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SUMMARY 

In the current study, a genetic algorithm was used in conjunction with the 

expectation-maximization algorithm to estimate parameters in a polytomous unfolding 

IRT model known as the generalized graded unfolding model (GGUM). One advantage 

of using a genetic algorithm for IRT parameter estimation is that this global optimization 

procedure is not easily affected by local maxima in the likelihood function – a condition 

that is often encountered in unfolding IRT models including the GGUM. Additionally, 

because genetic algorithms do not use derivatives to maximize the likelihood function, it 

is computationally simple and could be deployed efficiently with higher dimensional 

data. The focus of this study was to implement the genetic algorithm in the context of the 

GGUM, and then evaluate the speed and accuracy of the resulting parameter estimates   

Program development was done with the R computer language, and the efficacy of 

estimates was examined with simulation methods, which systematically vary sample size, 

test length and number of response categories.  The resulting estimation strategy was also 

illustrated with real data from an abortion attitude questionnaire.   
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CHAPTER 1. INTRODUCTION 

Background 

Unfolding Item Response Theory (IRT) Models 

Traditional IRT models work under the assumption that the latent trait level of the 

respondent is monotonically related to the probability of endorsing an item.  These 

models can be described intuitively as “more is better models,” and, in psychometrics, 

they are often referred to as cumulative models. These types of models most 

appropriately describe item response data that follow the assumption mentioned above 

(i.e., result from a dominance-based response process).  These data can be routinely 

found in the measurement contexts involving academic proficiency, personality traits, 

and clinical diagnoses. Such models would yield monotonically increasing item 

characteristic curves (ICCs) and test characteristic curves (TCCs).    

However, not all item response data conform to a cumulative model.  There are 

other areas in psychology in which item responses generally follow from a proximity-

based process (an ideal point response process).  These areas include measurement of 

attitudes, preferences, and certain developmental changes that occur in distinct stages 

(Noel, 1999; Roberts, Donoghue, & Laughlin, 2000; Roberts & Laughlin, 1996; Stark, 

Chernyshenko, Drasgow, & Williams, 2006; Tay, Drasgow, Rounds, & Williams, 2009). 

Thurstone’s (1928) work is a classical illustration that implicitly presumes that responses 

to attitude questionnaires specifically follow from an ideal point process. Following 

Thurstone’s seminal work, there have been various confirmations throughout the years 

that responses to Thurstone and Likert style attitude questionnaires do indeed follow this 



 2 

process (Andrich, 1996; Roberts, 1996; Roberts, Laughlin, & Wedell, 1999; Van Schurr 

& Kiers, 1994). The measurement of the aforementioned psychological constructs is a 

frequently researched area within psychology. As a result, there have been different 

models proposed for item response data that follow from an ideal point process (Andrich, 

1988; Andrich & Luo, 1993; Roberts et al., 2000). Coombs (1964) referred to models for 

ideal point responses as “unfolding models” to describe the geometric analogy for 

resolving the different preference orders given by different respondents to a common set 

of stimuli.  

The notion behind ideal point processes is that a person will endorse an item to 

the degree that the person and the item are located near each other on the underlying 

latent trait continuum or latent space.  In other words, the endorsement probability 

increases as the distance between an item location and a person’s ideal point approaches 

zero, and the probability decreases as this distance increases in any direction.  The ICC of 

a unidimensional unfolding item would have a peak (fold) at the point on the latent trait 

continuum where the person and item locations are identical. It is at this point that an ICC 

reaches it maximum value.  

Generalized Graded Unfolding Model (GGUM) 

 The GGUM is a unidimensional unfolding IRT model for polytomous item 

responses (Roberts et al., 2000; Roberts & Laughlin, 1996). The underlying premise of 

the GGUM is the assumption that the data follow the proximity-based response process 

described above. That is, as the location of an item on the latent continuum approaches 

that of the individual examinee, then greater agreement (i.e., higher item scores) will be 
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exhibited. The models in the GGUM family have been successfully applied to the 

measurement of attitudes, emotion faces, and physical attraction (Roberts, Barrett, & 

King, 2016; Roberts et al., 2000; Roberts & Sparks, 2015). Additionally, the GGUM has 

been used in the industrial and organizational psychology domain to explore the 

measurement of personality traits such as conscientiousness and neuroticism (Carter et 

al., 2014; Drasgow, Chernyshenko, & Stark, 2010).   

 Within the GGUM framework, each observed response category (ORC) available 

to the examinee is considered a combination of exactly two subjective response 

categories (SRCs). To illustrate this idea, consider an observed response of “strongly 

disagree” on a Likert scale to an item located at the center of the latent trait continuum. 

Assuming a proximity-based response process, the examinee could respond “strongly 

disagree” to this item because they are located above, and far away from the item on the 

latent trait continuum, or because they are located below, and also far away from the item 

on the latent trait continuum. Therefore, as seen in Equation 1, the numerator of the 

GGUM is made up of exactly two terms (i.e., the two SRCs that correspond to a 

particular ORC). Additionally, the GGUM is a divide by total model, which means the 

denominator of the equation is simply the sum of all SRC numerator terms. 

 The GGUM is explicitly defined as follows: 

𝑃[𝑍𝑖 = z|𝜃𝑗] = 

𝑒𝑥𝑝 (𝛼𝑖[𝑧(𝜃𝑗−𝛿𝑖)−∑ 𝜏𝑖𝑘])+
𝑧
𝑘=0 𝑒𝑥𝑝 (𝛼𝑖[(𝑀−𝑧)(𝜃𝑗−𝛿𝑖)−∑ 𝜏𝑖𝑘])

𝑧
𝑘=0

∑ [𝑒𝑥𝑝 (𝛼𝑖[𝑤(𝜃𝑗−𝛿𝑖)−∑ 𝜏𝑖𝑘])+
𝑤
𝑘=0 𝑒𝑥𝑝 (𝛼𝑖[(𝑀−𝑤)(𝜃𝑗−𝛿𝑖)−∑ 𝜏𝑖𝑘])

𝑤
𝑘=0 ] 𝐶

𝑤=0
   ( 1 ) 
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where  

 Zi = an observable response to the ith item, 

 z = 0, 1, 2, …, C; z = 0 corresponds to the strongest level of disagreement and z =        

C refers to the strongest level of agreement, 

 C = the number of observable response categories minus 1, 

 M = 2C + 1 = the number of SRC thresholds, 

θj = the location of the jth individual on the latent continuum, 

 δi = the location of the ith item on the latent continuum, 

αi = the discrimination parameter of the ith item, 

τik = the kth subjective response category threshold for the ith item. 

The value of τi0 is defined as zero, and the remaining SRC thresholds are constrained to 

be symmetric about the item location. However, these thresholds are not constrained to 

be constant across items, and are not forced to be ordered.  

GGUM Parameter Estimation 

 In practice, the first and most important step in applying IRT models to response 

data is that of estimating the model parameters.  Therefore, parameter estimation is 

paramount in the application of the GGUM, and a variety of estimation techniques have 

been explored over the years.  Early, simpler versions of the model (i.e., the graded 

unfolding model; GUM) were estimated using joint maximum likelihood  (JML;Roberts 

& Laughlin, 1996). JML is a two-step maximum likelihood procedure that first uses 

starting values for the item parameters, and estimates person parameters. Second, the 

item parameter estimates are updated constraining the person parameters to the values 

from step one. Then, the process iterates back and forth between the two steps until a 
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convergence (stopping) criteria is met (Birnbaum, 1968). Like other applications of JML, 

the resulting GUM estimates were not consistent, meaning the estimates did not converge 

to the true values as the sample size increased. Additionally, the algorithm often became 

stuck at various local maxima in the likelihood function, and a grid search was required 

whenever there were indications that this may have occurred.  Consequently, the method 

overall was computationally intensive. 

 The GGUM has also been estimated using the marginal maximum likelihood 

(MML) procedure (Roberts et al., 2000; Roberts, Donoghue, & Laughlin, 2002). To 

implement MML, a prior distribution was placed on the person parameters, allowing 

these parameters to be integrated out of the likelihood equation. The resulting item 

parameter estimates were very accurate when based on a moderately large sample size 

(N=750 to 1000). Additionally, it was found that at least 15-20 equally spaced items with 

six ORCs were needed to get reasonably accurate person parameter estimates. 

 Moving forward to a fully Bayesian estimation methods, the GGUM was 

estimated using marginal maximum a posteriori (MMAP) (Roberts & Thompson, 2011). 

In addition to MMAP, the GGUM has also been estimated using the Markov-chain 

Monte Carlo (MCMC) method (De La Torre, Stark, & Chernyshenko, 2006; Roberts & 

Thompson, 2011; Wang, de la Torre, & Drasgow, 2015). The MMAP procedure 

produced parameter estimates that were generally more accurate than the estimates 

produced by the MML or MCMC procedures. Specifically, these differences were 

greatest in experimental situations where the number of ORCs was small (i.e., 2 to 4). 

Because the MMAP procedure is more efficient than the MCMC procedure, it was 

recommended as the best estimation procedure for the GGUM at the time. However, it 
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should be noted that the MMAP procedure has been shown to have some shrinkage in 

parameter estimates, as does the MCMC estimation procedure, as is the nature of using 

prior distributions in any Bayesian estimation procedure. As for the MCMC procedure, 

the disadvantage beyond computational intensity is the convergence criteria for the joint 

distribution of parameters, in that there is no sharply defined rule for making this 

decision. A researcher must decide how many burn-in iterations are necessary to achieve 

a stationary joint posterior distribution from which parameter values can be sampled; 

there is no exact number of these iterations that is required. Additionally, in both 

procedures, knowledge of appropriate priors is necessary, and misspecification can result 

in inaccurate estimates should the data be uninformative.  

 While each of these methods suffice in most experimental estimation settings, 

there are points on which estimation of the GGUM can be improved to provide another 

alternative for practitioners to use when applying this model. In estimation conditions 

where the joint likelihood function of model parameters contains many local maxima, 

which is a common problem when modelling item response data using the GGUM, 

estimation procedures like MML, MMAP, and MCMC can converge quickly to one of 

the local maxima if informative start values are not used. This is particularly true with 

respect to person parameters as opposed to item parameters because there is substantially 

less information in the data about an individual than an item.  Such local minima result in 

inaccurate parameter estimates. The only recourse for the researcher to fix this problem is 

to re-estimate parameters from another set of starting values that are closer to the global 

maxima or to implement a procedure that does not require maximization.  Unfortunately, 

it is not always apparent that a local maximum has been achieved in the case of a 
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particular GGUM parameter when this critical point is near that for the global maximum.  

Additionally, simulation studies have shown that some of the current estimation methods 

for the GGUM need very good starting values for item parameters, even with the use of 

prior distributions in some cases, to yield accurate parameter estimates. Therefore, a new 

estimation method is needed for these specific GGUM estimation situations to give 

researchers greater confidence that the global maximum has been found. The strengths of 

a genetic algorithm described below may overcome these specific weaknesses of current 

estimation methods for the GGUM. The current study developed and evaluated a genetic 

algorithm (GA) estimation procedure for the GGUM. 

Genetic Algorithms (GA) 

 GAs were first developed by John Holland as an optimization procedure (Holland, 

1973). It was in this early work that the traditional theory of schema (similarity 

templates) was used as a piece of the explanation of GA performance. Simply put, 

schema theory states that all knowledge is organized into units. Within these units of 

knowledge, or schemata, is stored information. By considering individual solutions to an 

optimization problem as knowledge broken down into schema, and then applying the 

principles of genetic algorithms, Goldberg (1989) showed through schemata analysis that 

the best solutions receive at least exponentially greater opportunities in successive 

generations. However, in the last decade of GA research, evidence has accumulated that 

GAs don’t necessarily work the way Holland first described. This has resulted in several 

different perspectives on GAs, none of which can claim to be the complete answer as to 

why GAs work so well in solving optimization problems (Reeves & Rowe, 2003). Yet, 

the fact still remains that GAs have been successful in solving optimization problems in a 
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wide range of applications; for example, automotive design, telecommunications 

networks, and traffic signal timing (Castellani & Franceschini, 2003; Ceylan & Bell, 

2004; Dengiz, Altiparmak, & Smith, 1997). 

 Broadly, from its beginning, GAs combine survival of the fittest among solution 

structures with a structured, but randomized, information exchange to form a search 

algorithm (Goldberg, 1989). A successful GA efficiently exploits historical information 

to venture onto new search points with the expectation of improved performance (Reeves 

& Rowe, 2003). As will be shown in the detailed description below, these algorithms are 

computationally simple, yet powerful in their search for improvement. Additionally, they 

are not, at the core, limited by restrictive assumptions about the search space (e.g., 

assumptions concerning the existence of derivatives). 

 The differentiating qualities of a GA are what lead to its strengths, and thus the 

motivation for its application in the present study. There are three major qualities that set 

GAs apart from traditional optimization methods: (1) GAs search from a population of 

points, not a single point, (2) GAs use payoff knowledge in the form of a fitness function, 

not derivatives for example, and (3) GAs use probabilistic transition rules, not 

deterministic ones. Characteristic (1) above gives a GA the ability to perform a parallel 

search, which allows the algorithm to not be stuck in one location in the search space. 

Additionally, because of characteristic (2), GAs are computationally simple to understand 

and implement due to the use of a payoff function to direct the search. However, the GA 

is not without its faults. The time taken for a GA to converge is generally longer than 

other optimization methods. Moreover, while the computation of GA mathematics are 

relatively simple, there are many GA parameters that must be specified and fine-tuned 
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with each new optimization application. This leads to more of a trial and error process in 

applying the GA. To better describe each of these emergent aspects of a GA, the 

following sections present the details of a traditional GA 

Details of GA 

 In general, GAs are iterative search algorithms based on the mechanics of natural 

selection and natural genetics.  As an overview, a GA has four steps (1) initialization, (2) 

selection, (3) breeding, and (4) evaluation (Reeves & Rowe, 2003). Until the stopping 

criterion is met, steps 2-4 will be repeated iteratively as seen in Figure 1. When designing 

a GA, there are four main components of these steps that a researcher must consider: (a) a 

representation of potential solutions, (b) a method to create an initial population of 

Figure 1. Genetic Algorithm Iterative Process   
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potential solutions, (c) an evaluation (fitness) function that plays the role of the 

environment, rating solutions in terms of their fitness, and (d) a set of well-defined 

genetic operators. These various components and how they relate to each step of a GA 

will now be described in more detail. To aid in understanding, GA estimation of the 3-

PLM will be used as a very general running example, while specific empirical 

implementation of a GA in IRT is reviewed in the next section. 

Initialization 

 A GA begins by specifying an initial population of potential solutions for the 

optimization problem at hand (Step (1) above). The initial population defines the areas of 

the solution space in which the GA will start its search. The GA maintains a population 

of solutions throughout the entire search process, which gives rise to the GA’s strength in 

avoiding local maxima by conducting a parallel search. Therefore, the function of the 

initial population is to provide adequate coverage of the search space for a successful 

search to be achieved (Reeves & Rowe, 2003). To that end, there are user specified 

characteristics of initialization that the must be decided before beginning this process. 

These are: (1) population size, and (2) percentage of mutation (or, alternatively, cloning). 

Population size is the number of potential solutions (e.g., N=100) that the GA maintains 

and works with throughout the optimization process. The percentage of mutation (e.g., 

20%) in an initial population helps to generate potential solutions to fill the 

aforementioned population of size N. The operational specifics of these two 

characteristics in achieving the goal of an initial population will be discussed next.  But 

first, it should be noted that the values of these characteristics are largely specific to and 

dependent upon each individual optimization problem. Therefore, any explicit 



 11 

recommendations with regard to the initialization of a GA should be taken as a starting 

point. For example, some empirical results indicate a population of size 30 are acceptable 

in some cases. However, later analyses led researchers to believe that there is a linear 

dependence between population size and the solution length (i.e., number of parameters 

to be estimated) (Goldberg, 1989). To more clearly illustrate this process, the 

initialization of a GA for IRT parameter optimization is described generally below. 

 First, the generation of an initial population begins with one candidate solution 

(CS). As mentioned above, if a GA is to be applied, then it must be possible to explicitly 

and simply represent this CS (i.e., a potential solution for the optimization problem) so 

that the GA can function optimally.  In the case of IRT, this beginning CS would be the 

values of each item parameter for a given item i (e.g., CS 1 for item i would be βi1= (αi1, 

bi1, ci1) for the 3-PLM). As you can see, IRT model parameter estimation contains this 

first GA component.  Specifically, the IRT model parameters provide a clear 

representation of any solution. 

 Next in initialization, the CS is mutated according to the percentage of mutation 

specified at the start. That is, for example, 20% of the initial population will contain 

mutated solutions of 1i. More specifically, in a population of size 100, the initial 

population will contain 20 mutated CSs, while the remaining 80 CSs in the population 

will be copies of the starting CS. The precise details of the mutation operator in a GA are 

described more fully later. For the purpose of initialization, it is most important to 

recognize that the function of this operator is to add variation to the search space. 

Consequently, the population size and the mutation percentage are specified to achieve 
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the appropriate level of differentiation the researcher needs in the areas of the search 

space. Once the algorithm has an initial population, it proceeds to the selection step. 

Selection 

 In the selection step, CSs from the population are selected to survive to the next 

generation. The basic idea of selection is that it should be related to fitness (Reeves & 

Rowe, 2003). More specifically, the probability of being selected should be directly 

proportional to a CS’s fit. In a GA, the fitness function should be defined to place value 

on the potential solutions in the population according to the GA’s optimization goal. For 

example, when using a GA to solve a manufacturing optimization problem, the fitness 

function might be cost. Therefore, the candidate solution that minimized cost would be 

considered best “fitting”. Conversely, when using a GA to solve a farming optimization 

problem, the fitness function might be crop yield. In this case, the CS that maximized 

crop yield (higher values of the fitness function) would be considered best “fitting”. 

After initialization of the population, the fitness function is calculated for each CS 

in the population. Then, the CSs are ranked based on their fitness function. In some GAs, 

the best (or top five best) candidate solution based on their fitness function value will 

automatically survive to the next generation; this is termed elitism. However, this is not a 

requirement of a GA. The GA description from this point forward will assume no elitism 

has been implemented.  

Next, N CSs are selected with replacement to survive based on some user created 

probability based on these ranks, such that higher ranking equals a higher probability of 

selection, where N is the population size (Reeves & Rowe, 2003). While there is no 
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required definition of selection probability, it must achieve the goal of a GA’s selection 

step: to reward better fitting CSs by having a higher chance of survival. The selection 

procedure and fitness function links the GA to the principle of survival of the fittest and 

the desired problem-specific optimization. As a final note on the selection procedure, it 

should be based on probability and not some deterministic rule (e.g., taking the top 50% 

best fitting solutions, and their copies). Deterministic rules like this undermine the 

randomness of the GA, and thus weaken the ability of a GA to continue an independent 

parallel search of the solution space.  

Breeding 

 Following the selection step, there is a new population of size N that consists of a 

higher number of better fitting CSs than ill-fitting ones. At this point in the GA, new CSs 

(children) are created from these (parent) CSs using two genetic operators: (1) mutation, 

and (2) crossover (Reeves & Rowe, 2003). With either of these operators, the first 

decision point is whether mutation or crossover will occur at all. The researcher specifies 

two probabilities to select CSs for breeding; one for mutation (pm), and another for 

crossover (pc).  

For the crossover operator, parent CSs are randomly selected from the population, 

without replacement, with probability pc. These solutions are randomly paired together 

for crossover. Each pair of parent CSs generates two children, as described next. 

Consider this pair of 3-PLM item parameter solutions: βi1 = (αi1, bi1, ci1)
 and βi2 = (αi2, bi2, 

ci2). A crossover point is then randomly chosen. For example, if the crossover point was 
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after αn, the new pair would be: βiC1 = (αi1, bi2, ci2), and βiC2 = (αi2, bi1, ci1). Finally, the 

pair of children then replaces the parents as candidate solutions.  

Following the crossover procedure, the remaining CSs are randomly selected 

without replacement to undergo mutation.   Selection for mutation is performed with a 

probability pm, and is limited to those solutions that were not selected for crossover. The 

mutation operator is simpler than the crossover operator. Each selected parent CS is 

randomly altered according to some error probability distribution (Reeves & Rowe, 

2003). More specifically, new CSs (children) are created by adding random noise (ε), 

where ε is randomly sampled from a standard normal distribution, for example. To 

illustrate, for the 3-PLM, if candidate solution 1 (βi1 = (αi1, bi1, ci1))
 is selected for 

mutation, then each parameter in this parent solution will have an independently and 

randomly sampled number added to it such that the child candidate solution is βiC1 = (αi1+ 

ε1, bi1+ε2, ci1+ ε3). These mutated children survive to the next generation, while the parent 

CSs are discarded as before. Please note that in the initialization step, where 20% of the 

population were mutations of the first candidate solution, each mutated solution in the 

population was created using the random noise sampling described here. 

At the end of the breeding step of a GA, the mutated children, crossover children, 

the candidate solutions that were selected to survive because of elitism, and any 

remaining CSs (that were selected, but did not breed) constitute the next generation 

population. At this point, the new generation is ready for evaluation. Through this step, 

the GA aims to have a new population of CSs that are approaching the global maximum 

by first selecting better fitting CSs at a higher rate, and then exchanging (changing) 
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characteristics of some of these CSs to produce offspring containing the best qualities of 

the parents. 

Evaluation 

 In the evaluation step, the fitness function is calculated for each CS in the new 

population. The maximum value of the fitness function is recorded, and, more 

importantly, the CS associated with it. It is here that the stopping criterion for the GA is 

assessed. If the best fitting parameter values obtained at the end of the preceding iteration 

change by less than a pre-specified amount in the current iteration, then the GA stops. 

However, if the stopping criteria isn’t met, then the algorithm continues (i.e., the steps 

above are repeated, beginning with selection from the current population) as shown in 

Figure 1 above.  

 As seen in the description above, GAs possess a number of strengths over 

traditional maximization methods such as parallel search, randomization of the search, 

and computational simplicity. Because of this, there are already a small number of 

researchers who have applied a GA to estimate IRT model parameters. In the next 

section, IRT model parameter estimation using a GA is discussed, as well as its 

performance and application thus far throughout the field. 

IRT Parameter Estimation Using GA 

 IRT model parameter estimation is inherently an optimization problem. The 

nature of IRT model parameter estimation is to find the solution of parameter estimates 

that maximizes the likelihood of observing a particular set of response data. Two critical 
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components necessary for a GA to be applied are implicitly inherent in a typical IRT 

parameter estimation process. These two components are (1) an explicit representation of 

potential solutions (i.e., βi1 = (αi1, bi1, ci1)), and (2) the likelihood function which can be 

used as a straightforward evaluation (fitness) function that plays the role of the 

environment, and rates solutions in terms of their fitness. While it seems that GA 

estimation of IRT model parameters is a natural extension of evolutionary optimization, 

GAs have only been used quite sparsely throughout the field of IRT. For instance, GAs 

have not been applied to polytomous IRT models, and have not been applied to unfolding 

models in the literature.  

Despite the limited application of GA in IRT, there is empirical evidence that this 

method can be successfully applied in the above contexts. Specifically, GAs have been 

effectively applied to the 2-PLM and 3-PLM parameter estimation, albeit with a slight 

deviation from traditional GAs (Du & Chu, 2013; Jiang & Tang, 1998). In both cases, the 

GA was used at the maximization step of the E-M algorithm to significantly reduce the 

number of parameters estimated. By first integrating the person parameters out of the 

likelihood function (the E-step), the GA was then used to search for solutions for the item 

parameters, using the marginal likelihood function as the fitness function. Additionally, 

the marginal likelihood was maximized separately for each item parameter set due to the 

local independence assumption of IRT. The representation of candidate solutions, and the 

steps inherent in the GA are similar to the previous step-by-step example in that the steps 

are directly applied to the individual item parameter solutions. The next section describes 

the performance of GAs in IRT model estimation, as well as the benefits of using GAs 

above and beyond current IRT model estimation techniques. 
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Performance of GA 

 The extent of the use of GA in the IRT literature has been as calibration for 

generating start values for other estimation programs. It has been shown that the GA 

provides satisfactory results as a calibration method (Du & Chu, 2013; Jiang & Tang, 

1998; Li, 1997). The results when using GA to get the starting points for use in BILOG 

are almost identical to the calibration results when using BILOG alone (Jiang & Tang, 

1998). However, using a GA significantly reduces the number of EM cycles when input 

into that IRT estimation software. Additionally, when only the item characteristic curves 

or test characteristic curves are of primary concern, the GA alone provided acceptable 

results for most purposes. As noted in these studies cited above, the main disadvantage of 

the GA is computational speed. However, the benefit of using a GA in these instances, 

rather than rely on traditional estimation methods alone, lies squarely on the evolutionary 

programming strengths discussed previously. That is, because GAs are global 

optimization procedures, they won’t be as easily susceptible to saddle points, or local 

maxima, in the likelihood function. Specifically, unlike a calculus hill-climbing method 

like Newton-Raphson, GAs allow the search of different areas of the solution space in 

parallel. Therefore, in situations where local maxima are an issue, the use of a GA could 

achieve a more successful search for the global maximum by being in two places at once.  

Objectives of the Current Study  

 As an IRT model, when the GGUM fits the item responses, it offers researchers 

the advantages of person invariant interpretation of item parameters, item invariant 

interpretation of person parameters, and estimates of the standard errors of measurement 
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at the individual level. However, none of these benefits can be achieved if the model 

parameter estimation is not statistically sound or cannot be conducted in a reasonable 

time frame for most practical applications. Therefore, GGUM parameter estimation is an 

ever-evolving quest to realize statistically justifiable, accurate and computationally 

efficient results.  

To this end, the goal of the current study was to build upon existing GGUM 

parameter estimation methods by exploring a potential solution to some of the issues 

plaguing all estimation methods currently available. First, the current study aimed to 

apply the GA-EM to GGUM parameter estimation and establish it as a procedure that 

results in estimates that are comparable to those explored in previous research (Roberts et 

al., 2000; Roberts & Thompson, 2011). Second, the current study sought to improve upon 

existing methods by developing a GA-EM estimation procedure of GGUM parameters 

that is not as easily fooled by local maxima, does not require a fully Bayesian solution for 

adequate parameter recovery (i.e., prior distribution for item parameters), and is 

computationally simple, without the need for calculation of complex derivatives.  Third, 

it was expected that the computational speed would need to be sacrificed to achieve these 

goals, but that the potential benefits would outweigh this cost. Fourth, and finally, the 

current study sought to investigate what experimental conditions affect the performance 

of the GA, and therefore, determine the conditions in which it could be successfully 

applied. 

 The second point above deserves a bit more explanation in that previous marginal 

or fully Bayesian estimation methods applied for the GGUM obscured the fact that the 

GGUM likelihood is not generally single peaked.  This was quite apparent in the work of 
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Roberts (1995) and Roberts and Laughlin (1996), which utilized joint maximum 

likelihood estimation of model parameters.  Those researchers had to implement lengthy 

grid searches at various points within their algorithm to avoid local maxima.  They 

reported that local maxima for both item locations and person locations were often 

encountered, but that the latter were more difficult to deal with using the Newton-

Raphson maximization procedure.  Specifically, local maxima for item locations tended 

to occur further away from the true item location and the log-likelihood at those local 

maxima was usually much smaller than that for the absolute maximum.  Consequently, 

the Newton-Raphson procedure generally performed well as long as a judicious choice of 

start values was made.  On the other hand, the local maxima for person locations 

typically occurred much closer to the corresponding global maxima, and the log-

likelihood in these cases was often quite similar to the maximum log-likelihood.  The 

Newton-Raphson procedure did not perform well in those circumstances, so they 

implemented a slow and tedious grid search for optimal person locations within the JML 

procedure.  

     More recent GGUM estimation algorithms that rely on marginal or fully 

Bayesian methods tend to skirt the issue of local maxima (Roberts et al., 2000; Roberts & 

Thompson, 2011; Thompson, 2014).  That is somewhat justifiable for two reasons.  First, 

anecdotal evidence suggests that the addition of single-peaked prior distributions 

mitigates the occurrence of local maxima to at least some extent (J.S. Roberts, personal 

communication, Spring, 2017).  Second, all of the marginal or fully Bayesian estimation 

procedures used with the GGUM thus far have implemented expected a prior (EAP) 

estimates of person locations in which only the mean of the posterior likelihood for a 
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given person parameter, rather than the mode, is calculated.  Thus, with respect to person 

parameters, the posterior likelihood has not been maximized and the issue of local 

maxima is moot.  Whether this state of affairs is tolerable depends on the value of 

estimates based on the mode of the posterior likelihood of θj (i.e., the MAP estimate). For 

example, the MAP estimate of θj, like the EAP estimate, will always exist regardless of 

the person response vector in question (Baker, 1987).  Moreover, the mode, rather than 

the mean, may be a more meaningful estimate when the posterior distribution of θj is 

skewed, and this will generally occur to some extent until the number of questionnaire 

items grows large.  Thus, researchers may prefer the MAP over the EAP estimate in 

situations with smaller numbers of items.  In such cases, local maxima in the log-

likelihood for θj may lead to inaccurate results, and the benefits of the GA algorithm 

could be substantial. 

    Finally, it is worthwhile to note that some researchers may prefer maximum 

likelihood estimates (MLEs) of θj conditioned on item parameters obtained from a 

marginal Bayesian procedure.  Those estimates may also be adversely affected by any 

local maxima that exist in the log-likelihood for θj, and thus, the GA would be 

advantageous in those contexts as well.         
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CHAPTER 2. METHOD 

Parameter Recovery 

Experimental Design 

A simulation study was performed to assess the accuracy of parameter recovery 

when using the GA-EM to estimate the GGUM. The simulation study investigated the 

effects of three factors on parameter recovery. The three factors were (a) sample size 

(N=750, 1000, 1250), (b) test length (I=10, 20, 30), and (c) observed response categories 

(ORC=2, 4, 6). These three factors were fully crossed, resulting in a 3x3x3 experimental 

design. The simulation study had 10 replications in each of the resulting 27 cells. 

Data Generation 

 The data was generated using the Generalized Graded Unfolding Model (GGUM) 

(Roberts et al., 2000). The GGUM is defined as follows:    

𝑃[𝑍𝑖 = z|𝜃𝑗] = 

exp (𝛼𝑖[𝑧(𝜃𝑗−𝛿𝑖)−∑ 𝜏𝑖𝑘])+
𝑧
𝑘=0 exp (𝛼𝑖[(𝑀−𝑧)(𝜃𝑗−𝛿𝑖)−∑ 𝜏𝑖𝑘])

𝑧
𝑘=0

∑ [exp (𝛼𝑖[𝑤(𝜃𝑗−𝛿𝑖)−∑ 𝜏𝑖𝑘])+
𝑤
𝑘=0 exp (𝛼𝑖[(𝑀−𝑤)(𝜃𝑗−𝛿𝑖)−∑ 𝜏𝑖𝑘])

𝑤
𝑘=0 ]𝐶

𝑤=0
       (2) 

 

where  

 Zi = an observable response to the ith item, 
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 z = 0, 1, 2, …, C; z = 0 corresponds to the strongest level of disagreement and z =         

C refers to the strongest level of agreement, 

 C = the number of observable response categories minus 1, 

 M = 2C + 1, 

θj = the location of the jth individual on the latent continuum, 

 δi = the location of the ith item on the latent continuum, 

αi = the discrimination parameter of the ith item, 

τik = the kth subjective response category threshold for the ith item.  Note that τi0  

is defined as zero in this model. 

True Parameter Values  

 The true item parameter values were randomly sampled with replacement from a 

list of unidimensional GGUM parameter estimates for abortion attitude items described 

by Thompson (2014). The item parameter estimates from Thompson (2014) were 

separated into five intervals that span the latent trait continuum, and true item parameter 

values for this simulation were equally sampled, with replacement, from each interval. 

This strategy promotes realism with respect to the item population and the correlations 

among item parameters.  The true person locations were sampled from a normal 

distribution with zero means and unit (1) variances, as the usual assumption is that 

examinee latent trait values are normally distributed.  

Response Generation 

 Using the GGUM defined in Equation 2, an I x (1+C) matrix of item response 

probabilities was obtained for each individual in a given replication within the 

experimental design. The obtained category response probabilities for a given item 
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formed a multinomial distribution from which observed item responses were randomly 

sampled. 

Parameter Estimation 

Starting Values  

The starting value for the item discriminations (αi) were set to one for all items. 

The starting values for item location parameters (δi) were computed from a detrended 

correspondence analysis (DCA) of the simulated item responses in which only the first 

dimension was retained (Hill & H. G. Gauch, 1980). The starting values for thresholds 

(τik) were obtained using a regression equation that was developed from previous MMAP 

estimation of the GGUM  (King, 2017; Roberts & Thompson, 2011).  

Prior Distribution 

 In this technique, person locations (θj) were integrated out of the likelihood 

function by specifying a prior distribution, g(θ), and then integrating over this distribution 

using numerical quadrature approximation. A standard normal distribution, Ν(μ=0, 

σ2=1), was used as the prior distribution for θj.  This prior distribution is traditionally 

used in EM approaches to parameter estimation (Baker, 1987; Bock & Aitkin, 1981). 

GA-EM Parameter Item Estimation Procedure 

Expectation 

The GA was applied at the maximization step of the E-M algorithm, following the 

previous applications of GA to IRT model parameter estimation. To begin, at the 
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expectation step of the GA-EM, the expected frequency of response z for item i at 

quadrature point Vf was calculated using the following equation: 

𝑟̅𝑖𝑧𝑓 = ∑
𝐻𝑠𝑖𝑧𝑟𝑠𝐿𝑠(𝑉𝑓)𝐴(𝑉𝑓)

𝑃𝑠̃

𝑆
𝑠=1                  (3) 

 

where 

𝐿𝑠(𝑉𝑓) =  ∏ 𝑃(𝑍𝑖 = 𝑥𝑠𝑖|𝑉𝑓)
𝐼
𝑖=1         (4) 

and 

𝑃𝑠̃ = ∑ 𝐿𝑠(𝑉𝑓)𝐴(𝑉𝑓)
𝐹
𝑓=1          (5) 

where 

s=1,…,S; S=total number of examinees, 

f=1,…,F; F=total number of quadrature points, 

Ls(Vf)= the conditional probability of response vector Xs at Vf, 

𝑃̃s=the marginal probability of response vector Xs, 

A(Vf)=the height of quadrature points Vf,  

Hsiz=dummy variable that is equal to 1 only when z=xsi. 

𝑟̅𝑖𝑧𝑓=expected frequency of response z for item i at Vf 
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The counts in matrix 𝑟̅𝑖𝑧𝑓 give the number of persons who are expected to be located at 

quadrature point Xf , and use category z in response to item i.  These expected counts 

were calculated using the observed responses and the current item parameter estimates. In 

the subsequent maximization step, they were treated as known constants when calculating 

the log-likelihood equations, and then item parameters were solved for one item at a time. 

This reduces the computational burden of the log-likelihood calculation within the 

maximization step. 

Step1: Initialization  

For ease of understanding, the details of the GA are described for one item, 

although the procedure is identical for every item. To begin the maximization step and 

implementation of the GA, an initial population of size 100 was created from one starting 

solution. A candidate solution was represented as follows: βis= (αis, δis, and τis1, τis2, 

…,τisC).  Of these 100 CSs, 20% were mutated solutions, while the other 80% were 

clones of the starting solution. The mutated solutions were created according to the 

mutation operator described below.  

Step 2: Selection 

The log-likelihood equation was evaluated for each CS according to the following 

equation, similar to Jiang and Tang (1998) and (Zhang, 2005): 

𝑄𝑖𝑠(𝛽𝑖𝑠) = ∑ ∑ log(𝑃𝑖𝑠𝑧(𝑉𝑓; 𝛽𝑖𝑠)) ∗ 𝑟̅𝑖𝑧𝑓
𝐶
𝑧=0

𝐹
𝑓=1      (6)  

Equation 6 illustrates how the expected number of persons at a given quadrature point 

who use a particular response category for the ith item contributes to the marginal log-
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likelihood of responses to that item.  CSs were then ranked in ascending order according 

to their values of Qis. To begin selection, the best fitting CS (rank 100) survived to the 

next generation. The remaining 99 CSs of the new population were selected, with 

replacement, from the current population according to roulette wheel selection, where the 

probability of selection is directly proportional to the rank. These 99 CS solutions 

constitute the selected population to begin this iteration of the GA. 

Step 3: Breeding 

The probability of mutation and crossover were 0.7 and 0.3, respectively, which 

are in line with common values from the literature. The crossover operator was conducted 

first. A random number from a uniform distribution (0, 1) was drawn for each of the 

remaining 99 CSs in the population to decide which CSs were selected for crossover. 

Once selected, the CSs were paired up, a random crossover point was selected, and two 

children were created using the scheme presented in Chapter 1. The parent CSs were then 

discarded. 

 Next, the mutation operator was applied to the remaining CSs in the population 

that were not selected for crossover. Once selected for mutation, each solution was 

altered by adding random noise to the parameter values. To demonstrate, consider the CS 

solution βi1= (αi1, δi1, and τi11-τi13) for a 4 ORC GGUM item. Independent random 

numbers were drawn from uniform distributions and added to each of the 5 parameters. 

The uniform distributions for δi and τ1-τ3 all ranged from -0.25 to +0.25.  However, the 

mutation process for the αi parameter was altered by sampling from a censored uniform 

distribution so that it was above the acceptable threshold (i.e., greater than zero). Once all 
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selected CSs were mutated, the children were saved to the new generation, and the 

parents were discarded. As described in the general GA steps above, the children of 

crossover, the mutated solutions, the elite solution that was saved from the selection step, 

and any remaining solutions that were not selected to breed made up the next generation 

of candidate solutions (totalling 100). 

Step 4: Evaluation 

Finally, the log-likelihood equation was evaluated for each CS in the next 

generation using Equation (6). The solution that yielded the maximum marginal log-

likelihood function value in this population was retained and compared to the best fitting 

solution from the beginning of this iteration. If any of the parameter values for this item 

changed more than 0.0005, then steps 2 through 4 were repeated until this stopping 

criteria is met. 

General Notes 

It is conceptually simple to think of the GA-EM algorithm as two nested loops – 

the outer and inner loops.  At the beginning of the outer loop, the values of 𝑟̅𝑖𝑧𝑓 were 

calculated, and then the inner loop was executed.  Within the inner loop, the four GA 

steps described above were performed for each parameter type separately, while holding 

the other parameter types constant. The order of parameter estimation for a given item 

was item thresholds, followed by item locations, and then item discriminations. Each of 

these separate GAs, of which there are three, were performed in sequence within the 

inner loop. Because the maximum marginal log-likelihood associated with a given 

parameter depends on the values of other parameters for that item, the inner loop iterated 
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until the stopping criteria was met.  Specifically, once each inner loop was finished, if 

any of the parameter estimates changed substantially from their respective values at the 

beginning of the loop, then then the inner loop iterated and the sequence of three GAs 

began again. The inner loop iterations continued until the change in any item parameter 

estimate was less than .0005.  Once this criterion was met, then the parameters for the 

next item were calculated in an analogous fashion within the inner loop.  At the 

conclusion of the inner loop for all items, control was passed back to the outer loop 

where the values of  𝑟̅𝑖𝑧𝑓 were recalculated with the most recent item parameters.  The 

cycle of outer loop and inner loop updated continues until no item parameter change 

more than .0005 across successive iterations of the outer loop. A visual representation of 

this process can be seen in Figure 2.  
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Person Parameter Estimation 

The GA-EM estimates of the item parameters as well as the observed responses 

were used to calculate θ parameter estimates. These estimates were obtained using each 

of five procedures which included an expected a posteriori (EAP) procedure whereby the 

conditional mean of the individual’s posterior distribution of θj was found, a maximum a 

posteriori (MAP) procedure in which the mode of the posterior likelihood was found with 

GA, a MAP procedure in which the mode of the posterior likelihood was found with a 

common Fisher scoring technique, a maximum likelihood (MLE) procedure in which the 

maximum was found with the GA, and an MLE procedure in which the mode was found 

Figure 2. GA-EM Iterative Process 
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with the Fisher scoring method.  Therefore, there were five estimates of θj produced for 

each individual examinee on a given replication.   

Preliminary GA Testing 

 As mentioned above, there are specific parameters that define any particular GA. 

These parameters are optimization problem specific, and thus, have no predefined values. 

To test the appropriateness of the parameter values used in the GA-EM in this study 

(described above), five additional preliminary simulation tests were conducted.  

 In the simulation conditions described below, only the changes to the GA-EM 

detailed within each condition were implemented. Therefore, unless otherwise noted, all 

other GA-EM specifics that were presented above were not changed; that is, they were 

held constant across levels of the GA-EM parameter being investigated. Additionally, for 

each of the five tests, 10 replications of response data with six response categories, 30 

items, and 1250 examinees were generated as described above. (i.e., a total of 50 

independently simulated datasets). This constitutes a within-replications design for each 

test. Therefore, there will be five independent one-way within-replications ANOVAs 

performed on the five different sets of 10 replications of data. Please note that the factors 

manipulated in each of the five tests were not fully crossed. Finally, within each of the 

first four tests, one level of the manipulated factor constitutes the GA-EM described 

above as a control.  

 In the first test, the population size for the GA-EM item parameter estimation was 

varied in an attempt to investigate any improvement of parameter recovery performance 

by having a larger population of CSs or improvement of computational speed by having a 
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smaller population of CSs. The three levels of CS population size were (1) 50, (2)100, 

and (3) 200.  

 For the second test, the crossover probability was varied for item parameter 

estimation. There were three levels of crossover probability: (1) 0.1, (2) 0.2, and (3) 0.3. 

One concern with the current form of the GA-EM used in this study was that there might 

be too much variance in the CSs within each iteration, resulting in too random of a 

search. Therefore, only smaller crossover probabilities than the probability used in this 

study were tested.  

 In the third test, the factor that was manipulated was mutation probability. The 

four levels of this factor were (1) 0.05, (2) 0.1, (3) 0.25, and (4) 0.7. The choice to test 

smaller mutation probability was made to address any issue there might be with too much 

variance in the CS population during one iteration of the GA-EM. 

 The fourth test investigated the influence of the width of the uniform distribution 

from which random noise is selected when the mutation operator is applied. Specifically, 

the upper and lower bounds of the uniform distribution for mutating δi were manipulated. 

The motivation for only examining the effects of this factor on δi was because initial tests 

of the GA-EM yielded comparable parameter recovery with respect to δi, but not at the 

level that GGUM estimation simulation studies suggest. Therefore, by reducing the 

amount of random noise added to the mutated δi parameters, parameter recovery might 

increase as a result from smaller jumps in estimated δi parameter values within an 

iteration of the GA-EM. The three levels of this factor were (1) ±0.05, (2) ±0.1, and (3) 

±0.25. 
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 For the final test of the GA-EM, all parameter types were estimated within the 

same GA. Additionally, the mutation operator was applied at the parameter level, instead 

of the level of the CS. These changes were made to mimic other common GA forms 

found outside of IRT parameter estimation. To better illustrate the change in mutation, 

consider the example CS from Chapter 2: βi1= (αi1, δi1, and τi11, τi12, …,τi1C) for the 

GGUM.   During an iteration of the GA described above, each CS is chosen to mutate 

independently based on some probability (see mutation operator section above). If CS 

βi1= (αi1, δi1, and τi11, τi12, …,τi1C) is chosen to mutate in the τ estimation inner subloop, 

then every τ parameter is altered with random noise, which results in : βi1= (αi1, δi1, and 

τi11+ ε1, τi12+ ε2, …,τi1C+ εk). However, when the mutation operator is applied at the 

parameter level, each parameter in each CS is evaluated separately according to the 

mutation probability, and thus, not all parameters within a CS are required to mutate 

together. In this method, it could be the case, for example, that only τi11 is mutated in βi1= 

(αi1, δi1, and τi11, τi12, …,τi1C), resulting in a child CS βi1= (αi1, δi1, and τi11+ε1, τi12, 

…,τi1C). In addition to estimating the parameter types at the same time, and mutating at 

the parameter level, the mutation probability was varied. The four levels of mutation 

probability were (1) 0.03, (2) 0.05, (3) 0.07, and (4) 0.1. To reiterate, these probability 

values were chosen to investigate whether reduction in variance in the CS population 

would increase parameter recovery. 

Software 

The GA-EM estimation and analysis will be implemented using the R statistical 

software package. Other than the EAP, MAP, and MLE estimation of person parameters, 

all other estimation algorithms were programmed specifically for this study by the author. 
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Analysis 

 In this study, parameter recovery was evaluated using the familiar root mean 

square deviation (RMSD) statistic, which is an index of the average discrepancy between 

estimated and true parameter values. RMSD for a given parameter type in the GGUM is 

defined as: 

𝑅𝑀𝑆𝐷 = (
∑ [𝛾𝑡̂−𝛾𝑡]

2𝑇
𝑡=1

𝑇
)
1/2

   (7) 

where 

 𝛾𝑡̂= estimated value of the tth parameter of a given type, 

γt=true value of the tth parameter of a given type, 

T=total number of parameters of a given type in any one replication (e.g., T=I for α or δ  

parameters; T=I*C for τ parameters; and T=N for θ parameters ) 

Within a given replication, RMSD was computed for each item parameter type, as well as 

each type of θ estimate produced. 

 For the GA preliminary tests, a one-way within subjects ANOVA was conducted 

for each test to examine the effects of the manipulated factor on the on the RMSD of item 

parameters. Similar to the primary study analysis, the RMSD was examined for each item 

parameter type (i.e., αi, δi, and τi1 to τiC) using three identical ANOVA models. The Type 

I error rate for each of these three ANOVA models was set to .05/3 = .0167. 
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In addition to a descriptive interpretation of RMSD for the larger simulation 

study, a three-way between replications ANOVA was computed to examine the effects of 

the three manipulated factors (i.e., sample size, test length and number of response 

categories) on the RMSD of item parameters.  Similar to the above analysis, the RMSD 

was examined for each item parameter type (i.e., αi, δi, and τi0-τiC) using three identical 

ANOVA models. In contrast, a split-plot ANOVA was conducted for the RMSD of 

alternative estimates of θj.  The same three between replication factors were included in 

this split-plot ANOVA, and the type of θj estimation method used constituted the sole 

within replications factor.  All main effects and interactions were entered into every 

ANOVA model.  Moreover, the Type I error rate for each of the four ANOVA models 

was set to .0125 = .05/4.  The power to detect even small effects in simulations such as 

the one proposed here is generally quite high. Therefore, an effect size estimate denoted 

as 𝜂𝑤
2  (Roberts & Thompson, 2011) was used to determine the largest effects in each 

ANOVA model.  The 𝜂𝑤
2  index indicates the proportion of sums of squares within a 

family of effects tested by the same error term which can be attributed to a given effect 

within that family.  As such, 𝜂𝑤
2  is like a traditional  𝜂2 except that it decomposes within-

family, rather than total, sums of squares.  Across all ANOVA models, a given effect 

warranted interpretation only if it was both statistically significant and had a  𝜂𝑤
2  value 

greater than or equal to 0.10. 

 Although RMSD was the primary dependent variable in this study, a second set of 

ANOVA models analogous to those described above was conducted using a count of the 

number of local maxima seen in the corresponding likelihood for a given parameter.  In 

the case of item parameters, this count was formed by examining the marginal likelihood 
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for each item parameter.  A grid search was conducted to identify the number of times 

that 1) a critical point in the marginal likelihood occurs and 2) the pattern of the marginal 

likelihood to the left and right of that point indicates it is either a local or global 

maximum.  This count minus 1 enumerated the number of local maxima in the likelihood.  

(The global maximum constitutes the largest of the local maxima.) Similar counts were 

constructed for θj.  These counts were calculated based on the likelihood of θj.  

Empirical Data Analysis 

 In addition to the simulation study described above, the GA-EM was applied in an 

empirical data set in an effort to assess the applicability and interpretability of parameter 

estimates derived from this procedure. The GA-EM was used to estimate GGUM 

parameter estimates from responses to attitude statements about abortion. These data are 

composed of responses to 40 statements obtained from approximately 1,500 college 

students, and all statements used a six point graded response scale. The GA-EM was 

implemented using the algorithm specifics that are described above.   
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CHAPTER 3. RESULTS 

Parameter Recovery 

Item Parameters 

 Following the GA-EM estimation of item parameters, interpretable effects were 

identified after analysing the mean RMSD using the ANOVA models described in 

Chapter 3 along with and the corresponding 𝜂𝑤
2 . Before calculating RMSD values,  it was 

necessary to match the proper signs corresponding to a particular end of the latent trait 

continuum. This is because the DCA process of assigning start values for δi occasionally 

reversed the poles of the dimension such that, for example, positive estimates 

corresponded with negative true generated values. It should be noted that this does not 

affect the GGUM likelihood other than reversing the sign of the domain for the 

corresponding parameters (i.e., location parameters δi and θj) 

GA Preliminary Tests  

 Table 1 presents the mean RMSD for each parameter type within each test 

described above. There were no interpretable effects within any of the tests using the 

corrected Type I error rate, as evidenced by the similar mean RMSD seen in Table 1. It 

can be seen, descriptively, that the mean RMSD for each parameter type was higher in 

the fifth test than any of the other four tests. In addition to the combination of all 

parameter estimation into one GA-EM, test five had significantly lower mutation 

probabilities. Based on the results of this fifth test, decreasing the variance in the CS 

population to this degree does not result in acceptable parameter recovery. The 



 37 

statistically insignificant results of the first four tests show that none of these factors, 

varied as they were here, improve parameter recovery beyond the GA-EM used in the 

larger simulation study. Therefore, the parameter values for the GA-EM described in 

Chapter 2 were sufficiently appropriate for use. 

 

   

Table 1. Mean RMSD of parameters estimates for GA preliminary tests 

Condition

Test 1: Population Size

50 0.3822 0.15872 0.40672

100 0.37651 0.15878 0.3996

200 0.36768 0.15942 0.38991

Test 2: Crossover Probability

0.1 0.37763 0.15628 0.40135

0.2 0.37907 0.15862 0.40983

0.3 0.37651 0.15878 0.3996

Test 3: Delta Distribution Bounds

2 0.37701 0.15999 0.40007

4 0.37618 0.15999 0.39952

6 0.37651 0.15878 0.3996

Test 4: Mutation Probability

0.05 0.37518 0.16114 0.4005

0.1 0.36249 0.15975 0.38794

0.25 0.37518 0.16114 0.4005

0.7 0.39051 0.15878 0.3996

Test 5: Mutation Probability (Combined GA)

0.03 2.40075 0.52577 0.73549

0.05 2.42126 0.52452 0.74947

0.07 2.40437 0.52809 0.73652

0.1 2.42982 0.52862 0.7444

𝛿 i  ̂i  ̂i
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GA-EM Simulation  

The mean RMSD of all parameter estimates across all conditions were equal to 

𝛼̂=0.292, 𝛿=0.3719, and 𝜏̂=0.366. Table 2 displays the mean RMSDs in the factorial 

design conditions, while Table 3 portrays the  results from the ANOVAs in the form of 

statistically significant effects and effect sizes (i.e.,  𝜂𝑤
2 ). 

 

 

 

 

Table 2. Mean RMSD of parameters estimates by condition 

Factorial Condition

Sample Size

750 0.36464 0.28346 0.36032

1000 0.38812 0.28763 0.38142

1250 0.36314 0.30661 0.35884

Test Length

10 0.38816 0.37818 0.38376

20 0.37202 0.25154 0.36384

30 0.35536 0.24753 0.35267

Response Category

2 0.43003 0.43114 0.38283

4 0.317 0.26303 0.32592

6 0.36809 0.18326 0.39122

𝛿 i  ̂i  ̂i
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The main effect of response category was considered to be interpretable for all 

estimated item parameter types. This is similar to previous GGUM simulation study 

results (Roberts & Thompson, 2011). There was a decrease in mean RMSD for 𝛼̂ as 

response categories increased from two to six (F(2,243)=124.114, p<0.001) as seen in 

Figure 3. However, for  𝛿, the mean RMSD decreased from 0.4300 to 0.3169 when the 

number of response categories increased from two to four, but then rose to 0.3680 when 

there were six response categories (F(2,243)=51.7280, p<0.001). For 𝜏̂, the mean RMSD 

mimicked the pattern seen with 𝛿.  Specifically, it decreased from 0.3828 for two 

response categories to 0.3259 for four response categories, and then mean RMSD 

increased to 0.3912 when the number response categories reached six (F(2,243)=25.816, 

p<0.001). These results can be seen in Figures 4 and 5, respectively. Across these 

Note: Bolded values were statistically significant (p<0.0125). Values 

bordered in red were interpretable (𝜂𝑤
2 >0.10). 

Table 3. 𝜂𝑤
2  values for ANOVA effects 

Effect

Sample Size 1.43% 0.39% 1.70%

Test Length 2.13% 13.40% 2.84%

Response Category 24.76% 38.68% 14.19%

Sample Size x Test Length 2.56% 1.00% 3.56%

Sample Size x Respsonse Category 1.49% 0.51% 1.61%

Test Length x Response Category 2.07% 6.06% 1.93%

Sample Size x Test Length x Response Category 7.57% 2.43% 7.57%

𝛿 i  ̂i  ̂i
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parameters, there were statistically significant mean differences between all pairwise 

comparisons of the number of response categories, based on Tukey’s HSD test 

(p<0.0.125), except for the pairwise comparison between two and six response categories 

with respect to 𝜏̂. Therefore, the optimal accuracy was obtained with either 4 or 6 

response categories depending on the type of item parameter in question.  Two response 

categories consistently produced suboptimal accuracy across all item parameters.   
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Figure 3. Mean RMSD of 𝛼̂ across response categories 
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Figure 4. Mean RMSD of 𝛿 across response categories 
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 Beyond the effects of the number of response categories on each parameter type, 

the only other interpretable effect was the main effect of test length, but only when 

estimating 𝛼̂i (F(2,243)=42.994, p<0.001). As seen in Figure 6, mean RMSD decreased 

as the number of items increased, with the largest decrease occurring between 10 and 20 

items and a very slight decrease thereafter. An increase in test length yields better 

approximations of  𝑟̅𝑖𝑧𝑓 counts in the expectation step of the algorithm, which can make 

item parameter estimation more precise. Moreover, because 𝛼̂i is a slope, and not a 

specific location, it benefits more from this increased precision more than the other item 

parameters; hence, the presence of an interpretable effect here. Based on the lack of 

interpretable effects beyond the ones mentioned, and based on percent of the total 
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Figure 5. Mean RMSD of 𝜏̂ across response categories 



 43 

variance in RMSD accounted for by the number of response categories effect, item 

parameter estimation accuracy benefits the most from an increase in the number of 

response categories. Additionally, when considering the item parameter estimation 

accuracy of 𝛼̂i, the number of items should be greater than 10. It is interesting that, unlike 

other GGUM simulation study results, the GA-EM did not exhibit a benefit of increasing 

the sample size within these simulated conditions (Roberts & Thompson, 2011; 

Thompson, 2014). This is probably due to the fact that the minimum sample size in this 

study was 750, whereas the studies just mentioned also tested parameter recovery at a 

sample size of 500. The results found in Roberts et al. (2002) support this lack of sample 

size effect; that is, parameter recovery does not meaningfully diminish until sample size 

decreases below 750 examinees. 
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Person Parameters 

 As described in Chapter 2, person parameter estimates for each replication were 

obtained using five different methods: (1) an expected a posteriori (EAP) procedure 

whereby the conditional mean of the individual’s posterior distribution of θj was found, 

(2) a maximum a posteriori (MAP) procedure in which the mode of the posterior 

likelihood of θj was found with GA, (3) a MAP procedure in which the mode of the 

posterior likelihood was found with a common Fisher scoring technique, (4) a maximum 

likelihood (MLE) procedure in which the maximum was found with the GA, and (5) an 

MLE procedure in which the mode was found with the Fisher scoring method. The mean 

Figure 6. Mean RMSD of 𝛼̂ across test length 
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RMSD for each type of  person parameter estimate is given in Table 4 for each factorial 

condition. The GA for θj estimation was implemented similarly as the GA for item 

parameters, albeit treating the estimated item parameters as known. Additionally, because 

each θj could be estimated separately (due to examinee independence), and the simulated 

data were unidimensional, the crossover operator was moot. The starting values for θ in 

each GA estimation procedure were set to the DCA starting values. 

 All between-subjects effects were examined for interpretability according to the 

same criteria as the ANOVAs for item parameters described previously. All within-

subjects were evaluated for statistical significance using Huynh-Fedlt degree of freedom 

correction for any violation of the spherecity assumption. Based on these criteria, there 

were several statistically significant effects, and the main effect of number of response 

categories (F(2, 243)=134.58, p<0.001), and test length (F(2, 243)=294.634, p<0.001) 

accounted for the most variance in RMSD; by far more than the other effects in the 

model. The effect size calculations for each effect in the model can be found in Table 5. 

While the within subjects factor of estimation method was statistically significant 

(F(4,240)=19.1203, p<0.001), it did not account for as much variance in RMSD as the 

two aforementioned effects.The within-subjects main effect can be seen in Figure 7. 

Paired t-tests were conducted between each pairwise comparison of estimation method of 

θ, and were evaluated for statistical significance using a Bonferroni’s corrected Type I 

error rate of 0.005=0.05/10. Based on this criteria, the only statistically significant 

comparisons were between MLE estimation method and all other methods. That is, all 

other methods reduced mean RMSD to a statistically significant degree. 
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With regard to the between-subjects main effects, mean RMSD decreased as 

response category increases from two to four (p<0.0125), and from two to six 

(p<0.0125). There was no statistically significant difference between mean RMSD of 

four and six response categories. Post-hoc analyses of the main effect of test length on 

mean RMSD shows that increasing test length will reduce the mean RMSD of person 

parameter estimation (p<0.0125 for each pairwise comparison). Figures 8 and 9 display 

these effects. 

 

 

 

 

 

 

Factorial Condition EAP MAP MLE GA MAP GA MLE

Sample Size

750 0.33028 0.33215 0.37013 0.27864 0.28894

1000 0.27019 0.26964 0.28156 0.28523 0.29373

1250 0.27296 0.27166 0.26651 0.28901 0.28772

Test Length

10 0.34792 0.35155 0.38483 0.3376 0.34849

20 0.27416 0.27353 0.28143 0.26968 0.27297

30 0.25113 0.24812 0.25161 0.24366 0.24700

Response Category

2 0.33028 0.33215 0.37013 0.31447 0.32905

4 0.27019 0.26964 0.28156 0.26963 0.27946

6 0.27296 0.27166 0.26651 0.26712 0.26031

Method of Estimation

Table 4. Mean RMSD of person parameters estimates by condition 
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Table 5. Mean 𝜂𝑤
2 of person parameters estimates by condition 

Note: Bolded values were statistically significant (p<0.0125). Values 

bordered in red were interpretable based on relative 𝜂𝑤
2  values. 

Effect

Response Category 1.03%

Test Length 2.23%

Sample Size 0.00%

Test Length x Response Category 0.13%

Sample Size x Respsonse Category 0.03%

Sample Size x Test Length 0.01%

Sample Size x Test Length x Response Category 0.04%

Estimation Method 0.06%

Response Category x Estimation Method 0.09%

Test Length x Estimation Method 0.05%

Sample Size x Estimation Method 0.00%

Test Length x Response Category x Estimation Method 0.05%

Sample Size x Respsonse Category x Estimation Method 0.04%

Test Length x Response Category x Estimation Method 0.01%

Sample Size x Test Length x Response Category x Estimation Method 0.06%

𝜃 
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Figure 9. Mean RMSD of 𝜃 across response categories 
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Figure 8. Mean RMSD of 𝜃 across test length 
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Grid Search  

As described in Chapter 1, GA algorithms have been shown to avoid the pitfalls of local 

maxima in the likelihood function (or whatever the objective function might be). To 

investigate the existence, or lack thereof, of local maxima in the likelihood function and 

compare this to the simulation study results, a grid search was conducted. The grid search 

was conducted on the marginal likelihood for each item parameter type, and once on the 

likelihood with respect to 𝜃.  As mentioned previously, the count of maxima (minus 1) 

constitute the dependent measure for ANOVAs.  

To illustrate the process of the grid search used here, consider conducting this 

search with respect to δi of a particular item within a given replication. To search the 

marginal likelihood function for maxima, the partial derivative of the marginal likelihood 

function, with respect to δi, is calculated for varying values of δi along the latent trait 

continuum of plausible values. Then, these values are investigated for any sign changes 

from positive to negative, which will constitute a count of 1. In the case of a maximum 

(local or global), the value of this partial derivative is equal to 0. Therefore, the value to 

the left and to the right of the maximum will have different signs. A count of these sign 

changes, from positive to negative is obtained across the successively larger values of δi 

for item i. Further, this count is averaged across items in a given replication. An 

analogous procedure was implemented for each parameter type in a given replication. All 

partial derivatives were calculated according the formulae given in Roberts et al. (2000).  
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 All effects in the ANOVAs for maxima counts were evaluated for 

interpretability according to the effect size cutoff and a correct Type I error rate that have 

been discussed throughout this study. The mean count was highest for θ, and then τ, 

although none of the manipulated factors had an interpretable effect on the mean count 

for τ. The only interpretable effects found in any of the ANOVAs appeared within the 

analysis of the mean count of likelihood maxima with respect to θ. The main effect of 

number of response categories was statistically significant and met the effect size cutoff 

(F(2,243)=19.798, p<0.001). Additionally, the interaction between test length and sample 

size also had an interpretable effect on the mean count of maxima (F(4,243)=15.4912, 

p<0.001), which means that the effect of sample size on the mean count for person 

parameters depends upon the level of test length. However, these mean differences are 

too small to be meaningful to practitioners. 

 

Table 6. Mean count of local maxima by simulation condition 

Factorial Condition

Sample Size

750 0.46646 0.00425 1.30874 1.516296

1000 0.46333 0.00423 1.34980 1.520111

1250 0.46858 0.00037 1.32038 1.518044

Test Length

10 0.47611 0.00555 1.27563 1.522741

20 0.46419 0.0025 1.35625 1.515444

30 0.45777 0.001 1.35346 1.516367

Response Category

2 0.44938 0.00888 1.28812 1.514844

4 0.47462 0 1.37108 1.527259

6 0.47259 0 1.31649 1.512348

Parameter Type

𝛿 i  ̂i
 ̂i  ̂ 
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Empirical Data Application 

 The results of the simulation study have shown that the GA-EM is able to 

estimate GGUM parameters successfully in a variety of situations. To further investigate 

the applicability of the GA-EM, a set of real data from an abortion attitude questionnaire 

were analyzed. The questionnaire consisted of 40 statements ranging from pro-life to pro-
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Figure 10. Mean Count for 𝜃 at each level of response categories across test length 
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choice orientations.  Each statement was associated with six response categories where  

0=strongly disagree, 1=disagree, 2=slightly disagree, 3=slightly agree, 4=agree and 

5=strongly agree. The data set contained responses from a random sample of 1,500 

examinees, all of which were undergraduate college students from the Georgia Institute 

of Technology.  

 The estimation of GGUM parameters from this data set used the same procedure 

for start value calculation and implementation of the GA-EM as was described in Chapter 

2. The item parameter estimates are shown in Table 7. The item parameters in Table 7 

have been ordered by the value of 𝛿i from smallest to largest. The contents of each 

statement can be found in Table A.1 in Appendix A. However, Table A.2 contains the 

same statements ordered according to the order in Table 7. When examining these 

statements and comparing them to the corresponding 𝛿i values, it is clear that the 

statements range from pro-choice to pro-life in a logical fashion. Additionally, for all of 

the items in this dataset, the 𝜏̂ik were ordinal. This is unlike previous applications  of the 

GGUM to real data, where the 𝜏̂ik were not generally ordered along the latent trait 

continuum (Roberts et al., 2000). The standard errors for item parameter estimates were 

calculated based on Roberts et al. (2000). Table B.1 displays the standard error estimates 

for each item and each parameter type. Additionally, a plot of the estimated standard 

errors against their corresponding 𝛿i can be seen in Figure B.1. It is evident from this plot 

that the most extreme items (items 40 and 30) on either side of the latent trait continuum 

had the highest standard error estimates. This is due to the lack of examinees located 

around these items, thus making it harder to estimate these item locations. Figure B.2 

displays a similar plot for 𝜃i. The bowl-shape nature of the plot is typical for a large 
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questionnaire with graded responses.  Specifically, the standard error of an estimate 

generally increased as theta estimates become more distant from the mean. The 

magnitude of these changes is slight due to the large amount of information provided by 

the substantial number of polytomous questionnaire items.     

Based on the estimation, Figure 12 displays the mean expected and observed 

responses as a function of (θ-δ). This plot illustrates the concordance between the average 

model predicted response and what was observed in the data. Therefore, when the 

estimated model parameters fit the data well, there will be a large overlap of the two 

lines. Additionally, the (largest) mode of both lines should be around (θ-δ)=0, because 

the closer an examinee is to an item, the higher mean expected and mean observed 

agreement should be.  This figure shows that the estimated model fit the data relatively 

well based on these characteristics. 

 The person parameters for this dataset were estimated using the GA-MAP 

because this method led to the smallest observed mean RMSD across all five tested 

methods in the larger simulation study. A histogram of these estimates can be found in 

Figure 11. The distribution of 𝜃j differed significantly from a normal distribution 

according to the Shapiro & Wilk criterion (W=0.96614, p<0.001). This distribution has a 

slight positive skew of 0.552, and a high degree of peakedness (kurtosis=2.692). The 

mean person parameter estimate was 0.006215, while the median was -0.150724. Based 

on this mean, the statement located around the average person in this sample was “7. My 

feelings about abortion are very mixed”. Only 13 of the statements are located outside of 

the middle 50% of the person parameter estimates (25th percentile of 𝜃j=-0.9899, 75th 
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percentile of 𝜃j=0.912281). The statement located at the 25th percentile was statement 

“36. Although abortion on demand seems quite extreme, I generally favor a women’s 

right to abortion”, and the statement located at the 75th percentile was statement “33. 

Abortion should be illegal except in extreme cases involving incest or rape”. 

Furthermore, the statement surrounding the most extreme 𝜃j were “10. Society has no 

right to limit a woman's access to abortion” (at the 0.025 percentile of 𝜃j), and “6. 

Abortion is the destruction of one life for the convenience of another” (at the 0.975 

percentile of 𝜃j).  
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Item 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

40 0.8508 -2.875 -2.688 -2.667 -2.342 -2.3 -1.1016 

10 1.1398 -1.563 -2.814 -2.308 -1.785 -1.488 -0.7407 

9 0.9451 -1.499 -2.627 -2.324 -2.179 -1.231 -0.9742 

39 1.371 -1.495 -2.852 -2.446 -2.44 -1.309 -0.9684 

35 0.7858 -1.437 -2.742 -2.709 -2.686 -1.909 -1.5815 

36 1.187 -1.173 -2.536 -2.097 -2.054 -1.268 -0.4318 

38 1.1076 -0.949 -2.22 -1.765 -1.743 -1.23 -0.941 

27 0.866 -0.94 -1.039 -1.037 -1.029 -0.891 -0.0784 

19 1.1523 -0.838 -2.147 -1.277 -1.223 -0.013 -0.0037 

20 0.7896 -0.79 -1.534 -1.303 -1.277 -0.166 -0.0046 

4 1.5247 -0.762 -1.998 -1.388 -1.236 -0.407 -0.0003 

37 0.8865 -0.76 -2.148 -1.997 -1.982 -1.318 -0.7675 

22 1.4558 -0.714 -2.118 -1.543 -1.523 -0.784 -0.007 

26 0.9475 -0.612 -1.109 -1.079 -0.768 -0.038 -0.0011 

23 1.009 -0.542 -1.117 -0.653 -0.013 -0.005 -0.0041 

25 1.1304 -0.531 -1.612 -0.718 -0.608 -0.031 -0.0018 

3 0.9739 -0.512 -1.114 -0.846 -0.122 -0.008 -0.0012 

24 0.8498 -0.503 -1.202 -1.054 -1.051 -0.027 -0.0089 

21 0.9722 -0.363 -1.525 -1.384 -0.524 -0.012 -0.0022 
 

  

Table 7. GGUM item parameter estimates of abortion attitude statements 

 
𝛿i 

𝛼̂i 
𝜏̂i1 𝜏̂i2 𝜏̂i3 𝜏̂i4 𝜏̂i5 
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13 0.8742 -0.306 -1.551 -1.186 -0.232 -0.006 -0.0049 

7 0.9386 0.0249 -1.188 -1.141 -1.13 -0.328 -0.3188 

8 0.9509 0.0356 -1.315 -0.933 -0.931 -0.292 -0.2567 

12 1.0285 0.3026 -1.609 -0.925 -0.146 -0.015 -0.0015 

15 0.8944 0.4038 -2.14 -1.289 -1.217 -0.018 -0.004 

18 1.3365 0.5531 -1.854 -1.083 -0.718 -0.054 -0.0172 

17 1.2183 0.6512 -1.711 -1.202 -0.656 -0.031 -0.0095 

1 1.2363 0.6696 -1.783 -1.047 -0.771 -0.034 -0.0185 

2 1.1985 0.6756 -1.825 -1.322 -0.879 -0.202 -0.0149 

14 1.3059 0.6809 -1.919 -1.129 -0.823 -0.032 -0.0003 

16 1.4834 0.7269 -1.934 -1.449 -0.796 -0.268 -0.0004 

11 1.0637 0.8011 -1.423 -1.212 -0.142 -0.009 -0.0042 

33 1.3432 0.9593 -2.151 -1.541 -1.18 -0.876 -0.1844 

32 1.1414 0.9988 -2.302 -1.492 -1.451 -0.894 -0.0027 

31 0.9631 1.4367 -2.725 -1.96 -1.917 -1.278 -0.9912 

34 0.4961 1.5362 -2.32 -2.3 -2.3 -1.691 -1.3189 

5 0.7024 1.6222 -2.061 -2.058 -2.049 -1.089 -0.5254 

28 0.9761 2.0083 -2.931 -2.605 -2.598 -1.633 -1.2358 

29 1.1297 2.1892 -2.985 -2.764 -2.732 -1.785 -1.3306 

6 0.7918 2.2278 -2.913 -2.882 -2.863 -2.079 -1.3049 

30 0.8662 3.6955 -3.434 -3.427 -3.066 -2.958 -2.024 

 

 

 

 

 

Table 7. Continued 

𝛿i 𝛼̂i 𝜏̂i1 𝜏̂i2 𝜏̂i3 𝜏̂i4 𝜏̂i5 
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Figure 11. Histogram of 𝜃 for the abortion attitude data 
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Figure 12. Average expected response and average observed response across 

aggregated values of (θ-δ). 
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CHAPTER 5. DISCUSSION 

 The primary goal of this study was to lay the groundwork for the GA application 

within a more complex IRT model generally, as well as specifically build a foundation 

for successful GA application within the GGUM. To achieve this goal, the current study 

developed a GA-EM for GGUM parameter estimation, and examined its performance 

using a simulation study and an empirical data application.  

 Based on the preliminary tests and the associated item parameter recovery results, 

the current GA-EM for GGUM parameter estimation seems relatively robust to 

manipulations of data and GA specific characteristics. Specifically, four different 

parameters of the GA-EM were varied independently, and did not result statistically 

different item parameter recovery. One contributing factor to the robustness of the GA-

EM to changes in the algorithm could be the informed starting values used (i.e., for δi and 

τik). Because these starting values place the algorithm close to the global solution, it is not 

necessary for the GA-EM to have a larger population size for example. Additionally, the 

GA-EM is robust to changes in mutation probability above a minimum value (i.e., 0.1 

tested here), which shows that the GA-EM is more sensitive to not enough variance in the 

population than too much variance among the candidate solutions. With respect to 

improvements to the GA-EM, computational speed is an area where there could be 

significant strides made. The GA-EM was implemented in this study without a maximum 

number of iterations, only a cutoff value based on estimated parameter differences. By 

capping the number of iterations for the innermost cycle of the algorithm, the GA-EM 
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could be executed much quicker by eliminating iterations of the algorithm that occur after 

the estimations are relatively stable. 

  Roberts and Laughlin (1996) briefly addressed the fact that the likelihood 

function for the GGUM generally has local maxima, especially with respect to person 

parameters.  However, this aspect of the GGUM has never been systematically studied 

until now.  These results suggest that the GGUM marginal likelihood function may have 

local maxima with respect to all item parameters, but it is most problematic for τik 

parameters and least noticeable for α parameters.  On average there were 1.33 local 

maxima in the marginal likelihood function for a given τik parameter.  It is possible that 

the GA-EM has helped find the absolute maximum in these cases, but this is only 

conjecture because the standard EM algorithm utilizing Fisher scoring was not included 

as a comparison condition.   

The mean number of local maxima in the likelihood function with respect to 

person parameters was equal to 1.52, and was the highest seen for any GGUM parameter.  

Unlike the count of local maxima for item parameters, the number of local maxima for θ 

parameters was related to the design factors implemented in the simulation study.   

However, the magnitude of mean differences lacked practical significance.     

     With respect to GGUM item parameter estimation in the main simulation, the current 

version of the GA-EM was found to efficiently recover reasonably accurate item 

parameter estimates from simulated GGUM response data, without the use of item prior 

distributions or complex start values derivations beyond DCA calculations.  Moreover, 

the only experimental factor that resulted in interpretable parameter recovery differences 
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for all item parameter types was the number of response categories.  These results 

suggest that the GA-EM can recover item parameters relatively well when there are 

between 4 to 6 response categories.  This finding is consistent with those of Roberts and 

Thompson (2011) who suggested that little gain in precision can be obtained once the 

number of response categories exceeds 5.  The current simulation also showed that the 

precision of item parameter estimates obtained with the GA-EM does not substantially 

improve with sample sizes of more than 750 simulees. This is also consistent with 

traditional EM results reported by Roberts et al. (2002) who showed that sample sizes 

greater than N=750 led to noticeably smaller corresponding increases in item parameter 

estimation accuracy.  Obviously, if substantially smaller samples had been implemented 

in the current simulation, then one would expect degraded parameter recovery with 

decreasing sample size.  Finally, the current results indicated that once the number of 

items reached 20, there was little improvement in accuracy for any item parameters.  This 

is consistent with past studies of EM parameter estimation using Fisher scoring where 15 

to 20 items were recommended (Roberts et al., 2002).  Presumably, the test length effect 

emerges in the discrimination parameter estimates due to increased accuracy of the 

estimated theta distribution in the EM algorithm with larger test lengths. The marginal 

likelihood with respect to all item parameters is developed using this estimated 

distribution, and thus, it too is better estimated with longer tests. 

 With respect to person parameter estimation, the GA-MAP and GA-MLE 

produced a smaller observed mean RMSD than their non-GA counterparts (MAP and 

MLE, respectively). Indeed, the GA-MAP was the most precise theta estimate of those 

investigated here.  As mentioned above, this research showed that the person parameter 
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likelihoods contained the highest mean count of local maxima relative to other GGUM 

parameters. So, although the mean RMSD differences between GA-MAP and GA-MLE 

and their non-GA counterparts did not lead to an interpretable effect, it does make sense 

that GA estimation of theta parameters would have better observed parameter recovery 

given the relatively higher incidence of local maxima with these parameters. In short, the 

differences observed in mean RMSD across estimation methods, while not deemed 

interpretable, made logical sense and were in the expected direction. Furthermore, it 

could be the case that in measurement situations where the frequency of local maxima is 

potentially higher (e.g., multidimensional GGUM applications), this improvement in 

parameter recovery could be magnified.  The same would be true if random starting 

values for GGUM parameters were used in the algorithm rather than the informed 

starting values that are traditionally used.  

       Another feature of the GA that is pertinent to IRT models in general and the GGUM 

in particular concerns it mathematical simplicity.  As new models are developed at a 

higher rate, a means to quickly test the performance of these models becomes more 

valuable.  Approaches like MCMC and GA are particularly attractive in that they avoid 

the need to calculate and subsequently program partial derivatives for model parameters, 

and therefore, the speed with which new models can be investigated is potentially 

enhanced. 

     The GA procedure implemented in this research was also used to estimate GGUM 

parameters using real responses to an abortion attitude questionnaire.  The resulting item 

locations were strongly related to the pro-choice or pro-life orientation of item content. 

Moreover, the estimates of subjective response category thresholds were generally 
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ordered in a logical fashion. This appealing result is rarely obtained when six response 

categories are used in the traditional EM estimation procedure (J.S. Roberts, personal 

communication, Summer, 2017).  Indeed, when a standard EM procedure was used to 

obtain item parameters with the same data (not reported), the thresholds were noticeable 

disordinal for many of the items.        

     A note about the computational speed of this GA-EM application to item parameter 

estimation in the GGUM is in order.  The average time for item parameter estimation 

across simulation replications using the GA-EM was approximately 40 minutes, and thus, 

the algorithm is not as fast as traditional EM estimation in the GGUM which generally 

requires only a few minutes if that long. It does, however, improve upon the 

computational speed of MCMC item parameter estimates, with the benefit of a much 

simpler mathematical form (Roberts et al., 2002). Moreover, with faster compiled 

languages like FORTRAN or C++ along with more streamlined code, the computational 

efficiency of the GA-EM algorithm implemented in this study could certainly be 

improved.   

 Obviously, the GA-EM is no panacea.  In addition to its relative computational 

inefficiency compared to traditional EM, it is generally not portable across problems.  It 

typically requires some tweaking depending on the optimization problem under study. 

When the data are believed to follow a GGUM model, then this GA approach can be used 

to estimate accurate item and person parameters. However, there are many other 

psychometric measurement models for which a GA-EM procedure may be effective in 

theory, but cannot be applied without first tailoring the algorithm to the model and the 

typical data that are encountered.  This makes the application of the GA technique more 
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problematic for mathematical programmers and measurement practitioners than other 

estimation techniques that can easily be applied to a variety of measurement models in a 

more or less “canned” fashion.   

 The primary goal of this work was to develop and implement a GA approach to 

estimate parameters in the GGUM.  Another relevant goal was to broaden the GA 

literature, and in doing so, merge it with the field of IRT parameter estimation. Based on 

a literature search, the current study is the first successful application of a GA-EM to 

polytomous IRT data, with respect to item parameter estimation. Furthermore, it is the 

first instance of a GA-EM being successfully applied to IRT data that do not follow a 

cumulative model. Therefore, the benefits of the GA can be realized beyond the binary 3-

PLM case that has formed the basis of all published GA applications to date. 

Furthermore, by taking the first step of extending the application of GA across more 

varied IRT model estimation problems, psychometricians can then investigate and take 

advantage of other evolutionary processing optimization advancements beyond the 

traditional GA. For example, the ability of the GA to hybridize with other optimization 

methods (Gehlhaar & L.J., 1995; Wieland, 1990).  

Overall, the current study has helped further the development of the GGUM and 

increase the practicality of the model for use in common psychological research. By 

increasing the accuracy of estimation and ease of implementation of the GGUM, 

practitioners and researchers beyond psychometrics will more readily apply the model in 

research situations where the measurement of a proximity-based response process is 

necessary for correct interpretation of the psychological constructs being investigated. It 

is only when psychological constructs are validly and reliably measured that they are 
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truly useful for investigating important research questions involving individual 

differences.   

The current study laid the groundwork for eventual GA application to estimate the 

more complicated versions of GGUM.  These include GGUMs for multidimensional 

latent constructs or those in which responses are from a mixture of several latent 

populations or both.  In these situations, the number of local maxima associated with 

model parameters is expected to increase and sequentially oriented search algorithms will 

become less efficient and perhaps less accurate.  This research has shed light on a 

potential solution to avoid local maxima in GGUM parameter estimation by capitalizing 

on a parallel search and randomization strategy.  It is hoped that future research with 

more elaborate GGUMs will use this work as a roadmap for successful parameter 

estimation.  
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APPENDIX A. ABORTION ATTITUDE STATEMENTS 

 

Table A.1. Abortion attitude statements 

01. Abortion should not usually be allowed unless the child will be extremely mentally 

retarded. 

02. Abortions should not normally be performed unless there is medical evidence that 

the baby will die before one year of age. 

03. Abortions should typically be allowed, but only when both biological parents are 

legal adults. 

04. Abortions should generally be allowed, but only when the woman obtains 

counseling beforehand. 

05. Abortion could destroy the sanctity of motherhood. 

06. Abortion is the destruction of one life for the convenience of another. 

07. My feelings about abortion are very mixed. 

08. I cannot whole-heartedly support either side of the abortion debate. 

09. Outlawing abortion violates a woman's civil rights. 

10. Society has no right to limit a woman's access to abortion. 

11. Abortions should generally be illegal except in cases involving women in prison. 

12. Abortion should not usually be allowed except when the woman is financially 

unable to support the child. 

13. Abortion should not typically be illegal except in cases where the woman is not 

emotionally capable of rearing the child. 

14. As a general rule abortion should be illegal unless the woman is mentally incapable 

of caring for a child. 

15. Abortion should be avoided unless the woman is not physically able to raise the 

child. 

16. Abortion is generally unacceptable except when the child will never be able to live 

outside a medical institution. 
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Table A.1. Abortion attitude statements continued 

17. Abortions should generally be prohibited except when there is medical evidence 

that the child will be unable to hear, speak, and see. 

18. Abortions should not usually be permitted unless the child will never be able to 

care for itself. 

19. Abortions should generally be legal unless the woman is mentally incapable of 

making a decision to undergo the procedure. 

20. Abortion is acceptable in most cases, but it should not be supported with tax 

dollars. 

21. Abortions should generally be legal unless a sonogram has detected a heartbeat. 

22. Abortions should usually be permissible, but other alternatives must be explored 

first. 

23. Abortions should be acceptable most of the time unless the pregnant person is a 

minor. 

24. Abortions should be allowed only if both biological parents agree to it. 

25. Abortions should typically be permitted unless the parents are fully capable of 

providing a good home life for the child. 

26. Abortions should be permitted unless the woman has had multiple abortions in the 

past. 

27. Abortion should usually be legal except when it is performed simply to control the 

gender balance in a family. 

28. Abortion can be described as taking a life unjustly. 

29. Abortion is inhumane. 

30. Abortion is unacceptable under any circumstances. 

31. Even if one believes that there may be some exceptions, abortion is still generally 

wrong. 

32. Abortion is basically immoral except when the woman's physical health is in 

danger. 

33. Abortion should be illegal except in extreme cases involving incest or rape. 

34. Abortion should not be made readily available to everyone. 
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Table A.1. Abortion attitude statements continued. 

35. Regardless of my personal views about abortion, I do believe others should have 

the legal right to choose for themselves. 

36. Although abortion on demand seems quite extreme, I generally favor a woman's 

right to choose. 

37. Abortion should be a woman's choice, but should never be used simply due to its 

convenience. 

38. Abortion should generally be legal, but should never be used as a conventional 

method of birth control. 

39. A woman should retain the right to choose an abortion based on her own life 

circumstances. 

40. Abortion should be legal under any circumstances. 
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Table A.2. Ordered abortion attitude statements 

40. Abortion should be legal under any circumstances. 

10. Society has no right to limit a woman's access to abortion. 

9. Outlawing abortion violates a woman's civil rights. 

39. 
A woman should retain the right to choose an abortion based on her own 

life circumstances. 

35. 
Regardless of my personal views about abortion, I do believe others 

should have the legal right to choose for themselves. 

36. 
Although abortion on demand seems quite extreme, I generally favor a 

woman's right to choose. 

38. 
Abortion should generally be legal, but should never be used as a 

conventional method of birth control. 

27. 
Abortion should usually be legal except when it is performed simply to 

control the gender balance in a family. 

19. 
Abortions should generally be legal unless the woman is mentally 

incapable of making a decision to undergo the procedure. 

20. 
Abortion is acceptable in most cases, but it should not be supported with 

tax dollars. 

4. 
Abortions should generally be allowed, but only when the woman obtains 

counseling beforehand. 

37. 
Abortion should be a woman's choice, but should never be used simply 

due to its convenience. 

22. 
Abortions should usually be permissible, but other alternatives must be 

explored first. 

26. 
Abortions should be permitted unless the woman has had multiple 

abortions in the past. 

23. 
Abortions should be acceptable most of the time unless the pregnant 

person is a minor. 

25. 
Abortions should typically be permitted unless the parents are fully 

capable of providing a good home life for the child. 

3. 
Abortions should typically be allowed, but only when both biological 

parents are legal adults. 

24. Abortions should be allowed only if both biological parents agree to it. 

21. 
Abortions should generally be legal unless a sonogram has detected a 

heartbeat. 

13. 
Abortion should not typically be illegal except in cases where the woman 

is not emotionally capable of rearing the child. 

7. My feelings about abortion are very mixed. 
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8. I cannot whole-heartedly support either side of the abortion debate. 

12. 
Abortion should not usually be allowed except when the woman is 

financially unable to support the child. 

15. 
Abortion should be avoided unless the woman is not physically able to 

raise the child. 

18. 
Abortions should not usually be permitted unless the child will never be 

able to care for itself. 

17. 
Abortions should generally be prohibited except when there is medical 

evidence that the child will be unable to hear, speak, and see. 

1. 
Abortion should not usually be allowed unless the child will be extremely 

mentally retarded. 

 

2. 

 

Abortions should not normally be performed unless there is medical 

evidence that the baby will die before one year of age. 

14. 
As a general rule abortion should be illegal unless the woman is mentally 

incapable of caring for a child. 

16. 
Abortion is generally unacceptable except when the child will never be 

able to live outside a medical institution. 

11. 
Abortions should generally be illegal except in cases involving women in 

prison. 

33. 
Abortion should be illegal except in extreme cases involving incest or 

rape. 

32. 
Abortion is basically immoral except when the woman's physical health is 

in danger. 

31. 
Even if one believes that there may be some exceptions, abortion is still 

generally wrong. 

34. Abortion should not be made readily available to everyone. 

5. Abortion could destroy the sanctity of motherhood. 

28. Abortion can be described as taking a life unjustly. 

29. Abortion is inhumane. 

6. Abortion is the destruction of one life for the convenience of another. 

30. Abortion is unacceptable under any circumstances. 
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APPENDIX B. REAL DATA ESTIMATION STANDARD ERRORS 

 

Item 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

40 0.0486 1.0833 1.1124 1.1615 1.4641 3.8238 2.6639 

10 0.0100 0.0015 0.0076 0.0865 0.3853 0.8786 0.7313 

9 0.0066 0.0003 0.0117 0.0889 0.3632 0.6698 0.5180 

39 0.0421 0.0007 0.0552 0.0353 0.4286 1.1289 0.9680 

35 0.0031 0.0003 0.0068 0.0748 0.2560 0.5839 0.5342 

36 0.0165 0.0041 0.0219 0.1034 0.3204 0.6697 0.5392 

38 0.0115 0.0019 0.0158 0.0806 0.1854 0.3902 0.3577 

27 0.0372 0.0118 0.0647 0.1209 0.1943 0.3004 0.2748 

19 0.0349 0.0033 0.0484 0.1453 0.3231 0.4386 0.3138 

20 0.0506 0.0168 0.0913 0.1270 0.2379 0.3330 0.2703 

4 0.0320 0.0041 0.0240 0.0974 0.3074 0.5874 0.4324 

37 0.0325 0.0077 0.0528 0.0653 0.1898 0.3798 0.3475 

22 0.0309 0.0009 0.0272 0.0875 0.2730 0.6007 0.4720 

26 0.0566 0.0144 0.0706 0.1166 0.2019 0.2665 0.2381 

23 0.0512 0.0171 0.0772 0.1288 0.1783 0.2441 0.2553 

25 0.0511 0.0097 0.0715 0.1252 0.2173 0.3055 0.2455 

3 0.0550 0.0177 0.0780 0.1348 0.1869 0.2313 0.2199 

24 0.0477 0.0144 0.0770 0.1267 0.2161 0.2820 0.2325 

21 0.0488 0.0138 0.0659 0.1262 0.2102 0.3051 0.2826 
 

 

 

 

 

 

 

𝛼̂i 𝜏̂i1 𝜏̂i2 𝜏̂i3 𝜏̂i4 𝜏̂i5 𝛿i 

Table B.1. GGUM item parameter standard errors from abortion 

attitude data 
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Item 

 

  
 

  

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

13 0.0470  0.0193 0.0822 0.1500 0.2109 0.2822 0.2914 

7 0.0425  0.0142 0.0518 0.0992 0.1898 0.2978 0.2564 

8 0.0469  0.0182 0.0650 0.1063 0.1942 0.3135 0.2621 

12 0.0466  0.0151 0.0794 0.1580 0.2295 0.3259 0.3087 

15 0.0294  0.0102 0.0661 0.1374 0.2964 0.4495 0.3612 

18 0.0582  0.0061 0.0603 0.1490 0.3230 0.5295 0.4469 

17 0.0505  0.0063 0.0632 0.1572 0.3214 0.4578 0.3621 

1 0.0487  0.0076 0.0663 0.1557 0.3258 0.4815 0.3888 

2 0.0380  0.0041 0.0564 0.1556 0.3322 0.4904 0.3883 

14 0.0478  0.0047 0.0549 0.1592 0.3687 0.5562 0.4357 

16 0.0623  0.0021 0.0505 0.1623 0.3934 0.6605 0.5417 

11 0.0560  0.0127 0.0809 0.1765 0.2808 0.3528 0.3171 

33 0.0282  0.0022 0.0305 0.1423 0.3196 0.7055 0.6204 

32 0.0264  0.0059 0.0428 0.1324 0.3476 0.7002 0.5733 

31 0.0070  0.0004 0.0209 0.1731 0.4622 0.7265 0.6046 

34 0.0119  0.0072 0.0680 0.2383 0.4457 0.6397 0.5386 

5 0.0158  0.0044 0.0448 0.1717 0.3325 0.5640 0.5027 

28 0.0045  0.0002 0.0110 0.1094 0.4444 0.9897 0.8411 

29 0.0118  0.0002 0.0074 0.0576 0.4692 1.2538 1.0514 

6 0.0091  0.0003 0.0107 0.1653 0.6023 1.0793 0.8606 

30 0.0137  1.1549 1.1519 1.1913 1.0306 5.4300 3.4651 

 

 

 

 

 

 

 

 

Table B.1. Continued 

𝛿i 𝛼̂i 𝜏̂i1 𝜏̂i2 𝜏̂i3 𝜏̂i4 
𝜏̂i5 
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Figure B.1. 𝛿𝑖̂  and SEs from abortion attitude data  
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Figure B.2. 𝜃𝑗̂  and SEs from abortion attitude data  
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