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SUMMARY

The thesis consists of two independent parts.
The first part is devoted to certain results in the discrepancy theory and related prob-
lems. Take A C [0,1]¢ to be an N point set in the d dimensional unit cube and consider

the discrepancy function associated to it:

Da(@) = 4{AN[0, 2]} — N ‘[6, Al,  Felo1~

(here the § sign counts the number of elements in the set, and [0, Z] stands for the rectangle
with antipodal corners 0 and Z). The function D4 measures how much the distribution of
the finite set A deviates from the corresponding uniform distribution.

In a joint work with D. Bilyk and M. Lacey we extended the previous result of D.
Bilyk and M. Lacey (see [4]) to dimensions d > 3, by improving the lower bound for the
discrepancy function. Namely, we showed that there exists a positive 1(d) > 0 for which we

have:

1D Ao = (In N)E=D/240D - g5 gy st $A = N.

This result makes a partial step towards resolving the Discrepancy Conjecture. Being
a theorem in the theory of irregularities of distributions, it also relates to corresponding
results in approximation theory (namely, the Kolmogorov entropy of spaces of functions
with bounded mixed derivatives) and in probability theory (namely, Small Ball Inequality
- small deviation inequality for the Brownian sheet).

In another joint work with D. Bilyk and M. Lacey we treat a particular case of the Small
Ball Inequality - the Signed Small Ball Inequality. We show that in this case our estimates
can be further improved.

Yet another joint work with D. Bilyk, M. Lacey and I. Parissis provides sharp bounds

X



for the exponential Orlicz norm and the BMO norm of the discrepancy function in two
dimensions.

The second part of the thesis deals with Calderén-Zygmund operators in weighted
spaces. We prove that any sufficiently smooth one-dimensional Calderén-Zygmund con-
volution operator can be recovered through averaging of certain Haar shift operators (i.e.
dyadic operators which can be efficiently expressed in terms of the Haar basis). This gen-
eralizes the estimates, which had been previously known (see [23]) for Haar shift operators,
to Calderén-Zygmund operators. As a result, the Ay conjecture is settled for this particular

type of Calederén-Zygmund operators.



CHAPTER I

INTRODUCTION

1.1 Main References.

The thesis is based on three published and one accepted papers:

Chapter 2 (“Discrepancy and Small Ball Inequality “) is based on a paper by D. Bilyk,
M. Lacey and A. Vagharshakyan (see [6]),

Chapter 3 (“Signed Small Ball Inequality “) is based on a paper by D. Bilyk, M. Lacey
and A. Vagharshakyan (see [3]),

Chapter 4 (“Orlicz and BMO Norms of Discrepancy in Two Dimensions*) is based on
a paper by D. Bilyk, M. Lacey, I. Parissis and A. Vagharshakyan (see [5]),

Chapter 5 (“Recovering Singular Integrals from Haar Shifts“) is based on a paper by A.

Vagharshakyan (see [48]).
1.2 Reading Order.

For chapters 3 and 4 a review of sections 2.1 and 2.2.1 is necessary. Other than that, the

chapters essentially don’t depend on each other.



CHAPTER II

DISCREPANCY AND SMALL BALL INEQUALITY

2.1 Small Ball Conjecture

In this chapter we will prove results in dimension four and higher in three separate areas,
Number Theory, Approximation Theory, and Probability Theory: (a) the theory of Irreg-
ularities of Distribution, (b) the Kolmogorov Entropy of spaces of functions with bounded
mixed derivative, and (c¢) Small Deviation Inequalities for the Brownian Sheet. As far as
the authors are aware, these are the first results on these questions which provide more
information than that given by an average case analysis. Underlying these three results is
a central inequality, the Small Ball Inequality for the Haar functions, which we state here.
The related areas are addressed in the next section.

In one dimension, the class of dyadic intervals is D = [j2%, (j + 1)2¥] : 4,k € Z. Each
dyadic interval has a left and right half, indicated below, which are also dyadic. Define the
Haar functions

hr=—1p, +1;1

right
Note that this is an L* normalization of these functions, which we will keep throughout
chapters 2,3 and 4. In contrast, chapter 5 will use a different normalization.

In dimension d, a dyadic rectangle is a product of dyadic intervals, thus an element of
D?. We define a Haar function associated to R to be the product of the Haar functions

associated with each side of R, namely
d
hR1><-~~><Rd($17 ey $d) = H hRj (:C])
j=1

This is the usual ‘tensor’ definition.

We will concentrate on rectangles with fixed volume and consider a local problem. This
is the ‘hyperbolic’ assumption, that pervades the subject. Our concern is the following
Theorem and Conjecture concerning a lower bound on the L° norm of sums of hyperbolic

Haar functions:



Small Ball Conjecture 2.1.1. For dimension d > 3 we have the inequality

2 Y |a(R)\5n%<d—2>H 3 a(R)hRHOO.

|Rj=2-n IR>2-"

Average case analysis — that is passing through L? — shows that we always have
2™n a(R)| < n%(d_l)H a(R)h H .
|R|§;n\ (R)] |R|§" (R)hr||
Namely, the constant on the right is bigger than in the conjecture by a factor of \/n. We
refer to this as the ‘average case estimate,” and refer to improvements over this as a ‘gain
over the average case estimate.” Random choices of coefficients «(R) show that the Small
Ball Conjecture is sharp.

In dimension d = 2, the Conjecture was resolved by [44].1

Talagrand’s Theorem 2.1.2. For dimensions d > 2, we have

2 > RIS | Y atng|

|R|]=2-" |R|=2—"
Here, the sum on the right is taken over all rectangles with area at least 277,

The main result of this chapter is the next Theorem, which shows that there is a gain
over the trivial bound in the Small Ball Conjecture in dimensions d > 3. In dimension
d = 3, this result was proved in [4]. The three-dimensional result and its present extension
build upon the method devised by [1]. As far as we are aware, this is the first ‘gain over

the average case bound’ known in dimensions four and higher.

Theorem 2.1.3. (Bilyk, Lacey, Vagharshakyan, [6]) In dimension d > 3, there exists a

number n(d) > 0 such that for all choices of coefficients a(R), we have the inequality

n%—md)H 3 a(R)hRHoozz—" 3 la(R).

|R[>2—n |R|=2—"

'This result should be compared to [41], as well as [17],[46].



We take this Theorem as basic to our study, and use its proof to derive results on the
three other questions mentioned at the beginning of this section.

The principal difficulty in three and higher dimensions is that two dyadic rectangles of
the same volume can share a common side length. Beck [1] found a specific estimate in
this case, an estimate that is extended in [4]. In this chapter the main technical device
is the extension of this estimate, in the simplest instance, to arbitrary dimensions, see
Lemma 2.5.2. This Lemma, and its extension to longer products Theorem 2.8.2; is the
main technical innovation of this chapter. The value of 1 that we can get out of this line
of reasoning appears to be of the order d—2, imputing additional interest to the methods of

proof used to improve this estimate.

2.2 Related Results

2.2.1 Discrepancy Conjecture

In d dimensions, take Ay to be N points in the unit cube, and consider the Discrepancy
Function

Dy (z) := tAx N[0, %) — N|[0, T)|. (2.2.1)

Here, [0, %) = H;lzl[(),wj), that is a rectangle with antipodal corners being 0 and #. The
common theme of the subject of irregularities of distribution is to show that, no matter how
N points are selected, their distribution must be far from uniform. The canonical result of

this type is the following estimate proved in [40].

K. Roth’s Theorem 2.2.2. We have the universal estimate
IDwl2 Z (log N)* 172,
with the implied constant only depending upon dimension.

For all 1 < p < o0, ||[Dn||, admits the same lower bound, a result in [42]. The endpoint
estimates of p = 1,00 are however much harder, with definitive information known only
in two dimensions. The method of proof of this Theorem, and the LP variants can be
summarized as follows: Fix 2N < 2™ < N, and just project the Discrepancy Function onto

the (hyperbolic) Haar functions {hr : |R| = 27"}. By the Bessel inequality, this provides a



lower bound on the L? norm of Dy. This same method of proof, with the Littlewood-Paley
inequalities replacing the Bessel inequality, can be used to prove the LP lower bound, for
1 <p<oo. See [2].

At L°°, guided by the sharpness of the Small Ball Conjecture, we pose the Conjecture

below, which represents a y/log N gain over the lower bound proved by Roth.

The L*° Norm of Discrepancy Function Conjecture 2.2.3. In dimension d > 3, we

have the lower estimate valid for all point sets Ay.
IDx oo Z (log N)¥/2.

In dimension d = 2, this is the Theorem of [41]. In dimension d = 3, [1],[4] give partial
information about this conjecture. In this chapter, we can prove the following result, which

appears to be new in dimensions d > 4.

Theorem 2.2.4. (Bilyk, Lacey, Vagharshakyan, [6]) In dimension d > 3 there is a positive

n =mn(d) > 0 for which we have the uniform estimate
IDnlso = (log N)@=1/2+n

The proof of this result follows easily from the method of proof of Theorem 2.1.3, and

will be presented below.

2.2.2 Metric Entropy of Mixed Derivative Sobolev Spaces

While the special structure of the Haar functions can be exploited to prove the Small Ball
Conjecture, one would not anticipate that this special structure is in fact essential to the
Conjecture. Thus, we formulate a smooth variant of the Small Ball Conjecture.

Fix a continuous non-constant function ¢, supported on [—1/2,1/2], and of mean zero.

For a dyadic interval I, let

be a translation and rescaling of ¢ so that it is supported on I. Then, for a dyadic rectangle

R=R; x -+ xX Ry, set

d
QDR<HL'1, e ,.Z'd) = H goRj(xj) .
7=1

at



Smooth Small Ball Conjecture 2.2.5. For dimension d > 3 we have the inequality

27" 37 Ja(R) Snd 2| 3 a(R)er|

|R|=2—" |R|>2-"

The implied constant depends upon dimension d and ¢ only.
In this direction, we will prove a result in the same spirit as our Main Theorem.

Theorem 2.2.6. (Bilyk, Lacey, Vagharshakyan, [6]) Suppose ¢ is continuous, supported
n [=1/2,1/2], of mean zero, and such that (¢, hj_1,91/9) # 0. For dimension d > 3, there
is a positive n = n(d) so that we have the inequality below

2 Y \a(R)\gn%(d’l)*”H 3 a(R)chHOO. (2.2.7)

|Rl|=2"" [R|>2—"
The implied constant depends upon ¢.
With this Theorem, we can establish new results on the metric entropy of certain Sobolev
spaces of functions with mixed derivative in certain LP spaces. In d dimensions, consider

the map
x] Tq
Intdf(xl,’;gd):/ / f(y1’7yd)dy1dyd
0 0

We consider this as a map from LP([0, 1]¢) into C ([0, 1]%). Clearly, the image of Inty consists

of functions with LP integrable mixed partial derivatives. Let us set
Ball(MW?([0,1]%) = Inta({f € L7([0, 1)%) : | /], S 1})-

That is, this is the image of the unit ball of LP. This is the unit ball of the space of functions
with mixed derivative in LP.

These sets are compact in in C([0, 1]¢), and it is of relevance to quantify the compactness,
through the device of covering numbers. For 0 < e < 1, set N (¢, p,d) to be the least number

N of points z1,--- ,zx € C([0,1]%) so that
N
Ball(MWP([0,1]? U (n + €Boo

Here, By is the unit ball of C([0,1]¢). The task at hand is to uncover the correct order of
growth of these numbers as € | 0. The case of d = 2 below follows from Talagrand [44], and

the upper bound is known in full generality [14],[46].



Conjecture 2.2.8. For d > 2 one has the estimate
log N(e,p,d) ~ ¢ (log1/e)1/2 €l0.

It is well known [45] that results such as Theorem 2.2.6 can be used to give new lower

bounds on these covering numbers.

Theorem 2.2.9. (Bilyk, Lacey, Vagharshakyan, [6]) For 1 <p < oo, and d > 3, there is a

n > 0 for which we have
log N(e,p,d) = ¢ (log1/e)d=11.

We have concentrated on the case of one mixed derivative, but various results on frac-

tional derivatives are also interesting. See for instance [22], and [13].
2.2.3 Small Ball Inequality for the Brownian Sheet

Perhaps, it is worthwhile to explain the nomenclature ‘Small Ball’ at this point. The name
comes from the probability theory. Assume that X; : T'— R is a canonical Gaussian process
indexed by a set T'. The Small Ball Problem is concerned with estimates of P(sup;cp | X¢| <
€) as € goes to zero, i.e the probability that the random process takes values in an L* ball
of small radius. The reader is advised to consult a paper by Li and Shao [28] for a survey
of this type of questions. A particular question of interest to us deals with the Brownian
Sheet, that is, a centered Gaussian process indexed by the points in the unit cube [0,1]¢
and characterized by the covariance relation EX; - X; = H;l:1 min(s;,t;).

Kuelbs and Li [21] have discovered a tight connection between the Small Ball prob-
abilities and the properties of the reproducing kernel Hilbert space corresponding to the
process, which in the case of the Brownian Sheet is WM?([0,1]9), the space described in
the previous subsection. Their result, applied to the setting of the Brownian sheet in [14],

states that

Theorem 2.2.10. In dimension d > 2, as € | 0 we have

—log P(|| Bl ¢ (jo,174y < €) =~ e 2(log1/e)? iff logN(e) ~e '(log1/e)?/2.



Thus, in agreement with Conjecture 2.2.8, the conjectured form of the aforementioned

probability in this case is the following:

The Small Ball Conjecture for the Brownian Sheet 2.2.11. In dimensions d > 2,

for the Brownian Sheet B we have
—log P(|| Bl ¢(jo,17¢y < €) =~ e 2(log1/e)?"t, ¢ 0.

In dimension d = 2, this conjecture has been resolved by Talagrand in the already cited
paper [44], in which he actually proved Conjecture 2.2.5 for a specific function ¢ and used it
to deduce the lower bound in the inequality above.? In higher dimensions, the upper bounds
are established, see [14], and the previously known lower bounds miss the conjecture by a
single power of the logarithm.

Theorem 2.2.9 can be translated into the following result on the Small Ball Probability

for the Brownian Sheet:

Theorem 2.2.12. (Bilyk, Lacey, Vagharshakyan, [6]) In dimensions d > 3, there exists

n > 0 such that for the Brownian Sheet B we have
—1og P(|| Bllo(pojey < &) 2 & *(log1/e)* 21, & | 0.
2.3 Notations and Littlewood-Paley Inequality

Let ¥ € N? be a partition of n, thus ¥ = (r1,...,74), where the rj are nonnegative integers
and |7] = Y, 7+ = n, which we refer to as the length of the vector 7. Denote all such vectors
as H,,. (‘H’ for ‘hyperbolic.”) For vector 7 let Rz be all dyadic rectangles R such that for

each coordinate k, |Ry| = 27".

Definition 2.3.1. We call a function f an r function with parameter ¥ if

f=> erhr, ere{*l}.

ReRz

A fact used without further comment is that ng =1.

2The work of Talagrand bears strong similarities to the prior work of [41] and [17]. The argument of
Talagrand was subsequently clarified by [46], and [13].



As it has been already pointed out, the principal difficulty in three and higher dimensions
is that the product of Haar functions is not necessarily a Haar function. On this point, we

have the following

Proposition 2.3.2. Suppose that Ry,..., Ry are rectangles such that there is no choice of
1 <j<j' <k and no choice of coordinate 1 <t < d for which we have Ry = Rj ;. Then,

for a choice of sign € € {£1} we have

Proof. Expand the product as

¢ d

£
H hRm(xlv' . .,.’L'd) = H HhRm,t(xt) .
m=1

m=1t=1
Here €, € {£1}. Our assumption is that for each ¢, there is exactly one choice of 1 < mgy < ¢
such that R,,,; = S¢. And moreover, since the minimum value of |R,, ¢| is obtained exactly
once, for m # mg, we have that hg, , is constant on S;. Thus, in the ¢ coordinate, the

product is

hs, (x) H hRm,t(St) .
1<m#mo </t

This proves our Lemma. O

Remark 2.3.3. It is also a useful observation, that the product of Haar functions will have

mean zero if the minimum value of |R;, | is unique for at least one coordinate ¢.

Definition 2.3.4. For vectors 7; € N?, say that 7,...,7; are strongly distinct iff for
coordinates 1 <t < d the integers {rj,t : 1 < j < J} are distinct. The product of strongly

distinct r functions is also an r function, which follows from ‘the product rule’ (2.3.2).

The r functions we are interested in are:

fr= Z sgn(a(R)) hr . (2.3.5)

We recall some Littlewood-Paley inequalities, which are standard, and so we omit proofs.



Littlewood-Paley Inequalities 2.3.6. In one dimension, we have the inequalities

[Z ‘@11(')} -

ICR

, 2<p<oo. (2.3.7)
P

S aamiof, < v

ICR

Moreover, these inequalities continue to hold in the case where the coefficients aj take values

i a Hilbert space H.

The growth of the constant is essential for us, in particular the factor \/p is, up to a
constant, the best possible in this inequality. See [15],[50]. That these inequalities hold
for Hilbert space valued sums is imperative for applications to higher dimensional sums of

Haar functions. The relevant inequality is as follows.

Theorem 2.3.8. We have the inequalities below for hyperbolic sums of r functions in di-
mension d > 3.

.S (pr) =12 2 <p <o,

IS

7l=n

We recall a vector valued Harmonic Analysis inequality.

Proposition 2.3.9. Let F; be a sigma field generated by dyadic rectangles in dimension 2.
We then have

[Esen] edl5]”

Proof. This is one of many examples of a vector valued inequality in the Harmonic Analysis

1/2

., 2<p<oo. (2.3.10)
p

literature. This particular inequality admits a simple proof by duality, recalled here for
convenience.

Since p > 2, we can appeal to a duality argument. We can choose g € L®/?" of norm

10



one so that

e ;@E(%‘ | F3)%,9)
< Z (5 | F)),
= Zj:w?,E(g | F))
< 2_(#], M)
j
2.4
7

S((p/2) =1)”

ZE(% | Fy)?

”MgH(p/Q)’
2

Here we have used Jensen’s inequality and the self-duality of the conditional expectation

operators. The operator M g is the (strong) maximal function on the plane, namely

1
Mg(x) =supR/\g(y)\ dy,
r |R| Jr

where the supremum is over all dyadic rectangles R. This maps L? into L4 for all 1 < ¢ < oo,
an inequality appealed to in the last line of the display above. Moreover, it is well known

that the norm of the operator behaves as

HMHq—>q (q—l) l<g<2.

2.4 Proof of a Small Ball Inequality

The proof of the Theorem is by duality, namely we construct a function ¥ of L' norm about
one, which is used to provide a lower bound on the L norm of the sum of Haar functions.
The details of this argument are similar to those of [4].

The function ¥ will take the form of a Riesz product, but in order to construct it, we

need some definitions. Fix 0 < & < 1 to be a small number, ultimately of order 1/d?. Define

11



relevant parameters by

q=lan®], b=y, (2.4.1)

=

p=agtn~d"D/2 p=/qn 4=1/2, (2.4.2)

Here a is a small positive constant, we use the notation b = i throughout, so as not to
obscure those aspects of the argument that dictate this choice. p is a ‘false’ L? normalization
for the sums we consider, while the larger term p is the ‘true’ L? normalization. Our ‘gain
over the average case estimate’ in the Small Ball Conjecture is ¢® ~ n/%.

Divide the integers {1, 2, ...,n} into ¢ disjoint intervals of equal length I, . .., I, ordered
from smallest to largest. Let A, = {7 € H,, : r1 € I;}. Let

Fr=> fr, Hy= > a(R)hg (2.4.3)
FEA, |R|=2—"

Here, the f7 are as in (2.3.5). The Riesz product is a ‘short product’:

U=
t

(1+5Ft)a
1

q
One can view the pF; as a ‘poor man’s sgn(F;)’, in that the Riesz product above tends to
weight the region where the functions F} align. Note the subtle way in which the false L?
normalization enters into the product. It means that the product is, with high probability,
positive. And of course, for a positive function F, we have EF = || F'||1, with expectations

being typically easier to estimate. This heuristic is made precise below.

Proposition 2.3.2 suggests that we should decompose the product ¥ into

U=1+044 77,

where the two pieces are the ‘strongly distinct’ and ‘not strongly distinct’ pieces. To be

specific, for integers 1 < u < g, let

wi=p S S

1< < <wp <q €Ay, 1=1

sd
where Z is taken to be over all 7 € A,, 1 < m < k such that:

the vectors {7} : 1 < m < k} are strongly distinct. (2.4.4)

12



Then define

q
el =S wyd,
k=1

With this definition, it is clear that we have

d—1

(Ho, U0 = (H,, B3 2 " n™"2 27" Y~ agl,

|Rj=2-n

so that ¢® is our ‘gain over the trivial estimate’, once we prove that |[U%d||; <1 (estimate

(2.4.11) below). Proving this inequality is the main goal of the technical estimates of the

following Lemma:

Lemma 2.4.5. We have these estimates:

P(¥ < 0) S exp(—Ag'~);
19|z S exp(a’q™);
EV =1;
W] S1;
971 S 1;

el < 1.

Here, 0 < o' < 1, in (2.4.7), is a small constant, decreasing to zero as a

(2.4.6)
(2.4.7)
(2.4.8)
(2.4.9)
(2.4.10)

(2.4.11)

in (2.4.1) goes to

zero; and A > 1, in (2.4.6) is a large constant, tending to infinity as a in (2.4.1) goes to

ZET0.

Proof. We give the proof of the Lemma, assuming our main inequalities proved in the

subsequent sections.

Proof of (2.4.6). Using the distributional estimate (2.6.3) of Theorem 2.6.1 proved in

Section 5, and the definition of ¥ we estimate

13



M=

PV <0)<S P(GF < —1)

-
Il

1

P(pF; < —a~ ¢!/

I
M=

)
I

< exp(—ca”?q' 7).

Proof of (2.4.7). The proof of this is detailed enough and uses the results of subsequent
sections, so we postpone it to Section 6, Lemma 2.6.4 below.

Proof of (2.4.8). Expand the product in the definition of ¥. The leading term is one.

Every other term is a product

177,

keV

where V' is a non-empty subset of {1,...,¢}. This product is in turn a linear combination
of products of r functions. Among each such product, the maximum in the first coordinate
is unique. This fact tells us that the expectation of these products of r functions is zero. So

the expectation of the product above is zero. The proof is complete.

Proof of (2.4.9). We use the first two estimates of our Lemma. Observe that

¥, = EV — 2E¥1g
<14 2P(¥ < 0)/2]| ||,
<14 exp(—Agt20/2 +d/¢?).
We have taken b = 1/4 so that 1 — 2b = 2b. For sufficiently small a in (2.4.1), we will have

A 2> a'. We see that (2.4.9) holds.

Indeed, Lemma 2.6.4 proves a uniform estimate, namely

sup B [[(1+5F)* S exp(a'q™).
Vc{l,....q} eV

Hence, the argument above proves

sup [T+ ﬁFt)H <1, (2.4.12)
Vel 1oy !

14



Proof of (2.4.10). The primary facts are (2.4.12) and Theorem 2.8.2; we use the notation
devised for that Theorem.

We use the triangle inequality, estimate (2.4.7) of Lemma 2.4.5, Holder’s inequality, with
indices ¢%* and (q%)/ =¢%*/(¢* — 1) , the inclusion-exclusion identity (2.8.1) and estimate

(2.8.3) of Theorem 2.8.2 in the calculation below. Notice that we have

(qzbil)/qu —2b

sw | TT+5r0) sup | TT(1+5F))
Vc{l,...q} g/ (g2) Vc{l,....q} 11;‘[/ 1

- 2q
<[ ITa=+sm],
teVv

We now estimate

- ~ V(@) . =
2=y Hp SumProd(X (G)) I « +th)H1 (2.4.13)
G admissible te{l,...,q}-V(G)
< 3 15 VO SumProd(X ()|l - H 1 «a+ m)‘ o
G admissible te{l,...,¢}—V(G) 1

< > 15 VOl SumProd(X(G)) |l s
G admissible

=> > 7V SumProd(X (G))| e

Proof of (2.4.11). This follows from (2.4.10) and (2.4.9), and the identity ¥ = 1+ ¥4 +

U™ together with the triangle inequality.

2.5 The Analysis of the Coincidence

Following the language of J. Beck [1], a coincidence occurs if we have two vectors 7 # §
with e.g. 79 = so. He observed that sums over products of r functions in which there are
coincidences obey favorable L? estimates. We refer to (extensions of) this observation as

the Beck Gain. We introduce relevant notation for this situation. For 1 < k < d and

15



1 <t1,t2 < g, set
Pty ok = Z fr 15 (2.5.1)
TEAL; ; €A,
T#£S
rE=Sk
Notice that due to our construction of the Riesz Product, there are no coincidences in the
first coordinate in the decomposition of W, although the case £ = 1 is important for the
proof of the L? estimate (2.4.7) . In the sum above, there are 2d — 3 free parameters among
the vectors 7 and §. That is, the pair of vectors (7, §) are completely specified by their

values in 2d — 3 coordinates. The following lemma suggests that these parameters behave

as if they were orthogonal.

The Simplest Instance of the Beck Gain 2.5.2. We have the estimates below, valid

for an absolute implied constant that is only a function of dimension d > 3.
sup H(I)thtmknp S pd71/2 -nd=3/2 ) 2<p<oo, (2.5.3)
where the supremum is taken over all 1 < k <d and 1 < t1,ts <gq.

This estimate is smaller by 1/2 power of n than what one might naively expect, and
so we say that we have an average gain of 1/4 power of n in the products above. (Here,
the average is in reference to the two functions we form the product of.) This Lemma,
in dimension d = 3 appears in [4]. We will give an inductive proof of this estimate, that
requires that we revisit the three dimensional case. In the next section, we also derive other
estimates from the one above.

The estimate above may admit an improvement, in that the power of p is perhaps
too large by a single power, due to our use of Proposition 2.3.9. (There should also be a
dependence upon ¢, but on this point, and in many others, the arguments are suboptimal,

and so we do not pursue this point here.)

Conjecture 2.5.4. We have the estimates below, valid for an absolute implied constant

that is only a function of dimension d > 3.

Sup H(I)thtmk”p = (pn)d_3/2 ) 2<p<oo.

16



Proof of Lemma 2.5.2
The proof is inductive on dimension. We shall suppress dependence on t¢1, t2. In fact,

we shall prove the Theorem for the quantity

oy= Y frfs
FASEH,
r1=51

and the claimed statement will follow with only minor adjustments. To set up the induction,

we need some definitions.

Definition 2.5.5. Given a set of r functions { fr} and subset C C H,,, x --- x H,,, set

t
SumProd(C) = Z H fr -

(71,....7%)€C s=1
Below, we will be interested in pairs and four-tuples of r functions. It is an important
element of the argument, allowing us to run the induction, that we consider products of r

functions where the vectors are in hyperbolic collections H,, for different values of n.

The main quantity we induct on is then
B(d,n,p) = sup||SumProd(B)||, , d,n,p>3. (2.5.6)
B

Here, the supremum is formed over all B C H,,, x H,, and all r functions subject to these

conditions:

e There is a coincidence in the first coordinate: For all (7, 5) € B, we have 7 # § and

r| = S1.
e n1,no < n. That is the lengths of the vectors 7 and § are permitted to be different.
e No other restriction is placed upon the pairs of vectors in B.
Our main estimate on these quantities is as follows.

Lemma 2.5.7. We have the inequality below valid for all dimensions d > 3.

B(d,n,p) Sp 2t 320 pn>3.

17



The inductive argument for Lemma 2.5.7 has the underlying strategy of reducing di-
mension by application of the Littlewood-Paley inequalities. But, this causes the collections
of vectors to lose some of their symmetry. Regaining the symmetry causes us to introduce

additional types of collections of vectors. Two of these collections are as follows.

C(d,n,p) = sup||SumProd(C)||, , d,n,p>3.
C

Here, the supremum is formed over all C C H,,, x H,,, and all r functions subject to these

conditions

There is a coincidence in the first coordinate: For all (7,5) € C, we have 77 # § and

rh = S1.

For all (7, §) € C, we have ry > s9 and r3 < s3.

e ny,no < N

There is no other restriction on the pairs of vectors in C.

The only difference between the present collections and the collections in B(d,n,p) is
that in the present collections we assume locations of maximums in the second and third
coordinates, thereby permitting application of the Littlewood-Paley inequalities in those
two coordinates.

The second collection is less sophisticated. We simply assume that the maximum always

occurs in say, the first coordinate. Define
D(d,n,p) = sup||SumProd(D)||,, d,n,p>3. (2.5.8)
D

Here, the supremum is formed over all D C H,,, x H,, and all r functions subject to these

conditions

e There is a coincidence in the first coordinate: For all (7,5) € D, we have 7 # § and

r = S1.

e For all (7,5) € D, and all 2 < j < d, we have r; > s;.

18



e no < nip <n.

That is, we require that in each coordinate where there is a maximum, the maximum occurs

in the vector 7.

Lemma 2.5.9. We have the inequality below valid for all dimensions d > 3.
C(d,n,p), D(d,n,p) Sp™ /2032 pn>3.

We turn to the proofs of the Lemma 2.5.7 and Lemma 2.5.9, and begin by explaining
the logic of our induction. Let B(d) stand for the inequalities in Lemma 2.5.7 in dimension

d, and likewise for C(d) and D(d). We prove:

e The inequalities D(d) for all dimensions d.

e The inequalities B(3) and C(3). At the same time, assuming B(d — 1), d > 4, we

prove C(d).

e Assuming C(d) and D(d), we prove B(d).

These clearly combine to prove the two Lemmas, and so complete the proof of Lemma
2.5.2.

The Inequalities D(d).

The definition of D(d) permits the possibility of equality for a large number of coordi-

nates of the two vectors. Let us exclude that case in this definition. Define
D(d,n,p) = sup|[SumProd(D)||, , d,n,p>3, (2.5.10)
D

where D is as in (2.5.8), but with the additional condition that for 2 < j < d we have r; > s;.
Then, we are free to apply the Littlewood-Paley inequality in each of the coordinates from
2 to d.

Fix a collection of vectors D, and a collection of r functions which achieves the supremum

in (2.5.10). For this collection, and a choice of vector 7€ N1 let

Dﬁ:{(’Fag)ED T4l = Py 1§j§d_]‘}
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Of course there are at most < n?~! values of § for which the collection above is non-empty.

Then,

1/2
Dy(d,n,p) S p* 172

p

[Z SumProd(ID)ﬁ)2
5

< P20 @02 supl |5 SumProd (D)
p g p

But, the coordinate r; is completely specified in D, and therefore does not contribute to
the last norm. And so the first coordinate of § is specified. Therefore, there are at most
d — 2 free choices of parameters in the vector s. By application of the Littlewood—Paley

inequalities, we have
D4(d,n,p) S (pn)* /2.
This is better than the claimed inequality.

If there are a set J C {2,...,d} of coordinates for which r; = s; for all j € J, then
after arbitrarily specifying these values, we have will be in position to apply the inequality
D_(d—|J|,n,p). This will clearly give a smaller estimate. As the number of possible choices
for J is only a function of dimension, this completes the proof.

The Bounds B(3) and C(3). Assuming B(d — 1), d > 4, we prove C(d).

In this section, we will prove the estimates for C'(3). As well, we present the inductive

proof of C'(d) assuming B(d — 1), for d > 4.
For the proof of C(3) there is an ancillary collection that we will have recourse to. Let
M(n, p) = sup||SumProd(M)]|,
M
where the supremum is formed over all choices of M C H,,, x H,,, and all r functions subject
to these conditions.

e 7, 5 are three dimensional vectors.

e There is a coincidence in the first coordinate: For all (7,5) € C, we have 7 # § and

rh = S1.
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=3
oy

£ F %Values

n o lengths of the vectors

Figure 1: The collections M, with a coincidence in the top row, the second row taking
fixed values, and no coincidence in the bottom row.

e The second coordinates are fixed: There are integers Fy, Fy so that for all (7, §) € M

we have ro = F and sy = F5.
e There is no coincidence in the third coordinate: For all (7, 5) € M we have r3 # s3.

® ny,ng < N.

See Figure 1 for an illustration of this collection.We remark that in the case ny # ns, a

coincidence can occur in the third coordinate, a case that will come up below.

Lemma 2.5.11. We have the inequalities

M(n,p) S VB Vi

Proof. Notice that the value of the maximum in the third coordinate completely specifies
the pair of vectors (7, §). Therefore, one application of the Littlewood-Paley inequalities
completes the proof. For any collection M as above, let M, be the (7,5) € M where the
maximum in the third coordinate is a, max{rs, s3} = a. Note that this can only consist, at

most, of two pairs of vectors.

|SumProd(M)]|, < @HZ sumpmd(Ma)zHZz < VBV
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Fix a dimension d > 3. Let B be the collection which satisfies the conditions associated
with (2.5.6) that contains C. We introduce a conditional expectation into the argument, to
gain some additional symmetry. Let F,; be the dyadic sigma field in the second and third
coordinates generated by dyadic rectangles of side lengths 2721 and 27~ respectively.

We have this equality.

S e ds=E( Y S sl Fap) — SumProd(Day),

(7,8)eC (7,5)eB
ro=a,s3=b ro=a,s3=b

where D, ; consists of pairs of vectors (7,5) € B such that r; = s1, a = 12 = sp and
b =r3 = s3. In three dimensions, the set D, ; is empty, since the requirements for a pair of
vectors being in the set D, forces 7= 3, a contradiction.

Assuming that d > 3, using the assumption of B(d — 2) ( in the case of d = 4 we just

apply the Littlewood-Paley inequality in the last coordinate), we see that

[SumProd(Dgp)ll,/2 S pd=5/2 . pd=T/2

Here, we have ‘lost two dimensions’ due to the roles of a,b. Therefore, using a trivial

estimate in the parameters a, b,

1/2
< pd=3/2pd=5/2

p

H [Z SumProd(Dg)?

This estimate is smaller than what the other terms will give us.

Therefore, using (2.3.10) we can estimate

2)1/2

||SumProd(C)|, < pd_3/2nd_5/2 + p?

D

a,b

Yo fefs

(7,5)eB
ro=a,s3=b

p/2

We concentrate on the latter term, and in particular expand the square.

I fefs

ab' (7,5)€B
ro=a, s3=b

<n

+ SumProd (B ) + SumProd(B})

+ SumProd(B") (2.5.12)
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where these terms arise as follows. In forming the square on the left in (2.5), we have two

pairs (7, 5), (7, 8) € C with 7o = %, and s3 = s4. We form the product

e fs fo fs

e If the two pairs are equal, the product in (2.5) is one. There are < n2?=3 ways to

select such pairs. This is the right hand side of (2.5).

e The collection B} consists of vectors such that 7= 7 but §# 8, the product in (2.5) is
equal to fz- f3 (B is defined symmetrically). Notice that necessarily we have s; = s/,

which is equal to r1, and s3 = s5. Let us set

B/c:{(§>5) 181 =81 =2¢; 83 :§3}.

We have ‘lost’ one parameter in B/, and have one more coincidence, therefore, we can

apply the induction hypothesis B(d — 1) to see that
|SumProd(BL)|l, < p*=*/2n?~5/2.
It is easy to see that

SumProd(B}) = Z SumProd(B],, ).

FEHn,

Thus we have

HSumProd(IB%’l)Hp < Z HSumProd(BLl)Hp < pd=1. pd=3/2,d=5/2 _ ;d=3/2,d-T/2

FEHy,
This controls the term in (2.5).

—\

e The last term arises from two pairs of vectors (7, ), (7, 5) € C that consist of four

distinct vectors. Let us set

Here, for the sake of cleaner graphics, we have deliberately written 5, s as the middle

two vectors in the four-tuples in B”.
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F 1 F 2
'\\—/ /'
——o

ni ng N2 ni lengths of the vectors
N——— I\J
W

outside

Figure 2: The Decomposition of IB%’}’,h F,» in the four dimensional case (the coincidences are
indicated by the connected black circles).

It remains to bound the term in (2.5.12). We reduce this four-fold product back to a
product of two-fold products. For integers Iy, I, let B, p be those (7, 5,5,7) € B” with
r1=s1 = Fy and ry = s; = I%. Let B] (40 7, g, Pe the projection of four-tuples in By, p,
onto the first and fourth coordinates, and B{;Side, PP the projection onto the second and
third coordinates. See Figure 2.

. — 17 .
For any pair (7,7) € B utside,y 1,0 and any two pairs
JER JE. "
(S7§) ’ (U,Q) S IB%inside,Fl,Fg ’

we have

Therefore, we have the product formula
SumProd(]B%}fﬂh&) = SumProd(Bgutsideyphfb) X SumProd(ngside’Fh&).

Notice that the pairs of vectors in B .. F.F, have their first coordinates fixed, and
have a coincidence in the second coordinate. The fixed first coordinates need not be the
same, so that the lengths of the remaining coordinates are, in general, distinct. Still, we

may conclude that

d—3/2,_d—5/2
”SumPTOd(Bgutside,Fl,Fz)||p510 2pd=5/2,
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This estimate is uniform in Fj, F5. In the case of dimension d = 3, this follows from
Lemma 2.5.11, while for d > 3 it follows from the induction hypothesis. A similar inequality
holds for B;,nside,Fl By

Therefore, we can estimate the term in (2.5.12) as follows:

1/2 1/2
p/2 < pn sup HSumPrOd(Blolutside,Fl,Fz) X SumPrOd(ngside,Fl,Fz)||p§2

HSumProd(B”)
F1,F>

Spn IEUII; [[SumProd( gutside,Fl,Fg)Hglo/2 x |[[SumProd( i,nside,Fl,Fg)H;lo/Q
1,472

< (pn)t32.

Our proof is complete. Assuming B(d — 1), d > 4, we have proved C(d). We have also
proved C(3). The fact that B(3) holds follows from the argument below.

Assuming C(d) and D(d), we prove B(d).

Fix p,n > 3, a collection of vectors B and r functions which achieve the supremum in
(2.5.6). Write this collection as

B=Du |J GCi
2<i£j<d
where C; ; consists of those pairs (7,5) € B such that i is the first coordinate for which
r; > s; and j is the first coordinate for which r; < s;. Then, the collections C;; are
pairwise disjoint, and the collection ID consists of all pairs not in some C; ;. Thus,
SumProd(B) = SumProd(D) + Z SumProd(C; ;).
2<i#5<d
After a harmless permutation of indices, the inequalities C(d) apply to the collections

C;,j. The (unconditional) inequalities D apply to the collection D. The proof is complete.
2.6 Corollaries of the Beck Gain

Theorem 2.3.8 implies an exponential estimate of order exp(L? (4=1) for sums of 7 functions.
In fact, we can derive a subgaussian estimate for such sums, for moderate deviations, and
d2

moreover, in order to have a gain of order n®/% in our Main Theorem, we need to use this

estimate.

25



Theorem 2.6.1. Using the notation of (2.4.2) and (2.4.3), we have this estimate, valid for

all1 <t <q.
1-2¢
IpFilly SvP,  1<p<en2i. (2.6.2)
As a consequence, we have the distributional estimate
1—2¢
P(|pFy| > ) < exp(—cx?), x < cnid-2 (2.6.3)

Here 0 < ¢ < 1 s an absolute constant.

b

1
To use (2.6.3), we need ¢° = a®n® < eni-6, and so € ~ 1/d is the optimal value for e

that this proof will give.

Proof. Recall that

F, = fo-

rEAL

where A, = {7 € H,, : r1 € I}, and I; in an interval of integers of length n/q, so that
BA; ~nd1 g~ p2,
Apply the Littlewood-Paley inequality in the first coordinate. This results in the esti-

mate

Iorls < VA [Sle 3 57

sel; riri=s

1/2
S VBl + P2l

1/2
< \/15{1 + ||P2<I>t,t,1|pf2},

where ®;; 1 is defined in (2.5.1). Here it is important to use the constants in the Littlewood-

Paley inequalities that give the correct order of growth of \/p. Of course the terms @,

are controlled by the estimate in (2.5.3). In particular, we have
q - - _ _
107t 11llp S A2 d=8/2 < g pt= 1272 <

nd—1P

Hence (2.6.2) follows.
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The second distributional inequality is a well known consequence of the norm inequality.
Namely, one has the inequality below, valid for all z:

1—2¢

P(pF; > x) < CPpP/z7P,  1<p<cn2di.
If z is as in (2.6.3), we can take p ~ 22 to prove the claimed exponential squared bound. [J

We shall now use the Beck Gain to prove the crucial L? estimate (2.4.7) of Lemma 2.4.5.

We actually need a slightly more general inequality:

Lemma 2.6.4. We have the following estimate:

sup B [[(1+5F)? S exp(a'q™).
VC{17 7q} veV

The supremum over V will be an immediate consequence of the proof below, and so we

don’t address it specifically.

Proof of (2.4.7). Let us give the essential initial observation. We expand

q q
H1+pF =EJ](+25F; + (5F))?) .
: j:

Hold the last d — 1 coordinates, xo, ..., x4, fixed and let F' be the sigma field generated by
Fy,...,F;—1. We have
E(1+ 2pF, + (pF,)? | F) = 1+ E((pF,)* | F)
=1+ + PE(®y g | F),

where ®, 1 is defined in (2.5.1). Then, we see that

q q—1
E JJ0+ 25 + (5F)?) = B{ (1 + 25F: + (5R)?) x E(1+25F, + (5F:)% | F) }
=1 v=1
q—1
< (14’ HE[( +25F, + (bF)?) (2.6.5)
v=1
q—1
+Ep°®g g1l - [[(1+ 255 + (5F)?) (2.6.6)
v=1

This is the main observation: one should induct on (2.6.5), while treating the term in (2.6.6)

as an error, as the Beck Gain estimate (2.5.3) applies to it.
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Let us set up notation to implement this line of approach. Set

, V=1...,q.

r

N(Vir) = Hﬁ(l + )|
t=1

We will obtain a very crude estimate for these numbers for » = 4. Fortunately, this is
relatively easy for us to obtain. Namely, ¢ is small enough that we can use the inequalities

(2.6.2) to see that

1%
N(V;4) < []I1+ PFillav

v=1

< (Cq)".
We have the estimate below from Holder’s inequality
N(V:2(1—1/q)"Y) < N(V;2)' Ve N(V;4)1 /e, (2.6.7)
We see that (2.6.5), (2.6.6) and (2.6.7) give us the inequality

N(V +1;2° < 1+’ )N(V;2)* + C - N(V;2(1 = 1/q) )2 - [Py 1 v 411

q
< (1+a?* )N(V;2)% + ON(V;2)* 27 N(V; 429 5@y 4 1,v411 g

< (L+a* )N(V:2)* + Cqn V2N (V52)2 720,

In the last line we have used the inequality (2.5.3). Of course we only apply this as long as

N(V;2) > 1. Assuming this is true for all V' > 1, we see that
NV +1, 2)2 <1+ a1 4 C’qd+2n_1/2)N(V; 2)2.
And so, by induction,
N(q;2) < (1 + a2q2b—1 + qu+2n—1/2)q/2 < e2aq2b )

Here, the last inequality will be true for large n, provided that ¢ in the definition of ¢ (2.4.1)

is small. Indeed, we need

a2 > gt 12
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Or equivalently,

a2nl/? > gd+5/2
Comparing to the definition of ¢ in (2.4.1), we see that the proof is finished. O
One should notice that the results of this section suggest that our methods give a gain
of the order %.

2.7 The Beck Gain with Fixed Parameters.

We will need to analyze longer products of r functions. These longer products will be
reduced to the case of a a slightly more general version of the Beck Gain Lemma 2.5.2.
Namely, we will consider sums of products of two r fucntions, but impose the additional
restriction for some coordinates in the pair of vectors to have fixed values. Let @ € N1 and

b € N'2 be integer vectors with lengths |a@], |b| < n. We will be estimating the quantity:

B(Fy,F;) = sup sup|[SumProd(B)||,, d,n,p>3.
E’g’j1<.j2 BB
The inner supremum is formed over all B C H,, x H,, and all r functions subject to these

conditions:

o "€ Aj,5€Aj,, where j; < jo (i.e. s1 is the maximum in the first coordinate.)

There is a coincidence in the second coordinate: For all (7, 5) € B, we have 7 # § and

T9 = S92.
e For k=1,..., Fi, we have ry 9 = a. (F1 coordinates of 7 are fixed.)
e For k = 1,...,F,, we have sp, 142 = bg. (Fh coordinates of § are fixed, and these

coordinates are distinct from the other vector.)

We have the following estimate, which gives an average Beck Gain of n!/8 for each of

the two functions in the product.

Lemma 2.7.1. We have the inequality below valid for all dimensions d > 3.

B(Fi,F) Spt™' "2 TR pn> 3.
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Proof. We will reduce this situation to the Beck Gain proven before. Let B be as above.
First of all, we shall apply the Littlewood-Paley inequality in the first coordinate. Notice

that the maximum in this coordinate is automatically s;.

211/2

[|SumProd(B)||, <

VBRI I Y fre fs

celjy (7, §’)€]E p/2
s1

We concentrate on the latter term, and in particular expand the square.

211/2 1/2
VBIIY I DY fe fs =Vol| > fefefrefs
celyy | (75)CB p/2 (7,5,7,5)EBxB p/2
s1 51=5;
1/2
pn In;zX Z f,?- fg‘ . ff . fg (2.7.2)
e (7,3,7,3)eBxB p/2
51=8;T2=82=C; T =85=C
1/2
+v/pv/nmax > fe-Jo- fz- f5|| (2.7.3)
(7,3,7,3) EBxB p/2

81=8;T2=82=T5=8,=C

We start with the estimates for the first term above (2.7.2):

1/2
v/pnmax > fe-fo fo- Js
e7e (7,5,7,5)€BxB p/2
S1=81;T2=82=C; ry=8,=C
1/2
= Vpnmax ( >t fr) ( o s fs)
- (7,F) By (8,8)€B2 p/2
<vinm| S g s e

GJBl p (S S EBQ

—

Here B, is defined to consist of pairs (7,7) € A?-l which satisfy the following:
e For k=1,...,F, we have 1y 0 = 1,5 = Q.
® Ty =20, Ty =C.

And similarly Bs consists of pairs (§,5) € A?Q with the properties:

e For k=1,...,Fy, we have spyp 12 = Spp 42 = bk

® Sy =¢ 5 =cC
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e Moreover, we have s1 = s;.

Notice that because of the last condition and the fact that ¢ # ¢ (i.e., §# 5), the Beck
Gain (Lemma 2.5.2) applies to this family of pairs, giving a gain of n'/2, while By will be
estimated by simple parameter counting, supplying no gain. We have

HSumProd(Bl)Hp < (pn)d_Q_Fl,

[SumProd(B,)|| < p?=3/2Fend-2- 212,

And thus we can estimate the term (2.7.2) by

1/2
v > fe-fo-fef5l| S
(7,5,7,5)eBxB p/2
S1=81;T2=82=C;Ty=853=C
1/2 12 e
< on ((pn)d*Q*Fl) (pd—3/2fF2nd—27F271/2> _ (pn)dflf%*i,

The second term (2.7.3) satisfies the same bound in n. This can be shown by simple
parameter counting, the gain comes from the loss of one parameter since ¢ = c.

We remark that in this version of the Beck gain ‘error terms’ do not arise, since we apply
Littlewood-Paley inequality only in the first coordinate, where we already have a natural
order. Thus we do not need to use the conditional expectation argument as in the proof of

Lemma 2.5.2.

2.8 The Beck Gain for Longer Coincidences

In the present section we treat longer coincidences. This requires a careful analysis of the
variety of ways that a product can fail to be strongly distinct. That is, we need to understand
the variety of ways that coincidences can arise, and how coincidences can contribute to a
smaller norm. Following Beck, we will use the language of Graph Theory to describe these

general patterns of coincidences.
2.8.1 Graph Theory Nomenclature

We adopt familiar nomenclature from Graph Theory, although there is no graph theoretical

fact that we need, rather the use of this language is just a convenient way to do some
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bookkeeping. The class of graphs that we are interested in satisfies particular properties. A
d—1 colored graph G is the tuple (V(G), Eq, Es, ..., Eg), of the vertex set V(G) C {1,...,q},

and edge sets Fo, E3, ... Eg, of colors 2,3, ...,d respectively. Edge sets are are subsets of
E; cV(GQ) xV(GQ)—{(k,k) | ke V(G)}.

Edges are symmetric, thus if (v,v") € E; then necessarily (v',v) € Ej;.

A clique of color j is a maximal subset @ C V(@) such that for all v # o' € @ we have
(v,v") € E;. By mazimality, we mean that no strictly larger set of vertices Q" D @ satisfies
this condition.

Call a graph G admissible iff

e The edges sets, in all d — 1 colors, decompose into a union of cliques.

e If Q1’s are cliques of color k (k =2,...,d), then ﬂZZQ @} contains at most one vertex.
e Every vertex is in at least one clique.

A graph G is connected iff for any two vertices in the graph, there is a path that
connects them. A path in the graph G is a sequence of vertices v1,...,v; with an edge of

any color, spanning adjacent vertices , that is (vj,v;41) € UzﬂEk.
2.8.2 Reduction to Admissible Graphs

It is clear that admissible graphs as defined above are naturally associated to sums of
products of r functions. Given admissible graph G on vertices V, we set X (G) to be those

tuples of r vectors

e [] A

veV

so that if (v,v’) is an edge of color j in G, then 7, ; = ry ;.
We shall introduce the following counting parameter: for an admissible graph G, its

index, ind(G), is defined as

indG)= Y, (tQ-1).

Q is a clique
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Effectively, the index of G is the least number of equalities, needed to define X(G), in
other words, the number of coincidences. In particular, for the graphs, corresponding to
the simplest case of the Beck Gain, the index is one.

With these definitions at hand, it is not hard to obtain the Inclusion-Exclusion formula,

relating admissible graphs and the ‘not strongly distinct’ part of the Riesz product:

= Y ()OO VOl sumProd(X(@)) - [ (1 + AF. (2.8.1)
G admissible t¢V(G)

We will prove the following Theorem:

Theorem 2.8.2. Beck Gain for Graphs (Bilyk, Lacey, Vagharshakyan, [6]) For an
admissible graph G on vertices V we have the estimate below for positive, finite constants

Co, C1,C2,Cs:
PV |SumProd(X (G) |, < [ColV|C1p©2qC2n ™IV, 2<p< . (2.8.3)

The most significant term on the right is n~". It shows that as the number of coinci-
dences goes up, the corresponding ‘Beck Gain’ improves. Notice that for the other terms
on the right, Cy is a constant; |V| < ¢ < n¢, where we can choose 0 < € as a function of
n; and while the inequality above holds for all 2 < p < oo, we will only need to apply it
for p < ¢? < n/2. That is, the n~" is the dominant term on the right. This Theorem,
together with the fact that there are at most |V |>*V| admissible graphs on the vertex set

V, yields the boundedness of the sum in (2.4.13).
2.8.3 Norm Estimates for Admissible Graphs

We begin the proof of Theorem 2.8.2 with a further reduction to connected admissible
graphs. Let us write G € BG(Cy, C1,Cs,C3,1n) if the estimates (2.8.3) holds. (‘BG’ for
‘Beck Gain.’) We need to see that all admissible graphs are in BG(Cy, Cy, Ca, C3,n) for

non-negative, finite choices of the relevant constants.

Lemma 2.8.4. Let Cy,Cq,Co,C3,n be non-negative constants. Suppose that G is an ad-

missible graph, and that it can be written as a union of subgraphs G1,...,Gy on disjoint
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vertex sets, where all G; € BG(Cy, C1,Co,Cs,n). Then,
G € BG(Cy, C1,Co,C2 + C3,m) .

With this Lemma, we will identify a small class of graphs for which we can verify
the property (2.8.3) directly, and then appeal to this Lemma to deduce Lemma 2.8.2.
Accordingly, we modify our notation. If G is a class of graphs, we write G C BG(n) if there

are constants Cy, C1, C2, C3 such that G C BG(Cy, C1,Cs, Cs,n).

Proof. We then have by Proposition 2.8.5
k
SumProd(X (G)) = H SumProd(X(Gy)) .
j=1

Using Holder’s inequality, we can estimate

k
PV l[|SumProd(X (G))], < H Vil || SumProd (X (G;)) Ik

Co (kp)©rq©2n Vil

szl

< [COpCl qCQJrCln*n}\VW )

Here, we use the fact that since the graphs are non-empty, we necessarily have k < q.

O

Proposition 2.8.5. Let G1,...,Gp be admissible graphs on pairwise disjoint vertex sets
Vi,...,Vp. Extend these graphs in the natural way to a graph G on the vertex set V.= JV;.

Then, we have

SumProd(X(G)) = ﬁ SumProd(X (Gy)) .
t=1

2.8.4 Connected Graphs Have the Beck Gain.

We single out for special consideration the connected admissible graphs G. Let Gconnected

be the collection of of all admissible connected graphs on V' C {1,...,q}.

Lemma 2.8.6. We have Geonnected C BG(7) for some n > 0.
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The point of this proof is that we will reduce this question to a much simpler key fact,
namely Lemma 2.7.1, which we restate here in our current notation.?
Let Gfixed(2) be the set of graphs—and sets of r functions associated with the graphs—

with these properties:

e (G is a connected graph on two vertices {v,v'}. That is, there is at least one edge
that connects these to vertices. Denote by C' C {2,...,d} the set of coordinates

corresponding to the edges.

e There are a set of coordinates F,, F,y C {2,...,d} that are disjoint from the set of

edges, and two vectors @ € N and @ € N/ so that we define

Y(G) = {(Fv,’?y/) e H, : Tv,j = T j Vj S C; Tvk = Ok Vk € Fy; Ty k= Qf Vk € Fv/}

These are in essence the assumptions of Lemma 2.7.1. This Lemma proves that

ISumProd(Y (@), < pn®, o—d—1- # - i

By abuse of notation, let us summarize this inequality by the inclusion Gyeq(2) C
BG(Cy,C4,d/2,0,1/8). Or, even more briefly, as Gaxed(2) C BG(1/8). That is, there is a
gain of é for each vertex. It follows from the proof of Lemma 2.8.4, that if G is any graph
whose connected components are each elements of Gfyeq(2), then G € BG(1/8).

Our line of attack on this Lemma is to take a general connected graph G, use the triangle
inequality to assign fixed values to a number of edges, making the connected components
of the new graph to be elements of Ggxeq(2). The proportion of vertices that will be in one
of these graphs will be at least 1/2d of all vertices. And therefore connected graphs will be
in BG(1/164d).

Remark 2.8.7. A heuristic guides this argument. The normalization p/V! in (2.8.3) assigns a

1/2

weight n~/# to each free parameter of X (G), ignoring losses of parameters from the edges

of G. If (v,v’) is an edge in the graph, and we assign the edge one of n possible values, the

3The only points that recommend the proof we describe here is that it is easy to state and delivers a
gain. Clearly, a more sustained analysis, yielding a larger gain would result in an improved result on the
Small Ball Conjecture.
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full power of n is exactly compensated by the collective weight of the two parameters in the
edge. Therefore, we are free to fix a fixed proportion of edges in the graph, obtaining a Beck
Gain on the remaining proportion. In this argument, if the edge is in a clique of size at least
k > 3, specifying a single value on this clique actually leads to a positive gain of n=%/2+1,
In other words, graphs, all of whose cliques are of size two, are extremal with respect to

this analysis (see Lemma 2.8.8). This heuristic is made precise in the proof below.

By ’deleting a clique’ we shall mean fixing a value of the coincidence which corresponds
to that clique. Let G € Geonnected- Following the heuristic above, in the first step of the
algorithm we delete all cliques of size at least 3 in G.

After this step G breaks down into connected components, which are admissible graphs
with cliques only of size 2 (and, possibly, some singletons). Next, we want to obtain an

estimate for such graphs.
Lemma 2.8.8. Suppose G ¢ Geonnected has cliques of size at most 2. Then G e BG(Wld).
To prove this statement we shall use the following property of G:

e The degree of each vertex in G is at most d — 1 (since the degree in each color is at

most one).

Let V be the set of vertices of é, and E be the set of all its edges. The point is to
select a maximal subset Eindpndt of independent edges. That is, no two edges in Eindpndt,

regardless of color, have a common vertex. It is an elementary fact that we can take

’Eindpndt| > ﬁ‘ﬁ| .

Indeed, each edge in G shares a vertex with at most 2d — 4 distinct edges, which observation
directly implies the inequality above.

We delete all other edges of G (i.e. we fix some choice of parameters for the corresponding
coincidences) and thus G breaks down into a number of components each of which is either
a singleton or a graph with two vertices and one edge. The latter components correspond

exactly to the situation in which the Beck gain of the previous section is applicable. Let
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us denote these pairs by Gy € Gfixed(2), k=1,...,N = |Eindpndt|; the singletons — by v,
ji=1,..., ]\7] —2N. Let also B! = E — Emdpndm denote the set of all deleted edges in G.
Denote also by Fj the number of fixed parameters in X (Gy) and Fj’ will be the number of

fixed parameters in 77,,. We have the following relations:

N |V|—2N
2’E,‘ = Q‘E - Eindpndnt‘ = ZFk + Z F],, (289)
k=1 j=1

and, since G is connected, it has at least |V (G)| — 1 edges, thus

B _[V]-1 Vi V]
N > > > i 2.8.10
Z2d-3~ 2d—3 ~202d—3)~ 4d’ ( )

Besides, by Proposition 2.8.5, we obtain the following equality (the sum below is taken over
all choices of parameters on the ‘deleted’ edges):
|V|—2N
SumProd(X Z H SumProd(X (Gyg)) - H SumProd(X (v;)) .
j=1
Now we apply the triangle inequality, Holder’s inequality, the relations (2.8.9) and

(2.8.10), and the Beck gain in the form of Lemma 2.7.1 to estimate (k = |[V]| — N < ¢):

- N |V|—2N
PV ISumProd(X (G)) |, < n'#1- T p*[SumProd(X (Gi)) |l wp - H Pl fe, Nlwp
k=1
/ N Fr 1 ‘V‘izN a-1_Fj
< plEl H [p2(/ipn)d 1_7_1} : H [P(ﬂp”) 2 2}
k=1 j=1

This proves Lemma 2.8.8. The point of passing to the collection of independent edges
is that SumProd(X (G)) splits into a product of terms associated with graphs in Gyea(2).
Each of these graphs leads to a gain of at least % for each vertex. But by (2.8.9), there are
at least 55|V (G)| vertices for which we will get this gain. This shows that G € BG(1/16d).

We can now proceed to prove Lemma 2.8.6 — the proof will be in the same spirit.

After we delete ”large” (of size at least 3) cliques of G, this graph decomposed into some
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singletons and components as in Lemma 2.8.8 (but with some parameters fixed). Denote
these components by ék, k =1,...,n1 and the singletons by u;, j = 1,...,n2. Let f; be
the number of fixed parameters in X (ék) and and fJ’- — the number of fixed parameters in
;. Notice that the proof of Lemma 2.8.8 can be trivially adapted to the case when some

parameters are fixed to obtain the estimate:
7 ~ Vel 1
P | SumProd(X (Gy))ll, < |Cp*F gén | "

Also, if we denote by K the total number of fixed cliques, one can see that, since all the

cliques had size at least 3, we have the inequality:
ni no
BK <) fut D
k=1 j=1

Let us write the set of vertices of G as V = V; U V4, where V; are the vertices involved in
at least one of the deleted cliques and V5 are all the other vertices. It is easy to see that
Vo C UL 1V(Gk) Indeed, all the vertices that became singletons had to be a part of one of

the deleted cliques. Thus,

ni
Vo <) V(G
k=1

Besides, it is easy to see that

ny n2
k=1 j=1

because at least one parameter is fixed in each vertex from a deleted clique. Using these

relations, similarly to the proof of Lemma 2.8.8, taking x = n; + ns < ¢, we can write:

ny _ _ ng
PV NProd(X (G))llp < n™ - T oV Prod(X(Gi)llwp - [ | pllf i

k=1 e
= V(G n2 3 7
H [C’p qdn_ﬂ]‘ (@l n_%k . H |:delqdn_2]:|
k=1 i
< [Cp%qd}w‘ LS AAT ) 1k SV
v \%
[Cp 24 }I \ n—Vil— el < [de21qdn_ﬁ}| I.
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2.9 The Lower Bound on the Discrepancy Function

We give the proof of Theorem 2.2.4, which is essentially a corollary to the proof of our Main
Theorem, Theorem 2.1.3. As such, we will give a somewhat abbreviated proof. Indeed, the
analogy between the lower bound on Discrepancy Functions and the Small Ball Inequality
is well known to experts.

The proof is by duality. Fix N, and take 2N < 2" < 4N. It is a familiar fact [2] that

for each || = n we can construct a r function fr such that

<DN7fF> >C>07

where ¢ depends only on dimension. We use these functions in the construction of the test
function, following § 2.4, with this one change. Before, see (2.4.3), we took Iy, ..., I, to be

a partition of {1,2,...,n} into ¢ disjoint intervals of equal length. Instead, we take

={jeN: |j—tn/q| <q/4}. (2.9.1)

This is the only change we make in the construction of W4, It follows that |||} < 1.

Recall that ¥54 = Y7 | 34, see (2.4.4). By construction, we have

q
(Dy, ¥ =Zp DN,ff>
t=1
Z qbn(d—l)/ ~ ne/4+(d 1)/2

This is a ‘gain over the average case estimate’ as one can see by comparison to Theorem 2.2.2.
It remains to see that the higher order terms ‘Ifskd contribute smaller terms than the one
above.

By construction, U5 is itself a sum of r functions fs with |§] > n. Indeed, it follows

from the separation in (2.9.1) that we necessarily have

n+ kg < [5] <nd.

Second, it is a well known fact that [(Dy, f5)| < N27I5l. Third, we fix 5 as above, and set

Count(5) to be the number of distinct ways can we select 771, ..., 7%, all of length n, so that
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the product fy --- fz is an r function of parameter 5. A very crude bound here is sufficient,
Count(5) < |3](¢Vk

Thus, we can estimate

(D, W) < Y- > Count(3)|(Dy, fs)|

jzn+k2£q 5:|3]=j

5 nd(k+3) 2—kn/2q )

As g = nf, this is clearly summable in £ > 1 to at most a constant. This completes the

proof.
2.10 The Proof of the Smooth Small Ball Inequality

We prove Theorem 2.2.6. There is no loss of generality in assuming that |a(R)| < 1 for
all R of volume at least 27", since both sides of (2.2.7) are homogeneous and sums have
finitely many terms. With ¢ as in the theorem, set
pr=».  a(R)er.
R:|R;|=2""
And let @ = > 5, ¢ Define the r functions as in (2.3.5). It is the assumption that
co = (o, hi—1/2.1 /2]> # 0, and in fact we will assume that this inner product is positive.

Thus,
(pm fr) = co27™ Y |a(R)] (2.10.1)

R:|R;|=2"i
As p € C[-1/2,1/2], we have

(e, ha)| < CylJ| (2.10.2)

for all dyadic intervals J.

It is important to note that

0 dj @ s5 <1y
(o, f5)] S (2.10.3)
C";,Q_"?_é1 otherwise
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The first line follows from the fact that ¢ is supported on [—1/2,1/2], so that if e. g. 51 < 7y,
the fact that ¢ has mean zero proves this estimate. The second estimate follows from (2.10.2)
and the assumption that the coefficients «(R) are at most one in absolute value.
Let us take the intervals I; in (2.9.1), and let us assume that
q
D la®<4>d > > B (2.10.4)
|R|=2" t=17e€hs R:|Rj|=2""7
If this inequality fails, it is an easy matter to redefine the I; so that the inequality above is
true, and adjacent intervals Iy, I; 11 are seperated by n/q.
We then follow § 2.4 as before to define our test function ¥4, It follows that || Usd||; < 1.
Using (2.10.4), (2.10.1) and (2.10.3), we have
q
(@, W) 2275y > > |a(B)
t=17€As R:|R;|=2"J

z 92— nf(dfl)/2+e/4 Z ‘O((R)’ )
|R|=2—"

This is the main term.
It remains to see that the inner products ](q),\llskdﬂ are small £ > 1. The details of
this calculation are very similar to the corresponding calculuations in the previous section,

hence they are omitted.
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CHAPTER III

SIGNED SMALL BALL INEQUALITY

3.1 Signed Small Ball Conjecture

In this chapter we discuss a more restrictive formulation of the Small Ball Conjecture that

we considered in chapter 2 (see (2.1.1)). This new conjecture still appears to be of interest.

Signed Small Ball Conjecture 3.1.1. We have the inequality (2.1.1), in the case where
the coefficients a(R) € {£1}, for |R| = 27" . Namely, under these assumptions on the

coefficients a(R) we have the inequality

n¥? < HR|:22n a(R)hRHOO .

The main result of this chapter is the next Theorem, in which we give an explicit gain

over the trivial bound in the Signed Small Ball Conjecture in dimensions d > 3.

Theorem 3.1.2. (Bilyk, Lacey, Vagharshakyan, [3]) In dimension d > 3, for choices of

coefficients a(R) € {£1}, we have the inequality

nd < H Z a(R)hRHoo’ for all n(d) < ———+ —.
|R|=2-"

The main simplification in the current chapter, in comparison to the previous one, lies
in the equalities (3.3.2), which allow us to avoid analyzing longer coincidences. The value of
1 appears to be the optimal one we can get out of this line of reasoning, imputing additional

interest to the methods of proof used to improve this estimate.
3.2 Notations and Littlewood-Paley Inequality

Recall the definition of 7~functions, introduced in section 2.3 (see (2.3.1)).
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The r-functions that we are interested in this chapter are:

In the following sections we will use the Littlewood-Paley inequalities (2.3.7) and (2.3.8),

mentioned in the previous chapter.
3.3 Proof of a Signed Small Ball Inequality

The proof of the main theorem of this chapter - Theorem 3.1.2, is by duality, namely we
construct a function ¥ of L' norm about one, which is used to provide a lower bound on
the L*° norm of the sum of Haar functions.

The function ¥ will take the form of a Riesz product, but in order to construct it, we
need some definitions first. Fix 0 < x < 1, with the interesting choices of x being close to

zero. Define relevant parameters by

1
= € = — — =
qg=|an]|, €_2d K, b

5= aghn~@-D/2 p= Jan— @072,

)

IS,

Here a is a small positive constant, we use the notation b = i throughout, so as not to
obscure those aspects of the argument that that dictate these choices of parameters. pis a
‘false’ L? normalization for the sums we consider, while the larger term p is the ‘true’ L?
normalization. Our ‘gain over the average case estimate’ in the Small Ball Conjecture is
¢b ~ nElt = p1/8d—r/4 — pn(d)—(d-1)/2,

Divide the integers {1,2,...,n} into ¢ disjoint increasing intervals of equal length
LIi,...,1;, and let Ay = {F € H,, : r1 € I}. Let

q
Fr=> fe H=) fr=) F.
t=1

TEAL reH,

The Riesz product is a ‘short product.’

q q
‘I’:H(1+5Ft)a q’;éj:H(l‘i‘ﬁFt), 1<j<gq.
=1 =1
2]
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Note the subtle way that the false L? normalization enters into the product. It means that
the product is, with high probability, positive. And of course, for a positive function F,
we have EF = ||F||;, with expectations being typically easier to estimate. This heuristic is
made precise below. Notice also that EW = 1.

We need a final bit of notation. Set

¢, = Z fre [z

TEFEA:
ri=s1

Note that in this sum, there are 2d — 3 free parameters among the vectors ¥ and s. That
is, the pair of vectors (7, §) are completely specified by there values in 2d — 3 coordinates.
Our main Lemma is below. Note that in (3.3.1), the assertion is that the 2d — 3 param-

eters in the definition of ®; behave, with respect to LP norms, as if they are independent.

Lemma 3.3.1. We have these estimates.

”\Ij”l S 1,

) < a/qu
1Pllz2, max [[Wxjlla S ™,
H(I)t”p 5 pd71/2nd73/2q71/2’ 2<p< .
In (3.5.1), the value of @’ is a decreasing function of 0 < a < 1.

The proof of this Lemma is taken up next section. Assuming the Lemma, we proceed
as follows. An important simplification in the Signed Small Ball Inequality comes from the

equalities

(Fj, 0) = (> fr, )
FGA]'
= > (fr (14 5F)) Ty
FEAJ‘ (332)

=7 ) (2 0) + p(D;, Uyy)
FEA]‘

— FHA; + (D) V).
We have used the fact that there has to be a coincidence in the first coordinate in order for

the product of r functions to have non-zero integral. The first term in the third line is the
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‘diagonal’ term, while the second term arises from different vectors which coincide in the

first coordinate. Therefore, we can estimate
[Hllo Z (H, V)

q
Z F;, )
- q

Z ‘I)J’\IJ#

.
—_

It is clear that

FHH, ~ a5/ 4 TS = g/ Apn(d)

which is our principal estimate. The other term we treat as an error term. Using Holder’s

inequality, and (3.3.1) and (3.3.1) we see that
2b_9 2b 2qg—2b
19 5ll iy < 104l 03 S 1
Therefore, we can estimate as below, where we use the estimate above and (3.3.1).

q
D (@, Uyy)
i=1

q
<A1 1 gy

J=1

<yq- aqb ‘q2b(d71/2)nd73/2 . q71/2
~H o (d-1)/2

a2 1/2p(@=2)/2 o p(d)

This term will be smaller than the term in (3.3). The proof of our main result is complete,

modulo the proof of Lemma 3.3.1.
3.4 Analysis of Coincidences

Following the language of J. Beck [1], a coincidence occurs if we have two vectors 7 # §
with e.g. 7 = s1, precisely the condition that we imposed in the definition of &4, (3.3).
He observed that sums over products of r functions in which there are coincidences obey

favorable L? estimates. We refer to (extensions of) this observation as the Beck Gain.
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The Simplest Instance of the Beck Gain 3.4.1. We have the estimates below, valid

for an absolute implied constant that is only a function of dimension d > 3.

sup [|@;]l, S p? 2 nt P2 1< p<oo.
1<j<n

This Lemma, in dimension d = 3 appears in [4]. The proof in higher dimensions, which
was given in the previous chapter, is inductive. We omit the proof here as it is rather lengthy
and refer the reader to the previous chapter for details. Strictly speaking, the estimate of

the previuos chapter does not contain Lemma 3.4.1, as it does not include ¢—'/2

. However,
this can be easily fixed in the proof due to the fact that the value of the first coordinate
can be chosen in n/q ways rather than n. We also emphasize that the estimate above may

admit an improvement, in that the power of p is perhaps too large by a single power.

Conjecture 3.4.2. We have the estimates below, valid for an absolute implied constant

that is only a function of dimension d > 3.

d-3/2.-1/2

sup [|®;]l, < (pn) 1<p<oo.

1<j<n

. . . . d—1 1

With this conjecture we could prove our main theorem for all n(d) < 5= + g7—-

The Beck Gain Lemma 3.4.1 has several important consequences. Theorem 2.3.8 implies
an exponential estimate for sums of r functions. However, with the Beck Gain at hand, we

can derive a subgaussian estimate for such sums, for moderate deviations.

Theorem 3.4.3. Using the notation of (3.3) and (3.8), we have this estimate, valid for all

1<t<q.

1
2d—1
loFilp < /P 1@9(2) |

As a consequence, we have the distributional estimate

_1

9 n\ #d—2
P(|pFi| > x) < exp(—cx”), x<c< > .
q

Here 0 < ¢ < 1 is an absolute constant.
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Proof. Recall that

Fr=)Y fr.

rEAL

where Ay = {7 € H,, : r1 € I}, and I; in an interval of integers of length n/q, so that
BA, ~n?/q~ p~2.
Apply the Littlewood-Paley inequality in the first coordinate. This results in the esti-

mate

lorl, < va|[Sle 3 #£]7)

sel; 7riri=s
2 1/2
S Vol + o2l
2 1/2
< vp{1+ e}
Here, it is important to use the constants in the Littlewood-Paley inequalities that give the

correct order of growth of (/p. Of course the terms ®; are controlled by the estimate in

(3.4.1). In particular, we have

HPZ‘I’th < nf_lpd71/2nd73/2q71/2 < P12 =1/241/2

Hence (3.4.3) follows.

The second distributional inequality is a well known consequence of the norm inequality.
Namely, one has the inequality below, valid for all z:
9 _ n\ 2d-1
IP’(th>:U)§Cppp/:vp, 1<p<ec|-— .
q

If z is as in (3.4.3), we can take p ~ 22 to prove the claimed exponential squared bound. [J

Proof of (3.3.1). Observe that

P(¥ < 0) < gexp(ca2¢t=%).
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Indeed, using (3.4.3), we have

M=

PV <0)<S P(GF < —1)

-
Il

1

P(pF; < —a~ ¢!/

I
M=

)
I

< gexp(ca?qt ).

1

Note that to be able to use (3.4.3) we need to have a~1¢'/?t < ¢ (%) 1 which leads to

€ < o;. Then, assuming (3.3.1), we have
W]y = E¥ — 2BW1q
< 14 2P(W < 0)'/2| 0|,
<1+exp(—a2¢72/2 + ag®).

For sufficiently small 0 < a < 1, the proof is finished. Note that this last step forces b = 1/4

on us.

O

Proof of (3.8.1). The supremum over j will be an immediate consequence of the proof
below, and so we don’t address it specifically.

Let us give the initial, essential observation. We expand

q q
E]J(+7pF)* = H1+2pF+pF))
i i

Hold the x9 and x3 coordinates fixed, and let F be the sigma field generated by Fi, ..., F,_1.
We have
E(1+ 2pF, + (pF,)* | F) = 1+ E((pFy)* | F)

2 2b—1 ~2
=1+a"¢7  +p°Pg,
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where @, is defined in (3.3). Then, we see that

q g-1
E JI0+ 255 + (5F)?) = E{[[(1 + 25F: + (GR)?) x E(1+25F, + (5F)? | F) }
v=1 v=1

q—1
<(1+d*¢ "E H(l +20F; + (pF)?)
v=1
q—1
+ Bl 0| - [[(1+20F, + (1))

v=1

This is the main observation: one should induct on (3.4), while treating the term in (3.4)
as an error, as the ‘Beck Gain’ estimate (3.4.1) applies to it.

Let us set up notation to implement this line of approach. Set

, V=1,...,.4q.

T

N(Vir) = Hrv[u +PF)
v=1

We will obtain a very crude estimate for these numbers for » = 4. Fortunately, this is
relatively easy for us to obtain. Namely, ¢ is small enough that we can use the inequalities

(3.4.3) to see that
\%4
N(V;4) < [ I+ PFllav
v=1
< (1+0")Y
< (Cq)*.

For a large choice of 7 > 1, which is a function of the choice of £ > 0 in (3.3), we have the

estimate below from Holder’s inequality

N(V;2(1 = 1/7q)™Y) < N(V;2)17270. N(V;4)2/79.

We see that (3.4), (3.4) and (3.4) give us the inequality
N(V+1;2)2 < (1 +a?¢* HYN(V;2)% +C - N(V;2(1 — 1/79) 12 |52 ®v || +g
< (1+a*®* HYN(V;2)? + ON(V; 22747 N(V; )7 320y ||
< (14 2@ YN(V;2)2 + Cpq Y2+ 4m =12 N (v 2)2-2/a
In the last line we have used the the inequality (3.4.1) and the constant C is only a function

of 7 > 1, which is fixed.
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Of course we only apply this as long as N(V;2) > 1. Assuming this is true for all V' > 1,

we see that
NV +1;2)2 < (1 +a?¢® ' + Cog V20 V2N (V3 2)2.
And so, by induction,
N(g:2) < (1+ a2q2b71 + Cqu71/2+4/‘rn71/2)q/2 < ezaq2b '

Here, the last inequality will be true for large n, provided 7 is much bigger than 1/x. Indeed,

we need

a2 > O g2 T2

Or equivalently,

Comparing to the definition of ¢ in (3.3), we see that the proof is finished.
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CHAPTER IV

ORLICZ AND BMO NORMS OF DISCREPANCY IN TWO
DIMENSIONS

4.1 Formulation of the Result

Recall the definition of Discrepancy Function (2.2.1) from chapter 2. In the present chapter,
we are primarily interested in the precise behavior of estimates for the Discrepancy Function
near the L endpoint, phrased in terms of exponential Orlicz classes. We restrict our
attention to the two-dimensional case. According to (2.2.1), the definition of Discrepancy
Function in two-dimensions would go as follows:

Let Ay C [0,1]? be a set of N points in the unit square. For & = (x1,2) € [0,1]%, we

define the Discrepancy function associated to Ay as follows:
Dy (%) = ¢(Ay N [0,7)) — N|[0, )],

where [0, Z) is the axis-parallel rectangle in the unit square with one vertex at the origin
and the other at ¥ = (x1,22), and |[0,Z)| = x1 - 2 denotes the Lebesgue measure of the
rectangle. This is the difference between the actual number of points in the rectangle [0, Z)
and the expected number of points in this rectangle. The relative size of this function, in
various senses, must necessarily increase with N.

As noted in chapter 2, the principal result in this direction is due to Roth [40]. Let’s

cite it again:

K. Roth’s Theorem 4.1.1. In all dimensions d > 2, we have the following estimate
IDx|l2 Z (log N)t4=1)/2 (4.1.2)

where the implied constant is only a function of dimension d.

The same bound holds for the LP norm, for 1 < p < oo, [42], and is known to be sharp
as to the order of magnitude, see [10] and [2] for a history of this subject (for the case d = 2,

see Corollary 4.1.6 below). The endpoint cases of p = 1 and p = oo are much harder.
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We concentrate on the case of p = co in this chapter, just in dimension d = 2. The case
d > 3 was discussed in chapter 2. As for information about the case of p = 1, see [17],[24].
As it has been shown in the fundamental theorem of W. Schmidt [41], in dimension d = 2,
the lower bound on the L* norm of the Discrepancy function is substantially greater than

the LP estimate (4.1.2):

W. Schmidt’s Theorem. For any set Ay C [0,1]? we have
IDN|loc 2 log N . (4.1.3)

This theorem is also sharp: one particular example is the famous van der Corput set [49]
— a detailed discussion is contained in section 4.3. In this chapter, we give an interpolant
between the results of Roth and Schmidt, which is measured in the scale of exponential

Orlicz classes.

Theorem 4.1.4. (Bilyk, Lacey, Parissis, Vagharshakyan, [5]) For any N-point set An C
[0,1] we have

IDNlexp(rey = (log N)! Ve 2 <a< .

Of course the lower bound of (log N)'/2, the case of & = 2 above, is a consequence of
Roth’s bound. The other estimates require proof, which is a variant of Haldsz’s argument
[17]. We give details below and also remark that this estimate in the context of the Small Ball
Inequality [44],[46] is known [14]. In addition, we demonstrate that the previous theorem

is sharp.

Theorem 4.1.5. (Bilyk, Lacey, Parissis, Vagharshakyan, [5]) For all N, there is a choice
of An, specifically the digit-scrambled van der Corput set (see Definition 4.3.5), for which
we have

HDNHeXp(LO‘) S (IOgN)l_l/a, 2<a<o0.

In view of Proposition 4.2.2; taking a = 2, the theorem above immediately yields the

sharpness of the LP lower bounds in d = 2 with explicit dependence of constants on p.
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Corollary 4.1.6. For every 1 < p < oo, the set Ay from Theorem 4.1.5 satisfies

IDxllp < p"?*(log N)2,

where the implied constant is independent of p.
There is another variant of the Roth lower bound, which we state here.

Theorem 4.1.7. We have the estimate
”DN”BMO1,2 Z (log N)1/2 )

where the norm is the dyadic Chang-Fefferman product BMO norm (see Definition 4.2.11),

introduced in [8].

Indeed, this Theorem is just a corollary to a standard proof of Roth’s Theorem, and
its main interest lies in the fact that the estimate above is sharp. It is useful to recall the
simple observation that the BMO norm is insensitive to functions that are constant in either

the vertical or horizontal direction. That is, we have ||Dy|/Bmo, , = ||5N||BMOL2, where
_ 1
Dy (z1,22) = Dn(21,22) — / Dy(z1,22) dz
0

1 1 p1
— / DN($1,$2) dro + / / DN(.Z‘1,$2) dzrydzsy.
0 0J0

Theorem 4.1.8. (Bilyk, Lacey, Parissis, Vagharshakyan, [5]) For N = 2™, there is a choice

of An, specifically the digit-scrambled van der Corput set, for which we have

IDnBMO,, S (log N)YV2.

The main point of these results is that they unify the theorems of Roth and Schmidt
in a sharp fashion. This line of research is also of interest in higher dimensions, but the
relevant conjectures do not seem to be as readily apparent. As such, we think that this is
an interesting theme for further investigation.

In the next section we collect a variety of results needed to prove the main Theorems

of this chapter. These results are drawn from the theory of Irregularities of Distribution,
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Harmonic Analysis, Probability Theory and other subjects. In section 4.3 we discuss the
structure of the digit-scrambled van der Corput set. Section 4 is dedicated to the analysis
of the Haar decomposition of the Discrepancy function for the van der Corput set. The
proofs of the main theorems above are then taken up in the sections 4.5 and 4.6.

The results of this chapter of thesis concern refinements of the L°°-endpoint estimates
for the Discrepancy Function. In three dimensions, even the correct form of Schmidt’s
Theorem is not yet known, making the discussion of these results in three dimensions
entirely premature, though speculation about such results could inform the analysis of the
more difficult three dimensional case. Higher dimensional versions of Schmidt’s theorem

were discussed in chapter 2.
4.2 Preliminary Facts

We suppress many constants which do not affect the arguments in essential ways. A < B
means that there is an absolute constant K > 0 such that A < KB. Thus A < 1 means

that A is bounded by an absolute constant. And if A < B < A, we write A ~ B.

4.2.1 Martingale Inequalities

We recall the square function inequalities for martingales, in a form convenient for us.

In one dimension, the class of dyadic intervals in the unit interval are D = {[j27%, (j +
1)27%) : j,k € N,0 < j < 2F}. Let D, denote the dyadic intervals of length 27", and
by abuse of notation, also the sigma field generated by these intervals. For an integrable
function f on [0, 1], the conditional expectation is

F=BU D)= 31 [ s dy.

1€D,

The sequence of functions {f,, : n > 0} is a martingale. The martingale difference sequence
is dy = fo, and dy, = fn, — fan—1 for n > 1. The sequence of functions {d,, : n > 0} are

pairwise orthogonal. The square function is

. 1/2
S(f) = [ZW] :
n=0

We have the following extension of the Khintchine inequalities.
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Theorem 4.2.1. The inequalities below hold, for some absolute choice of constant C > 0.

1flly < CVPIS(Nllp,  2<p<oo.

In addition, this inequality holds for Hilbert space valued functions f.

For real-valued martingales, this was observed by [7]. The extension to Hilbert space
valued martingales is useful for us and is proved in [15]. The best constants in these

inequalities are known for p > 3 [50].
4.2.2 Orlicz Spaces

For background on Orlicz Spaces, we refer the reader to [29]. Consider a symmetric convex
function 1, which is zero at the origin, and is otherwise non-zero. Let (€2, P) be a probability
space, on which our functions are defined, and let [E denote expectation over the probability

space. We can define

Ilpw = inf{K >0 : Ep(f- K1) <1},

where we define the infimum over the empty set to be co. The set of functions LY = {f :
| fllpv < oo} is a normed linear space, called the Orlicz space associated with .

We are interested in, for instance, ¥ (z) = e’ —1, in which case we denote the Orlicz
space by exp(L?). More generally, for o > 0, we let 1), (z) be a symmetric convex function
which equals ell” —1 for |z| sufficiently large, depending upon a.! And we write LY =
exp(L®). These are the spaces used in the statements of the main Theorems of this chapter:
4.1.4 and 4.1.5. It is obvious that, for all 1 < p < co and « > 0, we have LP D exp(L®) D
L*>, hence Theorem 4.1.4 can be indeed viewed as interpolation between the estimates of
Roth (4.1.2) and Schmidt (4.1.3). The following useful proposition is well-known and follows

from elementary methods.

'We are only interested in measuring the behavior of functions for large values of f, so this requirement
is sufficient. For a > 1, we can insist upon this equality for all x.
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Proposition 4.2.2. We have the following equivalence of norms valid for all o > 0:

| £ llexp(ray = supp™ /(| ]I, -
p>1

We shall also make use of the duality relations for the exponential Orlicz classes. For
a > 0, let p,(z) be a symmetric convex function which equals |z|(log(3 + |z|))® for |z|
sufficiently large, depending upon a.2 The Orlicz space L#* is denoted as L¥> = L(log L)*.

The propositions below are standard.

Proposition 4.2.3. For 0 < a < oo, the two Orlicz spaces exp(L®) and L(log L)/® are

Banach spaces which are dual to one another.

Proposition 4.2.4. Let E be a measurable subset of a probability set. We have
118 Log 1y1/e = B(E) - (1 — log P(E))Y/.

4.2.3 Chang-Wilson-Wolff Inequality

Each dyadic interval has a left and right half, Iief, Iright Tespectively, which are also dyadic.

Define the Haar function associated with I by

hr=—1p, +1;1

right

Note that here the Haar functions are normalized in L*°. In particular, the square function

with this normalization has the form

s =3 Sy o g = S ),
I

[1]?
IeD

We can now deduce the Chang-Wilson-Wolff inequality.

Chang-Wilson-Wolff Inequality 4.2.5. For all Hilbert space valued martingales, we

have

1/ lexp(z2) S NS()loo -

Indeed, we have

1Fllp < /P IS(Hlp S VP - [1S()lloo -

*For o > 1, we can take this as the definition for all |z| > 0.
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Taking p — oo, and using Proposition 4.2.2, we deduce the inequality above.

In dimension 2, a dyadic rectangle is a product of dyadic intervals, thus an element of
D?. A Haar function associated to R is the product of the Haar functions associated with

each side of R, namely for R; X Ra,

2
hR1><R2(x17x2) = Hth (xt) .
t=1

See Figure 3. Below, we will expand the definition of Haar functions, so that we can describe
a basis for L2([0,1]?).
We will concentrate on rectangles of a fixed volume, contained in [0, 1]2. The notion of

the square function is also useful in the two dimensional context. It has the form

sr= Y L e fw= Y G a2

2
ReD? |R’ ReD? ‘R|

Jill Pipher [38] observed the following extension of the Chang-Wilson-Wolff inequality.

Two Parameter Chang-Wilson-Wolff Inequality 4.2.7. For functions f in the plane

as in (4.2.6) we have

||f||exp(L) 5 ||S(f)||oo .

Namely, in the case of two-parameters, the exponential integrability has been reduced by
a factor of two. This follows from a two-fold application of the Littlewood-Paley inequalities,
with best constants, for Hilbert space valued functions. Details can be found in [38],[15],[4].

In fact, we will need the following variant.

Theorem 4.2.8. Let n > 1 be an integer. Suppose that f on the plane has the expansion

_ <fa hR>
f= R%;Q 7| hr
|R|=2—n

That is, f is in the linear span of Haar functions with a fixed volume. Then, we have the

estimate

1f lexp(z2) < 15 (f)lloo -
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Thus, if f is in the linear span of a ‘one-parameter’ family of rectangles, we regain
the exponential-squared integrability. The proof is straightforward. As the volumes of the
rectangles are fixed, one need only apply the one-parameter Chang-Wilson-Wolff inequality
in, say, the x; variable, holding the xo variable fixed.

The following simple proposition reduces the proof of Theorem 4.1.5 to the case a = 2.

Proposition 4.2.9. Suppose that for A > 1, we have
||f||exp(L2) < \/Za ||fHOO <A4.

It follows that

| fllexp(zay < All/e 2<a< 0.
4.2.4 Bounded Mean Oscillation

We recall facts about dyadic BM O spaces, see [9],[8].

We need to subtract some terms from Dy, as it is not necessarily in the span of the
Haar functions as we have defined them. The deficiency is that standard Haar functions on
the unit square have zero means in both directions. Hence, for a dyadic interval I € D, we
also need to consider

ht=1; = |hy|.

And set h9 = hy, where ‘0’ stands for ‘zero integral’ and ‘1’ for ‘non-zero integral.” In the

plane, for €, €2 € {0,1} set
€4
h;{l’qu x1,T2) H hp, xj

We will sometimes write hgr = h%’:o in order to simplify our notation. With these definitions
we have the following orthogonal basis for L*([0,1]?).

{highp Y UL r by = L€ DYULRY - Re D).

There are couple of different BMO spaces that are relevant here. Let us begin with the

variants of the more familiar C. Fefferman, one-parameter, dyadic BMO spaces.
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Definition 4.2.10. Define the space BMO; to be those square integrable functions f in

the span of {h?’xl[o g ile D} which satisfy

<f7 h(j)i[071]>21| 1/2

< o0.
1]

= sup ||J| !
I£llvi0, = sup 1717157

IeD
IcJ

Define BMOg similarly, with the roles of the first and second coordinate reversed.

Definition 4.2.11. Dyadic Chang-Fefferman BMO; > is defined to be those square inte-
grable functions f in the linear span of {hg : R € D?}, for which we have
— f7 hR 2 1/2
HfHBMOl,Q = Sup [|U’ ! Z <R>} < 00
UC[0,1]2 ool |R|

RCU

We stress that the supremum is over all measurable subsets U C [0, 1]2, not just rectangles.

It is well-known that these ‘uniform square integrability’ conditions imply that the cor-
responding functions enjoy higher moments. This is usually phrased as the John-Nirenberg

inequalities, which we state here in their sharp exponential form.

The John-Nirenberg Estimates. We have the following estimate for f € BMOy, and

Y e BMOL2.

Hf”exp(L) rg Hf”BMOI

1]l exp(vz) S llellBMO 2 (4.2.12)

Note that in the second inequality, (4.2.12), the number of parameters has doubled,
hence the exponential integrability has decreased by a factor of two. Of course, if the
square function of f is bounded, one sees immediately that the functions are necessarily
in BMO. And in this circumstance the Chang-Wilson-Wolff inequalities give an essential

strengthening of the John-Nirenberg estimates.
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4.2.5 Discrepancy

Below, we will refer to the two parts of the Discrepancy function as the ‘linear’ and the

‘counting’ part. Specifically, they are

Ln(Z) = Nz - 22,
Op(F) =Y 1y;1)(@).
peEP

Here, P is the subset of the unit square of cardinality N. In proving upper bounds on the
Discrepancy function, one of course needs to capture a cancellation between these two, that
is large enough to nearly completely cancel the nominal normalization by N.

We recall some definitions and facts about Discrepancy which are well represented in
the literature, and apply to general selection of point sets, see [40],[43],[2].

In consistency with the definition of #function in any dimension (see (2.3.1)), we call a
function f an r function with parameter ¥ = (r1,72) if ¥ € N, and

f=> erhr, ege{£l},
RER;

where we set R = {R =Ry x Ry : R€D?>, RC [0,1?, |Ry| =2""t, t =1,2}. We will
use fr to denote a generic r function. A fact used without further comment is that fg =1.

Let |7] = Zle ry = n, which we refer to as the index of the r function. And let
H2 = {# € {0,1,...,n}% : |f] = n}, i.e., the set of all ¥’s such that rectangles in R have
area 27" It is fundamental to the subject that fH2 = n + 1. We refer to {fr : » € H2} as

hyperbolic r functions. The next four Propositions are standard.

Proposition 4.2.13. For any selection Ay of N points in the unit cube the following holds.

Fiz n with 2N < 2" < 4N. For each ¥ € H2, there is an r function fr with

<DN7fF>21

Proof. There is a very elementary one dimensional fact: for all dyadic intervals I,

1
/ z-hy(z) dv = 1|1)2.
0

60



This immediately implies that
(1 - @9, B (21, 29)) = 472|RJ. (4.2.14)

Thus, the inner product with the linear part of the Discrepancy function is completely
straightforward. We have (L, h(]){}()} > 472N |R|? > 4|R| for R € R with 7 € H2.

Call a rectangle R € R good if R does not intersect Ay, otherwise call it bad. Set

fr= Z sgn((Dn, hg))hr .

ReRz

Each bad rectangle contains at least one point in Ay, and 2" > 2N, so there are at least
N good rectangles. Moreover, one should observe that the counting function §(Ax N[0, Z))

is orthogonal to hg for each good rectangle R. That is,
(Cay, h%0> =0, whenever RN Axy =10.

Critical to this property is the fact that Haar functions have mean zero on each line parallel
to the coordinate axes.

Thus, by (4.2.14), for a good rectangle R € Rz we have
(Dn,hr) = —(Ln, hg) = =N(|[0,D)|, hr(Z)) = —N272""1 < —27".
Hence, to complete the proof, we can estimate

(Dn. f7) = Y. Dy, hg)l 22 "{R € Ry : Ris good} 2 1.

ReRz
R is good

Proposition 4.2.15. Let fz be any r function with |S] > n. We have
(D, f5)] < N2

Proof. This is a brute force proof. Consider the linear part of the Discrepancy function.
By (4.2.5), we have

(L, fz)] S N2~
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as claimed.
Consider the part of the Discrepancy function that arises from the point set. Observe

that for any point &y in the point set, we have
|<1[6750)7f§>| SJ 27|§1 .

Indeed, of the different Haar functions that contribute to f3 there is at most one with non
zero inner product with the function 1y - (Zp) as a function of Z. It is the one rectangle
which contains xg in its interior. Thus the inequality above follows. Summing it over the

N points in the point set completes the proof of the Proposition. ]

Proposition 4.2.16. In dimension d = 2 the following holds. Fiz a collection of r functions
{fr : 7€ H2}. Fiz an integer 2 < v < n and § with 0 < 51,82 < n and |5] > n+v — 1.
Let Count(8;v) be the number of ways to choose distinct 7, ...,7, € H2 so that [[_; fr,
18 an S function. We have

|51—n—1
Count(s;v) = v—2

Proof. Fix a vector § with |§] > n, and suppose that

I1 7=
w=1

is an § function. Then, the maximum of the first coordinates of the 7, must be s, and
similarly for the second coordinate. Thus, the vector s completely specifies two of the 77,.

The remaining v — 2 vectors must be distinct, and take values in the first coordinate
that are greater than n — sy and less than s;. Hence there are at most |3] — n — 1 possible
choices for these vectors. This completes the proof.

O]

In two dimensions, the decisive product rule holds. If R, R’ € D? are distinct, have the

same area and non-empty intersection, then we have

hr-hg = thgar-
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Figure 3: Two Haar functions.

This rule is illustrated in Figure 3 and can be generalized as follows.

Proposition 4.2.17. In dimension d = 2 the following holds. Let 71, ...,7, be elements of

H2 where one of the vectors occurs an odd number of times. Then, the product H§:1 fris

also an r function. If the 7; are distinct and k > 2, the product has index larger than n.

4.3 The Digit-Scrambled van der Corput Set

In this section we introduce the digit-scrambled van der Corput set, that is, a variation of
the classical van der Corput set described, e.g., in [30]*Section 2.1, and prove some auxiliary
lemmas that will help us exploit its properties. This set will be our main construction for
the upper bounds in Theorems 4.1.5 and 4.1.8, although strictly speaking, Theorem 4.1.8
is satisfied by the standard van der Corput point distribution. The reasons we need this
modified version of the van der Corput set will become clear by the end of this section.

First, we introduce some additional definitions and notations.

Definition 4.3.1. For x € [0, 1) define d;(x) to be the i’th digit in the binary expansion of
z, that is

di(z) = [2'z] mod 2.

Definition 4.3.2. For z € [0,1) we define the digit reversal function by means of the

expression

dn—i—l—i(x)a 1= 1,2"‘77/,
d; (revy(x)) =

0, otherwise,
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in other words, setting d;(z) = z;, we have rev, (0.x123...2,) = 0.2y...2227.

Definition 4.3.3. Let z,0 € [0,1) where ¢ has n binary digits. We define the number
r®o as

di(z ® o) = di(z) + d;(0) mod 2,
i.e. the i*" digit of  changes if d;(¢) = 1 and stays the same if d;(¢) = 0. In the literature

this operation is called digit scrambling or digital shift.

Remark 4.3.4. We stress at this point that when we define a digit scrambling we only use
the first n binary digits of the number o € [0,1). As a result, for each given positive integer
n there are exactly 2" such digital shifts, that is, the number of digital shifts is finite. The
choice of a real number o € [0, 1) to represent this operation is just a matter of notational

convenience.

We are now ready to define the digit-scrambled van der Corput set.

Definition 4.3.5. For an integer n > 1 and a number o € [0,1) we define the o-digit

scrambled van der Corput set V, , as
Vn,o = {'Un,o('f) : 7=0,1,...,2" — 1},

where
T T 1 e
vnp(T) = <2n,revn <2n @J)) + (2 n 1’2 n 1)'
It is clear that the digit-scrambled van der Corput set has cardinality [V, .| = 2". We
should notice that the roles of z and y coordinates are symmetric, since we can write
Voo = {(revp (/2" ® '), 7/2") + (271 27 0 £ =0,1,...,2" — 1} with ¢/ = rev,(0).
With the notation introduced above, the standard van der Corput set

Vi = {(0.2122...25,1,0.2,...20211) : 2; = 0,1}

is just V,, = Vy,0. Note that our definition differs from the classical by the shift (2771, 2771).
This shift ‘pads’ the binary expansion of the elements by a final 1 in the (n + 1)5* place,

and ensures that the average value of each coordinate is %:

27 Y =2 Y y:%. (4.3.6)

(z,9)EVn,o (2,9)EVn, o
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This is just a technical modification that will simplify our formulas and calculations.
The following proposition describes which points of the van der Corput set V), , fall into

any given dyadic rectangle.

Proposition 4.3.7. Let k,l € N andi € {0,1,...,2F —1}, j €{0,1,...,2 — 1}. Consider

i P41 joj+1
R:[%’ oF )X[zl 9 >

Then the set Vy, » N R consists of the points vy, »(T) where

a dyadic rectangle

dm(ik)a m:172"'>k7

T 2

)

() =

dnt1-m(55) +dm(o) mod 2, m=n+1-1---,n

Proof. Let (z,y) be any point [0,1)2. It is easy to see that (z,y) € R if and only if

dq(:r):dq(zik) forall ¢=1,2,...,k, and

J
dr(y) = dr(g) forall r=1,2,...,1
The proposition is now a simple consequence of the structure of the van der Corput set. [

Some remarks are in order:
Remarks 4.3.8.

When k + | < n there are exactly 2"~ *+0) points of the van der Corput set inside the
canonical rectangle R. Indeed, the conditions of Proposition 4.3.7 only specify the first k

and last [ binary digits of the z—coordinates of the points vy, (7).

When k + [ > n it might happen that the set of conditions in proposition 4.3.7 is void

(observe that the system is overdetermined in this case).

Finally, when k 4+ = n, that is when the rectangle R has volume |R| = 27", the system of
equations in 4.3.7 gives a unique point of the van der Corput set inside R. So, for fixed n,
the van der Corput set V), , is a net: every dyadic rectangle of volume N —1 = 27" contains

exactly one point. This has the well-known consequence, see [30], that

DN (Vno)lloo < log N. (4.3.9)
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This fact is independent of the digit scrambling ¢ and holds in particular for the standard
van der Corput set V,, ([49], [40]). In view of Schmidt’s Theorem (4.1.3) this means that
the van der Corput set is extremal in terms of measuring the Discrepancy function in L*°.
However, the same is not true if one is interested in meeting the lower bound in Roth’s
Theorem, that is, the standard van der Corput set V,, is not extremal in terms of measuring
the Discrepancy function in L?. The lemma below explains this fact. In particular it
shows that the L? discrepancy of V, is big because of a single ‘zero-order’ Haar coefficient,
i.e.the mean [ Dy. The lemma also shows that digit scrambling provides a remedy for
this shortcoming. This fact has been observed by Chen in [11] where the author uses digit
scrambling in order to obtain the best possible LP upper bounds for a general class of ’one
point in a box’ sets in general dimension (see the case k + [ = n in the remarks above). We
also note that similar calculations, albeit slightly less general, have been carried out in [18].

We include a proof of this Lemma for the sake of completeness.

Lemma 4.3.10. We have

In particular
1
D ) dedy = —
/ NV ray = 8

On the other hand, if > p_, dx(0) = n/2, i.e. half of the digits are scrambled, then

1,1
/ / DN(Vn,o') dl'dy =0.
0J0

Proof. As usually, we write N = 2. We have

1 pl N-1 1,1
I= / / DN(VH,O')(x7 y) dwdy = _N/4 + Z /0 /0 1[0,z]><[0,y] (Un,a (T/N)) d:[dy
7=0

:rJW4+§:<1——2}><1—Hwng;@a>—2;>.

N 1 1 T T
[=—2 42— T, n(—r ). 4311
4+2 4N+2Nrev N@U (4.3.11)



Now expand the sum above using the binary representation of the summands as follows:

Z;\_[.revn( )ZZ ni (T)dl(;::l"(]:f@a))

=0 =0 k=1 I=1
1

N-1 n n
3 (§) duvii (5 @ 0)
-y Yy o (4.3.12)
=0 k=1 I=1
B n o n 1 N—-1 - r
=22 g 2 b (N) ntl l(N@U)
k=1 I=1 =0
Finally observe that if s,¢t € {1,2,...,n} then
N-1 ¥(1-dy(o), s=t
3 d, (l) d (l @ a) =7 (4.3.13)
— AN AN N
= T S % t.

Indeed, when s = ¢, the terms in the sum above are non-zero exactly when ds(§) = 1 and
ds(o) = 0, and hence the first equality. The case s # ¢ is similar.

Using (4.3.13) and (4.3.12) we get

N—-1 n
T T n 1 N 1 1
> gren (@) =57 de)+ T -3+ oy
7=0 k=1
which, combined with (4.3.11), completes the proof. O

Remark. We should point out that in [20] it has been shown that the L? norm of the
Discrepancy of the digit-scrambled van der Corput set depends only on the number of 1’s

in o, and not their distribution.
4.4 Haar Coefficients for the Digit-Scrambled van der Corput Set

In this section we will work with the digit-scrambled van der Corput set V, , as defined
in Section 4.3, where o € [0,1) is arbitrary and N = 2". We will just write Dy for the
discrepancy function of V,, ;. The following Lemma records the main estimate for the Haar
coefficients of Dy and is the core of the proof for the upper bounds in Theorems 4.1.5 and

4.1.8.

Lemma 4.4.1. For any dyadic rectangle R € D? we have

1
(Dn,hr)| < S
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We need to consider dyadic rectangles of the form R = [2’7, Z;‘—,}) X [%, %), where

k,l € Nand i€ {0,1,...,2F — 1}, 7 € {0,1,...,2" — 1}. The proof will be divided in two
cases, depending on whether the volume of R is ‘big’ or ‘small’.

We will use an auxiliary function to help us write down formulas for the inner product
of the counting part with the Haar function corresponding to the rectangle R. In particular,

¢ : R — R is the periodic function

{z}, 0<{z} <y
¢(z) =
1—A{z}, %<{$}<1,
where {x} is the fractional part of z. Observe that the function ¢ is the periodic extension

of the anti-derivative of the Haar function on [0,1]. See Figure 4.

Let p = (pz, py) € [0,1)%. A moment’s reflection allows us to write

R|o(2Fp.)o(2p,), € R,
(1101 = |R|6(2°p2)p(2'py), P £42)

0, otherwise.
We also record two simple properties of the function ¢ that will be useful in what follows.
First, for z € R,

o) + <Z><:r o ;) = % (4.4.3)

Second, ¢ is a ‘Lipschitz’ function with constant 1. For z,y € R,

[6(y) — o(x)] < Hy} — {=}]. (4.4.4)

Proof of Lemma 4.4.1 when |R| < %. We fix a dyadic rectangle R with |R| < %. We treat
the linear part and the counting part separately.

For the linear part we have that

2
ALY
42 ~ N

<LN) hR> =
Now notice that since k + 1 > n — 2, there are at most 2 points in V, , N R. Since ¢ is

obviously bounded by 1, formula (4.4.2) implies

(Cvoe b < RIS 6(22)0(2p,) < 4IRI £ +-

PEVR,oNR
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Figure 4: The graph of the function ¢.

Summing up the estimates for the linear and the counting part completes the proof. O

Proof of Lemma 4.4.1 when |R| > 4. The proof of the case |R| > 4 is much more involved
as this is the typical case where the rectangle contains ‘many’ points of the point set V;, ;.
Before going into the details of the proof we will discuss the structure of the set RNV, »
in order to organize and simplify the calculations that follow.

First, notice that the condition |R| > 4 implies that n — (k +1) > 2. In other words,
there are at least 4 points in the set R NV, , according to Proposition 4.3.7 and Remark
4.3.8. To be more precise, let us look at a point p = (x,y) € V. The z-coordinate can
be written in the form = = 0.x122... 2,1, where z; = d;(z), for i = 1,2,...,n. The first k
and the last [ binary digits of x are determined by the fact that x € R (Proposition 4.3.7).

That leaves us with at least 2 ‘free’ digits for x
T=0.21...Tp,*, ..., % Tp_141...2Tpl.

We group all points in V, , N R in quadruples according to the choices for the first and last
‘free* digits xx4+1 and x,_;. In particular, we consider quadruples (Q) of points in V,, , N R

with z-coordinates of the form:

0.%‘1 e X 0 Lht2 ooy Tp—]—1 0 Tp—]+1 - - ..%‘nl,
0.:L‘1 PN 0 Lh42 oy Tp—]—1 1 Tp—+1 - - - J,‘nl, (Q)
0.z1...2 1 g2 .-, Tn—1—1 0 Tp—yy1 ... 201,
Ox1...2x Lxpyo. ., Tp—g—1 1 Tp—g41... 251

on—(k+1)—2 _ NIE|
4

There are exactly such quadruples. Let’s index the quadruples Q
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(u,v) o

Figure 5: The quadruple Q.

arbitrarily as Q,, r=1,2,..., %. Observe that we can write
NIR|
NIRP? ¢ |R|
PEVn oNR r=1 \peQ,

The following Proposition exploits large cancellation within these quadruples.

Proposition 4.4.6.
|B| 1
R <
Z<1[ﬁ,1)’hR> 4 |~ N2|R|
PEQr
Let assume Proposition 4.4.6 for a moment in order to complete the proof of Lemma

4.4.1. Indeed, Proposition 4.4.6 together with equation (4.4.5) immediately yield

NIR|
<1 1
Dy, hg) < < —.
r=1
This completes the proof modulo Proposition 4.4.6. O

Proof of Proposition 4.4.6. For the proof of the proposition we will fix a Q = @, and
suppress the index r since it does not play any role. Suppose p = (u,v) is any of the points
with z-coordinate as in (Q) and y-coordinate v such that p € V, , . Then it is easy to see

that the quadruple (Q) consists of the four points which can be written in the form:
(u,v),

(u @27k 1 v @2 nth),

(w27 v @2l

(u@®2 " @2~k y@2nth gl

See also Figure 5.

We invoke equation (4.4.2) to write

> (L) he) - @ = 1BI( Y 62 )0 (2'py) - %) — |R|(S - i). (4.4.7)

PEQ PER
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We have

S = ¢(2"u)p(2')

o D)oo e 2

1
+ o2 e 2 ))e(2v & )
1 1
+ ¢(2ku fa 2k X 2—n+l D §)¢(2ZU D 2l . 2—n+kz o 5)

Using equation (4.4.3) we get
Y= i + [6(2%u) — ¢(2F(u @ 27" H))] [¢(2') — p(2' (v B 27" HF))].

Finally, using the fact the the function ¢ is Lipschitz (4.4.4) we have

1 1
S| <otk - 1
g <@ = i
This estimate together with equation (4.4.7) completes the proof. O

Lemma 4.4.1 has an analogue in the case of Haar functions h[ld?l]x ; and h?’xl[o,l]’ where

1,1

0,1]2 is the content of

I € D. Observe also that the inner product that corresponds to h

Lemma 4.3.10 of the previous section.

Lemma 4.4.8. For I € D we have the estimates

|<DN7 ho’l

0ol S,

(D, h°

LD S I

Proof. 1t suffices to prove just the first estimate in the statement of the Lemma. The proof
proceeds in a more or less analogous fashion as the proof of Lemma 4.4.1. We fix a dyadic
interval I = [2%, ’;r—kl) and write hy = h?’xl[o,u' We need an analogue of formula (4.4.2) which

in this case becomes

‘I’¢(2kpx)(1 —p )’ Pz € I,
(L) i) = ’ (4.4.9)

0, otherwise.
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As in the proof of Lemma 4.4.1, we need to consider separately the case of small volume
and large volume rectangles. The small volume case here is |I| < % Note that in this
case there are at most 2"7% < 2 points of the van der Corput set whose z coordinate lies
in I. Using equation (4.4.9) we trivially get the desired estimate as in the proof of the
corresponding case of Lemma 4.4.1.

We now turn to the main part of the proof, namely the estimate

1,0
‘(DN,h[X[071]>’ 5 ‘”7

when |I] > % Instead of the quadruples (Q), we now group the points of the van der

Corput set with z-coordinate in I, into pairs (P) of the form:

0.21...25 0 Tpya...2n1,

0.21...25 1 pyo... 2,1
If (u,v) is one of the two points in (P), we also have the description:
(u,v),

(P)
(w271, p @ 277k,

There are 2" %=1 such pairs and let’s index them arbitrarily as P, r = 1,2,...,2" 51,
We write
NI P NI
(Dxohiy= D> (g h)——g—= > > (pn.h) =~
PEVn,oNIX[0,1] r=1 pcP:

Now for any pair (P) we use (4.4.9) to write

Z<1Lﬁj)a hr) = |I| ¢(2ku)(1 — )+ || ¢(2k(u ® 271471))(1 —vd 27n+k)
pEP

= |I| [¢(2"u) + ¢p(2Fu @ 271)] (1 - )
|1 p(2Fu@ 27 (v—v @2
:%W“—vwﬂﬂ¢@%@ﬂ*>@_v@zm%»

where in the last equality we have used (4.4.3). Using the fact that |[v —v @27 "+k| = 2-n+k

and assuming d,,_x(v) = 0, it is routine to check that

1 2n7k71
(Dy, hg) = || {2 Y (l—v) -2y 0(1)}, (4.4.10)
r=1
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where v, are y-coordinates of the form
Vp = Oyvl ce Yn_k_loyn_k+1 ce ynl

The digits y,—k+1 up to y, are fixed because of the digit reversal structure of the van der

Corput set. We can then estimate the sum in the previous expression as follows:
2n—k—1

Z (1—v,)=2""k1_ %2”*’“*1 <1 - 2”*’““) +0(1) =224 00).

r=1
Substituting in (4.4.10) we get
(Dy, ) = |I| { (2" 52+ 0(1)) —2"k3+0(1)} < |,
which completes the proof. O

4.5 BMO Estimates for the Discrepancy Function

This section is devoted to the proofs of Theorems 4.1.7 and 4.1.8. We recall that the Dyadic
Chang-Fefferman BMO; 7 is defined to consist of those square integrable functions f in the

linear span of {hg : R € D?}, for which we have

1/2
- ,hR)?
||f||BMOL2 = sup ; |U| 1 Z <f|R1r>
vl ReD?
RCU

We begin with the proof of Theorem 4.1.7 which is essentially just a repetition of the

argument used in Proposition 4.2.13.

Proof of Theorem 4.1.7. We fix a distribution Ay of N points in the unit square and take

n such that 2N < 2" < 4N. For the special choice of U = [0,1]? we have

(Dn,hR)?
HDNHBMO12 = Z Z ’R|

reH,, ReRz
RNAN=0

Consider a rectangle R € R which does not contain any points of Ax. Then

(Dn,hg) = —(Ln,hg) = ——-.

As a result,

1
IDxlBNo0: 2 D D NURPZ & D H{RE Ry RNAy =0}
reH,, ReRz reH,
RNAN=0
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For fixed 7 € H,, we have ${ R € Rz, RNAx = (0} > N, arguing as in the proof of Proposition

4.2.13. Thus we get

IDN 0, 2 D 120
reH,

This completes the proof since n ~ log V. O
We proceed with the proof of the upper bound in Theorem 4.1.8. Our extremal set of

cardinality N = 2" will be V,, , for arbitrary o € [0,1), as defined in Definition 4.3.5. We

will just write Dy for the Discrepancy function of the digit-scrambled van der Corput set.

Proof of Theorem 4.1.8. We fix a measurable set U C [0, 1]? and consider only rectangles
R in the family {R € D?, R C U}. We will sometimes suppress the fact that our rectangles
are contained in U to simplify the notation.

The are two estimates that are relevant here, one for large rectangles and one for small
volume rectangles. For the large volume case, |R| > 27", we have

h h
U Z <D]\][,R|R _ Ul 122 Z DN, R)?

|R|>2—n k=0 el RER

SN7AUI- 122’“2 >,

= FeHy RER#
where we have used the estimate (Dy, hg) < + of Proposition 4.4.1. Now observe that for
fixed k and 7 € Hy, there are at most 2¥|U| rectangles R € R contained in U. Furthermore,

there are k choices for the ‘geometry’ 7 € Hj. We thus get

Dn~. h 2 n on 2
‘U|71 Z < N"R R> 5 N72Zk(2k)2 S.; n( ) — n.
Rz pad

In the small volume term we treat the linear and the counting parts separately.
For the linear part we use (4.2.14) to get (Ly,hgr) = 4 2N|RJ?. So we have

hRr) h
I SR TR DI S DRSS

|R|<2—™ k=n+17ecH, RERy

~ NYU|~! i d Py L

k=n+1FeHy, ReR-
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Now arguing as in the large volume case we have } p. 1 S 2k|U|, and thus
Ly, h
|U|—1 Z < ]\?R’R N2 Z k‘ —k;
|R|<2—" k=n+1
It remains to bound the counting part that corresponds to small volume rectangles, i.e.
2
1 (Cv,0oIR)
pr 3 G
|R|<2—™ | ’
Let R be the maximal dyadic rectangles R of area at most 27", contained inside U, and
such that hgr has non-zero inner product with the counting part. It is essential to note that

> IR < nlU]. (4.5.1)

ReR

Indeed, for each rectangle R € R, the function hp is, as we have observed, orthogonal to
each 1[]1 f) with § not in the interior of R. Thus, R must contain one element of the van
der Corput set in its interior. On the other hand V, , is a net so R contains exactly one
point. Now look at all the rectangles in R € R, R = R, x R,;, with a fixed side length |R|.
The length of this side must be at least 27" in order for the rectangle to contain a point
of the van der Corput set in its interior, so there are at most n choices for |R;|. On the
other hand, the rectangles in R with the same side length must be disjoint since they are
maximal and dyadic. Since they are all contained in U, their union has volume at most U.
Summing over all possible side lengths |R;| proves (4.5.1).
Now, we can write

DY <C""‘;%’, SUEDIDY

|R|<2™ RER R'CR

(Cv,, hr)?

R
Note that we have inequality instead of equality, since a rectangle R can be contained in
several maximal rectangles. However, this does not create any problem.

Let R € R be fixed and let pr be the unique point of V,, , contained in R. We can use
Bessel’s inequality to bound the inner sum:

<Ovn o-?th>2
> —rr = e il <RI
R'CR
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Thus, by (4.5.1)
_ (Cy,.hR)? _
v D R ST RIS
|R|<2™™ ReR

The proof is finished, since we have shown that for any measurable set U C [0, 1]?

1

1 <DN7hR>2 ? 1 ~
(‘U| RZDQ’R| 5712 _\/lOgN.
RECU

4.6 Orlicz Norm Estimates for the Discrepancy Function.

This section is constructed according to the following table:

Table 1: Orlicz Norm Estimates

Subsection Topic
4.6.1 Lower Bound
4.6.2 Upper Bound for N = 2"
4.6.3 Upper Bound in the General Case

4.6.1 Lower Bound

The proof is by way of duality and is very similar to Haldsz’s proof [17] of Schmidt’s
Theorem, see (4.1.3). Fix the point distribution Ay C [0,1]2. Set 2N < 2" < 4N, so that
n ~ log N. Proposition 4.2.13 provides us with r functions f» for ¥ € H2. Let G4, C H% be
those elements of H3, whose first coordinate is a multiple of a sufficiently large integer a.
We construct the following functions:
v= T @+ ). U=0-1.

FeG?

The ‘product rule’ 4.2.17 easily implies that ¥ is a positive function of L' norm one. In

fact, letting g = G2, it is clear that

n
U =291, P(E)=279.
Therefore, by Proposition 4.2.4,

1| £ 10 £)1/e = g/~ ptle
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The fact that (Dy, ¥) > n is well-known [17], [30]. In fact, if we expand

I
agh
=

k
\Ijk: Z Hfﬁgv

{Fl,...,Fk}CG% /=1

then, using the ‘product rule’ 4.2.17, it is not hard to see that we have

<DN,‘1’1>292

)

3

and the other, higher order terms can be summed up, using Propositions 4.2.15 and 4.2.16,
to give a much smaller estimate for a sufficiently large.

Thus, we can estimate
n < <DNa \Tj) S ||DN||exp(L°‘) : nl/a )
and so Theorem 4.1.4 holds.

4.6.2 Upper Bound in the Case N = 2".

In this section we shall obtain the upper bound of the exp(L?) norm of the discrepancy
of the digit-scrambled van der Corput set. We shall consider the case of N = 2", leaving
the general case to later. Lemma 4.3.10 tells us that we should choose V), , with half the
digits ‘scrambled’, i.e. Y 1, d;(¢c) = [n/2] — this will be the only restriction on ¢ and for
simplicity we shall assume that n is even. We expand Dy in the Haar series and break the

expansion into several parts (in view of our choice of o, h*! does not play a role in the

expansion):
(DN, hR) (Dn,h") 01 DN, L0
Dv= D g et 2 h+2 T
ReD? R=1Ix][0,1] =[0,1]x1
Dy, h Cy.h Ly, h
= Z 7< N R>hR+ Z 7< N R>hR* Z 7< N R>hR (4.6.1)
R:|R|>2—" |R| R:|R|<2—™ ‘R| R:|R|<2— ™ |R|
(Dn., B3 (D, hg)
+ ). 7’}2'3 M+ > 7|R|R hy (4.6.2)
R=Ix[0,1] R=[0,1]x1
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For the first sum in the expansion (4.6.1) above we have:

n—1
Dy, h Dy, h
H 3 <J|VR|R> il e < 3 <J|VR|R>hR 2
R:|R|>2—" k=0"R:|R|=2—F exp(L?)
1
n—1 5
(Dn, hg)?
< 1
Sl 3 P,
k=01l \ R:|R|=2"F o
n—1
1
S N'M-Qk%\/ﬁ,
k=0

where we have used the hyperbolic version of the Chang-Wilson-Wolff inequality (Theorem
4.2.8), the estimate of the Haar coefficients of Dy (Lemma 4.4.1), and the fact that each
point in [0, 1]? lives in k + 1 dyadic rectangles of volume 2.

The last sum in (4.6.1) is easy to estimate. Since (Ly,hgr) = 4 ¢N|R|?, we have:

fd k
H Z exp(L?) Z H Z N2 hR

Ri|R|<2—" =n R:|R|=2 exp(L?)
1
2
swzw( > 1)
k=n

R:|R|=2"%
o
SNY VE+1-27%~/n,
k=n

(LN, hR)

R "

o

where we have once again applied Theorem 4.2.8.
The second sum in (4.6.1) is the hardest. We consider rectangles R of volume |R| < 27™.
Recall that, in order for (Cn,hp) to be non-zero, R must contain points of V, , in the

interior. The structure of the van der Corput set then implies that we must at least have

|R1|,|R2| > 27 ™. For each such rectangle R, one can find a unique ‘parent’: a dyadic
rectangle RC [0,1]% with |§| = 27" Ry = Ry, and R C R. We can now write
Cn,hR) (CN, hR)
ISR TR D SEID SED DI LV TR
R:|R|<2—™ k=0 R:|R|=2-" RCR

|Ry|=2"% Ri=R:

A given rectangle R as above contains precisely one point (p1,p2) from the set V,, ;. Thus,

C ,h <h~ al ,1>
3 (ONR) 0, ) = Cpn) Rl his (1), (4.6.4)
< |R| |R1|
RCR
Ri=R;
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where

(hy, ) - ~
ZICRz i |1\2 — hf(‘TQ) - 1[p2 1](372 f§2 1[p2,1](x)dx/|R2|7 T3 € Ry,

0, T2 € ﬁg.
\

In any case, we have |Cz(z2)| < 2. Now we fix x5 € [0,1]. For fixed zo and Ry, there is a

unique R such that the sum in (4.6.4) is non-zero. Thus, using (4.6.3)

Cy,h Cx(z2)(hg , 1 1))
Z 7< NR R hr(x1,x2) Z Z R o (P11 hﬁl(m)

R:|R|227" Al k=0 Ry:|Ri|=2-F |51

-y oy m

k=0 Ry:|Ri|=2F [l

hﬁl (x1)>

where the Haar coefficient ap (z2) satisfies |ap (z2)] < |Ry|. Next, we apply the one-

dimensional Littlewood-Paley inequality in the variable x1:

(Cn,hg) g, ()2
| > (Cutay, ((x el

R:|R|>27" Ri:|Ri|>2—"

[NIE
IA
i
[N
S\

1
< p2
Lo (z1) ~P

Lp(z1)
We now integrate this estimate in xo to obtain
| 5 Gty
P 1 P
| R|>2-"
and thus

1
<n2
exp(2) ¥

| > Sen

R:|R|>2—™

in view of Proposition 4.2.2. Thus, we have estimated the exp(L?) norms of all the terms in
(4.6.1) by nz. The estimates for (0,1) and (1,0) Haars in (4.6.2) can be easily incorporated,
invoking similar one-dimensional arguments and Lemma 4.4.8. We skip these computations

for the sake of brevity. We thus arrive to

HDNHQXP(LQ) S, f ~ \/m

Proposition 4.2.9 and inequality (4.3.9) finish the proof of Theorem 4.1.5 for all o > 2.
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4.6.3 Upper Bound in the General Case.

We use a standard argument to generalize the previous proof to the case of arbitrary V.

Fix 2"71 < N < N’ = 2". Set % <t=N2"4+2"""1 < 1. Consider the following function
AN(CCl,l‘Q) = DN/(t.’El, xg) — %1‘1 “Zo, (.’El, :EQ) € [07 1]2 .

Here, Dy is the Discrepancy Function of a shifted van der Corput set V, . (The ‘—%xl 29’
above arises from the precise definition of the van der Corput set.)

The observation is that Ay is in fact the Discrepancy Function of the set of points
{vne(r) : 7=0,1,..., N}, where this notation is given in Definition 4.3.5. For the linear

part of the Discrepancy Function, note that
N/(tl'l) cTr9 — %1’1 Xy = le I .

And for the counting part, note that 1y, (r)1)(tx1,72), restricted to [0, 1]2 will be the
indicator of a rectangle with one corner anchored at the upper right hand corner. Moreover,
it will will be identically zero on [0, 1]? iff N < 7 < N’. Thus, Ay is a Discrepancy Function.

So it suffices for us to estimate the exp(L®) norm of Ay. But this is straight forward.

[ANlexp(rey < 1+ [[Dnr(tz1, 2) [ exp(ze)

< 1+t Dy (@1, 22) [lexpre)y S (log N)Me 2< <00,

Remark 4.6.5. We make a final remark on the other upper bound of the dyadic BMO
estimate of the digit-scrambled van der Corput set in Theorem 4.1.8. It is natural to guess
that this estimate should hold for all N, and for BMO. A natural way to prove this is
via the approach developed in [39],[47], but carrying out this argument is not completely

straight forward.
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CHAPTER V

RECOVERING SINGULAR INTEGRALS FROM HAAR SHIFTS

5.1 Introduction.

We will represent one-dimensional Calderén-Zygmund convolution operators with suffi-
ciently smooth kernels /see conditions (5.2.5), (5.2.6)/ by means of a properly chosen av-
eraging of certain Haar shift operators with bounded coefficients. By Haar shift operators
we mean linear operators that can be expressed in an efficient manner with the Haar basis
/see Remark (5.2.8)/.

The use of Haar shift operators to represent singular integral operators goes back to the
work of T.Figiel [16]. Later S. Petermichl derived a representation of the Hilbert transform
[36]. Similar representations were derived for Beurling [12], Riesz [35] transforms and the
truncated Hilbert transform (S. Petermichl, oral communication). The reason why these
representations are useful is that one can deduce deep facts about singular integral oper-
ators, based on the analysis of Haar shift operators. In Petermichl’s original paper [36]
a deep property of Hankel operators associated to matrix symbols was deduced. These
representations also allowed to deduce the linear As bound for the Hilbert [34] and Riesz
transforms [37]. The study of the Haar shift operators is interesting in itself [31],[33], and
has become an important model of the singular integral operators /see for instance their
use in [26],[25]/.

To illustrate this, as a corollary to the main result of this chapter, Theorem (5.2.4)
below, and the main result of [23], we see that we have a proved a sharp Ay inequality for

the Calderon-Zygmund operators, a question of current interest:

Corollary 5.1.1. Let

T(f)(x) = PV. /R K(z — 1) f(t)dt

be a one dimensional Calderon-Zygmund convolution operator whose kernel K is odd and
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satisfies (5.2.5) and (5.2.6), then

ITfllzow) S lwllaslfllaw)-
By ||w|| 4, we mean the As constant of the weight w. (See [34],[27] for a definition.)
This generalizes the result of S. Petermichl, obtained for the Hilbert transform [34], and

improves the estimates of A. Lerner, S. Ombrosi and C. Perez (equation 1.9 in [27]) for

these particular type of Calderon-Zygmund operators.

5.2 Formulation of the Result.

In order to formulate the main theorem of this chapter we introduce some notations.
For any 3 = {3} € {0,1}? and for any r € [1,2) define the dyadic grid D, 5 to be the

collection of intervals

D, g = {rzn ([0; D+k+> 2“%) }
<n n€Z,kEZ

This parametrization of dyadic grids appears explicitly in [19], and implicitly in section 9.1
of [32]. Note, that the dyadic grid we use is different from the one used in [36].

Place the usual uniform probability measure P on the space {0, 1}%, explicitly
1
P(ﬁ:ﬂlzo):P(ﬂ:ﬂlzl)zi, for all [ € Z.

We define two functions. Take h to be the function supported on [0, 1] defined by

¢

7, 0<z<1/4,

“1, 1/4<z<1/2,

h(z) = (5.2.1)
1, 1/2<uz<3/4,

=7, 3/4<x<1.

and ¢ to be the function supported on [0, 1] defined by

-1, 0<z<1/4,

1, 1/4<z<1/2,

g(x) = (5.2.2)
1, 1/2<uz<3/4,

~1, 3/4<z<1.
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Note that the function g appears in [36] paired with the usual Haar function. In contrast,
our function h, defined by (5.2.1), differs a little bit from the Haar function. In some sense,
our choice of the function h makes the convolution A * g ’less smooth’, and this property will
be crucial for the proof. We’ll make this statement precise in (5.3.12), which will permit us
to invert a Fourier transform.

For any function f and any interval I = [a;a + ] we define the function f; to be the

scaling of f to I which preserves the Lo-norm, namely

f1(@) = flaatn = \1flf <x ; a) : (5.2.3)

Now we are ready to state our main theorem:

Theorem 5.2.4. Let K : (—00,0) U (0,00) — R be an odd, twice differentiable function (in

the sense that K' is absolutely continuous) which satisfies

lim K(z) = lim K'(z) =0 (5.2.5)
and
23 K" (2) € Loo(R). (5.2.6)

Then there exists a coefficient-function v : (0,00) — R, satisfying
I7lloe < Cllz* K" ()00

so that

2 dr
Ke=p= [ [0S A met) T (527)

IEDTﬁ

for all x #y. Here C is some absolute constant and the series on the right of (5.2.7) is a.e.

absolutely convergent.

Remark 5.2.8. Note, that for for fixed r, 3, and a function v € Lo (R), the linear operator

Fe= >0 AT gr, fha(x)

IGDT,[}

is an example of a Haar shift operator as defined in [23]. Note that this operator, expressed

as a matrix in the Haar basis, has a bounded diagonals, but is even better than that: one
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only needs to use Haar coefficients associated with dyadic intervals that intersect and have

lengths that differ by at most a factor of 2.

5.3 Proof of the Recovering Theorem

5.3.1 Derivation of an Integral Equation.

The following lemma derives a concise formula for properly averaged Haar shift operators:

Lemma 5.3.1. Suppose the functions h and g are defined by (5.2.1),(5.2.2) and suppose

v € Loo(Ry). Then for any x # y, we have

/{071} /1 A1) hr)gr (o) 2 B () = /Ooo’ﬁ;”)m*gl) <x;y> & (532

I1eD, 5
where g1(z) = g(—x), and the functions hr, g; are defined by (5.2.3). Here the series on the

left of (5.3.2) is a.e. absolutely convergent.

Remark 5.3.3. This lemma appears in [19] for the case v = 1.

Remark 5.3.4. The notation g; is introduced in the right hand side of (5.3.2) to emphasize

the role of convolution.

Proof. The following calculation justifies the a.e. convergence of series,

Y WD i@ W) < o Y [hi(@)gr(y)] <

IEDr,ﬁ IGDT,B
zel, yel
2[[ylloollPllo g
< llsollhlloollgllos > m < Tx _OO’ =
IeD,. Y
zel, |11>]o—y|
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Now recalling the definition of the dyadic grid D, g we get

/{ . / A (@)gr ()2 a(3)

I€D,. B

:/01} /1 ZZ’YTQ” <r926"_k 221 n@) (n_k ZT n@) Zap(a)

keZ neZ <n <n

[T [ G e
Z / :22: 1) (xr;"y> %

nez

"L e ()

ne’

_/0 'Yg)(h*gl) <””T_y> dr.

O]

Having this lemma at hand, the claim of theorem 5.2.4 is equivalent to the following:
For h and g defined by (5.2.1) and (5.2.2), find a function v € L (R) which would satisfy

the following integral equation

K(z) = /OOO 7g)(h 1) (%) dr, (5.3.5)

for all x > 0. The case z < 0 would be satisfied automatically as both K and h * g; are

odd.
5.3.2 Derivation of Recursive Equation

In this step we’ll use the functional equation (5.3.5) to get a recursive equation (5.3.7) for
the coeflicient function ~.

Differentiating (5.3.5) twice, we get

o
neN v(r) n(x
K (9”)—/0 1 (hxg1) (r)dr, x> 0.
or equivalently
K" (x) = / 2y ( ) (h*g1)"(t)dt, — x>0. (5.3.6)
0
Using the definitions (5.2.1),(5.2.2) for h and g, we see that h* g; is a continuous, piecewise

linear, odd function. The graph of h * g; on the positive axis is illustrated in Figure 1.
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—5/4
-2
Figure 6: h * g; on the positive axis.

Thus, the function (h * g1)” is a linear combination of Dirac measures, which one can

calculate from the graph above, in particular
(h*g1)"(x) =25(x — 1/4) + 185(x — 1/2) — 226(x — 3/4) + 76(x — 1), x>0,

where ¢ is the usual Dirac delta function centered at the point 0.

With this, (5.3.6) becomes
- 1\? 1\? 3\? /4
K" (x) =2 1 v(4z) 4+ 18 5 v(2x) — 22 1) 7\3® +7v(z), x> 0. (5.3.7)
Let’s modify (5.3.7) to a form, which will be more convenient to us. Denote
m(x) = 3 K" (&%),

and
c(x) = y(e*). (5.3.8)
In terms of these new notations the equation (5.3.7) becomes

m(z) = te(z+n4)+5c(z+n2)—22 (%)2 c(z+1n(3))+7c(z), —o00 < x < oo. (5.3.9)

The condition (5.2.6) of theorem 5.2.4 provides that m € Lo (R). We want to find ¢ €

Lo (R) which would solve (5.3.9).

Remark 5.3.10. In the case of Hilbert transform we have m(z) = 2, thus a constant function

c(x) = C for a proper constant C' would solve (5.3.9).
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5.3.3 Fourier Transform

We’ll use Fourier transform in order to solve the recursive functional equation (5.3.9). (Here
we’ll deal with Fourier transform of L., functions, which is understood in a distributional
sense. )

Apply Fourier transform to both sides of (5.3.9) to get
m*(w) = a(w)c*(w), (5.3.11)

where

1 iwlnd | 9 iwln2 32iwln<4)
a(w) = g+ 5T =22 ) e 34 17.

Now the function a is a Fourier transform of a finite Borel measure on R. Also note the
following important property of a: our choice of functions kA and g provided that one of the

terms of a dominates the rest

5 3\’ 1 9 5
128 =22(3) >g+5+7=113 (5.3.12)

In particular, we have |a(w)| > 2 for all w.

Recall that the space of Fourier transforms of finite Borel measures on R, equipped with
the Lo, norms of these Fourier transforms, is a Banach algebra under pointwise multiplica-
tion. Therefore a is invertible, too. (The inverse of a can be written in terms of a Neumann
series of exponents.) But this means that a~! is a multiplier of the space Lo (R). Hence,
there exists a function ¢ € Lo (R), which solves the equation (5.3.11) and ||¢/lec < C||m|co
(for some absolute constant C'). Using (5.3.8) we can further restore the coefficient-function
~. It would solve the integral equation (5.3.6) and would satisfy the same bound as the
function ¢, i.e.

[Vlloo < Cllmn|co-

This fact, along with the conditions (5.2.5) on kernel K is sufficient to make the integral in

equation (5.3.5) convergent, and to justify the passage from (5.3.6) back to (5.3.5).

Remark 5.3.13. The conditions (5.2.5) and (5.2.6) are somewhat necessary. Indeed, if some

functions h, g : [0,1] — R are constant on all dyadic intervals with sufficiently small length
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and if the coefficient function v is in Loo(R) then the lemma (5.3.1) still holds. Thus,
whatever kernel K is restored by the averaging of corresponding Haar shift operator, it
must satisfy (5.3.5) and (5.3.6). If additionally % is odd and g is even with respect to the
point 1/2, then h * g would be a piecewise linear function with bounded support, vanishing

at 0. So, (5.3.5) and (5.3.6) would imply that K has to satisfy (5.2.5) and (5.2.6).
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