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SUMMARY

DRAM caches are important for enabling effective heterogeneous memory systems that

can transparently provide the bandwidth of high-bandwidth memories and the capacity of

high-capacity memories. This dissertation investigates enabling intelligent cache manage-

ment for tag-inside-cacheline DRAM cache designs. Such a DRAM cache uses a direct-

mapped design, co-locates the tag and data within the DRAM array, and streams out the

tag and the data concurrently on an access. This direct-mapped design has been shown to

be effective for enabling low latency and bandwidth-efficient tag access; however, such a

direct-mapped design can have lower hit-rate and high bandwidth cost to confirm misses.

This dissertation proposes simple architectural techniques to improve the hit-rate and band-

width consumption of such DRAM caches to improve performance of heterogeneous mem-

ory systems.

Cache compression can improve hit-rate by fitting more lines in a set, provided the

lines are compressible. This dissertation discusses how to enable cache compression for

DRAM caches to improve associativity and capacity. Cache compression improves capac-

ity to obtain 7% speedup. This dissertation then shows how to tune cache compression to

also provide bandwidth benefits, by compressing adjacent lines together and using location

prediction. The bandwidth benefits in addition to capacity benefits enable 19% speedup.

Cache associativity can improve hit-rate by allowing for more flexibility in line place-

ment, and this flexibility can provide performance benefits so long it does not incur sig-

nificant bandwidth costs. Way-prediction can be used to enable associativity for DRAM

caches in a bandwidth-efficient manner; however, traditional way-prediction techniques

typically require significant per-line SRAM storage. This dissertation shows that coordinat-

ing way-install and way-prediction can enable a storage-efficient (<1KB SRAM) and accu-

rate way-prediction. This dissertation proposes three coordinated way-prediction methods:

Probabilistic Way-Steering, Ganged Way-Steering, and Skewed Way-Steering. The three

techniques enable associativity at low bandwidth cost to provide 11% speedup on average.



Cache replacement policy can improve hit-rate by predicting which lines will have reuse

and keeping in the cache longer. This dissertation discusses how to enable replacement

policies for direct-mapped caches with two techniques: formulating replacement policies

as bypass policy with Age-On-Bypass, and exploiting spatial locality to reduce cost of

maintaining per-line replacement state with Efficient Tracking of Reuse. The combination

of the two reduce miss-rate by 10% and reduce bandwidth cost of maintaining replacement

state by 70% to achieve 18% speedup on average.

The baseline Tag-Inside-Cacheline (TIC) organization is good for hits, but can suffer

from needing bandwidth to check DRAM array to confirm misses. Alternatively, a Tag-

Outside-Cacheline (TOC) organization that stores tags of multiple lines together can save

on miss cost. This dissertation discusses how to intelligently combine both organizations

in a TicToc organization that can provide both good hit and good miss path. Additional

enhancements for dirty-bit tracking enables 10% speedup over baseline TIC organization.



CHAPTER 1

INTRODUCTION

As the processor industry steps into the many-core regime, the main memory system has

become one of the key bottlenecks that limit performance and scalability. Memory systems

must scale in both bandwidth and capacity to meet this ever growing data demand. System

architects today have the choice of several memory technologies with varying bandwidths

and capacities: conventional DRAM, high-bandwidth die-stacked 3D-DRAM, or high-

capacity non-volatile 3D-XPoint. To meet both increased bandwidth and capacity needs

simultaneously, system architects are now provisioning multiple memory technologies at a

time, in what are called heterogeneous memory systems (e.g., Intel Knights Landing [1] or

AMD Vega [2]). This dissertation focuses on improving the scenario where one memory

technology is used as a hardware managed cache for another memory technology, since

this configuration enables applications to see the latency and bandwidth of one memory

technology and the capacity of another without relying on any software or OS support.

1.1 Difficulty: DRAM Caches are Direct-Mapped and Store Tag-Inside-Cacheline

Architecting one memory technology as a hardware managed cache for another technology

(e.g., 3D-DRAM [3] in front of DRAM [4]) has a main challenge of organizing and access-

ing a tag storage of several megabytes. For example, a 2GB DRAM cache can fit 32 million

lines, which would need 32-128MB of storage for tags. Practical designs for DRAM caches

must therefore organize the tag-store such that the tags can be kept in DRAM (to reduce

SRAM storage requirements) and yet the tags can also be obtained with low-latency and

low-bandwidth overheads. Tag-stores for large SRAM-based caches are typically imple-

mented by having a serial access for tags before a separate data access. However, in a

memory system employing a DRAM-based cache where the cache [3] has similar latency
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Figure 1.1: Organization of the Tag-Inside-Cacheline (TIC) DRAM cache used in Knights
Landing. The DRAM cache is organized at a linesize of 64 bytes, is direct-mapped, and
tags are kept with the data-line. On an access, the cache transfers 72 bytes using four bursts
on an 18-byte bus (16-bytes for data + 2-bytes for ECC). We need only 9-bits for SECDED
on 16-bytes of data, which leaves 7 unused ECC bits in each burst that can be used to store
metadata (TIC utilizes these 28 unused ECC bits to store tags).

to memory, this serial tag lookup would incur 2x the bandwidth and latency and conse-

quently perform poorly [5].1 Instead, practical DRAM cache designs use a direct-mapped

organization and store Tag-Inside-Cacheline (TIC) [1, 6], such that one access can retrieve

both tag and data. A direct-mapped TIC DRAM cache has good hit-latency, as it can ser-

vice cache hits in one DRAM access. However, TIC incurs bandwidth overhead on cache

misses as such designs needs to probe the tag in DRAM in order to determine a miss. Fig-

ure 1.1 shows the tag organization for such a cache – tags are kept in unused ECC-bits and

fetched along with data access. We perform our studies on TIC style DRAM caches as

such caches perform well and are the approach industry has currently adopted [1].

The baseline direct-mapped TIC DRAM cache design optimizes for hit latency at the

cost of lower hit-rate and some bandwidth overhead to confirm misses. This disserta-

tion investigates architectural techniques to improve hit-rate via bandwidth-efficient set-

associativity, to improve hit-rate via bandwidth-efficient replacement policies, and to re-

duce miss-probe bandwidth overhead via alternative tag storage methods. The following

sections describe the three major problems.

1We show alternative DRAM cache organizations in Section 2.2.
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1.1.1 Enabling Associativity for DRAM Caches, at Low Bandwidth Cost

While direct-mapped TIC DRAM caches provide low hit-latency, they can suffer from low

hit-rate due to conflict misses. Ideally, we want to obtain the hit-rate of associative DRAM

caches, without paying the latency and bandwidth costs of increasing associativity.

One way to enable associativity for TIC caches without changing direct-mapped orga-

nization is to utilize cache compression, to fit multiple compressible lines into a single set.

This dissertation discusses how to design cache compression suitable for DRAM caches.

DRAM cache compression can be implemented with minor changes local to the memory

controller. And, additional tag and metadata bits, which are necessary for interpreting extra

compressed lines, can be allocated as needed from the data bits of each line. This dis-

sertation also discusses how to tune cache compression to additionally provide bandwidth

benefits, with Dynamic-Indexing Cache comprEssion (DICE). However, we note that these

cache compression techniques enable associativity only when lines are compressible. Ide-

ally, we would like to guarantee associativity without depending on compressibility.

Alternatively, we can use way prediction on associative TIC caches, to enable asso-

ciativity at the latency and bandwidth of direct-mapped designs. Unfortunately, conven-

tional way prediction policies typically require per-set storage, causing multi-MB stor-

age overheads for gigascale DRAM caches. This dissertation proposes Associativity via

Coordinated Way-Install and Way-Prediction (ACCORD), a design that steers an incoming

line to a “preferred way” based on the line address and uses the preferred way as the de-

fault way prediction. By coordinating way-install and way-prediction, ACCORD enables

a scalable way-prediction framework that can achieve high way-prediction accuracy at low

SRAM storage cost. ACCORD enables TIC style DRAM caches to get most of the benefits

of associativity, without sacrificing the hit-latency of direct-mapped designs.

3



1.1.2 Enabling Replacement Policies for DRAM Caches, at Low Bandwidth Cost

The second part of the dissertation discusses how to enable intelligent replacement poli-

cies for TIC DRAM caches. Cache replacement policies are commonly used to improve

the hit-rate of on-chip caches. The most effective replacement policies often require the

cache to track and update per-line reuse state to inform their decision. However, there are

two fundamental challenges to applying such replacement policies on direct-mapped TIC

DRAM caches: (1) replacement policies rely on finding good eviction candidates from

multiple ways and can be difficult to apply on direct-mapped caches, and (2) stateful poli-

cies would require significant bandwidth to maintain per-line DRAM cache state. To make

replacement policies applicable to direct-mapped caches, we propose a reuse-based bypass

policy called RRIP-AOB that can protect predicted-useful lines in direct-mapped caches by

bypassing most other lines by default. To reduce the bandwidth cost of maintaining reuse

state in DRAM caches, we propose Efficient Tracking of Reuse (ETR) that exploits spatial

locality to reduce the bandwidth cost of state update. The combination of the two tech-

niques improve hit-rate and reduce bandwidth consumption to enable substantial speedup.

1.1.3 Reducing Miss Confirmation Cost for DRAM Caches

The third part of the dissertation discusses how to reduce bandwidth cost to confirm DRAM

cache misses. There are currently two major approaches for DRAM cache design: (1) a

Tag-Inside-Cacheline (TIC) organization that optimizes for hits, by storing tag next to each

line such that one access gets both tag and data, and (2) a Tag-Outside-Cacheline (TOC)

organization that optimizes for misses, by storing tags from multiple data lines together in

a tag-line such that one access to a tag-line gets information on several data-lines. Ideally,

we would like to have the low hit-latency of TIC designs, and the low miss-bandwidth of

TOC designs. To this end, this dissertation proposes a TicToc organization that provisions

both TIC and TOC to get the hit and miss benefits of both. However, we find that naively

combining both techniques actually performs worse than TIC individually, because one has
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to pay the bandwidth cost of maintaining both metadata. The main contribution this part

of the dissertation makes is developing architectural techniques to reduce the bandwidth

cost of accessing and maintaining both TIC and TOC metadata. This dissertation proposes

several techniques that reduce the bandwidth cost of maintaining dirty bit, maintaining tag

bits, and installing lines.

1.2 Thesis Statement

DRAM caches suffer from conflict misses and need high bandwidth cost to confirm misses;

simple architectural innovation that addresses the challenges of enabling associativity, re-

placement policy, and reduced miss probes at low bandwidth cost can improve the perfor-

mance of heterogeneous memory systems.

1.3 Contributions

This dissertation makes the following contributions.

• Associativity The dissertation shows that cache compression can be used to increase

DRAM cache set-associativity opportunistically, and that cache compression can also

be used to improve effective DRAM cache bandwidth. Also, the dissertation shows

that coordinating way-install and way-prediction policy can enable a scalable way

prediction method suitable for gigascale associative DRAM caches.

• Replacement Policy The dissertation shows that intelligent replacement policies can

be made suitable for direct-mapped caches by implementing them as bypassing poli-

cies. The dissertation also shows that spatial locality can be exploited to reduce the

bandwidth cost of maintaining replacement state in the DRAM cache.

• Miss Bandwidth Cost The dissertation shows that utilizing both Tag-Inside-Cacheline

and Tag-Outside-Cacheline tag storage methods simultaneously can improve both hit

and miss bandwidth; however, such an approach can suffer from needing to maintain
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both tags. The dissertation then proposes a technique to reduce repeated dirty bit

updates and a technique to reduce even the initial dirty bit update, to reduce dirty bit

tracking costs.

The thesis is organized as follows. Chapter 2 provides background on prior work and re-

lated studies. Chapter 3 and 4 presents techniques for enabling associativity in bandwidth-

efficient manners via cache compression and way-prediction, respectively. Chapter 5 ad-

dresses the challenge of implementing replacement policies in gigascale direct-mapped

DRAM caches. Chapter 6 shows presents techniques to reduce bandwidth costs of DRAM

cache maintenance and Chapter 7 summarizes dissertation.
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CHAPTER 2

BACKGROUND

As the main memory system is increasingly becoming a bottleneck, both industry and

academia have increased their focus on bridging the gap between processors and mem-

ory. This chapter presents prior studies related to heterogeneous memory systems and is

organized as follows: (1) available memory technologies of DRAM / 3D-DRAM / 3D-

XPoint, (2) DRAM cache architectures, (3) cache compression, (4) associativity and way-

prediction, and (5) replacement policies.

2.1 Memory Technologies

A system architect has many choices in memory technology today, and can use any com-

bination of the technologies to build heterogeneous memory systems. We discuss the three

memory technologies used in this dissertation.

2.1.1 Conventional DRAM

First, system architects can provision dynamic random access memories (DRAM) [4].

DRAM is a low-cost high-density memory technology in common use today. DRAM is

built of a dense arrays of capacitors that store logical 0 and 1 depending on charge, and the

capacitors needs periodic refresh to maintain their values. DRAM is typically provisioned

in the DIMM form factor and is accessed across DDR channels. DRAM read and write la-

tency usually depends on rowbuffer hit rate (8-16 buffers each 2-4 KB in size) – an access

that hits in the rowbuffer will see low latency, whereas an access that misses will see higher

latency to close the current row and open the requested row. DRAM bandwidth is typically

limited by either bus bandwidth (number of channel pins and bus frequency) or internal

bandwidth (number of banks or rowbuffers). DRAM capacities are the current standard for
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memory technologies – a typical single-socket server node of 16-48 cores can provision up

to 6-8 DDR4 channels each with 2 DIMMs of 4-32GB DRAM (e.g., ˜384GB).

2.1.2 High Bandwidth 3D-DRAM

Second, system architects can provision emerging high-bandwidth die-stacked memories (3D-

DRAM) [3, 7]. Improvements in die-stacking and interconnect technology have enabled

3D-stacking several DRAM chips together in small form factor and connecting them to

processors with a higher number of pins [3]. Examples of such die-stacked memories,

collectively referred to as 3D-DRAM, include Hybrid Memory Cube [7], High Bandwidth

Memory [3], and Multi-Channel DRAM [1]. The read and write latency to access 3D-

DRAM are similar to conventional DRAM as the underlying DRAM technology is similar.

The bandwidth of 3D-DRAM is on the order of ˜4-8X higher bus bandwidth due to in-

creased pin-count. However, 3D-DRAM is more expensive and has lower capacity than

conventional DRAM (e.g., ˜16GB).

Capacity is a critical need in many systems, so 3D-DRAM is unlikely to be able to

outright replace conventional DIMM-based DRAM. However, heterogeneous memory sys-

tems employing both 3D-DRAM and conventional DRAM can potentially enable both the

bandwidth benefits of 3D-DRAM and capacity benefits of DRAM.

2.1.3 High Capacity 3D-XPoint

Third, system architects can provision emerging high-capacity non-volatile memories (3D-

XPoint) [8]. Non-volatile memories such as 3D-XPoint [9, 10, 8] and PCM [11, 12, 13,

14] are an even denser form of memory or storage technology that stores data based on the

current phase/state of the material. Bits are written by physically changing the state of the

material with electrical signals, and bits are read by measuring the electrical resistance of

the material. Such technologies do not need power to maintain state, and hence constitute

a non-volatile data storage technology. The read latency of these memories is roughly 4-6x
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longer than DRAM, and the write latencies are roughly 20-50x longer than DRAM [9].

The bus bandwidth of such memories are similar to conventional DIMM-based DRAM as

they use the same DDR channels [15]. The benefits of such memories are that they offer

4-8X higher capacity than conventional DRAM (e.g., ˜1.5 TB).

The higher capacity of 3D-XPoint is attractive in many applications; however, the poor

read and worse write latencies may cause performance degradation relative to DRAM

main memory. Heterogeneous memory systems can employ 3D-XPoint in conjunction

with 3D-DRAM or DRAM technologies [16] to potentially enable the capacity benefits of

3D-XPoint with the latency of DRAM technologies.

2.2 DRAM Cache Organizations

Operating one memory technology as a hardware-managed DRAM cache for another tech-

nology allows for applications to benefit from both technologies without relying on soft-

ware or OS support. However, how one organizes the DRAM cache is critical to enabling a

good hit-latency, hit-rate, and miss-bandwidth DRAM cache that can be implemented with

minimal SRAM storage overhead. We explain prior studies on DRAM caches.

2.2.1 Tag-Inside-Cacheline DRAM Caches

Tag-Inside-Cacheline (TIC) designs [1, 6, 17, 18, 19, 20], shown in Figure 2.1(b), gen-

erally organize their cache as direct-mapped and store tag inside the cacheline, such that

one access can retrieve both tag and data. TIC approaches are optimized for hit latency,

at the cost of hit-rate and bandwidth overhead to confirm misses [6]. An enhancement,

BEAR [17], proposes several optimizations to reduce bandwidth cost of TIC DRAM cache

maintenance: we include its DRAM Cache Presence that targets reducing write probe in

our baseline, we compare with Bandwidth-Aware Bypass with 90%-bypass that targets

reducing install bandwidth in Chapter 5 and Chapter 6, but, however, we do not include

Neighboring Tag Cache that targets reducing miss bandwidth as current implementations
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Outside-Cacheline (TOC) [24].

cannot obtain neighboring tag for free [1]. Such hit-latency optimized approaches have

been proven effective in industrial application with Intel Knights Landing product [1];

as such, we perform all of our experiments with direct-mapped TIC DRAM cache (with

BEAR optimizations) as our baseline.

2.2.2 Tag-Outside-Cacheline (TOC) DRAM Caches

Tag-Outside-Cacheline (TOC) designs [5, 21, 22, 23, 24, 25, 26], shown in Figure 2.1(c),

store tags in separate tag-only locations in the DRAM cache and fetch them as needed.

Such caches are not bound to direct-mapped organizations and can implement high-performance

cache optimizations such associativity and intelligent replacement policies. However, they

often need separate accesses for tag and data, which constitute significant bandwidth over-

heads and can limit overall performance. This dissertation perform comparisons to these

caches throughout in Chapter 4, Chapter 5, and Chapter 6, and shows how one can enable

their associativity, replacement policy, and miss-bandwidth benefits, respectively, for TIC

DRAM caches without sacrificing TIC hit-latency. We discuss prior line-granularity and

page-granularity implementations of TOC DRAM caches.
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Line Granularity Designs

The earliest forms of line-granularity TOC DRAM caches were highly associative and

would need a serial tag then data lookup (Loh-Hill [5]), which would have poor hit la-

tency and performance. Some enhancements used tag-prefetching (ATCache [21]) or way-

prediction (Buffered Way Predictor [22]) to avoid serialized tag lookup. Others used direct-

mapped organization (Sim et. al [23]) to avoid serialized tag lookup, with one employing

a tag cache (Timber [24]) to reduce the bandwidth of tag lookup as well. Such caches have

the potential to amortize miss lookup as one access to a tag-only line can give residency

information for multiple lines; however, they can suffer significant bandwidth cost to main-

tain tags and dirty bit. This dissertation attempts to obtain TOC’s miss-bandwidth-reducing

benefits while avoiding TOC’s metadata maintenance costs in Chapter 6.

Page Granularity Designs

Large-granularity TOC DRAM caches have reduced tag and metadata storage overheads [25,

26], and have space to store associativity and replacement metadata. These caches can

implement associativity with recency-based replacement [26, 27, 28] or frequency-based

replacement [29, 30] that would otherwise be too expensive in TIC DRAM caches. We

would like to enable associativity and replacement policies in our DRAM cache designs.

Tags for such caches are stored either in SRAM [25, 31] or in DRAM [26]. Tag-In-

SRAM proposals, shown in Figure 2.1(a), typically use sector caching [31] to reduce the

overall tag requirements, and fit them all in MegaBytes of SRAM (Footprint Cache [25]).

However, the storage for these approaches are still typically quite large. On the other hand,

Tag-In-DRAM proposals store metadata in DRAM, and fetch the tags as needed (Unison

Cache [26]). These approaches often need to spend bandwidth to access and update meta-

data information in a separate area of DRAM cache. And, they have the penalty of poor

cache utilization when not all lines in a page are used. We would like to avoid such meta-

data bandwidth overheads and cache-utilization difficulties in our DRAM cache design.
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2.2.3 Software-supported Hybrid Memories

Software-supported DRAM cache approaches maintain mapping and metadata information

inside page tables [27, 28, 29, 30], and use various heuristics to determine when to install

pages. The benefit to such approaches is that they do not need to pay additional bandwidth

to access tags. The shortcomings of such an approach are two-fold. First, the migration

granularity is fixed to the size of OS page, which can cause overfetch problems, as well as

poor cache DRAM utilization when not all of the page is useful. Second, such approaches

require both hardware and software support, and can be difficult to deploy without cooper-

ation between multiple vendors. This dissertation does not perform comparison with such

works as these approaches are out of scope (i.e., breaks design goal of OS-transparency).

2.2.4 Swap-based Hybrid Memories

Other hybrid memory approaches attempt to get the capacity of both memories, and instead

initiate hardware-managed line or page swaps to enable most data to be serviced at the

lower-latency or higher-bandwidth memory [32, 33, 34, 35, 36]. These approaches have

various tracking overheads and effectiveness. However, we note there is a fundamental

difference from caching. On eviction of an unmodified line/page, caches can simply drop

the clean line/page – whereas, swap-based approaches need to always write back the evicted

line/page. Such swaps incur extra writes that could otherwise have been avoided.

These approaches can work well for 3D-DRAM + DRAM configurations because DRAM

does not have constrained writes [2]. However, for a DRAM + 3D-XPoint configuration,

these extra swapping-induced writes would cost performance, endurance, and power when

writing to write-constrained 3D-XPoint. The added capacity benefits (3-12% increase in

capacity) obtained from such swapping are unlikely to make up the difference. This disser-

tation does not perform comparison with such works as these approaches are out of scope

(i.e., breaks design goal of write-efficiency when using 3D-XPoint memories).
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2.2.5 Mostly-clean DRAM caches to Avoid Dirty-Bit Tracking

Tracking dirty-bit or most-recent-copy of cacheline efficiently with low SRAM storage

costs is a known difficult problem. Many works limit the amount of lines that can be kept

dirty [37, 38], to reduce SRAM storage costs needed to track dirty lines. Other approaches

are more extreme and make the cache clean-only by always writing through [39, 40].

In Chapter 6, this dissertation targets DRAM caching for a DRAM + 3D-XPoint system,

which is often constrained by 3D-XPoint write bandwidth. Such mostly-clean caching

techniques, which limit the fraction of DRAM cache that can be dirty, hamper the ability

for the DRAM cache to act as an effective write buffer for 3D-XPoint. This write limit can

cause corresponding degradation in performance, endurance, and power. This dissertation

does not perform comparison with such works as these approaches are out of scope (i.e.,

breaks design goal of write-efficiency when using 3D-XPoint memories).

2.3 Compression in Cache and Memory Systems

Compression has been used throughout the memory system to improve SRAM cache ca-

pacity and DRAM bandwidth. We show related work, and show how DRAM caches can

enable both capacity and bandwidth benefits at minimal cost.

2.3.1 Compressing On-Chip SRAM Caches: Additional Capcity

Compression exploits redundancy in data values to increase effective capacity of a given

substrate. Prior work has looked at compression for improving the capacity of SRAM

caches [41, 42, 43, 44]. As decompression latency is in the critical path of cache access,

these proposals use simple compression schemes such as Frequent Pattern Compression

(FPC) [45], Base-Delta-Immediate (BDI) [46], CPACK [47], and ZCA [48], that can per-

form decompression within a minimal number of cycles. We would like to utilize learnings

from SRAM cache compression to improve DRAM cache associativity and capacity.
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These proposals focus solely on increasing the effective capacity of the cache as a

means to improve performance. However, if the cache is large enough to hold the un-

compressed working set of the applications, then these proposals would not provide any

performance benefit. As the size of the DRAM cache is typically quite large compared

to an SRAM cache, prior schemes [49, 50] that focus solely on increasing the capacity of

DRAM cache can have limited performance benefit. As such, this dissertation investigates

utilizing cache compression to improve DRAM cache bandwidth as well.

2.3.2 Compressing Main Memory: Additional Bandwidth

Compression has also been applied to main memory for increasing memory capacity [51]

and bandwidth [52, 53]. For example, Linearly Compressed Pages [52] proposes to spa-

tially compress all lines in a page to one-fourth their size, such that one DRAM access

can potentially get 4 lines worth of data at a time. If all 4 lines obtained are useful, this

can result in 4x effective bandwidth improvement. This dissertation exploits the insight

that such spatial compression can improve bandwidth, and proposes a cache compression

scheme that can improve bandwidth as well.

2.4 Associativity at Low Bandwidth Cost

This dissertation discusses prior work on enabling associativity via way prediction or mod-

ified indexing, and show how such approaches fail to scale to gigascale DRAM caches.

2.4.1 Conventional Way-Predictors: Challenge in Scaling to Gigascale DRAM Caches

Way Prediction has been proposed for SRAM caches (L1 or LLC) for reducing latency and

power. If we can predict the location of the data-line and retrieve it in one access, we can

avoid the tag serialization penalty.

For L1, tracking the most-recently-used way in each set (MRU Pred [54, 55]) provides

high accuracy as the access stream of an L1 cache has high temporal locality. Unfortu-
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nately, such locality is usually not visible to secondary caches (L2/L3/L4), so MRU pre-

diction tends to be less effective.

Secondary caches can use a partial-tag (e.g., 4-bits) design for each line to avoid cache

lookup [56, 57, 58, 59, 60, 61]. Unfortunately, both the MRU Pred and the Partial-Tag

design require per-line or per-set storage. Therefore, these schemes would incur a large

storage overhead of several megabytes for a 4GB DRAM cache.

If we are to implement way prediction effectively at the size of DRAM caches, we need

a way-predictor that is both accurate and requires less storage overhead than prior designs.

2.4.2 Multiple-Indexed Caches

Hash-Rehash and Column-Associative caches (CA-cache) [62, 63] serially check two in-

dices (preferred and alternate) in a direct-mapped cache and moves the line physically to

the preferred index, if a cache hit happens at the alternate index. Thus, a hit to the preferred

index can be serviced in one access, whereas a hit to the alternate index requires not only

two accesses but also the bandwidth overhead of a swap between the preferred and the

alternate index. The probability of CA-cache to obtain a hit with a single access is simi-

lar to having a two-way cache with MRU-based way predictor (see Table 4.1). However,

CA-cache invokes significant bandwidth consumption in swaps, even when the cache is not

sensitive to increased associativity, which limit its performance.

Prior work proposed skewed associative cache [64, 65] design that allows a cache line

to reside in two possible locations based on a hash of memory address. If the first hash of

two lines collide, it is unlikely the second hash location will also collide. Such caches uses

parallel lookup of two locations, and can waste bandwidth when scaled to DRAM cache.

Nonetheless, its concept of skew associativity is useful for increasing cache utilization.
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2.5 Replacement Policies

Computer designers look for techniques that can improve performance, increase energy-

efficiency, and reduce the off-chip bandwidth bottleneck. Quite often, a solution that im-

proves one of these metrics ends up worsening the other metrics. However, an intelli-

gent cache replacement policy is one such optimization that can simultaneously provide all

three benefits: it can improve system performance by reducing the long-latency memory

accesses, increase energy efficiency by servicing data on-chip at lower energy, and mitigate

the pressure on the off-chip memory systems. We would like to enable such benefits for

our DRAM caches. We discuss common replacement policies and their applications.

The commonly-used Recency-based replacement policies (Least Recently Used [66, 67,

68]) installs incoming lines with highest priority, based on the heuristic that recently-used

lines are more likely to be re-used. Recency-based replacement policies work well for L1

caches, but they tend to be not as effective for the Last Level Cache (LLC). This is because

the LLC receives an access stream that has filtered temporal locality.

Instead, LLC are often subject to significant thrashing patterns (e.g., cyclic ABCABC

patterns on 2-way cache) that can cause recency-based policies to actually end up with 0%

hit-rate. For such cases, global Probabilistic replacement policies [69, 70] can choose to

install most lines at low priority to protect the current working set and maintain some hit-

rate under thrashing conditions. However, such global policies are coarse-grain and can

miss out on per-line behavior.

Over the last decade, there has been significant research work on intelligently managing

the LLC by accurately predicting the re-reference interval of cache lines with Frequency-

based replacement policies[71, 72, 73, 74, 75] or Reuse-based replacement policies[76,

77, 78, 79, 80]. Such works rely on maintaining reuse counters per each LLC line and

protecting lines that are predicted to have high reuse. Such policies are resilient to thrashing

and scans (an access pattern where a workload accesses a large number of lines and never
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reuses them). Many of the most effective replacement policies are reuse based [76, 81,

82, 83, 84, 85]. We would like to implement such intelligent policies on DRAM caches;

however, there are difficulties in implementing such policies on DRAM caches.

Difficulty of applying such policies on DRAM caches: We would like to obtain the hit-

rate benefits of intelligent replacement policies for our DRAM caches. However, cache

replacement policies are typically discussed in the context of a set associative caches, as

the set contains multiple lines and there is a choice of the line to evict. Our baseline direct-

mapped DRAM cache only has one choice in selecting victim, and can be difficult to apply

such policies on. This dissertation needs to solve the dual problem of applying replacement

policies on direct-mapped caches, as well as the problem of maintaining significant per-line

reuse state for gigascale DRAM caches.
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CHAPTER 3

ENABLING DRAM CACHE COMPRESSION WITH DICE

This chapter first discusses how to design cache compression suitable for DRAM caches

to improve cache associativity and capacity, and then discusses how to enhance DRAM

cache compression to improve bandwidth as well [20]. The baseline direct-mapped TIC

DRAM caches is effective for hit-latency, but it can be subject to significant conflict misses.

Cache compression is a promising method that can reduce conflict misses by opportunisti-

cally improving the associativity and capacity of caches when lines are compressible [41,

42, 43, 44]. However, cache compression techniques have primarily been developed for

SRAM caches, and often need excessive tag management bandwidth if directly applied to

DRAM caches designs. We would like to develop a practical and effective compressed

cache architecture suitable for direct-mapped TIC DRAM caches that can improve cache

associativity/capacity and bandwidth without too much added complexity.

3.1 Motivation: Potential of DRAM Cache Compression

3.1.1 DRAM Cache Performance Sensitive to Both Capacity and Bandwidth

Doubling the capacity of the DRAM cache could potentially provide an improvement of

about 10%, on average. We note that DRAM caches are provided mainly to improve the

system bandwidth. If we could use compression to increase the effective bandwidth of the

DRAM cache as well, then we could get even higher performance benefit. For example,

doubling both the capacity and bandwidth of the DRAM cache can provide 22% perfor-

mance on average. As such, we aim to develop a cache compression architecture that can

provide both capacity and bandwidth benefits.
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3.1.2 DRAM Cache Compression is Nearly Free

We find that compressed DRAM caches are in a unique position to achieve both capac-

ity and bandwidth benefits, with no software involvement, and with minimal cost / com-

plexity, as shown in Table 3.1.2. Compressed SRAM caches can improve cache capac-

ity/associativity without OS support, but often needs complicated tag access and manage-

ment. Compressed main memory can improve both memory capacity and bandwidth, but

current proposals need OS support to obtain both benefits. Compressed DRAM caches,

on the other hand, can potentially improve both cache capacity and bandwidth, without

the need for OS support, and without complicated tag management: they can utilize main

memory’s spatial compression [52, 53] to improve bandwidth, they inherently do not need

OS support due to hardware-managed caching, and they do not need extra storage for stor-

ing extra tags (the extra tag entries needed for compression can be created dynamically

within the DRAM array, as the memory controller has the freedom to interpret any bit as

either a tag bit or a data bit). We discuss how to design DRAM cache compression to get

capacity and bandwidth benefits with minimal complexity/cost next.

Table 3.1: Comparison of different forms of compression
Module to Compress On-Chip Cache Main Memory DRAM Cache

Improve Capacity Only Yes No No
OS Support Needed No Yes No

Tag Overhead Yes No No

3.2 Design: Compressing DRAM Cache for Capacity

3.2.1 Design Overview: Organization and Working

As practical DRAM caches use the same DRAM array for storing tags as well as data, we

can simply architect a compressed DRAM cache by providing L4 cache controller with

compression and decompression logic as shown in Figure 3.1. In our compressed DRAM

cache design, only the L4 is compressed, and the data in other parts of the memory system
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remain in normal uncompressed form; thus, cache compression can be implemented local

to L4 cache controller without requiring changes to the other parts of the system.

Write

Main Memory (uncompressed)

L4 Cache (compressed)

Logic Logic

Decompression Compression

L3 Cache (uncompressed)

Read

InstallWriteback

L4 Cache Controller

Figure 3.1: Design of compressed DRAM-cache. Changes are limited to L4 controller.

On an L3 read from the compressed TIC L4 cache, the L4 controller obtains a 72B

compressed set (including ECC). Decompressing the set can provide multiple lines with a

single access. The system can decide to install these lines in L3, or only requested lines.

The L4 cache controller compresses data before L3 writebacks to L4, and before L4

installs from main memory. For writes, the L4 cache controller compresses the data to

see how much space is required to store the line, and reads from L4 cache to check what

lines are resident. If the compressed line can be stored in the unused space of the set, it is

appended and written. If the compressed line cannot fit, then resident entries are evicted

(written back to memory if dirty) until enough space is made available for the line.

3.2.2 Flexible Tag Format:

To enable compression, we need not change the organization of the DRAM cache. The

DRAM cache provides 72B per set (including ECC). It is up to the memory controller to

interpret those 72B as either tag or data. For supporting compression, we use a format

that allows the number of tag-store entries to increase dynamically to accommodate storing

extra lines with the same set. We implement this by having one bit per tag denoting that

the next 4B should be interpreted as tag or data.

Figure 3.2 shows the format of the tag and data entry used in our design. For com-

pressed design, each tag entry has a Next Tag Valid bit to inform whether the next 4B is

20



tag or data. This allows us to store arbitrary number of tags. A BAI bit is added to dis-

tinguish the direct-mapped line vs. an adjacent line that is spatially compressed together

with it (more on this in Section 5). A Shared tag bit is used to save tag space when spa-

tially contiguous lines are compressed in the same index [43, 42]. We use up to 9 bits

for compression algorithm metadata (FPC/BDI). Our design can accommodate up to 28

compressed lines per set.

Dirty

Variable−Sized Data

Valid BAI Next Tag Valid?

18 bit tag 9 metadata bits
= 64B Total Storage

+ 52B Data Storage

24B Data C 12B Data B

Next Tag Valid? Next Tag Valid? Next Tag Valid?

12B Tag Storage

Tag A Size A 1 1Tag B Size B Tag C Size C 0

Shared Tag

4B Tags

Variable−Number Tags

16B Data A

1 11 11

Figure 3.2: Accommodating multiple compressed lines within a DRAM cache set.

3.2.3 Speedup from Compression for Capacity

Our compressed cache design tries to accommodate more lines in each set of DRAM Cache,

if data is compressible. For our baseline direct-mapped TIC DRAM Cache, we assume that

each set is determined by the conventional cache indexing scheme that places consecutive

lines in consecutive sets. We call this set selection as Traditional Set Indexing (TSI). Lines

that map to the same set under TSI are separated by several GB in physical memory. If these

lines can be compressed, then they can reside in the same cache set, and an access to the set

will obtain these lines with a single access. Unfortunately, lines that are spatially far away

are unlikely to be accessed within a short period of each other, and should not be installed

in the L3 cache. Thus, this form of compression is purely for capacity benefits, and not

for bandwidth. Figure 3.3 shows performance improvement of a cache compressed with

TSI. Unfortunately, compression for capacity alone has limited performance benefit, as it

provides a speedup of 7%. We observe that compressing for both capacity and bandwidth

has higher potential for speedup. Therefore, we seek a design that can potentially improve

bandwidth as well.
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Figure 3.3: Speedup from Traditional Set Indexing and Bandwidth-Aware Indexing, com-
pared to doubling the cache capacity and bandwidth. BAI improves bandwidth for com-
pressible workloads but causes slowdown for others due to thrashing.

3.3 Design: Compressing DRAM Caches for Bandwidth

3.3.1 Insight: Cache Indexing Can Improve Associativity Or Bandwidth

Indexing for Associativity: Cache indexing plays an important role when compressing

direct-mapped TIC DRAM caches. We explain the considerations in compressing DRAM

caches with an example. Figure 3.4(a) shows the baseline uncompressed cache storing

lines A-D. The baseline uses Traditional Set Indexing (TSI) that maps consecutive lines

to consecutive sets. There are four more lines (W-Z) in the working set that are used less

frequently than A-D. A straight-forward method to compress DRAM caches is to compress

the lines that map to the same set together, if they both can be compressed to within the

same set. If the data is compressible, we can expect all the eight lines (A-D and W-Z) to

be resident in the cache, as shown in Figure 3.4(b). A single access to the cache can obtain

two lines (e.g., A and W). However, even though we can get two lines with one access, such

a design compresses purely for capacity, as two lines mapping to the same set (A and W)

would spatially be GBs apart in main memory – and hence be unlikely to be used within a

short period of each other.

Indexing for Bandwidth: To obtain higher effective bandwidth, it would be desirable

to obtain two spatially adjacent lines in one access from the DRAM cache. We can im-

plement this by changing the cache indexing such that two consecutive lines map into the

same set. A simple method to have two consecutive lines map in the same set is to ignore
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Figure 3.4: Considerations in compressing DRAM caches (a) Baseline system with four
lines (A-D) (b) Compression for capacity (c) Spatial indexing for bandwidth (d) Slowdown
from spatial indexing when data is incompressible (e) Dynamic index compression based
on compressibility (A, B use spatial index)

the least significant bit of line address while indexing the cache, as in Figure 3.4(c) and

Figure 3.5(b). We call such a method of cache indexing as Naive Spatial Indexing (NSI).

When lines are compressible, on an access to A, both line A and line B are received with

one access, improving effective bandwidth.

However, when lines are incompressible, the spatially close lines fight for space in

the same set, degrading performance (by as much as 63% in the studies). We explain

shortcoming of NSI with an example. Figure 3.5 shows a cache with 8 sets, labeled Set

0 to Set 7. We have a workload with sixteen consecutive lines A0-A15, where lines A0-

A7 are frequently accessed. Figure 3.5(a) shows the mapping with TSI and Figure 3.5(b)

shows mapping with NSI. When lines are compressible, both TSI and NSI can fit all 8

frequently used lines (A0-A7), and NSI can stream out these lines in half the number of

accesses. Unfortunately, if lines are incompressible, NSI can accommodate only four lines

out of A0-A7 at any time, causing thrashing. This thrashing can degrade performance of

NSI to worse than that of uncompressed cache, which is undesirable.

As such, we aim to have a dynamic policy to switch between TSI and NSI depending

on compressibility, to get capacity and bandwidth when lines are compressible, but avoid

slowdown when lines are incompressible.

23



Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

Set 0

A2, 

A4, 

A6, 

A8, 

A10, 

A12, 

A14, 

A9

A11

A13

A1 

A3 

A5 

A7 

A0, 

A15

A8,

A10,

A12,

A14,

A1, 

A15

A13

A4,

A11

A2,

A0,

A6, A7 

A5 

A3 

A9

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

A8

A1, 

A3, 

A5, 

A7, 

A10

A12

A14

A0,

A9

A2, 

A11

A4, 

A13

A6, 

A15

(c) BAI(a) TSI (b) NSI

Figure 3.5: Mapping 16 consecutive lines A0-A15 in a cache with 8 sets under (a) TSI (b)
NSI (c) BAI. Purple boxes indicate lines that remain in the same set as TSI.

3.3.2 Flexible Bandwidth-Aware Indexing (BAI)

However, switching between NSI and TSI is costly, as nearly all the lines are in different

positions, as shown in Figure 3.5(b). To address this, we propose Bandwidth-Aware In-

dexing (BAI) that ensures consecutive lines map to the same set, while half of lines retain

the same position as in TSI, as shown in Figure 3.5(c). BAI is calculated by using a tag

bit as the least significant index bit. BAI retains capacity and bandwidth benefits of NSI

when lines are compressible, as consecutive lines map to same set. And, it allows quick

switching to TSI when lines are incompressible. Another key feature of BAI is that BAI is

guaranteed to be either the same set, or neighboring set as under TSI. Thus, both locations

of the line (under BAI or TSI) are guaranteed to be in the same row buffer.

3.3.3 Effectiveness of Bandwidth-Aware Index

BAI can get benefits of both capacity and bandwidth – as multiple lines obtained from a

single cache access are likely to be useful, reducing accesses to the DRAM cache. Unfortu-

nately, when lines are incompressible, BAI performs poorly compared to TSI. For example,

if lines are incompressible, in Figure 3.4(d), only one of A and B can be resident at a time,

and the other would be fetched from memory, degrading performance.

Figure 3.3 compares the speedup from BAI with TSI, and also to doubling the cache

capacity and bandwidth. BAI improves performance significantly for compressible work-
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loads such as soplex, gcc, zeusmp, and astar. This happens because compression allows

the cache to have more effective capacity and bandwidth. Unfortunately, for workloads

such as mcf, lbm, libq, and sphinx, there is significant performance degradation with BAI,

as spatially contiguous lines end up fighting for the same set.

Ideally, we would like to use BAI as much as possible when lines are compressible to

improve both bandwidth and capacity, but use TSI when lines are incompressible to avoid

slowdown, as in Figure 3.4(e). To this end, we propose a dynamic indexing scheme for

compressed caches that can adapt cache indexing based on data compressibility.

3.4 Design: Compressing DRAM Caches for Both Capacity and Bandwidth

3.4.1 Insight: Dynamic Indexing for Improving Bandwidth and Enabling Robust Performance

We develop a compressed cache indexing policy that maximizes both bandwidth and ca-

pacity while ensuring no performance degradation compared to baseline uncompressed

cache. To do so, we propose a dynamic indexing scheme called Dynamic-Indexing Cache

Compression (DICE) that switches between two indexing policies, Traditional Set Index-

ing (TSI), and Bandwidth-Aware Indexing (BAI) depending on data compressibility. We

present overview and working of DICE, then discuss effectiveness of our solution.

Based Insertion 

Compressibility Cache Index

Prediction 

>36B

Read 

DRAM Cache 

Write

<=36B

TSI

BAI

TSI = BAI

Figure 3.6: Design of DICE. DICE is implemented by deciding index policy on write, and
predicting index policy on read.
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3.4.2 DICE: Overview

DICE allows the cache to adapt its indexing scheme between TSI and BAI. Therefore, a

given cache line can be present in either of the two locations, determined either by TSI

or BAI. Fortunately, our BAI scheme is designed such that both of these sets would be

either neighboring to each other, or be the same set, as shown in Figure 3.6. On a write

access (due to install or writeback), we must decide which indexing policy to use. We

develop a compressibility-based scheme to make this decision. Similarly, on a read access,

we predict which indexing scheme is likely to have been used, and access that location.

The effectiveness of DICE depends on developing simple and effective mechanism for

deciding index policy on writes and predicting index policy on reads. Note that, given BAI

is designed such that the set index of 50% of the lines remain invariant between BAI and

TSI, we need to decide insertion index (on write) and predict index policy (on read) for

only the remaining 50% of the lines.

3.4.3 Deciding Cache Index Policy on Insertion

To decide the index policy at insertion, we leverage the observation that lines within a page

are usually compressible to similar sizes [52]. As BAI gets benefits of both capacity and

bandwidth when lines are compressible, we want the insertion policy to favor BAI when

two lines are likely to compress together. If a line compresses to ≤ 36B, its neighboring

line is also likely to compress to ≤ 36B. In these cases, we insert into BAI. Conversely, if a

line is incompressible (say it compresses to 60 bytes), then its neighboring line is unlikely

to be able to be compressed with it, so we insert using TSI.

We propose a simple mechanism that selects insertion policy based on size of com-

pressed line. If a line compresses to ≤Threshold, we insert the line using BAI. Otherwise,

we insert it using TSI. We study different threshold values for deciding index policy and

determine that a threshold of 36B provides the best performance. In our studies, we use a

default threshold of 36B. Sensitivity to threshold is performed in Section 3.6.3.
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3.4.4 Cache Index Prediction (CIP)

As DICE makes the decision to use either TSI or BAI at insertion time, a cache can become

mixed with some lines using TSI and others using BAI. To retrieve a line in the cache, we

may need to look up both the possible locations. Unfortunately, doing so would consume

more bandwidth and incur high latency. We develop a predictor to determine which location

to access first.

HASHPage #

0 = TSI

1 = BAI

0

1

1

1

1

0

0

0

Demand Access Last−Time−Table (LTT)

Predict TSI

Figure 3.7: History-based Cache Index Predictor. CIP tracks history at page granularity.

As misprediction incurs extra latency and bandwidth, we would like rate of mispredic-

tion to be low. We develop Cache Index Predictors (CIP) for reads and writes that can

accurately predict cache index with low storage overhead. For reads, we design a page-

based CIP predictor that uses last-time information for predictions, as shown in Figure 3.7.

CIP leverages observation that lines within a page have similar compressibility [52]. If a

page is compressible, lines within that page will likely be in BAI. CIP contains a Last Time

Table (LTT) that tracks last outcome for a page. Given LTT has limited entries, we hash

page address to index LTT.

We vary the number of entries in LTT and find the accuracy increases from 93.2%

(512 entries) to 94.1% (8192 entries). For reads, we use a default LTT of 2048 entries

(256B), which has an average accuracy of 93.8%. For writes, we predict index based on

compressibility of data (same as insertion policy), which has an accuracy of 95%.
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3.5 Methodology

3.5.1 Configuration

We use USIMM [86], an x86 simulator with detailed memory system model. We modified

USIMM to include a DRAM cache. Table 3.2 shows the configuration used in our study.

We assume a four-level cache hierarchy (L1, L2, L3 being on-chip SRAM caches and L4

being off-chip DRAM cache), with 64B line size. We model a virtual memory system to

perform virtual to physical address translations.

Table 3.2: Baseline Configuration
Processors

Number of cores 8 cores
Core type 4-wide 3.2GHz out-of-order
L1/L2 (private) 32KB/256KB (8-way each)
L3 cache (shared) 8MB (1MB per core)

DRAM Cache
Capacity 1GB
Configuration 4 channel, 128-bit bus
Bus Frequency 800MHz (DDR 1.6GHz)
Banks 16 banks per channel
tCAS-tRCD-tRP-tRAS 44-44-44-112 CPU cycles
Read/Write Queue 96 entries per channel

Main Memory (DDR DRAM)
Capacity 32GB
Configuration 1 channel, 64-bit bus
Bus Frequency 800MHz (DDR 1.6GHz)
Banks 16 banks per channel
tCAS-tRCD-tRP-tRAS 44-44-44-112 CPU cycles
Read/Write Queue 96 entries

We use direct-mapped TIC DRAM cache (Alloy Cache [6]) for the L4 cache, and re-

sults are normalized to direct-mapped TIC DRAM cache unless stated otherwise. Cache

misses fill all levels of the hierarchy. We assume a heterogeneous memory system with

DRAM cache using HBM technology [3] and main memory using conventional DDR-

based DIMM technology, corresponding to 1/8th scale of Knights Landing [87]. In accor-

dance with stacked memory specifications, we assume same access latency for both DRAM

technologies. However, the bandwidth of stacked-DRAM is 8x higher than main-memory,

with 4x channels and 2x bus width.
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3.5.2 Workloads

We use a representative slice of 4 billion instructions selected by PinPoints [88], for bench-

marks from SPEC 2006 and GAP [89]. For SPEC, we perform studies on all the 16 bench-

marks that have at least 2 Miss Per Thousand Instructions (MPKI) out of L3 cache. In

addition, we run GAP suite (Graph Algorithm Platform) to show server workloads with

real data sets (twitter, web sk-2005). We run all 30 suggested configurations, and present

a sample where speedup is representative of GAP suite. We perform evaluations by ex-

ecuting benchmarks in rate mode, where all eight cores execute the same benchmark. In

addition to rate-mode workloads, we also evaluate four 8-thread mixed workloads, which

are created by randomly choosing 8 out of the 16 SPEC benchmarks. Table 3.3 shows the

L3 miss rates and footprints of the 8-core rate-mode workloads used in our study.

Table 3.3: Workload Characteristics

Suite Workload (8-copies) L3 MPKI Footprint

SPEC

mcf 53.6 13.2 GB
lbm 27.5 3.2 GB

soplex 26.8 1.9 GB
milc 25.7 2.9 GB
gcc 22.7 264 MB
libq 22.2 256 MB

Gems 17.2 6.4 GB
omnetpp 16.4 1.3 GB
leslie3d 14.6 624 MB
sphinx 12.9 128 MB
zeusmp 5.2 2.9 GB

wrf 5.1 1.4 GB
cactus 4.9 3.3 GB
astar 4.5 1.1 GB
bzip2 3.6 2.5 GB
xalanc 2.2 1.9 GB

GAP

bc twitter 69.7 19.7 GB
bc web 17.7 25.0 GB

cc twitter 93.9 14.3 GB
cc web 9.4 16.0 GB

pr twitter 112.9 23.1 GB
pr web 16.7 25.2 GB

We perform timing simulation until all benchmarks in the workload execute at least 4

billion instructions each. We use weighted speedup to measure aggregate performance of
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the workload normalized to baseline. We use geometric mean to report average speedup

across workloads, and use RATE to denote average over 16 spec rate-mode workloads,

MIX for the 4 mixed workloads, GAP for its 6 workloads, and ALL26 to denote average

over all 26 workloads.

3.6 Results

3.6.1 Impact on Performance

Figure 3.11 shows the speedup of cache compression with TSI, BAI and DICE, and com-

pare it with a cache that has double the capacity and bandwidth. Recall that compressing

with TSI provides only capacity benefits and not bandwidth. Therefore, compression with

TSI provides a small benefit of 7% on average. We observe that TSI always provides a hit

rate that is better than or equal to an uncompressed cache, so no workloads have slowdown.
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Figure 3.11: Speedup of compressing DRAM cache with (a) TSI, (b) BAI, and (c) DICE
with respect to double capacity and bandwidth. DICE provides a speedup of 19.0%,
whereas doubling the capacity and bandwidth provides 21.9%.

Compression using BAI tries to get both higher capacity and higher bandwidth. There-

fore, there is significant performance improvement for workloads such as gcc and cc twi,

where optimizing for capacity alone provided negligible benefits. Unfortunately, for work-

loads such as lbm and libq, the data is incompressible and the increased contention due to

the indexing of BAI causes significant increase in cache misses, resulting in performance

degradation. Overall, BAI performs similar to baseline (0.1% speedup), on average.

With DICE, the cache performs as well as BAI when BAI performs well, and similar
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to TSI for incompressible workloads, causing no degradation compared to baseline. In

addition, there are several standouts (such as soplex, leslie3d, zeusmp, wrf, and cactus)

when DICE performs better than either BAI or TSI independently, as it is able to use BAI

for compressible regions of memory, and TSI for incompressible regions of memory. The

dynamic selection of DICE helps it to outperform the two static indexing schemes. Overall,

our DICE design incurs an SRAM overhead of less than 1 kilobyte yet provides 19.0%

speedup, nearing the performance of a double-capacity double-bandwidth DRAM cache.

3.6.2 Distribution of TSI and BAI with DICE

With DICE, the cache can use TSI, or BAI, or a combination of TSI and BAI across the

cache sets. Figure 3.12 shows the distribution of BAI and TSI. We separate the cases

where location of the line remains invariant between BAI and TSI (50% of lines). From

the remaining lines, we see a skew of 52% towards TSI and 48% towards BAI. This is due

to incompressible workloads such as libq that cause almost the entire cache to use TSI to

avoid performance degradation.
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Figure 3.12: Distribution of BAI and TSI for a cache compressed with DICE. Note that for
50% of accesses, we do not need to make install decisions or do index prediction as TSI
and BAI refer to the same set, hence the y-axis starts at 50%.

3.6.3 Sensitivity to Insertion Threshold

DICE uses compressibility of data to determine index policy on insertion. We use a default

threshold of 36B to determine if BAI or TSI should be used. Table 3.4 shows the speedup
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of DICE as the threshold is changed from 32B to 36B to 40B. Note that a threshold of 0

will degenerate DICE to always use TSI, and a threshold of 64 will degenerate DICE to

always use BAI. We find that the performance is maximized for a threshold of 36B. This is

because BDI often compresses a single line to 36B, but double-line compresses it to 68B,

which can fit in BAI if the tags are shared.

Table 3.4: Sensitivity to DICE threshold
≤ 32B ≤ 36B ≤ 40B

SPEC RATE +10.6% +12.2% +11.1%
SPEC MIX +6.4% +7.5% +7.4%

GAP +47.6% +48.9% +49.1%
GMEAN26 +17.5% +19.0% +18.3%

3.6.4 Impact on DRAM Cache Capacity

Compression increases effective capacity of cache by storing more lines within the same

physical space. Table 3.5 shows average capacity of DRAM cache when compressed with

TSI, BAI, or DICE. We estimate effective capacity by checking number of valid lines in

each set every 50M instructions.

Table 3.5: Effective Capacity of TSI/BAI/DICE
TSI BAI DICE

SPEC RATE 1.07x 1.16x 1.13x
SPEC MIX 1.12x 1.28x 1.24x

GAP 2.00x 5.57x 5.06x
GMEAN26 1.24x 1.69x 1.62x

DICE and BAI have higher compression ratios than TSI due to two reasons: First, TSI

compresses lines from different pages within the same set. These lines are less likely to

have similar compressibility. DICE and BAI, on the other hand, often compress together

lines from the same page, which are likely to have similar compressibility and hence are

more likely to fit within the same set. Second, DICE and BAI improve compression ratio

due to tag and base-sharing (BDI), which amortizes tag and metadata overhead. DICE

increases effective cache capacity by 62%, on average.
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3.6.5 Impact of DICE on Hit-Rate of L3

If data is compressible, then BAI can provide two spatially-contiguous lines with a single

access to L4 cache. As these lines are spatially close, we install both lines in the L3 cache

as they are likely to be used within a short period of each other, improving L3 hit rate.

Table 3.6 shows the hit rate of the L3 cache for a baseline system (uncompressed L4),

and a system using DICE. For the baseline system, the average L3 hit rate is 37.0%, and

it is improved to 43.6% with DICE. Thus, the adjacent lines obtained due to compression

with DICE are useful, and installing them in the L3 cache provides performance benefits.

Table 3.6: Effect of DICE on L3 hit rate
BASE DICE

SPEC RATE 34.7% 43.0%
SPEC MIX 61.6% 67.2%

GAP 26.9% 29.4%
AVG26 37.0% 43.6%

3.6.6 Comparison to Larger Fetch for L3

DICE can send adjacent lines from the L4 cache proactively to the L3 cache. While this

may have some resemblance to nextline prefetch or 2x-width line fetch, we note that there is

a fundamental difference. DICE sends the adjacent line from L4 to L3, only when that line

is obtained without any bandwidth overheads. However, prefetches result in an independent

cache request which incurs extra bandwidth. We compare our proposal, with alternative

designs for L3 cache that try to either get a wider granularity line in the L3 cache (128

bytes, with two separate 64 byte requests) or next line prefetching in the L3 cache (demand

request is followed by a prefetch for the next line).

Table 3.7 shows the performance of wide-granularity fetch at L3 cache, next-line prefetch

in L3 cache, and compare it with DICE (in L4) and a combination of DICE (in L4) plus

next-line prefetch in L3 cache. We find that designs that simply try to get an extra line in

the L3 cache (due to wider fetch or next-line prefetch) give marginal benefits of 1.9% and
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1.6%, on average. DICE, which inherently provides an extra line to the L3 cache when such

a line is obtained without bandwidth overheads, provides speedup of 19.0%. Nonetheless,

the L3 optimizations are orthogonal to DICE and can be combined for greater benefit. For

example, using DICE with next line prefetch increases speedup to 20.9%.

Table 3.7: Comparison of DICE to Prefetch
128B-PF Nextline-PF DICE DICE+NL

SPEC RATE +3.2% +2.6% +12.2% +16.7%
SPEC MIX +1.2% +1.9% +7.5% +7.7%

GAP -1.1% -1.1% +48.9% +43.4%
GMEAN26 +1.9% +1.6% +19.0% +20.9%

3.6.7 Non Memory-Intensive Workloads

In our studies, we only considered benchmarks that had an L3 cache MPKI ≥ 2, as they

tend to be sensitive to optimizing memory system. Alternatively, if a workload fits in on-

chip caches, then such workload would not benefit from improving off-chip memory.

Figure 3.13 shows performance impact of DICE on the non memory-intensive SPEC

benchmarks excluded from detailed study. As many of these benchmarks fit in L3 cache,

they do not see benefit. However, more importantly, DICE does not degrade performance

for any of them. On average, DICE improves performance by 2% on these workloads.
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Figure 3.13: Speedup of DICE on non-memory-intensive applications (L3 MPKI <2).
DICE does not degrade these workloads.
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3.6.8 Sensitivity to Capacity, BW, and Latency

Table 3.8 shows sensitivity of DICE to varying the capacity, bandwidth, and latency of the

DRAM cache, normalized to their respective uncompressed designs. For a 2GB DRAM

cache, DICE retains its bandwidth benefits for a speedup of 13.2%. For a 2x-channel

DRAM cache, denoted by 2x BW in Table 3.8, DICE performs well at 24.5% speedup. We

note that specifications for stacked DRAM state that stacked DRAM latency remains same

as DIMM-based counterparts. Nonetheless, we perform sensitivity study on a half-latency

DRAM cache. For a half-latency DRAM cache, DICE is able to alleviate the increased

memory pressure (by increasing L4 hit rate) caused by the lower-latency DRAM cache

for a speedup of 24.4%. Overall, DICE is robust and benefits a wide range of DRAM

configurations.

Table 3.8: Sensitivity of DICE on different caches
Base(1GB) 2x Capacity 2x BW 50% Latency

SPEC RATE +12.2% +8.7% +13.3% +13.5%
SPEC MIX +7.5% +4.7% +8.2% +9.1%

GAP +48.9% +32.6% +75.9% +73.5%
GMEAN26 +19.0% +13.2% +24.5% +24.4%

3.6.9 Impact of DICE on Energy

Figure 3.14 shows L4+Memory power, energy consumption, and energy-delay-product

(EDP) of a system with TSI, BAI, and DICE, normalized to the baseline. TSI increases

L4 hit rate, which reduces memory energy consumption. BAI improves performance and

energy for compressible workloads, but hurts incompressible ones, making its performance

similar to baseline but energy worse. DICE improves both L3 and L4 hit rate leading to a

reduction in both stacked DRAM and memory energy consumption. Overall, DICE reduces

energy consumption by 24% and EDP by 36%.
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Figure 3.14: Impact of DICE on energy. DICE reduces DRAM cache and memory ac-
cesses, reducing off-chip energy by 24%.

3.6.10 Comparison to Compressed SRAM Cache Designs (Superblock)

Prior work has looked at using compression to increase capacity of on-chip SRAM caches.

Cache compression is typically done by accommodating additional ways in a given cache

set and statically allocating more tag-store entries [41, 90]. These proposals optimize

purely for hit rate, while we find that DRAM caches are more sensitive to bandwidth.

As such, 11.4% of our 19.0% speedup is from bandwidth benefits, not capacity (DICE over

TSI). Recent proposals, such as Skewed Compressed Cache (SCC), investigate reducing

SRAM tag overhead by sharing tags across spatially-contiguous sets in what are called su-

perblocks [43, 42, 44, 91]. For a 4x-superblock 8-way physical cache, these proposals use

32 physical tags to address up to 128 compressed lines by sharing the tags of neighbor-

ing sets. Unfortunately, an access in SCC requires skewed associative lookup for different

locations in the cache. While this may be practical to do in an SRAM cache, it incurs pro-

hibitively high bandwidth overhead to lookup multiple locations in DRAM cache to service

each request.

We evaluate SCC in the context of DRAM caches, to highlight need for bandwidth ef-

ficiency in compressing DRAM caches. Figure 3.15 shows the speedup from compressing

the DRAM cache with SCC and DICE. Each request in SCC incurs four accesses to DRAM
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Figure 3.15: Skewed Compressed Cache (SCC) on DRAM cache. SCC causes 22%
slowdown due to extra tag accesses.

cache (3 for tags and one for data), whereas a request in DICE requires only one access to

the DRAM cache in the common case (second only in case of CIP misprediction). On

average, SCC causes 22% slowdown, whereas DICE provides 19% speedup.

3.7 Summary

This work looked at compression as a means of increasing both the capacity and bandwidth

of DRAM caches. We exploit the fact that practical DRAM caches are likely to store tags

within the DRAM array, so they can support compression seamlessly, as the tag-store en-

tries required for the additional capacity created due to compression can be accommodated

within the DRAM substrate without the need for any SRAM overheads. Furthermore, as

DRAM caches are managed entirely in hardware, we can do DRAM cache compression in

a software-invisible manner and avoid the OS changes that are necessary for compressing

main memory.

Our study showed that for maximizing performance it is important that DRAM caches

perform compression for enhancing both the capacity and the bandwidth. We note that

traditional methods to perform cache compression are aimed at solely increasing the cache

capacity and provide only marginal benefits. To this end, our work proposes to change the

cache indexing dynamically to a bandwidth-enhancing scheme called Bandwidth-Aware In-

dexing (BAI). We show that while BAI can improve both capacity and bandwidth when data

is compressible, it can degrade performance when data is not compressible. We propose
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Dynamic-Indexing Cache Compression (DICE) that dynamically changes cache indexing

depending on compressibility of line. To avoid looking up two locations for a line, we

develop low-cost Cache Index Predictors (CIP) that can accurately predict index for the

line using history information. Our evaluations show that DICE improves DRAM cache

capacity and bandwidth to improve performance of a 1GB DRAM cache by 19.0% and re-

duce EDP by 36%, all while incurring storage overhead of less than 1 kilobyte and without

requiring OS support.

These capacity and bandwidth benefits DICE offers are contingent on compressibility

of data – it may be desirable to enable associativity benefits regardless of compressibility.

We investigate an alternative solution based on way-prediction in the next chapter.
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CHAPTER 4

ENABLING ASSOCIATIVITY WITH ACCORD

This chapter discusses how to enable associativity for baseline direct-mapped Tag-Inside-

Cacheline (TIC) DRAM caches at minimal bandwidth cost [19].

4.1 Introduction

DRAM caches are important for enabling effective heterogeneous memory systems that

can transparently provide the bandwidth of high-bandwidth memories [3], and the capacity

of high-capacity memories [4, 8]. Current DRAM cache design [1, 6] stores tag next to data

at a line granularity and utilize a direct-mapped organization (i.e., baseline direct-mapped

TIC design), such that a single access can provide both data and the associated tag, which

allows for quick determination of a hit or a miss. Unlike its set-associative counterpart [5,

37, 25, 26], the direct-mapped organization is attractive as it eliminates additional accesses

to determine location of lines and optimizes for hit latency. However, such caches can

suffer from a low cache hit rate due to significant conflict misses.Ideally, we would like the

hit-latency of direct-mapped caches, but the hit-rate of set-associative caches. In this work,

we focus on enabling associativity in a bandwidth-efficient and low hit-latency manner

suitable for such DRAM caches that place Tag-Inside-Cacheline.

4.1.1 Challenges in Set-Associativity

Trading off the cache hit rate for low hit latency may be acceptable when the memory

latency is similar to DRAM cache latency. However, this trade-off is unacceptable when the

main memory latency is much longer than the DRAM cache latency (e.g., 2-4X longer in

the case of NVM). Therefore, it is important to optimize for the DRAM cache hit rate while

retaining low DRAM cache hit latency. A straightforward way of improving the cache hit
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Figure 4.1: (a) Organization of practical direct-mapped TIC DRAM cache [1, 6]: Each
access indexes a direct-mapped location and transfers 72 bytes that has tag and data (and
ECC). (b) Extending to a 2-way cache. Ways in the same set are placed in the same row
buffer. Each memory address has two possible locations (ways).

rate is to build a set-associative DRAM cache. For example, we extend the DRAM cache

design to a 2-way cache, shown in Figure 4.1(b). The tag of a way is associated with

the way, and ways in the same set are placed in one row buffer [5]; in this case, each

memory address has two possible locations. However, we identify the following obstacles

in designing set-associative DRAM caches:

1. Determining Hit Location: On an access, the line can be present in any way of a set in

a set-associative DRAM cache. We may need to check all the ways to obtain the requested

line, thus incurring the bandwidth and latency overheads associated with accessing multiple

lines. Ideally, we want to implement a set associative DRAM cache while retaining the

single lookup of a direct-mapped DRAM cache.

2. Miss Confirmation: On miss, we need to ensure that the line is not present in the

DRAM cache. This typically requires checking all ways in a set, which incurs bandwidth

overhead proportional to DRAM cache set associativity. For set-associative DRAM caches,

we want to reduce the bandwidth overheads incurred by miss confirmation.

3. Writeback Probe: On a writeback operation to a set-associative DRAM cache, a write-

back probe may be needed to determine the way in which the line is resident. For a direct-

mapped DRAM cache, simply knowing that the line is resident is sufficient to avoid a

writeback probe operation (by keeping the DRAM cache presence, or DCP bit, in the L3

cache [17]). However, for a set-associative DRAM cache, we additionally need to know

“which way” to write back to. To determine the correct way to write back to on a writeback,
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we extend the DCP scheme to store way information as well. We note that any associative

DRAM cache will require this extension to enable write performance.

4. Replacement Policy: A set-associative cache relies on a replacement policy to choose

a victim line. For any intelligent replacement policy, an update of the replacement state is

performed on hits and insertions (e.g., counter update [76]). Since DRAM caches store the

tags with the line, updating the replacement state incurs a DRAM write operation (to the

line). Unfortunately, performance overhead because of extra bandwidth for such updates far

outweighs performance benefits from the improved hit rate [6]. In fact, using an update-free

replacement policy (e.g., random) provides better performance.1 As such, we use random

replacement for set-associative DRAM caches throughout this work.

4.1.2 Options for Implementing Set-Associativity

In an N-way set-associative cache, a line can be resident in any of the N locations. Ideally,

we desire a low-latency and low-bandwidth implementation of a set-associative DRAM

cache. We now discuss some options for implementing a set-associative DRAM cache.

Addr

Way 0 Way 1 Way 0 Way 1 Way 0 Way 1

Addr
read both ways

A
Bcheck way−0 first

If miss, check Way 1A, B

(a) Parallel Lookup (b) Serial Lookup

Addr

(c) Way−Predicted Lookup

B

If miss, check Way 0

BA
Way−Pred

Way = 1

B

Predicted

ABA

Figure 4.2: Comparison of accessing lines in a 2-way DRAM cache. (a) Parallel Lookup:
One cache request reads all ways in the corresponding set. (b) Serial Lookup: A request
first reads way-0; if miss, it checks way-1. If data is in way-1, this dependent way checking
incurs serialization penalty. (c) Way-Predicted Lookup: A request first reads a predicted
way; if miss, it checks the other way.

1For example, using LRU replacement for a 2-way DRAM cache degrades performance by 9% compared
to random replacement.
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Parallel Lookup

A straightforward way to locate data in an N-way DRAM cache is to read all N lines of a set

on each access, shown in Figure 4.2(a). We refer to such a design as parallel lookup. While

parallel lookup may be practical for SRAM caches, the bandwidth overhead of streaming

N lines on each access (both hits and misses) becomes prohibitive for DRAM caches.

Serial Lookup

Alternatively, we can check the lines sequentially (see Figure 4.2(b)). We refer to this

design as a serial lookup design, which reduces the bandwidth for transferring lines on a

hit from N to ˜(N+1)/2 on average. However, it introduces latency as the lookups are now

serially dependent on each other (N accesses). If we can predict which way the line is likely

to be in, we can reduce hit latency further.

Way-Predicted Lookup

We can reduce serialization penalty by intelligently choosing which way to check first using

Way-Prediction (see Figure 4.2(c)). We refer to this design as a Way-Predicted Lookup

design. On a hit, if we can predict the way accurately, we can service hits with just one

DRAM access. This organization can achieve the hit latency of a direct-mapped cache

while maintaining the hit rate of an N-way cache. However, achieving high way-prediction

accuracy at low storage cost is difficult in practice. Furthermore, the bandwidth overheads

of miss confirmation is still N lookups.

4.1.3 Conventional Way-Predictors: Challenge in Scaling to Gigascale DRAM Caches

Way Prediction has been proposed for SRAM caches (L1 or LLC) for reducing latency

and power. For L1, tracking the most-recently-used way in each set (MRU Pred [54, 55])

provides high accuracy as the access stream of an L1 cache has high temporal locality.

Unfortunately, such locality is typically not visible to secondary caches (L2/L3/L4), so
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MRU prediction tends to be not as effective. Secondary caches can use a partial-tag (e.g.,

4-bits) design for each line to avoid cache lookup [56, 57, 58, 59, 60, 61]. Unfortunately,

both MRU Pred and Partial-Tag design require per-set or per-line storage. Such schemes

would incur storage overhead of several MBs for a 4GB DRAM cache, in Table 4.1.

Table 4.1: Accuracy and Storage of way predictors for a 4GB cache
Rand Pred MRU Pred Partial-Tag

Storage 0B overhead 4MB overhead 32MB overhead
2-way 50.0% 85.7% 97.3%
4-way 25.0% 74.3% 91.6%
8-way 12.5% 63.2% 81.2%

Table 4.1 shows that simply predicting a random location has low accuracy (labeled as

Rand Pred). Additionally, MRU prediction accuracy also degrades significantly at higher

associativity. The partial-tag design has good accuracy but incurs an impractical storage

overhead of 32MB. If we are to implement way prediction effectively at the size of DRAM

caches, we need a way-predictor that is both accurate and requires lower storage overhead

than conventional designs.

4.1.4 Insight: Way-Steering for Way-Prediction

In a conventional set-associative design, any way in a set can be replaced (determined by the

replacement policy), thus complicating the way prediction. We observe that if we steer the

incoming line to a “preferred way” based on the line address at install time, way prediction

can simply use the preferred way as the default prediction at access time. The coordina-

tion between way install and way prediction can simultaneously improve way prediction

accuracy and reduce way prediction hardware requirements. Based on this insight, we de-

velop a scalable (low storage overhead), low-latency, and low-bandwidth way prediction

for set-associative DRAM caches.
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4.2 Design of Associativity via Coordinated Way-Install and Way-Prediction

Way-prediction can enable a set-associative cache to maintain the hit latency of a direct-

mapped cache but the hit-rate of an associative cache. Conventional way predictors are

designed independent of the way install policy of the cache and typically incur significant

storage overhead. There tends to be no correlation between the line address and the install

way. If we can instead coordinate way-install with way-prediction, we can obtain high

accuracy for way prediction while incurring negligible storage overhead. To this end, we

propose Associativity via Coordinated Way-Install and Way-Prediction (ACCORD), a de-

sign that steers an incoming line to a “preferred way” based on line address and uses that

preferred way as the default way prediction, in Figure 4.3. We propose and evaluate three

low-cost and effective way-steering policies to enable associativity for DRAM caches at

low bandwidth and SRAM storage cost.

Way 0 Way 1

DRAM Cache

Way Install
PolicyPredictor

Way

Line A (Install)Line A (Access) Coordinate

Way
Preferred

Figure 4.3: ACCORD: Coordinating Way-Install and Way-Prediction using Way Steering.

4.2.1 Probabilistic Way-Steering (PWS)

The install policy in practical set-associative DRAM cache is likely to employ random

replacement, to avoid bandwidth for updating replacement state on a hit. Random replace-

ment chooses any way in a set with equal probability. For example, in a 2-way cache, either

way will be picked with 50% probability. However, using the line address, we can bias the

install policy to select a particular way with a higher probability. Based on this insight, we

propose our first way-steering policy, Probabilistic Way Steering (PWS).
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Figure 4.4: Probabilistic Way-Steering (PWS): (a) deciding preferred way based on tag, and
(b) installing in the preferred way based on preferred-way install probability(e.g., 85%).

PWS determines the preferred way of a line based on the tag of the line, as shown in

Figure 4.4(a). If the tag is even, Way-0 is preferred; if the tag is odd, Way-1 is preferred. On

an install, PWS chooses the preferred way with a given probability, Preferred-Way Install

Probability (PIP). For example, if PIP=85%, then, PWS chooses the preferred way with

85% likelihood, as shown in Figure 4.4(b).2 On an access, the way-prediction statically

predicts the preferred way based on the tag. As we install in the preferred way 85% of the

time, we will find the line in the preferred way ˜85% of the time. As such, the prediction

accuracy of PWS is approximately equal to PIP. Note that a high value of PIP can degrade

cache hit-rate as it reduces the flexibility of an associative cache. Thus, tuning PIP effec-

tively allows PWS to trade off a small amount of hit-rate (i.e., speed of learning to use both

ways) for predictability.

Table 4.2: Average Hit-Rate and Speedup of PWS
Organization Hit-Rate WP Acc. Speedup

2-way (Unbiased, PIP=50%) 77.5% 50.0% 2.6%
2-way PWS (PIP=60%) 77.5% 59.8% 3.7%
2-way PWS (PIP=70%) 77.5% 69.4% 4.7%
2-way PWS (PIP=80%) 77.3% 78.6% 5.5%
2-way PWS (PIP=85%) 77.2% 83.1% 5.6%
2-way PWS (PIP=90%) 76.9% 87.8% 5.3%

Direct-Mapped (PIP=100%) 74.2% 100.0% 0.0%

PWS must balance between the dueling needs of high hit-rate and high way-prediction

accuracy. Table 4.2 shows the hit-rate and performance of PWS as a function of PIP,

2For a two-way cache, PWS with PIP=50% is an unbiased policy that is identical to the baseline random
replacement policy, whereas PIP=100% degenerates into a direct-mapped cache.
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averaged over all our workloads. At PIP of 80% or below, PWS provides most of the

hit-rate of a 2-way cache, and achieves high way-prediction accuracy (similar to PIP). Note

that even at PIP=90%, PWS still provides most of the hit-rate benefit of a 2-way design,

as lines that constantly thrash eventually use the other way. However, at PIP=100%, the

design simply degenerates into a direct-mapped cache. We observe that, PIP between 80%

and 85% provides the best trade off between hit rate and way-predictability. Performance of

PWS is maximized (5.6% speedup) at PIP=85%. Thus, we use PIP=85% for the remainder

of this work.

4.2.2 Ganged Way-Steering (GWS)

PWS guides most of the lines to the preferred way; however, some lines in the region can

still go to different ways. This is because PWS makes the install decisions on each miss, and

decides if the incoming line should be installed in the preferred way or the non-preferred

way. In conventional cache management schemes, the install decisions of one set has no

bearing on the install decisions on another set. We develop an insight that if we could

coordinate the install decisions across sets, then we can obtain even higher way-prediction

accuracy. For example, if multiple lines of a spatially contiguous region miss the cache,

then rather than making independent install decisions for each line in the region, we could

make the install decision for the first line in the region and install subsequent lines from

the region in the same way as the earlier line from that region. Based on this insight, we

propose Ganged Way-Steering (GWS).

Only one in Way 0

(a) Probabilistic Steering

85%
Prefer Way 0

A, B
15%

Way 0  Way 1

Prefer Way 0
A, B

15%

Install B2, B3 in the same way

Way 0  Way 1

(b) Ganged Way−Steering
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A and B prefer Way−0
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Install B0 in Way−1

B1
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A1

A0
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B3B3
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Line A (Access)
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WayRegionID

0x001 0 0x101 1Way
InstallPredict
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DRAM Cache

Line X (Install)

(c) Implementation of Ganged Way−Steering

Figure 4.5: The benefit of coordinating install decisions across sets: (a) PWS install lines
of each region (A and B) into either way. (b) GWS steers later lines from the region into the
same way earlier line was installed. The purple boxes denote lines that can be predicted.
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Figure 4.5(c) shows that GWS steers installs to last-way-installed (region-based) with

Recent Install Table (RIT), and predicts way based on last-way-seen (region-based) with

Recent Lookup Table (RLT). Ganged-Install and Ganged-Prediction provides high way-

prediction accuracy for workloads with high spatial locality within a region.3

4.2.3 Extending to Higher Associativity with Skewed Way-Steering (SWS)

Thus far, we have analyzed ACCORD for 2-way caches. The next step is to scale to N-

ways. However, there is a major obstacle in making DRAM cache highly set-associative:

the prohibitive cost of miss confirmation. For an N-way cache, a cache request needs to

do N lookups to confirm a miss. Consider a scenario where an 4-way cache receives 100

requests, and 60 of them hit. Even with perfect way prediction, the 40 misses still incur

160 lookups (40*4) for confirmation, shown in Figure 4.6(a). We found that extending

ACCORD to four ways achieves only 3% speedup and extending it to eight ways causes

6% slowdown. Therefore, to enable high set associativity, we must address the cost of miss

confirmation.

(b) Skewed Way−Steering

Miss Conf.

ABC

Same preferred way

Check two ways: preferred & alternate

C BA

line C

line B
One distinguished alternate way

Check all four ways

Miss Conf.

ABC

Same preferred way

Way 0 1 2 3

CB A

Three non−preferred ways

(a) Full flexibility of four ways

Figure 4.6: (a) Full flexibility of four ways. Miss confirmation checks all locations. (b)
Skewed Way-Steering. Each line in the same set has one distinct alternate location. Miss
confirmation checks only two locations.

If each line in a set can be restricted to only two possible locations, the miss confirma-

tion needs to check only two ways, significantly reducing the bandwidth overhead of miss

3The region size is 4KB, and we use a 64-entry RIT and 64-entry RLT (total 160B storage overhead) as
tracking 64 regions captures most of the benefit of GWS.
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confirmation. Figure 4.6(b) shows an example. Lines A, B, and C map to the same set

and thrash in their preferred ways (Way-1); besides the preferred way, each line now can

be in one and only one other location determined by the hash of tags: A in 1 or 3, B in 1

or 2, and C in 1 or 0. On misses, A, B, and C might first try to install in their preferred

way. But on subsequent misses, B could be installed in its alternate way Way-2, and C in

Way-0. Therefore, with this restriction, most of lines can still fit in the cache [64], but miss

confirmation cost is reduced to two lookups. Based on this insight, we propose Skewed

Way-Steering (SWS), which restricts lines to having exactly one Alternate location, instead

of allowing the line to have (N-1) non-preferred locations in a N-way set-associative cache.

The Alternate way is selected using an intelligent hashing function such that the Alternate

location is guaranteed to be different from the Preferred location. Overall, ACCORD with

SWS provides improved hit-rate at direct-mapped bandwidth cost.

4.3 Methodology

4.3.1 Framework and Configuration

We use USIMM [86], an x86 simulator with detailed memory system model. We extend

USIMM to include a DRAM cache. Table 4.3 shows the configuration used in our study.

We assume a four-level cache hierarchy (L1, L2, L3 being on-chip SRAM caches and L4

being off-chip DRAM cache). All caches use 64B line size. We model a virtual memory

system to perform virtual to physical address translations. The baseline contains a 4GB

direct-mapped DRAM cache that places tags with data in the unused ECC bits [87]. The

parameters of our DRAM cache is based on HBM technology [3]. The main memory is

based on non-volatile memory and assumed to have a latency similar to PCM [11, 12, 13,

14]: the read latency is 2-4X and the write latency is 4X as long as those of DRAM [4].
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Table 4.3: System Configuration

Processors 16 cores; 3.0GHz, 2-wide OoO
Last-Level Cache 8MB, 16-way

DRAM Cache
Capacity 4GB
Bus Frequency 500MHz (DDR 1GHz)
Configuration 8 channel, 128-bit bus
Aggregate Bandwidth 128 GB/s
tCAS-tRCD-tRP-tRAS 13-13-13-30 ns

Main Memory (PCM)
Capacity 128GB
Bus Frequency 1000MHz (DDR 2GHz)
Configuration 2 channel, 64-bit bus
Aggregate Bandwidth 32 GB/s
tCAS-tRCD-tRP-tRAS-tWR 13-128-8-143-160 ns

4.3.2 Workloads

We run benchmark suites of SPEC 2006 [92], GAP [89], and HPC. For SPEC, we perform

studies on all 9 benchmarks that have at least 5% speedup potential going from 1-way to

8-way, along with 2 workloads that are less sensitive to set associativity. GAP is graph

analytics with real data sets (twitter, web sk-2005) [93]. The evaluations execute

benchmarks in rate mode, where all cores execute the same benchmark. In addition to

rate-mode workloads, we evaluate 10 mixed workloads, which are created by choosing 16

of the 16 SPEC workloads that have at least two miss per thousand instructions (MPKI).

Table 4.4 shows L3 miss rates, memory footprints, and performance potential with ideal

8-way cache for the rate-mode workloads used in our study.

We perform timing simulation until each benchmark in a workload executes at least 2

billion instructions. We use weighted speedup to measure aggregate performance of the

workload normalized to the baseline and report geometric mean for the average speedup

across all the 21 workloads. For other workloads that are neither memory bound nor sen-

sitive to set associativity of DRAM caches, we present performance of all 46 workloads

evaluated (29 SPEC, 10 SPEC-mix, 6 GAP, and 1 HPC) in Section 4.4.3.
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Table 4.4: Workload Characteristics

Suite Workload L3 MPKI Footprint
8-Way

Potential
Speedup

SPEC

soplex 29.8 3.6 GB 2.43
leslie 17.0 1.2 GB 1.63
libq 25.6 512 MB 1.55
gcc 5.8 2.9 GB 1.27

zeusmp 5.3 3.3 GB 1.18
wrf 7.4 2.2 GB 1.18

omnet 20.8 2.4 GB 1.17
xalanc 4.3 3.0 GB 1.09

mcf 83.1 26.1 GB 1.06
sphinx 13.7 293 MB 1.01
milc 25.5 9.0 GB 0.99

GAP

pr twitter 121.7 30.5 GB 1.15
cc twitter 108.7 18.6 GB 1.15
bc twitter 81.1 26.9 GB 1.11

pr web 17.8 30.3 GB 1.07
cc web 9.2 18.6 GB 1.05

HPC nekbone 6.4 111 MB 1.04

4.4 Results and Analysis

4.4.1 Effectiveness of ACCORD

The effectiveness of ACCORD is contingent on high way-prediction accuracy for low band-

width overhead, and increase in hit-rate to enable more data serviced from high-bandwidth

memory. We analyze ACCORD’s impact on way-prediction accuracy and hit-rate.

Impact on Way-Prediction Accuracy

Figure 4.7 shows the way-prediction accuracy of PWS, GWS, and PWS+GWS. PWS has

an accuracy close to 85% (since PIP=85%). GWS has near-ideal accuracy for workloads

with high spatial locality (e.g., nekbone and libq have 99% accuracy). Note that GWS can

only way-predict on RLT hits and defaults to random prediction on RLT miss. As such,

GWS has limited accuracy when pages are sparsely accessed or the workload footprint

is large (e.g., mcf and pr twi). GWS, combined with the way-prediction policy of PWS,

improves way-prediction accuracy to 90%. This enables the DRAM cache to frequently

locate the lines in one access.
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Figure 4.7: Accuracy of way-predictors for a 2-way cache. While probabilistic way-
steering (PWS) provides a 83% accuracy, ganged way-steering (GWS) is 75% accurate.
Combining GWS with PWS provides 90% accuracy.

Impact on Cache Hit-Rate

Table 4.5 shows the impact of Way-Steering on hit rate. Increasing associativity to 2 ways

increases hit-rate from 74.2% to 77.5%. GWS retains the hit-rate of a 2-way cache, as it

simply increases the granularity at which replacement happens. PWS, on the other hand,

trades hit-rate for predictability, so there is small hit-rate degradation under PWS+GWS,

to 77.3%. Overall, PWS+GWS achieves high way-prediction accuracy (>90%), while

keeping most of the hit-rate of a 2-way cache (77.3%).

Table 4.5: Sensitivity of hit-rate to PWS and GWS

Direct-mapped 2-Way Rand PWS GWS PWS+GWS
Amean 74.2% 77.5% 77.2% 77.7% 77.3%

To further improve hit-rate without increasing miss confirmation cost, we employ Skewed

Way-Steering. SWS provides flexibility of where to place lines, while simultaneously re-

moving worst-case tag-lookup bandwidth. We show aggregate hit-rate for SWS(4,2) and

SWS(8,2) and compare it with the hit-rate of direct-mapped, 2-way ACCORD (PWS+GWS),

and 8-way cache. In Table 4.6, we can see that SWS(8,2) offers improved hit-rate over 2-

way ACCORD, at similar miss-confirmation cost. Note that going from 2-way to 8-way

provides little hit-rate improvement, and, SWS provides 1/3rd of the benefit for nearly free.
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Table 4.6: Hit-Rate of different ACCORD designs

Direct-mapped
ACCORD SWS SWS

8-Way
(2-way) (4,2-way) (8,2-way)

Hit Rate 74.2% 77.3% 77.7% 77.9% 79.7%

4.4.2 Performance of ACCORD

ACCORD provides speedup due to enabling associativity at low bandwidth cost. Figure 4.8

shows the speedup for parallel tag-lookup, serial tag-lookup, PWS, GWS, PWS+GWS,

and perfect way-prediction. Parallel Lookup wastes bandwidth, and Serial lookup incurs

latency. Probabilistic Way-Steering provides a good baseline prediction accuracy for the

cache. Ganged Way-Steering improves way-predictability for workloads with high spatial

locality by steering ganged patterns to install in the same way. Combining Probabilis-

tic Way-Steering and Ganged Way-Steering achieves 90% way-prediction accuracy (with

<1KB SRAM) and provides 7.3% speedup, close to (10%) with perfect. Additional modi-

fications for skewed-associativity bring final speedup to 11%.
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Figure 4.8: Speedup from 2-way DRAM Cache.

4.4.3 Speedup for Remaining Workloads and Mixes

Figure 4.9 shows speedup of ACCORD with 2-way and SWS(8,2) across all 46 workloads

evaluated, including 29 SPEC, 10 SPEC-mix, 6 GAP, and 1 HPC workloads. On average,

ACCORD improves performance by 4% and 6% for the 2-way and SWS(8,2) configura-

tions. And, ACCORD improves the performance of the 10 Mix workloads by 7% and 11%

on average. More importantly, Figure 4.9 shows that ACCORD maintains performance

across all workloads, including ones that are not sensitive to increased associativity.
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Figure 4.9: Speedup of ACCORD over 46 workloads (including ones not sensitive to mem-
ory or hit rate).

4.4.4 Impact of Cache Size

We use a default cache size of 4GB for our studies. Table 4.7 shows the speedup of AC-

CORD as the size of the DRAM cache is varied from 1GB to 8GB. ACCORD provides

significant speedup across different cache sizes, ranging from 13.6% at 1GB to 8.6% at

8GB. As expected, when the cache size is increased, larger portions of the workload fit in,

and there is reduced scope for improvement.

Table 4.7: Sensitivity to Cache Size

Cache Size Avg. Speedup from ACCORD
1.0GB 13.6%
2.0GB 12.0%
4.0GB 10.6%
8.0GB 8.6%

4.4.5 Storage Requirements

We analyze the storage overheads of ACCORD in Table 4.8. Both PWS and SWS do not

require any storage overheads. The only storage required is for GWS. Each entry in the

Recent Lookup Table entry (RLT) and Recent Install Table (RIT) is 20 bits (1 valid bit +

19-bit tag). With a 64-entry RLT and 64-entry RIT, the total storage overheads would be

320 bytes. Thus, ACCORD enables associativity while incurring a total storage overhead

of 320 bytes.
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Table 4.8: Storage Requirements of ACCORD

ACCORD Component Storage
Probabilistic Way-Steering 0 Bytes

Ganged Way-Steering 320 Bytes
Skewed Way-Steering 0 Bytes

ACCORD 320 Bytes

4.5 Summary

This work addresses the challenge of enabling set associativity for line-granularity DRAM

caches at low bandwidth and low storage cost. We propose ACCORD (Associativity via

Coordinated Way Install and Way Prediction), a framework that enables low-cost way pre-

diction by steering lines to “preferred” ways on install time and predicting the preferred

way on access time. We propose two policies: probabilistic way-steering, which steers

cache line installs to a preferred way based on its tag and predicts the preferred way on an

access, and ganged way-steering, which steers subsequent installs in a region to the same

way and predicts accesses in that region with last observed way. These policies provide a

90% way-prediction accuracy at negligible storage overhead (320 bytes). To obtain higher

levels of set associativity (e.g., 8-way) at reduced overheads of miss confirmation, we pro-

pose skewed way-steering policy that steers lines to at most two locations in an N-way

set-associative cache. Our evaluations on a 4GB DRAM cache show that ACCORD out-

performs direct-mapped organization by 11% on average. We develop ACCORD over the

existing DRAM cache design used in industry, and we believe the simplicity of our solution

will make it appealing for industrial adoption.
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CHAPTER 5

ENABLING INTELLIGENT REPLACEMENT WITH ETR

This chapter discusses how to enable intelligent replacement policies for direct-mapped

TIC DRAM caches at minimal bandwidth cost.

5.1 Introduction

DRAM caches are important for enabling effective heterogeneous memory systems that

can transparently provide the bandwidth of high-bandwidth memories [3], and the capacity

of high-capacity memories [4, 8]. For example, Intel’s Knights Landing product organizes

its DRAM cache as a direct-mapped cache with tags stored alongside each data-line, so

that one access can retrieve both tag and data (i.e., our baseline direct-mapped TIC DRAM

cache). This direct-mapped design has been shown to be effective for enabling low-latency

and bandwidth-efficient tag access [6]; however, such a direct-mapped design can have

significant conflict misses. Fortunately, cache bypassing [17, 80, 79] offers a way to both

improve hit-rate and decrease bandwidth consumption, while still maintaining a direct-

mapped organization. We investigate the extent to which an intelligent bypass policy can

reduce conflict misses for direct-mapped TIC DRAM caches.

We would like to use the most effective replacement policies to improve DRAM cache

hit-rate. However, intelligent replacement policies [76, 79, 81, 82] often require the cache

to track per-line state that needs to be updated on cache events. On a DRAM cache, man-

aging this per-line state is difficult as tracking even 2-bits of state per line would require

multi-megabyte storage. As such, DRAM cache designs would need to keep this state in

the DRAM array, and spend offchip bandwidth to update state. Prior replacement policies

proposed for DRAM caches have avoided this per-line state with stateless policies [6, 1,

17]. KNL-Cache [6, 1], for example, employs an Always-Install policy. Along the same
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lines, Chou et. al [17] propose a policy that bypasses the cache with 90% probability (we

call this policy 90%-Bypass). However, such stateless policies often fail to capture the reuse

patterns commonly seen in large caches. We show how such policies are often inadequate

with an example.
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Figure 5.1: (a) Always-Install, 90%-Bypass, and Desired replacement policies under mixed
high-reuse low-reuse access pattern. (b) Potential for speedup: Probabilistic Bypass [17],
and Ideal Reuse-based Bypass with no state-update cost.

Let us consider replacement policies for a common access pattern where the workload

has repeated accesses to high-reuse data (labeled A) mixed with accesses to low-reuse data

(labeled B), as shown in Figure 5.1(a). For the baseline Always-Install policy, accesses to

A will install A and enable subsequent accesses to A to hit; however, accesses to low-reuse

B will evict A and cause the subsequent access to A to miss. In this case, always-installing

lines allows low-reuse B to evict high-reuse A, and this results in degraded hit-rate and

wasted install bandwidth. For a 90%-Bypass policy, references to A will install some A

lines and marginally improve hit-rate, and references to B will install only a few lines and

marginally degrade hit-rate. In this case, 90%-Bypass offers some working-set protection;

however, it is indiscriminate in deciding which lines to protect and may not achieve high hit-

rate. Figure 5.1(b) shows that such a probabilistic bypass policy has poor speedup potential

of 3%. Ideally, we desire a bypass policy that can remember and protect individual lines

that have high reuse (i.e., A), and bypass other lines (i.e., B). Figure 5.1(b) shows that if we

formulate a reuse-based bypass policy while avoiding the bandwidth cost for state-update,

we could achieve up to 20% speedup.
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Our approach to improving DRAM cache performance is to (1) design a reuse-based

bypass policy to improve DRAM-cache hit-rate, and to (2) reduce the bandwidth cost of

state-update to further improve performance.

5.1.1 Adapting Replacement Policies for Direct-Mapped Caches

Typically, cache replacement policies are discussed in the context of a set associative cache,

as the set contains multiple lines and there is a choice of the line to evict. For a direct-

mapped cache, the set contains only one line, so if we want to install, there is exactly one

place the line can go, and we do not have a choice in selecting the victim. However, we

could choose to bypass the line, so the binary choice for a direct-mapped cache becomes,

whether to evict the resident line or to bypass the incoming line. We can improve the

hit-rate by making this binary decision intelligently. We explain different replacement

strategies for a direct-mapped cache.

Probabilistic Replacement: The simplest policy is to bypass the incoming line with a

certain probability. For example, Bandwidth-Aware Bypass (BAB) [17, 79] bypasses the

incoming line with 90% probability to reduce install bandwidth, as long as hit-rate remains

unaffected. Figure 5.5 shows that such global bypassing policies are coarse-grain and miss

out on bypassing opportunities that exploit per-line information.

Recency-Based Replacement: LRU[66] installs incoming lines with the highest priority,

based on the heuristic that recently-used lines are more likely to be re-used. On a direct-

mapped cache, LRU degenerates into an Always-Install design, as the incoming line is the

most recent. Enhancements of LRU, such as DIP [69], degenerate to probabilistic bypass.

Reuse-Based Replacement: Replacement policies that exploit reuse (also called re-reference

or frequency) are resilient to thrashing and scans[76, 71, 72]. Such policies can protect the

direct-mapped DRAM cache from thrashing when multiple pages are mapped to the same

set of the DRAM cache. We discuss Re-Reference Interval Prediction (RRIP) [76] policy.
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Figure 5.2: Re-Reference Interval Prediction (RRIP).

Re-Reference Interval Predictor[76] is a thrash-and-scan-resistant replacement policy

often used in last-level caches. As shown in Figure 5.2, each line is equipped with a 2-bit

counter to track the Re-Reference Interval Prediction Value (RRPV). On a hit to the line,

the RRPV is Promoted to 0. On a miss, the victim is found by searching from way 0 and

finding the first line in the set with RRPV of 3. If no such line is found, the RRPV of all

lines in the set is Demoted (i.e., incremented) and the search is repeated. Lines are installed

in RRPV=2 to protect the lines that were re-used.

Challenge in Using RRIP for Direct-Mapped Cache: Just like other replacement policies

based on reuse-information, RRIP operates by comparing the counter values of multiple

candidates in the set. It becomes ill-defined for a direct-mapped cache, where there is

only one counter, which means the resident line will always get evicted regardless of the

past behavior. Thus, for a direct-mapped cache RRIP degenerates into always-install (or

always-bypass if the incoming line is bypassed unless the RRPV of the resident line equals

3). We propose extensions that make reuse-based policies viable for direct-mapped and

two-way caches, and implementations that reduce the cost of tracking the RRPV state for

gigascale DRAM caches.

5.2 Design of Reuse-based Replacement on DRAM Cache with RRIP Age-On-Bypass

If we want to use RRIP on direct-mapped DRAM caches, we have to solve two issues: how

do we formulate RRIP as a bypassing policy suitable for caches with limited associativity,

and how can we mitigate the state-update cost of maintaining per-line reuse state in DRAM.
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5.2.1 RRIP as a Bypassing Policy

We design a version of RRIP for limited-associativity caches, called RRIP Age-On-Bypass

(RRIP-AOB). The key insight in RRIP-AOB is to use the episode of cache bypassing to age

/ update the RRPV information associated with the line. Figure 5.3 shows the overview

of our design. RRIP-AOB needs to similarly track lines that have reuse, so RRIP-AOB

Promotes state (sets RRPV to 0) on hit. RRIP-AOB can protect these reused lines by

bypassing when reuse has been seen (bypass when RRPV is 0, 1, or 2). However, reused

lines can now stay stuck in high priority state. We need a different mechanism to age

older lines so that new lines can eventually be installed. We choose to implement aging by

Demoting (increment RRPV) state when an incoming line is bypassed. This allows lines to

naturally age to RRPV of 3, and be evicted in favor of the incoming line. Similar to RRIP,

RRIP-AOB needs 2-bits per line to track RRPV. A practical design must address where to

store the RRPV bits and address the bandwidth needed to track the per-line RRPV.

Hit

Hit

Hit

Bypass BypassBypass

Install

1000 01 11

Hit

Evict

Promotion Demotion

Figure 5.3: Overview of RRIP Age-On-Bypass (RRIP-AOB). The transition from one state
to another is accomplished with replacement-state update operation. Such updates may
consume significant bandwidth.

5.2.2 Storing RRPV in DRAM

A straight-forward way of incorporating RRIP into a DRAM-cache is to extend the tag-

entry of the line to incorporate the RRPV bits. We refer to this design as simply RRIP-AOB.

However, such a design incurs bandwidth overhead for performing update of the replace-
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ment state. Note that these accesses for updating the replacement state are not present in

the baseline and for designs that do bypassing without tracking per-line state.

Alternatively, we can avoid the bandwidth of replacement updates by storing the re-

placement state in a dedicated SRAM array. Unfortunately, for our 2GB DRAM cache,

maintaining 2-bits of RRPV per line would need 8MB of SRAM, which is impractically

large. We call this design Ideal RRIP-AOB.
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Figure 5.4: MPKI of baseline and RRIP-AOB. RRIP-AOB reduces misses by 10%.

5.2.3 Benefits from Reuse-Based Replacement

Intelligent replacement policies improve performance by reducing cache misses. Figure 5.4

shows the Misses Per Thousand Instructions (MPKI) for our baseline DRAM cache and

with RRIP-AOB. RRIP-AOB reduces 10% of the misses on average. However, the speedup

from RRIP-AOB also depends on bandwidth used in replacement-state updates.

Figure 5.5 shows the speedup from different bypassing policies implemented on our

2GB DRAM cache. Performance numbers are normalized to the always-install policy. In-

discriminately bypassing 90% of the lines (Bypass-90%) causes a degradation of 15%. The

adaptiveness of Bandwidth-Aware-Bypass (BAB) [17, 79] avoids slowdowns; however, the

average speedup is only 3%. With RRIP-AOB, the performance benefits is 13%, whereas

with Ideal RRIP-AOB the speedup could be 20%. Thus, there is significant room for per-

formance improvement with reuse-based replacement policies. Unfortunately, obtaining
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this benefit in a practical manner is challenging as maintaining accurate per-line state in

DRAM requires significant bandwidth for state-updates.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

sp
hi
nx

m
ilc

ne
kb

on
e

cc
 w

eb

pr
 w

eb m
cf

xa
la
nc

pr
 tw

i

bc
 tw

i

cc
 tw

i

ze
us

m
p

w
rf

om
ne

t
gc

c
lib

q

le
sl
ie

so
pl
ex

m
ix
1

m
ix
2

m
ix
3

m
ix
4

G
m

ea
n

1.93
2.27

S
p
e
e
d
u
p

Bypass-90% Bandwidth-Aware Bypass RRIP-AOB Ideal RRIP-AOB

Figure 5.5: Speedup from different replacement policies over baseline always-install direct-
mapped DRAM cache. (a) Bypass-90% causes 15% degradation, (b) Bandwidth-Aware
Bypass provides 3% speedup, (c) RRIP-AOB that maintains state in DRAM provides 13%
speedup, and (d) Ideal RRIP-AOB with no state-update cost provides 20% speedup

5.2.4 Dissecting the Bandwidth of Replacement-Updates

To highlight the bandwidth differences between Always-Install and RRIP-AOB, we show

the bandwidth needed to implement replacement policy for Always-Install and RRIP-AOB.

Always-Install simply has install bandwidth, whereas RRIP-AOB additionally needs band-

width to promote and demote state. Figure 5.6 shows the replacement bandwidth consump-

tion of RRIP-AOB, normalized to the replacement bandwidth of Always-Install. While

RRIP-AOB reduces 76% of the install bandwidth (due to bypass), it has increased band-

width consumption due to promotion and demotion. If we want to obtain most of the

benefits of RRIP, we must develop methods to reduce this bandwidth overhead.

5.2.5 Potential for Improvement

RRIP-AOB with state in DRAM is a practical design as it does not require any SRAM

overheads, and can be implemented without any changes to the DRAM cache (the extra

bits for RRPV are taken from the unused ECC bits). However, it has two-thirds the speedup

compared to the potential benefit of Ideal RRIP-AOB with no state-update costs. Ideally,

we would like to get speedup similar to Ideal RRIP-AOB, and keep the implementation

simplicity of RRIP-AOB. The goal of the next section is to develop such a solution.
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Figure 5.6: Replacement bandwidth (Install, Promote, Demote) of RRIP-AOB, normalized
to replacement bandwidth (Install) of Always-Install. RRIP-AOB reduces install band-
width but incurs state-update bandwidth.

RRIP-AOB simply suffers from high DRAM state-update cost. If we can find effective

ways to mitigate this bandwidth overhead, we can get most of the benefits at little cost. We

develop an insight that if we can do replacement updates in an efficient manner for only

a subset of the lines, then we can reduce the bandwidth for replacement updates and still

retain most of the benefits.

5.3 Design of Efficient Tracking of Reuse (ETR)

Demoting state on every cache bypass incurs significant bandwidth overheads–even if we

choose to bypass the line, we still have to spend bandwidth to demote the replacement-state.

We can avoid state-update costs if we have an effective way to infer an RRPV state. Our

design reduces the bandwidth consumed in performing updates of the replacement state

by doing the updates for only a subset of the lines and using their replacement state to

infer the replacement state of the other lines. Our solution is based on two key properties,

Coresidency and Eviction-Locality, which we describe next.
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5.3.1 Insight of ETR: Coresident Lines Have Similar Reuse

Coresidency indicates that at any given time if a line is present, then several other lines

belonging to that region are also present in the cache. Coresidency indicates that there is

some amount of spatial locality in the reference stream, even if such spatial locality is not

perfect. A 4KB region contains 64 lines each of 64 bytes. Therefore, the maximum number

of coresident lines for a region would be 63. Figure 5.7 shows the level of coresidency for

our workloads. In general, the workloads have between 16 to 45 coresident lines. We note

that although this is lower than perfect spatial locality, there are still a large number of lines

coresident (even 4 coresident lines can amortize 75% state update cost). This shows there

is potential for using one line to infer replacement state of many coresident lines.
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Figure 5.7: Coresidency in DRAM caches. Average number of coresident lines in a 4KB
region on first line evicted from a region (workloads with L4 MPKI>1).

Eviction-Locality indicates that when a line gets evicted from the cache, then the replacement-

state of the other coresident lines belonging to that region tend to have similar replacement-

state as the line being evicted. Figure 5.8 shows the distribution of the RRPV of coresident

lines, on an eviction from L4 (on the first line evicted from a region).

On an eviction, we typically observe 30 or more lines are coresident. In addition, we

find the coresident lines generally have similar RRPV state (77% have RRPV≥2). To-

gether, this means that if we maintain accurate RRPV for just one of the coresident lines,

then we can infer the RRPV state for the rest of the coresident lines in the region with

reasonable accuracy. Our solution is based on exploiting this insight.
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Figure 5.8: Distribution of RRPV of coresident lines on first line evicted from a 4KB
region, for workloads with L4 MPKI>1. Average number of coresident lines shown above
workloads. Eviction of one line indicates other lines in a region are likely to be evicted
soon (RRPV≥2).

5.3.2 Design of ETR: Update Only the Representative-Line

We propose Efficient Tracking of Reuse (ETR) to reduce the bandwidth overheads of doing

replacement updates in DRAM. We implement ETR on top of RRIP-AOB as an example.

ETR is based on the insight of coresidency and eviction-locality. Instead of updating the

replacement state of all of the lines in the cache, ETR updates the state of only one of the

Representative-Line among all the coresident lines. The state of the Representative-Line

is used in guiding the replacement states of the coresident lines. The design of ETR con-

sists of three parts: (1) Selecting a Representative-Line in the region (2) Keeping accurate

RRPV for only the Representative-Line, and (3) Using the representative’s RRPV to infer

coresident lines’ RRPV to make bypass decisions.

To implement representative-update, we first need to pick a stable representative line.

Prior work finds the first access to a region is relatively consistent [94]. If we maintain state

for just the first conflicting set in a region, we can maintain good reuse information for the

rest of the region without incurring extra bandwidth costs. Figure 5.9 shows an example

of how ETR’s RRPV-inference (i.e., representative-update and bypass-decision following)

can be used to obtain similar install-policy and hit-rate at reduced update cost.
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Access:	Page	A,	Page	B,	Page	B

A,	R=2Set	0 B,	R=2A,	R=3

A,	R=2Set	1 B,	R=2A,	R=3
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A,	R=2Set	3 B,	R=2A,	R=3
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(4)
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(5)
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(5)

A,	R=2Set	0 B,	R=2A,	R=3

A,	R=2Set	1 B,	R=2A,	R=2

A,	R=2Set	2 B,	R=2A,	R=2
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(4)

Bypass	B	
(2)

Install	B	
(5)

(a)	RRIP-AOB (b)	ETR	on	RRIP-AOB

First	conflicting	set Avoid	3	
updatesUpdate	1

BW	cost:BW	cost:

Set	4 Set	4B,	R=2 B,	R=0 B,	R=2 B,	R=0

Figure 5.9: ETR’s coordinated bypass-decision-following enables similar RRIP-AOB in-
stall policy, at reduced update-bandwidth. Dashed box denotes benefit.

If we first access 4 lines from region A at time 0, we install region A with RRPV=2. If

5 lines from region B are then accessed, Figure 5.9(b) shows that we can save bandwidth

and demote only the state of the first conflicting set (being set 0). On second access to

region B, set 0 with its RRPV of 3 will inform us that that region A was not used recently.

This means that lines corresponding to region A have low reuse and should be evicted in

favor of installing region B. We can then follow the region B install-decision for the rest of

the lines. Such a policy will end up installing all of region B and result in an install policy

similar to if we had maintained each state individually in Figure 5.9(a). As such, we can

keep similar install policy and save update bandwidth with representative state update and

bypass-decision following.

Structures for ETR: To implement representative state update and bypass-decision fol-

lowing, ETR maintains a Recent-Bypass Table (RBT), in Figure 5.10. RBT tracks recently

seen regions (Region-ID) and the bypass decision made for them (Last-Bypass-Decision).

RBT enables us to find the representative first-conflicting-set in a region (as the first con-

flicting set would have miss in RBT), keep just that set’s RRPV up-to-date, and remember

the first-conflicting-set’s bypass decision to inform bypass decision for the other lines in
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the region (as the follower sets would hit in RBT and see previous decision made). We use

a 128-entry RBT, which requires <512B of SRAM.

Page	Address

A

Last	Bypass	
Decision

Recent	Bypass	Table	(RBT)

1.	Hit,	follow	representative’s	decision

C
1.	Miss,	is	representative,	make	new	decision

Page	#

2.	Update	RRIP	state

3.	Update	RBT Page	C 0

Page	A

Page	B

1

0

Figure 5.10: Design of Recent-Bypass-Table to enforce coordinated-bypass and
coordinated-state-update. Demotions only occur on first miss to a region.

Operation of ETR: On cache miss, we index into RBT with Region-ID. If there is an RBT

miss, we are currently accessing the representative first-conflicting-set in a region. In this

case, we should make a bypass decision based on its RRPV, spend bandwidth to demote

state if bypass was chosen, and update the RBT so later accesses can make an informed

bypass decision. Otherwise, if there is an RBT hit, the region has been recently accessed

and already had a bypass decision made, so we should follow the Last Bypass Decision to

keep similar install policy and save on demotion bandwidth.

5.4 Methodology

5.4.1 Framework and Configuration

We use USIMM [86], an x86 simulator with detailed memory system model. We extend

USIMM to include a DRAM cache. Table 5.1 shows the configuration used in our study.

We model a configuration similar to a Intel Knights Landing (KNL) Sub-NUMA Clus-

ter (one-eighth size). We assume a four-level cache hierarchy (L1, L2, L3 being on-chip

SRAM caches and L4 being off-chip DRAM cache). All caches use 64B line size. We

model a virtual memory system to perform virtual to physical address translations. The L4

is a 2GB KNL DRAM-cache[87], which is direct-mapped and places tags with data in the
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unused ECC bits. The parameters of our DRAM cache is based on HBM technology [3].

The main memory is based on non-volatile memory and assumed a latency similar to PCM

and 3D-XPoint[9, 10, 8, 11, 12, 13, 14]: the read latency is 4X that of DRAM [4], and

write bandwidth is worse than read bandwidth. We perform evaluations with DRAM-based

memory in Section 5.5.7.

Table 5.1: System Config (KNL 1⁄8 Sub-NUMA Cluster)

Processors 8 cores; 3.0GHz, 2-wide OoO
Last-Level Cache 8MB, 16-way

DRAM Cache
Capacity 2GB
Bus Frequency 500MHz (DDR 1GHz)
Configuration 4 channel, 128-bit bus
Aggregate Bandwidth 64 GB/s
tCAS-tRCD-tRP-tRAS 13-13-13-30 ns

Main Memory (PCM)
Capacity 64GB
Bus Frequency 1000MHz (DDR 2GHz)
Configuration 1 channel, 64-bit bus
Aggregate Bandwidth 16 GB/s
tCAS-tRCD-tRP 13-128-8 ns
tRAS-tWR 143-160 ns

5.4.2 Workloads

We use a representative slice of 2-billion instructions selected by PinPoints [88], from

benchmarks suites that include SPEC 2006 [92], GAP [89], and HPC. For SPEC, we pick

a sample of high intensity workloads that have at least two miss per thousand instructions

(MPKI). The evaluations execute benchmarks in rate mode, where all eight cores execute

the same benchmark. In addition to rate-mode workloads, we also evaluate 24 mixed work-

loads, which are created by randomly choosing 8 of the 15 SPEC workloads that have at

least two MPKI. Table 5.2 shows L3 miss rates, and memory footprints for the 8-core

rate-mode workloads in our study.

We perform timing simulation until each benchmark in a workload executes at least 2

billion instructions. We use weighted speedup to measure aggregate performance of the
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workload normalized to the baseline and report geometric mean for the average speedup

across all the 21 workloads (11 SPEC, 4 SPEC-mix, 5 GAP, 1 HPC). Note that to keep the

graphs readable we only use 4 mixed workloads for all of our results. However, we provide

key performance results for the set of the remaining 20 mixes in Section 5.5.4.

Table 5.2: Workload Characteristics

Suite Workload L3 MPKI Footprint

SPEC

soplex 35.3 1.8 GB
leslie 22.1 623 MB
libq 30.1 256 MB
gcc 108.5 1.5 GB

omnet 29.1 1.2 GB
wrf 10.4 1.1 GB
zeus 7.0 1.6 GB

xalanc 7.4 1.5 GB
mcf 101.1 13 GB
milc 31.2 4.5 GB

sphinx 15.0 146 MB

GAP

cc twitter 116.8 9.3 GB
bc twitter 101.2 13.5 GB
pr twitter 126.6 15.3 GB
pr web 24.8 15.1 GB
cc web 11.4 9.3 GB

HPC nekbone 13.71 44 MB

5.5 Results

5.5.1 RRIP-AOB Impact on Misses

To isolate the impact of intelligent replacement without considering bandwidth costs spe-

cific to each DRAM cache organization, Table 5.3 shows the impact on average L4 misses

when using different replacement policies for 1-way and 2-way caches, normalized to the

baseline 1-way always-install policy. As expected, our RRIP-AOB achieves the highest

miss reduction for 1-way caches as it enables intelligent reuse-based replacement policy

for 1-way caches. Additionally, RRIP-AOB also achieves the highest miss reduction for

2-way caches. This is because RRIP-AOB can intelligently decide to bypass in the case the

cache set is storing multiple useful lines.
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Table 5.3: RRIP-AOB Impact on Misses for 1-2 Way L4
Replacement Policy Impact on Avg. L4 Misses

1-way Always-Install -0.0%
1-way Probabilistic Bypass [17] -1.6%

1-way RRIP-AOB -10.4%
2-way Random -14.6%

2-way LRU -15.5%
2-way RRIP -19.7%

2-way RRIP-AOB -26.6%

5.5.2 ETR Impact on Bandwidth

ETR tries to reduce the bandwidth consumed in doing replacement updates (promotion and

demotion of RRPV) to improve performance. To understand the effectiveness of ETR at

reducing the bandwidth of state updates, we divide the bandwidth usage into three parts:

installs, promote, and demote, and we normalize this consumption to the baseline design

that uses bandwidth only for installs. Figure 5.11 shows the replacement bandwidth con-

sumption of base RRIP-AOB and ETR on RRIP-AOB, normalized to Always-Install. ETR

reduces 70% of bandwidth required for doing replacement state updates. These bandwidth

savings result in speedup.
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Figure 5.11: Replacement and Install bandwidth consumption of base RRIP-AOB [left]
and ETR on RRIP-AOB [right], normalized to Always-Install. ETR reduces 70% of the
bandwidth consumed in state-update.
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5.5.3 ETR on RRIP-AOB Impact on Performance

Figure 5.12 shows the performance of RRIP-AOB, ETR on RRIP-AOB, and Ideal RRIP-

AOB with no state-update costs. ETR on RRIP-AOB bridges 70% of the performance gap

between RRIP-AOB and Ideal to achieve 18% speedup, while incurring negligible SRAM

storage costs. Our proposed AOB and ETR make it practical to apply reuse-based policies

to DRAM caches and get significant benefits while incurring negligible storage costs.
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Figure 5.12: Performance of RRIP-AOB, ETR on RRIP-AOB, and an Ideal RRIP-AOB
with no state-update costs. Coordinating bypass decisions with ETR reduces state-update
needs, and enables RRIP-AOB to obtain 18% speedup.

5.5.4 Multi-programmed Workloads

To show robustness of our proposal to multi-programmed workloads, we evaluate over a

larger set of 20 mix-application workloads. Figure 5.13 shows that ETR provides 19%

speedup across 20 mixes, with no workloads experiencing slowdown.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

m
ix
1
m

ix
2
m

ix
3
m

ix
4
m

ix
5
m

ix
6
m

ix
7
m

ix
8
m

ix
9

m
ix
10

m
ix
11

m
ix
12

m
ix
13

m
ix
14

m
ix
15

m
ix
16

m
ix
17

m
ix
18

m
ix
19

m
ix
20

G
m

ea
n

S
p

e
e

d
u

p

ETR Ideal

Figure 5.13: Speedup of ETR on RRIP-AOB and Ideal RRIP-AOB on multi-programmed
workloads.
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5.5.5 Storage Requirements

We analyze the SRAM storage overheads of ETR. ETR requires only a 128-entry 4B-per-

entry Recent-Bypass Table, which needs 512B. Thus, our proposal can be easily built with

negligible overheads within the memory controller.

For DRAM storage overheads required for RRIP-AOB, we use the fact that KNL-Cache

has 28 unused bits in the ECC, which can be used for tag and metadata (see Figure 1.1).

Baseline uses 8-10 bits for tag, valid, and dirty bit. RRIP requires just 2-bits for RRPV.

Tag-entry becomes 12 bits, which fit in 28 available bits.

5.5.6 Impact of Cache Size

Table 5.4 shows the speedup of ETR as the size of the DRAM cache is varied from 1GB to

8GB. ETR on RRIP-AOB continues to provide significant speedup across different cache

sizes, ranging from 16.4% at 1GB to 13.5% at 8GB. As expected, when the cache size is

increased, larger portions of the workload fit, and there is reduced scope for improvement.

Table 5.4: ETR Sensitivity to Cache Size
Cache Size Avg. Speedup from ETR

1.0GB 16.4%
2.0GB 18.0%
4.0GB 17.4%
8.0GB 13.5%

5.5.7 Impact of Memory Type

We use a non-volatile main memory for our studies, but our benefits are not limited to

NVM-backed systems only. We compare BEAR’s Bandwidth-Aware Bypass[17] with pro-

posed ETR on DRAM-backed main memory in Table 5.5. ETR outperforms BEAR by

intelligently bypassing lines and achieving better hit-rate and decent bandwidth benefits.
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Table 5.5: ETR on DRAM-backed Memory
Bandwidth-Aware-Bypass ETR

SPEC RATE +7.4% +17.0%
SPEC MIX +1.7% +16.0%

GAP +4.8% +26.6%
GMEAN26 +5.7% +19.0%

5.5.8 Impact of Region Size

Table 5.6 shows the speedup of ETR as the region size is varied from 1KB to 4KB. Region

size of 4KB (matching smallest OS page) provides best speedup of 18.0% as it amortizes

the most replacement-update costs.

Table 5.6: ETR Sensitivity to Region Size
Region Size Avg. Speedup from ETR

1KB 17.8%
2KB 18.0%
4KB 18.0%

5.5.9 Comparison to Other DRAM Cache Designs

In our study, we use the DRAM cache organization used in Intel’s Knights-Landing (KNL-

Cache)[1] that is direct-mapped and stores each tag next to its data. This organization

is the commercial implementation of many research efforts that store Tag-With-Data[17,

6, 18] to improve latency and reduce bandwidth consumption. We compare with recent

enhancements in Figure 5.5 (90%-Bypass and BAB[17]).

Other Line-based DRAM Caches: Alternative designs such as Sim et al.[23] take a dif-

ferent approach to storing tags via tag grouping. For such caches, a tag-only line is placed

along with data in the same row buffer[5, 23, 24, 21, 22]. Timber is an enhancement that

proposes to mitigate tag lookup by using a tag-cache and exploiting spatial locality (by

co-locating tags and metadata from multiple sets)[24]. We compare with Timber as a rep-

resentative of the grouped tag / metadata approach in Figure 5.14. Timber needs 2x lookup

when workloads have large footprint and low spatial locality (e.g., mcf and pr twi), which

limit its performance.
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Figure 5.14: Speedup of line-based [24] and page-based [26] set-associative DRAM
caches, rel. to baseline direct-mapped DRAM cache [1, 6]. Proposed ETR on RRIP-AOB
enables direct-mapped DRAM caches to obtain the hit-rate benefits of intelligent cache
replacement, without needing to pay additional bandwidth to maintain set-associative tags.

Page-based DRAM Caches: An alternate approach to designing DRAM-caches is to use

large-granularity caches to reduce tag and metadata overhead, in hardware[25, 26] or soft-

ware[27, 28, 29, 30]. The reduction in tag requirements enable more space for associativity

and replacement metadata. Such large-granularity caches often implement recency-based

replacement[26, 27, 28] or frequency-based replacement[29, 30] that would otherwise be

too expensive in line-granularity caches. We compare with Unison cache[26] (hardware-

managed, 4-way, page-based sectored cache with LRU replacement) as a representative of

page-based designs, in Figure 5.14. The associativity and intelligent replacement Unison

offers enable it to frequently outperform the baseline direct-mapped TIC cache. However,

the large linesize of Unison often limits it from using a large portion of the cache (e.g.,

pr twi and bc twi). ETR on RRIP-AOB on the direct-mapped TIC cache, on the other

hand, maintains the cache utilization benefits of fine-granularity caches while additionally

offering intelligent replacement.

5.6 Extending to Enhanced Signature-Based Policies

Thus far, we have discussed AOB and ETR only in the context of RRIP. However, AOB

and ETR are actually general techniques that enable formulating direct-mapped versions

of replacement policies, as well as reducing the bandwidth needed to maintain replacement

policy state. AOB and ETR can make even state-of-the-art signature-based policies [81, 82,
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83, 84, 85] suitable for DRAM caches. We show how using Signature-based Hit Predictor

(SHiP)[81] as an example.

Sig = PC%(1<<12)
Cache

000

SHCTR

NON 
ZERO

SHCT

Sig 
IncomingLineB

Sig R

Sig 
IncomingLineALP-Install

(RRPV=3)

HP-Install

(RRPV=2)

Figure 5.15: Operation and Organization of SHiP.

5.6.1 Operation of Conventional SHiP

SHiP works by observing and learning which signatures correspond to low-reuse lines,

and installing lines accessed by those signatures at low priority, as shown in Figure 5.15.

SHiP maintains signatures (PC) and reuse-bit (R-Bit) for tracking reuse of the signature.

On eviction, the line increments or decrements a counter in the Signature History Counter

Table (SHCT) based on the R-bit. On install, the SHCT decides if the incoming line is

installed with High-Priority (RRPV=2) or Low-Priority (RRPV=3), based on signature.

5.6.2 Adapting SHiP to Direct-Mapped Cache

Conventional SHiP design always installs the incoming line, either with High-Priority or

Low-Priority. Unfortunately, with a direct-mapped cache, doing so will degenerate into an

always-install policy. We extend SHiP in the context of direct-mapped caches using the

option of bypassing with SHiP-AOB. If the resident line has RRPV=3, then the incoming

line is always installed. If the resident line has an RRPV of less than 3, then we bypass the

incoming line. However, we then demote the RRPV of the resident line only if the incoming
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line had a High-Priority install, and we skip the RRPV update for incoming lines with Low-

Priority install. Thus, the advantage of SHiP-AOB is that it can reduce the bandwidth to

perform demotion when the incoming line is predicted to have low reuse.

5.6.3 Implementing SHiP for DRAM Cache

To implement this bypassing version of SHiP for DRAM cache, we would need additional

replacement metadata with each line: 12-bit signature + 1 R-Bit, in addition to the 2 bits for

RRPV. Fortunately, these 15-bits of replacement metadata can still fit in the 18-20 unused

bits available in ECC space of the DRAM Cache, so storage for the additional metadata for

SHiP is not a concern. The SHCT table still needs to be implemented in SRAM (similar to

conventional SHiP); however, the SRAM overhead of the SHCT is only 1.5 kilobytes.

Note that updating the R-Bit occurs concurrently with the Promote operation (setting

RRPV to 0), so no additional bandwidth is required for tracking the R-Bit. We force install

2% of the time to get information on bypassed pages. We train write-reuse in a single

SHCT entry as no PC is available.

5.6.4 Impact on Bandwidth

Figure 5.16 shows the bandwidth breakdown (in terms of install, promotion, and demotion

operations) for ETR on RRIP-AOB, and ETR on SHiP-AOB, normalized to the bandwidth

consumed in doing installs for the always-install design. ETR on SHiP-AOB achieves fur-

ther reduction in state-update bandwidth compared to ETR on RRIP-AOB. ETR on SHiP-

AOB is able to prevent the bandwidth for demotion operations by reducing update-cost

when lines have predicted no-reuse, and this reduces the number of lines that need to be

promoted back on hit. In particular, ETR on SHiP-AOB benefits workloads that had poor

spatial locality (e.g., mcf ).
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Figure 5.16: Bandwidth usage of ETR on RRIP-AOB [left] and ETR on SHiP-AOB [right],
normalized to Always-Install. SHiP-AOB further reduces BW for state-update.

5.6.5 Impact on Performance

Figure 5.17 shows the speedup of ETR on RRIP-AOB, ETR on SHiP-AOB, and the Ideal-

ized version of SHiP-AOB with no state-update cost. Overall, ETR on SHiP-AOB achieves

21% speedup, achieving most of the 23% speedup with the Ideal design (which incurs im-

practical storage overheads).
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Figure 5.17: Performance of ETR on RRIP-AOB, ETR on SHiP-AOB, and Ideal SHiP-
AOB with no state-update costs.

5.7 Towards Set-Associative Designs

We evaluate our solutions in the context of a direct-mapped DRAM cache. ACCORD [19]

from Chapter 4 tries to make this DRAM cache set-associative (to improve hit rate albeit

at a slight expense of bandwidth and latency [63, 54, 59]). We compare with the recently
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proposed associative cache design, and show that ETR has higher potential as it improves

both hit-rate and bandwidth. Nonetheless, ETR on RRIP-AOB can be used in conjunction

with set-associative designs for DRAM caches for even better performance.
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Figure 5.18: Performance of set-associative ACCORD, ETR on RRIP-AOB, and ACCORD
with ETR on RRIP-AOB.

Figure 5.18 and Figure 5.20 shows ACCORD provides 10% speedup, as it reduces

misses by 15% but can cost extra bandwidth consumption (due to way-mispredictions and

looking up multiple ways on miss). Meanwhile, ETR on RRIP-AOB provides a higher

18% speedup, as it reduces misses by 10% while simultaneously reducing DRAM-cache

bandwidth consumption. However, these ideas are not direct competitors. Associativity

enables storing of multiple conflicting lines, and bypassing enables reducing install band-

width while maintaining hit-rate. We design a solution that gets benefits of both.

5.7.1 Combining ACCORD and Bypassing

We want to obtain the hit-rate benefits associativity offers; however, we must do so while

maintaining ACCORD’s biased-install or we will face increased bandwidth cost to locate

lines (due to frequent way-mispredictions).

To obtain benefits of both associativity and bypassing, we combine the two by viewing

associativity as a way-selection policy and using a tiered decision. Figure 5.19 shows our

tiered decision tree: ACCORD is first used to select the way, and then ETR is used to

determine bypass policy.

For the first install to a region (Region Miss in ACCORD-RIT and ETR-RBT), we use

ACCORD PWS to select which way to attempt install. This will have a biased probability
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to install into a preferred-way, so we can maintain similar way-prediction accuracy. We

subsequently use RRIP-AOB to decide install or bypass into this particular way, and cor-

respondingly update the state. This enables us to keep ACCORD’s flexibility to use both

ways and maintain high way-prediction accuracy, as well as add RRIP’s thrash-resistant re-

placement. This combination of the two enables high way-prediction accuracy (ACCORD)

and bandwidth-efficient state-update and bypass (ETR on RRIP-AOB).

Line	Install

Probabilistic	Way	
Selection	(PWS)

Bypass-Decision	&	
State-Update	(RRIP)

Way-Selection	
Following	(GWS)

Bypass-Decision	
Following	(ETR)

Select	Way	
with	ACCORD

Decide	Bypass	with	
ETR	on	RRIP-AOB

Region-Miss
(RIT/RBT)

Region-Hit
(RIT/RBT)

Figure 5.19: We first use ACCORD to select which way to attempt install, then use RRIP-
AOB to decide bypass.

5.7.2 Effectiveness: Miss-rate and Speedup

Such a tiered decision process allows the bypass-policy ETR on RRIP-AOB to continue to

obtain its thrash and scan-resistance, and bandwidth benefits. And, it enables ACCORD’s

associativity to utilize both ways to improve hit-rate, at minor cost to DRAM-cache band-

width. Figure 5.20 shows the read MPKI of ACCORD, RRIP-AOB, and the combination

of the two. ACCORD reduces miss-rate by 15%, RRIP-AOB reduces miss-rate by 10%,

and the combination of the two reduces miss-rate by 20%.

Figure 5.18 shows the performance of ACCORD, ETR on RRIP-AOB, and the com-

bination of the two. ETR on RRIP-AOB improves both hit-rate and bandwidth, whereas

ACCORD improves hit-rate at the cost of bandwidth. The combination of ACCORD and

ETR on RRIP-AOB enables 20% speedup, and show the concepts developed in ETR and

RRIP-AOB are also applicable to set-associative DRAM cache designs. We discuss poten-

tial for improving other set-associative designs in Section 5.5.1.
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Figure 5.20: L4 Read-Miss-Per-Kilo-Instruction of Always-Install, ACCORD, RRIP-AOB,
and ACCORD + RRIP-AOB. Combination enables 20% miss reduction.

5.8 Summary

This work investigates improving hit-rate for direct-mapped DRAM-caches by utilizing

reuse-based replacement polices. We would like to use the most effective replacement

policies to improve DRAM-cache hit-rate. Unfortunately, state-of-the-art policies based

on reuse information are designed to compare multiple counter values within the set and

then make the decision of a replacement victim. As such, these policies become ill-defined

and inapplicable for direct mapped cache (they degenerate into either always-install or

always-bypass policies). To make reuse-based policies, such as RRIP, applicable to direct-

mapped DRAM caches, we propose a bypass formulation of RRIP called RRIP Age-On-

Bypass (RRIP-AOB). RRIP-AOB leverages the insight that the event of bypassing in a

direct-mapped cache, should also age the reuse state of the resident line.

Similar to RRIP, RRIP-AOB requires per-line reuse counters. Maintaining such reuse

state in DRAM costs significant bandwidth overheads (promote on hit, demote on by-

pass). We investigate methods to reduce bandwidth overheads of maintaining reuse state in

DRAM. We propose Efficient Tracking of Reuse (ETR) to reduce state-update costs. ETR

builds upon an observation that, at any given time, many lines from a 4KB region are cores-

ident and have similar reuse state. If we select a representative (e.g., first-conflicting set in
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a region) and maintain accurate reuse state for just that line, we can use that line’s reuse to

infer rest of the lines’ reuse without update-cost. ETR reduces the bandwidth for tracking

replacement state by 70% while maintaining similar hit-rate. Our evaluations with a 2GB

DRAM-cache, show that ETR on RRIP-AOB provides a speedup of 18.0% while incur-

ring an SRAM overhead of less than 1KB. ETR on RRIP-AOB performs within 2% of an

idealized design that does not incur bandwidth for state-update.
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CHAPTER 6

REDUCING MISS-BANDWIDTH COST WITH TICTOC DRAM CACHE

This chapter discusses how to reduce DRAM cache maintenance bandwidth costs for hits,

misses, dirty-bit update, tag update, and installs by employing multiple tag organizations.

6.1 Introduction

This work investigates bandwidth-efficient DRAM caching for hybrid DRAM + 3D-XPoint

memories. 3D-XPoint is becoming a viable alternative to DRAM as it enables high-

capacity and non-volatile main memory systems. However, 3D-XPoint has several char-

acteristics that limit it from outright replacing DRAM: 4-8x slower read, and even worse

writes. As such, effective DRAM caching in front of 3D-XPoint is important to enable a

high-capacity, low-latency, and high-write-bandwidth memory.

6.1.1 Target Configuration: Channel-Sharing Hybrid Memory

We would like to utilize insights learned from HBM+DDRx hybrid memories [5, 25, 6, 1,

24, 23, 26] to design effective DRAM caches in front of non-volatile memories, such as

3D-XPoint. However, we note that there are significant differences in setup and goals for a

DRAM+3D-XPoint hybrid memory as compared to a HBM+DDRx hybrid memory. First,

in a 3D-XPoint based hybrid memory, 3D-XPoint and DRAM will be sharing the same

channel interfaces [15]. Second, as opposed to targeting bandwidth, DRAM caches in front

of 3D-XPoint target reducing read latency and improving write bandwidth and endurance

of 3D-XPoint, by servicing most data at the lower latency and higher write bandwidth of

DRAM. An added complexity is that the DRAM cache and 3D-XPoint are likely to sit be-

hind the same channel [95], as depicted in Figure 6.1(a). Such a set-up enables a balanced

configuration where every channel has DRAM backing it. However, in such a channel-

81



(a) Channel-Sharing Hybrid Memory (b) Performance of DRAM Cache Organizations 
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Figure 6.1: (a) Channel-Sharing Hybrid Memory, and (b) Performance of hit-optimized
Tag-Inside-Cacheline (TIC) [6], miss-optimized Tag-Oustide-Cacheline (TOC) [24], and
idealized Tag-In-SRAM, normalized to TIC.

sharing set-up, bandwidth needed for maintaining DRAM cache state now comes directly

at a cost to bus bandwidth available for memory. As such, there is a renewed need for

bandwidth-efficient DRAM caches. We analyze prior DRAM caching approaches, high-

light cases of bandwidth-inefficiency, and rigorously target remaining bandwidth overheads

to develop a bandwidth-efficient DRAM cache suitable for DRAM + 3D-XPoint systems.

6.1.2 Available DRAM Cache Approaches

It is desirable to organize DRAM caches at the granularity of a cache line to efficiently

utilize cache capacity, and to minimize the consumption of main memory bandwidth [25].

A key challenge in designing a large line-granularity cache is deciding where to store the tag

and dirty-bit metadata. For a 4GB DRAM cache with 64B lines, there would be 64 million

lines. Even if each metadata required 8 bits (6 tag, 1 dirty, 1 valid bit), this would result in

64MB storage for metadata. Next, we discuss various options for DRAM cache metadata

management, and their implications on SRAM storage cost and bandwidth consumption.

Tag In SRAM

A costly method to design high performance DRAM caches is to simply maintain all of

the tag and dirty bits in on-chip SRAM, and query the on-chip SRAM metadata to deter-

mine hit or miss, in a Tag-In-SRAM approach, shown in Figure 6.2(a). Assuming 1-byte
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Figure 6.2: DRAM cache organization and flow for (a) idealized Tag-In-SRAM, (b) hit-
latency-optimized Tag-Inside-Cacheline (TIC) [6], and (c) miss-bandwidth-optimized Tag-
Outside-Cacheline (TOC) [24].

metadata per cache line, such an approach would require 64MB of SRAM for a 4GB cache

(>20MB with sectoring [25, 31]). Table 6.1 shows the DRAM bandwidth consumption for

such an approach. SRAM metadata is queried first to determine hit or miss. A hit can be

serviced with one DRAM access. A miss can be serviced without a DRAM access. How-

ever, in preparation for installing the newly accessed line, the cache would need to perform

an eviction of the resident line. If the resident line were clean, the location could be directly

overwritten. However, if the resident line were dirty, the resident line would need to be read

before writeback to memory. Hence, miss with eviction of clean line costs 0 bandwidth,

and miss with eviction of dirty line costs 1 bandwidth. Such a design represents the min-

imum DRAM bandwidth needed for DRAM cache maintenance, and an upper-bound for

performance. We aim to achieve Tag-In-SRAM performance at low SRAM cost.

Tag Inside Cacheline (TIC)

To reduce SRAM storage costs, one could store tags inside each line in DRAM [1, 6, 17]

in a Tag-Inside-Cacheline (TIC) approach, shown in Figure 6.2(b). TIC optimizes for hit-

latency by using a direct-mapped design and storing tag inside each data-line such that one

access can retrieve both tag and data. Direct-mapped organization enables the controller to

know which location to access, without waiting for tags.

83



Table 6.1: Bandwidth of DRAM Cache Approaches. ρ is Metadata-Cache Miss Probability

Organization SRAM TIC TOC
(SRAM Cost) (>20MB) (<1KB) (˜32KB)

Hit 1 1 1 + ρ
Miss + Evict-Clean 0 1 0 + ρ
Miss + Evict-Dirty 1 1 1 + ρ

Table 6.1 shows the bandwidth of such an approach. Hits are serviced with one DRAM

access that retrieves both tag and data: in case of a tag match, the attached data can be used

to service the request. However, misses also need to access tag in DRAM. As such, TIC is

effective for hit-latency, but consumes extra bandwidth on misses. This approach of trading

miss-bandwidth for hit-latency has been proven effective in commercial products [1], and,

as such, we use the TIC organization [6] as our baseline.

Setup: We store metadata alongside data in unused ECC bits similar to Intel’s Knights

Landing [1]. TIC additionally employs a small hit-miss predictor to guide when to access

cache+memory either in a parallel or serial manner (needs <1KB SRAM storage over-

head). We additionally include bandwidth-reducing enhancements from Chou et al. [17],

such as DCP to reduce writeback probe.

Tag Outside Cacheline (TOC)

Another option with reduced SRAM storage costs, is to store metadata lines in a separate

area of DRAM and bring them in as needed in a Tag-Outside-Cacheline (TOC)[24, 23, 26]

approach, shown in Figure 6.2(c). To determine hit or miss, TOC first accesses a meta-

data line to get tag+dirty information for the requested data line, then routes the request

appropriately to DRAM cache or to memory. Of note, each of these metadata lines actu-

ally stores tag+dirty information of several adjacent data lines. An enhanced design [24]

proposes to cache the metadata lines in a small metadata cache to avoid repeated accesses

to the same metadata line, and would amortize metadata lookup if there is spatial locality.

Table 6.1 shows the bandwidth consumption of such an approach. In case of a metadata-
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cache hit, TOC performs similar to idealized Tag-In-SRAM. For a metadata-cache miss,

TOC spends additional bandwidth to access the metadata. Overall, TOC has the potential

for reducing miss bandwidth, but it can suffer from significant bandwidth overhead when

the metadata-cache has poor hit rate (due to poor spatial locality).

Setup: We assume 1-byte metadata (6 tag, 1 dirty, 1 valid bits), and 64 tags stored in

each metadata entry. The metadata are stored in a separate part of DRAM, consisting of

64MB out of the 4GB DRAM capacity. Recently accessed metadata are stored in a 512-

entry metadata cache, which requires 32KB of SRAM. Note that the metadata cache is

sized to capture only spatial locality and not the working set of the DRAM cache, which

would need megabytes of SRAM.

Optimizing for Latency: In the case of metadata-miss in the metadata-cache, we want

to avoid the latency for serialized tag + cache-data access, as well as the latency for serial-

ized cache-data + memory access. We employ a direct-mapped organization and a hit-miss

predictor [6] for latency and bandwidth considerations. If predicted hit, we access tag +

cache-data in parallel to save latency (direct-mapped organization dictates only one pos-

sible location for data), and serially access memory only if prediction is wrong to save

memory bandwidth. If predicted miss, we access tag + memory in parallel for latency, and

serially access cache-data only if prediction is wrong to save DRAM cache bandwidth.

6.1.3 Insight: Combine Metadata Approaches

A TIC approach has good hit-latency, but suffers from extra miss bandwidth. Whereas, a

TOC approach has good miss bandwidth but incurs extra hit bandwidth. We have an insight

that if we could use TIC for hits and TOC for misses, then we could potentially achieve

both good hit and miss bandwidth.

We note that provisioning metadata for both TIC and TOC is relatively inexpensive:

TIC simply uses spare ECC bits [1], and TOC needs to dedicate only ˜1.5% of DRAM

cache capacity to store metadata lines and employs 32KB SRAM for its metadata cache [24].
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Figure 6.3: TicToc Metadata Organization queries hit/miss predictor to use TIC metadata
for hits and TOC metadata for misses. TicToc enables good hit latency, and good hit/miss
bandwidth.

Unfortunately, we find that naively combining both approaches actually leads to worse per-

formance than TIC. This is because maintaining TOC tag and dirty bits consumes substan-

tial bandwidth. To complete our design, we need to additionally develop effective solutions

to reduce maintenance bandwidth for TOC. We discuss TicToc design next.

6.2 Design of TicToc

This section is organized is as follows: we describe how to provision and effectively use

both TIC and TOC metadata in a TicToc organization, and describe how to reduce TOC

metadata maintenance costs.

6.2.1 TicToc Metadata Organization

Figure 6.3 shows metadata organization of our TicToc design. TicToc provisions TIC meta-

data – tag-bits and dirty-bit are stored inside the cacheline in unused ECC bits, similar

to commercial implementation [1]. In addition, TicToc provisions TOC metadata – meta-

data is stored in dedicated metadata lines corresponding to 1.5% of DRAM capacity, and

cached as needed in a 32KB on-chip metadata cache. While provisioning both TIC and

TOC metadata is relatively cheap, the complexity lies in utilizing TIC and TOC metadata

appropriately to save on bandwidth for both hits and misses.

TicToc Operation

Figure 6.3 shows the operation of TicToc. Ideally, we want to use TIC metadata for hits and

TOC metadata for misses. Our key insight is that one can use hit/miss prediction [6, 37]
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to help guide when to use which metadata. Hit/miss predictors have been primarily used

to hide the serialization latency that can occur from waiting on last-level cache response

before sending memory access. They work by predicting which cache accesses are likely

to miss, and sending both cache and memory requests in parallel to avoid serialization. We

exploit an effective hit/miss predictor [6] to guide TicToc to use TIC metadata on likely-

hit and TOC metadata on likely-miss. The common result: a hit is serviced in one cache

access (TIC path), a miss with clean eviction directly goes to memory (TOC path), and

a miss with dirty eviction goes to cache and memory (TIC path). An uncommon path

of predict-hit actual-miss incurs serialization latency and bandwidth cost to access cache

before memory. The other uncommon path of predict-miss actual-hit incurs extra memory

access due to parallel lookup of cache and memory.

TicToc Bandwidth Consumption

To analyze effectiveness of TicToc, Figure 6.4 and Figure 6.5 shows the proportion of

channel bandwidth being used for useful operations, install operations, and assorted main-

tenance operations, for baseline TIC and proposed TicToc, respectively. Useful operations

include 3D-XPoint Read and Write, and DRAM Cache Hit and Writeback. Install opera-

tions refer to cache installs, which are important for improving hit-rate but cost bandwidth

to write the line to DRAM. Lastly, Maintenance operations refer to bandwidth-wasting op-

erations used to confirm a line is not resident: miss probes for TIC, and accessing and

updating TOC metadata for TOC.
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Figure 6.4: Breakdown of bus bandwidth consumption for TIC organization [6]. Workloads
with low hit-rate waste significant bandwidth to confirm misses.
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As expected, Figure 6.4 shows that TIC wastes bandwidth probing the DRAM cache

to confirm misses. The proposed TicToc can utilize TOC to reduce such miss probes.

However, Figure 6.5 shows that TicToc actually fares worse due to needing bandwidth to

maintain TOC tag and TOC dirty-bit.

TOC tag-updates happen when the workload misses on a line and installs it. A large

fraction of misses occur when a workload is accessing many lines in a new page, so misses

generally have good spatial locality. In such cases, metadata-accesses/updates are amor-

tized with the small metadata cache.

TOC dirty-bit-updates, on the other hand, occur upon eviction of a dirty line from an

earlier level of cache. Eviction generally has poor spatial and temporal locality, so updating

this information often takes significant bandwidth to read then update the TOC dirty-bit.

We need effective methods that target reducing the cost of maintaining dirty information.
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Figure 6.5: Breakdown of bus bandwidth consumption for proposed TicToc organization.
Write-heavy workloads wastes significant bandwidth updating TOC dirty-bit.

6.2.2 Reducing TOC Dirty-Bit Tracking Costs

The main source of bandwidth overhead of TicToc is maintaining the dirty-bit for TOC

metadata. We need effective methods to reduce the cost of tracking dirty information. We

explain difficulty before describing solution.

Understanding Dirty-bit Updates

The dirty-bit update procedure starts upon an eviction of a dirty line from L3. First, we

need to check the tag/dirty-bit line in the destination location of the DRAM cache to see if
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(a) Write Path (b) Miss + Install Path
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But, overpredicting dirty lines increases miss BW“Predicted-Dirty”

Figure 6.6: Bandwidth for a typical (a) write path and (b) miss+install path. TicToc+PDM
adds “Predicted-Dirty” state, where TOC dirty-bit is installed as dirty but TIC dirty-bit is
installed as clean. Installing lines in Pred-Dirty can (a) save TOC dirty-bit update, but (b)
increase miss cost. Using Pred-Dirty only for write-likely lines can save bandwidth.

we can overwrite it (i.e., we must first evict a dirty tag-mismatched line). The common case

is that the line evicted from L3 is resident in L4 in Figure 6.6(a). Chou et al. [17] proposes

to eliminate the tag-check for this common case by maintaining a DRAM Cache Presence

bit (DCP) alongside every line in L3. The DCP informs us that the same line is in both

L3 and L4 – if the bit is set, the destination location has the same tag and can be directly

overwritten (note that this optimization is included in our baseline). Second, the DRAM

cache will then write the dirty line to the DRAM cache. Third, the cache will need to update

any pertinent tag and dirty-bit metadata. The tag-update for TIC and TOC is uncommon,

as typically L3 to L4 writebacks will hit. The dirty-bit-update for TIC is sent along with

L4 install, so it does not incur bandwidth overhead. However, Figure 6.6(a)[TOC,TicToc]

shows that the dirty-bit update for TOC often needs to be separately queried and potentially

updated. This TOC dirty-bit update is TicToc’s main source of bandwidth overhead.

The overhead of dirty-bit updates is comprised of two parts: repeated TOC dirty-bit

checks for already-dirty lines, and the initial TOC dirty-bit update to mark clean-to-dirty

transition. We target these two scenarios with two techniques.
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Reducing Repeated TOC Dirty-bit Checks with DRAM Cache Dirtiness bit (DCD)

We have an insight that if we also knew the dirty state of the corresponding line in the

DRAM cache, we can avoid the need to check the TOC dirty-bit. Instead, we can check

(and update) the TOC dirty-bit only if the dirty status changes.

To enable this optimization, we propose to additionally store a DRAM Cache Dirtiness

bit (DCD) alongside the DCP [17] next to each line in the L3 cache. The DCP stores infor-

mation that the current L3 line is also resident in L4. Meanwhile, the DCD will additionally

store the dirty status of that L4 line. We set the DCD on read of a dirty line from L4. On a

DRAM cache write, we check both the DCP and DCD. If both DCD and DCP are set, we

know the line is resident and already dirty in the TOC metadata – tag and dirty-bit will be

unchanged and we do not need to fetch TOC. Hence, DCP reduces tag checks when tag will

not be modified, and DCD reduces dirty-bit checks when dirty-bit will not be modified.

Figure 3.11 shows that DCD reduces dirty-bit check of many workloads that repeat-

edly write to same lines (e.g., omnet, soplex). However, there are several workloads (e.g.,

zeusmp) that are write-heavy and write to most lines only once – we want to reduce dirty-bit

updates for those workloads as well.

Reducing Initial TOC Dirty-bit Update with Preemptive Dirty Marking (PDM)

For workloads that write-once to lines, we have an insight that if we can preemptively mark

the dirty bit in the TOC at install time, we can avoid even the initial TOC clean-to-dirty

update that would have occurred at L3 eviction time. We call this approach Preemptive

Dirty Marking (PDM).

Figure 6.6 shows the typical write and miss+install bandwidth for TicToc and one that

preemptively marks TOC dirty-bit. Figure 6.6(a)[TicToc] shows a typical write path needs

4 accesses: a normal line would incur clean install, a write, and TOC dirty-bit read and

write. Figure 6.6(a)[TicToc+PDM] shows that PDM can limit writes to 2 accesses. We

add a new dirty state of “Predicted-Dirty,” where TOC dirty-bit is marked as dirty but TIC
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dirty-bit is marked as clean. If we install lines in “Predicted-Dirty,” the TOC dirty-bit is set

at install time, and even the initial TOC clean-to-dirty update can be avoided.

However, while early marking can save bandwidth on writes, PDM incurs a different

problem on the miss path. Figure 6.6(b)[TicToc] shows a typical miss+install path needs

2 accesses: TOC metadata informs residence and dirtiness so miss+install can be accom-

plished with a memory read and a DRAM cache install. However, Figure 6.6(b)[TicToc+PDM]

shows that PDM can increase miss+install to 3 accesses. For instance, if an otherwise clean

line has been preemptively marked as dirty in the TOC dirty-bit, we would read the DRAM

cache line in preparation for an eviction of a dirty line, thereby adding an extra DRAM

read. Note that the Predicted-Dirty state does not cause extra memory writebacks as the

miss/wb probe will find the TIC dirty-bit, and write back only if the data is dirty. Thus,

being aggressive in marking lines as “Predicted-Dirty” will save write bandwidth, but it can

come at the cost of increasing miss bandwidth.

Ideally, we want to avoid write costs by installing write-likely lines as “Predicted-

Dirty”, and avoid increased miss costs by installing write-unlikely lines as clean. However,

if we install a write-likely line as clean, it will pay increased miss cost. Conversely, if we

install a write-unlikely line as “Predicted-Dirty,” it will pay cost to update TOC dirty bit.

Hence, performance of Preemptive Dirty Marking is contingent on good classification of

write-likely and write-unlikely lines at install-time to avoid both TOC dirty bit update and

TIC miss probe bandwidth.

Sig = PC%(1<<10)
Cache

000

NON 
ZERO

Counters

Sig 
IncomingLineB

Sig W

Sig 
IncomingLineAPredict-Clean

(Init Dirty=0)

Predict-Dirty

(Init Dirty=1)

CTR

Figure 6.7: Signature-based Write Predictor learns which sigs correspond to eventual write,
to aid PDM technique.
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Write Predictor for Preemptive Dirty Marking

For accurate write-classification for PDM, we develop a Signature-based Write Predictor

(SWP) to predict likeliness an incoming line will be written. SWP employs a sampling

PC-based prediction, inspired by SHiP [81, 82]. Figure 6.7 shows structures and operation

of SWP. SWP consists of write-behavior observation, learning, and prediction.

Observation is accomplished by maintaining signature (installing-PC in this case) and

a written-to bit inside the metadata of each line (10 bits additional metadata for the 1%

sampled lines, stored in TOC-metadata). Signature is set at install-time, and written-to bit

is updated on first write to line. On eviction of such a sampled line, we get the information

that this PC installed a line that was either written-to or never written-to in its cache lifetime.

Learning is then accomplished by storing observed write-behavior into a PC-indexed

table of saturating 3-bit counters. On eviction of a line that has the written-to bit set, the

counter corresponding to installing-PC is incremented. On eviction of a line that does not

have written-to bit set, the counter corresponding to installing-PC is decremented. This

counter table becomes a PC-indexed table of write-behavior.

Prediction is then simple – on install, the installing-PC is used to index into the counter-

table to provide a write-likely or write-unlikely prediction. If the counter is non-zero, this

PC has seen write behavior and the incoming line should be installed in “Predicted-Dirty”

state to avoid initial TOC clean-to-dirty update. If the counter is zero, then this PC has

not seen much write behavior and the incoming line should be installed as clean to avoid

miss/wb probes.

Accuracy of Write Predictor: Effectiveness of PDM is contingent on good classification

of write-likely (dirty) lines to reduce dirty-bit update cost, and write-unlikely (clean) lines

to reduce miss-probe cost. Figure 6.8 shows the fraction of lines that are predicted clean

or dirty, and actually clean or dirty. On average, SWP predicts clean and dirty with 92%

accuracy, and enables PDM to save most dirty-update and miss-probe bandwidth.

92



0

25

50

75

100

m
cf

lb
m

so
pl
ex lib

q

ge
m

s

om
ne

t
w
rf

gc
c

xa
la
nc

ze
us

ca
ct
us

cc
 tw

i

pr
 tw

i

G
m

ea
n

W
ri
te

-P
re

d
 A

c
c
 (

%
)

PDirty,ADirty PClean,ADirty PClean,AClean PDirty,AClean

Figure 6.8: Accuracy of Write Prediction (P=predicted, A=actual). Low PClean/ADirty
and PDirty/AClean rate reflects accurate write-behavior prediction.

6.3 Methodology

6.3.1 Framework and Configuration

We use USIMM [86], an x86 simulator with detailed memory system model. We extend

USIMM to include a DRAM cache. Table 6.2 shows the configuration used in our study.

We assume a four-level cache hierarchy (L1, L2, L3 being on-chip SRAM caches and L4

being off-chip DRAM cache). All caches use 64B line size. We model a virtual mem-

ory system to perform virtual to physical address translations. The baseline L4 is a 4GB

DRAM-cache[1], which is direct-mapped and places tags with data in unused ECC bits.

The parameters of our DRAM cache are based on DDR4 DRAM technology [4]. The main

memory is based on 3D-XPoint[9, 10, 8]: the read latency is ˜6X, the write latency is

˜24X that of DRAM, and there are 64 rowbuffers each 256B in size.

Table 6.2: System Configuration

Processors 8 cores; 3.0GHz, 4-wide OoO
Last-Level Cache 8MB, 16-way

DRAM Cache
Capacity 4GB
Bus Frequency 1000MHz (DDR 2GHz)
Configuration 1 channel, 64-bit bus, shared
Aggregate Bandwidth 16 GB/s, shared with Memory
tCAS-tRCD-tRP-tRAS 13-13-13-30 ns

Main Memory (3D XPoint)
Capacity 64GB
Bus Frequency 1000MHz (DDR 2GHz)
Configuration 1 channel, 64-bit bus, shared
Aggregate Bandwidth 16 GB/s, shared with DRAM
tCAS-tRCD-tRP 4-80-0 ns
tRAS-tWR 96-320 ns
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6.3.2 Workloads

We run 2-billion instruction slices selected by PinPoints [88], from benchmark suites of

SPEC 2006 [92] and GAP [89]. For SPEC, we pick a subset of high memory intensity

workloads that have at least 2 L3 misses per thousand instructions (MPKI). The evaluations

execute benchmarks in rate mode, where all eight cores execute the same benchmark. In

addition to rate-mode workloads, we also evaluate 21 mixed workloads, which are created

by randomly choosing 8 of the 17 SPEC workloads. Table 6.3 shows L3 miss rates and

memory footprints for the 8-core rate-mode workloads in our study.

We perform timing simulation until each benchmark in a workload executes at least 2

billion instructions. We use weighted speedup to measure aggregate performance of the

workload normalized to the baseline and report geometric mean for the average speedup

across all the 17 workloads (11 SPEC, 2 GAP, 4 MIX). We provide key performance results

for additional 17 SPEC-mixed workloads in Section 6.4.6.

Table 6.3: Workload Characteristics

Suite Workload L3 MPKI Footprint

SPEC

mcf 101.14 13.4 GB
lbm 49.3 3.2 GB

soplex 35.3 1.8 GB
libq 30.1 256 MB

gems 29.1 6.4 GB
omnet 29.0 1.2 GB

wrf 10.4 1.1 GB
gcc 7.6 1.5 GB

xalanc 7.4 1.5 GB
zeus 7.0 1.6 GB

cactus 6.5 2.6 GB

GAP cc twitter 116.8 9.3 GB
pr twitter 126.6 15.3 GB
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6.4 Results

6.4.1 Bandwidth of TicToc and Dirty-Tracking Optimizations

To analyze the effectiveness of our TicToc organization on reduccing DRAM cache main-

tenance, we analyze bus bandwidth consumption. Figure 6.9 shows the bandwidth break-

down of TicToc + dirty-bit optimizations. Overall, our approach eliminates nearly all of

the TOC dirty-bit update bandwidth (decreased fraction from 10% to 0.8%) and frees up

bandwidth for useful reads and writes. This bandwidth saving can provide corresponding

benefits to performance.
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Figure 6.9: Breakdown of bus bandwidth for dirty-optimized TicToc. Dirty-bit updates are
greatly reduced.

6.4.2 Performance of TicToc and Dirty-Tracking Optimizations

Figure 6.10 shows the speedup of TOC, our TicToc, TicToc with DCD, TicToc with PDM,

and idealized Tag-In-SRAM, normalized to TIC approach. TOC performs poorly due to

poor metadata-cache hit-rate, for 30% slowdown. Our TicToc reduces hit bandwidth, for

22% slowdown. Adding DRAM Cache Dirtiness bit reduces dirty-bit tracking for repeated

writes to same lines, for 0% speedup. Adding Preemptive Dirty Marking reduces the initial

dirty-bit update without incurring extra miss bandwidth due to accurate Write Predictor.

Notably, TicToc+PDM achieves near idealized Tag-In-SRAM performance for most work-

loads for 10% speedup, without including worst-case mcf in the average.

95



0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

m
cf

lb
m

so
pl
ex lib

q

ge
m

s

om
ne

t
w
rf

gc
c

xa
la
nc

ze
us

ca
ct
us

cc
 tw

i

pr
 tw

i

m
ix
1

m
ix
2

m
ix
3

m
ix
4

G
m

ea
n

+ 
no

 m
cf

.30
.33

S
p
e
e
d
u
p

TOC TicToc TicToc+DCD TicToc+PDM Tag-In-SRAM

Figure 6.10: Speedup of TOC, proposed TicToc, TicToc with DRAM Cache Dirtiness bit,
TicToc with Preemptive Dirty Marking (PDM), and ideal Tag-In-SRAM, normalized to
TIC. TicToc+PDM performs near ideal for most workloads.

6.4.3 Storage Requirements

We analyze the SRAM storage requirements of our TicToc organization in Table 6.4. Tic-

Toc requires structures from its component TIC and TOC organizations. Inheriting from

TIC, we need ˜1KB for PC-based hit/miss prediction [6], and 1 bit alongside each L3 line

for DRAM Cache Presence bit to avoid tag-check for writes to resident lines [17]. Inherit-

ing from TOC, we need 32KB for a metadata cache [24].

Specific to TicToc, to implement our dirty-bit optimizations, we need a 1-bit bit along-

side each L3 line for DRAM Cache Dirtiness, and ˜1KB for our Signature-based Write-

Predictor (512 entries of 3-bit counters with 9-bit PC tag). Our bypassing optimizations do

not require additional space. In total, TicToc needs 34KB SRAM storage in the memory

controller, with 2 bits alongside each L3 line.

Table 6.4: Storage Requirements of TicToc

TicToc Component SRAM Storage
Hit-Miss Predictor [6] 1 KB

DRAM Cache Presence [17] 1-bit / L3-line
Metadata Cache [24] 32 KB

DRAM Cache Dirtiness 1-bit / L3-line
Signature-based Write Predictor 1 KB

TicToc 34KB + 2-bits/L3-line
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6.4.4 Sensitivity to Metadata-Cache Size

The largest SRAM component of our TicToc proposal is the TOC metadata cache. Table 6.5

shows performance sensitivity of our TicToc proposal to metadata-cache sizing. We show

average speedup of TicToc with dirty-bit optimizations, when employing metadata-caches

with sizes ranging from 8KB to 64KB. The dirty-bit tracking optimizations enable TOC

approaches to be much more effective with small metadata-cache sizes, as the metadata

caches do not need to sized to handle writeback traffic that has poor spatial locality.

Table 6.5: Sensitivity to Metadata Cache Sizing

Num. Entries TicToc TicToc (no mcf)
128 (8KB) -3.0% +1.9%

256 (16KB) +1.5% +7.0%
512 (32KB) +4.2% +10.0%
1024 (64KB) +4.8% +10.7%

6.4.5 Impact of Channel-Sharing

DRAM and 3D-XPoint are likely to be behind the same channel to maximize the band-

width out of each physical pin, as shown in Figure 6.1. Figure 6.11 shows the system per-

formance of a channel-shared system (two channels of TIC DRAM cache + 3D-XPoint),

normalized over previously assumed dedicated-channel systems (one channel of 2x TIC

DRAM cache, and one channel of 2x 3D-XPoint). We find that channel-shared systems en-

able more balanced channel bandwidth usage due to each channel having a DRAM cache.

For example, under high DRAM cache hit-rate, a channel-shared system would be able to

utilize all channels, whereas a dedicated-channel system would only be able to use the half

of channels employing DRAM caches. Such channel-shared approaches enable up to 40%

speedup compared to the traditional dedicated-channel setups.
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Figure 6.11: Speedup of Channel-Shared Hybrid Memory, over Dedicated-Channel Hybrid
Memory. Channel-sharing enables up to 40% speedup.

6.4.6 Multi-program Workloads

To show robustness of our proposal to multi-programmed workloads, we conduct evalua-

tions over a larger set of 17 mix-application workloads. Figure 6.12 shows that our dirty-

optimized TicToc organization provides 11% speedup across 17 mixes, with no workloads

experiencing slowdown.
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Figure 6.12: Speedup of TicToc with dirty-bit optimizations, and idealized Tag-In-SRAM,
on mixed workloads.

6.5 Enhancement: Reducing Install Bandwidth With Write-Aware Bypass

When data has poor reuse, installing lines and updating TOC metadata wastes bandwidth.

In fact, in such cases, employing a DRAM cache could actually hurt performance, as the

line install and tag maintenance operations needlessly steal bus bandwidth from memory

accesses. Figure 6.15 shows the performance of a setup without a DRAM cache, normal-

ized to a setup with a TIC DRAM cache. We note that there are multiple workloads (e.g.,

pr twi and cc twi), for which “no DRAM cache” performs better than TIC. While one can

98



avoid this degradation by disabling the DRAM cache at boot-time, doing so would then

hurt the cache-friendly workloads. Therefore, we need effective mechanisms to reduce the

cost of unnecessary installs.

Insight – Write-Aware Bypassing: Prior work has proposed cache bypassing [17, 80, 79] to

avoid unnecessary installs. On an L3 miss, one can bypass the DRAM cache and install the

line only in L1/L2/L3 caches, thereby saving the DRAM cache install bandwidth. However,

such bypassing must be done selectively and carefully, otherwise it may increase writes to

3D-XPoint memory, and degrade performance, endurance, and power.

6.5.1 Design of Write-Aware Bypassing

Figure 6.13 shows our Write-Aware Bypassing policy. We start with the default 90%-

bypass policy proposed in [17], which bypasses 90% of all installs. While such aggressive

bypassing was shown to work well for an HBM+DDR hybrid memory [17], we note that it

can increase write traffic to the write-constrained 3D-XPoint memory. To address this prob-

lem, we add write awareness to the bypass policy. We augment the default bypass policy

with a write-allocate condition, which requires that dirty L3 evictions would always install

DRAM cache lines. Thus, the DRAM cache would act as a write buffer for 3D-XPoint

memory. Unfortunately, the drawback of such an approach is that installing DRAM cache

lines at the time of L3 evictions may result in significant tag-update costs. L3 evictions

often have poor spatial locality, so TOC tag updates carried out at L3 eviction time exhibit

poor metadata cache hit rates and incur extra DRAM accesses.

To amortize the TOC tag-update cost of our write-allocate policy, we propose Pre-

emptive Write-Allocate, whereby we also always-install write-likely lines (predicted with

SWP). Preemptive Write-Allocate enables our write-allocate installs to happen at L3 miss

time. Such installs have higher spatial locality, resulting in more metadata cache hits and

more effective amortization of TOC metadata updates.

99



Demand 
Miss

Writeback
Miss

90%-Bypass
(save install/tag BW)Pred-Clean

Pred-Dirty
Always-Install

(reduce 3D-XPoint writes)

Write-
Predictor

= Preemptive Write-Allocate

Figure 6.13: Write-Aware Bypass. Reduce install bandwidth by bypassing most write-
unlikely lines. Reduce 3D-XPoint writes by installing write-likely lines.

6.5.2 Bandwidth of Write-Aware Bypassing

To understand the effectiveness of our install and metadata-update reducing optimizations,

we show the bandwidth breakdown of our approach in Figure 6.14. Overall, we find that

install-reducing optimizations can eliminate nearly all of the install bandwidth overheads

and leave much more bandwidth for useful reads and writes. In total, the combination

of our cache bandwidth reducing optimizations improves fraction of bandwidth going to

useful operations (servicing reads / writes) from 70% to 90% on average.
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Figure 6.14: Breakdown of bus bandwidth for dirty-optimized TicToc w/ Write-Aware
Bypassing. Installs are mitigated.

6.5.3 Performance of Write-Aware Bypassing

Figure 6.15 shows the performance of TicToc with dirty-optimizations, TicToc with 90%-

bypass, TicToc with 90%-bypass and write-allocate, and TicToc with 90%-bypass and pre-

emptive write-allocate, relative to TIC.

TicToc with dirty-bit optimizations does well for most workloads for an average 4.2%

speedup, but can suffer for workloads with poor spatial locality and low hit-rate (e.g., mcf ).
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TicToc with 90%-bypass reduces install and TOC tag-update cost to improve speedup to

16.7%. Notably, the performance degradation for mcf has been mostly mitigated. TicToc

with 90%-bypass and write-allocate enables effective write-buffering to improve speedup

to 20.6%. Finally, TicToc with 90%-bypass and preemptive write-allocate further amortizes

TOC metadata-update (e.g., useful for zeusmp and pr twi) to improve speedup to 23.2%.
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Figure 6.15: Speedup of a no-DRAM-cache configuration, proposed TicToc organization,
adding 90%-bypass, adding Write-Allocate, and adding Preemptive Write-Allocate, rela-
tive to TIC approach.

6.5.4 Putting it all together

Overall, our proposed techniques target all forms of DRAM cache maintenance bandwidth

to achieve a bandwidth-efficient (>90% of channel bandwidth to useful operations) and

low SRAM storage overhead (34KB) DRAM cache organization: TicToc improves hit and

miss bandwidth, DRAM Cache Dirtiness bit and Preemptive Dirty Marking reduces dirty-

bit-tracking bandwidth, and Write-Aware Bypass reduces install and tag-tracking band-

width. Our TicToc with dirty-bit and install bandwidth reducing optimizations enables

23.2% speedup at the cost of only 34KB of SRAM.

6.6 Summary

This work investigates bandwidth-efficient DRAM caching for hybrid DRAM + 3D-XPoint

memories. Effective DRAM caching in front of 3D-XPoint is critical to enabling a memory

system that has the apparent high-capacity of 3D-XPoint, and the low-latency and high-
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write-bandwidth of DRAM. There are two currently major approaches for DRAM cache

design: (1) a Tag-Inside-Cacheline (TIC) organization that optimizes for hits, by storing

tag next to each line such that one access gets both tag and data, and (2) a Tag-Outside-

Cacheline (TOC) organization that optimizes for misses, by storing tags from multiple data

lines together in a tag-line such that one access to a tag-line gets information on several

data-lines. Ideally, we would like to have the low hit-latency of TIC designs, and the

low miss-bandwidth of TOC designs. To this end, we propose a TicToc organization that

provisions both TIC and TOC to get the hit and miss benefits of both.

However, we find that naively combining both techniques actually performs worse than

TIC individually, because one has to pay the bandwidth cost of maintaining both metadata.

We find the majority of update bandwidth is due to maintaining the TOC dirty information.

We propose DRAM Cache Dirtiness Bit that helps prune repeated dirty-bit updates for

known dirty lines. We propose Preemptive Dirty Marking technique that predicts which

lines will be written and proactively marks the dirty bit at install time, to help avoid even

the initial dirty-bit update for dirty lines. To support PDM, we develop a novel PC-based

Write-Predictor to aid in marking only write-likely lines. Our evaluations on a 4GB DRAM

cache in front of 3D-XPoint show that our TicToc organization enables 10% speedup over

the baseline TIC, nearing the 14% speedup possible with an idealized DRAM cache design

with 64MB of SRAM tags, while needing only 34KB SRAM.
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CHAPTER 7

CONCLUSION

DRAM caches are important for enabling effective heterogeneous memory systems that can

transparently provide the bandwidth of high-bandwidth memories and the capacity of high-

capacity memories. This dissertation investigates enabling intelligent cache management

for tag-inside-cacheline DRAM cache designs. Such a DRAM cache uses a direct-mapped

design, co-locates the tag and data within the DRAM array, and streams out the tag and the

data concurrently on an access. This direct-mapped design has been shown to be effective

for enabling low latency and bandwidth-efficient tag access; however, such a direct-mapped

design can have lower hit-rate and high bandwidth cost to confirm misses. DRAM caches

suffer from conflict misses and need high bandwidth cost to confirm misses; simple ar-

chitectural innovation that addresses the challenges of enabling associativity, replacement

policy, and reduced miss probes at low bandwidth cost can improve the performance of

heterogeneous memory systems.

Chapter 3 investigates cache compression as a means to enable DRAM cache asso-

ciativity and improve bandwidth. Cache compression allows fitting more lines in a set,

provided the lines are compressible. This dissertation investigates enabling cache com-

pression for DRAM caches via simple modifications local to the memory controller. The

techniques enable improving cache associativity and capacity to obtain 7% speedup on av-

erage. However, this dissertation finds that additional performance can be gained by tuning

cache compression to enable bandwidth benefits as well. To enable bandwidth benefits,

this dissertation proposes compressing adjacent lines together and using location predic-

tion – this enables retrieving multiple useful lines per DRAM cache access while avoiding

the bandwidth to probe multiple locations. The bandwidth benefits in addition to capacity

benefits enable 19% speedup on average.
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Chapter 4 investigates way-prediction as a means to enable associative DRAM caches

with the hit-latency of direct-mapped caches. Way-prediction can be used to enable as-

sociativity for DRAM caches in a bandwidth-efficient manner; however, traditional way-

prediction techniques typically require significant per-line SRAM storage. This disserta-

tion shows that coordinating way-install and way-prediction can enable a storage-efficient

(<1KB SRAM) and accurate way-prediction. This dissertation proposes three coordinated

way-prediction methods: Probabilistic Way-Steering, Ganged Way-Steering, and Skewed

Way-Steering. The three techniques enable associativity at low bandwidth cost to provide

11% speedup.

Chapter 5 investigates intelligent bypass policies as a means to enable replacement

policies for direct-mapped DRAM caches. Cache replacement policy can improve hit-rate

by predicting which lines will have reuse and keeping in the cache longer. This disser-

tation discusses how to enable replacement policies for direct-mapped caches with two

techniques: formulating replacement policies as bypass policies with Age-On-Bypass, and

exploiting spatial locality to reduce cost of maintaining per-line replacement state with Ef-

ficient Tracking of Reuse. The combination of the two techniques on RRIP reduce miss-rate

by 10% and reduce 70% of the bandwidth cost of maintaining replacement state to achieve

18% speedup on average.

Chapter 6 investigates hybrid DRAM cache tag organizations as a means to reduce miss

bandwidth cost of DRAM caches. The baseline Tag-Inside-Cacheline (TIC) organization

is good for hits, but can suffer from needing bandwidth to check DRAM array to confirm

misses. Alternatively, a Tag-Outside-Cacheline (TOC) organization that stores tags of mul-

tiple lines together can save on miss cost. This dissertation discusses how to intelligently

combine both organizations in a TicToc organization that can provide both good hit and

good miss path. Additional enhancements for dirty-bit tracking enables 10% speedup over

baseline TIC organization.
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