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SUMMARY

A simulation study consists of several steps such as data collection, coding

and model verification, model validation, experimental design, output data analysis,

and implementation. Our research concentrates on output data analysis. In this field,

many researchers have studied how to construct confidence intervals for the mean µ

of a stationary stochastic process. However, the estimation of the value of a nonlinear

function f(µ) has not received a lot of attention in the simulation literature. Towards

this goal, a batch-means-based methodology was proposed by Muñoz and Glynn [51].

Their approach did not consider consistent estimators for the variance of the point

estimator for f(µ). This thesis, however, will consider consistent variance estimation

techniques to construct confidence intervals for f(µ). Specifically, we propose meth-

ods based on the combination of the delta method and nonoverlapping batch means

(NBM), standardized time series (STS), or a combination of both. Our approaches

are tested on moving average, autoregressive, and M/M/1 queueing processes. The

results show that the resulting confidence intervals (CIs) perform often better than

the CIs based on the method of Muñoz and Glynn in terms of coverage, the mean of

their CI half-width, and the variance of their CI half-width.

xi



CHAPTER I

INTRODUCTION

1.1 Simulation

Simulation is the imitation of the operation of a real-world process or system over

time (Banks [5]). It concerns the study of the operating characteristics of real sys-

tems. A simulation project consists of several steps such as data collection, coding

and model verification, model validation, experimental design, output data analysis,

and implementation. In our thesis, we focus on statistical methods for computing

confidence intervals for steady-state system performance measures.

To provide a framework for this thesis, it is useful to define the basic terms of

simulation (Fishman [24] and Law and Kelton [39]).

• A system is defined to be a collection of entities, e.g., people or machines, that

interact together toward the accomplishment of some logical end.

• The state of a system is that collection of variables necessary to describe the

system at a particular time, relative to the objective of a study. In a study of

a bank, examples of possible state variables are the number of busy tellers, the

number of customers in the bank, and the arrival times of each customer in the

bank.

• A model is a representation of the system that is used to study it as a surrogate

for the actual system. In our thesis, we are interested in mathematical models,

representing a system in terms of logical and quantitative relationships that are

then manipulated and changed to see how the model reacts, and to see how

the system would perform if the mathematical model were a valid one. We are

1



considering highly complex mathematical models so that they must be studied

by means of simulation, i.e., numerically exercising the model for the inputs in

question to see how they affect the output measures of performance.

• Deterministic models do not contain any probabilistic (i.e., random) compo-

nents. A complicated (and analytically intractable) system of differential equa-

tions describing a chemical reaction might constitute such a model. Many sys-

tems, however, must be modeled as having at least some random input compo-

nents, and these give rise to stochastic simulation models. Most queueing and

inventory systems have stochastic components. Stochastic simulation models

produce output that is itself random, and can therefore only give estimates of

the true characteristics of the model.

• If time is not a variable in a model, then the model is said to be static (e.g., a

finite element model of a ship’s hull). If the time horizon is a finite portion of

time, say from the time that a particular bank opens to when it closes, then the

model is said to be transient. On the other hand, if the time horizon is infinite,

and interest lies in estimating characteristics of the model over the long run,

then the model is said to be a steady-state model.

• Discrete-event simulation concerns the modeling of a system as it evolves over

time by a representation in which the state variables change only at distinct

points in time. These instances in times are the ones at which events occur,

where an event is defined as an instantaneous occurrence that may change the

state of the system. Continuous simulation concerns the modeling over time of a

system by a representation in which the state variables change continuously with

respect to time. Typically, continuous simulation models involve differential

equations that give relationships for the rates of change of the state variables

with time.

2



This research focuses on discrete, stochastic, steady-state simulation output data

analysis.

1.2 Simulation Output Analysis

We start with some notation and abbreviations that will be used in the sequel.

Notation and Abbreviations

CI confidence interval

CLT central limit theorem

CvM Cramér-von Mises

CMT continuous mapping theorem

FCLT functional central limit theorem

IID independent and identically distributed

LHS left-hand side

NBM nonoverlapping batch means

RHS right-hand side

RV random variable

STS standardized time series

N(µ, σ2) RV following the normal distribution with mean µ and variance σ2

tn t distribution with n degrees of freedom

tn,1−α 1 − α quantile of the t distribution with n degrees of freedom

z1−α 1 − α quantile of the N(0, 1) distribution

⇒ weak convergence

P→ convergence in probability

D→ convergence in distribution

2→ convergence in mean square

3



One objective of simulation output analysis is to estimate some unknown char-

acteristic or parameter of the system being studied. The analyst often wants not

only an estimate of this parameter value, but also some measure of the estimator’s

precision. Confidence intervals are widely used for this purpose.

Let {Yi, i ≥ 1} be a stationary output stochastic process from a single simula-

tion run. Assume that any transient portion of the simulation output has somehow

been deleted. From this point, unless it is stated explicitly, we assume that the Yj

are univariate random variables with mean µ = E[Y1]. For example, Yj might be

the throughput (production) in the jth hour for a stationary manufacturing system.

Usually, the Yj are not independent.

Let y11, y12, . . . , y1n be a realization of the random variables Y1, Y2, . . . , Yn resulting

from a simulation run of length n observations (the jth random number used in the

ith run is denoted yij). If we run the simulation with a different set of random

numbers, then we will obtain a different realization y21, y22, . . . , y2n of the random

variables Y1, Y2, . . . , Yn. In general, suppose that we make l independent replications

(runs) of the simulation (i.e., different random numbers are used for each replication)

of length n, resulting in the observations:

y11, . . . , y1j, . . . , y1n

y21, . . . , y2j, . . . , y2n

...

yl1, . . . , ylj, . . . , yln

The observations from a particular replication (row) are clearly not independent.

However, note that the data y1j, y2j, . . . , ylj (from the jth column) are IID observa-

tions of the random variable Yj, for j = 1, 2, . . . , n. This independence across runs

is the key to certain relatively simple output-data analysis methods. Then, from

the observations yij (i = 1, 2, . . . , l; j = 1, 2, . . . , n), we can estimate some unknown

parameter of the system and find a confidence interval.

4



Most research on steady-state simulation output analysis has focused on CIs for

the mean µ. In our research, we are interested in estimating a nonlinear function f(µ)

of the steady-state mean µ. Muñoz and Glynn [51] investigated the estimation of f(µ)

in the steady-state simulation context. We would like to develop new asymptotically

valid CIs for f(µ).

1.3 Confidence Interval Estimators for a Non-

linear Function of the Steady-State Mean

The vast majority of the existing articles on steady-state simulation output analysis

try to find confidence intervals for the mean µ of a stationary, discrete-time stochastic

process {Yi, i ≥ 1}. However, relatively few attempts have been made to investigate

CIs for a nonlinear function f(µ). Muñoz and Glynn [51] proposed a batch-means-

based methodology to estimate f(µ). Asymptotically valid confidence intervals for

f(µ) were obtained by combining three different point estimators (classical, batch

means and jackknife) with two different variability estimators (classical and jackknife).

Muñoz and Glynn showed that if the run length is large enough, the jackknife point

estimator usually has the smallest bias, with no significant increase in mean squared

error. Our emphasis is on the development of the asymptotically valid confidence

intervals for f(µ) using consistent variance parameter estimation methodology (Foley

and Goldsman [25], Goldsman et al. [33], Goldsman and Schruben [31], Schruben

[61]).

In the steady-state context, the sample average Ȳn typically converges to the

steady-state mean µ in terms of mean squared error (see Lehmann [40] and Serfling

[63]), i.e., Ȳn
2→ µ as n → ∞. By the continuous mapping theorem (CMT) (Billingsley

[6]), if f is continuous, then f(Ȳn) converges to f(µ) in mean square, i.e., f(Ȳn) is

a weakly consistent estimator for f(µ) (Lehmann and Casella [41]). In order to

obtain a confidence interval for f(µ), we need a point estimator for f(µ) as well

5



as the variance of the point estimator. As the point estimators for f(µ), we could

use f(Ȳn), the NBM, or the jackknife estimators, which will be discussed in Chapter

III. That chapter also proposes estimators for the variances of the point estimators

of f(µ) (hereafter referred to as variance estimators); these estimators are based on

the delta method and consistent estimators of the variance parameter of the process

{Yi, i ≥ 1}, defined in Section 2.2. The latter estimators are based on the methods

of nonoverlapping batch means, standardized time series, or a combination of these

methods, and are known to be consistent (Chien et al. [10] and Damerdji [12]).

The organization of the remainder of this thesis is as follows. Chapter II con-

tains some background material on the nature of simulation output, several variance

parameter estimation methods, and the jackknife and bootstrap resampling meth-

ods. Chapter III presents the proposed CIs for f(µ). Chapter IV contains several

performance analyses for CIs based on a first-order moving average process. Chap-

ter V presents experimental results based on an autoregressive process of order one.

Chapter VI considers CIs in a stationary M/M/1 queueing system. Chapter VII

summarizes our results and suggests topics for future research.
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CHAPTER II

BACKGROUND

The purpose of this chapter is to introduce the nature of simulation output data,

several variance parameter estimation methods, and the jackknife and bootstrap es-

timators of the variance of a certain estimator.

2.1 Simulation Output Data

Since most simulation models use random variables as input, the simulation output

is itself random and care must be taken in drawing conclusions about a model’s true

characteristics. Consider an experiment in which we wish to estimate the mean µ of

a stationary process, {Yi, i ≥ 1}, e.g., the mean waiting time in a stationary M/M/1

queueing system. If Y1, Y2, . . . , Yn are IID RVs with finite population mean µ and

finite population variance σ2
Y ≡ Var[Y1], then the sample mean Ȳn =

∑n
i=1 Yi/n is an

unbiased estimator of µ and the sample variance S2 =
∑n

i=1(Yi − Ȳn)2/(n − 1) is an

unbiased estimator of σ2
Y . The usual way to assess the precision of Ȳn as an estimator

of µ is to construct a confidence interval for µ. For IID samples, if n is sufficiently

large, then an approximate 100(1 − α)% confidence interval for µ is given by

Ȳn ± z1−α/2
S√
n

. (1)

Recall that if the Yi are normal random variables, an exact 100(1 − α)% confidence

interval for µ is given by

Ȳn ± tn−1,1−α/2
S√
n

. (2)

If the distribution of the Yi is not normal, the confidence interval given by Equation

(2) will be approximate in terms of coverage. Since tn−1,1−α/2 > z1−α/2, the confidence
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interval given by Equation (2) will usually be wider than the one given by Equation

(1) and may have slightly higher coverage. Notice that tn−1,1−α/2 → z1−α/2, as n → ∞.

Unfortunately, the independence assumption is rarely satisfied by simulation out-

put data (e.g., consecutive waiting times) from a single run. In particular, assume

that the RVs Y1, Y2, . . . , Yn come from a stationary stochastic process. Then the sam-

ple mean Ȳn is an unbiased estimator of µ; however, the sample variance S2 is no

longer an unbiased estimator of σ2
Y , and the estimation of Var[Ȳn] by the “usual”

estimator S2/n induces serious errors. In fact, it can be shown that

Var[Ȳn] =
1

n

[
R0 + 2

n−1∑

i=1

(1 − i

n
)Ri

]
(3)

and

E[S2] = R0 −
2

n − 1

n−1∑

i=1

(1 − i

n
)Ri, (4)

where Rk ≡ Cov(Y1, Y1+k), k = 0,±1,±2, . . ., is the autocovariance function of

the process {Yi, i ≥ 1} (see Anderson [4], p. 448). Being very often the case in

practice, if Ri > 0, then S2/n will have negative bias as an estimator of Var[Ȳn]:

E[S2/n] � Var[Ȳn] (Law and Kelton [39] display a formula relating E[S2/n] and

Var[Ȳn]). Therefore, we need other methods to estimate Var[Ȳn]. Section 2.2 reviews

such methods that will be used subsequently in our research.

2.2 Methods for Estimating Var[Ȳn]

Recall that the usual estimator for µ is the sample mean Ȳn. A measure of the sample

mean’s variance from sample to sample is Var[Ȳn] (see Equation (3)), which is also

unknown. To obtain confidence intervals for µ, it is common to provide an estimate

of Var[Ȳn], or, almost equivalently, the variance parameter σ2 ≡ limn→∞ σ2
n, where

σ2
n ≡ n Var[Ȳn] (provided that σ2 exists and is positive and finite). We can show from

Equation (3) that

σ2
n = R0 + 2

n−1∑

i=1

(
1 − i

n

)
Ri (5)
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and, if
∑∞

j=1 |Rj| < ∞,

σ2 =
∞∑

i=−∞

Ri. (6)

Generally, the observations will be divided into batches. We use the notations

Ȳ1,m, Ȳ2,m, . . . and Ȳn for the batched sample means and the grand sample mean

from all of the batches, respectively (see Section 2.2.1 below). Also, assume that

∑∞
j=1 |jRj| < ∞ and let γ ≡ −2

∑∞
j=1 jRj (Song and Schmeiser [67]).

Along the way, we will also assume that the process is φ-mixing (Billingsley [6]).

As in Billingsley [6], we say that a σ-field is a class of subsets of a set that is closed

under the operations of complements and countable unions. Let Mj
i (i ≤ j) denote

the σ-field generated by the RVs Yi, Yi+1, . . . , Yj. The sequence {Yi, i ≥ 1} is φ-mixing

if for all i, j ≥ 1 and any events E ∈ Mi
1 with P (E) > 0 and F ∈ M∞

i+j, we have

|P (F |E) − P (F )| ≤ φj, where φj → 0 and, without loss of generality, the φj are

nonincreasing in j. Intuitively, φ-mixing means that the distant future is essentially

independent of the past or present. That is, the probability of F (a future event)

conditioned on E (a past or present event) becomes very close to the unconditional

probability of F as the time lag j increases.

We also use the “little-oh” notation g(m) = o(h(m)) to indicate that

g(m)/h(m) → 0 as m → ∞. The “big-oh” notation g(m) = O(h(m)) is used when

there is an integer m0 ≥ 1 such that |g(m)/h(m)| ≤ C for some constant C and all

m ≥ m0.

There are a number of estimators for σ2, as described in standard references such

as Law and Kelton [39]. One of the most popular techniques in practice is the NBM

method; we will review this method in Section 2.2.1. Another class of estimators is

based on Schruben’s STS methodology (Schruben [61]). Two specific examples of STS

estimators with good properties are the weighted area and weighted CvM estimators,

described in Goldsman et al. [29] and [31], respectively. We will discuss weighted

STS estimators in Section 2.2.2. Finally, we look at combined nonoverlapping batch
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means and STS (NBM+STS) estimators in Section 2.2.3.

2.2.1 The NBM Method for Estimating σ2

The nonoverlapping batch means method is popular among experimenters because

of its simplicity and effectiveness. This approach has been explored by many people,

e.g., Conway [11], Fishman [22], Schmeiser [60], and so on. In the batch means

approach, the sample Y1, Y2, . . . , Yn is divided into sub-groups of samples, and each

sub-group is reduced to a single average value — a batch mean. These batch means

are then used to estimate σ2.

Suppose that one forms b nonoverlapping batches, each of size m (assuming that

n = mb):

Batch 1: Y1, Y2, . . . , Ym

Batch 2: Ym+1, Ym+2, . . . , Y2m

...

Batch b: Y(b−1)m+1, Y(b−1)m+2, . . . , Yn.

For i = 1, 2, . . . , b and j = 1, 2, . . . ,m, let

Ȳi,j ≡ 1

j

j∑

k=1

Y(i−1)m+k.

The NBMs are the averages Ȳi,m, i = 1, 2, . . . , b, and form a stationary process

themselves.

If we choose the batch size m large enough, it is reasonable to treat the Ȳi,m as if

they are IID normal random variables with mean µ (see details in Law and Carson

[38], Alexopoulos and Seila [3], and Fishman [23]). Then, for sufficiently large m, the

variance of the batch means can be estimated by their sample variance,

V̂ar[Ȳ1,m] =
1

b − 1

b∑

i=1

(Ȳi,m − Ȳn)2

=
1

b − 1

( b∑

i=1

Ȳ 2
i,m − bȲ 2

n

)
,
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and the NBM estimator of σ2
n is given by

V̂B ≡ σ̂2
n = mV̂ar[Ȳ1,m] =

m

b − 1

b∑

i=1

(Ȳi,m − Ȳn)2,

where we use the approximation mVar[Ȳm]
.
= nVar[Ȳn]

.
= σ2 for sufficiently large m.

That is, we estimate σ2 .
= σ2

m by m times the sample variance of the batch means.

Theorem 1 (Glynn and Whitt [27]) As the batch size m → ∞,

V̂B
D→ σ2χ2

b−1

b − 1
.

Further, if V̂ 2
B is uniformly integrable (see Billingsley [6], p. 32), one has

E[V̂B] → σ2

and

Var[V̂B] → 2σ4

b − 1
.

Based on Theorem 1, we can form an asymptotic 100(1−α)% confidence interval for

the mean µ similar to interval (2),

µ ∈ Ȳn ± tb−1,1−α/2

√
V̂B/n. (7)

The main problem with the application of the batch means method for fixed

sample size is the choice of the batch size m. If m is too small, the batch means

Ȳi,m can be highly correlated and the resulting confidence interval may have coverage

below the nominal value 1−α. Alternatively, a large batch size can result in very few

batches and potential problems with the high variability of the CI half-width. For

more detailed explanations, see Alexopoulos and Seila [3], Chien et al. [10], Fishman

[24] and Steiger and Wilson [68].

Several variants of the batch-means estimation approach have been investigated.

Meketon and Schmeiser [46] introduced the method of overlapping batch means, which
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has been explored further by Song and Schmeiser [66] and Pedrosa and Schmeiser [54].

The overlapping batch means estimator is generally offered as a variance-reducing

modification to the NBM estimator. Also, Bischak [7] considered the formation of

weighted nonoverlapping batch means.

2.2.2 STS Weighted Area Estimator for σ2

The STS methodology, proposed by Schruben [61], uses a continuous-time random

process to represent the original sequence of samples in a particularly useful form.

Let

Di,n = Ȳi − Ȳn, i = 1, 2, . . . , n; D0,n ≡ 0,

where Ȳi ≡
∑i

j=1 Yj/i is the average of the first i observations in the sequence. Thus,

E[Di,n] = 0, for i = 0, 1, . . . , n. Then one scales the sequence by dividing by
√

nσ/i

and adjusts the time index of the sequence to the unit interval. The resulting process

is

Tn(t) ≡ bntcDbntc,n

σ
√

n
=

bntc(Ȳbntc − Ȳn)

σ
√

n
, 0 ≤ t ≤ 1, (8)

where b·c is the greatest integer function. Schruben pointed out that the original time

series can be reconstructed from Tn(t) and Ȳn; hence, no information is lost by the

transformation. We assume that the variance parameter is positive and finite. We

also assume that it is φ-mixing with a mixing sequence that goes to zero fast enough

so that the series
∑∞

i=1

√
φi converges. Similar to Glynn and Iglehart [26], we need an

additional reasonable assumption about {Yi} to derive our confidence intervals for µ.

The following Assumption 1 is typically called the Funtional Central Limit Theorem

(FCLT).

Assumption 1 (FCLT) (Billingsley [6]) There exist µ and σ ∈ (0,∞) such that as

n → ∞,

Xn ⇒ σW ,
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where ⇒ denotes weak convergence,

Xn(t) ≡ bntc(Ȳbntc − µ)√
n

, for 0 ≤ t ≤ 1, (9)

and W is a standard Brownian motion process. The sample paths of Xn lie in D[0, 1],

the space of functions on [0, 1] that are right-continuous and have left-hand limits,

while the sample paths of W lie in C[0, 1], the space of continuous functions on [0, 1].

Glynn and Iglehart [27] studied conditions that imply the equality of µ and σ2 with

the steady-state mean and variance parameter, respectively.

Assumption FCLT leads to a result involving the standard Brownian bridge process,

defined by B(t) = W(t)− tW(1). One has B(t) ∼ N(0, t(1− t)) and Cov[B(s),B(t)] =

min(s, t) − st, 0 ≤ s, t ≤ 1. Further, W(1) and B(·) are independent.

Theorem 2 Under Assumption FCLT,

(
√

n(Ȳn − µ), σTn) ⇒ (σW(1), σB).

Proof : See Foley and Goldsman [25] or Glynn and Iglehart [26].

Remark 1 Theorem 2 implies three useful properties:

(1)
√

n(Ȳn − µ) is asymptotically σN(0, 1).

(2) σTn is asymptotically σ times a Brownian bridge.

(3)
√

n(Ȳn − µ) and σTn are asymptotically independent; thus, all information

gleaned from σTn will be asymptotically independent of
√

n(Ȳn − µ).

The (weighted) area estimator for σ2 is based on the statistic

S(w; n) ≡ 1

n

n∑

k=1

w

(
k

n

)
σTn

(
k

n

)
, (10)

where w(t) is a certain weight function that is continuous on [0,1] and chosen to

satisfy Var[S(w)] = σ2, so that S(w) ∼ N(0, σ2). This statistic is then used to form

confidence intervals for µ.
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The limiting functional of S(w; n) is

S(w) ≡
∫ 1

0

w(t)σB(t)dt.

In addition, let A(w; n) ≡ S2(w; n) and A(w) ≡ S2(w). Then under mild conditions,

the CMT (see Billingsley [6], Theorem 5.1) implies A(w; n)
D→ A(w) ∼ σ2χ2

1, and we

call A(w; n) the weighted area estimator for σ2.

Example 1 (Goldsman and Schruben [33])

1. Schruben’s [61] original area estimator has constant weight function w0(t) ≡
√

12, for all t ∈ [0, 1].

2. w1(t) ≡
√

45t [or w1(t) ≡
√

45(1 − t)] gives greater weight to “large” [“small”]

values of t.

To this point, we have defined the STS of a sampled stochastic process for a single

long run of data samples. Thus, variance parameter estimators utilizing the STS do

not need to be based on batched data. However, batching the original sequence of

data as described in the second paragraph in Section 2.2, generating a STS from each

batch, and averaging the estimators from each batch can reduce the variance of the

final variance parameter estimator.

Let us now consider the batched STS area estimator. This is the sample mean of

the corresponding estimators from the individual batches, i.e.,

V̂A ≡ Ā(w; b,m) ≡ 1

b

b∑

i=1

Ai(w; m),

where Ai denotes an estimator from the ith batch of size m (n = bm). Since the

batched estimators are simply linear combinations of estimators from each contiguous

batch of size m, we can produce the following result concerning E[V̂A] and Var[V̂A].

Theorem 3 (Goldsman et al. [28]) Suppose {Yi} is a stationary process for which

Assumption FCLT holds and
∑∞

k=1 k2|Rk| < ∞. Then

E[V̂A] = E[Ai(w; m)] = σ2 +
[(F − F̄ )2 + F̄ 2]γ

2m
+ o(1/m) (11)

14



and

Var[V̂A]
.
=

Var[Ai(w; m)]

b
=̇

2σ4

b
, (12)

where F (t) ≡
∫ t

0
w(s) ds, F ≡ F (1), F̄ (t) ≡

∫ t

0
F (s) ds, and F̄ ≡ F̄ (1).

Remark 2 It is possible to choose weights w(t) such that the first-order bias term in

front of γ disappears. The antisymmetric function w2(t) ≡
√

840(3t2 − 3t + 1/2) (see

Goldsman et al. [31]) has this property. Another class of weights yielding first-order

unbiased estimators is given in Foley and Goldsman [25].

So we see that batching typically helps to decrease the variance of the STS estima-

tor (by a factor of b), though this is achieved at the cost of a modest increase in bias

(since m now appears instead of n in the expected value expressions). Recall that

Ai(w; m)
D→ Ai(w) ∼ σ2χ2

1. Further, under suitable moment and mixing conditions

(see Glynn and Iglehart [26]), the RVs Ai(w; m) are asymptotically independent; so

the batched STS weighted area estimator for σ2 converges to a χ2 distribution with

b degrees of freedom, that is,

V̂A
D→ σ2χ2

b

b
. (13)

By Remark 1 and the definition of the t distribution, we have the following result:

(Ȳn − µ)/(σ/
√

n)

(V̂A/σ2)1/2

D→ N(0, 1)

(χ2
b/b)

1/2
∼ tb, as m → ∞. (14)

This yields an asymptotic 100(1 − α)% batched STS weighted area CI for µ:

µ ∈ Ȳn ± tb,1−α/2

√
V̂A/n. (15)

Another set of STS estimators with good properties are the CvM estimators in

Goldsman et al. [29]. These estimators are based on weighted Cramér-von Mises

statistics; certain weight functions yield estimators that are first-order unbiased for

σ2. Compared to the weighted area estimator, asymptotic variance reduction of up

to 60% is achievable. However, in this research, we do not consider CvM estimators

since they occasionally yield negative realizations (see Marshall et al. [45]).
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2.2.3 NBM+STS estimators

We have discussed variance parameter estimators using the batch means and STS

weighted area methods. Now, we review another variance parameter estimator that

combines both.

Theorem 4 (Goldsman et al. [34]) Under the FCLT, as the batch size m → ∞,

V̂C ≡ (b − 1)V̂B + bV̂A

2b − 1

D→ σ2χ2
2b−1

2b − 1
, (16)

so that

E[V̂C ] → σ2

and

Var[V̂C ] → 2σ4

2b − 1
.

Further, V̂C is asymptotically unbiased and has lower variance than V̂A or V̂B.

Similar to Equations (7) and (15), we have an approximate 100(1 − α)% confidence

interval for µ:

µ ∈ Ȳn ± t2b−1,1−α/2

√
V̂C/n. (17)

2.3 The Jackknife and Bootstrap Methods

According to Shao and Tu [64], the jackknife and bootstrap methods are the most

popular data-resampling methods for estimating bias, variance and more general mea-

sures of error. Both methods replace theoretical derivations by repeatedly resampling

the original data and making inferences from the resamples. Because of the availabil-

ity of inexpensive and fast computing, these two computer-intensive methods have

caught on very rapidly in recent years and are particularly appreciated by applied

statisticians. The jackknife was introduced by Quenouille [56] and has been devel-

oped further by several authors including Tukey [70] and Miller [47, 48, 49]. The
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bootstrap was introduced by Efron [16], and has been developed further by others.

In our thesis, we will consider the jackknife technique to reduce bias and estimate

variance. In future research, we will investigate bootstrap techniques to construct

confidence intervals for f(µ). In this section we briefly review these two techniques.

2.3.1 The Jackknife Method

We start with the jackknife method. For more-detailed explanations, see Miller [47,

48, 49] and Efron [17].

Quenouille [56] introduced a technique for reducing the bias of an estimator based

on splitting the sample into two half-samples. The technique’s properties were studied

in some specific situations by Quenouille [57] and Durbin [14]. Tukey [70] proposed

the general use of this technique in order to reduce the bias and obtain approximate

confidence intervals in problems where standard statistical procedures may not exist

or are difficult to apply. Suppose that X1, X2, . . . , Xn are IID random variables from

a distribution with unknown parameter θ. Suppose that θ̂ is an estimator of the

parameter θ based on the sample of size n. Further suppose that the data is divided

into b groups of size m (n = bm), i.e.,

(X1, . . . , Xm), (Xm+1, . . . , X2m), . . . , (X(b−1)m+1, . . . , Xbm).

Let θ̂−i, i = 1, 2, . . . , b, denote the estimate of θ obtained by deleting the ith group

and estimating θ from the remaining (b − 1)m observations. Define

θ̃i = bθ̂ − (b − 1)θ̂−i, i = 1, 2, . . . , b, (18)

which are called “pseudo-values” by Tukey. The jackknife estimator of θ is the average

of the θ̃i; i.e.,

θ̃ ≡ 1

b

b∑

i=1

θ̃i = bθ̂ − b − 1

b

b∑

i=1

θ̂−i.

The jackknife typically eliminates bias of order n−1. Namely, if

E[θ̂] = θ +
a1

n
+ O(1/n2),
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then

E[θ̃] = θ + O(1/n2).

Tukey [69] noted that in many instances the θ̃i are approximately IID. Under this

assumption,

V̂J ≡
∑b

i=1(θ̃i − θ̃)2

b(b − 1)

can be a estimator of Var[θ̃], and
√

b(θ̃ − θ)

{ 1
b−1

∑b
i=1(θ̃i − θ̃)2}1/2

≈ tb−1. (19)

Property (19) could therefore be used to construct an approximate 100(1 − α)%

confidence interval for θ:

θ ∈ θ̃ ± tb−1,1−α/2

√
V̂J/n. (20)

The jackknife method has become a more valuable tool since Tukey [69] found

that it can also be used to construct variance estimators. However, it requires the

computation of the pseudo-values — an expensive task in the early days (Shao and

Tu [64]).

Since the original jackknife technique was developed for IID data, it may not be

applicable to dependent data since it fails to capture the structure of dependencies.

To overcome this problem, it needs nontrivial modifications. One modification takes

repeated samples from appropriately defined residuals, whereas a second modification

applies resampling to groups or blocks of the original data to maintain the dependence

structure of the data. The interested reader can refer to Shao and Tu [64], Park and

Willemain [52], Liu and Singh [43], Künsch [37], and references therein. In this

thesis, we will consider the jackknife technique to estimate f(µ) and the variance of

the estimators for f(µ).

2.3.2 The Bootstrap Method

In this section we will introduce the basic bootstrap technique. For details, we refer

the reader to Efron [16, 17], Efron and Tibshirani [20], and Davison and Hinkley [13].
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A data set of size n has 2n − 1 nonempty subsets; the jackknife method only

utilizes n of them. The jackknife method may be improved by using statistics based

on more than n (or even all 2n−1) subsets. This idea was discussed by Hartigan [35],

but it requires more computing power than the jackknife technique. Developments in

computer technology over the last two decades have made this idea more attractive.

The bootstrap is a member of a larger class of methods that resample from the

original data set, and thus are called resampling procedures. Since the publication of

Efron [17], research activity on the bootstrap method has grown exponentially.

Suppose that our data consist of a random sample from an unknown probability

distribution G,

U1, U2, . . . , Un ∼ G. (21)

Having observed U1 = u1, U2 = u2, . . . , Un = un, we compute the sample mean

Ūn = n−1
∑n

i=1 Ui. The issue now is: how accurate it is as an estimate of the true

mean θ = E[U ].

The standard error σ(G; n, Ūn), that is, the standard deviation of Ūn, is

σ(G) = [Var(Un)/n]1/2. (22)

In case we do not know Var(Un), we can estimate the standard error by

σ̂(G) = [V̂ar(Un)/n]1/2, (23)

where V̂ar(Un) = (n − 1)−1
∑n

i=1(Ui − Ū)2.

There is alternative way to estimate the quantity in Equation (22). Let Ĝ indicate

the empirical probability mass function,

Ĝ : Probability mass 1/n on u1, u2, . . . , un. (24)

Then we can simply replace G by Ĝ in Equation (22), obtaining

σ̂boot ≡ σ(Ĝ) = [Ṽar(Un)/n]1/2 (25)

19



as the estimated standard error for Ūn, where Ṽar(U) = n−1
∑n

i=1(Ui − Ūn)2 is the

true variance of Ĝ. This is the bootstrap estimate.

As is easily seen, there is not much difference between σ̂(G) and σ̂boot in this case.

However, if the estimators are more complicated than Ūn (for example, a median or a

correlation or a slope coefficient from a robust regression), explicit formulas like (23)

and (25) do not exist. This is where computing power becomes handy.

To illustrate, let Tn = Tn(U1, . . . , Un) be a given “complicated statistic” such as

the median of the sample. Since the standard error σ(G; n, Tn) does not have a simple

form, we cannot easily evaluate σ(G; n, Tn) exactly, even if G is known. Of course,

we can use Monte Carlo sampling methods to approximate σ(G; n, Tn) when G is

known. That is, we repeatedly draw new data sets from G and then use the sample

standard deviation of the values of Tn computed from the new data sets as an ap-

proximation to σ(G; n, Tn). This idea can be used to approximate σ̂boot since Ĝ is a

known distribution. That is, we can draw {U∗
1b, . . . , U

∗
nb}, b = 1, 2, . . . , B, indepen-

dently from Ĝ, conditionally on U1, U2, . . . , Un; compute T ∗
n,b = Tn(U∗

1b, U
∗
2b, . . . , U

∗
nb);

and approximate σ̂boot as follows:

σ̂B
boot ≡

√√√√ 1

B

B∑

b=1

(
T ∗

n,b −
1

B

B∑

l=1

T ∗
n,l

)2

.

It is easy to see that as B → ∞, σ̂B
boot will approach σ̂boot = σ(Ĝ), the bootstrap

estimate of standard error. Both σ̂B
boot and σ̂boot can be called bootstrap estimators.

In fact, σ̂B
boot is more useful in practical applications, whereas in theoretical studies

people usually focus on σ̂boot (Efron [17], and Efron and Tibshirani [20]).

2.3.3 The Relationship Between the Jackknife and Bootstrap Methods

In the jackknife method, the given statistic is recalculated for b fixed data sets that are

subsets of the original data set, whereas in the bootstrap method the recomputations

are based on many bootstrap data sets {U∗
ij, i = 1, 2, . . . , b}, j = 1, 2, . . . , B, that are
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randomly generated from the original data set. This is why the jackknife and the

bootstrap are called resampling methods. The bootstrap method often has a very

close relationship with other data “reuse” methods such as the jackknife method

(Efron [17], Rao and Wu [58], and Sitter [65]). The jackknife variance estimator V̂J

is an approximation to the bootstrap variance estimator σ̂2
boot when the statistic Tn

is sufficiently “smooth” (Shao and Tu [64]). But this does not imply that σ̂2
boot or

(σ̂B
boot)

2 have smaller mean squared error than V̂J . We wish to remind the reader that

the jackknife method often yields estimators with smaller mean squared error while

the bootstrap method is more computer-intensive. In this thesis, we use only the

jackknife technique to estimate f(µ) and the variance of the point estimator since it

has been shown to construct asymptotically valid confidence intervals for f(µ).
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CHAPTER III

ESTIMATION TECHNIQUES FOR A

NONLINEAR FUNCTION OF THE

STEADY-STATE MEAN

Since simulation output data are not IID, we cannot directly apply classical CIs to

simulation data. A variety of methods exist for the computation of CIs for a steady-

state mean µ. In this chapter we study new CIs for f(µ), where f(·) is a nonlinear

that is continuously differentiable in a neighborhood of µ with f ′(µ) 6= 0. We also

assume that the FCLT holds. As in Section 2.2.1, we collect n observations and form

b nonoverlapping batches, each of size m.

Section 3.1 lists the point estimators for f(µ), Section 3.2 discusses variance es-

timators, and Section 3.3 describes asymptotically valid CIs for f(µ). In particular,

we use the delta method to obtain consistent variance estimators and asymptotically

valid CIs for f(µ).

3.1 Point Estimators for f(µ)

We start with the three point estimators for f(µ) proposed by Muñoz and Glynn [51]:

(1) Classical estimator:

f̂C ≡ f(Ȳn). (26)

(2) Batch means estimator:

f̄B ≡ 1

b

b∑

i=1

f(Ȳi,m). (27)
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(3) Jackknife estimator:

f̄J ≡ 1

b

b∑

i=1

f̃i, (28)

where

f̃i ≡ bf(Ȳn) − (b − 1)f(Ȳ−i,m)

and

Ȳ−i,m ≡ 1

b − 1

∑

j 6=i

Ȳj,m.

Since the process {Yi} is stationary, the sample average Ȳn is a consistent estima-

tor for the steady-state mean µ, so that the classical estimator f̂C is also a consistent

estimator for the continuous function f(µ). However, even for IID observations, the

classical estimator f̂C is often biased for finite n (Miller [49]). Due to the station-

ary assumption, the only significant bias effects on f̂C must then ensue from the

nonlinearity of f .

The batch means estimator f̄B takes advantage of the methodology in Section

2.2.1, while the jackknife estimator f̄J attempts to reduce the bias of the classical

estimator f̂C .

The biases of the estimators f̄B, f̄J , and f̂C can be compared under the assump-

tions of Theorem 3 of Muñoz and Glynn [51]. Namely, suppose that the FCLT holds,

and that f(·) is bounded by a polynomial of degree q ≥ 0 and is four times differen-

tiable at µ. Further, let the number of batches b ≥ 1 be fixed, and set p = max{2, q}.

If there exists an n0 > 0 such that {np/2|Ȳn − µ|p : n ≥ n0} is uniformly integrable,

then for a sufficiently large n, we have

|Bias[f̄J ]| < |Bias[f̂C ]| < |Bias[f̄B]|.

Theorem 3 of [51] also shows that all three point estimators exhibit similar per-

formance with regard to their mean squared errors. Therefore, the jackknife point

estimator appears to provide the smallest bias, with no significant increase in the

mean squared error.
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Theorems 1 and 2 in Miller [47] show that if {Yi} is an IID sequence with mean

µ and standard deviation σY > 0, and if f is a real function with bounded second

derivative in a neighborhood of µ, then, as n → ∞,

√
n(f̂C − f(µ))

D→ N [0, (f ′(µ))
2
σ2

Y ]

and
√

n(f̄J − f(µ))
D→ N [0, (f ′(µ))

2
σ2

Y ].

Since we are dealing with correlated processes, we will have to develop analogous

results.

3.2 Point Estimators for Var[f̂(µ)]

In this subsection, we study estimators for the variance of the point estimators for

f(µ). The first two estimators, (a) and (b) below, are from Muñoz and Glynn [51].

Estimator (c) is based on the delta method (Lehmann et al. [40]), and the variance

parameter estimators from Chapter II. We call this the delta variance estimator.

(a) The NBM variance estimator:

S2
B ≡ 1

b(b − 1)

b∑

i=1

[f(Ȳi,m) − f̄B]2. (29)

(b) The jackknife variance estimator:

S2
J ≡ 1

b(b − 1)

b∑

i=1

[f̃i − f̄J ]2. (30)

(c) The delta variance estimator:

S2
∗(f̂

′; V̂ ) ≡ f̂ ′(µ)2V̂

n
, (31)

where f̂ ′(µ) is one of

f̂ ′
C ≡ f ′(Ȳn) =

d

dµ
f(µ)

∣∣∣∣
µ=Ȳn

, (32)
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f̄ ′
B ≡ 1

b

b∑

i=1

f ′(Ȳi,m) =
1

b

b∑

i=1

d

dµ
f(µ)

∣∣∣∣
µ=Ȳi,m

, (33)

and

f̄ ′
J ≡ 1

b

b∑

i=1

f̃ ′
i , (34)

with f̃ ′
i ≡ bf ′(Ȳn) − (b − 1)f ′(Ȳ−i,m); and V̂ is any of V̂B, V̂A, or V̂C .

Recall that the NBM variance estimator is the sample variance of the f(Ȳi,m) divided

by b, and the jackknife variance estimator is the sample variance of the pseudo-values

f̃i divided by b.

Theorem 5 (Muñoz and Glynn [51]) If the FCLT in Section 2.2.2 holds and f is

differentiable in a neighborhood of µ, then the batch means and jackknife variance

estimators obey

f̂(µ) − f(µ)√
V̂ar[f̂(µ)]

D→ tb−1, as m → ∞, (35)

where f̂(µ) can be f̂C , f̄B, or f̄J , and V̂ar[f̂(µ)] can be S2
B or S2

J .

From Theorem 5, we can construct confidence intervals for f(µ). Clearly, any of

the three point estimators for f(µ), in conjunction with either of the two variance

estimators, (a) and (b), produces asymptotically valid confidence intervals for f(µ).

One important property of the jackknife variance estimator that holds in the IID case

is known as the Efron-Stein inequality (see Efron and Stein [19]); it states that the

jackknife variance estimator overestimates the variance of a nonlinear function of the

sample mean. This result implies that confidence intervals based on the jackknife

variance estimator tend to have larger expected half-width than those based on the

batch means variance estimator.

Section 3.3 proposes and studies several confidence intervals for f(µ) based on the

point estimators (26)–(28) for f(µ) and the point estimators (29)–(31) for Var[f̂(µ)].
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3.3 Confidence Intervals for f(µ)

Since Ȳn, Ȳi,m, and Ȳ−i,m are consistent point estimators of µ, the three point esti-

mators (26)–(28) for f(µ) (which is differentiable at µ) are also consistent. When f

is a nonlinear function, the point estimator f(Ȳn) is typically biased (even for IID

observations); hence in general one is not able to produce unbiased estimators (Miller

[49]). In this section, we will consider several CIs based on the point estimators for

f(µ) and the variance estimators for f̂(µ).

Based on Theorem 5, asymptotic 100(1 − α)% confidence intervals for f(µ) are

given by

f(µ) ∈ f̂(µ) ± tb−1,1−α/2

√
V̂ar[f̂(µ)], (36)

where f̂(µ) can be f̂C , f̄B, or f̄J , and V̂ar[f̂(µ)] can be S2
B or S2

J .

To develop confidence interval estimators for f(µ) based on the delta variance

estimator (31), we need to derive a CLT for the point estimators of f(µ) under

consideration. We start with the first-order Taylor series expansion

f(x) = f(µ) + f ′(µ)(x − µ) + h(x − µ), x ∈ R, (37)

where the remainder h : R → R satisfies

lim
u→0

h(u)

|u| = 0. (38)

From Equation (37), the expansion for f(Ȳn) is given by

f(Ȳn) = f(µ) + f ′(µ)(Ȳn − µ) + h(Ȳn − µ). (39)

Lemma 1 Under the FCLT in Equation (9),

√
nf ′(µ)(Ȳn − µ)

D→ |f ′(µ)|σN(0, 1), as n → ∞.

Proof The proof follows from
√

n(Ȳn − µ)
D→ σN(0, 1).

Now, if we scale both sides of Equation (39) by
√

n, we can show that the last

term of Equation (39) converges to 0 in probability.
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Lemma 2 Under the FCLT,

√
nh(Ȳn − µ)

D→ 0, as n → ∞. (40)

√
n

b

b∑

i=1

h(Ȳi,m − µ)
D→ 0, as m, b → ∞, (41)

and
√

n

{
bh(Ȳn − µ) − b − 1

b

b∑

i=1

h(Ȳ−i,m − µ)

}
D→ 0, as m, b → ∞. (42)

Proof We will prove Equation (40) only. The proofs of Equations (41) and (42) are

similar. Our proof uses ideas from Section 3.1 of Muñoz and Glynn [51].

Define the function

h1(x) =





h(x)/|x|, if x 6= 0

0, if x = 0

and write
√

nh(Ȳn − µ) =
√

n|Ȳn − µ|h1(Ȳn − µ). (43)

Equation (38) implies that h1 is continuous at x = 0. Since Ȳn
P→ µ, the CMT implies

h1(Ȳn − µ)
D→ 0, as n → ∞. (44)

Recall that
√

n(Ȳn − µ)
D→ σN(0, 1), as n → ∞. (45)

Finally, Equations (44)–(45) and Slutsky’s theorem imply Equation (40). The con-

vergence in Equations (40)–(42) is also in probability because the limits are constant.

The following result is an implication of Lemma 1–2 and Slutsky’s theorem.

Theorem 6 Suppose that the FCLT holds and f is differentiable with a continuous

first derivative in a neighborhood of µ. Then

√
n(f̂(µ) − f(µ))

D→ |f ′(µ)|σN(0, 1), as m, b → ∞,

where f̂(µ) can be f̂C , f̄B, or f̄J .
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Proof In Equation (39), we move f(µ) to the LHS and multiply both sides by
√

n.

Then we get

√
n(f(Ȳn) − f(µ)) =

√
nf ′(µ)(Ȳn − µ) +

√
nh(Ȳn − µ). (46)

Taking limits on both sides of Equation (46), the conclusion follows from Lemmas 1

and 2 and Slutsky’s theorem. The proof for f̄B and f̄J is similar.

Theorem 7 Suppose that f̂(µ) is one of (26)–(28), f̂ ′(µ) is one of (32)–(34), and V̂

is a consistent estimator of σ2, that is, V̂
P→ σ2, as m, b → ∞. Then

√
n
(
f̂(µ) − f(µ)

)

|f̂ ′(µ)|
√

V̂

D→ N(0, 1), as m, b → ∞. (47)

Proof Since f ′ is continuous in a neighborhood of µ, the estimators f̂ ′(µ) in Equa-

tions (32)–(34) are consistent. First Theorem 6 implies

√
n
(
f̂(µ) − f(µ)

)

|f ′(µ)|σ
D→ N(0, 1), as m, b → ∞. (48)

The consistency of V̂ and the CMT imply

σ

V̂ 1/2

P→ 1. (49)

By Equations (48)–(49) and Slutsky’s theorem, one has

√
n
(
f̂(µ) − f(µ)

)

|f ′(µ)|
√

V̂

D→ N(0, 1), as m, b → ∞. (50)

Since f̂ ′(µ) is consistent for f ′(µ), the CMT implies

f ′(µ)

f̂ ′(µ)

P→ 1. (51)

Equation (47) follows from Equations (50)–(51), the CMT, and Slutsky’s theorem.

Theorem yields the following asymptotically valid 100(1 − α)% CI for f(µ):

f(µ) ∈ f̂(µ) ± z1−α/2|f̂ ′(µ)|
√

V̂ /n. (52)
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Recall that the batch means estimator V̂B, the area estimator V̂A, and the combined

estimator V̂C are consistent estimators of σ2 (as both m, b → ∞), yielding asymptot-

ically valid CIs for f(µ).

Alternatively, we may use the limiting result,

√
n
(
f̂(µ) − f(µ)

)

|f ′(µ)|
√

σ2

/
√

V̂

σ2

D→ tdf, (53)

where “df” refers to the appropriate degrees of freedom and V̂ can be V̂B, V̂A, or V̂C .

Property (53) yields the following asymptotically valid confidence interval for f(µ):

f(µ) ∈ f̂(µ) ± tdf,1−α/2|f̂ ′(µ)|
√

V̂ /n. (54)
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CHAPTER IV

ORDER-ONE MOVING AVERAGE PROCESS

This chapter evaluates the point and CI estimators for f(µ) using a first-order moving

average [MA(1)] process. We present analytical and experimental results based on

f(µ) = (µ + 1)2 and f(µ) = 1/(1 + µ). The point estimators are compared based

on their mean and variance. The various CIs are compared based on the estimated

coverage, the average half-width, and the variance of the half-width.

4.1 Preliminaries

Consider the stationary first-order moving average [MA(1)] process defined by Yi =

θεi−1 + εi, i ≥ 1, where the εis are IID N(0, 1) RVs. Figure 1 shows a sample path of

a Gaussian MA(1) process with µ = 0 and θ = 0.9 based on 100 observations. This

process has autocovariance function R0 = 1 + θ2, R±1 = θ, and Rk = 0, whence we

have σ2 =
∑∞

j=−∞ Rj = (1 + θ)2, γ = −2
∑∞

j=1 jRj = −2θ, and

Cov(Ȳj, Ȳk) =





σ2

k
+ γ

k2 , for j = k

σ2

k
+ γ

2jk
, for j < k.

(55)

From (55), we have

Var[Ȳ1,m] =
(1 + θ)2

m
− 2θ

m2
. (56)

Furthermore,

Cov[Ȳ1,m, Ȳ2,m] = Cov

[
1

m

m∑

i=1

Yi,
1

m

2m∑

j=m+1

Yj

]

=
1

m2
Cov[Ym, Ym+1]

=
θ

m2
(57)
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Figure 1: Sample Path of a Gaussian MA(1) Process with µ = 0 and θ = 0.9 based
on 100 Observations
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and

Cov[Ȳi,m, Ȳj,m] = 0, for |j − i| ≥ 2. (58)

Later on, we will use the following lemma.

Lemma 3 If X ∼ N(0, σ2) and r is a even number, then

Var[Xr] =

[
(2r)!

r!
−
(

r!

(r/2)!

)2
]

σ2r

2r
. (59)

Proof Recall that if X ∼ N(0, σ2), then

µr =





0, for r odd

r!
(r/2)!

σr

2r/2
, for r even,

(60)

where µr = E[Xr] is the rth moment (cf. Mood et al. [50]). Then

Var[Xr] = E[X2r] − (E[Xr])2

=
(2r)!

r!

σ2r

2r
−
[

r!

(r/2)!

σr

2r/2

]2

=

[
(2r)!

r!
−
(

r!

(r/2)!

)2
]

σ2r

2r
.

4.2 Performance Evaluation when

f(µ) = (µ + 1)2

In this subsection, we study the performance of the various estimators based on the

quadratic function f(µ) = (µ + 1)2. This function allows several analytical calcula-

tions.

4.2.1 Performance of Point Estimators

We first calculate the expectation and variance of point estimators for f(µ).

Case 1: f̂C (classical estimator). By Equation (56),

E[f(Ȳn)] = E[(Ȳn + 1)2] = E[Ȳ 2
n ] + 1 = Var[Ȳn] + 1 =

(1 + θ)2

n
− 2θ

n2
+ 1. (61)
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In an attempt to shorten expression, we define

v2
n ≡ Var[Ȳn] =

(1 + θ)2

n
− 2θ

n2
, n ≥ 1.

One now has

Var[f(Ȳn)] = Var[(Ȳn + 1)2] = E[(Ȳn + 1)4] −
(
E[(Ȳn + 1)2]

)2
. (62)

Since Ȳn has the normal distribution, we use Equation (60) to obtain

E[(Ȳn + 1)4] = E[Ȳ 4
n ] + 6E[Ȳ 2

n ] + 1

= 3v4
n + 6v2

n + 1. (63)

Putting Equation (63) into Equation (62),

Var[f(Ȳn)] = 3v4
n + 6v2

n + 1 − (v2
n + 1)2 = 2v4

n + 4v2
n. (64)

Case 2: f̄B (batch means estimator).

E[f̄B] =
1

b

b∑

i=1

E[(Ȳi,m + 1)2]

=
1

b

(
b∑

i=1

E[Ȳ 2
i,m] + b

)

= Var[Ȳ1,m] + 1

= v2
m + 1. (65)

Also,

Var[f̄B] = Var

[
1

b

b∑

j=1

(Ȳj,m + 1)2

]

=
1

b2
Cov

[
b∑

j=1

Ȳ 2
j,m + 2

b∑

j=1

Ȳj,m + b,

b∑

k=1

Ȳ 2
k,m + 2

b∑

k=1

Ȳk,m + b

]

=
1

b2

(
Cov

[
b∑

j=1

Ȳ 2
j,m,

b∑

k=1

Ȳ 2
k,m

]
+ 4Cov

[
b∑

j=1

Ȳj,m,
b∑

k=1

Ȳk,m

])
. (66)
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Now,

Cov

[
b∑

j=1

Ȳ 2
j,m,

b∑

k=1

Ȳ 2
k,m

]
= 2

b∑

j=1

b∑

k=1

Cov
2
[

Ȳj,m, Ȳk,m

]

(by Patel and Read [53]) when expected value = 0)

= 2
(
bVar

2
[
Ȳ1,m

]
+ 2(b − 1)Cov

2
[
Ȳ1,m, Ȳ2,m

])

(since only adjacent batch means are correlated)

= 2[bv4
m + 2(b − 1)θ2/m4], (67)

and

Cov

[
b∑

j=1

Ȳj,m,
b∑

k=1

Ȳk,m

]
=

b∑

j=1

b∑

k=1

Cov
[
Ȳj,m, Ȳk,m

]

= 2(b − 1)θ/m2 + bv2
m. (68)

Therefore, putting Equations (67) and (68) into Equation (66),

Var[f̄B] =
2

b2

[
bv4

m + 2bv2
m + 2(b − 1)(θ/m2)(θ/m2 − 2)

]
. (69)

Case 3: f̄J (jackknife estimator). By Equation (18),

f̄J =
1

b

b∑

i=1

f̃i,

where

f̃i = b(Ȳn + 1)2 − 1

b − 1

(
∑

j 6=i

Ȳj,m

)2

− 2

(
∑

j 6=i

Ȳj,m

)
− b + 1.

Therefore, after some algebra,

E[f̄J ] = bE[Ȳ 2
n ] − 1

b(b − 1)
E




b∑

i=1

(
∑

j 6=i

Ȳj,m

)2

+ 1. (70)

In order to simplify Equation (70), notice that

E




b∑

i=1

(
∑

j 6=i

Ȳj,m

)2

 =

b∑

i=1

E



(
∑

j 6=i

Ȳj,m

)2



=
b∑

i=1



Var

[
∑

j 6=i

Ȳj,m

]
+

(
E

[
∑

j 6=i

Ȳj,m

])2




=
b∑

i=1

Var

[
∑

j 6=i

Ȳj,m

]
. (71)
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The RHS of Equation (71) can be expressed as

b∑

i=1

Var

[
∑

j 6=i

Ȳj,m

]
=

b∑

i=1

∑

j 6=i

∑

k 6=i

Cov[Ȳj,m, Ȳk,m]

= 2
[
(b − 1)Var[Ȳ1,m] + 2(b − 2)Cov[Ȳ1,m, Ȳ2,m]

]

+(b − 2)
[
(b − 1)Var[Ȳ1,m] + 2(b − 3)Cov[Ȳ1,m, Ȳ2,m]

]

(break into i = 1, b and i = 2, 3, . . . , b − 1 cases)

= b(b − 1)Var[Ȳ1,m] + 2(b − 1)(b − 2)Cov[Ȳ1,m, Ȳ2,m]. (72)

Plugging Equations (56) and (72) into Equation (70), we have

E[f̄J ] = bv2
n − 1

b(b − 1)

[
b(b − 1)v2

m + 2(b − 2)(b − 1)θ/m2
]
+ 1

= bv2
n − v2

m − 2θ(b − 2)/(bm2) + 1

= 2θ/(bm2) + 1.

We skip the derivation for Var[f̄J ] because it is very tedious when b > 2.

4.2.2 Performance of Variance Estimators

This section presents approximations for the means and variances of the various

variance estimators. We start with the expectation and variance of point estimators

for Var[f̂(µ)].

Case 1: S2
∗ (delta variance estimator). In this case we have

S2
∗(f̂

′; V̂ ) =
f̂ ′(µ)2V̂

n
=

4(Ȳn + 1)2V̂

n
,

where V̂ can be V̂B, V̂A, or V̂C . Note that all three point estimators (26)–(28) for

f ′(µ) = 2(µ + 1) are equal to 2(Ȳn + 1). Then

E[S2
∗(2(Ȳn + 1); V̂ )] =

4

n
E[(Ȳn + 1)2V̂ ]

and

Var[S2
∗(2(Ȳn + 1); V̂ )] = Var

[
f ′(µ)2V̂

n

]
= Var

[
4(Ȳn + 1)2V̂

n

]

=
16

n2

(
E[(Ȳn + 1)4V̂ 2] −

{
E[(Ȳn + 1)2V̂ ]

}2
)

. (73)
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We consider the following three subcases, labeled 1(a)–1(c):

Case 1(a): V̂ = V̂B (NBM estimator for σ2).

E[V̂B] = E

[
m

b − 1

b∑

i=1

(Ȳi,m − Ȳn)2

]

.
= E

[
σ2χ2

b−1/(b − 1)
]

for large m

=

(
σ2

b − 1

)
E[χ2

b−1]

=

(
σ2

b − 1

)
(b − 1)

= σ2. (74)

Also, since Ȳn and V̂B are asymptotically independent as m → ∞,

E[S2
∗(2(Ȳn + 1); V̂B)] = E

[
f̂ ′(µ)2V̂B

n

]
= E

[
4(Ȳn + 1)2V̂B

n

]

.
=

4

n
E[(Ȳn + 1)2]E[V̂B]

.
=

4

n
(v2

n + 1)σ2 (75)

and

Var[S2
∗(2(Ȳn + 1); V̂B)]

.
=

16

n2

(
E[(Ȳn + 1)4]E[V̂ 2

B] −
{

E[(Ȳn + 1)2]E[V̂B]
}2
)

. (76)

By Equation (63),

E[(Ȳn + 1)4] = 3v4
n + 6v2

n + 1 (77)

and by Theorem 4,

E[V̂ 2
B]

.
= E

[(
σ2χ2

b−1/(b − 1)
)2]

=

(
σ2

b − 1

)2

E[(χ2
b−1)

2]

=
σ4

(b − 1)2
(b − 1)(b + 1)

=
σ4(b + 1)

b − 1
, (78)

where the third equality is due to

E
[
(χ2

d)
2
]

= Var[χ2
d] +

(
E[χ2

d]
)2

= 2d + d2 = d(d + 2). (79)
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Substitution of Equations (56), (74), (77), and (78) into the RHS of Equation (76)

yields

Var[S2
∗(2(Ȳn + 1); V̂B)]

.
=

16

n2

[
(3v4

n + 6v2
n + 1)

(b + 1)

b − 1
σ4 − (v2

n + 1)2σ4

]

=
32σ4

n2(b − 1)

[
(b + 2)v4

n + 2(b + 2)v2
n + 1

]
. (80)

Remark 3 It has been shown that

E[V̂B] = σ2 +
γ(b + 1)

m
+ o(1/m)

= σ2 − 2θ(b + 1)

m
+ o(1/m) (81)

(see Alexopoulos and Goldsman [1], Chien et al. [10], and references therein). Note

that the RHS of Equation (81) converges to σ2, as indicated by Equation (74).

Example 2 Consider the stationary Gaussian MA(1) process with mean 0 and

θ = 0.9. The variance parameter is σ2 = (1 + θ)2 = 3.61. Table 1 compares the

analytical approximations obtained in this subsection to estimates obtained from

1000 independent experiments for various combinations of b and m.

Table 1: Performance Evaluation of S2
∗(2(Ȳn + 1); V̂B) for an MA(1) Process with

µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[S2
C ] Ê[S2

C ] Var[S2
C ] V̂ar[S2

C ]
b = 32 128 3.525E-03 3.460E-03 8.499E-07 8.541E-07

256 1.763E-03 1.757E-03 2.065E-07 2.077E-07
512 8.814E-04 8.784E-04 5.087E-08 5.368E-08

b = 128 128 8.814E-04 8.814E-04 1.293E-08 1.265E-08
256 4.407E-04 4.412E-04 3.146E-09 3.186E-09
512 2.203E-04 2.200E-04 7.755E-10 7.544E-10

The results show that the analytical approximations are quite close to the

simulation-based estimates. This is probably attributable to the consistency of the
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delta variance estimator S2
∗(2(Ȳn + 1); V̂B).

Case 1(b): V̂ = V̂A(wi) (the batched STS area estimator with weight function

w(t) = wi(t), i = 0, 1, 2). We have

E[V̂A(wi)]
.
= E[σ2χ2

b/b] =

(
σ2

b

)
b = σ2. (82)

Since Ȳn and V̂A are asymptotically independent,

E[S2
∗(2(Ȳn + 1); V̂A(wi))] = E

[
f̂ ′(µ)2V̂A

n

]

= E

[
(4Ȳn + 1)2V̂A

n

]

.
=

4

n
E[(Ȳn + 1)2]E[V̂A(wi)]

.
=

4

n
(v2

n + 1)σ2. (83)

To obtain the variance of S2
∗(2(Ȳn + 1); V̂A(wi)), we just need to know E[V̂A(wi)

2]

in Equation (76) since the other terms are the same as in Equations (77), (82) and

v2
n. Using Equation (79) we have (cf. Goldsman and Schruben [32])

E[V̂ 2
A(wi)]

.
= E

[(
σ2χ2

b/(b)
)2]

=

(
σ2

b

)2

E
[

(χ2
b)

2
]

=

(
b + 2

b

)
σ4.

Equation (73) can now have be written as

Var[S2
∗(2(Ȳn + 1); V̂A(wi))]

.
=

16

n2

[
(3v4

n + 6v2
n + 1)

(b + 2)

b
σ4 − (v2

n + 1)2σ4

]

=
32σ4

n2b

[
(b + 3)v4

n + 2(b + 3)v2
n + 1

]
.
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Remark 4 From Equation (11) with γ = −2θ, we have

E[V̂A] =





σ2 − 6θ/m + o(1/m) for w0(t) =
√

12

σ2 − 6.25θ/m + o(1/m) for w1(t) =
√

45t

σ2 + o(1/m) for w2(t) =
√

840(3t2 − 3t + 1/2).

(84)

(see Foley and Goldsman [25] and Goldsman et al. [31]). Note that the RHS of

Equation (84) converges to σ2, as indicated by Equation (82).

Example 3 Tables 2–4 compare the analytical approximations for the mean and

variance of the estimators S2
∗(2(Ȳn + 1); V̂A(wi)) to Monte Carlo estimates obtained

from 1000 independent experiments for various values of b and m. Again, the analyt-

ical approximations are quite close to the respective estimates. Also, the estimates of

the mean and variance of S2
∗(2(Ȳn + 1); V̂A(wi)) are close to the respective estimates

for S2
∗(2(Ȳn + 1); V̂B).

Table 2: Performance Evaluation of S2
∗((2Ȳn + 1); V̂A(w0)) for an MA(1) Process

with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[S2
∗ ] Ê[S2

∗ ] Var[S2
∗ ] V̂ar[S2

∗ ]
b = 32 128 3.525E-03 3.443E-03 8.247E-07 8.277E-07

256 1.763E-03 1.744E-03 2.002E-07 2.036E-07
512 8.814E-04 8.865E-04 4.930E-08 4.821E-08

b = 128 128 8.814E-04 8.724E-04 1.284E-08 1.356E-08
256 4.407E-04 4.396E-04 3.122E-09 3.068E-09
512 2.203E-04 2.201E-04 7.695E-10 7.807E-10
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Table 3: Performance Evaluation of S2
∗(2(Ȳn + 1); V̂A(w1)) for an MA(1) Process

with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[S2
∗ ] Ê[S2

∗ ] Var[S2
∗ ] V̂ar[S2

∗ ]
b = 32 128 3.525E-03 3.438E-03 8.247E-07 8.279E-07

256 1.763E-03 1.744E-03 2.002E-07 2.058E-07
512 8.814E-04 8.873E-04 4.930E-08 4.821E-08

b = 128 128 8.814E-04 8.712E-04 1.284E-08 1.347E-08
256 4.407E-04 4.394E-04 3.122E-09 3.130E-09
512 2.203E-04 2.203E-04 7.695E-10 7.507E-10

Table 4: Performance Evaluation of S2
∗(2(Ȳn + 1); V̂A(w2)) for an MA(1) Process

with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[S2
∗ ] Ê[S2

∗ ] Var[S2
∗ ] V̂ar[S2

∗ ]
b = 32 128 3.525E-03 3.511E-03 8.247E-07 8.674E-07

256 1.763E-03 1.751E-03 2.002E-07 2.195E-07
512 8.814E-04 8.811E-04 4.930E-08 4.856E-08

b = 128 128 8.814E-04 8.822E-04 1.284E-08 1.316E-08
256 4.407E-04 4.418E-04 3.122E-09 2.961E-09
512 2.203E-04 2.200E-04 7.695E-10 7.816E-10

Case 1(c): V̂ = V̂C(wi) (combination of the NBM and batched STS area estimators).

From Theorem 4 we have

E[V̂C(wi)]
.
= σ2. (85)

Again, since Ȳn and V̂C are asymptotically independent,

E[S2
∗(2(Ȳn + 1); V̂C(wi))] = E

[
4(Ȳn + 1)2V̂C(wi)

n

]

.
=

4

n
(v2

n + 1)σ2. (86)

As with Equation (76), we just need to obtain E[V̂C(wi)
2] since the other terms
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come from Equations (56), (77), and (85). We have

E

[
V̂C(wi)

2
]

.
= E

[(
σ2χ2

2b−1/(2b − 1)
)2]

=

(
σ2

2b − 1

)2

E
[
(χ2

2b−1)
2
]

=

(
σ2

2b − 1

)2

(2b − 1)(2b + 1)

=

(
2b + 1

2b − 1

)
σ4,

where the third equality is due to Equation (79).

Finally,

Var[S2
∗(2(Ȳn + 1); V̂C(wi))]

.
=

16

n2

[
(3v4

n + 6v2
n + 1)

(2b + 1)

2b − 1
σ4 − (v2

n + 1)2σ4

]

=
32σ4

n2(2b − 1)

[
2(b + 1)v4

n + 4(b + 1)v2
n + 1

]
.

Example 4 Tables 5–7 present experimental results related to the Gaussian MA(1)

process with mean 0, θ = 0.9, the function f(µ) = (µ + 1)2, and the estimators

S2
∗(2(Ȳn + 1); V̂C(wi)) based on the weight functions w0, w1, and w2.

Table 5: Performance Evaluation of S2
∗(2(Ȳn + 1); V̂C(w0)) for an MA(1) Process

with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[S2
∗ ] Ê[S2

∗ ] Var[S2
∗ ] V̂ar[S2

∗ ]
b = 32 128 3.525E-03 3.451E-03 4.405E-07 4.301E-07

256 1.763E-03 1.750E-03 1.044E-07 1.051E-07
512 8.814E-04 8.825E-04 2.538E-08 2.535E-08

b = 128 128 8.814E-04 8.769E-04 6.785E-09 7.178E-09
256 4.407E-04 4.404E-04 1.610E-09 1.617E-09
512 2.203E-04 2.200E-04 3.916E-10 4.155E-10
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Table 6: Performance Evaluation of S2
∗(2(Ȳn + 1); V̂C(w1)) for an MA(1) Process

with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[S2
∗ ] Ê[S2

∗ ] Var[S2
∗ ] V̂ar[S2

∗ ]
b = 32 128 3.525E-03 3.449E-03 4.405E-07 4.317E-07

256 1.763E-03 1.751E-03 1.044E-07 1.069E-07
512 8.814E-04 8.829E-04 2.538E-08 2.528E-08

b = 128 128 8.814E-04 8.763E-04 6.785E-09 7.169E-09
256 4.407E-04 4.403E-04 1.610E-09 1.632E-09
512 2.203E-04 2.201E-04 3.916E-10 4.024E-10

Table 7: Performance Evaluation of S2
∗(2(Ȳn + 1); V̂C(w2)) for an MA(1) Process

with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[S2
∗ ] Ê[S2

∗ ] Var[S2
∗ ] V̂ar[S2

∗ ]
b = 32 128 3.525E-03 3.486E-03 4.405E-07 4.335E-07

256 1.763E-03 1.754E-03 1.044E-07 1.084E-07
512 8.814E-04 8.797E-04 2.538E-08 2.581E-08

b = 128 128 8.814E-04 8.818E-04 6.785E-09 7.080E-09
256 4.407E-04 4.415E-04 1.610E-09 1.644E-09
512 2.203E-04 2.200E-04 3.916E-10 4.083E-10

The entries of columns 3 and 4 indicate that the estimates of E[S2
∗ ] are quite close

to the respective analytical approximations. Also, the estimates of Var[S2
∗ ] are quite

close to the respective analytical approximations. Finally, notice that the estimates

of the variance of S2
∗(2(Ȳn + 1); V̂C(wi)) are smaller than the respective estimates for

S2
∗(2(Ȳn + 1); V̂A(wi)) and S2

∗(2(Ȳn + 1); V̂B).

Case 2: S2
B and S2

J (NBM and jackknife variance estimators). Since the analytic

calculation of E[S2
B], E[S2

J ], Var[S2
B], and Var[S2

J ] is too tedious, we compute estimates

based on 1000 independent experiments.

Example 5 This example estimates the mean and variance of S2
B and S2

J using a

Monte Carlo experiment. We use a stationary MA(1) process with mean 0 and

42



θ = 0.9. In Table 8, b and m denote the number of batches and batch size, respectively.

One can see that S2
J has a slightly smaller sample mean and variance than the NBM

variance estimator S2
B.

Table 8: Performance Evaluation of S2
B and S2

J for an MA(1) Process with µ = 0
and θ = 0.9, and f(µ) = (µ + 1)2

m Ê[S2
B] Ê[S2

J ] V̂ar[S2
B] V̂ar[S2

J ]
b = 32 128 3.510E-03 3.460E-03 9.796E-07 8.535E-07

256 1.766E-03 1.757E-03 2.196E-07 2.078E-07
512 8.807E-04 8.784E-04 5.509E-08 5.368E-08

b = 128 128 8.939E-04 8.814E-04 1.424E-08 1.265E-08
256 4.443E-04 4.412E-04 3.457E-09 3.186E-09
512 2.207E-04 2.200E-04 7.884E-10 7.544E-10

4.2.3 Performance of Confidence Interval Estimators

Now we consider the performance of confidence intervals. First, we study the expected

interval half-width E[H] and the variance of the confidence interval half-width, Var[H].

Then, we deal with the coverage of the CIs. Unlike the case of the variance estimators

for f̂(µ), we start with the combined variance estimator. The CI in Equation (54)

has half-width H(f̂ ′(µ); V̂ ) = tdf,1−α/2|f̂ ′(µ)|
√

V̂ /n. Therefore,

E[H(f̂ ′(µ); V̂ )] = tdf,1−α/2
1√
n

E

[
|f̂ ′(µ)|

√
V̂
]

and

Var[H(f̂ ′(µ); V̂ )] = t2df,1−α/2

1

n
Var

[
|f̂ ′(µ)|

√
V̂
]
.

Since f(µ) = (µ + 1)2 and f̂ ′(µ) = 2(Ȳn + 1), we have

H(f̂ ′(µ); V̂ ) = tdf,1−α/2|2(Ȳn + 1)|
√

V̂ /n,

E[H(f̂ ′(µ); V̂ )]
.
= tdf,1−α/2

2√
n

E[V̂ 1/2], for large m
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and

Var[H(f̂ ′(µ); V̂ )] = t2df,1−α/2

4

n
Var[|Ȳn + 1|V̂ 1/2].

Above, we have used the approximation E[|Ȳn + 1|] .
= E[Ȳn + 1] = 1 because Ȳn is

normal with a variance that goes to 0 as n → ∞.

Based on V̂ , we have the following cases.

Case 1: V̂ = V̂B (the batch means estimator for σ2). We have

E

[
V̂B

1/2
]

= E




√√√√ m

b − 1

b∑

i=1

(Ȳi,m − Ȳn)2




.
= E

[ √
σ2χ2

b−1/(b − 1)

]

=

(
σ2

b − 1

)1/2

E

[√
χ2

b−1

]

(see Mood et al. [50], Appendix)

=

(
2σ2

b − 1

)1/2
Γ(b/2)

Γ((b − 1)/2)
,

where Γ(·) is defined by

Γ(t) =

∫ ∞

0

xt−1e−1dx fort > 0.

Therefore,

E[H(f̂ ′(µ); V̂B)]
.
= tb−1,1−α/2

23/2

√
n

(
σ2

b − 1

)1/2
Γ(b/2)

Γ((b − 1)/2)
. (87)

Furthermore, since

Var

[
|Ȳn + 1|V̂ 1/2

]
= E[V̂B(Ȳn + 1)2] −

(
E

[
V̂

1/2
B |Ȳn + 1|

])2

.
= E[V̂B]E[(Ȳn + 1)2] −

(
E

[
V̂

1/2
B

]
E[Ȳn + 1]

)2

(for large m)

.
= σ2(v2

n + 1) − 2

(
σ2

b − 1

)(
Γ(b/2)

Γ((b − 1)/2)

)2

,

we have

Var[H(f̂ ′(µ); V̂B)]
.
= t2b−1,1−α/2

4

n

[
σ2(v2

n + 1) − 2

(
σ2

b − 1

)(
Γ(b/2)

Γ((b − 1)/2)

)2
]

. (88)
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Example 6 Table 9 contains analytical and experimental results related to the

half-width of the 90% confidence interval resulting from the variance estimator

S2
∗(2(Ȳn + 1); V̂B). The entries in columns 3 and 5 are based on Equations (87)

and (88), respectively, and the simulation results are based on 1000 independent

experiments. The results show that the analytical approximations are close to the

respective estimates.

Table 9: Performance Evaluation of the CI Half-width H(2(Ȳn + 1); V̂B) for the
Gaussian MA(1) Process with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[H] Ê[H] Var[H] V̂ar[H]
b = 32 128 9.986E-02 9.885E-02 1.711E-04 1.744E-04

256 7.061E-02 7.048E-02 8.330E-05 8.332E-05
512 4.993E-02 4.982E-02 4.109E-05 4.334E-05

b = 128 128 4.909E-02 4.909E-02 1.004E-05 9.806E-06
256 3.471E-02 3.473E-02 4.887E-06 4.944E-06
512 2.455E-02 2.453E-02 2.410E-06 2.345E-06

Case 2: V̂ = V̂A(wi) (the batched STS area estimators with w0(t) =
√

12, w1(t) =
√

45t, or w2(t) =
√

840(3t2 − 3t + 1/2)). Since

E

[
V̂

1/2
A

]
= E

[√
σ2χ2

b/b

]
=

(
2σ2

b

)1/2
Γ((b + 1)/2)

Γ(b/2)
,

we have

E[H]
.
= tb,1−α/2

23/2

√
n

(
σ2

b

)1/2
Γ((b + 1)/2)

Γ(b/2)
. (89)

Also,

Var

[
|Ȳn + 1|V̂ 1/2

]
= E[V̂A(Ȳn + 1)2] −

(
E

[
V̂ 1/2|Ȳn + 1|

])2

.
= σ2(v2

n + 1) − 2σ2

b

(
Γ((b + 1)/2)

Γ(b/2)

)2

.

Therefore,

Var[H]
.
= t2b,1−α/2

4

n
σ2

[
(v2

n + 1) − 2

b

(
Γ((b + 1)/2)

Γ(b/2)

)2
]

. (90)
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Example 7 Tables 10–12 contain analytical and experimental results relative to

the half-width of the CI for f(µ) = (µ + 1)2 and the Gaussian MA(1) process

with mean 0 and θ = 0.9. The variance is estimated by S2
∗(2(Ȳn + 1); V̂A(wi)) with

weight functions w0, w1, and w2. The entries of columns 3 and 5 are based on the

approximations in Equations (89) and (90), respectively. Again, the estimates in

columns 4 and 6 are quite close to the approximate values from Equations (89) and

(90), respectively. Also, the mean and variance estimates of H(2(Ȳn + 1); V̂A(wi)) are

close to those of H(2(Ȳn + 1); V̂B).

Table 10: Performance Evaluation of the CI Half-width H(2(Ȳn + 1); V̂A(w0)) for
the Gaussian MA(1) Process with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[H] Ê[H] Var[H] V̂ar[H]
b = 32 128 9.979E-02 9.853E-02 1.657E-04 1.692E-04

256 7.056E-02 7.016E-02 8.063E-05 8.203E-05
512 4.990E-02 5.005E-02 3.976E-05 3.854E-05

b = 128 128 4.909E-02 4.883E-02 9.965E-06 1.057E-05
256 3.471E-02 3.467E-02 4.849E-06 4.771E-06
512 2.455E-02 2.453E-02 2.391E-06 2.435E-06

Table 11: Performance Evaluation of the CI Half-width H(2(Ȳn + 1); V̂A(w1)) for
the Gaussian MA(1) Process with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[H] Ê[H] Var[H] V̂ar[H]
b = 32 128 9.979E-02 9.846E-02 1.657E-04 1.696E-04

256 7.056E-02 7.016E-02 8.063E-05 8.279E-05
512 4.990E-02 5.007E-02 3.976E-05 3.852E-05

b = 128 128 4.909E-02 4.880E-02 9.965E-06 1.051E-05
256 3.471E-02 3.466E-02 4.849E-06 4.855E-06
512 2.455E-02 2.454E-02 2.391E-06 2.338E-06
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Table 12: Performance Evaluation of the CI Half-width H(2(Ȳn + 1); V̂A(w2)) for
the Gaussian MA(1) Process with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[H] Ê[H] Var[H] V̂ar[H]
b = 32 128 9.979E-02 9.950E-02 1.657E-04 1.734E-04

256 7.056E-02 7.027E-02 8.063E-05 8.669E-05
512 4.990E-02 4.989E-02 3.976E-05 3.909E-05

b = 128 128 4.909E-02 4.911E-02 9.965E-06 1.017E-05
256 3.471E-02 3.476E-02 4.849E-06 4.580E-06
512 2.455E-02 2.452E-02 2.391E-06 2.434E-06

Case 3: V̂ = V̂C (the combination of NBM and batched STS area estimators). We

have

E

[
V̂

1/2
C

]
.
= E

[ √
σ2χ2

(2b−1)/(2b − 1)
]

=

(
2σ2

2b − 1

)1/2
Γ(b)

Γ((2b − 1)/2)

and

E[H(f̂ ′(µ); V̂C)]
.
= t2b−1,1−α/2

2√
n

(
2σ2

2b − 1

)1/2
Γ(b)

Γ((2b − 1)/2)
. (91)

Then

Var

[
|Ȳn + 1|V̂ 2

C

]
= E[V̂C(Ȳn + 1)2] −

(
E

[
V̂ 2

C |Ȳn + 1|
])2

.
= σ2(v2

n + 1) −
[

2σ2

2b − 1

(
Γ(b)

Γ((2b − 1)/2)

)2
]

and

Var[H(f̂ ′(µ); V̂C)]
.
= t22b−1,1−α/2

4

n
σ2

[
(v2

n + 1) − 2

2b − 1

(
Γ(b)

Γ((2b − 1)/2)

)2
]

. (92)

Example 8 Tables 13–15 present analytical and experimental results relative to the

half-width of the 90% CI for f(µ) = (µ + 1)2 and an MA(1) process with mean 0
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and θ = 0.9. The variance is estimated by S2
C(2(Ȳn + 1); V̂C(wi)) based on V̂ = V̂C

and the weight functions w0, w1, and w2. The entries of columns 3 and 5 are based

on the approximations in Equations (91) and (92), respectively. The results show

that the approximate values from Equations (91) and (92) are quite close to the

estimates in columns 4 and 6, respectively. Also, the mean and variance estimates of

H(2(Ȳn+1); V̂C(wi)) are less than those of H(2(Ȳn+1); V̂A(wi)) and H(2(Ȳn+1); V̂B).

Table 13: Performance Evaluation of the CI Half-width H(2(Ȳn + 1); V̂C(w0)) for
the Gaussian MA(1) Process with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[H] Ê[H] Var[H] V̂ar[H]
b = 32 128 9.873E-02 9.763E-02 8.632E-05 8.566E-05

256 6.981E-02 6.955E-02 4.100E-05 4.108E-05
512 4.936E-02 4.939E-02 1.996E-05 1.984E-05

b = 128 128 4.896E-02 4.883E-02 5.234E-06 5.521E-06
256 3.462E-02 3.461E-02 2.485E-06 2.495E-06
512 2.448E-02 2.446E-02 1.209E-06 1.283E-06

Table 14: Performance Evaluation of the CI Half-width H(2(Ȳn + 1); V̂C(w1)) for
the Gaussian MA(1) Process with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[H] Ê[H] Var[H] V̂ar[H]
b = 32 128 9.873E-02 9.760E-02 8.632E-05 8.640E-05

256 6.981E-02 6.955E-02 4.100E-05 4.153E-05
512 4.936E-02 4.940E-02 1.996E-05 1.985E-05

b = 128 128 4.896E-02 4.881E-02 5.234E-06 5.533E-06
256 3.462E-02 3.460E-02 2.485E-06 2.522E-06
512 2.448E-02 2.447E-02 1.209E-06 1.239E-06
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Table 15: Performance Evaluation of the CI Half-width H(2(Ȳn + 1); V̂C(w2)) for
the Gaussian MA(1) Process with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m E[H] Ê[H] Var[H] V̂ar[H]
b = 32 128 9.873E-02 9.813E-02 8.632E-05 8.571E-05

256 6.981E-02 6.961E-02 4.100E-05 4.202E-05
512 4.936E-02 4.931E-02 1.996E-05 2.030E-05

b = 128 128 4.896E-02 4.897E-02 5.234E-06 5.402E-06
256 3.462E-02 3.465E-02 2.485E-06 2.537E-06
512 2.448E-02 2.446E-02 1.209E-06 1.257E-06

Let us now consider the expectation and variance of the half-width of CIs using S2
B

(the NBM variance estimator) and S2
J (the jackknife variance estimator). The half-

width of the CI resulting from Equation (35), is H(S2
l ) = tdf,1−α/2

√
S2

l /b, l ∈ {B, J}.

Hence

E[H(S2
l )] = tb,1−α/2E[Sl]/

√
b.

Since the derivation or approximation of E[Sl] is difficult, even for our Gaussian MA(1)

process, we compute estimates of E[H] based on 1000 independent experiments with

α = 0.10. In Table 16:

• Ê[H(S2
l )] is the sample mean of the half-widths of the approximate 90% CIs

based on the variance estimator S2
l , l ∈ {B, J}.

• V̂ar[H(S2
l )] is the sample variance of the half-widths of the approximate 90%

CIs based on the variance estimator S2
l , l ∈ {B, J}.

.
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Table 16: Performance Evaluation of the CI Half-widths H(S2
B) and H(S2

J) for the
Gaussian MA(1) Process with µ = 0 and θ = 0.9, and f(µ) = (µ + 1)2

m Ê[H(S2
B)] Ê[H(S2

J)] V̂ar[H(S2
B)] V̂ar[H(S2

J)]
b = 32 128 9.948E-02 9.885E-02 1.950E-04 1.743E-04

256 7.064E-02 7.048E-02 8.630E-05 8.336E-05
512 4.988E-02 4.982E-02 4.419E-05 4.334E-05

b = 128 128 4.943E-02 4.909E-02 1.088E-05 9.806E-06
256 3.485E-02 3.473E-02 5.306E-06 4.944E-06
512 2.457E-02 2.453E-02 2.434E-06 2.345E-06

The results indicate that the mean and variance of H(S2
J) seem to be higher

than those of H(2Ȳn; V̂C(wi)). On the other hand, the mean and variance of H(S2
J)

appear to be smaller than those of H(S2
B).

We now turn to the coverage of the CIs. Table 17 contains estimated coverage

of 90% CIs for f(µ) = (µ + 1)2. Since all estimates are based on 1000 independent

runs, the standard errors are bounded by 1.5 × 10−3. From now on, we will use the

following abbreviations:

• BM: denotes S2
∗(2(Ȳn + 1); V̂B).

• STS(wi): denotes S2
∗(2(Ȳn + 1); V̂A(w0)), i = 0, 1, 2.

• BM+STS(wi): denotes S2
∗(2(Ȳn + 1); V̂C(w0)), i = 0, 1, 2.
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Table 17: Coverage Estimates for 90% CIs for f(µ) = (µ + 1)2 based on the Gaussian MA(1) Process with µ = 0 and θ = 0.9

Variance Estimator
Coverage m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 0.913 0.913 0.912 0.919 0.907 0.908 0.920 0.912 0.913
Cl. for f 256 0.900 0.901 0.903 0.910 0.903 0.903 0.897 0.894 0.900

512 0.911 0.908 0.903 0.907 0.911 0.907 0.909 0.908 0.911
b = 128 128 0.905 0.903 0.902 0.908 0.906 0.904 0.907 0.910 0.905
Cl. for f 256 0.901 0.898 0.900 0.901 0.899 0.900 0.902 0.898 0.901

512 0.908 0.903 0.904 0.899 0.902 0.902 0.902 0.906 0.908

b = 32 128 0.883 0.882 0.883 0.891 0.888 0.887 0.887 0.885 0.884
BM for f 256 0.900 0.894 0.894 0.891 0.892 0.890 0.897 0.895 0.900

512 0.900 0.905 0.903 0.901 0.904 0.904 0.896 0.900 0.900
b = 128 128 0.781 0.772 0.776 0.774 0.779 0.781 0.778 0.782 0.781

BM for f 256 0.818 0.812 0.814 0.818 0.820 0.822 0.816 0.818 0.818
512 0.856 0.863 0.864 0.868 0.863 0.861 0.864 0.858 0.856

b = 32 128 0.912 0.913 0.910 0.920 0.907 0.908 0.917 0.912 0.911
Jk. for f 256 0.899 0.899 0.904 0.911 0.903 0.903 0.897 0.893 0.899

512 0.910 0.908 0.902 0.907 0.909 0.905 0.906 0.907 0.910
b = 128 128 0.905 0.901 0.900 0.908 0.906 0.906 0.908 0.910 0.905
Jk. for f 256 0.901 0.897 0.898 0.901 0.899 0.900 0.902 0.899 0.901

512 0.907 0.902 0.903 0.899 0.902 0.903 0.902 0.906 0.907
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Below is a summary of observations based on Table 17:

• The classical and jackknife point estimation approaches induce good coverage

for all variance estimators of f̂(µ).

• The NBM point estimator induces lower coverage than the nominal 90% for all

variance estimators of f̂(µ) when b = 128. This can be attributed to the high

bias of f̄B: Muñoz and Glynn [51] point out that the coefficient of n−1 in the

asymptotic expansion for Bias[f̄B] is b times the corresponding coefficient in the

asymptotic expansion for Bias[f̂C ].

• In terms of coverage, CIs based on the jackknife point estimator and the delta

variance estimator (in columns BM+STS(wi)) for f̂(µ) seem to perform best.

Notice that the jackknife point estimator for f(µ) gives the lowest bias among

others with no significant increase in variance (see Appendix 1).

4.2.4 Summary of Experimental Results

In this subsection, we summarize the results from Tables 1–17.

• In Tables 1–8, we considered the mean and variance of the variance estimators

S2
B, S2

J , and S2
∗ . The delta variance estimator (in columns BM+STS(wi)) for

f̂(µ) is less variable than the other estimators.

• In Tables 9–16, we considered the mean and variance of the half-width of CIs for

f(µ). The CIs based on the delta variance estimator (in columns BM+STS(wi))

have smaller and less variable half-width than the alternative CIs.

• In Table 17, the CIs based on the jackknife point estimator and the delta vari-

ance estimator (in columns BM+STS(wi)) for f̂(µ) seem to perform best since

the jackknife point estimator for f(µ) has the lowest bias with no significant

increase in variance. The delta variance estimator (in columns BM+STS(wi))
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exhibits the solid statistical properties of the combined variance parameter es-

timator in Equations (16) and (31).

4.3 Performance Evaluation when

f(µ) = 1/(µ + 1)

In this subsection, we evaluate our methods using the function f(µ) = 1/(µ + 1).

Since analytical derivations are very hard to obtain, we rely solely on Monte Carlo

experiments. As performance measures for CIs, we will consider: E[H], the expected

interval half-width; Var[H], the variance of the interval half-width; and C, the con-

fidence interval achieved coverage. As performance measures for the estimators of

Var[f̂(µ)] we consider their mean and variance. The Appendix contains the simula-

tion results for the bias and variance of f̂(µ).

As before, all estimates are based on 1000 independent experiments. Tables 18–24

contain the experimental results. We first look at the performance of the CIs; then

we look at the variance estimates.

4.3.1 Discussion

• Coverage: We categorize our presentation based on the point estimator of f ′(µ).

Recall that the CIs based on the batch means and jackknife variance estimators for

f̂(µ) are not affected by the choice of point estimators for |f ′(µ)|—the entries of the

last two columns of Tables 18–20 are identical.

B Classical point estimator for |f ′(µ)| = 1/(µ + 1)2: First, the batch means

point estimator for f(µ) yields CIs with poor coverage. This is due to the

relatively high bias and variance of the NBM point estimates for f(µ) = 1/(µ+1)

(see Appendix 1). Second, the classical point estimator for f(µ) yields CIs with

good estimated coverage. This is probably due to the relatively lower bias and

variance of the classical point estimator. Third, the jackknife point estimator
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for f(µ) yields CIs with coverage that is as good as that of the classical point

estimator. Recall that the jackknife estimator for f(µ) has lower bias and a little

lower variance than the classical estimator except when b = 128 and m = 512

(see Appendix 1). The CIs based on the jackknife point estimator for f(µ), the

classical point estimator for |f ′(µ)|, and the delta variance estimator (in columns

BM through BM+STS(w2)) seem to perform as well, in terms of coverage, as

the jackknife-based CIs from Muñoz and Glynn [51].

B NBM point estimator for |f ′(µ)| = 1/(µ + 1)2: All entries of Table 19

are a bit larger than the entries of Table 18 except for the entries in the last

two columns. This is due to the relatively higher variance of the batch means

point estimator for |f ′(µ)|. Except for the NBM point estimator for f(µ), all

combinations have good coverage performance. As m increases for fixed b, the

differences in the entries of Table 18 and 19 decrease. This is because the

difference in the bias and variance between the classical point estimates and the

NBM point estimates for |f ′(µ)| decreases.

B Jackknife point estimator for |f ′(µ)| = 1/(µ + 1)2: Since the last two

columns in Tables 18–20 are identical, we consider only columns BM through

BM+STS(w2). As with Tables 18 and 19, all combinations except for the batch

means point estimator for f(µ) induce good CIs with coverage.

Based on the coverage estimates in Tables 18-20, we recommend the jackknife point

estimators for f(µ) and f ′(µ). With regard to the variance estimator for f̂(µ), CIs

using the delta variance estimator (in columns BM through BM+STS(w2)) seem to

perform as well as those based on the jackknife variance estimator.

• Sample mean of half-width: Among CIs with good coverage, the one with

smaller sample mean half-width is preferable. Among the classical, batch means

and jackknife point estimators for |f ′(µ)| = 1/(µ + 1)2, we recommend the jackknife
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point estimator. This is because for all entries corresponding to the delta variance

estimators (in columns BM through BM+STS(w2)) the jackknife point estimator for

|f ′(µ)| outperforms the other point estimators. Recall that the last two columns

corresponding to the batch means and the jackknife variance estimators are identical.

Therefore, if we consider both half-width and coverage as performance measures,

we recommend the jackknife point estimators for f(µ) and |f ′(µ)| = 1/(µ + 1)2.

With regard to half-width, CIs based on the delta variance estimator (in columns

BM through BM+STS(w2)) seem to perform as well as those based on the jackknife

variance estimator S2
J .

• Sample variance of half-width: Among the classical, batch means and jack-

knife point estimators for |f ′(µ)| = 1/(µ + 1)2, we recommend the jackknife point

estimator. This is due to the lowest variance of the jackknife point estimator. Among

the variance estimators, the delta variance estimators using the variance parameter

estimator BM+STS(wi) dominate all other estimators. This is probably due to their

lower variance.

• Best choice: For this instance, we recommend the jackknife point estimators for

f(µ) and |f ′(µ)| and the delta variance estimator S2
∗ (preferably with weight function

w2). The resulting CIs exhibit good coverage, and have half-widths that are smaller

and less variable than the half-widths of the CIs proposed by Muñoz and Glynn [51].
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Table 18: Coverage Estimates of 90% CIs for f(µ) = 1/(µ + 1) based on a Gaussian MA(1) Process with µ = 0 and θ = 0.9

Variance Estimator
Coverage m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 0.913 0.920 0.918 0.919 0.917 0.918 0.922 0.936 0.913
Cl. for f 256 0.892 0.903 0.904 0.907 0.904 0.905 0.909 0.918 0.893
Cl. for f ′ 512 0.912 0.910 0.910 0.907 0.912 0.916 0.912 0.915 0.912
b = 128 128 0.905 0.903 0.898 0.907 0.903 0.903 0.907 0.932 0.905
Cl. for f 256 0.899 0.901 0.899 0.899 0.900 0.900 0.901 0.914 0.899
Cl. for f ′ 512 0.906 0.901 0.900 0.898 0.900 0.900 0.903 0.911 0.906

b = 32 128 0.728 0.713 0.719 0.719 0.706 0.714 0.714 0.801 0.726
BM for f 256 0.821 0.800 0.804 0.808 0.809 0.810 0.805 0.847 0.820
Cl. for f ′ 512 0.868 0.861 0.863 0.856 0.859 0.858 0.860 0.871 0.868
b = 128 128 0.345 0.347 0.343 0.345 0.341 0.343 0.343 0.424 0.345

BM for f 256 0.608 0.612 0.616 0.616 0.611 0.612 0.612 0.644 0.608
Cl. for f ′ 512 0.783 0.778 0.777 0.784 0.784 0.781 0.783 0.797 0.783

b = 32 128 0.916 0.919 0.921 0.919 0.918 0.920 0.921 0.937 0.916
Jk. for f 256 0.898 0.905 0.904 0.909 0.907 0.906 0.908 0.921 0.898
Cl. for f ′ 512 0.912 0.910 0.909 0.911 0.912 0.916 0.912 0.913 0.912
b = 128 128 0.905 0.905 0.903 0.907 0.903 0.903 0.906 0.931 0.905
Jk. for f 256 0.898 0.899 0.900 0.897 0.900 0.901 0.900 0.913 0.898
Cl. for f ′ 512 0.904 0.901 0.902 0.898 0.900 0.900 0.902 0.911 0.904
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Table 19: Coverage Estimates of 90% CIs for f(µ) = 1/(µ + 1) based on a Gaussian MA(1) Process with µ = 0 and θ = 0.9

Variance Estimator
Coverage m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 0.937 0.937 0.935 0.943 0.940 0.937 0.941 0.936 0.913
Cl. for f 256 0.920 0.910 0.916 0.921 0.917 0.919 0.913 0.918 0.893
BM for f ′ 512 0.918 0.916 0.915 0.917 0.921 0.921 0.919 0.915 0.912
b = 128 128 0.928 0.935 0.935 0.933 0.932 0.933 0.932 0.932 0.905
Cl. for f 256 0.911 0.910 0.911 0.910 0.912 0.912 0.912 0.914 0.899
BM for f ′ 512 0.913 0.905 0.909 0.909 0.906 0.908 0.909 0.911 0.906

b = 32 128 0.786 0.767 0.768 0.774 0.770 0.772 0.779 0.801 0.726
BM for f 256 0.843 0.822 0.823 0.834 0.826 0.825 0.836 0.847 0.820
BM for f ′ 512 0.872 0.868 0.870 0.863 0.865 0.863 0.865 0.871 0.868
b = 128 128 0.401 0.403 0.404 0.410 0.397 0.400 0.402 0.424 0.345

BM for f 256 0.640 0.634 0.635 0.638 0.633 0.630 0.635 0.644 0.608
BM for f ′ 512 0.795 0.787 0.785 0.791 0.791 0.793 0.794 0.797 0.783

b = 32 128 0.935 0.935 0.936 0.944 0.938 0.940 0.940 0.937 0.916
Jk. for f 256 0.920 0.912 0.918 0.917 0.917 0.920 0.914 0.921 0.898
BM for f ′ 512 0.915 0.916 0.915 0.917 0.919 0.920 0.918 0.913 0.912
b = 128 128 0.928 0.934 0.935 0.932 0.930 0.934 0.931 0.931 0.905
Jk. for f 256 0.911 0.910 0.911 0.908 0.911 0.912 0.911 0.913 0.898
BM for f ′ 512 0.913 0.906 0.908 0.910 0.907 0.907 0.909 0.911 0.904
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Table 20: Coverage Estimates of 90% CIs for f(µ) = 1/(µ + 1) based on a Gaussian MA(1) Process with µ = 0 and θ = 0.9

Variance Estimator
Coverage m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 0.913 0.918 0.917 0.918 0.917 0.918 0.922 0.936 0.913
Cl. for f 256 0.892 0.903 0.903 0.907 0.904 0.905 0.909 0.918 0.893
Jk. for f ′ 512 0.912 0.910 0.909 0.907 0.911 0.916 0.912 0.915 0.912
b = 128 128 0.905 0.903 0.898 0.907 0.903 0.903 0.907 0.932 0.905
Cl. for f 256 0.899 0.901 0.899 0.899 0.899 0.900 0.901 0.914 0.899
Jk. for f ′ 512 0.906 0.901 0.900 0.898 0.900 0.900 0.903 0.911 0.906

b = 32 128 0.726 0.711 0.717 0.716 0.705 0.709 0.713 0.801 0.726
BM for f 256 0.821 0.798 0.804 0.807 0.809 0.809 0.805 0.847 0.820
Jk. for f ′ 512 0.867 0.861 0.863 0.856 0.859 0.858 0.859 0.871 0.868
b = 128 128 0.345 0.347 0.343 0.345 0.341 0.342 0.343 0.424 0.345

BM for f 256 0.608 0.612 0.615 0.615 0.611 0.612 0.612 0.644 0.608
Jk. for f ′ 512 0.783 0.778 0.777 0.784 0.784 0.781 0.783 0.797 0.783

b = 32 128 0.915 0.918 0.920 0.918 0.918 0.919 0.919 0.937 0.916
Jk. for f 256 0.898 0.905 0.903 0.908 0.906 0.906 0.908 0.921 0.898
Jk. for f ′ 512 0.912 0.910 0.907 0.911 0.912 0.916 0.912 0.913 0.912
b = 128 128 0.905 0.903 0.901 0.906 0.903 0.902 0.906 0.931 0.905
Jk. for f 256 0.897 0.898 0.900 0.897 0.900 0.901 0.900 0.913 0.898
Jk. for f ′ 512 0.904 0.901 0.902 0.898 0.900 0.900 0.902 0.911 0.904
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Table 21: Sample Mean of Half-widths for 90% CIs for f(µ) = 1/(µ + 1) based on a Gaussian MA(1) Process with µ = 0 and
θ = 0.9

Variance Estimator

Ê[H] m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 4.967E-02 4.950E-02 4.948E-02 5.000E-02 4.905E-02 4.904E-02 4.931E-02 5.567E-02 4.968E-02
Cl. for f ′ 256 3.540E-02 3.524E-02 3.523E-02 3.529E-02 3.493E-02 3.493E-02 3.497E-02 3.745E-02 3.541E-02

512 2.494E-02 2.505E-02 2.506E-02 2.497E-02 2.472E-02 2.473E-02 2.468E-02 2.561E-02 2.494E-02
b = 128 128 2.457E-02 2.443E-02 2.441E-02 2.457E-02 2.443E-02 2.443E-02 2.450E-02 2.792E-02 2.457E-02

Cl. for f ′ 256 1.736E-02 1.732E-02 1.732E-02 1.737E-02 1.729E-02 1.729E-02 1.731E-02 1.840E-02 1.736E-02
512 1.226E-02 1.226E-02 1.226E-02 1.226E-02 1.222E-02 1.223E-02 1.222E-02 1.261E-02 1.226E-02

b = 32 128 5.456E-02 5.419E-02 5.417E-02 5.474E-02 5.379E-02 5.378E-02 5.407E-02 5.567E-02 4.968E-02
BM for f ′ 256 3.703E-02 3.680E-02 3.680E-02 3.686E-02 3.651E-02 3.651E-02 3.654E-02 3.745E-02 3.541E-02

512 2.548E-02 2.559E-02 2.560E-02 2.550E-02 2.526E-02 2.526E-02 2.521E-02 2.561E-02 2.494E-02
b = 128 128 2.703E-02 2.685E-02 2.683E-02 2.701E-02 2.687E-02 2.686E-02 2.694E-02 2.792E-02 2.457E-02

BM for f ′ 256 1.815E-02 1.811E-02 1.810E-02 1.815E-02 1.808E-02 1.808E-02 1.810E-02 1.840E-02 1.736E-02
512 1.253E-02 1.252E-02 1.253E-02 1.252E-02 1.249E-02 1.249E-02 1.249E-02 1.261E-02 1.226E-02

b = 32 128 4.954E-02 4.937E-02 4.935E-02 4.987E-02 4.892E-02 4.891E-02 4.918E-02 5.567E-02 4.968E-02
Jk. for f ′ 256 3.536E-02 3.519E-02 3.519E-02 3.525E-02 3.489E-02 3.488E-02 3.492E-02 3.745E-02 3.541E-02

512 2.492E-02 2.504E-02 2.505E-02 2.496E-02 2.471E-02 2.471E-02 2.467E-02 2.561E-02 2.494E-02
b = 128 128 2.455E-02 2.441E-02 2.440E-02 2.456E-02 2.442E-02 2.441E-02 2.449E-02 2.792E-02 2.457E-02

Jk. for f ′ 256 1.735E-02 1.732E-02 1.731E-02 1.736E-02 1.729E-02 1.729E-02 1.731E-02 1.840E-02 1.736E-02
512 1.226E-02 1.226E-02 1.226E-02 1.225E-02 1.222E-02 1.223E-02 1.222E-02 1.261E-02 1.226E-02
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Table 22: Sample Variance of Half-widths for 90% CIs for f(µ) = 1/(µ + 1) based on a Gaussian MA(1) Process with µ = 0
and θ = 0.9

Variance Estimator

V̂ar[H] m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 5.152E-05 4.933E-05 5.052E-05 5.243E-05 2.856E-05 2.925E-05 2.951E-05 1.260E-04 5.163E-05
Cl. for f ′ 256 2.274E-05 2.173E-05 2.183E-05 2.294E-05 1.175E-05 1.182E-05 1.203E-05 3.602E-05 2.273E-05

512 1.153E-05 1.040E-05 1.032E-05 1.054E-05 5.680E-06 5.643E-06 5.790E-06 1.420E-05 1.153E-05
b = 128 128 2.976E-06 2.763E-06 2.757E-06 2.824E-06 1.694E-06 1.702E-06 1.745E-06 9.726E-06 2.976E-06

Cl. for f ′ 256 1.381E-06 1.218E-06 1.248E-06 1.194E-06 7.090E-07 7.204E-07 7.324E-07 2.168E-06 1.381E-06
512 6.012E-07 6.076E-07 5.818E-07 6.157E-07 3.276E-07 3.161E-07 3.253E-07 7.579E-07 6.013E-07

b = 32 128 8.863E-05 6.419E-05 6.568E-05 6.810E-05 4.948E-05 5.034E-05 5.068E-05 1.260E-04 5.163E-05
BM for f ′ 256 2.945E-05 2.409E-05 2.426E-05 2.538E-05 1.522E-05 1.531E-05 1.550E-05 3.602E-05 2.273E-05

512 1.308E-05 1.091E-05 1.082E-05 1.107E-05 6.457E-06 6.414E-06 6.575E-06 1.420E-05 1.153E-05
b = 128 128 5.292E-06 3.739E-06 3.719E-06 3.792E-06 3.083E-06 3.087E-06 3.135E-06 9.726E-06 2.976E-06

BM for f ′ 256 1.784E-06 1.358E-06 1.392E-06 1.345E-06 9.243E-07 9.372E-07 9.563E-07 2.168E-06 1.381E-06
512 6.827E-07 6.388E-07 6.112E-07 6.467E-07 3.715E-07 3.591E-07 3.688E-07 7.579E-07 6.013E-07

b = 32 128 5.075E-05 4.904E-05 5.021E-05 5.212E-05 2.815E-05 2.883E-05 2.910E-05 1.260E-04 5.163E-05
Jk. for f ′ 256 2.256E-05 2.166E-05 2.176E-05 2.287E-05 1.166E-05 1.173E-05 1.194E-05 3.602E-05 2.273E-05

512 1.148E-05 1.038E-05 1.031E-05 1.053E-05 5.657E-06 5.621E-06 5.767E-06 1.420E-05 1.153E-05
b = 128 128 2.965E-06 2.758E-06 2.752E-06 2.819E-06 1.688E-06 1.695E-06 1.739E-06 9.726E-06 2.976E-06

Jk. for f ′ 256 1.378E-06 1.217E-06 1.247E-06 1.193E-06 7.076E-07 7.190E-07 7.309E-07 2.168E-06 1.381E-06
512 6.006E-07 6.073E-07 5.816E-07 6.155E-07 3.273E-07 3.158E-07 3.250E-07 7.579E-07 6.013E-07
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Table 23: Sample Mean of Variance Estimators for f̂(µ) when f(µ) = 1/(µ + 1) based on a Gaussian MA(1) Process with
µ = 0 and θ = 0.9

Variance Estimator

Ê[S2] m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 8.761E-04 8.712E-04 8.707E-04 8.896E-04 8.736E-04 8.734E-04 8.830E-04 1.122E-03 8.764E-04
Cl. for f ′ 256 4.439E-04 4.403E-04 4.402E-04 4.421E-04 4.421E-04 4.421E-04 4.430E-04 5.003E-04 4.439E-04

512 2.203E-04 2.224E-04 2.225E-04 2.210E-04 2.214E-04 2.214E-04 2.207E-04 2.330E-04 2.203E-04
b = 128 128 2.210E-04 2.184E-04 2.181E-04 2.210E-04 2.197E-04 2.195E-04 2.210E-04 2.875E-04 2.210E-04

Cl. for f ′ 256 1.102E-04 1.098E-04 1.097E-04 1.103E-04 1.100E-04 1.100E-04 1.103E-04 1.241E-04 1.102E-04
512 5.494E-05 5.495E-05 5.500E-05 5.494E-05 5.495E-05 5.497E-05 5.494E-05 5.819E-05 5.494E-05

b = 32 128 1.066E-03 1.046E-03 1.045E-03 1.068E-03 1.056E-03 1.056E-03 1.067E-03 1.122E-03 8.764E-04
BM for f ′ 256 4.872E-04 4.804E-04 4.803E-04 4.823E-04 4.837E-04 4.837E-04 4.847E-04 5.003E-04 4.439E-04

512 2.305E-04 2.320E-04 2.321E-04 2.305E-04 2.312E-04 2.313E-04 2.305E-04 2.330E-04 2.203E-04
b = 128 128 2.680E-04 2.640E-04 2.637E-04 2.671E-04 2.660E-04 2.658E-04 2.675E-04 2.875E-04 2.210E-04

BM for f ′ 256 1.206E-04 1.199E-04 1.199E-04 1.205E-04 1.203E-04 1.202E-04 1.206E-04 1.241E-04 1.102E-04
512 5.739E-05 5.737E-05 5.742E-05 5.735E-05 5.738E-05 5.741E-05 5.737E-05 5.819E-05 5.494E-05

b = 32 128 8.712E-04 8.666E-04 8.661E-04 8.850E-04 8.689E-04 8.686E-04 8.782E-04 1.122E-03 8.764E-04
Jk. for f ′ 256 4.427E-04 4.391E-04 4.391E-04 4.409E-04 4.409E-04 4.408E-04 4.418E-04 5.003E-04 4.439E-04

512 2.200E-04 2.221E-04 2.223E-04 2.207E-04 2.211E-04 2.211E-04 2.204E-04 2.330E-04 2.203E-04
b = 128 128 2.207E-04 2.181E-04 2.178E-04 2.207E-04 2.194E-04 2.192E-04 2.207E-04 2.875E-04 2.210E-04

Jk. for f ′ 256 1.102E-04 1.097E-04 1.096E-04 1.102E-04 1.099E-04 1.099E-04 1.102E-04 1.241E-04 1.102E-04
512 5.492E-05 5.494E-05 5.499E-05 5.492E-05 5.493E-05 5.495E-05 5.492E-05 5.819E-05 5.494E-05
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Table 24: Sample Variance of Variance Estimators for f̂(µ) when f(µ) = 1/(µ + 1) based on a Gaussian MA(1) Process with
µ = 0 and θ = 0.9

Variance Estimator

V̂ar[S2] m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 6.381E-08 6.066E-08 6.249E-08 6.744E-08 3.613E-08 3.698E-08 3.800E-08 2.402E-07 6.398E-08
Cl. for f ′ 256 1.417E-08 1.340E-08 1.350E-08 1.440E-08 7.502E-09 7.597E-09 7.726E-09 2.625E-08 1.417E-08

512 3.572E-09 3.256E-09 3.228E-09 3.306E-09 1.828E-09 1.807E-09 1.859E-09 4.731E-09 3.572E-09
b = 128 128 9.714E-10 8.852E-10 8.840E-10 9.114E-10 5.491E-10 5.522E-10 5.706E-10 4.794E-09 9.715E-10

Cl. for f ′ 256 2.218E-10 1.955E-10 2.003E-10 1.916E-10 1.145E-10 1.160E-10 1.182E-10 3.967E-10 2.219E-10
512 4.825E-11 4.862E-11 4.677E-11 4.931E-11 2.643E-11 2.564E-11 2.629E-11 6.466E-11 4.826E-11

b = 32 128 1.401E-07 9.550E-08 9.789E-08 1.061E-07 7.839E-08 7.945E-08 8.148E-08 2.402E-07 6.398E-08
BM for f ′ 256 2.039E-08 1.623E-08 1.643E-08 1.742E-08 1.071E-08 1.085E-08 1.096E-08 2.625E-08 1.417E-08

512 2.143E-09 1.451E-09 1.444E-09 1.485E-09 1.231E-09 1.233E-09 1.261E-09 4.731E-09 3.572E-09
b = 128 128 2.143E-09 1.451E-09 1.444E-09 1.485E-09 1.231E-09 1.233E-09 1.261E-09 4.794E-09 9.715E-10

BM for f ′ 256 3.146E-10 2.382E-10 2.438E-10 2.358E-10 1.635E-10 1.652E-10 1.690E-10 3.967E-10 2.219E-10
512 5.730E-11 5.336E-11 5.132E-11 5.407E-11 3.133E-11 3.044E-11 3.116E-11 6.466E-11 4.826E-11

b = 32 128 6.244E-08 5.998E-08 6.179E-08 6.669E-08 3.540E-08 3.624E-08 3.726E-08 2.402E-07 6.398E-08
Jk. for f ′ 256 1.402E-08 1.332E-08 1.343E-08 1.432E-08 7.423E-09 7.516E-09 7.646E-09 2.625E-08 1.417E-08

512 3.553E-09 3.247E-09 3.219E-09 3.297E-09 1.818E-09 1.797E-09 1.849E-09 4.731E-09 3.572E-09
b = 128 128 9.664E-10 8.826E-10 8.814E-10 9.086E-10 5.463E-10 5.494E-10 5.677E-10 4.794E-09 9.715E-10

Jk. for f ′ 256 2.212E-10 1.952E-10 2.000E-10 1.914E-10 1.142E-10 1.157E-10 1.178E-10 3.967E-10 2.219E-10
512 4.819E-11 4.858E-11 4.674E-11 4.927E-11 2.640E-11 2.560E-11 2.626E-11 6.466E-11 4.826E-11
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CHAPTER V

ORDER-ONE AUTOREGRESSIVE PROCESS

This chapter considers a Gaussian stationary autoregressive process. We start out

with some preliminaries and then we evaluate the performance of all estimators by

Monte Carlo simulation.

5.1 Preliminaries

Consider the first-order Gaussian autoregressive [AR(1)] process defined by Yi =

φYi−1 + εi−1, i ≥ 1, where the εi are IID N(0, 1 − φ2) RVs, and Y0 is a N(0, 1) RV

initialized independently of the others. Figure 2 shows a sample path of a stationary

Gaussian AR(1) process with E[Yi] = 0 and φ = 0.9 based on 100 observations. This

process has autocovariance function Rk = φ|k|, for all k, whence

σ2 =
∞∑

j=−∞

Rj =
1 + φ

1 − φ
, and γ = −2

∞∑

j=1

jRj =
−2φ

(1 − φ)2
.

5.2 Performance Evaluation when

f(µ) = (µ + 1)2

This subsection evaluates all methods using the function f(µ) = (µ + 1)2. Since

analytical derivations are very hard, we rely on Monte Carlo simulations. Again,

as performance measures for CIs, we will consider: E[H], the expected interval half-

width; Var[H], the variance of the interval half-width; and C, the confidence interval

achieved coverage. As performance measures for the estimators of Var[f̂(µ)] we con-

sider the mean and variance. We will set coefficient φ = 0.9 and variance parameter

σ2 = (1 + 0.9)/(1 − 0.9) = 19. All estimates are based on 1000 independent experi-

ments.
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Figure 2: Sample Path of a Stationary Gaussian AR(1) Process with E[Yi] = 0 and

φ = 0.9 based on 100 Observations
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5.2.1 Discussion

Now, let us discuss the simulation results of Tables 25–26. These results exhibit a

similar pattern to the results in Tables 1–17 for the MA(1) process. The bias and

variance of estimators for f(µ) = (µ+1)2 and |f ′(µ)| = 2|µ+1| for this AR(1) process

are studied in Appendix 2.

• In Table 25, we can see that the classical and jackknife estimators for f(µ) =

(µ + 1)2 give CIs with good coverage.

• In Table 25, the NBM point estimator for f(µ) yields CIs with lower coverage

regardless of the variance estimator of f̂(µ). The reason for this behavior is

given in the discussion following Table 17.

• Considering Tables 25–26, the CIs based on the jackknife point estimator and

the delta variance estimator (in columns BM+STS(wi)) for f̂(µ) seem to per-

form best. In particular, the delta variance estimator BM+STS(w2) appears to

have the same mean as the estimators S2
B and S2

J of Muñoz and Glynn [51], but

is significantly less variable than either S2
B or S2

J (by roughly 1/2).
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Table 25: Coverage Estimates of 90% CIs for f(µ) = (µ + 1)2 based on a Gaussian AR(1) Process with µ = 0 and φ = 0.9

Variance Estimator
Coverage m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 0.898 0.870 0.858 0.890 0.879 0.879 0.890 0.906 0.900
Cl. for f 512 0.909 0.897 0.894 0.902 0.896 0.899 0.905 0.904 0.910

2048 0.904 0.901 0.902 0.902 0.905 0.905 0.904 0.904 0.904
b = 128 128 0.888 0.857 0.852 0.872 0.870 0.868 0.878 0.904 0.888
Cl. for f 512 0.905 0.893 0.891 0.896 0.895 0.895 0.900 0.903 0.905

2048 0.905 0.902 0.899 0.901 0.909 0.908 0.907 0.907 0.905

b = 32 128 0.759 0.706 0.701 0.726 0.725 0.728 0.741 0.777 0.760
BM for f 512 0.873 0.865 0.862 0.863 0.868 0.868 0.871 0.870 0.873

2048 0.894 0.892 0.888 0.893 0.885 0.891 0.891 0.893 0.894
b = 128 128 0.324 0.269 0.271 0.297 0.294 0.290 0.314 0.345 0.324

BM for f 512 0.729 0.707 0.706 0.721 0.713 0.712 0.722 0.732 0.729
2048 0.855 0.850 0.847 0.852 0.852 0.854 0.855 0.856 0.855

b = 32 128 0.898 0.868 0.859 0.889 0.878 0.879 0.885 0.902 0.898
Jk. for f 512 0.905 0.897 0.895 0.903 0.895 0.894 0.901 0.904 0.906

2048 0.903 0.902 0.902 0.903 0.905 0.906 0.905 0.904 0.903
b = 128 128 0.889 0.855 0.852 0.870 0.869 0.866 0.878 0.903 0.889
Jk. for f 512 0.906 0.893 0.890 0.895 0.894 0.893 0.897 0.903 0.906

2048 0.905 0.900 0.899 0.901 0.907 0.908 0.908 0.908 0.905
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Table 26: Performance Evaluation of 90% CIs for f(µ) = (µ + 1)2 based on a Gaussian AR(1) Process with µ = 0 and φ = 0.9

Variance Estimator
Perf. Measure m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 2.182E-01 2.012E-01 2.001E-01 2.104E-01 2.075E-01 2.069E-01 2.120E-01 2.245E-01 2.182E-01

Ê[H] 512 1.133E-01 1.116E-01 1.115E-01 1.137E-01 1.112E-01 1.111E-01 1.122E-01 1.140E-01 1.133E-01
2048 5.728E-02 5.706E-02 5.690E-02 5.744E-02 5.654E-02 5.646E-02 5.673E-02 5.741E-02 5.728E-02

b = 128 128 1.085E-01 9.958E-02 9.909E-02 1.038E-01 1.038E-01 1.036E-01 1.059E-01 1.121E-01 1.085E-01

Ê[H] 512 5.578E-02 5.478E-02 5.475E-02 5.589E-02 5.513E-02 5.511E-02 5.569E-02 5.625E-02 5.578E-02
2048 2.821E-02 2.806E-02 2.806E-02 2.818E-02 2.806E-02 2.806E-02 2.812E-02 2.828E-02 2.821E-02

b = 32 128 9.966E-04 8.514E-04 8.441E-04 9.079E-04 5.389E-04 5.366E-04 5.433E-04 1.392E-03 9.961E-04

V̂ar[H] 512 2.311E-04 2.029E-04 2.019E-04 2.135E-04 1.105E-04 1.108E-04 1.136E-04 2.540E-04 2.312E-04
2048 5.701E-05 5.384E-05 5.276E-05 5.174E-05 2.769E-05 2.772E-05 2.751E-05 5.874E-05 5.702E-05

b = 128 128 5.765E-05 5.416E-05 5.419E-05 5.381E-05 3.399E-05 3.437E-05 3.380E-05 8.328E-05 5.766E-05

V̂ar[H] 512 1.286E-05 1.301E-05 1.224E-05 1.362E-05 7.251E-06 6.994E-06 7.424E-06 1.481E-05 1.286E-05
2048 3.380E-06 3.209E-06 3.172E-06 3.062E-06 1.628E-06 1.613E-06 1.619E-06 3.504E-06 3.380E-06

b = 32 128 1.691E-02 1.441E-02 1.425E-02 1.574E-02 1.564E-02 1.556E-02 1.631E-02 1.801E-02 1.691E-02

Ê[S2] 512 4.542E-03 4.409E-03 4.400E-03 4.579E-03 4.474E-03 4.470E-03 4.561E-03 4.610E-03 4.543E-03
2048 1.161E-03 1.153E-03 1.147E-03 1.168E-03 1.157E-03 1.154E-03 1.165E-03 1.167E-03 1.161E-03

b = 128 128 4.306E-03 3.632E-03 3.596E-03 3.944E-03 3.968E-03 3.950E-03 4.124E-03 4.605E-03 4.306E-03

Ê[S2] 512 1.138E-03 1.098E-03 1.096E-03 1.143E-03 1.118E-03 1.117E-03 1.141E-03 1.158E-03 1.138E-03
2048 2.911E-04 2.880E-04 2.879E-04 2.904E-04 2.895E-04 2.895E-04 2.908E-04 2.925E-04 2.911E-04

b = 32 128 2.456E-05 1.753E-05 1.718E-05 2.043E-05 1.239E-05 1.226E-05 1.313E-05 3.752E-05 2.456E-05

V̂ar[S2] 512 1.493E-06 1.272E-06 1.266E-06 1.379E-06 7.179E-07 7.183E-07 7.500E-07 1.693E-06 1.493E-06
2048 9.337E-08 8.782E-08 8.674E-08 8.483E-08 4.625E-08 4.634E-08 4.611E-08 9.736E-08 9.337E-08

b = 128 128 3.640E-07 2.900E-07 2.878E-07 3.139E-07 2.002E-07 2.014E-07 2.079E-07 5.686E-07 3.640E-07

V̂ar[S2] 512 2.140E-08 2.088E-08 1.960E-08 2.277E-08 1.195E-08 1.152E-08 1.250E-08 2.529E-08 2.139E-08
2048 1.432E-09 1.348E-09 1.335E-09 1.293E-09 6.885E-10 6.829E-10 6.857E-10 1.495E-09 1.432E-09
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5.3 Performance Evaluation when

f(µ) = 1/(µ + 1)

In this subsection, we evaluate the methods using the function f(µ) = 1/(µ+1). Since

analytical comparisons remain intractable, we again rely on simulation experiments,

each using 1000 independent replications. Since f ′(µ) is a nonlinear function, the

classical, jackknife and batch means point estimators for |f ′(µ)| are not equal.

5.3.1 Discussion

The results in Tables 27–33 have similar patterns to the MA(1)–based simulation

results in Tables 18–24. The bias and variance of the estimators of f(µ) = 1/(µ + 1)

and |f ′(µ)| = 1/(µ + 1)2 are studied in Appendix 2.

• In Tables 27–29, we can see that the classical and jackknife point estimators of

f(µ) = 1/(µ+1) yield confidence intervals with good coverage regardless of the

variance estimators. This appears to be due to the lower bias and variance of

f̂C and f̄J compared to f̄B.

• Tables 30–31 considers the sample mean and variance of CI half-widths. All

variance estimators except for the NBM variance estimator S2
B yield similar

sample averages for all combinations of b and m. In Table 31, the delta variance

estimator based on S2
∗(f̄

′
J ; V̂C(wi)) yields the least variable half-widths.

• Tables 32–33 list the sample means and sample variances of the variance esti-

mators for f̂(µ). These estimates are directly related to the sample means and

sample variances of the half-widths. Therefore all variance estimators except for

the NBM variance estimator S2
B yield similar sample means for all combinations

of b and m. In Table 33, the delta variance estimators based on S2
∗(f̄

′
J ; V̂C(wi))

exhibit the smallest sample variance.
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• Overall, we recommend the jackknife point estimator for f(µ) and the delta

variance estimator based on S2
∗(f̄

′
J ; V̂C(wi)). These combinations yield CIs with

good coverage and the best half-width in terms of mean and variance.
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Table 27: Coverage Estimates for 90% CIs for f(µ) = 1/(µ + 1) based on a Gaussian AR(1) Process with µ = 0 and φ = 0.9,
and the classical point estimator for f ′(µ)

Variance Estimator
Coverage m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 0.909 0.885 0.880 0.902 0.903 0.901 0.907 0.979 0.909
Cl. for f 512 0.904 0.903 0.905 0.912 0.905 0.908 0.908 0.942 0.904
Cl. for f ′ 2048 0.904 0.903 0.904 0.906 0.900 0.903 0.907 0.912 0.905
b = 128 128 0.897 0.862 0.859 0.879 0.881 0.882 0.888 0.997 0.897
Cl. for f 512 0.902 0.893 0.895 0.899 0.900 0.899 0.902 0.944 0.902
Cl. for f ′ 2048 0.903 0.906 0.902 0.904 0.901 0.902 0.905 0.920 0.903

b = 32 128 0.204 0.201 0.201 0.218 0.198 0.201 0.203 0.651 0.206
BM for f 512 0.682 0.682 0.683 0.686 0.682 0.677 0.681 0.785 0.684
Cl. for f ′ 2048 0.865 0.856 0.854 0.863 0.855 0.855 0.857 0.878 0.864
b = 128 128 0.051 0.047 0.047 0.049 0.050 0.050 0.050 0.363 0.051

BM. for f 512 0.232 0.234 0.237 0.236 0.232 0.232 0.231 0.322 0.232
Cl. for f ′ 2048 0.707 0.708 0.712 0.710 0.710 0.710 0.710 0.726 0.707

b = 32 128 0.910 0.884 0.888 0.896 0.899 0.896 0.898 0.976 0.909
Jk. for f 512 0.904 0.904 0.906 0.910 0.906 0.907 0.908 0.940 0.904
Cl. for f ′ 2048 0.905 0.903 0.905 0.907 0.902 0.903 0.907 0.911 0.905
b = 128 128 0.896 0.861 0.863 0.882 0.883 0.882 0.890 0.997 0.896
Jk. for f 512 0.904 0.891 0.897 0.899 0.898 0.897 0.903 0.946 0.904
Cl. for f ′ 2048 0.905 0.905 0.903 0.904 0.901 0.901 0.904 0.917 0.905
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Table 28: Coverage Estimates for 90% CIs for f(µ) = 1/(µ + 1) based on a Gaussian AR(1) Process with µ = 0 and φ = 0.9,
and the batch means point estimator for f ′(µ)

Variance Estimator
Coverage m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 0.979 0.976 0.976 0.981 0.980 0.978 0.982 0.979 0.909
Cl. for f 512 0.942 0.932 0.928 0.935 0.932 0.933 0.939 0.942 0.904
BM for f ′ 2048 0.915 0.915 0.911 0.913 0.912 0.914 0.914 0.912 0.905
b = 128 128 0.998 0.995 0.996 0.998 0.997 0.997 0.997 0.997 0.897
Cl. for f 512 0.940 0.936 0.935 0.943 0.937 0.939 0.940 0.944 0.902
BM for f ′ 2048 0.914 0.913 0.911 0.917 0.914 0.914 0.915 0.920 0.903

b = 32 128 0.722 0.636 0.633 0.682 0.680 0.666 0.698 0.651 0.206
BM for f 512 0.768 0.739 0.745 0.746 0.753 0.751 0.754 0.785 0.684
BM for f ′ 2048 0.876 0.866 0.869 0.873 0.870 0.871 0.876 0.878 0.864
b = 128 128 0.390 0.360 0.361 0.373 0.373 0.374 0.380 0.363 0.051

BM for f 512 0.295 0.290 0.291 0.311 0.294 0.292 0.302 0.322 0.232
BM for f ′ 2048 0.722 0.724 0.724 0.720 0.720 0.719 0.722 0.726 0.707

b = 32 128 0.976 0.975 0.974 0.980 0.976 0.975 0.978 0.976 0.909
Jk. for f 512 0.942 0.933 0.928 0.935 0.933 0.932 0.937 0.940 0.904
BM for f ′ 2048 0.915 0.914 0.914 0.912 0.912 0.912 0.914 0.911 0.905
b = 128 128 0.998 0.995 0.995 0.998 0.997 0.997 0.997 0.997 0.896
Jk. for f 512 0.940 0.938 0.935 0.943 0.938 0.939 0.939 0.946 0.904
BM for f ′ 2048 0.914 0.911 0.911 0.918 0.912 0.911 0.912 0.917 0.905
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Table 29: Coverage Estimates for 90% CIs for f(µ) = 1/(µ + 1) based on a Gaussian AR(1) Process with µ = 0 and φ = 0.9,
and the jackknife point estimator for f ′(µ)

Variance Estimator
Coverage m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 0.906 0.881 0.877 0.899 0.898 0.896 0.904 0.979 0.909
Cl. for f 512 0.903 0.900 0.905 0.910 0.903 0.908 0.907 0.942 0.904
Jk. for f ′ 2048 0.904 0.903 0.904 0.906 0.900 0.901 0.906 0.912 0.905
b = 128 128 0.897 0.862 0.857 0.878 0.881 0.882 0.888 0.997 0.897
Cl. for f 512 0.901 0.893 0.895 0.899 0.900 0.898 0.902 0.944 0.902
Jk. for f ′ 2048 0.903 0.905 0.901 0.904 0.901 0.902 0.905 0.920 0.903

b = 32 128 0.201 0.196 0.197 0.214 0.197 0.198 0.201 0.651 0.206
BM for f 512 0.682 0.679 0.681 0.684 0.680 0.676 0.678 0.785 0.684
Jk. for f ′ 2048 0.865 0.853 0.854 0.863 0.854 0.855 0.857 0.878 0.864
b = 128 128 0.051 0.047 0.047 0.049 0.050 0.049 0.050 0.363 0.051

BM for f 512 0.231 0.234 0.236 0.236 0.230 0.231 0.231 0.322 0.232
Jk. for f ′ 2048 0.707 0.708 0.712 0.710 0.710 0.710 0.710 0.726 0.707

b = 32 128 0.906 0.882 0.882 0.893 0.896 0.895 0.894 0.976 0.909
Jk. for f 512 0.904 0.904 0.905 0.909 0.905 0.906 0.906 0.940 0.904
Jk. for f ′ 2048 0.905 0.903 0.904 0.907 0.902 0.903 0.907 0.911 0.905
b = 128 128 0.896 0.861 0.859 0.881 0.883 0.881 0.890 0.997 0.896
Jk. for f 512 0.902 0.891 0.897 0.899 0.897 0.897 0.902 0.946 0.904
Jk. for f ′ 2048 0.905 0.905 0.902 0.904 0.901 0.901 0.904 0.917 0.905
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Table 30: Sample Mean of Half-widths for 90% CIs for f(µ) = 1/(µ + 1) based on a Gaussian AR(1) Process with µ = 0 and
φ = 0.9

Variance Estimator

Ê[H] m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 1.112E-01 1.025E-01 1.019E-01 1.072E-01 1.057E-01 1.054E-01 1.080E-01 8.527E-01 1.113E-01
Cl. for f ′ 512 5.686E-02 5.602E-02 5.597E-02 5.709E-02 5.582E-02 5.579E-02 5.636E-02 6.662E-02 5.687E-02

2048 2.862E-02 2.851E-02 2.844E-02 2.871E-02 2.825E-02 2.821E-02 2.835E-02 2.961E-02 2.862E-02
b = 128 128 5.444E-02 4.996E-02 4.970E-02 5.208E-02 5.210E-02 5.198E-02 5.313E-02 2.067E+00 5.444E-02

Cl. for f ′ 512 2.787E-02 2.737E-02 2.735E-02 2.793E-02 2.755E-02 2.754E-02 2.782E-02 3.321E-02 2.787E-02
2048 1.410E-02 1.402E-02 1.402E-02 1.408E-02 1.402E-02 1.402E-02 1.405E-02 1.464E-02 1.410E-02

b = 32 128 3.934E+01 3.276E+01 3.262E+01 3.363E+01 3.567E+01 3.561E+01 3.607E+01 8.527E-01 1.113E-01
BM for f ′ 512 6.473E-02 6.346E-02 6.339E-02 6.466E-02 6.338E-02 6.335E-02 6.399E-02 6.662E-02 5.687E-02

2048 2.945E-02 2.932E-02 2.924E-02 2.952E-02 2.907E-02 2.902E-02 2.916E-02 2.961E-02 2.862E-02
b = 128 128 1.475E+03 1.223E+03 1.220E+03 1.304E+03 1.351E+03 1.349E+03 1.390E+03 2.067E+00 5.444E-02

BM for f ′ 512 3.169E-02 3.108E-02 3.107E-02 3.172E-02 3.130E-02 3.129E-02 3.162E-02 3.321E-02 2.787E-02
2048 1.451E-02 1.443E-02 1.443E-02 1.449E-02 1.443E-02 1.443E-02 1.446E-02 1.464E-02 1.410E-02

b = 32 128 1.097E-01 1.011E-01 1.006E-01 1.058E-01 1.043E-01 1.040E-01 1.066E-01 8.527E-01 1.113E-01
Jk. for f ′ 512 5.666E-02 5.583E-02 5.578E-02 5.689E-02 5.563E-02 5.560E-02 5.616E-02 6.662E-02 5.687E-02

2048 2.859E-02 2.849E-02 2.841E-02 2.868E-02 2.823E-02 2.819E-02 2.832E-02 2.961E-02 2.862E-02
b = 128 128 5.426E-02 4.979E-02 4.954E-02 5.192E-02 5.193E-02 5.181E-02 5.295E-02 2.067E+00 5.444E-02

Jk. for f ′ 512 2.785E-02 2.735E-02 2.733E-02 2.790E-02 2.752E-02 2.751E-02 2.780E-02 3.321E-02 2.787E-02
2048 1.409E-02 1.402E-02 1.402E-02 1.408E-02 1.402E-02 1.402E-02 1.405E-02 1.464E-02 1.410E-02
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Table 31: Sample Variance of Half-widths for 90% CIs for f(µ) = 1/(µ + 1) based on a Gaussian AR(1) Process with µ = 0
and φ = 0.9

Variance Estimator

V̂ar[H] m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 4.440E-04 3.758E-04 3.753E-04 4.176E-04 3.059E-04 3.060E-04 3.197E-04 2.849E+01 4.452E-04
Cl. for f ′ 512 7.161E-05 6.540E-05 6.471E-05 6.917E-05 4.141E-05 4.128E-05 4.271E-05 2.442E-04 7.160E-05

2048 1.462E-05 1.427E-05 1.404E-05 1.381E-05 7.512E-06 7.542E-06 7.498E-06 1.946E-05 1.463E-05
b = 128 128 2.567E-05 1.994E-05 1.947E-05 2.209E-05 1.719E-05 1.705E-05 1.825E-05 5.271E+02 2.568E-05

Cl. for f ′ 512 3.760E-06 3.636E-06 3.421E-06 3.844E-06 2.273E-06 2.198E-06 2.344E-06 2.115E-05 3.762E-06
2048 8.874E-07 8.299E-07 8.255E-07 7.716E-07 4.424E-07 4.409E-07 4.285E-07 1.244E-06 8.874E-07

b = 32 128 5.467E+05 3.507E+05 3.536E+05 3.711E+05 4.338E+05 4.352E+05 4.439E+05 2.849E+01 4.452E-04
BM for f ′ 512 1.540E-04 9.920E-05 9.789E-05 1.049E-04 9.013E-05 8.975E-05 9.222E-05 2.442E-04 7.160E-05

2048 1.730E-05 1.517E-05 1.495E-05 1.472E-05 8.856E-06 8.899E-06 8.853E-06 1.946E-05 1.463E-05
b = 128 128 9.594E+08 6.789E+08 6.662E+08 7.910E+08 8.126E+08 8.063E+08 8.685E+08 5.271E+02 2.568E-05

BM for f ′ 512 8.261E-06 5.581E-06 5.308E-06 5.997E-06 5.061E-06 4.966E-06 5.227E-06 2.115E-05 3.762E-06
2048 1.052E-06 8.834E-07 8.789E-07 8.214E-07 5.262E-07 5.247E-07 5.114E-07 1.244E-06 8.874E-07

b = 32 128 4.145E-04 3.606E-04 3.601E-04 4.009E-04 2.867E-04 2.868E-04 3.000E-04 2.849E+01 4.452E-04
Jk. for f ′ 512 7.022E-05 6.483E-05 6.415E-05 6.856E-05 4.064E-05 4.051E-05 4.192E-05 2.442E-04 7.160E-05

2048 1.455E-05 1.424E-05 1.401E-05 1.379E-05 7.474E-06 7.504E-06 7.459E-06 1.946E-05 1.463E-05
b = 128 128 2.525E-05 1.974E-05 1.927E-05 2.187E-05 1.692E-05 1.678E-05 1.797E-05 5.271E+02 2.568E-05

Jk. for f ′ 512 3.742E-06 3.628E-06 3.414E-06 3.836E-06 2.263E-06 2.188E-06 2.333E-06 2.115E-05 3.762E-06
2048 8.862E-07 8.296E-07 8.251E-07 7.712E-07 4.418E-07 4.404E-07 4.279E-07 1.244E-06 8.874E-07

74



Table 32: Sample Mean of Variance Estimators for f̂(µ) when f(µ) = 1/(µ + 1) based on a Gaussian AR(1) Process with
µ = 0 and φ = 0.9

Variance Estimator

Ê[S2] m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 4.456E-03 3.792E-03 3.752E-03 4.150E-03 4.118E-03 4.098E-03 4.300E-03 1.015E+01 4.461E-03
Cl. for f ′ 512 1.150E-03 1.117E-03 1.114E-03 1.160E-03 1.133E-03 1.132E-03 1.155E-03 1.629E-03 1.150E-03

2048 2.900E-04 2.883E-04 2.867E-04 2.920E-04 2.891E-04 2.883E-04 2.910E-04 3.117E-04 2.900E-04
b = 128 128 1.089E-03 9.164E-04 9.070E-04 9.963E-04 1.002E-03 9.976E-04 1.042E-03 1.934E+02 1.089E-03

Cl. for f ′ 512 2.843E-04 2.742E-04 2.738E-04 2.855E-04 2.793E-04 2.791E-04 2.849E-04 4.095E-04 2.843E-04
2048 7.271E-05 7.194E-05 7.191E-05 7.252E-05 7.232E-05 7.231E-05 7.262E-05 7.849E-05 7.271E-05

b = 32 128 1.905E+05 1.225E+05 1.235E+05 1.296E+05 1.560E+05 1.565E+05 1.596E+05 1.015E+01 4.461E-03
BM for f ′ 512 1.511E-03 1.438E-03 1.435E-03 1.494E-03 1.474E-03 1.472E-03 1.502E-03 1.629E-03 1.150E-03

2048 3.078E-04 3.049E-04 3.032E-04 3.088E-04 3.063E-04 3.055E-04 3.083E-04 3.117E-04 2.900E-04
b = 128 128 3.499E+08 2.476E+08 2.430E+08 2.885E+08 2.985E+08 2.962E+08 3.191E+08 1.934E+02 1.089E-03

BM for f ′ 512 3.689E-04 3.540E-04 3.535E-04 3.687E-04 3.614E-04 3.612E-04 3.688E-04 4.095E-04 2.843E-04
2048 7.708E-05 7.618E-05 7.615E-05 7.680E-05 7.663E-05 7.661E-05 7.694E-05 7.849E-05 7.271E-05

b = 32 128 4.329E-03 3.691E-03 3.652E-03 4.039E-03 4.005E-03 3.985E-03 4.182E-03 1.015E+01 4.461E-03
Jk. for f ′ 512 1.141E-03 1.109E-03 1.107E-03 1.152E-03 1.125E-03 1.124E-03 1.147E-03 1.629E-03 1.150E-03

2048 2.894E-04 2.878E-04 2.862E-04 2.915E-04 2.886E-04 2.878E-04 2.905E-04 3.117E-04 2.900E-04
b = 128 128 1.082E-03 9.104E-04 9.011E-04 9.898E-04 9.957E-04 9.910E-04 1.036E-03 1.934E+02 1.089E-03

Jk. for f ′ 512 2.839E-04 2.737E-04 2.733E-04 2.850E-04 2.788E-04 2.786E-04 2.844E-04 4.095E-04 2.843E-04
2048 7.268E-05 7.191E-05 7.188E-05 7.249E-05 7.229E-05 7.228E-05 7.258E-05 7.849E-05 7.271E-05
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Table 33: Sample Variance of Variance Estimators for f̂(µ) when f(µ) = 1/(µ + 1) based on a Gaussian AR(1) Process with
µ = 0 and φ = 0.9

Variance Estimator

V̂ar[S2] m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 32 128 2.986E-06 2.181E-06 2.174E-06 2.681E-06 1.973E-06 1.974E-06 2.160E-06 3.470E+04 2.997E-06
Cl. for f ′ 512 1.170E-07 1.050E-07 1.035E-07 1.161E-07 6.909E-08 6.857E-08 7.295E-08 7.271E-07 1.169E-07

2048 5.993E-09 5.855E-09 5.789E-09 5.742E-09 3.149E-09 3.161E-09 3.169E-09 8.730E-09 5.998E-09
b = 128 128 4.188E-08 2.716E-08 2.622E-08 3.289E-08 2.578E-08 2.545E-08 2.858E-08 1.622E+07 4.190E-08

Cl. for f ′ 512 1.565E-09 1.454E-09 1.372E-09 1.600E-09 9.329E-10 9.058E-10 9.796E-10 1.855E-08 1.566E-09
2048 9.428E-11 8.717E-11 8.693E-11 8.168E-11 4.691E-11 4.686E-11 4.548E-11 1.446E-10 9.429E-11

b = 32 128 2.028E+13 7.421E+12 7.537E+12 8.447E+12 1.285E+13 1.290E+13 1.356E+13 3.470E+04 2.997E-06
BM for f ′ 512 3.563E-07 2.084E-07 2.042E-07 2.318E-07 2.060E-07 2.040E-07 2.156E-07 7.271E-07 1.169E-07

2048 7.591E-09 6.576E-09 6.516E-09 6.472E-09 3.949E-09 3.966E-09 3.976E-09 8.730E-09 5.998E-09
b = 128 128 7.925E+19 4.408E+19 4.129E+19 6.217E+19 6.020E+19 5.860E+19 7.019E+19 1.622E+07 4.190E-08

BM for f ′ 512 4.588E-09 2.906E-09 2.787E-09 3.273E-09 2.757E-09 2.720E-09 2.916E-09 1.855E-08 1.566E-09
2048 1.188E-10 9.820E-11 9.800E-11 9.198E-11 5.919E-11 5.915E-11 5.757E-11 1.446E-10 9.429E-11

b = 32 128 2.689E-06 2.030E-06 2.023E-06 2.498E-06 1.789E-06 1.790E-06 1.962E-06 3.470E+04 2.997E-06
Jk. for f ′ 512 1.137E-07 1.033E-07 1.019E-07 1.143E-07 6.728E-08 6.677E-08 7.106E-08 7.271E-07 1.169E-07

2048 5.949E-09 5.834E-09 5.769E-09 5.721E-09 3.127E-09 3.139E-09 3.146E-09 8.730E-09 5.998E-09
b = 128 128 4.090E-08 2.671E-08 2.578E-08 3.234E-08 2.520E-08 2.487E-08 2.794E-08 1.622E+07 4.190E-08

Jk. for f ′ 512 1.555E-09 1.448E-09 1.367E-09 1.593E-09 9.270E-10 9.000E-10 9.735E-10 1.855E-08 1.566E-09
2048 9.412E-11 8.709E-11 8.686E-11 8.161E-11 4.683E-11 4.678E-11 4.540E-11 1.446E-10 9.429E-11
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CHAPTER VI

M/M/1 QUEUEING SYSTEM

This chapter presents experimental results related to a stationary M/M/1 system.

Specifically, we consider the estimation of the variance of the steady-state distribution

of the total time a customer spends in the system.

6.1 A Numerical Example

Consider a stationary M/M/1 queueing system (single-server queue with IID expo-

nential interarrival times and IID exponential service time) with mean interarrival

time α and mean service time β, where β < α. The traffic intensity is ρ = β/α.

Let Zi be the sojourn time of the ith customer (waiting time plus service time). It

is known (cf. Kulkarni [36]) that the steady-state distribution of the sojourn time is

exponential with rate 1/β−1/α; hence its mean is µ = (αβ)/(α−β). Figure 3 shows

a plot of 100 steady-state sojourn times in an M/M/1 System with α = 10 and β = 8.

Our objective is to estimate the variance f(µ) = µ2 of this exponential distribution.

We use α = 10 and β = 8. This implies ρ = 0.8, µ = 40, and f(µ) = 1600. To

eliminate the effects of the initial transient, we sample the first customer’s sojourn

time from the limiting exponential distribution and generate the remaining sojourn

times using Lindley’s [42] recursion

Zi+1 = max{0, Zi − Ai+1} + Si+1, i ≥ 1,

where Ai is the ith interarrival time and Si is the ith service time. The variance

parameter of the sojourn time process in the M/M/1 system is (see Blomqvist [8])

σ2 =
ρβ2

(1 − ρ)4
(ρ3 − 4ρ2 + 5ρ + 2) + β2 = 126,528.
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Figure 3: Plot of 100 Steady-state Sojourn Times in an M/M/1 System with α = 10

and β = 8

The entries of Tables 35 and 36 are based on 1000 independent experiments.

Again, as performance measures for the CIs we consider the expected interval half-

width, the variance of the interval half-width, and the coverage of the confidence

interval. Further, we judge the performance of the estimators of Var[f̂(µ)] based on

their expectation and variance.

78



Table 34: Coverage Estimates for 90% CIs for the Variance of the Steady-State Customer Sojourn Time in an M/M/1 Queueing
System with Traffic Intensity ρ = 0.8

Variance Estimator
Coverage m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 16 2048 0.882 0.862 0.862 0.868 0.872 0.870 0.878 0.895 0.880
Cl. for f 4096 0.890 0.868 0.866 0.884 0.879 0.876 0.887 0.894 0.888

8192 0.885 0.882 0.879 0.888 0.891 0.889 0.891 0.893 0.885
b = 32 2048 0.883 0.870 0.868 0.877 0.875 0.870 0.877 0.902 0.883

Cl. for f 4096 0.887 0.882 0.880 0.886 0.887 0.893 0.886 0.901 0.887
8192 0.890 0.878 0.872 0.878 0.885 0.884 0.883 0.899 0.890

b = 16 2048 0.863 0.849 0.849 0.850 0.867 0.859 0.856 0.895 0.861
BM for f 4096 0.889 0.869 0.870 0.865 0.882 0.882 0.886 0.900 0.888

8192 0.885 0.883 0.885 0.891 0.894 0.889 0.892 0.891 0.885
b = 32 2048 0.851 0.807 0.810 0.833 0.838 0.832 0.846 0.907 0.847

BM for f 4096 0.867 0.845 0.852 0.855 0.858 0.859 0.863 0.885 0.865
8192 0.877 0.869 0.873 0.879 0.878 0.879 0.879 0.885 0.877

b = 16 2048 0.884 0.860 0.859 0.867 0.865 0.869 0.876 0.895 0.881
Jk. for f 4096 0.888 0.870 0.865 0.885 0.878 0.877 0.883 0.892 0.887

8192 0.886 0.883 0.878 0.888 0.890 0.889 0.890 0.893 0.885
b = 32 2048 0.882 0.867 0.868 0.876 0.873 0.875 0.876 0.901 0.882

Jk. for f 4096 0.886 0.882 0.882 0.884 0.885 0.893 0.885 0.902 0.886
8192 0.891 0.874 0.874 0.876 0.885 0.882 0.883 0.899 0.891
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Table 35: Performance Evaluation for 90% CIs for the Variance of the Steady-State Customer Sojourn Time in an M/M/1
Queueing System with Traffic Intensity ρ = 0.8

Variance Estimator
Perf. Measure m BM STS(w0) STS(w1) STS(w2) BM+STS(w0) BM+STS(w1) BM+STS(w2) S2

B S2

J

b = 16 2048 2.630E+02 2.558E+02 2.556E+02 2.599E+02 2.537E+02 2.536E+02 2.554E+02 2.882E+02 2.614E+02

Ê[H] 4096 1.917E+02 1.855E+02 1.858E+02 1.891E+02 1.845E+02 1.847E+02 1.862E+02 2.023E+02 1.910E+02
8192 1.349E+02 1.350E+02 1.347E+02 1.363E+02 1.320E+02 1.318E+02 1.325E+02 1.388E+02 1.346E+02

b = 32 2048 1.854E+02 1.780E+02 1.778E+02 1.837E+02 1.800E+02 1.798E+02 1.827E+02 2.079E+02 1.848E+02

Ê[H] 4096 1.315E+02 1.292E+02 1.288E+02 1.315E+02 1.290E+02 1.289E+02 1.301E+02 1.397E+02 1.312E+02
8192 9.415E+01 9.356E+01 9.348E+01 9.431E+01 9.290E+01 9.287E+01 9.322E+01 9.732E+01 9.406E+01

b = 16 2048 6.684E+03 8.770E+03 8.845E+03 8.483E+03 6.059E+03 6.100E+03 6.092E+03 1.303E+04 6.380E+03

V̂ar[H] 4096 2.755E+03 2.888E+03 3.018E+03 2.775E+03 1.992E+03 2.036E+03 1.974E+03 4.307E+03 2.675E+03
8192 9.185E+02 1.147E+03 1.209E+03 1.089E+03 6.590E+02 6.815E+02 6.558E+02 1.199E+03 9.032E+02

b = 32 2048 1.816E+03 2.120E+03 2.057E+03 2.349E+03 1.564E+03 1.545E+03 1.700E+03 4.106E+03 1.766E+03

V̂ar[H] 4096 6.226E+02 7.477E+02 7.661E+02 7.510E+02 4.946E+02 4.953E+02 5.172E+02 1.038E+03 6.127E+02
8192 2.585E+02 2.652E+02 2.792E+02 2.614E+02 1.706E+02 1.754E+02 1.779E+02 3.594E+02 2.559E+02

b = 16 2048 2.467E+04 2.434E+04 2.433E+04 2.495E+04 2.450E+04 2.450E+04 2.481E+04 3.127E+04 2.431E+04

Ê[S2] 4096 1.285E+04 1.223E+04 1.231E+04 1.264E+04 1.253E+04 1.257E+04 1.274E+04 1.472E+04 1.274E+04
8192 6.217E+03 6.352E+03 6.345E+03 6.453E+03 6.286E+03 6.283E+03 6.339E+03 6.662E+03 6.190E+03

b = 32 2048 1.259E+04 1.178E+04 1.174E+04 1.258E+04 1.218E+04 1.216E+04 1.259E+04 1.647E+04 1.249E+04

Ê[S2] 4096 6.227E+03 6.081E+03 6.053E+03 6.286E+03 6.153E+03 6.139E+03 6.257E+03 7.152E+03 6.201E+03
8192 3.173E+03 3.143E+03 3.143E+03 3.191E+03 3.158E+03 3.158E+03 3.182E+03 3.419E+03 3.166E+03

b = 16 2048 3.168E+08 4.969E+08 4.902E+08 5.095E+08 3.420E+08 3.381E+08 3.593E+08 1.103E+09 2.913E+08

V̂ar[S2] 4096 5.988E+07 5.874E+07 6.583E+07 5.593E+07 4.325E+07 4.467E+07 4.332E+07 1.415E+08 5.668E+07
8192 8.246E+06 1.136E+07 1.276E+07 1.062E+07 6.519E+06 6.943E+06 6.350E+06 1.261E+07 8.032E+06

b = 32 2048 3.848E+07 4.445E+07 4.148E+07 5.323E+07 3.308E+07 3.192E+07 3.803E+07 1.525E+08 3.679E+07

V̂ar[S2] 4096 5.877E+06 7.485E+06 7.872E+06 7.745E+06 4.947E+06 4.980E+06 5.306E+06 1.267E+07 5.742E+06
8192 1.246E+06 1.277E+06 1.417E+06 1.249E+06 8.356E+05 8.757E+05 8.771E+05 2.067E+06 1.227E+06
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6.2 Discussion

The following list contains a summary of the observations.

• Table 34 indicates that all point estimators f̂C , f̄B, and f̄J of f(µ) = µ2 result in

CIs with coverage close to the nominal value regardless of the variance estimator.

• In Table 35, the sample mean and variance of the half-widths in columns

BM+STS(wi) are usually less than the respective quantities in columns BM,

S2
B and S2

J . In particular, the sample variance of half-widths in columns

BM+STS(wi) is up to 30% smaller than the sample variance in columns S2
B

and S2
J . We believe that this is due to the sound properties of the combined

variance parameter estimator in Section 2.2.3.

• Figures 4 and 5 show the sample mean and sample variance of CI half-

widths based on 32 batches. The CIs based on the delta variance estimator

S2
∗(f̂

′; V̂C(w2)) have the lowest sample variance of half-width among others with

competitive sample mean of half-width.

• Based on these experiments, we recommend the jackknife point estimator for

f(µ) and the delta variance estimator based on S2
∗(f̂

′; V̂C(wi)).
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Sample Mean of CI Half-widths based on 32 Batches
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Figure 4: Sample Mean of the CI Half-widths for the Variance of the Customer
Sojourn Time in a Stationary M/M/1 Queueing System with Traffic Intensity ρ = 0.8

Sample Variance of CI Half-widths based on 32 Batches
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Figure 5: Sample Variance of the CI Half-widths for the Variance of the Customer
Sojourn Time in a Stationary M/M/1 Queueing System with Traffic Intensity ρ = 0.8
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CHAPTER VII

CONCLUSIONS AND FUTURE RESEARCH

This dissertation considered the derivation of point and confidence interval estimators

for a function of the mean µ, say f(µ), of a stationary stochastic process {Yi, i ≥ 1}

with a finite variance parameter σ2. The point estimators f̂(µ) for f(µ) were proposed

by Muñoz and Glynn [51]; the classical estimator is simply f(Ȳn), while the batch

means and jackknife estimators are based on nonoverlapping batches. The proposed

estimators for the variance of f̂(µ) are based on the delta method and consistent

estimators of σ2 from the literature.

The point estimators for f(µ) were evaluated by means of their mean and variance.

The performance of a CI was evaluated by means of its coverage, mean half-width,

and the variance of the half-width. The test beds were two Gaussian processes, an

MA(1) process and an AR(1) process, and the process of customer sojourn times

in a stationary M/M/1 system. We also used two functions, f(µ) = (µ + 1)2 and

f(µ) = 1/(µ + 1) for the Gaussian processes and the function f(µ) = µ2 for the

M/M/1 system.

In the estimation problem of f(µ) = (µ+1)2 for the MA(1) process, the analytical

results show that the variance estimator S2
∗(2(Ȳn +1); V̂C) in Equations (16) and (31)

has the smallest variance. This probably results from the fact that the variance

parameter estimator V̂ 2
C has smaller variance than its competitors. The results also

show that the CIs based on the variance estimator S2
∗(2(Ȳn +1); V̂C) have half-widths

with the smallest mean and variance. In the estimation problem of f(µ) = 1/(µ +

1) for the MA(1) process, the simulation results show that the variance estimators

S2
∗(f̂

′; V̂C(wi)) have the smallest variance among all counterparts. Further, these
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results show that the CIs based on the point estimators f̂C and f̄J and the variance

estimator S2
∗(f̂

′; V̂C(wi)) have the best performance in terms of coverage, mean and

variance of half-width.

The experimental results from the estimation of f(µ) = (µ + 1)2 and f(µ) =

1/(µ + 1) under an AR(1) process are similar to the results for the MA(1) process.

Since the AR(1) process has a more “prolonged” autocorrelation structure than an

MA(1) process with equal correlation coefficient, the values of the mean and variance

of the variance estimators for f̂(µ) and half-widths are higher than their MA(1)

counterparts.

In Chapter VI, we considered the steady-state sojourn time of customers in an

the M/M/1 queueing system and presented experimental results for the variance

f(µ) = µ2 of the sojourn time. The experimental results show that the CIs based

on the variance estimator S2
∗(f̂

′; V̂C(wi)) have the best performance in terms of the

mean and variance of their half-width while having proper coverage, regardless of the

point estimator among f̂C , f̄B, or f̄J . This dominance appears to be due to the solid

statistical properties of the combined variance parameter estimator in Equations (16)

and (31).

Overall, the CIs based on the jackknife point estimator f̄J and the variance esti-

mator S2
∗(f̂

′; V̂C(wi)) exhibit the best performance in terms of the mean and variance

of their half-widths while achieving the nominal coverage.

With regard to future research, we are investigating CIs based on other variance

parameter estimation methods, e.g., Cramér–von Mises (CvM) estimators and com-

binations of STS and CvM estimators (Goldsman et al. [28]). Another interesting

problem arises when the first derivative f ′(µ) = 0. In this case, one could use a

higher-order approximation; see Casella and Berger [9]. We also consider the appli-

cation of the delta method to the estimation of functions of multivariate steady-state

means.
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APPENDIX A

ANCILLARY MATERIAL

A.1 Bias and Variance of Point Estimators for

an MA(1) Process

This section presents experimental results for the bias and variance of the point

estimators of f(µ) and |f ′(µ)| for an MA(1) process with mean µ = 0 and θ = 0.9.

The estimates are based on 1000 independent experiments. We define the bias as

θ − E[θ̂], where θ is a parameter and θ̂ is a estimator of θ.

Table 36: Bias and Variance Estimates of the Point Estimators for f(µ) = (µ + 1)2

and |f ′(µ)| = 2|µ + 1| for an MA(1) Process with µ = 0 and θ = 0.9

BIAS m f̂C f̄B f̄J |f̂ ′

C |
b = 32 128 5.849E-04 -2.626E-02 1.451E-03 1.410E-03

256 1.750E-03 -1.189E-02 2.190E-03 2.176E-03
512 -5.854E-05 -6.868E-03 1.611E-04 1.466E-04

b = 128 128 -5.854E-05 -2.805E-02 1.618E-04 1.466E-04
256 -7.436E-04 -1.474E-02 -6.334E-04 -6.336E-04
512 -4.618E-04 -7.442E-03 -4.068E-04 -4.102E-04

VARIANCE m f̂C f̄B f̄J |f̂ ′

C |
b = 32 128 3.295E-03 3.322E-03 3.296E-03 3.302E-03

256 1.693E-03 1.702E-03 1.693E-03 1.698E-03
512 8.205E-04 8.192E-04 8.206E-04 8.213E-04

b = 128 128 8.205E-04 8.240E-04 8.205E-04 8.213E-04
256 4.403E-04 4.404E-04 4.403E-04 4.400E-04
512 2.066E-04 2.078E-04 2.066E-04 2.064E-04
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Table 37: Bias and Variance Estimates of the Point Estimators for f(µ) = 1/(µ+1)
and |f ′(µ)| = 1/(µ + 1)2 for an MA(1) Process with µ = 0 and θ = 0.9

BIAS m f̂C f̄B f̄J |f̂ ′

C |
b = 32 128 -1.535E-03 -3.110E-02 -6.626E-04 -3.908E-03

256 -1.516E-03 -1.587E-02 -1.073E-03 -3.462E-03
512 -2.788E-04 -7.248E-03 -5.872E-05 -7.636E-04

b = 128 128 -2.788E-04 -3.108E-02 -5.805E-05 -7.636E-04
256 2.069E-04 -1.442E-02 3.171E-04 3.039E-04
512 1.535E-04 -6.975E-03 2.085E-04 2.556E-04

VARIANCE m f̂C f̄B f̄J |f̂ ′

C |
b = 32 128 8.356E-04 1.094E-03 8.310E-04 3.375E-03

256 4.289E-04 4.842E-04 4.277E-04 1.727E-03
512 2.061E-04 2.208E-04 2.058E-04 8.268E-04

b = 128 128 2.061E-04 2.767E-04 2.058E-04 8.268E-04
256 1.100E-04 1.256E-04 1.099E-04 4.400E-04
512 5.153E-05 5.429E-05 5.152E-05 2.060E-04
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A.2 Bias and Variance of Point Estimators for

an AR(1) Process

This section presents experimental results for the bias and variance of the point

estimators of f(µ) and |f ′(µ)| for an AR(1) process with mean µ = 0 and φ = 0.9.

The estimates are based on 1000 independent experiments.

Table 38: Bias and Variance Estimates of the Point Estimators for f(µ) = (µ + 1)2

and |f ′(µ)| = 2|µ + 1| for an AR(1) Process with µ = 0 and φ = 0.9

BIAS m f̂C f̄B f̄J |f̂ ′

C |
b = 32 128 -1.015E-03 -1.320E-01 3.212E-03 3.323E-03

512 -7.898E-04 -3.599E-02 3.455E-04 2.889E-04
2048 -1.206E-03 -1.019E-02 -9.156E-04 -9.341E-04

b = 128 128 -7.898E-04 -1.374E-01 2.861E-04 2.889E-04
512 -1.206E-03 -3.729E-02 -9.213E-04 -9.341E-04
2048 -5.561E-04 -9.793E-03 -4.833E-04 -4.853E-04

VARIANCE m f̂C f̄B f̄J |f̂ ′

C |
b = 32 128 1.730E-02 1.824E-02 1.730E-02 1.736E-02

512 4.309E-03 4.351E-03 4.311E-03 4.319E-03
2048 1.088E-03 1.098E-03 1.088E-03 1.086E-03

b = 128 128 4.309E-03 4.528E-03 4.310E-03 4.319E-03
512 1.088E-03 1.113E-03 1.088E-03 1.086E-03
2048 2.834E-04 2.849E-04 2.834E-04 2.832E-04

Table 39: Bias and Variance Estimates of the Point Estimators for f(µ) = 1/(µ+1)
and |f ′(µ)| = 1/(µ + 1)2 for an AR(1) Process with µ = 0 and φ = 0.9

BIAS m f̂C f̄B f̄J |f̂ ′

C |
b = 32 128 -6.089E-03 -1.062E-01 -1.720E-03 -1.676E-02

512 -1.230E-03 -4.141E-02 -8.539E-05 -3.555E-03
2048 1.961E-04 -9.033E-03 4.859E-04 1.216E-04

b = 128 128 -1.230E-03 2.563E-01 -1.458E-04 -3.555E-03
512 1.961E-04 -4.077E-02 4.803E-04 1.216E-04
2048 1.719E-04 -9.327E-03 2.446E-04 2.731E-04

VARIANCE m f̂C f̄B f̄J |f̂ ′

C |
b = 32 128 4.547E-03 1.003E+01 4.426E-03 1.901E-02

512 1.095E-03 1.600E-03 1.087E-03 4.431E-03
2048 2.709E-04 2.901E-04 2.705E-04 1.084E-03

b = 128 128 1.095E-03 1.933E+02 1.087E-03 4.431E-03
512 2.709E-04 3.835E-04 2.704E-04 1.084E-03
2048 7.074E-05 7.651E-05 7.071E-05 2.829E-04
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A.3 Bias and Variance of Point Estimators for

an M/M/1 Queueing System

This section presents experimental results for the bias and variance of the point

estimators for f(µ) = µ2 and |f ′(µ)| = 2µ in the case of the stationary M/M/1 system

in Chapter VI. Recall that µ is the mean customer sojourn time. The estimates are

based on 1000 independent experiments.

Table 40: Bias and Variance Estimates of the Point Estimators for f(µ) = µ2 and
|f ′(µ)| = 2µ for a Stationary M/M/1 System with Mean Interarrival Time α = 10
and Mean Service Time β = 8

BIAS m f̂C f̄B f̄J |f̂ ′

C |
b = 16 2048 3.463E+00 -5.252E+01 7.195E+00 1.842E-01

4096 1.924E+00 -2.767E+01 3.897E+00 9.576E-02
8192 -4.478E-01 -1.491E+01 5.161E-01 1.399E-02

b = 32 2048 1.924E+00 -5.810E+01 3.860E+00 9.576E-02
4096 -4.478E-01 -3.035E+01 5.168E-01 1.399E-02
8192 9.120E-01 -1.440E+01 1.406E+00 3.555E-02

VARIANCE m f̂C f̄B f̄J |f̂ ′

C |
b = 16 2048 2.547E+04 3.292E+04 2.505E+04 1.560E+01

4096 1.225E+04 1.429E+04 1.213E+04 7.626E+00
8192 6.474E+03 6.864E+03 6.451E+03 4.033E+00

b = 32 2048 1.225E+04 1.627E+04 1.214E+04 7.626E+00
4096 6.474E+03 7.401E+03 6.448E+03 4.033E+00
8192 3.262E+03 3.515E+03 3.254E+03 2.041E+00
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