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SUMMARY

Dynamic programming is a principal method for analyzing stochastic optimal

control problems. However, the exact computation of dynamic programming can

be intractable in large-scale problems due to the “curse of dimensionality”. Various

approximate dynamic programming methods have been proposed to address this issue

and they can often generate sub-optimal policies. However, it is generally difficult

to tell how far these suboptimal policies are from optimal. To this end, this thesis

concerns with studying the stochastic control problems from a duality perspective and

generating upper bounds on maximal rewards (or lower bounds on minimal costs),

which complements lower bounds on maximal rewards (or upper bounds on minimal

costs) that can be derived by simulation under heuristic policies. If the gap between

the lower and upper bounds is small, it implies that the heuristic policy must be close

to optimal.

The approach considered in this thesis is called “information relaxation” (see [20,

77]), that is, it relaxes the non-anticipativity constraint that requires the decisions to

depend only on the information available to the decision maker and impose a penalty

that punishes such a violation. This methodology has been applied successfully in

finite-horizon stochastic dynamic programs with various applications. This thesis

further explores theories of information relaxation and computational methods in

several stochastic optimal control problems.

First, we study the interaction of Lagrangian relaxation and information relax-

ation in weakly coupled dynamic program. A commonly studied approach builds on

the property that this high-dimensional problem can be decoupled by dualizing the

xi



resource constraints via Lagrangian relaxation. We generalize the information relax-

ation approach, by generating penalties based on the Lagrangian relaxation bound,

to improve upon the Lagrangian bound and also develop a computational method

to tackle large-scale problems. We implement the algorithm on two examples and

effectively reduce the duality gap between the performance of heuristic policies and

Lagrangian bounds.

Second, we formulate the information relaxation-based duality in an important

class of continuous-time decision-making models – controlled Markov diffusion, which

is widely used in risk management and portfolio optimization. We find that this

continuous-time model admits an optimal penalty in compact expression – an Ito

stochastic integral, which enables us to construct approximate penalties in simple

forms and achieve tight dual bounds, and to facilitate the computation of dual bounds

significantly compared with that of the discrete-time model. We demonstrate its use in

a dynamic portfolio choice problem subject to position and consumption constraints.

Third, we consider the problem of optimal stopping of discrete-time continuous-

state partially observable Markov processes. We develop a filtering-based dual ap-

proach, which relies on the martingale duality formulation of the optimal stopping

problem and the particle filtering technique. We carry out error analysis and illus-

trate the effectiveness of our method in an example of pricing American options under

partial observation of stochastic volatility.

xii



CHAPTER I

INTRODUCTION

1.1 Stochastic Optimal Control

Stochastic optimal control studies the sequential decision making problems in the

presence of uncertainty, where the decision can earn profits or cost resources, and can

also have an impact on the future by influencing the probabilistic dynamics. The goal

of stochastic optimal control is to design control strategy such that it performs the

desired task with maximal reward or minimum cost. In many situations, decisions

that are chosen with the largest immediate profits may not be good in view of future

events.

Stochastic optimal control has attracted the attention of researchers for decades

because they are important from both the practical and intellectual point of view (see,

e.g., [73, 9]). Its wide applications have been seen in different fields such as supply

chain management [80], financial engineering [70], planning in robotic control [54],

network models [65], and medical treatment decisions [2]. Among different types of

the stochastic optimal control problems, Markov decision processes(MDPs) provide

a powerful paradigm for modeling optimal decision making under uncertainty in the

discrete-time setting. Though the optimal policies for such problems are generally

known to exist and to satisfy the Bellman’s principle of dynamic programming [6],

the exact computation of optimal policies suffers from the “curse of dimensionality”.

Many approximate dynamic programming methods have been proposed to combat

this curse of dimensionality such as [9, 10, 22, 72, 30, 85]. It is worth noting that these

approximate dynamic programming methods often generate suboptimal policies, and

simulation under a suboptimal policy leads to a lower bound on the optimal expected
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reward (or an upper bound on the optimal expected cost), though it is generally

difficult to tell how far they are from the optimal ones.

The lack of performance guarantee on a sub-optimal policy can be potentially

addressed by providing a dual bound, i.e., an upper bound (or lower bound) on the

optimal expected reward (or cost). With such a complementary dual bound on the

optimal value, the decision maker can easily evaluate the quality of heuristic policies

and justify the need of improvement. It is worth noting that the problem-specific

dual bound may be derived from relaxations of two intrinsic constraints in gener-

al stochastic optimal control problems. The first constraint is “resource constraint”

or the feasibility of the control, which means the decision or control should take

values in a feasible region. Another constraint is the “information constraint” or

non-anticipativity of the control policy, that is, the decision should depend on the

information up to the time that the decision is made. The relaxation of these con-

straints may lead to a simpler dynamic optimization problem: the resource constraint

that exists universally in mathematical programs can be tackled by the commonly

known Lagrangian relaxation (see, e.g., [8]), which relaxes the feasibility of the de-

cisions and results in a less complicated unconstrained stochastic dynamic program;

the information constraint can be approached by a recently developed technique –

“information relaxation”, which is proposed by [20] and [77]. The main idea of this

approach is to relax the non-anticipativity constraint on decisions but impose a penal-

ty for such a violation. In particular, a perfect information relaxation assumes that

the decision maker can acquire all the system randomness in advance and allows her

to make decisions based on the extra information; therefore, decisions are determined

according to a scenario-based optimization problem that may be easier to solve than

the original stochastic dynamic program, making this relaxation useful to evaluate the

quality of sub-optimal policies in complex stochastic systems. There also exist other

relaxation methods. For example, the LP-based approximate dynamic programming

2



(ALP) method proposed by [81] and [30] employs a parameterized class of functions

to approximate the optimal value based on the linear programming formulation of the

Bellman optimality equation; moreover, the ALP method not only provide approx-

imate values that can be used to generate heuristic policies, but also upper bounds

(or lower bounds) on the optimal expected rewards (or expected costs).

Recent years have seen growing research interests and numerous attempts to de-

rive valid and tight information relaxation bounds based on the dual representation

of MDPs or more general stochastic dynamic programs. This relaxation method has

also found increasing applications including but not limited to natural gas storage

valuation [57], dynamic portfolio optimization and execution [17, 66, 48], optimiza-

tion of commodity procurement, processing and trade operations [34], and inventory

management [20, 19].

1.2 Motivation of Thesis Research

Despite the growing interests in applying the information relaxation approach in

various problems, there are many unanswered questions in both theoretical and com-

putational aspects.

• First, prior research mainly focus on discrete-time and finite-horizon sequential

decision making problems. A natural question is whether the idea of information

relaxation can be extended to the continuous-time/infinite-horizon setting; more

importantly, we aim to develop a tractable computational method that can be

used to generate dual bounds in these settings.

• Second, many dynamic programs involve constraints on the controls or decision

variables, which implies that the Bellman equation is a constrained stochastic

optimization problem. To tackle the feasibility constraints on the controls, La-

grangian relaxation is a commonly used relaxation method that may simplify

the original constrained dynamic program. On the other hand, information

3



relaxation that relaxes non-anticipativity constraints of the controls, at first

glance, contrasts with the Lagrangian relaxation that relaxes the feasibility of

the controls. We expect to use a unifying framework to interpret both relax-

ations; furthermore, we are also interested in the interaction between the two

relaxations.

• Third, the information relaxation approach can be naturally applied in the op-

timal stopping problems under imperfect state information, since a well-known

technique can be used to transform a partially observable MDP to a fully ob-

servable one with belief state. However, this belief state could be infinite-

dimensional in general and hence become intractable to represent, making it

less straightforward to apply the information relaxation approach. Moreover,

it is generally difficult to characterize in theory the gap between the optimal

values of the optimal stopping problems under perfect and partial observations.

Therefore, computing a tight dual bound on the optimal value of the partially

observable problem has the potential to numerically capture this difference.

1.3 Contributions

This thesis attempts to develop theories of information relaxation and computational

methods in several stochastic optimal control problems to address the aforementioned

questions.

• We consider weakly coupled dynamic program, which describes a broad class

of stochastic optimization problems in which multiple controlled stochastic pro-

cesses evolve independently but subject to a set of linking constraints imposed

on the controls. For example, a supplier needs to dynamically allocate the

limited capacity among different customers with stochastic demand, in order

to maximize the expected profits. One feature of the weakly coupled dynamic

4



program is that it decouples into lower-dimensional dynamic programs by du-

alizing the linking constraint via the Lagrangian relaxation, which also yields a

bound on the optimal value of the original dynamic program. Together with the

Lagrangian relaxation, we generalize the information relaxation approach to ob-

tain a guaranteed tighter dual bound than the Lagrangian bound. To tackle the

large-scale problems, we further propose a computationally tractable method by

relaxing the weakly-coupled inner optimization problem. Preliminary results of

this work appear in our paper [94].

• Though the information relaxation approach can be generalized to the infinite-

horizon MDPs in a straightforward way, the main difficulty is that the inner

optimization problem involves infinite number of decision variables due to the

future information of infinite length. To adapt this dual approach to the infinite-

horizon problem, we consider a randomization idea to reformulate the original

problem such that the inner optimization problem within the information re-

laxation approach is of finite-time horizon.

• We develop the information relaxation-based dual formulation of an important

class of the continuous-time stochastic optimal control problems – the controlled

Markov diffusions. Based on the technical machinery “anticipating stochastic

calculus” (see, e.g., [68, 67]), we establish the weak duality, strong duality and

complementary slackness results in parallel as those in the dual formulation of

MDPs. We investigate one type of optimal penalties, i.e., the so-called “value

function-based penalty”, which admits a stochastic integral form under the

natural filtration generated by the Brownian motion. This compact expression

potentially enables us to design sub-optimal penalties in simple forms and also

facilitates the computation of the dual bound. An application is illustrated by

a dynamic portfolio choice problem with predictable returns and intermediate

5



consumptions. We consider the numerical solution to a discrete-time model that

is discretized from a continuous-time model; an effective class of penalties that

are easy to compute is proposed to derive dual bounds on the optimal value

of the discrete-time model. The development of this framework and technical

details appear in our papers [95, 98].

• We propose a filtering-based duality approach for partially observable optimal

stopping problem, in order to complement the suboptimal policy with an asymp-

totic upper bound on the value function. This method relies on the martingale

duality formulation of the optimal stopping problem. Our work focuses on em-

ploying the particle filtering technique, which is used to approximate general

filtering distribution, to generate penalty (i.e., the martingale term) in the d-

ual formulation via Monte Carlo simulation. We apply our approach to price

American put options in stochastic volatility models, under more realistic as-

sumption that the volatility cannot be directly observed but can be inferred

from the asset prices. The numerical results confirm a higher price of the op-

tion if we alternatively assume that the volatility is directly observable. The

price difference becomes more significant when the effect of volatility is high,

indicating the importance of taking the partial observability into account. The

development and analysis of the approach appear in our papers [97, 96].

1.4 Thesis Outline

The rest of the dissertation is organized as follows.

Chapter 2 provides the background and literature review on information relaxation

and duality in stochastic dynamic programs and martingale dual representation of

optimal stopping problems.

6



Chapter 3 discusses the interaction of Lagrangian relaxation and information re-

laxation in weakly coupled dynamic program that is formulated as a discounted in-

finite horizon MDP. We develop a computational method that involves the idea of

time randomization and relaxing the inner optimization problem. We implement the

algorithm on a restless bandit problem and a linear quadratic control problem un-

der non-convex linking constraints. Our method effectively reduces the duality gap

between the heuristic policy and Lagrangian bound.

Chapter 4 characterizes the dual formulation of controlled Markov diffusions. We

establish the duality results in a parallel way as those in Markov decision processes.

We further explore the structure of the optimal penalties and expose the connection

between the optimal penalties for Markov decision processes and controlled Markov

diffusions. We demonstrate the use of this dual representation in a classic dynamic

portfolio choice problem through a new class of penalties, which require little extra

computation and produce small duality gap on the optimal value.

Chapter 5 presents a filtering-based duality approach to solve the discrete-time

continuous-state partially observable optimal stopping problem. This method relies

on the martingale duality formulation of the optimal stopping problem and the parti-

cle filtering technique. We show that this approach complements an asymptotic lower

bound derived from a suboptimal stopping time with an asymptotic upper bound on

the value function. We carry out error analysis and illustrate the effectiveness of

our method on an example of pricing American options under partial observation of

stochastic volatility.

Chapter 6 concludes the dissertation and outlines some future research.

7



CHAPTER II

INFORMATION RELAXATION

In this section we review the information relaxation-based dual formulation of Markov

decision processes(MDPs) and the martingale duality formulation of optimal stopping

problems.

2.1 Duality in Markov Decision Process

Consider a finite-horizon MDP on the probability space (Ω,G,P), where Ω is the set

of possible outcomes or scenarios ω, G is an σ-algebra containing the events in Ω, and

P is a probability measure. Time is indexed by K = {0, 1, · · · , K}. Suppose X is the

state space and A is the control space. The state {xk} follows the equation

xk+1 = f(xk, ak, vk+1), k = 0, 1, · · · , K − 1, (1)

where ak ∈ Ak ⊂ A is the control or decision variable chosen at time k, and {vk}K−1
k=0

are independent random variables taking values in the set V with known distributions.

The natural filtration associated with this MDP is denoted by G = {G0, · · · ,GK},

where Gk is the σ-algebra generated by {x0, a0, v1, a2, v2, · · · , ak, vk}; in particular,

G0 = σ{x0}. Therefore, Gk contains the information that is known to the decision

maker at the beginning of time k.

Note that a scenario ω ∈ Ω refers to a realization of v = {v1, · · · , vK}. Given a

scenario ω ∈ Ω, the decision maker chooses a sequence of controls a = (a0, · · · , aK−1)

with ak ∈ Ak. Such a selection is called a control policy, i.e., α : Ω→ A0×· · ·×AK−1.

We denote the set of such control policies as A.

Let AG be the set of control strategies that are adapted to the filtration G, i.e., each

ak is Gk-adapted. We also call α ∈ AG a non-anticipative policy. Given the initial

8



Figure 1: Markov Decision Process

condition x0 ∈ X , the objective is to maximize the expected sum of intermediate

rewards {gk(xk, ak)}K−1
k=0 (that depend on the state and the control) and final reward

Λ(xK) (that depends only on the final state) by selecting a non-anticipative policy

α ∈ AG:

V0(x0) = sup
α∈AG

J0(x0;α),

where J0(x0;α) , E

[
K−1∑
k=0

gk(xk, ak) + Λ(xK)

∣∣∣∣x0

]
, (2)

where ak is selected by α depending on the scenario ω, and the expectation in (2) is

taken over ω or all possible realizations of v. The value function V0 is a solution to

the following dynamic programming recursion:

VK(xK) , Λ(xK);

Vk(xk) , sup
ak∈Ak

{gk(xk, ak) + E[Vk+1(xk+1)|xk, ak]}, k = K − 1, · · · , 0.

Next we describe the information relaxation-based dual formulation of Markov

decision process. Here we only consider the perfect information relaxation, i.e., we

have full knowledge of the future randomness.

Define Ek,x[·] , E[·|xk = x]. Let MG(0) denote the set of dual feasible penalties

M(a,v), which do not penalize non-anticipative policies in expectation, i.e.,

E0,x[M(a,v)] ≤ 0 for all x ∈ X and a ∈ AG.

9



Denote by D the set of real-valued functions on X . Then we define an operator

L :MG(0)→ D:

(
LM

)
(x) = E0,x

[
sup
a∈A

{
K−1∑
k=0

gk(xk, ak) + Λ(xK)−M(a,v)

}]
. (3)

Note that the supremum in (3) is over the set A not the set AG, i.e., the control

or decision ak can be selected based on the future information. The optimization

problem inside the expectation in (3) is usually referred to as the inner optimization

problem. In particular, the right hand side of (3) is well suited to Monte Carlo

simulation: we can simulate a realization of v = {v1, · · · , vK} and solve the following

inner optimization problem:

I(x,M,v) , max
a

K−1∑
k=0

gk(xk, ak) + Λ(xK)−M(a,v) (4a)

s.t. x0 = x,

xk+1 = f(xk, ak, vk+1), k = 0, · · · , K − 1, (4b)

ak ∈ Ak, k = 0, · · · , K − 1, (4c)

which is in fact a deterministic dynamic program. The optimal value I(x,M,v) is an

unbiased estimator of (LM)(x).

Theorem 1 below establishes a strong duality in the sense that for all x0 ∈ X ,

sup
a∈AG

J0(x0; a) = inf
M∈MG(0)

(
LM

)
(x0).

In particular, Theorem 1(a) suggests that LM(x0) can be used to derive an upper

bound on the value function V0(x0) given any M ∈MG(0), i.e., I(x0,M,v) is a high-

biased estimator of V0(x0) for all x0 ∈ X ; Theorem 1(b) claims that the duality gap

vanishes if the dual problem is solved by choosing M in the form of (5).

Theorem 1 (Theorem 2.1 in [20]).

(a) (Weak Duality) For all M ∈MG(0) and all x0 ∈ X , V0(x0) ≤ (LM)(x).
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(b) (Strong Duality) For all x0 ∈ X , V0(x0) = (LM∗)(x), where

M∗(a, v) =
K−1∑
k=0

(Vk+1(xk+1)− E[Vk+1(xk+1)|xk, ak]) . (5)

In addition, the following equality holds almost surely, i.e.,

V0(x0) = sup
a∈A

{
K−1∑
k=0

gk(xk, ak) + Λ(xK)−M∗(a, v)

}
a.s..

Remark 1.

1. Note that the right hand side of (5) is a function of (a,v), since {xk} depend

on (a, v) through the equation (1).

2. Note that the optimal penalty M∗(a, v) is the sum of a G-martingale difference

sequence when a ∈ AG; therefore, M∗(a, v) ∈MG(0). Since M∗ depends on the

value function {Vk}, it is referred to as the value function-based penalty.

2.2 Duality in Optimal Stopping

Optimal stopping is concerned with the problem of choosing a time to take a particular

action based on sequentially observed random variables whose joint distribution is

known, in order to maximize an expected reward or to minimize an expected cost.

References [76, 45] use the martingale duality approach to compute upper bounds on

the prices of American options, which is essentially an optimal stopping problem. This

martingale-based dual approach can be viewed as a case of the perfect information

relaxation.

Consider a finite-horizon Markov process {xk}k∈K on the probability space (Ω,G,P),

where time is indexed byK = {0, 1, · · · , K} and the transition probability Pk(xk+1|xk)

is known. The filtration generated by the processes {xk}k∈K is denoted by G =

{G0, · · · ,GK} with Gk , σ{x0, · · · , xk}.

A random variable τ : Ω → K is a Gk-stopping time if {τ ≤ k} ∈ Gk for every

k ∈ K. We define SG as the set of Gk-stopping times that take values in K. We

11



consider the finite-horizon optimal stopping problem assuming that the initial x0 is

known:

V0(x0) = sup
τ∈SG

E
[
g(τ, xτ )

∣∣∣∣x0

]
, (6)

where g(k, ·) is the reward at time k that only depends on the state xk.

The optimal stopping problem is a special case of the Markov decision process.

The only differences are (i) the state dynamic is an uncontrolled process and (ii) the

only decision to be made at each stage is to “stop” or “continue” the process, that

is, to compare the immediate profit based on the current state information and the

expected reward considering all the future outcome. Therefore, the value function V0

can also be solved by a dynamic program:

VK(xK) , g(K, xK);

Vk(xk) , max{g(k, xk),E[Vk+1(xk+1)|xk]}, k = K − 1, · · · , 0.

Theorem 2 (Theorem 2.1 in [76]). Let M represent the space of Gk-adapted martin-

gales {Mk} with M0 = 0 and supk∈K E[|Mk|] <∞. Then

V0(x0) = min
M∈M

{
E
[
max
k∈K
{g(k, xk)−Mk}|X0 = x0

]}
. (7)

The optimal martingale {M∗
k} that achieves the minimum on the right hand side of

(7) is of the form

M∗
k =

k∑
j=1

(Vj(xj)− E[Vj(xj)|xj−1]), (8)

In addition, the following equality holds in the almost sure sense, i.e.,

V0(x0) = max
k∈K

(g(k, xk)−M∗
k ) a.s..

Theoretically, the strong duality results hold in both Markov decision processes

and optimal stopping problems. However, the optimal penalty (5) and the optimal

martingale (8) that achieve the strong duality involve the value function {Vk}, and

hence are intractable in practical problems. The hope is that we can construct a good
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approximation of the optimal penalties based on some approximate value functions

{V̂k} or sub-optimal policy â (or τ), which may result in a tight dual bound by in-

corporating the approximate penalties in the dual approach. Methods based on these

ideas have been successfully implemented in the American option pricing problems

[76, 45, 3], and also in various stochastic dynamic programs [20, 57, 34].

2.3 Literature Review

Information relaxation-based duality for general stochastic dynamic program [20, 77]

builds on the research work of American option pricing (or optimal stopping) and

stochastic programming. [76, 45] propose a general algorithm for constructing an up-

per bound on American option price based on its dual formulation (see section 2.2),

which complements the lower bound derived from the approximate dynamic program-

ming method [60]. The same duality technique was also developed in the earlier work

[28]. In particular, [76] uses the approximate value function to generate penalties

(or “dual martingale” in their terminology), while [3] develops an alternative com-

putational algorithm by using the approximate policies. To improve the quality of

dual bounds, [23] proposes an iterative approach to construct a sequence of the dual

martingales, and [33] considers the idea of parameterized martingales and uses a con-

vex optimization procedure to produce upper and lower bounds. In the special cases

that the asset process is modeled as a diffusion process or a jump-diffusion process,

the structure of the optimal martingale (i.e., the optimal penalty) is investigated by

[7, 91, 101], which leads to practical algorithms for fast computation of tight upper

bounds on the American option prices. A nice overview of American option pricing

can be found in [40].

The idea of relaxing the non-anticipativity has also been studied in stochastic

programming literature [83, 75]. The stochastic programming formulation requires

that the cost functions and the set of feasible action (or control set) to be convex and
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penalties to be linear in actions. In contrast, the information relaxation approach

does not impose any assumption on the convexity of the cost functions. In case

that the reward function is convex in the feasible actions, [17] develops a gradient-

based optimal penalty, which is equivalent to the Lagrangian term that dualizes the

non-anticipativity constraints in stochastic programming (see Chap 3.2.4 of [83]).

The relaxation of the non-anticipativity constraint on the control policies in MDPs

also has a long history, dating back at least to [29]. Due to the work [20, 77], the infor-

mation relaxation technique has attracted researchers’ attention in both theoretical

and practical aspects during recent years. It is worth noting that the optimal penalty

is not unique: for general problems we have the value function-based penalty derived

in [77] and [20]; for problems with convex structure there is a class of alternative

optimal penalties [19], which extends the aforementioned gradient-based penalty in

[17]. It is shown in [47] that the value function-based penalty and the gradient-based

penalty are different in linear quadratic control problems. In order to derive tight d-

ual bounds, various algorithms based on different approximation schemes [20, 17, 19]

and the idea of parameterized penalties [32, 93] have been proposed. In addition,

[55] studies a robust model of the multi-armed bandits using the information relax-

ation approach. [44] extends this dual approach to the zero-sum game. Information

relaxation has found various applications such as natural gas storage valuation [57],

dynamic portfolio optimization and execution [17, 66, 48], optimization of commod-

ity procurement, processing and trade operations [34], and inventory management

[20, 19].
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CHAPTER III

LAGRANGIAN AND INFORMATION RELAXATIONS IN

WEAKLY COUPLED DYNAMIC PROGRAM

We study the interactions between Lagrangian relaxation and information relaxation

in the weakly coupled dynamic program(WCDP), which consists of multiple sub-

problems that are independent of each other except for a set of budget or linking

constraints on the controls (see, e.g., [49, 1]). The WCDPs have many interesting

and practical applications including multi-armed and restless bandits ([52, 39, 92, 12]),

resources allocation ([41]), network revenue management ([86, 89]), and optimal learn-

ing ([11, 21, 38]). Unfortunately, the exact solution to WCDPs quickly becomes in-

tractable as the number of subproblems increases. Therefore, we resort to heuristic

policies as well as a good performance bound in high-dimensional problems. [49] de-

composes the original problem by dualizing the linking constraints, which leads to a

dual bound on the optimal value. Despite the computational advantage of Lagran-

gi5an relaxation, we cannot expect the bound to be tight, because the general WCDPs

may lack the convex structure. Some recent literatures suggest two main approaches

for improving the Lagrangian relaxation bound. The first approach in [1] shows that

the ALP method can be used to obtain a tighter upper bound compared with the

Lagrangian bound, and it has been successfully implemented in large-scale bandit-

like problems. The second approach in [19] studies how to improve the Lagrangian

bound using the information relaxation approach, and develops a gradient penalty for

computing the bound in convex WCDPs. However, these approaches have their own

limitations. For example, the gradient penalty approach in [19] is not suitable for

nonconvex problems, and the efficiency of the ALP method may deteriorate quickly
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with increasing dimensions of linking constraints due to the implementation of the

column generation. Another issue of the ALP method is that the column generation

procedure may require designing problem-specific sampling technique to achieve the

optimal solution quickly, when the stochastic decision model has continuous states or

decisions.

In this paper, we consider an alternative approach that utilizes the information

relaxation technique to generate upper bounds on the optimal value of a general class

of WCDPs. Our approach does not require convexity assumption and can apply on

infinite-horizon problems with discounted rewards. Our work is partly motivated

by the work of [19] that considers finite-horizon WCDPs with convex structure, and

the work of [32] that studies the ALP and the information relaxation methods. To

apply the state-of-art of the information relaxation technique in an infinite-horizon

discounted WCDP, there are several challenges. First, a perfect information relax-

ation means that the system randomness of infinite length is revealed beforehand,

which implies that the associated scenario-based inner problem has infinite number

of decision variables and can be difficult to solve. To address this problem, we use

a standard technique in simulation - a geometric distributed randomized time - to

convert the discounted infinite-horizon inner problem to a finite (but random) horizon

problem (see, .e.g., [37]). This reformulation makes it possible to solve the scenario-

based inner problem with finite computational costs, though the costs depend on the

length of the random horizon that is affected by the discount factor. By coupling

the randomized time with penalties derived from approximate value functions, we

can adapt the weak and strong duality to the discounted infinite-horizon problem,

which parallels the results in finite-horizon stochastic dynamic programs (see, e.g.,

[20]). We also observe in principle the information relaxation approach can always

generate a tighter bound than the approximate value function, as long as it is a su-

persolution to the Bellman’s equation. In particular, both Lagrangian bound and
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ALP bound qualify as supersolutions. We then compare the respective sufficient and

necessary conditions such that Lagrangian relaxation and information relaxation give

tight bounds on the optimal value. We provide an example in which the Lagrangian

bound can be arbitrarily loose, whereas the information relaxation bound that builds

upon it is always tight.

Despite the finite-horizon scenario-based inner problem, solving its optimal so-

lution effectively remains another main challenge, especially when the number of

subproblems is large: with a fixed scenario, the state transition is purely determined

by the decision subject to linking constraints; therefore, finding the optimal decisions

suffers from the curse of dimensionality (in terms of the number of subproblems) and

becomes more difficult in the possible long-horizon problem. Instead of computing its

optimal value exactly, we solve a relaxed problem by dualizing linking constraints for

the purpose of decomposition, which leads to an upper bound on the optimal value

that is computationally tractable for each scenario. With this relaxation we generally

have a weaker bound (referred to as the “practical information relaxation bound”)

compared with the exact information relaxation bound, but we can show it is still

superior to the Lagrangian relaxation bound; therefore, this relaxation lies interme-

diately between the Lagrangian relaxation and the exact information relaxation. We

also provide theoretical analysis on the relative gap between the exact and practical

information relaxation bounds: with certain conditions on the linking constraints,

this relative gap will vanish as the number of subproblems goes to infinity.

Overall, we can compute various dual bounds via relaxations with different perfor-

mance guarantees and computational complexities. Due to the trade-off between the

quality versus complexity, we may start with one relaxation that requires the least

computational cost, and based on its bound performance we may decide how much

more we should invest to derive better policies or/and tighter dual bounds.
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3.0.1 Literature Review

The weakly coupled dynamic program was first systematically studied in [49], which

employs Lagrangian relaxation to develop heuristic policies in high-dimensional prob-

lems. The work [1] shows that the ALP method can guarantee a tighter dual bound

than the Lagrangian bound, though Lagrangian relaxation is much easier to compute.

The WCDPs have many interesting and practical applications including multi-armed

and restless bandits in [52, 39, 92, 12], resources allocation ([41]), network revenue

management ([86, 89]), and optimal learning ([11, 21, 38]).

Recently, information relaxation was developed in [20] to study performance bound-

s in general dynamic programs. [77] independently proposes a dual formulation of

Markov decision process that can be interpreted as perfect information relaxation.

Information relaxation was further explored in different settings such as convex dy-

namic programs in [17, 19], continuous-time stochastic control in [95], and zero-sum

stochastic games in [44].

There are several works related to information relaxation and the subject of our

study. The work [19] develops a gradient-based penalty method to compute dual

bounds on the revenue in an airline network problem, which is a case of WCDPs;

their method can also be applied in general convex stochastic dynamic programs.

[32] explores the theoretical formulation of the information relaxation bound in the

infinite-horizon discounted MDP and compared it to the ALP bound. A recent inde-

pendent work by [16] studies the infinite-horizon discounted MDP using a change-of-

measure technique called “weak formulation”; they also consider the “strong formula-

tion” (i.e., the randomized time) and solve the relaxed inner problem, but they do not

characterize the relative gap between the exact and practical information relaxation

bounds. The work [55] studies a robust model of the multi-armed bandit using the

information relaxation approach. [18] applies the information relaxation and decouple
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the inner problem in an optimal sequential exploration problem (a generalized multi-

armed bandit with dependent arms) without using penalty. The work [17] and [82] use

information relaxation to derive tighter dual bounds from the optimal value or policy

of a simplified model in a dynamic portfolio optimization problem and a commodi-

ty storage problem, respectively. In stochastic programming literature, [31] studies

variants of Lagrangian relaxations and the associated decomposition scheme with d-

uality gaps in nonconvex stochastic optimization problems. The work [13] shows the

structure of stochastic integer programs that leads to a vanishing Lagrangian duality

gap as the number of scenarios increases.

The rest of this chapter is organized as follows. In Section 3.1, we review the for-

mulation of the weakly coupled dynamic program and its decomposition using the La-

grangian relaxation approach. In Section 3.2, we present the information relaxation-

based dual bounds for the infinite-horizon problem, and compare it to the Lagrangian

relaxation and ALP method. In Section 3.3, we address the computational issue of

the information relaxation bound in the large-scale setting. We present our numerical

studies in Section 3.4, and provide the concluding remarks in Section 3.5.

3.1 Formulation of the Weakly Coupled Dynamic Program

In this section, we present the general framework of the weakly coupled stochastic

dynamic program and the Lagrangian relaxation approach.

3.1.1 Problem Formulation

Consider a collection of N projects or subproblems labeled by n = 1, · · · , N . The

state of each project or subproblem transits independently according to a homogenous

transition law and yields a reward that is dependent only on the individual state

and control. However, at each time period there are constraints imposed on the

controls of these projects, which are referred to as the “linking constraints” or “budget

constraints”. The underlying probability space is described by (Ω,F , P ), where Ω is
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the set of possible outcomes or scenarios ω, F is a σ-algebra containing the events in

Ω, and P is a probability measure.

We use the following notations to describe the mathematical formulation of the

weakly coupled stochastic optimization problem.

1. Time is indexed by t = 0, 1, 2 · · · .

2. xt = (x1
t , · · · , xNt ) is the joint state of the N projects, and it takes value in the

state space X = X 1 × · · · × XN .

3. at = (a1
t , · · · , aNt ) is the control (or decision variable) that takes value in the

control (or action) space A =
∏N

n=1An.

4. The state of N -project transits in a Markovian fashion; in particular, it evolves

as N independent Markov decision processes according to a known homogenous

transition law

P (xt+1|xt, at) =
N∏
n=1

Pn(xnt+1|xnt , ant ),

where {Pn}Nn=1 denotes the controlled transition probability of the individual

project. Note that each state xt+1 depends on the prior control sequence a(t) ,

(a0, a1, · · · , at) and the scenario ω, i.e., x0 = x0(ω) and xt+1 = xt+1(a(t), ω) for

t ≥ 0, where ω represents the underlying uncertainty.

5. At period t the control at is chosen by the decision maker subject to a set of L

time-invariant linking constraints
∑N

n=1 Bn(xnt , a
n
t ) ≤ b, where b ∈ RL. Denote

the feasible control space at time t by

Āt = {at ∈ A : B(xt, at) ,
N∑
n=1

Bn(xnt , a
n
t ) ≤ b}. (9)

Here, the dependence of Āt on the state xt is omitted for convenience.
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6. At period t the n-th project or subproblem receives a reward of Rn(xnt , a
n
t ). The

total reward received at time t is of the additive form

R(xt, at) ,
N∑
n=1

Rn(xnt , a
n
t ).

7. Given a scenario ω, the decision maker chooses a sequence of controls a =

(a0, a1, · · · ), where each at takes value in Āt. Such a selection is called a control

policy, i.e., α : Ω → Ā0 × Ā1 × · · · . We denote the set of such control policies

as Ā.

8. The filtration F = {F0,F1,F2, · · · } describes the evolution of the state informa-

tion, where F0 , σ{x0} and Ft , σ{x0, · · · ,xt, a0, · · · , at−1} for t ≥ 1. Since

the decision maker determines at based only on the information known up to

period t, each at is then Ft-measurable; we call such a control policy α to be

non-anticipative and denote the set of non-anticipative policies by

ĀF = {α ∈ Ā| α is non-anticipative}.

9. The expected discounted infinite-horizon reward induced by a control policy α

is

V (x0;α) , E

[
∞∑
t=0

βtR (xt, at)

∣∣∣∣x0

]
, (10)

where β ∈ (0, 1) is a discount factor, and at is selected by α depending on the

scenario ω. The objective of the decision maker is to maximize the expected

infinite-horizon reward over all non-anticipative policies, given the initial con-

dition x0 ∈ X :

V (x0) = sup
α∈ĀF

V (x0;α). (11)

To avoid technical complication, we assume that {Rn}Nn=1 are uniformly bounded

on their respective domain (therefore, V is also bounded), and the supremum in (11)
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can be achieved (this is the case, for example, when X and A are finite). So V is

well-defined for all x0 ∈ X . Thus, the exact solution to (11) can be obtained by

solving the following Bellman optimality equation:

V (x0) = max
a0∈Ā0

{R(x0, a0) + βE [V (x1)|x0, a0]} . (12)

We assume (12) have an optimal stationary and Markov policy α∗, where α∗ :

X → A satisfies

α∗(x0) ∈ arg max
a0∈Ā0

{R(x0, a0) + βE [V (x1)|x0, a0]}.

The standard value iteration or policy iteration algorithm that can be used to

solve (12) becomes intractable as N increases, since the size of its state space is

|X | =
∏N

n=1 |X n|.

3.1.2 Lagrangian Relaxation

In this subsection we consider the Lagrangian dual of (12) that relaxes the linking

constraints on the controls. The motivation of relaxing the linking constraint is to

decompose the original high-dimensional problem to several low-dimensional subprob-

lems.

Denote by A , {α : Ω→ A×A×· · · }, which contains Ā as a subset. By dualizing

the linking constraint with the Lagrangian multiplier λ ∈ RL
+, we define Jλ(x0) for

x0 ∈ X :

Jλ(x0) , max
α∈AF

Jλ(x0;α), (13)

where

Jλ(x0;α) , E

[
∞∑
t=0

βt
(
R(xt, at) + λ> [b−B(xt, at)]

) ∣∣∣∣x0

]
,

and AF , {α ∈ A| α is non-anticipative}.

We list some properties of Jλ in Lemma 1; in particular, Jλ is an upper bound

on V given any λ ≥ 0, which will be referred to as the “Lagrangian bound” in the

following.
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Lemma 1 (Properties of Jλ). 1. For any λ ≥ 0, Jλ(x) ≥ V (x) for all x ∈ X .

2. Jλ(x) is convex and piecewise linear in λ ≥ 0.

3. For all x ∈ X , Jλ(x) can be written as

Jλ(x) =
λ>b

1− β
+

N∑
n=1

Jλ,n(xn), (14)

where Hλ,n(xn0 ) is the solution to the following Bellman optimality equation for

each n = 1, · · · , N :

Jλ,n(xn0 ) = max
an0∈An

{
Rn(xn0 , a

n
0 )− λ>Bn(xn0 , a

n
0 ) + βE

[
Jλ,n(xn1 )|xn0 , an0

] }
. (15)

The proof of these results can be found in Theorem 1 and Theorem 2 of Section

2 in [49], or Proposition 1 and Proposition 2 in [1].

In the case that X and A are finite, we may compute the tightest Lagrangian

bound over λ ≥ 0 via a linear program. To be more specific, suppose {υ(x),x ∈ X}

is a probability distribution on X , which can be viewed as the initial distribution of

x0. Let υn(·) denote the marginal distribution of υ with respect to the n-th project,

i.e, υn(xn0 ) =
∑
{x=(x1,··· ,xn)∈X :xn=xn0 }

υ(x). From (14) we define the Lagrangian bound

based on the initial distribution υ as the weighted sum∑
x∈X

υ(x) · Jλ(x) =
λ>b

1− β
+

N∑
n=1

∑
xn∈Xn

υn(xn)Jλ,n(xn).

The optimal λ∗ = arg min{λ≥0}{
∑

x∈X υ(x)·Jλ(x)} and the corresponding {Jλ∗,n(·)}Nn=1

can be determined by the following linear program (with variables λ and {Hn(·)}Nn=1).

min
λ,Hn(·)

λ>b

1− β
+

N∑
n=1

∑
xn∈Xn

υn(xn)Hn(xn) (16)

s.t. λ ≥ 0,

Hn(xn0 ) ≥ Rn(xn0 , a
n
0 )− λ>Bn(xn0 , a

n
0 ) + β

∑
xn1∈Xn

Pn(xn1 |xn0 , an0 )Hn(xn1 ),

for all (xn0 , a
n
0 ) with an0 ∈ An(xn0 ).
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In the continuous-state or continuous-action case, noting that Jλ(υ) is convex in

λ with a fixed probability distribution υ, the Lagrangian bound Jλ∗ may be solved

using the stochastic subgradient method (see, e.g., Section 2.2.1 of [49]). We also

review the ALP method to derive an upper bound HLP on V and compare its bound

performance with the Lagrangian bound in Appendix A.1.

3.2 Information Relaxation-based Dual Bound

Information relaxation has been used to compute a dual bound on the optimal value

of finite-horizon stochastic dynamic programs. In this section, we propose a compu-

tational method based on a randomization idea to extend information relaxation to

the discounted infinite-horizon problem. This computational approach will be used

to improve the quality of the Lagrangian bound; we show in one example that the

improvement can be significant. We also analyze the conditions that the two bounds

equal the optimal value.

We will use the following notations. Given T ∈ N, we denote by A(T ) , A0 ×

· · · × AT , where each At = A. Respectively, we define Ā(T ) , Ā0 × · · · × ĀT .

3.2.1 Information Relaxation-based Bounds for Discounted Infinite-Horizon
Problem

The Lagrangian relaxation approach in Section 3.1.2 relaxes the feasible set of the

controls, where the term
∑∞

t=0 β
tλ>
(
[b−B(xt, at)]

)
plays the role of a penalty when

the decision takes value outside the feasible region. As an alternative relaxation

technique, the “information relaxation” relaxes the non-anticipativity constraint on

the control policy and impose a class of penalties that penalize this violation.

We will construct a penalty from a function H defined on the state space X . This

penalty is the discounted sum of martingale difference sequence under any policy

α ∈ ĀF, implying that charging this penalty does not influence the expected rewards

under such a policy.
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To begin with, we first define a partial discounted sum Mk based on a measurable

and bounded function H : X → R, that is,

Mk(a, ω) ,
k∑
t=0

βt+1∆H(xt+1,xt, at), k = 0, 1, · · · , (17)

where ∆H(xt+1,xt, at) = H(xt+1)−E[H(xt+1)|xt, at] and . Note that given a control

policy α ∈ ĀF, {Mk(α(ω), ω)}∞k=0 is an F-martingale, since {∆H(xt+1,xt, at)}∞t=0 is

an F-martingale difference sequence. In particular, E[Mk(α(ω), ω)|x0] = 0 for any

α ∈ ĀF.

We then consider the discounted infinite sum of ∆H, that is,

M(a, ω) ,
∞∑
t=0

βt+1∆H(xt+1,xt, at).

Define D , {H : X → R|H is measurable and bounded}. It is straightforward to

verify that M is well-defined given any function H ∈ D and M has expectation zero

under a non-anticipative policy.

Lemma 2. Suppose H ∈ D. Then M(a, ω) is well defined given any control sequence

a and scenario ω; moreover, E[M(α(ω), ω)|x0] = 0 for all α ∈ ĀF.

Proof. We can show that M(a, ω) is well defined for any a and ω given H ∈ D, i.e.,

|H(·)| < Λ for some Λ > 0; the sequence {Mk}∞k=0 is then uniformly bounded for all

k ≥ 0, since for t = 0, 1, · · · , k,

|Mk(a, ω)| ≤
k∑
t=0

βt+1|∆H(xt+1,xt, at)| ≤
2Λ

1− β
for all ω ∈ Ω and at ∈ A(xt),

Therefore, M(a, ω) , limk→∞Mk(a, ω) is well-defined for every a and ω. In par-

ticular, E[M(α(ω), ω)|x0] = limk→∞ E[Mk(α(ω), ω)|x0] = 0 for α ∈ ĀF due to the

dominated convergence theorem, noting that E[Mk(α(ω), ω)|x0] = 0 for all k.
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Since E[M(α(ω), ω)|x0] = 0 for any α ∈ ĀF, then

V (x0;α) =E

[
∞∑
t=0

βtR(xt, at)

∣∣∣∣x0

]
− E [M(α(ω), ω)|x0]

=E

[
∞∑
t=0

βt
(
R(xt, at)− β(H(xt+1)− E[H(xt+1)|xt, at])

)∣∣∣∣x0

]

=H(x0) + E

[
∞∑
t=0

βt
(
R(xt, at) + βE[H(xt+1)|xt, at]−H(xt)

)∣∣∣∣x0

]
. (18)

The second equality holds due to the definition of ∆H, and the last equality holds s-

ince
∑∞

t=0 β
tR(xt, at),

∑∞
t=0 β

t+1E[H(xt+1)|xt, at], and
∑∞

t=0 β
t+1H(xt) are absolutely

convergent for all ω ∈ Ω and a ∈ A.

To develop a computational method that reduces the infinite sum inside the con-

ditional expectation in (18) to a finite sum, we consider a random time τ (see, .e.g.,

[37]) that is independent of {Ft, t = 0, 1, · · · }, and τ is of geometric distribution with

parameter β, i.e.,

P (τ = t) = (1− β)βt, t = 0, 1, · · · .

A complete definition of τ is in Appendix A.2.1.

Lemma 3. Suppose τ is a random time of geometric distribution with parameter β

and it is independent of {Ft, t = 0, 1, · · · }. Then for all α ∈ ĀF and H ∈ D,

V (x0;α) = H(x0) + E [IH(α(ω), ω, τ)|x0] , (19)

where

IH(a, ω, τ) ,
τ∑
t=0

(
R(xt,at) + βE[H(xt+1)|xt,at]−H(xt)

)
. (20)

Proof. Noting that P (t ≤ τ) = E
[
1{t≤τ}

]
= βt, we can rewrite the second term in
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(18) as

E

[
∞∑
t=0

E
[
1{t≤τ}

]
· (R(xt, at) + βE[H(xt+1)|xt, at]−H(xt))

∣∣∣∣x0

]

=E

[
∞∑
t=0

1{t≤τ} · (R(xt, at) + βE[H(xt+1)|xt, at]−H(xt))

∣∣∣∣x0

]

=E

[
τ∑
t=0

(R(xt, at) + βE[H(xt+1)|xt, at]−H(xt))

∣∣∣∣x0

]
,

where the first equality holds due to the Fubini’s theorem, noting that the bounded-

ness of R and H implies the integrability of the integrand in E0[·].

The conditional expectation in (20) is now taken with respect to both the ran-

dom outcome ω and the random time τ . We can better interpret this conditional

expectation via Monte Carlo simulation: in each trial of simulation, we first generate

a realization of the random horizon τ (that is finite) and scenario ω, i.e., the under-

lying uncertainty that affects the evolution of {xt}τt=0; we then apply the policy α

on the scenario ω up to time τ to evaluate the value of IH(α(ω), ω, τ). According to

(19), H(x0) + IH(α(ω), ω, τ) is an unbiased estimator of V (x0;α).

To obtain an upper bound on the optimal value V that complements the lower

bound V (x0;α) in (19) induced by the policy α and function H, we introduce the

operator L : D → D

LH(x0) , H(x0) + E
[

max
a∈Ā(τ)

{IH(a, ω, τ)}
∣∣∣∣x0

]
, (21)

Since the dependence of IH on a is only through the first τ + 1 actions, namely,

a(τ). Thus, maxa∈Ā(τ){IH(a, ω, τ)} is short for maxa(τ)∈Ā(τ){IH(a(τ), ω, τ)}, which

is referred to as the inner optimization problem. In each trial of simulation, we

maximize IH(a, ω, τ) subject to a ∈ Ā(τ) given a realization of the random horizon τ

and scenario ω. We show that the estimator maxa∈Ā(τ){IH(a, ω, τ)} has finite mean

and variance in Appendix A.2.2.
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We next show for any H ∈ D, the optimal value V is upper bounded by LH,

which will be referred to as the “information relaxation bound”. The relaxed infor-

mation is reflected in the scenario-based inner optimization problem, while M(a, ω) =∑∞
t=0 β

t+1∆H(xt+1,xt, at) induced by the function H plays the role of a penalty: if

H is chosen to be V , then the upper bound LH is tight, i.e, LH = V .

Theorem 3 (Information Relaxation Bound). Let τ be a random time of geometric

distribution with parameter β and it is independent of {Ft, t = 0, 1, · · · }. Then

(a) (Weak Duality) For any H ∈ D, V (x) ≤ LH(x) for x ∈ X .

(b) (Tighter Bound) For any H ∈ D∗(ε) with ε ≥ 0, where

D∗(ε) , {H ∈ D : R(x0,a0)+βE[H(x1)|x0,a0] ≤ H(x0)−ε for x0 ∈ X and a0 ∈ Ā(x0)},

then maxa∈Ā(τ){IH(a, ω, τ)} ≤ −ε(τ + 1) for every ω ∈ Ω and τ ∈ N; therefore,

for x ∈ X ,

LH(x) ≤ H(x)− ε

1− β
.

(c) (Strong Duality) V (x) = LV (x) for x ∈ X . Moreover, maxa∈Ā(τ){IV (a, ω, τ)} =

0 for every ω ∈ Ω and τ ∈ N.

Proof. (a) For x0 ∈ X0 and α ∈ ĀF,

V (x0;α) = H(x0) + E0 [IH(α(ω), ω, τ)] ≤ H(x0) + E0

[
max
a∈Ā(τ)

{IH(a, ω, τ)}
]
,

where E0[ · ] = E[ · |x0]. By maximizing V (x0;α) over α ∈ ĀF, the weak

duality V (x0) ≤ LH(x0) holds.

(b) Note that given any H ∈ D∗ and xt ∈ X , R(xt, at) + βE[H(xt+1)|xt, at] −

H(xt) ≤ −ε for all at ∈ Ā(xt). It is straightforward to see that for any τ ∈ N

and ω ∈ Ω,

IH(a, ω, τ) =
τ∑
t=0

(
R(xt, at) + βE[H(xt+1)|xt, at]−H(xt)

)
≤ −(τ + 1)ε
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for any at ∈ Ā(xt), t = 0, 1, · · · , τ . Therefore, for all x0 ∈ X we have

LH(x0) ≤ H(x0) + E0[−(τ + 1)ε] = H(x0)− ε

1− β
.

Together with the weak duality, we have shown that V (x0) ≤ LH(x0) ≤

H(x0)− ε
1−β .

(c) The strong duality follows from the weak duality and the results in (b) by choos-

ingH = V noting that V ∈ D∗(0). Moreover, since V (x0) = maxa∈Ā{R(x0, a0)+

βE[V (x1)|x0, a0]} for every x0 ∈ X , we can use the dynamic program to show

that maxa∈Ā(τ){IV (a, ω, τ)} = 0 for every ω ∈ Ω and τ ∈ N.

The function H ∈ D∗(0) is sometimes referred to as a “supersolution” to the

problem (11), and it is a standard result that the optimal value V is upper bounded by

a supersolution H (see, e.g., [9]). Theorem 3(b) indicates that the scenario-dependent

inner optimization problem of an arbitrary time horizon τ is upper bounded by zero

provided H ∈ D∗(0); therefore, LH improves the quality of the supersolution H as

an upper bound on V . The strong duality implies that we may obtain a tight dual

bound, given some approximate function of V that induces a good approximation of∑∞
t=0 β

t+1∆V (xt+1,xt, at). In addition, Theorem 3 is true not only for weakly coupled

dynamic program, but also for general discounted infinite-horizon stochastic dynamic

program due to the applicable randomization technique.

As a corollary of Theorem 3, we present the information relaxation-based dual

representation of the Lagrangian bound Jλ. To this end, we dualize the linking

constraints at each period in maxa∈Ā(τ){IH(a, ω, τ)} up to time τ , and introduce the

Lagrangian function IH(a, ω, τ ;µ) for µ , (µ0, · · · ,µτ ) with each µt ∈ RL
+:

IH(a, ω, τ ;µ) ,
τ∑
t=0

(
R(xt, at) + µ>t [b−B(xt, at)] + βE[H(xt+1)|xt, at]−H(xt)

)
.

(22)
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In particular, IH(a, ω, τ) = IH(a, ω, τ ; 0).

Corollary 4. Suppose λ ∈ RL
+ and µ̃ = (λ, · · · ,λ). Suppose τ is of geometric

distribution with parameter β and it is independent of {Ft, t = 0, 1, · · · }. Then

(a) (Weak Duality) For any H ∈ D,

Jλ(x0) ≤ H(x0) + E
[

max
a∈A(τ)

{IH(a, ω, τ ; µ̃)}
∣∣∣∣x0

]
.

(b) (Strong Duality) Jλ(x0) = Jλ(x0)+E
[
maxa∈A(τ) {IJλ(a, ω, τ ; µ̃)}

∣∣∣∣x0

]
. Moreover,

maxa∈A(τ){IJλ(a, ω, τ ;µ)} = 0 for every ω ∈ Ω and τ ∈ N.

Proof. Note that Jλ is the optimal value to the discounted infinite-horizon MDP with

one-period reward R(xt, at) + λ>[b−B(xt, at)] and control set A(τ). Following the

proof of Theorem 3, it is straightforward to verify the weak duality and strong duality

results.

3.2.2 Comparing Lagrangian Relaxation Bound

In weakly coupled stochastic dynamic program, a natural candidate of the approxi-

mate value function is the Lagrangian bound Jλ . It can be shown that the informa-

tion relaxation approach can be used to improve the performance of the Lagrangian

bound.

Corollary 5. For any λ ≥ 0, LJλ(x) ≤ Jλ(x) for all x ∈ X .

Proof. This is an immediate corollary of Theorem 3(c) since Jλ ∈ D∗(0) (see

Lemma 4(b) in Appendix A.1). Here we consider an alternative proof based on

the dual representation of Jλ. Let µ̃ = (λ, · · · ,λ). Note that for each scenario

ω and τ ∈ N,

0 = max
a∈A(τ)

{IH(a, ω, τ ; µ̃)} ≥ max
a∈Ā(τ)

{IH(a, ω, τ ; µ̃)} ≥ max
a∈Ā(τ)

{IH(a, ω, τ)} ,

(23)
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where the equality follows Corollary 4(b), the first inequality holds because

A(τ) ⊃ Ā(τ), and the second inequality holds since λ ≥ 0 and each b −

B(xt, at) ≥ 0 for at ∈ Ā. Hence, Jλ(x) ≥ LJλ(x) for all x ∈ X .

Corollary 5 generalizes the result in [19] from finite-horizon to discounted infinite-

horizon setting. It is worth noting that the information relaxation approach can

improve the ALP bound HLP , since it is also a supersolution to (11) (see Lemma 6

in Appendix A.1).

A natural question is whether the improvement of the information relaxation

bound over the Lagrangian bound can be significant. In Appendix A.3, we provide

an affirmative answer by investigating the example proposed in [1], where the La-

grangian bound can be arbitrarily poor compared with the optimal value; as opposed

to the performance of the Lagrangian bound, we show that the optimal value can be

recovered based on it using the information relaxation approach.

A significant difference of the information relaxation and Lagrangian relaxation in

the weakly coupled dynamic program is that the strong duality exists in the former

relaxation (at least theoretically), while such a result does not hold in general for

the latter approach. The following theorem characterizes the sufficient and necessary

conditions such that V (x;α′) = LH(x0), where α′ is a stationary Markov policy and

H ∈ D. This result resembles Theorem 2.2 in [20] for the finite-horizon problem.

Theorem 6. Suppose H ∈ D and α′ : X → A is a stationary Markov policy such

that α′(x) ∈ Ā(x). A necessary and sufficient condition for V (x0;α′) = LH(x0) for

all x0 ∈ X is that

max
a∈Ā(T )

{
T∑
t=0

(
R(xt,at) + βE [H(xt+1)|xt,at]−H(xt)

)}

=
T∑
t=0

(
R(xt, α

′(xt)) + βE[H(xt+1)|xt, α′(xt)]−H(xt)
)

(24)
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for ω ∈ Ω almost surely, T = 0, 1, 2, · · · . In particular, by considering the case T = 0,

α′(x0) ∈ arg max
a0∈Ā(x0)

{R(x0,a0) + βE[H(x1)|x0,a0]}

for all x0 ∈ X .

Proof. Given α′ ∈ ĀF and x0 ∈ X ,

V (x0;α′) =H(x0) + E0 [IH(α′, ω, τ)]

≤H(x0) + E0

[
max
a∈Ā(τ)

{IH(a, ω, τ)}
]
, (25)

=H(x0) +
∞∑
T=0

P (τ = T ) · E0

[
max

a∈Ā(T )
{IH(a, ω, T )}

]
=LH(x0).

To show necessity, V (x;α′) = LH(x) means that the inequality (25) is an equality;

we also note that IH(a, ω, τ) ≤ maxa∈Ā(τ) {IH(a, ω, τ)} for each τ = 0, 1, 2, · · · and

ω ∈ Ω, which implies that for every T ∈ N, the equality (24) holds for ω ∈ Ω almost

surely, observing that P (τ = T ) > 0 for each T ∈ N.

The sufficiency is straightforward, since the condition (24) holds for ω ∈ Ω almost

surely and T ∈ N implies that (25) is an equality.

Theorem 6 characterizes the optimality conditions of a policy α′ to (11) and value

approximation H in (21) as a pair: the optimal policy to the inner optimization prob-

lem of any horizon T induced by the approximate value function is non-anticipative

and also stationary, though these decisions can be chosen to be anticipative and non-

stationary. In particular, the policy α′ should be the greedy policy induced by the

approximate value function H.

As a special case, if we choose Lagrangian bound as the approximate value, the

analogous optimality conditions developed in Theorem 2 of [1] can be recovered us-

ing the information relaxation argument. We review the sufficient and necessary

conditions therein and present them in parallel with the statement of Theorem 6.
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Lemma 4. Suppose λ′ ≥ 0 and α′ : X → A is a stationary Markov policy such that

α′(x) ∈ Ā(x). A necessary and sufficient condition for V (x0;α′) = Jλ′(x0) for all

x0 ∈ X is that for all x0 ∈ X , λ′> [b−B(x0, α
′(x0))] = 0 and

α′(x0) ∈ arg max
a0∈A(x0)

{
R(x0,a0) + λ′>[b−B(x0,a0)] + βE[Jλ′(x1)|x0,a0]

}
. (26)

We can use information relaxation to obtain the optimality conditions in Lemma

4. Note that for any λ ≥ 0 (let µ̃ = (λ, · · · ,λ)) and stationary Markov policy α′ (in

ĀF), we have

IJλ(α′, ω, τ) ≤ IJλ(α′, ω, τ ; µ̃) ≤ max
a∈A(τ)

{IJλ(a, ω, τ ; µ̃)}

for every ω and τ ; therefore, V (x0;α′) ≤ Jλ(x0) for all x0 ∈ X , according to Lemma

3 and Corollary 4(b).

If V (x0;α′) = Jλ(x0) for some α′ ∈ ĀF and λ ≥ 0, it implies

IJλ(α′, ω, τ) = IJλ(α′, ω, τ ; µ̃) = max
a∈A(τ)

{IJλ(a, ω, τ ; µ̃)} .

The above equality renders the conditions in Lemma 4 more stringent than those in

Theorem 6. Consider the special case τ = 0 and recall that λ> [b−B(x0, α(x0))] ≥ 0.

Then the first equality implies λ> [b−B(x0, α(x0))] = 0 and the second equality

implies (26).

3.3 Practical Information Relaxation Bound for Large-scale
Problems

The information relaxation approach has the desirable property that it generates

tighter upper bound based on the Lagrangian bound; however, computing the infor-

mation relaxation bound can be challenging in large-scale weakly coupled dynamic

program due to the intractable inner optimization problem. To be specific, the size

of this scenario-dependent optimization problem increases exponentially with respect

to the number of the projects or subproblems N , and also increases at least linearly
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in the horizon τ . Instead of computing the optimal value of the inner optimization

problem, we discuss how to derive its upper bound that is computationally tractable.

Therefore, this sub-optimal method still leads to a valid upper bound on the value

function, which is referred to as the “practical information relaxation bound”. We

will show its performance guarantee under certain conditions.

Throughout this section we assume that the approximate value function is of

the additively separable form H(x) = θ +
∑N

n=1 H
n(xn), where θ is a constant and

Hn : X n → R for n = 1, · · · , N . We denote by D◦ the space of additively separable

functions. By substituting H(·) in (20) by θ +
∑N

n=1 H
n(·), we can rewrite IH as

IH(a, ω, τ) =
N∑
n=1

[
τ∑
t=0

(
Rn(xnt , a

n
t ) + βE[Hn(xnt+1)|xnt , ant ]−Hn(xnt )

)]
−(τ+1)(1−β)θ.

(27)

3.3.1 Relaxation of the Inner Optimization Problem

Note that the scenario-dependent primal problem maxa∈Ā(τ){IH(a, ω, τ)} is also weak-

ly coupled due to the additively separable structure of (27) and the feasible control

set Ā(τ). To obtain an upper bound on its optimal value, we consider its Lagrangian

dual maxa∈A(τ){IH(a, ω, τ ;µ)}, where

IH(a, ω, τ ;µ) =
τ∑
t=0

(
R(xt, at) + µ>t [b−B(xt, at)] + βE[H(xt+1)|xt, at]−H(xt)

)
=

τ∑
t=0

[ N∑
n=1

(
Rn(xnt , a

n
t ) + βE[Hn(xnt+1)|xnt , ant ]−Hn(xnt )− µ>t Bn(xnt , a

n
t )
)

− (1− β)θ

]
+

τ∑
t=0

µ>t b

=
N∑
n=1

InHn(an, ω, τ ;µ)− (τ + 1)(1− β)θ +
τ∑
t=0

µ>t b, (28)

where InHn in (28) is defined as

InHn(an, ω, τ ;µ) ,
τ∑
t=0

(
Rn(xnt , a

n
t ) + βE[Hn(xnt+1)|xnt , ant ]−Hn(xnt )− µ>t Bn(xnt , a

n
t )
)

with an , (an0 , · · · , anτ ).
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Given any µ ≥ 0, it is straightforward to see

max
a∈Ā(τ)

IH(a, ω, τ) ≤ max
a∈A(τ)

IH(a, ω, τ ;µ).

According to (28), the Lagrangian dual function can be decomposed as

max
a∈A(τ)

{IH(a, ω, τ ;µ)} =
N∑
n=1

max
an∈An(τ)

{InHn(an, ω, τ ;µ)} − (τ + 1)(1− β)θ +
τ∑
t=0

µ>t b,

(29)

where An(τ) , An0 × · · · × Anτ with each Ant = An. The equality (29) implies that

the computational cost on solving maxa∈A(τ){IH(a, ω, τ ;µ)} is linear rather than ex-

ponential in the number of the subproblems N . Therefore, the Lagrangian relaxation

significantly reduces the computational complexity, and hence solving (29) to opti-

mality becomes potentially tractable.

It remains to find the optimal µ∗ that achieves the minimum of IH(a, ω, τ ;µ) over

µ ≥ 0. To this end, we list some properties of maxa∈A(τ) IH(a, ω, τ ;µ) as a function

of µ, based on properties of Lagrangian relaxation.

Lemma 5. Given IH(a, ω, τ ;µ) defined in (28), where ω ∈ Ω and τ ∈ N. Then

(a) maxa∈A(τ) IH(a, ω, τ ;µ) is convex in µ.

(b) Let a◦ = (a◦0, · · · ,a◦τ ) ∈ arg maxa∈A(τ) IH(a, ω, τ ;µ) for a fixed µ ≥ 0. Then

[b−B(x◦0,a
◦
0), · · · , b−B(x◦τ ,a

◦
τ )] ∈ ∂IH(a◦, ω, τ ;µ),

where {x◦t}τt=0 is the state trajectory under a◦ and ω, and ∂IH(a◦, ω, τ ;µ) is the

subdifferential of IH(a, ω, τ ;µ) with respect to µ at a = a◦.

(c) maxa∈Ā(τ) IH(a, ω, τ) ≤ minµ≥0 maxa∈A(τ) IH(a, ω, τ ;µ).

The duality gap in Lemma 5(c) is zero if the primal problem is convex and the

strong duality holds. Since the primal problem may lack the convex structure, we
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cannot expect zero duality gap in general. To find the optimal solution µ∗ to the

dual problem, Lemma 5 indicates that it is is convex in µ and has explicit subgra-

dient at every µ; therefore, we can employ the standard subgradient method or its

variant to locate the optimal solution efficiently. Due to Lemma 5(c), we refer to

minµ≥0 maxa∈A(τ) IH(a, ω, τ ;µ) as the “relaxed inner optimization problem”.

Based on the relaxed inner optimization problem we define a new operator L◦

that can be viewed as a “relaxed” version of L on the additively separable function

space D◦:

L◦H(x) , H(x) + E0

[
min
µ≥0

max
a∈A(τ)

IH(a, ω, τ ;µ)

]
. (30)

Due to the computational tractability of L◦H(x), it will be referred to as “prac-

tical information relaxation bound”. In the next theorem we formalize the bound

performance of L◦H(x), which naturally places an upper bound on the information

relaxation bound LH; moreover, the performance of L◦Jλ(x) is no worse than the

Lagrangian bound Jλ(x).

Theorem 7. Suppose H ∈ D◦. Then

(a) LH(x) ≤ L◦H(x) for all x ∈ X .

(b) Suppose H = Jλ is a Lagrangian bound for some λ ≥ 0. Then for every ω ∈ Ω

and τ ∈ N,

min
µ≥0

max
a∈A(τ)

{IJλ(a, ω, τ ;µ)} ≤ 0.

Consequently, L◦Jλ(x) ≤ Jλ(x) for all x ∈ X .

Proof. (a) This is because for every ω ∈ Ω and τ ∈ N,

max
a∈Ā(τ)

{IH(a, ω, τ)} ≤ min
µ≥0

max
a∈A(τ)

{IH(a, ω, τ ;µ)}.
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(b) Note that for any λ ≥ 0, Jλ(x0) = Jλ(x0) + E0

[
maxa∈A(τ){IJλ(a, ω, τ ; µ̃)}

]
,

where µ̃ = (λ,λ, · · · ,λ). According to Corollary 4, we have

0 = max
a∈A(τ)

{IJλ(a, ω, τ ; µ̃)} ≥ min
µ≥0

max
a∈A(τ)

{IJλ(a, ω, τ ;µ)}, (31)

for every ω ∈ Ω and τ ∈ N. Therefore,

Jλ(x0) ≥ Jλ(x0) + E0

[
min
µ≥0

max
a∈A(τ)

{IJλ(a, ω, τ ;µ)}
]

= L◦Jλ(x0).

The inequality (31) highlights the comparison between two scenario-based in-

ner optimization problems: the right term of the inequality in (31) allows µ =

(µ0, · · · ,µτ )
(
contained in

∑τ
t=0µ

>
t [b − B(xt, at)]

)
to be different across periods;

on the other hand, the left term forces µt to be constant (equal to λ) over time.

Therefore, L◦Jλ can be viewed as an intermediate relaxation between the “exact”

information relaxation LJλ and the Lagrangian relaxation Jλ. Another useful ob-

servation is that µ = (λ, · · · ,λ) can naturally serve as the initial point to solve

minµ≥0 maxa∈A(τ){IJλ(a, ω, τ ;µ)} via the subgradient method.

Note that the computational complexity of the inner optimization problem also

depends on the time horizon τ . In case of drawing a sample of τ that is a large

number (often occurs when β that is close to 1), we propose a simple remedy to ease

computation, i.e., to truncate the random horizon of the relaxed inner optimization

problem up to some deterministic time T ∈ N that is sufficiently large. This operation

reduces the computational cost in some extreme cases. The next result shows the

complexity versus quality trade-off in choosing an appropriate T : a greater truncated

horizon T implies a more difficult inner optimization problem but guarantees better

bound.

Corollary 8. Suppose T ∈ N. Define

L◦T Jλ(x) , Jλ(x) + E0

[
min
µ≥0

max
a∈A(τ)

IJλ(a, ω, τ ∧ T ;µ)

]
,

37



where τ ∧ T = min{τ, T }. Then

(a) L◦Jλ(x) ≤ L◦T +1J
λ(x) ≤ L◦T Jλ(x) ≤ Jλ(x).

(b) limT →∞ L◦T Jλ(x) = L◦Jλ(x).

Proof. Proof of Corollary 8 Note that by fixing ω ∈ Ω and τ ∈ N, the following

inequality holds for any T ∈ N:

min
µ≥0

max
a∈A(τ)

IJλ(a, ω, τ ;µ) ≤ min
µ≥0

max
a∈A(τ)

IJλ(a, ω, τ∧(T +1);µ) ≤ min
µ≥0

max
a∈A(τ)

IJλ(a, ω, τ∧T ;µ) ≤ 0.

Therefore, the inequality in (a) follows from the above inequality immediately, and

the equality in (b) is true due to the monotone convergence theorem.

3.3.2 The Gap between Two Information Relaxation Bounds

The practical information relaxation bound L◦H(x) effectively reduces the compu-

tational cost compared to deriving the exact information relaxation bound LH(x),

though yields a less tight bound. In this subsection we investigate the gap L◦H(x)−

LH(x), which is the average difference between the optimal values of the exact and

relaxed inner optimization problems, i.e.,

min
µ≥0

max
a∈A(τ)

IH(a, ω, τ ;µ)− max
a∈Ā(τ)

IH(a, ω, τ). (32)

[8] established the sufficient conditions such that the Lagrangian duality gap of the

weakly coupled deterministic optimization problem is uniformly bounded regardless

of the number of the subproblems (see Appendix A.4). We will show a similar result

for L◦H(x)− LH(x) assuming that H is additively separable.

We begin with an intuitive interpretation on the duality gap (32) by looking at

two equivalent linear program formulations of (29). We fix ω ∈ Ω and τ ∈ N, and

assume that the control space A is finite. For each project n = 1, · · · , N , we can then

enumerate all state trajectories of (xn1 , · · · , xnτ ) (denoted by (xn,nk1 , · · · , xn,nkτ ) with

index nk) associated with the control sequence (an1 , · · · , anτ ) ∈ An(τ) (denoted by
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an,nk). Noting that InH(an,nk , ω, τ ; 0) −
∑τ

t=0µ
>
t Bn

t (xn,nk , an,nk) = InH(an,nk , ω, τ ;µ).

Then (29) can be equivalently written as the following linear program,

min
{yn,µt}

N∑
n=1

yn +
τ∑
t=0

µ>t b− (τ + 1)(1− β)θ

s.t. yn ≥ InH(an,nk , ω, τ ; 0)−
τ∑
t=0

µ>t Bn(xn,nk , an,nk) for all nk, n = 1, · · · , N ;

(33)

µt ≥ 0, t = 0, · · · , τ.

We use pn,nk to denote the dual variable associated with (33), so the dual linear

program is

max
{pn,nk}

N∑
n=1

∑
nk

pn,nkInH(an,nk , ω, τ ; 0)− (τ + 1)(1− β)θ

s.t.
N∑
n=1

∑
nk

pn,nkBn(xn,nkt , an,nkt ) ≤ b, t = 1, · · · , τ ;

∑
nk

pn,nk = 1, n = 1, · · · , N ;

pn,nk ≥ 0 for all nk and n = 1, · · · , N,

where pn,nk can be interpreted as the probability assigned to the nk-th scenario associ-

ated with project n. Comparing the above linear program to (27), it can be seen that

the feasible control set Ā(τ) is enlarged to include all the randomized controls subject

to the linking constraint. Therefore, the relaxed inner optimization problem can be

viewed as the convexification of the exact inner optimization problem. In addition,

the optimal solution to the above linear programs also provides benchmark result on

(29), which may help to adjust the parameters used in the subgradient method.

To characterize the gap L◦H(x)−LH(x), we list some technical assumptions based

on Lemma 2 in Appendix A.4. In particular, we denote Bn(xnt , a
n
t ) equivalently as

Bn
t (an, ω), as xnt depends on an and ω.

Assumption 1. For every state x ∈ X , Ā(x) 6= φ.
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Assumption 2. Given ω ∈ Ω and T ∈ N, the sets

Sn , {(an,Bn
0 (an, ω), · · · ,Bn

T (an, ω), InH(an, ω, T ))|an ∈ An(T )}

are non-empty and compact for n = 1, · · · , N .

This assumption is automatically true if each An is finite, or An(T ) is compact

and each Bn
t (an, ω) and InH(an, ω, T ) are continuous functions on An(T ).

Assumption 3. Given ω ∈ Ω and T ∈ N. For every n = 1, · · · , N , we assume that

for any ãn ∈ conv(An(T )), there exists an ∈ An(T ) such that

Bn
t (an, ω) ≤ (čl Bn

t )(ãn, ω), t = 0, · · · , T, (34)

where čl Bn
t is the function whose component is the convex closure of the corresponding

component of Bn
t , i.e.,

čl Bn
t (ãn, ω) , inf

{∑
nk

pn,nkBn
t (an,nk , ω)

∣∣∣∣ãn =
∑
nk

pn,nkan,nk , an,nk ∈ An(T );

∑
nk

pn,nk = 1, pn,nk ≥ 0

}
.

Remark 2. All the sums in the definition of čl Bn
t (ãn, ·) are finite sums.

This assumption is not trivially satisfied, as (34) can be a vector inequality. How-

ever, we can directly verify Assumption 3 is true in several cases.

Case 1. Each |An| is finite, the number of the linking constraints L = 1 (therefore, each

inequality in (34) is a scalar inequality), and each Bn
t (an, ω) (i.e., Bn(xnt , a

n
t ))

only depends on ant . A typical example is the restless bandit problem, in which

the linking constraint is
∑N

n=1 Bn(xnt , a
n
t ) =

∑N
n=1 a

n
t = 1 with ant ∈ {0, 1}.

Case 2. IfAn(T ) is convex, and the components of each Bn
t (an, ω) are convex overAn(T )

for t = 0, · · · , T . Then conv(An(T )) = An(T ), and (čl Bn
t )(ãn, ω) = Bn

t (ãn, ω).

We present our main result on the gap L◦H(x)− LH(x).
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Theorem 9. Suppose that H is of the additively separable form H(x) = θ+
∑N

n=1H
n(xn),

and Assumptions 1-3 hold for every ω ∈ Ω and T ∈ N. Then for all x ∈ X ,

L◦H(x)− LH(x) ≤ (L− 1)β + L+ 1

(1− β)2
max

n=1,··· ,N
Γn, (35)

where

Γn = sup
xn0∈Xn,an0∈An

{Rn(xn0 , a
n
0 ) + βE[Hn(xn1 )|xn0 , an0 ]−Hn(xn0 )}

− inf
xn0∈Xn,an0∈An

{Rn(xn0 , a
n
0 ) + βE[Hn(xn1 )|xn0 , an0 ]−Hn(xn0 )}.

The proof of Theorem 9 is in Appendix A.4. Theorem 9 not only characterizes the

gap between L◦H(x) and LH(x), but also allows controlling this gap by restricting

the feasible region of {Hn(·)}Nn=1. To be specific, we can add to the linear program

(16) or (94) the following constraints on the Bellman error of each subproblem (i.e.,

Rn(xn0 , a
n
0 ) + βE[Hn(xn1 )|xn0 , an0 ]−Hn(xn0 )):

Γn,2 ≥ Rn(xn0 , a
n
0 ) + βE[Hn(xn1 )|xn0 , an0 ]−Hn(xn0 ) ≥ −Γn,1,

for all (xn0 , a
n
0 ) with an0 ∈ An(xn0 ), where Γn,1 and Γn,2 are two positive numbers for

n = 1, · · · , N . Suppose that there is a feasible solution to the linear program (16) or

(94), then L◦H(x)−LH(x) can be bounded by (L−1)β+L+1
(1−β)2 maxn=1,··· ,N{Γn,1 + Γn,2}.

Note that the greater Γn,1 and Γn,2 are, the larger the feasible region of {Hn(·)}Nn=1

is, which implies a better bound Jλ(x) or HLP (x); they may be used to generate

tighter bounds LJλ(x) or LHLP (x) according to Theorem 5. As a trade-off, the gap

between the practical information relaxation bound L◦H(x) and the exact LH(x)

may be enlarged.

As a corollary, Theorem 9 indicates that the gap L◦H(x)−LH(x) has a uniform

bound in N , if the Bellman errors of individual subproblems (and hence Γn) are

uniformly bounded for all state-action pairs {(xn0 , an0 )}. Therefore, the relative gap

L◦H(x)−LH(x)
N

vanishes as N goes to infinity. We provide an instance in which {Γn}Nn=1

are uniformly bounded with mild conditions on rewards and linking constraints.
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Corollary 10.

(a) If {Γn}Nn=1 are uniformly bounded for all subproblems, then L◦H(x) − LH(x) is

also uniformly bounded with respect to the number of subproblems N .

(b) Let H(x) = Jλ(x) for some λ ≥ 0. Suppose there exists a constant C > 0 such that

{|Rn|, |Rn − λ>Bn|}Nn=1 are uniformly bounded by C. Then {Γn}Nn=1 are uniformly

bounded by 4C
1−β .

Proof. (a) The result directly follows from Theorem 9.

(b) Since |Rn − λ>Bn| ≤ C, it can be seen from (15) that {Jn,λ}Nn=1 are uniformly

bounded by C
1−β . Therefore, for all (xn0 , a

n
0 ) with an0 ∈ An and n = 1, · · · , N ,

2C

1− β
≥ Rn(xn0 , a

n
0 ) + βE[Jλ,n(xn1 )|xn0 , an0 ]− Jλ,n(xn0 ) ≥ − 2C

1− β
,

i.e., {Γn}Nn=1 are uniformly bounded by 4C
1−β .

In other words, if the optimal value is proportional to the number of the subprob-

lems, i.e., NC1 ≤ V ≤ NC2 for some C1, C2 > 0 (e.g., C1(1− β) ≤ |Rn| ≤ C2(1− β)

for all n = 1 · · · , N), then the relative gap L◦H(x)−V (x)
V (x)

converges to the relative gap

LH(x)−V (x)
V (x)

as the number of subproblems N increases.

Remark 3. All results presented in Section 3.3 have counterparts in the finite-horizon

setting; we refer the readers to Appendix A.5 for details.

3.4 Numerical Examples

To investigate the performance of the information relaxation bounds, we test our

method in both discrete-state and continuous-state WCDPs. We compare some

heuristic policies with both the Lagrangian bound and the practical information re-

laxation bound.
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3.4.1 Dynamic Product Promotion

We consider dynamic promotion management of perishable items in retail stores or su-

permarkets following [51]. By dynamically allocating products of different categories

to a limited promotion space, these products are more likely to attract customers and

bring in more revenues to the retailers. The limited promotion space may refer to

the promotion counters, the shelves close to the cashier, or the space available on the

advertisement of weekly specials and sales. A perishable item is a product unit that

worsens in quality over time and can no longer be sold at a deadline (e.g., the “best

by” date). A profit is obtained by the retailer if an item is sold before its deadline;

otherwise, a loss is received.

Since perishable products must reach consumers in a timely manner, at each time

period the retailer considers selecting a collection of products to the promotion space,

which changes the probability the chosen product is sold. Such a selection is subject

to the capacity of the promotion space with the goal of maximizing the expected

profits in the long run. This problem can be formulated as a weakly coupled dynamic

problem with knapsack constraints, and can be generalized to a variety of dynamic

resource allocation problems.

3.4.1.1 MDP Model

Our model generalizes the model in [51] in that we assume the products will be re-

stocked and the selection of products is under multi-dimensional knapsack constraints.

Suppose There are N items. The n-th item has the deadline Sn. The state space of

this item is described by X n = {0}∪Sn, where state xn ∈ Sn = {1, 2, · · · , Sn} means

that there are xn remaining periods to deadline (i.e., the item does not perished) and

it is not sold, while state 0 means this product needs to be reordered either because

it has perished or has been sold. One feature of our model is that we assume the

retailer will replenish one item when it is sold or becomes perished, while there is no
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act of reordering in the model of [51].

At each period, the retailer decides whether to include the n-th item in the pro-

motion space (an = 1) or not (an = 0). Therefore, the action space for item n is

An(xn) = {0, 1} if xn ∈ Sn; otherwise, An(0) = {0}.

The retailer’s decision results in a different probability ξnan that the n-th item can

be sold during this period.

Pn(xnt+1 = s− 1|xnt = s, ant ) = 1− ξnant , Pn(xnt+1 = 0|xnt = s, ant ) = ξnant , if s ∈ Sn;

Pn(xnt+1 = Sn|xnt = 0, ant ) = 1.

In particular, the transition from state 1 to state 0 is not influenced by the action an1

(though the expected revenue is influenced as explained later). When the n-th item

is sold or becomes perished, the retailer reorders this item immediately and the new

products will arrive the next day in state Sn.

If the item n is sold before the deadline, it yields a profit margin rn > 0. Otherwise,

a loss ϕnrn with ϕn ≤ 0 is obtained. Therefore, the expected one-period revenue

is Rn(xn, an) = rnξnan for xn ∈ Sn/{1}, Rn(1, an) = rn(ξnan + ϕn(1 − ξnan)), and

Rn(0, 0) = 0.

Suppose that the promotion space is available with capacity of W0 ≥ 1, and each

item n occupies wn units of promotion space. So the retailer’s decision is subject

to the constraint
∑N

n=1 w
nan ≤ W0. In practice, the retailer may promote at most a

certain number of products among the same category or brand per period by allowing

a limited capacity of the promotion space. To this end, we can impose extra linking

constraints such as
∑

n∈Nk w
nan ≤ Wk with Nk ⊆ N0 = {1, 2, · · · , N}, where Wk ∈

[0,W0] for k = 1, · · · , K. Therefore, the resource constraints can be represented as

Āt =

{
at ∈ {0, 1}N

∣∣∣∣ant ∈ An(xnt ),
∑
n∈Nk

wnant ≤ Wk for k = 0, 1, · · · , K

}
.

Under the multiple capacity constraints, the objective of the retailer is to sequen-

tially select certain products at each period in order to maximize the discounted
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Table 1: Parameter Set
Category 1 Category 2 Category 3
1 ≤ n ≤ N

3
N
3

+ 1 ≤ n ≤ 2N
3

2N
3

+ 1 ≤ n ≤ N
Sn 8 10 12
wn 1 2 4
rn [2.5, 3.5] [4.5, 5.5] [7.5, 8.5]
φn −1 −2 −4
ξn0 [0.10, 0.80] [0.10, 0.80] [0.10, 0.80]
ξn1 [ξn0 + 0.05, 0.90] [ξn0 + 0.05, 0.90] [ξn0 + 0.05, 0.90]

expected reward:

V (x0) = max
a0∈Ā0

{R(x0, a0) + βE [V (x1)|x0, a0]} , (36)

where R(x0, a0) =
∑N

n=1 R
n(x0, a0).

3.4.1.2 Heuristics and Bounds

We consider a 4-dimensional knapsack constraints (K = 3) by divide all N perishable

items into three categories and the items in the same category share similar property.

The parameter values are listed in Table 1 including the deadline Sn, the size wn, the

profit margin rn, the loss φn, and the transition probabilities ξn0 and ξn1 . For instance,

the item in the first category has Sn = 8, wn = 1, φn = −1; rn is sampled from

the uniform distribution on [2.5, 3.5], and ξn0 and ξn1 are sampled from the uniform

distribution [0.10, 0.80] and [ξn0 + 0.05, 0.90] (to satisfy ξn1 > ξn0 ), respectively.

The set of capacities on the promotion space are chosen as (W0,W1,W2,W3) =

(10, 4, 6, 4): there is a total capacity of 10 units for all the items, while the capacity of

each of the category is upper bounded by 4 units, 6 units, and 4 units, respectively,

i.e., at most 4 items from category one, 3 items from category two, and 1 item from

category three can be promoted. We then solve the problem with the initial condition

x0 = (S1, S2, · · · , SN)> under different discount factors β = 0.9, 0.95, and 0.99, and

different number of subproblems N = 12 and 24.

We first solve the Lagrangian bound Jλ∗(x0) via the linear program (16), where

υ(·) has all probability mass on the initial x0. In all cases, we observe that the only
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non-zero Lagrangian multipliers are associated with the total capacity constraint (i.e.,

W0) and the capacity constraint on the third category (i.e., W3) of the promotion s-

pace. As we increase W3 from 4 to 8 and keep other Wk (k = 0, 1, 2) unchanged,

the only non-zero Lagrangian multiplier is associated with the total capacity con-

straint W0, meaning that the total capacity is the main constraint on the promo-

tion space. Therefore, by considering different capacity constraints (W0) = (10)

and (W0,W1,W2,W3) = (10, 4, 6, 4), respectively, we can derive two upper bounds

“Lag. Bound 1” and “Lag. Bound 2” on the optimal value V0; “Lag. Bound 1”

can be viewed as the Lagrangian relaxation bound that ignores the respective capac-

ity constraints on three categories, i.e, (W1,W2,W3) = (4, 6, 8), which is implied by

the values of the Lagrangian multipliers. In particular, both “Lag. Bound 1” and

“Lag. Bound 2” are supersolutions to (36) under the capacity constraints parameters

(W0,W1,W2,W3) = (10, 4, 6, 4). Given these two different approximate values, we

compute lower bounds from the one-step greedy policies, as well as upper bounds

from the practical information relaxation approach on the optimal value V0:

- Lag. Policy 1/Lag. Policy 2: By generating 400 random horizons τ and sce-

narios ω, we estimate V (x0;α) in (19) by applying the one-step greedy policy

α,

α(xt) ∈ arg max
at∈Āt

{
R(xt, at) + βE

[
Jλ∗(xt+1)|xt, at

]}
,

where Jλ∗ is “Lag. Bound 1”/“Lag. Bound 2”. The average of the sample

rewards provides a lower bound on V0.

- Info. Bound 1/Info. Bound 2: We compute the practical information relax-

ation bound L◦Jλ∗(x0) in (30) based on the same 400 random horizons τ and

scenarios ω and solve the associated relaxed inner optimization problems using

the subgradient method, where Jλ∗ is “Lag. Bound 1”/“Lag. Bound 2”. The

average of these optimal values provides an upper bound on V0.

46



Table 2: Bound computation times (in seconds)
LB UB UB LB UB UB

N β Lag. Bound 1 Lag. Bound 2 Lag. Policy 1 Lag. Policy 2 Info. Bound 1 Info . Bound 2
12 0.90 0.8 2.1 382.1 385.3 1447.2 1482.3
12 0.95 0.8 2.0 840.6 838.3 3793.6 3821.3
12 0.99 0.8 2.1 426.3 424.7 15190.2 15810.4
24 0.90 1.0 2.9 960.5 962.3 2912.7 2925.6
24 0.95 1.0 2.5 165.3 165.7 5527.2 5549.3
24 0.99 1.0 2.5 605.4 603.2 29362.5 29490.1

3.4.1.3 Numerical Results

In Table 2 we list the running time of the lower and upper bounds on a laptop with

1.70GHz Intel Core(TM)i5 with 4GB RAM using Matlab2013b. The running time (in

seconds) of solving the Lagrangian relaxation bound by CVX (see [42]) is reported;

the total running time (in seconds) of other bounds is calculated over 400 scenarios

. It can be observed that more running time is needed in problems with a larger

discount factor β, since a larger β implies a longer horizon with higher probability. To

compute the information relaxation bound, we use the subgradient method to solve

the relaxed inner optimization problem with at most 2000 iterations, or until the

norm of the subgradient is exactly zero. To save computational time, we truncate the

random time horizon τ up to T = 120. In practice, The actual number of iterations

mainly depends on the realization of τ : the greater τ is, generally more iterations are

needed to attain convergence in the subgradient method. We observe that the actual

computational time of two lower bounds and upper bounds are roughly proportional

to 1/(1− β), which is the average number of horizons under the discount factor β.

In Table 3 we list the numerical results and the corresponding parameters including

the discount factor β and N . The estimated bounds are reported with standard

errors in parentheses. To facilitate the comparison, we also report the gaps between

two upper bounds(“UB”) and one lower bound(“LB”). The relative gaps are also

computed as the percentage of the Lagrangian bound and reported in parentheses

following the associated gaps.
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Table 3: Bounds on dynamic product promotion
LB UB UB LB UB UB

N β Lag. Policy 1 Lag. Bound 1 Info. Bound 1 Lag. Policy 2 Lag. Bound 2 Info . Bound 2
12 0.90 220.1(0.41) 232.5 222.9 (0.32) 220.3(0.13) 224.0 221.2(0.10)

Gap (%) 12.4 (5.3%) 1.8 (0.8%) 3.7 (1.7%) 0.9 (0.4%)
12 0.95 429.6(1.25) 456.4 435.2(0.98) 431.1(0.36) 437.6 432.6(0.22)

Gap (%) 26.8 (5.9%) 5.6 (1.2%) 6.5 (1.5%) 1.5 (0.3%)
12 0.99 2125.5(3.26) 2247.9 2151.3 (2.63) 2121.7(0.97) 2144.4 2129.4(0.68)

Gap (%) 122.4 (5.4%) 25.8 (1.1%) 22.7 (1.1%) 7.7 (0.4%)
24 0.90 366.0(0.19) 378.9 368.6(0.16) 366.5(0.06) 369.6 367.9(0.03)

Gap (%) 12.9 (3.5%) 2.6 (0.7%) 3.1 (0.8%) 1.4 (0.4%)
24 0.95 721.7(0.40) 745.5 727.1(0.22) 720.9(0.08) 725.7 722.9(0.05)

Gap (%) 23.8 (3.2%) 5.4 (0.7%) 4.8 (0.7%) 2.0 (0.2%)
24 0.99 3559.3(2.92) 3676.0 3575.5(2.43) 3554.4(0.64) 3572.9 3564.5(0.32)

Gap (%) 116.7 (3.2%) 16.2 (0.4%) 18.5 (0.5%) 10.1 (0.3%)

In all the cases “Lag. Bound 2” are superior to “Lag. Bound 1” as an upper

bound on the optimal value V0, since “Lag. Bound 1” corresponds to the Lagrangian

relaxation with only a total capacity constraint on the promotion space. We use these

two approximate values to derive respective one-step greedy policies and generate

lower bounds based on the same set of scenarios. The relative gaps between “Lag.

Bound 1” and “Lag. Policy 1” are comparatively larger (ranging from 3.2% to 5.9%),

while the relative gaps between “Lag. Bound 2” and “Lag. Policy 2” are greatly

reduced (ranging from 0.5% to 1.7%). It is expected that “Lag. Policy 2” has an

advantage over “Lag. Policy 1” in terms of the standard errors, since “Lag. Bound

2” is a better approximate value than “Lag. Bound 1”; therefore, we can obtain

an accurate lower bound with a relatively smaller number of scenarios using the

approximate value “Lag. Bound 2”.

The practical information relaxations bounds “Info. Bound 1” and “Info. Bound

2” improve the quality of the upper bounds “Lag. Bound 1” and “Lag. Bound 2”,

respectively. We observe that in all scenarios the optimal value of the inner optimiza-

tion problem is no greater than zero; the optimal value generally becomes farther

away from zero as the random horizon τ increases. “Info. Bound 1” are quite good

upper bounds in terms of the relative gaps (ranging from 0.4% to 1.2%) considering

that it is derived from the less satisfying approximate value “Lag. Bound 1” (with
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relative gaps ranging from 3.2% to 5.9%). This great improvement is because all

four capacity constraints are incorporated in the relaxed inner optimization problem-

s. Comparatively, “Info. Bound 2” has a moderate improvement over “Lag. Bound

2” (e.g., the relative reduced gap is reduced from around 1.1% to 0.4% when N = 12),

as “Lag. Bound 2” is already a good upper bound. In problems with larger discount

factors (e.g., β = 0.99), “Lag. Bound 2” can be even better than “Info. Bound

1”; this may be because the truncated horizon has stronger effects in problems with

large discount factor, and a longer horizon τ worsens the performance of practical

information relaxation bounds, as the relaxation of the inner optimization problem

tends to be weaker with increasing horizons.

In all cases, “Info. Bound 2” that derived upon the better approximate value

“Lag. Bound 2” are tighter than “Info. Bound 1”. Another advantage of having a

good approximate value is reflected in the standard errors of its induced information

relaxation bounds: “Info. Bound 2” always has a smaller standard error than “Info.

Bound 1”, since there is not much space for “Info. Bound 2” to improve upon “Lag.

Bound 2”. This observation is consistent to the comparison of standard errors of two

lower bounds. To conclude, information relaxation approach strengthens the upper

bound performance and shows that the Lagrangian relaxation-based greedy policy is

very close to optimal. On the other hand, the choice of the approximate values can

be critical in the information relaxation approach to generate a tight and accurate

dual bound.

3.4.2 Linear Quadratic Control with Nonconvex linking constraint

We next consider a finite horizon linear quadratic control (LQC) problem with a non-

convex linking constraint. We refer the readers to [47] on the information relaxation

approach in (unconstrained) finite horizon LQC. Let xt ∈ Xt = RN and at ∈ At = RN

denote the state and the action at time t, respectively. The state equation is described
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by

xt+1 = Atxt +Btat + wt+1, t = 0, · · · , T − 1, (37)

where At, Bt are diagonal matrices for t = 0, · · · , T − 1, and w′ts are N-dimensional

zero-mean random vectors with finite second moments. In particular, cov(wt) = Σt is

a diagonal matrix for t = 1, · · · , T . We denote by F the natural filtration generated

by {w0, · · · ,wT−1}.

The objective is to minimize the expected cost

U0(x0) = min
α∈ĀF(T )

E

[
T−1∑
t=0

a>t R̃tat + x>TQTxT

∣∣∣∣x0

]
, (38)

where each R̃t and QT are diagonal positive definite matrices, and ĀF(T ) is the set of

non-anticipative policies α, where α selects a = (a0, a1, · · · , aT−1) over time such that

at ∈ Āt = {at ∈ RN |B̃(at) ,
∑N

n=1(ant )2 ≥ b} with b ∈ R+ for each t = 0, 1, · · · , T−1.

The system (37)-(38) is weakly-coupled, since At, Bt, Σt, R̃t, and QT are all diagonal

matrices and the linking constraint at time t is B̃(at) ≥ b. It is simple to verify that

the value function U0 is well defined for all b ≥ 0.

Note that the control set Āt is nonconvex, so the optimal policy for (38) cannot be

solved to optimality. Instead we consider a simple heuristic. At each period t we com-

pute the one-step greedy policy induced by the value function to the unconstrained

problem: we apply such an action if it is already feasible subject to the linking con-

straint; otherwise, we project it onto the sphere ∂Āt , {a ∈ RN |B̃(a) = b}, and use

the projection as the action at time t. We call this heuristic “projection policy”. The

performance of this policy provides an upper bound on (38) (since it is a minimization

problem), which will be referred to as “Projection Policy” in Table 4.

To derive a lower bound on U0 we first consider the Lagrangian relaxation of (38),
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which turns out to be an unconstrained LQC problem:

Jλ0 (x0) , min
α∈AF(T )

E

[
T−1∑
t=0

a>t R̃tat + x>TQTxT −
T−1∑
t=0

λt ·
[
B̃(at)− b

] ∣∣∣∣x0

]

= min
α∈AF(T )

E

[
T−1∑
t=0

a>t

(
R̃t − λt · IN

)
at + x>TQTxT

∣∣∣∣x0

]
+

T−1∑
t=0

λ>t b,

where each λt is a scalar and λ = (λ0, · · · , λT−1) ≥ 0, and IN is the N-dimensional

identity matrix. Noting that Jλ0 (x0) admits a closed form solution that is quadratic

in x0, provided that every R̃t − λt · IN is positive definite:

Jλt (x0) = x>t Ktxt +
T−1∑
s=t

trace(Ks+1Σs+1) +
T−1∑
s=t

λs · b, t = 0, · · · , T.

where K0 is obtained by the Riccati equation KT = QT , and

Kt = A′t

(
Kt+1 −Kt+1Bt

(
B′tKt+1Bt + (R̃t − λt · IN)

)−1

B′tKt+1

)
At, t = T−1, · · · , 0.

We can use stochastic subgradient method to derive a tightest Lagrangian bound

on the domain S , {λ ≥ 0|R̃t − λt · IN � 0, t = 0, · · · , T − 1}. Due to the restricted

range, the Lagrangian multiplier λ may not be optimal, but Jλ0 is still a valid lower

bound on U0.

Based on the Lagrangian bounds {Jλt }Tt=1 we can derive the information relaxation

bound through (10) in Appendix A.5 by choosing Ht = Jλt (xt), that is,

E0

[
max
µ≥0

min
a∈A(T )

{
x>TQTxT +

T−1∑
t=0

a>t R̃tat + µt · (bt −Bt(xt, at))

+ E[Jλt+1(xt+1)|xt, at]− Jλt+1(xt+1)
}]
, (39)

where µ = (µ0, · · · , µT−1), and

E[Jλt+1(xt+1)|xt, at]− Jλt+1(xt+1)

=− 2(Atxt +Btat)
>Kt+1wt+1 −w′t+1Kt+1wt+1 + trace(Kt+1Σt+1).
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Restricting µ in S, the optimization problem inside the conditional expectation in

(39) is

max
µ∈S

min
a∈A(T )

{
x>TQTxT +

T−1∑
t=0

a>t (R̃t − µt · IN)at − 2(Atxt +Btat)
>Kt+1wt+1

−w′t+1Kt+1wt+1 + trace(Kt+1Σt+1)

}
(40)

subject to the state dynamics (37). Then the minimization problem in (40) remains

a standard deterministic LQ problem, and can be solved efficiently.

Table 4: LQ problem with Nonconvex linking constraint
Proj. Policy Unconstrained Lag. Bound Info. Relaxation Duality Gap

N b T Value S.E. Value Value Value S.E. 1 2

10 5 10 61.4693 0.211 34.7883 59.8636 60.0606 0.0028 2.29% 2.01%
20 5 10 88.0457 0.242 71.2836 87.2886 87.6371 0.0085 0.46% 0.25%
50 5 10 189.1857 0.099 182.7984 188.7715 189.0481 0.0039 0.07% 0.02%
100 5 10 364.2132 0.023 361.7224 364.1160 364.1729 0.0004 0.01% 0.00%
10 10 10 104.6974 0.306 34.7883 103.6067 103.7460 0.0026 0.91% 0.79%
20 10 10 123.4789 0.444 71.2836 120.7735 121.5403 0.0090 1.57% 1.13%
50 10 10 209.3848 0.099 182.7984 208.8579 209.1757 0.0046 0.10% 0.04%
100 10 10 374.4066 0.193 361.7224 373.7121 374.2227 0.0118 0.05% 0.01%

In our numerical experiments we set At = Bt = R̃t = IN for t = 0, · · · , T − 1, and

each diagonal entry of QT is sampled from the uniform distribution on [1, 2]. We set

the initial point x0 = (1, 1, · · · , 1)>. Here is the procedure to get the bounds in Table

4:

- “Proj. Policy”: We generate 10000 sample paths w , (w0, · · · ,wT−1) and

apply the projection policy to compute the sample cost. To reduce the variance,

we use the unconstrained problem as a control variate. The average of the

adjusted sample costs provides an upper bound on U0.

- “Unconstrained”: The value function to the problem (38) without the linking

constraint, i.e., Āt = RN . It can be seen that the “Unconstrained” is equal to

J0, which is a lower bound on U0.
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- “Lag. Bound”: we use (stochastic) subgradient method and run 500 iterations

to compute the tightest Lagrangian bound Jλ
∗

0 (x0). We restrict λ in the range

S ′ = {λ ≥ 0|R̃t−λt ·IN � 0.001·IN , t = 0, · · · , T−1} ⊆ S (therefore, R̃t−λt ·IN

is positive definite) to ease the optimization. In our numerical experiments the

stochastic gradient with respect to λ is very close to zero, which implies that

our Lagrangian bound is already near optimal.

- “Info. Relaxation”: We generate another 100 sample paths of w. Based on these

sample paths and the Lagrangian bound Jλ
∗

0 , we compute the relaxed inner

optimization problem (40) (also replace S by S ′) using subgradient method

that runs at most 80 iterations or until the norm of the subgradient is under

the tolerance level (we set it to be 0.001). For most scenarios, this relaxed inner

optimization problem can be solved to optimality after around 40 iterations.

- “Duality Gap”: We report the relative gaps between the upper bounds and the

lower bound as the percentage of the Lagrangian bound. “Duality Gap 1” is

the relative gap between “Lag. Bound” and “Proj. Policy”, and “Duality Gap

2” is the relative gap between “Info. Relaxation” and “Proj. Policy”.

Observing the small gaps between “Proj. Policy” and “Lag. Bound”, it is a little

surprising to see the excellent performance of the simple projection policy. We also

note that this simple policy is not trivial by comparing “Proj. Policy” to “Uncon-

strained”: the weak lower bound of “Unconstrained” indicates that the “projection”

should occur in some scenarios if not many. The “Info. Relaxation” improves the

quality of the “Lag. Bound”, where the duality gaps also behave quite consistently

as those in the dynamic production promotion problem. The “Info. Relaxation”

bound shows that the projection policy becomes closer to optimal as N increases.

In this example, the linking constraint is a non-decreasing function in the number of

subproblems. Therefore, the linking constraint becomes weaker as N increases, i.e.,
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the action derived from the unconstrained problem becomes unlikely to violate the

linking constraint. As we observe, the optimal value to the constrained problem gets

closer to the unconstrained one with increasing N .

3.5 Conclusion

Lagrangian relaxation and information relaxation are developed to tackle the budget

and non-anticipativity constraints that exist universally in general stochastic dynamic

programs. The attraction of studying the interaction of these relaxations particularly

in the setting of weakly coupled dynamic programs is due to the decomposed struc-

ture of the Lagrangian bound, as well as the theoretical strong duality guaranteed

by the information relaxation. We show that a tighter dual bound, compared with

the Lagrangian bound, can be derived by incorporating it into the information relax-

ation approach. For large-scale problem, we further develop a computational method

to obtain the practical information relaxation bound, which implies an intermediate

relaxation between the Lagrangian and exact information relaxations. The computa-

tion of the practical information relaxation bound is easy to implement, and requires

little structure of the linking constraints. We may apply this computational method

to the case in which both “easy” and “complicated” linking constraints exist: to

balance the complexity and quality of the dual bound, we may choose to dualize

the “complicated” constraints in Lagrangian relaxation and incorporating the “easy”

constraints in computing the information relaxation bounds.
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CHAPTER IV

DUAL FORMULATION OF CONTROLLED MARKOV

DIFFUSIONS

The goal of this chapter is to extend the information relaxation-based dual represen-

tation of MDPs to controlled Markov diffusions, which are typical sequential decision

making problems in continuous-time setting. The Hamilton-Jacobi-Bellman (HJB)

equation, a standard approach solving controlled Markov diffusions, rarely allows a

closed-form solution, especially when the state space is of high dimension or there

are constraints imposed on the control variable. There are several numerical methods

based on different approximation schemes: [56] considered the Markov chain approx-

imation method by discretizing the HJB equation; [43] extended the approximate

linear programming method to controlled Markov diffusions. Another numerical ap-

proach is to discretize the time space, which reduces the original continuous-time

problems to MDPs and the technique of approximate dynamic programming can be

applied.

In this chapter we intend to answer the following questions.

• Can we establish a similar framework of dual formulation for controlled Markov

diffusions based on information relaxation as that for MDPs?

• If the answer is yes, what is the form of the optimal penalty in the setting of

controlled Markov diffusions?

• If certain optimal penalty exists, does its structure imply any computational

advantage in deriving dual bounds on the optimal value of practical problems?

The answer to the first question is yes, at least for a wide class of controlled Markov
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diffusions. To fully answer all the questions we present the information relaxation-

based dual formulation of controlled Markov diffusions based on the technical ma-

chinery “anticipating stochastic calculus” (see, e.g., [68, 67]). We establish the weak

duality, strong duality and complementary slackness results in a parallel way as those

in the dual formulation of MDPs. We investigate one type of optimal penalties, i.e.,

the so-called “value function-based penalty”, to answer the second question. One key

feature of the value function-based optimal penalty is that it can be written compact-

ly as an Ito stochastic integral under the natural filtration generated by the Brownian

motions. This compact expression potentially enables us to design sub-optimal penal-

ties in simple forms and also facilitates the computation of the dual bound. Then

we emphasize on the computational aspect using the value function-based optimal

penalty so as to answer the third question. A direct application is illustrated by a

classic dynamic portfolio choice problem with predictable returns and intermediate

consumptions: we consider the numerical solution to a discrete-time model that is dis-

cretized from a continuous-time model; an effective class of penalties that are easy to

compute is proposed to derive dual bounds on the optimal value of the discrete-time

model.

It turns out that [28, 27, 26] have pioneered a series of related work for con-

trolled Markov diffusions. They also adopted the approach of relaxing the future

information and penalizing. In particular, [28] proposed a Lagrangian approach for

penalization, where the Lagrangian term plays essentially the same role as a penalty

in our dual framework; in addition, this Lagrangian term has a similar flavor as the

gradient-based penalty proposed by [17] for MDPs in terms of their linear forms in

actions. The main difference of the work [28] from ours is that we propose a general

framework that may incorporate their Lagrangian approach as a special case; the

optimal penalty we develop in this chapter is value function-based, which differs from

their proposed Lagrangian approach. In addition, their work is purely theoretical and
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does not suggest any computational method. In contrast, we provide an example to

demonstrate the practical use of the value function-based penalty.

Another closely-related literature focuses on the dual representation of the Amer-

ican option pricing problem (that is essentially an optimal stopping problem) [76, 45,

3]. In particular, the structure of the optimal martingale (i.e., the optimal penalty)

under the diffusion process is investigated by [7, 91], which leads to practical algo-

rithms for fast computation of tight upper bounds on the American option prices.

The form of the optimal martingale also reflects its inherent relationship with the

value function-based optimal penalty in the controlled diffusion setting.

We summarize our contributions as follows:

• We establish a dual representation of controlled Markov diffusions based on

information relaxation. We also explore the structure of the optimal penalty

and expose the connection between MDPs and controlled Markov diffusions.

• Based on the result of the dual representation of controlled Markov diffusions,

we demonstrate its practical use in a dynamic portfolio choice problem. In our

numerical experiments the upper bounds on the optimal value show that our

proposed penalties are near optimal, comparing with the lower bounds induced

by sub-optimal policies for the same problem.

The rest of this chapter is organized as follows. In Section 4.1, we derive the dual

formulation of controlled Markov diffusions. In Section 4.2, we illustrate the dual

approach and carry out numerical studies in a dynamic portfolio choice problem.

Finally, we conclude with future directions in Section 4.3. We put some of the proofs

and discussion of the connection between [7, 91] and our work in Appendix.
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4.1 Controlled Markov Diffusion and Its Dual Representa-
tion

We begin with a basic setup of the controlled Markov diffusion and its associated

Hamilton-Jacobi-Bellman equation in Section 4.1.1. We then develop the dual rep-

resentation of controlled Markov diffusions and present the main results in Section

4.1.2.

4.1.1 Controlled Markov Diffusions and Hamilton-Jacobi-Bellman Equa-
tion

This subsection is concerned with the control of Markov diffusion processes. Applying

the Bellman’s principle of dynamic programming leads to a second-order nonlinear

partial differential equation, which is referred to as the Hamilton-Jacobi-Bellman

equation. For a comprehensive treatment on this topic we refer the readers to [35].

Let us consider a Rn-valued controlled Markov diffusion process (xt)0≤t≤T driven

by an m-dimensional Brownian motion (wt)0≤t≤T on a probability space (Ω,F ,P),

following the stochastic differential equation (SDE):

dxt = b(t, xt, ut)dt+ σ(t, xt)dwt, 0 ≤ t ≤ T, (41)

where the control ut takes value in a compact set U ⊂ Rdu (du ∈ N), while b and σ

are functions b : [0, T ] × Rn × U → Rn and σ : [0, T ] × Rn → Rn×m. The natural

(augmented) filtration generated by the Brownian motions is denoted by F = {Ft, 0 ≤

t ≤ T} with F = FT . In the following ‖ · ‖ denotes the Euclidean norm.

A control strategy u at time t is defined as a stochastic process u : [t, T ]×Ω→ U .

Given an outcome in Ω (i.e., a realization of w , (ws)t≤s≤T ), the decision maker

chooses the control us ∈ U at time s ∈ [t, T ].

Definition 1. A control strategy u : [t, T ]×Ω→ U is called an admissible strategy at

time t if u is F-progressively measurable (therefore, u(s, ·) is Fs-adapted for s ∈ [t, T ]),

and satisfying E
[∫ T

t
||u(s, ·)||2ds

]
<∞.
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The set of admissible strategies at time t is denoted by UF(t).

Let Q = [0, T )× Rn and Q̄ = [0, T ]× Rn. With the following standard technical

conditions imposed on b and σ, the SDE (41) admits a unique pathwise solution when

u ∈ UF(0), i.e., (xt)0≤t≤T is F-progressively measurable and has continuous sample

paths almost surely given x0 = x ∈ Rn.

Assumption 4. b and σ are continuous on their domains, respectively, and for some

constants C1, C2, and Cσ > 0,

1. ‖ b(t, x, u) ‖ + ‖ σ(t, x) ‖≤ C1(1+ ‖ x ‖ + ‖ u ‖) for all (t, x) ∈ Q̄ and u ∈ U ;

2. ‖ b(t, x, u) − b(s, y, u) ‖ + ‖ σ(t, x) − σ(s, y) ‖≤ C2(|t − s|+ ‖ x − y ‖) for all

(t, x), (s, y) ∈ Q̄ and u ∈ U .

3. ξ>(σσ>)(t, x)ξ ≥ Cσ ‖ ξ ‖2 for all (t, x) ∈ Q and ξ ∈ Rn.

We define the functions Λ : Rn → R and g : Q̄ × U → R as the final reward

and intermediate reward, respectively. Assume that Λ and g satisfy the following

polynomial growth conditions.

Assumption 5. For some constants CΛ, cΛ, Cg, cg > 0,

1. |Λ(x)| ≤ CΛ (1+ ‖ x ‖cΛ) for all x ∈ Rn;

2. |g(t, x, u)| ≤ Cg (1+ ‖ x ‖cg + ‖ u ‖cg) for all (t, x) ∈ Q̄ and u ∈ U .

Given an initial condition (t, x) ∈ Q, the objective is to maximize the expected

sum of intermediate rewards and final reward by selecting an admissible strategy u

in UF(t):

V (t, x) = sup
u∈UF(t)

J(t, x; u), (42)

where J(t, x; u) =Et,x
[
Λ(xT ) +

∫ T

t

g(s, xs, us)ds

]
.
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Here we abuse the notations of the state x, the rewards Λ and g, and the value

function V , since they play the same roles as those in MDPs.

Let C1,2(Q) denote the space of function L(t, x) : Q → R that is continuously

differentiable in (i.e., C1) in t and twice continuously differentiable (i.e., C2) in x on

Q. For L ∈ C1,2(Q), define a partial differential operator Au by

AuL(t, x) ,Lt(t, x) + L>x (t, x)b(t, x, u) +
1

2
tr
(
Lxx(t, x)

(
σσ>

)
(t, x)

)
,

where Lt, Lx, and Lxx denote the t-partial derivative, the gradient and the Hessian

with respect to x respectively, and
(
σσ>

)
(t, x) , σ(t, x)σ>(t, x). Let Cp(Q̄) denote

the set of function L(t, x) : Q̄→ R that is continuous on Q̄ and satisfies a polynomial

growth condition in x, i.e.,

|L(t, x)| ≤ CL(1+ ‖ x ‖cL)

for some constants CL > 0 and cL ≥ 0. The following well-known verification theorem

under Assumptions 1 and 2 provides a sufficient condition for the value function and

an optimal control strategy using Bellman’s principle of dynamic programming.

Theorem 11 (Verification Theorem, Theorem 4.3.1 in [35]). Suppose Assumptions

1 and 2 hold, and V̄ ∈ C1,2(Q) ∩ Cp(Q̄) satisfies

sup
u∈U
{g(t, x, u) + AuV̄ (t, x)} = 0 for (t, x) ∈ Q, (43)

and V̄ (T, x) = Λ(x). Then

(a) J(t, x; u) ≤ V̄ (t, x) for any u ∈ UF(t) and any (t, x) ∈ Q̄.

(b) If there exists a function u∗ : Q̄→ U such that

g(t, x, u∗(t, x)) + Au
∗(t,x)V̄ (t, x) = max

u∈U
{g(t, x, u) + AuV̄ (t, x)} = 0 (44)

for all (t, x) ∈ Q, and if the control strategy u∗ defined as u∗(t,w) = u∗(t, xt) is

admissible at time 0 (i.e., u∗ ∈ UF(0)), then
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1. V̄ (t, x) = V (t, x) = supu∈UF(t) J(t, x; u). for all (t, x) ∈ Q̄.

2. u∗ is an optimal control strategy, i.e., V (0, x) = J(0, x; u∗).

Equation (43) is the well-known HJB equation associated with the problem (41)-

(42).

4.1.2 Dual Representation of Controlled Markov Diffusions

In this subsection we present the information relaxation-based dual formulation of

controlled Markov diffusions. In a similar way we relax the constraint that the decision

at every time instant should be made based on the past information and impose a

penalty to punish the access to future information. We will establish the weak duality,

strong duality and complementary slackness results for controlled Markov diffusions,

which parallel the results in MDPs. The value function-based optimal penalty is also

characterized to motivate the practical use of our dual formulation, which will be

demonstrated in Section 4.2.

We consider the information relaxation that the decision maker can foresee all the

future randomness generated by the Brownian motion so that the decision made at

any time t ∈ [0, T ] is based on the information set F = FT . To expand the set of

the feasible controls, we use U(t) to denote the set of measurable U -valued control

strategies at time t, i.e., u ∈ U(t) if u is B([t, T ]) × F -measurable and u(s, ·) takes

value in U for s ∈ [t, T ], where B([t, T ]) is the Borel σ-algebra on [t, T ]. In particular,

U(0) can be viewed as the counterpart of A introduced in Section 2.1 for MDPs.

Unlike the case of MDPs, the first technical problem we have to face is to define a

solution of (41) with an anticipative control u ∈ U(0). Since it involves the concept

of “anticipating stochastic calculus” and Stratonovich integral, we postpone the tech-

nical details to Appendix B.1, where we use the decomposition technique to define

the solution of an anticipating SDE following [28], [68].

Right now we assume that given a control strategy u ∈ U(0) there exists a unique

61



solution (xt)t∈[0,T ] to (41) and it is B([0, T ])×F -measurable. Next we consider the set

of penalty functions in the setting of controlled Markov diffusions. Suppose h(u,w) is

a penalty that is a function of a control strategy u ∈ U(0) and the Brownian motion

w = (w)t∈[0,T ]. Denote byMF(0) the set of dual feasible penalties, which are penalties

that do not penalize non-anticipative policies in expectation, i.e.,

E0,x[h(u,w)] ≤ 0 for all x ∈ Rn and u ∈ UF(0).

We will show in the dual formulation of controlled Markov diffusions, the set

MF(0) parallels the role of MG(0) in the dual formulation of MDPs.

With an arbitrary choice of h ∈ MF(0), we can determine an upper bound on

(42) with t = 0 by relaxing the constraint on the adaptiveness of control strategies.

Proposition 1 (Weak Duality). If h ∈MF(0), then for all x ∈ Rn,

sup
u∈UF(0)

J(0, x; u) ≤ E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h(u,w)

}]
. (45)

Proof. For any ū ∈ UF(0),

J(0, x; ū) = E0,x

[
Λ(xT ) +

∫ T

0

g(t, xt, ūt)dt

]
≤E0,x

[
Λ(xT ) +

∫ T

0

g(t, xt, ūt)dt− h(ū,w)

]
≤E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h(u,w)

}]
.

Then inequality (45) can be obtained by taking the supremum over ū ∈ UF(0) on the

left hand side of the last inequality.

The optimization problem inside the conditional expectation in (45) is the counter-

part of that in (3) in the context of controlled Markov diffusions: an entire realization

of w is known beforehand, and the objective function depends on this specific real-

ization. Therefore, it is a deterministic and path-dependent optimal control problem

parameterized by w. We also call it an inner optimization problem, and the expec-

tation term on the right side of (45) is a dual bound on the value function V (0, x).
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References [28, 26, 27] have conducted a series of research on this problem under the

name of “anticipative stochastic control”. In particular, one of the special cases they

have considered is h = 0, which means the future information is accessed without any

penalty; [28] characterized the value of relaxed information in this case. We would

expect that the dual bound associated with the zero penalty can be loose as that in

MDPs.

An interesting case is when we choose

h∗(u,w) = Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− V (0, x). (46)

Note that h∗ ∈MF(0), since by the definition of V (0, x),

E0,x

[
Λ(xT ) +

∫ T

0

g(t, xt, ut)ds

]
≤ V (0, x)

for all x ∈ Rn and u ∈ UF(0).

We also note that by plugging h = h∗ in the inner optimization problem in (45),

the objective value of which is independent of u and it is always equal to V (0, x). So

the following strong duality result is obtained.

Theorem 12 (Strong Duality). For all x ∈ Rn,

sup
u∈UF(0)

J(0, x; u) = inf
h∈MF(0)

{
E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h(u,w)

}]}
.

(47)

The minimum of the right hand side of (47) can always be achieved by choosing an

h ∈MF(0) in the form of (46).

Proof. According to the weak duality, the left side of (47) should be less than or equal

to the right side of (47); the equality is achieved by choosing h = h∗ in (46).

Theorem12 is the counterpart of Theorem 2.1 in [20] that is developed for the

discrete-time problem. Due to the strong duality result, the left side of (47) is referred
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to as the primal problem and the right side of (47) is referred to as the dual problem.

If u? is a control strategy that achieves the supremum in the primal problem, and h?

is a dual feasible penalty that achieves the infimum in the dual problem, then they are

optimal solutions to the primal and dual problems, respectively. The “complementary

slackness condition” in the next theorem, which parallels the result in the discrete-

time problem (Theorem 2.2 in [20]), characterizes such a pair (u?, h?).

Theorem 13 (Complementary Slackness). Given u? ∈ UF(0) and h? ∈ MF(0), a

sufficient and necessary condition for u? and h? being optimal to the primal and dual

problem respectively is that

E0,x[h
?(u?,w)] = 0,

and

E0,x

[
Λ(x?T ) +

∫ T

t

g(s, x?s, u
?
s)ds− h?(u?,w)

]
=E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(s, xs, us)ds− h?(u,w)

}]
, (48)

where x?t is the solution of (41) using the control strategy u? = (u?t )t∈[0,T ] on [0, t) with

the initial condition x?0 = x.

Proof. We first consider sufficiency. Let u? ∈ UF(0) and h? ∈ MF(0). We assume

E0,x[h
?(u?,w)] = 0 and (48) holds. Then by the weak duality, u? and h? should be

optimal to the primal and dual problem, respectively.

Next we consider necessity. Let u? ∈ UF(0) and h? ∈MF(0). Then we have

E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h?(u,w)

}]

≥E0,x

[
Λ(x?T ) +

∫ T

t

g(t, x?t , u
?
t )dt− h?(u?,w)

]
≥J(0, x; u?).

The last inequality holds due to h? ∈ MF(0). Since we know u? and h? are opti-

mal to the primal and dual problem respectively, then the strong duality result (the
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equality (47)) implies all the inequalities above are equalities. Therefore, we know

E0,x[h
?(u?,w)] = 0 and (48) holds.

Here we have the same interpretation on complementary slackness condition as

that in the dual formulation of MDPs: if the penalty is optimal to the dual problem,

the decision maker will be satisfied with an optimal non-anticipative control strategy

even if she is able to choose any anticipative control strategy. Clearly, if an optimal

control strategy u∗ to the primal problem (41)-(42) does exist (see, e.g., Theorem

11(b)), then u∗ and h∗(u,w) defined in (46) is a pair of the optimal solutions to the

primal and dual problems. However, we note that the optimal penalty in the form

of (46) has no practical use, as it requires knowing the value of V (0, x). Theorem

14 characterizes the form of another optimal penalty, which motivates the numerical

approximation scheme that will be illustrated in Section 4.2. The proof of Theorem

14 is in Appendix B.2.

Theorem 14 (Value Function-Based Penalty). Suppose that the value function V (t, x)

for the problem (41)-(42) satisfies the assumptions in Theorem11(b), and y = (t, xt)t∈[0,T ]

satisfies the conditions in Proposition 4 in Appendix B.1 (i.e., the Ito formula for

Stratonovich integral (103) is valid for F = V (t, x) and y = (t, xt)t∈[0,T ]), where

(xt)t∈[0,T ] is the solution to (41) with u ∈ U(0). For u ∈ U(0), define

h∗v(u,w) ,
m∑
i=1

∫ T

0

[
V >x (t, xt)σ

i(t, xt)
]
◦ dwit −

1

2

∫ T

0

[
V >x (t, xt)

(
m∑
i=1

σixσ
i(t, xt)

)

+ tr
(
Vxx(t, xt)(σσ

>)(t, xt)
) ]
dt, (49)

where w = (w1
t , · · · , wmt )0≤t≤T , σi is the i-th column of σ, σki is the (k, i)-th entry of

σ, and σixσ
i denotes an n× 1 vector with

∑n
j=1

∂σki

∂xj
σji being its k-th entry. Then

1. If u ∈ UF(0), (49) reduces to the form

h∗v(u,w) =

∫ T

0

V >x (t, xt)σ(t, xt) dwt, (50)
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and h∗v(u,w) ∈MF(0).

2. The strong duality holds in V (0, x) =

E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h∗v(u,w)

}]
.

Moreover, the following equalities hold almost surely with x0 = x

V (0, x) = sup
u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h∗v(u,w)

}
(51)

=Λ(x∗T ) +

∫ T

0

g(t, x∗t , u
∗
t )dt− h∗v(u∗,w), (52)

where (x∗t )t∈[0,T ] is the solution of (41) using the optimal control u∗ = (u∗(t, xt))t∈[0,T ]

(defined in Theorem11(b)) on [0, t) with the initial condition x∗0 = x.

Although the value functions {V (t, x), 0 ≤ t ≤ T} are unknown in real applica-

tions, (50) implies that if an approximate value function {V̂ (t, x), 0 ≤ t ≤ T} is dif-

ferentiable with respect to x, then heuristically, h∗v can be approximated by ĥv(u,w) ,∫ T
0
V̂ >x (t, xt)σ(t, xt)dwt at least for u ∈ UF(0). Noting that {

∫ t
0
V̂ >x (s, xs)σ(s, xs)dws}0≤t≤T

is an F-martingale if u ∈ UF(0) (assuming that V̂ >x (t, x)σ(t, x) satisfies the polynomial

growth condition in x); therefore, E0,x[ĥv(u,w)] = 0 for all x ∈ Rn and u ∈ UF(0).

As a result, ĥv(u,w) ∈ MF(0), i.e., ĥv is dual feasible, which means that ĥv can be

used to derive an upper bound on the value function V (0, x) through (45). Hence,

in terms of the approximation scheme implied by the form of the optimal penal-

ty, Theorem14 presents a value function-based penalty that can be viewed as the

continuous-time analogue of M∗(a,v) in (5).

It is revealed by the complementary slackness condition in both discrete-time

(Theorem 2.2 in [20]) and continuous-time (Theorem13) cases that any optimal penal-

ty has zero expectation evaluating at an optimal policy; as a stronger version, the

value function-based optimal penalty in both cases assign zero expectation to all non-

anticipative polices (note that M∗ in (5) is a sum of martingale differences under the

original filtration G).
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Intuitively, we can interpret the strong duality achieved by the value function-

based penalty as to offset the path-dependent randomness in the inner optimization

problem; then the optimal control to the inner optimization problem coincides with

that to the original stochastic control problem in the expectation sense, which is

reflected by the proof of Theorem14 in Appendix B.2 for controlled Markov diffusions.

In Appendix B.3 we briefly review the dual representation of the optimal stopping

problem, where an analogous result of Theorem14 exists provided that the evolution

of the state is modelled as a diffusion process.

4.2 Dynamic Portfolio Choice Problem

We illustrate the practical use of the dual formulation of controlled Markov diffusions,

especially the value function-based optimal penalty developed in Theorem14, in a

classic dynamic portfolio choice problem with predictable returns and intermediate

consumptions (see, e.g., [79, 63, 64]). Since most portfolio choice problems of practical

interest cannot be solved analytically, various numerical methods have been developed

including the martingale approach [24, 50], state-space discretization methods [87, 5],

and approximate dynamic programming methods [14, 43]. These methods all produce

sub-optimal policies, and it is not difficult to obtain lower bounds on the optimal

expected utility by Monte Carlo simulation under these policies; on the other hand,

an upper bound is constructed by [46] and [17] respectively based on the work by

[25] and [20]. The gap between the lower bound and the upper bound can be used to

justify the performance of a candidate policy.

In this section we solve a discrete-time dynamic portfolio choice problem that is

discretized from a continuous-time model (see, e.g., [25, 59]). We consider the time-

discretization as it is a common approach to numerically solve the continuous-time

problem, and the decisions of investment only occur at discrete-time points. We fo-

cus on generating upper bounds on the optimal expected utility of the discrete-time
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problem using the information relaxation dual approach. In particular, we propose a

new class of penalties for the discrete-time problem by discretizing the value function-

based optimal penalties of the continuous-time problem. These penalties make the

inner optimization problem much easier to solve compared with the penalties that

directly approximates the optimal penalty of the discrete-time model. We demon-

strate the effectiveness of our method in computing dual bounds through numerical

experiments. We also discuss more general settings (other than the portfolio choice

problem) in which our method can be successfully applied.

4.2.1 The Portfolio Choice Model

We first consider a continuous-time financial market with finite horizon [0, T ], which

is built on the probability space (Ω,F ,P). There are one risk-free asset and n risky

assets that the investor can invest on. The prices of the risk-free asset and risky assets

are denoted by S0
t and St = (S1

t , · · · , Snt )>, respectively, and the instantaneous asset

returns depend on the m-dimensional state variable φt:

dS0
t = rfS

0
t dt

dSt = St • (µtdt+ σtdzt), (53)

dφt = µφt dt+ σφ,1t dzt + σφ,2t dz̃t, (54)

where rf is the instantaneous risk-free rate of return, and z , (zt)0≤t≤T and z̃ ,

(z̃t)0≤t≤T are two independent standard Brownian motions that are of dimension n

and d, respectively; the drift vector µt = µ(t, φt) and the diffusion matrix σt = σ(t, φt)

in (53) are of dimension n and n × n, where the symbol • denotes the component-

wise multiplication of two vectors; the terms µφt = µφ(t, φt), σ
φ,1
t = σφ,1(t, φt), σ

φ,2
t =

σφ,2(t, φt) in (54) are of dimension m, m× n, and m× d, respectively.

We denote the filtration by F = {Ft, 0 ≤ t ≤ T}, where Ft is generated by the

Brownian motions {(zs, z̃s), 0 ≤ s ≤ t}.
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Let πt = (π1
t , · · · , πnt )> and c̃t denote the fraction of wealth invested in n risky

assets and the instantaneous rate of consumption, respectively. The total wealth

Wt of a portfolio that consists of the n risky assets and one risk-free asset evolves

according to

dWt =Wt

[
π>t (µtdt+ σtdzt) + rf

(
1− π>t 1n

)
dt− c̃tdt

]
=Wt

(
π>t (µt − rf1n) + rf − c̃t

)
dt+Wtπ

>
t σtdzt, (55)

where 1n is the n-dimensional all-ones vector. A control strategy u with ut , (πt, c̃t)

is an admissible strategy in the sense that

1. u is F-progressively measurable and E[
∫ T

0
||ut||2dt] <∞;

2. Wt > 0, c̃t ≥ 0, and
∫ T

0
Wtc̃tdt <∞ a.s.;

3. ut ∈ U , where U is a closed convex set in Rn+1.

We still use UF(t) to denote the set of admissible strategies at time t and we will

specify the control space U later. Suppose that U is a strictly increasing and concave

utility function (see, e.g., [62]). The investor’s objective is to maximize the weighted

sum of the expected utility of the intermediate consumption and the final wealth:

V (t, φt,Wt) = sup
u∈UF(t)

E
[ ∫ T

t

αβsU (c̃sWs) ds+ (1− α)βTU(WT )

∣∣∣∣φt,Wt

]
, (56)

where β ∈ [0, 1) is the discount factor, and α ∈ [0, 1] indicates the relative importance

of the intermediate consumption.

The value function (56) sometimes admits an analytic solution, for example, under

the assumption that µt is a constant vector and σt is a constant matrix in (53), and

there is no constraint on ut = (πt, c̃t). A recent progress on the analytic tractability

of (56) can be found in [59]. However, (56) usually does not have an analytic result

when there is a position constraint on πt.
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Considering that the investment and consumption can only take place in a finite

number of times in the real world, we discretize the continuous-time problem (54)-

(56). Suppose the decision takes place at equally spaced times {0 = t0, t1 · · · , tK}

such that K = T/δ, where δ = tk+1 − tk for k = 0, 1, · · · , K − 1. We simply denote

the time grids by {0, 1, · · · , K}. Note that (53) is equivalent to

d log(St) =

(
µt −

1

2
· Pdiag (Σt)

)
dt+ σtdzt,

where Pdiag(Σt) denotes an n-dimensional vector that is the principal diagonal of

Σt = σtσ
>
t , the covariance matrix of the instantaneous return. That is to say, Sk+1 =

Rk+1 • Sk with distribution log(Rk+1) ∼ N(
∫ (k+1)δ

kδ
(µs− 1

2
σ2
s)ds,

∫ (k+1)δ

kδ
Σsds). Hence,

we can discretize (54),(53), and (55) as follows:

φk+1 = φk + µφkδ + σφ,1k

√
δZk+1 + σφ,2k

√
δZ̃k+1, (57a)

log(Rk+1) =

(
µk −

1

2
σ2
k

)
δ + σk

√
δZk+1, (57b)

Wk+1 = Wk

(
R>k+1πk

)
+Wk

(
1− 1>nπk

)
Rf −Wkck,

= Wk

(
Rf + (Rk+1 −Rf1n)>πk − ck

)
, (57c)

where {(Zk, Z̃k), k = 1, · · · , K} is a sequence of identically and independently dis-

tributed standard Gaussian random vectors. In particular, we use Rf , 1 + rfδ

and the decision variable ck to approximate erf δ and c̃kδ due to the discretization

procedure.

Here we abuse the notations φ,W, and π in the continuous-time and discrete-

time settings. However, the subscripts make them easy to distinguish: the subscript

t ∈ [0, T ] is used in the continuous-time model, while k = 0, · · · , K is used in the

discrete-time model.

Denote the filtration of the process (57) by G = {G0, · · · ,GK}, where Gk is gen-

erated by {(Zj, Z̃j), j = 0, · · · , k}. In our numerical examples we assume that short

sales and borrowing are not allowed, and the consumption cannot exceed the amoun-

t of the risk-free asset. Then the constraint, on the control ak , (πk, ck) for the
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discrete-time problem, can be defined as

A , {(π, c) ∈ Rn+1|π ≥ 0, c ≥ 0, c ≤ Rf (1− 1>nπ)}. (58)

Since ck is used to approximate c̃kδ, (58) corresponds to a control set for the continuous-

time model, which is defined as

U , {(π, c̃) ∈ Rn+1|π ≥ 0, c̃ ≥ 0, c̃ ≤ Rf (1− 1>nπ)/δ}.

Let AG again denote the set of A-valued non-anticipative control strategies a,

which selects the decisions (a0, · · · , aK−1) that are adapted to the filtration G. The

discretization of (56) serves as the value function to the discrete-time problem:

H0(φ0,W0) = sup
a∈AG

E0

[
K−1∑
k=0

αβkδU(ckWk)δ + (1− α)βKδU(WK)

]
, (59)

which can be solved via dynamic programming:

HK(φK ,WK) = (1− α)βKδU(WK);

Hk(φk,Wk) = sup
ak∈A

{
αβkδU(ckWk)δ + E [Hk+1|φk,Wk, ak]

}
. (60)

We will focus on solving the discrete-time model (57)-(59), which is discretized

from the continuous-time model (54)-(56). Though our methods proposed later can

be applied on general utility functions, for the purpose of illustration we consider the

utility functions of the constant relative risk aversion (CRRA) type with coefficient

γ > 0, i.e, U(x) = 1
1−γx

1−γ, which are widely used in economics and finance. Since the

utility functions are of CRRA type, both value functions (56) and (59) have simplified

structures. To be specific, the value function to the continuous-time problem can be

written as the factorization (see, e.g., [59])

V (t, φt,Wt) = βtW 1−γ
t J̃(t, φt), (61)

where J̃(T, φT ) = (1− α)/(1− γ), and

J̃(t, φ) = sup
u∈UF(t)

E
[ ∫ T

t

βs−tα

1− γ
(c̃sWs)

1−γ ds+ βT−t
1− α
1− γ

W 1−γ
T

∣∣∣∣φt = φ,Wt = 1

]
;
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and the value function to the discrete-time problem, due to the factorization scheme,

can be written as

Hk(φk,Wk) = βkδW 1−γ
k Jk(φk), (62)

where Jk, the discrete-time reward functional, is defined recursively as JK(φK) =

(1− α)/(1− γ) and

Jk(φk) = sup
(πk,ck)∈A

{
αc1−γ

k δ

1− γ
+ βδE

[(
Rf + (Rk+1 −Rf )

>πk − ck
)1−γ

Jk+1(φk+1)|φk
]}

.

(63)

It can be seen that the structure of the value functions to both continuous-time

model and discrete-time model are similar: they can be decomposed as a product of a

function of the wealth W and a function of the market state variable φ. If δ is small,

J̃(kδ, φ) and Jk(φ) may be close to each other. As a byproduct of this decomposition,

another feature of the dynamic portfolio choice problem with CRRA utility function

is that the optimal asset allocation and consumption (πt, c̃t) in continuous-time mod-

el are independent of the wealth Wt given φt (respectively, the optimal (πk, ck) in

discrete-time model are independent of the wealth Wk given φk). So the dimension

of the state space in (60) is actually the dimension of φk. A number of numerical

methods have been developed to solve the discrete-time model based on the recursion

(63) including the state-space discretization approach [87, 5], and a simulation-based

method [14].

4.2.2 Penalties and Dual Bounds

In this subsection, we compute upper bounds on the optimal value H0 of the discrete-

time (and continuous-state) model (57)-(59) based on the dual approach for MDPs

in Theorem 1. We illustrate how to generate two dual feasible penalties for the

discrete-time problem: one directly approximates the value function-based penalty

of the discrete-time problem, while the other one is derived by discretizing the value

function-based penalty of the continuous-time problem (54)-(56). We discuss why
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the latter approach is more desirable to generate upper bounds on H0 in terms of

computational tractability of the inner optimization problem.

Throughout this subsection we assume that an approximate function of Jk(φ),

say Ĵk(φ) (therefore, Ĥk(φk,Wk) , W 1−γ
k Ĵk(φk) is an approximation of Hk), and

an approximate policy â ∈ AG are available. We do not require that â should be

derived from Ĵk(φ) or vice versa; in other words, they can be obtained using different

approaches. We first describe the information relaxation dual approach of MDPs

in the context of our portfolio choice problem, assuming the investor can foresee the

future uncertainty Z = (Z1, · · · , ZK) and Z̃ = (Z̃1, · · · , Z̃K), i.e., all the market states

and returns of the risky assets. A function M(a,Z, Z̃) is a dual feasible penalty in

the setting of dynamic portfolio choice problem if for any (φ0,W0),

E
[
M(a,Z, Z̃)|φ0,W0

]
≤ 0 for all a ∈ AG. (64)

Let MG(0) denote the set of all dual feasible penalties. For M ∈ MG(0) we define

LM as a function of (φ0,W0):

(LM)(φ0,W0)

=E
[

sup
a∈A
{
K−1∑
k=0

αβkδU(ckWk)δ + (1− α)βKδU(WK)−M(a,Z, Z̃)}
∣∣∣∣φ0,W0

]
. (65)

Based on Theorem1(a), (LM)(φ0,W0) is an upper bound on H0(φ0,W0) for any M ∈

MG(0).

To ease the inner optimization problem, we introduce equivalent decision variables

Πk = Wkπk and Ck = Wkck, which can be interchangeably used with πk and ck. We

still use a to denote an admissable strategy, though in terms of (Πk, Ck) now. Then

we can rewrite the inner optimization problem inside the conditional expectation in
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(65) as follows:

max
Π,C,W

K−1∑
k=0

αβkδU(Ck)δ + (1− α)βKδU(WK)−M(a,Z, Z̃) (66a)

s.t. φk+1 = φk + µφkδ + σφ,1k

√
δZk+1 + σφ,2k

√
δZ̃k+1, (66b)

log(Rk+1) = (µk −
1

2
σ2
k)δ + σk

√
δZk+1, (66c)

Wk+1 = WkRf + (Rk+1 −Rf1n)>Πk − Ck, (66d)

Πk ≥ 0, Ck ≥ 0, (66e)

Ck ≤ Rf (Wk − 1>nΠk), for k = 0, · · · , K − 1. (66f)

Note that (66b)-(66d) are equivalent to (57a)-(57c), and(66e)-(66f) are equivalent to

(58). The advantage of this reformulation is that the inner optimization problem (66)

has linear constraints. Therefore, we may find the global maximizer of (66) as long

as the objective function in (66a) is jointly concave in a.

Heuristically, we need to design near-optimal penalty functions in order to obtain

tight dual bounds on H0. A natural approach is to investigate the optimal penalty

M∗ for the discrete-time problem according to (5):

M∗(a,Z, Z̃) =
K−1∑
k=0

∆Hk+1(a,Z, Z̃),

where ∆Hk+1 is the deviation in Hk+1 from the conditional mean. In practice we can

approximate Hk by Ĥk = W 1−γ
k Ĵk; however, it does not mean that ∆Ĥk+1 can be

easily computed, since the conditional expectation (that is, Ek[Ĥk+1]) over (n + d)-

dimensional space is involved. We may use sample average estimation to obtain its

accurate approximation, though, at the expense of substantial computational efforts.

Another difficulty is that M∗ =
∑K−1

k=0 ∆Hk+1 enters into (66a) with possibly positive

or negative signs for different realizations of (Z, Z̃), making the objective function of

(66) nonconcave, even if U is a concave function. Therefore, it might be extremely

hard to locate the global maximizer of (66).
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To address these problems, we propose another dual feasible penalty for the discrete-

time problem, and describe how to efficiently compute this penalty. This new class

of penalties are derived by exploiting the value function-based optimal penalty h∗v for

the continuous-time problem (54)-(56), recalling that our discrete-time problem is dis-

cretized from the continuous-time model. We assume that all the technical conditions

in Theorem14 hold, and then we can apply the result (50) by selecting xt = (φt,Wt),

V (t, xt) = V (t, φt,Wt), σ(t, xt) =

 σφ,1t σφ,2t

Wtπtσt 0

, and dwt =

dzt
dz̃t

 such that

h∗v(u, z, z̃) =

∫ T

0

 Vφ(t, φt,Wt)

VW (t, φt,Wt)


> σφ,1t σφ,2t

Wtπtσt 0


dzt
dz̃t


=

K−1∑
k=0

∫ (k+1)δ

kδ

[
V >φ (t, φt,Wt)σ

φ,1
t dzt

+ V >φ (t, φt,Wt)σ
φ,2
t dz̃t + VW (t, φt,Wt)Wtπtσtdzt

]
=

K−1∑
k=0

∫ (k+1)δ

kδ

βt
[
W 1−γ
t ∇φJ̃

>(t, φt)σ
φ,1
t dzt +W 1−γ

t ∇φJ̃
>(t, φt)σ

φ,2
t dz̃t

+ (1− γ)W 1−γ
t J̃(t, φt)πtσtdzt

]
, (67)

for u = (πt, c̃t)0≤t≤T ∈ UF(0), and the last equality holds due to the structure of the

value function (61). In particular, we use ∇φJ̃ to denote the gradient of the function

J̃ with respect to φ. By discretizing the Ito stochastic integrals in (67), we propose

a heuristic – using the (k+ 1)-th term in the summation – to approximate ∆Hk+1 in

M∗, that is,

∆Hk+1 ≈βkδ
[
W 1−γ
k ∇φJ

>
k (φk)σ

φ,1
k

√
δZk+1 +W 1−γ

k ∇φJ
>
k (φk)σ

φ,2
k

√
δZ̃k+1

+ (1− γ)W−γ
k Jk(φk)Π

>
k σk
√
δZk+1

]
, (68)

where we use Jk(φ) to approximate J̃(kδ, φ) and also use the substitution Πk = Wkπk.

We then describe a procedure to numerically approximate ∆Hk+1 using simulation

based on (68). Given a realization of (Z, Z̃), we can obtain the realized terms of φ̄k ,

75



φk(φ0,Z, Z̃), σ̄k , σ(φ̄k), σ̄
φ,1
k , σφ,1(k, φ̄k), σ̄

φ,2
k , σφ,2(k, φ̄k); with an admissible

strategy â, we can also obtain W̄k , Wk(W0, â(φ0,W0,Z, Z̃),Z, Z̃) via (57c) as an

approximation to the wealth under the optimal policy. Then we can approximate

∆Hk+1 by Ψ1
k

(
a,Z, Z̃

)
Zk+1 + Ψ2

k(a,Z, Z̃)Z̃k+1, where

Ψ1
k(a,Z, Z̃) =βkδ

[
W̄ 1−γ
k Ξ2>

k

(
φ̄k
)
σ̄φ,1k

√
δ + (1− γ)W̄−γ

k Ξ1
k(φ̄k)Π

>
k σ̄k
√
δ

]
, (69)

Ψ2
k(a,Z, Z̃) =βkδW̄ 1−γ

k Ξ2>
k (φ̄k)σ̄

φ,2
k

√
δ,

and where Ξ1
k(·) is a scalar function of φ, whereas Ξ2

k(·) is an m-dimensional function

of φ. Therefore, we can further approximate M∗ =
∑K−1

k=0 ∆Hk+1 by

M1(a,Z, Z̃) ,
K−1∑
k=0

(
Ψ1
k

(
a,Z, Z̃

)
Zk+1 + Ψ2

k(a,Z, Z̃)Z̃k+1

)
, (70)

We will verify in Proposition 2 below that M1 is dual feasible in the sense of (64)

given any functions Ξ1
k and Ξ2

k, and hence LM1 is an upper bound on H0. To derive

a tight upper bound, it is suggested by (68) that Ξ1
k(·) and Ξ2

k(·) are preferably

chosen as Ĵk(·) – an approximation of Jk(·), and ∇φĴk(φk) – an approximation of

∇φJk(φk), respectively. It is worth noting that the differentiability of Ĵk(φ) is not

required to validate the dual feasibility of the penalty M1. In the case that Ĵk(φ) is

not differentiable in φ, we may apply the finite difference method on Ĵk(φk) to obtain

the difference quotient as Ξ2
k(·) (i.e., a nominal approximation of ∇φĴk(φk)).

It remains to show why the forms of Ψ1
k and Ψ2

k make the inner optimization

problem (66) easy to solve. This is because both functions are affine in a, regardless

of the realizations of Z and Z̃. To be specific, when a realization of (Z, Z̃) is fixed,

Ψ2
k is a constant with respect to a, while Ψ1

k is affine in Πk (hence, in a). Therefore,

together with the concave property of U(·), the inner optimization problem (66) is

guaranteed to be convex with M = M1. To find some variants of the penalties while

still keeping the convexity of the inner optimization problem, we also generate Ψ̆1
k+1

based on a first-order Taylor expansion of Ψ1
k+1 in (69) around the strategy âk−1,
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k = 1, · · · , K (we only expand the first term, since the second term is already linear

in Πk):

Ψ̆1
k+1(a,Z, Z̃) = βkδ

[
W̄ 1−γ
k + (1− γ)W̄−γ

k

(
(R̄k −Rf1n)>

(Πk−1 − Π̄k−1)− (Ck−1 − C̄k−1)
)]
· Ξ2>

k (φ̄k)σ̄
φ,1
k

√
δ

+ βkδ(1− γ)W̄ 1−γ
k Ξ1

k(φ̄k)Π
>
k σ̄k
√
δ,

where R̄k , Rk(φ0,Z, Z̃), (Π̄k, C̄k) , âk(φ0,W0,Z, Z̃). Then Ψ̆1
k+1 is affine in Πk−1

and Ck−1. We can also obtain a variant of Ψ2
k+1 that is is affine in Πk−1 and Ck−1,

say Ψ̆2
k+1, in exactly the same way. In our numerical examples we will consider dual

bounds generated by M1 as well as M2, where

M2(a,Z, Z̃) ,
K−1∑
k=0

(
Ψ̆1
k(a,Z, Z̃)Zk+1 + Ψ̆2

k(a,Z, Z̃)Z̃k+1

)
. (71)

To go further, we can also generate a penalty function by linearizing Ψ1
k+1 around

(â0, · · · , âk−1). We show M2 ∈MG(0) in Proposition 2 as well.

Proposition 2. Both M1 and M2 are dual feasible in the sense of (64), i.e., M1,M2 ∈

MG(0). Hence, both LM1 and LM2 are upper bounds on H0.

Proof. First, we show that Ψi
k(a,Z, Z̃) is Gk-adapted given any a ∈ AG for i = 1, 2.

Noting that φ̄k, Ξ1
k(φ̄k), Ξ2

k(φ̄k), σ̄k, σ̄
φ,j
k (j = 1, 2), and W̄k are naturally Gk-adapted

under a fixed non-anticipative policy â ∈ AG. Therefore, Ψ2
k+1(a,Z, Z̃) is Gk-adapted.

We also observe that Πk is Gk-adapted as a ∈ AG; therefore, Ψ1
k(a,Z, Z̃) is Gk-adapted

for any a ∈ AG.

Second, since Zk+1 and Z̃k+1 have zero means and are independent of Gk and

(φ0,W0), along with the linearity of Ψ1
k (resp., Ψ2

k) in Zk+1 (resp., Z̃k+1), we have for

k = 0, · · · , K − 1,

E
[
Ψ1
k · Zk+1

∣∣φ0,W0

]
= E0

[
Ψ1
k · Ek[Zk+1

]]
= 0 for all a ∈ AG;

E
[
Ψ2
k · Z̃k+1

∣∣φ0,W0

]
= E0

[
Ψ2
k · Ek[Z̃k+1]

]
= 0 for all a ∈ AG.
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Therefore, E[M1(a,Z, Z̃)|φ0,W0] = 0 for all a ∈ AG, and hence M ∈ MG(0). The

same argument can also apply on M2. Therefore, M2 ∈MG(0).

4.2.3 Discussion on Penalties

In this subsection we compare our penalty-generating method with some available

approaches that are designed for stochastic dynamic programs in the literature. We

also discuss a broader class of controlled diffusion problems in which our proposed

penalties can be applied.

The first approach of constructing penalties of the discrete-time problem is pro-

posed in [20], which suggests directly approximating the optimal values in the value

function-based penalty (e.g, the first approach discussed in Section 4.2.2). The dual

feasibility of this class of penalties is ensured by computing the conditional expecta-

tion term accurately, which may involve a substantial amount of computational work.

Later, [17] proposes a gradient-based penalty (the gradient is taken with respect to a

policy) that requires to solve a stochastic decision-making problem, which is generally

simpler than the problem of interest but with similar problem structure. The dual

feasibility of these gradient-based penalties relies on the computational tractability of

the optimal policy to the simpler problem. In the setting of convex stochastic dynam-

ic programs, the recent work [19] develops a new class of gradient-based penalties,

which can be viewed as the combination of the previous two classes of penalties. This

new penalty circumvents the requirement of deriving an optimal policy, though it

involves conditional expectations over the subgradients of an approximate value with

respect to a suboptimal policy.

In contrast, relying on the settings of Markov diffusions, our proposed penalties

(70) and (71) do not involve any conditional expectation, while the only extra com-

putational work comes from estimating the difference quotient (or gradient) of the

approximate value function with respect to the state variable. Therefore, this new
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class of penalties can be evaluated very efficiently. Furthermore, the design of our

proposed penalties is quite flexible: we can use any suboptimal policy to obtain a

dual feasible penalty, and linearize around this policy if necessary, which guarantees

the convexity of the inner optimization problem (66).

We will provide some insights on how to generalize our penalty-generating method

to more controlled diffusion problems other than the dynamic portfolio choice prob-

lem. Recall that the purpose of our penalty-generating methods is to make the inner

optimization problem a convex program. So our proposed penalty can be applied in

problems with the following two features.

(i) The discrete-time state dynamic (derived by discretizing the continuous-time

dynamic (41)) is linear in its decision variables, which may be done by refor-

mulation or introducing extra decision variables.

(ii) The reward function (resp., cost function) to be maximized (resp., minimized)

is concave (resp., convex) in the decision variables.

Since our proposed penalty can be linearized with respect to the decision variables,

the inner optimization problem remains convex with the linearized penalty, provided

the above two assumptions hold. To illustrate our points, we provide two examples

below and they are in scalar cases for simplicity.

1. Suppose b(t, x, u) = A1x + A2u and σ(t, x, u) = A3x + A4u, where all Ai are

constants. The state equation after discretization is

xk+1 = xk + (A1xk + A2uk)δ + (A3xk + A4uk)
√
δ · Zk+1,

where the index k denotes the time kδ, and Zk+1 is a standard Gaussian random

variable for k = 0, · · · , K − 1. In addition, we require the reward function∑K−1
k=0 Rk(xk, uk)+Λ(xT ) is jointly concave in {xk}Kk=1 and {uk}K−1

k=0 . The linear
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convex (e.g., quadratic) control problem with convex constraints lies in this

category.

2. Suppose b(t, x, u) = A1x+ A2xu and σ(t, x, u) = A3x+ A4xu, where all Ai are

constants. The state equation after discretization is

xk+1 =xk + (A1xk + A2xkuk)δ + (A3xk + A4xkuk)
√
δ · Zk+1,

=xk + (A1xk + A2Uk)δ + (A3xk + A4Uk)
√
δ · Zk+1,

where Uk = xkuk, and Zk+1 is a standard Gaussian random variable for k =

0, · · · , K−1. In addition, we require the reward function can be reformulated as∑K−1
k=0 Rk(xk, Uk)+Λ(xT ), which is jointly concave in {xk}Kk=1 and {Uk}K−1

k=0 . The

dynamic portfolio choice problem and many financial decision-making problems

lie in this category.

4.2.4 Numerical Examples

In this section we discuss the use of Monte Carlo simulation to evaluate the perfor-

mance of the suboptimal policies and the dual bounds on the expected utility (59).

We consider a model with three risky assets (n = 3) and one market state variable

(m = 1). The dynamics (53)-(54) of the market state and assets returns are the same

as those considered in [46]. In particular, let µφk = −λφk, µk = µ0 + µ1φk, σk ≡ σ,

σφ,1k ≡ σφ,1, and σφ,2k ≡ σφ,2, in (57a)-(57b). The parameter values are listed in the

following tables including rf , λ, µ0, µ1, σ, σφ,1, and σφ,2. Note from (54) that the

market state φ follows a mean-reverting Ornstein-Uhlenbeck process: it has relatively

small mean reversion rate and volatility in the parameter set 1, while it has relatively

large mean reversion rate and volatility in the parameter set 2. We choose T = 1 year

and δ = 0.1 year in our numerical experiments. In addition, we use α = 0.5 for the

weight of the intermediate utility function and use β = 1 as the discount factor. We

assume φ0 = 0 and W0 = 1 as the initial condition and impose the constraint (58) on

the control space A in the following numerical tests.
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Table 5: Parameter Set 1
µ0 µ1 σ rf

log(R)

 0.081
0.110
0.130

 0.034
0.059
0.073

 0.186 0.000 0.000
0.228 0.083 0.000
0.251 0.139 0.069

 0.01

φ λ σφ,1 σφ,2

0.336
(

-0.741 -0.037 -0.060
)

0.284

Table 6: Parameter Set 2
µ0 µ1 σ rf

log(R)

 0.081
0.110
0.130

 0.034
0.059
0.073

 0.186 0.000 0.000
0.228 0.083 0.000
0.251 0.139 0.069

 0.01

φ λ σφ,1 σφ,2

1.671
(

-0.017 0.149 -0.058
)

1.725

For each parameter set, we first solve the the recursion (63) assuming that φk+1

and Rk+1 are independent conditioned on φk. We will use the numerical solution to

this simplified continuous-state problem as Ĵk(φ) and â, which are presumed to be

available in Section 4.2.2. The numerical method we employ is the discrete state-space

approximation method. To be specific, we approximate the market state variable φk

using a grid with 21 equally spaced grids from −2 to 2, and the transition between

these grid points is determined by (57a) noting that φk+1 ∼ N
(
φk+µφkδ, (‖ σ

φ,1
k ‖2 + ‖

σφ,2k ‖2)δ
)
; the random variables Zk and Z̃k are approximated by Gaussian quadrature

method with 3 points for each dimension (see, e.g., [53]). So the joint distribution of

the market state and the returns are approximated by a total of 33 × 21 = 567

grid points, which are used to compute the conditional expectation in (63), i.e.,

a finite weighted sum. For the optimization problem in (63) we use CVX ([42]),

a package to solve convex optimization problems in MATLAB, to determine the

optimal consumption and investment policy on each grid of φk at time k. We record

the value and the corresponding policy on this grid at each time k = 0, · · · , K.

We then extend these value functions and policies on the real line (noting that the

market state variable φk is one dimensional) by piecewise linear interpolation. These
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extended functions are regarded as the numerical solution to the recursion (63) with

the assumption that φk+1 and Rk+1 are conditionally independent.

In our numerical implementation these piecewise linear value function and pol-

icy function play the roles of Ĵk(φ) (i.e., Ξ1
k(φ)) and approximate policy â to the

continuous-state problem (57)-(59) with the assumption that φk+1 and Rk+1 are con-

ditionally dependent. We take the slope of the piecewise linear function as ∇Ĵk(φ)

(i.e., Ξ2
k(φ)), if φ is between the grid points; otherwise, we can use the average slope

of two consecutive lines as Ξ2
k(φ), which is equivalent to computing the difference

quotient of Ĵk(φ) via central difference method.

We then repeatedly generate random sequences of (Z, Z̃), based on which we gen-

erate the sequences of market states and returns according to their joint probability

distribution (57)-(59) (assuming that φk+1 and Rk+1 are conditionally dependent).

Then we apply the aforementioned policy â on these sequences to get an estimate of

the lower bound on the value function H0; based on each random sequence we can

also solve the inner optimization problem (66) with penalty M1 in (70) or M2 in (71),

which leads to an estimate of the upper bound on H0. We present our numerical re-

sults in the following tables: the lower bound, which is referred to as “Lower Bound”,

is obtained by generating 100 random sequences of (Z, Z̃) and their antithetic pairs

(see [40] for an introduction on antithetic variates) in a single run and a total number

of 10 runs; the upper bounds induced by penalties M1 and M2, which are referred

to as “Dual Bound 1” and “Dual Bound 2” respectively, are obtained by generating

30 random sequences of (Z, Z̃) and their antithetic pairs in a single run and a total

number of 10 runs. To see the effectiveness of these proposed penalties, we use zero

penalty and repeat the same procedure to compute the upper bounds that are referred

to as “Zero Penalty” in the table. These bounds on the value function H0 (i.e., the

expected utility) are reported in the sub-column “Value”, where each entry shows the

sample average and the standard error (in parentheses) of the 10 independent runs.
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Table 7: Results with Parameter Set 1
Lower Bound Dual Bound 1 Dual Bound 2 Zero Penalty Duality Gap

γ Value CE Value CE Value CE Value CE Value CE

1.5 −5.480 0.1332 −5.391 0.1376 −5.392 0.1376 -4.861 0.1693 1.61% 3.30%
(0.003) (0.0001) (0.008) (0.0004) (0.007) (0.0004) (0.012) (0.0008)

3.0 −42.887 0.1080 −39.227 0.1129 −39.873 0.1120 -27.562 0.1347 7.53% 3.70%
(0.036) (0.0001) (0.164) (0.0002) (0.317) (0.0004) (0.252) (0.0006)

5.0 −2445.9 0.1005 −2066.5 0.1049 −2025.5 0.1054 -1105.7 0.1226 15.51% 4.38%
(1.635) (0.0001) (22.019) (0.0003) (17.833) (0.0002) (16.438) (0.0004)

Table 8: Results with Parameter Set 2
Lower Bound Dual Bound 1 Dual Bound 2 Zero Penalty Duality Gap

γ Value CE Value CE Value CE Value CE Value CE

1.5 −5.466 0.1339 −5.380 0.1382 −5.381 0.1381 -4.864 0.1691 1.56% 3.14%
(0.005) (0.0001) (0.011) (0.0006) (0.015) (0.0008) (0.020) (0.0008)

3.0 −42.585 0.1084 −39.645 0.1123 −39.690 0.1122 -27.708 0.1343 6.80% 3.51%
(0.081) (0.0001) (0.229) (0.0003) (0.155) (0.0002) (0.209) (0.0005)

5.0 −2431.6 0.1007 −2043.8 0.1052 −2040.7 0.1052 -1122.1 0.1222 15.95% 4.47%
(7.510) (0.0001) (11.881) (0.0002) (19.882) (0.0003) (9.842) (0.0004)

We also compute the certainty equivalent of the expected utility in the sub-column

“CE”, i.e., the equivalent wealth left at time T = 1, where “CE” is defined through

U(CE) = Value. For ease of comparison, in the column “Duality Gap” we report the

smaller difference (in relative sense) between “Lower bound” and two “Dual Bounds”

on the expected utility and its certainty equivalent.

We consider utility functions with different relative risk aversion coefficients γ =

1.5, 3.0, and 5.0, which reflect low, medium and high degrees of risk aversions. The

dual bounds induced by zero penalty perform poorly as we expected. On the other

hand, it is hard to distinguish the performance of “Dual Bound 1” and “Dual Bound

2”, which may imply that the second term in (69) plays an essential role in the inner

optimization problem in order to make the dual bounds tight in this problem. We

observe that the duality gaps on the value function H0 are generally smaller when γ

is small, implying that both the approximate policy and penalties are near optimal.

For example, when γ = 1.5, the duality gaps are within 2% of the optimal expected

utility for all sets of parameters. As γ increases, the duality gaps generally become

larger.
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There are several possible reasons for the enlarged duality gaps on the value func-

tion with increasing γ. Note that the utility function U(x) is a power function (with

negative power of 1 − γ) of x and it decreases at a higher rate with larger γ, as x

approaches zero. This is reflected by the fact that both the lower and upper bounds

on the value function H0 decrease rapidly with higher value of γ. In the case of eval-

uating the upper bounds on H0, it can be inferred that with larger γ the objective

value (66a) is more sensitive to the solution of the inner optimization problem (66),

and hence the quality of the penalty functions. In other words, even a small torsion

of the optimal penalty will lead to a significant deviation of the dual bound. In our

case the heuristic penalty is derived by discretizing the value function-based penalty

for the continuous-time problem; however, this penalty may become far away from

optimal for the discrete-time problem when γ increases. Similarly, obtaining tight

lower bounds on the expected utility by simulation under a sub-optimal policy also

suffers the same problem, that is, solving a sub-optimal policy based on the same

approximation scheme of the recursion (63) may cause more utility loss with larger γ.

The performance of the sub-optimal policy also influences the quality of the penalty

function, since the penalties M1 and M2 involve the wealth W̄k induced by the sub-

optimal policy and its error compared with the wealth under the optimal policy will

be accumulated over time. Hence, the increasing duality gaps on the value function

with larger risk aversion coefficients are contributed by both sub-optimal policies and

sub-optimal penalties.

These numerical results provide us with some guidance in terms of computation

when we apply the dual approach: we should be more careful with designing the

penalty function if the objective value of the inner optimization problem is numeri-

cally sensitive either to its optimal solution or to the choice of the penalty function.

Fortunately, the sensitivity of the expected utility with respect to γ in this problem is

relieved to some extent by considering its certainty equivalent. We can see from the
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table that the differences between the lower bounds and the upper bounds in terms

of “CE” are kept at a relatively constant range for different values of γ.

4.3 Conclusion

We study the dual formulation of controlled Markov diffusions by means of informa-

tion relaxation. This dual formulation provides new insights into seeking the value

function: if we can find an optimal solution to the dual problem, i.e., an optimal

penalty, then the value function can be recovered without solving the HJB equation.

From a more practical point of view, this dual formulation can be used to find a dual

bound on the value function. We explore the structure of the value function-based

optimal penalty, which provides the theoretical basis for developing near-optimal

penalties that lead to tight dual bounds. As in the case of MDPs, if we compare

the dual bound on the value function of a controlled Markov diffusion with the lower

bound generated by Monte Carlo simulation under a sub-optimal policy, the duality

gap can serve as an indication on how well the sub-optimal policy performs and how

much we can improve on our current policy.

We carried out numerical studies in a dynamic portfolio choice problem that is

discretized from a continuous-time model. To derive tight dual bounds on the expect-

ed utility, we proposed a class of penalties that can be viewed as discretizing the value

function-based optimal penalty of the continuous-time problem, and these new penal-

ties make the inner optimization problem computationally tractable. This approach

has potential use in many other interesting applications where the system dynamic

is modeled as a controlled Markov diffusion. Moreover, we investigate the sensitivity

of the quality of both lower and upper bounds in terms of duality gaps with respect

to different parameters. These numerical studies complement the existing examples

of applying the dual approach to continuous-state MDPs.

This dual formulation also offers a straightforward extension to the jump-diffusion
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models. By relaxing the non-anticipativity constraints on the admissible control s-

trategies, we expect to derive the value function-based penalty also in compact form

(under natural filtration) as that in the setting of controlled Markov diffusions. The

recent work [101] has exploited the martingale structure of this penalty in optimal

stopping problems and found its application in pricing financial derivatives.
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CHAPTER V

OPTIMAL STOPPING OF PARTIALLY OBSERVABLE

MARKOV PROCESSES: A FILTERING-BASED

DUALITY APPROACH

Optimal stopping of a partially observable Markov process (POMP) is a sequential

decision making problem under partial observation of the underlying state. This type

of problems arise in a number of applications, including change point detection in

a production line, launching of a new technology under incomplete information of

the market, and selling of an asset or a financial derivative. Optimal stopping of a

POMP is more challenging than its counterpart of a fully observable process, since

the inference of the hidden state and the choice of an optimal action should be ac-

complished at the same time. As a special class of the partially observable Markov

decision processes (POMDPs), optimal stopping of a POMP can be transformed to a

fully observable optimal stopping problem by introducing a new state variable, often

referred to as the filtering distribution. However, this concise representation does not

reduce the complexity of the problem, because the filtering distribution is usually infi-

nite dimensional when the unobserved state takes values in a continuous space. Some

recent work proposed to solve continuous-state POMDP include [15],[71],[78],[88] and

[99], most of which can be viewed as a combination of dimension reduction on the

filtering distribution and the approximate dynamic programming. These methods

can also be adapted to solving OSPO with some modification.

To the best of our knowledge, only [36], [61], [74], [69] and [100] have studied

numerical methods in the specific context of OSPO. In particular, they all interpret-

ed the problem in the setting of American option pricing under partial observation
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of the stochastic volatility. [36] proposed a multinomial tree method that combines

with particle filtering; [61] and [74] also utilize the particle filtering technique, and in-

corporate it into the regression-based approximate dynamic programming approach;

whereas [69] used a grid-based method to approximate the filtering distribution. On

the other hand, [100] proposed the method of approximate value iteration that avoids

filtering step. It is worth noting that the first three methods all use particle fil-

tering, as it is so far the most successful and versatile numerical method to solve

nonlinear filtering problems. All of the above four approaches provide approximate

solutions, and some are proven to converge asymptotically to the true option price.

However, in practice with a finite computational power, the difference between their

approximate solutions and the true option price is not known. Some other intrinsic

problems of these methods also prevent their wide use in practice: for example, the

computation of the multinomial tree method grows exponentially in the number of

the exercise opportunities; the choice of basis functions is always problem-specific for

the regression-based methods, which usually provides a lower bound on the option

price.

In view of the lack of performance guarantee and computational complexity of the

aforementioned methods, in this chapter we focus on developing a lower-and-upper-

bound approach with moderate computational cost. We propose a filtering-based

duality approach that complements a suboptimal stopping time (hence an asymptotic

lower bound) with an asymptotic upper bound on the value function. Since our

approach does not tie to a particular model and only involves Monte Carlo simulation,

it can be generalized to any POMP as long as the particle filtering technique can

be applied. Our method relies on the martingale duality formulation of the fully

observable optimal stopping problem, which is proposed by [76] and [45] in the setting

of pricing American options under constant volatility.

From the perspective of modeling fidelity versus computational complexity, it is
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not trivial to compare optimal stopping of POMPs with its counterpart in fully ob-

servable Markov processes. In particular, the difference of their value functions cannot

be quantified in general and is problem dependent, so we are also interested in learn-

ing the features that influence this difference in the underlying probabilistic model.

Indeed, as an example, our numerical experiments on pricing American options un-

der partially observable stochastic volatility show that our asymptotic upper bound is

strictly less than the option price of the model where the volatility is treated directly

observable, and the difference is especially obvious when the effect of the volatility is

dominant. This in turn shows that our method provides a better criterion to evaluate

the performance of a suboptimal policy in the partially observable model.

The rest of this chapter is organized as follows. In Section 5.1, we describe the

general problem formulation of optimal stopping of POMPs and the transformation to

an equivalent fully observable optimal stopping problem. In Section 5.2, we develop

the filtering-based duality approach, and its error analysis and convergence result are

presented in Section 5.3. We present some numerical examples in Section 5.4, and

finally conclude in Section 5.5.

5.1 Problem Formulation

Let (Ω,F ,P) be a probability space. Consider a hidden Markov model {(Xt, Yt), t =

0, 1, · · · , T} satisfying the following equations

Xt+1 = f(Xt, Z
1
t+1), t = 0, 1, · · · , T − 1; (72a)

Y0 = h0(X0, Z
2
0); (72b)

Yt+1 = h(Xt+1, Yt, Z
2
t+1), t = 0, 1, · · · , T − 1; (72c)

where the unobserved state Xt is in a continuous state space X ⊆ Rnx , the observation

Yt is in a continuous observation space Y ⊆ Rny . The noises {(Z1
t , Z

2
t ), t = 1, · · · , T},

which are independent of the initial state X0 and the initial observation Y0, are

independent random vectors with known distributions, but the components of each
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vector can be correlated. Equations (72a) and (72b)-(72c) are often referred to as the

state equation and the observation equation, respectively. Note that {(Xt, Yt)} is a

bivariate Markov process adapted to the filtration
{
Ft , σ{(Xi, Yi); i = 0, . . . , t}

}
.

Let J , {1, · · · , T}. Denote by
{
FYt , σ{Y0, . . . , Yt}

}
the filtration generated by

the processes (72b)-(72c). A random variable τ : Ω → J is an FYt -stopping time if

{τ ≤ t} ∈ FYt for every t ∈ J . We define T Y as the set of FYt -stopping times that

take values in J . Assume that the initial Y0 is a known constant, and the initial X0

follows a known distribution π0, which is derived from the historical data (including

Y0). We consider the finite-horizon partially observable optimal stopping problem

V0(π0, y0) = sup
τ∈T Y

E[g(τ,Xτ , Yτ )|X0 ∼ π0, Y0 = y0], (73)

where g : J ×X×Y → R is the reward function. In this setting the decision maker has

access to only state Yt so that her decision at time t is made purely depending on the

observation history up to time t, i.e.,{Y0, · · · , Yt}. For convenience, in the following

we use g(Xt, Yt) and g(Xτ , Yτ ) in short for g(t,Xt, Yt) and g(τ,Xτ , Yτ ) respectively.

The optimal stopping problem of a POMP can be transformed to an equivalent

fully observable optimal stopping problem by introducing a new state variable Πt,

often referred to as the filtering distribution, which is the conditional distribution of

Xt given the observations Y0:t , {Y0, . . . , Yt}. More specifically, given a set A in the

Borel σ-algebra over X , define

Πt(A) , Prob(Xt ∈ A|Y0, . . . , Yt), t = 0, . . . , T.

Given a realization of the observations y0:t , {y0, . . . , yt}, the probability density

πt of the filtering distribution Πt evolves as follows:

πt(xt) =

∫
X p(xt, yt|xt−1, yt−1)πt−1(xt−1) dxt−1∫
X p(yt|xt−1, yt−1)πt−1(xt−1) dxt−1

, t = 1, . . . , T, (74)

where the conditional probability density functions p(xt, yt|xt−1, yt−1) and p(yt|xt−1, yt−1)

are induced by (72a), (72c), and the distributions of Z1
t and Z2

t . Noticing that πt
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only depends on πt−1, yt−1, and yt, and letting the realization y0:t be replaced by the

random variables Y0:t, we can abstractly rewrite the filtering recursion (74) as

Πt = Φ(Πt−1, Yt−1, Yt), t = 1, 2, . . . , T.

Then problem (73) can be transformed to an equivalent optimal stopping problem

(see, e.g., Chapter 5 in [9]) with fully observable state (Πt, Yt):

V0(π0, y0) = sup
τ∈T Y

E[g̃(Πτ , Yτ )|X0 ∼ π0, Y0 = y0],

where

g̃(Πt, Yt) , E[g(Xt, Yt)|FYt ] =

∫
g(xt, Yt)Πt(xt) dxt.

Theoretically, we can solve (73) following the dynamic programming recursion:

Vt(Πt, Yt) = max (g̃(Πt, Yt), Ct(Πt, Yt)) , t = T, . . . , 1, (75)

where Ct(Πt, Yt) is the continuation value at time t defined as

CT (ΠT , YT ) , g̃(ΠT , YT );

Ct(Πt, Yt) , E[Vt+1(Πt+1, Yt+1)|Πt, Yt], t = T − 1, . . . , 0.

Here E[·|Πt, Yt] is interpreted as E[·|Xt ∼ Πt, Yt]. Then V0 = C0 and the optimal

stopping time is

τ ∗ = min {t ∈ J | g̃(Πt, Yt) ≥ Ct(Πt, Yt)} .

We also define its associated t-indexed stopping time τ ∗t for each t ∈ J :

τ ∗t , min {i ∈ Jt | g̃(Πi, Yi) ≥ Ci(Πi, Yi)} (76)

with Jt , {t, t + 1, . . . , T}. The above recursion also shows that (Πt, Yt) are the

sufficient statistics that determine the optimal stopping time. The process {Vt ,

Vt(Πt, Yt)} defined in (75) is called the Snell envelope process (see, e.g., Chapter 2

in [58]) of the process {g̃(Πt, Yt)}, which is the smallest FYt -supermartingale that
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dominates g̃ in the sense that Vt(Πt, Yt) ≥ g̃(Πt, Yt). In particular, by shifting the

time index in (73) we can interpret Vt as

Vt(πt, yt) = sup
τ∈T Y , t≤τ≤T

E[g(Xτ , Yτ )|Xt ∼ πt, Yt = yt]

= E[g(Xτ∗t
, Yτ∗t )|Xt ∼ πt, Yt = yt], t = 1, . . . , T. (77)

However, it is often impossible to solve the problem exactly following (75) due to

two main difficulties. One is that in general the filtering distribution Πt is infinite

dimensional and the filtering recursion (74) cannot be computed exactly. The other

difficulty lies in the accurate estimation of the continuation value Ct(Πt, Yt) that leads

to the optimal stopping time τ ∗. So we develop an approximation method in the next

section.

5.2 Filtering-Based Martingale Duality Approach

In this section, we construct a dual problem to the original optimal stopping of

POMPs, and develop a numerical method that yields an asymptotic upper bound

on the value function. Our dual formulation is a straightforward extension of the

dual formulation for the optimal stopping problem proposed in [76], [45], and [3], by

replacing the filtration with FYt .

Theorem 15 (c.f. (5) in [3]). Let M represent the space of FYt -adapted martingales {Mt}

with M0 = 0 and supt∈J E|Mt| <∞. Then

V0(π0, y0) = min
M∈M

{
E[max

t∈J
{g̃(Πt, Yt)−Mt}|X0 ∼ π0, Y0 = y0]

}
. (78)

The optimal martingale {M∗t } that achieves the minimum on the right hand side of (78) is

of the form

M∗t =

t∑
i=1

∆∗i , (79)

where{∆∗t } is the martingale difference sequence defined as

∆∗t , E[Vt|FYt ]− E[Vt|FYt−1], t ∈ J . (80)
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In addition, the following equality holds pathwisely in the almost sure sense, i.e.,

V0(π0, y0) = max
t∈J

(g̃(Πt, Yt)−M∗t ) a.s..

The proof of Theorem 15 follows the same line in [3] and hence is omitted here.

Theorem 15 characterizes a strong duality relation between the primal problem (73)

and its dual problem on the right side of (78); the equality (78) suggests that any

FYt -adapted martingale {Mt} can lead to an upper bound on V0(π0, y0) and that

the optimal martingale (79) is derived from the Doob-Meyer decomposition of the

supermartingale {Vt}. In particular, we can rewrite (80) as

∆∗t =E[Vt|Πt, Yt]− E[Vt|Πt−1, Yt−1] (81a)

=E[g(Xτ∗t
, Yτ∗t )|Πt, Yt]− E[g(Xτ∗t

, Yτ∗t )|Πt−1, Yt−1]. (81b)

Note that it is impossible to compute the optimal martingale {M∗
t }, since the mar-

tingale difference term (81a) (or (81b)) involves the intractable filtering distribution

Πt and the Snell envelop process {Vt} (or the optimal stopping time τ ∗t ). Therefore,

we need to introduce approximation schemes to address both aspects. On the one

hand, the intractable filtering distribution Πt can be approximated by a discrete dis-

tribution using particle filtering, which will be stated in Section 5.2.1. On the other

hand, (81a) and (81b) suggest that we approximate ∆∗t using either approximate

value functions of Vt or suboptimal FYt -stopping times that approximate τ ∗t . In addi-

tion, some other heuristic constructions can be considered. For example, we can take

∆t = E[Ut(Xt, Yt)|FYt ]− E[Ut(Xt, Yt)|FYt−1], where Ut(Xt, Yt) is the value function to

the corresponding optimal stopping problem with fully observable state (Xt, Yt):

Ut(xt, yt) = sup
κ∈Tt

E[g(Xκ, Yκ)|Xt = xt, Yt = yt], (82)

where Tt is the set of Ft-stopping times κ that take values in Jt; or equivalently

we can take ∆t = E[g(Xκ∗t
, Yκ∗t )|Πt, Yt] − E[g(Xκ∗t

, Yκ∗t )|Πt−1, Yt−1], where κ∗t is the

optimal Ft-stopping time to problem (82). Even if the explicit forms of Ut and κ∗t
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are not known, their approximations can be used in ∆t and its martingale difference

property can still be preserved. The advantage of approximating Ut or κ∗t is their

simple structure as functions of only (Xt, Yt), whereas either Vt or τ ∗t is a function of

(Y0, · · · , Yt). Thus, it may be easier to generate martingale difference terms based on

approximate Ut or κ∗t , even though they may yield less optimal values.

In the rest of this section we focus on approximating ∆∗t in (81b) by the following

∆m
t based on a fixed stopping time τ (see, e.g., (87) in Section 5.2.2), which is either

FYt or Ft-adapted:

∆m
t , E[g(Xτt , Yτt)|Πm

t , Yt]− E[g(Xτt , Yτt)|Πm
t−1, Yt−1], (83)

where τt is the t-indexed stopping time associated with τ , and Πm
t (see details in

Section 5.2.1) is the approximate filtering distribution at time t obtained by particle

filtering (the superscript m in Πm
t denotes the number of particles), which will be

elaborated in the next section. A lower-case notation πmt denotes the corresponding

approximate filtering distribution based on a realization of the observations y0:t. Then

we define {Mm
t } as

Mm
0 = 0; Mm

t = ∆m
1 + . . .+ ∆m

t , t ∈ J . (84)

Incorporating the above ideas, we propose the following algorithm that yields an

asymptotic upper bound on V0.

Algorithm 1. Filtering-Based Martingale Duality Approach

Step 1. For k = 1, 2, . . . , N, do

- Generate a path of observations y
(k)
1:T according to the processes (72a)-(72c) with initial

condition Y0 = y0 and X0 ∼ π0, and then follow Algorithm 2 (particle filtering) to generate

the approximate filtering distribution {πm(k)
1 , . . . , π

m(k)
T }.

- For t = 1, . . . , T , use Algorithm 3 to compute ∆̃
m(k)
t , which is an approximation for

∆
m(k)
t = E[g(Xτt , Yτt)|π

m(k)
t , y

(k)
t ]− E[g(Xτt , Yτt)|π

m(k)
t−1 , y

(k)
t−1]. (85)
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- Sum the approximate martingale differences to obtain

M̃
m(k)
t = ∆̃

m(k)
1 + . . .+ ∆̃

m(k)
t , t = 1, . . . , T.

- Evaluate V (k) = maxt∈J

(
g̃(π

m(k)
t , y

(k)
t )− M̃m(k)

t

)
. end

Step 2. Set V τ
N = 1

N

∑N
k=1 V

(k). V τ
N is an asymptotic upper bound on the value function

V0(π0, y0).

In the next two subsections, we will discuss how to generate approximate filtering

distribution using particle filtering via Algorithm 2 and how to compute the approx-

imate martingale difference via Algorithm 3.

5.2.1 Particle Filtering

We approximate πt using particle filtering, which is a successful and versatile numer-

ical method for solving nonlinear filtering problems. A good introduction on particle

filtering can be found in the book [4]. The particle filtering method approximates πt

by a finite number (say m) of particles {x(1)
t , . . . , x

(m)
t }, i.e., a discrete distribution

πmt written as follows

πmt =
1

m

m∑
i=1

δ
x

(i)
t
, (86)

where δ is the Dirac measure. As the number of particles m goes to infinity, it can

be ensured that πmt converges to πt in certain sense.

Algorithm 2. Particle Filtering

Input: X0 ∼ π0 and a sequence of observations y0:T .

Output: The approximate filtering distribution πm0 , . . . , π
m
T .

Step 1. Initialization: Set t = 0. Draw m i.i.d. samples {x(1)
0 , . . . , x

(m)
0 } from the distribu-

tion π0. Set πm0 = 1
m

∑m
i=1 δx(i)

0

.

Step 2. For t = 1, . . . , T , do

− Prediction: For each i = 1, . . . ,m, draw one sample x̄
(i)
t from P (Xt|Xt−1 = x

(i)
t−1).

− Bayes’ Updating: Compute w
(i)
t =

p(yt|x̄(i)
t ,yt−1)∑m

i=1 p(yt|x̄
(i)
t ,yt−1)

, i = 1, . . . ,m.

− Resampling: Draw i.i.d. samples {x(1)
t , . . . , x

(m)
t } from the discrete distribution {Prob(x̄

(i)
t ) =

w
(i)
t , i = 1, . . . ,m}. Set πmt = 1

m

∑m
i=1 δx(i)

t
. end
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5.2.2 Approximate Martingale Difference

The remaining issue is how to compute the martingale difference (85). Throughout

this subsection we assume a suboptimal stopping time τ of the form,

τ = min{t ∈ J |g(Xt, Yt) ≥ C̃t(Xt, Yt)}, (87)

where {C̃t, t ∈ J } is a sequence of approximate continuation functions of Ut. The

approximate continuation functions C̃t can be derived, for example, by regression on

some basis functions as suggested by [60] and [90]. We choose an Ft-stopping time

τ of the form (87) only for ease of exposition, though Algorithm 3 can be adjusted

using any other Ft(or FYt )-stopping time with the same principle.

Given a realization of observations y0:T , we employ nested simulation to estimate

∆m
t in (85). Note that πmt in Algorithm 1 is of the form (86). Therefore,

∆m
t =

1

m

m∑
i=1

E[g(Xτt , Yτt)|Xt = x
(i)
t , Yt = yt]

− 1

m

m∑
i=1

E[g(Xτt , Yτt)|Xt−1 = x
(i)
t−1, Yt−1 = yt−1],

where τt is the t-indexed stopping time associated with τ defined as

τt = min{i ∈ Jt|g(Xi, Yi) ≥ C̃i(Xi, Yi)}.

To estimate E[g(Xτt , Yτt)|x
(i)
t , yt] (resp., E[g(Xτt , Yτt)|x

(i)
t−1, yt−1]), we generate l sub-

paths that are stopped according to τt with the initial condition Xt = x
(i)
t , Yt = yt

(resp., Xt−1 = x
(i)
t−1, Yt−1 = yt−1) for each i and t, and we average g(Xτt , Yτt) over

these subpaths. So there are a total number of m · l subpaths generated to estimate

each expectation term in (85). The details of the nested simulation are presented

below.

Algorithm 3. Estimation of ∆m
t Using Nested Simulation

Input: yt−1, yt, π
m
t−1 = 1

m

∑m
i=1 δx(i)

t−1

and πmt = 1
m

∑m
i=1 δx(i)

t
from Algorithm 1 and Algo-

rithm 2.
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(Step 1 - Step 2 are used to estimate E[g(Xτt , Yτt)|πmt−1, yt−1].)

Step 1. For i = 1, . . . ,m, do

- Simulate {(x(ij)
t , y

(ij)
t ), . . . , (x

(ij)
T , y

(ij)
T )}lj=1 from the processes (72a)-(72c) with the initial

condition Xt−1 = x
(i)
t−1 and Yt−1 = yt−1.

- To apply τt on these sample paths, find

tij = min
{
k ∈ Jt : g(x

(ij)
k , y

(ij)
k ) ≥ C̃k(x

(ij)
k , y

(ij)
k )

}
.

- Set bi = 1
l

∑l
j=1 g(x

(ij)
tij
, y

(ij)
tij

). end

Step 2. Set Gm,lt−1,t ,
1
m

∑m
i=1 bi, which is an unbiased estimator of E[g(Xτt , Yτt)|πmt−1, yt−1].

(Step 3 - Step 4 are used to estimate E[g(Xτt , Yτt)|πmt , yt].)

Step 3. For i = 1, . . . ,m, do

If g(x
(i)
t , yt) ≥ C̃t(x

(i)
t , yt), i.e., (x

(i)
t , yt) is in the stopping region, set b̃i = g(x

(i)
t , yt). Other-

wise, repeat Step 1 with the initial condition Xt = x
(i)
t and Yt = yt to obtain b̃i. end

Step 4. Set Gm,lt,t , 1
m

∑m
i=1 b̃i, which is an unbiased estimator of E[g(Xτt , Yτt)|πmt , yt].

Step 5. Set ∆̃m
t = Gm,lt,t −G

m,l
t−1,t.

5.3 Error Analysis

In this section, we analyze the error bound and asymptotic convergence of our algo-

rithm. To lighten the notations, we use E0[·] to denote E[·|X0 ∼ π0, Y0 = y0] in the

rest of note. The following assumption is used throughout our analysis.

Assumption 6.

i. ‖ g ‖∞, maxt∈J ‖ g(t, ·, ·) ‖∞<∞.

ii. For any observation sequence y0:T ,

sup
xt∈X

p(yt|xt, yt−1) <∞, ∀t ∈ J .
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We first introduce an FYt -adapted martingale difference sequence {∆τ
t } and mar-

tingale {M τ
t } induced by an Ft(or FYt )-stopping time τ :

∆τ
t = E[g(Xτt , Yτt)|Πt, Yt]− E[g(Xτt , Yτt)|Πt−1, Yt−1],

M τ
0 , 0; M τ

t , ∆τ
1 + . . .+ ∆τ

t , t ∈ J .

Since M τ
t is an FYt -adapted martingale, then E0[maxt∈J (g̃(Πt, Yt)−M τ

t )] is an upper

bound on V0(π0, y0) by Theorem 15.

Recall that the approximate martingale difference ∆m
t based on a realization of

observations y0:t is

∆m
t = E[g(Xτt , Yτt)|πmt , yt]− E[g(Xτt , Yτt)|πmt−1, yt−1].

In Algorithm 3 the empirical estimates of E[g(Xτt , Yτt)|πmt , yt] and E[g(Xτt , Yτt)|πmt−1, yt−1]

are denoted by Gm,l
t,t and Gm,l

t−1,t, respectively. Therefore, we use

∆̃m
t = Gm,l

t,t −G
m,l
t−1,t and M̃m

t =
t∑
i=1

∆̃m
i

to approximate ∆m
t and Mm

t . Instead of obtaining maxt∈J {g̃(πt, yt) −M τ
t } exactly

along each path of the observations y0:T , we compute maxt∈J {g̃(πmt , yt)−M̃m
t }. Note

that conditional on a fixed observation sequence, the former term is a constant, while

the latter one is a random term due to sampling. The difference between these

two terms is caused by two sources of errors: one from the difference between the

deterministic density πt and the random measure πmt , and this gap will go to zero (in

expectation) by increasing the number of particles m under Assumption 6; another

difference is from the variability of the nested (Monte Carlo) simulation, which can

be eliminated by increasing the number of sample paths m · l.

We will show in the next theorem that

E0[maxt∈J {g̃(Πm
t , Yt) − M̃m

t }] converges to E0[maxt∈J {g̃(Πt, Yt) − M τ
t }] when the

particle number m increases to infinity. Hence, E0[maxt∈J {g̃(Πm
t , Yt) − M̃m

t }] is an
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asymptotic (as m → ∞) upper bound on V0(π0, y0). Moreover, the gap between

E0[maxt∈J {g̃(Πt, Yt)−M τ
t }] and V0(π0, y0) is purely due to the suboptimal stopping

time τ .

Theorem 16. Suppose τ is an Ft(or FYt )-stopping time. Then

lim
m→∞

E0

[
max
t∈J
{g̃(Πm

t , Yt)− M̃m
t }
]

= E0

[
max
t∈J
{g̃(Πt, Yt)−M τ

t }
]
. (88)

Moreover, we have the following inequalities:

E0

[
max
t∈J
{g̃(Πt, Yt)−M τ

t }
]
− V0(π0, y0)

≤2

√√√√ T∑
t=1

E0 [(∆∗t −∆τ
t )2]

≤2

√√√√ T∑
t=1

E0

[(
E[g(Xτ∗t

, Yτ∗t )|Πt, Yt, ]− E[g(Xτt , Yτt)|Πt, Yt]
)2]

. (89)

From (88), the output V τ
N in Algorithm 1 is an asymptotic (as the sample path

number N → ∞ and the particle number m → ∞) upper bound on the true value

function V0. According to (89), a large m will lead to a tight upper bound provided

that the martingale {M τ
t } induced by the stopping time τ does not differ too much

from the optimal {M∗
t }, or more intuitively, the suboptimal stopping time τt does not

differ too much from the optimal τ ∗t .

Proof. We need the following proposition for the proof of the theorem.

Proposition 3 (Corollary 10.28, [4]). Let {πm0 , . . . , πmT } be the random measure gen-

erated by Algorithm 2 for the observation sequence y0:T . Suppose that the following

assumption holds:

‖ f ‖∞<∞ and sup
xt

p(yt|xt, yt−1) <∞, t = 1, . . . , T.

Then

E

[(∫
X
f(xt)πt(xt)dxt −

∫
X
f(xt)π

m
t (xt)dxt

)2
]
≤ k2

t ‖ f ‖
2
∞

m
, t = 0, . . . , T,
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where the constant kt does not depend on m (but it does depend on t and y0:t). In

particular, k0 = 1.

We first prove (88). Given a sample path of the observations {y0, . . . , yT}, the

difference between g̃(πt, yt) and g̃(πmt , yt) is

ϑmt ,
∫
X
g(xt, yt)πt(xt)dxt −

∫
X
g(xt, yt)π

m
t (xt)dxt.

Guaranteed by Proposition 3, E[|ϑmt |] ≤
√
E[(ϑmt )2] ≤ kt‖g‖∞√

m
for some constant kt.

The difference between M τ
t and M̃m

t is the sum of the differences between ∆τ
t and

∆̃m
t :

∆τ
t − ∆̃m

t = χmt,t − χmt−1,t + εm,lt,t − ε
m,l
t−1,t,

where

χmt,t , E[g(Xτt , Yτt)|πt, yt]− E[g(Xτt , Yτt)|πmt , yt],

χmt−1,t , E[g(Xτt , Yτt)|πt−1, yt−1]− E[g(Xτt , Yτt)|πmt−1, yt−1],

εm,lt,t , E[g(Xτt , Yτt)|πmt , yt]−G
m,l
t,t ,

εm,lt−1,t , E[g(Xτt , Yτt)|πmt−1, yt−1]−Gm,l
t−1,t.

The first two errors are filtering errors, since we can rewrite χmt,t as

χmt,t = E

[
T∑
j=t

g(Xj, Yj)1{τt=j}
∣∣πt, yt]− E

[
T∑
j=t

g(Xj, Yj)1{τt=j}
∣∣πmt , yt

]

=

∫
X
It(xt, yt)πt(xt)dxt −

∫
X
It(xt, yt)π

m
t (xt)dxt. (90)

It(xt, yt) is defined as the integrand of E[
∑T

j=t g(Xj , Yj)1{τt=j}|πt, yt], i.e.,

It(xt, yt) , g(xt, yt)1{τt=t} +

T∑
j=t+1

∫
g(xj , yj)1{τt=j}p(dxt+1dyt+1 . . . dxjdyj |xt, yt),

where p(dxt+1dyt+1 . . . dxjdyj|xt, yt) denotes the joint probability distribution of

(xt+1, yt+1, . . . , xj, yj) conditional on (xt, yt). As {τt = j} are disjoint sets for each

t ≤ j ≤ T , it implies ‖ It ‖∞≤‖ g ‖∞. Based on (90) and using Proposition 3
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with f = It, it is ensured that E[|χmt,t|] ≤
k
′
t‖g‖∞√
m

for some constant k
′
t. Similarly,

E[|χmt−1,t|] ≤
b
′
t−1‖g‖∞√

m
for some constant b

′
t−1. The latter two errors are from the

sampling variability of Monte Carlo simulation; the error bounds are guaranteed by

Proposition 3 with t = 0 (here πmt or πmt−1 plays the role of π0), i.e., E[|εm,lt,t |] ≤
‖g‖∞√
ml

and E[|εm,lt−1,t|] ≤
‖g‖∞√
ml

.

So given a sample path of the observations y0:t we have for each t ∈ J ,

lim
m→∞

E[|(g̃(πt, yt)−M τ
t )− (g̃(πmt , yt)− M̃m

t )|]

= lim
m→∞

E[|ϑmt + (
t∑
i=1

(∆̃m
i −∆τ

i ))|] = 0. (91)

Since

|max
t∈J
{g̃(πt, yt)−M τ

t } −max
t∈J
{g̃(πmt , yt)− M̃m

t }|

≤max
t∈J
{|(g̃(πt, yt)−M τ

t )− (g̃(πmt , yt)− M̃m
t )|}

≤
T∑
t=1

|(g̃(πt, yt)−M τ
t )− (g̃(πmt , yt)− M̃m

t )|,

by taking expectation and letting m go to infinity we have

lim
m→∞

E[|max
t∈J
{g̃(πmt , yt)− M̃m

t } −max
t∈J
{g̃(πt, yt)−M τ

t }|] = 0.

Note that ∆̃m
t is bounded by 2 ‖ g ‖∞ for each t ∈ J , and therefore, g̃(Πm

t , Yt)−

M̃m
t is bounded by (2t + 1)· ‖ g ‖∞ and maxt∈J {g̃(Πm

t , Yt) − M̃m
t } is bounded by

(2T + 1)· ‖ g ‖∞. The same conclusions are also valid for ∆τ
t , g̃(Πt, Yt) −M τ

t and

maxt∈J {g̃(Πt, Yt)−M τ
t }. Then

lim
m→∞

E0

[
|max
t∈J
{g̃(Πm

t , Yt)− M̃m
t } −max

t∈J
{g̃(Πt, Yt)−M τ

t }|
]

= lim
m→∞

E0

[
E
[
|max
t∈J
{g̃(Πm

t , Yt)− M̃m
t } −max

t∈J
{g̃(Πt, Yt)−M τ

t }|
∣∣FYT ]]

=E0

[
lim
m→∞

E
[
|max
t∈J
{g̃(Πm

t , Yt)− M̃m
t } −max

t∈J
{g̃(Πt, Yt)−M τ

t }|
∣∣FYT ]]

=0,
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where the second equality follows from the boundedness of the integrand and the

dominated convergence theorem. Hence,

lim
m→∞

E0[max
t∈J
{g̃(Πm

t , Yt)− M̃m
t }] = E0[max

t∈J
{g̃(Πt, Yt)−M τ

t }].

Now we prove (89). First we have

E0[maxt∈J {g̃(Πt, Yt)−M τ
t }]− V0

=E0[maxt∈J {g̃(Πt, Yt)−M τ
t }]− E0[maxt∈J {g̃(Πt, Yt)−M∗

t }]

≤E0[maxt∈J {M∗
t −M τ

t }],

following the fact that

maxt∈J {g̃(Πt, Yt)−M τ
t } −maxt∈J {g̃(Πt, Yt)−M∗

t } ≤ maxt∈J {M∗
t −M τ

t }.

Then (89) follows from

E0[maxt∈J {M∗
t −M τ

t }]

≤2
√
E0[(M∗

T −M τ
T )2]

=2

√√√√ T∑
t=1

E0

[(
(M∗

t −M τ
t )− (M∗

t−1 −M τ
t−1)
)2
]

=2

√√√√ T∑
t=1

E0[(∆∗t −∆τ
t )

2]

≤2

√√√√ T∑
t=1

E0

[(
E[g(Xτ∗t

, Yτ∗t )|Πt, Yt]− E[g(Xτt , Yτt)|Πt, Yt]
)2
]
,

where the first inequality follows from the fact that M∗
t −M τ

t is a martingale and

applying Doob’s martingale inequality, and the first equality uses the orthogonality

property of martingale difference (see p.331 in [84]). To show the last inequality,

recall that

∆∗t −∆τ
t =(E[g(Xτ∗t

, Yτ∗t )|FYt ]− E[g(Xτt , Yτt)|FYt ])

− (E[g(Xτ∗t
, Yτ∗t )|FYt−1]− E[g(Xτt , Yτt)|FYt−1]);
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then the last inequality can be shown by simple algebra and iterated expectation on

FYt−1.

5.4 Numerical Examples

We apply our method to price American put options under stochastic volatility.

Following the model in [74] we considered a dS-dimensional process of asset price

{St, t = 0 : T}:

Sit+1 = Sit exp

{(
r −

(σit+1)2

2

)
δ + σit+1

√
δZi,1

t+1

}
, i = 1, . . . , dS, (92)

where r is the constant interest rate, δ is the time period between the equally-spaced

time points, {Zi,1t , t = 1 : T}, i = 1, . . . , dS are independent sequences of Gaussian

random variables with Zi,1
t ∼ N (0, 1), and the volatility σit , exp(X i

t) is a determin-

istic function of a dX(= dS)-dimensional process {Xt, t = 0 : T} that evolves as a

discretized Ornstein-Uhlenbeck process:

Xi
t+1 = Xi

te
−λiδ + θi(1− e−λiδ) + γi

√
1− e−2λiδ

2λi
Zi,2t+1, i = 1, . . . , dX , (93)

where the positive constant θi is the mean reversion value, the constant λi is the mean

reversion rate, the constant γi is a measure of the process volatility, and {Zi,2t , t =

1 : T}, i = 1, . . . , dX are independent sequences of Gaussian random variables with

Zi,2
t ∼ N (0, µ2

i ), which are also independent of {Zi,1t }. Here µi is used to control the

observation noise. For simplicity, in our numerical experiments we use λi = λ, θi = θ,

γi = γ, µi = µ for all i = 1, . . . , dX . Assume that only the asset price is observed,

and exercise opportunities take place at t = 1, . . . , T . We consider the put option on

the minimum of dS assets, i.e., the payoff function is of the form

g(t, St) = max
{
e−rδt

(
K −min{S1

t , . . . , S
dS
t }
)
, 0
}
.

In the rest of this section, “exercise policy” simply means “stopping time” in the

general optimal stopping problem.
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Remark 4. In this example, the conditional probability density function is

p(St|Xt, St−1) =

dX∏
i=1

p(Sit |X i
t , S

i
t−1),

where

p(Sit |X i
t , S

i
t−1) =

exp

{
−(ln(Sit/S

i
t−1)−(r−exp2(Xi

t)/2)δ)
2

2 exp2(Xi
t)δµ

2

}
Sit
√

2π exp2(X i
t)δµ

2
.

It can be shown that p(St|Xt, St−1) satisfies Assumption 6(ii) and that Assumption

6(i) is also trivially satisfied.

Since the stochastic volatility cannot be directly observed in reality but can be

“partially observable” through the inference from the observed asset price, pricing

American option under the above model (92)-(93) falls into the framework of opti-

mal stopping of POMPs. We illustrate our algorithm through a series of numerical

experiments with dS = 1 (one asset) and dS = 2 (two assets). In particular, we

are interested in how the variance of the volatility (corresponding to the parameters

(θ, λ, γ)) and observation noise (corresponding to the parameter µ) influence the price

difference due to the difference between the fully observable and partially observable

volatilities. We list the parameter sets in Table 9. To compute option prices under

both full and partial observations, we implement our algorithm as well as the Least-

Squares Monte Carlo (LSMC) method of [60], which provides suboptimal exercise

policies, and the primal-dual (PD) method of [3], which parallels our method in the

fully observable models. The numerical results of the option prices under different

parameter sets are listed in Table 10 (for one asset) and Table 11 (for two assets),

where “LB” represents the lower bound obtained by the LSMC method for the ful-

ly/partially observable model with the following two sets of basis functions for the

one-asset and two-asset problems respectively:

H1 ={L0(S1
t ), L

2
0(S1

t ), L1(S1
t ), L

2
1(S1

t ), L0(S1
t )L1(S1

t ), 1},

H2 ={L0(S1
t ), L

2
0(S1

t ), L0(S2
t ), L

2
0(S2

t ), L0(S1
t )L0(S2

t ), L2(S1
t , S

2
t ), L

2
2(S1

t , S
2
t ), 1},
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where L0(x) = x, L1(x) = max{K − x, 0} and L2(x, y) = max{K − min{x, y}, 0}.

Please note that the basis functions only depend on the asset price St not the volatility

exp(Xt), so the suboptimal policy is FYt -adapted and the results are guaranteed to

be lower bounds for the partially observable model. In the tables, “UB” represents

the corresponding upper bound yielded by our filtering-based duality method for

the partially observable model, and “Full.ŨB” represents the corresponding upper

bound yielded by the PD method for the fully observable model. It is clear that we

can improve the exercise policy for the fully observable model by employing more

basis functions that use the information of the volatility exp(Xt): “Full.LB” and

“Full.UB” are the lower bound and upper bound for the fully observable model, still

obtained by the LSMC method and PD method with additional basis functions for

each problem:

Hadd
1 = {L0(eX

1
t ), L0(eX

1
t )L1(S1

t )}

Hadd
2 = {L0(eX

1
t ), L2

0(eX
1
t ), L0(eX

2
t ), L2

0(eX
2
t ), L0(eX

1
t )L2(S1

t , S
2
t ), L0(eX

2
t )L2(S1

t , S
2
t )}.

Each entry in Table 10 and Table 11 shows the sample average and the standard error

(in parentheses) of the numerical results of 20 independent runs using the following

procedure: we implement the LSMC method with 50000 sample paths to obtain

a suboptimal policy τ , and then apply this policy on another independent set of

50000 paths to get the lower bound LB; the dual upper bound UB is obtained by

implementing Algorithm 1 using the suboptimal policy τ with the number of sample

paths N = 500, number of particles m = 500, and number of subpaths l = 10; to

investigate the option prices under the fully observable stochastic volatility, we use

the PD method with 500 sample paths and 5000 subpaths in nested simulation (which

is equal to m·l) to obtain an upper bound Full.ŨB, since the policy τ obtained before

is also a suboptimal policy for the fully observable model. Except the new sets of

basis functions, the LSMC and PD methods are implemented exactly the same way
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as before to generate another set of lower bound Full.LB and upper bound Full.UB

for the fully observable model. In practice we often use the average of LB and UB,

and the average of Full.LB and Full.UB as estimates of the option prices to the

partially observable and fully observable problems, respectively.

Table 9: Parameter Sets

# (θ, λ, γ) µ

1 (log(0.1), 1.0, 1.0) 0.3
2 (log(0.1), 1.0, 1.0) 1.0
3 (log(0.2), 0.5, 1.0) 0.3
4 (log(0.2), 0.5, 1.0) 1.0
5 (log(0.2), 1.5, 1.0) 0.3
6 (log(0.2), 1.5, 1.0) 1.0
7 (log(0.2), 1.0, 0.5) 0.3
8 (log(0.2), 1.0, 0.5) 1.0
9 (log(0.3), 2.0, 0.3) 0.3
10 (log(0.3), 2.0, 0.3) 1.0

Table 10: American Put Option Prices on One Asset (r = 0.05, K = 40, δ = 0.1,
T = 10, S0 = 36, X0 = θ)

Volatility not observable Volatility directly observable

# LB UB Full.ŨB Full.LB Full.UB

1 3.820(0.000) 3.820(0.000) 3.825(0.001) 3.820(0.000) 3.821(0.000)
2 3.853(0.001) 3.887(0.001) 3.954(0.003) 3.905(0.002) 3.912(0.001)
3 3.892(0.001) 4.019(0.003) 4.321(0.005) 4.197(0.003) 4.209(0.001)
4 5.009(0.006) 5.216(0.005) 5.368(0.009) 5.297(0.005) 5.328(0.001)
5 3.881(0.001) 3.898(0.001) 3.995(0.004) 3.928(0.002) 3.938(0.001)
6 4.842(0.003) 4.935(0.002) 5.028(0.003) 4.973(0.004) 4.997(0.001)
7 3.869(0.001) 3.870(0.000) 3.876(0.001) 3.871(0.001) 3.872(0.000)
8 4.632(0.002) 4.653(0.001) 4.704(0.002) 4.679(0.003) 4.689(0.001)
9 4.010(0.001) 4.022(0.001) 4.049(0.001) 4.030(0.001) 4.044(0.001)
10 5.881(0.003) 5.902(0.001) 5.907(0.001) 5.896(0.005) 5.904(0.001)

The numerical results are divided into two categories: the first six rows report

the numerical results under the dominant volatility effects, i.e., γ is comparatively

large and λ is comparatively small; the last four rows report the results under mod-

erate/weak volatility effects. It can be seen from the tables that [Full.LB, Full.UB]
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Table 11: American Put Option Prices on the Minimum of Two Assets (r = 0.05,
K = 40, δ = 0.1, T = 10, S0 = (36, 36)>, X0 = (θ, θ)>)

Volatility not observable Volatility directly observable

# LB UB Full.ŨB Full.LB Full.UB

1 4.027(0.002) 4.032(0.001) 4.068(0.002) 4.039(0.001) 4.043(0.001)
2 5.004(0.006) 5.147(0.004) 5.256(0.006) 5.143(0.005) 5.222(0.003)
3 5.274(0.005) 5.378(0.002) 5.565(0.004) 5.467(0.004) 5.489(0.001)
4 8.045(0.006) 8.171(0.004) 8.289(0.006) 8.188(0.010) 8.268(0.003)
5 4.641(0.002) 4.782(0.001) 4.918(0.005) 4.833(0.006) 4.870(0.001)
6 7.531(0.006) 7.638(0.002) 7.723(0.007) 7.606(0.007) 7.704(0.002)
7 4.429(0.002) 4.456(0.001) 4.514(0.001) 4.477(0.002) 4.500(0.001)
8 6.984(0.004) 7.042(0.003) 7.074(0.004) 6.997(0.007) 7.080(0.001)
9 5.417(0.002) 5.428(0.001) 5.449(0.001) 5.431(0.003) 5.447(0.001)
10 9.084(0.006) 9.130(0.002) 9.138(0.002) 9.071(0.009) 9.133(0.002)

is usually a tighter interval than [LB,Full.ŨB] for the fully observable option price,

since more information is used to determine a better exercise policy. To differen-

tiate the option prices under full and partial observations of stochastic volatility,

[74] pointed out that the partial observation of stochastic volatility has an impact

especially when the effect of the volatility (i.e., γ
2

2λ
) is high. Our numerical results

also support their viewpoints in terms of the differences between UB and Full.ŨB,

which demonstrate the effectiveness of introducing the filtering step. In particular,

it can be observed that we can reduce relatively more overpricing for problems with

dominant volatility (i.e., the first category). Considering the differences between LB

and Full.UB, partially observable and fully observable option prices have relatively

small gaps under moderate/weak volatility effects compared with the gaps in the first

category. Larger observation noise µ challenges the performance of suboptimal exer-

cise policy and also deteriorates the performance of particle filtering, so it generally

increases the gap between Full.LB and Full.UB and the gap between LB and UB.

Compared with [74] and [61], whose approaches provide asymptotic lower bounds on

the option prices, our main contribution is to provide an asymptotic upper bound on

the option price, which is less than or similar to the lower bound (Full.LB) of the
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corresponding fully observable option price in the first category. Hence, our method

provides a better criterion to evaluate the performance of LB: the smaller the gap

between UB and LB, the better the bounds. If the gap between UB and LB is

small enough, they can be both regarded as approximate option prices under partial

observation. Otherwise, improvement on the exercise policy should be considered.

5.5 Conclusion

We propose a numerical approach to solve for the value function of the partially ob-

servable optimal stopping problem. We represent the value function as a solution

of a dual minimization problem, based on which we develop an algorithm that com-

plements a suboptimal stopping time with an asymptotic upper bound on the value

function. Our approach provides a practical way to judge whether more computa-

tional effort is needed to improve the quality of the approximate solution. We apply

our approach to price American put options in stochastic volatility models, with the

realistic assumption that the volatility cannot be directly observed but can be inferred

from the asset prices. The numerical results confirm a higher price of the option if

we alternatively assume that the volatility is directly observable. The price difference

is more significant when the effect of volatility is high, indicating the importance of

taking the partial observability into account.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

This thesis has developed new theories and computational methods that extend the

scope of information relaxation in three important dynamic decision making problems.

The first part of the thesis studies the interactions of Lagrangian relaxation and

information relaxations in weakly coupled dynamic programs. We generalize the

information relaxation approach to obtain a tighter dual bound than the Lagrangian

relaxation bound in discounted infinite-horizon problems. To develop this approach,

we first employ a geometric distributed randomized time to convert the discounted

infinite-horizon inner problem to a finite (but random) horizon problem. Next, we

propose a computationally tractable method that relaxes the inner problem to tackle

large-scale problems. We provide insightful interpretation and theoretical analysis on

the relative gap between the exact and practical information relaxation bounds.

The second part of the thesis is devoted to establish the information relaxation-

based dual representation of controlled Markov diffusion. We derive the weak an

strong duality as well as the complementary slackness conditions in parallel with the

results in MDPs. In particular, we explore the structure of the value function-based

optimal penalty and show that it takes the compact form of a stochastic integral

under the natural filtration generated by the Brownian motion. We discuss the con-

nection between the dual formulations of MDPs and controlled Markov diffusions.

An application is illustrated by a dynamic portfolio choice problem with predictable

returns and intermediate consumptions. We consider the numerical solution to a

discrete-time model that is discretized from a continuous-time model. An effective
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and easy-to-compute penalty is proposed to derive dual bounds on the optimal value

of the discrete-time model and produces small duality gaps.

The third part of the thesis focuses on discrete-time continuous-state partially

observable optimal stopping problem. We develop a simulation-based method to

provide an approximate solution to the optimal value. By treating the filtering dis-

tribution as a state, the partially observable problem is transformed to an equivalent

fully observable optimal stopping problem. We extend the martingale duality to this

formulation, based on which we apply the particle filtering technique to develop a

numerical method and show that it is an asymptotic upper bound on the optimal

value. We use this approach to price American put options on one and two assets

respectively, and compare with the option prices from the models assuming fully ob-

servable volatility. The numerical results indicate that different assumptions on the

observability of stochastic volatility have an impact on the option price, and show

that our method effectively reduces overpricing of the option.

6.2 Future Research

My future research will study the impact of future information on the performance

of decision strategies in dynamic decision-making problems including applications

in resources allocation and revenue management. The current information relaxation

technique is mainly used to place a dual bound on the performance of non-anticipative

decision strategy. In many real-world problems, the non-anticipativity constraint may

be relieved thanks to the modern forecasting technology and business strategy. For

instance,

• The sensor technology allows monitoring and collecting traffic information in of-

fice buildings or hotels, which can be used to predict future requests for elevator

service.

• Some airline companies offer the option of locking in the current fare for a

110



specified period of time to the potential passengers, which helps the company

to forecast the future demands within this time window.

Under the circumstances that the decision maker has partial access to the future

information, I plan to (i) develop new algorithm that can effectively utilize the inexact

future information; (ii) study the conditions under which the new algorithm can

gain significant improvement over the conventional “non-anticipative” algorithm; (iii)

analyze the limitation of the anticipative algorithm, especially on its sensitivity to

the inaccurate forecast. As a concrete example, incorporating advance passenger

information into the scheduling of group elevator system may help reduce the average

waiting time of passengers during peak times.
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APPENDIX A

WEAKLY COUPLED DYNAMIC PROGRAM

A.1 Approximate Linear Programming Approach

The approximate linear programming (ALP) method aims to find a good approxima-

tion of V within a parameterized class of functions with a lower-dimensional repre-

sentation [30]. In the setting of weakly coupled stochastic dynamic program, we can

set H(x) = θ +
∑N

n=1 H
n(xn), where θ is a constant and Hn(·) only depends on xn

for n = 1, · · · , N . This approximation scheme is probably motivated by the additive

form of Lagrangian function.

Note that each Hn(·) is a mapping from X n to R determined by |X n| values, which

implies that H(x) can be represented with 1 +
∑n

i=1 |X n| variables. To determine

appropriate parameter values, we are seeking a best feasible and additively separable

solution from the following linear program (with variables θ and {Hn(·)}Nn=1):

HLP (υ) , min
{θ,Hn(·)}

θ +
N∑
n=1

∑
xn∈Xn

υn(xn)Hn(xn) (94)

s.t. θ(1− β) +
N∑
n=1

Hn(xn0 ) ≥
N∑
n=1

Rn(xn0 , a
n
0 ) + β

N∑
n=1

∑
xn1∈×Xn

Pn(xn1 |xn0 , an0 )Hn(xn0 ),

for all x0 ∈ X and a0 ∈ Ā(x0),

where υn(xn) is the marginal distributions of xn derive from a probability distribution

υ(·) on X . This linear programming has
∑N

n=1 |Xn| variables and can have as many

as
∏N

n=1(
∑

xn∈Xn |An(xn)|) constraints. We denote by {θ∗, HLP,n(·), n = 1, · · · , N}

the optimal solution to (94), and define

HLP (x) , θ∗ +
N∑
n=1

HLP,n(xn).
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The following lemma shows that the bound derived by the ALP method is tighter

than the Lagrangian bound, the proof of which can be found in [1].

Lemma 6. (a). Let {λ, Hλ,n(·), n = 1, · · · , N} be a feasible solution to the linear

program (16). Then {λ>b
1−β , H

λ,n(·), n = 1, · · · , N} is also in the feasible region

of the linear program (94), i.e., Jλ ∈ D∗ (see the definition of D∗ in Theorem

3(b)).

(b). HLP (υ) ≤ Jλ(υ) for any λ ∈ RL
+ and probability distribution υ.

(c). HLP ∈ D∗, and V (x) ≤ HLP (x) for all x ∈ X (regardless of the distribution υ).

A.2 Complements to Section 3.2

A.2.1 A formal definition of τ

In this subsection we discuss the augmentation of the probability space (Ω,F , P )

associated with the original problem (11) due to the introduction of the random time

τ . We can assume that the random variable τ is associated with another probability

space (Ω̂, Ĝ, P̂ ), where τ : Ω̂→ N, Ĝ is the σ-algebra generated by τ (i.e., σ(τ)), and

P̂ (τ = t) = (1− β)βt for t = 0, 1, 2, · · · .

The probability space (Ω,F , P ) is then augmented to (Ω× Ω̂,F ⊗σ(τ),P), where

F ⊗ σ(τ) is the product σ-algebra of F and σ(τ), and P is the product measure of P

and P̂ , i.e., P(A × [t,∞)) = P (A) × P̂ (τ ≥ t) = P (A) × βt with A ∈ F . We clarify

this (straightforward) augmentation is because we can use the pair (ω, τ) to denote

the uncertainty in E0[·] in (21) without confusion, though we use P to denote P to

save notations.

A.2.2 maxa∈Ā{IH(a, ω, τ)} has finite mean and variance

Let I(ω, τ) = maxa∈Ā{IH(a, ω, τ)}. Then LH(x0) , H(x0) + E0[I(ω, τ)]. Since R

and H are both bounded, we can assume for all (xt, at) ∈ X ×A, t = 0, 1, 2, · · · ,

|R(xt, at) + βE[H(xt+1)|xt, at]−H(xt)| ≤ C

113



for some C > 0. Therefore, |I(ω, τ)| ≤ (τ + 1)C for any ω ∈ Ω, which implies

|E0[I(ω, τ)]| ≤ E0 [E [|I(ω, τ)||τ ]] ≤
∞∑
τ=0

(1− β)βτ (τ + 1)C =
C

1− β
<∞, (95)

and Var[I(ω, τ)|τ ] ≤ E[I2(ω, τ)|τ ] ≤ (τ + 1)2C2. The inequality (95) indicates that

I(ω, τ) has finite mean.

We note that Var[I(ω, τ)] = E[Var[I(ω, τ)|τ ]] + Var[E[I(ω, τ)|τ ]].

It can be seen that E[Var[I(ω, τ)|τ ]] ≤
∑∞

τ=0(1−β)βτ (τ+1)2C2 = 1+β
(1−β)2C

2 <∞,

and

Var[E[I(ω, τ)|τ ]] ≤E[(E[I(ω, τ)|τ ])2] ≤ E[(τ + 1)2C2]

=
∞∑
τ=0

(1− β)βτ (τ + 1)2C2 =
1 + β

(1− β)2
C2 <∞.

Hence, we conclude that I(ω, τ) has finite variance.

A.3 Whether Information Relaxation Can Improve the La-
grangian Bound

We consider the restless bandit-like problem with N = 1 as proposed in Section 3.3

of [1]: the state space contains three states, i.e., X = {0, 1, 2}, and for each state

x ∈ X the control space is A(x) = {0, 1}. The corresponding reward R(x, a), weight

B(x, a), and transition probability P (xt+1|xt, at) are listed in Table 12, in which

l > 0 and c > 1 are positive constants. Note that states “1” and “2” are absorbing

states regardless of the control applied, however, the state “0” may transit to either

“1” or “2” depending on the control chosen. The linking constraint is B(x, a) ≤ 1.

Therefore, Ā(0) = Ā(2) = {0, 1} and Ā(1) = {0}.

Remark 5. In Table 1 of [1], D(2, 0) = ε > 0. For simplicity we set ε = 0, and the

results therein are still true.

The exact value function (11) is V (0) = cβ
1−β , V (1) = 0, and V (2) = c

1−β . The

optimal stationary policy is α = (α∗, α∗, · · · ), where α∗(0) = α∗(1) = 0 and α∗(2) = 1.
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Table 12: One-subproblem with b = 1 and β ∈ (1
2
, 1)

State Control Reward Weight Transition

0 0 R(0, 0) = 0 B(0, 0) = 0 P (2|0, 0) = 1
0 1 R(0, 1) = 0 B(0, 1) = 0 P (1|0, 1) = 1
1 0 R(1, 0) = 0 B(1, 0) = 0 P (1|1, 0) = 1
1 1 R(1, 0) = c(2 + l) B(1, 1) = 2 P (1|1, 1) = 1
2 0 R(2, 0) = 0 B(2, 0) = 0 P (2|2, 0) = 1
2 1 R(2, 1) = c B(2, 1) = 0 P (2|2, 1) = 1

The Lagrangian relaxation yields Jλ(x) = λ
1−β +Hλ(x) for x = 0, 1, 2, where Hλ(·)

are the solution to (15). According to [1], the optimal Lagrangian multiplier is

λ∗ = arg min
λ≥0

Hλ(υ) = c+ cl/2,

which implies Hλ∗(0) = 0, Hλ∗(1) = 0, and Hλ∗(2) = 0. Therefore,

Jλ
∗
(0) =

λ∗

1− β
, Jλ

∗
(1) =

λ∗

1− β
, and Jλ

∗
(2) =

λ∗

1− β
.

Note that Jλ
∗
(·) are unbounded on X as l → ∞, though the exact values V (·) are

constant with respect to l.

By applying the information relaxation approach with H = Jλ
∗
,

LJλ∗(x0)

=H(x0) + E0

[
max

a∈Ā(τ)

{
τ∑
t=0

(
R(xt,at) + βE[H(xt+1)|xt,at]−H(xt)

)}]

=H(x0) +
∞∑
T=0

(1− β)βT · E0

[
max
a∈Ā

{
T∑
t=0

(
R(xt,at) + βE[Jλ

∗
(xt+1)|xt,at]− Jλ

∗
(xt)

)}]
.

Note that Jλ
∗
(x0) − (R(x0, a0) + βE[Jλ

∗
(x1)|x0, a]) ≥ λ∗ − c for all x0 = 1, 2, 3

and a0 ∈ Ā(x0). According to Theorem 5(c), Jλ
∗
(x)−LJλ∗(x) ≥ λ∗−c

1−β , which implies

LJλ∗(x) ≤ c
1−β for x = 1, 2, 3. This bound remains constant with respect to l and it

has already been tight as an upper bound on V (2).

We can show that the exact computation of the information relaxation bound also

leads to a tight upper bound on V (0). Starting at x0 = 0 and for each T ∈ N and

115



ω ∈ Ω,

max
a∈A(T )

{
T∑
t=0

(
R(xt,at) + βE[Jλ

∗
(xt+1)|xt,at]− Jλ

∗
(xt)

)}

= max

{
R(0, 0) + βE[Jλ

∗
(x1)|0, 0]− Jλ∗(0)

+

T∑
t=1

max
at∈Ā(xt)

{
R(xt,at) + βE[Jλ

∗
(xt+1)|xt,at]− Jλ

∗
(xt)

}
,

R(0, 1) + βE[Jλ
∗
(x1)|0, 1]− Jλ∗(0)

+
T∑
t=1

max
at∈Ā(xt)

{
R(xt,at) + βE[Jλ

∗
(xt+1)|xt,at]− Jλ

∗
(xt)

}}

= max

{
R(0, 0) + βJλ

∗
(2)− Jλ∗(0) +

T∑
t=1

max
at∈Ā(2)

{
R(2,at)− (1− β)Jλ

∗
(2)
}
,

R(0, 1) + βJλ
∗
(1)− Jλ∗(0) +

T∑
t=1

max
at∈Ā(1)

{
R(1,at)− (1− β)Jλ

∗
(1)
}}

= max

{
0 + β

λ∗

1− β
− λ∗

1− β
+ (c− λ∗)T, 0 + β

λ∗

1− β
− λ∗

1− β
+ (0− λ∗)T

}
= −λ∗ + (c− λ∗)T,

where the first equality holds since staring at x0 = 0, the control a0 = 0 leads

to x1 = 2 (respectively, a0 = 1 leads to x1 = 1) with probability 1, and hence

determine all the subsequent states x2, x3, · · · , since x = 1 and 2 are absorbing

states. Consequently, the deterministic dynamic program with time horizon T can be

decomposed as the summation of T sub-problems. The last equality holds as the first

term dominates the second, meaning that a0 = 0 and a1 = 1 for t ≥ 1 is the solution

to the inner optimization problem for all the scenarios ω ∈ Ω. Since Jλ
∗
(0) = λ∗

1−β ,

then

LJλ∗(0) =
λ∗

1− β
+ E0[−λ∗ + (c− λ∗)τ ]

=
λ∗

1− β
+
∞∑
τ=0

(1− β)βτ [−λ∗ + (c− λ∗)τ ] =
cβ

1− β
.

Hence, LJλ∗(0) = V (0).
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A.4 Proof of Theorem 9

To prove Theorem 5, we use the result of Lagrangian duality gap on deterministic

separable problem. Consider a separable problem

max
a∈Ā

N∑
n=1

fn(an), (96)

where Ā = {a , (a1, · · · , aN) ∈ A1 × · · · × AN |
∑N

n=1 hn(an) ≤ q} with q ∈ RL̃.

We then define the Lagrangian dual of (96):

min
µ≥0

d(µ) ,
N∑
n=1

max
an∈An

{fn(an)− µ>hn(an)}+ µ>q.

Lemma 7 (Proposition 5.26 in [8]). Suppose the following assumptions hold.

Assumption 1: Ā 6= ∅.

Assumption 2: for each n = 1, · · · , N , {an,hn(an), fn(an)|an ∈ An} is compact.

Assumption 3: for each n = 1, · · · , N , given any vector ãn ∈ conv(An), there

exists an ∈ An such that

hn(an) ≤ (čl hn)(ãn).

Then

min
µ≥0

d(µ)−max
a∈Ā

N∑
n=1

fn(an) ≤ (L̃+ 1) max
n=1,··· ,N

ρn,

where ρn = supan∈conv(An)

{
f̃n(an)− (čl fn)(an)

}
.

The proof of Theorem 5 uses the following lemma, which is a corollary of Lemma

7.

Lemma 8. Suppose that H is of the additively separable form H(x) = θ+
∑N

n=1 H
n(xn),

and Assumptions 1-3 in Section 3.2 hold for ω ∈ Ω and T ∈ N. Then

min
µ≥0

max
a∈A(T )

IH(a, ω, T ;µ)− max
a∈Ā(T )

IH(a, ω, T ) ≤ (1 + L(T + 1)) max
n=1,··· ,N

γn,
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where

γn = sup
ãn∈conv(An(T ))

{
ĨnHn(ãn, ω, T ; 0)− (čl InHn)(ãn, ω, T ; 0)

}
,

čl InH is the convex closure of InHn, and ĨnHn is defined as

ĨnHn(ãn, ω, T ; 0) = inf
an∈An(T )

{
InHn(an, ω, T ; 0)|Bn

t (an, ω) ≤ (čl Bn
t )(ãn, ω), t = 0, · · · , T

}
.

Remark 6. Note that ĨnHn(ãn, ω, T ; 0) is well-defined according to Assumption ?? in

Section ??.

Proof. Lemma 8 directly follows from Lemma 7 by setting fn = InHn , hn = (Bn
0 , · · · ,Bn

T ),

q = (b, · · · ,b) ∈ RL̃ with L̃ = L × (T + 1), and the decision variable an = an ∈

An(T ).

A.4.1 Proof of Theorem 9

According to Lemma 8, we have for fixed ω ∈ Ω and τ = T ,

min
µ≥0

max
a∈A(T )

IH(a, ω, T ;µ)− max
a∈Ā(T )

IH(a, ω, T ) ≤ (1 + L(T + 1)) max
n=1,··· ,N

γn,

where

γn ≤ sup
an∈An(τ)

{InHn(an, ω, T ; 0)} − inf
an∈An(τ)

{InHn(an, ω, T ; 0)}

≤(T + 1) sup
xn0∈Xn,an0∈An(xn0 )

{Rn(xn0 , a
n
0 ) + βE[Hn(xn1 )|xn0 , an0 ]−Hn(xn0 )}

− (T + 1) inf
xn0∈Xn,an0∈An(xn0 )

{Rn(xn0 , a
n
0 ) + βE[Hn(xn1 )|xn0 , an0 ]−Hn(xn0 )}

=(T + 1)Γn,

where the first inequality is due to the definitions of ĨnHn and čl InHn , and the second

inequality holds independent of ω. It is straightforward to see

L◦H(x)− LH(x) = E
[
min
µ≥0

max
a∈A(τ)

{IH(a, ω, τ ;µ)} − max
a∈Ā(τ)

{IH(a, ω, τ)}
]

≤ E
[
E
[
(1 + L(τ + 1))(τ + 1) max

n=1,··· ,N
Γn
∣∣∣∣τ]] .
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Then we can obtain (35), since

E
[
E
[
(1 + L(τ + 1))(τ + 1) max

n=1,··· ,N
Γn
∣∣∣∣τ]] = max

n=1,··· ,N
Γn · E [(1 + L(τ + 1))(τ + 1)]

=
(L− 1)β + L+ 1

(1− β)2
max

n=1,··· ,N
Γn.

A.5 Finite horizon case

In this section we consider the finite-horizon weakly coupled dynamic program, which

is the same as infinite-horizon case except that

1. The time is indexed by t = 0, · · · , T.

2. The transition probability can be time-varying.

3. The linking constraint can be time-varying, and the feasible control set at time

t is

Āt(xt) = {a = (a1
t , · · · , aNt ) ∈ At(xt) : Bt(xt, at) ,

N∑
n=1

Bn
t (xnt , a

n
t ) ≤ bt},

where each bt ∈ RL for t = 0, · · · , T .

4. The intermediate rewards denoted by Rt(xt, at) =
∑N

n=1 R
n
t (xnt , a

n
t ) can also be

time-varying.

The objective of the decision maker is to maximize the expected rewards given

x0 ∈ X ,

U0(x0) = max
α∈ĀF(T )

U0(x0;α), (97)

where

U0(x0;α) = E

[
T∑
t=0

Rt(xt, at)

∣∣∣∣x0

]
,
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and ĀF(T ) is the set of non-anticipative policies α that selects at ∈ Āt(xt) for each

t = 0, 1, · · · , T . Then U0 can be solved via the dynamic programming:

UT+1(xT+1) = 0;

Ut(xt) = max
at∈Āt(xt)

{Rt(xt, at) + E[Ut+1(xt+1)|xt, at]} .

A.5.1 Lagrangian Relaxation

Let AF(T ) = {α ∈ A(T )| α is non-anticipative}. By dualizing the linking constraint

with Lagrangian multipliers λ = (λ0, · · · ,λT ) ≥ 0 with each λt ∈ RL
+, we define for

x0 ∈ X ,

Jλ
0 (x0) , max

α∈AF(T )
Jλ

0 (x0;α), (98)

where

Jλ
0 (x0;α) , E

[
T∑
t=0

Rt(xt, at) + λ>t [bt −Bt(xt, at)]

∣∣∣∣x0

]
,

and AF(T ) is the set of non-anticipative policies α that selects at ∈ At(xt) for each

t = 0, · · · , T . Then Jλ
0 can be solved via the dynamic programming equations:

Jλ
T+1(xT+1) = 0;

Jλ
t (xt) = max

at∈At(xt)

{
Rt(xt, at) + λ>t [bt −Bt(xt, at)] + E[Jλ

t (xt+1)|xt, at]
}
. (99)

Similar to the infinite-horizon case, the solution to (98) can be solved by decom-

posing (99) into N dynamic programs of lower dimensions:

Jλ
0 (x0;α) =

T∑
t=0

λ>t bt+E

[
T∑
t=0

Rt(xt, at)− λ>t Bt(xt, at)

∣∣∣∣x0

]
=

T∑
t=0

λ>t bt+
N∑
n=1

Hλ,n
0 (xn0 ),

where

Hλ,n
T+1(xnT+1) = 0,

Hλ,n
t (xnt ) = max

ant ∈Ant (xnt )

{
Rn
t (xnt , a

n
t )− λ>t Bn

t (xnt , a
n
t ) + E[Hλ,n

t+1(xnt+1)|xnt , ant ]
}
.
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A.5.2 Information Relaxation

We define the space of a sequence of functions H = (H0, · · · , HT+1):

DT , {H = (H0, · · · , HT+1)|Ht : X → R for t = 0, · · · , T + 1, and HT+1(·) ≡ 0}.

Given H ∈ DT , we define

LTH(x0) ,E0

[
max

a∈A(T )

{
T∑
t=0

(
Rt(xt, at) + E[Ht+1(xt+1)|xt, at]−Ht+1(xt+1)

)}]

=H0(x0) + E0

[
max
a∈A(T )

{IH(a, ω, T )}
]
,

where we redefine a , (a0, · · · , aT ), and

IH(a, ω, T ) ,
T∑
t=0

(
Rt(xt, at) + E[Ht+1(xt+1)|xt, at]−Ht(xt)

)
.

Practical Information Relaxation Bound We further assume for each t =

0, · · · , T , the function Ht is of the additively separable form

Ht(xt) = θt +
N∑
n=1

Hn
t (xnt ),

where θt ∈ R and Hn
t : X n → R. The space of additively separable functions is

denoted by

D◦T , {H = (H0, · · · , HT+1) ∈ DT | Ht is additively separable for t = 0, · · · , T,

and HT+1(·) ≡ 0}.

Let µ , (µ0, · · · ,µτ ) with µt ∈ RL
+. We define the operator L◦T on D◦T :

L◦TH(x0) ,E0

[
min
µ≥0

max
a∈A(T )

{ T∑
t=0

(
Rt(xt, at) + µ>t (bt −Bt(xt, at))

+ E[Ht+1(xt+1)|xt, at]−Ht+1(xt+1)
)}]

(100)

=H0(x0) + E0

[
min
µ≥0

max
a∈A(T )

{IH(a, ω, T ;µ)}
]
,
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where

IH(a, ω, T ;µ) ,
T∑
t=0

(
Rt(xt, at)+µ>t (bt−Bt(xt, at))+E[Ht+1(xt+1)|xt, at]−Ht(xt+1)

)
.

We list the analogous results of Theorem 1, Theorem 2, Theorem 4, and Theorem

5 for finite horizon problem in Theorem 6. Proofs are similar and hence are omitted

here.

Theorem 17. (a) (Weak Duality) For any H ∈ DT , V0(x0) ≤ LTH(x0) for all

x0 ∈ X .

(b) (Tighter Bound) For any H ∈ D∗T , where

D∗T ,
{
H ∈ DT : Rt(xt,at) + βE[Ht+1(xt+1)|xt,at] ≤ Ht(xt)

for all xt ∈ X and at ∈ Ā(xt), t = 0, · · · , T
}
,

then maxa∈Ā(T ){IH(a, ω, T )} ≤ 0 for every ω ∈ Ω; consequently, V0(x0) ≤

LTH(x0) ≤ H0(x0) for all x0 ∈ X .

(c) (Strong Duality) V0(x0) = LTV (x0) for all x0 ∈ X , where V = (V0, · · · , VT ).

(d) (Comparing Lagrangian Bound) For all x0 ∈ X , V0(x0) ≤ LTJλ((x0) ≤ Jλ
0 (x0),

where Jλ = (Jλ
0 , · · · , Jλ

T ).

(e) (Relaxed Inner Optimization Problem) Suppose that H ∈ D◦T , i.e., Ht(xt) =

θt +
∑N

n=1H
n
t (xnt ), minµ≥0 maxa∈A(T ) IJλ(a, ω, T ;µ) ≤ 0 for every ω ∈ Ω. Con-

sequently, LTJλ(x0) ≤ L◦TJλ(x0) ≤ Jλ
0 (x0) for all x0 ∈ X .

(f) (Duality Gap) Suppose that H ∈ D◦T , i.e., Ht(xt) = θt +
∑N

n=1H
n
t (xnt ), and

Assumptions 1-3 in Section 3.2 hold for every ω ∈ Ω. Then for all x0 ∈ X ,

L◦TH(x0)− LTH(x0) ≤ (1 + L(T + 1)) max
n=1,··· ,N

T∑
t=0

Γnt , (101)
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where

Γnt = sup
xnt ∈Xn,ant ∈An(xn0 )

{
Rn(xnt , a

n
t ) + βE[Hn(xnt+1)|xnt , ant ]−Hn(xnt )

}
− inf

xnt ∈Xn,ant ∈An(xnt )
{Rn(xnt , a

n
t ) + βE[Hn(xnt+1)|xnt , ant ]−Hn(xnt )}.
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APPENDIX B

CONTROLLED MARKOV DIFFUSION

In this appendix we aim to develop the value function-based penalty as a solution to

the dual problem on the right side of (47), which can be viewed as the counterpart

of (5) in the setting of controlled Markov diffusions. For this purpose we need to

define a solution to the stochastic differential equation(SDE) (41) with an anticipative

control u ∈ U(0). Therefore, we introduce the Stratonovich calculus and anticipating

stochastic differential equation in Appendix B.1, and present the value function-

based optimal penalty in Appendix B.2. We also review the dual representation of

the optimal stopping problem under the diffusion process in Appendix B.3.

B.1 Anticipating Stochastic Differential Equation

There are several ways to integrate stochastic processes that are not adapted to

Brownian motions such as Skorohod and (generalized) Stratonovich integrals (see, e.g,

[67, 68]). In this subsection we present the Stratonovich integral and its associated Ito

formula. Then we generalize the controlled diffusion (41) to the Stratonovich sense

following [28].

We first assume that w = (wt)t∈[0,T ] is a one-dimensional Brownian Motion in the

probability space (Ω,F ,P). We denote by I an arbitrary partition of the interval

[0, T ] of the form I = {0 = t0 < t1 < · · · < tn = T}

Definition 2. (Definition 3.1.1 in [67]) We say that a measurable process y =

(yt)t∈[0,T ] such that
∫ T

0
|yt|dt <∞ a.s. is Stratonovich integrable if the family

SI =

∫ T

0

yt

n−1∑
i=0

wti+1 − wti
ti+1 − ti

1(ti,ti+1](t) dt
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converges in probability as sup0≤i≤n−1(ti+1 − ti) → 0, and in this case the limit will

be denoted by
∫ T

0
yt ◦ dwt.

Remark 7. We can translate an Ito integral to a Stratonovich integral. If y =

(yt)t∈[0,T ] is a continuous semimartingale of the form

yt = y0 +

∫ t

0

υs ds+

∫ t

0

ζs dws,

where (υt)t∈[0,T ] and (ζt)t∈[0,T ] are adapted processes taking value in Rn and Rn×m such

that∫ T
0
‖ υs ‖ ds <∞ and

∫ T
0
‖ ζs ‖2 ds <∞ a.s.. Then y is Stratonovich integrable on

any interval [0, t], and∫ t

0

ys ◦ dws =

∫ t

0

ys dws + 〈y, w〉t =

∫ t

0

ys dws +
1

2

∫ t

0

ζs ds, (102)

where 〈y, w〉t denotes the joint quadrature variation of the semimartingale y and the

Brownian motion w. Definition 2 and the equality (102) can be naturally extended to

the vector case.

Then we present the Ito formula for Stratonovich integral in Proposition 4 (see,

e.g., Section 3.2.3 of [67]).

Proposition 4 (Theorem 3.2.6 in [67]). Let w = (w1
t , · · · , wmt )t∈[0,T ] be an m-dimensional

Brownian motion. Suppose that y0 ∈ D1,2, υs ∈ L1,2, and ζ i ∈ L2,4
S , i = 1, · · · ,m.

Consider a process y = (yt)t∈[0,T ] of the form

yt = y0 +

∫ t

0

υs ds+
m∑
i=1

∫ t

0

ζ is ◦ dwis, 0 ≤ t ≤ T.

Assume that (yt)0≤t≤T has continuous paths. Let F : Rn → R be a twice continu-

ously differentiable function. Then we have

F (yt) = F (y0) +

∫ t

0

F>y (ys)υs ds+
m∑
i=1

∫ t

0

[
Fy(ys)

>ζ is
]
◦ dwis, 0 ≤ t ≤ T, (103)

where Fy(·) denotes the gradient of F w.r.t. y.
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Proposition 4 basically says that the Stratonovich integral obeys the ordinary

chain rule.

Based on the definition of Stratonovich integral and Remark 7, we generalize the

SDE (41) to the Stratonovich sense (referred to as S-SDE) assuming that b is bounded

and C1 in (x, u); σ is bounded and C2 in x. Then (41) is equivalent to

xt = x+

∫ t

0

b̄(t, xt, ut)dt+
m∑
i=1

∫ t

0

σi(t, xt) ◦ dwit, 0 ≤ t ≤ T, (104)

where σi : [0, T ] × Rn → Rn is the i-th column of σ, i = 1, · · · ,m, and b̄(t, x, u) =

b(t, x, u) − 1
2

∑m
i=1 σ

i
xσ

i(t, x). Here σki is the (k, i)-th entry of σ, and σixσ
i denotes

an n × 1 vector with
∑n

j=1
∂σki

∂xj
σji being its k-th entry. Since the stochastic integral

in (104) is in the Stratonovich sense, S-SDE (104) adopts its solution in the space

of B([0, T ]) × F -measurable processes, which may not be adapted to the filtration

generated by the Brownian motion. Therefore, we are allowed to consider anticipative

policies u ∈ U(0) in (104).

Finally, we need to ensure the existence of a solution to S-SDE (104) if the control

strategy u ∈ U(0) is anticipative. Following [28],[68], we have a representation of

such a solution using the decomposition technique:

xt = ξt(ηt), (105)

where {ξt(x)}t∈[0,T ] denotes the stochastic flow defined by the adapted equation:

dξt =
m∑
i=1

σi(t, ξt) ◦ dwit,

=
1

2

m∑
i=1

σixσ
i(t, ξt)dt+ σ(t, ξt)dwt, ξ0 = x, (106)

and (ηt)t∈[0,T ] solves an ordinary differential equation:

dηt
dt

=

(
∂ξt
∂x

)−1

(ηt)b̄ (t, ξt(ηt), ut) , η0 = x, (107)

where ∂ξt
∂x

denotes the n × n Jacobian matrix of ξt with respect to x. Under some

technical conditions (see Section 1 of [28]), the solution (105) is defined almost surely:
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observe that ξt does not depend on the control ut, i.e., it is the solution to a regular

SDE in the Ito sense; ηt is not defined by a stochastic integral so it is the solution

to an ordinary differential equation parameterized by w (note that ∂ξt
∂x

is well-defined

a.s. for (t, x) ∈ [0, T ] × Rn, because ξt(x) is flow of diffeomorphisms a.s..). Hence,

xt = ξt(ηt) is well-defined regardless of the adaptiveness of u = (ut)0≤t≤T . To check

that xt = ξt(ηt) satisfies (104), we need to employ a generalized Ito formula of (103)

for Stratonovich integral (see Theorem 4.1 in [68]).

B.2 Value Function-Based Penalty

The tools we have introduced in the last subsection, especially the Ito formula for

Stratonovich integral, enable us to show the value function-based optimal penalty for

the controlled Markov diffusions that developed in Theorem 14.

Proof. [Proof of Theorem 14] Suppose u ∈ UF(0) and let yt = V >x (t, xt)σ
i(t, xt) in

Remark 7 for i = 1, · · · ,m. We can immediately obtain

h∗v(u,w) =
m∑
i=1

∫ T

0

V >x (t, xt)σ
i(t, xt) dw

i
t =

∫ T

0

V >x (t, xt)σ(t, xt) dwt.

Note that Vx and σ both satisfy a polynomial growth, since V (t, x) ∈ C1,2(Q)∩Cp(Q̄).

Then we have

E0,x

[
‖
∫ T

0

V >x (t, xt)σ(t, xt) ‖2 dt

]
<∞,

and therefore, E0,x[h
∗
v(u,w)] = 0 when u ∈ UF(0). Hence, h∗v(u,w) ∈ MF(0). We

then show the strong duality

V (0, x) = E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h∗v(u,w)

}]
. (108)

According to the weak duality (i.e., Proposition 1),

V (0, x) ≤ E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h∗v(u,w)

}]
. (109)
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Next we prove the reverse inequality. Note that with x0 = x,

Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h∗v(u,w)

= V (0, x) +

∫ T

0

[
Vt(t, xt) + V >x (t, xt)b̄(t, xt, ut)

]
dt

+
m∑
i=1

∫ T

0

[
V >x (t, xt)σ

i(t, xt)
]
◦ dwit − h∗v(u,w)

= V (0, x) +

∫ T

0

[g(t, xt, ut) + AutV (t, xt)] dt,

where the first equality is obtained by applying Ito formula for Stratonovich integral

(i.e., Proposition 4) on V (t, x) with V (T, xT ) = Λ(xT ):

V (T, xT ) = V (0, x0) +

∫ T

0

[
Vt(t, xt) + V >x (t, xt)b̄(t, xt, ut)

]
dt

+
m∑
i=1

∫ T

0

[
V >x (t, xt)σ

i(t, xt)
]
◦ dwit.

Since we assume the value function satisfies all the assumptions in Theorem 11(b),

there exists an optimal control u∗ = (u∗t )t∈[0,T ] with u∗t = u∗(t, xt) and it satisfies

g(t, x, u∗(t, x)) + Au
∗(t,x)V (t, x) = max

u∈U
{g(t, x, u) + AuV (t, x)} = 0,

then we have

sup
u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h∗v(u,w)

}
= sup

u∈U(0)

{
V (0, x) +

∫ T

0

[
g(t, xt, ut) + AutV (t, xt)

]
dt

}
≤V (0, x) +

∫ T

0

sup
u∈U

{
g(t, xt, u) + AuV (t, xt)

}
dt (110)

=V (0, x) +

∫ T

0

[
g(t, x∗t , u

∗
t ) + Au

∗
tV (t, x∗t )

]
dt

=V (0, x). (111)

Taking the conditional expectation on both sides, we have

V (0, x) ≥ E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h∗v(u,w)

}]
.
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Together with the weak duality (109) , we reach the equality (108).

Due to the fact of the equality (108) (that is in expectation sense) and the pathwise

inequality (111), we find that the only inequality (110) should be an equality in almost

sure sense. So the equality (51) holds in almost sure sense. To achieve the equality

in (110), the optimal control u∗ should be applied, which implies the equality (52).

B.3 Optimal Stopping under Diffusion Processes and Its
Dual Representation

References [7, 91] use the martingale duality approach to compute upper bounds on

the prices of American options, which is a typical optimal stopping problem. By

viewing the martingale-based dual approach as a case of the perfect information

relaxation, [7, 91] both explored the structure of the “optimal penalty” to the dual

of the optimal stopping problem under the diffusion process. We briefly review these

results that parallel Theorem 14 for controlled diffusions.

Suppose an uncontrolled diffusion (xt)t∈[0,T ] follows the SDE

dxt = b(t, xt)dt+ σ(t, xt)dwt, 0 ≤ t ≤ T.

We still use F to denote the natural filtration generated by the Brownian motion

(wt)t∈[0,T ]. The primal representation of the optimal stopping problem is

V (t, x) = sup
τ∈Jt

Et,x [g(τ, xτ )] , (112)

where g : Q̄ → R is a reward function, and Jt is the set of F-stopping times taking

value in [t, T ]. Suppose that V (t, x) is uniformly bounded and is sufficiently smooth to

apply Ito formula, we have the following dual representation of the optimal stopping

problem.

Proposition 5 (Theorem 1 and Theorem 2 in [91] ). Let HF represent the space of
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F-martingales {ht}t∈[0,T ] with h0 = 0 and supt∈[0,T ] E[|ht|] <∞. Then

V (0, x) = min
h∈HF

E0,x

[
max
t∈[0,T ]

{g(t, xt)− ht}
]
, (113)

In particular, the optimal martingale {h∗t}t∈[0,T ] that achieves the minimum in (113)

is of the form

h∗t =

∫ t

0

Vx(s, xs)
>σ(s, xs)dws. (114)

Noting that the maximization problem inside the expectation term (113) is the

“inner optimization problem” in the dual representation of the optimal stopping prob-

lem, since the only control in the primal (112) is to choose “continue” or “stop” the

process. The strong duality result (113) holds for general Markov processes, which

relies on the the Doob-Meyer decomposition of the process {V (t, xt)}t∈[0,T ]; however,

the form of the optimal martingale (or penalty) h∗ in (114) is true only under the

diffusion process. The form of h∗ exposes its connection with the value function-based

penalty presented in Theorem 14.
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