
EXPLOITING STRUCTURE IN MIXED INTEGER PROGRAMMING:
BRANCHING, CUTTING PLANES, AND COMPLEXITY

A Dissertation
Presented to

The Academic Faculty

By

Yu Yang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
H. Milton Stewart School of Industrial & Systems Engineering

Georgia Institute of Technology

August 2020

Copyright © Yu Yang 2020

EXPLOITING STRUCTURE IN MIXED INTEGER PROGRAMMING:
BRANCHING, CUTTING PLANES, AND COMPLEXITY

Approved by:

Dr. Martin Savelsbergh, Advisor
H. Milton Stewart School of Indus-
trial & Systems Engineering
Georgia Institute of Technology

Dr. Natashia Boland, Co-advisor
H. Milton Stewart School of Indus-
trial & Systems Engineering
Georgia Institute of Technology

Dr. Alan Erera
H. Milton Stewart School of Indus-
trial & Systems Engineering
Georgia Institute of Technology

Dr. Santanu Dey
H. Milton Stewart School of Indus-
trial & Systems Engineering
Georgia Institute of Technology

Dr. Bistra Dilkina
Department of Computer Science,
Viterbi School of Engineering
University of Southern California

Date Approved: July 14, 2020

Learning without thought is labor lost; thought without learning is

perilous.

Confucius

To my beloved parents Aihua Yang and Aizhen Huang.

ACKNOWLEDGEMENTS

It has been a wonderful four-year study at Georgia Tech. In this fruitful journey, I came

to know so many knowledgeable and respectable people, without whom, the completion of

this dissertation could not have been possible. Firstly, I would like to express my deepest

gratitude to my advisors Professor Martin Savelsbergh and Professor Natashia Boland, who

have been extremely nice to offer me countless guidance and encouragement in research.

Working with them over the past few years has been a real privilege, which helps to make

up my mind to pursue an academic career and become a serious researcher like them. I

am sincerely grateful to Professor Alan Erera and Professor Bistra Dilkina for numerous

meaningful discussions throughout our collaboration. Many thanks go to Professor Santanu

Dey for making being an instructor of the course ISyE 3133-Engineering Optimization an

amazing experience and serving as my dissertation committee member. I would also like

to give special thanks to Professor George Lan for providing me tremendous help and

guidance during the first two years of my Ph.D. study. I would like to thank Professor

Martin Savelsbergh, Professor Alan Erera, Professor Santanu Dey and Professor George

Lan again for their support for my academic job search.

I am profoundly indebted to my parents for their unconditional love and support, which

help me stay determined and go through those hard times. My mother has always been opti-

mistic towards life and constantly encouraged me to see things from a positive perspective.

My father is my most consistent source of motivation and perseverance.

Moreover, I am grateful to my officemates Amin Gholami and Zhiqiang Zhou for hav-

ing many interesting conversations together; my collaborator Yassine Ridouane for those

productive discussions; my previous roommates Yuang Chen, Tianyi Liu and Zhe Zhou

for the help in life; my fellow Ph.D. students: Mostafa Reisi Gahrooei, Di Wu, Yi Zhou,

Can Zhang and Rui Gao for providing various useful suggestions on job search, Yufeng

Cao, Junqi Hu and Digvijay Boob for sharing information on job search, Guanyi Wang and

v

Zhehui Chen for having Chinese food together from time to time, just to name a few.

In addition, I would like to thank my friends Kaiwen You, Zhicai Zhang, Yuxin Xiao,

Yajing Cui, Shuaili Liu, and Simeng Zhang for their longlasting friendship. Last but cer-

tainly not least, thanks to my wife for not showing up in the first 26 years of my life, with

whom this dissertation may not have been finished.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xi

List of Figures . xiv

Chapter 1: Introduction and Background . 1

1.1 Cutting Plane and Branch and Bound Algorithms 2

1.2 Branching Strategies . 5

1.2.1 Background and Motivation . 5

1.2.2 Single-Variable Branching . 6

1.2.3 Multi-Variable Branching . 8

1.2.4 Learning to Branch . 9

1.3 Service Network Operations . 10

1.3.1 Background and Motivation . 10

1.3.2 Service Network Design With In-Tree Constraints 11

1.3.3 Equipment Balancing . 12

1.4 Main Contributions . 13

1.5 Remarks . 16

vii

Chapter 2: Multi-Variable Branching: A 0-1 Knapsack Problem Case Study . . 18

2.1 Chvátal Instances and Multi-Variable Branching 19

2.2 Examples and Analysis . 26

2.3 Computational Study . 31

2.3.1 Branching on sets of size two . 31

2.3.2 Branching on dynamically determined sets 32

2.3.3 Computational experiments . 33

2.4 Final Remarks . 37

Chapter 3: Learning Generalized Strong Branching for Set Covering, Set Pack-
ing, and 0-1 Knapsack Problems . 38

3.1 Generalized Strong Branching . 39

3.1.1 Score Function . 39

3.1.2 Variable Selection . 41

3.2 Learning Generalized Strong Branching 42

3.2.1 Learning Strong Branching . 43

3.2.2 Learning Generalized Strong Branching 49

3.3 Computational Study . 50

3.3.1 Settings . 50

3.3.2 Set Covering Problem . 51

3.3.3 Set Packing Problem . 56

3.3.4 0-1 Knapsack Problem . 59

3.4 Final Remarks . 65

viii

Chapter 4: Integer Programming for Service Network Design with In-Tree Con-
straints . 66

4.1 Problem Formulations . 67

4.1.1 Notation . 67

4.1.2 Steiner In-tree Formulations . 68

4.1.3 SNDPITC Formulations . 70

4.2 Comparing the Size and Strength of Formulations 73

4.2.1 For the Steiner In-Tree Formulations 73

4.2.2 For the SNDPITC Formulations 79

4.3 Strengthening the Formulations . 82

4.3.1 Strengthening the Steiner In-tree Formulations 82

4.3.2 Strengthening the SNDPITC Formulations 83

4.4 Novel Cutting Planes For the Flow-Based Formulation 85

4.4.1 Wheat-Stalk Inequalities . 86

4.4.2 Wheat-Sheaf Inequalities . 91

4.4.3 Combinatorial Rounding Inequalities 94

4.4.4 Generalized Cut-Set Inequalities 97

4.4.5 Commodity-Merging Inequalities 101

4.4.6 Truck-Balancing Inequalities . 103

4.4.7 An Illustrative Instance . 104

4.5 Computational Study . 106

4.6 Conclusions and Future Work . 111

ix

Chapter 5: Substitution-based Equipment Balancing in Service Networks with
Multiple Equipment Types . 113

5.1 Notation and formulations . 114

5.1.1 Minimizing imbalance . 115

5.1.2 Minimizing the number of changes required to achieve the mini-
mum imbalance . 116

5.2 Complexity of equipment substitution problems 116

5.2.1 Two-equipment type networks with full interchangeability 117

5.2.2 Two-equipment type networks with partial interchangeability 121

5.2.3 Two-equipment type models: Additional results 123

5.2.4 Three-equipment type networks 125

5.3 Final Remarks . 128

Chapter 6: Concluding Remarks and Future Directions 130

Appendices . 132

Appendix A: Detailed Results of Numerical Experiments 133

Appendix B: Illustrative Instances in Chapter 4 159

B.1 Instance in Proposition 4.2.2 . 159

B.2 Instance in Proposition 4.2.2 . 160

B.3 An Simple Illustrative Instance on F3 . 161

References . 172

Vita . 173

x

LIST OF TABLES

2.1 Ratios of N with respect to B0. 34

2.2 Ratios of t with respect to B0. 35

2.3 Ratios of N and t with respect to B0 for instances of larger size. 37

3.1 Comparison of candidate pair selection schemes. 42

3.2 Details of the instances used in training, evaluation, and testing. 52

3.3 Comparison of the number of nodes explored for set covering instances. . . 54

3.4 Comparison of the solution times for set covering instances. 55

3.5 Details of the instances used in training, evaluation, and testing. 56

3.6 Comparison on the number of nodes explored for set packing instances. . . 58

3.7 Comparison of solutions times for set packing instances. 58

3.8 Details of the instances used in training, evaluation, and testing. 60

3.9 Comparison of the number of nodes explored for 0-1 knapsack instances. . 61

3.10 Comparison of computing times for 0-1 knapsack instances. 61

3.11 Comparison of the number of nodes explored for set covering instances
(default CPLEX settings). 63

3.12 Comparison of computing times for set covering instances (default CPLEX
settings). 63

3.13 Comparison of number of nodes explored for set packing instances (default
CPLEX settings). 64

xi

3.14 Comparison of computing time for set packing instances (default CPLEX
settings). 64

4.1 Formulation size comparison. 79

4.2 Violated inequalities of the six new classes. 106

4.3 LP solution values with different valid inequalities added. From left to
right, inequalities are added incrementally. 106

4.4 Comparison on the number of instances where a violated CSI, GCSI and
WSI can be found, respectively, and the corresponding optimality gap after
all violated inequalities of each class have been added. 108

4.5 Comparison on the number of instances where a violated CSI, GCSI and
WSI can be found, respectively, and the corresponding optimality gap after
all violated inequalities of each class have been added, when only consid-
ering instances where a GCSI can be found. 109

4.6 Comparison on the number of instances where a violated CSI, GCSI and
WSI can be found, respectively, and the corresponding optimality gap after
all violated inequalities of each class have been added, when only consid-
ering instances where a WSI can be found. 110

4.7 Comparison on the corresponding optimality gap for all instances. 111

5.1 Complexity of equipment substitution problems in different simplified set-
tings. 117

A.1 Set covering problems: comparison on number of nodes explored. 133

A.2 Set covering problems: comparison on run time. 135

A.3 Set packing problems: comparison on number of nodes explored. 138

A.4 Set packing problems: comparison on run time. 140

A.5 0-1 knapsack problems: comparison on number of nodes explored. 143

A.6 0-1 knapsack problems: comparison on run time. 145

xii

A.7 Set covering problems (all settings except the branching scheme set to de-
fault): comparison on number of nodes explored. 148

A.8 Set covering problems (all settings except the branching scheme set to de-
fault): comparison on run time. 151

A.9 Set packing problems (all settings except the branching scheme set to de-
fault): comparison on number of nodes explored. 153

A.10 Set packinging problems (all settings except the branching scheme set to
default): comparison on run time. 156

B.1 LP relaxation values with different strengthening constraints and valid in-
equalities added. 165

xiii

LIST OF FIGURES

1.1 An illustration of cutting planes for MIP. 3

2.1 Search trees when n is even for Case 1. 24

2.2 Search trees when n is even for Case 2. 25

2.3 Example in which multi-variable branching (with set of branching variables
|S| = 2) improves over single-variable branching. 27

2.4 Example in which multi-variable branching using a set of branching vari-
ables of size three improves over multi-variable branching using a set of
branching variables of size two. 29

2.5 Performance profile on number of nodes explored N . Left: uncorrelated
instances; Right: weakly correlated instances. 35

2.6 Performance profile on run time t Left: uncorrelated instances; Right:
weakly correlated instances. 36

3.1 A comparison of the weighted product score function and the simple prod-
uct score function on 100 randomly generated set covering instances. 41

3.2 Practical implementation of GSB. 42

3.3 Feature selection of learning SB for set covering problems. On the left:
importance scores of the original 25 features in the first model trained
(features with importance score 0 are not shown). On the right: accuracy
changes in the feature selection process. 48

3.4 Feature selection of learning GSB for set covering problems. On the left:
importance scores of the original 16 features in the first model trained (fea-
tures with importance score 0 are not shown). On the right: accuracy
changes in the feature selection process. 53

xiv

3.5 Performance of CPLEX-D and LRN-GSB on all instances in the test set
(sorted in order of non-decreasing LRN-GSB values). On the left: Number
of nodes explored. On the right: Computing time. The y-axis is set to log
scale. 55

4.1 Three outgoing arcs at node i. 75

4.2 Four outgoing arcs at node i . 79

4.3 Network for the instance with a single destination, d, and two commodities,
k1 and k2, having o(k1) = o1, q(k1) = 1

10
, o(k2) = o2 and q(k2) = 1

2
. 81

4.4 An illustrative example of the wheat-stalk analogue. 87

4.5 An illustrative example of the wheat-sheaf analogue. 92

4.6 Left: complete network for the illustrative instance; Right: commodity data
for the illustrative instance. 105

B.1 Complete network for Proposition 4.2.2 159

B.2 Left: network for the illustrative instance; Right: commodity data for the
illustrative instance. 162

xv

SUMMARY

As a powerful mathematical modeling framework, mixed integer programming has seen

many industrial applications in areas such as airline industry, logistics, online advertising,

cloud computing, etc. Consequently, research on the efficient solution of mixed integer

programs (MIPs) has received significant attention (despite the fact that many of the prob-

lems modeled as MIPs are known to be NP-hard). Tremendous algorithmic advances have

been achieved and state-of-the-art solvers, such as CPLEX and Gurobi, can now solve pre-

viously unsolvable instances in just seconds. However, many instances, especially if the

underlying problem has a complex structure and the instances are large, can still take a

long time to solve. With unprecedented changes in industry, e.g., due to the rise of the

sharing economy, this is almost inevitable, and motivates our research. In our research, we

take on the challenge of solving MIPs faster through novel branching schemes and novel

cutting planes. Via computational complexity analysis, we also justify the usage of MIPs

for solving challenging problems and inspire the design of primal heuristics.

The first part of the dissertation focuses on novel branching schemes. We explore the

benefits of multi-variable branching schemes in achieving node efficiency, i.e., producing

small sized branch and bound search trees. Furthermore, we show that machine learning

(ML) techniques can significantly accelerate the selection of sets of variables to branch on

and thus turn multi-variable branching schemes into computationally efficient methods.

We use the 0-1 knapsack problem to illustrative the concepts and benefits of multi-

variable branching schemes. We present examples where multi-variable branching has ad-

vantages over single-variable branching, and partially characterize situations in which this

happens. For a special class of 0-1 knapsack instances from [28], we show an LP based

branch-and-bound algorithm employing an appropriately chosen multi-variable branching

scheme explores either three or seven nodes while it’s proved in [28] that a single-variable

branching counterpart must explore exponentially many nodes to arrive at an optimal so-

xvi

lution. Furthermore, we investigate the performance of various multi-variable branching

schemes for 0-1 knapsack instances computationally and demonstrate their potential.

Given that strong branching (SB) has been shown empirically to yield smaller search

trees than other branching schemes, we introduce a multi-variable branching analogy, which

we refer to as generalized strong branching (GSB). Unfortunately, even though GSB out-

performs SB, a straightforward implementation is prohibitively time-consuming. There-

fore, we apply extreme gradient boosting to train a model that predicts the ranking of sets

of candidate variables. To make a branching decision, it now suffices to collect (computa-

tionally cheap) features as input to the trained model to efficiently identify a set of variables

to branch on. As a result, we achieve a significant time reduction in making the branching

decisions and the learned method is able to solve instances of three well-known classes

of optimization problems faster than the default branching strategy of commercial solver

CPLEX.

The second part of the dissertation addresses two problems arising in service networks.

The first problem of interest is the service network design problem with in-tree constraints

(SNDPITC). Although in-tree constraints are common in practice, they are rarely consid-

ered in the academic literature. We compare the size and strength of three existing Steiner

in-tree formulations and introduce three integer programming (IP) formulations for the

SNDPITC based on these. We compare the size and strength of linear programming (LP)

relaxations of these formulations and provide simple strengthening inequalities. Then we

focus on the most compact of the three, the flow-based formulation, and derive six new

classes of valid inequalities. We discuss separation challenges and present ideas for separa-

tion heuristics. Finally, as a proof-of-concept, we conduct a few numerical experiments to

show that violated inequalities can be identified and that they can improve the dual bound.

The other problem of interest is the equipment balancing problem for a package express

carrier operating multiple equipment types in its service network. The weekly schedule of

movements used to transport packages through the service network leads to changes in

xvii

equipment inventory at the facility level. We seek to reduce this change by substituting the

equipment types initially assigned to the movements. To the best of our knowledge, the

underlying optimization problems, i.e., minimizing network-wide equipment imbalance

and minimizing the number of substitutions required to achieve minimum network-wide

equipment imbalance have not been studied and thus their computational complexity was

unknown. We carefully analyze several simplified cases and prove the possibly discourag-

ing, but not surprising, result that they are NP-hard in general.

xviii

CHAPTER 1

INTRODUCTION AND BACKGROUND

This dissertation is about the use and solution of mixed integer program (MIPs). There-

fore, in this chapter, we define what a MIP is and introduce branch and cut, the standard

framework for solving a MIP (the framework used in most commercial and open-source

solvers). Then we review the branching strategies currently employed in the branch and

cut framework, as novel branching strategies for MIPs is the focus of the first part of the

dissertation. Next, we introduce two problems arising in service network operations, as

effectively using MIPs to solve these problems is the focus of the second part of the dis-

sertation. For branching strategies, our innovation is branching on multiple variables rather

than on a single variable, which has been the current standard. For service network op-

erations, we consider a design problem with in-tree constraints and analyze formulations

and develop new classes of valid inequalities, and we consider an operational problem with

multiple equipment types and provide a computational complexity analysis. We end this

chapter with a summary of the contributions of the dissertation.

A MIP is an optimization problem of the form:

min cTx

subject to Ax = b,

l ≤ x ≤ u,

xj ∈ Z, ∀j ∈ I,

xj ∈ R, ∀j ∈ Ī ,

where N = {1, . . . , n}, I ⊆ N , Ī = N \ I , c ∈ Rn, A is a m × n matrix, b ∈ Rm, and

the decision variables are divided into two sets; the variables in set I are required to take

1

integer values whereas the variables in the other set Ī can take any continuous values.

Despite the linearity of objective function and constraints, solving a MIP efficiently can

be difficult and it has been a long-standing challenge faced by researchers and practitioners.

Fortunately, the linear programming relaxation, i.e. allowing all variables to take continu-

ous values, is much more tractable thanks to the simplex method by George Dantzig and it

provides a dual bound that helps us decide how far we are from the optimality and when

we should stop. As a result, solving linear programs (LPs) lies at the heart of the solution

of MIPs.

1.1 Cutting Plane and Branch and Bound Algorithms

Let P = {x : Ax = b, l ≤ x ≤ u, xj ∈ Z,∀j ∈ I} be the MIP’s feasible region and

Conv(P) be its convex hull. Let P̄ = {x : Ax ≤ b, l ≤ x ≤ u} denote the feasible

region of the corresponding LP relaxation where the integrality requirement is dropped.

Obviously, Conv(P) ⊆ P̄ as a result of the convexity of P̄ . In view of the fact that the

optimal solution z̄∗ returned by simplex method is an vertex of P̄ , it lies outside of Conv(P)

if it’s not feasible to the original MIP. As shown in Figure 1.1, it can be “cut off” by a linear

inequality that is satisfied by all z ∈ P , a so-called valid inequality, but that is violated by

z̄∗. Such a valid inequality is referred to as a cutting plane and the process of finding a

violated cutting plane, i.e., a cutting plane that separates the optimal LP solution z̄∗ from

Conv(P), is called separation. A pure cutting plane method iteratively refines the feasible

region by adding valid inequalities obtained via some separation procedure. In the 1950s,

Gomory proposed a cutting plane algorithm that converges to an optimal solution in a finite

number of steps ([48]). The valid inequalities used, the so-called Gomory cuts, can be

efficiently separated. Unfortunately, in the worst case, an exponential number of Gomory’s

cuts have to be added to obtain an optimal solution. For many other types of cutting planes,

even the separation itself is NP-hard, let alone solving the MIP. Therefore, the pure cutting

plane method is not viewed as a viable approach to solving MIPs for a long time. It was not

2

Figure 1.1: An illustration of cutting planes for MIP.

until the 1980s, when cutting planes were incorporated in a branch and bound algorithm

for solving instances of the traveling salesman problem (see [31]), that the full potential of

cutting planes became clear.

Branch and bound was first proposed in 1960 by Land and Doig in their celebrated work

[56] and has grown into a standard algorithmic framework for solving discrete optimiza-

tion problems. Using bounds on the optimal solution value to avoid searching parts of the

solution space that cannot contain an optimal solution, branch and bound can be far more

effective than exhaustive search. LP based branch and bound is at the heart of all commer-

cial, and most open-source, solvers, where dual bounds at the nodes in the search tree are

obtained by solving the LP relaxation of the MIP at the nodes. A high-level description of

the LP based branch and bound algorithm is included in Algorithm 1.

3

Algorithm 1: LP based based branch and bound algorithm.
Initialization: L = {the original MIP} and zbest = −∞.
while L 6= ∅ do

Select and remove a MIP Pi from L.
Solve the LP relaxation of Pi.
if the LP relaxation is feasible then

Retrieve the LP solution xLPi and its objective value zLPi .
if zLPi > zbest then

if xLPi is integer feasible then
xbest ← xLPi and zbest ← zLPi
Remove MIPs Pj from L with zUBj ≤ zbest.

else
Apply a branching strategy to create two new mixed integer
programs Pi,1 and Pi,2, set zUPi,1 = zUPi,2 = zLPi , and add Pi,1 and
Pi,2 to L.

Similar to the pure cutting plane method, branch and bound is an exact approach that

solves MIPs with provable optimality. Nevertheless, it may not be efficient by itself when

LP relaxations yield very loose dual bounds, which is very common for MIPs arising in

real applications.

Incorporating cutting planes in an LP-based branch and bound algorithm has been

shown to be extremely effective for solving many integer programs, especially 0-1 inte-

ger programs (see [30] for pioneering work). The resulting algorithm has received its own

name: branch and cut. More specifically, when the LP relaxation is solved at the root,

cutting planes are added to cut off the solution in case of infeasibility and thus improve the

dual bound. In the hope of getting a tighter global dual bound, this process can be repeated

several times at the root node before the actual branch and bound procedure starts. After-

words, cutting planes are periodically added to nodes in the search tree to improve local

dual bounds.

4

1.2 Branching Strategies

This section is devoted to branching strategies, which is the main focus of the first part

of this dissertation. Branching is a critical component of the branch and cut framework.

We start this section by providing background on existing branching strategies and by mo-

tivating our approach to enhancing branching strategies. Then we review literature on

single-variable branching schemes, which is the standard in MIP solvers, on multi-variable

branching schemes, and on the application of machine learning techniques to assist making

branching decisions.

1.2.1 Background and Motivation

As dual bounds at the nodes in the search tree are obtained by solving the LP relaxation of

the MIP at the nodes, the branching scheme employed has a significant impact on the effec-

tiveness of the algorithm. A computational study in [6], using CPLEX 12.5, shows that a

naive branching scheme, i.e., branch on the most infeasible variable, increases computation

time by a factor of 4.5 and number of nodes explored by a factor of 6.5 times compared to

the default branching scheme.

The typical branching scheme identifies a variable xi with fractional value f in the

solution to the LP relaxation and creates two branches (i.e., two new nodes in the search

tree) one in which the constraint xi ≥ dfe is imposed and one in which the constraint

xi ≤ bfc is imposed, i.e., branching is based on a single-variable dichotomy. As a result,

most research on branching schemes (in the context of LP based branch and bound) has

focused on the identification of the variable to branch on, e.g., pseudo-cost branching [19],

strong branching [11], and reliability branching [5]. Branching based on sets of variables

has only been considered in very special cases, e.g., special ordered set branching (see [16]

and [17]). We note that in [62], they list multi-variable branching schemes as one of the

under-explored areas of research that deserves further investigation.

5

1.2.2 Single-Variable Branching

Over the years, much effort has been devoted to finding schemes for selecting a (single)

variable to branch on that result in small search trees. The “desirability” of branching on

a particular variable in a single-variable branching scheme has historically been defined by

the value max{z−, z+}, in case of a maximization problem, where z− and z+ represent

the optimal value of the LP relaxation on the “down” branch and the “up” branch of that

variable, respectively, and where a smaller value of max{z−, z+} is more desirable.

The simplest scheme is to select the variable xi with fractional part f − bfc closest

to 0.5. Let z be the value of the LP solution. The intuition (or hope) is that enforcing

xi ≤ bfc and enforcing xi ≥ dfe result in noticeable changes to the value of the LP solu-

tion, and, therefore, we will have max{z−, z+} noticeably less than z, which improves the

dual bound. The computational requirements of this naive method are minimal, but, unfor-

tunately, studies have shown that it is not much better than randomly selecting a variable

(see [4]).

Rather than hoping that max{z−, z+} is noticeably less than z, pseudo-cost branching

(PB) (see [19]) observes and records actual changes to the values of the LP relaxations and

maintains for each variable xi an average change and uses these values to choose a variable

to branch on. The major weakness of PB is that initially little or no information is available

and initial branching decisions, at the top of the search, are critically important. How-

ever, PB is computationally cheap, and computational studies have shown that it performs

reasonably well.

Instead of hoping or observing and recording, strong branching (SB) (see [11]) goes

ahead and computes the change in dual bound for each variable xi with a fractional value,

i.e., it computes the value z−i at the “down” child where xi ≤ bfic is imposed and the

value z+
i at the “up” child where xi ≥ dfie is imposed. SB then chooses the variable xi for

which max{z−i , z+
i } is the smallest. SB results in small search trees, but, unfortunately, is

computationally intensive and the benefits of smaller search trees are often undone by the

6

effort required to select the variable to branch on.

Hybrid strong / pseudo-cost branching tries to overcome the weaknesses of the two

methods by applying SB to nodes high in the search tree (i.e., depth up to d) and switch-

ing to PB for nodes low in the search tree (i.e., depth more than d). Since d is typically

chosen to be relatively small, fractional variables without a pseudo-cost may still be en-

countered at depth more than d, in which case SB is used to initialize the pseudo-cost

([45, 58]). These ideas have been taken one step further in reliability branching (RB) (see

[5]) which uses SB to initialize variables without a pseudo-cost or to re-initialize vari-

ables with an unreliable pseudo-cost. Extensive computational experiments have shown

that RB performs the best among all aforementioned methods in terms of solution time.

Furthermore, several generalizations and alternatives to SB have been considered. For ex-

ample, the linear scoring rule [58] generalizes SB: it chooses the variable xi for which

(1 − µ) max{z − z−i , z − z+
i } + µmin{z − z−i , z − z+

i } is the largest, where µ ∈ [0, 1]

is a parameter (µ = 1 gives SB). An alternative, which performs well in practice, is the

product scoring rule [2], in which the variable xi chosen is the one for which the product

(max{z − z−i , ε}) · (max{z − z+
i , ε}) is the largest, where ε is a small positive tolerance.

Other rules are discussed in [14], which also provides theoretical and computational in-

sights into the challenges of designing branching rules.

Instead of deciding candidate branching variables purely from one optimal solution of

the current LP relaxation, in [20], they take advantage of the multiple alternative optimal

solutions and potentially avoids solving unpromising LPs in strong branching. In [3] relia-

bility branching is combined with criteria from conflict analysis widely used in satisfiability

problems (SAT) into hybrid branching which solves standard integer programs faster than

reliability branching.

7

1.2.3 Multi-Variable Branching

Two types of special ordered sets (SOS) were introduced in [16] for modeling nonconvex

problems. Special order sets of type 1 (SOS1), in which at most one element from an or-

dered set can have a non-zero value, can be used to model multiple choice problems, while

special ordered sets of type 2 (SOS2), in which up to two consecutive elements from an

order set can have non-zero values, can be used when a nonlinear function is approximated

by a piecewise linear function. Multi-variable branching can be readily applied to variables

appearing in special ordered sets. For example, let xi for i ∈ {1, . . . , n} be the variables

in a special ordered set of type 1, and let x0 = x1 = . . . xk−1 = 0, xk = xk+1 = 0.5,

and xk+2 = . . . , xn = 0, then we can branch by imposing xi = 0 for i = 1, . . . , k on one

branch and imposing xi = 0 for i = k + 1, . . . , n on the other branch. Similar branching

ideas can be developed for special ordered sets of type 2. Beyond the well-known SOS1

and SOS2, Linked Ordered Sets (LOS) was introduced in [17]. We note that these multi-

variable branching rules target special structures occurring in certain types of optimization

problems.

Basis reduction methods, following the groundbreaking work of [57], also give rise to

multi-variable branching, often referred to as hyperplane branching in that context. (For an

introduction to basis reduction methods, see [63], and for an overview of “non-standard”

methods for integer programming, see [1].) Ihe potential of hyperplane branching for de-

composable knapsack problems (DKPs) is established in [54]. They show that for certain

classes of 0-1 knapsack instances a feasibility version can be generated and demonstrate

how the infeasibility of this feasibility version can be proven by branching on hyperplanes.

Obtaining these hyperplanes, however, involves basis reduction computations which are

time-consuming (in spite of their polynomial complexity for fixed dimension). One of the

classes of 0-1 knapsack instances considered by [54] are the Chvátal instances. They show

that a feasibility version can be generated for instances with an odd number of variables

and that therefore infeasibility of these instances can be proven instantly via branching on

8

hyperplanes. Unfortunately, a feasibility version cannot be generated for the instances with

an even number of nodes, which are more the interesting instances, and, therefore, their dif-

ficulty cannot be assessed using the [54] framework. Using a traditional, but multi-variable

branching perspective, we show how to choose a set S of variables to branch on that will

solve all instances (regardless of whether the number of variables is odd or even) evaluating

only a few nodes.

1.2.4 Learning to Branch

The recent success of machine learning has inspired new ways to guide the selection of

the branching variable. DASH (Dynamic Approach for Switching Heuristics) is introduced

in [34], which chooses a branching scheme from a collection of branching schemes to be

applied at a node in the search tree based on the features of the integer program at that

node. The learning is offline, i.e., it is based on the performance of the branching schemes

on a set of training instances. In [14], it is shown how to learn near-optimal parameters

in a convex combination of scoring functions from a sample of instances drawn from a

distribution over an instance class and provides complexity guarantees on the number of

samples needed.

Almost all single-variable branching schemes, pure pseudo-cost branching being the

exception, in one way or another rely on SB concepts. SB has been shown to result in

small search trees, but is computationally prohibitive. Thus another line of research tries

to mimic the behavior of SB via machine learning (ML) techniques in the hope of achiev-

ing search trees of small size without the need to spend huge amounts of computing to

select a variable to branch on. The idea is to solve many instances using a SB strategy, col-

lecting information throughout the solution process, e.g., features of candidate branching

variables, SB scores, ranking of SB scores at a node, and then train a ML model to predict

SB scores or a ranking of candidate variables based on their features. In [7] extremely

randomized forests are used to train a ML model offline. Their computational study shows

9

that the learned model is faster than full SB, but that it is outperformed by RB. An on-

line learning variant enhanced by a reliability mechanism is proposed in [61]. The authors

observe improvement over (their implementation of) full SB and RB, but it is difficult to

tell from the performance profile how significant the improvement is. In [52], an online

ML model trained by SVMrank is proposes to predict a ranking of candidate variable by

SB scores rather than SB scores themselves. Their computational study shows that using

the ML model has some benefits over using PB, but cannot compete with the state-of-the-

art implementations of RB, which is the default branching scheme of CPLEX. Finally, in

[44], they use imitation learning (using a graph convolutional neural network) to learn SB

and report promising results that the resulting branching scheme outperforms the default

branching scheme of SCIP, a state-of-the-art open-source solver, on three classes of op-

timization problems. For a recent survey and more in-depth discussion of learning and

branching for MIP, see [59].

1.3 Service Network Operations

The second part of this dissertation is focused on challenging MIPs arising in service net-

work operations. In this section, we provide background information on the two problems

considered in this context, and we motivate our specific research efforts.

1.3.1 Background and Motivation

Two of the major challenges faced by logistics companies, such as Fedex and United Parcel

Service, are designing service networks that allow efficient and economic daily operations

to satisfy their business needs and ensuring their operations are carried out steadily.

To address the first challenge, we consider the service network design problem with

in-tree constraints (SNDPITC), which tries to find a minimum-cost transportation plan for

shipping multiple less-than-truckload (LTL) commodities from their respective origin to

their respective destination. In addition, if any commodities sharing the same destination

10

should meet at any given point in their respective paths, then they must continue on a

common path from that point forward.

As is often the case, those companies use a large and heterogeneous pool of trailers and

containers in their service (linehaul) networks. To ensure that the right equipment is avail-

able at the right location at the right time is part of the second challenge. This is difficult

to achieve, in part, because the flow of packages between facilities in the network is not

balanced. Another source of imbalance comes from their planning process, where a phased

approach is typically applied to reduce the complexity. As a consequence, the companies

are forced to move equipment empty, i.e., reposition equipment, which is expensive and

motivates research for cheaper ways to restore balance.

1.3.2 Service Network Design With In-Tree Constraints

LTL companies often, in load planning, require the in-tree restriction, which is used to

simplify operations at handling terminals (crossdock facilities and the like): dock workers

loading trucks need only look at the destination of a commodity to know the next destina-

tion it should be loaded to. This restriction implies not only that each commodity follows

a single path, but that the paths for commodities having the same destination induce an

in-tree rooted at the destination.

Network design problems for freight transportation have been extensively researched,

and reviews of modeling and mathematical programming developments can be found in

papers such as [29], [55], [71]. Network design problems are usually modeled as a multi-

commodity flow problem (MCFP) with some additional design variables (usually integral)

and constraints forcing the flows to comply with the design. The variant in which the flow

of a commodity must follow a single path, (it cannot be split to be sent on multiple paths),

is known as network design with unsplittable or nonbifurcating flow, and has also been

relatively well studied [see 70], as has the case with splittable or bifurcating flow [see 42].

MCFP with various transport cost functions, including piecewise linear functions [41] and

11

applications with nonlinear functions [23, 32, 46], has also investigated a lot. A polyhedral

study and branch-and-cut algorithm for network design with splittable and unsplittable flow

is presented in [13]. A column generation model and branch-and-price-and-cut algorithm

for MCFP with unsplittable flows is presented in [15]. A comparison of branch-and-cut

algorithms for MCFP with unsplittable flow is presented in [9]. An exact solution method-

ology for the multicommodity network flow problem with general step cost functions is

provided in [43]. A branch-and-cut algorithm that embeds new classes of valid inequalities

for an network design problem with unsplittable flow is presented in [18]. A branch-and-cut

algorithm with filtering for the multicommodity capacitated fixed charge network design

problem is developed in [27]. A dynamic discretization discovery method is designed for

solving the scheduled service network design problem in [49].

In contrast, the SNDPITC is relatively unexplored. In [65], they present a local im-

provement heuristic which manipulates the tree constraint, as well as primal-dual algo-

rithms that provide upper and lower bounds. Similar versions to one of our formulations

including time constraints, which are not considered in our work, are presented in [50] and

[38] along with heuristics.

1.3.3 Equipment Balancing

We are primarily interested in reducing imbalance resulting from the phased planning

process, which goes sequentially as follows. In a flow planning phase, a forecast of

daily origin-destination demand is used to determine origin-destination paths for pack-

ages that guarantee the service commitments are met and that create consolidation op-

portunities (consolidation is the primary mechanism a package express carrier employs to

reduce/control its operational costs). In a load planning phase, the package flows are con-

verted into loads, i.e., timed movements of equipment through the network. This phase

continues to focus primarily on the flow of packages (now in discrete units - by assigning

the flows of packages to equipment types), but equipment repositioning decisions are also

12

made. In a scheduling phase, driver schedules are created to actually move the loads from

their origin to their destination directly or through one or multiple relay points. A driver

schedule plan typically covers a period of a week and has to satisfy many requirements,

e.g., Hours of Service regulations and union contract rules. As considerations related to the

equipment pool are only of secondary importance in the above planning phases, the result-

ing plan (i.e., the plan of loads to be moved in the coming week and the driver schedules

to execute this plan) tends to be imbalanced, in the sense that the inventory of the different

equipment types at a facility at the start of the week differs from that at the end of the

week, which is referred to as the equipment imbalance introduced by (or associated with)

the plan. As this may lead to a surplus or a shortage of equipment in the future, the final

phase in the planning process seeks to reduce the equipment imbalance introduced by the

plan.

The existing literature on equipment management in the trucking industry focuses on

the design of empty repositioning strategies to balance equipment (also referred to as

“empty vehicle allocation” or “redistribution”), e.g., [36], [22], [37], [60], [33], and [24].

We are not aware of any literature on approaches based on equipment substitution to deal

with equipment imbalance in the trucking industry, and thus the complexity of related op-

timization problem is unknown.

1.4 Main Contributions

The three main contributions are: (1) improved branching strategies for solving (general)

integer programs, (2) improved formulations and new classes of valid inequalities for ser-

vice network design with in-tree constraints, and (3) computational complexity analysis of

service network operations with multiple equipment types. Details are provided below.

We consider a multi-variable branching scheme that is a natural generalization of a

single-variable branching scheme. Rather than branching on a single variable with a frac-

tional value in the solution to the LP relaxation, branching is performed on a set of vari-

13

ables such that the sum of their values in the solution to the LP relaxation is fractional.

More specifically, a set S of variables with
∑

i∈S xi = f with f fractional is identified

and two branches are created, one in which the constraint
∑

i∈S xi ≥ dfe is imposed and

one in which the constraint
∑

i∈S xi ≤ bfc is imposed. Chvatal, using a class of 0-1 knap-

sack instances, demonstrates that branch and bound algorithms employing a single-variable

branching scheme may have to explore exponentially many nodes [28]. One of our contri-

butions is to show that there is a branch and bound algorithm employing a multi-variable

branching scheme that can solve any instance in this class by exploring either three or seven

nodes. That some instances in this class can be solved easily by a multi-variable branch-

ing scheme was known, as it follows from investigations of basis reduction methods for

decomposable knapsack problems [54], but we are the first to show that all instances in

this class can be solved easily by a multi-variable branching scheme. Another contribution

is that we present and partially characterize situations in which multi-variable branching

schemes lead to better dual bounds, i.e., smaller values of max{z−, z+}, which should lead

to smaller search trees. Finally, we demonstrate the potential benefits of multi-variable

branching schemes in an extensive computational study in which we assess their relative

performance, where our primary measure for the quality of a branching scheme is the num-

ber of nodes explored in the search tree, but, at the same time, we seek branching schemes

that are computationally efficient.

We propose generalized strong branching (GSB) which uses SB scores to select a set

of variables to branch on. If only sets of variables of up to size k are considered, this

will be denoted as GSB-k. The computational challenges associated with computing SB

scores are even greater than the single-variable counterpart since we have far more choices

of candidates. To reduce the computational burden, only a small number of candidate sets

are considered. Furthermore, we propose a new weighted product function to compute

SB scores for candidate sets that makes GSB-2 able to achieve better node efficiency than

SB, i.e. the resulting search trees are smaller, which is non-trivial. Nevertheless, GSB-

14

2 still remains unpractical in view of its significantly longer computation time compared

to existing single-variable branching schemes in use. Therefore, we exploit advances in

ML to (efficiently) select a good set of variables to branch on and demonstrate that ML

techniques can be used to develop branching strategies that are computationally efficient

and mimic SB (single variable) and GSB (pair of variables). Moreover, we highlight the

importance and benefit of a systematic approach to feature selection. Finally, we show that

branching strategies based on learning can outperform the default branching strategy of

state-of-the-art commercial solver CPLEX in terms of both the number of nodes explored

in the search tree and the time it takes to explore the search tree through extensive numerical

experiments.

We approach the SNDPITC from a pure cutting plane perspective. We first compare the

size and strength of three popular Steiner in-tree formulations: the path-only formulation,

the path-tree formulation and the tree-only formulation. The size is measured by the num-

ber of variables and constraints of each formulation and the strength is compared by the

feasible region of their corresponding linear programming (LP) relaxation. We conclude

that the path-only formulation is weaker than the path-tree and the tree-only formulations,

which are proved to be equivalent. Based on them, we subsequently present three inte-

ger programming (IP) formulations for the SNDPITC: a commodity-based formulation, a

destination-based formulation, and a flow-based formulation. We also compare their sizes

and show that the flow-based formulation is significantly more compact than the other two

formulations. In terms of strength, we conclude the destination-based formulation is the

strongest amongst the three by showing the feasible region of its LP relaxation is strictly

contained in those of the other two formulations. Then we present some simple constraints

to further strengthen these three formulations. For real applications, the number of com-

modities |K| can be prohibitively large and the flow-based formulation may be the only

viable model since its size is independent of |K|. Thus, we are particularly interested in

this formulation and try to iteratively tighten it by cutting planes. To this end, we derive six

15

new classes of cutting planes: the wheat-stalk inequalities, the wheat-sheaf inequalities, the

combinatorial rounding inequalities, the generalized cut-set inequalities, the commodity-

merging inequalities, and the truck-balancing inequalities. We show by a non-trivial in-

stance that inequalities of these six classes can help improve the dual bound significantly

when all simple strengthening inequalities and cut-set inequalities have already been ap-

plied. Despite their potential effectiveness, the separation can be challenging. We discuss

the difficulty of separation and present ideas for separation heuristics. Finally, as a proof-

of-concept, we implement simple separation heuristics for two classes of valid inequalities

and demonstrate that violated inequalities are identified and that their addition improves

the dual bound.

We introduce a substitution-based equipment balancing problem and develop a MIP

formulation. We consider several simplified versions of the underlying optimization prob-

lems, i.e., minimizing imbalance and minimizing the number of substitutions required to

achieve minimum imbalance. By determining the computational complexity theoretically,

we conclude that when the number of equipment types in the network is two, then the two

problems of interest can be polynomially solvable. However, when the number of equip-

ment types is at least three, the solution becomes difficult, actually NP-hard. Although

the complexity analysis results in somewhat negative results but it provides insights to the

source of difficulty and potentially helps design efficient heuristics.

1.5 Remarks

The research presented in Chapter 4 was initiated by Dr. Ira Wheaton Jr. who carried out

the analysis of the formulations and was responsible for the basic variant of the wheat-stalk

inequality.

The research presented in Chapter 5 of this dissertation was part of a larger effort on

developing decision support technology for equipment management at a large U.S. package

express carrier based in Atlanta. The material presented in the dissertation represents the

16

areas of research for which I was responsible. For an overview of the complete research

effort, see [74].

17

CHAPTER 2

MULTI-VARIABLE BRANCHING: A 0-1 KNAPSACK PROBLEM CASE STUDY

In this chapter, we explore the benefit of multi-variable branching schemes focusing on 0-1

knapsack problems of the form:

max
n∑
i=1

pixi

subject to
n∑
i=1

wixi ≤ b,

xi ∈ {0, 1}, ∀ i ∈ [n].

where [n] = {1, . . . , n} and b ∈ Z>0, pi, wi ∈ Z>0 and wi ≤ b for all i ∈ [n]. We demon-

strate the potential of multi-variable branching on a special class of knapsack instances

analyzed in [28] and partially characterize the situations when branching on multiples vari-

ables does bring benefits, which is further confirmed by a numerical study.

The remainder of this chapter is organized as follows. In Section 2.1, we consider a

class of difficult 0-1 knapsack problems used in [28]. In Section 2.2, we give examples

showing that branching on sets of variables can be better than branching on a single vari-

able, and derive conditions for branching on sets of two variables to outperform branching

on a single variable. In Section 2.3, we report the results of a number of numerical experi-

ments which further reinforce that branching on sets of variables holds promise. Finally, in

Section 2.4, we provide some concluding remarks.

18

2.1 Chvátal Instances and Multi-Variable Branching

We first study the class of instances characterized by the following formulation:

max
n∑
i=1

aixi

subject to
n∑
i=1

aixi ≤

⌊
n∑
i=1

ai/2

⌋
,

xi ∈ {0, 1}, i ∈ {1, . . . , n},

where

•
∑

i∈I ai ≤
∑n

i=1 ai/2 for all sets I ⊆ {1, . . . , n} with |I| ≤ n/10,

• every integer greater than one divides fewer than 9n/10 of the integers ai,

•
∑

i∈I ai 6=
∑

j∈J aj , when I 6= J , and

• there is no set I such that
∑

i∈I ai = b
∑n

i=1 ai/2c.

In [28], it is shown that for this class of 0-1 knapsack instances, a branch and bound

algorithm employing a singe-variable branching scheme must explore at least 2n/10 nodes.

In [28], a “specific example” with aj = 2k+n+1 + 2k+j + 1 for j = 1, . . . , n and with

k = blog(2n)c is also considered. For this class of 0-1 knapsack instances, it can be

shown that a branch and bound algorithm employing a singe-variable branching scheme

must explore at least 2(n−1)/2 nodes. We will show, for this class of instances, that a branch

and bound algorithm employing an appropriately chosen multi-variable branching scheme

solves instances by evaluating at most 7 nodes. We start by observing some properties of

the instance data and showing that each instance has a unique optimal solution.

Lemma 2.1.1. When n is odd, the sum of the largest n−1
2

coefficients in the “specific ex-

19

ample” is less than b, while the sum of the smallest n+1
2

coefficients exceeds b:

n∑
j=n+1

2
+1

aj < b and

n+1
2∑
j=1

aj > b. (2.1)

Proof. For n odd,

b :=

⌊
n∑
i=1

ai/2

⌋
=

⌊
n∑
j=1

(
2k+n + 2k+j−1 + 1/2

)⌋
= (n+ 1)2k+n − 2k +

n− 1

2
.

Summing the largest n−1
2

elements, we have

n∑
j=n+1

2
+1

aj =
n∑

j=n+1
2

+1

(
2k+n+1 + 2k+j + 1

)
= (n+1)2k+n−2k+n+1

2
+1+

n− 1

2
< b. (2.2)

Summing the smallest n+1
2

elements, we have

n+1
2∑
j=1

aj =

n+1
2∑
j=1

(
2k+n+1 + 2k+j + 1

)
= (n+ 1)2k+n + 2k+n+1

2
+1− 2k+1 +

n+ 1

2
> b. (2.3)

�

Corollary 2.1.1. When n is odd, the inequality

n∑
j=1

xj <
n+ 1

2

is valid for the LP relaxation of the “specific example”.

Proof. This is obvious from the second part of Lemma 2.1.1. �

Corollary 2.1.2. When n is odd, the optimal solution to an instance in the “specific exam-

ple” class is:

x∗ = (

n+1
2︷ ︸︸ ︷

0, . . . , 0,

n−1
2︷ ︸︸ ︷

1, . . . , 1).

20

Proof. By Corollary 2.1.1 and integrality, an optimal solution can have at most n+1
2
− 1 =

n−1
2

non-zero variables. By Lemma 2.1.1, packing the last n−1
2

items into the knapsack is

feasible, and since these have the largest coefficients, will give the best possible value. �

Proposition 2.1.1. If n is even, the optimal solution to an instance in the “specific exam-

ple” class is:

x∗ = (0, . . . , 0︸ ︷︷ ︸
n
2
−1

, 1, . . . , 1︸ ︷︷ ︸
n
2

, 0).

Proof. When n is even,

b =

⌊
n∑
i=1

ai/2

⌋
=

⌊
n∑
j=1

(
2k+n + 2k+j−1 + 1/2

)⌋
= (n+ 1)2k+n − 2k +

n

2
.

Summing the smallest n
2

elements, we have

n
2∑
j=1

aj =

n
2∑
j=1

(
2k+n+1 + 2k+j + 1

)
= n2k+n + 2k+n

2
+1 − 2k+1 +

n

2
< b. (2.4)

Summing the first n
2

+ 1 elements, we have

n
2

+1∑
j=1

aj =

n
2

+1∑
j=1

(
2k+n+1 + 2k+j + 1

)
= (n+ 2)2k+n + 2k+n

2
+2 − 2k+1 +

n

2
+ 1 > b. (2.5)

Thus, we can pack at most n
2

items. The most valuable n
2

items have total weight

n∑
j=n

2
+1

aj =
n∑

j=n
2

+1

(
2k+n+1 + 2k+j + 1

)
= (n+ 1)2k+n + 2k+n − 2k+n

2
+1 +

n

2
> b,

and, thus, we cannot simply pack the last n
2

items. However, note that

n
2
−1∑
j=1

aj

+ an =

n
2
−1∑
j=1

(
2k+n+1 + 2k+j + 1

)+ 2k+n+1 + 2k+n + 1

= (n+ 1)2k+n + 2k+n
2 − 2k+1 +

n

2
> b.

(2.6)

21

This shows that if the n-th item is included, we can pack at most n
2
− 1 items with total

value no more than

α :=
n∑

j=n
2

+2

aj =
n∑

j=n
2

+2

(
2k+n+1 + 2k+j + 1

)
= n2k+n − 2k+n

2
+1 +

n

2
− 1. (2.7)

Excluding the n-th item and packing the most valuable n
2

items among the remaining n− 1

items has value

α <
n−1∑
j=n

2

aj =
n−1∑
j=n

2

(
2k+n+1 + 2k+j + 1

)
= (n+ 1)2k+n − 2k+n

2 +
n

2
< b. (2.8)

Thus, we obtain that the optimal solution is x∗ = (0, . . . , 0︸ ︷︷ ︸
n
2
−1

, 1, . . . , 1︸ ︷︷ ︸
n
2

, 0). �

Next, we define the multi-variable branching scheme to be used for this class of in-

stances. Let x̂ be the solution to LP relaxation at a node, letXI = {i : x̂i ∈ {0, 1}, i ∈ [n]}

be the set of variables with an integral value, i.e. 0 or 1, in that solution, Xf = {i : 0 <

x̂i < 1, i ∈ [n]} be the set of variables with a fractional value in that solution, and

j = min{i : i ∈ Xf} be the index of the first variable with a fractional value. Then

we branch on the set S = XI ∪ {j}.

Theorem 2.1.1. A branch and bound algorithm employing a multi-variable branching

based on the set S as defined above solves an instance in at most 7 nodes when n is even

and at most 3 nodes when n is odd.

Proof. We introduce the following notation. The root node of the search tree is identified

by (0, ·) and other nodes are identified either by a pair (k,+) or by a pair (k,−) where

k represents the depth of the node, − indicates the node was reached from its parent by

branching down, and + indicates the node was reached from its parent by branching up. In

general, this does not uniquely identify a node in the search tree, but, as we will see shortly,

in this case it does. The solution x(0,·) at the root node has at most one fractional variable,

22

which implies that S = [n].

When n is odd, by Lemma 2.1.1, we have n−1
2

<
∑n

i=1 x
(0,·)
i < n+1

2
. Branching on

S = [n] generates two branches defined by
∑n

i=1 xi ≤
n−1

2
and

∑n
i=1 xi ≥

n+1
2

. By

Lemma 2.1.1, LP(1,+) is infeasible, while LP(1,−) has solution x(1,−) = (0, . . . , 0︸ ︷︷ ︸
n+1
2

, 1, . . . , 1︸ ︷︷ ︸
n−1
2

),

which is the optimal solution to the instance. Thus, in this case, at most 3 nodes are

evaluated.

When n is even, by (2.5),
∑n

i=1 x
(0,·)
i < n

2
+ 1. By reasoning in the proof of Propo-

sition 2.1.1, n
2
− 1 <

∑n
i=1 x

(0,·)
i . To see this, suppose otherwise, i.e., suppose n

2
− 1 ≥∑n

i=1 x
(0,·)
i . In this case, the objective value of x(0,·) cannot be better than that obtained by

packing the n
2
− 1 most valuable items, given by α in (2.7). But α < z∗, the value of the

integer program, which cannot exceed the value of the LP relaxation (which must be b).

We consider several cases for
∑n

i=1 x
(0,·)
i in the open interval (n

2
− 1, n

2
+ 1).

Case 1: n
2
− 1 <

∑n
i=1 x

(0,·)
i < n

2
. Branching on S = [n] generates two branches

defined by
∑n

i=1 xi ≤
n
2
− 1 and

∑n
i=1 xi ≥

n
2
. For LP(1,−), it is easy to see that the

solution is x(1,−) = (0, . . . , 0︸ ︷︷ ︸
n
2

+1

, 1, . . . , 1︸ ︷︷ ︸
n
2
−1

), which is integer but not optimal. Then we analyze

two subcases for LP(1,+). (The search trees are shown in Figure 2.1.)

Case 1(a): If solution x(1,+) has exactly one fractional component, then S = [n] and

n
2
<
∑n

i=1 x
(1,+)
i < n

2
+ 1. Branching on S = [n] generates two branches defined by∑n

i=1 xi ≤
n
2

and
∑n

i=1 xi ≥
n
2

+ 1. Clearly, LP(2,+) is infeasible. Observe that LP(2,−) has

both
∑n

i=1 xi ≤
n
2

and
∑n

i=1 xi ≥
n
2
, which implies that

∑n
i=1 xi = n

2
, which forces x(2,−)

to have exactly two fractional variables. One of them has to be xn, because if x(2,−)
n = 0,

it will not give the largest possible value by (2.7) and (2.8). If x(2,−)
n = 1, even if all n

2
− 1

items with smallest weight are included, i.e., a1 through an
2
−1, the weight constraint is

still violated in view of (2.6). Therefore, at this node, S = [n − 1], which generates two

branches defined by
∑n−1

i=1 xi ≤
n
2
− 1 and

∑n−1
i=1 xi ≥

n
2
. LP(3,−) has both

∑n
i=1 xi = n

2

23

and
∑n−1

i=1 xi ≤
n
2
− 1, which implies xn = 1 and

∑n−1
i=1 xi = n

2
− 1, which is infeasible.

LP(3,+) has solution x(3,+) = (0, . . . , 0︸ ︷︷ ︸
n
2
−1

, 1, . . . , 1︸ ︷︷ ︸
n
2

, 0) which is optimal to the original integer

program. Thus, in this case, at most 7 nodes will be evaluated.

Case 1(b): If solution x(1,+) has two fractional components, then x(1,+)
n must be frac-

tional using a similar argument to the one given for LP(2,−) in Case 1(a). Therefore, at

this node, S = [n − 1], which generates two branches defined by
∑n−1

i=1 xi ≤
n
2
− 1 and∑n−1

i=1 xi ≥
n
2
. LP(2,−) has both

∑n
i=1 xi ≥

n
2

and
∑n−1

i=1 xi ≤
n
2
− 1 which implies xn = 1

and
∑n−1

i=1 xi = n
2
− 1, which is infeasible by (2.6). LP(2,+) has both

∑n
i=1 xi ≥

n
2

and∑n−1
i=1 xi ≥

n
2
, one of which is redundant. Therefore, its solution x(2,+) has exactly one

fractional variable, and, consequently, S = [n] and n
2
<
∑n

i=1 x
(2,+)
i < n

2
+ 1. Branching

on S = [n] generates two branches defined by
∑n

i=1 xi ≤
n
2

and
∑n

i=1 xi ≥
n
2

+ 1. Clearly,

LP(3,+) is infeasible. LP(3,−) has
∑n

i=1 xi ≥
n
2
,
∑n−1

i=1 xi ≥
n
2

and
∑n

i=1 xi ≤
n
2
, which im-

plies
∑n

i=1 xi = n
2

and xn = 0, which gives solution x(3,−) = (0, . . . , 0︸ ︷︷ ︸
n
2
−1

, 1, . . . , 1︸ ︷︷ ︸
n
2

, 0), which

is the optimal to the instance. Thus, in this case too, at most 7 nodes will be evaluated.

LP(0,	•)

LP(1,	-) LP(1,	+)
Integer, not optimal One fractional

LP(3,	-)

LP(2,	-)

LP(3,	+)

LP(2,	+)

Two fractional Infeasible

Infeasible Optimal

Case	1(a)
LP(0,	•)

LP(1,	-) LP(1,	+)

Two fractional

LP(3,	-)

LP(2,	-)

LP(3,	+)

LP(2,	+)

Infeasible One fractional

InfeasibleOptimal

Case	1(b)

Integer, not optimal

Figure 2.1: Search trees when n is even for Case 1.

Case 2: n
2
<
∑n

i=1 x
(0,·)
i < n

2
+ 1. Branching on S = [n] generates two branches

defined by
∑n

i=1 xi ≤
n
2

and
∑n

i=1 xi ≥
n
2

+ 1. LP(1,+) is infeasible. Next, we analyze two

24

subcases for LP(1,−). (The search trees are shown in Figure 2.2.)

Case 2(a): If x(1,−) has only one fractional variable, then S = [n] and n
2
− 1 <∑n

i=1 x
(1,−)
i < n

2
and two branches are generated defined by

∑n
i=1 xi ≤

n
2
− 1 and∑n

i=1 xi ≥
n
2
, respectively. LP(2,−) and LP(2,+) are the same as LP(1,−) in case Case 1

and LP(2,−) in case Case 1(a), which completes the argument for this case.

Case 2(b): If x(1,−) has two fractional variables, by similar argument for LP(2,−) in Case

1(a), we know x
(1,−)
n is fractional. Then S = [n − 1] and n

2
− 1 <

∑n−1
i=1 x

(1,−)
i < n

2
and

two branches are generated defined by
∑n−1

i=1 xi ≤
n
2
− 1 and

∑n−1
i=1 xi ≥

n
2
, respectively.

LP(2,+) has both
∑n

i=1 xi ≤
n
2

and
∑n−1

i=1 xi ≥
n
2
, which yields the optimal solution x(2,+) =

(0, . . . , 0︸ ︷︷ ︸
n
2
−1

, 1, . . . , 1︸ ︷︷ ︸
n
2

, 0). LP(2,−) has both
∑n

i=1 xi ≤
n
2

and
∑n−1

i=1 xi ≤
n
2
− 1, one of which

is redundant. x(2,−) can only have one fractional variable, and
∑n−1

i=1 xi <
n
2
− 1 and x(2,−)

n

is fractional. Thus S = [n] and n
2
− 1 <

∑n
i=1 x

(2,−)
i < n

2
and two branches are generated

defined by
∑n

i=1 xi ≤
n
2
−1 and

∑n
i=1 xi ≥

n
2
, respectively. LP(3,−) are the same as LP(1,−)

in Case 1, which has non-optimal integer solution, and LP(3,+) is infeasible. �

LP(0,	•)

LP(1,	-) LP(1,	+)
One fractional Infeasible

LP(3,	-)

LP(2,	-)

LP(3,	+)

LP(2,	+)

Two fractionalInteger, not optimal

Infeasible Optimal

Case	2(a)
LP(0,	•)

LP(1,	-) LP(1,	+)

Infeasible

LP(3,	-)

LP(2,	-)

LP(3,	+)

LP(2,	+)

Integer, not optimal

One fractional

Infeasible

Optimal

Case	2(b)

Two fractional

Figure 2.2: Search trees when n is even for Case 2.

25

2.2 Examples and Analysis

The multi-variable branching scheme used to solve Chvátal’s specific example class of

instances shows the dramatic improvements that are possible, but it is a specific branching

scheme for a specific class of instances. We now present and analyze examples in which

branching on a set of variables of size two improves over branching on a set of variables

of size one, and branching on a set of variables of size three improves over branching on

a set of variables of size two. The insights obtained from the analysis suggest branching

schemes that are more general and that may be computationally viable.

The following example illustrates that branching on sets of variables of size two can be

better than branching on sets of variables of size one (standard single-variable branching).

Consider the 0-1 knapsack problem

z∗ = max 9x1 + 4.2x2 + x3

subject to 3x1 + 2x2 + x3 ≤ 5.7,

xi ∈ {0, 1}, i ∈ [3].

The solution to the LP relaxation is xLP = (1, 1, 0.7) with value zLP = 13.9. Using

standard single-variable branching, the solution to LP relaxation at the node on the down

branch is x− = (1, 1, 0) with value z− = 13.2, and the solution to LP relaxation at the node

on the up branch is x+ = (1, 0.85, 1) with value z+ = 13.57. If, instead, we branch on

the set of variables S = {2, 3}, then the solution to LP relaxation at the node on the down

branch is x− = (1, 1, 0) with value z− = 13.2, and the solution to LP relaxation at the node

on the up branch is x+ = (0.9, 1, 1) with value z+ = 13.3. Thus, we obtain a better bound

as max{13, 13.3} = 13.3 < max{13, 13.57} = 13.57. See Figure 2.3 for an illustration.

26

Root
xLP = (1, 1, 0.7)
zLP = 13.9

LP−

x− = (1, 1, 0)
z− = 13.2

x3 = 0

LP+

x+ = (1, 0.85, 1)
z+ = 13.57

x3 = 1

Root
xLP = (1, 1, 0.7)
zLP = 13.9

L̂P
−

x−S = (1, 1, 0)

z−S = 13.2

x2 + x3 ≤
⌊
xLP
2 + xLP

3

⌋
= 1

L̂P
+

x+S = (0.9, 1, 1)

z+S = 13.3

x2 + x3 ≥
⌈
xLP
2 + xLP

3

⌉
= 2

Figure 2.3: Example in which multi-variable branching (with set of branching variables
|S| = 2) improves over single-variable branching.

Consider the 0-1 knapsack problem

z∗ = max 16x1 + 9x2 + 4x3 + 1.1x4

subject to 4x1 + 3x2 + 2x3 + x4 ≤ 5.2,

xi ∈ {0, 1}, i ∈ [4].

The solution to the LP relaxation is xLP = (1, 0.4, 0, 0) with value zLP = 19.6. Using

standard single-variable branching, the solution to the LP relaxation at the node on the

down branch is x− = (1, 0, 0.6, 0) with value z− = 18.4, and the solution to the LP

relaxation at the node on the up branch is x+ = (0.55, 1, 0, 0) with value z+ = 17.8. If,

instead, we branch on the set of variables S = {2, 3}, then the solution to the LP relaxation

at the node on the down branch is x− = (1, 0, 0, 1) with value z− = 17.1, and the solution

to LP relaxation at the node on the up branch is x+ = (0.55, 1, 0, 0) with value z+ = 17.8.

Thus, we obtain a better bound: max{17.1, 17.8} = 17.8 < max{18.4, 17.8} = 18.4.

(Branching on S = {1, 2} gives the same bound as single-variable branching: the up branch

27

is infeasible and the down branch gives bound 18.4.) However, if, instead, we branch on

the set of variables S = {1, 2, 3}, then the solution to the LP relaxation at the node on the

down branch is x− = (1, 0, 0, 1) with value z− = 17.1, but the solution to the LP relaxation

at the node on the up branch is x+ = (0.2, 0.8, 1, 0) with value z+ = 14.4. Thus, we obtain

an even better bound as max{17.1, 14.4} = 17.1 < max{17.1, 17.8} = 17.8. See Figure

2.4 for an illustration.

Root

xLP = (1, 0.4, 0, 0)

zLP = 19.6

LP−

x− = (1, 0, 0.6, 0)

z− = 18.4

x2 = 0

LP+

x+ = (0.55, 1, 0, 0)

z+ = 17.8

x2 = 1

Root

xLP = (1, 0.4, 0, 0)

zLP = 19.6

L̂P
−

x−S = (1, 0, 0, 1)

z−S = 17.1

x2 + x3 ≤
⌊
xLP
2 + xLP

3

⌋
= 0

L̂P
+

x+S = (0.55, 1, 0, 0)

z+S = 17.8

x2 + x3 ≥
⌈
xLP
2 + xLP

3

⌉
= 1

28

Root

xLP = (1, 0.4, 0, 0)

zLP = 19.6

L̃P
−

x−
S̃

= (1, 0, 0, 1)

z−
S̃

= 17.1

x1 + x2 + x3 ≤
⌊
xLP
1 + xLP

2 + xLP
3

⌋
= 1

L̃P
+

x+
S̃

= (0.2, 0.8, 1, 0)

z−
S̃

= 14.4

x1 + x2 + x3 ≥
⌈
xLP
1 + xLP

2 + xLP
3

⌉
= 2

Figure 2.4: Example in which multi-variable branching using a set of branching variables
of size three improves over multi-variable branching using a set of branching variables of
size two.

Next, we present a necessary, but not sufficient, condition as well as a sufficient, but

not necessary, condition for multi-variable branching using a set of variables of size two

to outperform single-variable branching. In all that follows, when we say “outperforms”

or “is better than” we mean that the dual bound after branching is lower. Without loss of

generality, suppose p1
w1
≥ p2

w2
≥ . . . ≥ pn

wn
and that the solution to the LP relaxation at the

root node is fractional, i.e., the solution has the form

xLP = (1, . . . , 1︸ ︷︷ ︸
i−1

, f, 0, . . . , 0︸ ︷︷ ︸
n−i

),

with 1 < i ≤ n. (Note that we have assumed that wi ≤ b for i = 1, . . . , n.) We consider

two cases, i = n and 1 < i < n. In the former case, we give a necessary condition for

branching on a set of two variables to outperform single-variable branching. In the latter

case, we provide a sufficient condition.

Proposition 2.2.1. If i = n, then branching on S = {k, n} can be better than branching

on S ′ = {n} only if the solution to the LP relaxation on the up branch, x+, is fractional

and k is the index of the fractional variable in x+.

Proof. Since i = n, it must be that xLP = (1, 1, . . . , 1, f) with 0 < f < 1. It is easy to see

29

that branching on S ′ gives

x− = (1, . . . , 1︸ ︷︷ ︸
n−1

, 0), x+ = (1, . . . , 1︸ ︷︷ ︸
k−1

, f+, 0, . . . , 0︸ ︷︷ ︸
n−k−1

, 1), 0 ≤ f+ ≤ 1, 1 ≤ k ≤ n− 1.

If f+ is integer, then we have integer solutions on both the down and the up branch, and z =

max{z−, z+} is the optimal value for the original integer program. Therefore, branching

on S cannot be better than branching on S ′.

So assume 0 < f+ < 1. Consider S = {`, n} with ` < k (k ≥ 2). On the down

branch we add x` + xn ≤
⌊
xLP` + xLPn

⌋
= 1, and on the up branch we add x` + xn ≥⌈

xLP` + xLPn
⌉

= 2. Note that x− is feasible for the down branch, and, thus, z−S ≥ z−.

Similarly, x+ is feasible for the up branch, and, thus, z+
S ≥ z+. This implies zS =

max{z−S , z
+
S } ≥ max{z−, z+} = z, which means that branching on S cannot be better

than branching on S ′. Next, consider S = {`, n} with k < ` < n (k ≤ n − 2). On the

down branch, we add x` + xn ≤
⌊
xLP` + xLPn

⌋
= 1, which is satisfied by both x− and x+.

Again, branching on S cannot be better than branching on S ′. �

Proposition 2.2.2. Suppose 1 < i < n and let pi+1

wi+1
> pi+2

wi+2
and wi+1 ≥ wi. Furthermore,

let the value of the solution to the LP relaxation on the down branch be greater than the

value of the solution to the LP relaxation on the up branch, i.e., z− > z+, when branching

on S ′ = {i}. Then branching on S = {i, i+1} is better than branching on S ′ and achieves

the best bound that can be achieved by branching on a set of variables of size two.

Proof. Since wi+1 ≥ wi, branching on S ′ results, on the down branch, in

x− = (1, . . . , 1︸ ︷︷ ︸
i−1

, 0, f−, 0, . . . , 0︸ ︷︷ ︸
n−i−2

), 0 < f− < 1.

When we branch on S, we add xi + xi+1 ≤
⌊
xLPi + xLPi+1

⌋
= 0 on the down branch, and,

because pi+1

wi+1
> pi+2

wi+2
, we have that z−S < z−.

Let b̄ = b −
∑i−1

k=1wk. Because xLPi = f is fractional, wi > b̄, thus, wi+1 > b̄. We

30

will show that x+
S = x+, and, thus, z+

S = z+. When we branch on S, we add xi + xi+1 ≥

dxLPi + xLPi+1e = 1, which causes some “waste” of the resource as items i and (i + 1) are

less desirable than items 1 through i − 1. By setting xi = 1 and xi+1 = 0, the branching

constraint is satisfied and the waste is minimized. As a consequence, we obtain solution

x+. Thus, zS = max{z−S , z
+
S } = max{z−S , z+} < z− = z.

Then, consider branching on S ′′ = {k, i} 6= {i, i + 1}. When k < i, we add xk +

xi ≤
⌊
xLPk + xLPi

⌋
= 1 on the down branch, and have z−S′′ ≥ z−, because x− satisfies

x−k + x−i ≤ 1. This implies z−S′′ ≥ z− > z+, i.e., branching on S ′′ cannot be better than

branching on S (in fact, it cannot even better than branching on S ′). When k > i + 1,

we add xi + xk ≤
⌊
xLPi + xLPk

⌋
= 0 on the down branch, and have xi = xk = 0. Since

wi+1 ≥ wi > b̄, all of the resource can be consumed by items in {1, . . . , i−1, i+1}. When

branching on S, on the down branch only items in {1, . . . , i− 1, i+ 2, . . . , n} can be used,

which implies z−S′′ ≥ z−S . We have already argued that when we branch on S, on the up

branch we will have x+
i = 1 and x+

i+1 = 0. This solution is feasible when branching on

S ′′, as xi + xk ≥
⌊
xLPi + xLPk

⌋
= 1 is added on the up branch. Therefore, we also have

z+
S′′ ≥ z+

S , which implies branching on S ′′ cannot be better than branching on S. �

2.3 Computational Study

In this section, we evaluate the performance of four multi-variable branching schemes mo-

tivated by the observations in the previous section.

2.3.1 Branching on sets of size two

The first two multi-variable branching schemes involve sets of size two in order to limit

the computation time required to identify the set of variables to branch on. In the first

scheme, we use strong branching to computer SB scores for all sets of size no larger than

two (all sets of size one and two) and then pick the best one to branch on. This scheme,

which we refer to as “B1”, is an analogue of the standard single variable strong branching

31

and can be very time-consuming. In the second scheme, which is inspired by the analysis

in Section 2.2, we choose S = {i, i + 1} where i is the largest index such that x∗i is

fractional and i < n, and choose S = {i, j}, when i = n and where j the largest index

such that x∗j ∈ {0, 1}. Observe that this multi-variable branching scheme is attractive

computationally as determining S does not require the solution of any linear programs. We

refer to this scheme as “B2”.

2.3.2 Branching on dynamically determined sets

The last two multi-variable branching schemes may involve sets of size larger than two

as this may improve the performance (as we have seen in Section 2.2). To control the

computation time somewhat, we generate the set S of variables to branch on dynamically.

More specifically, we start from S = {i} with i the index of the fractional variable that

gives the best bound among all fractional variables when branching on these variables.

Note that i is the index of the variable that would be chosen if strong branching was used.

Next, we evaluate sets S = {i, j} for j such that xLPi +xLPj is fractional, and, again, choose

the set that gives the best bound, say S = {i, ĵ}. If the best bound associated with {i, ĵ} is

better than the best bound associated with {i}, then the process continues, i.e., we explores

all sets of size three, extending {i, ĵ}, to see if there is one among them that results in a

better best bound. We continue extending the set S with one more variable as long as it

results in an improved bound. We refer to this scheme as “B3”. Clearly, the B3 branching

scheme is computationally intensive, and, therefore, we consider a variant in which the

cardinality of the set is limited to at most K1 and it is only applied at the top of the search

tree, i.e., at nodes of depth less than or equal to K2. At nodes of depth more than K2,

standard single-variable branching is used, where we branch on the fractional variable with

the smallest index. We refer to this scheme as “B4”.

32

2.3.3 Computational experiments

In our computational experiments, we compare the five branching schemes:

B0: Standard single-variable branching;

B1: Standard two-variable branching;

B2: Restricted two-variable branching;

B3: Dynamic multi-variable branching; and

B4: Restricted multi-variable branching.

We implemented these five variable selection schemes in the branch-and-bound framework

of CPLEX using their callback functions. All experiments to compare the performance of

the five branching schemes use CPLEX 12.8 in single-thread mode with a time limit of one

hour for each instance. Since our focus is on the impact of the branching strategy, we turn

off cuts, heuristics, and presolve.

For our computational experiments, we use two classes of instances introduced in [64]:

uncorrelated data instances and weakly correlated data instances with coefficient rangeR =

{103, 104} and instance size n = {100, 200, 500, 1000}, i.e., 8 different combinations of R

and n for each class. For each combination, we generate 100 instances. The performance

metrics of interest are: (1) N : the number of nodes evaluated, (2) t: the solve time.

Many commercial (and open-source) solvers have switched to using the product scoring

rule [2], rather than max{z−, z+}, to assess the desirability of branching on a particular

variable. However, our theoretical analysis in the previous sections has been done using the

max scoring rule. Thus, we show all of our results computed by both the max and product

rules. Note a score function is needed only for B1, B3, and B4. Actually, preliminary

experiments with these instances revealed no performance improvement (in fact, in many

cases a performance deterioration) is yielded by the product form.

33

In Tables 2.1 and 2.2, we report, for each of the branching schemes, the number of

nodes evaluated and the solve time as a fraction of the number of nodes evaluated and

the solve time of standard single-variable branching B0, respectively, averaged over all

instances. Since nearly all weakly corrected instances with n = 1000 exceed the 1 hour

time limit when B1 (both max and product functions) or B3 (product function) is used, we

leave out those results.

Table 2.1: Ratios of N with respect to B0.

R=103
aaaaaa
n

Score Max{z−, z+} Product
B0 B1 B2 B3 B4 B1 B3 B4

Uncorrelated

100 1.00 0.55 0.80 0.23 0.56 0.64 0.44 0.87
200 1.00 0.46 0.69 0.16 0.58 0.56 0.38 0.85
500 1.00 0.36 0.52 0.08 0.67 0.46 0.28 0.96

1000 1.00 0.34 0.45 0.04 1.04 0.42 0.22 4.67

Weakly
correlated

100 1.00 0.75 1.31 0.42 0.69 0.92 1.02 1.34
200 1.00 0.62 1.08 0.26 0.73 0.74 0.93 1.30
500 1.00 0.45 0.75 0.17 1.26 0.59 0.81 1.70

1000 1.00 — 0.63 0.19 4.13 — — 3.93

R=104
aaaaaa
n

Score Max{z−, z+} Product
B0 B1 B2 B3 B4 B1 B3 B4

Uncorrelated

100 1.00 0.52 0.74 0.20 0.52 0.63 0.43 0.81
200 1.00 0.47 0.71 0.16 0.53 0.55 0.40 0.86
500 1.00 0.36 0.50 0.08 0.51 0.45 0.30 0.79

1000 1.00 0.28 0.32 0.02 0.53 0.33 0.15 0.92

Weakly
correlated

100 1.00 0.52 0.74 0.20 0.52 0.63 0.43 0.81
200 1.00 0.47 0.71 0.16 0.53 0.55 0.40 0.86
500 1.00 0.36 0.50 0.08 0.51 0.45 0.30 0.79

1000 1.00 — 0.36 0.04 0.93 — — 2.19

In Figures 2.5 and 2.6, we show two performance profiles [35] for the five branching

schemes using the max score function: the first with respect to N , the number of nodes

evaluated, and the second with respect to t, the solve time.

In Figure 2.5 (and also in Table 2.1), we see that all four multi-variable branching

schemes achieve better node-efficiency than standard single-variable branching for both

classes of instances and for all combinations of R and n. Furthermore, it is also clear

34

Table 2.2: Ratios of t with respect to B0.

R=103
aaaaaa
n Score Max{z−, z+} Product

B0 B1 B2 B3 B4 B1 B3 B4

Uncorrelated

100 1.00 121.80 0.84 212.88 96.77 186.21 664.66 161.35
200 1.00 391.10 0.72 469.27 153.50 630.03 1635.47 252.10
500 1.00 2004.81 0.50 1332.98 222.53 3250.63 7639.95 365.70
1000 1.00 8355.19 0.45 3378.24 221.88 12653.67 35272.41 314.00

Weakly
correlated

100 1.00 229.33 1.63 542.09 214.71 359.89 2506.82 329.76
200 1.00 507.03 1.27 970.21 326.34 801.70 6930.39 436.65
500 1.00 2389.17 0.69 4011.84 303.46 4259.84 32596.95 368.25
1000 1.00 — 0.60 17242.40 332.22 — — 305.71

R=104
aaaaaa
n Score Max{z−, z+} Product

B0 B1 B2 B3 B4 B1 B3 B4

Uncorrelated

100 1.00 124.83 0.82 224.26 97.21 197.89 678.29 156.23
200 1.00 379.42 0.73 449.02 139.80 598.36 1655.14 251.13
500 1.00 1946.13 0.48 1271.18 182.79 3115.66 5386.72 310.01
1000 1.00 7114.82 0.32 3093.03 124.79 10592.71 13749.53 199.88

Weakly
correlated

100 1.00 124.83 0.82 224.26 97.21 197.89 678.29 156.23
200 1.00 379.42 0.73 449.02 139.80 598.36 1655.14 251.13
500 1.00 1946.13 0.48 1271.18 182.79 3115.66 5386.72 310.01
1000 1.00 — 0.35 6594.44 150.62 — — 222.64

0 1 2 3 4 5 6

log()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
r p,

s
 lo

g(
) :

1
 s

 n
s)

Number of nodes explored N

B0
B1
B2
B3
B4

0 1 2 3 4 5 6

log()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
r p,

s
 lo

g(
) :

1
 s

 n
s)

Number of nodes explored N

B0
B1
B2
B3
B4

Figure 2.5: Performance profile on number of nodes explored N . Left: uncorrelated in-
stances; Right: weakly correlated instances.

35

0 2 4 6 8 10 12 14

log()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
r p,

s
 lo

g(
) :

1
 s

 n
s)

Run time t

B0
B1
B2
B3
B4

0 2 4 6 8 10 12

log()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
r p,

s
 lo

g(
) :

1
 s

 n
s)

Run time t

B0
B1
B2
B3
B4

Figure 2.6: Performance profile on run time t Left: uncorrelated instances; Right: weakly
correlated instances.

that branching scheme B3 results in the most significant reduction in number of nodes

evaluated. However, as Figure 2.6 reveals (and also Table 2.2), this reduction in number

of nodes evaluated comes at a high price in terms of solve time. As expected, branching

scheme B4 is faster than branching scheme B3 even though it explores many more nodes.

Tuning the two restriction parameters of B4 may achieve an even better balance between

node-efficiency and time-efficiency. We observe too that only one of the multi-variable

branching schemes, B2, does better than the standard single-variable scheme, B0, in terms

of solve time; for uncorrelated instances and for large weakly corrected instances (with

n = 500 and 1000). By comparing both score functions for B1, B3, and B4, we arrive to a

different conclusion from what’s claimed in [2]. This is interesting and suggests that score

function also plays an important role in multi-variable branching.

To further explore the benefits of multi-variable scheme B2, we generated and solved

additional instances of significantly larger size: n = {5000, 10000} (with R = 104). As

before, for each combination of R and n, we generate 100 instances. The results can be

found in Table 2.3.

These results for branching scheme B2 (as well as those in Table 2.1 and 2.2) indicate

the promise of multi-variable branching: both the number of nodes and the solve time can

be reduced.

36

Table 2.3: Ratios of N and t with respect to B0 for instances of larger size.

N t
n B0 B2 B0 B2

Uncorrelated
5000 1.00 0.32 1.00 0.43

10000 1.00 0.54 1.00 0.63
Weakly

correlated
5000 1.00 0.37 1.00 0.47

10000 1.00 0.60 1.00 0.69

2.4 Final Remarks

In this chapter, we explored the potential benefits of branching on sets of variables rather

than standard single-variable branching. Preliminary computational experiments on ran-

domly generated instances of the 0-1 knapsack problem show promise and reveal the trade

off between node-efficiency and time-efficiency. Our current research is focused on re-

producing the promise of multi-variable branching on general mixed integer programs and

developing efficient heuristics to obtain high-quality sets of variables to branch on.

37

CHAPTER 3

LEARNING GENERALIZED STRONG BRANCHING FOR SET COVERING,

SET PACKING, AND 0-1 KNAPSACK PROBLEMS

The primary challenge associated with the use of a set branching strategy is the efficient

selection of an effective branching set. The promising computational results reported in

the literature on developing a ML model that effectively mimics SB and is computationally

efficient (as it does not require solving LPs to compute SB scores), prompted us to explore

similar ideas, but focusing on multi-variable variants of strong branching, which we refer

to as GSB-k, where k specifies the cardinality of the sets of variables to branch on. More

specifically, we focus on learning GSB-2 for three well-known classes of integer programs

(IPs): set covering, set packing, and 0-1 knapsack problems.

Practical implementations of SB only compute SB scores for a small set of candidates.

Similarly, our implementation of GSB-2 selects a pair of variables to branch on from among

a small set of candidate pairs, where each candidate pair includes the variable identified as

the best single variable to branch on. Thus, our approach relies on two learned models: one

to select the best single variable to branch on from among a small set of candidate variables,

and one to select the best pair of variables to branch on from among a small set of candidate

pairs of variables. We employ a systematic approach to identify the features to be used to

train the ML model. We start from 25 features that we believe, based on our domain

knowledge, provide meaningful information for predicting the ranking of candidates by SB

scores. After training data has been gathered, a feature selection procedure is applied to

eliminate insignificant features. The result is a small set of significant features (about 5)

that can be computed efficiently. More details are found in the sections below.

The remainder of the chapter is organized as follows. In Section 3.1, we introduce GSB-

k and our implementation of GSB-2. In Section 3.2.1 and 3.2, we present our methodology

38

for learning SB and extend this framework to learn GSB-2. Section 3.3 presents the results

of an extensive computational study. We finish, in Section 3.4, with final remarks.

3.1 Generalized Strong Branching

GSB refers to a branching strategy in which set branching is employed and in which the

set of variables to branch on is determined using the SB score. To obtain the SB score

for a candidate set S at the current node in the search tree, two LPs have to be solved:

one in which the branching constraint
∑

i∈S xi ≥ dfe is added (the up branch) and one in

which the branching constraint
∑

i∈S xi ≤ bfc is added (the down branch). The SB score

is computed using a score function score(∆−,∆+), where ∆− = |z− z−|, ∆+ = |z− z+|,

and z, z+, and z− are the objective values of the LP relaxations at the current node, the up

branch, and the down branch, respectively. The candidate set S with the largest SB score is

selected to branch on. If no restrictions are imposed on the candidate sets S, GSB becomes

computationally intractable as the number of sets of size k isO(nk). To explore the benefits

of GSB, we therefore only consider GSB-2, i.e., branching on sets of size up to 2.

3.1.1 Score Function

In [2], it is shown that the score function used can significantly impact the performance of

SB. His computational study shows that

score(∆−,∆+) = max{∆−, ε} ·max{∆+, ε}

with ε = 10−6, the product form, outperforms

score(∆−,∆+) = (1− µ) min{∆−,∆+}+ µmax{∆−,∆+},

the more traditional sum form, by almost 15%. The reason, most likely, is that the product

form better balances the contribution of the two branches than the sum form. When one of

39

∆− and ∆+ is much larger than the other, the SB score is dominated by the larger one in the

sum form, which implies that the SB score does not fully capture the information provided

by the two branches. On the other hand, with the product form, even a small value affects

the SB score as it pushes down the value of the product.

Even though the product form of the score function outperforms the sum form of

the score function, we believe it should be slightly modified when used for set branch-

ing. Consider, for example, set covering problems, where all constraints have the form∑
k∈K xk ≥ 1. When branching on a single variable, the effect of fixing a variable to zero

or fixing a variable to one is somewhat similar because no further variables can be fixed

directly. As result, the search tree is likely somewhat balanced. When branching on a pair

of variables, this is no longer the case. There is a difference between adding xi + xj ≤ 0,

which fixes two variables, and adding xi + xj ≥ 1, which fixes no variables, and less bal-

anced search trees may result. A simple product does not capture these differences. By

placing more importance on the branch with more freedom a more effective SB score may

be obtained. Therefore, we use a weighted product score function

max{z/z − 1.0, ε}α ·max{z/z − 1.0, ε}β, (3.1)

where z is the LP value of the branch with more freedom, z is that of the other branch,

α > 1, β < 1, α + β = 2 and ε = 10−6.

The results of computational experiment using 100 randomly generated set covering

instances, in which we compare the performance of the weighted product score function

with α = 1.5 and β = 0.5 to the direct product score function with α = β = 1 are shown in

Figure 3.1. The weighted product score function does better in 74 out of the 100 instances

and on average reduces the number of nodes in the search tree by 18%.

40

0 10 20 30 40 50 60 70 80 90 100

Instance index

0

50

100

150

200

250

300

350

400

450

of

 n
od

es
 e

xp
lo

re
d

Figure 3.1: A comparison of the weighted product score function and the simple product
score function on 100 randomly generated set covering instances.

3.1.2 Variable Selection

When the number of variables, n, is large, considering every possible set of size up to 2 will

be computationally prohibitive. A straightforward way to reduce the number of candidates

is to randomly select a small number of qualifying variable pairs, i.e., a pair (xi, xj) with

xLPi +xLPj fractional. However, given that there areO(n2) potential candidates, the chance

that a small subset contains a good pair of variables to branch on is small. Therefore, we

adopt the following scheme. Given that the variable xi∗ with the highest SB score is highly

likely to result in effective branching if used by itself, we include it in all the candidate pairs

of variables, i.e., we consider only pairs of the form (xi∗ , xj) with xLPi∗ + xLPj fractional.

Preliminary computational experiments revealed that it is also beneficial to consider only

variables xj with xLPj > 0. Finally, let (xi∗ , xj∗) be the variable pair with the largest SB

score ŝ∗ and let the SB score of xi∗ be s∗. If ŝ∗ > s∗, then we choose to branch on the pair

(xi∗ , xj∗), otherwise, we choose to branch on xi∗ . The selection scheme is summarized in

Figure 3.2.

To assess the performance of the proposed selection scheme, where we randomly gen-

41

10

branching decision

Figure 3.2: Practical implementation of GSB.

erate 50 candidate pairs, we compare its performance with three other selection schemes

on 100 randomly generated set covering instances. The other selection schemes proceed as

follows. Scheme 1 randomly selects 100 pairs (xi, xj) with xLPi + xLPj fractional. Scheme

2 selects randomly selects 100 pairs (xi, xj) with xLPi +xLPj fractional and xLPi +xLPj > 1.

Scheme 3 randomly selects 100 pairs (xi, xj) with xLPi + xLPj fractional and xLPi > 0 and

xLPj > 0.

Table 3.1: Comparison of candidate pair selection schemes.

GSB Scheme 1 Scheme 2 Scheme 3

Total # of nodes explored 5286 9687 5570 6216

of times with smallest search tree 51 6 24 19

We see that the proposed selection scheme explores fewer nodes and most often results

in the smallest search tree even though it considers fewer candidate sets; 50 compared to

100 for the other schemes. This confirms that always including the variable with the highest

SB score is beneficial.

3.2 Learning Generalized Strong Branching

To decide the candidate sets in GSB, we first identify the variable with the highest SB

score. Therefore, learning strong branching is a prerequisite to learning generalize strong

branching.

42

3.2.1 Learning Strong Branching

Methodology

We train a separate model that mimics SB for each problem class and the learning is per-

formed offline. More specifically, we start by using our implementation of SB to solve

instances in a training set. At the current node of the search tree, our implementation of

SB selects ` = min{50, v} integer variables with a fractional value in the solution to the

LP relaxation, where v is the number of such variables, computes their SB scores, and then

selects the one with the largest SB score to branch on. For each variable xi in the candi-

date set, we collect a feature vector fi and its SB score si. Since the ranking by SB scores

suffices to select the variable to branch on, predicting the actual SB scores is not necessary.

The exact ranking is not necessary either, because candidates with similar SB scores are

expected to behave similarly, and, thus, can be ranked similarly. By doing so, we introduce

some flexibility and tolerance for errors in the model.

We transform a list of SB scores {si1 , . . . , si`} into an r-level ranking by a function

g : {(1, si1), . . . , (`, si`)} → {1, . . . , r}. Without loss of generality, we suppose si1 ≥

si2 ≥ . . . ≥ si` . Since we are particularly interested in the candidates with the highest SB

scores, we assign rank 1 to the candidates with SB score greater than ηsi1 , where η ∈ (0, 1)

and close to 1, which is adopted by learning to branch in [52]. Since SB score is not

a perfect predictor of the benefit of branching on a variable, it is (too) risky to assign

rank 1 to just one or two variables, which can happen if there is only one score that is

significantly larger than others. To avoid overfitting and thus improve robustness in the

training process, we we assign rank 1 to at least the top t variables. More specifically, if the

number of such candidates is less than t, we assign rank 1 to the t candidates with highest

SB scores. Let k′ = argmaxk{sik > ηsi1} and t′ = max{t, k′}. We go further than than

the binary labeling scheme in [52]. The remaining candidates are ranked from 2 to r by

43

evenly distributed quantile:

g(k, sik) =


1, 1 ≤ k ≤ t′

p+ 1, t′ + 1 ≤ k ≤ `, sit′ − pq < sik ≤ sit′ − (p− 1)q,

where q =
sit′
−si`
r−1

+ ε, p ∈ {1, 2, . . . , r − 1}, ε = 10−15.

Our goal is to train a model that takes in features (fi1 , . . . , fi`) of the ` candidate vari-

ables and predicts a ranking (ri1 , . . . , ri`) close to the true ranking g. We use extreme

gradient boosting (XGBoost), an optimized distributed gradient boosting library (see [25]),

to accomplish this goal. In addition to its high efficacy and efficiency proved in various ma-

chine learning competitions1, XGBoost offers a C API, which is essential for our numerical

experiments since we work with CPLEX C API to take advantage of the built-in callback

functions. In our training, we choose the learning objective to be rank:pairwise, which uses

LambdaMART ([73]) to obtain a ranking. We also tested the other two objective functions

available in XGBoost, i.e., rank:ndcg and rank:map, but they yielded worse performance in

terms of the XGBoost performance metric (ndcg) and the branching scheme performance

metrics (runtime and search tree size).

In the training process, we solve a set of instances (the training set TS) to obtain the data

for training a ML model; this data set is split into two subsets, a set, denoted by ML-train,

on which the ML algorithm is trained and a set, denoted ML-eva, on which the training

quality is evaluated by ndcg, and use another set of instances (the evaluation set ES) to

assess the performance of the solver when using the learned model to make branching

decisions. To achieve the best performance on the evaluation set, we perform a two-stage

tuning. The first stage uses the set ML-eva and the metric is ndcg, while the second uses the

set ES and the metrics are the runtime and the number of nodes explored, which are what

we really care about. We tune the following hyperparameters of XGBoost: max depth for

the maximum depth of a tree, eta for learning rate, tree method for the tree construction

1https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions

44

algorithm used in XGBoost. After tuning has been completed, the performance of the

learned model is finally evaluated on a set of instances (the testing set TEST) that have not

been used in any part of the training process.

Features

In [7], they proposed three sets of features for training the model, i.e., 9 static problem

features, 6 dynamic problem features and 6 dynamic optimization features (21 features in

total). The static problem features represent the static state of the problem and are computed

solely from parameters c,A and b once for all. The remaining two sets of features are meant

to represent the the solution of the problem at the current B&B node and overall state of

the optimization, respectively. The same features are used for training in [8]. Two sets

of features of a candidate variable at a node for learning, i.e., 18 static features and 54

dynamic features, are used in [52]. However, little information is provided regarding the

effectiveness of these features (or combinations of these features).

As computational efficiency is critical, we start from a smaller set of 25 features that

may provide meaningful information to predict the ranking. Some of the features are used

in the papers mentioned above, but not necessarily in the same form, such as f2, f3, . . . , f7

present below. Other features are introduced based on our knowledge of the domain, e.g.,

the observed reduced costs of a variable during the solution process and the number of

times a variable appeared in the basis of an LP relaxations (f18 and f21).

The 25 features can be grouped in three categories: static features, dynamic “history-

free” features, and dynamic “history-dependent” features. Static features do not change

during the solution process and can be computed once before the solution process starts.

The dynamic features change during the solution process and need to be computed or up-

dated at every node of the search tree that is not fathomed. Dynamic “history-free” features

only use information at the current node, whereas dynamic “history-dependent” features

embed information from previously evaluated nodes in the search tree as well. As all fea-

45

tures should be independent of instance size and parameter scale, we normalize feature

values by the average feature value for the candidate variables.

For convenience, let z0, z, z−j and z+
j be the objective values of the LP relaxations at

the root node, at the current node, at the down branch, and at the up branch, if variable

xj is branched on, respectively. Furthermore, let cj be the coefficient of variable xj in the

objective function, Aij be the coefficient of variable xj in the i-th constraint, and xLP be

the solution to the LP relaxation at the current node. Finally, let m and n be the number of

constraints and variables, respectively, and [m] = {1, . . . ,m} and [n] = {1, . . . , n}. The

25 features associated with variable xj are:

Static features

• f1: Number of constraints xj participates in divided by the total number of con-

straints.

• f2: cj−mink∈[n] ck
maxk∈[n] ck−mink∈[n] ck

.

• f3: f2
mean({Aij , Aij 6=0, i∈[m]}) .

• f4, f5, f6: Mean, min, max of Aij∑
k∈[n] Aik/n

over i ∈ [m].

Dynamic “history-free” features

Node-based

• f7: Depth of the current node.

• f8: Current node gap, i.e., |z − z0|/|z0|.

• f9: Current node infeasibility, i.e.,
∑

k∈[n] min{xLPk − bxLPk c, dxLPk e − xLPk } divided

by the number of fractional variables in the solution to the LP relaxation.

Variable-based

• f10: xLPj − bxLPj c.

46

• f11: dxLPj e − xLPj .

• f12: xLPj · f2.

• f13, f14, f15: Pseudo costs of xj (up, down, geometric mean) divided by z.

• f16: Number of times xj appears in a constraint that is binding divided by the number

of binding constraints.

Dynamic “history-dependent” features

Variable-based

• f17: Number of times xj has been branched on divided by the number of nodes that

required branching (so far).

• f18: Number of times xj appears in the basis divided by number of nodes evaluated

(so far).

• f19, f20: Average improvement of the bound on the up and down branches when

branching on xj , i.e., of |z+
j − z|/z and |z−j − z|/z (so far).

• f21: Average of the reduced cost of xj divided by z (so far).

• f22, f23, f24: Average pseudo costs (down, up, geometric mean) of xj divided by z

(so far).

• f25: Average of the value of xj in the solution to the LP relaxation (so far).

Feature Selection

Once a model is trained, XGBoost is able to report an importance score for each feature

as shown on the left in Figure 3.3. Our feature selection algorithm uses these importance

scores and proceeds as follows. We repeatedly drop features that have the smallest impor-

tance score in the current model and train a new model using the remaining features. For

47

each model, we compute the prediction accuracy, defined as the ratio of the correct rank-

ing predictions and the total number of ranking predictions, where a predicted ranking is

deemed correct if an item ranked 1 in the prediction is in the top 5 of the true ranking. We

seek to identify a model with a high prediction accuracy and a small number of features.

More specifically, we select a model with at least five features and more if a significant

drop in accuracy occurs. A plot of the accuracy changes in the feature selection process of

learning SB for set covering problems is shown on the right in Figure 3.3 – the model with

5 features is selected.

XGBoost offers five importance scores which can yield different results for our feature

selection procedure. We observed that the use of different importance scores usually result

in models with similar accuracy even when the features selected are not be same. This sug-

gests that some of the features capture similar information and using different importance

scores results in different sets of features that jointly capture the necessary information.

Since the resulting accuracy is not sensitive to the type of importance score in use, we de-

cide to use the default importance type ‘weight’, which is the number of times a feature is

used to split the data across all trees, for our feature selection.

0510152025

Number of feautres

0%

10%

20%

30%

40%

50%

60%

70%

80%

Ac
cu

ra
cy

Figure 3.3: Feature selection of learning SB for set covering problems. On the left: impor-
tance scores of the original 25 features in the first model trained (features with importance
score 0 are not shown). On the right: accuracy changes in the feature selection process.

48

3.2.2 Learning Generalized Strong Branching

Methodology

Similar to learning SB, we train a model that mimics GSB for each problem class and the

learning is performed offline. We start by using GSB (as described in Section 3.1) to solve

instances in a training set. For each candidate pair of variables (xi, xj), we collect a feature

vector f̂ij and its SB score ŝij . We introduce an artificial pair of variables (xi∗ , xi∗) with

SB score si∗ , which represents branching on a single variable (i.e., the variable selected by

SB). This captures our desire to branch on the variable xi∗ if its SB score si∗ is larger than

SB score ŝi∗j∗ of the the candidate pair of variables (xi∗ , xj∗) with the highest score. Again,

we train a model LRN-GSB using XGBoost which takes in features (̂fi∗j1 , . . . , f̂i∗j` , f̂i∗i∗)

and predicts a ranking (rj1 , . . . , rj` , ri∗). If ri∗ = 1, then we branch on the variable xi∗ ,

otherwise, we branch on a variable pair (xi∗ , xj) with rj = 1.

Features

Let u be the number of single-variable features resulting from the feature selection process

of learning SB in Section 3.2.1. For each candidate pair (xi∗ , xj), we collect the following

(6 + 2u) features. The first 6 features are features that seek to capture the interaction of the

two variables xi∗ and xj . The next u features are single-variable features of the variable xj

and the last u features are pairwise products of single-variable features of the two variables

xi∗ and xj . For the artificial pair (xi∗ , xi∗), the first 6 and last u features are set to 0.

Interaction features

• f ′1: |ci∗−cj |
maxk∈[n] ck−mink∈[n] ck

.

• f ′2: Number of times xi∗ and xj appear in the same constraint divided by the number

of constraints.

• f ′3: Number of times xi∗ and xj appear in the same binding constraint divided by the

49

number of binding constraints.

• f ′4: xLPi∗ + xLPj − bxLPi∗ + xLPj c.

• f ′5: Indicator function 1{xLP
i∗ +xLP

j >1}.

• f ′6: Indicator function 1{i=j}.

Single-variable features

• f ′7, . . . , f
′
6+u: The u features of the second variable xj .

Transformed single-variable features

• f ′7+u, . . . , f
′
6+2u: Pairwise product of the u features of the two variables xi∗ and xj .

Feature selection

We go through the same feature selection process as described in Section 3.2.1.

3.3 Computational Study

3.3.1 Settings

We use CPLEX 12.8 for all experiments. To be able to focus on the impact of the branching

strategy, we allow cuts to be added only at the root and turn off heuristics. We also turn

off root presolve as variable aggregation can significantly alter the structure of an instance.

All performance evaluation experiments have a node limit of 106 and are conducted using

a single thread to ensure a fair comparison. We use α = 1.5 and β = 0.5 in the score

function (3.1).

50

3.3.2 Set Covering Problem

We consider the set covering problem, i.e., integer programs of the following form:

min cTx

s.t. Ax ≥ ~1,

x ∈ {0, 1}n,

where c ∈ Rn, A is a m×n (0,1)-matrix. When we branch on the variable pair (xi, xj) and

xLPi + xLPj ∈ (0, 1), then the down branch will have more freedom than the up branch, and

the opposite is true when xLPi + xLPj ∈ (1, 2). This observation is used when evaluating

the score function (3.1).

Instances

We have two classes of instances, OR-Library instances and randomly generated in-

stances. All randomly generated instances have n = 10m. The cost cj of variable xj for

j = 1, . . . , n is drawn from a discrete uniform distribution on {1, 2, . . . , 100}. The num-

ber of nonzero elements ni in row i of A is drawn from a discrete uniform distribution on

{2n
25

+1, . . . , 3n
25
−1}, and coefficient aij is set to 1 with probability ni

n
. Given that n = 10m,

we have that the density of A is about 10%.

The details of the instances used in training, evaluation, and testing are shown in Table

3.2, where w indicates the density of the coefficient matrix and q the number of instances

in the subset.

Training and feature selection

We use strategy SB to solve instances in training set TS1 to generate data to train LRN-

SB. The feature selection process described in Section 3.2.1 results in the following five

features being chosen:

1. Current node infeasibility, i.e.,
∑

k∈[n] min{xLPk − bxLPk c, dxLPk e − xLPk } divided by

51

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html

Table 3.2: Details of the instances used in training, evaluation, and testing.

TS1 m n w q
Random a1 300 3000 10% 20
Random a2 400 4000 10% 20
OR-LIB a1 200 1000 5% 5
OR-LIB a2 200 2000 2% 5
OR-LIB a3 300 3000 5% 5
OR-LIB a4 300 3000 2% 5

TS2 m n w q
Random a1 300 3000 10% 20

ES m n w q
Random b1 400 4000 10% 10
Random b2 500 5000 10% 10
Random b3 600 6000 10% 10
OR-LIB b1 500 5000 10% 5
OR-LIB b2 500 5000 20% 5

TEST m n w q
Random c1 300 3000 10% 20
Random c3 400 4000 10% 20
Random c3 500 5000 10% 20
Random c4 600 6000 10% 20
OR-LIB b1 500 5000 10% 5
OR-LIB b2 500 5000 20% 5

the number of fractional variables in the solution to the LP relaxation.

2. xLPj − bxLPj c.

3. dxLPj e − xLPj .

4.
xLP
j ·(cj−mink∈[n] ck)

maxk∈[n] ck−mink∈[n] ck
.

5. Number of times xj appears in a constraint that is binding divided by the number of

binding constraints.

Next, we use strategy GSB to solve instances in training set TS2, with TS2 a small

subset of TS1, to generate to train LRN-GSB. The reason why we use a small subset is that

solving instances using strategy GSB is very time-consuming. Feature selection results

in the following five features being chosen (Figure 3.4 presents information related to the

feature selection process):

1. xLPi∗ + xLPj − bxLPi∗ + xLPj c.

2.
xLP
j ·(cj−mink∈[n] ck)

maxk∈[n] ck−mink∈[n] ck
.

52

3. Number of times xj appears in a constraint that is binding divided by the number of

binding constraints.

4. (xLPi∗ − bxLPi∗ c) · (xLPj − bxLPj c).

5. (dxLPi∗ e − xLPi∗) · (dxLPj e − xLPj).

0246810121416

Number of feautres

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ac
cu

ra
cy

Figure 3.4: Feature selection of learning GSB for set covering problems. On the left:
importance scores of the original 16 features in the first model trained (features with im-
portance score 0 are not shown). On the right: accuracy changes in the feature selection
process.

Instances in the evaluation set ES are used to tune XGBoost to train LRN-SB and LRN-

GSB for better performance. Finally, the performance of trained models is evaluated by

solving instances in the test set TEST. Since OR-Library has relatively few instances, the

10 instances in sets OR-LIB b1 and OR-LIB b2 are both used in evaluation and testing. For

randomly generated instances, the instance used for evaluation and testing are different.

Results

Let CPLEX-D denote CPLEX with default branching, CPLEX-SB denote CPLEX with

its implementation of SB, and OUR-SB denote CPLEX with our implementation of SB. To

measure the accuracy of the learned models, we use “Top k accuracy%” defined as the ratio

of number of times LRN-SB branches on a variable in the top k of the ranking computed

by OUR-SB and the total number of nodes in the search tree that were not fathomed.

53

The results for the instances in the test set can be found in Table 3.3 and 3.4. We report

totals for each of the subsets, and, for convenience, also the percentage reduction compared

to CPLEX with default branching – the largest percentage reduction is shown in red.

Table 3.3: Comparison of the number of nodes explored for set covering instances.

Name
Number of nodes explored Top 5

CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

Random c1 17,005 3,415 7,862 11,956 9,877 63.52
Savings — 79.92% 53.77% 29.69% 41.92%

Random c2 83,630 20,673 38,808 55,041 48,796 64.85
Savings — 75.28% 53.60% 34.19% 41.65%

Random c3 677,597 147,493 289,853 407,605 280,568 65.58
Savings — 78.23% 57.22% 39.85% 58.59%

Random c4 6,042,591 1,441,345 4,121,957 2,939,851 2,275,633 66.79
Savings — 76.15% 31.78% 51.35% 62.34%

OR-LIB b1 379,338 91,224 147,818 192,697 124,413 67.31
Savings — 75.95% 61.03% 49.20% 67.20%

OR-LIB b2 502,572 49,353 284,273 130,820 187,969 72.66
Savings — 90.18% 43.44% 73.97% 62.60%

Total 7,702,733 1,753,503 4,890,571 3,737,970 2,927,256 65.72
Savings — 77.24% 36.51% 51.47% 62.00%

We observe that LRN-SB significantly outperforms CPLEX-D, on average a reduction

of more than 50% in terms of the number of nodes explored and of almost 40% in terms

of computing time. LRN-GSB performs even better, as, on average, it reduces the number

of nodes explored by more than 60% and the computing times by almost 43%. In Figure

3.5, we provide more detail and report the performance of CPLEX-D and LRN-GSB for all

90 test instances. We see that LRN-GSB consistently performs better than CPLEX-D (the

values are on a logarithm scale, so the the actual differences are much larger than what is

shown in the figure). Detailed results are reported in Table A.1 and A.2 in the Appendix A.

54

Table 3.4: Comparison of the solution times for set covering instances.

Run time (seconds)
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

Random c1 24.01 65.95 222.53 18.42 17.5
Savings — -174.68% -826.82% 23.28% 27.11%

Random c2 117.77 497.69 1,225.79 93.51 93.78
savings — -322.59% -940.83% 20.60% 20.37%

Random c3 1,087.91 4,248.86 11,916.94 792.07 658.44
Savings — -290.55% -995.40% 27.19% 39.48%

Random c4 12,608.06 57,573.18 231,886.18 7,584.87 7,099.62
Savings — -356.64% -1739.19% 39.84% 43.69%

OR-LIB b1 566.12 2,648.44 6,233.16 374.06 294.43
Savings — -367.82% -1001.03% 33.93% 47.99%

OR-LIB b2 659.74 1,642.62 25,724.2 259.52 426.65
Savings — -148.98% -3799.14% 60.66% 35.33%

Total 15,063.61 66,676.74 277,208.8 9,122.45 8,590.42
Savings — -342.63% -1740.25% 39.44% 42.97%

0 10 20 30 40 50 60 70 80 90

Instance index
101

102

103

104

105

106

N
um

be
r o

f n
od

es
 e

xp
lo

re
d

CPLEX-D
LRN-GSB

0 10 20 30 40 50 60 70 80 90

Instance index
10-1

100

101

102

103

104

R
un

tim
e

CPLEX-D
LRN-GSB

Figure 3.5: Performance of CPLEX-D and LRN-GSB on all instances in the test set (sorted
in order of non-decreasing LRN-GSB values). On the left: Number of nodes explored. On
the right: Computing time. The y-axis is set to log scale.

55

3.3.3 Set Packing Problem

Next, we consider the set packing problem, i.e., integer programs of the form:

max cTx

s.t. Ax ≤ ~1,

x ∈ {0, 1}n,

where c ∈ Rn, A is a m × n (0,1)-matrix. Consider a constraint
∑

k∈K xk ≤ 1. When

we branch on the variable pair (xi, xj) with i, j ∈ K, on the down branch xi and xj are

fixed to 0, but on the up branch all variables xk with k ∈ K \ {i, j} are fixed to 0. Thus,

the down branch has more freedom. This observation is used when evaluating the score

function (3.1).

Instances

Instances are randomly generated in the same way as in Section 3.3.2 except that n =

5m. The details of the instances used in training, evaluation, and testing are shown in Table

3.5.

Table 3.5: Details of the instances used in training, evaluation, and testing.

TS1 m n w q
Random d1 100 500 10% 20
Random d2 150 750 10% 20
Random d3 200 1000 10% 20

TS2 m n w q
Random e1 100 500 10% 10
Random e2 150 750 10% 10

ES m n w q
Random f1 150 750 10% 10
Random f2 200 1000 10% 10
Random f3 250 1250 10% 10

TEST m n w q
Random g1 100 500 10% 20
Random g2 150 750 10% 20
Random g3 200 1000 10% 20
Random g4 250 1250 10% 20
Random g5 300 1500 10% 20

Training and feature selection

Using feature selection as described in Section 3.2.1, the following five features are

selected for training LRN-SB:

56

1. Number of constraints in which xj appears divided by the number of constraints.

2. xLPj − bxLPj c.

3. dxLPj e − xLPj .

4. Number of times xj appears in a constraint that is binding divided by the number of

binding constraints.

5. Average of the value of xj in the solution to the LP relaxation (so far).

Similarly, the following five features are selected for training LRN-GSB.

1. Number of times xi∗ and xj appear in the same constraint divided by the number of

constraints.

2. xLPi∗ + xLPj − bxLPi∗ + xLPj c.

3. xLPj − bxLPj c.

4. (xLPi∗ − bxLPi∗ c) · (xLPj − bxLPj c).

5. (dxLPi∗ e − xLPi∗) · (dxLPj e − xLPj).

Results

The results on the instances in the test set can be found in Table 3.6 and Table 3.7. We

see that LRN-GSB outperforms CPLEX-D both in terms of the number of nodes explored

and the computing time. However, the improvements are not as significant, on average, a

44% reduction in the number of nodes explored and a 12% reduction in computing time.

Although LRN-GSB, on average, explores a smaller number of nodes than LRN-SB, its

computing time, on average, is slightly higher than LRN-SB. This is because more time

is spent on each branching decision. Furthermore, possibly more importantly, LRN-GSB

adds constraints to enforce branching decisions, whereas LRN-SB only changes variables

57

Table 3.6: Comparison on the number of nodes explored for set packing instances.

Name
Number of nodes explored Top 5

CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

Random1 g1 35,489 5,604 13,348 18,008 21,659 57.24
savings — 84.21% 62.39% 49.26% 38.97%

Random1 g2 187,742 44,354 79,289 105,175 100,326 67.53
savings — 76.38% 57.77% 43.98% 46.56%

Random1 g3 217,579 72,191 108,008 134,939 124,652 77.43
savings — 66.82% 50.36% 37.98% 42.71%

Random1 g4 344,339 103,481 165,997 197,382 203,088 81.77
savings — 69.95% 51.79% 42.68% 41.02%

Random1 g5 345,463 104,276 168,075 184,140 183,097 83.91
savings — 69.82% 51.35% 46.70% 47.00%
Total 1,130,612 329,906 534,717 639,644 632,822 73.58

Savings — 70.82% 52.71% 43.42% 44.03%

Table 3.7: Comparison of solutions times for set packing instances.

Run time (seconds)
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

Random1 g1 24.44 64.6 137.54 14.75 19.26
savings — -164.32% -462.77% 39.65% 21.19%

Random1 g2 217.02 823.88 1,576.46 159.92 166.8
savings — -279.63% -626.41% 26.31% 23.14%

Random1 g3 549.65 1,993.62 4,039.72 434.57 442.44
savings — -262.71% -634.96% 20.94% 19.51%

Random1 g4 991.08 3,714.48 9,016.01 833.85 862.34
savings — -274.79% -809.72% 15.86% 12.99%

Random1 g5 1,682.15 6,104.38 17,382.97 1,511.29 1,548.72
savings — -262.89% -933.38% 10.16% 7.93%
Total 3,464.34 12,700.96 32,152.7 2,954.38 3,039.56

Savings — -266.62% -828.10% 14.72% 12.26%

58

bounds to enforce branching decisions. Another interesting observation is that the predic-

tion accuracy of LRN-SB for instances of the set packing problem appears to be higher than

for instances of the set covering problem, which suggests that LRN-SB already performs

very well and it is more difficult for LRN-GSB to achieve further improvements. More

detailed results are reported in Table A.3 and A.4 in the Appendix A.

3.3.4 0-1 Knapsack Problem

Next, we consider the 0-1 knapsack problem, i.e., integer programs of the form:

max pTx

s.t. wTx ≤ b,

x ∈ {0, 1}n,

where p, w ∈ Rn. We make a minor change in the way we select candidate pairs of vari-

ables. Rather than requiring that xLPj > 0, we require that xj is not fixed, i.e., its lower and

upper bound at the current node are not equal.

Instances

All instances are randomly generated as follows. The profit pj and the weight wj for

j = 1, . . . , n are drawn from a discrete uniform distribution on {1, 2, . . . , 10n} and we set

b = b
∑n

i=1wi/5c. The details of the instances used in training, evaluating, and testing are

shown in Table 3.8.

Training and feature selection

The five features selected for training LRN-SB are as follows:

1. cj−mink∈[n] ck
maxk∈[n] ck−mink∈[n] ck

.

2. Mean of Aij∑
k∈[n] Aik/n

w.r.t i ∈ [m].

3. Max of Aij∑
k∈[n] Aik/n

w.r.t i ∈ [m].

59

Table 3.8: Details of the instances used in training, evaluation, and testing.

TS1 n q
Random h1 2000 20
Random h2 3000 20
Random h3 4000 20

TS2 n q
Random i1 2000 10
Random i2 3000 10

ES n q
Random j1 2000 10
Random j2 3000 10

TEST n q
Random k1 2000 20
Random k2 3000 20
Random k3 4000 20
Random k4 5000 20
Random k5 6000 20

4. Up pseudo-cost of xj divided by z.

5. Average of value of xj in the solution to the LP relaxation (so far).

The five features selected for training LRN-GSB are as follows:

1. Number of times xi∗ and xj appear in the same constraint divided by the number of

constraints.

2. xLPi∗ + xLPj − bxLPi∗ + xLPj c.

3. Indicator function 1{xLP
i∗ +xLP

j >1}.

4. cj−mink∈[n] ck
maxk∈[n] ck−mink∈[n] ck

.

5. Product of up pseudo-cost of xi∗ and xj divided by z2.

Results

Even though there is only a single constraint in the 0-1 knapsack problem (which should

imply that there is only a single fractional variable in a solution to the LP relaxation),

CPLEX-D, CPLEX-SB, OUR-SB, RAND, and LRN-SB can still exhibit different behavior

because we allow cuts to be added at the root. However, we have observed that the number

of cuts added at the root is very small and so is the number of fractional variables – usually

fewer than five. Therefore, we report “Top 1 accuracy%” instead of “Top 5 accuracy%”.

60

Table 3.9: Comparison of the number of nodes explored for 0-1 knapsack instances.

Name
Number of nodes explored Top 1

CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

Random k1 33,813 121,798 27,219 25,862 21,056 99.62
Savings — -260.21% 19.50% 23.51% 37.73%

Random k2 269,145 113,748 37,421 36,372 50,045 99.06
Savings — 57.74% 86.10% 86.49% 81.41%

Random k3 128,406 153,494 51,736 52,593 55,048 99.39
savings — -19.54% 59.71% 59.04% 57.13%

Random k4 401,585 151,681 69,477 65,193 34,219 99.46
savings — 62.23% 82.70% 83.77% 91.48%

Random k5 403,323 441,979 78,708 86,559 45,403 99.57
savings — -9.58% 80.49% 78.54% 88.74%
Total 1,236,272 982,700 264,561 266,579 205,771 99.42

Savings — 20.51% 78.60% 78.44% 83.36%

Table 3.10: Comparison of computing times for 0-1 knapsack instances.

Run time (seconds)
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

Random k1 13.46 34.96 46.79 19.96 18.07
Savings — -159.73% -247.62% -48.29% -34.25%

Random k2 88.12 47.39 289.44 41.65 51.11
Savings — 46.22% -228.46% 52.73% 42.00%

Random k3 80.64 72.51 463.88 72.74 72.23
Savings — 10.08% -475.25% 9.80% 10.43%

Random k4 248.98 98.73 698.41 112.33 75.78
Savings — 60.35% -180.51% 54.88% 69.56%

Random k5 301.1 303.76 870.23 172.96 115.32
Savings — -0.88% -189.02% 42.56% 61.70%

Total 732.3 557.35 2,368.75 419.64 332.51
Savings — 23.89% -223.47% 42.70% 54.59%

61

The results on the instances in the test set can be found in Table 3.9 and Table 3.10. We

observe, again, that LRN-SB and LRN-GSB significantly outperform CPLEX-D in terms

of both number of nodes explored and computing time, where LRN-GSB is, again, better

than LRN-SB. What is most surprising is that CPLEX-SB has the worst performance, even

in terms of number of nodes explored. Detailed results can be found in Table A.5 and A.6

in the Appendix A.

Default Settings

In the computational experiments present in the previous subsections, we have turned

off CPLEX root preprocessing, CPLEX heuristics, and CPLEX cut generation in nodes

other than the root, in order to be able to “isolate” the effect of the branching strategy.

One may argue that provides only limited information on the value of the proposed learned

branching strategies. Therefore, we have rerun all set covering and set packing instances,

but this time with all default settings of CPLEX, except for the branching scheme. With

default CPLEX settings, the 0-1 knapsack instances solve in only a few nodes, so not much

can be learned from these instances, which is why we are not reporting results for them.

Set Covering Problem

The results of the computational experiments can be found in Table 3.11 and 3.12.

We observe that LRN-SB and LRN-GSB still significantly outperform CPLEX-D, with,

on average, a reduction of 49% and 51% in computing time, respectively. In fact, the

improvements are even greater!

Set Packing Problems

The results of the computational experiments can be found in Table 3.13 and 3.14.

As with the set covering instances, LRN-SB and LRN-GSB still significantly outperform

CPLEX-D, with, on average, a reduction of 54% and 24% in computing time, respectively.

62

Table 3.11: Comparison of the number of nodes explored for set covering instances (default
CPLEX settings).

Number of nodes explored Top 5
CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

Random c1 9,238 2,643 5,191 8,559 6,695 62.04
Savings — 71.39% 43.81% 7.35% 27.53%

Random c2 62,769 17,474 30,884 41,185 39,026 58.98
savings — 72.16% 50.80% 34.39% 37.83%

Random c3 540,532 126,479 221,347 334,208 277,814 54.06
Savings — 76.60% 59.05% 38.17% 48.60%

Random c4 5,987,841 1,091,251 1,802,029 2,487,096 2,024,740 49.36
Savings — 81.78% 69.91% 58.46% 66.19%

OR-LIB b1 473,797 54,144 122,734 205,697 83,895 51.53
Savings — 88.57% 74.10% 56.59% 82.29%

OR-LIB b2 300,003 67,455 197,604 90,375 340,769 54.23
Savings — 77.52% 34.13% 69.88% -13.59%

Total 7,374,180 1,359,446 2,379,789 3,167,120 2,772,939 55.75
Savings — 81.56% 67.73% 57.05% 62.40%

Table 3.12: Comparison of computing times for set covering instances (default CPLEX
settings).

Run time (seconds)
CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

Random c1 24.21 43.32 71.55 21.92 20.83
Savings — -78.93% -195.54% 9.46% 13.96%

Random c2 96.3 295.66 433.41 78.23 82.74
Savings — -207.02% -350.06% 18.76% 14.08%

Random c3 772.68 2,611.14 3,846.96 582.49 556.84
Savings — -237.93% -397.87% 24.61% 27.93%

Random c4 10,841.31 31,735.29 39,472.03 5,326.21 4,939.62
Savings — -192.73% -264.09% 50.87% 54.44%

OR-LIB b1 636.05 1,162.46 2,270.96 354.63 166.95
Savings — -82.76% -257.04% 44.24% 73.75%

OR-LIB b2 388.75 1,384.31 3,286.55 149.67 496.78
Savings — -256.09% -745.41% 61.50% -27.79%

Total 12,759.3 37,232.18 49,381.46 6,513.15 6,263.76
Savings — -191.80% -287.02% 48.95% 50.91%

63

Table 3.13: Comparison of number of nodes explored for set packing instances (default
CPLEX settings).

Number of nodes explored Top 5
CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

Random g1 26,189 4,654 11,070 15,937 15,299 57.24
Savings — 82.23% 57.73% 39.15% 41.58%

Random g2 151,127 39,372 62,337 79,206 78,037 67.53
Savings — 73.95% 58.75% 47.59% 48.36%

Random g3 213,988 56,722 84,836 94,442 96,379 77.43
Savings — 73.49% 60.35% 55.87% 54.96%

Random g4 328,638 76,617 138,657 145,188 147,282 81.77
Savings — 76.69% 57.81% 55.82% 55.18%

Random g5 315,255 77,508 138,175 143,052 142,063 83.91
Savings — 75.41% 56.17% 54.62% 54.94%

Total 1,035,197 254,873 435,075 477,825 479,060 73.58
Savings — 75.38% 57.97% 53.84% 53.72%

Table 3.14: Comparison of computing time for set packing instances (default CPLEX set-
tings).

Run time (seconds)
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

Random g1 28.11 61.58 118.58 20.6 21.77
savings — -119.07% -321.84% 26.72% 22.55%

Random g2 244.17 778.98 1,322.18 167.79 176.02
savings — -219.03% -441.50% 31.28% 27.91%

Random g3 674.14 1,879.89 3,731.11 503.74 518.55
savings — -178.86% -453.46% 25.28% 23.08%

Random g4 1,312.1 3,645.31 9,613.23 985.79 1,004.31
savings — -177.82% -632.66% 24.87% 23.46%

Random g5 2,284.04 5,989.27 17,901.58 1,704.14 1,737.75
savings — -162.22% -683.77% 25.39% 23.92%
Total 4,542.56 12,355.03 32,686.68 3,382.06 3,458.4

Savings — -171.98% -619.57% 25.55% 23.87%

64

3.4 Final Remarks

We have shown that complex branching strategies, e.g., strong branching and generalized

strong branching, can be implemented efficiently by incorporating a model that mimics

their behavior and is learned offline. In fact, the resulting performance, on specific classes

of integer programs, is not only competitive with the branching strategies found in state-of-

the-art commercial solver, they outperform these branching strategies significantly (even

given the disadvantages of having to implement these branching strategies using callback

functions and not having access to customized internal data structures). Equally important

is the fact that the learned models are robust in the sense that even though they are trained on

only small (easy) instances, the trained models are able to solve large (difficult) instances

effectively and efficiently.

65

CHAPTER 4

INTEGER PROGRAMMING FOR SERVICE NETWORK DESIGN WITH

IN-TREE CONSTRAINTS

The service network design problem with in-tree constraints (SNDPITC) seeks a minimum-

cost transportation plan for moving multiple less-than-truckload (LTL) shipments (or com-

modities) from their origins to their destinations. In addition, if any shipments sharing the

same destination should meet at any point in their respective paths, then they have to travel

on the same path thereafter.

More formally, let G = (N,A) be a directed graph with node set N and arc set A. Let

the positive cost of a truck traversing arc a ∈ A be ca ∈ R>0. Let K denote the set of

all commodities, o(k), d(k) ∈ N denote the origin and destination for commodity k ∈ K,

respectively, and q(k) ∈ (0, Q] denote its quantity, where Q is the capacity of a truck.

In what follows, we take Q = 1 and commodity quantities are scaled accordingly. The

SNDPITC seeks a shipping plan where each commodity k ∈ K follows a single path in G

from o(k) to d(k). Furthermore, for any k1, k2 ∈ K such that d(k1) = d(k2), if the paths

for k1 and k2 visit a common node n ∈ N , then both paths must depart n via the same arc

a ∈ A. The cost of the shipping plan (purely the transportation cost), which the SNDPITC

seeks to minimize, is modeled by

∑
a∈A

ca ·

⌈ ∑
k∈K:a∈Pk

q(k)

⌉

where Pk ⊆ A denotes the arcs in the path for shipping commodity k.

The remainder of the chapter is organized as follows. In Section 4.1, we present three

Steiner in-tree formulations and three IP formulations for the SNDPITC. In Section 4.2,

we compare the size and strength of the LP relaxation of these formulations. Some simple

66

strengthening inequalities are present in Section 4.3. In Section 4.4, we derive six new

classes of cutting planes for the flow-based SNDPITC formulation. The separation chal-

lenges and heuristics are also discussed. In Section 4.5, we present and analyze the results

of a numerical study. Finally, in Section 4.6, we draw conclusions and give further research

directions.

4.1 Problem Formulations

4.1.1 Notation

First, we introduce some additional notation that is used throughout the remainder of the

chapter:

• K(d) := {k ∈ K : d(k) = d} is the set of all commodities k with destination d;

• Ka ⊆ K is the set of commodities that may use a path containing arc a;

• KV := {k ∈ K : o(k) ∈ V, d(k) ∈ V̄ } is the set of commodities with origin in V

and destination in V̄ , where V̄ := N \ V ;

• K(a, d) = Ka ∩K(d) is the set of commodities with destination d that are allowed

to use a path containing arc a;

• D := {d(k) : k ∈ K} ⊆ N is the set of all destinations;

• O(d) := {o(k) : d(k) = d} is the set of all nodes that are an origin for a commodity

with destination d;

• O := {O(d) : d ∈ D} is the set of all origins;

• δ−(i) is the set of incoming arcs to node i ∈ N in the network (N,A);

• δ+(i) is the set of outgoing arcs from node i ∈ N in the network (N,A); and

• [n] = {1, 2, · · · , n} for any n ∈ Z>0.

67

4.1.2 Steiner In-tree Formulations

The SNDPITC embeds a Steiner in-tree problem for each node that is a commodity destina-

tion: the union of paths for all commodities having the same destination node must induce a

Steiner in-tree in the network, connecting the set of commodity origins with their common

destination. In this section, we review existing approaches to modeling these this subprob-

lem, and consider one alternative that is natural in the SNDPITC setting. For the remainder

of this section, we fix a single destination node, d ∈ D, and consider IP formulations to

ensure that the paths for all commodities in K(d) satisfy the in-tree requirement.

Path-Only Formulation

The most direct approach is to use a binary flow variable, xak, to indicate whether an arc a

is used (xak = 1) or not (xak = 0) to deliver commodity k, for each a ∈ A and k ∈ K(d).

The following formulation, which we call the path-only formulation, directly models the

requirement that if any two of these commodity paths meet at a node, then they must follow

the same path to their destination thereafter.

∑
a∈δ+(i)

xak −
∑

a∈δ−(i)

xak =


1, if i = o(k),

−1, if i = d,

0, otherwise,

∀i ∈ N, ∀k ∈ K(d), (4.1)

xak +
∑

a′∈δ+(i),
a′ 6=a

xa′k′ ≤ 1 ∀i ∈ N, ∀a ∈ δ+(i), ∀k, k′ ∈ K(d) with k 6= k′, (4.2)

xak ∈ {0, 1}, ∀a ∈ A, ∀k ∈ K(d). (4.3)

Constraints (4.1) and (4.3) ensure that (xka)a∈A induces a path from o(k) to d for each

k ∈ K(d). Note that, in the absence of an objective function with positive costs to the xak

variables, extraneous cycles may also be included. Constraint (4.2) models the requirement

68

that if two distinct commodity paths meet at a node, they must use the same arc leaving

that node. We denote the set of feasible solutions to these constraints by

S1 := {x ∈ {0, 1}|A|×|K(d)| : x satisfies (4.1) and (4.2)}.

Path-Tree Formulation

The requirement of a common path after commodities meet can also be modeled as the

problem of finding a Steiner arborescence T ⊆ A, rooted at d, such that T contains a path

from i to d for all i ∈ O(d), the set of target nodes. Note an arborescence is usually defined

as directed from its root node towards the target nodes, so all nodes have in-degree at most

one. Here, we use an equivalent definition in which all arcs are reversed, away from the

target nodes and towards the root, so all nodes have out-degree at most one. Hence the

arborescence we seek is actually an in-tree. The formulation, which we call the path-tree

formulation, consisting of

x satisfies (4.1) and (4.3),

xak ≤ ya, ∀a ∈ A, ∀k ∈ K(d), (4.4)∑
a∈δ+(i)

ya ≤ 1, ∀i ∈ N, (4.5)

ya ∈ {0, 1}, ∀a ∈ A, (4.6)

appears frequently in the literature [see 47, 53], where y represents the indicator vector for

the desired in-tree T . Given a cost for each arc, the Steiner arborescence problem seeks to

minimize the total costs of the arcs in T . This problem is known to be NP-hard [51]. We

denote the set of feasible solutions to the above constraints by

S2 := {(x, y) ∈ {0, 1}|A|×|K(d)|+|A| : (x, y) satisfies (4.1), (4.5), (4.4)}.

69

It is obvious that (x, y) ∈ S2 if and only if x ∈ S1.

Tree-Only Formulation

For the SNDPITC, the number of commodities, and hence the number of commodity flow

variables in x, can grow prohibitively large for IP formulations to succeed. Thus we are

especially interested in formulations for the Steiner in-tree rooted at d that do not require

commodity flow variables, and hence are much more compact. One such formulation uses

only the tree indicator variables and employs a constraint for each d-cut, defined to be any

set C ⊆ N \ {d} with C ∩O(d) 6= ∅. The d-cut constraints are defined as follows

∑
a∈δ+(C)

ya ≥ 1, for each d-cut C, (4.7)

where δ+(C) = {(i, j) ∈ A : i ∈ C, j ∈ N \ C}. We call this formulation the tree-only

formulation and denote the resulting feasible region by

S3 := {y ∈ {0, 1}|A| : y satisfies (4.5) and (4.7)}.

Polyhedral aspects of this formulation have been discussed in [40], [47], and others. A

branch-and-cut algorithm for solving Steiner tree problems based on this formulation has

been proposed in [53].

4.1.3 SNDPITC Formulations

This section presents three IP formulations for the SNDPITC. Each formulation uses na, for

each a ∈ A, a non-negative integer variable representing the number of truckloads needed

on arc a. This variable, along with additional constraints, allows us to model a linear

objective function. The first two of the three formulations use the path-only and path-tree

Steiner in-tree formulations from Section 4.1.2, respectively, for each destination node,

d ∈ D. We use S1(d) and S2(d) to denote these two Steiner in-tree formulations for the

70

destination d, respectively. The third formulation is very compact: it does not require any

variables indexed by commodity. Instead, it uses only continuous flow variables for each

destinations together with tree arc indicator variables. The connectivity of commodity

origins to their destination is ensured by the continuous flow variables together with a

capacity-class constraint linking them to their corresponding tree arc variables. The in-tree

requirement is forced by the out-degree constraints as well as the integrality of the tree arc

indicator variables.

Commodity-based Formulation

This formulation is based on the path-only Steiner in-tree formulation: let xak for arc a

in the network be a binary variable indicating whether the arc is used (xak = 1) or not

(xak = 0) in the path for commodity k. We write xd to denote the vector in R|A|×|K(d)|

corresponding to (xak)a∈A,k∈K(d). Our IP Formulation F1 is as follows:

min z =
∑
a∈A

cana

s.t. xd ∈ S1(d), ∀d ∈ D,

na ≥
∑
k∈K

qkxak, ∀a ∈ A, (4.8)

na ∈ Z≥0, ∀a ∈ A. (4.9)

Constraints (4.8) and (4.9) ensure that there are enough trucks to transport the amount of

freight on each arc.

Destination-based Formulation

This formulation is based on the path-tree Steiner in-tree formulation: binary variable yad

indicates whether arc a is used (yad = 1) or not (yad = 0) in the in-tree for commodities

with destination d. We write yd to denote the vector in R|A| corresponding to (yad)a∈A. Our

71

IP Formulation F2 is given below:

min

{
z =

∑
a∈A

cana : (x, y) ∈ S2(d), ∀d ∈ D, n satisfies (4.8) and (4.9)

}
.

Flow-based Formulation

This formulation introduces the continuous variable wad ∈ R≥0 indicating the quantity

flowing on arc a that is destined for d, which replaces the binary xak variable for k ∈ K(d).

Our IP Formulation F3 is as follows:

min z =
∑
a∈A

cana

s.t.
∑

a∈δ+(i)

wad −
∑

a∈δ−(i)

wad =



∑
k∈K(d),
o(k)=i

qk, if i ∈ O(d),

−
∑

k:d(k)=d

qk, if i = d,

0, otherwise,

∀i ∈ N, ∀d ∈ D,

(4.10)∑
a∈δ+(i)

yad ≤ 1, ∀i ∈ N, ∀d ∈ D,

wad ≤

 ∑
k∈K(d)

qk

 yad, ∀a ∈ A, ∀d ∈ D, (4.11)

na ≥
∑
d∈D

wad, ∀a ∈ A, (4.12)

na ∈ Z≥0, ∀a ∈ A,

wad ≥ 0, ∀a ∈ A, ∀d ∈ D, (4.13)

yad ∈ {0, 1}, ∀a ∈ A, ∀d ∈ D.

72

Constraint (4.10) is the flow balance constraint and Constraint (4.11) models the rela-

tionship between the wad and yad variables. Constraints (4.12) and (4.9) ensure that there

are enough trucks to transport the amount of freight on each arc.

4.2 Comparing the Size and Strength of Formulations

4.2.1 For the Steiner In-Tree Formulations

The aforementioned three Steiner In-tree formulations have quite different numbers of vari-

ables and constraints. The path-only formulation, with feasible set S1, has a large number

of variables (|A||K|) and a very large number of constraints (O(|A||K(d)|2)). The path-

tree formulation, with feasible set S2, has |A| more variables, but has far fewer constraints

(O(|A||K(d)|)). The tree-only formulation, with feasible set S3, has very few variables

(|A|) but has an exponentially large number of constraints.

Here we consider the comparative strength of the LP relaxation of these formulations,

analytically. We find that the path-only formulation is surprisingly weak. Although it can

be strengthened, it still does not attain the strength of the other two formulations. We

also confirm that the path-tree and tree-only formulations have equivalent LP relaxations.

Although the basis of this observation has been established in [10], and mentioned in [47],

there is some variation in the details of the models considered, so we provide a careful

proof. We give this result first.

We denote by LP (F) the feasible region of the LP relaxation for the formulation having

feasible set F , and by ProjvLP (F) its projection onto the v variables.

Proposition 4.2.1. ProjyLP (S2) = LP (S3)

Proof. Assume that (x, y) ∈ LP (S2). To show that y ∈ LP (S3), it suffices to show that

the d-cut constraints (4.7) are satisfied. For any C with d /∈ C and O(d) ∩ C 6= ∅, there

73

exists k ∈ K(d) with o(k) ∈ O(d) ∩ C. Thus, we have

∑
a∈δ+(C)

ya ≥
∑

a∈δ+(C)

xak

≥
∑

a∈δ+(C)

xak −
∑

a∈δ−(C)

xak

=
∑
i∈C

 ∑
a∈δ+(i)

xak −
∑

a∈δ−(i)

xak


= 1,

where the first inequality is due to (4.4), and the last equality is due to (4.1) and the fact

that o(k) ∈ C and d /∈ C. Thus ProjyLP (S2) ⊆ LP (S3).

To prove the converse, we observe that for a given, fixed, y ∈ LP (S3), there exists x

such that (x, y) ∈ LP (S2) if and only if for each k ∈ K(d), some vector (xak)a∈A induces

a flow of one unit from o(k) to d, where the flow capacity of arc a ∈ A is given by ya. In

other words, y ∈ ProjyLP (S2) if and only if the solution to the maximum flow problem

with source o(k), sink d and arc capacities given by y must have value at least one, for each

k. Since the d-cut constraints ensure that the capacities given by y are at least one for any

cut separating o(k) from d for some k ∈ K(d), the result follows from the max flow-min

cut theorem. �

We note that the d-cut constraints can thus be interpreted as Benders cuts, if formulation

S2 is approached via Benders decomposition. Furthermore, the same max flow-min cut

argument as is given in the proof above shows that separation of the d-cut constraints can

be done by solving a max flow problem for each k ∈ K(d), with arc capacities given by y.

This is exploited in [53], for example, in their branch-and-cut approach.

We now consider the strength of LP (S1). We first show that it is strictly weaker than

the other formulations, in general.

Proposition 4.2.2. ProjxLP (S2) $ LP (S1)

74

Proof. We first show the inclusion relation holds and then give a specific example that

shows the containment is strict.

Assume (x, y) ∈ S2. To show that x ∈ S1, it suffices to show that the in-tree constraints

(4.2) are satisfied. In view of (4.4) and (4.5), we have, for any i ∈ N , a ∈ δ+(i), and

k, k′ ∈ K(d) with k 6= k′, that

xak +
∑

a′∈δ+(i),
a′ 6=a

xa′k′ ≤ ya +
∑

a′∈δ+(i),
a′ 6=a

ya′ =
∑

a′∈δ+(i)

ya′ ≤ 1.

Thus, ProjxLP (S2) ⊆ LP (S1).

Now, consider an instance with three commodities, k1, k2, k3, each having a different

origin, but the same destination, d. Figure 4.1 contains a snapshot of the network at some

node i that is neither an origin nor the destination for these three commodities.

i

a 1 a2

a
3

Commodity 1 flows on arc a1.
Commodity 2 flows on arc a2.
Commodity 3 flows on arc a3.

Figure 4.1: Three outgoing arcs at node i.

Each commodity has entered node i, and is leaving node i via distinct arcs, a1, a2, a3,

none of which end at the destination. Assume that xa1k1 = 3
8
, xa2k2 = 3

8
, and xa3k3 = 3

8
.

These values can appear in a complete feasible solution of LP (S1) (see Section B.1) since

(4.2) only applies to two commodities at a time. However, xak values and (4.4) force

ya1 ≥ 3
8
, ya2 ≥ 3

8
, and ya3 ≥ 3

8
. Thus, Constraint (4.5) is violated since

∑
a∈δ+(i)

ya ≥ 9
8
> 1,

which completes the proof. �

The above example, which shows that the path-only formulation is strictly weaker than

75

the path-tree formulation, uses three commodities and three distinct arcs with the same tail

node. In fact, S1 has a weaker LP relaxation than S2 if and only if there are at least two

commodities in K(d) and at least three arcs with the same tail node. Otherwise, the two

formulations are equivalent.

Before proving this, we first show how to strengthen the path-only formulation. Ob-

serve that, for any given node i and a ∈ δ+(i), the two sets {a} and {a′ ∈ δ+(i) : a′ 6= a}

form a partition of δ+(i). Constraint (4.2) considers flow of commodity k on the arcs in the

first set of this partition and flow of commodity k′ on the arcs in the second set. This can

be generalized as follows. Let K̃ ⊆ K(d) have cardinality p = |K̃| with 2 ≤ p ≤ |δ+(i)|

and let ∆i : K̃ → 2δ
+(i) \{∅} be a function mapping each commodity in K̃ to a non-empty

subset of δ+(i) such that sets {∆i(k)}k∈K̃ form a partition of δ+(i). We call such a pair

(K̃,∆i) a commodity-out-i partition pair. It’s easy to see that the constraint

∑
k∈K̃

∑
a∈∆i(k)

xak ≤ 1, ∀i ∈ N, ∀ commodity-out-i partition pairs (K̃,∆i), (4.14)

is valid for S1. (If commodity k ∈ K̃ uses an arc a ∈ ∆i(k), then all other commodities

leaving i must use the same arc, and no other arcs in ∆i(k
′) can be used for any k′ 6= k.)

We define the strengthened path-only formulation to be

S̃1 := {x ∈ {0, 1}|A|×|K(d)| : x satisfies (4.1) and (4.14)}.

It is obvious that S̃1 is at least as strong as S1 since (4.2) is a special case of (4.14). Further-

more, it’s strictly stronger, since (4.14) cuts off the fractional point in LP (S1) given in the

proof of Proposition 4.2.2: take K̃ = {k1, k2, k3} and ∆i(kr) = {ar} for each r = 1, 2, 3.

Actually, the strengthened path-only formulation is now as strong as the path-tree

and tree-only formulations. In proving this, it is helpful to observe that if (K̃,∆i) is a

commodity-out-i partition pair for some i ∈ N , then, since {∆i(k) : k ∈ K̃} is a partition

76

of δ+(i), we have the identity

∑
k∈K̃

∑
a∈∆i(k)

γa =
∑

a∈δ+(i)

γa, (4.15)

for any vector γ ∈ R|A|.

Proposition 4.2.3. LP (S̃1) = ProjxLP (S2).

Proof. We first show that ProjxLP (S2) ⊆ LP (S̃1). Suppose (x, y) ∈ LP (S2). It suffices

to show that Constraint (4.14) is satisfied. Let i ∈ N and (K̃,∆i) be a commodity-out-i

partition pair, chosen arbitrarily. In view of (4.4), the above identity (4.15), and (4.5), we

have ∑
k∈K̃

∑
a∈∆i(k)

xak ≤
∑
k∈K̃

∑
a∈∆i(k)

ya =
∑

a∈δ+(i)

ya ≤ 1.

Thus, x ∈ LP (S̃1) and ProjxLP (S2) ⊆ LP (S̃1).

Now suppose x ∈ LP (S̃1). We will prove by construction that ∃y such that (x, y) ∈

LP (S2). For each a ∈ A, set ya := maxk∈K(d) xak. Clearly, by definition, the pair (x, y)

must satisfy (4.4). Also, for each a ∈ A, choose k∗a ∈ arg maxk∈K(d) xak. (Break ties

arbitrarily; in particular, if the total flow on an arc is zero, any commodity may be selected.)

Thus ya = xak∗a for all a ∈ A. Let i ∈ N and define

K̃ := {k∗a : a ∈ δ+(i)} and ∆i(k) = {a ∈ δ+(i) : k∗a = k},

for each k ∈ K̃. Clearly (K̃,∆i) is commodity-out-i partition pair and since x satisfies

(4.14), it must be that

1 ≥
∑
k∈K̃

∑
a∈∆i(k)

xak =
∑
k∈K̃

∑
a∈∆i(k)

xak∗a =
∑
k∈K̃

∑
a∈∆i(k)

ya =
∑

a∈δ+(i)

ya,

by the identity (4.15). Thus y satisfies (4.5), and the result follows. �

77

Though the addition of Constraint (4.14) does improve the strength of the formulation

S1, it also increases its size significantly. Let S(n, k) be the number of ways to partition a

set of size n into k subsets. We have S(n, k) = k∗S(n−1, k)+S(n−1, k−1) and S(n, 1) =

1 for all n. Then the number of commodity-out-i partition pairs is
min{n,p}∑
j=0

n!
(n−j)!S(n, j),

where n = |δ+(i)| and p = |K(d)|. This number grows exponentially with n and p.

We conclude this section by observing that the LP relaxation of S̃1 is stronger than that

of S1 if and only if the number of commodities and out-degrees of nodes is larger than 2

and 3 respectively.

Proposition 4.2.4. If |K(d)| ≤ 2 and |δ+(i)| ≤ 3 for all i ∈ N then LP (Ŝ1) = LP (S1).

Otherwise, LP (Ŝ1) 6= LP (S1).

Proof. Note the problems of interest always have more than one commodity, that is |K(d)| ≥

2. We consider the following three cases:

• Case 1: |K(d)| ≤ 2 and |δ+(i)| ≤ 3 for all i ∈ N . In this case, any commodity-

out-i partition pair, (K̃,∆i) has |K̃| = 2, and any partition of δ+(i) into two non-

empty sets must have a set of cardinality one. In other words, K̃ = {k, k′} for

some k 6= k′ with |∆i(k)| = 1. Thus, ∆i(k
′) = {a′ ∈ δ+(i) : a′ 6= a}, where

∆i(k) = {a}. Constraint (4.2) for this i, a, k and k′ is precisely Constraint (4.14) for

this commodity-out-i partition pair. In this case, LP (Ŝ1) = LP (S1).

• Case 2: |K(d)| ≥ 3. The instance used in the proof of Proposition 4.2.2 has |K(d)| =

3 and we have shown ∃x ∈ LP (S1) \ ProjxLP (S2). By Proposition 4.2.3, x ∈

LP (S1) \ LP (Ŝ1). Thus, for this instance, LP (Ŝ1) 6= LP (S1).

• Case 3: |δ+(i)| ≥ 4 for some i ∈ N . Consider an instance with two commodities,

k1, k2, each having a different origin, but the same destination d. Figure 4.2 contains

a snapshot of the network at some node i that is neither an origin nor the destination

for the two commodities.

78

i

a 1 a2

a
3

a
4

Commodity 1 flows on arcs a1, a2.
Commodity 2 flows on arcs a3, a4.

Figure 4.2: Four outgoing arcs at node i

Consider x ∈ LP (S1) for this instance with xa1k1 = 1
3
, xa2k1 = 1

3
, xa3k2 = 1

3
,

and xa4k2 = 1
3
. One can easily check that these values will satisfy Constraint (4.2).

However, these xak values and Constraint (4.4) imply ya1 ≥ 1
3
, ya2 ≥ 1

3
, ya3 ≥ 1

3
,

and ya4 ≥ 1
3
. Thus, Constraint (4.5) is violated since

∑
a∈δ+(i)

ya ≥ 4
3
> 1. Again, this

implies, by Proposition 4.2.3, that LP (Ŝ1) = ProjxLP (S2) $ LP (S1). �

4.2.2 For the SNDPITC Formulations

Table 4.1 summarizes the size comparison for all the three SNDPITC formulations, in

terms of the number of variables and constraints. Note that it is generally the case that

|N | << |K|. Thus, F3 is significantly more compact that F1 and F2.

Table 4.1: Formulation size comparison.

Formulation No. Variables No. Constraints

F1 O(|K||A|) O(|K|2|A|)

F2 O(|K||A|) O(|K||A|)

F3 O(|N ||A|) O(|N ||A|)

We consider the LP relaxations of F1, F2, and F3, where we relax the integrality con-

straints for variables xak, yad, and na, where applicable. The analysis in Section 4.2.1 leads

us to conclude that not much is gained by considering F1, even with strengthening; the

79

most interesting trade-off is between the strength of F2 and the size of F3. The following

proposition establishes a comparison of the LP relaxations of the formulations presented in

Section 4.1.3:

Proposition 4.2.5. F2 is the strongest of these formulations.

Proof. Note that Projx,nLP (F2) $ LP (F1) follows easily from Proposition 4.2.2. Thus,

the remainder of this proof shows that Projy,nLP (F2) $ Projy,nLP (F3).

Suppose (x, y, n) ∈ LP (F2). We want to show that there exists w such that (w, y, n) ∈

LP (F3). We can construct w variables by

wad :=
∑

k∈K(d)

qkxak, (4.16)

for each arc a ∈ A and destination d ∈ D. We now consider the constraints of F3 in turn.

• Constraint (4.10): for each d ∈ D and i ∈ N , in view of the flow balance constraint

(4.1) for xd ∈ S1(d), we have

∑
a∈δ+(i)

wad −
∑

a∈δ−(i)

wad =
∑

a∈δ+(i)

∑
k∈K(d)

qkxak −
∑

a∈δ−(i)

∑
k∈K(d)

qkxak

=
∑

k∈K(d)

∑
a∈δ+(i)

qkxak −
∑

k∈K(d)

∑
a∈δ−(i)

qkxak

=
∑

k∈K(d)

[
qk

(∑
a∈δ+(i)

xak −
∑

a∈δ−(i)

xak

)]

=



∑
k∈K(d)

qk, if i = o(k),

−
∑

k∈K(d)

qk, if i = d,

0, otherwise.

• Constraint (4.11): for each a ∈ A and d ∈ D, due to (4.4) for (xd, yd) ∈ S2(d), we

80

have

wad =
∑

k∈K(d)

qkxak ≤
∑

k∈K(d)

qkyad.

• Constraint (4.12): for each a ∈ A, in view of (4.8), we have

∑
d∈D

wad =
∑
d∈D

∑
k∈K(d)

qkxak =
∑
k∈K

qkxak ≤ na.

Thus, Projy,nLP (F2) ⊆ Projy,nLP (F3).

The strictness can be shown by the following instance, where there are two commodi-

ties, k1, k2, each having a different origin, but the same destination d. Figure 4.3 displays

the network where nodes o1 and o2 are the origins of k1 and k2, respectively, node i is some

intermediate node, and node d is the destination of both k1 and k2.

io1 o2

d

Figure 4.3: Network for the instance with a single destination, d, and two commodities, k1

and k2, having o(k1) = o1, q(k1) = 1
10

, o(k2) = o2 and q(k2) = 1
2
.

Consider the following feasible solution for the LP relaxation of F3, on this instance:

w(1,i),d =
1

40
, w(1,d),d =

3

40
, w(2,i),d =

3

8
, w(2,d),d =

1

8
, w(i,d),d =

2

5
,

y(1,i),d =
1

4
, y(1,d),d =

3

4
, y(2,i),d =

3

4
, y(2,d),d =

1

4
, y(i,d),d =

2

3
.

It is straightforward to verify the feasibility of this solution. The computation is shown in

Section B.2.

Given the above solution, it suffices to show that there does not exist a corresponding

81

feasible solution to F2. Suppose that there does exist x such that (x, y, n) is a feasible

solution to F2. By Constraint (4.4), we have

x(2,d),k2 ≤ y(2,d),d =
1

4
and x(i,d),k2 ≤ y(i,d),d =

2

3
.

In view of the commodity flow balance constraint (4.1) at node d and x(2,d),k2 ≤ 1
4
,

it must be that x(i,d),k2 ≥ 3
4
, which contradicts to the fact that x(i,d),k2 ≤ 2

3
. Thus,

Projy,nLP (F2) $ Projy,nLP (F3). �

4.3 Strengthening the Formulations

In this section, we present some simple valid inequalities that strengthen the aforemen-

tioned Steiner in-tree and SNDPITC formulations.

4.3.1 Strengthening the Steiner In-tree Formulations

In the absence of an objective function that puts a positive cost on using arcs in the Steiner

in-tree, the tree arc indicator variable y may not induce a minimal tree: it may induce extra-

neous cycles. Although eliminating them is not needed for a valid SNDPITCformulation,

doing so may help to solve these problems in practice.

The following class of inequalities, the so-called flow-balance inequalities, are dis-

cussed in both [47] and [53], which can strengthen the LP relaxation of S2 and S3:

ya ≤
∑

â∈δ+(i)

yâ, ∀i ∈ N\{d}, ∀a ∈ δ−(i). (4.17)

This constraint eliminates extraneous subgraphs where a non-root node has a positive in-

degree and a zero out-degree.

In the case of S2, we propose to eliminate subgraphs, on which there are no commodity

82

flows, by adding the constraints

ya ≤
∑

k∈K(d)

xak, ∀a ∈ A. (4.18)

It is easy to see for S2, if (4.18) is satisfied then (4.17) must be satisfied. Actually, ∀i ∈

N \ {d} and a ∈ δ−(i), if ya = 0, then (4.17) is satisfied. If ya = 1, then xak = 1 for some

k ∈ K(d). According to (4.1), there exists â ∈ δ+(i) such that xâk = 1. In view of (4.4)

and (4.6), we have yâ = 1, and thus, (4.18) holds.

4.3.2 Strengthening the SNDPITC Formulations

Depending on the network structure, some arcs may not appear in any (simple) path for

some commodities. Furthermore, in practical applications, it is likely that the LTL business

would wish to forbid flow of some commodities on some arcs. The sets Ka may either be

taken as given instance data, or determined at a preprocessing step, and can be used for

coefficient reduction. In particular, they are helpful for strengthening Constraint (4.11) as

follows:

wad ≤
(∑
k∈K(a,d)

qk

)
yad, ∀a ∈ A, ∀d ∈ D. (4.19)

Furthermore, ∀a ∈ A, the variables xak can be removed for all k 6∈ Ka and the variables

yad and wad can be removed for any d with K(a, d) = ∅. The sets δ+(i) and δ−(i) can then

be replaced by δ±d (i) = {a ∈ δ±(i) : K(a, d) 6= ∅}, respectively, and the model constraints

should be adjusted accordingly. In some cases, an arc must be used by a commodity: define

Ka to be the set of commodities that must use arc a in their paths. Then for all a ∈ A and

d ∈ D with K(d) ∩Ka 6= ∅, yad can be fixed to 1.

As mentioned in the discussion of the Steiner in-tree formulations, we may use the

83

flow-balance inequalities (4.17) for each destination: the constraint

yad ≤
∑

â∈δ+d (i)

yâd, ∀d ∈ D, ∀i ∈ N\{d}, ∀a ∈ δ−d (i), (4.20)

may be added to F2 and F3. We have observed that fractional solutions can violate a

mirrored version of the flow-balance inequality:

yad ≤
∑

â∈δ−d (i)

yâd, ∀d ∈ D, ∀i ∈ N\O, ∀a ∈ δ+
d (i), (4.21)

so adding it may also strengthen F2 and F3. Similarly, for each destination, (4.18) can be

added to F1 and F2, which is

yad ≤
∑

k∈K(a,d)

xak, ∀a ∈ A, ∀d ∈ D. (4.22)

Also, for a given arc a, it may be that
∑

k∈Ka qk < 1, in which case (4.8) is weaker than

na ≥ xak, ∀a ∈ A, ∀k ∈ Ka, (4.23)

and adding these to F1 and F2 improves the strength.

Since positive flow for destination dmust leave every origin node inO(d), the following

special case of the d-cut constraints may strengthen F2 and F3:

∑
a∈δ+d (i)

yad ≥ 1, ∀d ∈ D, ∀i ∈ O(d). (4.24)

These two formulations may also be strengthened by the addition of

na ≥ yad, ∀d ∈ D, ∀a ∈ A, K(a, d) 6= ∅. (4.25)

84

Note that in the case of F2, due to Constraint (4.4) in each Steiner in-tree set S2(d), (4.25)

dominates (4.23). Thus, (4.23) is no longer helpful when (4.25) is included for F2.

F3 can be further strengthened by forcing the relationship of variables wad and yad as

follows:

wad ≥


qkyad, if a ∈ δ+

d (o(k)),(
min

k∈K(a,d)
qk

)
yad, otherwise,

∀d ∈ D, ∀a ∈ A, K(a, d) 6= ∅.

(4.26)

4.4 Novel Cutting Planes For the Flow-Based Formulation

All service network design formulations suffer from weakness of their LP relaxations. In

particular, they allow weak lower bounds on the na variables. The well-known cut-set in-

equalities address this weakness by increasing the lower bound on a sum of such variables

for arcs that cross a cut in the network. Theoretical strength of the cut-set inequalities has

been shown in [12, 67] and an extensive computational study demonstrating their potential

can be found in [66]. However, the separation is NP-hard [see 26] even for the single

commodity-single facility version of the problem with a single source and a single sink.

As a result, a practical implementation of the separation usually considers a relatively re-

stricted version, limiting the size of cut sets as well as the choice of subsets of commodities,

which may fail to cut off a fractional solution. To address this issue, we provide six alter-

native classes of cutting planes that supplement the cut-set inequalities. They are specially

designed for the flow-based formulation, which is intriguing due to its compact size. For

comparison, we use the limited version of cut-set inequalities defined as follows:

∑
a∈A(C,C̄)

na ≥

⌈∑
k∈KC

qk

⌉
, for any nonempty cut set C $ N. (4.27)

Throughout the remainder of the chapter, let (w̃, ỹ, ñ) denote the optimal solution to the LP

relaxation.

85

4.4.1 Wheat-Stalk Inequalities

This class of valid inequalities drive up the lower bound of the na variable on a single arc

a, by inference on subtrees that use it. For a given arc â = (̂i, ĵ) ∈ A, the new inequality is

defined for

• a subset of destinations H ⊆ {d ∈ D : K(â, d) 6= ∅},

• a collection of nonempty commodity subsets κd ⊆ K(â, d) for each d ∈ H , and

• a collection of in-trees, τd ⊆ A, one for each d ∈ H , having terminals {o(k) : k ∈

κd} and root ĵ, such that τd ∩ δ−(ĵ) = {â}.

Another way of describing τd is as the union over all k ∈ κd of the arcs in a path starting

from o(k) and ending with the arc â. The wheat-stalk inequalities (see Figure 4.4 for an

illustration) are defined as follows:

nâ ≥
⌈∑
d∈H

∑
k∈κd

qk

⌉(
1 +

∑
d∈H

(∑
a∈τd

yad − |τd|

))
. (4.28)

The validity of (4.28) is straightforward to see: if all the in-trees in the collection are used,

then all commodities in the collection of commodity subsets must flow on arc â; if any arc

in the collection of in-trees is no in use, the right hand side will take value 0, given the

integrality of yad. Thus, the inequality holds.

86

d2
d1

o1
o2

o3
o4 o5

o6

o7
o8

o9

!d2
!d1

Figure 4.4: An illustrative example of the wheat-stalk analogue.

In cases where there is a nonzero lower bound on the number of trucks needed on arc

â, arising when the set K â of commodities that must use arc â is non-empty, then the valid

inequality can be strengthened. In this case, let Lâ denote the lower bound on the number

of trucks needed on arc â, so

Lâ =


∑
k∈Kâ

qk

 .
Now there is no need or benefit to include k ∈ κd for any k ∈ K â, so we modify the criteria

for selection of the destination subset and the commodity subsets to require

• a subset of destinations H ⊆ {d ∈ D : K(â, d) \K â 6= ∅}, and

• a collection of nonempty commodity subsets κd ⊆ K(â, d) \K â for each d ∈ H .

Then the inequality

nâ ≥ Lâ +

⌈∑
d∈H

∑
k∈κd

qk +
∑
k∈Kâ

qk

⌉
− Lâ

(1 +
∑
d∈H

(∑
a∈τd

yad − |τd|

))
, (4.29)

87

is valid. (4.29) is stronger than (4.28) since

1 +
∑
d∈H

(∑
a∈τd

yad − |τd|

)
≤ 1.

An illustrative instance is included in the section B.3, which shows the effect of the simple

strengthening inequalities, the cut-set inequalities as well as the wheat-stalk inequalities.

It turns out that the wheat-stalk inequalities are strong, actually facet defining, for this

particular instance.

Separation

We consider a simplified version of (4.28), where τd = {â} is a single arc, to get a sense

of the difficulty of separation. In this case, the tail of the arc â, î, is an origin, and the

inequality takes the following form:

nâ ≥

⌈∑
d∈H

qd

⌉(
1 +

∑
d∈H

(yâd − 1)

)
. (4.30)

To check if (4.30) is satisfied or not for a fixed arc â, we need to decide if there exists

a the set of destination H ⊆ D such that the right hand side of (4.30) is larger than ñâ.

Equivalently, the optimization version of it can be stated as follows:

max
H⊆D

⌈∑
d∈H

qd

⌉(
1−

∑
d∈H

pd

)
, (4.31)

where qd ∈ (0, 1] and pd := 1− ỹâd ∈ [0, 1], for d ∈ D. Actually, it suffices to just consider

those pd ∈ (0, 1), since if for some d ∈ D, pd = 0, then we should always include it in the

set H to makes the objective larger, if pd = 1, then we never want to include it.

Proposition 4.4.1. The optimization problem (4.31) is NP-hard.

Proof. We prove it by reducing from the PARTITION, a decision problem asking to decide

if there exists S̄ ⊆ S such that
∑

k∈S̄ ak = b for a given a set of positive integers ak with

88

∑
k∈S ak = 2b, and ak < b for all k ∈ S. Observe that the answer to the PARTITION is

“YES” if and only if

max
S̄⊆S

(∑
k∈S̄

ak

)(
2b−

∑
k∈S̄

ak

)
= b2

⇐⇒max
S̄⊆S

(∑
k∈S̄

ak
b

)(
2−

∑
k∈S̄

ak
b

)
= 1

⇐⇒max
S̄⊆S

⌈
1

b|S|
+
∑
k∈S̄

ak
b

⌉(
2− 1

b|S|
−
∑
k∈S̄

ak
b

)
= 2

(
1− 1

b|S|

)
.

The first equivalence is straightforward by dividing both sides by b2, and the second is

because

max
S̄⊆S

⌈
1

b|S|
+
∑
k∈S̄

ak
b

⌉(
2− 1

b|S|
−
∑
k∈S̄

ak
b

)
≥ 2

(
1− 1

b|S|

)
if and only if ∃S̄ ⊆ S such that either

∑
k∈S̄

ak
b
∈
(

0,
1

b|S|

]
or

∑
k∈S̄

ak
b
∈
(

1− 1

b|S|
, 1

]
.

Since ak and b are positive integers for k ∈ S, the only possibility is
∑

k∈S̄
ak
b

= 1. Let

D = S ∪ {d′},

qd =


ad
b
, d ∈ S,

1

b|S|
, d = d′,

and pd = qd, ∀d ∈ D.

Obviously, qb, pb ∈ (0, 1) for all d ∈ D. The size of the PARTITION is |S| log(N), with

N = max{b, ad : d ∈ D}. The size of the reduced optimization problem (4.31) is a

polynomial of |S| log(N) since log
(
b|S|
)

= |S| log(b) ≤ |S| log(N), which completes the

proof. �

Actually, the arguments above only show that (4.31) weakly NP-hard. Although we

are not able to prove its strong NP-hardness directly, we have results for the following two

89

closely related problems:

max
H⊆D

(∑
d∈H

qd

)(
1−

∑
d∈H

pd

)
, and (4.32)

max
H⊆D

⌊∑
d∈H

qd

⌋(
1−

∑
d∈H

pd

)
. (4.33)

Proposition 4.4.2. Optimization problems (4.32) and (4.33) are both strongly NP-hard.

Proof. The proof reduces PARTITION with rational weights (PARTITION-RW), which

has been proved to be strongly NP-complete in [72], to (4.32) and (4.33). The PARTITION-

RW asks to dicide if there exists S1 ⊆ S such that
∑

k∈S1

rk
wk

= r
w

for a given a set of

positive rational numbers rk
wk

with
∑

k∈S
rk
wk

= 2r
w

, and rk, wk, r, w being positive integers,

and rk
wk

< r
w

for all k ∈ S. Similarly, the answer to the PARTITION-RW is “YES” if and

only if

max
S̄⊆S

(∑
k∈S̄

rk
wk

)(
2r

w
−
∑
k∈S̄

rk
wk

)
=
r2

w2

⇐⇒max
S̄⊆S

(∑
k∈S̄

wrk
rwk

)(
2−

∑
k∈S̄

wrk
rwk

)
= 1

⇐⇒max
S̄⊆S

⌊∑
k∈S̄

wrk
rwk

⌋(
2−

∑
k∈S̄

wrk
rwk

)
= 1.

The first equivalence is obtained by dividing both sides by r
w

, and the second can be seen

by considering the folowing cases:

⌊∑
k∈S̄

wrk
rwk

⌋(
2−

∑
k∈S̄

wrk
rwk

)


= 0 if
∑
k∈S̄

wrk
rwk
∈ (0, 1),

= 1 if
∑
k∈S̄

wrk
rwk

= 1,

∈ (0, 1) if
∑
k∈S̄

wrk
rwk
∈ (1, 2),

= 0 if
∑
k∈S̄

wrk
rwk

= 2.

90

Take D = S and pd = qd = wrd
rwad
∈ (0, 1), we have two optimization problems, one in

the form of (4.32), the other of (4.33), whose sizes grow as a polynomial function of that

of the original PARTITION-RW in unary, which completes the proof. �

The above hardness results suggest that the separation is challenging and we propose

the following heuristic when τd = â, is a single arc from an origin i. For each i ∈ O, let

Ki := {k ∈ K : o(k) = i}, Hi := {d(k) : k ∈ Ki}, δ̃i =
{
a ∈ δ+(i) :

∑
d∈Hi

ỹad > 0
}

,

Dj ⊆ D such that ∀d ∈ Dj , there is a directed path from j to d, k(i, d) be the commodity

with origin i and destination d, and Dij := {d ∈ Dj : k(i, d) exists}.

At each iteration, the heuristic first decides an origin, which is the tail of the arc of

interest, in a greedy way. It picks and removes the origin i from the remaining nodes in O,

from which the number of commodities originating, i.e., |Ki|, is the largest. The reason for

this is that we will have more choice and the possibility of separating the current fractional

solution may be larger. Then the arc â ∈ δ̃i is also decided greedily, where one with a larger∑
d∈Hi

qk(i,d)ỹâd is picked first. The intuition is that it may provide a larger right hand side

of (4.28). After fixing â, more destinations are added to form the set H . This step is also

done greedily such that d ∈ Dij with the largest ỹad will be added first, and it stops until we

find a violated inequality or conclude we can not find one on this arc. The full algorithm is

summarized in Algorithm 2.

4.4.2 Wheat-Sheaf Inequalities

Similar to wheat-stalk inequalities, this class of inequalities also depend on inferring the

subtrees in use. Instead of considering the truckloads on a single arc, the wheat-sheaf

inequalities include all outbound arcs from a node. For a given node i, a subset of desti-

nations H ⊆ D \ {i}, a collection of subsets of commodities κd ⊆ K(d) and a collection

of subtrees τd that connects the origin of each commodity in κd to i, for each d ∈ H , the

91

Algorithm 2: Heuristic for separating wheat-stalk inequalities of cardinality one.
Initialization: O = {O(d) : d ∈ D}.
while O 6= ∅ do

Select and remove a node i with |Ki| largest from O.
while δ̃i 6= ∅ do

Select and remove an arc â = (i, j) ∈ δ̃i with the largest
∑

d∈Hi
qk(i,d)ỹâd.

Compute Dij and sort qk(i,d)ỹâd for d ∈ Dij in descending order
qk(i,d1)ỹâd1 , . . . , qk(i,d|Dij |)

ỹâd|Dij |
.

for h = 1 to |Dij| do
if
∑h

p=1 ỹâdp > h− 1 then

if ñâ <
⌈

h∑
p=1

qk(i,dp)

⌉(∑h
p=1 ỹâdp − h+ 1

)
then

nâ ≥
⌈

h∑
p=1

qk(i,dp)

⌉(∑h
p=1 yâdp − h+ 1

)
is a violated

wheat-stalk inequality, stop.
else

Break from the for loop.

wheat sheaf inequalities (see Figure 4.4 for an illustration) take the following form:

∑
a∈δ+(i)

na ≥


∑
d∈H

∑
k∈κd

qk +
∑

k:o(k)=i

qk


(∑
d∈H

(∑
a∈τd

yad − |τd|

)
+ 1

)
. (4.34)

!d1
!d2

!d3
!d4

Node i

"!4"!3"!1
"!2

Figure 4.5: An illustrative example of the wheat-sheaf analogue.

92

Separation

The difficulty of separation can be seen from that of wheat-stalk inequalities since the

right hand side of (4.34) is exactly the same as that of (4.28) for any i /∈ O. A similar

separation heuristic as follows can be used to find a violated wheat-sheaf inequality. For

each node i, it identifies the set of origin nodes Oi having an arc to i. At each iteration, the

algorithm chooses and removes the node i with the largest |Oi| from N . Then it chooses

and removes the node u with the largest
∑

d∈Hu
qk(u,d)ỹad from Oi, and the arc of interest

now is a = (u, i). The intuition for doing this is similar to that of Algorithm 2 and then

the heuristic also decides the destinations to include in the same way. The difference is that

more than one arcs can be included in this case, which means |τd|may not be 1 for the right

hand side of (4.34), but all arcs in τd are chosen from δ−(i). The full description of the

heuristic is shown in Algorithm 3.

Algorithm 3: Heuristic for separating the wheat-sheaf inequalities.
Initialization: Oi = {u ∈ O : (u, i) ∈ A} for all i ∈ N .
while N 6= ∅ do

Select and remove a node i with |Oi| largest from N .
Set q = s = t = 0, Y = ∅.
while Oi 6= ∅ do

Select and remove a node u ∈ Oi with
∑

d∈Hu
qk(u,d)ỹad largest, and set

a = (u, i).
Sort qk(i,d)ỹad for d ∈ Hu in descending order
qk(u,d1)ỹad1 , . . . , qk(u,d|Hu|)

ỹad|Hu|
.

for h = 1 to |Hu| do
Set q = q + qk(u,dh), s = s+ ỹadh , t = t+ 1, Y = Y ∪ {(a, dh)}.
if s > t− 1 then

if ña < dqe (s− t+ 1) then
na ≥ dqe

(∑
(a,d)∈Y yad − t+ 1

)
is a violated wheat-stalk

inequality, stop.
else

Break from the while loop.

93

4.4.3 Combinatorial Rounding Inequalities

A critical relationship in this problem is that captured in constraints (4.8), which, together

with the integrality of the truck use variables, ensures that the number of trucks assigned

to an arc is an integer no less than the total quantities of commodities flowing on that

arc. These constraints, used in both F1 and F2, have the structure of a binary knapsack

constraint with a variable integer right-hand side. Thus, we expect current state-of-the-art

solvers to have good built-in capability to find valid inequalities that will strengthen this

relationship in the LP relaxation.

With the omission of the binary commodity flow variables, Formulation F3 only indi-

rectly models this relationship, via the mixed integer constraint (4.12). The requirement

that the truck use variable is an integer at least as big as a combination of commodity

quantities is not explicit forced in this formulation. We discuss how to rectify this, by

considering a class of cuts that we call combinatorial rounding inequalities.

Consider the following structure in F3 for each arc a ∈ A (For simplicity, we drop the

arc subscript for variables w and n in describing the form of the inequalities and how to

separate them.):

S =

(w, n) : wd =
∑

k∈K(a,d)

qkzk,∀d ∈ D, ∃z ∈ {0, 1}|K
a| ∩ Z, n ≥

∑
d

wd, n ∈ Z

 .

Here Z may capture any other constraints known on z, for example, if k, k′ ∈ K(a, d) with

k 6= k′ and o(k) is the tail of the arc, then the in-tree structure requires that zk′ ≤ zk.

The combinatorial rounding inequalities applied to S are defined to be

n ≥ β +
∑
d

αdwd, (4.35)

where αd ≥ 0, for all d ∈ D, and β ∈ R is upper bounded by min
(w,n)∈S

{n−
∑

d αdwd}.

Proposition 4.4.3. All nontrivial facet defining inequalities of S take the form of (4.35).

94

By nontrivial we mean the inequalities are not of the form wd ≥ γd, where γd = min
(w,n)∈S

wd,

for d ∈ D.

Proof. Let Fα,β = {(w, n) : n ≥ β+
∑

d αdwd}∩S be a nontrivial facet. Since for d̂ ∈ D,

Fα,β is not contained in the face defined by wd̂ ≥ γd̂, so ∃(w̄, n̄) that belongs to Fα,β such

that

n̄ = β +
∑
d

αdw̄d (4.36)

with w̄d̂ > γd̂. Let ŵd = w̄ad for all d ∈ D \ {d̂}, and ŵd̂ = γd̂, then (ŵ, n̄) ∈ S. Since

n ≥ β +
∑

d αdwd is valid for all S, we have

n̄ ≥ β +
∑
d

αdŵd =
∑

d∈D\{d̂}

αdw̄d + γd̂ (4.37)

Combine (4.36) and (4.37), we have αd̂w̄d̂ ≥ γd̂ ⇒ αd̂ ≥ 0, which completes the proof. �

Separation

Since the relationship between such valid inequalities and the well-known MIR cuts is

readily apparent, we do not expect to find a closed form for the coefficients αa = (αd)d∈D

and β, and nor do we expect separation to be easy.

Instead, we propose the following separation procedure to identify (α, β) cutting off

given (w̃, ñ) or show that none exists. The procedure solves, at each iteration, an LP of the

form

max
α,β
{αT w̃ + β : αTw + β ≤ n, ∀(w, n) ∈M, α ≥ 0},

where M ⊆ S. The set M is augmented until it assures that the optimal solution, (α∗, β∗),

yields a valid inequality for S when α := α∗, β = β∗ is used in (4.35). In this case we say

that (α∗, β∗) is valid for S. If at any stage, (α∗)T w̃ + β∗ ≤ ñ then the procedure may stop:

there is no nontrivial valid facet defining inequality separating (w̃, ñ) from S. Otherwise,

we check the validity of (α∗, β∗), by solving an IP over S to identify a point in S that

95

(α∗, β∗) cuts off or proves that there is none: determine

µ := max
(w,n)

{
(α∗)Tw + β∗ − n : (w, n) ∈ S

}
.

If µ > 0, the solution (w∗, n∗) may be added to M ; otherwise it must be that (α∗, β∗)

is valid. To see that this procedure must terminate finitely, first observe that it suffices to

include in M only points (w, n) ∈ S that satisfy n = d
∑

dwde, which yields a finite set.

Furthermore, it is clear that if (w, n) ∈ S and (w′, n) ∈ S and w′ dominates w, i.e., w′ ≥ w

(componentwise) and w′ 6= w, then (w, n) cannot lie on a facet of conv(S). Thus, we can

ignore (w, n) ∈ S, where w is dominated by w′ for some (w′, n) ∈ S, and we instead

propose to solve, in practice, the hierarchical optimization problem

lex max
(w,n)∈S

{
(α∗)Tw + β∗ − n,

∑
d

wd

}
.

We may also want to solve

lex max
α,β

{
αTw + β,

∑
d

αd + β : αTw + β ≤ n, ∀(w, n) ∈M, α ≥ 0

}
,

to try to get a “stronger” inequality, but this may come at the cost of more iterations, so it

is not clear if this is helpful on balance, or not.

To complete the description of the separation procedure, we need to explain how to

initialize M to avoid the LP being unbounded. One approach is to first solve, for each

d, the hierarchical IP lex max
(w,n)∈S

{wd,−n}, and include the result in M . Alternatively, M

could simply be initialized to

M :=


 ∑

k∈K(a,d)

qk

 ed,


∑

k∈K(a,d)

qk


 : ∀d ∈ D


where ed denotes the d-th unit vector. Regardless of the structure of Z , these points provide

96

a valid upper bound on αd, for each d ∈ D.

4.4.4 Generalized Cut-Set Inequalities

Given a cut, the original cut-set inequalities focus on lower bounding the truck use variables

n via the commodity quantities q as well as the flow variables w (excluded for the limited

version considered in this paper). We can generalize them by incorporating the design

variables y. Given V $ N , for any S ⊆ A(V, V̄) with s = |S| ≤ r, where A(V, V̄) is

the set of arcs that going from set V to its compliment V̄ , i.e., arcs that lie in the cut set

generated by V . Suppose KV = {k1, k2, · · · , kr} and DV = {d(ki), 1 ≤ i ≤ r}, then a

valid inequality, which we call a generalized cut-set inequality, is defined as follows:

∑
a∈A(V, V̄)

na ≥ Cs
V −

(
s− 1

|DV |
∑
d∈DV

∑
a∈S

yad

)
, (4.38)

where Cs
V is defined to be the optimal value of the following optimization problem:

Cs
V = min

s∑
j=1

zj

s.t.
s∑
j=1

xij = 1, ∀i ∈ [r],

r∑
i=1

xij ≥ 1, ∀j ∈ [s],

zj ≥
r∑
i=1

xijqki , ∀j ∈ [s],

zj ∈ Z+, xij ∈ {0, 1}, ∀i ∈ [r], j ∈ [s],

(4.39)

which computes a lower bound on the number of trucks needed to deliver all commodities

in KV when all arcs in S are used.

97

We can further strengthen (4.38) to

∑
a∈A(V, V̄)

na ≥ Cs
V −

(
s−

∑
a∈S

za

)
, (4.40)

where for a ∈ A, the variable za indicates whether the arc is used by any commodity or

not. It suffice to use a continuous variable since all y variables are binary. To ensure this

happens, we should also add the following constraints to the flow-based formulation:

za ≥ yad, a ∈ A, d ∈ DV ,

za ≤
∑
d∈DV

yad, a ∈ A,

za ∈ [0, 1], a ∈ A.

(4.40) is stronger than (4.38) since

za ≥ yad ⇒
∑
a∈S

za =
1

|DV |
∑
d∈DV

∑
a∈S

za ≥
1

|DV |
∑
d∈DV

∑
a∈S

yad.

To show the validity of (4.38), it suffice to show that (4.40) is valid. We first prove the

following intermediate result.

Lemma 4.4.1.

C`+1
V − 1 ≤ C`

V ≤ C`+1
V , ∀1 ≤ ` ≤ r − 1, (4.41)

where C`
V is defined as in (4.39).

Proof. Let (x`, z`) be an optimal solution to (4.39) when s = `. Since r ≥ ` + 1 and by

the constraints of the optimization problem (4.39), we have

r =
r∑
i=1

∑̀
j=1

x`ij =
∑̀
j=1

r∑
i=1

x`ij ≥ `+ 1.

According to the pigeonhole principle, there ∃j′ ∈ [`] such that
∑r

i=1 x
`
ij′ ≥ 2, meaning

98

that there are two commodities using a common arc in the cut set to go into V̄ . So we may

move one of them to another arc to construct a feasible solution (x`
′
, z`

′
) when `′ = `+ 1.

Suppose x`i′j′ = 1, then (x`
′
, z`

′
) can be obtained as follows:

x`
′

ij =



0, if i = i′, j = j′,

1, if i = i′, j = `′,

0, if i 6= i′, j = `′,

x`ij, otherwiser,

z`
′

j =


z`j , if j ∈ [`] \ {j′},

z`j − bqki′c, if j = j′,

dqki′e, if j = `+ 1.

Thus,

C`+1
V = C`′

V ≤
∑

j∈[`]\{j′}

z`j + z`j′ − bqki′c+ dqki′e ≤
∑
j∈[`]

z`j + 1 = C`
V + 1.

Similarly, suppose 2 ≤ ` ≤ r, `′ = ` − 1 and x`i′` = 1, we can construct a feasible

solution (x`
′
, z`

′
) as follows:

x`
′

ij =


x`ij + x`i`, if i ∈ [r], j = 1,

x`ij, if i ∈ [r], j = [`− 1] \ {1},
z`
′

j =


z`1 + z`` , if j = 1,

z`j , if j ∈ [`− 1] \ {1},

Thus,

C`−1
V = C`′

V ≤
∑

j∈[`−1]\{1}

z`j + z`1 + z`` ≤
∑
j∈[`]

z`j = C`
V ,

or equivalently, C`
V ≤ C`+1

V for 1 ≤ ` ≤ r − 1, which completes the proof. �

Proposition 4.4.4. For any V $ N and S ⊆ A(V, V̄) with |S| ≤ |DV |, (4.40) is valid.

Proof. By definition of Cs
V , we have

∑
a∈A(V, V̄)

na ≥ C`
V , with ` =

∑
a∈A(V, V̄)

za. (4.42)

99

In view of the right part of (4.4.1), we have

C`
V ≥ C`′

V , with `′ =
∑
a∈S

za ≤ `. (4.43)

According to the left part of (4.4.1), we have

C`′

V +

(
s−

∑
a∈S

za

)
≥ Cs

V . (4.44)

Combining (4.42), (4.43), and (4.44) completes the proof. �

Separation

To compute the constant Cs
V for a subset V ⊆ N and a number s, we need to solve a

small MIP, which can be difficult by itself. Thus, we don’t expect the separation to be easy.

For a practical separation heuristic, we only consider cut sets (by enumeration) induced by

subsets of destinations, i.e., i is a destination of some commodity ∀i ∈ V . Note, in this

case, (4.38) and (4.40) are equivalent, and thus, it suffices to use (4.38). For each such set

V , let t = min{|A(V, V̄)|, |KV |}. For each s = 1, · · · , t, we compute the constant Cs
V .

By definition, C1
V can be computed trivially, which is simply d

∑r
i=1 qkie. After that, for

each subset S ⊆ V such that |S| = s, we check if (4.38) is violated by (ñ, ỹ). The full

100

description of the heuristic is shown below.
Algorithm 4: Heuristic for separating the generalized cut-set inequalities.

Initialization: V := {V : V $ D, V 6= ∅}.

while V 6= ∅ do
Select and remove a set V from V , and compute t = min{|A(V, V̄)|, |KV |}.

for s = 1 to t do
Compute the constant Cs

V , and identify S := {S : S ⊆ A(V, V̄), |S| = s}.

while S 6= ∅ do
Select and remove a set S from S.

if
∑

a∈A(V, V̄) ña < Cs
V −

(
s− 1

|DV |
∑

d∈DV

∑
a∈S ỹad

)
then∑

a∈A(V, V̄) na ≥ Cs
V −

(
s− 1

|DV |
∑

d∈DV

∑
a∈S yad

)
is a violated

generalize cut-set inequality, Stop.

4.4.5 Commodity-Merging Inequalities

This class of inequalities also try to bound from below the truck use variables n via the

commodity quantities q and the design variables y. Instead of looking at all arcs in a

cut set, the focus here is for a single arc. In general, for an arc a ∈ A and H ⊆ D,

qad := min
k∈K(a,d)

qk, if ∑
d∈H

q̂ad > |H| − 1, (4.45)

then we have a valid inequality, which we call a commodity-merging inequality, as follows:

na ≥
∑
d∈H

yad − (|H| − 2). (4.46)

Proposition 4.4.5. ∀a ∈ A and H ⊆ D, (4.46) is valid if (4.45) is satisfied.

Proof. Firstly, we have the following inequality:

na ≥ µaH

(∑
d∈H

yad − (|H| − 1)

)
, (4.47)

101

where µaH :=

⌈ ∑
d∈H

qad

⌉
. Because if for each destination d ∈ D, there is a commodity with

destination d that uses the arc a, then the truck use variable na should be no less than µaH .

Adding all inequalities na ≥ yad for all d ∈ H to (4.47), we obtain

(|H|+ 1)na ≥ (µaH + 1)
∑
d∈H

yad − µaH(|H| − 1)

=⇒na ≥
⌊
µaH + 1

|H|+ 1

⌋∑
d∈H

yad −
µaH(|H| − 1)

|H|+ 1

na,yad∈Z======⇒na ≥
⌊
µaH + 1

|H|+ 1

⌋∑
d∈H

yad −
⌊
µaH(|H| − 1)

|H|+ 1

⌋
. (4.48)

When (4.45) holds, we have µaH = |H|, and (4.48) becomes

na ≥
∑
d∈H

yad −
⌊
|H|(|H| − 1)

|H|+ 1

⌋
.

Observe that

|H| − 2 <
|H|(|H| − 1)

|H|+ 1
< |H| − 1 =⇒

⌊
|H|(|H| − 1)

|H|+ 1

⌋
= |H| − 2,

which completes the proof. �

If Ka ∩K(a, d) 6= ∅ for some d ∈ H then the definition of µaH could be strengthened,

and the requirement (4.45) could be weaker.

Separation

The separation of this class of inequalities can be relatively easy. First note
∑

d∈H yad −

(|H| − 2) ≤ 2, which suggests (4.46) can not be stronger than na ≥ 2 and we are safe to

leave out arcs with ña ≥ 2.

For each a ∈ A with ña < 2, we compute q̂ad, this can be done in O(K) operations.

102

Then we sort q̂ad for all d ∈ D in descending order q̂ad1 , · · · , q̂ad|D| , which can be done

in O (|D| log |D|) operations. Finally, we check if ña ≥
∑p

i=1 ỹadi − (p − 2), for p =

1, · · · , |D|, which needsO(|D|) operations. Thus, in total, the separation runs in |A|(|K|+

|D| log |D|) time, which is a polynomial of the size of the problem.

4.4.6 Truck-Balancing Inequalities

For a given node i, the truck-balancing inequalities focus on the relationship between its

incoming and outgoing trucks. More specifically, the truck load on any particular incoming

arc to a given node should be no larger than the sum of those on all outgoing arcs after some

modification:

∑
a∈δ+(i)

na −
⌊
Q+(i)

⌋
≥ nâ −

⌈
Q−(i)

⌉
, ∀â ∈ δ−(i), (4.49)

where Q+(i) :=
∑

k∈K,o(k)=i

qk, Q−(i) :=
∑

k∈K,d(k)=i

qk. The left hand side is a upper bound

on the round up of the net total commodity quantities going out of node i, while the right

hand side is a lower bound on the round up of the net commodity quantities coming into i

on any given arc â ∈ δ−(i).

Similarly, we can have a mirrored version as follows:

∑
a∈δ−(i)

na − bQ−(i)c ≥ nâ − dQ+(i)e, ∀â ∈ δ+(i). (4.50)

The above two inequalities can be generalized even further, but may not necessarily be

stronger, as follows:

∑
a∈δ+(i)

na −
⌊
Q+(i)

⌋
≥

∑
a∈δ−(i)

na − ∑
d∈D,

K(a,d) 6=∅

yad

− ⌈Q−(i)
⌉

+ 1, (4.51)

103

∑
a∈δ−(i)

na − bQ−(i)c ≥
∑

a∈δ+(i)

na − ∑
d∈D,

K(a,d) 6=∅

yad

− dQ+(i)e+ 1. (4.52)

Their validity is due to the right hand side is a valid lower bound on the round up of the net

total commodity quantities coming into i for (4.51) (going out of i for (4.52)). Note (4.51)

can be weak since we sum up yad to determine if an arc is in use or not. It can be tightened

in the same way as for (4.40) by introducing some additional continuous variables za for

a ∈ δ+(i):

∑
a∈δ+(i)

na −
⌊
Q+(i)

⌋
≥

∑
a∈δ−(i)

(na − za)−
⌈
Q−(i)

⌉
+ 1,

za ≥ ya,d ∀a ∈ δ+(i), d ∈ D, k(a, d) 6= ∅,

za ≤
∑
d∈D,

K(a,d)6=∅

ya,d, ∀a ∈ δ+(i),

0 ≤ za ≤ 1, ∀a ∈ δ+(i).

(4.53)

We can refine (4.52) similarly.

Separation

The separation can be done by enumeration in O(|V |(|K|+ |A|)) time.

4.4.7 An Illustrative Instance

We end this section by an illustrative instance where the above six classes of instance can

be identified and help to improve the dual bound significantly after all simple strengthening

inequalities and cut-set inequalities have been added. The network of the instance and the

commodity data are shown in Figure 4.6. The cost of each arc is computed as the distance

between its two end nodes: c(2,1) = 5.39, c(3,1) = 9.43, c(4,2) = 5.00, c(5,2) = 11.18,

c(4,3) = 11.18, c(5,3) = 5.00, c(6,4) = 6.40, c(4,5) = 10.00, c(6,5) = 7.81.

104

1

2 3

4 5

6

Commodity Origin Destination Quantity

k o(k) d(k) q(k)

1 4 1 0.5

2 5 1 0.6

3 6 1 0.8

4 6 3 0.7

Figure 4.6: Left: complete network for the illustrative instance; Right: commodity data for
the illustrative instance.

We call the LP relaxation of the flow-based model root as shown in Section 4.1.3 . The

optimal value of the root is 36.35. After adding all simple strengthening inequalities shown

in (4.20), (4.21), (4.24), (4.25), (4.26), the optimal value becomes 39.21. On top of that, we

add cut-set inequalities (4.27) (all of them by enumeration), and the optimal value improves

to 44.03. Then we start to identify violated inequalities of the six new classes manually,

which is doable since it is not big instance. All the violated inequalities found are listed

in Table 4.2. After adding them, the LP value increases to 50.34, and the corresponding

optimality gap drops to 1.6%, which suggests those new cutting planes can do a very good

drop in closing the gap when no more violated cut-set inequalities can be found. More

details on the optimal values and optimality gps are presented in Table 4.3.

105

Table 4.2: Violated inequalities of the six new classes.

Wheat-stalk
n(2,1) ≥ 2(y(2,1),1 + y(4,2),1 + y(6,4),1 − 2) (4.2.1a)

n(4,2) ≥ 2(y(4,2),1 + y(6,4),1 − 1) (4.2.1b)

Wheat-sheaf n(4,2) + n(4,3) + n(4,5) ≥ 2y(6,4),1 (4.2.2)

Combinatorial rounding

n(4,2) ≥ (1/0.8)w(4,2) (4.2.3a)

n(2,1) ≥ (2/1.9)w(2,1),1 (4.2.3b)

n(6,5) ≥ (1/0.8)w(6,5),1 + (1/0.7)w(6,5),3 (4.2.3c)

n(4,5) ≥ (1/1.3)w(4,5),1 + (1/0.7)w(4,5),3 (4.2.3d)

n(4,3) ≥ (1/1.3)w(4,3),1 + (1/0.7)w(4,3),3 (4.2.3e)

Generalized cut-set n(2,1) + n(3,1) ≥ y(2,1),1 + y(3,1),1 + 1 (4.2.4)

Commodity-merging n(4,3) ≥ y(4,3),1 + y(4,3),3 (4.2.5)

Truck-balancing n(2,1) ≥ n(4,2) (4.2.6)

Table 4.3: LP solution values with different valid inequalities added. From left to right,
inequalities are added incrementally.

Root
Simple

strengthening
Cut-set

(4.2.1a) (4.2.1b) (4.2.2)
(4.2.3a) (4.2.3b) (4.2.3c) (4.2.3d)

(4.2.3e) (4.2.4) (4.2.5) (4.2.6)
LP value 36.35 39.21 46.16 50.34

Optimality gap 28.09% 23.36% 9.77% 1.60%

4.5 Computational Study

In this section, we present the results of a small proof-of-concept computational study

to assess the potential of some of the new classes of inequalities. Specifically, we focus

on the wheat-stalk and the generalized cut-set inequalities, and implement the separation

heuristics described in Algorithms 2 and 4.

Instances, which are characterized by three parameters n, nd, and nc, are generated

randomly. The networks are randomly generate 6-regular directed graphs with n nodes,

106

with each node having 3 incoming and 3 outgoing arcs. The coordinates of the nodes are

normally distributed with mean 0 and variance 10. To obtain commodities, we randomly

select nd nodes to form the set of destinations D and for each d ∈ D, we randomly select

no nodes in N \ {d} as the origins with a distance of at least 2 to d (i.e., the number of arcs

in a path from from origin o to destination d in the network is at least 2) for a total of no ·nd

commodities. The size of a commodity is randomly chosen from {0.4, 0.45, 0.5, · · · , 0.95}.

The cost ca for traversing arc a is set to the length of a, i.e., the Euclidean distance between

its two end nodes. For each configuration, i.e., each a combination of n, nd and no, we

generate 1000 instances.

In all our experiments, we start from Formulation F3 with all simple strengthening

constraints added (i.e., (4.20), (4.21), (4.24), (4.25), and (4.26)) and denote the value of

the optimal solution to the LP relaxation by Initial. For convenience, we use CSI, GCSI,

and WSI to denote the cut-set, the generalized cut-set, and the wheat-stalk inequalities,

respectively.

In the first experiment, we compare the optimality gaps obtained after adding CSI

(4.27), GCSI (4.38), and WSI (4.28), respectively, where in each case we add violated

inequalities one at a time (and resolve) until no more violated inequalities can be found.

The results can be found in Table 4.4 where #-Instances indicates the number of instances

for which at least one violated inequality was found and and Gap represent be the average

optimality gap after adding all violated inequalities.

We observe that cut-set inequalities are found for every instance and that the cut-set

inequalities are most effective in reducing the optimality gap. When the number of origins

no = 2, no violated generalized cut set inequalities can be found even if we increase

the number of destinations from 2 to 4. Interestingly, no = 3 seems to be the best in

this case, which can be seen by comparing all configurations with the same n and nd.

When the number of destinations increases, the number of instances for which wheat-stalk

inequalities are found increases as well. This is also true when the number of origins

107

Table 4.4: Comparison on the number of instances where a violated CSI, GCSI and WSI
can be found, respectively, and the corresponding optimality gap after all violated inequal-
ities of each class have been added.

#-Instances Gap
n no nd CSI GCSI WSI Initial CSI GCSI WSI

Config1 8 2 2 998 0 11 18.14% 0.29% 18.14% 17.89%
Config2 8 2 3 1000 0 56 19.45% 1.25% 19.45% 18.45%
Config3 8 2 4 1000 0 152 19.57% 2.67% 19.57% 16.91%
Config4 8 3 2 1000 135 28 17.33% 1.32% 15.27% 16.84%
Config5 8 3 3 1000 202 161 17.77% 2.82% 15.00% 15.27%
Config6 8 3 4 1000 276 352 17.22% 4.18% 13.78% 12.57%
Config7 8 4 2 1000 109 74 16.40% 2.09% 14.95% 15.23%
Config8 8 4 3 1000 166 244 16.29% 3.63% 14.36% 13.05%
Config9 8 4 4 1000 190 511 15.55% 4.81% 13.61% 10.10%
Config10 10 2 2 1000 0 12 18.39% 0.32% 18.39% 18.13%
Config11 10 2 3 1000 0 56 19.21% 1.20% 19.21% 18.20%
Config12 10 2 4 1000 0 155 19.92% 2.49% 19.92% 17.20%
Config13 10 3 2 1000 134 24 17.35% 1.18% 15.23% 16.91%
Config14 10 3 3 1000 193 141 17.66% 2.56% 14.88% 15.47%
Config15 10 3 4 1000 243 331 17.31% 3.79% 14.23% 12.77%
Config16 10 4 2 1000 108 54 16.44% 1.79% 14.90% 15.58%
Config17 10 4 3 1000 145 238 16.37% 3.33% 14.58% 13.20%
Config18 10 4 4 1000 187 432 15.66% 4.72% 13.79% 10.97%
Config19 12 2 2 1000 0 6 18.40% 0.31% 18.40% 18.28%
Config20 12 2 3 1000 0 35 19.39% 1.07% 19.39% 18.69%
Config21 12 2 4 1000 0 90 19.57% 1.94% 19.57% 17.89%
Config22 12 3 2 1000 118 16 17.38% 1.07% 15.34% 17.08%
Config23 12 3 3 1000 189 104 17.82% 2.22% 14.87% 16.11%
Config24 12 3 4 1000 240 220 17.36% 3.53% 14.20% 14.27%
Config25 12 4 2 1000 94 45 16.47% 1.60% 15.10% 15.75%
Config26 12 4 3 1000 149 201 16.42% 3.13% 14.53% 13.71%
Config27 12 4 4 1000 189 403 15.96% 4.47% 13.93% 11.38%

108

increases. We also observe that when the total number of commodities is large, WSI can

be more useful than GCSI. This conclusion can also be confirmed by comparing different

configurations when the number of nodes n is fixed. For no = 3 and nd = 2, which is

6 commodities in total, WSI is much worse than GCSI in terms of #-Instances and Gap.

When no = 4 and nd = 4, i.e., 16 commodities in total, the reverse applies. With no = 3

and nd = 4, which is 8 commodities in total, the difference between those two are much

less pronounced.

However, if we focus on those instances where a GCSI can be found, we conclude that

GCSI on average is stronger than CSI and WSI. Similarly, if we only consider instances

where a WSI can be found, the conclusion will be WSI on average is stronger than CSI and

GCSI. The detailed comparison can be found in Table 4.5 and Table 4.6.

Table 4.5: Comparison on the number of instances where a violated CSI, GCSI and WSI
can be found, respectively, and the corresponding optimality gap after all violated inequal-
ities of each class have been added, when only considering instances where a GCSI can be
found.

#-Instances Gap
n no nd CSI GCSI WSI Root CSI GCSI WSI

Config4 8 3 2 135 135 7 18.48% 3.70% 3.15% 17.49%
Config5 8 3 3 202 202 43 17.88% 4.37% 4.18% 14.67%
Config6 8 3 4 276 276 112 17.10% 4.74% 4.65% 12.03%
Config7 8 4 2 109 109 5 16.80% 3.79% 3.52% 16.19%
Config8 8 4 3 166 166 47 16.41% 4.93% 4.83% 13.11%
Config9 8 4 4 190 190 117 15.84% 5.72% 5.66% 9.34%
Config13 10 3 2 134 134 7 18.73% 3.40% 2.87% 17.87%
Config14 10 3 3 193 193 30 18.20% 3.98% 3.81% 15.79%
Config15 10 3 4 243 243 92 17.29% 4.67% 4.59% 12.32%
Config16 10 4 2 108 108 12 17.42% 3.51% 3.16% 15.69%
Config17 10 4 3 145 145 43 17.00% 4.72% 4.61% 13.18%
Config18 10 4 4 187 187 78 15.86% 5.91% 5.85% 11.72%
Config22 12 3 2 118 118 5 20.49% 3.74% 3.24% 19.72%
Config23 12 3 3 189 189 22 19.18% 3.73% 3.55% 17.20%
Config24 12 3 4 240 240 66 17.91% 4.82% 4.73% 14.20%
Config25 12 4 2 94 94 10 17.73% 3.45% 3.15% 16.13%
Config25 12 4 3 149 149 31 16.91% 4.34% 4.24% 14.22%
Config27 12 4 4 189 189 87 16.24% 5.59% 5.52% 11.26%

109

Table 4.6: Comparison on the number of instances where a violated CSI, GCSI and WSI
can be found, respectively, and the corresponding optimality gap after all violated inequal-
ities of each class have been added, when only considering instances where a WSI can be
found.

#-Instances Gap
n no nd CSI GCSI WSI Root CSI GCSI WSI

Config1 8 2 2 11 0 11 24.85% 2.40% 24.85% 2.35%
Config2 8 2 3 56 0 56 21.52% 3.78% 21.52% 3.72%
Config3 8 2 4 152 0 152 21.31% 3.89% 21.31% 3.84%
Config4 8 3 2 28 7 28 20.32% 2.83% 15.58% 2.73%
Config5 8 3 3 161 43 161 19.00% 3.54% 14.98% 3.47%
Config6 8 3 4 352 112 352 17.74% 4.59% 13.77% 4.53%
Config7 8 4 2 74 5 74 18.48% 2.84% 17.58% 2.79%
Config8 8 4 3 244 47 244 17.29% 4.07% 15.06% 4.02%
Config9 8 4 4 511 117 511 15.85% 5.23% 13.44% 5.18%
Config10 10 2 2 12 0 12 25.25% 3.38% 25.25% 3.35%
Config11 10 2 3 56 0 56 21.27% 3.21% 21.27% 3.16%
Config12 10 2 4 155 0 155 21.22% 3.68% 21.22% 3.65%
Config13 10 3 2 24 7 24 21.88% 3.73% 17.13% 3.46%
Config14 10 3 3 141 30 141 19.00% 3.58% 15.71% 3.50%
Config15 10 3 4 331 92 331 17.91% 4.23% 14.28% 4.18%
Config16 10 4 2 54 12 54 19.29% 3.32% 15.83% 3.20%
Config17 10 4 3 238 43 238 17.15% 3.87% 14.83% 3.83%
Config18 10 4 4 432 78 432 15.99% 5.17% 14.20% 5.13%
Config19 12 2 2 6 0 6 25.26% 4.28% 25.26% 4.28%
Config20 12 2 3 35 0 35 23.01% 2.94% 23.01% 2.92%
Config21 12 2 4 90 0 90 22.23% 3.60% 22.23% 3.56%
Config22 12 3 2 16 5 16 20.81% 2.13% 15.15% 2.03%
Config23 12 3 3 104 22 104 19.51% 3.16% 15.93% 3.10%
Config24 12 3 4 220 66 220 18.39% 4.36% 14.36% 4.31%
Config25 12 4 2 45 10 45 18.54% 2.68% 15.22% 2.62%
Config26 12 4 3 201 31 201 17.24% 3.78% 15.25% 3.74%
Config27 12 4 4 403 87 403 16.27% 4.96% 13.94% 4.92%

110

Table 4.7: Comparison on the corresponding optimality gap for all instances.

Gap
n no nd Root CSI CSI + GCSI + WSI

Config4 8 3 2 17.33% 1.32% 1.24%
Config5 8 3 3 17.77% 2.82% 2.78%
Config6 8 3 4 17.22% 4.18% 4.14%
Config7 8 4 2 16.40% 2.09% 2.06%
Config8 8 4 3 16.29% 3.63% 3.61%
Config9 8 4 4 15.55% 4.81% 4.77%
Config13 10 3 2 17.35% 1.18% 1.10%
Config14 10 3 3 17.66% 2.56% 2.52%
Config15 10 3 4 17.31% 3.79% 3.76%
Config16 10 4 2 16.44% 1.79% 1.75%
Config17 10 4 3 16.37% 3.33% 3.30%
Config18 10 4 4 15.66% 4.72% 4.69%
Config22 12 3 2 17.38% 1.07% 1.01%
Config23 12 3 3 17.82% 2.22% 2.19%
Config24 12 3 4 17.36% 3.53% 3.50%
Config25 12 4 2 16.47% 1.60% 1.57%
Config26 12 4 3 16.42% 3.13% 3.11%
Config27 12 4 4 15.96% 4.47% 4.44%

In our final experiment, we explore whether GCSI and WSI can add value on top of

CSI. More specifically, after solving the initial linear programming relaxation (with simple

strengthening inequalities), we first add violated CSI (one by one until we can no longer

find any), then we add violated GCSI (one by one and until we can no longer find any), and

then violated WSI (until we can no longer find any). The results are shown in Table 4.7. We

observe that only modest gains are achieved when adding the two new sets of inequalities

for these instances.

4.6 Conclusions and Future Work

In this chapter, we try to strengthen the compact but relatively weak flow-based formula-

tion for the SNDPITC. The newly proposed six classes of cutting planes show promise in

closing the optimality gap when the well-known cut-set inequalities can not provide any

further improvement. One future direction is to develop more efficient separation heuris-

111

tics. A more extensive numerical study will be helpful for identifying special structures

where the new cutting planes can be more helpful.

112

CHAPTER 5

SUBSTITUTION-BASED EQUIPMENT BALANCING IN SERVICE NETWORKS

WITH MULTIPLE EQUIPMENT TYPES

A load plan for the coming week, i.e., the loads to be moved and the driver schedules to

make this happen, often induces a change in the inventory of an equipment type at a facility

at the end of the week. In other words, the number of a specific equipment type departing

from the facility is not equal to the number arriving. The imbalance (induced by a plan) of a

facility is defined to be the sum of the imbalances (surplus or deficit) of all equipment types

at the facility, and the total imbalance (induced by a plan) is the sum of the imbalances of

the facilities in the network.

We seek to decrease the imbalance introduced by a plan via substituting the original

equipment types assigned to the loads according to the plan. Equipment substitution com-

plements empty repositioning of equipment, but is only possible if companies operate mul-

tiple, exchangeable equipment types. It has the advantage (over empty repositioning) of not

incurring any costs. The primary goal of substitution-based equipment balancing is to min-

imize the total imbalance induced by a plan. A secondary goal is to achieve the minimum

total imbalance with as few equipment substitutions as possible. That is, substitution-based

equipment balancing is a hierarchical optimization problem.

In this chapter, we explore computational complexity questions arising when using an

MIP to decrease the imbalance of a given load plan.

The remainder of the chapter is organized as follows. Section 5.1 introduces notation

and presents integer programming formulations. Section 5.2 gives the results of our com-

plexity analysis. We include some concluding remarks in Section 5.3.

113

5.1 Notation and formulations

We first introduce the notation used throughout this chapter. A network N is represented

as a directed graph, N = (V,A), with each vertex representing a facility and each arc rep-

resenting a load. A load represents a movement of equipment that is scheduled to dispatch

during the planning horizon and deliver a quantity of packages for an origin-destination

pair. It is also also characterized by the initial equipment type assigned to it which is used

to compute the initial imbalance. Let Z≥0 be the set of non-negative integers, n = |V | be

the number of vertices, and m = |A| be the number of arcs. Let E be the set of basic equip-

ment types and C be the set of equipment type configurations used operationally, which can

be a basic type or a composite type formed by combining basic types. For c ∈ C, we have

c =
∑

e∈E fcee with fce ∈ Z≥0 indicating how many units of basic equipment type e ∈ E

are used in the composite type c. For each v ∈ V , let Cv ⊆ C be the set of allowable equip-

ment types at vertex v, and δ+
v = {(v, u) ∈ A : u ∈ V } and δ−v = {(u, v) ∈ A : u ∈ V } be

the sets of outgoing and incoming arcs at v, respectively. Let σ+
v := |δ+

v | and σ−v := |δ−v |.

An equipment assignment (or assignment for short) is a function A : A → C that assigns

an equipment type to each arc. The initial assignment is denoted by A0. Let Ca ⊆ C be the

set of equipment types that can be assigned to arc a ∈ A, A+
vc := {a ∈ δ+

v : c ∈ Ca}, and

A−vc := {a ∈ δ−v : c ∈ Ca}. For a given network N , let I∗ be the minimum imbalance and

I(A) be the imbalance of an assignment A . When I(A) = I∗, we say A is optimal for

N .

Our goal is to find an optimal A ∗ that is closest to A0, i.e., A ∗ ∈ argminI(A)=I∗‖A −

A0‖, where ‖A − A0‖ = |{a ∈ A : A (a) 6= A0(a)}|. We use a two-stage hierarchical

optimization approach, where we compute I∗ for networkN in Stage 1, and find the desired

A ∗ in Stage 2.

114

5.1.1 Minimizing imbalance

We define the following variables. For a ∈ A and c ∈ Ca, let

yac =


1, if equipment c is used on arc a,

0, otherwise.

For v ∈ V , e ∈ Cv ∩ E , let rve ∈ Z≥0 be the imbalance for basic equipment type e at vertex

v. The following model minimizes the total imbalance I∗:

I∗ = min
∑
v∈V

∑
e∈Cv∩E

rve (5.1)

s.t.
∑
c∈C

fce

∑
a∈A+

vc

yac −
∑
a∈A−vc

yac

 ≤ rve, v ∈ V, e ∈ Cv ∩ E , (5.2)

∑
c∈C

fce

∑
a∈A−vc

yac −
∑
a∈A+

vc

yac

 ≤ rve, v ∈ V, e ∈ Cv ∩ E , (5.3)

∑
c∈Ca

yac = 1, a ∈ A, (5.4)

yac ∈ {0, 1}, a ∈ A, c ∈ Ca. (5.5)

Constraints (5.2) and (5.3) ensure that rve is set to the net surplus or deficit of equipment

type e at vertex v, while Constraint (5.4) guarantees that exactly one equipment type is

assigned to each arc (i.e., the assigned equipment type remains the same or is replaced by

exactly one other equipment type). Note that the minimum imbalance induced by a plan

depends on both the loads and the initial assignment, A0, since Ca depends on A0.

115

5.1.2 Minimizing the number of changes required to achieve the minimum imbalance

In Stage 2, we minimize the number of changes Ω and adding Constraint (5.6) ensures that

the obtained equipment assignment is an optimal assignment:

Ω = min
∑
a∈A

(1− yaA0(a))

s.t. ∑
v∈V

∑
e∈Cv∩E

rve ≤ I∗, (5.6)

(5.2), (5.3), (5.4), (5.5).

Note that Ω < m, and, thus, the two optimization models can be combined into a single

optimization model as follows:

min
∑
v∈V

∑
e∈Cv∩E

mrve +
∑
a∈A

(1− yaA0(a))

s.t. (5.2), (5.3), (5.4), (5.5).

However, for real-life instances, m can be as large as hundreds of thousands, which makes

it more difficult to solve than the two-stage hierarchical optimization model.

5.2 Complexity of equipment substitution problems

In this section, we analyze the computational complexity of some simplified settings of the

equipment substitution problem. For simplicity, we only consider basic equipment types,

i.e., C = E and an assignment A can be viewed as a function A → E . We consider two

variants: one where there is full interchangeability, i.e., the equipment assigned to all arcs

in the network can be changed, and the other where there is partial interchangeability,

i.e., the equipment assigned to a given subset of arcs cannot be changed. Furthermore, we

consider settings with two and three equipment types. The findings, to be discussed next,

116

are summarized in Table 5.1.

Table 5.1: Complexity of equipment substitution problems in different simplified settings.

full interchangeability partial interchangeability
2 equipment

types
3 equipment

types
2 equipment

types
3 equipment

types

minimizing imbalance P P P NP-hard
minimizing number of changes P NP-hard P NP-hard

For networks with full interchangeability, the following claim gives a necessary and

sufficient condition for an assignment function A to be optimal. Let σ+
ve = |{a ∈ δ+

v :

A (a) = e}| and σ−ve = |{a ∈ δ−v : A (a) = e}|.

Claim 1. Given a network N with full interchangeability and an assignment A , then

I(A) = I∗ if and only if for all v ∈ V and for all e ∈ E , (σ+
ve − σ−ve)(σ

+
v − σ−v) ≥ 0

if σ+
v − σ−v 6= 0 and σ+

ve − σ−ve = 0 if σ+
v − σ−v = 0.

Proof. For each node v, the minimum imbalance is at least |σ+
v − σ−v |, which implies∑

v∈V |σ+
v − σ−v | is a lower bound of I∗. It’s easy to see this bound can be achieved by

A (a) := e, ∀a ∈ A and a fixed e ∈ E . By definition, for all v ∈ V ,
∑

e∈E σ
+
ve = σ+

v and∑
e∈E σ

−
ve = σ−v , which implies

∑
e∈E(σ

+
ve − σ−ve) = σ+

v − σ−v . Now I(A) = I∗ if and

only if for all v ∈ V ,
∑

e∈E |σ+
ve − σ−ve| = |σ+

v − σ−v |. This, in turn, is true if and only if

for all e ∈ E we have (σ+
ve − σ−ve)(σ+

v − σ−v) ≥ 0 if σ+
v − σ−v 6= 0 and σ+

ve − σ−ve = 0 if

σ+
v − σ−v = 0. �

5.2.1 Two-equipment type networks with full interchangeability

Given a network N with two equipment types, i.e., E = {Q1, Q2}, and full interchange-

ability, it is easy to see that both A (a) = Q1 for all a ∈ A and A (a) = Q2 for all

a ∈ A achieve minimum imbalance. However, it is not obvious how to find an assignment

that minimizes the number of changes required to achieve minimum imbalance. We start

by giving an example that demonstrates that the natural greedy heuristic, which identifies

117

an arc for which swapping the equipment type reduces the imbalance the most and then

performs that swap, does not necessarily yield the desired A ∗.

A counterexample for the greedy heuristic

v1 v2

v3v4

v5

Q1

Q2

Q2

Q1
Q1

Q1

Q2
Imbalance Q1 Q2

v1 1 0
v2 2 1
v3 1 1
v4 1 1
v5 1 1

Total 10

In Iteration 1, the greedy heuristic may change the equipment type on (v2, v3) from Q2

to Q1 as it reduces the imbalance by 4 (the maximum possible).

v1 v2

v3v4

v5

Q1

Q1

Q2

Q1
Q1

Q1

Q2

Imbalance Q1 Q2

v1 1 0

v2 1 0

v3 0 0

v4 1 1

v5 1 1

Total 6

In Iteration 2, the greedy heuristic may change the equipment type on (v4, v3) from Q2

to Q1 even though it does not reduce the imbalance.

118

v1 v2

v3v4

v5

Q1

Q1

Q1

Q1
Q1

Q1

Q2

Imbalance Q1 Q2

v1 1 0

v2 1 0

v3 1 1

v4 0 0

v5 1 1

Total 6

Finally, in Iteration 3, the greedy heuristic will change the equipment type on (v3, v5)

from Q2 to Q1, which reduces the imbalance by 4. The minimum imbalance is achieved in

three iterations.

v1 v2

v3v4

v5

Q1

Q1

Q1

Q1
Q1

Q1

Q1

Imbalance Q1 Q2

v1 1 0

v2 1 0

v3 0 0

v4 0 0

v5 0 0

Total 2

However, it is easy to see that the minimum imbalance can be reduced to 2 by only

2 equipment type changes: change the equipment type on (v5, v2) from Q1 to Q2 and on

(v4, v3) from Q2 to Q1.

To show that an optimal assignment closest to the initial assignment can be found in

polynomial time, we formulate the problem as an integer program and show that the coef-

ficient matrix is totally unimodular.

119

IP formulation and polynomial solvability

Given that there are only two equipment types, a simpler formulation for the Stage 2 prob-

lem can be constructed. Let A1 := {a ∈ A : A0(a) = Q1} and A2 := {a ∈ A : A0(a) =

Q2}, and for all a ∈ A let

xa =


1 if equipment type Q1 is assigned to arc a,

0 otherwise.

Minimizing the number of changes required to achieve the minimum imbalance can be

modeled as an integer program (IP) as follows

min
∑
a∈A1

(1− xa) +
∑
a∈A2

xa

s.t. 0 ≤
∑
a∈δ+v

xa −
∑
a∈δ−v

xa ≤ σ+
v − σ−v , v ∈ V, σ+

v > σ−v , (5.7)

σ+
v − σ−v ≤

∑
a∈δ+v

xa −
∑
a∈δ−v

xa ≤ 0, v ∈ V, σ+
v < σ−v , (5.8)

∑
a∈δ+v

xa −
∑
a∈δ−v

xa = 0, v ∈ V, σ+
v = σ−v , (5.9)

xa ∈ {0, 1}, a ∈ A.

Validity of the formulation follows from the fact that Constraints (5.7), (5.8), and (5.9)

guarantee that the condition in Claim 1 is satisfied. In addition, the objective function

forces the solution to be closest to the initial assignment A0.

The above IP can be written in the following form

min wTx

s.t. l ≤ Lx ≤ u,

x ∈ {0, 1}m.

120

where L is the node-arc incidence matrix of the network. Because a node-arc incidence

matrix of a network is totally unimodular and l, u ∈ Zn, the LP relaxation will return an in-

tegral solution. Since LPs can be solved in polynomial time, we have shown its polynomial

solvability.

5.2.2 Two-equipment type networks with partial interchangeability

As before, let A1 := {a ∈ A : A0(a) = Q1} and A2 := {a ∈ A : A0(a) = Q2}. In this

setting, we assume that the equipment types on the two given sets X1 ⊆ A1 and X2 ⊆ A2

cannot be changed, i.e., the equipment type Q1 assigned to arcs in X1 cannot be changed

to Q2, and the equipment Q2 assigned to arcs in X2 cannot be changed to Q1.

Minimizing imbalance

Determining the minimum imbalance I∗, when certain equipment type assignments cannot

be changed, is no longer trivial, but can be accomplished using the following IP:

min
∑
v∈V

(rv,1 + rv,2)

s.t.
∑

a∈δ+v \X1

xa + |δ+
v ∩X1| −

∑
a∈δ−v \X1

xa − |δ−v ∩X1| ≤ rv1, v ∈ V, (5.10)

∑
a∈δ+v \X2

(1− xa) + |δ+
v ∩X2| −

∑
a∈δ−v \X2

(1− xa)− |δ−v ∩X2| ≤ rv2, v ∈ V,

(5.11)∑
a∈δ−v \X1

xa + |δ−v ∩X1| −
∑

a∈δ+v \X1

xa − |δ+
v ∩X1| ≤ rv1, v ∈ V, (5.12)

∑
a∈δ−v \X2

(1− xa)− |δ−v ∩X2| −
∑

a∈δ+v \X2

(1− xa)− |δ+
v ∩X2| ≤ rv2, v ∈ V,

(5.13)

xa ∈ {0, 1}, a ∈ A \ (X1 ∪X2), (5.14)

rv1, rv2 ∈ R, v ∈ V, (5.15)

121

where

xa =


1 if equipment type Q1 is assigned to arc a,

0 otherwise,

and rv1, rv2 ∈ Z≥0 represent the imbalance for equipment type Q1, Q2 at vertex v, respec-

tively.

The LP relaxation of the above IP can be written in the following form:

min (0, w)

x
r


s.t.

B −I

−B −I


x
r

 ≤
 d

−d

 ,

0 ≤ xa ≤ 1, a ∈ A \ (X1 ∪X2),

r ∈ R2n.

Claim 2. Polyhedron P :=

(x, r) :

B −I

−B −I


x
r

 ≤
 d

−d

 , 0 ≤ x ≤ 1, r ∈ R


has integral extreme points.

Proof. B has 2n rows and can be written in the form

L̂
− L̂

, where L̂ = (la)a∈A\(X1∪X2)

is a submatrix of the node-arc incidence matrix L, and la is the column of L that corre-

sponds to arc a. Since L is TU, so are L̂ and B. Suppose (x∗, r∗) is an extreme point of

P and I ⊆ [4n] is the index set of active constraints at (x∗, r∗). Note that if there exists a

j ∈ [2n] such that both j and j+2n are in I, then bjx∗−ujr∗ = dj and−bjx∗−ujr∗ = −dj ,

where bj is the j-th row of B and uj is the j-th unit vector. Then ujr∗ = 0 and only one

of the constraints is necessary. Let I1 = {j : j ∈ I ∩ [2n], j + 2n /∈ I}, I2 = {j : j ∈

I ∩ ([4n] \ [2n]), j − 2n /∈ I}, I3 = {j : j ∈ I ∩ [2n], j + 2n ∈ I}, H1 = {j : r∗j = 0},

122

H2 = [2n] \H1, r1 = (r∗j)j∈H1 , r2 = (r∗j)j∈H2 . Then (x∗, r2) is an extreme point of

P̂ =

(x, y) :

(
B̂ −I

)x
y

 = d̂, 0 ≤ x ≤ 1, y ∈ R

 ,

where B̂ =

(bj)j∈I1∪I3

−(bj)j∈I2

 is a submatrix of B, d̂ =

(dj)j∈I1∪I3

− (dj)j∈I2

 ∈ Z|I1|+|I2|+|I3|.

Since B is TU, so are B̂ and
(
B̂ −I

)
. Therefore, every extreme point of P̂ is integral

and (x∗, r2) is integral. Consequently, (x∗, r∗) is integral (since r1 = 0). �

Minimizing the number of changes to achieve minimum imbalance

The integrality property derived in the previous section relies on the structure of the coef-

ficient matrix. Therefore, if we modify the objective, but keep the coefficient matrix the

same, the solution to the LP relaxation will still be integral. As mentioned in Section 5.1,

we can combine the optimization models of the two stages into a single optimization model

by changing the objective. In the case of two equipment types this results in

min
∑
v∈V

m(rv,1 + rv,2) +
∑

a∈A1\X1

(1− xa) +
∑

a∈A2\X2

xa

s.t. (5.10), (5.11), (5.12), (5.13), (5.14), (5.15).

Observing that
∑

a∈A1\X1
(1 − xa) +

∑
a∈A2\X2

xa ≤ |A1 \ X1| + |A2 \ X2| = |A \

(X1 ∪ X2)| < m, the optimal solution is guaranteed to achieve the minimum imbalance

while minimizing the number of changes made to the original assignment.

5.2.3 Two-equipment type models: Additional results

A more general question, for a given K ∈ Z≥0 and a given A0, is whether an A ′ can be

found such that I(A ′) ≤ K and ‖A −A ′‖ is minimum in a network with two equipment

123

types and full interchangeability. Next, we will show that to solve this problem, it suffices to

solve K integer minimum cost circulation problems in an auxiliary network G′ = (V ′, E ′),

which has size polynomial in the size of the original network G, and is constructed as

follows.

We add three vertices {s, t, s′} to V , and thus V ′ = V ∪ {s, t, s′}. Let E ′ = E ∪ E+ ∪

E− ∪ {s′s, ts′}, where E+ = {sv : σ+
v > σ−v , v ∈ V } and E+ = {vt : σ−v > σ+

v , v ∈ V }.

Define the capacity function u : E ′ → Z≥0 and cost function c : E ′ → Z as follows

u(e) =



σ+
v − σ−v , if e ∈ E+,

σ−v − σ+
v , if e ∈ E−,

1, if e ∈ E,

k, if e = s′s or ts′,

c(e) =


− 1, if e ∈ A1,

1, if e ∈ A2,

0, if e ∈ E+ ∪ E− ∪ {s′s, ts′},

where k ∈ Z≥0, k ≤ K. It’s easy to see that there exists an integer circulation in G′.

Suppose we have a minimum cost integer circulation fk : E ′ → Z≥0 of G′ and define the

assignment function A k as

A k(e) =


Q1, if e ∈ E, fk(e) = 1,

Q2, if e ∈ E, fk(e) = 0.

By construction, the imbalance of equipment Q1 for A k is less than or equal to k. Thus

if we solve this problem for each k ∈ {0, 1, . . . , K}, then we are able to find an A ′ such

that I(A ′) ≤ K and thus T := {0 ≤ k ≤ K : I(A k) ≤ K} is not empty. Let k∗ =

argmink∈T‖A k − A 0‖. Since for each k, fk achieves the minimum cost, then A k∗ is

closest to A0 with I(A k∗) ≤ K over all assignment functions. Due to the integrality of

capacities, we can find the minimum cost integer circulation in strongly polynomial-time

([69]). Given that K ≤ 2m, finding the desired A ′ := A k∗ can be done in polynomial

time.

124

In case of partial interchangeability, the cost function has to be modified slightly:

c(e) =



− 1, if e ∈ A1 \X1,

1, if e ∈ A2 \X2,

−m, if e ∈ X1,

m, if e ∈ X2,

0, if e ∈ E+ ∪ E− ∪ {s′s, ts′},

where a large cost m or −m is assigned to the arcs on which the equipment cannot be

changed. If for some 0 ≤ k ≤ K, the cost of fk, c(fk) ≥ m, then the equipment on some

of the fixed arcs has been changed, and thus the corresponding A k is not feasible. Let

T̂ = {0 ≤ k ≤ K : I(A k) ≤ K, c(fk) < m}. If T̂ = ∅, then the desired assignment

function A ′ does not exist, otherwise, let k̂∗ = argmink∈T̂‖A k −A0‖, and A ′ := A k̂∗ is

the desired assignment function.

5.2.4 Three-equipment type networks

We call a networkN balanced if for any vertex v ∈ V , σ+
v = σ−v . The following proposition

characterizes the difficulty of finding an assignment function A such that I(A) = 0 in a

balanced three-equipment network with partial interchangeability.

Proposition 5.2.1. The problem of deciding whether there exists an assignment A such

that I(A) = 0 for a balanced network N with three equipment types and a set S ⊆ A of

arcs on which the equipment type cannot be changed is NP-complete.

Proof. Transformation from SIMPLE D2CIF, which is known to be NP-complete (see

[39]).

SIMPLE D2CIF: Given a directed graph D = (V,A), with two source vertices s1, s2 ∈ V ,

two sink vertices t1, t2 ∈ V , each arc a ∈ A having capacity one, and two non-negative

125

integers R1 and R2. Do there exist two flow functions f1 and f2, both A→ N, such that f1

sends R1 units of flow from s1 to t1 and f2 sends R2 units of flow from s2 to t2?

Without loss of generality, we assume σ−s1 = σ−s2 = σ+
t1 = σ+

t2 = 0 for D. We construct

D′ = (V ′, A′) as follows. Add a vertex s to V . For each v ∈ V , if σ+
v > σ−v , add σ+

v − σ−v

parallel arcs from s to v and if σ+
v < σ−v , add σ−v −σ+

v parallel arcs from v to s. For v ∈ V ,

let Avs and Asv denote the set of parallel arcs from v to s, and from s to v, respectively.

Let the three equipment types be Q1, Q2 and Q3. Let Âss1 ⊆ Ass1 , Âss2 ⊆ Ass2 ,

Ât1s ⊆ At1s, and Ât2s ⊆ At2s with |Âss1 | = |Ât1s| = R1, |Âss2| = |Ât2s| = R2. In the

initial equipment assignment, let the equipment assigned to arcs in Âss1 and Ât1s be Q1,

in Âss2 and Ât2s be Q2, and in Ass1 \ Âss1 , Ass2 \ Âss2 , At1s \ Ât1s, At2s \ Ât2s, and in

Asv, and Avs for v ∈ V \ {s1, s2, t1, t2} be Q3. Furthermore, let these sets be such that

the equipment type cannot be changed. For convenience, let Y1 and Y2 denote the sets of

arcs with equipment type Q1 and Q2, respectively, for which the equipment type cannot be

changed.

For a YES-instance of SIMPLE D2CIF, we have the required flow functions f1 and f2.

We may assume f1 does not send any flow from s2 to t2 and f2 does not send any flow from

s1 to t1 (otherwise, we can simply delete those flows from f1 and f2). Zero imbalance can

be achieved by A : A′ → {Q1, Q2, Q3} defined as follows:

A (a′) =


Q1, a′ ∈ {a ∈ A : f1(a) = 1} ∪ Y1,

Q2, a′ ∈ {a ∈ A : f2(a) = 1} ∪ Y2,

Q3, otherwise.

For equipment typeQ1, since f1 is a flow, by conservation of flow for v ∈ V \{s1, s2, t1, t2},

Q1 is balanced. By the definition of A , it is also balanced for {s1, s2, t1, t2, s}. Similarly,

equipment type Q2 is balanced. Since for all v ∈ V ′, σ+(v) = σ−(v), equipment type Q3

is also balanced, and, thus, the imbalance is zero.

126

Now suppose there exists an assignment A for D′ that achieves zero imbalance, then

the corresponding instance of SIMPLE D2CIF is YES-instance, because the two flow func-

tions f1 and f2 can be constructed as follows:

f1(a) =


1, a ∈ {a ∈ A : A (a) = Q1},

0, otherwise,

and

f2(a) =


1, a ∈ {a ∈ A : A (a) = Q2},

0, otherwise.

Since M(D′,A) = 0, for all v ∈ V \ {s1, s2, t1, t2}, the imbalance for Q1 and Q2 is zero,

and, thus, there is conservation of flow. For s1, since on R1 arcs from s to s1 the equipment

type is Q1 and on the remaining arcs from s to s1 the equipment type is Q3, and the equip-

ment type on these arcs cannot be changed, we have
∑

a∈A : a3s1 f1(a) = R1. Similarly,

we have
∑

a∈A : a3t1 f1(a) = R1,
∑

a∈A : a3s2 f2(a) = R2, and
∑

a∈A : a3t2 f2(a) = R2.

Therefore, f1 and f2 are the desired flow functions. �

Proposition 5.2.1 implies that in the case of partial interchangeability, both the problem

of finding the minimum imbalance and the problem of finding the minimum number of

changes required to reach minimum imbalance are NP-hard. Next, we show that the prob-

lem of finding the minimum number of changes required to reach minimum imbalance is

also NP-hard for the case of full interchangeability.

Proposition 5.2.2. The problem of deciding whether there exists an assignment A such

that I(A) = I∗ and ‖A − A0‖ ≤ K, for a given K ∈ Z≥0 and a network N with three

equipment types and full interchangeability is NP-complete.

Proof. For convenience, the decision problem in Proposition 5.2.1 is referred to as 3EPI

(3-equipment with partial interchangeability). We prove the proposition by providing a

transformation from 3EPI.

127

Given a balanced network D = (V,A), three disjoint subsets Y1, Y2, and Y3 of A such

that the equipment types on arcs in Y1, Y2, and Y3, are Q1, Q2, and Q3, respectively, and

cannot be changed, and K ∈ Z≥0, we construct a directed graph D′ = (V ′, A′) as follows.

For all arcs a = (u, v) ∈ Yi, i = 1, 2, 3, replace a by a directed path Pa of length m = |A|

from u to v by adding m − 1 intermediate vertices and m − 1 arcs. Note that |V ′| ≤ mn

and |A′| ≤ m2 and the size of D′ is polynomial in the size of D. Let the initial assignment

for a′ ∈ A′ be

A0(a′) :=


Q1, if a′ ∈ Pa for a ∈ Y1,

Q2, if a′ ∈ Pa for a ∈ Y2,

Q3, otherwise.

By construction, D′ is also a balanced network. Let Î∗ be the minimum imbalance of

D′ and Î(A) be the imbalance of an assignment of D′. Observe that in any assignment

A ′ with Î(A) = 0 and ‖A ′ − A0‖ ≤ m − 1, the equipment type on arcs a′ ∈ pa for

a ∈ Y1 ∪ Y2 ∪ Y3 cannot have changed. Therefore, if we can find an A with I(A) = 0 and

‖A ′ −A0‖ ≤ m− 1, then the instance of 3EPI is a YES-instance, verified by assignment

A (a) :=


Q1, if A ′(a) = Q1,

Q2, if A ′(a) = Q2,

Q3, otherwise.

If, on the other hand, for all A with Î(A) = 0, we have ‖A ′−A0‖ ≥ m, then the instance

of 3EPI is a NO-instance. �

5.3 Final Remarks

Striving for equipment balance, i.e., seeking to have the same equipment at a facility at the

end of the week as at the start of the week, ignores what happens during the week, and does

not account for seasonal changes in package flows. A natural future research direction,

128

therefore, is inventory-aware equipment management, in which time is modeled explicitly,

e.g., days for planning periods of one or more weeks, and weeks for planning periods of

one or more quarters.

129

CHAPTER 6

CONCLUDING REMARKS AND FUTURE DIRECTIONS

Serving as a tool to obtain a solution efficiently, optimization (mainly continuous) has

always been an indispensable part of machine learning (ML). Various optimization al-

gorithms have been developed and/or tailored to different ML models and have facili-

tated the tremendous success of ML, such as the alternating direction method of multi-

pliers (ADMM) for compressed sensing, full gradient descent (GD) for logistic regression,

stochastic gradient descent (SGD) and its variants for deep learning, to name a few. En-

couraged by the promise of ML in helping to make smarter decisions given enough history

information, there is a trend to apply ML to improve optimization (mainly discrete) algo-

rithms. Although MIP solvers has achieved a speedup of more than 800 billions over the

past 25 years (1991-2015), as reported in [21], there are still numerous problems faced by

the industry that are beyond their solution capacities. We have demonstrated that ML com-

bined with domain knowledge can result in noticeable improvement in performance, which

is a direction deserving more research effort.

An efficient LP solver is of the essence for every MIP solver. Meanwhile, solving LPs

itself sees tons of applications in reality. To solve LPs by simplex, longstanding questions

are how to select the initial basis to start and how to pivot, i.e., choose entering and exiting

variables at each step. If an interior point method is used, to return a basis for subsequent

computation, an initial basis is also required for the crossover stage. To solve MIPs, how

to pick effective primal heuristics, branch, add cutting planes, or identify potential decom-

posable structure to address problems of large size are all open questions. Currently, those

important decisions in MIP solvers are made by some predefined rules that are mostly

summarized manually through extensive numerical experiments. We believe most of the

decisions can be made more intelligently with the aid of ML techniques.

130

In addition to branching strategies (see Chapter 3), cutting plane selection (see [68]) can

also be improved by ML. Nevertheless, most of current research tries to enhance a simple

component at a time without paying enough attention to the complex interplay of different

decisions within MIP solvers. It will be interesting to investigate if a certain combinations

of a branching strategies, cutting planes and primal heuristics can deliver better overall

performance.

131

Appendices

132

APPENDIX A

DETAILED RESULTS OF NUMERICAL EXPERIMENTS

Table A.1: Set covering problems: comparison on number of nodes explored.

Name
Number of nodes explored Top 5

CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%
gte 3 00 418 60 231 305 390 62.19
gte 3 01 104 54 52 25 23 65.00
gte 3 02 1,121 91 297 529 415 64.45
gte 3 03 634 82 296 455 352 64.01
gte 3 04 32 14 35 46 78 54.55
gte 3 05 864 257 360 838 904 66.85
gte 3 06 430 252 353 561 839 63.51
gte 3 07 1,084 178 323 786 629 63.92
gte 3 08 578 72 255 186 267 68.00
gte 3 09 1,217 410 716 888 906 65.41
gte 3 10 306 170 353 476 357 64.54
gte 3 11 486 174 181 396 217 59.00
gte 3 12 233 105 194 450 340 63.58
gte 3 13 655 215 291 332 611 70.37
gte 3 14 161 37 70 146 137 59.14
gte 3 15 966 145 367 917 684 68.20
gte 3 16 4,426 619 1,965 2,673 1,657 65.61
gte 3 17 445 115 323 530 173 59.88
gte 3 18 2,774 330 1,154 1,178 845 63.18
gte 3 19 71 35 46 239 53 58.95

total 17,005 3,415 7,862 11,956 9,877 63.52
savings — 79.92% 53.77% 29.69% 41.92%
gte 4 00 4,684 1,178 1,573 1,590 2,969 68.68
gte 4 01 22,598 6,252 9,723 15,603 10,938 68.44
gte 4 02 3,317 616 1,282 3,375 1,154 59.72
gte 4 03 1,372 358 1,454 2,139 1,227 66.05
gte 4 04 1,067 405 378 770 750 63.11
gte 4 05 2,563 615 1,136 1,739 1,538 66.77
gte 4 06 1,471 578 851 1,216 930 67.82
gte 4 07 1,680 480 678 1,148 885 63.08
gte 4 08 1,458 382 1,101 1,472 831 66.77
gte 4 09 4,427 710 1,751 3,278 2,817 64.84
gte 4 10 1,830 393 755 3,082 1,876 63.84
gte 4 11 861 412 538 955 691 63.19
gte 4 12 2,704 624 1,474 2,272 1,772 66.74
gte 4 13 515 112 425 294 269 61.44

Continued on next page

133

Table A.1 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

gte 4 14 1,358 312 639 1,166 339 58.49
gte 4 15 2,958 621 837 1,623 1,685 61.47
gte 4 16 12,018 2,981 6,680 3,502 8,519 69.53
gte 4 17 795 232 454 665 1,012 61.81
gte 4 18 8,964 1,637 3,764 4,351 4,350 68.31
gte 4 19 6,990 1,775 3,315 4,801 4,244 66.85

total 83,630 20,673 38,808 55,041 48,796 64.85
savings — 75.28% 53.60% 34.19% 41.65%
gte 5 00 17,339 6,521 16,502 16,765 9,839 73.14
gte 5 01 9,400 1,411 5,068 6,317 4,760 62.91
gte 5 02 87,696 18,804 32,903 49,048 46,740 64.94
gte 5 03 17,853 7,821 19,960 24,871 10,759 65.38
gte 5 04 38,278 11,677 30,433 24,263 12,081 65.78
gte 5 05 140,687 14,987 22,697 58,074 29,957 69.49
gte 5 06 29,724 5,346 8,663 10,976 11,331 62.76
gte 5 07 49,893 17,024 23,654 47,338 21,705 62.39
gte 5 08 28,051 5,862 9,821 15,874 16,705 60.00
gte 5 09 11,434 3,412 13,727 18,015 12,669 63.23
gte 5 10 6,503 1,206 2,260 5,262 2,726 70.33
gte 5 11 52,553 13,678 28,190 31,198 30,894 65.42
gte 5 12 17,190 3,739 10,566 8,606 6,085 68.00
gte 5 13 55,147 11,731 17,182 25,009 21,736 61.24
gte 5 14 6,846 3,645 5,539 2,611 4,066 66.09
gte 5 15 3,286 797 1,198 1,604 1,421 63.52
gte 5 16 13,255 5,497 8,534 3,072 6,962 63.53
gte 5 17 73,865 10,788 17,989 40,890 21,206 66.53
gte 5 18 8,741 2,244 9,455 8,932 7,323 67.09
gte 5 19 9,856 1,303 5,512 8,880 1,603 69.80

total 677,597 147,493 289,853 407,605 280,568 65.58
savings — 78.23% 57.22% 39.85% 58.59%
gte 6 00 66,359 8,819 18,722 19,969 21,074 66.91
gte 6 01 29,122 6,182 21,912 12,243 7,903 64.68
gte 6 02 377,863 109,474 423,699 139,043 156,993 67.62
gte 6 03 467,523 45,594 89,205 103,326 109,543 65.68
gte 6 04 206,069 26,132 56,984 59,855 54,365 67.62
gte 6 05 1,000,000 447,398 1,000,000 344,568 425,109 69.03
gte 6 06 651,731 132,161 1,000,000 611,423 246,961 68.58
gte 6 07 181,479 55,242 91,392 62,354 72,002 66.54
gte 6 08 29,434 5,869 33,537 14,570 13,467 65.97
gte 6 09 1,000,000 144,436 354,465 342,833 363,778 66.99
gte 6 10 223,047 18,220 27,699 38,824 45,479 66.00
gte 6 11 466,738 164,218 169,450 185,680 230,245 69.06
gte 6 12 216,485 30,796 105,397 159,153 146,332 63.88
gte 6 13 73,490 17,475 44,529 36,166 31,223 67.83
gte 6 14 107,282 21,774 40,863 48,613 43,151 64.86

Continued on next page

134

Table A.1 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

gte 6 15 473,913 130,895 399,090 521,841 194,681 67.85
gte 6 16 89,671 9,766 52,555 42,050 16,391 66.43
gte 6 17 37,587 10,888 24,557 30,688 9,420 65.66
gte 6 18 101,833 21,361 11,229 23,454 8,693 69.66
gte 6 19 242,965 34,645 156,672 143,198 78,823 64.98

total 6,042,591 1,441,345 4,121,957 2,939,851 2,275,633 66.79
savings — 76.15% 31.78% 51.35% 62.34%
scpnre1 46,901 7,598 15,256 17,697 16,998 68.84
scpnre2 179,779 58,980 88,501 138,099 38,463 67.30
scpnre3 37,324 7,318 23,163 15,390 28,189 67.96
scpnre4 105,694 15,116 17,215 15,568 35,678 64.28
scpnre5 9,640 2,212 3,683 5,943 5,085 68.17

total 379,338 91,224 147,818 192,697 124,413 67.31
savings — 75.95% 61.03% 49.20% 67.20%
scpnrf1 48,144 4,763 27,985 13,269 13,706 72.72
scpnrf2 18,950 3,488 12,980 8,449 7,787 71.26
scpnrf3 12,466 6,288 22,055 3,533 4,687 73.35
scpnrf4 65,506 12,096 50,019 76,450 34,927 73.37
scpnrf5 357,506 22,718 171,234 29,119 126,862 72.60

total 502,572 49,353 284,273 130,820 187,969 72.66
savings — 90.18% 43.44% 73.97% 62.60%

Total 7,702,733 1,753,503 4,890,571 3,737,970 2,927,256 65.72
Savings — 77.24% 36.51% 51.47% 62.00%

Table A.2: Set covering problems: comparison on run time.

Name
Run time (seconds)

CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB
gte 3 00 0.79 1.51 6.07 0.59 0.75
gte 3 01 0.48 1.67 2.53 0.24 0.24
gte 3 02 1.47 2.13 9.66 0.86 0.83
gte 3 03 0.94 1.64 7.69 0.71 0.64
gte 3 04 0.37 0.64 1.91 0.27 0.32
gte 3 05 1.10 3.64 10.41 1.12 1.32
gte 3 06 0.87 4.46 10.21 0.91 1.28
gte 3 07 1.22 3.11 8.08 1.05 0.98
gte 3 08 0.86 1.71 6.72 0.40 0.51
gte 3 09 1.62 7.23 17.10 1.20 1.40
gte 3 10 0.78 3.27 10.29 0.82 0.72
gte 3 11 0.74 2.85 6.11 0.63 0.48
gte 3 12 0.69 2.26 6.18 0.76 0.74
gte 3 13 1.02 4.47 10.38 0.62 1.09
gte 3 14 0.55 1.03 2.90 0.33 0.35
gte 3 15 1.44 3.41 11.52 1.32 1.18

Continued on next page

135

Table A.2 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

gte 3 16 4.86 11.10 51.11 3.59 2.54
gte 3 17 0.98 2.84 10.58 0.88 0.48
gte 3 18 2.79 5.79 30.58 1.62 1.37
gte 3 19 0.44 1.19 2.50 0.50 0.28

total 24.01 65.95 222.53 18.42 17.5
savings — -174.68% -826.82% 23.28% 27.11%
gte 4 00 6.41 28.81 50.65 3.15 5.73
gte 4 01 27.41 149.12 279.17 25.08 18.94
gte 4 02 4.28 15.33 40.76 5.24 2.28
gte 4 03 2.58 9.80 50.81 4.11 2.70
gte 4 04 2.01 11.33 14.33 1.51 1.70
gte 4 05 4.22 14.20 32.12 3.22 3.13
gte 4 06 2.64 14.38 34.36 2.32 2.03
gte 4 07 2.69 11.41 19.54 2.01 1.72
gte 4 08 2.66 10.60 40.62 2.76 1.97
gte 4 09 6.48 17.05 51.27 5.58 5.26
gte 4 10 3.17 10.52 25.91 4.66 3.69
gte 4 11 1.99 12.03 16.77 2.09 1.69
gte 4 12 4.48 15.24 51.61 3.86 3.48
gte 4 13 1.37 3.61 16.14 0.80 0.84
gte 4 14 2.32 8.12 21.42 2.20 1.01
gte 4 15 3.77 11.77 26.40 2.53 2.97
gte 4 16 17.10 75.76 237.95 6.68 16.88
gte 4 17 1.79 6.44 15.76 1.44 2.20
gte 4 18 10.47 32.67 107.58 6.62 7.86
gte 4 19 9.93 39.50 92.62 7.65 7.70

total 117.77 497.69 1,225.79 93.51 93.78
savings — -322.59% -940.83% 20.60% 20.37%
gte 5 00 30.32 190.40 703.09 34.16 23.95
gte 5 01 17.09 43.97 226.96 13.58 11.95
gte 5 02 131.71 518.60 1159.14 91.51 107.04
gte 5 03 34.21 236.88 932.69 48.91 27.37
gte 5 04 62.05 348.61 1363.74 49.88 30.59
gte 5 05 237.66 470.99 1074.98 124.29 78.24
gte 5 06 49.48 169.64 318.61 22.51 28.62
gte 5 07 76.46 431.79 948.45 80.55 47.52
gte 5 08 37.73 146.81 338.95 27.33 36.32
gte 5 09 19.35 100.80 542.82 33.47 28.07
gte 5 10 12.63 38.39 87.97 12.30 7.14
gte 5 11 78.30 358.78 1044.39 54.40 66.01
gte 5 12 29.84 124.04 468.23 18.96 15.34
gte 5 13 78.74 321.40 641.10 44.29 46.54
gte 5 14 12.40 105.82 226.66 5.63 9.17
gte 5 15 6.16 25.83 50.73 3.74 4.39
gte 5 16 21.12 156.02 335.68 6.19 15.66

Continued on next page

136

Table A.2 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

gte 5 17 121.01 346.04 747.71 83.95 53.08
gte 5 18 15.44 69.42 406.65 17.82 16.91
gte 5 19 16.21 44.63 298.39 18.60 4.53

total 1,087.91 4,248.86 11,916.94 792.07 658.44
savings — -290.55% -995.40% 27.19% 39.48%
gte 6 00 132.14 315.93 962.42 48.72 58.13
gte 6 01 59.20 227.67 1217.78 31.27 24.83
gte 6 02 777.32 4176.73 25036.77 348.78 479.65
gte 6 03 841.15 1562.97 4318.07 224.58 318.98
gte 6 04 437.85 1061.35 2887.39 171.31 179.88
gte 6 05 2330.47 19526.79 58224.99 994.56 1488.88
gte 6 06 1495.31 5201.63 54520.36 1627.42 788.34
gte 6 07 408.38 2141.05 5277.72 161.53 222.15
gte 6 08 62.30 214.40 1962.26 37.21 41.46
gte 6 09 1967.79 5240.57 18402.67 811.10 1051.40
gte 6 10 431.44 735.68 1793.04 100.85 137.68
gte 6 11 956.12 6383.23 9553.25 482.02 719.60
gte 6 12 392.46 1060.42 5214.38 382.65 396.93
gte 6 13 165.85 735.68 2990.66 95.06 103.08
gte 6 14 201.62 737.71 1898.54 111.96 121.69
gte 6 15 1017.94 5277.22 24016.23 1361.13 626.10
gte 6 16 178.86 382.84 2822.59 106.89 51.70
gte 6 17 79.39 439.08 1393.88 81.79 31.63
gte 6 18 201.73 894.95 687.32 69.96 29.00
gte 6 19 470.74 1257.28 8705.86 336.08 228.51

total 12,608.06 57,573.18 231,886.18 7,584.87 7,099.62
savings — -356.64% -1739.19% 39.84% 43.69%
scpnre1 70.66 206.19 578.41 30.74 37.02
scpnre2 269.91 1742.58 3913.00 268.99 95.30
scpnre3 59.85 221.30 886.89 32.49 68.71
scpnre4 148.13 411.53 728.08 29.45 80.86
scpnre5 17.57 66.84 126.78 12.39 12.54

total 566.12 2,648.44 6,233.16 374.06 294.43
savings — -367.82% -1001.03% 33.93% 47.99%
scpnrf1 70.92 151.63 5024.09 27.28 30.39
scpnrf2 29.37 119.60 951.49 17.95 19.20
scpnrf3 20.19 228.63 4579.44 8.40 11.70
scpnrf4 103.42 397.93 3568.10 144.56 85.48
scpnrf5 435.84 744.83 11601.08 61.33 279.88

total 659.74 1,642.62 25,724.2 259.52 426.65
savings — -148.98% -3799.14% 60.66% 35.33%

Total 15,063.61 66,676.74 277,208.8 9,122.45 8,590.42
Savings — -342.63% -1740.25% 39.44% 42.97%

137

Table A.3: Set packing problems: comparison on number of nodes explored.

Name
Number of nodes explored Top 5

CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%
gte 100 00 189 38 153 168 201 40.26
gte 100 01 1,723 253 799 781 956 60.13
gte 100 02 2,900 530 1,156 1,132 1,809 62.65
gte 100 03 1,190 132 343 670 660 58.49
gte 100 04 706 96 298 318 481 54.00
gte 100 05 1,469 88 172 925 1,002 59.30
gte 100 06 484 170 350 239 172 55.00
gte 100 07 1,470 316 650 911 1,412 56.08
gte 100 08 348 67 235 171 415 58.94
gte 100 09 2,968 274 899 1,745 1,848 53.50
gte 100 10 582 100 322 267 298 57.14
gte 100 11 6,124 1,047 2,492 3,533 4,467 58.79
gte 100 12 5,259 757 1,791 3,059 2,854 61.90
gte 100 13 1,179 208 511 511 623 57.75
gte 100 14 1,590 206 512 721 865 58.94
gte 100 15 518 118 192 323 451 60.73
gte 100 16 1,994 413 801 1,367 1,013 57.26
gte 100 17 1,201 250 280 379 1,015 58.41
gte 100 18 2,403 301 1,014 511 872 50.40
gte 100 19 1,192 240 378 277 245 65.19

total 35,489 5,604 13,348 18,008 21,659 57.24
savings — 84.21% 62.39% 49.26% 38.97%

gte 150 00 6,680 1,591 3,165 4,015 2,558 71.71
gte 150 01 8,801 1,320 3,101 5,119 3,908 67.70
gte 150 02 8,130 1,821 4,323 4,376 4,928 65.52
gte 150 03 12,638 3,191 4,032 5,563 5,988 64.99
gte 150 04 10,656 2,154 4,249 6,460 4,654 67.53
gte 150 05 6,735 1,634 2,775 5,156 4,369 69.46
gte 150 06 6,969 1,281 2,750 3,215 3,557 67.76
gte 150 07 10,655 2,616 5,174 4,845 6,340 69.75
gte 150 08 12,290 3,753 4,726 7,140 6,130 65.51
gte 150 09 7,976 2,754 3,863 5,374 7,357 65.08
gte 150 10 11,852 2,638 5,793 8,184 6,676 67.26
gte 150 11 4,304 1,234 1,530 1,205 2,821 61.09
gte 150 12 11,901 2,545 4,103 4,446 5,418 69.43
gte 150 13 11,480 2,539 4,109 5,648 5,013 66.59
gte 150 14 18,107 4,081 7,284 9,817 9,344 69.12
gte 150 15 6,559 1,797 3,208 3,551 2,850 70.86
gte 150 16 9,655 1,710 4,745 5,812 5,499 63.83
gte 150 17 7,207 849 2,315 4,934 2,932 69.68
gte 150 18 5,236 1,916 2,015 3,066 2,091 68.86
gte 150 19 9,911 2,930 6,029 7,249 7,893 68.84

total 187,742 44,354 79,289 105,175 100,326 67.53
Continued on next page

138

Table A.3 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

savings — 76.38% 57.77% 43.98% 46.56%
gte 200 00 8,489 3,010 4,901 5,484 5,151 76.74
gte 200 01 10,733 3,133 5,228 7,187 6,575 75.30
gte 200 02 9,123 2,662 3,977 5,251 4,134 78.37
gte 200 03 13,039 3,904 5,971 6,740 6,417 78.40
gte 200 04 8,176 3,041 5,569 5,205 6,808 75.91
gte 200 05 9,829 2,644 3,087 6,062 2,788 76.72
gte 200 06 8,809 3,388 4,110 3,578 5,822 77.59
gte 200 07 11,079 3,659 5,640 5,615 6,691 79.98
gte 200 08 15,090 4,777 7,825 7,757 7,485 77.09
gte 200 09 10,496 3,990 5,288 8,757 7,928 77.45
gte 200 10 8,170 3,233 3,332 4,919 5,392 76.37
gte 200 11 9,121 2,849 4,774 5,637 5,679 76.62
gte 200 12 14,182 5,305 7,777 8,328 10,274 78.68
gte 200 13 10,436 4,363 5,622 6,374 5,329 79.71
gte 200 14 10,243 3,297 4,358 6,600 4,739 77.92
gte 200 15 11,544 3,365 5,221 7,116 6,654 78.69
gte 200 16 13,786 5,226 7,431 10,150 7,576 76.02
gte 200 17 11,933 3,433 5,281 8,601 5,877 77.20
gte 200 18 10,232 2,537 5,064 7,620 6,052 76.73
gte 200 19 13,069 4,375 7,552 7,958 7,281 77.18

total 217,579 72,191 108,008 134,939 124,652 77.43
savings — 66.82% 50.36% 37.98% 42.71%

gte 250 00 15,812 5,145 7,193 8,770 9,624 82.64
gte 250 01 22,469 6,643 11,506 11,993 11,738 81.99
gte 250 02 22,459 4,641 9,609 9,453 12,082 81.64
gte 250 03 16,449 4,323 9,187 10,610 11,564 82.15
gte 250 04 14,404 3,479 7,011 8,878 7,726 81.68
gte 250 05 14,444 4,928 4,771 8,020 8,309 82.02
gte 250 06 16,025 5,043 8,139 9,922 9,822 80.56
gte 250 07 24,003 6,505 11,038 12,620 15,005 80.81
gte 250 08 18,732 5,202 9,049 11,654 10,543 81.05
gte 250 09 14,579 4,972 8,481 10,253 9,945 82.94
gte 250 10 18,625 5,000 8,509 11,284 9,048 81.75
gte 250 11 16,893 4,844 8,792 11,751 10,661 81.63
gte 250 12 15,629 3,960 7,533 7,301 8,330 81.92
gte 250 13 17,520 5,329 7,464 8,769 9,498 81.89
gte 250 14 14,158 5,670 9,644 9,137 9,689 82.96
gte 250 15 17,957 4,363 9,176 8,767 9,147 82.87
gte 250 16 12,834 4,574 6,374 8,261 8,392 81.87
gte 250 17 15,836 5,637 6,273 7,947 8,657 81.15
gte 250 18 23,504 8,849 10,651 14,705 14,443 80.51
gte 250 19 12,007 4,374 5,597 7,287 8,865 81.41

total 344,339 103,481 165,997 197,382 203,088 81.77
savings — 69.95% 51.79% 42.68% 41.02%

Continued on next page

139

Table A.3 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

gte 300 00 17,131 4,534 8,256 9,213 9,019 83.90
gte 300 01 21,740 5,981 12,610 11,740 10,962 83.68
gte 300 02 18,146 5,106 8,651 9,848 8,796 83.84
gte 300 03 24,414 4,678 9,060 10,186 8,655 83.80
gte 300 04 14,361 6,237 8,436 8,010 8,140 84.01
gte 300 05 15,366 6,024 4,775 7,990 8,449 84.28
gte 300 06 14,316 5,219 7,992 8,411 8,279 83.47
gte 300 07 14,287 4,730 8,240 7,269 8,390 84.60
gte 300 08 14,077 4,383 8,423 9,665 9,659 83.26
gte 300 09 17,571 4,350 7,462 8,640 8,769 84.26
gte 300 10 20,705 5,036 10,170 9,943 10,497 83.90
gte 300 11 15,205 5,441 5,298 7,500 6,446 84.23
gte 300 12 18,644 5,267 8,454 9,332 9,757 83.00
gte 300 13 16,874 4,768 7,493 8,594 8,972 83.74
gte 300 14 16,711 3,661 6,542 7,378 6,864 83.86
gte 300 15 18,942 4,455 8,246 9,651 9,644 84.51
gte 300 16 17,063 5,540 9,727 10,777 10,869 84.18
gte 300 17 11,867 3,738 5,952 5,443 8,084 83.99
gte 300 18 23,093 8,650 13,765 14,405 13,768 83.77
gte 300 19 14,950 6,478 8,523 10,145 9,078 84.02

total 345,463 104,276 168,075 184,140 183,097 83.91
savings — 69.82% 51.35% 46.70% 47.00%

Total 1,130,612 329,906 534,717 639,644 632,822 73.58
Savings — 70.82% 52.71% 43.42% 44.03%

Table A.4: Set packing problems: comparison on run time.

Name
Run time (seconds)

CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB
gte 100 00 0.38 0.47 2.13 0.23 0.26
gte 100 01 1.13 2.83 7.26 0.60 0.81
gte 100 02 1.81 5.83 12.35 1.02 1.65
gte 100 03 0.99 1.77 3.61 0.64 0.75
gte 100 04 0.64 1.18 3.18 0.31 0.49
gte 100 05 0.96 1.25 2.16 0.76 0.94
gte 100 06 0.59 2.08 4.38 0.34 0.29
gte 100 07 1.02 3.78 6.25 0.75 1.20
gte 100 08 0.47 0.95 2.98 0.25 0.47
gte 100 09 1.91 3.27 10.49 1.33 1.60
gte 100 10 0.79 1.54 4.35 0.40 0.45
gte 100 11 3.27 10.97 21.91 2.39 3.26
gte 100 12 2.97 8.24 16.24 2.08 2.15
gte 100 13 0.84 2.17 5.19 0.45 0.60
gte 100 14 1.07 2.44 5.09 0.59 0.82

Continued on next page

140

Table A.4 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

gte 100 15 0.51 1.48 2.31 0.31 0.46
gte 100 16 1.32 4.72 7.91 1.05 0.93
gte 100 17 1.04 3.32 3.36 0.46 1.04
gte 100 18 1.83 3.66 12.01 0.49 0.80
gte 100 19 0.90 2.65 4.38 0.30 0.29

total 24.44 64.6 137.54 14.75 19.26
savings — -164.32% -462.77% 39.65% 21.19%

gte 150 00 8.20 35.64 84.57 6.31 6.26
gte 150 01 9.92 28.71 68.13 7.79 7.02
gte 150 02 10.27 34.37 85.19 6.88 7.82
gte 150 03 13.21 56.97 78.79 7.92 9.07
gte 150 04 10.52 39.47 77.46 8.78 7.72
gte 150 05 8.43 31.09 58.46 7.14 7.23
gte 150 06 8.92 25.86 63.41 5.87 6.36
gte 150 07 13.08 43.52 109.59 8.44 10.93
gte 150 08 13.03 63.24 82.28 9.69 11.55
gte 150 09 9.00 49.36 71.47 7.61 10.42
gte 150 10 13.69 51.29 109.84 15.39 10.53
gte 150 11 5.59 25.99 35.79 2.50 4.66
gte 150 12 13.57 46.53 82.65 7.42 9.05
gte 150 13 11.99 45.79 80.61 7.89 7.91
gte 150 14 19.33 65.93 114.71 13.14 13.83
gte 150 15 8.64 36.17 71.95 5.48 5.52
gte 150 16 11.43 32.29 84.78 8.32 8.96
gte 150 17 9.18 20.88 59.71 7.87 5.89
gte 150 18 7.47 38.05 47.76 5.47 4.09
gte 150 19 11.55 52.73 109.31 10.01 11.98

total 217.02 823.88 1,576.46 159.92 166.8
savings — -279.63% -626.41% 26.31% 23.14%

gte 200 00 24.95 86.23 191.77 19.00 18.94
gte 200 01 28.02 89.05 185.89 22.86 22.03
gte 200 02 26.19 81.79 165.63 19.74 18.78
gte 200 03 31.27 100.25 213.22 22.24 21.90
gte 200 04 23.76 86.84 218.92 18.95 22.62
gte 200 05 24.62 84.89 133.17 19.79 12.20
gte 200 06 22.03 102.39 164.65 15.57 21.60
gte 200 07 30.65 103.23 209.58 22.04 26.50
gte 200 08 35.96 116.92 249.44 25.51 25.32
gte 200 09 27.49 102.43 187.50 23.46 23.82
gte 200 10 21.42 100.72 164.51 16.37 20.96
gte 200 11 28.12 84.40 190.16 19.09 22.87
gte 200 12 31.89 134.41 265.27 24.93 29.94
gte 200 13 28.95 127.09 221.79 23.15 21.54
gte 200 14 26.18 100.47 178.84 21.22 20.02
gte 200 15 30.97 98.42 224.94 24.27 23.95

Continued on next page

141

Table A.4 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

gte 200 16 28.77 116.21 251.70 25.27 23.28
gte 200 17 23.95 94.78 184.10 24.35 20.60
gte 200 18 26.01 72.67 189.18 22.55 21.60
gte 200 19 28.45 110.43 249.46 24.21 23.97

total 549.65 1,993.62 4,039.72 434.57 442.44
savings — -262.71% -634.96% 20.94% 19.51%

gte 250 00 47.66 195.25 394.89 38.71 41.62
gte 250 01 55.41 217.20 538.20 48.29 47.72
gte 250 02 52.72 176.50 478.23 42.84 47.40
gte 250 03 47.62 168.36 480.91 38.50 44.15
gte 250 04 49.50 144.93 424.74 38.73 39.14
gte 250 05 43.30 189.73 333.68 34.88 39.41
gte 250 06 47.60 184.80 438.73 40.11 41.58
gte 250 07 56.38 218.05 540.38 46.00 53.92
gte 250 08 50.47 177.24 435.85 43.27 41.34
gte 250 09 47.99 181.98 458.01 43.27 43.61
gte 250 10 51.36 177.60 423.41 44.60 37.83
gte 250 11 54.61 187.84 524.91 48.84 50.00
gte 250 12 44.42 156.24 452.18 39.12 38.59
gte 250 13 52.36 191.69 463.42 43.78 45.67
gte 250 14 49.15 192.49 488.52 43.24 44.18
gte 250 15 51.66 169.80 499.42 41.55 44.25
gte 250 16 45.74 180.02 397.04 37.59 37.54
gte 250 17 48.78 199.58 386.09 38.15 38.31
gte 250 18 51.90 235.23 481.68 46.20 48.82
gte 250 19 42.45 169.95 375.72 36.18 37.26

total 991.08 3,714.48 9,016.01 833.85 862.34
savings — -274.79% -809.72% 15.86% 12.99%

gte 300 00 85.18 294.45 878.00 76.21 78.56
gte 300 01 92.93 327.42 997.50 81.81 81.42
gte 300 02 89.85 328.07 950.80 81.13 81.52
gte 300 03 92.32 290.17 892.34 76.56 76.76
gte 300 04 81.74 329.00 911.35 76.91 77.74
gte 300 05 72.83 331.80 689.49 69.79 71.79
gte 300 06 80.73 323.52 871.74 73.62 75.48
gte 300 07 78.28 287.04 827.59 67.88 73.61
gte 300 08 83.46 289.92 874.43 76.14 78.14
gte 300 09 86.07 293.58 848.02 80.05 79.91
gte 300 10 80.47 291.72 895.09 71.75 75.73
gte 300 11 84.65 304.55 783.77 72.77 75.04
gte 300 12 86.95 303.04 831.93 73.86 73.87
gte 300 13 78.16 269.06 817.22 72.48 74.80
gte 300 14 84.33 272.25 866.60 71.76 72.25
gte 300 15 94.42 309.18 904.62 80.78 81.03
gte 300 16 80.48 305.77 860.75 74.93 79.27

Continued on next page

142

Table A.4 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

gte 300 17 81.02 289.59 834.77 70.19 82.54
gte 300 18 92.73 349.95 963.31 81.15 81.83
gte 300 19 75.55 314.30 883.65 81.52 77.43

total 1,682.15 6,104.38 17,382.97 1,511.29 1,548.72
savings — -262.89% -933.38% 10.16% 7.93%

Total 3,464.34 12,700.96 32,152.7 2,954.38 3,039.56
Savings — -266.62% -828.10% 14.72% 12.26%

Table A.5: 0-1 knapsack problems: comparison on number of nodes explored.

Name
Number of nodes explored Top 1

CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%
gte 2 00 476 2,402 1,239 1,239 389 99.92
gte 2 01 1,285 2,302 1,212 1,178 6,446 99.58
gte 2 02 982 2,446 1,221 1,800 591 99.83
gte 2 03 1,506 3,202 1,996 1,996 621 99.95
gte 2 04 1,444 7,370 1,207 1,204 1,322 99.83
gte 2 05 1,518 24,807 1,223 1,174 614 99.83
gte 2 06 6,883 2,440 1,161 1,277 753 99.53
gte 2 07 2,171 4,902 1,183 1,210 506 99.75
gte 2 08 1,470 2,447 1,356 1,208 1,226 99.59
gte 2 09 1,220 2,432 1,440 1,073 694 98.60
gte 2 10 1,228 2,445 1,223 1,015 621 99.51
gte 2 11 4,885 2,450 1,226 1,193 632 99.75
gte 2 12 881 41,094 1,245 1,230 1,596 99.67
gte 2 13 902 2,541 1,758 1,201 614 99.83
gte 2 14 1,408 1,461 2,522 1,569 664 99.04
gte 2 15 1,363 3,178 1,180 892 555 99.55
gte 2 16 1,730 2,699 1,238 1,941 1,273 99.85
gte 2 17 1,161 5,736 1,144 914 613 99.78
gte 2 18 1,176 2,575 1,212 1,213 613 99.75
gte 2 19 124 2,869 1,233 1,335 713 99.32

total 33,813 121,798 27,219 25,862 21,056 99.62
savings — -260.21% 19.50% 23.51% 37.73%
gte 3 00 13,421 16,601 2,196 1,586 896 91.99
gte 3 01 1,729 12,231 2,173 2,597 1,078 99.88
gte 3 02 2,249 3,646 1,821 1,822 1,116 99.84
gte 3 03 25,710 4,599 1,831 1,831 928 99.95
gte 3 04 251 2,724 1,815 1,814 927 99.83
gte 3 05 4,175 5,337 1,823 1,853 970 99.89
gte 3 06 747 3,738 1,686 1,686 930 99.94
gte 3 07 1,149 3,671 2,269 1,785 30,499 99.78
gte 3 08 1,844 57 1,834 1,788 922 99.89
gte 3 09 27,366 6,654 1,836 1,807 945 99.83

Continued on next page

143

Table A.5 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

gte 3 10 266 3,222 1,791 1,789 1,017 99.72
gte 3 11 1,941 3,348 1,769 1,429 875 99.72
gte 3 12 5,988 2,925 1,843 1,841 933 99.84
gte 3 13 6,527 11,325 1,852 1,852 1,779 99.89
gte 3 14 1,761 5,187 1,858 1,837 937 99.89
gte 3 15 1,319 4,358 1,322 1,323 836 99.77
gte 3 16 2,273 8,273 2,232 1,458 880 99.31
gte 3 17 1,724 3,570 1,785 894 666 93.29
gte 3 18 23,775 2,405 1,847 1,846 943 99.13
gte 3 19 144,930 9,877 1,838 3,534 1,968 99.89

total 269,145 113,748 37,421 36,372 50,045 99.06
savings — 57.74% 86.10% 86.49% 81.41%
gte 4 00 27,023 5,606 2,438 2,437 1,233 99.75
gte 4 01 2,468 4,924 2,437 2,437 1,243 99.96
gte 4 02 2,439 4,874 2,438 2,438 31,656 99.96
gte 4 03 3,990 4,899 2,451 2,451 2,936 99.92
gte 4 04 2,435 21,401 2,128 2,126 1,431 99.86
gte 4 05 2,428 8,231 2,425 2,427 1,257 99.84
gte 4 06 1,932 3,458 2,450 2,111 1,230 95.55
gte 4 07 2,428 4,854 2,428 2,428 1,227 99.96
gte 4 08 1,971 10,134 2,426 2,426 1,047 99.96
gte 4 09 2,690 5,056 2,452 801 670 97.50
gte 4 10 2,769 5,327 2,456 4,583 641 99.89
gte 4 11 2,146 3,710 2,402 2,403 1,215 99.88
gte 4 12 3,212 5,011 2,422 4,265 482 99.86
gte 4 13 2,672 43,403 4,414 4,314 1,181 99.95
gte 4 14 3,626 4,909 2,442 1,439 1,236 99.72
gte 4 15 2,452 4,362 3,957 3,277 1,651 98.72
gte 4 16 2,841 580 2,468 1,570 1,236 99.62
gte 4 17 3,294 5,013 2,459 3,786 1,026 98.15
gte 4 18 1,021 4,904 2,449 2,449 1,243 99.92
gte 4 19 54,569 2,838 2,194 2,425 1,207 99.92

total 128,406 153,494 51,736 52,593 55,048 99.39
savings — -19.54% 59.71% 59.04% 57.13%
gte 5 00 4,015 13,846 3,018 5,005 1,535 99.94
gte 5 01 2,982 6,665 4,166 4,166 2,121 99.95
gte 5 02 3,035 21,897 3,034 3,034 1,548 99.87
gte 5 03 3,727 6,109 3,012 3,012 1,547 99.97
gte 5 04 2,676 5,294 4,323 3,063 1,976 99.93
gte 5 05 3,945 4,860 3,062 3,060 1,483 99.93
gte 5 06 3,218 6,086 3,039 3,039 1,451 99.93
gte 5 07 4,552 6,424 3,063 1,783 1,262 99.66
gte 5 08 3,191 6,608 3,073 2,269 1,436 99.74
gte 5 09 81,753 6,138 3,026 579 532 99.48
gte 5 10 168,757 5,024 3,058 4,646 1,574 99.89

Continued on next page

144

Table A.5 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

gte 5 11 74,604 6,652 4,634 4,791 1,618 99.94
gte 5 12 3,129 6,127 4,767 3,297 1,411 99.79
gte 5 13 3,097 6,164 3,082 1,698 1,558 91.81
gte 5 14 3,034 6,064 3,030 2,856 1,533 99.89
gte 5 15 955 5,048 2,968 2,980 2,461 99.87
gte 5 16 28,227 18,423 3,093 3,089 2,842 99.81
gte 5 17 2,699 5,938 5,864 6,110 3,211 99.93
gte 5 18 2,451 3,487 3,078 3,079 1,551 99.94
gte 5 19 1,538 4,827 3,087 3,637 1,569 99.86

total 401,585 151,681 69,477 65,193 34,219 99.46
savings — 62.23% 82.70% 83.77% 91.48%
gte 6 00 5,401 26,737 3,704 2,090 1,505 99.47
gte 6 01 3,615 6,800 5,000 6,052 2,367 99.92
gte 6 02 30,072 7,335 3,610 3,449 1,495 93.97
gte 6 03 2,092 7,127 3,685 3,620 4,424 99.94
gte 6 04 3,512 7,074 3,599 3,654 1,844 99.95
gte 6 05 1,634 6,501 3,676 5,277 1,855 99.89
gte 6 06 3,201 7,285 3,578 3,578 1,735 99.97
gte 6 07 4,562 5,563 6,351 6,353 1,881 99.95
gte 6 08 3,665 7,309 3,654 5,879 1,843 99.90
gte 6 09 3,654 7,304 3,653 3,653 4,026 99.97
gte 6 10 52,233 1,355 3,673 3,177 1,796 99.84
gte 6 11 5,613 7,153 3,654 3,657 2,625 99.67
gte 6 12 3,472 7,728 3,647 6,914 1,843 99.91
gte 6 13 4,680 133,091 3,624 4,668 2,438 99.94
gte 6 14 4,459 9,657 3,679 3,677 1,764 99.92
gte 6 15 5,734 7,337 3,669 3,667 1,551 99.86
gte 6 16 217,320 164,062 3,691 2,844 4,180 99.65
gte 6 17 3,703 7,392 5,243 6,997 1,783 99.93
gte 6 18 2,732 7,754 3,622 3,658 1,661 99.89
gte 6 19 41,969 7,415 3,696 3,695 2,787 99.95

total 403,323 441,979 78,708 86,559 45,403 99.57
savings — -9.58% 80.49% 78.54% 88.74%

Total 1,236,272 982,700 264,561 266,579 205,771 99.42
Savings — 20.51% 78.60% 78.44% 83.36%

Table A.6: 0-1 knapsack problems: comparison on run time.

Name
Run time (seconds)

CPLEX-D CPLEX-SB d OUR-SB LRN-SB LRN-GSB
gte 2 00 0.32 0.78 2.13 1.04 0.43
gte 2 01 0.61 0.72 1.99 1.02 4.25
gte 2 02 0.65 0.69 1.96 1.29 0.61
gte 2 03 0.85 0.81 3.07 1.28 0.61

Continued on next page

145

Table A.6 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

gte 2 04 0.57 1.81 1.89 0.89 1.06
gte 2 05 0.73 6.55 1.92 0.96 0.62
gte 2 06 1.62 0.75 2.62 1.02 0.77
gte 2 07 0.74 1.94 2.40 0.90 0.52
gte 2 08 0.73 0.71 2.09 0.99 1.01
gte 2 09 0.68 0.71 2.33 0.98 0.74
gte 2 10 0.64 0.68 2.05 0.84 0.57
gte 2 11 1.17 0.72 2.01 1.03 0.65
gte 2 12 0.40 11.51 1.95 1.01 1.31
gte 2 13 0.43 1.28 3.26 1.07 0.65
gte 2 14 0.73 0.40 4.21 1.04 0.69
gte 2 15 0.76 1.05 2.42 0.72 0.58
gte 2 16 0.54 0.69 1.95 1.26 1.00
gte 2 17 0.47 1.66 2.36 0.74 0.65
gte 2 18 0.75 0.74 2.11 0.93 0.63
gte 2 19 0.07 0.76 2.07 0.95 0.72

total 13.46 34.96 46.79 19.96 18.07
savings — -159.73% -247.62% -48.29% -34.25%
gte 3 00 3.81 6.88 15.72 2.02 1.40
gte 3 01 1.68 5.54 16.17 2.48 1.42
gte 3 02 1.49 1.40 14.04 2.04 1.52
gte 3 03 8.86 1.72 14.15 2.02 1.40
gte 3 04 0.19 1.12 14.62 2.26 1.42
gte 3 05 1.65 2.28 14.85 2.04 1.47
gte 3 06 0.59 1.45 13.69 2.04 1.38
gte 3 07 0.92 1.48 16.98 2.17 23.70
gte 3 08 1.49 0.05 13.83 2.19 1.33
gte 3 09 9.10 3.55 14.04 2.28 1.28
gte 3 10 0.21 1.30 14.44 2.24 1.49
gte 3 11 1.39 1.25 14.11 1.77 1.31
gte 3 12 2.17 1.12 13.97 2.05 1.32
gte 3 13 2.22 5.23 14.10 2.06 2.10
gte 3 14 1.64 1.78 14.12 2.19 1.33
gte 3 15 1.20 1.92 11.47 1.67 1.25
gte 3 16 2.02 3.53 17.21 1.94 1.38
gte 3 17 1.61 1.44 13.67 1.03 0.96
gte 3 18 6.01 0.94 14.26 2.06 1.41
gte 3 19 39.87 3.41 14.00 3.10 2.24

total 88.12 47.39 289.44 41.65 51.11
savings — 46.22% -228.46% 52.73% 42.00%
gte 4 00 10.64 2.42 21.12 3.46 2.21
gte 4 01 2.58 2.69 22.88 3.88 2.45
gte 4 02 2.35 2.17 22.27 3.39 29.54
gte 4 03 4.37 2.63 21.16 3.49 4.36
gte 4 04 2.90 8.76 20.35 3.29 2.63

Continued on next page

146

Table A.6 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

gte 4 05 2.51 4.88 21.52 3.49 2.18
gte 4 06 2.42 1.70 21.59 3.38 2.42
gte 4 07 2.32 2.12 21.48 3.30 2.00
gte 4 08 1.52 5.66 21.06 3.49 2.02
gte 4 09 2.57 2.41 21.59 1.24 1.17
gte 4 10 2.66 2.66 20.99 5.35 1.17
gte 4 11 2.45 1.77 21.78 3.71 2.27
gte 4 12 3.65 2.53 22.92 5.33 0.90
gte 4 13 2.19 18.44 38.97 5.03 2.33
gte 4 14 4.02 2.61 22.20 2.22 2.39
gte 4 15 2.53 2.26 35.21 4.32 3.03
gte 4 16 2.89 0.31 22.19 2.49 2.39
gte 4 17 3.40 2.57 21.55 4.78 1.99
gte 4 18 1.01 2.41 21.35 3.56 2.32
gte 4 19 21.66 1.51 21.70 3.54 2.46

total 80.64 72.51 463.88 72.74 72.23
savings — 10.08% -475.25% 9.80% 10.43%
gte 5 00 5.51 6.89 31.64 7.44 3.67
gte 5 01 4.49 3.69 42.25 7.05 4.60
gte 5 02 4.34 15.17 32.19 5.73 3.59
gte 5 03 4.67 4.09 31.98 5.99 3.69
gte 5 04 4.00 3.19 42.13 5.44 4.07
gte 5 05 3.45 3.02 30.39 5.46 3.52
gte 5 06 4.15 3.85 29.32 5.34 3.33
gte 5 07 5.71 3.75 32.32 3.43 2.99
gte 5 08 4.88 4.21 30.33 4.51 3.51
gte 5 09 44.49 4.05 31.25 1.10 1.23
gte 5 10 82.34 3.02 32.01 7.53 3.79
gte 5 11 40.71 3.67 44.29 7.37 3.46
gte 5 12 4.18 3.99 47.44 5.20 3.36
gte 5 13 4.01 6.79 30.25 3.57 3.42
gte 5 14 3.94 3.54 28.99 5.60 3.24
gte 5 15 1.29 3.15 33.20 5.67 5.02
gte 5 16 18.52 13.68 30.48 5.53 5.72
gte 5 17 2.98 3.61 57.34 8.98 6.20
gte 5 18 3.43 2.55 30.67 5.45 3.62
gte 5 19 1.89 2.82 29.94 5.94 3.75

total 248.98 98.73 698.41 112.33 75.78
savings — 60.35% -180.51% 54.88% 69.56%
gte 6 00 8.02 24.86 40.11 4.51 4.21
gte 6 01 6.62 4.89 52.79 10.72 5.94
gte 6 02 19.27 5.15 42.61 6.36 4.17
gte 6 03 2.63 5.10 40.49 8.70 10.21
gte 6 04 6.54 4.85 43.41 7.77 5.29
gte 6 05 2.85 4.78 39.96 10.34 5.48

Continued on next page

147

Table A.6 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

gte 6 06 4.41 5.04 41.56 8.34 4.63
gte 6 07 6.58 4.14 70.39 11.51 4.83
gte 6 08 5.53 5.55 39.21 11.04 5.24
gte 6 09 5.20 4.86 41.54 7.36 8.28
gte 6 10 34.04 1.00 39.73 7.65 4.97
gte 6 11 7.48 5.06 40.75 7.59 6.44
gte 6 12 4.49 5.36 39.62 12.39 5.23
gte 6 13 7.57 79.10 39.87 8.92 6.05
gte 6 14 4.43 8.28 40.24 7.79 5.05
gte 6 15 8.25 5.38 39.58 7.56 4.13
gte 6 16 129.80 113.77 39.51 6.59 9.09
gte 6 17 5.72 5.71 56.21 12.38 4.84
gte 6 18 4.90 5.25 42.01 7.75 4.63
gte 6 19 26.77 5.63 40.64 7.69 6.61

total 301.1 303.76 870.23 172.96 115.32
savings — -0.88% -189.02% 42.56% 61.70%

Total 732.3 557.35 2,368.75 419.64 332.51
Savings — 23.89% -223.47% 42.70% 54.59%

Table A.7: Set covering problems (all settings except the branching scheme set to default):
comparison on number of nodes explored.

Name
Number of nodes explored Top 5

CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%
gte 3 00 189 49 71 125 121 53.97
gte 3 01 0 6 0 15 17 62.50
gte 3 02 459 105 163 235 247 64.41
gte 3 03 229 72 123 229 207 66.96
gte 3 04 43 11 15 29 33 80.00
gte 3 05 432 255 398 856 860 65.00
gte 3 06 454 144 231 357 357 56.98
gte 3 07 797 120 217 305 317 62.75
gte 3 08 357 96 145 215 209 48.15
gte 3 09 1,032 328 527 739 733 56.49
gte 3 10 154 39 61 79 91 72.50
gte 3 11 206 72 117 161 155 54.32
gte 3 12 182 53 91 109 109 63.64
gte 3 13 372 99 278 331 259 61.11
gte 3 14 90 24 41 87 75 54.55
gte 3 15 308 151 451 621 380 65.61
gte 3 16 3,094 661 1,687 3,310 1,958 63.22
gte 3 17 162 180 297 350 149 60.75
gte 3 18 653 168 269 385 397 64.25
gte 3 19 25 10 9 21 21 63.64

Continued on next page

148

Table A.7 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%
total 9,238 2,643 5,191 8,559 6,695 62.04

savings — 71.39% 43.81% 7.35% 27.53%
gte 4 00 1,899 424 695 1,135 1,207 54.40
gte 4 01 21,937 5,203 9,610 12,951 11,401 62.67
gte 4 02 2,018 649 1,124 2,199 2,492 48.04
gte 4 03 2,059 921 1,660 1,700 1,030 58.51
gte 4 04 1,306 255 301 883 667 50.81
gte 4 05 2,845 656 1,141 1,329 1,429 66.77
gte 4 06 653 243 343 429 469 66.05
gte 4 07 1,599 417 677 1,017 1,079 63.06
gte 4 08 1,167 824 886 1,082 871 62.31
gte 4 09 2,891 729 1,401 1,967 1,997 52.64
gte 4 10 1,308 312 615 791 773 59.09
gte 4 11 316 91 151 211 233 58.49
gte 4 12 2,009 723 975 1,273 1,297 62.17
gte 4 13 334 96 171 315 321 51.90
gte 4 14 629 184 571 716 576 61.52
gte 4 15 605 419 1,255 1,243 974 53.83
gte 4 16 4,949 1,361 2,563 2,835 2,869 67.70
gte 4 17 927 208 283 465 475 56.22
gte 4 18 6,991 1,794 3,285 4,367 4,655 60.39
gte 4 19 6,327 1,965 3,177 4,277 4,211 63.07

total 62,769 17,474 30,884 41,185 39,026 58.98
savings — 72.16% 50.80% 34.39% 37.83%
gte 5 00 23,821 6,681 9,512 12,221 11,611 67.89
gte 5 01 5,242 1,614 2,676 3,576 2,587 50.02
gte 5 02 86,293 19,232 34,643 54,551 58,833 47.92
gte 5 03 24,463 7,896 9,575 29,202 8,363 52.49
gte 5 04 25,340 7,976 13,415 29,427 13,484 53.59
gte 5 05 50,420 13,794 43,890 37,584 22,105 53.97
gte 5 06 25,458 5,035 7,595 13,525 11,909 49.37
gte 5 07 23,613 5,768 7,930 12,201 11,901 50.54
gte 5 08 40,940 7,437 9,239 20,675 19,945 47.68
gte 5 09 18,382 5,219 13,144 16,116 8,763 54.40
gte 5 10 6,040 1,418 2,437 2,649 2,573 59.62
gte 5 11 84,832 15,154 23,419 34,019 34,353 50.02
gte 5 12 9,816 2,616 4,569 5,635 5,529 62.78
gte 5 13 45,062 10,122 13,891 27,651 27,971 45.64
gte 5 14 5,031 1,131 2,265 2,589 2,539 57.53
gte 5 15 2,961 494 963 1,375 1,283 60.32
gte 5 16 4,631 1,378 1,951 4,189 3,631 50.07
gte 5 17 48,178 9,118 15,211 19,939 21,947 53.08
gte 5 18 6,636 3,538 3,809 5,671 7,032 54.30
gte 5 19 3,373 858 1,213 1,413 1,455 59.97

total 540,532 126,479 221,347 334,208 277,814 54.06
Continued on next page

149

Table A.7 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

savings — 76.60% 59.05% 38.17% 48.60%
gte 6 00 42,312 10,259 14,377 24,751 22,243 48.47
gte 6 01 29,328 5,845 6,606 26,683 9,410 50.18
gte 6 02 475,541 112,763 130,332 153,365 143,540 50.71
gte 6 03 292,621 51,922 81,139 113,165 114,129 51.57
gte 6 04 157,153 38,415 54,504 61,817 54,355 51.80
gte 6 05 1,000,000 237,913 372,956 583,261 327,250 50.51
gte 6 06 786,699 152,654 247,627 288,791 246,429 49.50
gte 6 07 129,674 36,923 52,717 63,267 80,168 49.83
gte 6 08 22,914 7,018 22,817 16,759 49,319 47.18
gte 6 09 915,036 156,113 261,332 389,466 383,797 49.30
gte 6 10 43,531 7,324 29,507 23,517 15,987 47.51
gte 6 11 357,677 61,959 117,870 233,052 131,020 52.92
gte 6 12 318,621 44,247 95,685 92,456 71,021 45.96
gte 6 13 53,450 12,163 27,238 30,744 28,400 47.67
gte 6 14 161,352 21,305 37,535 53,115 57,937 48.45
gte 6 15 964,732 79,484 133,315 178,729 176,585 45.88
gte 6 16 33,315 6,117 10,941 13,859 13,201 51.01
gte 6 17 35,555 3,825 23,971 34,350 10,231 47.29
gte 6 18 29,981 8,719 12,647 22,948 8,188 54.79
gte 6 19 138,349 36,283 68,913 83,001 81,530 46.62

total 5,987,841 1,091,251 1,802,029 2,487,096 2,024,740 49.36
savings — 81.78% 69.91% 58.46% 66.19%
scpnre1 28,695 8,265 14,773 14,971 14,519 55.18
scpnre2 360,101 20,432 47,850 120,035 36,435 54.34
scpnre3 24,363 10,330 22,636 37,510 7,977 50.48
scpnre4 48,924 12,693 34,000 26,354 18,257 49.00
scpnre5 11,714 2,424 3,475 6,827 6,707 48.65

total 473,797 54,144 122,734 205,697 83,895 51.53
savings — 88.57% 74.10% 56.59% 82.29%
scpnrf1 28,500 4,850 9,769 13,975 15,081 55.25
scpnrf2 14,850 3,403 10,605 9,475 9,564 51.40
scpnrf3 26,004 5,777 9,859 9,897 7,374 52.25
scpnrf4 49,738 15,290 32,663 25,962 45,739 54.84
scpnrf5 180,911 38,135 134,708 31,066 263,011 57.40

total 300,003 67,455 197,604 90,375 340,769 54.23
savings — 77.52% 34.13% 69.88% -13.59%

Total 7,374,180 1,359,446 2,379,789 3,167,120 2,772,939 55.75
Savings — 81.56% 67.73% 57.05% 62.40%

150

Table A.8: Set covering problems (all settings except the branching scheme set to default):
comparison on run time.

Name
Run time (seconds)

CPLEX-D CPLEX-SB d OUR-SB LRN-SB LRN-GSB
gte 3 00 1.03 1.21 1.59 0.83 0.84
gte 3 01 0.64 0.60 0.65 0.54 0.54
gte 3 02 1.08 1.73 2.44 0.83 0.86
gte 3 03 0.86 1.29 1.86 0.72 0.73
gte 3 04 0.91 0.87 1.01 0.77 0.77
gte 3 05 1.20 3.33 4.93 1.46 1.56
gte 3 06 1.17 2.15 3.15 1.00 1.05
gte 3 07 1.27 1.75 2.78 0.85 0.89
gte 3 08 0.99 1.62 2.21 0.79 0.80
gte 3 09 1.70 4.08 5.95 1.40 1.50
gte 3 10 1.18 1.27 1.69 0.95 0.96
gte 3 11 0.89 1.25 1.78 0.74 0.74
gte 3 12 0.95 1.24 1.77 0.75 0.76
gte 3 13 1.28 2.07 4.16 1.15 1.05
gte 3 14 0.74 0.81 1.06 0.60 0.61
gte 3 15 1.28 2.74 5.40 1.34 1.22
gte 3 16 3.72 9.29 20.57 4.40 3.22
gte 3 17 1.03 2.51 3.91 0.99 0.82
gte 3 18 1.47 2.70 3.75 1.13 1.22
gte 3 19 0.82 0.81 0.89 0.68 0.69

total 24.21 43.32 71.55 21.92 20.83
savings — -78.93% -195.54% 9.46% 13.96%
gte 4 00 3.23 7.43 10.31 2.62 2.85
gte 4 01 26.22 88.14 127.15 18.87 19.41
gte 4 02 3.42 11.62 16.68 3.73 4.47
gte 4 03 3.62 16.81 25.26 3.44 2.80
gte 4 04 2.54 5.01 5.03 1.99 1.82
gte 4 05 4.61 10.49 16.10 3.31 3.47
gte 4 06 1.85 4.68 5.68 1.49 1.59
gte 4 07 3.09 6.65 9.61 2.62 2.86
gte 4 08 2.81 13.50 14.51 2.60 2.44
gte 4 09 4.54 12.30 19.83 3.76 4.30
gte 4 10 2.91 5.81 9.55 2.36 2.50
gte 4 11 1.70 2.62 3.50 1.41 1.41
gte 4 12 3.90 12.07 14.47 3.12 3.25
gte 4 13 1.57 2.48 3.41 1.48 1.49
gte 4 14 2.09 4.27 9.42 2.03 1.96
gte 4 15 1.83 6.25 16.46 2.33 2.27
gte 4 16 7.84 25.02 38.04 5.84 6.58
gte 4 17 2.34 4.55 5.14 1.84 2.00
gte 4 18 7.94 25.08 41.59 6.44 7.91
gte 4 19 8.25 30.88 41.67 6.95 7.36

Continued on next page

151

Table A.8 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB
total 96.3 295.66 433.41 78.23 82.74

savings — -207.02% -350.06% 18.76% 14.08%
gte 5 00 35.62 145.97 165.85 25.83 25.84
gte 5 01 9.71 39.71 53.62 8.20 6.93
gte 5 02 121.13 407.12 541.47 85.75 102.61
gte 5 03 38.16 167.96 190.54 49.39 20.16
gte 5 04 40.00 184.60 267.97 52.89 29.88
gte 5 05 81.72 332.36 891.56 69.97 53.03
gte 5 06 35.46 100.46 125.03 25.30 23.56
gte 5 07 34.29 125.11 138.51 22.75 24.59
gte 5 08 43.94 139.87 135.09 32.40 35.19
gte 5 09 26.43 103.40 226.30 27.78 17.39
gte 5 10 11.04 31.33 42.01 7.21 7.28
gte 5 11 108.59 263.03 352.12 48.59 63.21
gte 5 12 16.79 56.41 80.71 14.33 15.18
gte 5 13 57.60 174.67 201.77 39.81 45.70
gte 5 14 8.69 22.46 37.87 5.70 6.51
gte 5 15 5.93 10.65 17.16 4.08 4.08
gte 5 16 7.54 26.12 31.38 8.13 8.16
gte 5 17 71.63 185.25 255.46 38.43 47.75
gte 5 18 11.00 75.40 69.97 11.24 14.86
gte 5 19 7.41 19.26 22.57 4.71 4.93

total 772.68 2,611.14 3,846.96 582.49 556.84
savings — -237.93% -397.87% 24.61% 27.93%
gte 6 00 71.50 237.77 269.94 48.40 53.28
gte 6 01 51.57 158.02 131.88 56.08 24.77
gte 6 02 811.37 3276.67 2808.39 329.69 351.68
gte 6 03 444.64 1150.59 1447.43 208.26 245.13
gte 6 04 300.65 1145.51 1159.07 146.18 140.63
gte 6 05 2090.74 7954.58 9334.73 1343.48 894.80
gte 6 06 1642.13 4574.53 5542.81 631.67 623.79
gte 6 07 219.59 1091.93 1158.55 136.18 191.34
gte 6 08 49.13 193.82 524.24 32.40 114.39
gte 6 09 1418.36 4333.46 5150.20 782.76 878.00
gte 6 10 90.44 215.14 732.85 53.31 40.58
gte 6 11 650.05 1827.87 2567.68 503.31 333.31
gte 6 12 541.22 1147.01 2063.62 179.02 154.35
gte 6 13 97.24 365.06 654.05 67.15 70.05
gte 6 14 255.16 457.85 676.52 93.79 119.40
gte 6 15 1659.98 2087.70 2733.66 381.12 430.00
gte 6 16 63.74 156.69 224.07 33.01 35.14
gte 6 17 71.76 121.19 534.89 82.06 32.28
gte 6 18 63.96 258.78 326.49 55.52 25.62
gte 6 19 248.08 981.12 1430.96 162.82 181.08

total 10,841.31 31,735.29 39,472.03 5,326.21 4,939.62
Continued on next page

152

Table A.8 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

savings — -192.73% -264.09% 50.87% 54.44%
scpnre1 36.17 152.47 227.91 26.19 26.68
scpnre2 473.95 477.54 963.13 211.44 72.64
scpnre3 40.02 222.76 383.73 61.35 18.44
scpnre4 67.95 262.26 638.79 42.70 34.48
scpnre5 17.96 47.43 57.40 12.95 14.71

total 636.05 1,162.46 2,270.96 354.63 166.95
savings — -82.76% -257.04% 44.24% 73.75%
scpnrf1 37.23 92.17 148.00 22.09 27.10
scpnrf2 21.70 75.45 201.53 16.48 16.36
scpnrf3 33.85 111.19 163.98 17.28 15.45
scpnrf4 70.52 318.81 624.99 40.11 77.69
scpnrf5 225.45 786.69 2148.05 53.71 360.18

total 388.75 1,384.31 3,286.55 149.67 496.78
savings — -256.09% -745.41% 61.50% -27.79%

Total 12,759.3 37,232.18 49,381.46 6,513.15 6,263.76
Savings — -191.80% -287.02% 48.95% 50.91%

Table A.9: Set packing problems (all settings except the branching scheme set to default):
comparison on number of nodes explored.

Name
Number of nodes explored Top 5

CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%
gte 100 00 69 25 57 65 65 40.26
gte 100 01 1,053 284 527 633 681 60.13
gte 100 02 2,384 384 689 1,285 1,018 62.65
gte 100 03 632 124 337 389 449 58.49
gte 100 04 436 97 219 255 293 54.00
gte 100 05 618 89 181 451 297 59.30
gte 100 06 291 54 137 147 153 55.00
gte 100 07 1,259 296 640 906 814 56.08
gte 100 08 237 69 147 167 161 58.94
gte 100 09 1,480 415 871 1,519 1,241 53.50
gte 100 10 333 97 187 241 219 57.14
gte 100 11 6,848 694 2,551 3,948 4,119 58.79
gte 100 12 4,883 587 1,681 2,351 2,178 61.90
gte 100 13 728 240 408 440 569 57.75
gte 100 14 937 177 407 523 541 58.94
gte 100 15 204 61 164 266 194 60.73
gte 100 16 1,615 429 826 1,027 1,007 57.26
gte 100 17 629 136 279 365 365 58.41
gte 100 18 1,048 192 430 720 684 50.40
gte 100 19 505 204 332 239 251 65.19

total 26,189 4,654 11,070 15,937 15,299 57.24
Continued on next page

153

Table A.9 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

savings — 82.23% 57.73% 39.15% 41.58%
gte 150 00 3,994 1,128 1,373 1,517 1,601 71.71
gte 150 01 5,614 1,642 2,557 3,326 2,914 67.70
gte 150 02 6,719 1,776 3,495 4,131 3,877 65.52
gte 150 03 9,236 2,389 4,793 5,317 4,516 64.99
gte 150 04 6,733 1,657 3,504 4,460 3,771 67.53
gte 150 05 6,733 1,128 2,409 3,252 3,828 69.46
gte 150 06 4,179 985 1,791 2,313 2,303 67.76
gte 150 07 8,842 2,470 4,069 5,050 4,933 69.75
gte 150 08 12,999 3,762 4,584 7,171 5,835 65.51
gte 150 09 8,739 1,844 3,616 4,100 4,627 65.08
gte 150 10 10,432 1,731 3,711 4,695 4,229 67.26
gte 150 11 2,695 812 955 1,217 1,129 61.09
gte 150 12 8,334 2,374 3,273 3,833 4,569 69.43
gte 150 13 6,811 2,336 2,271 3,699 4,101 66.59
gte 150 14 17,061 4,423 7,634 8,882 9,534 69.12
gte 150 15 4,804 1,457 2,105 2,883 3,040 70.86
gte 150 16 9,437 2,548 3,260 4,590 4,567 63.83
gte 150 17 6,534 985 2,151 1,734 2,257 69.68
gte 150 18 3,019 906 1,349 1,843 1,735 68.86
gte 150 19 8,212 3,019 3,437 5,193 4,671 68.84

total 151,127 39,372 62,337 79,206 78,037 67.53
savings — 73.95% 58.75% 47.59% 48.36%

gte 200 00 11,529 2,654 3,613 4,143 3,880 76.74
gte 200 01 13,042 2,580 4,067 4,449 4,521 75.30
gte 200 02 5,935 1,932 3,065 3,375 3,229 78.37
gte 200 03 10,275 2,896 4,741 5,119 5,295 78.40
gte 200 04 8,510 2,820 4,544 5,123 4,691 75.91
gte 200 05 7,163 1,617 2,285 2,581 2,579 76.72
gte 200 06 10,491 2,034 3,302 4,616 4,305 77.59
gte 200 07 12,420 3,518 5,134 5,902 5,488 79.98
gte 200 08 12,543 3,321 6,063 6,349 6,121 77.09
gte 200 09 13,989 3,672 4,652 5,485 6,601 77.45
gte 200 10 7,178 1,599 2,251 2,743 2,921 76.37
gte 200 11 8,794 2,333 3,838 4,436 4,421 76.62
gte 200 12 14,920 4,123 6,366 6,459 6,607 78.68
gte 200 13 11,265 2,339 3,740 4,520 4,783 79.71
gte 200 14 12,167 3,535 4,189 4,270 5,550 77.92
gte 200 15 10,793 3,109 3,679 3,921 4,409 78.69
gte 200 16 11,926 3,197 5,599 5,989 6,397 76.02
gte 200 17 8,415 2,265 3,509 4,377 4,363 77.20
gte 200 18 8,801 2,601 3,971 3,955 3,887 76.73
gte 200 19 13,832 4,577 6,228 6,630 6,331 77.18

total 213,988 56,722 84,836 94,442 96,379 77.43
savings — 73.49% 60.35% 55.87% 54.96%

Continued on next page

154

Table A.9 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

gte 250 00 17,114 4,172 6,435 7,313 7,410 82.64
gte 250 01 22,247 5,380 10,368 10,880 10,181 81.99
gte 250 02 18,336 4,392 7,993 8,603 8,338 81.64
gte 250 03 13,427 3,233 5,843 6,273 6,099 82.15
gte 250 04 14,130 3,245 5,937 5,847 6,243 81.68
gte 250 05 11,298 2,732 4,719 4,965 4,947 82.02
gte 250 06 17,460 3,748 7,292 7,527 7,688 80.56
gte 250 07 21,971 5,386 9,621 9,955 10,209 80.81
gte 250 08 18,015 4,234 7,439 7,841 7,831 81.05
gte 250 09 20,101 4,413 7,656 7,936 8,064 82.94
gte 250 10 17,919 4,389 7,621 7,161 8,817 81.75
gte 250 11 18,005 3,731 7,523 7,769 7,827 81.63
gte 250 12 12,128 3,045 5,607 5,745 5,881 81.92
gte 250 13 15,681 3,617 6,449 6,779 6,731 81.89
gte 250 14 18,485 4,063 7,697 8,189 8,307 82.96
gte 250 15 16,419 3,577 6,899 7,064 7,236 82.87
gte 250 16 11,576 2,667 4,945 4,969 5,171 81.87
gte 250 17 11,448 2,584 4,323 4,497 4,547 81.15
gte 250 18 22,703 5,797 10,485 11,562 11,596 80.51
gte 250 19 10,175 2,212 3,805 4,313 4,159 81.41

total 328,638 76,617 138,657 145,188 147,282 81.77
savings — 76.69% -0.20% 57.81% 55.82% 55.18%

gte 300 00 16,505 3,736 6,414 6,875 6,892 83.90
gte 300 01 25,929 8,203 10,947 11,445 11,538 83.68
gte 300 02 17,527 4,041 7,714 7,892 8,387 83.84
gte 300 03 17,767 3,960 7,307 7,559 7,413 83.80
gte 300 04 13,648 4,489 6,573 6,371 6,477 84.01
gte 300 05 10,595 3,015 4,379 4,569 4,583 84.28
gte 300 06 12,937 3,031 5,830 5,968 5,776 83.47
gte 300 07 15,196 3,893 6,486 7,046 6,878 84.60
gte 300 08 16,705 3,717 7,420 7,912 7,381 83.26
gte 300 09 13,087 2,772 5,567 5,593 5,591 84.26
gte 300 10 17,004 3,624 7,063 7,217 7,093 83.90
gte 300 11 9,332 2,486 4,681 4,649 4,555 84.23
gte 300 12 17,515 3,903 8,137 8,027 8,143 83.00
gte 300 13 14,201 2,955 6,247 6,203 6,453 83.74
gte 300 14 10,999 2,831 4,745 5,001 5,057 83.86
gte 300 15 17,854 3,998 7,711 8,242 8,322 84.51
gte 300 16 19,322 4,359 8,153 9,152 8,053 84.18
gte 300 17 8,098 2,179 4,043 4,165 4,107 83.99
gte 300 18 26,069 6,392 12,005 12,279 12,163 83.77
gte 300 19 14,965 3,924 6,753 6,887 7,201 84.02

total 315,255 77,508 138,175 143,052 142,063 83.91
savings — 75.41% 56.17% 54.62% 54.94%

Continued on next page

155

Table A.9 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB Accuracy%

Total 1,035,197 254,873 435,075 477,825 479,060 73.58
Savings — 75.38% 57.97% 53.84% 53.72%

Table A.10: Set packinging problems (all settings except the branching scheme set to de-
fault): comparison on run time.

Name
Run time (seconds)

CPLEX-D CPLEX-SB d OUR-SB LRN-SB LRN-GSB
gte 100 00 0.73 0.74 1.18 0.56 0.59
gte 100 01 1.24 3.44 5.47 0.97 1.05
gte 100 02 2.06 4.47 7.03 1.51 1.38
gte 100 03 1.02 1.93 4.05 0.74 0.80
gte 100 04 1.09 1.82 2.69 0.84 0.87
gte 100 05 0.81 1.30 2.39 0.62 0.55
gte 100 06 1.00 1.29 2.08 0.75 0.76
gte 100 07 1.59 4.15 6.95 1.33 1.29
gte 100 08 0.63 1.31 2.03 0.48 0.48
gte 100 09 1.52 5.27 10.70 1.54 1.37
gte 100 10 0.75 1.55 2.64 0.49 0.52
gte 100 11 4.04 7.68 23.70 2.88 3.57
gte 100 12 3.50 7.08 15.61 1.95 2.15
gte 100 13 1.11 3.12 4.28 0.83 1.03
gte 100 14 1.30 2.54 4.39 0.93 1.03
gte 100 15 0.67 1.10 2.09 0.65 0.58
gte 100 16 1.45 4.76 8.31 1.06 1.13
gte 100 17 1.20 2.49 3.70 0.85 0.91
gte 100 18 1.19 2.51 4.93 0.77 0.83
gte 100 19 1.21 3.03 4.36 0.85 0.88

total 28.11 61.58 118.58 20.6 21.77
savings — -119.07% -321.84% 26.72% 22.55%

gte 150 00 8.95 25.61 37.66 5.06 5.16
gte 150 01 9.45 35.55 60.86 6.55 7.17
gte 150 02 11.88 36.47 75.40 11.30 8.57
gte 150 03 13.72 45.16 93.77 9.90 8.93
gte 150 04 14.32 34.17 69.39 9.56 9.02
gte 150 05 9.89 25.08 54.74 7.67 9.00
gte 150 06 8.18 23.70 45.91 6.16 6.54
gte 150 07 15.45 44.62 94.18 11.05 11.93
gte 150 08 17.31 66.91 84.78 11.42 11.46
gte 150 09 12.67 34.38 72.44 8.57 8.63
gte 150 10 16.29 36.68 78.43 10.63 10.12
gte 150 11 6.39 18.95 24.51 4.33 4.32
gte 150 12 13.65 44.66 70.98 7.59 10.33
gte 150 13 10.18 46.83 50.75 7.17 9.36

Continued on next page

156

Table A.10 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

gte 150 14 22.69 76.20 128.26 14.91 16.77
gte 150 15 8.85 32.74 49.32 7.25 7.35
gte 150 16 14.02 45.97 65.63 8.67 9.33
gte 150 17 11.27 24.99 62.68 4.90 7.04
gte 150 18 6.39 20.87 32.79 4.65 4.75
gte 150 19 12.62 59.44 69.70 10.45 10.24

total 244.17 778.98 1,322.18 167.79 176.02
savings — -219.03% -441.50% 31.28% 27.91%

gte 200 00 35.22 89.89 168.88 23.53 22.49
gte 200 01 41.75 86.48 170.14 23.14 26.79
gte 200 02 24.82 73.18 151.87 20.61 22.83
gte 200 03 34.78 92.09 192.86 27.38 25.25
gte 200 04 27.75 99.80 215.84 24.81 27.70
gte 200 05 23.47 60.64 123.64 17.10 17.58
gte 200 06 29.86 74.13 177.55 23.82 23.25
gte 200 07 42.23 119.99 216.07 32.12 28.93
gte 200 08 42.36 104.51 241.34 31.13 28.88
gte 200 09 37.59 110.79 192.85 27.51 30.05
gte 200 10 25.23 66.82 119.39 17.61 18.33
gte 200 11 30.37 89.98 183.44 31.65 25.37
gte 200 12 41.08 123.55 235.66 28.81 29.96
gte 200 13 38.01 84.56 189.25 26.27 26.30
gte 200 14 34.67 119.41 206.36 26.30 32.00
gte 200 15 34.96 101.73 186.89 22.30 26.15
gte 200 16 35.10 93.72 205.91 27.86 32.08
gte 200 17 27.23 77.00 150.10 20.77 22.33
gte 200 18 30.98 88.11 177.27 22.10 22.87
gte 200 19 36.68 123.51 225.80 28.92 29.41

total 674.14 1,879.89 3,731.11 503.74 518.55
savings — -178.86% -453.46% 25.28% 23.08%

gte 250 00 68.13 198.69 463.18 48.61 53.51
gte 250 01 71.84 230.35 613.26 62.12 59.44
gte 250 02 64.81 209.25 480.89 51.92 47.38
gte 250 03 56.56 150.38 428.13 44.08 45.82
gte 250 04 60.45 157.25 428.64 41.60 43.55
gte 250 05 54.77 153.04 437.28 39.93 45.28
gte 250 06 64.22 174.22 470.23 49.77 52.29
gte 250 07 81.78 240.71 645.59 62.93 60.32
gte 250 08 66.93 190.83 464.90 48.19 48.35
gte 250 09 68.21 203.76 498.31 53.99 51.20
gte 250 10 66.37 199.93 497.59 45.26 51.17
gte 250 11 78.38 196.38 539.07 55.32 59.00
gte 250 12 50.59 161.67 440.46 43.88 47.91
gte 250 13 68.28 187.91 497.25 51.10 51.00
gte 250 14 69.21 181.35 483.69 52.58 52.23

Continued on next page

157

Table A.10 – Continued from previous page
Name CPLEX-D CPLEX-SB OUR-SB LRN-SB LRN-GSB

gte 250 15 79.97 176.15 523.07 49.39 52.62
gte 250 16 53.76 137.21 410.69 40.36 43.54
gte 250 17 51.85 136.79 387.10 39.74 39.37
gte 250 18 73.16 230.68 551.25 61.51 59.34
gte 250 19 62.83 128.76 352.65 43.51 40.99

total 1,312.1 3,645.31 9,613.23 985.79 1,004.31
savings — -177.82% -632.66% 24.87% 23.46%

gte 300 00 122.57 316.91 892.86 89.88 94.97
gte 300 01 120.62 428.06 1034.22 99.83 102.98
gte 300 02 125.73 340.72 1002.58 91.13 104.03
gte 300 03 118.53 283.77 837.30 82.95 90.92
gte 300 04 95.71 308.64 947.53 87.59 79.77
gte 300 05 90.57 243.61 736.21 67.34 77.49
gte 300 06 102.49 268.71 860.52 79.88 83.70
gte 300 07 106.38 309.62 870.77 92.54 87.49
gte 300 08 130.78 308.04 900.72 88.71 86.33
gte 300 09 111.00 284.31 836.13 84.60 85.00
gte 300 10 108.56 261.17 793.62 80.16 85.24
gte 300 11 96.55 239.06 767.32 73.31 75.03
gte 300 12 142.59 306.67 956.05 83.39 91.42
gte 300 13 98.07 248.74 821.59 75.40 78.62
gte 300 14 96.60 260.27 860.17 78.59 78.40
gte 300 15 135.08 344.62 1021.62 104.59 93.30
gte 300 16 124.48 314.98 946.35 94.00 89.02
gte 300 17 100.12 245.16 811.96 75.45 74.00
gte 300 18 151.81 368.15 1064.10 94.52 99.80
gte 300 19 105.80 308.06 939.96 80.28 80.24

total 2,284.04 5,989.27 17,901.58 1,704.14 1,737.75
savings — -162.22% -683.77% 25.39% 23.92%

Total 4,542.56 12,355.03 32,686.68 3,382.06 3,458.4
Savings — -171.98% -619.57% 25.55% 23.87%

158

APPENDIX B

ILLUSTRATIVE INSTANCES IN CHAPTER 4

B.1 Instance in Proposition 4.2.2

Here we show the complete instance and feasible solution used in Proposition 4.2.2. The

complete network is shown in Figure B.1.

i

1 2 3

4 5 6

d

Commodity 1 flows on arc.
Commodity 2 flows on arc.
Commodity 3 flows on arc.

Figure B.1: Complete network for Proposition 4.2.2

Commodities k1, k2, and k3 have origins 1, 2, and 3, respectively, and are all destined

159

for node d. The solution of interest takes the following form:

x(1,4),k1 =
5

8
, x(1,i),k1 =

3

8
, x(2,i),k2 =

3

8
, x(2,5),k2 =

5

8
, x(3,i),k3 =

3

8
,

x(3,6),k3 =
5

8
, x(i,4),k1 =

3

8
, x(i,5),k2 =

3

8
, x(i,6),k3 =

3

8
, x(4,d),k1 = 1,

x(5,d),k2 = 1, x(6,d),k3 = 1,

and all other xak variables are set to 0. It can be easily checked that the above solution lies

in LP (S1).

B.2 Instance in Proposition 4.2.2

Here we show the calculations for the feasible solution for the instance in Figure 4.3. Recall

the given feasible solution:

w(1,i),d =
1

40
, w(1,d),d =

3

40
, w(2,i),d =

3

8
, w(2,d),d =

1

8
, w(i,d),d =

2

5

y(1,i),d =
1

4
, y(1,d),d =

3

4
, y(2,i),d =

3

4
, y(2,d),d =

1

4
, y(i,d),d =

2

3
.

All other wad and yad variables are set to 0 and all na variables can be set to any feasible

lower bound for each arc.

• For Constraint (4.10):

160

w(1,i),d + w(1,d),d =
1

40
+

3

40
= qk1 =

1

10
, for node o1,

w(2,i),d + w(2,d),d =
3

8
+

1

8
= qk2 =

1

2
, for node o2,

w(i,d),d − w(1,i),d − w(2,i),d =
2

5
− 1

40
− 3

8
= 0, for node i,

−w(1,d),d − w(i,d),d − w(2,d),d = − 3

40
− 2

5
− 1

8
= −qk1 − qk2 = −3

5
, for node d.

• For Constraint (4.11):

w(1,i),d =
1

40
≤ 3

5
y(1,i),d =

3

5
· 1

4
=

3

20
, for arc (1, i),

w(2,i),d =
3

8
≤ 3

5
y(2,i),d =

3

5
· 3

4
=

9

20
, for arc (2, i),

w(1,d),d =
3

40
≤ 3

5
y(1,d),d =

3

5
· 3

4
=

9

20
, for arc (1, d),

w(i,d),d =
2

5
≤ 3

5
y(i,d),d =

3

5
· 2

3
=

2

5
, for arc (i, d),

w(2,d),d =
1

8
≤ 3

5
y(2,d),d =

3

5
· 1

4
=

3

20
, for arc (2, d).

Constraint (4.5) can easily be checked for each node and the na variables can be set to

any feasible lower bound for each arc.

B.3 An Simple Illustrative Instance on F3

Here we consider a small illustrative instance that shows the effect of the simple strengthen-

ing inequalities, the cut-set inequalities as well as the wheat-stalk inequalities on Formula-

tion F3. The instance has a network withN = {1, 2, 3, 4},A = {(1, 2), (1, 3), (2, 4), (3, 4)},

161

arc lengths c(1,3) = 1.5, c(1,2) = c(2,4) = c(3,4) = 1, and four commodities K = {1, 2, 3, 4}

with parameters given in Figure B.2.

1

2 3

4

Commodity Origin Destination Quantity

k o(k) d(k) q(k)

1 1 4 0.6

2 2 4 0.5

3 3 4 0.4

4 1 3 0.9

Figure B.2: Left: network for the illustrative instance; Right: commodity data for the
illustrative instance.

Clearly, only commodity 1 can use arc (1, 2), only commodity 3 can use arc (3, 4), only

commodities 1 and 2 can use arc (2, 4) and only commodities 1 and 4 can use arc (1, 3).

The Formulation F3 for this instance, after removing constraints that are redundant for its

162

LP relaxation, is thus

min n(1,2) + n(2,4) + n(3,4) + 1.5n(1,3)

w(1,3),3 = 0.9 (B.1)

w(1,2),4 + w(1,3),4 = 0.6, (B.2)

w(2,4),4 − w(1,2),4 = 0.5, (B.3)

w(3,4),4 − w(1,3),4 = 0.4, (B.4)

y(1,2),4 + y(1,3),4 ≤ 1, (B.5)

wa,4 ≤ 1.5ya,4, ∀a ∈ A, (B.6)

w(1,3),3 ≤ 0.9y(1,3),3, (B.7)

n(1,2) ≥ w(1,2),4, (B.8)

n(1,3) ≥ w(1,3),4 + w(1,3),3, (B.9)

n(2,4) ≥ w(2,4),4, (B.10)

n(3,4) ≥ w(3,4),4, (B.11)

n(1,2), n(1,3), n(2,4), n(3,4) ∈ Z≥0,

w(1,3),3, w(1,2),4, w(1,3),4, w(2,4),4, w(3,4),4 ≥ 0,

y(1,3),3, y(1,2),4, y(1,3),4, y(2,4),4, y(3,4),4 ∈ {0, 1}.

Solving the LP relaxation of this formulation gives an objective value of 3.45. Let

(ñ, ỹ, w̃) denote the solution to the LP relaxation. Then w̃(1,2),4 = 0.6, w̃(1,3),4 = 0,

w̃(2,4),4 = 1.1, w̃(3,4),4 = 0.4, ỹ(1,2),4 = 0.6, ỹ(1,3),4 = 0, ỹ(2,4),4 = 1, ỹ(3,4),4 = 1. Note that

(B.1) and (B.7) combine to force ỹ(1,3),3 = 1. The n variables are all fractional: ña = w̃a,4

for all a ∈ {(1, 2), (2, 4), (3, 4)} and ñ(1,3) = w̃(1,3),3 = 0.9. This LP solution satisfies

(4.20) and (4.24), so they do not improve the strength. Besides, all d-cut inequalities are

also satisfied. However, for (4.19), w̃(1,2),4 = 0.6 > 0.6ỹ(1,2),4 = 0.24, and for (4.26),

w̃(1,3),4 = 0 < 0.6ỹ(1,3),4 = 0.36. In addition, more than half of the constraints (4.25) are

163

violated since ñ(1,3) = 0.9 < ỹ(1,3),3 = 1 and ñ(3,4) = 0.4 < ỹ(3,4),4 = 1.

Applying (4.19), (4.20), (4.21), (4.24), and (4.26) (in other words, adding all simple

strengthening ineqaulities except for (4.25)), doesn’t change the LP bound. However, if

(4.25) is also added, the bound, improves from 3.45 to 4.25. The corresponding solution

is w̃(1,3),3 = 0.9, w̃(1,2),4 = 0, w̃(1,3),4 = 0.6, w̃(2,4),4 = 0.5, w̃(3,4),4 = 1.0, ỹ(1,3),3 = 1,

ỹ(1,2),4 = 0, ỹ(1,3),4 = 1, ỹ(2,4),4 = 1, ỹ(3,4),4 = 1, and n(1,2) = 0, n(1,3) = 1.5, n(2,4) = 1,

n(3,4) = 1. Note n(1,2) ≥ y(1,2),4 from Constraint (4.25) is facet defining.

The violated cut-set inequalities for this instance are

n(1,3) ≥ d0.9e = 1, cut-set {1, 2, 4},

n(3,4) ≥ d0.4e = 1, cut-set {3}, and

n(1,2) + n(1,3) ≥ d0.9 + 0.6e = 2, cut-set {1}.

(B.12)

The first two of them dominate the strengthening constraints (4.25) for the arcs (1, 3) and

(3, 4) respectively. However, none of them dominate n(1,2) ≥ y(1,2),4, which is Constraint

(4.25) for arc (1, 2). If we add all the three inequalities in (B.12), we will obtain the same

objective value of 4.25.

We now examine the wheat-stalk inequalities. Consider the inequality formed from

â = (1, 3), with H = {4}, κ4 = {1}, and τ4 = {(1, 3)}. Note K â = {4}, and thus,

Lâ = dq4e = 1. The wheat-stalk inequality is

n(1,3) ≥ 1 + (d0.6 + 0.9e − 1)(y(1,3),4 − 1 + 1) = 1 + y(1,3),4, (B.13)

which dominates the first cut-set inequality, derived from the cut-set {1, 2, 4}. Another

wheat-stalk inequality can be formed from â = (2, 4), with H = {4}, κ4 = {1}, and

τ1 = {(1, 2), (2, 4)}. NoteK â = {2}, and thus, Lâ = dq2e = 1. The wheat-stalk inequality

164

is

n(2,4) ≥ 1 + (d0.6 + 0.5e − 1)(y(1,2),4 + y(2,4),4 − 2 + 1) = y(1,2),4 + y(2,4),4. (B.14)

Since K(2,4) = {2}, preprocessing would have fixed y(2,4),4 = 1, so the wheat-stalk in-

equality becomes

n(2,4) ≥ 1 + y(1,2),4,

which dominates the second cut-set inequality, derived from the cut-set {3}. To have a

clear view of the possible strength of these inequalities, we list the LP relaxation values

with different strengthening constraints and valid inequalities added in Table B.1.

Table B.1: LP relaxation values with different strengthening constraints and valid inequal-
ities added.

Simple

Strengthening Constraints
None

Cut-set

(B.12)

Wheat-stalk

(B.13), (B.14)

Cut-set & Wheat-stalk

(B.12), (B.13), (B.14)
None 3.45 4.25 3.9 4.75

(4.19), (4.20), (4.21), (4.24), (4.26) 3.45 4.25 4.5 5
(4.19), (4.20), (4.21), (4.24), (4.25), (4.26) 4.25 4.5 5 5

We inspect the convex hull of integer feasible solutions to this instance. Firstly, we

simplify the formulation by projecting out all variables that can be fixed using equations

valid for this set to get an equivalent polyhedron. After observing that y(1,2),4 + y(1,3),4 =

1 and w(1,2),4 = 0.6y(1,2),4 are implied by the simple strengthening constraints, it’s not

difficult to see the convex hull of projected solutions is

conv

 {(1, 1, 2, 1, 1) + (η1, η2, η3, η4, 0) : η1, η2, η3, η4 ≥ 0}⋃
{(0, 2, 1, 1, 0) + (η1, η2, η3, η4, 0) : η1, η2, η3, η4 ≥ 0}

 ,

where projected solutions take the form

v = (v1, v2, v3, v4, v5) = (n(1,2), n(1,3), n(2,4), n(3,4), y(1,2),4).

165

The solution v = (1, 1, 2, 1, 1) corresponds to the choice of in-tree for d = 4 using arc

(1, 2), which has objective value 5.5. The solution v = (0, 2, 1, 1, 0) corresponds to the

optimal choice of in-tree for d = 4 using arc (1, 3), which has objective value 5 and is

optimal for this instance.

It can be shown that both wheat-stalk inequalities are facet defining, taking the first

inequality in its equivalent form n(1,3) ≥ 1 + y(1,3),4 = 1 + (1− y(1,2),4) = 2− y(1,2),4. The

third cut-set inequality n(1,2) + n(1,3) ≥ 2 is not a facet. It is implied by the strengthening

inequality (4.25) n(1,2) ≥ y(1,2),4 together with the first wheat-stalk inequality, n(1,3) ≥

2 − y(1,2),4: the two inequalities sum to give n(1,2) + n(1,3) ≥ 2. Thus, for this instance,

all the violated cut-set inequalities are implied by other inequalities and both of the given

wheat-stalk inequalities are facet-defining.

166

REFERENCES

[1] K. Aardal, R. Weismantel, and L. A. Wolsey, “Non-standard approaches to integer
programming,” Discrete Applied Mathematics, vol. 123, no. 1, pp. 5–74, 2002.

[2] T. Achterberg, “Constraint integer programming,” PhD thesis, TU Berlin, 2007.

[3] T. Achterberg and T. Berthold, “Hybrid branching,” in International Conference on
AI and OR Techniques in Constriant Programming for Combinatorial Optimization
Problems, Springer, 2009, pp. 309–311.

[4] T. Achterberg, T. Berthold, T. Koch, and K. Wolter, “Constraint integer program-
ming: A new approach to integrate CP and MIP,” in International Conference on
Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques
in Constraint Programming, Springer, 2008, pp. 6–20.

[5] T. Achterberg, T. Koch, and A. Martin, “Branching rules revisited,” Operations Re-
search Letters, vol. 33, no. 1, pp. 42–54, 2005.

[6] T. Achterberg and R. Wunderling, “Mixed integer programming: Analyzing 12 years
of progress,” in Facets of combinatorial optimization, Springer, 2013, pp. 449–481.

[7] A. M. Alvarez, Q. Louveaux, and L. Wehenkel, “A supervised machine learning
approach to variable branching in branch-and-bound,” in IN ECML, Citeseer, 2014.

[8] ——, “A machine learning-based approximation of strong branching,” INFORMS
Journal on Computing, vol. 29, no. 1, pp. 185–195, 2017.

[9] F. Alvelos and J. M. V. de Carvalho, “Comparing branch-and-price algorithms for
the unsplittable multicommodity flow problem,” in Proceedings of the International
Network Optimization Conference, 2003, pp. 7–12.

[10] Y. P. Aneja, “An integer linear programming approach to the steiner problem in
graphs,” Networks, vol. 10, no. 2, pp. 167–178, 1980.

[11] D. Applegate, R. Bixby, V. Chvatal, and B. Cook, “Finding cuts in the tsp (a prelim-
inary report),” Center for Discrete Mathematics & Theoretical Computer Science,
Tech. Rep., 1995.

[12] A. Atamtürk, “On capacitated network design cut–set polyhedra,” Mathematical
Programming, vol. 92, no. 3, pp. 425–437, 2002.

167

[13] A. Atamtürk and D. Rajan, “On splittable and unsplittable flow capacitated network
design arc–set polyhedra,” Mathematical Programming, vol. 92, no. 2, pp. 315–333,
2002.

[14] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik, “Learning to branch,” arXiv
preprint arXiv:1803.10150, 2018.

[15] C. Barnhart, C. A. Hane, and P. H. Vance, “Using branch-and-price-and-cut to solve
origin-destination integer multicommodity flow problems,” Operations Research,
vol. 48, no. 2, pp. 318–326, 2000.

[16] E. M. L. Beale and J. A. Tomlin, “Special facilities in a general mathematical pro-
gramming system for non-convex problems using ordered sets of variables,” in Pro-
ceedings 5th IFORS Conference, Tavistock, J. Lawrence, Ed., Wiley, 1970, pp. 447–
454.

[17] E. Beale, “Branch and bound methods for mathematical programming systems,” in
Discrete Optimization II, ser. Annals of Discrete Mathematics, P. Hammer, E. John-
son, and B. Korte, Eds., vol. 5, Elsevier, 1979, pp. 201–219.

[18] A. Benhamiche, A. R. Mahjoub, N. Perrot, and E. Uchoa, “Unsplittable non-additive
capacitated network design using set functions polyhedra,” Comput. Oper. Res.,
vol. 66, no. C, pp. 105–115, Feb. 2016.

[19] M. Bénichou, J.-M. Gauthier, P. Girodet, G. Hentges, G. Ribière, and O. Vincent,
“Experiments in mixed-integer linear programming,” Mathematical Programming,
vol. 1, no. 1, pp. 76–94, 1971.

[20] T. Berthold and D. Salvagnin, “Cloud branching,” in International Conference on
AI and OR Techniques in Constriant Programming for Combinatorial Optimization
Problems, Springer, 2013, pp. 28–43.

[21] D. Bertsimas and J. Dunn, “Optimal classification trees,” Machine Learning, vol. 106,
no. 7, pp. 1039–1082, 2017.

[22] M. Boile, S. Theofanis, A. Baveja, and N. Mittal, “Regional repositioning of empty
containers: Case for inland depots,” Transportation Research Record, vol. 2066,
no. 1, pp. 31–40, 2008.

[23] B. Brockmüller, O. Günlück, L. A. Wolsey, et al., “Designing private line networks-
polyhedral analysis and computation,” Université catholique de Louvain, Center for
Operations Research and . . ., Tech. Rep., 1996.

168

[24] H. Chang, H. Jula, A. Chassiakos, and P. Ioannou, “A heuristic solution for the
empty container substitution problem,” Transportation Research Part E: Logistics
and Transportation Review, vol. 44, no. 2, pp. 203–216, 2008.

[25] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, 2016, pp. 785–794.

[26] S. Chopra, I. Gilboa, and S. T. Sastry, “Source sink flows with capacity installation
in batches,” Discrete Applied Mathematics, vol. 85, no. 3, pp. 165–192, 1998.

[27] M. Chouman, T. G. Crainic, and B. Gendron, “The impact of filtering in a branch-
and-cut algorithm for multicommodity capacitated fixed charge network design,”
EURO Journal on Computational Optimization, vol. 6, no. 2, pp. 143–184, 2018.

[28] V. Chvátal, “Hard knapsack problems,” Operations Research, vol. 28, no. 6, pp. 1402–
1411, 1980.

[29] T. G. Crainic, “Service network design in freight transportation,” European Journal
of Operational Research, vol. 122, pp. 272–288, 2000.

[30] H. Crowder, E. L. Johnson, and M. Padberg, “Solving large-scale zero-one linear
programming problems,” Operations Research, vol. 31, no. 5, pp. 803–834, 1983.

[31] H. Crowder and M. W. Padberg, “Solving large-scale symmetric travelling salesman
problems to optimality,” Management Science, vol. 26, no. 5, pp. 495–509, 1980.

[32] G. Dahl, A. Martin, and M. Stoer, “Routing through virtual paths in layered telecom-
munication networks,” Operations Research, vol. 47, no. 5, pp. 693–702, 1999.

[33] P. J. Dejax and T. G. Crainic, “Survey paper—a review of empty flows and fleet
management models in freight transportation,” Transportation science, vol. 21, no. 4,
pp. 227–248, 1987.

[34] G. Di Liberto, S. Kadioglu, K. Leo, and Y. Malitsky, “Dash: Dynamic approach for
switching heuristics,” European Journal of Operational Research, vol. 248, no. 3,
pp. 943–953, 2016.

[35] E. D. Dolan and J. J. More, “Benchmarking Optimization Software with Perfor-
mance Profiles,” Mathematical Programming, vol. 91, pp. 201–213, 2002.

[36] Y. Du and R. Hall, “Fleet sizing and empty equipment redistribution for center-
terminal transportation networks,” Management Science, vol. 43, no. 2, pp. 145–
157, 1997.

169

[37] A. L. Erera, J. C. Morales, and M. Savelsbergh, “Robust optimization for empty
repositioning problems,” Operations Research, vol. 57, no. 2, pp. 468–483, 2009.

[38] A. Erera, M. Hewitt, M. Savelsbergh, and Y. Zhang, “Improved load plan design
through integer programming based local search,” Transportation Science, vol. 47,
Aug. 2013.

[39] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and multi-commodity
flow problems,” in 16th Annual Symposium on Foundations of Computer Science
(sfcs 1975), IEEE, 1975, pp. 184–193.

[40] M. Fischetti, “Facets of two steiner arborescence polyhedra,” Mathematical Pro-
gramming, vol. 51, no. 1-3, pp. 401–419, 1991.

[41] B. Fortz, L. Gouveia, and M. Joyce-Moniz, “Models for the piecewise linear unsplit-
table multicommodity flow problems,” European Journal of Operational Research,
vol. 261, no. 1, pp. 30–42, 2017.

[42] A. Frangioni and B. Gendron, “0–1 reformulations of the multicommodity capaci-
tated network design problem,” Discrete Applied Math., vol. 157, no. 6, pp. 1229–
1241, 2009.

[43] V. Gabrel, A. Knippel, and M. Minoux, “Exact solution of multicommodity network
optimization problems with general step cost functions,” Oper. Res. Lett., vol. 25,
no. 1, pp. 15–23, Aug. 1999.

[44] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact combinatorial op-
timization with graph convolutional neural networks,” arXiv preprint arXiv:1906.01629,
2019.

[45] J.-M. Gauthier and G. Ribière, “Experiments in mixed-integer linear programming
using pseudo-costs,” Mathematical Programming, vol. 12, no. 1, pp. 26–47, 1977.

[46] B. Gavish and K. Altinkemer, “Backbone network design tools with economic trade-
offs,” INFORMS Journal on Computing, vol. 2, pp. 236–252, Aug. 1990.

[47] M. X. Goemans and Y.-S. Myung, “A catalog of steiner tree formulations,” Net-
works, vol. 23, no. 1, pp. 19–28, 1993.

[48] R. E. Gomory, “Outline of an algorithm for integer solutions to linear programs and
an algorithm for the mixed integer problem,” in 50 Years of Integer Programming
1958-2008, Springer, 2010, pp. 77–103.

[49] M. Hewitt, “Enhanced dynamic discretization discovery for the continuous time load
plan design problem,” Transportation Science, vol. 53, no. 6, pp. 1731–1750, 2019.

170

[50] A. I. Jarrah, E. Johnson, and L. C. Neubert, “Large-scale, less-than-truckload service
network design,” Operations Research, vol. 57, no. 3, pp. 609–625, 2009.

[51] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of com-
puter computations, Springer, 1972, pp. 85–103.

[52] E. B. Khalil, P. Le Bodic, L. Song, G. L. Nemhauser, and B. N. Dilkina, “Learning
to branch in mixed integer programming.,” in AAAI, 2016, pp. 724–731.

[53] T. Koch and A. Martin, “Solving steiner tree problems in graphs to optimality,”
Networks: An International Journal, vol. 32, no. 3, pp. 207–232, 1998.

[54] B. Krishnamoorthy and G. Pataki, “Column basis reduction and decomposable knap-
sack problems,” Discrete Optimization, vol. 6, no. 3, pp. 242–270, 2009.

[55] T. L. Magnanti and R. Wong, “Network design and transportation planning: Models
and algorithms,” Transportation Science, vol. 18, pp. 1–55, Feb. 1984.

[56] A. H. Land and A. G. Doig, “An automatic method of solving discrete programming
problems,” Econometrica: Journal of the Econometric Society, pp. 497–520, 1960.

[57] H. Lenstra, Jr., “Integer programming with a fixed number of variables,” Mathemat-
ics of Operations Research, vol. 8, pp. 538–548, 1983.

[58] J. T. Linderoth and M. W. Savelsbergh, “A computational study of search strategies
for mixed integer programming,” INFORMS Journal on Computing, vol. 11, no. 2,
pp. 173–187, 1999.

[59] A. Lodi and G. Zarpellon, “On learning and branching: a survey,” Top, vol. 25, no. 2,
pp. 207–236, 2017.

[60] Y. Long, L. H. Lee, and E. P. Chew, “The sample average approximation method for
empty container repositioning with uncertainties,” European Journal of Operational
Research, vol. 222, no. 1, pp. 65–75, 2012.

[61] A. Marcos Alvarez, L. Wehenkel, and Q. Louveaux, “Online learning for strong
branching approximation in branch-and-bound,” University of Liege, Tech. Rep.,
2016.

[62] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell, “Branch-and-bound
algorithms: A survey of recent advances in searching, branching, and pruning,” Dis-
crete Optimization, vol. 19, pp. 79–102, 2016.

171

[63] G. Pataki and M. Tural, “Basis reduction methods,” in Wiley Encyclopedia of Opera-
tions Research and Management Science, J. J. Cochran, L. A. Cox Jr., P. Keskinocak,
J. P. Kharoufeh, and J. C. Smith, Eds., 2011.

[64] D. Pisinger, “Where are the hard knapsack problems?” Computers & Operations
Research, vol. 32, no. 9, pp. 2271–2284, 2005.

[65] W. B. Powell and I. A. Koskosidis, “Shipment routing algorithms with tree con-
straints,” Transportation Science, vol. 26, no. 3, pp. 230–245, 1992.

[66] C. Raack, A. M. Koster, S. Orlowski, and R. Wessäly, “Capacitated network design
using general flow-cutset inequalities,” 2007.

[67] C. Raack, A. M. Koster, and R. Wessäly, “On the strength of cut-based inequalities
for capacitated network design polyhedra,” 2007.

[68] Y. Tang, S. Agrawal, and Y. Faenza, “Reinforcement learning for integer program-
ming: Learning to cut,” arXiv preprint arXiv:1906.04859, 2019.

[69] É. Tardos, “A strongly polynomial minimum cost circulation algorithm,” Combina-
torica, vol. 5, no. 3, pp. 247–255, 1985.

[70] B. Thiongane, J. Cordeau, and B. Gendron, “Formulations for the nonbifurcated hop-
constrained multicommodity capacitated fixed-charge network design problem,” Com-
puters & Operations Research, vol. 53, pp. 1–8, 2015.

[71] N. Wieberneit, “Service network design for freight transportation: A review,” OR
Spectrum, vol. 30, pp. 77–112, Jan. 2008.

[72] D. Wojtczak, “On strong np-completeness of rational problems,” in International
Computer Science Symposium in Russia, Springer, 2018, pp. 308–320.

[73] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao, “Adapting boosting for information
retrieval measures,” Information Retrieval, vol. 13, no. 3, pp. 254–270, 2010.

[74] Y. Yang, Y. Ridousane, N. Boland, A. Erera, and M. Savelsbergh, “Substitution-
based equipment balancing in service networks with multiple equipment types,” Op-
timization Online 7564, 2020.

172

VITA

Yu Yang was born on July 21, 1994, in China. After obtaining his B.S. degree from the

School of Mathematical Sciences, Peking University in June 2016, he continued to pursue

a Ph.D. in Operations Research at the H. Milton Stewart School of Industrial & Systems

Engineering, Georgia Institute of Technology. He completed his Ph.D. study in July 2020.

He will join the Department of Industrial and Systems Engineering, University of Florida,

as an assistant professor in August 2020.

173

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Cutting Plane and Branch and Bound Algorithms
	Branching Strategies
	Background and Motivation
	Single-Variable Branching
	Multi-Variable Branching
	Learning to Branch

	Service Network Operations
	Background and Motivation
	Service Network Design With In-Tree Constraints
	Equipment Balancing

	Main Contributions
	Remarks

	Multi-Variable Branching: A 0-1 Knapsack Problem Case Study
	Chvátal Instances and Multi-Variable Branching
	Examples and Analysis
	Computational Study
	Branching on sets of size two
	Branching on dynamically determined sets
	Computational experiments

	Final Remarks

	Learning Generalized Strong Branching for Set Covering, Set Packing, and 0-1 Knapsack Problems
	Generalized Strong Branching
	Score Function
	Variable Selection

	Learning Generalized Strong Branching
	Learning Strong Branching
	Learning Generalized Strong Branching

	Computational Study
	Settings
	Set Covering Problem
	Set Packing Problem
	0-1 Knapsack Problem

	Final Remarks

	Integer Programming for Service Network Design with In-Tree Constraints
	Problem Formulations
	Notation
	Steiner In-tree Formulations
	SNDPITC Formulations

	Comparing the Size and Strength of Formulations
	For the Steiner In-Tree Formulations
	For the SNDPITC Formulations

	Strengthening the Formulations
	Strengthening the Steiner In-tree Formulations
	Strengthening the SNDPITC Formulations

	Novel Cutting Planes For the Flow-Based Formulation
	Wheat-Stalk Inequalities
	Wheat-Sheaf Inequalities
	Combinatorial Rounding Inequalities
	Generalized Cut-Set Inequalities
	Commodity-Merging Inequalities
	Truck-Balancing Inequalities
	An Illustrative Instance

	Computational Study
	Conclusions and Future Work

	Substitution-based Equipment Balancing in Service Networks with Multiple Equipment Types
	Notation and formulations
	Minimizing imbalance
	Minimizing the number of changes required to achieve the minimum imbalance

	Complexity of equipment substitution problems
	Two-equipment type networks with full interchangeability
	Two-equipment type networks with partial interchangeability
	Two-equipment type models: Additional results
	Three-equipment type networks

	Final Remarks

	Concluding Remarks and Future Directions
	Appendices
	Detailed Results of Numerical Experiments
	Illustrative Instances in Chapter 4
	Instance in Proposition 4.2.2
	Instance in Proposition 4.2.2
	An Simple Illustrative Instance on F3

	References
	Vita

