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SUMMARY

This dissertation addresses resource allocation problems that occur in both public

and private health care settings with the objective of characterizing the tradeoffs

that occur when simultaneously incorporating multiple objectives and developing

methods to address these tradeoffs. We examine three resource allocation problems

(i) strategic allocation of financial resources and limited staffing capacity for the

mobile delivery of health care within African countries, (ii) real-time allocation of

hospital beds to internal patient requests, and (iii) development of patient redirection

policies in response to limited bed availability in units within a system of hospitals.

For each problem we define models, each with a different methodology, and utilize the

models to develop allocation strategies that account for multiple competing objectives

and examine the performance of the strategies with computational studies.

In Chapter 2, we model African health care delivery systems utilizing a mixed-

integer program (MIP) which accounts for financial and personnel constraints as

well as infrastructure quality. We characterize tradeoffs in effectiveness, efficiency,

and equity resulting from four allocation strategies with computational experiments

representing the variety of spatial patterns that occur throughout the continent. The

main contributions include (i) the development of a model that incorporates spatial

and infrastructure characteristics and allows for a study of equity in the delivery of

care, rather than access to care, and (ii) the characterization of tradeoffs in the three

objectives under a variety of settings.

In Chapter 3, we model the real-time assignment of bed requests to available

xiii



beds as a queueing system and a Markov decision process (MDP). Through the de-

velopment of bed assignment algorithms and simulation experiments, we illustrate

the value of implementing strategic bed assignment practices which balance the bed

management objectives of timeliness and appropriateness of assignments. The main

contributions of this section include (i) the development of new bed assignment al-

gorithms which use stochastic optimization techniques and outperform algorithms

which mimic processes currently used in practice and (ii) the definition of a model

and methods for the control of a large complex system that includes flexible units,

multiple patient types, and type-dependent routing.

In Chapter 4, we model the impact of a patient redirection policy in a hospital

unit as a Markov chain. Assuming preferences for patient redirection are aligned with

costs, we examine the impact of incremental changes to redirection policies on the

probability of the unit being completely occupied, the long-run average utilization,

and the long-run average cost of redirection. The main contributions of this chapter

include (i) the introduction of a model of patient redirection with multiple patient

thresholds and patient preference constraints and (ii) the definition of necessary con-

ditions for an optimal patient redirection policy that minimizes the average cost of

redirection.

xiv



CHAPTER I

INTRODUCTION

A common problem addressed through operations research and mathematical mod-

eling is the strategic allocation of limited resources to a set of jobs or activities. De-

cisions regarding the allocation of scarce resources must account both for the unique

characteristics of the resources and tasks and the system objectives. Resource alloca-

tion problems arise in a variety of settings including financial portfolio management,

project management, and manufacturing scheduling. Some resource allocation prob-

lems focus on strategic decision making, over a long horizon, while others focus on

daily or hourly operational decisions. Additionally, resource allocation problems can

be static or dynamic.

The management of most health care systems involves difficult resource allocation

decisions which arise due to the imbalance between the supply of health services and

patient needs. This imbalance is particularly apparent in the delivery of public health

services in developing countries in which the level of global aid provided for health

care is significantly outweighed by the resource requirements [43]. Similarly, an imbal-

ance between the number of patients seeking care and the available capacity to treat

patients occurs in hospitals throughout the United States, resulting in overcrowded

hospitals and emergency departments [81].

Due to the delivery of life-altering services and the significant impact from poor

decision making, resource allocation problems in health care systems often require a

unique approach accounting for the unique system characteristics. Quality of health

care delivery, which is one of the key factors in decision making, requires simultaneous

consideration of a variety of objectives. The Institute of Medicine has identified six

1



aims for improving quality in health care delivery: effectiveness, efficiency, equity,

timeliness, safety, and patient-centeredness [40]. The simultaneous consideration of

these aims and their (often competing) interactions is necessary for informed decision

making regarding the operation of health care systems and allocation of resources.

As a result, improving quality within the confines of limited resources requires a

multi-objective approach.

This dissertation focuses on the allocation of scarce resources in three health care

system settings with respect to multiple objectives. In the first setting, we examine

strategic decision making for the allocation of financial resources and limited staffing

capacity in the delivery of health care services within African countries, accounting

for the unique challenges that exist in this environment. In the second setting, we

examine the real-time allocation of hospital beds to patient requests within a hospital,

accounting for appropriateness and timeliness in patient care. Lastly, we examine

the development of patient redirection policies within a system of hospitals, again

allocating hospital beds to patient requests and accounting for a variety of system

performance metrics. In all three settings, we utilize models to develop allocation

strategies that account for multiple competing objectives and test the performance

of the strategies through simulation and computational experiments.

1.1 African Health Care Delivery

In the first setting (Chapter 2), we model the decisions faced by managers within non-

governmental organizations (NGO) or ministries of health (MoH) when structuring

supply chains for delivery of health care services in developing countries. These

decisions include the opening or use of specific health centers, allocation of funds and

health supplies to the open health centers, and deployment of health center staff for

administration within the communities.

Health care delivery in resource-constrained regions is made difficult by unreliable

2



transportation systems, the relative locations of health centers and settlements, and

diverse geography [78, 85]. Therefore, the resource allocation model and policies we

develop account for the logistical difficulties resulting from the distribution of popu-

lations and health centers as well as the structure and quality of the transportation

infrastructure.

1.1.1 Objectives

Much of the difficulty in allocation of scare resources arises from the many competing

objectives that must be considered. For example, goals include maximizing the health

impact, while minimizing the resources that are utilized, and ensuring that allocation

is fair and equitable. These objectives of effectiveness, efficiency, and equity are key

elements in the delivery of quality health care in Africa [8, 85].

The logistical difficulties discussed above directly impact the effectiveness, effi-

ciency, and equity of an allocation strategy. For example, due to the spatial charac-

teristics of a region, it may be least expensive to the “health system” to distribute

health services in densely-populated areas, which leads to limited access to care for

communities in sparsely populated regions. Increasing equity by delivering health

care to those in remote areas results in sacrifices in efficiency, with a significant in-

crease in the average cost per patient treated [24]. Due to this increase in average

patient cost, limited funds treat fewer patients thereby decreasing the overall effec-

tiveness of the allocation. Therefore, a multi-objective approach that considers these

tradeoffs is needed.

1.1.2 Methodology

To examine tradeoffs in effectiveness, efficiency, and equity we develop a mixed-integer

program (MIP) to model an African health care system and the corresponding de-

cisions for allocation of scarce resources. Unlike previous health allocation models

[23], we incorporate objectives in a hierarchical fashion, identifying a solution with

3



the use of multiple objectives. We develop and examine four allocation strategies

with computational experiments. Each strategy pertains to the order in which the

objectives are used in a hierarchical optimization model.

1.1.3 Contribution

Rather than modeling one specific region in Africa, as many other studies have done,

we create data instances reflecting a variety of settlement patterns often seen in Africa.

By examining the strategies in multiple instances, we provide a comprehensive study

of the impact of spatial characteristics and allocation strategies.

By comparing the allocation policies, corresponding to specific instances and

strategies, we examine the interdependencies between the three objectives includ-

ing the tradeoffs in equity and health improvement. Additionally we examine how

the resource restrictions, budgetary and otherwise, impact the performance of the

allocation strategies.

1.2 Dynamic Bed Assignment

In the remainder of the thesis, we address operational decision making in hospital

systems. In Chapter 3 we address real-time bed assignment decisions faced by hospital

bed managers. Bed management refers to the task of balancing supply of scarce

hospital resources, primarily beds, and demand by way of patient admission and

transfer requests [67].

In bed management, the bed assignment for a particular patient is linked to the

nature of his or her condition. This allows for centralization of expertise by the nurses

in a particular wing or area of the hospital, improved patient outcomes and safety,

and more efficient rounding by physicians. While a patient’s ideal bed assignment

may be known, when a hospital is highly capacitated, a bed in the ideal unit may

not be available and instead the patient may need to be placed in an overflow, or

“off-service,” unit with a potential detriment to effectiveness. An alternate option

4



is to postpone a patient’s transfer, by continuing to “board” in the current unit,

especially if none of the available beds meet the patient’s medical needs. Despite the

fact that a patient is not assigned to the ideal unit, both the choices to “board” in

the current unit or assign a patient to an “overflow” unit correspond to decisions for

the allocation of limited hospital resources.

1.2.1 Objectives

A decision to postpone an assignment, through “boarding,” causes increased waiting

by the patient, results in inefficient use of resources, and reduces throughput [42].

Thus the bed assignment process involves the simultaneous consideration of objectives

to improve timeliness of assignments as well as appropriateness of assignments. The

metrics by which bed management performance is benchmarked nationally are the

number of diversions due to capacity restrictions and the median time between request

and assignment. Low mean and median assignment times represent the reduction of

system bottlenecks, improvements in timeliness of care, and efficient use of hospital

resources. In addition to these benchmarks, we also seek to reduce the rate of off-

service assignment and patients leaving without assignment.

1.2.2 Methodology

We describe the bed assignment problem using a queueing framework to account for

the interactions between capacitated hospital units and the impact of boarding in

creating throughput bottlenecks. Utilizing this queueing framework, we formulate a

mathematical model of the system as a Markov decision process (MDP). Due to the

complexity of the various streams of information and the detailed nature of the MDP

state space, identifying optimal state-dependent routing policies can be difficult even

for small hospital systems. Hence, we develop three assignment algorithms including

those that account for probabilistic expectations about future events (e.g., arrivals

and discharges) and utilize stochastic optimization methods. We test the performance

5



of these algorithms against approximations of current hospital practices and provide

an upper bound on the performance using a simulation approach.

1.2.3 Contribution

Decision making related to bed assignments, which is a critical process impacting

patient care and system efficiency, is a complex combinatorial optimization problem

due to the dynamic nature of hospitals including the constant change in status and

expectations for patient arrivals, transfers, and discharges. The problem we address

is different from previous research on dynamic assignment problems [76] due to the

dynamically changing information about both supply and demand for resources, the

reuse of resources, and the expectations about future events. While other researchers

have attempted to model the impact of bed assignment overflow policies [80] and

blocking in hospital systems [11] to our knowledge no one has specifically examined

the performance of bed assignment policies, incorporating the costs of boarding and

value of the appropriateness of the assignment.

Through the development and testing (via simulation) of bed assignment algo-

rithms we study the impact of how expectations about future events can improve bed

assignment practices and hospital system performance. Additionally, we demonstrate

the value of implementing strategic bed assignment techniques in a variety of hospital

settings. These techniques are shown to balance the multiple objectives considered

by bed managers, including both timeliness and appropriateness of bed assignments.

1.3 Patient Redirection in Hospital Networks

Building on the concept of strategic assignment to “overflow” beds, in Chapter 4

we examine the development of admission control policies for internal hospital units.

These admission control policies allow for the redirection of patients to partner hos-

pitals, if the unit to which they are seeking admittance does not have beds available.

We examine the development of patient-type specific redirection policies for a
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particular unit. Policies take the form of defining thresholds for each of multiple

patient types, such that if the number of patients in the unit reaches the threshold

level the corresponding patients are redirected.

We assume a penalty is incurred while patients are redirected. These penalties

or costs are assumed to be dependent on the patient type and represent the costs

associated with the quality of care provided to a patient. This stems from the fact

that often the appropriate equipment or services may not be available at another

hospital, resulting in a higher cost for redirection.

We assume that the patient types (and their corresponding redirection costs)

are ordered based on the hospital’s priorities, such that one type of patient with a

higher priority (and redirection cost) cannot be redirected unless patients with lower

redirection costs are also redirected. Thus, we seek to identify threshold policies

for patient redirection such that the prioritization and preferences for redirection of

different patient types is conserved.

1.3.1 Objectives

With the consideration of multiple patient types we account for the appropriateness

of the patient-unit through the redirection costs. We seek to minimize the sum of the

average (per unit time) redirection costs incurred by all patient types.

We consider the hospital’s objectives of efficiently utilizing resources while also

minimizing the probability that a unit is completely full and cannot accept any in-

coming patients. We define the diversion rate to be the probability that the unit is

completely full and therefore must divert, or redirect, all incoming patients. Addi-

tionally, we consider efficiency by calculating the long-term average utilization for the

corresponding unit.

In choosing thresholds for a redirection policy we seek to (i) minimize the average

cost from redirection, (ii) minimize the diversion rate, and (iii) maximize the average
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utilization. Due to the nature of these performance metrics, tradeoffs in the objectives

must be considered in the development of a patient redirection policy.

1.3.2 Methodology

With the assumption of preferences among the patient types, we model the unit as

a loss system with the assumption of Poisson arrivals and exponential service times.

For a particular policy, defined by the choice of redirection thresholds, the system is

modeled as a Markov chain. Hence, for each policy the limiting probabilities for the

number of occupied beds, the average cost of diversion, and the average utilization is

calculated directly.

Utilizing the properties of the model, we demonstrate the impact of incremental

changes to the thresholds of a control policy on the performance with respect to the

three objectives defined above. As a result, we derive necessary conditions for an

optimal threshold policy that minimizes the average cost per unit time. We conduct

numeric experiments on sample instances to illustrate the validity of the necessary

conditions for an optimal policy, the impact of preference constraints, and the trade-

offs in the three objectives.

1.3.3 Contribution

Unlike previous research, we examine the development of multiple threshold policies

in which preferences among patient types are fixed and demonstrate the nature of

tradeoffs in multiple objectives. Previous research either considers control systems

with at most two thresholds, does not enforce preference constraints, or utilizes dif-

ferent objective functions. Our model can be applied to settings with any number

of patient types and we demonstrate necessary conditions for a threshold policy that

minimizes average cost of redirection with the assumption of preferences for patient

types.
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1.4 Outline

The remainder of this dissertation presents the methodology and policy development

for multi-objective resource allocation problems in the three health care settings de-

fined above. Chapter 2 describes the model of health care distribution in African

countries, defines the hierarchical optimization approach used in policy development,

and examines the tradeoffs in the three objectives and the impact of infrastructure

characteristics.

Chapter 3 presents the queueing and MDP formulations of the bed assignment

problem, the bed assignment algorithms which incorporate the definition of these

models, and a study of the performance of the algorithms under realistic scenarios

informed by data from a local hospital.

Chapter 4 defines the problem of identifying patient type-specific redirection poli-

cies for an internal hospital unit with redirection preference constraints, examines

structural properties of the model, and presents an analysis of tradeoffs in multiple

objectives with a computational study.
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CHAPTER II

HEALTH CARE ALLOCATION IN SUB-SAHARAN

AFRICA: TRADEOFFS IN EQUITY, EFFICIENCY, AND

EFFECTIVENESS

In this chapter, we examine the allocation of scarce resources in African health care de-

livery. In particular, we utilize a hierarchical optimization approach to define resource

allocation strategies in response to system constraints, distribution of population, and

infrastructure characteristics. We study the impact of these features and characterize

the tradeoffs in three system objectives: equity, efficiency, an health impact under

different resource allocation strategies.

The remainder of the chapter is organized as follows. Background information

regarding the problem setting is presented in Section 2.1. A description of the model,

including assumptions, is provided in Section 2.2. Methodology for the creation of the

instances used in the computations study and the hierarchical optimization approach,

are explained in Section 2.3.1 and 2.3.2, respectively. An analysis of the results is

presented in Section 2.4 including: a study of the impact of the prioritization of health

and equity objectives (Section 2.4.1), a comparison of equity metrics (Section 2.4.2),

an analysis of tradeoffs in health and equity (Section 2.4.3), and an examination of

the impact of infrastructure (Section 2.4.4 and Section 2.4.5).

2.1 Introduction and Literature Review

In many parts of the developing world, including much of the African continent, there

is a crisis because people lack access to essential medicines and health services. The

severe imbalance of supply and demand for medical care dramatically increases the
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complexity of the allocation decisions that have to be made by many ministries of

health (MOHs) and non-governmental organizations (NGOs).

Additionally, much of the difficulty in allocating scare resources arises from the

many competing objectives that must be considered, e.g., maximizing health impact,

minimizing resource usage, and ensuring fair allocations. These objectives of effec-

tiveness, efficiency, and equity are key elements in the delivery of quality health care

in Africa [8, 85]. Health care delivery in resource-constrained regions is further com-

plicated by unreliable transportation systems, the relative locations of health centers

and settlements, and diverse geography [78, 85]. Therefore, health care allocation

decisions must account for the logistical challenges resulting from the location of

populations and health centers as well as the configuration and quality of the trans-

portation infrastructure.

These logistical challenges directly impact the effectiveness, efficiency, and equity

of an allocation strategy. For example, due to the spatial characteristics of a region,

it may be least expensive to the health care system to distribute health services in

densely-populated areas with communities in sparsely populated areas incurring an

unreasonable burden to receive care. Increasing equity by delivering health care to

those in remote areas will require a sacrifice in efficiency, with a significant increase in

the average cost per patient treated [24]. Due to this increase in average patient cost,

limited funds would treat fewer patients thereby decreasing the overall effectiveness

of the allocation.

No consensus has been reached regarding the appropriate definition and measure-

ment of equity [65]. We use two objectives to achieve equity between population

centers or communities. The first is minimizing the difference in the health improve-

ment in the communities with the largest and smallest improvement. The second is

maximizing the health improvement at the population center with the smallest im-

provement. This second objective incorporates Rawlsian’s maximin concept, by which
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resources are used to improve the status for the worst off-individual, or community

[65]. Both objectives strive for vertical equity, in which resources are distributed to

locations according to the relative needs [65].

To examine tradeoffs in effectiveness, efficiency, and equity we develop a mixed-

integer program (MIP) to model an African health care system and the correspond-

ing decisions for the allocation of scarce resources. Mixed-integer programming is a

technique that has been utilized in other health care allocation models for resource-

constrained countries, including models which efficiently allocate resources among

different treatments while comparing the performance of multiple objectives [23].

Unlike these health care allocation models, we incorporate multiple objectives in a

hierarchical fashion.

Most models for health care allocation in Africa focus only on antiretroviral HIV

treatments [44, 86]. Some HIV treatment allocation models incorporate spatial char-

acteristics of specific African regions [14, 83, 84]. Wilson and Blower (2005) developed

a mathematical model for the equitable allocation of antiretrovirals in South Africa,

which incorporated the relative locations of patients and health centers. The authors

identified an allocation strategy which maximized equity in the percentage of infected

individuals receiving treatment in each community [83]. Unlike Wilson and Blower,

our model incorporates transportation and distribution costs, and dependencies on

the infrastructure system.

Rather than focusing on one specific region in Africa, as many other studies have

done, we examine a variety of settlement patterns often seen in Africa. We implement

different allocation strategies for all settlement patterns, where an allocation strategy

represents choices regarding the importance assigned to health outcome and equity.

Our computational study reveals that a careful choice of an allocation strategy is

important in environments with tightly constrained budgets. The settlement pattern

of the environment seems to have a smaller impact on which allocation strategy is
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best. When limited funds are available, significant differences in health outcome

and equity can occur for the different allocation strategies. We find that for each

settlement pattern and each budget level, there is a specific “equity-threshold” at

which a minor increase in the total health improvement requires a large sacrifice in

equity.

We also conducted a comprehensive study to understand the impact of the location

of health centers and the quality of the transportation infrastructure on the efficiency

of the delivery of health care. We find that the efficiency does depend strongly on the

settlement pattern. Furthermore, we see that targeted investments in infrastructure

improvement are far more effective than system-wide infrastructure improvements

(for a given investment budget).

2.2 Model

Health care allocation systems in Africa are extremely complex involving interactions

between patients, health workers, transportation systems, health centers, and political

agencies. The model we develop incorporates many of these complexities while also

making some simplifying assumptions.

The model takes as input information pertaining to the settlement pattern and

the health care and transportation infrastructure of a particular region, including a

set of population centers (PCs), a road network connecting these population centers,

a set of health centers (HCs), and a medical supply distribution network connecting

health centers. Each population center is characterized by its total population, or

census, and disease occurrence. Rather than limiting the study to only one disease,

we allow multiple diseases each with its own occurrence rate. A road is defined by

the two population centers it connects, its length, and its quality. To accommodate

prevailing conditions within Africa, roads are categorized as paved roads, dirt roads,

or foot paths. The quality of a road is classified as primary, secondary, or tertiary,
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respectively. The transportation costs and travel time of a road depends on type and

length.

Reflecting health care systems in Africa, each health center is classified as a re-

gional hospital or a rural health center, defining the level of care it provides. These

are referred to as primary-level and secondary-level health centers, correspondingly.

In addition to defining the level of service, this classification also identifies the role of

the health centers in the distribution of medical supplies. Often, in practice, medical

supplies are distributed in a top-down fashion from intermediate stores located at re-

gional hospitals to rural health centers [1, 69]. This hierarchical distribution system

is incorporated into the model, with the cost of distributing from one health center

to another dependent on the roads that are traveled in the shortest path between the

corresponding population centers.

The model determines the allocation of medical treatments to health centers as

well as the allocation of medical treatments to population centers. The model assumes

that each disease has a particular treatment and that all treatments are administered

in the communities by visiting nurses, or health workers, dispatched from the nearest

open health center. A health center is open if it is allocated any treatments. Without

explicitly allocating treatments to population centers (through the assignment of

health workers to population centers), the percentage of treated individuals at a

population center would be more difficult to establish. It would depend on modeling

the willingness of individuals to travel to the nearest open health center and on

modeling how the limited number of medical treatments available at open health

centers would be distributed among the individuals seeking treatment. Thus, we

model delivery of care, rather than access to care. This allows for a more controlled

study of equity in health care provision. In addition, it also reflects current practice

as many organizations have been working on improving their ability to send health

workers to patients, including Riders for Health [79].
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The number of individuals that can be treated in one day by a nurse from a

particular health center depends on the time required to administer treatments and

the nurse’s time spent traveling between the health and population centers. These

travel times are impacted by the transportation network and road conditions. Each

nurse can only visit one population center in a day and we define a capacitated

quantity of nurse-days at each health center. Each nurse-day represents one health

worker being available for one day. Since treatments can only be administered by

nurses, the number of treatments allocated to a population center, is affected by

the number of nurses at the nearest open health center. This limit on the staff

capacity represents of one of the major challenges in health care delivery in Africa:

the significant shortage of health workers [15, 85]. All patients with an illness from

a particular population center are assumed to be available for treatment during a

nurse’s visit.

The effectiveness of an allocation policy is measured by the health improvement

achieved. Health improvement is typically measured in quality-adjusted life-years

(QALYs) [7]. In our model, each treatment is assigned a health improvement value,

measured in QALYs, representing the expected impact of the treatment. We assume

that health improvements (QALYs) are additive if a patient is treated for multiple

illnesses. Each treatment is also assigned a purchase cost. Therefore, the health care

budget is spent on purchasing medical treatments as well as on shipping treatments

to health centers through the distribution network.

We employ four objectives to define allocation strategies. These objectives pertain

to effectiveness, efficiency, and equity. The first objective relates to effectiveness and

maximizes the total health improvement, or the total increase in QALYs achieved in

the total population. Efficiency is achieved by fixing the level of health improvement

and minimizing the total cost, where total cost includes the cost of opening of health

15



centers, the cost of distribution, and the cost of procuring medical treatments. There-

fore efficiency is measured as the cost per QALY ($/QALY). The final two objectives

relate to equity. They are both expressed in terms of the success rate at population

centers, or communities. The success rate at a population center is the ratio of the

health improvement achieved by an allocation strategy and the maximum possible

health improvement, i.e., the health improvement when every individual in the pop-

ulation center is treated. The first equity objective maximizes the minimum success

rate over all population centers. The second equity objective minimizes the difference

between the smallest and largest success rates among the communities.

We developed a mixed-integer program (MIP) to mathematically model and evalu-

ate allocation strategies. The MIP captures the relationships and interactions between

transportation infrastructure, health centers, health workers, communities, patients,

and health treatments. There are constraints that limit the number of patients treated

based on the supply and demand for nurses and treatments. Supply levels are de-

termined by the number of treatments allocated, the number of nurse-days at open

health centers, and nurse traveling distances. Patient demand at an open health cen-

ter depends on which other health centers are open since patients receive treatment

from the nearest open health center. There are constraints that capture the structure

of the distribution network and ensure that treatments are shipped from regional

health centers to rural health centers. Finally, there is a budget constraint that limits

the expenditures. The full formulation and description of the model is included in

Appendix A.

This model is most applicable to the allocation of treatments for diseases that

require regular treatment and in which the disease occurrence can be estimated. Ex-

amples include HIV treatments, distribution of contraceptives, deworming medicine,

vaccinations, palliative care, or the treatment through bed nets. In such cases, deci-

sions for the allocation of treatments can be repeated at regular intervals.
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2.3 Methodology

2.3.1 Data Creation

One of the significant challenges associated with research related to health care al-

location in Africa, especially when taking infrastructure characteristics into account,

is the absence of reliable data. Lacking reliable data sources, we have developed a

methodology to create data instances that mimic health systems in Africa. The abil-

ity to generate and analyze many data instances allows for a more robust study of

the behavior of allocation strategies in areas with a variety of spatial characteristics.

To create a plausible representation of common settlement patterns, a set of pop-

ulation centers, or communities, was created, each classified as either rural or urban.

The census at a population center was drawn from a distribution dependent on its

classification, with a significantly higher average census in urban centers than in rural

ones.

Population density and settlement patterns throughout Africa can vary greatly

depending on the country or location on the continent [16]. Stock (2004) noted that

a variety of rural settlement patterns exist in Africa including clustered, or nucleated,

settlements in the form of villages [78]. When not clustered, rural settlements in Africa

are generally dispersed throughout a region. To account for some of the variability

in spatial patterns, we created instances of three different types. These types reflect

both rural settlement patterns and the relative location to the urban population

centers. The three spatial types are characterized as “rural population centers sparsely

distributed away from urban centers,” “rural populations clustered away from urban

centers,” and “rural population centers clustered near urban centers”.

Since roads generally connect cities that are near to each other rather than cities

that are far apart, it is assumed that roads only exist between population centers

that are less than a predetermined distance apart. The probability of a road existing

and its type depend on the classification of the two corresponding population centers
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as urban or rural and the distance between the population centers.

Additionally, each instance definition includes the location of health centers at

urban population centers. A health center is designated as either primary-level or

secondary-level according to a probability distribution. At most one health center is

located at an urban population center and health centers have a higher probability

of being located in those urban population centers in which the population density of

the surrounding area is greater. An equal number of nurse-days is allocated to each

health center.

Table 1: Input parameters
Data Generation Input Value

Total Area (sq. miles) 4900
Number Population Centers 20
Average Population - Urban PC 1000
Average Population - Rural PC 200

Incidence Rate - Disease 1 20%
Incidence Rate - Disease 2 10%
QALY Improvement per Treatment - Disease 1 .225
QALY Improvement per Treatment - Disease 2 .525
Treatment Cost - Disease 1 ($) 20
Treatment Cost - Disease 2 ($) 35

Number of Health Centers 5
Probability of Primary Health Center .4
Cost of Opening a Health Center ($) 1000

Number of Nurse-Days Per Health Center 10
Time Per Nurse-Day (hours) 6
Nurse’s Maximum Travel Time (minutes) 80
Time Per Treatment (minutes) 5
Nurse Travel Speed on Level 1 Road (mph) 40
Nurse Travel Speed on Level 2 Road (mph) 27
Nurse Travel Speed on Level 3 Road (mph) 20

Transport Cost Per Mile Per Treatment on Primary Road ($) 1.25
Transport Cost Per Mile Per Treatment on Secondary Road ($) 1.75
Transport Cost Per Mile Per Treatment on Tertiary Road ($) 2.25

Probability of Road Between Two Urban Centers Being Primary 0.5
Probability of Road Between Two Urban Centers Being Secondary 0.5
Probability of Road Between One Rural and One Urban PC Being Secondary 0.5
Probability of Road Between One Rural and One Urban PC Being Tertiary 0.5
Probability of Road Between Two Rural Centers Being Tertiary 1

Using a consistent set of parameters, shown in Table 1, 90 data instances were

created for the initial analysis using this methodology. Each of the three spatial
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patterns accounted for one-third of the data instances. Thirty infeasible instances,

in which not all nodes were connected, were excluded from the analysis. A visual

representation of some of the data instances is shown in Figure 1. In the following

sections, we highlight some of these instances to demonstrate key behaviors that are

exhibited throughout the set of data instances.

(a) Rural PCs Clus-
tered Away From Ur-
ban PCs

(b) Rural PCs Clus-
tered Near Urban PCs

(c) Rural PCs Scat-
tered Away From Ur-
ban PCs

(d)

Figure 1: Instance examples for three spatial patterns

2.3.2 Multi-Objective Optimization

Allocation strategies are constructed using efficiency, effectiveness, and equity objec-

tives. Each allocation strategy is defined by an objective hierarchy, which ranks the

objectives in order of importance. Hierarchical optimization is then used to find the

actual allocation for a particular data instance. More specifically, we start by opti-

mizing with respect to the objective at the top of the hierarchy. When the optimal

value for that objective has been found, a constraint is introduced in the optimization
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model to ensure that the value of that objective is no worse in any subsequent opti-

mizations. Next, we optimize with respect to the second objective in the hierarchy.

As before, when the optimal value for that objective has been found, a constraint is

introduced in the optimization model to ensure that the value of that objective is no

worse than in the last optimization. Finally, we optimize with respect to the third

and last objective in the hierarchy.

Four allocation strategies are considered using this hierarchical optimization ap-

proach differing in the first two objectives in the hierarchy: WSHI, DSHI, HIWS, and

HIDS. The last objective is always minimizing cost. Table 2 defines the ordering of

the objectives for each of these four strategies.

Table 2: Definition of allocation strategies
Allocation Strategy First Objective Second Objective

WSHI Max Worst Success Rate (Equity) Max Health Improvement (Effectiveness)
DSHI Min Difference in Success Rates (Equity) Max Health Improvement (Effectiveness)
HIWS Max Health Improvement (Effectiveness) Max Worst Success Rate (Equity)
HIDS Max Health Improvement (Effectiveness) Min Difference in Success Rates (Equity)

Alternatively, the multiple objectives could have been combined into a single ob-

jective using a weighted sum. The disadvantage of using a weighted sum is the need

to define the weights. For our model, defining weights would be difficult due to the

inconsistencies in the units of measure, including health improvement (QALYs), suc-

cess rate (%), and cost ($). With a hierarchical optimization approach the tradeoffs

in effectiveness, efficiency, and equity can be studied without the definition of weights.

2.4 Analysis

To analyze the performance of the allocation strategies (Section 2.4.1), the choice of

equity objective (Section 2.4.2), and to better understand the characteristics of the

fundamental tradeoffs (Section 2.4.3), each allocation strategy was applied to each

of the 60 data instances. As shown in Table 3, the potential health improvement is

similar for each of the spatial distribution types.
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Table 3: Health improvement (in QALYs) among all feasible instances
Spatial Distribution Type # of Instances Minimum Maximum Mean Median

Rural PCs Clustered Away From Urban PCs 18 746 2044 1069 903
Rural PCs Clustered Near Urban PCs 22 793 1816 1136 917
Rural PCs Scattered Away From Urban PCs 20 761 1950 1076 882

All 60 746 2044 1096 901

However, as shown in Table 4, the cost of health improvement, in dollars per

QALY, assuming a budget of $100,000 is quite different for the allocation strategies.

On average the cost per QALY improvement is much greater for strategies that prior-

itize equity over health, i.e., WSHI and DSHI, than for the strategies that prioritize

health over equity, i.e., HIWS and HIDS. While this basic analysis provides insight

into the relative behavior of the strategies, a closer examination of the behavior and

other metrics provides a more complete understanding of the impact of budget, choice

of equity objective, and fundamental tradeoffs.

Table 4: Cost per QALY ($/QALY) for allocation strategies WSHI, DSHI, HIWS,
and HIDS: $100,000 Budget

Allocation Strategy Minimum Maximum Mean Median

WSHI 17 222 137 131
DSHI 17 222 143 141
HIWS 67 172 109 107
HIDS 67 172 110 108

2.4.1 Impact of Budget When Prioritizing Health and Equity

In sub-Saharan Africa, limited budgets for health care are common. Therefore, under-

standing the impact of budget on allocation strategies is important. For each instance

and strategy, we identify the optimal allocation at many budget levels. The value of

an allocation is measured in total health improvement (QALYs) over all population

centers, the difference in success rates at the best- and worst-off population centers,

and the minimum success rate among population centers. A more informative com-

parison of the value of allocation strategies is obtained by examining allocations for

different budget levels.
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For Instance 9, a graphical representation of the performance of the allocation

strategies is shown in Figure 2. Each chart represents the allocations obtained with a

particular strategy for different budget levels. The minimum success rate among all

population centers for an allocation is represented by the striped bar. The difference

between the minimum and maximum success rates among all population centers for an

allocation is represented by the height of the second bar. Consequently, the maximum

success rate among all population centers for an allocation is displayed as the top of

the stacked bars.

We see that for Instance 9, the ranking of objectives can significantly impact

the value of an allocation. This is demonstrated most clearly in the comparison of

allocations obtained with a budget of $75,000. When health improvement is the

primary objective and equity is sought by maximizing the worst success rate (Fig.

2(c)), 838 QALYs are achieved with some population centers receiving no treatment

and some population centers receiving full coverage. However, when the order of

the objectives is reversed, i.e., when equity is prioritized over health outcome(Fig.

2(a)), only 622 QALYs are achieved, with all population centers achieving at least a

71.6% success rate and the best off population center achieving a success rate of 96%.

This demonstrates that the quality of an allocation can be significantly different for

different allocation strategies, i.e., for a different ranking of objectives.

The greatest difference between strategies WSHI and HIWS, or between DSHI

and HIDS, occurs at low budget levels. At these levels, the difference between the

best and worst success rates is larger and the worst success rate is smaller when health

improvement is the primary goal. For example, in Instance 9 with a budget of $75,000,

when equity is the primary objective and sought by minimizing the difference between

best and worst success rates(Fig. 2(b)), each population center achieves a success

rate of 71.6%. By contrast, some population centers do not receive any treatment

when health is the primary objective(Fig. 2(d)). With limited budgets, emphasizing

22



(a) (b)

(c) (d)

Figure 2: Performance of (a) WSHI, (b) DSHI, (c) HIWS, and (d) HIDS policies by
budget [Instance 9]

health over equity results in allocations that are significantly less equitable than the

allocations in which equity is preferred over health, regardless of how we seek to

achieve equity. It is at these lower budget levels, i.e., when resources are scarce, that

difficult allocation decisions are made in practice. Therefore the choice of the primary

objective significantly impacts allocations in real world settings. Tradeoffs between

health and equity are examined more closely in Section 2.4.3.

2.4.2 Comparison of Equity Objectives

To identify the impact of the equity objectives on the allocations, we contrast the

WSHI and DSHI strategies, in which equity is prioritized, and the HIWS and HIDS

strategies, in which health improvement is the primary objective.

In an allocation produced by the DSHI strategy all population centers will have the

exact same success rate and the difference in success rates will be zero. Subsequently

maximizing the health improvement with the difference in success rate constrained
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to be less than or equal to zero (i.e., constrained to be equal to zero) is equivalent

to maximizing the smallest success rate. Therefore, an allocation produced by the

DSHI strategy will be optimal with respect to both equity objectives, but the health

improvement will be less than or equal to that of the allocation produced by the

WSHI strategy (assuming the same budget).

Large differences in health improvement in allocations produced by the WSHI and

DSHI strategies occur when the budget is large and an increase of budget will not

cause an increase in the minimum success rate. As seen in Figure 3, in Instance 21 the

health improvement is similar for the allocations produced by the DSHI and WSHI

strategies for budgets less than or equal to $225,000, but differences occur when

the budget is greater than $225,000. For some instances and certain budgets, the

WSHI and DSHI strategies result in allocations with a similar health improvement,

but where the allocation produced by the WSHI strategy has a greater success rate

difference, implying a less equitable allocation. In Instance 21, with budgets between

$25,000 and $200,000 the success rate difference in allocations produced by the WSHI

strategy is significantly greater than of those produced by the DSHI strategy, but

the difference in health improvement is less than 1%. Therefore, seeking equity by

minimizing the difference in success rate results in better allocations, with respect to

health improvement and equity.

(a) (b)

Figure 3: Performance of (a) WSHI and (b) DSHI policies by budget [Instance 21]

There are instances and budget levels for which the allocation produced by the
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WSHI strategy has greater health improvement and greater difference in success rate

than the allocation produced by the DSHI strategy. In Instance 18, as shown in Figure

4, this occurs at budgets $100,000 and $150,000. With the $100,000 budget, the

allocation produced by the DSHI strategy has 15% fewer QALYs than the allocation

produced by the WSHI strategy. For the other budgets, there is little difference

in health improvement of the allocations produced by the strategies. Overall, the

health improvement is comparable for allocations produced by the WSHI and DSHI

strategies, but the DSHI strategy results in the more equitable allocations.

(a) (b)

Figure 4: Performance of (a) WSHI and (b) DSHI policies by budget [Instance 18]

We also contrasted the allocations resulting from strategies HIWS and HIDS to

examine the effect of equity objectives when prioritizing health improvement over

equity. For most instances, the allocations from strategies HIWS and HIDS are very

similar. This is not surprising, because when health improvement is constrained to be

maximal, there are typically only a few feasible allocations. Therefore, there is often

little difference in allocations produced by strategies that optimize health first. With

some instances and budgets there are substantial differences between the allocations

produced by the two strategies. Usually this occurs when, due to the characteristics

of the instance, it is impossible to allocate any treatments to a particular population

center while simultaneously achieving optimal health improvement. In Instance 33,

shown in Figure 5, the minimum success rate is zero regardless of budget size, but

the success rate difference (or maximum success rate in this situation) is smaller in
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the allocation produced by the HIDS strategy than in the allocation produced by the

HIWS strategy.

(a) (b)

Figure 5: Performance of (a) HIWS and (b) HIDS policies by budget [Instance 33]

In most instances in which at least one population center does not receive any

treatments, this is due to the limited number of health workers at the nearest health

center. Under the assumption that all population centers are served by the closest

open health center, opening a new health center will not always relieve this workforce

shortage. While this assumption may seem limiting, it is not uncommon in developing

countries of the world that shortages in health workers and the location of health cen-

ters result in some population centers not receiving health services. Therefore, these

particular instances depict the challenges faced in practice when staffing resources

capacity can be more limiting than financial resources.

Overall, we find that the HIDS strategy tends to produce more equitable alloca-

tions than the allocations produced by the HIWS strategy. Thus, we conclude that

for the majority of instances and budgets, regardless of the ordering of the objectives,

seeking equity by minimizing the difference in success rates should be preferred over

seeking equity by maximizing the worst success rate.

2.4.3 Tradeoffs in Health, Equity, and Budget

The analysis to this point has focused only on the allocations that can be obtained

with the hierarchical optimization. We have seen that the ordering of the objectives
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can significantly impact the value of the allocations obtained, often resulting in a sig-

nificant tradeoff in equity and effectiveness. A deeper understanding of these tradeoffs

is obtained by examining the tradeoff curve for a given budget. The points at the

extremes of a tradeoff curve correspond to the allocations produced by the strategies

introduced earlier. The other points on a tradeoff curve correspond to allocations

obtained when the health outcome is fixed at a level other than those seen at the

extremes.

First, we focus on tradeoff curves that result when we seek equity by maximizing

the worst success rate. An example is shown in Figure 6(a). For a given budget,

the part of the tradeoff curve to the left of the maximum corresponds to solutions in

which the success rate is limited by the health improvement level, not by the budget;

in fact the budget is not fully utilized in these solutions. Because the budget is not

used fully, it is possible to achieve a greater level of health improvement without

sacrificing equity (i.e., it is possible to move to the right in the graph). Therefore,

the solutions to the left of the maximum will never be implemented in practice.

We define the maximum on the tradeoff curve as the “equity threshold”. Beyond

this threshold, an increase in health improvement requires a decrease in equity, or

worst success rate. In Figure 6(a), with a budget of $50,000, the equity threshold

occurs at a health improvement of 330 QALYs and a worst success rate of 56.7%. The

steep slope of the tradeoff curve to the right of the equity threshold demonstrates that

in order to achieve greater health improvement, the population center with the worst

success rate must receive substantially fewer health treatments, resulting in a less

equitable allocation. For each budget, the right-most point on the tradeoff curve

corresponds to the policy in which health is prioritized over equity. In Figure 6(a),

this corresponds to a worst success rate of 0% for all budgets. It is interesting to

observe that for budgets greater than $75,000, the health improvement at the equity
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(a)

(b)

Figure 6: Tradeoff frontiers: (a) Health-minimum success rate tradeoff; (b) Health-
difference in success rate tradeoff [Instance 45]

threshold is only slightly less than the maximum achievable health improvement, but

is significantly more equitable, i.e., a small sacrifice in health outcome can result in

significant gains in equity.

A similar analysis is performed when we seek equity by minimizing the difference

between the best and the worst success rates observed at population centers (see

Figure 6(b)). The tradeoff curves in Figure 6(b) show that it is possible to have an

equitable solution, but that to achieve the maximum possible health outcome equity

has to be sacrificed; in fact, in allocations that result in the maximum health outcome

there is at least one population center that receives no treatment and at least one

population center that receives treatments for all its patients, i.e., difference in success

rate of 100%. Again, we observe that beyond a certain health outcome an increase
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in health improvement comes at a high price in terms of equity.

The range of health improvement levels where a small increase in health requires

a significant decrease in equity, referred to as the “critical health region”, is virtually

independent of the way we seek equity. As shown in Figure 7, there appears to be

an an intrinsic range of health improvement levels at which the tradeoff in health

improvement and equity is great, which depends on the instance and the budget.

Furthermore, with larger budgets, the critical health region becomes narrower.

(a) (b)

(c)

Figure 7: Health-Equity tradeoff frontiers with budgets of (a) $25,000 (a), (b) $50,000
(b), and (c) $75,000 [Instance 45]

We hypothesize that the critical health region depends on the unique character-

istics of an instance, including health center and population center locations as well

as characteristics of the road network, but not on the way equity is sought. The

critical health region appears to be quite narrow, other than for very small budgets.
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Therefore, determining and analyzing the critical health region is enormously valuable

when making difficult allocation decisions.

2.4.4 Impact of Road Infrastructure, Settlement Patterns, and Health
Center Location on Efficiency

It is reasonable to assume that the efficiency of an optimal allocation is affected by

the settlement pattern, health center locations, and road infrastructure. To study

these influences, we created 60 additional instances and examined the impact of road

infrastructure on the average cost per QALY when employing the DSHI strategy,

where we measure the quality of road infrastructure as the percentage of the total

road distance classified as primary road. We plot the primary road percentage against

average cost per unit health improvement of an optimal allocation for a variety of

instances and budgets. Each allocation is classified according to the overall success

rate achieved. Therefore, each point in a plot represents the primary road percentage

and cost per QALY for all allocations that achieve the corresponding success rate

level.

To create a fair comparison, each instance consists of the same set of population

centers, although the locations and road networks vary. To understand the impact

of the location of health centers, the set of population centers where health centers

are located is fixed as one of ten different patterns. By holding these characteristics

of the population centers and the location of health centers constant, the differences

between instances are related to the spatial distribution of population centers and the

road infrastructure. Instances are created according to the three spatial distributions

defined earlier: rural population centers clustered near urban population centers,

rural population centers clustered away from urban population centers, and rural

population centers sparsely distributed away from urban population centers.

First, we examine the impact of the location of the health centers on the re-

lationship between the road infrastructure quality and the efficiency. Plots of the
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relationship between road infrastructure quality and efficiency for the three health

center location patterns are given in Figure 9. For the first pattern (Fig. 8(a)), in

which all health centers are centrally located, the average cost per unit of health im-

provement does not appear to be impacted by the quality of the roads. However, for

the second pattern (Fig. 8(b)), in which the distance of the primary health centers to

the populations centers is larger, we see that as the quality of the roads increases the

average cost per QALY decreases. This can be explained as follows. As the quality

of the roads increases, nurses experience shorter travel times, allowing them to treat

more patients. At the same time, distribution costs between health centers decrease,

making the total cost less expensive. Both result in a decrease in the average cost

per QALY.

(a) Centrally Lo-
cated Health Cen-
ters

(b) Increased Dis-
tance to Primary
Health Centers

(c) Increased Differ-
ence to Secondary
Health Centers

(d)

Figure 8: Health center location patterns

A similar effect is observed with the third pattern (Fig. 9(c)), in which the

distance of the secondary health centers to the population centers increases. Here we

see that when the percentage of primary roads is below 4%, the cost per QALY ranges

between $100 and $250 for instances in which success rates are between 65 and 75

percent. However, when the percentage of primary roads is greater than 4%, the cost

per QALY is less than $133 regardless of the success rate. This demonstrates that

investment in road infrastructure can have a significant impact on the efficiency of a

health allocation, but that the impact depends on the location of the health centers.

Next, we consider balanced and unbalanced locations of health centers. In a
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(a) (b)

(c)

Figure 9: Efficiency and road quality for (a) centrally located health centers , (b)
relocated primary health centers , and (c) relocated secondary health centers

balanced health system, the primary health centers are located so that they have

good coverage of the entire region (Fig. 10(a)). In an unbalanced health system, the

primary health centers are located on one side of the region and do not have good

coverage of the entire region (Fig. 10(b)). The plots in Figure 11 show similar trends

as before, i.e., a reduction in cost per QALY when the road infrastructure improves,

although not as pronounced. More importantly, the plots show that the cost per

QALY to achieve a comparable health outcome is higher for an unbalanced system.

This again underscores the significance of health center location in the efficiency of

health distribution systems.

Lastly, we investigate the impact of the settlement patterns on the interaction of

road infrastructure and cost efficiency. In Figure 12, we again plot the cost per QALY
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(a) Balanced Location of
Health Centers

(b) Unbalanced Location
of Health Centers

(c)

Figure 10: Balanced and unbalanced health systems: health center location patterns

(a) (b)

Figure 11: Efficiency and road quality for balanced health systems (a) and Unbal-
anced health systems(b)

against primary road percentage for a given success rate level, but now the instances

are divided according to their settlement pattern.

When rural population centers are clustered away from urban population centers,

the cost per QALY shows a clear downward trend when road quality increases. The

trend is less clearly discernible for the other two settlement patterns.

2.4.5 Impact of Infrastructure Improvements

To further evaluate the impact of road improvements on the efficiency of health care

delivery, we created two sets of eight instances where the only difference between the

instances in a particular set is the quality of the roads.

For the first set, we observe, as expected, that the cost per QALY decreases when
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(a) (b)

(c)

Figure 12: Efficiency and road quality for spatial patterns: rural clustered away from
urban (a), rural clustered near urban (b), and rural away (c)

the quality of the roads increases. A more detailed analysis reveals additional insights.

The three instances with the lowest cost per QALY not only had the highest primary

road percentages, but also all had a primary road connecting an isolated primary

health center with a centrally located secondary health center. In instances with

similar primary road percentages, but in which this particular road was not a primary

road, the cost per QALY was higher.

For the second set, we did not observe that the cost per QALY decreases when

the quality of the roads increases. In fact, there are two instances in which only

10% of roads are primary but that have a significantly lower cost per QALY than

instances in which 18-19% of the roads are primary. Upon closer examination of the

instances in this set, it was found that three of the roads played a key role in the
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efficiency of allocations. Instances in which at least one of these three roads was

primary had a low cost per QALY where instances in which none of the three roads

were primary had a high cost per QALY. Two of these roads connected primary and

secondary health centers. The third road was between a secondary health center and

an isolated rural population center. However, the census at this isolated location is

largest among the rural centers, and this road is the only connection to the nearest

health center. Therefore, despite the quality of the road it is used frequently. As a

result, an improvement to this road has an immediate and noticeable impact on the

efficiency.

From the analysis of both sets of instances, it is apparent that targeted road

improvements are necessary to increase the efficiency of allocations. This also implies

that an investment in infrastructure improvement does not have to be large to have

an impact on the efficiency of health care delivery.

2.5 Conclusion

By analyzing and comparing health care allocations in a large number of situations

with characteristics that are representative of environments encountered in regions of

sub-Saharan Africa, we were able to understand and evaluate the tradeoff in equity

and effectiveness as well as the impact of health care and transportation infrastruc-

tures on health outcome.

The major findings of our study can be summarized as follows:

• Decision makers should aim to distribute medical supplies and treatments in

proportion to the relative needs of population centers if they want to ensure an

equitable delivery of health care.

• Tradeoff curves of health outcome and equity indicate a clear structure that

shows that there is a point after which even a small increase in health outcome
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leads to a large decrease in equity. As a consequence, there is only a small set

of health care allocations that balance efficiency and equity.

• When population centers are scattered throughout a region, targeted invest-

ments in road improvements have the potential to greatly impact efficiency of

health care delivery systems.

Our model aims to provide a reasonably comprehensive description of health care

environments encountered in sub-Saharan Africa. However, some of the assumptions

may be somewhat limiting. While the assumption that there is an equal and limited

number of health workers at each health center reflects one of the challenges of health

care in resource-constrained countries, an alternate model that allows for staffing

decisions might be of interest. Additionally, the assumption that health workers travel

into communities and that communities are always served by the nearest health center

ignores alternative models of African health care delivery. A study of the tradeoffs

in equity, efficiency, and equity under alternative health care delivery models would

also be informative.

While we considered the impact of infrastructure improvements, the costs of such

improvements were excluded from the study. An enhanced model in which decisions

and costs regarding infrastructure improvements are incorporated might provide ad-

ditional insights. Another extension of interest is a model that incorporates the

preventive value of treatments of communicable diseases.

36



CHAPTER III

DYNAMIC ASSIGNMENT OF PATIENTS TO HOSPITAL

BEDS

3.1 Introduction

A key issue plaguing health care systems both in the U.S. and abroad is a pattern of

overcrowding within hospitals, specifically in emergency departments (ED), operating

rooms (OR), and intensive care units (ICU). The practice of “boarding” in hospitals

is both a cause and effect of overcrowding within hospitals. The boarding of patients

refers to a patient continuing to occupy a bed once the patient has been designated for

hospital admission or transfer to another unit, often due to a bed being unavailable

in the next unit. ED boarding is a particularly serious problem with an estimated

17% of total ED hours between 2003 and 2005 being attributed to boarding patients

[13]. These boarding patients cause bottlenecks in the hospital system preventing

new patients from being admitted, decreasing the number of people treated, and

decreasing hospital revenues [21]. In addition to impact on throughput, the quality of

care delivered to patients is negatively impacted by the practice of boarding [39, 62].

In fact, patients who are likely to experience long periods of boarding, such as the

elderly, are more likely to have poor health consequences as a result [38].

One of the primary causes of boarding is unavailability of beds downstream from

the ED, ICU, and OR departments [33, 67]. Correspondingly, a system-wide per-

spective is needed to approach the problem of reducing overcrowding and boarding

throughout the hospital. Unfortunately, the problem of reducing bottlenecks is com-

plex and requires consideration of many factors. The task of balancing both demand

and supply of hospital beds is overseen by a bed manager or bed management team [9].
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Due to numerous competing requests for limited hospital resources and unique clinical

needs of patients, the task of choosing when and how to make an assignment is often

challenging, especially in an overcrowded hospital [67]. By strategically making bed

assignment decisions, bed managers are able to alleviate the negative consequences

of overcrowding including a detriment to safety, timeliness, and effectiveness, all key

components of quality health care as defined by the Institute of Medicine [40].

Due to the complexity of hospital systems, bed managers have multiple options

when considering the assignment of a patient to a bed. For instance, they may

assign the patient to the ideal bed (if it is available), postpone assignment through

boarding, or hold the patient in a separate temporary location, such as a hallway

[37]. Naturally, the bed assignment for a particular patient is linked to the nature

of his or her condition. For example, a patient recovering from heart surgery may

be prioritized to be assigned to a bed in the cardiology wing. In general, expertise

by the health care professionals in a particular wing or area of the hospital leads

to improved patient outcomes and safety, and more efficient rounding by physicians.

However, when a hospital is highly capacitated, a bed in the ideal unit may not be

available and instead the patient may need to be placed in an alternate unit with

available bed capacity and appropriate resources. This practice is often referred to as

overflow or “off-service” assignment and may negatively impact patient care [34, 53].

The impact of a patient’s assignment to an overflow unit must be weighed against

the similar effects from boarding, resulting in a careful balancing of tradeoffs by the

bed manager.

Decision making related to bed assignments is complicated by the dynamic na-

ture of hospitals including the constant change in status and expectations for patient

admissions, transfers, and discharges. Historically, in many hospitals, the process of

transferring patients between beds was completed through one-on-one communica-

tion between hospital staff, in a decentralized manner. As a result, bed assignments
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were made with limited information about the system-wide availability of beds and

patients’ needs, potentially leading to inequity among patients. In recent years, hos-

pitals have increasingly adopted information systems and software packages to aid

bed managers by providing visibility i.e., real-time information about the status of

patients, rooms, resources, and bed requests [6]. While these systems are useful for

visually processing information about the hospital system, to the best of our knowl-

edge they do not provide decision support, e.g., about the impact a particular bed

assignment on patient flow and the ability to fulfill bed requests in the future. We

explore the use of analytical approaches for real-time dynamic bed assignments in

hospitals utilizing information contained in these information systems.

We are interested in the process by which a patient currently occupying a bed

in one unit of the hospital (e.g., ED or ICU) is transferred to a bed in another

unit of the hospital. First, upon entering the system the patient occupies an ED

(or ICU) bed in the upstream unit. When the patient no longer requires care in

the ED and is ready to be transferred, the patient is either assigned to a bed in a

downstream unit or boards in the current unit (i.e., continues to occupy a bed) while

waiting for a bed assignment. The set of downstream units to which a patient can be

feasibly assigned is directly related to the nature of the patient’s illness, or the type of

patient. Therefore, if no downstream beds are available, “blocking” may occur (due

to boarding patients) in the ED preventing new patients from being admitted. While

waiting for an assignment, it is possible that a patient completes his or her hospital

stay and leaves directly from the ED.

We develop a model of patient flow within a hospital and algorithms to address

the bed assignment decisions faced by bed managers. In our model we consider mul-

tiple patient classes and hospital units. The primary objective is to maximize the

appropriateness of assignments of patients to units when both patients and beds be-

come available in an online fashion. The second objective is to minimize the time
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patients wait for assignment, or board in an upstream unit. Using a Markov De-

cision Process (MDP) we model the hospital system as a tandem queueing network

with multiple customer classes and cross-trained server pools, develop new algorithms

for dynamic patient assignment, and test the performance against current hospital

practices through simulation.

We demonstrate that implementation of analytical methods that utilize real-time

information about the hospital system, similar to that provided by bed management

information systems, can result in the simultaneous improvement of multiple per-

formance metrics. These metrics include the number of patients served, the rate

of off-service assignments, mean boarding time, and median boarding time. These

improvements are seen in systems with a variety of costs for waiting, average sys-

tem utilization, and alignment of supply and demand for individual units. These

algorithms result in greater improvement when the hospital places a priority on the

appropriateness of the assignments (rather than the boarding times and costs). When

boarding costs are high, representing the hospital’s preference for reducing conges-

tion in upstream units, the improvement from the use of these analytical methods is

limited.

In the remainder of this chapter we first provide an overview of relevant literature

(Section 3.2). We then present a model of the hospital system and associated bed

assignment decisions in Section 3.3. Utilizing the structure of the model, we present

our dynamic bed assignment algorithms in Section 3.4. We test the performance

of the proposed algorithms with a discrete event simulation and numerical study in

Section 3.5. Finally we propose areas for future research and summarize the research

contributions in Sections 3.6 and 3.7, respectively.
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3.2 Literature Review

The model we develop for the bed assignment problem shares similarities with well-

known problems from the operations research literature such as the online assignment

or matching problem and the problem of customer routing in queueing systems. In

our review of literature, we first examine models that have been developed to study

boarding and overflow within hospitals in Section 3.2.1. In Sections 3.2.2 and 3.2.3

we review related literature concerning dynamic assignment problems and queueing

models.

3.2.1 Models of Patient Overflow and Boarding

Due to the threat that overcrowding and boarding pose for patient throughput and

quality of care, researchers study both the causes of and potential solutions to over-

crowding and excessive boarding in hospitals. Levin et al. (2008) develop a discrete

event simulation model to study the impact of demand for cardiology beds by other

units, including telemetry, on the rate of ED boarding of cardiology patients. They

find that reserving beds for potential telemetry patients is a significant cause of the

excessive blocking, in which patients are prevented from moving to the next bed

due to the lack of available beds. The simulation does not explicitly model the bed

assignment process, but rather assumes that patients’ movements are similar to his-

torical data [45]. Bretthauer et al. (2011) address the role of boarding in hospitals

and develop a heuristic for tandem queues to evaluate the impact of blocking on pa-

tient flow [11]. While the algorithm they develop does provide a good approximation

for the effect of blocking, the system presented is simplified by the assumptions of

homogeneous patients and fixed probabilities for routing patients between units, or

general patient routing. While our model also addresses blocking, we also allow for

state-dependent routing and heterogeneous patients.

Other researchers have developed models to identify strategies for decreasing the
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rates of overflow and boarding. Harrison et al. (2005) develop a discrete event simu-

lation model of patient flow in an acute care hospital to examine the impact of bed

capacity on patient overflow. They note that seasonality of arrivals throughout the

year is a leading cause of overflow [34]. Another approach to dealing with overcrowd-

ing is the use of ED admission control policies. Helm et al. (2011) develop a model of

a hospital system in which call-in patients request a bed and do not arrive until a bed

is available. In order to decrease overcrowding they consider the placement of a pa-

tient in a “non-preferred” unit and seek to evaluate the off-unit census under a variety

of admission control policies [36]. While their initial model considers homogeneous

patients, their simulation considers multiple patient types [36]. Rather than consid-

ering all overflow units to be equivalent, our model addresses the appropriateness of

the assigned unit.

While significant work has been done related to admission control policies, there

is relatively limited research related to the decisions of when to assign patients to

non-preferred units, or allow for overflow. To the best of our knowledge, Teow et

al. (2011) are the first to consider the problem of identifying the causes of “overflow

beds” through data mining and statistical techniques. They suggest that statistical

information can be used to guide the bed management process of determining when

to use an overflow bed, when to wait for an appropriate bed, and which units are

most appropriate for use of overflow beds [80]. In comparison to existing literature,

we address the process of choosing when and which assignments to make, including

postponing assignments, and consider the value of the appropriateness of the unit in

this decision process.

3.2.2 Dynamic Assignment and Online Matching Problems

The bed manager’s decision is to assign available patients to available beds where

each feasible assignment has an associated value and both beds and patients become
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available in an online fashion. The bed assignment problem is similar to an online

bipartite matching, or online assignment problem, in which nodes and corresponding

edges become available over time. In an online assignment problem, upon arrival

of a node, and corresponding edges, an assignment of two nodes is made, removing

them from the graph. A reward, defined by the objective function, is received upon

assignment. The standard online assignment problem seeks to maximize or minimize

the total weight of the edges corresponding to the assignments. Here we use the terms

online bipartite matching and online assignment problems interchangeably.

Algorithms have been developed for many variants of the online assignment prob-

lem. Khuller, Mitchell, and Vazirani (1994) develop an online deterministic algorithm

for an online stable marriage problem where each node has a preference for nodes from

the other set. With one set of nodes arriving one-by-one in an online fashion, each

arriving node must immediately be matched. Unlike standard assignment problems,

their algorithm seeks to find a stable matching to minimize the dissatisfaction with

matches, or the preference to have been in another match [41]. The different prefer-

ences by each set of nodes has similarities with the bed assignment problem. While

a value or weight is assigned to each pair of patient and bed, it is not guaranteed

that the unit is the best match for the patient, and vice versa, because preferences or

values for beds, or marriage partners, are not drawn from a metric space. Within lit-

erature that develops algorithms for the online assignment problems, the assumption

of a metric space for defining edge weights is common [18, 25].

Another related stream of literature is that of online stochastic bipartite matching

in which the arrivals are drawn from a known or unknown [47, 82] distribution. Here

the objective is to maximize or minimize the sum of the weights associated with

the matchings. A common application of online stochastic bipartite matching is the

modeling of allocation of internet advertisements [5, 12, 22, 50]. In most online

assignment problems, an assignment must be made immediately upon arrival, or
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the arrival is discarded without assignment. While this assumption is reasonable in

many settings, it corresponds to rejecting a patient which may not be a possibility in

hospitals. Instead, we consider the option of postponing the assignment by boarding

a patient until he or she is assigned to a bed in an appropriate unit.

Another factor distinguishing the dynamic bed assignment problem from other

online assignment problems is the existence of advance information about arrivals of

both beds and patients. Advance information can take the form of a “look-ahead”

interval, in which information about events in the future interval is (partially) avail-

able when a decision is made. Spivey and Powell (2004) study a similar dynamic

assignment problem in a freight transportation setting. After providing a general

definition for the dynamic assignment problem, Spivey and Powell develop an adap-

tive algorithm which accounts for the value of advance information, in the form of a

“look-ahead” interval. While this work makes contributions in defining the general

dynamic assignment problem, in their numerical experiments they assume a constant

fixed set of entities from which arrivals occur or a metric space for evaluating the

value of an assignment [76]. Their algorithm disregards the reuse of resources, such

as trucks or hospital beds. Therefore the availability of a particular resource is not

related to the assignment of that resource in the past. With our consideration of

hospital beds, the probability a bed becomes available is a direct consequence of as-

signment decisions from past periods and service times of previously assigned patients.

Due to the reuse of resources (beds), there are no direct variations on the algorithms

developed by Spivey and Powell that are applicable in our setting. The algorithms

we develop assume known probabilities of arrival for both tasks and resources in an

assignment process and do not include an option to refuse assignment if capacity is

available.

While the problem we consider shares similarities with online assignment prob-

lems, different characteristics of the bed assignment problem and model include the
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following

• Two streams of online arrivals (patient arrivals and beds becoming available

after completion of service)

• No requirement for immediate assignment (a patient may board until an appro-

priate bed becomes available)

• Arrival patterns of beds are impacted by past assignment decisions, i.e., there is

reuse of resources (a bed becomes available when a previously assigned patient

completes service)

• Edge weights (the value of a patient-bed assignment) are not drawn from a

metric space

As a result, much of the literature related to online and dynamic assignment problems

is not directly applicable.

3.2.3 Control of Queueing Systems

The need to consider the interdependence of arrivals, assignments, and the future

availability of resources directly relates to a queueing network with competing requests

for limited resources. It is common for hospitals to be modeled as a queueing network,

in which patients are in service or waiting for beds [48, 52]. A key characteristic

distinguishing hospitals from traditional queueing systems is the lack of a physical

queueing area between units. This leads to the concept of “blocking” or “boarding”,

i.e., a patient whose service is completed in one unit continues to “board” in that

unit until a bed becomes available in the next unit to which the patient is assigned.

Blocking can be represented with an imaginary queue in which blocked customers are

waiting for resources to become available. A variety of research examines blocking in

queueing systems [10, 27, 77]. As mentioned above, Bretthauer et al. (2011) develop

a heuristic to accurately represent the effects of blocking in a hospital system [11].
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We consider blocking, cross-trained servers, the need for state-dependent routing

policies, and class-dependent service rates in our model. Cross-trained servers refer to

the existence of flexible servers which can serve multiple patient types, or can serve

multiple functions in the queueing system. Queueing models have been developed

that examine routing in systems with multiple customer classes [30], flexible servers

[26], and the need for state-dependent policies for control of such systems [51, 60].

Many of these control problems examine the switching of the designation of servers

rather than the routing of customers to servers. Development of policies for routing

customers has been examined under a variety of settings [48, 54, 55, 60, 75]. In the

presence of cross-trained servers, the development of optimal routing policies becomes

more difficult. Models with class-dependent service rates have also been developed

[35, 63]. While blocking, cross-trained servers, state-dependent routing policies, and

class-dependent service rates have been studied independently, we are not aware of

research that simultaneously examines all of these features. Additionally, we consider

the objective of maximizing the appropriateness of a match between customer and

server (through routing policies) rather than only minimizing the average wait time,

distinguishing the problem we examine from previous studies of queueing systems.

3.3 Model

We model the system as a tandem queueing network with multiple cross-trained server

pools and customer classes, and analyze it as a Markov Decision Process. In the

tandem queueing network model, patients, beds, and hospital units are represented

as customers, servers, and server pools, respectively. There are I customer classes and

J + 1 server pools. Pool 0 corresponds to the first stage of service, or the upstream

unit. Pools j ∈ {1 . . . J} refer to the parallel server pools in the second stage of

service, or downstream units. Pool k has Nk identical servers (beds) for k ∈ {0 . . . J}.

In practice, patients may enter the system through many different upstream units.
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In focusing our attention on the bed assignment process, we assume the existence of

one upstream unit to which all patients are admitted before assignment to one of

many downstream units. An extension to consider the assignment of patients with

multiple upstream units is left for future work and discussed in Section 3.6.

Customers from class i arrive to the system following a Poisson process with rate

λi. Servers in the upstream pool 0, are non-idling and any customer who sees an idle

server in pool 0 upon arrival immediately begins service. If all upstream beds are

occupied an arriving patient is diverted to another unit or hospital, i.e., if all servers

in pool 0 are busy, any arriving customers immediately leave the system. Therefore,

we do not address queues that may form for beds in the upstream unit. While we

acknowledge that admission control policies for the upstream unit do play a role in

the boarding and overflow that occurs within a hospital, in order to focus on the role

of bed assignments, we assume that patients are admitted in order of arrival.

Service time for customers of class i by a server in pool 0 is exponentially dis-

tributed with rate µ0
i for i ∈ {1 . . . I}. Previous work has confirmed the appropri-

ateness of modeling a hospital system with Poisson arrivals and exponential service

times [28, 52, 57]. A customer class can be served by multiple downstream server

pools which are cross-trained to serve multiple customer classes. Service time for

customers of class i by a server in pool j ∈ {1 . . . J} is exponentially distributed

with rate µi for i ∈ {1 . . . I}. Let E be the set of all pairs of customer classes and

downstream server pools such that the customers are eligible for assignment to the

unit (Equation 1).

E = {(i, j) : servers in pool j can feasibly serve customers in class i; i ∈ {1 . . . I}, j ∈ {1 . . . J}}

(1)

The benefits received from the appropriateness of the bed assignment are impacted

by the length of time the patient spends in the unit. Therefore, for a pair (i, j) ∈ E,

a value ai,j is achieved for each unit of time a customer of class i is in service in pool
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j. Sometimes a customer who completes service in pool 0 continues to wait (i.e.,

“board”) there for assignment, for example, if appropriate servers in the downstream

unit are all occupied or if some of the available servers are reserved for potential

future arrivals. For each unit of boarding time, there is a penalty bi for a customer

in class i. While boarding, a patient’s recovery and treatment continues as if he is

assigned to a downstream unit. Therefore, a boarding customer of class i leaves the

system with rate µi. Since we assume that the length of time needed for recovery

or treatment is not dependent on the location of the patient, the rate of a customer

exiting the system while boarding, or waiting in queue, is the same as the rate at

which the customer departs from the downstream server pools.

The system and associated processes can be represented as a tandem queueing

system with an imaginary queue existing between upstream and downstream servers.

A depiction of the system with two customer classes, one upstream server pool, and

three downstream server pools is shown in Figure 13.

Considering both the cost of boarding (bi) and the value of assignment (ai,j)

in the system, we are interested in identifying patient-bed assignment policies that

minimize the difference between the total value and total cost. Once a customer

completes service in the upstream server pool, either he is immediately assigned to

one of the servers in the downstream pools, or his assignment is delayed. The delay

can be due to the unavailability of a feasible downstream server, or due to the desire

to reserve a downstream server for a potential future arrival. Therefore, it is possible

to have a compatible idle server and a boarding customer concurrently.

Assuming that assignment decisions are only made at a change to the system

state (i.e., patient arrival or service completion) and that the time between state

changes is exponentially distributed, the system can be modeled as a continuous-time

Markov decision process. Correspondingly, applying the uniformization technique

we formulate the equivalent average reward criterion infinite-horizon discrete-time
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Figure 13: Description of patient assignment processes as a queueing system

Markov Decision Process (MDP) below [2, 68].

3.3.0.1 State Space

The state of the system is defined by the number of customers in service or wait-

ing for assignment in upstream or downstream server pools. A state s is defined

as s = (~U, ~B, ~D). Let ~U = (U1, U2, . . . , UI), ~B = (B1, B2, . . . , BI), and ~D =

(D1,1, D1,2, . . . , D1,J , D2,1, . . . , D2,J , . . . , DI,J) where Ui and Bi are the number of up-

stream servers that are busy due to service or boarding of a customer of class i,

respectively. Di,j is the number of servers in pool j that are busy serving a customer

of class i.

The state space is restricted such that the total number of customers in service or

boarding upstream does not exceed the upstream server pool capacity, N0. Similarly,

the number of customers in service in unit j cannot exceed Nj. Finally, Di,j can only
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be positive when an assignment of a customer of class i to server pool j is feasible

(i.e., (i, j) ∈ E). The state space, S, is defined in Equation 2.

S = {(~U, ~B, ~D)|
I
∑

i=1

Ui + Bi ≤ N0;
∑

i:(i,j)∈E

Di,j ≤ Nj ∀j ∈ {1 . . . J};Di,j = 0 ∀(i, j) /∈ E}

(2)

When in some state s the transition to the next state happens due to one of the

following: (i) the arrival of a new customer, (ii) completion of service by a customer

in the upstream server pool, (iii) the completion of service of a boarding customer

(while waiting for assignment), (iv) the completion of a customer being served by

a downstream server or (v) the action of assigning boarding customers to available

servers in downstream pools.

The transitions from the stochastic processes (i)-(iv) result in decision epochs.

While the arrival of a new customer results in a decision epoch, we assume no action

is taken as the set of possible actions does not change. The newly arriving customer

is assigned to a server in the upstream unit, while the number of boarding customers

and available downstream servers remains the same. Additionally, we assume that

after the completion of service by a boarding customer (iii), no action is taken as the

set of feasible actions is a subset of the feasible actions prior to the service completion.

There are at most 3I+ |E|+1 states that may be transitioned to from any state s

that do not relate to an action. For instance, there are I states that may result from

a customer completing service in the upstream server pool (ii), represented as s+Bi

(Equation 3).

s+Bi
= (U ′

1, . . . , Ui−1, Ui − 1, Ui+1, . . . , UI , B1, . . . , Bi−1, Bi + 1, Bi+1, . . . , BI , D1,1, . . . , DI,J)

(3)

Alternatively, the system changes upon completion of service by a boarding cus-

tomer (iii). The system then transitions to state s−Bi
(Equation 4).

s−Bi
= (U1, . . . , UI , B1, . . . , Bi−1, Bi − 1, Bi+1, . . . , BI , D1,1, . . . , DI,J) (4)
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With the completion of service of a customer of type i in a downstream server

pool j, (iv), a new server becomes available in unit j. The definition of the state

resulting from service completion in a downstream unit is provided in Equation 5.

There are at most |E| states that can result from service completion of a customer in

a downstream server pool.

s−Di,j
= (U1, . . . , UI , B1, . . . , B1, D1,1, . . . , Di,j−1, Di,j − 1, Di,j+1, . . . , DI,J) (5)

In Equation 6, we define the state resulting from the arrival of a new customer

(i), s+Ui
.

s+Ui
= (U1, . . . , Ui−1, Ui + 1, Ui+1, . . . , UI , B1, . . . , B1, D1,1, . . . , DI,J) (6)

Let Fs be the set of all feasible states that result due to a customer service comple-

tion in an upstream server pool (ii) or a downstream server pool (iv). The definition

of Fs is provided in Equation 7.

Fs ={s+Bi
∀i ∈ {1 . . . I} : Ui > 0}

⋃

{s−Di,j
∀(i, j) ∈ E : Di,j > 0} (7)

Let s = (~U, ~B, ~D) be the state immediately after (ii) or (iv). The manager takes

an action in state s, which may include the possibility of taking no action. Let

~xs = (xs
1,1, x

s
1,2, . . . , x

s
1,J , x

s
2,1, . . . , x

s
I,J) represent the action, or assignments, taken in

state s. ~xs must satisfy Equations 8 and 9. The actions are limited by the number

of boarding patients and the availability of beds in the downstream unit. The set of

feasible actions that can be taken in state s is defined by the set As.

As ={~xs :
∑

j:(i,j)∈E

xs
i,j ≤ Bi ∀i ∈ {1 . . . I}; (8)

∑

i:(i,j)∈E

xs
i,j ≤ Nj −

∑

i:(i,j)∈E

Di,j ∀j ∈ {1 . . . J}; (9)

s = (~U, ~B, ~D)} (10)
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Because interarrival times and service times are exponentially distributed, we can

model the continuous-time system as a discrete time MDP with the uniformization

approach [2, 46, 68, 74]. In this fashion we define the corresponding optimality equa-

tions, for the problem of maximizing the average reward over an infinite horizon. We

define the uniformization constant β to ensure that it is greater than the transition

rate for all possible states s ∈ S. The largest possible transition rate corresponds

to all upstream and downstream servers occupied by customers with the greatest

possible service rates (Equation 11).

β =
I
∑

i=1

λi +max
i

(µ0
i , µi)N0 +

J
∑

j=1

max
i:(i,j)∈E

(µi)Nj (11)

Let v∗ be the optimal expected average reward per unit time. g∗(s) is the value

of starting in state s under an optimal policy. Let {s}~x
s

be the state resulting from

taking action ~xs in state s.

Upon assignment of a customer to a downstream server pool, a one time reward

is received accounting for the expected time the patient spends in the downstream

unit, 1
µm

, and the per unit time value of assignment am,n. Due to the memoryless

property of the exponential distribution, the expected time a customer spends in the

system after assignment is independent of the time spent boarding. Therefore, upon

assignment of a customer of type m to server pool n a one time reward of am,n

µm
is

received.

The set of Bellman equations for this problem is expressed in Equation 12. The

first term in the equation represents the cost of boarding incurred until the next

transition. The second term corresponds to the completion of service by a customer

in the upstream server pool, incorporating the reward from the assignment ~xs+Bi . The

third term corresponds to the service completion of a boarding patient in the upstream

server pool. The fourth term corresponds to the service completion of a customer in
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a downstream server pool, resulting in the availability of a new downstream server.

A reward is received for the assignment ~xs−Di,j .

A transition to a state with an additional customer in upstream service is only

feasible if the upstream pool is not full. Hence, the fifth term corresponds to the

arrival of a customer to the system and beginning service. When the upstream server

pool is full, upon arrival of a new customer, the system remains in the same state.

Additionally, note that with uniformization there is a positive probability of no state

transition, corresponding to the final term in the Bellman equation.

v∗

β
+ g∗(s) = max

~xs
′

∈A
s
′

∀s
′
∈Fs












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















−
I∑

i=1
Bibi

β
+

I
∑

i=1

µ0
iUi

β

(

∑

(m,n)∈E

x
s+Bi
m,n

am,n

µm
+ g∗({s+Bi

}~x
s+Bi )

)

+
I
∑

i=1

µiBi

β
g∗(s−Bi

) +
∑

(i,j)∈E

µiDi,j

β

(

∑

(m,n)∈E

x
s−Di,j
m,n

am,n

µm
+ g∗({s−Di,j

}~x
s−Di,j

)

)

+
I
∑

i=1

λi

β
g∗(s+Ui

) +
β−

I∑

i=1
(µ0

iUi+µiBi+λi+
∑

j:(i,j)∈E

µiDi,j)

β
g∗(s)

if
i
∑

i=1

(Ui + Bi) < N0

−
I∑

i=1
Bibi

β
+

I
∑

i=1

µ0
iUi

β

(

∑

(m,n)∈E

x
s+Bi
m,n

am,n

µm
+ g∗({s+Bi

}~x
s+Bi )

)

+
I
∑

i=1

µiBi

β
g∗(s−Bi

) +
∑

(i,j)∈E

µiDi,j

β

(

∑

(m,n)∈E

x
s−Di,j
m,n

am,n

µm
+ g∗({s−Di,j

}~x
s−Di,j

)

)

+
β−

I∑

i=1
(µ0

iUi+µiBi+
∑

j:(i,j)∈E

µiDi,j)

β
g∗(s)

if
i
∑

i=1

(Ui + Bi) = N0

(12)

Due to the large dimension of both the state and action spaces, identifying the

exact optimal solution to the MDP is difficult for real-world sized problems with

currently available commercial solvers. For example, a hospital with 30 servers in

the upstream pool, 15 servers in each of 10 downstream pools, and with customers

from one of 10 customer classes which can be feasibly assigned to two downstream
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server pools results in 1.75×1034 feasible states. By comparison, for a small example,

with 5 servers in the upstream pool, 5 servers in each of 2 downstream pools, and

with customers able to be feasible assigned to either downstream server pool, 225,225

feasible states would result.

3.4 Bed Assignment Algorithms

With the goal of developing efficient and effective bed assignment policies, we uti-

lize the general structure, notation, and transition probabilities corresponding to the

MDP and tandem queueing system to define five dynamic assignment algorithms,

GREEDY, VALONLY, PROB, STOCH, and HYBRID. Each algorithm is designed

to be applied at each decision epoch, utilizing information about the system state,

(~U, ~B, ~D), to identify a bed assignment action.

Each of the algorithms focus on choosing an action by weighing the one period

nonassignment costs and the expected value of the state at the next decision epoch.

Because the algorithms focus on two stages of decision making, we examine the set of

transitions available in the state corresponding to the first period (s) for the definition

of β. In the MDP defined above, this corresponds to assigning β to be equal to the

transition rate in state s, βs. Thus, β = βs =
I
∑

i=1

(µ0
iUi + µiBi + λi +

∑

j:(i,j)∈E

µiDi,j).

In Section 3.4.1, we define two myopic algorithms, GREEDY and VALONLY, that

simulate the decision processes currently used at many hospitals. Next, in Section

3.4.2 we utilize the probabilities of arrivals and departures used in the definition of

the MDP and queueing models, to define the PROB algorithm. In Section 3.4.3

we develop the STOCH algorithm which utilizes a stochastic optimization model to

identify assignment decisions at each epoch. In Section 3.4.4 we combine features of

the PROB and STOCH algorithms to develop the HYBRID algorithm. Finally, we

develop the algorithm UB to calculate an upper bound on the total reward in Section

3.4.5.
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3.4.1 Myopic Algorithms

To develop a benchmark for comparison, we define two myopic assignment algorithms

to approximate the assignment processes currently used by hospital bed management

staff. In both algorithms, we assume nonidling downstream beds, such that no bed

will remain idle if it can be feasibly assigned to a boarding patient. As a result of

this nonidling assumption, at most one assignment will be made at each decision

epoch. Both myopic approaches are non-anticipatory, only considering patients and

beds that are currently available for assignment and disregarding expectations about

future arrivals.

In the first algorithm (GREEDY), we assume that patients are prioritized for

assignment based on their length of stay in the hospital. Under this approach, the

patient who has been in the hospital system the longest is assigned to the best avail-

able and feasible bed. If no beds are available that meet clinical requirements, the

patient continues to board in the upstream unit until the next decision epoch. After

a patient has been assigned to a bed, the patient with the next highest priority is

considered for assignment. This greedy approach seeks to find the best assignment

for each patient individually ignoring the overall system performance.

In another myopic algorithm, VALONLY, the feasible assignment with the highest

ai,j value is made assigning a boarding patient of type i to unit j. While similar,

VALONLY seeks to make the best possible assignment from a systems perspective,

while GREEDY prioritizes the patients that have been in the system for the longest

time.

3.4.2 Probabilistic Approximation for Non-Assignment of Patients or
Beds

In addition to the value from a particular patient-bed assignment there is also an

associated opportunity cost. For example, rather than assigning patient i to a bed

in unit j and receiving the reward ai,j now, it may be preferable to save the capacity
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in unit j for a potential future arrival with a higher reward, or with the goal of

avoiding a future off-service assignment. As a result, there is value associated with

both assignment and nonassignment.

In the PROB algorithm, we develop an approximation of the value of assigning

each patient type to a feasible unit, as well as values of nonassignment for patients and

beds. While we have a similar approximation of the assignment and nonassignment

values as Spivey and Powell (2004), due to their assumption of no reuse of resources

(beds), their adaptive algorithm is not directly applicable in this system. In PROB,

we develop approximations by incorporating our knowledge of the probabilities of

future events, as used in the definition of the MDP and queueing models. At each

decision epoch, we solve an assignment problem which incorporates these assignment

and non-assignment values to inform the decisions.

3.4.2.1 Value Approximations

We estimate the value associated both with assignment and nonassignment. We let

the pairs (i, 0) and (0, j) to represent the nonassignment of a patient of type i and the

nonassignment of a bed in unit j, respectively. Ē is the union of the set of pairs (i, j)

contained in E and the pairs associated with nonassignment of patients and beds,

(i, 0) and (0, j).

Ē = {(i, j) ∈ E}
⋃

{(i, 0)∀i ∈ {1 . . . I}}
⋃

{(0, j)∀j ∈ {1 . . . J}} (13)

The (short term) value of assigning a patient of type i to a bed in unit j is

denoted by Vi,j . This value represents the expected reward achieved over two periods

as a result of the assignment. A reward of ai,j is received for the assignment at t.

Unless the assigned patient exits the system at t+1, a reward of ai,j is also achieved

at decision epoch t + 1 with no boarding cost (bi) incurred. The probability of the

assigned patient exiting the system at the next decision epoch is µi

βs
. We define Vi,j

56



in Equation 14.

Vi,j =(2−
µi

βs

)ai,j ∀(i, j) ∈ E (14)

Additionally, for each patient type i we approximate the value of nonassignment

of a patient of class i with Vi,0. With nonassignment of a patient, a cost of bi, is

incurred from the boarding of the patient in the first period t. With probability µi

βs

the patient departs the system before the next decision epoch t+1, and no reward or

cost is incurred for the second period. The patient continues to board in the second

period, with a cost of bi unless a new bed becomes available before the next decision

epoch, t+1. Here we only consider the arrival of beds that are occupied at t and not

the rearrival of beds that were assigned at t. Therefore, if a bed in a compatible unit n

becomes available at t+1, with probability

∑

m:(m,n)∈E

µmDm,n

βs
a reward of ai,n is received

and no boarding cost is incurred in the second period. With these assumptions, we

define the approximation for nonassignment of patients (Equation 15).

Vi,0 =− 2bi +

∑

(m,n)∈E

µmDm,n(ai,n + bi)

βs

+
µibi
βs

∀i ∈ {1 . . . I} (15)

Similarly, for each bed in unit j we approximate the value of nonassignment of a

bed in unit j with V0,j . While, no cost is incurred for the nonassignment of a bed,

with the decision to defer assignment, a reward may be received with the arrival of a

new patient before time t+ 1. The probability of the arrival of a patient of type i is

µ0
iUi

βs
. We define the expected value of nonassignment of a bed in unit j in Equation

16.

V0,j =
∑

i:(i,j)∈E

µ0
iUiai,j
βs

∀j ∈ {1 . . . J} (16)

Utilizing the values of assignment and nonassignment defined above, in the PROB

algorithm, at each decision epoch the assignment problem (Equation 17) is solved and

the assignments corresponding to the optimal solution are implemented.
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max
∑

(i,j)∈Ē

Vi,jxi,j

s.t.
∑

j:(i,j)∈Ē

xi,j = Bi ∀i ∈ {1 . . . I}

∑

i:(i,j)∈Ē

xi,j ≤ Nj −
∑

i:(i,j)∈Ē

Di,j ∀j ∈ {1 . . . J}

xi,j ≥ 0 ∀(i, j) ∈ Ē

xi,j integer ∀(i, j) ∈ Ē (17)

This algorithm assumes that the value of not assigning patients of type i is linear

with respect to the number of patients. As shown by Spivey and Powell (2004),

the value obtained from two similar resources or customers is sub-additive. This

sub-additive property accounts for competition among patients for beds and is not

represented in this algorithm.

3.4.3 Two-Stage Stochastic Program with Recourse (STOCH) Algo-
rithm

Similar to PROB, STOCH seeks to optimize the sum of the expected value in pe-

riods t and t + 1. Unlike PROB, STOCH considers the competition of patients for

beds. In STOCH, we formulate a two-stage stochastic program with recourse model

to represent the two stages of decision making. The first stage corresponds to the

assignment decision made at t. The second stage corresponds to the second decision

epoch (t + 1). xi,j corresponds to the first stage assignment decisions. Independent

of the first stage assignments, a realization of a change in the system state occurs at

t + 1. The change to the system state can include the arrival of a new assignment

request by a patient of type i or the new availability of a bed in unit j, resulting in a

total of K = I+J scenarios. Unlike PROB, in which we incorporated the probability
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of a boarding patient exiting before assignment, we do not incorporate the possibil-

ity of a patient leaving from boarding in STOCH, as nonlinear constraints would be

needed to account for these scenarios in which the probability of the scenario would

be a function of the first stage assignment decisions.

In response to the first stage decisions and realization of the event k, a recourse

assignment yki,j is made in the second stage. The objective of the two-stage stochastic

problem is to identify a robust first stage decision to optimize the expected value

achieved after the realization and recourse. Based on the notation and transition

probabilities in the definition of the MDP, we define (Equations 18 and 19) and

estimate the probabilities of each event k, pk (Equation 20). Let Θ1
i,k and Θ2

j,k be the

realizations of uncertainty in scenario k. Θ1
i,k corresponds to an additional patient

of type i becoming available in decision epoch t + 1 in scenario k. Similarly, Θ2
j,k

corresponds to an additional bed in unit j becoming available in decision epoch t+1

in scenario k.

Θ1
i,k =















1 if k = i

0 otherwise

∀i ∈ {1 . . . I}, k ∈ {1 . . . K} (18)

Θ2
j,k =















1 if k = I + j

0 otherwise

∀j ∈ {1 . . . J}, k ∈ {1 . . . K} (19)

pk =



















µ0
k
Uk∑

i∈{1...I}

µ0
iUi+

∑

(i,j)∈E

µiDi,j
if k ≤ I

∑

(i,k−I)∈E

µiDi,k−I

∑

i∈{1...I}

µ0
iUi+

∑

(i,j)∈E

µiDi,j
otherwise

∀k ∈ {1 . . . K} (20)

Since we disregard the probability of patients unassigned at t leaving the system,

an assignment in the first period achieves a reward of 2(ai,j + bi), representing the

value for two periods. Note that because every patient is either assigned or continues
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to board maximizing the function
∑

(i,j)∈E

(ai,j + bi)xi,j is equivalent to maximizing

∑

(i,j)∈E

ai,j(Di,j + xi,j) −
∑

i∈1...I

bi(Bi −
∑

(i,j)∈E

xi,j). For assignments made in the second

stage, yki,j, the reward of ai,j+bi is achieved for the second period. The full formulation

of the two-stage stochastic program with recourse is defined below (Equation 21).

max
∑

(i,j)∈E

2(ai,j + bi)xi,j +
∑

k∈{1...K}

pk
∑

(i,j)∈E

(ai,j + bi)y
k
i,j

s.t.
∑

j:(i,j)∈E

xi,j ≤ Bi ∀i ∈ I

∑

i:(i,j)∈E

xi,j ≤
∑

(i,j)∈E

Di,j ∀j ∈ J

∑

j:(i,j)∈E

xi,j +
∑

j:(i,j)∈E

yki,j ≤ Bi +Θ1
i,k ∀i ∈ {1 . . . I}, k ∈ {1 . . . K}

∑

i:(i,j)∈E

xi,j +
∑

i:(i,j)∈E

yki,j ≤
∑

i:(i,j)∈E

Di,j +Θ2
j,k ∀j ∈ {1 . . . J}, k ∈ {1 . . . K}

xi,j ≥ 0 ∀(i, j) ∈ E

xi,j integer ∀(i, j) ∈ E

yki,j ≥ 0 ∀(i, j) ∈ E, k ∈ {1 . . . K}

yki,j integer ∀(i, j) ∈ E, k ∈ {1 . . . K}

(21)

The algorithm STOCH solves this two-stage stochastic program with recourse

problem at each decision epoch and implements the assignment defined by the opti-

mal first-stage decision variables, x. While patients exiting the system from boarding

cannot be accounted for, this approach does account for the competition among pa-

tients for limited beds and the sub-additive properties of postponing assignment of

patients or beds.
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3.4.4 Combination of STOCH and PROB Algorithms

The STOCH algorithm does not account for patients leaving from boarding while

the PROB algorithm does not account for the competition among patients for lim-

ited beds. To develop an algorithm that incorporates both of these characteristics,

we develop a HYBRID algorithm which has the structure of the STOCH algorithm

(Equation 21) but restricts assignments to those that would be in an optimal solution

to the problem in Equation 17.

A necessary condition for all optimal solutions to the problem in Equation 17 is

that xi,j is only be positive if the sum of the value from nonassignment of the patient

(Vi,0) and nonassignment of a bed in the unit (V0,j) is greater than the value from

assignment (Vi,j). Thus we define ¯̄E to be the set of pairs (i, j) meeting this criteria

(Equation 22).

¯̄E = {(i, j) : (i, j) ∈ E;Vi,j ≥ Vi,0 + V0,j} (22)

Utilizing this restricted set of feasible pairs (i, j), we define the HYBRID algorithm

which solves a variant of the integer program in Equation 21 such that the set of

decision variables is restricted to those defined by ¯̄E rather than E.

3.4.5 Upper Bound on Algorithm Performance

In comparing the performance of the assignment algorithms, we are interested both

in the improvement with respect to the myopic approaches as well as the performance

with respect to the optimal assignment decisions. Even with perfect information of all

arrival and service times for a specific instance, solving the associated integer program

to identify the optimal solution is difficult for large instances. The complexity in

solving the problem stems from the need to consider reuse of resources, guarantee that

capacity restrictions are met at each decision epoch, and ensure nonidling upstream

servers. The integer program which incorporates complete information about patient

arrivals and service times is provided in Appendix B. With this instance, a small
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instance with 100 patient arrivals, 10 downstream units, and each patient able to be

feasible assigned to 3 units requires 180,000 integer decision variables and 273,000

constraints. A similar instance with 1,000 patient arrivals requires 18 million integer

variables and 27 million constraints.

We utilize the UB algorithm to calculate an upper bound on the optimal reward

when it is guaranteed that no patients are diverted for all optimal assignments. We

can create a system guaranteeing that no patients are diverted with the optimal

decisions by augmenting the instance and increasing the capacity of the upstream

unit to a high enough level.

Similar to the other algorithms we have developed, the UB algorithm solves an in-

teger program at each change to the system state. The key difference is the relaxation

of the assumption that once a patient is assigned to a unit he remains in the unit

until he exits the system. This UB algorithm instead allows for the reassignment of

patients at each decision epoch. This includes the possibility of an assigned patient

being reassigned to board in the upstream unit or reassigned to a different down-

stream unit. Let the set Ê be the union of the set E and all pairs (i,0) representing

assignment of a patient to the upstream unit. At each decision epoch, all patients

not in service upstream are assigned to an upstream or downstream unit according to

the solution of the integer program defined in Equation 23, which optimizes the total

reward achieved in the associated period. Note, that while we allow for assignment

of patients to the upstream unit, we only consider the value obtained for assignments

to feasible units (E).
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max
∑

(i,j)∈E

(ai,j + bi)xi,j

s.t.
∑

j:(i,j)∈Ê

xi,j =
∑

j:(i,j)∈E

Di,j + Bi ∀i ∈ {1 . . . I}

∑

i:(i,j)∈Ê

xi,j ≤ Nj ∀j ∈ {0 . . . J}

xi,j ≥ 0 ∀(i, j) ∈ Ê

xi,j integer ∀(i, j) ∈ Ê (23)

As is shown in Theorem 3.4.1, the total reward achieved from the UB algorithm

is an upper bound on the optimal objective value when no patients are diverted from

the system under either policy. Unfortunately the assumption that no patients are

diverted in the optimal solution is necessary to ensure an upper bound, as we have

identified instances for which UB performs worse than other algorithms without this

assumption.

Theorem 3.4.1. Assume we have the complete information of all arrivals and service

times for a particular instance and let V ∗ be the total reward achieved when the optimal

action is taken at each decision epoch. Similarly, let V UB be the total reward achieved

when the action defined by the UB algorithm is taken at each decision epoch. If no

patients are diverted from the system when optimal actions are taken at each decision

epoch or when using the UB algorithm to choose actions, V UB ≥ V ∗.

Proof. 3.4.1 Let s∗t = (~U∗(t), ~B∗(t), ~D∗(t)) be the state of the system at time t when

the optimal action is taken at each decision epoch accounting for full information

about future events. Additionally, let ~xt
∗ be the optimal action taken at decision

epoch t. Since optimal actions are made with complete information about future

events, we assume that the choice of action is a function of the time t rather than the

state s∗t . Thus, the reward received under the optimal strategy at decision epoch t is
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r(s∗t , ~xt
∗) =

∑

(i,j)∈E

ai,j(D
∗
i,j(t)+x∗

i,j,t)−
∑

i∈{1...I}

bi(B
∗
i (t)−

∑

(i,j)∈E

x∗
i,j,t). Correspondingly,

V ∗ =
∑

t∈T

r(s∗t , ~xt
∗).

Let sUB
t = (~UUB(t), ~BUB(t), ~DUB(t)) be the state of the system at decision epoch

t when the UB algorithm is used to identify the action at each decision epoch. Since

all patients can be feasibly reassigned at each decision epoch, the feasible action space

at t is AUB
sUB
t

as defined in Equation 26.

AUB
sUB
t

= {~xt :
∑

j:(i,j)∈Ê

xi,j,t =
∑

j:(i,j)∈E

DUB
i,j (t) +BUB

i (t) ∀i ∈ {1 . . . I}; (24)

∑

i:(i,j)∈Ê

xi,j,t ≤ Nj ∀j ∈ {0 . . . J}; (25)

~xt integer } (26)

Let ~xUB
t ∈ AUB

sUB
t

be the action taken at decision epoch t as defined by the solution

to the integer program associated with the UB algorithm (Equation 23). Since all

patients may be reassigned at each decision epoch, the states at previous decision

epochs do not impact the action space. With these assumptions, the reward at time

t is r(sUB
t , ~xUB

t ) =
∑

(i,j)∈E

ai,jx
UB
i,j,t −

∑

i∈{1...I}

bix
UB
i,0,t.

Since no patients are diverted from the system with use of the optimal strategy

or the UB algorithm and the assignment decisions do not impact when a patient is

in the system, the relationship in Equation 27 holds.

B∗
i (t) +

∑

(i,j)∈E

D∗
i,j(t) = BUB

i (t) +
∑

(i,j)∈E

DUB
i,j (t) ∀i ∈ {1 . . . I} (27)

Let us define the action ~z = (z1,0 . . . , z1,J , z2,0, . . . , zI,J) according to Equations 28

and 29.

zi,j = D∗
i,j(t) + x∗

i,j,t ∀(i, j) ∈ E (28)

zi,0 = B∗
i (t)−

∑

j:(i,j)∈E

x∗
i,j,t ∀i ∈ {1 . . . I} (29)
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From the definition of ~z, it is easily seen that ~z ∈ AUB
sUB
t

. The relationships in

Equations 30 - 34 follow.

r(sUB
t , ~xUB

t ) ≥ r(sUB
t , ~z) (30)

r(sUB
t , ~z) =

∑

(i,j)∈E

ai,jzi,j −
∑

i∈{1...I}

bizi,0

=
∑

(i,j)∈E

ai,j(D
∗
i,j(t) + x∗

i,j,t)−
∑

i∈{1...I}

bi(B
∗
i (t)−

∑

(i,j)∈E

x∗
i,j,t)

= r(s∗t , ~x
∗
t ) (31)

r(sUB
t , ~xUB

t ) ≥ r(s∗t , ~x
∗
t ) (32)

∑

t∈T

r(sUB
t , ~xUB

t ) ≥
∑

t∈T

r(s∗t , ~x
∗
t ) (33)

V UB ≥ V ∗ (34)

As shown in Theorem 3.4.2, in addition to providing an upper bound on the

optimal total reward, the UB algorithm provides a tight upper bound on the optimal

total reward.

Theorem 3.4.2. There exists a bed assignment instance such that V UB = V ∗.

Proof. 3.4.2 Let there be a bed assignment system with I = J such that for patients

in class i the only feasible downstream unit is unit j. Let all ai,i and bi be positive.

Assume that the upstream unit is large enough such that no patients are diverted

from the system under either assignment policy.

With these assumptions, this system is equivalent to a system of I parallel multi-

server queues with no cross-trained servers. Due to the independence of the queues,

the optimal control policy for all is to have non-idling servers in each pool. There-

fore, for all instances having this system structure, we define the optimal action at
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each time t. If there are qi(t) patients of class i in the system at time t, the opti-

mal policy is to assign min(qi(t), Ni) to server pool i. This results in a reward of

r(s∗t , ~x
∗
t ) =

∑

i∈{1...I}

ai,imin(qi(t),Ni)− bimax(qi(t)−Ni,0) at each epoch t under the

optimal assignment policy.

We show that r(sUB
t , ~xUB

t ) = r(s∗t , ~x
∗
t ) for every decision epoch t in any instances

corresponding to this system. Assume to the contrary that for some instance and

time t, r(sUB
t , ~xUB

t ) > r(s∗t , ~x
∗
t ). Then there exists some t such that r(sUB

t , ~xUB
t ) >

∑

i∈{1...I}

ai,imin(qi(t),Ni)− bimax(qi(t)−Ni,0). Since the optimal solution to the IP in

Equation 23 always assigns xi,i = min (qi, Ni), we see that r(s
UB
t , ~xUB

t ) ≤ r(s∗t , ~x
∗
t ) for

all t.

Since we have shown that r(sUB
t , ~xUB

t ) ≥ r(s∗t , ~x
∗
t ) in Theorem 3.4.1, it follows

that r(sUB
t , ~xUB

t ) = r(s∗t , ~x
∗
t ) and V UB = V ∗ for all instances resulting from this

system.

3.5 Computational Study

To evaluate the relative performance of the algorithms described above (GREEDY,

VALONLY, PROB, STOCH, HYBRID) we conduct a numerical study using a discrete

event simulation. In this study we address the following research questions.

• What is the impact of new assignment policies on performance metrics such as

– (i) total reward from the appropriateness of assignment,

– (ii) mean assignment time,

– (iii) median assignment time,

– (iv) rate of off-service assignment

– (v) the number of patients diverted/accepted?

• How is the benefit from implementation of these algorithms affected by
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– (i) the system utilization,

– (ii) balance of supply and demand for specific units,

– (iii) relative weighting of assignment rewards and boarding costs?

The structure of the discrete event simulation and the performance metrics are

described in Section 3.5.1. Utilizing the simulation, we conduct comparative experi-

ments using data collected from Children’s Healthcare of Atlanta (Children’s) for the

development of model parameters. Methodology for parameter estimation is provided

in Section 3.5.2.

In Section 3.5.3 utilizing the upper bound calculations we examine how use of

the three algorithms reduces the optimality gap in comparison with the myopic ap-

proaches for “augmented” instance sets, in which the capacity of the upstream unit

is increased to ensure no patient diversions. In Section 3.5.4, we expand our analysis

to evaluate the relative performance of the algorithms in the original, not augmented,

instances. We demonstrate how the difference in performance is impacted by sys-

tem characteristics. Finally, we evaluate the sensitivity of algorithm performance to

changes in bi and ai,j , in Sections 3.5.5 and 3.5.6.

3.5.1 Simulation

We create randomly generated instances which simulate the arrivals and service times

of patients over a one year period. Table 6 summarizes the parameter values used

in generating the instances along with additional parameters defining the value of

assignments (ai,j), costs of boarding (bi), and unit capacities (Nj), we simulate the

flow of patients under each policy and evaluate the performance.

With the simulation we calculate the primary performance metrics included in

the problem objective, value from appropriateness and cost from boarding (Table

5). Additionally, we examine the secondary performance metrics such as the rate

of diversion, rate of off-service assignment, and median assignment times. National
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Table 5: Definition of simulation performance metrics
Performance Metric Description

Assignment Value Total value achieved from the appropriateness of the assignment of
patients to units

Boarding Cost Total cost incurred from boarding patients in the upstream unit
Total Reward Difference of assignment value and boarding cost
Mean Assignment Time The mean time (non-diverted) patients spends boarding
Median Assignment Time The median time (non-diverted) patients spends boarding
On-Service Assignments Count of (non-diverted) patients that are assigned to a preferred unit
Off-Service Assignments Count of (non-diverted) patients that are assigned to a non-preferred unit
Upstream Departures Count of (non-diverted) patients that are not assigned to a downstream unit
Diversions Count of the patients diverted from system due to lack of capacity at

upstream unit
Accepted Count of patients not diverted from the system

benchmarks for bed management track the median request-to-assignment time. We

hypothesize that some of the delay in real hospital systems is due to manual processes

and communication between hospital staff. The median assignment time reported

here does not capture the delays due to manual processes, but instead only captures

delays due to decisions to postpone assignment or due to the lack of available beds.

As such, the median assignment times are significantly lower than what is reported

in practice and this difference demonstrates the value of automated bed assignment

decision support tools. A description of each of the performance metrics is provided

in Table 5.

To remove bias in the calculation of performance metrics we designate a warm-up

period of 15 days in the simulation to disregard data collection when the system is not

in a steady state. We choose a length of time such that the fluctuations in number

of patients in the system is minimized beyond the warm-up period. A sample of

the charts used in choosing this warm-up period length are included in Appendix C.

Additionally, we only consider patients who complete service before the end of the

365-day period, so as to remove bias from the cool-down of the system. Consequently,

we calculate performance statistics using data from patients that enter the system

after Day 15 and leave the system before Day 365.
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3.5.2 Parameter Estimation

To test the performance of the algorithms under real world settings, we estimate

parameter values using data provided by Children’s where possible. Specifically, we

use 2011 inpatient volume data, unit specifications, and documented overflow policies.

These overflow policies identify the ideal or preferred unit by patient type, which

overflow units a patient can be feasibly assigned to, and the preferences among these

units. For each patient type we define primary, secondary, and tertiary units to which

patients can be assigned.

A summary of the base case parameters is provided in Table 6. Values for I, J ,

and Nj are derived directly from Children’s data. Due to a lack of available data

the values N0 and µ0
i are approximated. The limitations of these approximations are

discussed in Section 3.6. Patient overflow protocol is used in the definition of ai,j .

Using Children’s policies, we convert the overflow rules into numeric valuations. The

weighting of the value achieved from assignment is in direct contrast with the daily

cost of boarding.

Table 6: System parameters for base case
Parameter Simulation Values
I 11
J 9
N0 35
Nj {14, 21, 18, 17, 28, 26, 27, 10}
µ0
i Assuming the average utilization of upstream unit by non-boarding patients is 83 %,

all patient types assumed to have an average service time of .5 days.
µi Six sets of downstream service rate parameters. See Tables 7 and 8 for the full definition.
ai,j Daily value of 5 if unit j is a primary unit for patient i. Values of 3 and 1 if unit j is secondary

or tertiary unit, respectively, for patients of type i.
bi Daily value of 2 for all patient types.

The length of stay, and associated service rate µi are derived using information

obtained from the overflow policies. We create six sets of parameters for µi, repre-

senting the patient service time, by varying both the relationship between supply and

demand in the downstream units (SET1, SET2, SET3) and scaling parameters to
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represent high and low utilization of the downstream units (HI and LO). A descrip-

tion of the relationship between the six parameter sets (S1LO, S1HI, S2LO, S2HI,

S3LO, S3HI) is provided in Table 7.

Table 7: Description of six parameter sets (µi)
Match of Supply and Demand High Utilization Low Utilization
in Downstream Units (HI) (LO)
SET1: Proportional in primary unit S1HI S1LO
SET2: Proportional in primary
and secondary units S2HI S2LO
SET3: Proportional in all
feasible units S3HI S3LO

Ideally the distribution of beds among hospital units is proportional to the flow

of patients into their preferred units (SET1), but often the allocation of beds may be

mismatched due to changes in patient mix over time. For a more robust comparison of

the performance of the algorithms, we create two downstream service rate parameter

sets that vary the match of patient flow and unit capacity. In the second set, SET2,

for each patient class we divide patient flow evenly among the primary and secondary

units and proceed in a similar fashion as above. Lastly, service rates for SET3 are

calculated similarly dividing patient flow evenly among all feasible units.

This calculation of average service time by dividing the available capacity among

the expected arrivals results in a system with very high utilization (HI), as it leaves

little availability of excess capacity. To represent a system with lower utilization

(LO), we create similar parameters in which the expected service time is 80% of that

used in the high utilization parameter set. The average downstream length of stay

for each patient type in these six instance sets is presented in Table 8.

We create 20 instances for each of the 6 parameters sets for use in our analysis

and comparison of the algorithms performance.
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Table 8: Average length of stay by patient class for parameter sets: S1LO, S2LO,
S3L0, S1HI, S2HI, and S3HI

Patient Class
Average Length of Stay in Downstream Unit (days)
S1LO S2LO S3LO S1HI S2HI S3HI

1 4.5 4.1 5.3 5.7 5.2 6.7
2 8.8 3.3 5.3 11 4.2 6.6
3 3.5 5 5.8 4.4 6.3 7.3
4 8.8 4.1 6 11 5.2 7.5
5 4.1 5 4.5 5.2 6.2 5.6
6 4.3 4.9 5 5.4 6.1 6.3
7 8.6 6.2 5.5 10.7 7.1 6.8
8 5.3 4.6 6.6 6.6 5.8 8.2
9 3.5 4.7 5.8 4.4 5.9 7.3
10 4.9 6.2 4.7 6.1 7.7 5.9
11 1.5 1.5 1.1 1.9 1.9 1.4

3.5.3 Optimality Gap Reduction

To illustrate the performance of the algorithms independent of the effect from pa-

tient diversions, we first examine conduct a numerical analysis of the optimality gap

reduction in systems without patient diversion.

Without knowledge of the exact optimal solution, ensuring that the optimal solu-

tion has no diversions is difficult. If the capacity of the upstream unit is greater than

the maximum number of patients that can be in the system at any time, as defined by

the specific instance, it is guaranteed that no patients are diverted from the system

under any policies.

We develop “augmented” instances in which the capacity of the upstream unit is

increased to ensure no patient diversion. While this does not represent the system

characteristics seen in practice, a calculation of the upper bound in these augmented

instances, with expanded upstream unit capacity, allows for a better understanding

of the performance improvement achieved through use of the assignment algorithms

in comparison with the myopic approaches.

By augmenting the instances in sets S1LO, S1HI, S2LO, S2HI, S3LO, and S3HI we
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compare the optimality gap for each algorithm with the optimality gap for the myopic

approaches, GREEDY and VALONLY. We calculate the ratio of these optimality gaps

individually for each instance. Table 9 includes the total reward and optimality gap

reduction with respect to the GREEDY approach for each instance in S3HI. Because

the UB algorithm produces an upper bound of the optimal reward, the optimality

gap reduction listed here is an upper bound on the true optimality gap reduction.

Table 9: Optimality gap reduction in comparison to GREEDY for 20 instances in
S3HI

Total Reward Optimality Gap Reduction
INSTANCE GREEDY UB PROB STOCH HYBRID PROB STOCH HYBRID

0 196,016 235,651 215,110 213,259 213,690 48% 44% 45%
1 200,775 238,005 213,616 211,190 211,201 34% 28% 28%
2 197,636 236,058 217,204 213,661 213,916 51% 42% 42%
3 198,144 235,258 214,625 212,996 213,785 44% 40% 42%
4 197,795 236,774 212,967 209,428 209,989 39% 30% 31%
5 202,772 235,546 208,989 209,194 209,373 19% 20% 20%
6 206,003 237,479 214,749 214,254 214,379 28% 26% 27%
7 200,254 237,579 213,484 211,692 212,738 35% 31% 33%
8 199,974 237,591 212,251 212,493 211,936 33% 33% 32%
9 197,847 239,610 212,800 210,612 210,976 36% 31% 31%
10 195,158 239,738 217,949 215,182 214,817 51% 45% 44%
11 200,068 239,131 214,601 214,859 215,997 37% 38% 41%
12 198,106 236,261 211,911 211,417 211,467 36% 35% 35%
13 202,377 237,309 215,400 215,667 215,199 37% 38% 37%
14 201,056 237,570 211,851 212,168 212,766 30% 30% 32%
15 200,563 236,800 213,855 212,083 213,004 37% 32% 34%
16 200,518 239,114 215,537 212,692 212,279 39% 32% 30%
17 196,820 234,969 212,764 210,875 211,458 42% 37% 38%
18 203,275 238,467 216,222 215,774 216,402 37% 36% 37%
19 196,496 237,165 213,205 212,671 213,012 41% 40% 41%

Average 38% 34% 35%

As shown in Table 9, in comparison with the GREEDY method, a significant

decrease in the calculated optimality gap is achieved in each instance in the set S3HI

through use of any of the three algorithms: PROB, STOCH, HYBRID. For example,

the HYBRID algorithm results in an average optimality gap reduction of 35%, with

the individual optimality gap reductions ranging between 20% and 45% among all

instances.

While all three algorithms achieve a higher total reward than GREEDY for all

instances in S3HI, this finding does not hold for all instance sets and when compar-

ing against the performance of the VALONLY approach. A summary of the mean,
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minimum, and maximum optimality gap reductions with respect to the performance

with GREEDY and VALONLY for all six instance sets is provided in Table 10.

Table 10: Mean, minimum, and maximum optimality gap reductions with respect
to GREEDY and VALONLY

Optimality Gap Reduction - GREEDY Optimality Gap Reduction - VALONLY
PROB STOCH HYBRID PROB STOCH HYBRID

S1LO
-16% 31% 31% -18% 30% 30%

[-41% , 1%] [24% , 43%] [25%, 41%] [-41% , 0%] [21% , 42%] [21% , 41%]

S1HI
41% 36% 37% 9% 1% 3%

[30% , 50%] [22% , 45%] [25% , 47%] [2% , 16%] [-6% , 7%] [-4% , 10%]

S2LO
-4% 29% 30% -7% 27% 27%

[-19% , 7% ] [23% , 34%] [22% , 36%] [-23% , 8%] [17% , 34%] [17% , 36%]

S2HI
43% 39% 39% 11% 5% 5%

[27% , 56%] [24% , 53%] [21% , 52%] [6% , 19%] [-4% , 14%] [-3% , 12%]

S3LO
-3% 21% 21% -6% 19% 19%

[-9% , 4%] [15% , 26%] [16% , 26%] [-12% , 3%] [15% , 24%] [14% , 25%]

S3HI
38% 34% 35% 8% 2% 4%

[19% , 51%] [20% , 45%] [20% , 45%] [0% , 21%] [-7% , 9%] [-5% , 13%]

For the instances with low utilization (S1LO, S2LO, and S3LO) PROB performs

worse than both myopic approaches on average, but STOCH and HYBRID assign-

ment algorithms result in significant improvements over both myopic approaches.

Alternatively, for the high utilization instance sets, on average PROB results in the

greatest optimality gap reduction, but all three algorithms improve the optimality

gap over that of GREEDY for all 60 instances. Similarly, PROB performs better

than VALONLY for all 60 instances.

We hypothesize that the poorer performance of PROB in low utilization instances

is due to the greater value placed on waiting for a better assignment. By definition,

as more downstream beds are occupied, the probability of a bed becoming available

receives more weight and thus provides more incentive for boarding.

While these results are for the augmented instances with a large capacity in the

upstream unit, similar results regarding the relative performance of the algorithms

in high and low utilization systems occurs in the original instances. As a result, we

separate our discussion of the performance of the algorithms below with respect to

the level of utilization. In this analysis we explore the impact of the original upstream
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capacity constraints on other system objectives.

3.5.4 Multi-Objective Analysis

From the computational results in Section 3.5.3 we gain an understanding for the

performance of the algorithms for instances in which the upstream unit is not a

limiting factor and no patients are diverted from the system. In the remainder of the

computational study, we refer to the original instances in which the upstream unit

is a limiting factor. In systems with capacitated upstream units bed managers must

consider how assignment decisions impact the availability of beds in the upstream

units and the resulting diversion rates.

Utilizing the discrete event simulation, we examine the performance of these al-

gorithms with respect to the metrics defined in Table 5. Since we are only concerned

with algorithms which outperform myopic approaches on average, we limit the tests

to the STOCH and HYBRID algorithms for low utilization instances (S1LO, S2LO,

and S3LO).

3.5.4.1 Performance in Low Utilization Instances

The results for STOCH and HYBRID compared with GREEDY and VALONLY are

provided in Tables 11 and 12, respectively. In the low utilization systems, through the

use of STOCH or HYBRID simultaneous improvements in all performance metrics is

achieved on average. The improvement among all metrics with STOCH and HYBRID

is a result of the consideration of the interactions between different patient types

through proactive assignment to off-service units ensuring timely assignments for all

patients. Utilizing a paired two-sample t-test (α = .05) we confirm that the average

performance of both STOCH and HYBRID is significantly different than the average

performance of the same metric achieved with the myopic approaches. While the

difference in the average median assignment times is statistically significant, due

to small median assignment times in all instances the difference is not practically
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significant.

Table 11: Average performance of STOCH and HYBRID relative to GREEDY
among 60 low utilization instances (S1LO, S2LO, and S3LO)

Total Reward Assignment Boarding Mean Assignment Median Assignment
Value Cost Time (mins) Time (mins)

S1LO
GREEDY 207,650.7 208,112.4 461.5 32.8 1.19E-12
STOCH +1.26% +1.24% -7.45% -7.47% -11.90%
HYBRID +1.25% +1.23% -7.27% -7.28% -11.53%

S2LO
GREEDY 204,733.4 205,318.8 585.3 41.7 1.44E-12
STOCH +1.39% +1.36% -9.64% -9.64% -12.06%
HYBRID +1.41% +1.38% -9.44% -9.44% -11.89%

S3LO
GREEDY 203,500.9 203,847.9 347.0 24.7 9.62E-13
STOCH +1.09% +1.06% -11.88% -11.89% -13.26%
HYBRID +1.08% +1.06% -11.24% -11.25% -14.18%

Table 12: Average performance of STOCH and HYBRID relative to VALONLY
among 60 low utilization instances (S1LO, S2LO, and S3LO)

Total Reward Assignment Boarding Mean Assignment Median Assignment
Value Cost Time (mins) Time (mins)

S1LO
VALONLY 207,795.2 208,267.4 472.3 33.6 1.19E-12
STOCH +1.19% +1.16% -9.56% -9.58% -12.37%
HYBRID +1.18% +1.15% -9.39% -9.40% -12.00%

S2LO
VALONLY 205,018.9 205,617.6 598.7 42.7 1.46E-12
STOCH +1.25% +1.21% -11.67% -11.68% -13.67%
HYBRID +1.27% +1.23% -11.47% -11.49% -13.50%

S3LO
VALONLY 203,761.8 204,132.6 370.8 26.4 9.97E-13
STOCH +0.96% +0.92% -17.53% -17.54% -16.32%
HYBRID +0.95% +0.91% -16.94% -16.95% -17.21%

Additionally, these algorithms impact the rate at which patients are assigned to

on-service units and the rate at which patients do not receive assignment and exit

directly from the upstream unit. The distribution of the percentage of patients in

each category for low utilization instances is provided in Table 13. Use of HYBRID or

STOCH results in improved performance with a higher rate of on-service assignment

and lower rates of off-service assignment, upstream departures, and diversions.

Due to the low utilization in the instances for sets S1LO, S2LO, and S3LO, as seen

in the results of the simulation even with a capacitated upstream unit the average

diversion rate is approximately zero for all instance sets and the algorithms have no

significant impact on diversions. This implies that for the low utilization instance

sets the optimality gaps for the augmented instances (Table 10) provide a reasonable

approximation of the true optimality gap reduction in the original instances.
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Table 13: Distribution of patients among on-service, off-service, upstream departures
and diversions in 60 low utilization instances (S1LO, S2LO, and S3LO)

On-Service Off-Service Upstream
Assignments Assignments Departures Diversions

S1LO

GREEDY 90.91% 7.946% 1.147% 0.000%
VALONLY 91.05% 7.775% 1.178% 0.000%
STOCH 93.91% 4.973% 1.115% 0.000%
HYBRID 93.90% 4.980% 1.118% 0.000%

S2LO

GREEDY 88.09% 10.373% 1.538% 0.002%
VALONLY 88.41% 10.038% 1.545% 0.005%
STOCH 90.80% 7.756% 1.441% 0.003%
HYBRID 90.81% 7.734% 1.452% 0.003%

S3LO

GREEDY 88.10% 11.058% 0.841% 0.003%
VALONLY 88.46% 10.636% 0.907% 0.002%
STOCH 90.40% 8.783% 0.816% 0.002%
HYBRID 90.38% 8.815% 0.805% 0.002%

Observation 3.5.1. In low utilization systems, simultaneous improvement in all per-

formance metrics and a decrease in the optimality gap can be accomplished through

the implementation of improved bed assignment practices.

3.5.4.2 Performance in High Utilization Instances

As demonstrated with the upper bound analysis (Table 9), all three algorithms per-

form better than the myopic approaches in the high utilization instances with respect

to the average total reward achieved, but the performance of the algorithms with re-

spect to the other metrics varies. None of the algorithms experience an improvement

in all performance metrics across all three instance sets.

The average performance of the algorithms in the high utilization instance sets

(S1HI, S2HI, S3HI) are presented in Tables 14 and 15. Again, a two-sample paired

t-test confirms the significant difference of the average performance under each algo-

rithm and each of the myopic approaches. The table is annotated to display when

the difference is not significant.

PROB performs better with respect to the average total reward and assignment
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value and worse with respect to the assignment times in comparison to STOCH and

HYBRID. While the STOCH algorithm achieves improvements in assignment times

due to the proactive off-service assignment of patients, the PROB algorithm achieves

higher total assignment value through proactive boarding, in which a patient waits

for a better bed or beds are “reserved” for future arrivals. This practice of proactive

boarding results in increased assignment times.

STOCH and HYBRID perform similarly due to the similar structures, although

HYBRID consistently outperforms STOCH with respect to total reward. HYBRID

consistently results in the lowest average diversion rates among the algorithms, having

no significant difference from the myopic approaches. For high utilization instances,

each algorithm achieves the best average performance for one of the metrics under

consideration, but none have the best performance among all metrics.

Observation 3.5.2. For the high utilization systems, simultaneous improvement in

all performance metrics is not possible with the algorithms we developed. Instead, a

bed manager must choose the bed assignment approach that achieves an appropriate

tradeoff among the different objectives.

The rates of on-service and off-service assignment for each algorithm are provided

in Table 16. PROB, STOCH, and HYBRID all perform similarly in their distribution

of patients although they perform differently in total reward and mean and median

assignment times. With the STOCH algorithm performing better than PROB in

assignment times and the PROB performing better than STOCH in assignment value,

the performance of the HYBRID algorithm is a compromise between the two for all

instance sets and metrics, since the increase in median assignment time has not been

shown to be statistically significant.

Observation 3.5.3. HYBRID balances the high total assignment value from the

PROB with the low boarding costs achieved by STOCH. Regardless of the utilization
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level, HYBRID performs well with respect to both the primary objectives of maximiz-

ing value from appropriateness of assignments and minimizing the mean assignment

time, as well as secondary objectives such as number accepted and median assignment

time.

As a result of the intrinsic tradeoffs in the metrics, the choice of algorithm depends

on the preferences by the hospital staff.

Table 14: Average performance of algorithms relative to GREEDY among 60 high
utilization instances (S1HI, S2HI, S3HI) (*: denotes no significant difference between
GREEDY and algorithm)

Total Reward Assignment Boarding Mean Assignment Median Assignment Accepted
Value Cost Time (mins) Time (mins)

S1HI

GREEDY 203,617.75 207,615.20 3,997.50 289.05 7.36 9,952.80
PROB +7.11% +6.93% -2.16% -2.10% +31.40% -0.06%
STOCH +6.46% +6.28% -2.55% -2.55% +6.21*% 0.00*%
HYBRID +6.68% +6.50% -2.35% -2.36% +10.13*% +0.01*%

S2HI

GREEDY 205,245.40 209,318.15 4,072.59 294.68 8.30 9,945.15
PROB +5.82% +5.63% -3.78% -3.76% +42.32% -0.03%
STOCH +5.23% +5.07% -2.87% -2.87% -2.11*% 0.00*%
HYBRID +5.33% +5.17% -2.79% -2.79% +10.77*% -0.01*%

S3HI

GREEDY 201,086.70 204,774.65 3,687.82 266.99 13.78 9,939.70
PROB +6.11% +5.97% -1.70% -1.66% +39.87% -0.04%
STOCH +5.40% +5.27% -2.06% -2.05% +11.91*% -0.01*%
HYBRID +5.52% +5.38% -2.52% -2.51% +18.85*% 0.00*%

Table 15: Average performance of algorithms relative to VALONLY among 60 high
utilization instances (S1HI, S2HI, S3HI) (*: denotes no significant difference between
VALONLY and algorithm)

Total Reward Assignment Boarding Mean Assignment Median Assignment Accepted
Value Cost Time (mins) Time (mins)

S1HI

VALONLY 215,508.60 219,496.10 3,987.27 288.36 9.47 9,951.25
PROB +1.20% +1.14% -1.90% -1.86% +2.08*% -0.04%
STOCH +0.58% +0.53% -2.30% -2.31% -17.49% +0.01%
HYBRID +0.79% +0.74% -2.10% -2.12% -14.44% +0.02%

S2HI

VALONLY 214,827.30 218,826.40 3,998.97 289.36 8.81 9,944.90
PROB +1.10% +1.04% -2.01% -1.98% +34.02% -0.03%
STOCH +0.54% +0.51% -1.08% -1.08% -7.81*% 0.00*%
HYBRID +0.63% +0.60% -1.00% -1.00% +4.31*% 0.00*%

S3HI

VALONLY 211,334.85 214,993.25 3,658.52 264.90 14.53 9,938.95
PROB +0.97% +0.94% -0.91% -0.88% +32.64% -0.03%
STOCH +0.29% +0.26% -1.28% -1.28% +6.12*% 0.00*%
HYBRID +0.41% +0.37% -1.74% -1.75% +12.70*% +0.01*%

3.5.5 Sensitivity to Cost Parameters

To examine the impact of the cost of boarding, bi, on algorithm performance we

focus our study on the instances most likely to represent a hospital system, with
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Table 16: Distribution of patients among on-service, off-service, upstream departures
and diversions in 60 high utilization instances (S1HI, S2HI, S3HI)

On-Service Off-Service Upstream
Assignments Assignments Departures Diversions

S1HI

GREEDY 66.31% 26.61% 6.06% 1.02%
VALONLY 72.29% 21.00% 5.67% 1.03%
PROB 73.71% 19.67% 5.53% 1.08%
STOCH 73.40% 19.97% 5.61% 1.02%
HYBRID 73.52% 19.83% 5.63% 1.02%

S2HI

GREEDY 63.32% 29.00% 6.59% 1.08%
VALONLY 68.57% 24.34% 6.01% 1.08%
PROB 69.44% 23.67% 5.78% 1.11%
STOCH 69.33% 23.64% 5.95% 1.08%
HYBRID 69.42% 23.54% 5.96% 1.08%

S3HI

GREEDY 61.81% 30.92% 6.37% 0.90%
VALONLY 67.65% 25.71% 5.74% 0.91%
PROB 68.77% 24.71% 5.58% 0.94%
STOCH 68.18% 25.25% 5.66% 0.91%
HYBRID 68.35% 25.13% 5.62% 0.90%

well matched capacity and demand in the downstream units (S1LO and S1HI). For

each instance we vary the daily boarding cost to be .5, 2, 4, and 6. The assignment

values remain the same with a daily value of 5 received from assignment to the

primary unit and daily values 3 and 1 for assignment to secondary and tertiary units,

respectively. In Figure 14 we show how the change in bi impacts the average total

reward, assignment value, and mean and median assignment times for instances in

set S1HI. Similar results occur for instance set S1LO.

For GREEDY, VALONLY, STOCH, and HYBRID the relative performance with

respect to total reward, assignment value, mean assignment time, and median assign-

ment time do not significantly change with increasing boarding costs. With PROB,

while the average median assignment time is not affected, the average assignment

values and mean assignment times decrease with increases in boarding costs. These

changes cause the total reward to decrease in a similar fashion.

PROB outperforms the other algorithms, including the myopic ones, for low board-

ing costs, but the performance relative to the other algorithms is poorer with increases
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Figure 14: Effect of changes to bi on average total reward, assignment value, mean
assignment time, and median assignment time for instance set S1HI

(a) Average Total Reward (b) Average Assignment Value

(c) Average Mean Assignment Time (d) Average Median Assignment Time

in the boarding cost. We hypothesize that because PROB places more value on nonas-

signment than the other algorithms, when boarding costs are low and postponement

of assignment is naturally favored PROB outperforms other algorithms.

The average total reward in all of the algorithms converge to a similar level as

the boarding cost increases. If boarding costs are high, the objective is to assign

patients as quickly as possible regardless of the appropriateness of the bed. Since the

algorithms we develop are structured to focus on the appropriateness of the assign-

ments, it follows that they perform better than the myopic approaches in systems

with smaller boarding costs relative to assignment values. Similarly the optimality

gaps of the algorithms in the augmented instances converge as bi increases.

Observation 3.5.4. If a hospital has a significant preference for decreased assign-

ment times over increased on-service assignments VALONLY performs similarly to
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the other algorithms. As a result, the value of new bed assignment practices is minimal

is such a setting.

3.5.6 Impact of Weighting of Patient Preferences

To evaluate the sensitivity of algorithm performance relative to the assignment values,

we reassign the daily value of assignment to a preferred unit to be 9, rather than

5. We choose 9, such that the values increase exponentially, rather than linearly.

Thus we examine how an increased preference for patients to be assigned to primary

units impacts the algorithm performance. We evaluate this performance with hourly

boarding costs of .5, 2, 4, and 6.

The impact of this change is demonstrated through comparison of Figures 14

and 15. The average mean assignment times change only slightly in response to

an increase in the preferred unit assignment value. The average mean and median

assignment times decrease when the boarding cost is .5 and increases for all higher

boarding cost levels. The assignment values and total reward for the algorithms

increase proportionally with the change to the assignment values.

Observation 3.5.5. The performance of the HYBRID algorithm with respect to other

algorithms, specifically PROB and STOCH, is robust to changes in boarding costs

and assignment value, although the relative performance with respect to the myopic

approaches decreases as boarding costs increase.

3.6 Future Work

While we have demonstrated the value of implementing analytical methods for bed

management, opportunities exist to improve the models and algorithms presented

above. Additional work is needed to identify structural properties of the MDP pre-

sented in Section 3.3, which can in turn be used to improve the current bed assignment

algorithms and to develop new bed assignment algorithms, possibly through the use
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Figure 15: Effect of boarding costs on average total reward, assignment value, mean
assignment time, and median assignment time for instance set S1HI with increased
value of preferred assignments

(a) Average Total Reward (New ai,j Values) (b) Average Assignment Value (New ai,j Values)

(c) Average Mean Assignment Time (New ai,j Val-
ues)

(d) Average Median Assignment Time (New ai,j
Values)

of approximate dynamic programming. These structural properties may also prove

useful in examining the best allocation of beds among units.

Due to the limitations of the approximations for average service times in the up-

stream and downstream units, additional data collection is needed to further improve

the computational study. Additionally, testing of the bed assignment algorithms in

a variety of hospital settings will allow for further refinement of the bed assignment

algorithms.

In addition to improvements to the current algorithms, further research is needed

to extend our models and methods. First, an extension that incorporates multiple

upstream units can be examined. Assuming that all of the upstream units are large

enough such that no patients are diverted from the hospital, the models developed
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above provide an accurate representation of the true system and result in similar

performance with respect to both primary and secondary metrics. When there are

multiple upstream units for which the capacities are constrained resulting in diverted

patients, a single upstream unit, which assumes pooled resources, will not accurately

represent the diversion rates. To address these capacity constraints, the algorithms

need to directly incorporate the state of available beds. The algorithms developed

above are not designed with the direct intention of reducing patient diversions, al-

though we have explored the impact with respect to this objective.We leave the con-

sideration of the interactions between admission control policies and bed assignment

policies for future research.

We hypothesize that one of two extensions can be developed to address the effects

of constrained capacity in multiple upstream units. First, the addition of a policy

for choosing among similar patients in different upstream units based on the state of

the system could be considered. Alternatively, we hypothesize that the algorithms

and models presented above can be adapted to include state-dependent boarding

costs, rather than constant costs. These state-dependent boarding costs would inform

preferences for patients in different units, accounting for the instantaneous utilization

of the units. We leave these extensions and the development of appropriate policies

or state-dependent boarding cost functions for future research.

Second, while the assumptions of Poisson arrivals and exponential service times

have been shown to be reasonable in hospital settings, extensions that relax these

assumptions and test the performance of the algorithms under alternate assumptions

for arrival and departure patterns would be valuable. This may include changes to

the structure of the expectations for arrivals and departures used as input to the

algorithms. For example, instead of knowing the expected length of stay for all

patients at the time of arrival, often the expectations about the patient departures

change over time. Thus, we can examine the performance of algorithms considering

83



changing expectations about departure and assignment requests. The structure of

the STOCH, PROB, and HYBRID algorithms, while developed with assumptions of

Markovian arrivals and service times, do not explicitly require these assumptions for

implementation and their performance should be examined in systems with alternate

assumptions.

Both of these extensions have potential to further the readiness for application

of dynamic bed assignment algorithms and implementation of decision support tools

in hospitals for use by bed management staff. Finally, additional work is needed to

test these algorithms with data collected from other hospital systems to examine the

robustness with respect to model parameters and hospital policies.

3.7 Conclusion

In this chapter we developed a queueing framework and MDP model for hospital

bed management addressing the real-time dynamic assignment of patients to hospital

beds. Utilizing the features of the queueing framework, we developed three algo-

rithms for aiding in bed assignment decisions using real-time information provided

by bed management information systems. Each of these algorithms incorporate the

stochastic features of the hospital processes in the process of choosing assignments.

With a simulation, we tested the performance of these algorithms against standard

practices. Additionally, we developed an algorithm to calculate an upper bound on

system performance to further evaluate the value of the algorithms.

Through comparison with myopic algorithms, we identified the opportunity and

ability to improve bed assignment practices and support bed management teams in

hospitals. We improve these practices through the use of real time information about

bed requests and utilization found in bed management information systems. With the

development of the PROB and STOCH algorithms, we demonstrated the application

of new algorithms that utilize the probabilistic and stochastic system characteristics
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to aid in state-dependent routing. With the HYBRID algorithm we developed a

policy that harnessed the strengths of two algorithms and stochastic optimization

techniques. While PROB performed well with respect to the appropriateness of the

bed assignment at the expense of timeliness and STOCH performed well with respect

to timeliness, the HYBRID algorithm achieved a balanced improvement with respect

to both appropriateness and timeliness and closed the optimality gap.

With the HYBRID algorithm we provide an example of how two fields within

stochastic optimization, including stochastic optimization models with recourse and

MDP derived transition probabilities, can be combined to aid in control of a complex

queueing system. This is the first work to our knowledge to address the development

of state-dependent routing policies in a queueing network with multiple customer

classes, cross-trained servers, and in which service rates are dependent on customer

class rather than the server pool. Additionally, our focus on the appropriateness of

assignments and the assumption that the time in system is not influenced by the rout-

ing policies further distinguishes our problem of study. While future work is needed

to extend these models for implementation, we make contributions by defining and

modeling the dynamic assignment problem in the hospital bed management setting

and developing analytical methods to address the operational component of these

processes. We showed the value of continued research in this problem setting.
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CHAPTER IV

PATIENT REDIRECTION IN HOSPITAL SYSTEMS

WITH PREFERENCE CONSTRAINTS

4.1 Introduction

As discussed in Chapter 3, many hospitals are often plagued with overcrowding and

bed shortages in both the emergency department (ED), as well as the inpatient units

[13, 21, 33, 67]. To manage and alleviate overcrowding, hospital managers may im-

plement policies that address both the rate of external arrivals as well as internal bed

assignment operations. In the previous chapter, we developed models and methods

to address the internal hospital policies of assigning and allocating beds to admitted

patients. In this chapter we address the problem of managing patient arrivals to

internal hospital units (non-ED), through redirection of patients to other hospitals.

We focus our attention on the development of policies for redirection of patients

to other hospitals, e.g., in the same system, in the face of overcrowding or excess

demand at one location. The ability to control flow of non-emergent patients into

the hospital system is most applicable when the hospital is a member of a system

of hospitals. In this case, patients seeking to be admitted to a hospital unit that is

overloaded may be safely redirected to another hospital in the same system. In a

hospital that functions independently, and does not have access to excess capacity,

this form of admission control may not be feasible.

We address the definition of redirection policies for one hospital unit, in which

all beds are equivalent, and from which multiple patient types request care. Upon

request, based on the unit census, or the number of occupied beds, and the type of

patient making the request, a decision is made to admit the patient to the hospital

86



unit or redirect to a similar unit in another hospital. Given the structure of the

policies currently used in hospitals, we assume that the hospital utilizes a threshold

policy, in which each patient type has a corresponding threshold such that once the

total number of occupied beds in the unit reaches the threshold, patients of that type

are redirected. This structure ensures equity in the treatment of similar patients who

arrive to the system in a similar setting. We assume there is no queue for patients

to enter the unit. Therefore, if the unit is at capacity, all patients are redirected, or

diverted, regardless of patient type.

While we assume that units in different hospitals are similar (e.g., a focus on

cardiology or neurology), we address the fact that some hospitals may have specialized

equipment or facilities that are necessary for treating a subset of the total patient

population. Therefore, for some patients only specific hospitals may be appropriate.

As such, we do not treat the redirection of all patient types as equivalent and we

assume that each patient type has a corresponding penalty representing the costs of

redirection to another hospital.

Our focus on developing patient type-specific threshold redirection policies is

driven by discussions with administrators in a hospital system which seeks to balance

patient flow within the hospitals and to ensure that patients receiving specialized care

are not turned away due to lack of capacity. In alignment with the mission and goals

of the hospital, we assume the relative preferences for redirection and the order with

which patients are eligible for redirection is fixed, and we therefore seek to identify

the appropriate redirection thresholds given these constraints. In other words, the

hospital policies state that patients of a particular type can not be redirected unless

patients of a lower priority are also being redirected, thereby defining preferences for

redirection of patients. We model these redirection preferences with corresponding

penalties and redirection costs.

While ensuring that patients receive appropriate care is the first priority, there is
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an objective to minimize the number of patients requiring specialized services that

are redirected. Additionally, the administrators seek to efficiently utilize hospital

resources. Due to the multiple interests of the hospital, we examine three objectives:

(i) to ensure that beds are available for patients requiring care at a specific facility

through minimizing the total redirection costs incurred for all patient types, (ii) to

maximize the use of hospital beds, and (iii) to minimize the likelihood of a unit

being fully occupied, in which case complete diversion of all patients is necessary. To

identify threshold policies that simultaneously address these three objectives while

satisfying the preference constraints, we model the system as a Markov chain defined

by the redirection threshold policy.

In the remainder of this chapter we first present a review of relevant literature in

Section 4.2. Next we describe our model of the system with patient redirection policies

and preference constraints in Section 4.3. We discuss the impact of incremental

changes to the threshold policies and identify necessary conditions for optimal patient

redirection thresholds in Section 4.4. Finally, in Section 4.5 with numeric examples

we illustrate the nature of tradeoffs in the three objectives and examine the influence

of preferences on system performance, as defined by the objectives. In Section 4.6 we

summarize the results from the analysis and discuss areas for future research.

4.2 Literature Review

The problem we address and the model we develop share similarities with previous

work related to ambulance diversion (Section 4.2.1) and admission control policies in

hospitals and other systems (Section 4.2.2). While models for ambulance diversion

policies often differ in some of their objectives, the concept of identifying threshold

policies in hospitals is directly relevant. Our focus on the appropriateness of the

hospital unit by patient type and the costs associated with redirection is similar to

models developed for the optimal control of queueing or loss systems.
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4.2.1 Ambulance Diversion Models

The purpose of ambulance diversion policies is to address the overcrowding of emer-

gency departments (EDs) by allowing for ambulances arriving to overcrowded EDs

to be diverted to other local hospitals. Ideally the use of ambulance diversion poli-

cies can result in more balanced demand at EDs in a region and reduced patient

wait times. Traditionally, ambulance diversion policies define a threshold such that

when the occupancy of the ED exceeds this threshold, all incoming ambulances are

diverted to other hospitals in the region, while other types of patients, such as walk-in

patients, continue to be accepted until occupancy decreases to a specific level. With

regard to ambulance diversion, most hospitals are classified as either “on diversion”

or “off diversion”, distinguishing those times when all ambulances are diverted or no

ambulances are diverted. As a result, ambulance diversion policies identify criteria,

or thresholds, for beginning diversion as well as ending diversion.

The impact of ambulance diversion policies has been well studied through case

studies of hospital systems [3, 61, 64]. Multiple researchers have developed models to

inform decision making for and to examine the impact of ambulance diversion policies.

Using a simulation approach, Ramirez-Nafarrate, Fowler, and Wu (2010) demonstrate

the impact of the choice of ambulance diversion policies for one hospital, including

threshold triggers, on the performance metrics of time on diversion and average wait

time for patients to enter the ED [71]. Expanding on this work, they use a simulation-

optimization approach to examine a system of hospitals in which centralized decisions

are made regarding diversion policies and destination policies for diverted ambulances,

with the objective of minimizing non-value added time for patients such as the time

in transport or waiting for admission [70].

Hagtvedt (2008) examines a similar problem of selective diversion of patients

through a partial diversion strategy. In this problem a threshold is identified to

determine when a portion of patients are diverted and assumes that the system goes
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on “full diversion” once there is no additional capacity. A threshold is also identi-

fied for when to end full diversion [31]. With numeric experiments, he demonstrates

how policies of partial ambulance diversion using threshold policies can minimize the

time on full diversion and revenue loss while simultaneously benefiting hospitals, gov-

ernment, and the public. While we utilize a similar threshold model, assuming a

birth-death process and no queue forming, we focus on a multiple threshold approach

with patient specific costs dependent on the length of time being redirected. With our

assumption of a system of hospitals, we do not consider payer type in the definition

of redirection policies.

Expanding on the study of diversion policies in one hospital, Hagtvedt et al. (2009)

utilize an agent-based model to examine partial ambulance diversion as a sequential

game, with the purpose of identifying cooperative strategies. They note that the

existence of hospital systems in which the interests of players are naturally aligned

eases the ability to receive benefit from the implementation of diversion policies [32].

This reinforces our examination of redirection policies in a network of hospitals, where

the incentives to improve patient care and overall system performance are aligned.

Deo and Gurvich (2011) examine the nature of ambulance diversion in a compet-

itive environment through the use of a stylized model of ambulance diversion within

a network of hospitals. They utilize a game-theoretic queueing framework to exam-

ine both centralized and decentralized settings with the goal of minimizing expected

waiting time of patients [19]. Deo and Gurvich (2011) assume decision makers uti-

lize threshold policies based on local hospital census information and that an infinite

queue can form at EDs without the use of diversion policies [19].. With our focus on

internal hospital units, we do not address queues forming for admittance.

Similar to the ambulance diversion models, we seek to utilize threshold policies to

minimize the total time patients are diverted, or redirected, although we consider a

more complex setting with multiple patient types with different costs of redirection.
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Due to our focus on inpatient redirection, the objective of our model is both to reduce

overcrowding and average cost of redirection, rather than reducing wait times which

is more appropriate in an emergency setting.

4.2.2 Admission Control Models

In addition to models developed specifically for ambulance diversion, many researchers

have examined problems of admission control, in which upon arrival of a customer a

decision is made to admit or reject the customer based on the customer’s characteris-

tics and the state of the system. The patient redirection problem, with the focus on

decision making based on patient type, is similar to admission control problems, par-

ticularly those in loss systems. A loss system is one in which customers are rejected

from the system if there is no available capacity and does not allow a queue to form

for service.

A summary of past models of admission control assuming multiple customer types

within loss-systems is presented below. Many of these admission control problems oc-

cur in hospital settings, but do not specifically deal with ambulance diversion (Section

4.2.2.1). Other admission control models are developed for generic settings with mul-

tiple customer types (Section 4.2.2.2). The objectives of admission control vary with

the setting.

4.2.2.1 Admission Control in Hospitals

Admission control in hospitals generally focuses on whether to accept a patient into

a hospital based on the type of patient. These models assume patients arrive to the

hospital and request service and a decision regarding admission is made in response

[4, 29]. For example, Esogbue and Singh (1976) develop an admission control model

with two patient classes and the goal of identifying a threshold after which only

priority patients receive care. They seek to balance the penalties for turning away

patients as well as the holding costs per unit time [20]. Similar to our model, they
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assume that the cost of not fulfilling a patient request is dependent on the patient

type. Additionally, they utilize a set of birth-death equations to represent the system

and assume that the relative preference or priorities for rejecting patients is known.

Dissimilarly, we examine a system with multiple patient types and a different set of

objectives.

Helm et al. (2011) examine a system with three patient types using a Markov

decision process model[36]. They develop a double threshold policy such that two of

the patient types are denied hospital admission dependent on the system occupancy.

The preferred patient type is always admitted as long as capacity is available. With

the objective to balance costs of congestion and under utilization, they assume costs

are independent of patient type [36]. In our model we also consider multiple threshold

policies, with no limit on the number of thresholds. While our objectives of minimizing

full diversion and maximizing efficiency are similar, we examine the tradeoffs in these

objectives rather than assigning a cost for each objective. Additionally, we consider

the relative importance of the different patient types, and do not consider the costs

of diversions to be equivalent for all patient types.

4.2.2.2 Admission Control in Loss Systems

Örmeci, Burnetas, and van der Wal (2001) develop a stochastic model of admission

control policies for a loss system with two customer classes, to address a wide variety

of service and manufacturing systems [59]. They show the optimality of a threshold

policy dependent on the number of customers in service. Rather than a penalty for

rejecting a customer, they assume a reward is received upon completion of service.

They maximize the total long-run average revenue over an infinite horizon. They

show that the definition of a “preferred” customer class in the optimal solution is

only guaranteed when specific system characteristics are met [59].

While Örmeci et al. (2001) allow for different service rates for different patient
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types, the setting with equal service rates for all customers is studied by Miller (1969).

Miller does not assume preferences among customer types and only examines the

system with respect to the objective of maximizing revenue [56].

We seek to identify threshold policies for a system with more than two patient

types and in which there is a preference for patients. With our assumption of dif-

ferent costs for each patient type, the objectives are aligned with admission control

applications. Dealing with a hospital setting, and similar to the ambulance diversion

problems, cost is a function of the length of time for which patients of a particu-

lar type are diverted, which is different than what is traditionally seen in admission

control models. We build on existing literature by examining tradeoffs in multiple

performance metrics in a loss system with more than two customer classes, with con-

straints on preferences for redirection and for which costs are dependent on patient

type.

4.3 Model

We examine the development of admission control policies for a hospital unit with

N beds and I patient types. Patients of type i arrive to the unit according to a

Poisson process with rate λi. All patients, regardless of type, have an exponentially

distributed service time with rate µ. Any patients arriving to the system when all

beds are occupied are diverted from the system. Let S = {0 . . . N} represent the set

of all feasible states the unit may be in, as defined by the number of beds occupied,

or the unit census. The long-run probability of being in each state is a function of

the admission control policy, or patient redirection policy, in use.

We assume that preferences for patient redirection are fixed, such that a patient

of type i can only be redirected if patients of type i− 1 are also redirected, defining

the preference for patient type i over patient type i− 1. These preference constraints

are aligned with the penalties or costs associated with redirection. A penalty or cost
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ki is incurred for each unit of time that patients of type i are redirected due to the

admission control policy or lack of capacity. This measure of cost is in alignment with

that seen in the ambulance diversion literature, in which the objective is to minimize

the total time on diversion [31].

We consider admission control policies with a threshold structure, such that if the

total number of occupied beds is greater or equal to a specific threshold, patients are

redirected to another hospital. A redirection policy, or admission control policy, can

therefore be defined with the vector ~Θ = (Θ1,Θ2, . . . ,ΘI). When the unit has Θi or

more beds occupied, all patients of type i and patients with “lower preferences” are

redirected upon arrival.

We seek to minimize the weighted sum of the penalties for redirection for the

multiple patient types. In alignment with the preferences and the assumption that

at least one patient is always accepted as long as a bed is available, we assume

k1 ≤ k2 ≤ · · · ≤ kI and Θ1 ≤ Θ2 ≤ Θ3 ≤ · · · ≤ ΘI = N .

Under a specific control policy the system can be modeled as a Markov chain. A

depiction of the Markov chain, including states, transitions, and threshold policies is

provided in Figure 16.

4.3.1 Limiting Probability Distributions

Under any feasible admission control policy, with the assumption that patients of type

I are accepted as long as beds are available, there is a positive probability of visiting

all states regardless of the initial state and therefore the Markov chain is recurrent

Figure 16: Description of Markov chain for patient redirection in a unit with N beds,
4 patient types (I = 4), and the admission control policy ~Θ

0 1 Θ1
b b bb b Θ2

b b bb b Θ3
b b bb b Nb b bb b

∑4
i=1 λi

∑4
i=1 λi

∑4
i=1 λi

∑4
i=2 λi

∑4
i=2 λi

∑4
i=3 λi

∑4
i=3 λi λ4 λ4

Nµ(Θ3 + 1)µΘ3µ(Θ2 + 1)µ(Θ1 + 1)µ Θ2µΘ1µ2µµ
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and irreducible, and as a result there is a unique limiting probability distribution

[72, 73]. Let Pn(~Θ) be the limiting probability of being in state n (n ∈ S) in the

long run, or having n beds occupied when the admission control policy is ~Θ. We can

characterize these limiting probabilities utilizing birth-death balance equations.

In a standard fashion, we define each Pn(~Θ) by its relationship to P0(~Θ) and

normalize the values by defining P0(~Θ) such that
∑N

i=0 Pn(~Θ) = 1 [73]. For ease of

notation in the definition of the limiting probabilities, we define ρj which is the ratio

of the total arrival rate of all patients to the service rate of one patient in a state with

Θj or more beds occupied (Equation 35).

ρj =

I
∑

i=j

λi

µ
∀j ∈ {1 . . . I} (35)

Lemma 4.3.1. Equations for evaluating the limiting probabilities for the N+1 states

are provided in Equations 36 and 37.

Pn(~Θ) =































































P0(~Θ) ρ1n

n!
∀n ∈ S : 0 < n ≤ Θ1

P0(~Θ) ρ1Θ1 ρ2
n−Θ1

n!
∀n ∈ S : Θ1 < n ≤ Θ2

P0(~Θ) ρ1Θ1 ρ2
Θ2−Θ1 ρ3

n−Θ2

n!
∀n ∈ S : Θ2 < n ≤ Θ3

. . . . . .

P0(~Θ) ρ1Θ1 ρ2
Θ2−Θ1 ρ3

Θ3−Θ2 ...ρ
n−ΘI−1
I−1

n!
∀n ∈ S : ΘI−1 < n ≤ N

(36)

P0(~Θ) =
1

1 +
Θ1
∑

n=1

ρn1
n!

+
Θ2
∑

n=Θ1+1

ρ
Θ1
1 ρ

n−Θ1
2

n!
+ · · ·+

N
∑

n=ΘI−1+1

ρ
Θ1
1 ρ

Θ2−Θ1
2 ... ρ

n−ΘI−1
I−1

n!

(37)

Proof. The derivation of the equations for the limiting probabilities follow from the

definition of the limiting probabilities in a birth-death process provided by Ross (1996)
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in Equation (5.5.4) [72]. According to this equation, if the birth rate for some state n

is bn and the death rate is dn, then the limiting probability of state n (Pn) is defined

by the equation [72]

Pn =
b0b1 . . . bn−1

d1d2 . . . dn

(

1 +
∞
∑

n=1

b0b1...bn−1

d1d2...dn

)

We define the birth and death rates for each of the N+1 states in our system. For

all states n such that Θj−1 < n ≤ Θj, the corresponding birth rate (bn) is
I
∑

i=j

λi. For

each state n, the death rate (dn) is nµ. Utilizing these definitions of the birth and

death rates and Equation (5.5.4) from Ross (1996) [72], Equations 36 and 37 follow

intuitively with the assumption that
∑N

i=0 Pn(~Θ) = 1.

4.3.2 Performance Metrics

Utilizing the limiting probabilities of the Markov chain induced by the control policy,

we define three performance metrics: average cost (per unit time), average utilization,

and diversion rate.

Definition Average cost (per unit time), K(~Θ), is the weighted sum of the penalties

incurred from redirection of patients as a result of the patient redirection policy ~Θ

(see Equation 38). The definition of this metric accounts for the fact that the cost kj

is incurred for each unit of time spent in states n in which n ≥ Θj.

The mathematical definition of K(~Θ) is provided in Equation 38, representing

that the cost kj is incurred for each unit of time that the system is in state n ≥ Θj.

The average percentage of time spent in these states,
N
∑

n=Θj

Pn(~Θ), is a function of the

limiting probability distribution. An alternate, and equivalent, definition provided in

Equation 39 represents the costs incurred in each state n. In state n < N , the penalty

incurred per unit of time is
m
∑

j=1

kj such that Θm ≤ n ≤ Θm+1 − 1. Since ΘI = N and
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all patients are redirected when all beds are occupied, the penalty per unit time in

state n = N is
I
∑

j=1

kj.

K(~Θ) =
I
∑

j=1

kj

N
∑

n=Θj

Pn(~Θ) (38)

=
I−1
∑

m=1

(

m
∑

j=1

kj

)(

Θm+1−1
∑

n=Θm

Pn(~Θ)

)

+
I
∑

j=1

kjPN(~Θ) (39)

In addition to the objective of minimizing the average cost, hospitals seek to

minimize the percentage of the time for which all beds are in use and there is no

room for incoming patients. While we examine the redirection of patients due to the

threshold levels in our definition of average cost, here we reserve the phrase diversion

to correspond to the condition under which all beds are full and all patients must be

redirected, regardless of the patient type.

Definition Diversion rate pertains to the percentage of time that a hospital unit is

completely full and must go “on diversion,” redirecting all patients regardless of type.

Given a redirection policy ~Θ the diversion rate is PN(~Θ).

The final objective we consider is to maximize the average utilization in alignment

with the hospital’s goal of using resources efficiently.

for a hospital to efficiently utilize resources, specifically beds.

Definition Average utilization pertains to the percentage of beds that are utilized

on average with the use of a particular redirection policy. Given a redirection policy

~Θ, the average utilization is U(~Θ) =
∑N

n=0 nPn(~Θ)

N

4.4 Structural Properties

In this section, we define structural properties for the problem of identifying optimal

thresholds for a redirection policy. In Section 4.4.1, we define the impact of an
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incremental decrease in one threshold value on the three objectives discussed above.

Consequently, we characterize the properties necessary for a redirection policy such

that a decrease in any of the threshold values causes an increase in the average cost.

Similarly, in Section 4.4.2 we define the impact of an incremental increase in

one threshold value on the objectives defined above. Consequently, we identify the

necessary properties such that an incremental increase in any of the threshold values

causes an increase in the average cost.

Utilizing these properties, we then define necessary conditions for an optimal

redirection policy that minimizes the average cost in Section 4.4.3. These necessary

conditions can also be used to define a locally optimal redirection policy.

4.4.1 Impact of Incremental Decreases to Threshold Values

We seek to show how an incremental decrease in a threshold value impacts the per-

formance metrics average cost, average utilization, and diversion rate. We examine

the impact by comparing two policies which are equivalent except that the threshold

for patient type i in policy ~Θ is Θi and Θ0
i = Θi − 1 in policy ~Θ0 (see Equations 40

and 41).

~Θ = (Θ1, . . . ,Θi−1,Θi,Θi+1, . . . ,ΘI) (40)

~Θ0 = (Θ1, . . . ,Θi−1,Θi − 1,Θi+1, . . . ,ΘI) (41)

It follows from the preference definitions that ~Θ0, as defined in Equation 41, is

a valid, and feasible, redirection policy, satisfying the preference constraints, if and

only if Θi−1 < Θi.

We first examine the impact of an incremental decrease in the threshold for some

patient i on the limiting probability distribution. Let γi be the ratio between the

arrival rates associated with thresholds for patients i + 1 and i (Equation 42). We

define A(i, ~Θ) as the total limiting probability of being in a state with at most Θi− 1

patients in the unit with admission control policy ~Θ (Equation 43). B(i, ~Θ) is the
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sum of the costs from being in states with at most Θi−1 patients with the admission

control policy ~Θ (Equation 44).

γi =
ρi+1

ρi
(42)

A(i, ~Θ) =

Θi−1
∑

k=0

Pk(~Θ) (43)

B(i, ~Θ) =
i−1
∑

m=1

(
m
∑

j=1

kj)(

Θm+1−1
∑

n=Θm

Pn(~Θ)) (44)

Lemma 4.4.1. Assuming a feasible patient redirection policy ~Θ (Equation 40) such

that Θi−1 < Θi, then the limiting probability distribution for a similar policy in which

the threshold for patient i is decremented by one, ~Θ0 (Equation 41) is

Pn(~Θ
0) =















Pn(~Θ)

A(i,~Θ)+γi(1−A(i,~Θ))
if n ≤ Θi − 1

γi Pn(~Θ)

A(i,~Θ)+γi(1−A(i,~Θ))
if n ≥ Θi

∀n ∈ {0 . . . N} (45)

Proof of Lemma 4.4.1 is provided in Appendix D. It follows from Lemma 4.4.1,

that when the threshold for some patient i decreases the diversion rate under the

new policy is PN(~Θ
0) = γiPN (~Θ)

A(i,~Θ)+γi(1−A(i,~Θ))
. Since γi < 1 for all i, the decrease in

one threshold value always results in a decrease in the diversion rate regardless of

which threshold is changed. Accordingly, a decrease in the threshold for patient type

i also causes a decrease in the overall utilization. Utilizing the characteristics for the

changes in the limiting probabilities, the change to the average cost as a function of

~Θ can also be calculated (Lemma 4.4.2).

Lemma 4.4.2. Assuming a feasible patient redirection policy ~Θ (Equation 40) such

that Θi−1 < Θi, then the average cost for a similar policy in which the threshold for

patient i is decremented by one, ~Θ0 (Equation 41) is

K( ~Θ0) =
B(i, ~Θ) + γi(K(~Θ)−B(i, ~Θ)) + ki PΘi−1(~Θ)

A(i, ~Θ) + γi(1− A(i, ~Θ))
(46)
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Proof. To prove this equivalence, we first define K( ~Θ0). Note that when the value of

the threshold for patients of type i is decreased by one, the cost associated with the

limiting probability of state Θ0
i = Θi − 1, the new threshold for patients of type i,

increases by ki in alignment with the definition of the average cost function. Using

the results of Lemma 4.4.1, the derivation of the average cost for the new policy is

shown below.

K(~Θ0) =
I−1
∑

m=1

(
m
∑

j=1

kj)





Θ0
m+1−1
∑

n=Θ0
m

Pn( ~Θ0)



+
I
∑

j=1

kjPN( ~Θ0) (47)

=
i−1
∑

m=1

(
m
∑

j=1

kj)





Θ0
m+1−1
∑

n=Θ0
m

Pn( ~Θ0)



+
I−1
∑

m=i

(
m
∑

j=1

kj)





Θ0
m+1−1
∑

n=Θ0
m

Pn( ~Θ0)



 (48)

+
I
∑

j=1

kjPN(~Θ
0)

=
i−1
∑

m=1

(
m
∑

j=1

kj)

(

Θm+1−1
∑

n=Θm

Pn(~Θ)

A(i, ~Θ) + γi(1− A(i, ~Θ))

)

(49)

+ ki
PΘi−1

A(i, ~Θ) + γi(1− A(i, ~Θ))

+
I−1
∑

m=i

(
m
∑

j=1

kj)

(

Θm+1−1
∑

n=Θm

γiPn(~Θ)

A(i, ~Θ) + γi(1− A(i, ~Θ))

)

+
N
∑

j=1

kjγiPN(~Θ)

A(i, ~Θ) + γi(1− A(i, ~Θ))

=
B(i, ~Θ) + γi(K(~Θ)− B(i, ~Θ)) + ki PΘi−1(~Θ)

A(i, ~Θ) + γi(1− A(i, ~Θ))
(50)

We use the findings from Lemma 4.4.2 to define sufficient conditions for an optimal

policy that minimizes cost in Section 4.4.3.
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4.4.2 Impact of Incremental Increases to Threshold Values

Similar to above, we define the impact of an incremental change to one threshold

value on system performance. We seek to show how an incremental increase in a

threshold value impacts the performance metrics average cost, average utilization,

and diversion rate. We illustrate the impact by comparing two policies which are

equivalent except that the threshold for patients i in policy ~Θ is Θi and in policy ~Θ
′

is Θ
′

i = Θi + 1. Thus, the threshold for patients i in policy ~Θ
′
is one more than the

threshold for patients of type i in policy ~Θ. Definitions of these policies are provided

in Equations 51 and 52.

~Θ = (Θ1, . . . ,Θi−1,Θi,Θi+1, . . . ,ΘI) (51)

~Θ
′

= (Θ1, . . . ,Θi−1,Θi + 1,Θi+1, . . . ,ΘI) (52)

Corresponding to preference constraints, ~Θ
′
is a valid redirection policy if and

only if Θi < Θi+1.

In Lemmas 4.4.3 and 4.4.4, we define the impact of this incremental increase

to the threshold for patients of type i on the limiting probability distributions and

the average cost. We utilize the notation for γi, A(i, ~Θ), and B(i, ~Θ) defined in the

previous section.

Lemma 4.4.3. Assuming a feasible patient redirection policy ~Θ (Equation 51) such

that Θi < Θi+1, then the limiting probability distribution for a similar policy in which

the threshold for patient i is increased by one, ~Θ
′
(Equation 52) is

Pn(~Θ
′

) =















Pn(~Θ)

A(i,~Θ)+PΘi
(~Θ)+ 1

γi
(1−A(i,~Θ)−PΘi

(~Θ))
if n ≤ Θi

1
γi

Pn(~Θ)

A(i,~Θ)+PΘi
(~Θ)+ 1

γi
(1−A(i,~Θ)−PΘi

(~Θ))
if n > Θi

∀n ∈ 0 . . . N (53)

Proof of Lemma 4.4.3 is provided in Appendix D. In contrast to the results when

a threshold value is decreased by one, when a threshold value is increased by one the
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average utilization and the diversion rate both increase. An increase in a threshold

value may cause either an increase or a decrease in the average cost. Utilizing the

characteristics for changes in limiting probabilities due to an incremental increase in

the threshold for patients of type i, we define the average cost with the new control

policy, ~Θ
′
in Lemma 4.4.4.

Lemma 4.4.4. Assuming a feasible patient redirection policy ~Θ (Equation 51) such

that Θi < Θi+1, then the average cost for a similar policy in which the threshold for

patient i is increased by one, ~Θ
′
(Equation 52) is

K( ~Θ′) =

B(i, ~Θ) + PΘi
(~Θ)

i
∑

j=1

kj +
1
γi
(K(~Θ)− B(i, ~Θ)− PΘi

(~Θ)
i
∑

j=1

kj)− ki PΘi
(~Θ)

A(i, ~Θ) + PΘi
(~Θ) + 1

γi
(1− A(i, ~Θ)− PΘi

(~Θ))

(54)

Proof. To prove this equivalence, we first define K( ~Θ′). Note that when the value of

the threshold for patients of type i is increased by one, the cost associated with the

limiting probability of state Θi decreases by ki in alignment with the definition of the

average cost function. Using the results of Lemma 4.4.3, the average cost for the new

policy is derived below.
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K(~Θ
′

) =
I−1
∑

m=1

(
m
∑

j=1

kj)







Θ
′

m+1−1
∑

n=Θ
′
m

Pn( ~Θ
′)






+

I
∑

j=1

kjPN( ~Θ
′) (55)

=
i−1
∑

m=1

(
m
∑

j=1

kj)







Θ
′

m+1−1
∑

n=Θ
′
m

Pn( ~Θ
′)






+

I−1
∑

m=i

(
m
∑

j=1

kj)







Θ
′

m+1−1
∑

n=Θ
′
m

Pn( ~Θ
′)






(56)

+
I
∑

j=1

kjPN(~Θ
′

)

=

B(i, ~Θ) + PΘi
(~Θ)

i
∑

j=1

kj +
1
γi
(K(~Θ)− B(i, ~Θ)− PΘi

(~Θ)
i
∑

j=1

kj)− ki PΘi
(~Θ)

A(i, ~Θ) + PΘi
(~Θ) + 1

γi
(1− A(i, ~Θ)− PΘi

(~Θ))

(57)

Utilizing the properties from Lemma 4.4.4, we infer the necessary characteristics

of a threshold policy such that an incremental increase in the value in one threshold

(i) causes an increase in the average total cost.

4.4.3 Necessary Conditions for a Local Minimum

Since any incremental increase in utilization results in an increase in the diversion

rate there are no strictly dominating policies with respect to all three objectives. As

a result, we focus on identifying policies in which the average cost is minimized.

A policy ~Θ is a local minimum with respect to the average cost, if all feasible

incremental changes to any of the threshold values do not further decrease the average

cost. Theorem 4.4.5 defines the necessary conditions for a policy ~Θ to be a local or

global minimum with respect to average cost.

Theorem 4.4.5. For any optimal control policy ~Θ that minimizes the average cost,
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the criteria in Equations 58 and 59 hold.

K(~Θ) ≤

B(i, ~Θ) + PΘi
(~Θ)

i
∑

j=1

kj +
1
γi
(K(~Θ)−B(i, ~Θ)− PΘi

(~Θ)
i
∑

j=1

kj)− ki PΘi
(~Θ)

A(i, ~Θ) + PΘi
(~Θ) + 1

γi
(1− A(i, ~Θ)− PΘi

(~Θ))

∀i ∈ {1 . . . I − 1} : Θi < Θi+1 (58)

K(~Θ) ≤
B(i, ~Θ) + γi(K(~Θ)−B(i, ~Θ)) + ki PΘi−1(~Θ)

A(i, ~Θ) + γi(1− A(i, ~Θ))

∀i ∈ {1 . . . I − 1} : Θi−1 < Θi,Θ0 = 0 (59)

Proof. Assume to the contrary that Equation 58 does not hold for some i, then there

exists a policy such that increasing the threshold for patients of type i results in a

lower average cost (Lemma 4.4.4), thus implying that policy ~Θ is not an optimal

solution.

Assume to the contrary that Equation 59 does not hold for some i, then there

exists a policy such that decreasing the threshold for patients of type i results in

a lower average cost (Lemma 4.4.2), thus implying that policy ~Θ is not an optimal

solution.

We conjecture that if the criteria in Equation 58 and 59 hold for some ~Θ, this

implies that ~Θ is the global optimal solution for minimizing the average cost in this

patient redirection problem with preference constraints.

4.5 Analysis

In addition to the identification of structural properties for the patient redirection

problem with preference constraints, we utilize a numeric example to illustrate that

the criteria listed in Theorem 4.4.5 hold for the optimal policy in our example. The

optimal policy is identified through calculation of the limiting probability distribution,

average cost, diversion rate, and average utilization for each of the 286 feasible policies,

using the equations defined above (Equations 36, 37, 38) . We present an example
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such that the optimal policy allows for incremental increases and decreases to all

thresholds, to further demonstrate the accuracy of our claim. As a result, the example

we present has a high ratio of arrivals to departures, representing a severely overloaded

system. The definition of the instance for this example is provided in Section 4.5.1.

We show that the necessary conditions for optimality are met by the optimal control

policy for this example in Section 4.5.2.

With this example, we utilize the results from the enumeration of all feasible

policies to explore the following research questions:

• How do the preference constraints for patient types impact the system perfor-

mance with respect to the three objectives? (Section 4.5.3)

• What is the nature of the tradeoffs between average cost, average utilization,

and rate of diversion with respect to patient redirection policies? (Section 4.5.4)

4.5.1 Instance Definition

We utilize a small example, in which the performance metrics for all feasible policies

can be enumerated to instruct this study. This example assumes a unit with 10 beds

and four patient types. The service rate (µ) for all patients, regardless of type, is

0.15. Parameters for the arrival rates and costs associated with each of the patient

types are provided in Table 17.

Table 17: Patient specific parameters for numeric analysis
Patient Type (i) Arrival Rate (λi) Cost (ki)

1 0.6 1
2 0.5 1
3 0.75 3
4 0.5 5

The optimal policy with respect to average cost for the instance defined above,

as identified by enumeration of all 286 feasible policies, is ~Θ = (5, 6, 9, 10). The

discrepancies in the threshold levels for the different patient types is partially driven
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by the high ratio between arrivals and departures and the small size of the hospital

unit. For the optimal policy, the average cost is minimized at 2.9773, with an average

utilization of 0.7343, and a diversion rate of 0.0673.

4.5.2 Necessary Conditions for Optimality

With this example, we demonstrate that the necessary optimality conditions listed in

Theorem 4.4.5 hold for the policy ~Θ = (5, 6, 9, 10). We achieve this by showing that

the right hand side (RHS) of Equations 58 and 59 are greater or equal to K(~Θ). The

results from this comparison are provided in Table 18.

Table 18: Verifying necessary optimality conditions for policy ~Θ = (5, 6, 9, 10)

K(~Θ) i Θi γi ki A(i, ~Θ) B(i, ~Θ) PΘi−1
(~Θ) PΘi

(~Θ) PΘi
(~Θ)

i∑

j=1
kj RHS Eq. 58 RHS Eq. 59

2.97734 1 5 0.745 1 0.03780 0 0.02884 0.09037 0.09037 2.98465 2.97747
2.97734 2 6 0.714 1 0.12817 0.09037 0.09037 0.17572 0.35144 2.98475 2.98687
2.97734 3 9 0.4 3 0.73108 1.29599 0.21790 0.20176 1.0088 3.07105 3.12696

The necessary optimal conditions needed for a policy that minimizes cost was

tested on a variety of other instances, in which enumeration of all policies allowed

for the identification of the optimal solution. For all these experiments, the globally

optimal policy was the only policy for which the necessary optimality conditions

held, implying that there were no policies that were local minimums and not globally

optimal.

4.5.3 Impact of Preferences

One of the key assumptions of our model is that preferences for the redirection of

patients are fixed and consistent with the redirection costs ki, regardless of the arrival

rates for each patient type. Utilizing the same example as above, we examine the

impact of the preference constraints by developing three additional instances with

rearranged preferences.

When rearranging the preferences for patient types, we assume that costs associ-

ated with each threshold in the original setting remain fixed, and as a result through
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the changes to the preferences, the costs associated with each patient type change.

The arrival rates for the patient types remain the same. In Table 19, we present

the performance metrics for the policies when average cost is minimized in the four

instances representing variations of patient preferences.

Table 19: Impact of changes to patient type preferences in four-threshold policies on
average cost, utilization, and diversion rate

Instance Patient Type Assignments to Thresholds Average Utilization Diversion Optimal
Θ1 Θ2 Θ3 Θ4 Cost Rate Policy

(k1 = 1) (k2 = 1) (k3 = 3) (k4 = 5)
1 1 2 3 4

2.9773 0.7343 0.0673 (5, 6, 9, 10)λ = .6 λ = .5 λ = .75 λ = .5
2 3 1 2 4

2.4630 0.6975 0.0846 (4, 6, 10, 10)λ = .75 λ = .6 λ = .5 λ = .5
3 4 2 3 1

3.2510 0.7600 0.0918 (6, 6, 9, 10)λ = .5 λ = .5 λ = .6 λ = .75
4 4 2 1 3

3.3273 0.7673 0.1753 (5, 5, 10, 10)λ = .5 λ = .5 λ = .75 λ = .6

For this example, a system in which the lowest cost patients arrive with the

greatest frequency (Instance 2) results in the lowest cost solution, accompanied by

the lowest utilization. When, instead, the patients with the highest cost have the

highest arrival rates (Instance 3), a balance of the three objectives is achieved. A

similar balanced optimal policy occurs for Instance 1, in which the arrival rates are not

strictly increasing or decreasing with the thresholds. The optimal policy in Instance

1 achieves the lowest diversion rate and second lowest average cost.

These results illustrate that the assumption of preference constraints can signif-

icantly impact how well the system performs and the best admission control policy

with respect to average cost. In a hospital setting, the appropriateness of the hospital

unit for the patient type can not be disregarded, and patient redirection policies must

be made within this context. It is apparent that in this example, the proportion of

patients in each group is a key consideration in the definition of a redirection policy.

Additional experimentation is needed to examine the impact of preferences for other

instances and variations on patient preferences.
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4.5.4 Tradeoffs in Average Cost, Diversion Rate, and Utilization

While the optimal policy with respect to average cost is identified, for each feasi-

ble policy there is an intrinsic tradeoff in all three objectives: average cost, average

utilization, and diversion rate. To examine these tradeoffs we enumerate all feasible

threshold policies for the four instances defined in Table 19. For each policy we iden-

tify the limiting probability distribution and correspondingly calculate the average

cost, diversion rate, and utilization with the equations provided above (Equations 36,

37, 38).

In Figure 17, for each instance we plot the associated diversion rate and average

utilization for each feasible policy, represented as a point on the graph. The color of

each point corresponds to the average cost. This allows for an examination of the

tradeoffs that exist in the three objectives. The policy with the minimum average

cost, among all instances, is highlighted with a circle on the graph.

For all four instances the minimum average cost policy coincides with the portion

of the graph where the relative costs of improving the diversion rate and improving

average utilization are balanced. While the minimum cost policy appears to balance

average utilization and the diversion rate, it does not achieve the best solution with

respect to these objectives. Instead, for all four instances a simultaneous increase in

utilization and decrease in the diversion rate can be achieved, although it is accom-

panied by an increase in the average cost. Thus, for these four instances, utilizing the

objective of minimizing the average cost, the resulting optimal policy simultaneously

balances the tradeoffs between utilization and the diversion rate, although it does not

produce the optimal solution with respect to either objective. Thus, through the use

of the objective to minimize average cost we identify a policy on the efficient frontier

in which all three of the objectives are accounted for.
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Figure 17: Tradeoff in the diversion rate, utilization, and average cost for all feasible
policies for Instances 1, 2, 3, and 4 with a designation of the minimum average cost
policy
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(a) Instance 1
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(b) Instance 2
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(c) Instance 3
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(d) Instance 4

4.6 Conclusion

As previously discussed, the example used in the computational analysis has a high

ratio of demand by patients to supply of beds in order to demonstrate the accuracy of

the necessary conditions for a policy that minimizes average cost. We illustrate that

the necessary conditions hold for the globally optimal solution in the example (see

Section 4.5.2. Additional experimentation, not reported here, showed similar results

for other instances, leading us to conjecture that these conditions may be sufficient

for identifying a globally optimal solution.
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In the four instances we examine, we show that the use of the objective of min-

imizing average cost simultaneously provides a solution that balances tradeoffs in

average utilization and the diversion rate. Additionally, with the assumption of pref-

erence constraints and patient dependent costs, arrival rates significantly impact the

optimal control policy, or patient redirection policy. Additional experimentation with

other instances is needed to further verify these results and to conduct an analysis

of the sensitivity of the tradeoffs in the objectives to changes to arrival rates and

service times. Specifically, a simulation approach is needed to study the impact of

the assumption of uniform service rates for all patient types.

In addition to the numeric examples, we have provided the first model to our

knowledge that examines the development of a multi-threshold patient redirection

policy with the assumption of preference constraints for redirection of patients. With

this model, we define necessary conditions for a threshold policy that minimizes the

average cost. These characteristics are especially useful for circumstances in which

enumeration of all feasible policies may not be possible or ideal. If our conjecture

that these characteristics are both necessary and sufficient to define global optimality

is proven, this could inform the development of algorithms to efficiently identify the

optimal policy in large instance settings.

While we have made a contribution in defining the problem of modeling multi-

threshold patient redirection policies with preference constraints, there exist opportu-

nities to expand on this work. First, we seek to prove or provide a counterexample for

the conjecture regarding sufficient conditions for the global optimal policy. Addition-

ally, with the assumption that these policies will be implemented by hospitals that are

part of a larger group of hospitals, simulation can be used to examine the interactions

between the definition of threshold policies at associated hospitals. Additionally, by

focusing on these interactions in a centralized environment, an examination of how

policies that only account for local unit census information can be improved or how
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control policies that simultaneously account for the census at all system hospitals

should be examined. The results from these extensions to our model may provide a

better understanding of the multi-threshold patient redirection problem and aid in

the implementation of these policies in hospitals.
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APPENDIX A

AFRICAN HEALTH CARE ALLOCATION MODEL

FORMULATION

Sets:

A = set of arcs in the network of health care facilities incorporating

the hierarchical distribution system

H = set of health centers

H ′ = set of primary-level health centers, H’ ⊂ H

T = set of treatments

P = set of population centers
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Data:

Np,t = number of people in need of treatment t from population center p

Vp,t = increase in health value (in QALYs) from providing treatment t to an individual from

population center p

Rp,h = “traveling cost” from population center p to health center h

Dm,n,t = “shipping cost” of a treatment t from health center m to health center n

It = cost of a treatment t

B = total budget for the “distribution cost”

Oh = fixed-cost of opening health center h

Yh = number of nurse-days available at health center h

Qt = time to deliver treatment t to one patient

L = time available per nurse-day

Cp,g,h = {

1 if the cost of travel between population center p and health center h

is less than the cost of travel between population center p and health center g

0 otherwise

Variables:

ah,t = quantity of treatments t that are allocated to health center h

rp,h,t = number of individuals from population center p requiring treatment that

successfully receive treatment at health center h

qm,n,t = quantity of treatment t transported from health center m to health center n

kp,h = number of nurse-days at health center h assigned to population p

yh = {
1 if health center h is opened

0 otherwise

tp,h = {
1 if h is the closest open health center which provides treatment to p

0 otherwise
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Constraints:

∑

(f,g)∈A
t∈T

qf,g,tDf,g,t +
∑

h∈H,t∈T

Itah,t +
∑

h∈H

Ohyh ≤ B ∀f ∈ H, g ∈ H (60)

∑

(f,g)∈A

qf,g,t + af,t =
∑

(e,f)∈A

qe,f,t ∀f ∈ H H ′, t ∈ T (61)

∑

p∈P

rp,h,t ≤ at,h ∀h ∈ H, t ∈ T (62)

rp,h,t ≤ Np,ttp,h ∀h ∈ H, p ∈ P, t ∈ T (63)

∑

h∈H

tp,h = 1 ∀p ∈ P (64)

tp,g ≤ 1−
∑

h∈H

Cp,g,hyh

|H|
∀p ∈ P, g ∈ H (65)

tp,h ≤ yh ∀p ∈ P, h ∈ H (66)

∑

p∈P

Np,tyh ≥ ah,t ∀h ∈ H, t ∈ T (67)

∑

p∈P

kp,h ≤ Yh ∀h ∈ H (68)

kp,h(L−Rp,h) ≥
∑

t∈T

rp,h,tQt ∀p ∈ P, h ∈ H (69)

kp,h ≤ tp,hYh ∀p ∈ P, h ∈ H (70)

kp,h ≥ 0 ∀p ∈ P, h ∈ H (71)

rp,h,t ≥ 0 ∀p ∈ P, h ∈ H, t ∈ T (72)

at,h, rp,t,h, qm,n,t, kp,h ∈ Z (73)

yh, tp,h ∈ B (74)

Objectives:

max
∑

p∈P,h∈H,t∈T

Vp,trp,h,t (75)

min
∑

(f,g)∈A
t∈T

qf,gDf,g,t +
∑

t∈T,h∈H

Itah,t +
∑

h∈H

Ohyh (76)

max minp∈P

∑

t∈T,h∈H rp,h,tVp,t
∑

t∈T Np,tVp,t

(77)

min maxp∈P

∑

t∈T,h∈H rp,h,tVp,t
∑

t∈T Np,tVp,t

−minp∈P

∑

t∈T,h∈H rp,h,tVp,t
∑

t∈T Np,tVp,t

(78)
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The first constraint (60) defines restrictions on the total cost, including costs for

opening of health centers, distribution, and procurement, with regard to the budget.

The second constraint (61) depicts flow constraints in the distribution and allocation

of treatments to health centers. This constraint ensures that treatments are always

distributed from regional health centers to rural health centers. Limits on the number

of individuals treated at a health center due to supply and demand, are defined in con-

straints (62) and (63), respectively. Constraints (64),(65), and (66) ensure that each

population center is only served by nurses from the closest health center. The next

constraint (67) states that treatments can only be allocated to open health centers.

The number of available nurse-days is incorporated in constraint (69). Constraints

(70) and (71) describe the correlation between the distance traveled by a nurse to a

population center and the maximum number of individuals that can be treated by the

nurse. The last two constraints concern the nonnegativity of the number of nurses

dispatched from a health center and the number of patients receiving treatment at a

population center.

The first and second objectives maximize effectiveness and minimize total costs,

respectively. The third and fourth objectives relate to the equity measures described

above. The third objective maximizes the smallest success rate among all population

centers. The fourth objective minimizes the difference between the highest and lowest

success rates in all communities.
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APPENDIX B

BED ASSIGNMENT INTEGER PROGRAM MODEL

FORMULATION

Sets:

P = set of patients

E = set of events, or decision epochs, including patient arrivals, service completions, and exits; |E| = 3|P |

U = set of downstream units, {1 . . . J}

Variables:

vp,j,e =















1 if patient p is in service in unit j at time of event e

0 otherwise

xp,j,e =















1 if patient p is assigned to unit j at event e (i.e., patient p begins service in unit j at event e)

0 otherwise

wp =















1 if patient p is accepted to the upstream unit upon arrival

0 otherwise

up =















1 if patient p exits the system while boarding, and is never assigned to a downstream unit

0 otherwise

(79)
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Data:

Rp,e =















1 if event e corresponds to the arrival of patient p

0 otherwise

Cp,e =















1 if event e corresponds to the service completion of patient p

0 otherwise

Xp,e =















1 if event e corresponds to the exit of patient p

0 otherwise

ER
p = Event corresponding to arrival of patient p

EC
p = Event corresponding to service completion of patient p

EX
p = Event corresponding to exit of patient p

TC
p = Time of the arrival of patient p

TX
p = Time of the exit of patient p

Te = Time of event e

∆e = Time between events e and e+ 1

bp = Cost of boarding of patient p for one unit of time

ap,j = Value of patient p being served in unit j for one unit of time

N0 = Capacity of upstream unit

Nj = Capacity of downstream unit j
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Objective and Constraints:

max
∑

p∈P

J
∑

j=1

∑

e∈E

vp,j,e(ap,j ∆e)− xp,j,e bp (Te − TC
p )− up bp(T

X
p − TC

p ) (80)

s.t.N0 − wm Rm,e +

ER
p −1
∑

e=1

∑

m∈P

um Xm,e +

J
∑

j=1

xp,j,e ≤ N0 wp ∀p ∈ P (81)

wp − up −

EX
p
∑

e=EC
p

J
∑

j=1

xp,j,e = 0 ∀p ∈ P (82)

EC
p
∑

e=1

J
∑

j=1

xp,j,e +

|E|
∑

e=EX
p

J
∑

j=1

xp,j,e = 0 ∀p ∈ P (83)

f
∑

e=0

∑

p∈P

wpRp,e − upXp,e −

J
∑

j=1

xp,j,e ≤ N0 ∀f ∈ E (84)

f
∑

e=0

xp,j,e − vp,j,e ≥ 0 ∀f ∈ E, p ∈ P, j ∈ U (85)

1−

f
∑

e=0

(Xp,e + vp,j,e) ≥ 0 ∀f ∈ E, p ∈ P, j ∈ U (86)

f
∑

e=0

(xp,j,e −Xp,e) ≥ 0 ∀f ∈ E, p ∈ P, j ∈ U (87)

f
∑

e=0

(xp,j,e −Xp,e − vp,j,e) ≥ 0 ∀f ∈ E, p ∈ P, j ∈ U (88)

∑

p∈P

vp,j,e ≤ Nj ∀e ∈ E, j ∈ U (89)

vp,j,e, xp,j,e ≥ 0 ∀f ∈ E, p ∈ P, j ∈ U (90)

vp,j,e, xp,j,e integer ∀f ∈ E, p ∈ P, j ∈ U (91)

wp, up ≥ 0 ∀p ∈ P (92)

wp, up integer ∀p ∈ P (93)

Constraints 81 designate that as long as the upstream unit is not full a patient must

be accepted to the system. If accepted, the patient will leave the upstream unit either

through assignment to a downstream unit or by exiting from boarding (Constraint

82). Assignment to downstream units can not be made before the patient completes

service upstream or after exiting the system (Constraint 83). Constraints 85, 86,

87, and 88 define the events, or times, at which a patient is in service in a particular
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unit requiring that the patient has been assigned to the unit, has completed upstream

service, and has not exited the system. Constraints 84 and 89 ensure that the number

of patients in a unit does not exceed capacity of the upstream and downstream units,

respectively. The objective (80) maximizes the sum of the reward achieved between

events for each patient in service in a downstream unit and the cost of boarding for

both patients that are eventually assigned to downstream units and those that exit

from the upstream unit.
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APPENDIX C

EXPLANATION FOR CHOICE OF WARM-UP PERIOD

To identify the appropriate length of the warm-up period, we plot the number of

patients in the system over time in the simulation for numerous instances. From

these graphs we identify a 15-day warm up as appropriate for the simulation analysis,

since the system reaches steady state beyond this point. A sample of the plots for 6

instances is provided in Figure 18.

Figure 18: Plot of number of patients in system over the course of the simulation for
6 instances
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APPENDIX D

PROOFS OF LEMMAS 4.4.1 AND 4.4.3

Lemma D.0.1 (Lemma 4.4.1). Assuming a feasible patient redirection policy ~Θ

(Equation 40) such that Θi−1 < Θi, then the limiting probability distribution for a

similar policy in which the threshold for patient i is decremented by one, ~Θ0 (Equa-

tion 41) is

Pn(~Θ
0) =















Pn(~Θ)

A(i,~Θ)+γi(1−A(i,~Θ))
if n ≤ Θi − 1

γi Pn(~Θ)

A(i,~Θ)+γi(1−A(i,~Θ))
if n ≥ Θi

∀n ∈ {0 . . . N} (94)

Proof. First, we define the limiting probabilities for policy ~Θ0 in Equation 95.
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From this definition it follows that
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(96)
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Utilizing these results, we can write the expression for P0(~Θ
0).

P0(~Θ
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=
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A(i, ~Θ) + (1− A(i, ~Θ)) γi
(101)

With the definition of P0(~Θ
0) provided in Equation 101 and the relationships de-

fined in Equation 96, we define the limiting probabilities with policy ~Θ0 as a function

of ~Θ.
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(102)

Lemma D.0.2 (Lemma 4.4.3). Assuming a feasible patient redirection policy ~Θ

(Equation 51) such that Θi < Θi+1, then the limiting probability distribution for a

similar policy in which the threshold for patient i is increased by one, ~Θ
′
(Equation

52) is
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Proof. This proof follows in a similar fashion as Lemma D.0.1. First, we define the

limiting probabilities for policy ~Θ
′
.

Pn(~Θ
′

) =































































































P0(~Θ
′
) ρ1n

n!
∀n ∈ S : 0 < n ≤ Θ1

P0(~Θ
′
) ρ1Θ1 ρ2

n−Θ1

n!
∀n ∈ S : Θ1 < n ≤ Θ2

. . . . . .

P0(~Θ
′
) ρ1Θ1 ρ2

Θ2−Θ1 ...ρ
n−Θi−1
i

n!
∀n ∈ S : Θi−1 < n ≤ Θ

′

i = Θi + 1

P0(~Θ
′
) ρ1Θ1 ρ2

Θ2−Θ1 ...ρ
(Θi+1)−Θi−1
i ρ

n−(Θi+1)
i+1

n!
∀n ∈ S : Θi + 1 = Θ

′

i < n ≤ Θi+1

. . . . . .

P0(~Θ
′
) ρ1Θ1 ρ2

Θ2−Θ1 ...ρ
(Θi+1)−Θi−1
i ρ

Θi+1−(Θi+1)

i+1 ...ρ
n−ΘI−1
I−1

n!
∀n ∈ S : ΘI−1 < n ≤ N

(104)

From this definition it follows that
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(105)

Note that the multiple for Θi, does not change when we have an increase in

the threshold for patients of type i, dissimilar from when there is a decrease in the

threshold for patients of type i.
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Utilizing these results, we can write the expression for P0(~Θ
0).
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(110)

With the definition of P0(~Θ
′
) provided in Equation 110 and the relationships

defined in Equation 105, we define the limiting probabilities with policy ~Θ0 as a

function of ~Θ.
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