
FUNDAMENTALS OF DIFFUSION-BASED

MOLECULAR COMMUNICATION

IN NANONETWORKS

A Dissertation

Presented to

The Academic Faculty

By

Massimiliano Pierobon

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in

Electrical and Computer Engineering

School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2013

Copyright© 2013 by Massimiliano Pierobon



FUNDAMENTALS OF DIFFUSION-BASED

MOLECULAR COMMUNICATION

IN NANONETWORKS

Approved by:

Dr. Ian F. Akyildiz, Advisor

Ken Byers Chair Professor in Telecommunica-

tions, School of ECE

Georgia Institute of Technology

Dr. Faramarz Fekri

Professor, School of ECE

Georgia Institute of Technology

Dr. Albert B. Frazier

Professor, School of ECE

Georgia Institute of Technology

Dr. Craig R. Forest

Assistant Professor, School of Mechanical En-

gineering

Georgia Institute of Technology

Dr. Raghupathy Sivakumar

Professor, School of ECE

Georgia Institute of Technology

Date Approved: August 7, 2013



To my father, for his faith in my capabilities, his life lessons, and his handed-on experi-

ences, and for his strength and patience while fighting the threatens to his health.

To my mother, for her endless care and love for her family, and for her continuous

support over my many weaknesses, where she exercised great and endless patience.

To them, who gave me the greatest love, support, and courage I could ever ask over

this difficult choice of being a free thinker, and coming to the New World to pursue my

happiness.

For they never hesitated any single moment to give me the strength to leave my mother-

land and start anew, elsewhere, far from their arms.

To them I dedicate this work and all my future endeavors.



ACKNOWLEDGMENTS

I would like to express my heartiest thanks to Prof. Ian F. Akyildiz, who has been not only

my Ph.D. advisor, but also a mentor and a second father for me, from the very moment I

came to Atlanta with my heart full of hope and my mind as wild as a maniac’s mirth. He

truly shaped my will and my strength, he showed me the right path, he taught me how to

focus, concentrate, believe in my potential, and he made me achieve what I would have

never thought. The road to his Olympus is steep, and full of ordeals, but there he was

waiting for me, at the end of the trail, sure of my final success. Now I am changed, I

feel stronger, more confident of who I am, what I want, and where I am going, and this is

primarily thanks to Prof. Ian F. Akyildiz, to whom I owe a lot.

My heartiest thanks go also to my travel buddy, Josep Miquel, with whom I shared

these years of intense work, and even more intense friendship. Together we walked the

trail in the BWN Lab, and we also shared most of our ”limited” free time, whether it was

for cooking our meals, for praying our God, or for exchanging our ideas. Through the years

we became like brothers, and I feel the physical distance of our future commitments will

not untangle the strong bound we built.

My sincere and warm thanks go also to the whole BWN Lab family, to past and current

members, Ph.D. students, visitors, and Post-Docs, with whom I shared every weekday of

my life in these years. Amazing personalities, sincere friendships and open hearts were the

true gifts I received from them. People I will never forget in my entire life, whose origins

span the worldwide map from North to South, from East to West. The meeting of all these

culture and the vivid relationships among us all were a true consolation for me, and many

of the bounds we built will surely last forever.

Very special and warm thanks go also to the BWN Lab ”extension” in UPC, Barcelona,

with whom I spent a part of my summer Ph.D. studies, and whose warmth and friendship

made me really feel at home. I will never forget the time spent in that amazing city with

iv



even more amazing people, and surely I will work to make the summertime with N3Cat a

reality again in the near future.

My sincere and special thanks go also to the people I collaborated with while working

on the MoNaCo project. I had the pleasure to work with amazing faculty, Post-Docs and

students with diverse backgrounds, all willing to collaborate for a common research goal.

I consider many of them as true friends, and I hope our paths will join again in the future.

I feel truly honored to have been part of this team and to have had the opportunity to salute

the success of the first two years of this project.

Very very special thanks go to the department staff in the Centergy One building, in par-

ticular to Pat Dixon, who is a true friend for me, and with whom I shared so much in these

years. To her I owe the many things I learnt of economic research project management,

light-hearted attitude and positivity management, self-esteem management, and ”vegetable

management”. Particular thanks go also to Cordai Farrar, whose smiles, gentle attitude and

professionalism were true bedrocks for me from the very first day of my stay in the lab.

Finally, I would like to extend my sincere thanks to my Ph.D. committee members,

who accepted to serve as guarantors of my graduation, and whose constrictive criticism

and invaluable advices helped me take the final leap towards the completion of this life-

changing experience.

v



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Objectives and Solutions . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 2 PREVIOUS WORK ON MOLECULAR COMMUNICATION . 11

2.1 Molecular Communication Types . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Diffusion-based Molecular Communication Architectures . . . . . . . . . 13

CHAPTER 3 PHYSICAL END-TO-END MODEL OF DIFFUSION-BASED

MOLECULAR COMMUNICATION . . . . . . . . . . . . . . . 16

3.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 A Basic Design of a Diffusion-based MC System . . . . . . . . . . . . . . 17

3.3 The Emission Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 The Diffusion Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 The Reception Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 End-to-end Normalized Gain and Delay . . . . . . . . . . . . . . . . . . 31

3.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 4 NOISES IN DIFFUSION-BASED MOLECULAR

COMMUNICATION . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Definition of the Noise Sources in Diffusion-based MC . . . . . . . . . . 40

4.3 The Particle Sampling Noise . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 The Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 The Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 The Particle Counting Noise . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 The Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 The Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 The Ligand-receptor-binding Noise . . . . . . . . . . . . . . . . . . . . . 67

4.5.1 The Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.2 The Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . 74

vi



4.5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

CHAPTER 5 CAPACITY ANALYSIS OF DIFFUSION-BASED

MOLECULAR COMMUNICATION . . . . . . . . . . . . . . . 93

5.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Capacity Analysis through Thermodynamics . . . . . . . . . . . . . . . . 97

5.2.1 Information-theoretic Definition of Capacity . . . . . . . . . . . . 100

5.2.2 Information-theoretic Entropy from Thermodynamic Entropy . . . 102

5.2.3 The Input-signal Entropy . . . . . . . . . . . . . . . . . . . . . . 104

5.2.4 The Equivocation . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.5 The Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Capacity Analysis with Channel Memory and Molecular Noise . . . . . . 117

5.3.1 Information Capacity of a Diffusion-based MC System . . . . . . 121

5.3.2 The Molecule Diffusion as Fick’s Diffusion and Particle Location

Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.3 The Fick’s Diffusion Mutual Information . . . . . . . . . . . . . . 126

5.3.4 The Particle Location Displacement Mutual Information . . . . . 129

5.3.5 The Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

CHAPTER 6 INTERFERENCE ANALYSIS IN DIFFUSION-BASED

MOLECULAR COMMUNICATION . . . . . . . . . . . . . . . 144

6.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Intersymbol Interference and Co-Channel Interference . . . . . . . . . . . 147

6.2.1 Interference Formulas . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2.2 Attenuation and Dispersion of Diffusion-Waves . . . . . . . . . . 151

6.2.3 Interference Analysis . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.3 Statistical-physical Model of Interference . . . . . . . . . . . . . . . . . . 161

6.3.1 Reference Models, Assumptions, and Definitions . . . . . . . . . 161

6.3.2 Statistical-physical Interference Modeling . . . . . . . . . . . . . 166

6.3.3 Log-Characteristic Function and PDF of the Received Power Spec-

tral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

CHAPTER 7 A MOLECULAR COMMUNICATION SYSTEM DESIGN

VIA BIOLOGICAL CIRCUITS . . . . . . . . . . . . . . . . . . 182

7.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 182

7.2 Biological Circuit Design for Diffusion-based MC . . . . . . . . . . . . . 184

vii



7.2.1 Functional Blocks Description . . . . . . . . . . . . . . . . . . . 184

7.2.2 Reaction-based Description . . . . . . . . . . . . . . . . . . . . . 186

7.3 Deterministic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.3.1 Functional Block Transfer Functions . . . . . . . . . . . . . . . . 191

7.3.2 Time Scale Approximation . . . . . . . . . . . . . . . . . . . . . 195

7.3.3 Attenuation and Delay Expressions . . . . . . . . . . . . . . . . . 197

7.4 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.4.1 Noise in Chemical Reactions . . . . . . . . . . . . . . . . . . . . 199

7.4.2 Noise in Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.4.3 Output Noise PSD Expression . . . . . . . . . . . . . . . . . . . 211

7.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

CHAPTER 8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

CHAPTER 9 APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.1 Particle Binding and Release Rates . . . . . . . . . . . . . . . . . . . . . 224

PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

viii



LIST OF FIGURES

Figure 1 The expected functions of a biological nanomachine realized through the

genetic engineering of a bacterium. . . . . . . . . . . . . . . . . . . . . 3

Figure 2 Molecular communication types. . . . . . . . . . . . . . . . . . . . . . . 11

Figure 3 Representation of the end-to-end model. . . . . . . . . . . . . . . . . . . 17

Figure 4 Representation of the emission process. . . . . . . . . . . . . . . . . . . 18

Figure 5 RC-circuit model of the emission process. . . . . . . . . . . . . . . . . . 21

Figure 6 Representation of the diffusion process. . . . . . . . . . . . . . . . . . . 23

Figure 7 Representation of the reception process. . . . . . . . . . . . . . . . . . . 27

Figure 8 RC-circuit model of the reception process . . . . . . . . . . . . . . . . . 29

Figure 9 The normalized gain for the emission process A. . . . . . . . . . . . . . 33

Figure 10 The normalized gain for the diffusion process B. . . . . . . . . . . . . . 34

Figure 11 The group delay for the diffusion process B. . . . . . . . . . . . . . . . . 34

Figure 12 The normalized gain for the reception process C. . . . . . . . . . . . . . 35

Figure 13 The group delay for the reception process C. . . . . . . . . . . . . . . . 35

Figure 14 The normalized gain for the reception process T . . . . . . . . . . . . . . 36

Figure 15 The group delay for the end-to-end model T . . . . . . . . . . . . . . . . 36

Figure 16 Block scheme of the end-to-end model that includes the noise sources. . . 40

Figure 17 Block scheme of the physical model for the particle sampling noise. . . . 43

Figure 18 Graphical sketch of the transmitter kinetic state S̄ T (t) at time t. S̄ T (t)

depends on the particle concentration rate rT (t) in input through the ex-

pressions in (37) and (38). . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 19 Block scheme of the stochastic model for the particle sampling noise . . . 47

Figure 20 The particle sampling noise physical model simulation input. . . . . . . . 52

Figure 21 The particle sampling noise physical model simulation output. . . . . . . 52

Figure 22 The particle sampling stochastic model likelihood. . . . . . . . . . . . . 53

Figure 23 The Gaussian model likelihood for the particle sampling noise. . . . . . . 53

ix



Figure 24 Block scheme of the physical model for the particle counting noise. . . . 55

Figure 25 Graphical sketch of the receiver kinetic state S̄ R(t) at time t. S̄ R(t) de-

pends on the particle concentration cR(t) in input through the expressions

in (63) and (64). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 26 Block scheme of the particle counting noise stochastic model. . . . . . . 60

Figure 27 The particle counting noise physical model simulation input. . . . . . . . 65

Figure 28 The particle counting noise physical model simulation output. . . . . . . 65

Figure 29 The particle counting stochastic model likelihood. . . . . . . . . . . . . 66

Figure 30 The Gaussian model likelihood for the particle counting noise. . . . . . . 66

Figure 31 Block scheme of the physical model for the ligand-receptor-binding noise. 70

Figure 32 Graphical sketch of the ligand-receptor kinetic state block. The number

of particles P(t) in the receptor space depends on the particle concentra-

tion cR(t) in input through the expressions in (102). . . . . . . . . . . . . 73

Figure 33 Block scheme of the stochastic chemical kinetics applied to the LIGAND-

RECEPTOR BINDING process. . . . . . . . . . . . . . . . . . . . . . . 75

Figure 34 Graphical representation of (116) as a Markov chain. . . . . . . . . . . . 78

Figure 35 Graphical representation of (118) as a Markov chain. . . . . . . . . . . . 80

Figure 36 The input of the physical model and stochastic model of ligand-receptor-

binding noise simulations in terms of particle concentration. . . . . . . . 83

Figure 37 The output of the first set of simulations of the physical model in terms

of number of bound chemical receptors (left) and isolated noise contri-

bution (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 38 The output of the first set of simulations on the reversible second order

reaction model in terms of number of bound chemical receptors (left)

and isolated noise contribution (right). . . . . . . . . . . . . . . . . . . . 86

Figure 39 The output of the first set of simulations on the reversible first order

reaction model in terms of number of bound chemical receptors (left)

and isolated noise contribution (right). . . . . . . . . . . . . . . . . . . . 86

Figure 40 The output of the second set of simulations on the physical model of

the ligand-receptor-binding noise in terms of number of bound chemical

receptors (left) and isolated noise contribution (right). . . . . . . . . . . 87

x



Figure 41 The output of the second set of simulations on the reversible second

order reaction model in terms of number of bound chemical receptors

(left) and isolated noise contribution (right). . . . . . . . . . . . . . . . . 87

Figure 42 The output of the second set of simulations on the reversible first order

reaction model in terms of number of bound chemical receptors (left)

and isolated noise contribution (right). . . . . . . . . . . . . . . . . . . . 87

Figure 43 The reversible second order reaction log-likelihood for the first set of

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 44 The reversible first order reaction log-likelihood for the first set of simu-

lations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 45 The log-likelihood of a Gaussian model for the first set of simulations. . . 90

Figure 46 The log-likelihood of a Gaussian model for the second set of simulations. 90

Figure 47 The reversible second order reaction log-likelihood for the second set of

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 48 The reversible first order reaction log-likelihood for the second set of

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 49 Information-theoretic diagram of a diffusion-based MC system. . . . . . 96

Figure 50 Sketch of the reference physical model for diffusion-based MC. . . . . . 97

Figure 51 Schematic diagram of the diffusion-based MC system with the physical

reference model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 52 Capacity in relation to the transmitter-receiver Distance and for different

values of the bandwidth W. . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 53 Capacity in relation to the Bandwidth and for different values of the

transmitter-receiver distance d. . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 54 Capacity in relation to the Bandwidth and different values of the system

temperature T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 55 Sketch of the physical realization of the diffusion-based molecular com-

munication system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 56 Diagram of the diffusion-based MC system with the Fick’s diffusion and

the particle location displacement contributions to the molecule diffusion. 123

Figure 57 Capacity in relation to the bandwidth and for different values of the

transmitter-receiver distance d. . . . . . . . . . . . . . . . . . . . . . . . 138

xi



Figure 58 Capacity in relation to the transmitter-receiver distance and for different

values of the bandwidth W. . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 59 Capacity in relation to the bandwidth and for different values of the av-

erage transmitted power power PH . . . . . . . . . . . . . . . . . . . . . 141

Figure 60 Block scheme of the diffusion-based MC system considered in this sec-

tion of the Ph.D. thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Figure 61 The received pulses as function of the time and the distance in the case

of baseband modulation (left) and diffusion wave modulation (right) for

the simulation-based for the simulation-based ISI evaluation (upper) and

CCI evaluation (lower). . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure 62 The ISI values for the baseband modulation scheme (upper) and the dif-

fusion wave modulation scheme (lower) from the simulation (left) and

from the simple formulas (right). . . . . . . . . . . . . . . . . . . . . . . 159

Figure 63 The CCI values for the the baseband modulation scheme (upper) and the

diffusion wave modulation scheme (lower) from the simulation (left) and

from the simple formulas (right). . . . . . . . . . . . . . . . . . . . . . . 160

Figure 64 Reference diffusion-based molecular nanonetwork considered for the in-

terference modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Figure 65 PDF PSY (ω)(s) of the received PSD SY(ω). Different curves refer to dif-

ferent values of the frequency ω. . . . . . . . . . . . . . . . . . . . . . . 173

Figure 66 PDF PSY (ω)(s) of the received PSD SY(ω) for a range of frequencies ω

from 0 to 2 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Figure 67 Simulation-based PDF PSY (ω)(s) of the received PSD SY(ω) for a range

of frequencies ω from 0 to 2 Hz. . . . . . . . . . . . . . . . . . . . . . . 176

Figure 68 Probability of interference according to the statistical-physical model. . . 178

Figure 69 Probability of interference according to the simulation environment. . . . 179

Figure 70 Main functional blocks of a biological circuit for diffusion-based molec-

ular communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Figure 71 Decomposition of the transfer function of a biological circuit for diffusion-

based molecular communication into the transfer functions of each func-

tional block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Figure 72 Approximation of the decomposition of the transfer function of a bio-

logical circuit for diffusion-based molecular communication. . . . . . . . 196

xii



Figure 73 Attenuation of the biological circuit for diffusion-based MC as function

of the receiver distance from the transmitter rRx and the frequency ω. . . 213

Figure 74 Delay of the biological circuit for diffusion-based MC as function of the

receiver distance from the transmitter rRx and the frequency ω. . . . . . . 214

Figure 75 PSD of the output noise from the biological circuit for diffusion-based

MC as function of the frequency ω and the input signal PoPS in. . . . . . 215

xiii



SUMMARY

Molecular communication (MC) is a promising bio-inspired paradigm for the ex-

change of information among nanotechnology-enabled devices. These devices, called

nanomachines, are expected to have the ability to sense, compute and actuate, and inter-

connect into networks, called nanonetworks, to overcome their individual limitations and

benefit from collaborative efforts. MC realizes the exchange of information through the

transmission, propagation, and reception of molecules, and it is proposed as a feasible so-

lution for nanonetworks. This idea is motivated by the observation of nature, where MC

is successfully adopted by cells for intracellular and intercellular communication. MC-

based nanonetworks have the potential to be the enabling technology for a wide range of

applications, mostly in the biomedical, but also in the industrial and surveillance fields.

The focus of this Ph.D. thesis is on the most fundamental type of MC, i.e., diffusion-

based MC, where the propagation of information-bearing molecules between a transmitter

and a receiver is realized through free diffusion in a fluid. The objectives of the research

presented in this thesis are to analyze the MC paradigm from the point of view of com-

munication engineering and information theory, and to provide solutions to the modeling

and design of MC-based nanonetworks. First, a physical end-to-end model is realized to

study each component in a basic diffusion-based MC system design, as well as the overall

system, in terms of gain and delay. Second, the noise sources affecting a diffusion-based

MC are identified and statistically modeled. Third, upper/lower bounds to the capacity are

derived to evaluate the information-theoretic performance of diffusion-based MC. Fourth,

a stochastic analysis of the interference when multiple transmitters access the diffusion-

based MC channel is provided. Fifth, as a proof of concept, a design of a diffusion-based

MC system built upon genetically-engineered biological circuits is analyzed. This research

provides fundamental results that establish a basis for the modeling, design, and realization

of future MC-based nanonetworks, as novel technologies and tools are being developed.
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CHAPTER 1

INTRODUCTION

Molecular communication (MC) [1] is a bio-inspired paradigm where the exchange of in-

formation is realized through the transmission, propagation, and reception of molecules.

This paradigm was first studied in biology, since it is successfully adopted in nature by

cells for intracellular and intercellular communication [2]. MC is considered a promising

option for communications in nanonetworks [3], which are defined as the interconnections

of intelligent autonomous nanometer-scale devices, or nanomachines. Thanks to the fea-

sibility of MC in biological environments, MC-based nanonetworks have the potential to

be the enabling technology for a wide range of applications [3], mostly in the biomedical,

but also in the industrial and surveillance fields. The objectives of the research presented

in this thesis are to analyze the MC paradigm from the point of view of communication

engineering and information theory, and to provide solutions to the modeling and design of

MC-based nanonetworks.

1.1 Background

Among the more promising research fields of today, nanotechnology is enabling the ma-

nipulation of matter at an atomic and molecular scale, from one to a hundred nanometers.

One of the goals of nanotechnology is to engineer functional systems based on the unique

phenomena and properties of matter at the nanoscale [4]. Currently, a great research effort

is spent in the attempt to realize nanoscale machines, also called molecular machines or

nanomachines, defined by E. Drexel as “mechanical devices that perform useful functions

using components of nanometer-scale and defined molecular structure” [5]. More specif-

ically, nanomachines [3, 6, 7] are expected to have the ability to sense, compute, actuate,

manage their energy, and interconnect into networks, termed nanonetworks, to overcome

their individual limitations and benefit from collaborative efforts.
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Two main types of nanomachines can be identified within the aforementioned defini-

tion, namely, synthetic and biological. On the one hand, the synthetic nanomachines are

realized either by downscaling from the current micro-scale technologies, such as micro-

electronics or micro-electro mechanics, or through the use of chemically synthesized nano-

materials [6]. On the other hand, the biological nanomachines are realized either by reusing

biological components (e.g., DNA-based memories [8], flagellum-based actuators [9]), or

by programming the behavior of biological cells from nature, such as through the genetic

engineering of bacteria [10], as illustrated in 1.

Figure 1. The expected functions of a biological nanomachine realized through the genetic engineering

of a bacterium.

While the engineering of fully synthetic nanomachines is still in its infancy, the research

on the genetic engineering of biological cells is currently in rapid progress, thanks to the

advancements made by biotechnology [11]. Several key techniques developed under the

umbrella of synthetic biology have made possible today the realization of simple biological

nanomachines [12]. As illustrated in Figure 1, through the insertion of engineered genetic

code in the form of a circular DNA strand (i.e., plasmid) in a bacterium, it will be soon

possible to program complete functions, including sensing, actuation, and communication,

and have access to the main functionalities of the cell, such as the storage and the processing

of information through DNA code, the sensing and actuation through the use of the pili

(hairlike appendages), the management of the cell energy through the cell membrane, and

the transmission and reception of information through the production and the reception of
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signaling molecules.

The exchange of information between nanomachines, and their interconnection into

nanonetworks, is key to overcome their individual limitations in size, energy and computa-

tional capabilities, and benefit from collaborative efforts. In nanonetworks, the applicability

of classical communication technologies is limited by several constraints. In particular, the

very restricted size of the nanomachines and the peculiarities of the environments in which

they are envisioned to operate (e.g., biological scenarios) demand for novel solutions from

the perspective of both the choice of the communication medium and the study of suitable

communication techniques. While a possible solution to the problem of communication be-

tween synthetic nanomachines is suggested by recent studies [6] on nano-structures and on

the properties of carbon nano-electronics, the imminent availability of biological nanoma-

chines encourages to study and adopt the communication techniques naturally adopted by

biological cells. In this direction, the MC paradigm, inspired by the natural cell commu-

nication in biology, where message-carrying molecules are synthesized, emitted, collected,

and converted to cellular responses through biochemical processes, is expected to be espe-

cially attractive because of its inherent feasibility in a biocompatible environment [1, 3].

1.2 Potential Applications

Given the tight integration of MC within the biological environment and its feasibility

at the cellular scale (nm - µm), MC is studied not only as a candidate for nanonetwork

communication, but also as a possible tool for the future nanonetworks to interact with the

living organisms and their biological processes. As a consequence, the number of potential

applications of MC-enabled nanonetworks is very large. Amongst others, the following

three main areas deserve a special attention.

Biomedical applications, such as disease control and infectious agent detection [13],

smart drug delivery systems [14], and intelligent intrabody systems for monitoring glucose,

sodium, and cholesterol [15, 16]. These applications are expected to greatly benefit from
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the use of nanomachines deployed over the body (e.g., through tattoo-like patches) or inside

the body (e.g., through pills or intramuscular injection). Since MC is naturally adopted by

cells, nanonetworks enabled by this paradigm are envisioned to better integrate with the

intra-body biological processes and to show higher biocompatibility when compared to

other possible solutions.

Industrial applications, such as the monitoring and control of microbial formations.

As an example, applications based on bacterial biofilms [17], which are used to clean resid-

ual waters coming from different manufacturing processes or to treat organic waste [18],

could be greatly enhanced by MC-enabled nanonetworks, since microbial organisms natu-

rally produce and respond to molecular stimuli.

Surveillance applications will make use of biological and chemical nanosensors that

have an unprecedented sensing accuracy [19, 20]. Nanonetworks composed by several

MC-enabled nanosensors could serve for surveillance against biological and chemical at-

tacks [20] by detecting toxic or infectious agents diffusing in the environment.

In particular, with specific reference to the use of genetically engineered bacteria [21],

and their interconnection in MC-based nanonetworks, the following example applications

are envisioned:

• Intrabody bacteria-based sensor-actuator networks for diagnosis and drug deliv-

ery. Genetically engineered bacteria could be deployed in the human gastrointestinal

tract, where they would serve as sensors of particular biomarkers generated by in-

flammations or ulcers (e.g., Crohn’s disease) [22]. Upon sensing an inflammation,

these bacteria would communicate with each other, perform a consensus decision-

making process, and cooperate to produce drug molecules, finally providing a local-

ized and timely healing of the infection.

• Microfluidic bacteria-based network-on-chip for chemical analysis. MC-based nanonet-

works of genetically-engineered bacteria could be used to increase the throughput
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of a microfluidic device for chemical analysis by enabling on-chip information ex-

change, where the molecular communication between bacteria could enhance pro-

cedures for enzymatic analysis, immunoassays, DNA analysis, and proteomics [23].

The dynamic exchange of molecules in these nanonetworks could also be used to

combine multi-stage reactions on a single microfluidic device, thus achieving not

only higher throughput and accuracy, but also the automation of chemical analysis

that would otherwise require the intervention of an external human operator [24].

• Bacteria-based environmental monitoring. Bacteria could be deployed in the envi-

ronment, where they could detect and communicate the presence of chemicals or

changes in the status of other biological organisms [25]. As an example, bacteria

could be used to monitor the presence of toxic contaminants in runoff waters from

factory plants. The same mechanism could be applied to genetically engineered bac-

teria from species that are already present in food, (e.g., Lactobacillus in yogurt),

which could cooperatively decide when the food expires and it is not safe to eat, and

trigger a signal easily detectable by humans, such as a change in their color or the

generation of fluorescence. This would increase food safety and reduce the waste of

food, by effectively monitoring the edibility even after an expiration date.

1.3 Research Objectives and Solutions

The focus of this Ph.D. thesis is on diffusion-based MC, where the propagation of infor-

mation-bearing molecules between a transmitter and a receiver is realized through free

diffusion in a fluid. This choice is motivated by a preliminary analysis, detailed in Chap-

ter 2, which identifies the diffusion-based as the most fundamental type of MC among

different options suggested in the literature. As a consequence of the differences between

the diffusion-based MC paradigm and classical electromagnetic communication paradigms,

the classical communication engineering models and techniques are not directly applicable

for the study and the design of diffusion-based MC systems. These differences include, but
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are not limited to, the following:

• The process of diffusion-based molecule propagation is based on radically different

phenomena with respect to the electromagnetic wave propagation in classical com-

munication systems. While electromagnetic waves operate the propagation of energy

at the speed of light, the molecule diffusion process is caused by the random walk

of the molecule Brownian motion in a fluid [26, 27]. As a consequence, while an

electromagnetic wave propagates in a defined direction, and with negligible delay

for most of the terrestrial communication systems, molecules subject to Brownian

motion propagate with a random direction and with a high delay for almost all the

transmission ranges of interest.

• The biologically-inspired physical processes that can be adopted to transmit and re-

ceive information in a diffusion-based MC system are based on different mechanisms

with respect to the modulation and reception of electromagnetic radiations in classi-

cal communication systems. While in classical systems antennas transmit and receive

electromagnetic radiations through moving charges in metallic conductors, in biolog-

ical cell bio-signaling [2] information is transmitted through the chemical synthesis

of signaling molecules, and received through chemical reactions between incoming

signaling molecules and chemical receptors.

As a consequence, there is a need of to build a complete understanding of the diffusion-

based MC paradigm from the ground up. The research objectives addressed in this Ph.D.

thesis, and the proposed solutions, have been identified to specifically target this need, and

they are summarized in the following.

The first research objective is to develop of a physical end-to-end modeling of diffusion-

based MC, which provides a mathematical characterization of the main physical processes

involved in the transmission, propagation, and reception of molecules for the exchange of
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information between a transmitter and a receiver. To achieve this objective, a system de-

sign, inspired by biochemistry principles related to the living cells and to the mechanism

of cell bio-signaling [2], is described as the most basic implementation of diffusion-based

MC. This design identifies the three physical processes of molecule emission at the trans-

mitter, molecule diffusion in the fluid medium, and molecule chemical reception. For each

process, as well as for the overall end-to-end system, mathematical models are provided in

terms of transfer function, and consequently, in terms of gain and delay experienced by an

information signal exchanged between the transmitter and the receiver.

The second research objective is to identify and model the noise sources that affect

the diffusion-based MC. The modeling of the noise affecting a communication system is

fundamental to help the design of the system components, and increase the probability

of correct exchange of information between the transmitted and the receiver. By stem-

ming from the aforementioned physical end-to-end modeling, three noise sources affecting

diffusion-based MC are identified, namely, the sampling noise, the counting noise, and the

ligand-receptor-binding noise, and they are related to the transmitter, the signal propaga-

tion in the channel, and the receiver, respectively. Each noise source is described through

a mathematical analysis of the physical processes which generate the noise, and stochasti-

cally modeled in terms of noise-generating random processes.

The third research objective is to provide an estimate of the achievable performance of a

diffusion-based MC system in terms of information capacity. The diffusion-based MC has

two main characteristics, namely, a channel with memory and a signal-dependent noise,

which notoriously make impossible to find a closed-form analytical expression for the true

capacity of a communication system. In the attempt to provide an analytical closed-form

expression that relates the performance of a diffusion-based MC system to physical param-

eters, such as the diffusion coefficient, the temperature, the transmitter-receiver distance,

the bandwidth of the transmitted signal, and the average transmitted power, the results in-

cluded in this Ph.D. thesis are based on some simplifying assumptions. A first expression
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is derived from statistical mechanics and equilibrium thermodynamics considerations, and

it is based on assumption of having a molecular system in equilibrium. A second expres-

sion is based on a pure information-theoretic approach based on the decomposition of the

molecule diffusion into two main processes, namely, the Fick’s diffusion and the molecule

location displacement. These assumptions limit the validity of these closed-form analytical

expressions, which have to be considered as upper/lower bounds to the true information

capacity.

The fourth research objective is to analyze the interference produced at the reception

side of a diffusion-based MC system. Given an information signal sent by a transmitted to

a receiver in a diffusion-based MC system, the interference may be either due to distortions

of the signal itself or by other concurrent signals coming from different transmitters. The

analysis of these types of interference is fundamental to design interference mitigation

techniques and increase the performance of a communication systems. In this Ph.D. thesis,

first, the InterSymbol Interference (ISI) and the Co-Channel Interference (CCI) are jointly

analyzed for a diffusion-based MC system under the assumptions of having a Gaussian-

pulse-based information encoding and a limited number of transmitters in predetermined

locations. Second, the statistical-physical modeling of the interference is provided through

an analytical expression of the Power Spectral Density (PSD) probability distribution of the

received signal, independent from the transmitter number, specific transmitter locations, or

coding schemes.

The fifth research objective is to provide a possible design of a molecular communica-

tion system by stemming from a currently viable technology. In this direction, synthetic

biology techniques, and in particular the engineering of biological circuits, allow today to

program logical functions within biological cells, thus paving the way for the realization of

the aforementioned biological nanomachines. The design of an MC system built upon bio-

logical circuits is therefore described in this Ph.D. thesis by identifying a minimal subset of

elements to realize diffusion-based MC between biological cells. A mathematical model is
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then detailed in terms of transfer functions, from which analytical expressions are derived

for the attenuation and the delay experienced by an information signal through the bio-

logical circuit. Finally, the most significant noise sources within the biological circuit are

identified, stochastically modeled, and quantified in terms of noise Power Spectral Density

(PSD) generated at the output of the system.

1.4 Thesis Outline

The rest of this Ph.D. is organized as follows. A preliminary analysis of different MC

options from the literature is contained in Chapter 2, which also includes a survey of the

results from previous works pertinent to the study of diffusion-based MC. The results ob-

tained through the design and end-to-end modeling of a basic diffusion-based-MC system

are presented in Chapter 3, where the contributions of each component of the system are

analyzed in terms of gain and delay. In Chapter 4, the most relevant noise sources affect-

ing diffusion-based MC are studied through the mathematical expression of their under-

lying physical processes, and modeled through the use of statistical parameters. Analyti-

cal expressions of upper and lower bounds to the information capacity of diffusion-based

MC systems are derived in Chapter 5, first by using tools from thermodynamics, and then

through a pure information-theoretic approach. In Chapter 6, an analysis of the interfer-

ence in diffusion-based MC is provided first for specific cases, and then through a statis-

tical model with general validity. The design of a diffusion-based MC system built upon

genetically-engineered biological circuits is presented and modeled in Chapter 7, where

implementation-specific results in terms of attenuation, delay, and noise impairments are

discussed. A conclusion with the possible future avenues for this research field is provided

in Chapter 8. Finally, the publications resulted from the research presented in this Ph.D.

thesis are listed.
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CHAPTER 2

PREVIOUS WORK ON MOLECULAR COMMUNICATION

This chapter of the Ph.D. thesis contains a review of the literature pertinent to the research

on MC and its application to nanonetworks. This review is organized as follows. In Sec-

tion 2.1, different MC options from the literature are detailed on the basis of the type of

adopted molecule propagation. In Section 2.2, the results from the literature focused on

diffusion-based MC are presented and analyzed to motivate the research proposed in this

document.

2.1 Molecular Communication Types

Different types of MC have been studied so far, and they can be characterized on the basis of

how molecules propagate through the medium [1]. Three main types of MC are identified

from the literature, as shown in Figure 2, as the walkway-based, the advection-based, and

the diffusion-based. These categories are also described on the basis of how spontaneous

is the propagation of the molecules. The less spontaneous is the type of MC, the more

predictable is the path followed by the molecules during their propagation, and vice versa.

Figure 2. Molecular communication types.
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In walkway-based MC, the molecules propagate through active transport by follow-

ing pre-defined pathways connecting the transmitter to the receiver. The most widespread

example from the literature of this type of MC is given by the use of molecular mo-

tors [28, 29]. Molecular motors [30] are protein filaments that convert chemical energy

into kinetic energy, and they are at the basis of the generation of force in biology, e.g., in

the muscles. In [28, 29] molecular motors filaments are studied and employed to phys-

ically interconnect nanomachines and to generate the force to propagate the information

molecules from the transmitter to the receiver.

In advection-based MC, the molecules propagate through diffusion in a fluidic medium

whose flow, and consequently the transport of the molecules, or advection, is defined and

predictable. The use of gap junctions [31], which are nanofluidic pipes connecting the

transmitter and the receiver, is one example of this type of MC. Advection-based MC can

also be realized by using carrier entities whose motion is constrained on the average along

specific paths, despite showing a random component. A good example of this flow-based

MC is given by the chemotaxis-based technique in [32, 33], where flagellated bacteria

released by the transmitter, and containing information encoded in DNA molecules, are

guided to swim towards the receiver, which continuously releases an attractant substance.

In diffusion-based MC, the molecules propagate through their spontaneous diffusion

in a fluidic medium [34]. Diffusion-based MC was first analyzed in [35, 36, 37], where

the transmitted information molecules cover the distance between the transmitter and the

receiver by following an unbiased random walk, i.e., the Brownian motion. In diffusion-

based MC, the molecules can also be affected by random advection in the fluidic medium.

An example of this diffusion-based MC is given in [38], where information molecules are

released in the air and are subject to a random and unpredictable component of the wind

flow while they propagate.

The focus of the proposed research is on diffusion-based MC. This choice is motivated
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by the following arguments. First, molecule diffusion is at the basis of all the aforemen-

tioned MC options. As an example, in [29], diffusion is considered as an unavoidable

propagation effect superimposed on the molecular motor transport. Moreover, in [32, 33],

carrier bacteria are subject to a random walk with the same underlying rules of a biased

molecule diffusion. Second, diffusion-based MC can be considered the most general and

common MC option in nature, where examples are found in the calcium signaling among

cells [39], the pheromonal communication among animals [40, 38], and the synaptic trans-

mission between neurons [2]. As a consequence, the study of diffusion-based MC has

the potential to benefit from the observation of nature for the design of bio-inspired and

bio-compatible solutions.

2.2 Diffusion-based Molecular Communication Architectures

Different diffusion-based MC architectures for nanonetworks have been proposed and stud-

ied in the literature, and they can be classified on the basis of the technique used to encode

the information in the diffusing molecules. The three most referenced architectures en-

code the information in either the time of molecule release, the type of each molecule, or

variations in the molecule concentration.

The first type of architecture is theoretically analyzed in [41], where the authors focused

on the mathematical modeling of the diffusion channel as a probabilistic contribution in

the time of arrival of the molecules at the receiver, while the transmitter and the receiver

have simplified ideal models. The results of simulations from [41] in terms of achievable

information rate show that, as a consequence of the high uncertainty in the propagation

time, this architecture is characterized by a very low capacity.

The second type of architecture is analyzed in [29], where a piece of information is

encoded in each single molecule. As a consequence, the information carried by a certain

molecule is received only if that molecule reaches the receiver location. Similarly to [41],
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only the diffusion channel part is modeled, while the transmitter and the receiver are consid-

ered ideal. While no analytical model is provided in [29], the results of simulations reveal

very low performance for this architecture if compared to other non-diffusive techniques.

The third type of architecture is treated in [36, 37, 42, 43, 44, 45, 46, 47]. In particular,

a simplified receiver model of this architecture is studied in [36], where the diffusion-based

channel is coupled with ideal transmitter and receiver. Simulation results in [36] show

low values for the system capacity. In [37, 42], a model of a diffusion-based MC receiver

is developed by using multiple chemical receptors to read the molecule concentration at

the receiver location. The results of this model in terms of capacity are relatively high if

compared to [36], especially when an error compensation technique is applied.

The high similarity of the third type of architecture to some biological systems [2],

which are characterized by much higher performance than in the aforementioned results,

encourages the investigation in this direction.

In particular, very limited research has been conducted to analyze the complete end-to-

end (transmitter, channel and receiver) diffusion-based MC architecture and the complete

study of the noise sources, the capacity and the interference with closed-form analytical

models. In [36], the analytical model of the system is reduced to the diffusion-based chan-

nel. In [37, 42, 43] the diffusion process is not captured in terms of molecule-propagation

theory and, therefore, the end-to-end model reliability and accuracy are only accounted for

the receiver side. In [44], the capacity of a MC system is analyzed on the basis of the

effects of the diffusion-based-channel memory, but without accounting for molecular-noise

sources and only for the specific case of binary coding. Two different coding techniques

are analyzed in [46] in terms of achievable rates, while the diffusion-channel models are

oversimplified to a binary or a quadruple channel. Similarly, discrete-memoryless approx-

imations are applied to the molecule-diffusion channel in [48], where the MC capacity is

computed for a binary-coding scheme. In [46] the effects of intersymbol and co-channel

interference are analyzed in reference to two specific modulation techniques proposed by
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the same authors. In [45] the intersymbol interference is characterized in a unicast MC sys-

tem with binary amplitude-modulation. In [47], interference is studied for another specific

modulation technique, based on the transmission order of different types of molecules.
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CHAPTER 3

PHYSICAL END-TO-END MODEL OF DIFFUSION-BASED

MOLECULAR COMMUNICATION

3.1 Motivation and Related Work

The objective of the physical end-to-end modeling of diffusion-based Molecular Commu-

nication (MC) is to provide a mathematical characterization of the main physical processes

involved in the transmission, propagation, and reception of molecules for the exchange of

information between a transmitter and a receiver. This characterization is provided in this

chapter of the Ph.D. thesis in terms of transfer function and, consequently, by deriving the

gain and delay parameters for each physical process, as well as for the overall end-to-end

diffusion-based MC system. This characterization does not take into account noise sources

that could affect the performance of a diffusion-based MC system, which will be the subject

of the next chapter.

Some previous research has been conducted to address the modeling and analysis of

diffusion-based MC and the according end-to-end behavior in nanonetworks. In [37, 42],

a particle receiver model is developed by taking the ligand-receptor binding mechanism

into account [49]. However, in both works, the diffusion process is not captured in terms

of molecule propagation theory and, therefore, the end-to-end model reliability and accu-

racy are only accounted for the receiver side. Moreover, an ideal digital transmitter model

is used and the performance evaluation is conducted based on an ideal synchronization

between the transmitter and the receiver.

In this chapter, a basic diffusion-based MC system design is provided, which aims at

an interpretation of the diffusion-based MC, both in terms of molecule emission/reception

and molecule propagation. In the provided diffusion-based MC system design, the desired

information modulates the molecule emission at the transmitter side. This modulated signal

is then propagated by the diffusion process to the receiver side. The receiver detects the
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concentration and generates the received signal. This diffusion-based MC system is divided

into three processes: the emission process, the diffusion process and the reception process.

Each process is modeled in terms of transfer function, from which the normalized gain and

delay are derived. The models of the emission process and the diffusion process are built

on the basis of the molecular-diffusion physics [26], while the reception-process model is

interpreted by stemming from the theory of the ligand-receptor binding [49]. Finally, the

end-to-end normalized gain and delay are derived for the cascade of the three processes,

which provide the characterization of the complete diffusion-based MC system. Numerical

results are provided to evaluate the normalized gain and delay of the diffusion-based MC

system for several different values of the system frequency and the transmission range.

3.2 A Basic Design of a Diffusion-based MC System

The end-to-end model is a characterization of a basic diffusion-based MC design in terms

of transmission, propagation, and reception of molecules, as sketched in Figure 3.

Figure 3. Representation of the end-to-end model.

The molecules are here called particles, since in this preliminary work their chemical

properties are not taken into account. The particles are assumed as having no electrostatic
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charge, while their mass and shape characteristics are taken into account in the diffusion

coefficient D [26, 27], introduced later in this chapter. The end-to-end model is contained in

the three-dimensional space S indexed through the Cartesian axes X, Y , and Z. The space

S contains a fluidic medium, and it is initially filled with a homogeneous concentration of

particles. The emission process modulates the particle-concentration rate at the transmitter

according to an input signal sT (t), function of the time t. The modulation is achieved

through the release/capture of particles from/into emission gaps. The modulated-particle-

concentration rate rT (t) is the output of the transmitter and the input of the channel. The

channel relies on the diffusion process of the particles in the space S to propagate the signal

and deliver the particle concentration cR(t) at the receiver. The receiver senses the particle

concentration at its location as input, and it recovers the output signal sR(t). The reception

process generates the output signal by means of chemical receptors.

3.3 The Emission Process

The task of the emission process is to modulate the particle-concentration rate rT (t) at

the transmitter according to the input signal sT (t) of the end-to-end model, as shown in

Figure 4, which is based on the following assumptions:

Figure 4. Representation of the emission process.

• The transmitter has a spherical boundary that divides the space in proximity of the
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transmitter into two areas: the inner area and the outer area.

• The inner concentration cin
T

(t) is the concentration of particles lying in the inner area,

whereas the outer concentration cT (t) is the concentration of particles lying in the

outer area.

• The inner area and the outer area are spatially connected by means of emission gaps.

An emission gap is an opening in the spherical boundary which allows particles to

move through due to their diffusion. The size of an emission gap allows only one

particle to pass through at each time instant. Whenever a particle is traversing the

emission gap, its movement has only components along the radius of the spherical

boundary. As a consequence, the movement of a particle through the emission gap

can only be outward (from the inner area to the outer area) or inward (from the outer

area to the inner area). The emission gaps are many and homogeneously distributed

on the surface of the spherical boundary. The present analysis does not depend on

their precise number. We believe it will be important to discuss the impact of the

number of emission gaps on the end-to-end model in our future work.

• Whenever there is a difference between the inner concentration cin
T

(t) and the outer

concentration cT (t), a movement of particles is stimulated between the inner area and

the outer area through the emission gaps.

• The movement of particles between the inner area and the outer area causes a varia-

tion in the outer concentration, whose first time derivative is the particle concentra-

tion rate at the transmitter location rT (t).

• Particles can be created/destroyed in the inner area in order to reach a desired inner

concentration cin
T

(t). The creation/destruction of particles in the inner area is sup-

posed to be ideally perfect and instantaneous. As a consequence, we do not account

for the randomness that can derive from the creation/destruction of particles. We
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believe that this is a reasonable approximation that allows us to analyze the contri-

butions coming only from the emission process. Further analysis can be conducted

by specifying the processes involved in the creation/destruction of particles. As an

example, the creation/destruction of particles could be realized through a cascade

of chemical reactions or by the emptying/filling of particle reservoirs located in the

inner area.

• The transmitter is supposed to be able to adjust the inner concentration cin
T

(t) in or-

der to obtain a particle concentration rate rT (t) proportional to the input signal sT (t)

(modulation of rT (t) according to sT (t)).

This transmitter characterization is inspired by biochemistry principles related to the

living cells and to the mechanism of cell bio-signaling [2]. According to these principles,

the spherical boundary is a simplification of the cell plasma membrane, which separates

the interior of a cell from the outside environment. The emission gaps are inspired by the

channels that permit the selective passage of molecules through the plasma membrane of

a cell. As an example, the gated ion channels in the plasma membrane are openings that

allow the passage of specific ion molecules between the interior of a cell and the outside

environment and, amongst others, they serve for cell-to-cell communication purposes. As

stated in [2], those ion molecules, while traversing the gated ion channels, are driven by a

force that is a sum of two terms. The first term of the force is a function of the difference

between the inside and the outside concentration of the same molecules and it depends

on the diffusion. The second term of the force is a function of an electrical potential and

it is related to the electrostatic charge carried by the ion molecules. Since, according to

our assumption, the particles in our system do not carry any electrostatic charge, when

they traverse an emission gap they are driven only by the first term of the force. For this,

the difference in the concentration of particles between the inner area and the outer area

stimulates the driving force that permits their movement through the emission gaps either

outward or inward, as explained above.
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The emission process is modeled with an electrical-parallel-resistor-capacitor (RC) cir-

cuit [50]. This circuit is shown in Figure 5, where Iin(t) is the input current as a function of

the time t, Re stands for the resistance value, Ce is the capacitance value and Iout(t) is the

output current, which is equal to the current IR(t) flowing through the resistance Re.

Figure 5. RC-circuit model of the emission process.

Within the RC-circuit model, the input signal sT (t), shown in Figure 4, corresponds to

the input current Iin(t). The particle-concentration gradient∇cT (t) at the transmitter, defined

as the difference between the particle concentration inside and the particle concentration

outside the transmitter, is equal to the voltage Ve(t). The current IR(t) that flows through

the resistance Re is equal to the particle-concentration rate rT (t), which is the output of the

transmitter. The relation between the particle concentration flux J̄(x̄, t) and the particle-

concentration gradient ∇c(x̄, t) at time t and location x̄ is given by the Fick’s first law

[26, 27] as follows:

J̄(x̄, t) = −D∇c(x̄, t) , (1)

where D is the diffusion coefficient and it can be considered as a constant value for a specific

fluidic medium.

Therefore, since J̄T (t) and ∇cT (t) are, respectively, the particle-concentration flux J̄(x̄, t)

and the opposite of the particle-concentration gradient −∇c(x̄, t) at the transmitter, and since

IR(t) = J̄T (t) Ve(t) = ∇cT (t) , (2)

then

IR(t) = DVe(t) , (3)
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and the constant resistance value becomes

Re =
1

D
. (4)

We relate the capacitor charging/discharging current IC(t) at time t to the difference be-

tween sT (t), equal to the input current Iin(t), and rT (t), equal to the output current IR(t). The

voltage applied to the capacitor Ve(t) is equal to ∇cT (t). The particle-concentration gradi-

ent ∇cT (t) is the difference between the outside particle concentration cT (t) and the inside

particle concentration cin
T

(t). Therefore, the time derivative d∇cT (t)/dt changes according

to the net flux of particles that contributes to ∇cT (t). The net flux of particles is given by

the difference between sT (t) and rT (t). This results in the following relation:

d∇cT (t)

dt
= sT (t) − rT (t) , (5)

and, since IC(t) = sT (t)− rT (t) and Ve(t) = ∇cT (t), then IC(t) = dVe(t)/dt and, therefore, the

capacitor value becomes

Ce = 1 . (6)

From the electrical-circuit theory [50], the Fourier transform of the transfer function

(FTTF) [51] of the RC circuit HRC( f ), equal to the FTTF Ã( f ) of the transmitter, has the

following expression:

HRC( f ) = Ã( f ) =
Ĩout( f )

Ĩin( f )
=

1

1 + j2π f ReCe

, (7)

where Ĩin( f ) and Ĩout( f ) are the Fourier transforms [51] of the input voltage Iin(t) and output

voltage Iout(t), respectively.

The normalized gain ΓA( f ) of the emission process is the magnitude |Ã( f )| of the FTTF

Ã( f ) normalized by its maximum value max f (|Ã( f )|), which becomes 1 from (7), and it is

expressed as

ΓA( f ) =
|Ã( f )|

max f (|Ã( f )|)
=

1
√

(1 + (2π f ReCe)2)
. (8)
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The delay τA( f ) of the emission process is

τA( f ) = −dφA( f )

d f
, (9)

where φA( f ) is the phase of the FTTF from (7), and it is expressed as

φA( f ) = arctan

(

Im(Ã( f ))

Re(Ã( f ))

)

= arctan(−2π f ReCe) , (10)

which is computed from the real part Re(Ã( f )) and the imaginary part Im(Ã( f )) of the

FTTF Ã( f ).

3.4 The Diffusion Process

The diffusion process, as shown in Figure 6, deals with the propagation of the particle-

concentration rate rT (t) from the transmitter, located at the Cartesian coordinates [0, 0, 0],

across the space S by means of free particle-diffusion in the fluidic medium. The parti-

cle concentration cR(t) at the receiver location [xR, yR, zR] is considered the output of the

diffusion process.

Figure 6. Representation of the diffusion process.
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We use the particle concentration distribution flux to study the signal propagation oc-

curring during the diffusion process. According to the Fick’s first law [26, 27], the particle

concentration flux J̄(x̄, t) at time instant t and location x̄, is equal to the spatial gradient

(operator ∇) of the particle concentration c(x̄, t) occurring at time instant t and location x̄

multiplied by the diffusion coefficient D, expressed as follows:

J̄(x̄, t) = −D∇c(x̄, t) , (11)

where ∇c(x̄, t) is a vector containing the spatial first derivatives of c(x̄, t) along the three

spatial dimensions.

At time t we assume to have a particle concentration rate r(x̄, t) at the location x̄ in the

space S and time t. The principle of mass/matter conservation allows us to formulate the

Continuity Equation [52], which states that the time derivative of the particle concentration

∂c(x̄, t)/∂t is equal to

∂c(x̄, t)

∂t
= −∇J̄(x̄, t) + r(x̄, t) . (12)

Substituting the Fick’s first law from (88) into (12), we end up with the inhomogeneous

Fick’s second law of diffusion. According to this, the time derivative of the particle con-

centration ∂c(x̄, t)/∂t at location x̄ and the time t is equal to the Laplacian (operator ∇2) of

c(x̄, t) occurring at time instant t and location x̄ multiplied by D (diffusion coefficient) plus

the incoming particle concentration rate r(x̄, t), expressed as follows:

∂c(x̄, t)

∂t
= D∇2c(x̄, t) + r(x̄, t) , (13)

where ∇2c(x̄, t) is the sum of the spatial second derivatives of c(x̄, t) along the three spatial

dimensions.

As pointed out in [53], the second Fick’s law is in contradiction with the theory of

special relativity. The solution of the second Fick’s law allows particle concentration infor-

mation to propagate instantaneously from one point to another point in the space S , with a

so-called super-luminal information propagation speed. In order to overcome this problem,
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it was proposed in [54] to add a new term to the Fick’s second law accounting for a finite

speed of propagation in the concentration information. With this additional term, we obtain

the following Telegraph Equation [54]:

τd

∂2c(x̄, t)

∂t2
+
∂c(x̄, t)

∂t
= D∇2c(x̄, t) + r(x̄, t) , (14)

where τd is called relaxation time and it has its origin from statistical mechanics of the

electrons distribution for heat diffusion [54]. Heat diffusion stems from the same laws

underlying the particle diffusion process. Therefore, despite the fact that the Telegraph

Equation in (14) was originally formulated for the case of heat transfer, it can also be

applied to the diffusion of particle concentration.

We propose to model the processing of the system input r(x̄, t)|x̄=0 through the linear

system denoted by the impulse response gd(x̄, t). This process is a convolution operation

performed both in time t and in space x̄, expressed as follows:

c(x̄, t)|x̄ǫS =
∫

S

∫ +∞

t′=0

r(x̄′, t′)gd(x̄′ − x̄, t − t′) dt′ dx̄′ , (15)

where the system input is the particle concentration rate at transmitter r(x̄, t)|x̄=0 and the

system output is the particle concentration value c(x̄, t) at any space location x̄ǫS and at

any time instant t.

Since the input particle concentration rate is a non-zero value only at the transmitter,

this can be also seen as the multiplication of a Dirac delta in the space S by the particle con-

centration rate rT (t) at the transmitter. Therefore, the convolution operation is performed

only in time, expressed as follows:

c(x̄, t)|x̄ǫS =
∫ +∞

t′=0

rT (t′)gd(x̄, t − t′) dt′ , (16)

The impulse response gd(x̄, t) of the system is the Green’s function [55] (the propagator)

of the diffusion process occurring between the transmitter and any other location x̄ in the

space S . The Green’s function is in this case the diffusion process response to a particle

concentration rate at the transmitter given by a Dirac delta in time (rT (t) = δ(t)). In order
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to compute the function gd(x̄, t) we study the equations governing the diffusion process and

the physical conditions constraining their validity.

The Green’s function gd(x̄, t) of the Telegraph Equation in (14), which is analytically

equivalent to the wave equation in a lossy medium [56, 57], is the analytical solution for

the concentration evolution in space and time when r(x̄, t) is a Dirac delta function both in

time t and in space S : r(x̄, t) = δ(x̄)δ(t). It is analytically expressed as

gd(x̄, t) = U (t − ‖x̄‖/cd) e
− t

2τd

cosh
( √

t2 − (|x̄‖/cd)2
)

√

t2 − (‖x̄‖/cd)2
, (17)

where ‖x̄‖ is the distance from the transmitter and cd is the wavefront speed, defined as

cd = ±
√

D/τd, where D is the diffusion coefficient, τd is the relaxation time in (14) and

U(.) is the step function.

The FTTF B̃( f ) of the diffusion process is the Fourier transform of the Green’s function

gd(x̄, t) from (17), expressed as

B̃( f ) =

∫ ∞

−∞
gd(x̄R, t)e

− j2π f tdt , (18)

where x̄R is the receiver location. The values of B̃( f ) are computed numerically.

The normalized gain ΓB( f ) of the diffusion process is the magnitude |B̃( f )| of the

FTTF B̃( f ) normalized by its maximum value max f (|B̃( f )|), which is numerically com-

puted from (18):

ΓB( f ) =
|B̃( f )|

max f (|B̃( f )|)
. (19)

The delay τB( f ) of the diffusion process is

τB( f ) = −dφB( f )

d f
, (20)

where φB( f ) is the phase of the FTTF B̃( f ), as

φB( f ) = arctan

(

Im(B̃( f ))

Re(B̃( f ))

)

, (21)

which stems from the real part Re(B̃( f )) and the imaginary part Im(B̃( f )), numerically

computed from (18).
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3.5 The Reception Process

Through the reception process, the receiver senses the particle concentration cR(t), and

accordingly modulates the output signal sR(t) of the physical end-to-end model. The recep-

tion process, sketched in Figure 7, is based on the chemical theory of the ligand-receptor

binding [49], and on the following assumptions:

Figure 7. Representation of the reception process.

• The measure of the particle concentration takes place inside the receptor space. The

receptor space has a spherical shape of radius ρ.

• The input particle concentration cR(t) is considered homogeneous inside the receptor

space and equal to the particle concentration value at the receiver location.

• The reception is realized by means of NR chemical receptors.

• The chemical receptors are assumed to homogeneously occupy the volume of the

receptor space.

• Each chemical receptor, at the same time instant t, is exposed to the same particle

concentration cR(t).
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• The chemical receptors, when exposed to the particle concentration cR(t), can remain

in their state, namely, bound or unbound, or they can change their state by undergoing

two possible chemical reactions: the particle binding reaction if the receptor was

previously unbound, or the particle release reaction if the chemical receptor was

previously bound to a particle.

• The particle binding occurs with a rate k+, while the particle release occurs with the

rate k−.

When a particle concentration cR(t) is present at time t inside the reception space, the

chemical receptors change their states accordingly. The trend is to reach a ratio between the

number of bound chemical receptors over the not-bound chemical receptors proportional

to cR(t) itself. The concentration of chemical receptors inside the receptor space is the

number of chemical receptors NR divided by the reception space size ρ. Therefore, we

define ŝR(t) as the desired of the number of bound chemical receptors over the number

of not-bound chemical receptors inside the receptor space with the following expression:

ŝR(t) = ρ/NR cR(t).

We define nc(t) as the number of bound chemical receptors (complexes) inside the emis-

sion space at time t. The time differential in the number of complexes dnc(t)dt inside the

reception space is equal to the number of receptors NR multiplied by the time differential

of the system output signal dsR(t)dt:

dnc(t)dt = NR dsR(t)dt (22)

The reception process described above is inspired by cellular systems from biology.

According to these systems, the chemical receptors are models of the transmembrane re-

ceptors [2] embedded in the plasma membrane of living cells and involved in the signal

transduction process. In this section of the report, we do not model the location of the

chemical receptors as if they were on the plasma membrane, but we place them homo-

geneously in the receptor space. This allows us to simplify the treatment related to the
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chemical changes which ultimately lead to the signal transduction. The signal transduction

in bio-signaling involves the conversion of a chemical change (e.g., the change in con-

centration of the chemical components in the surrounding environment) into information.

From this point of view, the molecules of the biochemical components are modeled by the

particles and the biological surrounding environment is the receptor space.

The reception process is modeled through a series-resistor-capacitor (RC) circuit [50].

This circuit is shown in Figure 8, where Vin(t) is the input voltage, function of the time t, Rch
r

is the resistance value of the resistor that is active during the capacitance-charging phase,

Rdis
r is the resistance value of the resistor that is active during the capacitance-discharging

phase, Cr is the capacitance value, and Iout(t) is the output current, equal to the current

Ir(t) that is charging or discharging the capacitance. In the following, it is assumed that

Rch
r ≃ Rdis

r . Under this assumption, the diodes can be removed, and a single resistor Rr is

considered.

Figure 8. RC-circuit model of the reception process

From the electrical circuit theory [50], the Fourier transform of the transfer function

(FTTF) [51] of the RC circuit HRC( f ) between the input voltage Vin(t) and the output current

Iout(t) is

HRC( f ) =
Ĩout( f )

Ṽin( f )
=

j2π f Cr

1 + j2π f RrCr

, (23)

where Ṽin( f ) and Ĩout( f ) are the Fourier transforms [51] of the input voltage Vin(t) and

output current Iout(t), respectively.
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In this scheme, we identify the desired ratio ŝR(t) of the number of bound chemical

receptors over the number of not-bound chemical receptors inside the receptor space with

the input voltage Vin(t) of the RC circuit. The system output signal sR(t) is equal to the

output current Iout. The number nc of bound chemical receptors inside the receptor space is

considered as the charge Qr stored in the capacitor at time t. The time differential dQr(t)dt

of the charge stored in the capacitor is equal to the capacitor value Cr multiplied by the

time differential dVc(t)dt of the output voltage, expressed as follows:

dQr(t)dt = Cr dVc(t)dt . (24)

The similarity of (22) and (24) implies that NR is the total number of chemical receptors

inside the receptor space can be considered equal to the capacitor value Cr, expressed as

Cr = NR . (25)

A number of bound chemical receptors inside the reception space generates a proportional

ratio between bound chemical receptors and not-bound chemical receptors as in an ideal ca-

pacitor, the stored charge Qr(t) generates a proportional voltage Vc(t). The proportionality

constants are NR and Cr, respectively.

The rates of increase and decrease in the number of bound chemical receptors Vc(t) are

related to the rate constant k+ of binding reaction and the rate constant k− of release reac-

tion, respectively. We assume that the probability of a chemical receptor to build/break a

complex and to capture/release a particle is affected by the ratio Vc(t) between the bound

chemical receptors and not-bound chemical receptors itself. When Vc(t) increases, the

probability of capturing a particle decreases. When Vc(t) decreases, the release rate de-

creases. We assume to have a linear relation, which leads to the following expression:

dnc

dt
= (Vin(t) − Vc(t))k . (26)

When Vin(t) > Vc(t), then k = k+, whereas, when Vin(t) < Vc(t), then k = −k−.
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We relate the number of complexes nc to the capacitor charge Qr(t) stored in the ca-

pacitor. dnc(t)/dt is therefore related to the capacitor charge current Ir(t) at time t, equal to

dQr(t)/dt, expressed as follows:

Ir(t) =
(Vin(t) − Vc(t))

Rr

⇒ Rr =
1

k
, (27)

where we assume that k = k− ≃ k+

From the electrical-circuit theory [50], the FTTF C̃( f ) of the transmitter can be ex-

pressed as function of the FTTF of the RC circuit as follows:

C̃( f ) =
ρ

NR

HRC( f ) =
j2π f Crρ

NR(1 + j2π f RrCr)
, (28)

where Ĩin( f ) and Ĩout( f ) are the Fourier transforms [51] of the input voltage Iin(t) and output

voltage Iout(t), respectively.

The normalized gain ΓC( f ) of the reception process is the magnitude |C̃( f )| of the FTTF

C̃( f ) normalized by its maximum value max f (|C̃( f )|), which becomes ρ/(NR Rr) from (28).

This normalized gain has the following expression:

ΓC( f ) =
|C̃( f )|

max f (|C̃( f )|)
=

2π f RrCr
√

(1 + (2π f RrCr)2)
. (29)

The delay τC( f ) of the reception process is computed similarly to (9), where the phase of

the FTTF of (28) is applied in place of the phase φA( f ), expressed as

φC( f ) = arctan

(

Im(C̃( f ))

Re(C̃( f ))

)

= arctan

(

1

2π f RrCr

)

, (30)

which is computed from the real part Re(C̃( f )) and the imaginary part Im(C̃( f )) of the

FTTF C̃( f ).

3.6 End-to-end Normalized Gain and Delay

The end-to-end normalized gain ΓT( f ) is computed by multiplying the normalized-gain

contributions coming from the three processes, expressed as

ΓT( f ) = ΓA( f ) · ΓB( f ) · ΓC( f ) , (31)
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where ΓA( f ) is obtained from (8), (4) and (6); ΓB( f ) is numerically computed from (18)

and (17); ΓC( f ) is obtained from (29), (27) and (25). The end-to-end delay τT( f ) is obtained

by summation of the delay contributions coming from the three processes, expressed as

τT( f ) = τA( f ) + τB( f ) + τC( f ) , (32)

where τA( f ) is obtained from (9), (10), (4) and (6); τB( f ) is numerically computed from (18)

and (17); τC( f ) is obtained from (9), (30), (27) and (25).

3.7 Numerical Results

In this section, we show the numerical results in terms of normalized gain and delay for

each process, as well as for the overall end-to-end model. The frequency spectrum con-

sidered in these results ranges from 0 Hz to 1 kHz. Although we believe that there is no

biological justification for taking into account this frequency range, we are expecting to

study networks of new devices which will be able to exploit the MC end-to-end model by

using various modulation techniques, even the ones not used by biological entities. For

this, we believe that the results in this frequency range could help the future development

of nano-scale communication systems. We do not consider a wider frequency range since

the results up to 1 kHz already show clearly the trend of the end-to-end model attenuation

and delay as functions of the frequency.

The normalized gain ΓA( f ) for the emission process A, shown in Figure 9, is com-

puted from (8), (4) and (6), for a frequency spectrum from 0 Hz to 1 kHz and a diffusion

coefficient D ∼ 10−6m2sec−1 of calcium molecules diffusing in a biological environment

(cellular cytoplasm, [58]). The normalized gain ΓA( f ) shows a non-linear behavior with

respect to the frequency, as expected from an RC circuit. The curves for the normalized

gain in Figure 9 show the maximum value 1 (0 dB) at the frequency 0Hz and they mono-

tonically decrease as the frequency increases and approaches 1 Hz. This phenomenon can

be explained considering that if the frequency of the end-to-end model input signal sT (t)
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Figure 9. The normalized gain for the emission process A.

increases, the resulting modulated particle concentration rate rT (t) decreases in its magni-

tude. This is due to the fact that the particle mobility in the diffusion process between the

inside and the outside of the transmitter is constrained by the diffusion coefficient. The

higher is the diffusion coefficient, the faster is the diffusion process given a value for the

particle concentration gradient between the inside and the outside of the transmitter.

The delay τA( f ) for the emission process A, obtained from (9), (10), (4) and (6), shows

a constant zero value in the frequency range from 0 Hz to 1 kHz and, for this reason, we

omitted its plot here. Consequently, the transmitter does not distort any input signal having

a bandwidth contained in the analyzed frequency range.

The normalized gain ΓB( f ) for the diffusion process B, shown in Figure 10, is numer-

ically computed from (19), (18) and (17) for a transmitter-receiver distance from 0 µm

to 50 µm and a frequency spectrum from 0 Hz to 1 kHz. The diffusion coefficient is the

one of calcium molecules diffusing in a biological environment (cellular cytoplasm, [58])

D ∼ 10−6 m2sec−1. The relaxation time τd from (14) is set approximatively to the relaxation

time computed for water molecules: τd ∼ 10−9 sec. The normalized gain ΓB( f ) shows a

non-linear behavior both with respect to the distance d and the frequency f . The maximum
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value of the normalized gain (0 dB) is at the transmitter location (distance = 0) and for the

frequency f = 0. As the frequency increases, the normalized gain decreases monotonically.

The behavior with respect to the distance from the transmitter is monotonically decreasing.
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Figure 10. The normalized gain for the diffusion

process B.
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cess B.

The delay τB( f ) for the diffusion process B, shown in Figure 11, is numerically com-

puted from (20), (21), (18) and (17). The delay τB( f ) is shown both with respect to the

distance and the frequency. For low frequency values, the delay is non-linear with respect

to the distance from the transmitter. Therefore, the particle diffusion process B has a dis-

persive behavior in the frequency range from 0 Hz to 1 kHz and, consequently, the signal

propagating through the molecular diffusion process can be distorted.

The normalized gain ΓC( f ) for the reception process C, shown in Figure 12, is obtained

from (29), (27) and (25), for a variable number of receptors NR from 20 to 100, a fre-

quency spectrum from 0 Hz to 1 MHz, rate constants k+ = k− = 108 M−1sec−1 (see [59]),

and ρ = 10 µm. The reception process normalized gain shows a non-linear behavior with

respect to the frequency, as expected from an RC circuit. Each different curve is related to

a different value in the number of receptors NR. All the curves show the maximum value

1 at the frequency 0 Hz. The normalized gain monotonically increases as the frequency
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increases. This phenomenon can be explained considering that if the frequency of the par-

ticle concentration cR(t) increases, the resulting output signal sR(t) increases its magnitude.

This is due to the fact that the particle receptors are constrained by the rate of release and

binding in the sensing of the particle concentration cR(t). The curves related to lower values

of NR show lower values of normalized gain throughout the frequency spectrum range. A

higher number of receptors NR requires a higher number of molecules released or captured

in order to reach a desired ratio of bound receptor to non bound receptors. The number

of receptors NR is also related to the precision of the particle concentration measurement.

Then the higher is the number NR of receptors inside the receptor space S r, the smaller is

the minimum concentration variation dcr(t) sensed by the reception process and translated

into a variation in the system output signal sR(t).
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Figure 12. The normalized gain for the reception

process C.
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Figure 13. The group delay for the reception pro-

cess C.

The delay τC( f ) for the reception process C, shown in Figure 13, is obtained from (30),

(27) and (25). The delay τC( f ) curves are shown in Figure 13 with the same input pa-

rameters as before. For every curve, the delay has a non-linear behavior with respect to

frequency. This means that the shape of the system output signal sR(t) is distorted with

respect to the particle concentration cR(t). This behavior is enhanced for higher values in

the number NR of receptors.
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The normalized gain ΓT( f ) for the end-to-end model T , shown in Figure 14, is com-

puted from (31) for a transmitter-receiver distance from 0 µm to 50 µm. The number of

receptors is assumed to be NR = 10, since it corresponds to the lowest normalized gain for

the reception process, while maintaining a reasonable number of receptors at the receiver.

The end-to-end normalized gain shows a non-linear behavior with respect to the frequency.

Each different curve is related to a different value of the transmitter-receiver distance. All

the curves show the maximum value 1 at the frequency 0Hz. The normalized gain mono-

tonically decreases as the frequency increases. If the frequency of the end-to-end model

input signal sT (t) increases, the resulting output signal sR(t) decreases its magnitude. The

curves related to higher values of the transmitter-receiver distance show lower values of

normalized gain throughout the frequency spectrum range.
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Figure 14. The normalized gain for the reception

process T .
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Figure 15. The group delay for the end-to-end

model T .

The delay τT( f ) for the end-to-end model T , shown in Figure 15, is computed from (32).

The delay τT( f ) curves are shown in Figure 15, one for each value of the transmitter-

receiver distance. For every curve, each frequency is delayed by a different time. Conse-

quently, the shape of the system output signal sR(t) is distorted with respect to the end-to-

end model input signal sT (t). This behavior is enhanced for higher values of the transmitter-

receiver distance.
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3.8 Conclusion

In this chapter of the Ph.D. thesis, a physical end-to-end model for the diffusion-based MC

is proposed. For this, a basic diffusion-based MC system design is provided, which aims at

an interpretation of the diffusion-based MC, both in terms of molecule emission/reception

and molecule propagation. In the provided diffusion-based MC system design, the physical

end-to-end model is studied as the composition of three subsequent processes, namely, the

particle emission, the particle diffusion, and the particle reception. The normalized gain

and delay are computed as functions of the frequency and the transmission range for the

three physical processes, as well as for the overall end-to-end model. Numerical results are

provided to evaluate the normalized gain and delay of the diffusion-based MC system for

several different values of the system frequency and the transmission range.

Typical communication engineering paradigms can be applied to this model in order

to study the end-to-end behavior in terms of noise, capacity and throughput. Moreover, in

light of the results, several classical modulation schemes could be studied when information

is sent over this physical end-to-end model. However, this analysis does not account for

stochastic phenomena present in the aforementioned processes that can act as noise on

the information signal. In the next chapter, the models for the three processes are further

refined by providing an analysis of the noise sources affecting the diffusion-based MC.
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CHAPTER 4

NOISES IN DIFFUSION-BASED MOLECULAR

COMMUNICATION

4.1 Motivation and Related Work

The proper study and characterization of the noise is one of the main challenges in the

information theoretic analysis of diffusion-based Molecular Communication (MC). The

noise in a communication system is defined as an unwanted and unavoidable random com-

ponent that affects the information-bearing signal [60]. The modeling of the noise sources

is fundamental to design the components of a communication system, and increase the

probability of correct exchange of information between the transmitted and the receiver.

From the point of view of communication engineering, the most useful characterization

the noise sources is achieved, whenever possible, through a stochastic modeling, where the

generated noise signal is interpreted as the output of random processes with known statis-

tical parameters. The objective of this chapter of the Ph.D. thesis is to identify the most

relevant noise sources affecting diffusion-based MC, and provide stochastic models with a

proven physical validity.

Most of the contributions from the literature to the noise analysis for diffusion-based

MC are mainly based on the results of simulations, and do not provide stochastic models

for the noise sources in terms of random processes. As an example, in [36] the results of

simulations show a noise for the diffusion-based MC which follows a non-Gaussian statis-

tics, although the analytical model for this statistics is not investigated. In [29] the noise

effects on the diffusion-based MC are resulting only from simulation and there is no an-

alytical model of diffusion-based noise and no stochastic study of its underlying physical

phenomena. Moreover, in [29] there is no specific analysis of the noise sources which affect

the reception side of a diffusion-based MC system. In [43], the diffusion-based MC recep-

tion noise is analyzed in terms of probability of having erroneous digital reception, under
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the assumption of a binary squared pulse code modulation signal. As a consequence, the

work in [43] addresses the noise analysis for a diffusion-based MC system having specific

characteristics in terms of modulation scheme and type of transmitted messages.

Contributions from the biochemistry literature provide descriptions of some physical

processes underlying the noise sources in diffusion-based MC systems. Seminal works

in biochemistry, such as [61], analyzed how free space diffusion of molecules impairs the

proper measurement of the molecule concentration. A more recent contribution to the phys-

ical analysis of molecule diffusion and reception in biochemical signaling can be found

in [62]. However, these contributions tend to focus on the explanation of natural phenom-

ena, and do not provide suitable models for MC engineering. The work in [63] stems, on

the contrary, from the simulation of a biological signal transduction mechanism and its as-

sociated noise using tools from communication engineering. However, the analysis of the

system is limited to a numerical evaluation of the simulation results using communication

engineering parameters (e.g., the Signal to Noise Ratio, SNR). No stochastic models are

provided in [63] for the noise sources, but the results are coming from numerical simula-

tions. In [64], the authors develop only a preliminary information theoretic model applied

to the study of intracellular communication with the diffusion of calcium ions.

In this chapter of the Ph.D. thesis, three noise sources affecting diffusion-based MC are

identified, namely, the sampling noise, the counting noise, and the ligand-receptor-binding

noise, and they are related to the transmitter, the signal propagation in the channel, and the

receiver, respectively. These noise sources are modeled in a twofold fashion: the physi-

cal model provides a mathematical analysis of the physical processes which generate the

noise, while the stochastic model aims at capturing those physical processes through statis-

tical parameters. The physical model contains all the physical variables which contribute

to the generation of the noise. The stochastic model summarizes the noise generation us-

ing random processes and their associated parameters. Sets of noise data realizations are

generated through simulation of the physical model. These sets of noise data are then used
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to test the stochastic model ability to capture the behavior of the physical processes which

generate the noise.

4.2 Definition of the Noise Sources in Diffusion-based MC

Three noise sources, which affect the physical end-to-end model defined in Chapter 3, are

here identified and studied, namely, the particle sampling noise, the particle counting noise,

and the ligand-receptor-kinetics noise. In the following, each noise source is defined with

reference to the block scheme in Figure 16.

Figure 16. Block scheme of the end-to-end model that includes the noise sources.

The PARTICLE SAMPLING is related to the Emission Process at the transmitter. The

particle sampling noise is expressed as ns(t). The effect of ns(t) is an unwanted perturbation

on the output of the emission process rT (t), which results in r̂T (t):

rT (t)→ r̂T (t) (33)

The particle sampling noise is generated by the PARTICLE SAMPLING, which occurs

when the particle concentration rate r̂T (t) is being modulated through the emission of the

particles. The noise effects arise from the discreteness of the particles that compose the

particle concentration rate r̂T (t). The particle concentration rate rT (t) in output from the

emission process is caused by a particle flux between the transmitter and the external space.

Given the discreteness of the particles, the particle concentration rate rT (t) is sampled by

the particles themselves, resulting in the particle concentration rate r̂T (t). Further details on

the analysis for this type of noise are provided in Section 4.3.

The PARTICLE COUNTING is related to the signal propagation due to the Diffusion

Process. The particle counting noise is expressed as nc(t). The effect of nc(t) is an unwanted
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perturbation on the output of the diffusion process cR(t), which results in ĉR(t):

cR(t)→ ĉR(t) (34)

The particle counting noise occurs when the particle concentration value is being measured

at the receiver location (PARTICLE COUNTING) and it is due to the randomness in the

movement and to the discreteness of the particles. The particle concentration cR(t) at the

receiver location is computed by counting the number of particles present in the reception

space. Fluctuations and imprecisions in counting the particles impair the proper computa-

tion of the concentration cR(t). The actual computed concentration ĉR(t) differs from cR(t).

The analysis for this type of noise is provided in Section 4.4.

The LIGAND-RECEPTOR BINDING is related to the Reception Process. The ligand-

receptor-binding noise affects the molecular receiver due to random fluctuations in the

LIGAND-RECEPTOR BINDING process. Due to the effect of this noise contribution,

denoted by wk(t), the particle concentration cR(t) is subject to an unwanted perturbation,

resulting in ĉk
R
(t). As a consequence, this perturbation propagates to the output signal ŝk

R
(t)

after the reception process:

cR(t)→ ĉk
R(t)→ ŝk

R(t) (35)

Further details on the analysis for this type of noise are provided in Section 4.5.

In the following, the analysis of each noise source, which results in both a physical

model and a stochastic model, is detailed. With the former the mathematical expression of

the physical process underlying the noise source is obtained, while with the latter the noise

source behavior is modeled through the use of statistical parameters.

4.3 The Particle Sampling Noise

The model of the emission process provided in Section 3.3 of Chapter 3 does not take into

account the discrete nature of the particles. In this chapter, an additional assumption is

considered for the particle-emission process:
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• The particle flux through the emission gaps in the spherical boundary is composed

of discrete particles.

As a result, the relation between the input signal sT (t) and the resulting particle-concentration

rate, denoted by r̂T (t), is no longer a continuous function as in Section 3.3. During the emis-

sion process, as shown in Figure 4, single particles flowing through the emission gaps con-

tribute to the concentration rate r̂T (t) with a value kn at discrete time instants tn = t1, t2, . . ..

These time instants are not equally spaced, as a consequence of the random nature of the

particle motion through the emission gaps. Therefore, the resulting particle-concentration

rate r̂T (t) assumes values equal to kn at randomly-spaced time instants tn, and it is zero for

any other time instant. This particle-concentration rate is expressed as follows:

r̂T (t) =
∑

nǫN

kn

tn − tn−1

δ(t − tn) , (36)

where δ(.) is a Dirac delta function. According to the Nyquist theorem [65], since the

time instants tn are randomly spaced, the continuous particle concentration rate rT (t) can be

reconstructed from the non-uniform sampled particle concentration rate r̂T (t) if the band-

width of rT (t) is limited up to frequency 1/(2〈tn − tn−1〉), where 〈tn − tn−1〉 is the average

interval between two consecutive samples of r̂T (t). As a consequence, given a fixed band-

width for the system, the degradation caused by the particle sampling noise on the particle

concentration rate in output at the transmitter depends on the average rate of the events of

single particles flowing between the inner area and the outer area. This event rate corre-

sponds to the particle concentration rate rT (t) and the system bandwidth depends on the

parameters as defined in Section 3.3. This result is confirmed through the stochastic model

of the particle sampling noise, outlined in Section 4.3.2.

4.3.1 The Physical Model

The physical model of the particle sampling noise is represented by the block scheme

shown in Figure 17. The signal sT (t) is the input of the emission-process block, whose

output is the particle-concentration rate rT (t). The physical model of the particle sampling
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noise ns(t) takes as input the particle-concentration rate rT (t) that the emission process

would produce in output in the absence of noise. The particle sampling noise ns(t) is com-

posed of a decision block and a non-uniform sampler, which have as input the transmitter

kinetic state S̄ T (t), and a divisor. The output of the particle sampling noise ns(t) is the

particle-concentration rate r̂T (t) affected by noise.

Figure 17. Block scheme of the physical model for the particle sampling noise.

The transmitter kinetic state S̄ T (t), as shown in Figure 18, is a set composed by the

location x̄p(t) and the net velocity v̄p(t) of each particle p at time t present in the surrounding

of the transmitter spherical boundary, expressed as

S̄ T (t) =
{

x̄p(t), v̄p(t)| p = 1, ..., P(t)
}

, (37)

where P(t) is the number of particles in the system and varies as a function of the time t.

The net velocity v̄p(t) is here defined as the non-isotropic component of a particle speed, in

contrast to the Brownian motion in free space which has isotropic components. In order to

realistically simulate the transmitter kinetic state S̄ T (t), we consider two different contribu-

tions to the particle displacement, namely, the Brownian motion and the time integral of the

particle net velocity from time instant t0 to time instant t. The time instant t0 corresponds

to the beginning of the emission process. The expression of the particle location x̄p(t) is

written as follows:

x̄p(t) = bx(t) î + by(t) ĵ + bz(t) k̂ +

∫ t

t′=t0

v̄p(t′)dt′ , (38)
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where the Brownian motion components, namely, bx(t), by(t) and bz(t), are random vari-

ables with normal distribution, zero mean value and variance equal to 2Dδt, according to

the expression of the Wiener process [66], expressed as

bx(t), by(t), bz(t) ∼ N(0, 2Dδt) , (39)

along the versors of the cartesian axes, namely, î, ĵ and k̂. D is the diffusion coefficient

and δt is the simulation time step and it depends on how the transmitter kinetic state is

sampled during the physical model simulation. The smaller is the time step δt, the closer

is the simulation to the real physical phenomenon of particle diffusion. The value of the

time step δt defines the time resolution with which we model events concerning particles

changing their space area. According to the Nyquist theorem [65], if the value of the time

step δt is smaller than 1/(2BrT
), where BrT

is the bandwidth of the particle concentration

rate rT (t), then we can have a perfect simulation of the sampling noise generation as it

happens in reality. When the particle is located inside the inner area or the outer area, it

is only subject to the Brownian motion. In these cases, the particle speed has only the

isotropic components due to the Brownian motion in free space, and its net velocity v̄p(t)

is equal to zero. When the particle is traversing an emission gap, its movement can only

be outward incase of positive rate (rT (t) > 0) or inward in case of negative rate (rT (t) < 0)

along the radius of the spherical boundary. In order to quantify the particle net velocity

v̄p(t), we consider that the particle concentration rate rT (t) is given only by the contribution

of the particles traversing the emission gaps. Given a particle concentration rate rT (t), the

number of particles traversing the emission gaps in a unit time is given by the transmitter

inner concentration cin
T

(t) in case of positive rate (rT (t) > 0) and by the transmitter outer

concentration cT (t) in case of negative rate (rT (t) < 0), multiplied by their average velocity.

When they traverse the emission gap, the particle average velocity corresponds to the net

velocity v̄p(t). As a consequence, the particle net velocity v̄p(t) is proportional to the particle

concentration rate rT (t), divided by the transmitter inner concentration cin
T

(t) in case of

positive rate (rT (t) > 0), or divided by the transmitter outer concentration cT (t) in case of
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negative rate (rT (t) < 0), expressed as follows:

v̄p(t) =























0 if p in inner or outer

rT (t)

cin
T

(t)1rT (t)>0+cT (t)1rT (t)<0
γ̂ if p in emission gap

, (40)

where 1(condition) is equal to 1 when condition is true and 0 otherwise. γ̂ is the versor along

the radius of the transmitter spherical boundary.

Figure 18. Graphical sketch of the transmitter kinetic state S̄ T (t) at time t. S̄ T (t) depends on the particle

concentration rate rT (t) in input through the expressions in (37) and (38).

The decision block assigns the value of kn according to the transmitter kinetic state

S̄ T (t). kn is assigned a positive k value or a negative −k value according whether there is an

event in the kinetic state S̄ T (t) concerning a particle changing its space area, e.g., from the

inner to the outer area, with contribution k to the rate, or from the outer to the inner area,

with contribution −k, expressed as

kn =























k i f S̄ T (t) ⊂ {x̄p(t), v̄p(t)|p from inner to outer}

−k i f S̄ T (t) ⊂ {x̄p(t), v̄p(t)|p from outer to inner}
. (41)

The value of k equals a contribution of one particle to the concentration at the transmitter

location or, in other words, it is the constant difference in the particle concentration ĉT (t)
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from consecutive time instants tn, tn−1, expressed as

k = ĉT (tn) − ĉT (tn−1) . (42)

The non-uniform sampler block samples at time instants tn, which are functions of

the transmitter kinetic state S̄ T (t). If, at time instant tn, there is an event in the kinetic

state S̄ T (tn) concerning a particle changing its space area, the non-uniform sampler block

produces a Dirac impulse at tn, with amplitude equal to the current value of kn, output from

the decision block, expressed as

knδ(t − tn)i f S̄ T (tn) ⊂ {x̄p(tn), v̄p(tn)|p changes space area} . (43)

The divisor block divides the output of the sampler by the time interval between the

previous sample at tn−1 and the current sample, which is at tn. As a consequence, the output

of the divisor block for the time interval tn−1 < t < tn+1, which corresponds to the particle

concentration rate r̂T (t) affected by noise, is

r̂T (t) =
knδ(t − tn)

tn − tn−1

f or tn−1 < t < tn+1 . (44)

For a time interval spanning from t = 0 to t → ∞ the result is the expression introduced

in (36).

Since it is not possible to always have the knowledge of the kinetic state of the system

S̄ T (t) due to the huge amount of information and to the randomness in the particle motion,

we cannot analytically compute the value of r̂T (t) as function of rT (t) from the physical

model of the particle sampling noise. Using the physical model provided here, we can only

simulate numerically the behavior of the particle sampling noise ns(t).

4.3.2 The Stochastic Model

The particle sampling noise can also have another formulation, through statistical parame-

ters, that is suitable when theoretical studies require an analytical expression of the noise.

In this formulation, the particle sampling noise ns(t) is generated by a random process
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ñs(t), whose contribution corresponds to the difference between the particle-concentration

rate r̂T (t) affected by noise and the particle-concentration rate rT (t) expected in the absence

of noise, expressed as follows:

ñs(t) = r̂T (t) − rT (t) . (45)

In Figure 19, the main block scheme of the stochastic model for the particle sampling

noise is shown. The random process ñs(t), as it is proved in the following, depends on

the value of the particle-concentration rate rT (t), output from the emission-process block,

which receives the signal sT (t) as input. The sum of the random process ñs(t) and the

particle-concentration rate rT (t) is the particle-concentration rate r̂T (t) affected by the par-

ticle sampling noise.

Figure 19. Block scheme of the stochastic model for the particle sampling noise .

In order to properly model the random process ñs(t) we consider the following assump-

tions:

• The outer particle concentration at the transmitter ĉT (t) increments/decrements its

value whenever a single event concerning a particle changing its space area occurs.

• The probability of having two simultaneous events concerning particles changing

their space area is zero. In other words, it is unlikely to have two particles crossing the

spherical boundary of the transmitter at the same exact time instant. With reference to

the physical model of the particle sampling noise from Section 4.3.1, this assumption
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translates into the statement: the probability of having two samples from the non-

homogeneous sampler at the same time instant is zero. In equation this becomes

Pr [tn − tn−1 = 0] = 0 . (46)

This assumption is justified by the independency of the Brownian components in

the movement of different particles in the space. This assumption directly trans-

lates into the property of orderliness for the outer particle concentration cT (t) incre-

ments/decrements. The property of orderliness states that the probability that the dif-

ference between outer particle concentrations ∆ time apart from each other is higher

than the contribution k from a single particle, tends to zero as ∆ tends to zero, ex-

pressed as

lim
∆→0

Pr [|cT (t + ∆) − cT (t)| > k] = 0 , (47)

where k is defined through (42).

• An event concerning a particle changing its space area (passing through an emission

gap) occurring after time t is independent of any event of the same kind occurring

before time t. This assumption is justified by the property of the Wiener process un-

derlying the particle Brownian motion of having independent increments. As stated

inSection 3.3, particles are subject only to the contribution of the Brownian motion

when they are located inside the inner area or the outer area. An event concerning

a particle passing through an emission gap takes place whenever a particle, due to

the Brownian motion, reaches the location of an emission gap: if there is a non-zero

particle concentration rate in the outer area, the particle traverses the emission gap

with net velocity v̄p(t), given by (40). In other words, given a particle concentration

rate in the outer area, which controls the average rate of occurrence of an event of

this kind, the statistics of the event is solely dependent on the Brownian motion of the

particles. As a consequence, the distribution of the time interval between an event at

time t−∆t and another event at time t is independent from the distribution of the time
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interval between an event at time t and an event at time t + ∆t. The two distributions

have the same expression from (39), as

Pr (bx(t) − bx(t − ∆t) = x) = 1√
2πD∆t

e−
x2

2D∆t =

= Pr (bx(t + ∆t) − bx(t) = x) ,

(48)

where bx(t) is the motion component along the î versor at time t, D is the diffusion

coefficient and ∆t is positive. Equation (48) is valid also for the motion components

by(t) and bz(t) along the versors ĵ and k̂, respectively. This implies that a particle mo-

tion from time t is independent from any motion of the particle occurred before time

t. Being all the particle independent among each other, events concerning a change

in the particle space area show the same independence. As a consequence, the events

concerning particles changing their space area have the property of memorylessness.

• The occurrence rate of events concerning particles changing their space area is pro-

portional to the flux of the particles between the inner area and the outer area. The

flux of the particles is proportional to the expected particle concentration rate at the

transmitter location rT (t).

Under these assumptions [66], the resulting outer particle concentration at the transmitter

ĉT (t) is a double non-homogeneous Poisson counting process, whose rate of occurrence

corresponds to the expected particle concentration rate rT (t). The distribution of the outer

particle concentration ĉT (t) corresponds to a Poisson counting process with rate of occur-

rence rT (t) whenever the particle concentration rate rT (t) is positive. Whenever the particle

concentration rate rT (t) is negative, ĉT (t) is the negative of a poisson counting process with

rate of occurrence −rT (t), expressed as

ĉT (t) ∼























Poiss(rT (t)) rT (t) > 0

−Poiss(−rT (t)) rT (t) < 0

, (49)

When the emission process is subject to the particle sampling noise, the particle concentra-

tion rate at the transmitter location r̂T (tn) corresponds to the first finite time difference of
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the particle concentration ĉT (t), which is step-wise and, therefore, not derivable, expressed

as

r̂T (tn) =
ĉT (tn) − ĉT (tn−1)

tn − tn−1

. (50)

Since the particle concentration ĉT (t) is a double non-homogeneous Poisson counting pro-

cess, the particle concentration rate at the transmitter location r̂T (t) is the first finite time

difference of a double non-homogeneous Poisson counting process, whose average value

〈r̂T (t)〉, where 〈.〉 denotes the ensemble average operator, has the same value as the rate of

occurrence of the originating double Poisson counting process

〈r̂T (t)〉 = rT (t) , (51)

and whose autocorrelation is the expected squared particle concentration rate r2
T
(t) added

to the expected particle concentration rate rT (t) itself only for correlation lag l equal to 0,

expressed as follows:

〈r̂T (t) · r̂T (t + l)〉 = r2
T (t) + rT (t)δ(l) , (52)

where δ(l) is a Dirac delta. Given (45), the random process ñs(t) has zero average value

and its autocorrelation Rs(t, l) is equal to the expected particle concentration rate rT (t) for

correlation lag l equal to 0, expressed as

Rs(t, l) = 〈ñs(t) · ñs(t + l)〉 = rT (t)δ(l) . (53)

Therefore the random process ñs(t) is white [66] and its mean squared value is the expected

particle concentration rate rT (t), as

〈ñ2
s(t)〉 = 〈ñs(t) · ñs(t + l)〉|l=0 = rT (t) . (54)

The RMS of the perturbation RMS(ñs(t)) on the expected particle concentration rate rT (t)

is equal to the square root of the expected particle concentration rate rT (t), expressed as

RMS(ñs(t)) =
√

rT (t) . (55)
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According to the results in Section 3.3, the relation between the input signal T (t) and

the particle concentration rate rT (t) is expressed in the frequency ( f ) domain as

r̃T ( f ) = Ã( f )T̃( f ) , (56)

where T̃( f ) and r̃T ( f ) are the Fourier transforms [51] of the system input signal T (t) and

the particle concentration rate rT (t) at the transmitter location, respectively. Ã( f ) is the

Transfer Function Fourier Transform [51] (TFFT) of the transmitter module. The same

relation in the time (t) domain becomes

rT (t) = a(t) ∗ T (t) , (57)

where ∗ denotes the convolution operator [51], a(t) is the impulse response of the trans-

mitter module and T (t) is the input signal. The formula for the RMS of the perturbation

RMS(ñs(t)) on the signal r̂T (t) becomes

RMS(ñs(t)) =
√

a(t) ∗ T (t) . (58)

4.3.3 Numerical Results

Sampling Noise Simulations

The simulations of the physical model for the particle sampling noise are computed by

applying to the scheme in Figure 17 a sinusoidal signal in the particle concentration rate

rT (t), expressed as

rT (t) = A sin(2π fat) , (59)

where fa is the frequency of the sinusoid in Hz, A is the value of the maximum particle

concentration rate in particles µm−3sec−1, and t is the simulation time index in msec.

The input of the physical model simulation is a sinusoidal particle concentration rate

rT (t) with frequency fa equal to 4 Hz and maximum particle concentration rate A of 10 par-

ticles µm−3sec−1, as shown in Figure 20. The radius of the transmitter spherical boundary is

ρ = 1 µm. The simulation runs for 1sec by steps of δt = 1 msec. The output noisy particle

concentration rate r̂T (t) of the physical model simulation is shown in Figure 21.
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Figure 20. The particle sampling noise physical

model simulation input.

Figure 21. The particle sampling noise physical

model simulation output.

During the simulation, particles are generated inside the transmitter spherical bound-

ary at random locations whenever the particle concentration rate rT (t) is positive. Particle

deletion is randomly performed inside the transmitter spherical boundary whenever rT (t) is

negative. Through particle generation and particle deletion we control the number of par-

ticles in the system P(t), which is a parameter of the transmitter kinetic state S̄ T (t) shown

in (37). The Brownian motion of the particles is modeled according to (38) and having

the diffusion coefficient D ∼ 10−6 cm2sec−1 of calcium molecules diffusing in a biological

environment (cellular cytoplasm, [58]). Samples contributing to the value of r̂T (t) are gen-

erated by applying (41) and (43) to the transmitter kinetic state S̄ T (t). The final results in

terms of particle concentration rate r̂T (t) is achieved by applying (44).

The particle sampling noise has two different effects on the sinusoidal signal, namely,

signal sampling and signal amplitude distortion. Signal sampling is given by the non-

homogeneous sampling of the particle concentration rate rT (t) in time, as shown in Fig-

ure 21. In non-homogeneous sampling, samples are separated by a non-constant time in-

terval. Since in the simulations we apply a constant time step δt, for each time steps the

contributions of samples which occur within δt are added. The signal amplitude distortion

is given by the constant contribution that each particle gives to the concentration at the
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transmitter location, (42), whenever a sample is generated by the non-homogeneous sam-

pling. Constant contributions in non-homogeneous sampling cause sudden changes in the

particle concentration rate value, which result in distortions of its amplitude.

Figure 22. The particle sampling stochastic

model likelihood.

Figure 23. The Gaussian model likelihood for the

particle sampling noise.

Sampling Noise Statistical Likelihood Test

The statistical likelihood test is applied in order to assess the stochastic model ability to cap-

ture the behavior of the physical processes which generate the noise. For this, we compute

the likelihood, that is, the probability of the noisy data coming from the physical model

simulation r̂T (t) given the stochastic model of the particle sampling noise, as defined in

Section 4.3.2. In order to evaluate the reliability of the particle sampling stochastic model

parameters in (52) and (54), the likelihood probability is evaluated for a range of different

values for the parameter rT (t) of the Poisson processes in (49):

likelihoodParticleS ampling = Pr
(

r̂T (t)|Part.Sampl.sto.rT(t)
)

(60)

where rT (t) ranges from 0.1 to 10 particles µm−3sec−1 for every time instant t. The results

are shown in Figure 22, where it is clearly visible that the highest likelihood value corre-

sponds, for every time instant t, to the value of rT (t) from (59), thus confirming that the

best particle concentration rate, parameter of the model, is actually the particle concentra-

tion rate in input to the physical model of the particle sampling noise.
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This statistical likelihood test results shown in Figure 22 are compared to the results ob-

tained through the use of a Gaussian model in place of the particle sampling noise stochastic

model. The Gaussian model, denoted by N(rT (t), rT (t)) has the same expected value and

the same variance as the particle sampling noise stochastic model. The likelihood formula

is:

likelihoodGaussian = Pr (r̂T (t)|N(rT (t), rT (t))) (61)

where rT (t) ranges from 0.1 to 10 particles µm−3sec−1 for every time instant t. The results

in terms of Gaussian model likelihood are shown in Figure 23. When the Gaussian model is

applied, the likelihood shows higher values than when using the particle sampling stochas-

tic model, but only at specific time instants. On average, the likelihood values shown in

Figure 23 are much lower than the values in Figure 22 and this proves that the particle sam-

pling stochastic model performs better than the Gaussian model. This preliminary result

confirms the validity of the particle sampling stochastic model presented in this paper.

4.4 The Particle Counting Noise

The model of the diffusion process provided in in Section 3.4 of Chapter 3 does not take

into account the discrete nature of the particles and the randomness of their motion when

the concentration c(x̄R, t) inside the receptor space is measured. In the present analysis, the

following assumptions are introduced:

• The receptor space contains a discrete number of particles.

• Particles may enter/leave the receptor space as a consequence of the diffusion pro-

cess, even when the concentration c(x̄R, t) at the receiver location is maintained at a

constant value.

As a result, the measured particle concentration ĉR(t) suffers from two effects. The first

effect is given by the quantization of the concentration measure, which is due to the discrete

number of particles inside the receptor space. The second effect is given by fluctuations in
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the concentration measure, which are due to single events of particles entering/leaving the

receptor space.

During the reception process, particles present inside the receptor space at time instant t

are counted, and their number N̂p(t) is divided by the size of the receptor space, defined in

Section 3.5, equal to (4/3)πρ3, expressed as

ĉR(t) =
N̂p(t)

(4/3)πρ3
, N̂p(t)ǫN , (62)

where N denotes the set of the positive integers.

4.4.1 The Physical Model

The physical model of the particle counting noise is represented though the block scheme

shown in Figure 24.

Figure 24. Block scheme of the physical model for the particle counting noise.

The particle-concentration rate r̂T (t) is the input of the diffusion-process block, whose

output is the true particle concentration cR(t). The physical model of the particle count-

ing noise nc(t) takes as input the true particle concentration cR(t) that the diffusion process

would produce in output in the absence of noise. The particle counting noise nc(t) is com-

posed of two branches. The upper branch has a decision block and a non-uniform sampler,

which have as input the receiver kinetic state S̄ R(t), while the lower branch has a multi-

plier and rounder block, and it takes as input the true particle concentration cR(t). The two
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branches are then added and the result is the input of a divisor. The output of the particle

counting noise nc(t) is the particle concentration ĉR(t) affected by noise.

The receiver kinetic state S̄ R(t), as shown in Figure 25, is a set composed by the

location x̄p(t) of each particle p at time t present in the surrounding of the receptor space

defined in Section 3.5, expressed as follows:

Figure 25. Graphical sketch of the receiver kinetic state S̄ R(t) at time t. S̄ R(t) depends on the particle

concentration cR(t) in input through the expressions in (63) and (64).

S̄ R(t) =
{

x̄p(t)| p = 1, ..., P(t)
}

, (63)

where P(t) is the number of particles in the system and varies as a function of the time t.

In order to realistically simulate the receiver kinetic state S̄ R(t), we consider the Brownian

motion contribution at every time instant t. The expression of the particle location x̄p(t) is

written as follows:

x̄p(t) = bx(t) î + by(t) ĵ + bz(t) k̂ , (64)

56



where the Brownian motion velocity components, namely, bx(t), by(t) and bz(t), are random

variables with normal distribution, zero mean value and variance equal to 2Dδt, according

to the expression of the Wiener process [66], expressed as

bx(t), by(t), bz(t) ∼ N(0, 2Dδt) , (65)

along the versors of the cartesian axes, namely, î, ĵ and k̂. D is the diffusion coefficient and

δt is the simulation time step and it depends on how the receiver kinetic state is sampled

during the physical model simulation. The smaller is the time step δt, the closer is the

simulation to the real physical phenomenon of particle diffusion. The particle number

P(t) is proportional to the particle concentration cR(t) multiplied by the size size(Ss) of the

simulation space Ss, shown in Figure 25, which includes the receptor space, expressed as

P(t) = cR(t) size(Ss) , (66)

The decision block assigns the value of ln according to the receiver kinetic state S̄ R(t).

ln can assume either value 1 or −1 depending whether the kinetic state S̄ R(t) has an event

concerning a particle that is entering or leaving the receptor space, respectively, expressed

as

ln =























1 i f S̄ R(t) ⊂ {x̄p(t)|p enters the receptor space}

−1 i f S̄ R(t) ⊂ {x̄p(t)|p leaves the receptor space}
, (67)

The non-uniform sampler block samples at time instants tn, which are functions of the

receiver kinetic state S̄ R(t). If, at time instant tn, there is an event in the kinetic state S̄ R(tn)

concerning a particle entering/leaving the receptor space, the non-uniform sampler block

produces a Dirac impulse at tn, with amplitude equal to the current value of ln, in the output

e(t) from the decision block, expressed as

e(t) = lnδ(t − tn)i f S̄ R(tn) ⊂ {x̄p(tn)|p ent./leav. rec. space} . (68)

The integration block integrates the output from the nonuniform sampler for a time

interval equal to τ in the past up to time t, namely, [t − τ, t], expressed as

∆Np(t) =

∫ t

t−τ
e(t′)dt′ , (69)
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where τ corresponds to the time interval in which we expect a quasi constant particle con-

centration and its effect on the particle counting noise is further discussed in Section 4.4.2.

The result of the integration block is the perturbation ∆Np(t) at time t in the number of

particles inside the receptor space.

The multiplier and rounder block rounds the particle concentration cR(t) multiplied by

the size of the receptor space (4/3)πρ3. The output of this block corresponds to the expected

number of particles Np(t) contained in the receptor space at time instant t, expressed as

follows:

Np(t) = round

[

cR(t)

(

4

3
πρ3

)]

. (70)

The divisor block divides the sum of the output coming from the two branches, namely,

∆Np(t) and Np(t), by the size of the receptor space (4/3)πρ3. As a consequence, the output

of the divisor block corresponds to the particle concentration ĉR(t) at the receiver affected

by noise, expressed as

ĉR(t) =
Np(t) + ∆Np(t)

4
3
πρ3

=
N̂p(t)
4
3
πρ3

. (71)

Since it is not possible to always have knowledge of the kinetic state of the system

S̄ R(t) due to the huge amount of information and to the randomness in the particle motion,

we cannot analytically compute the value of ĉR(t) as function of cR(t) from the physical

model of the particle counting noise. Using the physical model provided here, we can only

simulate numerically the behavior of the particle counting noise nc(t).

4.4.2 The Stochastic Model

The particle counting noise, similarly to the particle sampling noise, can also have another

formulation, through statistical parameters, which is suitable when theoretical studies re-

quire an analytical expression of the noise. Statistical parameters for the particle counting

noise, such as the RMS value, are provided in [62] without the definition of a complete

stochastic model in terms of random processes. The derivation of these statistical parame-

ters in [62] stems from a formulation of the particle counting noise in terms of macroscopic
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thermodynamic fluctuations in the system, without accounting for a particle-by-particle

analysis. In this paper, we detail the knowledge of the particle counting noise by providing

a stochastic model of the noise source. This model is obtained by stemming from the phys-

ical model outlined in Section 4.4.1, where the system is modeled in a particle-by-particle

fashion. As will be proved in the following, the statistical parameters computed through

the stochastic model provided here are in agreement with those from [62].

The particle counting noise nc(t) is generated by a random process ñc(t), whose con-

tribution corresponds to the difference between the measured particle concentration ĉR(t)

and the expected particle concentration 〈ĉR(t)〉, where 〈.〉 denotes the ensemble average

operator, expressed as

ñc(t) = ĉR(t) − 〈ĉR(t)〉 . (72)

The expected particle concentration 〈ĉR(t)〉 corresponds to the true particle concentration

cR(t) that we would measure at the receiver in the absence of the particle counting noise,

expressed as

〈ĉR(t)〉 = cR(t) . (73)

In other words, ñc(t) is an unwanted perturbation on the particle concentration measured

at the receiver location around its expected value cR(t) due to the particle counting noise.

In Figure 26 we show the main block scheme of the particle counting noise. The random

process ñc(t), as it is proved in the following, depends on the value of the particle concentra-

tion at the receiver cR(t), output from the diffusion process, which receives the transmitted

particle concentration rate rT (t) as input. The sum of the random process ñc(t) and the true

particle concentration at the receiver cR(t) is the particle concentration affected by the par-

ticle counting noise, namely, ĉR(t). In order to properly model the random process nc(t) we

consider the following assumptions:

• The actual number of particles N̂p(t) inside the receptor space at time t is a random

59



Figure 26. Block scheme of the particle counting noise stochastic model.

process whose average value is the true particle concentration at the receiver multi-

plied by the size of the receptor space, expressed as

〈N̂p(t)〉 = cR(t)
4

3
πρ3 . (74)

• It is unlikely to have two particles occupying the same location in space at the same

time instant t. In other words, the probability of having a distance equal to zero

between two particles at the time instant t is zero, expressed as

Pr
[

‖x̄p(t) − x̄q(t)‖ = 0
]

= 0 p , q, p, q ∈ [1, . . . , P(t)] , (75)

where P(t) is given by (66), ‖.‖ is the Euclidian distance operator and p and q are two

particles present in the simulation space Ss defined in Section 4.4.1. This assumption

is justified by the independence of the Brownian components in the movement of dif-

ferent particles in the space. This assumption directly translates into the property of

orderliness for the counting process of the number of particles n̂p(t, x̄(t)) at a location

x̄(t) in the space, expressed as follows:

lim
∆̄→0
= Pr

[

|n̂p(t, x̄(t) + ∆̄) − n̂p(t, x̄(t))| > 1
]

→ 0 , (76)

where ∆̄ is a movement in the three directions of the space from x̄(t) to x̄(t) + ∆̄.

• An event concerning a particle which occupies a location in space x̄(t) is independent

of any event of the same kind occurring at another space location x̄(t) + ∆̄. This

assumption is justified by the property of the Wiener process underlying the particle
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Brownian motion of having independent realizations. In other words, the distribution

of the distance between the location of a particle in x̄(t) and another particle in x̄(t)+

∆̄1 is independent from the distribution of the distance between the same particle

at x̄(t) and another particle present at location x̄(t) + ∆̄2, where ∆̄1 , ∆̄2. The two

distributions have the same expression from (65), as

Pr
(

‖∆̄1‖ = x
)

=
1√

2πD∆t
e−

x2

2D∆t = Pr
(

‖∆̄2‖ = x
)

. (77)

This implies that the location of a particle is independent from the location of any

other particle. As a consequence, the events concerning the location of particles in

the space have the property of memorylessness.

• The occurrence rate of particle location in the space is proportional to the particle

concentration at the receiver location c(xR, yR, zR, t), equal to the expected true parti-

cle concentration cR(t).

Under these assumptions, the resulting actual number of particles N̂p(t) inside the receptor

space is a volume non-homogeneous Poisson counting process, whose rate of occurrence

corresponds to the expected particle concentration cR(t), expressed as

N̂p(t) ∼ Poiss(cR(t)) . (78)

According to the Poisson process [66] in (216), the expected number of particles 〈N̂p(t)〉

contained in the receptor space can be computed by multiplying the volume Poisson process

rate, which is the concentration cR(t), by the size of the receptor space (4/3)πρ3 and it is

in agreement with the assumption made in (213). The variance in the number of particles

contained in the receptor space has the same value as 〈N̂p(t)〉 [66], expressed as

〈(N̂p(t) − 〈N̂p(t)〉)2〉 = cR(t)
4

3
πρ3 . (79)

The actual measured particle concentration ĉR(t) corresponds to the actual number of

particles N̂p(t) divided by the size of the receptor space, expressed as follows:

ĉR(t) =
N̂p(t)

(4/3)πρ3
, (80)
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Therefore, the average 〈ĉR(t)〉 of the actual measured particle concentration is equal to the

expected particle concentration cR(t), as

〈ĉR(t)〉 = cR(t) . (81)

The variance of the actual measured particle concentration is equal to the expected particle

concentration cR(t) divided by the size of the receptor space, expressed as

〈(ĉR(t) − 〈ĉR(t)〉)2〉 = 〈(N̂p(t) − 〈N̂p(t)〉)2〉
(4/3)πρ3

=
cR(t)

(4/3)πρ3
. (82)

Given (72) and (73), the random process ñc(t) has zero average value and the RMS of

the perturbation ñc(t) on the actual measured particle concentration ĉR(t) is

RMS(ñc(t)) =
√

〈(ĉR(t) − 〈ĉR(t)〉)2〉 =
√

cR(t)

(4/3)πρ3
, (83)

It is possible to reduce the value of RMS(ñc(t)) by averaging in time a number M of

measures of the particle concentration ĉR(t), with the following expression:

ĉR(t) =
1

M

M
∑

m=1

ĉR(t − tm) . (84)

The best results in terms of noise are obtained when the M measures are statistically inde-

pendent. For this, we assume independent measures when they are taken at time instants

spaced by an interval τp, as defined in [61]. If we assume to have a quasi-constant expected

concentration in a time interval τ (which means that the bandwidth of the signal cR(t) is

less than 1/τ [51]), the maximum value of M is equal to the time interval τ divided by τp,

expressed as

M =
τ

τp

, (85)

thus, reducing the RMS of the perturbation RMS(ñc(t)) by a factor
√

M, as

RMS(ñc(t)) =

√

cR(t)

(4/3)πρ3M
. (86)

The waiting time τp corresponds to the average time required for a particle to leave the

reception space. τp is equal to the average distance to the spherical boundary, divided by
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the velocity of a particle vp. The average distance corresponds to the receptor space radius

ρ, expressed as

τp =
ρ

vp

. (87)

The velocity vp of a particle comes from the first Fick’s law of diffusion [26, 27]. For

this, the particle concentration flux J̄(x̄, t) at time instant t and location x̄, is equal to the

spatial gradient (operator ∇) of the particle concentration c(x̄, t) multiplied by the diffusion

coefficient D, expressed as

J̄(x̄, t) = −D∇c(x̄, t) . (88)

When we have homogeneous concentration c̄ inside the receptor space and zero concen-

tration outside the receptor space, ∇c(x̄, t) is equal to the opposite −c̄ of the concentration

divided by the radius ρ of the receptor space. Further, the particle concentration flux J̄(x̄, t)

is equal, by definition, to the particle concentration c̄ multiplied by the particle velocity vp.

If we solve (88) for the particle velocity, we obtain

vp =
D

ρ
. (89)

The average time τp is therefore equal to the radius ρ squared and divided by the diffusion

coefficient D, as

τp =
ρ2

D
, (90)

which is in agreement with the results from [61, 62]. The final expression for the RMS of

the perturbation RMS(ñc(t)) becomes

RMS(ñc(t)) =

√

cR(t)

(4/3)πDρτ
, (91)

where cR(t) is the expected measured particle concentration, D is the diffusion coefficient,

ρ is the radius of the receptor space and τ is the time interval in which we expect a quasi-

constant particle concentration. The validity of (91) is confirmed by the results from [62],

where the authors reach the same expression for the RMS of the particle counting noise by

applying a different approach, as explained above.
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According to the results in Section 3.4, the relation between the input particle concen-

tration rate r̂T (t) and the measured particle concentration cR(t) at the receiver location is

expressed in the frequency ( f ) domain as

c̃R( f ) = B̃( f )˜̂rT ( f ) , (92)

where ˜̂rT ( f ) and c̃R( f ) are the Fourier transforms [51] of the particle concentration rate

r̂T (t) and the particle concentration cR(t), respectively. B̃( f ) is the Transfer Function Fourier

Transform [51] (TFFT) of the propagation module. The same relation in the time (t) domain

becomes

cR(t) = b(t) ∗ r̂T (t) , (93)

where ∗ denotes the convolution operator [51], b(t) is the impulse response of the propaga-

tion module and r̂T (t) is the input particle concentration rate. The formula for the RMS of

the perturbation RMS(ñc(t)) on the signal ĉR(t) becomes

RMS(ñc(t)) =

√

b(t) ∗ r̂T (t)

(4/3)πDρτ
, (94)

where D is the diffusion coefficient, ρ is the radius of the spherical receptor space, and τ is

the time in which we expect a quasi-constant particle concentration.

4.4.3 Numerical Results

Counting Noise Simulations

The simulations of the physical model for the particle counting noise are computed by

applying to the scheme in Figure 24 a sinusoidal signal in the true particle concentration at

the receiver cR(t):

cR(t) = B sin(2π fbt) + B (95)

where fb is the frequency of the sinusoid in Hz, 2B is the maximum value of the expected

particle concentration in particles µm−3, and t is the simulation time index in msec.

The input of the physical model simulation is a sinusoidal particle concentration cR(t)

with frequency fb equal to 4Hz and maximum particle concentration 2B of 2000 particles
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µm−3, as shown in Figure 27. The radius of the spherical receptor space is ρ = 1 µm. The

simulation runs for 1 sec by steps of δt = 1 msec. The output noisy particle concentration

ĉR(t) of the physical model simulation is shown in Figure 28.

Figure 27. The particle counting noise physical

model simulation input.

Figure 28. The particle counting noise physical

model simulation output.

A number P(t) of particles are deployed according to (66) for each time at random lo-

cations inside the simulation space Ss, shown in Figure 25, which includes the receptor

space. The receptor kinetic state is maintained according to (63) and (64), where the Brow-

nian motion of the particles is modeled according to (65). The diffusion coefficient D ∼ 106

cm2sec−1 corresponds to the D of calcium molecules diffusing in a biological environment

(cellular cytoplasm, [58]). The upper branch of Figure 24, which generates the contribution

∆Np to the final result, is computed by applying (67) and (68) to the transmitter kinetic state

S̄ T (t). Equation (69) is applied with a value τ = 1msec, equal to a simulation step. The

lower branch of Figure 24 gives the second contribution to the final result and includes the

computation of Np(t) through (70). The final results in terms of particle concentration ĉR(t)

is achieved by applying (71) to the sum of the outputs from the upper branch and the lower

branch.

The particle counting noise is visible through two effects, as shown in Figure 28. The

first effect is given by the quantization of the concentration measure by a discrete number

of particles inside the receptor space. The second effect is given by fluctuations in the
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concentration measure due to single events of particles entering/leaving the receptor space.

The latter is more accentuated for high values of the particle concentration. This behavior is

a confirmation of the fact that the RMS value of the particle counting noise is proportional

to the square root of the true particle concentration cR(t), as shown in (83), (86) and (91).

Figure 29. The particle counting stochastic model

likelihood.

Figure 30. The Gaussian model likelihood for the

particle counting noise.

Counting Noise Statistical Likelihood Test

The statistical likelihood test is applied in order to assess the stochastic model model ability

to capture the behavior of the physical processes which generate the noise. For this, we

compute the likelihood, that is, the probability of the noisy data coming from the physical

model simulation ĉR(t) given the stochastic model of the particle counting noise, as defined

in Section 4.4.2. In order to evaluate the reliability of the particle counting stochastic model

parameters in (81) and (82), the likelihood probability is evaluated for a range of different

values for the parameter cR(t) of the Poisson processes in (216):

likelihoodParticleCounting = Pr (ĉR(t)|Part.Count.sto.cR(t)) (96)

where cR(t) ranges from 1 to 2000 particles µm−3 for every time instant t. The results are

shown in Figure 29, where it is clearly visible that the highest likelihood value corresponds,

for every time instant t, to the value of cR(t) from (95), thus confirming that the best particle

concentration model parameter is actually the particle concentration in input to the physical

model of the particle counting noise.
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This statistical likelihood test results shown in Figure 29 are compared to the results ob-

tained through the use of a Gaussian model in place of the particle counting noise stochastic

model. The Gaussian model, denotedN(cR(t), cR(t)/(4/3πρ3)) has the same expected value

and the same variance as the particle sampling noise stochastic model. The likelihood

formula is:

likelihoodGaussian = Pr

(

ĉR(t)|N
(

cR(t),
cR(t)

(4/3πρ3)

))

(97)

where cR(t) ranges from 1 to 2000 particles µm−3 for every time instant t and ρ = 1 µm.

The comparison between the Gaussian model likelihood and the particle counting stochas-

tic model drives us to the same conclusions we had for the particle sampling noise. At

specific time instants the Gaussian model likelihood shows higher values than when us-

ing the particle counting stochastic model but, on average, the likelihood values shown

in Figure 30 are much lower than the values in Figure 29. This proves that the particle

counting stochastic model performs better than the Gaussian model and it confirms the

stochastic model ability to express the behavior of the physical processes underlying the

particle counting noise.

4.5 The Ligand-receptor-binding Noise

In the model of the reception process provided in Section 3.5 of Chapter 3 the binding re-

action and the release reaction are considered as happening only according to deterministic

rates: k+ and k−, respectively. This is justified from the viewpoint of the classical chemical

kinetics [62], which interprets the time evolution of a chemical system with deterministic

Reaction Rate Equations (RREs). The RRE of the chemical system defined by the assump-

tions from Section 3.5 is expressed as follows:

dnb(t)

dt
= k+cR(t) (NR − nb(t)) − k−nb(t) , (98)

where nb(t) is the number of bound chemical receptors, k+ is the rate of particle binding,

cR(t) is the particle concentration at the receiver, NR is the total number of chemical recep-

tors at the receiver and k− is the rate of particle release. In Appendix 9.1, we detail the
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mathematical expressions of the particle binding and release rates. Given the the model of

the reception process provided in Section 3.5, the first time derivative in the number nb(t)

of bound chemical receptors can be substituted with the output signal sR(t) of the reception

process.

The model of the reception process provided in Section 3.5 does not take into account

the random fluctuations in the ligand-receptor-binding process. The following additional

assumptions are here considered:

• Particles inside the receptor space are discrete and they move according to the Brow-

nian motion.

• The binding reaction can occur only when a particle, subject to the Brownian motion,

collides with an unbound receptor.

• The binding reaction occurs only if the kinetic energy of the particle colliding with

an unbound receptor is higher than the activation energy Ea. The kinetic energy E
p

k
(t)

of a particle p at time t is expressed as follows:

E
p

k
(t) =

1

2
|v̄p(t)|2 mp . (99)

v̄p(t) is the velocity of the particle p at time t and mp is its mass, while |.|2 denotes the

squared absolute value operator.

• Whenever a binding reaction occurs, there is a subtraction of a particle from the

reception space. Whenever a release reaction occurs, there is an addition of a particle

to the reception space.

As a result, the relation between the particle concentration cR(t) and the actual output signal

of the reception process, denoted by ŝk
R
(t), is subject to random fluctuations. As shown in

Figure 7, particles subject to the Brownian motion inside the receptor space contribute to

the number of bound chemical receptors, denoted with n̂b(t), only at discrete time instants
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tn = t1, t2, . . . that correspond to collision events between the particles themselves and the

unbound receptors. Each collision event contributes to n̂b(t) according to the coefficient

kn, which is a function of the kinetic energy of the collided particle. The bound receptors

can become unbound according to the particle release rate k−, thus decreasing the value of

n̂b(t). Therefore, the ligand-receptor kinetics-equation is derived by extending the Reaction

Rate Equation (RRE) in (98) in order to account for the random effect of the collisions,

expressed as

dn̂b(t)

dt
=















∑

n

knδ(t − tn)















− k−n̂b(t), tn = t1, t2, . . . , (100)

where n̂b(t) is the number of bound chemical receptors, kn is a coefficient related to the

particle binding at time instant tn, k− is the rate of particle release, and δ(.) is a Dirac delta

function. The time-first derivative in the number n̂b(t) of bound chemical receptors in (100)

can be substituted with the output signal of the reception process, denoted as ŝk
R
(t). The

contribution of the ligand-receptor kinetics creates fluctuations in the output signal ŝk
R
(t)

that are not present in the previous formulation of the reception process in Section 3.3.

4.5.1 The Physical Model

The physical model of the ligand-receptor-binding noise is represented though the block

scheme shown in Figure 31. The particle concentration cR(t) is the input of the overall

reception process + wk(t) block, whose output signal is ŝk
R
(t). The ligand-receptor-kinetics

block is composed of the ligand-receptor kinetic state block, the integration block, and

three multiplication blocks.

The ligand-receptor kinetic state block, as shown in Figure 31, takes as input the

concentration ĉR(t) of the particles inside the receptor space and returns the signal a(t) as

output. The ligand-receptor kinetic state block keeps track of the locations x̄p(t) of all the

particles present inside the receptor space at time t through the set KP(t), expressed as

KP(t) =
{

x̄p(t)| p = 1, ..., P(t)
}

, (101)

where P(t) is the number of particles in the receptor space at time t and it is expressed as

69



Figure 31. Block scheme of the physical model for the ligand-receptor-binding noise.

follows:

P(t) = round(ĉR(t)
4

3
πρ3) , (102)

where ĉR(t) is the particle concentration at the receiver and (4/3)πρ3 is the size of the

receptor space. ρ is the radius of the receptor space, and round(.) is the operator that rounds

the operand to the nearest integer. In order to realistically simulate the evolution of KP(t),

we consider the Brownian motion contribution at every time instant t. The expression of

the particle location x̄p(t) is written as follows:

x̄p(t) = x̄p(t − ∆t) + bx(∆t) î + by(∆t) ĵ + bz(∆t) k̂ , (103)

where the Brownian motion components, namely, bx(∆t), by(∆t) and bz(∆t), are random

variables with normal distribution, zero mean value and variance equal to 2D∆t, according

to the expression of the Wiener process [66], expressed as

bx(∆t), by(∆t), bz(∆t) ∼ N(0, 2D∆t) , (104)

along the directions of the Cartesian axes, namely, î, ĵ and k̂. D is the diffusion coefficient

and ∆t is the simulation time step and it depends on how the ligand-receptor kinetics block

samples the evolution of KP(t) during the physical model simulation. The smaller is the
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time step ∆t, the closer is the simulation to the real physical phenomenon of the particle

Brownian motion. Despite in the simulation we are sampling the Brownian dynamics, the

time variable of the number of bound chemical receptor nb(t) is kept continuous. This is

due to the fact that while collisions between particles and unbound receptors can occur only

every ∆t time steps, the unbinding reaction occurs continuously according to (100). The

ligand-receptor kinetic state block keeps also memory of the locations x̄r(t) of the unbound

chemical receptors through the set KR(t), expressed as

KR(t) = {x̄r(t), r = 1, ..., nu(t)} , (105)

where nu(t) corresponds to the number of unbound chemical receptors present in the recep-

tor space at time t. The number nu(t) is computed taking into account the time differential

dnb(t − ∆t) in the number of bound chemical receptors coming from the lower branch of

the block scheme at time t −∆t. The resulting number of unbound chemical receptors nu(t)

at time t is recursively computed as follows:

nu(t) = round(nu(t − ∆t) − dnb(t − ∆t)) , (106)

where round(.) is the operator that rounds the operand to the nearest integer. Since for every

time instant we assume to have a uniform distribution of both particles and receptors inside

the receptors space, the probability of having a collision between a particle and an unbound

receptor is uniform. As a consequence, for every time instant, every unbound receptor has

the same probability of having a collision with a particle. Whenever there is a collision be-

tween a particle and an unbound chemical receptor, which means that the spherical volume

of a particle of radius rp from the set KP(t) has a non-void intersection with the volume of

a receptor of radius rR from the set KR(t), then the ligand-receptor kinetic block contributes

to the output a(t) with a Dirac delta δ(t − tn) multiplied by the coefficient kn. The coeffi-

cient kn is equal to 1 when the kinetic energy of the colliding particle E
p

k
(t) is higher than

the activation energy Ea, and it is 0 otherwise. In case of kn equal to 1, then the collision

successfully results in a binding reaction (non-elastic collision). If kn is equal to 0, then
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the binding reaction does not take place and the particle resumes its Browinan motion from

the location of the collision with the same kinetic energy as before the collision occurred

(elastic collision). The coefficient kn is computed through the following expression:

kn =























1 if E
p

k
(tn) > Ea

0 otherwise

. (107)

The kinetic energy E
p

k
(tn) of the colliding particle p at time tn is computed through (99),

where the velocity v̄p(tn) of the particle p at time tn is computed with the following expres-

sion:

v̄p(tn) =
x̄p(tn − ∆t) − x̄p(tn)

∆t
, (108)

where x̄p(tn−∆t) and x̄p(tn) are the particle location at time tn−∆t and time tn, respectively.

The activation energy Ea is computed as a function of the rate k+ of particle binding by

rearranging (407) and (408) from Appendix 9.1 as follows:

Ea = −kBT ln

(

k+

Z

)

, (109)

where Z is computed through (407). The time instant tn corresponds to the moment when a

collision between a particle and an unbound receptor occurs. As a consequence, the output

a(t) of the ligand-receptor kinetic block is a sum of Dirac deltas δ(t − tn), each one at a

different time instant tn, expressed as

a(t) =
∑

n

knδ(t − tn) ; tn ∈
{

ti|
(

KP(ti)
⋂

KR(ti)
)

, ⊘
}

. (110)

Where KP(ti)
⋂

KR(ti) is the intersection between the set KP(ti) and the set KR(ti), which

contains elements only if there are particle locations with the same value as the locations

of unbound receptors. ⊘ is the void set.

The multiplication by ∆t block receives as input the first time derivative dn̂b(t)/dt at

time t of the number of bound chemical receptors and returns as output its time differential

dn̂b(t). The time differential dn̂b(t) corresponds, when positive, to the number of particles

subtracted from the receptor space due their binding to previously unbound receptors; when
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Figure 32. Graphical sketch of the ligand-receptor kinetic state block. The number of particles P(t) in

the receptor space depends on the particle concentration cR(t) in input through the expressions in (102).

negative, it corresponds to the number of particles added to the receptor space due to their

release from previously bound receptors.

The multiplication by 3/(4πρ3) block receives as input the time differential dn̂b(t) at

time t in the number of bound receptors, and it outputs the concentration differential dĉR(t)

of bound receptors at time t. The value of dĉR(t) corresponds to the variation in the concen-

tration of particles inside the receptor space given by the binding or the release of particles

to/from chemical receptors. The true concentration ĉR(t) of particles present at time t inside

the receptor space is given by the following expression:

ĉR(t) = cR(t) − dĉR(t) , (111)

where dĉR(t) is the time differential of the particle concentration cR(t) in input to the phys-

ical model of the ligand-receptor-binding noise.

The integration block receives as input the first time derivative dn̂b(t)/dt in the num-

ber of bound chemical receptors and gives as output the number n̂b(t) of bound chemical

receptors at time t. The output of the integration block n̂b(t) is therefore the time integral:

n̂b(t) =

∫ t

−∞

n̂b(t′)

dt′
dt′ . (112)
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The multiplication by k− block receives as input the number n̂b(t) of bound receptors

at time t and multiplies it by the rate k− of release reaction. The output of the multiplication

block is then subtracted from the output a(t) of the ligand-receptor kinetics block. The

result of the subtraction is the first time derivative in the number n̂b(t) of bound receptors,

expressed as

dn̂b(t)

dt
= a(t) − k−n̂b(t) , (113)

where a(t) is computed through (110).

Since it is not possible to always have the knowledge of the ligand-receptor kinetic state

due to the huge amount of information and to the randomness in the particle motion, we

cannot analytically compute the value of Ŝ k
R
(t) as a function of cR(t) through the physical

model of the ligand-receptor-binding noise. Using the physical model provided here, we

can only simulate numerically the behavior of the reception noise wk(t).

4.5.2 The Stochastic Model

The ligand-receptor-binding noise can also have another formulation, through the stochas-

tic chemical kinetics. According to this formulation, the reception noise wk(t) is generated

by a random process, whose contribution corresponds to

wk(t) = ĉk
R(t) − cR(t) , (114)

where ĉk
R
(t) is the actual particle concentration in input to the reception process, and ĉR(t)

is the expected particle concentration in input to the reception process in the absence of

the reception noise. In Figure 33, the main block scheme of the ligand-receptor-binding

process is shown, where the stochastic chemical kinetics is applied to model the reception

noise. As detailed in the following, the random process wk(t) depends on the value of the

particle concentration ĉR(t) itself, output of the diffusion process. The sum of the random

process wk(t) and the particle concentration ĉR(t) is the particle concentration affected by

the reception noise ĉk
R
(t).
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In the following, we provide the necessary assumptions underlying the stochastic mod-

els of the reception noise: the reversible second order reaction and the reversible first order

reaction stochastic models. As proved in the following, the latter allows also to find a

closed-form solution for the variance Var(ĉk
R
(t)) of the perturbed particle concentration.

4.5.2.1 Stochastic Model Assumptions

In Figure 33 we show the main block scheme of the LIGAND-RECEPTOR BINDING

process when the stochastic chemical kinetics is applied to model the reception noise. The

random process wk(t), as it is proved in the following, depends on the value of the particle

concentration cR(t) itself, output from the diffusion process. The sum of the random pro-

cess wk(t) and the particle concentration cR(t) is the particle concentration affected by the

reception noise ĉk
R
(t).

Figure 33. Block scheme of the stochastic chemical kinetics applied to the LIGAND-RECEPTOR

BINDING process.

In order to properly model the random process wk(t) we consider the following assump-

tions:

• The particles and the chemical receptors inside the receptor space are considered as

two different types of molecules (chemical species). For these two chemical species,

we assume that the system is “well stirred”, which means that the particles and the

chemical receptors have random uniformly distributed locations inside the receptor

space.
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• The assumption of having a “well stirred” system allows us to describe the ligand-

receptor binding process only accounting for the populations of the chemical species.

We can therefore ignore the description of the system through the ligand-receptor

kinetic state defined in Section 4.5.1, which was composed by the locations of the

chemical receptors and the locations and velocities of the particles inside the receptor

space.

• The populations of the chemical species are described through two quantities: the

number of particles P(t) in the receptor space and the number of bound receptors n̂b(t)

at each time instant t. The number of unbound receptors is computed by subtracting

the number n̂b(t) of bound receptors from the total number NR of chemical receptors,

namely, NR − n̂b(t).

• As a consequence of the first assumption, the binding reaction rate is considered as a

constant equal to k+, since, without accounting for the ligand-receptor kinetic state,

it is not possible to know either the kinetic energy of a particle colliding with an

unbound chemical receptor, nor when the collision occurs.

Under these assumptions, the value of the population for each chemical species is never

known deterministically, but only in probability. The stochastic chemical kinetics studies

how the populations of the chemical species evolve in a system due to chemical reactions.

This is achieved by the formulation of the chemical system through the Chemical Master

Equation (CME) [67]. The CME is a stochastic differential equation that binds together the

populations of the chemical species involved in the chemical reactions through a stochas-

tic differential equation. In the following, we consider two different CMEs, namely, the

reversible second order reaction and the reversible first order reaction. Although both

of them can represent the ligand-receptor binding, the former CME is the most complete

formulation but, due to its complexity, it does not easily provide a closed-form solution. On

the contrary, the latter CME is based on further assumptions and it allows for a closed-form
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solution to the problem of the stochastic modeling of the lligand-receptor-binding noise.

4.5.2.2 The Reversible Second Order Reaction

The reversible second order reaction is able to model the changes both in the number of

bound receptors n̂b(t) and in the number of particles P(t) in the receptor space occurring due

to the binding and release reactions. Whenever a binding/release reaction occurs, there is a

subtraction/addition of a particle from/to the reception space, and this is taken into account

in the perturbation of the value of the particle concentration cR(t) inside the receptor space.

Given this assumption, we can write the reversible second order reaction CME for the

ligand-receptor binding, whose schematic relation is as follows:

NR − n̂b(t) + P(t)⇄
k+

(4/3)πρ3

k−
n̂b(t) , (115)

where n̂b(t) is the number of bound chemical receptors, P(t) is the number of particles in the

receptor space and NR − nb is the number of unbound chemical receptors, as defined above.

(4/3)πρ3 is the size of the receptor space and it divides the binding reaction rate k+ since

here we are dealing with the number of particles in the receptor space rather than with the

particle concentration cR(t). The formulation of the CME for the ligand-receptor binding

states that the first time derivative of the probability of having nb bound receptors is equal

to the sum of different terms: the probability Pnb−1(t) of having nb − 1 bound chemical

receptors and having a binding reaction, the probability Pnb+1(t) of having nb + 1 bound

chemical receptors and having a release reaction, the negative of the probability Pnb
(t) of

having nb chemical receptors and having either a release reaction or a binding reaction,

expressed as follows

dPnb
(t)

dt
=

k+

(4/3)πρ3
(NR − nb + 1)(P(t) − nb + 1)Pnb−1(t)

+ k−(nb + 1)Pnb+1(t) − [k−nb + k+(NR − nb)(P(t) − nb)]Pnb
(t)

, (116)

where: k+/((4/3)πρ3)(NR−nb+1)(P(t)−nb+1) is the rate of having a binding reaction with

NR − nb + 1 available unbound receptors and P(t) − nb + 1 available particles; k−(nb + 1) is
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the rate of having a release reaction with nb + 1 bound receptors; k−nb is the rate of having

a release reaction with nb bound receptors and k+(NR − nb)(P(t)− nb) is the rate of having a

binding reaction with NR −nb available unbound receptors and P(t)−nb available particles.

Equation (116) can be schematically interpreted in terms of Markov chains [66], as shown

in Figure 34. According to the theory of Markov chains, each possible value of the number

nb of bound chemical receptors can represent a finite state in a state chain. In the Markov

chain of Figure 34, the probability of having a transition to a higher state number is given

by the probability of being in that state and having a binding reaction, while the probability

of having a transition to a lower state number is given by the probability of being in that

state and having a release reaction. In order to find a closed-form solution to the problem of

Figure 34. Graphical representation of (116) as a Markov chain.

the stochastic modeling of the ligand-receptor-binding noise it is necessary to add a further

assumption to the stochastic model and to interpret the system through the reversible first

order reaction CME, which is explained in the following.

4.5.2.3 The Reversible First Order Reaction and Closed-Form Solution

The reversible first order reaction is based on a further assumption which is formulated

as follows:

• The number of particles P(t) in the receptor space for any time instant t is much

higher than the number NT of chemical receptors.
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As a consequence, the particle concentration cR(t) in input to the ligand-receptor binding

process is not affected by the binding or release reactions occurring between the particles

and the chemical receptors. For this, even if, whenever a binding/release reaction occurs,

there is a subtraction/addition of a particle from/to the reception space, the perturbation in

the value of the particle concentration cR(t) inside the receptor space is negligible. Given

this assumption, we can write the CME for the ligand-receptor binding process as a re-

versible first order reaction, whose schematic relation is

NR − n̂b(t)⇄
cR(t)k+
k−

n̂b(t) , (117)

where n̂b(t) is the number of bound chemical receptors and NR − n̂b(t) is the number of

unbound chemical receptors, as defined above. The formulation of the CME for the ligand-

receptor binding states that the first time derivative of the probability of having nb bound

receptors is equal to the sum of different terms: the probability Pnb−1(t) of having nb − 1

bound chemical receptor and having a binding reaction, the probability Pnb+1(t) of having

nb+1 bound chemical receptor and having a release reaction, the negative of the probability

Pnb
(t) of having nb chemical receptors and having either a release reaction or a binding

reaction, expressed as follows:

dPnb
(t)

dt
= cR(t)k+(NR − nb + 1)Pnb−1(t) + k−(nb + 1)Pnb+1(t)

− [k−nb + cR(t)k+(NR − nb)]Pnb
(t)

, (118)

where: cR(t)k+(NR − nb + 1) is the rate of having a binding reaction with NR − nb + 1

available unbound receptors; k−(nb + 1) is the rate of having a release reaction with nb + 1

bound receptors; k−nb is the rate of having a release reaction with nb bound receptors and

cR(t)k+(NR − nb) is the rate of having a binding reaction with NR − nb available unbound

receptors. Equation (116) can be schematically interpreted in terms of Markov Chains [66],

as shown in Figure 35. We can interpret the Markov chain of Figure 35 in the same way

as we did for Figure 34, where, this time, the probability of having a transition to a higher

state number does not account for the number of particles P(t) in the receptor space, but
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only for the value of the particle concentration cR(t). The solution to the problem of the

Figure 35. Graphical representation of (118) as a Markov chain.

stochastic modeling of the ligand-receptor-binding noise can be found through a similar

procedure as in [68]. We express (118) in terms of Probability Generating Function [66]

F(s, τ), which is defined as follows:

F(s, τ) =

NR
∑

nb=0

Pnb
(τ) snb , (119)

where s is an auxiliary variable and τ is a time variable which is ranging from t to t+1/(2Bc).

Bc is the bandwidth of the particle concentration cR(t) in input to the stochastic model.

According to the Nyquist theorem [65], we can sample the particle concentration cR(t) with

a rate equal to 2Bc without loss of information. During a sampling time interval from t

to t + 1/(2Bc) spanned by τ, we can consider only one sample of the concentration signal

cR(t). As a consequence, we can solve (118) treating cR(t) as a constant parameter. The

CME in (118) can be expressed in terms of Probability Generating Function as follows:

∂F(s, τ)

∂τ
=[k− + (cR(t)k+ − k−)s − k−s2]

∂F(s, τ)

∂s

+ NRcR(t)k+(s − 1)F(s, τ) .

(120)

We impose to the Probability Generating Function to have at τ = t a number of bound

receptors n̂b(τ = t) equal to the number of bound receptors n0(t) that we would expect in

the absence of noise and at chemical equilibrium, given the particle concentration cR(t −

1/(2Bc)) in the receptor space from the previous time interval t−1/(2Bc), which is computed
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by setting to zero the derivative dnb(t)/dt of the RRE in (98) and solving for nb(t) as follows:

n̂b(τ = t) = n0(t) =
NRcR(t − 1/(2Bc))k+

cR(t − 1/(2Bc))k+ + k−
, (121)

which means that the probability of having n0 bound receptors at time τ = 0 is equal to 1.

As a consequence, the Probability Generating Function assumes at time τ = 0 the value

sn0(t), expressed as

F(s, 0) = sn0(t) . (122)

Accounting for (122), we can solve (120) with respect to the Probability Generating Func-

tion F(s, τ) as follows:

F(s, τ) =

{

[k2s2 + (k1 − k2)s − k1](λe−K(τ−t)(s − 1) + λ + s)2

(s − 1)(s + λ)K(1 + λ)

}

n0(t)

2

, (123)

where k− = k1, cR(t)k+ = k2, λ = k1/k2 and K = k1 + k2. This allows to find the average

value 〈n̂b(t)〉 and the variance Var(n̂b(t)) of the number nb(τ) of bound receptors at time τ

according to the properties [66] of the Probability Generating Function as follows:

〈n̂b(τ)〉 = ∂F(s, τ)

∂s

∣

∣

∣

∣

∣

s=1

, (124)

Var(n̂b(τ)) =
∂2F(s, τ)

∂s2

∣

∣

∣

∣

∣

∣

s=1

+
∂F(s, τ)

∂s

∣

∣

∣

∣

∣

s=1

−
(

∂F(s, τ)

∂s

∣

∣

∣

∣

∣

s=1

)2

. (125)

The final expressions for the average value 〈nb(τ)〉 and the variance Var(nb(τ)) become

〈n̂b(τ)〉 = n0(t)

K
(k1e−K(τ−t) + k2) , (126)

Var(n̂b(τ)) =
n0(t)(λe−K(τ−t) + 1)

1 + λ

(

1 − λe−K(τ−t) + 1

1 + λ

)

τ ∈ [t, t + 1/(2Bc)] .

(127)

The perturbed particle concentration ĉk
R
(t) is computed from the value of the number of

bound receptors through the steady state solution of the RRE in (98) as follows:

ĉk
R(t) =

k−n̂b(τ)

k+(NR − n̂b(τ))
, (128)
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which is computed from (121) by substituting n0(t) with n̂b(t) and cR(t) with ĉk
R
(t) and by

solving for ĉk
R
(t). By substituting the value of n0(t) from (121) into (126) and by applying

the approximation exp(−K(τ − t)) ≈ 1, the average value of the perturbed particle concen-

tration 〈ĉk
R
(t)〉 computed by averaging (128) is equal to the particle concentration cR(t) that

we would expect in input to the reception process without the contribution of the reception

noise, expressed as

〈ĉk
R(t)〉 = cR(t) τ ∈ [t, t + 1/(2Bc)] . (129)

The variance Var(ĉk
R
(t)) of the perturbed particle concentration can be approximated through

the formula for the variance of a function of a random variable of known variance and av-

erage [66] as follows:

Var(ĉk
R(t)) ≈

[

NRk−
k+(NR − 〈n̂b(τ)〉)2

]2

Var(n̂b(τ)) , (130)

valid for τ ∈ [t, t + 1/(2Bc)], and where 〈n̂b(τ)〉 and Var(n̂b(τ)) are computed through (126)

and (127), respectively, NR is the total number of chemical receptors, k+ is the rate of the

binding reaction and k− is the rate of the release reaction.

4.5.3 Numerical Results

In this section, we present a numerical analysis of the ligand-receptor-binding noise mod-

els. Sets of noise data realizations are generated through numerical simulation of both the

physical model and the stochastic model of the ligand-receptor-binding noise. The sets of

noise data realized using the physical model are then used to assess the performance of the

analytical formulations of the reception noise in terms of stochastic model.

Ligand-receptor Binding Simulations

The simulations of the physical model are computed by applying a sinusoidal signal in the

particle concentration cR(t) to the scheme in Figure 31:

cR(t) = A sin(2π fat) + A (131)
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where fa is the frequency of the sinusoid in Hz, 2A is the value of the maximum particle

concentration, expressed in particles µm−3, and t is the simulation time index in msec.

We used a simple modulation waveform, a sinusoid, to produce easy to read graphical

results. Moreover, the sinusoidal waveform spans the concentration values from 0 to the

maximum value 2A and it allows for the computation of the noise contribution for all the

values in this range. Since we do not account for a time correlation model in the noise

statistical parameters of the stochastic chemical kinetics, in this paper we are not interested

in the analysis of different waveforms in input to the receiver and on their distortion due to

the reception noise.
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Figure 36. The input of the physical model and stochastic model of ligand-receptor-binding noise sim-

ulations in terms of particle concentration.

The input of the physical model simulation is the particle concentration cR(t) in (131),

sum of a sinusoid and a constant value A, since cR(t) cannot have negative values. The

sinusoid has frequency fa equal to 4/5 Hz. We carried out two sets of simulations: in

the first set, the amplitude of the input sinusoid is equal to the value A of 5000 particles

µm−3, while for the second set, the value of A is 500 particles µm−3, as shown in Figure 36.

The values for the particle concentration cR(t) are quantized with respect to the number
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of particles ranging from 0 to 2A, even if, due to the high values of the parameter A,

the quantization of the sinusoidal curves is not clearly visible in Figure 36. These two

different values in the simulations enable to validate the property of the reversible first order

reaction model to approximate the output of the reversible second order reaction model

when the number of particles inside the receptor space is much higher than the number of

chemical receptors, which is a valid assumption only for the first set of simulations. All the

simulations run for 5sec by steps of ∆t = 1 msec.

The simulations are carried out using the following values for the system parameters:

the radius of the reception space is ρ = 10 µm, the binding reaction rate is set to k+ = 0.2

[µm3/sec] and the release reaction rate is set to k− = 10 [1/sec], with reference to [49]; the

number of receptors present inside the receptor space is set to NR = 500, while the particle

diffusion coefficient, used in the physical model, is set to D ∼ 10−6 cm2sec−1 of calcium

molecules diffusing in a biological environment (cellular cytoplasm, [58]). The radii of a

particle rp and a chemical receptor rR are set equal to 1 nm.

The ligand-receptor binding is simulated through two different models, namely, the

physical model and the stochastic model of the ligand-receptor-binding noise. The former

is simulated through the block scheme shown in Figure 31, while the latter is simulated

through the CME of the reversible second order reaction from (116) and Figure 34 and

through the CME of the reversible first order reaction from (118) and Figure 35.

In the simulation of the physical model, particles are generated inside the receptor

space at random locations whenever the particle concentration cR(t) increases. Particle dele-

tion is randomly performed inside the receptor space whenever cR(t) decreases. Through

particle generation and particle deletion, we control the number of particles P(t) in the re-

ceptor space, which is a parameter of the ligand-receptor kinetic state block shown in (101).

The number of particles P(t) in the receptor space depends from the particle concentration

cR(t) through the relation in (102). The Brownian motion of the particles is modeled ac-

cording to (103). Samples contributing to the value of the number n̂b(t) of bound chemical
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Figure 37. The output of the first set of simulations of the physical model in terms of number of bound

chemical receptors (left) and isolated noise contribution (right).

receptors are generated by applying (107) and (110) with the knowledge of the results

from (99) and (108). The final results in terms of n̂b(t) is achieved by applying (112)

and (113).

The results of the first set of simulations of the liphysical model are shown in Figure 37

in terms of the number n̂b(t) of bound chemical receptors (left) and in terms of the pertur-

bation of n̂b(t) around the average value (right), which corresponds to the isolated noise

contribution. Figure 37 shows how the physical model affects the value of n̂b(t) more heav-

ily when the input particle concentration cR(t) and the resulting n̂b(t) have a lower value.

This result is a consequence of the fact that when there are fewer particles inside the re-

ceptor space, the fluctuations in the number of bound chemical receptors are comparable in

magnitude to the average number of bound receptors itself.

For the stochastic chemical kinetics model, we reproduce the behavior of the Chemi-

cal Master Equations studied in Sec 4.5.2 through simulations of the Markov chains sketched

in Figure 34 and Figure 35, respectively. For the reversible second order reaction we

use (116), while for the reversible first order reaction we use (118).

The results of the first set of simulations of the stochastic chemical kinetics model are

shown in Figure 38 and Figure 39 in terms of the number n̂b(t) of bound chemical receptors

(left) and the perturbation of n̂b(t) around the average value (right) for the reversible second
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Figure 38. The output of the first set of simulations on the reversible second order reaction model in

terms of number of bound chemical receptors (left) and isolated noise contribution (right).
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Figure 39. The output of the first set of simulations on the reversible first order reaction model in terms

of number of bound chemical receptors (left) and isolated noise contribution (right).

order reaction and the reversible first order reaction, respectively. The results for the two

types of reactions show similar values to the results of the physical model of the ligand-

receptor-binding noise, shown in Figure 37.

The results of the second set of simulations for the ligand receptor kinetics, the re-

versible second order reaction and the reversible first order reaction are shown in Fig-

ure 40, Figure 41 and Figure 42, respectively. The reversible second order reaction has

values closer to the physical model if compared to the reversible first order reaction. This

is a consequence of the fact that the reversible second order reaction model accounts for the
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Figure 40. The output of the second set of simulations on the physical model of the ligand-receptor-

binding noise in terms of number of bound chemical receptors (left) and isolated noise contribution

(right).
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Figure 41. The output of the second set of simulations on the reversible second order reaction model in

terms of number of bound chemical receptors (left) and isolated noise contribution (right).
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Figure 42. The output of the second set of simulations on the reversible first order reaction model in

terms of number of bound chemical receptors (left) and isolated noise contribution (right).
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effects of the binding or release reactions on the input particle concentration cR(t). The re-

versible first order reaction is an approximation of the real behavior of the physical model

of the ligand-receptor-binding noise: the higher is the number of particles inside the re-

ceptor space than the number of chemical receptors, the closer is the reversible first order

reaction to reality. Since for the second set of simulations we used a number of particles

inside the receptor space closer to the number of chemical receptors, the difference of the

results from the reversible first order reaction with respect to the results from the physi-

cal model are more evident. The reversible first order reaction model overestimates the

number of particles present inside the receptor space, while the reversible second order

reaction model realistically accounts for a depletion of the particles when these bind to the

receptors.

Ligand-receptor Binding Statistical Likelihood Test

The statistical likelihood test is applied to prove that the analytical formulation of the re-

ception noise in terms of stochastic chemical kinetics provides a good statistical model of

the behavior of the physical model. For this, we compute the likelihood, that is, the prob-

ability of having a number of bound chemical receptors nb, given a stochastic chemical

kinetics models defined in Section 4.5.2, and then we compare the results with the value of

the number of bound receptors from the simulation of the physical model model.

The likelihood of the stochastic chemical kinetics models is evaluated for a range of

different values for the number of bound chemical receptors nb as follows:

likelihoodS toChemKin = Pr (nb|StoChemKin(n̂b(t))) (132)

where nb ranges from 1 to NR bound chemical receptors for every time instant t and n̂b(t) is

the result of the simulation of the physical model of the ligand-receptor-binding noise. The

results are shown for the reversible second order reaction and for the reversible first order

reaction in Figure 43 and Figure 44, respectively, for the first set of simulations. The highest

likelihood value corresponds, for every time instant t, to the value of the number of bound
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receptors in Figure 37 (left), thus visually confirming that the best particle concentration

model parameter for the stochastic chemical kinetics model is actually the number n̂b(t) of

bound chemical receptors in output from the physical model of the ligand-receptor-binding

noise. A noticeable characteristic in Figure 43 and Figure 44 is the asymmetry of the

values between a time interval where the input sinusoid increases and a time interval where

it decreases. This is also evident in Figure 40, Figure 41 and Figure 42. This phenomenon

is created by the difference between the values of the rates k+ and k−, where k+ < k−, which

results in a slower increase in the number of bound chemical receptors than a corresponding

decrease. This is even more evident for a lower number of particles in the receptor space.

These statistical likelihood test results shown in Figure 43 and Figure 44 are compared

to the results obtained through the use of a Gaussian model in place of the stochastic chem-

ical kinetics model. The Gaussian model, denoted by N(〈nb(τ)〉,Var(nb(τ))), has the same

expected value and the same variance as the stochastic chemical kinetics model for the

reversible first order reaction, from (126) and (127), respectively. The likelihood formula

is:

likelihoodGaussian = Pr (nb|N (〈nb(τ)〉,Var(nb(τ)))) (133)

where nb ranges from 1 to NR bound chemical receptors for every time instant t. nb(τ)

is the result of the simulation of the physical model, where τ ∈ [t, t + 1/(2Bc)]. When

the Gaussian model is applied, the likelihood shows lower values than when using the

stochastic chemical kinetics model. On average, the likelihood values shown in Figure 45

are much lower than the values in Figure 43 and Figure 44 and this proves that the stochastic

chemical kinetics model performs better than the Gaussian model. These results confirm

the validity of the stochastic chemical kinetics model presented in this paper.

The results of the second set of simulations in terms of statistical likelihood are shown

for the reversible second order reaction, the reversible first order reaction and the Gaussian

model in Figure 47, Figure 48 and Figure 46, respectively. The same conclusions as for the

first set of simulations can be drawn from these results, even if now the likelihood values

89



Time steps

# 
bo

un
d 

ch
em

ic
al

 r
ec

ep
to

rs

Log-likelihood of the Reversible second order reaction

 

 

1000 2000 3000 4000 5000

50

100

150

200

250

300

350

400

450

500
-10

-5

0

5

10

15

Figure 43. The reversible second order reaction

log-likelihood for the first set of simulations.
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Figure 44. The reversible first order reaction log-

likelihood for the first set of simulations.
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Figure 45. The log-likelihood of a Gaussian model

for the first set of simulations.
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Figure 46. The log-likelihood of a Gaussian model

for the second set of simulations.

for the reversible second order reaction are noticeably different from the reversible first

order reaction. This is given by the fact that for the second set of simulations the number of

particles inside the receptor space is not consistently higher than the number of chemical

receptors, with the above explained consequences on the reversible first order reaction.

Finally, we computed the Kullback-Leibler (K-L) distance [66] K-L(M) of each stochas-

tic model M from the data generated through the physical model of the ligand-receptor-

binding noise by applying the following formula:

K-L(M) =

∫

Pr (n̂b(t))|M)) log [Pr (n̂b(t))|M))] dt (134)
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Figure 47. The reversible second order reaction

log-likelihood for the second set of simulations.
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Figure 48. The reversible first order reaction log-

likelihood for the second set of simulations.

Table 1. Kullback-Leibler Distance

First Simulation Set Second Simulation Set

Rev. First Order -64.4435 -64.9863

Rev. Second Order -65.1680 -66.4959

Gaussian -89.8191 -115.7583

where n̂b(t) is the result of the simulation using the physical model of the ligand-receptor-

binding noise. The results in terms of K-L distance are shown in Tab. 1, where values closer

to 1 indicate a better matching between the data and the stochastic model. As expected, the

values for the stochastic chemical kinetics models are closer to 1 with respect to the values

for the Gaussian model. Moreover, the difference in the K-L distance values between

the reversible second order and the reversible first order reaction models increases for the

second set of simulations, where the assumption for the validity of the reversible first order

reaction is no longer valid.

4.6 Conclusion

In this chapter of the Ph.D. thesis, the sampling noise, the counting noise, and the ligand-

receptor-binding noise are identified as the most relevant diffusion-based-noise sources af-

fecting the diffusion-based-MC transmitter, channel, and receiver, respectively. The anal-

ysis of the noise sources results both in physical models and stochastic models. With the
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former we aim at the mathematical expression of the physical processes underlying the

noise sources, while with the latter we model the noise source behaviors through the use

of statistical parameters. For both the two noise sources, the results of the physical models

are summarized through block schemes, which expand the end-to-end physical model from

Chapter 3. The stochastic models result in noise source characterization in terms of random

processes, and in the analytical expression of the Root Mean Square (RMS) perturbation

of the noise on the information signal. Simulations are shown to prove that the analytical

formulation of the noises in terms of stochastic models is compliant with the generate noise

behaviors resulting from simulations based on the physical models.

The analysis of the noise sources provided in this paper and the results in terms of math-

ematical modeling will serve to expand the knowledge on diffusion-based MC systems and

to support further investigation on their performance in terms of capacity and throughput.

The results provided in this chapter of the thesis constitute an initial study on the noise

sources affecting a basic design of a diffusion-based MC system, and further study is ex-

pected in the future to specialize these results in light of more specific diffusion-based MC

system implementations.
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CHAPTER 5

CAPACITY ANALYSIS OF DIFFUSION-BASED

MOLECULAR COMMUNICATION

5.1 Motivation and Related Work

The theoretical analysis and the modeling of the information capacity in diffusion-based

MC are of primary importance to understand the performance of a diffusion-based Molec-

ular Communication (MC) system from an information theoretic perspective. The objective

of the research detailed in this chapter is to provide closed-form mathematical expressions

that are valid as upper/lower bounds of the true information capacity of an MC system

based on free molecule diffusion, independent from any specific coding scheme. Shan-

non [69] provided the famous mathematical expression of the capacity of a channel affected

by additive white Gaussian noise, which has a general validity for classical electromagnetic

(EM)-based communication. As detailed later in this chapter, the diffusion-based MC has

two main characteristics, namely, a channel memory and a signal-dependent noise, which

limit the applicability of the aforementioned classical capacity expression. The channel

memory is given by the persistent effects in the channel of previous transmissions, while a

signal-dependent noise is given by a correlation between the transmitted information signal

and the characteristics of the noise-generating stochastic processes present in the commu-

nication system. The impossibility of finding a closed-form analytical expression for the

true capacity of such a communication system, even when affected by only one of these

characteristics, is a well-known argument in information theory. As a consequence, in the

attempt to provide an analytical closed-form expression that relates the performance of a

diffusion-based system to physical parameters, such as the diffusion coefficient, the tem-

perature, the transmitter-receiver distance, the bandwidth of the transmitted signal, and the

average transmitted power, the results included in this chapters are based on some simplify-

ing assumptions, mentioned in the following. These assumptions limit the validity of these
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expressions, which have to be considered as upper/lower bounds to the true information

capacity.

Up to date, some contributions from the literature have attempted to study the infor-

mation capacity in diffusion-based MC systems, but often these are focused on specific

modulation and coding schemes, or do not take into account the aforementioned channel

memory and signal-dependent noise characteristics of the diffusion-based MC. The work

in [35] addresses for the first time the capacity of MC systems by emphasizing the need

for its mathematical analysis, but no concrete solutions are proposed. In [37, 43], the MC

capacity is computed for a specific binary coding scheme and by taking into account the

molecular receiver model, but without modeling the molecule diffusion propagation. An

analysis of the molecular achievable rate is conducted in [70] by assuming a single in-

stantaneous emission of molecules from the transmitter, a deterministic diffusion channel

and a detailed chemical model of the receiver, but the effects of an emission of molecules

over time is not considered. In [44], the capacity of a MC system in case of binary cod-

ing is properly analyzed on the basis of the effects of the channel memory, but without

accounting for molecular noise sources. The same authors complement in [71] their first

work by including the contribution on the capacity of a ligand-receptor binding reception

of binary coded molecular signals. Moreover, in [72] and [73], they further extend their

work by considering the effects on capacity of an MC system realized through genetically

engineered bacteria, where multiple bacteria act collectively as a network node. To achieve

these results, the authors take into account the noise sources in the biochemical processes

of molecule generation and reception, in the contexts of both binary and M-ary coding

schemes. Two different coding techniques are analyzed in [46] in terms of achievable rates,

while the diffusion channel models are reduced to a binary or a quadruple channel. Sim-

ilarly, discrete memoryless approximations are applied to the molecule diffusion channel

in [48], where the MC capacity is computed for a binary coding scheme.
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In the first part of this chapter, solutions from statistical mechanics and equilibrium ther-

modynamics are applied to derive a preliminary upper-bound expression to the diffusion-

based MC capacity. This preliminary expression is derived through the simplifying as-

sumption of having a molecular system in equilibrium, and the dynamic effects of the

diffusion-based channel are not taken into account, in particular the channel memory. This

derivation is based on the interpretation of a diffusion-based MC system as at the crossroad

of two different disciplines, namely, information theory and statistical mechanics. While

information theory [69] focuses on the quantification of the information in a communi-

cation channel, statistical mechanics [74] studies the thermodynamic behavior of systems

composed of a large number of particles. While in the past years some efforts [75, 76] have

been devoted to merge information theory and statistical mechanics, they were not directed

towards the interpretation of a communication system. Moreover, these contributions tend

to focus on the explanation of natural phenomena using information theory as a tool, and

they do not provide suitable models for MC engineering. In particular, the relationship

between thermodynamic entropy and information entropy is used to derive a closed-form

expression of an upper bound to the true capacity in diffusion-based MC, as a function of

the parameters from statistical mechanics, namely, the volume, the temperature, the num-

ber of molecules, as well as the bandwidth of the system and the thermodynamic power

spent at the transmitter for releasing molecules.

In the second part of this chapter, unlike the previous contribution, a lower-bound ex-

pression of the capacity is provided by taking into account both the channel memory and

the signal-dependent noise, termed molecular noise. For this, we decompose the molecule

diffusion into two main processes: i) the Fick’s diffusion, which captures solely the effects

of the channel memory; ii) the particle location displacement, which isolates the molec-

ular noise. The properties of these two processes allow to analyze them as a cascade of

two separate communication systems. We compute the information capacity by assuming

that the transmitter can modulate the emission of molecules in the space according to any
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possible time continuous input message, differently from previous contributions where the

transmitter is assumed to modulate (e.g., binary coding) impulses according to discrete

input messages (e.g., binary digital messages). As a consequence, this lower-bound ex-

pression to the information capacity is independent from any specific coding scheme, and

it is expressed as a function of the average transmitted power, which corresponds to the

thermodynamic power spent at the transmitter for molecule emission.

The information-theoretic diagram of a diffusion-based MC system is shown in Fig-

ure 49, and it is composed by the classical [77] cascade of information source, transmitter,

channel, receiver and destination. The Information Source produces messages to be com-

municated to the destination. The type of message depends on the particular application

in which the diffusion-based MC system is deployed. In case of intelligent drug delivery

applications [78], the message can be a time sequence of ON/OFF values that trigger/stop

the release of the drug molecules. In nanomachine communication [35] the message can

be any function of the time carrying data such as nanomachine states [1] or sensory mea-

surements [6]. The Transmitter, the Channel, and the Receiver, which are based on the

molecule emission, molecule diffusion and molecule reception, respectively, are within a

Physical System, whose underlying laws and parameters affect how these components are

physically realized. The Destination is the recipient of the messages coming from the re-

ceiver. Upon reception of a message, the destination reacts according to the meaning and

to the particular application.

!"#$%&#$'()*&+)",'
!"#$%&#$'

-.)++)",'

!"#$%&#$'

/$%$01",'

234,+.)5$6'

7)8,4#'

/$%$)9$6'

7)8,4#'

!"#$%&'()"* +,#$$)-* .)/)'0)"*

1$23"&#43$*

536"/)* 7)%4$#43$*

!$++48$+' !$++48$+'

X Y

8,9%'/#-*59%:)&*

Figure 49. Information-theoretic diagram of a diffusion-based MC system.
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5.2 Capacity Analysis through Thermodynamics

In a diffusion-based MC, the transmitter, the channel, and the receiver are function of phys-

ical parameters and depend on how the diffusion-based MC system is physically realized.

The physical parameters are variables that characterize a physical realization of the MC

diffusion-based system. Physical parameters can be considered, e.g., the temperature or the

chemical composition of the environment in which diffusion-based MC is performed. For

this, we define a physical reference model that allows to identify general physical parame-

ters in a diffusion-based MC system.

The physical reference model embodies the basic characteristics of a diffusion-based

MC system through the definition of the physics underlying the diffusion-based molecule

exchange. We are interested in the analysis of the theoretical best performance limit [69]

for the communication system (diffusion-based MC capacity). For this, we study an ideal

physical realization of the MC system through the use of an ideal gas. The physical ref-

erence model based on the ideal gas is sketched in Figure 50 and it is defined through the

following statements:

Figure 50. Sketch of the reference physical model for diffusion-based MC.

• The physical reference model is contained in the space S , whose shape is spherical with
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radius rS .

• All the molecules are considered as mono-atomic.

• The molecules have negligible spatial dimension when compared to the size of the space

S . As a consequence, in the physical reference model they are equivalent to zero-dimensional

point particles. From now on we will refer to particles when talking about molecules in

the reference system.

• Each particle i is characterized by two quantities, namely, the location x̄i and the momen-

tum ρ̄i. The location of a particle is a vector x̄i =
[

xi, yi, zi

]

containing the values of the

three space coordinates where the particle is located. The momentum ρ̄i of a particle is

the product of the velocity v̄i, which is a vector containing all the velocity components

v̄i =
[

vx
i
, v

y

i
, vz

i

]

, by the particle mass m. The set containing the locations and momenta of

all the particles in the system define the Phase Space (Φ) of the system as follows:

Φ = {x̄i, ρ̄i|i = 1, . . . ,Np} , (135)

where Np is the total number of particles in the system.

• Each particle is randomly-moving in the space following the Brownian motion [79] ran-

dom process. According to the Brownian motion, the distribution fdi
of the distance trav-

eled by a particle i in any direction in a time interval t is equal to

fdi
(di, t) =

1√
4πDt

e−
d2

i
4Dt , (136)

where di corresponds to xi, yi, zi or any other direction and D is the diffusion coefficient.

Due to the Brownian motion [79], the distribution fρ̄ of the momenta of the particles in

the system is

fρ̄(ρ̄) =

(

1

2πmkbT

)
3
2

e
− ‖ρ̄‖2

2mkbT , (137)

where ‖.‖ is the Euclidian distance operator, kb is the Boltzmann constant, m is the particle

mass and T is the absolute temperature of the system.
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Given the above statements, the particles of the physical reference model behave accord-

ing to the theory of the ideal gases [80]. Due to the simplicity of the model, the ideal gas

is the most simple diffusion-based molecular system and enables us to find a closed-form

expression for an upper bound to the capacity. The ideal gas concept allows us to define

the physical parameters for the physical reference model when it is in a state of ther-

modynamic equilibrium. The thermodynamic equilibrium is defined when the system has

homogeneous distribution of the particle locations in the space S and the distribution of the

particle momenta follows (137). When the system is in thermodynamic equilibrium we can

define the following physical parameters: the temperature T , the pressure P, the volume V

and the number of particles Np. The physical parameters completely define the state of the

system and they are bound by the Ideal Gas Law.

Figure 51. Schematic diagram of the diffusion-based MC system with the physical reference model.

In Figure 51 we show the elements from the diagram in Figure 49 that are function

of the physical parameters. In the following, those elements are detailed in light of the

definition of the physical reference model.

The TRANSMITTER has a spherical shape of radius rT , where rT << rS . The loca-

tion of the transmitter corresponds to the center
[

xT , yT , zT

]

of the spherical space S . The

transmitter can modulate two different molecular features for information transmission over

the channel. Those features are the local particle number and the particle type inside the
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transmitter spherical shape. The local concentration is modulated by releasing or absorbing

particles into/from the space S at the transmitter location. The particle type modulation is

realized by releasing particles of different types.

The CHANNEL propagates the signal from the transmitter to the receiver by means

of particle diffusion, as detailed in Section 3.4, which stems from the expression of the

Brownian motion in (136). From now on, we assume to have the same particle diffusion

coefficient D for all the particles released by the transmitter.

The RECEIVER is point-wise (zero-dimensional). The location of the receiver is at

a distance d from the transmitter, where rT < d < rS . The receiver has the ability to read

the particle concentration and the incoming particle type at its location. The reading of the

particle concentration is realized by counting all the particles present around the receiver

location. The particle types are recognized on the basis of some chemical features (e.g.,

atomic composition) that characterize the particles.

The information capacity of a communication system is defined as the maximum rate of

transmission at the information source that allows the reception of all the sent information

at the destination. The goal of the research work detailed in this section of the Ph.D. thesis

is the study of the information capacity as a function of the physical parameters that control

the diffusion-based MC systems in the physical reference model.

5.2.1 Information-theoretic Definition of Capacity

The information capacity of a communication system is expressed by the general formula

from Shannon [69]. The general formula defines the information capacity as the maxi-

mum difference between the entropy H(x) of the signal x in input to the channel and the

equivocation HY (x) as follows:

C = max
fX (x)
{H(x) − HY(x)} , (138)

where the maximum is found with respect to the probability density function fX(x) of all

the possible values of the input signal x.
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Definition 5.2.1 The entropy H(x) of the input signal x is defined [69] as the opposite of

the integral of the probability density function fX(x) multiplied by its base 2 logarithm in

the space of all the possible values of the input signal x, expressed as

H(x) = −
∫

fX(x) log2 ( fX(x)) dx , (139)

where H(x) is the entropy expressed in bits per transmitted sample [69] [bit/sample]. If

we assume that the system has a bandwidth W, and by approximating the response of the

system within this bandwidth as flat, the entropy H′(x) of the input signal expressed in [69]

bits per second [bit/sec] is the entropy in [bit/sample] multiplied by the maximum rate of

samples per second, which is equal to 2W. The formula is [69] as follows:

H′(x) = 2WH(x) , (140)

Definition 5.2.2 The equivocation HY (x) is defined as the entropy of the signal x in input

given the output signal y. The equivocation HY(x) is computed as the opposite of the

integral of the joint input-output distribution fX,Y(x, y) multiplied by the base 2 logarithm

of the probability density function fX|Y(x|y) of the input signal x given the output signal y.

The integral is computed over all the possible values of the input signal x and the output

signal y:

HY (x) = −
∫ ∫

fX,Y(x, y) log2

(

fX|Y(x|y)
)

dx dy , (141)

In the following, we study the entropy of the input signal (Section 5.2.3), the equiv-

ocation (Section 5.2.4) and the upper-bound expression of the capacity (Section 5.2.5) of

a diffusion-based MC system as functions of the physical parameters such as the volume,

the temperature, the number of molecules. For this, in Section 5.2.2 we investigate the

similarity between two entropies that can be defined in a MC system, namely, information

entropy and thermodynamic entropy.

101



5.2.2 Information-theoretic Entropy from Thermodynamic Entropy

TThe thermodynamic entropy is defined by Gibbs [81] as a measure of the disorder in

a thermodynamic system when it is in a macrostate. A thermodynamic system can be de-

scribed in a twofold way, namely, through the definition if its macrostate or its microstate. A

macrostate corresponds to the values of the overall thermodynamic variables of the system,

such as pressure, volume, temperature and number of particles. A microstate is defined by

all the values of the mechanical variables present in the system, such as particle locations

and particle velocity. A system defined by a macrostate can assume many different mi-

crostates. As a consequence, a macrostate corresponds to a distribution of microstates. The

entropy S associated to a thermodynamic system in a macrostate i is defined as the oppo-

site of the Boltzmann constant [81] Kb multiplied by the sum over the space of all possible

microstates Ψ of the probability pi for the system of being in a microstate i, multiplied by

the natural logarithm of the same probability, expressed as

S = −Kb

∑

iǫΨ

pi ln (pi) , (142)

The physical reference model introduced at the beginning of Section 5.2 is a thermody-

namic system. The macrostate of the physical reference model can be defined through the

values of its thermodynamic variables when it is in thermodynamic equilibrium. The mi-

crostate of the physical reference model is defined by the locations and the momenta of all

the particles in the system. Therefore, the microstate corresponds to the values contained

in the phase space Φ, (135) defined at the beginning of Section 5.2. The phase space of the

reference model can assume continuous values (locations and momenta are continuous).

As a consequence, the microstates have a continuous distribution when the physical refer-

ence model is in a macrostate. The thermodynamic entropy S r of the physical reference

model is given by the formula in (142), where the distribution is expressed as a probability

density function fΦ(φ) and the sum is substituted with a integral over all the possible values
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Ψ for the phase space φ, expressed as follows:

S r = −Kb

∫

φǫΨ

fΦ(φ) ln ( fΦ(φ)) dφ , (143)

where the integral is computed over 6Np dimensions: 3Np dimensions for the particle loca-

tions and 3Np dimensions for the particle momenta. Np is the number of particles present

in the system.

As stated at the beginning of Section 5.2, the physical reference model behaves accord-

ing to the ideal gas theory. According to the Sackur-Tetrode equation [76], the entropy of

an ideal gas in thermodynamic equilibrium has a closed-form expression as function of the

thermodynamic variables. Therefore, the entropy S r of the physical reference model can

be computed using the Sackur-Tetrode equation, expressed as follows

S r = Np Kb
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where Np is the number of particles present in the system, Kb is the Boltzmann con-

stant [81], V and T are the volume and the absolute temperature of the system, respectively,

m is the particle mass and h is the Planck’s constant [76].

The thermodynamic entropy formula in (143) can be reduced to the information en-

tropy formula in (139) if the Boltzmann constant Kb is removed and the logarithm ln is

set to log2. The comparison between thermodynamic entropy and information entropy has

already been tackled as a research topic [76]. The main conclusions of this research state

that despite the mathematical formulation is the same, the physical meaning of the two

formulas is fundamentally different. This difference is related to the probability density

function to which the formula applies. In the case of the thermodynamic entropy, the prob-

ability density function fΦ(φ) is a function of the thermodynamic variables of the system

(macrostate). In the case of the information entropy, the probability density function fX(x)

is the probability of having the input signal value x out of all the possible values, without

being a function of any physical variable. In a diffusion-based MC system, the similarity

between the two formulas is not only formal. The microstate of the physical reference
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model can be also seen as an input signal value. We are only able to control the thermody-

namic variables of the physical reference model but not directly its microstate. Therefore,

the probability density function of having a microstate out of all the possible microstates is

a function of the thermodynamic variables. In conclusion, in the case of a diffusion-based

MC system, we can interpret the thermodynamic entropy as an information entropy where

the input signal values are the microstates of the physical reference model. The Boltzmann

constant Kb relates only to the conventional units of the temperature [81] and it has no

meaning from the Information Theory point of view. The logarithm ln is converted into the

log2 because [69] the units of the information entropy are [bit/sample] or [bit/sec].

As a consequence, the information entropy of the physical reference model has the same

expression as the thermodynamic entropy in (144), where the first Boltzmann constant Kb

is removed and the logarithm ln is set to log2, expressed as

Hre f = Np
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5.2.3 The Input-signal Entropy

The input signal in the physical reference model introduced at the beginning of Section 5.2

corresponds to the modulation of the molecular features operated by the transmitter. As

described at the beginning of Section 5.2, the molecular features that can be modulated are

the local particle number and the particle type.

The modulation of the particle features affects the value of the entropy of the physical

reference model. The distribution of the particle locations in the space S is not homoge-

neous due to both the modulation of the local particle number and the particle type. As

a consequence, the modulation shifts the physical reference model away from the state of

thermodynamic equilibrium. Therefore, the entropy of the physical reference model cannot

be computed through the formula in (145).

A local entropy can be defined for the transmitter when it modulates the molecular

features. The local information entropy depends on the molecular features and it can be
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computed from (145). The local entropy HT at the transmitter is a function of the set M of

all possible particle types, of the number Nm for each particle type m from the set M, the

absolute temperature T of the system and the transmitter volume VT , expressed as

HT =
∑

mǫM

Nm
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where the transmitter volume VT is

VT =
4

3
πr3

T . (147)

Equation (146) takes into account that, according to the Dalton’s law [80], in thermody-

namics the contributions to the entropy coming from different types of particles of ideal

gases (mixture of ideal gases) are independent. As a consequence, (146) is the sum of each

contribution coming from the application of (145) to each particle type at the transmitter.

The total entropy Hmod
re f

of the physical reference model when the transmitter is modu-

lating the particle features can be written as the sum of two contributions. The first con-

tribution is the transmitter local entropy HT from (146). The second contribution is the

entropy Hre f of the physical reference model from (145) without the transmitter modula-

tion, expressed as

Hmod
re f = HT + Hre f . (148)

The input signal entropy corresponds to a measure of the amount of information con-

tained in the input signal. The formula in (148) contains the information entropy of the

system composed by the transmitter and the physical reference model. In practice, the

input signal does not contain all the entropy Hmod
re f

since the transmitter is not able to con-

trol the exact value of the phase space Φ of the system. While the transmitter modulates,

it inserts information in the system. This information, according to the Second Law of

Thermodynamics [80], eventually will fade out when the system will reach a new ther-

modynamic equilibrium state, characterized by a higher entropy. In the thermodynamic

equilibrium all the thermodynamic variables are constant and homogeneous and, therefore,
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there is no transmitted information. The entropy Hnew
re f

of the physical reference model in

the new thermodynamic equilibrium is computed from the formula in (145), expressed as

Hnew
re f = Ntot
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where Ntot is the total number of particles in the system, expressed as

Ntot = Np +
∑

mǫM

Nm . (150)

Np is the number of particles present in the physical reference model before modulation. In

order to quantify the input signal entropy, we subtract the total entropy Hmod
re f

of the physical

reference model at modulation from the entropy Hnew
re f

of the physical reference model in

the new thermodynamic equilibrium, expressed as follows:

H(x) = Hnew
re f − Hmod

re f , (151)

where H(x) is the input signal entropy in [bit/sample].

If we consider a bandwidth W for the system, we can transmit 2W samples per second

without equivocation. According to (140) the input signal entropy in [bit/sec] becomes

H′(x,W) = 2W
(

Hnew
re f − Hmod

re f

)

. (152)

5.2.4 The Equivocation

The received signal in the physical reference model introduced at the beginning of Sec-

tion 5.2 corresponds to the reading of the changes in the molecular features operated by

the receiver. As described at the beginning of Section 5.2, the receiver is considered as

point-wise, therefore it only reads the changes in the molecular features that occur at the

exact receiver location.

The propagation of the signal from the transmitter to the receiver affects the value of

the local entropy at the receiver. The variation in the local entropy at the receiver HR at

instant t and distance d corresponds to the variation in the entropy of the spherical surface
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at instant t and distance d, divided by the spherical surface area 4πd2 as

HR =
H

sph

R

4πd2
. (153)

The variation in the entropy in a spherical surface at distance d from the transmitter and at

time t can be computed as the entropy of an ideal gas from (145) with an equivalent number

of particles Nm
eq and an equivalent volume Veq. The variation in the entropy H

sph

R
(d, t) in a

spherical surface at instant t at distance d is

H
sph

R
=

∑

mǫM

Nm
eq
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The equivalent number of particles Nm
eq of the ideal gas corresponds to the number of

transmitted particles of type m that in a time t reach a distance d from the transmitter.

This can be computed from the particle diffusion process that is at the basis of the particle

propagation. The number of particles NR that diffuse from the transmitter to the receiver

located at a distance d is equal to the number NT of the particles at the transmitter multiplied

by the probability for each particle of shifting by a distance d at a time instant t after the

instant of transmission, given by (136). This is expressed as

Nm
eq = Nm

1√
4πDt

e−
d2

4Dt . (155)

The value of the equivalent volume Veq divided by the equivalent number of particles Nm
eq

in (154) is the inverse of a the concentration of type m particles at the spherical surface at

instant t and distance d. This concentration is equal to the concentration Nm/VT of type m

particles inside the transmitter multiplied by the probability in (136)

Nm
eq

Veq

=
Nm

VT

1√
4πDt

e−
d2

4D∆t =
Nm

eq

VT

. (156)

The equivocation formula in (141) corresponds to the entropy of the input signal when

the receiver knows the value of the output signal. As a consequence, if the receiver is placed

at a distance 0 ≤ d ≤ rT from the transmitter, then the increase in entropy is zero, since the

output signal corresponds to the input signal. If the receiver is at a distance d ≥ rT from the

107



transmitter, then the increase in the entropy at instant t depends on the number of particles

that reach the receiver location in a time t. The increase in the entropy at the receiver

corresponds exactly to the equivocation. In other words, the equivocation is the entropy

increase in the transmitted signal during propagation, computed by subtracting the entropy

per unit volume HT

VT
of the transmitted signal from the entropy HR(d, t) of the received signal

HY(x) = HR(d, t) − HT

VT

, (157)

where HR is computed through (153), HT through (146) and VT through (147).

If we consider a bandwidth W for the system, we can receive up to 2W samples per

second without equivocation. In order to find the expression of the equivocation as a func-

tion of the bandwidth W it is necessary to find the number of particles NR(d,W) that diffuse

from the transmitter to the receiver located at a distance d and for a bandwidth W. This cor-

responds to (155), where the time variable is substituted with the inverse of the frequency of

sample reception 2W, that corresponds to the time interval between two consecutive trans-

mitted samples. This is valid only under the hypothesis of not having influences between

the diffusion of two different samples. In practice, this is not physically realistic since par-

ticles diffusing after the transmission of a sample will inevitably be present in the system

at the time of transmission of the consecutive sample. Since taking into account this lat-

ter effect would complicate more the treatment concerning the equivocation and since the

equivocation will result in a higher value, in this section of the Ph.D. thesis we rely on

the assumption of not having influences between consecutive samples. This assumption

will result in an overestimation of the capacity (upper bound to the true capacity).

The variation in the entropy H
sph

R,W
in a spherical surface with bandwidth W at distance d is

computed through

H
sph

R,W
=

∑

mǫM

Nm
eq,W
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where Nm
eq,W

is equal to the number of particles that diffuse from the transmitter to the
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receiver located at a distance d and for a bandwidth W

Nm
eq,W = Nm

√

2W

4πD
e−

2Wd2

4D . (159)

As a consequence, the variation in the local entropy at the receiver HR(W) with bandwidth

W and distance d is

HR(W) =
H

sph

R,W

4πd2
. (160)

The expression for the equivocation formula in [bit/sec] becomes

HY(x,W) = 2W

(

HR(W) − HT

VT

)

, (161)

where HR(W) is computed through (160), HT through (146) and VT through (147).

5.2.5 The Capacity

The information capacity of the diffusion-based MC system, given the physical reference

model detailed at the beginning of Section 5.2, is expressed by the formula in (183), where

the input signal entropy H(x) is given by (151) and the equivocation is given by (157). The

final upper-bound expression of the capacity becomes

C = max
fX (x)

{

Hnew
re f − Hmod

re f −
(

HR −
HT

VT

)}

, (162)

where Hnew
re f

is computed through (149), Hmod
re f

through (148), HR through (153) and HT

through (146). The transmitter volume VT is computed through (147).

If we consider a bandwidth W for the system, the upper-bound expression of the in-

formation capacity C(W) of the diffusion-based MC system is expressed as a function of

the bandwidth W by the formula in (183), where the input signal entropy H(x,W) is given

by (166) and the equivocation HY(x,W) is given by (170), as follows:

C(W) = max
fX(x)

2W

{

Hnew
re f − Hmod

re f −
(

HR(W) − HT

VT

)}

, (163)

where Hnew
re f

is computed through (149), Hmod
re f

through (148), HR(W) through (160) and HT

through (146). The transmitter volume VT is computed through (147).
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A closed-form expression for the upper bound to the capacity of the diffusion-based

MC system is given by the input signal probability density function fX(x) that maximizes

the quantity H(x) − HY(x) from (183). Such a value for fX(x) can be found by setting a

constraint on the total transmitted power. The value for fX(x) corresponds to the distribu-

tion of the total transmitted power among the possible values for the input signal that gives

the maximum input signal entropy H(x) and the minimum equivocation HY (x). This dis-

tribution is found by associating the input signal entropy H(x) to the power PH . PH is the

transmitter enthalpy power. The transmitter enthalpy power corresponds to the transmitted

power to perform diffusion-based MC. If we consider a bandwidth W for the system, the

transmitter enthalpy power PH becomes

PH = 2HW , (164)

whereH is the transmitter enthalpy.

Definition 5.2.3 The transmitter enthalpy is defined as the energy necessary to insert N

particles in the system and to heat these particles up to a temperature T when the system

has the pressure P and the volume V. In our case, the transmitter enthalpy can be computed

as

H = PV +
3

2
KbT

∑

mǫM

Nm , (165)

where P and V are the pressure and the volume of the physical reference model, respec-

tively. M is the set of all possible particle types that the transmitter can emit, Nm is the

number of particles of type m, Kb is the Boltzmann constant and T is the absolute temper-

ature of the system.

In order to find a closed-form expression for the upper bound to the capacity starting

from (175), it is necessary to find a distribution of the transmitter enthalpy power among

the M particle types so that the input signal entropy H(x) from (151) is maximized and the

equivocation HY (x) from (157) is minimized.
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The input signal entropy H(x) as function of the transmitter enthalpy power is

H(x,W) = 2W
(

Hnew
re f − Hmod

re f

)

, (166)

where Hnew
re f

is computed through (149) and Hmod
re f

through (148). The expression of the

entropy Hmod
re f

will depend on the fraction of the power Pm
H assigned to each particle type m.

The entropy Hmod
re f

can be written as function of the transmitter power by expressing Nm as

function of Pm
H as follows:
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∑
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where M is the set of possible input signals, VT is the receiver volume from (147), Kb is the

Boltzmann constant, T is the absolute temperature of the system, m is the particle mass, h

is the Planck constant and NP
m is given by

NP
m =

Pm
H − 2WPV

3WKbT
, (168)

where Pm
H is the fraction of the power assigned to each particle type m and P and V are the

pressure and the volume of the physical reference model, respectively. The maximum of

the input signal entropy H(x,W) corresponds to the distribution of the power that results in

the minimum of HT from (167). The minimum of HT , denoted by Hmin
T

, corresponds to an

even distribution of the power among all the M types of particles that the transmitter can

send. Therefore, for each particle type out of the M possible, the fraction of power Pm
H is

given by the total transmitter enthalpy power PH divided by the number of particle types

M, as follows:

Pm
H =

PH
M
→ HT = Hmin

T . (169)

The equivocation HY (x) as function of the transmitter enthalpy power is

HY(x,W) = 2W

(

HR(W) − HT

VT

)

. (170)

HR(W) is computed through (160) and HT through (146). Both HT and HR(W) depend on

the fraction of power Pm
H assigned to each particle type m. HT is expressed by (167) and
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HR(W) is given by (160) where H
sph

R,W
is

H
sph

R,W
=

∑

mǫM
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where Nm
eq,PH

is

Nm
eq,PH

=
Pm
H − 2WPVT

(3/2)KbT
. (172)

The optimal distribution of power in (169) minimizes HT

VT
, and it minimizes also H

sph

R,W
and,

consequently, HR(W). HR(W), expressed in (160), corresponds to the entropy of the trans-

mitted particles per unit volume at a distance d and time t, while HT

VT
is the entropy per unit

volume at the transmitter at time t = 0. We can logically assume that if d is sufficiently

large, the entropy HT

VT
is negligible with respect to the contribution of HR(W), expressed as

HR(W) >>
HT

VT

; (173)

which is valid also for large values of W, as can be observed by computing the limit for

W → ∞ of the expression in (160), after substitution with (158) and (159). Therefore,

the minimum of the equivocation HY(x) corresponds roughly to the minimum of HR(W),

denoted as Hmin
R

(W), which is again given by the even power distribution in (169).

A closed form expression for the upper bound to the capacity of the diffusion-based

MC system is

C(W) = 2W

[

Hnew
re f − H

mod,min

re f
−

(

Hmin
R (W) −

Hmin
T

VT

)]

, (174)

where Hnew
re f

is the computed through (149), HR(W) through (160) and (149), and HT through (146),

(149) and (146) are evaluated with (169). The transmitter volume VT is computed through (147)

and Hmod,min

re f
is

Hmod,min

re f
= Hmin

T + Hre f , (175)

where Hre f is detailed in (145).

5.2.6 Numerical Results

In this section, we provide numerical results for the upper bound expression to the capacity

in MC nanonetworks. All the results are computed for a common set of parameters, whose
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values are assigned as follows. The total transmitter enthalpy power PH is set to 1 µW.

Note that the latter is only a reference value, since so far we do not know how much

transmitter power a nanomachine will be able to provide. The radius rS of the spherical

space S in which the system is immersed is set to 1cm, while the radius of the transmitter

rT is set to 1 µm. The mass of the particles m is set to 1.66053878283x10−27 kg, which is

the standard atomic mass unit [82]. The number Np of particles present in the system is set

equal to a number of molecules in a mole [80] 6.0221417930x1023. We set the number M of

molecules types that the transmitter can release to 5. The Boltzmann constant [81] is Kb =

1.380650424x10−23 [Joule/K] and the Planck constant is [76] h = 6.6260689633x10−34

[Joule*sec].

All the results come from the evaluation of (175), (160), (149) and (146), given the

condition of having an even distribution of the transmitted power among all the types of

particles, (169).

The results in Figure 52, as well as Figure 53 and Figure 54, show extremely high

values for the capacity which are on the order of magnitude of 1036 [bit/sec].

Although those numbers refer to an upper bound to the true capacity, which could be

achieved only with a theoretical optimal modulation scheme at the transmitter, they can be

physically explained as follows.

The computation of the capacity in this section of the Ph.D. thesis considers a transmit-

ted sample as any combination of the number of particles of any possible type out of M,

bounded by the transmitter power using (168).

In our numerical analysis, by taking into account (169) and (168) we achieve a maxi-

mum number of molecules NP
m on the order of magnitude of 1012 per each type m.

Therefore, the number of combinations we can achieve using the optimal modulation

scheme is extremely high and, consequently, also the capacity.
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Figure 52. Capacity in relation to the transmitter-receiver Distance and for different values of the

bandwidth W.

5.2.6.1 Distance Vs Bandwidth

In Figure 52 we show the values of the upper-bound expression of the capacity of a diffusion-

based MC nanonetwork in relation to the distance d between the transmitter and the receiver

locations and different values of the bandwidth W.

We evaluate the capacity in [bit/sec] for a distance ranging from 1 µm to 100 µm. The

different lines refer to different bandwidth W values, from 1 Hz to 45 Hz. The temperature

T of the system is set to a standard room temperature of 25 ◦C and the diffusion coefficient

D is set to 10−9 [m2/sec], as explained in Chapter 3.f

The curves in Figure 52 show the maximum values of the upper-bound to the true

capacity for every value of the bandwidth when the distance between the transmitter and

the receiver locations is equal to the minimum considered value, namely, 1 µm. As the

bandwidth W increases, the Gaussian shape of the curves, related to (136), decreases its

variance and the maximum capacity value when the distance is 1 µm. This behavior can

be explained by noticing that, as the bandwidth of the input signal W increases, the higher
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frequencies are affected by higher attenuation in the channel, and the received signal power,

whose average is kept constant at the transmitter, gets lower. As a consequence, increasing

the bandwidth W shifts also the maximum distance with non-zero capacity closer to the

transmitter.

5.2.6.2 Bandwidth Vs Distance

Figure 53. Capacity in relation to the Bandwidth and for different values of the transmitter-receiver

distance d.

The upper-bound expression of the capacity of a diffusion-based MC system is shown

in Figure 53 in relation to the bandwidth W and different values of the transmitter-receiver

distance d.

We evaluate the capacity in [bit/sec] for a bandwidth W ranging from 1 Hz to 45 Hz and

different lines refer to different distance values, from 1 µm to 100 µm. The temperature T

of the system is set to a standard room temperature of 25 ◦C and the diffusion coefficient D

is set to 10−9 [m2/sec], as explained in Chapter 3.

Figure 53 shows a bandwidth value which maximizes the capacity. This maximum

capacity value appears only for short distances d < 30 µm, it is different for each distance d
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value and it decreases as the distance increases. As a consequence, we understand that for

each distance value there is an optimal bandwidth in Hz that minimizes the equivocation in

diffusion-based molecular communication.

The curves in Figure 53 show also a maximum bandwidth value over which the capacity

is zero. This value is not changed by different distance values and for every curve it is

around 40 Hz.

5.2.6.3 Bandwidth Vs Temperature

Figure 54. Capacity in relation to the Bandwidth and different values of the system temperature T .

In Figure 54 we show the upper-bound expression of the capacity dependent on the

bandwidth W ranging from 1 Hz to 45 Hz and the temperature T . Different lines refer

to different system temperature T values, from 0 ◦C to 100 ◦C. The distance between the

transmitter and the receiver locations is set to 50 µm and the diffusion coefficient D is set

to 10−9 [m2/sec], as explained in Chapter 3, for a temperature of 25 ◦C as a reference, and

it is varied according to the actual temperature values by following the Einstein-Stokes

equation [79].

Figure 54 shows a bandwidth value which maximizes the capacity. This maximum
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capacity value is different for each temperature T value and it decreases as the temperature

increases. As a consequence, we understand that for each temperature value there is an

optimal bandwidth in Hz that minimizes the equivocation in diffusion-based molecular

communication.

The curves in Figure 54 show also a maximum bandwidth value over which the capacity

is zero. This value is different for each temperature and it ranges from 32 Hz at 100 ◦C to

44 Hz at 0 ◦C.

5.2.7 Conclusion

In this section of the Ph.D. thesis, a mathematical expression of an upper bound to the

information-theoretic capacity in diffusion-based MC is provided as a function the pressure,

the volume, the temperature, the number of molecules, the bandwidth of the system, and

the transmitter power. Further investigation will be carried out in the future on finding more

stringent upper bounds to the performance. The most interesting result stands in the order

of magnitude of these capacity values, since they are are extremely high if compared to

capacity values in classical EM-communication systems. These results confirm the validity

of the sentence by R. Feynman ”There’s Plenty of Room at the Bottom” [83], and explain

the growing interest around diffusion-based MC shown by the research community in the

last couple years.

5.3 Capacity Analysis with Channel Memory and Molecular Noise

Differently from the previous section, the Physical System considered in this section of the

Ph.D. thesis is sketched in Figure 55 and it is based on the following considerations:

• The diffusion-based MC channel is in a three-dimensional space indexed by the three

axes X,Y,Z and it has infinite extent in all three dimensions. This space is filled with

a fluidic medium having viscosity µ. The fluidic medium does not have flow currents

or turbulence, therefore the propagation of the molecules between the transmitter and

the receiver is solely realized by the Brownian motion.
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• All the molecules in the system, which are emitted by the transmitter, are indistin-

guishable and equivalent to spherical particles of radius r and mass m, where r << d,

d being the distance between the transmitter and the receiver in the diffusion-based

MC system. As a consequence, from now on we will refer to particles when talking

about molecules in the physical system.

• The transmitter is considered point-wise (size equal to zero) and at location T =

(TX, TY, TZ) in the three-dimensional space.

• Once emitted from the transmitter, every particle moves independently from the oth-

ers and according to its Brownian motion in the fluidic medium. The Brownian

motion of a molecule is referred to as the random motion of the particles suspended

in a fluid and its formulation according to the Langevin equation [84] states that the

location pn
i
(t) of the particle n at time t along any i of the three dimensional axes

X,Y,Z obeys the following stochastic differential equation:

m
∂2 pn

i
(t)

∂t2
= −6πµr

∂pn
i
(t)

∂t
+ fi(t) , i ∈ {X,Y,Z} , (176)

where m is the particle mass, ∂2(.)/∂t2 and ∂(.)/∂t are the second and first time deriva-

tive operators, respectively, µ is the viscosity of the fluid, r the radius of the particle

and fi(t) is a random process whose probability density function is Gaussian and has

correlation function < fi(t) f j(t
′) > given by

< fi(t) f j(t
′) >= 12πµrkBTδi, jδ(t − t′) i, j ∈ {X,Y,Z} , (177)

where < . > is the average operator, kB is the Boltzmann constant, T is the absolute

temperature of the fluid, considered homogeneous throughout the space, and δi, j is

equal to 1 if i = j and zero otherwise; δ(t − t′) is the Dirac delta function.

• The receiver detects a signal which is proportional to the concentration of the incom-

ing particles. The receiver location is at a distance d from the transmitter.
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In the following, the components included in the physical system are described in light of

the aforementioned considerations.

Figure 55. Sketch of the physical realization of the diffusion-based molecular communication system.

The Transmitter processes the messages from the information source and produces a

signal suitable for the transmission over the channel. The transmitted signal, denoted by

X 1, is here defined as the number of particles nT (t) emitted into the space as a function of

the time t, expressed as

X := nT (t) , t > 0 . (178)

At the time t of emission of a particle, denoted by n̄, its location pn̄(t) = (pn̄
X

(t), pn̄
Y

(t), pn̄
Z
(t))

corresponds to the location of the transmitter T = (TX, TY, TZ), expressed as

pn̄(t) = T , n̄ =

∫ t

0

nT (τ)dτ , t > 0 , (179)

where T is the vector of the three-dimensional coordinates (TX, TY, TZ) of the transmitter.

n̄ is here an index assigned to each particle on the basis of the order in which they are

emitted. This index serves only for the mathematical formulation of their propagation

1For the information capacity analysis of this communication system, the transmitted signal X is con-

sidered as a band-limited random process whose value at every time instant t is a realization of the random

variable nT (t). As a consequence, the entropy of X is found by decomposing X into a band-limited ensemble

of functions, as detailed in Section 5.3.3.
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through the Langevin equation in (176), while, as mentioned above, particles are identical

and indistinguishable in the physical system.

The Channel propagates the signal from the transmitter to the receiver by means of

molecule diffusion, which is the result of the collective translation by Brownian motion

of many particles from an area in which they are more dense to an area of lower density.

This results in the propagation of the particles emitted by the transmitter throughout the

three-dimensional space. This propagation can be expressed as the translation of the three-

dimensional coordinates from the location T of the transmitter to a location pn(t) at time t

computed by applying (176) to each particle n from the set NT (t), as

T→ pn(t), ∀n ∈ NT (t) , (180)

where NT (t) is the set containing all the indexes of the particles emitted by the transmitter

from time 0 to time t:

NT (t) =

{∫ t′

0

nT (τ)dτ

∣

∣

∣

∣

∣

∣

0 < t′ < t

}

. (181)

The Receiver reconstructs the messages (sent by the transmitter) from the received

signal Y , which is proportional to the concentration of incoming particles. In this section

of the Ph.D. thesis, we assume an ideal receiver where the received signal Y is defined as

the time-varying number of particles that are present inside a spherical volume VR centered

at the receiver location and with radius RVR
<< d, where d is the distance between the

transmitter and the receiver. This choice makes the results of this section of the Ph.D.

thesis independent from any specific techniques for the reception (e.g., the chemical ligand-

binding reception detailed in Section 3.5). As a consequence, the received signal Y is

expressed as the number of particles emitted by the transmitter from time instant 0 to time

instant t whose location pn(t) is inside the volume VR, as

Y := # {n ∈ NT (t) : pn(t) ∈ VR} , t > 0 , (182)

where #{.} stands for the cardinality (number of elements) of the set enclosed in the brack-

ets.
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5.3.1 Information Capacity of a Diffusion-based MC System

The capacity C of a communication system in [bit/sec] is defined as the maximum rate

of transmission between the information source and the destination, where this maximum

is with respect to all possible signals produced by the transmitter [69]. This is expressed

by the general formula from Shannon [77], which defines the capacity as the maximum

mutual information I(X; Y) between the transmitted signal X and the received signal Y with

respect to the probability density function fX(x) in all the possible values of the transmitted

signal, expressed as follows:

C = max
fX (x)
{I(X; Y)} . (183)

The mutual information I(X; Y) in [bit/sec] is defined as:

I(X; Y) = H(X) − H(X|Y) = H(Y) − H(Y |X) = H(X) + H(Y) − H(X, Y) , (184)

where H(X) is the entropy per second of the transmitted signal X, defined in Section 5.3.3,

H(X|Y) is the entropy per second of the transmitted signal X given the received signal Y ,

H(Y |X) is the entropy per second of the received signal Y given the transmitted signal X,

and H(X, Y) is the joint entropy per second of the transmitted signal X and the received

signal Y .

In the following, we analytically compute the mutual information of a molecular com-

munication system, as expressed by (183), by considering the transmitter, the channel and

the receiver, defined through (317), (180) and (182), when evaluating (184). From the

physical system defined at the beginning of Section 5.3, two phenomena play an important

role in the quantification of the mutual information, namely, the channel memory and the

molecular noise, as we highlight in Section 5.3.2. For this, we propose to divide the com-

putation of the mutual information into two processes, namely, the Fick’s diffusion, treated

in Section 5.3.3, which captures solely the effects of the channel memory, and the particle

location displacement, treated in Section 5.3.4, which isolates the effects of the molecular

noise.
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5.3.2 The Molecule Diffusion as Fick’s Diffusion and Particle Location Displacement

The Langevin equation in (176) is the most general expression of the molecule diffusion due

to the Brownian motion. In a MC system, it impacts on the communication performance

(mutual information and capacity) through the following two phenomena:

• Channel memory: it is the effect of the persistent presence in the three-dimensional

space of the particles from the moment they are emitted by the transmitter until in-

finite time. This is a consequence of the fact that in the physical system considered

in this section of the Ph.D. thesis each emitted particle is subject to the Brownian

motion. For this, each particle wanders randomly in the three-dimensional space

without being destroyed. This is expressed through a positive probability of having

any of the emitted particles at any time after the emission instant inside the receiver

volume, expressed as

P (n ∈ NT (t) : pn(t) ∈ VR) > 0 ∀n , t > 0 , (185)

where NT (t) is given by (181), pn(t) is the vector with the location coordinates for

the particle n at time t and VR is the set containing all the space coordinates included

in the receiver volume.

• Molecular noise: it is the effect of the randomness of the particle locations in the

three-dimensional space, which results in random fluctuations of the received signal.

This is a consequence of the random process fi(t) of the particle locations expressed

in (176). This is expressed by considering the received signal Y as a random variable

with a generic distribution F. Its expected value E[Y] is the integral of the expected

particle distribution, denoted by ρ(p, t), integrated in the receiver volume VR, as

Y ∼ F , E[Y] =

∫

VR

ρ(p, t)dp , t > 0 , (186)

where ρ(p, t) is the particle distribution at location p = (pX, pY, pZ) and time t, whose

equation will be defined in the following.
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Figure 56. Diagram of the diffusion-based MC system with the Fick’s diffusion and the particle location

displacement contributions to the molecule diffusion.

In this section of the Ph.D. thesis, we propose to analyze the impact of the aforemen-

tioned phenomena on the mutual information (184) by separating the molecule diffusion

from the Langevin equation (176) into two processes, namely, the Fick’s diffusion and the

particle location displacement, as shown in Figure 56. This is possible since the molecule

diffusion expressed by the stochastic differential equation in (176) and having X (317) as

input and Y (182) as output can be equivalently expressed by the deterministic Fick’s equa-

tion [27] followed by a stochastic process which results in the assignment of the particle

locations in the three-dimensional space.

The Fick’s equation is a parabolic partial differential equation [27] in the variable

ρ(p, t), which is the particle distribution at location p = (pX, pY, pZ) and time t. The ex-

pression of this equation for the diffusion-based MC system accounts for the transmitter

as a source of particles at location T. This translates into an additional term, namely,

nT (t)δ(|p − T|), which corresponds to the number of particles nT (t) emitted into the space

as a function of the time t at the location T, where the Dirac delta δ(|p − T|) is non-zero.

We express the Fick’s equation as follows:

∂ρ(p, t)

∂t
= D∇2ρ(p, t) + nT (t)δ(|p − T|) , t > 0 , (187)

where ∂./∂t is the time derivative operator of the particle distribution ρ(p, t), which corre-

sponds to the expected number of particles at location p and time t, and ∇2 is the Laplacian
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operator. D is the particle diffusion coefficient, whose expression is as follows:

D =
KbT

6πµr
, (188)

where Kb is the Boltzmann constant, T is the absolute temperature of the system, µ is the

viscosity of the fluid and r is the particle radius.

The particle location displacement is expressed through the stochastic process that ran-

domly assigns the location to each transmitted particle according to the particle distribution

ρ(p, t) at each time instant t, as

pn(t) ∼ ρ(p, t) ,∀n ∈ NT (t) , (189)

where NT (t) is given by (181).

The channel memory phenomenon of the molecule diffusion introduced above is fully

captured by the Fick’s diffusion contribution. This is expressed by stating that the proba-

bility that the location of a particle is inside the receiver volume is never zero from the time

instant of the particle emission until infinite time. This is detailed through the following

relation:
∫

VR

ρt′(v, t)dv > 0 , ∀t, t′ : t > t′ > 0 , (190)

where the integral is performed by spanning the set VR containing all the space coordinates

included in the receiver volume. ρt′(v, t) is the particle distribution. This is the solution of

the Fick’s equation in case the particles are emitted only at the time instant t′

∂ρt′(p, t)

∂t
= D∇2ρt′(p, t) + nT (t′)δ(|p − T|)δ(t − t′) , t > 0 . (191)

The molecular noise phenomenon is isolated into the particle location displacement

contribution, since it contains the stochastic process which contributes to the Langevin

equation (176). This is expressed by noting that the number of the particles whose loca-

tion pn(t) is within the receiver volume at time t is a realization of the particle location

displacement, as expressed in (189).
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The cascade of the Fick’s diffusion and the particle location displacement contributions,

as shown in Figure 56, define a Markov chain [77] in the variables X, ρ and Y following

the order X → ρ → Y . This is justified by the property that X and Y are conditionally

independent given ρ, which is expressed as follows:

fX,Y |ρ(x, y) = fX|ρ(x) fY |ρ(y) , (192)

since ρ is function of X from (317) and (324), and the distribution of Y is a function of ρ

from (182) and (189). The chain rule applied to the joint entropy of X, ρ and Y states the

following [77]:

H(X, ρ, Y) = H(X, Y |ρ) + H(ρ) = H(X|ρ) + H(Y |ρ) + H(ρ) . (193)

Since ρ is a deterministic function of X through the Fick’s equation from (324), then the

joint entropy per second of X, ρ and Y is equal to the joint entropy per second of X and Y:

H(X, ρ, Y) = H(X, Y) . (194)

By applying (193) and (194) to the third expression in (184), we obtain that the mutual

information I(X; Y) of the transmitted signal X and the received signal Y as the sum of

the mutual information of a communication system which includes only the Fick’s diffu-

sion (mutual information I(X; ρ) of the transmitted signal and the particle distribution) and

the mutual information of a system which includes only the particle location displacement

(mutual information I(Y; ρ) of the received signal and the particle distribution), respec-

tively, with the subtraction of the entropy per second H(ρ) of the particle distribution. This

is expressed as follows:

I(X; Y) = H(X) + H(Y) − H(X|ρ) − H(Y |ρ) − H(ρ) = I(X; ρ) + I(Y; ρ) − H(ρ) , (195)

where we applied the first two definitions of mutual information from (184) to obtain the

last expression.
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We provide closed-form solutions to the mutual information of the Fick’s diffusion

and to the mutual information of the particle location displacement in Section 5.3.3 and

Section 5.3.4, respectively. In Section 5.3.5 we apply (183) and (195) to the results of

the previous sections to obtain a closed-form expression of a lower bound to the mutual

information of the diffusion-based MC system and, ultimately, to obtain a lower bound to

its capacity.

5.3.3 The Fick’s Diffusion Mutual Information

The closed-form expression for the mutual information I(X; ρ) in [bit/sec] of the Fick’s

diffusion is computed by applying the following relation:

I(X; ρ) = H(X) − H(X|ρ) , (196)

where H(X) is the entropy per second of the transmitted signal X and H(X|ρ) is the condi-

tional entropy per second of the transmitted signal X given the particle distribution ρ.

The entropy per second H(X) of the transmitted signal is computed as the entropy mea-

sured in [bit/symbol], multiplied by twice the bandwidth W, which corresponds here to

the rate of the symbol transmission in [symbol/sec]. This results from considering the

transmitted signal X defined in (317) as a band-limited ensemble of functions [69] within a

bandwidth W. The ensemble has the following expression:

X =

∞
∑

k=0

nT

(

k

2W

)

sin [π(2Wt − k)]

π(2Wt − k)
, k ∈ N , (197)

where the bandwidth W is here defined as the maximum frequency contained in the time-

continuous signal nT (t) (317), which corresponds to the number of emitted particles as

function of the time t. The Shannon-Hartley theorem [77] assures the equivalence of the

expressions in (197) and (317), respectively. As proven in [69], we can express the entropy

per second H(X) of the transmitted signal X as the entropy of the ensemble per degree

of freedom in [bit/sample] multiplied by twice the bandwidth W in [sample/sec]. The

entropy of the ensemble per degree of freedom corresponds to the entropy H(n̂T ) of a
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sample nT (k/2W) of the time-continuous signal nT (t), expressed as follows:

H(X) = 2W H(n̂T ) . (198)

The distribution of the stochastic process model for the sampled signal n̂T , which allows

to compute a lower-bound expression of the capacity C through (183), is assigned in Sec-

tion 5.3.5 as the distribution leading to the maximum possible mutual information for the

MC system constrained by the average power consumption for particle emission at the

transmitter.

The conditional entropy per second H(X|ρ) of the transmitted signal X given the particle

distribution ρ is computed as a result of the two following properties of the Fick’s diffusion

from (324):

• Its linearity, which allows to interpret the Fick’s diffusion block in Figure 56 as a

linear filter having the transmitted signal X as input and the particle distribution ρ as

output. As a consequence, the formula of the entropy loss in linear filters [85] can

be applied to compute the entropy per second H(ρ) of the particle distribution as the

sum of the entropy per second H(X) of the transmitted signal and the integral of the

transfer function Fourier transform [51] of the Green’s function [86] of the Fick’s

diffusion in the portion W of its frequency spectrum that is excited by the transmitted

signal X, expressed as

H(ρ) = H(X) +
1

W

∫

W

log2 |Gd( f )|2 d f . (199)

• Its deterministic nature, since (324), in contrast to the expression in (176), does not

contain any stochastic term. For this, given the transmitted signal X as the input of

the Fick’s diffusion, the output particle distribution ρ is completely known. As a

consequence, the conditional entropy per second H(ρ|X) of the particle distribution

given the transmitted signal is equal to zero, expressed as

H(ρ|X) = 0 . (200)
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Given the aforementioned properties, the conditional entropy per second H(X|ρ) of the

transmitted signal X given the particle distribution ρ is computed by applying (199) and (200)

to the following relation [77]:

H(ρ) = H(X) + H(ρ|X) − H(X|ρ) , (201)

which results in the following expression:

H(X|ρ) = − 1

W

∫

W

log2 |Gd( f )|2 d f , (202)

where Gd( f ) is the transfer function Fourier transform [51] as function of the frequency f

of the Green’s function [86] of the Fick’s diffusion, expressed by (324). W is the bandwidth

of the transmitted signal X, which corresponds to the portion of the frequency spectrum of

the transfer function Gd( f ) that is excited by the transmitted signal X.

The transfer function Fourier transform [51] as function of the frequency f of the

Green’s function [86] of the Fick’s diffusion from (324) has the following expression:

Gd( f ) =
e−(1+ j)

√
2π f

2D
d

πDd
, (203)

where d is the distance between the transmitter and the receiver and D is the diffusion

coefficient expressed by (188). By applying (203) to (202) we obtain the closed-form

expression of the conditional entropy per second H(X|ρ) of the transmitted signal X given

the particle distribution ρ as follows:

H(X|ρ) = 2 log2(πDd) +
4d

3 ln 2

√

πW

D
. (204)

The closed-form expression for the mutual information I(X; ρ) of the Fick’s diffusion is

finally computed by subtracting the conditional entropy per second H(X|ρ) of the transmit-

ted signal X (204) given the particle distribution ρ from the entropy per second H(X) (198)

of the transmitted signal X. This results in the following expression:

I(X; ρ) = 2WH (n̂T ) − 2 log2 (πDd) − 4d

3 ln 2

√

πW

D
, (205)

where H (n̂T ) is the entropy of a time sample of nT (t).
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5.3.4 The Particle Location Displacement Mutual Information

The mutual information I(Y; ρ) in [bit/sec] of the particle location displacement is com-

puted from the following expression:

I(Y; ρ) = H(ρ) − H(ρ|Y) , (206)

where H(ρ) is the entropy per second of the particle distribution ρ and H(ρ|Y) is the condi-

tional entropy per second of the particle distribution ρ given the received signal Y .

The entropy H(ρ) per second of the particle distribution ρ is computed from (199)

by substituting the expression for the entropy per second H(X) of the transmitted signal

X from (198) and by applying (202) and (204) as the solution of the integral in (199).

As a result, the entropy per second H(ρ) of the particle distribution ρ has the following

expression:

H(ρ) = 2WH (n̂T ) − log2

[

(πDd)2
]

− 4d

3 ln 2

√

πW

D
. (207)

The conditional entropy per second H(ρ|Y) of the particle distribution ρ given the re-

ceived signal Y is computed similarly to (198) in Section 5.3.3. Under the assumption that

the realizations of the stochastic process ρ|Y are independent [66] for different time instants,

and band limited within a bandwidth W, we express the entropy per second H(ρ|Y) as the

entropy of H(ρ|Y) in [bit], where Y is the received signal per time sample, multiplied by

the maximum time sample rate 2W in [1/sec] given by the Shannon-Hartley theorem [51],

expressed as

H(ρ|Y) = 2WH(ρ|Y) . (208)

The received signal Y per time sample is defined as

Y =
1/(2Wτp)
∑

i=1

yi , (209)

where 1/(2Wτp) is the number of independent measures of the number of particles inside

the receiver volume that can be performed within a time sample, for which we consider a

quasi-constant particle distribution. W is the bandwidth of the transmitted signal X. We
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assume independent measures when they are taken at time instants spaced by an interval

τp, as we considered in Section 4.4.2. The time interval τp is equal to the squared linear

dimension of the receiver volume RVR
divided by the diffusion coefficient D, as derived in

Section 4.4.2, expressed as

τp =
R2

VR

D
. (210)

The conditional entropy H(ρ|Y) of the particle distribution ρ given the received signal Y

per time sample is defined as

H(ρ|Y) =

∫

H(ρ|Y = y)pY(y)dy = Ey

[

H(ρ|Y = y)
]

, (211)

where H(ρ|Y = y) is the entropy of the particle distribution ρ given a value y for the

received signal per time sample Y, pY(y) is the probability density of the received signal

Y per time sample and Ey[.] is the average value operator with respect to the probability

density of the value y.

The entropy H(ρ|Y = y) is based on the probability density pρ|Y(r|y) of the possible

values y of the particle distribution ρ at the receiver given a value y for the received signal

per time sampleY through the formula

H(ρ|Y = y) = −
∫

pρ|Y(r|y) log2 pρ|Y(r|y)dr . (212)

With the goal of having a closed-form expression for this probability density, we use the

following assumptions, with reference to our previous work on the particle counting noise

in Section 4.4:

• The actual number of particles yi inside the receiver volume for every measurement

is a random process whose average value is the average particle distribution at the

receiver ρ̄within a time sample multiplied by the size size(VR) of the receiver volume,

expressed as

E[yi] = ρ̄ size(VR) . (213)
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Since the particle distribution ρ is the output of the Fick’s diffusion, whose input is the

stationary stochastic process of the number of the emitted particles n̂T for every time

sample, by applying the theory of the random processes through linear filters [66] we

obtain

ρ̄ = E [n̂T ] Gd( f )| f=0 =
E [n̂T ]

πDd
, (214)

where Gd( f ) is from (203) and E [.] is the average operator.

• It is unlikely to have two particles occupying the same location in space at the same

time instant. In other words, the probability of having a distance equal to zero be-

tween two particles is zero, expressed as

Pr
[

‖Pp(t) − Pq(t)‖ = 0
]

= 0 p , q, p, q ∈ NT (t) , (215)

where NT (t) is given by (181), ‖.‖ is the Euclidian distance operator and p and q are

two particles previously emitted by the transmitter, which are subject to the Brownian

motion. This assumption is justified by the independence of the Brownian compo-

nents in the movement of different particles in the space.

• An event concerning a particle which occupies a location in space is independent

from any event of the same kind occurring at any other space location. This assump-

tion is justified by the property of the Wiener process [27] underlying the particle

Brownian motion of having independent realizations. This implies that the location

of a particle is independent from the location of any other particle. As a conse-

quence, the events concerning the location of particles in the space have the property

of memorylessness.

• The occurrence rate of particle locations in the space is proportional to the particle

distribution at the receiver location ρ.

Under these assumptions, the resulting single measurement yi, which corresponds to the
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number of particles inside the receiver volume, is a volumetric Poisson counting pro-

cess [66], whose rate of occurrence corresponds to the average value of the particle dis-

tribution ρ̄ within a time sample, expressed as

yi ∼ Poiss(ρ̄) , (216)

According to the theory of Bayesian inference [87], the estimator of the rate of occurrence

ρ̂ of a Poisson counting process given a series of measurements of the output of the process,

which corresponds to a value y of the received signal per time sample Y defined in (209),

follows a Gamma distribution with parameters y and 1/(2Wτp), expressed as

ρ̂ ∼ Gamma(y, 1/(2Wτp)) , (217)

where W is the bandwidth of the transmitted signal X and τp is the time interval in which

we consider a quasi-constant particle distribution. The probability density of the estimator

ρ̂ corresponds to the probability density pρ|Y(r|y) of the possible values r of the particle

distribution ρ at the receiver given a value y for the received signal in a time sampleY [87],

expressed as

pρ|Y(r|y) = ry−1 e−rWτp

(Wτp)yΓ(y)
, r ≥ 0, y > 0 , (218)

where Γ(y) is the gamma function [88], defined as follows:

Γ(y) = (y − 1)! . (219)

The entropy H(ρ|Y = y) of the particle distribution ρ given a value y for the received

signal per time sample Y corresponds to the computation of the formula in (212) by using

the expression of the probability density pρ|Y(r|y) from (218), thus obtaining the following

expression [87]:

H(ρ|Y = y) = y + ln(2Wτp) + ln
(

Γ(y)
)

+ (1 − y)ψ(y) , (220)

where ψ(y) is the digamma function.
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For the final computation of the conditional entropy H(ρ|Y), expressed in (211), we

apply a formulation of the Jensen’s inequality [66], which is based on the consideration

that H(ρ|Y = y) is a concave function of y, since its expression in (220) is a sum of

concave or linear components:

• The first term y is linear.

• The second term ln
(

Γ(y)
)

is concave in y since the gamma function Γ(y) has the

property of being log-concave [88].

• The third term (1 − y)ψ(y) is concave in y when the value of y is sufficiently high

(y >> 1). This can be proven from the decomposition of the digamma function as

follows [89]:

ψ(y) = ln y − 1

2y
− 1

12y2
+

1

120y4
− 1

252y6
+ O

(

1

y8

)

, (221)

By taking the limit of (1 − y)ψ(y) as y→ ∞ we obtain

(1 − y)ψ(y)→ −y ln y , (222)

which is a concave function of y.

For the aforementioned considerations, the Jensen’s inequality [66] applied to (211) states

that the average value Ey

[

H(ρ|Y = y)
]

of the entropy H(ρ|Y = y) as function of the value

y for the received signal per time sample Y is less or equal than the entropy H(ρ|E [Y]

) as

function of the average value E
[Y]

of the received signal per time sample Y, as

H(ρ|Y) = Ey

[

H(ρ|Y = y)
] ≤ H(ρ|E [Y]

) , (223)

As a consequence, by substituting the left hand side of (223) for the computation (211)

of the conditional entropy H(ρ|Y) of the particle distribution ρ given the received signal Y

per time sample with the right hand side of (223), we provide a higher bound to the real

value of H(ρ|Y). This results in a higher bound to the conditional entropy H(ρ|Y) of the
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particle distribution ρ given the received signal Y in (208) and, consequently, in a lower

bound to the mutual information I(ρ; Y) of the transmitted signal and the particle distribu-

tion in (206). Since the capacity is the maximum mutual information I(X; Y) between

the transmitted signal X and the received signal Y , as expressed in (183), the substi-

tution of I(ρ; Y) with its lower bound in the computation of the mutual information

I(X; Y) expressed in (195) results in a lower bound to the capacity C of a molecular

communication system. We consider this in agreement with the purpose of this section of

the Ph.D. thesis, since it allows expressing achievable performance of a molecular commu-

nication system with a closed-form mathematical expression, even if it is an underestimate

of the theoretical capacity C.

The average value E
[Y]

of the received signal per time sample Y is given by (213)

and (214). Since the distribution of particles ρ is a deterministic function of the transmitted

signal X, whose average value per time sample is E [n̂T ], the value of E
[Y]

becomes

E
[Y]

=

1/(2Wτp)
∑

i=1

E
[

yi

]

=
1

2Wτp

ρ̄size(VR) =
D

2WR2
VR

E [n̂T ]

πDd

4

3
πR3

VR
=

2

3

E [n̂T ] RVR

Wd
. (224)

As stated previously, the expression for the conditional entropy H(ρ|Y) can be approxi-

mated with the right hand side of (223), whose expression is found by applying the average

value E
[Y]

of the received signal per time sampleY to (220) as follows:

H(ρ|Y) � H(ρ|E [Y]

) = E
[Y]

+ ln(2Wτp) + ln
(

Γ(E
[Y]

)
)

+ (1 − E
[Y]

)ψ(E
[Y]

) . (225)

The final approximated expression for the conditional entropy H(ρ|Y) is found by substi-

tuting the expression in (224). This becomes

H(ρ|Y) �
2

3

E [n̂T ] RVR

Wd
+ln(2Wτp)+ln

(

Γ

(

2

3

E [n̂T ] RVR

Wd

))

+

(

1 − 2

3

E [n̂T ] RVR

Wd

)

ψ

(

2

3

E [n̂T ] RVR

Wd

)

,

(226)

where W is the bandwidth of the transmitted signal X, τp is the time interval in which

we consider a quasi-constant particle distribution, ψ(.) is the digamma function, D is the

diffusion coefficient, d is the distance between the transmitter and the receiver, and RVR
is

the radius of the spherical receiver volume VR.
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The closed-form expression for the mutual information I(Y; ρ) of the particle location

displacement is finally computed by subtracting the conditional entropy H(ρ|Y) of the par-

ticle distribution ρ given the received signal Y per time sample from (226) multiplied by

two times the bandwidth W of the transmitted signal X from the entropy H(ρ) (207) of the

particle distribution ρ. This results in the following expression:

I(Y; ρ) =2WH (n̂T ) − log2

[

(πDd)2
]

− 4d

3 ln 2

√

πW

D
− 2W

2

3

E [n̂T ] RVR

Wd
− 2W ln(2Wτp)+

− 2W ln

(

Γ

(

2

3

E [n̂T ] RVR

Wd

))

− 2W

(

1 − 2

3

E [n̂T ] RVR

Wd

)

ψ

(

2

3

E [n̂T ] RVR

Wd

)

. (227)

5.3.5 The Capacity

The capacity of the diffusion-based MC system is computed from (183), by maximizing

the mutual information I(X; Y), expressed in Section 5.3.5.1 with respect to the probability

density function fX(x) of the transmitted signal X. It is common in information theory [69]

to compute the maximum probability density function fX(x) subject to a constraint on the

average power of the transmitted signal X defined in (317). As explained in Section 5.3.5.2,

the expression for this average power is here related to the thermodynamic energy spent for

the emission of particles in the MC signal transmission. Finally, in Section 5.3.5.3 we

obtain the closed-form expression of the lower bound to the capacity.

5.3.5.1 The Mutual Information

The expression for the mutual information I(X; Y) of the diffusion-based MC system is ob-

tained by applying the expression of the mutual information I(X; ρ) of the Fick’s diffusion

from (205), the mutual information I(Y; ρ) of the particle location displacement from (227)

and the entropy H(ρ) of the particle distribution ρ from (207) to the formula in (195). We

obtain the following expression:

I(X; Y) =2WH (n̂T (t)) − log2

[

(πDd)2
]

− 4d

3 ln 2

√

πW

D
− 2W

2

3

E [n̂T ] RVR

Wd
− 2W ln(Wτp)+

− 2W ln

(

Γ

(

2

3

E [n̂T ] RVR

Wd

))

− 2W

(

1 − 2

3

E [n̂T ] RVR

Wd

)

ψ

(

2

3

E [n̂T ] RVR

Wd

)

, (228)
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where W is the bandwidth of the transmitted signal X, τp is the time interval in which

we consider a quasi-constant particle distribution, ψ(.) is the digamma function, D is the

diffusion coefficient, d is the distance between the transmitter and the receiver and RVR
is

the radius of the spherical receiver volume VR.

5.3.5.2 The Average Thermodynamic Power

Given the physical system considered at the beginning of Section 5.3, the average power

necessary for signal transmission corresponds to the energy necessary to emit the average

number E [n̂T ] of particles per time sample, divided by the duration of a time sample. In

thermodynamics, this energy is defined as enthalpy.

Definition 5.3.1 The enthalpy H [90] is the energy necessary to emit N particles in the

physical system and to heat these particles up to a temperature T when the system has the

pressure P and the volume V. The considerations detailed at the beginning of Section 5.3 of

having spherical particles with radius r << d independently and randomly moving in the

space are in agreement with the approximation of the system as an ideal gas. According to

the ideal gas theory [91], the enthalpy is expressed through the following formula:

H = PV +
3

2
KbT N , (229)

where P and V are the pressure and the volume and T is the absolute temperature of the

physical system, Kb is the Boltzmann constant.

When associated to the transmitter of the molecular communication system, the enthalpy

is the energy necessary for communication when N particles are emitted into the space.

In this section of the Ph.D. thesis, we define the average thermodynamic power P̄H

as the enthalpy variation ∆H in a time sample divided by the time sample duration 1/2W.

As a consequence, the average thermodynamic power P̄H quantifies the energy necessary

to emit E [n̂T ] particles per time sample divided by the time sample duration 1/2W, at a

temperature T . This is given by the following expression:

P̄H =
∆H

1/2W
=

3

2
KbTE [n̂T ] 2W , (230)
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where the enthalpy variation ∆H is computed from (230) by taking into account that no

variations in the pressure P and the volume V occur in the physical system, and the absolute

temperature T is considered a constant parameter with respect to the time t.

As a consequence, a constraint on the average thermodynamic power P̄H spent by the

transmitter corresponds to a constraint in the average number E [n̂T ] of emitted particles

according to the following expression:

E [n̂T ] =
P̄H

3WKbT
. (231)

5.3.5.3 The Lower-bound Expression of the Capacity

In the expression of I(X; Y) (228), only the term H (n̂T (t)) depends on the probability den-

sity function fn̂T
(n). Therefore, the lower-bound expression of the capacity C is achieved (183)

for a probability density function fn̂T
(n) leading to the maximum entropy H (n̂T (t)).

The distribution fn̂T
(n) with the maximum possible entropy H (n̂T ) in the number of

emitted particles per time sample constrained on its average value E [n̂T ], as expressed

in (231), is the Exponential distribution [77] whose rate corresponds to E [n̂T ] as follows

fH(n̂T )(n) =
e
− n

E[n̂T ]

E [n̂T ]
. (232)

The entropy of the number H(n̂T ) of emitted particles per time sample is therefore [77]

H(n̂T ) = 1 + log2 E [n̂T ] . (233)

By applying (231) and (233) to the expression of the mutual information I(X; Y) from (228),

we obtain the lower-bound expression of the capacity C of the diffusion-based MC system

as follows:

C =2W

(

1 + log2

P̄H
3WKbT

)

− 2 log2 (πDd) − 4d

3 ln 2

√

πW

D
− 2W

2P̄HRVR

9W2dKbT
− 2W ln(Wτp)+

− 2W ln

(

Γ

(

2P̄HRVR

9W2dKbT

))

− 2W

(

1 − 2P̄HRVR

9W2dKbT

)

ψ

(

2P̄HRVR

9W2dKbT

)

, (234)

where P̄H is the average thermodynamic power spent by the transmitter, Kb is the Boltz-

mann constant, T is the absolute temperature of the system, W is the bandwidth of the
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transmitted signal X, τp is the time interval in which we consider a quasi-constant particle

distribution, ψ(.) is the digamma function, D is the diffusion coefficient, d is the distance

between the transmitter and the receiver and RVR
is the radius of the spherical receiver

volume VR.

5.3.6 Numerical Results

In this section, we provide a numerical evaluation of the closed-form expression of the

lower bound to the capacity of a diffusion-based MC obtained in Section 5.3.5. All the

results are computed for a common set of parameters, whose values are assigned as follows.

The radius RVR
of the receiver volume VR, which we assume to be spherical, is set to 10

nm. The temperature T of the system is set to a standard room temperature of 25 ◦C and the

diffusion coefficient D is set to 10−9 [m2/sec], as explained in Chapter 3. The Boltzmann

constant [81] is Kb = 1.380650424x10−23 [Joule/K].

5.3.6.1 Capacity Vs Bandwidth
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Figure 57. Capacity in relation to the bandwidth and for different values of the transmitter-receiver

distance d.

The values of the lower bound to the capacity of a diffusion-based MC system are shown

in Figure 57 in relation to the bandwidth W and different values of the transmitter-receiver
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distance d. We evaluate the capacity in [bit/sec] for a bandwidth W ranging from 20 Hz

to 40 Hz and different lines refer to different distance values, from 50 µm to 500 µm. The

choice of the values for the bandwidth can be justified from a biological viewpoint, since,

according to biochemical studies [2], the neurons in our brain communicate through the

exchange of molecules (and their diffusion between the synapses) at a frequency of around

20 Hz for the processing of general information and around 60 Hz for the processing of

visual images. We restricted our range to a maximum of 40 Hz in order to visualize better

the intersection of the curves around 26 Hz. The average transmitter power PH is set to

10−12 W, equivalent to 1 pW. This value should not be compared to the transmitted power

values used for electrical devices, since the average transmitted power is a thermodynamic

quantity. Note also that this is only a reference value, since so far we do not know how

much average thermodynamic power a transmitter nanomachine will be able to provide.

According to the obtained results, the capacity of a molecular communication system with

the chosen parameters can achieve a value close to 3 [Kbit/sec] at a distance of 500 µm and

for a bandwidth of 40 Hz. This is a theoretically achievable maximum value, which reveals

the maximum potential of molecular communication. Further investigation on informa-

tion coding schemes is required in order to provide achievable bit rates related to specific

molecular communication implementations.

Figure 57 shows the trend of the MC capacity, which is monotonically increasing as

the bandwidth increases from 20 Hz to 40 Hz for all the given values of the transmitter-

receiver distance d. The capacity values range from 1.2 [Kbit/sec] to 2.4 [Kbit/sec] for

a distance of 50 µm and between a few [bits/sec] and 3 [Kbit/sec] for a distance of 500

µm. For a bandwidth value within 20 and 26 Hz, the MC capacity values corresponding to

the lowest transmitter-receiver distance d are higher than the values corresponding to other

transmitter-receiver distances and, as this distance increases, the MC capacity values de-

crease monotonically. For a bandwidth value higher than 26 Hz, higher MC capacity values

correspond to higher transmitter-receiver distances d. This behavior, which is apparently
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counterintuitive, can be explained as a consequence of the interactions between the channel

memory and the molecular noise contributions in the second and third term of the first line

and in the second, third and fourth lines of (234), respectively. For low bandwidth val-

ues (lower than 26 Hz), the channel memory terms tend to outperform the molecular noise

terms and the MC capacity values tend to be proportional to the transmitter-received dis-

tance (higher MC capacity when lower transmitter-receiver distance). For high bandwidth

values (higher than 26 Hz), the molecular noise terms outperform the channel memory

terms and the MC capacity values become inversely proportional to the transmitter-receiver

distance (higher MC capacity when higher transmitter-receiver distance).

5.3.6.2 Capacity Vs Distance
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Figure 58. Capacity in relation to the transmitter-receiver distance and for different values of the band-

width W.

In Figure 58 we show the values of the lower bound to the capacity in relation to the

distance d between the transmitter and the receiver locations and different values of the

bandwidth W. We evaluate the capacity in [bit/sec] for a distance ranging from 1 µm

to 500 µm. The different lines refer to different bandwidth W values, from 30 Hz to 39

Hz. We restricted these numerical results to this narrow bandwidth interval in order to
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better visualize the differences in the MC capacity for the considered values of the distance

between the transmitter and the receiver. The average transmitted power PH is set to 1 pW.

The curves in Figure 58 show a monotonically increasing trend of the capacity as func-

tion of the transmitter-receiver distance ranging from 1 µm to 50 µm, while they show a

monotonically decreasing value for a distance ranging from 50 µm to 500 µm. The capac-

ity values range from a value around 1.9 [Kbit/sec] and a 1.85 [bits/sec] for a bandwidth

of 30 Hz and between 2.45 [Kbit/sec] and 2.3 [Kbit/sec] for a bandwidth of 39 Hz. The

different behavior when the distance ranges from 1 µm to 50 µm with respect to when the

distance ranges from 50 µm to 500 µm can be explained as a consequence of the inter-

actions between the channel memory and the molecular noise contributions, similarly to

Figure 57: as the distance increases from 1 µm to 50 µm, the contribution coming from the

channel memory gets lower and the capacity values tend to increase, until reaching a dis-

tance of 50 µm, where the contribution coming from the molecular noise becomes relevant

and decreases the capacity values as the distance is further increased.

5.3.6.3 Capacity and Average Transmitted Power
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Figure 59. Capacity in relation to the bandwidth and for different values of the average transmitted

power power PH .
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In Figure 59 we show the values of the lower bound to capacity as a function of the

bandwidth W ranging from 30 Hz to 40 Hz and the average transmitted power PH . Simi-

larly to Figure 58, we restricted these numerical results to this narrow bandwidth interval

in order to better visualize the differences in the MC capacity for the values of the average

transmitter power. Different lines refer to different average transmitted power PH values,

from 1 pW to 10 pW. The transmitter-receiver distance d is here set to 50 µm.

Figure 59 shows for all the curves a monotonic increasing trend as the bandwidth in-

creases from 30 Hz to 40 Hz. The capacity values range from a value between 1.92

[Kbit/sec] and around 2.5 [kbits/sec] for an average transmitted power of 1 pW and be-

tween 2.05 [Kbit/sec] and 3.7 [Kbit/sec] for an average transmitted power of 10 pW. The

MC capacity values are higher for higher values of the average transmitted power. Even if

the average transmitted power is applied with constant increments of 1 pW from a value of

1 pW to 10 pW, the increment in the values of the capacity is not constant and it is higher

for lower values of the average transmitted power. This behavior can be explained through

the dependency of the molecular noise terms in the second, third and fourth lines of (234)

with respect to the average transmitted power. As the average transmitted power increases,

we have an increase in the first positive term in the first line of (234), but, at the same time,

we have an increase in the aforementioned molecular noise terms.

5.3.7 Conclusion

In this section of the Ph.D. thesis, unlike previous contributions from the literature, an

expression of the lower bound to the true diffusion-based MC capacity is provided by taking

account the two main effects of the molecule diffusion channel, namely, the memory and the

molecular noise. The capacity analysis in this section is also independent from any specific

coding scheme by assuming that the transmitter can send in general any continuous time

signal which complies to a constraint on the average transmitted power.

The closed-form expression is obtained here by combining two separate contributions,
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namely, the Fick’s diffusion and the particle location displacement, which separately cap-

ture the effects of the channel memory and the molecular noise, respectively. The obtained

lower-bound expression of the capacity is a function of the medium diffusion coefficient,

the system temperature, the distance between the transmitter and the receiver, and the band-

width of the transmitted signal. The MC capacity is also expressed as a function of the

average transmitted power, which corresponds to the thermodynamic power spent at the

transmitter for molecule emission. Numerical results show interesting properties of the re-

lationship between diffusion-based MC capacity and parameters such as the distance, the

bandwidth and the average thermodynamic power.

According to the provided results, capacity values of a few [Kbit/sec] can be reached

within a distance of tenth of µm between the transmitter and the receiver and for an average

transmitted power around 1 pW (Note that this power value should not be compared to the

transmitted power values used for electrical devices, since the transmitted power in a MC

system is a thermodynamic quantity).
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CHAPTER 6

INTERFERENCE ANALYSIS IN DIFFUSION-BASED

MOLECULAR COMMUNICATION

6.1 Motivation and Related Work

The analysis of the interference produced at the reception of a transmitted signal, either

by distortions of the signal itself or by other concurrent signals coming from different

transmitters, is fundamental to design interference mitigation techniques and increase the

performance of a communication systems. The focus of this chapter of the Ph.D. thesis is

on the analysis of interference in diffusion-based Molecular Communication (MC), when

multiple transmitters access the fluid medium simultaneously and emit molecular signals

directed to a single receiver.

Several different methods have been used in the engineering literature to measure the

impact of the interference. In this chapter of the thesis, three main methods are used,

namely, the InterSymbol Interference (ISI), the Co-Channel Interference (CCI) and the

statistical-physical modeling. The ISI is here defined as the overlap between two consec-

utively received signals in molecule concentration, which were transmitted from a single

molecular transmitter, while the CCI is considered here as the overlap between a received

molecule concentration signal, which was transmitted by a single transmitter, and all the

received molecule concentration signals transmitted by the other concurrent transmitters.

Both ISI and CCI depend greatly on the number and locations of the transmitters, how in-

formation is encoded in the signal modulation, and how the signals propagate through the

channel from the moment they are transmitted until they combine at the receiver side. In

most of the classical communication channels, this propagation is expressed through the

so-called wave equation, while in diffusion-based MC it is expressed through the funda-

mentally different diffusion equation [26, 27]. While the ISI and CCI parameters provide

a more practical evaluation of the interference in specific situations, the latter method to

144



measure the impact of the interference, the statistical-physical modeling, provides a more

general probabilistic description of the received signal when multiple transmitters access

the medium simultaneously, which is independent from the transmitter number, specific

transmitter locations or coding schemes.

Previous literature has addressed the problem of diffusion-based MC interference. In [92]

the effects of the ISI and CCI are analyzed in reference to two specific modulation tech-

niques proposed by the same authors. In [45] the ISI is characterized in a unicast MC

system with binary amplitude modulation. In [47], interference is studied for another spe-

cific modulation technique, based on the transmission order of different types of molecules.

In the first part of this chapter, the ISI and the CCI are jointly analyzed for a diffusion-

based MC system having a limited number of transmitters in predetermined locations.

Moreover, the information transmitted in this system is encoded through the modulation

of Gaussian pulses in the molecule emission rate. An in-depth analysis of the propagation

of signals though a diffusion-based channel is performed by studying two main parameters,

namely, the attenuation and the dispersion. For this, the diffusion equation is interpreted in

terms of diffusion wave propagation, which allows to apply the wave theory to the realm of

the diffusion-based MC, and to find mathematical expressions for the attenuation and the

dispersion in a diffusion-based channel. From these, simple closed-form formulas for both

the ISI and the CCI are derived. Two different modulation schemes, namely, the baseband

modulation and the diffusion wave modulation, are considered for the release of molecules

in the diffusion-based MC, and are compared in terms of interference. The obtained ana-

lytical results for both ISI and CCI are compared and validated by simulation results. This

ultimately allows to assess the validity of the simple closed-form formulas for the evalua-

tion of the interference in a diffusion-based MC system.

The objective of the second part of this chapter is to provide a statistical-physical

modeling of the interference in diffusion-based MC. Our method to characterize interfer-

ence differentiates from the previous literature on diffusion-based MC, since the developed
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statistical-physical model is independent from the transmitter number, specific transmitter

locations or coding schemes. In particular, this model stems from the same general as-

sumptions used in interference study for radio communication networks [93], namely, a

spatial Poisson distribution of interfering transmitters having independent and identically

distributed (i.i.d.) emissions. Moreover, the specific probability distribution used for the

molecule emissions is in agreement with a chemical description of the transmitters in terms

of Langevin equation [94], which models the randomness in the chemical reactions in-

volved in the production of the molecules.

The statistical-physical modeling detailed the second part of this chapter is based on

the property of the received molecular signal of being a stationary Gaussian Process (GP),

which results from the molecule emission distribution and the diffusion-based molecule

propagation. As a consequence, the statistical-physical modeling is operated on the re-

ceived Power Spectral Density (PSD), for which it is possible to obtain an analytical ex-

pression of the log-characteristic function. The derivation of this log-characteristic func-

tion is inspired by the mathematical framework in [95], where the authors derive the log-

characteristic function of the received signal in radio communication interference. The

expression of the received PSD log-characteristic function ultimately leads to the estima-

tion of the received PSD probability distribution. The received PSD probability distribu-

tion provides a complete description of the GP of the received molecular signal, which

corresponds to the interference in diffusion-based molecular nanonetworks. By using the

derived statistical-physical interference model, we also provide numerical results in terms

of received PSD probability distribution and probability of interference for selected values

of the physical parameters of the molecular nanonetwork, such as the diffusion coefficient,

the transmitter density and the average power of molecule emissions, and we compare them

with the outcomes of a simulation environment.
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Figure 60. Block scheme of the diffusion-based MC system considered in this section of the Ph.D. thesis.

6.2 Intersymbol Interference and Co-Channel Interference

The MC system model considered in this section of the Ph.D. thesis, and shown in Fig-

ure 64, includes N MOLECULAR TRANSMITTERS. Each transmitter, denoted by n

and located at x̄n, is responsible for the modulation of the number of molecules mn(t) emit-

ted into the space as a function of the time t according to input information signals, denoted

as si
n(t), where i = 1, 2, ... is a sequential index. We assume the emitted molecules are iden-

tical and undistinguishable between each other. Two different modulation schemes that can

be adopted by the molecular transmitters are studied and compared in this section of the

Ph.D. thesis from the point of view of interference, namely, the baseband modulation and

the diffusion wave modulation. For both modulation schemes, the transmitters produce a

number of molecules mn(t) emitted at location x̄n and time t corresponding to the amplitude

modulation of an oscillation with angular frequency ω0, expressed as

mn(t) =

∞
∑

i=0

si
n(t)e jω0t , (235)

where ω0 = 0 in the baseband scheme and ω0 > 0 in the diffusion wave scheme.
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The MC system model includes a DIFFUSION-BASED CHANNEL which is based

on the free diffusion of molecules between the transmitter and the receiver. Each molecular

transmitter n emits a number of molecules mn(t) in this space at location x̄n and time t.

For this, the total number of emitted molecules m(x̄, t), which is the input of the molecular

channel, is expressed as

m(x̄, t) =

N
∑

n=1

mn(t)δ(x̄ − x̄n) , (236)

where δ(x̄ − x̄n) is a Dirac delta defined in the three dimensional space and centered at the

corresponding transmitter location x̄n. Once emitted, every molecule moves independently

from the others and according to its Brownian motion in a fluidic medium. The output of

the molecular channel is the molecule concentration c(x̄, t) as function of the space loca-

tion x̄ and the time t, whose relation with the input m(x̄, t) is expressed by the diffusion

equation [26, 27], as

∂c(x̄, t)

∂t
= D∇2c(x̄, t) + m(x̄, t) , (237)

where D is the diffusion coefficient and it is considered a constant parameter within the

scope of this section of the Ph.D. thesis.

The linearity of (324) gives the following results:

• Given a modulated number of emitted molecules mn(t) from a single transmitter n,

the output molecule concentration c(x̄, t) at any location x̄ and time t is computed

through the convolution integral with the Green’s function [86] g(x̄, t) (linear chan-

nel), expressed as follows:

c(x̄, t) = m(x̄, t) ∗ g(x̄, t) =

∫ ∞

0

mn(t)g(x̄n − x̄, t′ − t)dt′ , (238)

where (.∗.) denotes the convolution integral between the two arguments. The Green’s

function [86] is the solution of the diffusion equation (324) when the input m(x̄, t) is

a Dirac delta and it is expressed as follows:

g(x̄, t) =
1

√

(4πDt)3
e−

|x̄|2
4Dt . (239)
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• Given the modulated number of molecules mn(t) emitted simultaneously from mul-

tiple transmitters, where n = 1, ...,N, the output molecule concentration is the sum

of the outputs of the diffusion-based channel applied independently to each single

molecule concentration rate input (additive channel), expressed as

c(x̄, t) =

N
∑

n=1

(mn(t)δ(x̄ − x̄n) ∗ g(x̄, t)) . (240)

The MC system model includes a single MOLECULAR RECEIVER, whose task is

to read the incoming molecular concentration c(x̄R, t) at its location x̄R and to demodulate

the output information signal sout(t). For this, the molecular receiver produces an output in-

formation signal sout(t) equal to the real part of the molecule concentration signal c(x̄R, t) at

the receiver location x̄R, multiplied by an oscillation with angular frequency −ω0, expressed

as

sout(t) = ℜ
{

c(x̄R, t)e
− jω0t

}

, (241)

where ω0 = 0 or ω0 > 0 in case the transmitter adopted the baseband or the diffusion wave

modulation scheme, respectively. ℜ{.} denotes the operator which extracts the real part

from the complex operand.

6.2.1 Interference Formulas

The ISI is quantified as the time integral of the product of two output information signals

which derive from two input information signals sent from a transmitter n, expressed as

follows:

IS I =

∫ ∞

−∞
si

n,out(t)si+1
n,out(t)dt , (242)

where si
n,out(t) is the output information signal of the MC system when the input information

signal si
n(t) is sent by the transmitter n.

The CCI is quantified as the time integral of the product of an output information signal

which is sent in a modulated number of emitted molecules by a transmitter n with all the

other received output information signals which are sent as modulated number of molecules
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by all the other N − 1 transmitters, expressed as follows:

CCI =

∫ ∞

−∞
si

n,out(t)

N, k,n
∑

k=1

∞
∑

l=0

sl
k,out(t)dt . (243)

In case of baseband modulation scheme, the output information signal si
n,out(t), which

derives from the input information signal si
n(t) sent by the transmitter n, has the following

expression:

si
n,out(t) = si

n(t) ∗ g(x̄, t) , (244)

where (. ∗ .) denotes the convolution integral between the two arguments and g(x̄, t) has

the expression from (239). In case of diffusion wave modulation scheme the same output

information signal si
n,out(t) has the following expression:

si
n,out(t) = ℜ

{[(

si
n(t)e jω0t

)

∗ g(x̄, t)
]

e− jω0t
}

. (245)

In order to evaluate the ISI through (242) and the CCI through (243), it is necessary

to analyze how the shape of an information signal changes from its transmission as si
n(t)

until its reception as si
n,out(t). For this, we decompose an input information signal into its

frequency components S i
n(ω) by applying the Fourier transform [51], expressed as

si
n(t) =

∫ ∞

0

S i
n(ω)e jωtdω . (246)

Each frequency component S i
n(ω)e jωt, as it propagates in the diffusion-based channel de-

fined by (324), is in general attenuated and it has a finite propagation velocity. As will

be proved in the following section, this attenuation and velocity are functions of the an-

gular frequency ω of the frequency component S i
n(ω) itself. As a consequence, the output

information signal si
n,out(t) will be composed by the same frequency components as the

transmitted input information signal, each one attenuated by a different value and propa-

gated with a different velocity. These two effects, identified as the attenuation and the

dispersion of a signal, are at the basis of the changes in the information signal shape as

it propagates through the diffusion-based channel. For this, in the following section we

analyze these two parameters by using the wave theory [96].
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6.2.2 Attenuation and Dispersion of Diffusion-Waves

This section deals with the analysis of the attenuation and the dispersion which affect any

modulated total number of emitted molecules m(x̄, t) in the diffusion-based channel defined

at the beginning of Section 6.2 as it propagates from the transmitter to the receiver. For this,

as suggested in [96, 86], we apply the wave theory to the diffusion equation from (324).

According to the wave theory, given an oscillatory input q(t) with angular frequency ω

of the following type:

q(x̄, t) = Q(x̄, ω)e jωt , (247)

the propagation of a wave defined by the following expression:

u(x̄, t) = U(x̄, ω)e jωt , (248)

stems from a differential equation that can be defined in the space x̄ and angular frequency

ω as follows:

∇2U(x̄, ω) − k2(ω)U(x̄, ω) = Q(x̄, t) , (249)

where Q(x̄, t) and U(x̄, ω) are the input and the output respectively, as function of the space

x̄ and the input angular frequencyω. k(ω) is the wavenumber, which is in general a function

of ω. We have the following definitions based on k(ω):

• The attenuation of a wave α(ω) is the imaginary part of the wavenumber k(ω), ex-

pressed as

α(ω) = ℑ{k(ω)} , (250)

where ℑ{.} denotes the operator which extracts the imaginary part from the complex

operand.

• The phase velocity vp is equal to the angular frequency ω divided by the real part

of the wavenumber k(ω) and it is defined as the propagation velocity of a point of

constant phase (wavefront velocity), expressed as

vp =
ω

ℜ{k(ω)} . (251)
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• The group velocity vg is the time first derivative of the angular frequency ω with

respect to the real part of the wavenumber k(ω) and it is defined as the propagation

velocity of a group of waves having a narrow frequency range aroundω (wave-packet

velocity), expressed as

vg =
∂ω

∂ℜ{k(ω)} . (252)

The wave propagation expressed through (249) is subject to dispersion if the expressions

of the phase velocity (251) and the group velocity (252) are different. The resulting prop-

agating wave from (248) can be written as function of the oscillatory input q(x̄, t), the

attenuation α(ω) and the phase velocity vp as follows:

u(x̄, t) = q(x̄, t)e−α(ω)|x̄|e
j ω

vp
|x̄|
. (253)

By taking the Fourier transform [51] of the diffusion equation from (324) and by rear-

ranging the terms we obtain an expression of the same type as (249) defined in the space x̄

and angular frequency ω, expressed as

∇2C(x̄, ω) − jω

D
C(x̄, ω) = M(x̄, ω) , (254)

where M(x̄, ω) and C(x̄, ω) are the Fourier transforms [51] of the modulated total number of

emitted molecules m(x̄, t) and the output molecule concentration signal c(x̄, t), respectively.

The similarity with the wave equation in (249) suggests an interpretation of the diffusion

equation in terms of waves, thus identifying the so-called diffusion waves [96]. Although

the diffusion waves have different properties [86] if compared to the waves generated by

the wave equation, also for the diffusion waves we can identify a wavenumber k(ω), this

time equal to

k(ω) =

√

jω

D
= (1 + j)

√

ω

2D
. (255)

As a consequence, the attenuation of a diffusion wave α(ω) is given by (250)

α(ω) =

√

ω

2D
. (256)
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The phase velocity vp is given by applying (255) to (251)

vp =
√

2Dω , (257)

and the group velocity vg is computed through (255) and (252), expressed as

vg = 2
√

2Dω . (258)

Since the phase velocity in (257) and the group velocity in (258) are different, the wave

propagation in the diffusion-based channel is affected by dispersion. This is a consequence

of the frequency dependency of the phase velocity and the group velocity of the diffusion

waves.

The resulting propagating diffusion wave can be written as function of an oscillatory

total number of emitted molecules M(x̄, ω)e jωt, the attenuation α(ω) and the phase velocity

vp as follows:

c(x̄, t) = M(x̄, ω)e jωte−
√

ω
2D
|x̄|e j
√

ω
2D
|x̄| . (259)

6.2.3 Interference Analysis

In this section, the i-th input information signal si
n(t) for the transmitter n is modeled as a

Gaussian-shaped pulse with standard deviation σ, which is a user-defined parameter, and it

is expressed as follows:

si
n(t) =

1√
2πσ2

e
− (t−tn−i∆t)2

2σ2 , (260)

where tn + i∆t is the time instant at which the receiver n transmits the maximum of the

i-th pulse. Equation (260) allows to simplify the following interference analysis and to find

closed-form expressions for the interference. Although these expressions depend on (260),

this does not prevent from considering the general conclusions of this section of the Ph.D.

thesis valid for any other input signal shape.

We describe the changes in the shape of the pulse sent by the transmitter n from its

transmission as si
n(t) until its reception as si

n,out(t) by using two parameters, namely, the
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amplitude An at the peak maximum and the broadening factor Bn, expressed as

si
n,out(t) = Ansi

n

(

t − td

Bn

)

= An

1√
2πσ2

e
− (t−tn−i∆t−td)2

2(Bnσ)2 , (261)

where td is the pulse propagation delay and its value is not relevant for the following inter-

ference analysis since we account only for the time of pulse reception. The relation in (261)

is a first approximation of the changes in the pulse shape and it allows a simplification of

the expressions of the ISI and the CCI in (242) and (243), respectively. In light of (261) the

ISI becomes

IS I ≃ 2A2
ner f c

(

∆t/2√
2Bnσ

) [

1 − er f c

(

∆t/2√
2Bnσ

)]

. (262)

Similarly, the CCI becomes

CCI ≃
N, k,n
∑

k=1

2AnAker f c

( |tn − tk|/2√
2Bnσ

) [

1 − er f c

( |tn − tk|/2√
2Bkσ

)]

, (263)

where tn and tk are the time instants of transmission of the pulses and Bn and Bk are the

broadening factors for the pulses transmitted by the transmitter n and the transmitter k, re-

spectively. er f c(x/
√

2Bnσ) denotes the complementary error function, which corresponds

to the integral of the Gaussian pulse dilated by a factor Bn between x and∞.

By stemming from the formulas discussed in Section 6.2.1 concerning the attenuation

and the dispersion of the diffusion waves, we can derive closed-form formulas for the am-

plitude An at the peak maximum and the broadening factor Bn:

• The pulse amplitude An at the peak maximum after propagation from the transmitter

n located at x̄n to the receiver located at x̄R is given by the double of the integral of

the attenuation contribution e−
√

ω
2D
|x̄R−x̄n | of each frequency component M(x̄n, ω) of

the transmitted signal, expressed as

An = 2

∫ ∞

0

M(x̄n, ω)e−
√

ω
2D
|x̄R−x̄n |dω , (264)

where M(x̄n, ω) is the Fourier transform [51] of the total number of emitted molecules

m(x̄n, t) when only a single pulse is transmitted from (241), having ω0 = 0 in the case

of baseband scheme and ω0 > 0 in the case of diffusion wave modulation.
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• The pulse broadening factor Bn is computed as the squared root of the sum of 1

with the squared integral of the delay contribution ∂
∂ω

(

1
vg

)

|x̄R − x̄n| of each frequency

component M(x̄n, ω) of the total number of emitted molecules, expressed as

Bn =

√

1 +

(∫ ∞

0

∂

∂ω

(

1

vg

)

|x̄R − x̄n|M(x̄n, ω)dω

)2

, (265)

where vg is the group velocity expressed in (258). The first derivative of the inverse

of the group velocity 1/vg with respect to the angular frequency ω has the following

expression:

∂

∂ω

(

1

vg

)

=

√

1

2Dω3
. (266)

In order to compare the ISI and CCI results for the two modulation schemes, we sim-

plify further (264) and (265) by approximation. For the baseband modulation scheme,

the amplitude Abase
n at the peak maximum becomes

Abase
n =

2

σ2
e−
√

ωc
2D
|x̄R−x̄n | , (267)

where ωc is the cut-off frequency of the Gaussian pulse (260). The cut-off frequency is

the angular frequency of the pulse spectrum component whose amplitude value is half the

amplitude of the maximum. The pulse broadening factor Bbase
n for the baseband modulation

scheme can be approximated with

Bbase
n =

√

√

√

√

1 +

















1

σ2

√

1

2Dω3
c

|x̄R − x̄n|
















2

. (268)

In case of diffusion wave modulation scheme, the amplitude Awave
n at the peak maxi-

mum becomes

Awave
n =

2

σ2
e−
√

ω0
2D
|x̄R−x̄n | , (269)

where ω0 is the frequency of the modulating oscillation, as expressed in (235). The pulse

broadening factor Bwave
n for the diffusion wave modulation scheme can be approximated

with

Bwave
n =

√

√

√

√

1 +

















1

σ2

√

1

2Dω3
0

|x̄R − x̄n|
















2

, (270)
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where for both (269) and (270) we assumed to have a frequency ω0 much higher than the

the cut-off frequency ωc of the Gaussian pulse (260).

The amplitude at the peak maximum for the baseband modulation scheme Abase
n and for

the diffusion wave modulation scheme Awave
n , if compared, guide to the following result:

Abase
n > Awave

n ∀ω0 > ωc . (271)

When comparing the pulse broadening in case of baseband modulation scheme Bbase
n

and in case of diffusion wave modulation scheme Bwave
n , we can conclude the following

result:

Bbase
n > Bwave

n ∀ω0 > ωc . (272)

As a conclusion, for a diffusion-based channel model as defined by (324), the inter-

symbol interference IS Iwave
x̄R

in the case of diffusion wave modulation scheme is lower with

respect to the intersymbol interference IS Ibase
x̄R

in the case of baseband modulation scheme,

expressed as

IS Iwave < IS Ibase ∀ω0 > ωc . (273)

In addition, we deduce that the higher is the wave modulation frequency ω0, the lower is

the value of the intersymbol interference IS Iwave, expressed as

IS Iwave |ω0=ω1
< IS Iwave|ω0=ω2

∀ω1 > ω2 . (274)

Similarly, we compare the co-channel interference for the two modulation schemes ap-

plied to systems having the same values for the locations x̄n and the time instants tn, which

correspond to the maximum of the transmitted Gaussian pulses for all the N transmitters.

We deduce also for the CCI the following result:

CCIwave < CCIbase ∀ω0 > ωc , (275)

and

CCIwave |ω0=ω1
< CCIwave |ω0=ω2

∀ω1 > ω2 . (276)
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6.2.4 Numerical Results

In this section we simulate the system detailed at the beginning of Section 6.2 and we

compare the results in terms of ISI and CCI with the simple formulas resulting from the

interference analysis of Section 6.2.3, which stems from the diffusion-wave attenuation and

dispersion studied in Section 6.2.2. The goal of this comparison is to prove that the simple

formulas for the ISI (262) and for the CCI (263) constitute a valid approximation for the

evaluation of the interference in a diffusion-based MC system.

The simulations are based on (235), (238) and (241), ω0 = 0 in the baseband scheme

and ω0 > 0 in the diffusion wave scheme. The diffusion coefficient D in (239) is set

to ∼ 10−6cm2sec−1 of calcium molecules diffusing in a biological environment (cellular

cytoplasm, [58]) and the distance x̄ − x̄n is varied from 0 to 70µm.

For the evaluation of the ISI, the simulations are performed by sending two Gaussian

pulses of the type in (260) where σ is set to 0.32sec, ∆t is set to 0.96sec and i = 1, 2.

The parameter tn is set to 4.14sec from the starting time of the simulation. The resulting

amplitude of the received pulses as function of the time t ranging from 0 to 10sec and

the distance x̄ − x̄n ranging from 0 to 70µm are shown in Figure 61 (upper), (left) for the

baseband modulation and (right) for the diffusion wave modulation. The ISI is evaluated

by applying (242) with the computed values of s1
n,out(t) and s2

n,out(t).

In Figure 62 (upper-right) and Figure 62 (lower-right) we show the results of the nu-

merical evaluation of the formula (262) for the baseband modulation and the diffusion wave

modulation, respectively. In case of baseband modulation, we apply (267) and (268), while

for the diffusion wave modulation we used (269) and (270). The comparison of the ISI sim-

ulation results shown in Figure 62 (upper-left) and Figure 62 (lower-left) with the results of

the simple formulas in Figure 62 (upper-right) and Figure 62 (lower-right) reveals strong

similarities between the results of (242) and (262) in the case of baseband modulation and

diffusion wave modulation and confirms the validity of the simple formulas for the ISI de-

veloped in Section 6.2.3. Moreover, both the results in terms of ISI in the simulation and
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Figure 61. The received pulses as function of the time and the distance in the case of baseband modula-

tion (left) and diffusion wave modulation (right) for the simulation-based for the simulation-based ISI

evaluation (upper) and CCI evaluation (lower).

in the numerical evaluation confirm the relation in (273).

For the evaluation of the CCI, the simulations are performed by sending a Gaussian

pulse of the type in (260) from each one of N = 4 transmitters placed at distances from

the second transmitter ‖x̄n − x̄2‖ equal to 39.2µm, 0µm, 11.2µm and 49.7µm respectively.

In (260) σ is set to 0.32sec and the index i is set to 0. We set t1 = 4.14sec, t2 = 5.09sec,

t3 = 7sec and t4 = 8.9sec. The resulting amplitude of the received pulses si
n,out(t) as function

of the time t ranging from 0 to 10sec and the distance x̄R − x̄2 ranging from 0 to 70µm are

shown in Figure 61 (lower-left) and Figure 61 (lower-right) for the baseband modulation

and the diffusion wave modulation, respectively. The CCI is evaluated through (243) with

the values of si
n,out(t).
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Figure 62. The ISI values for the baseband modulation scheme (upper) and the diffusion wave modu-

lation scheme (lower) from the simulation (left) and from the simple formulas (right).

In Figure 63 (upper-right) and Figure 63 (lower-right) we show the results of the nu-

merical evaluation of the formula (263) for the baseband modulation and the diffusion wave

modulation, respectively. In case of baseband modulation, we apply (267) and (268), while

for the diffusion wave modulation we used (269) and (270). The comparison of the CCI

simulation results shown in Figure 63 (upper-left) with results of the simple formulas in

Figure 63 (upper-right) clearly show the limit of the simple formulas to properly capture

the real CCI curve as function of the distance. This is explained by the fact that the shape

of the received pulse in case of baseband modulation is subject to a high value of dispersion

and it is distorted with respect to the Gaussian shape assumed for the simple formula (263).

This phenomenon is more clearly visible for the CCI computation (243) since its value

is the result of the contributions of more than two received pulses, as in the case of the

ISI (242). On the contrary, the results in Figure 63 (lower) guide to the same conclusion

as mentioned above for the ISI and confirm the validity of the simple formulas for the CCI
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developed in Section 6.2.3. Moreover, the result from (275) is supported by both Figure 63

(upper) and Figure 63 (lower).
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Figure 63. The CCI values for the the baseband modulation scheme (upper) and the diffusion wave

modulation scheme (lower) from the simulation (left) and from the simple formulas (right).

6.2.5 Conclusion

In this section of the Ph.D. thesis, the effects of the InterSymbol Interference (ISI) and the

Co-Channel Interference (CCI) in a diffusion-based molecular communication system are

analyzed. For this, characterization of the diffusion channel in terms of signal propagation

is provided by studying two main parameters, namely, the attenuation and the dispersion,

and simple closed-form formulas for the evaluation of the ISI and the CCI are derived

for the baseband modulation and the diffusion wave modulation schemes. According to

the ISI and CCI formulas, the diffusion wave modulation scheme shows lower values of

interference with respect to the baseband modulation scheme. This is also confirmed by

numerical results obtained through the simulation of the MC system, which also assess the

validity of the derived simple closed-form formulas. The interference analysis presented
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in this section of the Ph.D. thesis will contribute to the general understanding of molecular

communication systems based on diffusion and it will support the design of nanonetwork

architectures based on this paradigm.

6.3 Statistical-physical Model of Interference

6.3.1 Reference Models, Assumptions, and Definitions

In the following, we describe the main reference models, assumptions, and definitions used

in this section of the Ph.D. thesis for the statistical-physical modeling of the interference in

molecular nanonetworks.

6.3.1.1 Reference Molecular Nanonetwork

In the following, we detail the main elements of the reference molecular nanonetwork con-

sidered in this section of the Ph.D. thesis. As sketched in Figure 64, these elements are

the molecular transmitters, responsible for the emission of molecular signals, the diffusion-

based propagation, which broadcasts the molecular signals in the space by means of free

molecule diffusion, and the molecular receiver, which senses the incoming molecular sig-

nals.

A Molecular Transmitter, identified by a number i and located at x̄k, is responsible for

the emission of molecules in the space according to a molecular signal sk(t) as function of

the time t. We assume that all the transmitters emit molecules of the same species n within

an equal definite volume VT , whose size is negligible with respect to the distance between

each transmitter and the receiver. Upon this emission of molecules, identified with the time

derivative dXn(t)/dt in the number Xn of molecules of species n inside the volume VT at the

transmitter i, each molecular transmitter i causes a change in the molecule concentration

c(x̄, t) at its location x̄k, which is expressed through the following relation:

∂c(x̄, t)

∂t
=

1

VT

dXn(t)

dt
δ(x̄ − x̄k) = sk(t)δ(x̄ − x̄k) , (277)

where ∂c(x̄k, t)/∂t is the time derivative in the molecule concentration at the location x̄k and

time t, and δ(.) is the Dirac delta. Moreover, we assume that a transmitter is able to produce
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Figure 64. Reference diffusion-based molecular nanonetwork considered for the interference modeling.

molecules, thus resulting in a positive time first derivative dXn(t)/dt > 0 and a positive

transmitted signal sk(t) > 0, or to subtract molecules, thus resulting in a negative time first

derivative dXn(t)/dt < 0 and in a negative transmitted signal sk(t) < 0.

The Diffusion Propagation broadcasts the emitted molecular signal sk(t) from each

transmitter location x̄k to any other location x̄ in the space. In this section of the Ph.D.

thesis, we rely on the assumption to have a 3-dimensional space, which contains a fluidic

medium and has infinite extent in all the three dimensions. Moreover, the molecules of

species n are all identical and undistinguishable, and they move independently from each

other according to the Brownian motion. We define the total molecule concentration in the

space as cbase + c(x̄, t), where cbase is a component of the molecule concentration that is ho-

mogeneous in the space and constant in time, while c(x̄, t) is the varying component of the

molecule concentration as a function of the space x̄ and time t. We assume that the compo-

nent cbase has a value sufficient to keep the total molecule concentration positive throughout

the space even when c(x̄, t) < 0 due to transmitters subtracting molecules from the space,
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sk(t) < 0. The diffusion propagation is based on the following Diffusion Equation [26, 27]

in the variable c(x̄, t):

∂c(x̄, t)

∂t
= D∇2c(x̄, t) , (278)

where ∂(.)/∂t and ∇2(.) are the time first derivative and the Laplacian operator (sum of the

3-dimensional spatial second derivatives), respectively. D is the diffusion coefficient and

it is considered a constant parameter within the scope of this section of the Ph.D. thesis.

This is in agreement with the assumption of having independent Brownian motion for every

molecule in the space.

The Molecular Receiver senses the total incoming molecular concentration cbase +

c(x̄R, t) at its location x̄R and recovers the received signal Y(t) from the varying component

c(x̄R, t). This is expressed by the following relation:

Y(t) = c(x̄R, t) . (279)

As a consequence, when no transmitter is emitting molecular signals (creating or subtract-

ing molecules), the total molecule concentration is constant and equal to cbase, and the

received signal Y(t) is equal to zero.

6.3.1.2 Assumptions on Interferers

For our interference study, we consider multiple molecular transmitters (interferers), each

one emitting a molecular signal from a different location. We apply the following assump-

tions:

• The molecular transmitters are assumed to be infinite in number and distributed in

the 3-dimensional space according to a spatial homogeneous Poisson process whose

rate is equal to the transmitter density λ, which corresponds to the average num-

ber of transmitters per unit volume. For this, the probability to find a number k of

transmitters in a region V of the space is expressed as follows:

P(k transmitters in V) =
[λV]ke−λV

k!
. (280)
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• The molecular transmitters emit independent and identically distributed (i.i.d.) molec-

ular signals sk(t). Each sk(t) is a white Gaussian signal [66], whose values at each

time instant t have zero mean and variance equal to σ2, expressed as

sk(t) ∼ N(0, σ2) ∀t . (281)

The expression in (281) models the variability of the transmitter emissions accord-

ing to the variance parameter σ2, which corresponds to the average power of the

molecular signals emitted by the transmitters.

The white Gaussian model for the molecular signals sk(t) expressed in (281) is in agreement

with a chemical description of the molecule emission at the molecular transmitters. With-

out loss of generality, we assume that the total molecule concentration cbase+c(x̄k, t) at each

transmitter i is a function of M different chemical reactions involving N different chemical

species (molecule types) within the transmitter definite volume VT . According to the chem-

ical Langevin equation approximation [94], the time derivative dXn(t)/dt from (277) in the

number Xn of species-n molecules, and function of the time t, is given by the following

expression:

dXn(t)

dt
=

M
∑

m=1

νmnam(X(t)) +

M
∑

m=1

νmn

√

am(X(t))Γm(t) (282)

where X(t) = [X1(t), X2(t), . . . , XN(t)]′ is a vector that contains the number of molecules

of each reacting species, νmn corresponds to the change in the number of molecules of the

chemical species n produced by the chemical reaction m, am(X(t)), which is called propen-

sity function, is the probability that the chemical reaction m will occur within the transmitter

volume as function of the vector X(t), and Γm(t) are i.i.d. white Gaussian signals. Under the

assumption to have the chemical reactions at equilibrium within every transmitter volume,

which is expressed as
∑M

m=1 νmnam(X(t)) = 0, and given (282), the molecular signal sk(t)

in (277) is equal to a sum of i.i.d. white Gaussian signals as follows:

sk(t) =
1

VT

M
∑

m=1

νmn

√

am(X(t))Γm(t) . (283)
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As a consequence of the property of a linear combination of i.i.d. Gaussian random vari-

ables [66], sk(t), as expressed in (281), is a white Gaussian signal with zero mean and

variance σ2 equal to:

σ2 =
1

V2
T

M
∑

m=1

ν2
mnam(X(t)) (284)

where X(t) is the vector that contains the number of molecules of each reacting species, νmn

corresponds to the change in the number of molecules of the chemical species n produced

by the chemical reaction m, and the propensity function am(X(t)) is the probability that the

chemical reaction m will occur within the transmitter volume as function of the vector X(t).

6.3.1.3 Definition of Interference

We define as interference the received signal Y(t) expressed as the propagation function

fd(.) of the multiple transmitted molecular signals sk, where k = 0, ...,∞, as follows:

Y(t) = fd















∞
∑

k=0

sk(t)δ(x̄ − x̄k)















, (285)

where δ(.) is the Dirac delta, fd(.) is the diffusion propagation function that transforms the

sum of transmitted molecular signals sk into the incoming molecular concentration c(x̄R, t)

at the receiver location x̄R through the diffusion equation (324) and, according to (279),

into the received signal Y(t).

Due to the linearity of (324) [26, 27], given multiple molecular signals transmitted

simultaneously from multiple transmitters, the resulting varying component c(x̄, t) of the

molecule concentration is the sum of the varying components of the molecule concentration

resulting from the emission of each molecular transmitter, computed as if each transmitter

were emitting alone (additive channel). As a consequence, we can express the received

signal Y(t) as the sum of the propagation functions applied separately to each transmitted

molecular signal, which results into

Y(t) =

∞
∑

k=0

fd(sk(t)δ(x̄ − x̄k)) , (286)
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where the propagation function fd(.) is computed as the solution of the diffusion equa-

tion (324) when a single transmitter is emitting a molecular signal sk(t). For this, we con-

sider the following expression:

∂c(x̄, t)

∂t
= D∇2c(x̄, t) + sk(t)δ(x̄ − x̄k) . (287)

The solution of (287) in terms of c(x̄, t) corresponds to the following propagation function

fd(.):

fd(sk(t)δ(x̄ − x̄k)) = c(x̄, t) = gd(rk, t) ∗ sk(t) =

∫ ∞

0

gd(rk, τ)sk(τ − t)dτ , (288)

where (. ∗ .) is the convolution operator [51], and gd(rk, t) is the Green’s function of the

diffusion equation [86], equal to

gd(rk, t) =
e−

rk
2

4Dt

(4πDt)3/2
, (289)

where rk is the Euclidian distance between the transmitter k location and the receiver lo-

cation, rk = ‖x̄k − x̄R‖, and D is the diffusion coefficient. As a result, we can express the

received signal Y(t) as

Y(t) =

∞
∑

k=0

gd(rk, t) ∗ sk(t) , (290)

where gd(rk, t) is expressed in (289), (. ∗ .) is the convolution operator [51], and sk(t) is the

molecular signal transmitted from each transmitter k, whose distribution is given by (281).

6.3.2 Statistical-physical Interference Modeling

The goal of the statistical-physical interference modeling is to find a probabilistic descrip-

tion of the received signal Y(t) expressed in (290), as function of the transmitter density

λ, the diffusion coefficient D, and the average power σ2 of the molecular signals emitted

by the transmitters.

In standard statistical-physical modeling of the interference for radio communication

networks [93], since the propagation function corresponds to a multiplication of each trans-

mitted signal (uncorrelated random process with zero mean value) by the radio propagation
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amplitude loss, independent with respect to the time variable, the received signal Y(t) is an

uncorrelated stochastic process with zero mean value. As a consequence, the received sig-

nal Y(t) can be probabilistically described with the Probability Density Function (PDF)

PY (y) of a time sample, for which analytical expressions are usually provided in terms of

log-characteristic functions [95].

6.3.2.1 Probabilistic Description of the Received Signal

In the context of diffusion-based molecular nanonetworks, as a consequence of the expres-

sion of the propagation function in (289) as function of the time variable t, the received

signal Y(t) is in general a correlated stochastic process, which cannot be described by the

PDF PY (y) of a single time sample. A probabilistic description of the received signal Y(t)

can be provided upon the following considerations:

• Consider a realization of the spatial homogeneous Poisson process of the transmitter

locations, expressed in (280), which results into a set of values R = {rk}k=1,2,...,∞ for

the distances rk between each transmitter k = 1, 2...,∞ and the receiver.

• Given the previous consideration, each term of the sum in (290) is a convolution of a

deterministic function gd(rk, t) of the time t with a zero-mean Gaussian white random

signal sk(t) with zero mean and variance equal to σ2. The result of this convolution is

a zero-mean stationary Gaussian process yk|rk with autocorrelation function Ryk |rk
(t)

equal to σ2 multiplied by the correlation of gd(rk, t) with itself [66]. This is expressed

as follows:

Ryk |rk
(t) = σ2

∫ ∞

0

gd(rk, τ)gd(rk, τ + t)dτ . (291)

• The autocorrelation of the sum of two uncorrelated random processes is a random

process whose autocorrelations is the sum of their autocorrelations [66].

As a consequence of the aforementioned considerations, the received signal Y |R, given a

realization of the transmitter locations R, is a zero-mean stationary Gaussian Process
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(GP), probabilistically described as follows:

Y |R ∼ GP(0,RY |R(t)) , (292)

whose autocorrelation functionRY |R(t) is equal to the sum for each transmitter k = 1, 2, ...,∞

of the autocorrelation function Ryk |rk
(t) in (291), expressed as

RY |R(t) =

∞
∑

k=0

Ryk |rk
(t) . (293)

Since Y |R is a continuous time stationary random process, according to the Wiener-

Khintchine theorem [66] it can be equivalently described in terms of Power Spectral Den-

sity (PSD), which corresponds to the Fourier transform [51] of the autocorrelation function

RY |R(t). Given the expressions in (293) and (291), the PSD SY |R(ω) results in the following:

SY |R(ω) = σ2

∞
∑

k=0

|Gd(rk, ω)|2 , (294)

where |.|2 denotes the squared absolute value operator, and Gd(rk, ω) is the Fourier trans-

form [51] of gd(rk, t) in (289), whose expression is

Gd(rk, ω) =
e−(1+ j)

√
ω

2D
rk

πDrk

, (295)

where rk is the Euclidian distance between the transmitter k and the receiver, and D is the

diffusion coefficient.

6.3.2.2 Statistical-physical Modeling of the Received Power Spectral Density

The received PSD SY(ω) is defined as the distribution of the power of the received signal

Y over each frequency ω. Given the presence of multiple transmitters, and the probabilistic

assumptions described in Section 6.3.1.2, the received PSDSY(ω) is a measure of the power

of the interference which affects the communication system in each received frequency ω.

As a consequence, we aim at the statistical-physical modeling of the received PSD SY(ω)

through the expression of its PDF PSY (ω)(s) as a function f (.) of the PSD value s, the

frequency ω, the transmitter density λ, the diffusion coefficient D, and the average power
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σ2 of the molecular signals emitted by the transmitters. This is expressed as follows:

PSY (ω)(s) = f (s, ω, λ,D, σ2) . (296)

As detailed in the following, the PDF PSY (ω)(s) of the PSD SY(ω) is computed from the

PSD SY |R(ω) in (294) by taking into account the spatial homogeneous Poisson process of

the transmitter locations in (280).

The PDF PSY (ω)(s), as happens in standard statistical-physical modeling for the PDF

PY (y) of the interference for radio communication networks [93], does not have a closed-

form mathematical expression. As a consequence, by following the standard statistical-

physical modeling of the interference for radio communication networks [93], we aim at the

expression of the log-characteristic function ψSY (ω)(Ω) of the received PSD SY(ω), which

is defined as the natural logarithm of the characteristic function φSY (ω)(Ω), as

ψSY (ω)(Ω) = ln
[

φSY (ω)(Ω)
]

. (297)

The characteristic function φSY (ω)(Ω) of the received PSD SY(ω) is defined as the expected

value of the function e jΩs of the PSD value s:

φSY (ω)(Ω) = ESY (ω)

[

e jΩs
]

=

∫

PSY (ω)(s)e jΩs ds , (298)

The PDF PSY (ω)(s) of the PSD SY(ω) is computed through the Fourier transform [51]

of the exponential with the log-characteristic function ψSY (ω)(Ω) as argument. This is ex-

pressed as follows:

PSY (ω)(s) =

∫

eψSY (ω)(Ω)e− jΩy dΩ , (299)

As mentioned above, the formula in (299) does not in general result in a closed-form ex-

pression, and it is computed through numerical methods.

In the following, we derive the log-characteristic function ψSY (ω)(Ω), which admits an

analytical expression as a function Ψ(.) of the the transmitter density λ, the diffusion co-

efficient D and the average power σ2 of the molecular signals emitted by the transmitters,
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PSD frequency variable ω, the characteristic function frequency variable Ω, expressed as

follows:

ψSY (ω)(Ω) = Ψ(λ,D, σ2, ω,Ω) . (300)

6.3.3 Log-Characteristic Function and PDF of the Received Power Spectral Density

In this section, we analytically derive the log-characteristic function ψSY (ω)(Ω) of the re-

ceived PSD SY(ω). Through the derivation detailed in Section 6.3.3.1, we obtain the fol-

lowing analytical expression:

ψSY (ω)(Ω) = j
16
√

2λσ2Ω

3π
√

D3ω

∫ ∞

0

(x + 1)e−2xe
− j e−2x

x2
σ2ωΩ

2π2D3 dx , (301)

where λ is the transmitter density (number of transmitters per unit volume), D is the diffu-

sion coefficient, σ2 is the average power of the molecular signals emitted by the transmit-

ters, ω is the PSD frequency variable, and Ω is the frequency variable of the characteristic

function. Subsequently, we derive the PDF PSY (ω)(s) of the received PSD SY(ω) by numer-

ically computing the expression in (299).

6.3.3.1 Derivation of the Log-characteristic Function ψSY (ω)(Ω)

In the following, we adapt the analytical computation of the log-characteristic function

of the received signal in case of radio communication networks [95] to derive the log-

characteristic function ψSY (ω)(Ω) of the received PSD SY(ω) in diffusion-based molecular

nanonetworks. By applying the rule of the iterated expectations [66], we can perform the

expectation in (298) with respect to the transmitter locations R = {rk}k=1,2,...,∞, where rk

are the random distances between each transmitter k = 1, 2, ...,∞ and the receiver, and

substitute the PSD value s with the PSD SY |R(ω) of the received signal given a realization

of the transmitter locations. As a consequence, we obtain the following expression:

φSY (ω)(Ω) = ER

[

e jΩSY |R(ω)
]

, (302)

where the PSD SY |R(ω) is computed through (294) and (295).
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Since the transmitter locations are resulting from a spatial homogeneous Poisson pro-

cess, as described in Section 6.3.1.2, the distances rk are i.i.d. random variables, and the

distribution in the number k of molecular transmitters in a space region V is given by (280).

As a consequence, for an infinite space region, represented by a sphere centered at the

receiver with infinite radius, namely, V = limρ→∞(4/3)πρ3, we derive the following expres-

sion from (294) applied to (302):

φSY (ω)(Ω) = limρ→∞
∑∞

k=0

(

Erk

[

e jΩσ2 |Gd(rk,ω)|2
])k ·

· [λ(4/3)πρ3]ke−λ(4/3)πρ3

k!
, (303)

where the summation from (294) is substituted with the power k operator (.)k, and the

average operator ER[.] is written in terms of summation in k of the average operator Erk
[.]

of the k-th transmitter distance, weighted by the probability density from (280).

By applying the following Taylor series expansion [97] substitution to (303):

∞
∑

k=0

xk

k!
= ex , (304)

and by applying the definition of log-characteristic function ψSY (ω)(Ω) from (297), we ob-

tain the following expression:

ψSY (ω)(Ω) = lim
ρ→∞

4

3
πρ3λ

(

Erk

[

e jΩσ2 |Gd(rk,ω)|2
]

− 1
)

. (305)

Since the transmitters are distributed according to a Poisson process (280), the dis-

tribution of the distance between the transmitter and the receiver, given a space region

V = (4/3)πρ3, has the following expression:

Prk
(r) =

3r2

ρ3
, 0 ≤ r ≤ ρ . (306)

If we express in (305) the average operator Erk
[.] of the distance rk between the transmitter

and the receiver by using the distribution of this distance in (306), we obtain the following:

ψSY (ω)(Ω) = lim
ρ→∞

4

3
πρ3λ

(∫ ρ

0

e jΩσ2 |Gd(r,ω)|2 3r2

ρ3
dr − 1

)

. (307)
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By using the formula of the integration by parts [97] for the integral in (307), we obtain

the following expression:

ψSY (ω)(Ω) = lim
ρ→∞

4

3
πρ3λ



















e
jΩσ2 e

−2

√
ω

2D
ρ

(πDρ)2 − 4 jΩσ2

ρ3(πD)2

∫ ρ

0

(
√

ω

2D
r + 1

)

e−2
√

ω
2D

re
jΩσ2 e

−2

√
ω

2D
r

(πDr)2 dr − 1



















.

(308)

We note the following result:

lim
ρ→∞

ρ3



















e
jΩσ2 e

−2

√
ω

2D
ρ

(πDρ)2 − 1



















= 0 , (309)

which is demonstrated by considering the following inequality:

e−2
√

ω
2D
ρ

(πDρ)2
<

1

ρ
, for ρ→ ∞ , (310)

and by repeatedly applying L’Hôpital’s rule [97] to the following limit:

lim
ρ→∞

ρ3(e1/ρ − 1) = 0 . (311)

By applying (309) to (308), we obtain the following expression:

ψSY (ω)(Ω) = j
16

3

λσ2Ω

πD2

∫ ∞

0

(
√

ω

2D
r + 1

)

e−2
√

ω
2D

re
jΩσ2 e

−2

√
ω

2D
r

(πDr)2
r3

R3
dr . (312)

By operating in the integral of (312) the following variable substitution:

x =

√

ω

2D
r , (313)

we obtain the final expression of the log-characteristic function ψSY (ω)(Ω) of the received

PSD SY(ω), which is as follows:

ψSY (ω)(Ω) = j
16
√

2λσ2Ω

3π
√

D3ω

∫ ∞

0

(x + 1)e−2xe
− j e−2x

x2
σ2ωΩ

2π2D3 dx , (314)

where λ is the transmitter density (number of transmitters per unit volume), D is the diffu-

sion coefficient, σ2 is the average power of the molecular signals emitted by the transmit-

ters, ω is the PSD frequency variable, and Ω is the frequency variable of the characteristic

function.
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6.3.3.2 Derivation of the PDF PSY (ω)(s)

In this section, we derive the PDF PSY (ω)(s) of the received PSD SY(ω). In general, the

log-characteristic function expressed in (314) does not have an expression which can be

recognized as from a known probability distribution. For this, we numerically compute

the formula in (299) by using the MATLAB © fft function applied to the values of the

expression in (314). We also numerically compute the infinite integral in (314) by using

the MATLAB© numerical integration.
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Figure 65. PDF PSY (ω)(s) of the received PSD SY (ω). Different curves refer to different values of the

frequency ω.

The numerical results in terms of PDF PSY (ω)(s) of the received PSD SY(ω) are shown

in Figure 65 and Fig 66. The values of the PDF PSY (ω)(s) are computed for a transmitter

density λ equal to 109 [transmitters m−3], an average power σ2 of the molecular signals

equal to 106 [molecules2 m−6 sec−3 ], and for values of the PSD value s ranging from 0

to 5 · 104 [molecules3 m−6 sec Hz−1 ]. The diffusion coefficient D ∼ 109 [m2sec−1] is

set to the diffusion coefficient of molecules diffusing in a biological environment (cellular

cytoplasm, [58]). Different curves in Figure 65 refer to different values of the frequency
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Figure 66. PDF PSY (ω)(s) of the received PSD SY (ω) for a range of frequencies ω from 0 to 2 Hz.

ω, from 0.09Hz to 1.89Hz, while Figure 66 shows the PDF PSY (ω)(s) values for a range of

frequencies ω from 0 to 2 Hz.

As apparent from Figure 65 and Fig 66, the curves of the PDF PSY (ω)(s) as function

of the PSD value s tend to horizontal lines for low values of the frequency ω, while they

tend to concentrate the higher values around s = 0 as the frequency ω increases. This is an

expected behavior since, according to the absolute value of the expression of the Fourier

transform of the propagation function Gd(rk, ω) in (295), which is a negative exponential

function of the square root of the frequency ω, lower frequencies are subject to lower

attenuation than higher frequencies in the diffusion propagation. As a consequence, for

lower frequencies the received PSD tends to have a shape similar to the PSD of the white

transmitted signals sk(t) in (281), equally distributed among all the possible PSD values s

with a probability value around 0.01. On the contrary, since higher frequencies are more

attenuated, for a high ω lower values of the received PSD are more probable, which is more

likely distributed around s = 0, with the highest value around 0.16 for ω close to 2 Hz.
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6.3.4 Numerical Results

In this section, we provide a simulation environment to evaluate the statistical-physical in-

terference model presented in this section of the Ph.D. thesis (Section 6.3.4.1). In addition,

we study the probability of interference, defined as the probability for a single molecu-

lar signal sent by a transmitter to suffer interference at the receiver, by using both the

statistical-physical interference model and the simulation environment (Section 6.3.4.2).

6.3.4.1 Simulation-based Evaluation

The simulation environment is based on the following additional assumptions:

• The space where the transmitters are distributed is confined within a sphere with

radius ρ around the receiver location. This is motivated by the need to have in

the simulation environment a finite number of transmitters, which is equal to K =

⌊λ(4/3)πρ3⌋, where ⌊.⌋ denotes the rounding to the nearest lower integer.

• The transmitted signal sk(n/ fs) from each transmitter is discrete, sampled with a

frequency fs, and composed by Ns samples.

• The simulation is repeated for a number of iterations Iter, where each iteration is

based on i) a different realization of the spatial Poisson process with density λ of the

molecular transmitter distribution expressed in (280), ii) a different realization of the

Gaussian process in (281) with variance equal to σ2 for each transmitter k and for

each sample sk(n/ fs).

The PDF PSY (ω)(s) of the received PSD SY(ω), where ω = q fs/Ns, and q = 1, ...,Ns, is

computed though the following expression:

PSY (ω)(s)|ω=q fs/Ns
=

1

Iter

Iter
∑

l=1

1SYl
(q fs/Ns)=s , (315)

where 1S Yi
(q fs/Ns)=s is non-zero and equal to 1 only when the PSD S Yl

(q fs/Ns) from the l-

th iteration is equal to the value s at frequency q fs/Ns, and fs and Ns are the sampling
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frequency and the number of samples for the transmitted molecular signals, respectively.

The PSD SYl
(q fs/Ns) results from the following formula:

SYl
(q fs/Ns) =















K
∑

k=1

S k(q fs/Ns)Gd(rk, q fs/Ns)















2

, (316)

where S k(q fs/Ns) is the discrete Fourier transform of sk(n/ fs), computed through the MAT-

LAB© fft function, and Gd(rk, q fs/Ns) is the Fourier transform of the propagation function

in (295) computed at the frequency value q fs/Ns.
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Figure 67. Simulation-based PDF PSY (ω)(s) of the received PSD SY (ω) for a range of frequencies ω from

0 to 2 Hz.

In Figure 67 we show the values of PSY (ω)(s) computed for the same parameters as for

the results in Figure 66, namely, a transmitter density λ equal to 109 [transmitters m−3], an

average power σ2 of the molecular signals equal to 106 [molecules2 m−6 sec−3 ] a diffusion

coefficient D ∼ 109 [m2sec−1], and for PSD values s ranging from 0 to 5 · 104 [molecules3

m−6 sec Hz−1 ]. Moreover, the simulation is run with the following parameters: a spherical

space radius ρ = 19µm, a sampling frequency fs = 100Hz, a number of samples Ns = 104,

and a number of iterations Iter = 50. The curves in Figure 67 have been also post-processed
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through the use of a moving average filter [98] along the dimension of the PSD value s to

reduce the noise given by the limited dataset.

The simulation-based results in terms of PSY (ω)(s) in Figure 67 show a high degree

of similarity with the values computed through the statistical-physical model in Fig 66.

Also in the simulation-based results, the curves of PSY (ω)(s) as function of the PSD value

s tend to horizontal lines for low values of the frequency ω = q fs/Ns, while they tend to

concentrate the higher values around s = 0 as the frequency ω increases. While for high

frequencies ω around 2 Hz the simulation-based PDF has a value around s = 0 of 0.16, very

close to the results of the statistical-physical model, for lower frequencies the values of the

model-based PDF are overall lower than the values from the statistical-physical model. We

believe that these differences between the values in Figure 66 and Figure 67 are due to the

limited number of transmitters and the sampling of the molecular signals sk considered for

the simulation environment.

6.3.4.2 Probability of Interference

We define here the probability of interference PInter f (ω) as the probability of having at the

receiver a contribution from the interference whose PSD at frequency ω exceeds the PSD

of a contribution coming from a single transmitter. This single transmitter is placed at

a distance rT x from the receiver, and it transmits a signal sT x(t) with power equal to σ2
tx,

expressed as

sT x(t) = σtx

sin[t(ωb − ωa)]

t
e jωat , (317)

The PSD of the signal sT x(t) is then constant over the frequency range defined by ωa and

ωb, and it is expressed as follows:

ST x(ω) = σ2
txrect

(

ω − ωa

ωb − ωa

)

, (318)

where rect(.) is the rectangular function, and σ2
tx is the constant PSD value. The contribu-

tion SRx(ω) to the PSD of the received signal coming from the transmitted signal sT x(t) is
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given as

SRx(ω) = ST x(ω) |Gd(rT x, ω)|2 , (319)

where Gd(rT x, ω) is the Fourier transform [51] of the Green’s function of the diffusion equa-

tion expressed in (295). The probability of interference PInter f (ω) is expressed as follows:

PInter f (ω) =

∫ ∞

SRx(ω)

PSY (ω)(s)ds , (320)

where SRx(ω) is the PSD of the signal sT x(t) emitted by the single transmitter, given

in (318), and PSY (ω)(s) is the PSD of the received PSD SY(ω) computed above with ei-

ther the statistical-physical model, given by (314), or the simulation environment, given by

the numerical results of (315).
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Figure 68. Probability of interference according to the statistical-physical model.

In Figure 68 and Figure 69 we show the probability of interference PInter f (ω) according

to the statistical-physical model and the simulation environment, respectively, for a range

of frequencies ω from ωa = 0 Hz to ωb = 2 Hz and for a distance rT x between the single

transmitter and the receiver ranging from 1 µm to 2 µm. The values in Figure 68 are derived
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Figure 69. Probability of interference according to the simulation environment.

from the expression in (320) by using the PDF PSY (ω)(ω) computed in Section 6.3.3.2,

while for Figure 69 we applied the values of the PDF PSY (q fs/Ns)(s) computed through the

simulation detailed in Section 6.3.4.1. The constant PSD of the signal sT x(t) is here set to

two orders of magnitude higher than the average power of the molecular signals emitted by

the interfering transmitters, namely, σ2
tx = 102σ2.

In both Figure 68 and Figure 69 we observe an almost zero probability of interference

PInter f (ω) for low values of the frequency ω and low values for the transmitter distance rT x

from the receiver. As the frequency ω and the distance rT x increase, also the probability of

interference PInter f (ω) increases from zero to a maximum value. In both Figure 68 and Fig-

ure 69, values of the probability of interference higher than zero occur only for a frequency

ω higher than 0.59 Hz and a distance rT x higher than 1.1 µm. In Figure 68 the maximum

value of the probability of interference PInter f (ω) is 0.98 and it occurs for the range fre-

quencies ω between 0.67 Hz and 0.89 Hz and for a distance rT x higher than 1.4 µm. The

maximum value of the probability of interference PInter f (ω) in Figure 69 is around 0.82 and
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it occurs for a frequency ω around 0.73 Hz and a distance rT x higher than 1.9 µm. The over-

all lower values of the simulation-based probability of interference PInter f (ω) in Figure 69

compared to the values in Figure 68 from the statistical-physical model are likely due to the

limited number of interfering transmitters and iterations of the transmitter distribution re-

alizations considered in the simulation environment, as explained in Section 6.3.4.1, while

the statistical-physical model considers an infinite number of transmitters and it is based

on their distribution PDF.

Different behaviors of the probability of interference PInter f (ω) for high frequencies ω

and high distances rT x are shown in Figure 68 and Figure 69. In the former, the PInter f (ω)

reaches a plateau, corresponding to the aforementioned maximum value of 0.98, and then

decreases as the frequency value increases from 0.89 Hz to 2 Hz, where it has a PDF value

of 0.83. In the latter, after a maximum value at 0.82, and as the frequency increases from

0.73 Hz to 2 Hz, the PInter f (ω) oscillates between 0.74 and 0.72. Again, this oscillatory

behavior is likely due to the limited data used in the simulation environment to compute

the PDF PSY (ω)(s), where we considered a limited number of interferers, within a spherical

space of radius ρ = 19µm, and a limited number of iterations for the realization of their

location distribution.

6.3.5 Conclusion

In this section of the Ph.D. thesis, a statistical-physical modeling is provided for the in-

terference in diffusion-based molecular nanonetworks when multiple transmitting nanoma-

chines emit molecules simultaneously. Our method to characterize the interference differ-

entiates from the previous literature since we develop a general model independent from

the transmitter number, specific transmitter locations, or coding schemes. As a result of the

property of the received molecular signal of being a stationary Gaussian Process (GP), the

statistical-physical modeling is operated on its Power Spectral Density (PSD), for which it

is possible to obtain an analytical expression of the log-characteristic function. This log-

characteristic function expression ultimately leads to the estimation of the received PSD
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probability distribution, which provides a complete model of the interference in diffusion-

based molecular nanonetworks.

The numerical derivation of the PDF from the log-characteristic function expression

of the received PSD is performed for selected values of the physical parameters of the

molecular nanonetwork, such as the diffusion coefficient, the transmitter density, and the

average power of molecule emissions. As apparent from the PDF of the received PSD,

for low frequencies the power of the received signal tends to a uniform distribution over

the range of considered values, while for higher frequencies the power tends with more

probability to lower values.

The similarities of the results from the statistical-physical model with the outcomes

from simulations are evaluated first in terms of received PSD, and then in terms of prob-

ability of interference. The latter comparison is based on the probability of having at the

receiver a contribution from the interference whose PSD exceeds the PSD of a contribution

coming from a single transmitter. In both cases, the probability of interference has very low

values for frequencies lower than 0.59 Hz and a distance range lower than 1.1 µm, while

it assumes very high values otherwise. The statistical-physical model of the interference

presented in this section of the Ph.D. thesis has to potential to greatly help to realization

the future diffusion-based molecular nanonetworks, in particular as a support to the design

of interference mitigation techniques.
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CHAPTER 7

A MOLECULAR COMMUNICATION SYSTEM DESIGN

VIA BIOLOGICAL CIRCUITS

7.1 Motivation and Related Work

The design of a molecular communication system has to necessarily take into account the

underlying type of nanomachines for which the system is intended. In this direction, a

particularly promising type of nanomachines has been presented in Chapter 1 based on key

synthetic biology techniques [12], which allow to genetically engineer cells, such as bacte-

ria, and program functionalities in the biological environment. In particular, a synthetic bi-

ological circuit [99], or simply biological circuit, allows to program logical functions from

simple controlled production of specific types of protein molecules, to complete engineered

cell-to-cell interactions [100], such as a diffusion-based molecular communication system,

in a similar way as it is done with electrical circuits. The focus of this chapter of the Ph.D.

thesis is on the study from the communication engineering point of view of a diffusion-

based molecular communication system design based on biological circuits, where both a

deterministic and a stochastic modeling are applied to adapt the general results presented

in Chapter 3 and Chapter 4 to this specific implementation.

A biological circuit is normally defined as a genetic regulatory network [99] embed-

ded in a biological cell, where DNA genes are linked together by activation and repres-

sion mechanisms that regulate their expression into proteins, which are biological macro-

molecules. Each DNA gene contains coding sequences, which are chemical information

for building proteins, and regulatory sequences, which are sites were proteins can bind and

control the rate of the gene expression, either by increasing (activation) or decreasing (re-

pression) the protein building rate. In biological circuits, genes are interconnected such as

the proteins produced by one or more genes regulate the expression of one or more genes.

In recent years, a great effort is being devoted to the standardization and the establishment
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of catalogues of biological circuit parts [101]. By following the BioBrick™ standard [11],

the units to measure the input and the output of a biological circuit are defined as Poly-

merases Per Second (PoPS), which correspond to the rates of the transcription process of

the first and last biological circuit genes, respectively, proportional to their rate of expres-

sion. A biological circuit can process a PoPS signal as a function of the time in input by

returning in output another PoPS signal as a function of the time through the aforemen-

tioned interconnection of gene regulations.

Some recent literature can be found on the analytical modeling of biological circuits, but

with no specific mention to diffusion-based cell-to-cell communication through molecule

exchange, for which only a biological description is provided in some specific works. No-

table examples from this literature are given as follows. In [99] the genetic circuit design

is introduced as an engineering discipline and the main mathematical framework for the

modeling of biological circuit functions is introduced. The models of some important bio-

logical circuit patterns, called network motifs, are presented in a very complete theoretical

framework in [102]. The standardization efforts of biological circuit parts are reviewed

in [11], while the modeling techniques for biological circuits are discussed in [103]. The

frequency domain analysis of biological circuits is presented in [104] both from a deter-

ministic and a stochastic point of view, while the noise in biological circuit is discussed

in [105]. In [106], the specific noise sources affecting cellular signaling pathways are de-

scribed. Finally, the work in [12] treats engineering techniques to implement signals and

sensors in bacteria through biological circuits.

In this section, deterministic and stochastic communication engineering models are pre-

sented for a biological circuit where a signal is transmitted from a PoPS input in a biological

cell (transmitter cell) to a PoPS output in another biological cell (receiver cell), located at

a predefined distance from the transmitter cell. This biological circuit, inspired by the cell-

to-cell communication circuit sketched in [99], realizes a diffusion-based molecular com-

munication system as defined in this Ph.D. thesis by encoding the signal to be transmitted
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into signaling molecules, which propagate between the transmitter cell and the receiver

cell through their diffusion in the intercellular space. In addition, the biological circuit

detailed in this section is composed by the minimal subset of elements necessary to real-

ize diffusion-based molecular communication between biological cells, and the resulting

models are expected to have a general validity over other more complex implementations.

In the work presented in this section, first, a biological circuit for diffusion-based molec-

ular communication is identified through a minimal subset of elements. Then, a mathemat-

ical model is detailed in terms of transfer functions, from which analytical expressions are

derived for the attenuation and the delay experienced by an information signal through

the biological circuit. Finally, the most significant noise sources within the biological cir-

cuit are identified, and statistical models for these sources are provided in terms of noise-

generating random processes. For each statistical model, the impact of the generated noise

is quantified through the Power Spectral Density (PSD) parameter at the output of the bi-

ological circuit. Numerical results are also provided in this chapter by applying to the

developed models some biological parameters from the literature.

7.2 Biological Circuit Design for Diffusion-based MC

7.2.1 Functional Blocks Description

The main functional blocks of this biological circuit are shown in Figure 70, where a space

is divided into the intracellular environments of a transmitter cell and a receiver cell, respec-

tively, which are assumed chemically homogeneous, or well-stirred, and they are divided

by an intercellular environment. As a consequence, in the intracellular environment the

molecule concentrations are assumed homogeneous in the space, while in the intercellular

environment there is in general a non-homogeneous concentration of signaling molecules,

which is subject to propagation via diffusion. We assume that the intracellular space of the

transmitter cell is a volume with size ΩT x, while the intracellular space of the receiver cell

is a volume with size ΩRx. The main functional blocks of this biological circuit, shown in

Figure 70, are detailed as follows:
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• The Signaling Enzyme Expression takes place inside the transmitter cell, and it

is initiated by a PoPS signal in input, PoPS in, which promotes the transcription of

an enzyme coding sequence and the translation of the contained information into a

protein, denoted by E and called enzyme because of its specific chemical function,

as explained in the following. The output of the signaling enzyme expression is the

concentration of the produced enzymes, denoted by [E].

• The Signaling Molecule Production is an enzymatic chemical reaction that occurs

inside the transmitter cell, where the enzymes E catalyze the conversion of molecules

present in the intracellular environment, called substrates, into other molecules,

called products, by forming enzyme-substrate complexes. Among these products,

the signaling molecules, denoted by S , are small organic molecules whose size al-

lows them to cross the cell membrane and propagate through diffusion in the inter-

cellular environment. The other products of the enzymatic reaction, denoted here

as subproducts, remain in the intracellular environment and do not take part in the

diffusion-based molecular communication. As a consequence, the input of the sig-

naling molecule production is the concentration of enzymes [E], while the output

is the concentration of produced signaling molecules at the transmitter, denoted by

[S ]T x.

• The Diffusion Process realizes the propagation of the signaling molecules S in the

intercellular environment, and it is the macroscopic effect of the random Brownian

motion of the signaling molecules in the space. The diffusion process has the effect

to propagate differences in the signaling molecule concentration from the transmit-

ter cell to the receiver cell, where they cross the membrane and have access to the

receiver intracellular environment. The input of the diffusion process is the concen-

tration [S ]T x of signaling molecules at the transmitter cell, while the output is the

concentration [S ]Rx of signaling molecules at the receiver cell.
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• The Receptor Activator Expression takes place inside the receiver cell, and it is

initiated by an input PoPS auxiliary signal, PoPS aux, which promotes the transcrip-

tion of a receptor coding sequence and the translation of the contained information

into proteins, called receptors, and denoted by R. The output of the receptor activator

expression is the concentration of the produced receptors, denoted by [R].

• The Ligand-Receptor Binding is a reaction that occurs inside the receiver cell,

where the incoming signaling molecules S bind to the receptors R and form activator

complexes, denoted by RS . The inputs of the ligand-receptor binding are the concen-

tration of produced receptors [R] and the concentration [S ]Rx of signaling molecules

at the receiver cell, and the output is the concentration [RS ] of activator complexes.

• The Output Transcription Activation is initiated by the activator complexes RS

upon binding to the activator site, where a PoPS output signal is produced accord-

ing to the binding of RNA polymerase proteins, denoted as RNAP, to the promoter

sequence. The inputs of the transcription activation are the concentration [RS ] of

activator complexes, the concentration [PRx] of promoter sequences, and the concen-

tration [RNAP] of the RNA polymerase protein, respectively, while the output PoPS

signal is denoted as PoPS out.

7.2.2 Reaction-based Description

In the following, we provide a description of the biological circuit in terms of the chemical

reactions undergoing in the aforementioned elements. This description serves to define all

the chemical parameters of the biological circuit under study, and it sets the basis to build

the deterministic model and the stochastic model, detailed in Section 7.3 and Section 7.4,

respectively.

The Signaling Enzyme Expression is based on a transcription and translation re-

action, which models the production of the npE enzymes stimulated by the input signal
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Figure 70. Main functional blocks of a biological circuit for diffusion-based molecular communication.

PoPS in with a rate kE, expressed as follows:

PoPS in

kE−→ npEE + PoPS in . (321)

The enzymes are also subject to degradation, with a degradation rate kdE
, expressed as:

E
kdE−−→ () . (322)

The Signaling Molecule Production is based on an enzymatic reaction where the en-

zyme E and the substrates (one or more), here denoted as S 0, according to the rate kS 1
form

a complex Cs, which can then either dissociate back into the enzyme E and the substrates

S 0, with a rate kS −1
, or evolve into the sum of the enzyme E and the signaling molecule S

according to a rate kS 2
. This reaction is expressed as follows:

E + S 0

kS 1←−→
kS−1

CS

kS 2−−→ E + S . (323)
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The Diffusion Process is based on the assumption to have a 3-dimensional intercellular

space, which contains a fluidic medium and has infinite extent in all the three dimensions.

The diffusion process is based on the following Diffusion Equation [26, 27] in the variable

[S ](r, t), which is the concentration [S ] of signaling molecules present at distance r from

the transmitter and time instant t:

∂[S ](r, t)

∂t
= D∇2[S ](r, t) , (324)

where ∂(.)/∂t and ∇2(.) are the time first derivative and the Laplacian operator, respectively.

D is the diffusion coefficient and it is considered a constant parameter within the scope of

this thesis. This is in agreement with the assumption of having independent Brownian

motion for every molecule in the space.

The Receptor Activator Expression is based on the transcription and translation re-

action for the production of npR receptors R stimulated by the signal PoPS aux with a rate

kR, expressed as follows:

PoPS aux

kR−→ npRR + PoPS aux . (325)

The degradation reaction of the receptors R is expressed as follows according to a degrada-

tion rate kdR
:

R
kdR−−→ () . (326)

The Ligand-Receptor Binding is based on the binding and release reactions between

receptors R and signaling molecules S . Upon binding, which occurs with a rate kRS , a

receptor R and a signaling molecule S form an activator complex RS , which will be the

input of the next transcription activation reaction. A complex RS unbinds and releases

a receptor R and a signaling molecule S according to a rate k−RS . This is expressed as

follows:

R + S
kRS←−→
k−RS

RS . (327)

The Output Transcription Activation is based on an open complex formation reac-

tion, where an activator complex RS , a promoter sequence PRx, and an RNA polymerase
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RNAP trigger the open complex formation, quantified through the output signal PoPS out,

according to a rate kRx. The open complex can dissociate back into an activator complex

RS , a promoter sequence PRx, and an RNA polymerase RNAP according to a rate k−Rx.

This has the following expression:

RS + PRx + RNAP
kRx←−→
k−Rx

PoPS out . (328)

In the following, with reference to the aforementioned chemical reactions, we first de-

tail the deterministic model of this biological circuit (Sec 7.3), which allows to derive the

transfer function and, consequently, the attenuation and delay parameters for each func-

tional block and for their overall end-to-end cascade. Subsequently, we derive a stochastic

model of the biological circuit that takes into account the sources of randomness in each

functional block, and we express the end-to-end signal-to-noise ratio (Sec 7.4).

7.3 Deterministic Model

The objective of the deterministic model is to derive the mathematical relation between the

input signal PoPS in(t) and the output signal PoPS out(t) of the aforementioned biological

circuit for diffusion-based molecular communication, where the input and output signals

are function of the time t. As detailed in the following, we express this mathematical

relation in terms of transfer function H(ω), where ω corresponds to the frequency of the

Fourier transforms [51] of the signals, namely, PoPSin(ω) and PoPSout(ω), expressed as

follows:

H(ω) =
PoPSout(ω)

PoPSin(ω)
, PoPSi(ω) =

∫

PoPS i(t)e
− jωtdt , (329)

where i ∈ {in, out}, and H(ω) depends from all the chemical parameters defined in Sec-

tion 7.2, namely, the transmitter cell volumeΩT x and the receiver cell volumeΩRx, the reac-

tion rates kE, kdE
, kS 1

, kS −1
, kS 2

, kR, kdR
, kRS , k−RS , kRx, k−Rx and numbers of produced molecules

npE and npR, the diffusion coefficient D, the auxiliary signal PoPS aux, assumed constant in

time, the concentration of substrates [S 0] at the transmitter cell, and the concentrations of

promoter sequence [PRx] and RNA polymerase [RNAP] at the receiver cell.
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Figure 71. Decomposition of the transfer function of a biological circuit for diffusion-based molecular

communication into the transfer functions of each functional block.

As explained in the following and graphically shown in Figure 71, the linearity property

of the mathematical expressions of the chemical reactions described in Section 7.2.2 allows

the decomposition of the transfer function H(ω) into the cascade of the transfer functions

of each functional block, as shown in Figure 70. This decomposition has the following

expression:

H(ω) = HA(ω)HB(ω)HC(ω)HD(ω)HE(ω)HF(ω)[S 0]PoPS aux[PRx][RNAP] , (330)

where HX(ω), X ∈ {A, B,C,D, E, F}, are the transfer functions of each functional block,

as function of the frequency ω, detailed in the following. The parameters [S 0], PoPS aux,

[PRx] and [RNAP] are the concentration of substrates at the transmitter cell, and the auxil-

iary input signal, the concentration of promoter sequences and the concentration of RNA

polymerase at the receiver cell, respectively, assumed constant in time for the scope of this

thesis.

In the following, we analytically derive the transfer function of each functional block

shown in Figure 71 from the reaction-based description provided in Section 7.2.2. Subse-

quently, we provide an approximation Ĥ(ω) of the transfer function of the biological circuit

through considerations on the differences in the time scales of the chemical reactions of dif-

ferent functional blocks. Finally, starting from the expression of the approximated transfer

function Ĥ(ω) of the biological circuit, we provide analytical expressions for the attenua-

tion and delay experienced by an information signal through the biological circuit.
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7.3.1 Functional Block Transfer Functions

The transfer function of each functional block, with reference to Figure 71, is analytically

derived by applying the Classical Chemical Kinetic (CCK) modeling [107] to the reaction-

based description provided for each block in Section 7.2.2.

The CCK model of the Signaling Enzyme Expression is expressed through the fol-

lowing Reaction-Rate Equation (RRE), which analytically models the chemical reactions

in (321) and (322):

d[E](t)

dt
= npEkEPoPS in(t) − kdE

[E](t) , (331)

where [E](t) and PoPS in(t) are the concentration of produced enzymes inside the transmit-

ter cell and the input signal, respectively, as functions of the time t. By applying the Fourier

transform [51] to (331), we obtain the following:

jω[E](ω) = npEkEPoPSin(ω) + kdE
[E](ω) , (332)

As a consequence, the transfer function HA(ω) of the signaling enzyme expression func-

tional block is derived by solving (332) with respect to the concentration of produced en-

zymes [E](ω) as function of the PoPSin(ω), expressed as

HA(ω) =
npEkE

jω + kdE

, (333)

where npE, kE, and kdE
are the number of enzymes produced per reaction, the enzyme

expression rate, and the enzyme degradation rate, respectively.

The Signaling Molecule Production is expressed through the following two RREs,

which analytically model the chemical reactions in (323):

d[CS ](t)

dt
= kS 1

[E](t)[S 0] − kS −1
[CS ](t) − kS 2

[CS ](t)

d[S ]T x(t)

dt
= kS 2

[CS ](t) , (334)

where [CS ](t), [E](t), and [S ]T x(t) are the concentration of formed complexes, produced en-

zymes and produced signaling molecules inside the transmitter cell, respectively, as func-

tions of the time t, and [S 0] is the concentration of the substrates, assumed constant in time.
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By applying the Fourier transform [51] to (334) and by substituting the first expression in

the second expression, we obtain

jω[S]Tx(ω) =
kS 1

kS −1
+ kS 2

+ jω
[S 0][E](ω) . (335)

Starting from (335), by expressing the concentration of produced signaling molecules

[S]Tx(ω) as function of the produced enzymes [E](ω) and the frequency ω, we derive the

expression of the transfer function HB(ω) of the signaling molecule production functional

block as follows:

HB(ω) =
kS 1

ω{ j(kS −1
+ kS 2

) − ω} , (336)

where kS 1
, kS −1

, and kS 2
are the complex formation rate, the complex dissociation rate, and

the signaling molecule production rate, respectively.

The Diffusion Process functional block is expressed through the Inhomogeneous Dif-

fusion Equation, which is based on the diffusion equation expression in (324), as follows:

∂[S ](r, t)

∂t
= D∇2[S ](r, t) +

d[S ]T x(t)

dt
δ(r) , (337)

where [S ](r, t) and
d[S ]T x(t)

dt
are the concentration of signaling molecules present at distance r

from the transmitter and the first time derivative of the concentration of signaling molecules

at the transmitter, respectively, as function of the time t. δ(r) is a Dirac delta centered at

the transmitter location and D is the diffusion coefficient. The solution of (337) in terms

of Fourier transform [51] of the concentration of signaling molecules [S]Rx(ω) at the re-

ceiver, located at a distance rRx from the transmitter, as function of the produced signaling

molecules [S]Tx(ω), is as follows [86]:

[S]Rx(ω) =
e−(1+ j)

√
ω

2D
rRx

πDrRx

jω[S]Tx(ω) . (338)

As a consequence, the expression of the transfer function HC(ω) of the diffusion process

functional block is as follows:

HC(ω) = jω
e−(1+ j)

√
ω

2D rRx

πDrRx

, (339)

192



where D and rRx are the diffusion coefficient and the distance of the receiver from the

transmitter, respectively.

The CCK model of the Receptor Activator Expression is expressed through the fol-

lowing RRE, which analytically models the chemical reactions in (325) and (322):

d[R](t)

dt
= npRkRPoPS aux − kdR

[R](t) , (340)

where [R](t) and PoPS aux are the concentration of receptors inside the receiver cell as func-

tions of the time t and the PoPS signal that controls the receptor expression, respectively.

Since we assume that the auxiliary input signal PoPS aux is constant in time, the resulting

concentration of receptors inside the receiver cell is also constant in time. By solving (340),

the expression of the transfer function HD(ω) of the diffusion process functional block is as

follows:

HD(ω) =
npRkR

kdR

, (341)

where npR, kR, and kdR
are the number of receptors produced per reaction, the receptor

expression rate, and the receptor degradation rate, respectively.

The Ligand-Receptor Binding has a RRE CCK model which derives from the chemi-

cal reaction expression in (327), and it is as follows:

d[RS ](t)

dt
= kRS [R](t)[S ]Rx(t) − k−RS [RS ](t) , (342)

where [RS ](t), [R](t) and [S ]Rx(t) are the concentration of activator complexes, receptors

and signaling molecules inside the receiver cell, respectively, as functions of the time t.

By applying the Fourier transform [51] to (342), we express the concentration of activator

complexes [RS](ω) as function of [R](ω), [S](ω), and the frequency ω as follows:

jω[RS](ω) = ([R](ω) ∗ [S](ω)) kRS − k−RS [RS](ω) , (343)

where . ∗ . is the convolution operator [51]. As explained above, we assume a constant aux-

iliary input signal PoPS aux is constant in time, which results in a constant concentration of
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receptors inside the receiver cell. As a consequence, the expression of the transfer function

HE(ω) of the ligand-receptor binding functional block is as follows:

HE(ω) =
kRS

jω + k−RS

, (344)

where kRS and k−RS are the ligand-receptor binding and release rates, respectively.

The CCK model of the Output Transcription Activation functional block is expressed

through the RRE, which is derived from the description of the chemical reaction in (328).

This RRE has the following expression:

dPoPS out(t)

dt
= kRx[PRx][RNAP][RS ](t) − k−Rx[RS ](t) , (345)

where PoPS out(t) and [RS ](t) are the biological circuit output PoPS signal and the con-

centration of activator complexes inside the receiver cell, respectively, as functions of the

time t, and [PRx] and [RNAP] are the concentrations of promoter sequences and RNA poly-

merase at the receiver cell, respectively, assumed constant in time. The expression in (342)

is solved in the same way as done for the signaling enzyme expression functional block

in (332). Finally, the expression of the transfer function HF(ω) of the output transcription

activation functional block is as follows:

HF(ω) =
kRx

jω + k−Rx

, (346)

where kRx, and k−Rx are the open complex formation and dissociation rates, respectively.

Since the RRE expression of the functional blocks in (331), (334), (337), (340), (342),

and (342) are Ordinary Differential Equations (ODE), they represent Linear Time-Invariant

systems, whose transfer function solutions can be combined through the formula in (330)

to derive the transfer function H(ω) of a biological circuit for diffusion-based molecular

communication, expressed as

H(ω) =
npEkE

jω + kdE

kS 1
[S 0]

ω{ j(kS −1
+ kS 2

) − ω} jω
e−(1+ j)

√
ω

2D
rRx

πDrRx

npRkR

kdR

PoPS aux·

· kRS

jω + k−RS

kRx

jω + k−Rx

[PRx][RNAP] , (347)
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where npE, kE, and kdE
are the number of enzymes produced per reaction, the enzyme

expression rate, and the enzyme degradation rate, respectively, kS 1
, kS −1

, and kS 2
are the

complex formation rate, the complex dissociation rate, and the signaling molecule pro-

duction rate, respectively, D and rRx are the diffusion coefficient and the distance of the

receiver from the transmitter, respectively, npR, kR, and kdR
are the number of receptors

produced per reaction, the receptor expression rate, and the receptor degradation rate, re-

spectively, PoPS aux is the auxiliary input signal, assumed constant in time, kRS and k−RS

are the ligand-receptor binding and release rates, respectively, and kRx, and k−Rx are the

open complex formation and dissociation rates, respectively. [S 0], [PRx] and [RNAP] are

the concentrations of substrates at the transmitter cell, promoter sequences and RNA poly-

merase at the receiver cell, respectively, assumed constant in time.

7.3.2 Time Scale Approximation

According to [102], the chemical reactions involved in biological circuits have different

time scales. In particular, the chemical reactions described in Section 7.2.2, and modeled

through the transfer function expressions in Section 7.3.1, occur at significantly different

speeds. As experimentally demonstrated in [102], the chemical reactions where a protein is

expressed from the DNA coding sequence and accumulates/propagates in the space, such

as the signaling enzyme expression, the receptor activator expression, and the diffusion

process, are significantly slower than the reactions between two or more molecules for the

formation of complexes, such as in the signaling molecule production, the ligand-receptor

binding and the output transcription activation. Therefore, the former reactions dominate

the dynamic behavior of the circuit, and the transfer functions of the latter reactions can

be approximated with their steady state versions, as shown in Figure 72 and analytically

derived in the following.

As a result, we define Ĥ(ω) as the approximate transfer function of the biological cir-

cuit, derived through considerations on the chemical reaction time scales. The transfer
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Figure 72. Approximation of the decomposition of the transfer function of a biological circuit for

diffusion-based molecular communication.

function Ĥ(ω) is expressed as follows:

Ĥ(ω) = HA(ω)KB(ω)[S 0]HC(ω)HD(ω)PoPS auxKE KF[PRx][RNAP] , (348)

where HA(ω), HC(ω), and HD(ω) are the transfer functions of the signaling enzyme ex-

pression, the receptor activator expression, and the diffusion process, respectively, [S 0],

PoPS aux, [PRx] and [RNAP] are the concentrations of substrates at the transmitter cell, the

auxiliary input, the concentration promoter sequences and the concentration RNA poly-

merase at the receiver cell, respectively, assumed constant in time, KB(ω) is the steady state

transfer function of the signaling molecule production, KE, and KF are the steady state ap-

proximations to constant values of the transfer functions of the ligand-receptor binding and

the output transcription activation, respectively.

The steady state approximation KB(ω) of the Signaling Molecule Production func-

tional block is computed by setting in (334) the first time derivative d[CS ](t)/dt in the

concentration of formed complexes to 0. The solution to (334) becomes as follows:

d[CS ](t)

dt
= 0→ [S]Tx(ω) =

kS 1

jω(kS −1
+ kS 2

)
[S 0][E](ω) . (349)

The steady state transfer function KB(ω) of the signaling molecule production is therefore

given by

KB(ω) =
kS 1

jω(kS −1
+ kS 2

)
, (350)
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where kS 1
, kS −1

, and kS 2
are the complex formation rate, the complex dissociation rate, and

the signaling molecule production rate, respectively.

The steady state approximations of the Ligand-Receptor Binding and the Output

Transcription Activation functional blocks to the constant values KE and KF result from

computing the transfer functions HE(ω) and HF(ω) for a value of the frequency ω = 0,

expressed as

KE =
kRS

k−RS

, KF =
kRX

k−RX

, (351)

which correspond to the solution of (342) and (345) when we set to 0 the time first deriva-

tive d[RS ](t)/dt in the concentration of activator complexes and the time first derivative

dPoPS out(t)/dt in the biological circuit output PoPS signal.

The approximate transfer function Ĥ(ω) of the biological circuit, derived through the

steady state approximations, has the following expression:

Ĥ(ω) = KĤ

e−(1+ j)
√

ω
2D

rRx

jω( jω + kdE
)
, (352)

where the constant KĤ is as follows:

KĤ =
npEkEkS 1

[S 0]npRkRPoPS auxkRS kRx[PRx][RNAP]

(kS −1
+ kS 2

)πDrRxkdR
k−RS k−Rx

, (353)

where all the parameters are the same as in (347).

7.3.3 Attenuation and Delay Expressions

The attenuation and delay experienced by a signal through the biological circuit are analyt-

ically derived from the approximate transfer function Ĥ(ω) expressed in (352),

The attenuation α(ω), as function of the frequency ω, is computed through the recipro-

cal of the absolute value of the approximate transfer function Ĥ(ω) in (352), which has the

following expression:

α(ω) =
1

∣

∣

∣Ĥ(ω)
∣

∣

∣

=

ω
√

ω2 + k2
dE

KĤe−
√

ω
2D

rRx

, (354)

where kdE
is the enzyme degradation rate, D is the diffusion coefficient, rRx is the distance

of the receiver from the transmitter, and KĤ is given in (353).
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The delay ∆(ω), as function of the frequency ω, is computed as the frequency first

derivative of the phase φĤ(ω) of the approximate transfer function Ĥ(ω) in (352). The

phase φĤ(ω) has the following expression

φĤ(ω) = arctan

(

kdE

ω

)

−
√

ω

2D
rRx , (355)

As a consequence, the delay ∆(ω) is expressed as

∆(ω) = −dφĤ(ω)

dω
=

rRxω
2 + 2kdE

√
2Dω + rRxk

2
dE

2
√

2Dω
(

ω2 + k2
dE

) , (356)

where rRx, kdE
, and D are the distance of the receiver from the transmitter, the enzyme

degradation rate, and the diffusion coefficient, respectively.

7.4 Stochastic Model

In this section, we identify the most significant noise sources within a biological circuit for

diffusion-based molecular communication, and we provide a statistical model for each of

these sources in terms of noise-generating random processes. For each statistical model,

we quantify the impact of the generated noise on the biological circuit through the Power

Spectral Density (PSD) parameter at the output of the biological circuit.

As we will prove next, the physical characteristics of the noise sources within the bio-

logical circuit allow to derive, given a constant value PoPS in of the input signal, a frequency

dependent PSD SNout
(ω) of the noise generated at the output of the biological circuit. This

is expressed as follows [66]:

SNout
(ω) = E

[

|F {n(t)}|2
]

, (357)

where the n(t) is the random process as function of the time t that represent the noise at the

output of the biological circuit

The computation of the PSD SNout
(ω) is realized through the statistical modeling of the

noise sources in the biological circuit for diffusion-based molecular communication, which

arise from the discrete nature of the molecules and their interactions. In the following, we
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provide in Section 7.4.1 an analysis of the most significant noise sources that stem from

the randomness inherently present in the chemical reactions underlying a biological circuit,

and we derive closed-form analytical expressions of upper bounds to the PSD SNT x
(ω) of

the noise generated at the transmitter cell and the PSD SNRx
(ω) of the noise generated at

the receiver cell, respectively. Second, in Section 7.4.2, we provide a closed-form ana-

lytical expression of an upper bound to the PSD SNDi f f
(ω) of the noise coming from the

molecule diffusion process, by stemming from our previous results in Section 4.3. Finally,

in Section 7.4.3, we derive the final expression of the PSD SNout
(ω).

7.4.1 Noise in Chemical Reactions

According to the τ-leaping approximate stochastic method [103], a set of chemical reac-

tions can be statistically modeled as follows. Let the vector X(t) = [Xi(t), X2(t), ...XN(t)]′

contain the number of molecules for each species n out of N present in a space, supposed

to be well-stirred and with a volume Ω. The value X(t + τ) at time t + τ is given by the

value X(t) at time t plus the sum over the M reactions undergoing among the N molecule

species of the parameter Pm multiplied by the vector Vm, defined in the following. This is

expressed as follows:

X(t + τ) = X(t) +

M
∑

m=1

PmVm , (358)

where Pm is a realization of the following Poisson counting process:

Pm ∼ Poiss(am(X(t)), τ) , (359)

where am(X(t)) is the rate parameter of the Poisson counting process, and τ is the time

interval in which the counting process realization is computed. The parameter am(X(t)) is

called propensity function of the chemical reaction m, and it corresponds to the probability

that the reaction m occurs in an infinitesimal time interval after time t, given the values

in X(t) of the number of molecules for each species at time t. The propensity function

am(X(t)) for a chemical reaction m of the type considered in this chapter of the Ph.D. thesis
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is computed as follows [99]:

am(X(t)) = cm

∏

Xi∈Rm

Xi(t) (360)

where Rm is the set of reactant species for the chemical reaction m, and cm is computed as

follows:

cm =
km

Ω|Rm |−1
(361)

km is the rate and |Rm| is the number of reactant species of the chemical reaction m, and Ω

is the volume of the space that contains these reactants species.

The value of the time interval τ is chosen so as it is long enough to allow each reaction

from the set of M reactions to occur more than once, but short enough to consider the

propensity functions am(X(t)) constant within τ with negligible error [103]. The vector Vm,

termed stoichiometric vector, is equal to the changes in the number of molecules for each

species that the reaction m operates when it occurs.

According to the Chemical Langevin Equation (CLE) [94] formulation of the stochastic

model expressed in (358), we can rewrite the stochastic model through the RREs expressed

in Section 7.3.1 by adding the noise contribution as a Gaussian Process [94], as detailed in

the following. This latter approach ultimately leads to the expression of the PSD SNi
(ω) of

a noise source i in the biological circuit.

The CLE is expressed as follows [94]:

dXi(t)

dt
=

M
∑

m=1

Vimam(X(t)) +

M
∑

m=1

Vim

√

am(X(t))Γm(t) , (362)

where Xi(t) and Vim are the i-th components of the number of molecules vector X(t) and

the stoichiometric vector Vm, respectively, am(X(t)) is the propensity function for the re-

action m, computed through (360), and Γm(t) is a white noise process for the reaction m,

statistically independent from the white noise processes of other reactions.

The PSD SNi
(ω) of the noise source affecting the i component Xi(t) of the number of

molecules vector X(t) is computed through the expression in (357) where n(t) is substituted
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with Vim

√
am(X(t))Γm(t):

SNi
(ω) = E

[
∣

∣

∣

∣

F
{

Vim

√

am(X(t))Γm(t)
}

∣

∣

∣

∣

2
]

, (363)

where E[.] and F {.} denote the average value and the Fourier transform [51] operators,

respectively.

We apply the following assumptions which allow to derive an analytical expression of

an upper bound S̃Ni
(ω) to the PSD SNi

(ω) of the noise source i:

• We consider the following inequality

∣

∣

∣

∣

F
{

Vim

√

am(X(t))Γm(t)
}

∣

∣

∣

∣

2

≤
∣

∣

∣

∣

F
{

Vim

√

am(X(t))
}

∣

∣

∣

∣

2

∗ |F {Γm(t)}|2 , (364)

which is derived by applying the formula of the Fourier transform of the product

of two functions [51] and the Cauchy-Schwarz inequality [97] to the convolution

integral, denoted by the operator ∗.

• We consider that Γm(t) is a white noise process. By definition, we have the following

results:

|F {Γm(t)}|2 = 1 . (365)

• We consider am(X(t)) to be a constant parameter in time. This is an approximation,

since even in the presence of a constant input signal PoPS in to the biological circuit,

in general the number of molecules contained in the vector X(t) fluctuates as function

of the time as a consequence of the noise coming from previous sources with respect

to the noise source i in the cascade of functional blocks in the biological circuit. Since

we aim at the computation of an upper bound to the PSD SNi
(ω) of the noise source

i, we overestimate the noise contributions by considering all the noise sources within

the biological circuit as uncorrelated through this aforementioned assumption. This

assumption allows to write the following expression:

∣

∣

∣

∣

F
{

Vim

√

am(X(t))
}

∣

∣

∣

∣

2

= V2
imam(X(t))δ(ω) , (366)

where δ(ω) is a Dirac delta as function of the frequency ω.
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As a consequence of these assumptions, the upper bound S̃Ni
(ω) to PSD SNi

(ω) of the noise

source i has the following expression:

S̃Ni
(ω) = V2

imam(X(t)) , (367)

In the following, we express the τ-leaping statistical model in (358) for the two sep-

arate sets of chemical reactions present in the biological circuit for diffusion-based MC,

namely, the chemical reactions in the transmitter cell and the chemical reactions in the re-

ceiver cell, respectively. As detailed in the following, the statistical models of two noise

sources within the biological circuit are in agreement with the particle counting noise and

the ligand-receptor-binding noise that we detailed in our previous work included in Sec-

tion 4.3 and Section 4.5, respectively. Subsequently, for each noise source we derive the

CLE formulation and the expression of the upper bound to the source PSD. Finally, we

compute the PSD SNT x
(ω) of the noise generated at the transmitter cell and the PSD SNRx

(ω)

of the noise generated at the receiver cell, respectively.

7.4.1.1 Transmitter Cell

In the transmitter cell, we take into account the chemical reactions in (321), (322), and (323),

which involve the input signal PoPS in, the number of signaling enzymes E, the number of

complexes Cs, and the number of produced signaling molecules S , as functions of the time

t. We exclude from this model the number of substrates S 0 at the transmitter cell, since it is

assumed constant in time. The τ-leaping statistical model is expressed for the transmitter

cell through (358) where:

X(t) =

[

S Cs E PoPS in

]′
(t) , (368)

the number of reactions M is equal to 5, and the propensity functions am(X(t)) and the

stoichiometric vectors Vm, m = 1, ..., 5, are computed for the transmitter cell reactions

through the expressions in (360) and (361) as follows:

• In the Signaling Enzyme Expression functional block, the propensity function a1(X(t))

and the stoichiometric vector V1 are computed for the transcription and translation
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reaction in (321) as follows:

a1(X(t)) = kEPoPS in(t) , V1 =

[

0 0 npE 0

]′
. (369)

For the enzyme degradation reaction in (322), the propensity function a2(X(t)) and

the stoichiometric vector V2 are as follows:

a2(X(t)) = kdE
E(t) , V2 =

[

0 0 −1 0

]′
. (370)

• In the Signaling Molecule Production functional block, the propensity function

a3(X(t)) and the stoichiometric vector V3 for the formation of complexes CS in (323)

are expressed as

a3(X(t)) =
kS 1

ΩT x

E(t)S 0 , V3 =

[

0 1 −1 0

]′
. (371)

where ΩT x is the volume of the transmitter cell. For the dissociation of complexes

reaction in (323), the propensity function a4(X(t)) and the stoichiometric vector V4

are as follows:

a4(X(t)) = kS −1
CS (t) , V4 =

[

0 −1 1 0

]′
. (372)

For the production of signaling molecules from complexes reaction in (323), the

propensity function a5(X(t)) and the stoichiometric vector V5 are as follows:

a5(X(t)) = kS 2
CS (t) , V5 =

[

1 −1 0 0

]′
. (373)

By isolating the contribution of the noise coming from the complex CS formation in the

signaling molecule production functional block, we can derive the following expression:

CS (t + τ) = CS (t) + P3 − P4 , P3 ∼ Poiss(a3(X(t)), τ)

P4 ∼ Poiss(a4(X(t)), τ) , (374)

where, according to the RRE expression in (334), the number of signaling complexes CS

is proportional to the time first derivative dS T x(t)/dt in the number of produced signaling
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molecules at the transmitter cell. The expression in (374), where the production rate of

signaling molecules is modeled as a double inhomogeneous Poisson process, is in agree-

ment with the stochastic model of the particle sampling noise that we derived in our

previous work included in Section 4.5.

The CLE formulation of the noise generated by the Signaling Enzyme Expression

functional block is derived from (362) and (370) as follows:

dE(t)

dt
= npEkEPoPS in − kdE

E(t) + 2npE

√

kEPoPS inΓ1(t) , (375)

where Γ1(t) is a white Gaussian noise [66], and the coefficient 2 takes into account the

steady state noise generation from both the transcription and translation reaction and the

enzyme degradation reaction, in agreement with [105]. The upper-bound PSD S̃N1
(ω) of

the noise source of the signaling enzyme expression, as defined in (367), is equal to the

following:

S̃N1
(ω) = 4np2

EkEPoPS in , (376)

where npE is the number of enzymes produced per reaction, kE is the enzyme expres-

sion rate and PoPS in is the constant input signal, respectively. Inspired by the theoretical

framework in [105], we compute the PSD SNA
(ω) of the noise at the output of the signaling

enzyme expression functional block as follows:

SNA
(ω) =

S̃N1
(ω)

ω2 + k2
dE

= 4
PoPS in

kE

|HA(ω)|2 , (377)

where we applied the expression of HA(ω) defined in (333).

The CLE formulation of the noise generated by the Signaling Molecule Production

functional block is derived from (362) and (371), and through the Michaelis-Menten ap-

proximation of the RRE of the enzymatic reaction, as explained in [2]. The CLE expression

is as follows:

dS T x(t)

dt
=

kS 1
[S 0]

[S 0] + KM

E(t) + 2

√

kS 1
[S 0]

[S 0] + KM

E(t)Γ2(t) , (378)

where [S 0] = S 0/ΩT x, Γ2(t) is a white Gaussian noise [66], and the coefficient 2 takes into

account the steady state noise generation from both the signaling complex formation and
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the signaling complex dissociation reaction, respectively, in agreement with [105]. The

coefficient KM is the Michaelis-Menten constant [2], which has the following value:

KM =
kS −1
+ kS 2

kS 1

, (379)

where kS 1
, kS −1

, and kS 2
are the complex formation rate, the complex dissociation rate,

and the signaling molecule production rate, respectively. The upper-bound PSD S̃N2
(ω) of

the noise source of the signaling enzyme expression, as defined in (367), is equal to the

following:

S̃N2
(ω) = 4

kS 1
[S 0]

[S 0] + KM

PoPS inHA(0) , (380)

where we computed the value of E(t) by multiplying the constant input signal PoPS in by

the transfer function HA(ω) of the signaling enzyme expression functional block computed

at frequency ω = 0. Inspired by the theoretical framework in [105], we compute the PSD

SNB
(ω) of the noise at the output of the signaling molecule production functional block as

follows:

SNB
(ω) = 4

kS 1
[S 0]

[S 0] + KM

PoPS in [HA(ω)]ω=0

1

|ω|2
. (381)

Finally, the upper bounds to the PSD SNT x
(ω) of the noise generated at the transmitter

cell is equal to the sum of the PSD at the output of the signaling enzyme expression and

signaling molecule production functional blocks, respectively, multiplied by the squared

absolute value ‖.‖2 of the transfer functions of the functional blocks to reach the output of

the transmitter cell. This results in the following:

SNT x
(ω) = SNA

(ω) |HB(ω)|2 + SNB
(ω) , (382)

where SNA
(ω), HB(ω), and SNB

(ω) are computed through (377), (336), and (381), respec-

tively.

7.4.1.2 Receiver Cell

In the receiver cell, we take into account the chemical reactions in (325), (327), and (328),

which involve the signal PoPS aux, the number of receptors R, the number of signaling
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molecules at the receiver S Rx, the number of activator complexes RS , and the output signal

PoPS out, as functions of the time t. We exclude from this model the number of RNAP

molecules and the number of promoter sequences PRx at the receiver cells, since we assume

them constant in time. The τ-leaping statistical model is expressed for the transmitter cell

through (358) where:

X(t) =

[

PoPS out RS S R PoPS aux

]′
(t) , (383)

the number of reactions M is equal to 5, and the propensity functions am(X(t)) and the

stoichiometric vectors Vm, m = 6, ..., 11, are computed for the transmitter cell reactions

through the expressions in (360) and (361) as follows:

• In the Receptor Activator Expression functional block, the propensity function

a6(X(t)) and the stoichiometric vector V6 are computed for the transcription and

translation reaction in (325) as follows:

a6(X(t)) = kRPoPS aux(t) , V6 =

[

0 0 0 npR 0

]′
. (384)

For the receptor degradation reaction in (326), the propensity function a7(X(t)) and

the stoichiometric vector V7 are as follows:

a7(X(t)) = kdR
R(t) , V7 =

[

0 0 0 −1 0

]′
. (385)

• In the Ligand-Receptor Binding functional block, the propensity function a8(X(t))

and the stoichiometric vector V8 for the formation of activator complexes RS in (323)

are expressed as

a8(X(t)) =
kRS

ΩRx

R(t)S (t) , V8 =

[

0 1 −1 −1 0

]′
. (386)

where ΩT x is the volume of the transmitter cell. For the dissociation of activator

complexes reaction in (327), the propensity function a8(X(t)) and the stoichiometric

vector V8 are as follows:

a9(X(t)) = k−RS RS (t) , V9 =

[

0 −1 1 1 0

]′
. (387)
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• For the Output Transcription Activation functional block, the propensity function

a10(X(t)) and the stoichiometric vector V10 are as follows:

a10(X(t)) =
kRx

Ω2
Rx

PRxRNAPRS (t) , V10 =

[

1 −1 0 0 0

]′
. (388)

For the dissociation of open complexes dissociation reaction in (328), the propensity func-

tion a11(X(t)) and the stoichiometric vector V11 are as follows:

a11(X(t)) = k−RxPoPS out(t) , V11 =

[

−1 1 0 0 0

]′
. (389)

By isolating the contribution to the receiver cell noise coming from the reaction of

formation and dissociation of activator complexes RS within the ligand-receptor binding

functional block, we can derive the following expression:

RS (t + τ) = RS (t) + P8 − P9 , P8 ∼ Poiss(a8(X(t)), τ)

P9 ∼ Poiss(a9(X(t)), τ) , (390)

The expression in (390), whose general interpretation in terms of Chemical Master Equa-

tion (CME) [99] describes a Markov jump process [66], is in agreement with the ligand-

receptor-binding noise that we described in our previous work included in Section 4.5.

The CLE formulation of the noise generated by the Receptor Activator Expression

functional block is derived from (362) and (384) as follows:

dR(t)

dt
= npRkRPoPS aux − kdR

R(t) + 2
√

npRkRPoPS auxΓ3(t) , (391)

where Γ3(t) is a white Gaussian noise [66], and the coefficient 2 takes into account the

steady state noise generation from both the transcription and translation reaction and the

receptor degradation reaction, in agreement with [105]. The upper-bound PSD S̃N3
(ω) of

the noise source of the signaling enzyme expression, as defined in (367), is equal to the

following:

S̃N3
(ω) = 4np2

RkRPoPS aux , (392)
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where npR is the number of receptors produced per reaction, kR is the receptor expression

rate, and PoPS aux is the auxiliary input signal, assumed constant in time, respectively.

Inspired by the theoretical framework in [105], we compute the PSD SND
(ω) of the noise

at the output of the receptor activator expression functional block as follows:

SND
(ω) =

S̃N3
(ω)

k2
dR

= 4
PoPS aux

kR

|HD(ω)|2 , (393)

where we applied the expression of HD(ω) defined in (341).

The CLE formulation of the noise generated by the Ligand-Receptor Binding func-

tional block is derived from (362) and (386) as follows:

dRS (t)

dt
= kRS [R](t)S Rx(t) − k−RS RS (t) + 2

√

kRS [R](t)S Rx(t)Γ4(t) , (394)

where [R](t) = R(t)/ΩRx, Γ4(t) is a white Gaussian noise [66], and the coefficient 2 takes

into account the steady state noise generation from both the formation and the dissociation

of activator complexes RS , in agreement with [105]. The upper-bound PSD S̃N4
(ω) of

the noise source of the signaling enzyme expression, as defined in (367), is equal to the

following:

S̃N4
(ω) = 4kRS PoPS auxHD(ω)PoPS in [HA(ω)HB(ω)HC(ω)]ω=0 , (395)

where kRS is the number of receptors produced per reaction, PoPS aux is the auxiliary input

signal, assumed constant in time, and HD(ω) is expressed in (341), respectively. We com-

puted the value of S Rx(t) by multiplying the constant input signal PoPS in by the product of

the transfer function HA(ω), and HB(ω) and HC(ω), computed at frequency ω = 0. Inspired

by the theoretical framework in [105], we compute the PSD SNE
(ω) of the noise at the

output of the ligand-receptor binding functional block as follows:

SNE
(ω) =

S̃N4
(ω)

ω2 + k2
−RS

= 4
PoPS inPoPS aux

kRS

[HA(ω)HB(ω)HC(ω)]ω=0 HD(ω) |HE(ω)|2 ,

(396)

where we applied the expression of HE(ω) defined in (351).
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The CLE formulation of the noise generated by the Output Transcription Activation

functional block is derived from (362) and (388) as follows:

dPoPS out(t)

dt
= kRx[PRx][RNAP]RS (t)−k−RxRS (t)+2

√

kRx[PRx][RNAP]RS (t)Γ5(t) , (397)

where [PRx][RNAP] = PRxRNAP/Ω2
Rx

, Γ5(t) is a white Gaussian noise [66], and the co-

efficient 2 takes into account the steady state noise generation from both the open com-

plex formation and the open complex degradation reactions, in agreement with [105]. The

upper-bound PSD S̃N5
(ω) of the noise source of the output transcription activation, as de-

fined in (367), is equal to the following:

SN5
(ω) = 4kRx[PRx][RNAP]PoPS auxHD(ω)PoPS in [HA(ω)HB(ω)HC(ω)HE(ω)]ω=0 ,

(398)

where kRx is the open complex formation rate, [PRx] and [RNAP] are the constant concen-

trations of promoter sequences and RNA polymerase at the receiver cell, respectively. We

computed the value of RS (t) by multiplying the auxiliary input signal PoPS aux, assumed

constant in time, by HD(ω) and by multiplying the constant input signal PoPS in by the

transfer function HA(ω), HB(ω), HC(ω), and HE(ω) computed at frequency ω = 0. Inspired

by the theoretical framework in [105], we compute the PSD SNF
(ω) of the noise at the

output of the output transcription activation functional block as follows:

SNF
(ω) =

S̃N5
(ω)

ω2 + k2
−Rx

= 4
PoPS inPoPS aux[PRx][RNAP]

kRx

·

· [HA(ω)HB(ω)HC(ω)HE(ω)]ω=0 HD(ω) |HF(ω)|2 , (399)

where we applied the expression of HF(ω) defined in (346).

Finally, the upper bound to the PSD SNRx
(ω) of the noise generated at the receiver cell

is equal to the sum of the PSD at the output of the receptor activator expression, ligand-

receptor binding and output transcription activation functional blocks, respectively, multi-

plied by the squared absolute value ‖.‖2 of the transfer functions of the functional blocks to
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reach the output of the receiver cell. This results in the following:

SNRx
(ω) = SND

(ω) |HE(ω)|2 |HF(ω)|2 + SNE
(ω) |HF(ω)|2 + SNF

(ω) , (400)

where SND
(ω), HE(ω), HF(ω), SNE

(ω), and SNF
(ω) are computed through (393), (351),

(346), (396), and (399), respectively.

7.4.2 Noise in Diffusion

According to our results included in Section 4.3, the noise source that stems from the diffu-

sion process, termed particle counting noise, can be stochastically modeled by considering

the number S Rx(t) of signaling molecules in the receiver cell at time t as the realization

within the receiver volume ΩRx of a spatial inhomogeneous Poisson counting process [66]

whose rate is the concentration [S ]rx(t) of molecules in the receiver cell at time t, computed

as if no noise were affecting the diffusion process. This stochastic model is expressed as

follows:

S Rx(t) ∼ Poiss([S ]rx(t),ΩRx) . (401)

According to the Central Limit Theorem [66], under the assumption to have a suffi-

ciently high value for the receiver volume ΩRx, the Poisson distribution in (401) can be ap-

proximated as a Gaussian distribution with average value and variance equal to [S ]rx(t)ΩRx.

This approximation is expressed as follows:

S Rx(t) ≃ [S ]rx(t)ΩRx +
√

[S ]rx(t)ΩRxΓ , (402)

where Γ is a white Gaussian noise [66].

PSD SNDi f f
(ω) of the noise source at the diffusion process affecting the biological circuit

is computed through the following formula [66]:

SNDi f f
(ω) = E

[
∣

∣

∣

∣

F
{ √

[S ]rx(t)ΩRxΓ
}

∣

∣

∣

∣

2
]

, (403)

where E[.] and F {.} denote the average value and the Fourier transform [51] operators,

respectively.
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Under the assumption to have a constant value for the input signal PoPS in, by consid-

ering that the previous noise sources in the biological circuit have a negligible effect on the

concentration [S ]rx(t) of molecules in the receiver cell, as function of the time t, and by

taking into account the expressions in (364) and in (365), we can derive an upper bound

S̃NDi f f
(ω) to the PSD of the noise source at the diffusion process. This upper bound is

expressed as

S̃NDi f f
(ω) = PoPS inHA(0)HB(0)HC(0)ΩRx , (404)

where we computed the value of the concentration [S ]rx(t) of molecules in the receiver cell

by multiplying the constant input signal PoPS in by the values of the transfer function HA(ω)

of the signaling enzyme expression (333), the transfer function HB(ω) of the signaling

molecule production (336), and the transfer function HC(ω) of the diffusion process (339)

functional blocks at the frequency value ω = 0.

7.4.3 Output Noise PSD Expression

The PSD SNout
(ω) of the noise generated at the output of the biological circuit is computed

through the sum of the following terms: i) the upper bounds to the PSD SNT x
(ω) of the

noise generated at the transmitter cell multiplied by the cascade of the squared absolute

values of the transfer functions of the functional blocks between the transmitter and the

output of the biological circuit, namely, HC(ω)HE(ω)HF(ω); ii) the upper bound S̃NDi f f
(ω)

to the PSD of the noise source at the diffusion process multiplied by the cascade of the

squared absolute values of the transfer functions of the functional blocks in the transmitter

cell, namely, HE(ω)HF(ω); iii) the upper bound to the PSD SNRx
(ω) of the noise generated

at the receiver cell. This is expressed as follows:

SNout
(ω) =SNT x

(ω) |HC(ω)HD(ω)HE(ω)HF(ω)|2 +

S̃NDi f f
(ω) |HD(ω)HE(ω)HF(ω)|2 + SNRx

(ω) , (405)

whereSNT x
(ω), HC(ω), HD(ω), HE(ω), HF(ω), S̃NDi f f

(ω), andSNRx
(ω) are expressed in (382),

(339), (341), (351), (346), (404), and (400), respectively.
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7.5 Numerical Results

In this section, we present some preliminary numerical results obtained through the evalua-

tion of the expressions of the deterministic model and the stochastic model of the biological

circuit for diffusion-based MC analyzed in this chapter of the Ph.D. thesis.

In the synthetic biology and biological circuit engineering literature, there are currently

very few works that focus on the joint experimental determination of the biochemical pa-

rameters of a complete biological circuit implementation, such as the parameters we intro-

duced in Section 7.2.2. Most of the results presented in the literature focus on the study

of one specific element or biochemical reaction rather than a complete architecture. As a

consequence, the values of the biochemical parameters used for our numerical results are

taken from a diverse pool of papers and, although they satisfy the goal of having a realistic

order of magnitude, they do not necessarily capture the values that they would have in a

real implementation of the biological circuit we analyze here.

For the numerical results of both the deterministic model and the stochastic model, pre-

sented in the following, we applied the following parameter values from the LuxR-LuxI

quorum sensing system [108] in E. coli bacteria, which has been already used for the en-

gineering of a biological circuit for diffusion-based molecular communication, as in [21].

The rates of signaling enzyme and receptor activator translation equal to the rate of Lux

protein translation from [109], namely, kE = kR = 9.6x10−1 min−1, the rate of signal-

ing enzyme degradation equal to the degradation rate of LuxI protein in [109], namely,

kdE
= 1.67x10−2 min−1, the rate of receptor degradation equal to the degradation rate of

LuxR protein in [109], namely, kdR
= 2.31x10−2 min−1, the Michaelis-Menten constant,

defined in (379), equal to the constant computed for the hexanol homoserine lactone syn-

thase activity in [110], namely, KM = 130 µM, the complex formation rate from the binding

of the signaling enzymes and the substrates equal to the forward LuxI-substrates reaction

for autoinducer molecule production in [111], namely, kS 1
= 0.6 molecules−1 min−1, the

binding and unbinding rates between receptors and signaling molecules equal to the values
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in [109], namely, kRS = 6x10−4 molecules−1 min−1 and k−RS = 2x10−2 min−1, respectively,

and the rate of open complex formation upon output transcription activation and open com-

plex dissociation at the receiver as in [109], namely, kRx = 10−2 molecules−1 min−1 and

k−Rx = 4x10−2 min−1. The diffusion coefficient D ∼ 60x10−9 m2min−1 is set to the diffusion

coefficient of molecules diffusing in a biological environment (cellular cytoplasm, [58]).

We set the volume of the transmitter and receiver volume ΩT x = ΩRx to 1 µm2, the num-

ber of substrates at the transmitter cell S 0 = 100, the auxiliary input signal PoPS aux = 1,

the number of promoter sequences and RNA polymerases at the receiver cell PRx = 1 and

RNAP = 100, respectively.
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Figure 73. Attenuation of the biological circuit for diffusion-based MC as function of the receiver dis-

tance from the transmitter rRx and the frequency ω.

In Figure 73 and Figure 74 we show the numerical results for the attenuationα and delay

∆ experienced by a signal through the biological circuit, computed by using the expressions

in (354) and (356), respectively. The value of the receiver distance from the transmitter rRx

ranges from 5 to 500 µm, while the range of observed frequency ω values is between 0 and

1 Hz. The values for the attenuation α of the biological circuit, shown in dB, range from

a minimum of 0 at the minimum distance rRx and frequency ω equal to 0, to a maximum
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Figure 74. Delay of the biological circuit for diffusion-based MC as function of the receiver distance

from the transmitter rRx and the frequency ω.

of 117.8 dB for a distance rRx of 50 µm and frequency ω equal to 1 Hz with a monotonic

increasing trend both when increasing the distance rRx and the frequency ω. The values for

the delay ∆ range from a minimum of 0 min at the minimum distance rRx and maximum

frequency ω equal to 1 Hz, to a maximum of 1.4 min at a distance rRx of 50 µm and for a

frequency ω equal to 0. The curves of the delay ∆ always show a monotonically decreasing

trend as function of the frequency ω, more pronounced for higher values of the distance

rRx.

In Figure 75, we show the values of the output noise PSD SNout
(ω) computed through

the expression in (405) for a range of the frequency ω between 1 and 2 Hz, and for an input

PoPS in, assumed constant in time, ranging from a value of 0 to a maximum of 1 polymerase

per second. The minimum PSD SNout
(ω) close to 0 is achieved for a frequency ω equal to

2 Hz and for a PoPS in equal to 0 polymerase per second, and this result clearly shows

the direct dependency between the input signal PoPS in and the magnitude of the noise

produced within the biological circuit. The maximum PSD SNout
(ω), close to 1 (polymerase

per second)2, is achieved for a frequency ω equal to 1 Hz and the maximum considered
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Figure 75. PSD of the output noise from the biological circuit for diffusion-based MC as function of the

frequency ω and the input signal PoPS in.

value for the input signal PoPS in of 1 polymerase per second. This latter result shows that

it is possible under some conditions to have an output noise from the biological circuit with

a magnitude comparable to the input signal. The curves of the output noise PSD SNout
(ω)

show a quasi-constant trend as function of the input PoPS in for high frequency ω, while

for low values of the frequency, the curves are monotonically increasing according to the

value of the input PoPS in.

7.6 Conclusion

In this chapter of the Ph.D. thesis, deterministic and stochastic communication engineer-

ing models are presented for a diffusion-based molecular communication system design

based on biological circuits. Biological circuits are defined as genetic regulatory networks

embedded in a biological cell, and they are envisioned to allow the future engineering of

complete biological nanomachines. Some recent literature can be found on the analytical

modeling of biological circuits, but with no specific mention to diffusion-based cell-to-

cell communication through molecule exchange, for which only a biological description is
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provided in some specific works.

In our work, first, a biological circuit for diffusion-based molecular communication is

identified through a minimal subset of elements. Then, a mathematical model is detailed

in terms of transfer functions, from which analytical expressions are derived for the atten-

uation and the delay experienced by an information signal through the biological circuits.

Finally, the most significant noise sources within the biological circuit are identified, and

statistical models for these sources are provided in terms of noise-generating random pro-

cesses. For each statistical model, the impact of the generated noise on the biological

circuit is quantified through the Power Spectral Density (PSD) parameter at the output of

the biological circuit.

Numerical results for the attenuation and delay parameters show similar trends as in

the physical end-to-end modeling presented in Chapter 3, while the general noise sources

detailed in Chapter 4 find in this work a further confirmation of their validity through their

stochastic modeling in a biological environment.
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CHAPTER 8

CONCLUSION

Molecular communication (MC) is a promising bio-inspired paradigm for the exchange of

information among autonomous intelligent nanotechnology-enabled devices, or nanoma-

chines. MC realizes the exchange of information through the transmission, propagation,

and reception of molecules, and it is proposed as a feasible solution for nanonetworks.

This idea is motivated by the observation of nature, where MC is successfully adopted by

cells for intracellular and intercellular communication. Thanks to the feasibility of MC

in biological environments, MC-based nanonetworks have the potential to be the enabling

technology for a wide range of applications, mostly in the biomedical, but also in the in-

dustrial and surveillance fields.

The focus of this Ph.D. thesis is on diffusion-based MC, where the propagation of

information-bearing molecules between a transmitter and a receiver is realized through free

diffusion in a fluid. This choice is motivated by a preliminary analysis, which identifies the

diffusion-based as the most fundamental type of MC among different options suggested

in the literature. Since there are profound differences between the diffusion-based MC

paradigm and classical electromagnetic communication paradigms, the classical commu-

nication engineering models and techniques are not directly applicable for the study and

the design of diffusion-based MC systems. As a consequence, there is a need of to build a

complete understanding of the diffusion-based MC paradigm from the ground up.

The objectives of the research presented in this thesis are to analyze the diffusion-based

MC paradigm from the point of view of communication engineering and information the-

ory, and to provide solutions to the modeling and design of MC-based nanonetworks. First,

a physical end-to-end model is realized to study each component in diffusion-based MC, as

well as the overall system, in terms of gain and delay. Second, the noise sources affecting

217



the communication of information through diffusion-based MC are identified and statisti-

cally modeled. Third, upper and lower bounds to the capacity are derived to evaluate the

information-theoretic performance of the diffusion-based MC paradigm. Fourth, a stochas-

tic analysis of the interference when multiple transmitters access the diffusion-based MC

channel simultaneously is provided. The main contributions included in each chapter of

this Ph.D. thesis are summarized in the following.

Chapter 3 is devoted to the physical end-to-end model of diffusion-based MC. In par-

ticular, the main contributions are as follows:

• We provide a basic bio-inspired diffusion-based MC system design, which aims at an

interpretation of the diffusion-based MC in terms three processes, namely, molecule

emission, molecule propagation, and molecule reception.

• We study each process of the designed system by modeling the underlying physical

phenomena with an equivalent electrical circuit model, for which it is possible to

derive an input-output transfer function with a closed-form expression.

• We analyze the transfer function of each process, as well as their cascade that com-

poses the overall system, in terms of gain and delay experienced by an information

signal exchanged through the designed diffusion-based MC system, as function of

the signal frequency components.

Through the results from this physical end-to-end model we learn that the gains of the

molecule emission, molecule propagation, and molecule reception in a diffusion-based MC

have non-linear curves as function of the frequency components of the information signal

exchanged through the system, and as function of the distance range. Non-linear curves

as function of the frequency components are also shown for the delays of the molecule re-

ception and propagation processes. Moreover, the delay of the propagation process shows

non-linear curves also as function of the distance range, but only for low-frequency com-

ponents.
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Chapter 4 contains the analysis of the noises affecting a diffusion-based MC system. In

particular, the main contributions are as follows:

• We identify three noise sources affecting the diffusion-based MC, namely, the sam-

pling noise, the counting noise, and the ligand-receptor-binding noise, which are

related to the transmitter, the signal propagation in the channel, and the receiver,

respectively.

• We provide for each noise source a physical model based on a mathematical analysis

of the physical processes that generate the noise. Each physical model is character-

ized by an algorithm, summarized through a block scheme, which provides a means

to simulate the generation of a particular noise in diffusion-based MC.

• We analytically derive for each noise source a stochastic model that aims at capturing

the underlying physical processes through statistical parameters. Each stochastic

model summarizes the generation of a particular diffusion-based MC noise using

random processes and their associated parameters. We evaluated each stochastic

model ability to capture the behavior of the physical processes that generate the noise

through results of simulations based on the corresponding physical model.

Through the results of this noise analysis we learn that the diffusion-based MC noises

arise from the discrete nature of the signaling molecules used for the transmission of the

information signals, from the randomness of their Brownian motion propagation, and from

the stochasticity of the chemical reactions in which they are involved. As a result of the

peculiarities of these noise-generating processes, the statistical parameters of the noises

in a diffusion-based MC system are functions of the amplitude of the information signal

exchanged between the transmitter and the receiver.

Chapter 5 is focused on the capacity analysis of the diffusion-based MC paradigm.

This analysis of performed by accounting for two main characteristics of the diffusion-

based MC, which make impossible to find a closed-form analytical expression for the true
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capacity. As a consequence, in the attempt to provide an analytical closed-form expres-

sion that relates the performance of a diffusion-based MC system to physical parameters,

the contributions included in this chapter are based on some simplifying assumptions. In

particular, these contributions are as follows:

• We apply solutions from statistical mechanics and equilibrium thermodynamics to

find a relationship between thermodynamic entropy and information entropy in a

diffusion-based MC system. On the basis of this relationship, we derive a closed-

form expression of an upper bound to the true capacity in diffusion-based MC, as a

function of the parameters from statistical mechanics. This preliminary expression

is derived through the simplifying assumption of having a molecular system in equi-

librium, and the dynamic effects of the diffusion-based channel are not taken into

account.

• We provide lower-bound expression to the true information capacity of a diffusion-

based MC system, by taking into account both the dynamic effects of the channel

and the signal-dependent noise, termed molecular noise. Through a simplification

of the molecule diffusion into the composition of two main processes, namely, the

Fick’s diffusion and the particle location displacement, we analytically derive a ca-

pacity lower-bound expression independent from any specific coding scheme, and

expressed as a function of the average transmitted power.

Through the results of the capacity analysis we learn how the performance of a diffusion-

based MC system depend on the system bandwidth, the distance range, and the average

transmitted power. In particular, capacity values of a few [Kbit/sec] can be reached within

a distance of tenth of µm between the transmitter and the receiver, and for an average

transmitted power around 1 pW (Note that this power value should not be compared to the

transmitted power values used for electrical devices, since the transmitted power in a MC

system is a thermodynamic quantity).
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Chapter 6 contains an analysis of the interference in diffusion-based MC systems. In

particular, the main contributions are as follows:

• We jointly analyze the InterSymbol Interference (ISI) and the Co-Channel Interfer-

ence (CCI) for a diffusion-based MC system having a limited number of transmitters

in predetermined locations. We derive simple closed-form formulas for both the ISI

and the CCI based on the attenuation and the dispersion of information signals en-

coded through Gaussian-pulses.

• We provide a statistical-physical modeling of the interference through an analyti-

cal expression of the Power Spectral Density (PSD) probability distribution of the

received signal, independent from the transmitter number, specific transmitter loca-

tions or coding schemes. This PSD analytical expression is evaluated against the

outcomes of a simulation environment.

Through the results of the interference analysis, we learn that the ISI and CCI of a Gaussian-

pulse-encoded information signal have lower values when this signal is modulated by a

carrier oscillation. Moreover, the higher is the frequency of the carrier oscillation, the

lower are the values of the ISI and CCI. Through the statistical-physical modeling of the

interference, we derive the PSD probability distribution of a received signal in a diffusion-

based MC system as function of physical parameters, such as the diffusion coefficient, the

transmitter density, and the average power of molecule emissions. As apparent from the

PDF of the received PSD, the power of low frequency components of the received signal

tends to a uniform distribution over the range of considered values, while the power of

higher frequencies tends with more probability to lower values.

Chapter 7 is focused on the analysis of a diffusion-based MC system design built upon

genetically-engineered biological circuits. In particular, the main contributions are as fol-

lows:
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• We identify a minimal subset of elements necessary to realize diffusion-based molec-

ular communication between biological cells. These elements are compliant with the

current biological circuit standardization efforts where the units to measure the in-

put and the output are defined as Polymerases Per Second (PoPS). We provide a

description of the biological mechanisms underlying each element, which is then

characterized in terms of chemical reactions.

• We mathematically analyze the elements of the biological circuit and provide deter-

ministic models in terms of transfer functions. The cascade of these transfer func-

tions allow to derive analytical closed-form expressions for the attenuation and delay

experienced by an information signal through the biological circuit.

• We provide a stochastic model for each noise source within the biological circuit by

stemming from the noise analysis in biochemical reactions. For each noise source,

we quantify the impact of the generated noise in terms of Power Spectral Density

(PSD) at the output of the biological circuit.

Through this analysis of a diffusion-based MC design, we learn that the engineering of bio-

logical circuits is a key technology for the implementation of this communication paradigm

in future biological nanomachines. Moreover, in this chapter we provide a proof-of-concept

of the modeling techniques and results presented for the general diffusion-based MC case

in Chapter 3 and Chapter 4.

In the future, we plan to extend our work on molecular communication in several direc-

tions, including 1) an analytical framework to assess the energy consumptions for transmit-

ting, receiving, and processing information in diffusion-based MC systems, with reference

to the energy modeling in the biochemical reactions involved in the cellular bio-signaling;

2) the study of addressing mechanisms in diffusion-based MC systems; 3) the research on

the notion of message “packet” within the diffusion-based MC paradigm; 3) the study of

other molecular communication architectures, e.g., advection-based and walkway-based,
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and the definition of end-to-end physical models, the analysis of the related noise sources,

information capacity, interference, energy consumption, and addressing techniques; 4) the

study of more specific designs for molecular communication, stemming from the engi-

neering of synthetic biological circuits for the realization of biological nanomachines; 5)

the design of cooperative systems based on the molecular-communication-mediated in-

teraction within swarms of biological nanomachines; 6) the characterization of intrabody

molecular transport networks, such as the gastrointestinal system, the endocrine system, or

the cardiovascular systems, for the realization of molecular communication networks for

future drug-delivery and diagnostic applications.
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CHAPTER 9

APPENDICES

9.1 Particle Binding and Release Rates

The rate k+ of particle binding is defined in chemical kinetics [112] as follows:

k+ = ZFC(Ea) , (406)

where Z is the average collision frequency, Ea is the activation energy of the ligand-receptor

binding and FC(Ea) is the fraction of collisions having a higher energy than the activation

energy. The average collision frequency Z quantifies how frequently a collision occurs

between a particle and an unbound receptor and it is expressed as follows:

Z =< Np >< NR − nb > π(rp + rR)2 < v̄p > , (407)

where cR(t) is the concentration of particles at the receiver, < Np > is the average number

of particles inside the receptor space, < NR − nb > is the average number of unbound

chemical receptors, rp and rR are the radius of a particle and a receptor in the system,

respectively, and < v̄p > is the average velocity of the particles. The fraction FC(Ea)

of collisions having a higher energy than the activation energy is expressed through the

Boltzmann distribution [113] as

FC(Ea) = e
− Ea

kBT , (408)

where Ea is the activation energy, T is the absolute temperature of the system and kB is the

Boltzmann constant. The average collision frequency Z depends on the average velocity

< v̄p > of the particles subject to the Brownian motion and it is known from the kinetic

theory [113] to have the following expression:

< v̄p >=

√

8kBT

πmp

, (409)

where kB is the Boltzmann constant, T is the absolute temperature of the system and mp is

the mass of a particle.
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The rate k− of particle release is defined in transition state theory [114] as follows:

k− =
kBT

h

(

1 − e
− hν

kBT

)

e−
Eθ

RT , (410)

where kB is the Boltzmann constant, T is the absolute temperature of the system, h is the

Planck constant, ν is the vibrational frequency of the bond, Eθ is the unbinding energy at

absolute zero and R is the universal gas constant.
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