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SUMMARY 

 

Testing has existed for thousands of years and has evolved from all examinees receiving the 

same test to adaptive testing, in which the test is tailored to the individual examinee.  These 

adaptive testing designs have shown to be improvements over fixed-length, conventional tests in 

terms of proficiency measurement, reduced testing time, and faster scoring.  However, these 

designs introduce a variety of issues that must be considered during test development as well as 

during the test’s lifespan.  A popular method of test administration is computer adaptive testing 

(CAT) using expected a posteriori (EAP) estimation.  This Bayesian estimation approach utilizes 

previous information known about the examinee to obtain more precise estimates of the 

individual’s ability.  An appropriate prior will generally increase estimation precision, decrease 

outlier influences, and provide an estimate for all possible response patterns.  An inappropriate 

prior, however, may result in biased estimates (Embretson & Reise, 2000).  Previous studies 

have used collateral information (i.e., additional information) concerning the examinee to aid in 

estimation.  This collateral information may be related to item properties, such as item difficulty, 

or related to the individual, such as demographic variables, age, grade, or previous test scores.  

Several studies have used previous test scores (Matteucci & Veldkamp, 2013; Veldkamp & 

Matteucci, 2013; van der Linden, 1999) as collateral information, none have looked directly at 

priors based on group membership.  This study examined the influence of various group priors, 

such as composite priors (i.e., priors created from combining groups) and individual priors (i.e., 

priors specific to the group), on estimation in CAT designs.  Results of the study show group-

specific priors perform best; however, it is impossible to know an individual’s true group.  Thus, 

results of the study support the use of priors based on the population because priors based on 

demographics may adversely impact some high ability groups.  
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CHAPTER 1 

INTRODUCTION 

 In psychology, an individual’s behavior repertoire is used to infer his or her latent traits, 

or abilities, which are relatively stable attributes (e.g., skills or abilities) of the individual that 

cannot be directly measured (θ; Crocker & Algina, 2008; Green, Bock, Humphreys, Linn, & 

Reckase, 1984).  For example, height and weight are directly measureable aspects of an 

individual.  However, an individual’s social proclivity, verbal ability, or mathematics ability are 

not directly measureable and are considered latent constructs.  Their existence cannot be 

determined absolutely and must be inferred by examining behavior.  Once the existence of a 

construct has been proposed and a sufficient definition linking the construct to observable 

behaviors has been provided, instruments can be developed that set forth a systematic procedure 

(i.e., a test) for obtaining behavior samples (Crocker & Algina, 2008).  For example, an 

educational psychologist may be interested in a student’s mathematical achievement, a construct 

that has been established to exist but is not directly observable.  The psychologist would first 

need to specify a link between mathematics ability and behaviors that can be observed from the 

student.  These behaviors might include the number of mathematics items, utilizing addition, 

subtraction, multiplication, and division, the student is able to answer correctly in a pre-

determined time frame.  The test is the student’s behavior on these items.  Thus, the psychologist 

can infer the level of mathematics ability the student possesses by assigning a quantitative value 

(e.g., number of items answered correctly) to the behavior; this is called measurement (Crocker 

& Algina, 2008). 

 Tests can be administered in many different formats.  One test administration aspect deals 

with administration mode.  A test may be administered as a paper-based test (PBT) or a 
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computer-based test (CBT).  CBTs are administered using computer technologies and have been 

shown to have many improvements over PBTs.  However, more decisions must be made when 

using a CBT, such as item development, test assembly, test composition, examinee issues, test 

delivery, and post-test procedures (Luecht, 2006).  Another aspect of tests deals with 

adaptability.  Tests may have no adaptation and all examinees receive the same set of items; 

these are termed conventional tests (CTs).  In this testing design, examinees may be presented 

with items that are too difficult or too easy, and thus the items provide little information 

concerning the examinee pertaining to the construct of interest (Yan, Lewis, & von Davier, 

2014).  Or, a test may be adaptive, in which different individuals receive different sets of items 

based on their responses to previous items.  These tests are optimally designed, as examinees are 

presented with items that are ideal for their ability and thus are neither too difficult nor too easy 

(Meijer & Nering, 1999; Weiss, 1985).  Adaptive tests are often superior to conventional tests for 

their efficient and precise measurement of the examinee’s ability (Weiss, 1985; Yan et al., 2014).   

 Although linear CBTs (e.g., a conventional test administered via a computer) can be 

administered, capitalization on the efficiency of adaptive testing is often married with the 

advantages of computer-based administration.  Through this marriage and the use of item 

response theory (IRT), a sophisticated approach that uses both person and item characteristics to 

measure latent traits (Embretson & Reise, 2000), two types of adaptive testing have been 

developed.  These approaches to automated, adaptive testing are computerized adaptive testing 

(CAT) and multistage testing (MST). 

 CATs are adaptive assessments in which the test is tailored to the examinee at the 

individual item-level.  As the test progresses, the adaptive algorithm hones in on the examinee’s 

ability level by using responses to all previously administered items, administering new items 
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that provide the most information about the individual (Meijer & Nering, 1999; Weiss, 1985; 

Weiss & Kingsbury, 1984).  Compared to conventional tests, it is possible that every examinee 

will receive a different set of items (i.e., a different test).  This approach to testing has many 

advantages over conventional tests.  CATs often result in more precise trait measurement, 

require less items, involve shorter amounts of time to administer, can be scored immediately, and 

thus, can result in immediate score reporting to the examinee.  Although CATs have many 

advantages, some disadvantages do exist, such as starting costs, best ways to make classification 

decisions concerning examinees, how to control content, and a more complicated item review 

process. 

 MSTs, also called computer adaptive sequential tests (CASTs), are also adaptive 

assessments that tailor the test to the examinee’s ability, but instead of adapting at the item-level, 

these tests adapt at the item-set level (Yan et al., 2014).  In MSTs, groups of items are 

administered to examinees based on previous responses to item groups.  These tests can be 

considered a special case of CATs and aim to capitalize on CAT advantages, such as more 

precise measurement, while minimizing their disadvantages.  Thus, MSTs allow for greater 

control of content, since the item groups can be scrutinized before administration, and also allow 

examinees to review their responses to items within an item group before proceeding with the 

test (Mead, 2006). 

 Often, the goal of a test, whether PBT, CBT, conventional, or adaptive, is to accurately 

measure an individual’s latent ability or to classify individuals into various groups (Weiss & 

Kingsbury, 1984; Yan et al., 2014).  These goals are often determined by the test’s purpose.  For 

example, in an educational setting, the goal of a test may be to obtain an accurate estimate of a 
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student’s mathematics ability to rank order students.  However, in this same setting, the goal 

might be to classify a student as proficient or not proficient (i.e., classification). 

 Multiple IRT approaches exist to obtain an examinee’s position on the latent trait 

continuum.  IRT uses the behavior of the examinee, their scored responses on the items, to 

achieve this estimate.  For example, for dichotomously scored items, a response pattern can be 

obtained for each person.  Thus, examinees A and B may be administered the same set of items 

but have different response patterns (RP).  Examinee A may answer the first five questions 

correctly and the last five questions incorrectly {RPA = 1111100000}, while Examinee B might 

have a different pattern {RPB = 0111011000} but still answered five questions correctly.  

Classical test theory (CTT) would give both of these examinees the same number-right score 

(i.e., 5).  However, each examinee endorsed different items (i.e., answered different items 

correctly) and might vary on the latent trait.  IRT trait estimation is equipped to handle this via 

likelihood estimators (e.g., Maximum Likelihood Estimation) or Bayesian estimators (e.g., 

Expected A Posteriori Estimation).  When estimating ability, likelihood estimates are often less 

biased but Bayesian estimators are often more precise. 

 Bayesian estimators have a unique quality – they allow the introduction of a person prior 

distribution in the estimation process.  The prior distribution is a hypothetical distribution from 

which the examinees are a random sample.  This prior gives more examinee information, 

increasing both the efficiency of the test and the precision of the ability estimate, will protect 

against the influence of outliers, and can provide an estimate for all possible response patterns.  

However, if an inappropriate prior distribution is chosen, the resulting ability estimates may be 

biased, especially for extreme abilities (Embretson & Reise, 2000).  A common prior distribution 
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is the standard normal distribution, which has a mean of 0 and a standard deviation of 1 (θ ~ N(0, 

1)).  However, any appropriate distribution can be used. 

 Several techniques are used to ensure a test is unbiased and fair in terms of different 

population subgroups; however, often group differences in trait levels for various cognitive 

abilities do exist.  Aspects of cognitive ability (e.g., general intelligence, spatial ability, memory, 

etc.) are measured via different testing techniques, since different patterns of ability can exist.  

For example, two demographically similar individuals might be compared on their cognitive 

abilities.  One individual might be high in general intelligence, low in verbal ability, and high in 

mathematical ability.  The other individual might be high in all areas.  The different aptitudes are 

measured since not all abilities are correlated with demographic information, and although 

relationships may exist between abilities, these relationships are not always consistent.  

Differences in test performance have been documented between Caucasians, African Americans, 

and Hispanics in performance on various educational, military, and personnel selection 

assessments (Roth, Bevier, Bobko, Switzer, & Tyler, 2001).  For example, overall differences in 

general intelligence are typically found; Caucasians scored higher than the other two ethnicities.  

The Graduate Record Examination (GRE; ETS, 2016) and the SAT (SAT, 2015) report gender 

and ethnic differences in means and standard deviations.  For the GRE, females tend to score 

lower than males, and African Americans score lower than Caucasians. 

 Collateral information pertaining to the examinees can be used to specify the prior 

distribution.  This information may be demographic variables (e.g., gender, ethnicity), 

socioeconomic status, grade, country, age, or previous test scores.  Using this information, 

different priors may be utilized for trait estimation based on the examinee’s status on the 

covariate (e.g., male versus female).  Studies have utilized empirical priors for ability estimation 
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by creating relationships between ability and the collateral information.  For instance, Veldkamp 

and Matteucci (2013) used performance on one construct as collateral information to create an 

informed, empirical prior for performance on a similar construct.  These approaches to ability 

estimation provide better provisional estimates in adaptive testing, which might decrease the 

time needed to converge on the true ability (i.e., shorter tests), as well as increased statistical 

precision and lower item exposure (Matteucci & Veldkamp, 2013; van der Linden, 1999; 

Veldkamp & Matteucci, 2013). 

Motivation and Research Questions 

 While collateral information, in the form of previous test scores, has been used in studies 

concerning ability estimation, no study has directly examined the relationship between ability 

estimation and collateral information based on group membership.  Therefore, this study 

examines the impact on ability estimation when different group priors are utilized, and will 

inspect the influence of these different priors on estimation both between (i.e., Group A versus 

Group B) and within (i.e., high versus low ability examinees) groups.  As stated, most Bayesian 

estimation applications utilize a standard normal prior for all examinees.  However, different 

prior distributions based on collateral information (i.e., group membership) may exist.  For 

example, Group A might have a lower mean prior distribution [𝜃𝐴~𝑁(−0.5, 1)] while Group B 

has a higher mean prior distribution [𝜃𝐵~𝑁(0.5, 1)].  While both of these distributions are 

normal distributions, they vary in their mean ability.  Thus, these individual priors could 

potentially be used to estimate ability but may differentially influence various aspects of ability 

estimation and its use.  For example, while Group A might have a lower population mean, high 

ability examinees in this group may be negatively impacted when this prior is used versus a 

standard normal prior.   



 

7 
 

The simulation will vary the test type (i.e., conventional, CAT), the true ability 

distribution of the examinees, prior distributions used during estimation based on collateral 

information, final ability estimation approaches, and IRT model.  These various testing 

conditions will be examined for measurement precision via the standard error of the ability 

estimate, bias, as well as accuracy via Root Mean Square Error (RMSE).  In general, the 

simulation will aim to examine the impact on trait estimation for individuals within and across 

various groups when prior distributions are chosen based on group membership.   

Focus of the current study is aimed towards educational assessments, such as high-stakes 

tests administered to students.  While the results may support the use of group priors, other 

variables will need to be considered before the method is applied.  For example, if results of the 

simulation support the incorporation of group priors into testing designs, testing companies may 

need to examine any legal ramifications of the approach beyond the psychometric ones.  The 

approach may not be advantageous for a testing company if it opens up legal avenues for the 

company to be sued. 

However, even though the approach may not be advantageous in education settings, it 

may have applicability in other domains.  One possible domain is health screenings.  People may 

be partitioned into groups based on answers to questions, and each of these groups may have a 

different probability of a health concern.  For example, an individual may have a higher risk of a 

type of cancer.  By putting the individuals into groups based off various factors (i.e., covariates), 

risk values can be calculated.  Another possible domain is in personnel selection and job 

placement. 
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CHAPTER 2 

LITERATURE REVIEW 

 This chapter contains a brief review of the literature.  Topics will include an examination 

of item response theory, which will encompass explanations concerning various models as well 

as approaches to trait estimation and classification.  Different testing designs will be explained 

and compared.  A summary of subgroup differences relating to performance will be given, and 

the chapter will conclude with approaches to utilizing collateral information (i.e., information 

about the examinee) during testing. 

Item Response Theory 

 Item response theory (IRT), also known as latent trait theory, has become the 

predominant approach to psychological measurement (Embretson & Reise, 2000).  Measurement 

of performance in IRT depends on the relationship between the characteristics of items 

administered to an individual and the individual’s responses to those items.  Thus, a relationship 

exists between the individual’s observable item performance and the underlying, unobservable 

trait (θ) the items aim to measure.  Lord and Novick (1968) expressed the need to understand this 

relationship as a move to individualized testing became possible.  Item response models specify 

the specific relationship between the observable and unobservable variables and are considered 

“strong models” because of the stringent assumptions placed on the data that are not easily met 

(Hambleton & Jones, 1993). 

 Three assumptions underlie IRT models.  The first assumption is the dimensionality 

assumption, which states that a specific number of dominant latent variables underlyie behavior 

on the observed variables (de Ayala, 2008; Hambleton, Swaminathan, & Rogers, 1991).  A 

single dominant trait (e.g., mathematics ability) may underlie examinee behavior.  When one 
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dominant trait exists, unidimensional IRT models are appropriate to use.  However, it is possible 

that multiple dominant traits (e.g., mathematics and reading ability) may be necessary in order to 

sufficiently explain behavior and performance (Hambleton et al., 1991).  In this case, 

multidimensional IRT (MIRT) models are used to describe the interaction between persons and 

items when there is a vector of hypothetical latent traits (Reckase, 1997, 2009). 

 The second assumption of IRT is the concept of local independence (LI).  LI states that 

the responses to items are conditionally independent from each other and only depend on the 

latent trait (de Ayala, 2009; Embretson & Reise, 2000; Hambleton et al., 1991; Lord & Novick, 

1968).  In other words, the response to one item does not depend, or influence, the response to 

another after conditioning on the latent trait.  Due to LI, item and person characteristics are 

independent of each other.  But, there is a potential for LI to be violated. 

 The third assumption of IRT models relates to the functional form of the model (de 

Ayala, 2009).  IRT models generally follow an explicit mathematical function used to produce an 

item characteristic curve (ICC).  The mathematical form specifics the number of item parameters 

to be estimated and used in specifying the ICC.  The form of the ICC expresses the direct 

relationship between the probability of a specific response to precise changes in the latent trait 

and item’s properties (Embretson & Reise, 2000; Hambleton, van der Linden, & Wells, 2010).  

Thus, item and person characteristics can be placed on the same continuum.  Thus, they can be 

used to predict the probability of a specific response from an individual as well as estimate an 

individual’s ability from their response pattern (Gershon, 2005; Weiss & Vale, 1987).   

Unidimensional Dichotomous Models 

Often, a single dominant trait underlies examinee performance and the item types require 

binary scoring (i.e., items are scored as either correct, 1, or incorrect, 0).  An example of this 
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item type is multiple-choice (MC) items.  Four primary IRT models exist to represent the 

relationship between item and person parameters in this case.  The most general model is the 

three-parameter logistic (3PL) model (Birnbaum, 1968).  This model includes three item 

parameters for each item, i; these parameters represent item difficulty (βi), item discrimination 

(αi), and a lower asymptote (γi; i.e., pseudo-guessing parameter).  In the 3PL model, the 

probability of a correct response on a given item i by person s, P(Xis = 1), is: 

𝑃𝑠𝑖(𝜃) = 𝑃(𝑋𝑠𝑖 = 1|𝜃𝑠 , 𝛽𝑖, 𝛼𝑖, 𝛾𝑖) = 𝛾𝑖 + (1 − 𝛾𝑖)
exp⁡[𝛼𝑖(𝜃𝑠−𝛽𝑖)]

1+⁡exp⁡[𝛼𝑖(𝜃𝑠−𝛽𝑖)]
 , 2.1 

where θs represents the trait level (i.e., ability) of person s (Birnbaum, 1968; Embretson & Reise, 

2000).  The inclusion of the subscript i on item parameter allows for item differences in 

difficulty, discrimination, and guessing. 

In the 3PL model, the item difficulty parameter (βi) is the point of inflection of the ICC 

on the ability scale, where the probability of correctly answering the item is 
(1+𝛾𝑖)

2
 (Harris, 1989).  

Higher βi values (i.e., more positive) represent harder items, whereas lower values represent 

easier items.  Item discrimination (αi) represents an item’s ability to differentiate between groups 

of people along the ability continuum, and is the slope of the ICC.  Higher αi values indicate 

higher discriminatory power; thus, the ICC for the item will be steeper and the item will be more 

informational when discriminating between various groups around the item’s difficulty level 

(Harris, 1989).  Lastly, by including a lower asymptote, the 3PL model provides information for 

low ability examinees who have a probability greater than 0 of solving specific items (e.g., items 

that would be considered too difficult for them).  The model accounts for the fact that examinees 

can respond to an item correctly at a level greater than chance without explicitly knowing the 

correct answer (i.e., guessing; Birnbaum, 1968). 
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Although the 3PL model allows for unique lower asymptotes, these asymptotes can be 

constrained to be equal (γ).  By eliminating the lower asymptote (i.e., γ = 0) in Equation 2.1, the 

two-parameter logistic (2PL; Birnbaum, 1968) model can be specified, as follows:  

𝑃(𝑋𝑠𝑖 = 1|𝜃𝑠 , 𝛽𝑖, 𝛼𝑖) =
exp⁡[𝛼𝑖(𝜃𝑠 − 𝛽𝑖)]

1 + ⁡exp⁡[𝛼𝑖(𝜃𝑠 − 𝛽𝑖)]
⁡⁡. 2.2 

In the 2PL model, items vary on item discrimination and item difficulty.  The item difficulty 

parameter (βi) is still the point of inflection of the ICC, but this point is now where the 

probability of correctly answering the item is 50% (Harris, 1989).   

It may be plausible that, although items discriminate between groups, each item has the 

same discriminatory power.  This scenario is represented by the one-parameter logistic (1PL) 

model, in which item discrimination is freely estimated but constrained to be equal across items, 

as shown below: 

𝑃(𝑋𝑠𝑖 = 1|𝜃𝑠, 𝛽𝑖, 𝛼) =
exp⁡[𝛼(𝜃𝑠 − 𝛽𝑖)]

1 + ⁡exp⁡[𝛼(𝜃𝑠 − 𝛽𝑖)]
⁡⁡. 2.3 

Although all items are equally discriminating, they still vary in the location along the ability 

continuum and can discriminate between individuals using the item’s difficulty location (Harris, 

1989).  Thus, some items may discriminate well among low-ability examinees whereas other 

items discriminate well among high-ability examinees.  The probability of a correct response is 

still located at 50%, just as in the 2PL model, when 𝜃𝑠 − 𝛽𝑖 = 0.  While equal discriminations 

may hold for some tests, it is often unlikely this will occur in all settings, especially those related 

to educational testing (Hambleton et al., 2010). 

 Lastly, the Rasch model is extremely similar to the 1PL model, but item discrimination is 

assumed to be one instead of freely estimated.  The Rasch model is shown below: 
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𝑃(𝑋𝑠𝑖 = 1|𝜃𝑠 , 𝛽𝑖) =
exp⁡(𝜃𝑠 − 𝛽𝑖)

1 + ⁡exp⁡(𝜃𝑠 − 𝛽𝑖)
⁡, 2.4 

where, in this model, items only differ in item difficulty.  This model is a change in scale from 

Equation 2.3.  The models presented above are expressed in terms of the logistic function and 

use a logistic (log) metric.  Often, the logistic function is utilized over a normal ogive function 

due to their simplicity and computational advantages (Bock, 1997; Birnbaum, 1968).  However, 

a normal metric is approximated by including a multiplier of 1.7 in the logistic function exponent 

(i.e., for the 3PL model, 1.7𝛼𝑖(𝜃𝑠 − 𝛽𝑖); Birnbaum, 1968).  Other item types beyond 

dichotomous items can be used.  For example, items with partial credit can be used within 

polytomous IRT models.  However, binary models are only examined. 

 The amount of information an item i contains at specific trait levels, θ, along the 

continuum can be calculated; this is called the Fischer information of the item (FI; Birnbaum, 

1968; Embretson & Reise, 2000).  FI is calculated using the general information equation below 

for a binary IRT model: 

𝐼(𝜃) = ⁡
𝑃𝑠𝑖
′ (𝜃)2

𝑃𝑠𝑖(𝜃)𝑄𝑠𝑖(𝜃)
⁡, 2.5 

where Pis(θ) is the conditional probability of answering item i correctly, 𝑃𝑖𝑠
′ (𝜃) represents the 

first derivative of the conditional probability function at a particular θ, and Qis(θ) is the 

probability of an incorrect response (1 – Pis(θ)).  A test’s information (i.e., a set of items) can be 

calculated by summing the information across all the items, as shown below: 

𝑇𝐼(𝜃) =∑𝐼(𝜃)

𝐼

𝑖=1

⁡. 2.6 

Test information is important for the estimation of latent traits, as will be discussed later.   
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An item’s psychometric properties can affect the amount of information an item provides.  

Increases in information result when an item’s difficulty (βi) is closer to the examinee’s trait 

level (θ).  The more discriminatory power (αi) an item has also results in higher information 

values.  Lastly, the closer the lower asymptote (γi) is to 0, the more information the item provides 

(Hambleton et al., 1991).   

Ability Estimation 

IRT attempts to estimate the position of an examinee on the latent trait continuum by 

using the examinee’s behavior on a set of items.  The behavior of interest is the examinee’s 

scored responses to the items.  For example, for dichotomously scored items, a response pattern 

can be obtained for each person.  Thus, IRT can obtain estimates for the response patterns 

previously discussed for examinees A and B, who answered the same total number of items 

correctly but different individual items. based on the specific items endorsed by each examinee.  

Likelihood estimators (e.g., maximum likelihood estimation, weighted likelihood estimation) and 

Bayesian estimators (e.g., Expected A Posteriori estimation) can be used to obtain these 

measurements. 

 Maximum Likelihood Estimation.  Maximum likelihood estimation (MLE; Birnbaum, 

1968) is an approach to trait estimation that utilizes the examinee’s response patterns to find the 

value of θs that maximizes the likelihood of the pattern.  MLE assumes that item psychometric 

properties are known and item responses and examinee characteristics are independent. 

 First, the conditional likelihood of a specific response pattern is obtained using Equation 

2.7: 

𝐿(𝑥𝑠1, 𝑥𝑠2, … , 𝑥𝑠𝐼|𝜃𝑠) =∏𝑃𝑠𝑖(𝜃)
𝑥𝑠𝑖𝑄𝑠𝑖(𝜃)

1−𝑥𝑠𝑖

𝐼

𝑖=1

 2.7 
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where xsi is the observed item response, Psi(θ) is the probability of a correct response, and Qsi(θ) 

is the probability of an incorrect response (i.e., 1-Psi(θ); Embretson & Reise, 2000).  Since these 

probabilities range from 0 to 1, their product can become an extremely small number.  To deal 

with this issue, the natural logarithm is taken and the log-likelihood function in Equation 2.8 is 

maximized instead: 

𝑙𝑛𝐿(𝑥𝑠1, 𝑥𝑠2, … , 𝑥𝑠𝐼|𝜃𝑠) =∑𝑥𝑠𝑖 ln[𝑃𝑠𝑖(𝜃)] + (1 − 𝑥𝑠𝑖)ln⁡[𝑄𝑠𝑖

𝐼

𝑖=1

(𝜃)] 2.8 

The value of θ that maximizes the log-likelihood in Equation 2.8 is the same value that would 

maximize the likelihood in Equation 2.7 (de Ayala, 2009; Embretson & Reise, 2000).   

 This calculation can be quite cumbersome and Newton-Raphson is often employed to 

find the value of θ.  To use this procedure, the first (
𝜕𝑙𝑛𝐿

𝜕𝜃
) and second (

𝜕2𝑙𝑛𝐿

𝜕𝜃2
)  derivatives of the 

log-likelihood function, based on the IRT model being used, must be calculated.  Estimates of 

ability, 𝜃, are updated using an iterative process and these derivatives.  An initial estimate (𝜃0 ⁡̂) 

is first given to an examinee as an approximation of their true latent trait level; this estimate can 

be determined using prior information about the examinee or can be equal for all examinees.  

Using t𝜃0 ⁡̂, the first and second derivatives are calculated and a ratio (𝜀) of the derivatives is 

obtained (𝜀 = ⁡

𝜕𝑙𝑛𝐿

𝜕𝜃
𝜕2𝑙𝑛𝐿

𝜕𝜃2

⁄ ).  An updated estimate is obtained by subtracting this ratio, 𝜀, from the 

previous estimate (𝜃1 ⁡̂ = 𝜃0 ⁡̂ − 𝜀).  The standard error of measurement for a specific MLE θ 

estimate is calculated as follows (de Ayala, 2009; Embretson & Reise, 2000): 

𝑆𝐸(𝜃) =
1

√𝑇𝐼(𝜃)
 2.9 

 MLE has some positive features.  It is an unbiased estimate of θ and is an asymptotically 

efficient estimator with normally distributed errors (Birnbaum, 1968; Embretson & Reise, 2000).  
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However, MLE may also pose problems to trait estimation.  It assumes the item responses fit the 

model.  Local maxima, instead of global maxima, may be achieved in certain situations.  

However, a major problem with MLE is that the algorithm cannot provide a trait estimate for 

response patterns where all items are answered correctly or all items are answered incorrectly 

(i.e., perfect response patterns).  These patterns produce monotonically increasing or decreasing 

likelihood functions, respectively; these functions will have no absolute maximum.  The ability 

estimates will be either 𝜃𝑖 = +∞ or 𝜃𝑖 = −∞.  Thus, in this instance, another approach may be 

used or boundaries may be placed on the estimates. 

 Weighted Likelihood Estimation.  Lord (1983) showed that MLE is biased when 

estimating ability, especially at the extremes of the latent continuum, and proposed a way to 

remove the first order bias term.  In order to correct for this bias, Warm (1989) added a 

weighting factor to correct for the noted bias and called it a weighted likelihood estimate (WLE).  

In his approach, he utilizes the first derivation of the MLE likelihood function: 

𝜕𝑙𝑛𝐿

𝜕𝜃
=
∑ (𝑥𝑠𝑖 − 𝑃𝑖𝑠(𝜃))𝑃𝑠𝑖

′ (𝜃)𝐼
𝑖=1

𝑃𝑠𝑖(𝜃)𝑄𝑠𝑖(𝜃)
= 0⁡, 2.10 

where all terms have been previously defined.  In order to obtain an unbiased estimate, an 

estimate of θ must satisfy Equation 2.11 (Warm, 1989): 

𝜕𝑙𝑛𝐿

𝜕𝜃
=
∑ (𝑥𝑠𝑖 − 𝑃𝑖𝑠(𝜃))𝑃𝑠𝑖

′ (𝜃)𝐼
𝑖=1

𝑃𝑠𝑖(𝜃)𝑄𝑠𝑖(𝜃)
+⁡

𝐽

2𝐼
= 0 

 

𝑤ℎ𝑒𝑟𝑒⁡𝐽 = ⁡
∑𝑃𝑠𝑖

′ (𝜃)𝑃𝑠𝑖
′′(𝜃)

𝑃𝑠𝑖(𝜃)𝑄𝑠𝑖(𝜃)
⁡𝑎𝑛𝑑⁡𝐼 = ⁡

𝑃𝑠𝑖
′ (𝜃)2

𝑃𝑠𝑖(𝜃)𝑄𝑠𝑖(𝜃)
⁡. 

2.11 

WLE is attractive for many tests, as it produces an estimate that is less biased than that produced 

by MLE. 
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 Maximum A Posteriori Estimation.  As stated previously, MLE estimation cannot 

provide latent trait estimates when the examinee answers all items either correctly or incorrectly; 

some variation in the responses are necessary.  One way to combat this limitation is to introduce 

a prior distribution to the estimation process.  As long as the test administrator/researcher is 

comfortable assuming the estimated value falls within a specified range, the prior gives more 

efficient information and will protect against the influence of outliers (Embretson & Reise, 

2000).  Maximum A Posteriori (MAP) estimation, also known as Bayes Model Estimation, is a 

Bayesian estimation procedure that places a prior distribution on the person estimates.  The goal 

of MAP is to determine the value of θ that maximizes the posterior distribution, or the mode 

(Bock & Aitkin, 1981).   

 Similar to MLE, MAP is an iterative procedure and follows most of the same steps.  

Thus, it is necessary to have an initial estimate of the examinee’s true latent trait level (𝜃0 ⁡̂).  

Using the examinee’s response pattern and the item’s psychometric properties, the log-likelihood 

is calculated.  Also, as with MLE, the first and second derivatives of this log-likelihood at the 

initial trait estimate need to be computed.  However, before finding 𝜀, the derivatives are 

adjusted by incorporating the prior distribution.  This prior distribution is a hypothetical 

distribution from which the examinees are a random sample.  A common prior distribution is the 

standard normal distribution, θ ~ N(0,1), but any appropriate distribution can be used.  It is 

important to emphasize the use of an appropriate distribution.  If the prior distribution is 

inappropriate, the resulting trait estimates could be biased and misleading (Embretson & Reise, 

2000).  A posterior distribution results from the multiplication of the log-likelihood by the prior 

distribution.  At this point, 𝜀 is calculated and an updated trait estimate is obtained.  Standard 

errors for MAP are calculated similar to MLE, but information is from the posterior distribution. 
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 Inclusion of a prior distribution into the estimation of θ increases precision of the 

estimate, since more information is utilized.  It also allows for θ estimation of all examinees, 

regardless of their response pattern.  However, the estimates can be biased, as the expected value 

of the MAP estimate does not equal the true value.  The addition of the prior distribution results 

in estimates that are often pulled towards the mean of the prior distribution.  Shorter tests are 

more influenced by the presence of a prior distribution.  Lastly, as previously stated, if an 

inappropriate prior distribution is chosen, the resulting estimates may be even more biased 

(Embretson & Reise, 2000). 

 Expected A Posteriori Estimation.  Expected A Posteriori (EAP) estimation finds the 

mean of the posterior distribution (Bock & Aitkin, 1981; Embretson & Reise, 2000).  It is also 

known as the Bayes Mean Estimate (de Ayala, 2009).  EAP uses a discrete set of probability 

weights for a fixed set of θ values.  An EAP estimate is obtained using Equation 2.12, below: 

𝜃𝑠 =
∑ [𝑄𝑟 ⁡× 𝐿(𝑄𝑟) ×𝑊(𝑄𝑟)]
𝑅
𝑟=1

∑ [𝐿(𝑄𝑟) ×𝑊(𝑄𝑟)]
𝑅
𝑟=1

⁡, 2.12 

where Qr represents the quadrature nodes for the fixed set of θ values chosen, W(Qr) represent 

the discrete weights for each quadrature node, and L(Qr) is the exponent of the log-likelihood 

function at each of the r (r = 1, …, R) quadrature nodes.  Generally, the nodes and weights 

represent a standard normal prior distribution, θ ~ N(0,1), but as with MAP, other appropriate 

distributions can be chosen.  Standard error for the EAP estimate is calculated using Equation 

2.13. 

𝑆𝐸 = √
∑ [(𝑄𝑟 − 𝜃)2 ⁡× 𝐿(𝑄𝑟) × 𝑊(𝑄𝑟)]
𝑅
𝑟=1

∑ [𝐿(𝑄𝑟) ×𝑊(𝑄𝑟)]
𝑅
𝑟=1

⁡. 2.13 



 

18 
 

 EAP also yields estimates for all possible response patterns.  It is a non-iterative approach 

and is computationally faster, making it advantageous over other Bayesian estimators that use the 

mode of the posterior distribution.  It is also easy to use with both dichotomous and polytomous 

models.  However, EAP estimates may be biased and regressed to the mean.  This is overly 

apparent when an inappropriate prior is chosen. 

Examinee Classification  

Two main goals of testing are to determine an examinee’s ability with minimal error and 

to assign an individual examinee to a category that represents the level of skill proficiency as 

measured by the test (Birnbaum, 1968; Hambleton et al., 1991).  This score can be used in 

conjunction with a reference group to provide meaning to the examinee’s location (e.g., scores in 

the upper 20%).  However, this score can also be used to place the examinee into various groups, 

or categories, using cutscores.  This process is called classification and can be used to categorize 

individuals into two or more groups (e.g., master versus non-master; basic, proficient, or 

advanced).  IRT allows for classification based on θ estimates of examinees using the full 

response pattern of the individual. 

 Mastery testing is a type of testing that uses IRT-based θ to classify examinees into 

various groups (Lord, 1980).  To classify individuals into groups, cutscores (θC) are computed 

based on true-score levels that define mastery.  A test may have only one cutscore (θC) that 

defines the difference between two groups, such as masters and non-masters.  If an examinee’s 𝜃 

is below θC, the examinee is classified as a non-master; if it is above θC, the examinee is 

classified as a master.  The same approach can be used for multiple cutscores (θC1 and θC2) where 

examinees are classified into multiple groups (e.g., basic, proficient, advanced).  Classification 

into the basic and advanced groups would follow a similar pattern to the two group classification.  
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The difference would be in classifying an examinee into the proficient category.  To be classified 

as proficient, an examinee’s 𝜃 would need to be greater than θC1 but equal to or less than θC2 

(Lord, 1980). 

 IRT allows for the estimation of two separate classification indices.  The first, 

classification consistency, is the probability that an examinee with a specified θ would be 

classified into the same category on separate administrations of an assessment (Lee, 2010).  

Classification accuracy is the rate at which examinees are classified into their true category based 

on their “true” ability (Lathrop & Cheng, 2013; Lee, 2010).  False positives occur when an 

examinee is classified into a higher category than their true category, and false negatives occur 

when an examinee is classified into a lower category than their true category (Lee, 2010; Stone, 

Weissman, & Lane, 2005). 

 Classification via IRT requires multiple considerations.  First, the choice of IRT model 

will affect the classification of examinees.  Stone et al. (2005) found that more consistent 

classifications were obtained when the IRT model fit the data.  In this study, a 3PL model 

resulted in more consistent examinee classification than a 1PL model did when using multiple-

choice items.  Multiple-choice items often result in higher levels of guessing; the 3PL model 

includes a parameter for this item characteristic and may be more appropriate when representing 

items.  Thus, they found that the 1PL model systematically underestimated ability estimates, 

which affected classification. 

 Another consideration is the location of the cutscores.  Classification accuracy is 

conditional on the placement of the cutscore (Lathrop & Cheng, 2013).  Lathrop and Cheng 

(2013) found that classification accuracy was low when the cutscore was at the mean of the 

ability distribution, but increases as the cutscore moved further away from the mean.  Lower 
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classification accuracy is also obtained at locations along the ability distribution where the 

standard error of measurement is high.  This is because less information is available at these 

locations and results in more classification errors (Lathrop & Cheng, 2013).   

 Lastly, a choice of what to base the classification decision on affects accuracy.  

Classification can be based on a total score, x, for the test or it can be based off the latent trait 

estimate, 𝜃, obtained via IRT.  If using the Rasch model, the total score is a sufficient statistic 

and results in high classification accuracy.  However, if a model is chosen where total score is 

not a sufficient statistic, such as in the 3PL model, 𝜃 is preferable (Lathrop & Cheng, 2013).  

This decision relates to the first consideration of choosing the appropriate model to represent the 

data. 

Test Designs 

 Tests are generally constructed with a specific purpose (Crocker & Algina, 2008; 

Guilford, 1954).  Determining the purpose includes establishing the construct of interest (e.g., 

mathematics proficiency, aptitude, personality), the population of interest (e.g., high school 

students, job applicants, military personnel), and the behaviors that are representative of the 

construct (e.g., solving mathematics items, solving pattern sequences, responding to 

agree/disagree items).  Other features relating to the purpose of the test is whether the test will 

discriminate among a broad or narrow range of abilities based on the goal of the test (e.g., 

examinee rank or examinee classification).  The last decision is how the final score will be used 

(i.e., what gives the final score meaning).  One approach is to interpret an individual examinee’s 

score against a representative group; this is considered norm-referenced measurement.  Another 

approach is to gain an absolute level of performance for the examinee; this is criterion referenced 

measurement. 
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 A final determination for a test is whether it is to be administered adaptively or not.  Non-

adaptive tests, or conventional tests (CTs), are those in which a fixed set of items is administered 

to all examinees irrespective of administration medium, such as paper or via computer (Garrison 

& Baumgarten, 1986; Weiss, 1985); conventional tests may also be called linear fixed length test 

(LFTs).  These tests may be scored using traditional classical test theory (CTT) statistics, where 

an observed number correct score is obtained for each examinee, or using IRT methods.  

However, a major issue exists with the use of conventional tests; this issue is ability-difficulty 

mismatches (Garrison & Baumgarten, 1986; Mead & Drasgow, 1993).  While this issue is easy 

to understand, it is a serious disadvantage.  Ability-difficulty mismatches occur when items on 

the assessment are either too easy or too hard for the examinee (Mead & Drasgow, 1993).  Thus, 

a conventional test may not accurately reflect the true ability of an individual if items do not 

exist around his or her ability.  Consequently, the standard error of measurement for an examinee 

with a large ability-difficulty mismatch might be quite high (Garrison & Baumgarten, 1986).  A 

solution to this issue is the use of adaptive (e.g., computer adaptive or multistage) testing 

designs. 

Adaptive testing is a “process of test administration in which test items are selected for 

administration on the basis of the examinee’s responses to previously administered items” 

(Weiss & Kingsbury, 1984, p. 361).  This approach to measurement resolves the ability-

difficulty mismatch issue plaguing conventional tests by tailoring each assessment to the 

examinee (Weiss, 1985).  Thus, examinees only receive items appropriate for their ability level, 

creating an ability-difficulty match (Chang, 2014).  Two approaches to adaptive testing are 

computerized adaptive tests (CAT) and multistage tests (MST). 
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CAT   

Computerized adaptive testing (CAT) is one type of adaptive test design that tailors an 

assessment to the individual, resulting in a test that is optimal for an examinee with a specific 

ability level, θ.  These assessments utilize IRT, since item and people characteristics are placed 

on the same latent continuum.  CATs can be designed to measure achievement, aptitude, or 

personality traits.  During the CAT process (Figure 2.1), an initial item from the item pool is 

administered to an examinee, and based off their response, a provisional estimate of ability is 

obtained.  Using this estimate, 𝜃1̂, the next best item is chosen from the pool of items and 

administered to the examinee.  This item is chosen to provide the most information conditional 

on the examinee’s current ability estimate.  Based on the response to this new item and the 

previous one, an updated estimate, 𝜃2̂, is obtained.  The process continues in this “item, response, 

update” fashion until the end of the test and a final estimate is obtained using information from 

all items and item responses (Weiss & Kingsbury, 1984).  These tests are structured such that 

final ability estimates are obtained such that all examinees achieve a similar percentage correct 

score (e.g., examinees answer approximately 50% of the items administered correctly; 

Bergstrom, Lunz, & Gershon, 1992).  The goal of a CAT can be estimation, in which a precise 

estimate of proficiency in the domain is desired, or classification, in which the goal is to make a 

decision regarding the categorization of an individual (Eggen, 2011).  
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Figure 2. 1.  Example of a CAT. 

   

A CAT may be terminated when a pre-specified level of measurement precision has been 

attained, after a fixed number of items has been administered, or after a specific time interval has 

elapsed (Thissen & Mislevy, 2010).  CATs are designed to administer the shortest test possible 

to examinees.  Thus, using equiprecise measurement, the standard error (SE) of 𝜃 is examined 

and when a preset level is obtained, testing stops.  This level can vary for each test and depends 

on the test’s purpose (Weiss & Kingsbury, 1984; Weiss, 1982; Weiss & Vale, 1987).  This 

approach to termination results in variable-length CATs (i.e., test length can vary between 

examinees).  Another approach to termination is a fixed-length CAT, in which a specific number 

of items is administered to all examinees and the assessment stops when the last item has been 

reached (Gershon, 2005).  The last approach stops the test after a fixed amount of time (e.g., 2 

hours) has elapsed (Thissen & Mislevy, 2010).  Variable-length tests usually result in less 

measurement error and are more efficient than fixed-length tests (Babcock & Weiss, 2012).  In 
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practice, a combination of these approaches is usually considered and implemented for practical, 

political, and legal reasons (Babcock & Weiss, 2010; Gershon, 2010).  For example, examinees 

may complain they received a longer (or shorter) test than another examinee and suggest the test 

is unfair.  Or, if using equiprecise measurement, an examinee may run the risk of having every 

item administered to them during the testing window.  Thus, it is pertinent to think of possible 

issues that might arise and use the best combination of termination rules (Gershon, 2005).  

Babcock and Weiss (2012) recommend using a combination of variable-length termination 

criteria (e.g., low standard error) as well as a minimum number of items administered constraint. 

Since a CAT tailors the assessment to the examinee by selecting the next best item for the 

examinee’s provisional estimate, an item selection method must be chosen.  An item selection 

method specifies how the CAT chooses items for the examinee (Meijer & Nering, 1999).  

Random selection of items would result in longer, less precise assessments and would introduce 

an ability-difficulty mismatch issue as in conventional tests.  One approach (i.e., point 

information criterion) to item selection is to choose the most informative item at the examinee’s 

current 𝜃.  Using this provisional estimate, Fischer’s information (i.e., Equation 2.5) would be 

computed and the next item chosen such that it maximizes this information at the estimate 

(Gershon, 2005; Lord, 1980; Thissen & Mislevy, 2010; Thompson & Weiss, 2011; Weiss, 1982; 

Weiss & Kingsbury, 1984).  More informative items reduce the error of measurements at 𝜃 

(Weiss & Vale, 1987).  However, issues do exist with this approach, especially when there is no 

variation in the examinee’s response pattern.  Veerkamp and Berger (1997) proposed the 

likelihood weighted information criterion, which uses the likelihood function as a weight in item 

selection when it is more likely the item’s information function is close to the examinee’s true 

ability.  In this approach, ability is only estimated once at the end of the test administration.  
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However, it solves the issue with the point information criterion.  Another approach would be to 

select the item with the smallest posterior variance of 𝜃; this approach is appropriate if a 

Bayesian method (e.g., MAP, EAP) is used (Meijer & Nering, 1999; Weiss & Kingsbury, 1984).  

Both of these approaches are similar and would result in a similar set of administered items. 

Ability estimation.  When estimating ability, CTT can be used within a CAT framework, 

but IRT approaches provide more precision and are often preferred (Thompson & Weiss, 2011).  

As previously discussed, MLE and WLE can only be used when mixed response patterns, in 

which correct and incorrect responses have been recorded, are obtained, which is a drawback to 

these approaches.  Multiple studies have been conducted comparing likelihood based estimators 

and Bayesian estimators in terms of various error indices (i.e., bias, standard error (SE), and root 

mean square error (RMSE)) in multiple situations.  These estimators have been investigated in 

relation to various termination rules, such as fixed length and variable length termination 

(Doebler, 2012; Gorin, Dodd, Fitzpatrick, & Shieh, 2005; Wang, Hanson, & Lau, 1999; Wang & 

Wang, 2001; Yi, Wang, & Ban, 2001).  They have also been investigated with dichotomous 

(Doebler, 2012; Wang et al., 1999; Yi et al., 2001) and polytomous (Gorin et al., 2005; Wang & 

Wang, 2001) IRT models.  Item pools have also been varied in order to examine the impact of 

item bank size (small versus large) and item bank distribution (peaked versus rectangular) on 

ability estimators (Doebler, 2012; Gorin et al., 2005; Wang et al., 1999; Wang & Wang, 2001; Yi 

et al., 2001). 

Studies often compare the four ability estimators listed above.  However, Wang et al. 

(1999) introduced essentially unbiased Bayesian estimators.  These essentially unbiased 

Bayesian estimators (EU-EAP and EU-MAP) use a beta prior specifically designed to reduce the 

bias commonly seen in these estimators without increasing the SE.  Thus, in contrast to the 
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normally used normal prior that includes information reflecting the examinee population, the 

essentially unbiased prior solely serves to decrease bias and does not reflect any prior 

information about the examinee.  Gorin et al. (2005) examined EAP estimators with various 

priors, resulting in a total of six ability estimators:  MLE, WLE, EAP with a uniform prior (EAP-

U), EAP with a normal prior (EAP-N), EAP with a negatively skewed prior (EAP-NS), and EAP 

with a positively skewed prior (EAP-PS).  EAP-U was considered an uniformed prior, as no 

prior information was used, whereas the other EAP estimates had informed priors (i.e., EAP-N, 

EAP-NS, EAP-PS).  A variable termination rule was used.  Informed versus uniformed priors 

were examined for their effects on error indices.   

For tests using a fixed-length termination rule and dichotomous IRT models, bias can be 

seen across all estimators if the test is long enough.  Bayesian estimators often produce bias 

towards the mean of the prior (Meijer & Nering, 1999; Weiss & Kingsbury, 1984).  Likelihood 

estimators produce a different pattern:  ability is often overestimated for high performing 

examinees and underestimated for low performing examinees (Meijer & Nering, 1999).  In terms 

of specific ability estimators, WLE has less bias than MLE and EAP has less bias than MAP 

(Doebler, 2012).  WLE and EU-MAP produce similar results; these estimators were less biased 

than MAP, and their bias was lower or equal to bias in MLE and EU-EAP (Wang et al., 1999).  

In terms of SE, the estimators are listed in order of increasing error:  MAP, EU-EAP, EU-MAP, 

and MLE.  WLE estimators were similar to EU-MAP estimates in terms of SE except at the 

extreme low end of the ability continuum, in which WLE produced slightly higher SEs.  For 

RMSE, EU-EAP was lower than EU-MAP, which was lower than MLE.  Again, WLE 

performed similarly to EU-MAP except at the extreme low end.  Thus, WLE, EU-EAP, and EU-

MAP perform better in terms of bias and SE than MLE (Wang et al., 1999).  Similar results for 
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these estimators are obtained for polytomous IRT models and a fixed-length termination rule 

(Wang & Wang, 2001).  WLE produced the smallest bias over the largest ability range.  MLE 

produces outward bias (e.g., overestimation and underestimation at extremes) while EAP/MAP 

produce inward bias (e.g., bias toward mean).  WLE has the smallest SE in the middle ability 

ranges, but MLE is close.  EAP and MAP have lower SEs than MLE/WLE at the ability 

extremes (Wang & Wang, 2001). 

Comparison of the ability estimators with variable-length termination rules produce 

different results.  Under a variable-length termination rule for dichotomous IRT models, the 

likelihood estimators and MAP estimator were strongly biased; WLE results in greater bias than 

MLE (Wang et al., 1999; Yi et al., 2001).  EU-EAP, EU-MAP, and EAP resulted in the lowest 

bias across the estimators.  Similar patterns were found for SE and RMSE.  The likelihood 

estimators resulted in larger SEs and RMSEs than the Bayesian estimators, with the exception of 

the extremes, in which MAP had the largest RMSEs (Wang et al., 1999; Yi et al., 2001).  Using a 

polytomous IRT model, EAP estimates with informed priors showed bias towards the mean, as 

expected, and likelihood estimators also produced inward bias (Gorin et al., 2005; Wang & 

Wang, 2001).  WLE was not an improvement over MLE in terms of bias (Wang & Wang, 2001).  

All Bayesian estimators resulted in lower SEs than WLE and MLE (Gorin et al., 2005; Wang & 

Wang, 2001).  EAP-U had higher SEs than EAP estimators with informed priors.  Thus, in 

general, ability estimates were more stable for EAP estimators with informed priors over 

uniformed priors.  MLE and WLE were comparable in terms of standard error, so WLE was not 

an improvement over MLE (Gorin et al., 2005).   

When taking these results as a whole, a few general conclusions can be drawn.  The 

choice of the CAT termination rule greatly influences which ability estimator should be chosen.  
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For fixed length tests, WLE is an improvement over MLE and Bayesian estimators in terms of 

bias (i.e., it reduces bias more).  However, it may be non-convergent when response patterns do 

not include mixed responses, as described earlier.  In this case, Bayesian estimates may be 

utilized for the whole test or until a mixed pattern is observed (Gorin et al., 2005).  For variable 

length tests, WLE is not an improvement over MLE and may increase bias.  Informed Bayesian 

estimates improve estimation, but uninformed Bayesian estimates are not extremely detrimental.  

Thus, there is a trade off when choosing an ability estimator for an assessment.  The likelihood 

estimators (MLE and WLE) are often less biased but the Bayesian estimators (EAP and MAP) 

are often more precise.  If bias is a concern, likelihood estimators or the essentially unbiased 

Bayesian estimators are preferred; if SE is a concern, Bayesian estimators are preferred (Wang et 

al., 1999). 

Classification.  Computerized classification tests (CCTs) are a special form of CAT in 

which the goal of the test is to adaptively administer a test such that an examinee can be 

classified into mutually exclusive categories based on the relationship of the ability estimate to a 

cutscore.  CCTs maximize the efficiency of the test by having small classification errors and 

reduced items (Eggen, 2011; Gnambs & Batinic, 2011; Nydick, 2014; Thompson, 2007, 2009; 

Weiss, 1982).  Thompson (2007) recommends using variable-length computerized classification 

tests (VL-CCT) as the name for CCTs that terminate after a classification decision can be made, 

thus resulting in variable-length tests.  CCTs may also be designed to administer a fixed number 

of items.  However, for this discussion, CCT will be retained. 

One difference between standard CAT designs and CCT is the termination criterion 

utilized.  While CCTs can be terminated after a fixed number of items are administered, this 

approach is often not optimal.  Therefore, several approaches exist for termination.  One 
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approach is an ability confidence interval approach (ACI; Patton, Cheng, Yuan, & Diao, 2013; 

Thompson, 2009; Weiss & Vale, 1987).  In this approach, an estimate of ability for examinee s, 

𝜃𝑠̂, is obtained and a confidence interval (CI) is constructed around the estimate.  The confidence 

interval is calculated using Equation 2.14.   

𝐼 = ⁡𝜃𝑠̂ ⁡± ⁡𝑧⁡1−𝛼
2
∗ 𝑆𝐸⁡. 2.14 

In this equation, 𝑧⁡1−𝛼
2

 corresponds to the (1-α) CI (Patton et al., 2013; Thompson, 2007).  An 

examinee is classified into a category when the cutscore, 𝜃𝐶 , is not contained within the CI.  

Tests of varying length are obtained using ACI; if 𝜃𝑠̂⁡falls near the 𝜃𝐶 , the examinee will receive 

a longer test than if a larger discrepancy existed (Patton et al., 2013).  For example, if examinees 

are being classified as either masters or nonmasters, an examinee is classified as a master when 

their 𝜃 and corresponding CI is completely above the cutscore, 𝜃𝐶 .  When ACI utilizes estimate-

based (EB) selection, less items were required to make a classification decision with similar 

accuracy to cutscore-based (CB) selection (Thompson, 2011).  CCTs that used this approach 

were originally coined adaptive mastery tests (Thompson, 2007; Weiss & Kingsbury, 1984), but 

this title is too restrictive.  This approach was usually estimate-based and made dichotomous 

classifications.  ACI can be used in broader applications, such as adaptive testing for assigning 

grades (Weiss & Kingsbury, 1984). 

 A second termination approach is similar to that utilized in CAT.  This approach uses the 

SE to end the test, aiming for equiprecise measurement across all examinees (Thissen & 

Mislevy, 2000).  Thus, the test ends when a pre-specified level of measurement has been 

achieved, and the examinee is classified into a category.  This conditional standard error (CSE) 

rule might cause tests to end prematurely.  While a pre-specified level of error has been 
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achieved, classification accuracy may be impacted because ability estimates might be biased 

around extreme cutscores (Patton et al., 2013). 

 A third, and more common, termination approach in CCT is the sequential probability 

ratio test (SPRT).  The SPRT phrases the problem in terms of a ratio of the likelihoods of two 

hypotheses.  These hypotheses are shown below in terms of a dichotomous classification (Eggen, 

2011; Nydick, 2014): 

𝐻0:⁡𝜃1 = 𝜃𝐶 − 𝛿 

 
𝐻1:⁡𝜃2 = 𝜃𝐶 + 𝛿⁡, 

2.15 

where 𝛿 represents equally-spaced indifference regions around the cutscore 𝜃𝐶 .  These 

indifference zones reflect the idea that making accurate decisions for individuals close to the 

cutscore cannot be guaranteed due to measurement error (Eggen, 2011).  Larger indifference 

regions may decrease the number of items administered on an assessment, but classification 

accuracy may suffer (Thompson, 2011).  A likelihood ratio test is computed (Eggen, 2011; 

Nydick, 2014; Thompson, 2007, 2011): 

𝐿𝑅(𝜃2; 𝜃1) =
∏ 𝑃2𝑖(𝜃)

𝑥𝑠𝑖𝑄2𝑖(𝜃)
1−𝑥𝑠𝑖𝐼

𝑖=1

∏ 𝑃1𝑖(𝜃)𝑥𝑠𝑖𝑄1𝑖(𝜃)1−𝑥𝑠𝑖
𝐼
𝑖=1

⁡⁡. 2.16 

This ratio is then compared to two decision points with acceptable error rates, where 𝛼 represents 

Type I error rate and 𝛽 represents Type II error rate, shown below (Thompson, 2007): 

⁡𝐿𝑜𝑤𝑒𝑟⁡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ⁡𝐵 =
𝛽

1 − 𝛼
 

 

𝑈𝑝𝑝𝑒𝑟⁡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐴 =
1 − 𝛽

𝛼
⁡. 

2.17 

If the ratio is above B, the examinee is classified as above the cutscore (reject H0).  If the ratio is 

below A, the examinee is classified as below the cutscore (accept H0).  If the ratio is between A 

and B, another item is administered and the process is continued (Eggen, 2011; Thompson, 2007, 
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2011).  The SPRT can be extended to more than two categories.  SPRT can continue infinitely 

for examinees near the cutscore; thus, it can be adapted to end after a specified number of items, 

and is known as the Truncated SPRT (TSPRT; Eggen, 2011).  Once the maximum number of 

items has been administered, the most probable decision is made.  These termination approaches 

generally result in shorter tests than ACI (Thompson, 2011).  However, within SPRT, EB 

selection increases the number of items needed to make a classification decision with reduced 

accuracy (Thompson, 2009).  

MST   

Multistage testing (MST) is another approach to adaptive testing and can be thought of as 

a special case of CATs.  Where CATs adapt to the individual at an item level, MSTs adapt at the 

item-set level (Hendrickson, 2007; Yan et al., 2014).  In fact, a CAT can be obtained from a 

MST if each item-set was only composed of one item.  A conventional test can be considered a 

special case of a MST, in which there is only one item-set.  MSTs, often called computer 

adaptive sequential tests (CAST; Luecht & Nungester, 1998; Yan et al., 2014), are also an 

improvement over conventional tests in relation to the ability-difficulty mismatch (Weiss, 1985).  

Some researchers think MSTs are “the ideal compromise between linear (nonadaptive) tests and 

computerized adaptive tests (CATs) in that they allow some of the content and quality controls 

of linear tests, while providing some of the greater efficiency and flexibility of CATs” (Zwick & 

Bridgemen, 2014, p. 271).  Examinees receive items that are appropriate for their ability level, 

but they are administered in groups.  MSTs offer improved measurement precision and shorter 

tests when compared to conventional tests.  Various versions of multistage tests have been used, 

such as Cronbach and Gleser’s (1965) two-stage sequential test design for selection or rejection 

of borderline candidates for employment (i.e., classification) and Lord’s (1971) two-stage testing 
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for measurement.  MSTs can be PBTs with separate administrations, or they can be CBTs with 

or without separate administration times (Yan et al., 2014).  MSTs can also be adaptive or non-

adaptive.  However, research on MSTs was eclipsed by the development of CATs.   

 Like CATs, MST designs are administered via an algorithmic approach.  Prior to 

administration, modules, or groups of items, are assembled; these modules may also be called 

testlets.  Modules can be composed of discrete items, performance exercises, problem-based item 

sets, common-stem items, or other variations (Leucht, 2014).  These modules are selected by the 

algorithm and administered to examinees.  Figure 2.2 presents the basic concept of a MST with 

three stages; this can be designated as a 1-3-3 MST design.  The stages and modules 

administered together represent a panel, or a complete test.  Panels often will not provide the 

level of precision that a CAT can because the level of adaptability is lower (Chuah, Drasgow, & 

Luecht, 2006).  For each panel, the examinee is administered a routing test in the first stage.  

Based on the responses of the examinee to the items contained in the routing test, the examinee is 

routed to either module A, B, or C in stage 2.  After answering these items, the examinee is 

routed to one of the three modules in stage 3; this final module is considered the measurement 

test.  These later stage modules are designed to differentiate between narrower proficiency levels 

than the routing test (Hendrickson, 2007).  The sequence of modules taken through each stage is 

considered the path.  Each of the modules in each stage vary in total difficulty as it relates to the 

examinee’s proficiency, and specific rules govern the path an examinee can take.  For example, 

if the examinee is routed to the easy module A based on his or her responses to the routing test, 

the examinee can only be routed to either module D or E in stage 3.  Even if the examinee 

answers all items in module A correctly, there is no path to the harder module (i.e., Module F) in 

stage 3 (Zenisky & Hambleton, 2014; Yan et al., 2014).  While this explanation is based on the 
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three-stage, seven module example MST presented in Figure 2.2, it can be generalized to an m-

stage, k-module MST. 

 

 

Figure 2. 2.  Example of a MST. 

 As with conventional tests and CATs, the purpose of the MST must be determined prior 

to development of the modules, stages, panels, and test.  The test might be used for criterion 

referenced measurement or norm-referenced measurement (Hendrickson, 2007; Zenisky & 

Hambleton, 2014).  This decision will affect the routing method chosen to navigate examinees 

from one module to the next.  Since MSTs are composed of various modules at each stage, the 

module must be located along the difficulty continuum.  Often, the routing test in stage 1 is of 
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average difficulty; this allows for a first pass at estimating an examinee’s location (i.e., 

proficiency) on the latent scale and aids in selecting the next-best module for the examinee 

(Lord, 1980; Yan et al., 2014).  The modules in the successive stages vary in their difficulty.  

Terminating a MST is different from CATs.  Where CATs can be fixed-length or variable-

length, MSTs are terminated after a set number of stages have been administered (i.e., the MST 

has a fixed number of items and stages).  Routing in a MST can be done by using a pre-specified 

proportional schema, in which a specific proportion of examinees are routed to each module; this 

approach is termed defined population intervals (Luecht et al., 2006; Zenisky & Hambleton, 

2014).  Information from prior examinees is used to create decision points, θds, such that a 

specific proportion (i.e., 33%) of the population is exposed to the module.  This approach may 

manage module exposure but may lead to inaccurate estimation if the prior information used to 

set the θds is inaccurate (Zenisky & Hambleton, 2014).  Another routing approach, similar to that 

used in a CAT, selects the next informative module based on 𝜃 (Luecht & Nungester, 1998; 

Zenisky & Hambleton, 2014).   

 Ability estimation.  In MST, previously discussed trait estimation approaches (e.g., 

MLE, WLE, MAP, and EAP) can be utilized at the end of the assessment to deliver a point 

estimate and corresponding SE when item parameters are known.  These estimates can also be 

obtained at the end of each stage to route examinees to the next module (Hendrickson, 2007; 

Weissman, 2014).  Scoring, as well as classification based on the proficiency score, is conducted 

after an examinee has completed the entire MST (i.e., completed a path through a panel; 

Weissman, 2014). 

 Classification.  Similar to CCTs, classification in MSTs, called CMSTs, aims to 

categorize examinees into multiple groups with minimal error (Smith & Lewis, 2014).  When 
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classification is the goal in MST, several decisions must be made.  First, the location of the 

cutscore(s), θC, must be determined.  If cutscores are located near the densest part of the 

examinee population (i.e., the mean), classification accuracy might suffer.  Thus, classification is 

more accurate when cutscores are in the extremes of the distribution (Smith & Lewis, 2014).  

CMSTs can utilize the techniques discussed with CATs (i.e., SPRT, ACI, equiprecise 

measurement; Smith & Lewis, 2014; Weissman, 2014) to make classification decisions. 

 Research is convoluted on whether MST designs provide any increase in classification 

accuracy over conventional tests or CATs.  Xing and Hambleton (2004) examined the impact of 

item pool size and item quality across three testing designs:  linear tests, CATs, and MSTs.  

Results suggest that classification accuracy is higher when the item pool is large and items are 

more informative, which is a standard result.  Interestingly, their results suggest that a MST 

design functions similarly to a linear test around the cutscore, but does have increased 

measurement across the whole proficiency continuum.  Hambleton and Xing (2006) examined 

the potential of these test designs when the candidates were centered around the cutscore or not.  

Results support the use of MST designs when the cutscore and population mean are matched 

(i.e., optimally designed).  They concluded that the choice of test design did not have much 

influence over classification, although the CAT design did perform slightly better than the other 

two designs and MSTs perform better than conventional tests (Xing & Hambleton, 2004; 

Hambleton & Xing, 2006). 

Advantages and Disadvantages of Test Designs 

Conventional tests have a major limitation in that there is an ability-difficulty mismatch.  

Both CAT and MST designs remove this limitation by adapting to the examinee (Gershon, 2005; 

Weiss, 1982, 1985; Weiss & Vale, 1987).  CATs and MSTs have many advantages over 
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conventional tests, both for the test-taker and the test-developer.  Advantages for the examinee 

include easier test administration, greater test availability, and immediate score reporting with 

the marriage of the assessment with computers (Hendrickson, 2007; Meijer & Nering, 1999; 

Patsula, 1999).  These assessments are often shorter and more efficient at estimating ability, 

since the exam is tailored to the specific examinee, so comparable scores can be provided in less 

time with fewer items (Hendrickson, 2007; Meijer & Nering, 1999; Weiss, 1985).  For test-

developers, these assessments provide improved test reliability, test validity, and test security 

(Gershon, 2005; Patsula, 1999). 

 While CATs have many advantages that make them an ideal testing approach, they also 

have their disadvantages.  These disadvantages can directly affect the test-developer.  Since tests 

are not assembled prior to administration, developers cannot review the test form.  Large item 

banks must be developed and maintained in order to ensure particular items are not over-used 

and that all content is equally represented (Gershon, 2005; Patsula, 1999; Wainer & Eignor, 

2010).  Also, the initial costs of CAT development can be quite high (Meijer & Nering, 1999). 

 A disadvantage that specifically affects examinees is that CAT designs do not allow for 

common test-taking strategies (Mead, 2006).  In a CAT, examinees are unable to skip questions 

or review questions once answered as they can in a conventional test (Gershon, 2005; Patsula, 

1999).  This is a controversial topic in the area, as item review may allow greater satisfaction 

amongst test-takers but could result in less precise ability estimates.  Thus, examinees support 

the inclusion of review whereas test developers do not.  MSTs provide a solution for this issue. 

MST designs re-introduce some of the testing strategies examinees use in conventional 

testing but are unavailable in CATs.  Due to the modular design, examinees may review 

responses to items within a module, which may decrease stress and anxiety for examinees.  This 
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advantage of MSTs is an ideal aspect of conventional tests that was lost in CAT designs and is 

one of the most important advantages of MSTs (Hendrickson, 2007; Patsula, 1999; Robin, 

Steffen, & Liang, 2014; Yan et al., 2014; Zwick & Bridgeman, 2014).  Another strategy 

examinees can utilize is item skipping; they may skip items within a module that are too difficult 

and return to them if time permits (Zwick & Bridgeman, 2014). 

MSTs also have several advantages over both conventional tests and CATs.  Test-

developers have more control over the test in terms of balancing content.  Since modules are pre-

assembled, this provides an opportunity for review before administration (Breithaupt, Ariel, & 

Veldkamp, 2005; Chuah et al., 2006; Hendrickson, 2007; Yan et al., 2014; Zenisky & 

Hambleton, 2014; Zwick & Bridgeman, 2014).  This review can be item by item, but often, 

module item reports can be used; this is faster and troublesome items can be flagged for further 

review (Luecht & Nungester, 1998).  Due to increased ability for item review prior to 

administration, item and test security is often higher with MSTs (Breithaupt et al., 2005; 

Hendrickson, 2007).  Modular presentation of material also allows items to be scored as a unit 

with a polytomous IRT model and interdependency is not a concern.  Lastly, since there is less 

adaptability in MSTs (i.e., less routing points) than a CAT, test administration (e.g., scoring, 

routing, data management, computer processing) is more efficient (Hendrickson, 2007). 

Although MSTs have some of the same advantages as CATs and do offer other 

advantages, they do have disadvantages.  In order to create parallel modules and panels, large 

item pools are required (Breithaupt et al., 2005; Hendrickson, 2007).  While there are many 

advantages for item writers and item developers in terms of review and control, this does mean 

an increase in work and time needed that CATs do not require.  MSTs have the potential for 

increased error if only two stages are used, as one routing point might not be sufficient for 
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measurement precision (Hendrickson, 2007).  Lastly, to approximate the results of a CAT, more 

stages and modules at each stage are necessary, which increases the complexity of the MST 

(Patsula, 1999). 

Subgroup Differences 

 Assessments use various techniques in order to ensure the test is fair and unbiased against 

different population subgroups.  However, while a test may be fair and unbiased, it does not 

guarantee group differences in cognitive abilities, represented by test performance, will not exist.  

For example, examination of scores by military recruits on the Armed Services Vocational 

Aptitude Battery (ASVAB), as well as the Armed Forces Qualification Test (AFQT) composed 

of four ASVAB subtests, show that women and racial minority group members often score lower 

on these tests (GAO, 1990).  The scores influence the selection of these members and placement 

within the military, as they are less successful predictors for women and minority groups than 

white males.  Thus, the GAO (1990) called for an examination of the sensitivity and fairness of 

these tests.  Wise et al. (1992) examined the ASVAB and its technical composites.  They 

concluded that the test was unbiased and fair for women and African Americans, even though 

subgroup differences exist. 

Differences in cognitive abilities between demographic groups, such as gender, ethnicity, 

and race, have been documented in the literature (Eitelberg, 1981; Lynn & Kanazawa, 2011; 

Roth, Bevier, Bobko, Switzer, & Tyler, 2001).  Representation of these cognitive abilities may 

focus on different aspects.  One approach is to examine general intelligence (g; Spearman, 1904, 

1927), which suggests that all cognitive abilities are related to one common factor.   However, 

this common factor has been further broken down.  G can be further divided into two 

components:  fluid (Gf) and crystallized (Gc) intelligence.  These two categories suggest that 
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aspects of intelligence are innate (i.e., Gf) while other aspects are learned (i.e., Gc; Cattell, 1963; 

Horn & Cattell, 1966).  Intelligence can also be represented as general influences, such as 

visualization, fluency, speediness, memory and learning, audition, and retrieval (Carroll, 1993; 

Horn & Cattell, 1966).  These cognitive abilities are considered the second level of intelligence, 

underneath g, and can be further divided into more specific processes and abilities. 

Roth and colleagues (2001) documented differences between Caucasians, African 

Americans, and Hispanics in performance on educational, military, and personnel selection 

assessments.  Examination of these differences is important in relation to policy decisions and 

may explain wage differences (Blackburn, 2004).  Using the d statistic, a standardized statistic 

representing the mean difference between two groups divided by the sample-weighted average of 

the group standard deviations, the authors conducted a meta-analysis supporting the existence of 

differences between ethnic groups on various tests.  These tests represented general intelligence 

(g) and more specific abilities (i.e., verbal and mathematical ability) often measured via 

achievement tests, which have high correlations with intelligence tests.  The researchers also 

looked at differences between ethnicities based on various moderator variables; this approach is 

important because, although differences may exist, it is often difficult to explain the differences 

since the groups often vary on many different levels.   

The researchers found overall differences in g, ignoring all moderator variables, between 

Caucasians and African Americans (d = 1.10) and Caucasians and Hispanics (d = .72).  This 

implies that, in both comparisons, Caucasians score higher on intelligence than the other two 

ethnicities.  However, other variables did moderate the size of the standardized difference.  For 

example, Caucasians perform higher than African Americans on military assessments (Eitleberg, 

1981; Roth et al., 2011).  The military status of an individual (i.e., applicant versus incumbent) 



 

40 
 

also influenced the size of the difference observed.  Applicants had a d of 1.19 whereas 

incumbents had a lower d (.46) when comparing Caucasians to African Americans.  Thus, 

differences do exist between ethnicities, but the size of these differences are also related to 

various moderators (Roth et al., 2011).   

Lynn (2006) provides a comprehensive summary of race differences in various 

intelligence measures.  The book finds differences in intelligence for ten different races.  IQ 

scores range from approximately 60 to 100 points.  Africans have a weighted IQ average of 67, 

Caucasians have a weighted IQ average of 99, and Asians have a weighted average of 103.  As 

can be seen, races do vary in their IQ.  Similar to Roth and colleagues (2011), standard deviation 

units for IQ are reported.  Caucasians are used as the reference group.  For Africans, the standard 

deviation unit is -2 for IQ (Lynn, 2006).  Thus, this work provides more support to the notion 

that different races vary in IQ, as well as mathematics and science scores. 

 While a majority of studies find little to no group differences in test performance between 

genders (e.g., males and females), some studies do suggest that gender differences on specific 

tasks may exist.  Males often exceed at visual-spatial and mathematical tasks whereas females 

perform better on verbal tasks (Eitelberg, 1981).  These differences can also change over the 

course of time.  Females have been found to have higher IQs at earlier ages (i.e., ages 7 and 11) 

but this advantage changes at the age of 16, when males have higher IQs (Lynn & Kanazawa, 

2011).  At this age, the difference was approximately 1.8 IQ points, or .12d, where d represents 

standard deviation units.  Boys also had higher standard deviations than girls, suggesting a 

greater variance in intelligence.  While differences in IQ were observed, the study only used 

children in Britain, and thus might not generalize to other populations. 
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 Current assessments show differences in the ability of examinees based on their gender 

and ethnicity.  The Graduate Record Examination (GRE) reported gender differences in Verbal 

and Quantitative scores for U.S. citizens who took the GRE between 1 July 2014 and 30 June 

2015 (ETS, 2016).  On average, men scored higher than women in both the verbal reasoning 

(approximately 3 points) and quantitative reasoning (approximately 4 points) sections.  

Differences in mean and standard deviation can also be observed between ethnic groups as well 

on the GRE.  For example, African Americans tend to score lower on both assessments than 

Caucasians.  Asians tend to score the highest on the Quantitative section. 

 Gender and ethnic differences have also been reported in SAT scores in college-bound 

seniors in 2015 in both mathematics and critical reading (i.e., verbal).  When examining gender, 

males often score higher on both critical reading (4 points) and mathematics (31 points) than 

females (SAT, 2015).  These distributions have different means and standard deviations, which 

might provide different information if applied during trait estimation.  Differences in means and 

standard deviations also exist for various ethnic groups in mathematics and critical reading.  For 

example, Caucasians have the highest mean score for critical reading and African Americans 

have the lowest (98-point difference).  For mathematics, Asians have the highest score, whereas 

African Americans have the lowest (170-point difference; SAT, 2015). 

Collateral Information 

 Additional information, termed collateral information, can be obtained for both items and 

people.  For example, collateral information related to items may be features of the items (e.g., 

length, type of item, etc) such as those used in structural IRT models to predict item difficulty 

(Mislevy, 1988; Veldkamp & Matteucci, 2013).  For people, or examinees, collateral information 

may be demographic variables (e.g., gender, race), socioeconomic status, age, grade, country, or 
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previous test scores.  This type of information is contrasted with historical data, which is “data 

arising from previous similar studies where the same response variable and covariates of the 

current study have been collected” (Matteucci & Veldkamp, 2015, p. 919).  Information such as 

this might be used to estimate both item and person parameters (e.g., difficulty, discrimination, 

latent ability).  Therefore, the use and implications of collateral information in estimation must 

be examined. 

Item Parameter Estimation   

Studies have been conducted using collateral information to estimate item parameters.  

Mislevy and Sheehan (1989) used collateral information concerning examinees (e.g., age, grade) 

to estimate item parameters.  The researchers examined multiple cases of collateral information; 

they examined situations in which no collateral information was known, collateral information 

was known but not used, collateral information was known and used in examinee sampling, and 

collateral information was known and used in both examinee and item sampling.  The main 

conclusion of the study was that, if collateral information concerning examinees was used in 

order to assign items (i.e., only items appropriate for a specific grade were assigned), then the 

collateral information (i.e., grade) should be used when estimating item parameters.  Otherwise, 

parameter estimates would be inconsistent. 

 Another study examined the utility of using an empirical prior distribution versus non-

empirical priors in estimating items parameters (Matteucci, Mignani, & Veldkamp, 2012).  The 

study examined the possibility of having item covariates for item discrimination and item 

difficulty estimation.  Results support the use of an empirical prior over a non-empirical prior.  

Bias in both discrimination and difficulty was reduced using the empirical prior, particularly in 

the extreme regions of the item difficulty continuum.  However, the researchers only examined a 
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fixed-length linear test, and thus, the approach should be applied to an adaptive context before 

being used in such scenarios.  Regression trees have shown to have similar results for item 

parameters when creating an empirical prior from features of the items (Veldkamp & Matteucci, 

2013) or the examinees (Matteucci & Veldkamp, 2011) by examining the regression relationship 

between the covariate(s) and ability being examined.  Response times have also increased the 

efficiency of item parameter estimation (van der Linden, Entink, & Fox, 2010). 

Ability Estimation  

While the use of empirical information (i.e., collateral information) in item parameter 

estimation is less controversial, ethical issues exist related to the application of empirical priors 

in ability estimation (Veldkamp & Matteucci, 2013).  In certain situations, such as high-stakes 

achievement and aptitude testing, utilization of an empirical prior might have disadvantageous 

effects, such as bias in ability estimation based on group membership (i.e., implicit stereotypes).  

To circumvent these issues, researchers and test developers/administrators suggest the use of 

empirical information during test start-up and administration, such as when selecting the next 

item in a CAT, but to simply use the response patterns to estimate the examinee’s final ability 

(Matteucci & Veldkamp, 2013; van der Linden, Entink, & Fox, 2010;  Veldkamp & Matteucci, 

2013).  Research on the application of collateral information in ability estimation has persevered. 

 To exploit collateral information in ability estimation, a relationship between ability and 

the collateral information (e.g., covariates) must be created (Matteucci & Veldkamp, 2011; van 

der Linden, 1999).  The relationship between 𝜃𝑖, representing the latent ability of examinee i, and 

XP, representing the set of P individual covariates in the set [XP = 1, … P], is represented by 

Equation 2.18, 

𝜃𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑝𝑋𝑖𝑃 + 𝜖𝑖⁡, 2.18 
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where the 𝛽’s represent coefficients and the error terms are assumed to be independent and 

identically distributed (𝜖𝑖~𝑁(0, 𝜎
2)).  This linear regression is translated into a normal 

conditional distribution of 𝜃𝑖 given the set of XiP covariates: 

𝜃𝑖|𝑋𝑖1, … , 𝑋𝑖𝑃~𝑁(𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑝𝑋𝑖𝑃; ⁡𝜎
2) . 2.19 

Equation 2.19 represents the use of an empirical prior distribution for ability when examinees are 

randomly sampled from a subpopulation within XP (van der Linden, 1999).  Empirical 

information may also be used to calculate an initial ability estimate in order to initialize ability 

estimation in an adaptive design and select the first item administered using Equation 2.20: 

𝜃𝑖̂ = 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑝𝑋𝑖𝑃⁡. 2.20 

This approach provides a better provisional estimate for an individual, which might decrease the 

time needed to converge on an ability estimate, as well as leads to higher statistical precision and 

lower item exposure (Matteucci & Veldkamp, 2013; van der Linden, 1999; Veldkamp & 

Matteucci, 2013). 

 Various studies have utilized this approach to empirical priors for estimating ability.  

Through direct estimation of the regression weights and the variance of the prior, 𝜎2, van der 

Linden (1999) crated a relationship between the Name Comparison test and Vocabulary test 

included within the adaptive version of the Dutch General Aptitude Test Battery.  Previous 

performance on one test (i.e., Name Comparison) was used as collateral information for ability 

initialization or ability estimation using an empirical prior.  Veldkamp and Matteucci (2013) 

used performance on one construct (e.g., intelligence via Raven’s Matrices) to create an 

informed, empirical prior for performance on a similar construct (e.g., intelligence via Number 

Serires).  Using a CAT simulation design, the researchers found that for 𝜃s close to 0, slightly 

shorter tests could be administered to examinees.  For more extreme 𝜃s (i.e., high and low ends 



 

45 
 

of the continuum), a considerable reduction in test length was observed when using empirical 

priors.   

Matteucci and Veldkamp (2013) also examined the use of empirical priors in a CAT 

design, comparing fixed-length and variable-length tests.  Three simulation designs were 

examined:  one simulation was standard, using a standard normal distribution as a prior and 

ability is initialized at a point estimate of zero; one simulation used only empirical initialization, 

in which an empirical prior was used as an initial estimate; and the last simulation was fully 

empirical, utilizing an empirical prior for initialization and estimation.  Results show that the 

fully empirical situation reduced the number of items needed in relation to the standard 

simulation, also reducing item exposure.  This situation also resulted in more precision ability 

estimation over the standard situation in both variable-length and fixed-length CATs.  The 

empirical initialization situation provided intermediate results (i.e., its behavior was between the 

other two situations).  Empirical initialization performed better than the standard situation, but 

was less precise than the fully empirical situation.  The researchers also conducted two empirical 

studies, one in an intelligence test setting and the other in an educational setting (Matteucci & 

Veldkamp, 2013).  Both of these empirical situations used performance on a previous test as the 

collateral information for the succeeding test.  In both studies, the fully empirical design 

performed the best, especially at the extreme ends of the ability continuum. 

 The studies reported above often used MCMC with a Gibbs sampler to estimate the 

marginal maximal likelihood (MML) estimation of ability.  The studies also suggest that 

measurement precision and [reduced] bias will be related to the quality of the collateral 

information.  However, all of the studies have used performance on one test as collateral 

information.  None of the studies directly examined the impact of priors based on group 
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membership for the reasons stated above.  While researchers suggest the use of these 

demographic empirical priors for initialization and item selection only, no studies have been 

conducted examining the applicability of these approaches. 

 



 

47 
 

CHAPTER 3 

DATA AND METHODOLOGY 

 This chapter provides information pertaining to the design of the simulation study, 

including data generation, design conditions, and data analyses.  The chapter is split into five 

sections:  data generation, simulation test designs, ability estimation approaches, data analysis, 

and computer programs. 

 The main goal of the study is to examine the influence of various group-based test priors 

on trait estimation across the ability continuum in assessments, particularly CAT designs.  It is 

hypothesized that the use of inappropriate versus appropriate priors, based on group membership, 

will differentially impact estimates across groups.  Standard error (SE), bias, and Root Mean 

Square Error (RMSE) will be examined for different populations at the total population level, 

group membership level, and theta score level.  Each of these statistics will be examined for two 

fixed-length tests (CTs) and two CAT designs.  Based on current knowledge, it is expected that 

CAT designs will have lower standard errors (i.e., more precise measurement), less bias, and 

higher accuracy (i.e., lower RMSE values) when compared to the fixed-length test.  These 

routine expectations arise since CAT designs tailor the assessment to the individual, removing 

the ability-difficulty mismatch common in fixed-length tests.  Two CAT simulations will be 

conducted, in which length is varied.  Again, based on current information, it is hypothesized 

that the longer CAT will have lower standard errors than the shorter assessment. 

 Bias, representing a tendency to either over- or underestimate ability on an assessment, 

will be examined.  It is expected that bias will be present in the final estimates when using 

known information, in the form of an informative prior, about the simulee.  In general, estimates 

will be pulled toward the mean of the prior distribution utilized.  For simulees farther from this 
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mean, bias will be higher than for those closer.  In other words, simulees’ whose true ability is 

closer to the ability continuum extremes will be more heavily influenced by the prior, since it 

provides biased information pertaining to their true score (i.e., the information provided is that 

their true ability is closer aligned to the majority of the population when it is not).  It is pertinent 

to look at various theta score levels, as bias might exist at the extremes but not observed in 

overall bias (i.e., one extreme is underestimated, the other is overestimated, and this effect 

cancels out when examining overall bias).  However, this influence should be mitigated by the 

presence of information within the data (e.g., the scored responses).  However, if there is not 

enough information within the data or the prior utilized is extremely poor, bias may still be high. 

Greater bias should be observed overall and for theta score levels when an inappropriate 

prior is used instead of an appropriate one.  An appropriate prior is one in which the prior’s mean 

is equal to the mean observed in the population or population subgroups (i.e., true prior).  An 

inappropriate prior is one where the means are different; the prior’s mean may be above or below 

that observed in the total population or population subgroups.  For example, if a prior is chosen 

with a mean based on the entire population but various subgroups exist whose true ability mean 

is different, estimates for these subgroups will be more biased than for those subgroups whose 

true mean is closer to that of the prior.  In contrast, when an less informative prior (i.e., uniform 

prior) is used for final ability estimation, bias will be less extreme across the entire continuum 

but may still be higher than desired, since there is no capitalization on previous information 

pertaining to the individual. 

 Lastly, accuracy concerning the ability estimates will be examined via the use of RMSE.  

Smaller RMSE values indicate higher accuracy levels.  Higher accuracy will occur when the 

prior aligns closer to the true distribution of ability in the population (i.e., an appropriate prior is 
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used).  Thus, estimates will be less accurate when inappropriate prior distributions are utilized 

for ability estimation.  Accuracy will suffer more towards the extremes of the ability continuum 

(i.e., these estimates are being pulled to the mean of the prior). 

Data Generation 

Item Parameters 

Parameters were simulated to represent a four choice, multiple-choice assessment.  Item 

parameters were generated as if calibrated using the Rasch (Equation 2.4) and 2PL (Equation 

2.2) IRT models under the normal metric, resulting in two item banks.  In the 2PL item bank, 

each item has an item difficulty and an item discrimination parameter.  In the Rasch item bank, 

item discrimination was constrained to 1 with varying item difficulty parameters.  While there 

was no set rule on the required item bank size, enough items were generated to accurately 

represent the latent continuum (e.g., appropriate difficulty) and provide enough information at 

different locations (Green et al., 1984; Weiss & Kingsbury, 1984).  Items for both banks were 

generated along the ability spectrum between ± 3 at 0.25 increments (i.e., bins), with 100 items 

generated in each bin.  This resulted in a total of 2,500 items per bank.  Thus, item difficulties 

were normally distributed, β~N(μb, 0.04), such that μb represented the current location on the 

continuum.  All item discriminations were generated from a log-normal distribution with a mean 

of 0 and a variance of 0.25 (i.e., α~logN(0, 0.25)), mimicking the default parameters in BILOG-

MG 3 (du Toit, 2003; Zimowski, Muraki, Mislevy, & Bock, 2003). 

Table 3.1 presents that means and standard deviations for the 2,500 items in each item 

bank.  The mean difficulty was 0, as expected.  The item parameter distributions were examined 

graphically.  As seen in Figure 3.1, the item difficulty distributions for both items banks (i.e., B 

and D) were approximately uniform, suggesting there was roughly the same number of items at 
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each position on the latent continuum.  The items discriminations were equal (i.e., 1) for the 

Rasch item bank (i.e., A) and were clustered around a mean of 1 for the 2PL item bank (i.e., C) 

Table 3. 1.  Means and standard deviations of the total item bank. 

IRT Model N 
Item 

Parameter 
M SD 

Rasch Item 

Bank 
2,500 

α 1.0000 0 

β 0.0005 1.8148 

2PL Item 

Bank 
2,500 

Α 1.1469 0.6106 

β -0.0069 1.8157 

   

 

Figure 3. 1.  Distribution of item parameters  in the Rasch (A and B) and 2PL (C and D) item 

banks. 

Person Parameters 

Two populations were generated to represent true ability for two hypothetical groups, 

Group A and Group B.  Group A represented the majority, whereas Group B represented the 
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minority.  Each population contained 500,000 simulees; Group A represented 70% of the total 

population and Group B composed the remaining 30% of the population.  This population 

composition was chosen to be similar to census data, which reports approximately a 75% 

majority (i.e., Caucasian) and 25% minority composition (U.S. Census Bureau, 2016).  Table 3.2 

presents the distributional information for the total population for each simulation.  The Single 

Population (i.e., Simulation One) represented a situation in which both groups had the same true 

ability distributions; this represented a baseline condition.  The Subgroup Population (i.e., 

Simulation Two) represented a situation in which the two groups differ in true ability 

distributions, each having a different mean.  In this condition, the majority group (i.e., Group A) 

had a true ability distribution with a mean of 0.5 and a standard deviation of 1.  The minority 

group was split into two subgroups.  The first subgroup (i.e., Group B Low, or BL) was simulated 

to have a mean a full standard deviation below the majority; it consisted of 80% of the minority 

group.  Thus, its mean was -0.5 and its standard deviation is 1.  The second subgroup (i.e., Group 

B High, or BH) was generated to have the same true ability distribution as the majority group and 

contained the remaining 20% of the minority group.   

Table 3. 2.  True ability distributions for the populations. 

Simulation Population Group N Proportion True Ability 

Simulation 

One 

Single 

Population 

Group A 350,000 0.70 𝜃𝑇𝐴1~𝑁(0,1) 

Group B 150,000 0.30 𝜃𝑇𝐵1~𝑁(0,1) 

Simulation 

Two 

Subgroup 

Population 

Group A 350,000 0.70 𝜃𝑇𝐴2~𝑁(0.5,1) 

Group BL 120,000 0.24 𝜃𝑇𝐵2.𝐿~𝑁(−0.5,1) 

Group BH 30,000 0.06 𝜃𝑇𝐵2.𝑈~𝑁(0.5,1) 

 

 Descriptive information, examined after the person data were generated, supported the 

intended pattern from Table 3.2.  Table 3.3 shows that the mean for both groups in the Single 
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Population were approximately 0 (Figure 3.1A).  For the Subgroup Population, the population 

composite mean was 0.26 and the standard deviation was approximately 1.  The means were also 

obtained for the groups for in the Subgroup Population.  Group A had a mean of 0.5 and Group 

B had a composite mean of -0.3 (Figure 3.1B).  The individual group means for Group A, Group 

BL, and Group BH were also obtained (Figure 3.2).   

Table 3. 3.  Descriptive information for the true ability conditions. 

Simulation Condition Group N Mean SD Min Max 

Simulation 

One 
Condition 1 

A 350,000 -0.0032 0.9988 -4.9286 4.5781 

B 150,000 0.0012 1.0042 -4.2161 4.4927 

Total 500,000 -0.0018 1.0005 -4.9286 4.5781 

Simulation 

Two 

Condition 2 

Composite 

A 350,000 0.5000 1.0005 -3.9506 5.6225 

B 150,000 -0.2988 1.0727 -4.5362 4.8828 

Total 500,000 0.2604 1.0862 -4.5362 5.6225 

Condition 2 

Specific 

A 350,000 0.5000 1.0005 -3.9506 5.6225 

BL 120,000 -0.4984 0.9968 -4.5362 3.7960 

BH 30,000 0.4996 0.9911 -3.7955 4.8828 

 

 

Figure 3. 2.  True ability distributions by group for Single (A) and Subgroup (B) Populations. 
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Figure 3. 3.  True ability distributions for the Subgroup Population subgroups. 

 Simulees were classified into one of ten theta score levels based on their true ability.  

Table 3.4 shows the theta groupings for each score level.  The number of simulees in each theta 

score level for each population is presented in Table 3.5.  While simulees do exist in every theta 

score level, it is possible to have a percentage of 0 when compared to the total population.  
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Table 3. 4.  Theta score levels for comparisons across the ability continuum. 

Theta Score Level Theta Ranges Theta Score Level Mean 

1 𝜃⁡ < ⁡−2 𝜃1 <⁡−2 

2 −2⁡ ≤ ⁡𝜃⁡ < ⁡−1.5 𝜃2𝑀𝑛 =⁡−1.75 

3 −1.5⁡ ≤ ⁡𝜃⁡ < ⁡−1 𝜃3𝑀𝑛 =⁡−1.25 

4 −1⁡ ≤ ⁡𝜃⁡ < ⁡−0.5 𝜃4𝑀𝑛 =⁡−0.75 

5 −0.5⁡ ≤ ⁡𝜃⁡ < ⁡0 𝜃5𝑀𝑛 =⁡−0.25 

6 0⁡ ≤ ⁡𝜃⁡ < ⁡0.5 𝜃6𝑀𝑛 = 0.25 

7 0.5⁡ ≤ ⁡𝜃⁡ < ⁡1 𝜃7𝑀𝑛 = ⁡0.75 

8 1⁡ ≤ ⁡𝜃⁡ < ⁡1.5 𝜃8𝑀𝑛 = ⁡1.25 

9 1.5⁡ ≤ ⁡𝜃⁡ < 2 𝜃9𝑛 = ⁡1.75 

10 2 ≤ ⁡𝜃 2 ≤ ⁡𝜃10 

 

Table 3. 5.  Theta score level counts, and population percentage, for the total population. 

Theta 

Score 

Level 

Single Population Subgroup Population 

Group A Group B Group A Group B Group BL Group BH 

1 
7949 

(2%) 

3527 

(1%) 

2144 

(0%) 

8096 

(2%) 

7900 

(2%) 

196 

(0%) 

2 
15489 

(3%) 

6719 

(1%) 

5823 

(1%) 

11308 

(2%) 

10843 

(2%) 

465 

(0%) 

3 
32466 

(6%) 

13666 

(3%) 

15419 

(3%) 

19532 

(4%) 

18278 

(4%) 

1254 

(0%) 

4 
52459 

(10%) 

22332 

(4%) 

32248 

(6%) 

25647 

(5%) 

22909 

(5%) 

2738 

(1%) 

5 
67042 

(13%) 

28573 

(6%) 

52438 

(10%) 

27476 

(5%) 

22957 

(5%) 

4519 

(1%) 

6 
67143 

(13%) 

28760 

(6%) 

66934 

(13%) 

23931 

(5%) 

18057 

(4%) 

5874 

(1%) 

7 
52177 

(10%) 

22537 

(5%) 

66954 

(13%) 

16947 

(3%) 

11128 

(2%) 

5819 

(1%) 

8 
32043 

(6%) 

13672 

(3%) 

52627 

(11%) 

9718 

(2%) 

5237 

(1%) 

4481 

(1%) 

9 
15371 

(3%) 

6722 

(1%) 

31813 

(6%) 

4629 

(1%) 

1956 

(0%) 

2673 

(1%) 

10 
7861 

(2%) 

3492 

(1%) 

23600 

(5%) 

2716 

(1%) 

735 

(0%) 

1981 

(0%) 
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Simulation Test Designs 

 Two testing designs were examined for each population: conventional, fixed-length tests 

(CT) and computer adaptive testing (CAT).  Each test underwent 100 replications to test 

consistency.  A random sample of 3,000 simulees was drawn from the total population, specified 

in Table 3.2, for each replication.  Simulees in the sample were divided into 10 theta score levels 

based on true ability; each of these groups were equally represented in the sample.  This 

stratification was done to ensure that results were not influenced by outliers or too little 

information in a level.  For Simulation One (Single Population), a total of 1,500 simulees were 

pulled from each group (i.e., Group A, Group B); 150 simulees were sampled from each of the 

theta score levels.  For Simulation Two (Subgroup Population), a total of 1,000 simulees from 

each group (i.e., Group A, Group BL, Group BH) were sampled; 100 simulees were sampled from 

the theta score levels to have equal representation in all subgroups.  Thus, the subgroups will not 

differ in their overall score means, as observed in the population.  This ensured that each group, 

as well as each theta score level, had an equal representation of simulees in each simulation.  

However, the sample will not have a distribution like the total population due to this design.  To 

combat this issue in the analyses, a subset of the simulation samples will be drawn to 

approximate the individual subgroup distributions in the population.  Both types of data will be 

examined. 

Conventional Test 

First, simulees were routed through two conventional (i.e., fixed) testing designs.  These 

tests varied in length; one was composed of 15 items while the other was composed of 30 items.  

For each test, each simulee was administered the same set of items, in the same order, to obtain 

𝜃.  Four conventional tests, utilizing a specific item bank, were created for each population (i.e., 
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eight tests total) to have peaked item difficulties at the mean of the composite population 

distribution (i.e., total population mean).  This approach aims to have high measurement 

precision and low standard errors of measurement (Mead & Drasgow, 1993; Weiss, 1985, 2011).  

Thus, the items were clustered around this mean instead of spanning the whole item difficulty 

continuum.  All items were selected from the item bank to have high levels of item 

discrimination (𝛼𝑖 ≥ 1.5) for the 2PL IRT model. 

Table 3.6 provides descriptive information for the conventional tests under each IRT 

model and test length.  For the Single Population, both tests were constructed to have means of 0, 

while the items for the Subgroup Population were chosen such that the test’s mean difficulty was 

0.26.  For the 2PL model, item discriminations were, on average, greater than 1.  Appendices A 

and B contain the item parameters for the conventional tests for the Single and Subgroup 

Populations, respectively. 

Table 3. 6.  Descriptive statistics for all conventional test designs for the two simulations. 

Simulation Population IRT Model N Item Parameter M SD 

Simulation 

One 

Single 

Population 

Rasch 

15 
α 1.0000 0.0000 

β 0.0332 1.1650 

30 
α 1.0000 0.0000 

β -0.0652 1.1064 

2PL 

15 
α 1.8916 0.4507 

β 0.0062 1.1629 

30 
α 2.1067 0.6127 

β -0.0112 1.1059 

Simulation 

Two 

Subgroup 

Population 

Rasch 

15 
α 1.0000 0.0000 

β 0.2527 0.4479 

30 
α 1.0000 0.0000 

β 0.2666 0.7894 

2PL 

15 
α 1.9949 0.3859 

β 0.2664 0.6265 

30 
α 2.3002 0.7532 

β 0.2550 0.7207 
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CAT   

Two separate CAT simulations were conducted to represent fixed-length CAT design, 

like the conventional tests (Gershon, 2005).  However, each successive item was selected based 

on the simulee’s current 𝜃 and the item’s level of information.  This approach, maximum 

information, chooses the most informative item at the simulee’s current ability location using 

Fischer’s information (Equation 2.5).  Often, this is a popular choice in CAT administrations 

(van der Linden & Pashley, 2010).  Two fixed-length CATs were conducted, one with a length 

of 15 items and the other with a length of 30 items.  To avoid any political and legal issues, only 

fixed-length designs were used. 

For each replication, a different item pool, or a subset of items from the total item bank, 

was used to simulate real-world applications.  A total of 100 item pools was used (1 per 

replication) for all various conditions.  This approach was utilized because practical applications 

of CAT assessments do not have an infinite number of items at each level during administration.  

These item pools were created by selecting six items from each of the 25 bins.  For the Rasch 

model, six items were randomly selected.  For the 2PL model, one item was selected such that 

𝛼𝑖 < 0.5, four items were selected such that 0.5⁡ ≤ ⁡𝛼𝑖 ≤ 1.5, and the last item was selected so 

that 𝛼𝑖 > 1.5.  This was to simulate an item pool containing both high and low discriminating 

items; otherwise, the item pool might have had all highly discriminating items. 

Each CAT administration started with the most informative item (i.e., using maximum 

information item selection) at the mean of the chosen test prior.  For example, for a test prior 

based on the total population, each simulee was first administered an item around this difficulty.  

Therefore, each simulee received the same item at the beginning of the test.  However, when 

group specific priors were used, the starting item varied for each simulee based on group 
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membership.  While this approach did result in the same few items frequently used at the 

beginning of the test, this was not a cause for concern in the simulations.  Item exposure was not 

examined in the study and thus not controlled.  Also, CAT assessments often start with the same 

item to ensure that all examinees have the same starting point. 

Ability Estimation 

Trait Estimation 

 EAP (Equation 2.12; Bock & Aitkin, 1981) estimation was used to estimate ability.  It is 

less computationally intense, less biased, estimates proficiencies for people at the extremes, and 

can be used with perfect response patterns, which makes it preferred over other approaches, such 

as MLE.  Using EAP estimation allowed for the presence of information about the 

person/population via the inclusion of a prior distribution.  In this study, EAP with a specific, 

informative prior based on population groups was used to initiate the test (i.e., initial item 

selection) and during test administration (e.g., item selection after each successive item response) 

for CATs, but only influenced CTs at the end of testing.  However, final estimates were obtained 

using two approaches. 

Two different methods to final ability estimation were used.  Method 1 (i.e., EAP 

Normal) used EAP estimation to obtain the simulee’s final ability estimate in conjunction with 

the informative test prior, discussed next, utilized during test administration.  In other words, the 

test prior was used to start the test via ability initialization at the prior’s mean, item selection 

during the assessment, and for final ability estimation.  The EAP estimate used 40 equally-

spaced quadrature nodes between + −⁄  4 standard deviations from the mean of the informative 

prior.  Weights were normally distributed, in which extreme nodes have smaller probabilities.  

Method 2 (i.e., EAP Uniform) used the approach from Method 1 (e.g., the informative prior is 
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used during all stages of test administration) with the exception that the final ability estimate was 

estimated using a less informative prior, which provided little influential information about the 

simulee and used primarily the examinee’s scored responses to obtain a final estimate.  While the 

score responses provide a majority of the information, there is some impact from the uniform 

prior.  As with the EAP Normal estimate, the EAP Uniform estimate used 40 equally-spaced 

quadrature nodes between + −⁄  4 standard deviations from the mean of the informative prior.  

However, all weights were equal; in other words, each quadrature node had a similar probability.  

This second method simulated the approach of using empirical information to start and 

administer the assessment but using predominantly the response patterns to estimate the 

simulee’s final ability estimate, as recommended by researchers and test developers.   

Prior Information Utilization 

 Three test prior scenarios were employed to examine the impact of different test priors on 

trait estimation under the true ability distributions and trait estimation approaches.  Table 3.7 

represents the test prior distribution scenarios utilized.  The hyperparameters for each prior are 

fixed, not estimated.  Scenario 1 (i.e., Population Composite Prior) represented the use of the 

composite population mean obtained from the entire population.  This scenario was utilized in 

both simulations.  As can be seen, for the Single Population, the population composite mean is 0; 

for the Subgroup Population, the population composite mean is 0.26.   

The last two scenarios were only used with the Subgroup Population.  Scenario 2 (i.e., 

Group Composite Priors) represented the use of group composite priors based on group 

membership (Xgc).  Thus, for Group B, the composite prior was composed of the two subgroups 

(i.e., mean of both the Group B low and high subgroups).  For an individual in Group A, Xgc was 

0 and a mean of 0.5 was used.  However, for an individual in Group B, Xgc was 1 and a mean of -
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0.3 was used.  Scenario 3 (i.e., Group Specific Priors) was like Scenario 2, except members of 

Group B were further divided into the high and low subgroups.  Thus, three individual priors 

were utilized.  For Group A, the mean was 0.5.  For Group B, the covariate Xgs represents the 

specific subgroup membership.  When Xgs was 0, the mean was -0.5 to represent the lower 

subgroup (BL); when Xgs was 1, the mean was 0.5 to represent the higher subgroup (BH).  While 

previous work has utilized a previous test score as a prior (van der Linden, 1999; Veldkamp & 

Matteucci, 2013), the current work did not since the focus was on how composite group priors, 

created via the use of the total population or group’s mean, impacted trait estimation and not how 

individualized priors impact estimation.  Therefore, the pertinent collateral information in this 

simulation is group membership. 

Table 3. 7.  Prior distribution scenarios employed in the simulation. 

Simulation Population Scenario Label Prior Distribution 

Simulation 

One 

Single 

Population 
Scenario 1 

Population 

Composite Prior 
𝜃1.𝑃1~𝑁(0,1) 

Simulation 

Two 

Subgroup 

Population 

Scenario 1 
Population 

Composite Prior 
𝜃2.𝑃1~𝑁(0.26,1) 

Scenario 2 
Group Composite 

Priors 
𝜃2.𝑃2~𝑁(−0.8𝑋𝑔𝑐 + 0.5, 1) 

Scenario 3 
Group Specific 

Priors 

𝜃2.𝑃3𝐴~𝑁(0.5, 1) 
𝜃2.𝑃3𝐵~𝑁(𝑋𝑔𝑠 − 0.5, 1) 

 

 Priors will be utilized different for CTs and CATs.  For CTs, the above test priors will 

only be influential at the end of the assessment when estimating final ability.  Therefore, these 

priors are considered final estimate priors.  However, for the CATs, test priors are utilized 

throughout the entire testing process (administration and final ability estimation).  Thus, they are 

called test priors. 
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Data Analysis 

 Correlations will be computed between the true ability parameters and the ability 

estimates across all replications from each ability estimation approach.  High correlations 

indicate that the estimation approach produced estimated abilities like the true values.  In 

conjunction to these correlations, three statistics will be used as dependent variables to examine 

the data in terms of 𝜃 and⁡𝜃.  First, precision of 𝜃 will be examined via calculation of the 

standard error of the estimate (Equation 2.13).  A mean standard error for data will be examined, 

and will be calculated using Equation 3.1.   

𝑆𝐸𝜃̂̅̅ ̅̅ ̅ = ⁡√
∑ 𝑆𝐸𝑖

2𝑁
𝑖=1

𝑁
 3.1 

The lower the standard error, the more precise the estimate.  Second, residuals, representing bias, 

will be calculated for each simulee by subtracting his or her true ability from the estimated 

ability, 𝑟𝑖 =⁡𝜃𝑖̂ −⁡𝜃𝑖 .  These residuals represent the amount of error in the estimate and are 

expected to be 0.  Using these residuals, the mean bias can be calculated using Equation 3.2 

(Gorin et al., 2005; Patsula, 1999), below: 

𝑟̅ =
∑ 𝑟𝑖
𝑁
𝑖=1

𝑁
 3.2 

When this mean is non-zero, the ability estimates are considered to be biased and can be in either 

a positive or negative direction.  Thus, in terms of this study, the mean bias will imply whether 

the approach to ability estimation reflects the tendency to over- or underestimate ability.  

Positive bias indicates an overestimation of ability, while negative bias indicates an 

underestimation of ability.  Third, accuracy will be examined via the use of Root Mean Square 

Error (RMSE), which is the square root of the Mean Square Error (MSE) and is calculated using 

the below equation. 
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𝑅𝑀𝑆𝐸 = ⁡√
∑ 𝑟𝑖

2𝑁
𝑖=1

𝑁
 3.3 

 

RMSE is expected to be 0 when accurate ability estimates exist.   

For each of these statistics, values were analyzed in multiple.  Analyses were constrained 

to examination of the three subgroups (A, BH, BL) for all combination of IRT model, test type, 

test length, test prior distribution, and estimation approach.  These statistics were examined when 

all theta score levels are equally represented and when the groups approximate the population 

distribution.  When examining the statistics for equal theta score levels, how the test priors affect 

ability across the entire ability continuum can be examined.  For instance, does a test prior 

differentially affect different theta levels.  Then, examining the statistics with a sample similar to 

the population allows for generalization of the results.  However, it is inappropriate to examine 

group membership and theta score level simultaneously, and these analyses will be done 

separately.  

 Analysis of variances (ANOVAs) will be conducted using SE, bias, and RMSE as the 

dependent variable for each condition in both simulation studies.  Under each IRT model (i.e., 

Rasch and 2PL), the independent variables that will be examined will be the assessment type, 

final trait estimation approach, and test prior.  These ANOVAs will show any significant 

differences between the various conditions and their interactions. 

Software 

 Several software programs were utilized in completion of the study.  R (R Core Team, 

2015) was used for multiple purposes.  This software was used to create item pool and person 

samples, analyze data, and create tables and figures.  Simulated data was analyzed using 

SAS/STAT software® for final ability estimation under both estimation methods (i.e., EAP 
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Normal and EAP Uniform).  Two other software programs were utilized to obtain simulated data 

for all examinees.  

SimulCAT (Han, 2012) is a simulation software that enables CAT simulations to be 

conducted.  The software enables the user to put specify different conditions (e.g., prior, 

estimation technique, etc.) on the simulation design.  The software reads in a person dataset, 

containing ID and true ability, as well as an item parameter file.  Currently, unidimensional 

dichotomous models are available.  Then, the user sets information concerning the items, such 

as:  item selection criterion; test termination criterion; item exposure control; and content 

balancing.  In this simulation, maximum information (MFI) is used to select items, a fixed-length 

CAT termination criterion is used in which the length of the test is varied (e.g., 15 and 30 items), 

and there is no item exposure control or content balancing in place.  Next, information pertaining 

to test administration must be specified, like:  approaches to obtaining initial, interitem, and final 

ability estimates; pretest items; replication datasets; seed values; and output to save.  For the 

current study, the initial item is selected using a fixed value (e.g., the mean of the prior) and EAP 

estimation is used for all ability estimates.  The mean and standard deviation of the prior can be 

set by the user; SimulCAT uses 40 equally-spaced quadrature points ranging from + −⁄  4 

standard deviations from the mean of the prior.   

Once all this information is specified, the software conducts the simulation.  The first 

item is administered by selecting the item that provides the most information at the mean of the 

chosen prior, which is the first provisional estimate given to the individual.  This results in the 

same first item being administered to all examinees.  Using the item’s parameters and the 

individual’s true ability, a probability is generating under the chosen IRT model.  This 

probability is compared to a random number between 0 and 1.  If the probability is greater than 
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the random number, the item is scored as correct (i.e., 1); otherwise, the item is scored as 

incorrect (i.e., 0).  Using this response, the individual’s estimated theta is updated.  Using this 

updated theta, the most informational item is drawn from the item pool and administered.  This 

process continues until the termination criterion is satisfied (i.e., the pre-determined number of 

items has been administered), at which point the final estimate of ability is obtained. 

 MSTGen (Han, 2013) is a MST simulation software that allows the user to place items 

into modules spaced across various stages.  While MST simulations will not be conducted in this 

simulation, MSTGen will be employed to run the conventional test simulations.  A conventional 

test is essentially a one-stage MST design with one module in the first stage.  Therefore, 

MSTGen is useful for simulating the conventional tests runs.  Set-up is similar to SimulCAT in 

terms of people and items.  However, in MSTGen, the modules must be compiled.  For this 

simulation, one module is created in which all the conventional test items are administered in a 

specific order.  Ability estimation issues are handled in the same fashion; the mean of the prior is 

the initial person estimate.  For MSTGen, though, the first item is administered regardless of the 

initial estimate or informational value.  A probability is generated and a scored response 

provided as described above.  Each item in the module is administered in the same order to all 

simulees.  The final ability estimate is obtained using all item parameters and scored responses. 

Summary 

 Table 3.8 presents a summary of the study design.  The table is divided by the two 

populations:  Single Population (Simulation One) and Subgroup Population (Simulation Two).  It 

is also divided by the test type in Simulation Two, since CATs and CTs will be run separately 

due to the number of priors involved.  The number of priors did not vary for CTs and CATs in 

Simulation One, so separate runs were not necessary.  There are three within-subject variables 
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being examined throughout the analyses:  group membership (Table 3.2), theta score level (Table 

3.4), and final trait estimate type (2).  There are three between-subject conditions being 

examined:  IRT Model (2), Test Length (2), and Test Prior.  However, the IRT models will be 

analyzed separately.  The two simulations differ in the number of test priors.  The Single 

Population only has one test prior scenario with 8 conditions (i.e., Testing Type x Test Length x 

Prior During Test).  The Subgroup Population, in contrast, has more test prior scenarios, 

resulting in 12 total CAT conditions (i.e., Testing Length x Final Trait Estimation x Prior During 

Testing).  However, for the CT, there are 8 conditions (i.e., Test Length x Final Estimate Priors).  

The CTs and CATs in the Subgroup Population, as well as the IRT models, will be analyzed 

separately. 
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Table 3. 8.  Summary of study design. 

 Conditions 

Population 
Test 

Type 

Person 

Groups 

IRT 

Model 

Test 

Length 
Priors 

Final Trait 

Estimation 

Theta 

Score 

Level 

Single 

Population 

CT All Rasch 15 

Population 

Composite 

Prior 

EAP Normal 

1 - 10 

CAT  2PL 30  
EAP 

Uniform 

Subgroup 

Population 

 

CT 

A Rasch 15 

Population 

Composite 

Prior 

EAP 1 - 10 

BH 2PL 30 

Group 

Composite 

Priors 

BL   

Group 

Specific 

Priors 

   

Less 

Informative 

Prior 

CAT 

A Rasch 15 

Population 

Composite 

Prior 

EAP Normal 

1 - 10 
BH 2PL 30 

Group 

Composite 

Priors 

EAP 

Uniform 

BL   

Group 

Specific 

Priors 
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CHAPTER 4 

RESULTS 

 This chapter presents the results of the simulation study.  The chapter focuses on the 

estimates obtained from the simulation conditions, as well as the variables of interest discussed 

above (i.e., standard error, bias, and RMSE).  The chapter begins first with a presentation of the 

simulation data and sample sets, then descriptive information for the conditions in each 

simulation.  Next, correlation and regression results are presented, followed by the results of the 

split-plot ANOVAs conducted on the dependent measures.  The major findings are presented in 

the ANOVA section for Simulation Two, Sample Set 2 data. 

 Before presentation of the results, a quick terminology review is warranted.  Table 4.1 

presents a quick reference of the language to be used in the remainder of this chapter.  The table 

involves information relevant to both simulations, and then delves into information specific to 

the Simulation Two. 
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Table 4.1.  Terminology reference guide. 

Label Definition Explanation 

Pertinent to Both Simulations 

CT Conventional Test 
A static, fixed length test in which all items are 

administered in the same order to all simulees. 

CAT Computer Adaptive Test 
An algorithmic testing design in which the test 

is specifically tailored to the simulee. 

Test Length 15 or 30 items Length of the test. 

EAPN EAP Normal  
An ability estimate obtained using an 

informative prior in the estimation process. 

Theta Score Level  

Ten theta score levels, across the ability 

continuum, in which simulees are classified 

based on their true ability. 

EAPU EAP Uniform  

An ability estimate obtained in which the prior 

utilized contains little information on the 

simulee. 

Simulation Two Specific 

A 
Population group A (i.e., 

majority group) 

This is the high-functioning population Group 

A described in Table 3.2, with a mean of 0.5. 

B 
Population group B (i.e., 

minority group) 

This is the composite group B, composed of the 

low and high functioning subgroups (Table 

3.2), with a mean of -0.3. 

BH Group B High 
This is the high ability subgroup of Group B 

(Table 3.2) with a mean of 0.5. 

BL Group B Low 
This is the low ability subgroup of Group B 

(Table 3.2) with a mean of -0.5. 

Population 

Composite Prior 

Prior that utilizes mean of 

the total population. 

The mean of the population, computed using all 

groups/subgroups, is used as the test prior. 

Group Composite 

Prior 

Prior that utilizes mean of 

the groups from the 

population. 

The mean of the two groups is computed and 

used from the subgroups.  For A, there is only 

one subgroup.  For Group B, this is the mean of 

BH and BL together. 

Group Specific 

Prior 

Prior that utilizes mean of 

the individual subgroups. 

The mean of the subgroups is computed and 

used. 

Less Informative 

Prior  

Prior, only seen in CTs, 

where little prior 

information is used and 

bounds are placed. 

The EAP Uniform estimate in CT designs. 
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Sample Sets 

 The simulation was ran using the design previously discussed – each theta score level 

was equally represented and each group, such as the three for Simulation Two, had the same 

number of simulees.  This resulted in 3,000 simulees for a total of 300,000 across the 100 

replications.  However, to examine both the influence of theta score level and group membership 

in relation to the utilized prior information, three sets of data needed to be created.  Sample Set 1 

was a reduced version of the current data, in which all theta score levels were equally 

represented.  This sample set was utilized in both simulation study analyses.  Sample Set 2, used 

in both simulations, involved the peaked distributions of simulees, where the means were located 

at the same positions as in the population.  For Simulation One, this distribution had a mean of 0 

and SD of 1.  Simulation Two involved consideration of the three groups with different true 

ability means.  Thus, to look at the influence of the priors in a peaked distribution comparable to 

the population for Simulation Two, a sample was extracted from each condition to approximate 

the population distribution.  Using weights obtained from Table 3.5, presented in Table 4.2, 

simulees were extracted from the total sample group; it is important to note that the means of the 

samples approximated those seen in the population.  However, the group sizes were not 

proportional to that observed in the population for Sample Set 2.  For example, in the total 

population, only 6% of the population is contained in BL.  To combat results being influenced by 

unequal group size, groups were constrained to have the same number of simulees.  Then, for 

Simulation Two only, a third sample set (Sample Set 3) was obtained using weights in Table 4.3, 

in which not only the peaked distributions were obtained, but so was the total population group 

composition.  Thus, Group BL was 6% of the sample, Group BH was 24%, and Group A 
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comprised the other 70%.  This sample set was not analyzed for Simulation One because all 

groups were the same. 

Table 4. 2.  Weights used for both simulations to approximate the peaked distributions. 

Theta 

Score Level 

Simulation One Simulation Two 

A B A BL BH 

1 0.0159 0.0071 0.0231 0.0658 0.0065 

2 0.0310 0.0134 0.0323 0.0904 0.0155 

3 0.0649 0.0273 0.0558 0.1523 0.0418 

4 0.1049 0.0447 0.0733 0.1909 0.0913 

5 0.1341 0.0571 0.0785 0.1913 0.1506 

6 0.1343 0.0575 0.0684 0.1505 0.1958 

7 0.1044 0.0451 0.0484 0.0927 0.1940 

8 0.0641 0.0273 0.0278 0.0436 0.1494 

9 0.0307 0.0134 0.0132 0.0163 0.0891 

10 0.0157 0.0070 0.0078 0.0061 0.0660 

 

Table 4. 3.  Weights used for Simulation Two to approximate the population distribution. 

Theta 

Score Level 

Simulation Two 

A BL BH 

1 0.0043 0.0158 0.0004 

2 0.0116 0.0217 0.0009 

3 0.0308 0.0366 0.0025 

4 0.0645 0.0458 0.0055 

5 0.1049 0.0459 0.0090 

6 0.1339 0.0361 0.0117 

7 0.1339 0.0223 0.0116 

8 0.1053 0.0105 0.0090 

9 0.0636 0.0039 0.0053 

10 0.0472 0.0015 0.0040 

 

Descriptive Information 

 The following tables present the means and standard deviations for the total sample for a 

specific condition in both the datasets under each simulation.  This information is presented for 

the true ability, EAP Normal, and EAP Uniform estimates.  Both estimates are Bayesian; the 

difference lies in the fact that EAP Normal uses an informative prior, or a normal distribution 
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with a specific mean and standard deviation, whereas EAP Uniform uses a uniform distribution.  

For CTs, the EAP Uniform estimate is termed Less Informative Prior since it utilizes little 

information about the simulees and contains boundaries for the estimates.  Table 4.4 presents the 

means and standard deviations for the ability estimates for all conditions under both IRT models 

for Simulation One.  For Simulation Two, the means and standard deviations of combined 

subgroups for the three Sample Sets is presented, first for the CTs (Table 4.5) then the CATs 

(Table 4.6).  However, for Sample Sets 2 and 3, the group means should approximate those seen 

in the population and warranted further investigation.  Therefore, means for each condition by 

group (A, BH, BL) are presented in Tables 4.7 and 4.8 for the CT estimates for Sample Sets 2 and 

3, respectively, and in Tables 4.9 through 4.12 for EAP Normal and EAP Uniform, respectively, 

for CAT for each sample sets. 

 For Simulation One, all means are approximately 0, as expected.  For Simulation Two, 

Sample Sets 1 for both CT and CAT, the means of each condition is 0.  This is as expected, since 

all theta score levels are equal.  For Sample Sets 2 and 3 for each test type, however, the means 

are approximately 0.15 and 0.26, respectively.  In Sample Set 2, the groups have the same 

number of simulees, but the distribution is like the population distribution (i.e., the mean of each 

group matches their true population mean).  Thus, it is misleading to examine this table alone, 

and the means and SDs are given by groups.  For Sample Set 3, the means and SDs are also 

given by groups to ensure that the population was represented correctly.  In these tables (4.7 – 

4.12), the ability estimates for a group are close to the true mean.  An interesting find is that, for 

Group BL using a CT (Tables 4.7 and 4.8), the estimates are overestimated.  This is because the 

mean of the CT is much higher than the mean of the group.  Thus, there were not enough items 

to accurately estimate this group’s ability.  Tables 4.9 through 4.12 provide the most vital 
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information, as these tables present the information for the individual test priors by subgroups for 

EAP Normal and EAP Uniform estimates, respectively.  The means are approximately similar 

for each of the subgroups when compared to the true ability.  The lowest means are obtained 

under the Rasch model for Group BH when using the Group Composite Prior under both final 

ability estimate approaches.  When using this prior, its informative mean (M = -0.3) is far away 

from Group BH’s mean (M = 0.5).  Therefore, this prior, when utilized for test administration and 

final ability estimation, has more of an influence on the final ability estimates.  For the 

Population Composite Prior, the lowest means are obtained for Group BL under the Rasch 

model.  The mean of this informative prior (M = 0.26) is much higher than the mean ability of 

Group BL (M = -0.5).  The 2PL model can recover ability better due to the higher discrimination 

values, which lead to more informative item selection.
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Table 4. 4.  Descriptive statistics for Simulation One for both sample sets for each IRT model, test prior, and test length (N = 9,900). 

 

IRT 

Model 

Test 

Type 

Test 

Length 

Sample Set 1 – Uniform 
𝜃𝑇𝑟𝑢𝑒̅̅ ̅̅ ̅̅ ̅ = ⁡−0.025;⁡𝑆𝐷𝜃𝑇𝑟𝑢𝑒 = 1.460 

Sample Set 2 – Peaked 
𝜃𝑇𝑟𝑢𝑒̅̅ ̅̅ ̅̅ ̅ = 0.008;⁡𝑆𝐷𝜃𝑇𝑟𝑢𝑒 = 1.033 

𝜽𝑬𝑨𝑷⁡𝑵𝒐𝒓𝒎𝒂𝒍⁡̂  𝜽𝑬𝑨𝑷⁡𝑼𝒏𝒊𝒇𝒐𝒓𝒎⁡̂  𝜽𝑬𝑨𝑷⁡𝑵𝒐𝒓𝒎𝒂𝒍⁡̂  𝜽𝑬𝑨𝑷⁡𝑼𝒏𝒊𝒇𝒐𝒓𝒎⁡̂  

M SD M SD M SD M SD 

Rasch 

CT 
15 -0.020 1.072 -0.033 1.389 0.016 0.831 0.016 1.044 

30 -0.027 1.081 -0.024 1.237 -0.013 0.809 -0.010 0.908 

CAT 
15 -0.027 1.181 -0.031 1.343 0.007 0.895 0.007 1.008 

30 -0.020 1.293 -0.021 1.370 0.016 0.946 0.017 0.999 

2PL 

CT 
15 -0.033 1.230 -0.050 1.507 -0.001 0.917 -0.003 1.084 

30 -0.001 1.249 -0.009 1.405 0.007 0.921 0.008 1.010 

CAT 
15 -0.023 1.369 -0.024 1.451 0.008 1.008 0.009 1.065 

30 -0.025 1.391 -0.026 1.446 0.005 1.016 0.006 1.055 
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Table 4. 5.  Descriptive statistics for combined subgroups in Simulation Two for estimated ability for both sample sets for the 

conventional tests, or CTs, for each IRT model, test prior, and test length. 

 

   

Sample Set 1 – 

Uniform Distribution 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = 𝟎. 𝟎𝟎𝟒 

𝑺𝑫𝜽𝑻𝒓𝒖𝒆
= 𝟏. 𝟒𝟕𝟒 

N = 30,000 

Sample Set 2 – Peaked 

Distribution 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = 𝟎. 𝟏𝟔𝟒⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟏𝟐𝟐 

N = 30,000 

Sample Set 3 – 

Population Distribution 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = 𝟎. 𝟐𝟓𝟗⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟎𝟖𝟑 

N = 9,900 

IRT 

Model 

Final Estimate 

Prior 

Test 

Length 
𝜽̂ 𝜽̂ 𝜽̂ 

M SD M SD M SD 

Rasch 

Model 

Population 

Composite  

15 0.130 0.941 0.207 0.767 0.263 0.738 

30 0.103 1.010 0.205 0.780 0.272 0.780 

Group 

Composite  

15 0.067 0.957 0.170 0.785 0.263 0.768 

30 0.084 1.021 0.191 0.808 0.275 0.792 

Group Specific  
15 0.097 0.957 0.193 0.805 0.263 0.778 

30 0.101 1.020 0.203 0.820 0.274 0.797 

Less Informative 
15 0.037 1.313 0.181 1.037 0.260 0.990 

30 0.074 1.192 0.199 0.920 0.274 0.891 

2PL 

Model 

Population 

Composite  

15 0.089 1.093 0.190 0.881 0.255 0.855 

30 0.069 1.157 0.186 0.915 0.268 0.888 

Group 

Composite  

15 0.031 1.114 0.158 0.902 0.253 0.889 

30 0.055 1.169 0.180 0.926 0.270 0.904 

Group Specific  
15 0.055 1.113 0.172 0.921 0.251 0.899 

30 0.067 1.169 0.185 0.938 0.268 0.910 

Less Informative 
15 -0.049 1.608 0.140 1.262 0.241 1.224 

30 0.013 1.490 0.171 1.148 0.270 1.101 
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Table 4. 6.  Descriptive statistics for combined subgroups in Simulation Two for estimated ability, under both final estimation 

approaches, for both sample sets for the computer adaptive tests, or CATs, for each IRT model, test prior, and test length. 

 

   

Sample Set 1 – Uniform 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = ⁡𝟎. 𝟎𝟎𝟔⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟒𝟕𝟕 

N = 30,000 

Sample Set 2 – Peaked 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = 𝟎. 𝟏𝟔𝟓⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟏𝟐𝟑 

N = 30,000 

Sample Set 3 – Population 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = 𝟎. 𝟐𝟓𝟗 

𝑺𝑫𝜽𝑻𝒓𝒖𝒆
= 𝟏. 𝟎𝟖𝟐 

N = 9,900 

IRT 

Model 

Test 

Prior 

Test 

Length 
𝜽𝑬𝑨𝑷⁡𝑵𝒐𝒓𝒎𝒂𝒍⁡̂  𝜽𝑬𝑨𝑷⁡𝑼𝒏𝒊𝒇𝒐𝒓𝒎⁡̂  𝜽𝑬𝑨𝑷⁡𝑵𝒐𝒓𝒎𝒂𝒍⁡̂  𝜽𝑬𝑨𝑷⁡𝑵𝒐𝒓𝒎𝒂𝒍⁡̂  𝜽𝑬𝑨𝑷⁡𝑵𝒐𝒓𝒎𝒂𝒍⁡̂  𝜽𝑬𝑨𝑷⁡𝑵𝒐𝒓𝒎𝒂𝒍⁡̂  

M SD M SD M SD M SD M SD M SD 

Rasch 

Model 

Population 

Composite  

15 0.072 1.188 0.044 1.352 0.186 0.954 0.176 1.078 0.258 0.931 0.258 1.050 

30 0.053 1.300 0.039 1.377 0.179 1.015 0.174 1.073 0.261 0.984 0.260 1.039 

Group 

Composite  

15 -0.001 1.194 0.002 1.356 0.123 0.973 0.142 1.086 0.252 0.966 0.252 1.068 

30 0.004 1.33 0.006 1.380 0.140 1.026 0.150 1.079 0.254 1.002 0.254 1.050 

Group 

Specific  

15 0.047 1.186 0.028 1.345 0.167 1.003 0.167 1.103 0.258 0.974 0.259 1.070 

30 0.031 1.305 0.022 1.382 0.168 1.049 0.168 1.096 0.254 1.010 0.255 1.054 

2PL 

Model 

Population 

Composite  

15 0.023 1.392 0.010 1.477 0.172 1.084 0.168 1.146 0.262 1.046 0.263 1.106 

30 0.017 1.410 0.008 1.467 0.169 1.089 0.166 1.132 0.253 1.049 0.253 1.090 

Group 

Composite  

15 0.003 1.389 0.005 1.473 0.150 1.087 0.160 1.145 0.254 1.062 0.255 1.116 

30 -0.002 1.403 -0.001 1.459 0.152 1.093 0.160 1.132 0.250 1.056 0.251 1.091 

Group 

Specific  

15 0.020 1.395 0.011 1.478 0.167 1.096 0.168 1.148 0.259 1.060 0.261 1.110 

30 0.009 1.402 0.003 1.458 0.162 1.097 0.162 1.133 0.255 1.064 0.256 1.097 
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Table 4. 7.  Descriptive statistics, by group, for Simulation Two for the CT Sample Set 2 ability estimates for each IRT model, final 

estimate test prior, and test length. 

 

IRT 

Model 

Final 

Estimate 

Prior 

Test 

Length 

A 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = 𝟎. 𝟒𝟗𝟐⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟎𝟏𝟔 

N = 10,000 

BH 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = 𝟎. 𝟒𝟗𝟔⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟎𝟐𝟔 

N = 10,000 

BL 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = −𝟎. 𝟒𝟗𝟓 

𝑺𝑫𝜽𝑻𝒓𝒖𝒆
= 𝟏. 𝟎𝟐𝟎 

N = 10,000 

M SD M SD M SD 

Rasch 

Model 

Population 

Composite  

15 0.410 0.715 0.404 0.732 -0.192 0.689 

30 0.432 0.734 0.410 0.728 -0.226 0.755 

Group 

Composite  

15 0.437 0.719 0.340 0.701 -0.266 0.742 

30 0.445 0.736 0.392 0.731 -0.265 0.755 

Group 

Specific  

15 0.437 0.719 0.433 0.717 -0.290 0.751 

30 0.445 0.736 0.442 0.742 -0.279 0.760 

Less 

Informative 

15 0.450 0.932 0.447 0.931 -0.352 1.034 

30 0.446 0.832 0.444 0.842 -0.294 0.879 

2PL 

Model 

Population 

Composite  

15 0.430 0.817 0.443 0.823 -0.301 0.787 

30 0.456 0.839 0.440 0.836 -0.337 0.834 

Group 

Composite  

15 0.450 0.822 0.388 0.810 -0.363 0.837 

30 0.465 0.841 0.438 0.833 -0.362 0.854 

Group 

Specific  

15 0.450 0.822 0.450 0.819 -0.385 0.854 

30 0.465 0.841 0.466 0.843 -0.377 0.866 

Less 

Informative 

15 0.493 1.117 0.492 1.105 -0.564 1.252 

30 0.495 1.019 0.497 1.018 -0.478 1.116 
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Table 4. 8.  Descriptive statistics, by group, for Simulation Two for the CT Sample Set 3 ability estimates for each IRT model, final 

estimate test prior, and test length. 

 

IRT 

Model 

Final 

Estimate 

Prior 

Test 

Length 

A 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = 𝟎. 𝟓𝟓𝟎⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟎. 𝟗𝟖𝟑 

N = 6,800 

BH 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = 𝟎. 𝟒𝟗𝟕⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟎. 𝟖𝟓𝟒 

N = 600 

BL 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = −𝟎. 𝟓𝟖𝟗 

𝑺𝑫𝜽𝑻𝒓𝒖𝒆
= 𝟎. 𝟗𝟑𝟗 

N = 2,500 

M SD M SD M SD 

Rasch 

Model 

Population 

Composite  

15 0.441 0.686 0.384 0.686 -0.249 0.644 

30 0.469 0.712 0.390 0.656 -0.291 0.708 

Group 

Composite  

15 0.467 0.690 0.376 0.633 -0.317 0.701 

30 0.483 0.715 0.418 0.628 -0.325 0.718 

Group 

Specific  

15 0.467 0.690 0.465 0.659 -0.341 0.712 

30 0.483 0.715 0.466 0.644 -0.339 0.723 

Less 

Informative 

15 0.490 0.886 0.486 0.809 -0.420 0.987 

30 0.492 0.806 0.467 0.699 -0.363 0.845 

2PL 

Model 

Population 

Composite  

15 0.471 0.793 0.430 0.740 -0.373 0.724 

30 0.500 0.812 0.443 0.745 -0.408 0.762 

Group 

Composite  

15 0.492 0.799 0.418 0.754 -0.436 0.786 

30 0.511 0.817 0.456 0.742 -0.429 0.795 

Group 

Specific  

15 0.492 0.799 0.479 0.771 -0.458 0.805 

30 0.511 0.817 0.480 0.752 -0.443 0.808 

Less 

Informative 

15 0.550 1.074 0.534 0.985 -0.669 1.206 

30 0.554 0.979 0.500 0.826 -0.555 1.055 
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Table 4. 9.  Descriptive statistics, by group, for Simulation Two for the CAT Sample Set 2 ability estimates for each IRT model, test 

prior, and test length for EAP Normal ability estimates. 

 

IRT 

Model 
Test Prior 

Test 

Length 

A 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = ⁡𝟎. 𝟒𝟗𝟕 

⁡𝑺𝑫𝜽𝑻𝒓𝒖𝒆
= 𝟏. 𝟎𝟐𝟐 

N = 10,000 

BH 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = ⁡𝟎. 𝟒𝟗𝟒⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟎𝟐𝟏 

N = 10,000 

BL 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = −𝟎. 𝟒𝟗𝟓⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟎𝟐𝟏 

N = 10,000 

M SD M SD M SD 

Rasch 

Model 

Population 

Composite  

15 0.439 0.889 0.439 0.884 -0.319 0.882 

30 0.459 0.935 0.464 0.934 -0.386 0.930 

Group 

Composite  

15 0.492 0.887 0.313 0.873 -0.437 0.897 

30 0.497 0.940 0.383 0.925 -0.460 0.933 

Group 

Specific  

15 0.493 0.888 0.493 0.892 -0.485 0.893 

30 0.503 0.936 0.494 0.938 -0.494 0.943 

2PL 

Model 

Population 

Composite  

15 0.475 1.001 0.474 0.995 -0.434 0.991 

30 0.481 0.995 0.477 0.998 -0.453 0.999 

Group 

Composite  

15 0.492 0.998 0.434 0.983 -0.476 0.996 

30 0.488 1.001 0.450 0.988 -0.482 1.000 

Group 

Specific  

15 0.504 0.994 0.489 0.992 -0.493 0.989 

30 0.488 0.997 0.486 0.994 -0.489 0.998 
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Table 4. 10.  Descriptive statistics, by group, for Simulation Two for the CAT Sample Set 2 ability estimates for each IRT model, test 

prior, and test length for EAP Uniform ability estimates. 

 

IRT 

Model 
Test Prior 

Test 

Length 

A 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = ⁡𝟎. 𝟒𝟗𝟕 

⁡𝑺𝑫𝜽𝑻𝒓𝒖𝒆
= 𝟏. 𝟎𝟐𝟐 

N = 10,000 

BH 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = ⁡𝟎. 𝟒𝟗𝟒⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟎𝟐𝟏 

N = 10,000 

BL 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = −𝟎. 𝟒𝟗𝟓⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟎𝟐𝟏 

N = 10,000 

M SD M SD M SD 

Rasch 

Model 

Population 

Composite  

15 0.461 1.002 0.461 0.995 -0.393 1.002 

30 0.470 0.988 0.475 0.986 -0.422 0.985 

Group 

Composite  

15 0.492 0.998 0.389 0.991 -0.455 1.011 

30 0.497 0.993 0.422 0.980 -0.469 0.985 

Group 

Specific  

15 0.493 0.999 0.492 1.003 -0.485 1.004 

30 0.504 0.988 0.494 0.990 -0.495 0.995 

2PL 

Model 

Population 

Composite  

15 0.488 1.058 0.487 1.052 -0.472 1.050 

30 0.491 1.033 0.486 1.037 -0.479 1.038 

Group 

Composite  

15 0.493 1.055 0.475 1.041 -0.487 1.055 

30 0.489 1.039 0.480 1.027 -0.488 1.039 

Group 

Specific  

15 0.506 1.050 0.491 1.049 -0.494 1.047 

30 0.489 1.035 0.487 1.032 -0.489 1.037 
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Table 4. 11.  Descriptive statistics, by group, for Simulation Two for the CAT Sample Set 3 ability estimates for each IRT model, test 

prior, and test length for EAP Normal ability estimates. 

 

IRT 

Model 
Test Prior 

Test 

Length 

A 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = ⁡𝟎. 𝟓𝟒𝟗 

⁡𝑺𝑫𝜽𝑻𝒓𝒖𝒆
= 𝟏. 𝟗𝟖𝟐 

N = 6,800 

BH 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = ⁡𝟎. 𝟓𝟎𝟎⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟖𝟒𝟓 

N = 600 

BL 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = −𝟎. 𝟓𝟖𝟖⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟗𝟒𝟎 

N = 2,500 

M SD M SD M SD 

Rasch 

Model 

Population 

Composite  

15 0.482 0.866 0.442 0.795 -0.396 0.819 

30 0.505 0.909 0.483 0.783 -0.457 0.865 

Group 

Composite  

15 0.528 0.868 0.309 0.758 -0.512 0.845 

30 0.534 0.907 0.401 0.782 -0.543 0.862 

Group 

Specific  

15 0.533 0.862 0.528 0.771 -0.554 0.844 

30 0.540 0.900 0.488 0.807 -0.578 0.867 

2PL 

Model 

Population 

Composite  

15 0.528 0.957 0.479 0.854 -0.513 0.930 

30 0.527 0.956 0.489 0.850 -0.549 0.915 

Group 

Composite  

15 0.541 0.960 0.430 0.859 -0.570 0.936 

30 0.531 0.961 0.459 0.853 -0.564 0.918 

Group 

Specific  

15 0.544 0.956 0.508 0.871 -0.573 0.922 

30 0.541 0.962 0.491 0.856 -0.581 0.926 
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Table 4. 12.  Descriptive statistics, by group, for Simulation Two for the CAT Sample Set 3 ability estimates for each IRT model, test 

prior, and test length for EAP Uniform ability estimates. 

 

IRT 

Model 
Test Prior 

Test 

Length 

A 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = ⁡𝟎. 𝟓𝟒𝟗 

⁡𝑺𝑫𝜽𝑻𝒓𝒖𝒆
= 𝟏. 𝟗𝟖𝟐 

N = 6,800 

BH 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = ⁡𝟎. 𝟓𝟎𝟎⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟖𝟒𝟓 

N = 600 

BL 
𝜽𝑻𝒓𝒖𝒆̅̅ ̅̅ ̅̅ ̅ = −𝟎. 𝟓𝟖𝟖⁡ 
𝑺𝑫𝜽𝑻𝒓𝒖𝒆

= 𝟏. 𝟗𝟒𝟎 

N = 2,500 

M SD M SD M SD 

Rasch 

Model 

Population 

Composite  

15 0.510 0.974 0.464 0.888 -0.480 0.932 

30 0.519 0.960 0.494 0.823 -0.498 0.917 

Group 

Composite  

15 0.533 0.976 0.381 0.853 -0.542 0.952 

30 0.536 0.957 0.439 0.825 -0.558 0.910 

Group 

Specific  

15 0.538 0.968 0.531 0.857 -0.565 0.947 

30 0.543 0.949 0.487 0.849 -0.584 0.914 

2PL 

Model 

Population 

Composite  

15 0.544 1.011 0.492 0.897 -0.556 0.987 

30 0.538 0.993 0.499 0.881 -0.579 0.952 

Group 

Composite  

15 0.545 1.014 0.469 0.905 -0.587 0.993 

30 0.533 0.997 0.488 0.885 -0.574 0.953 

Group 

Specific  

15 0.548 1.010 0.509 0.916 -0.579 0.977 

30 0.544 0.998 0.491 0.886 -0.584 0.962 
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Correlations 

 Correlations were obtained for every condition between the true score and EAP Normal 

estimate, as well as between the true score and EAP Uniform estimate.  Regressions were 

conducted for each replication and the R2 extracted from each analysis.  The mean was taken 

across all R2 values, and then was square rooted.  Table 4.9 shows the correlations for Simulation 

One; Table 4.10 shows the correlations for Simulation Two CT; and Table 4.11 shows the 

correlations for Simulation Two CAT.  In general, correlations are higher for estimates obtained 

using a CAT than a CT.  Also, they are higher when obtained using an informative prior (i.e., 

EAP Normal) than a less informative prior (i.e., EAP Uniform).  But all these differences are 

negligible.   Lastly, correlations are higher for estimates obtained using the 2PL model since the 

Rasch model has lower discrimination values. 

 

Table 4. 13.  Correlations between true ability and estimated abilities for all conditions in both 

sample sets for Simulation One. 

 

    Data Set 1 - Uniform Data Set 2 - Peaked 

Prior 
Test 

Type 

Test 

Length 

IRT 

Model 
rNorm rUni rNorm rUni 

Population 

Composite 

Prior 

CT 

15 
Rasch 0.918 0.910 0.852 0.852 

2PL 0.958 0.948 0.926 0.922 

30 
Rasch 0.954 0.950 0.919 0.918 

2PL 0.979 0.973 0.964 0.962 

CAT 

15 
Rasch 0.936 0.934 0.881 0.882 

2PL 0.973 0.973 0.950 0.950 

30 
Rasch 0.966 0.966 0.937 0.937 

2PL 0.982 0.982 0.965 0.965 
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Table 4. 14.  Correlations between true ability and estimated ability for all conditions involving 

final estimate prior, test length, and IRT model in all three samples sets for Simulation Two, CT. 

 

Final 

Estimate 

Prior 

Test 

Length 
IRT Model rSampleSet1 rSampleSet2 rSampleSet3 

Population 

Composite 

Prior 

15 
Rasch 0.924 0.884 0.876 

2PL 0.956 0.939 0.926 

30 
Rasch 0.955 0.929 0.884 

2PL 0.974 0.968 0.928 

Group 

Composite 

Prior 

15 
Rasch 0.925 0.890 0.885 

2PL 0.957 0.940 0.928 

30 
Rasch 0.956 0.930 0.868 

2PL 0.975 0.968 0.922 

Group 

Specific 

Prior 

15 
Rasch 0.925 0.894 0.938 

2PL 0.957 0.942 0.968 

30 
Rasch 0.956 0.931 0.940 

2PL 0.975 0.969 0.969 

Less 

Informative 

Prior 

15 
Rasch 0.909 0.878 0.940 

2PL 0.936 0.917 0.969 

30 
Rasch 0.948 0.925 0.914 

2PL 0.956 0.948 0.950 

 

Table 4. 15.  Correlations between true ability and estimate ability for all conditions involving 

test prior, test length, and IRT model in both sample sets for Simulation Two, CAT. 

Test Prior 
Test 

Length 

IRT 

Model 

Data Set 1 - 

Uniform 

Data Set 2 - 

Peaked 

Data Set 3 - 

Population 

rNorm rUni rNorm rUni rNorm rUni 

Population 

Composite 

Prior 

15 
Rasch 0.937 0.935 0.895 0.895 0.890 0.891 

2PL 0.974 0.974 0.956 0.957 0.942 0.942 

30 
Rasch 0.968 0.968 0.945 0.945 0.894 0.893 

2PL 0.983 0.983 0.970 0.970 0.944 0.943 

Group 

Composite 

Prior 

15 
Rasch 0.932 0.933 0.897 0.898 0.899 0.898 

2PL 0.974 0.974 0.956 0.956 0.943 0.943 

30 
Rasch 0.966 0.967 0.944 0.945 0.954 0.954 

2PL 0.983 0.983 0.969 0.969 0.967 0.968 

Group 

Specific 

Prior 

15 
Rasch 0.932 0.933 0.901 0.900 0.954 0.954 

2PL 0.974 0.974 0.957 0.956 0.967 0.967 

30 
Rasch 0.966 0.966 0.947 0.947 0.954 0.953 

2PL 0.982 0.982 0.970 0.970 0.968 0.968 
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Regression Analysis 

Regressions were conducted using ten randomly selected replications from each 

condition to graphically display information.  Replications 4, 11, 26, 27, 34, 35, 39, 48, 76, and 

90 was randomly selected from all 100 replications for use in the regression analyses.  The 30-

item test under the 2PL model was used to conduct all regression analyses.  For Simulation One, 

Sample Sets 1 and 2 are presented in Figures 4.1 and Figure 4.2, respectively.  For Simulation 

Two, the Group Composite Prior was used for the regressions.  If the approach is used in 

practice, this is the prior that would be utilized.  The Group Specific Prior cannot be applied, 

since there is no way to know an individual’s true ability to accurate place them in a high or low 

functioning subgroup.  For CTs, the regressions are displayed in Figure 4.3 using the final 

estimate prior.  Figure 4.4 shows the results for all sample sets data for the CAT.   

 Figure 4.1 presents the regression analyses for Simulation One using Sample Set 1, where 

all theta score levels are equally represented.  As shown, the true abilities and estimated abilities 

are relatively similar.  There is a slight curvi-linear relationship towards the ability continuum 

extremes for the CTs (A and B); simulees at these extremes have a high chance for ability-

difficulty mismatch when using a CT, thus resulting in a higher degree of inaccuracy when 

estimating ability.  However, this pattern disappears when using a CAT, since the test is tailored 

to the simulee.   

 



 

85 
 

 

Figure 4. 1.  Regression plots for EAP Normal and EAP Uniform estimates for the Single Population under the 2PL model for the 30-

item CT and CAT, where Group A is represented in red and Group B is blue, for Sample Set 1. 
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Figure 4. 2.  Regression plots for EAP Normal and EAP Uniform estimates for the Single Population under the 2PL model for the 30-

item CT and CAT, where Group A is represented in red and Group B is blue, for Sample Set 2. 
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Figure 4. 3.  Regression plots for EAP estimates using the Group Composite Prior for final ability estimation for the Subgroup 

Population under the 2PL model for the 30-item CT, where Group A is represented by red triangles, Group BH is blue circles, and 

Group BL is green squares, for Sample Sets 1, 2, and 3. 
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Figure 4. 4.  Regression plots for EAP Normal and EAP Uniform estimates for the Subgroup Population under the 2PL model for the 

30-item CAT, where Group A is represented by red triangles, Group BH is blue circles, and Group BL is green squares, for Sample 

Sets 1, 2, and 3. 
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ANOVA Analyses 

 Multiple split plot ANOVAs were conducted.  For Simulation One, two sets of ANOVAs 

were conducted.  For Simulation Two, three sets of ANOVAs were conducted; the first two are 

similar to those in Simulation One, and the last used Sample Set 3, which was utilized only in the 

second simulation.  The first set of ANOVAs (i.e., ANOVA Set 1) used the Sample Set 1 data, in 

which all theta score levels are equally represented.  The second set of ANOVAs (i.e., ANOVA 

Set 2) used the Sample Set 2 sample data, in which the distributions for the subgroups reflect that 

observed in the population.  The third set of ANOVAs for Simulation Two (i.e., ANOVA Set 3) 

used the Sample Set 3 sample data, in which the sample reflected the true make-up of the 

population.  This set of ANOVAs examines group membership.  Data were examined these ways 

because equally represented theta score groups may confound the effects that might be observed 

when using the individual test priors.  When examining results at the theta score level, the mean 

being used is that of the score level of interest, not the group.  Therefore, the first set of 

ANOVAs for each simulation reflected how the theta score levels and test prior interact.  Thus, 

the second and third set of ANOVAs will highlight the interaction between the test prior and 

group membership using Sample Sets 2 and 3.  For each set of ANOVAs, IRT models (R = 

Rasch model; 2pl = 2PL model) were examined separately and not as another factor.  Therefore, 

the data were split on this variable for analyses.  While the Rasch model is presented in 

conjunction with the 2PL model for both simulations, it is pertinent to note that the two IRT 

models should not be compared to each other.  For the comparison to be appropriate, the single 

Rasch model item discrimination parameter should be estimated to be a constant instead of 

constrained to 1.  Therefore, comparisons between the two models were not made. 
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For Simulation One, or the Single Population, ANOVA Set 1 involved six Test Type (2) 

x Test Length (2) x Trait Estimate Type (2) x Theta Score Level (10) split-plot designs, where 

the first two factors are the between replication factors and the last two are the within replication 

factors.  For these ANOVAs, replications are treated as subjects as in a traditional split-plot 

design.  The between replication factors are test type (T = CAT or CT) and test length (L = 15 or 

30).  The within replication factors are final trait estimate type (E = EAP Normal or EAP 

Uniform) and theta score level (S = 1 to 10).  The Sample Set 1 data were used, in which all theta 

score levels are equally represented.  ANOVA Set 2 examined a Test Type (2) x Test Length (2) 

x Trait Estimate Type (2) design.  This second set utilized the Sample Set 2 data, in which the 

population distribution is observed.  A cross between test type and estimate type is appropriate 

for Simulation One because there are only two estimate types, one which uses an informative 

prior (EAP Normal) and one which uses a less informative one (EAP Uniform).   

A different approach had to be taken for Simulation Two, which examined the Subgroup 

Population.  First, IRT models are examined separately, as previously mentioned.  However, test 

type had to be examined individually as well.  For a CAT, three test priors existed, whereas for 

the CTs, four test priors existed.  For the CAT, the test priors are used as a first estimate of 

ability and to select items.  Then, at the end, final trait estimation is conducted using EAP 

Normal, which uses the test prior during the test, or EAP Uniform, which uses a less informative 

prior.  Therefore, they are called test priors.  For the CTs, either the informative prior was used at 

the end of the test to obtain an estimate or a less informative prior was used.  It is not appropriate 

to have a cross of estimate type and test prior for the CTs since the test prior is only utilized at 

the end.  The priors only influence final ability estimation and are thus referred to as final 

estimate priors.  Thus, each test type had both to be examined separately.  
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For CT ANOVA Set 1, six Test Length (2) x Final Estimate Prior (4) x Theta Score Level 

(10) split-plot ANOVAs were conducted, where the first two factors are the between subject 

factors and the remaining one is a within replication factor.  Between replication factors for this 

set are test length (L = 15 or 30) and final estimate prior (P = Population Composite Prior, Group 

Composite Prior, Group Specific Prior, Less Informative Prior).  The within replication factor is 

theta score level (S = 1 to 10).  For CT ANOVA Set 2, six Test Length (2) x Final Estimate Prior 

(4) x Group Membership (3) split-plot ANOVAs are conducted.  Here, the first two factors are 

the same as in Set 1.  However, the last factor is the only within replication factor and is group 

membership (G = A, BH, BL).  Theta score level and group membership are examined separately 

to ensure effects are not masked.  For CT ANOVA Set 3, the same six split-plot ANOVAs as in 

Set 2 are conducted, except Sample Set 3 is utilized.   

For the CAT analyses, both sets of data were examined.  For CAT ANOVA Set 1, six 

Test Length (2) x Test Prior (3) x Trait Estimate Type (2) x Theta Score Level (10) split-plot 

ANOVAs were conducted, where the first two factors are the between subject factors and the 

remaining two are within subject factors.  Between replication factors for this set are test length 

(L = 15 or 30) and test prior (P = Population Composite Prior, Group Composite Prior, Group 

Specific Prior).  Within replication factors are final trait estimate type (E = EAP Normal or EAP 

Uniform) and theta score level (S = 1 to 10).  Lastly, for CAT ANOVA Set 2 for this simulation, 

a Test Length (2) x Test Prior (3) x Trait Estimate Type (2) x Group Membership (3) design was 

employed.  The same two between replication factors are utilized.  However, the two within 

replication factors are estimate type (E = EAP Normal and EAP Uniform) and group 

membership (G = A, BH, BL).  For CAT ANOVA Set 3, as with the CTs, the design from 

ANOVA Set 2 is used but with Sample Set 3 data.  
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The following dependent measures were examined within each ANOVA set:  mean 

standard error (SE), bias, and root mean square error (RMSE).  Since there are three DVs, the 

family-wise error rate was controlled; therefore, 𝑝 = ⁡
0.05

3
≈ ⁡0.0167.  Violations of sphericity 

are corrected using a Huynh-Feldt adjustment (Huynh & Feldt, 1976).  Lastly, within-family 𝜂2 

(i.e., 𝜂𝑤
2 ; Roberts & Thompson, 2011) was calculated for each effect using effect families in the 

study design.  For example, one effect family is the between-factor error term; another effect 

family is within-factor error term related to those tested by the final trait estimate type.  Thus, for 

the Subgroup Population, eight effect families existed.  Only those effects which are statistically 

significant (p < 0.0167) and had a 𝜂𝑤
2  value greater than 0.07 are interpreted.  

Results for the ANOVAs are organized as follows.  First, Simulation One (i.e., Single 

Population) results are presented, serving as a base rate comparison for Simulation Two (i.e., 

Subgroup Population), which contains the subgroups of interest.  Within this section, ANOVA 

Set 1 is presented first, followed by ANOVA Set 2.  After presentation of these results, the 

results of Simulation Two are presented.  As with the first simulation, the order of presentation is 

ANOVA Set 1, ANOVA Set 2, then ANOVA Set 3.  However, these sets are presented within 

their respective test types, where CT is presented first, followed by CAT.  With this simulation, 

the influence of prior is of primary interest, and thus these results are presented first for each 

group.  Then, all other noteworthy results are presented.   

Simulation One 

 This section utilizes the Single Population data, in which there are no groups.  The 

distribution for the population is a standard normal distribution (θ ~ N(0, 1)).   

 ANOVA Set 1.  This first set of ANOVAs utilized the sample Set 1, or uniform sample.  

In this set, all theta score levels are equally represented to examine SE, bias, and RMSE at 
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different slices of the ability continuum.  This was done because examination of the theta score 

levels in conjunction with a peaked distribution will confound effects.  The 𝜂𝑤
2   for all effects and 

interactions for each dependent variable, separated by IRT model, is presented in Table 4.16.     

Table 4. 16.  Within-family effect sizes from ANOVA Set 1 conducted on standard error (SE), 

bias, root mean square error (RMSE) for each IRT model using the Single Population. 

 

Effect  
SE Bias RMSE 

Rasch 2PL Rasch 2PL Rasch 2PL 

T 0.392** 0.460** 0.001 0.000 0.294** 0.370** 

L 0.599** 0.438** 0.004 0.065** 0.573** 0.468** 

T*L 0.007** 0.094** 0.002 0.079** 0.005** 0.049** 

E  0.712** 0.613** 0.010 0.101** 0.573** 0.043** 

E*T 0.130** 0.324** 0.001 0.104** 0.043** 0.084** 

E*L 0.143** 0.039** 0.109** 0.029** 0.037** 0.161** 

E*T*L 0.011** 0.018** 0.079** 0.025** 0.089** 0.129** 

S 0.674** 0.512** 0.795** 0.558** 0.482** 0.342** 

S*T 0.169** 0.389** 0.037** 0.068** 0.072** 0.206** 

S*L 0.023** 0.009** 0.005** 0.002* 0.004** 0.013** 

S*T*L 0.016** 0.011** 0.011** 0.006** 0.016** 0.014** 

E*S 0.635** 0.506** 0.797** 0.704** 0.605** 0.178** 

E*S*T 0.175** 0.400** 0.077** 0.195** 0.059** 0.049** 

E*S*L 0.068** 0.017** 0.086** 0.043** 0.049** 0.032** 

E*S*T*L 0.011** 0.015** 0.008** 0.017** 0.004** 0.034** 

* p < 0.0167; ** p < 0.001     

T = test type; L = test length     

E = estimate type; S = theta score level    
 

 Standard error.  There is a significant main effect for test type for both IRT models.  

Under each model, the CAT (MR = 0.285; M2pl = 0.214) produces lower mean SEs than the CT 

(MR = 0.379; M2pl = 0.288).  There is also a significant main effect for test length for both IRT 

models.  Longer tests (MR = 0.274; M2pl = 0.215) produce lower SEs than shorter tests (MR = 

0.274; M2pl = 0.215).  For the 2PL model, there is a significant interaction between test type and 

test length; longer CATs produce lower mean SEs than shorter CATs or the CTs.  A longer CT 
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did produce lower mean SEs than a shorter one.  A main effect also exists for estimate type 

under both IRT models.  EAP Normal estimate (MR = 0.315; M2pl = 0.239) result in lower SEs 

than EAP Uniform estimates (MR = 0.349; M2pl = 0.263).  A significant interaction between test 

type and estimate type exists for both IRT models.  Table 4.17 shows that CATs, in conjunction 

with EAP Normal, produce lower mean SEs for both IRT models.  For the Rasch model, there is 

also a significant interaction between estimate type and test length (Table 4.18).  Longer CATs 

using EAP Normal produce the lowest mean SEs.  For the less informative prior (EAP Uniform), 

SE is more sensitive to the lack of information in the data and the prior has more of an influence, 

resulting in higher SEs. 

Table 4. 17.  Mean SEs for the interaction effect of test type and estimate type for both IRT 

models, Simulation One, equally represented theta score levels. 

 

 Rasch Model 2PL Model 

 CAT CT CAT CT 

EAP Normal 0.275 0.354 0.211 0.267 

EAP Uniform 0.295 0.404 0.217 0.309 

 

Table 4. 18.  Mean SEs for the interaction between estimate type and test length for the Rasch 

model, Simulation One, equally represented theta score levels.. 

 

 15 30 

EAP Normal 0.365 0.264 

EAP Uniform 0.415 0.284 

 

 As expected, a significant main effect exists for theta score level.  A U-shaped curve 

results when examining SE across all theta score levels.  Mean SEs are higher at the extremes of 

the ability continuum and lower towards the middle (Figure 4.5).  There is a significant 

interaction between theta score level and test type for both IRT models (Figure 4.6).  CATs 
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produce lower mean SEs across all levels of the ability continuum.  While the U-shaped pattern 

still exists, it is flatter for the CATs.   

 

Figure 4. 5.  Mean SEs for the main effect of theta score level for both IRT models for 

Simulation One, equally represented theta score levels. 
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Figure 4. 6.  Mean SEs for the interaction between theta score level and test type under both IRT 

models for Simulation One, equally represented theta score levels. 

 

 A two-way interaction between theta score level and estimate type is significant (Figure 

4.7).  EAP Normal estimates produce lower mean SEs across the ability continuum.  However, 

the two estimate types are similar towards the middle of the ability spectrum.  Lastly, a three-

way interaction between theta score level, test type, and estimate type exists for both IRT models 

(Figure 4.8).  When using a CAT, the differences between the two estimate types are negligible.  

Lower mean SEs still result for the CT when using EAP Normal. 

 

Figure 4. 7.  Mean SEs for the interaction between theta score level and estimate type for under 

both IRT models for Simulation One, equally represented theta score levels. 
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Figure 4. 8.  Mean SEs for the interaction between theta score level, estimate type, and test type 

under both IRT models for Simulation One, equally represented theta score levels. 

 

 Bias.  While no main effects exist for the between-subject factor, which is expected since 

bias usually cancels out across the whole ability spectrum, there is a significant interaction 

between test type and test length for the 2PL model.  Table 4.19 shows that, while bias is similar 

for a CAT regardless of length, shorter CTs underestimate ability and longer CTs overestimate 

ability. 

Table 4. 19.  Mean bias for the interaction between test type and test length for under the 2PL 

model for Simulation One, equally represented theta score levels. 

 

 CAT CT 

15 -0.001 -0.020 

30 -0.002 0.017 

 

 For the 2PL model, there is a significant main effect for estimate type.  EAP Normal (M 

= 0.001) produces less biased estimates than EAP Uniform (M = -0.004).  However, the 
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differences are minimal.  Also, for this IRT model, there is a significant interaction between 

estimate type and test type (Table 4.20).  Again, differences are minimal for CAT.  For the CT, 

the EAP Normal estimate results in more bias, but the differences are also small (0.009). 

Table 4. 20.  Mean bias for the interaction between estimate type and test type under the 2PL 

model for Simulation One, equally represented theta score levels. 

 

 CAT CT 

EAP Normal -0.002 0.003 

EAP Uniform -0.001 -0.006 

 

 Concerning theta score levels, there is a significant main effect and two significant 

interactions for both IRT models.  Figure 4.9 shows the main effect for theta score level.  A 

backward S-shaped pattern emerges.  Estimates for lower ability simulees are often 

overestimated, represented by position bias.  However, estimates for higher ability simulees are 

underestimated, represented by negative bias.  This is as expected due to the influence of the 

prior; estimates are often pulled toward the prior’s mean. 
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Figure 4. 9.  Mean bias for the main effect of theta score level under both IRT models for 

Simulation One, equally represented theta score levels. 

 

 There is a significant interaction between theta score level and estimate type.  As shown 

in Figure 4.10, EAP Uniform estimates generally flatten out the pattern observed for bias.  Thus, 

the less informative prior has less of an effect and estimates are less influenced by the prior.  

There is also a significant three-way interaction between theta score level, estimate type, and test 

type (Figure 4.11).  CATs (red) generally produce lower levels of bias under both IRT models, 

and EAP Uniform (bottom panel) produces less variability in bias across the entire ability 

continuum.  Lastly, there is a significant interaction between theta score level, estimate type, and 

test length (not pictured).  Longer tests produce less bias for EAP Normal estimates; bias levels 

are similar for EAP Uniform. 
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Figure 4. 10.  Mean bias for the interaction between theta score level and estimate type under 

both IRT models for Simulation One, equally represented theta score levels. 

 

 

Figure 4. 11.  Mean bias for the interaction between theta score level, estimate type, and test type 

under both IRT models for Simulation One, equally represented theta score levels. 
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 RMSE.  CATs (MR = 0.450; M2pl = 0.301) produce more accurate ability estimates than 

CTs (MR = 0.543; M2pl = 0.385) for both IRT models.  This result was expected.  Also, as 

expected, longer tests (MR = 0.431; M2pl = 0.296) produce more accurate estimates than shorter 

tests (MR = 0.562; M2pl = 0.390) for both IRT models.  For the Rasch model, there is a significant 

main effect of estimate type.  EAP Uniform (M = 0.485) produces more accurate ability 

estimates than EAP Normal (M = 0.508).   

 For the 2PL model, there are several significant interactions with estimate type.  First, 

there is a significant interaction between estimate type and test length (Table 4.21).  The two 

estimate types are similar for CAT, but EAP Normal estimates produce more accurate results for 

the CT.  There is also a significant interaction between estimate type and test length (Table 4.22).  

The estimates are relatively similar for longer assessments and result in higher accuracy. 

Table 4.18 shows the mean RMSEs for the interaction between estimate type and test type for 

under the 2PL model.  There is a significant interaction between estimate type, test type, and test 

length.  As Figure 4.12 shows, estimate accuracy is highest when a long CAT is utilized; little 

difference exists between estimate type. 

Table 4. 21.  Mean RMSE for the interaction between estimate type and test length for under the 

2PL model for Simulation One, equally represented theta score levels. 

 

 15 30 

EAP Normal 0.383 0.298 

EAP Uniform 0.398 0.293 

 

Table 4. 22.  Mean RMSE for the interaction between estimate type and test type for mean RMSE 

under the 2PL model for Simulation One, equally represented theta score levels. 

 

 CAT CT 

EAP Normal 0.302 0.379 

EAP Uniform 0.300 0.391 
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Figure 4. 12.  Mean RMSE for the interaction between estimate type, test type, and test length 

for the 2PL model for Simulation One, equally represented theta score levels. 

 

 There is a significant main effect of theta score level for both IRT models (Figure 4.13).  

Just like with SE, a U-shaped pattern emerges.  Simulees with true abilities near the middle of 

the ability continuum have more accurate estimates than those towards the extremes.  A 

significant interaction between theta score level and test type occurs for both IRT models (Figure 

4.14).  CATs generally produce more accurate estimate across all theta levels than CTs, but 

accuracy differences are small towards the middle of the continuum.  Lastly, there is a significant 

interaction between theta score level and estimate type for both IRT models (Figure 4.15).  EAP 

Uniform estimates produce more accurate estimates at the high and low extremes of the theta 

continuum.  Towards the middle, EAP Normal produces more accurate estimates but differences 

are minute. 
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Figure 4. 13.  Mean RMSE values for the main effect of theta score level under both IRT models 

for Simulation One, equally represented theta score levels. 

 

Figure 4. 14.  Mean RMSEs for the interaction between theta score level and test type for mean 

RMSE under both IRT models for Simulation One, equally represented theta score levels. 
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Figure 4. 15.  Mean RMSEs for the interaction between theta score level and estimate type for 

mean RMSE under both IRT models for Simulation One, equally represented theta score levels. 

 

 ANOVA Set 2.  The second set of ANOVAs presented deal with the peaked distribution 

for the Single Population.  In other words, this sample set has a distribution that matches that 

seen in the population.  While the number of factors involved in this analysis is small, it allows 

for a look at the how the estimate type, test type, and test length functions in a peaked population 

where the test prior mean matches the ability mean.  Table 4.23 presents the 𝜂𝑤
2  for all effects 

and interactions for each dependent variable, separated by IRT model.    There are very few 

meaningful results; most relate to standard error when using the Rasch model.  This is because 

the item discrimination value in the Rasch model is 1, meaning all items are equally 

discriminating.  However, for the 2PL model, items vary in discriminatory power.  It is pertinent 

to note that only one effect concerning bias is significant, but does not meet the effect size cutoff. 
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Table 4. 23.  Within family effect sizes from ANOVA Set 2 conducted on standard error (SE), 

bias, root mean square error (RMSE) for each IRT model using the Single Population. 

Effect  
SE Bias RMSE 

Rasch 2PL Rasch 2PL Rasch 2PL 

T 0.214** 0.226** 0.000 0.000 0.061** 0.096** 

L 0.231** 0.024** 0.000 0.002 0.136** 0.110** 

T*L 0.015** 0.010** 0.000 0.003** 0.001 0.016** 

E  0.546** 0.300** 0.000 0.000 0.055** 0.002* 

E*T 0.097** 0.158** 0.000 0.000 0.006** 0.003** 

E*L 0.105** 0.017** 0.000 0.000 0.002* 0.006** 

E*T*L 0.007** 0.007** 0.000 0.000 0.005** 0.005** 

* p < 0.0167; ** p < 0.001     

T = test type; L = test length     

E = estimate type      
 

 Standard error.  For both IRT models, the CAT (MR = 0.285; M2pl = 0.214) produces 

lower mean SEs than the CT (MR = 0.379; M2pl = 0.289).  For the Rasch model, there is a 

significant main effect for test length; longer tests (M = 0.274) produce lower SEs than shorter 

tests (M = 0.390).  For both IRT models, there is a significant main effect for estimate type.  EAP 

Normal (MR = 0.315; M2pl = 0.240) results in lower mean SEs than EAP Uniform (MR = 0.349; 

M2pl = 0.264).  The interaction between estimate type and test type (Table 4.24) is significant for 

both IRT models and shows that CATs using EAP Normal produces the lowest SEs.  A CT 

utilizing EAP Uniform produces the highest SEs.  For the Rasch model, the interaction between 

estimate type and test length (Table 4.25) shows that longer assessment using EAP Normal 

estimate produce lower SEs. 

Table 4. 24.  Mean SEs for the interaction between estimate type and test type for under both IRT 

models for Simulation One, peaked distributions. 

 Rasch Model 2PL Model 

 CAT CT CAT CT 

EAP Normal 0.275 0.354 0.211 0.268 

EAP Uniform 0.295 0.403 0.218 0.309 
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Table 4. 25.  Mean SEs for the interaction between estimate type and test length for under the 

Rasch model for Simulation One, peaked distributions. 

 

 15 30 

EAP Normal 0.365 0.265 

EAP Uniform 0.414 0.284 

 

 RMSE.  Few effects for RMSE are meaningful; only two meet the cutoff values.  First, 

for the 2PL model, there is a significant main effect for test type.  CATs (M = 0.295) produce 

more accurate estimates than CTs (M = 0.383).  This result is expected.  While this main effect 

did not occur for the Rasch model, the effect size was relatively high (M = 0.061).  For models, 

there is a significant main effect for test length.  As expected, longer tests (MR = 0.424; M2pl = 

0.292) result in more accurate estimates than shorter tests (MR = 0.561; M2pl = 0.386). 

Simulation Two 

 This section utilizes the Subgroup Population data, in which a majority group (A) and a 

minority group (B) both exist.  The minority group is further subdivided into two subgroups, 

where one group has a lower ability (BL) than the other (BH).  BH is identical to A.  However, BH 

composes only 20% of the minority group (i.e., Group B) and 6% of the total sample (Groups A 

and B).  However, to ensure that this small group size does not influence results, groups were 

constrained to be equal sizes for Sample Set 1.  For Sample Set 3, however, sample sizes were 

smaller since the population distribution was approximated. 

 ANOVA Set 1.  The first set of ANOVAs to be presented are those that utilized the 

uniform sample, where all theta score levels are equally represented.  This approach is taken 

because when group membership is examined in conjunction with theta score level, the influence 

of test prior is unbalanced.    First, information pertaining to the CTs is given, followed by CAT.  
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It was inappropriate to analyze both test types together, since the CT had four final estimate 

priors, while the CATs had three test priors. 

 CT.  The CTs did not involve priors during test administration.  Prior information is only 

influential during final ability estimation after the test has been administered.  Thus, the utilized 

priors are referred to as final estimate priors.  Table 4.26 presents the effect sizes for this portion 

of the study.  The four test priors for the CTs are:  Population Composite Prior, Group 

Composite Prior, Group Specific Prior, and Less Informative Prior. 

Table 4. 26.  Effect sizes from CT ANOVA Set 1 conducted on standard error (SE), bias, root 

mean square error (RMSE) for each IRT model using the Subgroup Population. 

 

Effect 
SE Bias RMSE 

Rasch 2PL Rasch 2PL Rasch 2PL 

Results on Final Estimate Priors 

P 0.203** 0.422** 0.230** 0.455** 0.140** 0.067** 

P*S 0.108** 0.104** 0.043** 0.226** 0.035** 0.076** 

P*S*L 0.015** 0.005** 0.005** 0.013** 0.003** 0.013** 

P*L 0.039** 0.028** 0.057** 0.074** 0.001 0.015** 

Results Dealing with All Other Factors 

L 0.750** 0.524** 0.006* 0.032** 0.617** 0.707** 

S 0.771** 0.824** 0.901** 0.658** 0.814** 0.766** 

S*L 0.028** 0.010** 0.005** 0.010** 0.010** 0.006** 

* p < 0.0167; ** p < 0.001     
P = final estimate prior; L = test 

length     
S = theta score level      

 

 Pertinent final estimate prior results.  First presented are the results that relate to the final 

estimate priors.  Any main effects and interaction that are significant and meet the effect size 

criterion are presented. 

Standard error.  There is a significant main effect of final estimate prior on mean SE.  

Table 4.27 presents the mean SE for each prior.  As can be seen, when a Less Informative Prior 

is used to estimate ability, there is more error obtained within the estimate.  There is a significant 
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interaction between final estimate prior and theta score level (Figure 4.16).  When there is a Less 

Informative Prior placed on the estimate (EAP Uniform for the CT), the mean SE gets quite high, 

especially at the ends of the theta continuum.  This is because the mean of the test is far from 

these theta levels and less information is obtained; therefore, estimation suffers. 

Table 4. 27.  Mean SEs for the main effect of final estimate prior under both IRT models for 

Simulation Two, CT, equally represented theta score levels. 

 

 Rasch Model 2PL Model 

Population Composite Prior 0.335 0.279 

Group Composite Prior 0.338 0.284 

Group Specific Prior 0.337 0.283 

Less Informative Prior 0.401 0.384 

 

 

Figure 4. 16.  Mean SEs for the interaction between theta score level and final estimate prior 

under both IRT models for Simulation Two, CT, equally represented theta score levels. 

 

 Bias.  There is a significant main effect of final estimate prior when examining bias as 

well.  Table 4.28 presents the mean bias, and absolute bias, for the four final estimate priors 
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under each IRT model.  While SE may be high for the Less Informative Prior condition, it has 

the lowest bias out of the four test priors. 

Table 4. 28.  Mean bias for the main effect of final estimate prior for mean bias, with absolute 

bias, for both IRT models for Simulation Two, CT, equally represented theta score levels. 

 

 Rasch Model 2PL Model 

 Bias Absolute Bias Bias Absolute Bias 

Population Composite Prior 0.112 0.112 0.075 0.075 

Group Composite Prior 0.071 0.071 0.039 0.039 

Group Specific Prior 0.095 0.095 0.057 0.057 

Less Informative Prior 0.051 0.051 -0.022 0.022 

  

There is a significant interaction between theta score level and final estimate prior for 

bias for the 2PL model.  The three informative priors are similar in terms of mean bias (Figure 

4.17), with more bias at the extremes of the ability continuum.  However, although using a less 

informative prior (i.e., Less Informative Prior, black line) results in higher SEs, these estimates 

have lower levels of bias across the entire ability spectrum.   
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Figure 4. 17.  Mean bias for the interaction between theta score level and final estimate prior 

under both IRT models for Simulation Two, CT, equally represented theta score levels. 

 

 There is a significant interaction between final estimate prior and test length, presented in 

Table 4.29, for the 2PL model.  Longer tests help when using certain priors (i.e., Population 

Composite Prior, Less Informative Prior) and decrease bias, but with other test priors (i.e., Group 

Composite Prior, Group Specific Prior), bias increases. 

Table 4. 29.  Mean bias for the interaction between final estimate prior and test length under the 

2PL model for Simulation Two, CT, equally represented theta score levels. 

 

 15 30 

Population Composite Prior 0.085 0.064 

Group Composite Prior 0.027 0.051 

Group Specific Prior 0.051 0.064 

Less Informative Prior -0.053 0.009 

 

 RMSE.  For mean RMSE, there is a significant main effect of final estimate prior for the 

Rasch model (Table 4.30).  Using an EAP estimate with a less informative prior (i.e., Less 

Informative Prior) leads to more accurate ability estimates.  For the 2PL model, the effect size 

was not reached but was close.  There is also an interaction between final estimate prior and theta 

score level (Figure 4.18) for the 2PL model.  The final estimate priors have similar levels of 

accuracy towards the middle of the ability continuum.  However, using a less informative prior 

led to more accurate estimates at the extremes.   

Table 4. 30.  Mean RMSE for the main effect of final estimate prior for the Rasch model for 

Simulation Two, CT, equally represented theta score levels. 

 

 Rasch Model 

Population Composite Prior 0.599 

Group Composite Prior 0.590 

Group Specific Prior 0.593 

Less Informative Prior 0.540 
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Figure 4. 18.  Mean bias for the interaction between test prior and theta score level for the 2PL 

model for Simulation Two, CT, equally represented theta score levels. 

 

 Other meaningful results.  All other significant results meeting the effect size criterion 

are presented. 

Standard error.  A significant main effect for test length exists for SE.  Longer tests (MR = 

0.299; M2pl = 0.258) produces lower levels of standard error than shorter tests (MR = 0.406; M2pl 

= 0.357).  There is a significant main effect for theta score level (Figure 4.19).  The resulting 

pattern is U-shaped; SE means are higher for the extreme ability levels than for the middle ones.  

This is expected when ignoring other influences, as seen in Simulation One. 
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Figure 4. 19.  Mean SE for the main effect of theta score level for both IRT models in 

Simulation Two, CT, equally represented theta score levels. 

 

 Bias.  There is a significant main effect of theta score level (Figure 4.20) for bias.  As can 

been seen, a S-shaped curve results, where lower ability levels are overestimated (i.e., positive 

bias) and higher ability levels are underestimated (i.e., negative bias).  When test length is added 

in for an interaction, longer tests generally result in less bias. 
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Figure 4. 20.  Mean bias for the main effect of theta score level for both IRT models for 

Simulation Two, CT, equally represented theta score levels. 

 

 RMSE.  For mean RMSE, there are two significant main effects – test length and theta 

score level.  Longer tests (MR = 0.531; M2pl = 0.380) results in more accurate estimates than 

shorter tests (MR = 0.630; M2pl = 0.483).  Figure 4.21 shows the main effect for theta score level.  

As expected, there is a U-shaped pattern to RMSE for both IRT models.  For simulees at the 

extremes of the latent continuum, ability estimates are less accurate than for those near the 

middle of the continuum. 
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Figure 4. 21.  Mean RMSE for the main effect of theta score level under both IRT models for 

Simulation Two, CT, equally represented theta score levels.   

 

 CAT.  For the CATs, test priors are used throughout test administration and the prior used 

in EAP Normal estimation.  Table 4.31 presents the 𝜂𝑤
2  for all effects and interactions for each 

dependent variable, separated by IRT model.  Effects involving the test priors will be presented 

first, followed by all other meaningful effects. 
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Table 4. 31.  Within family effect sizes from CAT ANOVA Set 1 conducted on standard error 

(SE), bias, root mean square error (RMSE) for each IRT model using the Subgroup Population. 

 

Effect 
SE Bias RMSE 

Rasch 2PL Rasch 2PL Rasch 2PL 

Results on Test Priors 

P 0.000 0.000 0.205** 0.031 0.001 0.001 

P*S 0.018** 0.016** 0.001* 0.002 0.011** 0.010** 

P*S*L 0.003** 0.001 0.000* 0.003 0.002 0.002 

P*E*S 0.014** 0.000** 0.000** 0.000 0.020** 0.008** 

P*E*S*L 0.007** 0.001 0.000 0.000 0.004** 0.001 

P*L 0.000 0.000 0.007 0.001** 0.000 0.001 

P*E 0.000* 0.000** 0.341** 0.364** 0.007** 0.006 

P*L*E 0.000 0.000** 0.040** 0.012** 0.004* 0.000 

Results Dealing with All Other Factors 

E 0.759** 0.909** 0.430** 0.376** 0.767** 0.071** 

L 0.998** 0.952** 0.005 0.012* 0.837** 0.611** 

E*L 0.239** 0.084** 0.062** 0.017** 0.040** 0.035** 

S 0.638** 0.195** 0.753** 0.397** 0.344** 0.034** 

S*L 0.116** 0.023** 0.041** 0.004** 0.040** 0.004* 

E*S 0.608** 0.545** 0.875** 0.944** 0.649** 0.395** 

E*S*L 0.239** 0.061** 0.101** 0.035** 0.082** 0.004** 

* p < 0.0167; ** p < 0.001     

L = test length; P = test prior     

E = estimate type; S = theta score level    

 

Pertinent test prior results.  First, the results relating to the test prior are presented, since 

these are the primary effects of interest.  When examining theta score levels in relation to 

standard error, there is no effect of test prior in comparison to the means of the theta score levels.   

Bias.  There is a significant main effect for test prior when examining bias for the Rasch 

model.  The Population Composite Prior (M = 0.046) produces the highest level of bias, followed 

by the Group Specific Prior (M = 0.026).  The Group Composite Prior (M = -0.003) produces the 

lowest amount of bias.  For both IRT models, there is a significant interaction between test prior 

and estimate type.  The test prior is used during the CAT for both ability initialization and for 

item selection.  For estimate type, EAP Normal utilizes the test prior used during the test while 
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EAP Uniform has a less informative prior.  Although the test prior is used during test 

administration, less information is being used from the prior to obtain final estimates of ability.  

Table 4.32 shows the mean bias for the interaction of these two factors.  The Group Composite 

Prior tends to underestimate ability, whereas the other two priors tend to overestimate ability.  

The Population Composite Prior produces the most bias.  However, bias decreases when the EAP 

Uniform estimate is used. 

Table 4. 32.  Means for bias when examining the interaction between test prior and final 

estimate type for both IRT models for Simulation Two, CAT, equally represented theta score 

levels.  

 

 Rasch Model 2PL Model 

 EAP Normal EAP Uniform EAP Normal EAP Uniform 

Population Composite Prior 0.056 0.035 0.014 0.003 

Group Composite Prior -0.005 -0.002 -0.006 -0.004 

Group Specific Prior 0.033 0.018 0.008 0.001 

  

Other meaningful results.  The remaining results are presented next.  Most of these 

results were as expected based off the results from the base simulation, Simulation One. 

Standard error.  There is a significant main effect of estimate type for both IRT models 

for SE.  EAP Normal (MR = 0.275; M2pl = 0.211) produces lower mean SEs than EAP Uniform 

(MR = 0.296; M2pl = 0.218).  A significant main effect for test length also occurs for both IRT 

models.  Longer tests (MR = 0.234; M2pl = 0.195) produces lower mean SEs than shorter tests 

(MR = 0.337; M2pl = 0.234).  There is also a significant interaction between estimate type and test 

length (Table 4.33).  Longer assessments utilizing EAP Normal estimation produce lower mean 

SEs. 

 

 

 



 

117 
 

Table 4. 33.  Mean SEs for the interaction between estimate type and test length for both IRT 

models for Simulation Two, CAT, equally represented theta score levels. 

 

 Rasch Model 2PL Model 

 15 30 15 30 

EAP Normal 0.322 0.229 0.230 0.193 

EAP Uniform 0.353 0.238 0.238 0.197 

 

 A significant main effect, as expected, exists for theta score level for SE.  As Figure 4.22 

shows, mean SE is higher at the extremes of the ability continuum.  However, the differences are 

minimal.  There is a significant two-way interaction for theta score level and test length for the 

Rasch model, in which longer tests reduces SE, as well as a significant two-way interaction for 

theta score level and estimate type for both IRT models, which is presented in Figure 4.23.  EAP 

Uniform estimates produce higher mean SEs at all levels of the ability continuum, and there is an 

upward turn at the extremes for both final estimate type.  There is a significant three-way 

interaction for the Rasch model including test length (not pictured).  A longer test produced 

lower levels of mean SE. 
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Figure 4. 22.  Mean SE for the main effect for theta score level under both IRT models for 

Simulation Two, CAT, equally represented theta score level. 

 

Figure 4. 23.  Mean SEs for the interaction between theta score level and estimate type under 

both IRT models for Simulation Two, CAT, equally represented theta score levels. 
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 Bias.  For bias, there is a significant main effect for estimate type for both IRT models.  

EAP Uniform (MR = 0.017; M2pl = 0.000) produces lower levels of mean bias than EAP Normal 

(MR = 0.028; M2pl = 0.005).  There is also a significant main effect for theta score level.  As 

previously seen, a backwards S-shape pattern occurs (Figure 4.24).  The lower ability levels are 

generally overestimated, where the higher ability levels are underestimated.  A two-way 

interaction between theta score level and estimate type is significant (Figure 4.25).  Using EAP 

Uniform (blue) for final ability estimation produces lower levels of bias across the ability 

spectrum than using EAP Normal (red). 

 

Figure 4. 24.  Mean bias for the main effect of theta score level under both IRT models for 

Simulation Two, CAT, equally represented theta score levels. 
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Figure 4. 25.  Mean bias for the two-way interaction (theta score level x estimate type) under 

both IRT models for Simulation Two, CAT, equally represented theta score levels.   

 

 RMSE.  There is a significant main effect for estimate type for mean RMSE for both IRT 

models.  EAP Uniform (MR = 0.445; M2pl = 0.300) produces slightly more accurate estimates 

than EAP Normal (MR = 0.465; M2pl = 0.302).  There is also a significant main effect of test 

length for both IRT models.  Longer assessments (MR = 0381; M2pl = 0.272) produce more 

accurate ability estimates than shorter assessments (MR = 0.529; M2pl = 0.330).   

 Also, for both IRT models, there is a significant main effect of theta score level (Figure 

4.26).  Estimates are more accurate towards the middle of the ability continuum.  A significant 

two-way interaction (theta score level by estimate type) for both IRT models shows that EAP 

Uniform estimates are more accurate towards the extremes of the latent trait continuum.  This is 

because the less informative estimate type and its prior is more sensitive to a lack of information 
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at these ability levels and, thus, has more of an influence over the ability estimates.  However, 

EAP Normal is more accurate towards the middle, but the two estimate types are close (Figure 

4.27).   

 

Figure 4. 26.  Mean RMSE for the main effect of theta score level under both IRT models for 

Simulation Two, CAT, equally represented theta score levels. 
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Figure 4. 27.  Mean bias for the interaction of theta score level and estimate type under both IRT 

models for Simulation Two, CAT, equally represented theta score levels. 

 

ANOVA Set 2.  The second set of ANOVAs to be presented are those that utilized the 

peaked sample, where the subgroup distributions approximated the means observed in the 

population.  This allowed the interaction of test prior and group membership to be observed 

without any erroneous influence with other factors, such as theta score level.  As with previous 

section, results are first presented for CTs then CATs.  

CT.  While ANOVA Set 1 examined equal theta score levels, ANOVA Set 2 examined 

the groups with distributions approximating the population.  Table 4.34 presents the effect size 

for all effects and interactions.  Again, priors influence only final ability estimation, and are 

called final estimate priors. 
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Table 4. 34.  Within-family effect sizes from CT ANOVA Set 2 conducted on standard error (SE), 

bias, root mean square error (RMSE) for each IRT model using the Subgroup Population. 

 

Effect 
SE Bias RMSE 

Rasch 2PL Rasch 2PL Rasch 2PL 

Results on Final Estimate Priors 

P 0.154** 0.446** 0.204** 0.263** 0.071** 0.217** 

P*G 0.130** 0.196** 0.040** 0.305** 0.069** 0.123** 

P*G*L 0.033** 0.015** 0.006** 0.023** 0.011** 0.011** 

P*L 0.000** 0.000** 0.042** 0.079** 0.009** 0.029** 

Results Dealing with All Other Factors 

L 0.808** 0.522** 0.071** 0.111** 0.780** 0.659** 

G 0.687** 0.670** 0.920** 0.583** 0.506** 0.460** 

G*L 0.040** 0.011** 0.000 0.000 0.003* 0.002* 

* p < 0.0167; ** p < 0.001     
P = final estimate prior; L = test 

length     
G = group membership     

 

 Pertinent test prior results.  First, any results relating to the final estimate priors are 

presented. 

Standard error.  A significant main effect exists for final estimate prior when examining 

mean SE (Table 4.35).  Mean SEs are similar for all final estimate priors except for the Less 

Informative Prior condition.  These SEs are higher due to the difficulty of estimating abilities at 

the extremes.  There is a significant interaction between final estimation prior and group 

membership for both models (Figure 4.28).  The Less Informative Prior condition has higher SEs 

for all groups, but has an upward trend for Group BL.  

Table 4. 35.  Mean SE for the main effect of final estimate prior for both IRT models for 

Simulation Two, CT, peaked distributions. 

 

 Rasch Model 2PL Model 

Population Composite Prior 0.318 0.247 

Group Composite Prior 0.321 0.252 

Group Specific Prior 0.323 0.255 

Less Informative Prior 0.371 0.348 
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Figure 4. 28.  Mean SE for the interaction between group membership and final estimate prior 

under both IRT models for Simulation Two, CT, peaked distributions. 

 

 Bias.  There is a significant main effect for final estimate prior under both IRT models.  

As Table 4.36 shows, the Group Composite prior results in less bias than the other priors.  The 

Less Informative Prior condition is comparable.  The other two priors are inappropriate since 

their means are far from the mean of the CT.  There is also an interaction between final estimate 

prior and group membership for the 2PL model (Figure 4.29).  For the 2PL model, the three 

priors utilizing an informative prior underestimate ability for Groups A and BH and overestimate 

ability for Group BL.  This makes sense, because the CT is easier for the higher functioning 

groups (A and BH) and harder for lower groups (BL).  However, the Less Informative Prior 

results in lower levels of bias than the other three test priors.   
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Table 4. 36.  Mean bias for the main effect of final estimate prior under both IRT models for 

Simulation Two, CT, peaked distributions. 

 

 Rasch Model 2PL Model 

Population Composite Prior 0.042 0.024 

Group Composite Prior 0.016 0.005 

Group Specific Prior 0.034 0.014 

Less Informative Prior 0.026 -0.008 

 

   

Figure 4. 29.  Mean bias for the interaction between final test prior and group membership under 

the 2PL model for Simulation Two, CT, peaked distributions. 

 

 RMSE.  There is a significant main effect for final estimate prior when examining mean 

RMSE (Table 4.37).  For the Rasch model, the most accurate estimates are obtained using the 

less informative prior.  However, for the 2L model, this prior produces the least accurate 

estimates.  The Group Specific Prior is the most accurate.  There is also an interaction between 

final estimate prior and group membership for mean RMSE for the 2PL model (Figure 4.30).  

The most accurate estimates are obtained using the Group Specific Prior (green).  However, the 
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three informative test priors are similar in terms of accuracy.  The less informative prior (black) 

produces the least accurate estimates. 

Table 4. 37.  Mean RMSE for the main effect for final estimate prior under both IRT models for 

Simulation Two, CT, peaked distributions. 

 

 Rasch Model 2PL Model 

Population Composite Prior 0.526 0.376 

Group Composite Prior 0.514 0.367 

Group Specific Prior 0.504 0.358 

Less Informative Prior 0.491 0.432 

  

 

Figure 4. 30.  Mean RMSE for the interaction between final estimate prior and group 

membership for the 2PL model for Simulation Two, CT, peaked distributions. 

 

 Other meaningful results.  The remaining significant and meaningful results for 

Simulation Two examining the CTs for the peaked distributions is presented. 

Standard error.  For mean SE, there are two significant main effects – test length and 

group membership.  Longer tests (MR = 0.282; M2pl = 0.230) produce lower mean SEs than 

shorter tests (MR = 0.384; M2pl = 0.321).  Mean SEs are higher for Group BL than for the other 



 

127 
 

two groups (Table 4.38).  This is due to the mismatch between this group’s mean ability level 

and the mean difficulty of the test. 

Table 4. 38.  Mean SE for the main effect of group membership under both IRT models for 

Simulation Two, CT, peaked distributions. 

 

 Rasch Model 2PL Model 

A 0.483 0.474 

BL 0.502 0.529 

BH 0.483 0.471 

 

 Bias.  When examining bias, there is a significant main effect for test length.  For CTs, 

the shorter tests (MR = 0.024; M2pl = 0.001) resulted in lower mean bias than longer tests (MR = 

0.035; M2pl = 0.016).  This might be due to more inappropriate information in terms of test items 

throughout the entire CT.  There is also a significant main effect of group membership (Table 

4.39).  Group BL has higher levels of bias; the mean of the CT (0.26) is farther away from the 

mean of this group than the other two groups.  Group BL abilities are generally overestimated, 

whereas the other two groups are underestimated.  The data obtained via the CT are less 

informative for the lowest group (BL), inflating the ability estimates obtained for this group.  

While bias levels are lower for Groups A and BH, the CT is still less informative than an optimal 

test, which affects final ability estimates for the groups. 

Table 4. 39.  Mean bias for the significant main effect of group membership under both IRT 

models for Simulation Two, CT, peaked distributions. 

 

 Rasch Model 2PL Model 

A -0.054 -0.029 

BL 0.225 0.099 

BH -0.082 -0.045 

 

 RMSE.  Longer tests (MR = 0.467; M2pl = 0.333) produce more accurate estimates (e.g., 

lower mean RMSE) than shorter tests (MR = 0.551; M2pl = 0.433).  There is also a significant 
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main effect for group membership (Table 4.40).  Estimates are more accurate for Group A, 

followed by Group BH.  These groups have mean abilities close to the mean of the CT.  Group 

BL has the least accurate ability estimates. 

Table 4. 40.  Mean RMSE for the main effect of group membership under both IRT models for 

Simulation Two, CT, peaked distributions. 

 

 Rasch Model 2PL Model 

A 0.484 0.357 

BL 0.547 0.425 

BH 0.495 0.367 

 

CAT.  For the CAT, test priors are utilized through the entire test administration process 

and for final ability estimation.  Table 4.41 presents the 𝜂𝑤
2   for all effects and interactions for 

each dependent variable, separated by IRT model.  Each measure meeting all previously 

described significance criteria will be discussed. 
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Table 4. 41.  Within-family effect sizes from CAT ANOVA Set 2 conducted on standard error 

(SE), bias, root mean square error (RMSE) for each IRT model using the Subgroup Population. 

Effect 
SE Bias RMSE 

Rasch 2PL Rasch 2PL Rasch 2PL 

Results on Test Priors 

P 0.000** 0.000 0.337** 0.079** 0.003** 0.000 

P*G 0.071* 0.000 0.306** 0.096** 0.070** 0.007 

P*G*L 0.000 0.003 0.011** 0.013** 0.003 0.006 

P*G*E 0.000** 0.066 0.397** 0.410** 0.304** 0.095** 

P*G*E*L 0.000** 0.035 0.045** 0.012** 0.051** 0.000* 

P*E 0.000** 0.000 0.793** 0.706** 0.178** 0.000** 

P*L 0.000 0.000 0.015** 0.005 0.000 0.000 

P*E*L 0.000** 0.000 0.087** 0.029** 0.022** 0.000** 

Results Dealing with All Other Factors 

E 0.770** 0.935** 0.054** 0.118** 0.022** 0.667** 

L 0.999** 0.937** 0.003** 0.004** 0.933** 0.786** 

G 0.071** 0.033** 0.431** 0.231** 0.012** 0.004** 

E*L 0.230** 0.065** 0.000** 0.000** 0.200** 0.103** 

G*L 0.000** 0.001 0.025** 0.003 0.002 0.100** 

E*G 0.000** 0.410** 0.487** 0.545** 0.063** 0.047** 

E*G*L 1.000** 0.489** 0.055** 0.020** 0.013** 0.004** 

* p < 0.0167; ** p < 0.001     

L = test length; P = test prior     

E = estimate type; G = group membership   
 

Pertinent test prior results.  As for previous sections, the results relating to the test priors 

are presented first. 

Standard error.  For mean standard error of measurement, there is only one significant 

and meaningful effect, the interaction between test prior and group membership for the Rasch 

model.  However, as Table 4.42 shows, the differences in mean SE is small for all groups across 

all test priors; this is as expected, since the effect size barely met the criterion cut-off (0.071 vs. 

0.07). 
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Table 4. 42.  Mean SE for the interaction between test prior and group membership under the 

Rasch model for Simulation Two, CAT, peaked distributions. 

 Population Composite Prior Group Composite Prior Group Specific Prior 

A 0.280 0.280 0.280 

BL 0.282 0.280 0.280 

BH 0.280 0.282 0.279 

 

 Bias.  When examining bias, there is a significant main effect of test prior for both IRT 

models.  As shown in Table 4.43, the Group Composite Prior has the largest bias out of all the 

test priors and tends to underestimate ability.  The Population Composite Prior has the next 

highest level of bias, whereas the Group Specific Prior has the lowest.  For the 2PL model, the 

absolute bias levels are very minimal; however, the actual bias is in different directions.  The 

effect is small (0.079) and might be driven by the polarization of bias (i.e., positive and 

negative).   

Table 4. 43.  Mean bias for the main effect of test prior under both IRT models for Simulation 

Two, CAT, peaked distributions. 

 

 Rasch Model 2PL Model 

 Bias Absolute Bias Bias Absolute Bias 

Population Composite Prior 0.014 0.014 0.003 0.003 

Group Composite Prior -0.027 0.027 -0.010 0.010 

Group Specific Prior 0.002 0.002 -0.001 0.001 

 

 A significant interaction between group membership and test prior exists for both IRT 

models, as shown in Figure 4.31.  The Group Specific Prior (green) is produce the lowest levels 

of bias.  The Population Composite Prior (red) produces bias in the minority groups (BL and BH).  

The Group Composite Prior does well for Groups A, in which the appropriate prior is being used, 

and Group BL, since it is near the group’s mean.  However, it functions very poorly for Group 

BH.  It underestimates the abilities of simulees in this group. 
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Figure 4. 31.  Mean bias for the interaction between test prior and group membership for both 

IRT models for Simulation Two, CAT, peaked distributions. 

 

 A three-way interaction between test prior, group membership, and estimate type is 

significant for both IRT models when examining bias (Figure 4.32).  Patterns comparable to 

those in Figure 4.32 above exists for the groups and test priors.  However, EAP Uniform 

estimates do reduce the amount of bias, but do not get rid of it entirely.  Not pictured is the two-

way interaction using only test prior and estimate type.  Patterns are comparable to those in 

Figure 4.31 for the three-way interaction.  EAP Uniform estimates reduce the amount of bias in 

each of the test priors, but do not get rid of it completely. 
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Figure 4. 32.  Mean bias for the interaction between test prior, group membership, and estimate 

type for both IRT models for Simulation Two, CAT, peaked distributions. 

 

 The last interaction significant for the test prior in terms of bias is the three-way 

interaction between test prior, estimate type, and test length for the Rasch model (Figure 4.33).  

The Population Composite Prior (red) overestimates ability whereas the Group Composite Prior 

(blue) underestimates ability.  The Group Specific Prior (green) has very little bias.  However, a 

reduction in bias is observed for the Group Composite Prior (blue) when a longer test is utilized. 
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Figure 4. 33.  Interaction between test prior, estimate type, and test length for mean bias under 

the Rasch model for Simulation Two, CAT, peaked distributions. 

 RMSE.  Concerning RMSE, the interaction between test prior, group membership, and 

estimate type is significant for both IRT models, and is presented in Figure 4.34.  For Group A 

(A), all three priors are similar.  For Group BL (B), the Population Composite Prior (red) is not as 

accurate as the group priors.  These priors function similarly in terms of accuracy because their 

means are close.  For Group BH (C), the Population Composite Prior (red) and Group Specific 

Prior (green) function similar.  The Group Composite is less accurate for these simulees.  There 

is a significant two-way interaction for RMSE under the Rasch model between test prior and 

estimate type, in which the Subgroup Prior using EAP Normal as a final estimate approach 

produces the most accurate estimates.  For this test prior, EAP Uniform is also lower for all other 

test priors.   
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Figure 4. 34.  Interaction of test prior, group membership, and estimate type for mean RMSE for 

both IRT models for Simulation Two, CAT, peaked distributions.  

 Other meaningful results.  The remaining results concerning the CATs for Simulation 

Two using the peaked distributions is presented. 

Standard error.  For both IRT models, EAP Normal (MR = 0.272; M2pl = 0.211) produces 

lower mean SEs than EAP Uniform (MR = 0.288; M2pl = 0.216).  Longer tests (MR = 0.231; M2pl 

= 0.195) also produce lower mean SEs than shorter tests (MR = 0.330; M2pl = 0.232) for both IRT 

models.  For SE under the Rasch model, there is also a significant interaction for estimate type 
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and test length.  Table 4.44 shows that tests using EAP Uniform have higher mean SEs, but the 

longer the test, the closer the two estimation methods are in terms of SE. 

Table 4. 44.  Mean SE for the interaction between estimate type and test length for the Rasch 

model for Simulation Two, CAT, peaked distributions. 

 

 EAP Normal EAP Uniform 

15 0.318 0.342 

30 0.227 0.234 

 

 There is a significant interaction between estimate type and group membership for SE 

under the 2PL model.  In Table 4.45, the EAP Normal approach produces lower mean SEs for all 

three groups.  Finally, for SE under both IRT models, there is a significant interaction between 

estimate type, group membership, and test length (Figure 4.35).  For all groups, EAP Normal 

produces the lowest mean SEs, but the two estimate types are approximately equal for a longer 

test. 

Table 4. 45.  Mean SE for the interaction between estimate type and group membership for the 

2PL model for Simulation Two, CAT, peaked distributions. 

 

 EAP Normal EAP Uniform 

A 0.211 0.217 

BL 0.210 0.215 

BH 0.211 0.217 
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Figure 4. 35.  Mean SE for the interaction between estimate type, group membership, and test 

length under the Rasch model for Simulation Two, CAT, peaked distributions. 

 

 Bias.  For both IRT models, a significant main effect for estimate type exists for mean 

bias for the 2PL model.  EAP Uniform (M2pl = -0.001) produces less bias than EAP Normal (M2pl 

= -0.004), but the differences are minimal.  There is also a significant main effect for group 

membership for both IRT models.  Table 4.46 presents the bias, as well as absolute bias, for the 

three groups.  Group A tends to have less bias than the other groups; more of the test priors are 

appropriate for this group.  Groups BL and BH have approximately the same levels of mean bias. 

Table 4. 46.  Mean bias for the main effect for group membership under both IRT models for 

Simulation Two, CAT, peaked distributions. 

 

 Rasch Model 2PL Model 

 Bias Absolute Bias Bias Absolute Bias 

A -0.014 0.014 -0.007 0.007 

BL 0.054 0.054 0.017 0.017 

BH -0.051 0.051 -0.018 0.018 
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 There is a significant interaction between estimate type and group membership for both 

IRT models, as well as a three-way interaction between estimate type, group membership, and 

test length (Figure 4.36).  EAP Uniform estimates have less absolute bias when compared to 

EAP Normal for all three groups.  This pattern is noticeable for the minority groups (BL and BH) 

who may have received more inappropriate priors. 

 

Figure 4. 36.  Mean bias for the interaction between estimate type, group membership, and test 

length under both IRT models for Simulation Two, CAT, peaked distributions. 

 

 RMSE.  For the 2PL model, there is a significant main effect for estimate type, in which 

EAP Normal estimates (M = 0.302) produce slightly more accurate estimates than EAP Uniform 

(M = 0.307).  However, the means are still similar.  There is also a significant main effect for test 

length.  Longer tests (MR = 0.367; M2pl = 0.277) produce more accurate estimates than shorter 

tests (MR = 0.499; M2pl = 0.332).    There is also a significant interaction between estimate type 
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and test length for both IRT models (Table 4.47).  EAP Normal estimates are a little more 

accurate, but the two estimate types are approximately the same, especially for longer tests.  

Lastly, there is an interaction between group membership and test length.  Although not 

explicitly stated, the longer test for all groups produces more accurate estimates, as expected, 

since the main effect of test length was significant. 

Table 4. 47.  Mean RMSE for the interaction between test length and estimate type under both 

IRT models for Simulation Two, CAT, peaked distributions. 

 

 Rasch Model 2PL Model 

 EAP Normal EAP Uniform EAP Normal EAP Uniform 

15 0.497 0.501 0.328 0.336 

30 0.368 0.366 0.275 0.279 

 

 ANOVA Set 3.  The third set of ANOVAs for Simulation Two represent a set of data in 

which the population composition is fully intact (i.e., Group BH composes only 6% of the data 

and all separate distributions exist); group membership is examined in this set of ANOVAs.  This 

approach allowed for the examination of how the test priors would function in the true 

population, and the interaction with group membership.  As with all previous sections, CT results 

are first presented followed by CAT results. 

 CT.  Similar to ANOVA Set 2 for the CTs, ANOVA Set 3 examined the groups and their 

interactions with the final estimate priors.  However, instead of each group having an equal 

number of simulees, Group BH only had 600 simulees (i.e., 6% of the population).  As with other 

CT conditions, the priors only influence final estimates.  Table 4.48 presents the effect size 

information for all effects and interactions. 
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Table 4. 48.  Within-family effect sizes from CT ANOVA Set 3 conducted on standard error (SE), 

bias, root mean square error (RMSE) for each IRT model using the Subgroup Population. 

 

Effect 
SE Bias RMSE 

Rasch 2PL Rasch 2PL Rasch 2PL 

Results on Final Estimate Priors 

P 0.136** 0.350** 0.013 0.048** 0.029** 0.176** 

P*G 0.101** 0.150** 0.038** 0.220** 0.012** 0.024** 

P*G*L 0.015** 0.006** 0.004** 0.022** 0.002 0.005 

P*L 0.034** 0.027** 0.005 0.010 0.012** 0.042** 

Results Dealing with All Other Factors 

L 0.805** 0.548** 0.006 0.029** 0.444** 0.463** 

G 0.551** 0.562** 0.775** 0.404** 0.366** 0.395** 

G*L 0.019** 0.007** 0.000 0.001 0.005* 0.002 

* p < 0.0167; ** p < 0.001     
P = final estimate prior; L = test 

length     
G = group membership     

 

 Pertinent test prior results.  All results relating to the final estimate priors are presented 

before presentation of all other results. 

 Standard error.  A significant main effect for final estimate prior exists when examining 

mean SE (Table 4.49).  For the informative final estimate priors, all levels of mean SE are 

relatively similar.  However, for the Less Informative Prior, mean SE is higher.  There is also a 

significant interaction between final estimate prior and group membership (Figure 4.37).  The 

Less Informative Prior condition has a higher SE mean for all three groups, but has an upward 

trend for Group BL. 

Table 4. 49.  Mean SE for the main effect of final estimate prior for both IRT models for 

Simulation Two, CT, population distributions. 

 

 Rasch Model 2PL Model 

Population Composite Prior 0.314 0.237 

Group Composite Prior 0.319 0.245 

Group Specific Prior 0.320 0.249 

Less Informative Prior 0.365 0.331 
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Figure 4. 37.  Mean SE for the interaction between group membership and final estimate prior 

under both IRT models for Simulation Two, CT, population distributions.  

 Bias.  In terms of bias, the only significant interaction as between the final estimate prior 

and group membership (Figure 4.38) for the 2PL model.  As shown in the figure, the three final 

estimate priors utilizing an informative prior underestimate ability for Groups A and BH, but 

overestimate ability for Group BL.  The Less Informative Prior, however, has less of an influence 

on bias for all three groups. 
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Figure 4. 38.  Mean bias for the interaction between final estimate prior and group membership 

under the 2PL model for Simulation Two, CT, population distributions. 

 RMSE.  For RMSE, the main effect of final estimate prior for the 2PL model is 

significant.  The Group Specific Prior (M = 0.332) produces the most accurate estimates.  The 

Group Composite Prior (M = 0.339) is almost as accurate, and is more accurate than the 

Population Composite Prior (M = 0.350).  The Less Informative Prior (M = 0.416) produces the 

least accurate estimates. 

 Other meaningful results.  The remaining significant and meaningful results for ANOVA 

Set 3 concerning the CTs are presented. 

 Standard error.  Longer tests (MR = 0.280; M2pl = 0.218) result in lower levels of mean SE 

than shorter tests (MR = 0.379; M2pl = 0.313).    There is also a significant main effect for group 

membership (Table 4.50) for both IRT models.  Mean SEs are higher for group BL, which is 
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primarily due to the ability-difficulty mismatch between the true ability of the group and the 

difficulty of the CT. 

Table 4. 50.  Mean SE for the main effect of group membership under both IRT models for 

Simulation Two, CT, population distributions. 

 Rasch Model 2PL Model 

A 0.323 0.256 

BL 0.350 0.311 

BH 0.315 0.230 

 

 Bias.    When examining mean bias, there is a significant main effect for group 

membership.  Table 4.51 presents the information for each group under each IRT model. 

Groups A and BH are underestimated; the mean of the CT is under the ability of these groups, 

suggesting not enough items are present at the appropriate level to obtain best estimates.  

However, bias levels are low.  For Group BL, the abilities are overestimated.  This is because the 

items are above the mean of the group and are harder for the simulees. 

Table 4. 51.  Mean bias for the main effect of group membership under both IRT models for 

Simulation Two, CT, population distributions.   

 Rasch Model 2PL Model 

A -0.077 -0.041 

BL 0.258 0.118 

BH -0.066 -0.030 

 

 RMSE.  When examining mean RMSE, two main effects are significant – test length and 

group membership.  Longer tests (MR = 0.442; M2pl = 0.305) result in more accurate estimates 

than shorter tests (MR = 0.527; M2pl = 0.413).  For group membership (Table 4.52), Groups A and 

BH receive more accurate estimates than Group BL. 
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Table 4. 52.  Mean RMSE for the main effect of group membership under both IRT models for 

Simulation Two, CT, population distributions. 

 Rasch Model 2PL Model 

A 0.486 0.353 

BL 0.545 0.424 

BH 0.423 0.300 

 

 CAT.  ANOVAs were conducted using Sample Set 3 for the CATs.  These assessments 

utilize the test priors throughout the entire test process.  Table 4.53 presents the within-family 

effects for each dependent variable for all variables.  Less effects/interactions were flagged as 

meaningful when using the population distributions. 

Table 4. 53.  Within-family effect sizes from CAT ANOVA Set 3 conducted on standard error 

(SE), bias, root mean square error (RMSE) for each IRT model using the Subgroup Population. 

Effect 
SE Bias RMSE 

Rasch 2PL Rasch 2PL Rasch 2PL 

Results on Test Priors 

P 0.000* 0.000 0.093** 0.020* 0.002 0.002 

P*G 0.034** 0.000 0.121** 0.020** 0.022** 0.004 

P*G*L 0.000 0.001 0.013** 0.007 0.003 0.001 

P*G*E 0.000** 0.024 0.290** 0.319** 0.108** 0.019** 

P*G*E*L 0.000** 0.017 0.029** 0.007** 0.025** 0.009 

P*E 0.000** 0.000 0.587** 0.639** 0.040** 0.010** 

P*L 0.000 0.000 0.014* 0.006 0.003 0.000 

P*E*L 0.000** 0.000 0.055** 0.000** 0.000 0.001 

Results Dealing with All Other Factors 

E 0.769** 0.931** 0.009** 0.056** 0.159** 0.450** 

L 0.995** 0.902** 0.000 0.001 0.0667*** 0.366** 

G 0.057** 0.031** 0.208** 0.054** 0.004 0.028** 

E*L 0.227** 0.069** 0.001 0.001 0.139** 0.070** 

G*L 0.000 0.000 0.010** 0.002 0.001 0.003 

E*G 0.000** 0.760** 0.537** 0.603** 0.028** 0.009** 

E*G*L 0.024** 0.199** 0.063** 0.023** 0.003 0.000 

* p < 0.0167; ** p < 0.001     

L = test length; P = test prior     

E = estimate type; G = group membership   
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 Pertinent test prior results.  First, all results relating to the three test priors are presented 

for each of the dependent measures of interest.  It should be noted that no significant effects exist 

for standard error. 

 Bias.  A significant main effect for test prior is found for the Rasch model (Table 4.54).  

The Group Specific Prior has the lowest level of bias, followed by the Population Composite 

Prior.  The Group Composite Prior has the highest absolute level of bias, and underestimates 

abilities. 

Table 4. 54.  Mean bias for the main effect of test prior under the Rasch model for Simulation 

Two, CAT, population distributions. 

 Bias Absolute Bias 

Population Composite Prior 0.019 0.019 

Group Composite Prior -0.029 0.029 

Group Specific Prior 0.005 0.005 

 

 For the Rasch model, there is also a significant interaction between group membership 

and test prior.  A significant two-way interaction between test prior and estimate type exists for 

both IRT models as well.  However, there is also a significant interaction between test prior, 

group membership, and estimate type for both IRT models, and is presented in Figure 4.39.  As 

the figure shows, the Group Specific Prior (green) has less of an influence in terms of bias for all 

three groups.  For Group A, the two group priors function the same; this is expected, since the 

mean of these priors are the same for this group.  For Group BL, the Group Composite Prior 

(blue) does overestimate abilities, but the Population Composite Prior (red) overestimates them 

even more.  This is due to the increased influence of the Population Composite Prior on the 

estimates for this group.  For Group BH, the Group Composite Prior (blue) underestimates 

abilities; it has more of an influence of final ability estimation than the other three priors.   
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Figure 4. 39.  Mean bias for the interaction between test prior, group membership, and estimate 

type for both IRT models for Simulation Two, CAT, population distributions. 

 RMSE.  For mean RMSE values, only the interaction between test prior, group 

membership, and estimate type is significant for the Rasch model (Figure 4.40).    For Group A 

(Figure 4.40A), the test priors all provide relatively similar accuracy levels.  For Group BL 

(Figure 4.40B), the Population Composite Prior (red) provides the least accurate estimates, 

whereas the two group priors are similar.  For Group BH (Figure 4.40C), the Group Composite 

Prior (blue) provides the lowest levels of accuracy.  While the Population Composite Prior (red) 

is slightly lower than the Group Specific Prior (green), the differences are minimal.   
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Figure 4. 40.  Mean RMSE for the interaction between test prior, group membership, and 

estimate type for the Rasch model for Simulation Two, CAT, population distributions. 

 Other meaningful results.  The remaining meaningful results for the CAT population 

distributions for Simulation Two, Sample Set 3, are presented. 

 Standard error.    The main effects for estimate type and test length are significant for 

both IRT models.  The EAP Normal (MR = 0.272; M2pl = 0.210) estimate approach to final trait 

estimation produces lower mean SE than the EAP Uniform (MR = 0.287; M2pl = 0.216) estimate 

approach.  Longer tests (MR = 0.230; M2pl = 0.194) also produce lower levels of mean SE than 

shorter tests (MR = 0.329; M2pl = 0.232).  For the Rasch model, the interaction between test 
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length and estimate type is significant (Table 4.55).  Longer tests using EAP Normal for final 

trait estimation result in lower mean SEs. 

Table 4. 55.  Mean SE for the interaction between estimate type and test length for the Rasch 

model for Simulation Two, CAT, population distributions. 

 EAP Normal EAP Uniform 

15 0.317 0.340 

30 0.226 0.233 

 

 There is a significant interaction for the 2PL model between estimate type and group 

membership (Table 4.56).  The EAP Normal approach produces lower mean SEs than the EAP 

Uniform approach.  Not presented is the significant interaction between estimate type, group 

membership, and test length for the 2PL model; however, the results are like those in Figure 

4.34.  Longer tests, in conjunction with EAP Normal estimates, produce lower mean SEs for all 

groups. 

Table 4. 56.  Mean SE for the interaction between estimate type and group membership for the 

2PL model for Simulation Two, CAT, population distributions. 

 EAP Normal EAP Uniform 

A 0.211 0.217 

BL 0.210 0.216 

BH 0.209 0.215 

 

 Bias.  There is a significant main effect for the Rasch model when examining mean bias 

for the three groups.  As Table 4.57 shows, Group BL has the highest levels of mean bias, 

followed by Group BH.  Group A has the lowest levels of bias.  The abilities for the two high-

functioning groups (A and BH) are underestimated, while the abilities for Group BL are 

overestimated.  There is a significant interaction between estimate type and group membership 

for both IRT models (Table 4.58).  The EAP Uniform final ability estimate approach has less of 

an influence over the estimates, resulting in lower levels of bias for both IRT models than the 
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EAP Normal final ability estimate.  As with the main effect of group membership, abilities are 

underestimate for Groups A and BH overestimate for Group BL. 

Table 4. 57.  Mean bias for the main effect of group membership under the Rasch model for 

Simulation Two, CAT, population distributions. 

 Bias Absolute Bias 

A -0.024 0.024 

BL 0.065 0.065 

BH -0.046 0.046 

 

Table 4. 58.  Mean bias for the interaction between estimate type and group membership under 

both IRT models for Simulation Two, CAT, population distributions. 

 Rasch Model 2PL Model 

 EAP Normal EAP Uniform EAP Normal EAP Uniform 

A -0.029 -0.019 -0.014 -0.007 

BL 0.081 0.050 0.029 0.011 

BH -0.059 -0.034 -0.024 -0.009 

 

 RMSE.  The main effects of estimate type and test length are both significant for mean 

RMSE.  The EAP Normal (MR = 0.422; M2pl = 0.295) resulted is slightly more accurate ability 

estimates than EAP Uniform (MR = 0.428; M2pl = 0.302).  As with all other analyses, longer tests 

(MR = 0.359; M2pl = 0.273) result in more accurate estimates than shorter tests (MR = 0.490; M2pl 

= 0.324).  There is also a significant interaction between estimate type and test length for both 

IRT models (Table 4.59).  As expected, longer assessments utilizing the EAP Normal estimate 

produce the most accurate final ability estimates. 

Table 4. 59.  Mean RMSE for the interaction between estimate type and test length under both 

IRT models for Simulation Two, CAT, population distributions. 

 Rasch Model 2PL Model 

 EAP Normal EAP Uniform EAP Normal EAP Uniform 

15 0.484 0.496 0.319 0.329 

30 0.359 0.360 0.270 0.275 
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CHAPTER 5 

DISCUSSION 

 The final chapter includes a discussion of the major findings of the study, as well as their 

implications.  While various findings are highlighted, focus is placed on the relationship of the 

test prior utilized during the administration of the assessment, primarily the CAT, in conjunction 

with the final estimate approach (i.e., EAP Normal vs. EAP Uniform) used to obtain the final 

ability estimate.  Limitations of the study are also presented.  The paper concludes with 

recommendations for further research as elucidated by the current study. 

Discussion of Findings 

 A multitude of effects were examined in this simulation study.  Highlights of various 

findings are presented, but primary focus is on interaction between the use of the different test 

priors during test administration and the final ability estimate method, in conjunction with 

various person and ability groups, for final trait estimation.  Globally, many results were 

expected.  For example, in both simulations, CATs perform better than CTs (conventional tests) 

in terms of theta recovery, standard error, bias, and RMSE.  Estimates obtained using a tailored 

test more closely approximated true ability than those obtained using a static test.  This result 

was expected, since the ability-difficulty mismatch common in CTs is resolved by using a CAT.  

This result also can be seen when comparing the global results from Simulation Two between the 

CTs and CATs.  Another expected finding was that, in general, longer assessments perform 

better than shorter assessments, especially for a CAT.  Further, when examining abilities at 

various locations along the latent trait continuum, individuals at the extreme ends of the 

continuum were less accurately estimated than those towards the middle.  This occurs for 

extreme abilities because, often, information obtained from the test prior used for ability 
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estimation is more discrepant.  Also, the data are often less informative, especially for the CTs, 

because fewer appropriate items exist, which influences estimation for extreme abilities.  Lastly, 

as expected, estimates resulting from EAP with a designated prior (i.e., EAP Normal) do regress 

the estimates to the mean of the prior.  Often, this regression has the largest impact at the 

extremes of the continuum, with the prior used has the most influence.  Therefore, there is less 

accuracy associated with this estimation approach than when using a less informative prior (i.e., 

EAP Uniform).  However, there is a trade-off, because although EAP Uniform estimates have 

less bias, they often result in larger SEs overall. 

 The primary focus of the study was the utilization of different test priors, some of which 

were more appropriate than others, for item selection and final ability estimation in a tailored 

assessment (CAT).  Two approaches to ability estimation were examined:  an informative test 

prior was used to initialize the CAT and to select items within the assessment, and then this 

informative prior used during testing was either used to obtain the final ability estimate or a less 

informative prior was used.  Thus, if the test prior used during administration is inappropriate, 

less informative data (i.e., the scored responses) may be obtained since the items selected may 

not be the most appropriate for the individual.  Using a less informative prior for final trait 

estimation may aid in trait estimation when information from the data is scarce, but the prior 

might have a larger influence than anticipated over the ability estimate.  Influence of the test 

prior was not only important on a macro level (e.g., how did the test prior function overall), but 

also on a micro level (e.g., how did the test prior function with the various subgroups).  The test 

priors examined were based off the existence of different subgroups in the population who had 

different distributions in terms of mean ability.  Therefore, how the test priors influenced the 

estimates for these groups was of utmost importance (i.e., Simulation Two, Sample Sets 2 and 3).   
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 In terms of standard error, test priors do have an influence, but often these influences are 

rather small.  To ensure lower SEs, using a longer test seems to have the most influence, as all 

test priors were relatively equivalent.  These results were as expected.  Lastly, using EAP 

Normal for final trait estimation leads to slightly lower mean SEs for each of the priors.  Test 

priors have interactions with group membership in terms of bias and RMSE (i.e., Sample Sets 2 

and 3 involving Simulation Two).  When the population composition is examined (Sample Set 

3), less effects are significant, but similar patterns are observed.  Thus, an investigation into how 

the prior function across the subgroups when the population mean abilities are represented is 

warranted. 

 In terms of overall bias for the test priors for Simulation Two, Sample Sets 2 and 3, the 

Group Composite Prior had the largest bias and tends to underestimate ability.  While the Group 

Composite Prior is appropriate for Group A, it is inappropriate for Groups BH and BL.  The mean 

ability of these groups (0.5 and -0.5, respectively) is discrepant from the mean of the prior for 

Group B as a while (-0.3).  While the mean for Group BL is more congruent with the prior mean, 

Group BH has a mean ability that is much higher.  Therefore, an investigation into the interaction 

between test prior and group membership answered why the test priors are functioning 

differently at a macro-level for bias, as summarized below. 

 For Group A, or the majority group, the two group-based priors (i.e., Group Composite 

and Group Specific) are the same (Figure 4.32).  That is, as the two priors utilize the same mean 

in the prior (M = 0.5).  The Population Composite Prior, in contrast, produced more bias, and 

thus less accurate estimates.  Ability is underestimated when using this prior.  These results are 

expected, as the mean of the prior (M = 0.26) is below the mean of the group (0.5), so some 

underestimation is expected due to regression to the mean.  Generally, EAP Uniform estimates 
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had less bias, but the difference was nonexistent when the appropriate priors were used (i.e., 

group priors) and similar for the Population Composite Prior. 

 For Group BL, which is the low-ability subgroup of the minority group, the two group-

based priors provide more accurate estimates.  The Group Specific Prior (M = -0.5) provided less 

biased, and more accurate estimates.  This is the most appropriate prior for the group, since the 

test prior mean matched the mean of the group (M = -0.5).  The next best test prior was the 

Group Composite Prior (M = -0.3).  This prior functioned better than the Population Composite 

Prior (M = 0.26).  While the Group Composite Prior is not the most appropriate prior for this 

group, it is more appropriate than the Population Composite Prior.  The Population Composite 

Prior tends to overestimate ability; this is expected, since the mean of the prior is higher than the 

mean of the group and lower ability levels are generally overestimated (as seen through 

examination of the theta score levels).  Using EAP Uniform estimates results in similar levels of 

bias and accuracy for the three priors, but the pattern described still holds. 

 Lastly, the impact of the various test priors on Group BH was investigated.  While this 

subgroup is part of the minority, it is a higher-ability group that has a distribution similar to the 

majority group (A).  Thus, the test priors might differentially affect this group than they did with 

the other two groups.  The Group Specific Prior (0.5) produces the most accurate estimates, as it 

is the most appropriate prior.  However, unlike the other two groups, the Population Composite 

Prior provides a better estimate than the Group Composite Prior for Group BH.  In this case, the 

Group Composite Prior (M = -0.3) is the least appropriate test prior because its mean is the 

farthest from that of the group (M = 0.5).  The Population Composite Prior (M = 0.26), while still 

not the most appropriate, is closer.  For this group, the test priors tend underestimate ability, 

except for Group Specific, but the Group Composite Prior leads to more negative bias.  This 
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group is being adversely affected using a prior based on the composite mean of the individual 

group rather than either a specific group prior, which is unobtainable, or a population prior. 

 The previous results for the CATs were compared to those concerning the CTs under 

Simulation Two, Sample Set 2, where multiple subgroups existed with various means. The 

Group Specific Prior for the CT results in lower bias than any of the other final estimate priors 

based on group membership for all three groups.  For Group A, the Group Specific Prior and the 

Group Composite Prior functioned similarly.  The Group Composite Prior for final trait 

estimation underestimates ability for Group BH, but overestimates ability for Group BL.  These 

results must consider the difficulty of the CT.  The mean of the CT is 0.26, which is discrepant 

from the mean of the Group Composite Prior for both subgroups in B.   While these two group-

based final estimate priors had more bias, they did provide more accurate estimates.  The Less 

Informative Prior condition led to less bias but higher RMSEs in the 2PL model; it had less 

information pertaining to the simulee and thus relied on informative data in terms of the scored 

responses.  Using the scored responses and the item parameters, inaccurate information was 

provided for the simulees.  While the Less Informative Prior final estimate approach might result 

in less bias, it had more of an influence on SEs (e.g., higher) provided less accurate information; 

this is different from the results found with the CAT, which showed that a less informative prior 

was often more accurate.  Therefore, informative priors are better for CTs.  The Group 

Composite Prior, as in the CATs, does adversely impact the Group B subgroups, and thus, is the 

most inappropriate for the same reasons as above.  That is, the means of the Group Specific Prior 

are more aligned to the subgroup means, but are unattainable.  The Group Composite Prior and 

Population Composite Priors do adversely affect subgroups of varying ability levels, but to 

different degrees.   
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Implications of Findings 

 A concern of the paper was whether the use of group specific priors would be beneficial 

to use during testing for various subgroups.  One major concern was whether the use of these 

group composite priors would be appealing to a testing company, not just in terms of improved 

psychometric qualities (e.g., improved measurement), but also for other reasons.  For example, if 

the Group Composite Priors provide improved measurement over Population Composite Priors, 

but they introduce concerns among the test population, the testing company may be more 

susceptible to legal issues because of the adverse impact of the Group Composite Priors on 

groups with varying levels of ability.  Thus, overall, the implementation of these priors may not 

be beneficial for high-stakes testing (i.e., summative assessments).  However, they may prove 

useful in recurring formative assessments, such as those given in classrooms.   

 Based on the findings of the study, the concluding recommendation is to continue using 

population-based priors for test administration and ability estimation, even if group-based priors 

are known.  The level of bias and accuracy of estimates across the ability continuum do vary for 

the groups based on the test prior used.  Even if group specific test priors result in the most 

accurate ability estimates overall, true ability is unknown and therefore, individuals cannot be 

placed into the appropriate subgroup (e.g., high or low ability) to have any gain in ability 

estimation.  The high functioning minority group is adversely affected when a low, inappropriate 

prior is used to estimate abilities.  While the impact might be minimal from a psychometric 

standpoint, legal and political implications outweigh these potential benefits.   

 Recommendations, aside from test priors, can also be given.  Regarding test length, 30-

items seems to be an appropriate number of items.  A goal of testing is to provide enough items 

to obtain an accurate estimate of ability without bombarding the examinee with too many items 
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to affect their performance (e.g., fatigue).  Thus, a test with 30 items appears to be sufficient.  If 

possible, adaptive tests provide improved measurement over static tests.  If available, these tests 

should be utilized.  However, other issues, such as cost, item bank issues, and others, might 

prevent their use.  Therefore, CTs are often used.  The less informative final estimate prior has 

high SEs but less bias, so it is possible to use only the scored responses.  However, if SE is a 

concern, the Population Composite is a viable option.  Lastly, recommendations can be given in 

terms of final trait estimation.  If standard errors are the primary concern, a test should utilize a 

Bayesian approach with an informed prior (e.g., EAP Normal).  This prior generally results in 

lower standard errors.  However, if bias/accuracy is the primary concern, the test administrator 

may choose to use a Bayesian approach with an uninformed prior (e.g., EAP Uniform).  In this 

current study, this approach resulted in more accurate estimates across the entire ability 

continuum. 

Limitations 

 As with all simulation studies, a major limitation of this research is that the data are 

simulated and not real.  When data are simulated, a high degree of control is placed on both the 

data and the test design.  Unfortunately, real test data are often even messier and therefore might 

result in different results.  These results might be caused by the item pools; in this study, while 

the item pools aimed to simulate real-world scenarios, there was still an elevated level of control 

that may be absent in real item banks/pools.  Or, the results could be caused by the test 

examinees.  Often, responses by examinees are affected by different things, such as the external 

environment (e.g., room temperature, subliminal noises) or the person’s internal environment 

(e.g., fatigue, hunger), and may not always result in expected patterns of responding.  These 

extenuating circumstances can be imposed in a simulation study but require intense consideration 
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during the design construction phase to ensure they are appropriate in terms of real-world 

conditions. 

 Another major limitation to the study is that, while varying levels of standard error, bias, 

and RMSE resulted, these results do not show how decisions using the potentially flawed 

estimates would be affected.  For example, the study shows that there may be a certain level of 

bias inherent in the estimate.  However, the current study does not examine how this bias might 

affect decisions based off the estimates.  If the method was being used to decide a plan of action 

regarding the individual (e.g., grade promotion, remedial level), the influence of the various 

approaches over this decision is unknown. 

 Other limitations of the study were the number of groups examined and the constraint of 

using fixed-length CATs, although these tests are often used in reality.  Only two groups, a 

majority and minority group, were examined in this study.  Results may vary when multiple 

groups exist in the population.  For example, while the Population Composite prior was deemed 

most appropriate, this may not be the case when a large number of groups are used to obtain the 

composite mean.  Also, the study used fixed-length termination rules.  It would be interesting to 

see how a variable-length CAT functions in the design, specifically as it relates to how many 

items would need to be administered under each test prior and final ability estimate type to end 

the assessment, examining various termination rules. 

 Lastly, a limitation of the study is generalizability to other testing designs.  The current 

study was designed to simulate testing in an education setting, such as high-stakes testing or 

formative/summative assessments.  While it is possible that the study could be adapted for use in 

other domains, such as mental health, physical health, or personnel selection, studies would need 

to be conducted before application.  Also, the design should not be discounted for use in other 
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domains because the recommendation of the current study is to stick with current administration 

techniques.   

Recommendations for Future Research 

 The current study results, recommendations, and limitations do give rise to some possible 

avenues for continuing research. 

 Since simulation studies allow for more control over the study design, another part of this 

current study could examine how the results would change when non-conforming 

individuals are introduced.  These individuals would be those who do not perform as 

expected, even by the simulation algorithm.  For example, while a 30-item test is not that 

long, a person might become fatigued towards the end of the exam and answer questions 

incorrectly that they otherwise would have successfully answered.  The test priors may 

have a different influence on these individuals. 

 While the current design may not recommend the use of group-based test priors for high-

stakes testing, these test priors could be further examined in terms of formative 

assessments.  These assessments can be used to hone in on a true group and thus may 

increase measurement precision. 

 As discussed in the limitations, further research could examine the design in terms of 

variable-length CATs under various termination rules. 

 Also, as discussed in the limitations, research could be conducted utilizing more than two 

groups.  This may influence the results of the study, as well as recommendations made to 

test administrators. 

 Currently, the study does not answer the question regarding how decisions based off the 

obtained estimates would be influenced.  Therefore, an extension of the study should be 
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conducted in which classification accuracy should be examined.  By placing a cutscore 

for a decision and investigating the relationship between classification based on the true 

and estimated ability, an understanding of how group-based priors affect decisions can be 

obtained. 

 The current study examined only the Rasch and 2PL models.  Two avenues of research 

could be aligned with this issue.  One, a simulation could be conducted in which the 

Rasch model’s item discrimination parameter is estimated but constrained to be the same 

across all items.  Although direct comparisons would still be inappropriate, the 2PL 

model may still recover ability better since items have varying degrees of discriminatory 

values.  However, the Rasch model is often used because it is easier to explain to the 

layperson.  Also, the 3PL model might be utilized since the multiple-choice items often 

involve levels of guessing (i.e., lower asymptote).   

 Multistage tests are becoming more common, since they offer many of the advantages of 

CATs plus others, such as item review within modules.  The various test priors might be 

more beneficial in terms of these item-set adaptive tests.  This avenue of research should 

be further investigated. 

While the current results will not revolutionize the testing industry, they do give further 

validation to current test practices and do open more avenues of future research. 
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APPENDIX A 

SIMULATION ONE CONVENTIONAL TEST ITEMS 

 

Table A1.  Item parameters for both IRT models for the 15-item test. 

 

Item 
Rasch Model 2PL Model 

α β α β 

1 1 -1.843 1.769 -2.019 

2 1 -1.413 1.711 -1.080 

3 1 -0.938 2.136 -1.289 

4 1 -1.315 1.529 -0.747 

5 1 -0.898 1.924 -1.047 

6 1 -0.361 1.816 -0.291 

7 1 -0.195 2.134 -0.378 

8 1 -0.028 3.287 0.316 

9 1 0.372 1.641 -0.293 

10 1 0.484 1.622 0.330 

11 1 0.914 1.532 0.733 

12 1 0.745 1.788 0.789 

13 1 1.525 1.564 1.524 

14 1 1.769 1.644 1.566 

15 1 1.680 2.277 1.979 
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Table A2.  Item parameters for both IRT models for the 30-item test. 

 

Item 
Rasch Model 2PL Model 

α β α β 

1 1 -1.800 1.642 -1.852 

2 1 -1.603 1.532 -1.619 

3 1 -1.508 1.744 -1.437 

4 1 -1.342 1.561 -1.523 

5 1 -1.320 2.245 -1.270 

6 1 -1.277 1.625 -0.977 

7 1 -1.299 2.241 -0.614 

8 1 -0.888 2.277 -0.899 

9 1 -1.048 1.577 -1.059 

10 1 -0.971 1.530 -0.877 

11 1 -0.417 4.289 -0.534 

12 1 -0.504 2.125 -0.723 

13 1 -0.491 2.204 -0.629 

14 1 -0.464 2.809 -0.283 

15 1 -0.149 2.073 0.045 

16 1 -0.137 1.843 -0.058 

17 1 0.290 2.561 0.038 

18 1 -0.100 1.647 0.140 

19 1 0.641 2.669 0.603 

20 1 0.277 1.992 0.264 

21 1 0.590 2.591 0.982 

22 1 0.845 2.144 0.597 

23 1 1.094 2.870 1.227 

24 1 0.648 1.540 1.139 

25 1 1.387 1.509 1.413 

26 1 1.135 1.543 1.314 

27 1 1.465 2.048 1.455 

28 1 1.647 3.081 1.609 

29 1 1.622 1.923 1.536 

30 1 1.722 1.767 1.655 
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APPENDIX B 

SIMULATION TWO CONVENTIONAL TEST ITEMS 

 

Table B1.  Item parameters for both IRT models for the 15-item test. 

 

Item 
Rasch Model 2PL Model 

α β α β 

1 1 -0.896 2.036 -0.935 

2 1 -0.084 1.623 -0.560 

3 1 -0.184 2.389 -0.463 

4 1 -0.068 2.096 -0.365 

5 1 0.158 2.176 -0.269 

6 1 0.246 2.910 0.491 

7 1 0.103 1.584 0.634 

8 1 0.237 2.048 0.468 

9 1 0.743 1.543 0.421 

10 1 0.870 2.329 0.500 

11 1 0.532 2.227 0.493 

12 1 0.612 1.799 0.625 

13 1 0.386 1.581 0.840 

14 1 0.513 1.985 1.263 

15 1 0.622 1.598 0.853 
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Table B2.  Item parameters for both IRT models for the 30-item test. 

 

Item 
Rasch Model 2PL Model 

α β α β 

1 1 -1.185 2.277 -0.899 

2 1 -1.223 2.241 -0.614 

3 1 -0.781 1.530 -0.877 

4 1 -0.839 1.577 -1.059 

5 1 -0.626 2.078 -0.659 

6 1 -0.835 4.289 -0.534 

7 1 -0.155 1.702 -0.730 

8 1 -0.302 2.204 -0.629 

9 1 -0.257 2.654 -0.229 

10 1 -0.260 2.073 0.045 

11 1 -0.194 2.637 0.303 

12 1 0.071 2.561 0.038 

13 1 0.308 1.561 0.254 

14 1 0.495 2.669 0.603 

15 1 0.434 2.227 0.493 

16 1 0.397 2.606 0.533 

17 1 0.509 1.576 0.512 

18 1 0.651 1.916 0.598 

19 1 1.082 2.445 0.396 

20 1 0.748 1.584 0.634 

21 1 0.432 2.048 0.468 

22 1 0.534 1.887 0.723 

23 1 0.601 3.771 0.571 

24 1 0.629 2.144 0.597 

25 1 1.011 2.591 0.982 

26 1 1.207 4.398 0.968 

27 1 1.300 2.870 1.227 

28 1 1.244 1.607 1.245 

29 1 1.672 1.509 1.413 

30 1 1.330 1.775 1.277 
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