceback problem can be addressed with hotspot-based traceback

by finding at least one true hotspot and perform hotspot analysis on these hotspots. In the

rest of this work, we focus on the problem of how to detect hotspots.
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7.3 Existing Protocols

Many existing traceback protocols are not suitable for MANET. We illustrate two major

problems. First, dynamic topology is a key characteristic of MANET in that the active

route between any source-destination pair may vary from time to time. Packet-marking

based traceback techniques [75, 81, 92], for example, assume that the same routing path is

used by all packets within a single attack flow and thus cannot work effectively in MANET.

Another issue is the trustworthiness of intermediate routers that forward the attack

packet. In wired networks, the majority of core backbone routers are well protected and can

be assumed secure in most scenarios. Many traceback schemes rely on this assumption.

7.3.1 The Source Path Isolation Engine (SPIE)

Let us first review some of the basic elements in the SPIE [80] approach.

Infrastructure In this framework, every SPIE-enabled router runs a Data Generation

Agent (DGA) where a Bloom filter [7] based digest table is used to store the digests of all

packets it forwards. The Bloom filter provides a space-efficient probabilistic membership

testing structure, the details of which will be examined in Chapter 7.4.2. In addition, there

are multiple SPIE Collection and Reduction (SCAR) agents where each SCAR agent is

responsible for collecting results from all DGA within a network region. Finally, SPIE

Traceback Manager (STM) controls the whole SPIE system. If an attack packet is detected,

a traceback request that contains the digest of the attack packet is sent to STM, which in

turn asks all SCARs in its domain to poll their respective DGAs for the relevant packet

digest. An SCAR periodically collects the digest tables from its regional DGA agents. A

partial attack path can thus be reconstructed by examining the DGA tables in the order they

would have been queried if a reverse-path flooding were conducted. Eventually, the attack

graph is fully reconstructed by combining the partial graphs from all SCARs.
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Digest Input In the SPIE framework, the digest is computed based on the hash of the

20-byte IP header plus the first 8 bytes of packet payload. Only non-mutable fields in the

header are used. This excludes fields such as Type of Service, TTL, and Checksum. It is

shown that the non-mutable fields can identify most packets uniquely with the collision rate

less than 0.001% percent in a wide area network and 0.15% in a local area network [80].

It should be noted that valid IP packets might be transformed while traversing the network.

Examples are fragmentations and ICMP messages. Packet transformation is addressed

efficiently in SPIE with a transform lookup table, where the additional storage requirement

is minimized.

The major problem to apply the SPIE scheme in MANET is that a central authority

(STM) and a number of regional agents (SCAR) are required. We have asserted that the

requirement for these hosts to be fully trusted is too strong for MANET. Instead, we propose

a different distributed scheme, namely, Hotspot-Based Traceback.

7.4 Basic Mechanisms
7.4.1 Overview

First, let us assume that the investigator for a traceback session itself is well-behaving. This

requirement will be relaxed later in Chapter 7.4.6.

Given this assumption, a natural alternative to the SPIE infrastructure is to use the

investigator as the replacement of STM and all SCAR agents. The investigator first broad-

casts a query that contains the digest of an attack packet and then collects responses from

all routers that have previously forwarded the packet. The dynamic topology in MANET,

however, makes the subsequent attack path reconstruction problem much harder. Without

a global route topology, we cannot know the order of the routers in the original attack path

without additional information. One possible solution is to require every router to remem-

ber the timestamp when a packet was forwarded, but comparing the timestamps provided

by different routers requires (securely) synchronized clocks, which may be expensive.
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Instead, we require each router to record two measures: the TTL value observed from

the forwarding IP packet (Chapter 7.4.3) and the neighbor list, i.e., the nodes within its own

transmission range (Chapter 7.4.4). An attack graph can then be constructed by finding all

edges between two neighboring nodes, where two nodes become neighbors if they have a

TTL difference exactly by one and/or they are in the neighbor lists of each other. Finally,

the hotspots can be detected based on the constructed attack graph. We note that both TTL

and the neighbor list may be inaccurate due to the existence of malicious nodes and other

factors, but it does not prevent us from using them effectively to detect true hotspots. We

illustrate the Attack Graph Construction Algorithm and Hotspot Detection Algorithm in

Chapter 7.4.5 and Chapter 7.4.6, respectively.

7.4.2 Tagged Bloom Filter

The TTL value must be stored along with every packet a router forwards. Maintaining

a separate lookup table has a huge storage requirement, and thus defeats the purpose of a

Bloom filter. In this subsection, we present an extension to the basic Bloom filter to address

this problem.

A Bloom Filter [7] is used in SPIE to provide efficient probabilistic membership testing.

The basic structure consists of a bit table with m bits and k independent hash functions that

each maps an input value to an index into the table. Initially, all bits are set to zeroes. When

an element x is inserted, the hashes of x produce k indices and the corresponding bits are

set. Later, if the membership of an element y is queried, we compute the hashes of y and

assert that y is a valid member if and only if all k bits at these indices are set.

The hash functions must be chosen randomly from a universal hash family so that the

hash results are uniformly and independently distributed. Although not required in SPIE,

we expect the hash functions to have the property of second pre-image resistance (i.e., it is

hard to find a different element that has the same hash of a known element). Without this

requirement, a compromised node can fabricate an attack packet that is indistinguishable
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from a non-attack packet, which complicates our design. In practice, we generate a series

of k hash functions using the keyed hash function HMAC-SHA1 with k different random

keys. We use the HMAC function because it is popular and implemented in many crypto

libraries. A more efficient hash function, such as UMAC [6], may also be used.

We propose an extension of the basic Bloom filter where an additional tag associated

with an element can be stored. It is called a Tagged Bloom Filter or TBF. It can be imple-

mented with only minimal modification to the underlying data structure: instead of a single

bit, multiple bits are stored in each table entry2. Let us assume c bits are necessary for each

tag. Our algorithm, however, allows only 2c − 2 valid values ∈ [0, 2c − 3]. 2c − 2 and 2c − 1

have special meanings, which are hereby referred to as the invalid tag and the empty tag

respectively.

Initially, all entries are initialized to the empty tag (which is equivalent to set 1s on all

bits. Note that this is different from the basic Bloom filter). The insert operation for an

element with tag t examines the k entries corresponding to the element: if an entry contains

the empty tag, it is changed to t; otherwise it is changed to the invalid tag to indicate that a

conflict has occurred. Finally, a membership test operation returns either the empty tag if

at least some of the k entries are empty, the invalid tag if all entries contain conflicts, or the

smallest tag value from all valid entries. We illustrate these operations in Algorithm 9.

It should be noted that a TBF always has zero false negative rate, i.e., query for any

element that has been inserted will always be successful. However, an effective TBF must

ensure both the invalid tag rate and false positive rate, the probabilities when an invalid tag

is returned and when all k entries are set but the element was never inserted, are sufficiently

small. After n items are inserted, the probability that a particular entry is not used by any

of the nk hashes is (1 − 1/m)nk. Hence, the invalid tag rate can be computed as

µ =

1 − (
1 −

1
m

)knk

≈ (1 − e−kn/m)k

2The Counting Bloom Filter presented in [23] also uses multiple-bit entries, but it serves a different pur-
pose and its operations are different.
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insert(element, t) begin
foreach i in [1, k] do

if TBF[hi(element)] = 2c − 1 then
TBF[hi(element)]⇐ t;

TBF[hi(element)]⇐ 2c − 2;

end
test(element) begin

if ∃ i, s.t. TBF[hi(element)] = 2c − 1 then
return 2c − 1;

return mini∈[1,k](TBF[hi(element)]);
end

Algorithm 9: Tagged Bloom Filter Operations

Similar analysis can show that the ε, the false positive rate, is equal to µ. We summarize ε

and µ in Table 14.

Table 14: Tagged Bloom Filter: Probability Matrix

returned tag
t 2c − 2 (invalid) 2c − 1 (empty)

never inserted ε 1 − ε
inserted with tag t 1 − µ µ 0

We observe that ε (or µ) is minimized when k = m
n ln 2, which yields εmin =

(
1
2

)m
n ln 2
≈

0.6185
m
n . The storage requirement can then be computed as cm, or cnk/ ln 2 bits if the

optimal k is used.

7.4.3 Relative TTL

Definition 8. We define the c-bit Relative TTL, or RTT L, of packet P as

RTT L(P) ≡ TT L(P) mod (2c − 2)

where TT L(P) comes from the IP header of P.

Lemma 1. Assume packet P is forwarded from router A to router B where both A and B

are well-behaving, the RTTL values for P stored on A and B satisfy

RTT LA(P) = RTT LB(P) + 1 (mod 2c − 2).
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Proof. The proof immediately follows the fact that when a well-behaving router forwards

P, the TTL field is always decremented by one. Note that we cannot guarantee this if either

A or B is malicious. �

When an incoming packet P is observed, a router adds the packet to TBF with RTT L(P)

as the associated tag. In order to determine c, the bit-storage requirement for each table en-

try, we need to bound the maximal length of a normal route so that no two routers in a

consecutive sequence of well-behaving routers will have the same RTTL values. The pa-

rameter can be determined based on the underlying routing protocol and network topology

settings. In the scenarios used in our simulations, we choose c = 4, because a maximal

route length of 24 − 2 = 14 is sufficient for most scenarios.

The TTL field may be modified by a compromised router in the attack path. However,

if we only consider an observable AP fragment (such as the essential attack path EAP), we

can guarantee that the RTTL values stored on all routers in the same OAF are continuous

and monotonically decreasing (in modulo arithmetic).

7.4.4 Local Neighbor Lists

Even though the invalid tag rate is fairly small, the chance that at least one router returns an

invalid tag in a long attack path can be much larger. This may prevent the attack graph from

being fully reconstructed. As a remedy, we obtain the local connection topology from all

matching routers. More specially, we obtain NL(A) from router A, the set of neighbors that

were within its transmission range when the packet was forwarded. It can be obtained using

the standard HELLO broadcast technique: a node A broadcasts a HELLO(A) message

with TTL=1 during every HELLO_INTERVAL. Node B which receives the HELLO(A) will

include A in its NL(B). The entry will be expired after one HELLO_INTERVAL, unless

a subsequent HELLO(A) has arrived by that time. Note that we do not require HELLO

messages to be authenticated. Therefore, it is possible for a malicious node to hide its own

address completely or masquerade as another node. Even without a malicious neighbor, the
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neighbor list may not be identical to the topology when the packet was actually forwarded,

due to wireless collision and node mobility. To ensure that neighbor lists can return useful

results, we assume that the global parameter ρ, defined below, should be sufficiently close

to 1.

Definition 9. ρ is defined as the lower bound of Pr(A ∈ NL(B)) for all distinct node pairs

A and B, given that A and B were well-behaving neighbors of each other when a packet

was forwarded within the latest HELLO_INTERVAL.

7.4.5 Attack Graph Construction

At the end of a traceback session for an attack packet P, an investigator collects summaries

in the form of S i ≡ {Ri,RTT LRi(P),NL(Ri)} from all routers where P was matched. We

assume that the investigator also generates a summary on behalf of the victim, of which

the RTTL tag is always valid because it is obtained directly from the attack packet. We

note that other summaries may come from three sources: well-behaving routers that match

the digest; well-behaving routers with a false positive in its TBF; and arbitrary malicious

nodes. Algorithm 10 returns an attack graph AG based on the summaries, where VIC is the

address of the victim.

The algorithm runs in O(|V |2) in the worst case. First, lines 4-5 (case 1) add a route

edge x → y if x and y have consecutive and valid RTTL tags. Second, lines 6-11 (case 2)

add two route edges y → x → z if x has an invalid tag but both y and z have valid tags

that are differed by two and they are both neighbors of x. If there is another satisfying

sequence u, x,w where x may be assigned a different RTTL, we add route edges for them

as well (since adversaries may add arbitrary neighbor relationships, allowing only one such

sequence may introduce attacks that prevent the true edges from being added). By gener-

ating a pseudo x separately for each possible RTTL tag (line 9), we prevent invalid path

traversals, such as y → x → w in the previous example. Pseudo nodes with different tag

values are considered different nodes, therefore may be traversed within a single route path.
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Attack_Graph({Ri,RTT LRi(P),NL(Ri)},VIC, c) begin1

V ⇐ {R1,R2, . . .};2

E ⇐ {};3

foreach x, y in V s.t. (RTT Ly(P) , 2c − 2 ∧RTT Lx(P) = RTT Ly(P) + 1 (mod 2c − 2)4

∧x , VIC) do
E ⇐ E ∪ {x→y};5

foreach x in V s.t. (RTT Lx(P) = 2c − 2) do6

foreach y, z in V s.t. (x ∈ NL(y) ∧ x ∈ NL(z) ∧RTT Lz(P) , 2c − 27

∧RTT Ly(P) = RTT Lz(P) + 2 (mod 2c − 2) ∧y , VIC) do
val = RTT Lz(P) + 1 (mod 2c − 2);8

Generate a pseudo node xval;9

foreach yi, zi in V s.t. (RTT Lyi(P) = RTT Ly(P) ∧RTT Lzi(P) = RTT Lz(P)) do10

E ⇐ E ∪ {yi→xval, xval→zi};11

return AG ≡ 〈V, E〉;12

end13

Algorithm 10: Hotspot Attack Graph Construction

Figure 14 illustrates a possible output from Algorithm 10 with c = 4 where letters A

through J denote the output vertices and the arrows represent the output edges. The dashed

lines reflect the local connection topology obtained from the neighbor lists, i.e., x and y are

dash-connected if either x ∈ NB(y) or y ∈ NB(x). I → J and D → E → F demonstrate

cases 1 and 2, respectively.

The following theorem shows that with high probability, an edge in some OAF is em-

bedded in the output attack graph AG. We note that EAP, the final OAF, should include

VIC because the investigator, on behalf of the victim, is assumed to be well-behaving.

Theorem 1.

Pr(E ∈ AG|E ∈ some OAF) ≥ (1 − µ)2(1 + λµρ2)

where µ is the invalid tag rate defined in Chapter 7.4.2 and λ is the number of well-behaving

sibling routers of E. Node z is a sibling router of edge E = x→ y if either z→ x or y→ z

is in the attack path. An edge that connects to the victim is considered to have an additional

(virtual) well-behaving sibling router on its right.

Proof. Assume the attack path consists of L nodes: R0 → R1 . . . → RL where R0 is the

92



Figure 14: Attack Graph Example

attack source and RL is the victim. We also add a virtual well-behaving RL+1 after RL to

simplify the discussion. For each Ri, we define V(Ri) to be the event that Ri returns a

summary and it contains a valid RTTL tag, i.e., V(Ri) ≡ RTT LRi(P) < 2c − 2.

Consider edge Ei = Ri → Ri+1 where i ∈ [1, L − 1] and both Ri and Ri+1 are well-

behaving, we have:

Pr(Ei ∈ AG) ≥ Pr(V(Ri) ∧ V(Ri+1))

+ ρ2Pr(V(Ri) ∧ ¬V(Ri+1) ∧ V(Ri+2))

+ ρ2Pr(V(Ri−1) ∧ ¬V(Ri) ∧ V(R2))

(7.4.1)

where the first term comes from case 1 (Algorithm 10), while the second and third come

from case 2. Also note that Definition 9 guarantees that Pr(Ri ∈ NL(Ri+1)) ≥ ρ and

Pr(Ri+1 ∈ NL(Ri)) ≥ ρ.

We now derive Pr(V(Ri)). First, it may be arbitrarily small if Ri is malicious. Second,

Pr(V(RL)) = 1 because the investigator always returns a valid RTTL on behalf of the victim.

Otherwise, Pr(V(Ri)) = 1−µ. By computing (7.4.1) using these Pr(V(Ri)) values, we prove

the theorem. �
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Based on Theorem 1, the probability that the essential attack path of length l is fully

embedded in the output attack graph is

PEAP(l, µ,ρ) =
∏

i

Pr(Ei ∈ AG)

≥ (1 − µ)2l(1 + 2µρ2)l−1(1 + µρ2).

For instance, PEAP(13, 0.00781, 0.85) ≥ 0.938. It corresponds to the longest path with the

number of bits per entry c = 4, the number of hashes k = 7, and ρ = 0.85.

7.4.6 Hotspot Detection

Theorem 1 shows that with high probability, every observable AP fragment OAF is fully

embedded in the output attack graph, i.e., OAF ⊆ AG. Algorithm 11 searches for all

possible hotspot(s) in AG based on this result where IV is the address of the investigator

and τ is a parameter to be determined. In this algorithm, we define a V-path to be a maximal

path embedded in AG that ends at victim VIC. A V-path is maximal in the sense that any

V-path is not a proper subset of another V-path. We refer to the first τ nodes of a V-path as

its head with size τ.

Hotspot({RTT LRi(P)}, AG = 〈V, E〉,VIC, IV, c, τ) begin1

S ⇐ {IV};2

T ⇐ {};3

Find all V-paths using a reverse depth-first search from VIC;4

foreach V-path VP ≡ R1 → R2 → · · · → VIC do5

T ⇐ T∪{all nodes in VP};6

S ⇐ S ∪ {R1,R2, . . .Rτ};7

foreach x in V − T s.t. (RTT Lx(P) , 2c − 2 ∧(¬∃z s.t. x→z ∈ E ∨¬∃y s.t. y→x ∈ E)) do8

S ⇐ S ∪ {x};9

return S ;10

end11

Algorithm 11: Hotspot Detection Algorithm

Lines 4 in Algorithm 11 find all V-paths by performing a depth-first search on the

reverse graph of AG (obtained by reversing the directions of all edges in AG) and returning
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the (forward) paths from each leaf to the root VIC. Lines 5-7 return the head of every V-

path with size τ as hotspots. Theorem 2, to be given soon, shows that with high probability,

at least one true hotspot can be found through V-path searching. Lines 8-10 find additional

hotspots within nodes that do not have a V-path to VIC. Here, a node x is identified as a

hotspot if it does not have either an outgoing or an incoming edge. It can only happen if (a)

x is malicious, (b) x is the first node of an OAF, or (c) x is the last node of an OAF. In all

these cases, x is a hotspot.

We relax the earlier assumption that the investigator must be well-behaving here, by

including IV directly (line 2) as a hotspot. This is useful because it thwarts a potential attack

where a malicious investigator starts a traceback with a normal packet captured elsewhere.

Figure 15 demonstrates an example attack graph where Q is the victim. Algorithm

11 returns {A,O}. They correspond to V-paths A → · · · → N → O → P → Q and

O → B → · · · → N → A → P → Q (there are two other V-paths, but they also return

either A or O). Consider a different attack scenario where H is compromised and chooses

not to respond, the algorithm will return {I, G} instead, and we can see that H becomes a

hotspot target.
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Figure 15: Hotspot Detection Example

Note that the true EAP may be one of these V-paths, but it is not necessary for us to

find out the exact EAP, because the number of possible V-path heads are much smaller than
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the number of V-paths. The following theorem further characterizes the V-path searching

procedure.

Theorem 2. V-path searching Given that every OAF is fully embedded in AG with high

probability (P0), the probability that V-path searching in Algorithm 11 returns at least one

true hotspot is at least P0(1 − ετ
′

) where τ′ = min(τ, minimum length of all V-paths).

Proof. If there is a V-path with length 1, i.e., it contains VIC only, VIC is obviously a

hotspot and the theorem is proved. Otherwise, assume that there is at least one V-path VP

with length > 1 and w is the first node of VP.

Define an equivalent set of v to be the set of all nodes with RTT L = v (VIC is a

special case that does not belong to any equivalent set). If RTT Lw(P) = x, we call W

the equivalent set of x (i.e., ∀w′ ∈ W,RTT L′w(P) = RTT Lw(P)), and U the equivalent set

of x − 1 (mod 2c − 2). The construction of AG guarantees that ∀u ∈ U ∧ w ∈ W, edge

u → w ∈ AG. Since w is the head of VP, either there is no node in U or all nodes in U are

connecting to other nodes in W somewhere in VP. Hence, |U | < |W |.

For all w′ ∈ W, by simply exchanging w and w′ in VP, we can obtain another valid

V-path with w′ as its head (of size 1). Therefore, we have W ⊆ S , i.e., either all nodes in

the same equivalent set will be returned as hotspots or none of them will be returned.

Assume that every OAF is fully embedded in AG and there is no false positive outputs

from the TBF of a well-behaving node, i.e., ε = 0. We can assert that there is at least one

node w′ in W that is either malicious or the first node of an OAF, in other words, a hotspot.

Otherwise, every node in W must have a preceding well-behaving node in the same OAF

that must be in U. Thus, we should have |U | ≥ |W |. This leads to a contradiction.

We now consider the general case ε ≥ 0. A false positive node has the same effect as a

malicious node, but the algorithm will fail if we only return false positives as hotspots. The

probability that a false positive is chosen as the head (with size 1) of a V-path is at most ε.

Therefore, the probability that all τ′ nodes in the head of every V-path are false positives is

at most ετ
′

. �
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Furthermore, we can bound the total number of hotspots returned by Theorem 2. First,

note that a normal route does not exceed 2c − 2 hops. A compromised router B, however,

can break the maximum-length rule by (1) introducing an artificial TTL gap so that two

well-behaving routers separated by B may have the same RTTL tag, (2) forwarding the

packet through a non-optimal route. Given that a single B can only increase the maximum

route length by at most 2c − 2, we can derive that an attack path containing at most q

compromised routers will have at most 1 + q well-behaving nodes in any equivalent set,

therefore at least 1
2+q outputs from V-path searching are true hotspots.

7.5 Hotspot-Based Traceback Protocols

Bloom Filter Capacity The digest table, implemented as a Tagged Bloom Filter (TBF),

is used to record the packets captured at each router. It is sufficient to only store the traffic

within the most recent TRACEBACK_INTERVAL, which is defined as the largest time gap

between the time a router recorded a packet and the time the packet may be queried for

the purpose of traceback. TRACEBACK_INTERVAL is associated with the capability of IDS

agents: The faster an IDS agent can detect attacks, the shorter the TRACEBACK_INTERVAL

has to be. Note that TRCEBACK_INTERVAL may be larger than HELLO_INTERVAL. It in-

troduces a problem because the neighbor list when a traceback is triggered may not be

consistent with the one when the packet was forwarded. The problem can be solved by

maintaining a set of buffers where each buffer Bi ≡ 〈T BFi,NLi〉 stores the data for each

HELLO_INTERVAL. To guarantee that these buffers are always available within one cycle of

TRACEBACK_INTERVAL, we only need to maintain up to max = TRACEBACK_INTERVAL
HELLO_INTERVAL

+1 buffers

and reuse them cyclically. When a packet is queried, we start with the most recent buffer

and check backwards if there is no match in the current buffer, until all max buffers have

been checked.

Protocol 1 - Investigator Directed We first introduce the basic protocol, where the in-

vestigator sends out traceback request, collects the response from all matching routers, and
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computes the hotspot list. The protocol involves three rounds:

• Request The investigator broadcasts a traceback request to the entire network. The

request is defined as INV(vic, iv, seq, hash)3. , where vic and iv are the

addresses of the victim and the investigator respectively, hash is the digest of the

attack packet P, and seq is a sequence number that is automatically incremented by

the investigator for every new INV in order to prevent replay attacks.

• Reply Every node responds to the INV message by querying its digest table, after

it determines that the message contains a valid signature and is not a duplicate. If

the digest table contains no match, the request is silently ignored. Otherwise, the

router sends a summary of its own results, ACK(vic, seq, router, rttl, nl),

back to the investigator, where the router’s address, the RTT L tag associated with the

packet, and the neighbor list associated with the matching TBF are included.

• Collection The investigator waits for the worst-case RTT (round-trip time) plus the

largest router processing time to ensure that all matching routers have responded. It

then runs the Attack Graph Construction Algorithm (Algorithm 10) and the Hotspot

Detection Algorithm (Algorithm 11) sequentially. A list of hotspots is reported to an

offline authority where hotspot analysis will be conducted.

Protocol 2 - Volunteer Directed The Investigator Directed protocol suffers from the

bandwidth consumption attack where the investigator may not have sufficient resources to

receive and handle all ACK messages. One solution is to give priority to ACK messages and

other traffic may be discarded if necessary. However, the adversaries may still be able to

launch Denial-of-Service attacks with bogus ACK messages because verifying the authen-

ticity of an ACK message is a non-trivial operation. Instead, we propose a new protocol,

3Although we do not state explicitly, all protocol messages use the broadcast authentication protocol to
protect its authenticity and integrity.
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namely Volunteer Directed. It chooses a number of third party nodes that perform ACK col-

lection and hotspot computation independently. One possible way to choose these nodes is

to deploy behavior-based trust management [59] so that only the most trusted servers are

used. We propose here a more general solution that does not require such an infrastructure.

It is similar to Investigator Directed but with the following differences:

1. Two additional fields, rttl and nl, containing the RTTL tag and the neighbor list

observed by the victim, are attached to the INV message.

2. Every router that receives INV determines whether it wants to be a volunteer with

probability α, prior to digest table lookup. If it volunteers, broadcast message

VLT(vic, seq, volunteer).

3. A matching router caches the ACK message. Instead of being sent to the investigator,

the cached ACKmessage is transmitted to a volunteer from whom a valid VLTmessage

is received. To ensure the cache size does not increase infinitely, an expiration time

is associated with every cached ACK.

4. A volunteer performs the same Collection round as performed by the investigator in

Protocol 1.

By having multiple volunteers, the communication overhead slightly increases. Hence,

one may prefer to suppress duplicated volunteers when the first volunteer broadcasts its

intent. However, this can also help adversaries because a malicious node can volunteer

quickly to suppress others, and then never deliver the hotspot list to the offline authority.

There is another more serious problem. We can ensure that a malicious node does not

forge summaries from well-behaving routers because they are signed (the signature can be

examined by the offline authority if necessary). But a malicious node can deny that some

summaries have ever been received, thus changing the attack graph and eventually altering

the resulting hotspot list. Unless a complicated protocol that implements non-repudiation
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is used, this situation cannot be prevented. Our approach, instead, is to keep multiple

volunteers with the hope that at least one of them is well-behaving.

Protocol 3 - Fast Filtering In the third protocol, we consider the most critical scenario:

the investigator requires immediate response to filter out the attack flows. We define an

attack flow as a number of attack packets delivered from the same attack source but possibly

with different (spoofed) source addresses. The previous protocols require offline analysis

and are thus not suitable to guide packet filtering. Instead, we can deploy a Fast Filtering

approach where filtering is conducted on the routers that actually forward the attack packet

in real-time. This protocol works by assuming the topology does not change too frequently,

thus most routers will still be used to forward subsequent packets in the same attack flow.

A straightforward approach requires all routers that contain a matching digest of an

attack packet to drop subsequent traffic destined for the victim. The major problem with

this approach is false positives. Not only does the attack flow get dropped, normal flows

destined for the victim may use these routers as well, and thus suffer from the unconditional

dropping. Instead, our approach assigns a different dropping probability for each router

based on its distance to the victim. Intuitively, a smaller dropping probability should be

used on a router closer to the victim, because the chance that this router is used by normal

flows is likely to be larger.

Assume we choose a dropping probability pi for a router whose distance to the victim

is i, the Fast Filtering protocol can then be briefly described as follows. A matching router

R estimates its distance to the victim as i = (RTT LR−RTT LVIC) (mod 2c−2). It then adds

a filter rule that drops all packets destined for the victim with probability pi. The filtering

rule can later be removed if so requested by the victim.

How to assign these probabilities optimally is a hard problem. We illustrate one solution

based on a simplified theoretical analysis with a random compromise model. Consider a

uniform distribution in an infinitely large map where each node has d neighbors (Figure 16).
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The sources of the traffic destined for V are randomly distributed, while the optimal route

with the shortest path can always be found. We assume every node may be compromised

with probability β. Assume the attack path is X to V , where X is the attack source and V is

the victim. We assume that the attack path contains k intermediate routers, R1 to Rk, where

the index stands for the distance to V .

Figure 16: An Ad Hoc Network with Uniform Distribution (d = 6)

First, we observe that there are i × d nodes that are i hops away from V . Therefore, the

probability that a node which is at least i hops away from V chooses Ri in its route to V is

1
id . Hence, the probability that a packet from a random source to V uses router Ri (but not

Ri+1) is 1
i(i+1)d . In this case, we denote Ri as the first filtering router of this packet.

Assume that router Ri drops any packet destined for V with probability pi. A com-

promised router would never drop attack packets, but drop packets in normal flows with

probability pi
4. We define PA as the probability that an attack packet from X is dropped

and PB as the probability that a normal packet is dropped. The objective of the optimiza-

tion problem can be defined by maximizing PA while requiring PB to be no more than γ,

the highest loss rate that can be tolerated on normal traffic.

An attack packet is not dropped when all intermediate routers are either compromised

4A slightly different attack model can use probability 1 instead. We do not address this variation here but
the analysis will be similar.
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or not dropping the packet (with probability 1 − pi). A normal packet is not dropped when

all routers from Ri to R1 choose not to drop it where Ri is the first filtering router of the

packet. The optimization problem can thus be formalized as:

maximize PA = 1 −
k∏

i=1

(1 − pi(1 − β)), given

PB =
k∑

i=1

1
i(i + 1)d

(1 −
i∏

j=1

(1 − p j)) ≤ γ

The optimal solution to this problem can be given by p1 = · · · = pi−1 = 0, pi = (dγ+ 1
k+1 )i(i+

1) − i, pi+1 = · · · = pk = 1, where i = b 1
dγ+ 1

k+1
c. The optimal PA is 1 − βk−i(1 − pi(1 − β)).

In practice, we do not know k precisely. An estimation with the average route length

can be considered as an alternative.

7.6 Simulation Results
7.6.1 Platform Setup

For most parameters, we use the same setup as Chapter 6.1. A few other parameters are

highlighted below.

We use a random waypoint model with maximum velocity = 20 m/s and pause time

= 50 seconds to show the effectiveness of our scheme in a high mobility scenario. The

number of bits per RTTL tag c = 4, and the size of a V-path head τ = 1. These parameters

are used throughout our experiments unless stated otherwise.

We assume that it is sufficient to store traffic within the last minute for traceback pur-

poses, i.e., TRACEBACK_INTERVAL = 60 seconds. We choose HELLO_INTERVAL to be 5

seconds, by which our simulation shows the neighbor list consistency probability ρ ≥ 0.85

under different levels of mobility.

7.6.2 TBF Storage Requirement

It is important to estimate the storage requirement because a TBF must be fully stored in

memory to support real-time membership queries. For simplicity at this moment, assume a
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large TBF is used where all incoming packets within the most recent TRACEBACK_INTERVAL

are recorded. Assume the average packet size is 1,000 bits, the number of bits per RTTL

tag c = 4, the number of hashes k = 7 (which corresponds to a false positive rate ε or

invalid tag rate µ ≈ 0.0781%). We first consider a normal operating environment that

delivers the user experience similar to a DSL connection where the average bandwidth

does not exceed 1Mbps. A TBF-enabled router needs 1M/1000 ∗ 60 ∗ 4 ∗ 7/ ln 2 ≈ 2.4M

to store a TBF table for one minute’s data, which should not be a constraint for most

modern devices. Secondly, we consider the worst case where a high-end scenario with

the full capacity provided by the 802.11a or 802.11g wireless standard is used and the

maximum bandwidth over a wireless link is 54Mbps. The footprint rises to about 131M.

While this is affordable even based on commodity hardware, the requirement can be heav-

ily reduced in practice because the achievable bandwidth is much lower due to wireless

collision and other physical constraints. Instead, a straightforward linear directory where

each entry contains a 160-bit SHA-1 packet digest and a 4-bit tag will take approximately

(160 + 4) ∗ 54M/1000 ∗ 60 = 531M for one-minute storage of traffic with full 802.11a(g)

capacity.

In our simulations, we choose HELLO_INTERVAL to be 5 seconds so that a total of

60/5 + 1 = 13 buffers are used. A careful reader would find out that the worst-case false

positive rate with the same k will be larger when multiple (and smaller) buffers are used.

By using k = 11, we obtain the same false positive rate compared with a full TBF when

k = 7. This corresponds to the memory footprints of 3.8M and 206M in the low-end and

high-end scenarios respectively.

7.6.3 Hotspot Detection

In order to evaluate the effectiveness of the Hotspot Detection Algorithm, we use a random

compromise model, where every node may be compromised with an equal probability β.

We consider the following two attacks:
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Figure 17: Hotspot-Based Protocol Performance

1. A router in an attack path is compromised and modifies the TTL field to a random

value.

2. A compromised node sends a summary for a traceback session with a random RTTL

and a random neighboring list.

Note that a compromised router that performs Attack 1 will also perform Attack 2 with

probability β in response to a traceback request or simply not respond.

We use the detection rate, the probability when at least one true hotspot is detected

from V-path searching, as the effectiveness measure. We also use the average number of

false hotspots per traceback session as the efficiency measure, because it reflects the extra

overhead when hotspot analysis is performed. Figure 17(b) shows both measures when the

compromise level β ranges from 0 to 1 with different values of c, the number of bits for
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each RTTL tag. We observe that the false hotspot number decreases when the compromise

level increases, because the V-path searching will more likely to stop at a malicious router

under a high compromise level. We also observe that the false hotspot number decreases

significantly when c changes from 2 to 3 but the difference is hardly distinguishable when

c changes from 3 to 4. It shows that most routes does not exceed 23 − 2 = 6 hops. This

matches the topology setting used in our experiments. In the mean time, the detection rate

increases slightly when the compromise level increases because it becomes less and less

likely for a false-positive well-behaving node to be the head of a V-path. Overall, we can

obtain 85% accuracy in detecting at least one true hotspot while the average false hotspot

number is less than one in the worst case.

To show similar curves for different τ values, we lower the maximum capacity of each

TBF (to the tenth of its optimal size) so that the false positive rate becomes much higher.

Figure 17(a) shows both measures where τ varies from 1 to 3 (c is fixed to 4). We can

see that the detection rate benefits from a larger τ, but the false hotspot number suffers.

In general, τ must be chosen properly to provide a good trade-off between the detection

rate and the false hotspot number if TBFs with a smaller capacity have to be used due to

memory constraints. In normal scenarios with the optimal TBF parameters, we observe

that τ = 1 is typically good enough.

7.6.4 Fast Filtering

To evaluate the Fast Filtering protocol, we choose a single attack path from each scenario

and apply fast filtering on all routers in this attack path. The filter index FI is defined as:

1 ≤ FI ≤ L, where L is the total number of routers in the attack path. We set the dropping

probability for router Ri (where i is the distance to the victim) as follows: ∀i < FI, pi = 0;

otherwise pi = 1. For the purpose of illustration, we first use a static topology (pause

time = 1,000 s). We vary the compromise level β, and observe the attack dropping rate

PA and normal dropping rate PB when various FI values are used in Figure 17(c). We
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see the similar behavior as the theoretical analysis shows: in a low compromise level,

PA is sufficiently close to 1, where the highest filter index can be used. In a medium or

high compromise level, PB decreases with a larger filter index, but PA decreases as well.

Therefore, the optimal point should be defined at the smallest FI where PB does not exceed

the pre-determined upper bound γ. For instance, if γ = 0.5, we can choose FI = 3, where

PA ≥ 0.8, even in a high compromise level.

We then experiment with a mobile topology (pause time = 50 s). In Figure 17(d),

we can see that the attack dropping rate becomes lower but a similar pattern as the static

scenarios can be observed in both rates.

7.7 Summary

In this work, we presented a distributed traceback approach where no trustworthy infras-

tructure is needed. Different from other traceback systems, we showed that in our scheme, a

single packet can be effectively used in traceback even when the routing topology has been

changed. Thus, our scheme is very suitable for MANET that consists of mobile nodes.

Our algorithms are able to detect the approximate locations where adversaries reside (but

not necessarily the original attack source), even in the face of arbitrary number of adver-

saries. Furthermore, we presented several traceback protocols. In particular, we showed

that a network-wide filtering scheme can be implemented effectively on top of the traceback

framework so that its impact on normal traffic is minimal.

Our system requires a traceback to be triggered promptly by an investigator. Otherwise,

the digests will be lost after some fixed interval. Although it may be desired to traceback

a historical packet when later evidence suggests that it is intrusive, we cannot lengthen

the time window infinitely due to memory constraints. One possible solution is to trade

off larger memory footprint with possibly slower access time. That is, we can utilize disk

storage to store old Bloom filters. Since real-time analysis is seldom needed in this case,

the trade-off is typically acceptable.
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CHAPTER VIII

S-MOBIEMU: SECURITY PROTOCOL EVALUATION

PLATFORM

We implemented our intrusion detection architectures and algorithms, and evaluated our

research prototypes using both simulation and emulation platforms.

Our first platform is ns-2 simulator [22]. Through our simulation study, we have already

gained extensive and valuable experience in using simulation software to implement and

evaluate our algorithms. We have also migrated our algorithms from ns-2 based simulation

to a more realistic platform. We use the MobiEmu software developed in HRL by Zhang

and Li [96], which provides a mobile ad hoc emulation on top of Local Area Networks

(LAN).

The reason why we apply this migration is multi-folded. The software uses packet

filtering based on source address to emulate dynamic topology. We believe MobiEmu can

be used as a base platform to build security solutions for MANET. It allows us to run

a wide range of MANET scenarios without the need to physically relocate participating

nodes, therefore we can reliably repeat the experiments for a large set of test cases and on

a practically large scale. In addition, we can easily evaluate real applications and obtain

real performance measurement data. Our experience of using MobiEmu in secure MANET

research has further validated these benefits.

Developing and evaluating secure mobile ad hoc networks in real systems is a complex

process that involves careful design of attack test cases and security countermeasures, as

well as meaningful performance measurements to evaluate both the impact of attacks and

the performance of security solutions. It is desirable to have a development and testing

environment that can automate this process. Although there are several such tools available
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for wired networks (such as LARIAT [53, 54]), little work has been done in the wireless

domains, and to the best of our knowledge, no such secure MANET testing systems exist

in the open literature.

For this purpose, we are developing a software framework, called S-MobiEmu, in the

secure MANET routing domain based on MobiEmu. In addition to the basic emulation

functionalities provided by MobiEmu, S-MobiEmu adds an attack emulation layer with

necessary API for easy development and execution of attack test cases. The test case repos-

itory is implemented as an attack library, which extends from a core foundation library

consisting of a full set of basic attacks, defined in Table 2. The repository is extensible as

compound attacks can be constructed using existing attacks as building blocks. Initially,

we have included several such well-known compound attack scenarios. Finally, a set of

measurement tools are also provided in a performance measurement toolkit.

Our successful experience confirms that the platform can greatly facilitate the develop-

ment of security solutions on MANET.

The history of security research and practice has taught us that security is an on-going

process and any secure system should undergo rigid test and re-test with carefully designed

attack test cases. Securing Mobile Ad-hoc Networks (MANET) should also follow this

process and it is extremely important to evaluate secure MANET software in real systems

and under real attacks.

Like any security system, a thorough evaluation of secure MANET software requires a

cycle of four steps (Figure 18). First, we must understand application objectives because

the ultimate test of success for a secure MANET is how well the MANET application

achieves its designed mission goal in spite of threats and attacks. This application under-

standing will help us design experiments, including the choice of test cases and evaluation

models. In test case development, we need to come up with a set of carefully designed

attack scenarios. Much like other testing in software engineering disciplines, this should

come after an extensive analysis of the potential threats to MANET objectives and the set
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Figure 18: The Circle of Securing MANET

of test cases should cover these threats extensively. Systematic approaches like our attack

taxonomy study in Chapter 2 can be used here in secure MANET test case development.

Next, secure MANET should be evaluated through experimentation. Unlike simulation,

actual experiments can allow both the actual application and security codes to run in the

same condition as in actual deployment. When the attack test cases are injected into the

experiment to create real intrusions, the behavior of the secure MANET system can be

observed and studied in face of these attacks. Furthermore, meaningful measurement and

evaluation can be conducted to gain qualitative and quantitative assessments.

Our past experience has also taught us that this process is non-trivial and time-consuming,

and it is desirable to have software tools and environments to automate and facilitate some

of the tasks. Although there are some such tools available for wired networks (such as

LARIAT [53, 54]), little work has been done in the wireless domains and to the best of our

knowledge no such secure MANET testing systems exist in the open literature.

The goal of this research is to develop such environment as an experimentation plat-

form for evaluating secure MANET. Given the potentially large amount of test cases and

MANET scenarios, this platform should support reproducible experiments and posses the

ability to inject attacks (test cases) automatically during an experiment. Further, this plat-

form should provide easy programming support for test case development, and a way to
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organize attack test cases in an extensible repository.

• The ability to run reproducible experiments repeatedly.

• The ability to inject artificial attacks (i.e., test cases) during experiments.

• Programming support for test case development.

• Extensible repository for organizing test cases.

• Performance measurement and evaluation tools.

We have developed a software system that meets the above goal. In the rest of this

chapter, we will describe the software architecture and explain each major components in

details. Especially, we will focus on the methodology and practice of attack emulation in

Chapters 8.3 and 8.4.

8.1 Architecture

We have developed such a software platform to facilitate the security development and

evaluation that meets the above goal. Architecture-wise it includes the following compo-

nents:

• A network emulator to provide a high-fidelity communication environment for re-

peatable and scalable mobile ad-hoc network experiments. This will allow us to test

real security code in real applications and real systems. The emulation of underlying

communication environment will allow us to test security in a wide range of different

scenarios and mobility patterns.

• An attack emulation system that is capable of injecting attack test cases during the

experiments. It installs hooks in certain MANET components and provides a pro-

gramming abstraction (an API) so that researchers can write attack logics in a way

independent from the actual MANET implementations. This is particularly useful
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because there can be a large number of test cases and it is impractical to modify a

huge number of MANET components to implement each test case.

• An extensible repository for test cases. The attack library should have the structure

to organize all the test cases and make it easily extensible to accommodate future

attacks. Based on the results of our attack taxonomy study, all attacks in MANET

can be composed from a set of basic attacks or other compound attacks. We should

therefore provide an object-oriented hierarchy in the repository to organize the test

cases, to assist attack composition into more complex attacks, and to make it easy to

add new atomic or compound attacks.

• A collection of instrumental, measurement, and data analysis tools to measure the

effectiveness and performance of the security solution in the experiments. This in-

cludes tools to log traffic and security-related events, tools to observe the state of the

network, and finally, tools to assess the effectiveness of the attacks and the state of

the applications.

8.1.1 Rationale for the Emulation Approach

The evaluation of secure MANET must be under a realistic MANET environment. Al-

though simulation tools like ns-2 [22] and QualNet is widely used for other MANET re-

lated experiments, they are not very suitable for this purpose. First, they do not have real

applications and thus attacks on application level cannot be easily ported and evaluated.

Second, it is impractical to obtain real and meaningful measurement data in a simulation

platform. And most importantly, the security of a real system should only be evaluated

with the real system and not on a simulated one.

The experimental environment should also be reproducible because this is important

in exploring design space and evaluating alternatives. A full-blown test with real wire-

less hardware may not be repeatable because it is difficult to reproduce the extra wireless
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communication environment and it can be too costly to try a wide range of mobility scenar-

ios [96]. Comparatively, the emulation approach has the advantage of both. We therefore

believe that emulation is the right approach for experiment with real applications and real

systems and yet be faithful to the actual communication environment (MANET).

8.1.2 S-MobiEmu
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Figure 19: S-MobiEmu Software Architecture

We have implemented this platform in a software system called S-MobiEmu, using ad-

hoc routing as an example application domain and intrusion detection as a security solution

case study. Figure 19 illustrates the software components and their relationship with respect

to the security solution being studied.

To support reproducible experiments, we build upon a publicly available wireless net-

work emulator called MobiEmu [96]. We add an attack emulation layer, called Basic Ad-

hoc Security Routines (BASR), as a common abstraction layer for attack injection and

for test case development. The test case repository is implemented as an attack library,

which extends from a core foundation library consisting of a full set of basic attacks. The

repository is extensible as complex attacks can be constructed using existing attacks as
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building blocks. Initially, we have included several such well-known complex attack sce-

narios. Finally, a set of measurement tools are also provided in a performance measurement

toolkit. Since functionwise this can be considered as an extension to MobiEmu, we call it

S-MobiEmu, with “S” meaning security.

8.2 Emulating MANET

The network emulation system in S-MobiEmu is based on MobiEmu [96] – a software

tool for testing “live” MANET systems in a laboratory setting. MobiEmu uses a cluster

of n Linux machines to emulate a MANET of n nodes (see Figure 20). Although these

testbed hosts are physically well-connected, the packet delivery behavior has been modified

at the network device layer to generate the effect of real-world wireless communications

and network dynamics. With MobiEmu, MANET software can be tested under the same

wireless communication characteristics and networking environment as if it were running

in a real MANET deployment.
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testbed network
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Figure 20: Emulating MANET with MobiEmu

MobiEmu experiments are driven by predefined network scenario, which is expressed
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in a history of node motions and link characteristics changes. The node motions can deter-

mine current connectivity topology, and the link characteristics include bandwidth, delay,

bit-error-rate, and loss rate. MobiEmu software enforces the topology and link characteris-

tics by setting proper packet filtering and queuing rules at the device driver layer.

The MobiEmu system operates in a master/slave architecture. The master controller

runs at a dedicated host outside the testbed network; a slave controller runs at each testbed

host. The master controller controls all slaves and synchronizes their actions: the master

dictates when changes (to topology and link characteristics) are needed according to the

scenario and instructs the slaves to enforce such changes. The master/slave communication

is on a separate control channel, which may be overlay on the testbed network if the overall

load is low.

There are many benefits of using MobiEmu to evaluate secure MANET. First, all net-

working and above is real in MobiEmu, meeting our requirements to run experiments with

actual secure MANET code. Second, since the communication effects are emulated, these

experiments are reproducible. And third, since MobiEmu allows we run a wide range of

MANET scenario without the need to physically move the nodes, we can easily repeat

the experiments for a large set of test cases. Our experience of using MobiEmu in secure

MANET research has further validated these points.

We have therefore use MobiEmu as the basis of our S-MobiEmu platform. To run

experiments, secure MANET software (i.e., the test subject) will be loaded in each testbed

host and run as if it were in a real deployment. S-MobiEmu accepts all MobiEmu scenarios,

although not all attack test cases would make sense in all network scenarios. MobiEmu

master controller has been extended to control and coordinate with attack emulation so that

both network emulation and attack emulation are in sync.
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8.3 Attack Emulation

The attack emulation layer in S-MobiEmu provides the means to test the security aspect

of the MANET system running in MobiEmu. It interacts with each node’s software stack

to inject the effects of a network under attacks. For example, if a MANET attack aims at

compromising a node’s routing agent and falsifying its route table, the attack emulation

layer will instruct the routing agent to make such alteration in its route table as if it were

indeed compromised. Then, the whole system can be put under test to see how it responds

to such route alteration event.

8.3.1 The BASR Layer

The software layer that implements the attack emulation layer is called BASR (Basic Ad-

hoc Security Routines). It consists of a set of “helper” modules that implement a library

of convenient security routines and a common API for attack test cases (see Figure 19).

Currently, BASR is designed for ad-hoc routing although it is extensible to support other

application domains.

The purpose of BASR is to isolate the implementation of attack test cases and security

systems from the routing protocol code as much as possible. In real network security

scenarios, routing agents can be compromised and driven into running malicious codes.

Implementing attacks or countermeasures to such attacks often requires modification of the

routing agents. It is obviously inconvenient and error-prone to modify the routing agents

every time a new possible attack is studied. Instead, the BASR layer abstracts the most

common security routines into a common API to expedite the design of attack cases and

security systems, thus minimizing direct code-injection into the routing agents.

The implementation of these “helper” modules is obviously routing protocol and im-

plementation dependent. It is indeed necessary to modify route agent source code to imple-

ment the security functions provided by the API. That is, each instance of routing protocol

implementation should be paired with an instance of the helper module as illustrated in
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Figure 19. So far, we have implemented a BASR instance for AODV-UIUC [41], a public

implementation of the AODV routing protocol. Further implementation on other protocols,

such as DSR, is currently under development.

8.3.2 API Details

BASR supports the following three types of common routines:

1. Capturing and intercepting incoming and outgoing packets – the pcap [36] library is

used to capture network packets, including both data packets and routing messages.

2. Overhearing traffic in neighboring nodes – wireless interface is put in the promiscu-

ous mode to monitor traffic in the proximity of this node.

3. Access to routing table entries – routing table entries that usually reside internally to

routing agents are made available in a shared memory block.

Here are the function prototypes of these common APIs:

• register_callback(bool incoming, int type,

addr_t src, addr_t dst, func callback);

This function creates a packet-matching rule and associates it with the given call-

back function. The callback function will be called, when a packet is received (when

incoming value is true) or sent (when incoming value is false) at the wireless in-

terface matches the given source, destination and protocol type. Protocol type can

be specified as TCP, UDP, RREQ, RREP, RERR, etc., or bitwise-ORs of them, such as

TCP|UDP. Source or destination address can be any IP address or wildcards. The

callback function has the following form:

int callback(addr_t src, addr_t dst,

void * data, int len);
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Sequential calls of this API (possibly from different processes) will register a chain

of callback functions that will be invoked in the reversed order of registrations.

• register_overhear_callback(int type,

addr_t src, addr_t dst, func callback);

This function registers a callback function similar to the previous one, but it matches

only those packets that are overheard in the neighborhood. The callback function

takes an additional parameter that specifies the particular neighbor from which the

packet is overheard.

• rentry * read_route_entry(int dst);

write_route_entry(int dst, rentry * new_rentry);

They provide read and write access to the routing table entry (rentry) corresponding

to the given destination. The rentry structure includes fields essential to the routing

protocol, such as destination, next hop (or source route), hops and sequence number,

etc.

• rentry * read_local_entry();

write_local_entry(rentry * new_rentry);

They provide the interface to read and modify information of the host node itself.

The interfaces are similar to the read_route_entry and write_route_entry.

8.3.3 An Example Attack Written in the API

We now use a simple example to demonstrate how we can use the API to program attack

test cases. Let us assume a possible attack scenario: an attacker Malice tries to eavesdrop in

communication from Alice to Bob. Let us assume they reside on nodes M, A and B respec-

tively. Malice can achieve the goal by several means. The simplest approach (Approach I)

is to intercept all traffic from A to B on the local interface of M. It only works when M is in

the route path from A to B. The second approach (Approach II) improves by overhearing
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nearby traffic as well. It works when there is at least some of M’s neighbors resides in

the interested route path. The most aggressive approach (Approach III) tries to proactively

advertise a new route from A to B that contains M. Thus, no matter where Malice resides, it

may always intercept the expected communication. Chapter 8.4.1 will describe the detailed

technique to advertise a false route, briefly, a Route Request message is fabricated and it

contains falsified originator and target fields, namely, B and A. By manipulating sequence

number fields in the message, all nodes who receive the request will forward the message

to other nodes. As a side effect, they will also update their route to B (the originator) via M

(the previous hop). Eventually, A will also receive the message and update the route path

to B accordingly, which contains M.

The following pseudo code segment illustrates how we can implement these three ap-

proaches with the BASR library. We assume that disclose_data() is a callback function

that attempts to extract useful information from an intercepted data packet, and the function

broadcast() broadcasts a packet. Here we provide a simplified RREQ structure only for

demonstration purposes.

Listing 1: Eavesdrop Attack Example using BASR library
Eavesdrop_Approach_I ( a d d r _ t A, a d d r _ t B) {

BASR : : r e g i s t e r _ c a l l b a c k ( true , TCP |UDP, A, B ,
d i s c l o s e _ d a t a ) ;

}

E a v e s d r o p _ A p p r o a c h_ I I ( a d d r _ t A, a d d r _ t B) {
Eavesdrop_Approach_I (A, B ) ;
BASR : : r e g i s t e r _ o v e r h e a r _ c a l l b a c k (TCP |UDP, A, B ,

d i s c l o s e _ d a t a ) ;
}

s t r u c t RREQ {
a d d r _ t s r c ; / / t h e o r i g i n a t o r
a d d r _ t d s t ; / / t h e t a r g e t
i n t s r c _ s e q ;
i n t d s t _ s e q ;
a d d r _ t i p _ s r c ; / / t h e f o r w a r d e r

} ;

E a v e s d r o p _ A p p r o a c h _ I I I ( a d d r _ t A, a d d r _ t B) {
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Eavesdrop_Approach_I (A, B ) ;
a d d r _ t M=BASR : : r e a d _ l o c a l _ e n t r y ()−> d s t ;
i n t a seq=BASR : : r e a d _ r o u t e _ e n t r y (A)−> seq ;
i n t bseq=BASR : : r e a d _ r o u t e _ e n t r y (B)−> seq ;
RREQ r r e q (B , A, bseq +1 , a seq +1 , M) ;
b r o a d c a s t ( r r e q ) ;

}

8.4 Attack Library

The Attack Library in S-MobiEmu is a well-organized and extensible collection of care-

fully designed attacks and test cases. It also provides the structure to assist researchers in

developing new test cases in a new study.

The attack library organizes attacks and test cases in a hierarchy structure based on

their composition. The core of the attack library is a collection called Attack Foundation

Library, which contains all the atomic attacks that define the basic attack behavior on a

single node. These attacks can be used as building blocks to construct compound attacks

or complex test cases. These more sophisticated attacks can also span over multiple nodes.

8.4.1 Attack Foundation Library for Ad-hoc Routing

We used the attack taxonomy to build an attack foundation library that includes the basic

attacks. All basic attacks listed in Table 2 are implemented in the attack foundation library.

8.4.2 Extending the Attack Library

The attack library is extensible because compound attacks can be built from the basic at-

tacks in the foundation library or other attacks. Here we will present several realistic attacks

that we developed and included in the extended attack library. They can serve as the com-

mon test cases to test, evaluate and compare different security solutions in their response

to MANET threats. Furthermore, they can also be used as building blocks of more compli-

cated attacks.

We now show a few attack examples in pseudo codes.
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Route Invasion Inject a node in an active route.

Listing 2: Route Invasion
R o u t e _ I n v a s i o n ( double d u r a t i o n / * unused * / , a d d r _ t s r c , a d d r _ t d s t ) {

i f ! r e a d _ r o u t e _ e n t r y ( s r c ) | |

! r e a d _ r o u t e _ e n t r y ( d s t ) {
re turn NO_ATTACK;

}
c u r= r e a d _ l o c a l _ e n t r y ()−> d s t ;
c seq= r e a d _ l o c a l _ e n t r y ()−> seq ;
s s e q= r e a d _ r o u t e _ e n t r y ( s r c )−> seq ;
dseq= r e a d _ r o u t e _ e n t r y ( d s t )−> seq ;
F a l s e _ R e q u e s t ( d s t , s r c , dseq +1 , s s e q +1 , c u r ) ;
F a l s e _ R e q u e s t ( cur , d s t , cseq , dseq +1 , c u r ) ;

}

If the route from src to dst exists, the attacker first generates a False_Request basic

attack with a larger sequence number for dst. It will make all nodes, including src, up-

date their routes to dst using cur as the next hop. Then, the attacker generates a second

False_Request attack, which will launch a route discovery process to establish the route

from cur to dst. Eventually, cur will be injected in the route from src to dst.

Note that this script does not prevent the route to be changed back later. We can imple-

ment a persistent version of this attack by calling the basic script repeatedly. The pseudo

code looks like this:

Listing 3: Route Invasion Persistent Version
R o u t e _ I n v a s i o n _ P ( double d u r a t i o n , a d d r _ t s r c , a d d r _ t d s t ) {

whi le ( d u r a t i o n >0) {
R o u t e _ I n v a s i o n ( 0 , s r c , d s t ) ;
s l e e p ( p e r i o d ) ;
d u r a t i o n=d u r a t i o n −p e r i o d ;

}
}

Similar techniques may be applied to many other attacks as well.

Route Loop Create a route loop.

Listing 4: Route Loop
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Route_Loop ( double d u r a t i o n / * unused * / , a d d r _ t s r c , a d d r _ t d s t ) {
i f ! r e a d _ r o u t e _ e n t r y ( s r c ) | |

! r e a d _ r o u t e _ e n t r y ( d s t ) {
re turn NO_ATTACK;

}
c u r= r e a d _ l o c a l _ e n t r y ()−> d s t ;
p r ev= r e a d _ r o u t e _ e n t r y ( s r c ) . nex t_hop ;
n e x t= r e a d _ r o u t e _ e n t r y ( d s t ) . nex t_hop ;
dseq= r e a d _ r o u t e _ e n t r y ( d s t ) . seq ;
Add_Route ( d s t , prev , dseq +1 ) ;
A c t i v e _ R e p l y ( s r c , d s t , dseq +1 , cur , n e x t ) ;

}

If the attacker is close to a route from src to dst such that two subsequent nodes in

this route, prev and next, are in the attacker’s 1-hop neighborhood, the attacker can first

add a route to dst using prev as the next hop. It then generates an Active_Reply basic

attack to next, using a larger sequence number for dst in the RREP message. It will make

next update its route to dst via cur. When prev receives a packet from src, the packet is

forwarded according to the normal path and it will eventually reach next. However, next

now thinks the best route to dst is through cur and cur forwards it back to prev. This

effectively creates a loop from src to dst and all packets will be dropped in the route when

their TTLs drop to zero.

A similar attack can be implemented when the attacker is not close to the targeted

route. The attacker can first find a victim node V that is close to the route. Instead of

calling Add_Route locally on V (which will require an additional compromise on V), the

attacker can use either False_Request or Active_Reply to force V to update its route to

dst via V’s corresponding prev. The rest is similar.

Sinkhole Create a sinkhole that redirects all neighboring traffic to a particular node.

Listing 5: Sinkhole
S i n k h o l e ( double d u r a t i o n / * unused * / , a d d r _ t v i c t i m ) {

c u r= r e a d _ l o c a l _ e n t r y ()−> d s t ;
s s e q= r e a d _ r o u t e _ e n t r y ( v i c t i m )−> seq ;
d s t=random a d d r e s s t h a t does not e x i s t ;
dseq=random s e q u e n c e number ;
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F a l s e _ R e q u e s t ( v i c t i m , d s t , s s e q +1 , dseq , c u r ) ;
Data_Drop_D ( 1 . 0 , v i c t i m , TCP |UDP ) ;

}

The attacker generates a False_Request that appears to come from the victim and to

a non-existent destination. Since nobody has a route to that destination, the RREQ will

eventually flood throughout the whole network. As a side effect, all nodes that receive the

RREQ will update its route to the victim via cur. Eventually, cur becomes a Sinkhole for

victim.

Note that the above attack examples only act on a single host. However, it is not difficult

to develop a powerful distributed attack with two or more compromised hosts based on

similar techniques.

8.5 Measurement and Evaluation Tools

Performance measurement tools are designed to evaluate the effectiveness of the security

solution in maintaining application mission objective when under attacks. They are very

useful to compare alternative security solutions. Since different security solutions have

different requirements and may target different ranges of attacks or threats, there is no

single measurement that can be used alone to determine the best solution. To provide an

objective basis for decision-making, we should support multiple measurement tools based

on different performance models. How to prioritize and assess these metrics wisely and

choose the best security solution(s) is a research problem that goes beyond our scope.

In S-MobiEmu, we build a set of measurement tools based on the cost-benefit analysis

model [50]. They can be extended to build other measurement and evaluation tools.

Every security solution comes with a cost. We can identify the major cost factors as

response cost and operational cost [50]. Response cost is the cost to perform responsive

actions based on the intrusion evidence indicated by the security solution. Operational cost

is the cost of applying security functions (e.g., encryption or intrusion analysis).
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On the other hand, there is also a benefit by deploying a security solution. One benefit

measurement is damage cost, which describes the degree of damage to the system that is

caused by an attack when the security solution is not available. Another measurement is

effectiveness, which describes how effective the security solution can reduce the damage

cost of a particular attack.

1. Operational Cost

(a) System Resource Consumption
i. CPU Usage

ii. Memory Usage

(b) Network Resource Consumption
i. Communication Overhead

ii. Overhearing Overhead

2. Effectiveness

(a) Detection Accuracy
i. Detection Rate

ii. False Positive Rate

Figure 21: Performance Measurement and Evaluation Library for Ad-hoc Routing

In our framework, we consider only the objective measures that are relevant to routing

security. In particular, we do not include the response cost and damage cost because they

are application and environment specific, and can thus be subjective.

Most metrics in the tree are self-evident. We describe the operational cost in the amount

of resource consumption, which can roughly be classified as system resource (such as CPU,

memory, disk, etc.) consumption, and network resource (such as incoming and outgoing

network traffic) consumption. In particular, we consider the the amount of overhearing

traffic as an overhead as well. The usefulness of this metric can be shown by the energy

efficiency problem. In wireless networks, energy efficiency is a very important issue. It

is widely agreed that both communication overhead and overhearing overhead contribute
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to the majority of energy consumption in a MANET environment. Therefore, energy con-

sumption can be measured (approximately) in terms of both communication overhead and

overhearing overhead.

8.6 Discussion
8.6.1 Experience of Using S-MobiEmu

The objective of our IDS research is to investigate IDS techniques and to develop IDS-

based security systems for MANET. Using S-MobiEmu, we have implemented two IDS

frameworks, node-based framework from Chapter 4, and cluster-based framework from

Chapter 5.

We expect our IDS can detect routing anomalies by utilizing information on both the

internal states of the underlying routing protocol and the patterns of network events. In our

implementation, we found that the BASR approach serves us very well for this purpose.

We can fully reconstruct the protocol specification indirectly through BASR hooks and use

the specification to detect anomalies. The implementation is non-trivial but it can be done

fairly efficiently.

We also experimented with a similar intrusion detection system on the simulation plat-

form ns-2. Compared with that experience, development using S-MobiEmu is easier,

because of fewer resource constraints. By using the user-mode Linux extension to Mo-

biEmu [96], we were able to experiment on an emulation platform of as many as 100

virtual nodes. Since each test experiment can be conducted in real-time, it turns out to

be much faster than a simulated run. Thus, we were able to conduct a larger number of

experiments with a wider parameter selection.

We further state that our implementation with BASR has additional security advantages

than a straightforward implementation without BASR. We note that a traditional IDS so-

lution requires a trace log from the routing protocol process as input. Let us assume an

attacker may not have the source code to the routing protocol and therefore cannot tamper
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with the normal protocol behavior directly. However, the attacker may still be able to ob-

tain the needed privileges to modify the trace log file right before IDS can access it. This

attack will not succeed in our implementation because we do not use the trace log as an

intermediate audit log file. Instead, the IDS uses (read-only) helper hooks directly from the

routing protocol.

8.6.2 Code Complexity

The BASR module for AODV is about 400 lines in C. The attack library, which includes

the implementation of 28 basic attacks, which form the Attack Foundation Library and

about 10 compound attacks, is implemented in about 3,500 lines in C++. The performance

measurement toolkit contains about 800 lines of code. For our case study, the node-based

IDS has about 15,000 lines of code. The cluster-based IDS has about 8,000 lines of code,

excluding the shared code base from the node-based IDS.

8.6.3 Limitation

We would like to point out that S-MobiEmu is not suitable for studying attacks in physical

layer (such as jamming), because the wireless communication is emulated. However, if

we replace the network emulator (MobiEmu) with a real deployed MANET network, it is

possible to use the rest of S-MobiEmu platform to run experiments, but such experiments

may not be reproducible for the reasons we have explained earlier. Similarly, we may have

to run real experiments for MAC-layer security study, because today’s wireless MAC is al-

most always implemented in firmware and is inaccessible. However, if the MAC protocols

are implemented in host OS, like in some new architecture such as “Native WiFi”, we may

be able to use S-MobiEmu in emulation mode. We also envision that S-MobiEmu can be

extended to support MAC-layer security study in future software-defined radio platforms

where MAC protocols are programmable in DSP or FPGA.
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8.7 Summary

In this work, we have explained the needs to have an experimental environment to assist

the development and evaluation of secure MANET. We have developed one such platform

called S-MobiEmu. It allows us to test actual secure MANET code in repeatable experi-

ments. It provides the necessary programming abstraction for us to design and implement

attack test cases and the flexibility for us to extend the attack library in the future. We have

tested S-MobiEmu in our own secure MANET research. We used it to evaluate an Intrusion

Detection System and gained very positive results. We believe that S-MobiEmu will be a

very useful tool for secure MANET research community.
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CHAPTER IX

BACKGROUND AND RELATED WORK

In this chapter, we discussed background and related work to our research.

9.1 Intrusion Detection

As to intrusion detection in wired environments, since its early introduction [2, 21], it has

received increasing interests from researchers and even vendors. The representative misuse

detection systems are IDIOT [47] and STAT [35], which use Colored Petri Networks and

State Transition Diagrams, respectively, to represent and pattern-match known intrusions.

These two are also host-based systems that monitor operating system events. NIDES [1]

has a statistical component for anomaly detection, e.g., it can use system resource usages

(e.g., process size) to detect anomalies. Bro [65] is a representative network-based IDS

that performs packet capturing, filtering, and re-assembly, and invokes user-specified event

handlers with intrusion detection and response logic. Both misuse and anomaly detection

schemes are used to detect attacks to the Open Shortest Path First (OSPF) routing proto-

col [87]. We use the knowledge and experience from these efforts in our research.

9.1.1 Misuse Detection Approaches

There are many approaches in misuse detection. They differ in the representation as well

as the matching algorithm employed to detect intrusion patterns.

Expert system The expert system contains a set of rules that describe the facts about

attacks and inferences can be made from these rules. A rule is triggered when specified

conditions are satisfied. Expert systems are typically very slow, because all of the audit

data need to be imported as facts. Therefore, expert systems are rarely seen in commercial
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products.

Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMERALD) [71]

is an extension of the Intrusion Detection Expert System (IDES) [37] and Next Gener-

ation Intrusion Detection System (NIDES) [1] by SRI International. EMERALD uses a

rule-based expert system component for misuse detection. A forward-chaining rule-based

expert system development toolset called the Production-Based Expert System Toolset (P-

BEST) [52] is utilized to develop a modern generic signature-analysis engine. A chain of

rules is established utilizing P-BEST to form the signature database.

Pattern Recognition Pattern recognition methods encodes knowledge about existing in-

trusions with signatures as patterns, and intrusion patterns are matched against audit logs.

This method is efficient with concise representation of pattern rules, and therefore it is

widely used in commercial tools.

Colored Petri Networks Intrusion signatures can also represented with Colored Petri

Networks (CPNs). It is more general and provides the capability to write complex intru-

sion scenarios. However, it is relatively computationally expensive and thus less used in

practice. Intrusion Detection In Our Time (IDIOT) is the one example that uses CPNs [48].

State Transition Analysis As yet another reprensentation, state transition diagrams can

be used to represent intrusions as well. It is proposed by Porras and Kemmerer [35], which

is implemented in USTAT - a real-time intrusion detection system for UNIX [34].

Vigna and Kemmerer [88] proposed NetSTAT that extends the original state transition

analysis technique (STAT) [35]. It models an attack as a sequence of states and transitions

in a finite state machine.

In our work, finite state machines are modeled for normal events, not abnormal events.

Specification-based intrusion detection was proposed by Ko et al. [43] and Sekar et al. [78].
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Specification-based approaches reduce false alarms by using manually developed specifica-

tions. Nevertheless, many attacks do not directly violate specifications and thus, specification-

based approaches cannot detect them effectively. In our work, we apply both specification-

based and statistical-based approaches to provide better detection accuracy and perfor-

mance.

9.1.2 Anomaly Detection Approaches

Anomaly based IDSes assume that an intrusion can be detected by observing a deviation

from normal or expected behavior of the systems or users. Normalcy is defined by the

previously observed subject behavior, which is usually created during a training phase. The

normal profile is later compared with the current activity. If a deviation is observed, IDS

flag the unusual activity and generate an alarm. The advantages of anomaly detection based

IDSes include that they might be complete to detect attacks, i.e., they can detect attempts

that try to exploit new and unforeseen vulnerabilities. They are also less system-dependent.

Disadvantages are that they may have very high false positive rates and are more difficult

to configure because the comprehensive knowledge of the expected behavior of the system

is required. They usually require a periodic online learning process in order to build the

up-to-date normal behavior profile. Anomaly detection approach is harder to implement,

which make them inappropriate for commercial use.

Anomaly detection is a very challenging problem. Early approaches [1] use statistical

measures of system features, e.g., CPU usage, to build normal profiles. Lane et al. recently

study machine learning approaches for modeling user behavior [49]. There have been

studies on modeling program behavior, using system call traces and learning-based ap-

proaches [27, 77] and specification-based approaches [42]. Ghosh and Schwartzbard [28]

propose using a neural network to learn a profile of normality. Hyperview [20] is an-

other example of IDS that uses neural networks. Fan et al. [24] transform a one-class

129



problem with only normal data into a new problem with two classes by introducing arti-

ficial anomalies. Lee and Stolfo [51] proposed to use data-mining approach to construct

intrusion detection models. There are many other anomaly detection techniques, such as

PAYL [89].

Several approaches can be used to perform general one-class classification, such as

K-means [56], Principal Direction Partitioning [8], Self Organizing Maps [44].

However, most of them are applied to a single series of features and cannot be gen-

eralized well to heterogeneous feature sets, while our cross-feature analysis can capture

inter-feature correlation and automatically construct anomaly detection models.

9.1.3 Specification-Based Detection

Bhargavan et al. [5] analyzed simulations of the AODV protocol. Their work included a

prototype AODV state machine. Our AODV EFSA is based on their work but has been

heavily extended. Ning and Sun [61] also studied the AODV protocol and used the defi-

nition of atomic misuses, which is similar to our definition of basic events. However, our

definition is more general because we have a systematic study of taxonomy of anomalous

basic events in MANET routing protocols.

Recently, Tseng et al. [85] proposed a different specification-based detection approach.

They assume the availability of a cooperative network monitor architecture, which can ver-

ify routing request-reply flows and identify many attacks. Nevertheless, there are security

issues as well in the network monitor architecture which were not clearly addressed.

Orset et al. [62] extended our work and analyzed attacks targeting at the OLSR (Op-

timized Link State Routing Protocol) protocol, and it shows that a similar EFSA-based

detection approach can detect some typical OLSR attacks. Their work uses only determin-

istic rules and therefore can only detect direct violations against the specification. We have

improved over their work and provided comprehensive analysis with both deterministic and

statistical methods to detect different attacks according to our attack taxonomy.
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9.1.4 Other Approaches

Schnackenberg et al. [76] proposed a low cost Intruder Detection and Isolation Protocol

(IDIP) architecture which achieves intrusion detection and tracking, automatic response by

isolating problematic nodes. In their protocol, each IDIP enabled node makes a local deci-

sion about the proper response while it also forwards a central coordinator to collect related

attack reports to form a better global picture. Wu et al. [16] discussed a real-time attack

source identification system, by instructing intermediate routers to authenticate packets (us-

ing IPSEC) destined to the victim and a binary search on routers in possible paths can nail

know exactly which router or link has been compromised. Although the approach is inter-

esting, it assumes the topology is fixed and known before hand, which is hard to achieve in

real time in MANETs. A more distributed approach is preferred.

9.2 Other Security Efforts in Ad Hoc Networks
9.2.1 Misbehavior Monitoring and Incentive Based Routing

Watchdog and pathrater approach, discussed by Marti et al. [59], introduces two related

techniques to detect and isolate misbehaving nodes, which are nodes that do not forward

packets. In the “watchdog” approach, a node forwarding a packet verifies the next hop

also forwards it. If not, a failure tally is incremented and misbehavior will be recognized

if the tally exceeds certain threshold. The “pathrater” module then utilizes this knowledge

of misbehaving nodes to avoid them in path selection. The approach is limited in several

aspects. First of all, overhearing does not always work in case of collisions or weak signals.

Secondly, pathrater actually awards the misbehaving node, if its motivation comes from

selfishness, i.e., not “serving” others can reduce its battery power consumption. It does not

prevent the misbehaving node from sending or receiving its own packets.

CONFIDANT [9] extends Marti’s approach in numerous ways. Misbehaving nodes are

not only excluded from forwarding routes, but also from requesting their own routes. Also,

it includes a trust manager to evaluate the level of trust of alert reports and a reputation
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system to rate each node. Only reports from trusted sources are processed. However, trust

management in MANETs has not been well studied yet. For example, it is not clear how

fast the trust level can be adjusted for a compromised node, especially if it has a high trust

level initially. Detection decision only comes from the residing node’s own observation,

which is not always sufficient. Trust relationship, which is pre-determined in this work,

does not always model the right relationship in run-time. Especially in case of nodes that

are compromised after trust relationship has been established.

Buttyan et al. [12] suggests the use of tamper-resistant hardware on each node to en-

courage cooperation. Nodes are assumed to be unwilling to forward packets, unless it is

stimulated. In this approach, a protected credit counter runs on the tamper-resistant device.

It increases by one when a packet is forwarded. It refuses to send its own packets if the

counter is smaller than a threshold n. Public key technology is used to exchange credit

counter information among neighbors and verify if forwarding is really successful. The

scheme has a few strong assumptions, including tamper-resistant hardware and public key

technology, which may not be widely available in MANET.

SPARTA, suggested by Krugel et al. [46], builds IDS based on mobile agents. It also

features an event definition language (EDL), which describes multiple-step correlated at-

tacks from an intrusion specification database. However, we have not seen details on how

these specifications are generated and used for well-known routing attacks.

9.2.2 Key Management

Key generation, distribution and management in MANET is challenging because of the ab-

sence of central management. Zhou and Haas [97] introduced a routing protocol indepen-

dent distributed key management service. It exploits redundancies in the network topology

and uses secret sharing to provide reliable key management. Stajano and Anderson [82]

proposed a scheme that establishes secure transient association between mobile devices by

“imprinting” according to the analogy to duckling acknowledging the first moving subject
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they see as their mother. The devices can be imprinted several times.

9.2.3 Secure Routing

Although there are secure routing approaches in wired networks, such as [17, 79], they

usually come with large communication overhead and do not work well in MANET because

of its dynamically changing network topology.

Several researchers have recently proposed new secure routing protocols or security

enhancement for existing protocols for MANET. For example, Papadimitratos et al. [63]

propose a Secure Message Transmission (SMT) protocol which disperses a message into

N pieces and transmits them through different paths, given a topology map of the network.

A successful reception of any M-out-of-N pieces allows the reconstruction of the origi-

nal message. The method protects data packet transmission, but the protection of routing

topology need to be further strengthened.

Their Secure Routing Protocol (SRP) attempts to address this problem by establishing

a prior secret association between every pair of the network nodes and protecting routing

request and reply messages using the secret association. Using secret key cryptography

leads to an efficient solution but key management is hard to scale. The prohibitive use of

cached routes from intermediate nodes is also restricted.

Zapata [94] proposes the use of asymmetric cryptography to secure the AODV proto-

col [66].

Hu et al. [32] consider the problem of avoiding expensive public key computation in

authentication in Ariadne, a secure version of the DSR protocol [39]. It primarily uses

TESLA [70] an efficient broadcast authentication protocol that requires loose time synchro-

nization, to secure route discovery and maintenance. To use TELSA for authentication, a

sender generates a hash chain and determines a schedule to publish the keys of the hash

chain. The key required to authenticate a packet will not be published before the packet

has arrived at the receiver so that an adversary cannot have captured the key and forged the
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packet. This is the same underlying broadcast authentication protocol that we currently use

Partridge et al. [64] reported that signal processing techniques can be used to perform

traffic analysis on packet streams, even in encrypted form. In its current stage, it provides

limited information other than timing information, which makes it not suitable for intrusion

detection in higher network layers.

9.3 Intrusion Response

Intrusion response in the ad hoc network is a new problem. As far as we know, there

is no other research yet that study how to perform traceback and filtering in a dynamic

network without infrastructure support. In the context of wired networks, IP traceback

schemes include hash-based traceback [80], hop-by-hop tracing [10], out-of-band ICMP

traceback [4], in-band probabilistic packet marking [75, 81, 92] and watermark-based [90]

techniques. Since they are designed for the traditional wired networks (more specifically,

the Internet) where the core infrastructure is well protected, the effectiveness of these so-

lutions rely heavily on the assumption that the intermediate routers would not be compro-

mised. Some solutions require a centralized management server, others assume the global

routing topology to be static and thus may be obtained or cached locally as guidance. Un-

fortunately, none of these solutions can be applied directly to MANET because none of

these assumptions can be guaranteed to hold in this new environment.

Egress (ingress) filtering [26] can be deployed at routers to enforce that all traffic with

illegal source addresses be blocked from establishing outbound (inbound) connections. For

example, a packet with a forged and invalid source address may not even be able to leave

its originating network because the gateway router can identify that the source address

does not belong to the valid address range that it owns. In a pure MANET scenario, node

mobility inevitably leads to dynamic route paths, and thus there is no equivalent concept

of a gateway. Consequently, it is usually difficult to find a good place to enforce these

filters. There are certain exceptions, especially in a hybrid network, where access points or
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wireless gateways are good candidates to apply egress (ingress) filter techniques.

9.4 Feature Selection

Many algorithms, such as Evolutionary Algorithms [29], SVM [11], PCA [60], can be used

to perform feature selection. In this study, we use the simple forward selection algorithm

which is very efficient and works pretty well in practice.

The problem of feature selection in one-class classification problem has been investi-

gated by [84]. They studied, in particular, PCA, that can be applied to reduce the dimen-

sionality for one-class classification problem. They find that retaining the high variance

directions is not always the best option for one-class classification. However, it remains to

be seen whether the same problem holds in other feature selection methods, such as Kernel

PCA, ICA, etc.

9.5 Cluster-Based Routing

Hierarchical network is an effective way to group (or cluster) a large number of nodes

in a network. Distributed algorithms to form clusters have been studied extensively, for

example, [3, 45, 86]. Most of these approaches have the drawback that the clusterhead

computation can be easily manipulated (cheated) to elect an arbitrary compromised node.

Nevertheless, the head-less cluster formation and maintenance protocol [45] does not have

such problem. We use this cluster formation scheme as the basis of clique computation

protocol because the clique structure allows us to effectively compute a selection function

on random inputs from each member.

9.6 S-MobiEmu

To the best of our knowledge, there is no similar secure MANET testing system reported in

the open literature. In wired network security, the best known test environment is perhaps

LARIAT, an IDS testbed used in the 1998 and 1999 DARPA Intrusion Detection evalua-

tion [53, 54]. LARIAT provides a configurable test environment where intrusion detection
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modules can be “plugged” in the testbed to capture audit data and invoke response. It pro-

vides many ways to configure background traffic and attack generation. However, it does

not provide APIs to extend its attack library to accommodate more/new attacks.
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CHAPTER X

CONCLUSION AND FUTURE WORK

In this chapter, we summarize our research, review contributions, and discuss the needed

future work.

10.1 Conclusion

Mobile ad hoc networks (MANET) are particularly vulnerable due to some of the funda-

mental characteristics, such as open medium, dynamic topology, distributed cooperation,

and constrained capability.

Intrusion Detection Systems (IDS) provide the second wall of defense that is essen-

tial to the overall security of MANET. However, IDS design in MANET is a challenging

task, because it requires a distributed design of IDS that is lacking from most wired IDSes

available today. In addition, we believe that proper response systems are also critical, as

effective detection will not be useful unless some actions can be taken properlyy.

Our central research problem is therefore the design of a scalable and distributed ap-

proach of intrusion detection and response systems for MANET. It should be noted that

although our work uses MANET as the main evaluation platform, various pieces of our

work, such as feature selection, Cross-Feature Analysis, and cluster formation protocols,

may be suitable for a more generalized distributed network platform without centralized

control.

In particular, our research work answers the following questions:

1. What kind of threats should be considered? Our taxonomy study of anomalous basic

events identifies different categories of intrusions and we can identify categories that

are suitable for detection approaches.
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2. What statistical features should be used to construct the model? In history, short

sequences of system calls from privileged processes can be used to effectively dis-

tinguish normal and intrusive behavior and utilized to construct host based IDSes.

TCPdump data could be used to construct network based IDS. However, these fea-

tures are not suitable to construct detection models to guard against MANET specific

attacks. In our approach, we used a specification-based approach, where features can

be enumerated automatically.

3. How do we build a anomaly detection model purely on normal data and with hetero-

geneous features? We build the Cross-Feature Analysis approach which is shown to

be effective in ad hoc intrusion detection. In fact, it is a general approach that can be

applied in many applications and different areas.

4. Why do we need two different frameworks: node-based and cluster-based detection?

They complement each other, and both are very useful with different assumptions.

Because of the importance of routing protocols in MANETs, we use many types of

basic attacks and complex attacks as examples to illustrate the effectiveness of the

node-based IDS. Simulation results illustrate that our IDS can achieve very good

false positive rate and detection rate on most attacks.

5. What can be done after an attack is detected? We develop a distributed response

framework: hotspot-based traceback and filtering. It is automatic and distributed,

and thus suitable for the ad hoc environment.

We have conducted extensive simulations to evaluate the performance of our node-

based and cluster-based IDS. Furthermore, we developed a security software toolkit that

facilities new security protocol design. Our work is based on the MobiEmu emulation

platform. It is superior than simulations in many aspects because real applications can be

launched and evaluated, and performance measures can be also taken from real environ-

ments.
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10.2 Future Work

Up to now, not many research efforts have been devoted to MANET IDSes. This thesis

provides our initial work in this respect. As a very new and promising research area, there

are several interesting and important future directions:

• Instead of focusing on specific routing protocols, we can apply similar detection

framework on all layers such as Medium Access Control (MAC) layers or application

layers.

• Encourage further collaboration among nodes within two or more hops. In fact,

the hotspot framework is an initial effort of distributed protocols that do not rely

on intermediate routers to be trustworthy. However, communication between IDS

agents may need to exchange information frequently, thus the overhead is fairly high

and better algorithms are yet to be found.

• Further study on MANET specific attacks and comprehensive defense strategies. As

we can envision from the security effort in wired networks, the security issue is going

to be more and more challenging.

• Improve topology aware normalization and anomaly detection model generalization

in general.

• Add more support from reliable infrastructure whenever it is available.
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APPENDIX A

AODV EFSA SPECIFICATION

We construct AODV EFSAs by following the AODV Internet draft [66]. AODV uses hop-

by-hop routing similar to distant vector based protocols. AODV does not use periodical

route advertisements. Instead, a route is created only if it is demanded by data traffic [66].

We construct an AODV EFSA by following the AODV Internet draft version [66].

Our AODV EFSA is based on the AODV state machine from Bhargavan et al.’s work [5].

AODV uses hop-by-hop routing similar to distant vector based protocols such as RIP [57],

but there are no periodical route advertisements. Instead, a route is created only if it is

requested by data traffic where routes are not available [66].

The AODV EFSA (per destination) is shown in Figures 3 and 4. The reason that one

EFSA is split into two sub-graphs are purely for the purpose of a better layout. Figure 4

is used within a certain period after a node has rebooted. After that, the normal Figure 3

should be used.

We define a unique EFSA for each destination host. We use the abbreviation ob, which

stands for the observed node, to specify the destination. Thus we can use EFSA(ob) to de-

note the EFSA for ob. In addition, there is a global variable cur that defines the node’s own

address. There is also a global variable cSeq denoting the node’s own sequence number.

States: There are eight states per EFSA where the initial and final states correspond to the

special situations when there is no actual route entry for the destination and when

it has just been removed. A few other states include: Valid, which indicates that a

route to the destination is available and valid; Invalid and WaitRREP, which indicate

that a route is either unavailable yet or has been invalidated due to broken links.

AODV keeps invalidated entries for efficiency reasons. WaitRREP is used only when
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(T9) RREP_FORWARD
RREP?[Prev,ob,Dst,Dst_Seq,Hops]&&ob!=cur->

RREP![nxt,ob,Dst.Dst_Seq,Hops+1]

(T1) DONE
DELETE_PERIOD->

(T5) RREQ_FORWARD
RREQ?[-, Src,Src_Seq,ob,Dst_Seq,Hops,
    ID] && noduplicate?[Src,ID] && ttl > 0->
RREQ![Src,Src_Seq,ob,
    max(oSeq,Dst_Seq),Hops+1,ID]

(T8) LEARN
(RREQ?[Prev,ob,Seq,-,-,Hops,ID]&&
    noduplicate?[ob,ID] ||
RREP?[Prev,Src,ob,Seq,Hops])&&
better?[(Seq,Hops+1).(oSeq,nHop)]->
oSeq=Seq;nHops=Hops+1;nxt=Prev
flush_buffer[ob, nxt]

(T12) INVALIDATE
ob!=cur&& (route_invalidated?[ob]||
    ACTIVE_ROUTE_TIMEOUT
         (from last T10))->
RERR![(extend[ob]]; oSeq++

(T11) REPLY
RREQ?[Prev,Src,SSeq,ob,Dst_Seq,Hops,ID] && 
    noduplicate?[Src,ID] &&
    (ob==cur||oSeq>=Dst_Seq)->
if(ob==cur&&oSeq==Dst_Seq) cSeq=oSeq++;
RREP![Prev,Src,ob,oSeq,nHops]

(T10) DATA_FORWARD
DATA?[Src,ob] ->
if (ob!=cur) DATA![Src,ob,nxt]

(T2) REQUEST_1
DATA?[cur, ob] ->

save_buffer[ob,DATA];
RREQ![cur,++cSeq,ob,

oSeq,0,++rreqid]; 
retries=0

(T6)
NET_TRAVERSAL_TIME&&
    retries==RREQ_RETRIES->
clear_buffer[ob]; oSeq++;
RERR![extend(ob)]

(T7) NEIGHBOR_LEARN
(RREQ?[ob,From,-,-,-,-,-] ||
RREP?[ob,-,From-,-] ) && 

From!=ob->
 oSeq=?;nHops=1;

nxt = ob;
flush_buffer[ob, nxt]

(T4) REQUEST_N
NET_TRAVERSAL_TIME&&
    retries<RREQ_RETRIES->
RREQ![cur,cSeq, ob, oSeq,0,++rreqid];
retries++

(T7’)=T7 (T8’)=T8

WaitRREP[ob,oSeq, 
nHops, retries]

Invalid[ob,oSeq,nHops]

Valid[ob,oSeq,nHops,nxt]

(T5’)=T5

(T7’’)=T7 (T8’’)=T8

DONE[ob]

(T0) INITIATE
packet?[ob]->
oSeq=?;
nHops=?;
continue

(T12’) INVALIDATE
ob!=cur&&

RERR?[nxt, ob, Dst_Seq]->
RERR![(extend[ob]];

oSeq=Dst_Seq

Start[ob]

(T3) DATA_PENDING
DATA?[cur,ob]->

save_buffer[ob,DATA]

Figure 22: AODV Extended Finite State Automaton (for Destination ob): In Normal Use

a Route Request message has been delivered and a Route Reply is expected. The

reboot subgraph has two other states that we will omit here.

Transitions: There are 19 transitions per EFSA.

Note that we only capture major AODV functionalities in the EFSA. Some specified

protocol behavior relies on information from other layers, which we choose not to model

for now. For instance, AODV can optionally use link-layer notifications to maintain lo-

cal connectivity. Furthermore, since AODV, as well as many other MANET protocols, is

evolving quickly, some parts of the specification are likely to change in future. We decide

that it is not necessary to reproduce every detail as long as the major need of IDS can

be satisfied. Instead, we abstract these functionalities with predicates (in input conditions)

and tasks (in output actions). They are silently ignored by our current IDS implementation.

Consequently, IDS currently cannot capture anomalies in these categories. Some missing
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(TR4) LEARN_REBOOT
(RREQ?[Prev,ob,Seq,-,-,Hops,ID]&&
    noduplicate?[ob,ID] ||
    RREP?[Prev,Src,ob,Seq,Hops])&&
    better?[(Seq,Hops+1).(oSeq,nHop)]->
oSeq=Seq;nHops=Hops+1;nxt=Prev

(TR6) NO_REPLY_REBOOT
RREQ?[Prev,Src,SSeq,ob,Dst_Seq,Hops,ID] && 
    noduplicate?[Src,ID] &&
    (ob==cur||oSeq>=Dst_Seq)->
if(ob==cur&&oSeq==Dst_Seq) cSeq=oSeq++

(TR5) NO_DATA_REBOOT
DATA?[Src,ob]->
if (ob!=cur) RERR![extend[ob]]];
oSeq++

(TR2) NO_ROUTE_REBOOT
DATA?[Src, ob]->
RERR![extend[ob]]; oSeq++

(TR3) NEIGHBOR_LEARN_
REBOOT

(RREQ?[ob,From,-,-,-,-,-] ||
RREP?[ob,-,From-,-] ) && 

From!=ob->
 oSeq=?;nHops=1;

nxt = ob
 

REBOOT_Invalid[ob,oSeq,nHops]

REBOOT_Valid[ob,oSeq,nHops,nxt]

REBOOT[ob]

(TR3’’)=TR3
(TR4’)=TR4

(TR0) INITIATE_REBOOT
ob!=cur && packet?[ob]->
oSeq=? ;
nHops=?

(TR7’) INVALIDATE_
REBOOT

ob!=cur&&
RRER?[nxt, ob, Dst_Seq]->

oSeq=Dst_Seq

(TR7) INVALIDATE_REBOOT
ob!=cur&&(route_invalidated?[ob]||
    ACTIVE_ROUTE_TIMEOUT
        (from last T10))->
oSeq++

(TR1) DONE_REBOOT
DELETE_PERIOD->

(from last TR2 or TR5 of ALL nodes)

Valid[ob,oSeq,nHops,nxt]

Start[ob]

(TR1) DONE_REBOOT
ob==cur && DELETE_PERIOD

(from last TR2 or TR5 of all nodes)->

(TR0’) INITIATE_MYSELF
ob==cur->

oSeq=0;
nHops=0

Figure 23: AODV Extended Finite State Automaton (for Destination ob): After Reboot

functionalities are as follows:

1. Hello Messages Handling;

2. ‘Gratuitous RREP’ flag and ‘Destination only’ flag in RREQ messages;

3. RREP Acknowledgment Handling;

4. RREP Subnet Prefix Usage;

5. Layer-2 Notification;

6. ICMP Messages;

7. Precursors List;

8. Computation of RERR Targets;
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9. Rate Limiting of RREQ and RERR Messages;

10. RREP Blacklist;

11. Expanded Ring Search;

12. Buffering;

13. TTL handling.

We list all packet-receiving events, packet-delivery events, timeouts and auxiliary func-

tions used in Figure 22 and 23 below. As a convention, packet-receiving events and boolean

axillary functions end with ’?’, while packet-delivery events end with ’!’. We use Src, Dst,

Src_Seq, Dst_Seq, Hops, Next, Prev, ID to denote the following packet fields: Source

address, Destination address, Source Sequence Number, Destination Sequence Number,

Number of Hops, Next Hop, Previous Hop and Route Request Identification Number re-

spectively.

• Packet-receiving events:

DATA?[Src, Dst]: data packet.

RREQ?[Prev, Src, Src_Seq, Dst, Dst_Seq, Hops, ID]: Route Request.

RREP?[Prev, Src, Dst, Dst_Seq, Hops]: Route Reply. It should be noted that Src

in RREP is consistent with the definition of Src in RREQ, that is, it specifies

the originator of the route discovery process. In other words, it is actually the

destination field in the IP header of a RREP packet.

RERR?[Src, Dst, Dst_Seq]: Route Error.

• Packet-delivery events:

DATA![Src, Dst, Next]: data packet.

RREQ![Src, Src_Seq, Dst, Dst_Seq, Hops, ID]: Route Request.
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RREP![Next, Src, Dst, Dst_Seq, Hops]: Route Reply. We explicitly specify Next

since RREP uses unicast instead of broadcast.

RERR![Dsts]: Route Error. Dsts are the list of affected destinations.

• Timeouts:

DELETE_PERIOD: timeout before an invalidated route is removed.

ACTIVE_ROUTE_TIMEOUT: timeout before a valid route is invalidated due to in-

activity.

NET_TRAVERSAL_TIME: timeout before a Route Reply is received in response to

Route Request.

• Auxiliary functions:

noduplicate?(Src, ID): whether a Route Request message from Src with ID is not

seen before.

route_invalidated?(Dst): whether a route to Dst has been invalidated.

packet?[Dst]: whether there is an incoming packet.

better?([seq1, hop1],[seq2, hop2]]: whether a packet with seq1 and hop1 is more

recent than a packet with seq2 and hop2.

extend[Dst]: return a list of destinations whose routes include Dst as the next hop.

Obviously, Dst ∈ extend(Dst).

save_buffer[Dst, DATA]: buffer DATA in buffer.

flush_buffer[Dst, Next]: deliver all packets in buffer that are destined to Dst through

Next and remove them from buffer.

clear_buffer[Dst]: remove all data to Dst from buffer.
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A.0.1 Basic AODV Transition Flow

A normal state transition starts from the Start state, which represents the state where no

routing entry (valid or invalid) exists for the observed node. The current state will change

to Invalid if there is a packet targeted for the observed node (transition T0 in Figure 22).

Note that we assume it enters Invalid first and if the packet helps establish a route, it will

perform another transition (which can be transition T2, T5’, T7’ or T8’. See related de-

scriptions below). When there is a data packet prepared to send to ob while the current

state is Invalid, it buffers the data, broadcasts a RREQ (Route Request) message and en-

ters WaitRREP (T2). During WaitRREP, it will not send another RREQ to the same

destination even if another data packet is requesting the route to ob (T3). However, af-

ter timeout NET_TRAVERSAL_TIME, if there is no RREP (Route Reply) received for

ob, it broadcasts another RREQ message (T4). This process repeats until a maximum of

RREQ_RETRIES times of RREQ have been broadcast. If there is still no RREP received,

the current state switches to Invalid and sends (or broadcasts) RERR to notify neighbors

about the failure of data transmission to ob. The RERR message contains notification of

undeliverable destinations, which includes not only ob, but also other destinations that use

ob as the next hop (T6). In either WaitRREP or Invalid, if there is another incoming

RREQ which also requests a route to ob, it is forwarded immediately (T5 or T5’).

In either WaitRREP or Invalid, if there is a RREQ or RREP message with ob as the

previous hop, the protocol assumes there is a direct link to ob and enters Valid (T7 or T7’).

Similarly, if a RREQ originated from ob is overheard, we can take the route directly (T8 or

T8’). Finally, if the corresponding RREP is received, it is used to create a new route and

enters Valid (T8 or T8’).

During Valid, if there is a RREQ or RREP message with ob as the previous hop, the

protocol assumes there is a direct link to ob and replaces the current route with it (T7”).

Similarly, if a RREQ originated from ob or another RREP received whose destination field

is ob, the route will be updated if and only if the receiving message contains a better route
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(T8”).

If there is an incoming data packet, ob!=cur, and a valid route to ob exists, the packet is

forwarded (T10). If there is a RREP packet originated from ob, while we are in the active

route, the RREP packet is forwarded (T9). If there is a RREQ packet requesting a route to

ob while we are in the Valid state, a RREP message is replied to the previous hop (T11).

Under all three situations described, the current state remains Valid.

A valid route can be broken later if 1) a received RERR message includes ob in the

unreachable destination list and the RERR is sent by the next hop to ob; or 2) the route

is invalidated by other means (link layer notification, timeout of hello messages) or AC-

TIVE_ROUTE_TIMEOUT has elapsed with no active route activities. In either case, a

RERR message is sent (or broadcast) and the current state becomes Invalid (T12 or T12’).

Finally, if an invalid route is not validated after DELETE_PERIOD, it is removed from

the route table and the EFSA enters the final Done state (T1), which will have the EFSA

removed.

When a node reboots, all previous routes or states are lost. However, there may be

neighboring nodes that still consider the node as the next hop in an active route. To avoid

this situation, the system starts from REBOOT. It behaves like the normal graph but it will

not forward any routing or data messages. If a data packet needs to be forwarded, a stale

route before the reboot must have been used. A RERR message is then sent (or broadcast)

instead, in order to notify neighbors that the route should be invalidated (TR2 or TR4).

After DELETE_PERIOD, the state changes to Start (TR1), when normal routing behavior

starts.
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APPENDIX B

DSR EFSA SPECIFICATION

We construct DSR EFSAs by following the DSR Internet draft [39]. DSR uses source

routing and it is also a on-demand routing protocol [39]. We use the MobiCache imple-

mentation of DSR in ns-2, and therefore many details also follow that implementation.

Our DSR EFSA is shown in Figure 24. Unlike the AODV EFSA, DSR does not have

the special logic to handle packets during reboot time differently.

(T9) RREP_FORWARD
RREP?[-,ob,Dst,Path] && ob!=cur->

RREP![previous_node[Path, cur],ob,Dst.Path]

(T5) RREQ_FORWARD
RREQ?[-, Src,ob,Path,ID] && 
noduplicate?[Src,ID]->
RREQ![Src,ob,,Path+[cur],ID]

(T8) LEARN
RREQ?[-, Src, ob, Path, ID] &&
noduplicate?[Src, ID] ||
RREP?[-,-,ob,Path])->
add_path[Path, ob]
flush_buffer[ob]

(T12) INVALIDATE
link_invalidated?[ob] &&
no_more_path?[ob]->
RERR![ob]

(T11) REPLY
RREQ?[-,Src,ob,Path,ID] && 
    noduplicate?[Src,ID] ->;
RREP![previous_node[Path, cur],Src,ob,Path]

(T2) REQUEST_1 
DATA?[cur, ob] ->

save_buffer[ob,DATA];
RREQ![cur,,ob,[cur],

++rreqid]; (T6) RREQ_EXPIRED
SEND_TIMEOUT->
clear_buffer[ob]

(T4) REQUEST_N
BACKOFF_TIME->
RREQ![cur,ob, [cur],++rreqid];

(T3) DATA_PENDING
DATA?[cur,ob]->

save_buffer[ob,DATA]

(T8’)=T8

WaitRREP[ob]

Invalid[ob]

Valid[ob]

(T5’)=T5

(T8’’)=T8

(T0) INTIATE
packet?[ob]->
continue

(T12’) INVALIDATE
RERR?[nxt, ob] &&

no_more_path?[ob]->
RERR![ob]

Start[ob]

(T14) SHORTEN
OVERHEAR_DATA?[From, ob, Dst, Path] &&

can_shorten?[Path, From, cur] ||
RREP![From,ob,Dst, shorten[Path, From, cur]]

(T13) DATA_SNOOP_FORWARD
DATA?[Src,ob, Path] ->

if (ob!=cur) DATA![Src,ob,Path]
add_path[Path, ob]

flush_buffer[ob]

(T10) DATA_FORWARD
1) DATA?[Src,ob, Path] ->
if (ob!=cur) DATA![Src,ob,Path]
2) DATA?[cur, ob]->
DATA![cur, ob, find_path[ob]]

DONE[ob]

(T1) DONE
DELETE_PERIOD->

(T13’)=T13

Figure 24: DSR Extended Finite State Automaton (for Destination ob):

Similar to the case of AODV, we define a unique EFSA for each destination host. We

use the abbreviation ob, which stands for the observed node, to specify the destination.

Thus we can use EFSA(ob) to denote the EFSA for ob. And there is also a global variable
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cur that defines the node’s own address.

In our EFSA, DSR has five states and 14 transitions. Note that for compatibility with

the AODV notation, we reserve transition T7 which does not actually exist in DSR. DSR

also introduces two new transitions T13 (snooping) and T14 (automatic route shortening).

Again, we do not include all DSR functionalities because they cannot be modeled for

now. Some missing functionalities are listed below:

1. Packet Salvaging;

2. Flow state Extension;

3. Layer-2 Notification;

4. Increased Spreading of Routing Error Messages;

5. Preventing Route Reply Storms;

6. Expanded Ring Search.

We list all packet-receiving events, packet-delivery events, timeouts and auxiliary func-

tions used in Figure 24 below. As a convention, packet-receiving events and boolean ax-

illary functions end with ’?’, while packet-delivery events end with ’!’. We use Src, Dst,

Path, ID to denote the following packet fields: Source address, Destination address, Source

Route and Route Request Identification Number respectively.

• Packet-receiving events:

DATA?[Src, Dst, Path]: data packet with source route.

DATA?[Src, Dst]: data packet without source route.

OVERHEARD_DATA?[From, Src, Dst, Path]: data packet overheard from another

node From.

RREQ?[Prev, Src, Dst, Path, ID]: Route Request.
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RREP?[Prev, Src, Dst, Path]: Route Reply.

RERR?[Src, Dst]: Route Error.

• Packet-delivery events:

DATA![Src, Dst, Next]: data packet.

RREQ![Src, Dst, Path, ID]: Route Request.

RREP![Next, Src, Dst, Path]: Route Reply. We explicitly specify Next since RREP

uses unicast instead of broadcast.

RERR![Dst]: Route Error for destination Dst.

• Timeouts:

DELETE_PERIOD: timeout before an invalidated route is removed.

BACKOFF_TIME: timeout before another Route Request is sent.

SEND_TIMEOUT: timeout before a Route Reply is received in response to Route

Request.

• Auxiliary functions:

noduplicate?[Src, ID]: whether a Route Request message from Src with its rreq_id

equal to ID or less is not seen before.

link_invalidated?[Dst]: whether some link in any route to Dst has been invalidated.

packet?[Dst]: whether there is an incoming packet.

no_more_path?[Dst]: whether there is no more source route destined to Dst.

can_shorten?[path, From, Node]: whether Node is in a later position than From in

source route Path with more than one hop.

save_buffer[Dst, DATA]: buffer DATA in buffer.
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flush_buffer[Dst]: deliver all packets in buffer that are destined to Dst through Next

and remove them from buffer.

clear_buffer[Dst]: remove all data to Dst from buffer.

add_path[Path, Dst]: add a new source route Path destined to Dst.

find_path[Dst]: find and return a source route destined to Dst.

previous_node[Path, Node]: find the node in source route Path prior to node Node.

shorten_path[Path, From, Node]: shorten Path by removing nodes from From to

Node (both exclusive).

B.0.2 Basic DSR Transition Flow

Most transition flow in DSR is similar to the AODV EFSA, therefore we do not repeat the

detailed explanation from Appendix A.0.1. However, it should be noted that our EFSA

for DSR reflects a relatively high abstract model because DSR maintains route caches dif-

ferently from AODV. In particular, there may be multiple paths to each destination, and

each path may be implicitly discarded when any link in the path is invalid. Therefore there

remain a few important differences.

• In transition T12, a state switch from Valid to Invalid occurs when there are no more

paths to destination ob.

• DSR does not learn new routes from RREQ or RREP messages with ob as the previ-

ous hop, therefore T7 (or T7’) does not exist in the DSR EFSA.

• Instead, DSR snoops data packets with source route. If the source route is destined

to ob, it is learned and it enables state switch for ob from Invalid (or WaitRREP) to

Valid (T13 or T13’).

• DSR also allows automatic route shortening when a node overhears a data packet

with source route and it observes itself is included in the source route but in a later
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position than the node it overhears from with more than one hop. This means a

shorter route is possible. The node then send a “gratuitous” Route Reply to the

originator of the data packet with the shortened path.

Figure 25 provides an example for route shortening. Node E overhears a data packet

sent from C to D which originates from A and is destined to G with source route

following the solid arrows. At this point, node E finds out a shorter route from A to

G is possible by simply omitting node D. Therefore, it sends a RREP to node A with

the shortened path.

A B C D

E F G

Figure 25: DSR Automatic Route Shortening Example:
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APPENDIX C

OLSR EFSA SPECIFICATION

We construct OLSR EFSAs by following the OLSR Internet draft [18]. OLSR (Optimized

Link State Routing Protocol) is a proactive link state routing protocol for ad hoc networks.

It is optimized to reduce the flooding of link state information by selecting a subset of

nodes called Multipoint Relays (MPR). It also advertises only partial link state information

in order to compute shortest path routes. The minimum set of links are the links from

MPR nodes to nodes that select them. OLSR is well suited to large and dense mobile

networks [18] where the traffic is random and sporadic rather than being almost exclusively

between a small specific set of nodes.

Our OLSR EFSA is shown in Figure 26. It is based on Orset et al.’s work [62]. Because

OLSR is a link state routing protocol, links play a central role in OLSR’s core functions.

Therefore, each OLSR EFSA represents a link between two nodes, instead of a route entry

to a particular destination as the other two protocols.

In our EFSA, OLSR has four states and 23 transitions. For simplicity, we assume each

node has only one interface and it can only claim one link to the same node [62].

Section 6.1.1 in RFC 3626 [18] defines all link codes. In our work, we only use the

following link codes:

ASYM: Asymmetric link;

SYM: Normal symmetric link;

MPR: Symmetric link where the destination node is selected as the MPR of the source

node.
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We list all packet-receiving events, packet-delivery events, timeouts and auxiliary func-

tions used in Figure 26 below. As a convention, packet-receiving events and boolean ax-

illary functions end with ’?’, while packet-delivery events end with ’!’. We use Src, Dst,

LinkCode to denote the following packet fields: Source address, Destination address and

the LinkCode field.

• Packet-receiving events:

DATA?[Prev]: data packet received from the previous node Prev.

Hello?[Src]: Hello message without link information.

Hello?[Src, Dst, LinkCode]: Hello message that claims link Src to Dst with given

the link code.

TC?[Src, Dst]: Topology Control message received from Src, in which Dst is listed

because Dst is one of its MPR selectors.

• Packet-delivery events:

DATA![]: data packet transmitted according to the current routing table.

Hello![Src]: Hello message without link information.

Hello![Src, Dst, LinkCode]: Hello message that claims link Src to Dst with given the

link code.

TC![Src, Dst]: Topology Control message sent from Src, in which Dst is listed be-

cause Dst is one of its MPR selectors.

• Timeouts:

HelloTimeOut: timeout before a Hello message is received.

UpdateTimeOut: timeout before a link state updating message is received.

TcTimerOut: timeout before a Topology Control message is received.
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• Auxiliary functions:

has_data?: whether there is a data packet to be sent by the current node.

recv_tc: accept and handle an incoming Topology Control message.

• Boolean variables:

SentHello: whether a hello message has been sent.

InAsym: whether the link to ob is asymmetric.

InMprSel: whether ob selects the current node as one of its MPRs.

InMpr: whether the current node selects ob as one of its MPRs.

C.0.3 Basic OLSR Transition Flow

We refer more details of OLSR transition flow to [62].
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Figure 26: OLSR Extended Finite State Automaton (for Link between cur and ob):
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