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SUMMARY

The purpose of this dissertation describes several power optimization techniques for

energy efficient datacenters. To achieve this goal, it approaches power dissipation holisti-

cally for entire datacenters and analyzes them layer-by-layer from (1) the infrastructure

level, (2) the system level, and all the way down to (3) the micro-architecture level.

First, for infrastructure-level power optimization of datacenters, this work presents

infrastructure-level mathematical models. These models demonstrate that to achieve opti-

mal performance in a heterogeneous cloud infrastructure, the response time of the slowest

node should be no more than three times as long as that of the fastest node. This disserta-

tion also presents a holistic warehouse-scale datacenter power and performance simulator,

SimWare. To optimize datacenter energy efficiency, SimWareanalyzes the power con-

sumption of servers, cooling units, and fans as well as the effects of heat recirculation

and air supply timing. Experiments using SimWare show a highloss of cooling efficiency

resulting from the non-uniform inlet air temperature distribution across servers.

Second, this study describes a system-level technique, ATAC, for power efficient dat-

acenters. The SimWare framework reveals that only a small number of servers at hot

spots suffer from high inlet air temperature, and cooling these servers largely compromises

cooling efficiency. Thus, to tackle these inefficiencies, this dissertation proposes ambient

temperature-aware capping, ATAC, which maximizes power efficiency while minimizing

overheating.

Finally, this dissertation describes a micro-architecture level technique under the con-

text of emerging non-volatile memory technologies. Non-volatile solid-state memory tech-

nologies often exploit the analogous characteristics of anunderlying material that stores

more than one bit per cell. We first show that storing more thanone bit per cell, or multi-

ple bits per cell, ends up with much higher soft-error rates than conventional technologies.

However, multi-bit per cell technology can still be used as approximate storage. To this

xi



end, we propose a new class of multi-bit per cell memory in which both a precise bit and

an approximate bit are located in a physical cell.

With the development of these techniques, the contributionof this body of work is a

reduction in the power consumption of datacenters in a holistic way, eliminating one of the

most important hurdles to the proliferation of cloud-computing environments.
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CHAPTER 1

INTRODUCTION

The current de-facto future computing model for all types ofcomputing is the concept of

cloud computing. Ideally, moving computing to the cloud relieves much of the respon-

sibility of users by providing higher reliability and availability for data computation and

management. With this transformational paradigm shift, the main computing power and

resources will be provided by cloud service providers that maintain and operate a complete

infrastructure, solution platforms, and a plethora of applications in the so-calleddatacen-

ters. Datacenters accommodate computing nodes and peripheralsthat consume electrical

power for computing and cooling facilities in units of megawatts. For example, in 2010,

the world’s largest online game, World of Warcraft, developed by Blizzard Entertainment,

required more than 20,000 systems with more than 75,000 processing cores for their online

services. Aside from the cost of building the infrastructure of a datacenter, energy costs for

operating and cooling these power-hungry datacenters havereached a level that surpasses

hardware acquisition costs. In 2011, datacenters, accounting for $27 billion in annual elec-

tricity cost [1, 2], consumed a total of 1.5% of energy worldwide. With the rapid growth of

cloud-based services, the upward trend is expected to continue with energy consumption

by datacenters estimated to double by 2014.

As the cloud computing model becomes more pervasive, the power consumption of

datacenters will continue to increase as the number of online users rises worldwide. Such

increased power usage is not simply an economic concern for service providers, datacen-

ter operators, and end users; it is also environmental concern, for generating this large

amount of energy also inevitably leads to more carbon dioxide emissions, which accel-

erate pollution and global warming. Therefore, operating datacenters at maximal power

efficiency has become a top priority of scientists, engineers, and policy makers in myriad

multi-disciplinary areas. However, before any effort is devoted to this issue, researchers
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and policy makers need to fully understand the entire power delivery and distribution sys-

tem; that is, they must be able to answer the following question: Where does the power

consumed by datacenters go?

This dissertation takes a holistic view of power dissipation for the entire datacenter and

analyzes them layer-by-layer on the infrastructure level,the system level, and all the way

down to the micro-architecture level. It begins by discussing the power breakdown of each

level using data available in the public domain and then proposes innovative techniques for

each level.

In general, infrastructure-level electrical power usage falls into two categories: comput-

ing and cooling. Legacy datacenters often consume more than50% of their total power for

cooling [3] while state-of-the-art datacenters consume less than 10% [4]. A metric referred

to as power usage effectiveness, or PUE [5], was proposed to measure the efficiency of the

datacenter infrastructure. However, this metric could be misleading because PUE ignores

the increased fan power that occupies the non-negligible portion of power consumption by

servers [6]. When an administrator decides to reduce the power consumption of air con-

ditioning (CRAC) units in the computing room, the fans in servers will blow harder and

consume more power than before, resulting from higher room temperature than that dur-

ing normal operation. In other words, raising the room temperature of a datacenter always

results in lower PUE than before because of both decreased cooling power and increased

server power. Although increased server power comprises a large portion of total datacenter

power, it has not been accounted for in the PUE metric.

Prior studies have proposed software tools that simulate datacenters; however, they

were not complete because the tools were lacking critical parameters. For example, CloudSim [7]

and DCSim [8] did not include the effect of increased fan powerand heat recirculation.

Other studies [9, 10, 11, 12] largely ignored the air-traveltime from CRAC units to servers.

To address these shortcomings, this dissertation introduces a new datacenter simulator,

SimWare, with detailed temperature, power, and performance models for servers and CRAC

2



units. It also simulates the heat-recirculation effect andthe detailed timing model for the

travel time of supply air.

This dissertation also proposes a system-level technique that saves a significant amount

of the cooling power of datacenters with negligible performance overhead. The aforemen-

tioned holistic datacenter simulator reveals that not all server locations in a datacenter are

identical in terms of cooling: Some suffer from high temperatures while the others are not.

More specifically, server locations at the highest positionin racks are identified as hot spots,

and about 70% of cooling power is used for cooling down these servers at hot spots. If a

system-level technique prevents CPUs from temperature emergencies, datacenters can save

a significant amount of cooling power. Motivated from these observations, this dissertation

proposes a new thermal optimization technique that only triggers performance capping for

servers at hot spots. In other words, the new technique is designed to exploit the inequality,

or non-uniformity, of the inlet-air temperature among the servers in a rack.

The last contribution of this dissertation is the proposal of a micro-architectural tech-

nique for power-efficient datacenters. Datacenters today run a variety of workloads includ-

ing error-tolerant approximate workloads such as voice recognition or image processing.

Approximate computing is a promising way to provide energy efficiency for such types

of applications that require precision. As approximate computing embraces imprecision,

however, it is crucial for streamlining computational resilience against errors for the best

tradeoff among accuracy, performance, and energy consumption. Therefore, this disser-

tation discusses error resiliency in the context of approximate solid-state memory. More

specifically, it provides a comprehensive study to efficiently enable phase-change mem-

ory (PCM) as approximate storage. It is shown that simply relaxing a write-and-verify

sequence in cell programming does not provide good error resilience. Therefore, this dis-

sertation proposes a new class of multi-level PCM cells for approximate storage, in which

a precise bit and an approximate bit are co-located (i.e., half-precise/half-approximate) in

a PCM cell.
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The rest of this document is organized as follows. The following chapter discusses the

origin and history of the problem as well as state-of-the-art techniques in different levels,

infrastructure-level, system-level, and micro-architecture-level techniques. The next three

chapters, Chapter 3 through Chapter 5, present novel optimization techniques for these

levels. More specifically, Chapter 3 discusses the infrastructure-level power breakdown

of datacenters and presents analytical models that can be used to optimize the energy ef-

ficiency of naturally heterogeneous datacenters. In addition, this chapter also presents a

holistic datacenter simulator that takes the critical power-consuming components of data-

centers into account. Chapter 4 discusses the system-level power breakdown of a server

and presents a system-level power optimization technique,ATAC. Chapter 5 also shows

the micro-architecture-level power breakdown of a CPU first and then proposes a class of

multi-level PCM cells for power efficient and reliable computing. Lastly, Chapter 6 con-

cludes the dissertation.
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CHAPTER 2

ORIGIN AND HISTORY OF THE PROBLEM

Power optimization is one of the most active research areas in several engineering disci-

plines for the last decade. Moore’s Law continues to drive a large number of transistors to

be integrated on a single chip, and these transistors consume exponentially increased dy-

namic power. On the other hand, device miniaturization increases the operating frequency

at the expense of increased dynamic power and, at the same time, worsens the leakage

power. Technologies at the device level (e.g., Intel’s high-k metal gate in their 45nm pro-

cess) all the way up to the design of a datacenter all aim at minimizing power consumption.

For example, datacenters save millions of dollars paid for energy even with a small per-

centage of improvement in reducing power consumption. Thissection discusses origin and

history of power optimization problems from a hierarchicalperspective starting from the

infrastructure, system, and finally the micro-architecture level.

2.1 Infrastructure-level Techniques
2.1.1 Energy-Proportional Computing

In typical datacenters, the average utilization is known tobe as low as 20% to 30% [13].

One reason for this low utilization is that since datacenters are prepared to serve the highest

demand of a day or a week, their computing power is over-provisioned to satisfy the worst-

case scenario even when the average number of requests is low. Given the low utilization

of a datacenter by its nature, the need for energy-proportional computing [14] has risen.

The basic concept of the energy-proportional computing is that when the utilization of a

computing node is under 100%, say 50%, the power consumptionof the computing node

should be half the power of 100% utilization. To apply this concept to a datacenter, an

energy-proportional datacenter with 30% utilization should consume only 30% of its peak

power. However, the energy-proportional computing concept is not ready to the vast ma-

jority of today’s equipments. A power model for today’s common computing node shows
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that the computing node consumes almost half of its peak power when it is completely idle

(0% utilization) and consumes about 75% of its peak power when utilization is 50% [14].

To alleviate this problem, a new idea has been proposed for datacenters with common

equipments [15]. In this work, by considering that even common equipments have a nearly

energy-proportional characteristic at high utilization,some computing nodes are suggested

to be turned off to keep the others busy. For example, when tencomputing nodes of the

same type are around 5% utilization, the idea suggests to turn nine machines off but keep-

ing only one node up and running. In the ideal situation of this technique, the aggregate

power consumption can be meaningfully close to the utilization even with non-energy-

proportional machines.

2.1.2 Power Routing

Power Routing [16] is a technique for reducing redundant power delivery infrastructure. In

high-availability datacenters, more than one power distribution units (PDU) are used for

supporting a server cluster to reduce the risk of PDU failure. In the event of PDU failure,

other PDUs take over the duty of the broken PDU to support uninterrupted service. Hence,

high availability and reliability in datacenters can be achieved via such over-provisioning

to provide reserved capacity. The amount of the reserved capacity that causes overhead in

power delivery infrastructure highly depends on the topology used by the datacenter. For

example, in the wrapped topology illustrated in Figure 1a, two PDUs can be brought in to

recover a single PDU failure. In other words, each PDU in the wrapped topology needs to

have 50% of the reserved capacity for recovering a single PDUfailure. On the other hand,

when it comes to a single PDU failure, an example of a fully-connected topology as shown

in Figure 1b can be used to have three additional PDUs for replacing one failed PDU. In

this case, the amount of redundant capacity that each PDU must have is 33% of the peak

power a rack can draw.

The design rationale of Power Routing is that depending on the connectivity among

PDUs and server clusters in a datacenter, the reserved capacity can vary for recovering a
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Figure 1: Power distribution topologies for Power Routing.

PDU failure. Because reserved or redundant capacity in PDUsdirectly indicates that more

money is to be spent on power-delivery infrastructure than the PDUs without redundancy, it

is important to choose a routing topology without redundancy while maintaining the same

level of scheduling ability. Power Routing is one of such techniques. Power Routing com-

prises two parts. First, this idea introduced many different topologies between PDUs and

server clusters such as the serpentine topology in Figure 1cor the X-Y topology in Fig-

ure 1d. Second, Power Routing introduced a heuristic scheduling algorithm for assigning a
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power line to servers while balancing loads. As this power assignment is a non-polynomial

(NP) problem, authors first let the servers be fractionally assigned to the power feeds by us-

ing standard linear programming methods. From this fractional solution, the real problem

will be solved approximately. When the approximate solutionfails to meet the require-

ments from PDU specs or fails to balance between AC phases, they repeat the second step.

By applying real datacenter power traces to this idea, PowerRouting could save 5% to

10% of the required power capacity for conventional datacenters and 22% to 28% for the

energy-proportional servers.

2.2 System-level Techniques
2.2.1 DRAM Power Management

Active
���� ���

Precharge
power-down
����� ���

Standby
���	 ���

Self refresh
��� ���

5 ns5 ns

75 ns5 ns

auto

Figure 2: Operating modes for DDR DRAM [17]

The main memory made of dynamic random access memories (DRAM) is a power hog

as demonstrated in Figure 21. To save DRAM power, modern DRAMsupports up to six

different power states for RDRAM [18] or four different power states for double data rate

(DDR) DRAM [17]. More specifically, a DRAM controller can putan entire rank1 of the

main memory into the low power state if the rank has not been used for a given period of

1In DRAM, a rank is uniquely addressable 64 bits or 72 bits (when supporting 8 bits error correction code)
data area. In a dual rank memory module, for example, memory controller uses chip select signal to choose
what rank to access. In other words, the memory controller can access only half of the entire memory space
in a cycle.
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time. However, when a rank is in the low power state, there will be non-negligible delay

before it becomes ready to be read or written again. Figure 2 illustrates this cycle. There

are four power modes implemented in current DDR DRAM [17]. When a rank is in the

standby mode, it is automatically moved to the active mode when a read or write request

arrives. On the contrary, a transition to the other two modes, self-refresh or power-down

mode, is done manually by the memory controller. The power-down mode starts when the

memory controller lowers the clock enable signal (CKE) to theidle DDR DRAM rank,

and the self-refresh mode starts when CKE is lowered as well asthe auto-refresh signal

is sent. These two low power modes are essentially similar interms of power savings,

however, different in terms of allowed interval in each mode. For the power-down mode,

a rank can not be in this mode more than maximum refresh interval, because no refresh

signal is sent to a rank in this mode. In contrast, a rank can bein the self-refresh mode

without time limit, because the on-chip timer in DRAM generates periodic refresh signal

for a rank in this mode. This is why the self-refresh mode has longer transition delay and

requires slightly more power than the power-down mode. To make use of these different

power states for saving power in DRAM, Huret al. [19] proposed a simple power-down

policy. First, each rank of the main memory has a counter thatresets upon every read or

write request and increases upon every idle cycle for bookkeeping the number of idle cycles

for the rank. Second, when the counter reaches a threshold value, the memory controller

checks the internal queue to verify whether there is a read orwrite request for this rank. If

a rank has been idle for more than the threshold time and thereis no read or write request

in the queue, the memory controller puts the rank into the power-down mode. This policy

is reported to increase DRAM energy efficiency by 11% to 43% for different benchmark

programs.

2.2.2 Powernap

On the other hand, Powernap [20] has been proposed for eliminating the idle power of

servers. The basic idea of Powernap starts from the fact thatonce a server becomes idle, the
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average idle time is around 100msfor most of internet services while some other services

(domain-name services or scientific computing clusters) have longer average idle time than

the others up to one or several seconds. For these reasons, ifa server can be turned off

and brought back in a few milliseconds, the server can effectively be turned off during its

idle period. For this fast transition between full performance andnap modes, Powernap

suggests to use the S3 sleep state (also known as standby state) for CPUs, the self-refresh

technique for DRAM, solid state disks (SSD) for storage devices, and the wake-on-LAN

technique for network interface cards. By using these features, a typical blade can change

its power state from full performance mode to thenapmode in 300µsand vice versa. With

the penalty of less than 1ms transition time, a typical server that consumes 270W when

idle and 450W when active can save significant power while in the nap mode because it

consumes only 10W during the nap mode. Further comparison between Powernap and

dynamic voltage-frequency scaling (DVFS) technique showed that Powernap technique

with less than 10msof transition time always outperforms DVFS in terms of response time

and power scaling. As a result, Powernap yields a steep powerreduction up to 70% for

internet servers.

2.2.3 Power Capping

Power Capping [21] is another system-level technique that guarantees the power consumed

by a server to be confined within a given power envelope, or thecapped value. For example,

if a server with power capping capability is set to 200W, the power controller inside the

server will keep the power consumption of this server below 200W. To achieve this design

goal, the controller throttles performance by using DVFS technique when it consumes more

power than the capping value. The closed-loop feedback controller for Power Capping

is illustrated in Figure 3. First, the controller is set to a certain value representing the

maximum allowed power budget for this server. The controller calculates the ideal throttle

level based on the set point and the measured power consumption. Second, the actuator,

a first-order delta-sigma modulator, calculates the targetthrottle level based on the ideal
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and real throttle level retrieved from other sources. By using this extra controller on top of

the conventional power supply design, a server can safely beunder-provisioned, the key to

enhance efficiency of the power delivery infrastructure.

Integrator Quantizer ServerController

Power set point

Ideal
throttle
level −

On−board server−level power measurement from power monitor

Real throttle level

First−order delta−sigma modulator

Figure 3: System diagram for Power Capping controller.

2.2.4 Dynamic Voltage-Frequency Scaling (DVFS)

Dynamic voltage-frequency scaling is a technique for reducing the dynamic active power

by lowering the operating voltage and/or frequency of a microprocessor. The active power

of a CMOS circuit is linearly and quadratically proportionalto the frequency (f ) and the

operating voltage (Vdd), respectively. In other words,

Active Power∝ V2
dd · f . (1)

Therefore, for certain instances such as when the utilization of a processor is low, when the

response time is insensitive, or when the running tasks are not critical, a system with the

DVFS technique can reduce its operating voltage and frequency on the fly with minimal

impact to the quality of service. Although the voltage and frequency can be controlled

independently in a typical microprocessor, it is common to use a low voltage for a low

frequency. This is because when using a low operating voltage, the time for charging

any given capacitor takes longer than the baseline with a high operating voltage. As a

result, a low voltage leads to a slower operation or slower operating frequency than the

baseline. In all, the main drawback of this technique is thata low voltage and frequency

can inadvertently penalize the performance.
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2.2.5 Clock Gating and Power Gating

Distributing the clock signal across the entire die area in synchronous circuits requires

more than one third of the total chip power. It gets worse if a chip uses a metal grid clock

distribution network for minimizing the clock skew as discussed earlier. For reducing the

active power for the clock distribution network, the most commonly used technique is clock

gating. The basic idea of clock gating is to cut off the clock signal for the regions that are

not used. When the clock signal does not enter a particular region of a circuit, it avoids the

switching activities of its flip-flops and clock buffer tree,thereby saving power. To achieve

this goal, two types of solutions are employed: a latch-freeclock gating and a latch-based

clock gating. In the latch-free clock gating design, a simple two-input AND gate is used to

enable or disable the clock signal while the latch-based design uses a level-sensitive latch

for holding the enable signal. Whenever the enable signal is off, the delivery of the clock

signal is cut off. The main drawback of this clock gating is that the additional combinational

logic will likely elongate the propagation delay in delivering clock signal to all corners of

a chip. Due to this extra propagation time that exacerbates the clock skew, a circuit with

clock gating may reduce the operating frequency.

Although clock gating can help reduce the active power of unexercised circuits, this

cannot save leakage power. As the leakage power continues toworsen when the feature

sizes shrink due to lowered threshold voltage (as shown in Figure 35), power gating is

introduced to disconnect the unused circuits from the powersource using a sleep transistor

with a high threshold voltage to eliminate the leakage current. Figure 4a illustrates an

example of a sleep transistor that gates off the power supplypath viaVss of an SRAM

cell. This more aggressive power-saving technique faces several drawbacks if not used

wisely. First, power-gating a circuitry, from active to inactive or vice versa, takes time

in order to stabilize the circuit operation. Depending on the scale of the circuit block, the

circuit may need to be switched off in multiple steps to keep the ground bounce noise under

safety margin. Hence, it could affect the overall performance. Second, switching the states
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consumes extra power. For these reasons, when and where to power off must be chosen

carefully. In other words, power gating should be performedonly when the penalty in

power and time for turning on and off is significantly less than the power that can be saved.

2.3 Micro-architecture-level Techniques

Microarchitectural power reduction techniques have been an active research area among

processor architects. A majority of these studies focus on on-chip memories,i.e., caches.

Some techniques combine circuit and microarchitectural optimization techniques to reduce

power. Subsequent sections review some major tasks toward these efforts.

2.3.1 Reconfigurable Caches

Selective cache waysis one of the earliest architectural techniques proposed for reducing

power consumption in caches of a processor. It selectively turns off a subset of cache

ways for an associative cache at run-time. The idea starts from the fact that large on-chip

caches are usually partitioned into several subarrays for reducing latencies. Because each

subarray effectively stores one data cache way, it can readily be turned off at the hardware

level. The mechanism can be supported with minimal additional hardware— a Cache Way

Select Register (CWSR), to store which cache ways to use, and special instructions for

reading and writing the CWSR. An application can disable selected cache ways during the

period of modest cache activities without much performanceimpact. As shown in [22],

this on-demand cache resource allocation mechanism saves 40% in overall cache energy

dissipation in a four-way set associative cache with less than average 2% performance

penalty.

2.3.2 Cache Decay

Given the trend of integrating larger and larger on-die caches continues, researchers have

studied and proposed various techniques to control the leakage power of these compo-

nents. Cache decay[23] is one of such techniques that combine power-supply-gating

shown in Figure 4a with dynamic architectural behavior for controlling the leakage power
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Figure 4: Circuit diagram for Cache decay and Drowsy cache

of each individual cache line. It was motivated by the observation that cache lines are

“dead” for more than 70% of the time. The dead time of a cache line is defined as the time

of its last access and the time it is evicted. To avoid leakagepower consumed during the

dead time, if one can predict a cache line is dead, the line canbe evicted and powered off

earlier than the actual replacement taking place. The prediction is achieved by employing

a decay counter for each cache line to book-keep the idlenessof the line. When the down-

counter reaches zero indicating the line is not being accessed for a given threshold, the

line will be early-evicted and enter the power-off state using power-gating to save leakage
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energy.

One drawback of the cache decay technique is the potential performance loss due to the

fact that early power gating loses cache data, which may causes additional cache misses.

Therefore, “when to decay a cache line” becomes critical. This work experimented differ-

ent decay intervals from 1k cycles to 512k cycles and showed that a decay interval of 8k

cycles showed the best saving result with a 70% reduction of the leakage power.

2.3.3 Drowsy Caches

Drowsy cache[24] was proposed to ameliorate the performance issue due todata loss of

cache decay. In a drowsy cache, a cache line can choose between two different supply

voltages, a normal voltage (Vdd) for regular cache lines, and a lowered one (Vdd−low) for

drowsy cache lines. When a line is put into the drowsy mode, thedata content is preserved

although it has to pay a slight penalty (one to two cycles) to reinstate the line back to normal

operated voltage before it can be re-accessed. Cache lines with the scaled down supply

voltage can significantly reduce the leakage current by 6x to10x due to short-channel

effects. For the drowsy cache technique, there are additional hardware overheads. First,

a drowsy bit is added to each cache line to indicate whether the cache line is in drowsy

mode or not. Second, a voltage controller is added as illustrated in Figure 4b to supply a

normal voltage for active state cache lines and a lowered voltage for drowsy state cache

lines. Third, the word line gating circuit is added to prevent direct access to drowsy cache

lines. With these additional hardware overheads, cache lines periodically change its state

to the lower power one, and the line is woken up in the penalty of one cycle when it has to

be accessed. Due to the overhead of additional cycle to wake up a cache line, performance

could be degraded as much as 2% with an average of less than 1%.With this small impact

on performance, the total energy (including static and dynamic) consumed in cache lines

were reduced by 75%.
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2.3.4 Razor

Razor [25], a combination of micro-architectural and circuit-level techniques, can substan-

tially reduce the power consumption of a microprocessor by aggressively adopting sub-

critical voltage in the pipeline. Similar to DVFS, Razor dynamically lowers the operating

voltage to significantly reduce power consumption. However, even with the DVFS tech-

nique, there are voltage margins to be obeyed to avoid any execution error in the processor.

For example, there have to be a process margin to consider manufacturing variations, an

ambient margin to prevent processors from malfunctioning due to high temperature, and a

noise margin to tolerate various unknown noise sources. Without these voltage margins, a

processor could generate incorrect computation results mostly due to timing failure in the

slow latches. In many cases, these margins are over-estimated to guarantee a reasonably

large guard band for correctness. The design rationale of Razor challenged this worst-case

design constraint and proposed to aggressively and dynamically scale down the operating

voltage until an error is detected. Once an error is detected, a recovering mechanism will

be triggered to correct these errors dynamically. As such, Razor can approach the minimal

power consumption by lowering the supply voltage to the lowest possible value. The error

detection mechanism is achieved by employing ashadow latchwith a delayed clock to

each normal flip-flop. As shown in Figure 5, the shadow latch with the delayed clock is

designed to ensure to latch the correct incoming data while the normal flip-flop could fail

due to too aggressive dynamic voltage scaling (DVS). Whenever the value of the shadow

latch mismatches the value in the DVS-ed flip-flop, a timing error is indicated. Then, a

pipeline flush and replay similar to branch mis-prediction recovery will follow with in-

crementally increased supply voltage. This supply voltagefeedback control system will

eventually reach the optimal operating voltage for a specific processor that runs a specific

application. As shown in the original study [25], the error detecting circuits with aggres-

sive DVS can reduce the power consumption of a processor by 64% with 3% performance

impact [26].
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Figure 5: Razor flip-flop employs a shadow latch with delayed clock.

2.4 Challenges in Power Optimization

Although the power consumption of targeted components can be improved with the power

optimization techniques discussed above, it does not guarantee an overall saving when they

are applied altogether. Under certain circumstances, the savings of individual optimiza-

tion techniques are not additive, worse yet, they could cancel each other out. Therefore,

whenever a new power optimization is being considered, it must be thoroughly evaluated

together with all existing solutions applied to the datacenter.

One common pitfall in power optimization is so-calledballoon effect. In the balloon ef-

fect, suppressing one corner of a balloon may inadvertentlyinflate the other side. Similarly,

saving power on one particular component may increase powerconsumption of others in

the system. For example, administrators could raise the room temperature of datacenters

for saving cooling energy; however, such optimization may result in increased fan power

in the servers as raising the room temperature makes inlet-air temperature of servers higher

than before. Without proper trade-off evaluation prior to the optimization, the overall fa-

cility power may end up being increased rather than reduced.Therefore, the proposed

research introduces a holistic datacenter simulator on thefollowing section.
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CHAPTER 3

INFRASTRUCTURE-LEVEL OPTIMIZATION

3.1 Infrastructure-level Power Breakdown

Computer 

Loads, 38%

HVAC, 54%

UPS Losses, 

6%

Lighting, 2%

(a) datacenter 8.1 (total 578kW)

Computer 

Loads, 63%

HVAC, 23%

UPS Losses, 

13%

Lighting, 1%

(b) datacenter 8.2 (total 1681kW)

Figure 6: Power breakdown of two different datacenters [3]

This chapter first analyzes the power distribution from the perspective of the highest

level, i.e., the infrastructure level, by taking published data from actual datacenters. When

the electrical power from a power plant is delivered to a datacenter, it is consumed to

operate two main facilities. Firstly, it powers up all the computing equipments and hosts

the computing services. Secondly, as these computing devices convert the supplied power

into useful computation and dissipate heat, the datacenterhas to arrange additional power

to remove the heat generated from the facility. These computing nodes and their cooling
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system are two major power consumers in a typical data center. In addition, a datacenter

also uses power for their power delivery infrastructures including the uninterrupted power

supply units (UPS) or other supplementary infrastructures, e.g.,lighting. In addition to the

utility power, modern datacenters typically build their own power generators along with

UPS systems in order to guarantee a stable, uninterrupted power supply system.

The breakdown of power usage of these components at the infrastructure level is illus-

trated in Figure 6. The data were taken from a case study performed by the Lawrence

Berkeley National Lab [3]. In Figure 6, the portion, “Computer Loads,” accounts for

the power drawn from the UPS for non-HVAC (heating, ventilating, and air condition-

ing) purpose. This includes not only the power drawn from actual machines or network

switches, but also the loss from the power distribution units (PDUs) or power supply units

(PSUs). According to the investigation on two different types of datacenters, each datacen-

ter demonstrated rather different characteristics in power usage. For datacenter facility 8.1,

54% of its available power was consumed in the HVAC while only38% was for computer

loads. In contrast, the datacenter facility 8.2 spent the majority of its power, 63%, in the

computer loads and only 23% for the HVAC. One reason for the difference is that the HVAC

of facility 8.1 was running on its full power regardless of the utilization of their computing

nodes. In other words, facility 8.1 will continue to dissipate power for the HVAC even if the

computer loads are low. Other potential reasons for facility 8.2’s higher power efficiency

for computing, although not revealed in the original report, could be attributed to different

ambient temperatures, different sizes of the facilities, different designs of air flow, etc.

To emphasize the importance of efficient HVAC for maintaining a datacenter, we can

perform simple math to see what if the datacenter 8.1 could achieve the HVAC efficiency of

datacenter 8.2. If the datacenter 8.1 can reduce its power consumed by the HVAC down to

23% of its total power as in the datacenter 8.2, the amount of power for the HVAC will be

reduced from 312kW (∼ 578kW×0.54) to 79kW (∼ 578kW×0.46× 23
100−23). The difference

in power, 233kW, will become 2041MWH (∼ 233kW×365days×24hours) per year. When
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Figure 7: Power consumed by HVAC out of total power in datacenters [27]

this energy saving is converted into dollars by applying roughly $0.1/1kWH, 2041MWH

will turn into 204 thousand dollars. This shows why power-efficient cooling is critical in

datacenters. Figure 7 shows the power consumed by the HVAC for a variety of datacenters

investigated in [27], the power portion by the HVAC alone spans from as low as 20% up to

more than 50%.

Fans

39%

Chillers

39%

CW Pumps

18%

Cooling Towers

4%

Figure 8: HVAC power breakdown

Furthermore, the power breakdown of the HVAC itself for datacenter 8.2 is shown

in Figure 8 based on data collected in [3]. According to this study, there are three major

power consumers in an HVAC: fans (39%), chillers (39%), and cooling water pumps (18%).

In a typical datacenter with raised floor, fans designed to circulate the air in the server room
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are connected to two water pipes, one for inlet of cool water and the other one for outlet of

warm water. Pumps in Figure 8 are for the water flow while chillers are for cooling down

the warm water.

3.2 Mathematical Modeling of Performance and Utility Consumption
for A Heterogeneous Cloud Computing Environment

Cloud computing has emerged as a highly cost-effective computation paradigm for

IT enterprise applications, scientific computing, and personal data management [28, 29].

Given the cloud service is to be provided by machines of various capability, performance,

power, and thermal characteristics, it becomes a challenging task for providers to under-

stand their cost effectiveness when deploying their systems. This dissertation analyzes a

parallelizable task in a heterogeneous cloud infrastructure with mathematical models to

evaluate the trade-off of energy and performance. To achieve the optimal performance per

utility, the response time of the slowest node should be no more than three times of that

of the fastest node. Theoretical analysis presented here can be used to guide allocation,

deployment, and upgrades of computing nodes for optimizingutility effectiveness in cloud

computing services [30].

3.2.1 Background

Cloud computing is an emerging computing paradigm that is transforming the entire IT

industry, high performance computing, and even personal data sharing and management.

The basic concept of cloud computing is that the computing power is supplied as flexible

as utility, similar to electricity or water. As such, computing resources can be centrally

managed, maintained, and upgraded by a service provider, offloading the burden of small

business owners or those who do not have expertise or budget to handle the fast-changing

computing infrastructure. Nevertheless, the core idea of cloud computing is not completely

new; it has been evolved from previous legacy systems — for example, grid computing,

clusters, or autonomic computing. To differentiate cloud computing from grid computing,
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several characteristics of the cloud were identified [31]. First, cloud computing makes

use of virtualization techniques to isolate users from the physical resources [31]. Second,

cloud computing offers more flexibility than the legacy infrastructures in terms of pricing

and dynamic scalability. Last but not least, the performance of computing in the cloud is

guaranteed through service level agreement (SLA), rather than deterministic or dedicated

physical resources [32].

In addition to IT enterprise applications and personal datamanagement, there is also

a growing interest in performing high-performance computing (HPC) in the cloud [33].

This paradigm shift can substantially reduce the total costof ownership by eliminating the

need of maintaining large-scale parallel machines and their enormous power and cooling

system [34]. From the perspective of cost-effectiveness, there are trade-offs in terms of

resource provisioning given that a target task can be embarrassingly parallelized, a common

case for throughput-oriented computing. For example, assume that an HPC job, which can

be perfectly parallelized, takes eight hours to complete using one computing node. If the

cloud computing service provider charges a job on a per (machine·hour) basis,i.e., utility

based on the accumulated machine time, instead of running iton one node for eight hours,

the job can be finished in one hour on eight machines with 8x speedup with the same utility

charge (8 machine·hour). In this case, (execution time)×(machine·hour) becomes 8x better

when compared to the case of using only one computing node.

One trend that complicates the above trade-off is the heterogeneity in a cloud com-

puting environment. Although a cloud service provider can start with their business with

(near-)homogeneous computing nodes, it is likely that the facility will grow more hetero-

geneously over time due to upgrades and replacement. Therefore, not only do the per-

formance and capability of each computing node continue to deviate, the new computing

nodes will also provide better performance at the same powerof the older ones due to

technology scaling and architectural innovation. Due to this heterogeneity, there will be

significant variations with respect to the response time depending on provisioning policies.
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To mitigate this variation and guarantee quality-of-service, the cloud provider may want

to dismiss the slowest computing nodes. The question to answer here is thathow slow a

physical node can be for a given task to maintain its optimal computing quality in terms of

execution time and energy cost?To tackle the issue, this section establishes a mathematical

model based on statistics for a heterogeneous cloud environment. Using this model, this

section evaluates the trade-off of execution time and energy of a task to understand optimal

provisioning in a cloud.

3.2.2 Cloud Computing Model
3.2.2.1 Workload definition

In this analytical study, the workload is assumed to be perfectly parallelizable, which is

often the case for throughput-oriented computing present in HPC and transactional pro-

cessing applications. For example, the most common application for cloud computing is

application service on the web. For such web services, all the requests received at the same

time can be processed individually and independently. Therefore, one can expectn times

speedup when there aren nodes deployed if and only if the number of concurrent users is

always larger than or equal ton.

Next, it is assumed that an entire workload can be evenly divided intom smaller jobs

without affecting its scalability andm is also assumed to be larger thann wheren represents

the maximum number of virtual machines in the cloud (For simplicity, m= knwherek is a

positive integer.) In this study, one job unit represents the smallest task running to the end

on one single physical node without interruption. However,intermittent context switches

within one job unit are not considered interruption as long as the task keeps running on the

same physical node.

On the other hand, a virtual machine is not allowed to be migrated among physical

nodes during the execution of a job unit because this migration will not only include the

executable image but also all the architectural states including memory footprint. Data mi-

gration on interconnected cloud computing nodes will likely cause significant performance
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Figure 9: Power consumption and performance of Intel’s CPUs since 2006 (Solid line:
Power< 70W)

degradation due to peer-to-peer communication.

3.2.2.2 Power and performance behavior of a cloud

Before detailing the definition of the power and performancein a heterogeneous cloud, we

start with the following scenario from the perspective of the cloud administrator. Typically,

cloud service providers would commence their cloud computing business with a number of

(near-)homogeneous computing nodes. Over time, the cloud provider will phase out some

of the old computing nodes and replace them with newer nodes featuring latest technolo-

gies. Gradually, the capability and performance of all machines in the cloud will become

more heterogeneous. Although prior studies had consideredheterogeneity at the micro-

architectural level [35] and system level [36], they all assumed heterogeneity in the same
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generation of manufacturing technology. In contrast, thissection considers computing het-

erogeneity in a broader sense.

Now we review the power and performance trend of commercial microprocessors for

the last few years and use our observations as a justificationfor our model assumption. We

first plot the thermal design power (TDP) numbers and the performance scores of Pass-

Mark [37] for different processors including Pentium, Core 2, Core i3/5/7, and Xeon under

70W since 2006.1 The solid line shows their asymptotical trends between 2006and 2010.

In addition to this, we also plot the trends of two other machine groups in the same figure

(plotted in dashed lines without individual dots) based on their TDP: 70W to 120W and

over 120W.

To observe the trends, we applied regression method to estimate the relationship be-

tween power and performance over time. By taking all the samples into account, our re-

gression models for power and performance are plotted by solid lines in these figures. As

shown in Figure 9b the performance continues to improve for each machine group across

different proliferations or generations. On the other hand, the TDP trend in Figure 9a

shows negligible growth. More interestingly, the TDP trends for the two lower power ma-

chine classes are, in fact, decreasing. It is the consequence of recent awareness of power

wall, which gradually increases the cost for heat dissipation. For the same reason, we an-

ticipate that the power grade of future processors will remain below the bar. It also implies

that with the same power budget, newer machines can deliver higher performance. In other

words, performance per power continues to grow over time. For example, 95W Core i7

(Lynnfield) released in September 2009 achieves higher performance than the 95W Pen-

tium D (Presler) in January 2006. This is largely attributedto technological advancement

in micro-architecture as well as scale-down in feature sizeand supply voltage.

Given these observations, we move on to define our model of power and performance

1They include all commercial desktop or server processors from Intel from January 2006 to February
2010 except Celeron processors and certain processors thatdid not report TDP or PassMark results.
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for a future heterogeneous cloud by making the following assumptions. First, the com-

puting nodes in the cloud we will analyze are heterogeneous,having different micro-

architectures fabricated using different processes. Thus, the cloud provides a variety of ca-

pability and performance. Second, the performance capabilities of these computing nodes

are uniformly distributed (from low to high) while consuming exactly the same amount of

power. The rationale behind this assumption is two-fold. First, for a given power budget,

Figure 9 shows the trends of power consumption and performance for three different pro-

cessor groups classified by the thermal design power. They all show that, for a given power

budget, the performance of each machine class continues to improve linearly while their

power envelope remains pretty much unchanged. In other words, the power efficiency mea-

sured by performance per power improves over time. Second, when a datacenter phases

out some computing nodes due to upgrade, new computing nodescan safely be deployed

only when the new, aggregated power consumption with these upgrades does not exceed

the original one. Otherwise, the datacenter must also upgrade their power delivery infras-

tructure as well as the cooling capacity for accommodating the new servers. Given this

overhead, we anticipate that the replacement and upgrade will be done without altering the

power delivery infrastructure. Therefore, we assume that the newly deployed servers will

improve performance linearly across different machine proliferations while using the same

amount power. To express this distribution mathematically, we assume that the response

time for executing a job unit in such cloud is uniformly distributed froma seconds (the

fastest node) tob seconds (the slowest node). Hence, the probability distribution func-

tion (PDF) of the response time for executing a job unit in this cloud can be illustrated

in Figure 10.

On the other hand, we assume that the cloud service provider can improve theworst-

case response timewhen they dismiss physical nodes with the least performance. For

example, when the cloud service provider decides to retire one third of their physical nodes

from the slowest batch, we assume that the new response time for executing a job unit of
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Figure 10: PDF of the execution time of a job unit when there aren virtual machines

this cloud becomes a uniform distribution froma seconds to (a+2b)/3 seconds, represented

by U(a, a+2b
3 ). As such, we assume that the maximum number of virtual machines that can

be allocated on this cloud also shrinks in the same ratio. In Figure 11, the impact of retiring

one third of its physical nodes from the cloud is illustrated. The variablep in this figure

represents the maximum number of virtual machines that can be allocated on the cloud,

while n represents that of the original cloud discussed in the Figure 10. Moreover, the

PDF in Figure 11 shows the improved worst-case response timeas a result of removal of

one-third of physical nodes from the slowest side.

Cloud A
Faster ��

Cloud B
Fast ��

a+(b-a)�(p/n)

Cloud C
Slow ��

1/(b-a) p=n

p=2n/3(probability)

a b (response time)

n/(bp-ap)

Figure 11: PDF of the execution time of a job unit when there are 2n/3 virtual machines

Nevertheless, in the given PDF of the response time, we did not assume that a particular

virtual machine can pick a physical node at a particular speed. Rather, when a probability

distribution function of a cloud is given, the behavior of a virtual machine in this cloud

is considered to follow the PDF in a statistical manner. In other words, we assumed that
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virtual machines will be uniformly distributed across the physical nodes. Even though

dispatching more jobs to newly deployed servers with higherpower efficiency will lead to

better energy efficiency, this is not the case for a datacenter due to the following reasons.

First, for a datacenter, it is important to balance the powerdraw across the AC phases [16].

The balance will break when jobs are biasedly distributed toonly certain computing racks.

Second, it is desirable to minimize the number of hot spots for a datacenter, a common

consequence of unbalanced workloads. Hot spots generally cause higher machine failure

rate and require additional attention and effort for removing the heat.

3.2.2.3 Execution time and energy consumption

First, we would like to clarify the execution time of a given workload on a cloud used in this

study. It is defined as the time consumed to finish the entire workload consisting ofm job

units. When a partial number of job units are assigned to more than one virtual machine,

the execution time, in our definition, is bounded by the virtual machine that finishes the

last. For example, when an animator renders a movie composedof m independent frames,

the movie cannot be released before the last frame finishes rendering. In addition, when

comparing the performance of cloud configurations, we assume that thebaselineis the case

of executing the same amount of workload on a virtual machinerunning on the fastest node.

When more virtual machines are used to execute the workload inparallel, more slow nodes

will be used to accomplish the task. As a result, the parallelized version could reduce the

overall effectiveness of utility consumed in the cloud.

Second, we clarifyenergy consumptionto be the total energy needed to complete a

given amount of workload. In particular, when some physicalnodes finish their assigned

job units before the others, we assume that these nodes will not consume energy while wait-

ing for the other nodes to finish. This is because, in the real world scenario, these nodes will

either be assigned for other useful tasks or moved to the near-zero power state [20] for sav-

ing energy. In addition, given each computing node consumesthe same amount of power,

energy consumption as defined will be proportional to the total execution time. Therefore,
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for a parallelized workload, its utility consumption is calculated as the summation of the

execution time of each virtual machine.

To quantify the effectiveness of resource provisioning in acloud, we use the well-known

metric — energy-delay product [38] calculated by multiplying the execution time (seconds)

with the energy consumption (joules). This metric will be used in our subsequent evaluation

when provisioning resources (i.e., the number of virtual machines should be allocated for

achieving the optimal energy efficiency).

3.2.3 Analytical Evaluation

Based on the above assumptions, we now use analytical modelsto perform our evaluation.

The evaluation will compare energy-delay product (EDP) of each configuration over the

EDPof the baseline. The baseline of this study is the case of using only one virtual machine

running on the fastest physical node.

3.2.3.1 The Baseline

The baseline of this study assumes that the entire job is performed on one virtual machine

which is running on the fastest physical node. In this case, the fastest physical node can

retire a job unit in everya seconds. Since there arem independent job units in the entire

workload, the baseline configuration takesma seconds to finish. On the other hand, this

configuration consumesW ·ma joules for completing the entire workload whereW repre-

sents the power of a physical node. To sum up, the energy-delay product of the baseline of

this study will be as follows.

EDPbase= (W ·ma)(ma) =Wm2a2 (2)

3.2.3.2 Expectation-based analysis

We now analyze the execution time and energy consumption of acloud model in an expectation-

based analysis. In order to understand the expected performance, we will first discuss a new

distribution function which represents the execution timeof a virtual machine with more

than one job unit.
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Execution time distribution across virtual machines: The PDF of the response

time when usingp virtual machines is given byU(a, a+ (b−a)p
n ) as illustrated in Figure 11.

However, when a virtual machine is responsible for more thanone job unit (i.e., m/p units),

the total execution time of this virtual machine cannot be modeled in the same way. Rather,

it can be modeled as the summation of independently chosenm/p samples from Figure 11.

When we add independent samples from a uniform distribution,the distribution function

of this summation tends to approach a normal distribution according to thecentral limit

theorem[39]. The central limit theorem proves that when we add more independent sam-

ples into the summation, the distribution of this summationwill become more like a normal

distribution. In addition, the summation of twelve samplesis known to be good enough to

satisfy the central limit theorem [39]. In this case, we assume that a virtual machine will

be responsible for more than 12 job units by lettingm≥ 12n (i.e., m≥ 12p sincep ≤ n).

Now our goal is to obtain the mean and variance of the normal distribution which

represents the total execution time of a virtual machine responsible form/p job units.

First, we need to calculate the mean and variance for the original uniform distribution,

U(a, a+ (b−a)p
n ).

Mean=
1
2

(a+ a+
(b− a)p

n
) = a+

(b− a)p
2n

Variance=
1
12

(a+
(b− a)p

n
− a)2

= (
(b− a)p
√

12n
)2

(3)

The central limit theorem shows that the summation ofm/p independent samples from this

distribution will become a normal distribution with the following mean and variance.

N(
m
p

(a+
(b− a)p

2n
), (

√

m
p
· (b− a)p
√

12n
)2) = N(µ, σ2) (4)

For convenience, we useµ andσ2 to denote the mean and variance of this distribution. All

in all, when usingpvirtual machines, the execution time of each virtual machine will follow

the normal distribution,N(µ, σ2). The ultimate question is “how many seconds will it take

for finishing the entire workload?” To answer this question,we need to first answer “what

is the expectation of the largest sample fromN(µ, σ2) when we have to pickp samples?”
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Because the overall execution time is dependent on the slowest virtual machine that finishes

the last, the largest ofp samples will give the total execution time. In the next section, we

will use a statistical approach to answer this question.

Expectation of the largest sample: Before finding the expectation of the largest sam-

ple, we discuss the same question for the standard normal distribution, N(0,1). Let pd f(x)

be the the PDF of the standard normal distribution. In this PDF, lety be the largest sample

among randomly chosenp samples. For each case out ofp cases, the probability fory to

be the largest sample will be given by the following equation.

Probability= pd f(y) · (
∫ y

−∞
pd f(x)dx)p−1 (5)

The expectation of the variabley is given in Equation (6).

∫ ∞

−∞
p · y · pd f(y) · (

∫ y

−∞
pd f(x)dx)p−1dy= ExB(p) (6)

For convenience,ExB(p) denotes the expectation of the largest sample amongp samples

from the standard normal distribution. In addition, by substituting pd f(x) of Equation (6)

by Equation (7), the numerical values ofExB(p) for variousp can be obtained. We show

the results in the middle column of Table 1.

pd f(x) =
1
√

2π
exp(−x2/2) (7)

Since the complexity of Equation (6) grows exponentially asp increases, it is infeasible

to find the exact numerical values ofExB(p) for p > 64. To address this shortcoming, we

propose a more scalable way of approximating the Table 1. This scalable solution starts

from implementing a random number generator which producesrandom numbers from the

standard normal distribution. By using this random number generator, our solution will

pick p independent random samples and remember the largest sampleamong them. The

solution will repeat this operation for a long enough time and take an average of the largest

samples. This experimental way is able to generate the exactnumerical values ofExB(p)

as shown in the rightmost column of Table 1 after averaging more than 100 million trials.
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p By Equation (6) By experimental way

1 0.00000 -0.00001
2 0.56419 0.56419
4 1.02938 1.02938
8 1.42360 1.42356
16 1.76599 1.76591
32 2.06967 2.06968
64 2.34373 2.34368
128 2.59461
256 2.82679
512 3.04392

Table 1: Expectation of the biggest sample (ExB(p)) from N(0,1)

When comparing the middle and the rightmost column of Table 1,one can find that the

mathematical accuracy is slightly compromised in exchangeof the scalability. However,

we do not expect the tiny error of the numbers to affect our analysis and conclusion.

The study of the largest sample in the standard normal distribution gives us a keen idea

about theExB(p) for other normal distributions. Let a random variableX follows N(µ, σ2)

with µ , 0, σ , 1, σ , 0 and a derived random variableY = (X − µ)/σ. ThenY follows

N(0,1) by recalling the property that ifX follows N(µ, σ2) anda andb are real numbers

thenaX + b follows N(aµ + b, (aσ)2). From Equation (6), the expectation of the largest

sample forY is as follows.

Expectation of the largest sample for Y= ExB(p) (8)

SinceY = (X − µ)/σ, X = Yσ + µ.

Expectation of the largest sample for X= ExB(p) · σ + µ (9)

Now, the expectation of the largest sample can be calculatedfor any arbitrary normal dis-

tribution.

Execution time and energy consumption analysis: In our model, each one of thep

virtual machines is responsible form/p job units, and the response time for each job unit

follows U(a, a + (b−a)p
n ). Now, the expectation of the time required on a virtual machine
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finishing the last can be calculated by the conclusion from the previous sections.

Execution time= µ + ExB(p) · σ

=
m
p

(a+
(b− a)p

2n
) + ExB(p) ·

√

m
p
· (b− a)p
√

12n

=
ma
2np

(2n+ (
b
a
− 1)p+ ExB(p) · p3/2

√

1
3m
· (b

a
− 1))

=
ma
2np

(2n+ (
b
a
− 1)p+ Unbalance(

b
a
, p,m))

(10)

In this equation, we name the second termUnbalance, which becomes zero if and only if

every single virtual machine finishes at the same time.

Unbalance(
b
a
, p,m) = ExB(p) · p3/2

√

1
3m
· (b

a
− 1) (11)

For example, a higher deviation from the normal distribution indicates that the random sam-

ples from this distribution are more spread out, which increases the probability of having

more deviated samples. In our case, since the finishing time of a virtual machine is modeled

by picking a sample from Equation (4), more deviated samplesindicate that the workload

assignment is unbalanced among virtual machines executingthis workload. In particu-

lar, a larger (b/a) will lead to a largerσ2 in Equation (4) and a largerUnbalance(b
a, p,m)

in Equation (11). Hence, we can conclude that a larger (b/a) value causes more unbal-

anced workload distribution among virtual machines, degrading the overall performance.

Also note thatUnbalance(b
a, p,m) is directly proportional to 1/

√
m. Sincem is indepen-

dent ofp or b/a, changing the value ofm will not affect other variables in Equation (11).

This implies that a very largemwill eventually zero out Equation (11). Thus, the execution

time whenm→ ∞ can be expressed as follows.

Execution time (whenm→ ∞) =
ma
2np

(2n+ (
b
a
− 1)p) (12)

Meanwhile, the energy consumption has to be evaluated probabilistically as well. As we

defined that the performance is bounded by the execution timeof a virtual machine that

finishes the last, the expectation of the largest sample fromEquation (4) needs to be calcu-

lated. In contrast, for evaluating the utility consumption, we need to focus on the average
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execution time ofp virtual machines. This is because, in a normal distribution, the prob-

ability for havingµ + α samples is exactly the same as havingµ − α samples. This fact

indicates that the odds of having a virtual machine consuming α seconds more than the av-

erage is the same as having a virtual machine consumingα seconds less than the average.

Therefore, we can conclude that the expectation of the totalexecution time is given byµ

timesp, the number of virtual machines. Given the power of a physical node in the cloud

to beW, the total energy consumption will be the following.

Energy consumption=W · m
p

(a+
(b− a)p

2n
) · p

=W ·m(a+
(b− a)p

2n
)

(13)

EDPexp(p) =
Wm2a2

4n2p
· ((2n+ (

b
a
− 1)p+ Unbalance(

b
a
, p,m))(2n+ (

b
a
− 1)p))

=
EDPbase

4n2p
· ((2n+ (

b
a
− 1)p+ Unbalance(

b
a
, p,m))(2n+ (

b
a
− 1)p))

(14)

Similarly, the energy-delay product form→ ∞ can be calculated as follows.

EDPexp,m→∞(p) =
EDPbase

4n2p
· (2n+ (

b
a
− 1)p)2 (15)

To visualize the effect of a largem in the EDPexp metric, m = 12n,m = 120n, and

m→ ∞ are illustrated in Figure 12 by using the following coefficients;n = 16384,b/a =

1,2,3,5, andExB(p) from Table 1. To find the exact valuep that makes theEDP metric

be a global minimum point, we take the derivative of Equation(15) with respect top and

set it zero.

d
dp

(EDPbase·
(2n+ (b

a − 1)p)2

4n2p
) = 0

p =
2n

b
a − 1

(∵ p > 0)
(16)

In the example ofm→ ∞ in Figure 12, the minimumEDP is achieved whenp = 2n
b/a−1 =

16384 in Figure 12c orp = 2n
b/a−1 = 8192 in Figure 12d.
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Figure 12: An example of the expectation based analysis where the total number of avail-
able virtual machines is 16384

Again, p = n has to be fulfilled while maintaining Equation (16) to be energy-effective

for all n virtual machines in the cloud. By combining two conditions,p = n and Equa-

tion (16), the requirement ofb/a can be calculated as follows.

n =
2n

b
a − 1

b
a
= 3

(17)

This equation suggests that in a heterogeneous cloud computing environment with uni-

formly distributed performance, physical nodes that respond 3x slower than the fastest one

should not be used when the provisioning objective is to minimize theEDP.
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3.3 SimWare: A Holistic Datacenter Simulator
3.3.1 Background

One critical missing part of previous studies [7, 8, 9, 10, 11, 12] is the ignorance of the

temperature dependency on server power. In general, a server operating at a higher tem-

perature consumes more power than a server at a lower temperature. To briefly show the

relationship, an experiment using a Xeon 5160 system is performed. While running LIN-

PACK benchmark to keep the processor fully loaded, the entiresystem power, fan power,

fan speed, and core temperature at different inlet-air temperatures are measured. The en-

tire system power versus the inlet-air temperature is depicted in Figure 13a. Clearly, the

system power increases as the inlet-air temperature increases with a major contribution of

increased fan power. As illustrated in Figure 13b, the fan speed steeply increases whereas

the temperature of the processor remains the same until the inlet air reaches 92◦F. In short,

servers consume more power under high temperature than servers under low temperature

primarily due to increased fan power.2

The following hypothesis rationalizes the increased fan power in Figure 13a. It is

first assumed that a core temperature is 70◦C. When the inlet-air temperature is 10◦C, the

temperature difference between them is 60◦C. However, when the surrounding temperature

is 40◦C, the temperature difference becomes 30◦C. As a result, the latter requires twice

more air than the former and the fan must rotate twice faster.Hence, power consumption

of server fans increases as the inlet-air temperature increases.

Prior studies ignored changes in fan power, which accounts for 10-30% of the total

system power [20]. Assuming constant fan power will result in too optimistic results.

Many of these proposed techniques for saving cooling energyleave servers at higher inlet-

air temperature than the baseline [9, 10, 11]. They may save significant amount of energy in

cooling units; however, their implications to the server power should be evaluated carefully

2The proposed research ignores data points over92◦F (∼ 33.3◦C) as fans reach their maximum speed and
core temperature start to diverge. In addition, this temperature range is over emergency temperature of A1
class server (32◦C) [40]
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Figure 13: Inlet-air temperature versus system power, fan power, core temperature, and fan
speed.

by taking all the components into account.

Moreover, previous studies [9, 10, 11] disregarded the travel time of the cool air flow-

ing from the computer room air conditioning (CRAC) units to servers. Above all, energy

efficiency should be achieved in accordance with that the inlet-air temperature (Tinlet air) of
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servers remains below the emergency temperature (Temergency). If no travel time from the

CRAC units to the servers is considered, the datacenter can easily maximize its power sav-

ings by setting the CRAC units to raise the supply-air temperature until one of the servers

reaches the emergency temperature (∀Tinlet air = Temergency). However, in reality, when the

CRAC units detect thatTinlet air > Temergencyfor a server and start to supply cool air to lower

Tinlet air belowTemergency, the server will stay aboveTemergencyuntil cool air arrives. In other

words, a time delay exists for cool air to flow from CRAC units toa server, and the server

will fail to remain belowTemergencyduring that period of time. To avoid such failure, CRAC

units must secure a safety margin (Tsa f ety) when raising the supply-air temperature. There-

fore, a new simulator, SimWare, is introduced in this section. SimWare presents a method

to estimate the air-travel time from CRAC units to servers andshows the amount of the

cooling efficiency loss due toTsa f ety.

3.3.2 Core Components of SimWare

This section describes the building blocks, input files, andconfigurable parameters of the

datacenter simulator, SimWare. As shown in Figure 14, the simulator supports different

types of utilization traces as input files and generates performance, power and temperature

related statistics. SimWare consists of server-level and datacenter-level power models. The

server-level model estimates the power consumption of a server by the utilization and the

inlet-air temperature. In other words, the simulator considers the thermal impact on the

server power. For the datacenter-level power models, the simulator uses the concept of heat

distribution matrix (HDM) [41] and a CRAC power model from other study [9]. Moreover,

unlike prior studies, SimWare takes the air-travel time from CRAC units to servers into

account. In addition, the simulator is ready for evaluatingvarious job scheduling algorithms

and virtual machine-related [42, 43] studies. The above building blocks are combined to

construct the holistic datacenter simulator.
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3.3.2.1 Modeling Thermal Impact on Server Power

In modeling thermal impact on the server power, SimWare relies on the laws of convective

heat transfer and fan affinity laws [44]. The laws of convective heat transfer state that

heat transfer (in watts) is directly proportional to the amount of air and the temperature

difference between the cooling object and surrounding air.In other words,

Heat Trans f er(Watts) ∝ Temperature Di f f erence× Amount o f Air. (18)

For simplicity, this document assumes that the density of air is constant at the temperature

range of interest. The fan affinity laws define the relationship of the rotational speed, the

amount of air, and the power of the fan as

Amount o f air∝ FanRPM, (19)

FanPower∝ Fan3
RPM. (20)

It is first assumed that the power consumption of a CPU remains constant while the

surrounding temperature increases fromTinlet air to Tinlet air + α. Meanwhile, the amount of

heat transfer remains constant. When a surrounding temperature changes fromTinlet air to

Tinlet air + α, the initial temperature difference (= ∆T) between the CPU and the surround-

ing air decreases to∆T − α. In Equation (18), when the temperature difference decreases
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by ∆T−α
∆T times, the amount of air must be increased by∆T

∆T−α times to maintain constant

heat transfer. As indicated in Equation (19), to supply∆T
∆T−α times more air, the fan must

rotate ∆T
∆T−α times faster than before. As a result, according to Equation(20), the increased

fan speed consumes (∆T
∆T−α )

3 times more power than when the surrounding temperature is

Tinlet air. These laws let us calculate the relative fan power according to the power consump-

tion of CPU andTinlet air. Section 3.3.2.6 defines the boundary conditions so that SimWare

can calculate the exact power consumed by the fans.

3.3.2.2 Air-Travel Time from Cooling Units

A number of factors will affect the air-travel time including the datacenter layout, the prox-

imity of the CRAC unit to the servers, the air velocity discharged from the CRAC unit, and

the height of the plenum. By considering these physical parameters, SimWare presents a

simple thermodynamics-based scheme to estimate the air-travel time. Note that this scheme

assumes the most optimistic scenario that will result in thefastest possible travel time. Dur-

ing simulation, it was found that a longer air-travel time than the most optimistic scenario

worsens cooling efficiency. Therefore, to show the lower bound of the impact of the air-

travel time, this document estimates the fastest possible travel time.

It is assumed that the CRAC unit discharges 8m3/s of cool air into the plenum. The

air fills the plenum before the tiles (0.6m× 0.6m) discharge cool air. In other words, cool

air fills and pressurizes the area beneath the dashed line in Figure 15 before it is supplied

to the computer room. The time for this can be calculated by dividing the volume of this

area by the discharging rate. In reality, after the plenum ispressurized, each tile discharges

different amount of air.To simplify, the most optimistic scenario is assumed in which all

tiles discharge the same amount of air.

Once the tiles supply cool air, some airflow will bypass in thedirection of A and B in

Figure 15, and the majority will fill up the volume above the tiles, or the cold aisle. Here,

it is assumed that the supply air does not bypass but only fillsthe cold aisle. Altogether,

the results of the calculation show that the cool air takes about six seconds to reach the
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Figure 15: Layout of the raised floor datacenter.

servers located at the bottom of the rack and seven seconds tothe servers at the top. In

real-world scenarios, the tiles near the CRAC unit supply less cool air than the tiles far

away from the CRAC unit. Certain servers such as “C” in Figure 15 are harder to cool

down than the other servers. Thus, the CRAC unit usually lowers the supply temperature

with a significant safety margin, thereby reducing the cooling efficiency.

3.3.2.3 Heat Distribution Matrix

In addition to the power model described previously, the heat and air flow in datacenters

must also be considered. The heat and air flow can be represented by a heat distribution

matrix (HDM) [41]. To the best, SimWare is the first simulatorthat implements heat flow,

temperature, power, and performance into one single simulation infrastructure. Until now,

building such a simulator has been impractical because modeling recirculated heat as work-

load utilization changes requires a prohibitive amount of computation. SimWare mitigates

this problem by adopting HDM [41]. Generating an HDM of a datacenter requires series of
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tools and simulations [45] such as computational fluid dynamics (CFD) simulations. Nev-

ertheless, the HDM concept is simple; an HDM converts the heat generated by a particular

server into an increase in temperatures of all other servers. For example, given ten servers,

the size of an HDM will be 10×10. The first row of the HDM represents how muchTinlet air

is affected by the heat generated by the other ten servers. Matrix multiplication of the first

row and the power consumption of all the servers will produceTinlet air of the first server. In

other words, each cell (i, j) from the HDM indicates the contribution of serverj to the tem-

perature increase of serveri. The reference datacenter has 50 blade chassis as illustrated

in Figure 16. In this case, HDM of the reference datacenter becomes a 50 by 50 matrix as

shown in Figure 17. For example, at the bottom-right corner,“server number 50 (from)”

has tall bars for servers one through ten, indicating that the heat generated by server 50 is

more likely to recirculate to servers one to ten than to the others.
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Figure 16: Simulated datacenter setup.

This heat-recirculation effect is the main reason whyTinlet air varies by the location of

the servers. The HDM takes this heat-recirculation effect into account and converts the

impact of the power consumption (in watts) into the temperature difference (in◦C) of one
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server on the other servers. In SimWare, an HDM is used to calculateTinlet air of every

server. Since SimWare relies on HDMs as its thermal model, itinherits the limitations of

HDM. Interestingly, HDM does not model changes in convective flows as a consequence of

variable fan speeds; it assumes that airflow patterns are temperature invariant, which could

lead to temperature estimation errors under some datacenter geometries.
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Figure 17: The heat distribution matrix used in the simulation.

3.3.2.4 Power Consumption of CRAC Units by Supply Air Temperature

Prior studies found that the power consumption of CRAC units depends on their supply-air

temperature. Moore et al. [9] measured the relation betweenthe supply-air temperature and

the efficiency of the CRAC units for a typical cooling system. They showed that the power

required for CRAC units can be represented as a function of thesupply-air temperature and
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the amount of heat that must be removed. In other words,

Power drawn from CRAC units=
Heat to remove (Power drawn from servers)

0.0068T2
supply air+ 0.0008Tsupply air+ 0.458

. (21)

When the supply-air temperature is 10◦C, the denominator on the right-hand side of Equa-

tion (21) is about one and the CRAC units consume the same amount of power as the servers

do. However, if CRAC units increase the discharging temperature (Tsupply air), the denom-

inator increases, and the CRAC units consume less power than whenTsupply air = 10◦C

while removing the same amount of heat. When CRAC units increase Tsupply air to 20◦C,

they will consume only one-third of the power of the servers.In summary, SimWare uses

Equation (21) to calculate the required power for CRAC units.

3.3.2.5 Input and Output of SimWare

For input traces, SimWare currently supports two formats: standard workload format (SWF)

and google cluster data (GCD). A number of utilization tracesin SWF collected from ex-

perimental datacenters are available in the public domain [46]. Based on ASCII, each line

of an SWF file describes a submitted job and contains the job ID,the submitted time, the

run time, the number of allocated processors, the average CPUtime used, and the depen-

dency between jobs. Google released GCD in November 2011, which contains similar

records collected from their own warehouse-scale computers.

Once a simulation finishes, SimWare generates performance,power, energy and tem-

perature related data including the turnaround time of the jobs for studying latency-sensitive

internet datacenters [47, 48], the peak and average power consumption of servers and

CRAC units, the energy usage for the given time frame, and the energy-delay product of the

current configuration. Additionally, SimWare also outputsthe average room temperature,

the average temperature by server chassis, and the utilization level of the datacenter.

3.3.2.6 Chassis and Servers

Current simulated datacenter uses a 50 by 50 HDM. Hence, thereare 50 server chassis,

each holding ten blade servers to amount to a total of 500 blade servers. Each blade server
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has a 130W Xeon E7-2850, one of the latest Intel products with 10 cores without Hyper-

Threading. Since there are 500 servers with 10 cores each, the simulated datacenter con-

tains a total of 5,000 cores. Despite this study is limited to500 servers, SimWare is not

limited to the current physical layout. So long as one can generate an HDM for a spe-

cific datacenter layout, SimWare can simulate it. In addition, one can use an open CFD

simulator named BlueTool [45] to generate an HDM for a user-defined datacenter.

Except for the fans, the blade server consumes 260W when fully loaded and consumes

half of its peak power when idle [14]. Now the specification for the fans is defined as

follows. The fan on the CPU heat sink must remove heat generated by the CPU at any

time. Therefore, when the fan runs at its maximum speed, it should remove 130W (the

maximum CPU power) atTemergency(the highest operable temperature). At this operating

point, it is assumed that the fan consumes 15W and runs at 3,000rpm. Each server has two

other fans with the same specification; at the front and at theback panel. The rotational

speed of these case fans are directly proportional to the power consumption andTinlet air of

the server. It is also assumed that fans cannot be turned off and runs at 500rpm when the

server is idle.

The emergency temperature of this server is set to 30◦C (Temergency= 30◦C), which

meets A1 class server specification for datacenters [40]. Note that the goal of fan control

is to save fan power and set the die temperature lower than 70◦C for reliability. These

numbers are close to the experiments in Figure 13 where the core temperature is at 71◦C

andTinlet air is measured at 92◦F(∼ 33◦C) when the fan rotates at full speed.

3.3.2.7 CRAC Control Policy

SimWare currently supports two CRAC control policies; constant and dynamic. The con-

stant control is the most basic strategy that a CRAC unit supplies cool air of a constant

temperature. In this case, the supply-air temperature is low enough so all servers stay be-

low the emergency temperature at any time. Because the cooling power is constant and

set to the worst case scenario, this algorithm wastes cooling power when the datacenter is
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under-utilized.

To tackle this inefficiency, many recent datacenters proposed dynamic CRAC control

policies [49, 9]. The operation of the CRAC unit begins by supplying the lowest possible

air and jumps into the main loop. In the loop, the CRAC unit gradually raisesTsupply air

at the rate of 0.01◦C/sec3 until any server operates at a triggering temperature (Ttrigger).

When any server encountersTinlet air = Ttrigger, the CRAC unit starts to lower the supply-

air temperature at the same rate, 0.01◦C/sec. In the ideal case,Ttrigger can be set as high

as the emergency temperature. In such an ideal case, the CRAC unit continues to raise

the supply-air temperature until any server reaches the emergency temperature. How-

ever, due to the timing delay of the CRAC units to effectively lowering Tinlet air, using

Ttrigger = Temergencyas a condition will jeopardize some servers to operate unreliably above

the emergency temperature. Therefore, the dynamic controlpolicy needs a safety margin

(Ttrigger = Temergency− Tsa f ety margin), which leads to cooling inefficiency. The safety margin

will be discussed in Section 3.3.3 after analyzing the simulation results using real-world

traces.

3.3.3 Putting The Datacenter Simulator into Practice

In this section, SimWare is used to perform datacenter simulations. Among 26 available

SWF files and google cluster data, the job and utilization traces from SHARCNET in 2005

is used. Results from some trace files are omitted due to theirsimilarity. The SHARCNET

utilization trace file contains about 1.2 million jobs for more than a year of operation.

Figure 18 shows the daily utilization level of the simulateddatacenter in a black line. From

day zero to 50, the average utilization of this datacenter isless than 1%. From day 50

to 150, the workload is moderate with an average utilizationof 5.3% and a maximum

utilization of 44.3%. For the last phase, the datacenter is heavily used with an average

utilization of 71.3%. In addition, the average power consumption from cooling units and

3Because the previous study [49] roughly showed that the rateis from 0.005◦C/sec to0.015◦C/sec,
0.01◦C/secis used throughout this document. The rate is configurable inSimWare.
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servers are also shown in Figure 18. The total power consumption generally tracks the

utilization level well enough except when the datacenter isunder-utilized. Because it is

assumed in Section 3.3.2.6 that servers consume half of the peak power when idle, this

datacenter is not energy-proportional [14]. Normalized latencies of the submitted jobs are

also plotted in Figure 18. In calculating normalized latencies, the simulated latencies are

compared to the latencies specified in the SWF file. Note that SHARCNET has more than

7000 cores while the simulated datacenter has 5000 cores. Therefore, normalized latencies

drastically increase when the latter is at high utilizationlevel.
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Figure 18: Utilization, latency and power trace of SHARCNET in 2005.

To demonstrate the importance of the air-travel time discussed in Section 3.3.2.2, sim-

ulations with two different configurations are considered:one with zero air-travel time by

assuming that the cool air from the CRAC units instantly lowers servers’Tinlet air, and the

second one with the optimistic air-travel time discussed inSection 3.3.2.2. These two sim-

ulations share all other parameters. As a result, the distribution ofTinlet air for all the servers

is depicted in Figure 19a. In Figure 19a, the Y-axis represents the fraction of time that

servers spend at a givenTinlet air while X-axis representsTinlet air. When instant delivery of

cool air is assumed, all the servers operate under theTemergency(= 30◦C). However, with

non-zero travel time, servers experienceTinlet air overTemergency, up to 35◦C. Therefore, to

ensure∀Tinlet air ≤ Temergencyat any time, a dynamic CRAC control scheme must secure a

safety margin.

Now the safety margin (Tsa f ety margin) introduced in Section 3.3.2.7 will be discussed.
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Figure 19: Effect of air-travel time, energy breakdown, andPUE.

Even with the most optimistic air-travel time, whenTtrigger = Temergency, one of the servers

spent more than 49% of the time at above the emergency temperature according to simu-

lation results from SimWare. However, ifTtrigger = Temergency− 1, all servers will operate

below the emergency temperature for 99.99% of the time. To make it 100%,Ttrigger has

to be as low asTtrigger = Temergency− 7. It is also found that whenTtrigger = Temergency− 7,

the average supply-air temperature is 14.7◦C, close to the typical outlet air temperature of
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the CRAC units from prior studies4. Figure 19b illustrates how much energy does this

safety margin cost. In this figure, bars represent energy usage of the simulated datacenter.

Each bar represents server and cooling energy for a given CRACcontrol policy. Every

policy shares the same algorithm but uses differentTtrigger values. For example, the left

most bar indicates that the total energy consumption is slightly more than 5,000GJ when

Ttrigger = Temergency− 7. If two bars are compared,α = −1 andα = −7, the cooling energy

is increased from 1100GJ to 1900GJ. The safety margin costs extra 800GJ (∼ 73%) on

the cooling energy. In summary, to ensure every server to be underTemergencyat any time,

datacenters should set a safety margin, which SimWare identified as one major source of

inefficiency.

α is continuously increased on the right half of Figure 19b. Along withα, the room tem-

perature increases, and the cooling energy decreases. However, server fans now consume

more energy than before, and increased fan energy now overwhelms the cooling savings.

As a result, the total energy consumption saturates atα = 9. Even thoughα > 9 does

not result in any energy saving, one can achieve a lower PUE thanα = 9 — an incorrect

indication when evaluating energy efficiency. Fromα = 11 toα = 15, servers consume

more energy and cooling units consume less thanα < 11. As a result, PUE monotoni-

cally decreases regardless of the total energy consumption. For these reasons, total PUE

(tPUE) [52] is also plotted in Figure 19b. Because tPUE factors fan power out of the useful

server power, smaller tPUE guarantees the better energy efficiency than bigger tPUE.

In general, the heat-recirculation effect and the air-travel time from the CRAC units re-

sult in two types of inequality among servers. Firstly, someservers will operate at relatively

higherTinlet air than the others. Because hot air tends to circulate upward, the servers at the

top of the racks typically experience higherTinlet air than the servers at the bottom. In sim-

ulations, the difference between the highest and the lowestTinlet air among servers is 8.1◦C.

In other words, the majority of servers are over-cooled because the CRAC units lower the

4Prior studies reported15.0◦C [50, 10] or lower than15.0◦C [51]
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supply-air temperature for the worst-case servers. Secondly, some servers require a longer

time to cool down than the others. Depending on the location of the servers,Tinlet air of

some servers respond slowly. Because the CRAC units set a safety margin based on the

worst-case scenario, these two types of inequality among servers reduce the efficiency of

the cooling system and require other effective solutions.

To tackle this inefficiency, the proposed research suggestsheterogeneous cooling ca-

pacities among servers for a green datacenter. If servers atthe top of the racks have better

cooling capacities and have higherTemergencythan the other servers, the CRAC units can

safely discharge air at a high temperature by using aggressive dynamic CRAC control poli-

cies. For example, one can pick eleven blade chassis by the highest averageTinlet air from the

simulated datacenter. In addition, if one changeTemergencyof these blade chassis from 30◦C

to 35◦C, the datacenter can use a dynamic CRAC control policy ofTtrigger = Temergency− 2

without compromising thermal guidelines and save 37% of cooling energy than the base-

line, Ttrigger = Temergency− 7.
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CHAPTER 4

SYSTEM-LEVEL OPTIMIZATION

4.1 System-level Power Breakdown

Datacenter infrastructure delivers power to the components such as the CPUs, PCI slots,

memory, motherboards, and disks, of a system. Before we detail the per-system power

breakdown, it is important to understand why we need to estimate the actual power con-

sumption of a system instead of the power described in a user manual,i.e., the nameplate

power. When calculating the nameplate power, the vendor has to be as conservative as pos-

sible to prevent their products from malfunctioning in the face of power deficiency. As a

result, the total nameplate power is usually estimated by summing up the worst-case power

consumption of all components in a system. In most of the cases, however, not all of the

system components will operate with its maximal power simultaneously. Even if all of

them are busy at the same time, a system will not reach manufacturer’s nameplate power as

it is oftentimes overestimated intentionally. In a datacenter environment, this discrepancy

between the nameplate power and the actual measured peak power can cause significant

inefficiency in the power delivery infrastructure. As seen in previous figures, a system has

to be placed in a rack that typically accommodates tens of servers. Given that the power for

a rack is limited by the PDU (e.g.,, 2.5kW per rack [53]), the number of systems in a rack

is fixed based on either the nameplate power or the measured peak power of a server. For

example, if a datacenter deploys servers based on the nameplate, 213W, a rack of 2.5kW

will accommodate 11 servers while the actual aggregated peak power of 11 servers is less

than 1.6kW [53]. Under such circumstances, the datacenter will pay more on the power

delivery infrastructure for supporting the nameplate power that can never be reached.

Because the nameplate power is different from the actual power consumption, so does

the power breakdown of a server is. According to the nameplate power readings in Fig-

ure 20a, a CPU accounts for around one third of the total power of a system followed by
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Figure 20: Power breakdown of a server

20% for the PCI slots, 14% for the memory, and 10% for the motherboard. On the other

hand, Figure 20b shows the actual power consumption of components in a typical blade

server using a 2.2GHz AMD Turion processor. Different from the nameplate power read-

ings, the CPU with an on-die MCU consumes 43% of the total actualpower while the

memory accounts for a quarter of the total. By comparing these two figures, it is appar-

ent that in the actual deployment, the CPU and memory are the most power-consuming

components in a system.

Figure 21 also identified that the CPU and memory are the two major power consuming
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components in a system, accounting for more than half in all three samples that corrobo-

rates the data points shown in Figure 20. In the worst case, the IBM p670, 67% of the total

power were consumed by the CPU and memory. In addition to this fact, it is also inter-

esting to find that Google spends more power on the CPU and I/O devices than the others.

This is simply because their main applications are the web search, email, and document

services [53]. For the web search service, many computing nodes in the back-end have to

sort and index web pages while the front-end nodes have to parse queries. Many of these

operations are CPU intensive. On the other hand, email services require a large number of

database accesses and file downloads which are primarily I/Ooperations. Moreover, even

though the source [53] did not mention YouTube service or similar types of workloads, it is

obvious that these streaming services will demand much moreon the I/O side. In summary,

the most power-consuming components in a real datacenter are the CPU and memory, how-

ever, depending on the services that a system provides, the power breakdown can be vastly

different.

4.2 ATAC: Ambient-Temperature-Aware Capping For Power
Efficient Datacenters

The emergence of cloud computing has created a demand for more datacenters, which

in turn, has led to the substantial consumption of electricity by computing systems and

cooling units. Although recently built warehouse-scale datacenters can nearly completely
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eliminate cooling overhead, small to medium datacenters, which still spend nearly half of

their power on cooling, still labor under heavy cooling overhead. Often overlooked by the

cloud computing community, these types of datacenters are not in the minority: They are

responsible for more than 70% of the entire electrical powerused by datacenters. Thus,

to tackle the cooling inefficiencies of these datacenters, we propose ambient temperature-

aware capping (ATAC), which maximizes power efficiency whileminimizing overheating.

ATAC senses the ambient temperature of each server and triggers a new performance cap-

ping mechanism to achieve 38% savings in cooling power and 7%savings in total power

with less than 1% degradation in performance [55].

4.2.1 Background

Generally speaking, the major usage of electrical power falls into two categories: comput-

ing and cooling. Data have been shown that cooling power in a datacenter can take from

10% [4] to as much as 50% [3] of the total power depending on their operation. A metric

calledPower Usage Effectiveness(PUE) [5] as shown in Equation (22) has been widely

adopted to measure the efficiency of a datacenter.

PUE=
PowerS ervers + PowerFacility + PowerCRAC

PowerS ervers
= 1 +

PowerFacility

PowerS ervers
+

PowerCRAC

PowerS ervers

(22)

Given its definition, a datacenter with an ideal efficient cooling system (i.e., zero cooling)

will reduce the PUE value to 1. However, using PUE to evaluatethe energy efficiency of

an entire datacenter can be misleading. For example, it doesnot account for the increased

fan power that consumes non-negligible power in computing servers [6]. These fans in the

servers will blow harder and consume more power when a datacenter administrator reduces

the cool air supply by turning down theComputing Room Air Conditioning (CRAC)units

for power reduction. In consequence, the inlet-air temperature arises, however, the PUE

value gets lowered.1

1With increased fan powerPowerserverswill be increased, whilePowerCRAC is reduced andPowerFacility

remains constant. As a result, PUE becomes smaller.
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Figure 22a shows the power breakdown of a server with a fully utilized Xeon 5160 pro-

cessor. This server runs the LINPACK benchmark at different inlet-air temperatures from

27◦C to 33◦C. As we increase the temperature, fans, which consume from 10% to 30% of

the total system power [20], rotate faster and consume more power while the other parts

of the server including CPU, motherboard, and disks do not show significant increase. In

PUE, increased fan power is captured as part of the useful server power. Therefore, al-

though a high ambient temperature (HTA2) datacenter [2] achieves a lower PUE value,

it does not always guarantee a better power efficiency. To overcome such shortcomings,

Hamilton [52] proposed a new metric, total PUE (tPUE) to factor fan power out of the use-

ful server power. In this work, we will show both PUE and tPUE values in our experiments

and demonstrate tPUE as a better metric in assessing power efficiency for datacenters.

Recent study advocated the importance of taking a holistic approach when analyzing

power efficiency of datacenter [12, 56]. The factors such as inlet-air temperature, power

of cooling units, the effect of heat recirculation, and the impact of timing delay of cool air

deliver should be simultaneously evaluated under the same simulation framework [56]. For

example, the heat-recirculation effect in a datacenter results in unequal thermo-dynamic

environments among servers,i.e., some servers will operate at relatively higher inlet-air

temperature than the others. As hot air tends to rise up, the servers at the top of racks

typically experience higher inlet-air temperature. When the CRAC unit targets its cooling

objective for the worst-case hot spot, those servers located at the lower level of racks are

overly cooled. Such inequality was identified as the major reason of low cooling efficiency.

Using SimWare, a holistic datacenter simulator in [56], we studied the temperature differ-

ential for 50 blade server chassis with 5 blade servers each.When all the blade servers are

fully loaded and consume nearly 565W with the cooling units constantly blowing cool air

at 15◦C, the difference between the highest and the lowest inlet-air temperature is 8.5◦C.

Figure 22b details the temperature differences among servers. The left bars represent the

2Although the abbreviation for High Ambient Temperature is HAT, we follow Intel’s naming convention.
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servers closer to the bottom of racks, and right bars are those at the top. Since the CRAC

unit has to keep all the servers below the emergency temperature to guarantee reliability,

some server was overly cooled with an inlet temperature about 8.5◦C below the emergency

temperature.

2
0

3

2
0

4

2
0

3

2
0

4

2
0

3

2
0

2

2
0

4

1
1 1
3 1
6 1

9 2
2 2
6 2

9

185
190
195
200
205
210
215
220
225
230
235

27 28 29 30 31 32 33

Inlet Air Temperature ( ˚̊̊̊C)

P
o

w
er

 D
ra

w
 (

W
) 

'

Fans (W)
Others (W)

(a) Power draw by inlet-air temperatures.

0

5

10

15

20

25

Lowest Lower Middle Higher Highest
Height of Server Chassis in Racks

In
le

t A
ir 

T
e

m
pe

ra
tu

re
 (
˚̊̊̊ C

)

(b) Inlet temperature when CRAC supplies15◦C air and full server load.

Figure 22: Server power consumption by changing inlet-air temperatures.

To address cooling inequality and inefficiency, we propose anovel system-level ap-

proach calledAmbient Temperature Aware Capping(ATAC) at per-server level for a dat-

acenter. The technique exploits the non-uniformity of the inlet-air temperature among

servers of a rack to improve the cooling effectiveness. It allows each server to run at a

higher ambient temperature and applies local DVFS using itssensed inlet-air temperature

as input to avoid overheating. With such dynamic regulation, the power of CRAC units
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for the datacenter can be tuned down, thereby reducing the amount of cool air supply. In

summary, this section makes the following contributions:

• We analyzed the energy and thermal impact of high inlet-air temperature in modern dat-

acenters. With thorough experimentation we identified the inter-relationship for several

pertinent factors including total server power, fan speed,core temperature, and fan

power in response to the changes of ambient temperature.

• We proposed a new system-level technique that increases thesupply air temperature of

the CRAC units to optimize energy usage for the entire datacenter, while relying on

a dynamic performance capping mechanism (ATAC) to keep processors from running

across the emergency temperature.

• We used SimWare, a holistic datacenter simulator, to extensively study our proposed

ATAC scheme and evaluate its impact to power and performanceagainst prior power

optimization techniques including Power Capping [21] and PowerNap [20].

The rest of the chapter is organized as follows. Section 4.2.2 presents the motivation of

proposed scheme by showing thermal impact on server and fan powers. Section 4.2.3 dis-

cusses ATAC. Section 4.2.4 describes the simulation platform and specifies the parameters

for the modeled datacenter. Section 4.2.5 evaluates and analyzes the results. Section 4.2.6

highlights the distinction of this chapter by discussing relevant research works.

4.2.2 Motivation

Server’s inlet-air temperature impacts the core temperature, the server power usage, and the

fan speed, which altogether creates a complex interaction among these parameters and was

not properly quantified and analyzed in prior datacenter cooling literatures [57, 10, 11]. To

evaluate the influence of ambient inlet-air temperature, weset up a server enclosed in a

controlled area with a thermocouple and run LINPACK benchmark at the maximum load.

The ambient temperature (Tinlet air) inside is increased due to the enclosure preventing cool

air from flowing in. We repeat the experiments for three core frequencies: 2.7 GHz, 2.9
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Figure 23: Inlet-air temperature versus power.

GHz, and 3.1 GHz. During the experiments, the system level power, the fan speed, and the

core temperature are measured at different inlet-air temperatures, as depicted in Figure 23

through Figure 25.

4.2.2.1 Thermal Impact on Server Power

First, Figure 23 shows power consumption of the server at various Tinlet air. Three solid

lines show system-level power consumption at different operating frequencies, 3.1GHz,

2.9GHz, and 2.7GHz while stacked bars show power breakdown just for the 3.1GHz run.

We first use the 3.1GHz run as the example for the following analysis. For the data points

of Tinlet air ≤ 33◦C shown in Figure 23, the power elevation, mostly due to the fanpower,

follows the trend of the fan speed increase shown in Figure 25. As a result, the core

temperature remains unchanged around 71◦C as shown in Figure 24. This observation

is different from prior study which assumed the fan power is constant [58]. Such negli-

gence could dramatically affect the effectiveness of energy-saving strategies. Once the fan

speed reaches the maximum (3100 rpm), the core temperature starts to rise and the up-

ward trend of the power in Figure 23 also slows down. The slight power increase in this

region (Tinlet air > 33◦C) is likely due to increased leakage current caused by highercore

temperature.

We now compare the results of running at different frequencies. First, when running at
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Figure 24: Inlet-air temperature versus core temperature.

lower frequencies (e.g.,, 2.7GHz and 2.9GHz), the system does not attempt to cool down

the core temperature as shown in Figure 24. Instead, it lowers the fan speed (Figure 25) in

order to reduce the fan power consumption. As shown in Figure23, the system can save

13.5W and 18W for 2.9GHz and 2.7GHz, respectively, from the power rating of 232W for

3.1GHz at 33◦C. This power saving can be explained by the fundamental law ofcooling.

According to Newton’s law of cooling, the rate of heat loss isproportional to the tempera-

ture difference between the object and its surroundings.

We now verify the measured power saving numbers in Figure 23 quantitatively. To

eliminate the effect of the fan power and the difference of core temperatures, we pick the

data points of two systems when the fan reaches its maximum speed with the same core

temperature. As indicated by the circles in Figure 23, the runs of 3.1GHz and 2.7GHz

reach that state whenTinlet air = 33◦C andTinlet air = 37◦C, respectively. According to Fig-

ure 24, both scenarios have the core temperature at 71◦C. Then the temperature differ-

ences between the core and its surroundings (i.e., Tcore − Tinlet air) are 38◦C(= 71 − 33)

and 34◦C(= 71− 37) for the 3.1GHz and 2.7GHz core. The 3.1GHz core has an adver-

tised Thermal Design Power (TDP) of 80W, in other words, the cooling system, rotating

the fan at the maximum speed, can remove heat generated by an 80W core when the delta
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Figure 25: Inlet-air temperature versus fan speed.

temperature is 38◦C. Based on the law of cooling, the 2.7GHz system will remove heat

generated by a 71.6W (= 80W × 34◦C
38◦C) core. Our measurement result of these two systems

in Figure 23 (i.e., the power difference between two dashed circles) shows a 9W difference,

which closely conforms to the theoretical deduction of 8.4W.

By using the relation discussed above, we now present a simple example with respect

to how to keep the core temperature constant under control while the inlet temperature goes

above emergency temperature (Temergency). Initially, we assume a server whose temperature

difference between the core (Tcore = 70◦C) and the ambience (Tinlet air = 30◦C) is 40◦C

when the inlet temperature is 30◦C. Now we tune down the cool air supply from the CRAC

unit and subsequently the server senses theTinlet air raised to 35◦C, which is 5◦C above

Temergency. In other words, the temperature difference (∆T) between the core and the ambi-

ence is reduced to 35◦C. According to our previous discussion, due to the fan has reached

its maximum rotation speed, the server will have to increaseits core temperature by 5◦C

to 75◦C to achieve the equilibrium, which is undesirable due to reliability issue. Another

option for the server will be to reduce its own power consumption to keep the core tem-

perature at 70◦C. Based on our prior deduction, the power draw has to be proportionally

decreased to achieve this goal. Therefore, the server has toreduce its power down to35
40th of
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the original power via technique, such as, DVFS to keep the core temperature from rising.

4.2.2.2 Thermal Impact on Fan Power

To build a link fromTinlet air to fan power, we adopt a similar approach as in prior litera-

ture [56, 59]. First, we use theFan Affinity Lawsthat indicates - (1) the fan power is in a

cubic growth of the rotational speed; (2) the volume capacity (the amount of air) of a fan is

proportional to the rotational speed. Thus, the following relations hold.

Fan Power∝ (RPM)3

Volume∝ RPM

Fan Power∝ (Volume)3

(23)

Second, we use theLaws of Convective Heat Transferthat indicates that heat transfer or

power (in watts) is proportional to (1) the volume capacity of air3 and (2) the temperature

difference betweenTcore andTinlet air, or∆T.

Heat Removal∝ Volume

Heat Removal∝ ∆T
(24)

Therefore, when the temperature difference (∆T = Tcore− Tinlet air) becomes half of what it

was, the volume capacity has to be doubled to maintain the cooling capacity.

Heat Removal Per Volumebe f ore

Heat Removal Per Volumea f ter
=
∆Tbe f ore

∆Ta f ter
= 2

To makeHeat Removalbe f ore= Heat Removala f ter

∴ Volumea f ter = 2× Volumebe f ore

(25)

Since the volume capacity of a fan is proportional to rotational speed, a halved∆T will

result in doubling the rotation speed. The fan now rotates twice as fast and consumes 8x

more power.

Volumea f ter

Volumebe f ore
=

RPMa f ter

RPMbe f ore
= 2

∴

Fan Powera f ter

Fan Powerbe f ore
= (

RPMa f ter

RPMbe f ore
)3
= 8

(26)

3For simplicity, we assume that the density of air is constantat the temperature range of interest throughout
the dissertation.
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In summary, a higherTinlet air results in a smaller∆T and increases the fan power.

4.2.3 Details of ATAC Algorithm

In this section, we propose ATAC (Ambient Temperature AwareCapping), a system-level

technique to guarantee the reliability of operations when we tune down the cooling units for

improving energy efficiency. Our proposed scheme enables the inlet air supply to furnish

less cooling air for saving cooling energy, and at the same time, applies ATAC to allow each

server to dynamically scale down its frequency and voltage (i.e.,capping the performance).

Local to each server, the ATAC mechanism collects various information including core

temperature, inlet-air temperature, fans’ rotational speed, and CPU’s thermal design power

(TDP), and checks if the inlet-air temperature (Tinlet air) is above the emergency temperature

(Temergency) to make a decision for performance capping.

Initially, the system administrator starts to operate the datacenter in a way that all the

CRAC units supply cool air at the lowest possible temperature. Then the CRAC controller

increases the air supply temperature from the CRAC units, which in turn will reduce the

energy consumed by them [9, 49]. CRAC’s discharge temperaturekeeps raising until the

highest inlet-air temperature of a server reaches a triggering temperature point,Ttrigger. At

the moment that any of the servers experiencesTtrigger, CRAC units now start to lower the

supply air temperature. In this scenario, ATAC constantly monitors the inlet-air temper-

atures from each server, obtained using the thermal sensor embedded in the servers. If

Tinlet air stays belowTemergency, the triggering event does not occur. Otherwise, ATAC of

the violating server will cap its own performance by scalingdown its frequency/voltage to

reduce the power consumption. Note that ATAC has to assure that the power is proportion-

ally reduced with the delta temperature (∆T = Tcore − Tinlet air ) based on the discussion

in Section 4.2.2.1.

Now we discuss the relationship between power and performance for designing an

effective performance capping mechanism. In general, the performance is not propor-

tionally reduced by the reduction of power. For instance, inthe experiment shown in
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Figure 23 through Figure 25, we find that when the frequency islowered from 3.1GHz

to 2.7GHz (87.1%), the power is reduced from 80W to 72W (90.0%); however, perfor-

mance results from LINPACK benchmarks is only reduced from 15.3 Gflops to 15.1 Gflops

(98.6%). In the previous example, if we define 90.0% as the power ratio and 98.6% as

the performance ratio, then the relationship between the two is close to (Power ratio)=

(Performance ratio)7, which indicates only slight performance degradation by reduced power.

To obtain a more conservative evaluation, we adopt a generalpower and performance

model from other studies [60, 61] in which the power ratio is equal to the square of the

performance ratio ((Power ratio)= (Performance ratio)2). Based on this model, if the

performance of a core degrades by 90%, its power consumptionwill be reduced to 81%

(= (0.90)2). For the following evaluation of ATAC, we use this conservative assumption.

Although ATAC is designed to exploit the inequality or non-uniformity of the inlet-air

temperature among the servers in a rack, we also argue that the ATAC benefits from the

uneven cooling effectiveness among servers in a datacenter. Depending on the proximity

of the racks to the CRAC unit, the inlet temperature of some servers changes more rapidly

than the others. When some servers take longer time to cool down, the CRAC unit cannot

raise supply air temperature instantly even though all the servers are running belowTtrigger.

This is because of the uncertainty of future workload. If thedatacenter has no information

about the future workload, the CRAC unit cannot aggressivelyraise the room temperature

but has to maintain a safety margin. In other words, to maintain max(Tinlet air) strictly

underTemergency, Ttrigger cannot be as high asTemergency. Section 3.3 identified that such

phenomenon is caused by non-uniform distances from CRAC units to servers. In contrast,

with ATAC support for all the servers in the datacenter, the CRAC unit can increase the

supply air temperature more aggressively with more relaxedsafety margin as the built-in

dynamic performance capping scheme in each server can respond and resiliently control

the core temperature.
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4.2.4 Simulation Setup
4.2.4.1 The Simulation Platform and Inputs

In this chapter, we use SimWare [56] as an evaluating platform. SimWare is the only

publicly available datacenter simulator that implements avariety of critical components in

a warehouse-scale computer including:

• A detailed power model of servers by utilization level and inlet-air temperature

• CRAC power models [9] by supply air temperature

• The effect of heat recirculation [41]

• The effect of the timing delay of cool air delivery from CRAC tothe front plate of

servers

At the end of the simulation, SimWare outputs utilization level-, power-, and latency-related

statistics.

To model different datacenter settings, SimWare supports avariety ofconfigurablepa-

rameters, including the number of server chassis in a simulated datacenter, the number of

servers per chassis, architectural specifications for CPU and fans, task scheduling algo-

rithms, and CRAC algorithms to control air supply. First of all, SimWare provides two

different CRAC controlling algorithms; constant and dynamic. In the constant controlling

algorithm, the cool air temperature supplied by CRAC does notvary (i.e.,constant temper-

ature). Since CRAC does not change the supply air temperature, datacenter administrators

assume the worst case scenario where all the servers are fully loaded. Since this worst case

scenario is extremely rare, the constant CRAC control overcools the datacenter most of the

time and thus scores low power efficiency.

The dynamic algorithm, on the other hand, changes the supplyair temperature while

sensing the inlet-air temperature of the servers. Algorithm 1 shows the dynamic CRAC

control implemented in SimWare. CRAC starts to supply cool air at the lowest possible

temperature, and raises the temperature until any server’sinlet-air temperature hits a trig-

gering temperature,Ttrigger. Upon such an event, CRAC begins to lower the supply air
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temperature to cool down the room temperature. In general, the inlet-air temperature of a

server is computed as follows [62]:

Tinlet air = Tsupply air+ Trecirculated heat (27)

Here,Trecirculated heatrepresents the thermal impact caused by heat recirculationof the other

servers. Note that this heat-recirculation effect is the primary reason why Tinlet air varies by

the location of the servers. Also, the goal of the dynamic CRACcontrol can be expressed

as follows:

∀Tinlet air < Ttrigger (28)

Throughout this chapter, we assume that the simulated datacenter uses the dynamic CRAC

control, which dynamically changes the discharge air temperature. Therefore, we do not

specifically show whichTsupply air is used, but show whichTtrigger is used.

Algorithm 1 Dynamic CRAC Control
Require: Tsupply air← lowest possible temperature

loop

while ∀S erver′s inlet air temperature< Ttrigger do

CRAC raises Tsupply air f or 0.01◦C/sec

end while

while ∃S erver′s inlet air temperature≥ Ttrigger do

CRAC lowers Tsupply air f or 0.01◦C/sec

end while

end loop

Secondly, we use Google Cluster Data (GCD) [63, 64] as the inputto SimWare. Google

released GCD, one of the most detailed utilization traces, topublic in 2011. GCD com-

prises 178GB of text files containing detailed information that is collected from the jobs

submitted to one of the company’s datacenters. The overall computing cluster has about
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12500 heterogeneous computing nodes in 10 different groups[65]. Although the differ-

ent groups have disparate hardware specifications, we regroup the nodes into three groups

based on the CPU performance metric. This is because current SimWare only models

server’s power consumption by CPU utilization, but not by memory or disk utilization. In

terms of normalized CPU performance, servers in GCD have threedifferent types: 0.25, 0.5

and 1. On the contrary, in our simulated datacenter, serversare homogeneous (i.e., all the

servers share the same computing capacity). Since more than92% of the servers in GCD

have a normalized CPU scale of 0.5, we assume that a CPU scale of 0.5 matches to one

core in the simulated datacenter. For the servers with a CPU scale of 0.25 or 1, we assume

linearly decreased or increased execution time, respectively. For example, one second in a

machine with a CPU scale of 0.25 corresponds to a half second ina machine with a CPU

scale of 0.5. The rest of the configurable parameters for SimWare are discussed in the next

section.

4.2.4.2 Specifications for Blade Servers

In our simulation, we use the same 50 by 50 heat recirculationmatrix as in the original

SimWare in Section 3.3. Because the number of rows in this square matrix represents

the number of blade server chassis inside the datacenter, the simulated datacenter has 50

blade server chassis. We also configure each blade server chassis holds five blade servers

to attain a total of 250 blade servers. Table 2 summarizes thespecification of a blade

server in our simulated datacenter. Each blade server has anIntel Phi, one of the Intel’s

anticipated products with 57 cores. However in our simulation, we only activate up to 51

cores from each server. This is because GCD utilizes only 12583 cores, or 50.332 cores

(= 12583/250) per server. Therefore, we recalculate the power consumption as follows.

Even though Intel’s Phi is rated at 300W [66], we first subtract its maximum fan power

and multiply by51cores
57coresto obtain the maximum power in our simulation. We first assume

that the fan attached to Intel’s Phi consumes up to 21.6W. In this case, the maximum CPU

power becomes (300W − 21.6W) × 51
57 = 249.1W � 250W. Here, because Intel did not
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Table 2: Specification of the simulated blade server.
Component name Specification

CPU 57-core Intel Phi. TDP=300W [67]. When only 51 cores are ac-
tive, TDP=250W

CPU Cooling Capacity CPU fan removes heat generated by 250W when the fan rotates at
the maximum speed

∆T = Tcore− Tinlet air When the fan rotates at its maximum speed and the CPU is at full
load, The temperature difference between the processor die’s tem-
perature and the ambient air is40◦C.

CPU Fan Maximum speed = 4800 rpm; power = 21.6W.
Case Fans Two more fans are located at the front and back of each server.

Fan Control WhenTcore < 70◦C the priority of the fan control is in saving fan
power. Otherwise, whenTcore ≥ 70◦C, the priority is in lower-
ing Tcore. The cpu fan cannot be turned off and runs at 500 rpm
when the server is idle. Case fans increase rotational speed pro-
portional to the power consumption of the server and the inlet-air
temperature.

Idle Power The blade server consumes 250W plus corresponding fan power
when idle.

Peak Power The blade server consumes 565W in maximum.

reveal the detailed specification of the fan attached to Phi,we assume the same fan used in

Nvidia’s GTX 480 because GTX 480 had the same TDP of 250W. In summary, Intel’s Phi

consumes 250W when 51 cores are activated.

We also elaborate more on the detailed specification of the fan attached to Phi. First

of all, the fan consumes 21.6W in maximum and removes heat generated by 250W when

the the fan rotates at the maximum speed of 4800rpm. We also assume that when the fan

removes the maximum power, 250W, the minimum temperature difference (∆T) between

the die and the inlet air is 40◦C. This was generated from our experiment discussed in Fig-

ure 24 where the core is at 71◦C and the inlet-air temperature is measured at 33◦C when the

fan rotates at full speed. For simplicity, we use 40◦C instead of 38◦C(= 71◦C−33◦C). This

number is particularly important for performing ATAC. As discussed in Section 4.2.2.1

and Section 4.2.2.2, we use the temperature difference to calculate the desired power level

to be achieved by DVFS. An example with respect to how to reachthe desired power level

was given at the end of Section 4.2.2.1.
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There are two other fans with the same specification used in the server. One is located

at the front panel of the server and the second one at the back.The rotational speed of

these case fans are directly proportional to the power consumption of the server and inlet-

air temperature. For simplicity, the boundary condition isthat the fans are rotating at 4800

rpm (maximum), when the server is fully loaded at 30◦C. In addition, we assume that the

goal of fan control is to save fan power and set the die temperature lower than 70◦C for

the reliability. In terms of the peak power of the blade server, we add up the idle power,

peak CPU power, and all three fan powers. We first assume that the blade server consumes

250W when idle4. Then the peak power becomes 250W (idle power) + 250W (peak CPU

power) + 3×21.6W (three fans) = 564.8W

4.2.5 Evaluation and Analysis
4.2.5.1 The Baseline Analysis

For the legacy datacenters, typicalTtrigger value ranges from 20◦C to 30◦C, and the average

Tsupply air is around or even lower than 15◦C [50, 10, 51]. However, according to Intel’s

projection of future datacenters, high ambient temperature (HTA) datacenters will let the

servers operate above 40◦C, or even more than 50◦C [2]. Because this chapter focuses on

the power optimization for future HTA datacenters, our experimental ambient temperature

ranges from 40◦C to even higher than 50◦C. Hence, throughout the chapter, we useTtrigger ≥

40◦C.

Figure 26a shows the overall utilization level of the simulated datacenter whenTtrigger =

40◦C. The X-axis represents the elapsed time while the primary Y-axis (left) and the back-

ground area chart show the power consumption in watts. In addition, the secondary Y-axis

(right) and the solid line chart show the utilization level.As stated before, GCD contains

job traces for about a month, and the average daily utilization level ranges from 40% to

60%. If we divide the time line into four consecutive weeks, the fourth week shows signif-

icantly higher utilization level. The power consumption curve for computing and cooling

4Typical servers consume the half of the peak power when idle [14]. When we exclude the fan power, our
blade servers consume half of the peak power when idle.
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units generally tracks the utilization level. More interesting observations can be made from

Figure 26b. In Figure 26b, we increaseTtrigger from 40◦C to 52◦C in X-axis. As we in-

creaseTtrigger, the datacenter saves cooling power while spends more on fanpower. As a

result, we identify that afterTtrigger = 47◦C, raising room temperature no more reduces the

total power consumption of the datacenter. Meanwhile, PUE is monotonically decreasing

as we increase the ambient temperature. This is because PUE is proportional to the ratio

of the CRAC power to the servers power, if the facility power isremains constant. With

reduced CRAC power and elevated server power (due to increasein fan power), PUE de-

creases even though the total power consumption increases.Therefore, we suggest to use

tPUE for measuring the power efficiency of datacenters. Because tPUE factors out the fan

power from useful computing power, we find that lower tPUE guarantees a better power

efficiency.

Another important implication of higherTtrigger is higherTcore. When the fan is not at

the maximum rotational speed, a system can holdTcore even at a higherTinlet air by increas-

ing the fan power. However, in rare situations, the following three conditions can occur at

the same time. Firstly, the fans are already at the maximum. Secondly, the CPU is at the

full load. Lastly,Tinlet air is raised aboveTemergency. In such situation,Tcore rises to maintain

the temperature difference (= ∆T) betweenTcore andTinlet air constant. Figure 27 shows

how rare such situations are. In Figure 27, we illustrate thedistribution of Tcore across

differentTtrigger values. As we increaseTtrigger from 40◦C to 52◦C, the maximum value of

Tcore also increases. Note that the Y-axis is in a log scale, indicating that the chances for

having a higherTcore are rare. In other words, theTcore distribution has a long tail on a

high temperature region. Nevertheless, if a CPU experiencesTcore = 90◦C for only a few

seconds in a month, the CPU must guarantee reliable operationatTcore = 90◦C.

Here, we recall that highTcore occurs when three conditions are met at the same time. In

other words, if any of three conditions can be broken, we can avoid unnecessary reliability

emergencies. Our proposed ATAC breaks the second conditionby sensingTinlet air and
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Figure 26: Simulated results for Google cluster data in 2011.

changes DVFS state so that the CPU cannot be fully utilized. Aswe show in the next

section, ATAC initiates performance capping only for a small fraction of time, therefore,

the overall responsiveness of the datacenter remains nearly the same while the maximum

Tcore drastically decreases.
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Figure 27: Distribution of core temperature whenTtrigger changes from 40◦C to 52◦C.

4.2.5.2 Evaluating ATAC

In applying ATAC mechanism to the servers, a datacenter administrator can set how ag-

gressive will ATAC be. For example in Power Capping [21], a server with a 1000W name

plate can be set to consume 900W, or even 800W by administrators’ decisions. When

the server’s power consumption is capped at 800W, the serverperforms less than when it

is capped at 900W. Similarly, administrators can configure the aggressiveness of ATAC.

Aggressive ATAC will activate performance capping more often.

We start with the most basic strategy, ATAC-0, which activates performance capping

whenTinlet air = Ttrigger. In other words,Temergencyfor this configuration isTtrigger, meaning

that when a server sensesTinlet air > Ttrigger, the maximum performance of the server is

capped. For example, we assume thatTtrigger = Temergency= 40◦C, and one of the servers

in the datacenter senses that itsTinlet air is 45◦C. In this case, without ATAC support,Tcore

can be as high as 85◦C(= Tinlet air + ∆T = 45◦C + 40◦C) according to the∆T specification

in Table 2. However with ATAC support, after acknowledging that Tinlet air is 5◦C over

Ttrigger, ATAC reduces the maximum power consumption of the CPU to∆T−5◦C
∆T . As a result,

required temperature difference betweenTcore and Tinlet air is also reduced to 35◦C, and

the maximumTcore becomes 80◦C. Figure 28a shows the results of the scenario described

above. In Figure 28a, the distribution ofTcore for the baseline configuration goes as high

as 84◦C while ATAC-0’s worst-caseTcore is 80◦C. We also define more aggressive ATAC,

from ATAC-1 to ATAC-4. In ATAC-1, performance capping is activated by ATAC when
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Tinlet air = Ttrigger − 1, and ATAC-4 activates it whenTinlet air = Ttrigger − 4. As a result, the

maximumTcore reduces to 79◦C for ATAC-1 and 76◦C for ATAC-4.
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Figure 28: ATAC’s impact on core temperature and latency whenTtrigger = 40◦C.

Even though ATAC-0 lowers the maximumTcore about 4∼ 5◦C than the baseline, the

chances for activating performance capping is low. We roughly calculate how low the

chances are from Figure 28a. Firstly, we add up all bars from 80◦C to 84◦C from the

baseline. The result is 26096 seconds. Because there are about 626 million CPU seconds

(= 50 chassis× 5 servers× 29 days× 24 hours× 3600 seconds) in our study, 26096 seconds

is less than 0.01% of the time. In summary, ATAC-0’s impact on the responsiveness of the

simulated datacenter is close to 0%. As shown in Figure 28b, more aggressive ATAC such
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as ATAC-4 shows the performance degradation of less than 1%.

4.2.5.3 Comparing ATAC against Power Capping and PowerNap

ATAC is unique in that it takes ambient temperature into account. Because ATAC activates

performance capping from the servers at the highest inlet-air temperature, ATAC exploits

temperature differences between servers. Figure 29 details the effect of ATAC on servers’

performance. We first group the servers by the height in the racks. Since the simulated

datacenter supplies cool air from the floor, servers near thefloor has the lowest average

inlet-air temperature. Therefore, servers located at the lowest to middle position do not

activate performance capping for any configuration we test in Figure 29. ATAC activates

performance capping only for the servers at top two positions. Even for the servers at top

two positions, the performance is sacrificed only for a fraction of time when the inlet-air

temperature is higher thanTemergency. Therefore, on the right-most ten bars in Figure 29,

the worst case server with ATAC-3 scores 90% of the original performance. Note that

Figure 29 shows the lowest performance scale of all time. In average, the performance

scale of any server scores more than 99% of the original performance regardless of the

location. Because ATAC exploits non-uniform inlet-air temperature among servers, ATAC

outperforms the other power management schemes.
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Figure 29: ATAC’s impact on cpu performance (lowest value of all time) by height of
servers.

Figure 30 shows the maximumTcore value and the normalized latency of the simulated

datacenter for different power management algorithms including Power Capping [21] and
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PowerNap [20]. Power Capping is a power management techniquefor datacenters that acti-

vates performance capping by sensing system-level power consumption and strictly limits

the maximum power consumption under the bar. In our experiment, when Power Cap-

ping is available, servers’ power are capped to 540W, 530W, or 520W. We also implement

the ideal PowerNap. Although the original PowerNap has 300µs performance penalty for

waking up from the napping state, we assume zero penalty to show the upper bound of the

effectiveness of the algorithm. In addition, we use the sameconfigurations for the baseline

and ATAC-0∼ ATAC-4 as in Figure 28.
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Figure 30: Comparing ATAC against other power management algorithms whenTtrigger =

40◦C.

Firstly, Figure 30a shows that ATAC and Power Capping are effective in reducing the

maximum value ofTcore. For example, when Power Capping is set to 520W, the highest

Tcore is 76◦C, which is close toTcore of ATAC-4. However, as shown in Figure 30b, Power

Capping to 520W results in 20% performance degradation whileATAC-4 shows less than

1% degradation. This is because Power Capping lowers the performance of CPU only

by detecting the system-level power consumption. Even whenthe server burns the full

power, there are no temperature emergencies whenTinlet air is substantially low. Figure 30

also shows that PowerNap has no impact onTcore nor on the normalized latency. This is

because PowerNap is not designed to controlTcore but to save server power for achieving
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Figure 31: Maximum core temperature equivalent comparison.

energy proportionality [14].

4.2.5.4 Max(Tcore)-Equivalent Comparison

As discussed in Section 4.2.5.3, ATAC and Power Capping algorithms effectively lowers

the upper bound ofTcore. For example, ATAC-4, which only activates performance capping

whenTinlet air is higher thanTtrigger − 4, lowers the maximumTcore value from 84.1◦C to

76.0◦C when it is compared to the baseline whereTtrigger = 40◦C. Results from additional

simulations show that the baseline datacenter without any power management mechanism

must lowerTtrigger from 40◦C to 32◦C to achieve the same level ofTcore. Similarly, since

PowerNap has no impact onTcore, PowerNap also has to lowerTtrigger to 32◦C for achieving

the maximumTcore of 76◦C. On the other hand, when Power Capping is available and set

to 520W, the maximum value ofTcore was the same as ATAC-4 without changingTtrigger.

In summary, ATAC-4 and Power Capping set to 520W both achieve the maximumTcore of

76.0± 0.1◦C while the baseline and PowerNap have to lowerTtrigger to 32◦C.

We compare power consumption of all four configurations in Figure 31a and Fig-

ure 31b. The labels on X-axis show the name of four configurations and corresponding

Ttrigger value in the parenthesis. Note that all configurations have the same peakTcore values
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Figure 32: Per-server utilization distribution.

of 76.0± 0.1◦C. In terms of the cooling power, savings for ATAC-4, Power Capping, and

PowerNap are 38%, 40%, and 1% respectively. Such savings aretranslated to about 6%,

8%, and 1% savings in terms of the total datacenter power, including all the components

such as computing power, fan power, and cooling power. PowerCapping to 520W is the

most effective power saving technique; however, it comes with the significant performance

penalty. Figure 31c shows the responsiveness of the simulated datacenter. The datacenter

with Power Capping set to 520W shows over 20% latency penalty.In contrast, ATAC-4’s

impact on the performance is negligible, less than 1%. Even though our implementation

assumes the ideal PowerNap, Figure 31 shows that PowerNap has limited impact on the

overall power consumption of the datacenter. The reason forsuch observation can be ex-

plained by Figure 32. The figure shows the distribution of theserver-level utilization of the

baseline configuration (Ttrigger = 40◦C without any power management scheme) in seconds.

As shown, servers spend most of the time in the utilization level of 20% to 80%. Servers

in GCD are completely idle only for 1.3% of the time. Because PowerNap puts servers in

napping state when they are completely idle, PowerNap has less than 1.3% of the head-

room for this specific utilization trace. However, we also find that PowerNap can be used

in conjunction with ATAC to save additional 1% of the total power consumption.
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4.2.6 Related Work

Researchers have investigated increasing the supply air temperature without compromising

reliability. Moore et al. [9] proposed a new job scheduling policy to minimize the heat

recirculation effect, and Banerjeeet al. [57] further improved it. A prior study found that

whenTinlet air increases, the processor cores contribute to the majority of additional power

consumption [58]. Atwoodet al.[68], however, showed that the failure rates of servers have

little correlations to temperature, dust, and humidity. These studies motivated us to design

system-level support that exploits the cooling inequalityamong the servers in datacenters.

In this work, we primarily focus on the power consumption of cooling units and servers;

nonetheless, other sources of inefficiency were explored inprior research. For example,

Wanget al.[69] and Pelleyet al.[16] proposed efficient power delivery and smarter cluster-

level power controller, and Liet al. [70] proposed power-efficient execution of programs.

In addition, Haqueet al. [71] proposed a new definition of service-level agreements,Green

SLAs, for the clients who care about using green energy. Alleviating the peak power con-

sumption is an important issue for datacenters [72] becausetheir electricity bills are based

on (1) the amount of energy they use and (2) the peak power thatthey demand. Use of

fresh-air cooling [73] or renewable energy [74, 75, 76] alsoimproves cooling efficiency

of datacenters. Although ATAC achieves the same goal (i.e., improving the cooling ef-

ficiency), it can be used in parallel with aforementioned techniques. For example, with

ATAC support, a datacenter with free-cooling systems can exploit high temperature varia-

tions among server locations.

Similar to ATAC, Zephyr [77] discussed blade chassis-level power optimizations in-

cluding fan and server power, while our study focuses on datacenter-level power opti-

mizations including cooling power. In addition, the novelty of ATAC lies in exploiting

location-dependent and regional cooling characteristicsinside datacenters.

Advancements of micro-architectures and memory technologies can lead to significant
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energy savings in datacenters. For example, Razor [25] allows microprocessors to oper-

ate at a lower voltage by comparing results from multiple flip-flops operating at different

speeds. Razor is in fact conceptually similar to ATAC: Razor lowers a supply voltage and

exploits voltage safety margins of microprocessors, whileATAC lowers cooling power and

exploits temperature safety margins of datacenters. Emerging memory technologies, such

as die-stacked memory [78], would also play a key role in alleviating power concerns in

datacenters. Stacked DRAM caches already become practicalto be deployed in large-scale

servers by alleviating hardware overhead [79] and resiliency concerns [80]. These advance-

ments could greatly reduce computing and memory power in datacenters.
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CHAPTER 5

MICRO-ARCHITECTURE-LEVEL OPTIMIZATION

5.1 Micro-architecture-level Power Breakdown

As a CPU is one of the most power hungry components in a system, it is imperative to

optimize power and energy consumption of CPUs [81]. In this section, we examine and

understand the power distribution within the CPU. Not only can power reduction in each

CPU collectively reduce the overall power consumption of allcomputing nodes, it also cuts

the cost of thermal management hardware, such as the sizes ofthe heat sinks and cooling

fans and the center-level cooling strategy. As a part of thiseffort, we will cover the power

breakdown of a CPU in two different aspects. First, the power breakdown by functional

modules such as the register file, fetch logic, or ALU will be included. Second, we will

further analyze the power breakdown of a CPU based on different types such as active

dynamic power, sub-threshold conduction, and gate leakage.

5.1.1 Per-CPU Power Breakdown by Modules
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Figure 33: Power breakdown of Alpha 21264 [82]
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Although there is a scarcity of public literature that breaks down the power distribu-

tion of a modern out-of-order (OoO) microprocessor, there were some attempts from both

academia and industry that analyzed, modeled, and simulated the power consumption of

sophisticated processors at the micro-architectural level. Figure 33 and Figure 34, both

based on the DEC Alpha processor, detail and illustrate suchpower distribution. Figure 33

shows the power breakdown of an Alpha 21264 processor running gzipat 600MHz. These

numbers were generated using the micro-architectural Wattch power model integrated with

the cycle-level Alpha-sim simulator [82]. Given that the Alpha 21264 processor is a four-

wide superscalar microprocessor with OoO execution, speculative execution, and large

instruction queues for both integer and floating-point instructions, the power breakdown

obtained by modeling this microprocessor will be a good representative for today’s high-

performance processors. From Figure 33, one can easily find that the clock tree actually

accounts for more than one third of the total power dissipation. Note that, the clock signal

itself is the fastest switching part of the entire chip, and this has to be done regardless of

the modular utilization in the CPU. For example, the clock signal would change the logical

state of the floating-point functional unit every cycle evenif only an integer application is

being executed. Such unnecessary power waste can be eliminated if more advanced circuit

techniques such as unit-level, fine-grained clock-gating or dynamic voltage frequency scal-

ing (DVFS) are applied. We will discuss more of these techniques in subsequent sections.

To elaborate more about the clock distribution, it is worth mentioning that the Alpha 21264

processor uses a metal grid that covers the entire die area for distributing the clock signal.

A metal grid for clock distribution is known to be the most effective (but not necessarily

the most efficient) way of distributing clock signal with minimum clock skew to all the

parts of the chip [83]. As a result, this lets a CPU run at a higher operating frequency than

other types of clock distribution network such as H-tree forIBM S390 or length-matched

serpentine structure for Intel P6. However, this clock distribution network, a metal grid,

has a main drawback that it consumes more power than other alternatives due to its large
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capacitance. Next to the clock signal, the integer registerfile accounts for 14% of the total

power. Because these numbers are generated by runninggzip, an integer application, the

integer register file is heavily used. The accumulated OoO logic accounts for 20% of the

total power consumption: 8% for the integer issue queue, 6% for the integer mapper (for

register renaming in integer registers), 2% for the floating-point issue queue, and 4% for

the floating-point mapper. In exchange for higher performance by exploiting instruction-

level parallelism, the power portion of the OoO-related logic is larger than those of the data

cache (4%) and the functional units (4%).
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Figure 34: Power breakdown of Alpha 21364 [84]

On the other hand, Figure 34 shows the power breakdown of Alpha 21364 micropro-

cessor generated by an integrated framework called McPAT that models power, area, and

timing done by HP Labs. The Alpha 21364 processor is the successor of Alpha 21264 with

minor changes on the core design with major differences on other supplementary logic in-

cluding an on-die memory controller (“MemCon” in Figure 34),L2 cache, and network

on chip controller (“NoC”). The design philosophy of Alpha 21364 was to improve band-

width of the memory subsystem as well as maintaining scalability for future many-socket

systems. With this objective, the memory controller and network on chip controller have
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become the most power-consuming components — accounting for almost half (46%) of

the entire chip power budget. For the rest of the chip, the clock distribution accounts for

16% while the OoO issue logic is about 9%.

5.1.2 Per-CPU Power Breakdown by Sources
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Figure 35: CMOS leak power trend by fabrication process technologies [84] [85] [86]

Figure 35 illustrates the power breakdown of a CPU by sources such as active power,

sub-threshold conduction (sub-threshold leakage), or gate leakage across different fabrica-

tion process technologies. These data are collected from multiple sources [86, 84, 85]. As

the feature size shrinks, as shown in Figure 35, the portion of the sub-threshold conduction

continues to increase and reaches almost 20% of the total power in the 22nm technology

node. This increasing trend is a trade-off for reducing the active power. To lower the power

of a processor, designers employ lower supply voltage (Vdd) as the active power of a CMOS

device is proportional toV2
dd. WhenVdd was high (e.g., 5V), CMOS gates can be operated

at relatively high threshold voltages (e.g.,Vth = 700mV). Due to the high threshold voltage,

sub-threshold leakage current were negligible as shown in the following formula whereIo f f

is the sub-threshold leakage current ands is the sub-threshold swing inmV/decade[87].

Io f f ∝ 10−
Vth

s (29)

82



According to Equation (29), for a given sub-threshold swing, the sub-threshold leakage

current is exponentially and negatively proportional to the threshold voltage. Meanwhile,

Vdd has been lowered from 5V to sub-1V today,Vth was also scaled down to 200mV. For

a sub-threshold swing of 100mV/decade, every 100mV drop in Vth will cause ten times

more sub-threshold leakage current. On the other hand, gateleakage is also exacerbated

as the technology node advances. The increasing trend was because of the fact that with

technology scaling, the capacitance of the gate oxide material in a MOSFET also scaled

down. Equation (30) shows the relationship of capacitance (C) with the dielectric constant

(kappa), area (A),permittivity of free space (ε0), and insulator thickness (t).

C =
κε0A

t
(30)

Since smaller fabrication process technology reduces area(A) of the gate oxide, the

overall capacitance of the gate oxide becomes smaller, which increases the gate leakage

current. As an alternative method for increasing the capacitance of the gate oxide material,

material with higherκ value has been used since 45nmfabrication process technology,e.g.,

Intel’s high-κmetal gate technology revolution. As a result, with the “High-κ” material, the

gate leakage has almost disappeared in Figure 35 since 45nm.

5.2 Emerging Solid-state Memory Technologies

There are several emerging memory technologies looming on the horizon to compen-

sate the physical scaling challenges of DRAM. Phase change memory (PCM) is one of such

candidates proposed for being part of the main memory in computing systems. One salient

feature of PCM is its multi-level cell (MLC) property which canbe used to multiply the

memory capacity at the cell level. However, due to the natureof PCM that the value written

to the cell can drift over time, PCM is prone to a unique type of soft errors, posing a great

challenge for their practical deployment. To address this reliability issue, many researchers
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proposed material-based or architectural solutions. In this section, we analyze the resis-

tance drift problem using both analytical models and Monte Carlo simulation and show

the fundamental limit in prior architectural solutions. According to our findings, four-level

PCM is unusable given its soft error rate and scrubbing time needed.

5.2.1 Background

Phase-change memory (PCM) is viewed as a promising alternative to dynamic random

access memory (DRAM) for future computing systems. PCM stores data by changing the

state of the material made of Ge, Sb, and Te (GeST). The state of PCM switches back

and forth between an amorphous state and a crystalline stateon microscopic level. The

amorphous and crystalline states indicate high and low resistance states, respectively, which

represent the value of data stored in the respective PCM cell.More specifically, a PCM cell

turns into an amorphous state if the temperature of the cell is raised up to the melting point

and then lowered relatively quickly. When the PCM cell is in theamorphous state, the

resistance of the cell is measured around 106 Ohms. On the other hand, if the PCM cell is

heated up to a certain temperature below the melting point and then cooled down relatively

slowly, it becomes a crystalline state. When the PCM cell is in the crystalline state, the

resistance is measured around 103 Ohms.

While adjusting the temperature and cooling time of PCM cells,researchers have learned

that the resistance value of the PCM cells continuously changes from 103 Ohms to 106

Ohms. In other words, the resistance value can be found anywhere in between the crys-

talline state (103 Ohms) and the amorphous state (106 Ohms). Based on the understanding,

multi-level cell (MLC) PCM has been studied to utilize intermediate resistance states be-

tween the crystalline and amorphous states so that the MLC PCMcan store more data per

cell than single-level cell (SLC) PCM.

However, MLC PCM needs more precise control over the resistance range of the cells

than SLC PCM. To do so, the MLC PCM requires an iterative-writing mechanism that reads

the resistance value of a cell immediately after the cell is written so that the mechanism is
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Table 3: Configuration Variables of Four-level Cell PCM Whent0 = 1 s.

Storage Level Data
log10 R α

µR σR µα σα

0 01 3.0

1
6

0.001

0.4× µα
1 11 4.0 0.02
2 10 5.0 0.06
3 00 6.0 0.10

able to confirm whether the cell is correctly written and determine whether a rewriting op-

eration is necessary. As a result, the iterative-writing mechanism adversely affects the write

latency of the MLC PCM. Recent studies show that a four-level PCM is approximately 4x

∼ 8x slower than SLC PCM in terms of write latency [88].

In addition, MLC PCM has to deal with reliability challenges arising from the fact that

the resistance level of cells tends to drift or rising over time and leading to soft errors.

Though this problem is more evident in MLC PCM than in SLC PCM, scientists have

focused on developing MLC PCM because it significantly increases the total capacity.

In light of those problems, we introduce mathematical errormodel that is used to calcu-

late soft error rates of MLC PCM for the first time. With the mathematical model, we eval-

uate existing error-reducing techniques including memoryscrubbing and error-correcting

codes. Based on the evaluation, we show that four-level cell(4LC) PCM, the most conser-

vative form of MLC PCM, is not a suitable alternative to DRAM asmain memory because

of its high soft-error rates.

5.2.2 Mathematical Soft Error Model and Validation

On the basis of a power-law model, Ielminiet al. [89, 90] reduced the resistance drift of

PCM into as

Rdri f t(t) = R× { t
t0
}α, (31)

whereR and t0 are normalization constants andα is a drift exponent. To obtain Equa-

tion (31), Ielminiet al. [89, 90] conducted iterative experiments to measure the resistance
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drift of reset and set states of PCM. Through the iterative experiments, the drift exponent of

the reset state was found substantially larger than that of the set state. The finding indicates

that the drift exponent increases directly in proportion tothe portion of the amorphous state

in a PCM cell.

We are aware of the fact that the resistance level of cells tends to drift, rising over time

and leading to soft errors in MLC PCM. In other words, resistance drift makes MLC PCM

unreliable. To estimate reliability impact of the resistance drift, we first deals with the

normalization constantsR andt0 and the drift exponentα, referring to Nirschlet al. [91].

In Nirschl et al. [91], iterative-writing mechanism is performed to adjust programed

resistanceRp into a certain resistance range. In such a case, log10 Rp is shown to follow

a normal Gaussian distribution. Based on their study, we make an assumption that alog

of R, or logR, from Equation (31) follows a normal distributionN(µR, σ
2
R). Nirschl et al.

[91] also stated that for a given state, a programmed resistance should fall within the range

of 10µR±2.75σR Ω, and upper and lower sensing boundaries should fall within the range of

10µR±3.00σR Ω. Based on that, we assume the drift exponentα of Equation (31) follows

a normal distribution ofN(µα, σ
2
α). We use the values of the parameters indicated in the

previous studies [92, 93], and Table 3 summarizes our analysis.

MLC PCM causes a soft error when the resistance level of its cell drifts and rises above

the upper boundary of its programmed state. Using the upper and lower sensing boundary

values presented above, we find out that the soft error occurswhen the condition repre-

sented below is met.

Rdri f t(t) > 10µR+3σR. (32)

Equation (32) and Table 3 show that the target resistance values are 103, 104, 105, and

106
Ω for the four storage levels, and the three sensing boundary values are between two

adjacent storage levels, 103.5, 104.5, and 105.5Ω. From these numbers, we learn that a soft

error occurs when the resistance value of a PCM cell for storage level 2 is identified larger

than 105.5 Ω. In such a case, the PCM cell is identified as storing a resistance value for the
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upper storage level, storage level 3.

Now we can obtain the probability of the soft error. First, weassume that log10 Randα

follow normal distributions as described in Table 3. Then wedefine thatmequals to log10 R,

andn equals to log10 t. In turn, we reduce Equation (31) into the following Equation (33)

usingmandn.

log10(Rdri f t(t)) = log10 R+ α log10 t = m+ nα. (33)

With Equation (32) and Equation (33), we can rewrite the condition that the soft error

generates as

m+ nα > µR+ 3.00σR

nα > µR+ 3.00σR−m,

wherenα follows a normal distributionN(nµα, (nσα)
2) becauseα follows a normal distri-

butionN(µα, σ
2
α). The probability thatnα is larger thanµR+ 3σR−m is calculated as

(Probability of soft error for a givenm) = 1− Φ(
µR+ 3σR−m− nµα

nσα
)

whereΦ(x) =
1
√

2π

∫ x

−∞
e−x2/2dx.

(34)

In turn, we obtain the probability density function of a random variablem, f (m) of

Equation (35), using the iterative-writing mechanism thatrepeats a write-and-verify se-

quence until log10 R falls into the range betweenµR+ 2.75σR andµR− 2.75σR.

f (m) =























1
Kφ(

m−µR

σR
) µR− 2.75σR < m< µR+ 2.75σR

0 otherwise,

whereK =
∫ µR−2.75σR

µR+2.75σR

φ(
m− µR

σR
)dm,

andφ(x) =
1
√

2π
e−x2/2.

(35)

Knowing that a random variablemhas a certain range,µR−2.75σR < m< µR+2.75σR,

we reduce Equation (34) into the following probability function in a time domain (t = 10n).

(Probability of soft error)

=

∫ µR−2.75σR

µR+2.75σR

(1− Φ(
µR+ 3σR−m− nµα

nσα
)) f (m)dm

(36)
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The equations presented above, including Equation (36), are verified using an indepen-

dent Monte Carlo simulator. We implement the simulator in accordance with the follow-

ing operating steps: (1) random number generator, 2) main loop, 3)Rdri f t(t) calculator, 4)

Rdri f t(t) evaluator and 5) repeater. In the first step, the random number generator generates

random numbers from a Gaussian distribution at a given mean and variance. The second

step picks correspondingR andα from Table 3, and then the simulator falls into the main

loop. The simulator repeats pickingR andα until µR − 2.75σR ≤ log10R ≤ µR + 2.75σR

for the purpose of emulating the iterative writing mechanism. OnceR andα in desired

ranges are picked, the simulator turns into the third step that calculatesRdri f t(t) using Equa-

tion (31). In the fourth step, the simulator determines a soft error occurs if log10 Rdri f t(t) is

larger thanµR + 3.00σR. Lastly, the simulator repeats the main loop one billion times and

counts the number of soft errors to obtain the soft error rate. For example, in the case that

ten soft errors are generated out of one billion trials, the soft error rate is amount to 10−8.

The simulation results are shown in Figure 36 and Table 4. Here, soft error rates for set

state (storage level 0) and reset state (storage level 3) arenot shown because a soft error does

not occur in storage level 3 even if the resistance drifts, and the soft error rate of storage

level 0 is negligibly low. Specifically, Mathematica 8.0 shows that the error rate of storage

level 0 first turns into a non-zero value, 2.3×10−18, at t = 235 (1090 years). Likewise, three

data points for storage levels 1 and 2 are omitted and marked as “too small” because the

simulator could not find error after running the main loop onebillion trials or Mathematica

8.0 is not able to evaluate Equation (36). Comparing Equation(36) to the results of the

Monte Carlo simulation obtained independently from Equation (36), we prove the validity

of Equation (36).

One salient observation made from this experiment is that researchers need analytical

models in studying soft error rates of a new technology. The Monte Carlo simulation could

not identify soft errors lower than 10−8 from a billion trials, which is already orders of

magnitude higher error rates than that of DRAM. In other words, to detect errors from
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Figure 36: Probability of Soft Error of Four-level Cell PCM Over Time

the odd of 10−11, Monte Carlo simulation must test several trillion trials, and this can take

months and years to finish. One of major contributions of thiswork is that we propose a

closed-form expression of soft-error rates of MLC PCM as shown in Equation (36).

5.2.3 Evaluating Four-level Cell PCM in Light of Reliability

It is obvious from Table 4 that 4LC-PCM is not suitable as a main memory because of high

error rates. Various studies have been proceeded to alleviate soft errors and build drift-

tolerant PCM including error correction schemes [92, 94, 95,93], data encoding schemes

using relative resistance difference [95, 94], a referencecell scheme [96], a time-aware drift

estimation scheme [93], and most recently an efficient scrubbing scheme [92]. Among

them, we evaluate the reliability of MLC PCM based on the efficient scrubbing scheme

because it is a recently introduced technique and gaining more attentions than the others

lately. Specifically, we utilize the most recent study published by Awasthiet al. [92] for

our evaluation.

Awasthi et al. [92] introduced a method of reducing the soft error rate using a mem-

ory scrubbing scheme and an error correction scheme. The twoschemes are combined to
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Table 4: Probability of Soft Error of Four-level Cell PCM

Storage Level 1 Storage Level 2
Elapsed Time (sec) Equation (36) Simulation Equation (36) Simulation

2 (too small) (too small) 5.85E-06% 7.40E-06%
22 1.59E-12% (too small) 0.02% 0.02%
23 5.85E-06% 7.40E-06% 0.12% 0.12%
24 7.45E-04% 7.57E-04% 0.28% 0.29%
25 0.01% 0.01% 0.52% 0.53%
26 0.02% 0.02% 0.85% 0.86%
27 0.05% 0.05% 1.30% 1.31%
28 0.08% 0.08% 1.90% 1.91%
29 0.12% 0.12% 2.67% 2.68%
210 0.17% 0.17% 3.64% 3.66%
211 0.22% 0.22% 4.84% 4.87%
212 0.28% 0.29% 6.29% 6.32%
213 0.35% 0.36% 7.99% 8.04%
214 0.43% 0.44% 9.95% 10.01%
215 0.52% 0.53% 12.16% 12.24%
216 0.62% 0.63% 14.61% 14.70%
217 0.73% 0.74% 17.27% 17.38%

reduce the error rate into a level suitable for main memory. Notwithstanding the most effi-

cient scheme, we find that the soft error rate of 4LC PCM is substantially higher than that

of DRAM1.

5.2.3.1 Estimating Scrubbing Overhead

In this section, we discuss in further details about the softerror rates (SERs) of 4LC-

PCM and DRAM, and show 4LC-PCM is not a feasible alternative to DRAM in light of

reliability. First, we presume that a basic access unit is a 16GB PCM main memory using

a 256B data block2 as described in prior literature [98, 99]. The read and writelatencies of

SLC PCM are known as 120nsand 150ns, respectively, as indicated in a recent paper, Choi

et al. [100]. That being said, we assume that MLC PCM spends at least 1µs in scrubbing

one cache line because MLC PCM necessitates the iterative-writing mechanism. Lastly,

1Soft error rates (SER) for DRAM are reported to be from25,000∼ 75,000FIT per Mbit, or25×10−12 ∼
75× 10−12 per bit-hour [97] on average.

2A last-level DRAM cache with larger capacity is used to hide PCM access latencies. We assume that its
cache-line size is 256B.
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Figure 37: Scrubbing Period Versus Scrubbing Overhead

we assume that each of the storage levels occurs with the sameprobability.

Figure 37 illustrates scrubbing overhead in the domain of scrubbing period and the

scrubbing overhead. The scrubbing overhead denotes (Time used for scrubbing)/(Scrubbing

period). As the basic access unit of the 16GB PCM has 64M cache-lines, it takes 67.1 sec-

onds (= 64M×1µs) to scrub the entire PCM. If the scrubbing period is set for 45 minutes as

the same as in a typical DRAM memory system [97], the SER of a 4LC-PCM cell for stor-

age level 2 comes close to 5%, still much higher than the SER ofDRAM. Accordingly, we

learn that 4LC-PCM does not provide reliability so much as to function as main memory

in place of DRAM even with scrub mechanisms.

Table 4 shows that in the dramatic scenario that the memory controller of 4LC-PCM

performs only the scrubbing operations and nothing else, the SER of storage level 2 still

remains as high as 0.9%. To main SER in the rage of DRAM and still reduce the scrubbing

overhead, the maximum capacity of PCM must be limited. The next section discusses the

impact of reducing maximum capacity of PCM to the scrubbing overhead and SER.

5.2.3.2 Lower Soft Error Rates by Reducing Capacity

Limiting the maximum capacity of 4LC-PCM is one way to lower theSER of 4LC-PCM.

Like in Section 5.2.3.1, we assume that the capacity of 4LC-PCMis 16GB in calculating

the scrubbing overhead. If the capacity is assumed as 8GB, the scrubbing overhead reduces
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Table 5: Maximum Capacity of Four-level Cell PCM by Soft Error Rates and Scrubbing
Overhead

Scrubbing Overhead
Scrubbing

Period (sec)
S ERcombined 100.0% 12.5% 1.0%

2 1.46E-06% 488MB 61.0MB 4.88MB
22 0.005% 977MB 122MB 9.77MB
23 0.030% 1.95GB 244MB 19.5MB
24 0.071% 3.91GB 488MB 39.1MB
25 0.132% 7.81GB 977MB 78.1MB

by half as the overhead increase in proportion to the capacity. In the same sense, a lower

SER is obtained if the capacity is further reduced.

We calculate the maximum available capacity of 4LC-PCM in a given SER and scrub-

bing overhead combination, as indicated in Table 5. The leftmost column of Table 5 shows

the scrubbing periods seen by each 256B memory block, and thenext column shows com-

bined SERs representing anaverageSER of the four states of 4LC-PCM. The combined

SERs are approximately one fourth of the SERs of storage level 3 because storage level

3 has a much larger SER than the other storage levels. Table 5 also shows the maximum

capacity at a three different degree of scrubbing overhead.In case of 100% scrubbing

overhead, the memory controller is not able to handle any service request delivered from

its upper level of the memory hierarchy. Table 5 also shows 12.5% scrubbing overhead

that can be considered as an upper bound as opposed to impractical 100% overhead. In

addition, Table 5 presents the maximum capacity for 12.5% and 1.0% scrubbing overhead,

respectively. For instance, when 4LC-PCM is set to have 1.0% scrubbing overhead and

spend 99% of its time servicing memory request, the 4LC-PCM canmerely have 4.88MB

of maximum capacity to maintain 1.46E-06% of average SER. Ithas been known that

scrubbing can be proceeded in parallel if 4LC-PCM has more thanone bank or rank. In

other words, while one bank is being scrubbed, the other bankcan respond to a service

request from the CPU. However, even 4LC-PCM with four ranks and four banks does not
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meet the capacity required for a main memory. The maximum capacity of such 4LC-PCM

is 78.1MB that is much lower than the required capacity. In sum, reducing the capacity

of 4LC-PCM does not render 4LC-PCM into a feasible technology because the maximum

capacity becomes too small to be used even though the SER can be lowered as a result of

the reduced capacity of 4LC-PCM.

5.2.3.3 Use of Error-Correcting Codes

The SER of 4LC-PCM can be lowered using error-correcting codes(ECC). Among various

ECC schemes, Hamming code error correction [101] is commonlyapplied to server main

memory as industry standard (72,64). The error correction can be implemented simply by

adding 8 redundant bits to 64 bits data3. Furthermore, stronger ECC, for example, BCH

codes can be used to correct multiple bit errors. More specifically, the BCH codes [102,

103] correct 8, 16, 24, or 40 bit errors in 256, 512, 1024 bytesof data based on the size of the

redundant bits. However, the BCH codes have disadvantage to the (72,64) Hamming code

in that the BCH codes needs more computing time and power for decoding. For the reasons,

the BCH codes are not frequently applied to delay sensitive devices such as main memory;

however, they are more suitable for slower devices including NAND-based storage. In this

section, we use (72,64) Hamming code and BCH codes together tocalculate the error rates

of 4LC-PCM. We refer to the combined SER as defined in the previous section and assume

the data size to 256 bytes for every ECC evaluation.

(72,64) Hamming code cannot correct two or more bit errors in72 bits data because

the code only corrects one bit error. Since 36 4LC-PCM cells arenecessary to store the

72 bits data, the probability of occurrence of multiple bit errors out of 36 cells is derived

as follows. From Table 3, we know that changing one storage level affects one bit of two

bit data at most. In accordance, two bit errors generate onlywhen two 4LC-PCM cells are

3Overhead is 12.5%.
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changed as a result of resistance drift.

Probability of having at least two bit errors

=Perror(64b) = 1− P(no errors)− P(one bit error)

=1− (1− S ERcombined)
36

−
(

36
1

)

(1− S ERcombined)
35(S ERcombined)

(37)

In turn, we calculate the probability that a uncorrectable error occurs in 256 bytes data,

using the scrubbing period, scrubbing overheads, and SER obtained from Table 4. 256

bytes data comprises 32 blocks where each block has 64 bits. Accordingly, any of the 32

blocks should not cause an error to reconstruct the 256 bytesdata. Therefore, the probabil-

ity of experiencing uncorrectable error for 256 bytes is represented as

Perror(256B) = 1− (1− Perror(64b))32, (38)

wherePerror(64b) denotes the result of Equation (37).

Table 6 shows in the fourth column the result values ofPerror(256B) when (72,64)

Hamming code is applied. From the error rates, we learn that although (72,64) Hamming

code lowers the error rates, the error rates still prevent this technology from practical use.

Stronger ECC is necessary to further reduce the error rates even though it leads to a large

computational overhead.

We now calculate the probability that an uncorrectable error occurs in 256 bytes data

when stronger ECC than (72,64) Hamming code is applied. BCH-8,BCH-16, BCH-24,

and BCH-32 are examples that are stronger than (72,64) Hamming code. BCH-8 adds 12

redundant bytes and corrects up to 8 bits errors, and BCH-16 adds 24 redundant bytes and

correct up to 16 bits errors4. We obtain the probability thatn or more bit errors occur out

4Overheads are 4.7% and 9.4%.
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Table 6: Probability of Uncorrectable Errors byS ERcombined for 16GB 4LC-PCM under
(72,64) Hamming code

Perror(256B)
Scrubbing Period (Overheads)S ERcombined No ECC (72,64)

27 sec (52.4%) 0.325% 96.4% 18.0%
28 sec (26.2%) 0.475% 99.2% 33.7%
29 sec (13.1%) 0.668% 99.9% 54.3%
210 sec (6.6%) 0.91% 100% 75.1%
211 sec (3.3%) 1.21% 100% 90.3%
212 sec (1.6%) 1.57% 100% 97.6%

Table 7: Probability of Uncorrectable Errors by different strength of BCH codes and
S ERcombinedfor 16GB 4LC-PCM

Perror(256B)
Scrubbing

Period
(Overheads)

S ERcombined
BCH-8

(256B+12B)
BCH-16

(256B+24B)
BCH-24

(256B+36B)
BCH-32

(256B+48B)

27 sec (52.4%) 0.325% 0.949% 2.96E-5% 4.11E-11 % (too small)
28 sec (26.2%) 0.475% 7.38% 4.00E-3% 1.09E-7% 6.24E-12%
29 sec (13.1%) 0.668% 29.2% 0.184% 6.68E-5% 3.65E-9%
210 sec (6.6%) 0.91% 64.0% 3.08% 1.09E-2% 6.17E-6%
211 sec (3.3%) 1.21% 90.0% 20.5% 0.53% 2.43E-3%
212 sec (1.6%) 1.57% 98.7% 58.9% 7.83% 0.22%

of mbits data using Equation (37).

Probability of having at leastn bit errors out ofmbits

= 1−
n−1
∑

k=0

(

m
k

)

(1− S ERcombined)
m−k(S ERcombined)

k.

(39)

Table 7 shows the result values of Equation (39). In case the scrubbing period is 27

seconds and the scrubbing overhead is 52.4%,Perror(256B) are obtained as 0.949% and

2.96× 10−5% for BCH-8 and BCH-16, respectively. Note that the error rates, 0.949% and

2.96× 10−5%, are much smaller than the error rate, 18%, with (72,64) Hamming code.

Nonetheless, the error rates with BCH-8 and BCH-16 are 105 ∼ 108 times as high as the

error rate of raw DRAM even without ECC support.

For those reasons, 4LC-PCM needs an ECC scheme more effective than BCH-16, for
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example, BCH-24 or BCH-32. However, the use of BCH-24 and BCH-32 is limited to

devices that are lenient to timing delay and designed to operate at a relatively low data

rate. For example, since MLC-NAND based devices delivers only a few tens of megabytes

per second, and they are not sensitive to latency, BCH-24 or BCH-32 can be effectively

implemented into them. However, 4LC-PCM as main memory of a system is sensitive to

latency and delivers more than a few gigabytes per second. Thus, a complex ECC mech-

anism, like the BCH-24 and BCH-32, is not a suitable solution for 4LC-PCM considering

the cost and performance problems. In light of the cost problem, applying complex ECC to

a memory controller is not desirable because the current industry trend fabricates a mem-

ory controller and a processor core on the same die, which requires a separate CPU that

supports 4LC-PCM. In light of the performance problem, the large computational overhead

stemming from complex ECC compromises the performance in exchange for the reduced

error rate and deteriorates the memory latency. In the sense, a typical DRAM system only

implements simple ECC mechanisms, such as (72,64) Hamming code. We argue that using

a complex and strong ECC mechanism does nothing but limiting the application of PCM

and cannot render 4LC-PCM practically feasible for main memory.

5.3 Half-and-Half Storage: Improving Error Resiliency of
Approximate Solid-State Memory by Co-Locating Precise and

Approximate Information
5.3.1 Background

With the increasing concerns of power and energy in today’s computing systems,approx-

imate computingdraws significant attention as one of the promising ways for energy-

efficient computing [104, 105, 106, 107, 108, 109, 110]. Softerrors are unbearable in

general, but certain categories of applications, such as multi-media processing and com-

puter vision, can tolerate some amount of soft errors while minimizing output quality loss.

As such, approximate computing trades off accuracy for energy and performance using

software and hardware techniques.
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With the same objective of energy efficiency, non-volatile memory such as phase change

memory (PCM), spin-transfer torque RAM (STT-RAM), and memristors has also recently

received significant attention as a replacement for DRAM. The domain of approximate

computing can be extended to such non-volatile memory to provide more energy-efficient

memory systems. For example, Sampson et al. [106] recently proposed relaxing the re-

peated write-and-verify sequences of a multi-level-cell (MLC) PCM write when storing

approximate data.

Although approximate computing embraces imprecision, however, it is crucial to stream-

lining error resilience for the best trade-off between accuracy, performance, and energy.

The same holds true for approximate storage as well. This chapter provides a comprehen-

sive study to efficiently enable MLC PCM as approximate storage. We show that simply

reducing the number of write iterations for approximate MLCPCM does not provide good

error-resilient approximate storage.

We then propose a new type of multi-level PCM cells for approximate storage, which

we refer to as a “half-precise and half-approximate” cell. To do so, we shift the resistance

range of the second storage level (L2) in 4LC PCM to the lower resistance level (L1) and

thus createnon-equispacedstorage levels. The proposed writing strategy, combined with

Gray coding, makes the most significant bit in a four-level-cell (4LC) PCM precise with-

out compromising write latency and energy, thereby having the great potential to improve

computational resilience to errors in the context of approximate storage.

5.3.2 Multi-Level-Cell Phase Change Memory as ApproximateStorage
5.3.2.1 Phase Change Memory (PCM)

Phase change memory (PCM) is a type of non-volatile memory that stores information

as a resistance value. For example, a single-level PCM cell stores one bit of information

(i.e., zero or one) in two different resistance states: an amorphous state (high resistivity;

reset) and a crystalline state (low resistivity; set). When aPCM cell is in a set state, its

resistance range is around a few kilo-ohms, while the resistance range of the reset state
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Figure 38: Write probability of a multi-level PCM cell. MLC PCM can either be precise
or approximate depending on the distribution width of each storage level.

is around a few mega-ohms. Because of the large difference inresistance between the

two states (three orders of magnitude), researchers have proposed multi-level-cell (MLC)

PCM that defines intermediate storage levels between the set and reset states to increase

information density in a PCM cell [91, 111]. For example, Figure 38 shows four-level-cell

(4LC) PCM in which the resistance ranges of four storage levelsare evenly distributed in a

log-scale manner; e.g., each storage level targets the resistance range of 1kΩ, 10kΩ, 100kΩ,

and 1MΩ. Unfortunately, PCM writes are non-deterministic; thus, a PCM write targeting

10KΩ may end up making PCM to have a resistance of only 5KΩ for instance. Therefore,

MLC PCM needs to repeatedly perform a write-and-verify sequence until the write has

been performed within a pre-defined resistance range (distribution width in Figure 38) of a

storage level.

5.3.2.2 Precise and Approximate MLC PCM

Due to the nature of PCM materials, the resistance programmedin a PCM cell increases

over time. This phenomenon, referred to asresistance drift, does not cause soft errors in

single-level-cell (SLC) PCM; SLC PCM always returns the value initially written to. In

contrast, MLC PCM is inherentlyapproximate storageas the resistance drift can cross the

decision boundary between code words (e.g., 00, 01, 11, 10 in4LC PCM); thus, it may

return a value different from the one initially stored in a cell after a few minutes since

writing. To alleviate the drift-induced soft errors, theremust be a large drift margin (guard
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band) between the storage levels; that is, a multi-level cell can be precise or approximate

by controlling the drift margin/distribution width of storage levels.

When PCM is used as main memory as a replacement for DRAM, it is expected to be as

reliable as DRAM. Thus, we define precise MLCs as multi-level cells whose bit-level error

rates are comparable to DRAM. Most of previous studies on 4LCPCM use the distribution

width of log10R = 0.916̇ that leads to 1000ns of PCM write latency. These 4LC PCMs

are in fact already approximate storage by the standard;i.e., for the distribution width,

both MSB and LSB have non-negligible error rates as shown in Figure 39a. We use this

error-prone 4LC PCM as baseline approximate 4LC PCM in this chapter.

5.3.2.3 The Need for Reliable Approximate Storage

Prior work discussing approximate MLC PCM [106] exploits therelationship between the

distribution width and the number of write iterations;i.e.,approximate data is written to the

PCM cells with reduced drift margins to improve the write latency and energy. However,

simply relaxing a write-and-verify sequence in cell programming does not enable efficient

and reliable approximate MLC PCM. Unfortunately, such an approximate PCM cell would

have non-negligible errors in bits of a PCM cell due to resistance drift. As we will discuss

more in detail in Section 5.3.4, the key to enabling effective approximate MLC is to provide

reliable high-order bits. In the next section, we discuss the writing strategy to provide more

error resilient approximate PCM.

5.3.3 Half-and-Half PCM
5.3.3.1 Overview

Each storage level in approximate 4LC PCM has a unique error rate. For example, the first

(L1) and the last (L4) storage levels do not generate errors,whereas the second (L2) and

the third (L3) storage levels have 0.25% and 5.39% error rates after 45 minutes of initial

writes due to resistance drift. For the 4LC PCM, if we convert thestorage-levelerror rates

into bit-levelerror rates, the first bit (MSB) and the second bit (MSB) have error rates of
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Figure 39: Half-and-half storage PCM secures reliability ofthe MSB by compromising
error rates for LSB

0.06% and 1.35%, as shown in Figure 39a.5 While mapping the highest-order bits of a

value to the MSB of PCM cells [106] may improve error resiliency of approximate MLC

PCM compared to a conventional PCM bit mapping, it can still lead to huge errors due to

the non-negligible error rates of the MSB (see Section 5.3.4).

To provide an approximate multi-level cell that is more resilient to soft errors than the

baseline approximate cell, we leverage the fact that one canwrite at any arbitrary resistance

level on a PCM cell without compromising write latencies [112]. In fact, the equispaced

5We assume that the chances of appearance of all code words (00, 01, 11, 10) are the same.

100



resistance ranges of L1∼L4, as illustrated in Figure 39a, are simply used because thecon-

figuration yields the lowest average bit-level error rates.However, as previously discussed,

approximate storage that provides a number of precise bits (even though the rest of the bits

are more compromised) is more beneficial in many cases than the one with lower average

error rates (but no precise bits provided). As such, we propose to shift the second storage

level (L2) to a lower resistance level, as illustrated in Figure 39b, thereby increasing the gap

between L2 and L3. When such a simple change is combined with Gray code (00, 01, 11,

and 10 for L1, L2, L3, and L4, respectively), commonly used for PCM cell encoding, the

most significant bit can become error-free since we can eliminate the error sequence from

01 to 11. This way, we can have much reliable approximate cells for approximate data.

Note that although this configuration may encounter errors between L1 and L2, which are

not generated in the conventional 4LC PCM configurations, these errors do not affect the

information stored in the MSB; Only the data stored in the LSBmay be compromised.

Also, the proposed half-and-half PCM has the same writing latency/power as conventional

approximate MLC PCM.

5.3.3.2 Error Rates of Half-and-Half PCM

In this section, we compute error rates of the proposed half-and-half storage. We first

determine the resistance range of the second storage level (L2) that does not generate errors

between L2 and L3. For the discussion, we use the same analytical models and physical

parameters as used in prior work [92, 93, 113]. We also conservatively assume that shifting

the second storage level to the lower level does not improve the resistance drift rate.6

MSB Error Rates: Table 8 shows the error rates of the second storage level of 4LC

PCM. The first column represents the elapsed time since initial writing, and the second

column shows the error rates of the baseline resistance level, which is log10 R = 4.0. The

last two columns show the error rates when we slightly move L2to the lower resistance

6Our modification moves L2 to the lower resistance level, which will decrease (or improve) the drift rate.
This will only improve the LSB error rate of half-half PCM.
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Table 8: Error rates for the second storage level (L2) of 4LC PCM

Elapsed
Time

Original log10 R= 3.9 log10 R= 3.8

5 minutes 0.09% 3.82× 10−8% (too small)
15 minutes 0.15% 8.50× 10−6% (too small)
25 minutes 0.19% 4.53× 10−5% (too small)
35 minutes 0.22% 1.13× 10−4% (too small)
45 minutes 0.24% 2.07× 10−4% 3.53× 10−12%

levels of log10 R = 3.9 and log10 R = 3.8. We mark “(too small)” when Mathematica 8.0

cannot compute the value because of lack of precision. In addition, a darker background

cell indicates that the bit-level error rate is lower than that of DRAM. As shown in the

table, when the resistance level of L2 is moved from log10 R = 4.0 to log10 R = 3.8, the

error sequence of 01→11 is negligible;i.e., the most significant bit of a MLC PCM cell

becomes as reliable as a DRAM cell.

LSB Error Rates: We now discuss the impact of the half-and-half configurationon

the LSB error rate. At a high level, the LSB of half-and-half PCM would intuitively have

a higher error rate than conventional 4LC PCM because the proposed configuration causes

soft errors between L1 and L2 in addition to the existing errors between L3 and L4. The

LSB errors by L1 and L2 are in fact broken into the two different types of errors. First, the

first storage level (L1) now causes drift-induced errors since the decision boundary between

L1 and L2 would also be shifted to the lower resistance level when we use the resistance

level of log10 R= 3.8. Second, since we simply shift L2’s distribution functionwhile using

the same writing methodology/precision as in conventional4LC PCM, the new decision

boundary now may generate initial writing errors;i.e., the attempts to writing to L2 may

accidentally end up writing to L1. As such, to compute the overall error rates of the LSB,

we evaluate these two types of errors and add them together.

Table 9 shows the error rates of the first level (L1) for a half-and-half PCM cell. The

second column shows the initial writing error rate, and the third column shows the drift-

induced error rate that is a function of elapsed time. All in all, after 45 minutes of initial

102



Table 9: Error rates of the first storage level (L1) for half-and-half 4LC PCM

Elapsed
Time

Initial
errors (=A)

Drift-induced
errors (=B)

Combined
(=A+B)

5 minutes

0.52%

0.03% 0.56%
15 minutes 0.04% 0.56%
25 minutes 0.04% 0.57%
35 minutes 0.05% 0.57%
45 minutes 0.05% 0.57%

00 01 11 10
0.25% 5.39%

00 01 11 10
5.39%0.57%

0.52%

(a) Approximate 4LC PCM (conventional)

(b) Proposed Half-and-half PCM

Figure 40: Error diagram for half-and-half storage.

writing, about 0.57% of the L1 cells are falsely read out as L2. The L2 error rate (01→00)

can be simply calculated because the L2 error rate is the sameas its initial writing error

rate (L2 does not cause drift-induced errors). Because all the storage levels have the same

distribution function, the initial writing error rate of L2is the same as that of L1;i.e.,0.52%

of L2 will be falsely read out as L1.

Comparison to Conventional 4LC PCM: Figure 40 shows the summary of the

storage-level error rates of the proposed half-and-half storage; after 45 minutes since writ-

ing, 0.57% of L1 moves to L2, 0.52% of L2 moves to L1, and 5.4% ofL3 moves to L4.

Table 10 shows the bit-level error rates of both conventional approximate 4LC PCM and

half-and-half PCM, which are converted from the storage-level error rates in the same man-

ner as previously discussed. Again, a dark background cell indicates that the error rate is

lower than that of DRAM.

As shown in Table 10, the key difference between these two technologies is that the

proposed technique guarantees the reliability of MSB whilethe other does not. In exchange
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Table 10: Bit-level error rates of two approximate PCM cells:4LC PCM and half-and-half
PCM

Four-Level Cell PCM Half-and-Half PCM
Time
(min)

MSB LSB MSB LSB

5 0.02% 0.51% (too small) 0.78%
10 0.03% 0.72% (too small) 0.99%
15 0.04% 0.86% (too small) 1.13%
20 0.04% 0.97% (too small) 1.25%
25 0.05% 1.07% (too small) 1.34%
30 0.05% 1.15% (too small) 1.42%
35 0.06% 1.22% (too small) 1.49%
40 0.06% 1.29% (too small) 1.56%
45 0.06% 1.35% 8.83× 10−14% 1.62%

for such a benefit, half-and-half PCM compromises (1) LSB error rates and (2) average bit-

level error rates of both MSB and LSB. However, we will show insubsequent sections that

even though half-and-half PCM exacerbates errors on LSB and average bit-level error rates,

it significantly improves robustness of stored values than the traditional PCM.

5.3.4 Bit-Level Errors to Value Errors

Bit-level errors in storage systems lead to value errors; however, each bit error has different

impact on the value of the stored data. In some extreme cases,a single-bit error in a

double-precision variable can change the stored value up to3.5 × 10618, or in the other

extreme cases, the error may only change the value as little as 1.0 × 10−300. Therefore,

storing the most important piece of information in a place with the least error is important

to minimize errors of stored values. Sampsonet al. [106] recently proposed a simple

coding scheme for approximate MLC PCM that minimizes value errors. This section first

discusses the coding scheme and shows that only a single-biterror of conventional MLC

PCM can largely compromise the robustness of the storage system. We then show that the

proposed half-and-half PCM can significantly improve computational resilience to errors.
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Figure 41: Bit mapping for (a) unsigned integer, (b) signed integer, (c) double-precision
floating-point (IEEE 754)

5.3.4.1 Assigning Binary Values to Multi-Level Cells

Sampsonet al. [106] examined two different codes for assigning binary values to MLC

PCM; concatenation and striping code. Concatenation code assigns n consecutive binary

bits to ann-bit cell, whereas striping code assigns firstn bits to n different cells. The

striping code basically exploits lower error rates of MSB inMLC PCM and stores important

information in the MSB and shows a better error tolerance. Therefore, we assume that the

baseline coding scheme is striping code where the firstn/2 bits are stored on MSB while

the lower bits are stored on LSB ofn PCM cells. This coding applies for both the traditional

4LC PCM and half-and-half PCM.

5.3.4.2 Impact of Single-Bit Errors

Bit flipping in storage value errors for virtually any data type including (1) integers and (2)

floating-point types.

Unsigned Integer: Due to its simplicity, we first discuss impact of a single-biterror

on an integer type of data. Figure 41a shows a typical bit-mapping for an unsigned integer

where thenth bit from the LSB represents 2n−1; thus, a bit flip on thenth bit leads to a value

error of 2n−1 in this case. If we defineE(n) as the expected error rate of thenth bit, then

the expected value error for anm-bit unsigned integer becomes
∑m

n=1 E(n) × 2n−1. Thus,

the best mapping strategy is clearly to assign the least failing bit from the most significant
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bit. Surprisingly, with this simple but optimal mapping strategy, in only five minutes after

writing, a 64-bit unsigned integer in conventional approximate 4LC PCM is expected to

have a value error of 4.01× 1015. Here we use 32 4LC PCM cells for mapping, and the

MSBs of the 32 cells store the 32 high order bits of a 64-bit integer.

On the other hand, the same integer data type using half-and-half PCM is expected to

have a value error of 3.35 × 107, which is about 108 smaller compared to conventional

4LC PCM. For a 32-bit unsigned integer, conventional approximate 4LC PCM shows the

expected value error of about 934,316.9, whereas half-and-half PCM only shows 255.6.

Thus, for both 64-bit and 32-bit cases, half-and-half PCM shows several orders of magni-

tude less value errors compared to conventional 4LC PCM.

Signed Integer: Signed integer types also show the same amount of expected value

errors as the unsigned integer types when two’s complement representations are used.

Signed integer types (Figure 41b) use the first bit to indicate whether the value is posi-

tive or negative; therefore, the value error depends on the rest of the bits. However, when

signed integer types employ two’s complement representations, it is easy to analyze the

impact of an error on the sign bit. In two’s complement system, when sign bit becomes

zero (positive) from one (negative), the value of such integer is subtracted by 2m−1 where

m is the number of bits in the integer. For example, we consideran eight-bit signed integer

variable with the stored value of three, then its binary representation is 0000 0011b. In the

case of sign bit error, it becomes 1000 0011b, or−125 in two’s complement representation.

The amount of value error in this case is 128 or 27
= 2m−1. This amount of error is exactly

the same as we found from the unsigned integer types; therefore, we argue that the same

analysis still holds for signed integers. In summary, we findthat for the two’s comple-

ment representation, the accuracy benefit of the proposed half-and-half PCM also holds for

signed integer types.
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Table 11: Bit flipping happens onπ stored in double-precision floating point

Error
Position

Bit Layout Value

(no error) 0x4009 21FB 5444 2D18 3.1416 (=π)
48th bit 0x4009 A1FB 5444 2D18 3.2041
49th bit 0x4008 21FB 5444 2D18 3.0166
50th bit 0x400B 21FB 5444 2D18 3.3916
51st bit 0x400D 21FB 5444 2D18 3.6416
52nd bit 0x4001 21FB 5444 2D18 2.1416
53rd bit 0x4019 21FB 5444 2D18 6.2832
54th bit 0x4029 21FB 5444 2D18 12.566
55th bit 0x4049 21FB 5444 2D18 50.265
56th bit 0x4089 21FB 5444 2D18 804.25
57th bit 0x4109 21FB 5444 2D18 2.06×105

58th bit 0x4209 21FB 5444 2D18 1.35×1010

59th bit 0x4409 21FB 5444 2D18 5.80×1019

60th bit 0x4809 21FB 5444 2D18 1.07×1039

61st bit 0x5009 21FB 5444 2D18 3.64×1077

62nd bit 0x6009 21FB 5444 2D18 4.21×10154

63rd bit 0x0009 21FB 5444 2D18 1.27×10−308

64th bit 0xC009 21FB 5444 2D18 -3.1416

Floating Point: In general, floating point data types are more common and important

than integers in approximate computing domains. The expected value error of a floating-

point variable depends on the value initially stored in approximate storage. For example,

assume thatπ(= 3.141592...) is stored in a 64-bit double-precision data type and that a

bit-flipping error happens on the 51st bit. In this case, the absolute error (|initial value−

altered value|) becomes 0.5. However, if the initial value is 2π, the absolute error for the

same bit flip becomes 1.0; thus, it is not trivial to define and quantitatively compare the

expected value errors across different approximate storage. However, we can still compare

the expected value error when we fix the initial value with oneof the widely used constants

and show that the proposed half-and-half PCM provides many orders of magnitude less

value errors than the traditional PCM.

Table 11 shows the changes in values by the location of a single-bit flipping error when

pi is stored in a 64-bit double-precision variable. The errorson 53rd through 64th bits result
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in more than 100% of absolute errors, and the most significanterror shows the absolute

error of more than 10150 when the 62nd bit is flipped. In contrast, the maximum value

error of half-and-half PCM is 9.54 × 10−7. For other constants, we have observed that

half-and-half PCM are similarly better than conventional 4LC PCM.

5.3.4.3 Approximate 4LC PCM with Error Correcting Codes

Bit-level errors can be detected and corrected using error correcting codes (ECC), so one

interesting question might be the possibility of using approximate 4LC PCM with ECC to

improve the error resiliency of approximate storage. However, using ECC is a less appeal-

ing solution in approximate computing than in conventionalcomputing. One main reason is

the overhead of ECC. The main purpose of using approximate storage is to improve perfor-

mance/energy. However, ECC will introduce extra storage overhead or another dedicated

chip that drives signals for increased numbers of data lines. Memory controller must also

occupy extra space, consume latency, and burn extra power for encoding, decoding, and

correcting errors for all the transferred data. In contrast, the proposed half-and-half PCM

does not incur extra area, latency nor power overhead compared to approximate 4LC PCM

with ECC.

5.3.5 Costs of Writing Precise Bits in 4LC PCM

4LC PCM can be as reliable as DRAM if we reduce the distributionwidth and increase the

guard band. Here, we discuss how narrow the distribution width needs to be to make the

4LC PCM precise. For the discussion, we use the equations fromother study (Equations

(5) and (6) in [113]) and use the distribution width oflog10R= 0.916̇ as baseline (100%).

Table 12 shows the error rates of MSB and LSB when we reduce thedistribution width

from 100% to 40% as illustrated in Figure 42. Cells with darkerbackground indicates that

the error rates are comparable to or lower than those of DRAM.As shown in the table, the

MSB starts to be as reliable as DRAM from 60% of the baseline distribution width, whereas

the LSB begins reliable around the half of the original width. Then, the next question is
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Table 12: Bit-level Error Rates of MSB and LSB by the width of the resistance range
Distribution

width
MSB LSB

100% 0.06% 1.35%
90% 0.01% 0.61%
80% 5.07× 10−04% 0.17%
70% 1.75× 10−06% 0.02%
60% 4.47× 10−10% 3.05× 10−4%
50% 7.57× 10−15% 5.59× 10−7%
40% (too small) 5.38× 10−11%

how many write iterations we need to halve the distribution width.

log10 Ω

Distribution Width
100%
90%
80%

log10 Ω

Distribution Width
100%
90%
80%

Figure 42: Shrinking distribution width of MLC PCM

Roughly speaking, halving the distribution width would increase the number of write

iterations as similar as that is required for doubling the numbers of storage levels in MLC

PCM. Assume that one decides to write a 4LC PCM cell with half of the distribution width.

In this case, one can either (1) define extra four storage levels between existing four to

create a 8LC PCM cell or (2) leave extra storage levels empty asdrift margins. Because the

writing precision remains the same for both cases, one should expect the same numbers of

write iterations as well. Thus, we can compute the number of required write iterations to

halve the distribution width for 4LC PCM by calculating the average write iterations that

4LC and 8LC PCM (distribution width oflog10R= 0.916̇) takes.

Figure 43 shows the number of write iterations required for 4LC and 8LC PCM. On

average, writing on 4LC PCM takes 8.7 iterations, whereas writing on 8LC PCM takes 19.3
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Table 13: Bit-level error rates and write latencies

Technology
Error Rates Write

LatencyMSB LSB (Avg)
Baseline 0.06% 1.35% 0.71% 1000ns

60% - 3.1E−4% 1.5E−4% 1667ns
50% - - - 2000ns

Half-and-half
PCM

- 1.62% 0.81% 1000ns
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Figure 43: Distribution of the number of write iterations for 4LC and 8LC PCM

iterations (about 2.2x). Another interesting change for 8LC PCM is that it has a longer tail

than 4LC, which can degrade the worst case performance of writing PCM. We assume that

other techniques [114] can mitigate such side effects and simply use the average number of

write iterations. Then, we can estimate the cost of writing two precise bits on 4LC PCM as

2000ns, one precise MSB and one approximate LSB as 1667ns (= 1000ns/60%), and two

approximate bits as 1000ns (= 1000ns/100%). Table 13 summarizes the write latencies

compared to half-and-half PCM.

5.3.6 Evaluation
5.3.6.1 Sensitivity study for half-and-half PCM

The proposed half-and-half PCM in Section 5.3.3 relocated the center of the resistance

distribution (=µR) of the second storage level from log10µR = 4.0 to log10µR = 3.8, which

made the MSB of it reliable. log10µR = 3.8 is an optimal point for the given number of

write iterations or write latency of 1000ns. However, we have shown that the error rate of
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Table 14: MSB Error Rates for Half-and-half PCM with Relaxed Write Iterations byµR of
L2

Dist.
Width

logµR = 3.78 logµR = 3.74 logµR = 3.70 logµR = 3.66 logµR = 3.62

110% 2.66E−10% 2.34E−14 % (too small) (too small) (too small)
120% 4.32E−9% 3.72E−10 % 4.37E−14 % 6.20E−19 % (too small)
130% 5.45E−7% 4.05E−7 % 4.60E−10 % 7.25E−14 % 1.48E−18 %
140% 7.25E−4% 3.53E−5 % 3.38E−7 % 5.10E−10 % 1.07E−13 %
150% 1.98E−3% 3.49E−4 % 2.06E−5 % 2.52E−7 % 4.99E−10 %

LSB is less sensitive to value errors as long as MSB is reliable, and there are cases where

write latency is more important than the error rate of LSB. Inother words, half-and-half

PCM can relax on write iterations or reduce write latency by further sacrificing the error

rate of LSB while still maintaining the most important property of it; reliable MSB.

To examine the relationship between write latency and the error rate of LSB, we first

evaluate the impact of stretching the distribution width ofthe second storage level. Starting

from the original half-and-half configuration, we stretch the distribution width from 100%

(=log10R = 0.916̇) to 150% (=log10R = 1.375) in the step of 10%. For all cases,µR of L2

is moved toward L1, andµR of L3 is moved toward L4 for the same amount so that MSB

is still reliable. Note that as we have wider distribution width of storage levels, we must

further move L2 and L3 toward L1 and L4 respectively, and thisrelocation will compromise

error rates of LSB.

We first examine how muchµR of L2 must be relocated toward L1 to have no MSB

errors for first 45 minutes. For each distribution width from100% to 150%, we start from

the original configuration, log10µR = 3.80, and moveµR toward L1 until it shows no errors

between L2 and L3. When the distribution width is 110% and 150%, we had to moveµR to

log10µR = 3.78 and log10µR = 3.62 respectively. This relation is summarized in Table 14

where darker backgrounds indicate the error rates less thanthat of DRAM.
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Table 15: Error Rates of Half-and-half PCM with Relaxed Write Iterations
Dist.
Width

L1→L2 Error L2 Initial Error L3→L4 Error
Combined
LSB Error

Write Latency

110% 0.95% 0.84% 6.89% 2.17% 909ns
120% 1.42% 1.27% 10.35% 3.26% 833ns
130% 1.96% 1.77% 14.80% 4.63% 769ns
140% 2.62% 2.38% 20.35% 6.34% 714ns
150% 3.45% 3.14% 26.96% 8.39% 667ns

Now for the given distribution width andµR, we calculate error rates for LSB. As dis-

cusses earlier, LSB error is a function of (1) errors from L1,which is the sum of the resis-

tance drift error and initial writing error, (2) initial writing errors from L2 where the write

attempt to L2 can write to L1, and (3) errors from L3 due to the resistance drift. Each type

of errors are evaluated and presented in the second through fourth column of Table 15. We

then show combined error rate of LSB and the expected write latency of each configuration.

LSB experiences about 5.3 times more errors than the original half-and-half PCM as we

stretch the distribution width from 100% to 150%. The remainder of this section examines

the impact of increased error rates for LSB to the output quality of applications.

5.3.6.2 Benchmarks and Definition of Output Quality Loss

We evaluate all SciMark2 benchmarks, Fast Fourier Transform (FFT), Jacobi Successive

Over-relaxation (SOR), Monte Carloπ calculation (MCπ), sparse matrix multiply (SMM),

dense LU matrix factorization (LU) from EnerJ [115]. For each benchmark, we define the

output quality loss as follows.

• FFT: FFT takes a linear array size ofn and Fourier transform the array. We first perform

Fourier transform to the input array and also apply inverse Fourier transform to the

output and compare it against the original array. Error scale is the same as LU.

• SOR: SOR takes a 2D matrix ofn by mand write its computational output to the matrix

itself. We copy the input matrix and inject errors to the original one. In addition, both

matrices are processed by SOR and the results are compared. Error scale is the same as

112



LU.

• MCπ: MCπ generates two random doubles and calculate sum of square of each dou-

ble. By repeatedly doing so, MCπ calculatesπ. This experiment assumes that reading

the calculated sum of two doubles generate reading errors. The output quality is de-

fined as difference between calculatedπ from perfect reading versus calculatedπ from

erroneous reading.

• SMM: SMM from SciMark2 employs compressed-row format and a prescribed spar-

sity structure. This experiment assumes that reading the compressed structure generates

errors. Output quality metric compares multiplied matrices element by element in the

scale of 0 to 1. Overall quality of output is average of scale of all elements.

• LU: LU takesn by n matrix and output anothern by n matrix. We compare the output

matrices element by element and scale the difference from 0,no quality loss or identi-

cal, to 1, totally different. This scale is an absolute valueof difference divided by the

results from the precise run. If it is zero, then the scale becomes the difference. The

scale cannot exceed 1. The output quality loss for LU is an average of scales of all

elements.

5.3.6.3 Evaluation Methodology

Our usage scenario assumes reading PCM cells 5∼ 45 minutes after the initial writing.

Because simulating computer systems for tens of real time minutes requires prohibitive

computing power or time, we present the following methodology. We first divide the entire

memory footprint of a benchmark into two categories; (1) thestorage for input data and (2)

the storage for by-products or output data. In addition, we inject MSB and LSB errors for

the read accesses to the category (1) while guarantee the perfect read / write accesses for

(2). For example, LU, one of benchmarks from EnerJ [115], takesn by n matrix as an input

and calculates anothern by n matrix after decomposing the matrix into lower and upper

parts. In such a case, the input matrix becomes the category (1) in our case while the rest

113



of the memory footprint becomes (2). The rationale behind this setup is that because we

only consider read errors for long-term writes, the input data or category (1) is the only part

that falls into this criteria. All other memory footprint including intermediate, temporary

variables, and output matrix is being written and reused almost immediately.

We evaluate impact of MSB and LSB error rates to the quality ofoutput by natively

running benchmarks. The quality of output is a metric of how similar the approximate and

precise results are, but not about the performance. Therefore, we can safely skip micro-

architectural simulations and run the benchmarks and errorinjectors on a native machine

without compromising the correctness of the experiment. Error injectors consume CPU

time and memory footprint; however, they do not change the outcome of the benchmarks.

Moreover, simulating bit-level errors using micro-architectural simulators is not practical

for the following reason. Because error injectors roll a dice every time they need to gen-

erate errors, the outcome of the results of our experiments is naturally non-deterministic.

Therefore, we have to repeat running the same benchmark overhundreds of times to reach

a stable data point, which takes hours in some cases. Simulating hours of native run using

simulators is impractical especially when we need the actual calculated results where we

cannot sample, skip, and fast-forward the simulation.

5.3.6.4 Experimental Results

We evaluate the impact of error rates in Table 10, bit-level error rates of 4LC and half-

and-half PCM, to the output quality. Figure 44 presents output quality loss of the baseline

approximate 4LC PCM. In this experiment, we find the followingobservations. Firstly,

output quality loss is a function of the size of the input matrix for all the benchmarks. We

evaluated from a tiny 10 by 10 matrix to a large 200 by 200 for LU, from 256 to 2048

elements of an array for FFT, and from 20 by 20 to 80 by 80 matrixfor SOR, to find out

that the output quality loss increases with the size of the input. For example, right most

markers from Figure 44e show the output quality loss after 45minutes of initial writing.

As we increase the input matrix size from 10 by 10 to 200 by 200,output quality loss
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Figure 44: Output Quality Loss for Approximate 4LC PCM (conventional)

increased from about 10% to over 80%. This is because when theinput matrix is big,

errors easily propagate to the other cells of a matrix. When there are only ten elements in

a row, an error on 9th element only propagate to the 10th cell;however, for a matrix of

200 elements, an error on 9th element propagates to the rest,191 elements. Secondly, each

benchmark shows different sensitivity on the output quality loss by the bit-level error rates.

For example, for large input cases, quality loss in LU increased from 70% to 84% while

for the SOR case, the output quality loss almost doubled. However, we also find that size

of the workload shows more significant impact to the output quality loss.

Now we compare output quality loss of half-and-half PCM against the baseline as

shown in Figure 45. As expected, quality loss of the proposedPCM was orders of mag-

nitude less than the baseline for all the benchmarks tested.More specifically, for a large
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Figure 45: Output Quality Loss for Proposed Half-and-half PCM

matrix, output quality loss of half-and-half PCM for LU was constantly less than 10−5 while

the baseline marked around 80%. For all other benchmark fromEnerJ, we also find that the

output quality loss of half-and-half PCM is orders of magnitude less than the conventional

4LC PCM.

5.3.7 Related work

Approximate computing basically trades accuracy for performance [107, 108]. Compro-

mising barely noticeable accuracy in output may lead to orders of magnitude less power

and energy consumption. Researchers proposed hardware techniques [116, 105, 117] in-

cluding probabilistic CMOS (PCMOS) technology [109] while others proposed software

techniques [118] or leveraged both the hardware and software techniques by exposing hard-

ware control extensions to software [119].
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While approximate computing mainly focuses on relaxing computational robustness,

others examined approximation concept for storage systems. Error-tolerant part of mem-

ory footprint could be saved in less-frequently refreshed region of DRAM [110] or stored in

non-volatile memory (NVM) with less power with improved latency [106]. Different from

prior studies, we exploit a unique characteristic of MLC PCM,which could secure reliabil-

ity of half of the information stored in a memory cell, to significantly improve resilience of

the approximate storage.

Research community proposed several NVM technologies to mitigate the physical scal-

ing challenges that DRAM face today. Among all emerging technologies, PCM is one of

the most mature and promising technology in replacing DRAM as main memory [120, 121,

122, 123, 124]. Because the resistance of a PCM cell can be set at any arbitrary point be-

tween set and reset states, researchers found that defining more storage levels between set

and reset states will result in storing more bits per cell or increasing the information den-

sity [111, 91]. However, the resistance level of a PCM cell increases over time, and such a

drift generates soft errors [89, 90, 112]. To compensate errors induced by resistance drift,

researchers proposed many techniques by leveraging data encoding and error correcting

schemes [92, 95, 93, 94]. Other studies also examined a writetime-aware scheme [96] or

a smart scrubbing based scheme [92]. However, a recent work argued that MLC PCM is

still requires architectural support to be as reliable as DRAM [125]. We, however, show

that by exploiting resistance drift nature of error-prone MLC PCM, it can be configured as

resilient approximate storage.
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CHAPTER 6

CONCLUSION

This dissertation proposed various power optimization techniques for three different lev-

els of datacenters; infrastructure level, system level, and micro-architecture level. An

infrastructure-level study in Section 3.2 investigated resource provisioning properties of

a heterogeneous cloud computing environment. Using mathematical models, Section 3.2

analyzed a perfectly parallelized task running on a heterogeneous cloud with distinct power

efficiencies. To quantify the trade-off of resource provisioning, Section 3.2 used the energy-

delay product as an objective metric to consider both performance and the utility consump-

tion. To achieve an optimal EDP value, the expectation-based analysis showed that the

response time ratio of the slowest node (= b) versus the fastest node (= a) must be less

than or equal to three (b/a ≤ 3). Findings suggest that computing nodes that are 3x or

slower than the fastest node should be discarded from the cloud for achieving an optimal

EDP. These models and analysis can be used to guide future deployment, allocation and

upgrades of cloud infrastructure to achieve optimal utility effectiveness.

Another infrastructure-level study, SimWare, was presented in Section 3.3. Over years,

researchers proposed to operate cooling units at a high discharge temperature to reduce

cooling power. However, high room temperature can inadvertently lead to high fan rotation

speed and eventually overwhelm the savings from the coolingunits. To study and under-

stand these compound effect, Section 3.3 presented a holistic simulator, SimWare, which

simulates the detailed behavior of an entire datacenter. SimWare reports power and en-

ergy breakdown of a given datacenter by analyzing several critical components including

the power of the servers and cooling units, the power of fans,the effect of heat recircula-

tion, and the air-travel time for providing shrewd, effective decision in optimizing power,

temperature, performance, and the operational cost. Experimental analysis using SimWare

showed that much of the cooling efficiency is lost due to inletair temperature differences
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across servers.

This dissertation continued to a system-level power optimization technique, ATAC, in

Chapter 4, which was motivated from observations made by SimWare. Section 4.2 began

by carefully reviewing the fundamentals of datacenter cooling and found that considerable

cooling energy is wasted because of (1) the safety margin that cooling units must ensure

and (2) the non-uniform inlet air temperatures across servers. These issues stem from the

location of each server relative to the CRAC unit and their height from the floor. To address

this drawback, Section 4.2 proposed a system-level approach that first aggressively reduces

the cool air supply from the CRAC unit to save power and then uses a new system-level

control called ATAC, which is applied to each server. By sensing the inlet temperature

to reduce the core temperature, ATAC can dynamically cap theperformance of the server

using DVFS. Using a modified SimWare framework with the Google production trace,

Section 4.2 evaluated ATAC and found that a datacenter can reduce the cool air supply with

38% savings of cooling power, or 7% savings of total power while degrading performance

by a negligible sub-1%.

Chapter 5 discussed micro-architectural techniques for power efficient datacenters un-

der the context of emerging memory technologies. Section 5.2 showed that the error rate

of 4LC-PCM cannot be reduced as low as the error rate of DRAM practically. Firstly, Sec-

tion 5.2 introduced the mathematical model that estimated SER of MLC PCM, considering

the following factors: (1) effect of resistance drift, (2) distribution functions of the resis-

tance att0 = 1s, (3) distribution functions at the rate of resistance drift, and (4) effects of

iterative writing mechanism. Secondly, Section 5.2 compared the results from the math-

ematical model to the results from Monte Carlo simulator for the purpose of validating

the mathematical model. In addition, Section 5.2 used mean and deviation of distribution

functions from other studies to show the relationship amongthe SER, scrubbing periods,

and scrubbing overheads for 4LC PCM. Further analysis showedthat 4LC PCM cannot be

used as main memory given its high error rates and scrubbing overheads. The most critical
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problem of 4LC PCM is high SER of the third storage level, whichis about 109 ∼ 1011

times higher than that of DRAM. With all in-depth analysis, due to resistance drift, 4LC

PCM is either unreliable for practical deployment.

Section 5.3 examined error-prone 4LC PCM as approximate storage systems. Error-

tolerant applications can utilize power efficient and high performance but approximate stor-

age systems. Furthermore, when the computational results are consumed by human beings,

such as rendered 3D images for video game users, errors in results can easily be justified.

However, Section 5.3 argued that storing important pieces of information in a more reliable

place with less errors significantly improved resiliency ofapproximate storage systems.

Section 5.3, therefore, proposed a new class of MLC PCM cells by exploiting skewed and

unevenly distributed storage levels for MLC PCM. This class of MLC PCM cells secured

reliability of MSB while sacrifices reliability of LSB,i.e., these cells are half-precise and

half-approximate. Even though the average error rate is compromised, Section 5.3 showed

that the proposed scheme significantly improved the qualityof output. The proposed writ-

ing strategy also reduced writing iterations, power, and latency of the underlying memory

technology while still achieved orders of magnitude more accurate results.
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