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SUMMARY

The wide spread of mobile smart phones and ever-increasing demand for more
throughput by the users has put a sever burden on cellular networks. Limited band-
width availability and crowded base station deployments of the cellular system pushes
network operators to improve existing network efficiency. This means reducing inter-
cell interference such that each base station can maximize performance. In goal of this
dissertation is to investigate techniques that mitigate inter-cell interference for mod-
ern cellular systems and focuses on development of practical scheduling algorithms for
inter-cell interference coordination that can be applied to currently deployed LTE Re-
lease 8 networks and development of more advanced inter-cell interference mitigation
techniques based on coordinated beamforming.

One of the classical methods of mitigating inter-cell interference is inter-cell inter-
ference coordination. Not only does it help improve cellular data coverage but also
allow more efficient use of valuable wireless spectrum. This dissertation investigates
soft frequency reuse for LTE systems. Systems employing soft frequency reuse is
analyzed and it is found that classification of cell-edge users and cell-center users is
critical. To improve performance, de-centralized scheduling algorithms that include
optimal user classification and balances throughput and fairness among users is pro-
posed. Additional sub-optimal methods to reduce the computational complexity is
introduced. Simulation demonstrates that gains of the 5th percentile user throughput
can be increased without loss to the overall cell average throughput compared to a
non-cooperating system.

Next, coordinated beamforming which require faster and tighter coordination



among base stations is investigated. Multi-user and multi-stream coordinated beam-
forming based on maximization of the harmonic-sum of signal-to-interference-plus-
noise ratio is proposed. Simulation results show that it improves cell-edge users
compared with prior researched coordinated beamforming algorithms based on min-
imizing mean square error, maximizing uplink signal-to-interference-plus-noise ratio,
and maximizing weighted sum-rate. Additionally, proposed coordinated beamforming
is further extended to multi-carrier systems with per-antenna power constraints. Low
complexity algorithm that can be applied to coordinated beamforming algorithms
with whitened match filter structure is proposed and simulated. The key idea is to
update a common antenna power regulating diagonal matrix, which determines the
antenna power of a precoding matrix in each iteration. The algorithm can be scaled
to any number of subcarriers because it only updates a common diagonal matrix for
all subcarrier. Simulations show that proposed algorithm enables excellent antenna
power efficiency with low number of iterations and converges quickly. Furthermore,
it can significantly mitigate inter-cell interference and improve performance over non-

coordinating system.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The high data-rate demands of today requires wireless networks to be much more
efficient than before, especially for the cell-edge users, where the data rates are far
more challenging than cell-center users. The performance of dense cellular networks,
deployed to meet the increasing throughput demands of users, is limited by inter-cell
interference (ICI). Therefore, mitigating ICI is an important issue in modern cellular
systems.

There have been different ways to improve the throughput of cell-edge users. For
example, a generalized proportional fairness (GPF) scheduler [61] can weigh the cell-
edge users more to increase their throughput at the cost of reducing the average
cell throughput. Multi-input multi-output (MIMO) techniques can use spatial beam-
forming to increase signal-to-interference-and-noise ratio (SINR) for cell-edge users.
Techniques confined to a single cell do not consider ICI and therefore, they have
limitations on achievable improvement to cell-edge users. For the downlink systems,
traditional methods on mitigating ICI are to optimize the transmit power of base
stations (BSs) in time or frequency domain to improve performance of the cell-edge
users [64), [51], which is known as inter-cell interference coordination (ICIC).

The two major categories of ICIC are fractional frequency reuse (FFR) [53] and
soft frequency reuse (SFR) [36]. The main difference being that SFR allows full
frequency reuse for wireless networks. In SFR, the bandwidth for a cell is divided into
two parts: cell-edge band (CEB) and cell-center band (CCB). Users are also divided

into two groups, with each group being scheduled in CEB or CCB, respectively.



The users with strong interference from the neighboring cells are classified as the
cell-edge users (CEUs) and the rest are the cell-center users (CCUs). To avoid
interference among the CEUs in adjacent cells, their CEB’s should be non-overlapped.
Furthermore, the downlink transmit power of the CEB should be boosted compared
to that of the CCB. The power boosting of the CEB increases the signal strength
whereas the coordinated CEB allocation among cells reduces inter-cell interference.
This leads to increase in the received SINR for the CEUs.

Nowadays, improvements in backhaul connection has allowed a large amount of
information to be shared among BSs quickly. As a result, faster and tighter coor-
dination among cells and advanced ICI mitigation techniques, such as coordinated
multi-point (CoMP) transmission, can be deployed. CoMP can be classified into two
large categories, coordinated scheduling/coordinated beamforming (CS/CB) and joint
processing (JP) [B0]. CB reduces the ICI experienced by the users by beamforming
the transmit signal of interfering BS to steer the interference towards the null space
of the interfered users. JP allows one or more neighboring BS to transmit the same
desired signal rather than interference signals from the point-of-view of a selected
user. This not only reduces ICI but increases signal strength as well. Although JP
has higher throughput, it also has higher implementation challenges, such as accurate
time-synchronization requirement and huge information exchange among cells.

The goal of this research is to investigate techniques that mitigate ICI for modern
cellular systems. Chapter 2 focuses on practical scheduling algorithms that can be
applied to currently deployed LTE Release 8 networks, while Chapter 3 and 4 focuses

on more advanced ICI mitigation techniques based on coordinated beamforming.

1.2 Literature Survey

Included in the following sections of the literature survey include a discussion of CB

in multi-input single-output (MISO) and MIMO systems and beamforming techniques



that take PAPC into account.

1.2.1 CB in MISO and MIMO Systems

The idea of CB comes from mid-nineties, mainly targeting a so-called SINR-leveling
problem [24], i.e. the power levels and the beamforming vectors are calculated to
achieve some common SINRs in the system or to maximize the minimum SINR. Sine
then there has been various CB algorithms that target different system aspects, such
as minimizing total transmit power, maximizing sum rate, minimizing mean-square
error (MSE), and minimizing interference leakage power.

A straight-forward method for CB is to extended the zero-forcing (ZF) beam-
forming for MU-MIMO. Since ZF beamforming nulls the interference to the selected
users, ZF-based CB can null out interference for users in the other cells. However,
complete-interference nulling generally requires greater number of transmit antennas
than the number of users in the system, and direct extension is not practical. There-
fore, ZF CB that omits nulling of interference to users with large pathloss is proposed
in [38]. This algorithm computes the ZF beams that matter the most, which is a
heuristic cell /user prioritization approach.

One of the classical CB objectives is to minimize total transmit power (Min-TTP),
while satisfying a minimum SINR among users [2I]. The Min-TTP optimization

problem is expressed as
K

J
minimize Y  [[P]2, (1)
k=1
subject to

SINR'*" > 4, (2a)

where || - || p is the Frobenius norm of the matrix, ’y(.k) is the minimum SINR constraint

j
for User k in Cell j.
It can be shown that total transmit power objective is a quadratic function of

the precoding vector and the SINR inequalities can be also made into a quadratic



function inequality in MISO systems. Therefore, the optimization problem is a convex
problem and optimum precoding vectors can be found in polynomial time using convex
optimization methods [13]. Other variation of the Min-TTP problem is adding a
leakage interference price to the problem objective [60]. It was shown that even
with the interference pricing, the problem is also solvable using convex optimization
methods and solution is unique.

As the BSs have access to stable electrical grids, minimizing the transmit power
may not be so critical. Instead optimizing the sum rate of all users under transmit
power constraints may be more attractive for cellular operators. Maximizing weighted
sum-rate (WSR) is expressed as

(k)
J Kj L

maximize Z Z Z log, (1 + SINRyg’r)), (3)

j=1 k=1 r=1

subject to

K;
SIPPE < Py (4a)
k=1

where P; is the total power constraint for cell j.

Precoding matrices that maximize WSR directly is complex because the precoding
matrices of cells are all coupled in the sum-rate equation. In MISO systems, it is
possible to find Rank 1 precoding vectors using a iterative estimation algorithm [43].
In each iteration, eigenvectors of a matrix derived from the Karush-Kuhn-Tucker
(KKT) condition of the WSR objective is found and the computed eigenvectors are
used to subsequently update the KKT condition matrix.

Alternatively, it can be shown that finding the precoding vectors that maximize
the WSR is equivalent to a weighted minimum mean-square error (MMSE) precoding
vector derived from the uplink virtual SINR [66]. The weights of the MMSE precoding
vector are chosen such that it maximizes the sum rate and can be found using the KKT

conditions. For MIMO systems, the maximizing the WSR is a non-convex problem



and therefore a suboptimal solution can be found by solving the WSR problem with
a fixed receiver filter, which effectively makes the problem into a MISO system [I8|
70, 47). The receive filter is updated using the computed precoding matrices and
new precoding matrices that achieve maximum WSR is iteratively computed. The
algorithm will find better precoding matrices that maximize WSR and is guaranteed
to converge.

The concept of iteratively computing CB precoding matrices and receiver filters
such that it improves overall system performance can be found in several other liter-
atures [44], [41) 92]. This will be denoted as the alternating optimization algorithm.
How the precoding matrix and the receiver filter is computed defines the maximizing
or minimizing objective. It was shown that differently weighted MMSE precoding in
a iterative algorithm can result in maximizing the virtual uplink SINR, maximizing
the weighted sum rate, or minimizing the total MSE [73], where the weighted MMSE
precoding can be expressed in the following form.

J K -1
P = (Z > o'H)WIWITHY + @1) HY W DM, (5)
i=1 1=1

(i
J

where P> is the precoding matrix for user k in cell j, Wl@ is the receive filter for
user [ in cell i, az@ and 3; are the weight coefficients, and D;k) is a diagonal matrix
that normalizes the column vectors of the precoding matrix. It is also interesting
to note that CB that maximizes the received signal power with interference limiting
constraints can be also represented into a weighted MMSE precoding matrix form
[65].

Although, maximizing the sum rate and the overall system performance is impor-
tant, modern cellular networks also need to consider fairness among users as the data

rate demands for each user is growing. CB that maximize the minimum SINR (Min-

SINR) of users is one example of such fairness. Maximizing Min-SINR optimization



problem is expressed as

maximize min SINR;’C’T), (6)
vi,k,r
subject to
K;
>_IPPE < Py (7a)
k=1

In [14], it was shown that CB precoding matrices can be computed such that
minimum SINR of users can be maximized through iterative computation of optimal
transmit powers and precoding matrices with the help of Perron-Frobenius theorems.
Alternatively, CB that maximize the lower bound of the SINR of users has been
proposed in [30], which can be also represented in a weighted MMSE precoding matrix
form.

Other CB algorithms worth mentioning are interference pricing algorithms, where
the objective is to maximize the sum rate [23| [73] or minimize the transmit power
[60] with some interference pricing. The interference pricing algorithms compute the
CB precoding matrices such that it either maximizes or minimizes the objective while

keeping the overall interference to a minimum.
1.2.2 Beamforming with Power Constraints

The capacity of the system is always of interest, since it gives some hints on the
performance of new techniques. The capacity region of a MIMO Gaussian broad-
cast channel with PAPC was shown to be the same as the capacity region of a dual
multiple-access channel with uncertain noise [48]. A capacity study of a single-user
system with and without beamforming, where PAPC is met with equality, was con-
ducted in [67] and [87], respectively. In all of these studies, it was shown that the
capacity of single-cell system with PAPC can be quite close to the capacity of system
with total power constraint (TPC).

One of the earliest study of beamforming with PAPC was for a single cell system

with ZF beamforming for multiple users [10]. It focused on finding the total power



scaling factor that would satisfy the PAPC and maximize sum rate for given ZF
precoding vectors. Therefore, the beamforming did not met PAPC with equality
and some of the transmit power was not used. To fully utilize all the transmit
power, beamforming for single cell, single user, single spatial stream beamforming
that only matches the phase of the channel was proposed in [34], and constant envelop
precoding, where all the elements of the precoding matrix have identical power was
proposed in [58]. While both beamforming algorithms met PAPC with equality, it
imposes significant restrictions on the beamforming coefficients.

PAPC was first applied to ZF beamforming in MISO systems and the precoding
vectors were computed using convex optimization [39]. Later, multi-stream ZF beam-
forming for MIMO systems was investigated in [40]. Although, studies presented a
close form formulation of the precoding matrix, the proposed algorithm in [40] could
not be applied for single stream beamforming and required maximal likelihood (ML)
receiver for all users.

PAPC applied to one of the classical beamforming objectives, Min-TTP, in a
MISO system was investigated in [93, [9T) ©94] [74]. It was identified that the problem
can be formulated into a convex problem with an unknown covariance parameter
and therefore solvable using convex optimization methods [I3]. Same beamforming
objective for MIMO systems was investigated in [54], where it utilized the alternating
optimization algorithm used in other various literature to tackle MIMO systems.

Beamforming that maximizes WSR with PAPC was investigated in [84] 11, 22].
Similar to Min-TTP with PAPC problem, convex optimization method can be used
[22]. In [84], the beamforming problem was approximated such that geometric pro-
gramming (GP) can be utilized to compute the precoding matrices. In [11], precoding
matrices that maximize WSR was computed indirectly by use of weighted MMSE pre-
coding, similar to CB studies in [66}, 18| [76], 47, [73].

Convex optimization methods were also utilized to compute beamforming with



PAPC that maximize Min-SINR [26] and minimize MSE [88] ?], respectively. How-
ever, convex optimization methods can be computationally complex and low-complexity
beamforming with PAPC has been proposed in [80]. The algorithm simply scales
each row of the MMSE precoding matrix such that it mets PAPC in an alternat-
ing optimization algorithm. Although, the algorithm is simple it does not guarantee
convergence and in some cases may diverge and result in poor performance. An-
other attempt at low-complexity beamforming algorithms with PAPC was presented
in [70, [46]. It proposed algorithms that iteratively computes the a single row vec-
tors of the precoding matrix in each iteration step. It was shown that the proposed

algorithms are guaranteed to converge.

1.8 Daissertation Outline

Outline of this dissertation is as follows. In Chapter 2, SFR inter-cell interference
coordination is investigated. Effect of user classification and transmit power config-
uration to performance of SFR is analyzed. Distributed scheduling algorithm that
can be applied to current LTE system is proposed and simulated. In Chapter 3,
multi-stream multi-user coordinated transmit beamforming for wireless networks with
multiple transmit and receive antennas is investigated. Low-complex iterative algo-
rithms to compute coordinated beamforming matrices is proposed and simulated.
Additionally, applicability of the proposed algorithm to TDD systems with partial
and imperfect CSI knowledge is analyzed. In Chapter 4, coordinated beamforming
discussed in Chapter 3 is further extended to multi-carrier systems with per-antenna
power constraints. Low complexity algorithm that can be applied to coordinated
beamforming algorithms with whitened match filter structure is proposed and sim-
ulated. The contents of Chapter 2 and 3 are based on previous publication by the

author [20, [49].



CHAPTER 11

SCHEDULING AND POWER-ALLOCATION
ALGORITHM FOR SFR

2.1 Introduction

There are different ways to improve the throughput of cell-edge users. For example,
generalized proportional fairness (GPF) scheduler [61] can weigh the cell edge users
more to increase their throughput at the cost of reducing the average cell through-
put. Multi-input multi-output (MIMO) techniques can utilize spatial beamforming
to increase signal-to-interference-and-noise ratio (SINR) for cell edge users. A group
of cells can cooperate to reduce inter-cell interference via regulating scheduling and
transmit power, which is also known as inter-cell interference coordination (ICIC).
ICIC techniques do not necessarily require any modification to existing user equipment
(UE) and can be implemented with some minimal changes in the base station. There-
fore, this chapter focuses on orthogonal frequency division multiple access (OFDMA)
based ICIC throughput improvement that can be implemented with the Release 8
downlink LTE.

There are two major categories of ICIC, called fractional frequency reuse (FFR)
[53] and soft frequency reuse (SFR) [36]. Since SFR allows full frequency reuse for
wireless networks, this chapter will focus on low-complexity SFR scheduling that takes
both throughput and fairness into consideration. In SFR, the bandwidth for a cell is
divided into two parts: cell-edge band (CEB) and cell-center band (CCB). Users are
also divided into two groups, scheduled in CEB and CCB, respectively. The users
with strong interference from the neighboring cells are classified as the cell-edge users

(CEUs) and the rest are the cell-center users (CCUs). To avoid interference among
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Figure 1. An example of relationship between frequency and power spectrum density for soft
frequency reuse deployed systems

the CEUs in adjacent cells, their CEB’s should be non-overlapped. Furthermore, the
downlink transmit power of the CEB should be boosted compared to that of the CCB.
For example, a 3-way SFR divides the whole bandwidth into 3 sub-bands, one for
CEB and two for CCB. If CCB is attenuated by —1.77dB, then CEB will be boosted
by 2dB so that total downlink transmit power of the SFR system maintains the
same as that of the non-ICIC system. The power boosting of the CEB increases the
signal strength whereas the coordinated CEB allocation among cells reduces inter-cell
interference. This leads to increase in the received SINR for the CEUs. The example
in Figure [l shows the relationship between frequency and power spectrum density for
two neighboring cells, where 75 ; is the CEB/CCB indicator for cell ¢ for sub-band £,
and is configured to 1 for CEB and 0 for CCB, and v and 3 represent the power gains
applied to CEB and CCB, respectively.

In order to deploy ICIC techniques to downlink LTE systems, additional restric-
tions imposed by the LTE standard needs to be considered. One of the restric-
tions is the transmit power of the data channel. The LTE standard allows trans-
mit power of the data channel to an UE to be either power boosted or attenuated

by {—6dB, —4.77dB, —3dB, —1.77dB, 0dB, 1dB, 2dB, 3dB} compared to the Common

10



Reference Signal (CRS) power [2]. In order to correctly demodulate data signals, the
UE must know the power gap between the transmission power density of the CRS and
data signal in advance, especially to demodulate Quadrature Amplitude Modulation
(QAM) signals. This information is conveyed through Radio Resource Control (RRC)
configuration messaging, which may take up to 64 ms configuration delay [2]. So for
all practical purposes, the transmit power density of the data channel is configured
in a semi-static manner.

In order to operate SFR in a system, the scheduling process must derive the re-
source allocation information for each user and the transmit power of CEB and CCB
for each cell. In addition, scheduler should also consider fairness among users. Pre-
vious research in [12] investigates transmit power optimization for the CEB and the
CCB along with dynamic resource allocation. Fairness and quality-of-service (QoS)
for the ICIC system have been considered in [96]. The above approaches can improve
the performance of wireless networks. However, their computational complexity grows
exponentially with the number of users and the number of cells. Furthermore, the
computation must be performed in every transmit time interval (TTI), which is 1 ms
in LTE systems. Additionally, joint optimization across all coordinating cells means
that the scheduling decisions and information in each TTIT must be conveyed to all
coordinating cells with a very low delay. Even with all the breakthrough in wired com-
munications, synchronizing information across the whole network with delay smaller
than 1 ms is extremely challenging. Therefore, low-complexity de-centralized SFR is
desired in LTE systems, which is a focus of this chapter. Even though some litera-
ture, such as [16] [62], has investigated SFR based ICIC techniques and have shown
interesting analytical results, there is no direct analytical comparison between SFR
and traditional non-ICIC systems.

The rest of this chapter is organized as following. In Section 2.2, comparison

of SFR and traditional non-ICIC systems are discussed and important properties of
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SFR throughput performance are identified. In Section 2.3, a novel low-complexity

SFR algorithm taking fairness and throughput into consideration is discussed. In

Section 2.4, the throughput improvement of the proposed algorithm is demonstrated

through computer simulation based on the realistic deployment scenario endorsed

by the International Telecommunication Union (ITU) Radiocommunication Group.

Conclusions are drawn in Section 2.5.

Here are some symbols that will be used in this chapter.

Pj(fi) : received downlink signal power for cell ¢ from UE j in cell [.

vi, Bi : relative power (boost or attenuation) gains for CCB and CEB at cell 1,

respectively.

Tri : CEB indicator on whether sub-band k of the cell ¢ is CEB or CCB, 1 for
CEB and 0 for CCB.

S; : set of UEs in cell 4.
|S| : cardinality of the set S.

SEEVU SCCU + sets of UEs classified as CEUs and CCUs in cell i, respectively,

SOV U S = S, and SEU N SCFY = .

5J(-i) : UE classification indicator on whether UE j in cell 7 is classified as CEU

or CCU, 1 for CEU and 0 for CCU.
k; : CCU population ratio defined as x; = |SFV|/|Si, (1 — k:) = |[SFEY|/|Sy).
N : number of sub-bands in the system.

F : set of cells in the network.
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2.2 Comparison of Non-ICIC and SFR System

In this section, SINR and throughput for the users in non-ICIC systems and in SFR
systems are derived and compared. It is assumed that the cells are fully loaded,
where ICIC schemes are most desired due to strong interference from neighboring
cells. Additionally, it is assumed that number of SFR bands is fixed and same for all

cells.
2.2.1 Throughput of a non-ICIC System

For a non-ICIC system, the general proportional fairness (GPF) scheduler [61] is
assumed. The GPF scheduler allocates any resource at time t to the user with the

maximum PF metric, which is defined as

Rest
PF; = %7 8
=T ®

where R is the estimated throughput for each user at time ¢, o determines the
fairness-throughput trade-off, and T;"® is the average data rate of the user. The

average data rate can be obtained by
T =e T8+ (1—€) - T, (9)

where T3V is the actual throughput of the system for the user at time ¢ — 1, and e
in the above equation is a forgetting factor and is typically chosen be very close to 1.
When a = 1, the GPF scheduler turns into a proportional fairness (PF) scheduler. It
becomes a greedy scheduler when o = 0, and an absolute fair scheduler when o = oc.

First, evaluation of the throughput of a non-ICIC system is shown. The average

SINR of user j in cell [ in a non-ICIC system can be expressed as

0 Pyl

_ Js

SINRY = IS (10)
Yicrin i Ton

where 02 is the power of additive white Gaussian noise, Pj(l) is the received downlink

N3

signal power of cell ¢ from UE j in cell [ and is called the Reference Signal Received
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Power (RSRP) [3] in LTE. If the system is interference limited, which is typical for

an urban cellular deployment, the SINR in can be approximated as

®
——( P
SINR(.) S — (11)
J p(l)
ieFiAl g

If the PF scheduler is used, in a long run, the PF scheduler will allocate to each
user equal amounts of bandwidth on the average [7], B3], thus the average bandwidth
allocated for a user in cell [ will be B/|S;|, where B is the whole bandwidth for a
cell. From the SINR derivation results, the approximation of user throughput can be

expressed as

B ()
RY = mlogQ(l +SINR; ). (12)

2.2.2 Throughput of an SFR System

It is assumed that only one of sub-band is allocated for the CEB in an SFR system
as described in [36], and each sub-band consists of multiple subcarriers. For example,
for SFR with N = 3 in a 10 MHz LTE system, the CEB consists of 17 resource
blocks out of total 50 ones, where the resource block is the minimum unit of resource.
This is about 1/N of the whole system bandwidth. In SFR systems, the CEB is
power boosted by ; (> 1). Because the total transmit power of a given cell cannot
exceed the regulatory constraint in LTE systems, the power for the CCB needs to be
attenuated by f5; (< 1) so that v; + (N —1)5;, = N.

For SFR systems, the SINR for sub-band k for user j in cell [ can be expressed
as
(573 + (0 - 8")3) P

S (i + (1= ) i) P +

i€ F il
The SINR in is a non-trivial form to analyze because the CEB indicator, 7,

SINR; ) = (13)

5
In

N

for other cells is its integral part. Instead, an approximation of the lower bound, the

upper bound, and the average SINR will be used to get more insights. The detailed
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derivation is shown in Appendix [A.1] The average SINR approximation is computed
by taking the expectation of the interference term and treating the CEB indicator as

a random binary variable with a probability of 1/N to be 1 and expressed as

! !
__— SFR-(l) (5( I+ (1- 5g( ))ﬁl> Pj(,l)
SINR, .
Zief,i;él le

The lower and upper SINR bounds can be represented in terms of the average SINR

(14)

approximation computed in and they are given as

FR-(I)  ——SFR-(l) 1 ——SFR-())

SINR, ) <SINR, < GunSINR; (15)

,-ymax

where 7% and /™ are the maximum power boost of CCB and minimum power

attenuation of CEB of all cooperating cells, respectively, and defined as

max

y = max-y;,
26]: (16)
prn = = min Bi.

From the average SINR, the throughput for the CEUs and the CCUs can be

expressed as

.y B 1 FR-(1)
RjestU =5 |SCEU|log2(1 + SINR ), (17)
and
. N-1)B 1 _——_SFR-()
RY oo = ( - ) |SCCU|log2(1 +SINR, ), (18)

respectively. The lower and upper bounds of the throughput for the CEUs and CCUs

are found by replacing the average SINR with the lower and upper bounds of SINR.
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2.2.3 Throughput Comparison

When the SINR is low, which is likely the scenario for the CEU, capacity is linear

with respect to SINR and the throughput in ([17)) can be approximated as

__lsl B
N|SFEY S|
M B ——O

= ————SINR
N(1 = rp) S| !

~_ L pO
- N(l—lil)Rj ’

S/IN\(Z)
! Rj

The lower and upper approximate throughput bounds can be found as

Smin-(1) " )
RjESlCEU ,ymaxN(l _ "{l) Rj ’

and

R@ax—(l) ~ ' M R(l)
jESZCEU 6m1nN(]_ _ Kl) J 0

(19)

(20)

(21)

respectively. The detailed derivation for the lower and upper bounds are given in

Appendix

Throughput approximation in , , and allows us to directly compare

the throughput of CEU in SFR and non-ICIC systems. From , in order for the

CEU to have any throughput gain on the average, the inequality, 7, /(N (1 —r;)) > 1,

must be satisfied. In the worst case scenario, performance of the cell-edge users

cannot be improved if 7, /(7™ N (1 — k;)) < 1 from (20]). Therefore, it is important

to configure the ICIC parameters properly to get performance improvement.

16



For typical CCUs, the SINR is much larger than one. Consequently, the through-

put of a CCU can be approximated by

(1) - (N — 1)B 1 ———SFR-())

(N-1)B 1 )

(N -DI|S| B

—()

N-128 N -1
~ _10g26[+

O]
R
N/{l |Sl|

Nlil 7

Similar to throughput approximation of CEUs, the lower and upper throughput

bounds can be expressed as

smin-) N —1 B B N-— 1R(l) 93
jESlCCU N/{l ‘Sl‘ OgQ ")/max N/ﬁ}l g ( )
and
o N-1B 157 N—-1_¢4
R, m ——= Zlogy—— + ——RY 24
]ESZCCU N/il |Sl| 082 ﬁmm + le,l 70 ( )
respectively.

Since f; < 1 and v > 1 in and , the first term in and is non-
positive. Because of this, if (N — 1/(Nk;)) < 1 then RE'ZG)SZCCU < Rj(l). The same
statement is true for the upper bound throughput if 8, < ™" in . From these
equations, throughput for the CCUs with ICIC is typically lower than that with
traditional non-ICIC if N — 1 < Nk;. In fact, this shows us that for CCUs, k; is the
most dominant term to throughput improvement. So in order for the CCUs to have
any throughput improvement, the ratio (N — 1)/(Nk;) needs to be large enough to
compensate for the loss incurred by £, in ([22)).

From the above analysis, the power gains, (; and 7;, and the numbers of the
CEUs and the CCUs play critical roles in the throughput of the SFR system. One
of the most dominant factors is the population ratio of CEUs and CCUs. In order

for the CEUs to get high throughput, the number of the CEUs in the cell needs to
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be small. For CCUs to have minimal throughput loss or even to have some gain, the
number of the CCUs must be small. The population ratio between the CEUs and
the CCUs will guide their throughput tradeoff. Similar tradeoff exists for the power
gains, where increasing the power of the CEB will increase throughput for the CEUs
but it will also decrease the power of the CCB and result in throughput loss for the
CCUs. Because of the trade-off relationship, it is difficult to improve the performance

of both the CEUs and the CCUs at the same time.

2.3 Proposed SFR algorithms

To overcome computational complexity and scheduling information exchange latency
for the dynamic resource allocation while obtaining fairness as well as optimal trans-
mit power for CEB and CCB, the SFR scheduling operations are seperated into two
parts. The first part, denoted as the parameter update, will compute the power gains
of CEB and CCB and classify UEs (CCU or CEU) taking fairness into account. The
parameter update requires coordinated information among the cells and will be only
computed in a long term basis. The second part, denoted as the resource allocation,
will perform dynamic resource allocation for each cell independently based on GPF.
Note that during the update of the power gains and the UE classification, before
new parameter configuration is available, the dynamic resource allocation can be still
performed based on the previous (i.e. latest) one. Therefore, this architecture al-
lows high latency information exchange among cells in the first part while keeping
low-complexity scheduling for the resource allocation for each T'TT in the second part.

Figure [2|shows the flowchart of the proposed SFR algorithm. It is a de-centralized
multi-cell cooperation algorithm. Each cell first updates power gains for CEB and
CCB as well as UE classification. The computation of the optimal power gains and UE
classification is based on RSRP reporting from the UEs. Because RSRP measurement

depicts the long term average signal strength of the cells, the computed results for
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long term
algorithm
(<100ms)

short
term
algorithm
(1 ms)

power gains and UE classification can be used in a long term basis. The minimum
reporting interval of RSRP information by the UEs used to compute power gains
and UE classification is 120 ms [2].
information will not change frequently and larger reporting interval can be used.

The power gains of other cells are received through base-station-to-base-station
link called the X2 interface [12]. If no information of power gain of cell i is available,
then set §; = v; = 1. The updated power gains are exchanged among base stations.
In LTE systems, the relative narrow-band transmit power (RNTP) [4] message can

represent the power gains as well as the CEB and CCB locations for each cell. From

<

N

< SFR Algorithm - Cell j )

>

UE Classification,
Power Gains Determination
S, 5, By, 1)

YE

iterate UE
classification/power gains
determination?

GPF scheduling
(per TTI)

pdate of U
classification/power
gains requied?
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Exchange

Power Gains
(X2 Interface)

{B1s Y15 B2 Y25 oe Birps Vi

< — — information flow

<«—— algorithm flow

Figure 2. An example of the parameter configuration in an SFR system
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the updated power gains, {51,71, ..., 87, Y7}, the UE classification can be updated.
An iteration is defined as an exchange of RNTP message among cells. After some
iterations of power gain computation and UE classification, the scheduler configures
UEs with the updated parameters. Each cell performs resource scheduling separately
and in parallel for each TTI. If a cell detects significant changes in the SINR of UEs
in the cell (e.g. new reporting of RSRP measurements), then it can perform power
gain computation and UE classification again. Note that resource scheduling for each
TTI can be still made during the power gain computation and UE classification based
on the previous parameters.

The power gain exchanges among cells are not expected to be the bottleneck of
the algorithm as most modern X2 interface implementations are able to meet 10 ms
round trip latency requirements [59] set by many of the LTE operators in the world.
The expected time interval of the update of power gains and UE classification is a
magnitude longer than the time needed for exchanging information among cells.

In general, the RNTP message should be exchanged among all SFR participating
cells in the network. But, in practice, the power gain information of a cell only needs
to be conveyed to its surrounding cells that are significantly affected by its power gain

change.
2.3.1 Prior Research on UE Classification and Power Allocation

Distance based UE classification has been developed for FFR systems [81] 29]. Since
distance information is not accurate enough and does not always reflect received signal
or interference strength, the distance metric may not truly represent whether a UE
is under severe interference or not.

To overcome this issue, UE classification should be based on UE’s wideband SINR

directly [63], [64], 32, 83]. The SINR threshold (STH) based UE classification can be
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expressed as,

SV = {j|Vj € S, SINRY > SINRyjresn }- -
SV = {j[¥j € S;, SINRY < SINRyjean }-
where SINRjresh 1S the SINR threshold.
Alternatively, UEs are classified and its power gains are allocated for CCB and

CEB by maximizing sum of user’s throughputs in the system [5, 12 6], [71], ©95], 15].

The max-sum throughput (MST) algorithm can be expressed as

SCCU

{SFV, By = argmf;j(]ez‘;l ; M](l (26)
subject to

i) = log, (14 SINR) (27a)
Bl c {1070.6, 1070.477, 1070.3’ 1070.177’ 1}7 (27b)
N=~+(N-1)3, (27¢)
SPV SFEY ¢ S, (27d)
SCCU ns CEU = 0,8 CCU SCEU S, (27e)

where M = 6|87V 4 (1 - 6\")|SY| and SINR}"? is from (13). The CEU
set and CEB power gain for cell [ is obtained from SV = S, \ SFCU and 4, =
N — (N —=1)4.

Once the UE is classified and power gains are determined, GPF scheduling can

be performed for each TTI in the resource allocation part of the SFR algorithm.
2.3.2 Proposed UE Classification and Power Allocation Algorithm

The MST algorithm is greedy and may result in unfairness among users. In order
to prioritize the most coverage limited user, the optimization problem is formulated
to maximize the minimum of all user’s throughput. However, max-min problem is

usually hard to tackle. Furthermore, the overall throughput of the cell is ignored
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in the max-min problem. Thus, to enhance throughput for coverage limited users
while having sufficiently good cell average throughput, the harmonic sum of the user
throughput is maximized. This approach achieves a good tradeoff between fairness

and throughput. The max-harmonic-sum throughput (MHT) algorithm can be ex-

pressed as,
. A 1
{SICCU7 ﬁl} = arginax ) (28>
SECYB, Z 1
ZN B ..
J€SI Zuk=1 Np @ ik
J
subject to the same constraints as .
It can be easily shown that for any set of positive numbers, {x1, zs, ..., zx},
. 1
min{zy, xe, -+ TN} > (29)

T il
i=1 z;
Therefore maximizing the harmonic sum will indirectly maximize the minimum value.

In addition, different from just maximizing the minimum value, maximizing the

harmonic sum also takes the overall throughput into account since
(30)

In summary, harmonic sum maximization results in UE classification and power
allocation in favor of the users with a low SINR while considering the overall average
throughput as well, which achieves a good trade-off between fairness and throughput.

The geometric sum of user’s throughputs, which is denoted as the max-geometric-
sum throughput (MGT) algorithm, is considered. Since the geometric mean is upper
bounded by arithmetic mean and lower bounded by the harmonic mean, it takes a
less priority to the coverage limited users and slightly more priority to cell average
throughput. It is interesting to note that maximizing the geometric sum is equivalent
to the definition of proportionally fair optimization metric [42] for maximizing Hfil x;
is equivalent to maximizing Zf\il log x;.

The MST, MGT, and MHT UE classification algorithms allows us to prioritize

the users in various ways, where the arithmetic sum is used to prioritize cell center
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Table 1. UE classification and power gain determination algorithm

Algorithm UE classification and power gain determination algorithm
1: Initialization : B = {107%¢,1079477 10703 1079177 1}, Hyeee = 0, U = {j|j €

Si}

2: form=1,---,|B| do

3 set By =B, and vy =N — (N — 1) - B,,.

4: forn=1,---,24 do

5 set 5j(-l): | 5v5r] mod 2 for j = U, for 1 < v < [U|.

6: compute SINR for each sub-band for each user, SINR,&%, as in for
Vi eS.

7: compute estimated throughput, R;l), as in and for Vj € .

8: compute harmonic mean of estimate throughput H =1/(3_..5 1/ Rg”)

9: if Hyeot < H thenA

10: set Hyest = H, B = 01, 1 = - R

11: set SCPU = {j]0\) = 1,5 € &} and STV = {j]8\ = 0,5 € S;}.

12: end if

13: end for

14: end for

users, whom contribute the most to cell average throughput, the harmonic sum is
the prioritize coverage limited users (e.g. the users with low throughput), and finally
geometric sum is used to be prioritize the coverage limited users and cell center users
in a proportionally fair manner.

Pseudo code of the MHT SFR algorithm for UE classification and power gain
determination is shown in Table [l Note that B,, and U, denote the m-th and v-
th element of the set B and U, respectively. The computed power gains from the
algorithm will be shared among cells that can be used to update 3; and +; in the next

iteration of the algorithm.

2.3.3 Computational Complexity Reduction for Harmonic Sum Maxi-
mization

The UE classification and power gain determination for the MHT algorithm is inte-

ger and combinatorial optimization problem and solved by exhaustively search for all
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possible parameter space of 3 and SCCY. The computational complexity of the MHT
algorithm can be further reduced by restricting the searching space of UE classifica-
tion. Since UEs with low and high SINR will typically be chosen as the CEU and the
CCU, respectively, the ||S;|/N| of the lowest and highest SINR UEs to CEUs and
CCUs, which are denoted as ST*CEV and SxCCU respectively, are fixed to a specific
value. Note that number, ||S;|/N]|, was chosen heuristically based on observations
from simulations of various deployment scenarios. The algorithm searches for optimal

solution only within the UEs belonging to neither ST*“EV nor SHxCCU that is
U= 'Sz \Siﬁx-CEU \SiﬁX-CCU. (31)

The above change will add one more restriction in the optimization objective function

constraint ([27)), which can be expressed as
SZﬁX-CEU C SZCEU,S?X-CCU C SiCCU. (32)

This will allow us to reduce the UE classification search space from |B|2!%! to |B|2/1S://N1,
Note that this type of computationally complexity reduction technique may be only
applicable for the MHT algorithm, which prioritizes coverage limited UEs.

The computational complexity can be further reduced by relaxing the optimization
binary UE classification variable, 6](-1), and using convex program methods. First, the
expected throughputs for an UE is computed assuming that the UE is classified as
CCU and CEU. Next, the softly classified UE throughput is expressed as a convex
combination of the throughputs of CCU and CEU. The soft classification is solved to
maximize the objective function and then finally the relaxed variable, 53(»1), is quantized
into binary.

Note that the MHT optimization objective function (28) is not a convex nor
concave function. Thus the objective function itself cannot be optimized by means of

convex program. However, can be transformed into a convex one by fixing the

power gains, 3; and -, as well as the total number of CEUs and CCUs. Once 5](-” is
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solved as an continuous variable between 0 and 1, it can be quantized into binary by
finding j which correspond to the highest values of 5§l) and set to 1, while rest of 5j(-l)
is set to 0. The processes repeats for all possible values of power gains, {3, 7}, and
number CEUs and CCUs, |SFEY|, and |SFCY|, and find the set of parameters which
maximize the objective function.

The convex relaxation of the objection function in can be expressed as

. 1
maximize 1 ) (33)
> T RO
2 A B
subject to
0<dV <1, Vies (34a)
l
ol =, (34b)
JES

where Ag-l) and BJ(-l) are estimated user throughputs for CEB and CCB, respectively,
and defined as

B ———(0)

(35)
B(N - 1) ——()
BV = 2V 1 - SINR,
J N(|Sl| —_ Al) 0g9 ( +Bl J )
)
and SINR]- is the reference SINR and defined as
)
——(1) P:
SINR,,; = 2 - (36)
’ o
> (it (U=ma)B) P+ 3

iEF,if#l
Since the harmonic sum in (33)) itself is not convex and cannot be solved directly,
(33) is transformed into an equivalent convex program that can be efficiently solved
using Second Order Conic Programming (SOCP) [I3]. The equivalent optimization
problem for can be expressed as

minimize Z tg-l), (37)

JES
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subject to constraints in (34)) and

l l l ! l
20— AW 1 W1 — 0y, (38a)
2 O 0
<z’ +t7, Vieds, (38b)
20 40 b
J J 9
0

The derivation of equivalent transformation of optimization problem is shown in Ap-
pendix [A.2] The SOCP can be casted as a semi-definite programming (SDP) and
the state of the art method for solving SDP is with running time of O(n35loge™1)
[13], where n is the number of UEs per cell and € is a small constant. This allows us
to reduce the UE classification computational complexity from an exponential to a
polynomial running time.

Table [2|shows the pseudo code of the MHT SFR algorithm with convex relaxation.

Note that in Table 5;1)* denotes the optimal solution to the SOCP in (37)).
2.3.4 Resource Allocation Algorithm for SFR

After UE is classified and power gains are determined, a cell performs resource allo-
cation based on GPF [89] [61]. In SFR systems, CEUs and CCUs will be restricted to
scheduling on CEB and CCB, respectively.

Let :m(j), for v=1,...,V, be the scheduling outcome of resource allocation of V
resource blocks of cell 7. If a resource block v is allocated to user j in cell 7, then
2 = j. The resource allocation vector %; = (2", xg), - xg))T will determine overall

resource block allocation. Additionally, let X°FB and X““® be the resource blocks

assigned as CEB and CCB for cell i, respectively. The CEB and CCB set can be
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Table 2. Reduced complexity UE classification and power gain determination algorithm

Algorithm Reduced complexity UE classification and power gain determination
algorithm

1: Initialization : B = {10796 1079477 10793 1079177 1}, Hypest = 0.

2: form=1,---|B| do

3: set B =B, and vy =N — (N — 1) - B,,.

4 forn=1,---|5]| do
5: Set A; = n.
6: Compute user throughput estimate Ag-l) and BJ(D in ([35)).
7: Solve the SOCP in (37).
8 Find j’s corresponding to highest A; values of the solution to SOCP, 5}(1)*.
9 Set to 53(-1) =1 for those j’s and 53@ = (0 otherwise.
10: Compute harmonic mean of estimate throughput H = +<l)
ZjGSZ 1/R]'
11: if Hyest < H then
12: set Hyest = H, Bll = B, =" . l
13: set SPFU = {j|(5](-) =1,j € S} and SV = {j\éj(») =0,5 € S}
14: end if
15: end for
16: end for
determined by
( )
Tki = ]-7
XCFU — viv=U-(k—1)+u, ¢ (39)
u=12---,U
\ J
and ) .
Tki = 07
XU =Sulv=U-(k=1)+u, ¢ (40)
u=1,2---,U
\ 7

where U = L% + O.5J and sub-band index, k, can take a value from 1 to N.

The resource allocation for CEU can be expressed as

| ct)
2\ = argmax —fR( af,g’t), Yo € XEY (41)
jESCEY szt
where C](th denotes the reported channel quality indicator (CQI) of user j in cell i

27



for resource block v at TTI ¢, the function fr(-) maps the CQI to the estimated data
rate and can be obtained using the method in [23], and T}7% is the actual average

throughput for user j in cell ¢ at time ¢ defined as in @ The resource allocation for

the CCUs can be similarly expressed by changing SCFY to SCCV and XFEV to X CV.
2.3.5 Computation Complexity Analysis

This secition discusses the computational complexity of the proposed algorithms and
they are compared with that of the centralized ICIC scheduling algorithm in [12]. The
SINR and throughput estimation described in [12] is similar to that of and (12).
Therefore, the comparison of the computational complexity is performed in terms of
the numbers of throughput estimate calculations.

The centralized scheduling method requires that the processing entity computes
all the scheduling information together. The centralized algorithm in [12] can be

expressed as

%
max -0 S0, (2

i€F jeS; v=1
where b;?, is the binary user/resource block assignment variable that is 1 if UE j
in cell ¢ is assigned to resource block v and 0 otherwise, and Ryl)) is the estimated
throughput for resource block v if UE 7 in cell ¢ is assigned to resource block v. The
optimization also needs to consider certain constraints which does not effect the total
computational complexity too much.
Assuming that number of values the transmission power can have is |B|. In LTE,
B = { —6dB, —4.77dB, —3dB, —1.77dB, 0dB } and |B| = 5. Then the algorithm
needs to estimate the user throughput >, » (|S;|V?|B|) times. If the more than
one resource block is allowed to be assigned to a single UE in [12], then it needs to
compute the user throughput Y, (|S;|V2"|B|”!) times.
The computational complexity for the proposed SFR algorithms is slightly dif-

ferent for different UE classification and power gain determination approaches. The
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proposed MHT SFR algorithm distributes the computation to each cell, and from (28])
and (1)), each cell only computes the user throughput V|S;| + |B| - 2/SiI/NT times.
For example, if there are 20 UEs per cell with 12 cells cooperating in 3 way SFR (i.e.
N = 3), 4 possible values for 3; and ~;, and 50 resource blocks (i.e. 10 MHz LTE
system), the centralized scheduling algorithm requires approximately 2.2 x 10?° times
of throughput calculations and the proposed algorithm only requires 1.5 x 10 times
of throughput calculations. The MHT SFR algorithm with convex relaxation further
reduces computational complexity. The convex program is an iterative algorithm only

with polynomial complexity. Therefore, our algorithms are much simplified.
2.3.6 Convergence of Power Gains Among Cells

In general, if each cell updates its power gains, [3; and +;, based on its previously
received power gain information from other cells then there is a possibility that some
of the cells will oscillate between sets of values for the power gains and do not converge.
Because there is only 4 states available for 3; for LTE downlink data transmissions,
the algorithm actually converges quickly. Even though convergence of the algorithm
can be guaranteed analytically, it always converges from the simulation results.
There have been solutions to ensure the convergence of the transmission power
among cells for coordinated scheduling [95]. The basic idea is to assign a probability
to the update of the power gains for each cell. The same principles can be adopted
here to ensure the power gain convergence among cells for our algorithms. Proof of

convergence is described in [95].

2.4 Simulation FEvaluation

The simulations are based on ITU-R sector recommendations for the IMT-Advanced
technology evaluation guidelines [37]. It is based on urban macro deployment scenario
of ITU evaluation methodology, which is widely accepted model in 3GPP and ITU.

Some key parameters are shown in Table
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Table 3. Simulation Configuration and Parameters

Simulation Parameter

Value

Total number of UE in the network

570 UEs randomly distributed in the
entire network (average of 10 UEs per
cell)

Channel Model (Scenario)

ITU Urban Macro [37]

System Bandwidth 10MHz
UE Speed 3km/hr
Antenna Configuration 2 Tx, 2 Rx
Tx Antenna Vertical Down Tilt 12°

UE location

100% outdoor, non-vehicular

Service Profile

Full Buffer Simulation

Handover Margin 1dB
HARQ Model IR Combining [79)
OLLA step size 0.25 dB

UE receiver algorithm

MMSE receiver with average interfer-
ence covariance estimation

CQI processing delay

5ms

CQI feedback period

every 2ms

CQI quantization

4 bits (LTE) [

CQI mode

PUSCH CQI feedback mode 3-1 (CQI
per sub-band, 1 PMI for all sub-band)
4]

Transmission Mode

LTE Transmission Mode 4 (Closed
Loop Spatial Multiplexing) [4]
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The specification of LTE systems were followed in the simulations, which includes
hybrid ARQ (HARQ) retransmission, channel quality indicator (CQI) feedback, pro-
cessing delay, and feedback quantization error. In order to fairly compare various
configurations and algorithms, Outer Loop Link Adaptation (OLLA) on top of the
CQI based link adaptation is applied to make sure that all UEs are controlled to have
10% block-error rate (BLER) for the initial transmission (i.e. non-retransmission)
packets. In addition, minimum mean square-error interference rejection combining
(MMSE-IRC) receivers are implemented in UEs, where each UE performs an estimate
of interference covariance for the MMSE receive filter. This is much more realistic
compared to the MMSE-IRC receivers using ideal interference covariance (i.e. exact
channel coefficients of all interfering signals) is assumed in each subcarrier at the UE.
The simulation is based on a 3 way SFR, with 1/3 bandwidth allocated for CEB. The
CEB frequency allocation is based on the modular sectorized cell layout, where the
CEB indicator for sub-band £ in cell ¢ is configured as

1, if i =k mod 3,
Thyi = (43)

0, otherwise.

The sectorized cell’s antenna orientation and the exact cellular layout is shown in
Figure [3| where the numbers represent cell indices. The three triangular pointers are
the directions of the antenna array’s for each individual cell. Wrap around of the cells
is implemented to remove the cellular boundary issues. Finally, the SFR algorithms
in the simulations assumed that the power gains and UE classification are updated

once every 1000 ms.
2.4.1 Comparison between Non-ICIC and Proposed SFR System

Table 4| shows throughput comparison between the non-ICIC system and various SFR
algorithms configured with 5; = 0.5 and v = 2.0.

Throughput for the STH algorithm in Table 4| shows that performance is sensitive
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Figure 3. Cellular layout, antenna orientation, and cell number configuration for simulations

to SINR threshold and a 2dB change in the SINR threshold results in a large change in
user throughput. When the SINR threshold is 4dB, it can increase the 5th percentile
user throughput by 3.2%. As expected, the MST algorithm significantly improves
the cell average performance by 40.3% but at the expense of -34.9% throughput loss
for the 5th percentile throughput. The MHT algorithm improves the 5th percentile
throughput by 20.9% while having similar cell average throughput as the non-ICIC
system. The performance of the MGT algorithm is between that of the MST and
MHT algorithms and it shows 14.3% and 11.7% gains for 5th percentile throughput
and cell average throughput, respectively.

The simulation results for the MST, MGT, and MHT algorithm are well aligned
with the analysis in Section 2.2. The network operator is able to control fairness

among users by changing the UE classification algorithm. The STH algorithm will
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Table 4. Throughput comparison for non-ICIC system and different SFR system

UE Classification Throughput
Algorithm bth percentile 10th percentile Cell Avg. Tput
Tput [Mbps] Tput [Mbps] [Mbps|
Non-ICIC system (Ref.) 0.40455 0.51303 13.9477
a=1 0% 0% 0%
STH 0.26362 0.33508 10.6236
(STNRpres = =2dB) 34 g5 34.7% 23.8%
STH (STNRyprees — 0dB) 0.32532 0.40742 11.436
-19.6% -20.6% -18.0%
STH (SINRypeay — 2dB) 0.40892 0.50904 12.9989
+1.1% -0.8% -6.8%
STH (STNRypeay — 4dB) 0.41765 0.51091 14.5089
+3.2% -0.4% +4.0%
STH (STNRypeay — 6B) 0.35839 0.45114 16.0415
-11.4% -12.0% +15.0%
MST (8 = 0.5, 7 = 2.0) 0.26348 0.32508 19.5701
-34.9% -36.6% +40.3%
MGT (8 = 0.5, v = 2.0) 0.46257 0.57484 15.5811
+14.3% +12.0% +11.7%
MHT (8 = 0.5, 7 = 2.0) 0.48893 0.61258 14.4705
+20.9% +19.4% +3.7%

be difficult to be implemented as it is difficult to pre-determine the optimal SINR
threshold that optimizes performance as the optimal SINR threshold may be different
for different deployment scenarios.

By adjusting the fairness-throughput trade-off exponent, «, in GPF scheduling in
, the average throughput and 5th and 10th percentile throughput will vary. Fig-
ure [] and Figure [f] show the 5th and 10th percentile throughput versus cell average
throughput, respectively, for the non-ICIC system with different o’s and the proposed

SFR algorithms. Each point in the figures correspond to a 2-dimensional throughput
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Figure 4. 5th percentile throughput and cell average throughput tradeoff comparison between
non-ICIC and proposed SFR algorithms

coordinate. The reference curve for non-ICIC system has been plotted by interpo-
lating the throughput coordinates with various PF exponents. In Figure [d the 5th
percentile throughput of the non-ICIC system saturates at 0.48 Mbps. However, the
proposed MHT algorithm with one iteration of power gain among cells can achieve up
to 0.51 Mbps and 0.63 Mbps for 5th and 10th percentile user throughput, respectively,
improved by 22% and 26% throughput gains for 5th and 10th percentile throughput,
respectively, compared to the non-ICIC system with GPF exponent a = 1 without
loss of cell average throughput.

Figure [6] compares the relative throughput of the search space restricting method
and convex relaxation method against the full exhaustive search method for the MHT
algorithm. From the figure, there are 3.9% and 9.1% loss for the 5th percentile user
throughput for search space restriction and convex relaxation methods, respectively,
compared to the exhaustive search method. The complexity reduction methods do
show modest cell average gains of 3.4% and 4.8% for each method. This is because

there exist a trade-off between 5th percentile throughput and cell average throughput.
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Figure 5. 10th percentile throughput and cell average throughput tradeoff comparison between
non-ICIC and proposed SFR algorithms

Although the objective of the MHT algorithm is to prioritize the cell edge users, the
reduced computational complexity methods are unable to compute solutions that

enable to prioritize the cell edge users as much as the exhaustive one.

2.4.2 SFR System Performance and Number of Power Gain Information
Exchanges

Table |5 shows the simulation results of the MHT SFR algorithm with 0, 1, 3, and 7
power gain information exchanges among cells prior to resource allocation scheduling.
From Table 5] the simulation results quickly converge and three power gain informa-
tion exchanges are enough. Note that performance improvement for the coverage
limited (e.g. 5th and 10th percentile throughput) users can be seen even with one
iteration where not all cells have fully converged.

In general, when the cells adjust their power gains independently based on in-
formation from the previous power gain exchange iteration, it is possible for cells to
oscillate the power gains adjustment and never converge to a value. The quick con-

vergence of the power gain among cells is observed to be possible due to the heavy
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Figure 6. Relative throughput comparison of computational complexity reduction methods of
MHT algorithm

quantization of the power gains for LTE. The large gap between different power gain
states enable certain cells to fixate its power gain to a certain state regardless of some
of the changes in power gain in other cells. This enables other cells to also converge
to a power gain state as power gains of more cells converge. Note that the LTE
specification only allows { -6, -4.77, -3, -1.77, 0 }dB to be configured for f; for data

transmission which rely on CRS to demodulate the received signals.
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Table 5. Throughput comparison of MHT algorithm for various numbers of power gain exchange
iterations

Number of ‘ Throughput
iteration for MHT

5th percentile User 10th percentile Cell Avg. Tput

Tput [Mbps] User Tput [Mbps]  [Mbps]
0 iteration (Ref.) | 0.46795 0.60164 13.6741
| 0% 0% 0%

N | 0.5115 0.62583 14.4122
1 iteration

| +9.3% +4.0% +5.4%

N | 0.48786 0.61248 14.3188
3 iteration

| +4.3% +1.8% +4.7%

N | 0.4904 0.6144 14.4066
7 iteration

| +4.8% +2.1% +5.3%
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Figure 7. Comparison of convergence for various quantization of CEB power gain f;

Figure [7] shows the effects of the power gain step size and convergence of power
gain values among cells, where the convergence rate is defined as percentage of the

number of cells that have not changed its power gains, 3; and ~;, from its previous
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power gain exchange iteration. If convergence rate is 100%, then no cells have adjusted
the power gain compared to the previous iteration and all cells have fully converged.
Simulation results show that convergence is tightly correlated with the step size of the
power gain. If the step size is too small, the power gains among cells do not converge.
Because of the natural of distribution of the UE distribution, some cells may be
less affected by changes in power gain of its neighbor cells. These cells are affected
more by its own power gain values and its UE classification. If the quantization
step size of the power gain is large, these cells are forced to converge its own power
gain value to quantized states. This helps other cells to converge as well in the next
iteration as there are less changes to the interference level. This is essentially the
same concept as the technique introduced in [95] that guarantees convergence. If
certain cells do not change its power gain value, other cells will converge quickly and
the whole convergence will be expedited. Probabilistic change condition on the power
gains as proposed in [95] can be emulated by having fewer available choices of the
power gain states. The LTE Release 8 only allows 4 power gain states for CCB of
the SFR operations and 1 power gain state for normal (i.e. non-SFR) operations,
{=6,—4.77,—-3,—1.77,0} dB [4]. The convergence is not an issue for the proposed
algorithm at all. For systems potentially with more flexibility in configuration of the

power gains, he proposed methods as mentioned in [95] may be adopted.

2.5 Summary and Conclusion

In this chapter, soft frequency reuse SFR inter-cell interference coordination is inves-
tigated. The performance for SFR is sensitive to user classification and power gains.
The proposed de-centralized SFR algorithms are robust and can significantly improve
cell-edge and cell average throughput simultaneously. The computational complex-
ity compared is significantly reduced compared to the centralized ICIC algorithm.

The proposed algorithm quickly converges. Since all assumptions and constraints
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are according to LTE specifications, the described algorithms can be readily used in

practical systems.
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CHAPTER II1

CB ALGORITHM WITH PER BS POWER CONSTRAINT

3.1 Introduction

Coordinated beamforming (CB) for a system with multiple transmit antennas and
single receive antenna, known as a multi-input-single-output (MISO) system, has
been well studied. For example, CB that minimizes the total transmit power un-
der minimum SINR constraint has been proposed using uplink-downlink duality [21].
Similarly, CB that maximizes the minimum of signal-to-interference-plus-noise ratio
(SINR) of the scheduled users has been developed using second-order conic program-
ming (SOCP) [31, 14}, 53], B5]. For system with multiple receive antennas in addition
to multiple transmit antennas, known as a multi-input-multi-output (MIMO) systems,
a class of CB precoding algorithms that maximize signal-to-leakage-plus-noise ratio
(SLNR) [72, 17, 27, [66] has been formulated as a generalized Rayleigh quotient prob-
lem and can be solved in polynomial time. However, finding optimal CB precoding
matrices that mazimize virtual uplink SINR (Max-VSINR) [73], weighted sum rate
(Max-WSR) [76, 11, 47, ?], minimum of SINR (Max-Min-SINR) [56, 84, [90], and
minimize mean-squared error (Min-MSE) [82] [73, 45] is known to be a non-convex
problem and no efficient algorithms for optimal solutions exist. As a result, subopti-
mal algorithms have been proposed to compute receive filters and transmit precoding
matrices iteratively.

The focus of the research will be on low-complexity CB that can prioritize the
performance of the 5% user throughput, denoted as cell-edge users. Single stream

and single user CB has been investigated in [52]. It is possible to utilize existing
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CB algorithms based on weighted utility, such as Max-WSR, to improve the cell-
edge users. However, obtaining the right weights to improve and prioritize cell-edge
users is difficult. This requires identification of the priority of users for scheduling
and beamforming matrix computation, which is an chicken-and-egg problem. The
difficulty stems from estimating which users will have the biggest issue coping with
ICI in multi-stream, multi-user, and multi-cell environment. Changes in beamforming
at the BS will drastically change ICI. Therefore, it is very hard to estimate the
weights that will improve the throughput of users of cell-edge while not sacrifice the
overall system performance too much. Alternatively, CB algorithms that maximize
the minimum SINRs of users is the most straightforward approach for improving cell-
edge performance. However, they require iterative search of SOCP feasibility test
[56] and are in general quite complex and can be only implemented in a centralized
algorithm (i.e. all CB matrices are computed at once without parallelism). Therefore,
the challenge is to develop low-complex CB algorithms that prioritize cell-edge users
and do no require additional parameters or weights to configure or optimize.

The harmonic sum of SINRs as the means to develop a low-complex CB algorithm
is investigated. Asimplied in [20], maximizing the harmonic sum of user rates leads to
higher prioritization of the cell-edge users and increases in 5% user throughput. Since
the SINR of users have one-to-one relationship with the user rates, CB that maximizes
the harmonic sum of SINRs should also improve the cell-edge user performance, which
will be verified by simulations in Section 3.4. It should be noted that maximizing the
harmonic sum of SINRs for multi-stream CB is non-convex. However, the objective
can be manipulated to derive low-complexity algorithms that find local maxima of
the harmonic sum of SINRs. Additionally, the proposed algorithms do not require
the network to pre-determine the cell-edge users.

To best of author’s knowledge, the harmonic sum of SINRs was used for a beam-

forming problem in early 2000 [§]. It has been shown that maximizing the harmonic
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sum of the SINRs for MISO systems can be transformed into weighted Min-MSE for
each user with power constraints, which is just a generalized eigenvalue problem. For
multi-cell MIMO CB, the harmonic sum of SINRs cannot be decoupled such that
beamforming for each user can be performed separately. Furthermore, direct formu-
lation of the problem in the multi-stream, multi-cell, and MIMO system is non-convex
and no efficient solutions exist. Therefore, the single-user single-stream CB in [52] is
extended to multi-user multi-stream CB. Furthermore, low-complexity iterative CB
algorithms that maximize the harmonic sum of SINRs of users in a MIMO system
with per BS power constraints (PBPC) is invesitgated. The proposed algorithms iter-
atively compute the precoding matrices of the transmitter and the hypothetical receive
matrices that may be used at the receiver, which has been utilized in many literatures
to combat the MIMO system beamforming problems [82], [73] [45] [75], [76], 7, 84, 00, 56].

The rest of this chapter is organized as follows. Section 3.2 describes the sys-
tem model and justifies the assumptions used in this chapter. Section 3.3 develops
algorithms to compute the CB matrices. Section 3.4 shows simulation results and

concluding remarks are provided in Section 3.5.

3.2 System Model

Consider a network, as in Figure |8} with J BSs. Each link consists of a BS with N
transmit antennas and users each with M receive antennas. They are all working at

the same frequency and therefore may interfere with each other. Denote the M x N

()

channel coefficient matrix from BS 7 to user £ in BS j to be H;;”. Since BS j serves

user k, channel coefficient matrix, Hgf), with ¢ # j, is the interference channel. Let
K be the number of scheduled users in BS j, and users are randomly distributed in
the network.

In multi-user MIMO (MU-MIMO), several users are scheduled in the same fre-

quency band simultaneously with the help of spatial division. Let Lg-k) be the number
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Figure 8. A cellular network with J cells

spatial streams for user k£ in BS j. The received signal for user £ in BS j in a

MU-MIMO system can be expressed as

K;
(k) _ ) p k) (k) OO0
y; =H P+ HPPx
1=1,l£k
+ Z ZH(k PUx" +nl", (44)
i=1,i#j =1

(k)

where ng) and ng) are the N x L§k) precoding matrix and the L™ X 1 transmit-signal

vector for user k£ from BS 7, respectively, and ngk) is the additive white Gaussian noise
(AWGN) vector. The power of the transmitted signal is given by the diagonal entries
of the transmit covariance matrix, £ [ng)XSk)T], where (-)7 denotes the Hermitian of
the matrix. The transmit covariance is assumed to be identity matrix, I, that is,
uniform power allocation is assumed. The power of AWGN is o?2.

(k)

At each receiver, a M x L;” weight matrix, W§k), is used to combine the received

signals from different antennas of user k. As a result,

~(k k k
) (45



and f(;-k) is the estimated desired signal.
From , the SINR of the r-th spatial stream of user k£ in BS j can be expressed

as
S(‘kﬂ.)
SINR{"") = . (46)

k k k k)’
W IQ Wi, — 57

S(krr)

where [-], is the r-th column vector of the matrix, S;™ is the signal power of r-th

2
k)]r , and Q;k) is the

spatial stream and can be expressed as, S j(k’r) = ‘[Wj(k)]iHy;) [P§

total received signal covariance of user k£ in BS j and can be expressed as

J K
Qg@) _ Z ZHEf)Pgl)PEl)THEf)T + 021 (47)
i=1 I=1

The receive filter can be obtained by finding the column vectors of W§-k) that
maximize SINR in , that is

(W), = arg max SINR") (48)
j Wi, j

)\ "L r (k) o (k
(@) e,

which corresponds to minimum mean-square error (MMSE) receive filter.

When there is a single BS with only one user, there will be no interference. If
the BS has no information on interference channels, then the best way is to treat
it as white noise when designing beamforming matrices. In either case, optimal
beamforming that maximizes user throughput for single user transmission will be the

right sided singular vectors of the channel matrix corresponding to the largest singular

(%)

values. Denote the singular-value decomposition (SVD) of channel matrix, H;’, as

k) _ 11(R) s (R)ys(R)T
H;" = U757V, (49)

;k) are ordered from the largest to the smallest.
@
J

where entries of the diagonal matrix 3
The optimal single user precoding matrix, P, is the first Lgk) column vectors of Vj(k).
The proposed research is for coordinated beamforming in multi-cell networks when

information on the desired signal and interference channels is provided at BSs. The
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channel state information (CSI) is assumed to be known at the BSs, which can be

done efficiently in TDD systems with uplink channel sounding.

3.3 Coordinated Beamforming for Multi-Stream Multi-User
MIMO Systems

In this section, the problem of optimal CB that maximizes harmonic sum of SINRs
of users is formulated and then a low complex algorithm is developed. With CSI,

H

;i » a centralized node can obtain precoding matrices for each cell based on the CB
algorithm. It is assumed that number of transmit streams for each user is known and
fixed. There has been some study on impact of number of streams transmitted to cell-
center and cell-edge users [9], which shows that cell-edge users are likely to benefit
more from a single stream transmission compared with cell-center users. Optimal
configuration of the number of spatial streams is beyond the scope of this chapter.

However, the proposed algorithm is formulated such that it will work with any number

of transmit streams for each user.
3.3.1 Harmonic-Sum Objective Function

Optimization objective metrics, such as maximizing sum rate of the users [86] or
maximizing the minimum of SINR of user [14], 3], are non-convex for multi-stream
multi-user MIMO systems and no efficient method for the optimal solution exists. As
a heuristic approach, the CB precoding matrices that maximize the harmonic-sum
of SINRs is solved. Investigation of use of harmonic-sum of SINR for single-user
single-stream CB case was performed in [52]. Simulation results in Section 3.4 show
that the proposed CB algorithms based on maximizing harmonic-sum of SINRs can
improve the cell-edge user throughput and require no prior knowledge of users.

It is well-known that for any N positive numbers, x1, s, ..., zy, the harmonic
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mean is upper and lower bounded by N min x,, and min x,,, respectively, that is

N min z,, > > min z,. (50)

N1

n=1 z,
Additionally, if SINRs of a certain stream of a user is much worst than rest of the
streams of other users, z,,(l)z;,Vj # m, the harmonic sum of SINRs approximates
the minimum SINR, that is

11
e L m

The harmonic sum is also upper bounded by the arithmetic mean through the arithmetic-

(51)

T, = Mminz, =
n

harmonic inequality, that is

%an = ZN—]Vl (52)

and the equality only holds when all the entries are identical. So if the SINRs of
streams of users are very similar, the harmonic sum of SINRs approximates the arith-
metic average of SINRs. These properties allow the maximization of harmonic sum to
indirectly maximize the minimum SINR as well as the average SINR and can balance
the overall throughput and cell-edge user performance. Some of these properties can
be implied in studies of user scheduling for ICIC [20]. Furthermore, it also results in
simpler CB algorithms than other metrics that prioritizes cell-edge users.

The harmonic-sum objective function for multi-cell multi-stream multi-user MIMO

systems can be expressed as

SINRy = (53)

J K LY
Zj:l Zk:l r=1 gINRF")
J
It should be noted that the multiple streams of each user have been treated as indi-
vidual streams of multiple users with a single effective antenna at the receiver. This

design principle is chosen to simplify the derivation of the CB algorithm. However,

it should be further noted that the final beamforming matrix of a user may not be
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optimized as a whole and may not diagonalize the effective channel at the receiver,
which may cause some degradation for linear receivers. The performance degradation
for linear receivers can be addressed by multiplying a conditioning matrix to the final
matrix, which will be addressed in Section 3.3.5.

From (46) and (53]), maximizing the harmonic-sum is equivalent to minimizing

J K L§-k) k k k) (k,r)
WQ W), — 8

2.2 : 7 (54)

- S( 7T)

7=1 k=1 r=1 7

subject to and
K;
k .
> PP < By, (54a)
k=1
where || - || is the Frobenius norm of the matrix, and P, is the maximum allowable

transmit power per BS. The precoding matrix constraint in (54a)) is PBPC.
Scaling the receive filter, VV](-k)7 by an arbitrary factor does not affect the received

SINR in (46). Without loss of generality, the receive filter of each user can be scaled

such that Sj(-k’r) = |[Wj(k)]lH§l;) [Pg-k)],,]2 = 1 is satisfied and the objective function can

be expressed as minimizing

g K LY
> (WIQ Wi, — 1) (55)
j=1 k=1 r=1
J K] J K]
k k k k
- (WP W) 3o -
J=1 k=1 j=1 k=1
subject to
k k) o (k .
(WP, = 1,97, k, (56a)

Furthermore, phase rotation of the column vectors of the precoding matrices, Pg-k),

does not affect the total received signal covariance, Q , in , nor the unit norm
constraint, in (56a)). Therefore, the constraint, |[W k)]TH( )[ng)]r\ = 1, is replaced by
[W](k)]IHEI;) [ng)}r = 1 without loss of generality. In addition, constants do not affect

the minimization problem and can be removed. Therefore, the objective function in
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(55) can be simplified as minimizing

j=1 k=1 i=1 =1
J Ky
33 T (W wPo2) (57)
7j=1 k=1
subject to (p4al) and
(WTHPP®) o1 =1,vj, (57a)

where o denotes entrywise multiplication, that is the Hadamard product.

It is interesting to note that the harmonic-sum maximization problem in is
similar to Min-MSE problem in [45] [73] with the exception of the additional affine
constraint in (57a)).

The objective function, , is partially convex and not jointly convex over P
and W. Because of it, conventional convex programming techniques [13] are not
applicable here. Therefore, two suboptimal algorithms are developed subsequently.
Unfortunately, the suboptimal algorithm only allows us to obtain local minima solu-

tions and may result in a duality gap between the primal and dual solutions.
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3.3.2 Alternating Optimization with Iterative Search

The solution to the optimization problem in (57) can derived using the Lagrange

multiplier approach. The Lagrangian of the optimization problem is expressed as

J
(4 (91 () p(¥
£ (- WTHDPY)) (58)

where ); is the non-negative dual variable for inequality constraint, , and \I’Ek)
is the diagonal matrix with dual variables for equality constraint, . Optimal
solution lies on the critical values of the Lagrangian. As demonstrated in Appendix
, by setting g‘—lﬁ = 0 and f—va = 0, optimal P and W can be found, and they are

expressed as

o1 )\ Lok k) o (k
P — 5 (R§. >> HOW R @) (59)
~ (k 1 k -1 k k) &, (k
Wi = > (Q) =P, (60)
where
J K;
k Dt 1 Dt l
RY =5 HYWOWOHY 4 AL (61)
i=1 =1

and \Ilg-k) and \ilg»k) are the diagonal matrices that scale the column vectors of the

precoding matrix and the receive filter so that equality constraint, (56al), is met and

given in Appendix [B.1| (114)) and (116)), respectively.

From and (60), the precoding matrix, P%" and the receive weight matrix,

J

w®

VR

can be computed iteratively. Furthermore, as proved in Appendix |B.2| the
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iteration converges and resulting precoding matrix for CB achieves equal or bet-
ter performance than single cell beamforming if single cell beamforming is used as
initial values. The proposed algorithm essentially transforms a multi-receive into a
single-receive subspace CB problem. Next, CB precoding matrices are computed that
minimize the objective. Finally, the receive filters are updates such that the original
objective is further minimized and whole process repeats. This guarantees that the
proposed CB algorithm will improve upon the single receive antenna case. Alternat-
ing optimization with iterative search algorithm is shown in Table @ Aj is searched in
each iteration until PBPC is met within €, tolerance or until 7}, number of searches.
The overall algorithm iterates at most Ny, iterations or until the objective function
is no further minimized than €% in each iteration.

The dual variable, A;, should be configured so that inequality constraint, (54al),

is satisfied. As proved in Appendix B.ql, ||P§k)||2F is a monotonically decreasing

function of A; . Therefore, dual variable, \;, can be obtained via the bi-section
method [52]. The optimal solution must satisfy complementary slackness conditions
[13] and therefore A; should be configured such that Z,ﬁl Hng)Hfm =PFyor )\ =0.
Alternatively, as Hng)H F is a smooth monotonically decreasing function of \;,
Newton’s method to search for optimal A; instead of the bi-section method may
be utilized. In general, the Newton’s method converges faster than the bi-section
method at the cost of higher computational complexity at each step. The bi-section
and Newton’s methods require N3 + LN? +2NL? + N? + 2L and 2LN?3 4+ N3 + N2 +
9LN? 4+ NL? + 10L complex additions/multiplications for each search for each user,
respectively, where L is number of spatial streams per user. The results based on
the simulation methodology described in Section 3.3 show that the bi-section and

Newton’s methods need an average of 11.3935 and 4.6905 searches, respectively, to

Tt should be noted that proof of monotonicity of \; using eigenvalue decomposition as done in
Min-MSE CB problem [76] is not applicable due to the additional dual variable, \Ilgk), from the
additional constraint (56al).
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Table 6. alternating optimization with iterative search algorithm

Algorithm SINR harmonic-sum maximization (SHS-Max) CB algorithm

1: Initialization :
set a initial value for P(k())

compute W " hased on P o) With (60).
compute ObJeCtIVG functlon fo

2: forn=1,--- Npax do

3: configure \; with an initial value.

4: fort=1,- Tmax do

5: compute P for Vj, k using (59) and (| -
6: if | Py — zkzl ||P§ﬁ;)||F| > €y then

7: update A; based on bi-section or Newton’s method.
8: else

9: break for loop.

10: end if

11: end for

12: update W ) for Vj, k using . ) and (| -

13: compute obJectlve function, f,.

14: if (fu_1— fn)/fn < € then

15: break for loop.

16: end if

17: end for

18: set optimal precoding matrix as ng) = P;(n)

19: if 37, P[] > Py then

20: scale back 155 ) to met Zk 1 HP HFH < P

21: end if

meet the error tolerance of €, = 1074

Iterative update of \; at the n-th iteration for the Newton’s method is given as

AL
/ n
g ()‘j )
where g();) can be expressed as
K
=2 IPPE - R, (63)
k=1
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and ¢'()\;), the derivative of g(};), can be expressed as

Ki L7 iy A .
g/(}\j) _ ; Zl 2G2()\J) G?(G;{ij())‘J)Gl()‘J)7 (64)

where
G.(Ny) = (W TG (RSY) ~H W),

Note that some of the computations for ¢’(\;) can be simplified by use of repeated
matrix structure, (Rﬁk))_l, which is taken into account in the complexity analysis.
Additionally, the updated Ag-") in certain conditions may result in a non-positive value.
Since non-positive )\gn) may result in non-invertible covariance in , )\5-") is forced
to be non-negative value in each update.

While the Newton’s method has higher computational complexity per iteration,
it is more attractive due to its quick convergence. Some of the computation for
Newton’s method can be computed in parallel using specialized hardware. However,
the iterative aspects of the algorithm cannot be parallelized and must be implemented
in a sequential fashion resulting in high processing latency. Therefore, algorithms that
have faster convergence properties are favorable. In the next subsection, a heuristic

algorithm that further reduces required number of iterations and with lower overall

computational complexity is introduced.

3.3.3 Low-Complexity Method

The above method is with iterative search and is with high computational complexity
due to the search of optimal \; for each step of computing the precoding matrices,
Pg.k). Therefore, a heuristic approach that incrementally updates A; once in each
iteration of Pg.k) and Wj(-k) (i.e. Tmax = 1) is considered. Comparison of the two
proposed alternating optimization algorithms is shown in Figure [9]

Note that non-optimal value of A\; may not meet the PBPC constraint .
Furthermore, the algorithm no longer guarantees maximization of the SINR harmonic-

sum in each alternating iteration. However, simulations results have showed that
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Figure 9. Algorithm flow comparison between alternating optimization and Low-Complexity al-
ternating optimization

with the right update of the dual variable, A;, the proposed low-complexity algorithm
does converge and cell-edge user performance can be improved. Our investigations
showed that if A\; is updated to aggressively, such as using Newton’s method, the
whole algorithm may not converge and lead to badly performing CB matrices. On
the other hand, if A; is only incrementally updated, such as using bi-section method,
the low-complexity algorithm requires many alternating iterations to converge.

The bi-section method essentially increases A; if ZkKl 1 ||P§»k) |%/ Py is too large and

decreases \; if ZkKi1 HPg-k) |%/ Py is too small. Based on the principles of the bi-section
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Table 7. low-complexity alternating optimization algorithm

Algorithm Low-complexity SINR harmonic-sum maximization CB algorithm

1: Initialization :
set a initial value for P;{C()O).
compute W](-k) based on PS?O) with (60).
set >\j,(0) =1.
compute objective function, fj.
2: forn=1,--- Ny do

3: compute P;iiz) for V4, k using (59).

£ update Ay = Ao -/ S0 PP/ Py
5: update W](.k) for V7, k using .

6: compute objective function, f,.

7 if (fuo1— fn)/fn < € then

8: break for loop.

9: end if

10: end for

11: set optimal precoding matrix as lagk) = P?(n)
12: i 3,7, [PV )3]| > Py then

13:  scale back ng) to met 317, HPEMH%H <P
14: end if

method, the following heuristic update algorithm is proposed,

K;
k
Mst) = Aoy | D P13/ P, (65)
k=1

The idea is to scale A\; such that it grows when Z,[:; L Hng)H% /Py is large, and to
shrink \; when Z,ﬁl HPg-k)H%/PO is small. Finally, if Z,ﬁl Hng)H%7 = Py, A; is not
updated further. The low-complexity alternating optimization algorithm is shown in
Table[7] Although, the convergence of the low-complexity algorithm is not confirmed
analytically, it has been demonstrated to converge numerically. More importantly, it
provides better cell-edge user performance when the total number of iterations of the

algorithm is very small, such as 4.
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Table 8. Complex addition/multiplications in precoding matrix computation of various CB algo-

rithms
Low-Complex
WSR Min-MSE Max-VSINR | Max-SHS- Max-SHS-
SINR
SINR
K - (I} +
LMN 4 e (oM + K- (LMN + 1 v +
2NL?) + ) K - (LMN + | 2NL?) + T - S
2 2 2NL*) + T - 2 3 5 s, | 2NLP)+N°+
L? + NL? + : | 2NL2) 4+ N3+ | (2LN3 + N3 + ) )
(BN® +4AN2 + | 2 ) ) , | 4N? + LN? +
LMN + T | v’ oy | N2+ LN N? 4 OLN? + | o\ o7
(3N® + 4N? + NIL? +10L)
5LN?+2L)

3.3.4 Computational Complexity Comparison

CB algorithms, such as WSR, Min-MSE, Max-VSINR, Max-Min-SINR, and the pro-
posed algorithms of this chapter, have in common that the solution is solved via al-
ternating optimization. Therefore, the computation of the hypothetical receive filter
can be identical and what is different is the how the precoding matrices are computed.
Of course, depending on how the precoding matrices are computed, convergence as
well as the performance change.

The complexity in computing the precoding matrices of mentioned algorithms
is compared for each user in each alternating iteration. The required numbers of
complex multiplication and addition for computing the precoding matrices for each
user in each iteration are shown in Table |8 Max-SHS-SINR and Low-Complex Max-
SHS-SINR refer to the proposed algorithms described in Table I and II, respectively.
In the table, K is the total number of active users participating in CB, L is the number
of transmitted streams per user, 7" is the number of iterations to find optimal A; using
the Newton’s method. From the analysis, the proposed low-complexity alternating
optimization for solving Harmonic sum of SINRs is only slightly more complicated

than the Max-VSINR, the least complex algorithm.
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Table 9. Example of average simulation run time for various CB algorithms

Low-
Min- Max- Max-SHS-SINR Min-
WSROl nse | vsiNg &‘;f}”lex Max-
Bl_t. Newton | SHS- SINR
section SINR
586s | 7.68s |753s | 7.04s 706s | 632s | 1565.22 s

The Max-Min-SINR CB algorithm requires iterative searches for the highest min-
imum SINR value using the bi-section algorithm, where each search requires to solve
a SOCP problem [84]. A bi-section search is a SOCP problem with K x LN dimen-
sioned solution and K second order cone inequalities with L x 1 dimensions. This
can be solved using an interior point method, an iterative algorithm, and requiring
O(N?L3K3) calculations per iteration of the interior point method [57]. Given that
the number of users, K, is expected to be much greater than the number of transmit
antennas per BS, N, or the number of streams per user per BS, L, it can be easily
seen that overall computational complexity of Max-Min-SINR CB algorithm is much
higher than other CB algorithms mentioned above.

To illustrate the difference in computational complexity of various CB algorithms,
the average simulation run time of each CB algorithm using Matlab on a Intel i7 CPU
is shown in Table [9] The comparison is the run time for computing CB matrices for
57 cells, each with 4 transmit antennas, and 228 users (i.e. 4 users per cell), each
with 2 receive antennas. It should be noted that the Min-Max-SINR is implemented
using a generalized semi-definite programming (SDP) tool, SDPT3 [85], and therefore
further run time optimization is possible with specialized SOCP solver implementa-
tion. However, even taking into account that run time for Min-Max-SINR may be
reduced by few factors, the difference between the Min-Max-SINR CB algorithm and
the proposed algorithms is still substantial.

Furthermore, the mentioned CB algorithms, Max-WSR, Min-MSE, Max-VSINR,
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and the proposed CB algorithms can be computed in a distributed manner. Because
computation of a CB precoding matrix of one BS, , does not require any informa-
tion about precoding matrix of another BS. Therefore, the precoding matrices can be
computed for each BS in parallel as long as the hypothetical receive filters and CSI
are shared among BSs. However, Max-Min-SINR CB algorithm requires computation

of all CB precoding matrices of all BSs simultaneously.
3.3.5 Precoding Matrix Conditioning for Multi-Stream CB

It should be noted that for multi-stream CB (i.e. L§k) > 1), the column vectors of
P§k) for user k£ in BS j are not necessarily orthogonal at the receiver and can be
further optimized. If the mazimum likelihood (ML) receivers are used, the precoding

conditioning matrix is not needed to obtain the capacity that can be achieved using

the precoding matrix basis, f’gk) [28]. However, if linear receivers are used, diagonal-

ization of the effective channel matrix is needed in order to maximize performance.
To find a precoding matrix that diagonalizes the effective channel, the principle

precoding matrix can be conditioned by a multiplication of an unitary matrix such

that the final precoding matrix can be expressed as
p (k) _ plk)ys(k)
P =plv®, (66)

where the conditioning matrix, V](-k), for user k in BS 7 is unitary. Note that in-
troduction of the unitary conditioning matrix for user & in BS j does not change
the interference covariance in for any other users. Therefore it does not effect
the reception of signals of other users and can be computed independently after the
calculation of the precoding matrix basis, P§~k), of all users.

The effective channel after the linear receive filtering, W(-k)TH(@P(-k)V(.k), needs to

J Jji 7 J

be diagonal. If the MMSE receive filter is used, that is W](k) = (Q§k))_1H§];)P§k)V](~k),

the effective channel after linear receive filtering, X;k), can be expressed as

X = vIOpOTBN Q)TN PRIy (67)

J J J JJ
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Figure 10. Cell layout for simulation evaluation

Therefore, the unitary conditioning matrix, V§k), consist of the eigenvectors that
satisfy
k k)t AR —151(k) o (k k) (k) r(k
P( )TH( ‘)J[(Qg‘ )) IH()P( ) _ V§ )S( )V]( )T’ (68)

where Sﬁ»k) is a diagonal matrix.

3.4 Simulation FEvaluation

In this section, numerical results of the proposed algorithms are presented. The
proposed algorithms are compared with single cell SLNR beamforming (SC-SLNR
BF) [27], Max-VSINR CB [73], Max-WSR CB [?], Min-MSE CB [73], and Max-
Min-SINR [84]. The proposed CB algorithms described in Sections 3.3.1 and 3.3.2,
will be denoted as SINR harmonic-sum mazimizing CB (SHS-CB) algorithm and

low-complexity SINR harmonic-sum mazimizing CB (LC-SHS-CB), respectively.

o8



=
i
N

1t 0.9
=09 0.8
=
g 0.8 0.7
5
> 0.7 0.6r
g [T
c L ) L
£ o6 g os
% 0.5¢ 0.4f
I
[
S04 0.3}

0al —o— SHS CB [SVD] | 02l —o— SHS CB [SVD]

—— SHS CB [RAND] —~— SHS CB [RAND]
02 ——LC-SHS CB [SVD] || 01} ——Lc-SHs CB [svD] |
¥ —— LC-SHS CB [RAND] —<— LC-SHS CB [RAND]
01 ‘ o ‘ ‘ ‘ : :
100 101 102 1 2 3 4 5 6 7
number of iterations User Tput [bps/Hz]
(a) Convergence (b) User throughput

Figure 11. Comparison between single cell SVD precoding (SVD) and random matrix (RAND)
based initial value configurations

All simulation results are based on 3GPP simulation methodology [I]. The sim-
ulated network consists of 57 sectorized BSs with directional antennas as in Figure
[10} Each BS site has 3 sectors and they are located in a hexagonal grid with geo-
graphical wrap around to mimic an infinitely large network. The distance between
any two BS sites is 500 m. The maximum transmit power for a 10 MHz channel is 43
dBm, and the noise power density is -174 dBm/Hz. The directional antennas have
a half-power beam-width of 70° and 17 dBi antenna gain with 20 dB front-to-back
ratio. The channel is spatially uncorrelated and with flat fading, generated by com-
plex Gaussian random variable. Pathloss model is 128.1 4 37.6 log;,(d/1000), where
d is the distance between the transmitter and the receiver. Users are uniformly and
randomly distributed over the entire network. The received SINR has been mapped
to throughput using log,(1 + SINR). Simulation is with 4 scheduled users per BS, 2
spatial streams per user, 8 transmit antennas at the BS, and 4 receive antennas at
each user, unless specified. The network is assumed to have full CSI of links between
users and BS, which is obtained through channel reciprocity in the TDD systems,

and all 57 cells are cooperating in the CB.
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Figure 12. Cumulative user throughput distribution

3.4.1 Initial Values and Convergence

As the proposed CB algorithms are sub-optimal and iterative, the initial value will
affect performance and convergence. The proposed algorithms are evaluated with the

following initial precoding matrices:
i) complex random matrices,
ii) single cell SVD based precoding.

Figure compares the average convergence trajectories of the SVD based and
the random matrix based initial precoding matrices for the proposed algorithms on
4,000 channel realizations. The proposed algorithms can reach 95% of the converged
objective within the average of 5 alternating iterations using single cell SVD precod-
ing as initial values. From the above figures, the SVD based initial precoding matrices
have faster convergence with similar performance to that of the random initial pre-
coding matrix. Therefore, single cell SVD precoding as initial values are utilized in

the subsequent simulations.
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3.4.2 Throughput Comparison

Figure compares cumulative user throughput of different CB algorithms with
4 transmit antennas at BS, 2 receive antennas at each user, and 1 spatial stream
per user. Other than Max-WSR CB algorithm, all CB algorithms improve the 5-th
percentile user throughput (i.e. cell-edge user throughput). The proposed algorithms,
SHS CB and LC-SHS CB, outperforms all other CB algorithms in improving cell-edge
user throughput other than Max-Min-SINR CB. Table|[10|shows the numerical results
with 5 and 10 alternating iterations based on the same simulation setup.

Figure [12b| compares cumulative user throughput of different CB algorithms with
8 transmit antennas at BS, 4 receive antennas at each user, and 2 spatial stream
per user. It should be noted that the precoding conditioning matrix, as described in
Section 3.3.5, has been applied to the proposed CB algorithms. Max-Min-SINR CB
results has been omitted due to computational challenges. The performance trends
of the algorithm between 1 spatial stream and 2 spatial streams per user are similar.

The percentage gains are referenced to the SC-SLNR BF algorithm, which is used
as an informative reference for non-coordinating scheme. From the table, LC-SHS
CB has 130% gain for 5-th percentile user throughput compared with SC-SLNR BF
without any loss for average user throughput. It has the highest 5-th percentile user
throughput gains while not degrading the average user throughput compared to SC-
SLNR BF. The proposed CB algorithms, SHS CB and LC-SHS CB, has 16% and
23% higher cell-edge user throughput compared with Min-MSE CB, which has the
second highest cell-edge user throughput if excluding Max-Min-SINR, CB. Even if the
Max-Min-SINR has the highest 5-th percentile user throughput, it is at the cost of sig-
nificantly higher computation complexity and average user throughput degradation.
In fact, Max-Min-SINR has computational complexity of O(TK3N2L3) per alternat-
ing optimization iteration, where T is the number of bi-section iterations needed to

estimate the maximum of the minimum SINR of users. The number of users, K,
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Table 10. User throughput comparison

5 iterations

‘ 10 iterations

5% User Tput User

Avg.

5% User Tput

User Avg.

[b/Hz/s] Tput [b/Hz/s| | [b/Hz/s]| Tput [b/Hz/s]
SCLSLNR | 0.3747 1.6206 | 0.3747 1.6206 |
| 0.0% 0.0% | 0.0% 0.0% |
SHS OB | 0.8083 1.6377 | 0.8114 1.6636 |
| +115.73% +1.06% | +116.57% +2.65% |
LC-SHS OB | 0.8620 1.7334 | 0.8685 1.7634 |
| +130.07% +6.96% | +131.79% +8.81% |
Max-Min-SINR | 1.2559 1.5191 | 1.2703 1.5449 |
B | +235.19% -6.26% | +239.04% -4.67% |
Min.MSE | 0.6961 2.0315 | 0.7237 2.0632 |
| +85.77% +25.35% | +93.15% +27.31% |
Max VSINR | 0-5613 2.1304 | 0.5644 2.1651 |
| +49.82% +31.45% | +50.63% +33.60% |
Max WSR | 0.1604 2.3868 | 0.0026 2.5479 |
-57.20% +47.28% -99.30% 57.22% |

is the dominating factor of computation. This is in the order of magnitude more

complex than LC-SHS CB, which only has computational complexity of O(KNML)

per alternating optimization it

eration.

Interestingly, the LC-SHS CB algorithm seems to outperform the SHS CB algo-

rithm. This is possible since both LC-SHS and SHS CB are sub-optimal algorithms

that search for local maxima of the SINR harmonic-sum objective and simulation is

terminated before full convergence.

Additionally, harmonic sum of user SINRs are shown in Figure[13] The harmonic

sum of all users in the network is computed for each user distribution drop and

multiple drops are simulated. The proposed objective, harmonic sum of user SINRs,

serves as a means to derive a low-complex algorithm rather than as a figure of merit.
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Figure 13. Cumulative distribution of harmonic sum of user SINRs

However, from the figure, the higher harmonic sum of SINRs results in improvement

of the cell-edge users throughput as indicated in Section 3.3.
3.4.3 Multi-Stream Precoding Conditioning Comparison

In addition, the proposed CB algorithms with and without conditioning of the precod-
ing matrices are compared in Table LI where 5 iterations are used. From the table,
it can be verify that the final conditioning of the precoding matrix always increases

the throughput for linear receivers.
3.4.4 Performance Impact from Partial CSI Knowledge

For time duplex division (TDD) systems, BSs may utilize uplink pilots to estimate the
channel and get CSI based on channel reciprocity. However, channel estimation based
on uplink pilots has some limitations, which lead to having partial CSI knowledge
at the network. To investigate the uplink pilot signal reception issues, LTE uplink

power control is modeled for sounding reference signal (SRS) [4]. The number of
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Table 11. Precoding conditioning comparison

5% User Tput User Avg.

[b/Hz/s] Tput [b/Hz/s]
without condition-
SHS CB ing 1.7853 3.2909
with conditioning 1.8031 3.3636
without condition-
LC-SHS CB  ing 1.8618 3.4737
with conditioning 1.8705 3.5509

links between a BS and a user that will have pilot signal-to-noise ratio (SNR) below
a certain value are analyzed.

In the simulation, full-pathloss compensation and no accumulated power control,
pilot transmission bandwidth of 9 MHz, and maximum transmit power of 23 dBm,
which corresponds to o = 1, f.(i) = 0, and Mgsrs = 50 in the power control formula in
Section 5.1.3 of [4] is assumed. Two different power control configurations, Py = -125
dBm and -115 dBm in Section 5.1.3 of [4], have been evaluated, which correspond to
serving BS target SNR of 7 dB and 17 dB, respectively, in the simulated scenario.

Figure 14| shows the probability distribution of number of links from BSs to a user
that has higher than 0 dB or -5 dB for two different power control configurations.
Simulation results show that with Fy = -125 dBm power control configuration, less
than 3 and 9 BSs out of 57 are able to received pilots from a users with higher than
SNR of 0 dB and -5 dB, respectively. The number of BSs that are able to receive
pilots from a user with higher than SNR of 0 dB and -5 dB with F, = -115 dBm
increases to 9 and 16, respectively.

Figure [15| shows the user throughput of SHS CB and LC-SHS CB with Py = -125
dBm and -115 dBm power control configurations. It has been assumed the CSI is
not available for links lower than received SNR of 0 dB and -5 dB and perfect CSI is

available for link otherwise. The ideal case in the figure represents CB with full CSI
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Figure 14. Probability distribution of number of links from a user to BSs with various receive
SNRs

knowledge. Even though the CSI knowledge is limited, simulation results show that
the proposed CB algorithms performance does not degrade much. ICI from interfering
links are dominant, which is similar to serving BS signal strength. Therefore, as long
as appropriate power control parameters are configured and CSI is made available for
the strongest interfering links, the proposed CB algorithm is robust to partial CSI
available at the transmitter.

CSI estimation error can affect the performance of the proposed algorithms. Table
shows user throughput results with channel estimation(CE) processing gains of 4,
8, 12 dB and uplink power control configuration of Fy = -115 dBm and -125dBm.
When the overall uplink transmit power is low, i.e. Py =-125 dBm, and CE processing
gain is low, i.e. 4 dB, the proposed CB algorithm may have up to 11% cell-edge
user throughput loss compared to perfect CSI cases for the LC-SHS CB algorithm.
Increasing the overall uplink transmission power into Fy = -115 dBm significantly

reduces user throughput loss to less than 1%. Therefore, right configuration of uplink
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Figure 15. User throughput comparison with various power control configurations and pilot signal
minimum detection threshold
pilot transmission power and pilot design to ensure high CE processing gain can

reduce the performance losses incurred by partial and imperfect CSI knowledge.

3.5 Summary and Conclusions

This chapter has investigated multi-stream multi-user coordinated transmit beam-
forming for wireless networks with multiple transmit and receive antennas and devel-
oped low-complex iterative algorithms to compute coordinated beamforming matri-
ces. The proposed algorithms can reach 95% of its convergence within an average of
5 iterations. The performance of the proposed algorithms significant improve upon
the non-coordinating network and have 16% to 23% improvement for 5-th percentile
user throughput compared with that of latest CB techniques while not degrading the
average user throughput. The proposed algorithms are low-complex alternatives to
the Max-Min-SINR CB algorithm that target the cell-edge users. The CB algorithms
can be applied to more wider coordination area with many users as it only linearly
scales with number of users and can be parallelized unlike the Max-Min-SINR CB
algorithm, where the computational complexity scales in the cube of number of users.

Research additionally shows that with proper uplink power control configurations in
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Table 12. User throughput comparison with various CE processing gain and power control config-
urations

| Lcsas o | Py =-115 dBm | Py =-125 dBm |
5% User Tput User Avg. | 5% User Tput User Avg.
[b/Hz/s] Tput [b/Hz/s| | [b/Hz/s] Tput [b/Hz/s|
| perfoct cg1 | 0-87219 1.7695 | 0.90032 1.748 |
| | +0.0% +0.0% | +0.0% +0.0% |
| 4dB CE Gain | 0-34888 1.7328 | 0.79309 1.5403 |
| | 2.67% -2.07% | -11.91% -11.88% |
| 84B CE Gain | 0-86368 1.7559 | 0.84986 1.6526 |
| | -0.97% -0.76% | -5.60% -5.45% |
| 194B CE Gaig | 0-86853 1.7654 | 0.87566 1.7068 |
| -0.41% -0.22% -2.73% -2.35% |

TDD systems, the performance loss due to partial and imperfect CSI knowledge is

minimal for the propose CB algorithms.
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CHAPTER IV

COORDINATED BEAMFORMING ALGORITHM WITH
PER ANTENNA POWER CONSTRAINT IN OFDMA

4.1 Introduction

Greater number of transmit antennas for cellular systems enable higher throughput
and efficiency through beamforming and spatial multiplexing gains. To reduce cost
for large antenna arrays, each antenna element may be designed to output only a
fraction of the total transmit power of the whole antenna array. This significantly
reduces cost and design complexity of each antenna element. However, in order to send
signals using such antenna arrays, transmit baseband signals must have per-antenna
power constraints (PAPC). Therefore, development of multiple input multiple output
(MIMO) techniques with PAPC is of a great importance.

Modern cellular systems, such as LTE, use of orthogonal frequency division multi-
ple access (OFDMA) to multiplex multiple users and to obtain frequency selectivity
gains through smart scheduling. The combination of OFDMA and high order MIMO
imposes higher computational complexity of signal processing and scheduling per-
formed by the base station (BS). The transmit power of an antenna in a multi-stream
beamforming system is determined by the sum of transmit power of each subcarrier
and each spatial stream. Therefore, even if transmit power of a given stream on a
given subcarrier exceeds a certain power allowance, PAPC can be met as long as
some other stream or subcarrier use less transmit power such that total transmit
power constraint is met. Multi-carrier operations enable some flexibility of transmit
power constraints on each subcarrier. However, designing a low complex beamform-

ing techniques that fully utilize such flexibility while meeting PAPC as a whole will
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be a challenge.

4.2 System Model

Consider a network with J BSs. Each link consists of a BS with NV, transmit antennas
and users each with N, receive antennas. They are all working at the same frequency

and therefore may interfere with each other. Denote the N, x N; channel coefficient

(k)

iim- Since BS j serves

matrix from BS ¢ to user k in BS j for subcarrier m to be H,

user k, channel coefficient matrix, H®

iim» With @ # j, is the interference channel. Let

K be the number of scheduled users in BS j, and users are randomly distributed in
the network. Let M be the number of subcarriers in OFDMA system.

In multi-user MIMO (MU-MIMO), several users are scheduled in the same fre-
quency band simultaneously with the help of spatial division. Let Lgk) be the number
spatial streams for user k in BS j. The received signal for user k in BS j of subcarrier

m in a MU-MIMO system can be expressed as

J
(k) _ gy(k) (k)
Yiom = H PimXim + Y HijmPimXim + 1), (69)
i=1 i;éj
(k) p(k) (k)
H]ijJm jm+ Z H]jm ]m ]m+ Z Zszm i,m zm+njm7
I=1,l#k i=1,i#j =1

where P;,, and x;,, is the overall precoding matrix and data signal of BS j and

are given as Pj7m - [Pglf)n’P( ) ,P;-’I;f)] and Xjm = [Xgn)@Tv fr)nTv T >X§',[7(TZ)T]Ta
respectively, where (-)7 is the matrix transpose operation, ngn)l and ngn)l are the

" %1 transmit-signal vector for user k£ from BS

N; X L;k) precoding matrix and the Lg-
7, respectively, and ngk) is the additive white Gaussian noise (AWGN) vector. The
power of AWGN is o2

The subcarrier index subscript, m, is omitted whenever the equation unambigu-

ously represents description for a single subcarrier.

At each receiver, a N, x L§k) weight matrix, W](-k), is used to combine the received
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signals from different antennas of user k. As a result,

~ (k k k
= Wity ()

and ﬁgk) is the estimated desired signal.

From ([69)), the SINR of the r-th spatial stream of user & in BS j can be expressed

as
P ® mp®) |2
N WP, -
7 k k k k K)ok |2
WQP W, — W E P,

where [-], is the r-th column vector of the matrix, and ng) is the total received signal

covariance of user k in BS j and can be expressed as

J K
Qék) _ Z ZHZ(;QPZ(Z)PEI)THE;?)T + UZI- (72)
i=1 I=1

The receive filter can be obtained by finding the column vectors of W§»k) that
maximize SINR in (71]), that is

(W*], = arg max SINR{"" (73)
J [W(‘k)]T J

B\ " e (k) oy (k
(@) mge,

which corresponds to minimum mean-square error (MMSE) receive filter.

4.3 CB Algorithms with PAPC

Some CB algorithms can be designed such that computed precoding matrices max-
imize weighted sum-rate (WSR), minimize mean-squared error (MSE), or maximize
the harmonic sum of SINRs (HSS). The precoding matrix of these CB algorithms
have a common structure, in the form of whitened matched filter, that enables efficient
application of PAPC.

The optimization problem for mentioned CB algorithms can be described as

M
maximize Z U(Pl,ma Py, 7PJ,m)a <74)

m=1
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subject to
M
To (Z Pj,mP}Vm) <D, Vj, (74a)
m=1
where o denotes the entrywise product symbol (i.e. Hadamard product), U(-) is the
optimization objective, WSR, negative MSE, or HSS, and D; is a diagonal matrix
that contains power constraint values for each antenna in each diagonal element.
The utility metric, U(P), is partially convex over P, and the optimal solution with
respect to the precoding matrix can be found using the Lagrange multipliers method

which can be expressed as

L(P,A) = iU(PLm o Pym) + Tr (i: A, (I ° (i Pj,mP;,m> - Dj)) :
m=1 j=1 m=1 75)
where the diagonal matrix, A;, is dual variable of the PAPC. Using commutative
property of Hadamard product, IoX = XoI, and matrix trace properties, Tr(IoX) =
Tr(X) and Tr(AB) = Tr(BA), the Lagrangian function can be further manipulated

as

‘C(P7 A) = Z U(Pl,ma Tt >PJ,m) (76)

J
Tr (ng;TAjp§?;) -3 T (A,D)).
j=1

Using complex matrix gradient result, VxTr(XTAX) = 2AX, in [68], the gradient of

the Lagrangian function can be expressed as

J M j

M K
V) L(P,A) = Vi STUPLPomy - Pu) D> 2APY (77
’ nm m=1

=1 m=1 k=1

For utility functions that are either convex or partially convex, we can derive an
efficient algorithm based on alternating optimization, similar to the proposed CB
algorithm in Chapter 2.3. Furthermore, if the critical solution to either maximizing
or minimizing the utility functions result in whitened match filter like structure of
the precoding matrix, low complex algorithm to compute the precoding matrix that

achieves PAPC is possible.
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4.3.1 WSR CB Algorithm with PAPC

WSR is useful metric when specific prioritization of users is known to the network.
Configuration of weight parameters enable uses for various applications and deploy-
ment scenarios. Both use of convex programming [78|, [77, 19] and Lagrangian mul-
tipliers [I8] has been investigated to efficiently solve maximization of WSR metric.
The following uses the latter approach to efficiency solve maximization of WSR, which
enables development of less complex algorithms.

The WSR utility metric is expressed as
J Kj

Unsr(P) =3 >

k=1

K]

Jjm Jjm= jm

,u§-k)10g‘I+P(k HOT QWY HE p® | (78)

(%)

;and 7’ ., are the the weight coefficient and the

where || is the matrix determinant, p;
sum-rate of user k in BS 7, respectively, and Q ;m 18 the Interference signal covariance
of user k£ in BS j and can be expressed as
Q= Q) - MY PP = 3OS HERUR Y ot (o
(Zi,l)lsﬁéj,;)
where nggl is the total received signal covariance, .

WSR optimization problem can be solved as a weighted minimum mean-square
error (WMMSE) problem with optimized weights [18]. The objective is convex with
respect to the precoding matrix, P( , and receive filter, W( . However, it is not
jointly convex. Therefore, alternating optimization method is used, where the pre-
coding matrix and receive filter is updated iteratively. For partially-convex objectives,

this method is known to converge. The CB precoding matrices are found using the

Lagrange multipliers method. The gradient of the WSR Lagrangian function with
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respect to the precoding matrix of user £ in BS j can be expressed as

Vo L(P,A) = 2B WIE B 1

J,m JmJ

J K
Dyy(l ) k)

— 1> ouPu) WTED Wi 'Y | P —2A P (s0)
i=1 1=1
(1,07 (j.k)

where E§k) is the weight matrix and is expressed as
-1

(k) JTpy k)t 1 k)t

S, = (1+ POE @) HE, PO (81)

The derivation is shown in the Appendix |C.1l The term, A, P% stems directly from

Jm’

the gradient of the PAPC.

By setting the gradient of the WSR Lagrangian to be equal to zero, can
be manipulated into semi-closed form CB precoding matrix equation. Additionally,
due to complementary slackness conditions, the dual variable, A;, must meet PAPC,
(74a)), with equality. The equation is semi-closed form because there is no close form
solution for obtaining the dual variable, A;. The CB precoding matrix for maximizing
WSR can be expressed as

-1

p® — [ S S O WOLOEO WO D 4 A, | HOLWELOES, (s
(Zi»l)l#éj,l}r)
which is the in the form of whitened matched filter equations.
The receive filter can be directly computed, as it is known that MMSE receive

filter, , is sum-rate maximizing solution. The overall algorithm is shown in Table

L3l

73



Table 13. WSR maximization CB algorithm

Algorithm WSR maximization CB algorithm

1: set P Wlth initial values

2: for t =1 Thaxiteration dO

3: compute (W§-2|P§2),‘v’j,m, k using
4: compute (E(-k)\Pg-kgi) V4, m, k using

5: compute (P Jm,A ]W ) V4, m, k using
6: break if converged
7: end for

4.3.2 MSE CB Algorithm with PAPC

Precoding matrix solution to minimizing MSE is partially derived during solving for
CB that maximizes WSR. Furthermore, relationship between minimizing MSE and
maximizing WSR is presented in [18].

Assuming that the signal power is one and the transmit power is controlled by

the precoding matrix, the negative MSE metric can be expressed as

Unse(P) = Z Bl k k)” ]

7=1

J
== (WhaQlhwihi —ore [POHETWE L 1) (83)

m 77,m
1

J

= ﬁMﬁ

B
Il

7=1
Similar to WSR CB algorithm, the MSE objective is partially convex over P and
efficient algorithm can be obtained using the Lagrange multipliers method. The

gradient of the MSE Lagrangian function with respect to the precoding matrix of
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user k in BS j can be expressed as

Vo L(P,A) = 2HJ I W)

J17,m
(S r el s
=1 [=1

The derivation of the gradient of the Lagrangian is shown in Appendix [C.2] The
resulting MSE CB precoding matrix can be expressed as

—1
Z Dy @) pr®F t
(Z Sy wiiw) BT 4 A, ) HYT W (85)

=1 [=1

which is also in the form of whitened match filter equations.
Since the objective is also partially convex over W, the receive filter can computed
using the Lagrange multipliers method. The gradient of the MSE with respect to the

receive filter, Wj(k), can be expressed as

Vi LW, A) = oH" pk)

JJ3,m= 3,m

0 Ot () 2va7 (k)
—2 (Z Z sz mT i, m sz m) Wj,m - 2O-nvvj,m' (86>

=1 [=1

By setting the gradient to be zero, a close form solution for the receive filter can be

formulated, which can be expressed as

J K -1
(Z H¥ pl) pUIg! ’“”+o—21> HY p®) (87)

1j,m> i,m zm 1j,m j7,m~ j,m
i=1 [=1

The result is identical to the MMSE receive filter, (73). The overall algorithm is
shown in Table T4
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Table 14. MSE minimization CB algorithm

Algorithm MSE minimization CB algorithm

1: set P Wlth initial values
2: fort=1--- Tmax—iteration do

3: compute (W§’“,31|P§’jil) Vj, m, k using

4: compute (P Jm,A ]W ) V4, m, k using
5: break if converged
6: end for

4.3.3 HSS CB Algorithm with PAPC

Use of harmonic sum of SINRs (HSS) as a metric for solving beamforming problem
is an old concept [§]. Although harmonic sum of SINRs for multi-user multi-stream
MIMO beamforming is directly intractable, equivalent transformation of the har-
monic sum of SINRs can be made such that Lagrangian multipliers method can be
applied to directly solve beamforming solutions [49]. It can be shown that maximiz-
ing the harmonic sum of SINR metric also yield similar precoding matrix structure
as precoding matrix of maximizing WSR or minimizing MSE.

The harmonic sum of SINR metric is expressed as

Uiyss(P) = ! v | (88)

S T ks g

Solving maximizing HSS is equivalent to minimizing inverse of HSS. Inverse of

HSS metric is expressed as

uinv—HSS = Z Z Z SINR(k T

2
o o W W, \[w““)wH“” P

J7,m

(89)

j=1 k=1 r=1 ‘[W k)] H® P k)]

Jgml= gmlir

76



The inverse HSS objective can be manipulated into a partially convex form with ad-
dition of an equality constraint. (add description on how this is done) The equivalent

form of the HSS optimization can be expressed as

M J K
minimize ZZ Tr( J(’“,ZJQ%W%—I), (90)

m=1 j=1 k=1

<.

subject to ([74a)) and
To <W<‘“>TH(.’?) P(k)> ~1. (90a)

The Lagrangian function of the equivalent form of HSS objective with PAPC can

be expressed as

E(P,\D,A):i Tr< Bl wik) 1)

K;
j=1 k=1
J Kj
k)t k
S (e (1w )

j=1 k=1
J Kj

33w (P MIAPW _ AD; ) (91)
j=1 k=1

where \Ilg»k) is the dual variable associated with the equality constraint, (90a]). There-

fore, the gradient of the Lagrangian function can be expressed as

k
Vpw L(P, ¥, A) = —2HT W gl
+2 (Z > Hﬁ-i?mwz(f%IWEfizHE-?L) Pl +20P (92)
=1 =1

where \I'gk) is the dual variable associated with equality condition, (90a)), and it is
a diagonal matrix. The derivation of the gradient of the Lagrangian is shown in

Appendix [C.2] Tt has a semi closed-form expression and can be expressed as
-1

J K -1
v® — 1o W](.kn)jH]jm<ZZH(l whiw) H(”+A> HTw )

ji,m ji,m j3,m
=1 [=1

(93)
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As aresult of finding the zero gradient, the HSS CB precoding matrix can be expressed

as
J K -1
P = <ZZHJ?WW VW HDT A ) HOT W gl (94)
=1 =1

The equivalent HSS objective, , is partially convex over the receive filter, Wﬁl

Therefore, the receive filter can derived by finding the zero gradient of the Lagrangian.
k)

The gradient of the Lagrangian with respect to the receive filter, ij, can be ex-
pressed as
(k) pk) g k)
Vw;me(W, U, A) = —2H; mPJm‘II

ca( S m L Wi,

=1 [=1

By setting the gradient to be zero, a close form solution for the receive filter can

be formulated, which can be expressed as

(96)

K; -1
(’f _ k) p() pOtgyR)t 2 (&) pk) gy k)
Wi = (Z H;) P PITHDT 4 anI) HY P W)
i=1 [=1
where \If( is the dual variable associated with equality condition, - and an be

expressed as

-1

¥ _ (10 [pOEO! (Zz’ﬂgﬁn 0 PO ﬂ) HO p®
i=1 1=1 o
It should be noted that the computation of Bk i is different from that of \IIE?Z,
(93).
The overall algorithm is shown in Table [15]
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Table 15. HSS maximization CB algorithm

Algorithm HSS maximization CB algorithm
1: set ngr)n with initial values

2: for t =1 Thaxiteration dO

3: compute (W§-2|P§2),‘v’j,m, k using

4: compute (PE’QH Aj]W](%),Vj, m, k using
5: break if converged

6: end for

4.3.4 Low Complexity Computation of A;

From the CB algorithms precoding matrix equations, , , and , Aj is
the regulating variable that controls power constraints of the precoding matrix. For
PBPC cases, the diagonal matrix simply becomes a scaled identity matrix as derived
in [I8, (73 [75]. Computing the correct A; is no small feat. There are no closed-
form solutions to computing A;. Furthermore, A; is common diagonal matrix for
all subcarriers and all scheduled users in OFDM transmission for a given cell, which
creates issues in computing a unique solution that satisfies the power constraints
taking into account he precoding matrix of all users in all subcarriers.

For most straightforward method of computing the correct A; is to use second-
order cone programing (SOCP) techniques, such as interior point methods. However,
the dimension of the SOCP problem quickly becomes intractable in OFDM systems
with many subcarriers and large bandwidths. Estimated computational complexity
of SOCP is O(M?- K3-N}- L3) calculations per iteration of the interior point method
[57]. Given that the number of users, K, and number of subcarriers, M, is expected

to be huge, this method is infeasible in practice.
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Figure 16. Conceptual diagram of proposed CB algorithm

There has been some research on developing low complexity algorithms for pre-
coding matrix with PAPC [69, 46]. These algorithms compute the row vectors of the
precoding matrix successively and iteratively. A heuristic algorithm with even lower
complexity and requiring even less computational iterations is proposed. The pro-
posed algorithm updates the all precoding matrices of all subcarriers with a common
dual variable, A;, and scales very well for multi-carrier systems.

Let ]5j be the estimate of the transmit power of each antenna of BS j, and can

be expressed as
K,

<.

P p

J,m J m
k=1

M
> (98)
m=1

The bi-section method essentially increases A if ]f)j is too large and decreases A

if ]f)j is too small. Based on the principles of the bi-section method, the following

heuristic update algorithm performs the following update,

1
Aj ) = Ajn) - (ﬁj ' Djl) - (99)
where D; is the PAPC for BS j.

A conceptual diagram of the proposed algorithm is shown in Figure [16| The idea
is to scale the r-th element of the diagonal matrix, [A;],,, such that it grows when

D], is large, and to shrink when it is small. Finally, if f)j = D, A; is not updated

further and PAPC is met with equality.
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The low-complexity alternating optimization algorithm is shown in Table [I6] Al-
though, the convergence of the low-complexity algorithm is not confirmed analytically,
it has been demonstrated to converge numerically. More importantly, it provides bet-
ter cell-edge user performance when the total number of iterations of the algorithm

is very small, such as 4.

Table 16. Low Complex PAPC CB algorithm

Algorithm Low Complex PAPC CB algorithm

1: set A ) with initial values

2: for n =1-- Thaxiteration dO

3: compute (P;FL‘W‘;%,A]'),V‘]., m, k using (82)), (85), or
4: update A, using

5: break if converged

6: end for

4.4  Stmulation FEvaluation

In this section, numerical results of the proposed algorithm are presented. All simu-
lation results are based on 3GPP simulation methodology [1]. The simulated network
consists of 57 sectorized BSs with directional antennas as in Figure [I0] Each BS site
has 3 sectors and they are located in a hexagonal grid with geographical wrap around
to mimic an infinitely large network. The distance between any two BS sites is 500 m.
The maximum transmit power for a 10 MHz channel is 43 dBm, and the noise power
density is -174 dBm/Hz. The directional antennas have a half-power beam-width of
70° and 17 dBi antenna gain with 20 dB front-to-back ratio. The channel is spatially
uncorrelated and with flat fading, generated by complex Gaussian random variable.
Pathloss model is 128.14+37.6 log,,(d/1000), where d is the distance between the trans-

mitter and the receiver. Users are uniformly and randomly distributed over the entire
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network. The received SINR has been mapped to throughput using log,(1 + SINR).
Simulation is with 2 scheduled users per BS, 2 spatial streams per user, and 4 receive
antennas at each user, unless specified otherwise. The network is assumed to have
full CSI of links between users and BS, which is obtained through channel reciprocity
in the TDD systems, and all 57 cells are cooperating in the CB. Additionally, the
maximum transmit power limit of each transmit antenna is inversely proportional to
total number of transmit antennas. For example, if 8 transmit antennas is used at
BS and maximum transmit power is configured to 43 dBm (i.e. 20 W), the maximum

transmit power of each antenna is limited to 34 dBm (i.e 2.5 W).
4.4.1 Antenna Power Efficiency Comparison

Generally, precoding matrix for downlink signals are not computed for each subcarrier
of OFDMA transmission. Applying different precoding matrix on different subcarriers
changes the channel phase continuity and creates issues during channel estimation
from sparsely positioned pilots within the resources allocated. Because of this, a
single precoding matrix is computed and applied to a group of subcarriers, denoted
as a subband. In LTE systems, precoding matrix grouping operation is known as
physical resource block bundling [4]. In 10 MHz LTE system, there are 50 resource
blocks and each subband is defined as three resource blocks, which results in 17
subbands. In 20 MHz LTE system, there are 100 resource blocks and each subband
is defined as two resource blocks, which results in 50 subbands.

If the OFDMA systems has large number of subbands, the BS will have more
flexibility in terms of adjusting the transmit power for each subband and antenna.
Therefore, the BS will able to operate CB with high power efficiency. Power efficiency
is defined as ratio of the power utilization of each transmit antenna with respect to
maximum transmit power limit of each transmit antenna. For example, an antenna

using 0.5 W of power out of 1 W will have power efficiency of 50% and antenna that
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Figure 17. Comparison of power efficiency vs. number of subbands between CB algorithms with
PBPC and PAPC

meets PAPC with equality will have antenna power efficiency of 100 %. This can
be easily verified by simulations as shown in Figure [I7 Simulation for Figure
was conducted with 8 transmit antennas at the BS and using maximizing HSS CB
algorithm algorithm with PBPC and PAPC. It shows the cumulative distribution of
measured power efficiency of the transmit antenna for different number of subbands,
M. Power efficiency of the the BSs increase as number of subbands increase for the
proposed CB algorithm with PAPC. Power efficiency of CB algorithm that only take
into account PBPC is also improved with increase in number of subbands. However,
this is mainly due to the averaging of the random transmit power usage of each
subband.

Opposite trend is observed when number of transmit antennas is increased. Figure
shows the cumulative power efficiency of CB algorithms with PBPC and PAPC
for different number of transmit antennas. The number of subbands was fixed to 15.
The power efficiency of CB algorithm that only consider PBPC drops significantly as
number of transmit antenna increases. This is because the maximum transmit power
limit for each antenna decreases for large number of antennas. For the proposed CB

algorithm with PAPC, this is not the case. In fact, power efficiency is significantly
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Figure 18. Comparison of power efficiency vs. number transmit antennas between CB algorithms
with PBPC and PAPC

improved with larger antenna arrays. As number of transmit antennas increase,
more degrees of freedom for beamforming is obtained. Therefore, the proposed CB
algorithm with PAPC is able to find precoding matrices that improve signal strength
for intended users, decrease interference for non-intended users in other BS, and
achieve higher power efficiency (i.e. higher chance of meeting PAPC with equality)

with more ease.
4.4.2 User Throughput Performance Comparison

Figure shows the cumulative distribution of user throughput based on proposed
CB algorithms in Section 4.3. The reference throughput curves, denoted as MU BF
in the figure, is multi-user MIMO beamforming algorithm without any cooperation
among BSs. The simulated CB algorithm used 20 iterative computation of ngr)n and
Wj(];)@ The proposed CB algorithm improve user throughput significantly by effec-
tively mitigating ICI. The performance improvement is greater for larger number of
transmit antennas, due to larger degrees of freedom at the BS to null out interfer-
ence to users. The throughput trend among proposed CB algorithm are shown to be

similar.
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Figure 19. User throughput for the proposed CB algorithm with PAPC

1 I

—>— 8 TX: Max WSR (PAPC)

09 H —&— 8TX: Max WSR (PBPC)

—-%-— 16 TX: Max WSR (PAPC)
0.8H —-8-—16 TX: Max WSR (PBPC)

&

0.7r " J
X
4

06 b i

L /

8 05+  Avg. User Tput: Avg. User Tput 1
oul LEBLOS #['f 0.2% Gain |
03+ 5& 1

i
02+ ok |
5% User Tput: 5% User Tput:
0.1 -8.3%Loss |/ -2.7% Loss 1
O [ VA 1 1
0 5 10 15 20
Tput [Bit/Hz/Sec]

Figure 20. User throughput for the proposed CB algorithm with PAPC

Further comparison of the proposed CB algorithm against CB algorithm that only
considers PBPC is shown in Figure 20} Same transmit per-antenna power limit was
applied to both CB algorithm that consider PAPC and PBPC. Not considering per-

antenna power limit, denoted as PBPC in Figure 20] resulted in -8.3% loss in cell-edge
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Figure 21. Convergence of utility metric and power efficiency with 8 Tx antennas

user throughput (i.e. 5th percentile user throughput) and -1.5% loss in average user
throughput for 8 transmit antenna BS. In case of 16 transmit antenna BS, cell-edge
user throughput loss was only -2.7% and average user throughput had 0.2% gain. The
performance trend for other proposed CB algorithms, maximize HSS CB algorithm

and minimize MSE CB algorithm, are similar to maximize WSR CB algorithm.
4.4.3 Convergence Analysis of the Proposed CB Algorithm

As shown in Figure [I6] the proposed CB algorithms that take into account PAPC
(k)

J7m7

are dual-iterative algorithms. Precoding matrix, P’ and hypothetical receive filter,

W

;m» are updated in the outer iteration, and per-antenna power regulating dual vari-

able, A;, is iteratively updated during computation of the precoding matrix, nggI
If the algorithm is slowly converging and taking many iterations to achieve appro-
priate performance and antenna power efficiency, it will not be practical. Therefore,
convergence of the proposed algorithms are investigated.

Figure and shows the convergence of the utility metric and the power ef-
ficiency for maximizing HSS CB algorithm with 8 and 32 transmit antennas at the

BS, respectively. The relative convergence gap, 7(n), shown in Figure and is
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Figure 22. Convergence of utility metric and power efficiency with 32 Tx antennas

defined as
f(o0) = f(n)
foo) = f(1)°

where f(n) is the value of the utility metric at outer iteration n and f(100) was used

T(n) = (100)

to approximate f(oco). The proposed CB algorithm converge quickly and achieves
utility metric convergence with 10% of the final value in 7 and 17 iterations for 8 Tx
and 32 Tx antenna cases, respectively. Power efficiency convergence is achieved even

faster and only about 5 iterations is needed to get good power efficiency.

4.5 Summary and Conclusion

In this chapter, multi-carrier coordinated beamforming for wireless networks with
per-antenna power constraints is investigated. Low complex iterative algorithm to
enable per-antenna power constraint to CB algorithm with whitened match filter
like precoding matrix structure is proposed. The main idea is to update a common
antenna power regulating diagonal matrix, which is part of the precoding matrix
equation, in each iteration. The algorithm can be scaled to any number of subcarriers
because it only updates a common diagonal matrix for all subbands. Simulations show
that proposed algorithm enables excellent antenna power efficiency with low number

of iterations and converges quickly. Additionally, it can significantly mitigate ICI and
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improve performance over non-coordinating system.
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 SINR Approximation for SFR Users

The approximation of the average SINR for SFR users is derived by taking the ex-

pectation of the interference plus noise power of the SINR as

A

Py = E [P (101)

-5 (] — A)B.)P'(l')_’_o-_?l

If the system is interference limited, the noise power in the SINR formulation can be
ignored and the SINR expectation can be computed as

pin = Z Z (T, + (1 — 7,4) Bi) Pj(,li)pT(fk)a (102)

VT 1eF,i#l
Tk, €0,1

where 7, = (i1, -- ,7_—k7|F|), the CEB indicator 73; is independent identically dis-
tributed (i.i.d.) binary random variable with probability of p.(1) = 1/N and p,(0) =
(N —1)/N. (102) can be explicitly computed by using the relationship between ~;
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and ;. The derivation is as follows;

pin = Z Z (Tk,i’)/i + (1 — Tk z)ﬁl) jsz(Tk)

1E€F,i#l V7, Tk, €0,1

i=1,..,| F|
l _
= Z %'Pj{i) Z Th,iDr (i) Z GiP; Z (1 = 7k,0)p-(Tk)
1E€F iFl V’T‘k,TkJEO,l 1E€F iF#l VTk,Tk,iEO,l
i—l, SIF i=1,...,|F|
- % (wrly + o)
ie]—',i;él( N N
1
= D BN -1)P
i€ F il
=Y PY. (103)
i€ F il

Therefore, the SINR approximation using the approximated interference and noise

power, P, in the SINR formulation is expressed as

l) 5 1— P
Pin
(07 + (1= 6;)81) P,
Zie]—',i;ﬁl P](,lz)

In actual deployments, the distribution of the CEB indicator, 7, will not be i.i.d.

binary random variable but will be configured similarly to the simulation assumption
in . To verify the usefulness of the derived average interference power under non-
i.i.d. random variable assumption, the received interference power is compuated from
simulation assuming that 7} is configured as in (43)) and configured randomly. Figure
shows the cumulative distribution of the interference power estimate error, where
the interference power estimate error is defined as the actual interference power minus
the average interference power computed by and can be expressed as

Cin = ( > (i + (L= 70)B) P 13) — P,. (104)

B i€ F il , Z N

The dotted lines correspond to the distribution of e;, in dB scale when 7 is i.i.d

random binary variable with 1/N probability of being 1. The solid lines correspond
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Figure 23. Cumulative distribution of interference power estimate error

to the distribution of e;, when 7 is configured as in (43). Both distributions are
quite similar and have a mean of 0 dB. Therefore, the average interference power
estimate derived in ([103)) can be used to represent the average interference power
under non-i.i.d. random distribution of 7.

The SINR for the worst case is derived by computing the lower and upper inter-
ference bound. The lower bound corresponding to the most naive case can be derived
by

Z (Thivi + (1 = 70)8;) P > Z B, P! " Y > pmin Z Pl). (105)
i€ F il i€ F i#l i€ F il
The upper interference bound corresponding to the most worst case can be expressed
by
Z (Thivi + (1 —734) 8;) P ) < Z vl <™ Z Pj(,li)' (106)

1EF iF£l 1€F il 1EF i#£l
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This results in the lower and upper throughput bounds of the UEs in ICIC systems

as
. !
SO _ Gt (L= 66 P
kg o max O]
g Zz‘ef,z’;él sz
_ L sw (107)
o ,Ymax kg
and
1
SN (6% + (1= 6;)8) P}
kg o min O]
B Zief,i;él P
1 —=0
= BminSINR koo (108)
respectively.

A.2 Equivalent Transformation of Harmonic Sum Opti-
mazation Problem

Let a convex program with the harmonic sum objective function be defined as

1
maximize : (109)
J 1

; A;jdj + Bj(1 —d;)

where A; and B; are constants, [J is the number of optimization variables, and 9, is
the optimization variable confined to be defined in [0,1]. The optimization problem
(109) can be rewritten by transforming it into a epigraph form. The epigraph form

is expressed as
minimize E t;
JjeJ

subject to

1
< t.
A5, +B(1=5) = (1102)

—t; <0 (110b)
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The constraint in (110a) is changed into a quadratic form and then into a second
order conic form. Let, z; = A;0; + B;(1 — 6;) and z; > 0, then the derivation is as

follows:

1 < zjty,
4 < 4z5t;,
A+ 22 = 22ty + 1 < 27 + 225t + £,
2

< (25 + ).

2 —t.
I8,

Finally, the optimization program is expressed as

minimize Z t;,
subject to constraint in (110p) and

2
< (A0 + Bji(1 = 6;) + ;).
Ao+ Bi(1 = 6;) — i

2
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Solving for Optimal CB Precoding Matrices and Re-
ceive Filters

First, the Lagrangian in is convex over P with fixed W and it’s vice versa is
shown. From P perspective, the Lagrangian is a quadratic function of P and therefore
a convex function of P. Similarly, the Lagrangian is also quadratic function of W
and therefore a convex function of W. It should be noted that the Lagrangian is not
jointly convex over both P and W.

There is only single minimum value of a convex function and it occur when partial

derivative of the function is zero. As a result,

0
WL(P, W, /\, \I’> - O,
J

J K;
Ot OWOTHHO | p® ®)) _ W Eg®t
2<ZZHJZ. W Wi Hﬁ)Pj +20,PY —HYTWPe =0 (112)

i=1 [=1

(k)

Therefore, optimal precoding matrix, 15]- , is expressed as

A 1 -1
P~ (RY) HY WP, (113)

2 J JJ

where Rg-k) is the uplink interference-plus-noise covariance and given as . The dual

variables, \Ilgk) and A;, should be configured so that it the optimal precoding matrix

satisfies constraint Zfil ||f’§k)\|2F < 1and [W;k)]:[Hy;) [P¥], = 1. The optimal values
(%)
7 0

(
J
of the dual variable, \Ilék), is obtained by inserting the optimal precoding matrix, P

into the equality constraint, which is given as

1 -1
k_ B tprR) (R ) —157(R)Tyrr ()
o= (Io (ij HYRM)H W) )) . (114)

J

94



From complementary slackness conditions, it is sufficient to find a non-zero A;
that can satisfy ||15'§k)||fv = 1, which can be done using the bi-section method.

The conditions for W can be derived similarly and as follows:

X 1
W= (ng)) ;i JONCH (115)

where ng) is downlink interference covariance and given as ([47). The dual variable,

\Il§-k), is given as

1 ~ -1
ok = (Io (§P§k>TH§.’;)T(Q§’“>) 1H§.’;>P§.’“>)> . (116)

B.2 Proof of Convergence of Alternating Optimization Al-
gorithm

Let f(P, W) be the optimization objective (57). Then for any feasible value of P and
W (i.e. constraints are satisfied), the Lagrangian, L(P, W, A\, ¥), in (58) is equal to
f(P,W).

Since L(P, W, A\, U) is convex for P when all other variables are fixed, a feasible

*

optimal precoding matrix, P(n), will be the minimum of the objective with respect to

a given receive filter, W,). That is
L(P n),W(n )\ \I/> IIlPi)Il L(P,W(n),A, \I/) (117)
The same observation can be made for the receive filter, W](k). That is

L(P ), Wiy, A, W) = min L(P ), W, A, ). (118)

Combining observations made in ((117)) and (118]), the following inequality state-

ment is made:
L<P>(kn+1)7 W (n+1)» >‘ ‘1]) < L( (n)» W¢ (n+1)> )‘ \I/) L(Pz(n)v W(”)? )‘7 \Ij) (119)

The iteration between computing optimal precoding matrix and receive filter guar-

antees that the Lagrangian is always updated with equal or smaller value by (119)).
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The Lagrangian with any feasible value of P and W is lower bounded by zero and

therefore the algorithm guarantees that the objective to converges to some limit value.

B.3 Proof of Monotonicity of HP;k)Tﬂ% with Respect to \;

In order to prove that ||P§k)||% = Tr(Pg-k)Tng)) is monotonically decreasing as ),
increases, the following basics are defined.

Lemma 1: Let, fi, fo, and g be positive valued function of A. If f;/g and fs/g
are monotonically decreasing function of A, then (f; + f2)/g is also a monotonically
decreasing function.

Proof of lemma 1 is straight forward. Summation of monotonically decreasing
function is also monotonically decreasing and fl’%’% = % + %.

Lemma 2: Let, f, g1, and g5 be positive valued function of X. If f/g; and f/go
are monotonically decreasing function of A, then f/(g; + g2) is also a monotonically
decreasing function.

Proof of lemma 2 can be derived through the derivatives. Monotonically decreasing
function has a strictly negative derivative. So if f/gx is a monotonically decreasing
function, then

! o /
(i) _ f'o 2fgk <0
9k 9k

where (-)’ is the first order derivative of the function. Since g is always positive,

f'gr — fgr’ < 0. The derivative of f/(g1 + g2) is given as

( / )l _ S+ 92) — flg + 92)
g1t 92 (91 + g2)*

_Sfoa—tfa' | [92—fg)

(91 + 92)? (g1 +92)*

Y

!/
Summation is negative functions is negative thus <g1 J{ﬁ) is negative and f/(g1 + ¢2)

is a monotonically decreasing function.
Lemma 3: If f; and g; are positive valued functions for 7 = 1---N and j =

1--- M, respectively, and f;/g; is a monotonically decreasing function for all ¢ and j,
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then

Zj:l 9j

is also a monotonically decreasing function. Proof of this can be derived from the

Zﬁ\;1 fz
M

combination of lemma 1 and 2.

Let, a, and s be N non-negative values for k = 1--- N, then

(s; +A)

aj(sg + A) (120)

is monotonically decreasing function of A for A > 0. This can be easily seen from the
derivative of (120]). (120]) is manipulated into
1

1
(s, +A) gz WG

. 1 i1
aj(sp+A)  aray s S F G
Based on lemma 3, the following function is monotonically decreasing.
S ()
k=1 2k \ 54X
N N 1
> k=1 23:1 k) X SN
3t Ok oty
_ k=1 "k (5,4 X)2

S at)
k=1 Yk s, X

(121)

Next, Tr(ng)TP§k)), which is equal to square Frobenius norm of precoding matrix,
ng), is shown to be equivalent to a function form of . Since, interference-plus-
noise covariance is summation of semi-positive definite matrices, it is semi-positive
definite. Therefore the uplink interference-plus-noise covariance, Rg-k), can be decom-
posed into

J Kj;
R3S HWOW R o2

i=1 =1

=U(S + \1)UT,

where U is an unitary matrix and S is a diagonal matrix. The derivation can be
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shown using the decomposition from above, and expressed as
wWHTHD (U(S + D Uh 2HY W,
—_ w® gk —2v 1Oty (k)

= TT(S + ANT)7°T,

where n is any arbitrary integer and T = UTHZ(-;?)TWJ(.’C).

With the result above, the Frobenius norm of the precoding matrix can be ex-

pressed as
Tr(PPTPY)
_ %Tr (\I,§k)w(k)TH(k)<R(k)> 2H§§)TW§1€)\I,§T> 7
- %Tr ((\Ilg.k))?TT(s + )\jI)’2T> :

(k>
:_Z ]kr S+)\ ) [T]T‘7
L(k>

= Z ]er’tTm‘Q Jr)\k)

where Tr(-) is the trace of the matrix, ¢,,, is the m-th element of the vector [T}, s,

is the m-th diagonal elements of S, and 9?,_ is the r-th diagonal element of (\Ilg»k))Q,

Jkr

which can be expressed as

K | N R g o))
(@2 = (Io (—W§ PO RO HO W ))) ’

(I o (%TT(S + /\jI)‘lT))_Q :

A~

Therefore, 1, = 2([T]L(S + \,I)71T],) ! and Tr(lsgk)TPg.k)) can be shown as

D (Bt (k) LSk) Zm:l |trm|2m
TP =) o T (123)
r=1 (Zmzl |trm‘2'(sm+)\j)>

HPE’C)H% is proven to be a monotonically decreasing function of A\; because ((123)) is

summation of monotonically decreasing functions, ((121)).
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APPENDIX C

APPENDIX FOR CHAPTER 4

C.1 Deriwvation of the Gradient of WSR metric

The derivation of the gradient of the WSR metric can be found based on the results
n [18]. Using the determinant gradient properties, Vx log |X| = Tr(X'VxX), the
(k)

im» With respect to the (u,v) element of the precoding

gradient of the sum-rate, r;

matrix, [Pg T?@]uv, can be expressed as

k k) \—
V[ng?n]u v log ‘( ‘ =Tr (Eg,r)nv[l)(k) Jusw (EE,TL) 1)

= o (500, B L QU B P )

Jim= j;m
Jim= jym T jm

—zTr(JMHW(Q ) )1k Pk)E(k)>,

Jg,m Jim= jym T jm

—9 [H( )T (Q(k)) 1g®) pk) E(k)} : (124)

where J,,, is a single-entry matrix with one at element in (u,v) and zero elsewhere.
Therefore, gradient of the sum-rate with respect to the precoding matrix can be

expressed as

H(k) (Q( ) lH(k) P(k) E(k) (125)

JJ,m J3,m= g,m = g,m’

Ve, o8 | (B) "] -

It should be noted that (Q( ) o) TH® p) g equal to the MMSE receive filter, Wﬁl

Jjjm= j;m
Therefore, the expression can be further simplified and the gradient of the rate for

)

user k in BS j with respect to the precoding matrix, P( can be expressed as

Voo log ‘( ‘ — oM W g®) (126)

JJ,m Jm=—g,m’

The gradient of the rate for user [ in BS 1, r" | with respect to the (u,v) element

1m7
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of the precoding matrix, [P; 721]” v, can be expressed as

\Y

[P(_k) Juw log ‘(Ez(,?n)_l‘

Ty (E§»2V[P(_k)] (I+P<f”H(?T QL)'H?Y PO )) (127)

1,m

The gradient of P(l THg)m(Ql( ) )= lHl(l)mPgl) can be obtained using the matrix inverse

gradient property, V,Y™! = - Y1 .V,Y - Y} in [68], and the gradient of the

sum-rate can be further simplified as

v log ’(ngln)_l

k
L

—Tr (Eg.fj;v[P(_k)] <I+P(Z)TH§f)fn(Q§f)) HY P ))

== —2Tr <E l) P(l TH’L’L m(Q,Elm) (H‘E’L mP] m']u UH]z m) (Q ) 1H’E’i mPllm>

= —21r (3, 1)), (Q1)) HY, PO ES POHD Q1)) H, P )

- 9 [H() (Q() ) 1H(l) P(l) E(k) P() H() (Q(l) ) 1H(l) P(k)]

ji,m ii,m> i,m—jm>* i,mTii,m ji,m> j,m
— 9 [ngmwff ) wOig®) p®| (128)

u,v

Therefore, gradient of the rate for user [ in BS ¢ with respect to the precoding matrix,

nggI can be expressed as
Voo log ‘(ng) ) ‘ —oHW W g0 whig® ph) (129)
J,m

ji,m i,m-—i,m im=ji,m— jm-*

Putting together the results in (126]) and ((129)), the gradient of the weighted sum-rate
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Lagrangian is expressed as

Voo L(P,A)

(Aij - P Aij%)

j=1 k=1 m=1
o WE 23 Y, WOE, W P
=1 [=1
(0#(h)
—2A,P). (130)

C.2 Derwation of the Gradient of MSE and HSS metric

The gradient of the MSE and HSS metric can be found by using the gradient trace
property, VTr(XTAX) = 2AX. The gradient of the total received covariance can be

expressed as
J
(k) (k) yx7r ()t
by 2T <Wj7mQ]’ij7m>

J
_ (k) g1(k) p) pOTgy(k) (k)1
= Vpgk Z ; Z Tr (ijmHlj,mPZ mP H’L] mWy,m >

Y3 T (P( I Wik HUZan(?n)

J
S>> m (PE, wihiwh Bl )

ji,m i,m i,m=ji,m jm

J
_ QZ H(l) W(Z)Tw() H(-l-) P(-k) (131)
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Based on the results in (131]), the gradient of the MSE Lagrangian is expressed as

Vo L(P, A)

J K
= —vp§k731 Z Z Tr (Wﬁk%Qﬁk%W%f) + 2VP(‘,21R6 {P TH]];);W }
=1 k=1 h

~ Vi Tr (PIAPS, - A/D; )

z

1) 1) k) k
:—QZZH( wwh HE Y L oHWT W op P (132)

ji,m ji,m> j,m jjm
=1 [=1

and the gradient of HSS Lagrangian as

Vo L(P, W, A)

J K
Voo > > T (WHQH W 1)

7=1 k=1
— 2V T (\pyﬂ —wPWEY PO ) 4 Vo Tr (P APE, - Aij>
22 Z ﬂm Wim TW(Z) ng mP§n)1 2H§j)mW( )‘I’(k T 24, P (133)
i=1 [=1
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