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GLOSSARY 
 
Certainty: the condition of knowing everything necessary to choose the course of action 

whose outcome is most preferred. 

Ignorance: inability to recognize (much less quantify) the existence of uncertainty; an 

unknown unknown. 

Imprecision: the gap between the presently available state of information and a state of 

precise information; i.e., uncertainty that can be reduced by gathering 

information.  Elsewhere referred to as “epistemic uncertainty” or “reducible 

uncertainty”. 

Indeterminacy: Inability to make a decision or identify the most preferred choice, perhaps 

due to propagated uncertainty; uncertainty about some state or condition that is 

affected by the unknown outcomes of indeterminate actors or events earlier in a 

causal chain. 

Info-gap uncertainty: the gap between what is known and what needs to be known in 

order to make a fully competent decision.  

Info-gap uncertainty parameter: α , unknown size of the discrepancy (error) between a 

known nominal estimate and an unknown actual value of a variable or model 

having info-gap uncertainty.  

Irreducible uncertainty: inherent randomness, recurrence of chance events, e.g., the 

numbers that come up when rolling dice.  Also called aleatory uncertainty. 

Model: a mathematical representation, useful to a design and/or analysis activity.  See 

system model and uncertainty model.  
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Parameter: One variable, or input, into a system model or reward function.  The 

parameter itself may be an output of another function. 

Performance function: mathematical expression of some goal that a design is to achieve, 

e.g., profit maximization or waste minimization.  Akin to an objective function in 

optimization.  The term reward function is used in descriptions of information-gap 

decision theory and can be considered a specific type of system model. 

Preferredness: The preference ranking assigned to an alternative.  There are situations 

demonstrated in this thesis where preferredness is indeterminate. 

Preferredness Switch Point: A preference ranking change at some value of critical 

reward, as seen on a robustness-performance ( α̂ –rc) plot. 

Representativeness: the degree to which a nominal value or model taken from one 

situation is valid or matches reality in a new situation. 

Robustness: (Info-gap definition) immunity to failure; (Taguchi definition) minimized 

variation in a response variable, given variation in an input parameter. 

Selection decision: choice of a design from a field of alternatives, described by a system 

model(s), which aims to meet certain targets and does not violate defined 

constraints. 

System model: A mathematical relationship between input and output parameters, e.g., a 

cause-effect model, behavioral model, mechanics model, logistics model, etc. 

Uncertainty: the gap between certainty and the decision maker’s present state of 

information 

Uncertainty model: A mathematical representation of uncertainty for either a system 

model or the parameters within that model.  Some choices for modeling the 
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uncertainty of a parameter include probabilistic, fuzzy (if membership is uncertain 

or linguistically vague), information gap, etc. 

Uncertainty parameter: See: Info-gap uncertainty parameter. 
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LIST OF SYMBOLS 
 
 
an scaling reference elicited using BBSE; used to determine sn 

p betting price; also the magnitude of a probability elicited subjectively 

q a design option or design variable 

q̂  a design option or design variable that is most preferred from a set of 
alternatives because it affords the most robustness 

rc critical reward; satisficing level of reward that must be met or exceeded 

sn scaling factor; scales an info-gap to a “typical” reference size 

u variable whose uncertainty can be modeled as an info-gap 

un one of several info-gap uncertain variables, n = 1…N 

u nominal estimate for a variable whose uncertainty is modeled as an info-gap 

U  an info-gap model of uncertainty 

α  info-gap uncertainty parameter; the unknown horizon of uncertainty around u 

nα  info-gap uncertainty parameter for un; one of several info-gaps n = 1…N 
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SUMMARY 
 

Due to increasing interest in sustainable development, today’s engineer is often 

tasked with designing systems that are environmentally benign over their entire life 

cycles.  Unfortunately, environmental assessments commonly suffer from significant 

uncertainty due to lack of information, particularly for time-distant life cycle aspects.  

Under severe uncertainty, traditional uncertainty formalisms require more information 

than is available.  However, a recently devised formalism, information-gap decision 

theory (IGDT), requires no more information than a nominal estimate; error bounds on 

that estimate are unknown.  The IGDT decision strategy, accordingly, favors the design 

that is robust to the most estimation error while still guaranteeing no worse than some 

“good enough” critical level of performance.  In some cases, one can use IGDT to 

identify a preferable design option without needing more information or more complex 

uncertainty analysis. 

In this dissertation, IGDT is investigated and shown to enhance decision support 

for environmentally benign design and manufacturing (EBDM) problems.  First, the 

applicability of the theory to EBDM problems is characterized.  Conditions that warrant 

an info-gap analysis are reviewed, the insight it can reveal about design robustness is 

demonstrated, and practical limitations to its use are revealed.  Second, a new 

mathematical technique is presented that expands capabilities for analyzing robustness to 

multiple info-gap uncertainties simultaneously.  The technique elicits scaling factors 

more rigorously than before and allows one to imprecisely express their beliefs about 

info-gap scaling.  Two examples problems affected by info-gaps are investigated: oil 

filter selection and remanufacturing process selection.  It is shown that limited 



 xxiii

information about uncertainty can, in some cases, indeed enable one to identify a most 

preferable design without requiring more information. 
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CHAPTER 1: 

INTRODUCTION 

 
 
 

In this thesis, a relatively new uncertainty formalism, information-gap decision 

theory (IGDT), is investigated and shown to enhance decision support for 

environmentally benign design and manufacturing (EBDM).  IGDT is applied to several 

problems featuring severely deficient information about uncertainty.  Additionally, a new 

technique for modeling and analyzing the effects of multiple uncertainties is presented, 

validated, and tested out. 

 In this chapter, the purpose and direction of the thesis is introduced.  In Section 

1.1, motivation for using IGDT is established and the context in which it is considered is 

explained.  In Section 1.2, the specific “Motivating Questions” to investigate are 

presented along with corresponding assertions about their Answers, which are to be 

explained and defended in the remainder of the thesis.  In Section 1.3, the intellectual 

contributions to be presented, tested, and defended are summarized.  In Section 1.4, an 

explanation of the approach to validation and testing is provided.  Finally, in Section 1.5, 

an overview to the story and content of the entire thesis is presented. 

1.1 Context and Motivation 

The research in this thesis is motivated by the prevalence of severe uncertainty in 

EBDM.  The general context of EBDM is introduced in the next subsection, followed by 

an overview of the problem of uncertainty in that context. 
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1.1.1 Environmentally Benign Design and Manufacturing  

Companies are becoming more and more concerned with the environment 

because a growing number of people, including consumers, are realizing that there is a 

cost to society that results from environmental impact.  All products and processes affect 

in some way our environment during their life-span.  In Figure 1.1, a schematic 

representation of a product’s life-cycle is given.  Materials are mined from the earth, air 

and sea, processed into products, and distributed to consumers for use, represented by the 

flow from left to right in the top half of Figure 1.1. 

 

Disposal

Mining Material
processing

Product
manufacture

Distribution

Product
take-back

Material de-
manufacture

Energy
recovery with
incineration

Use
+

Service

Product
demanufacture

Environment:
air, sea, land 1234

Clean fuel
production

2 = Remanufacture of reusable components
3 = Reprocessing of recycled material
4 = Monomer / raw material regeneration

1 = Direct recycling / reuse

Manufacture

Demanufacture

 

Figure 1.1: A Generic Representation of a Product’s Life-Cycle (Bras 1997) 
 

In general, a company’s environmental impact comes from (excessive or 

wasteful) consumption of natural resources and emissions of pollutants to air, water, and 

land.  Recognition of the negative effects of air emissions has led, among others, to the 

Clean Air Act and Corporate Average Fuel Economy legislation in the United States. 

The emergence of product take-back directives in Europe and Japan has forced 

manufacturers to include product recycling and reuse considerations in their designs, as 

represented in the lower half of Figure 1.1 (EU 2000, 2003).  This has lead to initiatives 
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for product take-back and “demanufacture” (a phrase used to characterize the process 

opposite to manufacturing necessary for recycling materials and products) (Gutowski et 

al. 2001, Allen et al. 2002). It is therefore not surprising that there is a growing interest in 

Environmentally Benign Design and Manufacture (EBDM), defined by NSF as “a system 

of goals, metrics, technologies, and business practices that address the long term dilemma 

for product realization: how to achieve economic growth while protecting the 

environment?” (Bras et al. 2006).  A key characteristic of life-cycle issues in EBDM is 

that only very limited information and knowledge is available, resulting in large 

uncertainty.  A product and its embodied materials may interact with a global ecosystem 

over a very long time-horizon, and its impact on the environment depends to a large 

extent on the future behavior of stakeholders (e.g., consumers, service personnel, and 

policy makers).   

1.1.2 Critical Issue: Inherent Uncertainty in the Product Life-Cycle  

Designers, engineers, managers, and companies alike are faced with new and 

emerging issues around product life-cycles that they have never faced before.  Design 

performance is influenced both by product attributes as well as life cycle activities and 

circumstances outside the control of the company designing the product.  Such 

circumstances, which link product configuration choices to environmental impact, for 

instance, are connected in a chain of cause and effects, as shown in Figure 1.2, where a 

design feature on a transmission is shown to relate, remotely, to the dispersion of 

automatic transmission fluid (ATF) waste into the environment. 
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Figure 1.2: Cause and effect parameters in a transmission’s product life cycle, only 
concerning the end-of-life path of transmission fluid. 

 

An evaluation of all of the loads and impacts along these chains has traditionally 

been addressed with life cycle assessment (LCA) methods, as described in (Keoleian et 

al. 1994, Vigon et al. 1994, Wrisberg and Udo de Haes 2002, Keoleian and Kar 2003).  

Although existing LCA case studies commonly use deterministic parameters in their 

assessments, many researchers are starting to account for the large amount of uncertainty 

in LCA information (Huijbregts 1998, Björklund 2002, Matthews et al. 2002, Ross et al. 

2002, von Bahr and Steen 2004).  A common theme in the literature is that the trust in 

LCA results is undermined by the large simplifications and unconfirmed assumptions in 

life cycle models.  These assumptions often have to be made due to the scarcity of data 

about a variety of LCA aspects, such as generation of environmental loads (e.g., energy 

use, resource extraction, and waste production over the life cycle), dispersion of loads (by 

region as point or non-point source), and impact of loads on ecosystem or human health.  

With limited information, statistical characterizations of uncertainty are not feasible.   

Quite commonly, as will be discussed in Section 2.2.4, designers must rely on 

information or models that are known to be significantly uncertain, but that uncertainty 
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has not been quantified.  This uncertainty occurs when there is only scarce information 

available, or when information is available but taken from different design scenarios 

where “the past is a weak indication of the future” (Ben-Haim 2006).  This type of 

uncertainty will be referred to as “severe uncertainty” or “severely deficient information” 

in this thesis.  Under severe uncertainty, there is nothing available to describe the 

uncertain variable or model other than a nominal estimate, with upper and lower error 

bounds on either side of that estimate unknown.  This nominal estimate may be a rough 

approximation, a comparable baseline from a similar life cycle design problem, a 

constant or value from a handbook, etc.  In some cases, significant effort or expertise is 

required to quantify the uncertainty; in other cases, the uncertainty is simply not 

quantifiable in the time frame in which a design decision must be made.   

Several typical strategies tend to be employed when validated uncertainty 

characterizations are non-existent and severe uncertainty is present.  Most often in 

EBDM, rather arbitrary ±10% parameter variation is assumed, and judgments are made 

based considering the sensitivity of the results (Björklund 2002).  In other cases, 

especially when more easily measurable performance aspects like cost and quality are 

being considered, uncertain EBDM aspects that are unregulated may simply be ignored 

out of convenience.   

Another course of action is to rely on unwarranted assumptions that fill in missing 

information, perhaps in order to use an uncertainty formalism that requires more 

information about uncertainty.  Several studies have quantitatively investigated how use 

of probabilistic methods under very limited statistical data can lead to inaccurate 

estimates of the probability of failure of safety-critical designs (Ben-Haim and Elishakoff 
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1990) or designs with a greater chance of severe failure (Aughenbaugh and Paredis 

2006).  The assumption (or interpolation) of more information than is available can lead 

to risky results.  So, the question arises, when information and/or characterizations of 

uncertainty are sparse, to what extent can we—and should we—use only that information 

in decision support analyses? 

1.1.3 An Emerging Approach to Decisions under Severely Deficient Information 

One answer is to search for decisions that are robust to lack of information.  When 

information is severely uncertain, a decision maker may want to make a decision that will 

yield a reasonably satisfactory result over a large range of realizations of the uncertain 

parameters.  Information-gap decision theory (IGDT), developed by Ben-Haim (Ben-

Haim 2006), is one means of identifying which designs have performance that is immune 

to the effects of uncertainty.  In choosing to use IGDT, one essentially asks, “How wrong 

can a model and/or its parameters be without jeopardizing the quality of decisions that are 

based on this model?”  A detailed introduction to and evaluation of IGDT is presented in 

Chapter 3, but a brief overview is presented next. 

In IGDT, it is assumed that a decision maker has available a nominal, but suspect, 

estimate of an uncertain quantity.  The decision maker wishes to analyze his options 

without any further assumptions about uncertainty, as further information is unavailable.  

In response, IGDT presents an approach to making design decisions when there is an 

info-gap, that is, a gap of unknown size between the uncertain quantity’s true value 

(which could be known but is not) and the available nominal estimate.  This concept is 

illustrated for an uncertain quantity in Figure 1.3. 
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Figure 1.3: Simple representation of info-gap uncertainty (Reproduced from 
(Duncan et al. 2007)) 

 

IGDT models the size of this gap as an unspecified uncertainty parameter, α .  

The design decision maker confronts this gap by employing a performance-satisficing 

(rather than the traditional performance-maximizing) decision policy that seeks to 

maximize robustness1 to uncertainty.  This requires the decision maker to specify a 

satisficing, critical performance level—a “good enough”, minimally acceptable level of 

performance that is guaranteed to be exceeded—and accordingly choose the design that, 

subject to this minimum requirement, allows for the largest information gap, i.e., the 

largest α .  Thus, when using info-gap theory to confront a design problem with severe 

uncertainty, one adopts the mindset that “good enough” performance is acceptable and 

that the design that guarantees at least that performance under the most uncertainty is 

preferable. 

A trade-off often exists between demand for critical performance and the amount 

of robustness that can be achieved.  Given the severe state of uncertainty, one may wish 

to compare this robustness-performance trade-off for each design option.  Such a trade-

off is depicted conceptually in Figure 1.4 for two design alternatives.  As seen in the 

figure, if a decision maker is willing to settle for a critical performance below 2.4 units, 
                                                 
1 In Section 3.2.3, the info-gap definition of robustness will be shown to be different than another 
definition, where robustness involves minimizing the variation in performance (outputs) caused by 
uncertain input parameters. 
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as long as that performance is guaranteed to be met or exceeded, Design 1 would be 

preferable as it offers greater robustness to info-gap uncertainty.  So, preference ranking 

for design alternatives depends on one’s trade-off preference, which is assumed to not be 

known or to be difficult to express a priori.  Inspection of robustness curves can help one 

induce their preference for this trade-off. 
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Figure 1.4: Trade-offs between robustness to info-gaps and critical performance. 
 

To summarize, not only is the modeling of uncertainty unique; the mode of 

assessing robustness, inducing trade-off preferences, and identifying most-preferred 

designs also differs from other formalisms.  These differences are considered in depth in 

Section 3.6. 

Because IGDT is a relatively new decision formalism, it has not seen wide 

application.  It  receives mention—in passing—in more recent overviews and/or 

comparisons of uncertainty formalisms.  Usually, these reviews offer no critical 
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investigation of the way IGDT models uncertainty, measures robustness, and influences 

preference rankings.  Intuitively, there would seem to be a match between the needs of 

EBDM analyses and the decision support potential of IGDT, but until now this has 

remained unexplored.  

IGDT is aligned with a main theme of EBDM research—to get as much design 

knowledge as possible out of deficient information, even if that requires a different 

approach to evaluating the acceptability of performance.  EBDM practitioners commonly 

lack information characterizing the uncertainty of some aspect of a system’s life cycle, 

but in some cases acceptable design decisions can be made without knowing more.  As 

Ben-Haim asserts, “a little information can go a long way, especially when it is not 

corrupted by unwarranted or unjustifiable assumptions” (Ben-Haim 2006).  IGDT 

analyses can uncover important weaknesses or opportunities in different designs’ 

capacity to provide robustness to faulty data.  If severe uncertainty never favors a 

decision alternative, it can be removed from further consideration; if uncertainty always 

favors one alternative, it can be chosen without further collection of information.  As this 

thesis reveals, other similar design insights can also be gained from IGDT analyses. 

1.2 Motivating Questions 

With the context now explained, the general question to be answered by this thesis 

can be stated as such: 

Overarching Motivating Question (OMQ):  How should one represent and 
analyze severe uncertainty inherent in product life-cycle information to 
provide better decision support for environmentally benign design and 
manufacture? 
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Answer2 to OMQ: A decision maker should apply info-gap decision 
theory to determine whether preferable design choices can be identified 
without requiring more information about the life-cycle than is available. 

 

As mentioned at the end of Section 1.1.2, relying on unwarranted information or 

assumptions to remedy a severe lack of information may in some cases lead to bad 

decisions.  Instead, we advocate the application of IGDT to EBDM design problems to 

determine whether decisions can be reached without more complex, information-

demanding methods for design under uncertainty. 

 The Overarching Question is answered in this thesis by applying IGDT to 

problems and discussing the particular design insight gained for each.  The following two 

specific secondary Motivating Questions, however, lead to the more tangible and 

substantial contributions. 

1.2.1 Motivating Question 1: IGDT Applicability 

Because there have been no IGDT applications for life cycle design problems in 

the literature (other than ones by the author), the appropriateness and usefulness for 

EBDM has not been well characterized.  In fact, IGDT applicability in general is not 

immediately clear from the limited examples in the literature.  This is mainly because 

IGDT is a relatively new formalism.  Thus, the first Motivating Question concerns IGDT 

applicability: 

Motivating  Question 1 (MQ1): How should we determine when IGDT 
will be most appropriate for supporting EBDM decisions? 

 

                                                 
2 Note that we propose Answers to advance rather than Hypotheses, which would need to be refutable.  The 
challenge of devising clear hypotheses that can be scientifically refutable is a defining characteristic of 
design research such as this, as discussed by (Aughenbaugh 2006). 
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A more informal way to ask this question is: if “a little information can go a long 

way”, when is this the case, and how “far” can we take it?  Like most formalisms for 

decisions under uncertainty, IGDT cannot be applied to all scenarios, and when it can, it 

doesn’t always provide useful design insight.  In addition, as the number of uncertainties 

and design alternatives under consideration scale up, info-gap analysis becomes 

increasingly difficult to carry out and interpret.  This is mostly due to the way that 

IGDT’s unique satisficing approach is implemented, as is explained in Chapter 3.  

Cognizant of these gaps, we propose the following Answer: 

Answer to MQ1: An evaluation of the usage conditions and decision 
support capabilities of IGDT, as well as the needs and characteristics of 
archetype EBDM problems, can be used to establish a set of guidelines for 
screening applicability. 

 

These guidelines are for the most part a checklist of criteria, to be presented in 

Section 4.1.  The elements in the guidelines are a compilation of observations about the 

structure of different info gap problems as well as lessons learned from actual 

applications. 

The answer to MQ1 may not seem particularly aggressive—can guidelines alone 

assure that IGDT is most appropriate, as MQ1 asks?  Ideally, one would want an 

experimental head-to-head comparison of the “value” of design information yielded from 

an info-gap analysis versus that of competing uncertainty formalisms.  However, a review 

of the underlying assumptions and mathematics of IGDT versus other uncertainty 

formalisms in Section 3.5 reveals that they cannot be compared in terms of value of 

information.  This is because they rely on different information sources and decision 

rules.  So, a design problem will be eligible for solution using IGDT based on the state of 
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information about uncertainty.  Given only that information state, IGDT is distinct 

enough, with a clearly different approach to modeling uncertainty and assessing 

robustness, that it is not in direct competition with other uncertainty formalisms.  If 

further information (either measured or subjective) is available, another uncertainty 

formalism should be used. 

 Consistent with the fact that the inputs and outcomes of an info-gap analysis do 

not compare to other uncertainty and decision formalisms, IGDT differs because it is not 

meant to be a purely normative decision theory.  As Ben-Haim states ( p.3, (Ben-Haim 

2006)): 

…info-gap theory is not a closed computational methodology.  Rather, 
[its] quantitative assessments assist the decision maker to evaluate options 
… and to evoke and evolve preferences in light of the analysis of 
uncertainties, expectations, and demands. 

  

The details implications of this decision support perspective to EBDM are 

discussed in Chapter 3, after example problems in Chapters 4 and 6, and in the discussion 

at the conclusion of this thesis. 

1.2.2 Motivating Question 2: Extension of Methods 

The other main thesis objective focuses on the modeling and analysis of multiple 

info-gaps (henceforth referred to as “multi-gaps”).  The current approach in the literature 

uses scaling factors to scale (or map) the relative sizes of different info-gaps to a single 

parameter representing the “overall” gross uncertainty that designs might face (Ben-Haim 

and Laufer 1998).  Different designs are ranked by the size of their robustness to this 

gross measure of overall uncertainty.  Because of this, the choice of scaling factors can 
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have a significant influence on what robustness is expected of different design 

alternatives. 

The current multi-gap technique explains how to use scaling factors but offers 

little substantial guidance about how to determine them; it is simply suggested that they 

might be available as pre-existing “prior knowledge” (Ben-Haim and Laufer 1998).  In 

addition, scaling factors are quantified precisely even though they are associated with 

severely uncertain variables. 

These facts provide motivation for an improved technique for capturing and 

utilizing what a decision maker knows about the relative scales of multi-gaps.  

Robustness calculations based on information that is more representative of what the 

designer knows will in turn lead to better decision support.  From these ideas, a 

Motivating Question follows: 

Motivating Question 2 (MQ2): For problems affected by multiple 
uncertainties, how should scaling factors be elicited in a rigorous fashion 
that allows for imprecision in those factors? 

 

In response, we propose a novel technique for eliciting and modeling potentially 

available information about the relative scales of different info-gaps: 

Answer to MQ2: One’s beliefs about info-gap scaling should be elicited in 
the form of subjective probabilities, which are revealed through one’s 
betting behavior.  The method for eliciting subjective probabilities allows 
for imprecise expression of one’s knowledge about scaling, which in some 
cases causes indeterminacy in the preference rankings for design 
alternatives. 

 

The foundations of this answer are the subject of Chapter 5.  It is demonstrated 

that a subjective probability, when elicited through a betting scenario involving the info-

gap uncertainty of interest, can serve as a reference point for establishing relative info-
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gap scales.  In the IGDT analysis and decision making, the subjective probability is not 

actually used as a probability, only as a reference point for one’s belief about info-gap 

scale. 

 The other benefit of using a subjective probability as a reference point is that it 

can be elicited imprecisely.  The upper and lower bounds on the precision with which one 

can identify a scaling factor correspond to upper and lower previsions, a concept from 

subjective probabilities that can also be revealed by betting behavior.  This concept is 

explained in Section 5.3.1.  The ability to quantify imprecision adds another dimension 

by which a decision maker can express the quality of their understanding of info-gap 

scale.  In other words, more information can be captured about how rough one’s 

knowledge of uncertainty scale is.  Scaling imprecision can be propagated into the info-

gap analysis and assessed, as will be discussed in Chapters 5 and 6.  It will be shown that 

scaling imprecision does not necessarily prevent a decision from being made. 

To generalize, MQ2 is motivated by the idea that more information about info-gaps 

leads to robustness that is more consistent with the decision maker’s understanding 

uncertainty.  This may not mean more robustness but should mean more accurate 

robustness.  Accordingly, more informed mapping of relative info-gap scales to the gross 

uncertainty parameter will ensure that trade-offs between competing robustnesses are 

consistent with the decision maker’s rough understanding of uncertainty. 

1.3 An Overview of Contributions 

The contributions in this thesis correspond to the Answers to the two secondary 

Motivating Questions in the previous section.  The first contribution is the guidelines for 

when to use IGDT in EBDM.  The guidelines serve as a checklist: what information 
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sources does the decision maker have?  How firm are their preferences?  What type of 

model for performance is available, and what sort of performance does it measure?  The 

guidelines also include a review of the modes of decision support that IGDT could 

potentially provide. 

 The second contribution is obviously more mathematical and thus more 

generalizable.  Ben-Haim’s existing technique for using scaling factors to map several 

uncertainties onto a single parameter will be leveraged, but the addition of a rigorous 

technique for eliciting those factors is new, as is the means of modeling and propagating 

imprecision when eliciting scaling.  The betting-based scaling technique is presented in 

Chapter 5 as part of an overall approach to assessing how the combined effects of 

multiple info-gaps influence preference rankings for design alternatives.  The systematic 

approach will be embodied as a decision tree.  The goals of the approach are to (1) 

identify what information about scaling is available and (2) analyze what type of bearing 

that information has on decision making.  In some cases, very little information will need 

to be known about scaling to identify a preferred design; in others, the lack of 

information can be shown to prevent decision making altogether. 

1.4 A Plan for Validation and Verification 

The initial steps towards validation that this thesis provides differs for the two main 

Answers to the Motivating Questions, since they differ greatly in their aims.  The “story” 

of how we provide support towards validity in this thesis is as follows for each Answer.  

The two main example problems used in our validation work are an oil filter selection 

design problem (Duncan et al. 2006, Duncan et al. 2007) introduced in Section 4.2 and a 
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remanufacturing process selection problem (Duncan et al. 2007) that is the sole focus of 

Chapter 6. 

For Answer 1, in which guidelines of applicability are derived, validation requires 

that we: 

• Carefully review the characteristics and decision support needs of a set of EBDM 

archetypes (Section 2.1).  The type of EBDM problems to be solved are 

summarized in Section 2.1.3. 

• Examine each part of the structure of info-gap modeling, decision rules, and 

trade-off analysis (Section 3.4), to ensure IGDT’s internal logical consistency 

(Section 3.5), 

• Compare this structure to other formalisms for decisions under uncertainty and 

explain why a direct comparison is infeasible (Section 3.6), 

• Summarize when EBDM archetype characteristics are seen to match IGDT 

capabilities (Section 4.1), 

• Apply info-gap to the basic oil-filter problem to demonstrate and generalize its 

usefulness and limitations, which can be translated into guideline information 

(Section 4.3), 

• Explain how the guidelines verify that the remanufacturing process example 

problem is worthy of an IGDT analysis (Section 6.2.1), 

• Discuss whether the guidelines can be applicable to a wider class of EBDM 

problems (Section 7.2). 
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Because these steps are not experimental in nature nor based on rigorous logic, 

they do not necessarily validate that the guidelines are fully general or complete for all 

types of EBDM problems.  Nonetheless, the guidelines are based on a careful assessment 

of needs, structure, and capabilities, and they do provide a valuable starting point for 

considering whether to apply IGDT to EBDM problems.  Such a starting point has been 

non-existent prior to this thesis. 

Answer 2 involves synthesis of existing mathematical methods with the intent to 

extend the capabilities of multi info-gap analyses; therefore, it can be validated with more 

rigor than Answer 1.   Validation requires that we: 

• Verify the need for new methods by critically examining the indeterminacy that 

multiple uncertainties can cause when trying to rank design alternatives by their 

“overall” robustness (Section 5.1.1), 

• Evaluate the information demands, assumptions, and function of Ben-Haim’s 

scaling technique, in order to demonstrate when its assumptions can be restrictive 

or where its elicitation methods could be expanded on (Section 5.2.1), 

• Review the theoretical rigor of using a betting scenario to elicit subjective beliefs 

(Section 5.3.1), 

• Tie the new concept of imprecision in multi-info-gap scaling to the more rigorous, 

previously examined idea of imprecision in subjective probabilities (Section 

5.3.1), 

• Argue that a subjective probability, when tied to an operationalized betting 

scenario, is relevant as a reference point for calibrating or “mapping” the scales of 

different info-gaps (Section 5.3.2), 
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• Test the validity of the components of a new technique for “bet-based scaling 

elicitation” on the basic oil-filter problem and two uncertainties (Section 5.4), 

• Explain and defend heuristics for making decisions when there is imprecision in 

scaling elicitation has propagated into indeterminacy in design preference 

rankings (Section 5.4.4), 

• Explain mathematically how the new scaling technique applies generally to 

problems with more than two uncertainties, for either precise or imprecise scaling 

(Sections 5.2.4.2 and 5.4.5), 

• Apply the new scaling technique to the more advanced remanufacturing process 

design problem and argue the value of the design insight gained (Section 6.2.2). 

 

Notice that no hard comparisons are proposed to measure the “value” of the new 

scaling elicitation techniques, as compared to old methods which incorporate less 

information or which do no explain where scaling information comes from.  It will be 

assumed that any technique that incorporates new information, as long as it is elicited 

rigorously, will provide robustness to a more accurate representation of what a decision 

maker knows about uncertainty, thus making the outcomes of assessments more valuable. 

 Verification of the outputs of info-gap analyses (i.e., that trade-off plots are 

accurate, that robustness sizes are indeed “maximum”) will rely on the fact that all of the 

functions considered are linear or at least monotonic, and that all of the info-gaps are 

based on simple interval structures.  Discussion of the challenges of verification for more 

complex functions will be provided in Chapter 7. 
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1.5 Organization of This Thesis 

This thesis is divided into seven chapters.  In this chapter, we have posed 

motivating questions and answers as well as a plan for validating the contributions that 

emerge from them.  In Chapter 2, we review the structure and capabilities of various 

uncertainty formalisms, the structure and needs of EBDM, and the extent to which 

various uncertainty formalisms have been successfully adopted in EBDM.  In Chapter 3, 

we evaluate the structure of IGDT, explain the decision support that it provides, and 

compare both of those to other uncertainty formalisms.  In Chapter 4, we formulate 

guidelines for when IGDT will be useful to EBDM, and use those guidelines as 

rationalization for an info-gap analysis on an oil filter design selection problem.  In 

Chapter 5, we review how current techniques analyze robustness to multiple 

uncertainties, extend existing methods that map multiple uncertainties to a gross 

parameter of uncertainty, and test these methods out on the oil filter example problem.  In 

Chapter 6, we apply both the screening guidelines and the new multi-info-gap scaling 

technique to a comprehensive example problem involving remanufacturing process 

selection.  In Chapter 7, we revisit the motivating questions, review novel contributions, 

and suggest future directions for research. 
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CHAPTER 2: 

EBDM AND THE PROBLEM OF DEFICIENT INFORMATION 

 
 
 

In this chapter, the problem of deficient life cycle information, as it affects the field 

of environmentally benign design and manufacturing (EBDM), is considered.  First, in 

Section 2.1, the meaning of EBDM is explained, and the scope that will be considered 

within EBDM in this thesis is bounded.  Section 2.2 consists of a literature review of the 

causes and types of information limitations in environmental life-cycle assessments.  In 

Section 2.3, it is shown that information limitations make it problematic to apply various 

existing uncertainty formalisms to EBDM decisions. 

2.1 The EBDM Context 

In this section, we move from general definitions of EBDM to the specific context 

and types of problems to be considered in this thesis. 

2.1.1 Definition and Scope 

Environmentally Benign Design and Manufacture3 (EBDM) is defined by NSF as 

“a system of goals, metrics, technologies, and business practices that address the long 

term dilemma for product realization: how to achieve economic growth while protecting 

the environment?”  EBDM is comparable to other approaches to reducing negative 

environmental impact as shown in Figure 2.1, which distinguishes differences in their 

organizational and temporal spans (Coulter et al. 1995).  EBDM is often acknowledged to 
                                                 
3 The terms Environmentally Benign Design and Manufacture (EBDM) appears to simply be a recent 
update of the term Environmentally Conscious Design and Manufacture (ECDM).  They will be referred to 
interchangeably in this thesis. 
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be generally equivalent  to Design for Environment (Ashley, 1993, Fiksel, 1996a, Navin-

Chandra, 1991), Life-Cycle Design (Alting and Joergenson, 1993, EPA, 1993), and 

Green Design (Congress, 1992), since they are all “practices that are intended to yield 

products whose aggregate environmental impact is as small as possible” ((Glantschnig 

1994) via (Emblemsvag and Bras 2001)).  Per the classification in Figure 2.1, EBDM is 

situated within the larger effort of sustainable development and utilizes techniques from 

environmental engineering and pollution prevention. 
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Figure 2.1: Environmental and Temporal Scale of Environmental Impact Reduction 
Approaches (from (Coulter et al. 1995)) 

 

It is generally agreed that environmental considerations cover a product’s entire 

life cycle and that a holistic, systems-based view provides the largest capability for 
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reducing environmental impact of both products and associated processes (Bras 1997, 

Congress, 1992, EPA 1993). 

2.1.2 From Environmental Assessments to Environmentally Benign Decisions 

Environmental Life Cycle Assessment (LCA) is the method used to assess 

environmental aspects and impacts of either products and service systems (ISO 2006).  

LCA considers environmental impacts generated by all parts of a product’s life cycle, 

from acquisition of materials through manufacture to recovery or disposal (Figure 1.1).  

One conducts an LCA by progressing through four distinct though interdependent phases: 

goal and scope definition, inventory analysis, impact assessment, and interpretation.  

Depending on the product system being evaluated and on how one scopes the assessment, 

the environmental performance dimensions measured by LCA can be numerous, and the 

spatial and temporal scales considered can be wide reaching.  As such, “full”, high 

quality LCA for complex systems is limited by a host of problems summarized in Table 

2.1 and discussed at length in (Reap et al. 2008).  All of the problems shown in the table 

can, on one way or another, be a significant root cause of uncertainty and/or lack of 

information, which is discussed at length in Section 2.2 of this chapter. 
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Table 2.1: Categories of Current Limitations to Environmental Life Cycle Analysis 

LCA Phase Problem 
Functional Unit Definition 
Boundary Selection 
Social and Economic Impacts 

Goal and 
Scope 

Alternative Scenario Considerations 
Allocation Inventory Local Technical Uniqueness 
Impact Category & Methodology Selection 
Spatial Variation 
Local Environmental Uniqueness 
Dynamics of the Environment 

Impact 
Assessment 

Time Horizons 
Weighting and Valuation Interpretation Uncertainty in the Decision Process 

All Data Availability and Quality 
 

LCA is an assessment framework; the ISO standards that define it offer no 

specific guidance on how to actually design a more environmentally benign product.  

Design guidance in the form of prescriptive rules and suggested metrics is instead 

supplied by Design for Environment (or any of the equivalent approaches of Figure 2.1).  

In turn, these design approaches can be strengthened by a made more comprehensive 

using a formalized design approach like (Pahl and Beitz 1996). 

 In this thesis, however, the focus is solely on the analysis and decision making 

portion of engineering design.  The more “creative” part of the design process is assumed 

to already be done and to have generated a set of design concepts.  The focus of this 

thesis is analyzing the performance of a set of design alternatives to determine which is 

best.  That is, a preference ranking is to be assigned over the design alternatives.  It is 

assumed that a decision would select the most preferred alternative.  Thus, in this thesis, 

settling on a preference ranking will be considered as a primary input to decision making.   
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The components of a design decision can be represented by an influence diagram 

(McGovern et al. 1993, Clemen 1996).  A typical influence features design alternatives 

input on one end, which connect to and influence a network of simulation and analysis 

models, which combine with uncertainties and preferences to influence an objective 

function on the terminal end of the diagram.  The influence diagram concept has been 

tailored to general aspects of environmentally benign life cycle analysis in Figure 2.2.  

This can be thought of as decision analysis that includes EBDM objectives and includes 

as much of the lifecycle and its upstream and downstream impacts (per Figure 1.1) as 

possible. 

 

Design 
Concepts 

and/or
Variables Effects

Weighting between
environmental impacts

Life Cycle
Events

Environmental 
performance

Other 
performance 

(cost, safety, etc.)

Performance 
tradeoff 

preferences
Objective

Technosphere

Ecosphere

Valuesphere

DamageInventory 
of Loads

Form

 

Figure 2.2: The components of an environmental analysis (from (Duncan et al. 
2006)) 

 

Decompositions similar to Figure 2.2 have been proposed (for example 

(Hofstetter 1998, Lu and Gu 2003)), though none are identical in form or scope to the 

structure presented here.  Components are grouped, as indicated by dashed-lines in the 

figure, using Hofstetter’s concept of “spheres” of knowledge and reasoning about 

environmental evaluation (Hofstetter 1998)}.  These spheres correspond to stages in LCA 

(left column in Table 2.1) as noted: 
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• Technosphere: description of the product and its life cycle and an inventory of 

loads (e.g., emissions).  The aggregate environmental loads created by the 

technosphere correspond to the output of a Life Cycle Inventory (LCI) in LCA. 

• Ecosphere: modeling of changes to the environment.  The aggregate 

environmental impacts suffered by the ecosphere correspond to the output of 

Impact Analysis (IA) in LCA. 

• Valuesphere: modeling of the perceived seriousness or importance of changes to 

the environment.  Using the set of values contained in the valuesphere to weight 

the impacts on ecosphere results in an environmental performance measure 

similar to the outcome of an LCA. 

 

Information about uncertainty can also be factored into a decision analysis.  An 

uncertainty formalism involves: 

• modeling the uncertainty mathematically,  

• analyzing how its size and effects propagate through the chain of analysis models 

in the influence diagram, and  

• interpretation of the influence of the propagated uncertainty on decisions. 

 

Different uncertainty formalisms that receive wide use will be reviewed in 

Section 3.2, and sources of severe uncertainty in EBDM are reviewed in Section 2.2.  But 

at this point in the thesis, all that is needed is a simple review of areas where uncertainty 

tends to manifest in the different “spheres” of Figure 2.2. 
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 In the technosphere, uncertainty might exist about the form (e.g., volume, mass, 

and material content) for any given concept and design variables.  Information about 

what materials are used can be limited, especially when suppliers provide 

subcomponents.  It will be assumed that in most cases, uncertainty about form is reduced 

during the design process.  There can be considerable uncertainty about the life cycle 

events (e.g., frequency of service, properties of the material-cycling, energy-supply 

infrastructures, customer usage behavior, and actual disposal paths).  Uncertainty in the 

inventory of loads, in turn, is dependent on the uncertainty in form and life cycle events. 

 Ecosphere components typically involve considerably more uncertainty.  

Environmental effects (e.g., ozone layer depletion, carcinogenesis, and toxic stress) are 

related to inventory first through fate analyses, and then exposure and effect analyses 

(Goedkoop and Spriensma 2001).  Fate analyses are simpler for point-source loads, but 

become complex for products that are sold, used, and disposed of over a wide spatial and 

temporal range.  Exposure and effect analyses are data intensive, involve simplified 

models, and may have limited applicability depending on how actual conditions deviate 

or fluctuate.  Similar forms of uncertainty affect analysis of damage, e.g., ecosystem or 

human health impairment, and resource depletion with respect to available reserves. 

 Uncertainty also arises in the valuesphere.  The valuesphere attempts to model the 

decision maker’s preferences.  This involves somehow relatively weighting different 

environmental impacts, e.g., what amount of non-renewable resource depletion is 

equivalent to species loss.  Weights between environmental impacts and other design 

goals, e.g., cost and reliability, might also be included.  Many factors add to valuesphere 



 27

uncertainty, including lack of information about values, failure to reach consensus, and 

the potential for values to shift in the future. 

 Multiple objectives can conflict or trade off across a set of decision options: one 

option dominates the others for one objective but is itself dominated for another 

objective.  To identify the most preferable decision option, one relatively weights the 

importance or value of different objectives and aggregates those weighted values into a 

single composite score.  For LCA, this requires quantifying and comparing the value of 

different environmental impacts even when their units and scales differ.  Several groups 

have proposed weighting methods to measure environmental impact as a single score, 

e.g., the Eco-indicator 99 (EI 99) impact assessment method in which particular scores, 

measured in millipoints (mPt), are assigned to specific materials and processes 

(Goedkoop and Spriensma 2001).  ISO, on the other hand, promotes transparency in LCA 

results and discourages the use of single score indicators without also presenting the data 

and weighting behind them.  Whatever the case, a multi-criteria decision between 

alternatives ultimately requires some form of weighting to be applied, whether done 

explicitly (like EI 99) or implicitly (observing different scores and coming to a 

conclusion about preferredness).  The challenge of weighting environmental 

performance, especially comparing it to other factors like cost and quality, are numerous 

(Reap et al. 2008). 

2.1.3 Scope of EBDM Considered in this Thesis 

In this thesis, the applicability of IGDT will be explored for basic EBDM problems of 

the following nature: 

• Consideration of information deficient, time-distant life cycle aspects, 
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• Single-score environmental performance measuring, both using Eco-Indicator 99 

and monetary measures, 

• Uncertainties in life-cycle design aspects from each of the “spheres” of Figure 2.2 

(though ecosphere and valuesphere aspects will be combined into a single 

indicator, as explained in Section 4.2.2.) 

• Multiple severe uncertainties, 

• Selection between alternative design options. 

Different combinations of these dimensions will be used.  

2.2 Limits to LCA Data Availability and Quality 

Having reviewed main LCA phase, attention is now paid to reasons for uncertainty 

in those phases, as cited by a wide range of literature.  In environmental life cycle design, 

a significant source of uncertainty is data or models that are of poor quality (Reap et al. 

2008).  In her survey of approaches to improve reliability, Björklund generally identifies 

the main types of uncertainty due to data quality: badly measured data ('data inaccuracy'), 

data gaps, unrepresentative (proxy) data, model uncertainty, and uncertainty about LCA 

methodological choices (Björklund 2002).  Specific instances of these data quality 

limitations are next discussed, grouped by those that are general, those that specifically 

affect life cycle inventory (i.e., the aspects in the “technosphere” portion of the life cycle 

in Figure 2.2) and those particular to impact assessment (i.e., the “ecosphere”). 

2.2.1 General Problems Limiting Data Quality 

A number of general reasons explain the existence of poor or unavailable data.  

Data and models alike can fail to accurately represent the full spatial and temporal scope 
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chosen in the initial phase of an LCA.  Data can be effectively unobservable during the 

time period devoted to conducting an LCA.  For example, consider product recovery 

infrastructure models and scenarios, which will be the focus of Chapter 7.  Uncertainty 

may also arise when different data sources measuring the same quantity conflict 

(Finnveden 2000, Björklund 2002).  Standardized databases of LCA data are sought to 

reduce the burdens of data collection; yet, easily accessible, peer-reviewed data sets 

remain absent (UNEP 2003).  There are few established, standardized or consistent ways 

to assess and maintain data quality (Vigon and Jensen 1995).  Regarding LCA databases, 

Bare and coauthors identify a fundamental conflict between the sophistication of the data 

and the variety of categories that the data covers (Bare et al. 1999). 

2.2.2 Data Quality in Life Cycle Inventories (Technosphere) 

Some barriers to data collection are specific to life cycle inventory (LCI) analysis. 

In general, the literature tends to agree that data for life cycle inventories is not widely 

available nor of high quality (Ayres 1995, Ehrenfeld 1997, Owens 1997).  Data collection 

costs can be prohibitively large, e.g., when sub-metering must be implemented in an 

industrial facility, when data must be gathered from the field or when data must be 

frequently collected to remain relevant (Maurice et al. 2000).  In other cases, data exists 

outside of the LCA practitioner's organization, e.g., when withheld upstream or 

downstream by suppliers or other partners who have concerns (potentially valid) that 

sharing inventory data might reveal confidential information related to their competitive 

advantage (Ayres 1995).  When available, external data can be of unknown quality.  

When data is not measured by the organization conducting the LCA, the accuracy, 

reliability, collection method and frequency of measurement may not be known and the 
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limits of the data cannot necessarily be deduced (Lee et al. 1995).  As a result, 

uncertainty distributions or even upper and lower bounds are commonly unavailable 

(Owens 1997).  Furthermore, mass balances are often not performed, or are performed 

incorrectly (Ayres 1995).  Data also can become outdated, compiled at different times 

corresponding to different materials produced over broadly different time periods (Jensen 

et al. 1997).  LCI data may be unrepresentative because it is taken from similar but not 

identical processes, is based on assumptions about technology levels, or uses averages, all 

of which may be features of database values (Björklund 2002).  During inventory 

analysis data with gaps are sometimes ignored, assumed or estimated (Graedel 1998, Lent 

2003).  Also, practitioners may extrapolate data based on limited data sets (Owens 1997).  

In fairness, it should be noted that ISO LCA standards require a company to document its 

data sources (ISO 2006, 2006), addressing many of the concerns raised in publications 

written in the late 1990s.  Still, companies not complying with ISO might take these 

shortcuts, limiting data quality. 

2.2.3 Data Quality in Environmental Impact Assessment (Ecosphere) 

Probably the most serious data and model quality limitations affect the impact 

assessment stage, as there tend to be large discrepancies between a characterization 

model and the corresponding environmental mechanism (ISO 2000, 2006).  The most 

fundamental barrier to model quality are limits to available scientific knowledge (ISO 

2000, 2006).  New chemicals constantly appear on the industrial market with poor 

models or measures of the mechanisms that disperse them into the environment.  

Finnveden points towards this being the case with dioxins (Finnveden 2000).  Even if 

dispersion models exist, fate still is often be ignored in calculations of impact (Bare et al. 
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1999).  Besides dispersion, the threshold levels that would create environmental damages 

may not be modeled or measured (Owens 1997) or may be represented using reduced 

order models, such as with linear dose-response curves (Bare et al. 1999).  Even if 

thresholds are known, they might not apply to any particular locale or time period, or 

they might be affected by synergistic combinations of chemicals (Bare et al. 1999, 

Björklund 2002).  To summarize the fundamental problem of modeling to an appropriate 

level of comprehensiveness, especially for environmental impact assessment, Bare and 

coauthors note that it is hard to know "where to draw the line between sound science and 

modeling assumptions" (Bare et al. 1999). 

2.2.4 Challenge: Estimates with Unknown Uncertainty 

Info-gap uncertainty can be seen to affect environmentally benign life cycle design 

in many of the information deficient scenarios mentioned in the previous three 

subsections.  EBDM practitioners commonly have access to data or models that have 

unknown bounds on their accuracy.  Major examples of this are reviewed as follows.  

Time-distant life cycle aspects of new products are estimated based on observations of 

older, different products.  Environmental impact models that are specific to one 

geographic region can deviate to an unknown extent when used to model a region on 

another continent, and so forth.  In fact, in general, the more precise a set of data is, the 

less widely applicable it is!  So, it is not difficult to argue that info-gaps exist in EBDM, 

but what sorts of problems exist that could be resolved using IGDT? 
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2.3 Unresolved Problems Applying Uncertainty Formalisms to EBDM Decisions 

We next review limitations of environmental life cycle assessment (Reap et al. 

2008).  These limitations extend to environmentally benign life cycle design.  First, we 

review reasons for information limitations in practice.  Then, we explain how lack of 

information reduces the quality of LCA and, in some cases, the tractability of problem 

solving in general.  Lastly, the aspects that IGDT has potential to improve are discussed.  

Admittedly, the following review will document numerous problems relating to 

uncertainty in LCA that no existing formalisms—IGDT included—can resolve. 

 Whether the desired outcome of an LCA is a simple benchmark or a more 

involved recommendation of action, its reliability depends on appropriate consideration 

of uncertainty.  One evaluates the effects of uncertainty using two main classes of 

techniques that will be referred to repeatedly in this section.  The first, uncertainty 

analysis, models uncertainties in the inputs to an LCA and propagates them to results.  

For comparative LCAs, this can reveal whether there are significant differences between 

decision alternatives.  The second type, sensitivity analysis, studies the effects of arbitrary 

changes in inputs on LCA outputs.  This helps to identify the most influential LCA inputs 

when their uncertainty has yet to be or cannot be quantified. 

 

The ISO LCA series of standards briefly mentions these two techniques but 

provides little guidance (ISO 2000, 2000, 2006) as to when or how procedurally to apply 

them.  In response, LCA researchers and practitioners have proposed or adopted different 

variations of these techniques (Björklund 2002, Lloyd and Ries 2007).  Choosing one can 

be difficult, especially for predictive assessments, comparative assessments of complex 
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systems, or assessments with broad scope.  Even when an appropriate choice is apparent, 

in practice, there are still many hurdles to using them. 

 In this section, problems associated with evaluating uncertainty in LCA fall into 

four categories:  

• Modeling of uncertainty,  

• Incorporation of multiple uncertainties,  

• Completeness of analysis, and  

• Cost of analysis. 

These general problem areas are considered in depth in the next four subsections 

respectively.  A review of the major concerns raised are used later in Section 2.3.5 as a 

basis for evaluating the general case for info-gap theory.  In the context of this chapter, it 

serves a thesis goal of characterizing the overall problems that uncertainty creates when 

one tries to assess how environmentally benign a product or system is from a broad life 

cycle perspective. 

2.3.1 Appropriate Representation of Uncertainty 

Mathematically representing the variety of uncertainty types identifiable in LCA 

is often not straightforward.  Probability distributions can be used to represent random 

variability in input parameters, which is arguably the type of uncertainty most familiar to 

LCA practitioners.  Probability distributions have been used in a variety of LCA 

uncertainty analysis methods (Huijbregts 1998, Björklund 2002, Ciroth et al. 2004) and 

applied to numerous case studies (Maurice et al. 2000, McCleese and LaPuma 2002, 

Geisler et al. 2004).  However, Björklund observes that few classical statistical analyses 

in the LCA literature describe their data sources or assumptions or reveal how 
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probability distributions were determined (Björklund 2002).  So, EBDM is affected by 

variability, but practitioners commonly lack data sets to characterize it.  Probability 

distributions can, alternatively, be defined based on subjective expert estimates rather 

than data sets; in fact, this option is used for a majority of LCI data (Björklund 2002).  In 

such cases, sensitivity analysis should be used to examine the sensitivity of conclusions 

to estimates and assumptions about probability distributions.  Lack of credible expertise 

about distributions can reduce confidence in the results of uncertainty analysis.  In 

general, probabilistic methods don’t receive wide use partially because practitioners 

commonly lack the information required by those formalisms.  Or, they rely on 

assumptions about information that undermine their trustworthiness. 

 Apart from variability, another chief source of uncertainty in information or 

models relates to their representativeness, commonly limited due to missing or 

incomplete data (Weidema and Wesnæs 1996).  In response, a variety of mathematical 

formalisms, also surveyed by Björklund (2002), have been proposed for use in 

uncertainty analysis.  Analysis of intervals (modeled based on expertise) can be effective 

but is not widely adopted because it is considered “pessimistic” (Björklund 2002).  

Several newer uncertainty formalisms have also begun to be examined to address 

uncertainty in representativeness.  These include possibility distributions (Benetto et al. 

2005), upper and lower bounds with no distributional information (Pohl et al. 1996), and 

fuzzy intervals (Pohl et al. 1996, Gonzalez et al. 2002, Güereca et al. 2006, Sadiq and 

Khan 2006).  These studies have been for hypothetical cases and have not been applied in 

practice.  The lack of means to procedurally define the information required by these 

forms of uncertainty is a potential problem identified by (Aughenbaugh 2006).  We 
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believe this exact reason deters practitioners from utilizing these newer formalisms.  In 

response, Aughenbaugh and coauthors have considered analyzing life cycle design 

problems using probability bounds analysis because it does have a procedural definition 

(Aughenbaugh et al. 2006). 

Lastly, some types of uncertainty, such as that due to LCA methodological 

choices, cannot be represented using any uncertainty formalism.  The typical approach is 

to use sensitivity analysis, which may include analyzing different design scenarios 

(Björklund 2002, Lloyd and Ries 2007). 

2.3.2 Incorporating Different Uncertainties into Overall Performance Measures 

Problems also become apparent when one attempts to aggregate, for decision 

purposes, the influence that multiple heterogeneous uncertainty types have on LCA 

results.  This is particularly problematic for comparative LCA, where the goal is 

identification of the best performing alternative, even for a single environmental 

performance dimension.  In best case scenarios where all input uncertainty can be 

represented by probability distributions, uncertainty can be propagated to outputs using 

well established techniques.  From there, a decision maker can compare statistical 

differences or expected (i.e., average) environmental performance. 

 However, in one LCA alone, it is possible that one or more uncertainty 

representations other than probability distributions are warranted due to the sparsity or 

non-probabilistic nature of available information.  Unfortunately, combination of 

different uncertainty formalisms is often mathematically impossible and, when feasible, 

not theoretically sound, though this capability is being pursued by some researchers 

(Joslyn and Booker 2004).  This prevents the incorporation of all uncertainty types into a 
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single propagated result, even for one environmental performance dimension.  Given the 

convenience of such single 'scores,' practitioners might be tempted to model all 

uncertainty information using a single formalism unjustifiably, either relying on 

unwarranted assumptions or ignoring available data.  Even though ISO mandates that 

assumptions be documented (ISO 2006), detecting whether or not such assumptions lead 

to an unreliable decision could be difficult for a complex assessment case. 

 In some cases, qualitative information may be available to describe the degree of 

representativeness of uncertain quantities or models.  Examples of this metadata (i.e., 

data about data) include dimensions such as age of the data, the geographical area to 

which it applies and technology assumptions.  Researchers have proposed formalizing 

these metadata types as data quality indicators (DQI) (Weidema and Wesnæs 1996), 

though opinions differ as to how to incorporate them.  ISO 14041 (ISO 1998) only 

recommends providing such metadata alongside LCA results for transparency purposes 

or to guide which alternative scenarios to analyze using sensitivity analysis as defined by 

ISO.  Weidema and Wesnæs have proposed a method for transforming DQI scores to 

probability distributions using pre-defined, default distributions (Weidema and Wesnæs 

1996); however, these conversions are subjectively defined. 

 To summarize, the fundamental problem is a tradeoff between two aspirations.  

The first is the (idealistic) motivation to utilize as much available information (qualitative 

or quantitative) about uncertainty—and as few unwarranted assumptions about that 

information—as possible.  The conflicting aspiration is to factor all uncertainty models, 

however heterogeneous in form, into an efficient, rational decision-making process.  To 

date, there are no frameworks for uncertainty analysis in LCA that guide characterization 
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of this tradeoff to make the assessment as comprehensive as possible yet still tractable in 

terms of decision making. 

2.3.3 Completeness and Conclusiveness of LCA Uncertainty Analyses  

Intuitively, limitations in the comprehensiveness of an uncertainty analysis can 

considerably affect the quality of LCA conclusions and recommendations.  The level of 

completeness achievable is proportional to the scope defined for a particular LCA, e.g., 

the time and geographical boundaries chosen.  For complex products with long lifetimes, 

a 'complete' characterization of uncertainty might only be possible over a timescale that is 

too small to be of use to the practicing organization. 

 In addition, the degree to which comprehensiveness can be achieved (e.g., direct 

data collection, quantification of uncertainty in representativeness, model validation, etc.) 

varies across the phases of an LCA.  For instance, developing models and characterizing 

uncertainty tends to be harder for impact assessment than for life cycle inventory (Owens 

1997) and, likewise, harder for some indicator categories than others (ISO 2000, 2006). 

 Even if one can achieve comprehensiveness in some portions of an LCA 

uncertainty analysis, the severe uncertainty and data limitations of other more difficult 

portions can dominate LCA outcomes and lead to inconclusive outcomes (ISO 2000, 

Björklund 2002, ISO 2006).  In response, practitioners can be tempted to characterize 

more readily quantifiable uncertainty and fail to acknowledge (or even know about) the 

existence of other uncertainty (Finnveden 2000).  Such partial uncertainty analyses may 

generate false confidence in the reliability of results (Bare et al. 1999). 

 For comparative LCA, a converse problem also arises: modeling uncertainty in all 

LCA phases comprehensively and conservatively can lead to inconclusiveness.  A 
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complete representation of uncertainty may entail wide probability distributions or broad 

intervals of imprecision, propagating to results to make the alternatives under 

consideration indistinguishable.  In fact, Finnveden argues that, from a scientific 

perspective, "it can in general not be shown that one product is environmentally 

preferable to another one, even if this happens to be the case" (Finnveden 2000). 

 The above problems of LCA have also been considered in the field of risk 

assessment (RA).  Risk assessments (or analyses) in general tend to rely on specific 

models of the mechanisms related to risks, usually valid for a specific place and time 

(Morgan et al. 1990, Dekay et al. 2002).  In contrast, LCA tends to include multiple 

impacts over different temporal or spatial scales, often with simplified models or 

assumptions.  From the RA perspective, the lack of "spatial, temporal, dose-response, and 

threshold information" in LCA makes its results overly conservative, since it implies that 

all environmental burdens will affect sites that are sensitive to adverse impact (Owens 

1997).  Direct comparisons between RA and LCA have clarified where the techniques are 

compatible or overlap or where their respective practitioners could learn from each other 

(Cowell et al. 2002, Hofstetter et al. 2002, Matthews et al. 2002).  However, limited 

conclusiveness in results remains a problem in LCA due to its often wide scope. 

2.3.4 Resource Intensiveness of LCA Uncertainty Analysis 

Lastly, the analysis of data quality in LCA, including sensitivity analysis and 

uncertainty analysis, incurs costs that can be daunting to practitioners.  Deriving 

probability distributions through statistical analysis requires significant collection of test 

data.  Alternatively, subjective distributions can be defined based on expertise, but better 

data requires more knowledgeable and expensive experts.  The costs of characterizing 
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uncertainty (by whatever means) is generally not quantified nor discussed in LCA 

research or practitioner communities, nor are techniques or frameworks that guide 

efficient data gathering.  Admittedly, such issues would be hard to generalize for all LCA 

types. 

2.3.5 Summary: From Problems to Motivation 

For the problems in the previous four subsections, here is a preview of how (if 

possible) they motivate our research: 

• Modeling of uncertainty: Practitioners are reluctant to use or rely on uncertainty 

formalisms that require more information than is available.  A formalism that requires 

only sparse information but still offers some decision making power is needed. 

• Incorporating different uncertainty types into a single decision: Any new decision 

formalisms probably won’t help here, but it might be useful to practitioners to have 

multiple means by which to evaluate uncertainty.  In fact, some advocate that 

“uncertainty should be examined from more than one viewpoint, with more than one 

tool, to avoid model / tool (software) myopia” (Regan et al. 2002). 

• Completeness and conclusiveness of uncertainty analysis: The “completeness” part of 

this problem relates to fundamental limitations created by the abstraction of real 

systems to evaluation models in design.  This problem is made more “wicked” by the 

wide scope that LCA attempts.  It  may be difficult for any theory to quantify the 

error created by abstraction.  The “conclusiveness” problem is similarly wicked.  

• Cost of analysis: Methods are needed that can utilize, as far as possible, whatever 

information is available, using analysis that is as simple as possible. 
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So, info-gap theory should be investigated since it proposes to make conservative 

assessments of severe uncertainty, doing more with less. 

2.4 What Has Been Presented and What Is Next 

So, severe uncertainty does exist in EBDM.  It appears to fit the form of info-gaps, 

at least as far as they have been discussed at this point in the thesis.  And, other 

uncertainty models aren’t adopted or trusted when they assume too much.  However, the 

fact that info-gaps exist does not verify that IGDT will be useful.  Thus, in the next 

chapter we introduce info-gap theory and the info-gap analysis procedure in full, and we 

explain how they relate and compare to other uncertainty formalisms. 
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CHAPTER 3: 

EXPLANATION AND EVALUATION OF INFO-GAP THEORY 

 
 
 

In this chapter, the goals are to explain the info-gap uncertainty formalism and to 

show that its purpose and structure differs from that of other uncertainty formalisms.  

First, in Section 3.1, a general discussion of uncertainty and its different forms is 

provided for context.  In Section 3.2, different formalisms for making decisions under 

uncertainty are reviewed.  This in turn provides a reference point for a conceptual 

overview of IGDT in Section 3.3.  The mathematical components of a generic info-gap 

analysis are presented in greater detail in Section 3.4, and an overall assessment of its 

validity is offered in Section 3.5.  In Section 3.6, IGDT is compared, from several 

different perspectives, to the uncertainty formalisms first presented in Section 3.2.  IGDT 

is not found be in direct competition with these alternative formalisms. 

3.1 The Nature and Sources of Uncertainty 

Before reviewing the various approaches to including uncertainty into design 

decisions, a discussion of the nature and sources of uncertainty is warranted.  In Section 

3.1.1, a general definition of uncertainty is provided, followed by a review of different 

uncertainty types in Section 3.1.2. 

3.1.1 Definition of Uncertainty 

Broadly defined, uncertainty is a some form of lack of knowledge, for instance, 

about the true value of a quantity, true form of a model, appropriateness of a modeling or 
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methodological decision, etc.  Uncertainty can be defined with respect to certainty, which 

is “the condition of knowing everything necessary to choose the course of action whose 

outcome is most preferred” (Nikolaidis 2005, Aughenbaugh et al. 2006).  Following this, 

uncertainty is “the gap between certainty and the decision maker’s present state of 

information” (Nikolaidis 2005, Aughenbaugh et al. 2006).  This is nearly equivalent to 

Ben-Haim’s definition of info-gap uncertainty introduced in Section 1.1.3.  However, the 

nuances of what type of uncertainty is being modeled sets different uncertainty 

formalisms apart. 

3.1.2 Types of Uncertainty 

Beyond the general definition for uncertainty, different specific forms of 

uncertainty have been identified.  As recently reviewed by (Choi 2005, Nikolaidis 2005, 

Thunnissen 2005), numerous uncertainty taxonomies exist that aim to categorize and 

delineate the various types.  There tends to be disagreement and/or overlap in the content 

of these taxonomies.  This is largely due to differences in their basic definitions (e.g., 

what “ambiguity” is), their conceptual modes of classification (e.g., by causes of 

uncertainty, by “nature” of uncertainty, by information available for quantifying 

uncertainty, etc.), and even their intent (e.g., prescriptive, “diagnostic”, or in some cases, 

some motive that clearly stated).  Because of this disagreement, no attempt is made in 

this thesis to choose and adhere to one “best”, most complete taxonomy. 

Nevertheless, several main types of uncertainty are repeatedly acknowledged in 

the literature.  The following list—which is not meant to be exhaustive—is assembled 

from a parts of several taxonomies (Wynne 1992, Nikolaidis 2005, Thunnissen 2005): 
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• Irreducible uncertainty – inherent randomness, recurrence of chance events, e.g., 

the numbers that come up when rolling dice.  Also called aleatory uncertainty. 

• Imprecision – the gap between the presently available state of information and a 

state of precise information4; i.e., uncertainty that can be reduced by gathering 

information.  Choice of this term (as opposed to “epistemic uncertainty” or 

“reducible uncertainty”) follows the reasoning used in Section 2.3.4 of 

(Aughenbaugh 2006).  Imprecision may be due to conflicting information sources. 

• Linguistic ambiguity – vagueness in assigning a numerical value to some term or 

proposition (Joslyn and Booker 2004). 

• Indeterminacy – Inability to make a decision or identify the most preferred 

choice, perhaps due to propagated imprecision; uncertainty about some state 

which is dependent on the unknown outcomes of indeterminate actors or events 

earlier in a causal chain.  One form of indeterminacy will be shown in Section 

5.1.2 to affect info-gap analyses having multiple info-gap uncertainties. 

• Ignorance – inability to recognize (much less quantify) the existence of 

uncertainty; an unknown unknown. 

The first three uncertainty types in the above list are the ones most commonly 

handled by the mathematical uncertainty formalisms introduced in the next section.  

Indeterminacy is included in the list as a different type because it relates to simulation 

outputs and/or decisions5.  Finally, ignorance is included simply to acknowledge the most 

                                                 
4 Note that “precise information” as used here is not the same as “certainty”, as defined in Section 3.1.1.  
One can have precise information about other forms of uncertainty.  For instance, one may precisely know 
the odds of a coin toss, but still not have certainty about what its outcome will be for any one event. 
5 The term “decision” here could be interpreted very broadly, e.g., a problem-framing decision about what 
some true state of the world is. 
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severe form of uncertainty, one which cannot be measured, simulated, or reduced a 

priori. 

3.2 Existing Uncertainty Formalisms in the Context of Decision Making 

To provide a reference by which to compare info-gap theory, a variety of uncertainty 

formalisms, all of which have received much more attention in the literature, are next 

discussed.  Every complete formalism has three main aspects:  

• Formulation, or modeling of what is known about uncertainty.  An overview of 

different formalisms’ uncertainty models, which correspond to the uncertainty 

types identified in the previous section, is provided in Section 3.2.1. 

• Analysis, or computation mathematics that allow the uncertainty to be propagated 

through the influence diagram of Figure 2.2.  Analysis techniques for each 

formalisms will be assumed to be rigorous enough that the details need not be 

discussed in this section.  An overview of the pluses and minuses of each 

formalism is presented, however, in Section 3.2.2. 

• Interpretation, or using the output of analyses to determine a preference ranking 

over design options that takes uncertainty into consideration in some way.  

Interpretation for two main formalisms is discussed in Section 3.2.3.  This 

provides a reference point for explaining how IGDT includes of uncertainty into 

design decisions later in Section 3.3. 

Finally, a review of the shortcomings of various uncertainty formalisms in light of the 

data limitations identified in Chapter 2 are presented in Section 3.2.4. 
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3.2.1 Models for Uncertainty 

Different uncertainty formalisms represent different types of uncertainty; 

therefore, their uncertainty models are expressed differently mathematically and they 

have different information requirements.  The general6 shapes of and relationships 

between the representations most commonly referenced in the literature are shown in 

Figure 3.1, taken from (Hemez 2002).  Mathematical details will not be explained here; a 

comprehensive and critical review can be found in (Aughenbaugh 2006).  

 

 

 

Figure 3.1: Different models of uncertainty and their relationships, from (Hemez 
2002) 

 

Generally, it can be said that all uncertainty models have the following properties 

which characterize them: 

                                                 
6 This figure is meant to simply illustrate the basic structural differences between different uncertainty 
models.  The relationships (i.e., arrows) in this figure are not comprehensive; for a full theoretical 
discussion of the similarities, differences, and relationships between uncertainty formalisms, refer to 
(Joslyn and Booker 2004). 
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• structure (i.e., applicability to a phenomenon, e.g., random variability can be 

represented as a lottery), 

• size (i.e., quantified parameters like bounds, mean, variance, etc.), and 

• distribution of occurrences (i.e., uncertainty measures that are normalized 

mathematical functions) 

In Section 3.4.1, info-gap models will be explained in terms of these properties.  

 Irreducible uncertainty is best represented in stochastic terms, e.g., probability 

density functions.  In traditional statistical decision theory (Berger 1985), it is assumed 

that all uncertainties can be characterized using precise probability distributions (left side 

of Figure 3.1).  Various assumptions or scenarios can lead to these probabilities, such as 

large historical databases, well-elicited beliefs, or well-founded prior distributions.  The 

information requirements (or assumptions) are stronger for probabilities than for the other 

methods. 

 Imprecision is best represented in terms of intervals (Kearfott and Kreinovich 

1996, Kreinovich et al. 1999, Muhanna and Mullen 2004).  In interval methods, exact 

bounds on the uncertainties are required, but there is no measure of where a value lies 

within those bounds.  An interval is represented on a CDF plot in the middle of Figure 

3.1; it is shown as a box because of imprecision. 

 When sufficient information to support probability density functions (PDFs) is 

lacking, characterizing their imprecision is important because otherwise PDFs may 

mischaracterize the objectively available information and result in flawed decisions.  To 

address this problem, Ferson and Donald created probability bounds analysis (PBA), a 

method that represents uncertainty using upper and lower cumulative probability 
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distributions (Ferson and Donald 1998, Aughenbaugh and Paredis 2006).  These 

structures, called probability boxes or just p-boxes, capture both variability and 

imprecision by generalizing both probability theory and interval methods (right side of 

Figure 3.1).  Because a p-box is more general than both interval methods and probability, 

its information requirements are as low as the lowest of the two, but its applicability 

(without throwing information away) is greater than either. 

 

- 3 - 2 - 1 0 1 2 3 4
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 t

1
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0  

Figure 3.2: Comparison of cumulative distributions of a precise probability, an 
interval, and a p-box. 

 

Other uncertainty formalisms also exist (Joslyn and Booker 2004).  Linguistic 

ambiguity in set membership (Zadeh 1965), as well as the possibility or necessity of 

event outcomes (Zadeh 1978), can be modeled by fuzzy membership functions.  

Additionally, the belief and plausibility (also fuzzy measures) of outcomes, based on sets 

of evidence, can be modeled with evidence theory (Shafer 1976).  These formalisms have 

come under some criticism because of they lack operational definitions; that is, it is 

unclear how a designer would procedurally measure those uncertainties (Aughenbaugh 

2006).  Regardless, the intent in this thesis is not to consider uncertainty types that could 

be modeled by fuzzy membership functions. 
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 Ideally, a decision maker should choose the uncertainty representation most 

appropriate for the available information and the assumptions that he or she is willing to 

make.  A good decision requires using all of the information that is available and not 

using or assuming information that is not present (Du et al. 2005, Aughenbaugh and 

Paredis 2006).  This perspective motivates a consideration of info-gap theory; it will be 

shown in Section 3.5 to require less information than all other formalisms.  

3.2.2 Approaches to Analyzing the Effects of Input Uncertainty on Performance 

The preceding uncertainty models can be used to quantify the effects of uncertain 

inputs on output uncertainty.  The plusses and minuses of various approaches are 

summarized by Table 3.1, adapted from (Ferson 2002).  The uncertainty assessment 

methods shown in the table are limited to ones commonly used in life cycle assessments.  

As should be intuitive, the choice of an approach is driven largely by available 

information. 
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Table 3.1: Review and Comparison of Risk Assessment Approaches, adapted from 
(Ferson 2002) 

Assessment Type Pluses Minuses 
Deterministic • Simple • Does not express reliability of results 
What-if and 
sensitivity analysis 

• General and flexible 
• Works for all uncertainty 

• Cumbersome to design and implement 
• Computationally expensive, sometimes 

impossible 
• Hard to explain when elaborated 

Worst case analysis • Accounts for uncertainty by being 
conservative 

• Useful in a screening assessment 

• Level of conservatism not consistent 
from analysis to analysis 

• Impossible to compare risks from 
different analyses 

• Possibly hyperconservative 
• Results in regulation that is unfair and 

burdensome to industry 
• Estimates may be biased 

Interval Analysis • Simple and easy to explain 
• Generalizes and refines worst case 

scenarios 
• Works no matter where uncertainty comes 

from 
• Especially useful in a screening assessment 

• Ranges grow very quickly 
• Often too conservative 
• No exact value, but exact bounds 

Monte Carlo 
analysis 
(probability) 

• Simple to implement 
• Simple to explain 
• Characterizes impacts of all possible 

magnitudes 
• Can use information about correlations 

among variables 
 

• Requires much empirical info or 
assumptions 

• Analysts need to guess some things 
• Routine assumptions lead to non-

protective conclusions 
• Confounds ignorance with variability 
• May be inappropriate for non-statistical 

uncertainty 
• May not be acceptable to merge 

subjective estimates from different 
sources 

Fuzzy arithmetic 
(possibility) 

• Computations are simple and easy to 
explain 

• Doesn’t require detailed empirical 
information 

• Doesn’t require knowledge of 
dependencies or correlations among 
variables 

• Not clear it’s acceptable to merge 
numbers whose conservativisms are 
different 

Probability bounds 
analysis 

• Handles uncertainty about parameter 
values, distribution shapes, dependencies, 
and model form 

• Bounds get narrower with better empirical 
info 

• Bounds are rigorous 

• Displays must be cumulative 
• Must truncate infinite tails 
• Optimal bounds are expensive to 

compute when parameters are repeated 

 

Note that sensitivity analysis has also been included in Table 3.1.  In basic 

decision analysis, nominal values are assumed to be known, and the problem is solved 

using these values.  Then a standard sensitivity analysis (such as with a tornado diagram 

(Clemen 1996)) is performed to explore the effects of uncertainty (in the form of bounded 
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intervals of fixed size around the nominal values).  Input variations are not necessarily 

related to available information about uncertainty; they are simply applied for all 

uncertain variables to gauge which is most influential on outputs.  Generally this method 

assumes independence between uncertain quantities and irrelevance of higher-order 

interactions. 

3.2.3 Including Uncertainty into Design Decisions 

Continuing the discussion of uncertainty formalisms, it is helpful to explain 

conceptually how their uncertainty models propagate to outputs, and how decisions are 

made given those outputs.  The next series of graphs relates the form of input uncertainty 

to the form of output uncertainty using a single continuous design variable and utility as a 

performance measure. 

 Inputs in the form of probability distributions propagate to output utilities that are 

also distributions, as shown in Figure 3.3.  Maximizing the expectation of the output 

distribution yields a design optimal per von Neumann-Morgenstern expected utility 

theory  (von Neumann and Morgenstern 1944). 
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Output:
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Figure 3.3: Propagating probability distributions to a performance measure. 
 

A similar propagation applies to interval uncertainties, however the output takes 

the form of best case and worst case performance curves.  A number of decision policies 

could be applied to yield a decision given this output.  One heuristic option is maximizing 

the performance under worst case conditions, a maxi-min policy, depicted in Figure 3.4. 
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Figure 3.4: Propagating intervals to a performance measure. 
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These conceptual plots are revisited as a basis for comparison when introducing 

the info-gap decision strategy in Section 3.3. 

Another approach to designing for robustness to uncertainty, rooted in the 

methods of Taguchi7, is to minimize the degree to which uncertain inputs (“noise 

factors”) create variations on performance (Phadke 1989).  This type of robustness is 

depicted in Figure 3.5, where the preferable design (“b”), offers the same average 

performance but with less variation (Chen et al. 1996). 

 

Y

Z

Control Factor

Noise
Factor

Response x = a
x = b

Deviation 
from noise 
when x = a

Deviation 
from noise 
when x = b

2∆Z  

Figure 3.5: “Type I” Robust Design (Taguchi Robustness), adapted from (Chen et 
al. 1996). 

 

This concept of robustness can utilize either probability distributions or intervals, 

as long as the parameters of those uncertainty models are fixed a priori to analysis.  As 

will be discussed in Section 3.6.2, the above approach to (and concept of) robustness is 

                                                 
7 For brevity, this perspective of robustness will be referred to in this thesis as “Taguchi robustness”, even 
though more recent work has gone beyond—and improved upon—Taguchi’s original work. 
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fundamentally different than the one used by IGDT.  In fact, their definitions of 

robustness differ; from the Taguchi robustness perspective, info-gap robustness may 

appear closer to reliability.  Thus, info-gap theory does not seek to replace or compete 

with design for robustness in the Taguchi sense. 

3.2.4 Limitations of the Preceding Uncertainty Formalisms 

The preceding formalisms are assumed to be sufficient for normative decision 

making when enough information is available to specify the parameters of their 

respective uncertainty models8.  Info-gap theory is not intended to replace or compete 

with these formalisms in such cases.  However, as was mentioned in Section 2.2, the 

gathering the required information is too demanding for some LCA and EBDM 

applications.  (In Chapter 4, specific examples of when info-gap models are warranted 

are provided.)  The main motivation for an investigation of info-gap is the desire to for a 

means to represent and assess the effects of sparse uncertainty without requiring a 

normalized distribution nor static interval bounds. 

3.3 Conceptual Overview of Info-Gap Decision Theory 

Before discussing any mathematics, an understanding of the “big picture” of info-

gap theory is useful.  The following short overview explains what info-gap uncertainty is, 

how robustness to that uncertainty is achieved, and how that robustness is used to 

establish a preference ranking between design options. 

 Info-gap theory, developed by Ben-Haim and explained in depth in his 2006 

book, is an approach to analyzing options and making decisions under sparse information 
                                                 
8 Further critical evaluation of possible problematic aspects of well-established uncertainty formalisms is 
not pursued in this thesis because IGDT does not aim to improve those problems; rather, IGDT applies 
under conditions when others do not.  
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about uncertainty.  IGDT has steadily evolved over 15 years from a body of work on 

convex set-based models of uncertainty (Ben-Haim and Elishakoff 1990; Ben-Haim 

1999; Ben-Haim 2000).  The foundations of IGDT are explained in detail in (Ben-Haim 

2006).  A summary follows. 

 To establish a “vocabulary” for the overview, the four basic inputs to an info-gap 

analysis are: 

• u, the uncertain variable for which some nominal u is available9 

• q, some design variable(s), or a member of a set of design alternatives Q 

• R(q,u), a performance (or “reward”) model of system response whose output is a 

performance attribute of interest. 

• rc, a critical value of performance that must be guaranteed (met or exceeded); 

alternatively: a failure criterion. 

These components are used to formulate: 

• ˆ ( , )cq rα , the info-gap robustness function, which outputs the largest info-gap 

uncertainty that a design option q can endure and still deliver a performance no 

worse than rc. 

The meaning of these different entities, as well as the general relationships between them, 

are found in the following narrative. 

 

Generally speaking, an information10 gap is the disparity between what is known 

and what could be known (Ben-Haim 2006). In the simplest11 example of an info-gap 

                                                 
9 Note that the use of the tilde (~) above a variable denotes a nominal value for that variable.  The tilde here 
should not be confused with the same notation used for fuzzy sets. 
10 Note that Ben-Haim “use[s] the term ‘information’ in its broadest lexical meaning, referring not only to 
facts or data, but also knowledge and understanding” (p. 1, Ben-Haim 2006).  (Footnote cont. next page→) 
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uncertainty, there exists some discrepancy between an uncertain quantity’s available (but 

suspect) nominal value12, u, and the quantity’s true value, u, which could be known but is 

not (Ben-Haim 2006).  This gap may be due to either ignorance or extremely rare events.  

The deficient information state of an info-gap is depicted conceptually in Figure 1.3. 

 

unknown actual value of quantity

u ?u =
known nominal

estimate for quantity

gap of unknown
sizeα

values u could be

unknown actual value of quantity

u ?u =
known nominal

estimate for quantity

gap of unknown
sizeα

values u could be

 

Figure 3.6: Simple representation of info-gap uncertainty (Reproduced from 
(Duncan et al. 2007)) 

 

Because the size of this gap is unknown, it is represented mathematically using an 

uncertainty parameter, α , sometimes referred to as the horizon of uncertainty.  This 

parameter actually reflects two different types of uncertainty: 

• Unknown location of the actual value for u within any horizon of uncertainty, α  

• Unknown horizon of uncertainty, α  

When info-gap uncertainty exists, the decision maker cannot or does not wish to assume 

more information than is available, so α  remains unspecified, a free parameter.  To our 

knowledge, no other uncertainty formalisms allow any of their parameters or coefficients 

(e.g., mean, standard deviation, interval bounds, etc.) to remain unspecified before use in 

analysis or optimization. 

�  
Though the usage of this term might cause some confusion, it is meant to simplify terminology given that, 
for instance, the “info” lacking in an info-gap may be knowledge about the form of a model. 
11 More complex info-gap models are briefly discussed in Section 3.4.1.2. 
12 “Value”, in this case, means “quantity” and not “worth”. 
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For comparison to earlier uncertainty models, an info-gap model can be 

characterized using the three properties introduced in Section 3.2.1: 

• Structure: the “horizon of uncertainty” is of the form of an interval (Ben-Haim 

2006), or in terms of Section 3.1.2, a severe form of imprecision.  Some info-gap 

models can have more of a structure (see Section 3.4.1.2) than just α , but, as 

Ben-Haim notes, “An info-gap model separates what we know (structure) from 

what we don’t know”, which is some aspect of size, represented by α . 

• Size: Because α  remains unspecified, the interval size is unknown.  To reiterate, 

this sets it apart from the previous formalisms. 

• Distribution of occurrences: Info-gap uncertainty does not measure any 

distributions.  (This property is shared by intervals.) 

 

The full family of nested sets created by the free uncertainty parameter α  can be 

viewed in Figure 3.7.  Notice that the sets are centered on the nominal u; α  grows 

equally in both directions away from the nominal13.  This property is explained further in 

Section 3.4.1. 

 

 

 

                                                 
13 Contrast this to Figure 3.6, which only depicts the deviation above the nominal. 



 57

α α

u
α=1Lower bound on u, when α =1

values    could beu

Upper bound on u, when

Info-Gap Model:
family of nested

sets (i.e., intervals)
numbered infinitely,

with bounds
positioned by α

when α =1
when α =1.5
when α =2

Range of uncertainty:

α α

u
α=1Lower bound on u, when α =1

values    could beu

Upper bound on u, when

Info-Gap Model:
family of nested

sets (i.e., intervals)
numbered infinitely,

with bounds
positioned by α

when α =1
when α =1.5
when α =2

Range of uncertainty:

 

Figure 3.7: Representing unbounded uncertainty as an α–parameterized family of 
nested sets (Reproduced from (Duncan et al. 2006)) 

 

For a fictitious (yet illustrative) problem, the influence that an info-gap model has 

on performance R(q,u) can be visualized in Figure 3.8.  Compare this plot to the version 

affected by static interval uncertainty in Figure 3.4.  Each value that the uncertainty 

parameter α  could take corresponds to an upper and lower performance curve, 

 and U U .  The inner pair of curves in the Figure occur where α=1, the outer pair where 

α=2.  Since α  is unbounded14 and continuous, there are an infinite number of these 

performance curves. 

 

                                                 
14 Actually, α  is not necessarily truly unbounded.  For almost any severely uncertain variable or model, 
there is surely some bound that would never be practically exceeded.  But, it is assumed that the span over 
which α   could be realized is considerably large and uncertain, and the performance effects of α  being 
any value in the range of those sizes is unknown. 
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Figure 3.8: The effects of an info-gap uncertainty on performance (“reward”) 
 

So, what good is leaving uncertainty unbounded in this manner?  Using IGDT, 

one seeks decision options that are robust to info-gap uncertainty.  A robust decision 

yields a reasonably satisfactory system performance over a large range of realizations of 

the uncertain parameter α .  To achieve robustness, system performance, R(q,u), is not 

optimized but instead satisficed.  Satisficing generally means accepting “good enough” 

performance in order to afford the achievement of other objectives, especially when only 

idealized models or limited information is available (Simon 1947; Ben-Haim 2006).  In 

the specific case of IGDT, one satisfices performance to increase immunity (i.e., 

robustness) to error estimating u.  To satisfice performance R(q,u), one must specify 

some level of critical performance, rc, to be exceeded by all design alternatives. 

 The info-gap robustness, ˆ ( , )cq rα , of a design alternative q is the largest horizon 

of uncertainty, α , that the design can withstand while still guaranteeing better than 

critical performance rc.  In other words, info-gap robustness is the greatest amount of 

error in the nominal that a design can endure and still perform at least as well as rc (but 
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not necessarily optimally).  This is expressed mathematically as the robustness function, 

ˆ ( , )cq rα , a guide to which is offered in Section 3.4.3. 

 The meaning of info-gap robustness can be better understood using Figure 3.9.  

For the continuous design variable q, there are two values, qA and qB, whose info-gap 

robustness is quantified.  The info-gap robustness of each design, ˆ ( , )cq rα , is the largest 

value for α  that can be sustained by each design without making the Performance drop 

below the critical performance rc.  For qA, α  can grow as big as α= 1α  and still 

guarantee the critical reward, so its info-gap robustness is 1ˆ ( , )A cq rα α= .  For qB, α  can 

grow as big as α= 2α   and still guarantee the critical reward . 
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Figure 3.9: The info-gap robustness of two different values for the design variable q. 
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Info-gap robustness can be used as a measure by which to assign preference 

rankings on a set of design alternatives q.  Because ˆ ˆ( , ) ( , )B c A cq r q rα α> , from the 

perspective of info-gap theory qB is preferred over qA.  Furthermore, the robust-satisficing 

decision rule used in IGDT prefers the design with the largest info-gap robustness at a 

given rc, i.e., ˆ ( , )cq rα  is maximized over the set of design options.  The most preferred 

design is designated q̂ .  In Figure 3.9, ˆ ( , )B cq rα  is the maximum info-gap robustness 

possible because qB is the design with maximum performance on the curve whose peak 

intersects rc.  Thus, qB = q̂  and is most preferred for that particular value of rc.  A more 

mathematically formal version of this statement is presented in Section 3.4. 

 Settling for a less demanding rc often affords a design more robustness to info-gap 

uncertainty.  By graphically plotting robustness versus the critical performance, one can 

view a tradeoff, henceforth denoted as the “ ˆ ( , )cq rα –rc trade-off”.   For the running 

example from Figure 3.9, the trade-off between maximum info-gap robustness and rc is 

depicted in Figure 3.10.  Note that, because this is a design problem with a continuous 

variable, every point on the trade-off line corresponds to a different value for q̂ .  In other 

words, q̂  can be a function ˆ( )cq r . 
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Figure 3.10: Trade-off between robustness and critical performance for continuous 
design variable q. 

 

The ˆ ( , )cq rα –rc trade-off curves take on a slightly different form for design 

problems that select between discrete alternatives.  In these selection cases, the 

robustness for each alternative can be plotted over all rc.  This is the case in Figure 1.4, 

repeated again for convenience in Figure 3.11 below.  The maximum info-gap robustness, 

ˆ ˆ( ( ), )c cq r rα , is the highest ˆ ( , )cq rα  value at each rc.  The design with the maximum info-

gap robustness at a particular value for rc is the most preferred design, per the robust-

satisficing decision rule.  A plot of maximum info-gap robustness for the same example 

as in Figure 3.11 is shown in Figure 3.12.  In some cases, as in Figure 3.12 at rc=2.4, the 

design alternative (1 or 2) that has the maximum info-gap robustness can switch.  This 

results in a preference ranking change (later denoted a Preferredness Switch Point, or 

PSP) at some rc.  In other words, if a decision maker is willing to settle for a critical 

performance at or below 2.4 units, as long as that performance is guaranteed to be met or 

exceeded, Design 1 would be preferable as it offers greater robustness to info-gap 

uncertainty. 
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Figure 3.11: Trade-off between info-gap robustness and rc for two discrete 
alternatives. 
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Figure 3.12: Trade-off between maximum info-gap robustness and rc for two 
discrete alternatives. 
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So, preference ranking for design alternatives depends on one’s trade-off 

preference, which is assumed to not be known or to be difficult to express a priori.  

Inspection of robustness curves can help one induce their preference for this trade-off. 

3.4 Mathematical Components of a Basic Info-Gap Analysis 

Now that a high-level overview of IGDT has been provided, a more detailed 

explanation is warranted for the four basic IGDT input components and the robustness 

function.  For each, the basic mathematical structure, variety in modeling forms, and 

qualifications on their use are next provided in respective subsections. 

3.4.1 Info-Gap Models of Uncertainty 

An info-gap model U of the uncertainty in u is represented mathematically as 

family of nested, convex sets centered around the nominal u.  The size of each set in the 

family is characterized by the uncertainty parameter, α , with the widths of each member 

progressively expanding outward above and below the nominal at a distance α≥0.  

According to Ben-Haim, an info-gap model’s set structure models “clustering of events 

rather than frequency of reoccurrence, likelihood, plausibility, or possibility” (Ben-Haim 

2006).  The specific structure of the info-gap model depends on what type of model u 

itself is (i.e., a constant or a function) and on available knowledge about the form in 

which uncertainty grows around the nominal. 

3.4.1.1 Uncertain Variables 

When u is a constant or single variable, the structure of the info-gap is relatively 

simple.  In the case from Figure 1.3, u is an uncertain variable for which one has an 
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estimate u but cannot quantify the discrepancy, α , between the actual u and u.  The 

horizon of uncertainty α  in this case may be interpreted as bounding approximation error 

in u, or any other source of variation that one cannot bound or otherwise quantify due to 

lack of information. 

 For the case of Figure 1.3, the severe uncertainty of u is represented 

mathematically by a “interval bounded” info-gap model: 

 { }( , ) : , 0u u u uα α α= − ≤ ≥U   (3.1) 

This model is depicted in Figure 3.13, which shows that the nested set model 

captures two levels of uncertainty: interval uncertainty within any set of fixed α , and 

unknown horizon of uncertainty α .  Note that the units of α  are the same as those of u 

and u. 
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Figure 3.13: Representing unbounded uncertainty as an α–parameterized family of 
nested sets (Reproduced from (Duncan et al. 2006)) 

 

The info-gap model in Eq. (3.1) may also be expressed in simpler, equivalent 

notation: 

    ,    0u u uα α α− ≤ ≤ + ≥   (3.2) 
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In some situations, it may be more intuitive to express variation α  as fractional 

deviation, that is, as a percentage of the nominal.  This has the following form: 

 ( , ) : , 0
u u

u u
u

α α α
⎧ − ⎫

= ≤ ≥⎨ ⎬
⎩ ⎭

U   (3.3) 

which is equivalent to: 

  (1 )  (1 ),    0nu u uα α α− ≤ ≤ + ≥  (3.4) 

The α  parameter of a fractionally defined info-gap is unitless, expressed as a 

percentage.  This type of normalized info-gap structure is shown to be useful for 

analyzing multiple info-gaps in Chapter 4 of this thesis. 

3.4.1.2 Uncertain Functions 

When u is a function rather than a constant, there is considerably more variety in 

the way that an info-gap model can be structured.  As listed in Section 2.5 of (Ben-Haim 

2006), info-gap models for uncertain functions include: 

• Uniform bounded: similar in form to Eq. (3.1) except that u is replaced with a 

function u(t).   

• Envelope bounded: Similar to uniform bounds, except the parameter α  is 

multiplied by (and thus modulated by) ψ(t), which modifies the shape of the 

deviation as some function of t.  It is usually loosely suggested that ψ(t) comes 

from some available “prior information”. 

• Energy bounded: bounds the integral of a quadratic function; appropriate for 

uncertain dynamic phenomena. 

• Fourier bounded: useful for uncertain spectral information 
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While the details of these modeling options are not important to this thesis, it 

should be stressed that each of these different model types are parameterized by α .  

Thus, each of these model types’ unique mathematical structure modifies or modulates 

how α  affects whatever particular phenomena is uncertain. 

3.4.2 Performance Function 

The performance function (i.e., performance model) is not particularly unique in 

IGDT compared to other uncertainty formalisms; it simply must be a function of the 

design variables q and the uncertainty u.  The output of the performance function does 

however need to be expressible with certainty15.  Critical performance, rc, is the satisficed 

level of critical performance that must be exceeded, as explained in Section 3.3.  When a 

larger (rather than smaller) reward R(q,u) is desirable, the critical value rc is defined such 

that for all q and u, the critical satisficing constraint requires: 

  ( , ) cR q u r≥  (3.5) 

Alternatively, when smaller performance is better: 

  ( , ) cR q u r≤  (3.6) 

The design variable q can be either continuous (which will yield trade-off plots 

that look like Figure 3.10) or discrete (which have trade-off plots of the form of Figure 

3.11).  If info-gap uncertainty affects the performance of each member of a set of discrete 

alternatives in different ways, then  the alternatives do not need to share the same 

performance function.  However, the output of each separate R(qi,u) must be measured 

using the same units.  This is the case for the example problem discussed in Chapter 4.  

                                                 
15 The value is certain, but may change depending on the value that α   takes. 
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All of the design alternatives, if affected by other uncertainties other than info-gaps (e.g., 

aspects not yet specified in the early design stages), should be affected equally by those 

other uncertainties so that they can be considered independently of the info-gaps. 

3.4.3 The Info-Gap Robustness Function 

From the main IGDT components, u, R(q, u), and rc, a robustness function 

ˆ ( , )cq rα  can be defined that maximizes the size that the uncertainty parameter α can take 

and still satisfy the critical constraint of Eq. (3.5).  This constraint is embedded into the 

robustness function, defined mathematically as an optimization problem: 

 
( , )

ˆ ( , ) max : min ( , )c cu u
q r R q u r

α
α α

∈
⎧ ⎫⎛ ⎞= ≥⎜ ⎟⎨ ⎬

⎝ ⎠⎩ ⎭U
 (3.7) 

The info-gap robustness ˆ ( , )cq rα  is “the maximum tolerable α  so that all u [in 

the info-gap model’s family of sets] up to uncertainty size α  satisfy the minimum 

requirement for survival” (Ben-Haim 2006).   Stated more simply, the robustness 

function is the greatest value of the uncertainty parameter for which the performance 

requirement is not violated.  Eq. (3.7) is formulated for cases where larger values of 

performance are better.  If smaller performance is better: 

 
( , )

ˆ ( , ) max : max ( , )c cu u
q r R q u r

α
α α

∈
⎧ ⎫⎛ ⎞= ≤⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭U
 (3.8) 

The “hat” on the symbol for robustness, α̂ , distinguishes it from the uncertainty 

size α .  The actual value of α is unknown, but one can still determine how much 

robustness, α̂ , to unknown uncertainty bounds can be achieved by choosing a satisficing 

design rather than a risky, reward-optimizing design. 
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The info-gap model, parameterized from its center, has two ends of interest for 

each set in the family, as seen in Figure 3.13.  The focus of this thesis will only be on the 

bound that creates the worst consequence to performance.  However, IGDT can consider 

the “favorable” end of the interval (i.e., α  on the other side of the nominal) when using 

an opportuneness function (Ben-Haim 2006).  Ben-Haim provides examples where 

robustness and opportuneness grow at different rates, which might differently influence a 

decision maker who is a risk taker rather than risk averse.  These scenarios are not 

typical, however. 

 To review, the typical steps to finding a satisficing, robust-optimal design using 

IGDT include translating the severely uncertain information into an info-gap model, 

defining the reward function, R(q,u), choosing a critical level of guaranteed performance, 

rc, and finding the robust-satisficing design, ˆ( )cq r .  If the requirement for critical 

performance is flexible, one can take the additional step of plotting the relationship 

between rc and ˆ( )cq r .  Additional explanation of IGDT is done via example in Section 

4.2. 

3.4.4 Evaluating Design Rankings and Weighing Trade-offs 

The design q that yields the largest robustness ˆ ( , )cq rα  for a given rc is the 

“robust-satisficing” design, denoted ˆ( )cq r .  In mathematical terms: 

 ( )ˆˆ ( ) arg max ( , )c c cq Q
q r q rα

∈
=  (3.9) 

For a given choice of rc, ˆ( )cq r  is the most preferable design; however, changing rc 

will in some cases switch ˆ( )cq r .  This switch is gradual over a range of continuous design 
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variables, as is demonstrated in the problem in Figure 3.10.  For design problems 

involving selection, however, the preference ranking switches at a specific value for rc, as 

shown in Figure 3.11.  Whereas Ben-Haim refers to this as a “preference reversal”, we 

refer to it as a Preferredness Switch Point (PSP), since “reversal” implies a change 

between 2 options and there could be more than one switch point if more than one design 

is considered (e.g., the problem in Chapter 6). 

 Robustness-reward curves like Figure 3.10 or Figure 3.11 are a way to assess 

info-gaps with the intent of forming or confirming preferences for trade-offs, which in 

turn can induce a preference ranking.  The visual nature of these curves enables one to 

weigh robustness versus performance using “gut” reaction, rather than express 

preferences a priori, which could be difficult to do for a satisficed level of performance.  

As Ben-Haim notes, “It often happens that a decision maker chooses both rc and the 

optimal action ˆ( )cq r  in an iterative (and introspective) fashion from consideration of the 

robustness function” ˆ ( , )cq rα .  This process will be narrated for the two example 

problems in this thesis. 

 Lastly, it is important to distinguish between selection problems where a single 

design ˆ( )cq r  dominates preference rankings for all choices of rc, versus cases where 

ˆ( )cq r  switches somewhere over the rc range.  Some R(q,u) models, when affected by 

changing uncertainty, will not respond differently for different design alternatives.  Thus, 

the design that performs optimally under no uncertainty will also perform better than any 

other alternative no matter what the uncertainty turns out to be.  A conceptual example of 

this is provided in Figure 3.14, which features a design problem of selecting between two 

design alternatives, where Design A always dominates.  Finding that one design 
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dominates may seem like a trivial case, but it is actually ideal because no further 

uncertainty assessment is needed to make a decision.   

 

Robustness

Critical Satisficing Performance Level rc

ˆ ( , )cq rα

(for a case where Bigger performance is better.)

Design A

Design B

 

Figure 3.14: Trivial design problem; robustness-performance trade-off does not 
influence decision 

On the other hand, when a preferredness change does occur somewhere within a 

range of potentially acceptable rc levels (as in Figure 3.11), one must reflect on how 

much robustness one thinks they will need.  This essentially involves settling one’s 

preferences for a robustness-reward tradeoff.  Given that the size of the uncertainty is 

unknown, making such a trade-off essentially involves a gamble16.  This mode of 

reflecting on the decision is the way IGDT facilitates decision making without requiring 

more information than is available.  Ben-Haim has considered some of the implications 

of and approaches to “gambling” in this sense (Ben-Haim 2006).  

While it may be difficult to completely generalize whether a preferredness switch 

will occur for a given selection problem, a few observations can be made.  Robustness 

curves are likely to cross and create a PSP when: 

• the uncertainty model U is somehow a function of the design options q, 

                                                 
16 The term gambling, here, is not related to probabilities. 
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• the reward function R(q,u) is a structurally different equation for different design 

options q.  (This is the case for the example problems in this thesis.) 

There may be other observable instances that can help a designer screen whether a 

an info-gap analysis will influence preference rankings of design alternatives. 

3.5 Commentary on the Internal Validity of IGDT 

Can one trust the results of an info-gap analysis?  As mentioned at the beginning 

of Section 3.2, the principal components of an uncertainty formalism are its formulation 

(i.e., the soundness of its models, and how the uncertainty is measured), its analysis (i.e., 

techniques for calculating, combining, or propagating uncertainty outputs), and its 

interpretation (i.e., its inference scheme, how one reaches a decision).  Each of these 

three aspects is next considered separately for info-gap theory. 

First, the formalism’s uncertainty models should accurately represent uncertainty, 

preferably using an operational definition, i.e., a set of operations, or a procedure by 

which the uncertainty can be measured.  Info-gap uncertainty models are sparse and 

straightforward: they consist of what you do know (a nominal model or parameter whose 

representativeness is in question) and the unknown degree of error around that nominal.  

Because the uncertainty parameter is undefined, one does not need an operational 

definition for it.  The axioms underlying the properties of info-gap models are discussed 

briefly in Section 3.6.3. 

The computational techniques of an info-gap analysis consist of whatever means 

are used to solve the optimization problem embedded in the robustness function of Eq. 

(3.7).  Finding this solution returns the robustness for a decision option at some level rc.  

In this thesis, exhaustive searches are used to calculate info-gap robustness.  The 
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computational effort is relatively low for problems featuring monotonic performance 

functions and interval-bounded info-gaps of the type in Eq. (3.1).  All of the examples in 

this thesis bear these basic features. 

Finally, the robust-satisficing decision rule (introduced in Section 3.3) must be 

deemed acceptable by a decision maker if info-gap theory is to be used.  The strategy of 

satisficing performance to gain robustness to uncertainty should seem relatively intuitive. 

This rule is compared to the rules of other decision formalisms in Section 3.6.2. 

A decision maker using IGDT is also able to assess the trade-off between their 

choice of satisficing rc level and the corresponding robustness that is achievable at that 

level.  (This was depicted in Figure 3.10 and Figure 3.11.)  Settling on a trade-off means 

determining how much robustness one thinks they will need; given that the size of the 

uncertainty is unknown, this effectively involves a gamble.  This judgment of how much 

robustness is adequate is not guaranteed to guard against a bad decision (based on a bad 

trade-off), for instance, if the true error in the nominal turns out to be greater than the 

most preferred design’s info-gap robustness.  This does not imply that the results of an 

info-gap analysis are invalid; it does mean, however, that the decision support afforded 

by IGDT is less powerful than normative methods. 

3.6 Comparing IGDT to Other Uncertainty Formalisms 

Further comparison of IGDT versus other decision formalisms is now warranted.  

The key differences in structure, decision rules, and decision axioms are examined in this 

section.  Additionally, consideration is given to whether the value of IGDT versus other 

formalisms could be comparable to problems of the same type. 
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3.6.1 Information Requirements 

IGDT information requirements are low and fundamentally different that those of 

other formalisms.  An info-gap model requires a nominal model or nominal piece of 

starting information, but if sample data are available, they should be used to define a 

probability distribution, or p-box if that sample is small.  An info-gap is comparable to a 

standard interval in that both represent imprecision; however, the starting information is 

different because an info-gap requires a nominal and nothing else and an interval requires 

no nominal but bounds. 

 Building on the discussion in Section 3.2.1, the uncertainty that an info-gap 

represents is different than the uncertainty models of other formalisms.  As Ben-Haim 

states, “We can rank degrees of information gap in terms of the size of the uncertainty 

parameter α , but this is much weaker information than probability or possibility where 

the distribution functions indicate recurrence-frequency or plausibility” (Ben-Haim 

2006).  In other words, one may have the rough notion that one size of α  is “much” 

bigger than another, but the likelihood or possibility of either of those values for α  are 

not known. 

3.6.2 Differences in Decision Rules 

Besides identifying what information is available to characterize uncertainty, one 

must consider what rule (i.e., what strategy) one wishes to adopt to include the effects of 

uncertainty into decisions.  What decision rule options are feasible for any particular 

problem depends on the information available about uncertainty.  Given imprecise 

outputs, one may prefer to maximize the performance under worst case (maxi-min, as in 

Figure 3.4) or best case (maxi-max) conditions, or any of a number of other heuristics.  
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Given probabilistic uncertainty on outputs, one may prefer to maximize expected utility 

(as in Figure 3.3) or minimize the variation on outputs (as in Figure 3.5) per robust design 

in the Taguchi sense.  Choice of one of these decision rules depends on the goals of the 

decision scenario. 

The decision rule in info-gap theory—to maximize the size that error in the 

nominal value could take, constrained by some critical level of performance that the 

decision maker must specify—differs from previous decision rules.  A robust-satisficing 

decision is motivated by scarcity of information.  It requires acceptance of a more 

conservative concept of desired performance: acceptable rather than optimal.  Also, 

because decision results using this rule can be sensitive to the rc level chosen, a decision 

maker can evaluate the trade-off between info-gap robustness and rc to help confirm or 

evolve their choice of an rc level.  This step is central to analysis of decisions in IGDT; it 

is recommended that, under severe uncertainty, a decision not be made using only a 

single fixed level of rc.  This aspect of catalyzing preferences and calibrating one’s 

sensitivity to risk is not observed to be as prominent when using other decision rules.  

Accordingly, info-gap does not require that such preferences be specified firmly before 

uncertainty analysis. 

As such, info-gap decision theory is meant to fill a different role than other 

uncertainty formalisms.  It is a last resort (or preliminary assessment) when information 

is, for whatever reason, too limited to enable the parameters of other uncertainty models 

to be specified without unwarranted assumptions.  It seems intuitively reasonable that one 

would, as IGDT requires, be willing to trade good-enough performance in exchange for 

extra allowance for error in estimates.  IGDT does not guarantee the optimal 
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performance; rather; it guards against choice of decisions that quickly underperform in 

the presence of uncertainty. 

3.6.3 Rationality and Axiomatic Underpinnings of Decisions 

From a normative standpoint, a decision theory can be judged as trustworthy if its 

information models, methods for elicitation, and decision rules are founded on 

mathematically sound axioms (Hazelrigg 2003).  Aughenbaugh, for instance, argues for 

the use of imprecise probabilities based on these grounds (Aughenbaugh 2006).  Also, 

many decision makers, especially economists, cite the dependability of expected utility 

theory based on the strength of both Kolmogorov’s axioms (Kolmogorov 1956) and the 

von Neumann-Morgenstern (vNM) axioms (von Neumann and Morgenstern 1944). 

IGDT has axioms for the structure and behavior of its models (Ben-Haim 1999); 

however, it lacks a normative decision axiom as strong as the vNM axioms.  This is 

mostly because preferences for robustness are (or can be) formed based on inspection of 

robustness curves (e.g. Figure 3.10 or Figure 3.11).  As Hall observes, "[info gap decision 

theory] is not dogmatic in being derived from axioms of rationality and leading to 

prescribed behaviour, though it certainly has a rationale that is justifiable as far as 

available information will allow" (Hall 2003).  And, as Ben-Haim himself defends: 

If “rationality” means choosing an action which maximizes the best 
estimate of the outcome, as is assumed in much economic theory, then 
info-gap robustness is not rational.  However, in a competitive 
environment, survival dictates rationality…If rationality means selecting 
reliable means for achieving essential goals, then info-gap robust-
satisficing is extremely rational.” (Ben-Haim 2006) 
 

This idea seems reasonable, though it warrants future discussion, perhaps on a 

philosophical level. 
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3.6.4 IGDT “Performance” Versus Other Formalisms 

Aughenbaugh and Paredis devised a scheme for comparing the average 

performance of two different uncertainty models: a precise normal fit distribution versus 

an imprecise p-box (Aughenbaugh and Paredis 2006).   Each model utilized the exact 

same test samples drawn from a “truth” probability distribution known only by an 

“omniscient supervisor”.  This test revealed that which model performs better depended 

on the number of samples available to describe a random variable, material strength.  

Could a similar test be applied to IGDT versus other formalisms? 

 Unfortunately, no.  As explained in Section 3.6.1, info-gaps and other uncertainty 

models can’t utilize the exact same information; doing so either throws away info (to 

make it usable in an info-gap) or requires unavailable assumptions for the other (to fill in 

missing data such as bounds or distribution parameters).  Once one starts to use 

information in the form of samples, probability is automatically favored.  Moreover, the 

decision rule for determining the most preferred design differs for info-gap (as indicated 

throughout Section 3.4), also discouraging comparability.  Info-gap robustness, and, 

accordingly, design preference ranking based on that, depends (structurally) on a choice 

of rc, the satisficing level of critical performance.  Choosing an rc level would require 

extra input than would be used in another uncertainty formalism. 

3.7 What Has Been Presented, and What is Next 

In this chapter, the general concept of uncertainty has been presented along with 

different models and approaches to including it into design decision making.  From this 

reference point, IGDT can be seen to be unique in the way that it models severely 

deficient information about uncertainty and assesses the robustness of designs from a 



 77

satisficing perspective.  Thus, info-gap theory is meant to complement existing 

uncertainty formalisms, providing a means for analysis of the decision-implications of 

uncertainty when information about that uncertainty is too sparse to warrant another 

formalism.  Additionally, IGDT uses much different information, and its performance 

(i.e., success in determining “good” decisions under uncertainty) cannot be 

experimentally compared to other uncertainty models if the same starting information is 

to be used. 

 Since IGDT has been identified as uniquely applicable depending on what is 

known about uncertainty, the next task is to explore its generality to handle various 

scenarios of EBDM problems that involve severe uncertainties. 
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CHAPTER 4: 

USAGE GUIDELINES FOR APPLYING IGDT TO EBDM 

 
 
 

At this point in the thesis, the problems and needs created by EBDM information 

deficiency have been reviewed in Chapter 2, and the structure, information requirements, 

and usage of IGDT have been examined in Chapter 3.  The current chapter synthesizes 

what has been learned so far into a set of guidelines for applying IGDT to EBDM.  A first 

attempt at proposing guidelines is made in Section 4.1.  An oil filter selection design 

problem is posed in Section 4.2, and we use it to consider how the guidelines would help 

one decide to apply IGDT.  In Section 4.3, the design problem is solved using IGDT and 

design insight is gained and discussed.  Finally, the design guidelines are updated using 

usability lessons learned during the application of info-gap to the problem. 

4.1 Proposal of an Initial Set of Usage Guidelines 

Different components of an info-gap analysis (per Section 3.4) can apply to 

EBDM problems in different foreseeable ways.  The following section makes an initial 

attempt at a set of guidelines for understanding the applicability of IGDT to an EBDM 

problem.  These guidelines combine findings from the survey of EBDM uncertainties 

(Chapter 2) with insight about formulating the components of an info-gap problem 

(Chapter 3).  System performance, uncertainty type, and one’s willingness to satisfice 

performance to gain robustness to uncertainty are all considered as follows. 
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4.1.1 Selection between Design Alternatives 

Generally, EBDM design problems can either consist of selection between 

discrete alternatives (i.e., choice between design options), specification of some value of 

a continuous design variable (e.g., specifying the thickness of a beam), or some 

combination of the two.  Conceptual examples of robustness-performance curves for a 

selection problem and for a continuous design problem were illustrated in Figure 3.11 

and Figure 3.10, respectively.  For a continuous design problem, switches in which 

design is most preferred occur at specific points (a PSP) rather than gradually, as in 

continuous design problems.  Thus, a decision maker will not need to be as precise when 

specifying a robustness performance trade-off for a selection problem.  In addition, the 

techniques to be presented in Chapter 5, which enable analysis of multiple info-gaps, are 

difficult to apply to design problems with continuous variables.  Thus, a decision maker 

will probably have most success applying IGDT to EBDM design problems limited to 

selection between discrete design alternatives. 

4.1.2 Info-gap Uncertainties in EBDM 

Variables and models alike can be info-gaps; in this section we will use the term 

“models” generally to describe both.  Phenomena that are info-gap uncertain tend to be 

models dependent on numerous compounded uncertainties, time-distant aspects, and/or 

system complexities.  They can fall in any of the “spheres” of influence discussed in 

Section 2.1.2.  Some general groupings for info-gap uncertain models include: 

• Estimates of unknown validity: variables that are specific to (or have been measured 

from) one system but whose validity in representing a different system is unknown.  

Examples include models of: 
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o Machine performance from one factory, applied to estimate the performance 

of a new factory’s machines, which may be a new or different technology. 

o Environmental (impact) performance indicators from an LCA database (or 

handbook) whose quantities are derived in an undocumented fashion or whose 

embedded valuation applies to geographic regions with different 

environmental priorities. 

• Time-sensitive models: models that may be applicable now but will deviate in 

validity by some unknown amount in the future.  Examples include models of: 

o Ecological impact models that could change with the climate or geographical 

changes. 

• Human behavior: economic demand, consumption habits, regulatory levels 

• Unobserved socio-techno interactions: customer usage trends, market success of 

technologies, destination of products at end of life, product “hacking”, terrorism. 

• Natural systems behavior: climate variables, storm loads, actual environmental 

responses to pollutants, resource availability. 

• Composite uncertainties: Several separate uncertainties combine together and are 

considered one overall severe uncertainty. 

4.1.3 Performance Functions R(q,u) in EBDM 

Different considerations about the performance function include what it measures 

and what structure it takes. 

4.1.3.1 Units of Environmental Performance 

Units that R(q,u) might be include: 
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• Single score all-in-one indicators: These performance measures come from 

impact assessment methods for life-cycle analysis in which particular scores are 

assigned to specific materials and processes.   An example is Eco-Indicator 99, 

measured in millipoints (Goedkoop and Spriensma 2001).  This is explained more 

in Section 4.2.2. 

• Composite weighted sums for single impact types: Global Warming Potential, 

eutrophication, etc. 

• Specific impact oriented metrics: Various measures of eco-system damage. 

• Energy measures: Energy consumption, total embedded energy, or even exergy 

• Waste measures: Waste production, the Waste Index (Emblemsvag and Bras 

2001) 

• Monetary measures: valuation of the effects of environmental impact, e.g. by 

emissions taxes or credits, resource consumption, etc. 

4.1.3.2 Structure of Performance Functions 

As mentioned at the end of Section 3.4.4, selection problems (i.e., a choice 

between design alternatives) are more likely to feature ranking switches (PSPs) when the 

following is true of the performance function: 

• the uncertainty model U is somehow a function of the design options q, 

• the R(q,u) is a structurally different equation for different design options q. 

An example of the second item above is a classic payback scenario.  This is when 

a design option that has a high up-front cost but low continuing cost eventually “pays 

back” and achieves savings if utilized for a long enough period of time.  Different design 
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alternatives may perform differently overall depending on the timescales involved.  This 

case will be demonstrated in the oil filter selection example problem in this chapter. 

4.1.4 Satisficing Behavior in EBDM 

Like for all info-gap problems, one must be willing to satisfice environmental 

performance to gain robustness to uncertainty.  Compared to financial measures, 

environmental performance dimensions may be less intuitive for people to relate to or 

express preferences for in terms of “value”; thus, the ability to analyze robustness-

performance trade-offs to help induce or catalyze one’s preferences is useful.   

As far as choices for satisficing targets, regulation thresholds could feasibly be 

used as a level of “critical performance” (rc) under conditions of severe uncertainty.  This 

should only be used for critical satisficing performance, however, not to design to the 

lowest standard. 

4.2 Introduction to the Test Example Problem: Oil Filter Selection 

The following oil filter problem has been used to test out the applicability of 

IGDT (Duncan et al. 2006, Duncan et al. 2008). 

 About 250 million light duty oil filters are discarded (and not recycled) in the 

United States each year, while about 250 million more are recycled (FMC 2002). The 

environmental impact of these filters can be substantial, as disposable filters contain large 

amounts of steel, aluminum, or plastic, depending on the style of filter. 

 In this example, it is assumed that an automobile manufacturer wants to reduce 

the environmental impact of oil filters from its cars by designing a more environmentally 

benign filter. Naturally, some simplifications and assumptions are introduced in the 
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problem.  For example, the exact parameters for the problem are chosen to be realistic, 

but they do not represent hard, real-world data.  Consequently, the emphasis is not on the 

actual decision outcome (i.e., the chosen filter), but rather on the decision and analysis 

process. 

4.2.1 Types of Oil Filters 

In this simplified model, shown in Figure 4.1, an oil filter is comprised of five 

main components: housing, top cap, filter, inner support, and bottom cap. support, and 

bottom cap.  The housing, top cap, and bottom cap make up the casing, and the inner 

support and filter make up the cartridge. 

 

filter

inner
supportbottom cap

top cap

housing

Casing Components Cartridge Components

 

Figure 4.1: Oil Filter Schematic Diagram (from (Aughenbaugh et al. 2006)) 
 

Two different types of oil filters are considered, as summarized in Table 4.1.  The 

dimensions of all components have been specified for the appropriate balance of strength 

and weight and are therefore fixed. 
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Table 4.1: Types of Oil Filters 

Filter Material Discarded parts 
SEC Steel All (casing and cartridge) 

TASO Aluminum Cartridge only 
 

 Engineers have developed two competing concepts for the new design.  The first 

filter considered is the steel easy change (SEC) filter.  For an SEC filter, the structural 

components are made of steel and the filter of cellulose.  The entire filter is designed to 

be replaced at once; it is simply unscrewed from the engine and the discarded or recycled.  

The second type of filter is the take-apart spin-on (TASO) filter.  A TASO filter’s 

structural elements are made out of aluminum and when the filter is replaced, only the 

cartridge is discarded; the casing is designed to last for the lifetime of the engine and is 

reused when the filter is changed.    The environmental performance of both alternatives 

is considered over a vehicle’s entire lifetime, which relates to F , the total number of 

filters used over the lifetime. 

4.2.2 Environmental Impact Calculation 

It is assumed that the primary environmental impact of an oil filter arises due to 

the construction, transportation, and disposal of the casing and cartridge components 

shown in Figure 4.1.  Other substances, such as oil residue and rubber seals are generally 

equivalent in both filter types, and therefore do not contribute to the selection decision. 

Eco-indicator 99 is an impact assessment method for life-cycle analysis in which 

particular scores, measured in millipoints (mPt), are assigned to specific materials and 

processes (Goedkoop and Spriensma 2001).  In this example problem, only those 

environmental impacts that increase in direct proportion to mass are considered.  For 

simplicity, these impacts-per-mass for different stages of the life cycle (mining, 
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processing, disposal, recycling, etc.) will be summed for each component and referred to, 

for simplicity, as Eco-indicator rates, or simply ecorates, subsequently. 

 In the Eco-indicator methodology, the ecorates are tabulated as shown in  by 

considering the three spheres of knowledge and reasoning noted in Section 2.1.2.  The 

rates are tabulated for various products or by-products of manufacturing processes and 

product life-cycles.  For each of the items in a potential load inventory (part of the 

technosphere), there are associated environmental effects in the ecosphere.  For example, 

the release of CFCs into the environment depletes the ozone layer.  In some cases these 

effects are clearly understood, and in other cases there is uncertainty as to how strong the 

effects are. 

 Each effect, in turn, has particular damages associated with it.  These damage 

estimates are often more uncertain than the effects.  For example, consider the current 

debate surrounding the damages that result from increased greenhouse gas emissions—

how much are they damaging the ecosystem?  There is not universal agreement, and 

hence significant uncertainty, as to the true damages. 

 

Technosphere Ecosphere Valuesphere

Inventory (e.g.)
• CFC
• Pb
• SO2
• CO2
• NOx

Effects (e.g.)
•Ozone layer 
depletion
•Heavy metals
•Greenhouse 
•Acidification

Damage (e.g.)
•Fatalities
•Health 
impairment
•Ecosystem 
impairment

Weighting
Subjective 
damage 

assessment

Eco-indicator
value

Calculated
rate

 

Figure 4.2: Eco-indicator calculation.  Adapted from (Goedkoop and Spriensma 
2001) 
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Once the ecosphere aspects are modeled, one evaluates how much he or she 

actually cares about these damages relative to other damages.  This is a valuesphere 

question.  The value that someone or some society places on a particular damage can vary 

with factors such as culture, religion, and geographic location.  For example, assuming 

greenhouse gas emissions are causing global warming and raising sea levels, how much 

does one care about these damages compared to damages caused by acid rain?  

The Eco-indicator methods condense ecosphere and valuesphere information for 

individual materials on a per-mass basis.  In order to calculate the actual impact of a 

process or product, the total mass of materials present—the inventory or technosphere 

information—must be determined.  In this example, we assume that the filter casings and 

cartridges can each be parameterized per filter, and thus the impact of each can be 

summarized with one mass and ecorate.  The specific assumed data are shown in Table 

4.2.  The impact cI  of a given component c  can be calculated as: 

 c c cI mass ecorate= ⋅  (4.1) 

The total environmental impact over a vehicle’s lifetime depends on the number 

of filters F  used, which is categorized as a life cycle event in the terminology of Figure 

2.2.  The quantity F  is uncertain because not every vehicle is in service for the same 

number of miles, and car owners change the filters with difference frequencies.  When 

using LCA in practice it is important to communicate fully to decision makers what 

masses and remaining assumptions were used in determining the Eco-indicator scores.  

However, because this thesis is not intended to be an actual recommendation of a filter, 

the rest of this step will be skipped for brevity. 
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Table 4.2: Mass and impact-per-mass for all components 

  mass, kg ecorate, 
millipoints/kg 

Cartridge mcr,T=0.071 ecr,T=5.07 TASO 
Casing mcs,T=1.841 ecs,T=17.10 
Cartridge mcr,S=0.075 ecr,S=5.50 SEC 
Casing mcs,S=0.817 ecs,S=1.78 

 

Assembling these components into equations for environmental performance, the 

total impacts of the filters are: 

 
( )

, , , ,

+

        ( ) ( )
TASO casing cartridge

cs T cs T cr T cr T

I I I F

m e m e F

= ⋅

= ⋅ + ⋅ ⋅
 (4.2) 

 
( )

, , , ,

+

       ( )
SEC casing cartridge

cs S cs S cr S cr S

I I I F

m e m e F

= ⋅

= ⋅ + ⋅ ⋅
 (4.3) 

An essential difference between the environmental impact of the designs is their 

casings: the TASO incurs a high one-time load  whereas the SEC incurs a smaller load 

every time the filter is changed.  For small F , the SEC filter has a smaller impact, but as 

F  increases, the impact of replacing the casing with the SEC filter will exceed the one-

time impact of the TASO’s casing.  The TASO casing has a higher impact because it is 

contains more material—it is built to last as long as the car’s engine—than the SEC filter 

and because the material is aluminum, which is more resource intensive per unit weight 

than steel.  In contrast, the SEC filter is made of steel (with a lower impact per mass) and 

contains less material since its lifetime is shorter. 

4.2.3 Considering IGDT Applicability to the Problem 

The oil filter selection problem introduced in this section can be used to explore 

the application of IGDT to various scenarios regarding the uncertainty in the ecorates and 
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the number of filters used over the vehicle’s lifetime.  This is justified by the following 

reasoning. 

The Eco-indicator construct provides a baseline for comparing the environmental 

impact of different materials across all of the spheres.  However, the uncertainties in the 

ecosphere (effects and damages) and valuesphere combine to yield a very large 

uncertainty in the ecorates.  If one does not know on what assumptions Eco-indicator 

scoring is based, one does not know how applicable those values are to different 

geographic regions or different social value sets.  This falls under the category “estimates 

of unknown validity” from the Guidelines in Section 4.1.2. 

The example also assumes severely deficient information regarding the average 

number of filters used over an engine’s life, F.  Despite recommendation by the 

manufacturer of a particular mileage period between filter changes, uncertainty about the 

frequency with which the customers will actually change their filters, coupled with 

uncertainty about the average lifetime of their cars, makes the actual average number of 

lifetime filter changes severely uncertain.  This uncertainty is a combination of categories 

from the Guidelines in Section 4.1.2: “Human Behavior”, “Estimates of Unknown 

Validity”, and “Composite Uncertainty”. 

Next, the performance functions I are different for the two design alternatives.  In 

addition, their structure are that of a pay-back scenario, as mentioned in 4.1.3.2.  It will 

be seen that these two facts mean that the environmental performance relates differently 

to the two info-gap uncertain variables. 

 Finally, the decision maker wishes to evaluate the selection decision without 

collecting further information, and decides to use the IGDT approach to do so.  She is 
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willing to take the attitude that settling for some guaranteed lower-bound on performance 

is acceptable and preferable to risky, (but higher) optimized performance that relies on 

the veracity of unfounded assumptions about the uncertainty.  Accordingly, the decision 

maker seeks the design alternative with maximum robustness to the unknown gap 

between the unknown actual variables and their nominal estimate.  The desire to 

maximize the size to which the discrepancy can grow is subject to a satisficing critical 

constraint that defines a largest environmental load that can be accepted, one that is sub-

optimal with respect to the solution with no uncertainty, yet “good enough” given its 

robustness to uncertainty. 

4.3 Oil filter Design Decisions with Info-Gap Theory 

In the following series of examples, info-gap models and analyses of uncertainty 

will be explained for increasingly complicated situations.  It is shown that different 

analysis approaches require different considerations and demands on the decision maker 

to form preferences for tradeoffs in critical performance versus robustness to uncertainty.  

The examples include, progressively: 

• Section 4.3.1: One uncertainty that affects both design alternatives. Specifically, 

the number of filters F  used over the vehicle’s lifetime. 

• Section 4.3.2: One uncertainty that has the same units and type but a different 

nominal for each alternative.  Specifically, the ecorate of the casing material for 

each alternative is considered uncertain. 



 90

4.3.1 Example 1: Uncertain Number of Filters Used in Lifetime 

For this first example problem, an info-gap analysis will be explained in detail.  

Subsequent examples are variants of this problem, so only their formulation differences 

and results will be presented. 

4.3.1.1 Info-gap model 

It is assumed that the design firm has experience making filters for vehicles 

owned by customers in the industrial sector who schedule regular maintenance and 

change filters with predictable frequency.  On average, those customers use 17 filters 

over the life of an engine.  However, the design company wishes to expand its business 

with a new filter design targeting the public sector.  Customers in that sector are expected 

to have less predictable maintenance behavior, and the degree to which their change 

frequency will deviate from that of industrial customers is unknown. 

 

Thus, the info-gap model for this example can be specified with the knowledge 

that: 

• The nominal value of oil filters used over an engine’s lifetime is 17F = , taken 

from information on maintenance rates in the industrial sector. 

• The growth of deviation around nominal can be expressed mathematically as a 

simple interval bounded info-gap. 

Combining the uncertainty parameter, α, with this sparse information, the info-

gap model for lifetime filter usage is: 

 { }( , ) : ,  0F F F F Fα α α= − ≤ ≥  (4.4) 
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The form of this particular info-gap model can also be expressed more simply: 

 F F Fα α− ≤ ≤ +  (4.5) 

4.3.1.2 Reward function and satisficing critical value 

The other two components needed for an info-gap decision analysis are the 

reward function and satisficing critical value for performance.  The reward functions for 

environmental impact, based on Table 4.2 and Eqs. (4.2) and (4.3), of the TASO and SEC 

designs are respectively: 

 1( , ) ( , ) 31.48 (0.36 ),  [mPt]R q u I TASO F F= = + ⋅  (4.6) 

 2( , ) ( , ) (1.46 0.41) ,  [mPt]R q u I SEC F F= = + ⋅  (4.7) 

The designer chooses a critical value of Icritical=40mPt, which is the highest level 

of environmental impact deemed tolerable.  In this problem, the decision maker seeks to 

minimize impact, so the inequality in Eq. (3.6) is used and the critical constraint is given 

as: 

 ( , ) criticalI alt F I≤  (4.8) 

For convenience, the variable alt is used to represent the discrete design 

alternatives, TASO and SEC. 

4.3.1.3 Info-gap robustness function 

Of main interest in an info-gap analysis is what largest amount of robustness to 

uncertainty, ˆ ( , )cq rα , is achievable.  This robustness is the largest amount of uncertainty 

α that can be sustained by a design alternative q while still guaranteeing, at worst, 
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achievement of the chosen critical performance level rc.  Expressed in the form of Eq. 

(3.8), the info-gap robustness for this example is: 

 
( , )

ˆ ( , ) max : max ( , )critical critical
F U F

alt I I alt F I
α

α α
∈

⎧ ⎫⎪ ⎪= ≤⎨ ⎬
⎪ ⎪⎩ ⎭

 (4.9) 

For this particular problem, finding the expression for α̂  for either design 

alternative is relatively simple.  First, the uncertain variable F in Eqs. (4.6) and (4.7) is 

replaced with F α+ , the side of the parameterized info-gap model associated with worse 

performance, e.g.: 

 ( , ) 31.48 (0.36 ( ))I TASO F F α= + ⋅ +  (4.10) 

With this equation form, one can solve for α and calculate ( , )criticalalt Iα , 

equivalent in this case to info-gap robustness, ˆ ( , )criticalalt Iα .  When the reward function, 

info-gap model, and/or design space q assume more complicated forms, the optimization 

problem embedded in Eq. (4.9) can be more difficult to solve. 

For the critical level Icritical=40mPt, ˆ ( , 40 )TASO mPtα =6.7 filters and 

ˆ ( , 40 )SEC mPtα =4.5 filters.  One design is preferable to another when it can assure 

performance at or better than the critical requirement amidst a greater amount of 

deviation α.  In this case, the TASO is “robust-optimal” and preferred to the SEC because 

the TASO filter can meet the critical impact constraint for a larger amount of uncertainty 

than the SEC filter can. 

4.3.1.4 Analysis of Robustness-Performance Tradeoff 

Analysis of preference for the trade between robustness and critical (acceptable) 

performance is facilitated by examining a tradeoff plot.  This plot is shown in Figure 4.3 
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and discussed next.  Critical levels of performance can be chosen along the horizontal 

axis, with the corresponding robustness found as the vertical distance from the horizontal 

axis to the performance line for each design alternative. 

 The designer, not knowing the estimation error α, is tasked with choosing a point 

on the horizontal axis corresponding to his or her demanded level of satisficing 

performance.  In some applications, the rc value may be strongly dictated by external 

factors.  In other applications, the decision maker has the flexibility to relax their choice 

of critical performance level in order to gain more robustness.  The decision maker can 

explore this tradeoff graphically in Figure 4.3 by examining the maximum robustness 

achievable for different values criticalI . In this example, the design having maximum 

robustness is the one whose performance function plot is the highest at a given critical 

performance level. 

 The plot in Figure 4.3 is instrumental in understanding how design preference 

changes as the demand for minimally acceptable performance is relaxed further away 

from the performance-optimal level.  For example, at critical satisficing level discussed 

earlier, =40mPtcriticalI , it can be seen that ˆ ( )TASOα =6.7 filters and ˆ ( )SECα =4.5 filters.  

If an impact as aggressively low as 31.7mPt were demanded, only the SEC would satisfy 

the constraint, and even then, there would be no tolerance for error, α, in estimating the 

number of filter changes.  Thus, ˆ ( ,31.7 )SEC mPtα =0.  Until the critical requirement is 

relaxed (i.e., moved to the right on the axis) as far as 37.6mPt, SEC is still the only viable 

option, with its tolerance for error growing linearly.  At 37.6criticalI mPt= , TASO is now 

a viable design, but offers no info-gap robustness.  TASO’s robustness eventually 

overtakes SEC at Icritical=39mPt, where the performance lines cross in Figure 4.3 and the 
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preferred design changes.  The decision maker must explore these tradeoffs and 

determine what feasible combinations of robustness and critical performance are 

preferable. 

 

0

1

2

3

4

5

6

7

8

30 32 34 36 38 40 42

Critical requirement level, r c , for millipoints (smaller 
better)

Ro
bu

st
ne

ss
 to

 #
 o

f f
ilt

er
s-

pe
r-

en
gi

ne
-

lif
e 

ab
ov

e 
no

m
in

al
 1

7

TASO

SEC

ˆ ( , 40 )TASO mPtα

ˆ ( , 40 )SEC mPtα

 

Figure 4.3: Info-gap robustness versus Environmental impact 

 

The following knowledge is gained in this simple example: 

• If the decision maker can accept a worst-case environmental impact as high (which 

indicates worse performance in this example) as 39mPt, then the TASO design is 

preferable because it can endure the highest amount of error above the nominal guess 

and still satisfy the performance constraint.  Moreover, the rate at which info-gap 

robustness is gained with incremental relaxation of the Icritical demand (i.e., the line 

slope) is faster for TASO than SEC, making TASO even more attractive past 39mPt 

of demand.   
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• If there were no uncertainty, SEC would outperform TASO by a difference of 5.9 

mPt; however, if in reality the deviation above the nominal estimate of 17 filter 

changes grew as high as 6 changes, for a total of 23 changes, TASO would then 

instead outperform SEC by 3.2 mPt. 

• The designer, not knowing what the uncertain variable actually will be, can use the 

info-gap analysis and plot in Figure 4.3 to get a handle on what a decision change 

entails under the satisficing decision rule.  If it seems reasonable that the average 

number of filter changes could deviate more than 4 above the estimate of 17, and that 

a relaxed demand of 7.3 mPt is reasonable, then the designer should choose the more 

robust TASO.  Past that decision-switch point, the TASO option takes advantage of 

greater robustness-per-incremental-relax-in-demand, as indicated by TASO line’s 

flatter slope.  It is up to the decision maker to sort out his or her preference for 

robustness versus guaranteed achievement of, at worst, some critical level of 

performance. 

4.3.2 Example 2: Uncertain environmental impact rates-per-material 

In this section, an info-gap analysis is performed assuming extreme uncertainty in 

the ecorates for the filter casings.  The rationale for considering ecorates as extremely 

uncertain was discussed in Section 4.2.2.  In this section, the previously unknown number 

of filters will be considered known in order to isolate the effects of uncertainty in the 

estimates of the casing ecorates.  Similarly, the ecorates for the cartridges will be 

assumed known in order to facilitate illustration of the main ideas.  An illustration of the 

more complicated case of multiple uncertainties is postponed until the next Chapter. 
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 Whereas the lifetime number of filters affected both TASO and SEC alternatives, 

the ecorates, while having similar properties, have different nominal values for each 

design alternative because each is made from a different material.  The values for 

ecorates, which were previously exact, are now used as the nominal values, i.e., 

,case TASOe =17.1 mPt/kg and ,case SECe =1.78 mPt/kg.  We note that the units of the two are 

the same, and thus they can be expressed using a common α .  (Note: One should only 

model in this fashion if it is believed that each uncertainty deviates in a similar scale from 

their nominals, which are different.)  Using the interval bounded form as before: 

 { }( , ) : ,  0case material material material materiale e e e eα α α= − ≤ ≥  (4.11) 

Or, more simply stated, for the side of the info-gap model that creates worse 

performance: 

 material materiale e α≤ +  (4.12) 

Substituting materiale  with materiale α+  in the original performance function of 

Eqs. (4.6) and (4.7), a new plot of robustness to error in estimating materiale  is presented 

in Figure 4.4. 
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Figure 4.4: Info-gap robustness to materiale  versus satisficing critical level of 
environmental impact 

 

In the analysis of Section 4.3.1,  each design alternative endured the same 

uncertain quantity, F , so α  was clearly the same for each alternative.  This made 

comparisons between the robustness of the SEC filter and TASO filter straightforward. 

 In Figure 4.4, consider the comparison of the robustness of the TASO and SEC 

filters for a critical impact of 40mPt.  At this critical impact, the TASO filter allows for a 

larger α  than SEC.  However, a particular α  for SEC is not necessarily equivalent to the 

same α  for TASO.  To clarify, as defined in Figure 4.4, the units of the two α ’s are the 

same, but the meaning is not necessary equivalent.  For example, is a deviation of 

1mPt/kg from the nominal value of 17.1 mPt/kg for the TASO casing the same as a 

1mPt/kg deviation from the nominal value of 1.78mPt/kg for the SEC casing?  We 

believe this to be a highly restrictive assumption because the underlying causes of the 

uncertainty could be different. 
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 An alternative way to compare two uncertainties with different nominal values 

would be to use the percent deviations (Eq. (3.3)) from the nominal.  However, this still 

assumes that the uncertainties tend to deviate in the same percentages in reality.  These 

restrictive demands on assumptions are examined in more detail in the next Chapter, in 

which both the ecorates for the casings and the number of filters F  are assumed to be 

uncertain. 

4.3.3 Discussion of Oil Filter Problem 

In certain situations, the info-gap design analysis approach can eliminate the need 

for further data collection by facilitating decision making under extreme uncertainty (i.e., 

when estimation error cannot be quantified).  For instance, if a switch in design choice 

(e.g., from SEC to TASO) requires a small sacrifice in guaranteed performance yet 

affords a reasonably large amount of extra robustness to error in a nominal estimate, one 

could decide to switch their choice without collecting more information. 

4.4 An Updating of the Guidelines: Lesson Learned About Usability 

Applying IGDT to the preceding example problem has provided insight that can 

be used as future guidelines.  Most importantly, it was found that making assessments of 

robustness-performance trade-offs with either performance or uncertainty measured in a 

single-score environmental performance indicator can be difficult.  This can reduce the 

precision with which one could make a trade-off and determine which design has the 

most preferable robustness characteristics. 
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4.4.1 Measuring Performance with Composite Indicators Can Be Hard to Judge 

The IGDT approach requires that the decision maker be able to evaluate the 

acceptability of some satisficing level of critical performance in light of the 

corresponding gain in robustness to an info-gap of unknown size.  In the examples in the 

previous Section, we assumed that the decision maker could state a preference for some 

acceptable size in the Eco-indicator 99 measure of environmental impact, specifically 

=40mPtcriticalI .  Although Eco-indicator scoring is grounded in reality, with one 

millipoint corresponding to 1/1000000 of the environmental load of a European citizen 

over 1 year, the Eco-indicator 99 construct was primarily developed to compare options 

relatively, not absolutely (Goedkoop and Spriensma 2001).  Whether or not a decision 

maker would find it reasonable to state one’s preference for an absolute millipoint score 

with that reference point in mind is debatable. 

4.4.2 Some Info-Gap Sizes are Harder to Assess 

Similarly, IGDT requires a decision maker to have a relative understanding of the 

magnitude of deviation around an uncertain quantity’s nominal estimate, but not all 

uncertainty severities are equally easy to assess.  In this example, it is probably easier to 

understand the severity of error in number of lifetime filter changes in Section 4.3.1 than 

to understand the severity of particular errors in an ecorate in the analysis of Section 

4.3.2.  This problem was compounded in Section 4.3.2 because there were uncertain 

ecorates whose actual values differ for different materials.  Difficulty assessing the 

severity of an uncertainty makes trading off critical performance to gain robustness 

difficult, perhaps prohibitively so. 
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4.5 What Has Been Presented, and What is Next 

In this chapter, we have proposed what a set of guidelines would look like for 

gauging the applicability of IGDT to an EBDM problem.  The guidelines were used to 

determine that the oil filter problem was a potential candidate.  An info-gap analysis was 

performed on the oil filter problem for two different uncertain variables of much different 

type.  Design insight and lessons learned were gleaned from solving the example 

problem, and used to qualify the usability of Eco-Indicator scoring in info-gap problems. 

 The next chapter uses the oil filter selection problem as a platform to examine the 

effects that multiple uncertainties have when trying to evaluate info-gap robustness and 

settle on preferences for a robustness-performance trade-off. 
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CHAPTER 5: 

ASSESSING MULTIPLE INFO-GAP UNCERTAINTIES 

 
 
 

So far in this thesis, we have reviewed, for general cases, the conditions and 

assumptions that a decision maker would need to accept when deciding to use info-gap; 

we’ve outlined when IGDT’s satisficing strategy will be valuable; and, we’ve explained 

what all this means in light of specific aspects of EBDM.  In this chapter we consider 

decision scenarios affected by multiple info-gap uncertainties, which we will call “multi-

gaps” for brevity.  In Section 5.1, we illustrate how the existence of multi-gaps can create 

indeterminacy in preference rankings.  In Section 5.2, we review the assumptions and 

implications of prior techniques that analyze multi-gaps through the use of scaling 

factors.  In Section 5.3, we leverage existing techniques and propose Bet-Based Scaling 

Elicitation (BBSE), a new, more rigorous technique for eliciting scaling factors.  After 

applying BBSE to an example problem in Section 5.4, we discuss its implications of the 

newly presented techniques in Section 5.5. 

5.1 Motivation 

We now review the mission of IGDT—that is, to evaluate how satisficing 

performance affords robustness to info-gaps—in the context of multiple uncertainties.  

This section illustrates the effects that multiple info-gaps have on determining design 

preferredness, and clarifies what the challenges are and where gaps in previous 

capabilities exist. 



 102

5.1.1 The Added Complexity of Assessing Multiple Info-Gaps 

As demonstrated in Section 3.3, for problems with only one info-gap uncertainty, 

the decision analyst (DA) is interested in assessing how much robustness is achievable 

for a range of satisficing critical performance levels, rc.  From there, preference rankings 

can be induced for a set of design option q.  For multiple info-gap uncertainties (multi-

gaps), the DA’s interest remains fundamentally the same: How much robustness to each 

uncertainty can simultaneously be achieved for various levels of rc, for the different 

design options q?  How “good” are the robustnesses that can be achieved, and what q̂  

should be chosen accordingly? 

 Assessing robustness to multi-gaps becomes more complicated when robustnesses 

“compete”.  A decision maker naturally wants to maximize the size to which each 

robustness, ˆnα , can allowably grow.  However, when growth in each α  separately results 

in worse performance, a trade-off exists between the simultaneously achievable maxima 

for each ˆnα .  This trade-off resembles Pareto optimality: robustness to one uncertainty 

cannot be further increased without causing a corresponding loss in robustness to another 

uncertainty.  An example of this trade-off is shown in Figure 5.1, which is introduced in 

detail in Section 5.1.2. 

 Competition between robustnesses adds complexity to the trade-offs being 

assessed.  Before, for one info-gap uncertainty, the decision analyst would assess the 

adequacy of a design’s robustness in light of the rc value on which it depends.  For multi-

gaps, however, the analyst assesses not only the “size” of each robustness ˆ ( , )n cr qα , but 

also the trade-offs between simultaneously achievable robustnesses, all of which are 

dependent on rc.  This not only makes eliciting ˆ ( , )cq rα –rc trade-off preferences more 
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complicated, but also, as will be shown in the next section, can create ranges of rc where 

one cannot identify a most preferred design q̂  without additional information. 

5.1.2 Exploration of an Example 

The above situation can be illustrated using a three dimensional plot based on the 

EBDM example of oil filter design originally introduced in Section 4.2.  The plot is 

shown in Figure 5.1.  The plot is of robustness to the two uncertainty parameters of the 

following info-gap models: 

 { }( , ) : ,  0F F FF F F F Fα α α= − ≤ ≥  (5.1) 

 { }( , ) : ,  0case e material material material material e ee e e e eα α α= − ≤ ≥  (5.2) 

The performance equations (4.6) and (4.7) and the robustness functions of the 

type (4.9) are used again for the 3-D plot.  The two intersecting surfaces shown are the 

robustnesses, ˆ ( , )ecorate cr qα  and ˆ ( , )filterlife cr qα , which are functions of critical performance 

rc (expressed as a “milliPoint” environmental score) for the two design alternatives, q1 = 

TASO (solid shading) and q2 = SEC (grid shading).  Close inspection will reveal that the 

2-D plot traced out in the ˆ ( , )filterlife cr qα – rc plane is the same as in Figure 4.3; likewise, 

the 2-D plot traced out in the ˆ ( , )ecorate cr qα – rc plane is the same as in Figure 4.4. 
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Figure 5.1: Plots of the info-gap robustness of two different filter designs 

 

Both robustnesses ˆnα  depend on rc, but the sizes that they can simultaneously be 

trade off.  This trade-off can be viewed on a 2-D plane taken from the 3-D plot at a fixed 

rc, as shown on the right side of Figure 5.2.  The 2-D plot is also shown overlaid onto the 

3-D plot on the left side of the same figure; a green17 dotted box/border denotes the plane 

with which the 2-D plot is coincident.  The 2-D plot is called a competing robustness 

plot18 because it shows competition between robustnesses.  The red-solid and blue-

                                                 
17 When reading this thesis on a black-and-white printout, it is helpful to know that the green line will 
always be dotted, corresponding to an edge of a plane of constant rc; a black line will always be solid, 
corresponding to the robustness of the SEC design option; a blue line will always be dashed, corresponding 
to the robustness of the TASO design option; and a red line will always be dot-dashed, corresponding to the 
trade-off specification (TS) line, which is introduced in Section 5.2.3. 
18 Plotting of “competing robustnesses” requires the reward function, R(q,u), to be solved for α , thereby 
yielding the robustness function, ˆ ( , )cr qα .  Furthermore, since the plot involves the dependency of 1α̂  on 

2α̂ , the function becomes 1 2
ˆ ( , , )cr qα α .  Solving for this functional form may be difficult in many 

scenarios.  The competing robustness plots are provided in this section for the purposes of illustration of the 
concepts involved.  Later it will be shown that they are not actually used in (continues on next page ) 



 105

dashed robustness trade-off lines shown are the maximum simultaneously achievable 

robustnesses to each uncertainty, for each design, for a specific rc.  In the 2-D plot, in the 

two locations where the trade-off lines intersect the plot axes, robustness to one 

uncertainty is completely maximized, and there is no robustness to the other uncertainty.  

In this particular problem, each uncertainty has significant influence on performance, 

thus neither can grow exceptionally large (compared to the other) simultaneously. 
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Figure 5.2 : A slice of the 3-D plot at a specific rc, showing TASO’s dominance. 
 

When one design’s robustness trade-off line is furthest from the origin, that 

design’s robustness to multiple uncertainties exceeds, or dominates, that of all other 

designs.  For some choices of rc, such as in Figure 5.2 for rc = 39.4 mPt, one design 

always dominates by providing more robustness for any way that competing robustness 

ˆnα  trade off.  In that case, for that specific rc, a single most preferable choice q̂  exists no 

�  
multi-gap assessments to support elicitation of preferences for trade-off between robustness and 
performance. 
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matter how the robustnesses trade off, i.e., no matter the position along the robustness 

trade-off lines. 

 There are some values for rc (i.e., points along the rc axis), however, where no 

design completely dominates for all robustness trade-offs.  That is, q̂  cannot be 

determined uniquely without knowing how to trade-off between each competing 

robustness ˆnα .   
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Figure 5.3 : Preference indeterminacy: A most preferred q cannot be determined 
without more info. 

 

Such values for rc lie inside an interval [rc,low, rc,high] along the range of rc in which 

no most preferred design q̂  can be determined without additional information about how 

to trade off between competing robustnesses.  This line has not been observed in other 

literature; it will be henceforth be called an  interval of preferredness19 indeterminacy 

(IPI).  To put this concept into perspective, recall that before when evaluating the 

                                                 
19 Our choice of the term “preferredness” may seem awkward in comparison to the term “preference”, 
which might seem equivalent.  However, “preferredness” will be used here to stay consistent with the 
theme that one’s preference for maximum uncertainty to info-gaps does not change; however, which design 
is most preferred (i.e., preferredness) could change depending on how one would trade between competing 
robustnesses.  Within the IPI, preferredness is indeterminate. 
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ˆ( , )cq rα –rc trade-off for one uncertainty, there was a distinct preferredness switch point 

(PSP, also called a design preference ranking switch earlier in Section 3.4.4), at some 

level of critical performance rc, where the most preferred design switched.  An IPI, on the 

other hand, occurs due to multiple uncertainties; the bounds of the IPI correspond to the 

PSPs found when considering the different uncertainties individually.  This is depicted in 

Figure 5.4, where the cross-over points (highlighted with circles) from Figure 4.3 and 

Figure 4.4 are traced to the bounds of the IPI.  The IPI is highlighted on the rc axis as a 

bold line segment with large dots at the IPI boundaries (the IPI is shown again on the 

right axis just for clarity). 
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Figure 5.4 : Correspondence between IPI and PSPs from earlier single-info-gap 
examples. 

 

The IPI is a range of rc levels for which the most preferred design is 

indeterminate without somehow specifying a trade-off.  For the filter example, values of 
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rc = 39.0, 38.7, and 38.5 mPt are on the IPI’s high bound, interior, and low bound, 

respectively, as shown in Figure 5.5, Figure 5.6, and Figure 5.7. 
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Figure 5.5 : A slice of the 3-D plot at rc = 39 mPt, showing TASO’s complete 
dominance. 
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Figure 5.6 : A slice of the 3-D plot at rc = 38.7 mPt, showing a transition in 
dominance. 
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Figure 5.7 : A slice of the 3-D plot at rc = 38.5 mPt,, showing SEC’s complete 
dominance. 

 

For any rc ≤ 39 mPt (as in Figure 5.2, for instance), TASO is the clear choice 

because it dominates for any trade-off between robustnesses.  At 39 mPt, as in Figure 5.5, 

SEC has caught up partially; its robustness line intersects the TASO line on the ˆ
filterlifeα  

axis.  This intersection at the axis means that the SEC option has caught up in its ability 

to  provide robustness to error in the filter life estimate, but only for the trivial trade-off 

where there is no robustness to error in the ecorate estimate.  The rc = 39 mPt value at 

which this first intersection occurs is one end of the IPI: the value of rc where TASO is 

always most preferred except for at the intersection point, where it is preferred at least as 

much as SEC. 

 In Figure 5.6, for rc = 38.7 mPt, inside the IPI, determining the most preferred 

design q̂  now requires the DA to trade somehow between achieving robustness to one 

uncertainty or the other.  If the DA is unable to specify a trade-off, then a most preferred 

design cannot be identified.   
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 In Figure 5.7, created by the plane where rc = 38.5 mPt, SEC now becomes the 

sole choice for any trade-off between competing robustnesses.  This is the low end of the 

IPI.  Past this boundary, i.e., for critical performance more aggressive than (i.e., smaller 

than) 38.5 mPt, SEC will always be most preferred. 

 Finally, it should be noted that an IPI can be calculated for more than 2 

uncertainties.  Note that in Figure 5.4 the bounds of an IPI correspond to the PSPs found 

when considering the different info-gap uncertainties individually.  For n uncertainties, 

the PSP created by each info-gap separately can be plotted along the rc axis.  The extreme 

high and low switch points along that axis bound the IPI for multiple uncertainties. 
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5.1.3 Categorization of Different Multi-Gap Scenarios 

A conceptual guide to the different multi-gap analysis situations mentioned so far, 

and how they relate to the sections that follow is depicted in Figure 5.8.  This decision 

tree also addresses the question, “How should one systematically evaluate the effects of 

multiple info-gaps, gradually adding information or assumptions until indeterminacy (as 

created by an IPI) is resolved?”  One begins at the top of the tree and moves downward, 

gradually adding onto overall analysis of info-gap uncertainty and, if needed, eliciting 

and incorporating new information as necessary. 

 

Interval of Preferredness
Incertitude Exists
(Figure 5.6 – 5.8)

Assume nothing,
Assess incertitude,
Might still be able 
decide if IPI small

Multi-gap
growth can be scaled

(Section 5.2)
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Multiple Info-gap Uncertainties Exist
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(Complicated)

1

Ranking Reversals for each u
(Preference Switch Point)

PSP’s Coincide @
same rc

(Trivial)
2

3

Precise
Scaling

Imprecise
Scaling

4

 

Figure 5.8 Different multi-gap assessment techniques, and their novelty 

 

In Branch Point 1 of the Figure, one plots robustness functions for each different 

info-gap uncertainty separately to determine if there is a PSP for the designs separately.  

If there are no PSPs, multiple info-gaps exist, but one design option q̂  always provides 
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the most robustness to every info-gap, no matter the rc value, and no matter the trade-off 

between competing robustnesses.  This is a trivial case but is sometimes seen. 

For Branch Point 2, if there are PSPs for each info-gap and the PSP locations do 

not coincide at the same value for rc, this means that the combined effects of multiple 

uncertainties create an IPI.  For a given rc inside the IPI, no single design alternative 

always provides the most robustness to each uncertainty for all possible trade-offs 

between those competing robustnesses.  No preferred option q̂  can be identified unless 

one can specify how to trade between robustnesses.  

 In Branch Point 3, if the IPI is narrow enough along the range of rc, a decision 

still may be possible because the range over which preferredness is indeterminate is 

negligible.  In this case, it does not greatly matter how one trades off between competing 

robustnesses, thus no extra information about equivalent uncertainty scales or preferences 

for trade-offs need to be elicited. 

 In the case where the IPI is not narrow (Branch Point 4), which will be the 

concern of the remainder of this chapter, the IPI may span a great enough range of rc 

values that a trade-off between robustnesses needs to be specified. 

5.2 Multi-Gap Scaling: Concept and Benefits 

This section explains and demonstrates the concept of scaling multi-gaps to a 

single baseline uncertainty parameter as a means of resolving indeterminacy in 

preference rankings.  In Section 5.2.1, an existing technique for scaling is explained 

generally.  In Section 5.2.2, two specific ways to apply the technique are reviewed and 

examined for weaknesses.  In Section 5.2.3, a more in depth explanation is provided as to 

how scaling resolves the indeterminacy (IPI) identified in Section 5.1.  In Section 5.2.4, 
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the general concept of imprecise scaling and its usefulness in partially reducing the IPI is 

explained.  It should be noted that, in this section, demonstration is limited to how to 

apply normalized α  parameters to assessments; a discussion of how to actually elicit 

normalized α  parameters is postponed until Section 5.3. 

5.2.1 Scaling Factors: An Existing Technique 

Some precedence for multi-gap scaling exists in the literature.  In an example 

problem (Ben-Haim and Laufer 1998), Ben-Haim and Laufer offer “uncertainty weights” 

as a modeling option for defining a vector of info-gap uncertainties (i.e., multi-gaps).  We 

will instead use the term scaling factors for these weights20.  The mathematical form of a 

vector u of info-gap models that include scaling factors can be generalized as: 

 ( , ) : ,  1,..., ,  0n n
n

n

u u
u u s n N

u
α α α

⎧ − ⎫
= ≤ = ≥⎨ ⎬
⎩ ⎭

U  (3) 

or, in simpler terms: 

    ,    0n n n n n n nu s u u u s uα α α− ≤ ≤ + ≥  (4) 

where sn is a unitless scaling factor that modifies the magnitude of α  to be of appropriate 

scale for each uncertain variable un in the vector U   (Ben-Haim and Laufer 1998).  

Although sn is a scaling factor, it can also be thought of as an indicator or relative 

measurement of the decision analyst’s confidence in the nominal.  This confidence is a 

belief, perhaps based on prior evidence or perhaps not, that maps to α .  If one sn is small 

relative to others then the analyst has relatively more confidence in his/her assessment of 

that uncertain quantity. 

                                                 
20 The term “weights” often is used in discussions about preference modeling, so use of that term will be 
avoided during the discussion of uncertainty or belief modeling.  In this situation, calibration of scale seems 
to be a more accurate description of the function provided by Ban-Haim and Laufer’s “uncertainty 
weights”.  This is purely a semantic choice. 



 114

Because α  is fractional variation21 from nominal (see Eq. (3.3)), it is a unitless 

percentage.  The term baseline α  will henceforth be used to refer to this α  because, 

effectively, it parameterizes the info-gap uncertainty of multiple un.  The baseline α  can 

also be thought of as the “overall” level of gross uncertainty that the design alternatives 

could face, as was discussed before in Section 1.2.2. 

“Separate” uncertainty parameters nα  can also be defined: 

 n nsα α= ,   n = 1 , … , N (5) 

Like the α  on which it depends, nα  is a fractional variation from nominal, so it is 

also a unitless percentage. 

The structure of Eq. (3) creates a mapping between different info-gaps via the 

baseline α , which effectively imposes a trade-off between competing robustnesses.  This 

mapping is depicted conceptually for the oil filter problem in Figure 5.9, where scaling 

factors for info-gap uncertainties in ecorate and filter life are each shown to correspond to 

a particular value of the baseline α . 

 

                                                 
21 Again, “variation” refers to discrepancy between the known u and the unknown u; it does not refer to the 
probabilistic concept of variance. 
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Figure 5.9: Mapping the relative scales of two info-gaps to the baseline α measure of 
gross system uncertainty. 

 

With a scale mapping applied, the trade-off between info-gap robustnesses α̂ n 

and critical reward rc can be analyzed using the shared baseline α̂ .  This makes it easier 

to identify α̂ – rc trade-off trends that would be difficult to assess when considering each 

robustness separately (as was done in Figure 5.1, for instance).  The concept of using the 

shared α̂  as a proxy can be seen in Figure 5.10, which graphically depicts the results of 

scaling in the right half of the figure.   
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Figure 5.10 : Scaling to combine multiple αn into a baseline α for use in 
assessing α̂ – rc trade-off trends for n info-gap uncertainties. 

 

This type of bulk assessment of the effects of all uncertainties (via mapping their 

scales to a single baseline α ) is a heuristic, necessary because so little information about 

uncertainty is available.  This heuristic is non-ideal but provides some insight into how 

immune a design is to the overall gross uncertainty that a design might face. 

5.2.2 Details and Limitations of Two Ways to Use Scaling Factors 

Next, two different general classes of techniques that use scaling factors are 

discussed: equal fractional scaling and unequal fractional scaling.  Particular attention is 

paid to their limitations at the end of each subsection. 

5.2.2.1 Equal Fractional Scaling (EFS) 

In the case where fractional variation nα  is of equal scale for all un, (e.g., α=10% 

fractional variation from nominal u1 is of equivalent scale to 10% fractional variation 

from nominal u2), the scaling factor s is equal to 1 for all n.  (Because s is a factor of 

scale, if all sn = 1, then no scaling factor is actually necessary.)  We will refer to this 

modeling choice as equal fractional scaling (EFS).  In cases where the analyst has no 



 117

understanding of how to scale nα  sizes to each other, one could assume that EFS reflects 

this ignorance; it requires no more information than the nominal un.  Besides cases where 

one does not know how to scale, EFS has also been used in examples in the literature 

where un with different un sizes all have a common bound, i.e., zero.  This is the case in 

the endangered species example of (Regan 2006), where the viability of each of a set of 

preservation options was severely uncertain but could only drop as low as u=0. 

 EFS can be applied to the oil filter example discussed earlier in Section 5.1.2.  

First, a normalized info-gap model of the type of (3) is needed:   

 ( , ) : ,  ecorate, filterlife , 0n n

n

u u
u u n

u
α α α

⎧ ⎫−
= ≤ = ≥⎨ ⎬
⎩ ⎭

U   (5.6) 

This is then utilized in the following robustness function, repeated from Eq .: 

 
( , )

ˆ ( , ) max : max ( , )
n n

fractional critical criticalu u
alt I I alt u I

α
α α

∈
⎧ ⎫

= ≤⎨ ⎬
⎩ ⎭U

 (5.7) 

The formerly three-dimensional visualization of trade-offs between ˆecorateα , 

ˆ
filterlifeα , and rc (as visualized in Figure 5.5 through Figure 5.7) is condensed to two 

dimensions: between ˆ fractionalα  and rc.  Also, the IPI seen before in Figure 5.5 is reduced 

to a switch point at rc = 46.5 mPt.  This is depicted in Figure 5.11. 
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Figure 5.11 : An α̂ – rc trade-off plot created by Equal Fractional Scaling (EFS) 

 

While the EFS assumption makes trading off convenient, non-equal scaling is 

probably inappropriate for the oil filter example given that the uncertain quantities 

involved are of heterogeneous type. 

5.2.2.2 Unequal Fractional Scaling (UFS) 

Unequal fractional scaling (UFS) is the case where one or more sn equals 

something other than 1, requiring that all sn be specified.  Thus, UFS requires more 

information that EFS.  This technique has been applied by Ben-Haim in a project 

scheduling example problem (Section 3.2.6 of (Ben-Haim 2006)).  In the example, 

scaling factors are chosen from “rough information about the relative variability of the 

different tasks” that comprise the schedule.  No further explanation of elicitation is 

provided. 

 Using UFS, one could decide to use the shared baseline α  parameter to assess 

ˆ ( , )cq rα –rc trade-offs in two dimensions in the same way that was explained for EFS.  

However, with UFS, because the scaling factors sn is embedded within the info-gap 
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model definition of Eq. (3), the baseline α  is only a proxy for the actual variations nα .  

The decision analyst must be sure to understand the equivalence of the “size” of this 

baseline.  One technique for calibrating this “size” is to set α=1 as a “typical” variation.  

If a more direct understanding of the α̂  vs. rc trade-offs are needed, the analyst may wish 

to convert a particular proxy α̂  size to one or more of the equivalent α̂ n and compare 

those to rc.  These concerns are better illustrated by the example problems of Section 

5.3.3.2.  Like EFS, UFS collapses the visualization of α̂  vs. rc trade-offs into a two 

dimensional plot, as can be seen in Figure 5.25.  

5.2.3 How Scaling Factors Specify Trade-offs Between Competing Robustnesses 

When applied to info-gap models, scaling factors map a trade-off between 

competing robustnesses and, in turn, collapse the IPI presented previously in Section 

5.1.2 into a PSP.  This can be visualized on “competing robustness” plots first shown in 

Figure 5.3, used to introduce the IPI.  Given scaling factors, a trade-off specification 

line22 (TS line) can be plotted that maps multi-gap scale equivalence for different values 

of the baseline α .  This line is parameterized by the baseline α , as depicted by the points 

in the line in Figure 5.12.  The distance along the TS line corresponds to the size of the 

traded-off robustnesses; the slope of the line depends on the values of the scaling factors.  

 When a trade-off between robustnesses is specified, a most preferred design ( q̂ ) 

can be determined, also depicted in Figure 5.12.  As explained before in Section 5.1.2, a 

design q on a competing robustness plot dominates other designs when its robustness 

trade-off line is furthest away from the plot origin.  To update this idea, the design whose 

                                                 
22 This trade-off specification line should not be confused with the robustness trade-off line introduced 
earlier, which reflects the set of all possible trade-offs between competing robustnesses.  The TS line will 
be shown as a red dot-dashed line. 
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robustness trade-off line crosses the TS line furthest away form the origin offers the most 

robustness to each info-gap for the scaling factors (i.e., robustness trade-off) specified. 

 

Robustness
to info-gap

uncertainty #1

Robustness to info-gap uncertainty #2

“trade-off specification (TS) line”: 
the design whose line crosses furthest 
from the origin offers most robustness 
to all error, for the scaling factors 
chosen, for the rc value to which this 
plot corresponds.
TASO is preferable here.

@    = 1α̂

@    = 0.25α̂

2 = S2· = S2· 0.25α̂ α̂

*Note: Robustnesses here 
are fractional variations, 
i.e., unitless percentages.

1 = S1· = S1· 0.25α̂ α̂

TASO
SEC

TASO
SEC

 

Figure 5.12 : Plot of competing robustnesses at some rc, showing dominance along a 
“TS line”. 

 

When the relative sizes of robustnesses are scaled, a PSP can be found on the rc 

axis.  This is illustrated in Figure 5.13 for the previous oil filter example.  The competing 

robustness plot that corresponds to that PSP will show the TS line passing through the 

intersection of the robustness trade-off lines of the designs q.  This is shown in the right 

half of Figure 5.13. 
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Figure 5.13 : A slice of the 3-D plot at rc = 38.7 mPt, showing a switch in dominance. 
 

In the oil filter example, the PSP is found (calculated) to be located at rc = 38.7 

mPt, within the former IPI of Figure 5.5.  For the robustness scaling specified, any other 

value for rc besides the PSP will show one design dominating, looking similar to the 

scenario in Figure 5.12. 

The TS line has been introduced in this section strictly for the purposes of 

illustrating the benefits of scaling and reinforcing the concepts with respect to the three 

dimensional plots introduced in Section 5.1.2.  In the example in Section 5.4, plotting this 

line is not necessary to assess trade-offs.  Rather, the preference ranking indeterminacy 

(IPI) or PSP that it generates along the rc axis is of greater interest.  The TS line concept 

is, however, used further in the section that follows to help explain the concept of 

imprecise scaling. 

5.2.4 Imprecise Scaling 

The preceding discussions have progressed under the assumption that scaling 

factors can always be determined precisely; however, this is not always the case.  In 
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Section 5.3.2, an elicitation method will be introduced that allows for imprecision.  In 

anticipation of this, we propose that scaling factors can in sometimes only be known to 

lie within a interval of scaling imprecision, or ISI.  Generally, for N info-gap 

uncertainties, an ISI assumes the mathematical form: 

 sn ∈ [ sn,low, sn,high ],   n = 1 , … , N (8) 

Consider the case with two info-gap uncertainties parameterized respectively by 

1α  and 2α , which per Eq. (5) are scaled to a baseline α  by scaling factors s1 and s2.  If 

the scaling factors are imprecise: s1 ∈ [ s1,low, s1,high ] and s2 ∈ [ s2,low, s2,high ].  Any scaling 

value contained within the first interval could—consistent with the analyst’s limited 

understanding of scaling—be of equivalent scale to any value contained in the second 

interval. 

5.2.4.1 Illustrating the Imprecise Scaling Concept for N=2 Info-Gap Uncertainties 

 The effects of this imprecision can be explained graphically for N=2 info-gaps 

using competing robustness trade-off plots.  As shown in Figure 5.14, an imprecise trade-

off specification sector (ITS sector) is formed that contains all TS lines consistent with 

the set of all combinations of elements from intervals s1 and s2.  The ITS sector is 

bounded by the TS lines generated when the high and low scaling factors for different nα  

are combined.  These are called extreme pairings of imprecise scaling factor bounds.  For 

example, for N=2 the pairing of s1,low with s2,high generates a TS line that is one border of 

the sector, whereas pairing s1,high with s2,low creates a border at the opposite extreme, as 

shown in Figure 5.14. 
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Robustness
to info-gap

uncertainty in u1

Robustness to info-gap
uncertainty in u2

s2,low with s1,high

2,high2,low

s2,high with s1,low

2,low = S2,low· = S2· 0.5α̂ α̂

α̂α̂

1,highα̂

1,lowα̂

e.g.,

represent the 
robustness sizes 
parameterized by 

= 0.5 (i.e., 50%)
Locations differ due
to different scaling.

α̂

 

Figure 5.14 : ITS sector, bounded by TS lines formed by scaling factors from 
opposite extremes. 

 

The imprecision introduced by the ITS sector creates a corresponding interval of 

preferredness indeterminacy (IPI) along the range of rc.  For instance, if the TS line from 

Figure 5.13 were treated as the lower (i.e., most clockwise) boundary of an ITS sector, 

the corresponding switch point on the rc axis (previously shown in the left side of Figure 

5.13) now becomes the lower bound of an IPI.  Figure 5.13 is updated in Figure 5.15 to 

reflect this concept.  The upper (i.e., most counterclockwise) boundary of the ITS sector 

corresponds to the other IPI bound, also shown on the rc axis in Figure 5.15. 

 



 124

1
2 3

38

39

Narrowed IPIrc
robustness to error above the estimate for #filters/life

ˆ
filterlifeαro

bu
st

ne
ss

 to
 e

rr
or

 a
bo

ve
 th

e 
es

tim
at

e 
fo

r e
co

ra
te

 (m
Pt

/k
g) ˆecorateα

 
0 0.5 1 1.5 2 2.5 3 3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

αmax, Maximum bounds on deviation from nominal fi

α
m

ax
, M

ax
im

um
 b

ou
nd

s 
on

 d
ev

ia
tio

n 
fro

m
 n

om
i

TS line = lower 

ITS sector bound

robustness to error above the estimate for #filters/life

ro
bu

st
ne

ss
 to

 e
rro

r a
bo

ve
 th

e 
es

tim
at

e 
fo

r e
co

ra
te

TASO
SEC

ITS Sector

 

Figure 5.15 : ITS sector, and the relationship between one of its bounds to the 
bounds of an IPI. 

 

Note that the IPI created by scaling imprecision is narrower than the IPI that 

resulted from no normalization, such as that of Figure 5.5 through Figure 5.7.  This 

means that if one can narrow, to some extent, the range of imprecision to which different 

nα  can be scaled (and over which robustnesses could be traded), then the IPI will be 

narrowed accordingly.  This also means that not specifying any trade-off scaling at all is 

the same as maximum imprecision. 

Table 5.1 summarizes the different degrees of precision with which multi-gap 

scaling can be applied.  The columns of the table include the types of information that 

could be available to for use in specifying a trade-off between competing α̂ n, how that is 

reflected as values for sn, the graphical interpretation of that, and the effects on IPI size.  

The different graphical interpretations are also summarized conceptually in Figure 5.16, 

with the numbered graphical elements corresponding to the numbered rows in Table 5.1. 
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Table 5.1: Different levels of scaling info and their implications 
Info available about scaling 

(and, accordingly, robustness 
trade-offs) 

Scaling factors sn TS line location on 
a competing 

robustness plot 

Decision’s 
dependency on rc 

level? 

1. None available (or none 
used) Unknown 

Could be 
anywhere in 

quadrant 

Widest interval 
of preferredness 
indeterminacy 

(IPI) 
2. Imprecision in scaling 
narrowed to some degree 

Known within 
[sn,low, sn,high] 

Inside an ITS 
sector Narrowed IPI 

3. Precise scaling; constant 
with growth of baseline α Known precisely Static TS line with 

constant slope 

Certitude; IPI 
collapses into 

PSP 
 

 

2

3

1 (entire quadrant)Robustness
to info-gap

uncertainty #1

Robustness to info-gap
uncertainty #2

@ some rc

TASO
SEC

 

Figure 5.16 : Graphical depiction of different normalization options. 
 

 The preceding graphical explanations are meant to elucidate the concepts 

involved; however, in practice, a different approach is used to perform a multi-gap 

analysis affected by imprecise scaling.  Robustness-performance ( ˆ ( , )cq rα –rc) trade-off 

curves should be generated using each extreme pairing of imprecise scaling factor 

bounds.  For example, one robustness curve would use s1,low with s2,high; a second curve 

would use s1,high with s2,low.  The curves generated at the extremes of pairings can then be 

superimposed to view how scaling imprecision creates indeterminacy in preference 
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rankings.  An example of superimposing robustness curves is presented in Section 5.4.4, 

along with a suggested heuristic for making a decision given the resulting indeterminacy. 

5.2.4.2 Imprecise Scaling Concept for N>2 Info-Gap Uncertainties 

 For N>2 number of info-gap uncertainties, the additional extreme pairings of 

imprecise scaling factor bounds (sn,low, sn,high) must also be considered.  This creates 2(N-1) 

unique extreme pairings.  For instance, for N=3: the four pairings are: 

s1,high with s2,low with s3,high 
s1,low with s2,high with s2,high 
s1,high with s2,low with s3,low 
s1,low with s2,high with s2,low 

 
To display the extremes in indeterminacy that result, one would need to plot 2(N-1) 

robustness curves for each design alternative in a selection problem.  Clearly, this 

becomes difficult to manage quite quickly.  More about the complexities and limitations 

of problems with both N>2 info-gaps and imprecise scaling factors are discussed in 

Section 5.4.5, after an example with N=2 info-gaps is presented in Section 5.4.4. 

5.3 Bet-Based Scale Elicitation (BBSE) 

Now that the meaning, usage, and benefits of multi-gap scaling have been 

introduced, an explanation about how to elicit scaling factors sn is warranted.  A novel 

bet-based scale elicitation (BBSE) technique is next presented to improve scaling factor 

elicitation, which was found to be lacking in rigor in pervious sections.  BBSE is built 

upon a technique for eliciting subjective probabilities; however, the numbers elicited are 

used to establish scaling factors rather than probabilities.  This section presents the 

betting foundations and assembles the steps for scaling. 

 The overall BBSE strategy can be broken down into two main steps: 
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• Step 1: eliciting scaling factors, and  

• Step 2: mapping to them to the baseline α .   

More specifically, the scales of each info-gap are calibrated to a comparable 

reference for belief (betting); then, that calibration reference is mapped to a baseline α , 

making the scaling factors usable in Eq. (3).  Then, the analyst proceeds with unequal 

fractional scaling (Section 5.2.2.2) in its usual procedure.  The two main steps are 

elaborated next, starting with a discussion of betting, which is the foundation of Step 1. 

5.3.1 Foundation: Using Betting Behavior to Reveal Belief about Uncertainty 

The BBSE approach leverages a technique for eliciting subjective probabilities.  

A recent review of the subjective interpretation of probability is provided in Section 

3.3.3.3 of (Aughenbaugh 2006), which is paraphrased as follows.  The fundamental 

principle is that a person’s belief about probability is reflected by (and revealed through) 

their betting behavior.  This belief is based on some combination of knowledge, 

assumptions, preferences, and even biases, and can be easily expressed through the action 

taken when a bet is presented.  It is argued that subjective probabilities are appropriate in 

cases where there are few or no sample data points available to quantify uncertainty, or 

when the uncertain event is one that simply does not repeat.   

 A definition of belief that relates betting to subjective probabilities was conceived 

by (de Finetti 1980), discussed in (Hajek 2003), and clarified in (Aughenbaugh 2006).  A 

simpler version of this definition, appropriate for the purposes of this chapter, can be 

stated as such:  
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An individual’s degree of belief in outcome X is p if and only if p units of 

currency (0<p<1) is the price, known as a fair price, at which he or she is 

indifferent between buying or selling a bet that pays: 

• 1 unit of currency if outcome X occurs, and  

• 0 units of currency if X does not occur.   

Assuming that the person is risk neutral (i.e., is neither more averse nor 

more attracted to risk as the stakes change) and that there are no 

endowment effects in this problem, p then represents the individual’s 

probability that outcome X will occur.  

 

Under these conditions, the probability, P(X), of the event X occurring, where 

0≤P(X)≤1, is given directly by the fair price the individual would be willing to pay to 

enter the bet.  For example, purchasing a bet for $0.10—not a large wager—implies that 

the individual does not find the likelihood of the event (and, by extension, winning a bet 

that it will occur) to be very probable.  This betting behavior reveals a belief in a 

probability P(X)=0.10 that the event will occur. 

 The theoretical strengths of the subjective interpretation of probability are argued 

by (Aughenbaugh 2006), using criteria for rigor developed by (Walley 1991).  Two key 

aspects exist that imply rigor.  First, the subjective belief is operationalized, i.e., 

observable through the betting activity.  Rigor in elicitation is achieved because the 

concept of  the uncertainty measure is synonymous with a corresponding set of 

operations, eliminating ambiguity as to what is actually being measured.  Second, the 



 129

subjective interpretation is behavioral because it has implications concerning the 

individual’s behavior in actual decision making, i.e., agreeing or not to the terms of a bet. 

 The subjective interpretation also has its limitations, which Aughenbaugh also 

reviews (Aughenbaugh 2006).  First, betting behavior depends not just on probabilities 

but also preferences, which may be influenced by the individual’s current state of wealth.  

This problem motivates the use of relatively small bet prices and payouts between $0 and 

$1.  Lastly, people have been observed to be inherently limited in their abilities to assess 

probabilities, whatever the means used (Tversky and Kahneman 1974, Kahneman et al. 

1982).  Overall, we contend that these limitations affect any form of elicitation that one 

would turn to when statistical sampling is not an option.  Therefore, the rigor added by 

bet-based elicitation makes it better than any other technique in situations of sparse 

information. 

5.3.2 Bet-Based Scaling Elicitation (BBSE): A Novel Premise 

BBSE is devised to take advantage of the premise that betting at a certain bet 

price p corresponds to a level of belief p about uncertainty23.  BBSE uses the value p not 

as a probability but rather as a reference point for size; nα  scale will be mapped to α  

based on p.   

 There are two participants in BBSE: the Subject, whose beliefs about scaling are 

being elicited, and the Elicitor, who is the questioner and whose job may be automated.  

The object in BBSE is to elicit a value nα =an such that the Subject would agree to buy 

the bet at price p; that is, an makes p become a fair price.  Thus, an is a scaling reference.  

                                                 
23 Henceforth, when p or the bet price is discussed, it will be implied that these are the same as a level of 
probability p consistent with price p.   
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(As indicated by Figure 5.17, an is the distance above/below un per the usual info-gap 

uncertainty model structure, see: Section 3.4.1.)  This is achieved by the general bet 

structure outlined in Figure 5.17.  The Subject’s choice of an will depend on the win/loss 

stakes involved as well as his or her own understanding of uncertainty. 

 

un

un

an

Given: u n, 
price p to enter the bet

Find:   value for an at which you would pay
price p for a bet of the following structure:

if: actual un
* turns out to be within u n ± an

then: win $1 (i.e., net $1-p)
else: win $0 (i.e., net $0-p)

an

 

Figure 5.17 : Bet structure used in BBSE 
 

For example, if a Subject is presented with u1 = 17 and bet price of p = $0.90, 

suppose a value of 1α  = 5.5 is elicited, as is depicted in Figure 5.18.  Based on the 

subjective probability interpretation upon which BBSE is founded, the Subject believes 

that there is a 90% that the actual value of u1 will fall between 11.5 and 22.5. 
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un

u1 =17

Given: u 1 = 17
p = $0.90

Elicited: an = 5.5

an= 5.5 an= 5.5  

Figure 5.18 : Outcome of an elicitation scenario 
 

However, rather than use this information as a probability in the traditional manner, 

BBSE merely employs it as a reference “size”: 1α =5.5 is now scaled to the value p=$0.90 

and, accordingly, a “size” of p=0.90.  For each of the n info-gaps in a given multi-gap 

problem, there is a value for an that has a “size” p=0.90.  From this idea, the main 

assumption connecting betting to scaling can be established: 

Any an that makes p a fair price will be of comparable scale to any other an 

that does the same. 

An expanded explanation of how this assumption relates to scale mapping is 

provided later in Section 5.3.3.2.  (Later in Section 5.3.3.2 it is shown that the an gotten 

from p is mapped to a value of  baseline; this allows calculation of the  factors that were 

originally discuss, e.g., in Eq. (3).  Skipping ahead to Figure 5.21 shows the “big picture” 

of the overall scaling scheme.) 

 Compared to Ben-Haim’s method of multi-gap scaling, which estimates 

“uncertainty weights” in an ad hoc fashion, BBSE offers improved elicitation rigor.  This 

rigor is entirely based on the betting structure that BBSE borrows from the subjective 

interpretation of probability introduced in Section 5.3.1.  In BBSE terms, the Subject’s 

belief in the size of different values for nα  is observable through the operationalized 
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betting activity.  This size, which is actually a subjective probability, is then used to 

establish scale.  Also, BBSE is behavioral because it corresponds to an individual’s 

behavior in actual decision making, i.e., agreeing or not to the terms of a bet.  Whether 

these qualities imbues BBSE with enough rigor to be completely dependable could be 

questionable.  To this point we simply reply that any elicitation rigor—as long as it is 

valid—is preferable to no rigor.  We operate under the assumption that the rigor that 

Walley has applied to subjective probability elicitation is theoretically sound (Walley 

1991). 

 Imprecision, in the context of betting, is the last concept to explain before the 

BBSE steps can be elaborated on.  In some cases, the Subject’s knowledge about info-gap 

scales may be limited in a way that makes an imprecise.  A precise an is simply a single 

quantity, one at which p is a fair price to purchase the bet.  If an is imprecise, it lies within 

an interval that will be referred to as the interval of bet imprecision, or IBI.  For an values 

within the bounds of the IBI, the Subject cannot decide whether or not to take the bet at 

price p.  Above the upper bound of the IBI, the Subject knows they would not buy the 

bet.  Below the lower bound they know they would buy it.  This scenario is depicted 

graphically in Figure 5.19.  Imprecision in betting corresponds to the idea of upper and 

lower previsions for subjective probabilities as explained by (Walley 1991).   
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un

u1 =17

Given: u 1 = 17
p = $0.90

Elicited: an ∈ [ 5 , 6 ]
(Imprecise)

an= 6 an= 6

an= 5an= 5

Would take betWouldn’t take bet Wouldn’t take bet
Can’t decide Can’t decide  

Figure 5.19 : Betting behavior when elicitation is imprecise. 

 

When an IBI exists, the conversion from an to sn in BBSE Step 2 creates the 

interval of scaling imprecision (ISI) introduced earlier in Section 5.2.4. 

5.3.3 Bet-Based Scaling Elicitation: Steps 

The three main steps introduced briefly at the beginning of the BBSE section are 

next presented in further detail. 

5.3.3.1 Step 1: Elicitation 

The general bet-purchasing scenario is presented to the Subject, per Figure 5.17: 

• Parameters for the bet: 

o The nominal estimate, un 

o A price p to buy the bet, somewhere between $0 and $1.  It is suggested 

that p be set at $0.90. 

• The Subject is told that a value an is sought such that: 

o If the actual un (unknown) turns out to be within un ± an, the bet pays $1. 

o If outside these bounds, the bet pays $0. 
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Depending on what form is more understandable by the subject, the value for an 

to be elicited may be either fractional (a unitless percentage of the nominal) or non-

normalized (having units).  Elicitation may be done either directly or indirectly, which 

are described next as options A and B: 

1A) Direct elicitation:  

• The Subject is forced to buy a bet at price p.  They must outright pick the an 

which makes p a fair price.  They may determine that an is either precise or that it 

lies within an IBI with bounds defined by the Subject. 

—or— 

1B) Indirect elicitation: (basically, a bracketing method)  

• The Subject is asked to respond “Yes” or “No” to whether they would accept a 

bet having price p and some an value assigned by the Elicitor.  This bet offering is 

then repeated, each time featuring a new an value that is strategically chosen by 

the Elicitor to narrow the bounds on the IBI.  This strategy is depicted in Figure 

5.20, which is labeled to correspond to the following steps: 

I) Commonly, the Elicitor begins by asking whether the Subject would buy a bet 

where nα  = an = 0.  To this the Subject will usually reply “No”.  (A reply of 

“Yes” would suggest that the Subject is completely sure that the nominal 

estimate is correct, which will most often not be the case for a variable with 

severe uncertainty.)  This becomes the first lower bound on the an IBI. 

II) The Elicitor picks some large value for an to try to find an upper bound for the 

IBI.  The new bet is presented to the Subject.  If the Subject replies “No”, then 
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they believe that an lies outside of the current guess, and the interval is not 

large enough.  In response to a “No” here, a new bet with a larger value for an 

should be offered until the Subject provides a “Yes” response. In the case of 

Figure 5.20, Bet B2 receives a “Yes” response and the Elicitor can continue. 

III) At this point the Elicitor knows extreme upper and lower bounds within 

which an is known to lie and can thus start halving the IBI to try to narrow 

these bounds.  This is done by picking a point near the middle of the current 

IBI and using it as the an in the next round of bet offering.  If the Subject’s 

response to any bet offering is ever “No”, then the next bet’s an must be 

greater than the an of the current bet.  Conversely, if the response is ever 

“Yes”, then the next bet’s an must be less than the an of the current bet.  As 

this step is repeated, the bounds of the IBI are narrowed in the fashion 

depicted in Figure 5.20, as the Subject’s answers for Bets B3-B6 are “Yes”, 

“No”, “Yes”, and “No”, respectively. 

IV) The series of bet offerings stops when one of the following stopping condition 

is met: 

• The Subject is unable to reply “Yes” or “No” to bets because their 

sense of scale is not precise enough. 

End) After betting stops, the Subject can choose whether to use the last two 

elicited bounds to define an IBI for an, or else specify a precise an using the 

midpoint between those bounds. 
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BBSE Step 1 is repeated for all un (i.e. n = 1 , … , N), using the same p, so that all 

an are elicited.  If not expressed as percentages (i.e., as fractional variation from 

nominal), each  an will need to be normalized by their respective un.  This makes them 

usable for scaling per Eqs. (3) and (4). 

 

αn

0

B1 B2

B3

B4

B5

B6

(high number)

I. II.

III.

IV: Stopping condition met.
Choose: an∈ this interval, or

an = interval’s midpoint  

Figure 5.20 : Indirect elicitation offers progressive bets that gradually narrow the 
IBI  

 

As should be apparent, indirect elicitation (option B) spreads elicitation over a 

greater number of questions, placing lower information demands (i.e., answers in “Yes” 

or “No” form rather than a quantity) on the Subject for each of those questions.  This 

option is better for Subjects who have less knowledge about the uncertain quantities 

involved, or who are less confident in their ability to quantify an, especially when their 

knowledge is very imprecise.  More discussion about the appropriateness of direct or 

indirect scaling elicitation will be provided in the discussion section of this chapter, as 

well as after they are applied to the example problems featured in this thesis. 
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5.3.3.2 Step 2: Calibrating p to some value of the baseline α 

Per Step 2 of BBSE, the Decision Analyst must associate or “map” p to some 

specific value of the baseline α .  This calibration choice is left to the Decision Analyst’s 

discretion, but it is recommended that α=1 (where is α  defined fractionally) be 

considered the “typical” horizon of uncertainty, and that the p used in betting be 

associated with α=1, as is depicted in Figure 5.21.  It is important to keep in mind that 

scaling between the bet price p and the baseline α  are only known for that calibration 

point.  Any other fraction (or multiple) of the baseline α  (e.g., 0.5·α ) is not necessarily 

calibrated to the same fraction (or multiple) of the bet price (e.g., 0.5·p), as denoted by 

“No!” in Figure 5.21.  This is because calibration is not guaranteed to scale linearly 

between α  and p; all that is known is that they are equal at the assigned calibration point. 

 

$p a2

Bet price

a1

α1

aN

α2 αN

…

…

$p

baseline αBet price

α=1
a2

baseline α

α=1

rc

a1

α1

aN

α2 αN

(smaller rc is more aggressive)

…

…

Elicit Scaling wrt p
(BBSE Step 1)

Calibrate p to baseline α=1
(BBSE Step 2)

Use baseline α as a proxy for αn

$p α=0.5
2

No!
Note

^

^
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SEC

 

Figure 5.21 : Calibrating p to the baseline α 

 

Once a baseline α  has been matched to the value of p used in betting, Eq. (5) can 

be used to derive scaling factors sn from the an.  Consistent with the structure of the 

scaled info-gap model in Eq. (3), each sn is constant for all values of the baseline α .  But, 
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up to this point in the chapter, scaling elicitation has only involved one value of p, and 

thus only a single point to which multi-gap scales are calibrated.  How can one assure 

constant scaling for all sizes that the uncertainty parameters nα  could take?  The solution 

is to use the following assumption: 

The value of p corresponds to a point on a belief distribution24 for each info-

gap, as illustrated in Figure 5.22.  If every info-gap’s belief distribution is 

assumed to be of the same shape, then only one value of p needs to be used in 

the elicitation of an. 

 

Using this assumption in conjunction with knowledge that every distribution is 

centered around un (as enforced by the symmetry built into the definition of info-gap 

models), one can be sure that scaling of “size” is constant for all values of the baseline α .   

Note that, although the S-shape of the CDF in Figure 5.22 suggests a normal 

distribution, the actual shape is not known.  Not knowing the distribution shape is not a 

problem for multi-gap scaling, as long as it is still acceptable to assume that every info-

gap uncertainty’s belief distribution has the same shape. 

 

                                                 
24 To reiterate, this distribution is only used for the purposes scaling, not for use as an actual subjective 
probability distribution. 
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Figure 5.22 : Subjective belief distribution implied by the Subject’s response to 
betting. 

 

Whatever the calibration choice, both the bet level p and the value of the baseline 

α  value to which it corresponds should be made transparent to the Decision Maker.  

Converting the baseline α  axis into the equivalent units of one or more nα  provides this 

transparency.  This assures that, when assessing the α̂ – rc trade-off, the decision maker 

understands the actual magnitude of the baseline α  as it serves its proxy role.  If the 

decision maker possesses this understanding, then the final decision analysis should not 

be significantly sensitive to the choice of bet level p nor corresponding baseline α , both 

of which ideally should be no more than artifacts of the BBSE scaling technique.  
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5.4 Applying BBSE to the Oil Filter Example Problem 

The BBSE steps can be assembled and applied to the oil filter example problem.  

Recall that, up to this point, α̂ – rc trade-off plots have been generated for the case of: a 

single info-gap uncertainty (Figure 4.3, Section 4.3.1); the separate effects of a second 

info-gap uncertainty (Figure 4.4, Section 4.3.2); the combined effects of two info-gaps, 

with visualization in three dimensions (Figure 5.5 through Figure 5.7, Section 5.1.2); and 

the combined effects of two info-gaps, with Equal Fractional Scaling (EFS) applied 

(Figure 5.11, Section 5.2.2.1).  In this section, a multi-gap assessment with BBSE is 

provided starting with problem formulation and ending with a 2-D α̂ – rc trade-off plot of 

the combined effects of two info-gaps, with Precise BBSE applied.  To orient the reader, 

the map of multi-gap assessment options is presented again, this time noting the branches 

to which each of the following subsections correspond. 

 

Interval of Preferredness
Incertitude Exists
(Figure 5.6 – 5.8)

Assume nothing,
Assess incertitude,
Might still be able 
decide if IPI small

Multi-gap
growth can be scaled

(Section 5.2)

One design
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Multiple Info-gap Uncertainties Exist

(Trivial)

(Complicated)

1

Ranking Reversals for each u
(Preference Switch Point)

PSP’s Coincide @
same rc

(Trivial)
2

3

Precise
Scaling

Imprecise
Scaling

4

 

Figure 5.23 Different multi-gap assessment techniques, and their novelty 
 

Section 5.4.3 Section 5.4.3
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5.4.1 Problem Formulation 

EFS can be applied to the oil filter example discussed earlier in Section 5.1.2.  

First, a normalized info-gap model of the type of (3) is needed, this time with scaling 

factors added in:   

 ( , ) : ,  ecorate, filterlife , 0n n
n

n

u u
u u s n

u
α α α

⎧ ⎫−
= ≤ = ≥⎨ ⎬
⎩ ⎭

U   (5.9) 

This is combined with the performance functions from Chapter 3 (Eqs. (4.2) and 

(4.3)), repeated here for convenience: 
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, , , ,

+

        ( ) ( )
TASO casing cartridge

cs T cs T cr T cr T

I I I F

m e m e F

= ⋅
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 (5.10) 

 
( )

, , , ,

+

       ( )
SEC casing cartridge

cs S cs S cr S cr S

I I I F

m e m e F

= ⋅

= ⋅ + ⋅ ⋅
 (5.11) 

The uncertain variables F and ecs in Eqs. (5.10) and (5.11) are replaced with the 

info-gap models of Eq. (5.9).  This is then utilized to generate the following robustness 

function, repeated from Eq . (4.9): 

 

 
( , )

ˆ ( , ) max : max ( , )
n n

fractional critical criticalu u
alt I I alt u I

α
α α

∈
⎧ ⎫

= ≤⎨ ⎬
⎩ ⎭U

 (5.12) 

But first, the scaling factors sfilter and secorate need to be determined to be able to 

solve for the info-gap robustness for each design alternative. 

5.4.2 Elicitation of Scaling Factors 

Begin BBSE for the filters option: 
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• Given: 

o Nominal estimate for oil filters used per engine life: F̃=17 filters/life 

o Bet price, p = $0.90 

o Bet payout: 

 $1 if truth is inside 17± afilter 

 $0 if outside 

o Find: filterα  = afilter such that p is a fair price to the Subject 

• Bets presented, with responses: 

B1) Q: Would you pay $0.90 when filterα  = 0?   A: No. 

B2) Q: Would you pay $0.90 when filterα  = 17?   A: Yes. 

B3) Q: Would you pay $0.90 when filterα  = 8?   A: Yes. 

B4) Q: Would you pay $0.90 when filterα  = 4?   A: No. 

B5) Q: Would you pay $0.90 when filterα  = 6?   A: Yes. 

B6) Q: Would you pay $0.90 when filterα  = 5?   A: No. 

• Subject decides she cannot be more precise than a whole number, so afilter is 

known to be within IBI bounds [5,6] filters/life.  The Subject is offered the choice 

to choose a precise midpoint value of afilter = 5.5 filters/life, and she accepts.  
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Figure 5.24 : Using a series of bet offerings to narrow down the value of an. 
 

When BBSE is applied to the uncertain estimate of the ecorate for the filter 

casing, the elicited result is a precise value of aecorate = 70%.  Unlike filter life, the Subject 

finds it easier to express their beliefs about ecorate scale as a fractional percentage from 

nominal.  These values will be calibrated to a baseline α  value of 1.  Thus the scaling 

factor output of BBSE is: sfilter = 5.5 filters/life and secorate = 70%. 

5.4.3 Weighing Trade-offs between Robustness and Critical Performance 

The results of BBSE are utilized to create info-gap models per Eq. (3).  Following 

the standard technique for defining the robustness function and plotting robustness versus 

performance, the plot in Figure 5.25 can be generated. 
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Figure 5.25 : A α̂ – rc trade-off plot that combines the effects of two info-gaps 
affecting filter choice. 

 

In Figure 5.25, the results of Unequal Fractional Scaling (UFS) are shown, 

appearing different than those of Equal Fractional Scaling (EFS) plotted in Figure 5.11.  

Notice that with precise BBSE applied, the rc value at which preferences switch is now 

55.7 mPt, a difference of 9.2 mPt greater (i.e., worse) than before.  This happens at 75.2% 

of the calibration points (in the figure), i.e., the scaling factor values found when p = 

$0.90.  Because the calibration values are afilter = 5.5mPt (or, expressed fractionally: afilter/ 

un =5.5/17) and aecorate = 70%, the crossover point occurs at robustnesses of ˆ filterα =  4.1 

filters/life above nominal and ˆecorateα =  52.6% above nominal.  Given the similar, shallow 

slopes of the two robustness lines, one would probably prefer the SEC option unless it is 

suspected that more robustness is needed, or that greater than 55.7mPt is a reasonable 

amount of guaranteed performance to sacrifice.  In summary, the trade-offs between 

competing robustnesses more accurately account for what the Subject knows about 
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uncertainty.  The shift in the preferredness switch point could influence decision making 

accordingly. 

5.4.4 Multi-Gap Assessment with Imprecise BBSE 

Now assume that the Subject is unable to precisely determine scaling factors at 

the conclusion of BBSE.  The elicited intervals of scaling imprecision (ISI) are: sfilter ∈ 

[4.5, 8] filters per engine life (fpel) and secorate ∈ [40%, 90%].  As explained in Section 

5.2.4 and depicted in Figure 5.14, mixing high and low scaling factors into pairs 

generates the bounds an interval of preferredness imprecision (IPI).  Pairing sfilter,low with 

secorate,high generates the α̂ –rc plot25 in Figure 5.26; whereas, pairing sfilter,high with 

secorate,low results in the plot in Figure 5.27.  Note that although the vertical axes in both 

plots span 0% to 100%, these are percentages of scaling factors which differ between the 

two plots as indicated. 

 

                                                 
25 Note that, because the inclusion of imprecision results in an increased number of different curves to plot 
(as was explained at the end of Section 5.2.4.1), the curve color/type convention established in Footnote 17 
cannot be adhered to for Figure 5.26 through Figure 5.28. 
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Figure 5.26 : A α̂ – rc trade-off plot showing part of imprecise BBSE: “low” sfilter & 
“high” secorate. 
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Figure 5.27 : A α̂ – rc trade-off plot showing part of imprecise BBSE: “high” sfilter & 
“low” secorate. 
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At these extremes of scaling, the preferredness switch points are located at rc = 

65.7mPt and 45.3mPt, bounding an IPI.  Between these two points, it is not known which 

design alternative dominates in its capacity to provide robustness.  In other words, 

preference rankings within that IPI are indeterminate.  For instance, consider rc = 50mPt: 

for the “low/high” combination of scaling in Figure 5.26, SEC provides more robustness; 

whereas, for the “high/low” combination in Figure 5.27, TASO provides more 

robustness. 

 Different scaling combinations could also be combined into a single plot, as in 

Figure 5.28.  Keep in mind that this plot incorporates the (imprecise) mapping of beliefs 

about scaling equivalencies.  Scaling factors are not transparent in this plot, other than the 

annotation made to the line key at bottom right. 
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Figure 5.28 : A α̂ – rc trade-off plot combining the effects of two info-gaps whose 
scaling is imprecise. 
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Within the IPI, imprecision prevents one from determining which design offers 

the most robustness (in terms of the baseline α  to which all nα  are mapped).  This is the 

case at rc= 50mPt, where the imprecise robustness ranges spanned (on the vertical axis) 

due to scaling extremes overlap, as shown in the right side of Figure 5.28.  To resolve 

this, one could adopt a heuristic decision policy to reach a solution.  For instance, under a 

“maxi-min” policy, one would prefer the option that has the highest lower bound; in this 

case, SEC. 

The preceding methods all help a designer to understand the implications that 

scaling different uncertainty parameters nα  to a single baseline α  has on one’s ability to 

achieve preference rankings on designs.  The new capability to express imprecision about 

this scaling allows one to get a sense of what decision making power might be available 

under deficient information.  This is akin to a sensitivity analysis, but with actual elicited 

information on the bounds of scaling imprecision. 

5.4.5 Analysis with Imprecise BBSE and N>2 Info-Gap Uncertainties 

For N>2 uncertainties, an info-gap analysis affected by imprecise scaling factors is 

still carried out in generally the same way as it is when there are two info-gaps, as in 

Section 5.4.4.  The aspects of interest in the analysis are still: 

1) the range of rc where preference rankings are indeterminate (i.e., the IPI), and 

2) for any specific value of rc (e.g., in the example problem where rc=50mPt), 

the size of imprecision in determining what robustness could be (as in the 

vertical intervals on right side of Figure 5.28), and whether that imprecision 

range overlaps with that of other design alternatives. 
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However, additional curves must be superimposed onto the combined robustness 

plots of the type seen in Figure 5.28.  Because of imprecision, a curve must be generated 

for each extreme pairing of imprecise scaling bounds, as explained in Section 5.2.4.2.  

The IPI generated by N>2 info-gaps will accordingly grow to the size of the extreme high 

and low PSPs generated over the set of all extreme pairings.  Likewise, for any specific 

value of rc within the IPI, the interval of imprecision in determining what robustness 

could be (i.e., aspect of interest #2) is also bounded by the extreme high and low 

robustnesses found over the set of all extreme pairings.  Applying imprecise scaling to an 

analysis of N>2 info-gap uncertainties is left to future work.  However, it seems 

reasonable to expect that the combined effects of all scaling imprecision would result in 

exceedingly large intervals of preference-ranking indeterminacy, and consequently 

discourage decision making. 

5.5 Discussion 

The preceding sections raise a variety of points for discussion.  In Section 5.5.1, the 

prospects of applying BBSE to functions with info-gap uncertainty are briefly considered.  

In Section 5.5.2, a discussion is presented regarding whether or not it is worthwhile to  

expend extra effort to improve the accuracy of scaling by using non-constant scaling 

factors.  The trustworthiness of using scaling factors to simplify multi-gap assessments is 

considered in Section 5.5.3.  

5.5.1 Eliciting Scaling Factors for Functions with Info-Gap Uncertainty 

Though the new methods presented in this chapter are intuitive for variables (or 

constants) having info-gap uncertainty, they do not extend as easily to functions with 
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info-gap uncertainty.  Ben-Haim proposes an “envelope bounded” info-gap model for 

uncertain functions (originally mentioned in Section 3.4.1.2), which has an effect 

analogous to scaling factors (Ben-Haim 2006).  However, it is unknown whether scaling 

envelopes could be elicited through a betting scenario.  This is left to future work, as the 

scope of this thesis only includes uncertain life-cycle variables. 

5.5.2 Whether or Not to Consider Non-Constant Scaling Factors 

As described thus far, BBSE elicits constant sn scaling factors, but non-constant 

scaling could conceivably be appropriate in some situations.  For instance, if the extent to 

which an unknown un could deviate from nominal un is bounded by some physical limit 

(e.g., 0, for a variable that must be non-negative), then the perceived “size” or scale of 

uncertainty nα  might accelerate approaching the hard limit.   

 Whatever the motivation, non-constant scaling would affect trade-offs between 

competing robustnesses by resulting in a TS-line that is curved instead of straight, as 

depicted in Figure 5.29, a modified version of Figure 5.12.  This in turn would create a 

different preference switch point (PSP) location than the one that would be found using 

constant sn. 
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Figure 5.29 : Non-constant scaling factors can cause the TS-line to be non-linear. 
 

Unfortunately, just because one can conceptualize non-constant scaling doesn’t 

mean it can be practically elicited.  Two possible ways can be thought of to define non-

constant scaling factors, and each has significant limitations.  In the first, the decision 

analyst simply skips BBSE altogether and declares non-constant “uncertainty weights” 

(as Ben-Haim does for constant weights).  This requires modification of Eq. (3) to make 

each sn a function of the baseline α .  This route to modeling is not operational like BBSE 

is, and we expect that in most cases it would demand knowledge unavailable to a decision 

analyst faced with severe uncertainty. 

 In the other approach, if one were to conduct multiple BBSE iterations using 

different values of p (e.g., p=$0.90, then p=$0.75, etc.), the resulting scaling might be 

non-constant.  This would be the case when the an scaling reference values elicited at 

different p reveal that the corresponding size belief distributions for different info-gaps 

are not of congruent shape.  In response, one would need to formulate non-constant sn 

functions from the an values using some means of interpolation, which to date has not 

been conceived.  Modeling effort is another concern.  Just one BBSE iteration could be 
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time consuming depending on the number of info-gap uncertain variables involved; 

iterating BBSE for multiple p-value references compounds this effort. 

 Instead of eliciting non-constant scaling factors, one could theoretically bound the 

non-linear tradeoffs they create using constant scaling factors that are imprecise, per Eq. 

(8).  This is conceptually depicted in Figure 5.30, which is an updated version of Figure 

5.29.  As explained in Section 5.1.2, this imprecise trade-off specification results in an 

interval of preferredness indeterminacy (IPI). 
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Figure 5.30 : Non-constant scaling factors can cause the TS-line to be non-linear. 
 

Unfortunately, no operational way has been conceived to elicit sn,low or sn,high 

values that would bound this error.  Contrast this with the elicitation of constant scaling 

factors in BBSE Step 1, where imprecision can be quantified in an operational manner 

through progressive bet offerings. 

 In summary, non-constant scaling factors are difficult to elicit precisely, and there 

is no known technique for bounding their imprecision.  If the accuracy of non-constant 

scaling factors cannot be trusted, then they can’t be trusted to increase the accuracy of 

Equal-Scaled Robustness Trade-offs.  Thus, we do not encourage their use. 
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5.5.3 How Trustworthy are the Results of Scaling Elicitation? 

BBSE incorporates new scaling information, elicited through relatively rigorous 

means, into Ben-Haim’s pre-existing scheme (in Section 5.2.1) for trading off between 

competing multi-gap robustnesses.  The available information consistent with a Subject’s 

beliefs about scaling may be very rough; therefore, supporting techniques also enable the 

modeling of imprecision and offer rules for making decision amidst that imprecision.  

Beyond what has been outlined for BBSE, we do not suggest further extensions to scaling 

elicitation without some new rigorous basis. 

 Can one determine absolutely the trustworthiness of BBSE outputs and their 

effects on assessments?  We cannot make this claim, at least not absolutely, given the 

sparsity of information involved.  Recall that IGDT is meant to be a “process of 

exploration” of options, rough information sources, and their implications, not a closed 

form decision method (Ben-Haim 2006).  With this in mind, it is recommended that 

sensitivity checks be performed (some of which is achieved by representing imprecision 

in scaling).  A decision analyst should use caution recommending a decision if trade-off 

preferences turn out to be sensitive to the structure of the problem or to various 

assumptions employed.  However, any further quantification and analysis of uncertainty 

about info-gap uncertainty (i.e., meta-uncertainty) in scaling is generally not fruitful. 

Alternatively, we reiterate that when using IGDT one should be on the lookout for 

scenarios where good decisions can be reached with as little info (or as few restrictive 

assumptions) as possible.  Sometimes, simple analyses uncover important weaknesses or 

opportunities in different designs’ capacity to provide robustness to faulty data.  We have 

provided a few examples of when this might be the case.  Future examples may reveal 
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other instances where IGDT, applied as a “first cut” at analyzing a problem, is enough to 

help a decision maker develop preferences without further effort. 

5.6 What Has Come Before and What is Next 

In this chapter, we have presented a variety of techniques that allow one to elicit and 

introduce information, either precise or imprecise, about one’s beliefs about the scales of 

severe uncertainty.  Several of these techniques are applied in the next section to a 

remanufacturing facility design problem. 

 
 
 
 
 
 
 
 
 
 



 155

CHAPTER 6: 

A REMANUFACTURING PROCESS EXAMPLE PROBLEM 

 
 
 

In this chapter, the IGDT techniques presented in this thesis are applied to a more 

elaborate example problem.  The problem involves selection of the types of technologies 

and number of stations to be used in a remanufacturing process. The profitability of the 

manufacturing process is affected by severe uncertainty in (1) the demand for 

remanufactured parts and (2) the cost penalties of carbon emissions.  The problem 

features significantly more discrete design alternatives to consider than before as well as 

a reward function with discontinuities.  The example problem again takes the form of a 

pay-back scenario, as expensive machines that are more energy efficient are seen to 

recoup their capital costs with increased throughput. 

 In Section 6.1, the details of the remanufacturing process design problem are 

presented.  In Section 6.2, the effects of the two different info-gap uncertainties will be 

assessed separately and then together using precise bet-based scaling elicitation.    

6.1 Remanufacturing Problem Scenario 

In this example, it is assumed that the process designer for a remanufacturing firm 

wants to reduce the environmental impact of its facility.  For the subprocesses under 

consideration, the major environmental loads are energy consumption and greenhouse 

gas (carbon) emissions.  Assigning these loads a monetary cost in US$ has the effect of 
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reducing waste when designing to maximize profit26.  Other solid wastes are considered 

negligible. 

 Naturally, some simplifications and assumptions are introduced in the problem.  

For example, the exact parameters for the problem are chosen to be realistic, but they do 

not represent hard, real-world data.  Consequently, the emphasis is not on the actual 

decision outcome (i.e. the chosen station configuration), but rather on the decision and 

analysis process. 

6.1.1 Problem Scenario 

An engineering manager of an upcoming remanufacturing facility is tasked with 

choosing the type and amount of technology needed for three different subprocesses: 

sorting, cleaning, and drying.  These processes prepare a used part for machining and 

other refurbishing.  A flow diagram of the process and the subprocesses of interest is 

depicted in Figure 6.1.    
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Figure 6.1: Process diagram, with arrows denoting flow of parts. 
 

                                                 
26 It is acknowledged, however, that a manufacturer could spend more money on renewable electricity 
sources and reduce their burden on the environment.  We do not take this into consideration.  All electricity 
consuming technologies in the manufacturing line are assumed to use the same “grid” electricity. 
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Although the overall remanufacturing process also involves collection and 

machining of parts, these aspects are outside the scope of consideration.  The selection 

decision of interest consists of specifying what type of station (e.g., pure manual labor, a 

machine, labor with machine assistance, etc.) will be used in each of the three 

subprocesses, as well as what number of stations will be used for each subprocess.  It is 

assumed that the type of stations used in any subprocess must all be the same.  A “design 

alternative”, q, is any unique combination of type and number of machines for each 

subprocess.  For instance, a process with 1 automated sorting station, 3 ultrasonic 

cleaning stations, and 2 gas drying stations would constitute one design alternative.  The 

types and maximum number of stations for each subprocess are shown in Table 6.1. 

 

Table 6.1: Types of stations for different subprocesses. 

Sorting 
Max stations = 3 

Cleaning 
Max stations = 3 

Drying 
Max stations = 3 

Fully Manual Batch Aqueous Gas 

Manual Assisted by 
Electrostatic Pen Ultrasonic Electric 

Automated Conveyor Spray Ambient 

 

 

Across the different subprocesses, each station type has a different maximum 

throughput that it can handle, as well as different variable (i.e., per-part) costs and fixed 

costs.  Variable costs (US$/part) are incurred by labor, energy, and penalties due to 

carbon emissions.  Fixed costs (US$/hr) are due to overhead from machine capital costs, 
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as well as the energy and carbon emission overheads of continuously running machines 

(e.g., energy losses in an oven). 

 For different station types, trends exist in the magnitude of the constants for 

capacity and fixed and variable costs. In general, stations that rely on machines and 

automation tend to have high capacity and high capital costs, but lower variable costs.  

Alternatively, stations based primarily or wholly on manual labor have low capital costs, 

but also lower throughput and high labor costs.  Additionally, machines with high capital 

costs tend to have lower energy consumption and accordingly, lower carbon emissions. 

6.1.2 Performance Function: Profit 

Profit depends on the station-specific variables mentioned in the previous section.  

The total profit per hour (US$/hr), P, that the firm can make using a design alternative q 

is: 

 ( )( ) ( )
q qq part variable fixedP q throughput price c c= ⋅ − −  (6.1) 

where throughput is the number of parts remanufactured per hour; pricepart is the firm’s 

selling price for each remanufactured part (US$/part); cvariable is the total variable costs of 

remanufacturing; cfixed is the total fixed costs associated with all machines in every 

subprocess.  The q subscript on the throughput, variable cost and fixed cost denotes that 

they are each dependent on the specific design alternatives. 

Throughput is governed by the equation: 

 ,min min( ),q i qthroughput capacity demand⎡ ⎤= ⎣ ⎦  (6.2) 

where capacityi,q is combined maximum throughput of all stations in any one subprocess 

i for design alternative q, and demand (later denoted as D) is the market demand for 
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remanufactured parts per hour.  In Eq. (6.2), the subprocess with the smallest capacity 

constrains the throughput of the entire remanufacturing process.  Alternatively, 

throughput is equal to demand when demand is smaller than the capacity of any 

subprocesses. 

 For the variable cost component in Eq. (6.1): 

 ( ), , ,q i q i q i qvariable part labor energy carb
i

c c c c c= + + +∑  (6.3) 

where each c is a per-part cost, including the cost that the remanufacturing firm paid for 

the used part (assumed constant), as well as the variable costs mentioned in the previous 

section.  The station dependent variable costs in Eq. (6.3) are calculated as follows: 

 
,

,
i qlabor

i q

cost manhoursc
manhour part

⎛ ⎞⎛ ⎞= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6.4) 

 
.

,
i qenergy

i q

cost kWh sc
kWh s part

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (6.5) 

 
,

,
i q

carb
carb

carb i q

lbcostc
lb part

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (6.6) 

Note that each of the above equations depend on the type of stations associated 

with q, but not the number of stations. 

 Having established the model for variable costs, the equation for total fixed costs 

is now needed: 

 
, , , ,

( )
q i q i q i q i qfixed stat capital enoverhd carboverhd

i
c n c c c⎡ ⎤⎡ ⎤= ⋅ + +∑ ⎣ ⎦⎣ ⎦

 (6.7) 
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where nstat,i,q is the number of stations for a particular subprocess and design alternative, 

and the fixed costs are due to equipment capital costs, and energy and carbon emission 

overhead, as mentioned in the previous section.  Equations for fixed costs are: 

 
,

,
i q

capital
capital

lifetime i q

cost
c

hours
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (6.8) 

 ( )
. ,i qenoverhd overhead i q

costc kW
kWh

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

 (6.9) 

 
,

,

,
i q

carb overhead
carboverhd

carb i q

lbcostc
lb hr

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (6.10) 

The end result of Equations (6.2) through (6.10) is that profit, given by Eq. (6.1), 

is dependent on market demand and design alternatives (i.e., type and number of 

stations). 

6.2 IGDT Analysis 

The station selection problem will now be used to explore the application of IGDT 

to a scenario with severe uncertainty: first in market demand and, later, in the costs of 

carbon emissions.  The decision maker wishes to evaluate the selection decision without 

evaluating the market space further, and decides to use the IGDT approach to do so. 

The decision maker takes the attitude that settling for some guaranteed lower-

bound on Profit is acceptable and preferable to risky, (but higher) optimized Profit that 

relies on the veracity of unfounded assumptions about how uncertain the nominal 

estimate is.  Accordingly, the decision maker seeks the design alternative with maximum 

robustness to the unknown gap between the unknown actual Profit and a nominal 

estimate.  The desire to maximize the size to which this discrepancy can grow is subject 
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to a satisficing critical constraint that defines a smallest critical Profit that can be 

accepted, one that is sub-optimal with respect to what would be the best solution under no 

uncertainty, yet “good enough” given its robustness to uncertainty. 

6.2.1 IGDT Analysis of One Uncertainty: Demand 

To analyze the robustness of different designs to info-gaps, the standard 

procedure is followed: an available nominal estimate is translated into an info-gap model, 

a robustness function is formulated and solved, and trade-offs between critical 

performance and info-gap robustness are assessed to identify a design with a preferable 

amount of robustness. 

6.2.1.1 Info-Gap Model 

The info-gap model for this example can be specified with the knowledge that: 

• The nominal value for average demand is 175 /D parts hr= , taken from a 

previous year’s demand for a similar product. 

• The growth of deviation around nominal can be expressed mathematically as a 

simple, uniformly-bounded interval. 

Combining the uncertainty parameter, α, with this sparse information, the info-

gap model, D, for average demand is: 

 { }( , ) : ,  0D D D Dα α α= − ≤ ≥D  (6.11) 

The effective mathematical meaning of this particular info-gap model can also be 

expressed more simply: 

 D D Dα α− ≤ ≤ +  (6.12) 
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For the problem at hand, an unexpected drop in demand is worse for overall 

profit; therefore, D α−  is the side of the parameterized info-gap boundary that is of most 

interest. 

6.2.1.2 Reward function and satisficing critical value 

The other two components needed for an info-gap decision analysis are the 

reward function and satisficing critical level for performance.  Combining Eqs. (6.1) and 

(6.2), the reward function for Profit, which is dependent on the design alternative, q, and 

the uncertain demand, D, is: 

 ,( , ) min min( ), ( )
q qi q part variable fixedP q D capacity D price c c⎤⎡ ⎡ ⎤= × − −⎣ ⎦⎣ ⎦  (6.13) 

 Next, the critical constraint inequality in Eq. (3.5) becomes, for this example: 

 ( , ) criticalP q D P≥  (6.14) 

For now, it will be assumed that the decision maker can choose a critical profit, 

Pcritical=$90, i.e., the lowest level of Profit deemed tolerable.  As will be seen later, the 

decision maker may wish to adjust his or her choice of this value once the tradeoffs 

between critical performance and robustness to severe uncertainty are illustrated 

graphically. 

6.2.1.3 Info-gap robustness function 

Of main interest in an info-gap analysis is what largest amount of robustness to 

uncertainty, ˆ ( , )cq rα , is achievable.  This robustness is the largest amount of uncertainty 

α that can be sustained by a design alternative q while still guaranteeing, at worst, 
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achievement of the chosen critical performance level rc.  Expressed in the Eq. (3.7) form, 

the info-gap robustness for this example is: 

 
( , )

ˆ ( , ) max : min ( , )critical critical
D D

q P P q D P
α

α α
∈

⎧ ⎫⎛ ⎞⎪ ⎪= ≥⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭D

 (6.15) 

Carrying out the optimization to find info-gap robustness ˆ ( , )criticalq Pα  appears 

daunting at first glance, especially given that Eq. (6.13) is embedded inside Eq. (6.15) as 

P(q,D).  However, the simple, linear, uniform bounds of the info-gap model D makes the 

relationship between ˆ ( , )criticalq Pα  and Pcritical mathematically equivalent27 to the 

relationship between α and P(q,D).  In other words, for this simple case, if the (x, y) point 

pair (α, P(q,D)) can be calculated, their values can be swapped (i.e., ordered (y, x)) to 

yield the point pair corresponding to (Pcritical, ˆ ( , )criticalq Pα ).  This is advantageous 

because P(q,D) can be easily calculated as a function of α.  To do this, one must 

substitute D (the info-gap model for D defined in Eq. (6.11)) for D in the equation for 

Profit, Eq. (6.13).  Then, D itself can be substituted with D α− , which is the boundary 

from Eq. (6.12) associated with worse performance.  For the example at hand, the result 

of the substitution of D with D α−  is: 

 ,( , ( )) min min( ), ( ) ( )
q qi q part variable fixedP q D capacity D price c cα α ⎤⎡ ⎡ ⎤= − × − −⎣ ⎦⎣ ⎦ (6.16) 

So, if one exhaustively calculates Profit for all q and α, one can accordingly 

obtain and plot the robustness function ˆ ( , )criticalq Profitα  for all designs q and all critical 

                                                 
27 This shortcut may not be valid for more complicated info-gap models. 
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levels of Profit.  This has been done for the facility design problem, as shown in Figure 

6.2. 

 

 

Figure 6.2: Robustness to drops in demand, versus Critical profit, for all design 
alternatives. 

 

Due to the large combinatorial number of design alternatives in Figure 6.3, it is 

difficult to ascertain which design alternatives are best.  (This problem will be remedied 

in the following section.)  However, some general behaviors can be seen in the graph.  

Generally, the robustness-performance tradeoff for each design is in the form of a line 

moving from the bottom right up to the top left.  This is intuitive, as a reduction in one’s 
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expectation for minimally acceptable profit (i.e., Pcritical) should allow for more 

robustness to drops in demand, i.e., movement up the vertical axis.  The problem takes 

the form of the pay-back problem described in Section 4.1.3.2.  Different design 

alternatives have different slopes, and some fall off sharply, sometimes before the critical 

profit is very large.  This precipitous drop occurs when a design alternative’s capacity is 

exceeded by demand.  In such a scenario, the alternative cannot generate any greater 

profit because it cannot increase throughput because of limited capacity. 

6.2.1.4 Analysis of Robustness-Performance Tradeoff 

To aid identification of which design alternatives are most preferred over different 

ranges of Pcritical, an algorithm based on Eq. (3.9) was written to log which alternatives, 

ˆ( )criticalq P , have the maximum info-gap robustness for different critical Profit levels.  The 

tradeoff lines of designs that dominate for at least part of the range of Pcritical (i.e., the 

horizontal axis) are shown in Figure 6.3.  Notice that they outline the dense collection of 

curves from Figure 6.2.  The subscript numerals place the ˆ( )criticalq P  in order of 

decreasing critical Profit level.  The intervals for which each preferred design dominates 

are shown by double arrows. 
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Figure 6.3: Robustness to drops in demand, versus critical profit, for several most 
preferred designs. 

 

The particular design alternative (i.e., the type and number of machines) to which 

each ˆ( )criticalq P  line corresponds is shown in Table 2, along with exact numerical ranges 

of Pcritical and ˆ ( , )criticalq Pα  over which they dominate in Figure 6.3.  The point where 

dominance changes (Pcritical = $105, $79, and $41) are preference switch points (PSPs). 
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Table 6.2: Types of stations for different subprocesses. 

qi Sort 
type 

Sort 
# of 
stns 

Clean 
type 

Clean 
# of 
stns 

Dry 
Type 

Dry 
# of 
stns 

Critical 
Profit 
Range 

Info-Gap 
Robustness

Range 

1 Pen 1 Batch 1 Gas 1 $117 to 
$105 0 to 15 

2 Pen 1 Batch 1 Elec 2 $105 to 
$79 15 to 52 

3 Pen 1 Batch 1 Elec 1 $79 to 
$41 52 to 109 

4 Pen 1 Batch 1 Amb 3 $41 to 
$0 109 to 140 

 

From Table 6.2, it can be seen that the sort and clean subprocesses are not 

affected by severe uncertainty in demand.  The drying subprocess was affected, as it is 

the most energy and carbon emission intensive.  It also makes sense that the high volume, 

high capital cost machines allow for the most profit with small allowances for drops in 

demand, yet are dominated by a low volume, low capital station type for higher levels of 

uncertainty. 

 But the question remains, by what procedure does a decision maker go about 

eliciting their preference for a tradeoff between robustness and critical profit using Figure 

6.3?  Critical levels of performance along the horizontal axis can be weighed against the 

corresponding info-gap robustness, graphed by the tradeoff line for each design. 

The designer, not knowing the estimation error α, is tasked with choosing a point on the 

horizontal axis corresponding to his or her demanded level of satisficing performance.  In 

some applications, the rc value may be strongly dictated by external factors.  In other 

applications, the decision maker has the flexibility to relax their choice of critical 

performance level in order to gain more robustness.  The decision maker can explore this 

tradeoff graphically in Figure 6.3 by examining the maximum info-gap robustness 
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achievable for different values of criticalProfit . In this example, the design having 

maximum robustness is the one whose tradeoff line is the highest at a given critical 

performance level. 

 The plot in Figure 6.3 is instrumental in understanding how design preference 

changes as the demand for minimally acceptable profit is relaxed further away from the 

performance-optimal level.  For example, at critical satisficing level discussed in Section 

6.2.1.2, =$90criticalP , it can be seen that 2q̂  is most preferred and is robust to a drop of 

roughly 40 units below the nominal demand.  If profit as aggressively high as $117 were 

demanded (accepting no worse), only 1̂q  would satisfy the constraint, and even then, 

there would be no tolerance for error, α, in estimating demand.  Thus, 

2ˆ ( , $117)criticalq Pα = =0.    If one could accept a guarantee of profit no worse than $105, 

2q̂  becomes more favorable from the info-gap robustness-maximizing perspective.  The 

decision maker must explore these tradeoffs and determine what feasible combinations of 

robustness and critical performance are preferable. 

6.2.1.5 Insight Gained in the Info-Gap Analysis 

The following knowledge is gained in this simple example: 

• If the decision maker can accept profit that would never be worse than $105, 

design 2q̂  is preferable because it can endure the highest amount of error below 

the nominal guess and still satisfy the performance constraint.  Moreover, the rate 

at which info-gap robustness is gained with incremental relaxation of the Pcritical 

demand (i.e., the line slope) is faster for 2q̂  than 1̂q , making 2q̂  even more 

attractive past $105 of demand. 
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• Though it provides the most robustness between $79 and $41 of critical profit, 3q̂  

never provides significantly more robustness than 2q̂ , and would not provide any 

profit above $79 due to its limited throughput capacity. 

• 4q̂ , with its cheap, yet slow and labor intensive ambient drying stations, becomes 

superior should one be willing to accept very low levels of profit in exchange for 

robustness to very high drop in demand.  Notice, however, that 4q̂  has very 

limited  capacity, limiting its ability to provide profit if the drop in demand is not 

very high. 

• The designer, not knowing what the uncertain variable actually will be, can use 

the info-gap analysis and plot in Figure 6.3 to get a handle on what a decision 

change entails under the satisficing decision rule.  It is up to the decision maker to 

sort out his or her preference for robustness versus guaranteed achievement of, at 

worst, some critical level of performance. 

6.2.2 IGDT Analysis with Two Uncertainties: Demand and Emission Pricing 

A second uncertain variable, the cost per ton of carbon emissions, can also be 

modeled as an info-gap.   

6.2.2.1 Info-Gap Models 

Carbon emission cost can be represented simply as a price per ton.  This assumes 

that the price is set in a “carbon emissions trading” market, perhaps in a government 

mandated cap-and-trade system (Labatt and White 2007).  A characteristic of carbon 

emissions prices, as indicated by historical evidence in Figure 6.4, is potential volatility 

in pricing (The Economist 2006).  Note that we apply a carbon cost only to processes that 
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generate carbon at the facility.  Upstream sources of carbon at electricity plants are 

assumed to be accounted in some other fashion and, perhaps, passed along in the cost of 

electricity. 

 

 

Figure 6.4: An example of volatility in carbon pricing (from (The Economist 2006)). 

The info-gap model for this example can be specified with the knowledge that: 

• An estimated nominal value for carbon cost is $5.50 /carbonC ton= , taken from 

the best estimate from a panel of experts. 

• The growth of deviation around nominal can be expressed mathematically as a 

simple, uniformly-bounded interval. 

Combining the uncertainty parameter, α, with this sparse information, the info-

gap model, C, for carbon cost is: 

 { }( , ) : ,  0carbon carbon carbon carbonC C C Cα α α= − ≤ ≥C  (6.17) 

The effective mathematical meaning of this particular info-gap model can also be 

expressed more simply: 

 carbon carbon carbonC C Cα α− ≤ ≤ +  (6.18) 
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For the problem at hand, an unexpected rise in cost is worse for overall profit; 

therefore, carbonC α+  is the side of the parameterized info-gap boundary that is of most 

interest. 

 

The info-gap model for uncertainty in demand, D, will be the same used in 

Section 6.2.1.1. 

6.2.2.2 Precise Bet-Based Scaling Elicitation 

Using direct elicitation per Section 5.3.3.1, the Subject reveals her belief about 

scaling for each info-gap uncertainty as such: 

• She would pay $0.90 to enter a bet that pays $1 if acarbon were set equal to 400% 

of the nominal for Ccarbon.  That is, she believe with a subjective, precise 

probability of 0.9 that carbon price increases would not grow above an additional 

4 x $5.50 = $22 per ton. 

• She would pay $0.90 to enter a bet that pays $1 if ademand were set equal to 50% 

of the nominal for D.  That is, she believe with a subjective, precise probability of 

0.9 that demand for remanufactured parts would not drop below 0.5 x 175 = 87.5 

parts/hr. 

Per Step 2 of BBSE, the scaling references an are calibrated to a baseline level of 1, 

making the scaling factors scarbon = 4 and sdemand = 0.5. 

6.2.2.3 Plotting and Analysis of Robustness-Performance Tradeoff 

 With the scaling factors determined, a combined uncertainty model is defined: 
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 ( , ) : ,  carbon, demand , 0n n
n

n

u u
u u s n

u
α α α

⎧ ⎫−
= ≤ = ≥⎨ ⎬
⎩ ⎭

U   (6.19) 

This model, along with the performance function Eq. (6.13), are used in the 

robustness function, Eq. (6.15).  The resulting plot, showing only the designs with 

maximum robustness, appears in Figure 6.5. 

 

 

Figure 6.5: Robustness to baseline α, versus critical profit, for several most 
preferred designs. 

 

Comparison to Figure 6.3 reveals that the graphs are nearly identical, showing the 

same designs as being preferred for the same ranges.  Why is this? 

 It turns out that the influence of carbon costs on even the designs that emit the 

most carbon dioxide (i.e., natural gas heated ovens for the drying process) are very small.  
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A sensitivity analysis reveals this.  In Figure 6.6, the designs with maximum info-gap 

robustness to demand drop, originally see in Figure 6.3 are plotted28 for two different 

values of the carbon cost.  The outer line is for nominal $5.50 /carbonC ton=  and the inner 

line is ten times that cost.  For the scaling chosen, carbon cost does not significantly 

influence design choice.  This is indicated by the two small circles, which represent the 

switch point between 1̂q  and 2q̂ , which was of interest in Figure 6.3.  The switch point is 

insensitive to the size of carbon cost. 
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Figure 6.6: Sensitivity to two different extreme costs of carbon: nominal, and 10x 
nominal. 

 

                                                 
28 These plots show only the maximum robustness “contour”, i.e., only the portion of a design’s robustness 
curve where that design has maximum robustness is plotted, in the same fashion as in Figure 3.12 
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For the sake of verifying the effects that carbon pricing has on preference ranking, 

observe the plot in Figure 6.7 which is similar to Figure 6.6, except that the inner line 

represents 50 times the nominal carbon cost. 
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Figure 6.7: Sensitivity to two different extreme costs of carbon: nominal, and 50x 
nominal. 

 

It can be seen that, for the case of expensive carbon emission penalties (inner 

curve), the design 1̂q  (seen before in Table 6.2), offers the most robustness for a much 

smaller range of rc compared to the outer curve.  This is because 1̂q  utilizes natural gas 

fired drying and is affected aversely as the increase in carbon costs rise. 

Because of the miniscule influence of carbon for the example problem as defined, 

imprecise BBSE is not applied, as the intervals of preferredness indeterminacy (IPI) 

would be negligibly narrow. 
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6.2.2.4 Engineering Insight Gained 

Using a remanufacturing scenario, we have analyzed a design problem having 

complicated tradeoffs between fixed and variable costs.  Similar tradeoffs existed in the 

previous oil filter example (Duncan et al. 2006), but the facility subprocesses created 

significantly more design alternatives to consider, as well as discontinuities that affected 

how the tradeoff lines were interpreted.  We have identified another situation where the 

info-gap design analysis approach could feasibly enable a decision using no more than a 

sparse nominal value for demand, formulated into a simple info-gap model.  Specifically, 

it was observed that a switch in design choice from 1̂q  to 2q̂  requires a small sacrifice in 

guaranteed profit levels, yet affords a reasonably large amount of extra robustness to 

error in a nominal estimate. 

We also saw that, for this problem, the effects of uncertain carbon pricing did not 

affect the preference rankings significantly compared to the case that considered 

uncertain demand only.  A simple sensitivity analysis was employed to verify the small 

influence of carbon pricing. 

6.3 What Has Been Presented and What is Next 

The preceding example problem has revealed further insight into how info-gap 

theory could be applied to practical problems.  In the next Chapter, we look back on the 

questions answered in this thesis, and consider the overall motivating question about the 

general worth of IGDT to EBDM design problems. 
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CHAPTER 7: 

CLOSURE 

 
 
 

In this chapter, the findings and insight gained from the preceding chapters are 

collected and used to support a discussion of the overall relevance of the work.  First, in 

Sections 7.1 through 7.3, the motivating thesis questions, along with their answers, are 

reviewed and discussed using supporting points from relevant chapters.  For the 

contributions associated with each question, commentary on the value and wider 

usefulness of the contributions is provided.  Suggestions for future work are offered in 

Section 7.5, followed in Section 7.6 by parting thoughts on the direction that future 

researchers might be inspired to take to confront severe uncertainty. 

7.1 Review of Overarching Motivating Question 

The work in this thesis was inspired by a relatively general question: 

 

Overarching Motivating Question (OMQ):  How should one represent and 
analyze severe uncertainty inherent in product life-cycle information to 
provide better decision support for environmentally benign design and 
manufacture? 

 

While there may be numerous answers to this question, which depend on the 

definition of “severe uncertainty”, the answer explored in this thesis was: 

 

Answer to OMQ: A decision maker should apply info-gap decision theory 
to determine whether preferable design choices can be identified without 
requiring more information about the life-cycle than is available. 
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It has been demonstrated that IGDT offers a cheap, yet relatively coarse means for 

identifying what options are most immune to the effects of uncertainty of unknown size, 

under the condition that one is willing to settle for performance which is lesser, yet 

guaranteed.  We advocate that it should be applied if all one has is a nominal estimate of 

unknown variability or unknown validity.  The analysis effort involved is not significant 

and can reveal when an option will always provide the most robustness (and thus be 

preferable) or never provide enough (and be eliminated from further consideration).  This 

means IGDT can be used to screen whether more information about uncertainty even 

needs to be collected or not.  It was shown, for example in the remanufacturing example 

problem in Figure 6.3, that, if a relatively small sacrifice in demand for performance is 

made, designs can be identified that can withstand more error than the performance-

optimal option.  This is arguably the most valuable type of finding from an info-gap 

analysis.  If this is the case, and if less than optimal performance—if guaranteed—is 

acceptable, one should take the more robust choice.  This involves a satisficing focus on 

survival, rather than a risky demand for the optimal.  Of course, one’s definition of 

survival is based on subjective preferences; therefore, the ability to induce preferences for 

a trade-off, as enabled by plots of the robustness function, is vital.  Thus, not only does an 

info-gap analysis reveal when decisions can be made using only sparse information 

(instead of subjective uncertainty estimates or other assumptions); it also postpones the 

formation of preferences for trade-offs between robustness and performance until they 

can be viewed directly on a trade-off plot. 
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Another argument for the use of IGDT is that the analysis it entails is 

accomplished rather cheaply.  For systems with monotonic, continuous performance 

functions, the analysis involved does not require sophisticated search techniques to find 

maximum robustness.  In fact, an easy-to-compute plot of system performance R(q,u) 

versus uncertainty size α  can be directly viewed as a robustness function plot simply be 

reinterpreting its axes as rc and α̂ .  (An example of this short-cut was shown in Section 

6.2.1.3.) 

In summary, IGDT is not guaranteed to reveal an obviously preferable option in 

cases where one does not exist, but the chance that it could lead to a decision without 

requiring more information makes it worth trying.  This is especially true given the 

usually simple equations in EBDM problems, which make the cost of an info-gap 

analysis low. 

7.2 Motivating Question 1 and its Corresponding Contribution 

Though it has been demonstrated that IGDT can be effective, more examples 

characterizing when it is most useful are always needed.  This motivated the first 

subquestion in the thesis: 

 

Motivating  Question 1 (MQ1): How should we determine when IGDT 
will be most appropriate for supporting EBDM decisions? 

 

Answer to MQ1: An evaluation of the usage conditions and decision 
support capabilities of IGDT, as well as the needs and characteristics of 
archetype EBDM problems, can be used to establish a set of guidelines for 
screening applicability. 
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Situations where IGDT is more useful are identified and evaluated qualitatively in 

discussions in Chapter 4.  These situations are as follows: 

• When the uncertainties involved fall into any of the categories or are of any of the 

types reviewed in Section 4.1.2, including: estimates of unknown validity; time-

sensitive models; human behavior; unobserved socio-techno interactions; natural 

systems behavior; and composite uncertainties. 

• When design preference rankings switch over the range of rc.  This happens when 

the design that is performance-optimal achieves robustness (as rc is relaxed) at a 

slower rate than another design that it outperforms under no uncertainty.  (For 

instance, see Figure 4.3.)  An example of this scenario was seen in the form of a 

“pay-back” problem structure described in Section 4.1.3.2, seen in both the oil 

filter and remanufacturing examples. 

• When a design problem involves selection between alternatives, as opposed to a 

continuous variable whose value must be specified.  IGDT is more interesting for 

selection problems because the range of rc over which different discrete 

alternatives dominate is wider and easier to weigh because there are distinct 

switch points.  Selection problems of this type are more often in the earlier stages 

of design, where there is also usually less information available. 

• When the measure of performance is a more direct indicator of value (e.g., 

monetary, or measurement of energy consumption) as opposed to a single-unit 

composite score of performance, which may not have much meaning by itself (see 

Section 4.4). 
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• When an understanding of error size is easier to interpret.  For instance, it is easier 

to physically understand the size of the number of filters used over a lifetime than 

to understand the size of a single-unit score of environmental performance (e.g., 

from a database value in Section 4.3.2). 

 

While these guidelines seem intuitively valid, they are also very general.  It would 

be strong to label any of them “archetypes”, they are more like starting points for 

reference.  They are a useful start to characterizing when to use IGDT and what one 

might get out of an info-gap analysis.  But, like any modeling or decision approach, 

expertise identifying when it will be useful is only gained when it has been applied to a 

wide number of problems.  The applicability and usefulness of IGDT is still very context 

dependent.  Reading Chapters 3 and 4 of this thesis equips a person with examples that 

could help them better recognize applicability when encountering new uncertainties, new 

performance function types, etc. 

7.3 Motivating Question 2 and its Corresponding Contribution 

The second subquestion was oriented towards the assessment of multiple 

uncertainties, a key demand for EBDM: 

 

Motivating Question 2 (MQ2): For problems affected by multiple 
uncertainties, how should scaling factors be elicited in a rigorous fashion 
that allows for imprecision in those factors? 
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Answer to MQ2: One’s beliefs about info-gap scaling should be elicited in 
the form of subjective probabilities, which are revealed through one’s 
betting behavior.  The method for eliciting subjective probabilities allows 
for imprecise expression of one’s knowledge about scaling, which in some 
cases causes indeterminacy in the preference rankings for design 
alternatives. 

 

It is demonstrated in Chapter 5 that subjective probabilities, when elicited through 

a rigorous betting method outlined in Section 5.3, could be used as a reference point for 

scaling.  But is this more rigorous method better?  This is difficult to test; in Section 

5.3.1, it is explained that subjective probabilities are an operationalized way to measure 

belief about scale, and that this measure is transferable between different info-gaps.  A 

decision maker can review the widely accepted theoretical foundations already laid out 

by Walley in the field of imprecise probabilities (Walley 1991) in order to decide whether 

they trust betting as a reference.  Betting provides a more rigorous specification of 

scaling factors; we argue that any increase in rigor is worthwhile as long as the means of 

establishing that rigor is cheap.  Specifically, the bracketing method (of Section 5.3.3.1) 

used to determine scaling factors in the betting scenario is easy to implement and places 

low cognitive demands on the person whose beliefs are being elicited. 

 The ability to represent imprecision in the Subject’s beliefs, newly offered in this 

thesis, is a way to conservatively introduce new information into the process of scaling 

between multiple uncertainties.  The propagation of this imprecision to ranges where 

preference ranking was indeterminate (the “interval of preferredness indeterminacy”, for 

instance in Figure 5.15) follows a guiding theme of this thesis: to see whether or not 

decisions can be made using only limited information.  No attempts were made to 
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simulate or measure through experimentation how a real decision maker would react to 

intervals of indeterminate choice, however. 

There are fundamental accuracy limitations to the general approach to scaling 

info-gaps that is used in this thesis.  The technique of mapping all uncertainty parameter 

sizes onto a single gross proxy measure for the “overall” uncertainty (Section 5.2) is a 

rather coarse assessment of info-gap uncertainty.  However, most aspects of the modeling 

of uncertainty as an info-gap are of rough accuracy.  The investment of significant effort 

into any one aspect of the modeling or analysis is still prone to being overshadowed by 

the fact that the bounds on uncertainty are completely unknown.  We contend, however, 

that the more rigorous means of eliciting scaling factors (Section 5.3.3) and assessing 

their imprecision (Section 5.2.4) is of a low enough cost to be warranted in practice.  

More information about info-gaps leads to robustness that is more consistent with the 

decision maker’s understanding of uncertainty. 

In summary, three new sub-contributions in the area of analyzing robustness to 

multiple uncertainties are presented in this thesis.  All of these are mathematically general 

and can be applied to any IGDT problem, including non-EBDM ones.  The contributions 

are: 

• The concept (from Section 5.1.2) that an interval of indeterminacy (IPI) can exist 

when one is unable to scale different info-gaps with respect to each other, and that 

this interval is in some cases small enough to not require that scaling be specified.  

For selection problems, calculation of the size of this interval can scale up to n>2 

info-gap uncertainties as described at the end of Section 5.1.2. 
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• The addition of rigor to the elicitation of scaling factors, but at a low cost, in 

Section 5.3.  This technique also scales up to any number of info-gap 

uncertainties; the BBSE steps would simply be repeated for each uncertain 

variable.  However, as acknowledged in Section 5.5.1, BBSE only applies to 

uncertain quantities, not uncertain models that assume a functional form. 

• The ability, through the new rigorous method also based in betting, to represent 

imprecision when specifying scaling factors, in Section 5.4.4.  Making decisions 

under scaling imprecision for N>2 info-gap uncertainties was explained to be 

possible in Section 5.4.5, but conjectured to lead to increasingly indeterminate 

preference rankings over design alternatives. 

An additional smaller contribution is the systematic procedure for identifying 

when to apply these three multi-gap techniques, as outlined in the decision tree of Figure 

5.8. 

7.4 A Review of Validation Steps 

The bulleted lists in Section 1.4 (separated for the two Motivating Questions) 

contained steps that were to be followed to (1.) verify capability gaps to be filled in the 

thesis and (2.) move towards validation of the new contributions meant to fill those 

capability gaps.  The latter of those two types of steps are now summarized, recognizing 

what forms of validation were used, as well as what the major findings were.  An 

overview for Motivating Question 1 is provided in Table 7.1. 
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Table 7.1 : Validation Steps and Findings for Motivating Question 1 

Mode: Evaluation of IGDT and Review of Applicability to EBDM 
Thesis 
Section 

Activity Validation Type 

3.4 & 
3.5 

Argued IGDT’s internal logical 
consistency 
Finding: judged to be sound 

Review of axioms and logic: for info-
gap models, analysis, and decision 
rules 

3.6 Compared IGDT to other uncertainty 
formalisms 
Finding: direct comparison is 
infeasible, as each have different 
starting info requirements 

Critical Review: Compared 
requirements and assumptions of 
major uncertainty formalisms’ 
models, analysis, and decision rules 

4.1 Summarized when EBDM archetype 
characteristics are seen to match IGDT 
capabilities 
Finding: initial list of usage guidelines, 
previously non-existent 

Critical Review: info-gap information 
requirements, and corresponding 
info-availability in selected EBDM 
scenarios 

4.3 Applied info-gap to the basic oil-filter 
problem to find usefulness and 
limitations 
Finding: Further guideline information 

Demonstration;  
Qualitative Discussion of plusses & 
minuses 

 

To reiterate, the lack of any quantitative, directly comparative studies between 

info-gap and other uncertainty formalisms reflects the fact that IGDT is suited to an 

entirely unique class of problems.  Thus, given any specific set of starting information 

about uncertainty in a decision problem, info-gap theory IGDT is not in direct 

competition with alternative uncertainty formalisms. 

 An overview for Motivating Question 2 is provided in Table 7.2. 
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Table 7.2 : Validation Steps and Findings for Motivating Question 2 

Mode: Synthesis of Existing Techniques to Provide New Capabilities 
Thesis 
Section 

Activity Validation Type(s) 

5.3.1 Evaluated the betting scenario used to 
elicit subjective beliefs 

Critical evaluation of pre-existing 
work by Walley; 
Review of Walley’s criteria for 
elicitation rigor 

5.3.2 Defended subjective probability as a 
reference point for “mapping” the 
scales of different info-gaps  

Logical explanation: pluses, minuses, 
and underlying assumptions of the 
technique reviewed 

5.3.2 Grounded the new concept of 
imprecision in multi-info-gap scaling 
to the more rigorous, previously 
examined idea of imprecision in 
subjective probabilities 

Critical discussion: pre-existing work 
by Walley (upper and lower 
previsions) 

5.4.3 Tested bet-based scaling with precise 
elicitation. 
Finding: assumed to better reflect the 
decision maker’s info about 
uncertainty, but no solid proof due to 
the nature of severe uncertainty 

Demonstration: on the basic oil-filter 
problem and two uncertainties; 
Quantitative Comparison: to existing 
scaling methods that were applied in 
Section 5.2.2.1 

5.4.4 Tested bet-based scaling with 
imprecise elicitation. 
Finding: assumed to better reflect the 
decision maker’s info about 
uncertainty, but no solid proof due to 
the nature of severe uncertainty 

Demonstration: on the basic oil-filter 
problem and two uncertainties 
 

5.4.4 Proposed heuristics for assigning 
preference rankings given 
indeterminacy caused by imprecision 
in scaling elicitation 

Demonstration; logical explanation 

5.5.3 Reviewed assumptions and 
“correctness” of elicited scaling factors 

Qualitative Discussion 

6.2.2 Tested bet-based scaling with precise 
elicitation 
Finding: indeterminacy (IPI) was 
negligibly small, so scaling was not 
needed.   
Follow-up: a sensitivity analysis 
technique was created and applied. 

Demonstration; Qualitative 
Discussion 
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To reiterate, no quantitative comparisons were used to measure the “value” of the 

new scaling elicitation techniques as compared to old methods.  This is because, for the 

old methods, there is no explain where scaling information comes from, so the same 

starting information about scaling cannot be used as a way to compare both methods.  It 

is assumed that any technique that incorporates new information, as long as it is elicited 

rigorously, will provide robustness to a more accurate representation of what a decision 

maker knows about uncertainty, thus making the outcomes of assessments more valuable. 

7.5 Future Work 

Three main areas for future work are discussed next: exploring further 

applicability to EBDM, testing IGDT on more complex problem types, and using IGDT 

as a component in a framework for uncertainty management. 

7.5.1 Future EBDM Application Areas 

Further understanding of the full range of applicability and potential limitations of 

IGDT in EBDM scenarios can be gained by trying out more problems.  A clear set of 

principles that guide applicability and predict usefulness will probably not be practical.  

Rather, a wider set of example problems from which similar new problems could be 

identified is probably more useful.  We note that in the initial phases of Ben-Haim’s 

establishment of info-gap theory, he paid close attention to theoretical foundations, all the 

while sticking to relatively academic problems.  His more recent phase of research 

activities (as evidenced by recent publications, workshops, and seminars) has transitioned 

to trying to apply IGDT to as wide of a scope of problems as possible.  Certainly there is 

much more ground to be covered in EBDM applications, as info-gaps specific to the 
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ecosphere and valuesphere portions of Figure 2.2 have not yet even been seriously 

considered, even though they contain probably the most severe uncertainty. 

7.5.2 Greater Problem Complexities 

The examples in this thesis do not go beyond considering more than two info-

gaps at a time.  The BBSE techniques of Section 5.3 can scale up to accommodate more 

uncertainties, however, for imprecise scaling, the combined effects of imprecision can 

create intervals of ranking indeterminacy that are quite wide. 

 Of greater interest would be exploration of the practicality of considering multiple 

reward functions at once.  There is already an established technique for accommodating 

multi-criterion problems (Ben-Haim 2006), but Ben-Haim has left explorations of its 

practicality as something for other researchers to explore. 

 Considering more complex performance functions, as well as info-gap 

uncertainties in models, could be explored.  We expect that the computation of the 

robustness function ˆ ( , )cq rα  can be difficult for systems with non-continuous R(q,u,) 

functions.  In this thesis, all of the problems have been solved using exhaustive searches.  

Future work would use more efficient search algorithms to generate robustness-

performance frontiers. 

7.5.3 Towards Using IGDT in a Larger Uncertainty Management Framework 

IGDT certainly has its own place within the field of uncertainty formalisms.  How 

could it compliment these other formalism, and what place would it serve in a larger 

framework for uncertainty management?  IGDT could serve as a screening method, 

applicable in much earlier stages of uncertainty analysis.  However, we do not see it 
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playing as strong of a complimentary role as, e.g., probability bounds analysis plays for 

traditional probability theory. 

7.6 Parting Thoughts 

In this thesis it is shown how info-gap decision theory can be used to include 

severely deficient information into environmentally benign life cycle design.  For two 

major examples, we have demonstrated the practicality of using minimal information 

(suspect nominal estimates and imprecise scaling factors) to make support decisions 

without needing to collect more information.  In some cases, a preferable design option 

can be identified, in other cases there exists indeterminacy in preference rankings.  

Before an info-gap analysis, it is hard to distinguish which will be the case.  However, 

this thesis demonstrates a variety of modes in which IGDT can be tested and extended, 

providing much needed examples and discussion in the IGDT research domain.  It is 

hoped that future researchers will observe these steps and become inspired to take steps 

of their own. 
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