
FIXED-ANALYSIS ADAPTIVE-SYNTHESIS FILTER
BANKS

A Thesis
Presented to

The Academic Faculty

by

Clyde Alphonso Lettsome

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2009



FIXED-ANALYSIS ADAPTIVE-SYNTHESIS FILTER
BANKS

Approved by:

Dr. David Anderson,
Committee Chair
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Aaron Lanterman
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Mark J.T. Smith, Advisor
School of Electrical and Computer
Engineering
Purdue University

Dr. Yorai Wardi
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Russell M. Mersereau
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Gail Rosen
Electrical and Computer Engineering
Drexel University

Date Approved: 31 March 2009



To my parents, Whitmore and Elterah Lettsome.

iii



ACKNOWLEDGEMENTS

First and foremost, let me start by thanking my advisors, Dr. Mark J. T. Smith

and Dr. Russell M. Mersereau. Dr. Smith has been the best teacher I could have

ever dream of having. I hope that I am half as successful as Dr. Smith, in sharing

knowledge and wisdom with future generations. Dr. Mersereau took time out to help

review my dissertation, sign documents, as well as guide me through the university

rules and regulations. Thank you both for your guidance.

With regards to my reading committee, thank you Dr. David Anderson and Dr.

Aaron Lanterman for challenging me to find solutions to your complex questions.

Special thanks as well to other defense committee members, Dr. Yorai Wardi and

especially Dr. Gail Rosen. Dr. Rosen has been both a friend and sincere committee

member providing me with great encouragement. Many thanks goes to Dr. David

Hertling and Marilou Mycko for leading me through the admission process, helping

me find funding for most of the years at the Georgia Institute of Technology, and

tolerating the many emailed questions. Special thanks also to Dr. David Veazie for

enlightening me by telling me what my advisor expects of me and what I should

expect of my advisor.

It would not be fair, if I fail to make mention of my friends and fellow students.

Dr. Cherita Corbett, Dr. Raheem Beyah, and Dr. Dalong Li. Thank you all for

helping me navigate the politics. A special thanks to all the students of GCATT’s

third floor, later the CSIP section of Centergy, BGSA, and Caribsa. There are too

many worth mentioning. Thus, I will not name them individually. You all have made

my stay at CSIP and Georgia Institute of Technology enjoyable. Special thanks goes

to Freda ”Mika” Johnson and Tamara Clegg. Mika, my grammar editor, reading

iv



about filter bank was not your preferred reading subject. At times, you might have

fallen asleep. Nevertheless, you were such a great help. Tamara, I can always count

on you with your warm hospitality. Thank you for preparing the food for my proposal

and dissertation defense.

Thank you to my business partner Antoine B. Rolle, our small but yet diligent

staff, and subcontractors at Calabrix Corporation. Thank you for patience, through-

out this journey. You’ve taken up the slack at work when I was doing research and

writing. Our clients never once noticed any delay in fulfilling their needs or meeting

their expectations.

This would not have been possible without my parents, Whitmore and Elterah

Lettsome. Your support both financially and emotionally, allowed me to dream big. I

could never really express how much I appreciate everything. Neither of you attended

college. In fact, neither you completed high school initially, as you were forced to leave

school to help nuture your younger siblings. Yet despite this, you still understood

the importance of an education and found your own ways to encourage and motivate

me. Later on, while juggling work and family, mom you received your high school

diploma. I can recall the countless nights you spent doing homework, even after going

to work and school. Mom you remained discipline in your duties and punctual for

work the following day. Somehow, my father inspired me through his pride. Dad, I

can recall when you bought a custom made shelf to place all the awards and trophies

we earned, after there was no more space left on the old shelf.

To my sister Glenda Lettsome, thanks for being like a mom when mom was study-

ing. I owe a special thanks to my brother, Kevin Lettsome who passed away when I

was just twelve. You were a real go-getter and genius amongst us kids. You encour-

aged me to never stop trying. Rest in peace. Also many thanks to my sister Justine

Lettsome, for being like a best friend when we were growing up. Additionally, I would

like to thank my cousin Tameka Winchester, for her many invites to dinner, when

v



she knew I could not find time to cook for myself.

Most importantly, thank God, my Lord and Savior Jesus Christ. Through whom,

you have blessed me with your patience, guidance and kept me sane through this

venture. I would also like to thank God for allowing my parents overcome their

health issues over the last couple of years. They’ve always been encouraging all

through these years. Now they are even more proud, to experience this pinnacle of

success in my academic career. It was with great joy to place that phone call and tell

my parents, I am now Dr. Clyde Alphonso Lettsome.

Lastly, I have a special message to ”my future wife and future kids”, that will one

day read this acknowledgement, I hope. A wise man once said, ”People do not plan to

fail, they fail to plan.” Because of this, I postponed having a family until I completed

my doctorate degree. My greatest fear was failing as a husband, as a father, as a

provider, as a protector and as a leader. I waited this long, so that I might be able

to give all of you the attention you deserve. Only time will tell if this was a good

decision. I trust that it was the best decision for us.

vi



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Quadrature Mirror Filters . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Conjugate Quadrature Filters . . . . . . . . . . . . . . . . . . . . . 11

2.3 Tree-Structured Filter Banks . . . . . . . . . . . . . . . . . . . . . 12

2.4 Efficient Implementations . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 M -Band and Modulated Filter Banks . . . . . . . . . . . . . . . . 16

2.6 Time-Domain Design . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

III ADAPTIVE-ANALYSIS ADAPTIVE-SYNTHESIS FILTER BANKS . . 18

3.1 Nayebi’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Postfiltering Method . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Comments on AAAS Filter Bank Applications . . . . . . . . . . . . 24

IV INTRODUCTION OF FIXED-ANALYSIS ADAPTIVE-SYNTHESIS FIL-
TER BANKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

V FAAS FILTER BANKS FILTER DESIGN . . . . . . . . . . . . . . . . . 31

5.1 Even-Length Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Designing Odd-Length Filters . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Odd-Length Filter Design Example . . . . . . . . . . . . . . 41

vii



VI FAAS SYSTEM DESIGN FOR ADAPTIVE SYNTHESIS . . . . . . . . 46

6.1 Even-Length Adaptive Synthesis Filter Design . . . . . . . . . . . . 52

6.2 Odd-Length Adaptive Synthesis Filter Design . . . . . . . . . . . . 56

VII DISTORTION SUPPRESSION . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Distortion Suppression Strategies . . . . . . . . . . . . . . . . . . . 62

7.2 New Phase Switching Selection Method . . . . . . . . . . . . . . . 72

VIII FAAS FILTER BANK APPLICATION TO SYMMETRIC EXTENSION 78

8.1 The Boundary Problem . . . . . . . . . . . . . . . . . . . . . . . . 78

8.2 Linear Phase Symmetric Extension . . . . . . . . . . . . . . . . . . 81

8.2.1 Linear Phase Half-Point Symmetric Extension . . . . . . . . 82

8.2.2 Linear Phase Whole-point Symmetric Extension . . . . . . . 91

8.3 Adaptive Boundary Symmetric Extension . . . . . . . . . . . . . . 96

8.3.1 Adaptive Boundary Half-Point Symmetric Extension . . . . 96

8.3.2 Adaptive Boundary Half-point Symmetric Extension Results 100

8.3.3 Nonlinear Phase Whole-Point Symmetric Extension . . . . . 103

8.3.4 Adaptive Boundary Whole-point Symmetric Extension Results106

IX APPLICATION OF FAAS SYSTEMS TO INTERPOLATION AND COD-
ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.1 Application to Image Compression . . . . . . . . . . . . . . . . . . 109

9.1.1 Filtering Upsampling and Phase Selection . . . . . . . . . . 111

9.2 Image Compression Results . . . . . . . . . . . . . . . . . . . . . . 113

9.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.3.1 Odd-Length Lowpass Adaptive Filters For Interpolation . . 117

9.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

X CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . 122

10.1 Itemized Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 123

10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

viii



VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

ix



LIST OF TABLES

1 Coefficients for the near-linear phase odd-length 9/7 filters. . . . . . . 45

2 Johnston eight-tap(A) analysis filter coefficients (normalized for a pass-
band gain of

√
2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Johnston eight-tap(A) synthesis lowpass filter and complementary syn-
thesis lowpass filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Johnston eight-tap(A) synthesis highpass filter and complementary
synthesis highpass filters . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Johnston’s eight-tap(A) filters and complementary filters reconstruc-
tion errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Daubechies 9/7 analysis filter coefficients . . . . . . . . . . . . . . . . 57

7 Daubechies 9/7 synthesis lowpass filter and complementary synthesis
lowpass filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8 Daubechies 9/7 synthesis highpass filter and complementary synthesis
highpass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9 Daubechies 9/7 filters and complementary filters reconstruction errors 60

10 Johnston eight-tap(A) Redesigned Synthesis Lowpass Filter and Com-
plementary Synthesis Lowpass Filter . . . . . . . . . . . . . . . . . . 69

11 Johnston eight-tap(A) Redesigned Synthesis Highpass Filter and Com-
plementary Synthesis Highpass Filter . . . . . . . . . . . . . . . . . . 69

12 Johnston eight-tap(A) Redesigned Filters Reconstruction Errors . . . 70

13 Complementary Daubechies 9/7 synthesis lowpass filters . . . . . . . 70

14 Redesigned Daubechies 9/7 complementary synthesis lowpass filter . . 71

15 Redesigned Daubechies 9/7 complementary synthesis highpass filters . 71

16 Reconstruction errors for the Daubechies 9/7 filters and complemen-
tary filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

17 Daubechies 9/7 analysis filter coefficients . . . . . . . . . . . . . . . . 111

18 Daubechies 9/7 synthesis lowpass filter and complementary synthesis
lowpass filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

19 Daubechies 9/7 synthesis highpass filter and complementary synthesis
highpass filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

20 PSNR for Bicubic and Optimal Adaptive Filter Interpolations . . . . 120

x



LIST OF FIGURES

1 Block diagram of a 1-D uniform band analysis-synthesis filter bank. . 3

2 M-channel analysis-synthesis sections of the discrete short-time Fourier
transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Two-band analysis-synthesis filter bank . . . . . . . . . . . . . . . . . 10

4 Octave-band tree structure (also known as a dyadic wavelet tree struc-
ture). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Octave band (also known as wavelet or tree structure) frequency par-
titioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Polyphase filter bank structure. . . . . . . . . . . . . . . . . . . . . . 13

7 Basic lattice filter section. . . . . . . . . . . . . . . . . . . . . . . . . 14

8 Lattice filter bank structure. . . . . . . . . . . . . . . . . . . . . . . . 14

9 Ladder filter bank structure. . . . . . . . . . . . . . . . . . . . . . . . 15

10 Two-band time-varying filter bank proposed by Nayebi et al. . . . . . 19

11 A diagram of analysis-synthesis combinations. . . . . . . . . . . . . . 20

12 Time-Varying Filter Bank with Postfiltering. . . . . . . . . . . . . . . 22

13 Basic block diagram of an adaptive analysis fixed synthesis Filter Bank. 27

14 Basic block diagram of a fixed analysis adaptive synthesis filter bank. 28

15 (a)low delay lowpass filter step response. (b)high delay lowpass filter
step response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

16 Daubichies 9/7 lowpass product filter. . . . . . . . . . . . . . . . . . . 37

17 Pole-zero plot for Daubechies 9/7 product filter. . . . . . . . . . . . . 41

18 Pole-zero plots for 9/7 lowpass near-linear phase filters. . . . . . . . . 42

19 Frequency plot for 9/7 lowpass near-linear phase filters. . . . . . . . . 43

20 Pole-zero plot for 9/7 ER near-linear phase filters. . . . . . . . . . . . 44

21 Frequency plot for 9/7 ER near-linear phase filters. . . . . . . . . . . 44

22 Fixed-analysis adaptive-synthesis filter bank structure. . . . . . . . . 49

23 Illustration of ringing distortion in cameraman image. . . . . . . . . . 63

24 Step function response in the lowpass channel. . . . . . . . . . . . . . 65

xi



25 Illustration of image subbands for the cameraman image coded at four
different bit rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

26 Example of FAAS synthesis filters applied to an upsampled block. . . 68

27 Unscaled and same length synthesis filters response . . . . . . . . . . 73

28 Cameraman phase comparison row mask. . . . . . . . . . . . . . . . . 75

29 Cameraman phase comparison column mask. Note: Image is transposed. 76

30 Cameraman phase comparison row mask with accuracy criteria relaxed. 77

31 Subband image coding example using circular convolution. . . . . . . 80

32 Circularly extended building image that has been filtered and quantized. 82

33 Filtered and quantized symmetrically extended building image. . . . . 83

34 Two-band analysis-synthesis filter bank with symmetric extension. . . 84

35 New two-band analysis-synthesis filter bank for nonlinear phase sym-
metric extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

36 Results from a filter bank with nonlinear symmetric extension. . . . . 102

37 Illustration of filter bank stage outputs for adaptive boundary half-
point symmetric extension. . . . . . . . . . . . . . . . . . . . . . . . . 103

38 Results from a filter bank with nonlinear symmetric extension. . . . . 107

39 Results from a filter bank with nonlinear symmetric extension. . . . . 108

40 Block diagram of the analysis system of the SPIHT coder. . . . . . . 110

41 Block diagram of the Adaptive-Synthesis Filter Bank. . . . . . . . . . 113

42 SPIHT coder comparisions. . . . . . . . . . . . . . . . . . . . . . . . 115

43 Block diagram of the low-frequency synthesis channel of the FAAS
Filter Bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

44 Frequency response for the Daubechies 9/7 lowpass low delay comple-
mentary synthesis filter. . . . . . . . . . . . . . . . . . . . . . . . . . 118

45 Frequency response for the Daubechies 9/7 lowpass linear phase com-
plementary synthesis filter. . . . . . . . . . . . . . . . . . . . . . . . . 118

46 Frequency response for the Daubechies 9/7 lowpass high delay comple-
mentary synthesis filter. . . . . . . . . . . . . . . . . . . . . . . . . . 119

47 Interpolated Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xii



SUMMARY

Subband/Wavelet filter analysis-synthesis filters are a major component in

many compression algorithms. Such compression algorithms have been applied to

images, voice, and video. These algorithms have achieved high performance. Typi-

cally, the configuration for such compression algorithms involves a bank of analysis

filters whose coefficients have been designed in advance to enable high quality recon-

struction. The analysis system is then followed by subband quantization and decoding

on the synthesis side. Decoding is performed using a corresponding set of synthesis

filters and the subbands are merged together. For many years, there has been interest

in improving the analysis-synthesis filters in order to achieve better coding quality.

Adaptive filter banks have been explored by a number of authors where by the analy-

sis filters and synthesis filters coefficients are changed dynamically in response to the

input. A degree of performance improvement has been reported but this approach

does require that the analysis system dynamically maintain synchronization with the

synthesis system in order to perform reconstruction.

In this thesis, we explore a variant of the adaptive filter bank idea. We will refer

to this approach as fixed-analysis adaptive-synthesis filter banks. Unlike the adaptive

filter banks proposed previously, there is no analysis synthesis synchronization issue

involved. This implies less coder complexity and more coder flexibility. Such an

approach can be compatible with existing subband wavelet encoders. The design

methodology and a performance analysis are presented.

xiii



CHAPTER I

INTRODUCTION

Filter banks have a rich history of investigation. Much of the attention has been moti-

vated by speech, image, and video compression applications. However, subband filter

banks have also been employed in many other important areas such as telemedicine,

object detection and classification, denoising and enhancement, image size conver-

sion and sampling rate alteration, and secure signal transmission. In this application

context, filter banks are typically viewed as having the form shown in Figure 1. The

filter bank (or more precisely, the analysis-synthesis filter bank) contains two primary

sections: the analysis section and the synthesis section. The analysis section decom-

poses the signal into bands or subbands. This can be seen clearly by considering a

signal x[n] as the input to the system. First x[n] is filtered by

h0[n], h1[n], . . . , hM−1[n],

which are typically bandpass filters. In the z-domain, these filters are given by

H0(z), H1(z), . . . , HM−1(z).

The analysis section implements decimated convolution described by the equations

vk[n] = hk[n] ∗ x[n] =
L−1∑
m=0

x[n−m]hk[m], k = 0, 1, . . . ,M − 1,

yk[n] = vk[Rn]. (1)

The channel parameter M and decimation parameter R help define the specific type of

filter bank. Depending on the application, filter banks may have as few as two bands

(i.e. M = 2) or a large number of bands such as 64, 128, or more. The decimation

factor R determines the redundancy inherent in the representation. When R = 1,
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the filter bank embodies its highest degree of oversampling. In most applications, the

decimation factor is set equal to the number of bands (that is R = M) resulting in a

memory efficient critically sampled representation.

In the synthesis section, the outputs yk[n] are recombined to reconstruct the orig-

inal. In this process, the subbands, yk[n], are upsampled by a factor of R and then

filtered by the synthesis filters Gk(z), after which the channels are summed together.

Depending on the application, some type of signal operation is often performed

on the subbands prior to reconstruction. For compression applications, this involves

quantizing and coding the subbands. This allows the quantization noise associated

with quantization to be preferentially distributed in frequency, which allows one to

exploit the spectral roll off that typically accompanies input signals of interest as well

as exploit properties of human perception.

There are a number of issues associated with analysis-synthesis filter banks at

several levels. First at the filter level, one is typically concerned with the filter

characteristics. Often it is desired to have filters that are bandpass in nature with

flat passband characteristics, high attenuation stopband characteristics and a nar-

row transition band. This allows the spectral content of the input to be isolated for

independent processing. The designer also has choices with respect to the phase of

the filters. Filters may be designed with linear phase, non-linear phase, or approxi-

mately linear phase. In many compression applications, linear phase is thought to be

preferable. In addition, there is sometimes interest in having constraints placed on

the time-domain characteristics of the analysis and synthesis filters. For example, it

is sometimes desirable to keep the overshoot and undershoot in the lowpass filter step

response small, say below 10 percent. This condition is in contradiction to having

sharp frequency domain characteristics. Thus, there is a design tradeoff in play.

At the individual section level, one typically seeks to have the filter passbands

2
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Figure 1: Block diagram of a 1-D uniform band analysis-synthesis filter bank.

collectively cover the entire spectrum without gaps or significant dips in the spec-

tral magnitude response. This desire, when present, comes from the recognition that

gaps in coverage represent information loss associated with the spectral region cor-

responding to the gap. Significant variations in the flatness of the passbands can

also be a concern when subbands are quantized. Variations in magnitude can cause

quantization noise to be disproportionately amplified across the spectrum.

At the analysis-synthesis system level, one typically considers reconstruction prop-

erties. The prevailing view is that exact reconstruction is the ideal objective. How-

ever, on occasion, systems with almost exact reconstruction are employed to gain

added computational efficiency. These kinds of distortions come in several flavors,

such as magnitude distortion, phase distortion, and a mix of both. Again, when

these distortions are limited, the impact on performance can be negligible. Another

system level issue is delay. It was shown by Nayebi et al. [27] that the overall group

delay of the system could be controlled in the filter design process. This is an inter-

esting result for audio signal processing because it allows one to address the pre-echo

effect that is audible in conventional low bit rate subband coding algorithms.

At the implementation level, there are other sets of issues to consider. A num-

ber of implementation methods have been introduced that provide tradeoffs between

3



arithmetic complexity and decomposition quality. Included among the many imple-

mentation structures are tree-structure systems, uniform band systems, lattice struc-

tures, ladder structures, cosine modulated systems, lapped transforms, and parallel

and cascade filter implementations.

An issue that we have not addressed in this work at all is the use of infinite-

duration impulse response (IIR) filters. In this work, we only consider finite impulse

response (FIR) filters, as they are the most widely used. But, IIR filter banks have

been shown to have advantages and have their uses.

An interesting variation of the analysis-synthesis filter bank was introduced by

Nayebi et al. [26]-the so-called time-varying filter bank. This is a novel class of filter

banks where the constituent filters are allowed to be adaptive. The authors showed

that exact reconstruction can be achieved in a time-varying filter environment by

having the analysis filters and synthesis filters change in accordance with a set of

conditions that assure exact reconstruction. For every instance of change in the

analysis filters, a new set of synthesis filters is employed adaptively that ensures that

the input can be reconstructed exactly.

The formulation of time-varying systems was later refined by Sodagar et al. [42, 43]

leading to a significantly easier implementation and design process. More specifically,

Sodagar et al. introduced the use of a post filter with time-varying filter properties.

Now instead of having to invoke a set of adaptive filters for every switching occur-

rence in the analysis section, the analysis and synthesis filters can be matched one

for one. That is, assuming you had two different exactly reconstructing analysis-

synthesis filter banks (say A and B), when you switch from A to B in the analysis,

one simply switches from A to B in the synthesis section. Without postfiltering, dis-

tortion occurs in reconstruction in spite of the fact that both A and B in isolation are

exact reconstruction systems. The distortion, however, is transitory. The adaptive

postfilter functions as an inverse filter, restoring the input exactly during the periods

4



of transition. When the filters are operating without any switching, the postfilter

functions as an identity system.

One of the key issues associated with this type of adaptive filter bank is that one

must maintain the synchrony between the analysis and synthesis filters in order to

ensure exact reconstruction. This issue was investigated extensively by Arrowood et

al. [1, 2]. Both forward and backward adaptive methods of synchronous adaptive

analysis-synthesis were reported. It is also noteworthy that a number of authors

recognized that introducing adaptivity into the analysis-synthesis system was possible

by working in a lattice or ladder structure where exact reconstruction is constrained

structurally. In such cases synchronous switching of the analysis and synthesis filters

guarantees exact reconstruction. What is lost when doing this is that the analysis and

synthesis filter characteristics degrade completely during the interval surrounding the

switching. So, again there is a tradeoff.

This class of adaptive filter banks will be reviewed more extensively in Chapter 3

for context. But, in short, the use of this class of filter banks has been limited, owing

primarily to the overhead associated with having to track the analysis filter switching

pattern in order to maintain synchrony.

In this thesis, we introduce a new class of filter bank that heretofore has not been

considered previously. As stated earlier, the current and conventional filter bank

employs fixed analysis and fixed synthesis filters in the analysis-synthesis system.

The time-varying filter bank introduced by Nayebi et al. and further expanded and

explored by others involves adaptive analysis filters that operate in synchrony with

adaptive synthesis filters. The former system we call FAFS (fixed analysis, fixed

synthesis) and note that it remains the overwhelmingly dominate case. We call the

latter case just mentioned AAAS (adaptive analysis, adaptive synthsis) for analogous

reasons. It might be apparent at this point that there are two other filter bank classes

implied by the nomenclature. The first is Fixed Analysis Adaptive Synthesis (FAAS)
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and Adaptive Analysis Fixed Synthesis (AAFS). Initial intuition might suggest that

both FAAS and AAFS are not particularly interesting classes because exact recon-

struction in an adaptive steady state can be shown to be impossible. However, FAAS

and AAFS systems are quite interesting when you shift the paradigm. Instead of

assuming that exact reconstruction filter banks provide the best outcome, consider

that it may be possible to enhance the original or enable more robust performance in

the face of subband signal modification.

The image compression example is a good one in which to consider this new

paradigm. After an image is decomposed in a traditional subband/wavelet coder, the

subbands are quantized. As soon as this happens, information is lost and it becomes

impossible to reconstruct the original input exactly. So the issue is no longer about

quality in the absence of modification, but quality in the presense of modification.

What if FAAS and AAFS systems can be shown to improve reconstruction quality in

the presence of quantization relative to FAFS systems. Then such systems become

very interesting.

This thesis is devoted to defining, designing, and exploring FAAS systems, and

evaluating their utility in compression and interpolation/enlargement applications.

The exploration of AAFS systems, although identified, is not explored in this work

but is suggested as a topic for a follow-on thesis.

In the chapters that follow, we will provide some background and review for

context, and then discuss the new FAAS in detail. More specifically, a brief historical

overview of the evolution of filter banks is presented in Chapter 2. This is followed by a

discussion in Chapter 3 of the previous work relevant to this thesis that was developed

for AAAS systems. In particular, we discuss structure and design issues associated

with AAAS systems. The new work begins in Chapter 4 with the development of

the time-domain design methodology for odd-length analysis-synthesis filters, the

design methodology that is employed subsequently for FAAS systems. FAAS systems
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are fully developed in this thesis and are applied in compression and enlargement

applications. Performance results are presented that demonstrate the advantages of

FAAS systems over the traditional FAFS systems.
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CHAPTER II

BACKGROUND

This chapter provides a brief overview of the development of filter banks over the years

to help make clear how the new class of fixed analysis adaptive synthesis filter banks

(FAAS) advances theory and design in this area. It is easy to argue that modern day

filter banks date back at least to the early speech spectrum analysis work that was

done in the 1930’s. During that time, the ”analog” sound spectrograph was used to

generate time-frequency representations of speech. In the spectrograph, a variable

frequency oscillator is used to modulate the input signal. Then, bandpass filters are

employed to localize the frequency spectrum. The output of the device is a plot of

the average short-term energy as a function of time. Thus, the sound spectrograph

behaves as an analysis filter bank.

Perhaps the oldest type of digital filter bank is the channel vocoder introduced

by Dudley [11] during this same time period. The channel vocoder contains a cosine-

modulated filter bank of the form

hk[n] = h[n] cos[
π

M
(n + α)(k + β)]. (2)

The α and β constants provide variations to the filter bank that can allow for

efficient implementations. Such implementations were extensively developed by Mal-

var [21, 20] much later in the 1990s. In the channel vocoder, the absolute value of

each channel sample is computed (which is equivalent to full-wave rectification), fol-

lowed by lowpass filtering. Dudley used these outputs along with voicing and pitch

information to represent speech at a low bit rate.

Another relative of the filter bank is the discrete short-time Fourier transform

(STFT), shown in Figure 2, which is a kind of uniform DFT filter bank. It was popular
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in the area of digital speech processing in the 1970s and early 80s. The STFT uses

complex exponential modulators to shift high frequency regions of the spectrum to

baseband, after which lowpass filters are used to isolate the shifted band. Because the

modulators resemble the kernel of the DFT, the outputs are complex valued just like

the outputs of the DFT. Portnoff [32] is credited with much of the pioneering work in

developing the relationship between the filter bank and transform interpretations of

the discrete STFT as well as deriving the analysis/synthesis reconstruction conditions.

The general formulation allows for variable redundancy in the representation. When

y
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Figure 2: M-channel analysis-synthesis sections of the discrete short-time Fourier
transform.

R = 1, the representation is fully redundant, i.e. highly over-sampled. At the other

extreme is the case when R = M , which is a minimally sampled representation. The

minimally sampled representation may be implemented efficiently using a polyphase

structure concatenated with an FFT.

2.1 Quadrature Mirror Filters

A major milestone occurred in 1976 and 1977 with the introduction of Quadrature

Mirror Filters (QMFs) and the notion of aliasing cancellation [8]. In this approach,

the decomposition is based on a two-band filter bank where M = 2 and R = 2, as
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shown in Figure 3. The goal of the analysis filter bank is to decompose the input into

Figure 3: Two-band analysis-synthesis filter bank

critically sampled low frequency and high frequency subbands. In reconstruction, the

subbands are interpolated and merged so that the input is reconstructed with high

accuracy. Because decimation is involved in the filter bank, the reconstruction issue

is not trivial.

The analysis-synthesis equations can written in the z-transform domain, leading

to the reconstruction equation

X̂ =
1

2
X(−z)[H0(−z)G0(z)+H1(−z)G1(z)]+

1

2
X(z)[H0(z)G0(z)+H1(z)G1(z)], (3)

where x[n] is the input and x̂[n] is the reconstructed output. Two components are

associated with this equation: an aliasing component

1

2
[H0(−z)G0(z) + H1(−z)G1(z)] (4)

and a transfer function term

1

2
[H0(z)G0(z) + H1(z)G1(z)]. (5)

Ideally, the filter bank should have the property that the aliasing term reduces to

zero and the transfer function term is unity (or an approximation there of).

Croisier, Estaban and Galand [8] proposed a solution to the two-band filter bank

reconstruction equation where the analysis and synthesis filters are related as follows:

H1(z) = H0(−z), (6)

G0(z) = H0(z), (7)
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and

G1(z) = −H0(−z). (8)

The filter H0(z) is typically a lowpass filter, which implies that H1(z) is a highpass

filter. By examining the equations, it is evident that the QMF solution results in

a complete cancellation of the aliasing term. In order to achieve a unity transfer

function, H0(z) is designed so that the transfer function approximates z`, where

` is the system delay. Two-band QMFs cannot yield a perfect solution, but can

be designed to provide very good approximations. Johnston designed a full set of

optimized QMFs in 1980 that are still widely used today [15].

2.2 Conjugate Quadrature Filters

Another milestone occurred in 1984 with the introduction of conjugate quadrature

filters (CQFs). The CQF solution allowed two-band filter banks to achieve exact

reconstruction. In fact, it was shown how to design a broad class of analysis-synthesis

filters that satisfy the CQF conditions, including optimal equiripple filters [38]. The

CQF solution is defined as

H1(z) = H0(−z−1), (9)

G0(z) = H0(z
−1), (10)

and

G1(z) = −H0(−z). (11)

Unlike QMFs, the CQF analysis and synthesis filters are frequency shifted and

time reversed versions of H0(z). It is easily seen after substitution that the aliasing

term cancels, i.e.

[H0(−z)H0(z
−1)−H0(z

−1)H0(−z)] = 0 (12)

and that the transfer function can be designed so that

[H0(z)H0(z
−1)−H0(−z−1)H0(−z)] = 2z−`. (13)
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2.3 Tree-Structured Filter Banks

Two-band decompositions are rather uninteresting from an application perspective,

since two channel frequency resolution is generally too coarse for most applications.

However, two-band filter banks can be cascaded in trees to form an infinite variety

of multi-band filter banks with varying frequency resolution. A simple octave-band

tree structure is shown in Figure 4. In this simple tree structure, the original signal

Figure 4: Octave-band tree structure (also known as a dyadic wavelet tree structure).

is split into two subbands. Each proceeding level of decomposition is split into two

more subbands from the prior stage’s low frequency channel. The ideal bandwidths

of the analysis side are illustrated in the frequency response graph in Figure 5.

Figure 5: Octave band (also known as wavelet or tree structure) frequency parti-
tioning.

This process of cascading two-band filter banks can be repeated as appropriate for

a particular application. The reconstruction process involves a complementary tree

structure of two-band synthesis filter banks as shown in Figure 4.
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2.4 Efficient Implementations

There have been many implementation structures used to realize filter banks. These

structures include direct form implementation, polyphase [3], lattice [45], and ladder

(lifting) structures [23].

Polyphase Structure:

The polyphase filter bank is often a more efficient way to implement QMFs than

by using a direct form implementation. The polyphase structure is shown in Figure

6. For QMFs the number of multiplications required is reduced by a factor of two.

Figure 6: Polyphase filter bank structure.

Lattice Structure:

The use of lattice structures for implementing filter banks was discussed extensively

by Vaidyanathan and Hoang [45] and can be used to implement CQFs efficiently.

Lattice structures are formed by cascading a series of rotation and delay elements.

Each rotation is represented by a matrix of the form

Ri =




cosθi sinθi

−sinθi cosθi


 . (14)

Ri can be factored to

Ri = cosθi




1 α

−α 1


 (15)

where α is tan θ. Ri is graphically represented in Figure 7 . Each delay is represented

by

Λ =




1 0

0 z−1


 . (16)
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Figure 7: Basic lattice filter section.

Both rotation and delay matrices are paraunitary. As such, cascaded matrices result

in an equivalent paraunitary matrix. A block diagram of a lattice structure is shown

in Figure 8. On the synthesis side of Figure 8

Figure 8: Lattice filter bank structure.

Ei = RT
i . (17)

The delay element in the synthesis is

Γ =




z−1 0

0 1


 . (18)

Much like the polyphase structure outlined previously, the lattice implementation

is efficient and yields exact reconstruction. In addition, lattice structures are robust

to coefficient quantization, unlike the direct form implementation.
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Ladder Structure:

An even more attractive implementation is the ladder filter implementation. Digital

ladder filters were introduced in 1972 by Mitra and Sherwood [23] and are more

efficient than polyphase and lattice form structures. It is noteworthy that many

authors publishing in the literature appear to be unaware of this original work. Several

authors presented identical work in the 1990s under the name ”lifting filters.”

Similar to the lattice structure, ladder structures employ butterflies but with only

one wing. A basic two-band ladder structure is shown in Figure 9. Each step in the

Figure 9: Ladder filter bank structure.

analysis performs one of two functions:

1. The highpass signal is filtered and added to the lowpass channel.

2. The lowpass signal is filtered and added to the highpass channel.

It can be shown that the ladder structure guarantees exact reconstruction structurally

and that it can accommodate both linear and nonlinear operators as part of the ladder

step operations. An expanded treatment may be found in [10].

15



2.5 M-Band and Modulated Filter Banks

Shortly after the introduction of exact reconstruction filters in 1984, much attention

turned to multiband uniform systems and their reconstruction and implementation

issues. Solutions for the M -band case were proposed by a number of authors [44, 30].

Modulated filter banks of the form of Equation (2) were also being explored during this

time period. The first to appear in the open literature was presented by Rothweiler at

ICASSP83 [35]. Rothweiler’s modulated filter banks are like those formerly employed

to implement efficient transmultiplexers [24, 13], but in addition address the issue

of analysis-synthesis reconstruction. Although this class of modulated filter banks

cannot attain exact reconstruction, it’s reconstruction is of reasonably high quality

[5, 7].

The confluence of modulated filter banks and exact reconstruction occurred with

the introduction of the time-domain aliasing cancellation (TDAC) method of Princen

and Bradley [33]. Interestingly, Malvar, Staelin, and Cassereau arrived at the same

solution slightly later but approached the problem from a transform perspective. Al-

though Princen and Bradley were first to publish, their version did not catch on for

lack of an efficient implementation. The work of Malvar et al. (called Lapped Trans-

forms) included an efficient FFT-class implementation structure.Because of their effi-

ciency, lapped transforms received widespread attention. Additional improvements to

the theory and design of cosine modulated filter banks followed over the subsequent

years, primarily adding flexibility with respect to ease of design and the relaxation of

previous constraints on length and number of channels [19, 34, 25, 17].

2.6 Time-Domain Design

Another landmark development was the introduction of the time-domain framework

by Nayebi et al. Through this framework, low delay filter banks were discovered.

In addition time-varying filter banks, non-uniform filter banks, and block-decimation
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filter banks were also investigated. The time-domain framework is based on describing

the analysis filters in matrix form as a multi-channel decimated convolution matrix

multiplied by a synthesis filter matrix. All matrix elements represent time-domain

filter coefficients. This formulation is used extensively in the chapters that follow in

order to develop the FAAS filter banks.

2.7 Applications

As mentioned earlier, the study of analysis-synthesis filter banks was initially moti-

vated by medium rate speech coding. After 1986 when Woods and O’Neil [47] pub-

lished their paper on subband image coding, attention shifted. Now image compres-

sion and denoising are arguably the most popular applications of analysis-synthesis

filter banks. For image coding, quantization and coding are performed between the

analysis and synthesis sections. For denoising applications, a nonlinear operator is of-

ten applied between the analysis and synthesis. Thus, in both cases because the analy-

sis outputs are modified, exact reconstruction is no longer the expectation. Rather

one hopes that the appearance of the output image looks good subjectively.

The popular fixed analysis fixed synthesis filter banks presume that the best design

is one in which exact reconstruction is preserved in the absence of modification—the

thought being that analysis-synthesis distortion can only add to the quantization

error and thus reducing or eliminating such distortion improves overall quality. The

introduction of time-varying filter banks represented a slight paradigm shift in the

sense that it was recognized that time varying filter banks could be used to reduce

the effects of quantization noise.

The new FAAS system we will introduce in this thesis builds directly on the AAAS

work proposed by Nayebi et al. and developed by Arrowood et al. In the next chapter

we will discuss in more detail the operations of AAAS systems.
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CHAPTER III

ADAPTIVE-ANALYSIS ADAPTIVE-SYNTHESIS FILTER

BANKS

In 1992, it was shown for the first time that exact reconstruction filter banks could

be designed with adaptive analysis-synthesis filters [26]. This was an interesting

result from a theoretical perspective, but also from an application perspective. In

this approach, the analysis filter banks are selected dynamically from among a set of

candidate filters according to the properties of the input. In the synthesis process, the

corresponding exact reconstruction (ER) filter is employed adaptively in a way that

allows the input to be reconstructed without error. In this chapter, we will discuss the

history of time-varying filter banks (i.e. adaptive-analysis adaptive-synthesis [AAAS]

filter banks) and some of the key milestones to set the stage for the new class of FAAS

systems we will introduce in the next chapter.

3.1 Nayebi’s Method

Time-varying filter banks were originally introduced by Nayebi et al. [26]. In this

formulation, the analysis section contained a set of analysis filters where the decompo-

sition involved switching from one filter to another within the set. Changing from one

analysis filter pair to another introduces transitional discontinuities at the switching

points, which in turn result in reconstruction errors. In order to reconstruct exactly,

a large set of synthesis filter pairs are designed and applied sequentially. Nayebi for-

mulated the reconstruction equations and showed that filters could be designed to

satisfy the exact reconstruction condition.
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The system proposed by Nayebi is best illustrated by considering a simple two-

band system. This system has only two analysis filter sets as shown in Figure 12.

The number of synthesis filters needed for reconstruction is dependent on the length

Figure 10: Two-band time-varying filter bank proposed by Nayebi et al.

of the analysis filters ”L” and the intervals between switching. For a single switch,

2L synthesis filters are needed per filter set. To illustrate the inner workings of this

FAAS filter bank, consider the example from [26] shown in Figure 11 where the signal

shown is the input to the synthesis filters.

The sample at n0 is the transition sample. For this example, all points prior

to n0 were generated by the first set of analysis filters which are embodied in the

convolution matrix H. The other points are generated by the second set of analysis

filters, whose coefficients are contained in Ĥ. To reconstruct exactly, 2L different

synthesis filter pairs are needed, one for each point in the transition. Equation (19)

shows the interpretation where the transition occurs at n0
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Figure 11: A diagram of analysis-synthesis combinations.

A =




h[0] 0 . . . 0

h[1] h[0] 0

... h[1] 0

h[n0 − 2]
... 0

h[n0 − 1] h[n0 − 2] . . . 0

ĥ[n0] ĥ[n0 − 1] . . . 0

ĥ[n0 + 1] ĥ[n0] . . . 0

ĥ[n0 + 2] ĥ[n0 + 1] . . . 0

... h[n0 + 2] 0

ĥ[N − 1]
... ĥ[0]

0 ĥ[N − 1] ĥ[1]

...
...

...

0 0 . . . ĥ[N − 1]




. (19)
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To find the optimal synthesis filter set S[n0] using Equation (19), we obtain

S[n0] = (ATA)−1ATB . (20)

In general, the reconstruction error can be minimized for the system by using an

optimization algorithm based on the equation

εr = ‖AS[n0]−B‖2
F . (21)

The other synthesis filters , such as S[n0 + 1], may be determined by relocating the

switching point in Equation (19)

3.2 Postfiltering Method

One of the major drawbacks of the method proposed by Nayebi is that a prohibitively

large number of synthesis filters had to be designed in order to accommodate switch-

ing. Sodagar et al.[43, 42, 22] proposed an important improvement that addressed

the filter-bank structure and filter management complexities associated with Nayebi’s

approach. Specifically, it employed a dynamic FIR postfilter at the end of the analysis-

synthesis filter bank. The dynamic postfilter compensates for the transitional switch-

ing distortion that results when analysis and synthesis filter pairs are switched in

synchrony. Employing this dynamic postfilter, one enjoys the simplicity of being

able to switch the analysis filters based on the input characteristics and then directly

switch the synthesis filters in lockstep. Sodagar shows how to design these dynamic

postfilters [43, 42]. An example of a two-band time-varying FIR filter bank with

postfiltering is illustrated in Figure 12.

Sodagar et al. modeled the FIR analysis-synthesis filter bank as a time-varying

system with a time-varying postfilter transfer function T−1. The system transfer

function is given by

T = ST ΛA (22)
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Figure 12: Time-Varying Filter Bank with Postfiltering.

where

A =




H0

H1


 (23)

and

Λ =




λ

λ


 (24)

for a two-band system. The submatrices shown in the equations above are defined as

H0 =




h0[0] 0 0 0 0 . . . 0

h0[1] h0[0] 0 0 0 . . . 0

h0[2] h0[1] h0[0] 0

...
...

. . .
...

0 0 0 0 0 . . . h0[N − 2] 0

0 0 0 0 0 . . . h0[N − 1] h0[N − 2]




, (25)

H1 =




h1[0] 0 0 0 0 . . . 0

h1[1] h1[0] 0 0 0 . . . 0

h1[2] h1[1] h1[0] 0

...
...

. . .
...

0 0 0 0 0 . . . h1[N − 2] 0

0 0 0 0 0 . . . h1[N − 1] h1[N − 2]




, (26)

and
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λ =




0 1 0 0 0 . . . 0 0 0 0

0 0 0 1 0 . . . 0 0 0 0

0 0 0 0 0 1 0 0 0 0

...
...

. . .
...

...
...

...

0 0 0 0 0 . . . 1 0 0 0

0 0 0 0 0 . . . 0 0 1 0




. (27)

Similar to the A matrix, S is defined as

S =

[
G0 G1

]
(28)

where

G0 =




g0[0] 0 0 0 0 . . . 0

g0[1] g0[0] 0 0 0 . . . 0

g0[2] g0[1] g0[0] 0

...
...

. . .
...

0 0 0 0 0 . . . g0[N − 2] 0

0 0 0 0 0 . . . g0[N − 1] g0[N − 2]




(29)

and

G1 =




g1[0] 0 0 0 0 . . . 0

g1[1] g1[0] 0 0 0 . . . 0

g1[2] g1[1] g1[0] 0

...
...

. . .
...

0 0 0 0 0 . . . g1[N − 2] 0

0 0 0 0 0 . . . g1[N − 1] g1[N − 2],




. (30)

As mentioned earlier, in the absence of postfiltering, when the analysis and synthesis

filters are switched in synchrony, the input x and output x̂ are not equal. That is,

x̂ 6= Tx. (31)
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Sodagar designed the postfilter to be the inverse T−1 of the time-varying system such

that

x̃ = T−1Tx̂ = x. (32)

The inverse filter, in effect, contains rows that are each time-varying postfilters. It

should be noted that

T = I (33)

when the filter bank runs in steady state (i.e. when no filter switching occurs). This

implies that

x̂ = x (34)

under these conditions. Only during the transition period, when the analysis and

synthesis filters are switched, is T 6= I. During transition, the size of T is proportional

to the filter lengths involved. Thus, the only requirement for perfect reconstruction

is that T be invertible.

3.3 Comments on AAAS Filter Bank Applications

Arrowood et al.[1] explored the use of time-varying filter banks for image coding. It

should be noted that during this same time, subband image coders using adaptive

IIR filters were also being developed by Chung et al. in [6].

Arrowood et al.[1] examined the use of AAAS filter banks to reduce the perceived

distortions encountered in low bit rate image coding. One of the most pronounced

distortions visible when coding at low bit rates is ringing. This type of distortion is

prevalent at sharp edge boundaries. Switching between different types of filters with

asymmetric impulse responses and varying group delays were shown to have favorable

reconstruction properties at edges. Such AAAS systems require analysis of the input

image prior to decoding to determine the location of major edges.

The notion of using AAAS filter banks to address this distortion is compelling,
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since ringing distortion is mitigated by the filters themselves rather than by an invest-

ment in additional bits for the quantizers. The downside, however, is that synchro-

nization information must be communicated in some way from the analysis system to

the synthesis system in order to keep the filter pairs in synchrony. Synchronization

can be done in either a backward adaptive or forward adaptive mode. But either way,

it adds a layer of computational overhead to the encoder, which in many situations

is unattractive. In addition, the synchronization requirement may result in having to

transmit additional bits (as in the case of forward adaptation) or may result in the

corruption of the synchronization information after coding (as in the case of backward

adaptive systems). Furthermore, the postfilter becomes more complex as the interval

between switching decreases and the number of switches increases. As a result, AAAS

filter banks have not been widely adopted.

In the next chapter, we introduce FAAS filter banks and highlight the implemen-

tation advantages that make them attractive.
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CHAPTER IV

INTRODUCTION OF FIXED-ANALYSIS

ADAPTIVE-SYNTHESIS FILTER BANKS

In this chapter we introduce fixed-analysis adaptive-synthesis filter banks, the topic

of this dissertation. As mentioned previously, there are four classes of filters evident

from the nomenclature associated with time-varying filter banks:

• Fixed-Analysis Fixed-Synthesis Filter Banks (FAFS) - the conventional filter

banks used in the majority of subband-based systems.

• Adaptive-Analysis Adaptive-Synthesis Filter Banks (AAAS) - the class of time-

varying filter banks introduced by Nayebi et al. and further developed by several

other authors.

• Adaptive-Analysis Fixed-Synthesis Filter Banks (AAFS) - an unexplored class

of filter banks

• Fixed-Analysis Adaptive-Synthesis Filter Banks (FAAS) - an unexplored class

of filter banks and topic of this thesis.

The last two classes, in contrast to the first two, are asymmetric. That is, both

FAFS and AAAS are adaptive or non-adaptive in both analysis and synthesis, while

AAFS and FAAS filters are only adaptive in one of the two section, and hence are

asymmetric. Both of these asymmetric formulations have some appealing aspects.

Both have relatively low complexity. And both can be made compatible with existing

standard subband/wavelet image coders. But how do the AAFS and FAAS system

compare?
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Figure 13: Basic block diagram of an adaptive analysis fixed synthesis Filter Bank.

A block diagram of the AAFS filter bank is shown in Figure 13. Because all of

the adaptation occurs on the analysis side in the AAFS system, freedom to remove

artifacts and compensate distortion are limited, largely because quantization occurs

after the adaptive filtering. Employing the adaptive filters to correct distortions is

much more intuitive if done in the synthesis section, and thus is the motivation for

exploring the FAAS system.

A block diagram of the FAAS system is shown in Figure 14. What makes FAAS

filter banks particularly interesting is their potential to exploit phase diversity in cod-

ing and enlargement applications. It is well known that at high bit rates the output

of quantization can be modeled as the signal plus the quantization noise associated

with the signal at that spatial location. The design of FAAS filters involves a multi-

plicity of synthesis filter pairs. To preserve continuity of the magnitude response, we

design the FAAS filters to all have approximately the same magnitude response but

different phases. Each of these filter pairs will generate a unique reconstruction. The

differences among them are in their phase shifts. If reconstructions are performed

on the same quantized signal based on a diversity of synthesis filters with different

phases, the resulting reconstructions will each contain the signal plus the associated

noise spatially displaced. Since spatial regions with high amplitude changes generate

proportionately higher quantization noise and since this noise is now spatially shifted
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Figure 14: Basic block diagram of a fixed analysis adaptive synthesis filter bank.

across the diverse reconstructions, that noise in theory can be suppressed as part of

the process of merging the images together.

For simplicity, we have considered three-phase reconstruction, where we employ a

low delay, a linear phase, and a high delay filter set, which corresponds to the block

diagram shown in Figure 14. Once the three reconstructions are computed, we can

synthesize the final output adaptively by choosing the best pixels (on a pixel-by-pixel

basis) from among the three reconstructions, thereby exploiting the phase diversity

of the system.

To illustrate the exploitation of phase diversity in a fixed-analysis adaptive-synthesis

system, consider the step responses for a low delay and high delay filters as shown

in Figure 15. The phase dispersion results in relatively large oscillation on the back

end of the step for the low delay case with no oscillation at the onset of the edge.
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Figure 15: (a)low delay lowpass filter step response. (b)high delay lowpass filter
step response.

The reverse characteristics are apparent for the high delay filter case. For the linear

phase case (not shown in the figure), the oscillations are smaller in amplitude but are

distributed evenly on both sides of the edge. Each of these outputs is shifted spatially

by different amounts dictated by the characteristics of the filters.

One can quickly see that going pixel by pixel we can reconstruct the original step

function. The three reconstructed signals will result in three different displacements

and three dispersions for the noise (relative to the image), which potentially can be

exploited.

The fixed-analysis adaptive-synthesis filter bank reported here is based on de-

signing a set of synthesis filters, where each synthesis filter set is optimized to have

minimum reconstruction distortion and a different overall system group delay. Of

these filters, only one will achieve ER with the fixed analysis filter.
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There are potentially many methods for synthesizing the final image. The method

we pursued primarily is based on an empirically derived rule based on reducing the

filtering overshoots and undershoots that appear in the image when coded at low

bit rates. In practice, it is not necessary to reconstruct all of the images in the

synthesis section, but only these relevant sub-regions of the image. Thus computation

complexity in the synthesis section can be minimized. In the next chapter we consider

the design of the filter sets, which is critical to obtaining high quality performance in

compression and enlargement applications.
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CHAPTER V

FAAS FILTER BANKS FILTER DESIGN

In this chapter, we introduce a design method for the FAAS filter bank, which is

based on time-domain reconstruction equations. The formulation provides control

over the critical filter characteristics and system properties such as analysis filter rip-

ple, transition bandwidth, reconstruction fidelity, system group delay, and more. The

method is based on a matrix equation representation where analysis and synthesis

filter coefficients are optimized iteratively to reduce a weighted cost function. There

are two classes of FIR analysis-synthesis filters typically employed for subband de-

compositions: even-length filters and odd-length filters. Nayebi et al. developed the

design method for the even-length case, which we present next for completeness. The

odd-length case, which is markedly different is new and is introduced in the subse-

quent subsection. A design example is included to illustrate the effectiveness of the

new method.
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5.1 Even-Length Filters

Nayebi proposed the time-domain formulation for ER given by AS = B where




PT
0 0 0 . . . 0

PT
1 PT

0 0
... 0

PT
2 PT

1 PT
0

...

PT
3 PT

2 PT
1

. . .
...

...
...

. . .

PT
L−1 PT

L−2 PT
L−3 . . . PT

0

0 PT
L−1 PT

L−2

. . . PT
1

...
...

...
. . .

...

0 0 0 0 PT
L−1




︸ ︷︷ ︸
A




Q0

Q1

...

QL−2

QL−1




︸ ︷︷ ︸
S

=




0
...

0

JR

0
...

0




︸ ︷︷ ︸
B

.

(35)

In these equations A is a block Toeplitz matrix of analysis filter coefficients, S is

a matrix of synthesis filter coefficients, and matrix B is the reconstruction matrix

containing the exchange matrix JR. JR controls the group delay characteristics of the

system being designed. Matrix A is expressed in terms of submatrix P, where

P = [P0|P1| . . . |PL−1]

and

PT
i = [h0(i)h1(i)].

Matrix S is expressed in terms of submatrix Q, where

Q = [Q0|Q1| . . . |QL−1].

To be more specific,

Q0 = [g0(0)g0(1)],

Q1 = [g1(0)g1(1)],
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Q2 = [g0(2)g0(3)],

Q3 = [g1(2)g1(3)],

and so on. Finally, the exchange matrix Jr is defined as

JR =




0 0 . . . 1

0 · 0

... · 0

1 0 . . . 0




. (36)

As stated before, the position of the submatrix JR in B controls the system delay.

If matrix JR is moved to the top of B, the analysis-synthesis filter bank realizes

a minimum delay system. Similarly, if JR is moved to the bottom, the result is a

maximum delay system.

To illustrate the design method, an example is presented next. Suppose we wish to

design a two-band maximally decimated filter bank with even-length 6-tap analysis-

synthesis filters with a group delay of 6 samples. The analysis lowpass filter is

h0 = [h0[0], h0[1], h0[2], h0[3], h0[4], h0[5]] (37)

and the analysis highpass filter is

h1 = [h1[0], h1[1], h1[2], h1[3], h1[4], h1[5]]. (38)

Similarly, the synthesis filter coefficients are

g0 = [g0[0], g0[1], g0[2], g0[3], g0[4], g0[5]] (39)

and

g1 = [g1[0], g1[1], g1[2], g1[3], g1[4], g1[5]]. (40)

The corresponding analysis submatrices are given by

PT
0 = [h0(0)h1(0)],
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PT
1 = [h0(1)h1(1)],

and so on. Similarly, the synthesis submatrices are given by

Q0 = [g0(0)g0(1)],

Q1 = [g1(0)g1(1)],

Q2 = [g0(2)g0(3)],

Q3 = [g1(2)g1(3)],

and so on until we reach to Q5. Expressed strictly in terms of the analysis and

synthesis coefficients, the reconstruction equation becomes




h0[0] h1[0] 0 0 0 0

h0[1] h1[1] 0 0 0 0

h0[2] h1[2] h0[0] h1[0] 0 0

h0[3] h1[3] h0[1] h1[1] 0 0

h0[4] h1[4] h0[2] h1[2] h0[0] h1[0]

h0[5] h1[5] h0[3] h1[3] h0[1] h1[1]

0 0 h0[4] h1[4] h0[2] h1[2]

0 0 h0[5] h1[5] h0[3] h1[3]

0 0 0 0 h0[4] h1[4]

0 0 0 0 h0[5] h1[5]







g0[0] g0[1]

g1[0] g1[1]

g0[2] g0[3]

g1[2] g1[3]

g0[4] g0[5]

g1[4] g1[5]




=




0 0

0 0

0 0

0 0

0 1

1 0

0 0

0 0

0 0

0 0




. (41)

Starting with a reasonable best guess for the analysis coefficients, the synthesis coef-

ficients are obtained from the equation

S = (ATA)−1ATB. (42)

The reconstruction error (εr) can be computed at this point using the equation

εr = ‖AS−B‖2
F (43)
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where ||.||2F is the Frobenius norm defined by the equation

X =
∑

i

∑
j

|xij|2. (44)

Through the use of iterative optimization of the analysis filter coefficients to minimize

εr, coefficients for the filter bank can be obtained. The A matrix has a dimension

of 10×6. The S matrix has a dimension of 6×2. This leads to a B matrix that is

10×2. Considering this, the A matrix has 2L−R rows and LM/R columns, and the

S matrix has LM/R rows and L columns. This leads to a B matrix of 2L− R rows

and R columns with a possible minimum delay of R − 1 samples and a maximum

delay of (2L− 1)R− 1 samples.

Although the reconstruction error is minimized, the filter’s frequency domain char-

acteristics may not be of high quality. Consequently, a cost function is included in

the error term to assure that the frequency response characteristics are optimized.

Specifically, we use a frequency error component s2 where

s2
t = 1/2 ∗ s2

low + 1/2 ∗ s2
high. (45)

For a two-band system, the frequency error component can be decomposed into two

frequency error components. One component, s2
low, associated with the lowpass fre-

quency error where

s2
low =

1

N/2

N
2∑

k=1

(|hx(k)| −
√

2)2

︸ ︷︷ ︸
passband energy

+
1

N/2

N∑

k=N
2

+1

(|hx(k)| − 0)2

︸ ︷︷ ︸
stopband ripple

(46)

and one component, s2
high,where

s2
high =

1

N/2

N
2∑

k=1

(|hx(k)| − 0)2

︸ ︷︷ ︸
stopband energy

+
1

N/2

N∑

k=N
2

+1

(|hx(k)| −
√

2)2

︸ ︷︷ ︸
passband ripple

(47)

associated with the highpass frequency error. Each component has a term that con-

trols the passband deviation and stopband ripple. For optimization we use a weighted
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error of the form

εt = α ∗ εr + (1− α) ∗ s2
t . (48)

More details associated with the method may be found in [30, 27, 29, 28, 31].

The flexibility inherent in the method allow users to balance the many tradeoffs faced

when designing filters.

5.2 Designing Odd-Length Filters

In this section, we develop the design method for odd-length filters, which heretofore

has not been done. Many of the best known filters used in subband image coding are

odd-length filters. The most popular of these filters are the Daubechies 9/7 filters and

the LeGall 5/3 filters. The popularity is due to their superior performance over their

even-length counterpart. In addition, odd-length linear phase filters do not exhibit

fractional delay in the subband images, which makes them attractive.

Much like the previously developed even-length time-domain approach, this new

approach employs a matrix equation to ensure reconstruction conditions, but embod-

ies some notable differences. For simplicity and without loss of generality, this new

method is presented for a maximally decimated filter bank.

Unlike the even-length case, the constituent filters in an odd-length filter bank

have different lengths. This is a consequence of reconstruction conditions and perhaps

evident through the product filter. Recall from Section 5.1, that the product filter

must be a halfband filter where all even coefficients are zero except the mid-point

coefficient. This implies that product filters are constrained to have lengths of Lp =

3 + 4(i), where i = 0, 1, 2, ... Thus the product filter length Lp can be 3,7,11,15, and

so on. To help visualize this, consider Figure 16. These are the coefficients of the

product filter of the Daubichies 9/7 filter (15-tap lowpass product filter). Through

quick inspection we can see that all even coefficients are equal to zero except at n = 0.

This means we can never have a linear phase product filter that is of length 1,5,9,13,
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Figure 16: Daubichies 9/7 lowpass product filter.

and so on because the end coefficients would be zero. This would also be true for

low delay and high delay product filters. Decomposing a product filter of length

Lp = 3 + 4(i) into two odd-length filters clearly cannot be done unless the lengths

are different, which dictates a different set of design equations.
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For odd-length filters we define the reconstruction equation as follows:



PT
0 0 0 . . . 0 0

PT
1 PT

0 0
... 0 0

PT
2 PT

1 PT
0

...
...

PT
3 PT

2 PT
1

. . . . . .
...

...
...

. . . . . .

PT
K−1 PT

K−2 PT
K−3 . . . PT

0 0

0 PT
K−1 PT

K−2

. . . PT
1 h0(0)

...
...

...
. . .

...
...

0 0 0 0 PT
K−1 h0(L− 1)




︸ ︷︷ ︸
A




Q0

Q1

...

QK−2

QK−1




︸ ︷︷ ︸
S

=




0
...

0

JR

0
...

0




︸ ︷︷ ︸
B

,

(49)

where A is a block Toeplitz matrix of analysis filter coefficients, S is a matrix of

synthesis filter coefficients, and matrix B is the reconstruction matrix containing the

exchange matrix JR. JR controls the group delay characteristics of the system being

designed. Matrix A is expressed in terms of P, where

P = [P0|P1| . . . |PK−1]

Matrix S is expressed in terms of Q, where

Q = [Q0|Q1| . . . |QK−1].

The length parameter in Equation (49) is set to the length of the larger filter and is

denoted as K. To adjust the shorter filter to length K, the shorter filter is zero-padded

at the back end.

To create a more lucid picture of equation structure consider the following. Sup-

pose we wish to design a two-band filter bank with 7-tap and 5-tap analysis-synthesis

filters with a 6 sample group delay. The analysis lowpass filter is

h0 = [h0[0], h0[1], h0[2], h0[3], h0[4]] (50)
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and the analysis highpass filter

h1 = [h1[0], h1[1], h1[2], h1[3], h1[4], h1[5], h1[6]]. (51)

It is our goal to maintain alias cancelation for this system and thus,

G0(z) = H1(−z) (52)

and

G1(z) = −H0(−z). (53)

Given Equations (52) and (53) the synthesis filter coefficients are of length 7 and 5,

where the synthesis lowpass filter is

g0 = [g0[0], g0[1], g0[2], g0[3], g0[4], g0[5], g0[6]] (54)

and the synthesis highpass filter is

g1 = [g1[0], g1[1], g1[2], g1[3], g1[4]] (55)

In terms of the submatrices,

PT
1 = [h0(1)h1(1)],

PT
2 = [h0(2)h1(2)],

and so on, and

Q0 = [g0(0)g0(1)],

Q1 = [g1(0)g1(1)],

Q2 = [g0(2)g0(3)],

Q3 = [g1(2)g1(3)],

....
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In terms of the coefficients, Equation (49) becomes




h0[0] h1[0] 0 0 0 0 0

h0[1] h1[1] 0 0 0 0 0

h0[2] h1[2] h0[0] h1[0] 0 0 0

h0[3] h1[3] h0[1] h1[1] 0 0 0

h0[4] h1[4] h0[2] h1[2] h0[0] h1[0] 0

0 h1[5] h0[3] h1[3] h0[1] h1[1] 0

0 h1[6] h0[4] h1[4] h0[2] h1[2] h0[0]

0 0 0 h1[5] h0[3] h1[3] h0[1]

0 0 0 h1[6] h0[4] h1[4] h0[2]

0 0 0 0 0 h1[5] h0[3]

0 0 0 0 0 h1[6] h0[4]







g0[0] g0[1]

g1[0] g1[1]

g0[2] g0[3]

g1[2] g1[3]

g0[4] g0[5]

g1[4] 0

g0[6] 0




=




0 0

0 0

0 0

0 0

0 1

1 0

0 0

0 0

0 0

0 0

0 0




.

(56)

For any given set of analysis filters, the synthesis filter coefficients can be calculated

using (42). The reconstruction error (εr) can also be calculated using Equation (44).

For this example, the A matrix has a dimension of 11 × 7. The S matrix has a

dimension of 7 × 2. This results in a B matrix that is 11 × 2. For the general odd-

length case, the A matrix has 2K − R − (K mod R) rows and rnd(M K
R

) columns.

The S matrix has rnd(M K
R

) and R columns. This means that B has dimension

2K−R− (K mod R) by R. In order to specify the system group delay, JR is placed

in the ` − 1 position where ` is the desired system delay. Thus, for a system delay

of 6 samples, JR is placed in the 5 position from the top of B as shown in Equation

(56).

The frequency domain characteristics of the filter can be handled as before using

a cost function

s2
t = 1/2 ∗ s2

low + 1/2 ∗ s2
high, (57)

where s2
low, is lowpass frequency error given by Equation (46) and, s2

high, given by
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Equation (47) for the highpass component. The analysis filters are then optimized

iteratively to minimize the weighted cost function given by Equation (48).

5.2.1 Odd-Length Filter Design Example

In this subsection we present an example. We begin with the Daubechies 9/7 product

filter whose pole-zero plot is shown in Figure 17. Our objective is to develop a new set

Figure 17: Pole-zero plot for Daubechies 9/7 product filter.

of odd-length near-linear phase filters. We know from [40] that near-linear phase filters

can be obtained by factoring the product filter such that the analysis filter contains

selectively distributed zeros from the product filter. The synthesis filter contains the

remaining zeros from the product filter. Consider the lowpass Daubechies 9/7 pole-

zero plot in Figure 17. It is possible to factor the filter into two near-linear phase

odd-length filters whose pole-zero plots are shown in Figure 20(a) and Figure 20(b).
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(a) Lowpass analysis filter pole-zero plot.

(b) Lowpass synthesis filter pole-zero plot.

Figure 18: Pole-zero plots for 9/7 lowpass near-linear phase filters.
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Figure 19: Frequency plot for 9/7 lowpass near-linear phase filters.

Although these filters were designed from the Daubichies 9/7 and combine to

create a system having a reconstruction error on the order of 10−14, the frequency

response characteristics are degraded as shown in Figure 19. The degradation is not

huge compared to the original but it is noticeable. There is a larger overshoot in the

lowpass synthesis filter and a larger undershoot in the analysis lowpass filter.

Employing the new time-domain design method presented in Section 5.2, we were

able to develop the filters whose pole-zero plots are shown in Figure 20 and whose

frequency response plots are shown in Figure 21. The passband characteristics are

noticably improved with only a small increase in reconstruction error. The resulting

reconstruction error is 1.366875369975381×10−12 which is negligible. The coefficients

for the new filters are shown in Table 1.

In summary, we have introduced a design method for odd-length filters that pro-

vides control over filter frequency characteristics and system reconstruction error.

Similar to Nayebi’s approach, this method uses a time-domain approach coupled with
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(a) Lowpass analysis filter’s pole-zero plot.
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(b) Lowpass synthesis filter’s pole-zero plot.

Figure 20: Pole-zero plot for 9/7 ER near-linear phase filters.
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Figure 21: Frequency plot for 9/7 ER near-linear phase filters.
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H0 H1

0.05291311404179 -0.06971017838208
0.05838675082778 -0.07691802049972
-0.27517187079671 0.11840024237207
-0.69542616558931 0.64682815800842
-0.53910281122032 -0.87421545720016
-0.05908080620355 0.13719664367785
0.06374250317152 0.11841861202362
-0.01098656022147 0
-0.00948771638282 0

Table 1: Coefficients for the near-linear phase odd-length 9/7 filters.

a frequency error component and also provides explicit control over the system delay.

The most important fact about this new method is that it allows for the design of

odd-length filters in the time-domain that may be able to compete against commonly

used filters such as the Daubechies 9/7 and LeGall 5/3 filters.
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CHAPTER VI

FAAS SYSTEM DESIGN FOR ADAPTIVE SYNTHESIS

In the previous chapter, we discussed time-domain filter design and introduced a

design method to handle analysis-synthesis filters of uneven length. Such flexibility is

necessary when considering odd-length filters. In this chapter, we address the design

of FAAS filters optimized for high quality adaptive synthesis. Recall from Chapter 4,

that for convenience we are focusing on FAAS systems with three synthesis filter sets

that work in conjunction with one analysis filter set to reconstruct images and reduce

distortion. Thus, we need to design a system with a fixed analysis filter set and with

three filter sets that can be used to reconstruct images and reduce distortion that is

visible in low bit-rate subband/wavelet coders. In the remainder of this chapter, we

introduce the method to design a complete filter set with even-length and odd-length

filters and show a few examples.

The FAAS system is shown again in Figure 22 for convenience. In this particular

configuration of the FAAS filter bank, which is the one we explore in detail as part

of this thesis, the analysis filter set is fixed and reconstruction is based on three

synthesis filter sets. The identity property of the analysis-synthesis reconstruction

equations indicates that for a given analysis filter pair, only one synthesis filter pair

can reconstruct the input exactly in the absence of subband modification. Given this

constraint, the system design task is to design

(G00, G10), (G01, G11), (G02, G12)

with respect to (H0, H1) to

(a) minimize the error over the course of operation, and

(b) improve the subjective quality when subbands are quantized.
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Objective (b) does not lend itself to a numerical formulation and typically re-

quires observation and experimentation. Objective (a) however, can be addressed

mathematically as discussed next.

47



The three synthesis filter sets can be designed collectively with a common analysis

filter.

S0 = (ATA)−1ATB0 (58)

S1 = (ATA)−1ATB1 (59)

S2 = (ATA)−1ATB2 (60)

Equation (58) is used to obtain the low delay synthesis filters. Equation (59) is used to

obtain the linear phase synthesis filters. Similarly, Equation (60) is used to obtain the

high delay synthesis filters. Using Equation (43), a reconstruction error is computed

for each analysis-synthesis combination given by

εr0 = ‖AS0 −B0‖2
F (61)

εr1 = ‖AS1 −B1‖2
F (62)

and

εr2 = ‖AS2 −B2‖2
F (63)

where εr0, εr1, and εr2 are the low delay, linear phase, and high delay reconstruc-

tion errors, respectively. The filter frequency domain characteristics should also be

optimized for each adaptive synthesis set. These errors are given by

s00 =
1

N

N
2∑

k=1

(|G00(k)| −
√

2)2 +
1

N

N∑

k=N
2

+1

|G00(k)|2, (64)

s01 =
1

N

N
2∑

k=1

(|G01(k)| −
√

2)2 +
1

N

N∑

k=N
2

+1

|G01(k)|2, (65)

s02 =
1

N

N
2∑

k=1

(|G02(k)| −
√

2)2 +
1

N

N∑

k=N
2

+1

|G02(k)|2 (66)

48



Figure 22: Fixed-analysis adaptive-synthesis filter bank structure.
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for the lowpass filters and

s10 =
1

N

N
2∑

k=1

|G10(k)|2 +
1

N

N∑

k=N
2

+1

(|G10(k)| −
√

2)2, (67)

s11 =
1

N

N
2∑

k=1

|G11(k)|2 +
1

N

N∑

k=N
2

+1

(|G11(k)| −
√

2)2, (68)

s12 =
1

N

N
2∑

k=1

|G12(k)|2 +
1

N

N∑

k=N
2

+1

(|G12(k)| −
√

2)2 (69)

for the highpass filters.

With the reconstruction errors and frequency domain errors isolated as error com-

ponents a total weighted error can be calculated. We can specify the tradeoff between

reconstruction error and frequency domain error via the equation

εt = α ∗ εr + (1− α) ∗ s, 0 < α < 1 (70)

where α is the weighting factor and

s =
∑

i

∑
j

|sij|. (71)

To specify the reconstruction error tradeoff among the three synthesis filter pairs we

can again employ the use of weighting factors,

β0 + β1 + β2 = β, β = 1 (72)

where

0 ≤ β0, β1, andβ2 ≤ 1. (73)

The composite weighted reconstruction error then becomes

εr = β0 ∗ εr0 + β1 ∗ εr1 + β2 ∗ εr2 (74)
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To specify the tradeoff in frequency-domain error among the synthesis filters, we

can employ a similar set of constrained weights γ0, γ1, γ2 resulting in the composite

weighted error term

si = γ0 ∗ si0 + γ1 ∗ si1 + γ2 ∗ si2. (75)

One could ascribe preferential weightings to the lowpass and highpass filters within

each synthesis filter set, but for this investigation we constrained them to be equally

weighted. The degrees of freedom present in the implied design process are many -

too many in fact. How then does one specify the weights

α, β0, β1, β2, γ0, γ1, γ2?

For the gamma values that govern the relative emphasis of frequency domain error

among the synthesis filters, uniform weighting was used, since there is no rationale

for emphasizing one over another.

For the beta values that govern the relative reconstruction error, values were cho-

sen to minimize overall reconstruction error. In most cases, the selection/reconstruction

algorithm will employ the linear phase filters. When image edges are encountered

(which are not that often relatively speaking), the minimum and high delay filters

are used. Thus, we reason that the reconstruction errors should be weighted in pro-

portion to the frequency of use of the given filter in the reconstruction process. In

this way the overall reconstruction error is reduced.

For the α value that governs the tradeoff between reconstruction and frequency

domain errors, we relied on settings that worked well in previous AAAS experiments.

A remaining issue to address in the design process is the position of the exchange

matrix in B of Equations (58), (59), and (60). To take advantage of the greatest

spread in phase diversity we use a linear phase analysis filter in conjunction with a

low delay, a linear phase, and a high delay synthesis filter set. The choice of a linear

phase synthesis filter was motivated by the desire to be compatible with existing
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subband/wavelet coders. To achieve the low delay, linear phase, and high delay

design specifications the exchange matrix in B was placed in the first, middle, and

last positions respectively in B. The resulting system group delays are

`1 = n, (76)

`0 = n− integer(n/2), (77)

and

`2 = n + integer(n/2), (78)

where n is the order of the filter, integer(x) is the integer portion of the argument, `1 is

the group delay that yields linear phase, `0 is the group delay that yields a combination

of a linear phase filter for the analysis subsystem and a low delay synthesis subsystem,

and `2 is the group delay obtained from the combination of a linear phase filter for

the analysis subsystem and a high delay synthesis subsystem.

Minimizing the cost function in Equation (70), in combination with the given

group delays, leads to a set of FAAS filters. Designing in this manner allows us to

meet the design goals and attain a system compatible with current systems. In the

following sections, we will take a closer look at the design methodology and its use

for designing even-length and odd-length filters for FAAS systems.

6.1 Even-Length Adaptive Synthesis Filter Design

The multi-filter synthesis structure inherent in FAAS filter banks provides the poten-

tial to exploit phase diversity as mentioned previously. In Chapter 5, we provided an

example to illustrate the design of a single optimized analysis-synthesis filter bank

(with even or uneven length). In the next subsections, we walk through the design

of an even-length and odd-length FAAS filter bank, as a system of one fixed analysis

filter pair and three lowpass/highpass synthesis filter pairs.

Even-length Example

Even length filters, such as QMFs, are still employed in many image compression
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codecs. Here we consider the design of a compatible FAAS filter bank. For this

system, the filters are 7th order (n) filters. Given this, the linear phase analysis

and the linear phase synthesis filter combination yield a system group delay of seven

samples. Each filter set contributes a group delay of approximately 3.5 samples.

Using Equation (77), the linear phase analysis filter in combination with the low

delay synthesis filter yields a system group delay of 4 samples. This is obtained from

the 3.5 sample delay of the analysis filter and 0.5 sample delay from the synthesis

filter. Finally, from Equation (78), the linear phase analysis filter in combination

with the high delay synthesis filter results in a system group delay of 10 samples.

That is, this combination contains a 3.5 sample delay from the analysis filter and 6.5

samples from the synthesis filter. These all lead to a system capable of exploiting

phase diversity to reduce distortion.

With the previous portion of the design addressed, we continue by addressing the

determination of the weighting factors, α and the βs, and the initial coefficients for

the analysis filters in the A matrix of Equation (35). Since our design objective for

this system is to make it compatible with current compression coders, consider using

a scaled version of the Johnston’s eight-tap(A) (scaled for a two-band system) [15] for

the initial analysis filter coefficients for the A matrix in Equation (35). To achieve

a large degree of compatibility with systems that employ the Johnston eight-tap(A)

filters, α in Equation (70) is set to approximately 1. Similarly, β1 in Equations (72)

and (74) are set to approximately 1 also. Thus, β0 and β2 in each equation are set

to approximately 0. Minimizing Equation (70) yields the coefficients in Tables 2, 3,

and 4 for this even-length FAAS system.
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Table 2: Johnston eight-tap(A) analysis filter coefficients (normalized for a passband
gain of

√
2)

H0 H1

0.00037436976317 0.00037436976317
-0.01628634319845 0.01628634319845
0.01626542450770 0.01626542450770
0.70668561798825 -0.70668561798825
0.70668561798825 0.70668561798825
0.01626542450770 -0.01626542450770
-0.01628634319845 -0.01628634319845
0.00037436976317 -0.00037436976317

Table 3: Johnston eight-tap(A) synthesis lowpass filter and complementary synthesis
lowpass filters

G00 G01 G02

0.70677847266626 0.00037498769053 0.00000860859150
0.70677790627290 -0.01627617029410 0.00000863742685
0.01627985228855 0.01627984112172 0.00000020140233
-0.01627618601797 0.70677818952471 0.00037518634246
0.00037518634246 0.70677818952471 -0.01627618601797
0.00000020140233 0.01627984112172 0.01627985228855
0.00000863742685 -0.01627617029410 0.70677790627290
0.00000860859150 0.00037498769053 0.70677847266626
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Table 4: Johnston eight-tap(A) synthesis highpass filter and complementary syn-
thesis highpass filters

G10 G11 G12

0.70677847266626 -0.00037498769053 0.00000860859150
-0.70677790627290 -0.01627617029410 -0.00000863742685
0.01627985228855 -0.01627984112172 0.00000020140233
0.01627618601797 0.70677818952471 -0.00037518634246
0.00037518634246 -0.70677818952471 -0.01627618601797
-0.00000020140233 0.01627984112172 -0.01627985228855
0.00000863742685 0.01627617029410 0.70677790627290
-0.00000860859150 0.00037498769053 -0.70677847266626
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Table 2 contains the Johnston 8(A) analysis filter. Table 3 contains the lowpass

synthesis filters for the FAAS system. and Table 4 contain the coefficients for the

highpass synthesis filters. It is important to note that the filter coefficients G01 and

G11 from Tables 3 and 4 are the Johnston 8(A) (normalized by
√

2).

The reconstruction errors for each filter combination are shown in Table 5. At

Table 5: Johnston’s eight-tap(A) filters and complementary filters reconstruction
errors

Filter Pairs (analysis-synthesis) Reconstruction Error
linear phase - low delay 0.00106003613975

linear phase - linear phase 5.957290674789945 ∗ 10−10

linear phase - high delay 0.00106003613975

first glance, the reconstruction errors for the linear phase - low delay and linear

phase - high delay combination may appear large. But, these filters are used only for

small segments in an image while the linear phase-linear phase combination are used

significantly more often to reconstruct a given signal. Thus, the overall reconstruction

error for the image is very small.

6.2 Odd-Length Adaptive Synthesis Filter Design

Odd-length Example

In this subsection, we present the design of an odd-length FAAS filter bank, com-

patible with codecs that employ the popular Daubechies 9/7 and LeGall 5/3 filters.

For this system, we consider a nine-tap filter and a seven-tap filter. The linear phase

analysis and linear phase synthesis filter combination yield an overall system group

delay of 7 samples. The analysis filter contributes a group delay of 4 samples, while

the synthesis filter contributes a group delay of 3 samples. Using Equation (77), the

linear phase analysis filter in combination with the low delay synthesis filter yields

a system group delay of 5 samples. This is obtained from the 4 sample delay of the
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analysis filter and 1 sample delay from the synthesis filter. Finally, from Equation

(78), the linear phase analysis filter in combination with the high delay synthesis filter

results in a system group delay of 11 samples. That is, this combination contains a 4

sample delay from the analysis filter and 7 samples from the synthesis filter. Similar

to its even-length counterpart, these all lead to a system capable of exploiting phase

diversity to suppress distortion.

We continue by addressing the weighting factors, α and the βs, and the initial

coefficients for the analysis filters in the A matrix of Equation (35). Since the SPIHT

coder uses the Daubechies 9/7 filters, we consider using the Daubechies 9/7 [9] for

the initial analysis filter coefficients for the A matrix in Equation (35). To achieve

a large degree of compatibility with systems that employ the Daubechies 9/7 filters,

α in Equation (70) is set to approximately 1. Similarly, β1 in Equations (72) and

(74) is set to approximately 1 also. Thus, β0 and β2 in each equation are set to

approximately 0. Minimizing Equation (70) yields the coefficients in Tables 6, 7, and

8 for this odd-length FAAS system.

Table 6: Daubechies 9/7 analysis filter coefficients

H0 H1

0.03782845550726 -0.06453888262870
-0.02384946501956 0.04068941760916
-0.11062440441844 0.41809227322162
0.37740285561283 -0.78848561640558
0.85269867900889 0.41809227322162
0.37740285561283 0.04068941760916
-0.11062440441844 -0.06453888262870
-0.02384946501956 0
0.03782845550726 0
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Table 7: Daubechies 9/7 synthesis lowpass filter and complementary synthesis low-
pass filters

G00 G01 G02

0.79222481028799 -0.06453888262892 0
0.38154281168348 -0.04068941760936 -0.00000000000007
-0.04344260785188 0.41809227322190 0.00023522048207
-0.03865456887373 0.78848561640626 -0.06416579134413
0.00023522048207 0.41809227322190 -0.04344260785188
-0.00209828791646 -0.04068941760937 0.41372534362802

0 -0.06453888262892 0.79222481028799
0 -0.00000000000014 0.42402313704934
0 0 0

58



Table 8: Daubechies 9/7 synthesis highpass filter and complementary synthesis
highpass filter

G10 G11 G12

0.37417351498122 -0.03782845550717 0
-0.82245340753992 -0.02384946501974 0
0.38103462269512 0.11062440441872 0.00013787080251
0.07911389212137 0.37740285561309 -0.03760977389242
-0.02497324250280 -0.85269867900966 -0.02497324250280
-0.02702748264951 0.37740285561307 0.10884194235998
0.00013787080251 0.11062440441872 0.38103462269512
-0.00122987860735 -0.02384946501973 -0.84693820851846

0 -0.03782845550717 0.37417351498122
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Table 6 contains the Daubechies 9/7 analysis filter, Table 7 contains the lowpass

synthesis filters for the FAAS system, and Table 8 contain the coefficients for the

highpass synthesis filters. The reconstruction errors for each filter combination are

shown in Table 9.

Table 9: Daubechies 9/7 filters and complementary filters reconstruction errors

Filter Pairs (analysis-synthesis) Reconstruction Error
linear phase - low delay 0.20566879027821

linear phase - linear phase 3.376026106177021 ∗ 10−026

linear phase - high delay 0.00807868404910
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CHAPTER VII

DISTORTION SUPPRESSION

Subband image coders operating at low bit rates are known to exhibit distortion

in the form of ringing at edges. To alleviate this problem, AAAS filter banks were

investigated in work reported by Arrowood where a set of ringing removal strategies

were applied to effectively exploit phase diversity. Arrowood applied length switching

and phase switching techniques to mitigate ringing, but focused mostly on phase

switching. He applied the low delay results at the beginning of discontinuities, high

delay results at the end of discontinuities and linear phase results elsewhere.

Determining the appropriate place to switch filters in an AAAS filter bank is not

a trivial procedure. Arrowood employed a first-order difference equation on the rows

and columns of the input to detect major edges. Best results were obtained using

a threshold in the range of 45 to 55. To ensure encoder/decoder synchrony, switch

point locations were transmitted separately to the decoder as side information, which

constitutes a forward adaptive system. Arrowood also considered two methods to do

this. These two methods were highpass split information and edge detection.

Arrowood also considered using the HL and LH subbands, as they embody direc-

tional edge information. Together they can be used as an edge detector to trigger

switching. This approach is attractive because the HL and LH subbands are avail-

able and thus don’t involve additional arithmetic. For forward adaptive systems, he

was able to determine the major switch points and suppress distortion. However,

additional bits had to be transmitted to specify the switching point locations. For

his backward adaptive implementation, the switch points were extracted from HL

and LH at the receiver side. Consequently, no additional sync bits were necessary.
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The disadvantage here is that at low bit-rate edge information in the HL and LH

sometimes does not survive quantization, resulting in sync errors.

In the sections that follow, we consider the FAAS filter bank structure and intro-

duce a new approach to suppressing ringing distortion.

7.1 Distortion Suppression Strategies

A key advantage of FAAS filter banks is the potential to achieve higher performance

than conventional filter banks. In particular, these filter banks provide a way to

suppress ringing distortion in reconstruction. An example of ringing distortion is

shown in Figure 23. The reconstructed 256 × 256 cameraman image is shown here

compressed to 0.25 bpp. The ringing distortion manifests itself as alternating light

and dark bands adjacent to object edges. Ringing distortion is caused by a loss of

information in the high frequency channel. Such losses occur when images are coded

at low bit rates. The cause of the distortion can be seen clearly through a simple 1-D

example. Consider a step edge that has been filtered by H0(z) in the low frequency

channel of the filter bank, an illustration of which is shown in Figure 24.
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(a) Original cameraman image.

(b) Cameraman image compressed to 0.25 bpp.

Figure 23: Illustration of ringing distortion in cameraman image.
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The result is effectively the step response of the lowpass filter. The overshoot and

undershoot associated with the step response is the source of the ringing distortion

that appears when coding is performed at low bit rates.

There is a tradeoff between aliasing cancelation and ringing distortion that is

important to manage. Both of these factors are functions of high frequency channel

information loss, which, in turn, is a function of the bit rate. To illustrate this

point, consider Figure 25 which shows the various high frequency subband images

for different bit rates. By inspecting these subbands, it is evident that as the bit

rate is lowered, the amount of information present in the high frequency subbands is

reduced, leading to the ringing distortions we see.

Low delay and high delay reconstruction filters should be designed carefully to

minimize both imaging distortion and ringing distortion. To mitigate imaging dis-

tortion, the synthesis filters should have good stopband rejection characteristics. To

suppress ringing distortion, the step response characteristics should have minimal

ripples. These two objectives are contradictory, suggesting the need to impose con-

straints in both the frequency domain and the time domain.

To start, consider the method developed in Chapter 6. In general, this method

allows us to obtain a set of complementary low delay and high delay filters to aid

in distortion suppression. In Chapter 6, the Daubechies 9/7 filters were considered

as a specific case and complementary synthesis filters were designed.Although the

frequency domain coefficients have been optimized, an interesting phenomenon occurs

with the low delay (G00) and high delay (G02) filters when they are applied in an FAAS

filter bank to suppress ringing. Recall that the filters G00 and G02 are applied after

the subband images have been upsampled. When the subband has a high sustained

amplitude, the upsampled subband will contain interleaved zeros. Thus, if the sum of

the odd filter coefficients is different from the sum of the even coefficients, oscillations

will occur in the output. For linear phase filters (like the Johnston QMFs), the sum of

64



Figure 24: Step function response in the lowpass channel.
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(a) Four-band decomposition at 1 bpp. (b) Four-band decomposition at 0.75 bpp.

(c) Four-band decomposition at 0.5 bpp. (d) Four-band decomposition at 0.25 bpp.

Figure 25: Illustration of image subbands for the cameraman image coded at four
different bit rates.
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the even and odd coefficients is exactly the same (which is a property of even-length

linear phase filters). But such is not naturally true for low delay or high delay filters.

Figure 26 illustrates this point graphically. In the figure, three FAAS examples of

complementary Daubechies 9/7 synthesis filters are shown: a) low delay, b) linear

phase, and c) high delay. For the low delay, the difference in the sum of the odd and

even coefficients is high, resulting in the high oscillations seen in Figure 26(a). Small

oscillations are visible for the high delay case. It turns out the sum difference in odd

and even coefficients is smaller. No oscillations occur for the linear phase case.

To address this issue, an explicit constraint is introduced in the design process to

assure that the odd and even coefficient sums differences are negligible. It should be

noted that this sum difference issue is simply a component of reconstruction error,

which could have been addressed by using a higher weighting for the reconstruction

error in the original design procedure. Emphasizing the even/odd sum difference as

an explicit component within the reconstruction error has a perceptual advantage in

that it can be directly associated with a distortion that is visible.

In an effort to maximize FAAS distortion suppression, we have redesigned the

synthesis filters in accordance with the discussion above. In addition, to reduce com-

putation complexity while at the same time reducing ringing in the tails of the low

and high delay filters, we constrain the low amplitude trailing and leading coefficients

to be zero. Since these amplitudes are so small, their effect on the frequency response

characteristics is negligible and hence this represents an opportunity to reduce arith-

metic complexity.

Table 10 lists the coefficients of the redesigned FAAS synthesis filters for the

Johnston eight-tap(A) filters. Similarly, Table 11 lists the coefficients for the com-

plementary highpass filters. Table 12 lists the reconstruction errors for each of the

reconstruction pairs. One can observe that the reconstruction errors have been re-

duced significantly compared to the filters designed in Chapter 6.
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(a) FAAS low delay 9/7 synthesis filters.
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(b) FAAS linear phase 9/7 synthesis filters.
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(c) FAAS high delay 9/7 synthesis filters.

Figure 26: Example of FAAS synthesis filters applied to an upsampled block.
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1. Scaling the filter coefficients so that the sum of the coefficients are scaled to 2√
2

for the lowpass filter coefficients (0 for the highpass). That means a magnitude

of 1√
2

for the even coefficients and a magnitude of 1√
2

for the odd coefficients is

required (- 1√
2

and 1√
2

for the highpass).

2. Minimizing the coefficients in the ”tail” of the filter by reducing the magnitude

of the filter’s tail coefficients or using shorter filters [14].

These steps will increase the reconstruction error and image distortion but they will

lead to less ringing distortion.

Table 10: Johnston eight-tap(A) Redesigned Synthesis Lowpass Filter and Comple-
mentary Synthesis Lowpass Filter

G00Redesigned G01Redesigned G02Redesigned
0.69084041185006 0.00037498769053 0
0.72378694465759 -0.01627617029410 0
0.01590045844083 0.01627984112172 0
-0.01668016347104 0.70677818952471 0.00036591045377
0.00036591089566 0.70677818952471 -0.01668016298951

0 0.01627984112172 0.01590045801345
0 -0.01627617029410 0.72378694417606
0 0.00037498769053 0.69084041271932

Table 11: Johnston eight-tap(A) Redesigned Synthesis Highpass Filter and Com-
plementary Synthesis Highpass Filter

G10Redesigned G11Redesigned G12Redesigned
-0.69084041185006 -0.00037498769053 0
0.72378694465759 -0.01627617029410 0
-0.01590045844083 -0.01627984112172 0
-0.01668016347104 0.70677818952471 0.00036591045377
-0.00036591089566 -0.70677818952471 0.01668016298951

0 0.01627984112172 0.01590045801345
0 0.01627617029410 -0.72378694417606
0 0.00037498769053 0.69084041271932
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Table 12: Johnston eight-tap(A) Redesigned Filters Reconstruction Errors

Filter Pairs Redesigned Reconstruction Error
linear phase - low delay 0.00214737453486

linear phase - linear phase 5.957275160953383 ∗ 10−10

linear phase - high delay 0.00214737444664

This same procedure was applied to the odd-length filter for redesign. The original

(Chapter 6) FAAS Daubechies 9/7 complementary synthesis lowpass filters are listed

in Table 13. As before, the odd/even coefficient sum difference was constrained to

be negligible. In addition, note that in the complementary Daubechies 9/7 synthesis

Table 13: Complementary Daubechies 9/7 synthesis lowpass filters

G00 G02

0.79222481028799 -0.00000000000007
0.38154281168348 0.00023522048207
-0.04344260785188 -0.06416579134413
-0.03865456887373 -0.04344260785188
0.00023522048207 0.41372534362802
-0.00209828791646 0.79222481028799

0 0.42402313704934

lowpass filters in Table 13, there is only one virtual zero coefficient per filter. Keeping

with the approach to reduce the tail and reduce computational complexity, the filter

coefficients that are of low amplitude are replaced with zeros. This yields coefficients

listed in Table 14 and Table 15. The reconstruction errors for the filter combinations

are shown in Table 16. The effects of shortening and redesigning of the low delay

synthesis filter and high delay filters are evident from the example shown in Figure

27.
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Table 14: Redesigned Daubechies 9/7 complementary synthesis lowpass filter

G00 G01 G02

0.74789653543220 -0.06453888262897 0
0.79166508748431 -0.04068941760930 0.00022205891726
-0.04101181316292 0.41809227322225 -0.05865186334346
-0.08020455820952 0.78848561640516 -0.04101181316292
0.00022205891726 0.41809227322225 0.37817288321209
-0.00435374808825 -0.04068941760931 0.74789653543220

0 -0.06453888262897 0.38758576131792

Table 15: Redesigned Daubechies 9/7 complementary synthesis highpass filters

G10 G11 G12

0.36225423798497 -0.03782845550717 0
-0.75371272132055 -0.02384946501974 0
0.36889678548531 0.11062440441872 0.00013347893558
0.07250155009196 0.37740285561309 -0.03428376831574
-0.02417772121931 -0.85269867900966 -0.02417772121931
-0.02476852465009 0.37740285561307 0.09921654795315
0.00013347893558 0.11062440441872 0.36889678548531
-0.00112708530786 -0.02384946501973 -0.77203956082396

0 -0.03782845550717 0.36225423798497
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Table 16: Reconstruction errors for the Daubechies 9/7 filters and complementary
filters

Filter Pairs (analysis-synthesis) Reconstruction Error
linear phase - low delay 0.39370928190980

linear phase - linear phase 1.570612476380791 ∗ 10−024

linear phase - high delay 0.02794395475609

7.2 New Phase Switching Selection Method

In the prior section, distortion suppression strategies were presented in general terms.

What is more important now is to determine when and how often to switch between

filters, what constitutes an edge, and what constitutes ringing. Previous methods pro-

posed to make this determination were edge detection and mixed frequency subband

thresholding, as mentioned before. In the remainder of this section, we will introduce

the new method employed in this work for selecting the filter switching locations.

The rationale for expected performance gain articulated earlier in this document was

based on the notion of exploiting phase diversity. By considering a multiplicity of

reconstruction options involving different synthesis filter group delays, quantization

noise can be targeted spatially, enabling higher quality reconstruction. Each of the

reconstructions –low delay, linear phase, and high delay –has a unique noise profile

in a low bit-rate subband coding environment. This point is illustrated in Figure 31,

where a 1-D image block is shown reconstructed with low delay (in blue), linear phase

(in green), and high delay (in red) FAAS filters. The selection method employed in

this thesis is based on a simple rule-based comparison of the three outputs on a pixel-

by-pixel basis. Let x̂LD, x̂LP , x̂HD denote the low delay, linear phase, and high delay

reconstructions respectively. Then if

x̂LD(i) ≈ x̂LP (i) (79)
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(a) FAAS low delay 9/7 synthesis filters.
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(b) FAAS linear phase 9/7 synthesis filters.
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(c) FAAS high delay 9/7 synthesis filters.

Figure 27: Unscaled and same length synthesis filters response
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and

x̂HD(i) 6= x̂LP (i) (80)

we use the reconstruction from the high delay synthesis filter. As is evident by exam-

ining Figure 31, when this condition is true, we are at the back end of a transition, in

which case the high delay filter provides the most accurate reconstruction. Similarly,

if,

x̂HD(i) ≈ x̂LP (i) (81)

and

x̂LD(i) 6= x̂LP (i) (82)

then we are at the onset of a transition and low delay filters provide the most accurate

reconstructions. For all other areas in the image, linear phase reconstructions selected.

In so doing, the majority of the reconstruction will be identical to that obtained using

conventional FAFS filter banks. This method is performed on the image rows and

columns within the framework of a separable 2-D filter bank.

This phase switching method has three advantages over the edge detection and

the mixed frequency subband thresholding methods employed by Arrowood. First,

we do not have to find the explicit location of an edge. Second, we do not have to find

an edge and then create a switching mask. Both are accomplished in this one step.

Third, edges that occur within close proximity of each other such that the ringing

regions overlap are not a problem in the new method. This is because in these cases

neither the low delay nor high delay filter will be approximately equal to the linear

phase filter and this will not trigger a poor reconstruction choice.

To optimize the effectiveness of the phase selection method, threshold criteria

governing the approximations in Equations (79), (80), (81), and (82) must be devel-

oped. Such thresholds are best set empirically, but for the purpose of demonstration,

we assume equality to within 8-bit numerical precision. Using Equations (7.1)-(7.4)

defined in this way, a switching mask is created for both for the rows and column
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edges. The switching masks for both the row and column edge detection for the cam-

eraman image are shown in Figures 28 and 29. In these images, similar to Figure

Figure 28: Cameraman phase comparison row mask.

15, the green regions represent areas where linear phase filters will be used, the blue

are where low delay filters will be used, and the red areas where high delay filters will

be used. Control over the switching mask is essentially provided through the implicit

threshold used in Equations (7.1) - (7.4). If, for example, we relaxed the precision

from 8 bits to 3 bits, the high and low delay filters would be used more frequently.

Equivalently, the switching mask would be dilated as illustrated in Figure 34.
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Figure 29: Cameraman phase comparison column mask. Note: Image is transposed.

In closing, we point out that the phase selection method in combination with

the FAAS filter design will not reduce ringing distortion completely. However, this

method does suppress much of the distortion.
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Figure 30: Cameraman phase comparison row mask with accuracy criteria relaxed.
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CHAPTER VIII

FAAS FILTER BANK APPLICATION TO SYMMETRIC

EXTENSION

In this chapter, we consider the application of FAAS filter banks to symmetric

extension-which is now the standard method for implementing subband/wavelet coders.

First we provide a summary of the size expansion issue that motivates the use of sym-

metric extension. This is followed by a discussion of linear phase symmetric extension.

In the subsequent sections, the adaptive feature of FAAS filter banks is considered. It

is shown that FAAS filter banks provide additional implementation flexibility within

the natural decomposition structure that allows nonlinear phase in addition to linear

phase filters to be employed.

8.1 The Boundary Problem

Filter banks were popularized in the 1970s and early 1980s in the context of subband

audio coding. In 1986, Woods and O’Neil [47] considered applying subband coding

to images. This application caught the eye of researchers all over the world and has

been studied extensively since that time.

Extending subband coding to two-dimensions can be done in a straightforward

way by applying the filter banks to the rows and then to the columns of the resulting

subband images. However, a new issue arises in the context of subband image coding

for which there is no 1-D counterpart: the problem of data expansion. Data expansion

occurs because a digital image has a finite length, say N × M , and convolution

operations inherently expand the length of a finite duration signal. In particular,

the convolution of an image row of length M with a filter of length L results in an
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output of length M + L− 1. After performing the 2-band filter bank downsampling

operation, the length of the subband signal is (M + L− 1)/2.

This is a problem. For subband image coding, the goal is to decompose the original

image into subbands, code the subbands efficiently using as few bits as possible, and

then reconstruct in the decompression stage. Since the subband decompositions is

effectively performing a compaction transform, the resulting subbands should contain

no more pixels collectively than the original, if the overall system is to be efficient.

Thus, ideally each 2-D subband split should result in a set of four subbands each of

quarter size, i.e. N/2×M/2. Unfortunately, the natural output of the filter bank (for

a 2-D split) results in larger subband images of size (N + L− 1)/2× (M + L− 1)/2.

This expansion hurts coding performance, the degree of which is a function of the

image size and the filter length ”L.”

To appreciate the magnitude of the data expansion, consider coding an image

of size 256 × 256 with 32-tap analysis-synthesis filters. A single 2-D split results in

data expansion of 25.7 percent. If that same image is split again to form a 16-band

subband decomposition, the data expands by 85.9 percent. For larger images and

smaller filter lengths, the expansion is less severe. Nonetheless, data expansion is an

important issue to address if subband image coding is to be effective.

In the original paper by Woods and O’Neil, implementation of the filter bank

was performed using the DFT. That is, convolution was performed in the frequency

domain. Their implementation was equivalent to performing circular convolution in

the spatial domain. Since circular convolution will result in an output that is of

the same length as the input, no data expansion occurs. This would seem to be an

ideal solution in that it is simple to implement, it involves no more computation than

linear convolution, and it avoids the problem of data expansion. The disadvantage of

circular convolution is that it results in boundary distortions when the subbands are

quantized. The magnitude of these distortions increases in inverse relation to the bit
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rate: the lower the bit rate, the more visible the distortions.

The reason for these distortions is that often the pixel amplitudes at the beginning

and end of an image row or column will be different and hence represents a disconti-

nuity. Circular convolution involves filtering across this boundary discontinuity. Such

discontinuities cause ringing distortions that are particularly visible when coding at

low bit rates, hence the problem.

To better appreciate the problem, consider the image shown in Figure 32, which

has been coded at a low bit rate. Visible ringing distortions are evident at the top

and sides of the picture, which are a consequence of circular convolution. In the

Figure 31: Subband image coding example using circular convolution.
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next section, we discuss symmetric extension, the popular solution for addressing

this problem, along with its limitations.

8.2 Linear Phase Symmetric Extension

The coding distortion at boundary edges due to circular convolution is well recognized

at low bit rates. Smith and Eddins in [?, 12] developed a method to suppress these

effects called symmetric extension. Symmetric extension, like the circular convolution

method, creates a periodic signal, which is the key to avoiding data expansion, but

also avoids creating artificial boundary discontinuities. Symmetric extension is ac-

complished by reflecting the rows and columns at the image boundaries while circular

convolution involves a direct concatenation of the rows and columns. For example,

the circular convolution method applied to the sequence a,b,c,d, would create the

periodic sequence ...a,b,c,d,a,b,c,d,... . In contrast, the symmetric extension method

would create the periodic sequence ...a,b,c,d,d,c,b,a... .

Because artificial boundary discontinuities are avoided the symmetric extension

method avoids the migration of quantization noise across beginning and end of the

rows and columns. This point can be seen by comparing the circular convolution

coding example shown in Figure 32 to the symmetric extension coding example show

in Figure 33. In addition, symmetric extension accommodated ER with biorthogonal

filters, as highlighted in [16].

Symmetric extension is not as trivial as it may seem. This technique must be

done carefully and must obey a clear set of rules. If done correctly, the technique will

produce a symmetric output, ensure no expansion, and reduce boundary distortion.

Different types of symmetric extension are used for the various combinations of even-

length and odd-length image and filter size. Two types of symmetric extensions are

noteworthy in particular:

• half-point symmetric extension,
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Figure 32: Circularly extended building image that has been filtered and quantized.

• whole-point symmetric extension.

The rules governing the type of symmetric extension used were established and are

published in [4] and are outlined in the following two subsections. They have helped

to make symmetric extension a much more useful technique.

8.2.1 Linear Phase Half-Point Symmetric Extension

In this subsection, we describe linear phase half-point symmetric extension using a

simple example. Consider Figure 34, which has a six-tap (even-length) lowpass filter

h0 = [h0[0], h0[1],h0[2],h0[3], h0[4], h0[5]] (83)
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Figure 33: Filtered and quantized symmetrically extended building image.
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Figure 34: Two-band analysis-synthesis filter bank with symmetric extension.

where h0[2] and h0[3] are the largest coefficients of the mainlobe. Convolution

vk[n] =
L−1∑
m=0

x[n−m]hk[m], k = 0, 1, . . . , M − 1,

is performed with an input signal, x, where

x = [x[0], x[1], x[2], . . . , x[6], x[7]]T . (84)

For convenience, we will describe the filtering and downsampling operations using

matrix equations. Combining the filter block structure with the input data will yield

vext
0 which is symmetric at the boundary edges. In this way, each channel can be
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downsampled and windowed to yield four samples that mitigate the data expansion

issue experienced with linear convolution.

If x is extended prior to entering the system, x must be extended such that xext =

. . . , x[2], x[1], x[0], x[0], x[1], x[2], . . . at the left boundary of the signal. Likewise, x

must be extended such that xext = . . . , x[5], x[6], x[7], x[7], x[6], x[5], . . . at the right

boundary of the signal. To avoid extending x prior to it entering the system, a

different approach is employed. For simplicity, consider the lowpass channel and the

left boundary only. The samples of vext
0 can be represented as

vext
0 = H0x

ext (85)

where H0 is a filter matrix defined as

H0 =




h0[3] h0[2] h0[1] h0[0] 0 0 0 . . .

h0[4] h0[3] h0[2] h0[1] h0[0] 0 0 . . .

h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] 0 . . .

0 h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] . . .

0 0 h0[5] h0[4] h0[3] h0[2] h0[1] . . .

...
...




(86)

(87)

such that convolution is accomplished when the filter matrix is multiplied by an input
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signal. Equation 85 yields




h0[3] h0[2] h0[1] h0[0] 0 0 0 . . .

h0[4] h0[3] h0[2] h0[1] h0[0] 0 0 . . .

h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] 0 . . .

0 h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] . . .

0 0 h0[5] h0[4] h0[3] h0[2] h0[1] . . .

...
...







x[2]

x[1]

x[0]

x[0]

x[1]

x[2]

x[3]
...




=




v0[−2]

v0[−1]

v0[0]

v0[1]

v0[2]
...




.

(88)

To ensure symmetry at the left boundary we do two things. First, the mainlobe of h0

must straddle [. . . , x[0], x[0], . . .] when the output of v0 is v0[0]. In addition, h0 must

be linear phase, i.e.

h0[0] = h0[5]

h0[1] = h0[4]

h0[2] = h0[3]. (89)

(90)

Second, the first three (or L/2) columns are overlapped and added (OLA) onto the

proceeding three (or L/2) columns. This yields




h0[0] + h0[1] h0[2] h0[3] 0 0 0 0 . . .

h0[1] + h0[2] h0[0] + h0[3] h0[4] 0 0 0 0 . . .

h0[2] + h0[3] h0[1] + h0[4] h0[0] + h0[5] 0 0 0 0 . . .

h0[3] + h0[4] h0[2] + h0[5] h0[1] h0[0] 0 0 0 . . .

h0[4] + h0[5] h0[3] h0[2] h0[1] 0 0 0 . . .

...
...

...







x[0]

x[1]

x[2]

x[3]

x[4]
...




=




v0[−2]

v0[−1]

v0[0]

v0[1]

v0[2]
...




.

(91)
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which is partially expressed in the time domain due to spatial constraints.

Both the straddling of the mainlobe of h0 on x at [. . . , x[0], x[0], . . .] when the

output of v0 and the OLA of x produce the necessary symmetry in vext such that

vext
0 = v0[−2], v0[−1], v0[0], v0[1], v0[2], v0[3], . . . , v0[6], v0[7], v0[8], . . . , v[10]]T (92)

and is of length 13. Although the region of support is increased as with linear con-

volution, the added information is not transmitted to the synthesis side because of

the symmetry, downsampling (↓ 2), and windowing depicted in Figure 34. If done

correctly, the non-expansive transmitted information can be used to reconstruct the

original signal on the synthesis side.

Expressed in general equations, the above example can be extended such that the

input signal,

x = [x[0], x[1], x[2], . . . , x[N − 2], x[N − 1]]T , (93)

where N is the length of the input signal. x is symmetrically extended to yield

xext = x[L/2−1], . . . , x[1], x[0], x[0], x[1], x[2], .., x[N−2], x[N−1], x[N−1], . . . , x[N−L/2]]T ,

(94)

where L is the length of the analysis filters. Following the progression of xext through

Figure 34,

vext = Axext, (95)

where A is the analysis filter matrix

A =




H0

H1


 , (96)
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H0 is a lowpass filter matrix containing the filter coefficients h0, expressed as

H0 =




h0[N/2] . . . h0[0] 0 0 0 0 . . . 0

h0[L/2 + 1] . . . h0[1] h0[0] 0 0 0 . . . 0

h0[L/2 + 2] . . . h0[2] h0[1] h0[0] 0 0 0

...
...

...
...

. . .
...

0 . . . 0 0 0 0 0 . . . h0[L/2− 1] h0[L/2− 2]

0 . . . 0 0 0 0 0 . . . h0[L/2] h0[L/2− 1]




(97)

and H1 is a highpass filter matrix containing the filter coefficients h1, expressed as

H1 =




h1[N/2] . . . h1[0] 0 0 0 0 . . . 0

h1[L/2 + 1] . . . h1[1] h1[0] 0 0 0 . . . 0

h1[L/2 + 2] . . . h1[2] h1[1] h1[0] 0 0 0

...
...

...
...

. . .
...

0 . . . 0 0 0 0 0 . . . h1[L/2− 1] h1[L/2− 2]

0 . . . 0 0 0 0 0 . . . h1[L/2] h1[L/2− 1]




.

(98)

Looking at each channel’s output, the filtered output may also be written as

vext =




vext
0

vext
1


 (99)

where the lowpass filtered output

vext
0 = v0[−L/2+1], . . . , v0[−1], v0[0], v0[1], . . . , v0[N−1], v0[N ], v0[N+1], . . . , v0[N+L/2]]T

(100)

and the highpass filtered output

vext
1 = v1[−L/2+1], . . . , v1[−1], v1[0], v1[1], . . . , v1[N−1], v1[N ], v1[N+1], . . . , v1[N+L/2]]T .

(101)
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The region of support in Equation (100) is increased such that,

v0[−1] = v0[1]

v0[−2] = v0[2]

... (102)

v0[N − 1] = v0[N + 1]

v0[N − 2] = v0[N + 2]

..., (103)

and likewise the region of support in Equation (101) is increased such that,

v1[−1] = v1[1]

v1[−2] = v1[2]

... (104)

v1[N − 1] = v1[N + 1]

v1[N − 2] = v1[N + 2]

.... (105)

This would verify that symmetry is accomplished at the boundary edges. As for

expansion, only half the original samples should remain in each channel of a two-

band system. Thus, each channel must be downsampled. In the matrix equation

representation this results in

yext = ΛAxext, (106)

where

Λ =




λ

λ


 (107)
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and

λ =




0 1 0 0 0 . . . 0 0 0 0

0 0 0 1 0 . . . 0 0 0 0

0 0 0 0 0 1 0 0 0 0

...
...

. . .
...

...
...

...

0 0 0 0 0 . . . 1 0 0 0

0 0 0 0 0 . . . 0 0 1 0




. (108)

Looking at each channel’s output, the downsampled filtered output may also be writ-

ten as

yext =




(↓ 2)vext
0

(↓ 2)vext
1


 (109)

where

yext
0 = v0[−L/2+1], . . . , v0[−1], v0[1], . . . , v0[N−1], v0[N+1], . . . , v0[N+L/2]]T (110)

for the lowpass channel and

yext
1 = v1[−L/2+1], . . . , v1[−1], v1[1], .., v1[N−1], v1[N +1], . . . , v1[N +L/2]]T (111)

for the highpass channel. When both channels are windowed with an L/2 point

window, the analysis output becomes

ŷ = w(Λvext) (112)

or

ŷ =




w(yext
0 )

w(yext
1 )


 (113)

where

w(yext
0 ) = y0[1], y0[3], . . . , y0[N − 3], y0[N − 1]T (114)

for the lowpass channel and

w(yext
1 ) = y1[1], y1[3], . . . , y1[N − 3], y1[N − 1]T (115)
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for the highpass channel.

The process is repeated in reverse order in the synthesis subsystem to complete

the symmetric extension method. The entire process is called half-point symmetric

extension and is viable if and only if even-length filters are used [4]. This method,

for even-length filters, eliminates expansion and reduces the distortion at the recon-

structed image’s edge that is seen in systems that use circular convolution.

8.2.2 Linear Phase Whole-point Symmetric Extension

For odd-length linear phase filters, a different procedure is followed. To illustrate this

case, consider Figure 34 with a seven-tap (odd-length) lowpass filter

h0 = [h0[0], h0[1],h0[2],h0[3],h0[4], h0[5], h0[6]] (116)

where h0[2], h0[3], and h0[4] are the mainlobe coefficients. This filter is convolved

with a signal x, where

x = [x[0], x[1], x[2], . . . , x[6], x[7]]T . (117)

If odd-length linear phase filters are used, then symmetric extension is done such that

xext = [..., x(2), x(1), x(0), x(1), x(2), ...]. (118)

Likewise, x must be extended such that xext = . . . , x[5], x[6], x[7], x[6], x[5], . . . at the

right boundary of the signal. For simplicity consider the lowpass channel and the left

boundary only. We know from Equation (85) that

vext
0 = H0x

ext (119)
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where H0 is a filter convolution matrix. That is, when expanded, Equation 119 yields




h0[3] h0[2] h0[1] h0[0] 0 0 0 . . .

h0[4] h0[3] h0[2] h0[1] h0[0] 0 0 . . .

h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] 0 . . .

h0[6] h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] . . .

0 h0[6] h0[5] h0[4] h0[3] h0[2] h0[1] . . .

0 0 h0[6] h0[5] h0[4] h0[3] h0[2] . . .

...
...

...







x[3]

x[2]

x[1]

x[0]

x[1]

x[2]

x[3]
...




=




v0[−3]

v0[−2]

v0[−1]

v0[0]

v0[1]

v0[2]
...




. (120)

To ensure symmetry at the left boundary, (h0[3]) is multiplied by x[0] (as a part of

convolution) when the output, v, is v[0]. In addition, h0 must be linear phase, i.e.

h0[0] = h0[6]

h0[1] = h0[5]

h0[2] = h0[4].

(121)

To eliminate the need to extend x, the first three (or (rnd(L/2))−1 where rnd means

round) columns are overlap and added onto columns 5-7 (or [(rnd(L/2)) + 1, ..., 2 ∗
(rnd(L/2))− 1]). This yields



h0[0] h0[1] h0[2] h0[3] 0 0 . . .

h0[1] h0[0] + h0[2] h0[3] h0[4] 0 0 . . .

h0[2] h0[1] + h0[3] h0[0] + h0[4] h0[5] 0 0 . . .

h0[3] h0[2] + h0[4] h0[1] + h0[5] h0[0] + h0[6] 0 0 . . .

h0[4] h0[3] + h0[5] h0[2] + h0[6] h0[1] h0[0] 0 . . .

h0[5] h0[4] + h0[6] h0[3] h0[2] h0[1] h0[0] . . .

...
...

...







x[0]

x[1]

x[2]

x[3]

x[4]

x[5]
...




=




v0[−3]

v0[−2]

v0[−1]

v0[0]

v0[1]

v0[2]
...




(122)
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which is partially expressed in the time domain. Once again this processes produces

the necessary symmetry in vext such that

vext
0 = v0[−3], v0[−2], v0[−1], v0[0], v0[1], v0[2], v0[3], . . . , v0[6], v0[7], v0[8], . . . , v[10], v[11]]T

(123)

and is of length 14. Similar to the half-point procedure, this is sufficient information

for reconstruction.

The above example can be recast in the following way. Given the input signal

x = [x[0], x[1], x[2], . . . , x[N − 2], x[N − 1]]T , (124)

the symmetric extension results in

xext = [x[rnd(L/2)−1], . . . , x[1], x[0], x[1], x[2], .., x[N−2], x[N−1], . . . , x[N−(rnd(L/2))]]T .

(125)

Following the progression of xext through the diagram in Figure 34,

vext = Axext, (126)

when

A =




H0

H1


 , (127)

H0 is a lowpass filter matrix containing the filter coefficients h0,

H0 =




h0[rnd(L/2)− 1] . . . h0[0] 0 0 . . . 0

h0[rnd(L/2)] . . . h0[1] h0[0] 0 . . . 0

h0[rnd(L/2) + 1] . . . h0[2] h0[1] h0[0] 0 0

...
...

...
...

...

0 . . . 0 0 0 . . . h0[rnd(L/2)− 1] h0[rnd(L/2)− 2]

0 . . . 0 0 0 . . . h0[rnd(L/2)] h0[rnd(L/2)− 1]




,

(128)
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and H1 is a highpass filter matrix containing the filter coefficients h1,

H1 =




h1[rnd(L/2)− 1] . . . h1[0] 0 0 . . . 0

h1[rnd(L/2)] . . . h1[1] h1[0] 0 . . . 0

h1[rnd(L/2) + 1] . . . h1[2] h1[1] h1[0] 0 0

...
...

...
...

...

0 . . . 0 0 0 . . . h1[rnd(L/2)− 1] h1[rnd(L/2)− 2]

0 . . . 0 0 0 . . . h1[rnd(L/2)] h1[rnd(L/2)− 1]




.

(129)

The filtered output may be written as

vext =




vext
0

vext
1


 , (130)

where the lowpass filtered output is

vext
0 = v0[−(rnd(L/2) + 1)], .., v0[0], v0[1], .., v0[N − 1], v0[N ], .., v0[N + (rnd(L/2))]]T ,

(131)

and the highpass filtered output is

vext
1 = v1[−(rnd(L/2) + 1)], .., v1[0], v1[1], .., v1[N − 1], v1[N ], .., v1[N + (rnd(L/2))]]T .

(132)

If the regions of support in Equation (128) and (129) are increased, Equations (102),

(103), (104), and (105) will be true for filter banks with odd-length filters also. This

would verify that symmetry is accomplished at the boundary edges. As for expansion,

again, only half the original samples should remain in each channel of a two-band

system. Thus, each channel must be downsampled which in the matrix equation

representation results in

yext = ΛAxext (133)

where

Λ =




λ

λ


 (134)
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and

λ =




1 0 0 0 0 . . . 0 0 0 0

0 0 1 0 0 . . . 0 0 0 0

0 0 0 0 1 0 0 0 0 0

...
...

. . .
...

...
...

...

0 0 0 0 0 . . . 1 0 0 0

0 0 0 0 0 . . . 0 0 1 0




. (135)

Through careful evaluation one notices that each channel’s downsampled filtered out-

put can be written using Equation (109) where

yext
0 = v0[−(rnd(L/2)+1)], . . . , v0[−1], v0[1], . . . , v0[N−1], v0[N+1], .., v0[N+(rnd(L/2))]]T

(136)

for the lowpass channel and

yext
1 = v1[−(rnd(L/2)+1)], . . . , v1[−1], v1[1], .., v1[N−1], v1[N+1], .., v1[N+(rnd(L/2))]]T

(137)

for the highpass channel. When both channels are windowed with an L/2 point

window, the analysis output becomes

ŷ = w(Λvext) (138)

or

ŷ =




w(yext
0 )

w(yext
1 )


 . (139)

This means

w(yext
0 ) = y0[1], y0[3], . . . , y0[N − 3], y0[N − 1]T (140)

for the lowpass channel and

w(yext
1 ) = y1[1], y1[3], . . . , y1[N − 3], y1[N − 1]T (141)

for the highpass channel despite the fact that Equations 135 and 108 are not the

same. This difference is necessary to guarantee symmetry throughout the system.
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The process is repeated in reverse order in the synthesis subsystem. This entire

process is referred to as whole-point extension and is viable if and only if odd-length

filters are used [4]. This odd-length method eliminates expansion and reduces distor-

tion at the reconstructed image’s edge.

Despite symmetric extension’s apparent non-expansive properties and its ability

to mitigate boundary distortion, it can only be used in limited situations. Symmetric

extension can only be used for linear phase filters. This means that it can only be

used with QMF filters and other linear phase filters. Thus, CQF filters, which have

been proven to have better frequency responses than QMF and have been proven to

achieve ER [40, 41, 38], are unusable in the filter bank framework.

8.3 Adaptive Boundary Symmetric Extension

Symmetric extension is useful for reducing boundary distortion. Despite this, sym-

metric extension is not useable for nonlinear phase filters. This means that many high

performing filters cannot be used with symmetric extension with a filter bank frame-

work. Arrowood in [2] suggested a way to apply symmetric extension to nonlinear

phase filters. Despite this, no simulations were ever conducted. One of the objectives

of this dissertation is to develop an even-length a proof of concept for adaptive bound-

ary symmetric extension and assess the method. We will also develop the method for

the odd-length case, which was not done by Arrowood. Finally, in this section we will

evaluate the method for image coding, which was not done by Arrowood. Through

Arrowood’s example and Figure 35, we will review his work and then proceed to the

contributions of this dissertation. The following example is summarized from [2].

8.3.1 Adaptive Boundary Half-Point Symmetric Extension

Consider again a lowpass six-tap filter. This time, the filter is nonlinear phase. This

nonlinear phase filter is shown in Equation (142).

h0 = [h0[0],h0[1],h0[2], h0[3], h0[4], h0[5]] (142)
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Figure 35: New two-band analysis-synthesis filter bank for nonlinear phase sym-
metric extension.

In this equation h0[1] and h0[2] are the largest coefficients of the mainlobe. Because

the filter’s coefficients are anti-symmetric and therefore nonlinear, this filter cannot

be used for traditional symmetric extension. Thus, the approaches outlined previ-

ously must be reformulated. Since this filter is even-length, x must have a half-point

symmetric extension, as indicated by [4]. This makes

xext = [x[3], x[2], x[1], x[0], x[0], x[1], x[2], . . . , x[N − 2], x[N − 1], x[N − 1], x[N − 2]]T

(143)

where, because of the filter’s anti-symmetry characteristics, the signal is extended by

four taps on the left boundary and two taps on the right boundary. We know from

Figure 35 that

vext
0 = H0x

ext. (144)
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Written in the time domain, and extended for demonstration purposes, Equation

(144) is




...
...

...

h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] 0 0 0 . . .

0 h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] 0 0 . . .

0 0 h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] 0 . . .

0 0 0 h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] . . .

0 0 0 0 h0[5] h0[4] h0[3] h0[2] h0[1] . . .

...
...

...







x[5]

x[4]

x[3]

x[2]

x[1]

x[0]

x[0]

x[1]

x[2]
...




=




...

v0[−2]

v0[−1]

v0[0]

v0[1]

v0[2]
...




(145)

where h0 is placed such that the mainlobe straddles [. . . , x[0], x[0], . . .] when the out-

put for v is v[0]. For the sake of tracking this row, we will call it the boundary row.

Symmetry at the boundary is ensured by time-reversing all filter coefficients in H0

above the boundary row. The time-reversing point in these rows is the half-point

between the two largest coefficients of the mainlobe. This yields

vext
0 = Htv

0 xext (146)
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where Equation (146) is expressed in the time domain as




...
...

...

0 0 h0[0] h0[1] h0[2] h0[3] h0[4] h0[5] 0 . . .

0 0 0 h0[0] h0[1] h0[2] h0[3] h0[4] h0[5] . . .

0 0 h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] 0 . . .

0 0 0 h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] . . .

0 0 0 0 h0[5] h0[4] h0[3] h0[2] h0[1] . . .

...
...

...







x[5]

x[4]

x[3]

x[2]

x[1]

x[0]

x[0]

x[1]

x[2]
...




=




...

v0[−2]

v0[−1]

v0[0]

v0[1]

v0[2]
...




.

(147)

Overlapping and adding the extended region in H0 yields

vext
0 = Htv

0 x (148)

where it is expressed in the time domain as




...
...

...

h0[4] + h0[3] h0[5] + h0[2] h0[1] h0[0] 0 0 . . .

h0[3] + h0[2] h0[4] + h0[1] h0[5] + h0[0] 0 0 0 . . .

h0[1] + h0[2] h0[0] + h0[3] h0[4] h0[5] 0 0 . . .

h0[2] + h0[3] h0[1] + h0[4] h0[0] + h0[5] 0 0 0 . . .

h0[3] + h0[4] h0[2] + h0[5] h0[1] h0[0] 0 0 . . .

...
...

...







x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]
...




=




...

v0[−2]

v0[−1]

v0[0]

v0[1]

v0[2]
...




.

(149)

The procedure above illustrates adaptive boundary symmetric extension at the left

boundary. Comparable action is taken to accomplish symmetry at the right boundary.
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It is clear by using Equations (142) through (148) that symmetry is preserved, as

can be seen in Equation (149). This means that

v0[−1] = v0[1]

v0[−2] = v0[2]

... (150)

and

v0[N − 1] = v0[N + 1]

v0[N − 2] = v0[N + 2]

.... (151)

Incorporating downsampling into the process yields

yext
0 = [. . . , v[3], v[1], v[1], v[3], . . . , v[N − 3], v[N − 1], v[N − 3], . . .]. (152)

Repeating the procedure for the highpass channel completes the technique and pre-

serves symmetry in the highpass channel.

The adaptive boundary symmetric extension resolves the issues surrounding sym-

metry at image boundaries. Adaptive boundary symmetric extension also allows the

use of nonlinear phase filters with symmetric extension. Despite this, flipping the

filter’s coefficients at the boundary to preserve symmetry leads to imperfect recon-

struction. To correct this, a postfilter is used to restore PR for this region.

8.3.2 Adaptive Boundary Half-point Symmetric Extension Results

To prove that adaptive boundary half-point symmetric extension works, we start by

tracing the progression of a signal through the low frequency channel of an adaptive

boundary symmetric extension filter bank. Figure 36 shows the progression through

the analysis subsystem, while Figure 37 shows the progression through the synthesis
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subsystem. More specifically, Figure 36(a) shows the input signal. This signal is con-

volved in the low frequency channel by h0[n], shown in Figure 36(b). The particular

filter h0[n] is an eight-tap near linear phase CQF filter in [41]. The filtered output

v̂0[n] is shown in Figure 36(c). The lowpass filter’s result is then downsampled and

windowed and the resulting signal is shown in Figure 36(d).
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(d) ŷo(n) after window function.

Figure 36: Results from a filter bank with nonlinear symmetric extension.

Figure 37(a) shows the results of the analysis output after it has been symmetri-

cally extended and upsampled in the synthesis subsystem. This signal is then con-

volved in the low frequency channel by G0(z), which is equal to zLH0(z
−1), resulting

in the signal shown in Figure 37(b). Inspecting the results from Figure 37(b) one

quickly notices that the boundary edges contain imperfections, as expected. To rec-

tify this distortion, postfilters are applied resulting in the signal shown in Figure

37(c). Windowing is performed next to reconstruct the original signal. This result is

shown in Figure 37(d).
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(a) ŷo(n) after symmetric exten-
sion and upsampling.
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(b) Results after synthesis low-
pass filtering.
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(c) Results after postfiltering.
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(d) Results after windowing.

Figure 37: Illustration of filter bank stage outputs for adaptive boundary half-point
symmetric extension.

8.3.3 Nonlinear Phase Whole-Point Symmetric Extension

A technique for adaptive boundary half-point symmetric extension was explored in

[2]. Arrowood, however, never explored odd-length adaptive boundary symmetric

extension. In this section, we extend the theory to the odd-length case. Consider

once again the lowpass seven-tap filter shown below

h0 = [h0[0],h0[1],h0[2],h0[3], h0[4], h0[5], h0[6]], (153)

where h0[1], h0[2], and h0[3] are the largest coefficients of the mainlobe. Because

the filter coefficients again are not symmetric, they cannot be used for traditional

symmetric extension. Since this filter is odd-length, we must employ whole-point

symmetric extension of the input resulting in

xext = [x[5], x[4], x[3], x[2], x[1], x[0], x[1], . . . , x[N−2], x[N−1], x[N−2], x[N−3], x[N−4]]T .

(154)
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In addition, because of the filter’s anti-symmetric characteristics, the signal is ex-

tended this time by five taps on the left boundary and three taps on the right bound-

ary. Note that the region of support is N + 1 instead of N , as with the half-point

example.

We know from Figure 35 that

vext
0 = H0x

ext. (155)

Written in the time domain and extended for illustration purposes, Equation (155)

can be expressed as




...
...

...
...

h0[6] h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] 0 0 . . .

0 h0[6] h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] 0 . . .

0 0 h0[6] h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] . . .

0 0 0 h0[6] h0[5] h0[4] h0[3] h0[2] h0[1] . . .

0 0 0 0 h0[6] h0[5] h0[4] h0[3] h0[2] . . .

...
...

...
...







x[5]

x[4]

x[3]

x[2]

x[1]

x[0]

x[1]

x[2]
...




=




...

v0[−3]

v0[−2]

v0[−1]

v0[0]

v0[1]

v0[2]
...




,

(156)

where h0 is placed such that the center coefficient of the mainlobe (h0[2]) is multiplied

with x[0] (as a part of convolution) when the output for v is v[0]. Again, for the sake

of tracking this critical row, we will call it the boundary row. Symmetry at the

boundary is ensured by time-reversing all filter coefficients in H0 above the boundary

row. The time-reversing point of these rows are the h0[2] coefficients of the mainlobe.

This yields

vext
0 = Htv

0 xext, (157)

where it is expressed in the time domain as
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


...
...

...

0 h0[0] h0[1] h0[2] h0[3] h0[4] h0[5] h0[6] 0 . . .

0 0 h0[0] h0[1] h0[2] h0[3] h0[4] h0[5] h0[6] . . .

0 h0[6] h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] 0 . . .

0 0 h0[6] h0[5] h0[4] h0[3] h0[2] h0[1] h0[0] . . .

0 0 0 h0[6] h0[5] h0[4] h0[3] h0[2] h0[1] . . .

...
...

...







x[5]

x[4]

x[3]

x[2]

x[1]

x[0]

x[1]

x[2]
...




=




...

v0[−3]

v0[−2]

v0[−1]

v0[0]

v0[1]

v0[2]
...




.

(158)

Overlapping and adding the extended region in H0 yields

vext
0 = Htv

0 x, (159)

or, equivalently




...
...

...

h0[4] h0[5] + h0[3] h0[6] + h0[2] h0[1] h0[0] 0 . . .

h0[3] h0[4] + h0[2] h0[5] + h0[1] h0[6] + h0[0] 0 0 . . .

h0[2] h0[1] + h0[3] h0[0] + h0[4] h0[5] h0[6] 0 . . .

h0[3] h0[2] + h0[4] h0[1] + h0[5] h0[6] + h0[0] 0 0 . . .

h0[4] h0[3] + h0[5] h0[6] + h0[2] h0[1] h0[0] 0 . . .

...
...

...







x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]
...




=




...

v0[−3]

v0[−2]

v0[−1]

v0[0]

v0[1]

v0[2]
...




.

(160)

These procedures illustrate adaptive boundary symmetric extension at the left bound-

ary for odd-length filters. Comparable action is taken to accomplish symmetry at the

right boundary for odd-length filters.
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It is clear by using Equations (153) - (159) that symmetry is preserved, as can be

seen in Equation (160). This means that

v0[−1] = v0[1]

v0[−2] = v0[2]

... (161)

and

v0[N − 1] = v0[N + 1]

v0[N − 2] = v0[N + 2]

.... (162)

After downsampling we obtain

yext
0 = [. . . , y[3], y[1], y[1], y[3], . . . , y[N − 3], y[N − 1], y[N − 3], . . .]. (163)

The same procedure is performed on the high frequency channel.

Using adaptive boundary symmetric extensions allows odd-length nonlinear phase

filters to be used within the filter bank framework. Although flipping the filter coeffi-

cient at the boundary creates imperfections, postfilters can be used in these regions,

leading to exact reconstruction.

8.3.4 Adaptive Boundary Whole-point Symmetric Extension Results

Now that we have developed the method to perform nonlinear phase whole-point

symmetric extension, we need to verify that it works. We will trace the progression

of a signal through the low frequency channel of an adaptive boundary symmetric

extension filter bank. Figure 38 shows the progression through the analysis subsystem,

while Figure 39 shows the progression through the synthesis subsystem.

The input shown in Figure 38(a) is convolved in the low frequency channel by the

9-tap filter h0[n], shown in Figure 38(b). The resulting output is shown in Figure
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38(c). If the region of support were made larger, samples at the exterior of the

original signal edge samples would be mirrored in the extended area. The lowpass

filter’s result is then downsampled and windowed, and the resulting signal is shown

in Figure 38(d).
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1 2 3 4 5 6 7 8 9
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

(b) Analysis lowpass filter.
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(d) ỹo(n) after window function.

Figure 38: Results from a filter bank with nonlinear symmetric extension.

Figure 39(a) shows the results of the analysis’ output after it has been sym-

metrically extended and upsampled in the synthesis subsystem. This signal is then

convolved in the low frequency channel by G0(z), which is equal to zLH0(z
−1). This

results in the signal shown in Figure 39(b). Similar to the half-point results, Figure

39(b) boundary edges contain imperfections. Once again postfilters are applied at

these regions resulting in the signal shown in Figure 39(c). Windowing is performed

next to reconstruct the original signal. This result is shown in Figure 39(d).
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(a) ỹo(n) after symmetric exten-
sion.
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(b) Results after synthesis filter-
ing.
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filter.
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(d) Results after windowing.

Figure 39: Results from a filter bank with nonlinear symmetric extension.
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CHAPTER IX

APPLICATION OF FAAS SYSTEMS TO

INTERPOLATION AND CODING

In this chapter, we apply the FAAS filter bank to two important problem areas: image

compression and image interpolation. In the first section of this chapter, we describe

the compression system employed in our evaluation. We comment on some of the

particulars associated with the filters and the implementation method and conclude

with some comparative results.

In the second section of this chapter, we discuss the application of the FAAS

filter bank to image interpolation (or resizing). This is a very common application

that appears in virtually all computer programs that manage digital images, from

Microsoft Word to Photoshop. Comparative results are presented at the end of the

section that illustrate the improvement that can be obtained by employing FAAS

filter banks.

9.1 Application to Image Compression

The SPIHT coder developed by Said and Pearlman [36] is a very popular subband

image coder that is widely used for benchmarking. Thus, we use the SPIHT coder as

the baseline system to compare the performance of the FAAS filter bank against the

conventional FAFS currently employed in the industry.

The analysis section of the SPIHT coder is shown in Figure 40. The SPIHT

coder uses the Daubechies 9/7 lowpass and highpass filters to perform its subband

decomposition. These filter coefficients are shown in Table 17, and are designed for a

two-band system that is maximally decimated. Because these filters are linear phase
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Figure 40: Block diagram of the analysis system of the SPIHT coder.

biorthogonal filters, symmetric extension is used to ensure exact reconstruction. For

implementational convenience we combine the filtering, downsampling, and symmet-

ric extension functions into two convolution matrices as illustrated in Section 8.2.2.

One convolution matrix contains the lowpass channel structure and the other contains

the highpass channel structure.

After the filtering and downsampling, the subband images are quantized and en-

tropy coded using a progressive adaptive coder which was pioneered originally by

Shapiro [37] and refined by Said and Pearlman [36]. Quantization in the SPIHT

coder is performed on the bit-plane level, which allows bits to be allocated efficiently

in order to reduce quantization error. The quantized values are then coded with an

adaptive arithmetic coder. In this work, we use the conventional SPIHT encoder.

The deployment of the FAAS filter-bank results in a modification to the decoder’s

filter bank synthesis section and to the symmetric extension implementation.

In the decoder synthesis filter bank, we start by symmetrically extending the input

signal. Since linear phase filters were used in the analysis filter, the signal is extended

by L/2 samples on either side of the signal. For implementational convenience, we
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Table 17: Daubechies 9/7 analysis filter coefficients

H0 H1

0.03782845550726 -0.06453888262870
-0.02384946501956 0.04068941760916
-0.11062440441844 0.41809227322162
0.37740285561283 -0.78848561640558
0.85269867900889 0.41809227322162
0.37740285561283 0.04068941760916
-0.11062440441844 -0.06453888262870
-0.02384946501956 0
0.03782845550726 0

incorporated symmetric extension into each convolution matrix. The symmetric ex-

tension used is dependent on the filters used in each matrix. If low delay or high

delay filters are in the matrix, we must use the adaptive boundary symmetric exten-

sion as described in Section 8.3.4. Otherwise, traditional symmetric extension is used

as described in Section 8.2.2. Unlike the analysis convolution matrices, we do not

overlap and add matrices in the synthesis convolution matrices. If the overlap and

add is done, boundary values in the subsystem output would be doubled.

9.1.1 Filtering Upsampling and Phase Selection

The remaining components of the convolution matrices are upsampling and filtering.

To perform upsampling, the convolution matrices are simply transposed after the

filter coefficients are incorporated. The filters for the linear phase portion of the

FAAS system use the Daubecies 9/7 synthesis filters. Complementary low delay and

high delay filters were designed for use in the FAAS filter bank. These filters are

listed in Table 18 for the lowpass filters and in Table 19 for the highpass filters.

The final step in the FAAS system is to window the output and determine which

of the three reconstructions to use in the final synthesis process. For this, we will use

the phase selection method described in Section 7.2. The final synthesis subsystem

is shown in Figure 41.
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Table 18: Daubechies 9/7 synthesis lowpass filter and complementary synthesis
lowpass filters.

G00 G01 G02

0.74789653543220 -0.06453888262897 0
0.79166508748431 -0.04068941760930 0.00022205891726
-0.04101181316292 0.41809227322225 -0.05865186334346
-0.08020455820952 0.78848561640516 -0.04101181316292
0.00022205891726 0.41809227322225 0.37817288321209
-0.00435374808825 -0.04068941760931 0.74789653543220

0 -0.06453888262897 0.38758576131792

Table 19: Daubechies 9/7 synthesis highpass filter and complementary synthesis
highpass filters.

G10 G11 G12

0.36225423798497 -0.03782845550717 0
-0.75371272132055 -0.02384946501974 0
0.36889678548531 0.11062440441872 0.00013347893558
0.07250155009196 0.37740285561309 -0.03428376831574
-0.02417772121931 -0.85269867900966 -0.02417772121931
-0.02476852465009 0.37740285561307 0.09921654795315
0.00013347893558 0.11062440441872 0.36889678548531
-0.00112708530786 -0.02384946501973 -0.77203956082396

0 -0.03782845550717 0.36225423798497
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In the next section we present comparative results that highlight the improvements

possible with FAAS filter banks.

Figure 41: Block diagram of the Adaptive-Synthesis Filter Bank.

9.2 Image Compression Results

The fixed-analysis-adaptive-synthesis filter bank was incorporated into the popular

SPHIT coder and compared against the conventional SPHIT coder that uses fixed

analysis-synthesis filter banks. In this particular implementation, the adaptive syn-

thesis filters are used only in the base level of the subband tree, to which to the most

dominant visual coding distortions are attributable.

Several images were tested. Both the conventional SPHIT and FAAS SPHIT

coders were evaluated. At this point, we are using a simple empirical rule to determine

which pixel from among the three reconstructions to choose for reconstruction. In

each case, the FAAS SPHIT algorithm outperformed the conventional. However, the

improvements both subjectively and in terms of SNR are very modest (less than one-

tenth dB in PSNR). The marginal improvement may be attributed to the simplicity

of the selection algorithm, which we recognize needs to be improved. The potential

for high performance using the FAAS SPHIT algorithm is actually quite significant.

If we employ an optimal selection algorithm the improvement is both visible and
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measurable in terms of PSNR.

As an illustration we show in Figure 42(a) a section of the cameraman image

coded at a bit rate of 0.5 bpp. Distortions can be observed in a number of places,

particularly around the body outline. Shown in Figure 42(b) is the same image coded

at the same bit rate using the FAAS SPHIT with optimal selection. It is evident by

comparing the two coded images that the FAAS SPIHT coder has less distortion. This

improvement is also reflected in the PSNR, which turns out to be an improvement

of approximately 1.5dB. The conventional SPHIT coder achieves 31.47dB while the

adaptive SPHIT achieves 32.95dB.

Although we cannot implement an optimal selection algorithm in practice, a

slightly more sophisticated selection approach can be expected to better approximate

the optimal.
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(a) Cameraman image coded with the conventional SPIHT
coder at 0.5 bpp.

(b) Cameraman image coded with FAAS SPHIT coder using
optimal selection at 0.5 bpp.

Figure 42: SPIHT coder comparisions.
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9.3 Interpolation

Many methods have been proposed for enlarging digital images. One of the simplest

methods is zero-order (nearest-neighbor) interpolation. It requires the least amount

of digital processing. In this method, each pixel is replicated as a 2 × 2 pixel in the

case of a 1:2 interpolation. Digital zooming is often performed using this method,

however, the output often acquires undesirable blocking artifacts known as pixella-

tion. While there are many other methods that have been proposed, the most popular

continue to be those based on simple low order upsampling and filtering. In particu-

lar, bilinear and bicubic interpolation are most prevalent in practice, owing to their

relative simplicity and good performance.

Adaptive interpolation filters, like the ones developed for FAAS filter banks, pro-

vide an alternative method for interpolation. This approach involves switching among

a set of filters dynamically in a way intended to improve reconstruction quality. One

of the key issues previously associated with adaptive filter banks is the synchrony

between the analysis and synthesis filters. For the interpolation application, this is

not of consequence, since we are only concerned with the synthesis section. The key

issue in our case is how to design the filters and orchestrate the dynamic filtering to

maximize interpolation quality.

In this section, we apply the FAAS synthesis section to maximize interpolation

quality. We have limited the filters to three lowpass filters: a low delay, a linear

phase, and a high delay filter. Each of these filters individually can interpolate the

image with relatively good quality. Together these filters remove ringing that typically

accompanies conventional interpolation. In addition, together they provide a large

range of methods to improve interpolation quality. We will discuss in detail the

methods we have considered for performing the interpolation and show examples of

our interpolation results on standard database images and video frames.
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9.3.1 Odd-Length Lowpass Adaptive Filters For Interpolation

FAAS filter banks could be applied with even-length filters or with odd-length filters.

Because even-length linear phase filters have a fractional sample delay, we have de-

cided to focus on odd-length lowpass filters. The interpolation system is comprised

of components of the low frequency channel of the FAAS synthesis filter bank. This

portion is shown in Figure 43. Interpolation is performed by switching among the

Figure 43: Block diagram of the low-frequency synthesis channel of the FAAS Filter
Bank.

lowpass filters on a pixel-by-pixel basis.

For the Daubechies 9/7 synthesis filters, the associated frequency response for the
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low delay, high delay, and linear phase synthesis filters are shown in Figures 44, 45,

and 46.
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Figure 44: Frequency response for the Daubechies 9/7 lowpass low delay comple-
mentary synthesis filter.
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Figure 45: Frequency response for the Daubechies 9/7 lowpass linear phase com-
plementary synthesis filter.

9.3.2 Results

For image reconstruction, we use separable interpolation where we interpolate the

rows followed by the columns of the result. For the proposed adaptive synthesis filter

bank, this gives us nine reconstructions: low delay on the rows, low delay on the

columns; low delay on the rows, high delay on the columns; low delay on the rows,
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Figure 46: Frequency response for the Daubechies 9/7 lowpass high delay comple-
mentary synthesis filter.

linear phase on the columns; and so on. From this set of nine reconstructions, we

choose the best of the nine candidates on a pixel-by-pixel basis. A simple empirical

rule is applied that determines how pixel selection is performed. First we identify

all the dominant edges in the image. When we detect the onset of a positive going

edge, we use the result from the low delay interpolation. Similarly, when we detect

the onset of a negative edge (i.e. high to low), we use the result from the high delay

reconstruction. In all other cases, we use the linear phase reconstruction. It turns out

that this simple selection process yields improvement and suggests that even better

results could be obtained with refinements to the selection algorithm.

Several images were tested. Both the bicubic and proposed adaptive filter inter-

polation were evaluated. In each case, the adaptive interpolation algorithm outper-

formed the conventional bicubic algorithm. However, the improvements subjectively

and in terms of PSNR are very modest (less than half a dB PSNR). The marginal

improvement may be attributed to the simplicity of the selection algorithm, which

we recognize needs to be improved. The potential for high performance using the

adaptive interpolation algorithm is actually quite significant. If we employ an opti-

mal selection algorithm the improvement is both visible and measurable in terms of
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PSNR.

As an illustration we interpolated a 144 by 176 version of the Akiyo image to size

288 by 352 image using bicubic interpolation and the new FAAS interpolation. It is

evident by comparing the two interpolated images shown in Figure 47 that the adap-

tive filter interpolation is significantly sharper. The gains we see are evident both

visually and in terms of PSNRs. Table 20 shows a comparison of bicubic interpola-

tion and the proposed adaptive interpolation method for several standard sequences:

Stefan, Akiyo, Bus, Football, and Carphone. In all cases the adaptive approach yields

Table 20: PSNR for Bicubic and Optimal Adaptive Filter Interpolations

Image name Bicubic Optimal Adaptive
Stefan 24.56 28.6
Akiyo 28.37 36.52
Bus 25.18 28.08

Football 31.05 33.23
Carphone 27.47 32.86

improvement of several dB. The minimum performance gain is 2 dB, while the highest

is 8 dB.

Although we cannot implement an optimal selection algorithm in practice, a

slightly more sophisticated selection approach can be expected to better approximate

the optimal. In future work, we will consider the use of an algorithm to better utilize

the nine interpolated images available to adaptively interpolate images so that the im-

age is better perceptually than interpolated images using other methods. Currently,

the adaptation is based on a simple selection process that suppresses overshoots and

undershoots at the edge boundaries.
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(a) Bicubic Interpolation.

(b) Adaptive Filter Interpolation.

Figure 47: Interpolated Images
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CHAPTER X

CONCLUSION AND FUTURE WORK

This dissertation expands the evolution of filter bank (and wavelet) theory to include

new classes of adaptive systems. Four filter bank classes were identified: FAFS,

AAAS, FAAS, and AAFS. The focus of this thesis is on the theory, design, and

application of FAAS filter banks, which have not been explored previous.

At the onset, FAAS filter banks were hypothesized to be interesting because of

their potential to exploit phase diversity in a coding application. It is well known

that at high bit rates the output of quantization can be modeled as the signal plus

the noise associated with the signal at that spatial location. If reconstructions are

performed on the same quantized signal based on a diversity of synthesis filters with

different phases, the resulting reconstructions will each contain the signal plus the

associated noise spatially displaced. Consequently, since spatial regions with high

amplitude changes generate proportionately higher quantization noise and since this

noise is now isolated and spatially shifted across the diverse reconstructions, that noise

in theory can be suppressed as part of the process of merging the images together.

We were successful in demonstrating the proof of this concept using a three phase

reconstruction filter bank involving a low delay, a linear phase, and a high delay filter

set.

Furthermore, FAAS filter banks are attractive in the sense that they are compat-

ible with existing subband/wavlet systems. Among the most popular applications of

analysis/synthesis filter banks are image compression, decimation/interpolation (re-

sizing), and denoising. In virtually all of these cases, the existing systems employ fixed

filters. The work introduced here could be applied to any existing system by simply
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employing the adaptive synthesis structure introduced in this thesis in conjunction

with appropriately designed synthesis filters.

Experimental results support the potential utility of FAAS systems in the impor-

tant areas of compression and interpolation. The theoretical performance gains for

the three-phase system we investigated are dramatic in terms of signal-to-noise ratio.

The practical gains that were realized in this work are less dramatic but are positive

gains. Consequently, we expect that future work using a higher diversity of synthe-

sis filters and/or a more sophisticated recombination model would further improve

output reconstruction quality.

Two applications were considered in this thesis: image compression and image

interpolation. We expect that FAAS filter banks could also net improvement in

denoising applications. It is noteworthy that Arrowood showed improved denoising

results using AAAS filter banks. Similar improvement is expected for the FAAS

case but with much lower complexity. Such an investigation we believe would be an

interesting project for the future.

10.1 Itemized Contributions

The contributions of this thesis are outlined concisely below, broken down in terms

of theory and application.

• The FAAS filter bank was evaluated and compared against conventional FAFS

systems for image compression.

The popular SPHIT algorithm was used in the comparison. Performance im-

provement can be achieved with FAAS filter banks using simple synthesis filter

selection algorithms. Experimental results suggest that the potential for dra-

matic performance improvement is possible through the development of more

sophisticated synthesis filter selection algorithms.
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• The FAAS filter bank was applied to symmetric extension. Symmetric extension

is the preferred method for handling boundary effects in image compression, but

is also used to handle boundary effects associated with other image processing

tasks. For example, it can be used to handle boundary effects when performing

interpolation, for performing decimation, and for image analysis (such as target

detection where target chips are employed).

• The FAAS filter bank was examined as part of a video compression algorithm.

The video compression algorithm uses an adaptive warping algorithm in lieu of

motion compensated prediction. The FAAS was used as a component in the

video coder to perform still image frame interpolation.

• The FAAS filter bank was examined for image enlargement and resizing. Exper-

imental results show that improvement can be achieved over the conventional

FAFS system.

• Performed a proof of concept for even-length adaptive boundary symmetric ex-

tension. Experimental results show that even-length adaptive boundary sym-

metric extension aid in image reconstruction while not increasing the region of

support of an image.

• Developed the method for odd-length adaptive boundary symmetric extension.

Because odd-length nonlinear phase complementary filters were needed for the

FAAS system, the odd-length adaptive boundary symmetric extension was de-

veloped. Through experimentation then application, we were able to show that

this method aided in image reconstruction while not increasing the region of

support of an image.

Conference Publications:
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• Ying Chen, Clyde Lettsome, Mark Smith and Edward Delp, ”A Low Bit-rate

Video Coding Approach Using Modified Adaptive Warping and Long-Term Spa-

tial Memory” in Visual Communications and Image Processing. (VCIP’2007),

San Jose, California, Jan. 2007.

• Clyde A. Lettsome, Mark J.T. Smith, and Russell Mersereau, ”Fixed Analysis

Adaptive synthesis Filter Banks” in SPIE Defense and Security Conference.,

Orlando, Florida, March. 2008.

• Clyde A. Lettsome and Mark J.T. Smith, ”Image Interpolation Exploiting Phase

Diversity” in IEEE DSP Workshop., Marco Island, Florida, Jan. 2009.

Journal Publications:

• Jienyu lIn, Clyde Lettsome and Mark Smith, ”Optimized Non-linear phase Fil-

ters for Subband/Wavlet Coding,” in Transactions on Image Processing (In

Preparation).

• Clyde A. Lettsome, Mark J.T. Smith, and Russell Mersereau ”Fixed-Analysis

Adaptive-Synthesis Filter Banks: Theory and Applications,” in Transactions

on Image Processing (In Preparation).

10.2 Future Work

The investigation of FAAS filter banks reported in this thesis suggest a number of

projects for future investigation. Some of these were mentioned in earlier sections of

this chapter.

• Investigate the use of the adaptive synthesis filters on the subsequent levels

in the subband tree. Currently, the adaptation is being confined to the base

level. Adding multi-layer adaptive filtering should further improve performance

results. FAAS filter banks were shown to achieve performance gains at low bit

rates.
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• Determine the compression rate at which FAAS systems achieve significant gain

is a topic worth examining.

• Investigate alternative selection algorithms for exploiting phase diversity.

• Consider the use of a rich set of synthesis filters such as 6, 9, or 12 and investigate

the extent to which performance can be improved.

• Investigate and analyze the results of using FAAS high delay filters for image

interpolation.
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