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SUMMARY 

 

 This dissertation presents four microbial microcosm-based experimental studies 

addressing questions related to the causes and consequences of biodiversity.  All four 

studies adopted an approach that integrates ecology and evolutionary biology.  Two 

studies explored the utility of knowledge on species phylogenetic relationships for 

understanding community assembly (chapter 1) and invasibility (chapter 3).  The other 

two studies investigated the impacts of important ecological factors, including 

competition (chapter 2) and temporal niches (chapter 4), on adaptive radiation, using the 

rapidly diversifying bacterium Pseudomonas fluorescens SBW25 as the model organism.    

 The first study, described in Chapter 1, examined how phylogenetic relatedness 

between competing species affected the strength of priority effects and ecosystem 

functioning during community assembly.  Strong priority effects emerged only when 

competing bacterial species were phylogenetically most closely related, resulting in 

multiple community states associated with different assembly histories.  In addition, the 

phylogenetic diversity of bacterial communities effectively predicted bacterial production 

and decomposition.   

 The second study, described in Chapter 2, explored the role of competition in the 

adaptive radiation of P. fluorescens.  The adaptive radiation was generally suppressed by 

competition, but its effect was strongly modulated by the phylogenetic relatedness 

between the diversifying and competing species and their immigration history.  The 

inhibitive effect of competition on adaptive radiation was strongest when phylogenetic 

relatedness was high and when competitors were introduced earlier. 

 The third study, described in Chapter 3, evaluated the relative importance of 

phylogenetic relatedness between resident and invading species and phylogenetic 

diversity of resident communities for invasibility.  Laboratory bacterial communities 
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containing a constant number of resident species with varying phylogenetic diversity and 

relatedness to invaders were challenged by nonresident bacterial species.  Whereas 

invader abundance decreased as phylogenetic relatedness increased as predicted by 

Darwin's naturalization hypothesis, it was unaffected by phylogenetic diversity.   

 The final study, described in Chapter 4, presented the first experimental 

demonstration of the maintenance of biodiversity that emerged from adaptive radiation in 

the presence of temporal niches.  Only when provided with temporal niche opportunities 

were multiple derived phenotypes of P. fluorescens able to coexist as a result of negative 

frequency-dependent selection.  When temporal niche was absent, the specialized 

phenotypes either did not emerge or were predominated by one superior phenotype.   
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CHAPTER 1 

PHYLOGENETIC RELATEDNESS, PRIORITY EFFECTS, AND 

ECOSYSTEM FUNCTIONING 

 

Abstract 

Species immigration history can structure ecological communities through 

priority effects, which are often mediated by competition.  As competition tends to be 

stronger between species with more similar niches, we hypothesize that species 

phylogenetic relatedness, under niche conservatism, may be a reasonable surrogate of 

niche similarity between species, and thus influence the strength of priority effects.  We 

tested this hypothesis using a laboratory microcosm experiment in which we established 

bacterial species pools with different levels of phylogenetic relatedness and manipulated 

the immigration history of species from each pool into microcosms.  Our results showed 

that strong priority effects, and hence multiple community states, only emerged for the 

species pool with the greatest phylogenetic relatedness.  Community assembly also 

resulted in a significant positive relationship between bacterial phylogenetic diversity and 

ecosystem functions.  Interestingly, these results emerged despite a lack of phylogenetic 

conservatism for most of the bacterial functional traits considered.  Our results highlight 

the utility of phylogenetic information for understanding the structure and functioning of 

ecological communities, even when phylogenetically conserved functional traits are not 

identified or measured. 
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Introduction 

Understanding mechanisms underlying the assembly of ecological communities is 

one of the central goals of community ecology (Gleason 1927; Diamond 1975).  

Ecologists now recognize that both niche-based deterministic processes (Chase and 

Leibold 2003) and neutral stochastic processes (Bell 2001; Hubbell 2001) can operate 

during the process of community assembly.  Niche-based processes involve the 

interaction between species’ niches and the conditions of the environment in which they 

live, which can jointly regulate the structure of the assembling communities.  In habitats 

with similar environmental conditions and under the same regional species pool, such 

processes often result in convergent communities with similar species composition and 

abundance.  Stochastic processes, highlighted by the neutral theory (Bell 2001, Hubbell 

2001), can also strongly impact ecological communities.  In particular, stochasticity in 

the order and timing of species colonization events, as demonstrated by both theoretical 

and empirical studies (e.g., Drake 1991; Law and Morton 1993; Jiang and Patel 2008; 

reviewed by Chase 2003), can result in divergent communities dominated by different 

species.  These multiple community states associated with different species colonization 

histories frequently arise from priority effects, in which early colonizing species affect 

the establishment and abundance of later colonizers.    

One factor that can potentially influence the relative importance of deterministic 

and stochastic processes, and hence the strength of priority effects, is ecological 

similarity of species in the regional species pool.  Both theory (e.g., MacArthur and 

Levins 1967) and experiments (e.g., Gause 1934) have demonstrated the difficulty for 

species with similar niches to coexist, which prompted Hardin (1960) to coin the 

competitive exclusion principle.  A corollary of this principle, applying to community 

assembly, is that increasing ecological similarity of species in the regional pool may 

make it more likely for species already established at a locality to have strong negative 
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impacts on newly colonizing species, promoting inhibitive priority effects.  As species 

niches are often difficult to quantify and phylogenetically closely related species tend to 

possess similar niches (i.e., phylogenetic niche conservatism; Harvey and Pagel 1991; 

Prinzing et al. 2001; Webb et al. 2002; Donoghue 2008), we suggest that species 

phylogenetic relatedness may be used as a surrogate of niche similarity to predict the 

strength of competition and priority effects.  The positive relationship between species 

phylogenetic relatedness and competition was in fact first hypothesized by Darwin (1859), 

and supported by a recent experiment (Violle et al. 2011).  However, whether 

phylogenetic relatedness of the regional species pool influences the strength of priority 

effects during community assembly remains an open question.  

Phylogenetic relatedness of the regional species pool may also have consequences 

for the functioning of the assembled communities.  For example, if phylogenetic 

relatedness serves as a reasonable surrogate for species ecological similarity, then low 

phylogenetic relatedness (i.e., high phylogenetic diversity) may translate into increased 

niche complementarity among species in the assembled communities, potentially 

resulting in high levels of ecosystem functioning (Cavender-Bares et al. 2009).  On the 

other hand, high phylogenetic relatedness among species within the regional species pool 

would indicate possible redundancy in species’ niches, likely leading to reduced 

ecosystem functioning.  So far only a handful of studies have investigated the relevance 

of species phylogenetic relatedness for ecosystem functioning (Maherali and Klironomos 

2007; Cadotte et al. 2008, 2009; Jiang et al. 2010), but the potential interactive effects of 

phylogenetic relatedness and assembly history on ecosystem functions have not been 

explored. 

Here we describe an experimental study examining how species phylogenetic 

relatedness affects priority effects and ecosystem functioning by using a laboratory model 

of bacterial communities.  We established bacterial species pools with different levels of 
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species phylogenetic relatedness and manipulated the immigration history of bacteria 

from each species pool into the assembled communities.  We showed that significant 

dissimilarity among communities subjected to different assembly histories emerged only 

when bacteria in the species pool were phylogenetically closely related.  We also found 

significant effects of phylogenetic relatedness and assembly history on bacterial 

ecosystem functions (i.e., bacterial production and decomposition). 

 

Methods 

 Our experiment used eight strains of common environmental bacteria from 

freshwater ecosystems (Fig. 1.1), all of which can form colonies with unique 

morphological characteristics on agar plates.  To estimate phylogenetic relatedness 

between these bacteria, we constructed phylogenies based on bacterial 16S rRNA 

sequences (Fig. 1.1a).  We sequenced the 16S rRNA gene of each bacterial strain, aligned 

the sequences with Clustal X (ver. 2.0; Larkin et al. 2007), selected the best sequence 

evolution model—GTR+G with MrModeltest (ver. 2.3; Nylander 2004) by using the 

Akaike Information criterion, and built the phylogenetic tree with Bayesian method in 

MrBAYES (ver. 3.1.2; Huelsenbeck and Ronquist 2001).  Three archaea were used as the 

out-group.  The phylogenetic distance between bacteria was obtained by summing 

lengths of the intervening branches between the two species on the phylogeny; smaller 

phylogenetic distance between bacteria indicates greater phylogenetic relatedness.  Using 

these eight strains of bacteria, we established four species pools—Serratia, 

Staphylococcus, Bacillus, and a mixed-genus pool with one bacterium randomly selected 

from each of the single-genus pools (Fig. 1.1a).  The phylogenetic diversity (hereafter PD) 

of each species pool was calculated by summing the lengths of all the intervening 

branches of all the species in each pool (Faith 1992).  PD is thus an aggregate measure of 
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the phylogenetic relatedness of each species pool; higher PD values indicate larger 

phylogenetic distances and thus weaker phylogenetic relatedness among species. 

We estimated functional trait diversity of each species pool based on the 

bacteria’s ability to utilize a variety of carbon substrates that may appear in the bacterial 

growth medium used in our experiment (see below).  We measured 55 bacterial traits 

with Biolog MicroPlates (Biolog, Hayward, CA).  Following the manufacturer’s 

instructions, we prepared and inoculated Gram-positive and negative bacterial cultures 

into their corresponding type of Biolog MicroPlates.  Gram-positive and -negative 

Microplates, each containing 96 wells, share 55 carbon substrates in common, so we only 

recorded the results of these 55 traits.  We scored positive results—indicating that the 

species was able to use carbon sources in the wells—as 1 and negative results as 0.  In 

addition, we tested the ability of these bacteria to utilize two common carbon 

substrates—cellulose and starch.  We spread diluted cultures of each bacterial strain on 

carboxymethylcellulose (Wohl et al. 2004) and starch agar plates, incubated them at room 

temperature (~22 ℃) for 5 days, and flooded plates with 1% Gango Red and Lugol’s 

iodine solutions, respectively. Colorless zones around bacterial colonies on agar plates 

were observed if bacteria utilize cellulose or starch.  Based on the total 57 traits, we 

calculated functional trait diversity of each species pool in two ways.  First, we calculated 

functional richness (hereafter FR) by counting the total number of carbon substrates that 

bacteria from a species pool could utilize.  Second, we calculated functional diversity 

(hereafter FD) of each species pool.  We performed a UPGMA (unweighted pair group 

method with arithmetic mean)-based cluster analysis with the Euclidean distance between 

bacteria in the 57-dimensional trait space, produced the functional dendrogram (Fig. 

1.1b), and calculated FD as the total intervening branch lengths of the dendrogram of all 

the species in each pool (Petchey and Gaston 2002).  To test for phylogenetic 

conservatism of the measured traits, we conducted a Mantel test based on 10,000 
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permutations that evaluated the correlation between bacterial phylogenetic distance and 

trait Euclidean distance.  We also tested the phylogenetic signal of each trait by using 

Blomberg’s K (Blomberg et al. 2003), with the multiPhylosignal function in the Picante 

package (Kimbel et al. 2010).    

Our experiment used 25 mL capped test tubes as microcosms, each of which 

contained 10 mL of medium.  The medium contained 0.55 g of crushed protozoan pellets 

(Carolina Biological Supply, Burlington, NC) per liter of deionized water.  Protozoan 

pellets are made from plant extracts and include a variety of common carbon resources 

for bacterial growth.  Medium was autoclaved in large flasks and filtered to remove 

insoluble particles, then transferred into experimental microcosms and autoclaved again 

before the experiment started.  The microcosms were incubated on a shaker at 200 rpm 

under room temperature (~22℃).   

The experiment included all the possible combinations of assembly sequences for 

each bacterial pool.  Thus, we had two sequential assembly treatments for the Serratia 

pool that contained two species, and six for the Staphylococcus, Bacillus and mixed pools 

that each contained three species (Fig. 1.1).  Each treatment was replicated three times.  

Prior to the experiment, we prepared stock cultures of each bacterial strain in 8% nutrient 

broth.  At the beginning of the experiment (day 0), we introduced the first species into 

microcosms by transferring a small volume (<5 L) of stock culture with an aseptic loop.  

In the same way, on day 7 and 14, we introduced the second and third immigrants (no 

third immigrant for the Serratia communities), respectively.  The weekly interval 

between species introduction allows the assembled communities to equilibrate before 

next introduction event.  Our pilot experiment, albeit using only half of the eight bacterial 

strains used in this study, indicated that bacterial populations of individual species, 

initiated at small size in isolation from other species, require 2-3 days to reach carrying 

capacity and persist at the stationary phase for at least our experimental duration;  
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Fig. 1.1 Phylogeny (a) based on Bayesian methods and functional dendrogram (b) based 

on cluster analysis of 57 traits by UPGMA for the study bacteria.  Four species pools, 

Serratia (initial PD: 0.0065; initial FR: 36; initial FD: 2.645), Staphylococcus (initial PD: 

0.0274; initial FR: 42; initial FD: 7.224), Bacillus (initial PD: 0.0959; initial FR: 35; 

initial FD: 6.959) and the mixed (initial PD: 0.4854; initial FR: 50; initial FD: 7.550) 

species pool were formed by these bacteria.  Asterisk indicates the bacteria constituting 

the mixed species pool.  

  

(a) 

 

 

 

 

 

 

 

 

(b) 
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bacterial communities containing multiple species generally reach equilibrium in one 

week and can persist for similarly long periods of time (J. Tan, unpublished data).  On 

day 21, we added a dried, weighed and autoclaved wheat seed to each microcosm.  On 

day 49, we terminated the experiment and destructively sampled the microcosms.  The 

samples from microcosms were serially diluted and spread on nutrient agar plates.  After 

seven-day incubation, we counted the number of bacterial colonies on plates to determine 

population density (colony formation units per milliliter [CFU/mL]) of each bacterial 

strain.  Wheat seeds were retrieved from microcosms, oven dried and weighed. Two 

ecosystem functions were recorded.  Total bacterial production in each microcosm was 

obtained by summing the densities of each bacterial strain.  Decomposition was measured 

as the fraction of wheat seed mass lost during the experiment.   

We calculated realized community PD, FR and FD, based on the realized species 

composition measured at the end of the experiment. We calculated -diversity between 

communities sharing the same species pool but subjected to different assembly histories, 

by first calculating the modified Morisita similarity index (Horn 1966), then subtracting it 

from 1.  Calculation of Morisita indices was based on untransformed bacterial density 

data.  For subsequent statistical analyses all the bacteria density data were log10 

transformed (log10 [x+1]) to improve normality.  We used one-way ANOVA with -

diversity as the dependent variable and different species pools as the class variables to 

assess the effect of varying phylogenetic relatedness among species pools on history-

induced differences in community structure, as represented by -diversity.  Tukey’s HSD 

was further conducted as the post-hoc test.  To test the effect of assembly history on the 

density of bacteria in communities sharing the same species pool, we used MANOVA 

with bacteria densities for each species pool as the dependent variables and history 

sequences as the class variables.  To test the effect of assembly history on bacterial 

production and decomposition in different species pools, we used nested ANOVA with 
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production and decomposition as the dependent variables and history sequences as a 

factor nested within species pools.  To further test the effect of assembly history, we used 

one-way ANOVA within each species pool, with production and decomposition as the 

dependent variables and assembly history sequences as the independent variables.  To 

test the effect of phylogenetic and functional diversity on bacterial production and 

decomposition, we used simple and backward-selection multiple linear regressions to 

model the ecosystem functions (i.e., bacterial production and decomposition) as functions 

of realized PD, FR and FD.  In all the regressions, explanatory variables were deemed 

significant if P < 0.05. 

 

Results 

Our study bacteria did not exhibit significant phylogenetic conservatism when all 

the 57 traits were considered together (Mantel test, P = 0.152).  When examined 

individually, 9 of 57 traits (15%), including D-fructose, L-fucose, -D-glucose, -D-

lactose, D-melibiose, D-alanine, D, L, -glycerol phosphate, -D-glucose-1-phosphate 

and D-glucose-6-phosphate, showed significant phylogenetic signals (multiPhylosignal 

function, P < 0.05). 

-diversity among communities subjected to different histories varied 

significantly among the four species pools (ANOVA, F3, 411 = 443.081, P < 0.001).  This 

significant variation mainly resulted from the larger values of -diversity observed in the 

Serratia pool (see Fig. 1.2; Tukey’s HSD).  The dominant species in communities of the 

Serratia pool differed depending on history treatments (Fig. 1.3a).  In contrast, in the 

Staphylococcus, Bacillus and mixed species pools, the dominant species remained the 

same in different history treatments (Fig. 1.3b-d).  Nevertheless, MANOVA still revealed 

a significant effect of assembly history on species densities in those species pools 

(Staphylococcus: Wilk’s  = 0.010, F15,28 = 7.882, P < 0.001; Bacillus: Wilk’s  = 0.029,  
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Fig. 1.2 -diversity among communities assembled from the four species pools with 

varying phylogenetic relatedness.  -diversity is calculated as 1 - Morisita similarity 

index.  Values are means + SE.  Treatments sharing the same letters do not differ in the 

Tukey’s HSD test. 
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Fig. 1.3 Population density of each bacterium from the four species pools [(a) the 

Serratia, (b) Staphylococcus, (c) Bacillus and (d) mixed species pool] at the end of the 

experiment.  Values are means + SE with density data measured as colony formation 

units (CFU) per mL and log10-transformed prior to analysis.   
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Fig. 1.3 (Continued)  
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F15,28 = 4.867, P < 0.001; mixed: Wilk’s  = 0.018, F15,28 = 6.097, P < 0.001), in addition 

to the significant effect of history for the Serratia pool (Wilk’s  = 0.017, F1,4 = 234.1, P 

< 0.001).   

Nested ANOVA revealed a significant effect of assembly history on bacterial 

production (F5,40 = 14.449, P < 0.001), but no effect of assembly history on 

decomposition (F5,40 = 0.886, P = 0.499).  One-way ANOVA indicated that assembly 

history had a significant effect on bacterial production in communities of the 

Staphylococcus (F5,12 = 30.086, P < 0.001), Bacillus (F5,12 = 16.888, P < 0.001) and mixed 

(F5,12 = 3.601, P = 0.032) pools, but had no effects in communities of the Serratia pool 

(F1,4 = 1.136, P = 0.346).  In contrast, assembly history significantly affected 

decomposition in the Staphylococcus communities only (Staphylococcus: F5,12 = 37.615, 

P < 0.001; Serratia: F1,4 = 1.136, P = 0.346; Bacillus: F5,12 = 0.670, P = 0.654; mixed: 

F5,12 = 2.348, P = 0.105).  Nested ANOVA also revealed that ecosystem function levels 

differed significantly in communities of different species pools (production: F14,40 = 

41.161, P < 0.001; decomposition: F14,40 = 6.288, P < 0.001).   

Simple linear regressions showed that both bacterial production and 

decomposition increased with realized PD (Fig. 1.4a; R
2
 = 0.461, P < 0.001; Fig. 1.4b; R

2
 

= 0.212, P < 0.001), FR (Fig. 1.4c; R
2
 = 0.586, P < 0.001; Fig. 1.4d; R

2
 = 0.410, P < 

0.001) and FD (Fig. 1.4e; R
2
 = 0.268, P < 0.001; Fig. 1.4f; R

2
 = 0.415, P < 0.001), 

respectively.  Multiple regression models retained realized FR and FD as best predictors 

of both bacterial production and decomposition.   

 

Discussion 

The results of our experiment demonstrated the importance of understanding 

species phylogenetic relatedness when predicting the strength of priority effects.  We 

observed the highest -diversity among communities in the Serratia pool (Fig. 1.2),  
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Fig. 1.4 Relationships between realized phylogenetic diversity (PD; a, b), functional 

richness (FR; c, d), functional diversity (FD; e, f), and production (left 

column)/decomposition (right column).  PD and FD attained zero values in communities 

with one species. Data are plotted with linear regression lines.   
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which contained phylogenetically the most closely related bacterial strains (Fig. 1.1a).  

Different Serratia marcescens strains were dominant in these communities when 

subjected to different assembly histories (Fig. 1.3a).  In contrast, communities from each 

of the other pools with lower phylogenetic relatedness were structurally similar (Fig. 1.2), 

containing the same dominant species regardless of history (Fig. 1.3b-d).  This difference 

emerged despite the fact that history had a significant effect on the structure of the 

assembled communities for all species pools, as revealed by MANOVA. These results 

appear consistent with our hypothesis that stronger competition may occur between 

species that are more closely related phylogenetically (Maherali and Klironomos 2007; 

Violle et al. 2011), leading to stronger priority effects that generate multiple community 

states (Chase and Leibold 2003; Fukami and Lee 2006).  However, phylogenetic 

conservatism was not detected when all bacterial traits were considered together, and 

non-significant phylogenetic signals were detected for the majority of measured traits.  At 

least three mutually nonexclusive explanations can account for these results.  One 

possibility is that at least some of the phylogenetically conserved traits that we measured 

are important in defining the ecological niches of our study bacteria.  This is supported by 

the fact that phylogenetic diversity and functional diversity based on measured traits 

(including FR and FD) were both positively related to bacterial production and 

decomposition in our experiment.  Another possibility is that some unmeasured traits that 

are important in defining species niches may be phylogenetically conserved, making 

phylogenetic relatedness a reasonable proxy of functional similarity with regards to these 

traits.  A third explanation is that phylogenetic relationships based on the 16S rRNA gene, 

which is known to be highly conserved between different species of bacteria (Coenye and 

Vandamme 2003), may not adequately capture the potentially large variation in traits 

coded by less conserved genes (see Dahle et al. 2001 for a counterexample).  Note that 

this issue can be circumvented in the future by constructing phylogeny based on whole 

genomes, which are currently unavailable for most organisms.  Regardless, our results 
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highlight the utility of phylogenetic information for understanding the structure and 

functioning of ecological communities, even when phylogenetically conserved functional 

traits are not identified or measured. 

Our results indicated that phylogenetic diversity positively affected ecosystem 

functions (i.e., bacterial production and decomposition), but that ecosystem functioning 

was better predicted by functional diversity.  Using data from plant experiments, Cadotte 

et al. (2008, 2009) also showed that primary productivity was positively correlated with 

both plant phylogenetic and functional diversity.  However, their results indicated that 

phylogenetic diversity explained more variation in plant productivity than several 

measurements of functional diversity.  This discrepancy between the results of the two 

studies may be due to the fact that horizontal gene transfer, which may increase trait 

similarity among distantly related species and weaken the correlation between 

phylogenetic relatedness and trait similarity, is much more common for bacteria than 

plants (Andersson 2005; Richardson and Palmer 2007).  Note that phylogenetic diversity 

nevertheless remained significant in explaining the functioning of bacterial communities 

in our experiment.  

Our results also showed that community assembly history had significant effects 

on bacterial production in the Staphylococcus, Bacillus and mixed communities, and on 

decomposition in the Staphylococcus communities.  Likewise, Fukami et al. (2010) 

manipulated the assembly history of wood-decay fungal communities and found a 

significant effect of assembly history on fungal decomposition.  They showed that 

community divergence in species richness and composition, resulting from different 

assembly histories, led to the differentiation of ecosystem functioning.  However, this 

mechanism cannot explain the divergence/convergence of ecosystem functioning in 

communities subjected to different assembly histories in our study.  Two distinct 

alternative states were formed in communities of the Serratia pool (Fig. 1.3a), but 
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ecosystem functions of these two community states were similar.  In contrast, a single 

community state was observed in the Staphylococcus pool, but ecosystem functions 

differed among the assembled communities (Fig. 1.3b).  One explanation for the lack of 

historical effects on ecosystem functioning in the Serratia communities is that the two 

strains of Serratia marcescens may play similar ecological roles since they are 

phylogenetically closely related (99% similarity based on phylogeny) and functionally 

similar (sharing 50 of 57 traits).  The two Serratia strains may thus be largely 

functionally substitutable, resulting in the same levels of ecosystem functions in 

communities dominated by different Serratia strains.  In other species pools, although the 

historical effect was not strong enough to generate multiple community states, the 

abundance of subdominant species differed under different assembly histories (hence the 

significant effect of assembly history on species densities in MANOVA), especially in 

the Staphylococcus pool (Fig. 1.3b), which may have caused the differentiation of 

ecosystem functioning in those species pools.  All together, our results showed that 

assembly history affected ecosystem functioning in some communities, but not in others.  

Understanding the conditions that promote the relationship between assembly history and 

ecosystem functioning remains an important topic of future research. 

One concern is that each phylogenetic relatedness level in our experiment 

included only one species combination, so one could argue that the effect of phylogenetic 

relatedness may have been confounded with the effect of species identity.  An ideal 

solution to this problem would be to use as many species combinations in each 

phylogenetic level as possible, but this may not be logistically possible.  In particular, 

finding many combinations of phylogenetically closely related bacteria with different 

colony morphologies (e.g., the red and white Serratia marcescens) is difficult.  In this 

experiment, although we cannot exclude the possibility that the effects of species 

phylogenetic relatedness and identity are confounded, results from a related experiment 

suggests that this is not the case.  That experiment produced results similar to the current 
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experiment.  In particular, strong priority effects were also observed in bacterial 

communities containing closely related species, specifically those with three strains of 

Bacillus pumilus; weaker priority effects were detected in communities with less related 

species (J. Tan, unpublished data).  In the present experiment, weak priority effects also 

emerged in all communities of the three species pools with relatively low levels of 

phylogenetic relatedness, resulting in single community states.  Together, these results 

strongly suggest a linkage between species phylogenetic relatedness and the strength of 

priority effects.  Nevertheless, future studies that manipulate phylogenetic relatedness or 

diversity should aim to establish multiple species combinations within each treatment in 

order to eliminate the potential confounding effects from species identity. 

In this study, different bacterial species pools exhibited different levels of 

phylogenetic relatedness permitting an evaluation of how phylogenetic relatedness might 

govern the relative contributions of niche-based deterministic processes (Chase and 

Leibold 2003) and neutral stochastic processes (Bell 2001; Hubbell 2001) to community 

assembly.  In the experiment we conducted to accomplish this evaluation, multiple 

community states resulting from strong stochastic assembly processes (i.e., priority 

effects) were only observed in the species pool with the highest phylogenetic relatedness 

and highest functional similarity.  Alternatively, single-community states resulting from 

strong deterministic assembly processes were observed in communities assembled from 

less phylogenetically related species pools.  As such, these observations support our 

hypothesis that priority effects are stronger between species that are more closely related 

phylogenetically, although some caution must be exercised when generalizing these 

results given the limitation of our experimental design (see last paragraph).  Further, our 

study demonstrates a positive relationship between phylogenetic diversity and ecosystem 

functions in an experiment that directly manipulated phylogenetic diversity.  Importantly, 

we obtained these results despite the fact that many functional traits measured in our 

experiment exhibited non-significant phylogenetic signals.  Our results thus highlight the 
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difficulty of identifying species functional traits relevant for community assembly and 

ecosystem functioning, and at the same time, the utility of basic phylogenetic information 

in predicting the structure and functioning of ecological communities. 
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Chapter 2 

PHYLOGENETIC RELATEDNESS OF RESIDENT AND INVADING 

SPECIES, NOT PHYLOGENETIC DIVERSITY OF RESIDENT 

COMMUNITIES, CONTROLS INVASIBILITY 

 

Abstract 

 A central goal of invasion biology is to elucidate mechanisms regulating 

community invasibility.  Darwin’s naturalization hypothesis, one of the oldest hypotheses 

in invasion biology, emphasizes the importance of phylogenetic relatedness (PR) between 

resident and invader species for predicting invasibility.  Alternatively, a recent extension 

of the diversity-invasibility hypothesis predicts that phylogenetic diversity (PD) of 

resident communities influences invasibility.  Neither of these hypotheses has undergone 

rigorous experimental testing, and relative contributions of PR and PD to community 

invasibility are unknown.  In the reported experiment, we consider both perspectives 

together by independently manipulating PD and PR in laboratory bacterial assemblages.  

This experiment demonstrates, for the first time, that PR is more important than PD in 

regulating invasibility.  This novel result illustrates how understanding species 

evolutionary relationships can guide the prediction, prevention and management of 

biological invasions.  
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Introduction 

The broad ecological and economic consequences of biological invasions have 

spurred considerable interest among ecologists in exploring mechanisms controlling the 

invasibility of ecological communities (Vitousek et al. 1996, Tilman 1997, Mack et al. 

2000).  One aspect of this work has focused on biodiversity, asking the question of 

whether more diverse communities pose stronger resistance to invaders than their less 

diverse counterparts.  Much of this research has focused on species diversity.  

Experimental manipulations of species diversity have shown that community invasibility 

often declines as the number of species in the community increases (Levine et al. 2002, 

Fridley et al. 2007).  This negative diversity-invasibility pattern can be driven by at least 

one of two mechanisms—the niche complementarity effect (i.e., niche differentiation 

among resident species leads to fewer unoccupied niches available for invaders in more 

species-rich communities) and the sampling effect (i.e., there is a greater chance for more 

species-rich communities to contain species that strongly resist invasion) (Fargione and 

Tilman 2005).   

 In light of the large amount of work linking species diversity and invasion, it is 

notable that species diversity only represents one component of biodiversity and that it 

treats each species equally.  Species, however, are known to differ in their functional 

traits and evolutionary history.  Other, less studied, components of biodiversity may 

better capture these differences in species characteristics within a community.  One such 

component of biodiversity is phylogenetic diversity (hereafter PD), which has recently 

drawn much attention from biologists (Forest et al. 2007, Srivastava et al. 2012).  This is 

facilitated by the increased availability of gene sequences for various organisms, and also 

by our improved knowledge of species functional traits.  It has been recognized that 

species’ functional traits, rather than species’ identity, determine their contribution to 

ecosystem functions (Diaz and Cabido 2001, McGill et al. 2006).  As a result, functional 
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diversity (hereafter FD), which better captures functional trait distributions than species 

diversity, often does a better job predicting ecosystem functions (Diaz and Cabido 2001, 

Naeem and Wright 2003, Petchey and Gaston 2006).  Evolutionary histories, however, 

place a constraint on the differences in functional traits among taxa (Peterson et al. 1999, 

Donoghue 2008), such that PD, which accounts for species evolutionary relationships, 

may often be a reasonable proxy of FD.  As it may not always be straightforward to 

identify or measure functionally important traits, PD has been expected to be of much use 

as a predictor for ecosystem functions (Cavender-Bares et al. 2009, Srivastava et al. 

2012).  Here we suggest that increasing PD of resident communities serves to reduce 

invasibility (Fig. 2.1a), by promoting complementarity and sampling effects.  Increasing 

PD may strengthen the complementarity effect if higher PD communities are 

characterized by more diverse traits, translating into more niches being occupied by 

resident species and fewer opportunities available for invaders.  Increasing PD may also 

result in the sampling effect if species with particular traits that confer invasion resistance 

are more frequently present in higher PD communities.    

Ecologists have also long recognized the potential role of phylogenetic 

relatedness (PR) between resident and invader species in influencing community 

invasibility.  Darwin (1859) proposed that invasive species would be less successful in 

communities that contain their close relatives (Fig. 2.1b), reasoning that strong 

competition imposed by resident species on closely related invaders, due to high 

similarity in their niches, would reduce their success.  This naturalization hypothesis is 

thus related to the sampling effect, where community invasibility is largely determined 

by certain invasion-resistant species.  There have been a number of empirical tests of this 

hypothesis (Ricciardi and Mottiar 2006, Strauss et al. 2006, Proches et al. 2008, Schaefer 

et al. 2011, Tingley et al. 2011, Allen et al. 2013, Carboni et al. 2013).  These tests, 

which are based almost entirely on observations of nonnative species in their introduced  



26 
 

 

 

 (a)     (b) 

 

 

Fig. 2.1  The hypothesized effects of phylogenetic diversity (PD, panel a) of resident 

communities and phylogenetic distance, the inverse of phylogenetic relatedness (PR, 

panel b), between resident and invading species on community invasibility.  Invasibility 

is expected to decline as PD increases, but increase as phylogenetic distance increases.   
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habitats (Jiang et al. 2010), have produced mixed results.  These conflicting results are 

difficult to interpret, given the lack of control for confounding factors in observational 

studies.  Experiments that directly manipulate PR, independent of other factors, are 

needed to rigorously test the hypothesis.     

Recognizing that both PD and PR have the potential to influence community 

invasibility (Fig. 2.1), we performed the first experiment that independently manipulated 

PD and PR to evaluate their relative importance for invasibility.  We assembled resident 

communities using bacterial species collected from a single source, and invaded them 

with a nonresident bacterial species.  The PD and PR of each resident community were 

determined using a phylogenetic tree based on bacterial 16S rRNA sequences (Fig. 2.2).  

We kept initial resident species richness at a constant level (3 species) to minimize 

potential confounding effects of PD and PR from species richness.  This level of species 

diversity also permitted the setup of more than one resident community for each PD-PR 

combination (see Table A.1), reducing the idiosyncratic influences of individual species 

and communities on experimental results.  We hypothesized that both PD and PR are 

important in regulating community invasibility, much as both the complementarity and 

sampling effects often contribute to positive relationships between species diversity and 

community biomass production (Cardinale et al. 2006, Cardinale et al. 2007).  In addition, 

FD of resident communities and functional similarity (FS) between resident and invading 

species were also determined based on the ability of study bacteria to utilize various 

organic carbon compounds (see Methods for details and Fig. A.1).  We tested for 

phylogenetic signals in these bacterial functional traits using a Mantel test (all traits 

considered together; see Methods for details) and Blomberg’s K statistic (for each 

individual trait; Blomberg et al. 2003).  Similar to PD and PR, we hypothesized that FD 

and FS combine to affect community invasibility.  In addition to the multi-species 

resident communities, we also established monocultures of each resident species and 

subjected them to the invasion of the same non-resident species.     
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Fig. 2.2  Phylogeny of the bacterial species pool based on the 16S rRNA genes, 

constructed using the Bayesian methods.  Scores on nodes indicate posterior probability. 
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Methods 

Bacteria 

 Prior to the experiment, we collected bacterial strains from several freshwater 

ponds, and screened them for suitability as the candidate members of resident 

communities.  Candidate strains must form distinct colonies on agar plates, allowing us to 

quantify their abundance via simple plate counts.  They also must show a wide range of 

PR, so that resident communities with different degrees of PD can be constructed.  The 

resultant species pool (see Fig. 2.2) consisted of both Gram positive and negative bacteria, 

the majority of which were collected from a single pond—Lake Clara Meer in Piedmont 

Park of Atlanta, GA, USA.  We obtained a strain of Serratia marcescens, whose colony 

morphology (with a distinct solid red color) differs from that of all resident species, from 

Carolina Biological Supply (Burlington, NC, USA) as the invader.  The stock culture of 

each bacterial strain was grown in 0.2% LB broth.    

 

Constructing phylogeny 

 We constructed the bacterial phylogeny based on the 16S rRNA gene of each 

strain in the species pool (including the invader; Fig. 2.2).  After sequencing the 16S 

rRNA, we aligned sequences with the Nearest Alignment Space Termination 

Algorithm(DeSantis et al. 2006), selected the best sequence evolution model—TIM3+G 

with jModelTest (version 0.1; Guindon and Gascuel 2003, Posada 2008) using the 

Akaike information criterion, and assembled the phylogenetic tree with MrBAYES 

(version 3.1.2; Huelsenbeck and Ronquist 2001) using the Bayesian method.  Three 

archaeal species were used as the out-group.  We also constructed a phylogenetic tree 

with the maximum likelihood (ML) method, which was similar in structure to the 

Bayesian tree; results based on the two trees were similar.  We thus only reported the 

Bayesian tree and associated results here. 
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Experimental design 

 Based on the phylogenetic tree, we assembled bacterial communities that differed 

in three levels of PD (low, intermediate, and high) of resident communities and three 

levels of PR (low, intermediate, and high) between the resident community and invading 

species, while fixing the number of species in each resident community at three.  All the 

resident species used in our experiment came from Lake Clara Meer.  Three-species 

resident communities varied widely in PD and PR, allowing them to be manipulated 

independently of each other.  This level of species diversity also allowed the setup of 

more than one resident community for each PD-PR combination (see Table A.1), 

reducing the idiosyncratic influences of individual species and communities on 

experimental results.  Nevertheless, we were unable to find any suitable resident 

community for the high PD-low PR treatment, leaving us an incomplete factorial design 

(Table A.1).  Following Faith (1992), we calculated PD of a resident community by 

summing the lengths of all the intervening branches of the three constituent species with 

the community.  Similarly, we calculated phylogenetic distance (the inverse of PR) 

between resident and invading species by summing the length of the intervening branches 

between them on the phylogenetic tree.  Both nearest phylogenetic distance (distance 

between the invader and its closest relative in the resident community) and average 

phylogenetic distance (average distance between the invader and each species in the 

resident community) were calculated, and because results based on the two metrics were 

qualitatively similar, we reported those based on nearest phylogenetic distances only.  In 

addition to the three-species resident communities, we also established monocultures of 

each resident species used in the experiment and subjected them to the invasion of the 

same non-resident species.  Each of the single- and three-species communities was 

replicated five and ten times, respectively.   
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Each microcosm consisted of one 25-mL loosely capped test tube containing 10 

mL of filtered protozoan pellet medium, which, despite its name, supports the growth of 

bacteria (Jiang 2007, Jiang et al. 2010, Tan et al. 2012).  The medium was composed of 

0.55 g crushed protozoan pellet (Carolina Biological Supply, Burlington, NC, USA) per 

liter of deionized water.  The pellet is made from plant materials, containing a variety of 

carbon compounds that can be utilized by bacteria.  This medium was autoclaved in large 

flasks, and filtered afterwards to remove insoluble particles.  The filtrate was then 

transferred into experimental microcosms, and autoclaved again before the experiment 

started.  Each microcosm also received a wheat seed as the additional carbon source.  The 

wheat seeds were dried, weighed, and autoclaved beforehand.  During the experiment, all 

microcosms were incubated on a shaker at 200 rpm under room temperature (~22 °C).   

At the beginning of the experiment (Day 0), we introduced resident species into 

microcosms by transferring a small volume (<5 µL) of their stock cultures with an aseptic 

loop.  We allowed the resident communities to equilibrate for 41 days, before subjecting 

them to invasion.  To determine the realized PD and PR of three-species resident 

communities at the time of invasion, we destructively sampled half of the microcosms 

(five replicates of each treatment) on days 40 and 41 to determine resident species 

composition and abundance.  These data were used to calculate realized PD and PR in 

each sampled microcosm.  On day 42, we invaded the remaining microcosms with S. 

marcescens, introduced in the same way as the resident species.  The experiment 

continued for another 21 days to allow the establishment of invader populations.  Final 

sampling was conducted on day 63 to quantify invader abundance as a common metric of 

invasibility. 

 

Measuring FD and FS 
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 To directly assess the relevance of functional traits for predicting invasibility, we 

estimated FD of each resident bacterial community and functional similarity (FS) 

between resident and invading species, based on their ability to utilize a variety of carbon 

substrates on BIOLOG MicroPlates (BIOLOG, Hayward, CA, USA).  Gram-positive and 

-negative bacterial cultures were inoculated into their corresponding types of MicroPlates, 

and the results for each of the carbon substrates (positive or negative) were recorded.  

Our analyses focused on the 55 substrates that Gram-positive and -negative MicroPlates 

shared in common.  As in Tan et al. (2012), we performed a UPGMA-based cluster 

analysis of these functional trait data and produced a functional dendrogram (Fig. A.1).  

We then calculated FD of each resident community as the total branch lengths connecting 

its component species on the functional dendrogram (Petchey and Gaston 2002), and 

functional distance (the inverse of FS) between the invader and resident species as the 

branch lengths connecting these species on the functional dendrogram.  Both nearest and 

average functional distances between the invader and resident communities were 

calculated, and analyses based on the two metrics produce similar results.  We thus 

reported findings based on nearest distances only.   

 

Data analysis 

We used a two-way ANOVA to assess the effects of PD and PR on community 

invasibility, with invader abundance as the dependent variable and initial PD and 

phylogenetic distance as the class variables.  Tukey’s HSD post-hoc test was conducted 

following the detection of significant treatment effects.  We performed simple linear 

regressions modeling invader abundance as a function of realized PD, realized 

phylogenetic distance, realized FD, and realized functional distance, separately.  This was 

followed by a multiple regression model that considered all four explanatory variables 

together, with the backward selection procedure used to identify the variables best 
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explaining invasibility.  Bacterial abundance data were log-transformed prior to statistical 

analyses to improve normality.   

We tested for significance of phylogenetic signals of the measured functional 

traits in two ways.  First, we considered all traits together with a Mantel test assessing the 

association between bacterial phylogenetic and functional distances, with distance 

matrices permutated 10,000 times.  Second, we considered each trait individually with 

Blomberg’s (2003) K, using the multiPhylosignal function in the Picante package 

(Kimbel et al. 2010).   

 

Results 

 The non-resident invader successfully established its populations in all 

experimental microcosms.  Its abundance, however, differed substantially among the 

experimental treatments (Fig. 2.3).  ANOVA revealed a significant effect of PR (F2,82 = 

49.958, P < 0.001), but not PD (F2,82 = 2.291, P = 0.108), on invader abundance; changes 

in PD did not alter the effect of PR on invasibility (PD × PR term in ANOVA: F3,82 = 

1.117, P = 0.347).  The significant PR effect was largely driven by lower invader 

abundance in the high PR (i.e., low phylogenetic distance) treatment than in the low and 

intermediate PR (i.e., large and intermediate phylogenetic distance) treatments (Tukey’s 

HSD test, P < 0.001).   

 Consistent with the ANOVA results, linear regressions showed that invader 

abundance in multiple-species resident communities was unaffected by realized PD (R
2
 = 

0.024, P = 0.148, Fig. 2.4a), but declined with increasing realized PR (i.e., decreasing 

phylogenetic distance; R
2
 = 0.560, P < 0.001, Fig. 2.4b).  Neither FD (R

2
 = 0.001, P = 

0.811) nor FS (R
2
 = 0.002, P = 0.698) affected community invasibility (Fig. A.2).  The 

multiple regression model retained realized PR as the best predictor of invasibility.  PR 

(R
2
 = 0.379, P < 0.001, Fig. 2.5a), not FS (R

2
 < 0.001, P = 0.931, Fig. A.3), was a 
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significant predictor of invader abundance in single-species resident communities.  Note 

that species extinction occurred in some of the resident communities, without causing 

realized PR and PD to covary (R
2
 = 0.098, P = 0.357).   

 When all the 55 measured traits were considered together, our study bacteria 

exhibited significant phylogenetic signals (Mantel test, P = 0.005).  When examined 

individually, only 8 of the 55 traits (15%), including D-trehalose (Blomberg’s K = 1.250, 

P = 0.009), α-D-glucose (K = 0.472, P = 0.015), D-melibiose (K = 1.032, P = 0.022), D-

fructose (K = 0.355, P = 0.031), gentiobiose (K = 0.305, P = 0.034), β-methyl-D-

glucoside (K = 0.481, P = 0.035), α-D-glucose-1-phosphate (K = 1.016, P = 0.037) and 

D,L,α-glycerol phosphate (K = 0.255, P = 0.046), showed significant phylogenetic signal.   

 

Discussion 

Our study demonstrated the important role of PR, relative to PD, for determining 

community invasibility.  We found that invader abundance declined with increasing PR 

in both multi- and single-species resident communities, providing direct experimental 

support for Darwin’s (1859) naturalization hypothesis.  There has been substantial recent 

interest in evaluating Darwin’s naturalization hypothesis in natural assemblages of 

various organisms.  For example, Duncan and Williams (2002) found that exotic seed 

plant species with their congeneric native species present in New Zealand were more 

likely to naturalize in the country, a pattern at odds with the hypothesis.  By contrast, 

Strauss et al. (2006) found the invasiveness of exotic grass species was negatively related 

to their phylogenetic relatedness to native grass species in California, a finding consistent 

with the hypothesis.  These conflicting results, which were based on observations of 

natural communities, underscored the need for rigorous tests of Darwin’s naturalization 

hypothesis via experimentation (Duncan and Williams 2002, Lambdon and Hulme 2006, 

Ricciardi and Mottiar 2006, Strauss et al. 2006, Schaefer et al. 2011).   
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Fig. 2.3  Population densities of the invader (Serratia marcescens) in three-species 

resident communities with different levels of phylogenetic diversity (PD) and nearest 

phylogenetic distance (the inverse of PR) between resident and invading species.  Values 

are mean + standard error, with population densities measured as colony forming units 

(CFUs) per mL and log10(x+1)-transformed prior to analysis.  Treatments sharing the 

same letters do not differ from each other according to Tukey’s HSD tests.  Note the 

absence of the high PD-high phylogenetic distance treatment. 
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Fig. 2.4  Relationships between invader population density and (a) realized PD of three-

species resident communities; and (b) realized nearest phylogenetic distance (the inverse 

of PR) between the invader and three-species resident communities.  Realized PD and 

phylogenetic distance were calculated based on data collected immediately before 

invasion.  Data are plotted with significant linear regression lines.  Invader population 

densities are in the unit of CFUs per mL and were log10(x+1)-transformed prior to 

analysis. 
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Fig. 2.5  Invader population densities in single-species resident communities.  (a) The 

relationship between invader population density and its phylogenetic distance (the inverse 

of PR) within the single-species resident communities; and (b) invader population density 

in each single-species resident community (ordered by phylogenetic distance between the 

species and invader).  Invader population densities are in the unit of CFUs per mL and 

were log10(x+1)-transformed prior to analysis.  Data in panel (a) are plotted with the 

linear regression line.  Values in panel (b) are mean + standard error. 
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Jiang et al. (2010) conducted such an experiment using bacteria and reported results 

consistent with Darwin’s prediction, but the strength of this study was diminished by the 

fact that PD was left uncontrolled, and that the invader and its most closely related 

resident species were in fact two strains of the same species.  These issues were not a 

problem in the experiment reported here, in which PD and PR were manipulated 

independent of each other with each PD-PR combination represented by multiple resident 

communities, and where the bacterial invader and residents did not share the same 

species identity.  In particular, the six resident communities characterized by the highest 

PR, containing different Enterobacter cloacae strains, were most closely related to the 

invader (Fig. 2.2) and least receptive to invasion (Fig. 2.5b).  As predicted by Darwin 

(1859), more closely related bacterial species were more similar in their niches (i.e., 

phylogenetic conservatism in carbon usage patterns), presumably translating into stronger 

competition between the invader and its closer resident relatives (Violle et al. 2011).  

Taken together, our study provided strong experimental evidence for Darwin’s 

naturalization hypothesis, supporting the role of PR between resident and invader species 

in predicting community invasibility.   

 In contrast to the strong effect of PR, we found no effect of PD of resident 

communities on invasibility.  This surprising result is at odds with the traditional view 

that more diverse communities are more resistant to invasion (Elton 1958).  It also 

contrasts with the result of a recent observational study that higher PD plant communities 

in the Netherlands were less receptive to alien plant species (Gerhold et al. 2011).  One 

possibility that could potentially explain this apparent discrepancy is that the strength of 

the relationship with PD of resident communities may differ for different invasibility 

metrics.  Invader establishment success, the metric used in Gerhold et al. (2011), may be 

tightly linked with PD because higher PD communities would have less unoccupied niche 

space left for invaders, resulting in their higher establishment failure.  On the other hand, 

invader abundance, the metric used in our study, may be closely associated with PR but 
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not PD because invaders may not be able to attain large abundance if their optimal niches 

are occupied by their closely related resident species (i.e., those having high PR with 

invaders).  Here we focused on examining invader abundance, given that all our 

experimental communities were receptive to invasion.  Studies considering both metrics 

together would be needed to test the above hypothesis.  A second possibility associated 

with the lack of PD effect on invasibility is that lateral gene transfer among bacteria may 

reduce the degree of trait conservatism (Boucher et al. 2003), making PD an ineffective 

proxy of niche complementarity and sampling effects in bacterial communities.  However, 

current evidence indicates that many bacterial functional traits exhibit phylogenetic 

signals despite lateral gene transfer (Martiny et al. 2013).  Some of the bacterial traits 

examined in our experiment were also phylogenetically conserved, and the whole set of 

traits was conserved when considered together.  The significant effect of PR on invader 

abundance is also indicative of the conservatism of important functional traits for 

resident-invader interactions that determined invader abundance.  A third possibility is 

that the PD metric used in our experiment, which is based on species presence/absence 

data (Faith 1992), may not necessarily capture the actual phylogenetic diversity of real 

communities typically characterized by uneven species abundances (Cadotte et al. 2010).  

To address this issue, we calculated several abundance-based PD metrics for each 

resident community using the methods described in Cadotte et al. (2010).  None of these 

abundance-adjusted PD metrics, however, resulted in an improved ability to predict 

invader abundance (P > 0.05 in all cases).     

 Also somewhat surprisingly, metrics based on bacterial functional traits, including 

FD of resident communities and FS between resident and invading species, failed to 

predict community invasibility.  This contrasts with several plant invasion experiments 

reporting FD of plant resident communities (Dukes 2001) and FS between plant residents 

and invaders (Fargione et al. 2003) as significant predictors of invasibility (measured as 

invader abundance, biomass or cover).  Note that these results were obtained despite the 
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fact that these studies used discrete FD and FS measures based on simple plant functional 

group classifications.  These findings thus indicate that classifying plants into even 

simple functional groups can effectively capture key differences in functional traits 

among plant species.  Indeed, much interest in trait-based ecology has focused on plants 

(Violle et al. 2007, Kattge et al. 2011), resulting in a substantially better understanding of 

important functional traits for plants than for other groups of organisms.  In particular, we 

know relatively little about important microbial traits associated with various ecosystem 

functions and their distributions across different lineages.  This is reflected in our 

experiment, where the 55 bacterial functional traits were measured without a priori 

knowledge on their relevance for community invasibility.  The non-significant effects of 

FD and FS on invasibility could thus have been caused by the lack of involvement of 

these measured traits in modulating the interactions between residents and invaders.  The 

significant PR effect on invasibility, on the other hand, suggests that at least some of the 

important functional traits for resident-invader interactions, though not measured in our 

experiment, are phylogenetically conserved.  The greater predictive power of PR 

demonstrated here supports the idea that species phylogenetic knowledge would be 

particularly useful for predicting ecosystem functions where important species traits 

cannot be identified or measured (Srivastava et al. 2012).   

 Two aspects of our experiment warrant clarification.  First, only one invader 

species was used to challenge resident communities in our experiment, raising the 

concern that our findings may be influenced by idiosyncratic characteristics of the species.  

This concern, however, is alleviated by the fact that within each PD-PR combination 

treatment the invader faced multiple, different resident communities, which reduced the 

impacts of individual species (including both resident and invader species) on invasion 

success.  Nevertheless, we suggest that future studies could include multiple invader 

species to further evaluate the robustness of our results.  Second, bacterial functional 

traits were measured based on their ability to exploit different carbon sources in our 
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experiment.  While the number of measured traits was relatively large (55 total), it can be 

argued that they all belong to the same group of traits related to carbon and energy 

acquisition.  It remains to be seen whether considering other bacterial traits, such as cell 

size, capsule formation, and swimming behavior (Matz et al. 2002, Mulder et al. 2005), 

would improve the ability of FD and FS to predict invasibility.  

 In conclusion, our experimental results did not lend support to our original 

hypothesis that PD of resident communities and PR between resident and invading 

species combine to regulate community invasibility.  Rather, only PR was a significant 

predictor of invader abundance.  This result provides unequivocal support for Darwin’s 

naturalization hypothesis, reinforcing the importance of knowledge of phylogenetic 

relationships between invading and resident species for predicting invasibility.  

Mechanistically, this result suggests that trait similarity between resident and invading 

species is more important than trait diversity of resident communities in modulating 

invader success.  These results demonstrate the utility of species phylogenetic 

information for improving our understanding of regulatory mechanisms of ecosystem 

functions, and we encourage future investigations to be conducted in various types of 

ecosystems to evaluate their robustness.  Our study also highlights the need to identify 

and measure functionally important traits to better our ability to predict ecosystem 

functions.  Until a thorough understanding of species traits relevant for various ecosystem 

functions is attained, combining species phylogenetic information with knowledge of 

known functional traits may be our best tool for predicting the ecological consequences 

of changes in biodiversity.   
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Chapter 3 

SPECIES PHYLOGENETIC RELATEDNESS AND IMMIGRATION 

HISTORY MODULATE THE EFFECTS OF COMPETITION ON 

ADAPTIVE RADIATION 

 

Abstract 

 Understanding ecological mechanisms regulating the evolution of biodiversity is 

of much interest for ecologists and evolutionary biologists.  Adaptive radiation 

constitutes an important evolutionary process that generates biodiversity.  Competition 

has long been recognized to influence adaptive radiation, but the direction of its effect 

and associated mechanisms remain ambiguous.  Here we report an experimental test of 

the role of competition on adaptive radiation using the rapidly evolving bacterium 

Pseudomonas fluorescens interacting with different competing bacteria.  Overall, 

competition suppressed adaptive radiation.  This effect, however, was modified by the 

phylogenetic relatedness of P. fluorescens and its competitors and their immigration 

history, such that only when competitors were phylogenetically closely related to P. 

fluorescens was the extent of diversification affected by history.  Immigration history 

further altered the relative importance of ancestor population size and niche availability 

for adaptive radiation.  Our results highlight the context dependency of competitive 

effects on adaptive radiation. 
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Introduction 

 One important evolutionary process that generates biodiversity is adaptive 

radiation, in which a lineage diversifies rapidly to occupy available niches within a 

habitat (Schluter 2000, Gillespie 2004, Gavrilets and Vose 2005, Meyer et al. 2011).  

Often found in insular environments, such as islands (Losos et al. 1998, Grant and Grant 

2002, Gillespie 2004), lakes (Schluter and McPhail 1992, Seehausen et al. 1997), and 

mountains (Heenan and Mitchell 2003), adaptive radiation has been thought to be 

influenced by two important factors: the availability of ecological niches, and the size of 

ancestral populations (Grant 1998, Schluter 2000).  Whereas niche availability may affect 

the fitness of newly formed species and thus selective pressure (MacArthur and Wilson 

1967, Grant 1998, Schluter 2000), ancestral population size governs the supply of genetic 

variation and thus potential for diversification.  By affecting these two factors, 

competition—one of the most ubiquitous species interactions in many ecosystems—may 

influence adaptive radiation (Roughgarden 1972, Schluter 1994, Dieckmann and Doebeli 

1999, Doebeli and Dieckmann 2000, Zhang et al. 2012).  Several empirical studies 

(Schluter 1988, Gillespie and Roderick 2002, Grant and Grant 2006) have assessed the 

role of competition for adaptive radiation.  The majority of these studies, however, are 

based on comparisons of lineages found on islands (where fewer competitors are present) 

versus those found on the mainland (where more competitors are present) (Schluter 1988, 

DeSalle 1995, Grant and Grant 2008), or experiments manipulating the presence/absence 

of intraspecific competitors (Schluter 1994, Fukami et al. 2007, Bailey et al. 2013).  

While the findings of observational studies are vulnerable to alternative explanations, 

experimental studies of intraspecific competition tell little about how species from 

evolutionarily more distant lineages affect adaptive radiation.  The few experimental tests 

of interspecific competition, which have either considered a single competitor species 

(Zhang et al. 2012), or competition from complex natural communities (Gomez and 

Buckling 2013), have produced mixed findings.  Here we provide a rigorous 
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experimental test of how competition influences adaptive radiation by allowing the 

diversifying species to interact with various known intraspecific and interspecific 

competitors.  

 In situations where the diversifying lineages have the opportunity to interact with 

different competitors, the strength of competition could vary, with potential consequences 

for adaptive radiation.  In particular, the evolutionary relationship between the 

diversifying and competing species may have considerable influence on competition, as 

species traits that determine their interactions with other organisms are often constrained 

by their evolutionary histories (Darwin 1859, Harvey and Pagel 1991, Wiens 2004).  

Recognizing the general tendency for more closely related species to share more similar 

niches, Darwin (1859) reasoned that it would translate into stronger competition between 

more closely related species—a hypothesis supported by several recent experiments 

(Jiang et al. 2010, Violle et al. 2011, Peay et al. 2012, Tan et al. 2012).  Applying this 

idea to adaptive radiation, one may expect that greater phylogenetic relatedness (PR) 

between the diversifying species and its competitors would result in more intense 

competition, and in turn stronger effects on diversification.  We note that this hypothesis 

has not been experimentally explored, but can be readily tested by including multiple 

competitors with different degrees of PR to the diversifying species.  

 While PR is associated with different competitors faced by the radiating lineage, 

species immigration history may affect adaptive radiation by influencing the interaction 

between the radiating lineage and the same competitor species.  The importance of 

immigration history for adaptive radiation was emphasized in the first-arrival hypothesis 

of David Lack (1947), who suggested that earlier colonizing species should diversify to a 

greater extent than later colonizing species.  According to this hypothesis, earlier arrival 

allows a species to undergo adaptive radiation before its competitors that arrive later 

exert their force, whereas the earlier arrival of competitors suppresses diversification by 
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occupying available resources and niches.  Lack's first arrival hypothesis was initially 

proposed in 1947 to explain why Darwin's finches, but not other avian taxa, radiated on 

the Galapagos Islands (Lack 1947, Grant and Grant 2008).  Experimental evidence for 

this 67-year-old hypothesis, however, is extremely lacking (but see Fukami et al. 2007 for 

an intra-species study).  

 Here we report an experimental study examining the effect of competition on 

adaptive radiation, using the rapidly diversifying bacterium Pseudomonas fluorescens 

SBW25 (hereafter SBW25) (Rainey and Bailey 1996, Rainey and Travisano 1998, 

Fukami et al. 2007) as the model organism of adaptive radiation, and multiple 

environmental bacterial species, which vary in their phylogenetic distance (the inverse of 

PR) to SBW25, as the competitors (Fig. 3.1).  We found that competition tended to have 

an overall negative effect on adaptive radiation, with its effect modified by the PR of the 

diversifying and competing species and their colonization history, and that species 

immigration history further altered the relative importance of ancestor population size 

and niche availability for adaptive radiation. 

 

Methods 

 We used a smooth morph (SM) phenotype colony of P. fluorescens SBW25, as 

the ancestral bacterium (Rainey and Bailey 1996, Rainey and Travisano 1998).  This SM 

phenotype was marked by lacZ, which makes colonies of bacteria derived from SBW25 

in our experiment exhibit a distinct blue color on agar with 40 mg/L 5-bromo-4-chloro-3-

indolyl-β-D-galactopyranoside (X-gal) (Fukami et al. 2007).  In a static microcosm 

containing nutrient rich aqueous medium, SM, which prefers the broth phase, diversifies 

to utilize different niches in the microcosm.  Specialized phenotypes, including fuzzy 

spreaders (FS) inhabiting the bottom and wrinkly spreaders (WS) forming the biofilm at 

the air-broth interface of the microcosm, emerge within days (Rainey and Travisano 
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1998).  Within each phenotype, multiple subtypes can be further identified (e.g., small-, 

large-, wheel-, and SM-like-WS within WS) (Fukami et al. 2007).  We treat each 

identifiable phenotype/subtype as a biological species, as each of them is genetically 

identified and reproduces asexually with little recombination (Rainey and Travisano 1998, 

Spiers et al. 2002, Bantinaki et al. 2007, Ferguson et al. 2013).   

 We used six environmental bacterial strains, which show different degrees of 

phylogenetic relatedness to SBW25, as its competitors.  We sequenced the 16S rRNA 

gene of our study species, and constructed the phylogenetic tree based on the gene 

sequences (Fig. 3.1).  We first aligned these sequences with ClustalX2 (Larkin et al. 

2007), confirmed the alignment manually, and selected TIM3+G as the best evolution 

model with jModelTest 2 (Guindon and Gascuel 2003, Darriba et al. 2012), by using the 

Akaike information criterion.  Then we constructed the phylogenetic tree with the 

Bayesian method in MrBAYES (version 3.1.2) (Huelsenbeck and Ronquist 2001), with 

one archaeal species as the out-group.  Based on the phylogenetic tree, we calculated 

phylogenetic distance between SBW25 and each competing bacterial strain by summing 

the length of intervening branches between them; lower values of phylogenetic distance 

correspond to higher values of PR.  We classified the competing bacterial species into 

three groups according to PR values: Pseudomonas fluorescens (PF) and Pseudomonas 

putida (PP) in the high PR group, Aeromonas hydrophilia (AH) and Serratia marcescens 

(SER) in the intermediate PR group, and Bacillus pumilus (BP) and Bacillus cereus (BC) 

in the low PR group.  Each PR level included two competitors to reduce possible 

idiosyncratic effects of competitor identity.  The diversifying SBW25 and one 

competitor—P. fluorescens (PF), which was obtained from the Carolina Biological 

Supply (Burlington, NC, USA), belong to the same species.  However, there is significant 

genetic difference between the two (0.7% in their 16S rRNA sequence).  PF did not carry 

the lacZ marker, and did not diversify within the duration of our experiment.   
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Fig. 3.1 Phylogeny of the study bacteria based on the Bayesian method.  The scale 

indicates the posterior probability. 
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 Our experiment used a two-way factorial design with three immigration histories 

(competitor introduced first and SBW25 second [competitor-SBW25], SBW25 and 

competitor introduced simultaneously [competitor & SBW25], and SBW25 introduced 

first and competitor second [SBW25-competitor]) crossed with three levels of PR (low, 

intermediate, and high).  Each treatment combination was replicated six times.  

Experimental microcosms comprised 25 ml capped test tubes, each containing 6 ml 

King’s Medium B (KB).  Prior to the experiment, we plated each bacterial species on 

agar, randomly selected one colony for each species (one SM colony for SBW25), 

transferred the selected colonies into test tubes with 6 ml KB, and incubated the cultures 

under shaking (250 rpm) at 28℃ overnight.  We introduced ~10
4
 colony forming units 

(CFU) of each bacterial species into their designated microcosms on the day of their 

introduction (day 0 for the first colonizer, and day 1 for the second colonizer).  We ended 

the experiment after the microcosms were incubated statically under 28 ℃ for 12 days, 

which were sufficiently long for a variety of SBW25 phenotypes to emerge (Tan et al. 

2013).  We collected the sample from each microcosm, serially diluted and plated it on 

agar with X-gal, and quantified the abundance of each species/phenotype after another 

three days of incubation under 28 ℃.   

 To characterize the niche similarity between SBW25 and its competitors, we 

measured their ability of utilizing a variety of carbon resources with BIOLOG 

MicroPlates (BIOLOG, Hayward, CA, USA).  Previous work (Bailey et al. 2013, Gomez 

and Buckling 2013) has shown that different phenotypes of SBW25 differentiated among 

these carbon resources.  First, we prepared monocultures of the SBW25 SM phenotype 

and the six bacterial competitors, and propagated them separately on KB agar.  Then, we 

incubated each bacterium in their corresponding type of BIOLOG MicroPlates (GN2 for 

gram-negative bacteria, and GP2 for positive), each of which has 96 wells containing 

different carbon substrates.  The GN2 and GP2 plates share 55 substrates, and we 
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recorded the results of these 55 traits, as positive if the bacterium was able to utilize the 

carbon substrate, and negative if not.  We counted the number of traits shared by SM and 

each of the competitors as a proxy of the niche similarity between them.  WS phenotypes 

constituted the majority of SBW25 diversity, and the competition between WS and 

competing species within the air-broth interface (WS’s preferred habitat) may be affected 

by the similarity of carbon resource utilization of these species.  We thus also quantified 

the ability of the mixture of a total of four WS phenotypes, found in our experiment, to 

utilize carbon substrates on BIOLOG MicroPlates, and calculated their niche similarity to 

competitors, using the same protocol as described above.  

 To assess the overall effect of competition on adaptive radiation, we lumped data 

from all competition treatments together and compared SBW25 phenotypic richness in 

these treatments to that in the controls (where competition was absent), using ANOVA.  

We then conducted a two-way ANOVA with PR and species immigration history as class 

variables to examine their effects on SBW25 phenotypic richness and abundance, 

followed by Tukey's HSD tests to identify difference among the competition and history 

treatments.  To explore whether SBW25 shared more similar niches with more closely 

related competitors, we regressed SBW25-competitor trait similarity against their 

phylogenetic distance.  To explore whether ancestral population size affected adaptive 

radiation, we regressed SBW25 phenotypic richness against its abundance, using data 

from all three immigration histories together as well as data from each history treatment; 

data from microcosms with no SBW25 surviving at the end of the experiment were 

excluded from the regression analyses.  Similar regressions were also performed to assess 

whether niche availability affected adaptive radiation, using WS phenotypic richness as 

the dependent variable and niche similarity between WS and competitors as independent 

variables. In all regressions, data were log10-transformed when necessary to make the 

relationships linear.   
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Results 

 When all interspecific competitors were considered together, competition had a 

negative effect on the diversification of SBW25 (Fig. 3.2a; ANOVA: F1,113 = 5.057, P = 

0.026).  The effect of competition, however, varied substantially among the PR and 

immigration history treatments (Fig. 3.2a; ANOVA: PR, F2,99 = 155.467, P < 0.001, 

history, F2,99 = 38.094, P < 0.001, and PR×history, F4,99 = 12.370, P < 0.001).  In 

particular, the negative effect of competition on diversification was observed in the 

intermediate and high PR treatments (i.e., PF, PP, AH and SER), but not in the low PR 

(i.e., BP and BC) treatments.  Moreover, species immigration history affected 

diversification only in the intermediate and high PR treatments (ANOVA: PR×history, 

F4,99 = 12.370, P < 0.001).  Within these two treatments, SBW25 phenotypic richness 

tended to be higher when it was introduced before its competitors than when introduced 

after or simultaneously with competitors (Fig. 3.2a; Tukey's HSD: P < 0.05).  Similar 

patterns were observed when examining the response of SBW25 abundance to 

competition and history treatments (Fig. 3.2b; ANOVA: PR, F2,99 = 12.824, P < 0.001, 

history, F2,99 = 16.478, P < 0.001, and PR×history, F4,99 = 3.980, P = 0.005).   

 SBW25 phenotypic richness was positively correlated with SBW25 population 

abundance when all treatments were considered together (R
2
 = 0.238, P < 0.001). 

However, when considering different histories separately, we found that SBW25 

phenotypic richness was unaffected by SBW25 abundance when competitors were 

introduced prior to SBW25 (Fig. 3.3a; R
2
 = 0.042, P = 0.359), but was positively 

correlated with SBW25 abundance when competitors were introduced either 

simultaneously with (Fig. 3.3c; R
2
 = 0.408, P < 0.001) or after SBW25 (Fig. 3.3e; R

2
 = 

0.150, P = 0.002). 
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(a) 

 

(b) 

 

 

Fig. 3.2 The effect of different competitors and colonization histories on the phenotypic 

richness (a) and abundance (b) of Pseudomonas fluorescens SBW25.  Bars indicate the 

phenotypic richness or abundance of SBW25 in monoculutures (control) and polycultures 

(with competitors present).  Values are means ± SE.  Treatments sharing the same letter 

are not different from each other in Tukey's HSD tests. 
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(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 

  
 

Fig. 3.3 Relationships between SBW25 population density and phenotypic richness (left 

column), and between WS-competitor trait similarity (the number of traits shared by WS 

and competitors) and WS phenotypic richness (right column), under different 

immigration histories (a, b, competitors-SBW25; c, d, SBW25 & competitors; e, f, 

SBW25-competitors).  Data are plotted with linear regression lines.  Note that population 

density data were recorded as colony forming units (CFU) per mL and log10 (x+1)-

transformed.     
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 When data from all the treatments were considered together, we also found that 

the richness of WS phenotypes, which constituted most of the SBW25 diversity, was 

negatively correlated with niche similarity between WS and competitors (R
2
 = 0.182, P < 

0.001).  However, when considering different histories separately, we found a negative 

relationship between WS genotypic richness and niche similarity when competitors were 

introduced before (Fig. 3.3b, R
2
 = 0.367, P < 0.001) or simultaneously with SBW25 (Fig. 

3.3d, R
2
 = 0.250, P = 0.002), but not when competitors were introduced after SBW25 

(Fig. 3.3f, R
2
 = 0.035, P = 0.275). 

There was a significant negative relationship between SM-competitor PR and the 

similarity in their carbon usage (Fig. 3.4; R
2
 = 0.741, P = 0.028), indicating that 

competitors that were more closely related to SBW25 also shared more similar resource 

niches with it.  

 

Discussion 

 Competition is widely considered as the key driver of adaptive radiation, but the 

direction of its effect is unclear.  A common perception among evolutionary biologists is 

that intraspecific competition tends to promote divergent selection and, hence, 

diversification in the presence of ecological niches, and that interspecific competition 

tends to inhibit diversification by reducing population size of the focal lineage and niche 

availability (Roughgarden 1972, Doebeli and Dieckmann 2000, Schluter 2000).  

Experimental tests of the role of competition for adaptive radiation, however, are 

relatively few.  Using the same SBW25 strain as the model organism, Brockhurst et al. 

(2007) and Bailey et al. (2013) found that the presence of intraspecific competitors 

reduced, rather than, increased the extent of adaptive radiation.  Their results indicate that 

reduced niche opportunities and/or population size, often thought to be associated with 

interspecific competition, can also result in reduced diversification under intraspecific  
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Fig. 3.4 The relationship between SBW25-competitor phylogenetic distance (the inverse 

of PR) and functional similarity (number of traits shared by SM and competitors).  Data 

are plotted with the linear regression line.  Note that phylogenetic distance was log10-

transformed.     
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competition.  Indeed, both Brockhurst et al. (2007) and Bailey et al. (2013) have 

considered different phenotypes of SBW25 as different species in their experiments.  

Moreover, Gomez and Buckling (2013) reported that competition from natural soil 

microbial communities impeded adaptive radiation of Pseudomonas fluorescens SBW25 

via reducing niche availability.  Together, these studies suggest that the same 

mechanisms (i.e., niche occupation and/or population reduction), irrespective of the 

nature of competition (i.e., intraspecific or interspecific), may operate to influence 

adaptive radiation.   

 In our experiment, we have adopted a comprehensive approach by considering a 

gradient of PR between the competitors and the focal diversifying bacterium, which in 

fact shared the same species identity with its most closely related competitor.  Consistent 

with the aforementioned work (Brockhurst et al. 2007, Bailey et al. 2013, Gomez and 

Buckling 2013), our results show that competition tends to work in the direction of 

reducing the extent of adaptive radiation.  Note that in our experiment the presence of a 

congener competitor, P. putida, reduced the diversification of SBW25 when the two 

colonized microcosms simultaneously.  Zhang et al. (2012), however, found no effect of 

P. putida on the extent of SBW25 diversification in the same treatment of their 

experiment.  It is unknown what caused this discrepancy between the two experiments.  

One possibility is that the two P. strains, which came from different sources, may be 

somewhat different, causing differences in their interactions with other species.  

Importantly, our study produced two notable findings that have not been previously 

reported.  First, the effect of competition on adaptive radiation strongly depends on the 

evolutionary relationship between the competitor and the diversifying species and their 

colonization history, such that competition from a particular species may not necessarily 

reduce diversification.  Second, the mechanisms governing the extent of adaptive 

radiation strongly depend upon the history of species colonization, such that either niche 
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occupation or population reduction or both may be important in different community 

assembly scenarios.  We discuss these findings in more detail below. 

 We had hypothesized that both the PR of the radiating lineage and its competitors 

and their colonization history would influence adaptive radiation.  While supporting this 

hypothesis, our results also indicated that the effects of PR and colonization history were 

not independent.  Competitors that were closely related to the radiating lineage tended to 

reduce diversification as hypothesized, but not when they were late colonizers.  On the 

other hand, the earlier arrival of the competitors relative to the radiating lineage tended to 

have a negative effect on the extent of diversification, but not when they were distantly 

related, providing only partial support for the first arrival hypothesis.  One explanation 

for this pattern is that more closely related species may share more similar niches and 

thus compete more strongly (Darwin 1859), translating into stronger inhibitive priority 

effects on population abundance during community assembly (Tan et al. 2012).  

Consistent with this idea, we found that the diversifying species in our experiment shared 

more similar carbon usage patterns with its more closely related competitors (Fig. 3.4).  

Correspondingly, we also found that the earlier arrival of competitors strongly reduced 

the abundance of the diversifying species in the high and intermediate treatments.  In 

particular, the priority effect on abundance was strongest when the competitor exhibited 

the highest PR with the diversifying species (the two were the same species), with the 

early colonizer completely preventing the establishment of later species (Fig. 3.2).  This 

contrasted with the complete lack of priority effects in the two low PR communities, 

where the presence of competitor had little effect on SBW25 abundance (Fig. 3.2).  

 The rough correspondence between SBW25 abundance and diversification 

patterns suggests that competition influenced adaptive radiation through reducing 

population size of the diversifying species.  Small population size tends to discourage 

adaptive radiation for several reasons.  First, small population size means reduced 



63 
 

intraspecific competition, translating into weak disruptive selection.  Second, even given 

constant per capita mutation rates, small ancestral populations would produce fewer 

mutants than large ones.  Third, cooperation that may create novel niches is less likely to 

occur in smaller populations.  In our experiment, biofilm formation that requires 

cooperation may be reduced in small P. fluorescens populations, with a negative effect on 

the emergence of new WS phenotypes (Bantinaki et al. 2007, Brockhurst et al. 2007).  It 

should be noted, however, that population size alone only explained 23.8% of the 

variation in SBW25 diversification.  The lack of population size effect is most dramatic 

in communities with P. putida as the competitor, where its earlier arrival resulted in the 

reduction in SBW25 phenotypic richness, but not abundance.  This result suggests that 

competitors, when colonizing earlier, could impede adaptive radiation through other 

mechanisms such as niche preemption, without significantly diminishing population size 

of the radiating lineage.  

 While both population size and niche availability have the potential to influence 

adaptive radiation, mechanisms regulating their relative importance remain largely 

unknown (Grant and Grant 2008).  Our results indicate that the history of species 

colonization can strongly influence the role of population size and niche availability in 

regulating adaptive radiation.  In situations where the radiating lineage colonizes a 

heterogeneous habitat before its competitors, one may expect the size of its population to 

be of paramount importance as niches would be readily available.  This was the case in 

the SBW25 earlier colonizing treatment of our experiment, where the only significant 

predictor of SBW25 phenotypic richness was its abundance.  On the other hand, in 

situations where competitors colonize a heterogeneous habitat first, one may expect them 

to fill some if not all possible niches, making it difficult for a later arriving lineage to split 

into new forms and diversify.  Here the lack of niche opportunities could severely 

constrain adaptive radiation, even if the population of the radiating lineage is sufficiently 

large. Accordingly, we found that, when SBW25 arriving later, its niche similarity with 
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competitors, but not population size, was a significant predictor of its diversification in 

our experiment.  This result echoes those of a number of other experiments demonstrating 

niche preemption as an important mechanism for competition to reduce adaptive 

radiation (Brockhurst et al. 2007, Fukami et al. 2007, Bailey et al. 2013, Gomez and 

Buckling 2013), and is consistent with the fact that well-known examples of adaptive 

radiations mainly come from habitats harboring few competitor species (e.g., islands) 

(Losos et al. 1998, Gillespie 2004, Grant and Grant 2008).  In the third scenario where 

the radiating lineage and competitors colonize habitats simultaneously, niche preemption 

by competitors should be less important given that there is no time advantage for 

competitors to fill the niches.  In this treatment of our experiment, both population size 

and niche availability accounted for a significant portion of the variation in 

diversification, suggesting the co-limitation of adaptive radiation by these two factors.  

Overall, given that lineages rarely colonize environments in which competitors are 

completely absent, reduced level of diversification associated with niche occupation by 

competitors may be a common phenomenon. 

 Our study demonstrates that competition tends to have a negative effect on 

adaptive radiation, but that the PR between the radiating lineage and competitors and 

their immigration history interactively regulate the effect of competition on adaptive 

radiation.  We further demonstrate that the mechanisms associated with competitive 

effects on adaptive radiation vary with species immigration history.  These results 

suggest that making predictions about adaptive radiation in the presence of competitors 

would be difficult, if not impossible, without exact knowledge on species traits and 

colonization history.  In our experiment, PR was used as an effective surrogate of species 

niche similarity, which regulates the strength and outcome of competition (Darwin 1859, 

Chesson 2000).  However, when species niches do not show significant phylogenetic 

signals, which appear to be not uncommon (Webb et al. 2002, Edwards and Donoghue 

2006), the predictive power of PR would be compromised.  Further, competition strength 
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and outcome may also be influenced by species fitness differences (Chesson 2000), 

which also may not be always phylogenetically conserved, adding more complexity to 

the issue.  A thorough understanding of how competition influences adaptive radiation 

would require identifying species traits important for competition and elucidating how 

these traits vary across species.  While this goal may not be readily achieved in the near 

future, our study highlights the context dependency of both the role of competition on 

adaptive radiation and its underlying mechanisms.    
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Chapter 4 

TEMPORAL NICHE PROMOTES BIODIVERSITY DURING 

ADAPTIVE RADIATION 

 

Abstract 

 Understanding mechanisms underlying the origin and maintenance of biodiversity 

is a central goal of modern ecological and evolutionary research.  Ecologists have 

recognized the potentially important role of temporal niche in promoting species 

coexistence and diversity, yet little is known about how temporal niche affects the 

evolution of biodiversity.  Here we show that temporal niche strongly influences 

biodiversity dynamics in rapidly evolving bacteria.  An ancestral bacterium quickly 

diversifies when provided with constant spatial niche opportunities or when experiencing 

temporal niche dynamics.  However, only in communities with temporal niches, which 

promote frequency-dependent selection and the positive growth of new mutants, is the 

accumulated phenotypic diversity able to persist.  Overall, the presence of temporal niche 

opportunities eliminates the overshooting dynamics of adaptive radiation typically seen in 

this and other systems.  These results suggest that temporal niche may play an essential 

role in the maintenance of biodiversity over evolutionary time.  
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Introduction 

For decades, biologists have sought to understand mechanisms underlying high 

biodiversity observed in many of the Earth’s ecosystems (Hutchinson 1961, MacArthur 

1972, Tilman 2000).  The theory of temporal niche dynamics (TND) suggests that 

temporal variation in niche availability allows the storage effect to operate, buffering 

species against extinction (Chesson 2000, Kelly and Bowler 2002).  Increased species 

coexistence in fluctuating environments has been documented for both natural (Caceres 

1997, Adler et al. 2006, Angert et al. 2009) and experimental (Descamps-Julien and 

Gonzalez 2005, Jiang and Morin 2007) communities, and has, in a few cases, been 

explicitly linked to TND (Kelly and Bowler 2005, Adler et al. 2006).  In parallel, 

diversification under fluctuating selection has been of much interest for evolutionary 

biologists (Lynch 1987, Hairston and Dillon 1990, Bell 2010).  However, while TND has 

received some theoretical attention in this context (Ellner and Hairston 1994, Abrams et 

al. 2013), little empirical knowledge exists on how it affects biodiversity dynamics in 

systems where ongoing evolution contributes to biodiversity (Venail et al. 2011).  We 

hypothesize that because TND modulates ecological interactions that often provide the 

selective force for evolution, it may affect the emergence and maintenance of biodiversity 

over evolutionary timescales.  

Testing this idea is difficult in many systems, given the generally long period of 

biodiversity evolution and inadequate knowledge on the niches of evolved lineages.  

Such tests, however, are feasible using microbial lineages undergoing rapid adaptive 

radiation, which can give rise to new phenotypes/species adapted to different niches in a 

short period of time.  We investigated biodiversity dynamics in the rapidly diversifying 

Pseudomonas fluorescens SBW25 populations (Rainey and Travisano 1998, Kassen et al. 

2000).   Previous research has shown that a suite of environmental factors, such as 

disturbance (Buckling et al. 2000, Massin and Gonzalez 2006) and productivity (Kassen 
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et al. 2000), affect the diversification of this bacterium.  A key advantage of this 

experimental system is that rapid adaptive radiation produces ecotypes with different 

niche preferences (Rainey and Travisano 1998, Kassen et al. 2000), which allowed us to 

directly manipulate the temporal availability of these niches and link coexistence with 

TND, an approach that has not been taken previously.  When introduced into static 

microcosms, the ancestral P. fluorescens ecotype—smooth morph (SM) that occupies the 

broth phase—diversifies and generates two niche-specialists: the wrinkled spreader (WS) 

ecotype that colonizes the air-broth interface, and the fuzzy spreader (FS) ecotype that 

inhabits the bottom of microcosms.  Competition for oxygen, whose concentration 

decreases towards the bottom of static microcosms, is thought to be an important factor in 

driving this niche differentiation (Rainey and Travisano 1998).  Additional variations also 

exist within each ecotype.  Within WS, for example, small-WS, large-WS, wheel-WS and 

SM-like-WS subtypes may also emerge(Fukami et al. 2007), driven likely by adaptation 

to micro-niches (Meyer et al. 2011).  These P. fluorescens phenotypes are genetically 

determined and can be readily distinguished on agar plates (Rainey and Travisano 1998, 

Fukami et al. 2007).  Each phenotype may be considered as analogous to a biological 

species since P. fluorescens reproduces asexually with a low recombination rate (Rainey 

and Travisano 1998, Fukami et al. 2007).  The spatially structured niches provided by the 

static incubation are favorable for WS and FS, and crucial for SM diversification.  

Shaking of microcosms eliminates spatial niches (e.g., the oxygen gradient), making it 

difficult for SM to diversify.  Therefore, temporal shifting between static and shaking 

conditions provides temporal niche opportunities for P. fluorescens communities (Rainey 

and Travisano 1998).   

We examined biodiversity dynamics in a laboratory experiment in which evolving 

P. fluorescens populations were incubated with or without temporal niche (see Methods).  

We show that the availability of temporal niche is critical for the maintenance of the 

evolved P. fluorescens phenotypic diversity, via the mechanism of promoting negative 
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frequency-dependent selection.  These results suggest that TND have the potential to 

strongly influence biodiversity dynamics over evolutionary time.      

 

Results 

Temporal niches and phenotypic diversity 

 As in previous studies (Fukami et al. 2007, Meyer et al. 2011), new phenotypes, 

including small-WS, large-WS, wheel-WS, SM-like-WS, and FS, quickly emerged in 

static microcosms (all phenotypes detected by day 4; Fig. 4.1a, 4.2a).  This rapid increase 

in phenotypic richness, however, was followed by a slower decline, as some of the 

emerged phenotypes were later competitively excluded (Meyer et al. 2011) (Fig. 4.1a).  

Such overshooting dynamics are predicted by theory , and have been previously reported 

for this experimental system (Fukami et al. 2007, Meyer et al. 2011) as well as adaptive 

radiations in nature (Gillespie 2004, Adler et al. 2006, Seehausen 2006).  By contrast, 

diversification in microcosms experiencing constant shaking was much slower, 

presumably due to the lack of spatial niches for new phenotypes (Rainey and Travisano 

1998), resulting in the slow accumulation of phenotypes over the duration of the 

experiment (Fig. 4.1a, 4.2b).  The presence of TND, however, led to different 

biodiversity dynamics.  Although rapid diversification also occurred in TND microcosms, 

most of the derived phenotypes, including FS and multiple WS phenotypes, persisted 

afterwards in these microcosms (Fig. 4.2c, d).  Rather than exhibiting overshooting 

dynamics, phenotypic richness here approached an asymptote, albeit in an oscillatory 

fashion, during the second half of the experiment (Fig. 4.1a).  As a result, final  
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Fig. 4.1 Biodiversity dynamics in the temporal niche experiment.  (a) phenotypic richness 

of Pseudomonas fluorescens; (b) evenness of WS phenotypes.  Solid and open circles 

indicate that microcosms were incubated under the static and shaking condition on the 

day before sampling, respectively.  Values are mean ± SE (n = 6).  Asterisks indicate that 

the values in at least one of the two temporal niche dynamics treatments (shaking-static 

and static-shaking) are significantly greater than the values in the continuously static 

treatment in a Tukey’s HSD test (P < 0.05).  The effect sizes (

of ANOVA of 

phenotypic richness and WS evenness on day 12 are 0.62 and 0.53, respectively. 
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(a)      (b) 

  

(c)      (d) 

  

  

 

Fig. 4.2 Population dynamics of each phenotype in the four experimental treatments.  (a) 

continuously static; (b) continuously shaking; (c) shaking-static; (d) static-shaking.  

Population density data (CFU/ml) were log10 (x+1)-transformed. Values are mean ± SE 

(n = 6). 
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phenotypic richness was significantly greater with than without temporal niche structure 

(Fig. 4.1a).  The two TND treatments (shaking-static and static-shaking) did not differ in 

final phenotypic richness.   

We further examined diversity patterns within the group of WS phenotypes, 

which made up the majority of phenotypic diversity in the population (Fig. 4.2).  The 

dynamics of WS phenotype evenness, calculated as Pielou’s J' (Pielou 1966), largely 

mirrored those of overall phenotypic richness (Fig. 4.1b).  WS evenness in static 

microcosms exhibited overshooting dynamics, with the later decline in evenness 

associated with the extinction or reduced abundance of several WS phenotypes.  This can 

be explained by within-niche competition, where small-WS attained numerical 

dominance within this group of niche specialists (Meyer et al. 2011) (Fig. 4.2a).  In 

contrast, in TND microcosms, as several WS phenotypes attained appreciable abundance 

while coexisting with small-WS, overshooting in evenness was not observed (Fig. 4.2c, 

d).  

 

WS fitness and frequency dependent selection  

Our experimental results indicate that TND promoted biodiversity mainly by 

allowing more phenotypes sharing similar niches (i.e., WS phenotypes) to coexist.  Both 

static and shaking conditions appeared to be important: while the availability of spatial 

niches under static incubation allowed the emergence of different WS phenotypes, 

shaking apparently prevented the loss of some of the WS phenotypes that otherwise 

would be driven to extinction by small-WS.  This increased coexistence under temporal 

niche dynamics may be caused by frequency dependent selection (Chesson 2000, Kelly 

and Bowler 2002), which is known to operate among some P. fluorescens phenotypes 

(Rainey and Travisano 1998, Brockhurst et al. 2006, Zhang et al. 2009).  
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 To explore the possibility that frequency dependent selection operates among WS 

subtypes, we conducted a second experiment with four wild-type WS phenotypes and one 

lacZ-marked SM phenotype, allowing each wild-type WS phenotype to be initially more 

abundant than others (see Methods).  The lacZ-marked SM gives rise to WS mutants 

whose colonies exhibit a distinct blue color on agar plates with X-gal, which can be used 

to distinguish them from wild type WS colonies (Fukami et al. 2007).  We estimated the 

fitness of the initially dominant WS phenotypes relative to other WS phenotypes after 

two-day incubations under either shaking or static conditions (according to Equation 1 in 

the Methods).  We found that while the initially dominant WS phenotypes attained 

greater dominance in static microcosms, their fitness was significantly reduced in shaken 

microcosms, such that the relative fitness for none of the four phenotypes was positive 

(Fig. 4.3a, 4.4).  In addition, only in shaken microcosms was the fitness of the initially 

dominant WS phenotypes negatively correlated with their initial frequency (Fig. 4.3b).  

These signatures of frequency dependent selection suggest that shaking provided fitness 

advantage for rare WS phenotypes relative to common ones.  Note that the absolute 

fitness of each WS phenotype was still smaller under shaking relative to static conditions, 

presumably because shaking eliminated their preferred niche.  Moreover, only under 

shaken incubation was in situ mutation from lacZ-marked SM phenotype to WS detected 

(Fig. 4.5), indicating that shaking favored new WS mutants.  Together, these results 

suggest that shaking, while eliminating the niche of WS phenotypes, promoted their 

coexistence in the TND microcosms.   

 

Discussion 

 Using a model organism undergoing rapid adaptive radiation, we examined the 

hypothesis that TND affects the evolution of biodiversity.  Although we did not find   
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(a)      (b) 

 

 

Fig. 4.3 Fitness of the dominant WS phenotype in the shaken and static microcosms.  

Fitness is calculated as the difference in the Malthusian parameter (r) between the 

initially dominant and other WS phenotypes according to Equation 1.  (a) Fitness of each 

genotype in the shaking and static microcosms.  Values are mean + SE (n = 6).  Asterisks 

indicate treatments where the values are different from zero according to one sample t-

test (P < 0.05).  Note that the fitness of small-WS under shaking was not significantly 

different from zero, whereas fitness in other treatments all differed from zero.  (b) The 

relationship between the frequency of initially dominant WS phenotype and its fitness 

under shaking and static conditions.  The linear regressions are shown with data. 
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Fig. 4.4 Population density of each phenotype in the WS fitness experiment.  (a) small-

WS initially dominant; (b) large-WS initially dominant; (c) wheel-WS initially dominant; 

(d) SM-like-WS initially dominant.  Population density data (CFU/ml) were log10 (x+1)-

transformed.  Values are mean + SE (n = 6).  
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(a)     (b)     

 

(c)     (d) 

 

 

Fig. 4.5 The density of nondominant WS phenotypes of wild and lacZ-marked types in 

the shaken and static microcosms.  Data (CFU/ml) were log10 (x+1)-transformed.  Values 

are mean + SE (n = 6).   
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evidence of TND altering the emergence of diversity, our experiments clearly show that it 

functioned to maintain evolved diversity and stabilize its dynamics.  To our knowledge, 

this is the first experimental demonstration of TND promoting biodiversity over 

evolutionary time.  

One notable characteristic of TND in our experiment is that static conditions 

facilitated the generation of diversity by offering spatial niches, whereas shaking 

prevented the loss of evolved diversity by promoting negative frequency dependent 

selection between the WS phenotypes.  Previous studies have revealed that negative 

frequency-dependent selection also operated between SM and WS phenotypes under 

static conditions, facilitating their coexistence (Rainey and Travisano 1998, Zhang et al. 

2009, Meyer et al. 2011).  This scenario differs from the more commonly considered 

situations where the TND effect operates as the result of different species being favored 

by different niches associated with different environmental conditions.  Nevertheless, 

both static and shaking conditions were essential for the persistence of evolving diversity, 

in a similar manner as alternations in environmental conditions that favor different 

species were essential for species coexistence over ecological time.  The negative 

frequency dependent selection among the WS phenotypes under shaken conditions 

warrants some explanation.  Frequency dependent selection arose probably because 

subordinate WS genotypes faced strong competition in their niche (air-broth interface) 

housing concentrated small-WS populations under static conditions, but experienced 

weakened competition from diffused small-WS populations under shaking conditions.  In 

addition, for essentially the same reason, shaking may have facilitated the coexistence of 

WS genotypes via increasing the fitness of newly evolved nondominant WS individuals.  

In the context of the storage effect (Chesson 2000), the first scenario would generate 

covariance between competition and environment, and the second scenario would 

contribute to buffered population growth (i.e., the supply of new mutants buffering 
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populations against extinction) in addition to that afforded by overlapping generations 

(Warner and Chesson 1985, Ellner and Hairston 1994).  

 Several features of our experimental regime are worth noting.  First, alternation 

between static and shaking conditions in our experiment not only created temporal niche 

opportunities, but also altered the average environmental conditions.  Since it is 

impossible to create a constant environment equivalent to the average of static and 

shaking conditions, the possibility that increased diversity may be partly driven by 

changes in average conditions cannot be completely excluded.  The demonstrated role of 

static conditions for diversity generation and of shaking conditions for diversity 

maintenance, however, point to the importance of TND.  Second, our TND microcosms 

were shifted between static and shaking conditions every 24 h, which allowed frequency 

dependent selection to exert its force under shaking conditions while mitigating 

competitive exclusion of nondominant WS populations under static conditions.  In a 

related experiment, Massin and Gonzalez (2006) studied the effects of short-term (2 

minute duration) pulse disturbance, in the form of shaking the otherwise static 

microcosms, on P. fluorescens diversification.  Contrasting with our results, their 

experiment showed that periodic disturbance slowed diversification, presumably because 

the short-term shaking eliminated spatial niches without incurring frequency dependence.  

Third, daily dilution was used to propagate P. fluorescens populations in our experiment.  

Buckling et al. (2000) reported that the frequency of dilution affected P. fluorescens 

phenotypic diversity, such that diversity exhibited a unimodal relationship with dilution 

frequency in static microcosms.  Obviously, experiments with different dilution 

frequencies are needed to further test the robustness of our results.  Note that daily 

dilution in our experiment (see Methods) may have also resulted in different diversity 

dynamics than previously reported for P. fluorescens batch cultures (Rainey and 

Travisano 1998).   
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Our results demonstrate that TND can strongly influence evolutionary dynamics 

of biodiversity.  Given the prevalence of environmental fluctuations that offer temporal 

niche opportunities at various timescales in nature (Gavrilets and Losos 2009, Reddy et al. 

2012), this result has important implications for understanding diversification patterns in 

many natural systems.  For example, whereas overshooting dynamics are frequently 

encountered when studying adaptive radiation in nature (Gillespie 2004, Seehausen 2006), 

many lineages have diversified without showing an apparent decline in diversity 

(Baldwin and Sanderson 1998, Reddy et al. 2012).  Although alternative hypotheses exist 

(Fukami et al. 2007, Gavrilets and Losos 2009), our results suggest that TND may 

potentially explain the maintenance of the accumulated biodiversity over evolutionary 

time.  

 

Methods 

Bacterial cultivation 

 We cultivated P. fluorescens SBW25 (wild type and lacZ-marked) in 25 ml 

loosely capped test tubes containing 6 ml King’s Medium B (KB) on a shaker (250 rpm) 

at 28℃.  After 48 h, we plated the cultures on KB agar plates and incubated the plates at 

28℃ for another 48 h.  One wild type SM colony was isolated for use in the experiments; 

one lacZ-marked SM colony was isolated and cultivated in KB overnight and stored in 15% 

glycerol at -80℃.  Prior to setting up the SM stock culture, we thawed the P. fluorescens 

culture previously frozen at -80℃, and plated it on agar. We then isolated one two-day-

old SM colony on the agar plate, and introduced it into a test tube with 6 ml KB.  After 

incubating the culture for 2 h, we introduced 10 l of this culture into each experimental 

microcosm.   
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Experimental protocols 

 Microcosms were 25 ml capped test tubes containing 6 ml KB.  The initial SM 

density in each microcosm was ~10
3
 colony-forming units (CFU)/ml.  Microcosms 

without temporal niche were incubated under continuously static or shaking conditions.  

Microcosms with temporal niche were alternated between shaking and static conditions 

every 24 h, a period that permits P. fluorescens phenotypes to grow and interact for 

multiple (10-12) generations.  Two different regimes of temporal niche were used: one 

under shaking incubation on odd days and static incubation on even days (shaking-static), 

and the other with the reverse sequence (static-shaking).  The two regimes allowed us to 

discern if initial environmental conditions (static or shaking) matter for biodiversity 

evolution.  We propagated P. fluorescens populations by transferring 1% of the content 

of each microcosm into a fresh microcosm daily, and quantified the abundance of each 

phenotype afterwards.  Under the static condition, microcosms were kept at 28℃ without 

shaking; under the shaking condition, microcosms were placed on a shaker (250 rpm) at 

28℃.  Each treatment was replicated six times.  The experiment ended after 12 days. 

 

Quantifying phenotypic density and diversity 

 The density of each phenotype was measured after the daily transfer.  The sample 

from each microcosm was spread onto KB agar plates after serial dilutions.  A total of six 

P. fluorescens phenotypes, SM, FS, small-WS, large-WS, wheel-WS and SM-like-WS, 

were identified and the number of colonies of each phenotype was recorded.  Phenotypic 

richness was the number of phenotypes detected in the sample, and the evenness of WS 

phenotypes was calculated as Pielou’s J'(Pielou 1966).   We assessed the treatment 

effects on phenotypic richness and WS evenness using ANOVA, followed by Tukey’s 

HSD tests.   
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WS fitness experiment 

 From the temporal niche experiment, we isolated four WS phenotypes derived 

from the wild-type SM and preserved them in 15% glycerol at -80℃.  Prior to the 

experiment, we established separate stock cultures for the four WS phenotypes and lacZ-

marked SM in microcosms with 6 ml KB and incubated them overnight.  We initiated the 

experiment with highly uneven WS phenotype densities such that the ratio of the 

dominant WS, three nondominant WS and lacZ-marked SM was 1000:1:1:1:1000 (initial 

density: 10
6
:10

3
:10

3
:10

3
:10

6
 CFU/ml). The experiment had four treatments each with a 

different WS phenotype being initially dominant.  Each treatment was replicated 6 times.  

Microcosms were under either static or shaking incubation for 2 days at 28℃.  Thereafter, 

we sampled each microcosm to quantify the final abundance of each phenotype.  We 

calculated the relative fitness of the initially dominant WS using the ratio of Malthusian 

parameter (r), according to the following equation: 

    
                              

                                
   

                                       

                                         
 Equation 1 

We conducted a two-tailed t-test to compare the difference in r between shaking and 

static incubations for each of the four experimental treatments.   
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Appendix A 

SUPPLEMENT TO CHAPTER 2 

 

Table A.1. Species composition of the resident communities.   

PD  

level 

Phylogenetic distance between the invader and most closely related species  

Low Intermediate High 

Low  

1 

Bacillus pumilus 1 Deinococcus sp. Micrococcus luteus 

Bacillus pumilus 4 Staphylococcus sp. Staphylococcus haemolyticus 2 

Enterobacter cloacae 1 Vogesella indigofera Staphylococcus pasteuri 

2 

Enterobacter cloacae 1 Vogesella indigofera Bacillus pumilus 3 

Staphylococcus sp. Bacillus pumilus 2 Bacillus subtilis 2 

Deinococcus sp. Bacillus pumilus 4 Staphylococcus pasteuri 

3   

Lysinibacillus sphaericus 

  

Staphylococcus pasteuri 

    Bacillus pumilus 3 

Inter-

mediate 

1 

Acinetobacter baylyi 1 Bacillus subtilis 1 Staphylococcus haemolyticus 2 

Bacillus pumilus 4 Pseudomonas mosselii Bacillus pumilus 3 

Enterobacter cloacae 2 Micrococcus luteus Micrococcus luteus 

2 

Enterobacter cloacae 2 Vogesella indigofera Bacillus pumilus 3 

Vogesella indigofera Pseudomonas mosselii Pseudomonas resinovorans 

Deinococcus sp. Staphylococcus haemolyticus 2 Staphylococcus haemolyticus 1 

3   

Pseudomonas resinovorans 

  

Deinococcus sp. 

    Bacillus subtilis 1 

High 

1 

Enterobacter cloacae 2 Bacillus subtilis 2 

 Rheinheimera texasensis Pseudomonas resinovorans 

 Staphylococcus pasteuri Vogesella indigofera   

2 

Enterobacter cloacae 2 Rheinheimera texasensis 

 Pseudomonas 

resinovorans Vogesella indigofera 

 Bacillus subtilis 1 Staphylococcus pasteuri   
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Fig. A.1 The bacterial functional dendrogram, constructed based on a UPGMA-based 

cluster analysis of the 55 functional traits.  The scale for branch lengths is shown beneath 

the functional dendrogram.  
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 (a)           (b) 

 

Fig. A.2 Relationships between invader population densities and (a) realized FD and (b) 

realized function distance (the inverse of FS) in communities containing three resident 

species. 
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Fig. A.3 The relationship between invader-resident functional distance (the inverse of FS) 

and invader population density in monocultures. 
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