
EXTENDING LOW-RANK MATRIX FACTORIZATIONS
FOR EMERGING APPLICATIONS

A Dissertation
Presented to

The Academic Faculty

by

Ke Zhou

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computational Science and Engineering

Georgia Institute of Technology
December 2013

Copyright c© 2013 by Ke Zhou



EXTENDING LOW-RANK MATRIX FACTORIZATIONS
FOR EMERGING APPLICATIONS

Approved by:

Dr. Hongyuan Zha, Advisor
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Xiaoming Huo
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Le Song
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Jacob Eisenstein
School of Interactive Computing
Georgia Institute of Technology

Dr. Polo Chau
School of Computational Science and
Engineering
Georgia Institute of Technology

Date Approved: Aug 2013



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . xi

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Cold-start Recommendation . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Binary Coding for Collaborative Filtering . . . . . . . . . . . . . . . 4

1.4 Learning Social Infectivity from Temporal Events . . . . . . . . . . . 6

1.5 Learning Nonparametric Kernels for Hawkes Process . . . . . . . . . 8

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II BACKGROUND AND RELATED WORK . . . . . . . . . . . . . 11

2.1 Low-Rank Matrix Factorization . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Singular Value Decomposition . . . . . . . . . . . . . . . . . 11

2.2 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Low-Rank Matrix Factorizations with Incomplete Observa-
tions for Collaborative Filtering . . . . . . . . . . . . . . . . 15

2.2.2 Nuclear Norm Regularization: A Convex Formulation . . . . 17

2.2.3 Cold-Start Collaborative Filtering . . . . . . . . . . . . . . . 17

2.3 Learning Binary Codes . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Self-Exciting Point Process . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Estimating the Triggering Kernels . . . . . . . . . . . . . . . . . . . 22

III FUNCTIONAL MATRIX FACTORIZATIONS FOR COLD-START
RECOMMENDATION . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Functional Matrix Factorization . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Functional Matrix Factorization . . . . . . . . . . . . . . . . 25

iii



3.1.2 Alternative Optimization . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Decision Tree Construction . . . . . . . . . . . . . . . . . . . 28

3.1.4 Hierarchical Regularization . . . . . . . . . . . . . . . . . . . 30

3.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Multiple Questions . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 POMDP formulation for cold start problems . . . . . . . . . 35

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Data sets and Evaluation Metrics . . . . . . . . . . . . . . . 39

3.3.2 Deriving Interview Responses from User Ratings . . . . . . . 41

3.3.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.4 Cold-Start Performance . . . . . . . . . . . . . . . . . . . . . 42

3.3.5 The Impact of Non-responses . . . . . . . . . . . . . . . . . . 46

3.3.6 Warm-Start Performance . . . . . . . . . . . . . . . . . . . . 49

3.3.7 Impact of Model Parameters . . . . . . . . . . . . . . . . . . 53

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

IV LEARNING BINARY CODES FOR COLLABORATIVE FILTER-
ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Learning Binary Codes . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.3 Obtaining Binary Codes . . . . . . . . . . . . . . . . . . . . 65

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Comparison of Rounding Methods . . . . . . . . . . . . . . . 71

4.2.4 General Performance Results . . . . . . . . . . . . . . . . . . 72

4.2.5 Recommendation Efficiency . . . . . . . . . . . . . . . . . . . 76

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

iv



V LEARNING SOCIAL INFECTIVITY IN SPARSE LOW-RANK
NETWORKS USING MULTI-DIMENSIONAL HAWKES PRO-
CESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Multi-dimensional Hawkes Processes with Low-rank and Sparse Struc-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 One-dimensional Hawkes Processes . . . . . . . . . . . . . . . 84

5.1.2 Multi-dimensional Hawkes Processes . . . . . . . . . . . . . . 87

5.1.3 Sparse and Low-Rank Regularization . . . . . . . . . . . . . 89

5.2 Efficient Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Solving for Z1 and Z2. . . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 Solving for A and µ . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Real-world Data . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

VI LEARNING TRIGGERINGKERNELS FOR MULTI-DIMENSIONAL
HAWKES PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Nonparametric Triggering Kernel Estimation using Euler-Lagrange
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.1 Optimization Problem and Space . . . . . . . . . . . . . . . . 108

6.1.2 Iterative Algorithm . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Extension to Spatial-Temporal Process . . . . . . . . . . . . . . . . 114

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.1 Toy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.2 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.3 Real World Data . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

VII CONCLUSIONS AND DISCUSSIONS . . . . . . . . . . . . . . . . 130

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Discussions and Future Directions . . . . . . . . . . . . . . . . . . . 131

v



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

vi



LIST OF TABLES

1 Statistics for Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Examples of interview process with 6 questions . . . . . . . . . . . . 49

3 Examples of interview process with 6 questions . . . . . . . . . . . . 50

4 RMSE on MovieLens data set in warm-start setting . . . . . . . . . . 54

5 RMSE on EachMovie data set in warm-start setting . . . . . . . . . . 54

6 RMSE on Netflix data set in warm-start setting . . . . . . . . . . . . 54

vii



LIST OF FIGURES

1 An example for decision trees: Top three levels of a model of depth 6
for MovieLens data set . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The idea of learning binary codes for collaborative filtering . . . . . . 5

3 An illustration of recurrent mutually-exciting process. . . . . . . . . . 7

4 Evaluation process for cold-start users . . . . . . . . . . . . . . . . . 44

5 RMSE on MovieLens data set for cold-start users with respect to the
number of interview questions . . . . . . . . . . . . . . . . . . . . . . 46

6 RMSE on MovieLens data set for cold-start users with respect to the
number of interview questions . . . . . . . . . . . . . . . . . . . . . . 47

7 RMSE on MovieLens data set for cold-start users with respect to the
number of interview questions . . . . . . . . . . . . . . . . . . . . . . 48

8 Performance measured by RMSE on Netflix data set with respect to
the fraction of users with the most known ratings. . . . . . . . . . . . 51

9 Performance measured by RMSE on three data sets with respect to
the fraction of users with the most known ratings. . . . . . . . . . . . 51

10 RMSE of fMF, Tree and MF on MovieLens data set with respect to the
number of interview questions . . . . . . . . . . . . . . . . . . . . . . 53

11 Performance measured by RMSE with respect to different values of K
on MovieLens data set. The performance is reported by setting the
depth of the decision tree to be 6. . . . . . . . . . . . . . . . . . . . . 55

12 The performance of hierarchical regularization. The performance is
reported by setting the depth of the decision tree to be 6. . . . . . . . 55

13 Performance measured by RMSE with respect to different values of λ
on MovieLens data set. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

14 Performance measured by RMSE with respect to the number of itera-
tions on MovieLens data set. . . . . . . . . . . . . . . . . . . . . . . . 56

15 Performance of two rounding methods on MovieLens, EachMovie and
Netflix data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

16 Performance with respect to the length of binary codes on Movielens

data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

17 Performance with respect to the length of binary codes on EachMoive

data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

viii



18 Performance with respect to the length of binary codes on Netflix data
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

19 Variance of predicted similarity on unknown ratings with respect to
the length of binary codes . . . . . . . . . . . . . . . . . . . . . . . . 81

20 Performance measured by DCG with respect to the regularization pa-
rameter λ on MovieLens data set . . . . . . . . . . . . . . . . . . . . . 81

21 Performance measured by DCG with respect to the number of itera-
tions on MovieLens data set . . . . . . . . . . . . . . . . . . . . . . . 82

22 Comparison of low-rank matrix factorization and CFCodeReg onMovie-

Lens data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

23 Assortative mixing networks: performance measured by RelErr, PredLik
and RankCorr with respect to the number of training samples. . . . . 102

24 Disassortative mixing networks: Performance measured by RelErr, Pred-
Lik and RankCorr with respect to the number of training samples. . . 103

25 Performance measured by PredLik with respect to the value of λ1. . . 104

26 Performance measured by PredLik with respect to the value of λ2. . . 104

27 Performance measured by PredLik with respect to the number of in-
ner/outer iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

28 Performance measured by PredLik on MemeTracker data set. . . . . . 105

29 Performance measured by RankCorr on MemeTracker data set. . . . . 105

30 Influence structure estimated from the MemeTracker data set. . . . . 106

31 Estimated vs. True Triggering Kernels on toy data DataExp with ex-
ponential kernels. The four sub-figures show both the true triggering
kernels and the estimated ones from the data . . . . . . . . . . . . . . 119

32 Estimated vs. True Triggering Kernels on toy data DataCos. The four
sub-figures show both the true triggering kernels and the estimated
ones from the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

33 Performance measured by LogLik and Diff with respect to the number
of training samples on the synthetic data. . . . . . . . . . . . . . . . . 122

34 Performance measured by LogLik with respect to number of base ker-
nels D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

35 Performance measured by LogLik with respect to point used to dis-
cretize the ODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

36 Performance measured by LogLik with respect to number of iterations. 124

ix



37 Performance measured by LogLik with respect to regularization param-
eter α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

38 Performance measured by negative log-likelihood on MemeTracker data
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

39 Q-Q plot for comparing the transformed events with respect to the
exponential distribution. . . . . . . . . . . . . . . . . . . . . . . . . . 129

40 The base kernel estimated from the MemeTracker data set. . . . . . . 129

x



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Professor Hongyuan Zha,

for his invaluable help and support during the process of my research. I would also like

to thank my committee members, Professor Le Song, Professor Polo Chau, Professor

Xiaoming Huo and Professor Jacob Eisenstein, for all the discussions and suggestions

that have greatly improved this dissertation.

I would like to thank my former advisers, Professor Yong Yu and Professor Gui-

Rong Xue in Shanghai Jiao-Tong University, for helping me make my first steps into

research. I would like to take this opportunity to thank my teachers of computer

programming class in middle schools, Mr. Wu and Mr. Sun, for teaching me to

write my first computer programs and opening the window to the world of computer

science.

I would also like to thanks all my friends for their their support and help during

my study. It is my fortunate to know all of you.

Last but not least, I would like to thank my parents, for their love and great

support throughout my life.

xi



SUMMARY

Low-rank matrix factorizations have become increasingly popular to project

high dimensional data into latent spaces with small dimensions in order to obtain

better understandings of the data and thus more accurate predictions. In particu-

lar, they have been widely applied to important applications such as collaborative

filtering and social network analysis. In this thesis, I investigate the applications and

extensions of the ideas of the low-rank matrix factorization to solve several practically

important problems arise from collaborative filtering and social network analysis.

A key challenge in recommendation system research is how to effectively profile

new users, a problem generally known as cold-start recommendation. In the first

part of this work, we extend the low-rank matrix factorization by allowing the latent

factors to have more complex structures — decision trees to solve the problem of

cold-start recommendations. In particular, we present functional matrix factorization

(fMF), a novel cold-start recommendation method that solves the problem of adaptive

interview construction based on low-rank matrix factorizations.

The second part of this work considers the efficiency problem of making recom-

mendations in the context of large user and item spaces. Specifically, we address

the problem through learning binary codes for collaborative filtering, which can be

viewed as restricting the latent factors in low-rank matrix factorizations to be binary

vectors that represent the binary codes for both users and items.

In the third part of this work, we investigate the applications of low-rank matrix

factorizations in the context of social network analysis. Specifically, we propose a

convex optimization approach to discover the hidden network of social influence with

low-rank and sparse structure by modeling the recurrent events at different individuals

xii



as multi-dimensional Hawkes processes, emphasizing the mutual-excitation nature of

the dynamics of event occurrences. The proposed framework combines the estimation

of mutually exciting process and the low-rank matrix factorization in a principled

manner.

In the fourth part of this work, we estimate the triggering kernels for the Hawkes

process. In particular, we focus on estimating the triggering kernels from an infinite

dimensional functional space with the Euler Lagrange equation, which can be viewed

as applying the idea of low-rank factorizations in the functional space.
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CHAPTER I

INTRODUCTION

Low-rank matrix factorizations have become increasingly popular to project high di-

mensional data into latent spaces with small dimensions in order to obtain better

understandings of the data and thus more accurate predictions. In particular, they

have been widely applied to important applications such as collaborative filtering

and social network analysis. However, most current studies of low-rank matrix fac-

torizations focus on latent factors that can be represented by vectors and relative

simple objective functions such as the square loss, which considerably limits their

applications. On the other hand, the problems in real-world are much more complex

and diverse in nature and thus often involve more structures and constraints on not

only the latent factors themselves but also the objective functions. In particular, we

consider four different problems to illustrate the diversity and complexity arise from

real-world problems: cold-start recommendation, binary coding for collaborative fil-

tering, learning social infectivity from temporal events and learning nonparametric

kernels for Hawkes process.

1.1 Thesis

In this thesis, we propose to investigate the applications and extensions of the ideas

based on the low-rank matrix factorization to solve the problem mentioned above.

The basic idea is to adapt and extend the matrix factorizations to incorporate the

1



requirements from the application domains. In particular, we propose to introduce

structured latent factors into traditional low-rank matrix factorizations: The struc-

tures can be restricted by decision trees to solve the cold-start recommendation prob-

lem and discretized binary structures can be adapted to solve the binary coding

problem for collaborative filtering. Moreover, we also combine the ideas of low-rank

matrix factorization with the self-exciting processes to model the temporal events

in social networks. We also consider latent factors that comes from infinite dimen-

sional functional space to estimate the triggering kernels for Hawkes process. In the

following sections, we will briefly describe the backgrounds of the three problems.

1.2 Cold-start Recommendation

Recommendation systems have become a core component in today’s online business

world. A key challenge for building an effective recommender system is the well-known

cold-start problem — how to provide recommendations to new users? While existing

collaborative filtering (CF) approaches to recommendation perform quite satisfactorily

for warm-start users (e.g. users purchasing a lot from an online retailer), it could fail

completely for fresh users, simply because the system knows very little about those

users in terms of their preferences.

Providing effective cold-start recommendations is of fundamental importance to a

recommender system since it directly impacts to the attractiveness of the system to

new users and thus vital for reputation and the market share of the system. A natural

approach to solving the cold-start problem is to elicit new user preferences by query

users’ responses progressively through an initial interview process [123]. Specifically,
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Lethal Weapon 4

Taxi Driver

Like

The Ice Storm

Unknown

My Favorite Year

Dislike

Jingle All the Way

Like

Out to Sea

Unknown

The Day the Earth Stood Still

Dislike

Paris, Texas

Like

Star Trek V: The Final Frontier

Unknown

Air Force One

Dislike

Tin Men

Like

Snow White and the Seven Dwarfs

Unknown

Stop Making Sense

Dislike

Figure 1: An example for decision trees: Top three levels of a model of depth 6 for
MovieLens data set

at the visit of a new user, the recommender initiates several trials. At each trial, the

recommender provides a seed item as a question and ask the user for her opinion;

based on the user’s responses to the questions, the recommender gradually refines

its characterization (i.e. profile) of the user so that it can provide more satisfactory

recommendations to the user in the future. A good initial interview process should

not be time-consuming: the recommender can only ask a very limited number of

questions or otherwise the user will become impatient and leave the system. Equally

important, the process should also be effective, i.e. the answers collected from the

user should be useful for constructing at least a rough profile for the user. As an

illustration of movie recommendation, in an interview process depicted in Figure 1,

the system asks a new user the question “Do you like the movie Lethal Weapon

4?”. The user is allowed to answer with either “Like”, “Dislike” or “Unknown”. The

recommender refines its impression about the user and then direct the user to one

of the child nodes and then presents the next interview question according to her

previous response. For example, if a user chooses “Like” for “Lethal Weapon 4?” at

3



the root node of Figure 1, she will be directed to the left child node and will be asked

the question “Do you like the movie Taxi Driver?”

In this work, we propose functional matrix factorization (fMF), a novel method for

the construction of such interview decision trees. We argue that it is more effective to

combine the matrix factorization model for collaborative filtering and the decision-tree

based interview model into a single framework. Our proposed method is based on the

low rank factorization of the incomplete user-item rating matrix with an important

twist: it restricts the user profiles to be a function of the answers to the interview

questions in the form of a decision tree, thus the name functional matrix factorization.

The function — playing the role of the initial interview — is in the form of a decision

tree with each node being an interview question [50,122].

1.3 Binary Coding for Collaborative Filtering

With the rapid growth of E-commerce, hundreds of thousands of products, ranging

from books, mp3s to automobiles, are sold through online marketplaces nowadays.

In addition, millions of customers with diverse backgrounds and preferences make

purchases online, generating great opportunities as well as challenges for E-commerce

companies — How to match products to their potential buyers not only accurately

but also efficiently. Due to the nature of their applications, collaborative filtering

systems are usually required to learn and predict the preferences between a large

number of users and items. Therefore, for a given user, it is important to retrieve

products that satisfy her preferences efficiently, leading to fast response time and

better user experience.

4



Figure 2: The idea of learning binary codes for collaborative filtering

In this part of the thesis, we address the problem of learning binary codes for

collaborative filtering. Specifically, we propose to learn compact yet effective binary

codes for both users and items from the training rating data. A great advantage is

that given the binary code representations for users and items, the recommendation

can be performed quickly through retrieving the items with similar binary codes as

the user. (See Figure 2)

Unlike previous works on learning binary codes, we do not assume the similarity

between users and items are known explicitly. Therefore, the binary codes we con-

struct not only accurately preserve the observed preferences of users, but they also can

be used to predict the unobserved preferences, making the proposed method conceptu-

ally unique compared with the existing methods for learning binary codes [65,80,161].

Our approach is based on the idea that the binary codes assigned to users and items

should preserve the preferences of users over items. Two loss functions are applied

to measure the divergence between the training data and the estimates based on

the binary codes. Unfortunately, thus formulated, the resulting discrete optimiza-

tion problem is difficult to solve in general. Through relaxing the binary constraints,

5



it turns out the relaxed optimization problem can be solved effectively by existing

solvers. The problem can be viewed as a matrix factorization problem with restricted

binary latent factors. Moreover, we propose two effective methods for rounding the

relaxed solutions to obtain binary codes.

1.4 Learning Social Infectivity from Temporal Events

In today’s explosively growing social networks such as Facebook, millions of people

interact with each other in a real-time fashion. The decisions made by individuals

can be largely influenced by their neighbors, the authorities and various communities,

which is known as the property of following the crowd in social behaviors [19, 101].

For example, a recommendation from a close friend can be very decisive for the pur-

chasing of a product. Thus, the problem of modeling the influences between people

is a vital task for studying social networks. Despite its importance, the network of

social influence is usually hidden and not directly measurable. It is different from the

“physical” connections in a social network which do not necessarily indicate direct

influence. However, the network of social influence does manifest itself in the form

of various time-stamped and recurrent events occurring at different individuals that

are readily observable, and the dynamics of these historical events carry much infor-

mation about how individuals interact and influence each other. For instance, one

might decide to purchase a product the very next day when she saw many people

around her bought it today while it may take the same person a prolonged period to

try out the product if none from her community has adopted it. From a modeling

perspective, we also want to take into account several key features of social influence.

6



Figure 3: An illustration of recurrent mutually-exciting process.

First, many social actions are recurrent in nature. For instance, an individual can

participate in a discussion forum and post her opinions multiple times. Second, ac-

tions between interacting people are often self- and mutually-exciting. The likelihood

of an individual’s future participation in an event tends to increase if she has partici-

pated in it before and more so if many of her neighbors also have participated in the

event (See Figure 3). Third, the network of social influence have certain topological

structures. It is usually sparse, i.e. most individuals only influence a small number of

neighbors, while there are a small number of hubs with wide spread influence on many

others. Moreover, people tend to form communities, with the likelihood of taking an

action increased under the influence of other members of the same community (as-

sortive, e.g., peer-to-peer relation) or under the influence of members from another

specific community (dissortative, e.g., teacher-to-student relation) [46, 101]. These

topological priors give rise to the structures of the adjacency matrices corresponding

to the networks: they tend to have a small number of nonzero entries and they also

have sophisticated low-rank structures.

In this part of the thesis, we propose a regularized convex optimization approach
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to discovering the sparse and low-rank hidden network of social influence based on a

multi-dimensional Hawkes process. The multi-dimensional Hawkes process captures

the mutually-exciting and recurrent nature of individual behaviors, while the regu-

larization using nuclear norm and ℓ1 norm simultaneously on the infectivity matrix

allows us to impose priors on the network topology (sparsity and low-rank structure).

The advantage of our formulation is that the corresponding network discovery prob-

lem can be solved efficiently by bringing a large collection of tools developed in the

optimization communities. In particular, we developed an algorithm, called ADM4,

to solve the problem efficiently by combining the idea of alternating direction method

of multipliers [25] and majorization minimization [64]. In our experiments on both

synthetic and real world datasets, the proposed method performs significantly better

than alternatives in term of accurately discovering the hidden network and predict-

ing the response time of an individual, especially when the underlying networks are

sparse and low-rank.

1.5 Learning Nonparametric Kernels for Hawkes Process

Real world interactions between multiple entities, such as earthquake aftershocks

[156], civilian death in conflicts [85] and user behaviors in social network [104], often

exhibit the self-exciting and mutually-exciting property. For example, the time of

aftershocks are usually close to the main shock and may trigged further aftershocks

in the future. Multi-dimensional Hakwes processes, an important class of mutually

exciting process, can be used to capture these interactions.

Despite the usefulness of the mutually exciting property in real world problems, the
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actual dynamics of how previous events trigger future events, which is modeled by the

triggering kernels, can be quite complex and vary a lot across different applications.

For example, the dynamics of user behaviors in social network can be very different

from those in earthquake after shocks or disease contagion. Moreover, these dynamics

can be inherently complex since the diverse nature of user behaviors. Unfortunately,

most existing work based on Hawkes processes assumes that the triggering kernels

are known or chosen manually in advance, which trends to be oversimplified or even

infeasible for capturing the problem complexity in many applications. Therefore, it is

highly desirable to estimate the temporal dynamics in a principled data-driven way

rather than relying on ad-hoc manual selections.

In this part of the thesis, we propose a general framework to estimate the triggering

kernels of Hawkes processes from the recurrent temporal events that can be viewed as

samples from the Hawkes processes — without the knowledge of the actual triggering

structure in the events. The challenge of the problem arises not only from the fact

that the parameters is in an infinite dimensional space but also they are coupled with

each other in the likelihood function. To address the problem, we propose MMEL

which applies idea of majorization minimization [64] to construct an upper-bound of

the objective function at each iteration that decouples the parameters so that they

can be optimized independently. Another novelty of our method is that we used

the Euler-Lagrange equation to derive an ordinary differential equation (ODE) that

the optimal trigger kernel should satisfy. This connection allows us to exploit the

fruitful and well-developed techniques of ODE solvers. In our experiments on both

synthetic and real world datasets, the proposed method performs significantly better
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than alternatives.

1.6 Outline

The rest of this dissertation is organized as follows: In Chapter 3, we describe the

problem of cold-start recommendation and propose our solution that combines matrix

factorization and decision tree to construct the interview process. In Chapter 4,

we propose the method of binary coding to improve the efficiency of collaborative

filtering. In Chapter 5, we describe the model based on mutual-exciting Hawkes

process to infer the hidden influence network based on temporal events. Chapter 6,

we describe the method for learning nonparametric kernel for Hawkes process through

solving the Euler-Lagrange equation. The thesis is concluded in Chapter 7.
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CHAPTER II

BACKGROUND AND RELATED WORK

In this chapter, we review the existing studies related to the thesis. In particular, we

introduce the idea of low-rank matrix factorizations and its different formulations in

Section 2.1. Then, we will briefly summarize existing studies on collaborative filtering

and cold-start collaborative filtering in Section 2.2 and 2.2.3, respectively. The related

work of binary coding is summarized in Section 2.3 with the focus on collaborative

filtering, which is related to the work in Chapter 4. Finally, we survey the related

work on point process in Section 2.4.

2.1 Low-Rank Matrix Factorization

We first review the matrix factorization in its original form and illustrate the basic

idea of matrix factorization which is the basis of the thesis. In particular, we will

describe the singular value decomposition method and discuss its optimality.

2.1.1 Singular Value Decomposition

Singular value decomposition (SVD) is among the earliest ideas of the applications

of matrix factorizations to discovery the structure of the data. It has a wide range of

applications and extensions in information retrieval, data mining and other related

fields.

The SVD can be defined as follows: Given any matrix X ∈ R
m×n. Let the singular
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value decomposition of X be

X = UΣV T ,

where the matrices U and V are orthonormal and Σ is diagonal—

Σ =

















σ1

. . .

σmin{m,n}

















.

The values σ1, σ2, . . . , σmin{m,n} are the singular values of the matrix X. Without loss

of generality, we assume that the singular values are arranged in descending order,

σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n}.

For dimension reduction, we approximate the original matrix X by a rank-K

approximation X̂. This is done with a partial SVD using the singular vectors corre-

sponding to the K largest singular values.

X̂ = ÛΣ̂V̂ T

=

[

U 1 . . . UK

]

















σ1

. . .

σK

































V T
1

...

V T
K

















. (1)

A nice property is that SVD produces the rank-K matrix X̂ that minimizes the

distance from X in terms of the Frobenius norm. Specifically, we have the following

theorem by Eckart and Young: [42]:

Theorem 1. X̂ is a solution for the following optimization problem:

min
X̂

‖X − X̂‖2
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subject to:

dim X̂ = K

The above theorem ensures that the rank-K approximation produced by SVD is

optimal in terms of Frobenius norm. The property makes it possible to apply SVD

in a lot of applications to discover the low-dimensional latent structures from high

dimensional data. For example, latent semantic indexing (LSI), a famous technique in

information retrieval, to discover the semantic space of a corpus is based on applying

SVD to the document-term matrix [39], with several extensions such as fold-in process

and regularizations [17, 160,167].

In this case, the matrix X represents the documents and terms of the corpus.

Although X is typically sparse, its low-rank approximation X̂ is generally not sparse.

Thus, the low-rank approximation X̂ can be viewed as a smoothed version of X, ob-

tained by propagating the co-occurring terms in the document corpus. This smooth-

ing effect is achieved by discovering a latent semantic space formed by the documents.

Specifically, we can observe from Equation (1) that each document d can be repre-

sented by a K-dimensional vector V̂ d, which is the d-th row of the matrix V̂ . The

relation between the representation of document d in term space Xd and the latent

semantic space V̂ d is given by

Xd = ÛΣ̂V̂ d.

Similarly, each term v can be represented by the K-dimensional vector Û v given

by

T v = V̂ Σ̂Û v.
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Thus, LSI projects both terms and documents into a K-dimensional latent semantic

space the approximates the original document-term matrix.

2.2 Collaborative Filtering

Many studies on recommendation systems have been focused on collaborative filtering

approaches. These methods can be categorized into memory-based and model-based.

The reader is referred to the survey papers [4, 148] for a comprehensive summary of

collaborative filtering algorithms.

Recently, matrix factorization becomes a popular direction for collaborative fil-

tering [61, 78, 114, 125, 142]. These methods are shown to be effective in many ap-

plications. Specifically, matrix factorization methods usually seek to associate both

users and items with latent profiles represented by vectors in a low dimension space

that can capture their characteristics. In [126], a convex relaxation for low rank ma-

trix factorization is proposed and applied to collaborative filtering. A probabilistic

model for extracting low dimensional profiles is studies in [61], in which latent vari-

ables are introduced to capture the users and items and the EM algorithm is used

to estimate the parameters. More recently, fueled by the Netflix competition, several

improvements have been proposed including the use of regularized SVD [114], and the

idea of matrix factorization combined with neighborhood-based methods [78]. In the

following section, we describe collaborative filtering formulated as low-rank matrix

factorizations with incomplete observations.
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2.2.1 Low-Rank Matrix Factorizations with Incomplete Observations for
Collaborative Filtering

One drawback of the singular value decomposition is that it assumes that all entries

of the matrix X is observed, which is not true in a lot of applications, including

collaborative filtering. Specifically, in collaborative filtering, we only observe a small

fractions of ratings from the users. Therefore, the rating matrix is only partially

observed and the goal is to predict the missing entries in the matrix. Therefore, the

low-rank matrix factorization with incomplete observations has been developed to

solve the problem.

First, let rij denote the rating of user i for item j, where i = 1, 2, . . . , N and

j = 1, 2, . . . ,M . For example, in movie recommendation systems, rij can be rating

in {1, 2, 3, 4, 5} representing the degree of preference of user i for movie j, where the

rating 5 represents the user i very likes the user j, while a rating 1 represent that the

user i does not like the movie j. In collaborative filtering, only a small subset of ratings

are observed, denoted by K = {rij | (i, j) ∈ O}. The goal of collaborative filtering

is to predict the unknown ratings based on ratings in K. Collaborative filtering

exploits a basic heuristic that similar users tend to rate similar items in a similar

way. One important class of methods for collaborative filtering are based on matrix

factorization [61, 142]. Specifically, we associate a K-dimensional vector ui ∈ R
K for

each user i and vj ∈ R
K for each item j. The vectors ui and vj are usually called

user profiles and item profiles since they are intended to capture the characteristics

of users and items. The rating rij of user i for item j can be approximated by a

similarity function of ui and vj in the low dimensional space, for example, rij = uTi vj.
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Given the set of known ratings K, the parameters ui and vj can be estimated

through fitting the training data by solving the following optimization problem:

min
ui,vj

∑

(i,j)∈K

(rij − uTi vj)
2.

Regularization terms such as the Frobenius norms on the profile vectors can be in-

troduced to avoid overfitting. The problem can be solved by existing numerical opti-

mization methods such as alternating minimization, stochastic gradient descent and

LBFGS. Here, we summarize the alternating optimization, which is a special case of

the coordinate descent algorithm [22], for its amenability for the cold-start settings in

Chapter 3. Specifically, the optimization process performs the following two updates

alternatively.

First, for i = 1, 2, . . . , N , minimizing with respect to ui with all uj, j 6= i and all

vj fixed:

ui = argmin
ui

∑

(i,j)∈O

(rij − uTi vj)
2,

which is a linear regression problem with squared loss. The closed form solution can

be expressed as

ui =





∑

(i,j)∈K

vjv
T
j





−1



∑

(i,j)∈O

rijvj





Then, for j = 1, 2, . . . ,M , minimizing with respect to vj with all vi, i 6= j and all ui

fixed:

vj = argmin
vj

∑

(i,j)∈K

(rij − uTi vj)
2,

which is also a linear regression problem with similar closed-form solution.
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2.2.2 Nuclear Norm Regularization: A Convex Formulation

Recently, the nuclear norm regularization is frequently used to enforce the low-rank

structure in a matrix [11, 45, 77, 126, 143], with the advantage of providing a convex

formulation to the matrix factorization problem. It can be also applied together with

other regularizations to incorporate other prior knowledge [128]. In particular, the

nuclear norm ‖A‖∗ of a matrix A is defined as the sum of its singular values. Therefore,

the formulation with nuclear norm for matrix factorization can be expressed as:

min
A

∑

(i,j)∈K

(rij − aij)
2 + λ‖A‖∗

It has been shown that the solution A to the above problem is low rank [142, 143].

Moreover, the above optimization problem is convex and thus has a unique global

solution, which makes it attractive in a lot of applications. The problem can be

solved efficiently for relatively large problem [100]. One contribution of our work in

Chapter 5 is to apply these results of nuclear norm to social influence estimation

problem and we also develop a new algorithm ADM4 for solving the corresponding

optimization problem efficiently.

2.2.3 Cold-Start Collaborative Filtering

There have been several studies on the elicitation strategies for new user preferences.

The work [117] surveys several guidelines for user preference elicitation. Several mod-

els such as [52, 122, 123] constructed the interview process with a static seed set

selected based on measures such as informativeness, popularity and coverage. The

recent work of [50] proposed a greedy seed selection algorithm by optimizing the

prediction performance. Such seed-based methods are not completely satisfactory
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because the seeds are selected statically in batch, and they do not reflect the user

responses during the interview process. In [122], while discussing the IGCN (Infor-

mation Gain through Clustered Neighbors) algorithm, it was mentioned the idea of

adaptively selecting the interview questions by fitting a decision tree to predefined

user clusters. In particular, each node represents an interview question and the user

is directed to one of the child nodes according to her response to the parent question.

In [51], the authors proposed an algorithm that fits the decision to the users’ ratings.

This seems to provide a more disciplined approach than that based on the predefined

user clusters discussed in IGCN. Our proposed framework goes one step further by

integrating the decision tree construction into the matrix factorization framework of

collaborative filtering. We should also mention that the decision tree structure used

in those methods exhibit interesting resemblance to the Bayesian network approach

in [26].

A complimentary line of research for solving the cold-start problem is to utilize

the features of users or items. The content features can be used to capture the

similarities between users and items and thus reduce the amount of data required

to make accurate predictions [7, 21, 56, 113, 133, 144]. For example, the work of [7]

utilizes features of items and users as the prior distribution for latent profiles in

matrix factorization. The method described in Chapter 3 is based on the interview

process and does not solely rely on features of users and items.

We also want to mention active learning for collaborative filtering [24,58,72,115].

These methods usually select questions that are optimal with respect to some selec-

tion criteria, such as the expected value of information or the distance to the true
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user model. These methods generally are not suitable for interview process since the

selection process usually involves optimizing the selection criteria. In fact, the com-

plexity of existing active learning algorithms for collaborative filtering are often too

large to make online interview.

2.3 Learning Binary Codes

The problem of learning binary codes for fast similarity search has been investigated

in several studies [80,91,132,161] Locality sensitive hashing tries to construct binary

codes that preserve certain distance (e.g., Lp distance) between different points with

high probability, which is usually archived by random projection [37,66]. In [136], the

problem of learning effective binary codes is solved by utilizing the idea of boosting.

The work of [132] proposes to learn binary codes making use of Restricted Boltz-

mann Machine (RBM) for fast similarity search of documents. Recent work focuses

on constructing binary codes based on a given similarity function [109,159,161]. The

basic idea is to apply spectral analysis techniques to the data and embedding data

points into a low dimension space. For example, the work [161] investigate the re-

quirements for compact and effective binary codes. Their solution relies on spectral

graph partition, which can be solved by eigenvalue decomposition of the Laplacian

matrix for the graph. It has been shown that these methods archive significant per-

formance improvements in terms of preserving the similarity between data points.

Although several extension of this method has been studied [60, 168], these methods

only consider the problem of obtaining binary codes for one type of entities. However,

in collaborative filtering problem considered in Chapter 4, two types of entities, users
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and items, are naturally involved and thus should be consider simultaneously, which

makes it difficult to applies these method directly.

The preference of a user on an item is usually measured by some similarity, such

as the dot-product, between their low dimensional profiles. These studies are related

to our work in the sense that both of them aim to find certain representations that

preserve the preference between users and items. However, one key difference is that

our work in Chapter 4 aims to find binary codes in Hamming space for representing

users and items, which has the nice property that the retrieval of interesting items for a

user can be performed in time that is independent of the total number of items [132].

The work [170] proposes to learn binary codes for both documents and terms by

viewing the term-document matrix as a bipartite graph, where edges represent the

occurrences of terms in documents. Then, the method proposed in [161] is applied

to adjacent matrix obtain the binary codes. However, this method can not deal with

the problem of unobserved/missing ratings in collaborative filtering. As shown in our

experiments, the binary codes obtained by this method quickly overfit the training

data and lead to poor prediction accuracy.

Another direction of collaborative filtering investigate the problem of using binary

codes to create fingerprints for users [14,15,36]. The idea is create binary fingerprints

for each user using randomized algorithms so that the similarity between users can be

approximated according to the fingerprints. However, these studies do not address the

problem of simultaneously representing users and items by binary fingerprints. Thus,

the preference of users on items can not be estimated directly from these fingerprints.

On the other hand, the binary codes learnt by our proposed method in Chapter 4 can
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be directly used to measure the preference of users over items.

2.4 Self-Exciting Point Process

Self-exciting point processes are frequently used to model continuous-time events

where the occurrence of one event increases the possibility of future events. Hawkes

process [59], an important type of self-exciting process, has been investigated for a

wide range of applications such as market modeling [151], earth quake prediction

[97], crime modeling [146]. The maximum likelihood estimation of one-dimensional

Hawkes process is studied in [86] under the EM framework. Additionally, [138] models

cascades of events using marked Poisson processes with marks representing the types

of events while [23] propose a model based on Hawkes process that models events

between pairs of nodes. However, it only considers two dimensional Hawkes process

and aims to model events associated with edges. The novelty of this work is the

application of multi-dimensional Hawkes process [2,59] to model the recurrent events

on nodes of a social network, and leverage its connections to convex low-rank matrix

factorization techniques.

Estimating the hidden social influence from historical events is attracting increas-

ing attention recently. For instance, [111] proposes a hidden Markov based model to

model the influence between people which treats time as discrete index and hence

does not lead to models predictive of the response time. The approach in [54] models

the probability of a user influenced by its neighbors by a sub-modular functions, but

it is not easy to incorporate recurrent events and topological priors in a principled

way. In [107, 129], continuous-time models are proposed to recover sparse influence
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network. However, our work is different from theirs in two aspects: First, the models

can proposed in [107, 129] can not handle recurrent events as we did in Chapter 5.

Moreover, they only take into account the sparse network structure, while we consider

the estimation of networks that are both low-rank and sparse.

2.5 Estimating the Triggering Kernels

The problem of nonparametric estimation of the triggering kernels has been addressed

for special cases such as the one-dimensional Hawkes processes [86] or symmetric

Hawkes processes [16]. In this work, we study the general case of multi-dimensional

Hawkes process under the framework for optimizing the triggering kernels in the

infinite dimensional functional space. The recent work of [41] considers the problem

of learning the triggering kernel for diffusion processes based on linear combination

of basis functions. Our proposed method, on the other hand, does not assume any

known parametric forms of basis functions and estimate them from observed data

through optimization in an infinite dimensional functional space.

Another related direction of studies is smoothing splines [124, 158] and the ex-

tensions such as kernel methods and Gaussian Processes [137], in the sense that the

problem of estimating the triggering kernels can be viewed as a smoothing problem

with nonnegative constraints. The goal of smoothing splines is to estimate a smooth

function based on its value on finite points. The nonnegative constraints are usually

studied as the more general case of the shape restrictions [96, 124, 155]. The main

difference in our work is that the loss function we consider is more complex and de-

pends on the values of the triggering kernels on infinite points, which makes it difficult
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to directly apply the smoothing spline methods. Moreover, as we will see later, the

nonnegative constraints can be naturally enforced in our algorithm.

Positive definite kernels have also been used extensively in machine learning. This

type of kernel can be viewed as similarity function between data points. Its learning

has been addressed extensively in recent literature where one tries to learn a better

positive definite kernel by combining several positive definite kernels [10, 12, 34, 40,

141]. Nonparametric positive kernel learning, instead of learning combination of

existing positive kernels, directly learns the full Gram matrix with respect to certain

constraints and prior knowledges about the data, such as pairwise constraints [62] or

distribution of the data [173].
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CHAPTER III

FUNCTIONAL MATRIX FACTORIZATIONS FOR

COLD-START RECOMMENDATION

In this chapter, we describe functional matrix factorization (fMF), a novel method for

the construction of the interview process for cold start recommendation. We argue

that it is more effective to combine the matrix factorization model for collaborative

filtering and the decision-tree based interview model into a single framework. Our

proposed method is based on the low rank factorization of the incomplete user-item

rating matrix with an important twist: it restricts the user profiles to be a function

of the answers to the interview questions in the form of a decision tree, thus the

name functional matrix factorization. The function — playing the role of the initial

interview — is in the form of a decision tree with each node being an interview

question [50,122].

We will describe the proposed framework, functional matrix factorization, in detail

in Section 3.1. The learning algorithm based on alternative optimization is then

proposed with detailed derivations. Then, we evaluate the proposed method on three

data sets and analyze the results in Section 3.3.

3.1 Functional Matrix Factorization

In this section, we describe the functional matrix factorization (fMF) method for

cold-start collaborative filtering which explores the well-known matrix factorization
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methods for constructing the interview process. The key innovation is that we pa-

rameterize user profiles to be a function of the responses to the possible questions of

the interview process and use matrix factorization to compute the profiles.

3.1.1 Functional Matrix Factorization

We consider constructing the interview process for cold-start collaborative filtering.

Assume that a new user registers at the recommendation system and nothing is

known about her. To capture the preferences of the user, the system initiates several

interview questions to query the responses from the user. Based on the responses, the

system constructs a profile for the user and provides recommendations accordingly.

In the plain matrix factorization model described in Section 2.1, the user profile

ui is estimated by optimizing the ℓ2 loss on the history ratings rij . This model does

not directly apply to cold-start settings because no rating is observed for the new

user prior to the interview process. To build user profiles adaptively according to the

user’s responses in the course of the interview process, we propose to parameterize the

user profile ui in such a way that the profile ui is tied to user i’s responses in the form

of a function, thus the name functional matrix factorization (fMF). More precisely,

assume there are P possible interview questions. We assume that an answer to a

question takes value in the finite set {0, 1,Unknown}, representing “Dislike”, “Like”

and “Unknown”, respectively. Furthermore, let ai denote the P -dimensional vector

representing the answers of user i to the P questions. And we tie the profile to the

answers by assuming ui = T (ai), where T is a function that maps the responses ai

to the user profile ui ∈ R
k. To make recommendations for user i, we simply use
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rij = vTj T (ai).

Our goal is to learn both T and vj from the observed ratings K. To this end,

substituting ui = T (ai) into the low-rank matrix factorization model, we have the

following optimization problem:

T, V = argmin
T∈H,V

∑

(i,j)∈O

(rij − vTj T (ai))
2 + λ‖V ‖2, (2)

where V = (v1, . . . , vM) is the matrix of all item profiles, H is the space from which

the function T (a) is selected and the second term is the regularization term.

Several issues need to be addressed in order to construct the interview process by

the above functional matrix factorization. First, the number of all possible interview

questions can be quite large (e.g. up to millions of items in movie recommendation);

yet a user is only patient enough to answer a few interview questions. Second, the

interview process should be adaptive to user’s responses, in other words, a follow-up

question should be selected based on the user’s responses to the previous questions.

Therefore, the selection process should be efficient to generate interview questions in

real time after the function T (a) is constructed. In addition, since we allow a user

to choose “Unknown” to the interview questions, we need to deal with such missing

values as well.

Following prior works of [51,122], we use a ternary decision tree to represent T (a).

Specifically, each node of the decision tree corresponds to an interview question and

has three child nodes. When the user answers the interview question, the user is

directed to one of its three child nodes according to her answer. As a result, each

user follows a path from the root node to a leaf node during the interview process.
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A user profile is estimated at each leaf node based on the users’ responses, i.e., T (a).

The number of interview questions presented to any user is bounded by the depth

of the decision tree, generally a small number determined by the system. Also, non-

responses to a question can be handled easily in the decision tree with the introduction

of a “Unknown” branch.

3.1.2 Alternative Optimization

The objective function defined in Equation (2) can be optimized through an alter-

nating minimization process. Specifically, we alternate between the following two

steps:

1. Given T (a), we can compute vj by regularized least square regression. Formally,

for each j, we find vj such that

vj = argmin
vj

∑

(i,j)∈O

(rij − vTj T (ai))
2 + λ‖vj‖

2.

This problem has a closed-form solution given by

vj =





∑

(i,j)∈O

T (ai)T (ai)
T + λI





−1



∑

(i,j)∈O

rijT (ai)



 , (3)

where I is the identity matrix of appropriate size.

2. Given vj, we try to fit a decision tree T such that

T = argmin
T∈H

∑

(i,j)∈O

(rij − T (ai)
Tvj)

2. (4)

A critical challenge is that the number of possible trees grows exponentially with the

depth of the trees, which can be extremely large even for trees of limited depth. It is
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therefore computationally extensive to obtain a global optimal solution for the above.

We address this problem by proposing an efficient greedy algorithm for finding an

approximate solution.

3.1.3 Decision Tree Construction

Traditional decision tree algorithms such as C4.5 or CART [27] usually minimize

objective functions such as classification error and square loss for regression. In our

scenario, the objective function is defined in Equation (4), and we now describe how to

build a decision tree in a greedy and recursive fashion to minimize it. Specifically, at

each node, we select the best interview question by optimizing the objective defined in

Equation (4) based on the response to this question; the decision tree then splits the

user set into three subsets corresponding to the child nodes (i.e. “Like”, “Dislike” and

“Unknown”). We carry out this procedure recursively until the tree reaches certain

depth. In our experiments, the depth is usually set to a small number between 3 and

7.

Formally, starting from the root node, the set of users at current node are parti-

tioned into three disjoint subsets RL(p), RD(p) and RU(p) corresponding to “Like”,

“Dislike” and “Unknown” of their responses to the interview question p:

RL(p) = {i|aip = “Like”},

RD(p) = {i|aip = “Dislike”},

RU(p) = {i|aip = “Unknown”}.

To find the optimal question p that leads to the best split, we minimize the following
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objective:

min
p

∑

i∈RL(p)

∑

(i,j)∈O

(rij − uTLvj)
2 +

∑

i∈RD(p)

∑

(i,j)∈O

(rij − uTDvj)
2

+
∑

i∈RU (p)

∑

(i,j)∈O

(rij − uTUvj)
2, (5)

where uL, uD and uU are the optimal profiles for users in the child nodes corresponds

to the answers of “Like”, “Dislike” and “Unknown”, respectively:

uL = argmin
u

∑

i∈RL(p)

∑

(i,j)∈O

(rij − uTvj)
2,

uD = argmin
u

∑

i∈RD(p)

∑

(i,j)∈O

(rij − uTvj)
2,

uU = argmin
u

∑

i∈RU (p)

∑

(i,j)∈O

(rij − uTvj)
2.

There also exist closed-form solutions to uL, uD and uD as follows:

uL =





∑

i∈RL(p)

∑

(i,j)∈O

vjv
T
j





−1



∑

i∈RL(p)

∑

(i,j)∈O

rijvj



 , (6)

uD =





∑

i∈RD(p)

∑

(i,j)∈O

vjv
T
j





−1



∑

i∈RD(p)

∑

(i,j)∈O

rijvj



 , (7)

uU =





∑

i∈RU (p)

∑

(i,j)∈O

vjv
T
j





−1



∑

i∈RU (p)

∑

(i,j)∈O

rijvj



 . (8)

After the root node is constructed, its child nodes can be constructed in a similar

way, recursively. We summarize our algorithms for functional matrix factorization

and decision tree construction in Algorithm 1 and Algorithm, 2 respectively.

Implementation and Computational Complexity. The time complexity for

computing vj with Equation (3) is O(MK3), where M is the number of items and

K is the dimension of the latent space. In order to compute uL, uD and uU at each
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split, we need to compute the inverse of a square matrix of size K, which takes O(K3)

time. The brute-force approach for generating the matrix itself requires O(UMK2)

time. In order to reduce the time complexity, we observe that the coefficient matrix

can be computed based on the sum of ratings, the sum of squares of ratings and

the number of ratings for each item within time O(MK2). With a similar method

proposed in [51], the time complexity of computing these statistics of all items is

O(
∑

N2
i ) for each level of the decision tree, where Ni is the number of ratings by

the user i. Thus, the computation complexity for constructing the decision tree is

O(D
∑

iN
2
i + LMK3 + LM2K2), where D is the depth of the tree and L represents

the number of nodes in the tree. The computation time can be reduced by selecting

a subset of items based on some criteria such as the rating variance, and using only

the selected items as candidates for the interview questions.

3.1.4 Hierarchical Regularization

In the above section, uL, uD and uU for each node are estimated by linear regression.

When the amount of training data is small, the estimate may overfit the training

data. The problem becomes more severe especially for the nodes close to the leaves

of the decision tree, because as the split process progresses, users belonging to those

nodes become fewer and fewer. To avoid overfitting, regularization terms need to be

introduced. Although traditional ℓ2 regularization can be applied in this case [114],

but such approach does not take into account the rich structure of the decision tree.

Here, we propose to apply hierarchical regularization that utilize the structure of

the decision tree. Specifically, we shrink the coefficient u of a node toward the one at
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Algorithm 1 Alternating Optimization for Functional Matrix Factorization

Input: The training data K = {rij | (i, j) ∈ O}.
Output: Estimated decision tree T (a) and item profiles vj, j = 1, 2, . . . ,M .
1: Initialize vj randomly for j = 1, . . . ,M .
2: while not converge do
3: Fit a decision tree T (a) using Algorithm 2.
4: Update vj with Equation (3).
5: end while
6: return T (a) and vj, j = 1, 2, . . . ,M .

Algorithm 2 Greedy Decision Tree Construction

1: function FitTree(UserSet)
2: // UserSet: the set of users in current node.
3: Calculate uL, uD, uU by Equation (6), (7) and (8) for p = 1, . . . , P .
4: Compute the split criteria Lp by Equation (5) for p = 1, . . . , P .
5: Find the best interview question p = argmaxp Lp.
6: Split user into three groups RL(p), RD(p) and RU(p).
7: if square error reduces after split and depth < maxDepth then
8: Call FitTree(RL(p)), FitTree(RD(p)) and FitTree(RU(p)) to construct the child

nodes.
9: end if

10: return T (a).
11: end function

its parent node. For example:

uL = argmin
u

∑

i∈RL(p)

∑

(i,j)∈O

(rij − uTvj)
2 + λh‖u− uC‖

2,

where uC is the estimation at the current node and uL is the estimation at its child

node corresponding to the answer “Like” and the parameter λh controls the trade-off

between training error and regularization. We will evaluate the impact of λh in our

experiments. It seems that λh = 0.03 gives good results in practice. The similar idea

using parent node as the prior for the child node is also studied in [51], but the ratings

for the parent node is used to improve the prediction in the child node.
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3.2 Extensions

In this section, we describe some extensions to the proposed fMF model in order to

demonstrate the flexibility of the proposed method. In particular, we first describe

how to extend the model to ask multiple questions at each node. Then, we gener-

alize the proposed model to Partially observable Markov decision process (POMDP)

framework [30] which has a nice connection to matrix factorizations.

3.2.1 Multiple Questions

The proposed method can also be extended to ask multiple questions at each decision

tree split. To this end, there are two challenges to overcome. First, the number of

possible questions can be quite large (e.g., we may have n ∼ 105 in movie recommen-

dation system) and searching over all possible splits becomes a combinatorial problem

with a prohibitive
(

n
l

)

possibilities to evaluate where l is the number of questions at

each node. We solve this problem by relaxing it as an L1 regularized optimization.

Second, since we are keeping the structure of the tree with 3 branches, it is possible

that users with different opinions would enter the same node. Therefore, different

from other decision tree approaches, a non-constant function T needs to be learned

separately for each node. We solve this second problem by training a linear regressor

within each node using all the previously obtained answers as input. For splitting

with multiple items, the idea is to optimize for a sparse weight vector on each item

that has only a few non-zeros. Formally, let w denote the weight of items, which is a

n-dimensional vector. Let l denote the maximum number of questions at each split.

Training users at the current node are split into 3 child nodes L, D and U according
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to the linear combination of the answers xTi w.

We use a modified logistic probability model to determine the split. Let pi, qi

denote the probability that user i belongs to the L, and D branch respectively:

pi =
1

1 + c exp(−xTi w)

qi =
1

1 + c exp(xTi w)

Accordingly, the three subgroups are defined as:

L(w) = {i|pi > qi, pi > 1− pi − qi},

D(w) = {i|qi > pi, qi > 1− pi − qi},

U(w) = {i|1− pi − qi ≥ max(pi, qi)},

where c is a parameter controlling the likelihood of falling into different groups. In

practice, we find that c = 2 works best. In such a case, a user belongs to the L group

when xTi w is positive, the D group when xTi is negative, and the middle group U only

when the user answers none of the questions.

Ideally, we need to optimize such an objective function:

min
w,TL,TD,TU

∑

i∈L(w)

∑

j∈Oi

(rij − TL(xi)
Tvj)

2

+
∑

i∈D(w)

∑

j∈Oi

(rij − TD(xi)
Tvj)

2

+
∑

i∈U(w)

∑

j∈Oi

(rij − TU(xi)
Tvj)

2 (9)

subject to

‖w‖0 ≤ ℓ
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where TL, TD and TU are the profile functions for the nodes L, D, U , and ‖w‖0

denotes the number of non-zeros in w. The objective function first divides the training

users into three child nodes, and then computes the squared error within each child

node. The goal is to minimize the sum of errors in all the three child nodes. In

addition, the constraint ‖w‖0 ≤ ℓ determined that w cannot have more than l non-

zeros. We would adopt an alternating minimization strategy that optimizes w and

TL, TD, TU iteratively. However, the optimization of w is a complicated non-convex

combinatorial problem, therefore we make relaxations to solve it with continuous

optimization. In the next two subsections we discuss separately the optimization of

w and the computation of TL, TD, and TU .

3.2.2 Optimization

In order to update the weight vector w in Equation (9) with continuous optimization,

we adopt two relaxations. Firstly, we relax the hard partitioning L, D, and U into a

soft partitioning, with the probability of x belonging to the subgroups L, D and U to

be pi, qi, and 1−pi−qi, respectively. This makes the main objective function smooth

in w. The second relaxation is to append a penalty term on ‖w‖1 to the objective

function, instead of a hard constraint on the number of non-zeros in w. This ℓ1

relaxation approach has been popular in machine learning and signal processing in

recent years. The ℓ1 term is convex and thus there exists efficient methods to optimize

it. Let m̄ denote the number of users reaching the current node, our relaxation
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problem computes w which minimizes the weighted prediction loss:

min
w

m̄
∑

i=1

pi
∑

j∈Oi

(rij − TL(xi)
Tvj)

2

+
m̄
∑

i=1

qi
∑

j∈Oi

(rij − TD(xi)
Tvj)

2

+
m̄
∑

i=1

(1− pi − qi)
∑

j∈Oi

(rij − TU(xi)
Tvj)

2 + λ‖w‖1. (10)

In order to optimize Equation (10), we adopt a projected scaled sub-gradient op-

timization. This algorithm computes the Hessian only for the nonzero part of the

current w, and adopts linear-time Barzilai-Borwein subgradient steps [20,134] for the

rest. It is suitable for our task because of its fast convergence rate thanks to the

incorporated second-order information, and each iteration is a linear-time operation.

The only cubic-time computation is to compute the Hessian inverse on the nonzeros.

Since we have usually less than 5 nonzeros, this step would normally take constant

time. By changing the parameter λ, we can find solutions with different numbers of

nonzeros in w. In practice, we first binary search between 0 and λmax to obtain λ0

such that the number of nonzero entries of w is between 1 and ℓ. Then we search

around λ0 with a finer step size, locating ℓ different solutions with 1,2, · · · , ℓ nonzeros

respectively. From this solution set, we select the one that minimize Equation (9)

without the constraint. We find this scheme to work well in practice.

3.2.3 POMDP formulation for cold start problems

When the choice of which question to ask in the interview process is viewed as a deci-

sion, the construction of the interview process can be naturally done in the framework
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of Markov decision process [118], which is the theoretical framework to model a se-

quential decision-making process. Formally, a Markov decision process which consists

of a state space S, a set of actions A, the transition probabilities Pr(s′|s, a) and a

cost function C(s, a, s′). More specifically:

• States. The set of states S consists of all question sequences of all lengths with

all possible answers.

• Actions. The set of actions A consists of M question action, one for each can-

didate interview question. The action set A also consists the set of termination

actions {φ} of predicting the user profile to be φ.

• Transition Probability. The probability Pr(s′|s, a) can be estimated from

the rating data.

• Immediate Cost. We can define the cost of actions as follows: For termination

actions {φ}, the cost function can be defined by the negative prediction error

of the user profile φ. Specifically, we have

C(s, φ,Ψ) =
∑

u∈s

∑

i:(u,i)∈O

(rui − ψT
i φ)

2.

For question actions, we can use the cost C(s,m) = cm of asking question m,

which models the cognitive burden of answering the question.

The goal is to find an optimal policy π : S → A, which assigns an action π(s) to each

state s, that minimizes the expected overall cost.
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Incorporating the formalism of MDP, the objective function in Equation (2) can

be expressed as follows:

min
φ,π

V π(s0)

where V π(s) is the expected cost starting from state s under policy π:

V π(s) = E

[

D
∑

t=1

Ct|s, π, φ,Ψ

]

,

Moreover, s0 = {} is the initial state, i.e., the empty set when no question has been

asked. Notice that the cost during the interview process
∑D

t=1Ct = C(sD, φ,Ψ) +

∑D−1
t=1 C(st, at) is a generalization of the square loss function in Equation (22). In

Equation (22), we have C(st, at) = 0 for t = 1, . . . , D − 1, since we do not consider

the cost of answering the questions.

The problem can also be solved by alternating minimization. Given ψ and π, user

profiles π can be obtained by solving least square problems. Given item profiles ψ

and user profiles φ, the problem of constructing the policy π can be formulated by

the planing problem of a Markov decision process. The goal is to find a policy π(s)

that for every state s returns the action that minimize the expected cost starting

V π(s) from the state s. With the computed φ’s, we can use least squares fitting

to recompute Ψ as discussed before, and this process will repeat until convergence.

We then use the policy π and the user profiles φ to construct the interview process

T (a) as follows: We start from the initial state s0 = {}. For each state s, if π(s) is

a question action, we ask the question corresponds to π(s) and modify the state to

according the answer a. If π(s) is a terminate action, we return the corresponding

user profile φ as the value of T (a).
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Due to the large size of state space and action space, we need to reduce their

size in order to make the formulation tractable. One idea to reduce the size of the

state space in MDP is through clustering which naturally leads to exploring partially

observed Markov decision process (POMDP) [118], where the states of the system is

unobserved. In particular, we can formulate the cold start problem as a POMDP as

follows:

• States. The set of hidden states S with |S| = k.

• Actions. The set of actions A consists of M question action, one for each can-

didate interview question. The action set A also consists the set of termination

actions {φ} of predicting the user profile to be φ.

• Transition Probability. The probability Pr(s′|s, a) can be modeled by multi-

nomial distribution estimated from data.

• Observation Probability. Pr(o|s′) represents the distribution of answers of

users at state s′.

• Immediate Rewards. For termination actions {φ}, the rewards function can

be defined by the negative prediction error of the user profile φ. For question

actions, the rewards function can be generalized to capture the cost C(m) of

asking questionm, which models the cognitive burden of answering the question.

In POMDP policy consists of mappings from the set of belief states b(s), i.e.,

distributions over the hidden states, to the set of actions. In particular, b(s) repre-

sents a probability distribution over the state space, which is real-valued vector in R
k.
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This enables us to make a natural connection between POMDP and the latent fac-

tor/matrix factorization based framework: we can equate the belief states b(s) with

a user profile φ — the states in POMDP then correspond to the factors/dimensions

in latent factor/matrix factorization models. Considering the usually interpretation

of the latent factors as correspond to different genres in movie recommendation, this

gives an intuitive interpretation of the states of the POMDP. Thus, the predicted

ratings can be expressed by

rui = Ebu [vi] =
∑

s

bu(s)vis = bTu vi,

where vi is the profile for item i. The update rule for belief b(s) after taking action a

and observe o can be expressed by:

b′(s′) =
1

Z
Pr(o|s′)

∑

s∈S

Pr(s′|s, a)b(s).

Again, we can jointly optimize both the policy π and the item profiles vi.

3.3 Experiments

In order to evaluate the proposed method for cold-start collaborative filtering, we

carry out a set of controlled experiments on three widely used benchmark data sets:

MovieLens, EachMovie and Netflix.

3.3.1 Data sets and Evaluation Metrics

We first briefly describe the data sets.

• The MovieLens1 data set contains 3900 movies, 6040 users and about 1 million

1http://www.grouplens.org/node/73
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ratings. In this data set, about 4% of the user-movie dyads are observed. The

ratings are integers ranging from 1 (bad) to 5 (good).

• The EachMovie data set, collected by HP/Compaq Research, contains about

2.8 million ratings for 1628 movies by 72,916 users. The ratings are integers

ranging from 1 to 6.

• The Netflix2 is one of the largest test bed for collaborative filtering. It contains

over 100 million ratings and was split into one training and one test subsets.

The training set consists of 100,480,507 ratings for 17,770 movies by 480,189

users. The test set contains about 2.8 million ratings. All the ratings are ranged

from 1 to 5.

The performance of an collaborative filtering algorithm will be evaluated in terms

of the widely used root mean square error (RMSE) measure, which is defined as

follows

RMSE =





1

|T |

∑

(i,j)∈T

(rij − r̂ij)
2





1/2

,

where T represents the set of test ratings, rij is the ground-truth values for movie j

by user i and r̂ij is the predicted value by a collaborative filtering model. We can also

normalize the error of each user by the number of their ratings. Our initial results

show that the two metrics are consistent in general, so we only report RMSE in our

experiments.

2http://www.netflixprize.com/
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Table 1: Statistics for Data Sets

Dataset No. Users No. Items No. Ratings

MovieLens 6040 3900 1,000,209
EachMovie 72,916 1628 2,811,983
Netflix 480,189 17,770 104,706,033

3.3.2 Deriving Interview Responses from User Ratings

The responses ai of the interview process for user i is required in order to train and

evaluate the interview process. Following the standard settings [51, 122], we restrict

the format of interview questions to be “Do you like item j?” For example, for

movie recommendation system, we can ask questions like “Do you like the movie

Independence Day?” Then, we can infer the responses for existing users according to

their ratings for the corresponding items. For instance, with ratings in 1-5 scale, we

assume that the responses aij of user i to the question “Do you like item j?” can be

inferred from her rating rij as follows:

aij =







































0, if (i, j) ∈ O and rij ≤ 3

1, if (i, j) ∈ O and rij > 3

”Unknown”, if (i, j) 6∈ O

Intuitively, we assume that the user will response 0 (dislike) and 1 (like) for items she

rates with ≤ 3 rating or > 3 rating. If the user did not rate an item selected for the

interview process, we assume that she will respond with unknown. For EachMovie

data set, we use a similar method except setting the threshold to be 4 since its ratings

range from 1 to 6.
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3.3.3 Experiment Design

We seek to address the following questions:

1. For new users, how does the proposed algorithm perform? In particular, how

effective is the interview process? Moreover, how does the proposed algorithm

perform compared to the baseline algorithms?

2. We utilize the ratings from users to simulate their responses to the interview

questions in our evaluation. How do missing values in user ratings impact the

performance of the proposed algorithm?

3. How does fMF perform in warm-start settings compared to traditional collabo-

rative filtering methods such as plain matrix factorization?

4. How do the parameters impact the performance of the proposed model?

3.3.4 Cold-Start Performance

We first evaluate the performance of fMF in cold-start settings. For each data set, we

split the users into two disjoint subsets, the training set and the test set, containing

75% and 25% users, respectively. The users in the training set are assumed to be

warm-start users whose ratings are known by the system. We learn the models and

construct the interview process based on these training users. In contrast, the users

in the test set are assumed to be cold-start users. The ratings of each user in the test

set are partitioned into two sets: the first set is called the answer set which is used to

generate the user responses in the interview process while the second set is called the

evaluation set which is used to evaluate the performance after the interview process.
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The sizes of the answer set and the evaluation set are 75% and 25% of the rated

items of each user, respectively. Note that the interview process typically includes

only a small number (≤ 7 in our experiments) of questions although the answer set

contains 75% of the ratings when deriving the responses for the cold-start users. The

evaluation process is summarized in Figure 4.

We compare the performance with two baseline methods, named as Tree and TreeU

and briefly described as follows:

• Tree: this is the method proposed in the very recent work of [51]. The method

learns a decision tree for initial interview without using latent user/item profiles.

It fits the tree based on the ratings of all the items in the inventory. Therefore,

at the leaf node, it needs to estimate M ratings for all the M items in the

system.

• TreeU: this method learns decision tree and matrix factorization through two

separate steps. It first estimates the user profiles and item profiles through plain

matrix factorization described in Section 2.1; then, a decision tree is constructed

separately using the algorithm of [51] to fit the latent user profiles. The model

predicts ratings by using the user profiles from the decision tree and the item

profiles from matrix factorization.

Our proposed fMF algorithm differs from these two algorithms in that it is a natural

integration of both decision tree and matrix factorization.

We use the following parameter settings: For TreeU, we use as default the regular-

ization weight of λ = 0.01, which gives the best RMSE in our experiments. For Tree
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Figure 4: Evaluation process for cold-start users

and fMF, we consider only one question at each node and apply 4-fold cross validation

to determine the parameters.

The results on MovieLens, EachMovie and Netflix data sets are reported in Fig-

ure 5, Table 6 and Table 7, respectively. Our first observation is that, as expected,

the performance is gradually improved (i.e. the RMSE decreases) as the number of

interview questions increases. This is true for all three methods, suggesting that

these three algorithms are all capable of refining user preference through the inter-

view process. Therefore, all the three methods can be applied to solve the cold-start

problem.

Comparing the performance of fMF and Tree, we can see that fMF consistently

outperforms Tree in all the three data sets. The improvements are significant ac-

cording to t-test with significance level p = 0.05. This observation illustrate that the

interview processes learned by fMF is more effective than those by Tree. We attribute

this to the fact that fMF naturally integrates the matrix factorization model into the

interview process for cold-start collaborative filtering. In particular, fMF inherits the
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ability of matrix factorization models in collaboratively uncovering the user-item rat-

ings. In contrast, Tree assumes that users/items are independent from one another,

and therefore cannot capture the vital collaborative effect.

We can also see that TreeU does not work well, too. Recall that TreeU is a two-

stage method — It first extracts the user profiles and item profiles using plain matrix

factorization, and then constructs a decision tree on the answers of the interview

questions. A possible reason for why it does not perform well is that the user profiles

and item profiles obtained from the matrix factorization in warm-start setting usually

capture the refined preferences of users and refined characteristics of items. However,

in cold-start setting, we are only allowed to ask users a few questions so that the

model usually captures only very coarse interests of users. As a result, TreeU usually

fails to fit the user profiles from matrix factorization accurately. Thus, its prediction

accuracy is relatively low. On the other hand, our method estimates the decision tree

and item profiles simultaneously in a combined optimization process. Thus, the user

profiles obtained by decision tree and the item profiles can adapt to each other and

improve the prediction accuracy.

To provide more comprehensive views of the interview process, we further look

into particular cases. In Table 2 and Table 3, we present the interview process for

users in Netflix data set as well as the top-5 recommendations for them after the

interview process. From Table 2, we can see that the user chooses “Like” on the movie

Armegeddon and Reservoir Dogs, which belong to Fiction and Adventure movies. The

recommendation includes Lord of the Rings series and Star Wars. They are quite

related to the movie Armegeddon based on their genres. Similarly, the interview
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Figure 5: RMSE on MovieLens data set for cold-start users with respect to the
number of interview questions

process of Table 3 shows that the user likes Drama and Romance movies and the

top recommendations for her contain both those two types of movies. Those results

illustrate that the recommendations generated by fMF are indeed reasonable.

3.3.5 The Impact of Non-responses

In our experiments, we utilize the ratings of users to simulate their responses to the

interview questions as described in Section 3.3.2 since the users’ responses to the

interview questions are not available for the benchmark data sets. In particular, we

assume that the user will respond “Unknown” to an interview question if she does

not rate the corresponding item. This assumption, however, might be inaccurate in

practice. For example, a user’s rating to an item might be missing simply because

she does not have time to rate it. In this case, the user may actually responds

with “Like” or “Dislike” rather than “Unknown” if she is asked to respond to the
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Figure 6: RMSE on MovieLens data set for cold-start users with respect to the
number of interview questions

interview questions. As a result, the missing values in data sets may introduce bias

in the training and interview process.3

Here, we explore how the missing ratings influence the initial interview process.

We investigate the performance of the proposed method on users with different num-

bers of ratings. To this end, we sort users in the test set by the their numbers of

ratings in descending order and then plot, in Figure 8, the performance measured by

RMSE with respect to the fraction of users with the most ratings. We can see that

the RMSE increases when more users with few ratings are included, which indicates

that the performance for users with more ratings is better then the ones with less

ratings. This is because that the users with more ratings are less likely to select

“Unknown” in our simulation. Thus, they are less likely prone to the influences by

3The bias in training data seems to have been largely ignored in previous work.
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Figure 7: RMSE on MovieLens data set for cold-start users with respect to the
number of interview questions

the bias introduced by the missing values in the training data.

With this basic understanding, we carry out a set of experiments to investigate

the impact of missing values in training data. For each of the three data sets, we sort

users in training set in descending order. Then, the users in the test set (labeled by

MT) is sampled from top 20% users with the most ratings. We only consider the users

with sufficiently large number of ratings since we would like to rule out the impact of

bias during the interview process and focus on the missing values for training users.

We generate five training sets, namely M1 to M5, from the rest of the users in the

training set, including the top 20%, 40%, 60%, 80% and 100% of the users that are

not selected in the test set, respectively. Again, 75% ratings for each user in MT

is used to simulate the interview process and the performance is evaluated on the

remaining 25% ratings.
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Table 2: Examples of interview process with 6 questions

(a) Interview process

Round Question Response

1 Being John Malkovich Dislike
2 Armageddon Like
3 Maid in Manhattan Dislike
4 Reservoir Dogs Like
5 Collateral Damage Dislike
6 2 Fast 2 Furious Unknown

(b) Top-5 recommendations

Rank Movie Title

1 Lord of the Rings: The Return of the King
2 Lord of the Rings: The Two Towers
3 Mobile Suit Gundam: Char’s Counterattack
4 Star Wars: Episode V: The Empire Strikes Back
5 Raiders of the Lost Ark

We perform experiments by training the proposed models on M1 to M5 and eval-

uate them on MT for all three data sets. The results are shown in Figure 9. It can

be observed from Figure 9 that the prediction error measured by RMSE increases

when more users with few training data are included in the training set. This obser-

vation suggests that the performance are indeed affected by the bias introduced by

the missing values in training set.

3.3.6 Warm-Start Performance

In order to answer the third question proposed in Section 3.3.3, we evaluate the

proposed algorithm in warm-start settings and show the relative performance between

the cold-start methods and warm-start methods. In particular, we consider the matrix

factorization method described as follows:
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Table 3: Examples of interview process with 6 questions

(a) Interview process

Round Question Response

1 Being John Malkovich Like
2 Armageddon Dislike
3 What Women Want Dislike
4 The Royal Tenenbaums Unknown
5 Pretty Woman Like
6 Cats: The Ultimate Edition Unknown

(b) Top-5 recommendations

Rank Movie Title

1 The Shawshank Redemption
2 Schindler’s List
3 Sex and the City: Season 5
4 Sex and the City: Season 4
5 The Usual Suspects

• MF: The matrix factorization method described in Section 2.1 is included for

comparison. We include ℓ2 regularization to avoid overfitting with λ = 0.01.

The method is not designed for the cold-start problem and thus it requires the

user ratings in order to construct user profiles.

We include this method to present a concrete comparisons of the relative performance

of the proposed cold-start method and the warm-start methods that are widely stud-

ies in previous researches. We compare the proposed algorithm (fMF) with all three

methods for warm-start settings: Tree, TreeU and MF. To this end, we perform ex-

periments with different depths of decision trees and report the RMSE of the all the

methods over three data sets. For MovieLens and EachMovie data set, we randomly

split the ratings for each users into training set and test set and perform 4-fold cross

validation. For Netflix data set, we follow the popular evaluation protocol on this data
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set. Therefore, we train our models on the training set and report the performance

on the test set. The performance measured by RMSE with respect to the depths of

decision trees is reported in Table 4, Table 5 and Table 6.

We can observe that all the cold-start methods perform worse than the matrix

factorization method. This observation is consistent with our expectation because all

the three cold-start algorithms are constrained in some ways in order to deal with

cold-start users — the goal of the cold-start algorithms is to provide cold-start users

with reasonable predictions within a few quick interview questions. For example,
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the fMF model is restricted in its maximum depth. We should expect comparable

performance, if this constraint is eliminated.

As an empirical validation, we further carry out experiments on the MovieLens

data set by fitting the decision trees in our model with relatively larger depth. We

note that the decision trees of very large depth correspond to interview processes

with many questions, which are not proper for initial interview process for cold-start

users since users are typically not willing to answer many questions. However, we can

show that the performance of the proposed method can be quite close to the matrix

factorization method if we relax the constraint and allow the model to use decision

trees with large depth. We report the RMSE of fMF with respect to the depth of

the decision tree in Figure 10. We also include Tree and MF for comparison. We

can see that the RMSE of fMF monotonically decreases as the depth of decision trees

increases. Moreover, its performance can be quite close to the matrix factorization

method (MF). When the depth of the trees grows, the number of leaf nodes increases.

Therefore, there are only a few users at each node. Thus, the user profiles estimated

by fMF can be quite close to those by MF. We conclude that our method can be

a reasonably good method of general collaborative filtering as well. On the other

hand, we can see that the performance of Tree is much worse than MF even with a

large number of questions. Moreover, the gap between fMF and Tree becomes larger

when the depth of the decision tree grows. This is because Tree predicts the ratings

of different items independently at each leaf node, which is not a good model for

collaborative filtering in general. We also perform similar experiments with the cold

start setting. In this case, the RMSE of fMF decreases with the depth of the decision
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Figure 10: RMSE of fMF, Tree and MF on MovieLens data set with respect to the
number of interview questions

tree when the depth is not very large (e.g. ≤ 14). We emphasize that the depth of

the decision tree is usually set to be a small number since we can not ask a lot of

questions to users during the interview process.

3.3.7 Impact of Model Parameters

There are several parameters that affect the performance of the proposed model. In

this section, we carry out experiments to investigate the impacts of these parameters.

We only report the results on MovieLens data set as the observations are similar when

other data sets are sed. By default, the cold-start setting described in Section 3.3.4

is applied unless otherwise stated.

The parameter K controls the dimension of the user profiles and item profiles

for the matrix factorization model. We fix the depth of the decision tree to be 6,

and report the performance obtained with different K. The results are depicted

in Figure 11. Particularly, as K increases, the factorization model becomes more

and more flexible, as a results, the RMSE first decreases, and reaches the optima
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Table 4: RMSE on MovieLens data set in warm-start setting

No. Questions 3 4 5 6 7

fMF 0.9240 0.9216 0.9190 0.9134 0.9098
Tree 0.9458 0.9439 0.9409 0.9321 0.9329
TreeU 0.9906 0.9850 0.9771 0.9706 0.9728

MF 0.8702

Table 5: RMSE on EachMovie data set in warm-start setting

No. Questions 3 4 5 6 7

fMF 1.2548 1.2499 1.2449 1.2366 1.2226
Tree 1.2709 1.2614 1.2664 1.2570 1.2549
TreeU 1.28742 1.2813 1.2790 1.2772 1.2751

MF 1.1790

Table 6: RMSE on Netflix data set in warm-start setting

No. Questions 3 4 5 6 7

fMF 0.9770 0.9749 0.9721 0.9715 0.9703
Tree 0.9772 0.9761 0.9726 0.9717 0.9713
TreeU 0.9914 0.9879 0.9842 0.9792 0.9752

MF 0.9399

around K = 20; thereafter, the model becomes increasingly overparameterized and

the performance in turn starts to degrades. For example, the performance with

K = 30 is worse than the that with K = 20. In principle, the optimal K should

provide the best trade-off between fitting bias and model complexity.

One of our contributions is that we propose to use hierarchical regularization to

avoid overfiting. The impact of the hierarchical regularization is controlled by the

parameter λh. We evaluate fMF with different values of λh on MovieLens data set.

The performance obtained by ℓ2 regularization is also reported for comparison. We

can see from Figure 12 that the hierarchical regularization always performs better than
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Figure 12: The performance of hierarchical regularization. The performance is re-
ported by setting the depth of the decision tree to be 6.

the basic ℓ2 regularization. This observation suggest that hierarchical regularization,

by exploiting the structure of the decision tree, provides better regulatory to the

functional matrix factorization model.

Another parameter of interest is the regularization weight λ for the item profiles vj.

We vary the value of λ and report the performance measured by RMSE in Figure 13.

We can see that the optimal performance is achieved when a moderate λ is used.
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on MovieLens data set.

Especially, the model has a high risk of overfitting if λ is too small.

The learning algorithm of the proposed model is an iterative process. In Figure

14, we plot the both training and test performance measured by RMSE with respect

to the number of iterations. We can see that the algorithm converges very quickly,

usually within 5 iterations. The running time of algorithm depends largely on the size

of the data sets and the number of questions asked. For MovieLens and EachMovie

data set, it can usually finish within a few hours, while for Netflix data set, it can

56



take a day to fit a model.

3.4 Summary

The main focus of this chapter is on the cold-start problem in recommender systems.

We have presented the functional matrix factorization, a framework for simultane-

ously learning the decision tree for initial interview and latent factors for user/item

profiling. The proposed fMF algorithm seamlessly integrates matrix factorization

for collaborative filtering and decision-tree based interview into one unified frame-

work by reparameterizing the latent profiles as a function of user responses to the

interview questions. We have established learning algorithms based on alternating

minimization and demonstrated the effectiveness of fMF on real-world recommenda-

tion benchmarks.
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CHAPTER IV

LEARNING BINARY CODES FOR COLLABORATIVE

FILTERING

As we discussed in Section 1.3, it is desirable to design efficient algorithms for online

recommendation systems, especially for systems with a lot of items where even a linear

scan of all items are unaffordable in order to respond to user requests in real-time.

In this chapter, we address the problem of learning binary codes for collaborative

filtering. Specifically, we propose to learn compact yet effective binary codes for both

users and items from the training rating data. The learnt binary codes enable us

to perform recommendations efficient in time that are independent to the number of

items.

Our approach is based on the idea that the binary codes assigned to users and

items should preserve the preferences of users over items. Two loss functions are

applied to measure the divergence between the training data and the estimates based

on the binary codes. Unfortunately, thus formulated, the resulting discrete optimiza-

tion problem is difficult to solve in general. Through relaxing the binary constraints,

it turns out the relaxed optimization problem can be solved effectively by existing

solvers. Moreover, we propose two effective methods for rounding the relaxed solu-

tions to obtain binary codes. One key property of the binary codes obtained by the

proposed method is that the degree of preferences of a user to items can be measured
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by the number of common bits between their corresponding binary codes. Hence, the

major advantage of representing users and items by binary codes is to enable fast

search: In order to provide recommendations for a user, we need only to search items

with binary codes within a small Hamming distance to the binary codes of the given

user.

In Section 4.1, we first formulate the problem of learning binary codes for col-

laborative filtering as a discrete optimization problem and introduce the two loss

functions used in this work. Then, the learning algorithm proposed with detailed

derivations based on transforming and relaxing the discrete optimization problem so

that it can be optimized efficiently. Moreover, we discuss two different methods for

rounding real-valued solutions to obtain binary codes. The evaluations are described

and analyzed in Section 4.2. We conclude our work and present several future research

directions in Section 4.3.

4.1 Learning Binary Codes

In this section, we describe the proposed method for learning binary codes for collab-

orative filtering. We first describe the general formulation for this problem through

optimization using squared and pairwise loss functions, respectively. Then, the learn-

ing method based on solving the relaxed problem is derived in detail. Finally, we

discuss two methods to obtain binary codes from the real-valued solutions of the

relaxed problems.
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4.1.1 Problem Formulation

The goal of collaborative filtering is to recommend interesting items to users according

to their past ratings on the items. Formally, we assume that rui represents the

rating of user u ∈ U for item i ∈ I, where U and I are the user and item space,

respectively. Without loss of generality, we further assume that rui is a real number

in the interval [0, 1]. Moreover, we assign binary codes fu ∈ {−1, 1}B for each user u

and hi ∈ {−1, 1}B for each item i, where B is the length of the binary codes. Our

goal is to construct binary codes for users and items that preserve the preferences

between them — the degree of preference of user u over item i can be estimated by

the similarity between their binary codes fu and hi. A natural way to define the

similarity between user u and item i is the fraction of common bits in their binary

codes fu and hi, leading to the similarity function,

sim(fu, hi) =
1

B

B
∑

k=1

I(f (k)
u = h

(k)
i ),

where f
(k)
u and h

(k)
i represent the k-th bit of the binary codes fu and hi, respectively.

I(·) denotes the indicator function that returns 1 if the statement in its parameter is

true and zero otherwise.

It is easy to check that the following holds for the similarity function sim(·, ·)

defined above:

sim(fu, hi) = 1−
1

B
distH(fu, hi),

where distH(fu, hi) is the Hamming distance between two binary codes fu and hi. The

above fact suggests that the smaller the Hamming distance is, the more similar their

binary codes become. Therefore, in order to find items with similar binary codes to
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a user represented by fu, it is sufficient to search items i within a small Hamming

distance distH(fu, hi). This allows us to find similar items in time that is independent

to the total number of items [132].

In order to make accurate recommendations to users, we need to find binary codes

fu and hi for users and items such that the preferences between them are preserved

by the similarities between their respective binary codes. In addition, in collaborative

filtering, we only observe a subset of all the possible ratings {rui|(u, i) ∈ O} whereO ⊂

U × I and we need to recommend items to users according to their preferences over

items whose ratings are unobserved. Therefore, the key for accurate recommendations

is to construct binary codes that can not only preserve the observed ratings but also

accurately predict the preferences of users on unobserved items.

Our approach to learn binary codes is to estimate them from observed ratings.

Specifically, we propose to construct binary codes that minimize the degree of diver-

gence between the observed ratings and the ratings estimated from the binary codes.

To this end, we apply two objective functions to measure the degree of divergence

between the observed ratings and the model estimates:

• Squared Loss. Using this loss function, we seek to minimize the squared error

of the observed ratings and the similarity estimations from the binary codes,

which is a commonly used loss function for collaborative filtering:

min
fu,hi∈{±1}B

Lsq =
∑

(u,i)∈O

(rui − sim(fu, hi))
2. (11)

• Pairwise Loss. Since we are more interested in preserving the relative orders

between items rather than their absolute values, it is natural to consider the
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pairwise loss function described as follows:

min
fu,hi∈{±1}B

Lpair =
∑

u

∑

i,j∈Ou

(

(rui − ruj)− (sim(fu, hi)− sim(fu, hj))
)2

, (12)

where Ou = {(u, i) | (u, i) ∈ O}. Minimizing the above loss function requires

the binary codes to preserve the relative difference between each pair of items

rated by the user. The loss function has been applied to learning ranking

functions for information retrieval [33].

Additionally, we also require the binary codes to be balanced — we would like each

bit of the binary codes to have equal chance to be 1 or −1. The balance constraint is

equivalent to maximizing the entropy of each bit of the binary codes, which indicates

that each bit carries as much information as possible. Specifically, we will enforce the

following constraints to the binary codes:

∑

u

fu = 0, and
∑

i

hi = 0.

The above constraints motivate the following regularized objective function for learn-

ing binary codes. For example, for squared loss, we have the following objective

function:

min
fu,hi∈{±1}B

∑

(u,i)∈O

(rui − sim(fu, hi))
2 + λ(‖

∑

u

fu‖
2 + ‖

∑

i

hi‖
2), (13)

where the first term is the loss over observed ratings and the second term represents

that we prefer balanced binary codes. The parameter λ controls the trade-off between

minimizing the empirical errors and the enforcement of the constraints. ‖ ·‖ indicates

Euclidean norm of a vector.
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Similarly, we have the following regularized objective function for the pairwise loss

function:

min
fu,hi∈{±1}B

∑

u

∑

i,j∈Ou

(

(rui − ruj)− (sim(fu, hi)−

sim(fu, hj))
)2

+ λ(‖
∑

u

fu‖
2 + ‖

∑

i

hi‖
2). (14)

4.1.2 Learning

The objective functions defined in Equation (13) and Equation (14) are defined over

the discrete space {±1}B, which makes them difficult to optimize in general. There-

fore, we propose to solve it approximately by transforming the objective functions

and then relaxing the space of solutions to be [−1, 1]B. For the sake of concreteness,

we describe our method for solving the squared loss in Equation (13) in detail. The

pairwise loss in Equation (14) can be optimized in a similar approach.

First, we notice that for binary codes f, h ∈ {±1}B, the following property holds:

sim(f, h) =
1

B

B
∑

k=1

I(f (k) = h(k))

=
1

2B

(

B
∑

k=1

I(f (k) = h(k)) + (B −
B
∑

k=1

I(f (k) 6= h(k)))

)

=
1

2B

(

B +
B
∑

k=1

f (k)h(k)

)

=
1

2
+

1

2B
fTh.

Thus, by substituting the above equation into the regularized objective function de-

fined in Equation (13), we can express the objective function for squared loss as
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follows:

min
fu,hi∈{±1}B

Lreg =
∑

(u,i)∈O

(rui −
1

2
−

1

2B
fT
u hi))

2

+ λ(‖
∑

u

fu‖
2 + ‖

∑

i

hi‖
2). (15)

A widely used approach to obtain approximate solutions to the above discrete opti-

mization problem is to relax the space of solution to be real values and thus enables

the application of the continuous optimization techniques to solve the problem. To

this end, we first relax the space of solution to be real vectors in [−1, 1]B and then we

will round the real-valued solutions into {±1}B. The details of rounding are discussed

in Section 4.1.3.

It is also interesting to note that the above formulation also reveals a nice con-

nection between learning binary codes and the matrix factorization approaches that

are widely applied in collaborative filtering. In particular, the first term in (15) is the

objective function that factorizes the linearly transformed matrix of observed ratings

to find low-dimensional representations for users and items. The second term is dif-

ferent from the usual ℓ2 regularization used in traditional matrix factorization since

we would like the binary codes to balanced rather than close to zero in this case.

Given the relaxed problem, the partial derivatives of the objective function Lreg

with respect to fu and hi can be expressed as follows:

∂Lreg

∂fu
= −

1

B

∑

i∈Ou

(rui −
1

2
−

1

2B
fT
u hi)hi + 2λ

∑

u′

fu′ ,

∂Lreg

∂hi
= −

1

B

∑

u∈Oi

(rui −
1

2
−

1

2B
fT
u hi)fu + 2λ

∑

i′

hi′ .
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The relaxed problem can be solved by methods such as LBFGS [172] and stochastic

gradient descent.

Similarly, for the pairwise loss, we can compute the gradient as follows:

∂Lreg

∂fu
= −

1

B

∑

i,j∈Ou

(

(rui − ruj)−
1

2B
fT
u (hi − hj)

)

(hi − hj) + 2λ
∑

u′

fu′ ,

∂Lreg

∂hi
= −

1

B

∑

u∈Oi

∑

j∈Ou,j 6=i

(

(rui − ruj)−
1

2B
fT
u (hi − hj)

)

fu + 2λ
∑

i′

hi′ .

4.1.3 Obtaining Binary Codes

After solving the relaxed optimization problem defined in Equation (15), we obtain

real-valued vectors f̃u and h̃i ∈ [−1, 1]B for each user u and item i. In this section, we

propose two methods to obtain binary codes fu and hi ∈ {±1}B from these real-valued

vectors.

4.1.3.1 Rounding to Closest Binary Codes

A straightforward method is to find binary vectors fu and hi ∈ {±1}B that are

closest to f̃u and h̃i. Specifically, we seek to optimize the following objective function

to obtain fu for all u ∈ U :

min
fu∈{±1}B

∑

u

‖fu − f̃u‖
2 (16)

subject to
∑

u fu = 0. Similarly, we can obtain hi for all item i ∈ I by:

min
hi∈{±1}B

∑

i

‖hi − h̃i‖
2 (17)

subject to
∑

u hi = 0.

It turns out that the optimization problems defined in Equation (16) and Equation
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(17) have the following solution:

f (k)
u =



















1, f̃
(k)
u > median(f̃

(k)
u : u ∈ U),

−1, Otherwise,

and

h
(k)
i =



















1, h̃
(k)
i > median(h̃

(k)
i : i ∈ I),

−1, Otherwise,

where median(·) represents the median of a set of real numbers. The above solutions

can be verified by first observing that they satisfies the constraints from the definition

of the median. Also, any feasible solution can be obtained by switching the codes for

some pairs of users u, u′ such that f̃
(k)
u < f̃

′(k)
u . Moreover, we show that if f̃

(k)
u ≤ f̃

′(k)
u ,

[(f̃
(k)
u +1)2 + (f̃

′(k)
u − 1)2]− [(f̃

(k)
u − 1)2 + (f̃

′(k)
u +1)2] = 4(f̃

(k)
u − f̃

′(k)
u ) ≤ 0. Therefore,

switching the code can not improve the objective function. Similarly, we can verify

the solution for item codes.

4.1.3.2 Improved Rounding by Orthogonal Transformations

Another method to obtain the binary codes from the relaxed solution f̃u and h̃i makes

use of the structure of the solutions to the relaxed optimization problem. Similar

ideas have been investigated for spectral clustering [166] and we extend the idea to

the context of learning binary codes. First, we observe that if f̃u and h̃i are optimal

solutions for (15), then Qf̃u and Qh̃i are also optimal solutions achieving the same

value of the objective function for an arbitrary orthogonal matrix Q ∈ R
B×B, i.e.,
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QTQ = I. This observation can be proved as follows:

Lreg(Qf̃u, Qh̃i) =
∑

(u,i)∈O

(rui −
1

2
−

1

2B
(Qf̃u)

T (Qh̃i))
2 + λ(‖

∑

u

(Qf̃u)‖
2 + ‖

∑

i

(Qh̃i)‖
2)

=
∑

(u,i)∈O

(rui −
1

2
−

1

2B
f̃T
u h̃i)

2 + λ(‖
∑

u

f̃u‖
2 + ‖

∑

i

h̃i‖
2)

= Lreg(f̃u, h̃i),

where the second equation utilizes the fact the Q is an orthogonal matrix. The above

observation shows that applying orthogonal transformations to an optimal solution

of relaxed optimization problem does not change the value of the objective function,

which motives the following method to obtain binary codes from the relaxed solution:

min
Q,fu,hi∈{±1}B

∑

u

‖fu −Qf̃u‖
2 +

∑

i

‖hi −Qh̃i‖
2 (18)

subject to:

∑

u

fu = 0,
∑

i

hi = 0, QTQ = I.

Intuitively, instead of directly finding binary codes that are close to the relaxed solu-

tions, we seek binary codes that are close to some orthogonal transformation of the

relaxed solutions. Introducing the orthogonal transformation Q not only preserves

the optimality of the relaxed solutions but provides us more flexibility to obtain better

binary codes.

The optimization problem defined in Equation (18) can be solved by minimizing

with respect to fu, hi and Q alternatively.
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Optimization with respect to fu and hi. Specifically, we first fix the orthog-

onal transformation Q and optimizing with respect to fu and hi:

min
fu,hi∈{±1}B

∑

u

‖fu −Qf̃u‖
2 +

∑

i

‖hi −Qh̃i‖
2

subject to
∑

u fu = 0,
∑

i hi = 0. The solution can be expressed as follows:

f (k)
u =



















1, (Qf̃u)
(k) > median((Qf̃u)

(k) : u ∈ U),

−1, Otherwise,

and

h
(k)
i =



















1, (Qh̃i)
(k) > median((Qh̃i)

(k) : i ∈ I),

−1, Otherwise

where (Qf̃u)
(k) represents the k-th element of the transformed vector Qf̃u.

Optimization with Respect to Q. In this case, we fix fu and hi for all u ∈ U

and i ∈ I. Then we solve the following optimization problem to update the orthogonal

transformation Q:

min
Q∈RB×B

L(Q) =
∑

u

‖fu −Qf̃u‖
2 +

∑

i

‖hi −Qh̃i‖
2

= ‖F −QF̃‖2F + ‖H −QH̃‖2F (19)

subject to the constraint QTQ = I, where F = [f1, . . . , f|U|], F̃ = [f̃1, . . . , f̃|U|],

H = [h1, . . . , h|I|] and H̃ = [h̃1, . . . , h̃|I|]. ‖ · ‖F indicates the Frobenius norm. The

following theorem enables us to solve the optimization problem efficiently by singular

value decomposition:
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Theorem 2. Let UDV T be the singular value decomposition of the matrix (FF̃ T +

HH̃T ). Then, Q = UV T minimizes the objective function defined in Equation (19).

Proof. First notice that the objective function L(Q) = ‖F‖2 + ‖F̃‖2 − tr(FF̃ TQT ) +

‖H‖2 + ‖H̃‖2 − tr(HH̃TQT ). Therefore, the optimization problem is equivalent to

maximizing the following function subject to the orthogonality constraint QTQ = I:

tr(FF̃ TQT ) + tr(HH̃TQT ) = tr((FF̃ T +HH̃T )QT ).

Let us consider the Lagrange

L(Q,Λ) = tr((FF̃ T +HH̃T )QT )−
1

2
tr(Λ(QTQ− I)),

where Λ is a symmetric matrix. By taking the gradient with respect to Q, we have

(FF̃ T +HH̃T )− ΛQ = 0,

Thus, Λ = (FF̃ T +HH̃T )QT = UDV TQT , which implies that Λ2 = UD2UT . Hence,

Λ = UDUT . Substituting it into the above equation, we have Q = UD−1UTUDV T =

UV T .

In general, we perform the above two steps alternatively until the solution con-

verges and obtain the binary codes fu and hi.

4.2 Experiments

In this section, we describe the experiments conducted to evaluate the proposed

method for learning binary codes. For the sake of simplicity, we denote the proposed

method with squared loss and pairwise loss defined in Equation (13) and Equation

(14) by CFCodeReg and CFCodePair, respectively.
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4.2.1 Evaluation Metrics

We apply two evaluation metrics to evaluate the performance of CFCodeReg and

CFCodePair. Our goal is to evaluate whether the obtained binary codes can accurately

preserve the preferences of users to items. The evaluation metrics are described as

follows:

• Discounted Cumulative Gain (DCG). DCG [75] is widely used to evaluate

the quality of rankings. In order to compute DCG, we sort the items according

to the Hamming distance between their binary codes to the binary codes for the

user. The DCG value of a ranking list is calculated by the following equation:

DCG@n =
n
∑

i=1

2ri − 1

log(i+ 1)
,

where ri is the rating assigned by a user to the i-th item in the ranking list. DCG

mainly focuses on evaluating whether the obtained binary codes can accurately

preserve the relative orders of the of items rated by each user. We use DCG@5

as a evaluation metric in our experiments. When computing DCG, we only

consider the observed ratings in the test set.

In order to evaluate the performance of using binary codes for recommending

top-K items to users, we apply the following evaluation metrics:

• Precision: For each user u, we retrieve the set of items Su with binary codes

within Hamming distance 3 to the binary codes of the user. The precision is

defined as the fraction of relevant items in Su. Formally,

Prec =
|{i : i ∈ Su and item i is relevant to user u}|

|Su|
.
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In our experiments, all items with ratings that are greater than or equal to 5

are regarded as relevant items of users.

4.2.2 Data Sets

We use the three data sets, MovieLens, EachMovie and Netflix, described in Sec-

tion 3.3.1 to evaluate the proposed method. We split the three data sets into training

and test sets as follows: for Movielens and EachMovie, we randomly sample 80% rat-

ings for each user as the training set and the rest 20% is used as the test set. These

two data sets are very sparse and thus a lot of ratings are not observed, which may

lead to biased evaluation results for precision. Therefore, we also construct a dense

data set from the Netflix data as follows: We first select 5000 items with the most

ratings and then sample 10000 users with at least 100 ratings to construct a relatively

dense data set. For this data set, we sample 20% ratings for each users as the training

set and the rest ratings are used as the test set. For all three data sets, we gener-

ate five independent splits and report the averaged performance in our evaluations.

Moreover, we exclude all ratings in the training set and use only the ratings in the

test set when computing the evaluation metrics.

4.2.3 Comparison of Rounding Methods

In Section 4.1.3, we describe two methods for obtaining binary codes from the ap-

proximate real-valued solutions. We now compare the performance of these methods.

To this end, we denote the method that rounding to closest binary codes described in

Section 4.1.3.1 as Closest and the method using orthogonal transformation described

in Section 4.1.3.2 by OrthTrans. We apply CFCodeReg and CFCodePair with binary
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Figure 15: Performance of two rounding methods on MovieLens, EachMovie and
Netflix data sets

codes of length 10 to all the three data sets and compare the binary codes obtained

by Closest and OrthTrans. We report the performance on three data sets measured

by precision in Figure 15. From Figure 15, we can see that the binary codes ob-

tained by OrthTrans outperform the corresponding binary codes obtained by Closest,

which suggests that the OrthTrans can obtain better approximations for binary codes.

Intuitively, OrthTrans is more flexible than Closest through introducing the orthogo-

nal transformation and thus enable us to obtain better approximation. We will use

OrthTrans to obtain binary codes in the rest of our evaluations.

4.2.4 General Performance Results

4.2.4.1 Baseline Alternative Methods

We compare CFCodeReg and CFCodePair to the following baselines:

• Spectral Hashing [161] (SH): This method has been shown to be effective

to learning binary codes. Specifically, it formulates the problem of learning
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binary codes as an eigenvalue problem for the similarity graph. In particular,

the training ratings are viewed as the similarities between users and items and a

bipartite graph is constructed between nodes representing users and items [170].

Then, spectral hashing is applied to obtain binary codes for users and items

based on this graph.

• BinMF: In this baseline, we first apply low-rank matrix factorization to fit the

training ratings and obtain low dimensional real-valued latent profiles for users

and items. Then, we binarize these vectors to obtain binary codes through the

orthogonal transformations described in Section 4.1.3.2 since it archives better

performance as a rounding method.

4.2.4.2 Performance Analysis

We apply the proposed CFCodeReg and CFCodePair to all three data sets and com-

pare the obtained binary codes to the two baselines described in Section 4.2.4.1.

Specifically, we plot the performance measured by DCG and precision with respect to

the length of the binary codes in Figure 16, Figure 17 and Figure 18 for MoveiLens,

EachMovie and Netflix data sets, respectively.

We can observe that DCG and precision of both CFCodeReg and CFCodePair in-

crease in most cases with larger length of binary codes. Hence, the performance of

CFCodeReg and CFCodePair improves when the number of bits increases. Therefore,

we conclude that both methods can utilize the available bits to preserve the prefer-

ence of users more accurately. We can also observe from the figures that the binary

codes obtained by CFCodeReg and CFCodePair outperform other baselines in terms
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of DCG. Thus, the proposed method can better preserve the relative orders between

items according to the preference of users. Moreover, the improvement over baselines

in terms of precision indicates that the binary codes obtained by CFCodeReg and

CFCodePair can be used to recommend interesting items to users accurately.

Comparing the performance of CFCodeReg and CFCodePair, we can find that CF-

CodePair outperforms CFCodeReg in most cases, which suggests that the pairwise loss

function is more suitable for learning binary codes. This is because the pairwise loss

function emphasis more on the orders between different items rather than their abso-

lute ratings, which makes it a more reasonable loss function in the ranking scenario

for collaborative filtering.

Another interesting observation is that SH does not work very well in our case.

Specifically, it overfits the training data very quickly when the length of binary codes

increases. By observing the results, we find that SH usually fits the training data

very well. However, it frequently assign similar distances for users and items whose

ratings are not in the training set. Therefore, its performance over the test set is

reduced. In order to further investigate this point, we vary the length of binary codes

and plot the variance of Hamming distances on unobserved ratings for binary codes

generated by SH and CFCodeReg in Figure 19. We can observe that the variances

produced by SH decrease when the length of binary codes grows. On the other hand,

the variance generated by CFCodeReg are generally much higher than those generated

by SH, which indicates that CFCodeReg generates more diverse codes when the length

of binary codes increases. We think the reason is that SH usually fits the observed

similarities while fails to predict the unobserved ones. This observation verifies that
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CFCodeReg can not only fit the observed preferences very well, but it also can predict

the unobserved preference accurately.

4.2.4.3 Impact of Parameters

We investigate the impact of the regularization parameter λ for the propose methods.

To this end, we report the performance of CFCodeReg and CFCodePair measured by

DCG with respect to different values of λ in Figure 20. We only show the results

on the MovieLens data set due to the lack of space. From Figure 20, we can observe

that the performance measured by DCG first increases and then decreases in most

cases, which indicates that a good value of λ can enhance the learning process and

thus improves the accuracy of learnt binary codes. In general, the value of λ can be

determined by cross validation.

In our experiments, the relaxed optimization problem of Equation (15) is solved by

LBFGS, which is an effective iterative solver for optimization problems. In Figure 21,

we present the performance measured by DCG with respect to the number of itera-

tions on MovieLens data set. We can observe from Figure 21 that the performance

measured by DCG both training and test set increases when the number of iterations

grows. The training process usually converges in about one hundred iterations.

4.2.4.4 Compare with Low-rank Matrix Factorizations

It is also interesting to compare CFCodeReg to the low-rank matrix factorization

method that is widely exploited for collaborative filtering. Since CFCodeReg is re-

stricted to use binary codes in order to facilitate fast search, it can be viewed as
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an approximation of the low-rank factorization methods. Thus, it is natural to in-

vestigate how close CFCodeReg can approximate the performance of low-rank matrix

factorization. To this end, we vary to length of the binary codes from 10 to 110

and report the performance measured by DCG on MovieLens data set in Figure 22.

We also report the performance of low-rank matrix factorizations when varying the

rank of the factorization. We can see that the performance of CFCodeReg increases

in general when the length of the binary codes grows and become very close to the

performance of low-rank matrix factorizations. On the other hand, the performance

of low-rank matrix factorizations is slightly reduced when the number of latent di-

mensions increases which is generally explained by the overfitting of the training

data.

4.2.5 Recommendation Efficiency

We also compare the efficiency of obtaining top-K recommendations. In particular, for

MF we compute the predicted scores for every item for a given user and then select top-

10 items with the highest scores, which is linear to the number of items for each users.

For CFCodeReg, we retrieve items with binary codes within Hamming distance 3 to the

binary codes of the user. We measure efficiency by the total time required to generate

recommendations for all users. To this end, we run the recommendation program for

10 times and report the average running time. The evaluation is conducted on a

server with 16G main memory and use one of its eight 2.5GHz cores. On MovieLens

data set, CFCodeReg takes 0.586 seconds to process all users while MF takes 64.9

seconds. For CFCodeReg if we further select top-10 item among retrieved items with
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MF, the time spend is 2.92 seconds, which is still much faster than MF. The significant

efficiency improvement is expected and can be explained by the fact that CFCodeReg

only goes through a small fraction of items while MF computes the prediction for all

items. This confirms that recommendation efficiency can be significantly improved

by utilizing binary codes.

4.3 Summary

In this chapter, we address the problem of learning binary codes that preserves the

preferences of users to items. In particular, we propose a framework that constructs

binary codes such that the Hamming distances of a user and her preferred items

are small. By applying two loss functions, the problem is formulated as a discrete

optimization problem defined on the training ratings data set. It turns out that

the resulting optimization problem can be solving approximately by transforming

the objective function and relaxing the variables to real values. Moreover, we study

two methods to obtain the binary codes from the real-valued approximations. Ex-

periments on three data sets show that the proposed methods outperform several

baselines and thus and can preserve the preference of users more accurately.
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Figure 16: Performance with respect to the length of binary codes on Movielens data
set

78



 0.1

 0.15

 0.2

 0.25

 0.3

 5  10  15  20  25  30

P
re

c
is

io
n

Bits

CFCodeReg
CFCodePair

MFBin
SH

(a) Precision

 50

 52

 54

 56

 58

 60

 62

 64

 5  10  15  20  25  30

D
C

G

Bits

CFCodeReg
CFCodePair

MFBin
SH

(b) DCG

Figure 17: Performance with respect to the length of binary codes on EachMoive

data set
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Figure 18: Performance with respect to the length of binary codes on Netflix data
set

80



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 5  10  15  20  25  30

V
a
r

Bits

CFCodeReg
SH

Figure 19: Variance of predicted similarity on unknown ratings with respect to the
length of binary codes

 70.1

 70.2

 70.3

 70.4

 70.5

 70.6

 70.7

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

D
C

G

λ

CFCodeReg
CFCodePair

Figure 20: Performance measured by DCG with respect to the regularization pa-
rameter λ on MovieLens data set

81



 60

 65

 70

 75

 80

 85

 90

 0  10  20  30  40  50  60  70  80  90  100

D
C

G

No. of Iterations

Train
Test

Figure 21: Performance measured by DCG with respect to the num-
ber of iterations on MovieLens data set

d

 65

 70

 75

 80

 85

 90

 95

 0  20  40  60  80  100  120

D
C

G

No. of Latent Dimensions

CFCodeReg
MF

Figure 22: Comparison of low-rank matrix factorization and CF-

CodeReg on MovieLens data set

82



CHAPTER V

LEARNING SOCIAL INFECTIVITY IN SPARSE

LOW-RANK NETWORKS USING

MULTI-DIMENSIONAL HAWKES PROCESSES

How will the behaviors of individuals in a social network be influenced by their neigh-

bors, the authorities and the communities in a quantitative way? Such critical and

valuable knowledge is unfortunately not readily accessible and we tend to only ob-

serve its manifestation in the form of recurrent and time-stamped events occurring

at the individuals involved in the social network. It is an important yet challenging

problem to infer the underlying network of social inference based on the temporal

patterns of those historical events that we can observe.

In this chapter, we propose a regularized convex optimization approach to dis-

covering the hidden network of social influence based on a multi-dimensional Hawkes

process. The multi-dimensional Hawkes process captures the mutually-exciting and

recurrent nature of individual behaviors, while the regularization using nuclear norm

and ℓ1 norm simultaneously on the infectivity matrix allows us to impose priors on

the network topology (sparsity and low-rank structure). The advantage of our formu-

lation is that the corresponding network discovery problem can be solved efficiently

by bringing a large collection of tools developed in the optimization communities. In

particular, we developed an algorithm, called ADM4, to solve the problem efficiently
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by combining the idea of alternating direction method of multipliers [25] and ma-

jorization minimization [64]. In our experiments on both synthetic and real world

datasets, the proposed method performs significantly better than alternatives in term

of accurately discovering the hidden network and predicting the response time of an

individual.

5.1 Multi-dimensional Hawkes Processes with Low-rank and

Sparse Structures

5.1.1 One-dimensional Hawkes Processes

Before introducing multi-dimensional Hawkes processes, we first describe the basic

concept of counting process and one-dimensional Hawkes process [90] briefly.

Let {ti}i∈N be a one dimensional point process. Intuitively, a stochastic process

{Nt, t ≥ 0} is a counting process if

Nt =
∑

t<ti

I[t ≤ ti].

Formally,

Definition 1. A random process Nt, t ≥ 0 is a counting process if

• Nt ∈ N

• Ns ≤ Nt, ∀s < t.

• dNt = Nt −N(t−) ∈ {0, 1}1

• ENt is well-defined.

1We use the notation dNs without a formal mathematical definition of the random measures,
since we are focused on the modeling perspective. Intuitively, it can be viewed as the number of
events in time interval [s, s+ ds]. The readers are referred to [90] for formal definitions.
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The process {δti}i∈N is the duration process, where δti = ti − ti−1.

Conditional intensity function. Let Ht represents the history of the random

process up to time t. Let f ∗(t) = f(t|Ht) be the conditional density function of the

time of the next event tn+1 given the history of previous events (. . . , tn−1, tn).

Then, the joint density

f(t1, t2, . . . ) =
∏

i

f(ti| . . . , ti1 , ti) =
∏

i

f ∗(ti)

Let F ∗(t) =
∫ t

−∞
f ∗(s)ds be the cumulative distribution function of f ∗. Then the

conditional density function (or hazard function) is defined by:

λ(t) =
f ∗(t)

1− F ∗(t)
(20)

The conditional intensity function can be interpreted in the following way:

λ(t) = lim
h→0+

1

h

Pr(Nt+h −Nt > 0|Ht)

Pr(Nt −Ntn−1
= 0|Ht)

= lim
h→0+

1

h

Pr(Nt+h −Nt > 0, Nt −Ntn = 0|Ht)

Pr(Nt −Ntn = 0|Ht)

= lim
h→0+

1

h
Pr[Nt+h −Nt > 0|Ht]

= lim
h→0+

E

[

Nt+h −Nt

h
|Ht

]

We have the following theorem that establishes the relationship between condi-

tional intensity and density functions of a counting process:

Theorem 3. The reverse relation of Equation (20) is given by:

f ∗(t) = λ(t) exp

(

−

∫ t

tn

λ(s)ds

)

F ∗(t) = 1− exp

(

−

∫ t

tn

λ(s)ds

)
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Proof. From Equation (20), we have

λ(t)dt =
dF ∗(t)

1− F ∗(t)

Integrating over t, we have

∫ t

tn

λ(s)ds =

∫ t

tn

dF ∗(s)

1− F (s)
ds = − log(1− F ∗(t))

Therefore,

F ∗(t) = 1− exp(−

∫ t

tn

λ(s)ds.

Substitute the above equation into Equation (20), we have

f ∗(t) = λ(t) exp

(

−

∫ t

tn

λ(s)ds

)

Given the conditional intensity function, the likelihood function can be computed

according to the following theorem:

Theorem 4. Given point pattern (t1, . . . , tn) on an observation interval [0, T ), the

likelihood function is given by

L =

(

n
∏

i=1

λ(ti)

)

exp

(

−

∫ T

0

λ(s)ds

)

Proof.

L = f ∗(t1) . . . f
∗(tn)(1− F ∗(T ))

=

(

n
∏

i=1

f ∗(ti)

)

f ∗(T )

λ(t)

=

(

n
∏

i=1

λ(ti) exp

(

−

∫ ti

ti−1

λ(s)ds

)

)

exp

(

−

∫ T

tn

λ(s)ds

)

=

(

n
∏

i=1

λ(ti)

)

exp

(

−

∫ T

0

λ(s)ds

)
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Now, we can describe one-dimensional Hawkes process. In its most basic form, a

one-dimensional Hawkes process is a point process Nt with its conditional intensity

expressed as follows [59]

λ(t) = µ+ a

∫ t

−∞

g(t− s)dNs = µ+ a
∑

i:ti<t

g(t− ti),

where µ > 0 is the base intensity, ti are the time of events in the point process before

time t, and g(t) is the decay kernel. We focus on the case of exponential kernel

g(t) = we−wt as a concrete examples in this chapter, but the framework discussed in

this chapter can be easily adapted to other positive kernels. In the above conditional

intensity function, the sum over i with ti < t captures the self-exciting nature of the

point process: the occurrence of events in the past has a positive contribution of the

event intensity in the future. Given a sequence of events {ti}
n
i=1 observed in the time

interval [0, T ] that is generated from the above conditional intensity, the log-likelihood

function can be expressed as follows according to Theorem 4:

L = log

∏n
i=1 λ(ti)

exp(
∫ T

0
λ(t)dt)

=
n
∑

i=1

log λ(ti)−

∫ T

0

λ(t)dt.

5.1.2 Multi-dimensional Hawkes Processes

In order to model social influence, one-dimensional Hawkes process discussed above

needs to be extended to the multi-dimensional case [90]. In this case, we have U

Hawkes processes that are coupled with each other: each of the Hawkes processes

corresponds to an individual and the influence between individuals are explicitly mod-

eled. Formally, the multi-dimensional Hawkes process is defined by a U -dimensional
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point process Nu
t , u = 1, . . . , U , with the conditional intensity for the u-th dimension

expressed as follows:

λu(t) = µu +
∑

i:ti<t

auui
g(t− ti),

where µu ≥ 0 is the base intensity for the u-th Hawkes process. The coefficient auu′ ≥

0 captures the mutually-exciting property between the u-th and u′-th dimension.

Intuitively, it captures the degree of influence of events occurred in the u′-th dimension

to the u-th dimension. Larger value of auu′ indicates that events in u′-th dimension

are more likely to trigger a event in the u-th dimension in the future. We collect the

parameters into matrix-vector forms, µ = (µu) for the base intensity, and A = (auu′)

for the mutually-exciting coefficients, called infectivity matrix. We use A ≥ 0 and

µ ≥ 0 to indicate that we require both matrices to be entry-wise nonnegative.

Suppose we have m samples, {c1, . . . , cm}, from the multi-dimensional Hawkes

process. Each sample c is a sequence of events observed during a time period of [0, Tc],

which is in the form of {(tci , u
c
i)}

nc

i=1. Each pair (tci , u
c
i) represents an event occurring

at the uci -th dimension at time tci . Thus, the log-likelihood of model parameters

Θ = {A,µ} can be expressed as follows

L(A,µ) =
∑

c

(

nc
∑

i=1

log λuc
i
(tci)−

U
∑

u=1

∫ Tc

0

λu(t)dt

)

=
∑

c





nc
∑

i=1

log
(

µuc
i
+
∑

tcj<tci

auc
iu

c
j
g(tci − tcj)

)

−Tc

U
∑

u=1

µu −
U
∑

u=1

nc
∑

j=1

auuc
j
G(Tc − tcj)

)

, (21)

where G(t) =
∫ t

0
g(s)ds. In general, the parameters A and µ can be estimated by

maximizing the log-likelihood, i.e., minA≥0,µ≥0 −L(A,µ).
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5.1.3 Sparse and Low-Rank Regularization

As we mentioned earlier, we would like to take into account the structure of the social

influence in the proposed model. We focus on two important properties of the social

influences: sparsity and low-rank. The sparsity of social influences implies that most

individuals only influence a small fraction of users in the network while there can be a

few hubs with wide-spread influence. This can be reflected in the sparsity pattern of

A. Furthermore, the communities structure in the influence network implies low-rank

structures, which can also be reflected in matrix A. Thus, we consider incorporating

these prior knowledge by imposing both low-rank and sparse regularization on A.

That is we regularize our maximum likelihood estimator with

min
A≥0,µ≥0

−L(A,µ) + λ1‖A‖∗ + λ2‖A‖1, (22)

where ‖A‖∗ is the nuclear norm of matrix A, which is defined to be the sum of

its singular value
∑rankA

i=1 σi. The nuclear norm has been used to estimate low-rank

matrices effectively [143]. Moreover, ‖A‖1 =
∑

u,u′ |auu′ | is the ℓ1 norm of the matrix

A, which is used to enforce the sparsity of the matrix A. The parameter λ1 and λ2

control the strength of the two regularization terms.

5.2 Efficient Optimization

It can be observed that the objective function in Equation (22) is non-differentiable

and thus difficult to optimize in general. We apply the idea of alternating direction

method of multipliers (ADMM) [49] to convert the optimization problem to several

sub-problems that are easier to solve. The ADMM has been shown to be a special case
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of the more general Douglas-Rachford splitting method, which has good convergence

properties under some fairly mild conditions [43] compared with other alternatives

such proximal gradient methods [32].

Specifically, we first rewrite the optimization problem in Equation (22) to an

equivalent form by introducing two auxiliary variables Z1 and Z1

min
A≥0,µ≥0,Z1,Z2

− L(A,µ) + λ1‖Z1‖∗ + λ2‖Z2‖1, (23)

s.t. A = Z1, A = Z2.

In ADMM, we optimize the augmented Lagrangian of the above problem that can be

expressed as follows:

Lρ =− L(µ,A) + λ1‖Z1‖∗ + λ2‖Z2‖1

+ ρtr(UT
1 (A− Z1)) + ρtr(UT

2 (A− Z2))

+
ρ

2
(‖A− Z1‖

2 + ‖A− Z2‖
2),

where ρ > 0 is called the penalty parameter and ‖ · ‖ denotes the Frobenius norm.

The matrices U1 and U2 are the dual variable associated with the constraints A = Z1

and A = Z2, respectively.

In ADMM, we consider the augmented Lagrangian of the above constrained opti-

mization problem by writing it as follows:

min− L(µ,A) + λ1‖Z1‖∗ + λ2‖Z2‖1 +
ρ

2
(‖A− Z1‖

2 + ‖A− Z2‖
2) (24)

subject to

A = Z1,A = Z2.
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Clearly, for all ρ the optimization problem defined above is equivalent to Equation

(23) and thus equivalent to the problem defined in Equation (22). The augmented

Lagrangian of Equation (23) is the (standard) Lagrangian of Equation (24), which

can be expressed as follows:

Lρ =− L(µ,A) + λ1‖Z1‖∗ + λ2‖Z2‖1

+ tr(YT
1 (A− Z1)) + tr(YT

2 (A− Z2))

+
ρ

2
(‖A− Z1‖

2 + ‖A− Z2‖
2)

Thus, we can solve the optimization problem defined in Equation (23) applying

the gradient ascent algorithm to the dual variables Y1 and Y2. It can be shown that

the update of Y1 and Y2 has the following form at the k-th iteration:

Yk+1
1 = Yk

1 + ρ(Ak+1 − Zk+1
1 )

Yk+1
2 = Yk

2 + ρ(Ak+1 − Zk+1
2 ),

where Ak+1, Zk+1
1 and Zk+1

2 are obtained by optimizing Lρ with Y1 = Yk
1 and Y2 =

Yk
2 fixed:

argmin
A,µ,Z1,Z2

Lρ(A,µ,Z1,Z2,Y
k
1 ,Y

k
2)

In ADMM, the above problem is solved by updating A, µ, Z1 and Z2 sequentially

as follows:

Ak+1,µk+1 = argmin
A,µ,

Lρ(A,µ,Z
k
1,Z

k
2,Y

k
1 ,Y

k
2),

Zk+1
1 = argmin

Z1

Lρ(A
k+1,µk+1,Z1,Z

k
2,Y

k
1 ,Y

k
2),

Zk+1
2 = argmin

Z2

Lρ(A
k+1,µk+1,Zk+1

1 ,Z2,Y
k
1 ,Y

k
2).
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It is usually more convenient to consider the scaled form of ADMM. Let Uk
1 =

Yk
1/ρ and Uk

2 = Yk
2/ρ, we obtain the following iterative steps:

Ak+1,µk+1 = argmin
A≥0,µ≥0

Lρ(A,µ,Z
k
1,Z

k
2,U

k
1,U

k
2), (25)

Zk+1
1 = argmin

Z1

Lρ(A
k+1,µk+1,Z1,Z

k
2,U

k
1,U

k
2), (26)

Zk+1
2 = argmin

Z2

Lρ(A
k+1,µk+1,Zk+1

1 ,Z2,U
k
1,U

k
2), (27)

Uk+1
1 = Uk

1 + (Ak+1 − Zk+1
1 ),

Uk+1
2 = Uk

2 + (Ak+1 − Zk+1
2 ).

The advantage of sequential update is that we separate multiple variables and thus

can optimize them one at a time. We first consider the optimization problem for Z1

and Z2 and then describe the algorithm used to optimize with respect to A and µ.

5.2.1 Solving for Z1 and Z2.

When solving for Z1 in Equation (26), the relevant terms from Lρ are

λ1‖Z1‖∗ + ρtr((Uk
1 )

T (Ak+1 − Z1)) +
ρ

2
‖Ak+1 − Z1‖

2,

which can be simplified to an equivalent problem,

Zk+1
1 = argmin

Z1

λ1‖Z1‖∗ +
ρ

2
‖Ak+1 − Z1 +Uk

1‖
2.

The above problem has a closed form solution [143]

Zk+1
1 = Sλ1/ρ(A

k+1 +Uk
1), (28)

where Sα(X) is a soft-thresholding function defined as Sα(X) = Udiag((σi−α)+)V
T

for all matrix X with singular value decomposition X = Udiag(σi)V
T .
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Similarly, the optimization for Z2 can be simplified into the following equivalent

form

Zk+1
2 = argmin

Z2

λ2‖Z2‖1 +
ρ

2
‖Ak+1 − Z2 +Uk

2‖
2,

which again has the closed form solution. In this case, depending on the magnitude

of the ij-th entry of the matrix (Ak+1 +Uk
2), the corresponding (Zk+1

2 )ij is updated

as [48]







































(Ak+1 +Uk
2)ij −

λ2

ρ
, (Ak+1 +Uk

2)ij ≥
λ2

ρ
,

(Ak+1 +Uk
2)ij +

λ2

ρ
, (Ak+1 +Uk

2)ij ≤ −λ2

ρ
,

0, |(Ak+1 +Uk
2)ij| <

λ2

ρ
.

(29)

5.2.2 Solving for A and µ

The optimization problem for A and µ defined in Equation (25) can be equivalently

written as

Ak+1,µk+1 = argmin
A≥0,µ≥0

f(A,µ)

where f(A,µ) = −L(A,µ) + ρ
2
(‖A − Zk

1 + Uk
1‖

2 + ‖A − Zk
2 + Uk

2‖
2). We propose

to solve the above problem by a majorization-minimization algorithm [64] which is a

generalization of the EM algorithm. Since the optimization is convex, we still obtain

global optimum for this subproblem. Specifically, given any estimation A(k) and µ(k)

of A and µ, we minimize a surrogate function Q(A,µ;A(k),µ(k)) which is a tight
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upper bound of f(A,µ). Indeed, Q(A,µ;A(k),µ(k)) can be defined as follows:

Q(A,µ;A(k),µ(k))

=−
∑

c

(

nc
∑

i=1

(

pcii log
µuc

i

pcii
+

i−1
∑

j=1

pcij log
auc

iu
c
j
g(tci − tj)

pcij

)

−

(

Tc
∑

u

µu +
U
∑

u=1

nc
∑

j=1

auuc
j
G(T − tcj)

))

+
ρ

2
(‖A− Zk

1 +Uk
1‖

2 + ‖A− Zk
2 +Uk

2‖
2), (30)

where

pcii =
µ
(k)
uc
i

µ
(k)
uc
i
+
∑i−1

j=1 a
(k)
uc
iu

c
j
g(tci − tcj)

,

pcij =
a
(k)
uc
iu

c
j
g(tci − tcj)

µ
(k)
uc
i
+
∑i−1

j=1 a
(k)
uc
iu

c
j
g(tci − tcj)

.

Intuitively, pcij can be interpreted as the probability that the i-th event is influenced by

a previous event j in the network and pcii is the probability that i-th event is sampled

from the base intensity. Thus, the first two terms of Q(A,µ;A(k),µ(k)) can be viewed

as the joint probability of the unknown infectivity structures and the observed events.

An important property is that optimizing Q(A,µ;A(k),µ(k)) ensures that f(A,µ)

is decreasing monotonically.

First, we claim that the following properties hold for Q(A,µ;A(k),µ(k); ) defined

in Equation (30) :

• 1. For all A, µ,

Q(A,µ;A(k),µ(k)) ≥ f(A,µ)

• 2.

Q(A(k),µ(k);A(k),µ(k)) = f(A(k),µ(k))
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Proof. The first claim can be shown by utilizing the Jensen’s inequality: For all c and

i, we have

log(µuc
i
+

i−1
∑

j=1

auc
iu

c
j
g(tci − tcj)) ≥ pcii log

uci
pcii

+
i−1
∑

j=1

pcij
auc

iu
c
j
g(tci − tcj))

pcij

Summing up over c and i proves the claim.

The second claim can be checked by setting A = A(m) and µ = µ(m).

The above two properties imply that if (A(m+1),µ(m+1)) = argmin
A,µQ(A,µ;A

(k),µ(k)),

we have

f(A(k),µ(k)) = Q(A(k),µ(k);A(k),µ(k))

≥ Q(A(m+1),µ(m+1);A(k),µ(k))

≥ f(A(m+1),µ(m+1)).

Thus, optimizingQ with respect toA and µ ensures that the value of f(A,µ) decrease

monotonically.

Moreover, the advantage of optimizing Q(A,µ) is that all parameters A and µ

can be solved independently with each other with closed forms solutions, and the

nonnegativity constraints are automatically taken care of. That is

µ(m+1)
u =

∑

c

∑

i:i≤nc,uc
i=u p

c
ii

∑

c Tc
(31)

a
(m+1)
uu′ =

−B +
√

B2 + 8ρC

4ρ
, (32)
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Algorithm 3 ADMM-MM (ADM4) for estimating A and µ

Input: Observed samples {c1, . . . , cm}.
Output: A and µ.
Initialize µ and A randomly; Set U1 = 0, U2 = 0.
while k = 1, 2, . . . , K do
Update Ak+1 and µk+1 by optimizing Q defined in (30) as follows:
while not converge do
Update A, µ using (32) and (31) respectively.

end while
Update Zk+1

1 using (28); Update Zk+1
2 using (29).

Update Uk+1
1 = Uk

1 + (Ak+1 − Zk+1
1 ) and Uk+1

2 = Uk
2 + (Ak+1 − Zk+1

2 ).
end while
return A and µ.

where

B =
∑

c

∑

j:uc
j=u′

G(T − tcj) + ρ(−z1,uu′ + u1,uu′ − z2,uu′ + u2,uu′),

C =
∑

c

nc
∑

i=1,uc
i=u

∑

j<i,uc
j=u′

pcij.

The overall optimization algorithm is summarized in Algorithm 3.

5.3 Experiments

In this section, we conducted experiments on both synthetic and real-world datasets

to evaluate the performance of the proposed method.

5.3.1 Synthetic Data

Data Generation. The goal is to show that our proposed algorithm can recon-

struct the underlying parameters from observed recurrent events. To this end, we

consider a U -dimensional Hawkes process with U = 1000 and generate the true pa-

rameters µ from a uniform distribution on [0, 0.001]. In particular, the infectivity

matrix A is generated by A = UVT . We consider two different types of influences in
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our experiments: assortative mixing and disassortative mixing:

• In the assortative mixing case, U and V are both 1000×9 matrices with entries

in [100(i − 1) + 1 : 100(i + 1), i], i = 1, . . . , 9 sampled randomly from [0, 0.1]

and all other entries are set to zero. Assortative mixing examples capture the

scenario that influence are mostly coming from members of the same group.

• In the disassortative mixing case, U is generated in the same way as the as-

sortative mixing case, while the V has non-zero entries in [100(i − 1) + 1 :

100(i + 1), 10 − i], i = 1, . . . , 9. Disassortative mixing examples capture the

scenario that influence can come outside of the group, possibly from a few in-

fluential hubs.

We scale A so that the spectral radius of A is 0.8 to ensure the point process is

well-defined, i.e., with finite intensity. Then, 50000 samples are sampled from the

multi-dimensional Hawkes process specified by A and µ. The proposed algorithms

are applied to the samples to obtain estimations Â and µ̂.

Evaluation Metric. We use three evaluation metrics to measure the performance:

• RelErr is defined as the averaged relative error between the estimated parameters

and the true parameters, i.e.
|aij−âij |

|aij |
for aij 6= 0 and |aij − âij| for aij = 0.

• PredLik is defined as the log-likelihood of the estimated model on a separate

held-out test set containing 50,000 samples.

• RankCorr is defined as the averaged Kendall’s rank correlation coefficient be-

tween each row of A and Â. It measures whether the relative order of the
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estimated social influences is correctly recovered.

Results. We included 5 methods in the comparisons:

• TimeWindow. This method, we first discretize time into time windows with

equal length and then represent each node by a vector where each dimension is

to the number of events occurred within the corresponding time window at the

node. The cosine similarity are used to estimate the infectivity matrix.

• NetRate. This method is proposed in [129] for modeling information diffusion

in networks. It can not model the recurrent events, so we only keep the first

occurrences at each node in the training data.

• Full. The infectivity matrix A is estimated as a general U × U matrix without

any structure.

• LowRank. Only the nuclear norm is used to obtain a low-rank estimation of A.

• Sparse. Only the ℓ1 norm is used to obtain a sparse estimation of A.

• LowRankSparse. This is the proposed method Algorithm 1. Both nuclear

norm and ℓ1 norm are used to estimate A.

For each method, the parameters are selected on a validation set that are disjoint

from both training and test set. We run each experiment for five times with different

samples and report the averaged performance metrics over all the five runs.
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Figure 23 plots the results on assortative mixing networks measured by RelErr,

PredLik and RankCorr with respect to the number of training data. It can be ob-

served from Figure 23 that when the number of training samples increase, the RelErr

decreases and both PredLik and RankCorr increase, indicating that all methods can

improve accuracy of estimation with more training samples. Moreover, LowRank and

Sparse outperforms Full in all cases. Therefore, we conclude that utilizing the structure

of the matrix can improve the estimation very significantly. LowRankSparse outper-

forms all other baselines since it fully utilizes prior information about the infectivity

matrix. It is interesting to observe that when the number of training samples are

small, the improvements of LowRankSparse over other baselines are very large. We

think this is because when the number of training samples are not sufficiently large to

get a good estimation, the prior knowledge from the structure of the infectivity matrix

becomes more important and useful. TimeWindow is not as good as other methods

since it can not capture the time pattern very accurately. Similarly in Figure 24, the

proposed method LowRankSparse outperforms other methods in disassortative mixing

networks. These two sets of experiments indicate that LowRankSparse can handle well

different network topologies.

In Figure 25 and Figure 26, we plot the performance with respect to the values of

the two parameters λ1 and λ2 in LowRankSparse. It can be observed that the perfor-

mance first increases and then decreases when the value λ1 grows. Note that when

λ1 = 0, we obtain a sparse solution that is not low-rank, which is underperformed by

solutions that are both low-rank and sparse. Similar observations can be made for

λ2.

99



In order we investigate the convergence of the proposed algorithm, in Figure 27,

we present the performance measured by PredLik with respect to the number of outer

iterations K in Algorithm 3. We can observe that the performance measured by

PredLik grows with the number of outer iterations and converges within about 50

iterations. We also illustrate the impact of the number of inner iterations in Figure 27.

It can be observed that larger number of inner iterations leads to better convergence

speed and slightly better performance.

5.3.2 Real-world Data

We also evaluate the proposed method on a real world data set. To this end, we use

the MemeTracker data set2. The data set contains the information flows captured by

hyper-links between different sites with timestamps. In particular, we first extract

the top 500 popular sites and the links between them. The events are in the form

that a site created a hyper-link to another site at a particular time. We use 50% data

as training data and 50% as test data.

In Figure 28, we show that negative log-likelihood of Full, Sparse, LowRank and

LowRankSparse on the test set. We can see that LowRankSparse outperforms the

baselines. Therefore, we conclude that LowRankSparse can better model the influences

in social networks.

We also study whether the proposed model can discover the influence network

between users from the recurrent events. To this end, we present the RankCorr of

Full, Sparse, LowRank and LowRankSparse in Figure 29. We also include NetRate as a

2http://memetracker.org
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baseline. It can be observed that the LowRankSparse obtains better rank correlation

than other models, which indicates that it can capture the influence network better

than other models. In Figure 30, we visualize the influence network estimated from

the MemeTracker data. We can observe that there is a quite dense region near the

bottom right in the infectivity matrix. This region represents that the corresponding

sites are the centric of the infectivity networks. Example sites in this region include

news.cnet.com, blogs.zdnet.com and blogs.abcnews.com. The first two are both

famous IT news portal and the third one is a blog site that belongs to a general news

portal. It is clear that all of these sites are popular sites that can quickly detect

trending events and propragate them to a lot of other sites.

5.4 Summary

In this chapter, we propose to infer the network social influence from the observed

recurrent events indicating users’ activities in the social networks. The proposed

model utilizes the mutually-exciting multi-dimensional Hawkes model to capture the

temporal patterns of user behaviors. Moreover, we estimate the infectivity matrix for

the network that is both low-rank and sparse by optimizing nuclear norm and ℓ1 norm

simultaneously. The resulting optimization problem is solved through combining the

ideas of alternating direction method of multipliers and majorization-minimization.

The experimental results on both simulation and real-world datasets suggest that the

proposed model can estimate the social influence between users accurately.
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Figure 23: Assortative mixing networks: performance measured by RelErr, PredLik
and RankCorr with respect to the number of training samples.
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Figure 24: Disassortative mixing networks: Performance measured by RelErr, PredLik
and RankCorr with respect to the number of training samples.
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Figure 25: Performance measured by PredLik with respect to the value of λ1.
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Figure 26: Performance measured by PredLik with respect to the value of λ2.
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Figure 27: Performance measured by PredLik with respect to the number of in-
ner/outer iterations.
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Figure 28: Performance measured by PredLik on MemeTracker data set.
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Figure 29: Performance measured by RankCorr on MemeTracker data set.
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Figure 30: Influence structure estimated from the MemeTracker data set.
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CHAPTER VI

LEARNING TRIGGERING KERNELS FOR

MULTI-DIMENSIONAL HAWKES PROCESSES

In this chapter, we describe the work for estimating triggering kernels for multi-

dimensional Hawkes process. As we shown in Chapter 5, given a multi-dimensional

Hawkes process, the conditional intensity for the u-th dimension expressed as follows:

λu(t) = µu +
∑

i:ti<t

guui
(t− ti),

where µu ≥ 0 is the base intensity for the u-th Hawkes process. The kernel guu′(t) ≥ 0

captures the mutually-exciting property between the u-th and u′-th dimension. Intu-

itively, it captures the dynamics of influence of events occurred in the u′-th dimension

to the u-th dimension. Larger value of guu′(t) indicates that events in u′-th dimension

are more likely to trigger a event in the u-th dimension after a time interval t. As we

have mentioned before, the triggering kernel guu′(t) plays a central role in modeling

the dynamics of temporal events. Moreover, it can be quite complex in real-world

applications. Therefore, it is desirable to estimate it from the observer data as we

propose in this chapter. Specifically, we propose to estimate the triggering kernels

from a infinite dimensional functional space through combining the ideas of Euler-

Lagrange equation and majorization minimization. This method also exploits the

low-rank structure in functional spaces.
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6.1 Nonparametric Triggering Kernel Estimation using Euler-

Lagrange Equations

First we introduce some notations: We collect the parameters of the multi-dimensional

Hawkes process into matrix-vector forms, µ = (µu) for the base intensity and G =

(guu′(t)) into a matrix. These parameters can be estimated by optimizing the log-

likelihood over the observed events that are sampled from the process.

6.1.1 Optimization Problem and Space

Suppose we have m samples, {c1, . . . , cm}, from the multi-dimensional Hawkes pro-

cess. Each sample c is a sequence of events observed during a time period of [0, Tc],

which is in the form of {(tci , u
c
i)}

nc

i=1. Each pair (tci , u
c
i) represents an event occur-

ring at the uci -th dimension at time tci . Thus, the log-likelihood of model parameters

Θ = {G,µ} can be expressed as follows [90]:

L(Θ) =
∑

c

(

nc
∑

i=1

log λuc
i
(tci)−

U
∑

u=1

∫ Tc

0

λu(t)dt

)

=
∑

c





nc
∑

i=1

log
(

µuc
i
+
∑

tcj<t

guc
iu

c
j
(tci − tcj)

)

−Tc

U
∑

u=1

µu −
U
∑

u=1

nc
∑

j=1

∫ Tc−tj

0

guuc
j
(s)ds

)

. (33)

In general, the triggering kernels guu′(t) as well as the base intensity µ can be esti-

mated by maximizing the log-likelihood, i.e., minguu′ (t)≥0,µ≥0 −L(Θ).

We assume that the triggering kernels guu′(t) can be expressed by a linear combi-

nation of a set of D base kernels. Formally, we have

guu′(t) =
D
∑

d=1

aduu′gd(t),
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where {gd(t)|d = 1, 2, . . . , D} are the base kernels and aduu′ are the coefficients for the

linear combination. In our work, both aduu′ and gd(t) are estimated from the data. In

particular, we propose to estimate the base kernels gd(t) from an infinite dimensional

functional space. To this end, we consider the following penalized log-likelihood

function function, i.e.,

min
Θ

Lα(Θ),

where the penalized log-likelihood function Lα(Θ) is defined as follows:

Lα(Θ) = −L(Θ) + α

(

∑

d

R(gd) +
∑

u,u′,d

(aduu′)2

)

.

Here the first term is the negative log-likelihood of the parameters and the second

term represents the regularization of both the base function gd(t) and the coefficient

aduu′ . The parameter α determines the trade-off between these two terms. Moreover,

the functional R(gd) is a penalty term preferring smooth base kernels. In general,

the choice of the penalty should take into account of the prior knowledge of the

triggering kernels and thus is application-dependent. For the sake of concreteness

and tractability, we use R(g) =
∫∞

0
g′(t)2dt in the rest of this chapter, where g′(t) is

the derivative of g(t) with respect to t.

It appears that the above problem is similar to the smoothing splines and can

be solved through methods that transform the above problem to a finite dimensional

least squares optimization problem [158]. As we discussed in Section 2.5, however, the

main difference is that the log-likelihood function defined in Equation (33) contains

the integral over the triggering kernels that depends on the values of the triggering

kernels over the whole time interval rather than only a finite number of points as
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required by the smoothing splines. As a result, it is difficult to directly apply the

smoothing spline methods in our case.

Even more challenging is that the above objective function is difficult to optimize

in general due to the fact that the parameters are not only infinite dimensional but also

are coupled. In this chapter, inspired by the work of [86] on one-dimensional Hawkes

process, we propose MMEL to estimate the triggering kernels for multi-dimensional

Hawkes process, which combines the idea of constructing a tight upper-bound as a

surrogate to decouple parameters and the application of Euler-Lagrange equations to

deal with the infinite dimensionality of the parameters.

6.1.2 Iterative Algorithm

Our algorithm updates the parameters Θ in an iterative manner which, as we will show

later, ensures that the objective function Lα decrease monotonically. In particular,

we construct a tight upper-bound Q(Θ|Θ(k)) for current parameter estimation Θ(k)

and optimize the upper-bound Q(Θ|Θ(k)) to obtain the updates for the parameters.

Specifically, the upper-bound Q(Θ|Θ(k)) is defined as follows:

Q(Θ|Θ(k)) =−
∑

c

[

nc
∑

i=1

(

pcii log
µuc

i

pcii
+

i−1
∑

j=1

D
∑

d=1

pcijd log
aduc

iu
c
j
gd(t

c
i − tcj)

pcijd

)

+



Tc
∑

u

µu +
U
∑

u=1

nc
∑

j=1

D
∑

d=1

∫ τcj

0



(aduuc
j
)2
g
(k)
d (t)

2a
d,(k)
uuc

j

+ g2d(t)
a
d,(k)
uuc

j

2g
(k)
d (t)



 dt









+ α

(

∑

d

R(gd) +
∑

u,u′,d

(aduu′)2

)

, (34)
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where τ cj = Tc − tcj and p
c
ij and p

c
ii are defined as follows:

pcii =
µ
(k)
uc
i

µ
(k)
uc
i
+
∑i−1

j=1

∑

d a
d,(k)
uiuj g

(k)
d (tci − tcj)

,

pcijd =
a
d,(k)
uiuj g

(k)
d (tci − tcj)

µ
(k)
uc
i
+
∑i−1

j=1

∑

d a
d,(k)
uiuj g

(k)
d (tci − tcj)

.

Intuitively, pcijd can be interpreted as the probability that the i-th event is influ-

enced by a previous event j through the d-th base kernel and pcii is the probability that

i-th event is sampled from the base intensity. Thus, the first two terms of Q(Θ|Θ(k))

can be viewed as the joint probability of the unknown influence structures and the

observed events.

We first show that the following properties hold for Q(Θ;Θ(k)) defined in Equation

(34):

Theorem 5. The following properties hold for Q(Θ;Θ(k)):

1. For all Θ and Θ(k), Q(Θ;Θ(k)) ≥ Lα(Θ).

2. Q(Θ(k); Θ(k)) = Lα(Θ
(k)).

Proof. The first claim can be shown by utilizing the Jensen’s inequality: For all c and

i, we have

log(µuc
i
+

i−1
∑

j=1

D
∑

d=1

aduc
iu

c
j
gd(t

c
i − tcj)) ≥ pcii log

uci
pcii

+
i−1
∑

j=1

D
∑

d=1

pcijd log
aduc

iu
c
j
gd(t

c
i − tcj)

pcijd
(35)

Moreover, by the inequality of arithmetic and geometric means:

(aduuc
j
)2
g
(k)
d (t)

2a
d,(k)
uuc

j

+ g2d(t)
a
d,(k)
uuc

j

2g
(k)
d (t)

≥ aduuc
j
gd(t)
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By noting that summation and integration preserve the above two inequalities, we

prove the first claim.

The second claim can be checked by setting gd(t) = g
(k)
d (t), aduu′ = a

d,(k)
uu′ and

µu = µ
(k)
u .

The above two properties imply that if Θ(k+1) = argminΘQ(Θ;Θ(k)), we have

Lα(Θ
(k)) ≥ Lα(Θ

(k+1)). Thus, optimizingQ with respect to Θ at each iteration ensures

that the value of Lα(Θ) decrease monotonically.

Update for µu and aduu′. Moreover, the advantage of optimizing Q(Θ|Θ(k)) is

that all parameters gd and a
d
uu′ can be solved independently from each other in closed

form, and the non-negativity constraints are automatically taken care of. Specifically,

we have the following update rules for µu and aduu′ :

µ(k+1)
u =

1
∑

c Tc





∑

c

nc
∑

i=1,uc
i=u

pcii



 (36)

a
d,(k+1)
uu′ =





a
d,(k)
uu′

∑

c

∑

i:uc
i=u

∑

j<i,uc
j=u′ pcijd

∑

c

∑

j:uc
j=u′

∫ Tc−tcj
0 g

(k)
d (t)dt+ α





1

2

(37)

Update for gd. The corresponding update for gd can be derived by optimizing

in an infinite dimensional space. Specifically, for every d = 1, . . . , D, we consider the

terms in Q(Θ|Θ(k)) that are related to gd as follows:

min
gd∈L1(R)

−
∑

c

(

nc
∑

i=1

i−1
∑

j=1

pcijd log gd(t
c
i − tcj)

−
U
∑

u=1

nc
∑

j=1

∫ Tc−tci

0

g2d(t)
a
d,(k)
uuc

j

2g
(k)
d (t)

dt



+ αR(gd). (38)

The optimization problem in Equation (38) is equivalent to minimize L[t, g, g′] =
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∫∞

0
F (t, g, g′)dt, where

F (t, g, g′) = −
∑

c

nc
∑

i=1

i−1
∑

j=1

pcijd log gd(t)I[t = tci − tcj]

+
∑

c

U
∑

u=1

nc
∑

j=1

g2d(t)
a
d,(k)
uuc

j

2g
(k)
d (t)

I[t ≤ Tc − tci ] + α2(g
′
d(t))

2

By Euler-Lagrange equation, the solution satisfies

∂F

∂gd
−

d

dt
[
∂F

∂g′d
] = 0

Substitute F into the above equation, we get the follows:

−
D(t)

gd(t)
+ C(t)gd(t)− 2αg′′d(t) = 0, (39)

where

C(t) =
∑

c

U
∑

u=1

nc
∑

j=1

a
d,(k)
uuc

j

g
(k)
d (t)

I[t ≤ Tc − tci ]

D(t) =
∑

c

nc
∑

i=1

i−1
∑

j=1

pcijdI[t = tci − tcj],

where I[·] is the indicator function which returns 1 if the predicate in parameter is

true and 0 otherwise. We solve the above ODE numerically using the following Seidel

type iterations which is quite efficient. Specifically, we discretized the differential

equation over small intervals tm = m∆t, for m = 1, . . . ,M . Let gd,m = gd(tm). We

can express the derivative of g(t) as follows:

g′d(tm) ≈
gd(tm+1)− gd(tm)

tm+1 − tm
=
gd,m+1 − gd,m

∆t

g′′d(tm) ≈
gd(tm+1)− 2gd(tm) + gd(tm)

∆t2

Therefore, the discretized ODE can be expressed as follows:

−2α
gd,m+1 − 2gdm + gd,m−1

∆t2
+ Cmgdm =

Dm

gdm
, (40)
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Algorithm 4 (MMEL) for estimating parameters

Input: Observed samples {c1, . . . , cm}.
Output: Estimation of µu, a

d
uu′ and gd.

Initial µu, auu′ and gd randomly.
while not converge do
Update µu, auu′ by Equation (36) and (37) for u, u′ = 1, . . . , U .
for d=1,. . . , D do
while not converge do
Solve Equation (40) for m = 1, 2, . . . ,M .

end while
end for

end while

where

Cm =
1

g
(k)
d (m∆t)

∑

c

U
∑

u=1

nc
∑

j=1

a
d,(k)
uuc

j
I[m∆t ≤ Tc − tci ]

Dm =
1

∆t

∑

c

∑

i,j:m∆t≤tci−tcj<(m+1)∆t

pcijd

Therefore, we can solve for gd,m by fixing all other gd,m′ , m′ 6= m but solving the

above quadratic equation. We summary the proposed algorithm in Algorithm 4.

6.2 Extension to Spatial-Temporal Process

The proposed idea can be extended to estimate the kernels for spatial temporal pro-

cess. In this section, we describe the application of the Euler-Lagrange equation to

estimate the kernel of spatial temporal process. In this case, the conditional intensity

function can be expressed as follows:

λ(t, x, y|H) = µ(x, y) +
∑

i:ti<t

g(t− ti, x− xi, y − yi)

= µ(x, y) +

∫ t

0

∫

Ω

g(t− s, x− ξ, y − ψ)N(ds, dξ, dψ),

where the kernel g(t, x, y) captures the dynamic over both the spatial and temporal

dimensions and the function µ(x, y) is base intensity. For the sake of simplicity, we
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assume that µ(x, y) does not depend on time, but the method we proposed can be

applied to the case where µ is also time-dependent.

Similar to the case of temporal Hawkes process, the samples from the above process

can be expressed as {(ti, xi, yi)}
Nc

i=1, where ti, xi, yi are the time and location of the i-th

event. Given samples from the spatial-temporal process, the log-likelihood function

can be expressed as follows:

L(Θ) =
∑

c

Nc
∑

i=1

(

log λ(tci , x
c
i , y

c
i )−

∫ Tc

0

∫

Ω

λ(t, x, y)dtdxdy

)

=
∑

c

Nc
∑

i=1

log λ(tci , x
c
i , y

c
i )

−
∑

c

Nc
∑

i=0

∫ tci+1

tci

∫

Ω

(

µ(x, y) +
∑

j:j<i

g(t− tcj, x− xcj, y − ycj)

)

dtdxdy

=
∑

c

Nc
∑

i=1

log λ(tci , x
c
i , y

c
i )− CTU

−
∑

c

∫

Ω

Nc
∑

i=0

∑

j<i

∫ tci+1

tci

g(t− tcj, x− xcj, y − ycj)dtdxdy

=
∑

c

Nc
∑

i=1

log λ(tci , x
c
i , y

c
i )− CTU −

∑

c

Nc
∑

j=1

∫ T c

tcj

∫

Ω

g(t− tcj, x− xcj, y − ycj)dtdxdy,

where U =
∫

Ω
µ(x, y)dxdy.

In order to estimate the triggering kernel g(t, x, y) and the base intensity µ(x, y),

we can optimize the penalized likelihood function defined as follows:

min
Θ=(g,µ)

Lα = −L(Θ) + α(R1[µ] +R2[g]), (41)

where R1 and R2 are penalty functional defined as follows:

R1[µ] =

∫

Ω

(
∂µ

∂x
)2 + (

∂µ

∂y
)2dxdy

R2[g] =

∫ T

0

∫

Ω

(
∂g

∂t
)2 + (

∂g

∂x
)2 + (

∂g

∂y
)2dtdxdy
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Both R1[µ] and R2[g] prefers smooth functions, which plays the rule of regularization

in the estimation process.

The objective function defined in Equation (41) can be difficult to optimize for

similar reasons as the temporal case: 1) Its parameters are coupled with each other.

2) We would like to optimize with respect to a infinite dimensional space. To solve

the problem, we can apply the idea of majorization minimization. Define Q(Θ|Θ(k))

as follows:

Q(Θ|Θ(k)) =
∑

c

Nc
∑

i=1

(

pcii log
µ(xci , y

c
i )

pcii
+

i−1
∑

j=1

pcij log
g(tci − tcj, x

c
i − xcj, y

c
i − ycj)

pcij

)

− CTU −
∑

c

Nc
∑

j=1

∫ T

tcj

∫

Ω

g(t− tcj, x− xcj, y − ycj)dtdxdy

where

pcii =
µ(k)(xci , y

c
i )

µ(k)(xci , y
c
i ) +

∑i−1
j=1 g

(k)(tci − tcj, x
c
i − xcj, y

c
i − ycj)

pcij =
g(k)(tci − tcj, x

c
i − xcj, y

c
i − ycj)

µ(k)(xci , y
c
i ) +

∑i−1
j=1 g(t

c
i − tcj, x

c
i − xcj, y

c
i − ycj)

The nice property of Q(Θ|Θ(k)) is that the parameters g and µ are decouple and

thus can be optimized independently.

Optimizing with respect to µ(x, y).

We first collect the terms in Q(Θ|Θ(k)) that are related to µ:

min
g

∫

Ω

(

−
∑

c

∑

i

pcii log
µ(x, y)

pcii
I[x = xci ∧ y = yci ] + CTµ(x, y) + α

(

(
∂µ

∂x
)2 + (

∂µ

∂y
)2
)

)

dxdy

We can apply Euler-Lagrange equation to show that the solution satisfies the following
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ordinary differential equations:

−
∑

i,c

pcii
µ(x, y)

I[x = xci ∧ y = yci ] + T − 2α
∂2µ

∂x2
− 2α

∂2µ

∂y2
= 0

We can discretize the above equations by letting umn = µ(m∆x, n∆y):

−
Cmn

µmn

+ T − 2α
um−1,n − 2umn + um+1,n

∆x2
− 2α

um,n−1 − 2umn + um,n+1

∆y2
= 0 (42)

where

Cmn =
1

|Smn|

∑

i,c

pciiI[(x
c
i , y

c
i ) ∈ Smn],

Optimizing with respect to g(t, x, y).

Similarly, we first collect the terms in Q(Θ|Θ(k)) that are related to g(t, x, y):

min
g

∫ T

0

∫

Ω

(

−
∑

c,i

i−1
∑

j=1

pcij log
g(t, x, y)

pcij
I[t = tci ∧ x = xci ∧ y = yci ]

+
∑

c

Nc
∑

j=1

g(t, x, y)I[t ≥ tcj ∧ (x− xcj, y − ycj) ∈ Ω] + 2α(
∂g

∂t
)2 + (

∂g

∂x
)2 + (

∂g

∂y
)2

)

dxdydt

Therefore, the optimal kernel g(t, x, y) satisfies the following equations:

−
∑

c,i

i−1
∑

j=1

pcijI[t = tci − tj ∧ x = xci − xcj ∧ y = yci − ycj ]

g(t, x, y)
+
∑

c

Nc
∑

j=1

I[t ≥ tcj ∧ (x− xcj, y − ycj) ∈ Ω]

− 2α

(

∂2g

∂t2
+
∂2g

∂x2
+
∂2g

∂y2

)

= 0

We can discretize the above equation over umnp = g(m∆t, n∆x, p∆y) where m =

0, . . . ,Mt, n = 0, . . . ,Mx and p = 0, . . . ,My.

−
Amnp

umnp

+ Bmnp − 2α
um−1,np − 2umnp + um+1,np

∆t2
− 2α

um,n−1,p − 2umnp + um,n+1,p

∆x2

− 2α
um,n,p−1 − 2umnp + um,n,p+1

∆y2
= 0, (43)
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Algorithm 5 Estimating nonparametric kernels for spatial-temporal Hawkes process

Input: Observed samples {c1, . . . , cm} .
Output: Estimation of the triggering kernel g(t, x, y) and base intensity µ(x, y).
Initialize µ(x, y), g(t, x, y) randomly.
while not converge do
while not converge do
Update g(t, x, y) by Equation (43) for all m,n, p.

end while
while not converge do
Update µ(x, y) by Equation (42) for all m,n.

end while
end while

where

Amnp =
1

|Smnp|

∑

c,i

i−1
∑

j=1

pcijI[(t
c
i − tcj, x

c
i − xcj, y = yci − ycj) ∈ Smnp],

Bmnp =
∑

c

Nc
∑

j=1

I[m∆t ≥ tcj ∧ (n∆x− xcj, p∆y − ycj) ∈ Ω]

We summary the proposed algorithm in Algorithm 5.

6.3 Experiments

In this section, we conduct experiments on both synthetic and real-world datasets to

evaluate the performance of the proposed method MMEL.

6.3.1 Toy Data

In order to illustrate that the proposed method can estimate the triggering kernels

from data very accurately, we first conduct a set of experiments in toy data sets of

2-dimensional Hawkes processes. The goal is to visualize and compare the triggering

kernels estimated from data to the ground-truth.

Data Generation. The true parameters of the 2-dimensional Hawkes process are

generated as follows: the base intensity µ1 = µ2 = 0.1. We generate two data sets with
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Figure 31: Estimated vs. True Triggering Kernels on toy data DataExp with expo-
nential kernels. The four sub-figures show both the true triggering kernels and the
estimated ones from the data

different triggering kernels: 1) DataExp. In the first data set, we use the exponential

kernel g(t) = exp(−t), one of the most widely used trigger kernel for Hawkes processes,

to demonstrate that the proposed algorithm can obtain good estimations in this case.

2) DataCos. In this case, we consider relatively complex kernels rather than simple

exponential kernels. Specifically, in this case, the triggering kernels are generated by

the linear combination of two base functions: g1(t) = cos(πt/10) + 1.1 and g2(t) =

cos(π(t/10 + 1)) + 1.1. In both data sets, the coefficients of the linear combinations

are generated from a uniform distribution on [0.1, 0.2].
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Figure 32: Estimated vs. True Triggering Kernels on toy data DataCos. The four
sub-figures show both the true triggering kernels and the estimated ones from the
data

Results. We generate 100,000 samples from the two 2-dimensional Hawkes pro-

cesses described above on time interval [0, 20] as the training sets and run MMEL on

the sampled data to obtain the estimations for the triggering kernels. In order to

visualize the estimated kernels and compare them to the ground truth, we plot both

the estimated and the true kernels for each pairs of dimensions. In Figure 31, we plot

the triggering kernel obtained from the data by MMEL together with the true expo-

nential kernel. We can observe that the estimated and true kernels almost overlap

each other, which indicates that the estimated triggering kernels are very accurate in
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this case.

In Figure 32, we visualize the triggering kernels learnt from the DataCos data

set. It can be observed that the proposed MMEL can reconstruct the kernels quite

accurately from the data: The estimated kernel is very close to the true kernel in

most places, although the estimated kernel may diverge from the ground-true in a

few points. The proposed algorithm generally works quite well in this case since

our method do not assume any parametric forms of the triggering kernels. Another

observation is that MMEL tends to underestimate the triggering kernels at their peak

points while overestimate them at valleys. In fact, similar bias exists in a lot of

nonparametric estimators which is related to the curvature of the function. Several

methods has been proposed to correct this problem [131].

6.3.2 Synthetic Data

Data Generation. A relatively large synthetic data set is generated as follows:

We consider Hawkes processes of U = 300 dimensions with base intensity µu sampled

from a uniform distribution over [0, 0.001] for each u. The triggering kernels are the

linear combinations of three base functions: gd(t) = cos(2πt/wd)+2
t+2

where wd = 1, 3, 5

for d = 1, 2, 3, respectively. The coefficients of the linear combinations are generated

from a uniform distribution on [0, 0.1]. We generate 200,000 samples from the multi-

dimensional Hawkes process as training set and another disjoint 200,000 samples as

test set. We run the above process for five times and the performance are reported

by the average over five data sets.
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Figure 33: Performance measured by LogLik and Diff with respect to the number of
training samples on the synthetic data.

Evaluation Metrics. We use two evaluation metrics LogLik and Diff to evaluate

the proposed method. Specifically, LogLik is defined as the log-likelihood on the test

set of 200,000 samples that is disjoint with the training set. Diff measures the relative

distances between the estimated and true kernels as follows:

diff =
1

U2

U
∑

u=1

U
∑

u′=1

∫

(ĝuu′(t)− guu′(t))2dt
∫

guu′(t)2dt
,
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Figure 35: Performance measured by LogLik with respect to point used to discretize
the ODE.

where ĝuu′(t) and guu′(t) are the estimated and true kernels between dimension u and

u′, respectively.

Baselines. We compare the proposedMMEL with the following baselines to demon-

strate its effectiveness:

• ExpKernel. In this method, the triggering kernel is assumed to be fixed to be

the exponential kernel g(t) = 1
w
exp(−t/w) which is one of the most widely

used kernels for multi-dimensional Hawkes process. In this work, we use w =
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α.

1, 3, 5 as baselines and label them as ExpKernel-1, ExpKernel-3 and ExpKernel-5,

respectively.

• TrueKernel. In this method, we assume that the bases gd(t) used to generate

the data are known and fixed. Only the coefficients are estimated from the

data. This method is used as an upper-bound to show that how the proposed

MMEL algorithm can perform in the ideal situation that the true bases for the

triggering kernels are known.
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Results. We train models with MMEL as well as the baselines on the training set.

For MMEL, we use regularization parameter α = 1000 and discretize the ODE with

M = 3000 intervals. In Figure 33, we present the performance on the synthetic data

set with respect to the number of training data. From Figure 33, we can observe

that the performance of all methods improves as the number of training data grows,

which indicates that more training data can improve the performance. Comparing the

performance of methods using exponential kernels, i.e., ExpKernel-1, ExpKernel-3 and

ExpKernel-5, we can observe that the selection of the parameters for the exponential

kernel can greatly impact the performance, which confirms that the triggering kernels

play a central role in multi-dimensional Hawkes processes.

The proposed method MMEL performs significantly better than the method using

exponential kernels with respect to both metrics. Moreover, its performance is very

close to TrueKernel, the method that fixes the base kernels to be the ground-truth and

does not estimate them from data. From the error bars, the performance MMEL and

True Kernel are quite close to each other in terms of LogLik. Therefore, we conclude

that the MMEL can estimate the triggering kernels very accurately.

In Figure 34, we present the performance of MMEL measured by LogLik with

respect to the number of base kernels. In our previous experiments on the synthetic

data set, we set the number of base kernel to be 3, which is the true value used to

generate the data. It is interesting to observe that slightly larger number of base

kernels such as 4 can archive better performance.

In Figure 35, we investigate the number of intervals M used to discretize the

ordinary differential equation in Equation (39). In particular, we vary M in range of
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100 to 3000 and plot the performance measured by LogLik. From Figure 35, we can

see that when the number of intervals is relatively large (≥ 1000), the performance is

quite good and stable.

In Figure 36, we show that the performance measured by LogLik on both training

and test sets with respect to the number of iterations ofMMEL. It can be observed that

the performance on both training and test sets increases as the number of iterations

grows and converges after 100 iterations. In Figure 37, we present the performance

measured by LogLik on the test set with respect to the value of regularization param-

eter α. We can observe that small values of α usually reduce the performance, while

the performance is quite good for relatively large α = 1000 or 10000].

6.3.3 Real World Data

We also evaluate the proposed method on a real world data set. To this end, we use

the MemeTracker data set1. The data set contains the information flows captured by

hyper-links between different sites with timestamps. In particular, we first extract

the top 100 popular sites and the links between them. The events are in the form that

a site created a hyper-link to another site at a particular time. In particular, each site

corresponds to a dimension of the multi-dimensional Hawkes process. The observed

events are the propagation of hyper-links through the network. We use 50% data as

training data and 50% as test data. In this data set, we use D = 1 and α = 10.

In Figure 38, we present the performance measured by the negative log-likelihood

on test set for MMEL, ExpKernel-1, ExpKernel-3 and ExpKernel-5 on the MemeTracker

1http://memetracker.org

126



data set. We can observe that MMEL outperforms all the baselines, which indicates

that MMEL can capture the dynamics of the temporal events more accurately. We

also tried to fix the kernel to be other forms such as cosine functions. The performance

is much worse, which suggests the importance of the triggering kernel. In order to

further investigate the performance, we transform the events by the fitted model based

on the time rescaling theorem [112], and generate the quantile-quantile (Q-Q) plot

with respect to the exponential distribution, since it is the theoretical distribution

for the perfect model of intensity functions as shown by the theorem. Generally

speaking, Q-Q plot visualizes the goodness-of-fit for different models. The perfect

model follows a straight line of y = x. In Figure 39, we present the Q-Q plot for

MMEL, ExpKernel-1 and Poisson, which is the Poisson process model with constant

intensity. We can observe that MMEL are generally closer to the straight line, which

suggests that MMEL can fit the data better than other models.

In Figure 40, we plot the base kernel estimated from the data by MMEL. The base

kernel has quite intuitive in the sense that in the first several days, the estimated base

kernel has relatively large values, which can be explained by the fact that new blogs

or webpages are more likely to be related to hot topics and thus are more likely to

trigger further discussions. The base has relatively small values at almost all other

points, except for two small peaks as we can observe in the figure. We think it reflects

the long-term discussions of some topics.
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6.4 Summary

In this chaper, we address the problem of learning the triggering kernels, which cap-

ture the underlying temporal dynamics of the observed events, for multi-dimensional

Hawkes processes. In particular, we estimate the triggering kernels from the data

through optimizing the penalized log-likelihood function in infinite dimensional spaces.

An iterative algorithm MMEL is proposed to optimized the penalized log-likelihood

function effectively. The optimization problem in infinite dimensional functional space

is transformed to solving an ordinary differential equation which is derived from the

Euler-Lagrange equation. Experimental results on both synthesis and real-world data

set show that the proposed method can estimate the triggering kernels more accu-

rately and thus provide better models for recurrent events.

128



Figure 39: Q-Q plot for comparing the transformed events with respect to the expo-
nential distribution.
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Figure 40: The base kernel estimated from the MemeTracker data set.
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CHAPTER VII

CONCLUSIONS AND DISCUSSIONS

7.1 Summary

In this thesis, we investigate several applications and extensions of the ideas based on

low-rank matrix factorizations to solve the problems from real-world applications. In

particular, we adapt and extend the matrix factorizations to incorporate the require-

ments from the specific application domains. We introduce structured latent factors

into traditional low-rank matrix factorizations by restricting the latent factors to be

decision trees, binary codes and functions. We also investigate the problem of opti-

mizing the complex loss function introduced by modeling temporal events in social

networks.

We briefly summary the contributions of this thesis as follows:

• Cold-start recommendation. We extend the low-rank matrix factorization

by allowing the latent factors to be decision trees to solve the problem of cold-

start recommendations. In particular, we present functional matrix factoriza-

tion (fMF), which combines the ideas of the decision tree for adaptive interview

and latent factors for matrix factorization in a unified framework.

• Binary coding for collaborative filtering. We solve the problem of mak-

ing recommendations efficiently by constructing binary codes for collaborative

filtering. In particular, we restrict the latent factors for users and items to be
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binary vectors so that the recommendation can be performed by searching in

the Hamming space.

• Learning social infectivity from temporal events. We proposed a frame-

work to combine the estimation of mutually exciting process and low-rank ma-

trix factorization. Specifically, we propose a convex optimization approach to

estimate the hidden social influence, which is both low-rank and sparse, from

recurrent events modeled by multi-dimensional Hakwes process.

• Learning nonparametric kernels for multi-dimensional Hawkes pro-

cess. We estimate the triggering kernels from an infinite dimensional func-

tional space. The estimation process makes use of the Euler Lagrange equation

to derive the ordinary differential equation that the optimal kernel should sat-

isfy. Moreover, the method can be viewed as applying the idea of low-rank

factorization in the functional space.

In summary, low-rank matrix factorizations provide a flexible and effective frame-

work to capture the correlations in high dimensional spaces in a wide range of appli-

cations with a diverse set of requirements.

7.2 Discussions and Future Directions

The current fMF model is based on a basic matrix factorization formulation and does

not take into account the content features such as the demographical information of

users. For future work, we can investigate how to utilize such content features to

further enhance the performance of fMF in cold-start recommendations.
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For learning binary codes, we can investigate other methods for solving the discrete

problem more accurately. Specifically, we can investigate how to apply semidefinite

programming for relaxing the original problem. Another direction is to study how

to learn binary codes incrementally. In particular, we would like to construct the

binary codes bit by bit in a sequential and incremental manner. It has the advantage

that new bits of binary codes can be introduced to improve the accuracy without

re-training all of the bits. Finally, the problem of incorporating features for users and

items, such as demographical features for users and descriptions of items, to learn the

binary codes can be also very interesting.

For all the discussed models, it is important to design efficient algorithms over par-

allel and distributed computing environments, such as MPI, Hadoop and GraphLab,

in order to scale the algorithms to the case where the training data can not fit into a

single machine.
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[97] Marsan, D. and Lengliné, O., “Extending earthquakes’ reach through cas-
cading,” Science (New York, N.Y.), vol. 319, pp. 1076–9, Feb. 2008.

[98] Martinsson, G., “Randomization : Making Very Large-Scale Linear Alge-
braic Computations Possible.”

[99] Masuda, N., Takaguchi, T., Sato, N., and Yano, K., “Self-exciting point
process modeling of conversation event sequences,” May 2012.

[100] Mazumder, R., Hastie, T., and Tibshirani, R., “Spectral regularization
algorithms for learning large incomplete matrices,” JMLR, 2009.

140



[101] McPherson, M., Smith-Lovin, L., and Cook, J. M., “Birds of a Feather:
Homophily in Social Networks,” Annual Review of Sociology, vol. 27, pp. 415–
444, Aug. 2001.

[102] Meka, R., Jain, P., and Dhillon, I., “Matrix Completion from Power-Law
Distributed,” NIPS, 2009.

[103] Meyer, M. C., “Inference using shape-restricted regression splines,” The An-
nals of Applied Statistics, vol. 2, pp. 1013–1033, Sept. 2008.

[104] Mitchell, L. and Cates, M. E., “Hawkes process as a model of social inter-
actions: a view on video dynamics,” Journal of Physics A: Mathematical and
Theoretical, vol. 43, p. 045101, Jan. 2010.

[105] Moallemi, C. C. and Roy, B. V., “Convergence of Min-Sum Message-
Passing for Convex Optimization,” IEEE Trans. on Information Theory, vol. 56,
no. 4, pp. 2041—-2050, 2010.

[106] Mohler, G. O., Bertozzi, A. L., Goldstein, T. a., and Osher, S. J.,
“Fast TV Regularization for 2D Maximum Penalized Likelihood Estimation,”
Journal of Computational and Graphical Statistics, vol. 20, pp. 479–491, Jan.
2011.

[107] Myers, S. and Leskovec, J., “On the convexity of latent social network
inference,” NIPS, 2010.

[108] Newman, M. E. J. and Leicht, E. a., “Mixture models and exploratory
analysis in networks.,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 104, pp. 9564–9, June 2007.

[109] Norouzi, M. and Fleet, D., “Minimal Loss Hashing for Compact Binary
Codes,” in Proceedings of the 28th International Conference on Machine Learn-
ing, vol. 1, 2011.

[110] Okatani, T. and Deguchi, K., “On the Wiberg Algorithm for Matrix Fac-
torization in the Presence of Missing Components,” International Journal of
Computer Vision, vol. 72, pp. 329–337, Sept. 2006.

[111] Pan, W., Cebrian, M., Dong, W., Kim, T., Fowler, J., and Pent-

land, A., “Modeling dynamical influence in human interaction patterns,”
Arxiv preprint arXiv:1009.0240, p. 19, Sept. 2010.

[112] Papangelou, F., “Integrability of Expected Increments of Point Processes
and a Related Random Change of Scale,” Transactions of the American Math-
ematical Society, vol. 165, p. 483, Mar. 1972.

[113] Park, S.-T. and Chu, W., “Pairwise preference regression for cold-start rec-
ommendation,” Proceedings of the third ACM conference on Recommender sys-
tems - RecSys ’09, p. 21, 2009.

141



[114] Paterek, A., “Improving regularized singular value decomposition for collab-
orative filtering,” in Proceedings of KDD Cup and Workshop, vol. 2007, pp. 5–8,
2007.

[115] Pennock, D., Horvitz, E., Lawrence, S., and Giles, C., “Collabora-
tive filtering by personality diagnosis: A hybrid memory-and model-based ap-
proach,” in Proceedings of the 16th conference on uncertainty in artificial intel-
ligence, pp. 473–480, 2000.

[116] Porteous, I., Bart, E., and Welling, M., “Multi-hdp: A non parametric
bayesian model for tensor factorization,” in AAAI, pp. 1487–1490, 2008.

[117] Pu, P. and Chen, L., “User-involved preference elicitation for product search
and recommender systems,” AI Magazine, vol. 29, no. 4, p. 93, 2009.

[118] Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic
Programming. New York, NY, USA: John Wiley & Sons, Inc., 1st ed., 1994.

[119] Raginsky, M., “Locality-sensitive binary codes from shift-invariant kernels,”
The Neural Information Processing, 2009.

[120] Rakhlin, A., Abernethy, J., and Bartlett, P. L., “Online discovery
of similarity mappings,” Proceedings of the 24th International Conference on
Machine Learning (2007), pp. 767–774, 2007.

[121] Ramlau-Hansen, H., “Smoothing Counting Process Intensities by Means of
Kernel Functions,” The Annals of Statistics, vol. 11, pp. 453–466, June 1983.

[122] Rashid, A. M., Karypis, G., and Riedl, J., “Learning Preferences of
New Users in Recommender Systems: An Information Theoretic Approach,”
SIGKDD Workshop on Web Mining and Web Usage Analysis, vol. 22, Oct.
2008.

[123] Rashid, A., Albert, I., Cosley, D., Lam, S., McNee, S., Konstan,

J., and Riedl, J., “Getting to know you: learning new user preferences in
recommender systems,” in Proceedings of the 7th international conference on
Intelligent user interfaces, pp. 127–134, ACM, 2002.

[124] Reinsch, C. h., “Smoothing by Spline Functions,” Numerische Mathematik,
pp. 177–183, 1967.

[125] Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L., “Factorizing
personalized Markov chains for next-basket recommendation,” Proceedings of
the 19th international conference on World wide web - WWW ’10, p. 811, 2010.

[126] Rennie, J. and Srebro, N., “Fast maximum margin matrix factorization for
collaborative prediction,” in Proceedings of the 22nd international conference
on Machine learning, pp. 713–719, ACM, 2005.

142



[127] Rettinger, A., Nickles, M., and Tresp, V., “Statistical Relational Learn-
ing with Formal Ontologies,” ECML PKDD, no. 1, pp. 286–301, 2009.

[128] Richard, E., Savalle, P.-A., and Vayatis, N., “Estimation of simultane-
ously sparse and low rank matrices,” ICML, June 2012.

[129] Rodriguez, M. G., Balduzzi, D., and Schölkopf, B., “Uncovering the
temporal dynamics of diffusion networks,” Proceedings of the 28th International
Conference on Machine Learning, pp. 561–568, May 2011.
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