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SUMMARY 

 

  The main objective of this thesis is to propose new methods for designing high-

performance embedded computer system architectures. To achieve the goal, three major 

components - multi-core processing elements (PEs), DRAM main memory systems, and 

on/off-chip interconnection networks - in multi-processor embedded systems are 

examined in each section respectively. 

The first section of this thesis presents architectural enhancements to graphics 

processing units (GPUs), one of the multi- or many-core PEs, for improving performance 

of embedded applications. An embedded application is first mapped onto GPUs to 

explore the design space, and then architectural enhancements to existing GPUs are 

proposed for improving throughput of the embedded application. 

The second section proposes high-performance buffer mapping methods, which 

exploit useful features of DRAM main memory systems, in DSP multi-processor 

systems. The memory wall problem becomes increasingly severe in multiprocessor 

environments because of communication and synchronization overheads. To alleviate the 

memory wall problem, this section exploits bank concurrency and page mode access of 

DRAM main memory systems for increasing the performance of multiprocessor DSP 

systems. 

The final section presents a network-centric Turbo decoder and network-centric FFT 

processors. In the era of multi-processor systems, an interconnection network is another 

performance bottleneck. To handle heavy communication traffic, this section applies a 

crossbar switch – one of the indirect networks – to the parallel Turbo decoder, and 

applies a mesh topology to the parallel FFT processors. When designing the mesh FFT 

processors, a very different approach is taken to improve performance; an optical fiber is 

used as a new interconnection medium. 



 

1 

CHAPTER I 

INTRODUCTION 

 

1.1 Motivations 

Embedded applications are defined as computer applications that provide dedicated 

functions, sometimes with the constraints of real-time responses. They are contrary to 

general-purpose applications that provide a wide range of functions. DSP-oriented 

applications (such as jpeg and mpeg) and communication-oriented applications (such as 

Turbo decoding and rake receiving) are examples of embedded applications. These 

applications are increasingly important due to the prevalence of mobile devices such as 

smart phones. 

As the computational complexity of embedded applications grows, a new computing 

paradigm other than single processor-based systems is needed to meet increasing 

performance requirements. Even though single-processor systems can satisfy increasing 

throughput requirements by deepening pipelines or by increasing an operation frequency, 

single-processor systems have the power wall and development/verification time 

problems. To overcome these problems, multi-processor systems with relatively simple 

component cores (i.e., in-order cores) can be an alternative. Multiprocessor systems are 

widely used in both general-purpose and embedded computing to keep up with Moore‟s 

law.  

In the era of multi-processor systems, performance bottlenecks move from 

computations to communications. Therefore, efficient designs of communication 

components such as memory systems and interconnection networks are critical. 

1.2 Overview of dissertation 

We propose new methods for designing high-performance embedded computer system 

architectures. We deal with three main components in multi-processor embedded 
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systems: multi-core processing elements (PEs), DRAM main memory systems, and 

on/off-chip interconnection networks.  

When implementing embedded applications onto hardware platforms, optimizations 

on non-functional metrics such as throughput, power consumption, and area are essential 

for the embedded systems to be practically useful. In this thesis, we focus on throughput 

and power consumption.  

First, we propose architectural enhancements to graphics processing units (GPUs), 

one of the multi- or many-core processing elements, for improving performance of 

embedded applications. The GPU was originally developed for graphics, but is being 

used for general-purpose computing as well (this trend is called general-purpose 

computing on GPUs (GPGPU)). In this thesis, we map an embedded application onto 

GPUs and explore the design space of the application. We eventually propose 

architectural enhancements to existing GPUs for improving throughput. 

Second, we propose high-performance buffer mapping methods that exploit useful 

features of DRAM main memory systems in DSP multi-processor systems. As a 

performance gap between a processor and a memory system increases, the memory 

system becomes a performance bottleneck. This memory wall problem becomes 

increasingly severe in multiprocessor environments because of communication and 

synchronization overheads. A hierarchical memory system including caches and useful 

features of the DRAM main memory system (such as bank concurrency and page mode 

access) can alleviate the memory wall problem; however, effective analysis and 

utilization of such memory systems are challenging. In this thesis, we study the latter 

form of memory system enhancements – especially use of DRAM bank concurrency for 

increasing the performance of multiprocessor DSP systems. 

Finally, we propose a network-centric Turbo decoder and network-centric FFT 

processors. In the era of multi-processor systems, an interconnection network is another 

performance bottleneck. To handle heavy communication traffic, we design efficient 
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interconnection networks. We apply a crossbar switch – one of the indirect networks – to 

our parallel Turbo decoder, and we apply a mesh topology to our parallel FFT processors. 

When designing the mesh FFT processors, we take a very different approach to improve 

performance; we use an optical fiber as a new interconnection medium. 

1.3 History 

1.3.1 Multi- or many-core processing elements 

In 1965, Intel co-founder Gordon E. Moore observed that the number of transistors on an 

integrated circuit doubles approximately every two years [1]. This Moore‟s law has been 

valid for almost a half century in a single-core processor paradigm.  

Because of the power wall problem (finally enormous heat dissipation), a single-

core-based design method runs out of steam. Multi- or many-core systems with relatively 

simple component cores can be a solution to overcome the limitation and keep Moore‟s 

law on track in the future.  

In 2001, IBM released POWER4, the first multi-core (dual-core) processor [2]. In 

2004 ~ 2005, Intel and AMD unveiled their first multi-core processors, Pentium D (dual-

core, code name of Smithfield) and Athlon 64 X2 (dual-core) respectively. 

Despite of different target applications, DSPs have a similar trend as general-purpose 

CPUs. In 1980, the first stand-alone, complete DSPs – the NEC µPD7720 and AT&T 

DSP1 – were made public. Since then, Texas Instruments released the three-core 

TMS320C6488 and four-core TMS320C5441, and Freescale released the four-core 

MSC8144 and six-core MSC8156.  

The DSP has been widely used as processing elements when mapping embedded 

applications onto programmable processors to achieve high performance with flexibility 

(programmability). DSP solutions generally provide lower performance than ASIC 

solutions. 

http://en.wikipedia.org/wiki/Nippon_Electric_Corporation
http://en.wikipedia.org/wiki/NEC_%C2%B5PD7720
http://en.wikipedia.org/wiki/AT%26T
http://en.wikipedia.org/wiki/AT%26T_DSP1
http://en.wikipedia.org/wiki/Texas_Instruments
http://en.wikipedia.org/wiki/Freescale
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For example, some previous work implemented the Turbo decoding algorithm, one 

of the computationally intensive communication applications, in industrial DSP cores 

such as TI C6x and Starcore SC140 [3, 4]. Unfortunately, their throughput is below the 

standards‟ requirements. For example, none of them satisfy the 2 Mbps requirement of 

the WCDMA standard.   

To support both high performance and flexibility in embedded computing 

applications, we consider another type of programmable core – GPUs – in this thesis. 

Especially, GPGPUs are of our interest. GPUs have evolved from fixed pipeline graphics 

hardware to programmable and unified graphics hardware. GPUs are designed for highly 

parallel tasks and assign more transistors for computations than for controls. As a result, 

GPUs provide many number of processing elements that are relatively simple in-order 

cores compared to CPUs.  

In this thesis, we propose architectural enhancements to GPUs specialized for 

embedded applications; i.e., we propose GPGPU architectures. 

1.3.2 Main memory systems 

Memory systems are hierarchically constructed in high-performance computing systems 

to overcome the memory wall problem. Main memory systems, which are composed of 

memory itself and memory controllers, are generally placed at a level between single- or 

multi-level caches and hard disks.  

For several decades, DRAMs have been widely used as a main memory. In 1966, 

Dennard at the IBM Thomas J. Watson Research Center invented a DRAM awarded U.S. 

patent number 3,387,286 in 1968. In contemporary DRAMs, a single transistor-capacitor 

pair constitutes single bit storage.  The “dynamic” term originated from the fact that the 

capacitor requires periodic refreshes for data retention.  
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As a processor speed increases and memory latency-tolerating techniques emerge, 

conventional DRAM architectures need to be improved for providing a higher memory 

bandwidth. Fast page mode DRAM (FPM DRAM) [5], extended data-out DRAM (EDO 

DRAM) [6], synchronous DRAM (SDRAM) [7] –  SDRx and DDRx SDRAMs –, 

Rambus DRAM (RDRAM) [8], and Direct Rambus DRAM (DRDRAM) [9] are 

examples of advanced DRAM architectures.  

Due to non-trivial capacitor and transistor size requirements, a DRAM is known to 

be non-scalable in terms of its capacity and density beyond a 40 nm process technology 

[10]. Instead, a phase change memory (PCM) provides a non-volatile, scalable storage 

mechanism. A PCM was demonstrated in a 20 nm prototype and is expected to scale 

down to 9 nm [10, 11]. However, its large access latency should be overcome to replace a 

DRAM as a main memory component. A PCM is out of our scope. 

A memory controller is another critical component of main memory systems. In 

general-purpose computing, most of the research on improving memory performance has 

focused on memory controller techniques, such as command scheduling and memory 

address interleaving [12, 13, 14]. Several techniques [15, 16], which utilize both bank 

concurrency and page mode, exist to reorder memory commands in a memory controller.  

In addition to hardware-oriented approaches –  i.e., designing high-performance 

memory cores and memory controllers –, software-oriented approaches are another type 

of solution to mitigate the memory wall problem.  

In this thesis, we propose a high-level compiler (converting graphs to C codes) 

technique to exploit useful features of DRAM main memory systems.  

1.3.3 Interconnection networks 

With the advent of multi- or many-core processing elements, an interconnection network 

is another performance bottleneck. In a micro-architecture community, on-chip 
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interconnects are major concerns – e.g., interconnection network designs in the network-

on-a-chip (NoC) of a chip multiprocessor (CMP). In this thesis, we consider both on-chip 

and off-chip interconnection networks. By off-chip interconnection networks, we mean 

an interface between cores and off-chip main memory systems, unless otherwise stated 

(we assume that memory controllers are off-chip). 

Although constraints – such as bandwidth, latency, timing, and area – are different 

between on-chip and off-chip networks, techniques that have been used in one network 

can be applied to another. Various topologies – such as mesh, crossbar, trees, and Benes 

network [17] – have been proposed for computer systems. Over the past 20 years, k-ary 

n-cube (torus) [18] topology has been extensively used in systems such as Intel/CMU 

iWarp [19], Cray T3D [20], and Cray T3E [21].  

However, electrical networks have disadvantages of low bandwidth density [in 

bps/mm], distance-dependent power consumption, and electro-magnetic interference. An 

optic interconnect is a good replacing candidate – it has high bandwidth density, distance-

independent power consumption, and no interference. 

In 1984, Goodman explored the feasibility of optic usage as a communication 

medium in IC and system designs [22].  Main barriers against optic usage were CMOS 

incompatibility and expensive electrical-optical translation costs. Owing to the rapid 

progress in a nano-photonic technology, these problems are now resolved. 

 Optical topologies and routing algorithms have been recently studied in NoC 

designs [23, 24, 25]. Bergman et al. demonstrated the functional correctness of off-chip 

optical interconnects experimentally by setting up real test-beds [26, 27]. In their 

experiments, microprocessors write a bunch of data to SDRAM main memory systems 

through optical networks, read them back, and compare them with the original source 

data. They also demonstrated 70% improvements in static power consumption compared 

to that of off-chip electrical interconnects. 
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In this thesis, we propose a network-centric parallel Turbo decoder and network-

centric parallel FFT processors. The FFT processors use both electrical and optical media 

as an interconnection medium. 
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CHAPTER II 

MULTI-CORE PROCESSOR – GPUS 

 

Our goal in this section is to propose architecture enhancements to the existing GPUs for 

improving performance of DSP applications. First, we introduce GPU fundamentals and 

explore the design space of one example application on GPUs to find performance 

bottlenecks. Finally, we propose architectural enhancements to existing GPUs for 

improving performance. 

2.1 GPU fundamentals 

Instruction-level and data-level parallelisms are generally exploited in embedded 

applications. Since some embedded applications, such as DSP applications, generally 

have a static control flow – i.e., a control flow can be determined during a compile-time –

, a compiler can schedule instructions so that a set of instructions can be issued 

simultaneously (instruction-level parallelism). In addition, an instruction or a set of 

instructions can be issued to several sets of data (data-level parallelism). Therefore, most 

DSP processors fall into one of the two types of machine:  very long instruction word 

(VLIW) and/or single instruction multiple data (SIMD). VLIW machines support the 

static instruction-level parallelism and SIMD machines support the data-level parallelism. 

GPUs extensively support the data-level parallelism across multiple cores. 

A high-performance programmable GPU, such as the Tesla architecture GPU [28] is 

a good candidate for our work. It was originally developed for graphics, but is widely 

used in general-purpose computing today (this trend is called GPGPU). In addition to its 

huge number of processing elements, the GPU provides a good programming model as 

well. Our work is based on the assumption that mobile GPUs would be available in 
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mobile embedded systems such as smart phones in the near future. We consider the ION 

GPU, the simplest chip among NVIDIA GPUs, as our baseline architecture. 

2.1.1 Hardware 

GPUs have evolved from fixed pipeline graphics hardware to programmable and unified 

graphics hardware. GPUs are designed for highly parallel tasks and assign more 

transistors for computations than for controls. As a result, GPUs provide many number of 

processing elements that are relatively simple in-order cores compared to CPUs. We 

consider NVIDIA GPUs in this thesis. All NVIDIA GPUs have fundamentally the same 

hardware architecture. 

As shown in Fig. 1, the ION GPU is composed of two multi-threaded streaming 

multiprocessors (SMs), and each multiprocessor is composed of eight homogeneous 

scalar processors (SPs). The ION GPU supports different kinds of memories in terms of 

scope, latency, and size. We should note that the local memory in Fig. 1 is physically 

located off-chip despite of its scope to per thread. Therefore, to avoid performance 

degradation due to memory access latency, application programmers should avoid using 

the local memory and global memory as much as possible. The number of registers per 

multiprocessor is 8192, the amount of shared memory per multiprocessor is 16 kB, and 

the total amount of constant memory is 64 kB [29]. 

Global mem / Const mem / Texture mem / Local mem

Interconnection network

Multiprocessor0

Shared mem

S

P

0

Const cache

Texture cache

S

P

1

S

P

2

S

P

3

S

P

4

S

P

5

S

P

6

S

P

7

Same as 

Multiprocessor0

Register

Multiprocessor1

 

Figure 1. Hardware architecture of the ION GPU. 
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2.1.2 Programming model 

The compute unified device architecture (CUDA) programming model is a refinement of 

the vector programming model to enhance arithmetic intensity. In the CUDA 

programming model, task executions are done by a hierarchical structure of threads – the 

largest granularity is called a kernel that is composed of several thread blocks, and each 

thread block is composed of several threads. A GPU thread is more light-weight than a 

CPU thread, so one can generate enough number of threads to hide memory access 

latency and other kinds of latency. The granularity of task assignments onto 

multiprocessors is a thread block and the granularity of instruction scheduling and 

execution is a warp referring to a set of 32 threads. The CUDA programming model 

helps application programmers focusing on the parallelism analysis of applications rather 

than programming – application programmers only need to write a kernel code for one 

thread, which is automatically executed by all threads in a kernel. 

2.1.3 Parameters to affect performance 

In this sub-section, we introduce several major factors to determine application 

performance on GPUs. We will use these definitions throughout this thesis. 

In GPUs, the occupancy is defined as the ratio of the number of active warps per 

multiprocessor to the maximum number of active warps per multiprocessor, where an 

active warp is a warp that can be handled by a multiprocessor at a time. According to its 

definition, the occupancy indicates how fully given multiprocessor resources are utilized. 

If the current warp is stalled because of memory access latency and arithmetic operation 

latency, a multiprocessor can hide the latency by executing another warp to be ready – 

i.e., the warp whose operands are available. Therefore, the higher occupancy, the larger 

pool of candidate warps to be picked.  

Three factors interactively determine the occupancy: the number of threads per 

thread block, a shared memory requirement per thread block, and a register requirement 
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per thread. We should note that those factors interact – e.g., increasing the number of 

threads (positive on the occupancy) can increase shared memory and register 

requirements (negative on the occupancy). In the worst case, if a multiprocessor does not 

have enough shared memory and register resources for one block to be launched at least, 

a kernel fails to be launched. Therefore, we should carefully determine these three 

parameters to get a maximum occupancy. 

In the ION GPU, the shared memory is configured in a 16 multi-bank structure 

enabling parallel memory access. If threads within a half warp try to access the same 

memory bank simultaneously, bank conflicts occur. In this case, memory requests are 

divided into several conflict-free requests that are served sequentially. 

Global memory access by all threads of a half-warp can be coalesced if access 

patterns satisfy some requirements [29]. If not, global memory requests are separated into 

several memory transactions, which results in reduced performance. 

If threads within a warp follow different execution paths, the paths are executed 

sequentially (called a warp divergence), which also has a negative effect on performance. 

2.2 Design space exploration of embedded applications mapped onto GPUs 

To propose architectural enhancements to GPUs, we first find performance bottlenecks in 

embedded applications mapped onto GPUs. 

In this section, we select Turbo decoding as a target application since it is one of the 

very computationally intensive components in wireless communication systems. 

Examples of Turbo code applications are WCDMA, NASA missions such as Mars 

Reconnaissance Orbiter, IEEE 802.16 (WiMAX), and Qualcomm‟s MediaFLO [30]. 

Among the applications, we choose the WCDMA standard and try to achieve its 2 Mbps 

requirement on the GPU.  

We consider three axes for the design space exploration: a radix degree, a 

parallelization method, and the number of sub-frames per thread block. In Turbo 
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decoding, a degree of radix affects computational complexity and memory access 

patterns in both algorithmic and implementation viewpoints. Second, computations of 

branch metrics (BrMs) and state metrics (StMs) have a different degree of parallelism, 

which affects a mapping method of computational tasks to GPU threads. Finally, we can 

easily adjust the number of sub-frames per thread block to balance the occupancy and 

memory access traffic. 

2.2.1 Turbo decoding algorithm 

2.2.1.1 Log-MAP algorithm 

The Maximum A Posteriori (MAP) algorithm was proposed by Bhal et al. in 1974 [31]. It 

provides optimal BER performance at the cost of high computational complexity. Final 

output metrics of the MAP algorithm are Log-Likelihood Ratios (LLRs), the logarithm of 

the ratio of a posteriori probability (APP) of information bit uk being „1‟ to that of uk 

being „0‟: 
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At the last stage of a Turbo decoder, a decision unit determines a transmitted information 

bit as „0‟ or „1‟ according to the corresponding LLR‟s sign – if LLR(uk) is positive, the 

transmitted information bit, uk, is decoded as „1‟; otherwise it is decoded as „0‟.  

For practical computations of LLRs, Eq. (1) can be rewritten by using three metrics 

as 
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where Sk-1 and Sk are the trellis states of a component encoder at t = k-1 and t = k 

respectively. Gamma called a branch metric is calculated as follows:  
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where u and u
p
 are information and parity bits respectively. y and y

p
 are the 

corresponding received symbols. Alpha is a forward-recursion state metric, and beta is a 

backward-recursion state metric expressed as follows: 
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The Log-MAP algorithm can reduce computational complexity of the MAP 

algorithm by calculating logarithms of alpha, beta, and gamma as follows [32]: 
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Then by substituting Eqs. (6) and (7) into Eq. (2), an LLR is computed as 
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 (called log-sum). The multiplications and divisions in Eqs. 

(2), (4), and (5) of the MAP algorithm are now replaced with the additions and 

subtractions in Eqs. (6), (7), and (8) of the Log-MAP algorithm. Although the log-sum 

introduces another computational complexity, one can simply compute the log-sum by 

applying the Jacobian logarithm, )1ln(},max{)ln( 2121

21

 


 eee [33]; recursions are 

applied if the number of arguments in the log-sum is greater than two. The second term, 

ln(-), is called a correction term that is generally obtained by a lookup table. 

Since the Log-MAP algorithm provides reduced computational complexity with 

BER performance close to that of the MAP algorithm within 0.05 dB [34], we consider 

the Log-MAP algorithm in this section. Henceforth, a plain (i.e. without the upper bar) 
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alpha, beta, and gamma represent a log version of alpha, beta, and gamma for simple 

descriptions. 

2.2.1.2 Radix-4 algorithm 

We consider a radix degree – radix-2 or radix-4 - as the first axis for the design space 

exploration. 

In binary Turbo codes, the normal Log-MAP algorithm is based on radix-2. By 

applying a two-level look-ahead transformation, the radix-2 algorithm is transformed to 

the radix-4 algorithm as follows (for the detailed derivation, we refer readers to [32]): 
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where 
ji is a 2-bit symbol reliability metric with the first information bit uk = i and the 

second information bit uk-1 = j, which is represented as 
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where ij

k  is the branch metric of the radix-4 branch with uk = i and uk-1 = j. 

The radix-4 algorithm can be explained more clearly by comparing its trellis diagram 

with a radix-2 diagram. Figure 2 depicts the radix-2 and radix-4 trellis diagrams of the 

3rd Generation Partnership Project (3GPP) Turbo encoder [35] as an example. As shown 

in the figure, two trellis stages in the radix-2 algorithm are grouped into one trellis stage 

in the radix-4 algorithm. Therefore, in the radix-4 algorithm, computations of alpha and 

beta metrics at t = k require alpha and beta metrics at t = k-2 and t = k+2, respectively, as 

shown in Eqs. (9) and (10). The radix-4 algorithm decodes two information bits (uk-1 and 
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uk) per radix-4 decoding cycle, as shown in Eq. (11). We consider “radix-2 or radix-4” as 

the first axis for the design space exploration. 

2.2.2 Parallelism analysis   

To exploit parallelisms available in the Turbo decoding algorithm, we need to identify 

data dependencies. The concept of iterations in Turbo decoding is central to explaining 

data dependencies. One set of computations corresponding to one forward and backward 

traversal through the whole trellis diagram constitutes one half-iteration. Another set of 

computations corresponding to another forward and backward traversal constitutes 

another half-iteration. 

Data dependencies exist across half-iterations and within each half-iteration. Both 

inter-half-iteration and intra-half-iteration data dependencies are strong in the Turbo 

decoding algorithm – i.e., computations of the current half-iteration require computation 

results of the previous half-iteration, and computations at the current trellis stage require  

computation results at the previous trellis stage within a half-iteration. In this section, a 

trellis stage and a trellis state are defined as follows; each time stamp indicates one trellis 

stage that is composed of several trellis states. For example, Fig. 3 depicts six trellis 

stages and each stage is composed of four trellis states. Since Turbo decoding has both 

types of data dependencies, it is very difficult to parallelize the decoding sequence and 
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Figure 2. Radix-2 and radix-4 trellis diagrams. 
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map the Turbo decoding algorithm onto GPUs. Both data dependencies are inevitable in 

the sense that if we remove these dependencies to attain high throughput, it leads to a 

huge BER performance loss.  

Fortunately, other kinds of parallelisms can be exploited in the Turbo decoding 

algorithm. At the most coarse-grained level, one can exploit a frame-level parallelism, 

where several frames are processed simultaneously by several Turbo decoders. At the 

next level, one can use a sub-frame-level parallelism, where a frame is divided into 

several sub-frames, as shown in Fig. 4, and all sub-frames are processed in parallel, each 

by its dedicated MAP core. At the most fine-grained level, a trellis state-level parallelism 

can be exploited. In Fig. 2, computations corresponding to all states at each trellis stage 

are independent of each other and can be processed concurrently. The trellis state-level 

parallelism fits very well to the SIMD style of the GPU since operations of all states or 

all branches are exactly same, but to different sets of input data. Since the frame-level 

parallelism shows the largest decoding latency among the three, we consider the sub-

frame-level and trellis state-level parallelisms in this section. 
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Figure 3. Trellis diagram representation of Turbo decoding. 
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2.2.3 Overall mapping  

Figure 5 shows an overall mapping of the Turbo decoding algorithm onto the GPU in our 

implementation. In Turbo decoding, two half-iterations of a single iteration communicate 

extrinsic values and need a complete synchronization of all threads. Therefore, 

computations of the first half-iteration are assigned to one kernel (kernel_0) and 

computations of the second half-iteration are assigned to another kernel (kernel_1).  

The CPU (host) transfers raw input data from the host memory to the device 

memory, and then it calls kernel_0. The interleaving of extrinsic values is done within 

kernel_0 by writing the values to the global memory in a permuted order. After the GPU 

(device) completes kernel_0, it transfers interleaved extrinsic values from the global 

memory to the constant memory to take advantage of the constant cache. Then the device 

executes kernel_1. The deinterleaving is done within kernel_1 in the same way as the 

interleaving in kernel_0. These steps are repeated as many as the number of iterations. At 

the last iteration, the GPU generates LLR values and transfers them from the device 

memory to the host memory, and then the CPU executes hard-detections, completing a 

whole process for one frame.  

Since the interleaving/deinterleaving (I/DI) does not provide an opportunity of 

increasing a parallelism, it can be executed on either the CPU or the GPU. The I/DI on 
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Figure 5. Overall mapping. 
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the CPU requires data transfers through the PCI bus between the device memory and the 

host memory. On the other hand, the I/DI on the GPU requires data transfers through the 

internal data bus between the GPU and the device memory. Since, in our system, a 

bandwidth of the internal bus (25.6 GB/sec) is much larger than that of the PCI bus (PCI-

Express x16 ver.2: 8 GB/sec), we run the I/DI on the GPU.  

2.2.4 Memory allocation 

We allocate main variables of Turbo decoding to specific memory types according to the 

variables‟ scope and read/write attribute, as shown in Fig. 6.  

Read/write attributes in this paragraph are from the viewpoint of the GPU (device). 

Our allocation strategy is that the read-only data transferred from the host to the device 

(such as raw input data and interleaved extrinsic values) is allocated to the constant 

memory. The read/write or write-only data transferred from/to the host to/from the device 

(such as extrinsic values and at the last iteration, LLR values) is allocated to the global 

memory. The data shared by threads of a single thread block (such as alpha, beta, and 

gamma metrics) is allocated to the shared memory. The alpha, beta, and gamma metrics 

are shared by threads of a thread block according to data permutation patterns between 

trellis stages. We do not use the texture memory. 
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2.2.5 Task assignments considering computational parallelisms 

We exploit two kinds of computational parallelisms – trellis state-level and sub-frame-

level parallelisms. In this sub-section, we define additional two axes – one related to the 

trellis state-level parallelism and the other related to the sub-frame-level parallelism – for 

the design space exploration. 

2.2.5.1 Trellis state-level parallelism 

Although the Turbo decoding algorithm has very strong data dependency between trellis 

stages (intra-half-iteration dependency), all StMs or all BrMs at each trellis stage can be 

computed concurrently. For example, at a trellis stage t = k in the radix-2 trellis diagram 

of Fig. 2, all 16 BrMs (k,0 to k,15) or all 16 (previous StM + BrM)s (k-1,0+k,0 to k-

1,15+k,15  – these results are arguments of  the max* operation in Eq. (6)) can be 

computed in parallel and then all eight StMs (k,0 to k,7) can be computed in parallel as 

well. Henceforth, we refer to both BrM and (previous StM + BrM) computations as a 

BrM computation and refer to only a max* operation as a StM computation. 

Since the parallelization degree of BrM and StM computations is different – the 

degree in BrM computations is radix times that in StM computations –, how to map 

computations to GPU threads is another important parameter that affects performance. 

This different degree of parallelism is always an issue in applications where a core 

algorithm can be represented as a trellis diagram. We consider a parallelization method 

(i.e., a mapping method) as the second axis for the design space exploration (the first axis 

is a degree of radix). We call two candidate mapping methods reflecting the different 

parallelization method StM-centric and BrM-centric mappings. 

In the StM-centric mapping, the number of threads per thread block is equal to the 

number of states per trellis stage, which is less than the number of branches. As a result, a 

part of BrMs are computed sequentially while all StMs are computed at a time. Figure 7 

depicts an example of thread assignments to metric computations in the StM-centric 
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method of the radix-2 algorithm. In this example, the number of threads per block is 

eight, so 16 BrMs are computed in two separate steps. Then, all eight StMs are computed 

at a time. More specifically, at t = k, thread_0 sequentially computes the two BrMs (k,0 

and k,1) incoming to state_0 and then computes k,0. Thread_1 sequentially computes the 

two BrMs (k,2 and k,3) incoming to state_1 and then computes k,1, and so on. By 

assigning a pair of two branches with the same destination state to the same thread, we 

can avoid communication and synchronization overheads of BrM computation results 

across threads. In other words, BrMs are stored to and loaded from the local registers, not 

the shared memory.  

In the BrM-centric mapping, we fully parallelize BrM computations, i.e., the number 

of threads per thread block is equal to the number of branches per trellis stage. All 

threads do work during BrM computations, but some of them are in an idle state during 

StM computations. Figure 8 shows an example of thread assignments in the BrM-centric 
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Figure 7. Thread assignments in StM-centric mapping of the radix-2 algorithm. 
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method of the radix-2 algorithm. In this example, the number of threads per thread block 

is 16. All BrMs are computed at a time by 16 threads, and then all StMs are computed at 

a time by eight threads. The other eight threads are not used during the StM computations. 

More specifically, at t = k, thread_0 computes k,0 and thread_1 computes k,1. After all 

threads complete BrM computations, thread_0 computes k,0 and thread_1 computes k,1. 

There are two different points compared to the StM-centric mapping method. BrMs must 

be shared among threads, so they are stored to and loaded from the shared memory. StM 

computations can be started only after all threads complete all BrM computations, so a 

synchronization barrier is required. 

The two mapping methods in the radix-4 algorithm have similar characteristics as 

them in the radix-2 algorithm. For example, in the StM-centric mapping of the radix-4, 

the number of required steps for BrM computations is four – a quarter of BrMs are 

computed at every step, and each thread computes four BrMs sequentially. On the other 

hand, in the BrM-mapping method of the radix-4, all BrMs are computed at step 1 at a 

time.  

In the following paragraphs, we compare the two mapping methods in terms of the 

occupancy, warp divergence, and memory access patterns. 

First, it is hard to decide which mapping method provides a higher occupancy. Three 

factors determine the occupancy: the number of threads per thread block, a shared 

memory requirement, and a register requirement. The two mapping methods require 

almost the same shared memory size. As shown in Fig. 6, we allocate the shared memory 

to alpha, beta, and gamma metrics. Among the three, alpha metrics occupy most of the 

shared memory space (this will be explained in Section 2.2.6). The alpha memory 

requirement is   

(# of states per trellis stage) x (sub-frame length) x (# of sub-frames per thread block) x 

(word length of data).                              (13) 
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According to Eq. (13), the mapping method itself does not affect the alpha memory 

requirement. In terms of the number of threads per thread block (the second factor to 

determine the occupancy), the BrM-centric method is better than the StM-centric method. 

But increasing number of threads might increase the register requirement (the third factor 

to determine the occupancy). Therefore, we cannot easily decide which mapping method 

provides a higher occupancy. In Section 2.3.1, we will compare the occupancy of the two 

mapping methods based on experimental results.  

Second, both mapping methods have no warp divergence. In the StM-centric 

mapping, this is achieved at the cost of serialization of BrM computations. The BrM-

centric mapping also has no warp divergence; Although some threads of a warp are in an 

idle state during StM computations, these idle threads do not contribute to the warp 

divergence (they just do nothing).  

Before describing three factors related to memory access – shared memory bank 

conflicts, global memory coalescing, and constant memory caching –, we should note 

that all three factors are intra-half-warp parameters. In other words, memory access 

patterns of 16 threads of a half-warp are only meaningful, but the patterns across different 

half-warps are meaningless.   

Third, the BrM-centric method shows shared memory bank conflicts, but the StM-

centric method does not. Figures 9 and 10 show shared memory access patterns for the 

example of Figs. 7 and 8, respectively. (In our implementation, the data type of all three 

metrics is a 32-bit floating point.) In the StM-centric method, although there are data 

permutations during steps 1 and 2, bank conflicts do not occur. On the other hand, in the 

BrM-centric method, two-way bank conflicts occur during k-1 loads at step 1.  

Fourth, the two mapping methods have the equal number of global memory accesses 

and the same coalescing factor. Our implementation uses the global memory only for 

storing extrinsic information (or LLR values at the last iteration). Since only one extrinsic 
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value (or one LLR value) is generated and stored to the global memory at each trellis 

stage, the total number of global memory accesses is calculated regardless of the mapping 

method as follows: 

(Total # of gmem inst) = (frame length) x (2 half-iterations) x (# of iterations) / 

(coalescing factor).                                                         (14) 

In addition, the stride of global memory accesses from two adjacent threads within a half-

warp is determined by sub-frame length, e.g., if the first thread gets access to address 

128, the second thread gets access to address (128 + 4 x sub-frame length). (In our 

implementation, the data type of an extrinsic information and LLR value is a 32-bit 

floating point.) This amount of stride causes non-coalesced memory accesses and the 
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coalescing factor, which is defined as the number of global memory instructions 

processed in one unit, is not affected by the mapping method.  

Fifth, the two mapping methods have the equal number of constant memory accesses 

and the same degree of data access locality. Our implementation mainly uses the constant 

memory for raw input data and interleaved extrinsic values. As in the global memory 

access, the number of constant memory accesses is affected by frame length, not by the 

mapping method. In addition, each frame is iteratively processed (due to an iterative 

decoding feature of the Turbo decoding algorithm) and memory access patterns are 

sequential, so temporal and spatial localities are very good. We will show a hit ratio of 

constant cache accesses in Section 2.3.1. 

In summary, the BrM-centric method provides more threads per thread block, but it 

does not guarantee a higher occupancy. On the other hand, the StM-centric method shows 

fewer shared memory bank conflicts. The other factors – warp divergence, global 

memory access, and constant memory access – are same in both mapping methods. 

A pseudo-code for one complete half-iteration is shown in Fig. 11, including both 

computations and memory transactions. The pseudo code explicitly shows the intra-half-

iteration dependency and implicitly shows the trellis state-level parallelism.  First, the 

two “for” loops in the forward and backward recursion sections mean strong data 

dependency between trellis stages. Each loop index (i) represents one trellis stage and 

SUBFRAME_LENGTH is the total number of trellis stages. The inter-loop dependency 

(indicated by i-1 in alpha computations and i+1 in beta computations) indicates that alpha 

and beta computations at the current stage can be started only after computations at the 

previous stage are completed. All gamma and all alpha (or all beta) metrics at each trellis 

stage, however, can be computed in parallel by several threads. At each trellis stage (at 

each loop index i), every thread loads input data to its own registers and then computes 

one or more gamma metrics (depending on the computation mapping method to threads) 

and one alpha metric during a forward recursion. During a backward recursion, the same 
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steps are processed except that a computation direction is reversed. Finally, because of 

permutation requirements between trellis stages, we should insert synchronization 

barriers in proper locations. The locations are different in the two mapping methods 

because of different synchronization requirements.  

The code in Fig. 11 is an example of several possible implementations. 

2.2.5.2 Sub-frame-level parallelism 

Although in the previous sub-section we confined our explanations to cases with only one 

sub-frame per thread block, multiple sub-frames can be assigned per thread block. We 

__global__ void turbo_kernel_0(DATA_TYPE* d_w){ 

alpha, beta initialization; 

//Forward recursion section 

for (i=1 ; i< SUBFRAME_LENGTH+1 ; i++){ 

      Load the raw input data from constant mem to register.  

      Compute gamma metrics and store them to register or shared mem. 

      __syncthreads( );  

      Load the gamma metrics from register or shared mem and the previous alpha metric from 

shared mem.  

  Compute a new alpha metric as alpha[i] = f(alpha[i-1], gamma[i]) and store it to shared 

mem.  

      __syncthreads( ); 

} 

//Backward recursion section 

for(i= SUBFRAME_LENGTH -1 ; i>=0 ; i--){ 

      Load the raw input data from constant mem to register.  

      Compute gamma metrics and store them to register or shared mem. 

     __syncthreads( ); 

    Load the gamma metrics from register or shared mem and the previous beta metrics from 

shared mem. 

      Compute a new beta metric as beta[i] = f(beta[i+1], gamma[i]) and store it to shared mem. 

      __syncthreads( ); 

      Load the gamma metrics from register or shared mem and alpha, beta metrics from 

shared mem. 

 Compute  a new extrinsic value (d_w) and store it to global mem in a permuted order. 

//The interleaving is done here. 

     __syncthreads( ); 

} 

 

Figure 11. Pseudo device code of one kernel.  
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call it a sub-frame-level parallelism. In some cases, assigning multiple sub-frames to a 

thread block is essential to increase the occupancy. For example, in Figs. 7 and 8, a single 

sub-frame per thread block results in the number of threads less than 32 – eight in the 

StM-centric mapping and 16 in the BrM-centric mapping. 

The sub-frame-level parallelism fits very well to the many-core feature of the GPU. 

To exploit this parallelism, one frame is divided into several sub-frames and the constant 

number of sub-frames is assigned to each thread block. We consider the number of sub-

frames per thread block as the third axis for the design space exploration.  

The following paragraph analyzes the occupancy, warp divergence, and memory 

access patterns affected by combination of the three axes - a radix degree, a mapping 

method, and the number of sub-frames per thread block. 

First, in all four cases, (radix-2 or 4) x (BrM- or StM-centric), the increasing number 

of sub-frames increases the number of threads per thread block, but also increases shared 

memory and register requirements. We compare the occupancy based on experimental 

results in Section 2.3. Second, the number of sub-frames does not affect the degree of 

warp divergence. In other words, the degree is only determined by (radix-2 or 4) x (BrM- 

or StM-centric). Finally, all three factors related to memory access – shared memory 

bank conflicts, global memory coalescing, and constant memory caching – are intra-half-

warp parameters. Therefore, increasing the number of sub-frames does not affect those 

three factors at all.   

These analyses are also applied to the radix-4 algorithm in the same way. 

2.2.6 Shared memory usage optimizations 

Another important point when mapping the Turbo decoding algorithm onto the GPU is a 

memory size requirement. Among the three kinds of memories in Fig. 6, we focus on 

handling the shared memory requirement since the shared memory is a limited resource 

and its size requirement is one of the key factors to determine the occupancy. The global 
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memory is very spacious and the constant memory requirement is directly proportional to 

the frame length in our implementation. Because the frame length is given by standard 

specifications, there is not much freedom for us to handle the constant memory 

requirement.  

We consider three approaches to reduce the shared memory requirement: a trellis 

compaction, an optimization in Log-MAP algorithm implementations, and a reduction in 

the sub-frame length. First, the effect of the trellis compaction (transformation from the 

radix-2 to the radix-4) on the shared memory requirement was already explained in the 

previous section. Second, we can reduce the shared memory requirement by changing 

Log-MAP algorithm implementations. In most previous implementations, gamma and 

alpha metrics are computed during forward recursions. Both metrics of a whole frame are 

stored in a memory and are used for computing LLR values during backward recursions. 

(Note that the beta storage requirement can be kept very small by computing LLR values 

at the same time as beta computations.) A shared memory requirement in the previous 

implementations is 

(# of states per trellis stage) x (sub-frame length) x (# of sub-frames per thread block) x 

(1 + radix) x (word length of data),                                                                                (15) 

where 1 of (1+radix) is for alpha metrics and the radix factor is for gamma metrics (since 

every state has the radix number of incoming branches, the storage requirement of 

gamma metrics is radix times that of alpha metrics). We assume that the word length of 

alpha and gamma metrics is equal. The storage for beta metrics and some temporary 

variables is ignored. On the other hand, in our implementation we compute gamma 

metrics once again during backward recursions instead of using the previously calculated 

and stored ones during forward recursions. By doing this, we can significantly reduce the 

shared memory requirement (the factor of 1+radix in Eq. (15) reduces to 1) at the cost of 

a small additional computation overhead.  
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Finally, the third approach is easier to apply than the first and second ones. Since the 

shared memory requirement is directly proportional to sub-frame length, as shown in Eq. 

(15), we can reduce the size requirement by shortening the sub-frame length (the sub-

frame length is not specified by standards). But this approach comes at the cost of BER 

performance degradation. To show the BER performance trade-off, we measure the 

performance at two different sub-frame length = 50 bits and 100 bits, chosen based on the 

previous work [36]. As shown in Fig. 12, the 50-bit case shows about 0.5 dB coding gain 

loss at BER = 10
-3

 compared to the 100-bit case. Whether or not this loss is tolerable is 

determined by power-BER requirements. We fix the sub-frame length as 50 bits. 

2.3 Experimental results – design space exploration  

2.3.1 Design space exploration with the three axes 

In this sub-section, we explore the design space of the Turbo decoding algorithm with the 

three axes: the radix-2 or 4, the BrM- or StM-centric mapping, and the number of sub-

frames per thread block; we compare the performance of all possible cases and identify 

factors that differentiate the performance. We consider an even number of sub-frames per 

block from one to eight including one, for a total of 20 cases. A shared memory 

requirement of more than eight sub-frames exceeds the given resource in the ION (16 

kB). 
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Figure 12. GPU-running results - frame length = 3000 bits, # of 

iterations = 5, WCDMA specification parameters. 
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In these experiments, we consider the WCDMA Turbo coding specification [35] 

with sub-frame length = 50 bits and frame length = 3,000 bits. A random interleaving is 

used.  

We measure three parameters to determine the occupancy, as shown in Table 1. 

Within each combination of the radix and the mapping method, the increasing number of 

sub-frames increases the number of threads, but also increases the shared memory and 

register requirements per thread block. (The register requirement in Table 1 is per 

thread.) As a result, the occupancy does not monotonically increase or decrease, as shown 

in Fig. 13. Across the four combinations, the radix-4+BrM-centric combination shows 

the highest occupancy overall because it has benefits of both more number of threads 

(due to the BrM-centric) and the reduced shared memory requirement (due to the radix-

4). The occupancies of the other three combinations are very low, mainly because of the 

large shared memory or register requirements. The cases with an unfilled warp, i.e., the 

number of threads per thread block is not an integer multiple of 32 including less than 32, 

Table 1. Three factors to determine the occupancy. 

# of subframes  per block 1 2 4 6 8 

# of threads per 
thread block 

R2+StM 8 16 32 48 64 

R2+BrM 16 32 64 96 128 

R4+StM 8 16 32 48 64 

R4+BrM 32 64 128 192 256 

Shared mem. 
req. per thread 

block (kB) 

R2+StM 1.8 3.6 7.3 10.9 14.6 

R2+BrM 1.9 3.7 7.5 11.3 15.1 

R4+StM 1.1 2.3 4.6 6.9 9.2 

R4+BrM 1.3 2.5 5.1 7.7 10.2 

Register req.           
per thread 

R2+StM 22 22 22 22 22 

R2+BrM 21 21 21 21 21 

R4+StM 37 37 37 37 37 

R4+BrM 32 32 32 32 32 

     Shaded boxes: the number of threads is not an integer multiple of 32 including less than 32 
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are displayed as the shaded boxes in Table 1. In addition to the occupancy, the warp 

fullness also affects performance.   

To check whether or not device memory access is a reason for performance 

differences, we measure the number of coalesced/uncoalesced global memory references 

using the Ocelot tool [37]. The results show that all 20 cases have an exactly equal 

number of memory references – 30,000 (this number can be also calculated by Eq. (14)).  

We also measure the hit ratio of the constant cache – above 99% in all 20 cases.  In 

addition, the local memory is not used at all in all 20 cases. Therefore, we conclude that 

device memory accesses do not contribute to performance differences in the design 

space.  

Figure 14 shows the number of shared memory bank conflicts. The number is very 

different across the four combinations – both radix algorithms with the StM-centric 
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method show fewer bank conflicts than the other two with the BrM-centric method. The 

number of sub-frames per thread block does not have a considerable effect on shared 

memory bank conflicts (as described in Section 2.2.5.2).  

Figure 15 shows the execution time for decoding one total frame. First, within each 

combination, the occupancy determines performance patterns when a warp is full, i.e., 

when the number of threads per thread block is an integer multiple of 32. In the R2+StM, 

the performance at the number of sub-frames per block = 4 and 8 is almost same due to 

the same occupancy. In the R2+BrM, the performance pattern is almost similar to the 

occupancy pattern except for the number of sub-frames per block = 1. In the R4+StM, the 

performance at the number of sub-frames per block = 4 is better than that at 8 due to the 

better occupancy. Finally, the R4+BrM is the combination which the performance pattern 

is best matched with the occupancy pattern because a warp is full at all five cases of the 

number of sub-frames per block. 

Across the four combinations, the most critical factor to differentiate performance is shared 

memory bank conflicts. As shown in Fig. 14, the R4+StM combination shows the fewest number 

of bank conflicts, so it provides the best performance overall.  

In summary, the two factors – the occupancy and the shared memory bank conflict – 

cause the performance difference in the design space.  

2.3.2 Further performance improvements 

The design space exploration in Section 2.3.1 was highly affected by the GPU 

parameters. In this section, we solely focus on the Turbo decoding algorithm for further 

performance improvements. According to our design space exploration, experiments in 

this section start with a configuration of radix-4, StM-centric mapping, and four sub-

frames per thread block (the best performance case). After finally optimizing 

performance, we identify a performance bottleneck. (In Section 2.3.1, we did not identify 

performance bottlenecks, but found factors to cause the performance difference.) 
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To improve decoding throughput further, we identify factors to limit attainable 

throughput in an algorithm aspect. The most critical factor is data dependencies existing 

during forward and backward recursions. Since the data dependency is an inherent nature 

of MAP-based algorithms, we cannot remove it without changing the algorithm itself. 

Instead, we can reduce the span of the data dependency by applying the trellis 

compaction (a transformation from the radix-2 to the radix-4) and by reducing the sub-

frame length, which were discussed in the previous sections. The second critical factor is 

a max* operation, a kernel operation in the Log-MAP algorithm that is similar to an add-

compare-select (ACS) kernel operation in the Viterbi algorithm except for the additional 

correction term. Since the number of max* calls is huge – every single alpha, beta, and 

LLR computation calls the max* operation, even trivial optimization for this operation 

can result in meaningful improvements of decoding throughput. The kernel operation can 

be optimized in different ways: by max* approximation (MAX-Log-MAP) [32], by using 

a lookup table, or by using faster intrinsic functions supported by underlying hardware 

platforms. Performance advantages by all three methods come at the expense of BER 

degradation. We apply the first and the last ones. For the last one, the ION GPU supports 

__logf(x) and __expf(x) [29] that are faster versions of the main element operations –  

log(x) and exp(x) – of max*. 

Experimental results, after applying these optimizations, are shown in Fig. 16. A 

starting point is the case of R4+StM with four sub-frames per thread block (case 1). To 
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show performance improvements by memory usage optimizations, the performance of 

the case with unoptimized memory usage is also presented. In case 2, __logf and __expf 

are applied. In case 3, the MAX-Log-MAP algorithm is applied.  

With the finally optimized version (case 3), we estimate throughput at additional 

three cases on the ION GPU. Case 6 in Fig. 16 assumes that access latency of all kinds of 

memories is zero – this is a superset of no shared memory bank conflicts, perfect global 

memory access coalescing, 100% hit ratio of constant cache – and the synchronization 

cost is also zero. We define this throughput as maximum attainable throughput on the 

ION GPU. Case 5 in Fig. 16 adds real global memory access latency, including 

coalescing effects, to case 6. Case 4 adds real shared memory access latency, including 

bank conflict-free effects, to case 5.  

For estimating throughput at cases 4, 5, and 6, we count the number of executions of 

every instruction used in the case 3 program using the Ocelot tool [37]. Then we calculate 

the total number of required cycles to execute all the instructions and calculate 

throughput [in bps] as follows: 

 

Total # of required cycles per warp = 
i

{(nominal CPI of inst_warpi) x (# of inst_warpi)} +  

(# of gmem inst_th per warp) x (gmem access latency per reference) / (coalescing factor) + 

(# of smem inst_th per warp) x (smem access latency per reference) / (bank conflict-free factor).         

     (16) 

Throughput = (# of information bits) / {(total # of required cycles per warp) x (# of warps per 

block) x (# of blocks per SM) / (multiprocessor clock frequency)}.                              (17) 

Equations (16) and (17) are valid only when the number of threads per thread block 

is an integer multiple of 32. In Eq. (16), inst_warp is a warp instruction and inst_th is a 

thread instruction. The gmem and smem indicate the global memory and the shared 

memory, respectively. The coalescing factor and the bank conflict-free factor range from 
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one to 16, respectively. The second and third terms (gmem-related and smem-related 

ones) in Eq. (16) are zero when calculating the throughput at case 6. We ignore the 

effects of the warp divergence and the constant memory access on performance according 

to the analysis in Section 2.3.1. 

As shown in Fig. 16, the throughput at case 5 dramatically reduces from case 6. A 

reduction in throughput by the shared memory access (from case 5 to case 4) is very 

small. Therefore, we can conclude that global memory access latency is a major 

performance bottleneck at case 3 (the most optimized case). (In other cases, major 

performance bottlenecks may be different.) 

The best optimized performance (case 3) is compared with the previous work that 

uses other programmable platforms in Table 2. In addition to the ION GPU, we measure 

performance on three additional GPUs – Geforce 8600GTS, Geforce 8800GTS 512, and 

Tesla C1060. The performance on all four GPUs is overall comparable to that of the other 

Table 2. Comparisons with previous programmable implementations.  

 Algorithm parameters Machine parameters Result 

Dec. 
algori- 

thm 

Frame 
length 

# of 
iter. 

VLIW 
width 

SIMD 
width 

# of 
multi-
proc. 

Multi-
proc. 
clock 
(GHz) 

Mem. 
BW 

(GB/s) 

Peak 
FLOPS 
(Gflops

/s) 

Throu-
ghput 

(bits/s) 

Our 
curre-
nt 
work 

ION 
Max-
log 

5000 5 x 8 2 1.1 25.6 35 454 k 

Geforce 8600GTS 
Max-
log 

5000 5 x 8 4 1.45 32 139.2 582 k 

Geforce 
8800GTS512 

Max-
log 

5000 5 x 8 16 1.63 64 416 1.15 M 

Tesla C1060 
Max-
log 

5000 5 x 8 30 1.3 102 933 2.1 M 

Previ-
ous 
work 

TI’s C6X [18] 
Max-
log 

N.A. 5 8 x 1 0.2 N.A. > 1 57.2 k 

Starcore SC140 
[19] 

Max-
log 

5114 5 6 N.A.1) 1 0.3 N.A. N.A. 1.88 M 

ST120 [19] 
Max-
log 

5114 5 4 21) 1 0.2 N.A. N.A. 540 k 

TigerSharc2) [19] Log 5114 5 4 N.A.1) 1 0.18 N.A. 0.9 666 k 

SODA [1] 
Max-
log 

5114 5 x 32 1 0.4 N.A. N.A. 2 M 

1) In these three cores, each component instruction in a VLIW instruction supports SIMD operations. Except 

for ST120, the SIMD width is not clearly announced. 

2) TigerSharc supports a dedicated instruction for the max* operation. 
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programmable platforms except for the Starcore SC140 and SODA platforms; these two 

platforms are more customized to DSP applications than the GPUs. Especially, the 

SODA platform supports a customized instruction set and a specialized permutation data 

network for DSP applications. 

To improve decoding throughput further, several additional supports can be 

considered on the GPU: first, putting more multiprocessors in the mobile GPU is most 

helpful and straightforward. Second, like other contemporary DSP cores, special 

hardware and instruction set supports for the max* kernel operation would result in 

considerable performance improvements without compromising BER performance. 

Finally, since some metrics in the Turbo decoding algorithm - such as alpha, beta, and 

gamma - do not need a full 32-bit word length [38], complete supports for 8-bit or 16-bit 

floating points may be also helpful. 

The measured throughput in the baseline GPU architecture is 400 kbps and 418 kbps 

at # of sub-frames = 4 and 8 respectively, which are much lower than the WCDMA 2 

Mbps requirement. For further performance improvements, we propose architectural 

enhancements to existing GPUs in the following sections. 

2.4 Proposed architectural enhancements 

In the previous sections, we explored the design space of the Turbo decoding algorithm 

on GPUs and identified a performance bottleneck.  

In this section, we propose architectural enhancements to existing GPUs to increase 

throughput of embedded applications – especially, the Turbo decoding algorithm. We try 

four categories of architectural enhancements: increasing shared memory resources to 

raise the occupancy, supporting a sub-word parallelism, adding special 

instructions/hardware for data and memory index computations, and increasing the 

number of streaming multiprocessors. 
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2.4.1 Shared memory resources (size)  

According to the baseline experimental results, the low occupancy – 8% at most – is one 

of the major factors to restrict performance. A higher occupancy is related to a larger pool 

of ready warps available.  A ready warp can be chosen from the pool for execution when 

the current warp stalls mainly because of global memory access latency.  

Table 1 shows the three parameters to determine the occupancy, and the shared 

memory requirement turns out to be an occupancy-limiting factor.  

In our implementation, the shared memory is allocated to alpha and beta metrics and 

some intermediate variables since they must be shared among threads of the same thread 

block. This requirement of data sharing originates from data permutations between trellis 

stages. Sharing of gamma metrics can be avoided by mapping BrM computations to 

threads according to our proposal (as described in Section 2.2.5). The intermediate 

variables occupy negligible space. Therefore, either alpha or beta metrics take up most of 

the shared memory. In our implementation, a forward recursion (alpha computations) is 

done first; then LLR values are calculated during a backward recursion consuming beta 

computation results right away – i.e., no need to store beta metrics. As a result, alpha 

metrics occupy nearly all the shared memory. An alpha memory requirement [in bits] per 

thread block is estimated as follows: 

(# of states per trellis stage) x (sub-frame length [in bits]) x (# of sub-frames per thread 

block) x (word length of an alpha metric [in bits]),                                                        (18) 

where the word length is 32 bits (a single-precision floating-point).  An estimation result 

by Eq. (18) is almost equal to experimental results of Table 1. This size requirement 

affects the number of active warps per multi-threaded streaming multiprocessor, so it is 

eventually related to the occupancy.  

According to this analysis, the first architectural enhancement is to add more shared 

memory resources to increase the occupancy.  
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2.4.2 Sub-word parallelism 

In addition to the SIMD parallelism, a sub-word parallelism is another promising and 

cost-effective method to improve throughput in multimedia applications, including Turbo 

decoding.  

External and internal data in MAP-based algorithms can be represented with 16 bits 

[38]. Two 16-bit sub-words are packed into one 32-bit word (currently a single-precision 

data type supported by NVIDIA GPUs). Computations for two sub-words can be 

executed at a time. Since only nine or 10 bits of 16 bits are enough to represent 

amplitudes of metrics in the Max-Log-MAP algorithm, a carry is not generated at the 

sub-word boundary. Therefore, sub-word-level computations can reuse existing resources 

for word-level computations. Even an AND logic, which is generally required in 

architectures to support the sub-word parallelism [39], is not needed. In addition, the 

existing instruction set can be used for sub-word parallel computations (though this is not 

described in this thesis).   

2.4.3 Special instructions/hardware for data computations 

According to the algorithm analysis in Section 2.2.1, we add two special 

instructions/hardware for data computations. The first one supports an ACS operation 

that is called every alpha, beta, and LLR computations. Another new instruction supports 

a branch metric computation.  

ACS operations are classified into two categories according to the number of input 

arguments in a max operation: two arguments in alpha/beta computations, and eight 

arguments in an LLR computation.  

A single ACS operation of alpha and beta computations consists of two add, one 

max, and three shared memory instructions and is completed in 24 cycles on the baseline 

GPU, as shown in Fig. 17 (each instruction is a warp instruction and there are no shared 

memory bank conflicts, so 6 insts x 4 cycles = 24 cycles). A horizontal dashed line 
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indicates that arithmetic/logic operations separated by the line are executed by different 

instructions at different cycles. The dashed lines and red and black arrows in the 

following figures have the same meaning as in Fig. 17.  

We add a special instruction, facs (fast ACS), to finish a single ACS operation in 16 

cycles including the three memory instructions, as shown in Fig. 18. Three shared 

memory accesses are still serialized, but all arithmetic/logic operations are done by a 

single facs instruction. By assigning more hardware resources, including an additional 

adder, and/or by applying a fast addition algorithm (e.g., carry-look-ahead), a facs 

instruction can be completed in four cycles. To support facs, the number of read ports of 

the register file must be increased from two to four causing considerable area overheads. 

To remedy this problem, we add two temporary registers (not shown here) to hold data 

from the shared memory, instead of using the register file. 

Since ACS operations related to different trellis states are mapped to different 

threads (i.e., different scalar processors), a special hardware unit for supporting facs must 

be added to every scalar processor (Figs. 17 and 18 are of the 0
th

 scalar processor as an 

example). 

 This savings of eight cycles per single ACS operation is accumulated as follows: 

Total savings [in cycles] = 8 cycles x (sub-frame length [in bits]) x 2 (due to forward and 

backward recursions per half-iterations) x 2 (due to two half-iterations per iteration) x (# 

of iterations) x (# of thread blocks per SM).                                                                  (19) 
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        Figure 17. ACS operation in the baseline GPU.       Figure 18. ACS operation in the advanced GPU. 
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LLR computations require another category of an ACS operation with an eight-input 

max operation. In the baseline GPU, the eight-input max operation can be implemented 

by a tree structure of two-input max operations as shown in Fig. 19. The mapping method 

of LLR computations to threads, shown in Fig. 19, is an example. Our mapping method 

tries to minimize the frequency of shared memory access; particularly, by assigning beta 

(not shown here) and partial LLR computations of one branch to the same thread, 

previously generated beta+gamma results can be loaded from the registers instead of the 

shared memory. For example, thread_0 computes k,0+k,0 during a k-1,0 computation 

related to the first branch, and stores the k,0+k,0 to a register (this step is not shown in 

Fig. 19). To compute a LLR value, thread_0 loads the k,0+k,0 result from the register 

(instead of the shared memory) and computes k,0+k,0+k-1,0 related to the same branch. 

Note that another set of operations related to info bit „1,‟ which is identical to Fig. 19 

except for different combinations of alpha and beta inputs, is executed in the following 

cycles. The number of required cycles is {(8 insts related to info. bit „0‟) + (8 insts related 

to info. bit „1‟)} x 4 = 64 cycles.   

Principles behind the LLR computation mapping onto our enhanced architecture are 

resource sharing and shared memory access minimization. First, the newly added 

resources for a facs operation of alpha/ beta computations can be shared by LLR 

computations, as shown in Fig. 20. This resource sharing, however, introduces additional 
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Figure 19. LLR computation related to an info bit ‘0’ in the baseline GPU. 
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shared memory accesses for loading beta+gamma results. We try to minimize this 

additional shared memory access; by our mapping method, a half of the beta+gamma 

results can be loaded from registers, as shown in Fig. 20. The number of required cycles 

is 8x4 = 32 cycles, giving a 32-cycle savings per single LLR computation. This savings is 

also accumulated according to Eq. (19) except that the factor 2 now reduces to 1 since 

LLR computations are done only during backward recursions. 

In the Max-Log-MAP algorithm, a BrM computation is different from alpha, beta, 

and LLR computations; it does not use an ACS kernel operation. Instead, it is the only 

computation using a multiplication operation. Therefore, a different special instruction is 

needed for BrM computations.   

According to Eq. (3), a gamma computation requires two multiplications and two 

additions.  Since u and u
p
 in Eq. (3) take a value of +1 or -1 respectively, a gamma 

computation can be optimized by a compiler, as shown in Fig. 21(a) (a different 

optimization is possible, but the nvcc compiler ver. 2.3 generates this sequence of 

instructions).  

In the baseline GPU, a BrM computation takes {(6 insts related to info. bit „0‟) + (3 

insts related to info. bit „1‟)} x 4 = 36 cycles (the three loads are not needed in the 

computation related to info. bit „1‟). In the enhanced GPU, a new instruction called 

dbmcomp (double BrM computations) is supported to finish two BrM computations of a 

pair of branches – e.g., the two BrMs, k,0 and k,1, in Fig. 17 – in four cycles excluding 
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Figure 20. LLR computation in the enhanced GPU. 
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loads from constant memory. Note that the number of read ports of a register file must be 

increased to five, which results in big area overheads. The temporary register solution 

used for facs is applied here as well. The number of required cycles is 16 cycles including 

the three loads, resulting in a 20-cycle savings. This savings is also accumulated 

according to Eq. (19). 

2.4.4 Special instruction/hardware for memory index computations  

In addition to data computations, memory index calculations are also a significant part of 

the CUDA code for the Turbo decoding algorithm. Especially, address calculations for 

constant memory loads are most critical. The shared memory is local to each SM, so its 

address calculation is simpler than that of the constant memory. The global memory is 

not frequently used in our implementation. For a more detailed description of memory 

allocations in our mapping method, we refer readers to [40]. 

We propose to add a special functional unit (SFU), which is separate from the SPs, 

for memory index computations. A related new special instruction is called memidx. Data 

computations and memory loads/stores on the SPs and memory index computations on 

the SFU are processed simultaneously in a pipelined way – i.e., the current result of a 

memory index computation done by the SFU is used for the data computation by the SPs 

in the next cycles. 
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2.4.5 Special instruction/hardware for data communications 

The requirement of intensive data permutations is known as a major performance 

bottleneck in MAP-based Turbo decoding algorithms. Data permutations can be 

supported by strided memory access requiring multiple memory access ports or by a 

specific permutation network [41]. The baseline GPU takes a different approach to 

support data permutations – i.e. by constructing the shared memory in a multi-bank 

structure. The multi-bank structure does work when there are no bank conflicts. In our all 

proposed architectural enhancements, we ensure zero shared memory bank conflict. 

Therefore, a special instruction/hardware for data communications is not needed. 

2.4.6 Number of SMs 

Finally, increasing the number of multiprocessors is the most general (not specific to the 

Turbo decoding algorithm) and straightforward way to improve throughput. The baseline 

architecture (ION GPU) has two SMs that is less than other GPUs – e.g., eight or 16 in 

ION II, 16 in Geforce 8800GTS 512, and 30 in Tesla C1060. Therefore, increasing the 

number of SMs over two is a feasible solution. 

Since a Turbo decoding application has a small-scale workload compared to other 

graphic and scientific applications, we should carefully determine the maximum number 

of SMs so that none of the SMs are in idle states.  Furthermore, increasing the number of 

SMs without co-improving the memory system can worsen global memory latency by 

generating more memory traffic.  

2.5 Evaluations 

2.5.1 Experimental method 

We use an in-house cycle-accurate and trace-driven simulator for our experiments. We 

generate traces of the turbo decoding algorithm for different inputs and configurations 

using GPUOcelot [37]. The traces are generated at a warp granularity rather than at a 
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thread granularity since a warp is the unit of execution in the GPU. Though traces are 

generated at a warp granularity, any control divergence exhibited by the threads of a warp 

is captured in the traces. All the memory addresses generated by the different threads of a 

warp for the same instruction are also included in the traces. In addition to modeling the 

multi-threaded pipeline of GPU cores (Streaming Multiprocessor), the simulator models 

the GPU memory hierarchy in considerable detail. Shared memory bank conflicts, 

constant cache, texture cache, DRAM bus congestion, DRAM bank conflicts and DRAM 

timing constraints are all modeled faithfully. The simulator also includes a fixed delay 

interconnect. 

The simulator is configured to simulate the ION GPU and Turbo coding traces 

generated using GPUOcelot are fed to the simulator. First, we measure throughput on the 

baseline GPU architecture. Then we apply each architecture enhancement individually 

and show performance improvements in Section 2.5.2. We also show a trade-off between 

throughput and area overheads in Section 2.5.3. 

2.5.2 Throughput results 

We measure a throughput improvement by each architecture enhancement separately – 

e.g., when measuring performance on the enhanced architecture with the sub-word 

parallelism support, other parameters such as shared memory resources and the number 

of SMs are set to the same values as in the baseline architecture, 16 KB and two SMs. 

Throughput on the baseline architecture is used as a reference performance; the reference 

performance is 400 kbps at # of sub-frames = 4 and 418 kbps at # of sub-frames = 8.  

First, throughput is improved overall as we add more shared memory resources to 

increase the occupancy, as shown in Fig. 22 (a), but does not monotonically increase. 

Arithmetic intensity of the Turbo decoding algorithm is calculated as follows: 

(# of alpha, beta, gamma, and LLR computations per trellis stage) / (# of global memory 

access per trellis stage).                                                                                                  (20) 
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In our implementation, the numerator of Eq. (20) is 8 + 8 + 16 x 2 + 1 = 49 and the 

denominator is 1 (for storing an extrinsic value). Because of this high arithmetic 

intensity, the effect of the occupancy is saturated at some points – the optimal memory 

                     

                                       (a) Throughput                                                               (b) Occupancy   

Figure 22. Effect of more shared memory resources (size) (Section 2.4.1). 

 

 

                   

             Figure 23. Effect of the sub-word parallelism             Figure 24. Effect of the special inst./hw 

             (Section 2.4.2).                                                                 (Sections 2.4.3 and 2.4.4). 

 
 

                                                   

              Figure 25. Effect of increasing # of SMs                          Figure 26. Throughput vs. area  

   (Section 2.4.6)  .                                                                    (# of subframes=4). 
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size resulting in highest throughput is 64 kB at # of sub-frames = 4 and 80 kB at # of sub-

frames = 8. 

Figure 23 shows a throughput improvement by supporting the sub-word parallelism. 

Almost a 70% improvement is achieved by doubling the execution width. Figure 24 

shows throughput improvements by applying each new instruction/hardware one by one. 

The improvements by supporting facs for both alpha/beta and LLR computations is very 

small – 3% by alpha and beta facs and 7% by LLR facs. The improvements by dbmcomp 

and memidx instructions are greater than them by facs; this difference is caused by a 

difference number of arithmetic/logic instructions constituting a computation. In other 

words, optimization space for branch metrics and memory index computations is wider 

than that for alpha/beta and LLR computations. Finally, Fig. 25 shows performance 

improvements by increasing the number of SMs. Along with the sub-word parallelism, 

increasing the number of SMs is the most effective approach to improve throughput. The 

experimental results demonstrate that without any hardware enhancements, to reach the 2 

Mbps requirement, we need more than 12 SMs, which will increase area overheads 

significantly. We can reduce the number of required SMs significantly with our proposed 

architectural enhancements as described in Section 2.5.3.5.   

2.5.3 Area overheads 

In this section, we calculate area overheads caused by our architectural enhancements in 

terms of the number of transistors. 

2.5.3.1 Adding shared memory resources (size) 

The shared memory is SRAM, which requires six transistors per bit. The optimal memory 

size, 64 kB and 80 kB (see Fig. 22(a)), requires about 3 M and 4 M transistors 

respectively. This number is multiplied by # of SMs to get the total number of transistors 

that should be added. 
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2.5.3.2 Sub-word parallelism support 

As described in the previous section, supporting the sub-word parallelism does not 

require additional hardware resources. Even if a carry is generated at the sub-word 

boundary, only an AND gate is required to either pass (in the normal mode) or block (in 

the sub-word mode) the carry. Its area overhead is negligible.  

2.5.3.3 Special instructions/hardware 

The facs instruction requires one additional adder, dbmcmp requires one additional 

multiplier and two additional adders as shown in Figs. 18 and 21(b), and memidx requires 

one adder and one multiplier (not shown in this thesis). These additional components for 

facs and dbmcmp support 32-bit floating-point computations, and the components for 

memidx support 32-bit integer computations. The number of transistors of the 32-bit 

floating-point adder and multiplier are about 2,400 and 28,000 [42] respectively. The 

number of transistors of the 32-bit integer adder and multiplier are about 768 [43] and 

25,232 [44] respectively; these numbers are rough estimates (e.g., these numbers are 

different depending on addition and multiplication algorithms applied). Since the order of 

the number of transistors required for shared memory resources and SMs is in millions, 

the rough estimates are acceptable for our area estimate purpose. These new components 

must be added to every SP, so the total number of additional transistors is calculated as 

follows: 

 (facs_trans + dbmcmp_trans + memidx_trans) x 8 (due to # of SPs per SM) x (# of SMs),       (21) 

where *_trans is the number of transistors required for the * operation.    

2.5.3.4 Increasing the number of SMs 

Although increasing the number of SMs is the most efficient way to improve throughput, 

it has the biggest area overhead among all architectural enhancements.  
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The number of transistors per SM can be estimated as 72 M from the datasheet of 

Geforce 8600 GTS [45].  Please note that the number of transistors is typically much less 

in GPUs for mobile platforms, so our estimation provides an upper bound.  

2.5.3.5 Putting them all together – throughput vs. area 

Figure 26 shows the trade-off between throughput and area overheads. All architectural 

enhancements are put together. The order in which the architecture enhancements are 

applied is determined by percentage improvements – the bigger, the earlier. So # of SMs 

is first applied, and facs_alpha,beta is finally applied – the sequence is indicated beside 

the 6 SMs-based case in Fig. 26 and it is same for the other two cases.  

As shown in Fig. 26, by applying all the enhancements on top of four SMs, we can 

achieve 1.9 Mbps almost close to the WCDMA requirement. By applying the sub-word 

parallelism, 64 kB shared memory, and memidx instruction on top of six SMs, we can 

achieve 2.2 Mbps throughput. Please note that without any enhancements, we need at 

least 12 SMs (Fig. 25), which uses 864 M transistors. If area is given as a design 

parameter, we should consider the trade-off between throughput and area when selecting 

some of the architectural enhancements. 

2.6 Related work 

Some previous work implemented the Turbo decoding algorithm in industrial DSP cores 

such as TI‟s C6x and Starcore SC140 [3, 4]. Unfortunately, their throughput is below the 

standards‟ requirements. For example, none of them satisfy the 2 Mbps requirement of 

the WCDMA standard.   

On the academic side, Lin et al. [41] proposed a more specialized multimedia 

architecture called SODA. By supporting some specialized instructions and a permutation 

network on top of the SIMD+VLIW-style architecture, it is possible for SODA to satisfy 
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the WCDMA throughput requirement [46]. It is the only programmable platform to do 

so, but it is not yet available commercially.   

Our goal is to achieve the 2 Mbps requirement on a commercially available 

programmable core, the GPU. Turbo decoding is used in mobile systems where small 

area and low energy consumption are required. Therefore, we choose the ION GPU, one 

of the lightweight chips, as the baseline architecture. We propose architectural 

enhancements to it. 

Contributions of our work are as follows: 

1. We map the Turbo decoding algorithm onto the GPU according to the result of 

parallelism analysis. We explore the design space of the Turbo decoding algorithm on the 

GPU with three major axes. 

2. We enhance the baseline GPU architecture to improve throughput of Turbo 

decoding above the WCDMA requirement. 

2.7 Summary 

We explored the design space of the Turbo decoding algorithm on GPUs. We considered 

three axes for the exploration: the radix degree, the mapping method, and the number of 

sub-frames per thread block. In the Turbo decoding algorithm, combined effects of the 

algorithmic and implementation aspects make the design space exploration much more 

complicated.  

The experimental results demonstrate that the radix-4 algorithm with the StM-centric 

mapping method provides the best performance at four sub-frames per thread block. 

According to our analysis, the occupancy and shared memory bank conflicts are major 

factors to differentiate the performance in the design space. We further improved 

performance by optimizing the kernel operation and applying the MAX-Log-MAP 

algorithm. At the finally optimized case, the global memory access is a major 

performance bottleneck.  
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Even with the best optimized case, the performance does not satisfy the WCDMA 

requirement. We proposed architectural enhancements to GPUs for increasing 

throughput. We tried four categories of architectural enhancements: increasing shared 

memory resources to raise the occupancy, supporting the sub-word parallelism, adding 

special instructions/hardware for data and memory index computations, and increasing 

the number of streaming multiprocessors. Experimental results by our cycle-accurate 

GPU simulator demonstrate that increasing the number of SMs and supporting the sub-

word parallelism are the most promising ways to improve throughput. With the proposed 

enhancements, we achieved the WCDMA throughput requirement with only four to six 

SMs, while without any enhancements at least 12 SMs are required. When an area 

limitation is given as a design parameter, we should select some of the architectural 

enhancements based on our throughput-area trade-off analysis. 
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CHAPTER III 

OFF-CHIP DRAM MAIN MEMORY SYSTEMS 

 

Our final goal related to DRAM systems is to improve system throughput by exploiting 

useful features of DRAM systems in DSP multiprocessor systems. We first represent 

DSP applications as data flow graphs and allocate a part of DRAM main memory to 

some graph edges (called buffer mapping) for communication and synchronization 

between processing elements.  

We first introduce DRAM system fundamentals and graphical representations of 

DSP applications. And then we explain DRAM usage requirements of DSP applications. 

Finally, we propose two high-performance buffer mapping methods that exploit the bank 

concurrency of DRAM main memory systems.  

3.1 DRAM system fundamentals 

In this section, we describe the contemporary DRAM main memory system and its useful 

features. Figure 27 depicts the contemporary DRAM main memory system including a 
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     Figure 27. Contemporary DRAM main memory system. 
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memory controller. The system consists of several ranks, each rank has several chips, and 

each chip has several internal banks. The multiple internal banks within a chip and the 

multiple ranks provide multiple levels of concurrency. Note, however, that the multiple 

chips within a rank are not for providing concurrency, but for providing wide data 

transfers. In the example of Fig. 27, the number of ranks, the number of chips, and the 

number of internal banks are all four. We consider a single-channel SDRAM main 

memory system, where all banks and ranks share a single address/command bus and a 

single data bus as shown in Fig. 27. Furthermore, we assume that a commodity SDRAM 

chip with a relatively low frequency (e.g., see [47, 48]) is used as a component chip – i.e., 

each bank capacity and the number of banks per chip are fixed, but we can adjust the 

numbers of chips and ranks according to desired configurations. 

The DRAM memory system has two useful features: bank concurrency and page 

mode – data accesses to different banks and data accesses to the open row result in low 

access latency. Bank concurrency makes it possible to hide the latency caused by 

precharge and row activation commands. We use the terms command and transaction 

when describing main memory operations. A command is issued by the memory 

controller to the DRAM. Examples of operations referenced in a command are precharge, 

row activation, and column access. On the other hand, a transaction refers to an 

interaction between the processor and the memory controller. Examples of transactions 

are load and store operations. In general, a single transaction generates one or more 

commands depending on the row buffer management policy and the transaction schedule. 

Since an address/command bus and a data bus are shared among all banks in a single-

channel memory system, parallel execution of commands is actually done in a pipelined 

fashion. Second, page mode is used to exploit temporal and spatial row locality of 

DRAM memory accesses. Each internal bank has its own row buffer. When the current 

memory transaction goes to the same row as the previous memory transaction, the current 

transaction gets the data from the open row buffer, not from the bank itself.  
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Several techniques [13, 15, 16], which utilize both bank concurrency and page mode, 

exist to reorder memory commands in a memory controller. We focus in this thesis on 

exploiting one of them – bank concurrency – carefully, and on managing our exploitation 

systematically through a high-level compiler. For analyzing the pure effect of bank 

concurrency, we need to eliminate the effect of page mode on system performance. 

Therefore, the close page policy is selected as the row buffer management policy in this 

thesis. Under the close page policy, every transaction is converted to a sequence of 

precharge  row activation  column access commands regardless of row hit/miss 

status, so we can eliminate the effect of page mode on system performance.  

If we use a multi-rank configuration as in Fig. 27, rank concurrency is also used in 

addition to bank concurrency. In this thesis, the term bank concurrency indicates the 

concurrency among the banks within each chip. The term rank concurrency indicates the 

concurrency among the banks across the rank.  

3.2 Graph representations of DSP applications in multi-core systems 

3.2.1 SDF and IPC graphs 

Dataflow graphs provide a natural representation format for DSP applications [49]. 

Synchronous dataflow (SDF) is a special case of dataflow in which the number of tokens 

consumed or produced by each actor (computational task) in each firing (task execution) 

is known a priori [50]. An important class of DSP applications exhibits this form of 

synchrony, which allows compilers to perform more powerful scheduling and buffer 

mapping optimizations compared to more general models of computation (e.g., see [51, 

52]). This results in reduced run-time overhead, streamlined buffer memory 

requirements, and more predictable run-time behavior. 

To help analyze system performance, an inter-processor communication (IPC) graph 

can be generated from an SDF application graph and a self-timed scheduling result for 

the graph. The IPC graph models self-timed execution of the given application based on 
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the given schedule, and explicitly shows requirements of inter-processor communication 

and synchronization [49]. In the shared-memory programming model, communication is 

implicitly performed by memory read and write transactions, but synchronization 

requires an explicit mechanism. In embedded computing systems, software 

synchronization mechanisms based on hardware primitives, which are widely used in 

general-purpose computing systems, are often undesirable because of their hardware 

costs. Instead, the bounded buffer synchronization (BBS) and unbounded buffer 

synchronization (UBS) protocols are considered, which use the shared main memory for 

synchronization as well as communication. The BBS protocol is more attractive because 

of its bounded buffer feature. 

3.2.2 BBS synchronization protocol and buffer mapping 

In this section, we describe the BBS protocol and related buffer mapping considerations.  

Figure 28 depicts a SDF application graph and an associated scheduling result on 

three processors. Note that this scheduling result is in general not unique - it is 

determined by one of many scheduling possibilities [49]; the one illustrated here is a 

represented result that we have chosen for the purpose of illustration. Every actor is 

indexed with a unique number and this number is used to identify the actor in the 

schedule.  

The scheduling result shown here is derived by using the classic HLFET algorithm 

[53] under the self-timed paradigm. In this thesis, we consider a homogeneous SDF 

(HSDF) graph [50]. Since all arbitrary SDF graphs can be converted into equivalent 

HSDF graphs [50], the techniques of this thesis are also applicable to general SDF 

graphs, as long as the SDF-to-HSDF transformation is applied appropriately as a 

preprocessing step.  

From the SDF application graph and the schedule, we obtain the IPC graph shown in 

Fig. 29. In the IPC graph, each white circle represents a computation actor, and each gray 
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circle represents a communication actor. Communication actors are labeled as (S) or (R) 

to represent inter-processor send and receive operations, respectively. The actors that are 

assigned to the same processor by the given schedule are connected together so that they 

form a cycle. The ordering of actors along each of these cycles corresponds to the actor 

ordering for the corresponding processor in the self-timed schedule. Each of these cycles 

represents the iterative, sequential execution of the subset of actors that is assigned to a 

given processor.  

For each edge in the SDF application graph whose source and sink actors are 

assigned to different processors by the given schedule, IPC edge is instantiated between 

the associated send and receive actors in the IPC graph. For example, there are four IPC 

edges, e0-e3 in Fig. 29. For further details on IPC graph construction, we refer the reader 

to [49].  
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Suppose that we are given an IPC edge e which is a feedback edge, and let src(e) and 

snk(e) denote, respectively, the source and sink actors of e. Figure 30 depicts the 

sequential buffer mapping for the IPC graph of Fig. 29 under the BBS protocol. For 

simplicity, we suppose the transferred data size is one row. In the BBS protocol [54], a 

write pointer wrptr(e) for e is maintained on the processor that executes src(e), a read 

pointer rdptr(e) for e is maintained on the processor that executes snk(e), and a copy of 

wrptr(e) is maintained in some shared memory location shptr(e). The pointers rdptr(e) 

and wrptr(e) are initialized to zero and del(e), respectively, where del(e) denotes the 

logical delay (number of initial tokens) on e. 

Just after each execution of src(e), the new data value produced onto e is written into 

the shared memory buffer for e at offset wrptr(e), and wrptr(e) is updated by the 

following operation 

wrptr(e)   (wrptr(e) + 1) mod range(e).                           (22) 

Furthermore, shptr(e) is updated to contain the new value of wrptr(e). Just before 

each execution of snk(e), the value contained in shptr(e) is repeatedly examined until it is 

found to be not equal to rdptr(e). Then, the data value residing at offset rdptr(e) of the 

shared memory buffer for e is read, and rdptr(e) is updated by the operation 

rdptr(e)  (rdptr(e) + 1) mod range(e).                                    (23) 

Since all IPC edges in our proposed methodology can be assumed to be feedback edges, 

the size of each buffer is known at compile-time, so we can determine the start address 

and the range of each buffer at compile-time. Only the modulo-based increase of the 

pointers needs to be carried out during run-time. 

The sequential buffer mapping of Fig. 30 is the most straightforward, but does not 

utilize useful features of the contemporary DRAM main memory system.  

3.3 Proposed buffer mapping methods 

In Section 3.2, we represented DSP applications as SDF/IPC graphs and described 

DRAM space requirements of DSP applications in multiprocessor DSP systems. 
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In this section, we propose two high-performance buffer mapping methods that use 

two general approaches to improve throughput: parallelism and speculation.  

If applications show opportunities of concurrent executions, application throughput 

can be improved by supporting concurrent hardware resources. In this thesis, the 

opportunities in applications exist in comm/sync transactions of several IPC edges and 

the concurrent hardware resources are DRAM banks. IPC edges of an IPC graph indicate 

comm/sync requirements between processors. In the shared-memory programming model 

with the BBS synchronization protocol, a part of main memory space should be allocated 

to each IPC edge to perform communication and synchronization. If comm/sync 

transactions of several IPC edges occur in an overlapped time slot, throughput can be 

improved by assigning a unique DRAM bank to each IPC edge.  

The first proposed mapping method only exploits one type of parallelism – IPC 

edge-level parallelism. The second one uses speculation on the top of the first mapping 

method to further exploit another type of parallelism – comm/sync-level parallelism. The 

two kinds of parallelisms have a hierarchical structure – i.e., comm/sync-level parallelism 

is a subset of IPC edge-level parallelism.  

Although mapping methods to consider both balanced mapping and balanced access 

are the best, our mapping methods focus on the balanced mapping of IPC buffers. It can 

be more difficult to achieve balanced access in systems using the BBS protocol. In the 

BBS protocol, both communication and synchronization are performed by memory 

transactions to the shared main memory. If a specific receive-actor tries a sync_read 

before the corresponding send-actor completes its associated write and sync_write, then 

the sync_read check fails, and it must be retried until the sync_read check succeeds. This 

generally generates more accesses to the specific IPC buffer corresponding to the IPC 

edge that has the synchronization check failure. So in systems using the BBS protocol, 

the degree to which accesses are balanced is strongly affected by the rate of 

synchronization failures and associated needs to reattempt synchronization operations. 
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Further research on mapping methods to consider balanced access might be a good 

direction for future work. 

3.3.1 First proposed buffer mapping method 

To analyze the edge-level parallelism, an interference graph of IPC edges is generated by 

using a graph coloring technique. In an interference graph, each vertex represents an IPC 

buffer and each edge between vertices represents interference between the associated 

buffers. That is, two vertices are connected with an edge if the corresponding two buffers 

are accessed in overlapping segments of time. To facilitate exploitation of the parallelism, 

the two buffers should be mapped to different banks. The interference graph of the IPC 

graph of Fig. 29 is shown in Fig. 31. According to interference analysis based on many 

simulations for this example, all of the four buffers turn out to exhibit interference, so the 

four buffers should all be mapped to different banks.  

3.3.2 Second proposed buffer mapping method 

To exploit DRAM concurrency more, we use an additional form of parallelism at the 

comm/sync-level within each IPC edge. Every IPC buffer consists of two kinds of 

transaction buffers: a communication transaction buffer and a synchronization transaction 

buffer. In the balanced mapping using the edge-level parallelism, communication and 

synchronization buffers of an IPC buffer are mapped to the same bank. In contrast, in the 
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 Figure 31. Interference graph of IPC buffers.  Figure 32. 1-bit predictor of sync_read results. 
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balanced mapping using the comm/sync-level parallelism, communication and 

synchronization buffers are mapped to different banks. 

To analyze the comm/sync-level parallelism, we use the 1-bit state machine as 

shown in Fig. 32 to predict results of sync_read operations for each IPC edge (every IPC 

edge has its own state machine). In Fig. 32, `F' and `S' mean “failure” and “success” 

respectively; the circles indicate prediction results; and the arrows indicate actual 

observed results. The 1-bit predictor toggles a prediction result when the prediction result 

and the real result are different. An example of state transitions is also shown in Fig. 32. 

Based on the prediction result, we use a speculative read scheme that is different from a 

general conservative read scheme. In the conservative scheme, whether a read transaction 

is issued or not is determined only after checking the result of the corresponding 

sync_read. In contrast, in the speculative read scheme, a read transaction can be issued at 

the same cycle as the corresponding sync_read if the prediction result is `S'. (write 

operations use a conservative scheme – i.e., a sync_write transaction is always initiated 

after the corresponding write transaction is completed.) 

In the speculative read scheme, a second mechanism to handle wrong predictions is 

required. There are two cases of misprediction – the first case is that a prediction is 'F', 

but a real result is 'S'. The second case is that a prediction is 'S', but a real result is 'F'. In 

the first case, subsequent operations are same as in the conservative read scheme - i.e., a 

comm_read transaction is issued only after seeing the result of the sync_read transaction. 

Our second mechanism does nothing in this first case. In the second case, when a 

prediction turns out to be 'S', a comm_read transaction is issued in the next cycle. And 

then, a real result comes out as 'F'. Our second mechanism disregards the results of the 

previous sync_read and comm_read, and issues a new sync_read transaction. By this 

way, the functional correctness of our second mapping method is preserved. 

This speculative read scheme, however, does not always work well. If the mis-

prediction rate is too high, useless read transactions can waste memory bandwidth and 
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this overhead may overshadow the benefits provided by the parallelism. Thus, we should 

determine whether or not the comm/sync-level parallelism is used based on the prediction 

accuracy, which can be estimated at a compile-time.  

To show the difference of our proposed methods compared to the conventional 

sequential mapping, two types of balanced mappings are illustrated in Figs. 33(b) and (c). 

Figure 33(b) shows a balanced mapping using the edge-level parallelism (even1), and 

Fig. 33(c) shows a balanced mapping using the comm/sync-level parallelism on the top of 

the edge-level parallelism (even2). These buffer mapping examples pertain to the IPC 

graph of Fig. 29. Here, ei,c and ei,s represent the communication transaction buffer and 

the synchronization transaction buffer, respectively, for an IPC edge ei. 

To provide scalability, we use a modulo-operation to perform the mapping of buffers 

to banks. If an application requires a number of buffers that exceed the maximum number 

of configurable DRAM banks, then buffer mapping is done based on a modulo-B 

operation, where B is the total number of available banks. In this section, we only 

consider the temporal relationship within B edges - e.g., if B is 16, we consider the 
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temporal relationship of IPC edges 0 to 15 and the temporal relationship of IPC edges 16 

to 31. But we do not consider the temporal relationship between the group-1 (IPC edges 0 

to 15) and the group-2 (IPC edges 16 to 31). To consider both intra-group and inter-group 

temporal relationships is a good direction for the future work.  

Any performance improvements from our proposed buffer mapping policy over the 

sequential mapping come at the cost of additional banks and bank under-utilization. This 

kind of cost/benefit analysis is useful to perform in conjunction with rapid prototyping 

and SoC-based design space exploration. 

3.4 Evaluations 

3.4.1 Simulator 

Our simulator for these experiments is a time-driven simulator developed in C language. 

It is composed of a processor simulator, a bus arbiter, and a DRAM simulator. 

A processor-side simulator is developed at a high level of abstraction; only the 

estimated execution times of actors are taken into account for the processor-side 

simulator. These estimates may be constant values or they may be drawn from probability 

distributions (e.g., to model the effects of infrequent events such as cache misses). Such a 

high-level simulation approach based on actor execution time estimates is useful in rapid 

prototyping for signal processing applications because it allows for accelerated processor-

side simulation, and because execution time behavior in such applications has relatively 

high predictability. A global timer exists in the simulator, and each processor has its own 

local timer. The global timer is incremented by one on every cycle, while the local timer 

is incremented by the execution time of an actor at the end of the actor execution. To 

determine whether a processor advances at a given point, the simulator compares the 

global timer value with the processor's local timer value. 

A DRAM-side simulator is the most complicated part in the whole simulator. 

DRAM-side simulations are carried out based on DRAMsim [55], which is a cycle-
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accurate, highly-configurable, and C-based main memory system simulator. DRAMsim 

includes functions of the memory controller and main memory of Fig. 27. The function 

correctness and cycle accuracy of DRAMsim have been validated by several previous 

works [56, 57, 58]. In addition, interfacing DRAMsim with cycle-accurate processor 

simulators such as SimpleScalar [59] and GEMS [60] was also done in [61]. In this 

thesis, we interface DRAMsim with our processor-side simulator in the same way as in 

the previous work. 

A priority-based arbitration algorithm without interruption is selected as the bus 

arbitration protocol, where priorities are determined based on initiation times of bus 

requests – the processor with the earliest initiation time across a set of conflicting bus 

requests has the highest priority. After a processor obtains mastery of the bus, it 

maintains mastery until finishing its command or data transfers through the bus, 

regardless of other pending or arriving requests from other processors. In other words, 

scheduling of bus mastery is non-preemptive. A block diagram of an overall system with 

an arbiter and detailed connections, which are implemented in our simulator, are given in 

Fig. 34. In our system, the address, write-data, and read-data buses are separated as 

shown in Fig. 34.  

Figures 35(a) and (b) depicts timing diagrams, which are extracted from our 

simulator for the example of Fig. 29 IPC graph, in a point-to-point-connected system and 

in a shared-bus-based system. The timing diagram of the shared-bus-based system 

includes the effect of bus arbitrations. We assume that execution times of actors are 10 

cycles for actor 0, 12 for actor 2, 13 for actor 3, and 5 for all communication actors (all 

S* and R*s). As shown in Fig. 35(a), multiple address and data requests can be served in 

the overlapped time slots in point-to-point-connected systems. But those causes bus 

conflicts in shared-bus systems. The bus arbiter resolves the bus conflicts as shown in 

Fig. 35(b). The timing diagrams are captured on the bus between processors and a 

memory controller. After a command is issued from a processor to a memory controller, 
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it takes several cycles to get a final response from a DRAM main memory - 

e.g., in Fig. 35(a), after S0_c is issued through the P0_addr_data line, it takes 
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Figure 34. Block diagram of a whole system with a bus arbiter. 
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almost 16 cycles to get a final response from a DRAM main memory. Then S0_s is 

issued at cycle 33.  

Although timing diagrams show signal values only up to 100 simulation cycles, we 

always get a whole simulation log and check the validity line-by-line. 

3.4.2 Simulation results and analysis 

In this section, we measure application throughput for the sequential, even1 (balanced, 

edge-level), and even2 (balanced, comm/sync-level) buffer mapping strategies on a set of 

benchmarks. In our analysis, throughput is defined as the number of completed 

application iterations per processor clock cycle, where one application iteration 

corresponds to the completion of one execution of every actor. This is a common 

definition of throughput for HSDF graphs, since HSDF graphs typically execute 

iteratively across successive samples of the input signals that they are designed to process, 

and in HSDF, each actor executes exactly once (has a repetitions vector component equal 

to one) per graph iteration. 

We examine the synthetic and real benchmarks shown in Table 3. We use the TGFF 

algorithm to generate the synthetic benchmarks [62]. The benchmark application graphs 

are fairly complicated with 28-68 nodes, and the numbers of processors involved during 

scheduling ranges from two to eight. The examples fft1 and fft2 result from two 

Table 3. Benchmarks. 

Normal (|V|, |E|) 
# of 

proc. 
# of IPC 
edges 

Mem-
intensive 

# of 
proc. 

# of IPC 
edges 

fft1 (28, 32) 2 16 fft1_m 4 22 

fft2 (28, 32) 3 20 fft2_m 6 23 

qmf4 (14, 21) 2 10 qmf4_m 4 13 

karp10 (21, 29) 3 16 karp10_m 6 20 

tgff1 (20, 30) 3 16 tgff1_m 6 16 

tgff2 (68, 119) 4 82 tgff2_m 8 86 
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representative schedules for fast Fourier transforms based on examples given in [63]; 

qmf4 is a four-channel multi-resolution QMF filter bank [64] for signal compression; and 

karp10 is a music synthesis application based on the Karplus Strong algorithm [65] in 10 

voices. In addition to experimenting with these “normal” benchmarks, we derive a set of 

“memory-intensive” benchmarks from the normal ones by doubling the number of 

processors targeted in the scheduling stage. 

DRAMsim parameters are set as follows: DRAM type = SDRAM, DRAM freq. = 

100 MHz, # of ranks = adjusted, # of banks = 4, # of rows = 8192, # of columns = 512, 

transaction scheduling policy = first-come first-served, row buffer management policy = 

close page, address mapping policy = SDRAM base map, and refresh policy = all ranks 

and all banks at a time. All simulations are done for 1,000,000 simulation cycles. 

Figure 36(a) shows the measured throughput for the three different buffer mapping 

policies on the six normal benchmarks. Figure 36(b) shows percentage improvements of 

the even1 and even2 mappings compared to the sequential mapping. As shown in Fig. 

36(b), the percentage improvement is generally very different from application to 

application; about 15% in tgff2 but 0% in fft1 and fft2. This is largely affected by the 

total execution time of all actors on a given processor. 

 Figure 36(c) shows the average total execution time of all actors on a processor. For 

example, even if we save 25,000 cycles by applying the even1 mapping, this value is 

roughly translated to just one less iteration in fft2, but about 25 less iterations in tgff2. So 

the large execution times of fft1 and fft2 result in almost 0% improvements of the even 

mapping policies compared to the sequential mapping. The other interesting point is that 

the even2 throughput is smaller than the even1 throughput in tgff1. This is due to the 

relatively low prediction accuracy of sync_read checks; the prediction accuracy in tgff1 is 

about 83%, but for the other benchmarks, the accuracy is almost 90%. As described in the 
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previous section, a low prediction accuracy can cause useless read transactions to waste 

memory bandwidth significantly. 

To see the effect of applications' memory intensity on performance, we perform the 

same simulations on the six memory-intensive benchmarks. Figure 37(c) simply shows 

the increased memory intensity of the memory-intensive benchmarks compared to the 

corresponding normal benchmarks. The measured throughput is shown in Figs. 37(a) and 

(b). When examining these results, we see that first of all, percentage improvements in 

the memory-intensive benchmarks are larger than those in the corresponding normal 

benchmarks except for fft1_m. In fft1_m, the even1 mapping policy does not show any 

improvement mainly because of its large total execution time. In tgff1_m, the even2 
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Figure 36. Simulation results for normal benchmarks. 
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throughput is smaller than the even1 throughput due to the relatively high misprediction 

rate of the predictor. 

Overall, the simulation results show that the proposed buffer mapping policy is very 

useful, especially in memory-intensive applications with relatively small total execution 

time of actors. Whether or not the even2 mapping is used should be determined 

depending on sync read prediction accuracy. 

3.5 Related work 

Buffer mapping has a major impact on system performance. To understand this impact, it 

is useful to view a DRAM main memory system as a finite state machine whose next 

state is determined by the current state and the incoming memory operation command. 

            

                                (a) Throughput                                               (b) % improvement 
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Figure 37. Simulation results for memory-intensive benchmarks. 
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One factor that complicates memory analysis is that the DRAM main memory exhibits 

non-uniform access latency depending on access history. 

Various work has considered SDF buffer management, such as those reported in [66, 

67, 68]. In recent years, there has also been significant emphasis on systematically 

exploring trade-offs between throughput and buffer memory requirements in SDF graphs 

(e.g., see [69, 70, 71]). More specifically, previous work on SDF techniques computes or 

measures application throughput assuming zero or uniform access latency to the DRAM 

main memory system [50, 54]. Furthermore, the impact of different IPC buffer mapping 

policies on performance has not been considered much. In general-purpose computing, 

most of the research on improving memory performance has focused on memory 

controller techniques, such as command scheduling and memory address interleaving [12, 

13, 14]. In addition, there is no previous work on SDF techniques to lower energy 

consumption related to the buffer mapping method. 

Contributions of this thesis are as follows: 

1. We consider practical aspects of DRAM main memory systems for measuring 

application throughput in multiprocessor DSP systems. 

2. We propose high-throughput and low-energy buffer mapping methods considering 

the practical aspects of DRAM main memory systems. 

3.6 Summary 

We have proposed the high-performance buffer mapping policy for SDF-based DSP 

applications that are targeted to multiprocessor systems supporting the shared-memory 

programming model. The proposed policy exploits bank and rank concurrency of 

contemporary DRAM main memory systems according to the careful memory system 

modeling and parallelism analysis. We use a graph coloring technique to analyze the IPC 

(inter-processor communication) edge-level parallelism and a 1-bit predictor to analyze 

the comm/sync-level parallelism.  
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In our experiments, we measured application throughput on both synthetic and real 

benchmarks. The simulation results show that the proposed buffer mapping policy is very 

useful in terms of throughput, especially in memory-intensive applications with relatively 

small total execution time of actors. Whether or not the even2 (comm/sync-level) 

mapping approach is used should be determined based on sync_read prediction accuracy, 

which can be estimated at a compile-time. 

The performance improvements of the proposed buffer mapping policy are achieved 

in general at the cost of additional banks and bank under-utilization. 
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CHAPTER IV 

INTERCONNECTION NETWORKS 

 

Our goal in this section is to design a high-performance Turbo decoder and FFT 

processor. Those two applications are very popular embedded applications. To achieve 

the goal, we consider a network-centric approach to efficiently connect multi- or many 

processing elements.  

We first design a crossbar-based parallel Turbo decoder and then design a mesh-

based parallel FFT processor. 

4.1 Network-centric parallel Turbo decoder 

In this section, we propose a parallel Turbo decoder architecture based on an 

interconnection network, which can accommodate arbitrary interleaving/deinterleaving 

schemes during run-time.  

Interleaving/deinterleaving of extrinsic values in Turbo decoding can lead to access 

conflicts to network resources. We consider a virtual output queuing (VOQ) input-queued 

crossbar switch as an interconnection network to handle the conflicts. We use the parallel 

iterative matching (PIM) algorithm to configure the crossbar switch.  

4.1.1 Overall architecture 

Even though a single-core Turbo decoder can satisfy increasing throughput requirements 

with a very deep pipelining, it has the power wall and development/verification time 

problems. A multi-core Turbo decoder with relatively simple component cores can be an 

alternative. In this section, we consider a crossbar switch-based multi-core Turbo 

decoder.  

In our network-centric parallel Turbo decoder, MAP cores are placed at one side, and 

shared memories are placed at the other side as shown in Fig. 38. The number of 
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memories is chosen as equal to the number of MAP cores according to the analysis in the 

previous work. We call this a dancehall configuration. Figure 38 shows an example with 

five MAP cores and five memory banks. Our architecture is based on a single soft-input 

soft-output (SISO) scheme, i.e., a single MAP core fulfills computations for both 

component decoders in a time-multiplexed way.  

We exploit the sub-frame-level parallelization that was explained in Section 2.2.2. 

Each MAP core computes alpha, beta, gamma, and extrinsic values corresponding to 

each sub-frame. And it sends out extrinsic values to the interconnection network, which 

are used as a priori information to the other component decoder for iterative decoding. 

The extrinsic values are interleaved by writing them in a permuted order to the memory, 

and reading them in a sequential order from the memory. The cross-iteration reference 

method [72] is used to initialize the alpha and beta metrics at the boundary between sub-

frames. 

The memory banks are used for storing extrinsic values. The size of each memory 

bank is the same. Other kinds of memories in a Turbo decoder such as input buffers and 

alpha (or beta) memory are included inside MAP cores.  

The most critical issue in the dancehall configuration is how to handle 

communication traffic on the interconnection network. Several extrinsic values (e.g., five 
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Figure 38. Dancehall configuration of a parallel Turbo decoder. 
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in Fig. 38) simultaneously arrive at input ports of the interconnection network every cycle 

during backward recursions. This simultaneous arrival of the extrinsic values can cause 

conflicts of network resource usage. The interconnection network should handle conflicts 

and forward the extrinsic values to the right memory banks according to an interleaving 

rule. The design of a fully-adaptive interconnect network is the theme of this section. A 

fully-adaptive network dynamically accommodates arbitrary interleaving schemes during 

run-time. We will describe the interconnection network architecture in more detail in the 

next section. 

4.1.2 Interconnection network architecture  

The interconnection network in our parallel Turbo decoder is responsible for 

interleaving/deinterleaving of extrinsic values. Henceforth, we only consider interleaving 

since deinterleaving is implemented in the same way as interleaving. The interleaving can 

generate both internal and external conflicts of network resources. Internal conflicts occur 

inside switches and external conflicts occur at network output ports, i.e., the memory 

input ports in Fig. 38. If, for example, routing of several extrinsic values needs the same 

network resources (such as switches) at the same time, internal conflicts occur. If 

destined memory bank IDs of several extrinsic values are identical at the same cycle, 

external conflicts occur. 

To resolve internal conflicts, we choose a proper type of switching fabric among 

non-blocking networks. Any unconnected input can be connected to any unconnected 

output without affecting the existing connections in a strictly non-blocking network or by 

rearranging the existing connections in a rearrangeably non-blocking network. We select 

one of the strictly non-blocking networks - crossbar switch - as the interconnection 

network in our proposed parallel Turbo decoder. We assume that a crossbar switch is 
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readily implemented with 150 ports or less that is equal to the number of MAP cores to 

be considered in this section. 

External conflicts can be resolved by two different approaches: by a conflict-free 

interleaver or by a buffer-based scheme. First, we can avoid external conflicts from the 

beginning by designing a conflict-free interleaver [73, 74, 75] in which all destined 

memory bank IDs of extrinsic values at the same cycle are totally different. This static 

method has advantages of higher throughput than does a buffer-based scheme. But this 

method is too restrictive to be used, i.e., a special interleaver must be redesigned every 

time any related parameter is changed. Second, we can resolve occurred external conflicts 

during run-time by buffering unserved extrinsic values [76, 77]. Since our goal is to 

achieve a fully dynamic solution, we select the buffer-based scheme. Among three ways 

to implement buffers: input-queued, output-queued, and combined-input-output-queued 

(CIOQ) schemes, we consider an input-queued scheme and use a FIFO queue as a buffer. 

In the input-queued scheme, every input has its own FIFO queue. Unserved extrinsic 

values by a network at each input are stored in its FIFO queue and tried to be 

retransmitted in the future cycles. Since the only head extrinsic value in each FIFO queue 

is eligible for the transmission, the input-queued scheme suffers from the head-of-line 

(HOL) blocking problem, which results in poor throughput [78].  

To resolve the HOL blocking problem, we use the virtual output queueing (VOQ) 

[79]. In the VOQ scheme, each input port has multiple FIFO queues. Each FIFO queue 

stores extrinsic values destined to one of the output ports. As a result, the HOL problem 

is eliminated – extrinsic values destined to free memory banks are no longer blocked by 

other extrinsic values destined to occupied memory banks. 

In summary, the VOQ input-queued switch with a crossbar fabric is used as the 

interconnection network of the proposed Turbo decoder as shown in Fig. 39, where Q(i, 
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j) is the jth queue (destined to the jth output port) of the ith input port. The 

interconnection network is mainly composed of input queues, a crossbar switch, and a 

scheduler.  

4.1.3 Scheduling algorithm - PIM  

After determining hardware configurations, we should consider scheduling, switching, 

and routing algorithms. Since we use a crossbar switch as an interconnection network, a 

scheduling algorithm needs to be considered.  

A scheduling problem through the crossbar switch can be seen as a matching 

problem in a bipartite graph. A request graph can be represented as a bipartite graph as 
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Figure 40. Bipartite graph of requests. 
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Figure 39. Proposed architecture of a parallel Turbo decoder. 
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shown in Fig. 40 for the example of Fig. 39. The nodes at the left-hand side indicate 

MAP cores and the nodes at the right-hand side indicate memory banks. The solid lines 

represent new requests that are generated at the current cycle and the dashed lines 

represent old requests that were not served at the previous cycles. The number of dashed 

lines is various, but the number of solid lines is always equal to the number of MAP cores 

– every MAP core generates a single new extrinsic value every cycle during backward 

recursions. 

In this thesis, we use the parallel iterative matching (PIM) algorithm, one of the 

maximal matching algorithms, because it is feasible to implement and it is the basis of 

other iterative matching algorithms. For a detailed description of the PIM algorithm, we 

refer readers to [80]. Although maximum matching algorithms such as the Maximum size 

and the Maximum weight generally show better performance than maximal algorithms, 

they are not considered here because of their running time complexity O(N
2.5

) for the 

Maximum size [81] and O(N
3
log2N) for the Maximum weight [82], where N is the switch 

size. 

Although the PIM algorithm is applicable to Turbo decoding from the viewpoints of 

implementation feasibility, we must also consider stability, starvation, and fairness issues. 

The mathematical analysis of these issues is out of our scope. Instead, we check these 

issues in Turbo decoding based on experimental results shown in Section 4.1.4. 

The last thing to consider in the PIM algorithm is the number of iterations (the 

definition of the iteration is different from that of the Turbo decoding iteration). We can 

either execute a fixed number of iterations during a whole decoding process or execute 

iterations until a maximal matching is found. The latter method results in various run-

time from one set of extrinsic values to another set. We use a more predictive one, the 

first method.  
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4.1.4 Evaluations 

In this section, we measure throughput [in bits/cycle] of the proposed Turbo decoder with 

the PIM algorithm under 3GPP-style block interleaving.  

We develop a cycle-accurate simulator in C language based on the existing 

functional simulator of Turbo decoder that was used in [84]. In our simulations, 

execution time is composed of computation time spent by the MAP cores and 

communication time spent by the interconnection network. We assume that memory 

access time is uniform. Simulation parameters are set as follows:  

Encoder: two identical RSCs, generator = [1, 11/13], constraint length = 4, code rate = 

1/3,        

Decoder: Log-MAP algorithm, number of iterations = 8, 

Channel: Gaussian channel with Eb/No = 0.5dB.  

We measure throughput over various frame size = 100 ~ 10,000 bits and various number 

of MAP cores = 5 ~ 150. 

The first set of experiments are done to determine the number of iterations in the 

PIM algorithm required to find a good matching (it can be maximal or not). Figure 41 

shows measured throughput of the proposed parallel Turbo decoder with a different 

number of PIM iterations at 10, 50, and 100 MAP cores. The measured throughput is 

normalized by the ideal-case throughput (maximum attainable throughput) - in the ideal 

case, all newly generated extrinsic values every cycle are served instantly. As shown in 

Fig. 41, throughput is saturated after three iterations over all frame size regardless of the 

number of MAP cores. This performance pattern is almost consistent with results in [85]. 

According to our simulation results, we set the number of iterations in PIM as three in the 

following simulations.  

The next set of simulations is to show scalability of our architecture in terms of 

throughput – the effect of increased number of MAP cores on throughput. Figure 42(a) 
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shows measured throughput [in bits/cycle] at five different reference switch size. As 

shown in the figure, the increasing number of MAP cores does not always guarantee 

throughput improvements. This is due to the fact that the negative effect of increased 

communication time may overshadow the positive effect of decreased computation time 

on throughput in some cases as shown in Fig. 42(b) and (c). The turning point is different 

according to the reference switch size. For example, throughput starts decreasing from 40 

MAP cores at reference switch size = 5 and from 100 MAP cores at reference switch size 

= 20. Therefore, we must carefully determine the right number of MAP cores in our 

proposed architecture according to the reference switch size, i.e., feasible scheduler 

speed. For example, if the current technology can accommodate three iterations in one 

                

                            (a) Number of MAP cores = 10                           (b) Number of MAP cores = 50 

 

    

(c) Number of MAP cores = 100 

Figure 41. Normalized throughput.  
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cycle at 40 x 40 or less crossbar switch, using more than 100 MAP cores is meaningless. 

This scalability analysis is equally applied to other cases with different frame size.  

If we can estimate the operating clock frequency of our parallel Turbo decoder, we 

can calculate absolute throughput (in bits/sec) from the results in Fig. 42(a). The previous 

work [86] presents a very similar parallel architecture to ours; main difference is that 

their architecture uses one more crossbar switch and our architecture uses the VOQ input 

queue. Therefore, we can roughly estimate our clock frequency as 200 MHz at 32 MAP 

cores based on their synthesis results with a 65 nm technology. In the worst case – the 

case with reference switch size = 5, our proposed architecture serves the absolute 

                 

   (a) Throughput                                                 (b) Computation time   

  

 

(c) Communication time 

Figure 42. Scalability tests in terms of throughput –  

frame size = 3000bits, # of iterations in PIM = 3. 
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throughput ~= 0.42 bits/cycle x 200 MHz = 84 Mbits/sec with 32 MAP cores and eight 

Turbo iterations, which is acceptable considering current applications‟ requirement and 

the other previous work [76, 87, 88, 89]. Although this estimation of clock frequency is 

very rough, it can show the range of attainable throughput by our proposed architecture at 

least. 

Since the increasing number of MAP cores results in the dramatic increase in 

communication time, especially at the lower reference switch size as shown in Fig. 42(c), 

the input queue size could be obstacle to implementation. We measure the maximum, 

component queue depth (in number of entries per queue) as shown in Fig. 43. We use a 

circular buffer as a component input queue, where head and tail pointers wrap around 

according to modular operations. The simulation result shows that the component queue 

depth decreases as the number of MAP cores increases, which is opposite to our prospect. 

This is due to the fact that the positive effect of traffic distribution is bigger than the 

negative effect of communication time increase on the component queue depth at the 

large number of MAP cores. The input queue size is not an implementation obstacle. 

4.1.5 Related work 

Our proposed Turbo decoder resolves network resource conflicts under arbitrary 

interleaving schemes during run-time and we consider ASIC implementations of the 
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proposed Turbo decoder. There is several previous work related to this dynamic solution. 

Neeb et al. [76] considered strictly orthogonal networks such as mesh, torus, and cube 

networks as interconnection networks of parallel Turbo decoders. They used an input- or 

output-queued crossbar switch as a component switch with the SLIP scheduling 

algorithm [83].  They mainly focused on performance comparisons of different routing 

algorithms. Moussa et al. [77] used the butterfly and the modified Benes networks as an 

interconnection network of their parallel turbo decoder. To handle external conflicts, they 

used FIFO buffers in the butterfly network and off-line scheduling (semi-dynamic, 

between a conflict-free interleaver design and a buffered method in terms of dynamic 

level) in the Benes 2N-N network. The other work [86, 87] also considers ASIC 

implementations, but not a dynamic solution, i.e., they are designed based on conflict-

free interleavers. The other previous work [88, 89] considered software (programmable) 

implementations of parallel Turbo decoders on VLIW and SIMD machines. 

4.1.6 Summary 

In this section, we proposed the parallel Turbo decoder architecture based on the VOQ 

input-queued crossbar switch, which can accommodate arbitrary 

interleaving/deinterleaving schemes during run-time. The proposed architecture 

dynamically resolves both internal and external conflicts of network resources. And we 

found that the PIM algorithm can be applied to Turbo decoding.  

We measured throughput of the proposed Turbo decoder with the PIM algorithm 

under 3GPP-style block interleaving by using our cycle-accurate simulator that makes 

fast and wide design space exploration possible. Simulation results demonstrate that the 

feasible scheduler speed is a very critical parameter when determining the right number 

of MAP cores in the parallel architecture. And the input queue size is not an 

implementation obstacle, even at the large number of MAP cores.  

4.2 Network-centric FFT processor – electrical mesh network  
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In Section 4.1, we proved only small number of MAP cores are needed in Turbo 

decoding to meet throughput requirements of all contemporary communication standards. 

In other words, scalability is not an issue, so we used the crossbar-based indirect topology 

in designing a high-performance network-centric Turbo decoder. 

In this and the next sections (Sections 4.2 and 4.3), we consider another popular and 

core application in the embedded computing world – Fast Fourier Transform (FFT). A 

parallelization degree of FFT is much bigger than that of Turbo decoding, so more 

number of processing elements can boost the performance. As a result, a good scalability 

is essential in designing high-performance FFT processors. To handle a scalability issue, 

we apply another topology – mesh. A mesh network in this section is a general electrical 

network system. (On the contrary, a mesh network in Section 4.3 is an optical network 

system.) 

The following subsections explain three major parameters – a topology, a routing, 

and a flow control - to characterize our interconnection network. 

4.2.1 Topology 

We consider a 2D mesh that is widely used in existing computing systems. A k-ary 2D 

mesh network is composed of k
2
 nodes in a regular two-dimensional grid with k nodes in 

each dimension and nearest neighbors are connected by a channel as shown in Fig. 44. 

Every black rectangular node indicates a switch, every white rectangular node indicates a 

processing element, and every gray rectangular node indicates an off-chip DRAM system.   

Mesh networks provide bidirectional channels and a good path diversity. The latency 

and throughput are very good for local communication traffic (i.e., between neighbors), 

but bad for remote traffic [90]. Applying mesh topology has several implications. In a 

layout perspective, a general CMP style is well matched to the mesh topology. Another 

implication is that routing and flow control algorithms are more complex than those in 

indirect topologies, so in addition to a processing core and a memory, a router is another 

major component in mesh-based NoCs.  
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4.2.2 Routing and flow control algorithms  

A routing algorithm is one of the main factors to determine how close we get to the upper 

bound performance that is determined by a topology. A routing algorithm determines an 

optimal path from a source node to a destination node. The meaning of “optimality” is 

different depending on scope – in local scope, it means a shorter path length, but in global 

scope, it is more related to good load balancing. Therefore good routing algorithms 

should consider both by a trade-off analysis. A flow control algorithm is one that 

prevents a fast sender outrunning a slower receiver. It manages the allocation of network 

resources - such as buffers and channels – to a packet. Analyzing the impact of various 

routing and flow control algorithms on performance is out of our scope. In this section, 

we simply use dimension-order routing and virtual-channel flow control algorithms.  

The dimension-order routing algorithm is one of the deterministic routing algorithms 

that always select the same path from a particular source to a particular destination even 

though there are multiple possible paths. Deterministic routing algorithms are very 

common in practice because of easy implementation, despite of poor performance. In the 

dimension-order routing algorithm for a 2D mesh topology, a routing path is selected 

dimension-wise – a packet is routed in one dimension (along the X-axis or Y-axis) until 

 

Figure 44. 2D Mesh topology. 
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reaching to a proper coordinate, and then routed in another dimension reaching to the 

final destination (along the Y-axis or X-axis). 

The virtual-channel flow control [91] is one of the buffered flow control algorithms. 

By providing multiple buffers (called virtual channels) per each physical channel, it 

allows packets to pass other blocked packets. 

4.2.3 Circuit switching vs. packet switching schemes  

A traditional circuit-switched network was first introduced in telephone systems for 

transferring voice data. In a circuit-switched network, a whole path is established from a 

source to the final destination and resources are allocated to the connection before 

sending data. The resources remain allocated until the data transfer completes. Then the 

path is finally released (i.e., torn down). In circuit switching, data buffers at intermediate 

routers are not required, which results in some improvements in silicon area and power 

consumption. (Only small-size buffers are needed for path-setup request and 

acknowledge tokens.) In addition, all data of the same message follow the same path and 

they arrive at the destination in order, so additional overheads (such as data reordering at 

the destination node) are not needed. One of the big disadvantages of the circuit 

switching is that resources are tied up to one pair of source and destination during a 

whole session even though there is no data flow intermediately. So other connection 

requests are blocked and resources are wasted. Another disadvantage is that complex 

signaling is required to establish and maintain the end-to-end path. For the circuit-

switching scheme to be effective, a message size should be enough large to compensate 

the path setup and teardown overheads.  

Packet switching can overcome those disadvantages of circuit switching. Principles 

behind packet switching at a chip level originate from computer networks, so chip-level 

packet switching basically follows the OSI seven-layer model [92]. In packet switching, a 

message is segmented into smaller units called packets regardless of the original data 



 83 

type (e.g., the type can be voice or digital data). There are mainly two different types of 

packet switching schemes – connection-oriented or connectionless.  

Datagram packet switching is also known as connectionless switching. In contrast to 

circuit switching, the end-to-end connection is not needed. In the datagram switching 

scheme, each packet includes a destination address in its header. Each switch should map 

the destination address to the outgoing port for every incoming packet. A routing table in 

each switch includes this mapping information. If network resources – such as 

downstream buffers located at the next router – are unavailable, the packet should wait in 

the current buffer. A packet can be sent whenever the next outgoing port is available. In 

contrast to circuit switching, network resources are only allocated when there is a packet 

to send. So resource usage is more efficient than in circuit switching. Furthermore, 

complex signaling to maintain the end-to-end path is not required any more. However, 

datagram switching has some disadvantages. Each packet of a message is routed 

independently, i.e., each packet even of the same message can follow different paths, so 

those packets can arrive at the destination out of order. In addition, data buffers are 

required at every router, which is adversary to a general SoC design rule – silicon area for 

communication components should be minimized. Another disadvantage of datagram 

switching is that the header of every incoming packet should be examined to determine 

the next outgoing port at a line rate. Examples of commercial datagram packet-switched 

systems are Internet Protocol (IP), Ethernet, and User Datagram Protocol (UDP).  

Another sub-scheme of packet switching is virtual-circuit (VC) packet switching that 

is also known as connection-oriented packet switching. It uses the similar concept of 

circuit switching to deliver packet data. Virtual-circuit switching is similar to traditional 

circuit switching in the sense that a whole path (called virtual circuit) is set up before 

sending the first packet. On the contrary to circuit switching, resources are not allocated 
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physically while a message can make a reservation of the resources. As a result, virtual-

circuit switching provides efficient resource usage as in datagram packet switching. But 

the expense is that some packets may wait in buffers for congested resources to be freed. 

Each packet carries a virtual circuit identifier instead of a whole destination address, so 

routing table area cost is reduced. The circuit identifier is changed by each switch during 

data forwarding. Since an end-to-end VC establishment and tear-down are required, a 

little more complex signaling protocol is needed. X.25 and Asynchronous Transfer Mode 

(ATM) are examples of the system implementing the virtual-circuit switching scheme. 

In this section, we examine the traditional circuit switching and datagram packet 

switching schemes on the top of the electrical mesh topology. 

4.2.4 Off-chip memory interface 

An off-chip memory system interfaces with a NoC via a network interface (NIF) as 

shown in Fig. 45. Since in our system, any data transfer between a node (meaning 

processing element + router) and an off-chip memory goes through the NoC router (this 

is true even for local transfers), the memory system should support a network protocol. In 

our system, the memory controller is responsible for supporting the network 

communication protocol in addition to its normal functions – such as memory transaction 

ordering. The inner structure of the DRAM memory system is same as one explained in 

Section 3.1 and Fig. 27.  

We map the FFT application onto our electrical mesh network system and measure 
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Figure 45. Off-chip memory interface with an electrical NoC. 
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the performance in Sections 4.3.7 and 4.3.8. 

4.3 Network-centric FFT processor – hybrid mesh network  

In this section, as another approach to improve performance, we apply an optical fiber as 

an interconnection network medium. Photonics provides several advantages compared to 

electrical counterparts. The power dissipated in optical networks is distance-independent. 

Furthermore, power consumption is also data-rate-independent and a photonic switch 

does on/off only once per message. Finally, photonics provides a high bandwidth density 

[in bps/m]. 

A topology of optical network systems that we consider in this section is the mesh. 

And off-chip main memory systems are distributed around the NoC periphery in the same 

way as in the electrical network systems (Figs. 44 and 46). 

4.3.1 Implications of using an optical fiber as an interconnection medium 

Since processing elements and memories are still manufactured by CMOS electronics 

(optical processing elements and optical memories are still beyond feasible 

implementation), using optical interconnection networks requires the integration of 

CMOS electronics and optics. Advances in silicon-based nano-phonic technology make 

 
 

Figure 46. Photonic Mesh NoC (red circles indicate E-O and O-E conversion points). 
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the integration feasible. In addition, the integration implies the necessity of O-E and E-O 

conversions at some interfaces (indicated as red boxes in Fig. 46). 

Another major component – a switch – has a different aspect; fully-optical switches 

have been researched in [93, 94] and fully-optical implementation of switch is more 

feasible than processing elements and memories. Here, “a fully-optical” implementation 

means that both control – e.g., routing - and data path mechanisms are optically 

supported. The optical control requires all control-related processing to be done optically 

– e.g., optical routing and optical flow control algorithms are needed. As a result, the 

implementation cost of a fully-optical switch is too high because of use of exotic optical 

materials.  

 An economic way to overcome the problem of fully-optical switches is to separate a 

control plane and a data plane. An electrical network is used in the control plane to set up 

and tear down a data path, but an optical network is used to carry data. This concept of 

electrically controlled optical switch was proposed by [95, 96] and they call it “a hybrid 

switch”. We use this in our optical network system. By separating the two planes, we can 

remove optical control requirements, but still exploiting advantages of an optical medium 

when transferring data. However, note that requirements of optical buffering in the data 

path may still be an issue. By choosing an appropriate switching scheme, we can remove 

the optical buffering requirement as will be explained in Section 4.3.2. 

In our context, the “hybrid” indicates the mixture of two different media – electric 

and photonic - in designing interconnection networks. Previous work also applied a 

hybrid concept to designing high-performance, low-energy interconnection networks, but 

the definition of hybrid is different from ours. For example, in Firefly [97] multiple cores 

are grouped into a cluster. Intra-cluster communications are handled by an electrical 

network, but inter-cluster communications are handled by an optical network.  
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4.3.2 Communication protocol in the hybrid network  

The hybrid network is based on circuit switching because of the following reason. In 

packet switching, data is transferred in a store-and-forward manner (only after a whole 

packet is received, the next transfer of the packet can be started to an outgoing port), so 

data buffers are required. Although some previous work demonstrated an optical buffer 

implementation using optical fiber loops, buffer requirements make packet switching 

inappropriate for optical network systems. Instead a circuit-switching scheme is naturally 

well suited to photonic networks. 

The communication protocol described in Section 4.2.3 also works in our hybrid 

network; In the hybrid network, path setup and tear-down are achieved by 

communicating a control packet electrically. While setting up the path, an electrical 

router sets up the corresponding optical switch (5 x 5 crossbar in the mesh network) for 

end-to-end data transfers. Signal transmissions in the data path are actually via optical 

fibers without any intermediate buffering, and E-O and O-E conversions are needed at the 

interface between PEs and optical switches at the beginning and end nodes, respectively.    

4.3.3 Wavelength division multiplexing (WDM) 

In addition to the hybrid concept, another unique feature in photonic networks is an 

introduction of a new multiplexing scheme. Actually, the basic idea of the scheme is not 

new – WDM [98] is an optical version of frequency division multiplexing (FDM). But 

the range of frequency is orders of magnitude higher than that in FDM - normally a radio 

frequency range is considered in FDM, but an IR range is considered in WDM. WDM is 

a technology that multiplexes several optical signals with different wavelengths into a 

single optical fiber. In theory, system bandwidth is linearly proportional to the number of 

optical signals to be transmitted at the same time. Contemporary photonic components – 

such as laser, modulator, and detector - support WDM. We will check this in Section 

4.3.5. In this thesis, we apply WDM to our hybrid network system. 
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4.3.4 Off-chip memory interface - optically interfaced memory 

The final issue that needs to be addressed is an optically interfaced memory. We mainly 

focus on off-chip main memory systems. 

The development of photonic memories is still under way, so a general electronic 

DRAM is still popular candidate as an off-chip main memory in optical or hybrid 

network systems. Therefore, the interface between optical switches and electrical 

DRAMs should be designed including the function of E-O and O-E conversions. Another 

important point is that all DRAM memory accesses should go through a NoC, so a 

network protocol should be involved in DRAM memory accesses in some ways. (Even 

local accesses to DRAMs should go through a NoC in our hybrid network system. Some 

previous work tackled this issue by separating and providing different access mechanisms 

for local DRAM accesses and remote DRAM accesses.) 

To achieve both functions - E-O and O-E conversions, and a NoC protocol support -, 

we use the system configuration as shown in Fig. 47. The memory controller is 

responsible for the NoC protocol support such as circuit-path setup and teardown. The 

memory module (Mem in Fig. 47) is responsible for the E-O and O-E conversions. To do 

so, we use a circuit-accessed memory module (CAMM) as the memory module. For 

further information about CAMMs, we refer reader to [99]. 

4.3.5 Optical building components 
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Rou-
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Chip boundary
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Figure 47. Off-chip memory interface with a hybrid NoC. 
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In this section, we introduce photonic component devices required to build our hybrid 

network system. We will see what kind of characteristics at a device level is provided for 

supporting WDM. 

The nanophotonic component devices needed to build photonic NoCs are light 

source, modulators, detectors, and waveguides (optical fibers) as shown in Fig. 48. 

Another main component is a photonic switch that is made of a set of ring resonators and 

waveguides. 

To save manufacturing costs, developing those photonic devices in a CMOS-

compatible process is essential since the CMOS process is already used in electrical 

component manufacturing.  

A laser emitter  is an obvious choice for a light source. It produces an optical carrier 

on which electrical data signal is modulated. The optical carrier has a specific 

wavelength. To exploit WDM transmissions, a laser emitter is designed to produce 

multiple wavelengths at a time, which are transmitted simultaneously through a single 

WDM waveguide. For example, in Fig. 48 two optical signals with different wavelengths 

are generated from the laser emitter. We assume the WDM laser emitter is located off-

chip and coupled to the chip by an optical fiber [100].  

A waveguide is an optical wire that carries optical signals. To achieve good 

confinement and small loss of the light, a waveguide is fabricated using two different 

Laser

emitter

Modulator

Detector

Waveguide

SiGe doped 

region

 

Figure 48. Basic photonic system. 
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materials: crystalline silicon (a material with a high refractive index) as a core and 

silicon-oxide (a material with a low refractive index) as a cladding. A single WDM 

waveguide can carry multiple optical signals with different wavelengths at a time. For 

example, in Fig. 48 the single WDM waveguide carries the two optical signals 

simultaneously.  

Before describing a modulator, a detector, and a switch, we first explain a ring 

resonator that is a main building component of those three devices - a ring shape in Fig. 

48. One ring resonator is shown in the modulator and the other is shown in the detector. 

A ring resonator has a certain resonance frequency (i.e., resonance wavelength) that is 

determined by a radius of the ring, a refractive index of the ring material, and a thermal 

tuning. Each ring resonator captures only one signal (among several signals transferred 

through WDM waveguides) that has a wavelength equal to the ring‟s resonance 

frequency – i.e., each ring resonator is designed to operate on only one wavelength. 

A ring resonator is in either an on-resonance status or an off-resonance status 

controlled by injecting charges into the ring – i.e., the ring‟s resonance frequency can be 

shifted a little bit by injecting electrical current. In the on-resonance status, one of the 

optical signals (the blue signal in Fig. 49(a)), which has a wavelength equal to the 

resonance wavelength, is coupled into the ring and the optical signal in the ring 

eventually vanishes. In Fig. 49, the two wavelengths are shown to indicate WDM 

transmissions. The blue signal is the ring‟s interest – i.e., the signal with the same 

wavelength as the ring‟s resonance frequency. In the off-resonance status, the resonance 

frequency of the ring is slightly shifted, so the optical signal, which was coupled into the 

ring during the on-resonance status, is now passed through the WDM waveguide as 

shown in Fig. 49(b). 

A modulator accomplishes E-O conversions – it modulates (or encodes) electrical 

information onto an optical signal (carrier) with a specific wavelength. For WDM 

transmissions, a wavelength-selective modulator based on a ring resonator is needed. In 
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this type of modulator, a ring resonator is coupled with a waveguide as shown in Fig. 48. 

By switching between the on-resonance and off-resonance status, the modulation of a 

specific wavelength can be accomplished. 

A detector accomplishes O-E conversions. A ring resonator is also used to build a 

photo detector. For WDM transmissions, a wavelength-selective detector is needed. The 

ring resonator with a SiGe- or Ge-doped region is coupled with a waveguide as shown in 

Fig. 48 [101]. The optical signal with the same wavelength as the ring‟s resonance 

frequency is coupled into the ring. The coupled optical signal is absorbed by the SiGe 

region and transformed to current. 

Finally, a photonic switch is a major building component to route optical data from a 

source to a destination. (A photonic switch is not shown in Fig. 48.) A photonic switch 

can be built in several ways. One of the ways is using a set of ring resonators and 

waveguides. The important point is that characteristics of the ring resonator used in a 

photonic switch are different from those of the ring resonator used in a modulator and a 

detector. 

To support WDM transmissions, a ring resonator used in a photonic switch should 

have multiple resonance frequencies. This broadband ring resonator has the resonance 

profile of Fig. 50. For example, in Fig. 51 the broadband ring resonator provides two 

resonant wavelengths, so the photonic switch can change the route of the two optical 

signals at a time. 

To build our mesh hybrid network system, we actually need higher-order photonic 

switches than the simple one of Fig. 51.  The number of in/out ports required in our mesh 

  

(a) On-resonance status           (b) Off-resonance status 

Figure 49. Ring resonator. 
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hybrid system is five – four for E, W, S, N, and the other for a local PE. The Columbia 

lab developed a non-blocking 5 x 5 photonic switch by using a set of ring 

l
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Input wavelengths

On-resonance status

Off-resonance status

 

Figure 50. Resonance profile of a broadband ring resonator. 

 

                    

Figure 51. Simple photonic switch. 
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Figure 52. 5 x 5 non-blocking photonic switch [99]. 
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resonators and waveguides as shown in Fig. 52. It provides a fully non-blocking feature 

at the cost of more number of ring resonators and higher insertion loss (than their first 

type switch that exhibits blocking – this switch is not shown here). We use this photonic 

switch at every node in the hybrid mesh network system. 

4.3.6 Optical device parameters: insertion loss and energy 

4.3.6.1 Insertion loss 

As in electrical systems, optical systems have a dynamic power range in that the correct 

functionality is guaranteed at the system level - i.e., to achieve reliable optical 

communications , a signal power level should be within the range. The upper bound is the 

threshold that non-linearity of photonic devices starts being induced. The upper bound is 

determined by maximal input power allowed in the modulator at the source node. The 

lower bound is determined by the sensitivity of the photo detector at the final destination 

node. 

An initial source of optical signals is the laser at the source node as shown in Fig. 48. 

Beginning at that point, optical signals experience power loss (called insertion loss in the 

optical world) along the propagation path due to several different factors. A main source 

of insertion loss is shown in Table 4. The first type of insertion loss is related to a 

waveguide; optical signals fundamentally experience propagation loss along a waveguide 

[measured in dB/cm]. In addition to a straight waveguide, bending of a waveguide and 

Table 4. Insertion loss [99]. 

Factor Insertion loss 

Ring – off state ~=0 

Ring – on state 0.5 

Waveguide propagation 1.5dB/cm 

Waveguide bending 0.005dB/90 o 

Waveguide crossing 0.05 
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crossing of waveguides are needed to build optical network systems. The bending and 

crossing are another source of insertion loss related to a waveguide. The second type of 

insertion loss is related to a resonant ring that is a building component of modulators, 

detectors, and broadband switches. Insertion loss is different in the on-resonance and off-

resonance status. In WDM-based systems, this insertion loss affects system performance 

in a very critical way that determines the number of wavelengths transmitted 

simultaneously through a single WDM waveguide. In theory, system bandwidth is 

linearly proportional to this number of wavelengths. 

We explain how to calculate the number of simultaneously transmittable 

wavelengths in WDM-based systems by insertion loss analysis. The dynamic range 

described above is used to calculate it. The power level received at the photo detector of 

the final destination node must be greater than the sensitivity of the detector. Considering 

the worst-case (biggest) optical loss, each wavelength should be generated by laser 

emitters to have enough power - i.e., (each wavelength‟s power ─ the worst-case loss) ≥ 

the sensitivity of the detector. Note that the power of every individual wavelength should 

be considered here since a single detector can observe only one wavelength. 

Another limitation is the upper bound of the optical power range. (Note that mutiple 

wavelengths are generated by a single laser emitter.) The sum of all wavelengths‟ power 

must be below the threshold that causes non-linear activities of photonic devices. In this 

way, the number of wavelengths can be calculated. 

4.3.6.2 Energy consumption of optical devices 

To measure power consumption of the hybrid optical system, we need energy 

consumption parameters of every photonic device. Those parameters are provided by 

Columbia lab [99]. They got those numbers by measuring real and contemporary 

photonic devices. We use these parameters to measure power consumption by embedding 
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these into PhoenixSim – an interconnection network simulator that will be explained in 

Section 4.3.8. 

4.3.7 FFT application 

Fast Fourier transform (FFT) is a very popular kernel application in DSP and 

communication fields – e.g., spectral analysis, interpolation, filtering, and multi-carrier 

modulation (such as OFDM). Fourier Transform (FT) is a mathematical method to 

transform a time-domain signal to a frequency-domain signal, which is generally applied 

to continuous-time signals. Discrete Fourier transform (DFT) is a discrete version that 

can work on discrete-time signals. This discrete version is essential since FT is mostly 

computed by (digital) computers where only digital data is accepted. But computing DFT 

according to its mathematical definition is too complex to be practical. FFT provides a 

fast way to compute DFT – the computational complexity of DFT is O(N
2
), but that of 

FFT is O(NlogN).  

There are several different FFT algorithms. Among them, the Cooley-Tukey 

algorithm proposed by J. W. Cooley and J. W. Tukey [102] is the most common one. It is 

a divide-and-conquer algorithm – DFT of a composite size N = N1N2 can be computed 
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Figure 53. Radix-2 8-point Cooley-Turkey FFT. 
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using two DFTs of smaller size N1 and N2 where N1 and N2 are data sets that are 

interleaved each other – e.g., N1 is the even members of the N data set and N2 is the odd 

members. This step can be iteratively applied until the resulting data set is reduced to two 

data values.  

Figure 53 shows an example of the Cooley-Turkey algorithm for radix-2 8-point FFT. 

The Cooley-Turkey algorithm can be applied to any composite length; as an example, the 

composite length of N = 2
X
 (x is any positive integer number) is shown here, which is 

called a radix-2 Cooley-Turkey algorithm. In Fig. 53, eight input data (x[0] to x[7]) is 

divided into two subsets that are interleaved each other – x[0], x[2], x[4], x[6] in the first 

subset and x[1], x[3], x[5], x[7] in the other subset. Then each subset is divided into its 

own two subsets further – x[0], x[4] in one subset, x[2], x[6] in the second subset, x[1], 

x[5] in the third subset, and x[3], x[7] in the final subset. As a result, every subset is 2-

point FFT.  

For our purpose of experiments, we do not fully implement the FFT, instead we 

embed execution times spent on each stage into the PhoenixSim simulator [103]. The 

execution times are provided by [104] at various platforms.    

4.3.8 Evaluations – both electrical and hybrid mesh network systems 

In this section, we measure throughput and power consumption of the Cooley-Turkey 

FFT algorithm and three synthetic benchmarks on the three switching schemes. And we 

compute power efficiency [in samples/sec/W].  

For the performance evaluations, we use PhoenixSim (Photonic and Electrical 

Network Integration and Execution Simulator) that has been developed in C++ by 

Columbia lab. PhoenixSim is an event-driven simulator built on OMNET++ 

environments [105]. PhoenixSim captures detailed physical characteristics of photonic 

and electrical components. 
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Simulation parameters are set as shown in Table 5. In addition to the FFT application, 

we measure power efficiency on three synthetic benchmarks – random, neighbor, and 

tornado [18] – with two different message sizes as shown in Table 6. The simulation 

results are shown in Fig. 54. 

As shown in Fig. 54, the electrical mesh supporting packet switching shows the best 

power efficiency in the FFT application. This is due to the fact that the data size 

transferred per connection is generally very small in FFT – we fix the size as 32 bits in 

our simulations. Therefore, our circuit switching-based systems - electrical mesh and 

hybrid mesh systems based on circuit switching – are not appropriate for the Cooley-

Table 5. Simulation parameters. 

 Emesh-PS Emesh-CS Pmesh-CS 
NoC parameters 

# of nodes 64 (8x8) 
clockRate_cntrl 
(GHz) 

1.6 1.0 1.0 

clockRate_data (GHz) - 2.5 2.5 
Electrical Channel 
Width (bits) 

64 
32 (ctrl path) &  
128 (data path) 

32 

routerBufferSize per 
virtual channel (bits) 

1024 128 128 

# of virtual channels 
per port 

2 1 1 

DRAM parameters 
DRAM type SDRAM 
DRAM freq. (MHz) 1066 
# of ranks per MAP 2 
Chips Per DIMM 4 
# of banks per chip 4 
# of rows per bank 8192 
# of columns per 
bank 

512 

Transaction 
scheduling policy 

First-come first-served 

Row buffer 
management policy 

Close page 

Addr mapping policy SDRAM base map 
Refresh policy All ranks and all banks at a time 

FFT Application parameters 

# of points 2
10

 , 2
12

 , 2
14

 

Data resolution 32 bits 
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Turkey FFT algorithm. In other words, path setup and teardown overheads overshadow 

the positive effect of dedicated resources. 

A similar pattern is observed for all synthetic benchmark with a small message size - . 

But in the case of a large message size, the hybrid optical network shows the best power 

efficiency at all three benchmarks. Based on these experiments, the message size is a very 

critical parameter to determine whether or not the hybrid photonic network is appropriate 

to be applied.  

4.3.9 Summary 

In Sections 4.2 and 4.3, we designed network-centric FFT processors. We consider the 

electrical mesh network based on packet switching and circuit switching respectively. 

Table 6. Synthetic benchmarks. 

 Random Neighbor Tornado 

Message 

size (B) 
64 12800 64 12800 64 12800 

# of 

messages 
6400 6400 6400 6400 6400 6400 

 

 

 

Figure 54. Power efficiency. 
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And we apply a different medium as interconnection network; we consider the hybrid 

mesh network based on circuit switching. The hybrid network is an electrically-controlled 

photonic network. 

We map the Cooley-Turkey FFT algorithm onto the three NoC systems, then 

measure the power efficiency using PhoenixSim at various input sample sizes. The 

simulation results show that in the FFT algorithm, the packet-switching electrical 

network provides the best power efficiency regardless of the input sample size. This is 

due to the fact that the data transfer size per connection is very small in the FFT 

algorithm. In this environment, circuit switching does not provide its advantage (a 

dedicated end-to-end path).  To show the effect of a packet size on power efficiency, we 

performed further experiments on the three synthetic benchmarks. According to the 

experiment results, a message size is a very critical parameter to determine whether or 

not the hybrid photonic network is appropriate to be used. 
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CHAPTER V 

CONCLUSIONS 

 

In this thesis, we propose new methods for designing high-performance embedded 

computer system architectures.  

First, we proposed architectural enhancements to GPUs for the Turbo decoding 

algorithm, one of the popular communication applications. Experimental results by our 

cycle-accurate GPU simulator demonstrate that increasing the number of SMs and 

supporting the sub-word parallelism are the most promising ways to improve throughput. 

We achieved the 2 Mbps requirement of the WCDMA standard with all the architectural 

enhancements on the four-SM GPU (1.9 Mbps) or on the six-SM GPU (2.6 Mbps), while 

without any enhancements at least 12 SMs are required. An area overhead, however, by 

increasing the number of SMs is most severe. We also showed the estimated area 

overhead due to architectural enhancements. When an area limitation is given as a design 

parameter, we should select some of the architectural enhancements based on our 

throughput-area trade-off analysis.  

Secondly, we proposed a high-level compiler technique to improve system 

throughput in DSP multi-processor systems by exploiting useful features of contemporary 

DRAM main memory systems. Our high-performance buffer mapping policy is for SDF-

based DSP applications that are targeted to multiprocessor systems supporting the shared-

memory programming model. The proposed policy exploits bank and rank concurrency 

of contemporary DRAM main memory systems according to the careful memory system 

modeling and parallelism analysis. We use a graph coloring technique to analyze the IPC 

(inter-processor communication) edge-level parallelism and a 1-bit predictor to analyze 

the comm/sync-level parallelism. In our experiments, we measured application 

throughput on both synthetic and real benchmarks. The simulation results show that the 
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proposed buffer mapping policy enhances throughput, especially in memory-intensive 

applications with relatively small total execution time of actors. Whether or not the even2 

(comm/sync-level) mapping approach is used should be determined based on sync_read 

prediction accuracy, which can be estimated at compile-time. The performance 

improvements of the proposed buffer mapping policy are achieved in general at the cost 

of additional banks and bank under-utilization.  

Finally, we proposed the parallel Turbo decoder and the parallel FFT processors. The 

parallel Turbo decoder is based on the VOQ input-queued crossbar switch, which can 

accommodate arbitrary interleaving/deinterleaving patterns during run-time. The 

proposed architecture dynamically resolves both internal and external conflicts of 

network resources. And we found that the PIM algorithm can be applied to Turbo 

decoding. By using our cycle-accurate simulator, we proved that our network-centric 

Turbo decoder can satisfy throughput requirements of all contemporary communication 

standards. We designed NoCs for another embedded kernel application – FFT. The 

electrical mesh network supporting packet switching or circuit switching, and the hybrid 

mesh network supporting circuit switching were considered. We mapped the Cooley-

Turkey FFT algorithm onto those three network systems and measured power efficiency 

by using PhoenixSim. According to our experiments, the packet-switching electrical 

mesh network provides better power efficiency than the other two network systems. This 

is due to the fact that a data transfer size per connection is very small in the FFT 

algorithm. By further experiments on synthetic benchmarks, we found that a message size 

is a very critical parameter to determine whether or not the hybrid photonic network is 

appropriate to be applied.  
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