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SUMMARY

All physical systems are affected by some noise that limits the resolution that can

be attained in partitioning their state space. For chaotic, locally hyperbolic flows, this

resolution depends on the interplay of the local stretching/contraction and the smearing

due to noise. My goal is to determine the ‘finest attainable’ partition for a given hyperbolic

dynamical system and a given weak additive white noise. That is achieved by computing

the local eigenfunctions of the Fokker-Planck evolution operator in linearized neighborhoods

of the periodic orbits of the corresponding deterministic system, and using overlaps of

their widths as the criterion for an optimal partition. The Fokker-Planck evolution is then

represented by a finite transition graph, whose spectral determinant yields time averages of

dynamical observables. The method applies in principle to both continuous- and discrete-

time dynamical systems. Numerical tests of such optimal partitions on unimodal maps

support my hypothesis.
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CHAPTER I

INTRODUCTION

Long-term sensitivity to small perturbations is the best-known signature of chaos: a tiny

change in the initial conditions of a dynamical system can result in dramatic changes in the

long run [6, 31, 39, 34, 35].

Because of that, in order to fully characterize the phase space (‘state space’) of a set

of equations, one should determine all its (countably infinite) solutions one by one, which

is impractical, to say the least. One way to efficiently chart the space is to locate a few

regions of the phase space, which differ by their short-term dynamics, and label each one

with a symbol [26, 9]. These regions are in turn refined into smaller regions [13], in order

to characterize longer trajectories and make predictions on their whereabouts. Not surpris-

ingly, there is no end to this process, and the resolution of the symbolic space turns out

to be infinite, just like that of the phase space. Still, the symbolic dynamics helps find or

characterize precious invariants of the dynamics, such as periodic orbits, invariant mani-

folds or tori [15]. These in turn can be used to estimate long-term averages of observables

[43], such as correlations, escape rates, diffusion coefficients, and Lyapunov exponents, a

measure of the sensitivity of the system to initial conditions.

In reality, any physical system suffers background noise, any numerical prediction suffers

computational roundoff errors, any set of equations models nature up to a given accuracy,

since degrees of freedom are always neglected. As a result, no single chaotic trajectory can

be predicted in the long term [32], and there must be a limit to the resolution of the state

space, as trajectories can now cross due to noise.

In the present work, I propose an algorithm to determine the finest possible or optimal

partition of the chaotic state space of a one-dimensional discrete-time dynamical system

(map), with uncorrelated, Gaussian-distributed, background noise.

I find it convenient for my analysis to study the evolution of densities of orbits, rather
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than of single, noisy trajectories. The Fokker-Planck equation is derived in Sect. 1.2 to that

aim. Next, the Fokker-Planck evolution operator, a discrete-time analog of the homonymous

equation, is introduced in Sect. 1.3. It will be used everywhere in what follows. Chapter 2 is

focused on the evolution of densities surrounding periodic oribts of the deterministic system.

The eigenspectra of the Fokker-Planck operator and of its adjoint are computed locally, in

the neighborhood of periodic orbits of the map. In particular, the eigenfunctions found are

used to partition the state space in a noisy environment, in Chapter 3. The optimal partition

method is formulated and applied to a one-dimensional repeller. The next problem is how to

test the optimal partition hypothesis. The idea is to use the partition obtained to calculate

long-time averages (escape rate, diffusivity, etc.) from the spectrum of the Fokker-Planck

evolution operator, by reducing the latter to a finite matrix (Sect. 4.1), whose entries are

the transition rates between the intervals of the partition. Noise makes the borders of such

intervals fuzzy, and errors can dangerously propagate from a much too rough approximation

of the Fokker-Planck matrix, as one attempts to compute its spectrum. I bypassed that

problem by evaluating the leading eigenvalue of the evolution operator by means of periodic

orbit expansions, illustrated in the rest of Chapter 4 for a general setting, and narrowed

down to a finite-dimensional Fokker-Planck operator in Sect. 5.1. Once all the tools have

been developed, the optimal partition hypothesis is finally tested in Sect. 5.2, by computing

the escape rate and the Lyapunov exponent of the repeller previously introduced in Sect. 3.2.

The local approximation of the Fokker-Planck operator has been formulated in a lin-

earized neighborhood, yet it cannot be expected to work in any strongly nonlinear regime.

For that reason, the whole construction, leading to the optimal partition hypothesis and its

validity tests, is adapted in Chapter 6 to models with stronger nonlinearities, and exempli-

fied on a unimodal map.

Summary and a short-term, down-to-the-point outlook in Chapter 7. multiply defined.

1.1 History and motivation

Crutchfield and Packard [8] are the first, in 1983, to raise the problem of an ‘optimal

partition’, when dealing with a chaotic system in the presence of noise. More precisely, they
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define the most efficient symbolic encoding of the dynamics, as the sequence of symbols that

maximizes the metric entropy of the system. Once the maximum is found, they refine the

partition until the entropy converges to some value. Their method is purely statistical, and

works under the assumption that a generating partition already exists for the corresponding

deterministic system. They also introduce the attainable information, as a limiting value for

the probability to produce a certain sequence of symbols from the ensemble of all possible

initial conditions. Once such limit is reached, no further refinements make sense.

Tang and co-workers [46] do something similar in the realm of chaotic data analysis, with

the dynamics being unknown to start with. Their method is based on maximizing Shannon

entropy and at the same time minimizing an error function with respect to the partition

chosen. The same idea is used by Lehrman et al. [33] to encode chaotic signals in higher

dimensions, where they also detect correlations between different signals by computing

their conditional entropy. Daw, Finney and Tracy wrote a review of symbolic analysis of

experimental data up to 2001 [17].

More recently, Kennel and Buhl [29, 5] proposed a method to estimate partitions from

time-series data, which minimizes an energy-like functional with respect to the encoding

chosen, and maximizes the correlation between distances in the state space and in the sym-

bolic space. Once again, there is no regard for the interplay between noise and deterministic

dynamics, as the latter is taken as unknown.

A different, indirect approach to the problem of the optimal resolution is that of the

refinement of a transition matrix: given a chaotic, discrete-time dynamical system, the state

space is partitioned, and the probabilities of points mapping between regions are estimated,

so as to obtain a matrix, whose eigenvalues and eigenfunctions are then used to evaluate

averages of observables defined on the chaotic set. This idea was first advanced by Ulam

in 1960 [48], for a dynamical system with no noise, when he proposed a simple uniform-

mesh grid as partition. Later on, Nicolis [36], and Rechester and White [41, 40] discussed

different ways of constructing partitions for chaotic maps in one and two dimensions, which

would make Ulam’s method more efficient.

Dellnitz and Junge [19], Guder and Kreuzer [27], Froyland [22], and Keane et al. [28]
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all come up with different algorithms of non-uniform refinement for such grid methods,

summarized in a monograph by Froyland [23], who also treats their extension to random

dynamical systems. In all cases, the ultimate threshold for every refinement seems to be

determined by the convergence of the spectrum of the transition matrix.

Finally, Bollt et al. [4] show that the transition matrix of a stochastic dynamical system

is finite under certain restrictions, and compute its entries using a new set of basis functions.

They seem to get around the problem of determining the optimal resolution of their partition

by choosing the size of the matrix a priori.

The objective of all the literature cited so far is either to construct a partition that

encodes enough information from time-series data, with no attention to the dynamics and

no emphasis on an intrinsic limit to its refinement, or to just optimize the diagonalization

of a matrix. Devising a novel method to find this limit is, in my opinion, a problem

of fundamental relevance. The first reason for that is efficiency: setting a limit to the

resolution of a chaotic state space improves the computation of dynamical averages. In

particular, I will show that exceeding the optimal resolution generates wrong results when

attempting to estimate the escape rate of a repeller from the chaotic region. The second

reason is that brute-force methods of diagonalization of an evolution operator can only

be implemented in low-dimensional spaces, otherwise one can typically not afford to keep

refining a grid until some cost function converges. More precisely, we need to know exactly

where the resolution can be improved and up to how many iterations of the map. In order

to achieve that knowledge, one must study the interplay of the noise with the deterministic

dynamics everywhere locally. I will do that under the assumption that, if the noise is weak,

the unstable periodic orbits of the deterministic map still constitute the skeleton of the

dynamics for relatively short times, and I will use them as a starting point to look for local

invariants of the noisy dynamics, the eigenfunctions of the (adjoint) evolution operator. The

latter are then at the basis of an algorithm for the refinement of the state space, where the

limit is set by a critical overlapping of the supports of the eigenfunctions. The advantage of

a method based on periodic orbits is that, once again, it can be straightforwardly extended

to higher dimensions, as discussed in the last chapter of this thesis. But the quest for
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invariants is also a necessity: as I explain in Chapter 2, a noisy trajectory spreads in the

state space by an amount, which depends on where it started, unless it is periodic. A bit

like a wavepacket. So that, given a density of points in a chaotic state space, I would not

know what iteration of what noisy orbit it would be, unless it has some periodicity with

respect to the evolution operator.

In the next two sections I reproduce the derivation of the Fokker-Planck equation and

of its path-integral solution, which can be found, for example, in the book by Risken [42].

1.2 The Fokker-Planck equation

Consider a Langevin-type set of equations [49]

dx

dt
= f(x) + ξ(t) , (1)

where the additive noise ξ(t) is a Gaussian random variable such that

〈ξj(t)〉 = 0 ,
〈

ξi(t)ξj(t
′)
〉

= 2D δ(t− t′) δij . (2)

We seek an equation that express the evolution of a density of trajectories ρ(x, t). Since

(1) is a first-order ordinary differential equation, and the noise is uncorrelated (‘white’), we

have that (Appendix A)

ρ(x, t+ ∆t) =

∫

ρ(x′, t)p(x,∆t|x′)dx′ (3)

the evolved density ρ(x, t+ ∆t) only depends on what it was a time ∆t before and nothing

else before time t, a property that defines Markov processes. We now seek a more explicit

expression for (3). The following derivation is based on the awareness that ∆t’s are usually

made to be sent to zero at some point, and that the noise is always meant to be weak

with respect to the effects of the advection (I called it f(x) in (1)). All that suggests the

variation ∆x = x − x′ must be relatively small in an interval ∆t, and thus I change the

variable in the integral to ∆x in the perspective of an imminent Taylor expansion:

ρ(x, t+ ∆t) =

∫

ρ(x− ∆x, t)p(∆x, x− ∆x,∆t)d∆x (4)

6



where p(∆x, x− ∆x,∆t) is the conditional probability of a change ∆x, the initial variable

been fixed at x − ∆x. I now expand the product ρ(x − ∆x, t)p(∆x, x − ∆x,∆t) in the

previous integral, around ∆x = 0 , as promised:

ρ(x, t+ ∆t) =

∞
∑

n=0

(−1)n

n!

∫

∆xn∂n
x (ρ(x, t)p(∆x, x,∆t)) d∆x =

∞
∑

n=0

(−1)n

n!
∂n

x (〈∆xn〉 ρ(x, t)) (5)

this is known as Kramers-Moyal expansion [42]. In order to go any further, we need to

evaluate the moments 〈∆xn〉. First moment, first:

〈∆x〉 =

〈

∆x

∆t
∆t

〉

=

∫

f(x)∆tp(∆x, x,∆t)d∆x+ 〈ξ〉 = f(x)∆t (6)

where I used the Langevin equation (1) and the fact that the ensemble average of ξ is zero,

from (2). The second moment reads

〈

∆x2
〉

= f(x)∆t2 + 〈ξ〉∆t+

∫ t+∆t

t
dt′
∫ t+∆t

t
dt

′′
〈

ξ(t′)ξ(t
′′
)
〉

=

f(x)∆t2 +

∫ t+∆t

t
dt′2D = 2D∆t+O(∆t2) (7)

where I used
〈

ξ(t
′′
)ξ(t′)

〉

= 2Dδ(t′ − t
′′
) from (2). One can realize, by just looking at the

first identity in equation (7), that all higher moments will be at least proportional to ∆t2.

Thus, I will stop the Kramers-Moyal expansion (5) at the second term and write

ρ(x, t+ ∆t) = ρ(x, t) − ∂x (f(x)ρ(x, t)) ∆t+D∂xxρ(x, t)∆t (8)

now move ρ(x, t) to the left-hand side of (8), divide both sides by ∆t and then send the

latter to zero, so as to get the desired Fokker-Planck equation

∂tρ(x, t) = −∂x (f(x)ρ(x, t)) +D∂xxρ(x, t) (9)

1.3 The Fokker-Planck operator

This thesis only deals with discrete-time dynamical systems, such as the map

xn+1 = f(xn) + ξn (10)
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with the same assumptions on the noise that were previously made with the Langevin

equation, only in discrete time. That means I also need a discrete-time version of the

Fokker-Planck equation I just derived. Equation (8) is still in discrete time, and if I plug

its left-hand side into the expression (3) for the evolution of a density in an interval ∆t (our

starting point in the derivation of (9)), I get that the conditional probability p(x,∆t|x′)

must be written as

p(x,∆t|x′) = [1 − ∆t∂xf(x) +D∆t∂xx] δ(x− x′) =

exp [−∆t∂xf(x) +D∆t∂xx] δ(x− x′) (11)

The previous is true since I have been throwing away all terms of O(∆t2) and higher. Now

write the δ-function as a Fourier integral and move the exponential into it:

p(x,∆t|x′) = exp [−∆t∂xf(x) +D∆t∂xx]
1

2π

∫ ∞

−∞
eiu(x′−x)du =

1

2π

∫ ∞

−∞
exp

[

−iuf(x)∆t− u2D∆t+ iu(x′ − x)
]

du =

1√
4πD∆t

exp

(

− [x′ − x− f(x)∆t]2

4D∆t

)

(12)

Now fit the previous expression to the notation of our map (10), that is x−x′ → y ≡ xn+1,

and ∆t = 1, and the result is the Fokker-Planck evolution operator, as it will be used from

now on:

ρn+1(y) = (L ◦ ρn) (y)

=

∫

[dx] exp

{

− 1

4D
[y − f(x)]2

}

ρn(x) , (13)

where [dx] = (4πD)−1/2. In the noiseless limit, the Fokker-Planck operator reduces to its

deterministic counterpart, the Perron-Frobenius operator [12]:

lim
D→0

L ρ(y) = Ldetρ(y) =

∫

[dx] δ(y − f(x))ρ(x) . (14)
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CHAPTER II

THE FOKKER-PLANCK OPERATOR, LOCALLY

In this chapter, I obtain the eigenspectra of the Fokker-Planck operator and of its adjoint,

in the vicinity of any periodic point of a one dimensional map with white noise. It is the

first new result of this thesis, and it will be used later on to estimate the optimal partition

of the state space of the map.

Let me first define a periodic orbit or cycle of length (or period) np of a map x′ = f(x)

as a set of points x1, x2, ..., xn such that xi = fnp(xi). A periodic point of length one is

called a fixed point. A periodic orbit is said to be stable if the matrix

Jp(xi) =

[

dfnp(x)

dx

]

x=xi

(15)

called Jacobian, is is such that the magnitude of all its eigenvlaues is less than one (|Λp| < 1).

Otherwise the orbit is said to be unstable.

2.1 One-dimensional fixed point

Consider the 1-dimensional linear map

xn+1 = Λxn + ξn , |Λ| 6= 1 , (16)

with additive white noise with variance 2D:

〈ξn〉 = 0 , 〈ξnξm〉 = 2D δnm . (17)

This is the discrete-time version of the Ornstein-Uhlenbeck process [47]. The density ρ(x)

of trajectories evolves by the action of the Fokker-Planck operator (13):

Lρ(x) =

∫

[dy] e−
(x−Λy)2

4D ρ(y) . (18)

|Λ| < 1 case: In each iteration the map contracts the noisy trajectory points by factor

Λ toward the x = 0 fixed point, while the noise smears them out with variance 2D. The

9



normalized eigenfunctions ρ̃0, ρ̃1 ,· · · of (18) are [18, 25]1

dx ρ̃k(x) = [dx]Hk(µx) e−x2/2σ2
0

µ−2 = 2σ2
0 , σ2

0 =
2D

1 − Λ2
, (19)

where Hk(x) the kth Hermite polynomial, and [dx] = dx/(4πD)1/2. Hermite polynomials

pop up here [1, 45] as the linear fixed point of dynamical systems is the imaginary time

version of the harmonic oscillator of QM. Note that the eigenvalues Λk are independent

of the noise strength, so they are the same as for the D → 0 deterministic case [2]. The

unit-eigenvalue eigenfunction ρ0 dx = [dx] exp(−x2/2σ2
0) is the natural measure [12] for

the Fokker-Planck operator, its variance σ2
0 = 2D/(1 − Λ2) a balance of the fixed-point

contraction Λ and diffusive spread D.

|Λ| = 1 case is the marginal, pure diffusion case, and the behavior is not exponential, but

power-law. If the map is nonlinear, one needs to go to the first nonlinear order to reestablish

the control [25]. We will deal with this regime in Chapter 6.

|Λ| > 1 case:

dx ρk(x) = [dx]Hk(αx)

α−2 = 2σ2
0 , σ2

0 =
2D

Λ2 − 1
, (20)

with eigenvalues 1/|Λ|Λk .

The eigenfunctions (19) and (20) are respectively the left and the right eigenfunctions

of the Fokker-Planck operator with |Λ| > 1 (or the right and the left eigenfunctions of the

same operator with |Λ| < 1). They are orthonormal:

∫

[dx] ρ̃k(x)ρj(x) = δkj . (21)

In the deterministic, noiseless limit, (18) reduces to the Perron-Frobenius operator:

lim
D→0

L ρ(x) = Ldetρ(x) =

∫

[dy] δ(x − Λy)ρ(y) . (22)

1For a full derivation in continuous time, see Appendix B.
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In the |Λ| > 1 expanding case the noiseless D → 0 limit eigenfunctions (85) tend to the

deterministic eigenfunctions [25, 2]

ρk(x) →
xk

k!
(23)

while the contracting eigenfunctions (19) tend to distributions [25, 2]

ρk(x) → (−1)kδ(k)(x) . (24)

2.2 Local eigenfunctions of a one-dimensional map

I now adapt the discrete Ornstein-Uhlenbeck fixed-point calculation of Sect. 2.1 to determi-

nation of the complete Fokker-Planck operator eigenspectrum in the neighborhood of every

periodic point of any sufficiently smooth one-dimensional map

xn+1 = f(xn) + ξn (25)

by Taylor-expanding around an orbit point xa.

I first introduce local coordinate systems za centered on the orbit points xa, together

with a notation for the map (25), its derivative, and, by the chain rule, the derivative of

the kth iterate fk evaluated at the point xa,

x = xa + za , fa(za) = f(xa + za)

f
′
a = f ′(xa) , fk

a
′ = f

′
a+k−1 · · · f

′
a+1f

′
a , k ≥ 2 . (26)

Here a is the label of point xa, and the label a+1 is a shorthand for the next point b on the

orbit of xa, xb = xa+1 = f(xa). For example, a period-3 periodic point might have label

a = 001, and by x010 = f(x001) the next point label is b = 010.

If the noise is weak, we can approximate (to leading order in D) the Fokker-Planck

operator(13), which we now write in the local coordinates,

La ◦ ρn(xa+1 + za+1) =

∫

dzaLa(za+1, za)ρn(xa + za), (27)

by linearization centered on xa, the ath point along the orbit,

La(za+1, za) = (4πD)−1/2 e−
(za+1−f

′
aza)2

4D . (28)

11



A Gaussian density

ρ0(xa + za) = cae
−z2

a/2σ2
a . (29)

is transformed by (28) in a linearized neighborhood of the orbit, into another Gaussian

ρ0(xa+1 + za+1) = ca+1e
−z2

a+1/2(2D+(f ′
aσa)2) , (30)

centered around the next point of the periodic orbit, xa+1 = f(xa). The variances of the

original and the transformed Gaussians are related by the following recursion relation:

σ2
a+1 = 2D + (f

′
aσa)

2 . (31)

After n steps,

σ2
a+n = σ2

a(f
n′
a )2 + 2D(1 + (f ′a+n−1)

2 + (f2′
a+n−2)

2 + ...+ (fn−1′
a+1 )2) (32)

If the points xa, ..., xa+n−1, form a stable periodic orbit of length n, then (29) is a local

eigenfunction of Ln
a, when

σ2
a =

2D

1 − Λ2

(

1 +
i=n−1
∑

i=1

(fn−i′
a+i )2

)

, Λ = fn′
a . (33)

Expression (33) can also be derived in continuous time (see Appendix C), where Λ → J

and
∑i=n−1

i=1 (fn−i′
a+i )2 →

∫

dtJ2, the jacobian J as defined in (15) for maps.

The rest of the spectrum of a periodic point belonging to a stable cycle of period n is

ρ̃k(za) =
1√
4πD

Hk(µza)e
−z2

a/2σ2
a , µ−2 = 2σ2

a . (34)

with eigenvalues Λk. On the other hand, the local eigenfunctions of a periodic point of an

unstable cycle of period n are

ρ̃k(za) =
1√
4πD

Hk(αza) , α−2 = −2σ2
a . (35)

Eigenvalues are in this case 1
|Λ|Λk .

2.3 Adjoint of the Fokker-Planck operator

In one dimension, the adjoint L† of the Fokker-Planck operator satisfies, for any two densities

ρ(x) and h(x):

〈h|L|ρ〉 =

∫ ∞

−∞
h(x)dx

∫ ∞

−∞
e−

(x−f(y))2

4D ρ(y)[dy]

〈

ρ|L†|h
〉

=

∫ ∞

−∞
e−

(y−f(x))2

4D ρ(x)[dx]

∫ ∞

−∞
h(y)dy (36)

12



so that

L†ρ(x) =

∫ ∞

−∞
e−

(f(x)−y)2

4D ρ(y)[dy] (37)

L carries a density ρ(x), supported on some interval I, forward in time to a function sup-

ported on a subset of f(I). The adjoint operator L† transports the density ρ(x), supported

on I, backward in time to a function supported on f−1(I) (see Appendix E for details).

2.3.1 Eigenfunctions of L† for a fixed point

Suppose f(x) = Λx, with |Λ| > 1, then the previous reads

L†ρ(x) =

∫ ∞

−∞
e−

(Λx−y)2

4D ρ(y)dy (38)

Eigenfunctions are

ρn(x) =
1√
4πD

Hn(µx)e−x2/2σ2
0

µ−2 = 2σ2
0 , σ2

0 =
2D

Λ2 − 1
(39)

and eigenvalues 1
|Λ|Λn .

On the other hand, if |Λ| < 1, the spectrum is given by

ρn(x) =
1√
4πD

Hn(αx) , α−2 = −2σ2
0 (40)

with eigenvalues Λn.

2.3.2 Evolution of a Gaussian and local approximation

Now take a Gaussian density

ρ0(xa + za) = cae
−z2

a/2σ2
a (41)

The adjoint operator (37)

L† ρ(x) =

∫ ∞

−∞
[dy] cae

−
(f(x)−y)2

4D e−(x−xa)2/2σ2
a

= ca−1e
− (f(x)−xa)2

2(σ2
a+2D) . (42)

13



Given a nonlinear f(x), I now approximate the density in the neighborhood of f−1(xa) to

linear order,

L†ρ(x) = ca−1e
−

(f(x)−xa)2

2(σ2
a+2D) ≃ ca−1e

−
(f ′(f−1(xa))(x−f−1(xa)))2

2(σ2
a+2D)

= ca−1e
−(f ′

a−1za−1)2/2(σ2
a+2D) (43)

using the notation introduced in Sect. 2.2. I can again obtain a recursion relation for the

evolution of σ2
a:

(f ′a−1σa−1)
2 = σ2

a + 2D (44)

which can be extended to the nth preimage of the point xa :

(fn′
a−nσa−n)2 = σ2

a + 2D(1 + (f ′a−1)
2 + · · · + (fn−1′

a−n+1)
2) (45)

The initial density (41) is the leading eigenfunction of L† in the neighborhood of the unstable

cycle, if:

σ2
a =

2D

Λ2
p − 1

(

1 +
n−1
∑

i=1

(f i′
a−i)

2

)

, (46)

where Λp = f
n′

p
a . The rest of the spectrum is identical to that of a fixed point, with σ2

a as

above.
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CHAPTER III

OPTIMAL RESOLUTION OF A ONE-DIMENSIONAL MAP

Well-established techniques for partitioning and encoding the state space are reviewed in

Sect. 3.1. Then, in Sect. 3.2, I illustrate my algorithm to determine the optimal partition

on the example of a one-dimensional repeller in the presence of noise. This is the central

result of my work.

3.1 Partitions, symbolic dynamics, transition graphs

I have been talking so far about regular dynamics, where the equations of motion (either

deterministic, or Langevin, or Fokker-Planck) can be integrated, numerically or sometimes

even analytically. My work focuses instead on chaotic systems, whose equations exhibit

strong sensitivity to initial conditions, meaning one cannot integrate them for a long time

due to roundoff errors. I will now introduce a well-established technique of characterizing

orbits in a chaotic system, which consists of dividing the state space in regions (partitioning),

assigning a symbol to each region, and encoding any trajectory with a sequence of symbols

representing the regions of the state space it visits 1.

Everything is best explained with an example: consider the chaotic repeller

xn+1 = Λ0xn(1 − xn)(1 − bxn) , Λ0 = 6, b = 0.6 (47)

defined on the unit interval. In principle one can partition the unit interval arbitrarily, but

if we want it to be useful, we need to do it cleverly, understanding in which points the

dynamics changes qualitatively, and define those as borders between different regions. One

can already guess, just by looking at Figure 1, that the only point at which anything in

the dynamics can change is the maximum of the map, also called critical point xc. More

precisely, the map(47) stretches any interval on the left of the critical point to a larger

1Partitions are discussed comprehensively in ChaosBook.org [11], or in the monographs by Lefranc and
Gilmore [26], and Kitchens [30]
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Figure 1: Partitioning the deterministic map (47) in intervals of one- and two-step memory
(below). There is a periodic point in each interval (from ChaosBook.org).

interval, while it contracts any interval on the right of xc to a smaller interval, or it folds it

into two intervals of smaller length. This is true except for a small region (gap) around xc,

whose points are mapped outside the unit interval, to never go back inside, and therefore

they can be left out of our analysis. Let any point on the left of xc be encoded with a ‘0’ and

any point on its right be encoded with a ‘1’. Then a symbolic (in this case binary) sequence

can be assigned to every orbit of (47). That is the simplest partition one can make, but we

may want to know, for example, which points in the unit interval will map on which side

of the critical point after two, three, m iterations. In which case the partition gets refined

as in Figure 1 (1-step memory): ‘00’ means the point is and will stay on the left of xc after

the next iteration, ‘01’ that it will jump on the right side, and so on, to obtain the intervals

M00,M01,M11,M10. Once again there is a set of points that escape the unit interval after

two iterations, which our partition does not include. In other words, we are only concerned

with the set of points that remain in the unit interval for as many memory steps as our

partition accounts for, or non-wandering set. But how does one locate the intervals of a

partition?

There are several different methods to do that. In the case of a one-dimensional repeller,

the best way to obtain a refinement is to take the points that border the intervals of the

partition and iterate them backwards, or find their pre-images. Take region ‘0’ and try to

find its refinements ‘00’ and ‘01’, for example: the point x = 0 is a fixed one, so that and
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everything close enough to it still maps on the left of the critical point, more precisely the

interval ‘00’ begins at x = 0 and ends at that point x00 such that f(f(x00)) = 1 (looking

at Figure 1 helps understand why). Therefore x00 = f−1(f−1(1)). The inverse map is

double-valued, but it is easy to realize that one needs to take the value on the left branch

twice: x00 = f−1
0 (f−1

0 (1)). One can do the exact same thing to work out the borders of

the rest of the intervals of this and any n-th refinement of this partition, and find that all

but two of them (x = 0 and x = 1) are n-th preimages of the two points that map into

x = 1 (anything in between those points is in the gap and maps outside the unit interval

and therefore we don’t care about it).

Another way of partitioning is to use periodic orbits 2. According to Devaney’s defi-

nition [20], a chaotic map has a set of unstable periodic orbits that is dense in the non-

wandering set. In particular, there is a periodic point in every region of a partition, which

obviously bears the symbolic sequence of the interval it belongs to. In our four-interval

partition, for instance, M01 and M10 both have one periodic point belonging to a periodic

orbit of length two, while there is one fixed point in both regions M00 and M11, as illus-

trated by Figure 1. That gives us one possible way of making a partition, that is by looking

for periodic orbits of the map of the same length as the memory refinement we are seeking,

and draw and label a region around every periodic point found.

Once the partition has been determined, one can draw a transition graph, which says

which regions are allowed to map where. Take our four-interval partition as an example:

all points in region M11 are on the left of the critical point and will still map on the left

(that is what the second ‘1’ says), therefore they can either stay in M11 or move to M10,

and so on. So in general the recipe is to discard the first digit and add, in turn, all the

possible outcomes (in this case either ‘0’ or ‘1’) to the sequence left. Once this is done for

all the regions in the partition, just draw a node for each interval and links to represent the

possible transitions between nodes, as in Figure 2.

In principle, nothing prevents us from refining a partition more and more: the binary

2This approach was first introduced by Cvitanović and co-workers [15, 13]. More recently, the idea of
using periodic orbits to partition the state space was also proposed by Davidchack et al. [16], as well as by
Plumecoq and Lefranc [37, 38].
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1100

Figure 2: The transitions allowed in the two-step-memory partition of Figure 1, at a glance
(from ChaosBook.org).

000

0 1

00 01 11 10

001 011 010 110 111 101 100

Figure 3: Evolution of successive refinements of the partition in Figure 1, each interval
labeled with the symbolic sequence of all its points. (from ChaosBook.org).

tree in Figure 3 shows how every interval splits into two smaller regions at every new step of

the refinement. In practice, a trajectory loses memory of where it has been, at some point,

due to background noise, which sets a limit to the finest attainable resolution of the state

space. This is the topic of the next section and the central result of my work.

3.2 The optimal resolution hypothesis

The idea behind ‘the optimal resolution’ hypothesis is to partition the state space by means

of periodic points, as seen in the last section. Technically, periodic points no longer exist,

in the presence of noise, but, if the amplitude of the noise is relatively weak, periodic orbits

still constitute the skeleton of the dynamics [43, 15], and can be used as a starting point to

develop our algorithm. The effects of the noise are accounted for by switching to a Fokker-

Planck picture, and by considering the local eigenfunctions of the evolution operator in the

neighborhood of the periodic orbits of the noiseless system. As seen in the previous section,

refining a partition means to trace points back to their pre-images. In the Fokker-Planck

picture, that translates into using the adjoint operator L† in the vicinity of the periodic

points of the deterministic system, and finding its local ground-state eigenfunctions, which
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Figure 4: (a) f0, f1: branches of the deterministic map (48) for Λ0 = 8 and b = 0.6. The
local eigenfunctions ρ̃a,0 with variances given by (46) provide a state space partitioning by
neighborhoods of periodic points of period 3. These are computed for noise variance (D =
diffusion constant) 2D = 0.002. (b) The next generation of eigenfunctions shows how the
neighborhoods of the optimal partition cannot be resolved further. Only M011 can be split
into M0110 and M0111 (second and third peak from the left), but that would not change
the transition graph of Figure 6.

are then used to cover the non-wandering set of the state space. I derived the local spectrum

of L† in Sect. 2.3.2, and found that the ground state is a Gaussian of width σa, such that

(cf. equation (46))

σ2
a =

2D

Λ2
p − 1

(

1 +

n−1
∑

i=1

(f i′
a−i)

2

)

.

Every periodic point is assigned a neighborhood [xa − σa, xa + σa], and the non-wandering

set of the map is covered with neighborhoods of orbit points of higher and higher period

np. I stop the refinement when adjacent neighborhoods, say of xa and xb, overlap in such

a way that |xa − xb| < σa + σb.

As an example to illustrate the method, consider the chaotic repeller

xn+1 = Λ0xn(1 − xn)(1 − bxn) + ξn , Λ0 = 8, b = 0.6 (48)

with noise strength 2D = 0.002, on the unit interval. The map is plotted in Figure 4 (a); this

figure also shows the local eigenfunctions ρ̃a,0 with variances given by (46). Each Gaussian

is labeled by the {f0, f1} branches visitation sequence of the corresponding deterministic

periodic point. Figure 4 (b) illustrates the overlapping: M000 and M001 overlap, just like

M0101 and M0100 and all the neighborhoods of the period np = 4 cycle points, except for

M0110 and M0111. In this case the state space (the unit interval) can be resolved into 7
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Figure 5: Binary tree of the refinement leading to the partition (49). Once the optimal
resolution is found, the symbolic dynamics is recoded by relabeling the finite partition
intervals.
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Figure 6: (a) Transition graph (graph whose links correspond to the nonzero elements of a
transition matrix Tba) describes which regions b can be reached from the region a in one time
step. The 7 nodes correspond to the 7 regions of the optimal partition (49). Dotted links
correspond to symbol 0, and the full ones to 1, indicating that the next region is reached
by the f0, respectively f1 branch of the map plotted in Figure 4. (b) The region labels
in the nodes can be omitted, with links keeping track of the symbolic dynamics. (from
ChaosBook.org)

neighborhoods

{M00,M011,M010,M110,M111,M101,M100} . (49)

It turns out that resolving M011 further into M0110 and M0111 is not essential, as it

produces the same transition graph. Once the finest possible partition is determined, the

finite binary tree in Figure 5 is drawn: Evolution in time maps the optimal partition

interval M011 → {M110,M111}, M00 → {M00,M011,M010}, etc.. This is summarized

in the transition graph ( Figure 6), which we will use to estimate the escape rate and the

Lyapunov exponent of the repeller.

How accurate is this algorithm? Everything that follows is aimed at testing the optimal

partition hypothesis.
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CHAPTER IV

PERIODIC ORBIT THEORY

What can a partition be used for, in practice? It can help, for example, find statistical

properties of the system through long-time dynamical averages, e.g. correlations, Lyapunov

exponents, or the escape rate from the chaotic region of the state space. In thus chapter I

review the well-known methods of discretization for an evolution operator, and the periodic

orbit theory.

4.1 The Fokker-Planck operator, discretized

In order to evaluate any dynamical average, we need to know about the transition rates

between regions of the state space. Those will be, in a non-trivial way, the weights of

the average. We then discretize the evolution operator on the state space, that is its own

support.

This is best explained by dealing first with the deterministic evolution operator Ldet,

and writing it as a matrix.

The simplest possible way of introducing a state space discretization is to partition the

state space M with a non-overlapping collection of sets Mi, i = 1, . . . ,N , and to consider

piecewise constant densities, constant on each Mi:

ρ(x) =

N
∑

i=1

ρi
χi(x)

|Mi|
, χi(x) =











1 if x ∈ Mi ,

0 otherwise .
(50)

where χi(x) is the characteristic function of the set Mi. The density ρi at a given instant is

related to the densities at the previous step in time by the action of the Perron-Frobenius

operator:

ρ′j =

∫

M
dy χj(y)ρ

′(y) =

∫

M
dx dy χj(y) δ(y − f(x)) ρ(x)

=

N
∑

i=1

ρi
|Mi ∩ f−1(Mj)|

|Mi|
. (51)
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Figure 7: (a) Deterministic partition of the discretized Perron-Frobenius operatorfor the
repeller (47) by a uniform mesh (256 intervals). Color/gray scale indicates the matrix
element size. (b) The noisy version of (a), noise has variance D = 10−3.

In this way

Lij =
|Mi ∩ f−1(Mj)|

|Mi|
, ρ′ = ρL (52)

is the transition rate from Mj to Mi, and the whole matrix is an approximation to the

Perron-Frobenius operator(Figure 7). In the case of a repeller, the leading eigenvalue of

the matrix yields the escape rate from the chaotic region of the state space and its leading

left eigenvector is a piecewise constant approximation to the first eigenfunction of Ldet

(Figure 8). Then, the average of an observable a(x) over the state space is

〈a〉 =

∫

dx eγρ(x)a(x) (53)

where ρ(x) is the leading left eigenfunction of (52), γ is the escape rate, and eγρ is the

normalized repeller measure,
∫

dx eγρ(x) = 1.

In the presence of noise, the corresponding piecewise constant approximation to the

Fokker-Planck operator (13) is

[L]ij =
1

|Mi|
1√
4πD

∫

Mi

dx

∫

f−1(Mj)
dy e−

1
4D

(y−f(x))2, (54)

This method, proposed by Ulam in 1960 [48], has been shown to very accurately reproduce

the spectrum for expanding maps, once finer and finer Markov partitions are used [21, 24].

The choice of the partition is indeed crucial to the convergence of the spectrum, meaning

the better the partition, the fewer refinements are needed. A uniform mesh can always be
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Figure 8: (a) The left leading eigenfunction ρ0 of the uniformly discretized Perron-
Frobenius operator Figure 7 for the repeller (47), N = 256. (b) Leading left eigenfunction
of the uniformly discretized Fokker-Planck operator, in the presence of noise of variance
D = 10−3.
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Figure 9: The convergence of the leading eigenvalue γ of the discretized Perron-Frobenius
operator (Figure 7), using (a) a partition of the unit interval based on the preimages of
the critical point, as explained in Sect. 3.1, and (b) a uniform-mesh discretization. Plotted:
ln |γ(N) − γ∞| as a function of lnN , N being the number of partition intervals.

used, in case one has no clue. But the problem in that case is that the grid knows not what

parts of the state space are more or less important, and the convergence is generally slower

(Figure 9).

In the presence of noise, it is even more complicated to make an accurate non-overlapping

partition of the state space. In our example of the repeller, we do not know exactly where

the borders of the intervals that make the optimal partition are, meaning those seven neigh-

borhoods (49) are not enough for the discretization (54) to provide an accurate estimate

of the spectrum of L. In that case it is still OK to use a uniform mesh and refine it until

needed, and I will use that technique as a crosscheck in Chapter 5, but I am trying here to
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develop a method that overlook the exact location of the borders of the intervals.

In order to do that, I shall adapt the well-known technique of periodic orbit expansions,

outlined in the remainder of this chapter, to finite-dimensional operators like L1.

4.2 Evaluation of averages in a chaotic system

Given an observable a = a(x), its expectation value is defined as as

〈a〉 = lim
n→∞

1

M

∫

M
dx

1

n

∫ n

0
dτa(f τ (x)) (55)

where M is the region of the state space we are taking into consideration. In reality (55) is

not very practical when dealing with chaos. Let us define the quantity

An(x0) =
n−1
∑

k=0

a(fk(x0)) (56)

as an integrated observable on a trajectory, and consider the spatial average

〈

eβAn
〉

=
1

M

∫

M
dxeβAn(x) (57)

where β is a dummy variable, which we take as a scalar. I now assume that every trajectory

visits the whole phase space asymptotically (ergodicity), and that the system is also mixing,

i.e.:

lim
n→∞

〈a(x)b(fn(x))〉 = 〈a(x)〉 〈b(x)〉 (58)

In that case, time averages can be replaced with space averages. We can then expect [10]

the time average ā to asymptotically tend to a constant, and the integrated observable An

to tend to nā. This way, the phase-space average (57) grows exponentially with the number

of iterations, and its value is given asymptotically by the leading eigenvalue

〈

eβAn
〉

∝ ens0(β)

and therefore

s0(β) = lim
n→∞

1

n
ln
〈

eβAn
〉

(59)

1A full account of periodic orbit theory is given in ChaosBook.org [11].
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which makes it possible to evaluate the moments of a(x) as derivatives of s0(β), for example

the expectation value (55) is:

∂s0
∂β

∣

∣

∣

∣

β=0

= lim
n→∞

1

n
〈An〉 = 〈a〉 (60)

If the dynamics is confined to the region M, definition (57) is correct, otherwise one must

impose that the average be only on points of M, so that (57) becomes

〈

eβAn
〉

=
1

M

∫

M
dx

∫

M
dyδ(y − fn(x))eβAn(x) (61)

in which we find the evolution operator

Ln(y, x) = δ(y − fn(x))eβAn(x) (62)

I can now express the expectation value (61) as

〈

eβAn
〉

= 〈Ln〉

and notice that Ln can be written as a linear combination of eigenvalues and eigenfunctions

Lna(x) =
∑

i

cis
n
i φi(x) =

c0s
n
0φ0(x)

[

1 +
∑

(

cisiφi(x)

c0s0φ0(x)

)n]

≃ c0s
n
0φ0(x) (63)

for large n, where s0 is the leading eigenvalue of L, so that

〈L〉 = es0 (64)

and all one needs is to find s0.

4.3 Traces, determinants, and dynamical 1/ζ function

So far an idea was presented to estimate the expectation value of an observable by using

an evolution operator, however it is not yet clear where periodic orbits fit in this picture.

One way of finding the leading eigenvalue of Ldet is to evaluate its trace

trLn =

∫

M
dxLn(x, x) =

∫

M
dxδ(x − fn(x))eβAn(x) (65)
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since it tends to the leading eigenvalue, as n→ ∞. According to (65), the trace of Ln picks

a contribution every time x−fn(x) = 0, that is when x is a periodic point of f(x), meaning

we are summing over all the periodic orbits of period n of our system. Now that we know

that, (65) is also

trLn =

∫

M
dxLn(x, x) =

∑

xi∈Fixfn

eβAi

|det (1− Jn(xi))|
(66)

where Fix fn = {x : fn(x) = x} is the set of periodic points of period n and the Jacobian

in the denominator follows from a change of variable in (65) to evaluate the δ-function

integral. One can immediately write the necessary condition Jn(xi) 6= 1 in order for (66)

to exist. With that assumption in mind, let us now take a Laplace transform of trLn:

∞
∑

n=1

zntrLn = tr
zL

1 − zL =
∑

p

np

∞
∑

r=1

znprerβAp

|det (1 − Jr
p)|

(67)

where p indicates a prime periodic orbit, ie. not a repetition of shorter cycles. The previous

expression is known as trace formula. Let λp,e and λp,c be respectively the expanding and

contracting eigenvalues of a periodic orbit p, and Jp the Jacobian of the same orbit. Then

|det (1 − Jp)|−1 =
1

|Λp|
∏

e

1

1 − 1/λp,e

∏

c

1

1 − λp,c
(68)

where Λp =
∏

e λp,e, and

|det (1 − Jn
p )| → 1

|Λp|n
(69)

when n >> 1. Now plug (69) into (67) to get an approximated expression of the trace

formula.

The geometric series in (67) can be rewritten as a function of the eigenvalues of the

evolution operator2, in the form
∞
∑

i=0

zesi

1 − zesi
(70)

whence it is evident that the trace diverges for z = e−s0 . Thus, looking for the leading

eigenvalue of Ldet is the same as looking for the radius of convergence of (67), which in

general is no easy task to fulfill. Rather, one can use the identity

ln det (1 − zL) = tr ln(1 − zL) = −
∞
∑

n=1

zn

n
trLn (71)

2By definition, trLn =
P∞

i=0 e
nsi
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to obtain the determinant of the evolution operator, whose leading root (the closest solution

of (71) to z = 0) is exactly the radius of convergence of the trace formula. We shall see that

the power series (71) is to be truncated to a polynomial, at which point z = e−s0 is easy

to find. If one gets the expression for det (1− zL) from (71) and applies the limit (69), the

outcome is the so-called dynamical 1/ζ function:

1/ζ(z, β) = exp

(

−
∑

p

∞
∑

r=1

1

r

znprerβAp

|Λp|r

)

(72)

As already said,

1/ζ(s0, β) = 0

Equation (72) can be written in a more compact form by defining

tp(z, β) =
znp

|Λp|
eβAp (73)

and considering that
∑

r t
r
p/r = − ln(1 − tp), so as to obtain the Euler product

1/ζ =
∏

p

(1 − tp) (74)

4.4 Cycle expansions

The next step is to compute (74) and work out a formula to to estimate the average 〈a〉,

introduced in Sect. 4.2. First, equation (74) can be rewritten as

1/ζ = 1 −
∑

p1,...,pk

′
(−1)k+1tp1tp2...tpk

where
∑ ′

means the sum is over all the distinct, non repeated combinations of the prime

cycles. Now call tπ = (−1)k+1tp1tp2...tpk
any product of the weights tp’s of the prime orbits,

we can write the previous expression as

1/ζ = 1 −
∑

π

′
tπ (75)

We are dealing here with an infinite series, and we need to truncate it properly. The idea

is to arrange the terms of the sum in order of length, as the shorter cycles are normally

the least unstable and therefore contribute the largest terms. Knowing about the symbolic
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dynamics of the system (Sect. 3.1) also helps: in the case of a binary symbolic dynamics,

for instance, the product

1/ζ = (1 − t0)(1 − t1)(1 − t01)(1 − t001)(1 − t011)

(1 − t0001)(1 − t0011)(1 − t0111)...

is rewritten as

1/ζ = 1 − t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − ...

+t0t1 + t0t01 + t01t1 + t0t001 + t0t011 + t001t1 + t011t1

−t0t1t01 − ...

which we call cycle expansion. The next step is to regroup the terms of the sum in funda-

mental contributions and curvature corrections in the following way

1/ζ = 1 − t0 − t1 − [(t01 − t1t0)] − [(t001 − t01t0) + (t011 − t01t1)]

−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t1t01)] − ...

= 1 −
∑

f

tf −
∑

n

ĉ (76)

The previous expansion is dominated by the first two terms (t0 and t1) and progressively

corrected by the others, in which the weight of a cycle (say t001) is typically shadowed by

the weights of shorter cycles multiplied together (t0 and t01) to give the same symbolic

sequence. In a hyperbolic system, where the stability eigenvalues grow exponentially with

respect to the cycle period (Λp ∝ Cnp), the curvature corrections in the cycle expansions

become exponentially smaller with the period of the truncation, which make the sum (76)

converge very rapidly.
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4.5 Cycle expansions and averages

Equation (72) says that the function 1/ζ = 1/ζ(z, β). We said in Sect. 4.3 that the leading

root z0 of 1/ζ is nothing but e−s0, so that, at the end of the day, z0 = z0(β). Then, in order

to estimate the average 〈a〉 using (60)

∂s0
∂β

∣

∣

∣

∣

β=0

= lim
n→∞

1

n
〈An〉 = 〈a〉

we may consider the equation 1/ζ(s0, β) = 0 as an implicit function F (β, s0(β)), and

0 =
d

dβ
F (β, s0(β))

=
∂F

∂β
+
ds0
dβ

∂F

∂s0

∣

∣

∣

∣

s0=s0(β)

⇒ ds

dβ
= −∂F

∂β
/
∂F

∂s0
(77)

From (60), (75), and 73 we obtain

〈a〉 =

[

− ∂

∂β
(1/ζ)

]

β=0

/

[

−z ∂
∂z

(1/ζ)

]

β=0

(78)

where

〈A〉 =
∑

π

′
(−1)k+1Ap1e

−np1s0 +Ap2e
−np2s0 + ...+Apk

e−npk
s0

|Λp1 ...Λpk
| (79)

and

〈n〉 =
∑

π

′
(−1)k+1np1e

−np1s0 + np2e
−np2s0 + ...+ npk

e−npk
s0

|Λp1 ...Λpk
| (80)

are respectively numerator and denominator of (78). Now we have everything we need to

compute the average of an observable using cycle expansion.
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CHAPTER V

MATRIX APPROXIMATION TO THE FOKKER-PLANCK

OPERATOR

I will now apply the cycle expansions described in the last chapter to a finite matrix, using

the method of local matrix approximation, originally introduced by Cvitanović and co-

workers [14] for an infinite-dimensional evolution operator. The adaptation of this method

to a finite matrix and the use of a Hermite polynomials basis are both novel. In Sect. 5.2,

I use this technique to validate the optimal partition hypothesis, formulated in Chapter 3.

5.1 Periodic orbit theory of a matrix

In the presence of noise, I claimed in Sect. 3.2 that the state space cannot be resolved beyond

a certain optimal partition, meaning the evolution operator is now supported on a set of

finite measure, and it is just a matrix. As an example, let us start from the Fokker-Planck

operator for the simple partition of four intervals in Figure 1, Sect. 3.1:

L =



















L00,00 0 L00,10 0

L01,00 0 L01,10 0

0 L10,01 0 L10,11

0 L11,01 0 L11,11



















=

01

10

1100 . (81)

Now, if we knew the exact size of the intervals of the partition, a discretization like (54)

would determine the entries Lij with sufficient accuracy, but it turns out that, in the

presence of noise, the borders of the intervals are fuzzy and we cannot just diagonalize the
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(a) (b) (c)

(d)

Figure 10: (a)-(d): all the non-self-intersecting loops of the four-node transition graph in
Figure 81 (from ChaosBook.org).

matrix L. The determinant (71) of the evolution operator is

det (1 − zL) = 1 − L00,00z − L11,11z + (−L01,10L10,01 + L00,00L11,11)z
2 +

(−L00,10L10,01L01,00 + L00,00L01,10L10,01

−L01,10L10,11L11,01 + L01,10L10,01L11,11)z
3 +

(−L00,10L10,11L11,01L01,00 + L00,00L01,10L10,11L11,01

+L00,10L10,01L01,00L11,11 − L00,00L01,10L10,01L11,11)z
4 . (82)

Notice that every product of matrix elements in (82) describes the transition rate of a closed

path of the graph, e.g. L00,10L10,01L01,00 is the combined probability that an orbit starts in

region M00, visits regions M10 and M01 and goes back to M00. Since there is a periodic

orbit for each region of the partition (Sect. 3.1), we approximate the transition rate of every

non-self-intersecting loop of the graph (Figure 10) with the contribution to trace formula

(67) of the cycle that follows the same path, for instance

L00,10L10,01L01,00 → t001 =
1

|1 − Λ001|
(83)

and the expression for the determinant (82) becomes

det (1 − zL) = 1 − (t0 + t1)z − [(t01 − t1t0)]z
2 − [(t001 − t01t0) + (t011 − t01t1)]z

3

−[(t0011 − t001t1 − t0t011 + t0t01t1)]z
4 (84)
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In the presence of weak noise, (83) is a zeroth-order approximation to the trace of the local

Fokker-Planck operator, and higher order corrections can be included.

Let me now derive the approximation (83). As explained in Sect. 2.2, near a periodic

point xa ∈ p, the npth iterate Lnp
a of the linearization (28) is the discrete-time version

of the Ornstein-Uhlenbeck process [47], with left ρ̃0, ρ̃1, · · · , respectively right ρ0, ρ1, · · ·

mutually orthogonal eigenfunctions [42] given by

ρ̃a,k(z) =
βk+1

√
π2kk!

Hk(βz)e
−(βz)2

ρa,k(z) =
1

βk
Hk(βz) , (85)

whereHk(x) is the kth Hermite polynomial, 1/β =
√

2σa, and the kth eigenvalue is 1/|Λ|Λk .

Given the finest possible partition, the Fokker-Planck operator now acts as a matrix with

non-zero a → b entries. The idea is now to expand every matrix element in the Hermite

basis,

[Lba]kj = 〈ρ̃b,k|L|ρa,j〉

=

∫

dzbdza β

2j+1j!π
√
D
e−(βzb)

2−
(zb−fa(za))2

4D

×Hk(βzb)Hj(βza) , (86)

where 1/β =
√

2σa, and za is the deviation from the periodic point xa. It is the number of

resolved periodic points that determines the dimensionality of the Fokker-Planck matrix.

Its eigenvalues are determined from the zeros of det (1 − zL) (equation (84)), expanded as

a polynomial in z, with coefficients given by traces of powers of L, as in the trace formula

(67). As the trace of the nth iterate of the Fokker-Planck operator Ln is concentrated on

periodic points fn(xa) = xa, I evaluate the contribution of periodic orbit p to trLnp by

centering L on the periodic orbit,

tp = tr p Lnp = trLad · · · LcbLba , (87)

where xa, xb, · · · xd ∈ p are successive periodic points. Now just Taylor-expand the expo-

nential in (86) around the periodic point xa,

e−
(zb−fa(za))2

4D = e−
(zb−f

′
aza)2

4D ×
(

1 − 2
√
D(f

′′
a f

′
az

3
a + f

′′
a z

2
azb) +O(D)

)

. (88)
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Figure 11: f0, f1: branches of the deterministic map (48) for Λ0 = 8 and b = 0.6. The
local eigenfunctions ρ̃a with variances given by (46) provide a state space partitioning by
neighborhoods of periodic points of period 3. These are computed for noise variance (D =
diffusion constant) 2D = 0.002. The neighborhoods M000 and M001 already overlap, so
M00 cannot be resolved further. For periodic points of period 4, only M011 can be resolved
further, into M0110 and M0111.

To leading order in the noise variance 2D, tp takes the deterministic value tp = 1/|Λp − 1|,

approximation (83). Higher order corrections will be needed in what follows for a sufficiently

accurate comparison of different methods.

5.2 Testing the optimal partition hypothesis

It is now time to test the validity of the optimal partition method presented in Sect. 3.2. I do

so by estimating the escape rate γ = − ln z0, where z−1
0 is the leading eigenvalue of Fokker-

Planck operator L, for the repeller considered in Sect. 3.2 and plotted again in Figure 11.

The spectral determinant can be read off the transition graph of Figure 6, (dissected in all

its non-self-intersecting loops in Figure 12):

det (1 − zL) = 1 − (t0 + t1)z − (t01 − t0t1) z
2

−(t001 + t011 − t01t0 − t01t1) z
3

−(t0011 + t0111 − t001t1 − t011t0 − t011t1 + t01t0t1) z
4

−(t00111 − t0111t0 − t0011t1 + t011t0t1) z
5

−(t001011 + t001101 − t0011t01 − t001t011) z
6

−(t0010111 + t0011101 − t001011t1 − t001101t1

−t00111t01 + t0011t01t1 + t001t011t1) z
7. (89)
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Figure 12: (a) The transition graph of the partition in Figure 11. (b)-(j) The fundamental
cycles for the transition graph (a), i.e., the set of its non-self-intersecting loops. Each loop
represents a local trace tp, as in (87). (from ChaosBook.org)
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Figure 13: The escape rate γ of the repeller Figure 11 plotted as function of number
of partition intervals N , estimated using: (�) under-resolved 4-interval and the 7-interval
‘optimal partition’, (•) all periodic orbits of periods up to n = 8 in the deterministic, bi-
nary symbolic dynamics, with Ni = 2n periodic-point intervals (the deterministic, noiseless
escape rate is γ<> = 0.7011), and (�) a uniform discretization (54) in N = 16, · · · , 256
intervals. For N = 512 discretization yields γnum = 0.73335(4).

The polynomial coefficients are given by products of non-intersecting loops of the transition

graph [11], with the escape rate given by the leading root z−1
0 of the polynomial. Twelve

periodic orbits 0, 1, 01, 001, 011, 0011, 0111, 00111, 001101, 001011, 0010111, 0011101 up

to period 7 (out of the 41 contributing to the noiseless, deterministic cycle expansion up

to cycle period 7) suffice to fully determine the spectral determinant of the Fokker-Planck

operator. In the evaluation of traces (87) I include stochastic corrections up to order O(D)

(an order beyond the term kept in (88)). The escape rate of the repeller of Figure 11 so

computed is reported in Figure 13, together with: (a) several deterministic, over-resolved

partitions, and (b) a brute force numerical discretization of the Fokker-Planck operator. (a)

If there is an optimal resolution, then any over-resolved periodic orbit expansions should

give the wrong answer for the observable we want to estimate. I test such a statement by

evaluating the escape rate using a cycle expansion of the kind I have described in Sect. 4.4,

precisely equation (76), that is in terms of all deterministic periodic orbits of the map up

to a given period, with tp evaluated in terms of Fokker-Planck local traces (87), including

stochastic corrections up to order O(D). Figure 13 shows how the escape rate varies as I

include all periodic orbits up to periods 2 through 8. Successive estimates of the escape rate

appear to converge to a value different from the ‘optimal partition’ estimate. (b) I discretize

the Fokker-Planck operator L by the piecewise-constant approximation on a uniform mesh
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on the unit interval, introduced in Sect. 4.1, equation (54):

[L]ij =
1

|Mi|
1√
4πD

∫

Mi

dx

∫

f−1(Mj)
dy e−

1
4D

(y−f(x))2,

where Mi is the ith interval in equipartition of the unit interval into N pieces. Empirically,

N = 128 intervals suffice to compute the leading eigenvalue of the discretized [128 × 128]

matrix [L]ij to four significant digits. The latter turns out to be in excellent agreement with

the escape rate calculated using the optimal partition, so that it now makes sense to test

the method for an extensive range of values of the noise strength 2D. The optimal partition

method yields a different number of neighborhoods every time, the results are summarized in

Table 1, and illustrated by Figure 14, with the estimates of the ‘optimal partition’ method

within 2% of those given by the uniform discretization of Fokker-Planck. One can also

see from the same table that the escape rates calculated with and without higher order

corrections to the matrix elements (86) are consistent within less than 2%, meaning that

the stochastic corrections (88) do not make a significant difference, as opposed to the choice

of the partition, and need not be taken into account in this model.

Table 1: Escape rates of the repeller (48) from the unit interval, calculated from the

determinant of the graph of the optimal partition: (γ
O(D)
<> ) with stochastic corrections, (γ<>)

without stochastic corrections, and (γnum) by a uniform discretization of L, for different
values of D. nr is the number of regions of the state space resolved by the optimal partition
every time.

D nr γ<> γ
O(D)
<> γnum

0.01 4 0.763 0.748 0.773
0.008 5 0.763 0.751 0.769
0.005 5 0.763 0.755 0.759
0.003 6 0.736 0.732 0.747
0.001 7 0.735 0.734 0.733
0.0008 7 0.735 0.735 0.732
0.0005 9 0.736 0.735 0.729
0.0003 11 0.725 0.724 0.726
0.0001 14 0.722 0.722 0.718

Another interesting observable in the chaotic system in exam is the Lyapunov expo-

nent, which measures how fast neighboring orbits separate, and therefore, how sensitive

a dynamical system is to initial conditions: let x0 and x0 + δ0 be nearby points, then

δn = fn(x0 + δ0) − fn(x0) is the separation of their nth iterates. If the orbits separate
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Figure 14: Escape rates of the repeller (48) vs. the noise strength D, using: the op-
timal partition method with (�) and without (×) stochastic corrections; (�) a uniform
discretization (54) in N = 128 intervals.

exponentially fast, then |δn| ∝ |δ0|enλ, with λ positive and asymptotically equal to

λ = lim
n→∞

1

n
ln

∣

∣

∣

∣

fn(x0 + δ0) − fn(x0)

δ0

∣

∣

∣

∣

= lim
n→∞

1

n
ln
∣

∣

∣
fn′

(x0)
∣

∣

∣
= lim

n→∞

1

n

n−1
∑

i=0

ln
∣

∣f ′(xi)
∣

∣ (90)

for δ0 → 0. In order to test the validity of the optimal partition, I compute the Lypaunov

exponent as the ratio

λ = 〈ln Λ〉 / 〈n〉 , (91)

ln Λ =
∑

ln |f ′(x0)| being the integrated observable (‘An(x0)’) defined in Sect. 4.2, and the

two averages are given by the formulae (79) and (80) derived in Sect. 4.5:

〈A〉 = A0t0 +A1t1 + (A01t01 − (A0 +A1)t0t1) + (A001t001 − (A01 +A0)t01t0) +

+(A011t011 − (A01 +A1)t01t1) + · · · (92)

with tp = eγ/|Λp − 1|. In this case the sums are finite, and over the loops of the transition

graph generated by the optimal partition. On the other hand, I also use the uniform

discretization (54) to crosscheck my estimate: this way the Lyapunov exponent is evaluated

as the average

λ =

∫

dx eγρ(x) ln |f ′(x)| (93)

where ρ(x) is the leading eigenfunction of (54), γ is the escape rate, and eγρ is the normalized

repeller measure,
∫

dx eγρ(x) = 1. Figure 15 shows close agreement (< 1%) between the

Lyapunov exponent estimated using the average (92), and the same quantity evaluated with

(93), by the discretization method (54).
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Figure 15: The Lyapunov exponent of the repeller (48) vs. the noise strength D, using: the
optimal partition method (•) without stochastic corrections, and (⋄) a uniform discretization
(54) over N = 128 intervals.
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CHAPTER VI

WHEN THE GAUSSIAN APPROXIMATION FAILS

The last main result of this thesis is the formulation and validation of the optimal partition

hypothesis for a non-hyperbolic map, and its test on a one-dimensional map. Take for

example, the same map f(x) as in (48), but with the parameter Λ0 = 1/f(xc), where

xc is the maximum of the cubic parabola (Figure 16). As we can see from the figure,

f(x) maps the unit interval into itself, meaning there is no escape, besides it has a ‘flat

top’ (|f ′(x)| << 1) near its maximum, where the approximation (28) of the Fokker-Planck

evolution operator

La(za+1, za) = (4πD)−1/2 e−
(za+1−f

′
aza)2

4D

does not hold. Thus, I should first modify my choice of densities and neighborhoods, as

the whole construction leading to the optimal partition algorithm was entirely based on the

Gaussian approximation of the evolution operator.

Let us start recalling how the adjoint Fokker-Planck operator L† acts on a Gaussian

density ρ(x):

L† ρa(x) =

∫ ∞

−∞
cae

−
(f(x)−y)2

4D e−(x−xa)2/2σ2
a [dy]

= ca−1e
− (f(x)−xa)2

σ2
a+2D . (94)

 0

 0.2

 0.4
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f(
x)

x

Figure 16: The ‘skew’ Ulam map f(x) = Λ0x(1 − x)(1 − bx), with b = 0.6, and Λ0 =
1/f(xc), xc critical point of the map.
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Suppose the point f−1(xa) (cf. Sect. 2.3), around which I want to approximate the new

density, is very close to the critical point (flat top) of the map, so that I can write

ρa−1(x) = ca−1e
− (f(x)−xa)2

2(σ2
a+2D) ≃ ca−1e

− f
′′

(f−1(xa))2(x−f−1(xa))4

8(σ2
a+2D)

= ca−1e
−f

′′2
a−1z4

a−1/8(σ2
a+2D) (95)

the variance of the transformed density is

σ2
a−1 =

∫

z2
a−1e

−f
′′2
a−1z4

a−1/8(σ2
a+2D)dza−1

∫

e−f
′′2
a−1z4

a−1/8(σ2
a+2D)dza−1

=
Γ(3/4)

Γ(1/4)

(

8(σ2
a + 2D)

f
′′2
a−1

)1/2

(96)

that is no longer does the variance transform linearly, but as a square root, in the vicinity

of the critical point of the map. Let now L† transform this new density

L†e−α2z4
a−1 =

∫

e
(y−f(za−1))2

4D
−α2y4

[dy] (97)

where α2 = f
′′2
a−1/8(σ

2
a + 2D). Now make the change of variable ξ = y

√

α/4D, and write

the density ρa−1(y) as a power series, so that the previous integral reads

L†e−α2z4
a−1 =

√

4D

α

∫

[dξ]e
−

“

ξ√
α
−

f(za−1)√
4D

”2 ∞
∑

n=0

(−1)n
[

(4D)2ξ4
]n

n!

=

∞
∑

n=0

(−1)n(4n)!

n!
(
√
αf(za−1))

4n
2n
∑

k=0

1

(4n− 2k)!k!

(

4D

4f2(za−1)

)k

(98)

I then group all the terms up to order O(D) and neglect O(D2) and higher,

∞
∑

n=0

(−1)n

n!

(√
αf(za−1)

)4n
+ 4D

∞
∑

n=0

(−1)n(4n)!

4 [n!(4n− 2)!]
α2f4n−2(za−1) =

e−α2f4(za−1) − 4D
[

3α2f2(za−1)
]

Φ

(

7

4
,
3

4
,−
[√
αf(za−1)

]4
)

(99)

where Φ is a confluent hypergeometric function of the first kind, sometimes called [1] 1F1:

Φ

(

7

4
,
3

4
,−
[√
αf(za−1)

]4
)

= e−α2f4(za−1)

(

1 − 4α2f4(za−1)

3

)

(100)

I now want to consider the density (99) in the vicinity of the preimage of za−1, which is

expected to be far enough from the flat top of the map so as the linear approximation

f(za−1) ≃ f ′a−2za−2 to be valid, and evaluate the variance

σa−2 =

∫

dza−2z
2
a−2ρa−2(za−2)

∫

dza−2ρa−2(za−2)
(101)
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it is useful to know, in computing the denominator of (101), that

∫

f
′2
a−2z

2
a−2Φ

(

7

4
,
3

4
,−[

√
αf ′a−2za−2]

4

)

dza−2 = 0 (102)

so that

σa−2 =

∫

za−2e
−α2f

′4
a−2z4

a−2dza−2 − 4D[3α2f
′2
a−2

∫

z4
a−2Φ

(

7
4 ,

3
4 ,−[

√
αf ′a−2za−2]

4
)

dza−2
∫

e−α2f4
a−2z4

a−2

=
Γ(3/4)

Γ(1/4)
(α2f

′4
a−2)

−1/2 − 4D
(α2f

′4
a−2)

1/4

2Γ(5/4)
3α2f

′2
a−2

[

− 4Γ(9/4)

15(α2f
′4
a−2)

5/4

]

=
1

f
′2
a−2

(

Γ(3/4)

Γ(1/4)

1

α
+ 2D

)

=
σ2

a−1 + 2D

f
′2
a−2

(103)

in the last identity I used the definition of α and (96). I have just shown that the variance of

the density ρa−1(za−1) transforms again like the variance of a Gaussian, up to order O(D)

in the noise strength. By the same procedure, one can again assume the next preimage

of the map xa−3 is such that the linear approximation is valid, and transform the density

ρa−2(za−2) (99) up to O(D) and obtain the same result for the variance, that is

σ2
a−3 =

σ2
a−1 + 2D(1 + f

′2
a−2)

f
′2
a−2f

′2
a−3

(104)

which is nothing but the expression (45) for the evolution of the variances of Gaussian

densities, obtained in Sect. 2.3. In other words, the evolution of the variances goes back to

be linear, to O(D), although the densities transformed from the ‘quartic Gaussian’ (95) are

hypergeometric functions.

The question is now how to modify the definition of neighborhoods given in Sect. 3.2, in

order to fit the new approximation. Looking for eigenfunctions of L† seems to be a rather

difficult task to fulfill, given the functional forms (95) and (99) involved. Since all I really

care of are the variances, I define instead the following map

σ2
a−1 =















C

(

σ2
a+2D

f
′′2
a−1

)1/2

|f ′2
a−1 < 1|

σ2
a+2D

f
′2
a−1

otherwise,

(105)

C = 2
√

2Γ(3/4)/Γ(1/4), for the evolution of the densities, and take its periodic points as

our new neighborhoods. In practice, one can compute these numerically, but I will not need
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orbits longer than np = 4 in my tests of the partition. Therefore I assume only one periodic

point of f(x) to be close to the flat top, and obtain analytic expressions for the periodic

points of (105):

σ̃2
a ≃ C







2D
(

1 + f
′2
a−1 + ...+ (fn−1′

a−n+1)
2
)

Λ̃2
p

2






1/2

(106)

with Λ̃p = fn−1′
a−n+1f

′′
a , is valid when the cycle ends at a point xa close to the flat top.

Otherwise, take the periodic point xa−k, that is the kth pre-image of the point xa. The

corresponding periodic variance has the form

σ̃2
a−k ≃ 1

(fk′
a−1)

2

(

2D(1 + f
′2
a−1 + ...+ (fk−1′

a−1 )2) + σ̃2
a

)

(107)

both expressions (106) and (107) are approximated, as we further assumed 2DΛ̃2
p >> 1,

which is reasonable when D ∈ [10−4, 10−2], our range of investigation for the noise strength.

As before, a neighborhood of width [xa − σ̃a, xa + σ̃a] is assigned to each periodic point xa,

and an optimal partition follows. However, due to the geometry of the map, such partitions

as

{M000, [M001,M011] ,M010,M110,M111,M10} . (108)

can occur. In this example the regions M001 and M011 overlap, and the partition results in

a transition graph with three loops (cycles) of length one, while we know that our map only

admits two fixed points. In this case I decided instead to follow the deterministic symbolic

dynamics and ignore that particular overlap.

Let me now validate the method by estimating once again the escape rate of the noisy

map in Figure 16. We notice that the matrix elements

[Lba]kj = 〈ρ̃b,k|L|ρa,j〉

=

∫

dzbdza β

2j+1j!π
√
D
e−(βzb)

2−
(zb−f ′

aza)2

4D

×Hk(βzb)Hj(βza) , (109)

should be redefined in the neighborhood of the critical point of the map, where the Gaussian

approximation to L fails. Following the approximation made in (95),

[Lba]kj =

∫

dzbdza β

2j+1j!π
√
D
e−(βzb)

2−
(zb−f

′′
a

√
4Dz2

a/2)2

4D Hk(βzb)Hj(βza) . (110)
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Figure 17: Escape rates of the ‘skew’ Ulam map vs. noise strength D, using: the optimal
partition method (×), and (�) a uniform discretization (54) in N = 128 intervals.

However, as D decreases, it also reduces the quadratic term in the expansion of the expo-

nential, so that the linear term f ′aza must now be included in the matrix element:

[Lba]kj =

∫

dzbdza β

2j+1j!π
√
D
e−(βzb)

2−
(zb−f ′

aza−f
′′
a

√
4Dz2

a/2)2

4D Hk(βzb)Hj(βza) , (111)

I find in the ‘skew Ulam’ model that the periodic orbits used in the expansion have xa’s

near the flat top, such that f ′a ∼ 10−1 and f
′′
a ∼ 10, and therefore the matrix element (110)

would better be replaced with (111) whenD ∼ 10−4. In order to know whether a cycle point

is close enough to the flat top for the Gaussian approximation to fail, recall that the matrix

element (109) is the zeroth-order term of a series in D, whose convergence can be probed

by evaluating the higher order corrections (88): when the O(
√
D) and O(D) corrections

are of an order of magnitude comparable or bigger than the one of (109), I conclude that

the Gaussian approximation fails and I use (110) or (111) instead. Everywhere else the

usual matrix elements (109) are used, without the higher-order corrections, as they are

significantly larger than in the case of the repeller, and they are not accounted for by the

optimal partition method, which is entirely based on a zeroth-order Gaussian approximation

of the evolution operator (cf. Sect. 2.2). Like before, I tweak the noise strength D within

the range [10−4, 10−2] and compare the escape rate evaluated with the optimal partition

method and with the uniform discretization (54) The results are illustrated inFigure 17,

the uniform discretization method and the method of the optimal partition are consistent

within a 5−6% margin. The results of Figure 17 are also reported in table 2, together with

the number of intervals given by the optimal partition every time.
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Table 2: Escape rates of the ‘skew’ Ulam map from the unit interval, calculated from the
determinant of the graph of the optimal partition: γ<> is obtained using (109) and (111)
for the matrix elements, with nr indicating the number of regions of the corresponding
optimal partition; γnum is the escape rate obtained by uniform discretization of L (N = 128
intervals), for different values of D.

D nr γ<> γnum

0.01 7 0.174 0.186
0.008 7 0.166 0.172
0.005 7 0.148 0.146
0.003 7 0.126 0.122
0.001 13 0.082 0.084
0.0008 13 0.077 0.079
0.0005 14 0.069 0.069
0.0003 15 0.063 0.059
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CHAPTER VII

SUMMARY AND OUTLOOK

I formulated the hypothesis of a finite resolution for the state space in the presence of

white noise, and proposed an algorithm to determine the finest possible partition of a

one-dimensional map. A Fokker-Planck kind of approach is at the basis of my analysis: a

discrete-time evolution operator for densities of trajectories was derived, and then linearized

in the neighborhood of periodic orbits of the deterministic system, as they still constitute the

skeleton of the dynamics, if the noise is weak. The purpose of that is to obtain invariants

of the Fokker-Planck operator and of its adjoint, to be used for partitioning the state

space, in the same way as one uses periodic orbits of a deterministic map in the absence

of noise. As it turns out, periodic points become Gaussian- or hypergeometric-shaped

densities, which cover the state space of a chaotic map, until they overlap significantly within

a 1σ confidence level: that sets the finest attainable resolution. The length of the longest

orbits in the partition indicates the maximum number of iterations before the noisy system

loses memory of where it has been. Not surprisingly, such memory depends on the interplay

of the dynamics with the noise, and therefore is not uniform in the state space. The rest of

the work presented is an attempt to test the optimal partition hypothesis, using periodic

orbit expansions. Any evolution operator is forced into a finite-dimensional matrix, due to

the finite resolution of its support. A local approximation of the Fokker-Planck operator

allows us to compute such observables as the escape rate of the map or the Lyapunov

exponent in a perturbative fashion, with the noise strength as order parameter. The results

show satisfactory agreement with the ones obtained with a brute-force diagonalization of

the evolution operator.

The future presents a number of challenges, both technical and conceptual. The first
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(a) (b)

Figure 18: (a)The Hénon attractor (x′, y′) = (1 − ax2 + y, bx), with a = 1.4, b = 0.3;(b)
the Lozi attractor (x′, y′) = (1 − a|x| + y, bx), with a = 1.85, b = 0.3.

thing that comes to mind is how the optimal partition hypothesis would extend to a higher-

dimensional state space. Two main problems: (a) find the local spectrum of the Fokker-

Planck evolution operator and (b) define an interval, now having to account for both ex-

panding and contracting directions of the deterministic dynamics.

(a) Some preliminary work on the two-dimensional Hénon and Lozi maps (Figure 18)

with isotropic noise, shows that both the local Fokker-Planck operator

Lρ(y) =

∫

exp

(

−(y − Ax)T (y − Ax)

4D
− xTQx

)

d2x, Aij =
∂fi(x)

∂xj
(112)

and its adjoint admit Gaussian ground-state eigenfunctions, whose quadratic forms xTQx

at the exponential are all degenerate, meaning

UT QU = Λµ =







0 0

0 µ2






(113)

and the eigenfunction is a Gaussian ‘tube’ of variance σ2 = 1/2µ2, portrayed in Figure 19.

The local eigenfunction of L (L†) around a periodic point of a piecewise-linear map extends

along the direction of the unstable (stable) eigenvector of the Jacobian of the cycle, namely

the unstable (stable) manifold. In nonlinear maps these directions are somewhat skewed

from the stable and unstable manifolds, but the picture remains similar.

(b) So now here comes an idea for how to define an interval of the partition: take both

ground-state local eigenfunctions of L and L† and cross them as shown in Figure 19, then

take the intersection of their supports (within a 1σ confidence) as the interval M. The next
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(a) (b) (c)

Figure 19: (a) A ground-state eigenfunction of the local two-dimensional Fokker-Planck
operator (112); (b) the ground-state eigenfunctions of L and of its adjoint L†, both op-
erator linearized around the same cycle point; (c) my definition of partition interval in
two dimensions: take the local densities in (b), cut off their supports at 1σ and take their
intersections.
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Figure 20: Intervals defined as in Figure 19 cover the Lozi attractor in Figure 18, using:
(a) all periodic points of length five; (b) all periodic points of length six.

step is akin to what seen in one dimension, that is just cover the non-wandering set of the

system with all the intervals found until they significantly overlap (Figure 20). A couple of

technical issues still need to be addressed, before this idea can be tested in the same way as

in the one-dimensional maps. First, general overlapping of a generation of periodic points

(i.e. of a certain length) is not enough to determine the optimal partition: look at the Lozi

attractor in Figure 18 and then at the overlapping neighborhoods in Figure 20: some parts of

the attractor are still uncovered, even when the optimal resolution seems achieved, meaning

one needs to find more periodic orbits. Unlike in the repeller, longer cycles are not always

shadowed by shorter ones, due to forbidden sequences in the binary tree (cf. Sect. 3.1)

that regulates the topology of the orbits. This phenomenon, known as pruning [13], is

a science of its own. Arguably, one needs to understand how the evolution of forbidden

sequences (pruning fronts) in symbolic space maps into the state space, before attempting
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to fit the optimal partition method to two-dimensional attractors. The second issue concerns

symmetries of the periodic orbits, such as, for instance, the exchange (x, y) → (y, x) for

maps of the Hénon type, and whether those carry over to the local eigenfunctions of L

and L†. Taking symmetries into account would imply working in a reduced state space

(fundamental domain), where fewer cycles suffice to understand the dynamics.

It will be necessary, sooner or later, to understand how noise convolves with continuous-

time dynamical systems in d dimensions, from the perspective of a Poincaré-type of analysis.

In other words, given the path integral:

L ◦ ρ(x0, t0) = lim
n→∞

∫

[dx]e−[xi+1−xi−f(xi)δti]
T
∆

−1[xi+1−xi−f(xi)δti]ρ(x0, t0) (114)

where ∆ is the diffusion matrix, equal to just 4Dδti is one dimension, and

[dx] =

n−1
∏

i=0

dxd
i

(4π det (∆) δti)d/2
.

We want to establish whether, and to what extent, it is legal to split the previous into a

product of two path integrals, one along the direction of the orbit, and the others along the

directions normal to the orbit, in its local reference frame:

L ◦ ρ(x0, t0) ≈ lim
n→∞

∫

[dx‖]e
−[xi+1−xi−f(xi)δti]

T
‖ ∆

−1
‖ [xi+1−xi−f(xi)δti]‖ρ(x0‖, t0) ×

lim
n→∞

∫

[dx⊥]e−[xi+1−xi−f(xi)δti]
T
⊥∆

−1
⊥ [xi+1−xi−f(xi)δti]⊥ρ(x0⊥, t0) . (115)

One can reasonably hope that the previous is true for small, isotropic noise, when the

diffusion matrix ∆ is diagonal, while the whole issue gets more complicated when the noise

is anisotropic. Either way, the effect of the noise in the direction of traveling (‖) must be

understood, whether it only affects the return time on a fixed Poincaré section, or it is

entangled with the diffusion in the normal directions so as to alter the distribution of the

noise on the surface of section.

I believe any further development of the optimal partition hypothesis must go through

these steps.
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APPENDIX A

MARKOV PROCESSES

In general, the joint probability of a stochastic process p(x1, t1;x2, t2; ...;xn, tn) is expressed

as a function of the initial probability p(x1, t1) and the conditional probabilities for the

successive steps:

p(x1, t1;x2, t2; ...;xn, tn) = p(x1, t1)p(x2, t2|x1, t1)...p(xn, tn|x1, t1;x2, t2; ...;xn−1, tn−1)

(116)

The process is said to be Markovian if, for any t1 < t2 < ... < tn and for any n,

p(xn, tn|x1, t1;x2, t2; ...;xn−1, tn−1) = p(xn, tn|xn−1; tn−1) (117)

In words, once it has arrived at xn−1 at time tn−1, a Markov process evolves further irre-

spective of its history before xn−1. This way, equation (116) is rewritten as

p(x1, t1;x2, t2; ...;xn, tn) = p(x1, t1)p(x2, t2|x1, t1)...p(xn, tn|xn−1, tn−1) (118)

Suppose we know x1 and x3, but nothing in between. Then what would be in general

p(x3, t3|x1, t1) =

∫

p(x2, t2|x1, t1)p(x3, t3|x1, t1;x2, t2)dx2 (119)

becomes, for a Markov process

p(x3, t3|x1, t1) =

∫

p(x2, t2|x1, t1)p(x3, t3|x2, t2)dx2 (120)

which is known as Chapman-Kolmogorov equation.

Now consider an initial distribution ρ(x0, t0), which evolves into

ρ(x, t) =

∫

p(x, t|x0, t0)ρ(x0, t0)dx0 (121)

and, at a later time, into

ρ(x, t+ ∆t) =

∫

p(x, t+ ∆t|x0, t0)ρ(x0, t0)dx0 (122)
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In the following, I will relate ρ(x, t + ∆t) to ρ(x, t) using the fact that the process is

markovian: the Chapman-Kolmogorov equation (120) reads, in this case,

p(x, t+ ∆t|x0, t0) =

∫

p(x′, t|x0, t0)p(x, t+ ∆t|x′, t)dx′ (123)

Now plug (123) into (122) and get the double integral

ρ(x, t+ ∆t) =

∫ ∫

p(x′, t|x0, t0)p(x, t+ ∆t|x′, t)ρ(x0, t0)dx0dx
′ =

∫

ρ(x′, t)p(x, t+ ∆t|x′, t)dx′ (124)

If the process is stationary, that is p(x, t) = p(x, t+ T ) for any fixed T , then

ρ(x, t+ ∆t) =

∫

ρ(x′, t)p(x, t+ ∆t|x′, t)dx′ (125)

as stated in Sect. 1.2
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APPENDIX B

ORNSTEIN-UHLENBECK PROCESS

Here I reproduce results obtained by Dekker and Van Kampen [18] and later by Gaspard

et al. [25].

Add weak uncorrelated noise ξ̂ to the linear ODE

dx

dt
= λx

with a single equilibrium solution x = 0. The corresponding Langevin equation1

dx

dt
= λx+ ξ̂ (126)

leads to the Fokker-Planck equation [18, 25]

∂tρ(x, t) + ∂x[λxρ(x, t)] = D∂2
xρ(x, t) , (127)

known as the Ornstein-Uhlenbeck process [47, 51, 42]. The analytical solution is obtained

by rewriting ρ as

ρ = e−
U
2Dψ , (128)

where U = −λ
2x

2 can be interpreted as the potential of the Langevin force in (126). The

multi-dimensional Ornstein-Uhlenbeck process with potential

U = −1

2

∑

i,j

Ai,jxixj (129)

is known in financial literature as the Vašiček model [50]. The equation for ψ has the

Schrödinger form, with the quantum harmonic oscillator Hamiltonian:

−∂tψ = Hψ

H = −D∂2
x − 1

2
∂2

xU +
1

4D
(∂xU)2 = −D∂2

x +
λ

2
+
λ2

4D
x2 . (130)

1In papers by Ornstein and Uhlenbeck [47] and Chandrasekhar [7], the Langevin equation has a velocity
as the ‘x’ variable.
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A solution of the continuous time Fokker-Planck equation (127) can be expanded in the

harmonic oscillator eigenfunction basis as

ρ(x, t) =

∞
∑

k=0

Ckψk(x)e
−skt , (131)

where ψk and sk are respectively the eigenfunctions and eigenvalues of the time-independent

Schrödinger equation

Hψk = −skψk . (132)

The solutions are [25]

ψ̃k(x) = Hk(µx)e
−(µx)2 , µ2 = −λ/2D , sk = −kλ (133)

in the attracting case (λ < 0), and

ψk(x) = Hk(µx) , sk = (k + 1)λ , (134)

in the repulsive case (λ > 0).
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APPENDIX C

GAUSSIAN EVOLUTION IN CONTINUOUS TIME

Given a flow

dx

dt
= f(x) , (135)

the matrix of variations

Aij =
∂fi(x)

∂xj
(136)

describes the instantaneous rate of shearing of the infinitesimal neighborhood of x(t) by

the flow (135). Obviously one needs to integrate (136), together with the flow, in order to

determine the amount of deformation Jt(x) of an infinitesimal neighborhood after a finite

time t in the co-moving frame of x(t):

d

dt
Jt(x) = A(x)Jt(x), J0(x) = 1 (137)

This concept will be used in the following, in order to shed some light on the meaning of

formula (46),

σ2
a =

2D

1 − Λ2

(

1 +

i=n−1
∑

i=1

(fn−i′
a+i )2

)

, Λ = fn′
a

for the condition on the width of a Gaussian, in order for the latter to be an eigenfunction of

the Fokker-Planck operator L in the neighborhood of a periodic point xa. The idea is to see

whether the formula becomes more familiar in the continuous-time limit. From Sect. 1.3, I

can write the evolution of a Gaussian density by the Fokker-Planck operator of a flow, near

a periodic point xa, in a time step ∆t:

ρ(za+1) =

∫

exp

(

−(f ′aza∆t+ za − za+1)
2

4D∆t

)

e
− za

2σ2
a [dza] =

ca+1 exp

(

− z2
a+1

2(2D∆t+ (f ′a∆t+ 1)2σ2
a)

)

(138)

where I have used the notation introduced in Sect. 2.2 for the local coordinates near the

periodic point xa and its image xa+1 = f(xa). Thus, widths map as

σ2
a+1 = 2D∆t+ ((f

′
a∆t+ 1)σa)

2 . (139)
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from which it is easy to obtain a condition on the width for the Gaussian to be an eigen-

function of the n-th iterate of L:

σ2
a =

2D∆t

1 − Λ2

(

1 +

i=n−1
∑

i=1

i
∏

1

(1 + f ′a+i∆t)
2

)

, Λ =

n−1
∏

0

(1 + f ′a+i∆t) . (140)

Let me write out the term Λ after one, two, three iterations:

Λ1 = 1 + f ′a∆t (141)

Λ2 = 1 + (f ′a + f ′a+1)∆t+ f ′af
′
a+1∆t

2

Λ3 = 1 + (f ′a + f ′a+1 + f ′a+2)∆t+ (f ′af
′
a+1 + f ′af

′
a+2 + f ′a+1f

′
a+2)∆t

2 + f ′af
′
a+1f

′
a+2∆t

3

Recalling definitions (136), (137) and some simple algebra is all it takes to discover that

(142) is nothing but the integration (137), discretized in ∆t-time intervals to obtain the

Jacobian of a one-dimensional flow, therefore

Λ → J = e
R t
0 f ′(x(τ))dτ (142)

Next, consider the expression 140 and rewrite the summation

(

1 +

i=n−1
∑

i=1

i
∏

1

(1 + f ′a+i∆t)
2

)

∆t =

(

1 − Λ2 +

i=n
∑

i=1

i
∏

1

(1 + f ′a+i∆t)
2

)

∆t→
∫

J(x(t))2dt

(143)

where I just took the continuous limit ∆t→ 0 and n→ ∞: everything goes to zero except

for the summation multiplied by the time step. Now I have an expression for the local

eigenfunction (138) in continuous-time:

ρ(za(t)) = c(t) exp

(

− 1 − J(t)2

4D
∫

J(t)2dt

)

(144)

As a rapid crosscheck, let me see what that exponent becomes for the Ornstein-Uhlenbeck

process, where the matrix of variation is a constant λ (cf. Sect. B):

1 − J(t)2

4D
∫

J(t)2dt
=

1 − eλt

4D
∫ t
0 e

2λτdτ
=

λ

2D
(145)

which is exactly the exponent (133) of the ground-state eigenfunction of the attracting case

(λ < 0).

54



APPENDIX D

FOKKER-PLANCK OPERATOR AND TIME REVERSIBILITY

The Fokker-Planck evolution operator on the right-hand side of equation (9)

LDρ(x, t) = −∂x[f(x)ρ(x, t)] +D∂xxρ(x, t) (146)

is not symmetric under the operation of time-reversal. That is apparent from the solution

(131) of the one-dimensional Ornstein-Uhlenbeck problem: all the eigenfunctions (except

for the invariant measure) decay for t→ ∞, but they would diverge to infinity if t→ −t.

Formally, a time-evolution operator U(t, t0) satisfies the equation (cf. [44])

∂

∂t
[U(t, t0)ρ] = LD[U(t, t0)ρ] (147)

LD does not depend on time explicitly, therefore

U(t, t0) = e−LD(t−t0) (148)

In order to test whether U(t, t0) is symmetric under time reversal, let us write its expression

for short times:

U(t0 + dt, t0) = 1 − LDdt (149)

Then U(t0 + dt, t0) (and hence U(t, t0)) is time-reversible iff

U †(t0 + dt, t0)U(t0 + dt, t0) = 1 (150)

Plugging (148) into the previous condition, we obtain that U(t, t0) is T-symmetric iff

LD = −L†
D (151)

that is the Fokker-Planck operator should be antihermitian, in order for the evolution

operator of the Fokker-Planck equation to be symmetric under time reversal. The adjoint

of LD is

L†
D = D∂xx + λx∂x (152)

so that LD is not antihermitian and the evolution operator (148) cannot be T-symmetric.
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APPENDIX E

PERRON-FROBENIUS VS. KOOPMAN OPERATOR

The Perron-Frobenius operator

Lρ(x) = ρ(f−1(x))

∣

∣

∣

∣

df−1(x)

dx

∣

∣

∣

∣

= ρ(f−1(x))

∣

∣

∣

∣

1

f ′(f−1(x))

∣

∣

∣

∣

(153)

transforms a density supported on a set A to a density supported on f(A). In fact, if

ρ(f−1(x)) = 0 if f−1(x) /∈ A,

then x ∈ f(A).

On the other hand, the Koopman operator

L†ρ(x) = ρ(f(x)) (154)

transforms a density supported on A to a density supported on f−1(A). In fact, if

ρ(f(x)) = 0 if f(x) /∈ A,

then x ∈ f−1(A). In this sense, the meaning of the Koopman operator is to map a density

ρ(x) backwards in time.

This is different from applying the Perron-Frobenius operator associated to the inverse

map f−1(x):

Lf−1ρ(x) = ρ(f(x))

∣

∣

∣

∣

df(x)

dx

∣

∣

∣

∣

(155)

if the map f(x) is supported on A, then the transformed density is supported on f−1(A)
⋂

A.
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