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SUMMARY

Aerospace design requirements mandate acceptable levels of structural failure risk.

Probabilistic fatigue models enable estimation of the likelihood of fatigue failure. A

key step in the development of these models is the accurate inference of the probability

distributions for dominant parameters. Since data sets for these inferences are of

limited size, the fatigue model parameter distributions are themselves uncertain.

A hierarchical Bayesian approach is adopted to account for the uncertainties in

both the parameters and their distribution. Variables specifying the distribution of

the fatigue model parameters are cast as hyperparameters whose uncertainty is mod-

eled with a hyperprior distribution. Bayes’ rule is used to determine the posterior

hyperparameter distribution, given available data, thus specifying the probabilistic

model. The Bayesian formulation provides an additional advantage by allowing the

posterior distribution to be updated as new data becomes available through inspec-

tions. By updating the probabilistic model, uncertainty in the hyperparameters can

be reduced, and the appropriate level of conservatism can be achieved.

In this work, techniques for Bayesian inference and updating of probabilistic fa-

tigue models for metallic components are developed. Both safe-life and damage-

tolerant methods are considered. Uncertainty in damage rates, crack growth behav-

ior, damage, and initial flaws are quantified. Efficient computational techniques are

developed to perform the inference and updating analyses. The developed capabilities

are demonstrated through a series of case studies.

xi



CHAPTER I

INTRODUCTION

1.1 Motivation

Practical engineering materials and structures contain defects and cracks. Cyclic

loading can cause defects to nucleate cracks and existing cracks to propagate through

fatigue processes. The initiation and growth of fatigue cracks may lead to the failure

of structural components at loads below design levels, limiting their useful life. Thus

fatigue considerations must be addressed if the ability of a structure to withstand

design loads is to be ensured for the duration of its specified life. Fatigue risk is

especially acute for rotorcraft, where vibratory loads are significant, and structural

failures often result in fatalities and loss of expensive equipment.

Assessments of the probability of a fatigue failure and its consequences are required

to quantify the fatigue risk of a structure properly. Evaluating the consequences of

a fatigue failure, whether catastrophic or benign, is fairly straightforward and can

be done using established methods of structural analysis. Methods for accurately

estimating the likelihood of fatigue failure without costly replicated full-scale testing

are less developed, however.

1.1.1 Dynamic and Airframe Components

Rotorcraft parts can be divided into two basic groups based on their cyclic loading

environment: dynamic components and airframe components. Dynamic components

are subjected to high-frequency, low-amplitude loading during all operations of the

aircraft, and examples include shafts, powerplant and drivetrain components, and

rotor head components. The load spectra of airframe components are dominated

by higher-amplitude, non-vibratory loads, such as ground-air-ground cycles. The
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Figure 1: Comparison of dynamic and airframe component crack growth

difference in the fatigue loading environment between the two groups results in two

different regimes of fatigue damage accumulation. The useful lifetime of a dynamic

component is dominated by the crack initiation process, whereas crack propagation

occupies a larger part of an airframe component’s lifetime. This distinction between

crack growth histories of dynamic and airframe components is depicted schematically

in Figure 1.

Typically, dynamic components are designed so that no detectable fatigue cracks

initiate during a pre-determined service life. The part is replaced when damage,

such as a gouge, dent, or corrosion pit of a specified size has been found or the pre-

determined life limit has been reached. The damage size criteria for replacement are

usually blanket specifications that do not consider the specific geometry and location

of the flaw. In many cases these limits are historical and have not been substan-

tiated with either analysis or experiment. Without an analysis of the actual flaw,
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serviceable limits must be set by assuming worst-case conditions, and are necessar-

ily over-conservative. Likewise, service life limits prescribed for each component are

generally over-conservative since they are determined assuming worst-case conditions

instead of actual conditions, as well. Thus many components may be retired with

significant useful life remaining due to exceeding either damage or life limits.

Retirement lifetimes are generally not specified for inspectable airframe compo-

nents. Rather, a maintenance schedule is specified in advance such that cracks below

a certain size will not reach a critical length between inspections. Worst-case loading

and material properties are usually assumed when determining inspection intervals

leading to an over-conservative inspection schedule.

1.1.2 Flaw-Tolerant and Damage-Tolerant Design

Updated federal government helicopter certification regulations require that fatigue

life substantiation include consideration of possible flaws or damage present in critical

locations of structures [1]. The flaw-tolerant approach has been used successfully to

comply with the new requirement for the certification of Sikorsky S-92 dynamic com-

ponents [2]. In this approach, fatigue life testing is performed with a representative

flaw located at the most critical location of the part. Component replacement times

and inspection intervals are specified based on experimentally determined fatigue lives

in the presence of barely detectable flaws and clearly detectable flaws, respectively

[68].

For airframe components where the crack propagation time is the dominant por-

tion of the fatigue life, damage tolerance analysis (DTA) has been used successfully to

establish retirement times and inspection intervals. DTA is used to demonstrate the

ability of the structure to maintain a specified residual strength for a certain period of

use after sustaining damage [68]. Such an analysis requires characterization of inher-

ent flaws, crack growth behavior, non-destructive inspection (NDI) methods, loads,

3



and service damage [9]. These data are used as inputs to a physics-based based life

prediction model to establish the residual strength and the reliability as a function

of continued usage.

1.1.3 Economic Drivers

Accounting for fatigue life uncertainty with conservative blanket maintenance prac-

tices ensures some level of reliability but does so in an economically inefficient manner.

By achieving the proper level of conservatism, savings may be realized in direct main-

tenance costs in addition to improving rotorcraft fleet utilization. In the particular

case of the US Army helicopter fleet, fatigue-critical parts only serve an average of

roughly 25% of their design life before replacement under the current damage allow-

ables [74]. Thus the parts cost alone is about 300% larger than the design maintenance

replacement cost. In addition, the rotorcraft spend up to four times more hours in

maintenance than designed, necessitating a larger fleet to achieve operational require-

ments. White and Vaughan show that increasing the average replacement interval

from 25% to 33% of the design life limit should result in downtime and replacement

cost reductions of approximately 25% [74]. Additional utilization benefits may be

achieved through flexibility in inspection intervals. By lengthening intervals, some

component inspections may be combined into the same maintenance action or re-

moved altogether.

1.2 Condition Based Maintenance

Condition Based Maintenance (CBM) attempts to improve cost-efficiency and fleet

utilization by scheduling inspections, repairs, and retirement for a single component

based on its own unique service history, maintenance, and inspection record [46]. In

CBM, data from usage monitors, advanced sensing equipment, and non-destructive

inspections (NDI) are synthesized with an appropriate model for damage progres-

sion. The physical model provides an estimate of the remaining life of individual

4



components to be used in the decision-making process for maintenance and inspec-

tion scheduling. By alleviating some uncertainty in remaining life, a more appropriate

level of conservatism can be achieved in maintenance decisions for an individual sys-

tem.

1.2.1 Probabilistic Modeling and Condition Based Maintenance

The processes of crack initiation, crack growth, and fracture are dependent on a

wide array of microscopic and macroscopic factors which leads to a commonly large

scatter in fatigue lives. The variability in microstructural features is not completely

mitigated by stochastic averaging as each defect can potentially nucleate the crack

that causes failure. The random grain structure encountered by short cracks causes

large variability in crack initiation times. Furthermore, numerous other uncertain or

unpredictable factors such as crack surface irregularity, environment, surface condi-

tions, material inhomogeneities, and residual stresses can have significant effects on

the rates of crack nucleation and propagation. These sensitivities result in highly

scattered crack initiation times and growth histories obtained from component life

testing demonstrated by Sinclair and Dolan [63], Virkler et al. [69], and Ghonem and

Dore [29].

The inherent random nature of fatigue requires a probabilistic analytical treatment

to allow the prediction of a structural component’s reliability. Furthermore, a proba-

bilistic consideration avoids over-conservatism from worst-case scenario assumptions

in design by considering the whole range of possible outcomes and their respective

probabilities. That is, highly unlikely combinations of loads, material properties, and

damage should not dominate the design of a structural component. Quantitative

probabilistic fatigue models should provide a means for designing structural compo-

nents for a specified reliability without relying on empirical safety factors or historical

rules-of-thumb. An appropriate level of conservatism can be attained by designing
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components and scheduling maintenance to achieve a target failure probability cal-

culated by a structural risk assessment. Examples of risk assessment analyses can

be found in Lincoln [41] and White et al. [75]. Several software packages have been

developed for probabilistic DTA and maintenance program analyses such as the U.S.

Air Force’s Probability Of Failure (PROF) [34] and the Australian Numerical Eval-

uation of Reliability Functions (NERF) [30]. However, these software assume that

the distributions of initial flaws and crack growth are known with certainty, which is

seldom tenable.

1.2.2 Stochastic Updating

Given limited data, there may be considerable uncertainty in the probabilistic failure

model itself, making initial reliability predictions necessarily conservative. However,

as more data become available through inspections, testing, and tear-downs, the dis-

tributions of parameters can be updated to reflect the newly acquired knowledge.

Doing so reduces the epistemic (knowledge-based) uncertainty and provides a better

determination of how much conservatism is warranted. Also, inspection data for a

specific part can be used to update the probabilistic life prediction model to deter-

mine the distribution of remaining life for that part. Bayes’ theorem [5] provides a

systematic method to update a probabilistic model with the results of subsequently

obtained data [27].

It must be emphasized that without taking a physical action to modify or replace

the component under consideration, a calculated improvement in reliability does not

imply that the actual residual life of that part has changed. Analysis obviously has no

effect on the outcome of an experiment. However, reduction of epistemic uncertainty

will change the reliability that can be substantiated confidently. Improvement in

the substantiated reliability indicates that current maintenance procedures may be

overly-conservative. Similarly, a decrease in the substantiated reliability may motivate
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additional maintenance actions.

Updating analyses can be used to perform several useful tasks. Updating analyses

may be used as a decision-aiding tool to identify components with elevated risk of

fatigue failure given their maintenance and usage histories. In the same way, updating

results may be used to establish a basis for deferred inspection or maintenance actions

for mildly used parts. Updating may be also used as a predictive tool to evaluate

the effects on reliability of changes in usage or damage. By updating models with

these hypothetical changes, their reliability implications may be investigated and

quantified.

1.3 Scope and Objectives

This work seeks to address several technical issues facing implementation of Condition

Based Maintenance. A critical component of CBM is the inference of probabilistic

failure models for the prediction of component and system reliability. Since data

is necessarily limited, a systematic approach to quantify epistemic uncertainty in

the inferred probabilistic models is required to achieve proper levels of conservatism.

Current aerospace practice relies on safety factors to account for knowledge-based un-

certainty. A shift from the frequentist statistical methods currently used to Bayesian

statistics will enable the epistemic uncertainty to be directly modeled using proba-

bility distributions.

Maintenance and inspection data represent a large source of data whose informa-

tion is not fully utilized in reliability assessments for aerospace structures. Stochastic

updating techniques must be developed that are capable of incorporating these data

to assess the reliability of in-service components given their unique service history

and condition, as well as to reduce over-conservatism due to epistemic uncertainty in

the probabilistic life prediction model. The same Bayesian statistical framework that

systematically determines the proper level of conservatism also enables sequential

7



updating of probabilistic life models given subsequently acquired data.

The specific objectives of this research are as follows.

• Create a Bayesian framework for synthesizing test data, maintenance findings,

and NDI results to create an updated life prediction model for individual com-

ponents.

– Both flaw-tolerant safe-life and fracture mechanics formulations will be

considered.

– Variability in flaw sizes, damage, and material properties will be separated

and quantified.

• Develop efficient computational techniques to perform these inferences without

expert knowledge.

– Specifically, the computational methods should not require the user to tune

the algorithm to obtain valid results.

• Apply the developed techniques to case studies to demonstrate capabilities.

8



CHAPTER II

BACKGROUND

2.1 Structural Component Life Prediction

Engineering models of fatigue provide a means to include fatigue limitations in struc-

tural design. Due to the complexity of fatigue crack growth, early models were em-

pirical relationships between loading and life to either crack initiation or failure in

what is called the ”safe life” approach. Subsequent experimental work demonstrated

a fairly consistent relationship between the stress intensity range at the crack front

and the rate of crack propagation. These observations led to physics-based modeling

of fatigue crack growth using fracture mechanics. It must be noted that fracture

mechanics is currently unsuitable for modeling crack initiation. For this reason, both

the safe life approach and fracture mechanics are used, sometimes in conjunction, for

present fatigue analyses.

Since development of deterministic fatigue models is not the focus of this work,

this literature review focuses on the major results and simpler models that are suitable

for a probabilistic treatment. Thorough reviews of fatigue phenomena and modeling

techniques have been provided by Schütz [61], Newman [51], Lawson et al. [39], Fuchs

and Stephens [25], and Cui [13].

2.1.1 Safe Life Methods

The work of August Wöhler provides the first engineering model of structural com-

ponent fatigue life [61]. In his work on railcar axles Wöhler noticed that fatigue life is

primarily dependent on stress amplitude and is reduced by a tensile mean stress [78].

These observations are the foundation of the stress-life approach where an empirical

relationship between a constant amplitude, fully-reversed (R = σmin/σmax=-1) cyclic
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load and the cycles to failure, defined either as crack initiation or fracture, is derived

from coupon tests and service data. The resulting relationship between cycles to fail-

ure, N , and stress range is called an S-N or Wöhler curve and often takes the form

of a power law often termed Basquin’s equation [3].

∆S = σ′f (2N)b (1)

If the mean stress for a load cycle, Sm, is non-zero, the Gerber, modified Good-

man, or Soderberg equations are commonly used to obtain an equivalent fully-reversed

stress amplitude that can be used with the corresponding S-N curve to predict com-

ponent life [25]. These mean stress corrections were derived empirically however, so

the most accurate equation must be determined through experiment for each material

and application.

The stress-life method is fairly limited in that it is only valid for high-cycle fa-

tigue (HCF) where the cyclic plastic deformation is negligible. In the case of low-cycle

fatigue (LCF) where the cyclic plastic strain is significant, the strain-life approach pro-

vides better modeling results. The Coffin-Manson equation [8, 67] is an empirically-

derived power law that relates the cyclic plastic strain to the number of cycles to

failure in LCF.

∆εp = ε′f (2N)c (2)

Combining the plastic strain amplitude from the Coffin-Manson equation with

the elastic strain amplitude from Basquin’s equation provides a relationship between

total strain amplitude and component life, the ε-N curve. The parameters for the ε-N

curve are determined from strain-control fatigue tests.

∆ε =
σ′f
E

(2N)b + ε′f (2N)c (3)

10



2.1.2 Fracture Mechanics

Fracture mechanics modeling of fatigue and fracture traces its beginnings to exper-

iments performed by Griffith. In 1920 Griffith found during experiments on brittle

fracture in glass that the product of nominal stress at failure with the square root of

the crack length was constant [31]. These observations demonstrated the importance

of the stress intensity factor, K, in predicting fracture and led to the development of

fracture mechanics.

Subsequent studies also noted the importance of the stress intensity factor for

the prediction of crack growth under cyclic loading. Paris and Erdogan provided a

means to determine fatigue life using fracture mechanics with an empirical power law

relationship between the crack growth rate and the stress intensity range [57], written

as

da

dN
= C [∆K (a)]n (4)

where C and n are experimentally determined, material-dependent constants. By

integrating the Paris equation, the number of load cycles for a crack to grow to a

specified length under constant amplitude loading can be estimated.

It is important to note that the Paris equation and other similar relations between

the crack growth rate and stress intensity range are empirical correlations and not

theoretical results. However, a functional relationship between the crack growth rate

and stress intensity range is supported by numerous data sets and the intuition that

the stress field at the crack front, described in large part by the stress intensity factor,

plays an important role in extending the crack. For many materials, there does exist

a strong relationship between stress intensity range and the crack tip velocity that

is generally non-linear with a form similar to that depicted in Figure 2. Some non-

linear relationships in the log da/dN − log ∆K space commonly used include the
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SINH growth law [38] and the piecewise linear model presented in BS7910 [7].

Generally, crack driving force models such as the Paris equation are specified for

a stress ratio of R = 0. To account for differing mean stresses, several models that

incorporate R dependence have been proposed. The Walker equation [70], given in

Equation 5, simply modifies the multiplicative Paris constant by a function of the

stress ratio.

da

dN
= C

[
∆K (a)

(1−R)1−m

]n

(5)

For larger stress ratios, the Forman equation [23] has been used with some success.

Note that the Forman equation, given in Equation 6 also captures the non-linear

behavior in near-fracture regime shown as Region III in Figure 2. This is due to

the denominator that creates a vertical asymptote in the crack growth rate as the

maximum alternating stress intensity reaches the fracture toughness of the material,

Kc.
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da

dN
=

C∆ [K (a)]n

(1−R) Kc −∆K (a)
(6)

A more fundamental way of capturing stress ratio effects is to consider the phe-

nomenon of crack closure, first studied by Elber [18, 19]. In this phenomenon, the

action of one or a combination of several mechanisms results in the crack closing

during unloading, prior to achieving Kmin. Mechanisms of closure include crack wake

plasticity, crack surface roughness, debris on the crack faces, and solid phase tran-

sition at the crack front. The reduction in stress at the crack tip because of crack

closure results in reduced crack growth rates. Stress ratio effects can be explained by

noting that for higher values of R crack closure effects are necessarily lessened, caus-

ing the observed increases in crack growth rate. It should be mentioned however that

the importance and even the existence of plasticity-induced crack closure is currently

a matter of debate as discussed in Krenn and Morris [37] and Lawson et al. [39].

Crack-closure has also been used with some success to capture near-threshold

fatigue crack growth phenomena, such as Region I in Figure 2. At lower values of

stress intensity range and stress ratio, the crack remains closed for a larger portion

of the load cycle, slowing the rate of crack propagation. Crack closure may also be a

mechanism that leads to threshold-like phenomena such as short crack arrest. Crack

arrest and similar phenomena led some investigators to hypothesize that for many

materials, there exists a stress intensity range threshold, ∆Kth, below which a crack

does not propagate. Several studies have indicated the possibility of a stress intensity

range threshold existing [58]. However, accelerated fatigue testing to billions of cycles

has demonstrated fatigue failures below previously determined threshold values and

endurance limits, leading some investigators to question the existence of such limits

[4]. Newman et al. note that the apparent contradictions between data sets may

be due to the sensitivity of near threshold crack growth behavior data to the testing

procedures used [52].
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2.1.3 Spectrum Loading

Cumulative damage theories seek to extend the applicability of constant amplitude

safe life curves to applications with variable amplitude loading. The most widely

used of these theories is the Palmgren-Miner rule [49, 56], commonly called Miner’s

rule, based on the hypothesis of linear damage accumulation without load sequence

effects. Under Miner’s rule, the damage incurred on one cycle equals the reciprocal

of the cycles to failure at that stress amplitude from the appropriate S-N curve,

and failure occurs when the damage sum equals unity. Numerous experiments have

demonstrated failures at damage sums considerably different from unity, but Miner’s

rule is still widely used because of its simplicity and the lack of a suitable replacement

[61].

In contrast to safe life methods, fracture mechanics admits a physics-based treat-

ment for life prediction under variable amplitude or spectrum loading. Crack driving

force models like the Paris or Forman equation provide an explicit relationship be-

tween the applied stress for a given cycle and the crack growth increment. In this way,

growth histories for varying stress amplitudes can be simulated analytically. However,

to use the same growth law for all loading cycles requires the restrictive, and usually

inaccurate, assumption that the growth increment for a given cycle is independent

of previous cycles. One mechanism for load cycle interaction is the formation of a

zone of plastic deformation ahead of the crack tip where stresses are largest. Upon

unloading, compressive stresses develop in the plastic zone which slow crack growth

[73, 76], thus creating a form of memory. It is generally observed that crack growth

is slowed temporarily following a tensile overload and temporarily accelerated after a

compressive overload.

Load sequence effects due to residual stresses in the crack tip plastic zone and crack

closure mechanisms can be significant, motivating numerous efforts to incorporate

such effects into fracture mechanics modeling. Wheeler proposed an empirical model
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to capture the crack retardation effects of the plastic zone to predict fatigue life

under spectrum loading [73]. Willenborg et al. derived a retardation model that does

not rely on additional empirical parameters by using an effective stress concept [76].

Taking advantages of advances in computing, Newman [50] implemented a modified

Dugdale strip-yield model [17] capturing both plasticity-induced crack closure and

residual stresses in the plastic zone to predict fatigue life under variable-amplitude

loading.

2.2 Probabilistic Modeling of Fatigue

While deterministic fatigue models have enjoyed considerable success predicting av-

erage behavior, they fail to account for the large variability that is common in fatigue

data. To model fatigue more completely, probabilistic methods must be employed to

capture both the mean behavior and distribution of experimental outcomes. Deter-

ministic fatigue models provide a rational starting point for stochastic fatigue models,

and both the safe life approach and fracture mechanics have been recast probabilisti-

cally. This section presents the main concepts in probabilistic modeling of fatigue as

well as some illustrative models. The monograph by Sobczyk and Spencer provides

an extensive survey of probabilistic fatigue models [64].

2.2.1 Probabilistic Safe-Life Models

Probabilistic safe life models provide the probability distribution of component life

under a given loading history. Based on test involving identical specimens of 7076-T6

aluminum at different stress levels, Sinclair and Dolan proposed a lognormal distri-

bution for component life at a given stress amplitude [63]. Weibull proposed a more

flexible distribution function, now referred to as the Weibull distribution, for fatigue

life distribution modeling based on a weakest-link argument [71]. Freudenthal and

Gumbel arrived at the same distribution using extreme value statistical theory [24].

Weibull unified the life distributions with S-N curves by proposing the P-S-N
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diagram [72]. A P-S-N diagram consists of a family of non-intersecting S-N curves,

each corresponding to a different cumulative probability. The distribution of fatigue

lives is obtained by noting that the fraction, p, of failures will occur at a fatigue life

lower than predicted by the S-N curve corresponding to the cumulative probability

p. Similarly, a probabilistic strain life approach using a P-ε-N surface has also been

implemented, such as in Zhao et al. [85].

A generalization of the P-S-N approach is to recast parameters specifying the

shape and location of an S-N curve as jointly distributed random variables. It is

assumed that the fatigue life for each component is described by an individual re-

alization of the random S-N parameters. Such an analysis was performed by Cross

and Makeev [10] for a notional rotorcraft dynamic component. It bears mention

that a P-S-N surface can be recovered from the S-N curve equation and parameter

distributions.

For variable amplitude loading, probabilistic treatments of Miner’s rule have been

proposed. The simplest approach, called statistical Miner’s rule, recasts the cumu-

lative damage at failure, as a random variable. Tanaka et al. derive and discuss a

statistical Miner’s rule for two-level loading under some restrictive assumptions [66].

Shimokawa and Tanaka extended the two-level statistical Miner’s rule of Tanaka et

al. for an arbitrary number of load levels [62]. Ni and Atluri describe an algorithm

to derive a distribution for the cumulative damage at failure using the appropriate

P-S-N diagram without using the assumptions made by Tanaka et al. [53].

2.2.2 Probabilistic Fracture Mechanics Models

The success of fracture mechanics in providing a physics-based model of fatigue crack

growth has led to its probabilistic reformulation to capture the inherent scatter in

fatigue crack growth data. Probabilistic fracture mechanics models can be divided

into two categories: random variable (RV) models and random process (RP) models
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[47, 36]. RV models treat the parameters of a fracture mechanics model as random

variables, and assume deterministic crack growth given a realization of these param-

eters. For this reason, RV models are sometimes also referred to as random growth

law models. RP models, also called evolutionary models, assume that each individual

crack history is a sample path of a time, cycle count, or spatially indexed stochastic

process.

2.2.2.1 Random Variable Models

A RV model is formulated by identifying parameters that contribute significantly to

the variability in fatigue life and recasting them as a jointly distributed random vector.

A parameter’s contribution to the overall variability of fatigue life is assessed with a

sensitivity analysis and determination of the magnitude of the uncertainty in its value.

A crack is assumed to grow deterministically according to a single realization of the

random crack growth parameter vector. Under these assumptions, the distribution

of the cycles to a given crack length is determined by propagating the parameter

uncertainty through the deterministic model.

The first random variable models assumed that the uncertainty in the cycles to

crack initiation dominates the uncertainty. For HCF applications, this assumption

may be reasonable since the majority of the fatigue life is occupied by crack initiation.

Johnson et al. investigated the distribution of crack initiation times for panels on a

military transport aircraft [35]. The distribution of crack initiation times is of little

practical use since the initiation life depends strongly on the applied load spectrum

as noted by Yang [82]. Furthermore, the variance in crack initiation times is sensitive

to the applied load spectrum. The scatter in initiation times is especially large for

components experiencing low stress amplitudes with few initial defects. Sinclair and

Dolan demonstrated the increased scatter in fatigue life at low stress levels in a

series of tests on identical highly-polished 7075-T6 aluminum specimens cycled at
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six different stress amplitudes [63]. Sobczyk and Spencer explain this observation by

noting that initiation of cracks from defects at low stress levels may be more sensitive

to the random microstructure, leading to increased variability [64].

Yang describes a more useful quantity, the equivalent initial flaw size (EIFS)

distribution, defined as the distribution of crack sizes at some reference time. The

EIFS distribution allows arbitrary load sequences to be considered in the analysis.

Fawaz performed numerous tests investigating the EIFS distribution for aluminum

lap joints [20, 21], and DeBartolo and Hillberry performed a microscopy study of

the distribution of flaw sizes and shapes in aluminum alloys [14]. Other probabilistic

fatigue studies have assumed a random EIFS, such as White et al. [75], Maymon [48],

and Luo and Bowen [42].

The data set by Virkler et al. [69], shown in Figure 3, demonstrates that simply

randomizing the initial conditions, either through initiation times or EIFS, is insuf-

ficient to capture the full variability in fatigue crack growth. Significant variability

in crack growth histories was found in tests on 68 identical specimens starting from

the same initial crack length. Observations such as these motivated a random growth

law approach to capture this uncertainty. This is often done by randomizing selected

variables that define the relationship between the crack growth rate and stress inten-

sity range. Common random growth laws are based on randomization of constants in

the Paris equation, piecewise-linear models, and the SINH crack growth model [38].

2.2.2.2 Random Process Models

While conceptually simple, RV models models fail to capture the variability within

an individual crack history because of the deterministic growth assumption. If the

within-specimen variability is significant, random process (RP) modeling becomes a

more appropriate choice. RP models assume each crack history is a single realization

of a time, cycle count, or crack length indexed stochastic process. This is commonly
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done by multiplying the deterministic crack growth rate by a suitable stochastic cycle

count or crack length indexed process, denoted X (N) and Y (a) respectively, as in

Lin and Yang [40] and Ortiz [54, 55]. The crack length or cycle time process is then

found by integration. For example, a crack length indexed RP model can be written

as in Equations 7 and 8.

da

dN
=

1

Y (a)
f (∆K (a) , θ) (7)

N (a) =

∫ a

a0

Y (a) da

f (∆K (a) , θ)
(8)

Cycle count or time indexed random processes are often simpler to implement

because the choice of index leads to a differential equation that allows separation of

the deterministic growth function from the random process as in Equations 9 and

10. Yang and Manning have developed a RP model based on a covariant stationary

lognormal process with unit median multiplying the deterministic growth rate [83].

Their model’s capabilities for fitting data were further demonstrated by Wu and Ni

[79, 80] and Cross et al. [11].

da

dN
= X (N) f (∆K (a) , θ) (9)

∫ a(N)

a0

da

f (∆K (a) , θ)
=

∫ N

0

X (N) dN (10)

Crack length or spatial indexed random processes are more difficult to implement

than time or cycle count indexed processes. However, they do possess some signifi-

cant philosophical and practical advantages. Kozin demonstrated that treating crack

length as the independent variable leads to a more consistant probabilistic reformu-

lation of the Paris equation [36]. Ortiz noted that under a known loading history the

dominant source of crack growth variability is inhomogeneity within the material [54].

Thus, the assumption of a spatial or crack length indexed random process model is

20



a more physically relevant and generalizable approach to evolutionary fatigue crack

growth modeling. Ortiz [54, 55], Dolinski [15, 16], and Cross et al. [11] have derived

and applied crack length indexed random process models to experimental data.

2.3 Inference of Probabilistic Failure Models

A key step in creating an accurate model is the proper inference of parameters from

the results of experiments. The inference methods for different model classes can take

notably different forms. RV models require inference of the joint distribution of the

model parameters. RP models require that the spectral properties of the crack growth

process be characterized. Established statistical methods are employed to perform

these tasks when possible. However, several special techniques have been developed

in the course of stochastic fatigue modeling research.

2.3.1 Random Variable Model Inference

For random growth law models, a sample set of the random growth law parameters

can be obtained by performing a series of regressions in the log da/dN − log ∆K space,

one per crack in the data set. For example, if a randomized Paris equation formulation

is used, samples of the constant multiple and exponent are obtained by performing a

sequence of linear regressions on the crack velocity data in the log da/dN − log ∆K

space [81]. This approach may be expanded by performing a series of generalized

linear model (GLM) regressions assuming a crack growth law model of the form

(
log

da

dN

)

i

=
∑

j

βjhj (∆Ki, Ri, ∆Kth, Kc, ...) + σεi (11)

where hj (·) is some function of relevant crack growth parameters and εi is a zero-

mean Gaussian error term. Cross et al. analyzed the Virkler data using a polynomial

GLM [11].

Non-linear regressions can be performed for piecewise-linear growth laws as in
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Bigerelle et al. [6] and Righiniotis and Chryssanthopoulos [59]. Similarly, regressions

for curvilinear growth laws, such as the SINH law, can be performed as in Cross et al.

[11] and Yang et al. [84]. A multivariate distribution can then be fit to the growth

law parameter samples. Predictions can be made by propagating the parameter

uncertainty through the crack growth model.

To solve for a random EIFS or crack initiation time from an individual crack

history, the appropriate crack growth model is used to grow the crack backwards to

a reference time. However, doing so requires that the crack growth rate parameters

be known with certainty, which is seldom the case. Makeev et al. noted that if the

variability of the crack growth rate is not accounted for, the inferred EIFS distribution

will contain variability due to growth rate and hence be overly conservative [45].

Furthermore, the EIFS distribution will not be generalizable to other experimental

conditions since it was inferred from a specific combination of uncertainties. Makeev

et al. provide a method to infer a data set independent EIFS distribution when a

known uncertaintly is present in the crack growth rate. Cross et al. used Bayesian

techniques to extend Makeev’s method to perform simultaneous EIFS and growth

law inference when the variability in the crack growth rate is unknown [12].

2.3.2 Random Process Model Inference

Inference of RP model parameters is inherently more complicated than RV model

inference because the properties of a stochastic process must be determined. Usually

the mean or median behavior of the stochastic crack history process is assumed to

be that predicted by fracture mechanics analysis. The autocovariance function, or

equivalently the power spectral density (PSD), however, must be determined from

analysis of real crack growth histories. For situations where the data are evenly

spaced in the index set of the random process, this can accomplished by determining

an average spectrum of time or crack length series data and fitting a curve to obtain a
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functional form for the PSD as done by Ortiz [54, 55]. The stationary autocovariance

function is found by taking the inverse Fourier transform of the PSD.

Alternatively, a parametric functional form for the autocovariance function can

be assumed based on experience or preliminary analyses. Using the expression for

the autocovariance, the mean and variance of the life to a given crack size can be

calculated. Yang and Manning approximated the distribution of component life from

a time indexed stochastic process using a lognormal distribution with the mean and

variance calculated using the autocovariance function [83]. Cross et al. found that

point estimates for the autocovariance parameters can be inferred by assuming in-

dependence of each observation and performing a maximum likelihood estimation

(MLE) using the lognormal approximation [11]. They then calculated confidence in-

tervals for the parameters using a block bootstrap method to properly capture the

statistical dependence between observations.

2.4 Bayesian Inference and Updating of Failure Models

The distributions of probabilistic fatigue model parameters are seldom known a priori

and must be inferred from material and structural tests. In addition, the results of

further experiments after the first model inference provide information that should

be used to update knowledge of these distributions. An intuitive way to model these

uncertainties explicitly is with a probability distribution function. Prior probability

distributions modeling the uncertainty of model parameters can be systematically

updated using Bayes’ theorem [27]. Bayes’ theorem, shown in Equation 12, gives an

expression for the posterior probability distribution of a random event, A, given data,

D, in terms of a prior distribution, π (A) for the event of interest and the likelihood

of the data given that A occurs, L (D|A). The posterior distribution constitutes an

updated statement of the degree of belief in the true values of the underlying random

quantities.

23



P (A|D) =
L (D|A) π (A)∫

A
L (D|A) π (A) dA

(12)

Since the data in a Bayesian updating problem is given, D represents a realization

of the data and not a random quantity. Therefore the marginal probability of D is

a constant implying that the numerator in Equation 12 is constant as well. For this

reason, the denominator may be ignored and Equation 12 may be rewritten as

P (A|D) ∝ L (D|A) π (A) (13)

In Bayesian updating, the current estimate of the fatigue crack growth model

parameters’ distribution should be used for the prior distribution. If no suitable prior

information exists, a non-informative or vague prior distribution may be assumed

[12]. Care must be used if an improper non-informative prior distribution is specified

to ensure that the posterior distribution is proper [27]. The likelihood distribution

can be derived from the particular probabilistic fatigue model.

In addition to inferring the probabilistic growth model, the distribution for life of

a single structural component can be updated based on its own repair and inspec-

tion history. This allows maintenance and inspections to be individually tailored to

each component based on its own condition. Zhao and Haldar developed a Bayesian

updating method that accounts for inspection and repair results based upon a Gaus-

sian approximation of the distribution of reliability indices [86]. However, it must be

noted that their method implicitly assumes that all necessary parameters and distri-

butions used to predict the reliability index are known. Thus they assume the results

of inspections contribute negligibly to the knowledge of the reliability distribution.

A similar assumption was made by Madsen in updating reliability estimates with

inspection data to quantify the failure probability given survival to a specified usage

[43]. Assuming the true life distribution is known with certainty, Equation 12 gives
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the updated reliability simply as the prior probability of survival to the extended

lifetime divided by the probability of surviving the observed usage.

The assumption of certainty in the distribution of component life in many ap-

plications cannot be supported. Schedule and cost constraints often preclude the

extensive testing required to make the uncertainty in the fatigue life distribution

negligible. For example, the S-N curve and coefficient of variation in fatigue life for

rotorcraft dynamic components may be determined by experiments on as few as five

specimens in practice. Because of this, maintenance data also provides information on

the fleet-wide component life distribution, reducing epistemic uncertainty. Cross et

al. demonstrated reduction of conservatism in fatigue life predictions due to updating

of fleet-level parameters [10].
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CHAPTER III

BAYESIAN FORMULATION

3.1 Hierarchical Bayesian Updating Formulation

Proper construction of the Bayesian reliability model requires that a distinction be-

tween component-level information and fleet-level information be made. Component-

level information pertains to individual realizations of random parameters and pro-

cesses for a specific component. Fleet-level information describes the uncertain prob-

ability distributions for these parameters and stochastic processes. The natural hier-

archy created by the distinction between component-level and fleet-level information

fits well into the Bayesian framework. A natural way to select probability laws for

component-level random quantities is through distributions conditional on the values

of fleet-level variables. In this manner, the fleet-level variables behave as hyperpa-

rameters that specify the probability distributions of the component-level variables.

Let Di and Θi denote the set of all observations and set of random component-

level parameters for the ith of Nc components, respectively. Assuming statistical

independence between observations of distinct components, the likelihood function of

the set of all data gathered can be expressed as

L (D = {Di : i = 1 . . . Nc} |θi : i = 1 . . . Nc) =
Nc∏
i=1

Li (Di|θi) (14)

Note that statistical independence of observations of the same component is not

necessarily assumed. Also note that each component may have its own likelihood

function for its data set, as indicated by the subscripted notation, Li.

The hierarchy of information also allows the prior distribution of Θi to be expressed

conditionally as πΘ|A (θi|α). Since statistical independence may be assumed between
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components, the prior distribution for all component-level random variables can be

expressed as a product similar to that in Equation 14.

The final distribution to be specified is a hyperprior distribution for A, denoted

πA (α). This distribution models the a priori epistemic uncertainty in the probabilistic

law for the component-level parameters. Using Bayes’ rule, the likelihood, prior, and

hyperprior distributions are used to compute the posterior distribution of the fleet-

level and component-level parameters, given all data as

πA,Θ|D (α, θi : i = 1 . . . Nc|D) ∝ πA (α)
Nc∏
i=1

Li (Di|θi) πΘ|A (θi|α) (15)

Equation 15 represents the joint distribution of all parameters conditional on the

observed component data. Several useful distributions may be calculated from the

full posterior distribution. First, marginal distributions for the hyperparameters and

individual parameter sets are found by integration as

πA|D (α|D) =

∫

θ1

· · ·
∫

θNc

πA,Θ|D (α, θi : i = 1 . . . Nc|D)
Nc∏
i=1

dθi (16)

πΘk|D (θk|D) =

∫

α

∫

θi,i 6=k

πA,Θ|D (α, θi : i = 1 . . . Nc|D) dα
∏

i 6=k

dθi (17)

Next, several posterior predictive distributions of interest can be calculated from

the marginal distributions in Equations 16 and 17. The distributions of some function

g (Θ) for an inspected and uninspected component are given in Equations 18 and 19,

respectively, where δ (·) denotes the Dirac delta function. Setting g (Θ) = Θ in

Equations 18 or 19 gives the posterior predictive distribution for the inspected and

uninspected component level parameters, respectively. Specifying g (Θ) in Equation

18 to be the remaining life of a component gives the posterior residual life distribution

for each inspected component.
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πg(Θi)|D (g|D) =

∫

θi

δ (g − g (θi)) πΘi|D (θi|D) dθi (18)

πg(Θ)|D (g|D) =

∫

θ

∫

α

δ (g − g (θ)) πΘ|A (θ|α) πA|D (α|D) dαdθ (19)

Thus far the likelihood and prior distributions have been only referenced in gen-

eral terms. The following discussions describe specific details for the specification of

likelihood and prior distributions.

3.1.1 Likelihood Function Determination

Observations of components can be separated into categories, crack detection and

crack measurement, that determine the form of the likelihood function. It is assumed

in this work that the error characteristics of the inspection methods and measurement

techniques are known. For a crack growth model formulation, it is also assumed that

the form of a crack growth model, N (a, θ), and its inverse, a (N, θ), are provided where

a represents the final crack length, and N the number of cycles. The requirements on

the crack growth model are general, only requiring that it can be inverted and that

it is completely specified given a realization of the random parameters, θ. Similarly,

when a safe-life model is used, it is assumed that a crack growth model, t (θ), is given.

When a crack growth model is used, the error in a crack detection inspection

is characterized by a probability of detection (POD) curve that gives the likeli-

hood of detecting a crack of length a present in the specimen. A data set ob-

tained from a set of Nc components, each inspected once, can expressed as D =

{Di = (Ni, di) : i = 1 . . . Nc} where di is an indicator variable that equals unity if

a crack was detected and zero otherwise. The likelihood of an element Di can be

expressed as

Li (Di|θi) = 1− di + (2di − 1) POD(a (Ni, θi)) (20)
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When a safe-life formulation is used, the data set can be expressed as D =

{Di = (ti,1, ti,2) : i = 1 . . . Nc} where ti,1 denotes the time of the last inspection with

no crack detected, and ti,2 denotes the first inspection time at which a crack is de-

tected. If a crack is detected on the first inspection, ti,1 is set to zero. Likewise, if no

crack is ever detected, ti,2 is set to infinity. The likelihood function of a data point

can thus be expressed as

L (Di|θi) = 1 [ti,1 ≤ t (θi) ≤ ti,2] (21)

where 1 [·] is the indicator function that equals one if its argument is true and zero

otherwise.

For a crack measurement inspection, it is assumed that the distribution of mea-

surement error can be written conditionally on the true crack length as fE (e|a). A

data set gathered from from Nc components, each inspected once, is expressed as

D = {Di = (Ni, ai) : i = 1 . . . Nc} where ai denoted the measured crack length. The

likelihood function of a datum is written as

Li (Di|θi) = fE (ai − a (Ni, θi) |a (Ni, θi)) (22)

The likelihood of the entire data set is then calculated using Equation 14. Gen-

eralization of Equations 20 and 22 to cases where components are inspected multiple

times is straightforward.

3.1.2 Prior Distribution Specification

Standard parametric distributions provide a flexible means to model the uncertain dis-

tribution of fatigue model parameters. Use of parametric forms allows the uncertainty

in the distribution itself to be represented by the distribution of hyperparameters that

specify the prior distribution. Two-parameter distributions such as the Weibull, nor-

mal, and lognormal have hyperparameters that permit uncertainty in both location
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and scale. Selection of distribution will depend on the specific random quantities to

be modeled. Details to consider include skewness, domain, and practical computa-

tional concerns. For example, the normal distribution should not be used to model

an EIFS distribution since negative EIFS values have no physical meaning. Similarly,

a lognormal distribution should not be used to model a left-skewed random variable.

Computational considerations may enter into the prior selection when the like-

lihood function admits a conjugate or semi-conjugate prior. Applying Bayes’ rule

to a conjugate likelihood prior pair results in a posterior distribution of the same

form as the prior. Semi-conjugate pairs combine under Bayes’ rule to yield a pos-

terior distribution in which the full conditional distributions have the same form as

the individual variates’ priors. Obtaining the full conditionals can simplify posterior

sampling simulation. It must be noted that the complexity of the likelihood functions

previously described seldom admits conjugate priors.

3.1.3 Hyperprior Distribution Specification

The uncertainty in the fatigue model parameter distributions themselves is captured

by regarding the hyperparameters that specify these distribution as uncertain. The

hyperprior distribution should reflect all prior information, or lack thereof, on the

hyperparameters. Prior information may come from previous experiments or possibly

expert opinion.

Except in special cases, a proper, i.e. integrable, distribution should be used to

ensure that full posterior distribution is proper as well. No meaning can be assigned

to an improper posterior distribution since it cannot be normalized and integrated to

make probability statements. Thus true non-informative priors may not be appropri-

ate in this study unless integrability can be proven. Lack of prior information may

be modeled by diffuse hyperpriors that approximate a non-informative prior over the

feasible region of values.
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When previous information or belief is not available on the hyperparameters, an

empirical Bayesian approach may be adopted to elicit hyperprior distributions. Point

estimators of hyperparameters can be determined by using approximate techniques

such as pooled data regression or one-factor-at-a-time inference techniques. The par-

ticular estimation technique depends on the hyperparameters to be determined. Hy-

perprior distributions may be set with mean value equal to the point estimate and

standard deviation equal to the standard error, if available.

3.2 Posterior Simulation Schemes

Within the Bayesian philosophy, the posterior distribution represents a model of the

uncertainty in the random quantities of interest given available data and prior belief.

Hence, point estimation as in frequentist methods is not consistent with the Bayesian

statistical paradigm, which treats the parameters as random variables rather than

unknown constants. Characterization of the posterior distribution is required to ob-

tain credible intervals for the values of parameters of interest. In this application, the

hierarchical structure of these models generally leads to complex joint distributions

with numerous parameters of interest, preventing analytical posterior analysis or di-

rect sampling in most cases. This section presents several posterior characterization

schemes that are employed in this research.

3.2.1 Rejection Sampling

Among the simplest algorithms for sampling an arbitrary distribution is the rejection

sampling technique [27]. Let p (θ|y) denote the (possibly un-normalized) posterior

density function, and let g (θ) denote a (possibly un-normalized) distribution function

that can be directly sampled. If a distribution g (θ) can be identified such that there

exists some finite M such that

sup
θ

p (θ|y)

g (θ)
= M < ∞ (23)
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then p (θ|y) may be sampled follows. A candidate sample is generated from g (θ) and

denoted θ̂. Accept θ̂ as a posterior sample with probability p(θ̂|y)/(Mg(θ̂)) and reject

otherwise [27]. This probability of acceptance is termed the importance ratio. For an

efficient rejection sampler, the proposal distribution g (θ) should be selected to obtain

large importance ratios. This may be achieved by identifying a proposal distribution

that approximates the distribution of interest.

This method can be implemented to exploit the Bayesian hierarchical structure for

models with crack detection likelihood functions as in Equation 20. In this case, p (θ|y)

may be taken to be the joint density of the data, parameters, and hyperparameters,

πA,Θ,D (α, θi : i = 1 . . . Nc, D), which is proportional to the posterior distribution. The

joint prior distribution of the parameters and hyperparameters serves as a convenient

choice of proposal distribution, resulting in an importance ratio proportional to the

likelihood of the observed data. A candidate hyperparameter sample, α̂ may be

obtained by sampling the hyperprior directly. Candidate failure model parameter

samples, θ̂i, are then taken from the prior distribution conditioned on the candidate

hyperparameter sample. The predictions of the failure model model are calculated

given the θ̂i, and the candidate sample is accepted with probability equal to the

likelihood function.

The hierarchical rejection sampling procedure presented has practical limitations

however. It is apparent that small importance ratios will occur when data sets are

large, as the likelihood function is a product of the probability of each datum. Simi-

larly, if a priori unlikely events occur, the importance ratio will be small, leading to

a large fraction of samples being rejected. The following sections present methods

that overcome this difficulty by allowing the sampler to identify and localize in likely

regions of the posterior.
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3.2.2 Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) algorithm enables simulation of an ar-

bitrary distribution by generating samples from a Markov chain with a stationary

distribution equal to the distribution of interest [27]. A Markov chain is a stochastic

process whose state transition probabilities only depend on the current state [60].

Under general conditions, a Markov chain that has been run a sufficient amount of

time will achieve a stationary distribution where the probability of being in a certain

state is independent of time. The stationary state distribution must satisfy the re-

versibility equation for all states in the domain of the chain. Let Y and Z represent

arbitrary points in the Markov chain’s domain, and let π (·) and p (·|·) represent the

stationary and one-step state transition distributions, respectively. The stationary

distribution must then satisfy the reversibility equation

p (Z|Y) π (Y) = p (Y|Z) π (Z) (24)

for all Y and Z in the domain.

One-step state transition rules that result in a stationary distribution equal to

the distribution of interest can be obtained using the Metropolis-Hastings algorithm

[33]. Let Yi denote the ith sample from the Markov chain, and let π (Y) denote the

distribution of interest. The algorithm begins by generating a candidate sample Z

from some proposal distribution denoted q (Z|Yi). The next sample from the chain

is then a random variable with distribution

P
(
Yi+1 = Z

)
= κ

(
Z|Yi

)
(25)

P
(
Yi+1 = Yi

)
= 1− κ

(
Z|Yi

)
(26)

where
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κ (Z|Y) = min

{
π (Z) q (Y|Z)

π (Y) q (Z|Y)
, 1

}
(27)

Since the MCMC sampler simulates a Markov Chain with a stationary distribution

equal to the distribution of interest, the first samples generated contain a transient

period that must be removed. The influence of the transient is usually minimized in

practice by discarding the first half of the samples obtained. Convergence assessment

is used to verify that the transient influence is indeed negligible. This may be quan-

tified using the method of Gelman and Rubin [28] where several MCMC simulations

starting from over-dispersed initial conditions are run in parallel, and the variances

within and between chains are compared. Intuitively, the variance between chains

should approach the variance within chains as the transient periods decay and the

sampler explores the entire domain.

Let aij denote the ith of n samples of some scalar of interest from the jth of m

parallel chains. The between-chain variance, Ba, and within-chain variance, Wa, for

the scalar a are computed as

Ba =
1

n (m− 1)

m∑
j=1

(
n∑

i=1

aij − 1

m

n∑

k=1

m∑

l=1

akl

)2

(28)

Wa =
1

m (n− 1)

m∑
j=1

n∑
i=1

(
aij − 1

n

n∑

k=1

akj

)2

(29)

The posterior variance of the scalar a can be estimated as

var+ (a) =
n− 1

n
Wa +

1

n
Ba (30)

The estimator in Equation 30 is upward biased and will overstate the posterior

variance of a assuming the chain initializations are over-dispersed. As the chains ap-

proach a stationary solution, the estimator becomes unbiased. Hence, a convergence

metric Ra is defined as
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Ra =

√
var+ (a)

Wa

(31)

which approaches unity as the number of samples becomes large. Gelman et al.

suggest that a value of 1.1 for the convergence metric in Equation 31 is sufficient

[27]. Convergence assessment should be performed for all scalar quantities of interest.

Auxiliary variables may be ignored.

A critical step in general Metropolis-Hastings MCMC implementations is deter-

mination of efficient proposal distributions q (Z|Yi) that give suitably high sample

acceptance rates while being broad enough to traverse the entire likely domain. Com-

mon proposal distributions include symmetric Gaussian random walks, lognormal

random walks, and the independence sampler presented in Equations 32, 33, and 34,

respectively.

q
(
Z|Yi

) ∼ MVN (
Yi,Σp

)
(32)

q
(
log Z|Yi

) ∼ MVN (
log Yi,Σp

)
(33)

q
(
Z|Yi

)
= q (Z) (34)

Note that the random walk samplers introduce an as yet unspecified covariance

matrix Σp that completes the random walk specification. These free variables provide

a means to tune the sampler to improve sample acceptance rates and domain traversal.

It warrants emphasis however that even after tuning, a random walk proposal may

not provide satisfactory results.

3.2.3 The Gibbs Sampler

When the posterior distribution is such that the full conditional distributions may be

directly sampled, a special MCMC jumping rule may be used that yields an accepted

sample each iteration. The Gibbs sampler [26] proceeds variable by variable, sampling
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from the full conditional distributions to generate a new posterior sample. Equations

35 and 36 present the Gibbs sampler schematically.

θi+1
1 ∼ π

(
θ1|

{
θi

k : k ≥ 2
}

, D
)

(35)

θi+1
j ∼ π

(
θj|

{
θi+1

k : k < j
}

,
{
θi

k : k > j
}

, D
)

(36)

An iteration of a Gibbs sampling simulation begins by generating a sample of

the first of the parameters, θ1, from Equation 35, given the most recent samples of

the remaining random parameters. The iteration continues sampling sequentially the

remaining random quantities in the random vector, conditioned on the most recent

samples, using Equation 36.

Posterior distributions that admit practical Gibbs samplers may be formulated

using conditionally conjugate distributions for the likelihood and priors. Use of con-

ditionally conjugate distributions results in a posterior distribution for which the full

conditional distributions take a standard form. Gelman et al. provides numerous

examples of conjugate and semi-conjugate likelihood and prior distribution pairs [27].

An important conjugate pair for analyzing generalized linear models (GLM) in this

research consists of multivariate normal likelihood with a batch diagonal covariance

matrix, multivariate normal prior for the mean vector, and inverse gamma density

for the variance priors. The batch diagonal covariance matrix can be written as

Σ =




σ2
1In1

σ2
2In2

. . .

σ2
pInp




(37)

where nk, p, and In denote the number of observations in block k, the number of

blocks, and the identity matrix of size n, respectively. The GLM for the vector of

observations, Y, may be expressed in matrix form as

36



Y|β, σ2
i : i = 1 . . . p ∼MVN (Xβ,Σ) (38)

where X denotes the matrix of explanatory variables and β denotes the vector of

unknown regression coefficients.

The conditionally conjugate priors are normal and inverse gamma given as

β ∼ MVN (µβ,Σβ) (39)

σ2
i ∼ IG (νi, γi) (40)

where Σβ is a batch diagonal covariance matrix of size m×m. Note in this work that

the inverse gamma density is parameterized as

X ∼ IG (ν, γ) ⇔ fX (x) =
γν

Γ (ν) xν+1
exp

(
−γ

x

)
(41)

Following Gelman et al. [27], the prior information can be regarded as additional

data, allowing Equations 38 and 39 to be combined as

Y′|β, σ2
i : i = 1 . . . p ∼MVN (X′β,Σ′) (42)

where

Y′ =




Y

µβ


 (43)

X′ =




X

Im


 (44)

Σ′ =




Σ 0

0 Σβ


 (45)
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A standard exercise gives the full conditional equations as

β|σ2
i : i = 1 . . . p,Y ∼ MVN

(
β̂,V

)
(46)

σ2
i |β,Y ∼ IG

(
νi +

ni

2
, γi +

s2
i

2

)
(47)

where

β̂ =
(
X′TΣ′−1X′)−1

X′TΣ′−1Y′ (48)

V =
(
X′TΣ′−1X′)−1

(49)

s2
i =

(
Y′(i) −X′(i)β

)T (
Y′(i) −X′(i)β

)
(50)

and superscript (i) in Equation 50 denotes the rows of Y′ and X′ corresponding to

the ith batch.

Although the Gibbs sampler accepts a new sample each iteration, it may be inef-

ficient at traversing the entire probable domain of the posterior distribution in cases

of strong posterior statistical dependence between random variates. To see this, con-

sider a bivariate normal distribution with correlation coefficient near unity. Given

one variate, only a small fraction of the marginal domain of the other has significant

conditional probability mass. Hence, the sampler will only take small steps relative

to the size of the likely domain of each variate. Random variable transformations

may be employed in some applications to overcome this difficulty.

Note that since the Gibbs sampler is a MCMC algorithm, a stationary state of

simulation must be achieved before samples can be considered to be drawn from the

posterior distribution. Hence the simulation must be burned in and a convergence

assessment must be performed. For Gibbs sampler simulations, the posterior samples

must be analyzed for statistical dependence between variates and serial correlations

between successive samples. Strong autocorrelations or cross-correlations between
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variates may indicate a poor simulation since statistical dependence effectively reduces

the sample size.

3.3 Simplified Hyperparameter Updating

Implementation of probabilistic model updating for practical applications motivates

development of simplified techniques to avoid the requirement for an expert user to

perform the analysis. Posterior mode approximations using the multivariate normal

distribution enable closed-form approximate updating techniques. First, a multi-

variate normal approximation is fit to the posterior distribution of the appropri-

ately transformed hyperparameter vector. Let T (A) denote the transformation and

π̃T(A)|D (T (α) |D) denote the multivariate normal approximate distribution of the

transformed hyperparameters. An effective technique to create the initial approxi-

mation is first to transform the hyperparameter samples from a simulation, then to

calculate the mean vector and covariance matrix of the transformed samples.

Next, assume an additional data, denoted D′, is received for M additional unin-

spected components. Let Θ′
i denote the component-level parameter vector ith of these

M components. Using Bayes’ rule, the updated distribution, given both D and D′,

for the transformed hyperparameters can be expressed as

π̃T(A)|D,D′ (T (α) |D,D′) = π̃T(A)|D (T (α) |D)
M∏
i=1

Li (D
′
i|α) (51)

where the evidence of the hyperparameters is computed for each datum by integration

as

Li (D
′
i|α) =

∫

θ′i

Li (D
′
i|θ′i) πΘ|A (θ′i|α) dθ′i (52)

In a manner analogous to maximum likelihood estimation, the logarithm of the

posterior distribution in Equation 51 is then maximized over all feasible values of the
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transformed hyperparameter vector using a gradient-based method. The updated

mean can then be approximated as

E [A|D, D′] ≈ arg max
T(α)

(
log π̃T(A)|D (T (α) |D) +

M∑
i=1

log Li (D
′
i|α)

)
(53)

and the updated covariance matrix can be estimated as the negative inverse of the

Hessian matrix of the log-posterior evaluated at the maximum.

The remaining component is efficient estimation of the evidence integrals in Equa-

tion 52. When the dimension of Θ′ is small enough, discretization-based integration

techniques may be employed over a finite feasible region of Θ′ to compute a numeri-

cal estimate of the evidence. For higher dimensional integrals, accelerated sampling

techniques, such as Latin hypercube or weighted-importance sampling, may be used

to estimate the evidence efficiently.
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CHAPTER IV

UPDATING OF HIGH-CYCLE SAFE-LIFE MODELS

4.1 Description of Input Data

The following considers the updating of a probabilistic initiation life model under HCF

spectrum loading for a notional helicopter dynamic component with maintenance

findings. The notional data for this section was made available through research

conducted by The Boeing Company and Sikorsky Aircraft Corporation [44]. The high-

cycle load spectrum experienced by the notional component per hour of operation is

presented in normalized form in Table 1. The notional maintenance data consist

of an inspection time, the results of a crack detection inspection, and corrosion pit

depth measurement, if corrosion is present. The maintenance findings for components

subjected to Smax = 124.1 MPa are presented in Table 2.

A probabilistic stress-life model [44] is provided for the cycles to failure, N , of the

components under constant stress amplitude, Sa, loading as

Sa

C (d) E∞
= 1 +

β

Nγ
(54)

where β, γ, and the endurance limit, E∞, are assumed to be jointly distributed

random variables defining the S-N curve, realized once per component. The function

C (d) in Equation 54 represents an empirical knockdown factor on the endurance

limit, E∞, as a function of a random corrosion pit depth measured in millimeters, d,

initiating at a random initiation time, T . The form of this knockdown factor is given

in Equation 55.
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Table 1: Normalized high-cycle spectrum for helicopter dynamic component

Sa/Smax Cycles Per Hour
1.000 1
0.880 1
0.760 1
0.723 6
0.720 2
0.680 8
0.668 1
0.640 20
0.600 231
0.560 1419
0.520 4230
0.481 3034
0.480 134
0.472 68
0.448 108
0.440 716
0.400 272
0.388 67
0.381 74
0.367 67
0.360 155
0.347 67
0.324 34
0.320 142
0.293 67
0.280 154
0.261 68
0.247 67
0.240 95
0.200 59
0.160 14
0.120 66
0.080 215
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Table 2: Maintenance data crack and corrosion findings

Component Number Time in Service Corrosion Depth Crack Detected
(hrs) (mm)

1 750 0 No
2 750 0 No
3 790 0 No
4 800 0 No
5 850 0 No
6 860 0.8128 No
7 875 0 No
8 895 0 No
9 900 0 No
10 920 0 No
11 925 0 No
12 950 0 No
13 975 0 No
14 975 0.2032 No
15 1000 0 No
16 1000 0 No
17 1000 0.8890 No
18 1020 0 No
19 1050 0.1270 No
20 1075 0.7112 No
21 1100 0 No
22 1100 0 No
23 1120 0 No
24 1120 0 No
25 1150 0 No
26 1180 0 No
27 1200 0 No
28 1200 0.5842 No
29 1250 1.0160 Yes
30 1300 0 No
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C (d) =
1.03672

1 + exp
(

d−0.9652
0.2921

) (55)

Based on fleet corrosion grind-out data, a Weibull distribution with a shape factor

of 1.31 and scale factor of 0.3584 mm is determined for the corrosion depth of a

corroded part. Fleet corrosion rate data was analyzed to obtain a Weibull model

for corrosion onset times with shape parameter 1.07 and a scale parameter 7.014·104

hours.

4.2 Bayesian Model Construction

Because of the stress-life formulation, a crack detection likelihood function similar in

form to Equation 21 is appropriate. Since the total likelihood function is the product

of indicator functions, it can only take the values one or zero. The total likelihood

thus equals one if the parameter vector for each component gives a life prediction

in agreement with that component’s maintenance record and equals zero otherwise.

The life prediction function is calculated using the S-N curve in Equation 54 and

Miner’s rule, given a realization of the parameter vector. For the ith component prior

to corrosion initiation, the damage accumulated per hour is computed as a sum of

damage accumulated at stress amplitudes, Sa,j weighted by hourly cycle counts, Nj,

obtained from Table 1.

∆i (θi) =
∑

j

Nj

{
β−1

i max

(
0,

Sa,j

E∞,i

− 1

)}γ−1
i

(56)

Similarly, after corrosion, the damage per hour accumulated in the ith component

is computed as

∆d
i (θi) =

∑
j

Nj

{
β−1

i max

(
0,

Sa,j

C (di) E∞,i

− 1

)}γ−1
i

(57)
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Combining these results, the life for the ith component can be computed from the

parameter vector as

t (θi) =





∆i (θi)
−1 : Ti∆i (θi) ≥ 1

Ti + [1− Ti∆i (θi)]
[
∆d

i (θi)
]−1

: Ti∆i (θi) < 1

(58)

The logarithmic transformation allows use of the multivariate normal distribution

to model the joint prior distribution of the S-N parameters conditional on an uncertain

mean vector, M, and covariance matrix, S.




log β

γ

log E∞




∣∣∣∣M,S ∼ MVN (M,S) (59)

Data driven hyperprior distributions were specified with expected values equal to

point estimates of M and S. A multivariate normal hyperprior is assumed for M as

M ∼ MVN







−1.2111

0.7500

4.7002




, V I3




(60)

where I3 is the 3×3 identity matrix and V denotes a variance parameter set according

to the prior confidence in the point estimate of M. Higher values of V correspond

to high prior uncertainty in the median vector. The Wishart density [77] with n

degrees of freedom, given in Equation 61, is assumed for the covariance matrix with

expected value equal to the point estimate. Use of the Wishart density ensures that

the covariance matrix is positive-definite with probability one as its support consists

of all symmetric positive-definite matrices of size p× p.
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S ∼ W (Σ, n) ⇔ fS (S) ∝ |S|n−p−1
2 exp

(
−1

2
tr

(
Σ−1S

))
(61)

The hyperprior for the covariance matrix can be expressed as given in Equation

62. The degrees of freedom are set according to the prior confidence in the point

estimate, with higher values of n corresponding to higher confidence.

nS ∼ W







0.0143 −0.0072 0.0057

−0.0072 0.0056 −0.0042

0.0057 −0.0042 0.0064




, n




(62)

4.3 Posterior Simulation

Due to the crack detection formulation of the likelihood function and hierarchical

model structure, a rejection sampling technique to simulate the posterior distribution

was implemented. First, candidate samples of M and S are generated from the

hyperprior distributions in Equations, 60 and 62. Next, candidate samples of the S-N

parameters, one set per inspected component, are generated from Equation 59 given

the candidate samples of M and S. For components on which corrosion was found,

a corrosion initiation time, Ti, was sampled from the initiation time distribution,

conditional on Ti ≤ ti,insp as

fTi
(τ |Ti ≤ ti,insp) =

fTi
(τ)∫ ti,insp

0
fTi

(s) ds
; τ ∈ [0, ti,insp] (63)

The samples of crack initiation parameters are then used in Equation 58 to cal-

culate candidate samples of the total life for each inspected component, t (θi). The

candidate samples of the hyperparameters and component crack initiation parameters

are accepted if the computed lifetimes are in agreement with the inspection results.
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A rejection sampling simulation of the posterior distribution consisting of 2 ·105

samples was performed. The variance parameter, V , in Equation 60 is set to 0.01

corresponding to a coefficient of variation (COV) in the prior median (untransformed)

values of β, γ, and E∞ of roughly 10%. The number of degrees of freedom in Equation

62 was set to n = 10 resulting in a prior coefficient of variation in the variance of S-N

curve parameters of approximately 45%.

4.4 Simulation Results

The rejection sampling simulation yielded 2 ·105 posterior distribution samples for

each of the hyperparameters, M and S, S-N parameters for each inspected part, and

corrosion initiation time for each corroded part. The marginal posterior distributions

for M and S estimated from the samples were compared to their prior distributions

in Equations 60 and 62. The prior hyperparameter statistics are compared to their

updated values in Table 3. The most significant difference between the prior and

updated statistics is the reduction of 23% in the coefficient of variation of E [log E∞],

the third component in M. The expected updated values of components of M differ

from their corresponding prior values by less than 1%. Therefore, the key result of

this updating with regard to hyperparameters is the removal of epistemic uncertainty

in the median value of the endurance limit, E∞. Figures 5 and 6 depict this result

graphically with a comparison of the prior and updated marginal density functions

and distribution functions, respectively.

Next, the samples of S-N parameters, corrosion onset times, and corrosion pit

depths for inspected components were post-processed to make updated probabilistic

life statements about the remaining life of these parts. For each component on which

no corrosion was observed, a corrosion depth was sampled from the pit depth Weibull

distribution, and an onset time was sampled from the corrosion initiation Weibull

distribution, conditional on T > ti,insp.
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Table 3: Probabilities of crack initiation for at-risk components

Prior Value Updated Value

E [M] =



−1.2111

0.7500
4.7002


 E [M|D] =



−1.2112

0.7496
4.7068




cov [M] =




0.0825
0.1333
0.0213


 cov [M|D] =




0.0825
0.1333
0.0164




E [S]=




0.0143 −0.0072 0.0057
−0.0072 0.0056 −0.0042

0.0057 −0.0042 0.0064


 E [S|D]=




0.0141 −0.0070 0.0055
−0.0070 0.0055 −0.0040

0.0055 −0.0040 0.0062



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Figure 5: Updated and prior density functions for median endurance limit
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Figure 6: Updated and prior distribution functions for median endurance limit

fTi
(τ |Ti > ti,insp) =

fTi
(τ)∫∞

ti,insp
fTi

(s) ds
; τ ∈ (ti,insp,∞) (64)

With the completed sample set of crack initiation parameters for each inspected

component, the distribution of remaining life was calculated for each inspected com-

ponent, using Equation 58, as t (θi) − ti,insp. This analysis revealed a set of four

components, numbers 6, 17, 20, and 28, whose probabilities of failure within an ad-

ditional 1,000 service hours are orders of magnitudes higher than the others. These

components were termed ”at-risk,” and their computed failure probabilities under

continued usage are given in Table 4. This result demonstrates a rational method

to assess serviceable damage limits by determining the reliability for continues use of

damaged components. In this manner, this reliability analysis can be used as a tool

for repair and replacement decisions.

Samples of the posterior predictive distribution for the endurance limit were gen-

erated from Equation 59 given each sample of the hyperparameters. From these
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Table 4: Probabilities of crack initiation for at-risk components

Component Probability of Probability of Probability of
number initiation initiation initiation

within 100 hours within 500 hours within 1000 Hours
6 1.11% 5.26% 8.87%
17 5.31% 20.3% 29.9%
20 0.11% 0.62% 1.17%
28 7.5·10−3% 0.045% 0.98%

samples, the updated distribution of realized endurance limits for uninspected com-

ponents was estimated. Figure 7 compares the posterior predictive distribution of

the endurance limit to the prior predictive distribution, depicting the narrowing of

the distribution due to the consideration of maintenance data. The improvement in

precision is also reflected by a 15% narrowing of the 95% credible interval for the

endurance limit from [85.5 MPa, 142.0 MPa] to [88.9 MPa, 137.2 MPa]. Note that

the posterior predictive distribution for E∞ represents the updated distribution of en-

durance limits from uninspected components in light of the data obtained for others.

Therefore the updating analysis provides relevant information about the uninspected

population as well as those components that were inspected.

The importance of the narrowing of the predictive distribution becomes apparent

when considering the distribution of fatigue lives for uninspected components. By

drawing probability mass away from extremely low endurance limits, the updating

analysis shows that low component lifetimes are less likely in light of the maintenance

data. Since the high-reliability portion of the component life distribution is of central

interest, the shift of probability mass in the endurance limit distribution away from

the lower tail can have a pronounced effect on the reliability calculation for lifetimes

of interest. Figure 8 compares the updated and prior high-reliability portion of the

cumulative distribution function for the life of an uninspected component. This right-

ward shift in substantiated reliability is the result of an updating analysis given thirty
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Figure 7: Posterior and prior predictive density functions for endurance limit, E∞

inspection data points. A more substantial shift may be achieved if the volume of

inspection data approaches that available from a fully-populated fleet maintenance

database.

The smaller magnitude of the change in reliability for uninspected components

versus inspected components is expected. Specific information on the component-

level parameters for each inspected component is obtained from its own maintenance

records, whereas only fleet-level information can be applied to predictions of the relia-

bility for uninspected components. Since the component-level parameters govern the

fatigue life directly, more significant changes in reliability should occur for inspected

components as observed here.
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Figure 8: Updated life distribution for uninspected components
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CHAPTER V

EQUIVALENT INITIAL FLAW SIZE INFERENCE

5.1 Description of Input Data

Following Cross et al. [12], the growth of a double corner crack from a rivet hole in

a 2024-T3 Aluminum fuselage lap joint is considered. Figure 9 illustrates the crack

geometry. The skin is 1.016 mm thick with 4.76 mm fasteners spaced every 27.2 mm.

The US Air Force fracture mechanics based life prediction program, AFGROW [32],

is used to calculate the median crack growth behavior under spectrum loading. Based

on finite element results from Fawaz and Harter [22], 0.61 tension, 0.85 bending, and

2.61 bearing stress factors are used as inputs to AFGROW.

A simulated data set of 20 initial cracks was generated from a Weibull distribution

with a scale factor of 1.016·10−2 mm and a shape factor of three. Likewise, a simulated

set of 20 multiplicative crack growth rate noises was generated from a lognormal

distribution with log-mean of zero and a log standard deviation of 0.1. From these

samples, the simulated data set of 20 cracks depicted in Figure 10 was generated

using AFGROW.

5.2 Bayesian Model Construction

The uncertain crack growth parameters for this problem are the initial flaw size, c,

and the growth rate noise, X for which a Weibull and a unit-median lognormal prior

prior distribution are assumed, respectively. Thus there are three hyperparameters:

the Weibull shape α, Weibull scale β, and log-standard deviation σ. Let N (a, c)

denote the number of cycles predicted by AFGROW to grow a crack from the initial

flaw size, c, to the observed final crack length, a. The collection of all observed

53



4.76 mm

Initial Crack Radius

1.016 mm

Figure 9: Double corner crack from lap joint rivet hole

0 2 4 6 8

x 10
4

2

2.5

3

3.5

4

4.5

5

5.5

Number of Cycles

C
ra

ck
 S

iz
e 

(m
m

)

Figure 10: Simulated lap joint crack inspection data set
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final crack lengths and cycle counts will be denoted D = {(ai, Ni) : i = 1 . . . 20}, and

Θi = (ci, Xi) denotes the vector of uncertain crack growth parameters for the ith

crack. Assuming negligible inspection error, the likelihood of the collection of data

given all component-level parameters can be expressed as

L (D|Θi; i = 1 . . . 20) =
20∏
i=1

δ
(
X−1

i N (ai, ci)−Ni

)
(65)

A proper vague hyperprior is assumed for the hyperparameters A = {α, β, σ} so

that their logarithms are approximately uniformly distributed over the feasible region.

All hyperparameters are assumed a priori to be mutually statistically independent.

The prior distribution for β is assumed to be Weibull with a scale parameter of one

and a shape parameter of 0.01. The prior distributions for α and σ are assumed to

be lognormal with log-means Mα and Mσ and log-standard deviations of Sα and Sσ.

The values of Mα and Mσ are set using the best available knowledge on the locations

of α and σ. The parameters Sα and Sσ are set to be as large as possible without

allowing significant probability mass at unreasonable values of the hyperparameters.

Since no a priori knowledge of α or σ is assumed, a standard EIFS inference

is used as an empirical procedure to elicit the hyperprior distribution location pa-

rameters. First, the crack growth model is inverted to obtain a set of point esti-

mates of the initial flaw sizes as C = {ci : N (ai, ci) = Ni, i = 1 . . . 20}. A Weibull

distribution is then fit to the elements of C to obtain estimates α̂ and β̂ of the

shape and scale parameters, respectively. Samples of the lognormal noise in the crack

growth rate can be obtained assuming the median initial flaw size for all cracks as

X =
{

Xi = N
(
ai, β̂ (ln ln 2)α̂−1

)
·N−1

i

}
. The hyperprior location parameters are

then calculated by the method of moments.
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Mα = ln α̂ (66)

Mσ = ln

√√√√ 1

19

20∑
i=1

(
ln Xi − ln X

)2
(67)

The values of Mα and Mσ were calculated as 0.385 and -1.88 respectively, and the

dispersion parameters Sα and Sσ were both set to 0.8. The full posterior distribution

can then be written as

πA,Θ|D (α, β, σ, ci : i = 1 . . . 20|D) ∝ πA (α, β, σ)
20∏
i=1

L (Ni|ai, ci, σ) πC|A (ci|α, β) (68)

where

πA (α, β, σ) ∝ exp (−β0.01)

αβ0.99σ
exp

[
−1

2

(
ln α−Mα

Sα

)2

− 1

2

(
ln σ −Mσ

Sσ

)2
]

(69)

L (Ni|ai, ci, σ) ∝ σ−1φ

(
ln Ni − ln N (ai, ci)

σ

)
(70)

πC|A (ci|α, β) = αβαcα−1
i exp

[
−

(
ci

β

)α]
(71)

and φ (·) denotes the standard normal density function.

5.3 Posterior Simulation

The posterior distribution was simulated using MCMC with the Metropolis-Hastings

algorithm for the state transition rule. Candidate samples are generated according

to an independent lognormal random walk process. Let Yi denote the random vector

containing the twenty EIFS and three hyperparameter values in the ith sample. The

components of the proposal vector Z are generated according to the distribution

qj

(
zj|yi

j

) ∝ z−1
j exp

[
−1

2

(
ln zj − ln yi

j

sj

)2
]

(72)
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where the sj are free parameters used to tune the sampler. An iteration of the

algorithm proceeds by first generating the candidate vector Z from the distribution

in Equation 72. The value of the next sample Yi+1 is generated from the probability

distribution

P
(
Yi+1 = Z

)
= min

{
πA,Θ|D (Z|D)

∏23
j=1 zj

πA,Θ|D (Yi|D)
∏23

j=1 yi
j

, 1

}
(73)

P
(
Yi+1 = Yi

)
= 1− P

(
Yi+1 = Z

)
(74)

A simulation consisting of 10 parallel chains of 106 samples each was performed,

where the first half of the samples was discarded to eliminate transient effects on the

posterior estimates. The convergence metric in Equation 31 was calculated for the

hyperparameters as Rα = 1.00754, Rβ = 1.00765, and Rσ = 1.00063.

5.4 Simulation Results

The marginal posterior densities for the EIFS parameters and growth rate standard

deviation were estimated from the MCMC samples and appear in Figures 11, 12,

and 13. From the figures, the true values of α, β, and σ (3, 1.016 ·10−2 mm, and

0.1, respectively) are seen to lie in areas of high posterior probability mass. Posterior

statistics were also computed and are compared to the true values and standard results

in Table 5. The posterior mean, median, and mode all provide closer estimates of

the Weibull shape parameter, α, and growth rate standard deviation, σ, than the

standard EIFS inference predictions.

The posterior predictive density for the EIFS can be computed by averaging the

Weibull density evaluated for each shape and scale parameter sample. Figure 14

compares the posterior predictive density to the true EIFS density function as well

as the density inferred from a standard EIFS analysis. A clear improvement in EIFS

distribution is seen in the Bayesian model prediction over the standard EIFS inference.

In addition, posterior predictive EIFS statistics are compared to the true statistics
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Figure 11: Marginal posterior distribution for Weibull shape parameter
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Figure 12: Marginal posterior distribution for Weibull scale parameter
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Figure 13: Marginal posterior distribution for growth rate standard deviation

Table 5: Comparison of posterior statistics for distribution parameters

α β (mm) σ
True Value 3 1.016·10−2 0.1
Standard EIFS 1.47 1.115·10−2 0.152
Posterior Mean 4.07 0.958·10−2 0.138
Posterior Median 3.43 0.940·10−2 0.137
Posterior Mode 2.61 0.909·10−2 0.132
Posterior Std. Dev. 2.37 0.159·10−2 0.035
Posterior 95% CI [1.52, 10.61] [0.699·10−2, 1.321·10−2] [0.070, 2.11]

59



0.005 0.01 0.015 0.02 0.025 0.03
0

20

40

60

80

100

120

140

Initial Flaw Radius (mm)

P
ro

ba
bi

lit
y 

D
en

si
ty

Bayesian EIFS PDF
Standard EIFS PDF
True EIFS PDF

Figure 14: Posterior predictive equivalent initial flaw size distribution

Table 6: Equivalent initial flaw size statistics comparison

Mean (mm) Std. Dev. (mm) 95% CI (mm)
True Value 9.07·10−3 3.30·10−3 [2.97·10−3, 1.57·10−2]
Standard EIFS 10.0·10−3 6.96·10−3 [9.14·10−4, 2.72·10−2]
Posterior Pred. 8.66·10−3 3.66·10−3 [2.54·10−3, 1.71·10−2]

and standard EIFS statistics in Table 6. The posterior predictive mean and standard

deviation differ from the true values by 4.5% and 10.9% respectively, and the 95%

credible interval width differs from the true width by 14%. For comparison, the

standard EIFS method overstates the mean and standard deviation by 10% and 111%,

respectively. The 95% interval predicted by the standard EIFS method is 106% wider

than the true value.

The hyperparameter samples were then used to generate predictive samples of the

crack growth parameter vector (c,X). These predictive samples were then propagated

through AFRGOW to obtain samples from the distribution of crack growth histories.
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Figure 15: Posterior predictive distribution for crack growth history

The mean growth history and 95% credible interval are compared to the target data

in Figure 15. The posterior model fits the data well, with 19 of 20 data points falling

within the 95% credible region, as expected.

5.5 Updating Fleet-Level Parameters

Consider now that an additional rivet joint is inspected with a non-destructive inspec-

tion with a probability of detection (POD) curve given in Figure 16. The inspection

occurs at 104 hours in service and results in a crack detection indication.

The approximate updating procedure is conducted using the maximum a posteri-

ori method with multivariate normal approximations for the posterior hyperparame-

ter distribution. Using the logarithmic transformation for α, β, and σ, the posterior

distribution determined from the MCMC simulation may be approximated as
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Figure 16: Probability of detection curve
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(75)

Since Θ = (c,X), the integral required to evaluate the likelihood can be computed

using a simple two-dimensional integration technique. First, to save computational

time the crack growth model was discretized with equal spacing in c and log X and

saved in a matrix form as

aij = a
(
104, {ci, Xj}

)
(76)

The evidence integral is then estimated as

L (D′|T (A), D) ∝
∑

i

∑
j

POD (aij)
αβαcα−1

i

σ
exp

(
−

(
ci

β

)α

− 1

2

(
log Xj

σ

)2
)

(77)
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The function log π̃T(A)|D (T ({α, β, σ}) |D) + log L (D′|T ({α, β, σ}) , D) was then

maximized, and the Hessian matrix was computed at that point to give the updated

hyperparameter distribution in Equation 78.




log α

log β

log σ




∣∣∣∣D, D′ ∼ MVN





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1.2070

−4.5947

−2.0307




,
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0.2377 −0.0169 0.0557

−0.0169 0.0220 −0.0059

0.0557 −0.0059 0.0752







(78)

To verify the approximation, a MCMC simulation was run to provide a comparison

for the mean vector and covariance matrix of the hyperparameters. The estimated

mean and variance from the MCMC simulation, as shown in Equations 79 and 80 are

in close agreement with the MAP rule approximate updating method.

E


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log α

log β

log σ
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=
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(79)

cov
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−0.0180 0.0222 −0.0063
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
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(80)

5.6 Updating Residual Life Distribution

Now consider the situation that the previously described NDI detects no crack after

104 cycles, and denote this observation as D′. In this situation it is desirable to

simultaneously determine the distribution of remaining life as well as update the

distribution for α, β, and σ. The likelihood function, given the parameter vector

Θ′ = (X ′, c′), can be computed from the POD curve as

L (D′|θ′) = 1− POD
(
a

(
104, Θ′)) (81)
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The prior distributions are the same as before, with the Weibull prior for c′ and

lognormal prior for X ′. The approximate hyperprior distribution for the transformed

hyperparameters in Equation 75 is used to simplify sampling.

Because of the form of the likelihood function, rejection sampling can be im-

plemented exploiting the hierarchical structure of the posterior. First, a candidate

sample of the hyperparameters is drawn from the hyperprior in Equation 75. Next,

candidate samples of the crack growth model parameters are drawn from their re-

spective priors given the candidate hyperparameters. The candidate crack growth

parameter samples are propagated through the AFGROW model to determine the

likelihood in Equation 81. The candidate sample is accepted with probability equal

to the likelihood. After performing the sampling, the updated distribution of remain-

ing life can be calculated by propagating the uncertainty through the crack growth

model.

The updated distribution of remaining life for a crack to grow to a length of

0.005 inches appears in Figure 17. A rightward shift in the distribution is observed

indicating a upward revision in substantiated reliability. This rightward shift is more

pronounced at the high reliability region of the life distribution. Figure 18 provides

additional detail on the high reliability region.

Likewise, the updated distribution for the hyperparameters was approximated

from the samples by computing the mean vector and covariance matrix of the trans-

formed hyperparameter samples. These values were then used to derive a multivariate

normal approximation to the updated posterior distribution in Equation 82. The de-

crease in E [log β|D,D′] versus E [log β|D] demonstrates that the passed inspection

gives evidence that the true EIFS distribution lies slightly to the left of previous

predictions.
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Figure 17: Updated distribution of remaining life
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Figure 18: Detail on updated distribution of remaining life
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(82)

Extension of these results to multiple inspected components is straightforward

due to the assumed independence of components. Additional likelihood terms and

component-level prior distributions must be added for each inspected component.

The analysis the proceeds in the same manner as demonstrated.
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CHAPTER VI

HIERARCHICAL GROWTH RATE MODELING

6.1 Description on Input Data

In the following section, a hierarchical probabilistic model of short-crack growth is

derived based on data generated by Swain et al. [65]. A series of short cracks were

grown under constant amplitude cycling on single edge notch tension (SENT) speci-

mens prepared from 9.5 mm thick AISI 4340 steel plate. Specimens were tested at R

levels of -1, 0, and 0.5 with data recorded for 8, 4 and 3 cracks, respectively. The re-

duced growth rate data appearing in Figure 19 shows a clear dependence of the crack

growth rate on the load ratio. Table 7 summarizes the loading conditions, number of

growth rate data points, and geometries for each crack.

6.2 Bayesian Model Construction

Because of the effect of the load ratio and the dependence of data observed from the

same crack, a hierarchical GLM is hypothesized of the form

(
log10

da

dN

)

ijk

= log10 Cij + mij log10 ∆Kijk + σiεijk (83)

where the εijk are independent standard normal random variables. This model cor-

responds to individual Paris-type equations for the jth crack at the ith R level. The

vector of logarithms of all growth rate observations, denoted Y thus has multivariate

normal density given the vectors of intercepts and slopes, C and m, respectively.

Y|C,m, σi : i = 1 . . . NR ∼MVN


X




C

m


 , Σ (σi : i = 1 . . . NR)


 (84)
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Figure 19: Crack growth rate data for AISI 4340 steel

Table 7: Data description for AISI 4340 short-crack tests [65]

Crack Number R Smax Geometry Number of
(MPa) Observations

1 0.5 585 Corner 5
2 0.5 585 Surface 11
3 0.5 585 Surface 11
4 0.0 385 Surface/Corner 16
5 0.0 360 Surface 12
6 0.0 360 Surface 2
7 0.0 360 Surface 6
8 -1.0 270 Surface/Corner 30
9 -1.0 270 Surface 13
10 -1.0 270 Surface 4
11 -1.0 240 Surface 14
12 -1.0 240 Surface 3
13 -1.0 240 Surface 2
14 -1.0 240 Surface 1
15 -1.0 240 Surface 7
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Semi-conjugate priors are used for the linear model parameters and unknown

variances.

log10 Cij|µCi, σCi ∼ N (µCi, σCi) (85)

mij|µmi, σmi ∼ N (µmi, σmi) (86)

µCi ∼ N (ηC , τC) (87)

µmi ∼ N (ηm, τm) (88)

σ2
i ∼ IG (νe, γe) (89)

σ2
Ci ∼ IG (νC , γC) (90)

σ2
mi ∼ IG (νmγm) (91)

where the set ξ = {ηC , τC , ηm, τm, νe, γe, νC , γC , νm, γm} consists of prior parameters

to be elicited. Note that because of a priori independence, it is a simple matter to

express the prior for the collection of slopes and intercepts in multivariate normal

form in terms of the mean vector Mh = [µC1, . . . , µCNR
, µm1, . . . , µmNR

]T as




C

m




∣∣∣∣σCi, σmi : i = 1 . . . NR ∼MVN (XpMh, Σp (σCi, σmi : i = 1 . . . NR)) (92)

An augmented vector of regression unknowns β =
[
CT,mT,MT

h

]T
then has the

distribution

Ya|β, σi, σCi, σmi : i = 1 . . . NR ∼MVN (Xaβ, Σa (σi, σCi, σmi : i = 1 . . . NR)) (93)

where
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Ya =




Y

02Nc

ηC1NR

ηm1NR




(94)

Xa =




X 0

I2Nc −Xp

0 I2NR




(95)

Σa =




Σ 0 0 0

0 Σp 0 0

0 0 τ 2
CINR

0

0 0 0 τ 2
mINR




(96)

Without prior data, the hyperprior parameters, ξ may be determined empirically

from the data set. Point estimates of µmi and µCi were obtained by performing a

series of regressions on pooled data for each stress ratio and are given in Table 8.

The prior means, ηC and ηm, were set equal to the sample means of the ̂log10 Cij and

m̂ij, respectively. Similarly, the standard deviations τC and τm were computed as the

sample standard deviations of the point estimates. The mean squared error of the

regressions was used as a mean value for the inverse gamma priors for the unknown

variances. The complete set of hyperprior parameter values is given in Table 9.

Table 8: Point estimates of hyperparameters from pooled-data regressions

R ̂log10 Cij m̂ij

0.5 -10.4349 2.3363
0.0 -11.5756 2.8992
-1.0 -11.3802 2.4490
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Table 9: Numerical values for generalized linear model hyperprior parameters

Parameter Value
ηC -11.1302
τC 0.6100
ηm 2.5615
τm 0.2978
νe 2.0000
γe 0.5874
νC 2.0000
γC 0.5874
νm 2.0000
γm 0.5874

The posterior distribution is calculated using Bayes’ rule by multiplying the aug-

mented likelihood function in Equation 93 by the variance hyperprior distributions

in Equations 89-91. Because of the semi-conjugate formulation, the full conditional

distributions can be expressed in closed form for the mean as

β|σi, σCi, σmi : i = 1 . . . NR ∼ MVN
(
β̂,V

)
(97)

and variances as

σ2
i |β ∼ IG

(
νe +

ni

2
, γe +

1

2

Nci∑
j=1

∑

k

r2
ijk

)
(98)

σ2
Ci|β ∼ IG

(
νC +

Nci

2
, γC +

1

2

Nci∑
j

(log10 Cij − µCi)
2

)
(99)

σ2
mi|β ∼ IG

(
νm +

Nci

2
, γm +

1

2

Nci∑
j

(mij − µmi)
2

)
(100)

where

71



β̂ =
(
XT

a Σ−1
a Xa

)−1
XT

a Σ−1
a Ya (101)

V =
(
XT

a Σ−1
a Xa

)−1
(102)

rijk =

(
log10

da

dN

)

ijk

− log10 Cij −mij log10 ∆Kijk (103)

and Nci and ni denote the number of cracks and data points, respectively, at the ith

R level.

6.3 Posterior Simulation

The closed-form full posterior distributions in Equations 97-100 enable Gibbs sam-

pling to characterize the posterior distribution. The simulation was performed by

alternately sampling the full mean conditional and full variance conditionals given

the latest sample of each. Initial samples of the random parameters and hyperpa-

rameters were taken from the corresponding prior and hyperprior distributions. A

simulation of 2 · 104 samples was performed, and the first half of the samples was

discarded to reduce the influence of the MCMC startup transient.

Serial and cross correlations may be used to assess the strength of statistical

dependence of successive samples from the Gibbs simulation. Since the mean vector

is drawn as a batch, and the full conditional variance distributions are independent,

it follows that only the cross-correlations between the mean variates and variance

variates need be considered. The maximum absolute cross-correlation between a

mean and variance term was found to be 0.4045, verifying that statistical dependence

between variates is not large. In addition, the autocorrelation was computed for

each random variate being simulated, and the values for each variate are plotted in

Figure 20. The autocorrelation plot shows that no significant periodicity arises in the

simulation as autocorrelations fall below 0.1 after 4 iterations.
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Figure 20: Autocorrelations from Gibbs simulation

6.4 Simulation Results

Useful results can be extracted from the samples obtained from the Gibbs simulation

by post-processing. Marginal distributions for the hyperparameters are estimated by

considering the hyperparameter samples individually. Figures 21 and 22 depict the

marginal posterior densities of the mean regression intercepts and slopes, respectively.

A clear rightward shift of one unit is observed in the mean intercept distribution for R

= 0.5. The differences in the mean slope distributions between different stress ratios

are minor.

Similarly, the marginal posterior densities for the intercept and slope variances

appear in Figures 23 and 24. Little deviation from the prior distributions is observed.

This result is expected, however, since the numbers of observed cracks at each stress

ratio are small. The largest deviation from the prior distribution occurs for R=-1.0

where the most data was taken.

The final marginal hyperparameter posterior distributions are for the regression
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Figure 21: Marginal posterior densities of mean regression intercepts
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Figure 22: Marginal posterior densities of mean regression slopes
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Figure 23: Marginal posterior densities of regression intercept variances
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Figure 24: Marginal posterior densities of regression slope variances
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Figure 25: Marginal posterior densities of regression error variances

error variances depicted in Figure 25. Clear differences between the distributions at

different stress ratios are observed. The average regression error variances at R = 0.0

and R = -1.0 show increases of 320% and 55%, respectively, over the average regres-

sion error variance at R = 0.5. Physical meaning can be assigned to this result by

interpreting the regression error variance as a quantification of the irregularity in the

growth of a single crack. Crack closure processes may explain these differences, since

intuitively, crack closure phenomena should introduce randomness into the growth

of a single crack. Surface roughness and debris induced closure are the result of the

unpredictably irregular pattern of fracture surfaces along the crack face. Plasticity-

induced closure also may introduce irregularity since the small crack front intersects

a small number of grains, especially for the data points taken at low stress-intensity

factors. When few grains are intersected, the growth behavior is more susceptible to

the characteristics of the particular grains on the crack front.

Posterior means and standard deviations were also computed for the means and
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Table 10: Posterior AISI 4340 short-crack growth parameter statistics

Statistic R = 0.5 R = 0.0 R = −1.0
E [µC,i|D] -10.6665 -11.3562 -11.4099√
var (µC,i|D) 0.2194 0.2162 0.1784
E [µm,i|D] 2.5163 2.6526 2.4456√
var (µm,i|D) 0.1663 0.1898 0.1434
E

[
σ2

C,i|D
]

7.6267·10−2 6.8829·10−2 8.6906·10−2√
var

(
σ2

C,i|D
)

7.9903·10−2 6.3325·10−2 6.5715·10−2

E
[
σ2

m,i|D
]

6.4350·10−2 6.7742·10−2 6.0300·10−2√
var

(
σ2

C,i|D
)

5.7437·10−2 6.0320·10−2 4.3324·10−2

E
[
σ2

e,i|D
]

4.8996·10−2 1.5653·10−1 7.5912·10−2√
var

(
σ2

C,i|D
)

1.4625·10−2 3.9649·10−2 1.3996·10−2

variances of the short-crack growth parameters as well as the regression error vari-

ances. These statistics are summarized in Table 10.

The marginal hyperparameter samples are then used to generate samples of the

posterior predictive distributions for the regression slopes and intercepts. For ex-

ample, the nth sample of mi is generated from a normal distribution with mean and

variance equal to the nth samples of µmi and σ2
mi, respectively. The posterior predictive

distributions for the intercepts and slopes appear in Figures 26 and 27, respectively.

Here the rightward shift of the predictive intercept distribution for R = 0.5, together

with the similarity of the predictive slope distributions, may be given the physical

interpretation of a factor of ten increase, on average, in the crack growth rate at R =

0.5. The faster growth rate at R = 0.5 is expected since the tension-tension cycling

prevents significant crack closure.

Posterior predictive statistics were computed as well from the samples, and these

results are summarized in Table 11. The order-of-magnitude increase in the average

growth rate at R = 0.5 is supported by the increase in E [log10 Cij|D]. Predictive

standard deviations were approximately equal for each stress ratio.
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Figure 26: Posterior predictive densities of regression intercepts
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Figure 27: Posterior predictive densities of regression slopes
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Table 11: Posterior predictive AISI 4340 short-crack growth parameter statistics

Statistic R = 0.5 R = 0.0 R = −1.0
E [log10 Cij|D] -10.6676 -11.3529 -11.4112√
var (log10 Cij|D) 0.3550 0.3435 0.3389

E [mij|D] 2.5139 2.6513 2.4449√
var (mij|D) 0.3084 0.3194 0.2866

Finally, the posterior predictive distribution for the crack growth parameters, i.e.

the intercepts and slopes, can be propagated through the crack growth model to

determine the distribution of the crack growth rate at each stress ratio level. These

distributions can be compared to the data used to infer the model to verify goodness-

of-fit and prior distribution selection. For each stress ratio the mean growth rate

and 95% credible interval for the growth rate were computed and compared to the

data. Figures 28, 29, and 30 depict these comparisons at R = 0.5, R = 0.0, and R =

-1.0, respectively. Close fit is observed between the data and the the predicted mean

trends.
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Figure 28: Comparison of growth rate predictions to data at R = 0.5
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Figure 29: Comparison of growth rate predictions to data at R = 0.0
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Figure 30: Comparison of growth rate predictions to data at R = -1.0
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CHAPTER VII

CONCLUSIONS

In this work, fatigue life prediction techniques are incorporated within a Bayesian

statistical framework to create flexible structural risk assessment and reliability up-

dating methodologies. The developed methods were applied to three case studies:

updating of a high-cycle fatigue safe-life model from maintenance data, EIFS distri-

bution inference and updating with NDI data, and hierarchical short-crack growth

fatigue modeling. Through these analyses, several observations of note can be made:

• Uncertainty in probabilistic models can be captured using the hierarchical for-

mulations presented here. The hierarchical structure intuitively captures the

structure of the probabilistic life prediction problem by explicitly considering

the uncertainty in the model and fatigue variables separately. Furthermore,

by assuming uncertain hyperparameters that specify the distributions in the

probabilistic life prediction model, the often untenable assumption that the dis-

tributions of fatigue model parameters are known can be avoided. Bayesian

techniques are well-suited to perform inferences on these models, and efficient

sampling techniques have been implemented that exploit the hierarchical model

structure.

• Reduction of epistemic uncertainty enables more appropriate levels of conser-

vatism in inspections and maintenance. Maintenance data can be assessed with

an updating analysis to provide confidence that overly pessimistic values of the

probabilistic fatigue model parameters have negligible likelihood. This may be

demonstrated even if the location of the parameter distributions does not change

since variance reduction draws probability mass away from extreme values, as
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demonstrated in the dynamic component model maintenance data updating.

• The Bayesian formulation can be used to analyze a wide variety of data types

by use of appropriate likelihood functions. Likelihood function formulations

are developed for NDI, crack measurement, and maintenance data. Both safe-

life and fracture mechanics based probabilistic models were developed based on

these likelihood functions. These models were then applied to infer distributions

of several random parameters, including initial flaws, S-N parameters, crack

growth rate parameters, and damage.

• Adoption of Bayesian inference techniques provides flexibility to infer and up-

date probabilistic models from a variety of data sources. The Bayesian phi-

losophy of modeling uncertainty with probability distributions circumvents the

difficulty of assigning point values for ill-posed problems as done in other infer-

ence techniques. Indeed, the inclusion of a prior distribution enables ill-posed

data to be considered by providing a rational means by which to weight all

outcomes. The EIFS inference presented in this work illustrates Bayesian en-

abled ill-posed inference by considering unknown initial flaws and growth rate

simultaneously for each data point.

• Several computational techniques were implemented for the inferences in this

work. Well-performing Gibbs sampling and MCMC schemes were developed

to perform model inferences for the crack growth formulation case studies.

Schemes based on hierarchical rejection sampling enable efficient model up-

dating without the requirement for expert tuning of the posterior simulation

algorithm. In addition, a gradient based maximum a posteriori algorithm using

evidence integrals is developed for hyperparameter updating.
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CHAPTER VIII

FUTURE WORK

While deterministic structural analysis and Bayesian inference are separately well-

developed topics, the incorporation of the two into a practical engineering tool for

structural risk assessment is a relatively new area of research. This work aims to lay

a foundation for future work in structural risk assessment that takes advantage of the

flexibility of hierarchical Bayesian techniques. As such, several directions for future

investigation were identified in the course of conducting this research.

8.1 Advanced Measurement and Inspection Techniques

8.1.1 Accurate Damage/Defect Strain Measurement

The stress concentrations due to flaws and service damage represent a large source

of uncertainty in fatigue life. A large amount literature exists concerning analytical

and computational stress concentration solutions. However, much of the damages

and specimen geometries observed in practice are poorly approximated by available

solutions. Computational simulation of each specific combination of damage and

geometry is time consuming, and there are no guarantees the effort will result in

good stress concentration values.

An alternative approach is to determine stress concentrations experimentally using

full-field surface strain measurement. One possible enabling technology is Digital

Image Correlation (DIC). The surface displacements are determined by correlating

locations from stereo images of points in a speckle pattern applied to the specimen.

A series of loads can then be applied to the damaged component, and surface strains

are calculated from the resulting displacement fields.
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8.1.2 Residual Stress Measurement

Residual stresses are an additional source of fatigue life uncertainty receiving con-

siderable attention at this time. Difficulties exist both in determining their effect on

fatigue behavior as well as measurement. The DIC technology previously described

is not suitable for residual stress measurement, especially in an operational setting.

An alternative is X-ray diffraction (XRD) techniques to measure residual strains near

defects and damage. Used in conjunction with DIC surface strain measurements, a

complete assessment of the stress state induced by flaws and defects can be achieved.

A research effort is currently in progress in this research group to develop capa-

bilities for experimental stress concentration measurement and residual strain mea-

surement on full-scale rotorcraft components.

8.2 Analytical Capabilities

8.2.1 Random Process Models

The hierarchical Bayesian models developed in this thesis were constructed with ran-

dom variable formulations. Such formulations permit straightforward interpretation

of the probabilistic fatigue life model as the net result of uncertain physical quanti-

ties. However, the reduction of the problem to a finite number of random variables

is inherently an approximation, albeit often satisfactory. A logical extension of this

research is the incorporation of random process formulations for fatigue crack growth

modeling. A key difficulty to overcome is the specification of likelihood functions for

parameterized stochastic processes.

8.2.2 Loads Variability

Load spectra were assumed to be given and deterministic for this study. Loads for

rotorcraft components are commonly determined through usage monitoring with de-

terministic load spectra assumed for each flight regime. However, it is known that
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reconstructing loads from usage monitoring ignores the differences in the manner in

which maneuvers are performed. For this reason, direct load monitoring of fatigue

critical rotorcraft components is an open area of research. Monitored loads can then

be used to create a high-fidelity stochastic loads model to incorporate into the prob-

abilistic fatigue life prediction.

8.3 Experimental Verification

8.3.1 Verification of Probabilistic Crack Growth Models

The Virkler data set [69] and others have motivated numerous studies to develop prob-

abilistic crack propagation modeling techniques. A multitude of models exist which

can be fit to the existing replicated crack growth data sets. However, assessment and

verification of the predictive capabilities of these models remains an open research

question. Such verification research is necessary both to build confidence in proba-

bilistic fatigue modeling and to determine which, if any, of the many probabilistic

crack growth models perform well in a predictive sense.

8.3.2 Application to Full-Scale Components

The next step in verification of probabilistic crack growth models is to apply mod-

els generated from specimen tests to make predictions for actual components which

are then compared to full-scale data. Much of the usefulness of probabilistic fatigue

modeling lies in the ability to make predictions for multiple structural configurations

based on specimen testing. Further experimentation must be performed to gain con-

fidence that probabilistic fatigue models represent intrinsic material behavior and are

not specific to the experimental procedure.
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