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SUMMARY

The purpose of this dissertation describes several povtenization techniques for
energy efficient datacenters. To achieve this goal, it agogres power dissipation holisti-
cally for entire datacenters and analyzes them layer-pgrlfrom (1) the infrastructure
level, (2) the system level, and all the way down to (3) theraaarchitecture level.

First, for infrastructure-level power optimization of daenters, this work presents
infrastructure-level mathematical models. These modefsahstrate that to achieve opti-
mal performance in a heterogeneous cloud infrastructbhestg¢sponse time of the slowest
node should be no more than three times as long as that ofstestanode. This disserta-
tion also presents a holistic warehouse-scale datacemesrgand performance simulator,
SimWare. To optimize datacenter energy efficiency, Sim\Waralyzes the power con-
sumption of servers, cooling units, and fans as well as tfectsf of heat recirculation
and air supply timing. Experiments using SimWare show a lagh of cooling efficiency
resulting from the non-uniform inlet air temperature dl=ition across servers.

Second, this study describes a system-level techniqueCAT@& power efficient dat-
acenters. The SimWare framework reveals that only a smaiibeun of servers at hot
spots suffer from high inlet air temperature, and coolirgsthservers largely compromises
cooling efficiency. Thus, to tackle these inefficienciess thissertation proposes ambient
temperature-aware capping, ATAC, which maximizes poweciefficy while minimizing
overheating.

Finally, this dissertation describes a micro-architeetievel technique under the con-
text of emerging non-volatile memory technologies. Nomatite solid-state memory tech-
nologies often exploit the analogous characteristics ofiaaerlying material that stores
more than one bit per cell. We first show that storing more e bit per cell, or multi-
ple bits per cell, ends up with much higher soft-error ratemtconventional technologies.

However, multi-bit per cell technology can still be used ppraximate storage. To this

Xi



end, we propose a new class of multi-bit per cell memory inclwhioth a precise bit and
an approximate bit are located in a physical cell.

With the development of these techniques, the contributiotinis body of work is a
reduction in the power consumption of datacenters in a tioligy, eliminating one of the

most important hurdles to the proliferation of cloud-coripg environments.
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CHAPTER 1
INTRODUCTION

The current de-facto future computing model for all typesamputing is the concept of
cloud computing. Ideally, moving computing to the cloudeets much of the respon-
sibility of users by providing higher reliability and avability for data computation and
management. With this transformational paradigm shit, tiein computing power and
resources will be provided by cloud service providers thaintain and operate a complete
infrastructure, solution platforms, and a plethora of agilons in the so-calledatacen-
ters Datacenters accommodate computing nodes and periplieadlsonsume electrical
power for computing and cooling facilities in units of megstg. For example, in 2010,
the world’s largest online game, World of Warcraft, deveddiby Blizzard Entertainment,
required more than 20,000 systems with more than 75,00@psitg cores for their online
services. Aside from the cost of building the infrastruetaf a datacenter, energy costs for
operating and cooling these power-hungry datacenters teaahed a level that surpasses
hardware acquisition costs. In 2011, datacenters, acecmuior $27 billion in annual elec-
tricity cost [1, 2], consumed a total of 1.5% of energy worlde: With the rapid growth of
cloud-based services, the upward trend is expected toreentvith energy consumption
by datacenters estimated to double by 2014.

As the cloud computing model becomes more pervasive, thepoansumption of
datacenters will continue to increase as the number of enlgers rises worldwide. Such
increased power usage is not simply an economic concerrefeice providers, datacen-
ter operators, and end users; it is also environmental econdéer generating this large
amount of energy also inevitably leads to more carbon dexddhissions, which accel-
erate pollution and global warming. Therefore, operatiatpdenters at maximal power
efficiency has become a top priority of scientists, engiseand policy makers in myriad

multi-disciplinary areas. However, before any effort isyoied to this issue, researchers



and policy makers need to fully understand the entire povevery and distribution sys-
tem; that is, they must be able to answer the following goastiWhere does the power
consumed by datacenters go?

This dissertation takes a holistic view of power dissipafiar the entire datacenter and
analyzes them layer-by-layer on the infrastructure lethed, system level, and all the way
down to the micro-architecture level. It begins by discngghe power breakdown of each
level using data available in the public domain and then gsep innovative techniques for
each level.

In general, infrastructure-level electrical power usagksfinto two categories: comput-
ing and cooling. Legacy datacenters often consume mores@#nof their total power for
cooling [3] while state-of-the-art datacenters consurse than 10% [4]. A metric referred
to as power usage effectiveness, or PUE [5], was propose@asume the efficiency of the
datacenter infrastructure. However, this metric could h&leading because PUE ignores
the increased fan power that occupies the non-negligiategmoof power consumption by
servers [6]. When an administrator decides to reduce the poaresumption of air con-
ditioning (CRAC) units in the computing room, the fans in seswill blow harder and
consume more power than before, resulting from higher roemperature than that dur-
ing normal operation. In other words, raising the room terapge of a datacenter always
results in lower PUE than before because of both decreasdohggower and increased
server power. Although increased server power comprisage portion of total datacenter
power, it has not been accounted for in the PUE metric.

Prior studies have proposed software tools that simulatacdaters; however, they
were not complete because the tools were lacking critiaapaters. For example, CloudSim [7]
and DCSim [8] did not include the effect of increased fan poamd heat recirculation.
Other studies [9, 10, 11, 12] largely ignored the air-trawak from CRAC units to servers.
To address these shortcomings, this dissertation intexlacnew datacenter simulator,

SimWare, with detailed temperature, power, and perforraamadels for servers and CRAC



units. It also simulates the heat-recirculation effect #reldetailed timing model for the
travel time of supply air.

This dissertation also proposes a system-level technitatesaves a significant amount
of the cooling power of datacenters with negligible perfarmoe overhead. The aforemen-
tioned holistic datacenter simulator reveals that noteiver locations in a datacenter are
identical in terms of cooling: Some suffer from high temperas while the others are not.
More specifically, server locations at the highest posiiioracks are identified as hot spots,
and about 70% of cooling power is used for cooling down theseess at hot spots. If a
system-level technique prevents CPUs from temperaturegameies, datacenters can save
a significant amount of cooling power. Motivated from thebsayvations, this dissertation
proposes a new thermal optimization technique that ondgérs performance capping for
servers at hot spots. In other words, the new technique igrEsto exploit the inequality,
or non-uniformity, of the inlet-air temperature among tleevers in a rack.

The last contribution of this dissertation is the propodah onicro-architectural tech-
nique for power-efficient datacenters. Datacenters todaarvariety of workloads includ-
ing error-tolerant approximate workloads such as voicegedion or image processing.
Approximate computing is a promising way to provide enerfficiency for such types
of applications that require precision. As approximate patimg embraces imprecision,
however, it is crucial for streamlining computational fiesice against errors for the best
tradeoff among accuracy, performance, and energy consomptherefore, this disser-
tation discusses error resiliency in the context of apprate solid-state memory. More
specifically, it provides a comprehensive study to effidieehable phase-change mem-
ory (PCM) as approximate storage. It is shown that simplyxietaa write-and-verify
sequence in cell programming does not provide good errdreese. Therefore, this dis-
sertation proposes a new class of multi-level PCM cells f@raximate storage, in which
a precise bit and an approximate bit are co-located, half-precise/half-approximate) in

a PCM cell.



The rest of this document is organized as follows. The falhgichapter discusses the
origin and history of the problem as well as state-of-thetechniques in different levels,
infrastructure-level, system-level, and micro-archtitee-level techniques. The next three
chapters, Chapter 3 through Chapter 5, present novel optimizgechniques for these
levels. More specifically, Chapter 3 discusses the infrasire-level power breakdown
of datacenters and presents analytical models that candaetasoptimize the energy ef-
ficiency of naturally heterogeneous datacenters. In additihis chapter also presents a
holistic datacenter simulator that takes the critical pea@suming components of data-
centers into account. Chapter 4 discusses the system-lewarpreakdown of a server
and presents a system-level power optimization technigiiaC. Chapter 5 also shows
the micro-architecture-level power breakdown of a CPU firat then proposes a class of
multi-level PCM cells for power efficient and reliable comimgt Lastly, Chapter 6 con-

cludes the dissertation.



CHAPTER 2
ORIGIN AND HISTORY OF THE PROBLEM

Power optimization is one of the most active research areasveral engineering disci-
plines for the last decade. Moore’s Law continues to drivergd number of transistors to
be integrated on a single chip, and these transistors cansuponentially increased dy-
namic power. On the other hand, device miniaturizationgases the operating frequency
at the expense of increased dynamic power and, at the saraewarsens the leakage
power. Technologies at the device level (e.g., Intel's Highetal gate in their 45nm pro-
cess) all the way up to the design of a datacenter all aim atmaimg power consumption.
For example, datacenters save millions of dollars paid fargy even with a small per-
centage of improvement in reducing power consumption. $bcsion discusses origin and
history of power optimization problems from a hierarchiparspective starting from the

infrastructure, system, and finally the micro-architeetiavel.

2.1 Infrastructure-level Techniques
2.1.1 Energy-Proportional Computing

In typical datacenters, the average utilization is knowbéaas low as 20% to 30% [13].
One reason for this low utilization is that since datacewee prepared to serve the highest
demand of a day or a week, their computing power is over-groned to satisfy the worst-
case scenario even when the average number of requests iSiogn the low utilization

of a datacenter by its nature, the need for energy-propwtioomputing [14] has risen.
The basic concept of the energy-proportional computindnad twhen the utilization of a
computing node is under 100%, say 50%, the power consumpfitre computing node
should be half the power of 100% utilization. To apply thisicept to a datacenter, an
energy-proportional datacenter with 30% utilization ddazonsume only 30% of its peak
power. However, the energy-proportional computing cohcepot ready to the vast ma-

jority of today’s equipments. A power model for today’s commcomputing node shows



that the computing node consumes almost half of its peak patven it is completely idle
(0% utilization) and consumes about 75% of its peak powemwdtdization is 50% [14].

To alleviate this problem, a new idea has been proposed tacdaters with common
equipments [15]. In this work, by considering that even canrequipments have a nearly
energy-proportional characteristic at high utilizatisome computing nodes are suggested
to be turned off to keep the others busy. For example, wheraerputing nodes of the
same type are around 5% utilization, the idea suggestsriaine machines off but keep-
ing only one node up and running. In the ideal situation of technique, the aggregate
power consumption can be meaningfully close to the utillmaeven with non-energy-

proportional machines.

2.1.2 Power Routing
Power Routing [16] is a technique for reducing redundantgrayelivery infrastructure. In
high-availability datacenters, more than one power digtron units (PDU) are used for
supporting a server cluster to reduce the risk of PDU faildmethe event of PDU failure,
other PDUs take over the duty of the broken PDU to supporttemupted service. Hence,
high availability and reliability in datacenters can beiagbd via such over-provisioning
to provide reserved capacity. The amount of the reservedaigpthat causes overhead in
power delivery infrastructure highly depends on the togglased by the datacenter. For
example, in the wrapped topology illustrated in Figure thay PDUs can be brought in to
recover a single PDU failure. In other words, each PDU in th@pwed topology needs to
have 50% of the reserved capacity for recovering a single Rilure. On the other hand,
when it comes to a single PDU failure, an example of a fullpreected topology as shown
in Figure 1b can be used to have three additional PDUs foraoapy one failed PDU. In
this case, the amount of redundant capacity that each PDWiraus is 33% of the peak
power a rack can draw.

The design rationale of Power Routing is that depending enctinnectivity among

PDUs and server clusters in a datacenter, the reserveditsapan vary for recovering a
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Figure 1. Power distribution topologies for Power Routing.

PDU failure. Because reserved or redundant capacity in RiMdstly indicates that more

money is to be spent on power-delivery infrastructure ti@RDUs without redundancy, it
is important to choose a routing topology without redunganhile maintaining the same

level of scheduling ability. Power Routing is one of suctht@ques. Power Routing com-
prises two parts. First, this idea introduced many diffetepologies between PDUs and
server clusters such as the serpentine topology in Figuia tlte X-Y topology in Fig-

ure 1d. Second, Power Routing introduced a heuristic sdimggalgorithm for assigning a



power line to servers while balancing loads. As this powsigasnent is a non-polynomial
(NP) problem, authors first let the servers be fractionalsigned to the power feeds by us-
ing standard linear programming methods. From this fraeticolution, the real problem
will be solved approximately. When the approximate solufiaits to meet the require-
ments from PDU specs or fails to balance between AC phasssrépeat the second step.
By applying real datacenter power traces to this idea, Pderrting could save 5% to
10% of the required power capacity for conventional datsersrand 22% to 28% for the

energy-proportional servers.

2.2 System-level Techniques
2.2.1 DRAM Power Management

Active
(559 mw)

auto

Standby
(156 mw)
ns 75 ns

poP\I::rh Z:,g\;n Self refresh
(12.5 mW) (15 mWw)

Figure 2: Operating modes for DDR DRAM [17]

The main memory made of dynamic random access memories (DRAMpower hog
as demonstrated in Figure 21. To save DRAM power, modern DRsApports up to six
different power states for RDRAM [18] or four different pon&tates for double data rate
(DDR) DRAM [17]. More specifically, a DRAM controller can pah entire rank of the

main memory into the low power state if the rank has not beexd fisr a given period of

1In DRAM, arank is uniquely addressable 64 bits or 72 bits (whepporting 8 bits error correction code)
data area. In a dual rank memory module, for example, menmmiraller uses chip select signal to choose
what rank to access. In other words, the memory controllerazzess only half of the entire memory space
in a cycle.



time. However, when a rank is in the low power state, theré lvalnon-negligible delay
before it becomes ready to be read or written again. Figutlei&nates this cycle. There
are four power modes implemented in current DDR DRAM [17]. Wlerank is in the
standby mode, it is automatically moved to the active modenndnread or write request
arrives. On the contrary, a transition to the other two mode#-refresh or power-down
mode, is done manually by the memory controller. The povwswdmode starts when the
memory controller lowers the clock enable signal (CKE) to itie DDR DRAM rank,
and the self-refresh mode starts when CKE is lowered as weleagauto-refresh signal
is sent. These two low power modes are essentially similaenms of power savings,
however, different in terms of allowed interval in each moé&er the power-down mode,
a rank can not be in this mode more than maximum refresh iatebecause no refresh
signal is sent to a rank in this mode. In contrast, a rank caim bee self-refresh mode
without time limit, because the on-chip timer in DRAM gertesaperiodic refresh signal
for a rank in this mode. This is why the self-refresh mode loagér transition delay and
requires slightly more power than the power-down mode. Taensse of these different
power states for saving power in DRAM, Hat al. [19] proposed a simple power-down
policy. First, each rank of the main memory has a counterribsdts upon every read or
write request and increases upon every idle cycle for boeikeg the number of idle cycles
for the rank. Second, when the counter reaches a threshhld,wthe memory controller
checks the internal queue to verify whether there is a readioe request for this rank. If
a rank has been idle for more than the threshold time and ther@ read or write request
in the queue, the memory controller puts the rank into thegresdown mode. This policy
is reported to increase DRAM energy efficiency by 11% to 43%ditierent benchmark

programs.

2.2.2 Powernap
On the other hand, Powernap [20] has been proposed for @imgthe idle power of

servers. The basic idea of Powernap starts from the facotit# a server becomes idle, the



average idle time is around 1@&for most of internet services while some other services
(domain-name services or scientific computing clustersg t@nger average idle time than
the others up to one or several seconds. For these reas@nseifer can be turned off
and brought back in a few milliseconds, the server can efiggtbe turned off during its
idle period. For this fast transition between full performea andnap modes, Powernap
suggests to use the S3 sleep state (also known as standbyfetafPUs, the self-refresh
technique for DRAM, solid state disks (SSD) for storage desj and the wake-on-LAN
technique for network interface cards. By using these feafwa typical blade can change
its power state from full performance mode to tiegpmode in 30@s and vice versa. With
the penalty of less thannistransition time, a typical server that consumes 270W when
idle and 450W when active can save significant power whildnéniap mode because it
consumes only 10W during the nap mode. Further comparisomele®@ Powernap and
dynamic voltage-frequency scaling (DVFS) technique shibite&t Powernap technique
with less than 1Msof transition time always outperforms DVFS in terms of respetime
and power scaling. As a result, Powernap yields a steep pedeiction up to 70% for

internet servers.

2.2.3 Power Capping

Power Capping [21] is another system-level technique thataguees the power consumed
by a server to be confined within a given power envelope, ocdpped value. For example,
if a server with power capping capability is set to ¥@0the power controller inside the
server will keep the power consumption of this server belO@VX. To achieve this design
goal, the controller throttles performance by using DVFE$hteque when it consumes more
power than the capping value. The closed-loop feedbackatertfor Power Capping
is illustrated in Figure 3. First, the controller is set to ertain value representing the
maximum allowed power budget for this server. The contraldculates the ideal throttle
level based on the set point and the measured power consm@econd, the actuator,

a first-order delta-sigma modulator, calculates the tatigeittle level based on the ideal
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and real throttle level retrieved from other sources. Bygghis extra controller on top of
the conventional power supply design, a server can safelynder-provisioned, the key to

enhance efficiency of the power delivery infrastructure.

Power set point First-order delta—sigma modulator

Controller deal > > Integrator Quantizer Server
eal
throttle ?

level -
Real throttle level

On-board server-level power measurement from power monitor

Figure 3: System diagram for Power Capping controller.

2.2.4 Dynamic Voltage-Frequency Scaling (DVFS)

Dynamic voltage-frequency scaling is a technique for ratdythe dynamic active power
by lowering the operating voltage and/or frequency of a opecocessor. The active power
of a CMOS circuit is linearly and quadratically proportionalthe frequency {) and the

operating voltage\yq), respectively. In other words,
Active Powero V3, - f. 1)

Therefore, for certain instances such as when the utitinadf a processor is low, when the
response time is insensitive, or when the running tasks a@fremtical, a system with the
DVFS technique can reduce its operating voltage and fremyuen the fly with minimal
impact to the quality of service. Although the voltage aneljfrency can be controlled
independently in a typical microprocessor, it is common $e a low voltage for a low
frequency. This is because when using a low operating we|téige time for charging
any given capacitor takes longer than the baseline with b bjgerating voltage. As a
result, a low voltage leads to a slower operation or slowerajing frequency than the
baseline. In all, the main drawback of this technique is thliw voltage and frequency

can inadvertently penalize the performance.
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2.2.5 Clock Gating and Power Gating

Distributing the clock signal across the entire die areayinchronous circuits requires
more than one third of the total chip power. It gets worse ihgpases a metal grid clock
distribution network for minimizing the clock skew as dissed earlier. For reducing the
active power for the clock distribution network, the mostrsuonly used technique is clock
gating. The basic idea of clock gating is to cut off the clognal for the regions that are
not used. When the clock signal does not enter a particulameyg a circuit, it avoids the
switching activities of its flip-flops and clock buffer tret@ereby saving power. To achieve
this goal, two types of solutions are employed: a latch-@leek gating and a latch-based
clock gating. In the latch-free clock gating design, a serplo-input AND gate is used to
enable or disable the clock signal while the latch-basetydaesses a level-sensitive latch
for holding the enable signal. Whenever the enable signdf,ishe delivery of the clock
signal is cut off. The main drawback of this clock gating iattthe additional combinational
logic will likely elongate the propagation delay in delivgy clock signal to all corners of
a chip. Due to this extra propagation time that exacerbae€lock skew, a circuit with
clock gating may reduce the operating frequency.

Although clock gating can help reduce the active power ofxer@sed circuits, this
cannot save leakage power. As the leakage power continugersen when the feature
sizes shrink due to lowered threshold voltage (as shown gurEi 35), power gating is
introduced to disconnect the unused circuits from the p@earce using a sleep transistor
with a high threshold voltage to eliminate the leakage aurreFigure 4a illustrates an
example of a sleep transistor that gates off the power supglly viaVss of an SRAM
cell. This more aggressive power-saving technique facesrakedrawbacks if not used
wisely. First, power-gating a circuitry, from active to cteve or vice versa, takes time
in order to stabilize the circuit operation. Depending oa $icale of the circuit block, the
circuit may need to be switched off in multiple steps to kdepdground bounce noise under

safety margin. Hence, it could affect the overall perforo@arSecond, switching the states
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consumes extra power. For these reasons, when and wherevers pti must be chosen
carefully. In other words, power gating should be perfornoatly when the penalty in

power and time for turning on and off is significantly lessrthlae power that can be saved.

2.3 Micro-architecture-level Techniques

Microarchitectural power reduction techniques have beesctive research area among
processor architects. A majority of these studies focusrenlop memoriesi.e., caches.
Some techniques combine circuit and microarchitecturaihopation techniques to reduce

power. Subsequent sections review some major tasks towese efforts.

2.3.1 Reconfigurable Caches

Selective cache ways one of the earliest architectural techniques proposedefitucing
power consumption in caches of a processor. It selectivetystoff a subset of cache
ways for an associative cache at run-time. The idea stams fhe fact that large on-chip
caches are usually partitioned into several subarraysefitucing latencies. Because each
subarray effectively stores one data cache way, it canlgelbditurned off at the hardware
level. The mechanism can be supported with minimal addatibardware— a Cache Way
Select Register (CWSR), to store which cache ways to use, awaspnstructions for
reading and writing the CWSR. An application can disable setecache ways during the
period of modest cache activities without much performanggact. As shown in [22],
this on-demand cache resource allocation mechanism s@¥ésmoverall cache energy
dissipation in a four-way set associative cache with less thverage 2% performance

penalty.

2.3.2 Cache Decay

Given the trend of integrating larger and larger on-die esctontinues, researchers have
studied and proposed various techniques to control theaggalpower of these compo-
nents. Cache deca)23] is one of such techniques that combine power-supptinga

shown in Figure 4a with dynamic architectural behavior fontcolling the leakage power
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Figure 4: Circuit diagram for Cache decay and Drowsy cache

of each individual cache line. It was motivated by the obaton that cache lines are
“dead” for more than 70% of the time. The dead time of a caaieib defined as the time
of its last access and the time it is evicted. To avoid leaksayeer consumed during the
dead time, if one can predict a cache line is dead, the lindbeasvicted and powered off
earlier than the actual replacement taking place. The gtiediis achieved by employing
a decay counter for each cache line to book-keep the idlerfeke line. When the down-
counter reaches zero indicating the line is not being aeck&s a given threshold, the

line will be early-evicted and enter the power-off statenggpower-gating to save leakage
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energy.

One drawback of the cache decay technique is the potentfakpence loss due to the
fact that early power gating loses cache data, which mayesaadditional cache misses.
Therefore, “when to decay a cache line” becomes criticals Work experimented differ-
ent decay intervals from 1k cycles to 512k cycles and showatla decay interval of 8k

cycles showed the best saving result with a 70% reductioheofdakage power.

2.3.3 Drowsy Caches

Drowsy cachd24] was proposed to ameliorate the performance issue ddattoloss of
cache decay. In a drowsy cache, a cache line can choose betwealifferent supply
voltages, a normal voltagd/{y) for regular cache lines, and a lowered oMa4(jow) fOr
drowsy cache lines. When a line is put into the drowsy moded#ta content is preserved
although it has to pay a slight penalty (one to two cyclesgiostate the line back to normal
operated voltage before it can be re-accessed. Cache litleshei scaled down supply
voltage can significantly reduce the leakage current by 640w due to short-channel
effects. For the drowsy cache technique, there are additiserdware overheads. First,
a drowsy bit is added to each cache line to indicate whetleec#ithe line is in drowsy
mode or not. Second, a voltage controller is added as ilitesdrin Figure 4b to supply a
normal voltage for active state cache lines and a lowerethgelfor drowsy state cache
lines. Third, the word line gating circuit is added to prelvdimect access to drowsy cache
lines. With these additional hardware overheads, cacles jperiodically change its state
to the lower power one, and the line is woken up in the pendlgne cycle when it has to
be accessed. Due to the overhead of additional cycle to wakecache line, performance
could be degraded as much as 2% with an average of less thaw/itPhis small impact
on performance, the total energy (including static and dyinpconsumed in cache lines

were reduced by 75%.
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2.3.4 Razor

Razor [25], a combination of micro-architectural and cirdevel techniques, can substan-
tially reduce the power consumption of a microprocessor ¢yressively adopting sub-
critical voltage in the pipeline. Similar to DVFS, Razor @nically lowers the operating
voltage to significantly reduce power consumption. Howgeeeen with the DVFS tech-
nique, there are voltage margins to be obeyed to avoid arguére error in the processor.
For example, there have to be a process margin to considenfauaring variations, an
ambient margin to prevent processors from malfunctioning t high temperature, and a
noise margin to tolerate various unknown noise sourceshiitthese voltage margins, a
processor could generate incorrect computation resultlyndue to timing failure in the
slow latches. In many cases, these margins are over-estim@tguarantee a reasonably
large guard band for correctness. The design rationale pbiRzhallenged this worst-case
design constraint and proposed to aggressively and dymadlyngcale down the operating
voltage until an error is detected. Once an error is deteet@dcovering mechanism will
be triggered to correct these errors dynamically. As suezdrcan approach the minimal
power consumption by lowering the supply voltage to the tvpmssible value. The error
detection mechanism is achieved by employinghadow latchwith a delayed clock to
each normal flip-flop. As shown in Figure 5, the shadow latctinvthe delayed clock is
designed to ensure to latch the correct incoming data whéenbrmal flip-flop could fail
due to too aggressive dynamic voltage scaling (DVS). Whariéeevalue of the shadow
latch mismatches the value in the DVS-ed flip-flop, a timingers indicated. Then, a
pipeline flush and replay similar to branch mis-predicti@cavery will follow with in-
crementally increased supply voltage. This supply voltegelback control system will
eventually reach the optimal operating voltage for a spepifocessor that runs a specific
application. As shown in the original study [25], the err@tetting circuits with aggres-
sive DVS can reduce the power consumption of a processor \éih 3% performance

impact [26].
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2.4 Challenges in Power Optimization

Although the power consumption of targeted components eamproved with the power
optimization techniques discussed above, it does not gtesgan overall saving when they
are applied altogether. Under certain circumstances, dimgs of individual optimiza-
tion techniques are not additive, worse yet, they could ebeach other out. Therefore,
whenever a new power optimization is being considered, gtrbe thoroughly evaluated
together with all existing solutions applied to the dataeen

One common pitfall in power optimization is so-callealloon effectIn the balloon ef-
fect, suppressing one corner of a balloon may inadvertémfligte the other side. Similarly,
saving power on one particular component may increase poaresumption of others in
the system. For example, administrators could raise thenr@mnperature of datacenters
for saving cooling energy; however, such optimization masuit in increased fan power
in the servers as raising the room temperature makes iimletraperature of servers higher
than before. Without proper trade-off evaluation prior he bptimization, the overall fa-
cility power may end up being increased rather than reducBakerefore, the proposed

research introduces a holistic datacenter simulator offolle@ving section.
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CHAPTER 3
INFRASTRUCTURE-LEVEL OPTIMIZATION

3.1 Infrastructure-level Power Breakdown

UPS Losses,
6%

Lighting, 2%

Computer
Loads, 38%

HVAC, 54%

(a) datacenter 8.1 (total 578kW)

UPS Losses, Lighting, 1%

13%

HVAC, 23%

Computer
Loads, 63%

(b) datacenter 8.2 (total 1681kW)

Figure 6: Power breakdown of two different datacenters [3]

This chapter first analyzes the power distribution from tleespective of the highest
level,i.e., the infrastructure level, by taking published data fronuattiatacenters. When
the electrical power from a power plant is delivered to a datger, it is consumed to
operate two main facilities. Firstly, it powers up all thengouting equipments and hosts
the computing services. Secondly, as these computing eeeimnvert the supplied power
into useful computation and dissipate heat, the dataclateto arrange additional power

to remove the heat generated from the facility. These comguitodes and their cooling
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system are two major power consumers in a typical data celmtexddition, a datacenter
also uses power for their power delivery infrastructureguding the uninterrupted power
supply units (UPS) or other supplementary infrastructuees,lighting. In addition to the
utility power, modern datacenters typically build their mywower generators along with
UPS systems in order to guarantee a stable, uninterrupiedrgupply system.

The breakdown of power usage of these components at thatinfcéure level is illus-
trated in Figure 6. The data were taken from a case study npeefd by the Lawrence
Berkeley National Lab [3]. In Figure 6, the portion, “Computenads,” accounts for
the power drawn from the UPS for non-HVAC (heating, veniigt and air condition-
ing) purpose. This includes not only the power drawn fromuactmachines or network
switches, but also the loss from the power distributionsu(ffDUs) or power supply units
(PSUs). According to the investigation on two differentégmf datacenters, each datacen-
ter demonstrated rather different characteristics in pawgage. For datacenter facility 8.1,
54% of its available power was consumed in the HVAC while @896 was for computer
loads. In contrast, the datacenter facility 8.2 spent thgnty of its power, 63%, in the
computer loads and only 23% for the HVAC. One reason for tHfewrihce is that the HVAC
of facility 8.1 was running on its full power regardless oétitilization of their computing
nodes. In other words, facility 8.1 will continue to dissipaower for the HVAC even if the
computer loads are low. Other potential reasons for fgcliR’s higher power efficiency
for computing, although not revealed in the original repoduld be attributed to different
ambient temperatures, different sizes of the facilitie$eent designs of air flow, etc.

To emphasize the importance of efficient HVAC for maintaghandatacenter, we can
perform simple math to see what if the datacenter 8.1 coulcae the HVAC efficiency of
datacenter 8.2. If the datacenter 8.1 can reduce its powasucoed by the HVAC down to
23% of its total power as in the datacenter 8.2, the amounbwep for the HVAC will be
reduced from 312kW~ 57&Wx 0.54) to 79kW & 578&Wx 0.46x —22-.). The difference

100-23
in power, 233kW, will become 2041MWH-(23%kWx 365daysx 24hourg per year. When
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this energy saving is converted into dollars by applyinggfuy $0.1/1kWH, 2041MWH
will turn into 204 thousand dollars. This shows why poweiesnt cooling is critical in
datacenters. Figure 7 shows the power consumed by the HVIA& fariety of datacenters
investigated in [27], the power portion by the HVAC alonerspfrom as low as 20% up to
more than 50%.

Cooling Towers

4%
CW Pumps
18%

Chillers
39%

Figure 8: HVAC power breakdown

Furthermore, the power breakdown of the HVAC itself for datater 8.2 is shown
in Figure 8 based on data collected in [3]. According to thiglg, there are three major
power consumers in an HVAC: fans (39%), chillers (39%), araling water pumps (18%).

In a typical datacenter with raised floor, fans designedrmutate the air in the server room
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are connected to two water pipes, one for inlet of cool watelthe other one for outlet of
warm water. Pumps in Figure 8 are for the water flow while elndlare for cooling down

the warm water.

3.2 Mathematical Modeling of Performance and Utility Consumption
for A Heterogeneous Cloud Computing Environment

Cloud computing has emerged as a highly cost-effective ctatipn paradigm for
IT enterprise applications, scientific computing, and peat data management [28, 29].
Given the cloud service is to be provided by machines of w&ricapability, performance,
power, and thermal characteristics, it becomes a chaltgnigisk for providers to under-
stand their cost effectiveness when deploying their systeflmis dissertation analyzes a
parallelizable task in a heterogeneous cloud infrastrectuith mathematical models to
evaluate the trade-off of energy and performance. To aehiew optimal performance per
utility, the response time of the slowest node should be neertitan three times of that
of the fastest node. Theoretical analysis presented heréeaised to guide allocation,
deployment, and upgrades of computing nodes for optimiatilgy effectiveness in cloud

computing services [30].

3.2.1 Background

Cloud computing is an emerging computing paradigm that issf@ming the entire IT
industry, high performance computing, and even personal slaaring and management.
The basic concept of cloud computing is that the computinggras supplied as flexible
as utility, similar to electricity or water. As such, commg resources can be centrally
managed, maintained, and upgraded by a service providerading the burden of small
business owners or those who do not have expertise or bunlpantle the fast-changing
computing infrastructure. Nevertheless, the core idedonfcccomputing is not completely
new; it has been evolved from previous legacy systems — famgte, grid computing,

clusters, or autonomic computing. To differentiate cloothputing from grid computing,
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several characteristics of the cloud were identified [31itstFcloud computing makes

use of virtualization techniques to isolate users from thgspral resources [31]. Second,
cloud computing offers more flexibility than the legacy adtructures in terms of pricing

and dynamic scalability. Last but not least, the perforneapiccomputing in the cloud is

guaranteed through service level agreement (SLA), ratieer tleterministic or dedicated
physical resources [32].

In addition to IT enterprise applications and personal dgadéamagement, there is also
a growing interest in performing high-performance compgt{HPC) in the cloud [33].
This paradigm shift can substantially reduce the total obstvnership by eliminating the
need of maintaining large-scale parallel machines and #rm@rmous power and cooling
system [34]. From the perspective of cost-effectivendssiet are trade-offs in terms of
resource provisioning given that a target task can be erassingly parallelized, a common
case for throughput-oriented computing. For example,rassihat an HPC job, which can
be perfectly parallelized, takes eight hours to completaguene computing node. If the
cloud computing service provider charges a job on a per (madtour) basisj.e., utility
based on the accumulated machine time, instead of runnargahe node for eight hours,
the job can be finished in one hour on eight machines with 8adygewith the same utility
charge (8 machinkour). In this case, (execution tim&machinehour) becomes 8x better
when compared to the case of using only one computing node.

One trend that complicates the above trade-off is the hgéeraity in a cloud com-
puting environment. Although a cloud service provider ctartswith their business with
(near-)homogeneous computing nodes, it is likely that &udify will grow more hetero-
geneously over time due to upgrades and replacement. TDhnerafot only do the per-
formance and capability of each computing node continuestaoate, the new computing
nodes will also provide better performance at the same poivéne older ones due to
technology scaling and architectural innovation. Due is teterogeneity, there will be

significant variations with respect to the response timeeddmg on provisioning policies.
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To mitigate this variation and guarantee quality-of-seeyithe cloud provider may want
to dismiss the slowest computing nodes. The question to@nisere is thahow slow a
physical node can be for a given task to maintain its optineahputing quality in terms of
execution time and energy cosk@ tackle the issue, this section establishes a matherhatica
model based on statistics for a heterogeneous cloud emr@ot Using this model, this
section evaluates the trade-off of execution time and gnafrg task to understand optimal
provisioning in a cloud.
3.2.2 Cloud Computing Model
3.2.2.1 Workload definition
In this analytical study, the workload is assumed to be pdyfearallelizable, which is
often the case for throughput-oriented computing preset{PC and transactional pro-
cessing applications. For example, the most common apiplicéor cloud computing is
application service on the web. For such web services, @altequests received at the same
time can be processed individually and independently. &fbeg, one can expeattimes
speedup when there anenodes deployed if and only if the number of concurrent users i
always larger than or equal to

Next, it is assumed that an entire workload can be evenhddiintom smaller jobs
without affecting its scalability anohis also assumed to be larger thawheren represents
the maximum number of virtual machines in the cloud (For dioty, m = knwherek is a
positive integer.) In this study, one job unit represenésdmallest task running to the end
on one single physical node without interruption. Howewgermittent context switches
within one job unit are not considered interruption as loaghee task keeps running on the
same physical node.

On the other hand, a virtual machine is not allowed to be neégramong physical
nodes during the execution of a job unit because this mamaiiill not only include the
executable image but also all the architectural statesdieg memory footprint. Data mi-

gration on interconnected cloud computing nodes will fkeduse significant performance
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degradation due to peer-to-peer communication.

3.2.2.2 Power and performance behavior of a cloud

Before detailing the definition of the power and performainca heterogeneous cloud, we
start with the following scenario from the perspective a tthoud administrator. Typically,

cloud service providers would commence their cloud conmguitiusiness with a number of
(near-)homogeneous computing nodes. Over time, the clomdder will phase out some

of the old computing nodes and replace them with newer naessifing latest technolo-

gies. Gradually, the capability and performance of all naes in the cloud will become

more heterogeneous. Although prior studies had consideseéefogeneity at the micro-

architectural level [35] and system level [36], they allasgd heterogeneity in the same
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generation of manufacturing technology. In contrast, $kistion considers computing het-
erogeneity in a broader sense.

Now we review the power and performance trend of commerciataprocessors for
the last few years and use our observations as a justificktiaur model assumption. We
first plot the thermal design power (TDP) numbers and theopernce scores of Pass-
Mark [37] for different processors including Pentium, CoreéCdre i3/5/7, and Xeon under
70W since 2006. The solid line shows their asymptotical trends between 20@62010.
In addition to this, we also plot the trends of two other maelgroups in the same figure
(plotted in dashed lines without individual dots) based fegirt TDP: 70W to 120W and
over 120W.

To observe the trends, we applied regression method to &stithe relationship be-
tween power and performance over time. By taking all the dasnimto account, our re-
gression models for power and performance are plotted hg Boés in these figures. As
shown in Figure 9b the performance continues to improve &hanachine group across
different proliferations or generations. On the other hate TDP trend in Figure 9a
shows negligible growth. More interestingly, the TDP trefidr the two lower power ma-
chine classes are, in fact, decreasing. It is the consequanecent awareness of power
wall, which gradually increases the cost for heat dissgratiFor the same reason, we an-
ticipate that the power grade of future processors will renb@low the bar. It also implies
that with the same power budget, newer machines can deiykehperformance. In other
words, performance per power continues to grow over time. eéxample, 95W Core i7
(Lynnfield) released in September 2009 achieves higheppagnce than the 95W Pen-
tium D (Presler) in January 2006. This is largely attributedechnological advancement
in micro-architecture as well as scale-down in feature aiz supply voltage.

Given these observations, we move on to define our model oépand performance

1They include all commercial desktop or server processams fintel from January 2006 to February
2010 except Celeron processors and certain processodidhadt report TDP or PassMark results.
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for a future heterogeneous cloud by making the followinguagstions. First, the com-
puting nodes in the cloud we will analyze are heterogenebasing different micro-
architectures fabricated using different processes. ,Tthescloud provides a variety of ca-
pability and performance. Second, the performance capabibf these computing nodes
are uniformly distributed (from low to high) while consungiexactly the same amount of
power. The rationale behind this assumption is two-foldst-for a given power budget,
Figure 9 shows the trends of power consumption and perfoceéor three different pro-
cessor groups classified by the thermal design power. Thel@l that, for a given power
budget, the performance of each machine class continuespimve linearly while their
power envelope remains pretty much unchanged. In othersytrd power efficiency mea-
sured by performance per power improves over time. Secohénva datacenter phases
out some computing nodes due to upgrade, new computing radesafely be deployed
only when the new, aggregated power consumption with thpgeades does not exceed
the original one. Otherwise, the datacenter must also aegitzeir power delivery infras-
tructure as well as the cooling capacity for accommodatireyrtew servers. Given this
overhead, we anticipate that the replacement and upgrddeendone without altering the
power delivery infrastructure. Therefore, we assume thattewly deployed servers will
improve performance linearly across different machindifgn@tions while using the same
amount power. To express this distribution mathematically assume that the response
time for executing a job unit in such cloud is uniformly dibtrited froma seconds (the
fastest node) td seconds (the slowest node). Hence, the probability digtdb func-
tion (PDF) of the response time for executing a job unit irs tbioud can be illustrated
in Figure 10.

On the other hand, we assume that the cloud service provatemaprove thevorst-
case response timehen they dismiss physical nodes with the least performartes
example, when the cloud service provider decides to retieetbird of their physical nodes

from the slowest batch, we assume that the new responsedinexdcuting a job unit of
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Figure 10: PDF of the execution time of a job unit when theearirtual machines

this cloud becomes a uniform distribution franseconds tod+2b)/3 seconds, represented
by U(a, %’). As such, we assume that the maximum number of virtual nmashthat can
be allocated on this cloud also shrinks in the same ratioigarg 11, the impact of retiring
one third of its physical nodes from the cloud is illustratéthe variablep in this figure
represents the maximum number of virtual machines that eaallbcated on the cloud,
while n represents that of the original cloud discussed in the Eid. Moreover, the
PDF in Figure 11 shows the improved worst-case responseaszeresult of removal of

one-third of physical nodes from the slowest side.

Cloud A
Fasterk %

Cloud C
Slow Y¢ ¥¢

(probability)
n/ (bp-ap) [~==----

1/ (b-a) [~°°" 77"~ p=n

a at(b-a)-(p/n) b (response time)
Figure 11: PDF of the execution time of a job unit when theee2ay 3 virtual machines
Nevertheless, in the given PDF of the response time, we didssume that a particular
virtual machine can pick a physical node at a particular dp&ather, when a probability

distribution function of a cloud is given, the behavior of istwal machine in this cloud

is considered to follow the PDF in a statistical manner. Imeotwords, we assumed that
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virtual machines will be uniformly distributed across thieypical nodes. Even though
dispatching more jobs to newly deployed servers with higioaver efficiency will lead to

better energy efficiency, this is not the case for a datacehie to the following reasons.
First, for a datacenter, it is important to balance the paivaw across the AC phases [16].
The balance will break when jobs are biasedly distributeaihty certain computing racks.

Second, it is desirable to minimize the number of hot spotsafdatacenter, a common
consequence of unbalanced workloads. Hot spots genegrallgechigher machine failure

rate and require additional attention and effort for remgmihe heat.

3.2.2.3 Execution time and energy consumption

First, we would like to clarify the execution time of a givewikload on a cloud used in this
study. It is defined as the time consumed to finish the entimklaad consisting ofn job
units. When a partial number of job units are assigned to ntae one virtual machine,
the execution time, in our definition, is bounded by the \altmachine that finishes the
last. For example, when an animator renders a movie compisadndependent frames,
the movie cannot be released before the last frame finisimeler@g. In addition, when
comparing the performance of cloud configurations, we asdtiat thebaselinds the case
of executing the same amount of workload on a virtual machinaing on the fastest node.
When more virtual machines are used to execute the worklopdradlel, more slow nodes
will be used to accomplish the task. As a result, the paraéldiversion could reduce the
overall effectiveness of utility consumed in the cloud.

Second, we clarifyenergy consumptioto be the total energy needed to complete a
given amount of workload. In particular, when some physieades finish their assigned
job units before the others, we assume that these nodesotvdbmsume energy while wait-
ing for the other nodes to finish. This is because, in the redidscenario, these nodes will
either be assigned for other useful tasks or moved to thezexarpower state [20] for sav-
ing energy. In addition, given each computing node consutreesame amount of power,

energy consumption as defined will be proportional to thaltexecution time. Therefore,
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for a parallelized workload, its utility consumption is calated as the summation of the
execution time of each virtual machine.

To quantify the effectiveness of resource provisioningdaoaid, we use the well-known
metric — energy-delay product [38] calculated by multiplyithe execution time (seconds)
with the energy consumption (joules). This metric will bed$n our subsequent evaluation
when provisioning resourcesd., the number of virtual machines should be allocated for

achieving the optimal energy efficiency).

3.2.3 Analytical Evaluation

Based on the above assumptions, we now use analytical ntodssform our evaluation.
The evaluation will compare energy-delay prodUeDP) of each configuration over the
EDPof the baseline. The baseline of this study is the case ofjusity one virtual machine

running on the fastest physical node.

3.2.3.1 The Baseline

The baseline of this study assumes that the entire job i®feed on one virtual machine
which is running on the fastest physical node. In this case fastest physical node can
retire a job unit in everya seconds. Since there ameindependent job units in the entire
workload, the baseline configuration takea seconds to finish. On the other hand, this
configuration consumes/ - majoules for completing the entire workload wheférepre-
sents the power of a physical node. To sum up, the energy-gedauct of the baseline of

this study will be as follows.

EDPyase= (W - ma)(ma) = Wnfa? 2

3.2.3.2 Expectation-based analysis

We now analyze the execution time and energy consumptioclofia model in an expectation-
based analysis. In order to understand the expected pefmenwe will first discuss a new
distribution function which represents the execution tiofie virtual machine with more

than one job unit.
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Execution time distribution across virtual machines: The PDF of the response
time when using virtual machines is given by (a, a+ @’) as illustrated in Figure 11.
However, when a virtual machine is responsible for more thamjob unit {.e., ry p units),
the total execution time of this virtual machine cannot baeleled in the same way. Rather,
it can be modeled as the summation of independently chogprsamples from Figure 11.
When we add independent samples from a uniform distributima distribution function
of this summation tends to approach a normal distributiccoeding to thecentral limit
theorem[39]. The central limit theorem proves that when we add modependent sam-
ples into the summation, the distribution of this summatidhbecome more like a normal
distribution. In addition, the summation of twelve sampgeknown to be good enough to
satisfy the central limit theorem [39]. In this case, we assuhat a virtual machine will
be responsible for more than 12 job units by lettmg 12n (i.e., m> 12p sincep < n).

Now our goal is to obtain the mean and variance of the norm&ttidution which
represents the total execution time of a virtual machin@aasible form/p job units.
First, we need to calculate the mean and variance for thenatiginiform distribution,

(b-a)p
U(a, a+—>).

(b-2p) _,, (b-2ap
n 2n

(b-2p,, 3)
Vian

The central limit theorem shows that the summatiompp independent samples from this

Mean= %(a+ a+
(b-a)p
n

a)” = (

. 1
Variance= —
ariance 12(a+

distribution will become a normal distribution with the kmlving mean and variance.

(b— a)p m (b-ap

P Vi

For convenience, we ugeando? to denote the mean and variance of this distribution. All

N(p(a ) ( ———)) =N, o?) (4)

in all, when usingp virtual machines, the execution time of each virtual maehil follow
the normal distributionN(u, o-?). The ultimate question is “how many seconds will it take
for finishing the entire workload?” To answer this questia®, need to first answer “what

is the expectation of the largest sample frdlfu, 0?) when we have to piclp samples?”
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Because the overall execution time is dependent on the stawvtial machine that finishes
the last, the largest gf samples will give the total execution time. In the next sattive
will use a statistical approach to answer this question.

Expectation of the largest sample: Before finding the expectation of the largest sam-
ple, we discuss the same question for the standard normabdison, N(0, 1). Let pd f(X)
be the the PDF of the standard normal distribution. In thi&HEty be the largest sample
among randomly chosemsamples. For each case outptases, the probability for to

be the largest sample will be given by the following equation

Probability= pd f(y) - (fy pd f(x)dx)P* (5)

The expectation of the variabjas given in Equation (6).

o0 y
[ p-y- pdf@)-( f pd ()P dy = EXE(p) 6)

For conveniencelz xB(p) denotes the expectation of the largest sample anposgmples
from the standard normal distribution. In addition, by ditbhing pd f(x) of Equation (6)
by Equation (7), the numerical values BKB(p) for variousp can be obtained. We show

the results in the middle column of Table 1.
pdf(x) = ——exp—x/2) @)
V2r

Since the complexity of Equation (6) grows exponentiallyp@screases, it is infeasible
to find the exact numerical values B&B(p) for p > 64. To address this shortcoming, we
propose a more scalable way of approximating the Table 1s 3t@lable solution starts
from implementing a random number generator which prodwmedom numbers from the
standard normal distribution. By using this random numbamegator, our solution will
pick p independent random samples and remember the largest sampleg them. The
solution will repeat this operation for a long enough time #ake an average of the largest
samples. This experimental way is able to generate the exacerical values oExB(p)

as shown in the rightmost column of Table 1 after averagingentizan 100 million trials.
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| p | By Equation (6)] By experimental way
1 0.00000 -0.00001
2 0.56419 0.56419
4 1.02938 1.02938
8 1.42360 1.42356
16 1.76599 1.76591
32 2.06967 2.06968
64 2.34373 2.34368
128 2.59461
256 2.82679
512 3.04392

Table 1. Expectation of the biggest sam@ex@8(p)) from N(O, 1)

When comparing the middle and the rightmost column of Tablenk, can find that the
mathematical accuracy is slightly compromised in exchasfgbe scalability. However,
we do not expect the tiny error of the numbers to affect oufymmaand conclusion.

The study of the largest sample in the standard normal bligtan gives us a keen idea
about theE xB(p) for other normal distributions. Let a random variabdollows N(u, o)
with u # 0,0 # 1,0 # 0 and a derived random variab¥e= (X — u)/o. ThenY follows
N(O, 1) by recalling the property that X follows N(u, o?) anda andb are real numbers
thenaX + b follows N(au + b, (ac)?). From Equation (6), the expectation of the largest

sample forY is as follows.
Expectation of the largest sample for=YE xB(p) (8)
SinceY = (X - pw)/o, X =Yo + pu.
Expectation of the largest sample for=XExB(p) - o + u (9)

Now, the expectation of the largest sample can be calcufatemhy arbitrary normal dis-
tribution.

Execution time and energy consumption analysis: In our model, each one of the
virtual machines is responsible far/p job units, and the response time for each job unit

follows U(a, a + @’). Now, the expectation of the time required on a virtual miaeh
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finishing the last can be calculated by the conclusion froepitevious sections.

Execution time= u + ExXB(p) - o

_m_ (b-a)p ~[m (b-a)p
_p(a+ n ) + ExB(p) 0 Vi

(10)
_ ma b 32 |1 b
= anp@n+ (G = D+ EXBP) - 9725 (- 1)
ma b b
= m)(Zn + (5 -Dp+ Unbalancéa, p, M)
In this equation, we name the second tdédmbalance which becomes zero if and only if

every single virtual machine finishes at the same time.

Unbalanceég, p,m) = ExB(p) - p3/2\/3%n : (g -1) (11)

For example, a higher deviation from the normal distriboiiedicates that the random sam-
ples from this distribution are more spread out, which iases the probability of having
more deviated samples. In our case, since the finishing timeictual machine is modeled
by picking a sample from Equation (4), more deviated samipldisate that the workload
assignment is unbalanced among virtual machines exectitiagvorkload. In particu-
lar, a larger b/a) will lead to a largerr? in Equation (4) and a largey nbalancég, p, M)

in Equation (11). Hence, we can conclude that a larg¢a)(value causes more unbal-
anced workload distribution among virtual machines, déigig the overall performance.
Also note thatJ nbalancég, p, m) is directly proportional to 14/m. Sincem is indepen-
dent of p or b/a, changing the value ah will not affect other variables in Equation (11).
This implies that a very large will eventually zero out Equation (11). Thus, the execution
time whenm — oo can be expressed as follows.

Execution time (whem — o) = %(Zn + (g -1)p) (12)

Meanwhile, the energy consumption has to be evaluated pil@dieally as well. As we
defined that the performance is bounded by the execution dingevirtual machine that
finishes the last, the expectation of the largest sample Equoation (4) needs to be calcu-

lated. In contrast, for evaluating the utility consumptiare need to focus on the average
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execution time ofp virtual machines. This is because, in a normal distribyttbe prob-
ability for havingu + @ samples is exactly the same as having @ samples. This fact
indicates that the odds of having a virtual machine consgmiseconds more than the av-
erage is the same as having a virtual machine consumsgronds less than the average.
Therefore, we can conclude that the expectation of the &t@tution time is given by
timesp, the number of virtual machines. Given the power of a physiode in the cloud

to beW, the total energy consumption will be the following.

(b—a)p

Energy consumptios W - m(a+ > ) -
| o-ap ~
=W -m(a+ o )
2
EDPo(p) =2 ((2n+ (2 - 1)p + Unbalance?, p, m)(@n + (2 - 1)p)
an<p a a a (14)
_ EDPhase b b
= ~rp ((2n+ (a Dp+ Unbalanceéa, p, M))(2n + (a 1)p))
Similarly, the energy-delay product fan — oo can be calculated as follows.
EDP, b
EDPesam—(P) =750 - (@0 + (2 = )’ (15)

To visualize the effect of a large in the EDPeyp metric, m = 12n,m = 12, and
m — oo are illustrated in Figure 12 by using the following coeffitig,n = 16384,b/a =
1,2,3,5, andExB(p) from Table 1. To find the exact valygthat makes th& DP metric
be a global minimum point, we take the derivative of Equatib®) with respect tq and

set it zero.

(2n+ (3 -1)p)’
4nZp

d
%(EDPbase- )=0

2n (16)

b_1

a

p= (- p>0)

In the example ofn — oo in Figure 12, the minimunkEDP is achieved whemp = b/zTn_l =

16384 in Figure 12c op = 525 = 8192 in Figure 12d.
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Figure 12: An example of the expectation based analysisewvier total number of avail-
able virtual machines is 16384

Again, p = n has to be fulfilled while maintaining Equation (16) to be gyeeffective
for all n virtual machines in the cloud. By combining two conditiops= n and Equa-
tion (16), the requirement df/a can be calculated as follows.

2n
-1

SRy

b (17)

a

w

This equation suggests that in a heterogeneous cloud corgpenvironment with uni-
formly distributed performance, physical nodes that resp@x slower than the fastest one

should not be used when the provisioning objective is to mize theEDP.
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3.3 SimWare: A Holistic Datacenter Simulator
3.3.1 Background

One critical missing part of previous studies [7, 8, 9, 10, 17] is the ignorance of the
temperature dependency on server power. In general, arsgreeating at a higher tem-
perature consumes more power than a server at a lower tetaperdo briefly show the
relationship, an experiment using a Xeon 5160 system iopadd. While running LIN-
PACK benchmark to keep the processor fully loaded, the esgiseem power, fan power,
fan speed, and core temperature at different inlet-air egatpres are measured. The en-
tire system power versus the inlet-air temperature is degich Figure 13a. Clearly, the
system power increases as the inlet-air temperature iseseaith a major contribution of
increased fan power. As illustrated in Figure 13b, the fagesissteeply increases whereas
the temperature of the processor remains the same untihlgtsair reaches 9E. In short,
servers consume more power under high temperature thaarsemder low temperature
primarily due to increased fan power.

The following hypothesis rationalizes the increased fawgroin Figure 13a. Itis
first assumed that a core temperature i$70NVhen the inlet-air temperature is°10) the
temperature difference between them i8&0However, when the surrounding temperature
is 40°C, the temperature difference becomesS@O0As a result, the latter requires twice
more air than the former and the fan must rotate twice fastence, power consumption
of server fans increases as the inlet-air temperatureasese

Prior studies ignored changes in fan power, which accowntd®-30% of the total
system power [20]. Assuming constant fan power will resaltoo optimistic results.
Many of these proposed techniques for saving cooling ereaye servers at higher inlet-
air temperature than the baseline [9, 10, 11]. They may sgudisant amount of energy in

cooling units; however, their implications to the serveweo should be evaluated carefully

°The proposed research ignores data points 82dF (~ 33.3°C) as fans reach their maximum speed and
core temperature start to diverge. In addition, this terapge range is over emergency temperature of Al
class server32°C) [40]
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by taking all the components into account.

Moreover, previous studies [9, 10, 11] disregarded theetriimne of the cool air flow-
ing from the computer room air conditioning (CRAC) units toves. Above all, energy

efficiency should be achieved in accordance with that theg-air temperatureT{y et air) Of
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servers remains below the emergency temperaflfigefgenc)- If No travel time from the
CRAC units to the servers is considered, the datacenter iy geaximize its power sav-
ings by setting the CRAC units to raise the supply-air temipeeauntil one of the servers
reaches the emergency temperatM€det air = Temergenc)- HOWever, in reality, when the
CRAC units detect thaKiniet air > TemergencyfOr & server and start to supply cool air to lower
Tinlet air DEIOW Temergency the server will stay abov&emergencyuntil cool air arrives. In other
words, a time delay exists for cool air to flow from CRAC unitsatgerver, and the server
will fail to remain belowTemergencyduring that period of time. To avoid such failure, CRAC
units must secure a safety margif{se;) When raising the supply-air temperature. There-
fore, a new simulator, SimWare, is introduced in this secti®imWare presents a method
to estimate the air-travel time from CRAC units to servers ahdws the amount of the

cooling efficiency loss due tOsa ety

3.3.2 Core Components of SimWare

This section describes the building blocks, input files, eodfigurable parameters of the
datacenter simulator, SimWare. As shown in Figure 14, theukitor supports different
types of utilization traces as input files and generateopadnce, power and temperature
related statistics. SimWare consists of server-level andagnter-level power models. The
server-level model estimates the power consumption of\eséwy the utilization and the
inlet-air temperature. In other words, the simulator cdass the thermal impact on the
server power. For the datacenter-level power models, thalator uses the concept of heat
distribution matrix (HDM) [41] and a CRAC power model from ettstudy [9]. Moreover,
unlike prior studies, SimWare takes the air-travel timerir€@RAC units to servers into
account. In addition, the simulator is ready for evaluatiagous job scheduling algorithms
and virtual machine-related [42, 43] studies. The abovéding blocks are combined to

construct the holistic datacenter simulator.
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Figure 14: Overview of SimWare.

3.3.2.1 Modeling Thermal Impact on Server Power

In modeling thermal impact on the server power, SimWaresatin the laws of convective
heat transfer and fan affinity laws [44]. The laws of conwextheat transfer state that
heat transfer (in watts) is directly proportional to the ambof air and the temperature

difference between the cooling object and surroundingmiother words,

Heat TransfefWattg « Temperature Dif ference Amount of Air (18)

For simplicity, this document assumes that the densityrakaionstant at the temperature
range of interest. The fan affinity laws define the relationgti the rotational speed, the

amount of air, and the power of the fan as

Amount of airec Fanspy, (19)

Fanpower & Farbpy,. (20)

It is first assumed that the power consumption of a CPU remainstant while the
surrounding temperature increases fropkt air t0 Tinet air + @. Meanwhile, the amount of
heat transfer remains constant. When a surrounding temyerelhanges fronfiyet air t0
Tinet air + @, the initial temperature difference: (AT) between the CPU and the surround-

ing air decreases taT — a. In Equation (18), when the temperature difference deeeas
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by % times, the amount of air must be increasedj%{g—a times to maintain constant
heat transfer. As indicated in Equation (19), to supﬁ% times more air, the fan must
rotate% times faster than before. As a result, according to Equdf6i, the increased
fan speed consumeg%)?’ times more power than when the surrounding temperature is
Tinet air- These laws let us calculate the relative fan power accgridithe power consump-
tion of CPU andTiyet air- Section 3.3.2.6 defines the boundary conditions so thai\Gim@

can calculate the exact power consumed by the fans.

3.3.2.2 Air-Travel Time from Cooling Units

A number of factors will affect the air-travel time includjrthe datacenter layout, the prox-
imity of the CRAC unit to the servers, the air velocity disaied from the CRAC unit, and
the height of the plenum. By considering these physicalrpatars, SimWare presents a
simple thermodynamics-based scheme to estimate thexaeltime. Note that this scheme
assumes the most optimistic scenario that will result irféiseest possible travel time. Dur-
ing simulation, it was found that a longer air-travel timarnththe most optimistic scenario
worsens cooling efficiency. Therefore, to show the lowerrabaf the impact of the air-
travel time, this document estimates the fastest possilelttime.

It is assumed that the CRAC unit discharges®8s of cool air into the plenum. The
air fills the plenum before the tiles .@n x 0.6m) discharge cool air. In other words, cool
air fills and pressurizes the area beneath the dashed lingguwreFL5 before it is supplied
to the computer room. The time for this can be calculated kidolig the volume of this
area by the discharging rate. In reality, after the plenupréssurized, each tile discharges
different amount of air.To simplify, the most optimistices@rio is assumed in which all
tiles discharge the same amount of air.

Once the tiles supply cool air, some airflow will bypass in direction of A and B in
Figure 15, and the majority will fill up the volume above thiedi or the cold aisle. Here,
it is assumed that the supply air does not bypass but onhttidlscold aisle. Altogether,

the results of the calculation show that the cool air takesutibix seconds to reach the
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Figure 15: Layout of the raised floor datacenter.

servers located at the bottom of the rack and seven secoritie &ervers at the top. In
real-world scenarios, the tiles near the CRAC unit supplg lesol air than the tiles far
away from the CRAC unit. Certain servers such as “C” in Figure t&harder to cool

down than the other servers. Thus, the CRAC unit usually Is\vitee supply temperature

with a significant safety margin, thereby reducing the augpkfficiency.

3.3.2.3 Heat Distribution Matrix

In addition to the power model described previously, thet laga air flow in datacenters
must also be considered. The heat and air flow can be repeesbyta heat distribution
matrix (HDM) [41]. To the best, SimWare is the first simulatbat implements heat flow,
temperature, power, and performance into one single stmalanfrastructure. Until now,
building such a simulator has been impractical because Imgdecirculated heat as work-
load utilization changes requires a prohibitive amountahputation. SimWare mitigates

this problem by adopting HDM [41]. Generating an HDM of a datater requires series of
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tools and simulations [45] such as computational fluid dyiesar(CFD) simulations. Nev-
ertheless, the HDM concept is simple; an HDM converts the ¢peerated by a particular
server into an increase in temperatures of all other senFnsexample, given ten servers,
the size of an HDM will be 1& 10. The first row of the HDM represents how muGhet air

is affected by the heat generated by the other ten serversixaultiplication of the first
row and the power consumption of all the servers will prodiigeg; 4 Of the first server. In
other words, each celi,(j) from the HDM indicates the contribution of servgto the tem-
perature increase of server The reference datacenter has 50 blade chassis as iledtrat
in Figure 16. In this case, HDM of the reference datacenteolmes a 50 by 50 matrix as
shown in Figure 17. For example, at the bottom-right cortegrver number 50 (from)”
has tall bars for servers one through ten, indicating thattbat generated by server 50 is

more likely to recirculate to servers one to ten than to tine .

Heat Recirculation

#30 o5
#35 #20
#40 #15
#45 y L1#10 B L/
_ #50 // | #5 // /]
t|_[|]c: QZSL?,T;S // // Hot Air frqm
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Hot [ #48 Y/ // #3 | Y L ot
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#a1 | Y ) w2 | Y //
#a6 | V/ Cold #1 //
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Cool Air from the Floor

Figure 16: Simulated datacenter setup.

This heat-recirculation effect is the main reason Why, o Varies by the location of
the servers. The HDM takes this heat-recirculation effath ccount and converts the

impact of the power consumption (in watts) into the temperdifference (irfC) of one
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server on the other servers. In SimWare, an HDM is used taulzd&Ti, e o Of every
server. Since SimWare relies on HDMs as its thermal mod@&ihirits the limitations of
HDM. Interestingly, HDM does not model changes in convectiows as a consequence of
variable fan speeds; it assumes that airflow patterns aneetexture invariant, which could

lead to temperature estimation errors under some dataageenetries.
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Figure 17: The heat distribution matrix used in the simolati

3.3.2.4 Power Consumption of CRAC Units by Supply Air Tempreratu

Prior studies found that the power consumption of CRAC urefsethds on their supply-air
temperature. Moore et al. [9] measured the relation betweerupply-air temperature and
the efficiency of the CRAC units for a typical cooling systerhey showed that the power

required for CRAC units can be represented as a function afupply-air temperature and
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the amount of heat that must be removed. In other words,

Heat to remove (Power drawn from servers)

0.0068T2, "+ 0.0008Typpy ar + 0458 1)

Power drawn from CRAC units

When the supply-air temperature is°0) the denominator on the right-hand side of Equa-
tion (21) is about one and the CRAC units consume the same dmiquower as the servers
do. However, if CRAC units increase the discharging tempeea supply i), the denom-
inator increases, and the CRAC units consume less power than Wyppy air = 10°C
while removing the same amount of heat. When CRAC units iner€agy air to 20°C,
they will consume only one-third of the power of the servédnrssummary, SimWare uses

Equation (21) to calculate the required power for CRAC units.

3.3.2.5 Input and Output of SimWare
Forinput traces, SimWare currently supports two formatsndard workload format (SWF)
and google cluster data (GCD). A number of utilization traceSWF collected from ex-
perimental datacenters are available in the public don#6h Based on ASCII, each line
of an SWF file describes a submitted job and contains the jobh®submitted time, the
run time, the number of allocated processors, the averaget®iused, and the depen-
dency between jobs. Google released GCD in November 201 Thwduntains similar
records collected from their own warehouse-scale computer

Once a simulation finishes, SimWare generates performaueegr, energy and tem-
perature related data including the turnaround time ofabs for studying latency-sensitive
internet datacenters [47, 48], the peak and average poweuoaption of servers and
CRAC units, the energy usage for the given time frame, andritbegg-delay product of the
current configuration. Additionally, SimWare also outptite average room temperature,

the average temperature by server chassis, and the utihZavel of the datacenter.

3.3.2.6 Chassis and Servers
Current simulated datacenter uses a 50 by 50 HDM. Hence, #rerB0 server chassis,

each holding ten blade servers to amount to a total of 50Cekdad/ers. Each blade server
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has a 13W Xeon E7-2850, one of the latest Intel products with 10 corgsaut Hyper-
Threading. Since there are 500 servers with 10 cores eaglsirtiulated datacenter con-
tains a total of 5,000 cores. Despite this study is limite®®0 servers, SimWare is not
limited to the current physical layout. So long as one caregeie an HDM for a spe-
cific datacenter layout, SimWare can simulate it. In additione can use an open CFD
simulator named BlueTool [45] to generate an HDM for a ussfiretd datacenter.

Except for the fans, the blade server consumesd2@hen fully loaded and consumes
half of its peak power when idle [14]. Now the specificatiom fbe fans is defined as
follows. The fan on the CPU heat sink must remove heat gentekatehe CPU at any
time. Therefore, when the fan runs at its maximum speed,atiishremove 13W (the
maximum CPU power) alemergency(the highest operable temperature). At this operating
point, itis assumed that the fan consume®/i&nd runs at 3,0000m. Each server has two
other fans with the same specification; at the front and ab#dwk panel. The rotational
speed of these case fans are directly proportional to thepoansumption andi,e; air Of
the server. Itis also assumed that fans cannot be turnedadffums at 500 pm when the
serveris idle.

The emergency temperature of this server is set f€3T emergency = 30°C), which
meets Al class server specification for datacenters [40te Nt the goal of fan control
is to save fan power and set the die temperature lower thé@ #f reliability. These
numbers are close to the experiments in Figure 13 where tteetemperature is at 7C

andTinet air IS Measured at 9E(~ 33°C) when the fan rotates at full speed.

3.3.2.7 CRAC Control Policy

SimWare currently supports two CRAC control policies; canstand dynamic. The con-

stant control is the most basic strategy that a CRAC unit sepmool air of a constant

temperature. In this case, the supply-air temperaturenselmough so all servers stay be-
low the emergency temperature at any time. Because thengopbwer is constant and

set to the worst case scenario, this algorithm wastes applimver when the datacenter is
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under-utilized.

To tackle this inefficiency, many recent datacenters pregai/namic CRAC control
policies [49, 9]. The operation of the CRAC unit begins by dyimg the lowest possible
air and jumps into the main loop. In the loop, the CRAC unit gty raisesT syppiy air
at the rate of @1°C/sec? until any server operates at a triggering temperatTigyder)-
When any server encountefget air = Twigger, the CRAC unit starts to lower the supply-
air temperature at the same rate€QDDC/sec In the ideal cas€elyigger Can be set as high
as the emergency temperature. In such an ideal case, the CRiAContinues to raise
the supply-air temperature until any server reaches therganey temperature. How-
ever, due to the timing delay of the CRAC units to effectivadywéring Tinet air, USING
Trigger = Temergency@S @ condition will jeopardize some servers to operate iafnglabove
the emergency temperature. Therefore, the dynamic coptdaly needs a safety margin
(Ttrigger = Temergency— Tsafety margin, Which leads to cooling inefficiency. The safety margin
will be discussed in Section 3.3.3 after analyzing the sanoih results using real-world

traces.

3.3.3 Putting The Datacenter Simulator into Practice

In this section, SimWare is used to perform datacenter sittarls. Among 26 available
SWF files and google cluster data, the job and utilizatioretsdoom SHARCNET in 2005
is used. Results from some trace files are omitted due toghmilkarity. The SHARCNET

utilization trace file contains about 1.2 million jobs for reathan a year of operation.
Figure 18 shows the daily utilization level of the simulatedacenter in a black line. From
day zero to 50, the average utilization of this datacentéegs than 1%. From day 50
to 150, the workload is moderate with an average utilizatbrb.3% and a maximum
utilization of 44.3%. For the last phase, the datacenteemvity used with an average

utilization of 71.3%. In addition, the average power conption from cooling units and

3Because the previous study [49] roughly showed that the isafeom 0.005°C/sec t00.015°C/sec,
0.01°C/secis used throughout this document. The rate is configurabBrmNare.

46



servers are also shown in Figure 18. The total power consomgenerally tracks the
utilization level well enough except when the datacentarider-utilized. Because it is
assumed in Section 3.3.2.6 that servers consume half ofehk power when idle, this
datacenter is not energy-proportional [14]. Normalizednaies of the submitted jobs are
also plotted in Figure 18. In calculating normalized laiescthe simulated latencies are
compared to the latencies specified in the SWF file. Note th&RBENET has more than
7000 cores while the simulated datacenter has 5000 coresefbine, normalized latencies

drastically increase when the latter is at high utilizatiewvel.
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Figure 18: Utilization, latency and power trace of SHARCNETRDO05.

To demonstrate the importance of the air-travel time disedsn Section 3.3.2.2, sim-
ulations with two different configurations are considerede with zero air-travel time by
assuming that the cool air from the CRAC units instantly lavaerversTinet air, and the
second one with the optimistic air-travel time discussefiection 3.3.2.2. These two sim-
ulations share all other parameters. As a result, the digtan of Ti,e; 4 fOr all the servers
is depicted in Figure 19a. In Figure 19a, the Y-axis represére fraction of time that
servers spend at a givai, et air While X-axis represent$iyet air- When instant delivery of
cool air is assumed, all the servers operate undethggency(= 30°C). However, with
non-zero travel time, servers experieGge: air OVEr Temergency UP 10 38C. Therefore, to
ensure¥ Tiniet air < Temergency@t @ny time, a dynamic CRAC control scheme must secure a

safety margin.

Now the safety marginTisatety margid iNtroduced in Section 3.3.2.7 will be discussed.
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Figure 19: Effect of air-travel time, energy breakdown, &JE.

Even with the most optimistic air-travel time, Wh&gigger = Temergency ON€ Of the servers
spent more than 49% of the time at above the emergency tetapeeccording to simu-
lation results from SimWare. However, Thigger = Temergency— 1, all servers will operate
below the emergency temperature for 99.99% of the time. Thenial00%, Tyigger haS
to be as low aJigger = Temergency— 7. It is also found that wheffiyigger = Temergency— 7+

the average supply-air temperature is7t€, close to the typical outlet air temperature of
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the CRAC units from prior studiet Figure 19b illustrates how much energy does this
safety margin cost. In this figure, bars represent energgaisfthe simulated datacenter.
Each bar represents server and cooling energy for a given Cea@ol policy. Every
policy shares the same algorithm but uses diffef&mjyer Values. For example, the left
most bar indicates that the total energy consumption isi§ignore than 5,008 J when
Tuigger = Temergency— 7- If two bars are compared, = -1 anda = -7, the cooling energy

is increased from 11@RJ to 190G5J. The safety margin costs extra &0 (~ 73%) on
the cooling energy. In summary, to ensure every server tonoen ¢mergency@t any time,
datacenters should set a safety margin, which SimWareifgihéis one major source of
inefficiency.

a is continuously increased on the right half of Figure 19log witha, the room tem-
perature increases, and the cooling energy decreases.veigwerver fans now consume
more energy than before, and increased fan energy now oeémglthe cooling savings.
As a result, the total energy consumption saturates at 9. Even thoughr > 9 does
not result in any energy saving, one can achieve a lower Pdidh= 9 — an incorrect
indication when evaluating energy efficiency. Fram= 11 toa = 15, servers consume
more energy and cooling units consume less than 11. As a result, PUE monotoni-
cally decreases regardless of the total energy consumplionthese reasons, total PUE
(tPUE) [52] is also plotted in Figure 19b. Because tPUE fisctan power out of the useful
server power, smaller tPUE guarantees the better energyeeity than bigger tPUE.

In general, the heat-recirculation effect and the airgf@avne from the CRAC units re-
sult in two types of inequality among servers. Firstly, s@apsers will operate at relatively
higherTinet air than the others. Because hot air tends to circulate upwaedsdrvers at the
top of the racks typically experience highEye: air than the servers at the bottom. In sim-
ulations, the difference between the highest and the loWgst,;; among servers is.8C.

In other words, the majority of servers are over-cooled bseahe CRAC units lower the

4Prior studies reporteti5.0°C [50, 10] or lower tharl5.0°C [51]
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supply-air temperature for the worst-case servers. Sdgosmme servers require a longer
time to cool down than the others. Depending on the locatioe servers Tinet air Of
some servers respond slowly. Because the CRAC units set ty sadegin based on the
worst-case scenario, these two types of inequality amongsereduce the efficiency of
the cooling system and require other effective solutions.

To tackle this inefficiency, the proposed research sugdesterogeneous cooling ca-
pacities among servers for a green datacenter. If serveéhne abp of the racks have better
cooling capacities and have highBfmergencythan the other servers, the CRAC units can
safely discharge air at a high temperature by using aggeedgnamic CRAC control poli-
cies. For example, one can pick eleven blade chassis byghestiaverag€inet air from the
simulated datacenter. In addition, if one chafggergencyof these blade chassis from €D
to 35'C, the datacenter can use a dynamic CRAC control policli@fer = Temergency— 2

without compromising thermal guidelines and save 37% ofinganergy than the base-

line, Ttrigger = Temergency_ 7.
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CHAPTER 4
SYSTEM-LEVEL OPTIMIZATION

4.1 System-level Power Breakdown

Datacenter infrastructure delivers power to the companesuath as the CPUs, PCI slots,
memory, motherboards, and disks, of a system. Before wel detaper-system power
breakdown, it is important to understand why we need to edérnthe actual power con-
sumption of a system instead of the power described in a uaauai,i.e., the nameplate
power. When calculating the nameplate power, the vendordias &s conservative as pos-
sible to prevent their products from malfunctioning in tlaeé of power deficiency. As a
result, the total nameplate power is usually estimated bynsing up the worst-case power
consumption of all components in a system. In most of thes;dsmvever, not all of the
system components will operate with its maximal power stemdously. Even if all of
them are busy at the same time, a system will not reach manuésis nameplate power as
it is oftentimes overestimated intentionally. In a datdaeeenvironment, this discrepancy
between the nameplate power and the actual measured peak paw cause significant
inefficiency in the power delivery infrastructure. As searprevious figures, a system has
to be placed in a rack that typically accommodates tens geserGiven that the power for
a rack is limited by the PDUeg(g.,, 2.5kW per rack [53]), the number of systems in a rack
is fixed based on either the nameplate power or the measuaddppver of a server. For
example, if a datacenter deploys servers based on the nat@epl3W, a rack of.BkW
will accommodate 11 servers while the actual aggregateld peaer of 11 servers is less
than 16kW [53]. Under such circumstances, the datacenter will payenoor the power
delivery infrastructure for supporting the nameplate potlhat can never be reached.
Because the nameplate power is different from the actuaEpeansumption, so does
the power breakdown of a server is. According to the namegatver readings in Fig-

ure 20a, a CPU accounts for around one third of the total pofvarsystem followed by
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Figure 20: Power breakdown of a server

20% for the PCI slots, 14% for the memory, and 10% for the mdatberd. On the other
hand, Figure 20b shows the actual power consumption of caeigs in a typical blade
server using a 2.2GHz AMD Turion processor. Different frdme hameplate power read-
ings, the CPU with an on-die MCU consumes 43% of the total agiaaler while the
memory accounts for a quarter of the total. By comparingdhes figures, it is appar-
ent that in the actual deployment, the CPU and memory are thet pmaver-consuming
components in a system.

Figure 21 also identified that the CPU and memory are the twompawer consuming
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Figure 21: Per-system power breakdown by company [20]

components in a system, accounting for more than half imadle samples that corrobo-
rates the data points shown in Figure 20. In the worst casdBill p670, 67% of the total

power were consumed by the CPU and memory. In addition to #uf ft is also inter-

esting to find that Google spends more power on the CPU and Voegethan the others.
This is simply because their main applications are the welocke email, and document
services [53]. For the web search service, many computinigsian the back-end have to
sort and index web pages while the front-end nodes have seppreries. Many of these
operations are CPU intensive. On the other hand, email ssrveruire a large number of
database accesses and file downloads which are primarilgdé@ations. Moreover, even
though the source [53] did not mention YouTube service oilamypes of workloads, it is

obvious that these streaming services will demand much ootke I/O side. In summary,
the most power-consuming components in a real datacemténa@CPU and memory, how-
ever, depending on the services that a system providespthergpreakdown can be vastly

different.

4.2 ATAC: Ambient-Temperature-Aware Capping For Power
Efficient Datacenters

The emergence of cloud computing has created a demand fer dadacenters, which
in turn, has led to the substantial consumption of ele¢yriby computing systems and

cooling units. Although recently built warehouse-scaleadanters can nearly completely
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eliminate cooling overhead, small to medium datacentehns;iwstill spend nearly half of
their power on cooling, still labor under heavy cooling dwead. Often overlooked by the
cloud computing community, these types of datacenters @renrthe minority: They are
responsible for more than 70% of the entire electrical powssd by datacenters. Thus,
to tackle the cooling inefficiencies of these datacenteespmpose ambient temperature-
aware capping (ATAC), which maximizes power efficiency wmigimizing overheating.
ATAC senses the ambient temperature of each server aneétsggnew performance cap-
ping mechanism to achieve 38% savings in cooling power and&¥@ngs in total power

with less than 1% degradation in performance [55].

4.2.1 Background

Generally speaking, the major usage of electrical powés fiato two categories: comput-
ing and cooling. Data have been shown that cooling power iatacgnter can take from
10% [4] to as much as 50% [3] of the total power depending oin teeration. A metric
called Power Usage Effectivene$BUE) [5] as shown in Equation (22) has been widely

adopted to measure the efficiency of a datacenter.

PUE = Powekervers + POWEEqGiity + POWEERAc _ Powekaciity N Powekgrac
Powekervers Powekerers POWEKervers
(22)

Given its definition, a datacenter with an ideal efficientloapsystem (.e., zero cooling)
will reduce the PUE value to 1. However, using PUE to evaltiaeenergy efficiency of
an entire datacenter can be misleading. For example, it motesccount for the increased
fan power that consumes non-negligible power in computergess [6]. These fans in the
servers will blow harder and consume more power when a dat@ccadministrator reduces
the cool air supply by turning down t@omputing Room Air Conditioning (CRAGHits
for power reduction. In consequence, the inlet-air temjpeeaarises, however, the PUE

value gets lowered.

lwith increased fan poweaPowekenerswill be increased, whildPoweggrac is reduced andPoweEaciity
remains constant. As a result, PUE becomes smaller.
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Figure 22a shows the power breakdown of a server with a fuilized Xeon 5160 pro-
cessor. This server runs the LINPACK benchmark at differslettiair temperatures from
27°C to 33C. As we increase the temperature, fans, which consume fréntdB0% of
the total system power [20], rotate faster and consume monepwhile the other parts
of the server including CPU, motherboard, and disks do notvstignificant increase. In
PUE, increased fan power is captured as part of the usefuéispower. Therefore, al-
though a high ambient temperature (H)Alatacenter [2] achieves a lower PUE value,
it does not always guarantee a better power efficiency. Tocomee such shortcomings,
Hamilton [52] proposed a new metric, total PUE (tPUE) to daéan power out of the use-
ful server power. In this work, we will show both PUE and tPUues in our experiments
and demonstrate tPUE as a better metric in assessing pdireezrefy for datacenters.

Recent study advocated the importance of taking a holigiiecaach when analyzing
power efficiency of datacenter [12, 56]. The factors suchéet-air temperature, power
of cooling units, the effect of heat recirculation, and thmpact of timing delay of cool air
deliver should be simultaneously evaluated under the samdagtion framework [56]. For
example, the heat-recirculation effect in a datacentarlt®$ unequal thermo-dynamic
environments among servelis., some servers will operate at relatively higher inlet-air
temperature than the others. As hot air tends to rise up, éhees at the top of racks
typically experience higher inlet-air temperature. Whea @RAC unit targets its cooling
objective for the worst-case hot spot, those servers |dcat¢he lower level of racks are
overly cooled. Such inequality was identified as the majasoa of low cooling efficiency.
Using SimWare, a holistic datacenter simulator in [56], welged the temperature differ-
ential for 50 blade server chassis with 5 blade servers aatien all the blade servers are
fully loaded and consume nearly 565W with the cooling unitsstantly blowing cool air
at 15C, the difference between the highest and the lowest infeeaiperature is §°C.

Figure 22b details the temperature differences among ieride left bars represent the

2Although the abbreviation for High Ambient Temperature iTHwe follow Intel’s naming convention.

55



servers closer to the bottom of racks, and right bars aresthbshe top. Since the CRAC
unit has to keep all the servers below the emergency tempertd guarantee reliability,

some server was overly cooled with an inlet temperature 886tC below the emergency

temperature.
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Figure 22: Server power consumption by changing inletameratures.

To address cooling inequality and inefficiency, we proposeeel system-level ap-
proach calledAmbient Temperature Aware Cappi(QTAC) at per-server level for a dat-
acenter. The technique exploits the non-uniformity of thketiair temperature among
servers of a rack to improve the cooling effectiveness. ltved each server to run at a
higher ambient temperature and applies local DVFS usinggitsed inlet-air temperature

as input to avoid overheating. With such dynamic regulatibe power of CRAC units
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for the datacenter can be tuned down, thereby reducing tleeiainof cool air supply. In

summary, this section makes the following contributions:

¢ We analyzed the energy and thermal impact of high inleteangerature in modern dat-
acenters. With thorough experimentation we identified titverirelationship for several
pertinent factors including total server power, fan spesate temperature, and fan

power in response to the changes of ambient temperature.

e We proposed a new system-level technique that increasessifipdy air temperature of
the CRAC units to optimize energy usage for the entire datacewhile relying on
a dynamic performance capping mechanism (ATAC) to keep gsmrs from running

across the emergency temperature.

e We used SimWare, a holistic datacenter simulator, to ektelysstudy our proposed
ATAC scheme and evaluate its impact to power and performageast prior power

optimization techniques including Power Capping [21] and/@dap [20].

The rest of the chapter is organized as follows. Sectior2gsents the motivation of
proposed scheme by showing thermal impact on server andofaarp. Section 4.2.3 dis-
cusses ATAC. Section 4.2.4 describes the simulation plationd specifies the parameters
for the modeled datacenter. Section 4.2.5 evaluates artgzasahe results. Section 4.2.6

highlights the distinction of this chapter by discussinigvant research works.

4.2.2 Motivation

Server’s inlet-air temperature impacts the core tempegathe server power usage, and the
fan speed, which altogether creates a complex interactimng these parameters and was
not properly quantified and analyzed in prior datacenteficgditeratures [57, 10, 11]. To
evaluate the influence of ambient inlet-air temperature seteup a server enclosed in a
controlled area with a thermocouple and run LINPACK benchnadithe maximum load.
The ambient temperatur@ife: air) inside is increased due to the enclosure preventing cool

air from flowing in. We repeat the experiments for three caoegfiencies: 2.7 GHz, 2.9
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Figure 23: Inlet-air temperature versus power.

GHz, and 3.1 GHz. During the experiments, the system lewgkpdhe fan speed, and the
core temperature are measured at different inlet-air teatpees, as depicted in Figure 23

through Figure 25.

4.2.2.1 Thermal Impact on Server Power

First, Figure 23 shows power consumption of the server @ouafMi et 4ir- Three solid
lines show system-level power consumption at differentrafeg frequencies, 3.1GHz,
2.9GHz, and 2.7GHz while stacked bars show power breakdostrfgr the 3.1GHz run.
We first use the 3.1GHz run as the example for the followindyema For the data points
of Tinet air < 33°C shown in Figure 23, the power elevation, mostly due to thepianer,
follows the trend of the fan speed increase shown in Figure 28 a result, the core
temperature remains unchanged aroun&iC7as shown in Figure 24. This observation
is different from prior study which assumed the fan poweragsstant [58]. Such negli-
gence could dramatically affect the effectiveness of gneaying strategies. Once the fan
speed reaches the maximum (3100 rpm), the core temperdtute ® rise and the up-
ward trend of the power in Figure 23 also slows down. The slggiwer increase in this
region (Tinet air > 33°C) is likely due to increased leakage current caused by higber
temperature.

We now compare the results of running at different frequesickirst, when running at
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Figure 24: Inlet-air temperature versus core temperature.

lower frequenciesd.g.,, 2.7GHz and 2.9GHz), the system does not attempt to cool down
the core temperature as shown in Figure 24. Instead, it pterfan speed (Figure 25) in
order to reduce the fan power consumption. As shown in Fig8reghe system can save
13.5W and 18W for 2.9GHz and 2.7GHz, respectively, from theer rating of 232W for
3.1GHz at 33C. This power saving can be explained by the fundamental lagoofing.
According to Newton’s law of cooling, the rate of heat lospiigportional to the tempera-
ture difference between the object and its surroundings.

We now verify the measured power saving numbers in Figure (8ttatively. To
eliminate the effect of the fan power and the difference aEdemperatures, we pick the
data points of two systems when the fan reaches its maxime®dswith the same core
temperature. As indicated by the circles in Figure 23, thesraf 3.1GHz and 2.7GHz
reach that state WheRet oir = 33°C andTinet air = 37°C, respectively. According to Fig-
ure 24, both scenarios have the core temperature ‘&.7Then the temperature differ-
ences between the core and its surroundings, (Teore — Tinlet air) are 38C(= 71— 33)
and 34C(= 71 - 37) for the 3.1GHz and 2.7GHz core. The 3.1GHz core has amr-adve
tised Thermal Design Power (TDP) of 80W, in other words, tbeliag system, rotating

the fan at the maximum speed, can remove heat generated [¥ac@&e when the delta
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Figure 25: Inlet-air temperature versus fan speed.

temperature is 3&. Based on the law of cooling, the 2.7GHz system will removat he
generated by a 71.6W=(80W x %) core. Our measurement result of these two systems
in Figure 23 {.e., the power difference between two dashed circles) shows aifigvahce,
which closely conforms to the theoretical deduction of 8.4W

By using the relation discussed above, we now present a sisxaimple with respect
to how to keep the core temperature constant under contié# tie inlet temperature goes
above emergency temperatuii@fergenc)- [nitially, we assume a server whose temperature
difference between the cor@ ;e = 70°C) and the ambiencel(ye; oy = 30°C) is 40°C
when the inlet temperature is 30. Now we tune down the cool air supply from the CRAC
unit and subsequently the server sensesTihg o raised to 35C, which is 5C above
Temergency IN Other words, the temperature differened | between the core and the ambi-
ence is reduced to 36. According to our previous discussion, due to the fan hashea
its maximum rotation speed, the server will have to incratseore temperature by’6
to 75°C to achieve the equilibrium, which is undesirable due tcatality issue. Another
option for the server will be to reduce its own power consuopto keep the core tem-

perature at 7GC. Based on our prior deduction, the power draw has to be ptopally

decreased to achieve this goal. Therefore, the server meduoe its power down t%th of
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the original power via technique, such as, DVFS to keep tine mmperature from rising.

4.2.2.2 Thermal Impact on Fan Power

To build a link from Ti,et air to fan power, we adopt a similar approach as in prior litera-
ture [56, 59]. First, we use thiean Affinity Lawshat indicates - (1) the fan power is in a
cubic growth of the rotational speed; (2) the volume capdtite amount of air) of a fan is

proportional to the rotational speed. Thus, the followiatations hold.
Fan Powerx (RPM)®
Volumex RPM (23)

Fan Powercx (Volumg®
Second, we use theaws of Convective Heat Transfdrat indicates that heat transfer or
power (in watts) is proportional to (1) the volume capacityain® and (2) the temperature

difference betweeil.ore aNdTinjet air, Or AT.

Heat Removadk Volume
(24)
Heat Removadk AT

Therefore, when the temperature differena@ (= Teore — Tinet air) €COMeES half of what it

was, the volume capacity has to be doubled to maintain thiencpcapacity.
Heat Removal Per Volum8aore B ATpefore

= =2
Heat Removal Per Volurgge AT after

To makeHeat Removagkioe = Heat Removakie, (25)

2 Volum&sier = 2 X VOoluMetore
Since the volume capacity of a fan is proportional to rotadiospeed, a halvedT will

result in doubling the rotation speed. The fan now rotatasews fast and consumes 8x

more power.
Volume e _ RP M tter _o
Volum@etore RPMetore (26)
Fan Poweksier  RPMhgier P =8

" Fan Powegeiore  RPMoefore

3For simplicity, we assume that the density of air is consaattie temperature range of interest throughout
the dissertation.
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In summary, a highefi, et o results in a smalleAT and increases the fan power.

4.2.3 Details of ATAC Algorithm

In this section, we propose ATAC (Ambient Temperature Aw@egpping), a system-level
technique to guarantee the reliability of operations whertume down the cooling units for
improving energy efficiency. Our proposed scheme enabkemtbt air supply to furnish
less cooling air for saving cooling energy, and at the same,tapplies ATAC to allow each
server to dynamically scale down its frequency and voltage ¢apping the performance).
Local to each server, the ATAC mechanism collects vario@igrination including core
temperature, inlet-air temperature, fans’ rotationakspe@nd CPU’s thermal design power
(TDP), and checks if the inlet-air temperatulg,; i) IS above the emergency temperature
(Temergency to make a decision for performance capping.

Initially, the system administrator starts to operate thgadenter in a way that all the
CRAC units supply cool air at the lowest possible temperatliren the CRAC controller
increases the air supply temperature from the CRAC unitsgchvim turn will reduce the
energy consumed by them [9, 49]. CRAC'’s discharge temper&aeps raising until the
highest inlet-air temperature of a server reaches a triggeemperature poinlyigger. At
the moment that any of the servers experienGgger, CRAC units now start to lower the
supply air temperature. In this scenario, ATAC constantlynitors the inlet-air temper-
atures from each server, obtained using the thermal semsbecdded in the servers. If
Tinlet air Stays belowTemergency the triggering event does not occur. Otherwise, ATAC of
the violating server will cap its own performance by scaldoyvn its frequency/voltage to
reduce the power consumption. Note that ATAC has to assatelib power is proportion-
ally reduced with the delta temperatut®T( = Tcore — Tinlet air ) Pased on the discussion
in Section 4.2.2.1.

Now we discuss the relationship between power and perfacedor designing an
effective performance capping mechanism. In general, #rdopnance is not propor-

tionally reduced by the reduction of power. For instancethea experiment shown in
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Figure 23 through Figure 25, we find that when the frequendpwsered from 3.1GHz
to 2.7GHz (87.1%), the power is reduced from 80W to 72W (9Q;086wever, perfor-
mance results from LINPACK benchmarks is only reduced fron3 Tlops to 15.1 Gflops
(98.6%). In the previous example, if we define 90.0% as theepaatio and 98.6% as
the performance ratio, then the relationship between tleeiswclose to (Power ratio¥
(Performance ratid) which indicates only slight performance degradation lojed power.
To obtain a more conservative evaluation, we adopt a gempesaer and performance
model from other studies [60, 61] in which the power ratio gua&l to the square of the
performance ratio ((Power raticy (Performance ratid). Based on this model, if the
performance of a core degrades by 90%, its power consumpiilbibe reduced to 81%
(= (0.90¥). For the following evaluation of ATAC, we use this conseivaiassumption.
Although ATAC is designed to exploit the inequality or nonHermity of the inlet-air
temperature among the servers in a rack, we also argue thaTAC benefits from the
uneven cooling effectiveness among servers in a datacddggending on the proximity
of the racks to the CRAC unit, the inlet temperature of someegsrchanges more rapidly
than the others. When some servers take longer time to coal,do CRAC unit cannot
raise supply air temperature instantly even though all émeess are running beloWiigger.
This is because of the uncertainty of future workload. If da¢acenter has no information
about the future workload, the CRAC unit cannot aggressikele the room temperature
but has to maintain a safety margin. In other words, to maim@ax Tinet air) Strictly
under Temergency Ttigger CANNOL be as high abemergency Section 3.3 identified that such
phenomenon is caused by non-uniform distances from CRAG tmgervers. In contrast,
with ATAC support for all the servers in the datacenter, theACRunit can increase the
supply air temperature more aggressively with more relesafdty margin as the built-in
dynamic performance capping scheme in each server canngspw resiliently control

the core temperature.
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4.2.4 Simulation Setup
4.2.4.1 The Simulation Platform and Inputs

In this chapter, we use SimWare [56] as an evaluating platfoSimWare is the only
publicly available datacenter simulator that implemensugety of critical components in

a warehouse-scale computer including:
o A detailed power model of servers by utilization level ankirair temperature
e CRAC power models [9] by supply air temperature
e The effect of heat recirculation [41]

e The effect of the timing delay of cool air delivery from CRAC tioe front plate of

servers

At the end of the simulation, SimWare outputs utilizatiovele, power-, and latency-related
statistics.

To model different datacenter settings, SimWare suppovtgiaty of configurablepa-
rameters, including the number of server chassis in a steldatacenter, the number of
servers per chassis, architectural specifications for CRUfans, task scheduling algo-
rithms, and CRAC algorithms to control air supply. First of &imWare provides two
different CRAC controlling algorithms; constant and dynemnin the constant controlling
algorithm, the cool air temperature supplied by CRAC does/ant (i.e., constant temper-
ature). Since CRAC does not change the supply air temperatatacenter administrators
assume the worst case scenario where all the servers gréofadled. Since this worst case
scenario is extremely rare, the constant CRAC control ow@satie datacenter most of the
time and thus scores low power efficiency.

The dynamic algorithm, on the other hand, changes the swpptgmperature while
sensing the inlet-air temperature of the servers. Algorith shows the dynamic CRAC
control implemented in SimWare. CRAC starts to supply coolaithe lowest possible
temperature, and raises the temperature until any sernwelsair temperature hits a trig-

gering temperatureTyigger- Upon such an event, CRAC begins to lower the supply air
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temperature to cool down the room temperature. In gendraliniet-air temperature of a

server is computed as follows [62]:

Tinlet air = Tsupply air T Trecirculated heat (27)

Here, Tiecirculated heatf€presents the thermal impact caused by heat recirculefitire other
servers. Note that this heat-recirculation effect is thmpry reason why et air Varies by
the location of the servers. Also, the goal of the dynamic CRAGtrol can be expressed

as follows:

VTinIet air < Ttrigger (28)

Throughout this chapter, we assume that the simulated elattarcuses the dynamic CRAC
control, which dynamically changes the discharge air teaipee. Therefore, we do not

specifically show whicH s;ppiy air IS Used, but show whicliyigger is used.

Algorithm 1 Dynamic CRAC Control
Require: Tsypply air < lOwest possible temperature

loop
while VS ervefs inlet air temperature< Tyigger dO
CRAC raises Jpply ar for 0.01°C/sec
end while
while 3S ervefs inlet air temperature> Tyigger dO
CRAC lowers Tpply air fOr 0.01°C/sec
end while

end loop

Secondly, we use Google Cluster Data (GCD) [63, 64] as the ogBimWare. Google
released GCD, one of the most detailed utilization traceputdic in 2011. GCD com-
prises 178GB of text files containing detailed informatibattis collected from the jobs

submitted to one of the company’s datacenters. The ovevalbating cluster has about
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12500 heterogeneous computing nodes in 10 different grfafs Although the differ-
ent groups have disparate hardware specifications, weupdhe nodes into three groups
based on the CPU performance metric. This is because curmewa&e only models
server's power consumption by CPU utilization, but not by rogyor disk utilization. In
terms of normalized CPU performance, servers in GCD have thffegent types: 0.25, 0.5
and 1. On the contrary, in our simulated datacenter, searerfomogeneous.€., all the
servers share the same computing capacity). Since moréf#¥arof the servers in GCD
have a normalized CPU scale of 0.5, we assume that a CPU scalg wfaiches to one
core in the simulated datacenter. For the servers with a CRld s€0.25 or 1, we assume
linearly decreased or increased execution time, respygtifFor example, one second in a
machine with a CPU scale of 0.25 corresponds to a half secoadrnachine with a CPU
scale of 0.5. The rest of the configurable parameters for Sire\&@re discussed in the next

section.

4.2.4.2 Specifications for Blade Servers

In our simulation, we use the same 50 by 50 heat recirculatiatrix as in the original
SimWare in Section 3.3. Because the number of rows in thigrggmatrix represents
the number of blade server chassis inside the datacengesirtiulated datacenter has 50
blade server chassis. We also configure each blade senssisimlds five blade servers
to attain a total of 250 blade servers. Table 2 summarizespleeification of a blade
server in our simulated datacenter. Each blade server h&gterPhi, one of the Intel's
anticipated products with 57 cores. However in our simalatiwe only activate up to 51
cores from each server. This is because GCD utilizes only 3268es, or 50.332 cores
(= 12583250) per server. Therefore, we recalculate the power copsamas follows.
Even though Intel's Phi is rated at 300W [66], we first sulitigec maximum fan power
and multiply by213rE€3to obtain the maximum power in our simulation. We first assume
that the fan attached to Intel's Phi consumes up to 21.6Wisdase, the maximum CPU
power becomes (30U — 21.6W) x 22 = 2491W = 250W. Here, because Intel did not

5= =
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Table 2: Specification of the simulated blade server.
| Component name | Specification |

CPU 57-core Intel Phi. TDP=300W [67]. When only 51 cores are jac-
tive, TDP=250W
CPU Cooling Capacity CPU fan removes heat generated by 250W when the fan rotates at
the maximum speed
AT = Teore— Tinletair | When the fan rotates at its maximum speed and the CPU is at full
load, The temperature difference between the processor die’s{tem-
perature and the ambient aird€°C.

CPU Fan Maximum speed = 4800 rpm; power = 21.6W.
Case Fans Two more fans are located at the front and back of each server.
Fan Control WhenTqre < 70°C the priority of the fan control is in saving fan

power. Otherwise, wheficore = 70°C, the priority is in lower-
ing Teore. The cpu fan cannot be turned off and runs at 500 fpm
when the server is idle. Case fans increase rotational speed pro-

portional to the power consumption of the server and the inlet-air

temperature.

Idle Power The blade server consumes 250W plus corresponding fan ppwer
when idle.

Peak Power The blade server consumes 565W in maximum.

reveal the detailed specification of the fan attached towdhiassume the same fan used in
Nvidia’s GTX 480 because GTX 480 had the same TDP of 250W. imnsary, Intel’s Phi
consumes 250W when 51 cores are activated.

We also elaborate more on the detailed specification of thaftached to Phi. First
of all, the fan consumes 21.6W in maximum and removes heatrgad by 250W when
the the fan rotates at the maximum speed of 4800rpm. We atsoresthat when the fan
removes the maximum power, 250W, the minimum temperatudferdhce AT) between
the die and the inlet air is 4C. This was generated from our experiment discussed in Fig-
ure 24 where the core is at T and the inlet-air temperature is measured aC3®8hen the
fan rotates at full speed. For simplicity, we usé@anstead of 38C(= 71°C —33°C). This
number is particularly important for performing ATAC. As disssed in Section 4.2.2.1
and Section 4.2.2.2, we use the temperature differencdcdalate the desired power level
to be achieved by DVFS. An example with respect to how to rélaellesired power level

was given at the end of Section 4.2.2.1.
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There are two other fans with the same specification useceisehver. One is located
at the front panel of the server and the second one at the bEuwo&.rotational speed of
these case fans are directly proportional to the power aopson of the server and inlet-
air temperature. For simplicity, the boundary conditiothiat the fans are rotating at 4800
rpm (maximum), when the server is fully loaded at@0In addition, we assume that the
goal of fan control is to save fan power and set the die tenwperdower than 70C for
the reliability. In terms of the peak power of the blade serwee add up the idle power,
peak CPU power, and all three fan powers. We first assume thaldlde server consumes
250W when idlé. Then the peak power becomes 250W (idle power) + 250W (peak CPU
power) + 321.6W (three fans) = 564.8W
4.2.5 Evaluation and Analysis
4.2.5.1 The Baseline Analysis
For the legacy datacenters, typidalyger Value ranges from 2€ to 30°C, and the average
Tsupply air IS @around or even lower than 4G [50, 10, 51]. However, according to Intel’s
projection of future datacenters, high ambient tempeea(HiTA) datacenters will let the
servers operate above“l) or even more than 5C [2]. Because this chapter focuses on
the power optimization for future HTA datacenters, our ekpental ambient temperature
ranges from 40C to even higher than 3C€. Hence, throughout the chapter, we Uiggger >
40°C.

Figure 26a shows the overall utilization level of the sinbethdatacenter wheFyigger =
40rC. The X-axis represents the elapsed time while the primaaxig-(left) and the back-
ground area chart show the power consumption in watts. litiaddthe secondary Y-axis
(right) and the solid line chart show the utilization levéls stated before, GCD contains
job traces for about a month, and the average daily utibmakevel ranges from 40% to
60%. If we divide the time line into four consecutive weeke tourth week shows signif-

icantly higher utilization level. The power consumptiomeaifor computing and cooling

“Typical servers consume the half of the peak power when idig When we exclude the fan power, our
blade servers consume half of the peak power when idle.
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units generally tracks the utilization level. More intdieg observations can be made from
Figure 26b. In Figure 26b, we increa$ggger from 40°C to 52°C in X-axis. As we in-
crease€lyigger, the datacenter saves cooling power while spends more opdaer. As a
result, we identify that aft€figqer = 47°C, raising room temperature no more reduces the
total power consumption of the datacenter. Meanwhile, PUBanotonically decreasing
as we increase the ambient temperature. This is becausedpiBportional to the ratio
of the CRAC power to the servers power, if the facility poweramains constant. With
reduced CRAC power and elevated server power (due to inciedaa power), PUE de-
creases even though the total power consumption increabesefore, we suggest to use
tPUE for measuring the power efficiency of datacenters. Bee@PUE factors out the fan
power from useful computing power, we find that lower tPUE rgnéees a better power
efficiency.

Another important implication of high€Fyigger is higherTeoe. When the fan is not at
the maximum rotational speed, a system can Aglg even at a high€Finet air DY increas-
ing the fan power. However, in rare situations, the follogvthree conditions can occur at
the same time. Firstly, the fans are already at the maximueco&lly, the CPU is at the
full load. Lastly, Tiyet air iS raised abov@ emergency IN SUCh situationT ¢ore rises to maintain
the temperature difference- (AT) betweenT qe and Tinet oir CONStant. Figure 27 shows
how rare such situations are. In Figure 27, we illustratediséribution of T,y across
different Tyigger Values. As we increaskyigger from 40°C to 52C, the maximum value of
Teore @lSO increases. Note that the Y-axis is in a log scale, itidigahat the chances for
having a highefT are rare. In other words, thE.q distribution has a long tail on a
high temperature region. Nevertheless, if a CPU experiefiggs= 90°C for only a few
seconds in a month, the CPU must guarantee reliable opegtfigpe = 90°C.

Here, we recall that high.,e 0ccurs when three conditions are met at the same time. In
other words, if any of three conditions can be broken, we saidaunnecessary reliability

emergencies. Our proposed ATAC breaks the second condifosensingTinet air and
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Figure 26: Simulated results for Google cluster data in 2011

changes DVFS state so that the CPU cannot be fully utilized.w&show in the next
section, ATAC initiates performance capping only for a drfralction of time, therefore,
the overall responsiveness of the datacenter remainsyrtbarlsame while the maximum

Teore drastically decreases.
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Figure 27: Distribution of core temperature wh&gyger changes from 4 to 52°C.

4.2.5.2 Evaluating ATAC
In applying ATAC mechanism to the servers, a datacenter midtmator can set how ag-
gressive will ATAC be. For example in Power Capping [21], aszeewith a 1000W name
plate can be set to consume 900W, or even 800W by adminisgtratecisions. When
the server’s power consumption is capped at 800W, the spardorms less than when it
is capped at 900W. Similarly, administrators can confighee aggressiveness of ATAC.
Aggressive ATAC will activate performance capping moresaft

We start with the most basic strategy, ATAC-0, which actiggterformance capping
whenTiet air = Twrigger- 1N Other words TemergencyfOr this configuration iSTyigger, meaning
that when a server sens€giet air > Trigger, the maximum performance of the server is
capped. For example, we assume fhi@fger = Temergency= 40°C, and one of the servers
in the datacenter senses thatTifget air IS 45°C. In this case, without ATAC SuppOr,core
can be as high as 85(= Tinet air + AT = 45°C + 40°C) according to the\T specification
in Table 2. However with ATAC support, after acknowledgitgt Tinjet air IS 5°C over
Ttigger, ATAC reduces the maximum power consumption of the CPQT—géﬁ. As a result,
required temperature difference betweERe and Tiyet o IS also reduced to 3&, and
the maximumT,e becomes 8. Figure 28a shows the results of the scenario described
above. In Figure 28a, the distribution ©fe for the baseline configuration goes as high
as 84C while ATAC-0's worst-casél .o is 80°C. We also define more aggressive ATAC,
from ATAC-1 to ATAC-4. In ATAC-1, performance capping is actied by ATAC when
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maximumT .. reduces to 79C for ATAC-1 and 76C for ATAC-4.
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Figure 28: ATAC'’s impact on core temperature and latency whgger = 40°C.

Even though ATAC-0 lowers the maximuiie about 4~ 5°C than the baseline, the
chances for activating performance capping is low. We rbughlculate how low the
chances are from Figure 28a. Firstly, we add up all bars fréd€8o 84C from the
baseline. The result is 26096 seconds. Because there are@tHmillion CPU seconds
(=50 chassix 5 servers< 29 daysx 24 hoursx 3600 seconds) in our study, 26096 seconds
is less than 0.01% of the time. In summary, ATAC-0’s impactlmresponsiveness of the

simulated datacenter is close to 0%. As shown in Figure 2@lbe raggressive ATAC such
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as ATAC-4 shows the performance degradation of less than 1%.

4.2.5.3 Comparing ATAC against Power Capping and PowerNap

ATAC is unique in that it takes ambient temperature into actoBecause ATAC activates
performance capping from the servers at the highest imtdemperature, ATAC exploits
temperature differences between servers. Figure 29 détaleffect of ATAC on servers’
performance. We first group the servers by the height in tbkstaSince the simulated
datacenter supplies cool air from the floor, servers neafltoe has the lowest average
inlet-air temperature. Therefore, servers located at oneest to middle position do not
activate performance capping for any configuration we tegtigure 29. ATAC activates
performance capping only for the servers at top two posstideven for the servers at top
two positions, the performance is sacrificed only for a facof time when the inlet-air
temperature is higher thalemergency Therefore, on the right-most ten bars in Figure 29,
the worst case server with ATAC-3 scores 90% of the originafgsmance. Note that
Figure 29 shows the lowest performance scale of all time. verage, the performance
scale of any server scores more than 99% of the original pedoce regardless of the
location. Because ATAC exploits non-uniform inlet-air {@@nature among servers, ATAC

outperforms the other power management schemes.

100%
98%
96%
94%
92%
90%

CPU Performanct

ATAC-1 ATAC-2 ATAC-3

Figure 29: ATAC's impact on cpu performance (lowest value lbtiene) by height of
servers.

Figure 30 shows the maximume Value and the normalized latency of the simulated

datacenter for different power management algorithmsustialg Power Capping [21] and
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PowerNap [20]. Power Capping is a power management techfoqdatacenters that acti-
vates performance capping by sensing system-level poweucoption and strictly limits

the maximum power consumption under the bar. In our experim&hen Power Cap-

ping is available, servers’ power are capped to 540W, 530\&20W. We also implement
the ideal PowerNap. Although the original PowerNap has:3@@rformance penalty for
waking up from the napping state, we assume zero penaltyoto 8te upper bound of the
effectiveness of the algorithm. In addition, we use the seoméigurations for the baseline

and ATAC-0~ ATAC-4 as in Figure 28.
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Figure 30: Comparing ATAC against other power managemewtriéhgns whenTyigger =
40°C.

Firstly, Figure 30a shows that ATAC and Power Capping arecétffe in reducing the
maximum value ofT .. For example, when Power Capping is set to 520W, the highest
Teore IS 76°C, which is close tdl .o Of ATAC-4. However, as shown in Figure 30b, Power
Capping to 520W results in 20% performance degradation WATIRC-4 shows less than
1% degradation. This is because Power Capping lowers therpahce of CPU only
by detecting the system-level power consumption. Even wherserver burns the full
power, there are no temperature emergencies Whgh, is substantially low. Figure 30
also shows that PowerNap has no impacflgge nor on the normalized latency. This is

because PowerNap is not designed to conlggk but to save server power for achieving
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Figure 31: Maximum core temperature equivalent comparison

energy proportionality [14].

4.2.5.4 Max(Tore)-Equivalent Comparison
As discussed in Section 4.2.5.3, ATAC and Power Capping #ihgos effectively lowers
the upper bound of .. FOr example, ATAC-4, which only activates performance cagp
when Tijet air 1S higher thanTyigger — 4, lowers the maximunT o Value from 84.1C to
76.0C when it is compared to the baseline wh&kgyger = 40°C. Results from additional
simulations show that the baseline datacenter without amepmanagement mechanism
must lowerTyigger from 40°C to 32°C to achieve the same level 3t .. Similarly, since
PowerNap has no impact dige, PowerNap also has to low&figger to 32°C for achieving
the maximumrT .y Of 76°C. On the other hand, when Power Capping is available and set
to 520W, the maximum value dfc,e Was the same as ATAC-4 without changilggger-
In summary, ATAC-4 and Power Capping set to 520W both achieyenéximumT s Of
76.0 + 0.1°C while the baseline and PowerNap have to loWggger to 32°C.

We compare power consumption of all four configurations igufeé 31a and Fig-
ure 31b. The labels on X-axis show the name of four configomatiand corresponding

Trigger Value in the parenthesis. Note that all configurations hiagesame peaK.q. values
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Figure 32: Per-server utilization distribution.

of 76.0 = 0.1°C. In terms of the cooling power, savings for ATAC-4, Power Cagpiand
PowerNap are 38%, 40%, and 1% respectively. Such savingsamsated to about 6%,
8%, and 1% savings in terms of the total datacenter powedydimgy all the components
such as computing power, fan power, and cooling power. P@agping to 520W is the
most effective power saving technique; however, it comeh thie significant performance
penalty. Figure 31c shows the responsiveness of the siedutistacenter. The datacenter
with Power Capping set to 520W shows over 20% latency penktgontrast, ATAC-4's
impact on the performance is negligible, less than 1%. Ekendh our implementation
assumes the ideal PowerNap, Figure 31 shows that PowerNaliited impact on the
overall power consumption of the datacenter. The reasosdon observation can be ex-
plained by Figure 32. The figure shows the distribution ofgtever-level utilization of the
baseline configuration{;igger = 40°C without any power management scheme) in seconds.
As shown, servers spend most of the time in the utilizatiorllef 20% to 80%. Servers
in GCD are completely idle only for 1.3% of the time. Becausev®dap puts servers in
napping state when they are completely idle, PowerNap tsssthean 1.3% of the head-
room for this specific utilization trace. However, we alsaifthat PowerNap can be used

in conjunction with ATAC to save additional 1% of the totaMper consumption.
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4.2.6 Related Work

Researchers have investigated increasing the supplynaiature without compromising
reliability. Moore et al. [9] proposed a new job scheduling policy to minimize the heat
recirculation effect, and Banerjeg al. [57] further improved it. A prior study found that
whenTinet air INCreases, the processor cores contribute to the majdragditional power
consumption [58]. Atwooet al.[68], however, showed that the failure rates of servers have
little correlations to temperature, dust, and humiditye$é studies motivated us to design
system-level support that exploits the cooling inequalityong the servers in datacenters.

In this work, we primarily focus on the power consumption obtng units and servers;
nonetheless, other sources of inefficiency were explorgatior research. For example,
Wanget al.[69] and Pelleyet al.[16] proposed efficient power delivery and smarter cluster-
level power controller, and Let al. [70] proposed power-efficient execution of programs.
In addition, Haquet al. [71] proposed a new definition of service-level agreemeateen
SLAs, for the clients who care about using green energy.vidteng the peak power con-
sumption is an important issue for datacenters [72] bectneseelectricity bills are based
on (1) the amount of energy they use and (2) the peak powethbgtdemand. Use of
fresh-air cooling [73] or renewable energy [74, 75, 76] alsproves cooling efficiency
of datacenters. Although ATAC achieves the same goal, {mproving the cooling ef-
ficiency), it can be used in parallel with aforementionechteques. For example, with
ATAC support, a datacenter with free-cooling systems capiaéixhigh temperature varia-
tions among server locations.

Similar to ATAC, Zephyr [77] discussed blade chassis-leva@h@r optimizations in-
cluding fan and server power, while our study focuses onacdeatizr-level power opti-
mizations including cooling power. In addition, the noyetif ATAC lies in exploiting
location-dependent and regional cooling characterigtisisle datacenters.

Advancements of micro-architectures and memory techmedocan lead to significant
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energy savings in datacenters. For example, Razor [25)sallnicroprocessors to oper-
ate at a lower voltage by comparing results from multiple-flgps operating at different
speeds. Razor is in fact conceptually similar to ATAC: Rapwdrs a supply voltage and
exploits voltage safety margins of microprocessors, WAIAC lowers cooling power and
exploits temperature safety margins of datacenters. Engergemory technologies, such
as die-stacked memory [78], would also play a key role invadking power concerns in
datacenters. Stacked DRAM caches already become pratcticaldeployed in large-scale
servers by alleviating hardware overhead [79] and resilieoncerns [80]. These advance-

ments could greatly reduce computing and memory power iacagters.
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CHAPTER 5
MICRO-ARCHITECTURE-LEVEL OPTIMIZATION

5.1 Micro-architecture-level Power Breakdown

As a CPU is one of the most power hungry components in a systamjmperative to
optimize power and energy consumption of CPUs [81]. In thidise, we examine and
understand the power distribution within the CPU. Not onlp pawer reduction in each
CPU collectively reduce the overall power consumption otathputing nodes, it also cuts
the cost of thermal management hardware, such as the sitles béat sinks and cooling
fans and the center-level cooling strategy. As a part ofeffst, we will cover the power
breakdown of a CPU in two different aspects. First, the poweakdown by functional
modules such as the register file, fetch logic, or ALU will beluded. Second, we will
further analyze the power breakdown of a CPU based on diffdygres such as active

dynamic power, sub-threshold conduction, and gate leakage

5.1.1 Per-CPU Power Breakdown by Modules

Integer ALU Data cache FP issue queue LSQ
4% 2% 2%
4% BN =

Integer mapper

6%

System
7%

Integer issue Q
8%

Figure 33: Power breakdown of Alpha 21264 [82]
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Although there is a scarcity of public literature that brealown the power distribu-
tion of a modern out-of-order (O0O) microprocessor, theezensome attempts from both
academia and industry that analyzed, modeled, and sindullaéepower consumption of
sophisticated processors at the micro-architecturall.lekFeggure 33 and Figure 34, both
based on the DEC Alpha processor, detail and illustrate paater distribution. Figure 33
shows the power breakdown of an Alpha 21264 processor rgryzitpat 600MHz. These
numbers were generated using the micro-architecturaldatbwer model integrated with
the cycle-level Alpha-sim simulator [82]. Given that thepAl 21264 processor is a four-
wide superscalar microprocessor with OoO execution, dpéee execution, and large
instruction queues for both integer and floating-pointrinations, the power breakdown
obtained by modeling this microprocessor will be a good @spntative for today’s high-
performance processors. From Figure 33, one can easilyHadhe clock tree actually
accounts for more than one third of the total power dissgratNote that, the clock signal
itself is the fastest switching part of the entire chip, anid has to be done regardless of
the modular utilization in the CPU. For example, the clocksigvould change the logical
state of the floating-point functional unit every cycle evieonly an integer application is
being executed. Such unnecessary power waste can be adohihenore advanced circuit
techniques such as unit-level, fine-grained clock-gatimgdyoamic voltage frequency scal-
ing (DVFS) are applied. We will discuss more of these techegjin subsequent sections.
To elaborate more about the clock distribution, it is wortlmioning that the Alpha 21264
processor uses a metal grid that covers the entire die arelistabuting the clock signal.
A metal grid for clock distribution is known to be the mostezfive (but not necessarily
the most efficient) way of distributing clock signal with nmmum clock skew to all the
parts of the chip [83]. As a result, this lets a CPU run at a higiperating frequency than
other types of clock distribution network such as H-treel&ivl S390 or length-matched
serpentine structure for Intel P6. However, this clockribstion network, a metal grid,

has a main drawback that it consumes more power than otlenatives due to its large
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capacitance. Next to the clock signal, the integer regfgeeaccounts for 14% of the total
power. Because these numbers are generated by rugmipgan integer application, the
integer register file is heavily used. The accumulated Oafixlaccounts for 20% of the
total power consumption: 8% for the integer issue queue, @thie integer mapper (for
register renaming in integer registers), 2% for the floafpognt issue queue, and 4% for
the floating-point mapper. In exchange for higher perforogaby exploiting instruction-
level parallelism, the power portion of the OoO-relatedddg larger than those of the data
cache (4%) and the functional units (4%).

IEXEU MMU

FPU 5% / 4%

Caches

5 MemCon
7% 27%

L2
8%

000 Issue logic
9%

Figure 34: Power breakdown of Alpha 21364 [84]

On the other hand, Figure 34 shows the power breakdown ofaAB1864 micropro-
cessor generated by an integrated framework called McPAfl ttodels power, area, and
timing done by HP Labs. The Alpha 21364 processor is the ssoc®f Alpha 21264 with
minor changes on the core design with major differences bardupplementary logic in-
cluding an on-die memory controller (“MemCon” in Figure 34p cache, and network
on chip controller (“NoC”). The design philosophy of Alpha384 was to improve band-
width of the memory subsystem as well as maintaining sdéhabor future many-socket

systems. With this objective, the memory controller andvogk on chip controller have
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become the most power-consuming components — accountimgjrfmst half (46%) of
the entire chip power budget. For the rest of the chip, thekctiistribution accounts for

16% while the O0O issue logic is about 9%.

5.1.2 Per-CPU Power Breakdown by Sources

22 nm 81%
32 nm 82%
45 nm
65 nm 79%
90 nm 83%
130 nm 89%
180 nm | 6% 94%

250 nm ~100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

B Gate leakage O Subthreshold conduction @ Active power

Figure 35: CMOS leak power trend by fabrication process teldgies [84] [85] [86]

Figure 35 illustrates the power breakdown of a CPU by souraek as active power,
sub-threshold conduction (sub-threshold leakage), @& lgatkkage across different fabrica-
tion process technologies. These data are collected frolipheusources [86, 84, 85]. As
the feature size shrinks, as shown in Figure 35, the portidineosub-threshold conduction
continues to increase and reaches almost 20% of the totamowhe 22im technology
node. This increasing trend is a trade-off for reducing ttteva power. To lower the power
of a processor, designers employ lower supply voltage) @s the active power of a CMOS
device is proportional t&2,. WhenVyq was high (e.g., ), CMOS gates can be operated
at relatively high threshold voltages (e. 9y = 700mV). Due to the high threshold voltage,
sub-threshold leakage current were negligible as showmeifdilowing formula where,; ¢

is the sub-threshold leakage current ans the sub-threshold swing m\/decadg87].

Vih
Ioff x 10 s (29)
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According to Equation (29), for a given sub-threshold swihg sub-threshold leakage
current is exponentially and negatively proportional te threshold voltage. Meanwhile,
Vyq has been lowered from\bto sub-d today,Vy, was also scaled down to 20/. For
a sub-threshold swing of 169v/decade every 100nV drop in Vy, will cause ten times
more sub-threshold leakage current. On the other hand,|gakage is also exacerbated
as the technology node advances. The increasing trend wasidee of the fact that with
technology scaling, the capacitance of the gate oxide matara MOSFET also scaled
down. Equation (30) shows the relationship of capacita@gevith the dielectric constant
(kappa, area f),permittivity of free spacesp), and insulator thickness)(

B kEA

C== (30)

Since smaller fabrication process technology reduces @&keaf the gate oxide, the
overall capacitance of the gate oxide becomes smaller,hnihireases the gate leakage
current. As an alternative method for increasing the capace of the gate oxide material,
material with highek value has been used sincevi®fabrication process technolog.g.,
Intel’s high« metal gate technology revolution. As a result, with the ‘iHig material, the

gate leakage has almost disappeared in Figure 35 sinmo® 45

5.2 Emerging Solid-state Memory Technologies

There are several emerging memory technologies loomindneioérizon to compen-
sate the physical scaling challenges of DRAM. Phase chaegsony (PCM) is one of such
candidates proposed for being part of the main memory in coimg systems. One salient
feature of PCM is its multi-level cell (MLC) property which cée used to multiply the
memory capacity at the cell level. However, due to the nattiRRCM that the value written
to the cell can drift over time, PCM is prone to a unique typeadt srrors, posing a great

challenge for their practical deployment. To address tHiability issue, many researchers
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proposed material-based or architectural solutions. i ghction, we analyze the resis-
tance drift problem using both analytical models and MontddCsimulation and show
the fundamental limit in prior architectural solutions. @eding to our findings, four-level

PCM is unusable given its soft error rate and scrubbing tinezlad.

5.2.1 Background

Phase-change memory (PCM) is viewed as a promising alteenttdi dynamic random
access memory (DRAM) for future computing systems. PCM stdega by changing the
state of the material made of Ge, Sb, and Te (GeST). The stRE€W switches back
and forth between an amorphous state and a crystalline @tateicroscopic level. The
amorphous and crystalline states indicate high and lowstaste states, respectively, which
represent the value of data stored in the respective PCMMelle specifically, a PCM cell
turns into an amorphous state if the temperature of theedised up to the melting point
and then lowered relatively quickly. When the PCM cell is in #morphous state, the
resistance of the cell is measured arounfl@@ms. On the other hand, if the PCM cell is
heated up to a certain temperature below the melting poohttzen cooled down relatively
slowly, it becomes a crystalline state. When the PCM cell ihendrystalline state, the
resistance is measured around Ghms.

While adjusting the temperature and cooling time of PCM cedlsearchers have learned
that the resistance value of the PCM cells continuously cbsfigpm 168 Ohms to 16
Ohms. In other words, the resistance value can be found argwh between the crys-
talline state (1®Ohms) and the amorphous state{@hms). Based on the understanding,
multi-level cell (MLC) PCM has been studied to utilize intewirege resistance states be-
tween the crystalline and amorphous states so that the MLC B&i\tore more data per
cell than single-level cell (SLC) PCM.

However, MLC PCM needs more precise control over the resistaange of the cells
than SLC PCM. To do so, the MLC PCM requires an iterative-wgitimechanism that reads

the resistance value of a cell immediately after the cellngt@n so that the mechanism is
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Table 3: Configuration Variables of Four-level Cell PCM Whgg: 1 s.

Storage Level Data 10g3oR @
pr|oR| Ho | 0w
0 01 | 3.0 0.001
1 11 40| , | 0.02
2 10 |50/ 6 | 0.06 | %4XHa
3 00 | 6.0 0.10

able to confirm whether the cell is correctly written and deti@e whether a rewriting op-
eration is necessary. As a result, the iterative-writinghamism adversely affects the write
latency of the MLC PCM. Recent studies show that a four-le@\IRs approximately 4x
~ 8x slower than SLC PCM in terms of write latency [88].

In addition, MLC PCM has to deal with reliability challengassang from the fact that
the resistance level of cells tends to drift or rising ovendiand leading to soft errors.
Though this problem is more evident in MLC PCM than in SLC PCMemsiists have
focused on developing MLC PCM because it significantly insesahe total capacity.

In light of those problems, we introduce mathematical emodel that is used to calcu-
late soft error rates of MLC PCM for the first time. With the mathatical model, we eval-
uate existing error-reducing techniques including mensmnybbing and error-correcting
codes. Based on the evaluation, we show that four-leve(4e) PCM, the most conser-
vative form of MLC PCM, is not a suitable alternative to DRAMragin memory because

of its high soft-error rates.

5.2.2 Mathematical Soft Error Model and Validation
On the basis of a power-law model, lelmgt al. [89, 90] reduced the resistance drift of

PCM into as

t
Rarift(t) = RX {E}a’ (31)

whereR andty are normalization constants andis a drift exponent. To obtain Equa-

tion (31), lelminiet al. [89, 90] conducted iterative experiments to measure thsteese
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drift of reset and set states of PCM. Through the iterativeearpents, the drift exponent of
the reset state was found substantially larger than thdweo$ét state. The finding indicates
that the drift exponent increases directly in proportioth® portion of the amorphous state
ina PCM cell.

We are aware of the fact that the resistance level of celldstémdrift, rising over time
and leading to soft errors in MLC PCM. In other words, resistadrift makes MLC PCM
unreliable. To estimate reliability impact of the resistardrift, we first deals with the
normalization constan® andt, and the drift exponent, referring to Nirschlet al. [91].

In Nirschl et al. [91], iterative-writing mechanism is performed to adjusbgramed
resistanceR, into a certain resistance range. In such a casggRgis shown to follow
a normal Gaussian distribution. Based on their study, weenaakassumption thatlag
of R, or logR, from Equation (31) follows a normal distributidd(ug, o3). Nirschlet al.
[91] also stated that for a given state, a programmed resistahould fall within the range
of 10/*27>%® Q) and upper and lower sensing boundaries should fall withénrange of
10"=3007r () Based on that, we assume the drift exponemtf Equation (31) follows

a normal distribution oN(u,,c2). We use the values of the parameters indicated in the

previous studies [92, 93], and Table 3 summarizes our aisalys

MLC PCM causes a soft error when the resistance level of itslaéis and rises above
the upper boundary of its programmed state. Using the uppektaaver sensing boundary
values presented above, we find out that the soft error ocgbien the condition repre-
sented below is met.

Rurife(t) > 10°R*37R, (32)

Equation (32) and Table 3 show that the target resistancesare 18 10¢, 1, and
10PQ for the four storage levels, and the three sensing boundznes are between two
adjacent storage levels, 30 10*°, and 16°Q. From these numbers, we learn that a soft
error occurs when the resistance value of a PCM cell for stolexgl 2 is identified larger

than 10° Q. In such a case, the PCM cell is identified as storing a resistaalue for the
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upper storage level, storage level 3.

Now we can obtain the probability of the soft error. First, agsume that log R and«
follow normal distributions as described in Table 3. Therdeéne thatmequals to log, R,
andn equals to logyt. In turn, we reduce Equation (31) into the following Equat{@3)
usingm andn.

109, (Rarift (t)) = log, R+ @log,ot = m+ na. (33)

With Equation (32) and Equation (33), we can rewrite the dom that the soft error

generates as
m+na > ur + BOOO-R

Na > ur + 3.000r — m,
wherena follows a normal distributioN(nw,,, (no,)?) becauser follows a normal distri-

butionN(u,, o2). The probability thaha is larger thanug + 30 — mis calculated as

)
oy (34)

1 2
whered(x) = —f e */%dx
V2r

—00

a’

g . 3 _ _ o
(Probability of soft error for a givem) = 1 - q;('“R +tOo0R—M— T

In turn, we obtain the probability density function of a rana variablem, f(m) of
Equation (35), using the iterative-writing mechanism tregieats a write-and-verify se-

qguence until logy R falls into the range betweer + 2.750r andug — 2.750.

Loy pr—2.750R <M< pr+ 2.750R

f(m) = 7R
0 otherwise,
UR—2.750R _ 35
whereK :f ¢(m 'UR)dm, (33)
UR+2.750R OR

1 2
andg(x) = ——e /2,
Von
Knowing that a random variabha has a certain ranggr—2.750r < m < ugr+2.750R,

we reduce Equation (34) into the following probability faion in a time domaint(= 10").

(Probability of soft error)

fﬂR_Zj&TR MR+ 30'R — M- nNu, (36)

(1 -9

UR+2.750R Noy

)) f(m)dm
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The equations presented above, including Equation (36 vexified using an indepen-
dent Monte Carlo simulator. We implement the simulator inoadance with the follow-
ing operating steps: (1) random number generator, 2) maip, I8) Ry;is¢(t) calculator, 4)
Ryrift(t) evaluator and 5) repeater. In the first step, the random eugp@nerator generates
random numbers from a Gaussian distribution at a given madrvariance. The second
step picks corresponding anda from Table 3, and then the simulator falls into the main
loop. The simulator repeats pickifganda until ugr — 2.750g < 10g;10R < ur + 2.75%0R
for the purpose of emulating the iterative writing mechamisOnceR and« in desired
ranges are picked, the simulator turns into the third steapdalculate®yis; (t) using Equa-
tion (31). In the fourth step, the simulator determines & sobr occurs if log, Ryif: (t) IS
larger thanug + 3.000k. Lastly, the simulator repeats the main loop one billionesand
counts the number of soft errors to obtain the soft error. rete example, in the case that
ten soft errors are generated out of one billion trials, thfe arror rate is amount to 18.

The simulation results are shown in Figure 36 and Table 4e Hsaft error rates for set
state (storage level 0) and reset state (storage level Bpastown because a soft error does
not occur in storage level 3 even if the resistance driftsl, #ne soft error rate of storage
level O is negligibly low. Specifically, Mathematica 8.0 sisothat the error rate of storage
level O first turns into a non-zero value3 1078, att = 23° (1090 years). Likewise, three
data points for storage levels 1 and 2 are omitted and markétba small” because the
simulator could not find error after running the main loop dilkon trials or Mathematica
8.0 is not able to evaluate Equation (36). Comparing EqudB6éi to the results of the
Monte Carlo simulation obtained independently from Equa{6), we prove the validity
of Equation (36).

One salient observation made from this experiment is thedarchers need analytical
models in studying soft error rates of a new technology. Tloatd Carlo simulation could
not identify soft errors lower than 18 from a billion trials, which is already orders of

magnitude higher error rates than that of DRAM. In other veorb detect errors from
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Figure 36: Probability of Soft Error of Four-level Cell PCM QvEme

the odd of 10, Monte Carlo simulation must test several trillion trialadethis can take
months and years to finish. One of major contributions of wWosk is that we propose a

closed-form expression of soft-error rates of MLC PCM as showEquation (36).

5.2.3 Evaluating Four-level Cell PCM in Light of Reliability
It is obvious from Table 4 that 4LC-PCM is not suitable as a magmory because of high
error rates. Various studies have been proceeded to dabesadt errors and build drift-
tolerant PCM including error correction schemes [92, 94,98, data encoding schemes
using relative resistance difference [95, 94], a referemtiesscheme [96], a time-aware drift
estimation scheme [93], and most recently an efficient sgngoscheme [92]. Among
them, we evaluate the reliability of MLC PCM based on the effitiscrubbing scheme
because it is a recently introduced technique and gaining rattentions than the others
lately. Specifically, we utilize the most recent study psibid by Awasthet al. [92] for
our evaluation.

Awasthiet al. [92] introduced a method of reducing the soft error rate gigirmem-

ory scrubbing scheme and an error correction scheme. Thedivemes are combined to
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Table 4: Probability of Soft Error of Four-level Cell PCM

Storage Level 1 Storage Level 2
Elapsed Time (sec) Equation (36)\ Simulation | Equation (36)\ Simulation
2 (too small) | (toosmall)| 5.85E-06% | 7.40E-06%
22 1.59E-12% | (too small) 0.02% 0.02%
23 5.85E-06% | 7.40E-06% 0.12% 0.12%
24 7.45E-04% | 7.57E-04% 0.28% 0.29%
2° 0.01% 0.01% 0.52% 0.53%
26 0.02% 0.02% 0.85% 0.86%
27 0.05% 0.05% 1.30% 1.31%
28 0.08% 0.08% 1.90% 1.91%
2° 0.12% 0.12% 2.67% 2.68%
210 0.17% 0.17% 3.64% 3.66%
211 0.22% 0.22% 4.84% 4.87%
212 0.28% 0.29% 6.29% 6.32%
213 0.35% 0.36% 7.99% 8.04%
214 0.43% 0.44% 9.95% 10.01%
215 0.52% 0.53% 12.16% 12.24%
216 0.62% 0.63% 14.61% 14.70%
217 0.73% 0.74% 17.27% 17.38%

reduce the error rate into a level suitable for main memowgtwithstanding the most effi-
cient scheme, we find that the soft error rate of 4LC PCM is suttistlly higher than that

of DRAMY,

5.2.3.1 Estimating Scrubbing Overhead

In this section, we discuss in further details about the safor rates (SERs) of 4LC-
PCM and DRAM, and show 4LC-PCM is not a feasible alternative t(ADRN light of
reliability. First, we presume that a basic access unit i§@GR PCM main memory using

a 256B data blockas described in prior literature [98, 99]. The read and watencies of
SLC PCM are known as 12@and 15@s respectively, as indicated in a recent paper, Choi
et al. [100]. That being said, we assume that MLC PCM spends at lgashlscrubbing

one cache line because MLC PCM necessitates the iteratitiegvmechanism. Lastly,

1Soft error rates (SER) for DRAM are reported to be fraf000 ~ 75, 000FIT per Mbit, or25x 10712 ~
75x 1072 per bit-hour [97] on average.

2A last-level DRAM cache with larger capacity is used to hid&MPaccess latencies. We assume that its
cache-line size is 256B.

90



60% -
50%
40% A
30%
20%

Scrubbing Overhead
for 16GB PCM

10% -

0% T T T T T T T
-
—
<

N

Scrubbing Period (sec

277

28

279
2710
2712
273
2M3 ¢
27"15¢
2”16 ¢

~—

Figure 37: Scrubbing Period Versus Scrubbing Overhead

we assume that each of the storage levels occurs with the maiability.

Figure 37 illustrates scrubbing overhead in the domain adildwing period and the
scrubbing overhead. The scrubbing overhead denotes (Bewefar scrubbing)/(Scrubbing
period). As the basic access unit of the 16GB PCM has 64M chwobe-it takes 67.1 sec-
onds £ 64M x 1us) to scrub the entire PCM. If the scrubbing period is set for 45utes as
the same as in a typical DRAM memory system [97], the SER of@-BICM cell for stor-
age level 2 comes close to 5%, still much higher than the SHRR#M. Accordingly, we
learn that 4LC-PCM does not provide reliability so much as taction as main memory
in place of DRAM even with scrub mechanisms.

Table 4 shows that in the dramatic scenario that the memanyralter of 4LC-PCM
performs only the scrubbing operations and nothing else SIBR of storage level 2 still
remains as high as 0.9%. To main SER in the rage of DRAM aridediice the scrubbing
overhead, the maximum capacity of PCM must be limited. The seation discusses the

impact of reducing maximum capacity of PCM to the scrubbingrbgead and SER.

5.2.3.2 Lower Soft Error Rates by Reducing Capacity
Limiting the maximum capacity of 4LC-PCM is one way to lower ER of 4LC-PCM.
Like in Section 5.2.3.1, we assume that the capacity of 4LC-RECMGB in calculating

the scrubbing overhead. If the capacity is assumed as 8@B¢tinbbing overhead reduces
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Table 5: Maximum Capacity of Four-level Cell PCM by Soft Errort&aand Scrubbing
Overhead

Scrubbing Overhead
Scrubbing _ 0 0 0
Period (sec S ERombined || 100.0%| 12.5% | 1.0%
2 1.46E-06%| 488MB | 61.0MB | 4.88MB
22 0.005% || 977MB | 122MB | 9.77MB
23 0.030% | 1.95GB| 244MB | 19.5MB
24 0.071% | 3.91GB| 488MB | 39.1MB
2° 0.132% | 7.81GB| 977MB | 78.1MB

by half as the overhead increase in proportion to the capacitthe same sense, a lower
SER is obtained if the capacity is further reduced.

We calculate the maximum available capacity of 4LC-PCM in @gi8ER and scrub-
bing overhead combination, as indicated in Table 5. Thene$t column of Table 5 shows
the scrubbing periods seen by each 256B memory block, anuktktecolumn shows com-
bined SERSs representing anerageSER of the four states of 4LC-PCM. The combined
SERs are approximately one fourth of the SERs of storage Ebecause storage level
3 has a much larger SER than the other storage levels. Tab#® Slows the maximum
capacity at a three different degree of scrubbing overhdadcase of 100% scrubbing
overhead, the memory controller is not able to handle anyicerequest delivered from
its upper level of the memory hierarchy. Table 5 also show$%2scrubbing overhead
that can be considered as an upper bound as opposed to iit@rd€0% overhead. In
addition, Table 5 presents the maximum capacity for 12.5é1a@% scrubbing overhead,
respectively. For instance, when 4LC-PCM is set to have 1.0#bbing overhead and
spend 99% of its time servicing memory request, the 4LC-PCMnoarely have 4.88MB
of maximum capacity to maintain 1.46E-06% of average SERa# been known that
scrubbing can be proceeded in parallel if 4LC-PCM has more ¢timenbank or rank. In
other words, while one bank is being scrubbed, the other loankrespond to a service

request from the CPU. However, even 4LC-PCM with four ranks aod banks does not
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meet the capacity required for a main memory. The maximunacgpof such 4LC-PCM

is 78.1MB that is much lower than the required capacity. Imsteducing the capacity
of 4LC-PCM does not render 4LC-PCM into a feasible technologybge the maximum
capacity becomes too small to be used even though the SERedawéred as a result of

the reduced capacity of 4LC-PCM.

5.2.3.3 Use of Error-Correcting Codes

The SER of 4LC-PCM can be lowered using error-correcting cGEEL). Among various
ECC schemes, Hamming code error correction [101] is commappfied to server main
memory as industry standard (72,64). The error correctaonlze implemented simply by
adding 8 redundant bits to 64 bits datdurthermore, stronger ECC, for example, BCH
codes can be used to correct multiple bit errors. More speadlyi the BCH codes [102,
103] correct 8, 16, 24, or 40 bit errors in 256, 512, 1024 bygfekata based on the size of the
redundant bits. However, the BCH codes have disadvantape {@2,64) Hamming code
in that the BCH codes needs more computing time and power tardileg. For the reasons,
the BCH codes are not frequently applied to delay sensitiveeds such as main memory;
however, they are more suitable for slower devices inclgdNAND-based storage. In this
section, we use (72,64) Hamming code and BCH codes togethaldulate the error rates
of 4LC-PCM. We refer to the combined SER as defined in the prevéeation and assume
the data size to 256 bytes for every ECC evaluation.

(72,64) Hamming code cannot correct two or more bit errorgdrbits data because
the code only corrects one bit error. Since 36 4LC-PCM cellsnaaessary to store the
72 bits data, the probability of occurrence of multiple bitoes out of 36 cells is derived
as follows. From Table 3, we know that changing one storagd kffects one bit of two

bit data at most. In accordance, two bit errors generatewhin two 4LC-PCM cells are

30verhead is 12.5%.
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changed as a result of resistance drift.

Probability of having at least two bit errors

=Perror(64b) = 1 — P(no errors)- P(one bit error)
(37)
=1-(1-S ERombine()36

36
— ( 1 )(1 -S ERombineass(S E Rombined

In turn, we calculate the probability that a uncorrectabtereoccurs in 256 bytes data,
using the scrubbing period, scrubbing overheads, and SE&neld from Table 4. 256
bytes data comprises 32 blocks where each block has 64 ktsordingly, any of the 32
blocks should not cause an error to reconstruct the 256 bigies Therefore, the probabil-

ity of experiencing uncorrectable error for 256 bytes isresented as
Perror(256B) = 1 - (1 - Perror(64b))327 (38)

wherePgor(64b) denotes the result of Equation (37).

Table 6 shows in the fourth column the result valuesPgf, (256B) when (72,64)
Hamming code is applied. From the error rates, we learn tittadwegh (72,64) Hamming
code lowers the error rates, the error rates still prevesttdthnology from practical use.
Stronger ECC is necessary to further reduce the error raes ttwugh it leads to a large
computational overhead.

We now calculate the probability that an uncorrectableresazurs in 256 bytes data
when stronger ECC than (72,64) Hamming code is applied. BCBic3{-16, BCH-24,
and BCH-32 are examples that are stronger than (72,64) Hagnooide. BCH-8 adds 12
redundant bytes and corrects up to 8 bits errors, and BCH-d6 24 redundant bytes and

correct up to 16 bits errots We obtain the probability that or more bit errors occur out

40Overheads are 4.7% and 9.4%.
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Table 6: Probability of Uncorrectable Errors I8/ERombineafor 16GB 4LC-PCM under
(72,64) Hamming code

I:)error(2568)
| Scrubbing Period (Overheads)s ERombinea|| No ECC| (72, 64)
2" sec (52.4%) 0.325% 96.4% | 18.0%
28 sec (26.2%) 0.475% 99.2% | 33.7%
2% sec (13.1%) 0.668% 99.9% | 54.3%
210 sec (6.6%) 0.91% 100% | 75.1%
211 sec (3.3%) 1.21% || 100% | 90.3%
212 sec (1.6%) 1.57% 100% 97.6%

Table 7: Probability of Uncorrectable Errors by differeritength of BCH codes and
S ERombinedfor 16GB 4LC-PCM

i Perror(256B)
Sgg:i’gg‘g SER BCH-8 BCH-16 | BCH-24 | BCH-32
ombined
(Overheads) (256B+12B)| (256B+24B)| (256B+36B)| (256B+48B)
2" sec (52.4%) 0.325% 0.949% 2.96E-5% | 4.11E-11 %| (too small)
28 sec (26.2%) 0.475% 7.38% 4.00E-3% | 1.09E-7% | 6.24E-12%
2% sec (13.1%) 0.668% 29.2% 0.184% 6.68E-5% | 3.65E-9%
20 sec (6.6%)| 0.91% 64.0% 3.08% 1.09E-2% | 6.17E-6%
21sec (3.3%)| 1.21% 90.0% 20.5% 0.53% 2.43E-3%
212sec (1.6%)| 1.57% 98.7% 58.9% 7.83% 0.22%
of m bits data using Equation (37).
Probability of having at least bit errors out ofm bits
n-1 (39)
m
=1- Z ( k)(l -S ERombinet)m_k(S ERombineak'

k=0
Table 7 shows the result values of Equation (39). In casedhebbing period is 2
seconds and the scrubbing overhead is 52.B%,(256B) are obtained as 0.949% and
2.96 x 10°% for BCH-8 and BCH-16, respectively. Note that the error ra®e349% and
2.96 x 10°%, are much smaller than the error rate, 18%, with (72,64) kMarg code.
Nonetheless, the error rates with BCH-8 and BCH-16 afe~1A0® times as high as the
error rate of raw DRAM even without ECC support.

For those reasons, 4LC-PCM needs an ECC scheme more effecivB8@H-16, for
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example, BCH-24 or BCH-32. However, the use of BCH-24 and BCHs3inited to
devices that are lenient to timing delay and designed toatpet a relatively low data
rate. For example, since MLC-NAND based devices deliverg ariew tens of megabytes
per second, and they are not sensitive to latency, BCH-24 or-BEZlkan be effectively
implemented into them. However, 4LC-PCM as main memory of tegyss sensitive to
latency and delivers more than a few gigabytes per seconds, Ehcomplex ECC mech-
anism, like the BCH-24 and BCH-32, is not a suitable solutiordtaC-PCM considering
the cost and performance problems. In light of the cost gmmbhapplying complex ECC to
a memory controller is not desirable because the currenising trend fabricates a mem-
ory controller and a processor core on the same die, whichinegja separate CPU that
supports 4LC-PCM. In light of the performance problem, thgéazomputational overhead
stemming from complex ECC compromises the performance ihaxge for the reduced
error rate and deteriorates the memory latency. In the senggpical DRAM system only
implements simple ECC mechanisms, such as (72,64) Hammdwe & argue that using
a complex and strong ECC mechanism does nothing but limitiegapplication of PCM

and cannot render 4LC-PCM practically feasible for main megmor

5.3 Half-and-Half Storage: Improving Error Resiliency of
Approximate Solid-State Memory by Co-Locating Precise and
Approximate Information
5.3.1 Background

With the increasing concerns of power and energy in todaysputing systemsapprox-
imate computingdraws significant attention as one of the promising ways foargy-
efficient computing [104, 105, 106, 107, 108, 109, 110]. Swofors are unbearable in
general, but certain categories of applications, such df-madia processing and com-
puter vision, can tolerate some amount of soft errors whil@mmzing output quality loss.
As such, approximate computing trades off accuracy forgnand performance using

software and hardware techniques.
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With the same objective of energy efficiency, non-volatiemory such as phase change
memory (PCM), spin-transfer torque RAM (STT-RAM), and mestois has also recently
received significant attention as a replacement for DRAMe T@omain of approximate
computing can be extended to such non-volatile memory teiggganore energy-efficient
memory systems. For example, Sampson et al. [106] recertdjyoged relaxing the re-
peated write-and-verify sequences of a multi-level-cBILC) PCM write when storing
approximate data.

Although approximate computing embraces imprecision,éw@s it is crucial to stream-
lining error resilience for the best trade-off between aacy, performance, and energy.
The same holds true for approximate storage as well. Thigteh@rovides a comprehen-
sive study to efficiently enable MLC PCM as approximate sterdgye show that simply
reducing the number of write iterations for approximate MBCM does not provide good
error-resilient approximate storage.

We then propose a new type of multi-level PCM cells for apprate storage, which
we refer to as a “half-precise and half-approximate” cedl.db so, we shift the resistance
range of the second storage level (L2) in 4LC PCM to the lowsistance level (L1) and
thus createnon-equispacedtorage levels. The proposed writing strategy, combingt wi
Gray coding, makes the most significant bit in a four-leval-G4LC) PCM precise with-
out compromising write latency and energy, thereby haviveggreat potential to improve
computational resilience to errors in the context of apprate storage.

5.3.2 Multi-Level-Cell Phase Change Memory as Approximaté&torage

5.3.2.1 Phase Change Memory (PCM)

Phase change memory (PCM) is a type of non-volatile memonystases information
as a resistance value. For example, a single-level PCM cesbne bit of information
(i.e., zero or one) in two different resistance states: an amorpistate (high resistivity;
reset) and a crystalline state (low resistivity; set). WhdPGM cell is in a set state, its

resistance range is around a few kilo-ohms, while the r@sc&t range of the reset state
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Figure 38: Write probability of a multi-level PCM cell. MLC PCMan either be precise
or approximate depending on the distribution width of edonegje level.

is around a few mega-ohms. Because of the large differencesistance between the
two states (three orders of magnitude), researchers hay®ged multi-level-cell (MLC)
PCM that defines intermediate storage levels between thendeateaet states to increase
information density in a PCM cell [91, 111]. For example, K88 shows four-level-cell
(4LC) PCM in which the resistance ranges of four storage lema®venly distributed in a
log-scale manner; e.g., each storage level targets thetaase range of Xk, 10kQ2, 100k,
and 1MQ. Unfortunately, PCM writes are non-deterministic; thus,GMPwrite targeting
10KQ may end up making PCM to have a resistance of onl38&r instance. Therefore,
MLC PCM needs to repeatedly perform a write-and-verify segeeuntil the write has
been performed within a pre-defined resistance range ifaistn width in Figure 38) of a

storage level.

5.3.2.2 Precise and Approximate MLC PCM

Due to the nature of PCM materials, the resistance programmad®CM cell increases
over time. This phenomenon, referred torasistance drift does not cause soft errors in
single-level-cell (SLC) PCM; SLC PCM always returns the valuigally written to. In
contrast, MLC PCM is inherentlgpproximate storagas the resistance drift can cross the
decision boundary between code words (e.g., 00, 01, 11, Q@ PCM); thus, it may
return a value different from the one initially stored in dladter a few minutes since

writing. To alleviate the drift-induced soft errors, thereist be a large drift margin (guard
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band) between the storage levels; that is, a multi-levelozal be precise or approximate
by controlling the drift margin/distribution width of stage levels.

When PCM is used as main memory as a replacement for DRAM, ipisa&d to be as
reliable as DRAM. Thus, we define precise MLCs as multi-lee#lsovhose bit-level error
rates are comparable to DRAM. Most of previous studies on BOB/ use the distribution
width of logoR = 0.916 that leads to 1000ns of PCM write latency. These 4LC PCMs
are in fact already approximate storage by the standaed;for the distribution width,
both MSB and LSB have non-negligible error rates as showngdnrg 39a. We use this

error-prone 4LC PCM as baseline approximate 4LC PCM in thipteha

5.3.2.3 The Need for Reliable Approximate Storage

Prior work discussing approximate MLC PCM [106] exploits te&ationship between the
distribution width and the number of write iterationg., approximate data is written to the
PCM cells with reduced drift margins to improve the write tatg and energy. However,
simply relaxing a write-and-verify sequence in cell pragraing does not enable efficient
and reliable approximate MLC PCM. Unfortunately, such anrapipate PCM cell would
have non-negligible errors in bits of a PCM cell due to resistadrift. As we will discuss
more in detail in Section 5.3.4, the key to enabling effecapproximate MLC is to provide
reliable high-order bits. In the next section, we discussafiting strategy to provide more
error resilient approximate PCM.

5.3.3 Half-and-Half PCM

5.3.3.1 Overview

Each storage level in approximate 4LC PCM has a unique erer Faor example, the first
(L1) and the last (L4) storage levels do not generate ermingreas the second (L2) and
the third (L3) storage levels have 0.25% and 5.39% errosrateer 45 minutes of initial
writes due to resistance drift. For the 4LC PCM, if we convieedtorage-levekrror rates

into bit-level error rates, the first bit (MSB) and the second bit (MSB) haveraates of
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Figure 39: Half-and-half storage PCM secures reliabilitytled MSB by compromising
error rates for LSB

0.06% and 1.35%, as shown in Figure 39&Vhile mapping the highest-order bits of a
value to the MSB of PCM cells [106] may improve error resiligrod approximate MLC
PCM compared to a conventional PCM bit mapping, it can stilll isahuge errors due to
the non-negligible error rates of the MSB (see Section %.3.4

To provide an approximate multi-level cell that is more liest to soft errors than the
baseline approximate cell, we leverage the fact that onevciémat any arbitrary resistance

level on a PCM cell without compromising write latencies [L1& fact, the equispaced

5We assume that the chances of appearance of all code word¥1(QD1, 10) are the same.
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resistance ranges of k1.4, as illustrated in Figure 39a, are simply used becausedhe
figuration yields the lowest average bit-level error ratéewever, as previously discussed,
approximate storage that provides a number of preciseditn(though the rest of the bits
are more compromised) is more beneficial in many cases tleaortd with lower average
error rates (but no precise bits provided). As such, we psepo shift the second storage
level (L2) to a lower resistance level, as illustrated inFgy39b, thereby increasing the gap
between L2 and L3. When such a simple change is combined wéiz Gde (00, 01, 11,
and 10 for L1, L2, L3, and L4, respectively), commonly usedR&M cell encoding, the
most significant bit can become error-free since we can ehigi the error sequence from
01 to 11. This way, we can have much reliable approximates detl approximate data.
Note that although this configuration may encounter erretsvben L1 and L2, which are
not generated in the conventional 4LC PCM configurationsseherors do not affect the
information stored in the MSB; Only the data stored in the U8By be compromised.
Also, the proposed half-and-half PCM has the same writirgniat/power as conventional

approximate MLC PCM.

5.3.3.2 Error Rates of Half-and-Half PCM
In this section, we compute error rates of the proposed dradf-half storage. We first
determine the resistance range of the second storage l&)dgh@t does not generate errors
between L2 and L3. For the discussion, we use the same aralgtodels and physical
parameters as used in prior work [92, 93, 113]. We also coatigely assume that shifting
the second storage level to the lower level does not implioeedsistance drift rate.

MSB Error Rates: Table 8 shows the error rates of the second storage level ©f 4L
PCM. The first column represents the elapsed time since limitiing, and the second
column shows the error rates of the baseline resistancé letieh is log,R = 4.0. The

last two columns show the error rates when we slightly moved_the lower resistance

50ur modification moves L2 to the lower resistance level, Whidll decrease (or improve) the drift rate.
This will only improve the LSB error rate of half-half PCM.
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Table 8: Error rates for the second storage level (L2) of 41C/P

E'Tai‘raseed Original | log,,R=3.9 | log,,R= 3.8
5 minutes | 0.09% | 3.82x10%% | (too small)
15 minutes| 0.15% | 8.50x 10°%% | (too small)
25 minutes| 0.19% | 453x 10°% | (too small)
35 minutes| 0.22% | 1.13x 10%% | (too small)
45 minutes| 0.24% | 2.07x 104% | 3.53x 10 %%

levels of log,R = 3.9 and logyR = 3.8. We mark “(too small)” when Mathematica 8.0
cannot compute the value because of lack of precision. litiadda darker background
cell indicates that the bit-level error rate is lower thaattbf DRAM. As shown in the
table, when the resistance level of L2 is moved fromjéy= 4.0 to log,, R = 3.8, the
error sequence of 6211 is negligible;i.e., the most significant bit of a MLC PCM cell
becomes as reliable as a DRAM cell.

LSB Error Rates: We now discuss the impact of the half-and-half configuration
the LSB error rate. At a high level, the LSB of half-and-ha@¥ would intuitively have
a higher error rate than conventional 4LC PCM because theogeapconfiguration causes
soft errors between L1 and L2 in addition to the existing exfoetween L3 and L4. The
LSB errors by L1 and L2 are in fact broken into the two differeypes of errors. First, the
first storage level (L1) now causes drift-induced errorgssitine decision boundary between
L1 and L2 would also be shifted to the lower resistance levetrnvwe use the resistance
level of log,, R = 3.8. Second, since we simply shift L2’s distribution functiehile using
the same writing methodology/precision as in conventiegnal PCM, the new decision
boundary now may generate initial writing errors., the attempts to writing to L2 may
accidentally end up writing to L1. As such, to compute therallerror rates of the LSB,
we evaluate these two types of errors and add them together.

Table 9 shows the error rates of the first level (L1) for a fzadt-half PCM cell. The
second column shows the initial writing error rate, and thedtcolumn shows the drift-

induced error rate that is a function of elapsed time. Alllin &ter 45 minutes of initial
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Table 9: Error rates of the first storage level (L1) for hatidahalf 4LC PCM

Elapsed Initial Drift-induced | Combined
Time errors (=A) | errors (=B) (=A+B)
5 minutes 0.03% 0.56%
15 minutes 0.04% 0.56%
25 minutes| 0.52% 0.04% 0.57%
35 minutes 0.05% 0.57%
45 minutes 0.05% 0.57%

; : 0.25% @ 5.39%

(a) Approximate 4LC PCM (conventional)

0.52%
(b) Proposed Halénd-half PCM

Figure 40: Error diagram for half-and-half storage.

writing, about 0.57% of the L1 cells are falsely read out asTle L2 error rate (0400)
can be simply calculated because the L2 error rate is the sanits initial writing error
rate (L2 does not cause drift-induced errors). Becauséalstorage levels have the same
distribution function, the initial writing error rate of Li2 the same as that of LiLe.,0.52%

of L2 will be falsely read out as L1.

Comparison to Conventional 4LC PCM: Figure 40 shows the summary of the
storage-level error rates of the proposed half-and-hatbsgie; after 45 minutes since writ-
ing, 0.57% of L1 moves to L2, 0.52% of L2 moves to L1, and 5.4% ®fmoves to L4.
Table 10 shows the bit-level error rates of both conventiaparoximate 4LC PCM and
half-and-half PCM, which are converted from the storagellewror rates in the same man-
ner as previously discussed. Again, a dark background maitates that the error rate is
lower than that of DRAM.

As shown in Table 10, the key difference between these twlntgogies is that the

proposed technique guarantees the reliability of MSB wihiéeother does not. In exchange
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Table 10: Bit-level error rates of two approximate PCM cellsC PCM and half-and-half
PCM

Four-Level Cell PCM| Half-and-Half PCM
Time | \1se LSB MSB LSB
(min)
5 0.02% 0.51% (too small) | 0.78%
10 | 0.03% 0.72% (too small) | 0.99%
15 | 0.04% 0.86% (toosmall) | 1.13%
20 | 0.04% 0.97% (toosmall) | 1.25%
25 | 0.05% 1.07% (toosmall) | 1.34%
30 | 0.05% 1.15% (toosmall) | 1.42%
35 | 0.06% 1.22% (too small) | 1.49%
40 | 0.06% 1.29% (too small) | 1.56%
45 | 0.06% 1.35% 8.83x 10%% | 1.62%

for such a benefit, half-and-half PCM compromises (1) LSBreates and (2) average bit-
level error rates of both MSB and LSB. However, we will shovsubsequent sections that
even though half-and-half PCM exacerbates errors on LSBardge bit-level error rates,

it significantly improves robustness of stored values tlanttaditional PCM.

5.3.4 Bit-Level Errors to Value Errors

Bit-level errors in storage systems lead to value errorajdver, each bit error has different
impact on the value of the stored data. In some extreme cassisgle-bit error in a
double-precision variable can change the stored value (g5te 10°18, or in the other
extreme cases, the error may only change the value as lgtle0a< 1039, Therefore,
storing the most important piece of information in a placéwtihe least error is important
to minimize errors of stored values. Sampsnal. [106] recently proposed a simple
coding scheme for approximate MLC PCM that minimizes valwersr This section first
discusses the coding scheme and shows that only a singtertwtof conventional MLC
PCM can largely compromise the robustness of the storagersy$t/e then show that the

proposed half-and-half PCM can significantly improve corapiahal resilience to errors.
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Figure 41: Bit mapping for (a) unsigned integer, (b) signeegger, (c) double-precision
floating-point (IEEE 754)

5.3.4.1 Assigning Binary Values to Multi-Level Cells

Sampsoret al. [106] examined two different codes for assigning binaryueal to MLC
PCM; concatenation and striping code. Concatenation codgnassconsecutive binary
bits to ann-bit cell, whereas striping code assigns fimsbits to n different cells. The
striping code basically exploits lower error rates of MSBAhC PCM and stores important
information in the MSB and shows a better error toleranceeré&fore, we assume that the
baseline coding scheme is striping code where therifj@tbits are stored on MSB while
the lower bits are stored on LSB ofPCM cells. This coding applies for both the traditional

4L.C PCM and half-and-half PCM.

5.3.4.2 Impact of Single-Bit Errors
Bit flipping in storage value errors for virtually any datggyincluding (1) integers and (2)
floating-point types.

Unsigned Integer: Due to its simplicity, we first discuss impact of a single-dgitor
on an integer type of data. Figure 41a shows a typical bitpimapfor an unsigned integer
where thenth bit from the LSB represents$'2; thus, a bit flip on theth bit leads to a value
error of 21 in this case. If we defin&(n) as the expected error rate of thth bit, then
the expected value error for an-bit unsigned integer becoméd , E(n) x 2", Thus,

the best mapping strategy is clearly to assign the leagtddiit from the most significant
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bit. Surprisingly, with this simple but optimal mappingattgy, in only five minutes after
writing, a 64-bit unsigned integer in conventional appmate 4LC PCM is expected to
have a value error of.@1 x 10*. Here we use 32 4LC PCM cells for mapping, and the
MSBs of the 32 cells store the 32 high order bits of a 64-bgget.

On the other hand, the same integer data type using halialidRCM is expected to
have a value error of.35 x 10’, which is about 18 smaller compared to conventional
4L.C PCM. For a 32-bit unsigned integer, conventional appnaxe 4LC PCM shows the
expected value error of about 934,316.9, whereas halfratid®PCM only shows 255.6.
Thus, for both 64-bit and 32-bit cases, half-and-half PCMaghseveral orders of magni-
tude less value errors compared to conventional 4LC PCM.

Signed Integer: Signed integer types also show the same amount of expedigs va
errors as the unsigned integer types when two’s complenepresentations are used.
Signed integer types (Figure 41b) use the first bit to indcahether the value is posi-
tive or negative; therefore, the value error depends ondkeaf the bits. However, when
signed integer types employ two’s complement represamsiiit is easy to analyze the
impact of an error on the sign bit. In two’s complement systarhen sign bit becomes
zero (positive) from one (negative), the value of such iatdg subtracted by"™* where
mis the number of bits in the integer. For example, we consadegight-bit signed integer
variable with the stored value of three, then its binary espntation is 0000 004.1In the
case of sign bit error, it becomes 1000 0@1dr —125 in two’s complement representation.
The amount of value error in this case is 128 6=22™1, This amount of error is exactly
the same as we found from the unsigned integer types; therei@ argue that the same
analysis still holds for signed integers. In summary, we fimat for the two’'s comple-
ment representation, the accuracy benefit of the propodédind-half PCM also holds for

signed integer types.
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Table 11: Bit flipping happens onstored in double-precision floating point

Plc:;gig:)n Bit Layout Value
(no error)| 0x4009 21FB 5444 2D18 3.1416 (=)
48th bit | 0x4009 A1FB 5444 2D18 3.2041
49th bit | Ox4008 21FB 5444 2D18 3.0166

50th bit | 0x400B 21FB 5444 2D1§
51st bit | 0x400D 21FB 5444 2D1§
52nd bit | 0x4001 21FB 5444 2D1§
53rd bit | 0x4019 21FB 5444 2D1§
54th bit | 0x4029 21FB 5444 2D18 12.566
55th bit | 0x4049 21FB 5444 2D18 50.265

)

)

3 3.3916

3

3

)

)

)
56th bit | 0x4089 21FB 5444 2D18 804.25

)

)

)

)

)

)

)

3

3.6416
2.1416
6.2832

57th bit | 0x4109 21FB 5444 2D18 2.06x1(°
58th bit | 0x4209 21FB 5444 2D18 1.35<10%°
59th bit | 0x4409 21FB 5444 2D18 5.80x10'°
60th bit | 0x4809 21FB 5444 2D18 1.0710*°
61stbit | 0x5009 21FB 5444 2D18 3.64x10’
62nd bit | 0x6009 21FB 5444 2D18 4.21x10"*
63rd bit | 0x0009 21FB 5444 2D18 1.27x1073%
64th bit | OxC009 21FB 5444 2D18 -3.1416

Floating Point:  In general, floating point data types are more common anditapb
than integers in approximate computing domains. The erpealue error of a floating-
point variable depends on the value initially stored in agpnate storage. For example,
assume that(= 3.141592..) is stored in a 64-bit double-precision data type and that a
bit-flipping error happens on the 51st bit. In this case, theokute error |(nitial value —
altered valup becomes ®. However, if the initial value is2, the absolute error for the
same bit flip becomes.@; thus, it is not trivial to define and quantitatively compdhe
expected value errors across different approximate seoddgwever, we can still compare
the expected value error when we fix the initial value with ohthe widely used constants
and show that the proposed half-and-half PCM provides madgrsrof magnitude less
value errors than the traditional PCM.

Table 11 shows the changes in values by the location of aestmgflipping error when

pi is stored in a 64-bit double-precision variable. The eramr$3rd through 64th bits result
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in more than 100% of absolute errors, and the most signifieenotr shows the absolute
error of more than 18° when the 62nd bit is flipped. In contrast, the maximum value
error of half-and-half PCM is 84 x 107’. For other constants, we have observed that

half-and-half PCM are similarly better than conventionaCARCM.

5.3.4.3 Approximate 4LC PCM with Error Correcting Codes

Bit-level errors can be detected and corrected using enoecting codes (ECC), so one
interesting question might be the possibility of using apgmnate 4LC PCM with ECC to
improve the error resiliency of approximate storage. Haeveusing ECC is a less appeal-
ing solution in approximate computing than in conventia@hputing. One main reason is
the overhead of ECC. The main purpose of using approximatag#as to improve perfor-
mance/energy. However, ECC will introduce extra storagetwed or another dedicated
chip that drives signals for increased numbers of data liemory controller must also
occupy extra space, consume latency, and burn extra powentmding, decoding, and
correcting errors for all the transferred data. In contrés¢ proposed half-and-half PCM
does not incur extra area, latency nor power overhead cadparapproximate 4LC PCM

with ECC.

5.3.5 Costs of Writing Precise Bits in 4LC PCM
4L.C PCM can be as reliable as DRAM if we reduce the distributwiith and increase the
guard band. Here, we discuss how narrow the distributioriwmgeds to be to make the
4L.C PCM precise. For the discussion, we use the equationsdtber study (Equations
(5) and (6) in [113]) and use the distribution widthlo§;oR = 0.916 as baseline (100%).
Table 12 shows the error rates of MSB and LSB when we reduceistrébution width
from 100% to 40% as illustrated in Figure 42. Cells with datkackground indicates that
the error rates are comparable to or lower than those of DRA%&hown in the table, the
MSB starts to be as reliable as DRAM from 60% of the baselis&idution width, whereas

the LSB begins reliable around the half of the original widifhen, the next question is
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Table 12: Bit-level Error Rates of MSB and LSB by the width lo¢ tresistance range

Distribution
width MSB LSB
100% 0.06% 1.35%
90% 0.01% 0.61%

80% 5.07 x 10%% 0.17%
70% 1.75x 107%09% 0.02%
60% 447 % 101%% | 3.05x 10%%
50% 757x10%%% | 559x 10%
40% (too small) | 5.38x 10°1%

how many write iterations we need to halve the distributiodtiu

Distribution Width
100%
P 90%
80%

A
y

A __Y

Iogp Q

Figure 42: Shrinking distribution width of MLC PCM

Roughly speaking, halving the distribution width would ri@éase the number of write
iterations as similar as that is required for doubling thenbers of storage levels in MLC
PCM. Assume that one decides to write a 4LC PCM cell with halhefdistribution width.
In this case, one can either (1) define extra four storagdddwetween existing four to
create a 8LC PCM cell or (2) leave extra storage levels emptlyitisnargins. Because the
writing precision remains the same for both cases, one drexgect the same numbers of
write iterations as well. Thus, we can compute the numbeeqtiired write iterations to
halve the distribution width for 4LC PCM by calculating theeaage write iterations that
4LC and 8LC PCM (distribution width dbg;oR = 0.916) takes.

Figure 43 shows the number of write iterations required fo€4nd 8LC PCM. On

average, writing on 4LC PCM takes 8.7 iterations, whereasngron 8LC PCM takes 19.3
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Table 13: Bit-level error rates and write latencies

Technolo Error Rates Write
% rmsB LSB (Avg) | Latency
Baseline 0.06%| 1.35% 0.71% | 100hs
60% - 3.1E%% | 1.5E%% | 1667Ms
50% - - - 200hs
Half-and-half
- 0, )
PCM 1.62% 0.81% | 100hs
35%
30% O4LCPCM |
;\3 25% E8LCPCM |
:; 20%
T 15% -
©
e il
o 00 L | |
g";o T T T 1 1 D\D\;q | 1 [l[! \qqn\“\

1 3 5 7 9 1113 1517 19 21 23 25 27 29
Number of Write Iterations

Figure 43: Distribution of the number of write iterations #.C and 8LC PCM

iterations (about 2.2x). Another interesting change fo€C8CM is that it has a longer tail
than 4LC, which can degrade the worst case performance ohgZFRCM. We assume that
other techniques [114] can mitigate such side effects angdlgiuse the average number of
write iterations. Then, we can estimate the cost of writing precise bits on 4LC PCM as
2000ns, one precise MSB and one approximate LSB as 1667180(hs/60%), and two
approximate bits as 1000ns (L00hs/100%). Table 13 summarizes the write latencies

compared to half-and-half PCM.

5.3.6 Evaluation

5.3.6.1 Sensitivity study for half-and-half PCM

The proposed half-and-half PCM in Section 5.3.3 relocatedcemter of the resistance
distribution (sur) of the second storage level from lgar = 4.0 to log,,ur = 3.8, which
made the MSB of it reliable. lggur = 3.8 is an optimal point for the given number of

write iterations or write latency of 100& However, we have shown that the error rate of
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Table 14: MSB Error Rates for Half-and-half PCM with Relaxedté&/lterations byug of

L2
Dist.
Width logur = 3.78 | logugr = 3.74 | logug = 3.70 | logur = 3.66 | logur = 3.62
110% || 266E1%% | 234E'%% | (toosmall) | (toosmall) | (toosmall)
120% || 432E°% | 372E°% | 437E“% | 6.20E°% | (toosmall)
130% 5.45E7"% 4.05E~" % 4.60E1° % 7.25E7 14 % 1.48E8 %
140% 7.25E7%% 3.53E° % 3.38E" % 5.10E%° % 1.07E ¥ %
150% 1.98E3% 3.49E4 % 2.06E7° % 2.52E~" % 4.99E710 04

LSB is less sensitive to value errors as long as MSB is radiadohd there are cases where
write latency is more important than the error rate of LSBother words, half-and-half
PCM can relax on write iterations or reduce write latency bigher sacrificing the error
rate of LSB while still maintaining the most important progyeof it; reliable MSB.

To examine the relationship between write latency and ther eate of LSB, we first
evaluate the impact of stretching the distribution widthhef second storage level. Starting
from the original half-and-half configuration, we strettie tistribution width from 100%
(=logiR = 0.916) to 150% (F0g;0R = 1.375) in the step of 10%. For all caseg, of L2
is moved toward L1, angdr of L3 is moved toward L4 for the same amount so that MSB
is still reliable. Note that as we have wider distributiorditi of storage levels, we must
further move L2 and L3 toward L1 and L4 respectively, and teiscation will compromise
error rates of LSB.

We first examine how mucpr of L2 must be relocated toward L1 to have no MSB
errors for first 45 minutes. For each distribution width frd®0% to 150%, we start from
the original configuration, logur = 3.80, and move:g toward L1 until it shows no errors
between L2 and L3. When the distribution width is 110% and 158%had to move to
log,our = 3.78 and log,ur = 3.62 respectively. This relation is summarized in Table 14

where darker backgrounds indicate the error rates lesstttzof DRAM.
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Table 15: Error Rates of Half-and-half PCM with Relaxed Wrteradtions

Dist. . Combined .

Width L1—L2 Error | L2 Initial Error | L3—L4 Error L SB Error Write Latency
110% 0.95% 0.84% 6.89% 2.17% 909ns
120% 1.42% 1.27% 10.35% 3.26% 833ns
130% 1.96% 1.77% 14.80% 4.63% 769ns
140% 2.62% 2.38% 20.35% 6.34% 714ns
150% 3.45% 3.14% 26.96% 8.39% 667ns

Now for the given distribution width andg, we calculate error rates for LSB. As dis-
cusses earlier, LSB error is a function of (1) errors from whjch is the sum of the resis-
tance drift error and initial writing error, (2) initial wiing errors from L2 where the write
attempt to L2 can write to L1, and (3) errors from L3 due to tegistance drift. Each type
of errors are evaluated and presented in the second througth fcolumn of Table 15. We
then show combined error rate of LSB and the expected witgaty of each configuration.
LSB experiences about 5.3 times more errors than the ofigaé&and-half PCM as we
stretch the distribution width from 100% to 150%. The rendainof this section examines

the impact of increased error rates for LSB to the outputityuaf applications.

5.3.6.2 Benchmarks and Definition of Output Quality Loss

We evaluate all SciMark2 benchmarks, Fast Fourier Transf@fFT), Jacobi Successive
Over-relaxation (SOR), Monte Carlocalculation (MGr), sparse matrix multiply (SMM),
dense LU matrix factorization (LU) from EnerJ [115]. For Bdmnchmark, we define the

output quality loss as follows.

e FFT: FFT takes a linear array sizewwfnd Fourier transform the array. We first perform
Fourier transform to the input array and also apply inversarfer transform to the

output and compare it against the original array. Erroresgathe same as LU.

e SOR:SOR takes a 2D matrix afby mand write its computational output to the matrix
itself. We copy the input matrix and inject errors to the ora one. In addition, both

matrices are processed by SOR and the results are comparedséale is the same as
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LU.

MCr: MCr generates two random doubles and calculate sum of squascbfd®ou-
ble. By repeatedly doing so, Mcalculatesr. This experiment assumes that reading
the calculated sum of two doubles generate reading errdns. oltput quality is de-
fined as difference between calculateftom perfect reading versus calculatedrom

erroneous reading.

SMM: SMM from SciMark2 employs compressed-row format and a pileed spar-
sity structure. This experiment assumes that reading thgpoessed structure generates
errors. Output quality metric compares multiplied matsiedement by element in the

scale of 0 to 1. Overall quality of output is average of scédlalieelements.

LU: LU takesn by n matrix and output anotherby n matrix. We compare the output
matrices element by element and scale the difference framo Quality loss or identi-
cal, to 1, totally different. This scale is an absolute vad@igifference divided by the
results from the precise run. If it is zero, then the scaleobezs the difference. The
scale cannot exceed 1. The output quality loss for LU is amageeof scales of all

elements.

5.3.6.3 Evaluation Methodology

Our usage scenario assumes reading PCM celisdd minutes after the initial writing.

Because simulating computer systems for tens of real timeutes requires prohibitive

computing power or time, we present the following methodgloNe first divide the entire

memory footprint of a benchmark into two categories; (1)sdterage for input data and (2)

the storage for by-products or output data. In addition, nyedt MSB and LSB errors for

the read accesses to the category (1) while guarantee tfexipeyad / write accesses for

(2). For example, LU, one of benchmarks from EnerJ [115f$akby n matrix as an input

and calculates anotherby n matrix after decomposing the matrix into lower and upper

parts. In such a case, the input matrix becomes the categjpny ¢ur case while the rest
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of the memory footprint becomes (2). The rationale behinsl sletup is that because we
only consider read errors for long-term writes, the inputda category (1) is the only part
that falls into this criteria. All other memory footprintdiuding intermediate, temporary
variables, and output matrix is being written and reusedatimmediately.

We evaluate impact of MSB and LSB error rates to the qualitputput by natively
running benchmarks. The quality of output is a metric of hawilar the approximate and
precise results are, but not about the performance. Therefee can safely skip micro-
architectural simulations and run the benchmarks and amjectors on a native machine
without compromising the correctness of the experimentoiEnjectors consume CPU
time and memory footprint; however, they do not change thtemue of the benchmarks.
Moreover, simulating bit-level errors using micro-ar@utural simulators is not practical
for the following reason. Because error injectors roll aedavery time they need to gen-
erate errors, the outcome of the results of our experimantsiurally non-deterministic.
Therefore, we have to repeat running the same benchmarkoweireds of times to reach
a stable data point, which takes hours in some cases. Singitaturs of native run using
simulators is impractical especially when we need the acialaulated results where we

cannot sample, skip, and fast-forward the simulation.

5.3.6.4 Experimental Results

We evaluate the impact of error rates in Table 10, bit-levedrerates of 4LC and half-
and-half PCM, to the output quality. Figure 44 presents dugpality loss of the baseline
approximate 4LC PCM. In this experiment, we find the followinigservations. Firstly,
output quality loss is a function of the size of the input nxator all the benchmarks. We
evaluated from a tiny 10 by 10 matrix to a large 200 by 200 for, fitdm 256 to 2048

elements of an array for FFT, and from 20 by 20 to 80 by 80 m&tmixXSOR, to find out

that the output quality loss increases with the size of tipaiin For example, right most
markers from Figure 44e show the output quality loss aftemdutes of initial writing.

As we increase the input matrix size from 10 by 10 to 200 by 26iput quality loss
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Figure 44: Output Quality Loss for Approximate 4LC PCM (contrenal)

increased from about 10% to over 80%. This is because whemput matrix is big,
errors easily propagate to the other cells of a matrix. Wheretlare only ten elements in
a row, an error on 9th element only propagate to the 10th bellyever, for a matrix of
200 elements, an error on 9th element propagates to thel8dsglements. Secondly, each
benchmark shows different sensitivity on the output quaddiss by the bit-level error rates.
For example, for large input cases, quality loss in LU inseshfrom 70% to 84% while
for the SOR case, the output quality loss almost doubled. é¥ew we also find that size
of the workload shows more significant impact to the outpuligyloss.

Now we compare output quality loss of half-and-half PCM agiihe baseline as
shown in Figure 45. As expected, quality loss of the propd®€t# was orders of mag-

nitude less than the baseline for all the benchmarks tedtkute specifically, for a large
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Figure 45: Output Quality Loss for Proposed Half-and-h&iP

matrix, output quality loss of half-and-half PCM for LU waststantly less than T®while
the baseline marked around 80%. For all other benchmark EpeatrJ, we also find that the

output quality loss of half-and-half PCM is orders of magdéuess than the conventional

4L.C PCM.

5.3.7 Related work

Approximate computing basically trades accuracy for pennce [107, 108]. Compro-

mising barely noticeable accuracy in output may lead to srdé€ magnitude less power
and energy consumption. Researchers proposed hardwargdees [116, 105, 117] in-

cluding probabilistic CMOS (PCMOS) technology [109] whildnets proposed software
techniques [118] or leveraged both the hardware and sadtieahniques by exposing hard-

ware control extensions to software [119].

116



While approximate computing mainly focuses on relaxing cotaponal robustness,
others examined approximation concept for storage syst&msr-tolerant part of mem-
ory footprint could be saved in less-frequently refreshregdon of DRAM [110] or stored in
non-volatile memory (NVM) with less power with improveddaicy [106]. Different from
prior studies, we exploit a unique characteristic of MLC PQ@jch could secure reliabil-
ity of half of the information stored in a memory cell, to sificantly improve resilience of
the approximate storage.

Research community proposed several NVM technologiestigaté the physical scal-
ing challenges that DRAM face today. Among all emerging metbgies, PCM is one of
the most mature and promising technology in replacing DRANain memory [120, 121,
122, 123, 124]. Because the resistance of a PCM cell can bé @ey arbitrary point be-
tween set and reset states, researchers found that defioirggstorage levels between set
and reset states will result in storing more bits per cellnmreéasing the information den-
sity [111, 91]. However, the resistance level of a PCM celt@éases over time, and such a
drift generates soft errors [89, 90, 112]. To compensai@einduced by resistance drift,
researchers proposed many techniques by leveraging detaliag and error correcting
schemes [92, 95, 93, 94]. Other studies also examined a tivrieeaware scheme [96] or
a smart scrubbing based scheme [92]. However, a recent wgued that MLC PCM is
still requires architectural support to be as reliable asADR125]. We, however, show
that by exploiting resistance drift nature of error-prone®PCM, it can be configured as

resilient approximate storage.
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CHAPTER 6
CONCLUSION

This dissertation proposed various power optimizatiommégues for three different lev-
els of datacenters; infrastructure level, system leved amcro-architecture level. An
infrastructure-level study in Section 3.2 investigategogce provisioning properties of
a heterogeneous cloud computing environment. Using matheah models, Section 3.2
analyzed a perfectly parallelized task running on a hemegus cloud with distinct power
efficiencies. To quantify the trade-off of resource prossng, Section 3.2 used the energy-
delay product as an objective metric to consider both perémrce and the utility consump-
tion. To achieve an optimal EDP value, the expectationdhaselysis showed that the
response time ratio of the slowest nodeIf) versus the fastest node @) must be less
than or equal to threebfa < 3). Findings suggest that computing nodes that are 3x or
slower than the fastest node should be discarded from thel ¢t achieving an optimal
EDP. These models and analysis can be used to guide futuleydegnt, allocation and
upgrades of cloud infrastructure to achieve optimal ytiiffectiveness.

Another infrastructure-level study, SimWare, was preseér Section 3.3. Over years,
researchers proposed to operate cooling units at a highafige temperature to reduce
cooling power. However, high room temperature can ina@vely lead to high fan rotation
speed and eventually overwhelm the savings from the coolimty. To study and under-
stand these compound effect, Section 3.3 presented aitiglistulator, SimWare, which
simulates the detailed behavior of an entire datacenten\&ire reports power and en-
ergy breakdown of a given datacenter by analyzing sevettatalrcomponents including
the power of the servers and cooling units, the power of fareseffect of heat recircula-
tion, and the air-travel time for providing shrewd, effeetidecision in optimizing power,
temperature, performance, and the operational cost. Erpatal analysis using SimWare

showed that much of the cooling efficiency is lost due to inletemperature differences
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across servers.

This dissertation continued to a system-level power o@tnon technique, ATAC, in
Chapter 4, which was motivated from observations made by fireWSection 4.2 began
by carefully reviewing the fundamentals of datacenter iogohnd found that considerable
cooling energy is wasted because of (1) the safety margincti@ing units must ensure
and (2) the non-uniform inlet air temperatures across sgrvehese issues stem from the
location of each server relative to the CRAC unit and theigheirom the floor. To address
this drawback, Section 4.2 proposed a system-level appribad first aggressively reduces
the cool air supply from the CRAC unit to save power and thers aseew system-level
control called ATAC, which is applied to each server. By segdhe inlet temperature
to reduce the core temperature, ATAC can dynamically capérermance of the server
using DVFS. Using a modified SimWare framework with the Geogtoduction trace,
Section 4.2 evaluated ATAC and found that a datacenter carcesthe cool air supply with
38% savings of cooling power, or 7% savings of total powerevtlegrading performance
by a negligible sub-1%.

Chapter 5 discussed micro-architectural techniques foregp@fficient datacenters un-
der the context of emerging memory technologies. Sectidrsbowed that the error rate
of 4LC-PCM cannot be reduced as low as the error rate of DRAMtjmaty. Firstly, Sec-
tion 5.2 introduced the mathematical model that estimatee 8 MLC PCM, considering
the following factors: (1) effect of resistance drift, (Zpttibution functions of the resis-
tance aty = 1s, (3) distribution functions at the rate of resistance daftd (4) effects of
iterative writing mechanism. Secondly, Section 5.2 coragahe results from the math-
ematical model to the results from Monte Carlo simulator fog purpose of validating
the mathematical model. In addition, Section 5.2 used madrdaviation of distribution
functions from other studies to show the relationship amihegSER, scrubbing periods,
and scrubbing overheads for 4LC PCM. Further analysis sholadiLC PCM cannot be

used as main memory given its high error rates and scrubhiedheads. The most critical
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problem of 4LC PCM is high SER of the third storage level, whiglabout 18 ~ 10
times higher than that of DRAM. With all in-depth analysisiedo resistance drift, 4LC
PCM is either unreliable for practical deployment.

Section 5.3 examined error-prone 4LC PCM as approximategosystems. Error-
tolerant applications can utilize power efficient and highfprmance but approximate stor-
age systems. Furthermore, when the computational regseltoasumed by human beings,
such as rendered 3D images for video game users, errorsulisrean easily be justified.
However, Section 5.3 argued that storing important pietedarmation in a more reliable
place with less errors significantly improved resiliencyagiproximate storage systems.
Section 5.3, therefore, proposed a new class of MLC PCM cglexploiting skewed and
unevenly distributed storage levels for MLC PCM. This clasMaC PCM cells secured
reliability of MSB while sacrifices reliability of LSBI.e., these cells are half-precise and
half-approximate. Even though the average error rate igotomised, Section 5.3 showed
that the proposed scheme significantly improved the quafitutput. The proposed writ-
ing strategy also reduced writing iterations, power, arteriay of the underlying memory

technology while still achieved orders of magnitude moreuaate results.
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