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SUMMARY

Bus bunching occurs when two or more buses travel head to tail. It is an

annoying problem in public transportation because it increases passengers’ average

waiting time and traveling time, wastes bus capacity, reduces the frequency of bus

service and increases the pressure on bus drivers. So eliminating bus bunching is

important in public transportation.

Eliminating bus bunching is highly challenging due to the complexity and variabil-

ity of the bus dynamics. Bus bunching results from a positive feedback mechanism

of headway evolution, which is a flaw born with the bus system. In this thesis, we

quantify the intensity of the tendency to bus bunching and propose a headway control

modeling framework to reverse tendency. Our framework subsumes many headway

control schemes to coordinate buses and so enables batch analysis. Given different

headway information, our framework produces different control schemes under which

headways self-equalize. The stability of the bus system under control is characterized

by a single measure and it can be optimized. Besides, the bus system under control

is robust against traffic conditions and the level of ridership.

The framework is based on a snapshot model capturing the bus dynamics includ-

ing the tendency to bunch by taking traffic conditions and the level of ridership into

account. It is linear and time-invariant, which makes the bus dynamics tractable.

This model considers a single control point and constant bus velocity in a determin-

istic manner, but it can be extended to handle many control points, inhomogeneous

velocity along the route, and randomness.

Using our framework, we further study two simple control schemes—Threshold

control and “Prefol”. Threshold control drives headways to self-equalize the fastest

ix



but the corresponding bus system needs large slack time for robustness. “Prefol”

needs small slack time but headways self-equalize more slowly. We hybridize them

and find the hybrid control scheme balances robustness and fast headway equalization.

We also show that it outperforms several state-of-the-art control schemes in tests on

a simulated bus route in Chicago.
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CHAPTER I

INTRODUCTION

Buses are scheduled to be evenly spaced along a bus route, but in fact two or more

of them often travel in bunches. This is the notorious bus bunching phenomenon.

The mechanism of bus bunching has been long understood [49]. Even though some

buses will inevitably become late or early due to disturbance caused by variability of

traffic conditions and level of ridership, the root cause is a positive feedback mecha-

nism born with the bus system: A late bus picks up the passengers that should have

been picked up by the following bus and thus gets further delayed; Meanwhile, the

following bus spends less boarding time so it tends to catch up until the two buses

pair up. It is the positive feedback mechanism that makes the bus system unstable.

Bus bunching increases passengers’ average waiting time and traveling time. When

buses travel in bunches, some of the buses become late. Since more passengers get

on late buses, more passengers spend more time waiting. Besides, these buses travel

more slowly because of more boarding and alighting time for the increased number

of passengers. So more passengers spend more time traveling.

Bus bunching wastes bus capacity. While late buses pick up most passengers,

trailing buses are almost empty. Operating these buses wastes fuel and drivers’ work

hours.

Bus bunching reduces the frequency of bus service. When buses travels in pairs,

the frequency halves and thus the bus service will be degraded for passengers.

Bus bunching increases pressure on bus drivers. When their buses are late, they

may experience hostility from passengers. Pressure to recover the schedule may cre-

ate safety issues. Drivers in some bus systems are even monitored and told to speed
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up and slow down from time to time while they are driving. Some drivers com-

plain that this heavily-mediated style brings extra pressure and triggers anger from

passengers [54].

If buses can maintain equal headways, passengers will receive the best service and

all the defects mentioned above are maximally mitigated. Therefore, our goal is to

maintain equal headways effectively while minimally interfering with the drivers.

1.1 Literature Review

The problem of bus bunching remains a challenge in public transportation [53]. The

basic idea to separate buses that are too close is to speed up the leading bus or slow

down the trailing bus. However, buses that want to speed up may be blocked by the

traffic and buses that want to slow down will annoy the following traffic and on-board

passengers. There are other indirect ways to achieve this. A bus can, in effect, speed

up by skipping stops [20, 30, 63, 64], restricting boarding [23, 24], deadheading [28]

and short-turning [38, 50, 58] and a bus can, in effect, slow down by delaying at

designated stops.

Boarding restriction, stop-skipping, short-turning, and deadheading are not de-

sired by many transit agencies because they inconvenience passengers.

Boarding restriction is used to limit the number of boarding people to reduce dwell

time, but it increases wait time for passengers that cannot get on the bus.

Stop-skipping refers to a bus not making all designated stops along a route. It

serves to reduce the traveling time for passengers on board the vehicle, but it increases

waiting time for passengers that have been passed by and passengers who are forced

to alight early. Lin et al. [40] recommended against stop-skipping based on simulation

results.

Short-turning refers to a bus turning around before it reaches the route terminal.

It may reduce headway variance in the opposite direction by filling in a big gap in
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service. However, it affects passengers on the bus who are forced to alight and transfer

to the subsequent bus.

Deadheading refers to a bus traveling to a certain position without accepting

passengers. If the positioning is optimized, it reduces headway variance. But dead-

heading is inefficient. It incurs costs for the operator in terms of non-revenue earning

fuel use, wages, and a reduction in the utilization of the driver’s legal hours of driving.

In contrast, delaying buses at certain bus stops (referred to as “control points”)

is widely used in practice. The control points are typically located at terminals or

transfer points where there is large passenger demand, few on-board passengers and

enough spare spaces (e.g. bus bay, bus lane, parking lane, etc.). Delaying buses at

these control points has little effect on either the traffic or passengers. The implemen-

tation is easy compared with other methods mentioned above. In this thesis, we will

focus on bus-delaying control schemes. The core of these schemes is the determination

of the delay time.

There are roughly four categories in bus delaying control schemes: target sched-

ule control, target headway control, optimization-based headway control and self-

organizing headway control.

Target schedule control aims at keeping buses on a pre-determined schedule. A

bus is delayed longer at a control point if it is ahead of the schedule or shorter (or

even not delayed) if it is behind the schedule.

Target headway control does not have a schedule. Instead, it focuses on regulating

headways to achieve a pre-specified static value. A bus is delayed longer at a control

point if its headway is smaller than the target headway or shorter (or even not delayed)

if its headway is larger than the target headway.

Optimization-based headway control optimizes the headways typically by mini-

mizing some cost function related to passengers’ waiting time and variance of head-

ways based on real-time or forecasting information.
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Self-organizing headway control specifies only a simple rule for delaying buses.

Under self-organizing headway control headways self-equalize and converge to the

ideal achievable headway, which is unknown in advance.

In the following, we review the four categories of bus delaying control schemes

and identify the best application scenario for each of them.

1.1.1 Target Schedule Control

The goal of target schedule control is to reach and maintain a target schedule. The

arrival times and/or departure times of buses at all control points are planned to the

minute. Slack time is budgeted in the schedule to help late buses catch up. A bus is

delayed longer at a control point if it is ahead of the schedule or shorter (or even not

delayed) if it is behind the schedule.

A schedule is particularly useful in low-frequency transit: If the schedule can

be maintained, passengers can make travel plans based on the schedule and reduce

waiting time. Target schedule control is simple to implement.

The limitation of target schedule control is its rigidity. Schedules are hard to

maintain, hard to recover, and expensive to change. A target schedule is static, while

the environment can be dynamic. The environment may change so much that the

buses cannot be on time. Then the schedule exists in name only and the service

discourages the passengers. Also, if a bus breaks down, the “hole” in the schedule

tends to grow, leading to bunching.

There are two types of target schedule control schemes: binary target-schedule

control, which decides only whether to delay a bus at a control point until the sched-

uled departure time, and continuous target-schedule control, which always delays the

bus but the delay time is a continuous function of the arrival times and the scheduled

departure times. The studies of the former focus on slack time determination and

control point selection while those of the latter explore the relation between the delay
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time and the arrival deviation from the schedule. The former is simpler and wide-

ly used but the latter requires less slack time to provide the same level of schedule

adherence [74].

Binary Target-schedule Control

Binary target-schedule control works as follows: When a bus arrives at a con-

trol point before the departure time, it pauses until that time; otherwise it departs

immediately. The binary target control is commonly used in practice for its simplicity.

“Slack time” is the difference between the scheduled departure time and the ex-

pected arrival time at a control point. Slack time is added to the schedule to help late

buses catch up. Too large a slack time reduces the service frequency unnecessarily

when most buses are ahead of schedule while an insufficient one increases the risk of

bus falling behind schedule.

Due to the complicated nature of the bus dynamics, studies on the determination

of the slack time for the binary target-schedule control have been limited in what they

can achieve. They either offer insights based on strong assumptions or else model the

complicated dynamics but provide no insights.

Newell [47] is an example of the first type. He built a model based on five as-

sumptions:

1. The travel times between adjacent control points are identically distributed

random variables,

2. The bus headways are scheduled to be uniform,

3. The passenger arrivals at each control point are identically distributed Poisson

variables,

4. The lateness of buses at a control point has a probability density that satisfies

a Fokker-Planck (diffusion) type equation,
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5. The preceding bus is always on time.

He showed that the bus departure times are unlikely to deviate significantly from the

schedule if the slack time exceeds σ
√

2ar(τ ′ + τ ′′e−arh), where

σ = standard deviation of bus travel time between adjacent control points,

ar = mean arrival rate of passengers at a control point,

τ ′ = marginal time taken to board one passenger,

τ
′′

= time spent on stopping and starting a bus, and

h = headway between buses.

This lower bound on slack time increases with standard deviation of bus travel time,

passengers’ arrival rate, and boarding time. One limitation of this study is that the

argument holds only in the highly specialized setting satisfying all the assumptions

above. Another limitation is that the study considers only schedule adherence. The

slack time may inflate the headway and thus discourage passengers.

Wirasinghe [72] derived optimality conditions for slack time in a model with the

objective of minimizing the sum of the cost of the travel time for the trip, the cost of

expected delay and a penalty associated with a delayed arrival. The result is simple

and clear but the assumptions in the model are very strong. The model considers a

route where passengers board at a terminal and buses run non-stop to the destination.

Furthermore the analysis was for a single bus whose preceding bus runs exactly as

scheduled. It assumes that the travel times of the bus, including dwell times, are

independent and identically distributed with a unimodal probability density function.

Such strong assumptions might be satisfied only in a one-control-point low-frequency

route with stable traffic conditions, but it seems doubtful whether the result can be

extended to a more general case.

By elegantly utilizing queueing theory, Zhao et al. [77] first showed the stability

of the bus system under binary target-schedule control if the scheduled round-trip
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travel time is greater than the expectation of real round-trip travel time. This result

is based on the assumption that the round-trip travel times are independent, which

is more likely to hold in low-frequency route that experiences stable traffic intensities

(for example, no rush hour). They also proposed an analytical method to derive

the optimal slack time for a one-bus route when the travel time is exponentially

distributed, as well as several approximation approaches for a multi-bus route and

other travel time distributions to minimize passengers’ waiting time. However, the

objective function is derived from the assumption that passengers arrive randomly at

the control point, which is not true for low-frequency route. This assumption is not

consistent with the previous assumption to some extent and thus they are unlikely to

hold simultaneously.

Instead of generating analytical insights, Carey [18] focused on demonstrating

the feasibility of a modeling approach. He performed a comprehensive study on a

transit system with multiple vehicles and multiple control points. His model took

the randomness of the traveling times and waiting times into consideration. The

bus dynamics are described by a set of integral equations. As a result, the model is

general but too complicated to generate deep insights or even to solve for the optimal

slack time efficiently.

Some studies tried to determine both the slack time and the control point si-

multaneously by optimizing certain objectives, but this problem is not easy to solve.

Researchers either introduced simplified assumptions or tried to solve it using heuris-

tics. For example, Wirasinghe and Liu [73] built an analytical model which minimizes

the sum of waiting time cost, traveling time cost, delay penalty and operating cost.

They used dynamic programming to solve simultaneously for the optimal location of

control points and the amounts of slack time. However, the model considers only a

very special case where all boarding passengers coordinate their arrivals at each stop

in such a way that they never miss their intended bus. This can hardly be true. Also,
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it is tricky to determining the weights of different cost terms.

Liu and Wirasinghe [41] adopted the same objective as that in [73] but considered

a general passenger arrival pattern in a simulation model. This model is more realistic

and may be useful for schedule design. They tried to solve it using a combination

of heuristic search, enumeration, and population ranking and selection techniques

but cannot guarantee optimality. Mazloumi et al. [43] expressed this problem as a

knapsack problem for which input data was derived from simulation, and applied an

ant colony algorithm and a genetic algorithm to solve it. Their approach is more

efficient in computation.

Continuous Target-schedule Control

While binary target-schedule control decides only whether to delay a bus at a

control point until the departure time, continuous target-schedule control always de-

lays the bus but the delay time is a continuous function of the arrival times and the

scheduled departure times.

Xuan et al. proposed a parametric family of continuous target-schedule control

schemes. They also showed a sufficient condition to guarantee bounded deviations

from the schedule over time [74]. This study analytically addressed a broad range

of problems: transit systems with many buses, many control points and stochastic

traveling time. They also singled out a one-parameter control scheme that relies

only on the scheduled departure times and the arrival times of the current bus and

its preceding bus at the current control point. If an upper bound on the deviation

from the schedule is pre-specified, they are able to calculate the optimal parameter by

minimizing the slack time. They showed that this method requires less slack time than

the binary target-schedule control to provide the same level of schedule adherence in

a numerical study. A similar control scheme proposed by He [33] utilized the arrival

time of the previous bus at the next control point additionally and showed that the
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bus system needs less slack time to maintain the schedule.

However, these schemes all try to achieve a target schedule, and so they inherit the

limitations of a static schedule. A static schedule cannot adapt to the dynamic envi-

ronment, and so all target schedule control schemes are vulnerable to disturbances,

especially system-wide disruptions. Also, they cannot respond to bus break-down.

1.1.2 Target Headway Control

When realized headways are below 12 minutes, passengers tend to not care about a

schedule and arrive randomly at the bus stops [51]. Some researchers abandoned the

notion of a schedule and aim at maintaining a pre-determined static target headway.

A bus is delayed longer at the control points if its headway is smaller than the target

headway or shorter (or even not delayed) if its headway is larger than the target

headway.

The information required by target headway control is mild—only the arrival times

at the control points. And generally target headway control outperforms schedule-

based control in terms of service regularity. Target headway control is less ambitious

than target schedule control and therefore more likely to achieve its goals. Every bus

may be “late” but the headway may nevertheless be on target.

Target headway control shares weaknesses similar to those of target schedule con-

trol. The tricky part in applying target headway control is the determination of

target headway. The ideal headway changes with traffic conditions, weather, level of

ridership and habits of the driver. Consequently, any system that coordinates buses

based on static target headway must sometimes underestimate achievable headway,

and so fail to meet the target, and sometimes overestimate it, and so reduce service

frequency unnecessarily.

Another similar weakness of target headway control is that it cannot respond

adequately to serious disruption. For example, when a bus breaks down, it leaves
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a gap until a replacement can be inserted. When the gap is large enough, it will

overwhelm any planned slack. Also when there is a system-wide disruption, such as

a snow storm, that reduces the bus velocity, all headways will necessarily increase

and so the system will fail to meet its targets. When the disruption is large, most

headways are greater than the target headway, so there is no delay at all for most

buses, leaving the target headway control existing only in name.

Similar to target schedule control, two kinds of target headway control have been

proposed: binary target-headway control and continuous target-headway control. Bi-

nary target-headway control, also called “Threshold Control” or “Threshold Strategy”

in the literature, decides only whether to delay a bus at a control point until its head-

way equals to a threshold while the continuous headway control always delays the

bus but the delay time is a continuous function of the headways. The latter has more

flexibility in control. It may use more headway information than the former and thus

has the potential to produce smaller headway variance.

Binary Target-headway Control

In binary target-headway control, the bus at the control point is not delayed if

its forward headway is larger than a predetermined static threshold which may be

different from the target headway, otherwise it is delayed until its forward headway

equals the threshold. There are a number of studies about the determination of the

threshold. The following studies use analytical models that assume the threshold

equals the target headway.

Osuna and Newell [52] considered a bus route with only one or two buses. Travel-

ing times are assumed independent and identically distributed. They derived optimal

thresholds that depend on the distribution of the traveling time to minimize passen-

gers’ waiting time.
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Barnett [9] concentrated on the case that all passengers board at the same stop, a-

light at the same stop and traveling times are independent and identically distributed.

He derived the optimal threshold to minimize service irregularity.

Turnquist and Bowman [68] considered a bus route with multiple buses and mul-

tiple control points and sought to minimize average waiting time of passengers. They

derived a threshold value based on the ratio of onboard passengers to the boarding

demand at the control point according to daily statistics. This solution is sub-optimal

in the model.

Due to the complicated nature of the real bus dynamics, simulation models [15,

31, 38, 40, 70] were developed to test different thresholds. Some of these models tested

thresholds that are different from the target headway. All of these studies concluded

that an increase in the threshold can reduce passengers’ waiting time at the expense

of longer traveling time.

Continuous Target-headway Control

Continuous target-headway control always delays the bus and the delay time is a

continuous function of the headways. Daganzo proposed a parametric family of con-

tinuous target-headway control schemes and a sufficient condition on the parameters

to bound variance of the headways over time [21]. This study analytically addressed

a broad range of problems: transit systems with many buses, many control points

and stochastic traveling time. Daganzo also singled out a control scheme that only

relies on the forward headway of the bus at the control point (referred to as “forward

headway control scheme” later) and showed that this control scheme requires less

slack time than binary target schedule control to provide the same level of schedule

adherence.
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1.1.3 Optimization-based Headway Control

Optimization-based headway control determines delay time by optimizing a certain

objective based on a forecast (deterministic or stochastic) of headways and relevant

information for a certain number of periods in the future. Table 1 presents different

optimization-based headway control schemes according to the following characteris-

tics:

1. Passenger demand (PD) and bus traveling times (TT)

2. Number of control points

3. Number of buses considered in the optimization process

4. Bus capacity

5. Objective function, that could include waiting time of passengers at stops (Ws),

waiting time for passengers aboard a bus being delayed at a control point (Wo),

extra waiting time of passengers that cannot board the first bus arrived (We)

or the total variance of headways between buses (V )

Optimization-based headway control is adaptive to the environment. Since it as-

sumes knowledge of the future, it is able to make anticipatory adjustment no matter

how the environment changes. However, this approach is problematic in its im-

practical requirements, unconvincing artificial objective functions, and nonintuitive

solutions.

All the schemes listed in Table 1 require accurate forecast of bus arrival times and

rates of passenger arrival. Such requirements cannot be guaranteed, and it is doubtful

that these schemes can remain effective with inaccurate information.

Many of the schemes (e.g. [35, 55, 65, 76] and [78]) consider objective functions

as the sum of several weighted terms, but it is unclear which term should be more

valued and assigned larger weight, nor is there any agreement or convincing evidence.

12



T
a
b
le

1
:

O
p
ti

m
iz

at
io

n
-b

as
ed

h
ea

d
w

ay
co

n
tr

ol

S
tu

d
ie

s
P

D
an

d
T

T
C

on
tr

ol
p

oi
n
ts

B
u
se

s
C

ap
.

O
b

j.

E
b

er
le

in
et

al
.,

20
01

[2
9]

D
et

er
m

in
is

ti
c

O
n
e

M
u
lt

ip
le

=
∞

W
s

D
in

g
an

d
C

h
ie

n
,

20
01

[2
7]

D
et

er
m

in
is

ti
c

M
u
lt

ip
le

O
n
e

=
∞

V

H
ic

k
m

an
,

20
01

[3
5]

S
to

ch
as

ti
c

O
n
e

O
n
e

=
∞

W
s

+
W
o

Z
h
ao

et
al

.,
20

03
[7

6]
S
to

ch
as

ti
c

M
u
lt

ip
le

O
n
e

=
∞

W
s

+
W
o

S
u
n

an
d

H
ic

k
m

an
,

20
08

[6
5]

D
et

er
m

in
is

ti
c

M
u
lt

ip
le

M
u
lt

ip
le

=
∞

W
s

+
W
o

Z
ol

fa
gh

ar
i

et
al

,
20

04
[7

8]
D

et
er

m
in

is
ti

c
O

n
e

M
u
lt

ip
le

<
∞

W
s

+
W
e

P
u
on

g
an

d
W

il
so

n
,

20
08

[5
5]

D
et

er
m

in
is

ti
c

M
u
lt

ip
le

M
u
lt

ip
le

<
∞

W
s

+
W

0
+
W
e

H
er

n
án

d
ez

et
al

.,
20

15
[3

4]
D

et
er

m
in

is
ti

c
M

u
lt

ip
le

M
u
lt

ip
le

<
∞

V

13



1.1.4 Self-organizing Headway Control

Self-organizing headway control is simple and adaptive. It uses a simple rule to

determine delay times at the control points. Under the rule the headways are able

to self-equalize and so adapt to the environment. This rule makes an unstable bus

system stable.

Bartholdi and Eisenstein [11] first proposed a self-organizing headway control

scheme, under which the delay time of a bus at the control point is a proportion of its

backward headway (the headway of its trailing bus). We call it “backward headway

control scheme” in this thesis. They showed in an idealized model that headways

spontaneously converge to an ideal headway, even though it is unknown in advance.

Bus drivers may even be unaware of this process. When traffic conditions change, or

even under system-wide disruption, the bus system under this control scheme is still

able to direct headways to the new ideal headway. This method has been successfully

implemented on a bus route in Atlanta [10].

Turnquist et al. [68] proposed a bus-holding scheme called “Prefol”, in which

the delay time of the bus at a control point depends linearly on its forward and

backward headways. This control scheme was originally used to minimize a weighted

sum of on-board and off-board passengers’ average waiting times at each control

point. Turnquist et al. did not study the overall behavior of the bus system, or how

the headways evolve. Daganzo and Pilachowski proposed a strategy that uses both

headways, but they concentrate on adjusting bus velocity continuously instead of

delaying buses at control points [22]. Xuan et al. studied the delaying strategy and

showed that the “Prefol” control scheme leads to bounded deviation from a target

headway if bounded randomness of traveling time of buses is considered [74]. Later

in this thesis we shall prove that “Prefol” is self-organizing.

Berrebi et al. [14] suggested a scheme that is designed to allow achievable headways

to emerge, like a self-organizing scheme, but they did not prove convergence. This
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scheme requires the joint distribution of all the headways. Its performance largely

depends on the accuracy of the forecasting accuracy of headways.

1.1.5 Summary

Target schedule control, target headway control, optimization-based headway control

and self-organizing headway control all have their pros and cons. Each of them may

be useful in certain situations.

1. If the route frequency is low, target schedule control is favored. Such schemes are

widespread use because they provide passengers with a timetable for planning.

If the frequency is high (e.g. average headways are less than 12 minutes), buses

become more susceptible to bunching and the usefulness of a timetable fades.

2. If the route frequency is high and the environment is stable during a day, target

headway control may be practical. Indeed it has been successfully implement-

ed [4] because is easy to understand and cheap to implement. More importantly,

the ideal target headway can be estimated accurately due to the stable environ-

ment.

3. Optimization-based headway control requires accurate forecasts and produces

nonintuitive solutions. To the best of the author’s knowledge, none of the

optimization-based headway control schemes have been implemented.

4. If the route frequency is high and the environment is changeable, self-organizing

headway control is promising for its simplicity, adaptivity and cost-effectiveness.

They also have different data requirements. Both target schedule control and

target headway control requires only the arrival times of the buses at the control

point, which can be obtained by a clock. Self-organizing headway control requires

some or all of the real-time headways, while optimization-based headway control may

need extra information like passengers’ arrival rate.
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Essentially, these control schemes attack the problem at different depths. The root

cause of bunching is the positive feedback mechanism in the evolution of headways.

Optimization-based headway control aims to relieve the symptoms by global moni-

toring and adjustment. Target schedule control and target headway control attempt

to suppress the positive feedback mechanism by imposing constraints on headways,

so they lack flexibility; and even then the positive feedback mechanism may be too

strong to be suppressed. Self-organizing headway control creates a negative feedback

loop to counter the positive one so that the bus system becomes stable. The effect

may not be immediate, but it addresses the root cause of bus bunching.

1.2 Our Contributions

In this thesis, we extend the study of Bartholdi and Eisenstein [11] on self-organizing

headway control. We propose a unified headway control framework based on a snap-

shot model that captures the bus dynamics including the tendency to bunching (See

Chapter 2 for the model). Our framework subsumes many headway control schemes

to coordinate buses including most of the target headway control schemes and self-

organizing control schemes. We summarize the properties of our framework in the

following which will be shown in Chapter 3:

1. The schemes produced by our framework are simple. They use only headway

information. They delay buses only at control points. Drivers are not distracted

to check the time, bus position or velocity. They just concentrate on driving

buses and serving passengers (See Section 3.1).

2. Our framework is general and flexible. The form of the delay time can adapt

to different amounts of headway information (See Section 3.1).

3. Under any control scheme produced by our framework, headways self-equalize
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spontaneously. This process does not require direction of management or inten-

tion or even awareness of the drivers (See Section 3.2).

4. The bus system under control is robust against the level of ridership and traffic

conditions (See Section 3.3 and Section 3.4).

The demonstration of these properties is based on a measure of systemic stability we

identify (See Section 3.2.2). It essentially determines whether bus bunching would

occur and how severe it would be. It can be used to compare different self-organizing

bus systems.

In Chapter 4, we use our framework to further study two simple control schemes—

Threshold control and “Prefol”. Threshold control drives headways to self-equalize

the fastest but the corresponding bus system needs large slack time for robustness.

“Prefol” needs small slack time but headways self-equalize more slowly. We hybridize

them and find the hybrid control scheme balances robustness and fast headway equal-

ization. We also show that it outperforms several state-of-the-art control schemes in

tests on a simulated bus route in Chicago.
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CHAPTER II

BUS DYNAMICS

In this chapter, we develop a snapshot model that captures bus dynamics. It is spe-

cially designed for headway control schemes that delay buses at control points. It

captures the most important factors that influence the bus dynamics: traffic condi-

tions and the level of ridership. It has the mechanism that produces bus bunching

A delayed bus picks up the passengers that should have been picked

up by the following bus and thus gets further delayed. Meanwhile, the

following bus spends less time on boarding passengers so it tends to catch

up until the two buses pair up.

This model is linear, so it is simple and tractable. The form of the model shows

how headways evolve in a clear manner and how they are influenced by traffic condi-

tions, level of ridership and bus delays at the control points directly.

The majority of studies regarding bus bunching are empirically based or focus

only on minimizing some objective for a bus at a control point. Recently, there

are several models that capture how a bus system evolves under headway control

schemes. Daganzo proposed a model in 2009 that captures the main characteristics

of bus systems [21]. But his model is based on a schedule which is not necessary

for headway control. Daganzo and Pilachowski came up with a continuum model

that assumes infinitely divisible passengers and continuous passenger boarding along

every point of the bus route [22]. This model simplifies boarding behavior reasonably

and thus is easier for analyzing performance of bus systems. However, it is specially

designed for velocity adjusting strategies instead of bus delaying. Bartholdi and

Eisenstein developed an idealized model [11] that assumes constant commercial speed
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which includes the consideration of bus traveling and boarding. It is so simple for

further systemic analysis. However, it does not contain the tendency of bus bunching

even if there is no control at all. It cannot be used to identify what contributes to

bus bunching and how well a bus system under control resist bunching.

We extend the model of Bartholdi and Eisenstein by taking the bus bunching

mechanism into consideration, so the new model not only inherits its simplicity, but

enables the analysis of bunching resistance of bus systems under control as well.

Besides, our model is compatible with control schemes that either pre-determine a

target headway or not. Although the model considers only one control point, it can be

extent to multiple control points when we analyze the properties of headway control

schemes.

In the following, we describe an idealized model without dwell time first (Sec-

tion 2.1). This model has the same form of that of Bartholdi and Eisenstein but has

different assumptions. Then we incorporate deterministic dwell time into the ideal-

ized model (Section 2.2). This new model can explain bus bunching. Then we discuss

the extensions of this model.

2.1 Bus Dynamics without Dwell Time Delay

In this section, we build a model that assumes constant traveling speed and ignores

dwell time. This model shows the basic dynamics of a bus system under any bus

delaying control.

Modeling

Consider a bus route with n buses and one control point. Temporarily assume

that buses have identical constant average velocity v along the route and dwell time

is ignored.

We normalize the length of the route to be 1. When a bus arrives at the control
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point, a new epoch starts. Denote the index of the epoches t, t ∈ {1, 2, 3, . . .}. At

epoch t, index 1 the bus arriving at the control point and the others sequentially in

the traveling direction. Since the bus route is a close loop, the bus following Bus 1

is Bus n. For epoch t, denote by the vector xt = (xt1, x
t
2, . . . , x

t
n) the positions of the

buses where xt1 = 0 and xti < 1, i = 2, . . . , n. For convenience of formula derivation to

appear later in this section, let xtn+1 = 1. The trajectory of bus positions {x0,x1, . . .}

can be regarded as a series of snapshots of the bus route at the beginning of each

epoch. This “snapshot” setup is most suitable for headway control, because delaying

a bus at the control point is essentially an impulse control occurring only at the

beginning of each epoch.

The forward headway of a bus is the time it moves from its current position to

the current position of its preceding bus. It consists of three parts: traveling time,

dwell time and delay time at the control point which is 0 except for Bus 1. Denote

the traveling time of Bus i, i = 1, 2, . . . , n, traveling from xti to xti+1 by sti. We call it

travelling time in this thesis. It holds that

sti =
(xti+1 − xti)

v
, ∀i = 1, 2, . . . , n.

Essentially, they are the distances between buses normalized by the traveling velocity.

Denote the headway of Bus i, i = 2, 3, . . . , n at epoch t by hti. Also denote by ht1 the

headeway of Bus 1 before delay time is assigned. Since dwell time is ignored in this

case, headways are simply traveling times. So we have

hti = sti, ∀i = 1, 2, . . . , n.

Let Dt be the delay time of the bus at the control point. And let the actual headway

of Bus 1 after delay time is assigned be ĥt1. Then ĥt1 = ht1 + Dt. ht1 may be used to

determine the delay time and ĥt1 is the real headway.

The length of an epoch is the amount of time between successive arrivals at the

control point. So the length of Epoch t, t = 1, 2, . . ., is the headway of Bus n at Epoch
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t, htn. During Epoch t, Bus i, i = 2, 3, . . . , n− 1, spends all the time for traveling due

to the ignorance of dwell time. So at the beginning of Epoch t+ 1, Bus i at Epoch t

becomes Bus i+ 1 and its position becomes

xt+1
i+1 = xti + htnv.

Bus n at Epoch t arrives at the control point at Epoch t+ 1. It then becomes Bus 1

at Epoch t+ 1 and its position becomes

xt+1
1 = 0.

Since Bus 1 at Epoch t is delayed at the control point for Dt amount of time, it only

spends htn − Dt amount of time on traveling. At the beginning of Epoch t + 1, it

becomes Bus 2 and its position becomes

xt+1
2 = xt1 + (htn −Dt)v.

So we have the following bus dynamics in terms of bus positions:

xt+1
1 = 0 (1)

xt+1
2 = xt1 + (stn −Dt)v (2)

xt+1
i = xti−1 + stnv ∀i = 3, . . . , n. (3)

From these equations, we can obtain the dynamics equations expressed in terms

of sti and hti, ∀i = 1, 2, . . . , n, ∀t = 1, 2, . . .. Using Equation (3) we can write for each

i = 3, . . . , n,

st+1
i =

xt+1
i+1 − xt+1

i

v

=
(xti + stnv)− (xti−1 + stnv)

v

=
xti − xti−1

v

= sti−1
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and

st+1
2 =

xt+1
3 − xt+1

2

v

=
(xt2 + stnv)− (xt1 + (stn −Dt)v)

v

=
xt2 − xt1 +Dtv

v

= st1 +Dt

and finally,

st+1
1 =

xt2 − xt1
v

=
(stn −Dt)v

v

= stn −Dt

Thus we have the system

st+1
1 = stn −Dt (4)

st+1
2 = st1 +Dt (5)

st+1
i = sti−1 ∀i = 3, . . . , n. (6)

hti = sti, ∀i = 1, 2, . . . , n. (7)

Equation (4) (5) (6) describe the underlying dynamics. Equation (7) shows the rela-

tion between headways and traveling times. Let I be the index set of the headways

we know. Then hti,∀i ∈ I is the information we can use for control.

Comments

The model we develop in this section has the same form of that of Bartholdi and

Eisenstein [11]. The difference is that they assume constant commercial speed which

includes the consideration of bus traveling and boarding while we separate traveling

and boarding and ignore boarding at this moment.
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This model weakens the concept of bus stop. The model is linear and time-

invariant so that the headways are tractable.

However, this model does not produce bus bunching. Even when there is no control

at all, namely Dt = 0 for all t, the headways keep permutating and do not diverge.

This is because the bus headway evolution is only triggered by bus traveling, but it is

passengers’ boarding behavior that keeps augmenting the variation of headways and

produces bus bunching. Passengers’ boarding behavior can be captured in their dwell

time.

2.2 Bus Dynamics with Deterministic Dwell Time Delay

In this section, we will incorporate dwell time into the previous model so that the

new model has the potential to produce bunching. It shows how the level of ridership

affects the bus dynamics.

Modeling

When dwell time is not ignored, headway consists of both traveling time and dwell

time. Note that the lengths of an epoch for all buses are the same and dwell time is

typically much smaller than traveling time in the US, so the traveling distances of all

buses except the one that may be delayed at the control point are similar at a epoch.

But the accumulative numbers of passengers at different places along the route are

slightly different, which depend on the amount of time since the preceding bus leaves

that place.

When buses are in equilibrium state, the headways of all the buses are the same.

They spend the same amount of time on traveling, so the dwell times are the same.

Denote the equilibrium traveling time by s∗ and denote the equilibrium dwell time

by Q∗, which are unknown in advance.

When buses are not in equilibrium state, a bus with larger distance between it
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and its preceding bus spends more time on boarding. We assume that its dwell time

spent at Epoch t, which we denote Qt
i, is approximately affine in sti, i.e. that:

Qt
i ≈ Q∗ + b(sti − s∗) = bsti + (Q∗ − bs∗). (8)

The dwell times of all buses have the constant term Q∗ − bs∗. This constant amount

of time includes the time spent on slowing down when a bus arrives at a bus stop,

opening the doors, closing the doors, and speeding up when the bus leaves the bus

stop. This constant part can be incorporated into the bus velocity, implying that the

velocity becomes smaller due to the constant delay described above and the dwell

time becomes

Qt
i ≈ bsti. (9)

b is the marginal increase in dwell time arising from a unit increase in traveling time

— becasue the larger travelling time implies longer time the preceding bus has left

which is also the amount of time passengers accumulates at the bus stops. The value

of b reflects the level of ridership. It ranges from 0 to 0.2 for Georgia Tech campus

bus system during a day: when there are no passengers early in the mornings, b is

close to zero; when it comes to morning peaks and evening peaks, the value becomes

much larger.

So the length of Epoch t, which is the headway of Bus n, equals the sum of

traveling time and dwell time, i.e. that

htn = stn +Qt
n

= stn + bstn.

= (1 + b)stn

Similarly, the headway of Bus i, i = 1, 2, . . . , n, at Epoch t is approximately

hti = (1 + b)sti
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The time used for Bus i, i = 2, 3, . . . , n to travel at Epoch t is the length of Epoch t

subtracted by the dwell time, i.e. that

htn −Qt
i = (1 + b)stn − bsti

The traveling time of Bus 1 at Epoch t is similar except additionally subtracting delay

time at the control point, i.e. that

htn −Qt
1 −Dt = (1 + b)stn − bst1 −Dt

Thus, we have the following dynamics equations in terms of bus positions:

xt+1
1 = 0 (10)

xt+1
2 = xt1 + [(1 + b)stn − bst1 −Dt]v (11)

xt+1
i = xti−1 + [(1 + b)stn − bsti−1]v ∀i = 3, . . . , n. (12)

The mechanism that produces bus bunching is embedded in this model. Look at

Equation (12). For Bus i− 1 at Epoch t (or Bus i at Epoch t+ 1), when the distance

between it and its preceding bus is larger, namely sti−1 is large, then bsti−1 is larger.

That means it spends more time on boarding passengers. And then (1 + b)stn− bsti−1

becomes smaller. That means the time spent on traveling becomes smaller. So the

distance between it and its preceding bus tend to become even more larger later.

The dynamics above can be expressed only in terms of sti. We can write for each

i = 3, 4, . . . , n,

st+1
i =

xt+1
i+1 − xt+1

i

v

=
[xti + [(1 + b)stn − bsti]v]− [xti−1 + [(1 + b)stn − bsti−1]v]

v
(by Equation (12))

= sti−1 + b(sti−1 − sti)
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and

st+1
1 =

xt+1
2 − xt+1

1

v

=
[(1 + b)stn − bst1 −Dt]v

v
(by Equation (11))

= (1 + b)stn − bst1 −Dt

and finally,

st+1
2 =

xt+1
3 − xt+1

2

v

=
[xt2 + [(1 + b)stn − bst2]v]− [xt1 + [(1 + b)stn − bst1 −Dt]v]

v

(by Equation (11) and (12))

= st1 +Dt − b(st2 − st1)

Thus, we have the following system

st+1
1 = stn − b(st1 − stn)−Dt

st+1
2 = st1 − b(st2 − st1) +Dt (13)

st+1
i = sti−1 − b(sti − sti−1) ∀i = 3, . . . , n.

hti = (1 + b)sti ∀i = 1, 2, . . . , n. (14)

hti,∀i ∈ I is the information we can use for control. We use ht1 here, if 1 ∈ I, instead

of ĥt1 because ĥt1 relies on the actual delay time but we do not know the delay time

before we determine it.

There is a parameter, v, that does not explicitly appear in the model. In fact, it

appears in the underlying constraint that the sum of all the traveling times equals

the loop time, i.e. that
n∑
i=1

sti =
1

v
.

The average velocity, v, captures the overall traffic conditions which are influenced

by weather, time period, population density, traffic rules, etc.
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This model is an extension of that in Section 2.1. In fact, when b = 0, they have

the same form.

This model remains linear and time-invariant but captures basic bus dynamics

with the tendency to bus bunching. It is a simple and useful platform to analyze how

well a bus system under control resists bunching.

Generating Bus bunching

This model directly displays the essence of the cause of bus bunching. When no

control is applied, namely Dt = 0 for all t, it holds that st+1
i = (1 + b)sti−1 − bsti for

all i. The hand right side of this equality consists of two parts, the original traveling

time sti−1 and the dwell time difference of the bus and its preceding bus b(sti−1 − sti).

If the bus has larger dwell time than its preceding bus, then st+1
i > sti−1. It follows

that b(sti−1−sti) > 0 which implies that the bus falls further behind. And the amount

of time falling behind is larger as b becomes larger.

Here is an instance of a bus route with 4 buses. traveling times are generated

using dynamics (13) without any delay, namely Dt = 0,∀t > 0. The simulation starts

with almost equal traveling times: s01 = 0.25+0.001, s02 = 0.25−0.001, s03 = s04 = 0.25.

The boarding intensity parameter b in (13) is set 0.1. The result shows in Figure 1.

The curves represent headways generated by Dynamics Equations (13).

This typical example demonstrates the intensive positive feedback mechanism in

the bus system that leads to strong bunching. The rate of headway changes is super-

linear. Only after 20 epoches which means all buses completed 5 loops of the route,

the traveling time of Bus D hits 0. That means Bus D catches up with Bus A. The

other two buses are also close to each other.
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Figure 1: Evolution of traveling Times without Control

2.2.1 Bus bunching intensity and the level of ridership

When there is no control, the vector form of the bus dynamic equations is st+1 = Ast

where st = [st1, s
t
2, . . . , s

t
n]T and

A =


−b · · · 1 + b

1 + b −b · · ·
1 + b · · ·

. . . −b
1 + b −b


n×n

.

According to linear algebra, there exists an invertible matrix V ∈ Rn×n such that

A = V −1ΛV where Λ is a diagonal matrix with A’s eigenvalues on the diagonal. So

st = V −1ΛV st−1 = (V −1ΛV )2st−2 = V −1Λ2V st−2 = · · · = V −1ΛtV s0.

If the modulus of the largest eigenvalue of A, denoted |λ1(A)|, is greater than 1, then

the divergence rate of traveling times is |λ1(A)|. So |λ1(A)| measures the intensity of

bus bunching. |λ1(A)| depends only on the boarding parameter b which reflects the

level of ridership. We derives an exact formula for |λ1(A)|:
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Theorem 2.2.1 When there is no control, it holds that

|λ1(A)| = 1 + 2b.

Proof. When there is no control, the characteristic polynomial of A is

p(λ) = (−b− λ)n − (1 + b)n.

Hence the roots of p(λ) = 0, which are also the eigenvalues of A, equal

−b− (1 + b)e
2kπ
n
i, k = 0, 1, 2, . . . , n− 1.

So the eigenvalue of the largest modulus is

λ1 = −b− (1 + b) = −1− 2b

and finally

|λ1| = 1 + 2b.

2

Since b > 0, it holds that |λ1(A)| > 1. Therefore, the traveling times always

diverge if there is no control. Bus bunching was born with the bus system. Since

|λ1(A)| is an increasing function of b, the tendency to bus bunching becomes stronger

as the number of passengers increase. It is ironical that the bus system is created to

serve the passengers and passengers are the culprit of bus bunching.

Figure 2 shows the evolution of the traveling times of the same bus in a 4-bus

route when b1 = 0.1 and b2 = 0.05. Since b1 is twice as large as b2, the divergence of

the headways in the former case is much faster.
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Figure 2: Comparison of Headways Generated by Dynamics Equations with Different
b without Control

Model Extensions

The model developed in this section is based on several assumptions such as

constant traveling velocity, deterministic dwell time and single control point. Some

of these assumptions can be relaxed to be more general.

The model can be extended, by scaling, to consider any common bus traveling

velocity function v(x) that gives the instantaneous velocity of a bus at each point x

along the route, as long as v(x) is bounded above and below at every point (see [12],

for example). This weakens the assumption that all buses have a constant common

average traveling velocity.

The model also can be extended to account for sufficiently smooth and small

noise as in [13] or [21], but the subsequent stability analysis, which is presented in

Chapter 3, is similar. We will incorporate headway forecasting errors into the model

in Chapter 3 to study the influence of different amounts of headway information on
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the stability of the bus system.

The model cannot be extended to accommodate more than one control points

in general. But when we study control schemes that depend only on local informa-

tion, the stability analysis can be extended to multi-control-point case, which will be

discussed in Chapter 3.
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CHAPTER III

A GENERAL CLASS OF HEADWAY CONTROL

SCHEMES

In this chapter, we study a general class of headway control schemes in the model

developed in Section 2.2. We focus on the stability and robustness of the bus system

under control.

In Section 3.2, we derive a fundamental measure of system stability that charac-

terizes how fast headways converge or diverge. We present a sufficient and necessary

condition under which headways self-equalize to a unique common headway.

In Section 3.3, we demonstrate that the stability of the bus system is robust

against the level of ridership. In Section 3.4, we study what is the sufficient amount

of slack.

In Section 3.5, we show bounded deviations from ideal headway under the ap-

pearance of headway forecasting errors. We also quantify how the forecasting errors

affects the bound.

3.1 General Form of Delay Time

Thanks to the automatic vehicle location (AVL) system such as global positioning

system (GPS) and signpost based system, real-time headways can be estimated. We

can control the bus system based on real-time headway information. We restrict the

expression of Dt in the following form affinely depending on real-time headways:

Dt = γ0 +
n∑
i=1

γih
t
i (15)

where all the coefficients γi, ∀i = 0, 1, . . . , n, are constants independent of time. γ0

is a large enough constant so that Dt is positive almost all the time.
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In practice, this form is easy for managers, supervisors, and drivers to understand.

The corresponding bus system is easy to implement and monitored.

In theory, it maintains the linear structure of the bus dynamic equations. Besides,

the dynamic equations are time-invariant and thus it is easy to track the bus dynamics.

This form is flexible to represent a broad class of control schemes. If only partial

headway information is known, we let the coefficients corresponding to the unknown

headways be 0. It subsumes target headway control and current self-organizing head-

way control (See literature review in Section 1.1). Target headway control has delay

time

Dt = g + γ1(h
t
1 − h) = (g − γ1h) + γ1h

t
1

where g is the constant slack and h is the target headway.

Backward headway control [11] has delay time

Dt = γnh
t
n.

“Prefol” has delay time

Dt = γ0 + γ1h
t
1 + γnh

t
n

and generally γ0 = 0, γ1 = −0.5, and γn = 0.5.

Instead of choosing such a simple form, one may directly solve some sort of optimal

control problems to obtain the corresponding optimal delay time. However, it is

optimal only given that the parameters b and v are known precisely. But in fact,

they fluctuates during a day. So the optimal solution to the model generally is not an

optimal solution in practice. Also, the solution may appear to be more complicated

(time-variant or non-linear). In contrast, we assume that the delay time is of an affine

form with time-invariant coefficients to keep simplicity and then try to guarantee that

the bus system under control is robust against the variation of the parameters.
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3.2 Self-Equalization of Headways

The most important property of a bus system is that it has unique equal equilibrium

headways. Equilibrium headways refer to the headways that can be stabilized at after

disturbance. There are two conditions for headways to be equilibrium headways:

1. Headways are stationary. When they start from themselves, they remain un-

changed in the future.

2. Headways are stable. When they are disturbed, they are able to resile.

We study these conditions and propose a measure of stability. This measure charac-

terizes how fast headways converge or diverge.

3.2.1 Stationarity of Equilibrium Headways

Headways are stationary if they remain the same after one epoch in the snapshot

model. Hence equilibrium headways are always stationary.

Headways are stationary if and only if traveling times are stationary. Indeed,

when traveling times are equal, then so are the amounts of time spent on boarding

passengers, and thus so are headways. When traveling times are not equal, the

amounts of time spent on boarding passengers are different, and thus headways will

change. Now we show the sufficient and necessary condition for the existence of

stationary traveling times.

Denote by s∗ the stationary traveling times.

Proposition 3.2.1 The bus system with delay time Dt at Epoch t, t = 1, 2, . . ., has

unique stationary traveling times if and only if n(1 + γ1)−
∑n

i=1 γi 6= 0. If it has, the

stationary traveling times are

s∗1 =
(1−

∑n
i=2 γi)

1
v
− (n− 1) γ0

1+b

n(1 + γ1)−
∑n

i=1 γi
(16)

s∗i =
(1 + γ1)

1
v

+ γ0
1+b

n(1 + γ1)−
∑n

i=1 γi
, ∀i = 2, . . . , n.
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Proof. Since

hti = (1 + b)sti,

it holds that

Dt = γ0 + (1 + b)
n∑
i=1

γis
t
i. (17)

Plugging in (17) into the bus dynamics (13), we have that

st+1
1 = stn + b(stn − st1)− (1 + b)

n∑
i=1

γis
t
i − γ0

st+1
2 = st1 + b(st1 − st2) + (1 + b)

n∑
i=1

γis
t
i + γ0

st+1
i = sti−1 + b(sti−1 − sti) ∀i = 3, . . . , n.

We can represent the dynamics in vector form: st+1 = Ast + r where A =

−b− (1 + b)γ1 −(1 + b)γ2 −(1 + b)γ3 · · · −(1 + b)γn−1 (1 + b)(1− γn)

(1 + b)(1 + γ1)−b+ (1 + b)γ2 (1 + b)γ3 · · · (1 + b)γn−1 (1 + b)γn

1 + b −b
1 + b · · ·

. . . −b
1 + b −b


n×n

,

st = [st1, s
t
2, . . . , s

t
n]T and r = [−γ0, γ0, 0, 0, . . . , 0]T .

By the definition of stationarity, s∗ satisfies that

s∗ = As∗ + r

So we have that

s∗i = s∗i−1 + b(s∗i−1 − s∗i ), ∀i = 3, . . . , n,

and thus

s∗i = s∗i−1, ∀i = 3, . . . , n.

Then there exists a constant s∗ such that

s∗i = s∗, ∀i = 2, 3, . . . , n. (18)
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The first equation of the algebraic equations is

s∗1 = s∗n + b(s∗n − s∗1)− (1 + b)
n∑
i=1

γis
∗
i − γ0

Plugging in Equation (18), we have

(1 + γ1)s
∗
1 = (1−

n∑
i=2

γi)s
∗ − γ0

1 + b
.

Combined with the route length constraint

n∑
i=1

s∗i =
1

v

if n(1 + γ1)−
∑n

i=1 γi 6= 0, we have

s∗1 =
(1−

∑n
i=2 γi)

1
v
− (n− 1) γ0

1+b

n(1 + γ1)−
∑n

i=1 γi

s∗i = s∗ =
(1 + γ1)

1
v

+ γ0
1+b

n(1 + γ1)−
∑n

i=1 γi
, ∀i = 2, . . . , n.

If n(1 + γ1) −
∑n

i=1 γi = 0, the algebraic equations have infinite solutions when

− γ0
1+b

= (1 + γ1)
1
v

and have no solution when − γ0
1+b
6= (1 + γ1)

1
v
. 2

The stationary traveling time of the bus at the control point (s∗1) may be different

from others because it may be delayed for a constant amount of time at the stationary

situation.

By the relation between traveling time and headway, we have the sufficient and

necessary condition for the existence of stationary headways.

Corollary 3.2.1 The bus system with delay time Dt has unique stationary headways

if and only if n(1 + γ1)−
∑n

i=1 γi 6= 0. If it has, the stationary headways are

h∗1 =
(1 + b)(1−

∑n
i=2 γi)

1
v
− (n− 1)γ0

n(1 + γ1)−
∑n

i=1 γi
(19)

h∗i =
(1 + b)(1 + γ1)

1
v

+ γ0

n(1 + γ1)−
∑n

i=1 γi
, ∀i = 2, . . . , n.

This condition relates to a spectral property of the transition matrix–when there

is only one eigenvalue that equals 1, this condition is satisfied. We will identify and

use this property in the stability analysis.
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3.2.2 Stability of Equilibrium Headways

Equilibrium headways are stationary, but stationary headways are not necessarily

equilibrium headways–They may be unstable. In this part, we study the stability

property of the headways. We find that the systemic stability is completely reflected

by the modulus of the second largest eigenvalue of the transition matrix. It can

be used to determine whether bus bunching will occur. If bus bunching occurs, it

measures how fast the headways diverge. If bus bunching does not occur, it reflects

how fast headways self-equalize from any starting situation. It characterizes the

resistance of the bus system to bunching and the recoverability from disruptions.

Note that the column sums of A all equal 1. So 1 is an eigenvalue of A. Denote

the eigenvalues of A by λ1(A), λ2(A), . . . , λn(A) such that |λ1(A)| ≥ |λ2(A)| ≥ · · · ≥

|λn(A)| and denote their corresponding (generalized) eigenvectors by v1, v2, . . . , vn.

Theorem 3.2.2 [Self-Equalizing Theorem for traveling Time]

1. If |λ2(A)| < 1, then λ1(A) = 1 and

(a) there exists unique stationary traveling times.

(b) Given any initial traveling times, the traveling times converge to the sta-

tionary traveling times s∗ in Proposition 3.2.1.

(c) There exists a constant C such that ‖Ats0−s∗‖2 ≤ C|λ2(A)|t,∀t > 0 when

A is diagonalizable.

2. If |λ1(A)| ≥ 1 and |λ2(A)| ≥ 1, then there are no unique stationary traveling

times.

Remark 3.2.1 When A is not diagonalizable, the inequality in 1.(c) holds for all

t > n. The idea in the proof is similar, but the argument is slightly different (See

Appendix A).
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Proof.

1. The proof consists of three steps:

(a) Show that there exists unique stationary traveling times when |λ2(A)| < 1.

(b) Show that the inhomogeneous linear system st+1 = Ast + r can be trans-

formed to a homogeneous linear system yt+1 = Ayt by an affine transform

of st.

(c) Prove the convergence of the linear system yt+1 = Ayt.

(Step 1a)

The characteristic polynomial of A is

p(λ) = (−b− 1)n(z − 1)
n−1∑
i=1

(1 + γ1 − γi)zn−i

= (z − 1)q(λ)

where z = −b−λ
−b−1 . All the eigenvalues are roots of p(λ). When λ = 1, we have

z = 1 and thus p(1) = 0. So all the eigenvalues except 1 are roots of q(λ) = 0.

Since |λ2(A)| < 1, 1 is not a root of q(λ). That is

n(1 + γ1)−
n∑
i=1

γi = q(1) 6= 0

According to Proposition 3.2.1, there exists unique stationary traveling times.

This finishes the proof of 1.(a) in the theorem.

(Step 1b)

Let yt = st + q, where q is a constant vector. Forcing yt+1 = Ayt to hold, we

have that r = (A− I)q, or

q2 = q3 = · · · = qn

(−1− γ1)q1 − (1−
n∑
i=2

γi)q2 = −γ0
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When γ1 6= −1, we can set q2 = q3 = · · · = qn = 0 and q1 = γ0
1+γ1

.

When γ1 = −1, we claim that 1 −
∑n

i=1 γi 6= 0 and we can set q1 = 0 and

qi = − γ0
1−

∑n
i=1 γi

, ∀i = 2, 3, . . . , n.

The claim comes from the fact that unique stationary headways exist. According

to Corollary 3.2.1, it holds that n(1 + γ1) −
∑n

i=1 γi 6= 0. Since γ1 = −1, it

follows that 1−
∑n

i=1 γi 6= 0.

Therefore, the inhomogeneous linear system st+1 = Ast + r can be transformed

to a homogeneous linear system yt+1 = Ayt.

(Step 1c)

Let y∗ = s∗ + q. Then y∗ satisfy the stationary condition:

yt+1 = Ayt.

So y∗ is a multiple of v1 which is an eigenvector of A corresponding to the

eigenvalue 1.

Also, since the column sums of A all equal 1, it holds that
−→
1 A =

−→
1 . So

−→
1 vi =

−→
1 Avi =

−→
1 λi(A)vi = λi(A)

−→
1 vi, ∀i = 2, 3, . . . , n.

Since λi(A) 6= 1, it holds that
−→
1 vi = 0, ∀i = 2, 3, . . . , n.

Since A is diagonalizable, we can write y0 in terms of y∗, v2, v3, . . . , vn as

y0 = a1y
∗ + a2v2 + a3v3 + · · ·+ anvn.

Left-multiplying by
−→
1 on both sides, we have

−→
1 y0 =

−→
1 a1y

∗ +
−→
1 (a2v2 + a3v3 + · · ·+ anvn) = a1

−→
1 y∗

Since

−→
1 y0 =

−→
1 (s0 + q) =

−→
1 (s∗ + q) =

−→
1 y∗
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it holds that a1 = 1. Therefore, Ay0 = y∗ + a2λ2(A)v2 + a3λ3(A)v3 + · · · +

anλn(A)vn, and hence

‖Aty0 − y∗‖2 = ‖
n∑
i=2

aiλ
t
i(A)vi‖2

≤
n∑
i=2

|λi(A)|t ‖aivi‖2

≤ |λ2(A)|t
n∑
i=2

‖aivi‖2

, C|λ2(A)|t

Since Aty0 − y∗ = At(y0 − y∗) = At(s0 − s∗) = Ats0 − s∗, it holds that

‖Ats0 − s∗‖ ≤ C|λ2(A)|t.

So given any initial traveling times, the traveling times converge to the equilib-

rium traveling times which are s∗.

2. If |λ1(A)| ≥ 1 and |λ2(A)| ≥ 1, when there are two eigenvalues equal to 1, then

there exist an eigenvalue λj(A) such that n(1 + γ1) −
∑n

i=1 γi = q(λj(A)) = 0

according to the argument in Step 1a. By Proposition 3.2.1, there are no unique

stationary traveling times.

Suppose only one of the eigenvalues equals 1. Without loss of generality, let

λk(A) = 1. Since there are at least two eigenvalues of modulus not less than 1,

there exists some j ≥ 2 such that λi(A) ≥ 1 for i = 1, 2, . . . , j. Let U be the

set consisting of the indices of eigenvalues whose value does not equal 1 and

modulus not less than 1.

Suppose that traveling times converge for all initial traveling times. We can

pick initial traveling times such that ai 6= 0, for i = 1, 2, . . . , n. Arguments in

Step 1a and 1b still hold here. We can again decompose y0:

y0 = a1v1 + a2v2 + a3v3 + · · ·+ anvn.
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So

yt = Aty0

= At(a1v1 + a2v2 + a3v3 + · · ·+ anvn)

=
n∑
i=1

aiA
tvi

=
n∑
i=1

aiλi(A)tvi

Note that akλk(A)tvk = akvk. For i > j, aiλi(A)tvi goes to 0 when t goes to

infinity. But for i ∈ U , the limit of λi(A)t does not exist. So
∑

i∈U2
aiλi(A)tvi =

0 for t greater than some constant, which implies ai = 0 and thus contradicts

our assumption that ai 6= 0. So the traveling times do not converge for any

initial traveling times.

2

Because of the fixed proportional relation between headways and traveling times,

we have the following corollary

Corollary 3.2.2 [Self-Equalizing Theorem for Headways]

1. If |λ2(A)| < 1, then

(a) there exists unique stationary headways.

(b) Given any initial headways, the headways converge.

(c) The equilibrium headways are the stationary headways h∗ in Corollary 3.2.1,

and

(d) There exists a constant C such that ‖Ath0 − h∗‖2 ≤ C|λ2(A)|t,∀t > 0

when A is diagonalizable.

2. If |λ1(A)| ≥ 1 and |λ2(A)| ≥ 1, then headways do not converge for all initial

headways.
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|λ2(A)| not only reflects the stability of equilibrium headways, it is also a funda-

mental measure of systemic stability because convergence occurs for any initial head-

ways. The smaller |λ2(A)| is, the more stable the bus system is. When λ1(A) 6= 1,

bus bunching will occur. When |λ2(A)| < 1, headways self-equalize and |λ2(A)| is the

convergence rate of headways in the sense that ‖Ath0 − h∗‖2 ≤ C|λ2(A)|t.

If there are m control points and we use the same form of delay time at all of

them, then the convergence rate becomes |λ2(A)|m which is smaller than |λ2(A)|. So

more control points lead to a more stable bus system.

With this theorem, we can easily check the stability of a bus system. For example,

|λ1(A)| = 1.02 for a bus system with four buses under no control and the boarding

parameter b equals 0.01. So the headways diverge as expected. If we apply backward

headway control by setting γ0 = γ1 = γ2 = · · · = γn−1 = 0 and γn = 0.5, |λ2(A)| =

0.8894 and thus headways self-equalize as shown in [11].

With this theorem, we can easily compare different control schemes. For example,

if we change γn to be 0.1 in the backward headway control scheme mentioned above,

|λ2(A)| becomes 0.9848. So this new scheme should lead to a slower headway self-

equalization, which can be checked by plotting the evolution of the headway standard

deviations in the model (See Figure 3).
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Figure 3: Evolution of headway standard deviation when b = 0.01
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Are there any control schemes with |λ2(A)| < 1? The backward headway control

scheme [11] which sets γ0 = γ1 = γ2 = · · · = γn−1 = 0 and γn = 0.5 when b < 0.05 is

an example.

Now that there exists such control schemes where |λ2(A)| < 1, there should be an

optimum among them in theory in the sense of having the smallest |λ2(A)|. Mathe-

matically, we can identify it by solving the following optimization problem:

min
γi,i∈I

|λ2(A)| (20)

This problem is not convex. But according to the author’s numerical experiences,

the objective function is trumpet-shaped—conical but flaring broader and broader.

We conjecture that there is only one local optimal which is thus global optimal. We

also solve this problem when 1 ∈ I theoretically in Chapter 4.

Generally, it is needless to solve this problem to optimal. The optimal solution in

this problem is probably not optimal in practice because the model is idealized. For

practice, we suggest identifying parameters corresponding to a small enough |λ2(A)|,

e.g. less than 0.75, and then adjusting them in field tests.

3.3 Robustness of Systemic Stability

Since |λ2(A)| is a function of the transition matrix A and A has the boarding pa-

rameter b, the systemic stability depends on b which reflects the level of ridership.

Because we do not know b in advance, it is necessary to study the robustness of

systemic stability against the level of ridership.

In this section, we will show that |λ2(A(b))| is insensitive to b. So generally the

systemic stability varies little when the level of ridership changes. However, bus

system with |λ2(A)| close to 1 may turn unstable when the level of ridership changes.

Let µi(b)’s, i = 1, 2, . . . , n, be eigenvalues of A(b), not necessary in the same order

of λi. In other words, µi(b)’s is a permutation of λi’s.

Proposition 3.3.1 [Sensitivity of systemic stability]
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1. For i = 1, 2, . . . , n, it holds that

d|µi(A(b))|
db

=
(1 + b)(z2ix + z2iy)− (1 + b)zix + b(1− zix)

|µi(A(b))|
.

where zix, ziy ∈ R and zix + iziy is the i− th eigenvalue of A(b)) when b = 0.

2. For any positive number ∆b, it holds that

| |µi(A(b))| − |µi(A(b+ ∆b))| | ≤ 2∆b.

Proof. 1. Given γi, ∀i = 1, 2, . . . , n, the characteristic polynomial of A is

p(µ) = p(z(µ))

= (−1− b)n(z(µ)− 1)

n∑
i=2

(1 + γ1 − γi)z(µ)n−i

, (−1− b)n(z(µ)− 1)q(z(µ)) (21)

where z(µ) = µ+b
1+b

. When µ = 1, then z = 1 and hence p(1) = 0. So 1 is an eigenvalue

of A(b) no matter what b is.

Note that the roots of p(z) = 0 are independent of b. Suppose that they are zi,

i = 1, 2, . . . , n and zi = µi(A(b))+b
1+b

where µi(A(b)) is the eigenvalue corresponding to

zi. Then

µi = (zi − 1)b+ zi

Let the real part and imaginary part of zi be zix and ziy, respectively. Then

µi = (zix − 1)b+ zix + i(ziyb+ ziy).

So

|µi| =
√

[(zix − 1)b+ zix]2 + (ziyb+ ziy)2.

and

d|µi|
db

=
(1 + b)(z2ix + z2iy)− (1 + b)zix + b(1− zix)

|µi(A(b))|
.

Note that when b = 0, zi = µi. So zi can be calculated as an eigenvalue of A when

b = 0.
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2. Let b′ = b+ ∆b. It holds that

zi =
µi(A(b)) + b

1 + b
=
µi(A(b′)) + b′

1 + b′
. (22)

This is equivalent to

µi(A(b′)) =
1 + b′

1 + b
µi(A(b)) +

∆b

1 + b′

= µi(A(b)) + ∆b

(
µi(A(b))

1 + b
+

1

1 + b′

)
So

|µi(A(b′))| =
∣∣∣∣µi(A(b)) + ∆b

(
µi(A(b))

1 + b
+

1

1 + b′

)∣∣∣∣
Then

|µi(A(b′))| =

∣∣∣∣µi(A(b)) + ∆b

(
µi(A(b))

1 + b
+

1

1 + b′

)∣∣∣∣
≤ |µi(A(b))|+ ∆b

(
|µi(A(b))|

1 + b
+

1

1 + b′

)
≤ |µi(A(b))|+ ∆b

(
1

1 + b
+

1

1 + b′

)
≤ |µi(A(b))|+ 2∆b

1 + b

≤ |µi(A(b))|+ 2∆b

Similarly,

|µi(A(b))| ≤ |µi(A(b′))|+ 2∆b

So

| |µi(A(b))| − |µi(A(b′))| | ≤ 2∆b

2

Corollary 3.3.1 For any positive number ∆b, it holds that

| |λi(A(b))| − |λi(A(b+ ∆b))| | ≤ 2∆b.
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Proof. During the boarding parameter changes from b to b + ∆b, the ith largest

modulus eigenvalue λi(A) may switch to different µj’s for finite times. Suppose that

λi(A) switches when the boarding parameter is bk, k = 1, 2, . . . ,M , with b = b1 <

b2 < · · · < bM = b+ ∆b. Then

| |λi(A(b))| − |λi(A(b+ ∆b))| |

≤
M−1∑
k=1

| |λi(A(bk))| − |λi(A(bk+1))| |

≤
M−1∑
k=1

2(bk+1 − bk). by 2 in Proposition 3.3.1

≤ 2∆b.

2

Corollary 3.3.1 shows that the change of λ2(A(b)) with b is small. And since b has

a small range, the variation of b has little influence on the value of λ2(A(b)).

According to the first statement in Proposition 3.3.1, when |λ2(A(0))| < 1, it

holds that |z2| < 1 and thus 1− z2x > 0. If z22x + z22y − z2x > 0, then |λ2(A(b))| is an

increasing function of b. This is generally true. This is consistant with the intuition

that as passengers arrival rate is larger, the tendency to bunching is stronger.

Since the parameter b ranges from 0 to 0.2 for the campus bus system at Georgia

Tech, the magnitude of variation of the convergence rate could only be as large as

0.2. If |λ2(A(0))| is less than 0.7, then there is no risk that it exceeds 1 even if b

climbs up to 0.2. But when |λ2(A(b))| is close to 1 when b is small, the headways

may diverge when there are more passengers. For example, the backward headway

control with delay time equal to Dt = 0.5stn yields that |λ2(A(0))| = 0.9406 and

|λ2(A(0.1))| = 1.0239 with 5 buses in the bus route. So when b = 0.1, the headways

diverge.
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3.4 Slack and Existence of Equilibrium Headways

The essence of slack is a mean to speed up a late bus by delaying all the other buses

longer. If there is no slack, late buses have to speed up to avoid bunching, which is

not allowed. So slack serves as a base of the delay time—If a bus should be sped

up, it is delayed for a shorter time as long as the delay time is nonnegative; If a bus

should be slowed down, it is delayed for longer than that when slack is not added.

Since a larger slack implies longer loop time, slack should be as small as possible

as long as its function of speeding up remains effective, or in another word, the desired

delay time is almost always non-negative. In this section, we study how large a slack

should be even if traffic conditions and the level of ridership change.

In target schedule control, slack is the difference between scheduled departure

time and expected arrival time at a control point. In target headway control, slack is

the delay time of the bus at the control point when its current headway equals the

target headway. To be consistent, the definition of slack in our general form is the

bus’s delay time when the headways are in the equilibrium state. Mathematically,

the slack equals

D∗ = γ0 +
∑
i=1n

γis
∗
i =

n(γ0 + 1+b
nv

∑n
i=1 γi)

n(1 + γ1)−
∑n

i=1 γi

Only when this delay time is non-negative, the equilibrium headways exist. It leads

to the following conditions.

Lemma 3.4.1 Equilibrium headways existence constraints:

γ0 +
1 + b

nv

n∑
i=1

γi ≥ 0 (23)

n(1 + γ1)−
n∑
i=1

γi > 0

Proof. Suppose that the numerator is non-positive and the denominator is negative.

Since the stability of the system is invariant of γ0, we can keep increasing γ0 and fix

other γi’s so that D∗ is still non-negative and the stability of the system does not
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change. Since the numerator is non-positive and is an increasing function of γ0, it

will become positive for some γ0. But since the denominator is still negative, D∗

becomes negative, contradicting the fact that D∗ is non-negative. So the numerator

is non-negative and the denominator is positive. Inequality (23) follows. 2

The second constraint is a stronger condition than that in Proposition 3.2.1. If

this constraint is not satisfied, the equilibrium headways do not exist in the real world.

The first constraint gives a lower bound of γ0. The lower bound is a function

of b and v. In practice, we do not know the exact values of b and v. We can only

obtain some confidence intervals of them using daily data. Assume the intervals are

[vl, vu] and [bl, bu]. To guarantee that the equilibrium headways almost always exist,

Inequality (23) becomes

γ0 ≥ −
1 + b

nv

n∑
i=1

γi, ∀v ∈ [vl, vu], b ∈ [bl, bu]. (24)

This implies that

γ0 ≥ max
v∈[vl,vu],b∈[bl,bu]

{
−1 + b

nv

n∑
i=1

γi

}
(25)

In implementation, we suggest setting γ0 to be

mu +mc (26)

where mu is an upper bound for

max
v∈[vl,vu],b∈[bl,bu]

{
−1 + b

nv

n∑
i=1

γi

}
and mc is a constant. The mc amount of time is not only used for compensating

the time for management issues such as break of drivers and communication between

supervisors and drivers, but enables extra delay time incurred by irregular headways

as well.

Since we determine the maximum term according to the worst case, we are adding

more delay time than necessary in general. Larger slack implies larger equilibrium

headways. Consequently, the service frequency decreases.
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The maximum term has different robustness when
∑n

i=1 γi has different signs:

1. If
∑n

i=1 γi > 0,

max
v∈[vl,vu],b∈[bl,bu]

{
−1 + b

nv

n∑
i=1

γi

}
= −1 + bl

nvu

n∑
i=1

γi.

This term is always negative. So mu = 0 is an upper bound of it no matter

what b and v are even they are outside their confidence intervals. However, since

we determine mu according to the worst case, we are adding more delay time

than necessary in general. Backward headway control scheme [11] is an example

of this kind.
∑n

i=1 γi > 0 implies that the control scheme emphasizes more on

“slowing down” an early bus to help its following bus catch up. “Slowing down”

requires small slack.

2. If
∑n

i=1 γi < 0,

max
v∈[vl,vu],b∈[bl,bu]

{
−1 + b

nv

n∑
i=1

γi

}
= −1 + bu

nvl

n∑
i=1

γi.

This term increases as v decreases or b increases and it has no upper bound if v

has no lower bound. We can determine mu based only on some high percentage

quantile of the parameters. Once v becomes too small to be out of the confidence

interval, for example there is a snow storm, the equilibrium headways do not

exist and the bus system becomes unstable. Also like the previous case, since

we determine mu according to almost the worst case, we are adding more delay

time than necessary in general. Daganzo’s control scheme [21] is an example

of this kind.
∑n

i=1 γi < 0 implies that the control scheme emphasizes more on

“speeding up” a late bus. But as discussed before, “speeding up” a bus in a

setting that only allow delaying buses at the control points require large slack.

3. If
∑n

i=1 γi = 0,

max
v∈[vl,vu],b∈[bl,bu]

{
−1 + b

nv

n∑
i=1

γi

}
= 0.
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So we suggest setting mu = 0. “Prefol” policy [68] is an example of this kind.

Variation of bus velocity or the level of ridership does not influence the maxi-

mum term at all. The balance of “speeding up” and “slowing down” leads to

efficient utilization of slack.

Summary

In the setting that only allows delaying buses at control points, slack is a mean

to speed up a late bus by delaying all the other buses longer. The more a control

scheme emphasizes on “speeding up”, the larger slack it requires.

Considering the uncertainty of traffic conditions and the level of ridership, slack

is determined according to the worst case. Control schemes that emphasize more on

“speeding up” a late bus or “slowing down” an early bus have unnecessarily too large

slack in general. And the former has the risk of leading to unstable headways. The

balance of “speeding up” and “slowing down” leads to the most efficient utilization

of slack.

3.5 Systemic Stability and Headway Forecasting Accuracy

In all the analysis above, we assume that all the headway information is known

precisely. But in implementation, headways are forecasted so errors always exist. In

this section, we study how the accuracy of headway forecasts affects the stability

of the bus system. We will consider bounded unbiased forecasts of headways and

conclude that headways will be stabilized within some intervals instead of converging

to a fixed point. The length of the intervals depends on the number of headways

forecasted and the bound of the forecasting errors.

Suppose that the forecast of hti, denoted ĥti, is unbiased with errors, denoted δti ,
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bounded by a constant δ for all i and t. Then the delay time becomes

Dt = γ0 +
n∑
i=1

γiĥti

= γ0 +
n∑
i=1

γi(h
t
i + δti)

= γ0 + (1 + b)
n∑
i=1

γis
t
i + (1 + b)

n∑
i=1

γiδ
t
i

Let

εt = (1 + b)
n∑
i=1

γiδ
t
i .

Then εt is bounded by ε where

ε = (1 + b) δ
n∑
i=1

|γi|. (27)

The delay time equals

Dt = γ0 + (1 + b)
n∑
i=1

γis
t
i + εt

and the bus dynamics become

st+1
1 = stn + b(stn − st1)− (1 + b)

n∑
i=1

γis
t
i − γ0 − εt

st+1
2 = st1 + b(st1 − st2) + (1 + b)

n∑
i=1

γis
t
i + γ0 + εt

st+1
i = sti−1 + b(sti−1 − sti) ∀i = 3, . . . , n.

Its vector form is

st+1 = Ast + r + εt (28)

where εt = [−εt, εt, 0, . . . , 0]T .

We show in the following theorem that if the second largest eigenvalue of A is

less than 1, the headways will be stablized in a bounded interval containing the fixed

point s∗ of the deterministic system

st+1 = Ast + r. (29)

and the bound is proportional to the magnitude of the errors.
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Theorem 3.5.1 In bus dynamics (28), if |λ2(A)| < 1 and |εt| ≤ ε, then for any

positive η, there exists an large enough integer N such that for any t > N , it holds

that

‖st − s∗‖ ≤ η +
C ε

1− |λ2(A)|

where C is a function of A and s∗ is the equilibrium headways of the bus dynamic-

s (29).

Proof. When |λ2(A)| < 1, we can transform the non-homogeneous equations into

homogeneous ones like what was done in Step 2 in the proof of Theorem 3.2.2:

yt+1 = Ayt + εt

We transform A to its Jordan form—There exists an invertible matrix V such that

A = V −1JV.

Since |λ2(A)| < 1, we assume that without loss of generality the first block of J is 1

and the other blocks have diagonal entries with magnitude less than 1:

J =

(
1 0

0 J1

)

Let V be  − v1 −
...

− vn −


Since the first row of V is the row eigenvector corresponding to the eigenvalue 1, v1

is in span([1, 1, . . . , 1]):

v1 = c[1, 1, . . . , 1].

Since
∑n

i=1 ε
t
i = 0, the first entry of V εt is zero. Let zt be the n−1 vector by deleting

the first entry from V εt. Then

JV εt = J1z
t
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So

‖JV εt‖2 = ‖J1zt‖2 ≤ ‖J1‖2 |zt| = ‖J1‖2 |V εt| ≤ ‖J1‖2 ‖V ‖2 |εt| ≤ ‖J1‖2 ‖V ‖2 ε

The explicit expression of yt is

yt = Aty0 +
t−1∑
τ=0

Aτεt−τ

So

yt − y∗ = Aty0 − y∗ +
t−1∑
τ=0

A
τ
εt−τ

Replacing A with V −1JV , we have

yt − y∗ = Aty0 − y∗ +
t−1∑
τ=0

V −1JτV εt−τ

Since |λ2(A)| < 1, it holds that

‖J1‖2 = |λ2(A)| < 1.

Then we have

‖yt − y∗‖2 = ‖Aty0 − y∗ +
t−1∑
τ=0

V −1JτV εt−τ‖2

≤ ‖Aty0 − y∗‖2 + ‖
t−1∑
τ=0

V −1JτV εt−τ‖2

≤ ‖Aty0 − y∗‖2 +
t−1∑
τ=0

‖V −1‖2 ‖JτV εt−τ‖2

≤ ‖Aty0 − y∗‖2 +
t−1∑
τ=0

‖V −1‖2 ‖Jτ1 ‖2 ‖V ‖2 |εt−τ |

= ‖Aty0 − y∗‖2 +
t−1∑
τ=0

‖V −1|2 |λ2(A)|τ ‖V ‖2 |εt−τ |

≤ ‖Aty0 − y∗‖2 +

(
t−1∑
τ=0

|λ2(A)|τ
)
‖V −1‖2 ‖V ‖2 ε

≤ ‖Aty0 − y∗‖2 +
1

1− |λ2(A)|
‖V −1‖2 ‖V ‖2 ε
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Since

lim
t→∞
‖Aty0 − y∗‖2 = 0,

letting C = ‖V −1‖2 ‖V ‖2 we finish the proof. 2

Combining Theorem 3.5.1 and Equation (27), we find that the final traveling time

deviation is proportional to the bound of headway forecast. And it is likely that the

deviation is larger if more headway forecasts are used.

3.6 Process to Determine a Control Scheme

In this chapter, we propose a class of control schemes that affinely depends on real-

time headways. We discuss equilibrium headways, systemic stability and its sensitivi-

ty to level of ridership, how to determine slack, and the impact of headway forecasting

accuracy on systemic stability. Here is the process to determine the parameters of a

control scheme:

1. Determine which headways to use, say htj, j ∈ U ⊆ {1, 2, . . . , n}. Then set

γi = 0, ∀i ∈ {1, 2, . . . , n}\U . [By flexibility of the general form, Section 3.1]

2. Determine whether the slack is independent of bus velocity and the level of

ridership. If yes, set constraint
∑n

i=1 γi = 0. [By robustness of slack, Section

3.4]

3. Obtain the value of γi, i = 1, 2, . . . , n by optimizing the systemic stability. [By

self-equalization of headways, Section 3.2]

4. Obtain the value of γ0 using Equation (26). [By robustness of slack, Section

3.4]

3.6.1 An Example: Backward Headway Control

The backward headway of a bus refers to the headway of its following bus. Bartholdi

and Eisenstein [11] proposed a self-coordinating control scheme that only depends on
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backward headway, but they did not provide a way to determine the coefficients and

any quantitative robustness analysis. We use this backward headway control scheme

as an example to show how to use our framework.

Step 1: Determine the form of delay time

Suppose there are 5 buses in the route. In this setting, only ht5 is used. So we

have γ1 = γ2 = · · · = γ4 = 0. The formula of delay time is

Dt = γ0 + γ5h
t
5.

Step 2: Determine whether the slack depends on the parameters

A “Yes” leads to that γ5 = 0. In this case, we are not using the backward headway

information and the delay time is a constant γ0. Headways under this control will

diverge. So say “No”.

Step 3: Determine γi, i = 1, 2, . . . , 5

First, we estimate the boarding parameter b. Suppose b = 0.02. Figure 4 displays

the relation between |λ2(A(b))| and γ5. When γ5 < 0.1 or γ5 > 0.92, |λ2(A(b))| ≥ 1.

It implies that the backward control scheme definitely fails and results in bunching.

The smallest |λ2(A(b))| is achieved when γn = 0.58, so we set γn = 0.58 which

optimizes the systemic stablity. This process shows the simplicity and strength of our

framework.
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Backward Headway Control

Figure 4: Relation between the convergence rate |λ2(A)| and γn when b = 0.02 and
n = 5

The smallest |λ2(A(b))| is 0.9567 which is close to 1. It implies slow convergence

of headways. When b increases to 0.07, |λ2(A)| > 1, which implies that headways

diverge and lead to bunching under any backward headway control.

Step 4: Determine γ0

According to Equation (26),

γ0 = mu +mc

Since
∑5

i=1 γi > 0, we set mu = 0 according to Section 3.4. The delay time at the

equilibrium state is

D∗ =
5mc + 1+b

v
γ5

5− γ5
.

Service provider can set mc to be an appropriate value so that this delay time is

enough for bus drivers’ break.
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CHAPTER IV

A PRACTICAL CONTROL SCHEME

The analysis framework developed in Chapter 3 serves as a tool to select effective and

robust control schemes. In this chapter, we propose a practical control scheme that

has some desired properties. This control scheme is a hybrid of two simple control

schemes: Threshold control and “Prefol”.

We show that headways under the threshold control self-equalize fastest among

all control schemes in the general class, but the price for robustness is high. In

contrast, the stability of the bus system under “Prefol” is almost independent of traffic

conditions and the level of ridership, but headways self-equalize slower. We combine

both controls so that the hybrid control scheme inherits fast headway self-equalization

from threshold control and small slack to maintain robustness from “Prefol”.

4.1 Threshold Control

Threshold control is the binary target headway control described in Section 1.1.2 in

the literature review. In binary target-headway control, the bus at the control point

is not delayed if its forward headway is larger than a predetermined static threshold

which may be different from the target headway, otherwise it is delayed until its

forward headway equals the threshold.

We call “forward headway control” the control that depends only on the forward

headway. We start with forward headway control and will conclude that thresh-

old control has the fastest headway convergence among all forward headway control

schemes.

We assume that the forward headway is the only knowledge we have, so the delay
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time has the following form:

Dt = γ0 + γ1h
t
1

4.1.1 Headway Self-Equalization

In this part, we concentrate on studying the convergence rate of the headway self-

equalization process. We determine γ1 by minimizing the convergence rate, |λ2(A(b))|.

It is interesting to find that γ1 is always equal to −1 when it minimizes the

convergence rate no matter what b and n are. Figure 5, 6 and 7 display the relations

between |λ2(A(b))| and γ1 for different b and n.
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Figure 5: Relation between |λ2(A)| and γ1 when n = 3
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Figure 6: Relation between |λ2(A)| and γ1 when n = 6
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Figure 7: Relation between |λ2(A)| and γ1 when n = 12

Mathematically, when γ1 = −1, the transition matrix becomes

A =


1 1 + b

0 −b
1 + b −b

. . . . . .

1 + b −b


n×n

It is observed that the eigenvalues of the transition matrix are 1 of multiplicity 1 and

−b of multiplicity n− 1. So the modulus of the second largest eigenvalue is

|λ2(A(b))| = | − b| = b,

and thus the convergence rate is b which is very small, implying extremely fast con-

vergence and strong resistance to bunching.

When γ1 = −1, the delay formula becomes

Dt = γ0 − ht1

Surprisingly, this is exactly the form of delay time of threshold control where γ0 is the

threshold. Intuitively, it implies that we delay every bus at the control point until the

preceding bus has left the control point for γ0 amount of time. Hence, the headway

of the first bus always has the same value γ0. This value tends to remain stable till
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the bus comes back to the control point again because buses with similar headways

spend similar amount of time on boarding passengers.

4.1.2 Fastest Convergence Rate Overall

We conjecture that the forward headway control scheme with γ1 = −1 converges

fastest among all linear control schemes even if more headway information is available.

Mathematically, this is equivalent to the statement:

Conjecture 4.1.1 [γ1, γ2, . . . , γn] = [−1, 0, . . . , 0] minimizes |λ2(A)|.

Two facts support this conjecture.

1. |λ2(A)| = b. b is a small number in the possible range of |λ2(A)|.

2. From the discussion above, we know that when γi = 0, i = 2, 3, . . . , n, |λ2(A)|

is minimized at γ1 = −1. So ∂|λ2(A)|
∂γ1

∣∣∣
[γ1,γ2,...,γn]=[−1,0,...,0]

= 0. We claim that

∂|λ2(A)|
∂γi

∣∣∣
[γ1,γ2,...,γn]=[−1,0,...,0]

= 0, i = 2, 3, . . . , n. So [γ1, γ2, . . . , γn] = [−1, 0, . . . , 0]

satisfies the first order optimality condition.

Claim 4.1.1

∂|λ2(A)|
∂γi

∣∣∣∣
[γ1,γ2,...,γn]=[−1,0,...,0]

= 0, i = 2, 3, . . . , n.

Proof. The eigenvalues of A is the roots of Equation (21). Hence for any

i ∈ {2, 3, . . . , n}, when γ1 = −1 and γj = 0, ∀j ∈ 2, 3, . . . , n\{i}, the eigenvalues

except 1 satisfy

(−1− b)
(
−b− λ
−1− b

)
+ γi

(
−b− λ
−1− b

)n−i
= 0.

It follows that [(
−b− λ
−1− b

)i−1
− γi

1 + b

](
−b− λ
−1− b

)n−i
= 0

So there are n− i solutions that are equal to −b. They are constant. The derivative

of them is 0. For the other i− 1 solutions that satisfy(
−b− λ
−1− b

)i−1
− γi

1 + b
= 0,
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it holds that

−b− λ
−1− b

=

(
γi

1 + b

) 1
i−1

e
2kπ
i−1

i

So

λ = (1 + b)

(
γi

1 + b

) 1
i−1

e
2kπ
i−1

i − b.

Therefore,

dλ

dγi

∣∣∣∣
γi=0

=
1

i− 1

(
γi

1 + b

) 1
i−1
−1

e
2kπ
i−1

i

∣∣∣∣∣
γi=0

= 0.

This gives the wanted result.

∂|λ2(A)|
∂γi

∣∣∣∣
[γ1,γ2,...,γn]=[−1,0,...,0]

= 0, i = 2, 3, . . . , n.

2

Even if the conjecture is not true, the convergence rate of the headways with the

forward headway control scheme is fast enough.

4.1.3 Equilibrium Headways

According to Equation (19), when γ0 = −1, the equilibrium headways are

h∗1 +D∗ = h∗i = γ0, ∀i = 2, 3, . . . , n.

where the delay time in the equilibrium state is

D∗ = nγ0 − (1 + b)
1

v
.

Since D∗ ≥ 0, it holds that

γ0 ≥ (1 + b)
1

nv

Since 1+b
v

is the loop time of a bus, this addresses that γ0 is not smaller than the loop

time divided by the number of buses. Intuitively, once the opposite occurs, there is

at least one bus falling behind and it can never catch up with the others. Then this

forward headway control scheme fails and the bus service is not regular.
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The term (1 + b) 1
nv

depends on the average velocity and the number of the buses.

Smaller velocity makes it larger. So a lower bound of velocity is the key factor to

determine γ0. On the other hand, if buses breaking down is taken into account, then

a lower bound of number of buses is also crucial. In order to avoid the risk of the

system breaking down, γ0 should be determined by lower bounds of the velocity and

the number of buses. If so, however, γ0 is too large for most of the time when the

velocity and the number of buses is not that small, which makes delay time too large

and wastes bus capacity.

For example, suppose that v ranges from vlb to vub and n can be 5 or 4. Also

suppose that vlb = 0.8vav and vub = 1.2vav where vav is the average. Then γ0 should

not be smaller than (1 + b) 1
4vlb

. Consider the ideal case that b = 0 and there is no

disturbance. Let γ0 be exactly 1
4vlb

. In this way, the equilibrium delay time equals 0

when v = vlb and n = 4, but can be as large as 51
4vlb
− 1

vub
= 351

48vav
when v = vub and

n = 5. The actual loop time in this case is only 1
vub

= 51
12vav

, which is only 57% of

351
48vav

. This is the ideal case. In fact, γ0 is set larger to prevent the damage caused

by disturbance by random events like traffic lights. Thus more time is wasted on

lowering the risk of irregular service.

4.1.4 Simplicity

The threshold control is simple in three aspects:

1. From the prospective of information requirement, only the forward headway of

the bus at the control point is needed. A watch or a clock is enough to catch

this information. So the capital cost and maintenance cost is low.

2. From the prospective of control scheme design, there is only one coefficient to

determine, namely γ0. And this is exactly the equilibrium headway we want.

The determination of γ0 can be obtained from daily data. We can set different

values for γ0 for different time period throughout a day. Generally, morning
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peaks and evening peaks require larger values than early morning and midday.

3. From the prospective of scalability, the forward headway control scheme can be

easily extended to bus service with more than one control point. Just use the

same formula for all control points. Control points work as processors in series,

so the convergence rate becomes |λ2(A)|m where m is the number of control

points. And the equilibrium headways remain the same.

4.1.5 As a Component of Hybrid Control Schemes

In this part, we show that the fast convergence property and predictable equilibrium

headway enable the threshold to be an component in powerful hybrid control schemes.

Suppose that there is another convergent control scheme C1 with delay time being

Dt
1 that produces equilibrium headway s∗. Let a hybrid control scheme have the

following delay time:

Dt = max{Dt
1, γ0 − ht1}. (30)

Recall that the equilibrium headway of threshold control is γ0. Two possible scenarios

would happen:

1. γ0 < s∗. Then after n iterations most of the headways will be greater than γ0 .

The subsequent dynamics will mainly be controlled by Dt
1 and drive headways

to converge to s∗. So the convergence rate mainly depends on C1. The threshold

control component plays a role in speeding up the convergence process at the

beginning by imposing a planned headway.

2. γ0 ≥ s∗. Then for most of the time, γ0−ht1 ≥ Dt
1 and thus the forward headway

control component is activated. The headways converge to γ0 with convergence

rate b.

This hybrid control schemes utilizes the fast convergence property of threshold

control and remedy its defect of the large slack requirement to be robust. Suppose
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that v ranges from vl to vu and remains around vm for most of the time. Then it is

advisable to set γ0 slightly greater than 1+b
nvm

so that for most of the time the headways

converge fast to γ0. And the other component of the hybrid scheme handles the

situation when γ0 <
1

nvm
.

4.1.6 Conclusion

Threshold control has serval properties:

1. It is simple and economical in implementation. It requires only forecast of

forward headways and statistics of bus loop time.

2. The headways with it converge exponentially fast with convergence rate b.

3. It can serve as a component in a hybrid control scheme.

4. It is not easy to determine the target headway. If the target headway is too

large, it is a waste of slack. If it is too small, headways may not self-equalize.

4.2 Prefol Control

The name “Prefol” refers to the combination of “previous” and “following”. “Pre-

fol” was first proposed by Turnquist and Bowman as an approximate solution to a

stochastic programming minimizing average waiting time [68]. They showed that this

scheme is effective when consecutive headways have negative covariance and suggest

applying this scheme at bus stops which have large arrival rate and few on-board

passengers.

In this section, we further study this scheme. We pick out the one that drives

headways equalize fast.

4.2.1 Convergence Rate

In our standard approach, we determine γ1 and γn by minimizing |λ(A)|. However,

the minimizer is [γ1, γn] = [−1, 0]. The corresponding form of delay time is exactly

64



that of threshold control. But threshold control suffers from the variation of bus

velocity. When the bus velocity becomes small, the predetermined target headway

may be too small to result in bunching. When the bus velocity is large, the target

headway may be too large to result in waste of capacity. In Section 3.4, we show that

when
∑n

i=1 γi = 0, the equilibrium delay time is independent of bus velocity. So we

add this constraint to the optimization problem.

min
γ1,γn

|λ2(A)|

s.t. γ1 + γn = 0

Here is an example. When n = 5 and b = 0.02, Figure 8 displays the relation

between |λ2(A(b))| and γn. When γn < 0.05 or γn > 0.86, we have |λ2(A(b))| ≥ 1. It

implies that the Prefol control scheme definitely fails and results in bunching. The

smallest |λ2(A(b))| is achieved when γn = 0.49. When γn < 0.49, |λ2(A(b))| is an non-

increasing function of γn; when γn > 0.49, |λ2(A(b))| is an non-decreasing function of

γn. So when n = 5 and b = 0.02, we can just set γn = 0.49. This process shows the

simplicity and strength of our analysis.
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Figure 8: Relation between the convergence rate |λ2(A)| and γn when b = 0.02 and
n = 5

The smallest |λ2(A(b))| is 0.8358 which is large compared to that of the forward

headway control scheme and small compared to that of the backward headway control

scheme.

4.2.1.1 When Level of Ridership is Unknown

When we determine the value of γn by optimizing |λ2(A)|, we assume that we know

the value of b exactly. However, there exists error when we estimate b. In practice,

we only know the range of b, say from bl to bu. To determine the value of γn, we can

minimize the maximum value of |λ2A| over all b ∈ [bl, bu].

min
γn

max
bl≤b≤bu

|λ2(A(b))|

s.t. γ1 = −γn
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Figure 9: Relation between the convergence rate |λ2(A)| and γn when n = 5

Suppose that n = 5 and 0.01 ≤ b ≤ 0.07. The solution to the corresponding

robust problem is γn = 0.48. Figure 9 displays the relation between |λ2(A(b))| and

γn with different values of b. In this case, |λ2(A(b))| is an increasing function of b for

any fixed γn. So actually the robust optimization problem can be simplified to be

min
γn

|λ2(A(bu))| (31)

s.t. γn = −γ1

In fact, a larger b results in higher tendency to bunch, and so it is harder for a

control scheme to handle. So generally we can solve the optimization problem (31)

to obtain the value of γn.

4.2.2 Equilibrium Headways and Delay Time

According to Equation (19), the stationary headways are

h∗1 +D∗ = h∗i =
(1 + b)(1 + γ1)

1
v

+ γ0

n(1 + γ1)
, ∀i = 2, 3, . . . , n.
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where the delay time

D∗ =
γ0

1 + γ1

The equilibrium delay time is positive as long as γ0 is positive.

More importantly, the equilibrium delay time is totally determined by the param-

eters we set. Both the bus velocity and the level of ridership have no influence on it.

So there is never a waste of capacity. We don’t need to consider changing γ0 from

time to time. The Prefol control scheme is unique among all control schemes that

linearly depend on local headways in the sense of owning this celebrated independent

property, because γ1 + γn = 0 only holds here.

4.2.3 Simplicity

The “Prefol” is simple in three aspects:

1. From the prospective of information requirement, only the forward and back-

ward headways of the bus at the control point is needed. A few beacons installed

close to the control point along the bus route are enough to catch this informa-

tion precisely.

2. From the prospective of control scheme design, γn can be easily solved by mini-

mizing the convergence rate. The convergence rate with this parameter is robust

against the variation of level of ridership. Also, once γ0 is specified, there is no

need to change it again. The equilibrium headway is invariant to the variation

of both bus velocity and the level of ridership.

3. From the prospective of scalability, the “Prefol” can be easily extent to bus

service with more than one control points. Just use the same formula for all

control points. Control points work as processors in series. So the convergence

rate becomes |λ2(A)|m where m is the number of control points.
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4.3 A Practical Control Scheme

“Prefol” and threshold are perfectly complementary. The bus system under threshold

control has fastest convergence rate, but it is sensitive to the variation of bus velocity.

The bus system under “Prefol” has comparatively slower convergence rate, but it is

adaptive to the variation of bus velocity. The hybrid scheme made of them retains

their advantages and discards their disadvantages.

The delay time of the hybrid scheme

Dt = max{γ0 + γ1h
t
1 + γnh

t
n, γ

′
0 − ht1} (32)

According to the analysis in Section 4.1.5, the headways with this hybrid scheme

self-equalize from any initial values.

4.4 Comparison on a Simulated Route

In this section, we examine the performances of several control schemes in a realistic

setting. We compare bus systems under four control methods—target schedule con-

trol, forward headway control [21], backward headway control [11] and the practical

hybrid control we propose in Section 4.3—on a simulated bus route. We show that

the practical hybrid control scheme outperforms the others.

Bus bunching is complained a lot at Chicago Transit Authority. Route 63 is a

typical example. This route travels eastbound to Stony Island Avenue and back

to Midway Airport along 63rd street. The entire loop is 17.75 miles long (28.57

kilometers). Our simulation is based on CTA data collected from GPS systems and

automatic passenger counters on each bus. Route 63 has almost 80 stops, of which

the CTA monitors GPS data from only 18, including the two control points, one each

at the easternmost and westernmost ends of the route. The historical travel times

between key stops is well-described as the sum of uniformly distributed times for each

intervening city block (1/8 mile or 0.2 kilometers in length).

69



We matched the simulated passenger arrivals and departures with the historical

daily patterns by proceeding as follows: From the data we set the total arrivals to

the system every half hour over a 14 hour period, from 04:00 to 18:00. Arrivals and

departures at key bus stops vary over the day according to four major time periods:

AM Early, AM Peak, Midday, and Evening Peak (Figure 10). The mean arrival rate

for each particular bus stop during a given time period was estimated by sampling

from an exponential distribution with mean set to the mean number of boardings

observed during that period. Dwell times at bus stops were computed based on the

model of Milkovits (2008) which is nonlinear in the number of boarding, alighting

and on-board passengers.

Figure 10: Arrival rates of passengers to CTA Route 63, showing morning and
evening surges

We simulated the CTA route for a day under normal conditions and selected
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the best performing parameters under each of four control schemes: target schedule

control, forward headway control, backward headway control and the practical hybrid

control we propose in Section 4.3. All the control schemes utilize four control points.

In the early morning, buses run fast and there are few passengers. This period is

ideally used to evenly spread out the buses along the route. We use the average and

the coefficient of variation of the backward headway of the bus that just arrives at

the first control point as performance measures.

When we choose the best parameters ex post facto for the control schemes, the

practical hybrid control performed the best. Average headways under all the control

schemes are similar (Figure 11) but the coefficient of variations of headways under

the practical hybrid control is the smallest in all periods (Figure 12).

Figure 11: Average headways
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Figure 12: Coefficient of variations of headways

Of course, one cannot select parameters ex post facto in practice. The control

scheme must be able to react to the shocks and variances on each day. To test this,

we fixed the parameter settings, but re-ran the simulation to mimic a reduction in

travel velocity by 10%, as might occur in rainy days.

Average headways under all the controls are similar (Figure 13) except that under

forward headway control scheme the headways blew up in the evening peak. The

coefficient of variations of headways under the practical hybrid control again is the

smallest in all periods (Figure 14). This shows the robustness of the bus system under

it.
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Figure 13: Average headways in rainy day

Figure 14: Coefficient of variations of headways in rainy day
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APPENDIX A

PROOF

We show the proof of Theorem 3.2.2 when A is not diagonalizable here:

Theorem A.0.1 If the modulus of the second largest eigenvalue of A, |λ2(A)|, is less

than 1, then

1. there exists unique stationary traveling times.

2. Given any initial traveling times, the traveling times converge.

3. The equilibrium traveling times are the stationary traveling times s∗ in Propo-

sition 3.2.1, and

4. There exists a constant C such that ‖Ats0 − s∗‖2 ≤ C|λ2(A)|t,∀t > n when A

is not diagonalizable.

Proof. Both Step 1 and 2 remain the same. Here is the step 3 in the proof of

Denote the stationary yt by y∗. Then y∗ = s∗ + q and y∗ = Ay∗. So y∗ is an

eigenvector of A corresponding to the eigenvalue 1.

Denote the distinct eigenvalues ofA by λ2(A), λ3(A), . . . , λn(A) such that |λ2(A)| ≥

|λ3(A)| ≥ · · · ≥ |λm(A)| corresponding to generalized eigenvectors {v21, v22, . . . , v2k2},

{v31, v32, . . . , v3k3}, . . . , {vm1, vm2, . . . , vmkm} such that Avi1 = λi(A)vi1 and Avij =

λi(A)vi,j−1, ∀i = 2, 3, . . . ,m and ∀j = 2, 3, . . . ,mi. ki is the algebraic multiplicity of

λi(A), ∀i = 2, 3, . . . ,m.

Since ki < n, ∀i = 2, 3, . . . ,m, it holds that Anvij = λni (A)vi1, ∀i = 2, 3, . . . ,m

and ∀j = 1, 2, . . . , ki.
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We write y0 in terms of y∗ and vij

y0 = a1y
∗ +

∑
i,j

aijvij

Left-multiplying A for n times on both sides, we have

Any0 = Ana1y
∗ + An

∑
i,j

aijvij = a1y
∗ +

∑
i

aijλ
n
i (A)vi1 (33)

Again left-multiplying A for t−n(> 0) times on both sides of Equation (33), we have

Aty0 = a1y
∗ +

∑
i,j

aijλ
t
i(A)vi1 (34)

Since |λi(A)| < 1, ∀i = 2, 3, . . . ,m, it follows that limt→∞ λ
t
i(A) = 0, ∀i = 2, 3, . . . ,m.

Hence the limit of the right hand side of Equation (34) exists. So does the left hand

side. So lim→∞A
ty0 = y∗ by uniqueness of the stationary traveling times. Taking

limit for both sides of Equation (34), we get a1 = 1. So

Aty0 = y∗ +
∑
i,j

aijλ
t
i(A)vi1

It follows that

‖Aty0 − y∗‖2 = ‖
∑
i,j

aijλ
t
i(A)vi1‖2

≤ |λ2(A)|t
∑
i,j

‖aijvi1‖2

≤ C|λ2(A)|t

for some C.

Since Aty0 − y∗ = At(y0 − y∗) = At(s0 − s∗) = Ats0 − s∗, it holds that

‖Ats0 − s∗‖ ≤ C|λ2(A)|t.

So given any initial traveling times, the traveling times converge to the equilibrium

traveling times which are s∗.

2

75



REFERENCES

[1] Abkowitz, M. and Tozzi, J., “Transit route characteristics and headway-
based reliability control,” Transportation Research Record, no. 1078, 1986.

[2] Abkowitz, M., Eiger, A., and Engelstein, I., “Optimal control of headway
variation on transit routes,” Journal of Advanced Transportation, vol. 20, no. 1,
pp. 73–88, 1986.

[3] Abkowitz, M. and Engelstein, I., Methods for maintaining transit service
regularity. No. 961, 1984.

[4] Abkowitz, M. D. and Lepofsky, M., “Implementing headway-based reliabil-
ity control on transit routes,” Journal of Transportation Engineering, vol. 116,
no. 1, pp. 49–63, 1990.

[5] Adamski, A. and Turnau, A., “Simulation support tool for real-time dis-
patching control in public transport,” Transportation Research Part A: Policy
and Practice, vol. 32, no. 2, pp. 73–87, 1998.
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brid predictive control for real-time optimization of public transport systems
operations based on evolutionary multi-objective optimization,” Transportation
Research Part C: Emerging Technologies, vol. 18, no. 5, pp. 757–769, 2010.

[21] Daganzo, C. F., “A headway-based approach to eliminate bus bunch-
ing: Systematic analysis and comparisons,” Transportation Research Part B:
Methodological, vol. 43, no. 10, pp. 913–921, 2009.

[22] Daganzo, C. F. and Pilachowski, J., “Reducing bunching with bus-to-bus
cooperation,” Transportation Research Part B: Methodological, vol. 45, no. 1,
pp. 267–277, 2011.
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